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Zusammenfassung (Summary in German)

Die gegenseitige Wechselwirkung vieler Teilchen kann kollektives Verhalten hervor-
rufen, welches von der Betrachtung einzelner Teilchen unerwartet ist. Solch qualitativ
neues, emergentes Verhalten umfasst zum Beispiel nichtlineare Rückkopplung, Pha-
senübergänge und Kondensation. In meiner Promotionsarbeit präsentiere ich unsere
Analysen zweier stochastischer Vielteilchensysteme, in denen die Wechselwirkung
vieler Teilchen zu Kondensationsphänomenen führt.

I Kondensation in evolutionären Nullsummenspielen und in offenen, bosonischen
Quantensystemen mit Markus F. Weber, Torben Krüger und Erwin Frey.
Das erste Projekt ist motiviert durch Nullsummenspiele in der evolutionäeren Spiel-
theorie und deren Anwendung auf die Kondensation von nicht-interagierenden Boso-
nen in periodisch getriebenen und dissipativen Quantensystemen. Wir haben erklärt,
wie es in dem stochastischen Vielteilchenprozess, der dem Nullsummenspiel zugrunde
liegt, zur Kondensation in mehrere Zustände kommen kann. Diese Kondensation
kann als eine Verallgemeinerung der Bose-Einstein Kondensation ins Nichtgleichge-
wicht verstanden werden. Aus mathematischer Sicht ist der Kondensationsprozess
durch die antisymmetrische Lotka-Volterra Gleichung beschrieben, deren Langzeit-
verhalten wir charakterisiert haben. Die Ergebnisse dieses Projektes haben zu zwei
Publikationen geführt, die dieser Doktorarbeit angefügt sind.

II Kontrolle von Heterogenität in Bakterienpopulationen durch chemische Kom-
munikation mit Matthias Bauer, Matthias Lechner, Peter Pickl und Erwin Frey.
Bakterien können mit Hilfe chemischer Moleküle, so-genannter Autoinduktoren,
kommunizieren und damit kollektives Verhalten bei der Virulenz oder Biolumines-
zenz steuern. Mit bisherigen Erklärungsmodellen war es konzeptionel schwierig
zu erklären, dass Bakterien in einer Population solche Autoinduktoren in unter-
schiedlichen Mengen produzieren können und trotzdem kollektives Verhalten in
der Population gesteuert werden kann. Im zweiten Projekt schlagen wir daher einen
Mechanismus vor, der experimentelle Beobachtungen zur heterogenen Produktion
von Autoinduktoren in Bakterienpopulationen erklären könnte. Aus theoretischer
Sicht kommt es in unserem stochastischen Vielteilchenmodell zu einer Aufteilung
der Population in zwei stabil koexistierende Unterpopulationen (zwei Kondensat-
zustände). Verursacht wird der Kondensationsprozess durch die Veränderung der
Umwelt, die durch die Autoinduktoren-Produktion der Bakterien bestimmt ist, und
der Anpassung der Bakterien an diese Umwelt. Die mathematischen Aspekte dieses
Modells liefern darüber hinaus einen Beitrag zur qualitativen Rolle von langreichwei-
tigen Wechselwirkungen in der statistischen Physik. Die Ergebnisse dieses Projektes
befinden sich derzeit im Peer-Review-Prozess.
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Overview of the thesis

My thesis deals with two stochastic many-particle models in which the creation and
annihilation of particles induce condensation phenomena if the number of particles
is large. Even though a broad set of states is accessible to the particles, interactions
lead them into only a subset of states, the condensate states. In other words, an
initially complex system evolves into fragments over time. This thesis is organized
into two parts according to the two projects that I worked on during my doctoral
studies. The two theoretical models are motivated by their respective application
to (I) nonequilibrium statistical physics of open quantum systems and evolutionary
game theory, and to (II) microbial population dynamics. An overview of the two
projects is provided in the following.

I Evolutionary games of condensates in stochastic many-particle processes
with Markus F. Weber, Torben Krüger, and Erwin Frey.
In this project, we explained condensation phenomena that arise in evolutionary game
theory of zero-sum games and open quantum systems. Our results explain the forma-
tion of multiple condensates in driven-dissipative systems of non-interacting bosons,
which constitutes a generalization of Bose-Einstein condensation to nonequilibrium.
From a mathematical point of view, this condensation is captured by the antisym-
metric Lotka-Volterra equation. Our results are published in the two publications
“Coexistence and survival in conservative Lotka-Volterra networks”, Phys. Rev. Lett.
110(16), 168106 (2013) and “Evolutionary games of condensates in coupled birth-
death processes”, Nat. Commun. 6, 6977 (2015). I contributed to both publications
as first author. The publications are reprinted in sections 4 and 5 of chapter I (also
reprinted in the PhD thesis of Markus F. Weber). Sections 1–3 of chapter I provide
an overview of our results.

II Ecological feedback in quorum-sensing microbial populations
with Matthias Bauer, Matthias Lechner, Peter Pickl, and Erwin Frey.
In this project, we proposed a theoretical model that accounts for the existence and
stability of phenotypic heterogeneity in the production of autoinducers in microbial
populations. Autoinducers mediate the density-dependent collective response of
microbial populations known as quorum sensing. We showed that the coupling
between ecological and population dynamics through quorum sensing facilitates
phenotypic heterogeneity. At present, one manuscript incorporating our results is
under review for publication, for which Matthias Bauer and I share co-first authorship.
Our main results are presented in sections 1–4 of chapter II.
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Abstracts of the projects

When individual entities form a collective, the whole may evolve qualitatively differ-
ently than expected for the sum of its isolated entities (“more is different” [1]). The
interaction between individual entities may lead to novel, and sometimes counter-
intuitive, properties at the level of the collective such as nonlinear feedback, phase
transitions, and condensation phenomena. How collective behavior emerges in sys-
tems with many entities and how it can be mathematically described are central to
biological and statistical physics.
During my doctoral studies, I worked on two stochastic many-particle models in
which particles condense into a subset of the accessible states of the system. The first
of these models (chapter I) was formulated in the framework of zero-sum games in
evolutionary game theory. We showed that this model explains the condensation
of non-interacting bosons in a periodically driven and dissipative set-up, which was
proposed theoretically only recently. The second stochastic many-particle model
(chapter II) was developed in the context of microbial population dynamics and
can also be formulated in the framework of evolutionary game theory. For both
models, the model-specific interactions between the particles guide the particles into
a certain subset of states during a realization of the stochastic process provided that
the number of particles is large. The congregation of particles into certain states can
be interpreted as a condensation process. We explored the conditions under which
thermodynamic equilibrium is approached in the respective stochastic processes,
and under which conditions the processes remain out of equilibrium and approach
so-called nonequilibrium steady states. For each of the two models we determined the
condensate states and answered how they are selected from the set of accessible states
of the system. In the first model, the number of accessible states is finite, whereas it is
a continuum in the second model. We explained the condensation processes in both
models by a rigorous mathematical analysis and identified the specific interactions as
the driver of condensation. For the first model, an antisymmetric rule in the pairwise
interactions determines condensation: the amount of gain for one state equals the
loss of another state. For the second model, effective global interactions between the
particles are responsible for condensation: every particle communicates with every
other particle in the population.
Beyond their applications to physics and microbiology that are described below, our
two models show that simple microscopic interactions between particles can yield
emergent — and to some degree surprising — condensation behavior on a macroscopic
level of description.
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I Evolutionary games of condensates in stochastic many-particle processes
with Markus F. Weber, Torben Krüger, and Erwin Frey.

Summary
The first project of my thesis deals with a stochastic many-particle model with
which we explained a generic class of condensation phenomena that arise in both
classical and quantum systems. Interestingly, this condensation does not proceed
into a single, but into multiple states in a single realization of the stochastic pro-
cess. Only recently has it been shown that this stochastic many-particle process
governs the coarse-grained dynamics of a periodically driven and dissipative system
of non-interacting bosons. This process can be understood as a generalization of
Bose-Einstein condensation to nonequilibrium. We showed that the condensation
of bosons in such a driven-dissipative, nonequilibrium system corresponds to the
selection of strategies in evolutionary game theory. By combining analytical concepts
from the theory of stochastic processes, nonlinear dynamics, and linear programming
theory applied to antisymmetric matrices, we explained how multiple condensates
form in the stochastic process. Furthermore, we proposed the possibility of conden-
sates with oscillating occupations. We found that the condensation dynamics follow a
simple physical guiding principle: the vanishing of relative entropy production guides
the selection of condensates. How this condensation of bosons in nonequilibrium
and the design of oscillating condensates may be realized with an open quantum
system is an interesting challenge for future experiments.

Background information
A quantum particle is either a fermion or a boson. Whereas two fermions cannot
occupy the same quantum state (Pauli exclusion principle), many bosons may cluster
in the same quantum state. One dramatic consequence of these different quantum
statistics was predicted on theoretical grounds by Bose and Einstein in 1924 upon
studying a system of non-interacting bosons in thermodynamic equilibrium [2–4].
They showed that a macroscopic fraction of the bosons can cluster into the ground
state of the system if the temperature of the heat bath is tuned below a critical value.
This phase of matter, commonly referred to as a Bose-Einstein condensate, was exper-
imentally realized with ultra-cold atoms for the first time in 1995 [5, 6].
How the concept of Bose-Einstein condensation extends to nonequilibrium systems
has remained an intriguing question. Only recently has it been proposed theoretically
that a system of non-interacting bosons driven by a time-periodic potential and weakly
coupled to a heat bath may provide a suitable set-up for such a study [7]. The dynam-
ics of this quantum system is effectively incoherent, that is, it can be described in terms
of a stochastic many-body process on a coarse-grained time scale. Interestingly, it was
observed in numerical studies that condensation in such a nonequilibrium set-up may
not only proceed into a single condensate state, but into multiple condensates [7].
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Research question
In this project we wanted to understand how multiple condensates form in the
stochastic many-particle process that governs the dynamics of non-interacting bosons
in driven-dissipative systems. How does this condensation proceed and what is the
physical principle guiding the selection of condensates?

Summary of our findings
Correspondence between evolutionary game theory and bosonic condensation out of
equilibrium. As a first result, we established the correspondence between the dy-
namics of the bosonic condensation and the selection of strategies in evolutionary
zero-sum games. Strategies that prevail in an evolutionary zero-sum game correspond
to the quantum Floquet states that become the condensates in a periodically driven
and dissipative system of non-interacting bosons. Both phenomena are described by
the same stochastic birth-death process, which is also known as the inclusion process.
Furthermore, we characterized the condensation dynamics in this stochastic process.
We explained how multiple condensates form, and which of the states become the
condensates. Our results were published in “Evolutionary games of condensates in
coupled birth-death processes”, Nat. Commun. 6, 6977 (2015), and are reprinted in
section 5 of chapter I.
Condensation is described by the antisymmetric Lotka-Volterra equation (ALVE). We
found that the dynamics of the stochastic many-particle process evolves on two sepa-
rate time scales if the number of particles is large. The dynamics on the first time
scale, which grows proportionally with the particle number, determines the outcome
of the condensation. On this time scale, the temporal evolution of the stochastic
process is governed by a set of nonlinearly coupled, ordinary differential equations
that we refer to as the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is
characterized by antisymmetric, pairwise interactions between the states. The rates
with which mass is exchanged between the states are determined by an antisymmetric
matrix. On the second time scale, the properties of the eventual stationary state
of the stochastic process are determined. Depending on the antisymmetric matrix,
absorbing states, thermodynamic equilibrium, or nonequilibrium steady states are
approached at long times.
Condensation in the ALVE. We found that condensation in the dynamics of the ALVE
is fully determined by the defining antisymmetric matrix. We formulated an algebraic
characterization of antisymmetric matrices to determine whether the ALVE allows
the stable coexistence of all states, or whether and how it breaks up into a reduced
subset of states. This subset of states is the set of condensates that is approached
independently of the choice of initial conditions. In other words, the manifold
spanned by the set of condensates is a global attractor of the dynamics defined by the
ALVE. We proved that the condensation dynamics in the ALVE generically proceed
exponentially fast, meaning that the manifold of condensates is approached exponen-
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tially fast. This fragmentation of the state space is caused by the vanishing of relative
entropy production. The vanishing of this collective quantity guides the selection
of condensates as the underlying physical principle. Furthermore, we demonstrated
how one can design systems that evolve into specific sets of condensates. For example,
we formulated conditions on the antisymmetric matrix such that the resulting set
of condensates exhibits a rock-paper-scissors network topology. In this set-up, the
dynamics never come to rest, but perpetuate in an oscillating manner.
Our algebraic method of determining the condensates can be formulated as a problem
in linear programming theory for antisymmetric matrices, and identifies so-called
condensate vectors of antisymmetric matrices. These condensate vectors can be
thought of as generalized kernel vectors that are specific to antisymmetric matrices;
they determine which of the states become the condensates. By numerically exploit-
ing our analytical insight into the condensation dynamics, we were able to study the
ALVE for ensembles of large random networks of states. We found that the average
number of condensates reaches a maximum at a critical value of the connectivity of
the random network. This critical connectivity decreases as a power law when the
number of states in the network is increased. The criticality of random networks
thereby translates into a critical behavior of the condensation dynamics of the ALVE.
Coexistence of all states in the ALVE. In a previous study, we also characterized the
conditions under which all states coexist as condensates in the ALVE, that is, none
of the states becomes depleted. These conditions can be formulated in terms of
Pfaffians of submatrices of the antisymmetric matrix occurring in the ALVE. The
Pfaffian of an antisymmetric matrix is a determinant-like function tailored to an-
tisymmetric matrices. We also showed how linearly independent kernel elements
of the antisymmetric matrix give rise to independent conserved quantities. These
conserved quantities restrict the trajectory defined by the ALVE onto a manifold that
is diffeomorphic to a sphere of odd dimension. Using these conserved quantities, we
demonstrated how one can construct periodic orbits in the ALVE for networks with
an arbitrary number of states. Finally, we discussed the implications of our findings
for the stochastic process of zero-sum games in evolutionary game theory without
mutations in finite populations. We investigated how bifurcations in the ALVE affect
the stochastic process. Bifurcations in the ALVE can be evoked by tuning entries
of the antisymmetric matrix. For finite populations, the distance to a bifurcation
affects the time until the first state has become depleted. We found that this depletion
time diverges in the vicinity of critical parameter values for which coexistence of all
states is obtained in the ALVE. Away from a bifurcation, the depletion time increases
logarithmically with the number of particles as expected from a deterministic analysis,
whereas it increases linearly with the number of particles at the bifurcation. We
discussed these effects by using the rock-paper-scissors-lizard-spock network topol-
ogy as an example. The analysis of coexistence scenarios in the ALVE and their
consequences for the divergence of timescales in the vicinity of bifurcations were
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published in “Coexistence and survival in conservative Lotka-Volterra networks”,
Phys. Rev. Lett. 110(16), 168106 (2013), and are reprinted in section 4 of chapter I.

Relevance of our findings and prospects for future research
In the context of non-interacting bosons in periodically driven and dissipative set-ups,
our results may be of experimental relevance. Periodic energy input and dissipation
in open quantum systems may balance such that bosons aggregate into multiple
quantum states. Given the experimental parameters of such a set-up, our results
provide a theoretical method to determine which of the quantum states become the
condensates. Moreover, we predicted the possibility of condensates with an oscillating
occupation of bosons. We showed how one can tune the transition rates of bosons
between states such that a rock-paper-scissors game of condensates emerges. How
such oscillating condensates may be realized in an experimentally controlled open
quantum system remains, at present, a challenge for future research.
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II Ecological feedback in quorum-sensing microbial populations
with Matthias Bauer, Matthias Lechner, Peter Pickl, and Erwin Frey.

Summary
The second project of my thesis deals with a stochastic many-particle model whose
applications range from microbial population dynamics to statistical physics and
mathematical physics. We showed that the coupling between ecological and popu-
lation dynamics through quorum sensing may induce phenotypic heterogeneity in
the production of autoinducers in microbial populations. Our theoretical model and
our mathematical analysis qualitatively explain recent experimental observations in
microbial population dynamics and challenge currently accepted views on the origin
of phenotypic heterogeneity in quorum-sensing microbial populations. Future exper-
iments are needed to verify or falsify our model assumptions and predictions, and to
clarify the role of the identified ecological feedback for phenotypic heterogeneity in
quorum-sensing microbial populations.

Background information
Microbes can communicate with each other by making use of a chemical language [8,
9]. They produce so-called autoinducers, which are small signaling molecules, and
secrete those molecules into the environment. These molecules are sensed by other
microbes in the population, in turn. Upon responding to the sensed level of autoin-
ducers in the environment, a coordinated gene expression of all cells of the population
can be triggered. Such collective behavior of microbes is commonly referred to as
“quorum sensing” and comprises, for example, the coordinated and collective expres-
sion of genes for virulence, biofilm formation, and bioluminescence. Elucidating the
mechanisms that control the production of autoinducers and the level of autoinducers
in the environment is, thus, pertinent to understanding such collective microbial
behavior.
Recent experiments suggest that the production of autoinducers may vary between ge-
netically identical cells in a population in that some cells of the population expressed
autoinducer synthase genes during microbial growth, while others did not [10, 11].
This behavior is referred to as phenotypic heterogeneity [12]. The stable coexistence
of different phenotypes in one population may serve the division of labor or act as
a bet-hedging strategy and, thus, may be beneficial for the survival and resilience
of a microbial species at long time scales. However, the experimentally observed
phenotypic heterogeneity in the autoinducer production is not expected to occur in
well-mixed populations if currently favored threshold models for quorum-sensing
response are adopted.

Research question
In this work, we asked how phenotypic heterogeneity in the production of autoin-
ducers is established in quorum-sensing microbial populations. How can a microbial
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population control phenotypic heterogeneity of autoinducer production and, con-
comitantly, tightly adjust the average production level in the population to trigger
quorum-sensing functions such as virulence?

Summary of our findings
The quorum-sensing model. We studied the collective behavior of a stochastic many-
particle model of quorum sensing, in which cells produce autoinducers to different
degrees and secrete those into a well-mixed environment. Autoinducers become
thereby shared amongst all individuals. On the one hand, production of autoinducer
molecules and accompanied gene expression are assumed to be metabolically costly
such that non-producers reproduce faster than producing cells. On the other hand,
we assume that cells can up-regulate their autoinducer production by a sense-and-
response mechanism through quorum sensing. That is, individuals can increase their
production in response to the sensed average production level in the population.
The central feature of the quorum-sensing model is that individuals shape their envi-
ronment (through the production of autoinducers) and respond to this self-shaped
environment (by changing the individual production of autoinducers), in turn. Thus,
ecological and population dynamics are coupled in the quorum-sensing model.
Phenotypic heterogeneity in the autoinducer production through the coupling of ecologi-
cal and population dynamics in quorum-sensing microbial populations. We found that
the coupling between ecological and population dynamics through quorum sensing
can control a heterogeneous production of autoinducers in microbial populations.
The population may split into two subpopulations: one with a low, and a second with
a high production of autoinducers. This phenotypic heterogeneity in the autoinducer
production is stable for many generations. At the same time, the overall autoinducer
level in the environment is robustly self-regulated by how cellular production is
up-regulated. Thus, further quorum-sensing functions such as virulence or biolumi-
nescence can be triggered in the population. If cellular response to the environment is
absent or too frequent, phase transitions occur from heterogeneous to homogeneous
populations in which all individuals produce autoinducers to the same degree. Our
results show that, if microbes sense and respond to their self-shaped environment,
the population may not only respond as a homogeneous collective as is typically
associated with quorum sensing, but may also become a robustly controlled collective
of two different subpopulations.
Mean-field analysis of the quorum-sensing model explains phenotypic heterogeneity at the
population level. To mathematically capture the numerically observed phenotypic
heterogeneity in the autoinducer production, we developed a kinetic theory of the
quorum-sensing model in three steps.
(i) First, we heuristically derived the mean-field equation of the quorum-sensing
model that captures the microbial population dynamics on a macroscopic level. We
refer to this mean-field equation as the autoinduction equation, which describes how
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the distribution of production degrees in the population evolves in time.
(ii) Second, we proved that and quantified how the stochastic process converges
to this mean-field equation as the population size grows to infinity. To this end,
we introduced an auxiliary stochastic mean-field process that mimics the temporal
evolution of the mean-field equation and updates the individuals’ production degrees
in an independent manner. This way, the law of large numbers is separated from
the propagation of errors that build up due to correlations between the production
degrees of the individuals. The proof for the autoinduction equation gives concrete
error bounds for the quality and the speed of convergence of the stochastic process to
the mean-field equation. These error bounds depend on the population size and initial
correlations. Furthermore, our proof shows that the convergence to the mean-field
equation is robust against changes of microscopic details in the definition of the
stochastic process.
(iii) Third, we analyzed the mean-field equation and explained both homogeneous
and heterogeneous states of the population. Depending on how growth rate dif-
ferences between producers and non-producers balance with the response rate to
the environment, homogeneous (unimodal) or heterogeneous (bimodal) stationary
distributions are approached at long times. These stationary distributions can be
interpreted as condensation-like solutions of the mean-field equation. The existence
and the stability of heterogeneous stationary distributions is a consequence of the
feedback between ecological and population dynamics, which effectively introduces
long-range interactions between the individuals of the population. Furthermore, we
explained the transitions from heterogeneous to homogeneous distributions in terms
of nonequilibrium phase transitions.
In total, our mathematical analysis shows that phenotypic heterogeneity arises dy-
namically in the quorum-sensing model and that it is robust both against changes in
the definition of the stochastic many-particle process (how up-regulation and growth
rate differences are implemented) and against perturbations and demographic noise
of the stochastic dynamics.

Relevance of our findings and prospects for future research
We expect that our results will have applications in the field of microbiology at
the interface between phenotypic heterogeneity and quorum sensing in microbial
populations, and in the field of theoretical physics with focus on nonequilibrium
statistical mechanics and biological physics.
Relevance for microbiology. In recent years, a deeper mechanistic understanding of
phenotypic heterogeneity has been achieved by exploring how the presence of dif-
ferent phenotypes in a population of genetically identical cells depends upon the
stochastic expression of bistable gene regulatory circuits at the cellular level (so
called “threshold models”) [12–14]. Nonetheless, bistable regulation of autoinducer
production is not always verified experimentally and, thus, this standard view of



Abstracts of the projects xv

phenotypic heterogeneity can be questioned. Our findings suggest an alternative,
robust mechanism to stochastic gene expression in bistable gene regulatory circuits
that may be realized through the coupling of ecological and population dynamics in
quorum-sensing microbial populations.
We expect that our theoretical work will stimulate research on quorum sensing in
microbial populations and alternative mechanisms to threshold models that generate
phenotypic heterogeneity. Thus far, quorum sensing has only been shown to induce
homogeneous or synchronized populations. In our work, we showed that quorum
sensing might also play a decisive role for how phenotypic heterogeneity is controlled
at the population level as opposed to control at the cellular level (as assumed in
threshold models). We demonstrated that simple intuitions about quorum sensing
might be misguiding if one neglects the interaction of microbes with their self-shaped
environment.
Our conceptual model of quorum-sensing microbial populations describes a robust
mechanism to induce phenotypic heterogeneity in the expression of autoinducers
through the coupling of ecological and population dynamics. It will be highly in-
teresting to conduct experiments that verify or falsify this proposed mechanism,
that discriminate between the ecological feedback mechanism and the noisy bistable
regulation mechanism in threshold models, and that reveal the possible interplay
between the two mechanisms in quorum-sensing microbial populations.
Relevance for statistical physics. From a statistical physics point of view, the key fea-
ture of our quorum-sensing model is how a population evolves in time when its
constituents respond to an environment that is being shaped by their own activ-
ities. The feedback between ecological and population dynamics is mediated by
quorum sensing and creates an effective global coupling between the individuals in
the population. Such a global coupling is reminiscent of long-range interactions in
models of statistical mechanics, such as in the classical XY spin model with infinite
range interactions [15]. Our analysis suggests that such global feedback can result
in bimodal nonequilibrium steady-states in cases for which one might have naively
expected unimodal equilibrium states at long times. We believe that this insight could
inspire others to study the role of global feedback loops and long-range interactions
that arise, for example, through the coupling of population and ecological dynamics.
From a mathematical point of view, we believe that our developed method of an
auxiliary stochastic mean-field process could be helpful to prove the convergence of
mean-field equations for other stochastic many-particle processes. Our derivation and
analysis of the mean-field equation and the mathematical characterization of pheno-
typic heterogeneity provide a general framework to study stochastic many-particle
processes that arise through ecological feedback.
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I Evolutionary games of condensates
in stochastic many-particle processes

Abstract of the chapter

This chapter presents our results on a stochastic many-particle process that arises
for example, in the study of zero-sum games in evolutionary game theory (where it
describes the selection of strategies), and in the study of driven-dissipative systems of
non-interacting bosons. In the latter context, the process describes the formation of
multiple condensates as a generalization to Bose-Einstein condensation in thermody-
namic equilibrium. A graphical summary of our work is provided in figure 1. The
stochastic process is generically out of equilibrium and may exhibit condensation into
multiple states if the number of particles is large. Thus far, it has remained elusive
from an analytical point of view, which of the system’s states become the condensates
given the parameters and initial conditions of the stochastic process.

In our work, we showed that a nonlinearly coupled system of ordinary differential
equations, the so-called antisymmetric Lotka-Volterra equation (17), describes the con-
densation into multiple quantum states. Moreover, we developed an algebraic method
to determine the condensates. A suitably defined relative entropy guides the selection
of condensates. The condensation dynamics generically proceed exponentially fast.
However, the dynamics within the selected set of condensates may not come to rest,
but perpetuate in an oscillating manner instead. To demonstrate this phenomenon,
we proposed the design of a rock–paper–scissors game of condensates.

The results of our work are published in two publications, which are reprinted
in sections 4 and 5. Acknowledgments related to this project can be found in the
manuscripts. Sections 1 and 2 provide a fast-forward introduction and an overview of
our results; section 3 serves as an outlook to study further properties of the stochastic
process.

1 Introduction of the stochastic many-particle process
with coupled birth and death

1.1 A stochastic process on a network of states

In the following, we define the stochastic process whose dynamics is analyzed in this
chapter. We consider a system of S non-degenerate states Ei, i = 1, . . . , S < ∞, each
of which is occupied by Ni ≥ 0 indistinguishable particles; figure 1(A). The physical
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interpretation of the states Ei is described in detail in sections 1.3 and 1.4. The
configuration of the system at time t is fully characterized by the vector of occupation
numbers N = (N1,N2, . . . ,NS ) ∈ NS

0 . For later purposes, we also introduce the state
concentrations x = (x1, . . . , xS ) with x i B Ni/N . Configurations may change due to
jumps of particles between two states Ei and E j according to the following scheme:

(N1, . . . ,Ni − 1, . . . ,N j + 1, . . . ,NS ) = N − ei + e j
l

(N1, . . . ,Ni, . . . ,N j, . . . ,NS ) = N
l

(N1, . . . ,Ni + 1, . . . ,N j − 1, . . . ,NS ) = N + ei − e j .

Here, the vector ei ∈ ZS denotes the unit vector in direction i (equal to one at
index i, otherwise zero). Jumps of particles between the states and, thus, transitions
between different configurations, occur continuously in time and are modelled in
terms of a continuous-time Markov process. The jump process conserves the total
number of particles N =

∑
i Ni , or equivalently

∑
i x i = 1, over time and, thus, can

be interpreted as a coupled birth-death process. We are interested in the probability
P (N, t ) of finding the system in configuration N at time t , given that it was initially
in configuration N0 at time t0. The temporal evolution of the probability distribution
P (N, t ) is governed by the classical master equation [16–18]:

∂tP (N, t ) =
S∑

i, j=1
j,i

(
Γi← j (Ni − 1,N j + 1)P (N − ei + e j, t ) − Γi← j (Ni,N j )P (N, t )

)
.

(1)

We consider the following transition rate from configuration N to N + ei − e j :

Γi← j (Ni,N j ) = ri j (Ni + si j )N j , with si j ≥ 0 and ri j ≥ 0 . (2)

A stochastic process with the above choice of the transition rates is sometimes also
referred to as the inclusion process [19]. It governs the dynamics of both the selection
of strategies in zero-sum games in evolutionary game theory (see section 1.3) and
the condensation of non-interacting bosons into quantum states in driven-dissipative
systems (see section 1.4). While the values of the parameters {si j }i, j can attain any
non-negative value in the context of evolutionary game theory, they are equal to 1
for all i and j in the context of bosonic condensation. The parameters {ri j }i, j C R
turn out to be the crucial bifurcation parameters of the dynamics as we describe in
section 2; see also figure 1.
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Figure 1. Graphical summary of our work on evolutionary games of condensates in
stochastic many-particle processes. (A) In our work, we consider the effective dynamics of
a periodically driven-dissipative system of N non-interacting bosons; see section 1.4. Such
an open quantum system becomes incoherent over time and can be described in terms of a
classical many-particle process (1). The total rate for the transition of a boson from state E j
to Ei does not only depend on the number of bosons in the departure state (N j ), but also on
the arrival state (Ni + 1) reflecting the quantum statistics of bosons (16). Moreover, the rate
constants {ri j }i, j characterize the transition between two states. Remarkably, condensation
can proceed into multiple states depending upon the values of the rate constants. (B) We
are interested in how a single realization of the stochastic process proceeds if N � 1.
We showed that the condensation process is described by the antisymmetric Lotka-Volterra
equation (17); see section 1.2. The entries of the occurring antisymmetric matrix A are
determined from the rate constants as ai j = ri j − r j i . (C) We developed an algebraic method
to determine the condensates; see section 2. By determining a so-called condensate vector c
of the antisymmetric matrix A, and defining the relative entropy of c to the vector of
concentrations x, we identified the states that become the condensates and characterized the
condensation process. The dynamics within the selected set of condensates may not come to
rest, but perpetuate in an oscillating manner. In particular, we proposed a rock–paper–scissors
game of condensates [20].
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1.2 Separation of time scales in large populations

In our work, we are interested in how condensation proceeds in a single realization
of the stochastic process defined by the master equation (1) with rates (2). Note that,
in general, this question is conceptionally different from asking how an ensemble
evolves in time.

To address this question on a mathematical level, one may approximate the master
equation (1) by performing a Kramers-Moyal expansion if the particle number N � 1
is large. Truncating this expansion at second order in 1/N leads to the Fokker-Planck
equation, which can be written as a set of Itō stochastic differential equations for the
state concentrations x i :

dx i =
(
αi,0(x) +

1
N
αi,1(x)

)
dt +

1
√
N

S∑
j=1

ζi j (x) dW j . (3)

Here, the deterministic drift terms are obtained as:

αi,0(x) = x i
S∑
j=1
(ri j − r j i)x j , (4)

αi,1(x) =
1
N

S∑
j=1
(ri j si j x j − r j i s j i x i) , (5)

and the stochastic term is represented by the Wiener increment dW j of zero mean
and with covariances E(dWi dW j ) = δi jdt (accordingly, the unconditional probability
density function of the Wiener processW j is a normal distribution with zero mean
and variance t at time t ). The matrix ζ (x) is a square root of the positive semi-definite
diffusion matrix βi j = βi j,0 +

1
N βi j,1 in the sense that ζ ζT = β. The decomposition

of β implies that ζ can be written as ζi j = ζi j,0+O
( 1
N

)
. A derivation of these findings

and the explicit form of β are reprinted in section 5 on pages 75–77. For the above set
of stochastic differential equations (3), a leading-order time scale and subleading-order
time scales can be identified. On the leading-order time scale ( t ∼ O(1)), only the drift
term αi,0 is relevant, whereas on the first subleading-order time scale ( t ∼ O(N )), the
terms αi,1 and ζi j,0 compete. Here “subleading” means that the latter two terms (and
also the term ζi j,1) cause only slow changes of the leading-order dynamics. In other
words, the dynamics on the subleading-order time scales causes only slow changes of
the O(1)-trajectory.
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The leading-order dynamics of the stochastic process (1) for N � 1 is, thus,
governed by the following set of ordinary differential equations:

d
dt

x(lead)
i = x(lead)

i

∑
j
(ri j − r j i)x(lead)

j = x(lead)
i (Ax(lead))i , (6)

which we refer to as the antisymmetric Lotka-Volterra equation (ALVE). The ALVE
is characterized by the antisymmetric matrix A with entries ai j B ri j − r j i ; see
equation (17) for a complete mathematical definition.

As we show in section 2, the ALVE describes the condensation into a subset
of the system’s states. Because condensation in the ALVE proceeds exponentially
fast for generic choices of antisymmetric matrices A, the condensation dynamics of
the ALVE determine the condensation dynamics of the stochastic process (1), and
the temporal evolution up to a time t ∼ O(N ) [20]. It is noteworthy that only
the parameters {ri j }i, j characterize the dynamics at the leading-order time scale; the
parameters {si j }i, j influence the dynamics only on subleading-order time scales.

To see that both the deterministic drift term αi,1 and the stochastic term ζi j,0
contribute only on the time scale t ∼ O(N ), one may introduce the dilated time
t ′ = t/N and the Wiener process Vt ′ =Wt/

√
N (with zero mean and variance t ′;

thus, E(dVi dVj ) = δi jdt ′). On this dilated time scale t ′, the corrections due to the
terms αi,1 and ζi j,0 read as follows:

dx(sublead)
i = αi,1(x) dt ′ +

S∑
j=1

ζi j,0(x) dVj . (7)

The influence of the subleading-order time scales on the characteristics of the stochas-
tic process are briefly discussed as an outlook in section 3.

1.3 Selection of strategies in zero-sum games in evolutionary game
theory

We began our study of the master equation (1) in the context of strategy selection
in zero-sum games in evolutionary game theory, for which some background is pro-
vided in the following (see [21–23] and references therein for detailed and pedagogical
introductions to evolutionary game theory). First, we introduce the nonlinear dy-
namical framework within which interaction terms are derived from game theoretical
concepts in a second step. In essence, the antisymmetric Lotka-Volterra equation is
derived as the replicator equation of zero-sum games.

Evolutionary game theory has been developed as a mathematical concept to study
mechanisms that underlie the temporal evolution of biological populations [24, 25].
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Not only has evolutionary game theory contributed to the understanding of the
evolution of cooperation [26], but it has also initiated theoretical discussions and
experiments on mechanisms that may stabilize coexistence of species and biodiver-
sity [27–31].

At the heart of evolutionary game theory stands the idea that interactions between
different phenotypes, traits, or behavioral programs of species can be understood
as interacting strategies in a population of individuals. To connect the notion of
evolutionary game theory to the previous section, let us denote such a set of strategies
in a population as {E1, E2, . . . , ES }. Whether a strategy spreads or goes extinct in the
long run depends on the abundance of all other strategies in the population (hence,
manifesting the principle of frequency-dependent selection) and on whether this
strategy entails a relative advantage over the other strategies at a specific time.

1.3.1 Deterministic replicator dynamics

On a mathematical level, evolutionary game theory was formalized first in the
framework of the celebrated replicator equation [21, 23, 32, 33]:

∂t x i = x i( fi(x) − f̄ (x)) , i = 1, . . . , S . (8)

The replicator equation describes the temporal evolution of the composition of a
population in terms of S nonlinearly coupled differential equations assuming a well-
mixed, infinitely large population. The variable x i denotes the fraction of individuals
of strategy Ei in the population. For the sake of readability and simplicity, we use
here the same symbol x i to denote a deterministic variable (while it denotes a random
variable in the previous section). The relative growth rate (∂t x i/x i = ∂t ln(x i))
of the fraction of individuals with strategy Ei is given by the difference of the
strategy’s fitness fi and the average fitness of the population f̄ =

∑S
i=1 x i fi . The

initial conditions are chosen such that x i,0 > 0 for all i = 1, . . . , S and
∑S

i=1 x i,0 = 1.
The latter two properties are conserved over time by the dynamics of the replicator
equation (8) [21]. For this reason, the normalization f̄ appears in the replicator
equation in the first place.

Possible long-time scenarios and stability properties of the replicator equation (8)
such as coexistence of all strategies, survival, and extinction are determined by the
choice of the fitness function fi(x). The fitness of a strategy of type Ei may be
prescribed by several functional relations, depending upon the biological situation
that one might want to model. In evolutionary game theory, as already indicated
above, the fitness function is derived from models in classical game theory to capture
the interactions between phenotypes, traits or behavioral programs in terms of the
interactions between strategies. These interactions are characterized, for example, by
a symmetric two-player game [34] and its according payoff matrix P ; see below for
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an example. It is assumed that the fitness of strategy Ei is derived from the weighted
payoff (Px)i it receives when playing against all other strategies [35]. Common
choices of the fitness function are given by:

(1) fi = (Px)i , assuming that fitness equals the weighted payoff;

(2) fi = 1 + s(Px)i , introducing the basal fitness of 1 and the selection strength s ,
which scales the influence of the underlying game on the replicator dynamics
and effectively sets the time scale of the selection process described by the
replicator equation (8); see chapter II for an example (the fitness function is
denoted as φi that example);

(3) fi = e s(Px)i , defined in order to ensure positive fitness values fi . For small
selection constants, one obtains case (2) as an approximation.

Instead of defining classical game theory from first principles, let us here use
the example of the prominent children’s game Rock-Paper-Scissors to illustrate the
concept of a payoff matrix. In an interaction of this game, two players independently
choose amongst the three strategies E1 = Rock, E2 = Paper, and E3 = Scissors.
The payoff in a single round of the game depends upon the strategies played and is
distributed as follows: Paper wraps Rock and, thus, is assigned the payoff 1 (while
Rock looses that same amount against Paper), Scissors cuts Paper (thus, Paper pays
the payoff 1 to Scissors), and Rock crushes Scissors (payoff 1 for Rock and payoff -1
for Scissors). When the same strategies meet in a round of the game, the payoff is 0
for both players. In summary, one defines the Rock-Paper-Scissors game through the
following payoff diagram:

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

Accordingly, the payoff matrix is given as:

PRPS =
©«

0 −1 1
1 0 −1
−1 1 0

ª®¬ , (9)

which can be illustrated by a weighted network because of the antisymmetry of the
matrix PRPS, see figure 2(A).

Because the payoff of the winner equals the loss of the defeated, the total payoff
in one round of the game is zero. Therefore, the Rock-Paper-Scissors game is also
referred to as a zero-sum game [34]. One may, of course, generalize the Rock-Paper-
Scissors game to a zero-sum game with four, five, or more interacting strategies
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Figure 2. Network representation of zero-sum games. The antisymmetric payoff matrix
of a zero-sum game can be depicted as a weighted graph. The nodes of the network correspond
to the strategies of the zero-sum game. A link connecting Ei → E j denotes that strategy
E j dominates Ei because the payoff in an interaction is transferred from Ei to E j . The
transferred amount of payoff is denoted by the weight attached to a link. (A) The children’s
game Rock-Paper-Scissors with payoff 1 for every dominance relation. (B) A zero-sum game
with five strategies, which may be interpreted as a Rock-Paper-Scissors-Lizard-Spock game, and
arbitrary payoff values [36]. Every strategy dominates two other strategies and is dominated
by two others.

and allow for arbitrary payoff values; see 2(B). As long as the payoff matrix is an
antisymmetric matrix A (that is, A = −AT ), the game is a zero-sum game.

In the framework of evolutionary game theory, the choice of a zero-sum game
for the definition of the fitness fi(x) = (Ax)i simplifies the replicator equation (8).
For an antisymmetric matrix, the average fitness of the population is zero: f̄ =∑S

i=1 x i(Ax)i = 0, and the replicator equation is the antisymmetric Lotka-Volterra
equation that we study here (see mathematical definition in equation (17)) [20, 37].

1.3.2 Stochastic dynamics

One may also formulate an evolutionary game as a stochastic process in a finite popu-
lation (that is, N < ∞ individuals in the population) and directly obtain the master
equation (1) with transition rates (2); see [20]. In such a set-up, every individual plays
a fixed strategy out of the set of S strategies {E1, E2, . . . , ES }. Individuals update their
strategy due to pairwise interactions with individuals of different strategies according
to the dominance rules of a prescribed game. For example, if strategy E j is dominated
by strategy Ei , the rate with which any individual of strategy E j adopts strategy Ei
is given by Γi← j = ri jNiN j (if there are Ni individuals playing strategy Ei and N j
individuals of strategy E j ). Here, the rate constant ri j characterizes the dominance
relation between the pair of strategies. Furthermore, one may also allow for spon-
taneous switching of individuals between strategies. If a single individual playing
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strategy E j randomly switches to strategy Ei at rate ri j si j , the rate with which any
individual of strategy switches from strategy E j to Ei is given by Γi← j = ri j si jN j . In
total, these two processes (interaction between strategies and switching of strategies)
result in the master equation (1) with total transition rates (2).

1.4 Condensation into quantum states in driven-dissipative systems of
non-interacting bosons

Interestingly, the master equation (1) is also encountered in the theory of open
quantum systems [7, 38]. In this section, we first provide a brief overview of the
recently proposed set-up of a driven-dissipative many-body quantum system whose
dynamics is governed by the master equation (1). Afterwards, we sketch some steps of
its derivation by outlining both the Floquet-Born-Markov theory of a single quantum
particle and the derivation of the stochastic many-body dynamics that is obtained for
non-interacting particles.

The following notes are not a rigorous derivation of the master equation from
the quantum many-particle system; they are rather meant to give a flavor of the
methods and assumptions involved in deriving the master equation. All details of the
derivation can be found in the manuscript of Vorberg et al. [7] and the references
therein. For a pedagogical introduction and a detailed background, the reader is
referred to the PhD thesis of Waltraut Wustmann [39]. The general theory of master
equations in open quantum systems is discussed, for example, in the textbooks of
Breuer and Petruccione [38], and Gardiner and Zoller [40].

1.4.1 Overview

The set-up and the effective picture of the many-particle open quantum system that
we consider here are sketched in figure 1(A): A system of N non-interacting bosons is
weakly coupled to a heat bath and driven by an external time-periodic force (a so-called
Floquet system) [41–43]. For such an open quantum system with periodic energy
input, one can systematically eliminate the degrees of freedom of the bath. On a
coarse-grained time scale (upon employing the Born and Markov approximations [38,
44]), the density matrix of the system becomes diagonal in the time-periodic Floquet
basis; see below. In other words, in the suitable set of Floquet states {E1, . . . , ES }, the
dynamics becomes incoherent and is described by a classical stochastic process. In
this effective description, the bosons transition incoherently between the quantum
Floquet states. Nevertheless, the transition rates still reflect the quantum statistics
of the bosons. The more bosons occupy a quantum Floquet state, the higher is the
rate for a boson to transition into this state, reflecting the fact that bosons tend to
congregate. The rate constants of these transitions are determined by microscopic
properties of the system, the heat bath, and the coupling between the two. These
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rate constants determine how condensation proceeds in the nonequilibrium set-up.
In effect, energy inflow into the system via the periodic driving force and dissipation
of energy into the weakly-coupled heat bath may guide the bosons not only into a
single, but also into multiple condensates [7, 20].

Let us now explain in greater detail some of the steps to derive the master
equation (1) from the driven-dissipative system of non-interacting bosons.

1.4.2 Floquet-Born-Markov theory of a single quantum particle

As a first step, one derives the master equation for a single quantum particle (boson
or fermion), which is driven periodically in time and weakly coupled to a heat bath.
Its derivation is outlined below in point (i) and (ii). As a result, the master equation
for a single quantum particle is obtained as follows:

∂t pi(t ) =
S∑
j=1

(
ri jp j (t ) − r j ipi(t )

)
. (10)

Here, the occupation probabilities pi(t ) are the diagonal elements of the single-particle
density operator, pi(t ) = 〈Ei(t )|ρi j |Ei(t )〉, in the basis of the so-called Floquet states
|Ei(t )〉. The parameters {ri, j }i, j characterize the rate of the quantum particle to
transition between two states. The off-diagonal elements of the density matrix decay
in the Floquet basis such that the dynamics becomes incoherent. To emphasize the
fact that the quantum dynamics becomes incoherent, the master equation (10) is
typically called a “classical” master equation in the context of open quantum systems.
The derivation of equation (10) is sketched in the following.

(i) To derive the single-particle master equation (10), it is suitable to formulate
the equation of motion for the system coupled to the bath in terms of the
von-Neumann equation [38]:

i~ ∂t ρtot(t ) = [Htot(t ), ρtot(t )] , (11)

where [A, B] = AB − BA denotes the commutator of the two operators A and
B . The total Hamiltonian Htot = Hs + Hb + λHsb is a sum of:

– Hs, which denotes the Hamiltonian of the free particle with a time-
periodic external potential such that Hs(t ) = Hs(t + τ) (τ denotes the
period of the driving potential),

– Hb, which is the free Hamiltonian of the bath that is typically assumed to
be composed of free harmonic quantum oscillators, and



1 Introduction of the stochastic many-particle process 11

– Hsb, which denotes the interaction Hamiltonian between system and bath
(the weak coupling parameter λ � 1 serves as a perturbation parameter
in the Born approximation; see below).

Typically, one is only interested in how the system’s degrees of freedom evolve
in time and not in how the total system (system combined with the coupled
heat bath) evolves. To this end, the reduced density operator of the system is
introduced by integrating out the bath’s degrees of freedom:

ρs(t ) = Trb (ρtot(t )) . (12)

From the equation of motion of the total system (11), one can derive a closed
integro-differential equation that governs the temporal evolution of ρs. This
equation can be simplified by employing the Born-Markov approximation.
Upon assuming a weak interaction between bath and system (Born approxi-
mation, λ � 1), it is assured that the system does not feed back on the heat
bath. Further assuming that correlations in the bath decay on a much faster
time scale than significant changes in ρs take place (Markov approximation),
the equation of motion for ρs becomes local in time. In other words, the
temporal evolution of ρs on a suitably chosen coarser time scale depends only
on the current state and not on its past. The resulting equation for ρs under
the Born-Markov approximation is sometimes also referred to as a quantum
master equation. Note that the derivation starting out from the von-Neumann
equation of the density operator of the total system is systematic in that degrees
of freedom of the bath are systematically integrated out from the total system
and, thus, is more feasible than starting out from the Schrödinger equation of
the total system.

We also note that the framework outlined above is similar, for example, to the
derivation of the Brownian motion of a classical test particle suspended in a
heat bath of harmonic oscillators; see, for example, [45].

(ii) The next step lies in representing the reduced density operator of the system ρs
in the Floquet basis of the system’s Hamiltonian Hs. The Floquet basis is
obtained as follows. The single-particle Schrödinger equation with a time-
periodic Hamiltonian Hs(t ) = Hs(t + τ),

i~∂t |ψ(t )〉 = Hs(t )|ψ(t )〉 , (13)

admits a complete set of solutions of the form |ψi(t )〉 = e−iEi t/~ |Ei(t )〉 with
i = 1, . . . , S [46]. The values Ei ∈ R are referred to as the quasi-energies.
The so-called Floquet states |Ei(t )〉 = |Ei(t + τ)〉 are time-periodic, the set
{|Ei(t )〉}i=1,...,S is a complete orthonormal basis at every instant in time. Flo-
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quet states can be regarded as the temporal analogue to Bloch states in a spatially
periodic quantum system.

Upon formulating the dynamics of ρs in this Floquet basis of the time-periodic
single-particle Hamiltonian,

ρs(t ) =
S∑

i, j=1
pi j (t )|Ei(t )〉〈E j (t )| , (14)

one derives a closed equation of motion for the matrix elements of the reduced
density operator {pi j (t )}i, j . It turns out that, in this Floquet basis, the off-
diagonal elements decay to zero. Note that the off-diagonal elements of the
density matrix are sometimes called the coherences because they describe the
superposition of quantum states. Because the decay of the off-diagonal elements
is much faster than the relaxation dynamics of the diagonal elements in this
set-up, coherence in the quantum system studied here becomes effectively
negligible. In total, only the diagonal entries of the reduced density operator
are relevant; and the classical, single-particle master equation (10) governs the
dynamics of the system. All microscopic properties of the set-up (for example,
the period of the driving potential, the temperature and spectral density of
the bath, and the coupling strength between system and bath) are encoded in
the rate constants {ri j }i, j that characterize the transition of a single particle
between two states [7].

Classical master equations such as in equation (10) are sometimes referred to as
Pauli master equations and arise, for example, in models of quantum optics [40, 47,
48]. In this context, one typically needs to assume the rotating-wave approximation
to obtain decoherence from a theoretical point of view [38, 40], while, notably, the
off-diagonal elements of the density matrix decay without further ad-hoc assumptions
in a Floquet system as considered above.

1.4.3 Stochastic many-body system of non-interacting particles

The equation of motion (10) for the diagonal elements of the reduced density operator
of the single quantum particle readily generalizes to the many-particle master equa-
tion (1). However, care has to be taken in generalizing the single-particle transition
rates to the N -particle system. For a single particle, the transition rate for a single
particle from state E j to state Ei is given by:

Γi← j = ri j ≥ 0 . (15)
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For N non-interacting particles, the total transition rate for a transition of one particle
from state E j to state Ei is obtained as:

Γi← j (Ni,N j ) = ri j (1 + qNi)N j , (16)

where the factor q characterizes the different quantum statistics of the particles under
consideration:

• The case q = 1 occurs for bosons and follows from the bosonic cummutator
relation [bi, b†j ] = bib†j − b

†
j bi = δi j . Heuristically speaking, if a particle transi-

tions from state E j to state Ei , a particle is created in state Ei and annihilated
in state E j . Thus, the relevant transition operator with non-vanishing overlap
is given by b†j b jbib

†
i , which can be written as N j (1 + Ni) by employing the def-

inition of the particle number operator N = b†b and the bosonic cummutator
relation. Therefore, the bosonic quantum statistics is the reason why the factor
(1 + Ni) occurs in the total transition rate (16), and the resulting stochastic
many-particle process can be understood as an inclusion process.

• With the same reasoning, it follows q = −1 for fermions because of the
fermionic anticummutator relation { fi, f †j } = fi f †j + f †j fi = δi j . The operator

characterizing the relevant particle transition is given by f †j f j fi f †i = N j (1−Ni).
The resulting stochastic many-particle process is an exclusion process because a
transition to a state that is already occupied is forbidden.

• The case q = 0 captures the characteristics of classical particles, and a Poisson
process is obtained for the stochastic many-particle process (1) in this case.

1.4.4 Summary

In essence, within the framework of Floquet-Born-Markov theory, the dynamics of
the quantum many-particle system becomes incoherent on a coarse-grained time scale.
The effective dynamics of the periodically driven-dissipative system of non-interacting
bosons can be described in terms of the classical master equation (1) with {si j }i, j = 1
in the transition rates (2). States correspond to quantum Floquet states (labeled by
E1, . . . , ES ) and the fraction of bosons in a specific quantum state Ei is given by the
concentration x i . The total rate Γi← j for the transition of a boson from state E j to Ei
depends linearly on the number of bosons in the departure state (N j ) and the arrival
state (Ni + 1), and on the rate constants {ri j }i, j . These rate constants determine the
condensation of the many-particle process as we show next.
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2 The leading-order time scale of the stochastic process:
Condensation and coexistence in the antisymmetric
Lotka-Volterra equation (ALVE)

In this section, we summarize our results on the long-time behavior of the antisym-
metric Lotka-Volterra equation (see definition in equation (17) below) with focus on
condensation and coexistence scenarios. All details can be found in our manuscripts
that are reprinted in sections 4 and 5.

2.1 Mathematical definition of the ALVE

The antisymmetric Lotka-Volterra equation (ALVE) is mathematically defined for a
system of S dynamical variables as motivated in section 1.2. The concentration or
mass in state Ei is denoted as x i and the vector of state concentrations as x(t ) =
(x1(t ), . . . , xS (t )). These concentrations evolve in time according to a system of
nonlinearly coupled ordinary differential equations of first order in time, the ALVE:

d
dt

x i(t ) = x i(t )
S∑
j=1

ai j x j (t ) = x i(t )(Ax(t ))i , for all i = 1, . . . , S . (17)

The matrix A = {ai j }i, j ∈ RS×S is antisymmetric (or skew-symmetric), that is
ai j = −a j i . We are interested in the temporal evolution of initial concentrations
that are strictly positive and normalized, that is, x(t = 0) C x0 lies in the open
simplex ∈ ∆S−1. In other words, x0 ∈ RS such that x i,0 > 0 for all i = 1, . . . , S and∑S

i=1 x i,0 = 1. For brevity, the time variable t is not explicitly written out in most of
the following derivations.

First intuition of the long-time behavior

The antisymmetric matrix A defines the set of control parameters of the ALVE.
It specifies how mass is exchanged between the S states through pairwise interac-
tions. Mass in state Ei changes through interaction with state E j as ∂t x i ∼ ai j x i x j .
A negative matrix entry ai j < 0 means that mass is transported from state Ei to E j .
Concomitantly, state E j gains this mass through ∂t x j ∼ −ai j x j x i = a j i x j x i with
a j i > 0. Since no other interactions are defined by the ALVE (17), the total mass is
conserved over time:

d
dt

S∑
i=1

x i =
S∑

i, j=1
ai j x i x j

A=−AT
= −

S∑
i, j=1

a j i x i x j
relabel i, j
= −

S∑
i, j=1

ai j x i x j = 0 . (18)
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Consequently, the ALVE (17) defines a trajectory not leaving the open simplex,
that is x(t ) ∈ ∆S−1 for all times [21]. If the dynamics is started on the boundary
of the simplex, x0 ∈ ∂∆S−1 = ∆S−1\∆S−1, it remains restricted to the boundary.
Thus, the natural question about the long-time behavior of a state concentration
x i is whether it remains bounded away from zero, whether it approaches zero, or
whether it expresses any other qualitatively different behavior (such as, for example,
a heteroclinic orbit). All properties of the ALVE (17) such as mass conservation,
coexistence, and condensation that are discussed in this thesis, can be ultimately traced
back to its quadratic interaction structure and the antisymmetry of the matrix A.

An antisymmetric matrix can also be interpreted as the antisymmetric adjacency
matrix of a weighted network (also referred to as the skew adjacency matrix of a
weighted directed graph), see figure 2. States in the ALVE correspond to nodes of the
weighted network and entries of the antisymmetric matrix A characterize the links
between nodes. Some basic facts from linear algebra on antisymmetric matrices that
are relevant to our study are collected in appendix A.

2.2 Condensation and coexistence in the ALVE

2.2.1 Overview

Here we show that, depending on the entries of the antisymmetric matrix, a state
concentration may either vanish for long times (x i(t ) → 0 as t →∞), in which case
Ei is referred to as a depleted state (“depletion” or “extinction”), or it may remain
bounded away from zero for all times (x i(t ) ≥ Const > 0 for all times t ), in which
case Ei is called a condensate (“condensation” or “survival”); see below and [20, 37].
Other cases than being a condensate state or a depleted state do not occur in the
ALVE. Whether a state is a condensate or becomes depleted is independent of the
initial conditions x0 and depends only on the antisymmetric matrix A. However,
the dynamics within the attractive manifold that is spanned by the condensate states
depends on both the initial conditions and the antisymmetric matrix A.

2.2.2 Coexistence of all states

Before we discuss condensation, let us first discuss situations in which none of the
states become depleted. We refer to these scenarios as the coexistence of all states in the
ALVE (17) [20, 36, 49, 50]. All states are condensates in this case. In mathematical
terms, the trajectory of all state concentrations stays away from the boundary of
the (S − 1)-simplex by a non-vanishing distance for all times. In the context of
evolutionary game theory, coexistence of all states translates to a situation in which
none of the strategies goes extinct. Despite the interactions between the agents of the
population, all strategies remain present for all times.
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Figure 3. Coexistence and condensation in the antisymmetric Lotka-Volterra equation
are determined by the condensate vector of the antisymmetric matrix. (A) Coexistence
of all states is obtained if and only if the condensate vector of the antisymmetric matrix
A is a strictly positive kernel element. (B) The condensate vector determines the set of
states that become the condensates. In the depicted example, states E3 and E4 become
depleted exponentially fast as indicated by the zero-entries of the condensate vector of the
antisymmetric matrix.

We now show that a strictly positive kernel of the matrix A implies coexistence
of all states in the ALVE. First, let p be any element of the kernel (or nullspace) of A,
that is, p ∈ Ker(A) such that Ap = 0. It follows that the collective quantity defined as
the Kullback-Leibler divergence (or relative entropy) of the kernel element p to the
trajectory x,

D(p| |x(t )) =
S∑
i=1
(pi,0)

pi log
( |pi |
x i(t )

)
, (19)

is conserved under the dynamics of the ALVE (17) as one confirms straightforwardly
( d
dt D(p| |x) =

∑
i(Ap)i x i = 0). Furthermore, independent kernel elements of A corre-

spond to independent conserved quantities (see pages 27–29 for details). Therefore,
the dimension of the kernel, dimKer(A), determines how many such conserved quan-
tities of form D(p| |x) exist. Note that the relative entropy defined in equation (19)
is essentially the logarithm of the conserved quantity used in our publication [36].
This definition makes a comparison possible with the case of depletion of some of
the states (see equation (22)).

We call a kernel element p with p ∈ Ker(A) and pi > 0 for all i = 1, . . . , S a
“strictly positive kernel element”. For such a kernel element, the relative entropy (19)
is conserved and positive for all times: 0 < D(p| |x(t )) = D(p| |x(0)) < ∞. Therefore,
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none of the state concentrations vanishes (otherwise, D would diverge in contradic-
tion to the boundedness of D ). In other words, if there exist strictly positive elements
in the kernel of the antisymmetric matrix A, none of the states becomes depleted and
all states coexist in the ALVE (17).

We found that the dynamics of the ALVE is restricted to a manifold whose
dimension is at most S−1−dimKer(A) (the term −1 arises because of the conservation
of the total concentration

∑
i x i = 1, see equation (18)). Because the rank of an

antisymmetric matrix is always even, S and dimKer(A) have the same parity. Thus,
S − 1 − dimKer(A) is odd; see also appendix A. When the kernel of A contains a
strictly positive element, we showed that the manifold on which the dynamics take
place is diffeomorphic to an odd-dimensional sphere; see our manuscript in section 4.
With these insights, periodic orbits of the ALVE can be constructed in arbitrary
dimensions S if the kernel of the antisymmetric matrix A has dimension S − 2 and
contains strictly positive kernel elements [36].

2.2.3 Condensation into some of the states

To determine the set of condensates in the case of a general antisymmetric matrix
(that is, if the kernel of A does not contain strictly positive kernel elements), we
proceed in two steps: (i) First, we exploit an algebraic property of antisymmetric
matrices. (ii) Second, we connect this algebraic property to the long-time dynamics of
the ALVE via a collective quantity that has the same functional form as the conserved
quantity in equation (19).

(i) Condensate vectors of antisymmetric matrices.
Given an antisymmetric matrix A with real entries, there exist so-called condensate
vectors c fulfilling the following properties for a unique index set I ⊆ {1, . . . , S}
(see linear programming theory by Kuhn and Tucker [51], and figure 1(C) for an
illustration):

ci > 0 and (Ac)i = 0 , for all i ∈ I (20)
ci = 0 and (Ac)i < 0 , for all i ∈ Ī = {1, ..., S}\I . (21)

Condensate vectors can be thought of as generalized positive and attractive kernel ele-
ments. They are strictly positive kernel elements on the index set I of the submatrix
AI (matrix built from A by only including rows and columns whose indices lie in I ),
and they are zero vectors on the index set Ī and at the same time attractive in that
(Ac)Ī < 0. The existence of such condensate vectors is not intuitive at first sight and
is, indeed, special to antisymmetric matrices [51]. Even upon normalization (that
is,

∑
i ci = 1), there may exist linearly independent condensate vectors for a given

antisymmetric matrix A, depending on the degeneracy of the kernel of AI . However,
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the index set of positive entries of c, that is, the set I = {i ∈ {1, ..., S} : ci > 0}, is
unique for a given antisymmetric matrix A.

( ii) Lyapunov function of the ALVE.
To connect condensate vectors with the long-time dynamics of the ALVE, we intro-
duce a collective quantity in the spirit of the conserved quantities (19) from above.
In particular, we define the Kullback-Leibler divergence (or relative entropy) D(c| |x)
of an arbitrarily chosen condensate vector c of A to the state concentrations x(t ) as:

D(c| |x(t )) =
S∑
i=1
(ci,0)

ci log
(

ci
x i(t )

)
=

∑
i∈I

ci log
(

ci
x i(t )

)
. (22)

Note the asymmetry in the definition of D: We consider the relative entropy of c
to x and not the relative entropy of x to c as one might try first from a statistical
mechanics point of view. The collective quantity D in equation (22) is not conserved
over time, but it is a Lyapunov function of the ALVE (17). In other words, the value
of D decreases over time as one confirms directly ( d

dt D(c| |x) =
∑

i∈ Ī (Ac)i x i < 0).
Due to the definition of D as a relative entropy and due to the Lyapunov property, D
is bounded from below by 0 and from above by D(t = 0). Similarly to the coexistence
case, one concludes that all states with index i ∈ I remain bounded away from 0 for
all times, that is, x i(t ) ≥ Const > 0 for all i ∈ I and for all t (otherwise, D would
diverge in contradiction to the boundedness of D ). With further arguments from
analysis exploiting the boundedness of D, it is possible to show that all other states
with index i ∈ Ī become depleted, that is, x i(t ) → 0 as t →∞ for all i ∈ Ī [20]; see
section 5 for details.

In summary, condensation and depletion in the ALVE (17) are determined by
an algebraic property of the antisymmetric matrix A. The set of condensates I is
uniquely determined by the antisymmetric matrix alone in terms of its condensate
vectors. All states with indices i ∈ I become condensates, while all states with indices
i ∈ Ī become depleted for t → ∞. This selection of condensates in the ALVE is,
notably, independent of the initial conditions and proceeds exponentially fast in
generic cases; see the Methods section of [20] for details. Furthermore, the Lyapunov
function D(c| |x) becomes a conserved quantity of the form D(p| |x) for long times.
When all states coexist, the set of condensates is given by I = {1, . . . , S} and all
condensate vectors c are strictly positive kernel elements of the antisymmetric matrix
A, see equation (20). Therefore, coexistence of all states occurs if and only if the
kernel of the antisymmetric matrix A contains strictly positive elements.
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3 Thermodynamic equilibrium of the stochastic process

In this section, we provide an algebraic characterization of the conditions under
which the stationary state of the stochastic process defined by the master equation (1)
with transition rates (2) is in thermodynamic equilibrium. The presentation of
these results are meant to stimulate and motivate further research on the properties
of the stationary state and on its approach when the stochastic process is out of
thermodynamic equilibrium.

A stochastic process is said to be in thermodynamic equilibrium when the station-
ary process is reversible. In other words, the behavior of the stochastic process does
not change upon reversing the direction of time. Thermodynamic equilibrium holds
if and only if the detailed balance conditions are fulfilled [52, 53]. The implications
of detailed balance can be inferred most easily at the level of the master equation (1).
Kolmogorov’s criterion is equivalent to the detailed balance condition and involves
the transition rates alone. Kolmogorov’s criterion requires that forward and back-
ward processes must be equally likely for all possible cycles of configurations in a
system [52, 53].

For simple cycles in configuration space,

E1 → E2 → . . .→ ES ′ → E1 , (23)

Kolmogorov’s criterion reads as follows:

Γ1←S ′(N1,NS ′ + 1)ΓS ′←S ′−1(NS ′,NS ′−1 + 1) · · · Γ3←2(N3,N2 + 1)Γ2←1(N2,N1 + 1)
= Γ1←2(N1,N2 + 1)Γ2←3(N2,N3 + 1) · · · ΓS ′−1←S ′(NS ′−1,NS ′ + 1)ΓS ′←1(NS ′,N1 + 1) .

(24)

For the stochastic process (1) with transition rates of the form Γi← j = ri j (Ni + 1)N j
(that is, the bosonic case in equation (16)), the above condition simplifies to:

r1S ′rS ′,S ′−1 · · · r32r21 = r12r23 · · · rS ′−1,S ′rS ′,1 . (25)

Via induction in the length of cycles in configuration space, one can show that Kol-
mogorov’s criterion holds if and only if condition (25) holds for any finite sequence
(1, 2, . . . , S′) and if ri j = 0 implies r j i = 0. If the matrix R of rate constants fulfils the
latter conditions, the stationary process is reversible and, hence, in thermodynamic
equilibrium. The equilibrium distribution of the stochastic process can be expressed
in a Gibbs-Boltzmann form in that case [52].

In linear algebra, a matrix R, for which condition (25) is fulfilled for any finite
sequence (1, 2, . . . , S′) and for which ri j = 0 implies r j i = 0, is called symmetrizable.
A matrix is symmetrizable if and only if there exists an invertible (that is, non-
singular) diagonal matrix V such that V R is symmetric. In general, for every square
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matrix R there exists an invertible matrixW such thatWR is symmetric [54]. If such
an invertible matrixW can be chosen in a diagonal form V , Kolmogorov’s criterion
for the corresponding coupled birth-death process with bosonic transition rates holds
and the stationary process is in thermodynamic equilibrium. On the other hand,
if no such diagonal matrix V can be found, Kolmogorov’s criterion is violated and
the stochastic process does not approach thermodynamic equilibrium (that is, the
probability current between different configurations does not vanish). Therefore,
thermodynamic equilibrium holds for the stationary process if and only if the rate
matrix R is symmetrizable.

This result generalizes previous statements by Vorberg et al. about thermody-
namic equilibrium in this stochastic process [7]. In their study, a system was consid-
ered with single-particle energies E1 < E2 < E3 . . . < ES . Furthermore, the system
was assumed to be in weak contact with a thermal bath of inverse temperature β. For
such a set-up, the entries of the rate matrix obey r j i/ri j = exp (β(Ei − E j )) and it was
shown that detailed balance holds in this case. As one easily checks, conditions (25)
are fulfilled for this choice of rate constants.

How the stationary distribution looks like if the stochastic process is out of
thermodynamic equilibrium, how the stationary distribution is approached once
condensation has set in, and on which timescales this approach takes place may be
interesting questions for future research.
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Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the to-
tal biomass is conserved is of vital importance for the characterization of long-term dynamics of
ecological communities. Here, we introduce a classification scheme for coexistence scenarios in
these conservative LV models and quantify the extinction process by employing the Pfaffian of the
network’s interaction matrix. We illustrate our findings on global stability properties for general
systems of four and five species and find a generalized scaling law for the extinction time.

PACS numbers: 87.23.Cc, 02.50.Ey, 05.40.-a, 87.10.Mn

Understanding the stability of ecological networks is of
pivotal importance in theoretical biology [1, 2]. Coexis-
tence and extinction of species depend on many factors
such as inter- and intra-species interactions [3, 4], pop-
ulation size [5–9], and mobility of individuals [10–16].
An intriguing question is how the stability of ecosystems
depends on the interaction network between species. Is
it the topology of the network (whose links may arise
through predation, competition over common resources,
or mutual cooperation) that sets the level of biodiversity?
And how important is the strength of a single interaction
link? Stable coexistence can, for example, be observed
for natural populations in non-hierarchical networks that
are comprised of species that interact in a competitive
and predator-prey like manner [17, 18]. By understand-
ing the interplay between the structure of the interaction
network and the strengths of its links, it is possible to
reveal mechanisms that underlie this stability.

A paradigm in addressing these ecologically impor-
tant questions from a theoretical perspective are Lotka-
Volterra (LV) models [19, 20] in which the total biomass
of species is conserved. These conservative LV sys-
tems [12, 21, 22] originate in the well-mixed limit from
agent-based formulations of reaction-diffusion systems,
where individuals of S different species A1, A2, . . . , AS

compete directly with each other following the simpli-
fied reaction scheme [23]: Ai + Aj −→ Ai + Ai. Species
Ai beats species Aj with rate kij and immediately re-
places an individual of species Aj with an own offspring.
Species Aj is thus degraded at the same rate such that
the interaction matrix GS = {kij}i,j is skew-symmetric.
The interaction network can be visualized by a graph; see
Fig. 1. Neglecting demographic fluctuations [24], the de-
terministic dynamics for the species’ concentration vector
x = (x1, . . . , xS)T is given by the rate equations (REs):

∂txi = xi · (GSx)i , for all i = 1, . . . , S . (1)

This conservative LV model has been investigated as a
prototype to understand principles of biodiversity from
a theoretical point of view [8, 25]. While these sys-
tems are also of central importance to many other fields

of science (e.g., plasma physics [26], evolutionary game
theory [27, 28], and chemical kinetics [29]), no general
scheme to classify coexistence, survival, and extinction
of species has been established so far. It is frequently as-
sumed that the topology of the interaction network alone
determines coexistence of species [30, 31], i.e., that such
systems can be regarded as Boolean networks [32]. Re-
cent investigations of specific topologies indicate, how-
ever, that knowledge about the network topology may
not suffice to conclude whether all species coexist or if
some of them go extinct [33–35]. These questions on
global stability properties have been previously addressed
successfully for various particular LV systems [27, 36] and
for hierarchical networks [37, 38].

In this letter, we present a general classification of co-
existence scenarios in conservative LV networks with an
arbitrary number of species. We elucidate the conse-
quences of the interplay between the network structure
and the strengths of its interaction links on global sta-
bility. By analyzing conserved quantities, we find condi-
tions on the reaction rates that yield coexistence of all
species. In our mathematical framework this amounts to
the characterization of positive kernel elements of the in-
teraction matrix: By employing the algebraic concept of
the Pfaffian of a skew-symmetric matrix, we are able to
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FIG. 1. (Color online) Two interaction topologies specify-
ing the conservative LV systems. (a) The general cyclic four
species systems (4SS). (b) The general cyclic five species sys-
tem (5SS) as a natural extension of the rock-papers-scissors
configuration (RPS) [39].
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generalize previous approaches [34, 40] and to quantify
the extinction process when no conserved quantities ex-
ist. We illustrate our general results for coexistence and
survival scenarios of four and five species systems (4SS
and 5SS), cf. Fig. 1. Moreover, we demonstrate the im-
plications of our findings for the stability of stochastic
systems: We show how the extinction time diverges with
the distance to the critical rate at which coexistence of
all species is observed.

First, we discuss some general results for the REs (1)
before the specific interaction topologies in Fig. 1 are ana-
lyzed. In order to characterize the stability of the generic
LV system, we study conserved quantities. We elabo-
rate on the form of conserved quantities, under which
conditions they exist at all, and how many conserved
quantities there are for a given interaction network.
Since the interaction matrix GS is skew-symmetric, the
REs (1) conserve the sum over all species’ concentrations
τ0 = x1 + . . . xS , independent of the interaction scheme.
Hence, the dynamics can be normalized onto the (S −1)-
dimensional simplex where all concentrations are non-
negative and add up to 1. The vertices of the simplex
correspond to the extinction of all but one species, its
edges reflect the extinction of all but two species, and
so on. Further conserved quantities have previously been
derived as τ = xp1

1 . . . xpS

S [20, 27, 40]. Interestingly, these
conserved quantities can be obtained from solutions of
the linear problem GSp = 0 because τ̇ = −τ ⟨GSp,x⟩,
with p = (p1, . . . , pS)T . One infers that τ is conserved if
the exponent vector p is an eigenvector corresponding to
eigenvalue 0 [40], or in other words, if p lies in the kernel
of the matrix GS .

Coexistence means that all concentrations stay away
from the boundary of the simplex by a finite distance for
all times. Since the species’ concentrations are bounded
to the interval [0, 1], one concludes from the structure of
the conserved quantity τ that all S species coexist if the
kernel of the interaction matrix is positive, i.e., one finds
an element p in the kernel of GS with positive entries
pi > 0 for all i. Hence, to reveal coexistence scenarios
in the conservative LV model, one has to characterize
the kernel of the interaction matrix GS and identify its
positive elements. Note that this conclusion goes beyond
stating that a positive kernel element corresponds to a
stationary point in the inside of the simplex; see REs (1).

The existence of conserved quantities constrains the
dynamics to a submanifold of the simplex whose dimen-
sion Dc is determined as follows. The rank of a skew-
symmetric matrix is always even, because its non-zero
eigenvalues are purely imaginary, conjugate pairs. The
rank-nullity theorem [41] then implies that the dimension
of the kernel of GS is odd whenever S is odd, and even
whenever S is even. Each linearly independent kernel
element gives rise to an independent conserved quantity
τ which constrains the degrees of freedom of the tra-
jectory. Together with τ0, one finds that the dynamics
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FIG. 2. (Color online) Coexistence and survival in the general
cyclic 4SS are controlled by the Pfaffian of the interaction
matrix. (a) For Pf (G4) = 0, one obtains coexistence of all
species on periodic orbits. (b) Deterministic survival diagram:
for Pf (G4) < 0, species A, B, and D survive in a stable RPS
configuration, whereas A, C, and D survive for Pf (G4) > 0.

in case of non-stationary motion is constrained to a de-
formed sphere of dimension Dc = S − 1 − dimKer (GS)
for a positive kernel; see the Supplemental Material
(SM) for mathematical details. Thus, coexistence in
high-dimensional systems is generically observed on non-
periodic trajectories (Dc > 1); see Movie M1 of SM. Only
if the reaction rates are fine-tuned to a positive and max-
imal kernel of dimension S−2, the dynamics is restricted
to periodic orbits (Dc = 1); see Fig. 2(a) and Movie M2
of SM. In particular, for S = 3 or 4, a positive kernel
immediately implies coexistence on periodic orbits. This
follows from the fact that with three species, the kernel is
always one-dimensional. For the general 4SS, the dimen-
sion of the kernel of the interaction matrix is either 0 or 2.
A two-dimensional, positive kernel yields coexistence on
periodic orbits; see Fig. 2(a). If dim Ker (GS) = 0, i.e., if
the kernel is trivial, one observes extinction of species as
detailed below.

Next, we focus on the mapping between the reaction
rates in GS and its kernel elements in order to find the
stationary points. To this end, we apply the concepts of
the Pfaffian and of the adjugate matrix [41, 42]. The
Pfaffian is a simpler form of the determinant tailored
to skew-symmetric matrices with the property that its
square equals the value of the determinant. In contrast
to the non-negative determinant of skew-symmetric ma-
trices, the Pfaffian carries a sign which will turn out to be
crucial for our purposes. For a skew-symmetric matrix,
the Pfaffian can be computed recursively as:

Pf (GS) =
S∑

i=2

(−1)i · k1i · Pf (G1̂î) , (2)

with G1̂î being the matrix where both the first and i-
th column and row have been removed from the matrix
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GS . The Pfaffian of a 2×2 skew-symmetric matrix G2 =
{kAB}, is given by Pf (G2) = kAB . For the interaction
matrix corresponding to the LV network in Fig. 1(a),

G4 =




0 kAB kAC −kDA

−kAB 0 kBC kBD

−kAC −kBC 0 kCD

kDA −kBD −kCD 0


 ,

the Pfaffian is Pf (G4) = kABkCD − kACkBD − kDAkBC .
The Pfaffian always vanishes for odd S as opposed to

systems with an even number of species [42]. In the latter
case, the Pfaffian is zero only if a constraint on the reac-
tion rates is fulfilled. If the Pfaffian vanishes, one finds
more kernel elements than just the null vector and, thus,
conserved quantities of form τ exist. In the following, we
distinguish between even and odd S.

For an even number of species and a two-dimensional
kernel, positive kernel elements can be identified via the
adjugate matrix RS which is a generalized inverse of the
interaction matrix such that GS · RS = −Pf (GS) · IS ,
with IS being the identity matrix [42]. The adjugate
matrix can be computed as (RS)ij = (−1)σPf

(
Gîĵ

)

where (−1)σ denotes the sign of the permutation σ =
(i j 1 . . . î . . . ĵ . . . S), and the columns of RS give two
independent kernel elements of GS .

As an example, consider again the general cyclic 4SS
depicted in Fig. 1(a). By setting all reaction rates equal
to each other (e.g., to 1), the Pfaffian does not vanish
and, therefore, not all species can coexist. Only when the
rates are chosen such that Pf (G4) = 0, do we obtain two
independent kernel elements of G4: From its adjugate
matrix, R4, we identify p1 = (kCD, 0, kDA, kAC)T and
p2 = (kBD, kDA, 0, kAB)T . We infer the two conserved
quantities τ1 = xkCD

A xkDA

C xkAC

D and τ2 = xkBD

A xkDA

B xkAB

D ,
and conclude that the kernel is positive and coexistence
occurs on periodic orbits; see Fig. 2(a). Hence, classifying
LV networks in terms of their topology is incomplete; the
strengths of the interaction links are crucial in general.

In general, if the Pfaffian for a system with even S is
non-zero, i.e., when only the null vector lies in the ker-
nel, coexistence of all species is not possible. Still one
can quantify the extinction process by generalizing an
approach of Durney et al. [34] for a system with S = 4 to
systems composed of an arbitrary even number of species.
We define the function ρ = xq1

1 . . . xqS

S in the same way
as the conserved quantity τ , but this time choosing the
exponent vector qS = −RS1 with 1 = (1, . . . , 1)T . It is
straightforward to show that this function evolves expo-
nentially in time:

ρ(t) = ρ(0) · e−Pf(GS)·t , (3)

generalizing previous investigations [24, 33–35]. It is
quite remarkable that ρ quantifies the global collective
dynamics of systems with an arbitrary interaction topol-
ogy and even S. Depending on the sign of the Pfaffian,

ρ grows or decays exponentially fast with the Pfaffian of
the interaction matrix as rate. Since the system’s dy-
namics is driven towards the boundary of the simplex,
one can conclude on the extinction of some species. This
feature of ρ is reminiscent of a Lyapunov function; note
also that ρ becomes a conserved quantity τ if the Pfaffian
is zero. An interesting question for future investigations
is to ask whether further quantities exist that character-
ize the dynamics of conservative LV networks.

For the general 4SS shown in Fig. 1(a), we find q4 =
(−kCD + kBD − kBC , kCD + kDA + kAC ,−kBD − kDA −
kAB , kBC − kAC + kAB)T . The fact that (q4)2 is always
positive suggests that species B goes extinct for a posi-
tive Pfaffian, and that the converse holds true for (q4)3
and species C for a negative Pfaffian. In both cases, the
system tends to a stable rock-paper-scissors (RPS) con-
figuration. In summary, we derive the survival diagram
shown in Fig. 2(b). Interestingly, A and D always sur-
vive in this topology although D can be easily tuned to
be the weakest species. We emphasize that this result de-
pends on the sign of the Pfaffian and cannot be obtained
from applying the concept of the determinant. Again,
since the Pfaffian of the interaction matrix characterizes
the dynamics of this 4SS, its topology alone does not
determine the long-time dynamics. These findings unify
previous results for other 4SS [24, 33, 34], and show that
rules like “survival of the strongest” or “survival of the
weakest” [25, 43] cannot be formulated in general.

For an odd number of species, the kernel of GS is al-
ways nontrivial. In general, if dim kerGS = 1, we deter-
mine the independent kernel element via the adjugate

vector [42], rS =
(
Pf (G1̂) , −Pf (G2̂) , . . . ,Pf

(
GŜ

))T
,

which enables us to investigate the influence of the re-
action rates on the survival scenarios. For S = 3, only
the well-studied RPS topology [8, 27] leads to a positive
adjugate vector r3. In other words, coexistence of all
three species depends only on the topology of the net-
work. This behavior is unique to S = 3 and changes
dramatically for systems with more than three species.

We illustrate the importance of the reaction rates for
a system of five interacting species; see Fig. 1(b). This
interaction topology where each species dominates two
species and is outperformed by the two remaining species,
recently gained attention as a natural extension of the
RPS game [30, 39, 44]. For specificity, we investigate
the dependence of the survival scenarios on the rate kAB

with which species A beats species B and chose the other
rates (see Fig. 3(b), left inset) such that either five or
four species survive depending on the value of kAB ; see
Fig. 3(a). The kernel of the interaction matrix depends
on kAB and is characterized by the adjugate vector r5 =
(0, 0, 3kAB − 15, 5 − kAB , 5kAB − 25)T . For kAB ̸= 5,
the kernel is one-dimensional and non-positive, and four
species survive. In contrast, for kAB = 5, r5 equals the
null vector which in turn means that the kernel becomes
three-dimensional [42]. Since we have ensured that the
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FIG. 3. (Color online) Stability of the cyclic 5SS. (a) For the
interaction scheme (left inset of (b)), one obtains coexistence
of all species for the critical rate kAB = 5. (b) Stability of
the stochastic system, reflected by the extinction time Text,
peaks at the critical rate, which becomes more pronounced
as N → ∞. We find a scaling law for Text in the distance to
the critical rate (right inset). Initial conditions were chosen
as x(0) = 1/5 · 1. Larger line gap corresponds to smaller N .

kernel is also positive, we obtain coexistence of all five
species on periodic orbits (Dc = 1).

Finally, we discuss the implications of our findings by
asking how demographic noise affects the stability of
stochastic LV systems. We analyze ecological LV sys-
tems with a finite number N of interacting individuals
in the eye of the knowledge gained from the determinis-
tic analysis. It has been shown that due to demographic
fluctuations the system ultimately reaches an absorbing
state that is characterized by the extinction of all but
one species [45–48]. Moreover, the scaling behavior of
the mean extinction time with the system size N charac-
terizes the stability of the interaction network [14, 47].

As an example, we continue the discussion of the 5SS
from Fig. 3(b), left inset. We have carried out exten-
sive computer simulations employing the Gillespie algo-
rithm [49] to measure the time Text until the first species
has become extinct for different system sizes N and dif-
ferent reaction rates kAB . The results are displayed in
Fig. 3(b) and highlight the significance of the determinis-
tic drift underlying the stochastic dynamics. We observe
a peak in the extinction time as the reaction rate kAB

approaches the critical value kcr = 5 for which we obtain
coexistence of all species in the deterministic case. The
divergence of the extinction time for kAB → kcr becomes
more pronounced for larger system sizes as the system
reaches the deterministic limit for N → ∞.

A scaling analysis reveals how the extinction time
peaks in the vicinity of the coexistence scenario. Near
the critical rate, the extinction time scales linearly with
the system size leading to neutrally stable interaction

networks [8, 24, 50]. At larger distance from the criti-
cal rate, the deterministic driving force to the absorbing
boundary becomes more dominant than the demographic
fluctuations; see Fig. 3(b), right inset. The interplay be-
tween the stochastic and deterministic forces is reflected
by the scaling law:

Text ∝
{

N for kAB = kcr ,
ln N

|kAB−kcr| for kAB ̸= kcr ,
(4)

which extends the linear scaling Text ∝ N of neutral co-
existence. We observe a power-law dependence in the
distance of the reaction rates to the critical rate and log-
arithmic scaling with N for attracting boundaries [8, 51].

The observed scaling law (4) for kAB ̸= kcr can be
attributed to the exponentially fast extinction of species
xi = xi(0) exp (−αit); see Eq. (1). The extinction rate αi

is computed via the temporal average over the trajectory
⟨x⟩ as αi = −(GS ⟨x⟩)i, which becomes linear in the
distance to the critical rate |kAB − kcr| for large times.
The logarithmic dependence on N follows by defining
that a species with concentration xi less than 1/N has
become extinct. With this scaling behavior at hand, we
are able to compare the ecological stability of different
interaction networks based on our analysis of the REs (1).

In this Letter, we investigated global stability proper-
ties of conservative LV networks. By employing the Pfaf-
fian of the interaction matrix, we revealed the relation
between the reaction rates and the conditions for coexis-
tence, and exemplified the implications for the stability
of ecological networks with finite populations. We expect
that our results will also stimulate further progress for the
investigation of extinction scenarios. Beyond analyzing
whether an ecosystem is stable or unstable, it would be
highly interesting to actually predict which of its species
ultimately survive for a general conservative LV system.
This would, for example, allow us to predict the eventual
outcome of an unstable version of the five species system
shown in Fig. 1(b), and to formulate the conditions under
which 3- or 4-species cycles are attained. First insights
into these extinction dynamics will be outlined in a future
publication [52]. We believe that a full characterization
of general conservative LV dynamics is possible.
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Darnstädt, Falk Töppel, and Michal Oszmaniec for help-
ful discussions. This project was supported by the
Deutsche Forschungsgemeinschaft in the framework of
the SFB TR 12 “Symmetry and Universality in Meso-
scopic Systems”, and the German Excellence Initia-
tive via the program “Nanosystems Initiative Munich”
(NIM). J.K. acknowledges funding by the Studienstiftung
des Deutschen Volkes.

∗ frey@lmu.de
[1] R. M. May, Stability and complexity in model ecosystems

(Princeton University Press, Princeton, NJ, 1973).
[2] J. M. Montoya, S. L. Pimm, and R. V. Solé, Nature 442,
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Characterization of coexistence scenarios of conservative LV networks

In this supplemental material, we extend the characterization of the qualitative behavior

of coexistence scenarios for the conservative LV model as defined in the main text,

∂txi = xi · (GSx)i , (1)

where GS is a skew-symmetric matrix. We show that trajectories lie on odd dimensional,

deformed spheres. In case of a positive and maximal kernel of the interaction matrix this

behavior translates to periodic orbits.

In the main text of this letter, we define coexistence of all species for the deterministic

case if the species’ concentrations retain a finite distance to the absorbing boundary for

all times and a given set of initial conditions. Furthermore, we show that a positive

kernel of the interaction matrix implies this coexistence. We call the kernel of the in-

teraction matrix positive if there exists an element p in the kernel of GS with pi > 0 for all i.

First, we show that the motion of the LV system defined in Eq. (1) is either stationary or

restricted to a (S − 1− n)-dimensional manifold M , where n denotes the dimension of the

kernel of GS. Let us assume a LV system characterized by an interaction matrix GS with

a positive, n-dimensional kernel. Note that n has the same parity as S since the rank of

a skew-symmetric matrix is always even. In a sufficiently small neighborhood of a positive

element p of the kernel of the interaction matrix, the kernel is still positive and contains n

1



linearly independent vectors p(1), . . . ,p(n). We can assume these vectors to be normalized

such that
∑S

i=1 p
(l)
i = 1 holds true for l = 1, . . . , n. They give rise to n constants of motion

of the form

τl = x
p
(l)
1

1 . . . x
p
(l)
S

S ,

as shown in the main text. In addition, the trivially conserved quantity

τ0 =
S∑

i=1

xi = 1 ,

always exists. In order to prove linear independence of these conserved quantities, we com-

pute:

0 =
n∑

l=1

cl · d log τl + c0 · dτ0 =
S∑

i=1

(
n∑

l=1

clp
(l)
i + c0xi

)
dxi
xi

,

with arbitrary real constants c0, c1, . . . , cn. In case of x /∈ kerGS, the latter equation

holds true only if cl = 0 for all l = 0, . . . , n. This result shows the linear indepen-

dence of dτ0, dτ1, . . . , dτn. For x ∈ kerGS, the motion of the system is stationary

as can be seen from Eq. (1). Hence, we conclude that the motion is either stationary

or restricted to a (S−1−n)-dimensional manifold M and the dimension of M is always odd.

In the following, we elucidate that this manifold is diffeomorphic to a sphere of dimension

(S − 1− n). We introduce the coordinates

u1 = log x1, . . . , uS = log xS ,

and note that the manifold M can be characterized in these new coordinates by the inter-

section U ∩ {f(u) = 1}. The latter U denotes the set

U =

{
u ∈ RS :

∑

i

p
(l)
i ui = αl; l = 1, . . . , n

}
,

which is an (S−n)-dimensional affine subspace given by the intersection of the hypersurfaces

defined by the conserved quantities τ1, . . . , τn. The constants α1, . . . , αS < 0 are determined

by the initial conditions. The function

f : u 7→
∑

i

eui

2



corresponds to the sum over the species’ concentrations xi and is a strictly convex function.

Provided that minu∈U f(u) < 1, this property implies that the set {u ∈ U : f(u) ≤ 1} is

a strictly convex bounded subset of U with open interior and smooth boundary which is,

therefore, diffeomorphic to a sphere. If on the other hand minu∈U f(u) = 1, then U consists

of only one point and the motion is stationary.

As a consequence, the motion along solutions of Eq. (1) is either stationary or takes place

on an odd dimensional, deformed sphere in case of a positive kernel. From the observation

that M cannot contain an element of the kernel of GS for non-stationary motion, it follows

via the equations of motion (1) that ∂txi 6= 0 and together with the compactness of M , we

conclude that |∂txi| ≥ const > 0 for all i and all times. In other words, the dynamics on

these odd-dimensional spheres does not come to rest.

In summary, if the kernel is positive, quasi-periodic and non-periodic trajectories are

typically observed as can be seen from the corresponding Fourier spectrum; see also Movie

M1 of the Supplemental Material (SM). If the dimension of the kernel is maximal, that is

if dim kerGS = S − 2, the non-stationary trajectories are restricted to deformed circles and

they never come to rest. Therefore, the motion occurs on periodic orbits; see Movie M2 of

the SM.
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Condensation phenomena arise through a collective behaviour of particles. They are ob-

served in both classical and quantum systems, ranging from the formation of traffic jams in

mass transport models to the macroscopic occupation of the energetic ground state in ultra-

cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven

and dissipative system of bosons may form multiple condensates. Which states become the

condensates has, however, remained elusive thus far. The dynamics of this condensation are

described by coupled birth-death processes, which also occur in evolutionary game theory.

Here, we apply concepts from evolutionary game theory to explain the formation of multiple

condensates in such driven-dissipative bosonic systems. We show that vanishing of relative

entropy production determines their selection. The condensation proceeds exponentially fast,

but the system never comes to rest. Instead, the occupation numbers of condensates may os-

cillate, as we demonstrate for a rock-paper-scissors game of condensates.

Condensation phenomena occur in a broad range of contexts in both classical and quantum

systems. Networks such as the World-Wide-Web or the citation network perpetually grow by the

addition of nodes or links and they evolve by rewiring. Over time, a finite fraction of the links of

a network may be attached to particular nodes. These nodes become hubs and thereby dominate

the dynamics of the whole network; they become condensate nodes1–3. Condensation also occurs

in models for the jamming of traffic4–7 and in related mass transport models in which particles hop

between sites on a lattice3, 8, 9. A condensate forms when a finite fraction of all particles aggregates

into a cluster that dominates the total particle flow. Bose-Einstein condensation, on the other

hand, is a quintessentially quantum mechanical phenomenon. When an equilibrated, dilute gas
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of bosonic particles is cooled to a temperature near absolute zero, a finite fraction of bosons may

condense into the energetic ground state10–12. Long-range phase coherence builds up and quantum

physics becomes manifest on the macroscopic scale13, 14.

In both the classical and the quantum mechanical context, condensation occurs when one or

multiple states become macroscopically occupied (they become condensates), whereas the other

states become depleted15, 16. However, the physical origins of condensation in the above examples

differ from each other. Why and how condensation arises in a particular system remains a topic of

general interest and vivid research.

Here, we study condensation in two systems from different fields of research: incoherently

driven-dissipative systems of non-interacting bosons and evolutionary games of competing agents.

As we show below, the physical principle of vanishing entropy production governs the formation

of condensates in both of these systems. The entities that constitute the respective system shall be

called particles. They may be quantum or classical particles (bosons or agents). The dynamics of

these particles eventually lead to condensation into particular states (quantum states or strategies).

Before describing the above two systems, we now introduce the mathematical framework of our

study.

On an abstract level, we consider a system of S (non-degenerate) states Ei, i = 1, . . . , S,

each of which is occupied by Ni ≥ 0 indistinguishable particles, see Fig. 1a. The configuration

of the system at time t is fully characterized by the occupation numbers N = (N1, N2, . . . , NS).

This configuration changes continuously in time due to the transition of particles between states.
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The total number of particles in this coupled birth-death process is conserved (N =
∑

iNi).

We are interested in the probability P (N, t) of finding the system in configuration N at time t.

The temporal evolution of the probability distribution P (N, t) is governed by the classical master

equation17, 18:

∂tP (N, t) =
S∑

i,j=1
j 6=i

(
Γi←j(Ni − 1, Nj + 1)P (N− ei + ej, t)

−Γi←j(Ni, Nj)P (N, t)
)
, (1)

where ei ∈ ZS denotes the unit vector in direction i (equal to one at index i, otherwise zero). The

rate for the transition of particles from state Ej to Ei depends linearly on the number of particles

in the departure and in the arrival state:

Γi←j = rij(Ni + sij)Nj , (2)

with rate constant rij ≥ 0 and constants sij ≥ 0.

Condensation in this framework is understood as the macroscopic occupation of one or mul-

tiple states15, 16: We consider a state Ei as a condensate when the long-time average of the number

of particles in this state scales linearly with the system size (〈Ni〉t ∼ O(N) for large t). Hence, a

condensate harbours a finite fraction of the total number of particles for large systems (N � 1).

We refer to a state as depleted when its average occupation number scales less than linearly with

the system size. Therefore, the fraction of particles in a depleted state vanishes in the limit of large

systems.

Depending on the values of the rate constants rij , numerical simulation of equations (1) with
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rates (2) reveals that all states, multiple states, or only one state become condensates when the

particle density N/S is large enough to detect condensation19. Thus far, various questions about

condensation have remained elusive for the coupled birth-death process defined by equation (1):

Which of the states become condensates? How does this selection of condensates proceed? Is it

possible to construct systems that condense into a specific set of condensates?

In the following, we answer these questions by illuminating the physical principle that gov-

erns the formation of multiple condensates on the leading order timescale. We show that the

vanishing of relative entropy production determines the selection of condensates (see equations (3)

and (4) below). We elaborate how condensate selection is determined by the rate constants rij . The

condensation proceeds exponentially fast into a dynamic, metastable steady state within which the

occupation numbers of condensates may oscillate. By applying our general results to systems with

many states, we show that the interplay between critical properties of such networks of states20

and dynamically stable network motifs21 determines the selection of condensates. The results

of our analysis apply to any system whose dynamics are described by the coupled birth-death

processes (1) with rates (2). Before proceeding to the mathematical and numerical analysis of

condensation in these processes, we now give a brief overview of such systems.

Results

Non-interacting bosons in driven-dissipative systems. The classical master equation (1) has

recently been derived by Vorberg et al. in the study of bosonic systems that are dissipative and
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driven by external sources19. For a system of non-interacting bosons that is weakly coupled to a

reservoir and driven by an external time-periodic force (a so-called Floquet system)22–24, one can

eliminate the reservoir degrees of freedom (Born and Markov approximation)25, 26 and the density

matrix of the system becomes diagonal (see the Supplement of the work of Vorberg et al.19). The

effective dynamics of the bosons become incoherent and are captured on a macroscopic level in

terms of the coupled birth-death processes (1) with rates Γi←j = rij(Ni + 1)Nj (that is all sij = 1

in the rates (2)). These non-equilibrium setups may not only lead the bosons into a single, but also

into multiple condensates19.

For the incoherently driven-dissipative systems described above, the state Ei denotes a time-

dependent Floquet state22–24. The total rate Γi←j for the transition of a boson from state Ej to Ei

depends linearly on the number of bosons in the departure state (Nj) and the arrival state (Ni +

1). The latter factor stems from the indistinguishability of bosons and reflects their tendency to

congregate. Although, we refer to equation (1) as a classical master equation and coherence does

not build up, the quantum statistics of bosons is still encoded in the functional form of Γi←j . The

rate constant rij is determined by microscopic properties of the system and the reservoir.

Condensation in the above setup is to be distinguished from Bose-Einstein condensation.

Typically, studies on Bose-Einstein condensation focus on the existence of long-range phase co-

herence in thermal equilibrium10–15, its kinetic formation13, 14, 27–32, and the fragmentation of a co-

herent condensate into multiple condensates (for example when the equilibrium ground state is

degenerate)13, 16. In contrast, the classical birth-death processes (1) with rates (2) describe conden-
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sation in bosonic systems that are externally driven by a continuing supply of energy, dissipate into

the environment, and exhibit decoherence.

Equations of type (1) may also arise in atomic physics and quantum optics and are known as

Pauli master equations33–35. They describe how the population of S non-degenerate energy levels

changes over time when a system harbours N indistinguishable, non-interacting bosonic atoms.

Such changes may occur by interactions with a radiation field that induces transitions between

energy levels. A theoretical description of these transitions in terms of a Pauli master equation is

appropriate if coherence is negligible. As in the previous example, the system then approaches

a state in which some of the energy levels are macroscopically occupied (condensates) whereas

others are depleted. More generally, whenever a rate constant rij governs the transition of a single

boson from a state Ej to Ei, the rates (2) with sij = 1 for all i and j apply if N non-interacting

bosons are brought into the system19.

Strategy selection in evolutionary game theory. The classical master equation (1) also occurs in

evolutionary game theory (EGT). Historically, EGT was developed to study evolutionary processes

that are driven by selection and mutation36, 37 and seeks to identify optimal strategies for compet-

itive interactions. For example, EGT has been applied in the study of the prominent “rock-paper-

scissors” game, which was proposed as a facilitator of species coexistence and has inspired both

experimental and theoretical research38–42. Furthermore, the “prisoner’s dilemma” game serves as

a paradigmatic model to explore the evolution and maintenance of cooperation43, 44. The interplay

between non-linear and stochastic effects underlies the dynamics of such evolutionary games45–50.
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In EGT, one typically considers a system of N interacting agents (classical particles) who

repeatedly play one fixed strategy Ei out of the S possible choices E1, E2, . . . , ES . In each suc-

ceeding interaction, the defeated agent adopts the strategy of its opponent. SinceNj agents playing

strategy Ej can potentially be defeated by one of the Ni agents playing strategy Ei, the rate of

change is Γi←j = rijNiNj . If an agent who plays Ej can also spontaneously mutate into an agent

who plays Ei (with rate µij = rijsij), one recovers the classical master equation (1) with rates (2).

Thus, there exists a correspondence between condensation in incoherently driven-dissipative

bosonic systems and strategy selection in evolutionary game theory: the transition of bosons be-

tween states can be interpreted in terms of the interaction and mutation of agents employing evo-

lutionary strategies. In effect, the states in an incoherently driven-dissipative setup play an evolu-

tionary game and the winning states form the condensates.

After having introduced the above examples, we now proceed with the mathematical and

numerical analysis of the classical master equation (1). We show that the dynamics of condensa-

tion change on two distinct timescales. At the leading order timescale, the dynamics are described

by a set of nonlinearly coupled, ordinary differential equations (see equation (3) below), which

determine the states that become condensates. We identify these states by applying concepts from

EGT. After an exposition of the physical principles that underlie the condensation dynamics, im-

plications of our general results for incoherently driven-dissipative systems are discussed.

The antisymmetric Lotka-Volterra equation. The total number of particles needed for conden-

sation phenomena to occur is large (N � 1). In order to detect macroscopic occupancies, it is also
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assumed that the particle density N/S is large. Therefore, one may approximate the classical mas-

ter equation (1) by a Langevin equation for the state concentrations xi(t) = Ni(t)/N (details of

the derivation are provided in Supplementary Note 1). Originally proposed for Brownian particles

suspended in a liquid, the Langevin equation decomposes the dynamics of a sample trajectory of

the random process into two contributions: into a deterministic drift and into noise stemming from

the discreteness of particle numbers (“demographic fluctuations”). Both the demographic fluc-

tuations and the contribution to the deterministic drift that corresponds to mutations in the EGT

setting are suppressed by a small prefactor 1/N . Therefore, these terms change the dynamics only

slowly. The deterministic drift that corresponds to interactions between agents is, however, not

suppressed. It thus governs the dynamics to leading order.

Hence, we find that the leading order dynamics of the condensation process (1)-(2) are de-

scribed by the differential equations:

d

dt
xi = xi(Ax)i . (3)

The matrix A is antisymmetric and encodes the effective transition rates between states (aij =

rij − rji). The constants sij that occur in the definition of the rates (2) do not change the leading

order dynamics, but they become relevant on subleading order timescales.

We refer to equation (3) as the antisymmetric Lotka-Volterra equation (ALVE). It provides

a description of pairwise interactions that preserve the total number of particles. Therefore, the

ALVE finds a broad range of applications in diverse fields of research, in addition to the aforemen-

tioned condensation of bosons far from equilibrium. It was first studied by Volterra51 in the context
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of predator-prey oscillations in population biology47, 52, 53. In plasma physics, the ALVE describes

the spectra of plasma oscillations (Langmuir waves)54, 55, and in chemical kinetics it captures the

dynamics of bimolecular autocatalytic reactions18, 56–58. In EGT, the ALVE is known as the replica-

tor equation of zero-sum games such as the rock-paper-scissors game47, 59–61. Table 1 summarizes

all of the above analogies.

Despite the simple structure of the ALVE, it exhibits a rich and complex behaviour. In

the following, we show how the mathematical analysis of the ALVE explains condensation into

multiple states (condensate selection). To this end, we extend an approach for the analysis of the

ALVE that was introduced in the context of EGT59, 60.

Production of relative entropy and condensate selection. Our analysis starts from a theorem

in linear programming theory62. Given an antisymmetric matrix A, it is always possible to find a

vector c that fulfils the following conditions: its entries are positive for indices in I ⊆ {1, . . . , S}

and zero for indices in Ī = {1, . . . , S} − I , whereas the entries of Ac are zero for indices in

I and negative for indices in Ī (Fig. 1b). Although several vectors c with these properties may

exist, the index set I is unique and, thus, determined by the antisymmetric matrix A. Finding

such a “condensate vector” c is crucial for the understanding of condensate selection and of the

condensation dynamics. The condensate vector has the following physical interpretations.

All condensate vectors yield fixed points of the ALVE (3). Because of the antisymmetry

of matrix A, a linear stability analysis of these fixed points does not yield insight into the global

dynamics (Supplementary Note 1). However, global stability properties can be inferred by showing
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that the relative entropy of a condensate vector to the state concentrations,

D(c||x) =
∑

i∈I
ci log (ci/xi) , (4)

is a Lyapunov function (note that we do not consider the relative entropy of the state concentrations

to the condensate vector, but define the relative entropy vice versa). The relative entropy (4) de-

creases with time and is bounded from below (see Methods and Supplementary Fig. 1). Therefore,

the dynamics relax to a subsystem in which relative entropy production is zero. The relaxation of

relative entropy production is reminiscent of Prigogine’s study of open systems in non-equilibrium

thermodynamics. Indeed, we find that the system, to cite Prigogine’s phrase, “settles down to the

state of least dissipation”63.

This state of least dissipation is characterized even further by the condensate vector c. Con-

sidering the definition of the relative entropy (4) and its boundedness, it follows that every con-

centration xi with i ∈ I remains larger than a positive constant. On the other hand, states with

indices in Ī become depleted for long times (see Methods). Therefore, we find that the condensate

vector determines the selection of condensates. Positive entries of c correspond to states that be-

come condensates, whereas zero entries of c correspond to states that become depleted. Both the

set of condensates and the set of depleted states are unique (Fig. 1b) and independent of the initial

conditions. Generically, the entries of the condensate vector are also unique upon normalization

(its entries sum up to one) and yield the rate |(Ac)i| at which a state Ei becomes depleted. The

condensate selection occurs exponentially fast (see Fig. 2 and Methods).

After relaxation, the dynamics of the system are restricted to the condensates. In other words,
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the condensates form the attractor of the dynamics. However, the dynamics in this subsystem do

not come to rest. The state of least dissipation is a dynamic state with a perpetually changing

number of particles in the condensates: periodic, quasiperiodic, and non-periodic oscillations are

observed (Fig. 2b and Supplementary Fig. 1). In the generic case, the entries of the condensate vec-

tor represent the temporal average of condensate concentrations according to the ALVE (3). After

condensate selection, the dynamics of these active condensates take place on a high-dimensional,

deformed sphere61.

An algebraic algorithm to find the condensates. Numerical integration of the ALVE (3) is

neither a feasible nor a reliable method for identifying condensates (Fig. 2, Supplementary Figs. 1

and 2). Instead, we determine these states by numerically searching for a condensate vector c. To

this end, we reformulate the above conditions on c in terms of two linear inequalities62:

Ac ≤ 0 and c− Ac > 0 . (5)

We solve these inequalities with a linear programming algorithm that is both reliable and efficient.

The time to find a condensate vector scales only polynomially with the number of states S (see

Supplementary Fig. 3 and Methods for details).

Condensation in large random networks of states. We used our combined analytical and nu-

merical approach to study how the connectivity of a random network of states affects the selection

of condensates under the dynamics of the ALVE (3). The connectivity specifies the percentage of

states between which particle transitions occur20, 64. After having generated a network with a given

connectivity, the strength and direction of an allowed transition between states Ej and Ei were
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determined by randomly sampling the corresponding effective rate constant aij = rij − rji.

Our results for condensation in large random networks of states are summarized in Fig. 3.

When the connectivity of a network is zero, all of its states are isolated. Particles are not ex-

changed between states and none of the states becomes depleted. For an increased connectivity,

isolated pairs of states are sampled in a random network. One state in an isolated pair is always

depleted and the average number of condensates decreases rapidly. Upon approaching a critical

connectivity, cycles and trees of all orders become embedded in a random network. This critical

connectivity scales inversely with the number of states20. We observe that, under the dynamics of

the ALVE (3), the average number of condensates becomes minimal for a connectivity that also

scales inversely with the number of states (see Fig. 3g). We attribute this minimum to the interplay

between the criticality of random networks and condensate selection on connected components of

the network61, 65. Embedded directed cycles are a recurring motif21 in the remaining network of

condensates after condensate selection. Above the critical connectivity, a single giant cluster is

formed. On average, half the number of states in this giant cluster become condensates once the

network is fully connected (C = 1) (Fig. 3a)19, 60, 66. Thus, our analysis emphasizes the importance

of critical properties of random networks for condensate selection.

Design of active condensates. Our understanding of condensate selection can be used to design

systems that condense into a particular network of states, a game of condensates. We exemplify

this procedure by formulating conditions under which a system relaxes into a rock-paper-scissors

(RPS) game of condensates40. Three particular states E1, E2, and E3 in a system become a RPS
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cycle of condensates if, and only if, the following two conditions are fulfilled (Fig. 4). First, the

“RPS condition” requires that the rate constants between the three states form a RPS network (for

example, r12 > r21, r23 > r32, and r31 > r13). Second, the “attractivity condition” requires that

the inflow of particles into the RPS cycle from any other state Ek is greater than the outflow to that

state Ek (for all k = 4, . . . , S). The values of the rate constants between the states that become de-

pleted are irrelevant. More complex games of condensates can be designed by formulating similar

conditions on the rate constants. These conditions are formulated as inequalities that depend on

Pfaffians of the antisymmetric matrix A and its submatrices (see Methods)61. The flow of particles

between states in these systems causes condensate concentrations to oscillate (Fig. 2b).

Discussion

Our findings thus suggest intriguing dynamics of condensates in systems whose temporal evo-

lutions are captured by the classical master equation (1) with rates (2); for example in driven-

dissipative systems of non-interacting bosons. Condensates observed on the leading order timescale

are metastable. For longer times, relaxation into a steady state occurs19, 67. When detailed balance

is broken in the system of condensates, the net probability current between at least two states does

not vanish and a non-equilibrium steady state is approached68, 69. The simplest way of designing

such condensates is illustrated by the above RPS game. In this game, detailed balance is bro-

ken, for example, when the transition of particles is unidirectional (with totally asymmetric rate

constants r12 > r21 = 0, r23 > r32 = 0, and r31 > r13 = 0). For non-interacting bosons in driven-

dissipative systems, the continuing supply with energy through the external time-periodic driving
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force (Floquet system) and the dissipation of energy into the environment may, therefore, prevent

the system from reaching equilibrium. How such systems may be realized in an experiment poses

an interesting question for future research.

The transition of particles between condensates in the here studied coupled birth-death pro-

cesses parallels the interaction and mutation of winning agents in evolutionary game theory, re-

flecting an “evolutionary game of condensates”. Our results suggest the possibility of creating

novel bosonic systems with an oscillating occupation of condensates. Non-interacting bosons in

incoherently driven-dissipative systems are promising candidates. Since the antisymmetric Lotka-

Volterra equation also arises in population biology, chemical kinetics, and plasma physics, all of

our mathematical results apply to these fields as well.

Methods

Asymptotics of the antisymmetric Lotka-Volterra equation. The asymptotic behaviour of the

ALVE (3) can be characterized as follows: For every antisymmetric matrix A there exists a unique

subset of states I ⊆ {1, . . . , S} whose concentrations stay away from zero for all times, that is,

xi(t) ≥ Const(A,x0) > 0 for all t ≥ 0 and for every i ∈ I . (6)

The set I is the set of condensates. All of the other states with indices in Ī = {1, . . . , S} − I

become depleted as t→∞, that is,

xi(t)→ 0 as t→∞ for every i ∈ Ī . (7)
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The set of condensates can be determined algebraically from the antisymmetric matrix A and does

not depend on the initial conditions x0 ∈ ∆S−1 = {x ∈ RS | xi > 0 for all i,
∑S

i=1 xi = 1}.

To show this result, the time-dependent entropy D(c||x)(t) of a condensate vector c =

(c1, . . . , cn) ∈ ∆S−1 (ci ≥ 0 for all i and
∑

i ci = 1) relative to the trajectory x(t) is consid-

ered (that is, the Kullback-Leibler divergence of x(t) from c), see equation (4). A condensate

vector is defined via the properties (see Fig. 1b):

ci > 0 and (Ac)i = 0 for i ∈ I , and (8)

ci = 0 and (Ac)i < 0 for i ∈ Ī . (9)

Such a vector can always be found for an antisymmetric matrix62. Notably, the index set I is unique

although more than one condensate vector may exist.

Considering the time derivative of the relative entropy D(c||x)(t) and employing equa-

tions (3) and (8) yields:

d

dt
D(c||x)(t) = −

S∑

i=1

ci
∂txi
xi

= −
S∑

i=1

ci(Ax)i =
S∑

i=1

(Ac)ixi =
∑

i∈Ī
(Ac)ixi . (10)

Since (Ac)Ī < 0 and x > 0, it follows that ∂tD(c||x)(t) < 0. Therefore, the relative entropy

D(c||x) is a Lyapunov function if c is chosen in accordance with equations (8) and (9). Moreover,

D(c||x) is bounded from above by D(c||x)(0) and from below by zero for all times. This can be

seen from the definition of D, and from integration of equation (10) (using that (Ac)Ī < 0 and

x > 0):

0 ≤ D(c||x)(t) = D(c||x)(0) +

∫ t

0

ds
∑

i∈Ī
(Ac)ixi(s) ≤ D(c||x)(0) . (11)
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From the definition of the relative entropy in equation (4), it follows that every concentration

xi with i ∈ I remains larger than a positive constant, that is, xi(t) ≥ Const(A,x0) > 0 for all

times t (if xi(t)→ 0 for i ∈ I , it follows that D →∞, which contradicts the boundedness of D).

Furthermore, equation (11) implies that,

−
∫ t

0

ds (Ac)ixi(s) ≤ −
∫ t

0

ds
∑

i∈Ī
(Ac)ixi(s) ≤ D(c||x)(0) , (12)

for every i ∈ Ī and for all t. Therefore, concentration xi is integrable for every i ∈ Ī (xi ∈

L1(0,∞)) with the bound:

0 <

∫ ∞

0

ds xi(s) ≤
D(c||x)(0)

−(Ac)i
= Const(A,x0) for every i ∈ Ī . (13)

Since the derivative of the concentrations is bounded from above and below, |∂txi| = |xi(Ax)i| ≤

‖(Ax)‖∞ ≤ ‖A‖∞→∞ ≤ Const(A), one concludes that xi is uniformly continuous (‖A‖∞→∞

denotes the operator norm of A induced by the maximum norm on RS). Together with the integra-

bility (13), it follows that states with indices in Ī become depleted as t → ∞, that is, xi(t) → 0

for i ∈ Ī .

In conclusion, given an antisymmetric matrix A = R − RT via a rate constant matrix R =

{rij}i,j , one finds a condensate vector c that satisfies inequalities (8)-(9). The index set I , for which

entries of c are positive, represents condensates. The index set Ī , for which entries of c are zero,

represents states that become depleted. Moreover, equation (10) implies that the relative entropy

becomes a conserved quantity in the subsystem of condensates (Supplementary Fig. 1).
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Temporal average of condensate concentrations. The ALVE (3) is solved implicitly by,

xi(t) = xi(0)et·(A〈x〉t)i , (14)

with the time average of the trajectory 〈x〉t defined as:

〈x〉t =
1

t

∫ t

0

ds x(s) . (15)

It is shown above that 0 < Const(A,x0) ≤ xi(t) ≤ 1 holds for the states that become

condensates (i ∈ I). By rearranging equation (14), one thus obtains:

|(A〈x〉t)i| ≤
1

t

∣∣∣∣ log

(
xi(t)

xi(0)

)∣∣∣∣ ≤
Const(A,x0)

t
for all i ∈ I . (16)

Note that Const is used to denote arbitrary positive, time-independent constants. Therefore, the

right hand side of equation (16) vanishes for t→∞. On the other hand, xi is integrable for i ∈ Ī

(equation (13)). Thus, the corresponding component of the time average converges to zero,

〈xi〉t ≤
Const(A,x0)

t
→ 0 as t→∞ for every i ∈ Ī . (17)

Hence, the distance of the time average 〈x〉t to the kernel of the antisymmetric submatrix AI

converges to zero (the submatrix AI corresponds to the system of condensates with indices in I).

Structure of a generic antisymmetric matrix. For systems with an even number of states S,

the antisymmetric matrix A = R − RT generically has a trivial kernel, whereas for systems with

an odd number of states, the kernel of A is generically one-dimensional. A higher dimensional

kernel of A only occurs if the matrix entries are tuned52, 61, 70. As a consequence, when all of the

entries above the diagonal of A are, for example, randomly drawn from a continuous probability
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distribution (for example from a Gaussian distribution), all 2S submatrices of A have a kernel with

dimension of less than or equal to one.

The projection of x ∈ RS to the subspace R(J) ⊆ RS for an arbitrary index set J ⊆

{1, . . . , S} is defined as xJ := PJx := (xj)j∈J . In other words, entries of xJ are zero for in-

dices in the complement J̄ . In the following, the short notation AJ := PJAPJ is also used (see

above). Furthermore, the set of antisymmetric matrices whose submatrices have a kernel with

dimension less than or equal to one is defined:

Ω :=
{
A ∈ RS×S | A is antisymmetric and dim kerAJ ≤ 1 for all J ⊆ {1, . . . , S}

}
. (18)

The complement Ω̄ has measure zero with respect to the flat measure dA on antisymmetric matrices

(the translation invariant measure, which is sigma-finite and not trivial).

For antisymmetric matrices A ∈ Ω, the kernel can be characterized as follows61, 70. If the

number of states S is even, the kernel of A is trivial: kerA = {0}. If the number of states is odd,

the kernel is one-dimensional: kerA = {v}. This kernel element can be computed analytically in

terms of Pfaffians of submatrices of A:

v = (Pf (A1̂) ,−Pf (A2̂) , . . . ,Pf (AŜ)) . (19)

The submatrix Ak̂ ∈ R(S−1)×(S−1) denotes the matrix for which the k-th column and row are

removed from A.

For antisymmetric matrices A ∈ Ω, the normalized condensate vector c with
∑

i ci = 1 and

with properties (8), (9) is unique. The latter follows from AIc = 0 (equations (8) and (18)). There-

fore, the condensate vector is the unique kernel vector of the subsystem of condensates whose
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interactions are characterized by the matrix AI . Furthermore, I contains an odd number of el-

ements. To determine the condensate vector for A ∈ Ω, one can proceed as follows. For each

odd-dimensional submatrix AI with I ⊆ {1, . . . , S}, one computes the kernel element v accord-

ing to equation (19) and defines the vector w ∈ RS by setting wI = v and wĪ = 0. There exists

exactly one set I for which (Aw)Ī < 0. The corresponding vector w is the unique condensate

vector upon normalization.

Temporal average of condensate concentrations (generic case). It was shown above that the

temporal average of condensate concentrations 〈x〉t converges to a non-negative kernel element of

the antisymmetric matrix AI . In the generic case, the condensate vector c is the unique kernel ele-

ment of AI upon normalization. Therefore, positive entries of c represent the asymptotic temporal

average of condensate concentrations,

‖〈x〉t − c‖∞ ≤
Const(A,x0)

t
→ 0 as t→∞ . (20)

Exponentially fast depletion of states (generic case). Upon inserting equation (20) into the im-

plicit solution (14) of the ALVE, the exponentially fast depletion of states with i ∈ Ī can be seen

as follows (note that (Ac)i < 0 according to the choice of the condensate vector in equations (8)
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and (9)):

xi(t) = xi(0)et·(A〈x〉t)i (21)

≤ xi(0)et·((Ac)i+‖A(〈x〉t−c)‖∞) (22)

≤ xi(0)et·(Ac)i+Const(A,x0) (23)

= Const(A,x0)et·(Ac)i , (24)

and analogously,

xi(t) = xi(0)et·(A〈x〉t)i ≥ Const(A,x0)et·(Ac)i . (25)

Therefore, condensate selection occurs exponentially fast at depletion rate |(Ac)i|. The dynamics

of cases for non-generic antisymmetric matrices are discussed in Supplementary Note 2.

Linear programming algorithm. For the numeric computation of condensate vectors c, a finite

threshold δ > 0 was introduced into the inequalities (5): Ac ≤ 0 and c − Ac ≥ δ > 0. Its

value was set to δ = 1 by rescaling of c. Numerical solution of the inequalities was performed

by using the IBM ILOG CPLEX Optimization Studio 12.5 and its interface to the C++ language.

The software Mathematica 9.0 from Wolfram Research was also found to be applicable. Further

information on the calibration of the linear programming algorithm and a simplified Mathematica

algorithm are provided in Supplementary Note 3.
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Figure 1 Condensation into multiple states due to particle transitions between states and

mathematics of condensate selection. (a) With respect to condensation in an incoherently driven-

dissipative quantum system, each bowl represents a state Ei that is occupied by Ni non-interacting

bosons (filled circles). If indicated by an arrow, bosons may undergo transitions from state Ej to

state Ei at a rate Γi←j = rij(Ni + 1)Nj , with rate constant rij . In the language of evolutionary

game theory, the figure depicts the interaction of Ni agents (filled circles) playing strategies Ei

(bowls). An agent playing strategy Ej adopts strategy Ei at a rate Γi←j = rijNiNj . The above rate

of bosonic condensate selection is recovered if agents may also spontaneously mutate from Ej to

Ei at a rate rij . (b) A condensate vector c for an antisymmetric matrix A has two properties: its

entries are positive for indices for which Ac is zero, and they are zero for indices for which Ac is

negative (“-” signifies the antisymmetry of matrix A). Temporal evolution of the relative entropy

of the condensate vector to the state concentrations under the ALVE (3) relates positive entries of

the condensate vector to condensates, and its zero entries to depleted states. Generically, positive
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entries of c represent the asymptotic temporal average of oscillating condensate concentrations

according to the ALVE (3), and negative entries of Ac represent depletion rates.

32



0 4000 8000 12000
10-10

10-8

10-6

10-4

10-1

10-2

St
at

e 
co

nc
en

tra
tio

ns
 x

i

Time t

13000 13400 13800

10-3

10-1

10-2

ba

aij = rij – rji = 1
Ej Ei

Figure 2 Fragmentation of an exemplary system into multiple condensates with oscillat-

ing state concentrations. (a) Randomly sampled network of 50 states. Disks represent states.

An arrow from state Ej to state Ei represents an effective rate constant aij = rij − rji = 1 (a

missing arrow indicates a forbidden transition with aij = 0). Computation of a condensate vec-

tor c predicted relaxation into ten isolated condensates (yellow), one interacting subsystem with

six condensates (blue), and two rock-paper-scissors (RPS) cycles (red and green). All other states

become depleted. The complete network also comprises RPS cycles of which some states become

depleted. Knowledge of the network topology alone is thus insufficient to determine condensates.

(b) Temporal evolution of state concentrations xi (logarithmic scale). Colours in accordance with

(a). Numerical integration of the ALVE (3) confirmed the selection of states based on the conden-

sate vector c. Subsystems with six (blue) and three (red and green) condensates exhibit oscillations

of concentrations with non-vanishing particle flow. Depletion of states occurs exponentially fast.

Identifying condensates from a condensate vector c is more reliable than through numerical inte-
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gration: The concentration of the state associated to the purple disk in (a) decays exponentially to

a concentration of 1.5 · 10−7 before recovering transiently. Numerical integration cannot rule out

permanent recovery at later times. Supplementary Fig. 2 demonstrates such a case.
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Figure 3 Dependence of the number of condensates on the connectivity of states in random

networks. (a-f) Measured probability p of finding a particular number of condensates for a system

with S = 100 states and with connectivity C (5 · 106 systems analysed per histogram). The

connectivity specifies the percentage of states between which transitions of particles occur with a

non-zero effective rate constant aij = rij − rji. Effective rate constants aij were sampled from

a Gaussian distribution (zero mean, unit variance). (a) At full connectivity, the distribution is

pseudo-binomial with only odd numbers of condensates (C = 1; light blue bars)19, 60, 66. (b) As the

connectivity is reduced, even numbers of condensates become possible when systems decouple into

even numbers of subsystems (C = 0.129; dark blue bars). (c) The distribution exhibits bimodality

(C = 0.075) and (d) approaches a minimal average number of 40.2 condensates (C = 0.055). (e)
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This average subsequently increases (C = 0.018) because isolated states are trivially selected as

condensates (C = 0) as shown in (f). (g) Average number of condensates per number of states

(colour-coded) plotted against the number of states S and the connectivity C (log-log graph in

inset; ≥ 104 systems per data point, see Supplementary Fig. 4 for the reliability of the linear

programming algorithm). White circles correspond to distributions shown in (a-e). The minimal

relative number of condensates conforms to the power law C ∼ 1/Sγ with γ = 0.998 ± 0.008

(s.e.m.) and can be related to the criticality of random networks20.
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Figure 4 Conditions for the emergence of a rock-paper-scissors cycle of condensates. Three

particular states E1, E2, and E3 (blue, red, and yellow disks) of a network condense into a rock-

paper-scissors (RPS) cycle if, and only if, two conditions are fulfilled: First, the “RPS condition”

requires that the rate constants rij between the three states form a RPS network: ri−1,i+1 > ri+1,i−1

(indices are counted modulo 3, for example, r42 = r12 (framed arrows denote rate constants that

are larger than rate constants for the respective reverse direction). Differences between these rate

constants define the entries ci = ri−1,i+1 − ri+1,i−1 of an admissible condensate vector c. Second,

the “attractivity condition” requires that the weighted sum of rates from any exterior state Ek

(purple disks) into the RPS cycle,
∑3

j=1 cjrjk (framed arrows), is larger than the weighted sum of

outbound rates,
∑3

j=1 cjrkj (black arrows). In other words, the inflow of particles into the RPS

cycle from any exterior state needs to be greater than the outflow to that state.
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Field of research Entity State Process Dynamics

Quantum physics19 Boson Quantum state Incoherent transition Condensation/depletion

Evolutionary game theory59, 60 Agent Strategy Game (+mutation) Win/loss

Population dynamics51-53, 47 Individual Species Competition (+mutation) Survival/extinction

Chemical kinetics56-58 Molecule Chemical species Reaction (+conversion) Production/consumption

Plasma physics54, 55 Plasmon Jet Scattering Increase/decrease

Table 1. Condensation processes described by the ALVE in different fields of research. The

ALVE (3) governs condensation processes in diverse fields of research. For example, for incoher-

ently driven-dissipative bosonic systems, the ALVE describes condensation and depletion of states

by incoherent transitions of non-interacting bosons. In EGT, the ALVE occurs in the context of

winning and losing strategies played by agents.
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Supplementary Figure 1. Advantage of the algebraic algorithm over numerical integration of the antisymmetric

Lotka-Volterra equation (ALVE). (a) A fully connected network with 20 states (colored disks). Effective transition

rates aij (arrows) are listed in Supplementary Note 3 and were sampled from a Gaussian distribution (zero mean, unit

variance). Computation of the unique normalized condensate vector c identifies 11 states as condensates (red and

green disks) and depletion of 9 states (blue, yellow, and purple disks). (b) Trajectories show the temporal evolution of

state concentrations xi (colors in accordance with (a)). Numerical integration of the ALVE is highly unstable. Only

the routine NDSolve with method “StiffnessSwitching” of Mathematica from Wolfram Research was able to track the

concentrations for a sufficiently long time. Routines offered by the GNU Scientific Library failed (Dormand-Prince and

Runge-Kutta-Fehlberg). The concentration corresponding to the green state transiently decreases to a value of 4·10−473

before recovering. Its asymptotic temporal average is given by the corresponding entry of the condensate vector c as

1.6 · 10−4 . This average could, however, not be verified by integration due to numerical failure at t = 414960.

Negative entries of Ac determine the rates of exponentially fast depletion as illustrated by the black line for the yellow

state (note the logarithmic scaling). (c) Temporal evolution of the relative entropy D(c||x)(t) (blue line). The relative

entropy decreases towards a non-zero asymptotic value. (d) The production of relative entropy ∂tD(c||x)(t) (blue

line) is, therefore, negative and vanishes for large times.
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Supplementary Figure 2. Identification of condensates for a system with five states. (a) Colored disks represent

states Ei. An arrow from Ej to Ei denotes an effective rate constant aij = rij − rji. (b) Computation of condensate

vectors for different values of a12 yields depletion of states E1 and E3 for a12 < 5, depletion of state E3 for a12 = 5,

condensation of all states for 5 < a12 < 8 + 1/3, depletion of state E4 for a12 = 8 + 1/3, and depletion of states E2

and E4 for a12 > 8 + 1/3. These results can be verified by using the Mathematica code supplied in Supplementary

Note 3. (c) Numerical integration of the ALVE confirms the selection of condensates, but becomes error-prone in the

vicinity of values of a12 at which the set of condensates changes. The trajectories were obtained for a12 = 8.3, which

is slightly smaller than the value at whichE4 becomes depleted. Identification of condensates from trajectories requires

the introduction of a threshold for concentrations below which states are considered as depleted. If such a threshold is

set to values larger than∼ 2.5 ·10−265, state E4 is erroneously considered to be depleted, despite its periodic recovery.
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Supplementary Figure 3. Run-time analysis of the linear programming algorithm for fully connected random

networks of states. The computation time to find a condensate vector was measured for systems with up to S = 2000

states. The systems were constructed by sampling effective rate constants aij = rij − rji from a Gaussian distribution

(zero mean, unit variance). The numbers of systems (ensemble size) that were analyzed for different numbers of states

S are indicated at the top. (a) The median of computation times is shown in red, the regime between the 5th and

95th percentiles in green, and the range of computation times in grey (log-log graph). Computation time increases

at most polynomially as indicated by the black line (linear fit of the median with exponent 3.221 ± 0.008 (s.e.m.)).

(b) Percentage of networks for which a condensate vector was found (red dots). The lowest percentage was 99.6%.

All computations were performed on machines with 10 Intel Xeon E5-2670v2 cores (2.50 GHz) and 128 GB RAM.

Parallelization was not used in CPLEX.
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Supplementary Figure 4. Reliability of the linear programming algorithm for large random networks. Color-

coded representation of the percentage of random networks with S states and connectivity C for which the linear

programming algorithm found a suitable condensate vector (≥ 104 analyzed systems per data point; the figure accom-

panies Fig. 3b). The percentage was close to 100% for most parameters but decreased in the vicinity of the power law

shown in Fig. 3b (lowest percentage: 94.9% for networks with S = 500 states and connectivity C = 0.013).
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SUPPLEMENTARY NOTE 1: APPROXIMATION OF THE CLASSICAL MASTER EQUATION BY STOCHASTIC

DIFFERENTIAL EQUATIONS AND OCCURRENCE OF THE ANTISYMMETRIC LOTKA-VOLTERRA EQUATION

In the following, we supplement the discussion of the classical master equation that governs condensation of non-

interacting bosons in an incoherently driven-dissipative system. When the total number of particles in the system is

large (N � 1), the classical master equation can be approximated by a Fokker-Planck equation. This Fokker-Planck

equation is rewritten as an Itō stochastic differential equation, which is equivalent to a Langevin equation. From the

analysis of the stochastic differential equation, we find that the leading order dynamics of the condensation process is

governed by the antisymmetric Lotka-Volterra equation (equation (3) in the main text).

Classical master equation for the coupled birth-death processes with conservation of total particle number

We consider a system of S non-degenerate statesEi, i = 1, . . . , S, each of which is occupied byNi indistinguishable

particles (Fig. 1a). The configuration of the system at time t is fully characterized by the vector of occupation numbers

N = (N1, N2, . . . , NS) ∈ ZS with Ni ≥ 0. It changes only due to coupled creation (birth) and annihilation (death)

processes between two connected states Ei and Ej :

(N1, . . . , Ni − 1, . . . , Nj + 1, . . . , NS) � (N1, . . . , Ni, . . . , Nj , . . . , NS) � (N1, . . . , Ni + 1, . . . , Nj − 1, . . . , NS) .

(1)

We introduce the following short-hand notation for these processes:

N− ei + ej � N � N + ei − ej . (2)

Here, the vector ei ∈ ZS denotes the unit vector in direction i (equal to one at index i, otherwise zero). The above

creation and annihilation processes conserve the total number of particles N =
∑

iNi. We are interested in the

probability P (N, t) of finding the system in configuration N at time t, given that it was initially in configuration N0

at time t0. The temporal evolution of the probability distribution P (N, t) is governed by the classical master equation

(equation (1) in the main text):

∂tP (N, t) =
S∑

i,j=1
j 6=i

(
Γi←j(Ni − 1, Nj + 1)P (N− ei + ej , t)− Γi←j(Ni, Nj)P (N, t)

)
. (3)

In our work, we consider the following transition rate from configuration N to configuration N + ei − ej :

Γi←j(Ni, Nj) = rij(Ni + sij)Nj , with sij ≥ 0 and rij ≥ 0 . (4)

This transition rate encompasses the two model classes of condensate selection in bosonic systems and in evolutionary

game theory (EGT) as described in the main text. In the context of bosonic condensation, the parameters sij are equal

to 1 for all i and j, whereas it may assume any non-negative value in the context of EGT. In EGT, sij contributes to the

mutation or switching rate [1].
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For the study of incoherently driven-dissipative systems of non-interacting bosons, the above description in terms

of a classical master equation requires that the system under consideration is weakly coupled to a reservoir [2–5].

The reservoir has to be such that correlations in it decay rapidly. In particular, the Born-Markov and the rotating

wave approximation are assumed in the derivation of the classical master equation. These assumptions imply that off-

diagonal entries in the reduced density operator of the system decay fast enough such that coherence in the quantum

system is negligible. In addition, the initial states of the system and the reservoir should not be correlated after their

preparation.

These conditions are, for example, fulfilled in systems of non-interacting bosons that are both periodically driven in

time (Floquet systems) and weakly coupled to a thermal bath (see Vorberg et al. [2] for a detailed discussion).

Derivation of the Fokker-Planck equation

In the following, we approximate the classical master equation (3) in the limit of a large number of particles

(N � 1) [6]. For that purpose, we introduce state concentrations x = (x1, . . . , xS) with xi = Ni/N . The con-

centrations are intensive variables and elements of the (S − 1)-dimensional open simplex ∆S−1 = {x ∈ RS | xi >
0 for all i,

∑S
i=1 xi = 1}. In the limit N → ∞, they become continuous variables. We denote their corresponding

probability distribution by p(x, t). Furthermore, we rescale time by t→ t/N . It can be straightforwardly seen that the

following formulation of the classical master equation for p(x, t) is equivalent to the form given in equation (3):

∂tp(x, t) =
S∑

i,j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}
N1−k

(
γ(k)(∆xi,∆xj ;xi −∆xi, xj −∆xj) p(x−∆xiei −∆xjej , t)

− γ(k)(∆xi,∆xj ;xi, xj) p(x, t)
)
, (5)

with γ(0)(∆xi,∆xj ;xi, xj) = rijxixj δ(∆xi − 1/N)δ(∆xj + 1/N) , (6)

and γ(1)(∆xi,∆xj ;xi, xj) = rij sij xj δ(∆xi − 1/N)δ(∆xj + 1/N) . (7)

This classical master equation can be approximated by performing a Kramers-Moyal expansion. Truncation of the

expansion at second order, leads to the Fokker-Planck equation:

∂tp(x, t) = −
S∑

i=1

∂i
(
αi(x)p(x, t)

)
+

1

2N

S∑

i,j=1

∂i∂j
(
βij(x)p(x, t)

)
. (8)

Here, α(x) is the drift vector and β(x) the diffusion matrix.

The drift vector is given by:

αi(x) =
S∑

j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N∆xi , (9)

= xi

S∑

j=1

(rij − rji)xj +
1

N

S∑

j=1

(rijsijxj − rjisjixi) =: αi,0(x) +
1

N
αi,1(x) . (10)
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At leading order in 1/N (that is, at order O(1)), the drift vector is determined by the antisymmetric part A = R−RT

of the rate constant matrix R = {rij}i,j . In other words, the matrix A is antisymmetric with entries aij = rij − rji.

For the diffusion matrix, we have to distinguish between its diagonal entries,

βii(x) =
S∑

j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N2∆x2

i , (11)

=
S∑

j=1
j 6=i

(rij + rji)xixj +
1

N

S∑

j=1
j 6=i

(rijsijxj + rjisjixi) =: βii,0(x) +
1

N
βii,1(x) , (12)

and its off-diagonal entries (i 6= j):

βij(x) =

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N2∆xi∆xj , (13)

= −(rij + rji)xixj −
1

N

(
rijsijxj + rjisjixi

)
=: βij,0(x) +

1

N
βij,1(x) . (14)

Both diagonal and off-diagonal entries of the diffusion matrix are determined by the symmetric part of the rate constant

matrix R at leading order in 1/N .

Derivation of the stochastic differential equations

The Fokker-Planck equation (8) can be transformed into a system of Itō stochastic differential equations (SDEs) [6]:

dxi = αi(x) dt+
1√
N

S∑

j=1

ζij(x) dWj . (15)

Here, dWj represents a Wiener increment of zero mean and unit variance. The matrix ζ(x) is a square root of the

diffusion matrix β(x) in the sense that ζζT = β (the diffusion matrix β is positive semi-definite). Although ζ is

not unique, its choice does not change the stochastic nature of the process (an orthogonal transformation ζ → ζT
with T T T = IS does not change the corresponding Fokker-Planck equation). The decomposition βij = βij,0 + 1

N βij,1

in equations (11) and (13) implies that ζ can be written as ζij = ζij,0 +O
(

1
N

)
.

The Itō SDEs (15) can also be written in Langevin form, which are often used in the physics literature [6, 7]:

d

dt
xi = αi(x) +

1√
N

S∑

j=1

ζij(x) ηj . (16)

Here, ηj represents uncorrelated Gaussian white noise.
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The antisymmetric Lotka-Volterra equation

We identify a leading (fast) and a subleading (slow) timescale of the SDE (15). On the leading timescale (t ∼
O(1)), only the drift term αi,0 is relevant, whereas on the subleading timescale (t ∼ O(N)), the terms αi,1 and ζij,0

compete. The latter terms cause only slow changes on the leading O(1)-timescale. In other words, the dynamics on

the subleading timescale cause only slow changes of the O(1)-trajectory.

More specifically, we find that at order t ∼ O(1), only αi,0 determines the change in concentrations such that:

d

dt
xi = xi

∑

j

(rij − rji)xj = xi(Ax)i . (17)

As stated in the main text, we refer to this equation as the antisymmetric Lotka-Volterra equation (ALVE). The initial

concentrations are assumed to lie in the open simplex ∆S−1, that is x(t = 0) =: x0 ∈ ∆S−1. We note that the

dynamics defined by equation (17) cannot leave the simplex, that is x(t) ∈ ∆S−1 for all times [8].

We note that the van Kampen system size expansion [9] of the master equation (3) yields the same deterministic

equation (17) as our derivation via Fokker-Planck and Langevin equation at the leading order timescale.

Stability in the linear approximation around fixed points of the ALVE

We discuss the fixed points x∗ ∈ ∆S−1 (x∗i ≥ 0 and
∑

i x
∗
1 = 1) of the ALVE (17), that is the points for which the

dynamics is stationary (∂tx∗i = x∗i (Ax∗)i = 0). In the following, we show that a linear stability analysis of these fixed

points does not yield insight into the global dynamics of the ALVE.

First, every condensate vector c (normalized such that
∑

i ci = 1) of the antisymmetric matrix A yields a fixed point

of the ALVE. This can be seen from the properties of a condensate vector c (see Methods section of the main text) [10]:

ci > 0 and (Ac)i = 0 for i ∈ I , and (18)

ci = 0 and (Ac)i < 0 for i ∈ Ī . (19)

Notably, the index set I is unique although more than one condensate vector may exist. Furthermore, there exist fixed

points x∗ ∈ ∆S−1 and a different index set J 6= I for which x∗j > 0 and (Ax∗)j = 0 for j ∈ J , and x∗j = 0 for j ∈ J̄
but (Ax∗)j < 0 does not hold for all j ∈ J̄ (in other words, condition (18) is fulfilled, but condition (19) is not).

We first study the stability in the linear approximation around the fixed points that are given by condensate vectors.

Upon introducing the distance ∆x of a normalized condensate vector x∗ = c from the concentrations x as a new

variable, ∆x := x− c, one obtains from the ALVE (17) the temporal behavior of that translated variable as follows:

d

dt
∆xi = ∆xi(Ac)i + ci(A∆x)i + ∆xi(A∆x)i , that is, (20)

for i ∈ I :
d

dt
∆xi =

S∑

j=1

ciaij∆xj +R(∆x) , (21)

for i ∈ Ī :
d

dt
∆xi = (Ac)i∆xi +R(∆x) , (22)
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with R(∆x) = ∆xi(A∆x)i = O(‖∆x‖2).

Next, we discuss the stability of the condensate vectors in the linear approximation (linear stability analysis of fixed

points). The cardinality of the set I is referred to as |I|. After relabeling of the indices, one obtains up to linear order

in ‖∆x‖:

d

dt


 ∆xI

∆xĪ


 =


 Ãc B

0 Ãs




 ∆xI

∆xĪ


 =: Ã∆x , (23)

with Ãc denoting the (|I| × |I|)-dimensional matrix with elements (Ãc)i,j = ciaij for i, j ∈ I . Ãs denotes the

diagonal, ((S − |I|)× (S − |I|))-dimensional matrix with entries (Ãs)i,j = (Ac)iδij for i, j ∈ Ī . The matrix B is of

dimension |I| × (S − |I|) with elements Bij = ciaij for i ∈ I and j ∈ Ī .

The eigenvalues of the matrix Ã determine the linear stability of the fixed points. Because of the block upper triangular

structure of the matrix Ã, its eigenvalues are given by the eigenvalues of the matrices Ãs and Ãc. All eigenvalues of the

diagonal matrix Ãs are negative because (Ac)i < 0 for i ∈ Ī . All eigenvalues of the matrix Ãc have vanishing real part.

The latter can be seen from defining the nonsingular, (|I| × |I|)-dimensional matrix V with elements (V )i,j = ciδij

for i, j ∈ I . Since the matrix AI is an antisymmetric matrix, all eigenvalues of Ãc = V AI are purely imaginary

as well (the (|I| × |I|)-dimensional submatrix AI corresponds to the system of condensates with indices in I; see

Methods section of the main text). However, the matrix Ãc is not antisymmetric in general. This argument can be seen

as follows (see for example the Appendix in [11]): Consider the diagonal, nonsingular matrix V 1/2, whose square is

the matrix V , and whose inverse is the matrix V −1/2. The matrix V −1/2(V AI)V 1/2 has the same eigenvalues as the

matrix V AI . Since the matrix V −1/2(V AI)V 1/2 = V 1/2AIV 1/2 is antisymmetric and, thus, has purely imaginary

eigenvalues, also the matrix V AI has purely imaginary eigenvalues.

Consequently, the fixed points of the ALVE (17) that are given by the condensate vectors possess a (S − |I|)-

dimensional local, invariant stable manifold Ms and a |I|-dimensional local, invariant center manifold Mc (see for

example Theorem 3.2.1 in [12]). Concentrations with initial conditions chosen inMs decay to zero exponentially fast.

However, for initial concentrations that do not lie in Ms, the temporal behavior cannot be inferred (“linearly stable

solutions may be nonlinearly unstable” [12]).

We note that the above linear stability analysis applies to any fixed point of the ALVE. Any fixed point of the ALVE

possesses an at least |J |-dimensional local, invariant center manifold Mc (see definition of J above). Therefore, a

linear stability analysis of the fixed points of the ALVE (17) does not yield insight into the global dynamics of the

ALVE, at least not in the straightforward fashion.
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SUPPLEMENTARY NOTE 2: DYNAMICS OF CASES FOR NON-GENERIC ANTISYMMETRIC MATRICES

Some of the results presented in the main text for generic antisymmetric matrices (A ∈ Ω) can be extended to matri-

ces with higher dimensional kernels. Here, Ω is defined as in equation (18) of the main text as the set of antisymmetric

matrices whose submatrices have a kernel with dimension less than one or equal to one:

Ω =
{
A ∈ RS×S | A is antisymmetric and dim kerAJ ≤ 1 for all J ⊆ {1, . . . , S}

}
. (24)

When submatrices ofA have a kernel of dimension greater than or equal to two (A /∈ Ω) the statements generalize as

follows: The temporal average of the projection to the surviving concentrations converges to the positive kernel of the

attractive subsystem. This convergence takes place on a time scale which is not slower than 1/t. More precisely, the

distance between the time average of the concentrations of the selected states and the kernel of the surviving subsystem

tends to zero for large times:

dist
(
〈xI〉t , kerAI

)
≤ Const(A,x0)

t
. (25)

Typically, one still finds exponentially fast depletion of states. The effective bounds on the depletion rates may depend

on initial conditions.
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SUPPLEMENTARY NOTE 3: LINEAR PROGRAMMING ALGORITHMS

In the following, we supplement the description and discussion of the linear programming algorithm from the Meth-

ods section in the main text. We detail on the CPEX algorithm and discuss its calibration, and provide a simplified

Mathematica code.

CPLEX algorithm

The IBM ILOG CPLEX Optimization Studio 12.5 was used to numerically search for a condensate vector c for

a given antisymmetric matrix A. Direct solution of the inequalities Ac ≤ 0 and c − Ac ≥ 1 turned out to be

numerically infeasible for systems with a large number of states S. Therefore, condensate vectors were primarily

determined by solving the following linear programming problem: minimize ε1 + . . . + εS , subject to −Ac + ε ≥ 0

and c−Ac ≥ 1, with non-negative auxiliary variables ε := (ε1, . . . , εS). The resulting vector c was used to define the

set I := {i | ci > 5 ·10−8} and its complement Ī = {1, . . . , S}−I = {i | ci ≤ 5 ·10−8}. The vector c was accepted as

condensate vector, the set I as set of condensates, and the set Ī as set of depleted states if: |(Ac)i| < 10−6 for all i ∈ I ,

and −(Ac)i > 10−6 for all i ∈ Ī . Minor extensions were added to the CPLEX algorithm to handle matrices for which

an appropriate condensate vector could not be found. The Mathematica code in the following section exemplifies one

of these extensions.

The above numerical thresholds were optimized by comparing inferred sets of condensates and of depleted states to

sets that were derived using an alternative method. This alternative method is based on an analytical expression for

kernel vectors (see equation (19) in the Methods section of the main text and [13, 14]). It is reliable but restricted to

systems in which the network of states has connectivity C = 1 and in which the number of states is small (compu-

tational complexity grows exponentially with S). The correct identification of condensates and depleted states by the

CPLEX algorithm was validated for 106 randomly sampled networks of states with connectivity C = 1 and S = 18

states. A detailed evaluation of the reliability of the CPLEX linear programming algorithm is provided in Supplemen-

tary Figs. 3 and 4.

Mathematica code

The following code for Mathematica 9.0 from Wolfram Research determines a condensate vector c by minimizing

ε1 + . . .+ εS , subject to −Ac ≥ 0 and c− Ac + ε ≥ 1. The resulting vector is used to infer the set of condensates I

and the set of depleted states Ī . The code can be used to verify the selection of states for the systems shown in

Supplementary Figs. 1 and 2.
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lpAlgorithm[noOfStates_, matrix_] :=
Block[{condensateVector, condensates, depletedStates},
Block[
{
solution
(* solution: first half: condensate vector b, second half: aux. vector ε *),
vector = Join[ConstantArray[0., noOfStates], ConstantArray[1., noOfStates]]
(* vector: first half: w.r.t condensate vector b, second half: w.r.t. aux. vector ε *),
lhs = ConstantArray[0., {2*noOfStates, 2*noOfStates}]
(* lhs: upper left: -Ab, lower half: b-Ab+ε *),
rhs = ConstantArray[0., 2*noOfStates]
(* rhs: upper left: 0, lower half: 1 *)
},

Do[
(* -Ab >= 0 *)
Do[lhs[[i, j]] = -matrix[[i, j]], {j, 1, noOfStates}];
rhs[[i]] = 0.;

(* b-Ab+ε >= 1 *)
lhs[[noOfStates + i, i]] = 1.;
Do[lhs[[noOfStates + i, j]] -= matrix[[i, j]], {j, 1, noOfStates}];
lhs[[noOfStates + i, noOfStates + i]] = 1.;
rhs[[noOfStates + i]] = 1.;

, {i, 1, noOfStates}];

solution = Check[LinearProgramming[vector, lhs, rhs], {}];
condensateVector = solution[[1;;noOfStates]];
];

condensates = Flatten[Position[condensateVector, _?(# > 0.1&)]];
depletedStates = Complement[Range[noOfStates], condensates];
Return[{condensates, depletedStates, condensateVector/Total[condensateVector]}];
];

The following code can be used to verify the selection of states for the system with five states shown in Supplemen-

tary Fig. 2:

noOfStates = 5;
a12 = 8.3;
matrix = {{0,a12,4,-3,-5},{-a12,0,3,4,-5/3},{-4,-3,0,5,1},{3,-4,-5,0,5},{5,5/3,-1,-5,0}};

{condensates, depletedStates, condensateVector} = lpAlgorithm[noOfStates, matrix];

Print["Condensates: ", Length[condensates]];
Print[" Indices: ", condensates];
Print[" b: ", condensateVector[[condensates]]];
Print[" A.b: ", (matrix.condensateVector)[[condensates]]];
Print[];

Print["Depleted states: ", Length[depletedStates]];
Print[" Indices: ", depletedStates];
Print[" b: ", condensateVector[[depletedStates]]];
Print[" A.b: ", (matrix.condensateVector)[[depletedStates]]];
Print[];
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To verify the selection of states for the system with 20 states that is shown in Supplementary Fig. 1, the first two lines

of the above code have to be changed to:

noOfStates = 20;
matrix=
{{0.0000000000,0.1012965582,0.0960864501,0.1257833702,-0.0595764929,0.0924501179,-0.1016301739,
-0.0795618281,0.0487881199,-0.1122071087,-0.0286971727,-0.1000496191,-0.0103185636,0.0130714180,
-0.0572150115,-0.0129797149,-0.0706576396,-0.0389344063,0.0663966936,0.1467041892},{-0.1012965582,
0.0000000000,-0.0712011514,0.0415422138,-0.0019111200,-0.0816168047,-0.0477211059,-0.1006350936,
0.1522277516,0.0720296603,-0.2058646002,-0.1253355555,0.0717377587,-0.1063033227,-0.0942343547,
-0.0391532296,0.0049849208,-0.0929232005,-0.0840063075,0.0559612167},{-0.0960864501,0.0712011514,
0.0000000000,-0.0304803123,-0.1741821153,0.0076812872,0.0297497936,-0.0075143775,-0.0120359985,
-0.0110515825,-0.0808005342,0.2738320344,0.1170451029,-0.0357777508,-0.0896471841,-0.1577036387,
-0.3757310353,0.0296054422,-0.2259424452,0.0989073494},{-0.1257833702,-0.0415422138,0.0304803123,
0.0000000000,0.0510755453,0.0115416481,0.0985481106,0.0272202852,0.0213164598,-0.0535439544,
-0.0456534129,0.1362532620,0.1074372756,0.0375029473,-0.0533083982,0.1648089686,-0.0526653130,
0.0389051602,0.0438611333,0.0539352012},{0.0595764929,0.0019111200,0.1741821153,-0.0510755453,
0.0000000000,0.0109896214,0.1353304974,0.0912349277,0.0296142827,-0.1538255140,0.0431260101,
-0.0502994390,-0.0163964089,-0.1759377604,0.0481992186,0.0664062093,0.1736770927,-0.0448630119,
0.0535605474,-0.0257754999},{-0.0924501179,0.0816168047,-0.0076812872,-0.0115416481,-0.0109896214,
0.0000000000,-0.1090515383,-0.1188694334,0.0514000882,-0.0331443533,0.1623742129,0.0492738763,
0.0176787814,-0.1341072593,-0.0009543378,-0.0789222831,-0.0579314512,0.0892386351,-0.0686414708,
0.0492364011},{0.1016301739,0.0477211059,-0.0297497936,-0.0985481106,-0.1353304974,0.1090515383,
0.0000000000,-0.0303370160,0.0506580949,0.0225254369,0.1119589132,-0.2732763845,0.0903284019,
0.0780506743,0.1487517615,-0.0050831919,-0.0357202770,-0.1006725919,-0.0014275275,0.0744309213},
{0.0795618281,0.1006350936,0.0075143775,-0.0272202852,-0.0912349277,0.1188694334,0.0303370160,
0.0000000000,0.0881041025,0.0210453129,-0.0131581374,-0.0515644614,0.0300418276,0.0765770257,
0.1482013668,0.0876706565,-0.1600022303,-0.1501954314,0.0381309952,0.1069018065},{-0.0487881199,
-0.1522277516,0.0120359985,-0.0213164598,-0.0296142827,-0.0514000882,-0.0506580949,-0.0881041025,
0.0000000000,-0.0937867616,-0.1253362044,0.1051027292,-0.0160557361,0.0120747605,0.0410327424,
-0.1178120937,-0.0104974723,0.1001865178,0.0915443356,-0.0590317396},{0.1122071087,-0.0720296603,
0.0110515825,0.0535439544,0.1538255140,0.0331443533,-0.0225254369,-0.0210453129,0.0937867616,
0.0000000000,-0.1718419085,0.0842948432,0.1084407671,-0.1297238294,0.0768833880,-0.0866723482,
0.0062786219,-0.0986826408,-0.1352434973,-0.1425316892},{0.0286971727,0.2058646002,0.0808005342,
0.0456534129,-0.0431260101,-0.1623742129,-0.1119589132,0.0131581374,0.1253362044,0.1718419085,
0.0000000000,0.1936649126,-0.0428450371,0.0782428143,0.0592244942,-0.0554995964,0.0105651402,
-0.0184545141,0.1317087624,-0.1175718037},{0.1000496191,0.1253355555,-0.2738320344,-0.1362532620,
0.0502994390,-0.0492738763,0.2732763845,0.0515644614,-0.1051027292,-0.0842948432,-0.1936649126,
0.0000000000,0.0668839360,0.0174093226,0.0573713882,-0.0610992396,-0.0280347431,0.1058623608,
0.1781275929,0.0152443634},{0.0103185636,-0.0717377587,-0.1170451029,-0.1074372756,0.0163964089,
-0.0176787814,-0.0903284019,-0.0300418276,0.0160557361,-0.1084407671,0.0428450371,-0.0668839360,
0.0000000000,0.0571450290,0.1871354534,0.0147123474,0.1010276308,0.0366350187,0.0630761367,
-0.0728212225},{-0.0130714180,0.1063033227,0.0357777508,-0.0375029473,0.1759377604,0.1341072593,
-0.0780506743,-0.0765770257,-0.0120747605,0.1297238294,-0.0782428143,-0.0174093226,-0.0571450290,
0.0000000000,0.0158510770,-0.0301637492,0.0379895572,0.0353221008,-0.0410300505,0.0399902646},
{0.0572150115,0.0942343547,0.0896471841,0.0533083982,-0.0481992186,0.0009543378,-0.1487517615,
-0.1482013668,-0.0410327424,-0.0768833880,-0.0592244942,-0.0573713882,-0.1871354534,-0.0158510770,
0.0000000000,-0.1410043405,0.0473724443,0.1164556594,0.0120263929,0.0383652365},{0.0129797149,
0.0391532296,0.1577036387,-0.1648089686,-0.0664062093,0.0789222831,0.0050831919,-0.0876706565,
0.1178120937,0.0866723482,0.0554995964,0.0610992396,-0.0147123474,0.0301637492,0.1410043405,
0.0000000000,-0.0051486466,0.0770482371,-0.0619160030,0.1041763643},{0.0706576396,-0.0049849208,
0.3757310353,0.0526653130,-0.1736770927,0.0579314512,0.0357202770,0.1600022303,0.0104974723,
-0.0062786219,-0.0105651402,0.0280347431,-0.1010276308,-0.0379895572,-0.0473724443,0.0051486466,
0.0000000000,0.0771683333,0.0494219197,0.3405228485},{0.0389344063,0.0929232005,-0.0296054422,
-0.0389051602,0.0448630119,-0.0892386351,0.1006725919,0.1501954314,-0.1001865178,0.0986826408,
0.0184545141,-0.1058623608,-0.0366350187,-0.0353221008,-0.1164556594,-0.0770482371,-0.0771683333,
0.0000000000,-0.1856676553,0.0357968997},{-0.0663966936,0.0840063075,0.2259424452,-0.0438611333,
-0.0535605474,0.0686414708,0.0014275275,-0.0381309952,-0.0915443356,0.1352434973,-0.1317087624,
-0.1781275929,-0.0630761367,0.0410300505,-0.0120263929,0.0619160030,-0.0494219197,0.1856676553,
0.0000000000,0.1384008887},{-0.1467041892,-0.0559612167,-0.0989073494,-0.0539352012,0.0257754999,
-0.0492364011,-0.0744309213,-0.1069018065,0.0590317396,0.1425316892,0.1175718037,-0.0152443634,
0.0728212225,-0.0399902646,-0.0383652365,-0.1041763643,-0.3405228485,-0.0357968997,-0.1384008887,
0.0000000000}};
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A Linear algebra of antisymmetric matrices

A.1 Antisymmetric matrices and weighted networks

We here briefly describe the formal link between antisymmetric matrices and weighted
networks. A network (or directed graph) N consists of a set of labeled nodes (or
vertices) V (N ) = {1, ..., S} and a set of links (or directed edges) each of which
connects two nodes E(N ) = {(1 → 2), . . . , (i → j), . . .}. In a weighted network (or
weighted directed graph, or interaction network), every link is assigned the positive
weight w(i → j); see figure 2 for an illustration.

On the one hand, every antisymmetric matrix A ∈ RS×S gives rise to a weighted
network N (A). The set of vertices of N (A) is given by V (N (A)) = {1, ..., S}
and positive matrix entries a j i > 0 give rise to the links (i → j) with weight
w(i → j) = a j i . If a matrix entry vanishes, a j i = 0, nodes i and j are not connected
in the network. Naturally, two nodes are connected by at most by one link; self-loops
do not appear such that we deal with simple networks here.
On the other hand, the antisymmetric adjacency matrix A(N ) ∈ RS×S is obtained
from a simple, weighted network N being composed of S nodes by defining for all
links of the network the matrix entry A(N )i j = −A(N ) j i through the weight ai j > 0
that corresponds to the edge j → i. Therefore, the sign of an entry in the adjacency
matrix corresponds to the direction of the edge (positive weight for incoming link,
negative weight for outgoing link) and the absolute value denotes the magnitude of
the weight.
Note that we use A to refer to both the antisymmetric matrix occurring in the ALVE
and its corresponding weighted network. Note also that in our publication [36]
(reprinted on pages 22–29) the direction of links and, thus, the sign of the matrix
entries was defined conversely.

A.2 The Pfaffian of an antisymmetric matrix

The Pfaffian is a determinant-like function that is tailored to antisymmetric matrices.
Here, the combinatorial definition of the Pfaffian of an antisymmetric matrix is
presented. Let Π denote the set of all partitions of the set {1, 2, . . . , 2n} into ordered
pairs. In other words, every partition α ∈ Π is pairwisely ordered in the form
α =

(
(i1, j1), (i2, j2), . . . , (in, jn)

)
with ik < jk for all k and ik < il for all k < l . Note

that there are |Π | = (2n − 1) · (2n − 3) · . . . · 3 · 1 = (2n − 1)!! different pairwisely
ordered partitions of the set {1, 2, . . . , 2n}. We define the permutation σα of such a
pairwisely ordered partition α ∈ Π as:

σα B

(
1 2 3 4 . . . 2n − 1 2n
(i1 j1) (i2 j2) . . . (in jn)

)
≡

(
i1 j1 i2 j2 . . . in jn

)
. (26)
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With these notions, the Pfaffian of an antisymmetric matrix A ∈ RS×S of even
size S = 2n with n = 1, 2, 3, . . . is defined as:

Pf(A) B
∑
α∈Π

(
sign(σα)

n∏
e=1

aαe

)
. (27)

Note that, because the elements of every partition α are ordered pairs ( i < j for
every element (i, j) ∈ α), every summand

∏n
e=1 aαe is a product of above-diagonal

matrix entries of A. For an odd-sized antisymmetric matrix, the Pfaffian is 0. With
this definition, one can show that Pf(A)2 = Det(A) [55]. Note that the Pfaffian of an
antisymmetric matrix carries a sign as opposed to its determinant, which is always
non-negative.

As an example, consider an arbitrary antisymmetric 2 × 2 matrix (with a12 > 0),

A2 =

(
0 a12
−a12 0

)
. (28)

The set of all pairwisely ordered partitions of {1, 2} is simply Π = {
(
(1, 2)

)
}. There-

fore, the Pfaffian of A2 is given by:

Pf(A2) = a12 . (29)

Consider now an arbitrary antisymmetric 4 × 4 matrix,

A4 =
©«

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

ª®®®¬ . (30)

The set of all pairwisely ordered partitions of the set {1, 2, 3, 4} is given by Π =
{
(
(1, 2), (3, 4)

)
,
(
(1, 3), (2, 4)

)
,
(
(1, 4), (2, 3)

)
}. The Pfaffian of A4 is, thus, obtained as:

Pf(A4) = (+1)a12a34 + (−1)a13a24 + (+1)a14a23 . (31)

The sign of the permutation was highlighted in front of the corresponding factor (for
example, sign(1 3 2 4) B sign(

(
(1, 3), (2, 4)

)
) = −1).
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Permutation
(pairwisely ordered)

Signum ContributionNetwork representation of the 
antisymmetric matrix

a31

a32a43

a24

a14

E1

E2

E3

E4

Figure 4. Computation of the Pfaffian of an antisymmetric matrix. The Pfaffian of the
pretzel-like interaction network is computed according to the combinatorial definition (27).

For illustration, we compute the Pfaffian of the pretzel-like interaction network
depicted in figure 4. The corresponding antisymmetric adjacency matrix is given by:

Apretzel =
©«

0 0 −a31 a14
0 0 −a32 a24
a31 a32 0 −a43
−a14 −a24 a43 0

ª®®®¬ . (32)

Its Pfaffian is computed via equation (27) as:

Pf(Apretzel) = sign(1 2 3 4) · 0 · (−a43)
+ sign(1 3 2 4)(−a31)a24 + sign(1 4 2 3)a14(−a32) , (33)

= (−1)(−a31)a24 + (+1)a14(−a32) , (34)
= a31a24 − a14a32 . (35)

Therefore, the kernel of Apretzel is only nontrivial (dimKer(Apretzel) ≥ 2 in this case
because S is even) if the matrix entries of Apretzel fulfil Pf(Apretzel) = a31a24− a14a32 =

0, that is, if they are fine-tuned.
For a general antisymmetric 6 × 6 matrix A6,

A6 =

©«

0 a12 a13 a14 a15 a16
−a12 0 a23 a24 a25 a26
−a13 −a23 0 a34 a35 a36
−a14 −a24 −a34 0 a45 a46
−a15 −a25 −a35 −a45 0 a56
−a16 −a26 −a36 −a46 −a56 0

ª®®®®®®®¬
, (36)
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the Pfaffian is obtained as:

Pf(A6) =

(+1)a12a34a56 + (−1)a12a35a46 + (+1)a12a36a45

+(−1)a13a24a56 + (+1)a13a25a46 + (−1)a13a26a45

+(+1)a14a23a56 + (−1)a14a25a36 + (+1)a14a26a35

+(−1)a15a23a46 + (+1)a15a24a36 + (−1)a15a26a34

+(+1)a16a23a45 + (−1)a16a24a35 + (+1)a16a25a34 .

(37)

For further illustration of how the Pfaffian is computed, let us consider a di-
rected cycle of even length: S → 1 → 2 → 3 → . . . → S − 1 → S (such that
a1,S, a21, a32, . . . , aS,S−1 > 0 with S = 2n even, n = 2, 3, . . .) with according antisym-
metric adjacency matrix Aeven-cycle:

Aeven-cycle =

©«

0 −a21 0 0 . . . a1,S
a21 0 −a32 0 . . . 0
0 a32 0 −a43 . . . 0
... 0 . . .

. . .
. . .

...
0 0 . . . aS−1,S−2 0 −aS,S−1
−a1,S 0 . . . 0 aS,S−1 0

ª®®®®®®®®¬
. (38)

The Pfaffian according to definition (27) is obtained as:

Pf(Aeven-cycle) = (−1)nmod 2a21a43 · · · aS,S−1 − (−1)nmod 2a32a54 · · · a1,S . (39)

As can be seen from above, the computation of the Pfaffian of an antisymmetric
matrix proceeds in a similar manner as the computation of the determinant of an
arbitrary matrix, tailored to the antisymmetry of the matrix. In this line of thought,
it is not surprising that a recursive definition of the Pfaffian for an antisymmetric
matrix of even size is obtained as [55, 56]:

Pf(A) =
S∑
i=2
(−1)i a1iPf(A1̂î) , (40)

which is mentioned here for completeness because we employed this definition of the
Pfaffian in our publication [36].

A.3 The kernel of an antisymmetric matrix

The eigenvalues of an antisymmetric matrix A ∈ RS×S are either conjugated pairs of
purely imaginary values or zero. To see this, consider an eigenvector w of A (that is,
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Aw = λw) and compute:

λ | |w| |2 = λwTw = wT (Aw) =
(
ATw

)Tw , (41)

= (−Aw)Tw = (−Aw)Tw = −λwTw , (42)

= −λ | |w| |2 . (43)

Thus, an eigenvalue λ of A is purely imaginary (and −λ is an eigenvalue as well),
or it is zero. Consequently, the determinant of an antisymmetric matrix is either
0 or positive. Furthermore, the rank (that is, the dimension of the image) of an
antisymmetric matrix is always even, rk(A) = 0, 2, 4, . . . , S .

From the rank-nullity theorem it follows that, for odd S = 2n + 1 (with
n = 0, 1, . . .), the dimension of the kernel can only attain the values dimKer(A) =
1, 3, . . . , S − 2, whereas it can only attain dimension dimKer(A) = 0, 2, . . . , S − 2, S
for an antisymmetric matrix of even size S = 2n with n = 1, 2, . . .. In other words,
the kernel of an odd-sized antisymmetric matrix is at least one-dimensional, that
is, always nontrivial, and its determinant vanishes, Det(A) = 0. The kernel of an
even-sized antisymmetric matrix, however, is only nontrivial if a polynomial relation
is fulfilled by the matrix entries. If the determinant of an even-sized antisymmetric
matrix is non-zero, it is positive because all eigenvalues are pairs of purely imaginary
values. Note that, because the rank of an antisymmetric matrix is even, the dimension
of the kernel has the same parity as the size S of the matrix. By using the notion
of the Pfaffian of an antisymmetric matrix A, it is possible to obtain an analytical
expression for the kernel of A if its dimension is 1 (in case S = 2n + 1 is odd) or 2 (in
case S = 2n is even) via the adjugate vector or the adjugate matrix of A, respectively.

If S is odd, the kernel is odd-dimensional as well, and further characterized by
the adjugate vector r ∈ RS , which is defined as:

ri = (−1)i+1Pf(Aî) , i = 1, . . . , S . (44)

Here, Aî denotes the matrix that is created by deleting the i-th row and column from
A. The adjugate vector is a kernel vector of A if dimKer(A) = 1; if dimKer(A) =
3, 5, · · · , S − 2, S , the adjugate vector is the zero-vector r = 0 [56].

If S is even, the kernel is even-dimensional as well, and is further characterized by
the adjugate matrix B ∈ RS×S , whose entries are defined as follows:

Bi j = sign(σi j )Pf(Aî ĵ ) , i, j = 1, . . . , S . (45)

Here, Aî ĵ denotes the matrix created by deleting both the i-th and j -th row and
column from A. In case i = j , one defines Aî î B Aî with vanishing Pfaffian because
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Aî is of odd size. Furthermore, sign(σi j ) denotes the signum of the permutation,

σi j B

(
1 2 3 4 . . . i i + 1 . . . j j + 1 . . . 2n − 1 2n
(i j) (1 2) . . . î i + 1 . . . ĵ j + 1 . . . (2n − 1 2n)

)
, (46)

in which i and j are taken out of and put in front of the sequence (1, 2, . . . , 2n).
In general, the adjugate matrix can be thought of as the generalized inverse of the
antisymmetric matrix A having the property AB = −Pf(A)1S with 1S denoting
the unit matrix of size S . The adjugate matrix comprises two independent kernel
vectors if dimKer(A) = 2; if dimKer(A) = 4, 6, . . . , S , the adjugate matrix is the
zero-matrix [56]. If the kernel is trivial (dimKer(A) = 0, that is, Det(A) , 0), the
adjugate matrix is proportional to the inverse matrix of A.
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II Ecological feedback
in quorum-sensing microbial populations

Abstract of the chapter

Autoinducers are small signaling molecules that mediate intercellular communica-
tion in microbial populations and trigger coordinated gene expression via “quorum
sensing”. Elucidating the mechanisms that control autoinducer production is, thus,
pertinent to understanding collective microbial behavior, such as virulence and biolu-
minescence. Recent experiments have shown a heterogeneous promoter activity of
autoinducer synthase genes, suggesting that some of the isogenic cells in a population
might produce autoinducers, whereas others might not. However, the mechanism
underlying this phenotypic heterogeneity in quorum-sensing microbial populations
has remained elusive. In our theoretical model that is presented in this chapter,
cells synthesize and secrete autoinducers into the environment, up-regulate their
production in this self-shaped environment, and non-producers replicate faster than
producers. We show that the coupling between ecological and population dynamics
through quorum sensing can induce phenotypic heterogeneity in microbial popula-
tions, suggesting an alternative mechanism to stochastic gene expression in bistable
gene regulatory circuits.
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1 Introduction

1.1 Microbiological background: Heterogeneous production of
autoinducers in quorum-sensing microbial populations

Autoinducers are small molecules that are produced by microbes, secreted into the
environment, and sensed by the cells in the population [9, 57]. Autoinducers can
trigger a collective behavior of all cells in a population, which is called quorum sensing.
For example, quorum sensing regulates the transcription of virulence genes in the
Gram-positive bacterium Listeria monocytogenes [10, 58, 59] and the transcription
of bioluminescence genes in the Gram-negative bacterium Vibrio harveyi [60, 61],
and it may also autoregulate the transcription of autoinducer synthase genes [8, 62].
When the concentration of autoinducers reaches a threshold value, a coordinated
and homogeneous expression of target genes may be initiated in all cells of the
population [8, 57, 63], or a heterogeneous gene expression in the population may
be triggered at low concentrations [10–12, 61, 63–68]. To implement all of these
functions and behaviors, a microbial population needs to dynamically self-regulate
the average autoinducer production.

Within a given population, the promoter activity of autoinducer synthase genes
may vary between genetically identical cells [10, 11, 67, 69–71]. For example, during
the growth of L. monocytogenes under well-mixed conditions two subpopulations were
observed, one of which expressed autoinducer synthase genes, while the other did
not [10]. Such a phenotypic heterogeneity was associated with biofilm formation [10,
57, 59, 71]. The stable coexistence of different phenotypes in one population may
serve the division of labor or act as a bet-hedging strategy and, thus, may be beneficial
for the survival and resilience of a microbial species on long time scales [12].

The mechanism by which a heterogeneous expression of autoinducer synthase
genes is established when their expression is autoregulated by quorum sensing has
remained elusive. For example, expression of the above mentioned autoinducer
synthase genes in L. monocytogenes is up-regulated through quorum-sensing in single
cells [8, 10, 72]. From an experimental point of view it is often not known, however,
whether autoinducer synthesis is up-regulated for all autoinducer levels or only above
a threshold level. To explain phenotypic heterogeneity of autoinducer production,
currently favored threshold models of quorum sensing typically assume a bistable
gene regulation function [14, 73–75]. For bistable regulation, cellular autoinducer
synthesis is up-regulated above a threshold value of the autoinducer concentration
in the population, whereas it is down-regulated below the threshold (“all-or-none”
expression); see figure 1(B). Stochastic gene expression at the cellular level then
explains the coexistence of different phenotypes in one population. If, however,
cellular autoinducer synthesis is up-regulated for all autoinducer concentrations
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(monostable up-regulation), the mechanism by which phenotypic heterogeneity can
arise and is controlled has not been explained.

1.2 Summary of our quorum-sensing model

In our work, which is presented in this chapter, we demonstrated that the coupling
between ecological and population dynamics through quorum sensing can control
a heterogeneous production of autoinducers in quorum-sensing microbial popula-
tions. At the same time, the overall autoinducer level in the environment is robustly
self-regulated, so that further quorum-sensing functions such as virulence or bio-
luminescence can be triggered. We studied the collective behavior of a stochastic
many-particle model of quorum sensing, in which cells produce autoinducers to
different degrees and secrete them into the well-mixed environment. Production of
large autoinducer molecules (for example oligopeptides) and accompanied gene ex-
pression are assumed to reduce fitness such that non-producers reproduce faster than
producing cells. Moreover, it is assumed that quorum sensing enables up-regulation of
autoinducer production, that is, individuals can increase their production in response
to the sensed average production level in the population (figure 1). As a central
result, we found that the population may split into two subpopulations: one with
a low, and a second with a high production rate of autoinducers. This phenotypic
heterogeneity in the autoinducer production is stable for many generations and the
autoinducer concentration in the population is tightly controlled by how production
is up-regulated. If cellular response to the environment is absent or too frequent,
phase transitions occur from heterogeneous to homogeneous populations in which
all individuals produce autoinducers to the same degree. To capture these emergent
dynamics, we derived the macroscopic mean-field equation (1) from the microscopic
stochastic many-particle process in the spirit of the kinetic theory in statistical physics,
which we refer to as the autoinducer equation. The analysis of the autoinducer equa-
tion explains both phenotypic heterogeneity through quorum sensing and the phase
transitions to homogeneity.

The key aspect of our work is how the composition of a population changes
in time when its constituents respond to an environment that is being shaped by
their own activities. This ecological feedback is mediated by quorum sensing and
creates an effective global coupling between the individuals in the population. Such
a global coupling is reminiscent of long-range interactions in models of statistical
mechanics, such as in the classical XY spin model with infinite range interactions [15,
76–81]. Our analysis suggests that quorum sensing in microbial populations can
induce and control phenotypic heterogeneity as a collective behavior through such a
global coupling and, notably, does not rely on a bistable gene regulatory circuit (see
section 3).
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2 Phenomenology and analysis of the quorum-sensing
model

2.1 Definition of the stochastic many-particle process

We now introduce the quorum-sensing model for a well-mixed population of N
individuals (figure 1). The phenotype of each individual i = 1, . . . ,N is characterized
by its production degree pi ∈ [0, 1], that is, the extent to which it produces and
secretes autoinducers. In an experiment with microbes, the promoter activity of
autoinducer synthase genes or their enzymatic activity could be a proxy for the
production degree. The limiting case pi = 0 denotes a non-producer, and pi = 1
denotes a full producer.
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Figure 1. The quorum-sensing model for the production of autoinducers in microbial
populations. (A) Sketch of a typical update step. Individuals are depicted as disks and
the degree of autoinducer production (pi ∈ [0, 1]) is indicated by the size of the green
fraction. Non-producers (orange disks) reproduce fastest, full producers (green disks) slowest.
Individual i with pi = 1/6 divides into two offspring individuals, one of which replaces
another individual j . Both offspring individuals sense the average production level in the
population ( 〈p〉 = 1/3), and may either respond to this environment, with probability λ, by
adopting the value R(〈p〉) of the response function (= 2/3 here, see (B)) or, with probability
1 − λ, retain the production degree from the ancestor (= 1/6). Here, offspring individual
i responds to the environment while j does not (denoted by gray shading). (B) Quorum
sensing is characterized by the response function. Perception of the average production level
in the population ( 〈p〉) enables individuals to change their production degree to the value
R(〈p〉) ∈ [0, 1]. Sketched are a monostable response function (stable fixed point at 1, unstable
fixed point at 0), and a bistable response function (stable fixed points at 0 and 1, unstable
fixed point at an intermediate threshold value). Stable fixed points of the response function
are depicted as black circles while unstable fixed points are colored in white. For the sketched
bistable response function, autoinducer production is down-regulated with respect to the
sensed production level in the population below the threshold value, and up-regulated above
this threshold. For the monostable response function, autoinducer production is up-regulated
at all sensed production levels.
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The state of the population p = (p1, . . . , pN ) changes stochastically (figure 1(A))
through a continuous-time Markov process: An individual i reproduces randomly
after a time that is exponentially distributed with rate φi , which we refer to as the
individual’s fitness. We assume that fitness decreases with incurring metabolic costs
of induction and synthesis of autoinducers, and with other metabolic burdens in
the cell’s phenotypic state [82–84]. For simplicity, we choose φi = φ(pi) = 1 − spi .
The selection strength 0 ≤ s < 1 scales the fitness difference with respect to the
non-producing phenotype (φ(0) = 1). Thus, the larger an individual’s production,
the smaller its reproduction rate. This assumption is discussed in detail further below
(see section 3).

Whenever an individual divides into two offspring individuals in the stochastic
process, another individual from the population is selected at random to die such that
the population size N remains constant. Qualitative results of our model remain valid
if only the average population size is constant, which may be assumed, for example,
for the stationary phase of microbial growth in batch culture. One recovers the math-
ematical set-up of frequency-dependent Moran models for Darwinian selection [26,
85–87] if one restricts the production degrees to a discrete set, for example, to full
producers or non-producers only, pi ∈ {0, 1}. The well-known Prisoner’s dilemma in
evolutionary game theory is recovered if, in addition, the secreted molecules would
confer a fitness benefit on the population [26, 88–90]. Since we are interested in the
mechanism by which heterogeneous production of autoinducers might be induced
and do not study the context under which it might have evolved, we do not include
any fitness benefits through signaling, for example at the population level, into the
modeling here; see section 3.

A central feature of our model is the fact that individuals may adjust their pro-
duction degree via a sense-and-response mechanism through quorum sensing, which
is implemented as follows. After reproduction, both offspring individuals sense the
average production level of autoinducers 〈p〉 = 1/N ∑

i pi in the well-mixed popu-
lation. With probability λ, they independently adopt the value R(〈p〉) ∈ [0, 1] as
their production degree in response to the sensed environmental cue 〈p〉, whereas
they retain the ancestor’s production degree with probability 1 − λ through non-
genetic inheritance. In an experimental setting, the response probability λ relates
to the rate with which cells respond to the environment [91–93] and regulate their
production through quorum sensing. We refer to the function R(〈p〉) as the response
function, which is the same for all individuals. The response function encapsulates
all biochemical steps involved in the autoinducer production between perception
of the average production level 〈p〉 and adjustment of the individual production
degree to R(〈p〉) in response [57, 64, 84, 94, 95]; see figure 1(B). For example, it may
be a bistable step or bistable Hill function, which is often effectively assumed in
threshold models of phenotypic heterogeneity [14, 73–75]. For a bistable response
function, cellular production is up-regulated above a threshold value of 〈p〉, whereas
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it is down-regulated below the threshold. For the bistable response function sketched
in figure 1(B), both values 〈p〉 = 0 and 〈p〉 = 1 are stable fixed points. In this work,
however, we particularly focus on monostable response functions R(〈p〉) to model
microbial quorum-sensing systems in which autoinducer synthesis is up-regulated
at all autoinducer production levels in the population [8, 72]. In other words, cel-
lular production always increases with respect to the sensed production level in the
population (stable fixed point at 〈p〉 = 1 and unstable fixed point at 〈p〉 = 0). The
sense-and-response mechanism is further discussed in section 3.

From a mathematical point of view, the introduced sense-and-response mechanism
through quorum sensing constitutes a source of innovation in the space of production
degrees because an individual may adopt a production degree that was not previously
present in the population. Thus, a continuous production space with pi ∈ [0, 1] as
opposed to a discrete production space is a technical necessity for the implementation
of the quorum-sensing model. The coupling of ecological dynamics (given by the
average production level of autoinducers 〈p〉) with population dynamics (determined
by growth rate differences between the phenotypes) through quorum sensing results
in interesting collective behavior, as we show next. We emphasize that, as long as
this coupling is present, the effects of the quorum-sensing model that we found and
report next are qualitatively robust against noise at all steps; see below.

2.2 Heterogeneous production of autoinducers

The quorum-sensing model was numerically simulated by employing Gillespie’s
stochastic simulation algorithm [96, 97] for a population size of N = 104 individuals
and an exemplary selection strength s = 0.2, such that sN � 1. In this regime,
demographic fluctuations are subordinate [26, 87, 98]. Within the scope of our
quorum-sensing model, the precise value of the selection strength s that scales the
fitness differences is not important for the reported mechanism by which phenotypic
heterogeneity can be induced, see below. We tracked the state of the population p
over time, and depict the histogram of production degrees and the population average
in figure 2.

First, we studied the stochastic many-particle process without sense-and-response
(λ = 0); see figure 2(A, D). In this case, non-producers always proliferate because they
reproduce at the highest rate in the population, which is well-studied in evolutionary
game theory [21, 24, 32]. Thus, the initially uniform distribution in the population
shifts to a peaked distribution at low production degrees. Ultimately, a homogeneous
(unimodal) stationary state is reached in which all individuals produce autoinducers
to the same low degree plow ' 0. Such a stationary state is absorbing [99], that is, the
stochastic process offers no possibility of escape from this state of the population.

With quorum sensing (λ > 0), absorbing states are reached if, again, all individuals
produce to the same degree p∗ and, in addition, the value of this production degree
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Figure 2. Homogeneous and heterogeneous production of autoinducers in the quorum-
sensing model. Temporal evolution of autoinducer production in the quorum-sensing
model depicted as histograms of production degrees (normalized values, A-C), and average
production level of autoinducers in the population (D-F). (A) In the absence of sense-
and-response (λ = 0), only non-producers proliferate. The approach to stationarity is
asymptotically algebraically slow for a quasi-continuous initial distribution of production
degrees (D). The black line 〈p〉 ∼ t−1 serves as a guide for the eye. (B) Sense-and-response
through quorum sensing (λ = 0.2 here) promotes autoinducer production, and the popu-
lation becomes homogeneous (ultimately, fixation at a single production degree, data not
shown). The response function used here, R(〈p〉) = 〈p〉 + 0.2 · sin (π 〈p〉), was chosen such
that an individual’s production degree is always up-regulated through quorum sensing (see
figure 1(B)). Approach to stationarity is exponentially fast (E), but timescales may diverge
at bifurcations of the response function (see supplementary figure A.3). The dashed line in
(E) shows fit to an exponential decay. (C) When λ is small (λ = 0.05 here), the population
becomes heterogeneous: quasi-stationary states arise in which the population splits into two
subpopulations, one of which does not produce autoinducers, while the other does. The
same monostable response function was chosen as in (B). Therefore, heterogeneity may arise
without bistable response. For very long times, one of the two absorbing states (A, B) is
reached, data not shown (see figure 3(A)). Heterogeneous, quasi-stationary states arise for
a broad class of initial distributions (see supplementary figure A.1 and our mathematical
analysis). At the same time, the average production level of autoinducers in the population is
adjusted by the response probability λ if s is fixed (F) or vice versa (data not shown). Bimodal,
quasi-stationary states also arise when noisy inheritance, noisy perception, and noisy response
are included in the model set-up (see supplementary figure A.2). Mean-field theory (1) agrees
with all observations. The time unit ∆t = 1 means that in a population consisting solely of
non-producers, each individual will have reproduced once on average. Ensemble size M = 100,
s = 0.2, N = 104. Numerical simulations were carried out by Matthias Bauer.
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is a fixed point of the response function (R(p∗) = p∗); see figure 2(B, E). In such a
homogeneous absorbing state with 〈p〉∞ = p∗, an offspring individual can no longer
alter its production degree. It either takes over the production degree p∗ from its
ancestor or it adopts that same degree R(〈p〉∞) = 〈p〉∞ = p∗ through sense-and-
response. Thus, all individuals continue to produce with degree p∗ and the state of
the population remains homogeneous (unimodal).

Surprisingly, for small response probabilities λ, we found that the population may
get trapped in heterogeneous (bimodal) states for long times before a homogeneous
absorbing state is reached. The temporal evolution of such a heterogeneous state is
shown in figure 2(C, F) for λ = 0.05. A monostable response function was chosen
with R(〈p〉) > 〈p〉 for all 〈p〉 ∈ (0, 1) (unstable fixed point at 0, and stable fixed point
at 1) such that the production degree is always up-regulated through quorum sensing;
see sketch in figure 1(B). After some time has elapsed, the population is composed
of two subpopulations: one in which individuals produce autoinducers to a low
degree plow, and a second in which individuals produce to a higher degree phigh that
is separated from plow by a gap in the space of production degrees. Only through
strong demographic fluctuations can the population reach one of the homogeneous
absorbing states ( 〈p〉∞ = 0 or 1 for the response function chosen above). The
time taken to reach a homogeneous absorbing state grows exponentially with N
(figure 3(A)). Therefore, states of phenotypic heterogeneity are quasi-stationary and
long-lived. These heterogeneous states arise for a broad class of response functions
and initial distributions (supplementary figure A.1), and they are robust against
demographic noise that is always present in populations of finite size (figure 3(A));
see our mathematical analysis below. We demonstrated that states of phenotypic
heterogeneity are also robust against changes of the model set-up, which might
account for more biological details (see, for example, [63] and references therein).
Upon including, for example, noisy inheritance of the production degree, noisy
perception of the environment, and noisy response to the environment into the
quorum-sensing model, heterogeneous states still arise; see supplementary figure A.2.
Furthermore, the average production in the heterogeneous state is finely adjusted
by the interplay between the response probability λ and the selection strength s
(figure 2(F)).

The establishment of long-lived, heterogeneous states induced by quorum sensing
is one central finding of our study. We interpret this phenotypic heterogeneity as the
result of the robust balance between population and ecological dynamics coupled
through quorum sensing (see figure 4). On the one hand, fitness differences due to
costly production favor non-producers. On the other hand, sensing the population
average and accordingly up-regulating individual production enables producers to
persist. Remarkably, fitness differences and sense-and-response balance such that
separated production degrees may stably coexist in one population; the population
does not become homogeneous at an intermediate production degree as one might
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naively expect. Heterogeneity of the autoinducer production is a robust outcome of
the dynamics (and not a fine-tuned effect), and the average production level in the
population is adjusted by the interplay of the response probability λ and the selection
strength s . Phenotypic heterogeneity does not rely on a bistable response function,
but arises due to the global intercellular coupling of ecological and population
dynamics through quorum sensing, as we show next. The relevance of quorum
sensing for phenotypic heterogeneity in microbial populations is further explored
below (see section 3).
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Figure 3. Characterization of phenotypic heterogeneity in the quorum-sensing model.
(A) For small response probability λ, populations get stuck in heterogeneous quasi-stationary
states. The time taken to reach a homogeneous absorbing state, Tabs, increases exponentially
with the population size N (filled circles denote the mean, gray bars denote the range
within which 95% of the data points lie closest to the mean; dashed lines show fit to Tabs ∼
eγN ). (B) Heterogeneous states are long-lived only if the response probability λ is small
and the response function is nonlinear (in particular, up-regulation is required for some
average production level such that R(〈p〉) > 〈p〉). Here, the monostable response function
R(〈p〉) = 〈p〉 + κ sin(π 〈p〉) was chosen such that κ ∈ [0, 1/π] scales the magnitude of up-
regulation. As κ increases, the gap between the low-productive and high-productive peaks of
the heterogeneous state becomes larger such that it takes longer to reach the absorbing state.
Mean-field theory (1) predicts the existence and local stability of heterogeneous stationary
distributions for 0 < λ < λup = s/2 (regime below the black line). Deviations between the
stochastic process and mean-field theory are due to demographic fluctuations that vanish
as N → ∞. (C) The variance of production degrees in the population reveals whether the
population is in a homogeneous (Var(p) = 0) or heterogeneous state (Var(p) > 0). The
variance was averaged over long times in the quasi-stationary state. Mean-field theory (1)
(black line) agrees with our numerical observations (red filled circles); see Methods and
materials section 4. Ensemble size M = 100, s = 0.2, in (B) N = 103 and in (C) N = 104

and N = 5 · 104 close to λup, in (A, C) κ = 0.2. Numerical simulations were carried out by
Matthias Bauer.
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2.3 Derivation and analysis of the mean-field equation (1)

In the following, the observed long-lived states of phenotypic heterogeneity in the
quorum-sensing model are explained. First, we derived the macroscopic mean-
field equation (the autoinducer equation (1)) from the microscopic dynamics of the
quorum-sensing model. Second, we analyzed this mean-field equation and character-
ized phenotypic heterogeneity of autoinducer production.

The microscopic dynamics of the quorum-sensing model are captured by a mem-
oryless stochastic birth-death process as sketched in figure 1. Starting from the
microscopic many-particle stochastic process, we first heuristically derived (by ne-
glecting correlations) and then proved a mean-field equation for the probability
distribution of finding any individual at a specified production degree p at time t in
the spirit of the kinetic theory in statistical physics [100]. We call this one-particle
probability distribution the production distribution ρ; figure 2 shows the corre-
sponding histogram numerically obtained from the stochastic many-particle process.
The mean-field equation for ρ, which we also refer to as the autoinducer equation, is
obtained as:

∂t ρ(p, t ) = 2λφt
(
δ(p − R(p t )) − ρ(p, t )

)
+ (1 − 2λ)

(
φ(p) − φt

)
ρ(p, t ) , (1)

where · t denotes averaging with respect to ρ at time t . The details of the derivation
of the autoinducer equation from the microscopic dynamics are given in the Methods
and materials section 4 and in appendix B and C.

The autoinducer equation (1) involves two contributions: the sense-and-response
term with prefactor 2λ, and the replicator term with prefactor 1 − 2λ. Through the
replicator term, probability weight at production degree p changes if the fitness φ(p)
is different from the mean fitness in the population φt (here φ(p) − φt = −s(p − p t )).
Without quorum sensing (λ = 0), equation (1) reduces to the well-known replicator
equation of the continuous Prisoner’s dilemma [101–105]. The sense-and-response
term, on the other hand, encodes the global feedback by which individuals adopt the
production degree R(p t ) upon sensing the average p t through quorum sensing at rate
2λ. The difference between the current state ρ and the state in which all individuals
have this production degree R(p t ) determines the change in ρ at every production
degree. Through the replicator term and the sense-and-response term, the ecological
dynamics (average production level p t ) are coupled with the dynamics of ρ.

We now present our results for the long-time behavior of the autoinducer equa-
tion (1). First, the autoinducer equation (1) admits homogeneous stationary dis-
tributions. Without quorum sensing (λ = 0), the initially lowest production de-
gree in the population, plow, constitutes the homogeneous stationary distribution
ρ∞(p) = δ(p − plow), which is attractive for generic initial conditions. With quorum
sensing (λ > 0), fixed points of the response function p∗ = R(p∗) yield homogeneous
stationary distributions as ρ∞(p) = δ(p − p∗), which are attractors of the quorum-
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sensing dynamics (1) for all initial distributions if λ > s/2; see analysis below. These
homogeneous stationary distributions confirm our observations of homogeneous
absorbing states in the quorum-sensing model, in which all individuals produce to
the same degree; see figure 2(A, B). Time scales at which stationarity is approached
are discussed in the Methods and materials section 4.

Second, to analytically characterize long-lived heterogeneous states of the popula-
tion, we decomposed ρ into a distribution at low production degrees and a remainder
distribution at higher degrees. We found that such a decomposition yields the bi-
modal, heterogeneous, stationary distribution of the autoinducer equation (1):

ρ∞(p) = yδ(p) + (1 − y)δ(p − phigh) ,
with phigh = R(β) and y = 1 − β/R(β) ,

(2)

if the conditions 0 < phigh ≤ 1 and 0 < y < 1 are fulfilled; see figure 4 for an
illustration and appendix D for the derivation. The parameter β = 2λ/s quantifies
the balance between fitness differences and sense-and-response mechanism through
quorum sensing. Heterogeneous stationary distributions (2) are constituted of a
probability mass y at the low-producing degree plow = 0 and a coexisting δ-peak
with stationary value 1 − y at a high-producing degree phigh separated from plow
by a gap. Such heterogeneous stationary distributions have mean p∞ = β and
variance Var(p)∞ = β(R(β) − β). Therefore, the interplay between selection strength
s and response probability λ adjusts the average production of autoinducers in
the population (figure 2(F)). For simplicity, we assumed in equation (2) that the
initially lowest production degree in the population is plow = 0; generalized bimodal
distributions for arbitrary initial distributions ρ0 are given in appendix D.

From the conditions on phigh and y below equation (2), one can derive the follow-
ing conditions on the response function and the value of the response probability λ
(for given selection strength s ) for the existence of heterogeneous stationary distri-
butions: (i) The response function needs to be nonlinear with R(p∞) = phigh > p∞;
that is, quorum sensing needs to up-regulate the cellular production in some regime
of the average production level. Therefore, both monostable and bistable response
functions depicted in figure 1(B) may induce heterogeneous stationary distributions
through the ecological feedback. (ii) The response probability needs to be small
with λ < λup = s/2; that is, to induce phenotypic heterogeneity, cells must respond
only rarely to the environmental cue p. This estimate of an upper bound on λ is
confirmed by our numerical results of the stochastic process (figure 3(A-C)). Vice
versa, for a given response probability, the selection strength needs to be big enough
to induce heterogeneous stationary distributions. As we show in the Methods and ma-
terials section 4, phase transitions in the space of stationary probability distributions
govern the long-time dynamics of the autoinducer equation (1) from heterogeneity
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to homogeneity as the response probability changes (λ → 0 and λ → λup); see
figure 3(C).

For small λ, the coexistence of the low-producing and the high-producing peaks
in solution (2) is stable due to the balance of fitness differences and sense-and-response
through quorum sensing. In appendix D we show that the heterogeneous stationary
distributions (2) are stable up to linear order in perturbations around stationarity.
As our numerical simulations show, these bimodal distributions are the attractor
of the mean-field dynamics (1) for a broad range of initial distributions when λ
is small; see supplementary figure A.1 for some examples. They are also robust
against noisy inheritance, noisy perception, and noisy response as demonstrated
in supplementary figure A.2. We interpret the stability of the bimodal stationary
distributions (2) as follows (see also figure 4). Fitness differences quantified by the
selection strength s increase probability mass at production degree plow, whereas
nonlinear response to the environment with probability λ pushes probability mass
towards the up-regulated production degree phigh = R(p∞). The gap phigh − plow > 0
ensures that the exponential time scales of selection and sense-and-response stably
balance the coexistence of both peaks; see Methods and materials section 4. Because
heterogeneous stationary distributions (2) are attractive and stable, heterogeneous
states of the stochastic many-particle process arise and are quasi-stationary. Conse-
quently, the time to reach a homogeneous absorbing state in the stochastic process
through demographic fluctuations scales exponentially with the population size N
[22, 106–109]; see figure 3(A). Thus, phenotypic heterogeneity is long-lived.

In summary, our mathematical analysis explains how phenotypic heterogeneity in
the autoinducer production arises when quorum sensing up-regulates the autoinducer
production in microbial populations (figure 4). As an emergent phenomenon, the
population may split into two subpopulations: one in which cells do not produce
autoinducers (‘off’ state, plow = 0) and a second in which cells produce autoinducers
(‘on’ state, phigh = R(2λ/s) > 0), but grow slower. The fraction of individuals in
the ‘off’ state is given by the value of y in equation (2). If quorum sensing is absent
(λ = 0), the whole population is in the ‘off’ state (y = 1), whereas all individuals
are in the ‘on’ state (y = 0) if quorum sensing is frequent (λ ≥ λup). Only when
the response to the environment is rare (0 < λ < λup) can the two phenotypic
states, plow and phigh, coexist in the population (0 < y < 1). The transitions from
heterogeneous to homogeneous populations are governed by nonequilibrium phase
transitions when the response probability changes (λ → 0 and λ → λup). Our
mathematical analysis shows that phenotypic heterogeneity arises dynamically, is
robust against perturbations of the autoinducer production in the population, and is
robust against noise at the level of inheritance, sense, and response.
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Figure 4. Dynamic stability of phenotypic heterogeneity induced by an ecological feed-
back in quorum-sensing microbial populations. The sketch illustrates the effective picture
of how heterogeneous production of autoinducers is controlled in the quorum-sensing model.
The coupling of growth rate differences between non-producers and producers (selection
strength s ) and sense-and-response to the self-shaped environment through quorum sensing
(response probability λ and up-regulation of production with response function R(〈p〉))
ensures the stable coexistence of the two subpopulations. The value β = 2λ/s quantifies this
balance. In one subpopulation (fraction y = 1 − β/R(β) of the total population), individuals
do not produce (plow = 0), while in the other (fraction 1 − y ) individuals produce autoinduc-
ers to the degree phigh = R(β). The average production level in the population is robustly
adjusted to the value 〈p〉 = β. States of phenotypic heterogeneity arise for a broad range of
initial distributions and are robust against noisy inheritance, noisy perception, and noisy
response (see supplementary figures A.1 and A.2).

3 Discussion of the quorum-sensing model

3.1 Summary: Phenotypic heterogeneity in the quorum-sensing
model as a collective phenomenon through an ecological
feedback

In this work, we studied a conceptual model for the heterogeneous production of
autoinducers in quorum-sensing microbial populations. The two key assumptions
of our quorum-sensing model are as follows. First, production of large autoinducer
molecules and accompanied gene expression in the cell’s phenotypic state are nega-
tively correlated with fitness such that non-producers reproduce faster than producers.
Second, cells sense the average production level of autoinducers in the population and
may accordingly up-regulate their production through quorum sensing. As a result,
not only does the interplay between fitness differences and sense-and-response give
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rise to homogeneously producing populations, but it can also induce a heterogeneous
production of autoinducers in the population as a stable collective phenomenon.
In these heterogeneous states, the average production level of autoinducers in the
population is adjusted within narrow limits by the balance between fitness differences
(selection strength s in the model), and the rate with which cells respond to the
environment and up-regulate their production through quorum sensing (response
probability λ and response function R(〈p〉) in the model). Due to this robust adjust-
ment of the production level in the population, the expression of other genes (for
example, bioluminescence and virulence genes) can be regulated by quorum sensing
even when the production of autoinducers is heterogeneous in the population.

In the following, we discuss the assumptions of our model in the light of the em-
pirical reality for both quorum sensing and phenotypic heterogeneity. Furthermore,
we indicate possible directions to experimentally test the ecological feedback that is
suggested by the results of our theoretical work.

3.2 Does autoinducer production reduce individual growth rate?

In our quorum-sensing model, it is assumed that the individual’s production degree
of autoinducers is negatively correlated with its growth rate (φi = 1 − spi ). Is this
assumption of growth impairment for producing phenotypes justified [110]? This
would be the case if cellular production of autoinducers directly causes a reduction of
the cell’s growth rate. For example, in L. monocytogenes populations, heterogeneous
production was observed for an autoinducer oligopeptide that is synthesized via the
agr operon [10, 72]. This signaling oligopeptide incurs high metabolic costs through
the generation of a larger pre-protein. For the oligopeptide signal synthesized via
the agr operon in Staphylococcus aureus, the metabolic costs were conservatively
estimated by Keller and Surette to be 184 ATP per molecule (metabolic costs for
precursors were disregarded in this estimate); see [9] for details. In contrast, basically
no costs (0–1 ATP) incur for the different signaling molecule Autoinducer-2 (AI-2)
that is considered as a metabolic by-product. As to what extent the production of
oligopeptides for signaling reduces an individual’s growth rate has, to our knowledge,
not been studied quantitatively.

For quorum-sensing systems that involve N -acyl homoserine lactones (AHLs)
as signaling molecules, however, a reduced fitness of producers has been reported
for microbial growth in batch culture [82–84]. Even though metabolic costs for
the synthesis of C4-HSL (one of the simplest AHL signaling molecules that is syn-
thesized via the rhl operon) were conservatively estimated with only 8 ATP per
molecule [9], a growth impairment was experimentally reported only recently for a
C4-HSL-producing strain [82]. Furthermore, a strain producing a long-chain AHL
(OC12-HSL, synthesized via the las operon) showed a reduced fitness in both mono
and mixed culture compared with a non-producing strain. The reduced fitness of



3 Discussion of the quorum-sensing model 105

AHL-producers was attributed to (i) metabolic costs of autoinducer production, in
particular also to metabolic costs of precursors that were disregarded in the estimates
by Keller and Surette [9], and (ii) accumulation of toxic side products accompanying
the synthesis of autoinducers [82]. As another example, the strain Sinorhizobium
fredii NGR234 synthesizes AHLs via both the ngr and the tra operon [111], and it
was shown that gene expression related to autoinducer production reduces the strain’s
growth rate in mono culture [84]. On the other hand, a heterogeneous expression
of the corresponding autoinducer synthase genes was observed during growth of
NGR234 only recently [67]. As to what extent the production of AHLs reduces
fitness of NGR234 in mixed culture and, thus, whether the phenotypic heterogeneity
observed in [67] could be explained through the ecological feedback proposed by our
quorum-sensing model, remains to be explored experimentally.

In the quorum-sensing model, even small growth rate differences between pro-
ducer and non-producer, which are quantified by the ratio (growth rate of producer)
/ (growth rate of non-producer) = 1 − s , may give rise to a bimodal production of
autoinducers in the population. Furthermore, it would be interesting to track the
expression level of autoinducer synthase genes of a microbial strain during growth for
which growth differences between the producing and the non-producing phenotype
are known such as in the study of [82]. We emphasize that it would be desirable
to report the full distribution of expression levels in the population in order to
detect whether a population splits into several subpopulations; note that variance or
percentiles are not suitable measures to characterize and compare the bimodality of
distributions. A bimodal expression of autoinducer synthase genes in the population
together with a tightly controlled average expression level could be a signature of the
feedback between ecological and population dynamics underlying the observation of
phenotypic heterogeneity as suggested by our results.

3.3 A question of spatio-temporal scales: How stable and how
dispersed are autoinducers in the environment?

Autoinducers are secreted into the environment where they get dispersed and are
degraded. For simplicity and to facilitate our mathematical analysis, we assumed in
the quorum-sensing model that individuals respond to the current average production
level of autoinducers in the whole population. Temporal availability and spatial
dispersal of autoinducers determine whether this assumption is valid or not. On
the one hand, temporal availability of autoinducers in the environment for signaling
depends on many factors. For example, pH and temperature influence the stability
of autoinducers [112–116]. Biochemical mechanisms that inhibit or disrupt the
functioning of signaling molecules (commonly referred to as “quorum quenching”)
further determine the time scales at which autoinducers are degraded in the envi-
ronment [115–117]. On the other hand, spatial dispersal of autoinducers in the
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population depends, for example, upon cellular mechanisms that import and export
autoinducers into the cell from the environment and vice versa, and upon the spatial
structure of the microbial population [57, 118]. The degree of dispersal determines
whether autoinducers remain spatially privatized to a single cell, diffuse to neigh-
boring cells, or are spread evenly between all cells of the population. Consequently,
the spatio-temporal organization of the microbial population determines as to what
extent microbes sense rather the current average production level or a time-integrated
production of autoinducers, and to what extent they sense rather the global or a local
average production level. Our quorum-sensing model assumes that autoinducers are
uniformly degraded in a well-mixed environment. These assumptions do not hold
true for a spatially structured microbial biofilm, but should be fulfilled during the
stationary phase of microbial growth in a well-mixed batch culture [112, 113].

3.4 How is production of autoinducers up-regulated at the single-cell
level?

3.4.1 Monostable or bistable up-regulation of autoinducer synthesis at the
single-cell level

Our theoretical results also relate to the question of how cells regulate the production
of autoinducers upon sensing the level of autoinducers in the environment. In this
work, we showed that positive feedback loops and, thus, up-regulation of cellular
autoinducer production may give rise to phenotypic heterogeneity. Positive feedback
loops are mathematically introduced in our model as a stable fixed point at the
producing phenotype of the response function (up-regulation to the stable ‘on’ state
at p = 1; see figure 1(B)). Such a positive feedback is not present in all autoinducer
synthase systems, but was reported for the strains L. monocytogenes and S. fredii
NGR234 [8, 72, 84, 119] that showed a heterogeneous synthesis of autoinducers at
the population level [10, 67]. From an experimental point of view it is often not
known, however, whether autoinducer synthesis is up-regulated for all autoinducer
levels or only above a threshold level. Up-regulation at all production levels in
the population corresponds to a monostable response function with an unstable
fixed point at the ‘off’ state at p = 0, whereas up-regulation only above a threshold
level corresponds to a bistable response function with a stable fixed point at the
‘off’ state at p = 0 and an additional unstable fixed point at the threshold value;
see figure 1(B). Most models of quorum-sensing microbial populations explicitly
or implicitly assume a bistable gene regulation for positive feedback loops without
experimental verification; see [57] for further discussion. Why might it be relevant to
distinguish between bistable (for example, a Hill function with Hill coefficient > 1)
and monostable (for example, a Hill function with Hill coefficient ≤ 1) regulation
of autoinducer synthesis – apart from the insight on how regulation proceeds at the
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molecular level? As the results of our quorum-sensing model show, the qualitative
form of the regulation could discriminate between different mechanisms that control
phenotypic heterogeneity of the autoinducer production at the population level as
we describe in the following.

3.4.2 Heterogeneity through stochastic gene expression only for bistable gene
regulation

In recent years, a deeper mechanistic understanding of phenotypic heterogeneity has
been achieved by exploring how the presence of different phenotypes in a population
of genetically identical cells depends upon molecular mechanisms and stochasticity
at the cellular level [12]. For example, a bistable gene regulation function enables
cells to switch between an ‘on’ and an ‘off’ state with respect to the expression
of a certain gene or operon. Depending on environmental cues, cells are either
in the stable ‘on’ or in the stable ‘off’ state. A noisy expression at intermediate
concentrations of an environmental cue may then cause some cells to be in the
‘on’ state while others are still in the ‘off’ state. Thus, stochastic gene expression
explains the coexistence of different phenotypic states in one population in many
experimental situations [13, 120–125]. In the context of quorum sensing, the level of
autoinducers in the population is the environmental cue that triggers the stochastic
switch between ‘on’ and ‘off’ state explaining heterogeneous autoinducer production
when the response function is bistable [14, 73–75]. In other words, bistable regulation
together with stochastic gene expression can explain a bimodal autoinducer synthesis
in the population. If, however, regulation of autoinducer synthesis is monostable, an
explanation of phenotypic heterogeneity in the autoinducer production in terms of
stochastic gene expression appears questionable to us.

3.4.3 Heterogeneity through an ecological feedback for monostable and for
bistable gene regulation

The analysis of our quorum-sensing model suggests that an alternative mechanism
could explain a heterogeneous production of autoinducers in quorum-sensing mi-
crobial populations. Our results show that phenotypic heterogeneity may also arise
dynamically as a collective phenomenon for monostable regulation of autoinducer
production when quorum sensing creates an ecological feedback by coupling ecologi-
cal with population dynamics. Cells need to up-regulate their expression with respect
to the sensed production level in the population. A threshold-like, bistable response
function does not need to be assumed in the quorum-sensing model, but would work
as well, to establish a bimodal production of autoinducers in the population.

Therefore, if phenotypic heterogeneity of autoinducer synthesis is observed
in a microbial population and if cellular growth rate is correlated with the cell’s
production degree of autoinducers, then it would be worth testing experimentally



108 Ecological feedback in quorum-sensing microbial populations

whether regulation of autoinducer synthesis is monostable or bistable. Monostable
regulation would be an indicator that heterogeneity on the population level is not
caused by stochastic gene expression, but actually is caused by a different mechanism
such as the ecological feedback proposed here.

3.4.4 On which timescales do microbes respond to autoinducers in the
environment?

Furthermore, in our implementation of the quorum-sensing model, individuals re-
spond to the environment with response probability λ upon reproduction. The
rule that offspring individuals can only respond at reproduction events represents a
coarse-grained view in time to facilitate the mathematical analysis and to identify the
ecological feedback. The response probability can actually be interpreted as the rate
with which individuals respond to autoinducers in the environment. This cellular
response rate is then effectively measured in units of the cell’s reproduction rate (φi )
in the quorum-sensing model. Phenotypic heterogeneity of autoinducer production
arises in the quorum-sensing model if the time scale at which cells respond to autoin-
ducers in the environment is of similar order as or larger than the time scale at which
growth rate differences affect the population dynamics. This can be inferred from the
prefactors of the sense-and-response term and the replicator term in the autoinducer
equation (1): Effective changes of the distribution of autoinducer production in the
population occur (i) through cellular response to autoinducers in the environment at
rate ∼2λ and (ii) through growth rate differences at rate ∼ s . Both contributions need
to balance each other such that a bimodal production in the population is established
(quantified in our model by the ratio β = 2λ/s ; see also figure 4 for an illustration).
This balance is robust against several kinds of perturbations and noise as discussed
above; see supplementary figures A.1 and A.2. To understand how bacteria respond
to changes of autoinducer levels in the environment and to quantify response rates,
experiments at the single-cell level seem most promising to us at present.

3.5 Single-cell experiments

Some of the questions raised above may be addressed most effectively with single-cell
experiments. For example, it would be desirable to simultaneously monitor, at the
single-cell level, the correlations between autoinducer levels in the environment, the
expression of autoinducer synthase genes, and the transcriptional regulators that
mediate response to quorum sensing. Upon adjusting the level of autoinducers in
a controlled manner, for example in a microfluidic device, one could characterize
how cells respond to autoinducers in the environment. This way, it might be possible
to answer questions of (i) how the cellular production of autoinducers is regulated
(monostable or bistable regulation, or a different form of regulation), (ii) whether
response times to environmental changes are stochastic and whether response rates
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can be identified, (iii) as to what extent cellular response in the production of
autoinducers depends on both the level of autoinducers in the environment and on
the cell’s present production degree, and (iv) how production of autoinducers is
correlated with single-cell growth rate. In the context of the quorum-sensing model,
the results of such single-cell experiments would help to identify the form of the
fitness function φ and the response function R, to quantify the selection strength s
and response probability λ, and to refine the model set-up.

Different mechanisms at the cellular (microscopic) level may yield the same
behavior at the population (macroscopic) level. Therefore, observations at the
population level might not discriminate between different mechanisms at the cellular
level. Is phenotypic heterogeneity in the production of autoinducers an example
of such a case? In this work, we discussed that phenotypic heterogeneity in the
autoinducer production could be the result of stochastic gene expression in bistable
gene regulation or, as suggested by our model, the result of the feedback between
ecological and population dynamics. We believe that the above-mentioned single-cell
experiments could elucidate the mechanisms that allow for phenotypic heterogeneity
in quorum-sensing microbial populations, and help to understand how population
dynamics and ecological dynamics influence each other.

3.6 What is the function of phenotypic heterogeneity in autoinducer
production?

The purpose of the quorum-sensing model presented here is to explain how pheno-
typic heterogeneity in the autoinducer production arises and how it is controlled
in quorum-sensing microbial populations. With the current model set-up, however,
we did not address its function. Why might this phenotypic heterogeneity in the
autoinducer production be beneficial for a microbial species on long times? From an
experimental point of view, the evolutionary contexts and ecological scenarios under
which this phenotypic heterogeneity may have arisen are still under investigation [10,
11, 67]. From a modeling perspective, one could extend, for example, our chosen
fitness function with a term that explicitly accounts for the benefit of signaling either
at the cellular or population level, and study suitable evolutionary contexts and
possible ecological scenarios [57, 126–129]. Such theoretical models together with
further experiments might help to clarify whether heterogeneous production of
autoinducers can be regarded as a bet-hedging strategy of the population or rather
serves the division of labor in the population [12].

3.7 Conclusion

Overall, our analyses suggest that feedbacks between ecological and population dy-
namics through signaling might generate phenotypic heterogeneity in the production
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of signaling molecules itself, providing an alternative mechanism to stochastic gene
expression in bistable gene-regulatory circuits. Spatio-temporal scales are important
for the identified ecological feedback to be of relevance for microbial population
dynamics: growth rate differences between producers and non-producers need to
balance the rate at which cells respond to the environment, degradation of signaling
molecules should be faster than time scales at which growth rate differences affect the
population composition significantly, and signaling molecules should get dispersed
in the whole population faster than they are degraded. In total, if microbes sense
and respond to their self-shaped environment under these conditions, the population
may not only respond as a homogeneous collective as is typically associated with
quorum sensing, but may also become a robustly controlled heterogeneous collective.
Further experimental and theoretical studies are needed to clarify the relevance of
the different mechanisms that might control phenotypic heterogeneity, in particular
for quorum-sensing microbial populations.

4 Methods and materials

4.1 Derivation of the mean-field equation (1) from section 2

The microscopic dynamics are captured by a memoryless stochastic birth-death
process (a continuous-time Markov process) as sketched in figure 1. The state of the
population p is updated by nongenetic inheritance and sense-and-response through
quorum sensing such that at most two individuals i and j , i change their production
degree at one time. The temporal evolution of the corresponding joint N -particle
probability distribution P (p, t ) is governed by a master equation for the stochastic
many-particle process [16–18], whose explicit form is derived from figure 1 and given
in appendix B. This master equation tracks the correlated microscopic dynamics of
the production degrees of all N individuals. To make analytical progress, we focused
on the reduced one-particle probability distribution ρ(1)(p, t ) = 1/N 〈∑i δ(p − pi)〉P
in the spirit of a kinetic theory [100] starting from the microscopic stochastic
dynamics. ρ(1) denotes the probability distribution of finding any individual at
a specified production degree p at time t ; the numerically obtained histogram of
ρ(1) was plotted in figure 2. The temporal evolution of ρ(1) is derived from the
master equation, and couples to the reduced two-particle probability distribution
and to the full probability distribution P through quorum sensing. By assuming that
correlations are negligible, one may approximate ρ(1) by the mean-field distribution
ρ, which we refer to as the production distribution. The mean-field equation (1) for
ρ is derived in appendix B and referred to as the autoinducer equation. Note that
equation (1) conserves normalization of ρ, that is,

´
dp ∂t ρ(p, t ) = 0.

We also proved that ρ(1) converges in probability to ρ as N → ∞ for any fi-
nite time if initial correlations are not too strong. In other words, the autoinducer
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equation (1) captures exactly the collective dynamics of the stochastic many-particle
process for large N . To show this convergence, we introduced the bounded Lips-
chitz distance d between ρ and ρ(1), applied Grönwall’s inequality to the temporal
evolution of d , and used the law of large numbers. Similar distance measures and
estimates have been used, for example, to prove that the Vlasov equation governs the
macroscopic dynamics of the above-mentioned classical XY spin model with infinite
range interactions [77, 130–132].

4.2 Analysis of homogeneous stationary distributions of the
mean-field equation (1)

Without quorum sensing (λ = 0), one finds the analytical solution for ρ by applying
the method of characteristics to equation (1) in the space of moment and cumulant
generating functions as: ρ(p, t ) = ρ0(p)e−s t p/

´ 1
0 dp e−s t p ρ0(p); see appendix D for de-

tails. Thus, the initially lowest production degree in the population, plow, constitutes
the homogeneous stationary distribution ρ∞(p) = δ(p − plow), which is attractive for
generic initial conditions. Only δ-peaks at production degrees greater than plow are
stationary as well, but they are neither attractive nor stable. The temporal approach
to the homogeneous stationary distribution is algebraically slow for continuous initial
distributions ρ0, and exponentially fast if plow is separated from all greater degrees by
a gap in production space; see appendix D and figure 2(D).

With quorum sensing (λ > 0), fixed points of the response function p∗ = R(p∗)
yield homogeneous stationary distributions of the mean-field equation (1) as ρ∞(p) =
δ(p − p∗). In particular, stable fixed points of the response function (R′(p∗) < 1)
constitute homogeneous stationary distributions that are stable up to linear order
in perturbations around stationarity. For λ > s/2, these distributions are also
attractors of the mean-field dynamics (1) for all initial distributions; see appendix D.
The temporal approach towards homogeneous stationary distributions with quorum
sensing is generically exponentially fast (figure 2(E)). This exponentially fast approach
is illustrated for the special case of a linear response function and λ = 1/2, for which
one finds the analytical solution as: ρ(p, t ) = y(t )ρ0(p) + (1 − y(t ))δ(p − p0) with
y(t ) = e−φ0t . However, time scales at which stationarity is approached may diverge at
bifurcations of the response function. Such can be seen, for example, if one chooses a
supercritical pitchfork bifurcation of a polynomial response function and λ = 1/2;
see supplementary figure A.3 and appendix D.

4.3 Phase transitions from heterogeneity to homogeneity in the
mean-field equation (1)

Here we discuss how the long-time behavior of the quorum-sensing model changes
from heterogeneous to homogeneous populations as the response probability λ
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vanishes or reaches the upper threshold λup while the selection strength s is kept
fixed. For small response probabilities, 0 < λ < λup, the heterogeneous stationary
distributions of the autoinducer equation (1) explain the long-lived, heterogeneous
states of the stochastic quorum-sensing process. The coexisting δ-peaks at the low-
producing and high-producing degree in the heterogeneous stationary distribution
are separated by a gap in production space, which gives rise to the non-vanishing
variance Var(p)∞ in the phase of heterogeneity (figure 3(C)). As λ → λup, the gap
closes, phigh → R(phigh), and y → 0, such that a homogeneous stationary distribution
with Var(p)∞ = 0 is recovered in a continuous transition. This nonequilibrium phase
transition from heterogeneity to homogeneity proceeds without any critical behavior.
As λ → 0, and under the assumption that 0 is an unstable fixed point of the response
function (R(0) = 0 and 1 < R′(0); we further assume R′(0) < ∞), the gap between
the low-producing and the high-producing peak closes as well because phigh → 0.
However, y does not approach 1, but the value 1 − 1/R′(0) < 1. The probability
weight at the low-producing mode jumps by the value 1/R′(0) and the homogeneous
stationary distribution with Var(p)∞ = 0 is recovered in a discontinuous transition.
Therefore, a discontinuous phase transition in the space of stationary probability
distributions governs the long-time dynamics of the autoinducer equation (1) from
heterogeneity to homogeneity as the response probability λ vanishes (for fixed
selection strength s ).
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A Supplementary Figures

A.1 Supplementary figure: Phenotypic heterogeneity in the
quorum-sensing model arises for diverse initial distributions
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Supplementary figure A.1. Phenotypic heterogeneity in the quorum-sensing model
arises for diverse initial distributions. Bimodal quasi-stationary states arise for a broad
class of initial distributions if the value of the response probability λ is small and an individ-
ual’s production degree is upregulated by the sense-and-response mechanism through quorum
sensing (R(p) > p for some p ∈ [0, 1]). Depicted is the temporal evolution of the histograms
of production degrees (normalized values) as in figure 2. The monostable response function
R(p) = p+0.2 · sin (πp) was chosen (see figure 1(B)). (A, B) λ = 0.05. Initially, the population
consists of mainly non-producers (in (A) initial distribution pi ∼ Beta(0.5, 20) i.i.d. and
in (B) initial distribution pi ∼ Beta(4, 20) i.i.d.). Due to the balance of fitness differences
and sense-and-response through quorum sensing, the population splits into a heterogeneous
population with producers and non-producers coexisting for long times. (C) λ = 0.02. If
the initial distribution of production degrees is centered around high production degrees
(initial distribution pi ∼ Beta(10, 5) i.i.d.), the population may still evolve in time into a
heterogeneous quasi-stationary state. However, the peak at the low-producing degree is
typically located away from 0, that is, plow > 0. These exemplary numerical results (A-C) are
confirmed by the results of our mean-field theory: heterogeneous stationary distributions
are the attractor of the mean-field dynamics (autoinducer equation (1)) for a broad range of
initial distributions if conditions (i) R(p∞) = phigh > p∞ and (ii) λ < λup = s/2 are fulfilled.
Note that i.i.d. abbreviates “independent and identically distributed”. Parameters: selection
strength s = 0.2 and population size N = 104. Numerical simulations were carried out by
Matthias Bauer.
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A.2 Supplementary figure: Phenotypic heterogeneity in the
quorum-sensing model is robust against noisy inheritance, noisy
perception, and noisy response
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Supplementary figure A.2. Phenotypic heterogeneity in the quorum-sensing model is
robust against noisy inheritance, noisy perception, and noisy response. Upon including
either noisy inheritance of the production degree (A-C), or noisy perception of the average
production level and noisy response to it (D-F), or both (G-I) into the model set-up, bimodal
quasi-stationary states still arise in the relevant parameter regimes (see figure 2(C)). Depicted
are representative single realizations of the modified stochastic process (histogram over
normalized values of production degrees to make the comparison with figure 2 possible). (A-
C) Noisy inheritance is implemented at reproduction events. Production degree pi is passed on
to an offspring as pi 7→ pi + ηp with noise ηp ∼ N (0, σp) sampled from a Normal distribution
(and are cut off such that pi + ηp ∈ [0, 1]), emulating noisy inheritance of the phenotype.
σp ≥ 0 characterizes the strength of the noise (σp = 0 recovers noiseless inheritance). As σp
increases, bimodal quasi-stationary states still arise, but the two peaks become broader than in
the noiseless case. (D-F) Noise in the sensing apparatus is implemented as noisy perception of
the average production level 〈p〉 7→ 〈p〉+η 〈p 〉 with Gaussian noise η 〈p 〉 ∼ N (0, σ 〈p 〉), and noise
in the response is implemented at the level of the response function as R(〈p〉) 7→ R(〈p〉) + ηR
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with Gaussian noise ηR ∼ N (0, σR). Therefore, the production degree of an individual is
updated through sense-and-response to the environment as pi = R(〈p〉) 7→ R(〈p〉 + η 〈p 〉)+ ηR
in the quorum-sensing model. Again, as the strength of both sense and response noise increase,
bimodal quasi-stationary states still arise, but the two peaks become broaden compared with
the noiseless case. We emphasize that σ 〈p 〉 = σR = 0.1 corresponds to very strong noise on
the interval [0, 1]. (G-I) Combined effect of noisy inheritance and noisy sense-and-response.
Representative trajectories demonstrate that bimodal quasi-stationary states also arise in the
presence of noise at all update steps. Thus, phenotypic heterogeneity in the quorum-sensing
model is qualitatively robust against noise at all steps. Initial distribution: pi ∼ Uniform(0, 1),
independent and identically distributed; Parameters: selection strength s = 0.2, response
probability λ = 0.05, response function R(〈p〉) = 〈p〉 + 0.2 · sin(π 〈p〉), and population size
N = 104. Numerical simulations were carried out by Matthias Bauer.
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A.3 Supplementary figure: Time scales at which stationarity is
approached may diverge
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Supplementary figure A.3. Time scales at which stationarity is approached may diverge.
The response probability was set to λ = 1/2, and a nonlinear response function with
bifurcation parameter ε was chosen as R(〈p〉) = 〈p〉 + 40 · 〈p〉(〈p〉 − (0.5− ε ))(〈p〉 − 0.5)(〈p〉 −
(0.5 + ε ))(〈p〉 − 1), see equation (166); ε controls a supercritical pitchfork bifurcation of
the response function at the fixed point pcr = 0.5 (R(pcr) = pcr): For ε > 0, the fixed
point at pcr is unstable and non-degenerate (sketch in (B)), and becomes stable and threefold
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degenerate (z = 3) as ε = 0 (sketch in (A)). (D) Away from the bifurcation of the response
function (ε > 0), the approach of an absorbing state in the stochastic many-particle system
is exponentially fast (see inset of (D) for an exemplary measurement of 〈p〉(t ) − 〈p〉∞ for
ε = 0.1, dashed line denotes fit to exponential decay). The exponentially fast approach of
stationarity is confirmed by mean-field theory (p t − p∞ ∼ e−t/τ ), see sections 2 and 4, and
equation (169). Mean-field theory also predicts that the time scale of this exponentially fast
relaxation diverges as τ ∼ ε−2 as the bifurcation is approached (ε → 0), indicated by the
black line in (D). This prediction agrees with the numerical simulations of the stochastic
quorum-sensing model, see (D) (blue crosses denote values of the decay constants obtained
from the exponential fits and black dashed line indicates fit to τ ∼ 1/ε γ with γ = 1.95). The
divergence of time scales reflects critical slowing down as ε → 0. (C) At the bifurcation
of the response function (ε = 0), the approach of an absorbing state is algebraically slow,
p t − p∞ ∼ t−1/ν with critical exponent ν = z − 1 = 2 obtained from mean-field theory
(black line), see equation (171). This prediction agrees with our numerical simulations of the
stochastic quorum-sensing model (black dashed line in (C) indicates fit to 〈p〉(t ) − 〈p〉∞ ∼ tα
with α = −0.50). Initial distribution: unimodal pi ∼ Beta(1, 10), independent and identically
distributed; Parameters: Ensemble size M = 100, selection strength s = 0.1, population size
N = 104. Numerical simulations were carried out by Matthias Bauer.
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B Heuristic derivation of the mean-field equation (1)

B.1 Description of the microscopic dynamics: Master equation of the
stochastic many-particle process

To describe the temporal evolution of the population, we introduced the joint N -particle
probability distribution P (p, t ). The value P (p, t )dp1 . . . dpN denotes the joint probability of
finding the first individual with a production degree in the interval [p1, p1 + dp1], the second
individual with a production degree in the interval [p2, p2 + dp2], and so on at time t . The
stochastic dynamics are captured by a coupled birth-death process (continuous-time Markov
process) as described in section 2 and in figure 1. An individual i reproduces randomly after a
time that is exponentially distributed with rate φi , which we referred to as the individual’s
fitness in section 2. One update step involves reproduction, sense-and-response through
quorum sensing, and nongenetic inheritance such that at most two individuals i and j , i
change their production degree at one time. We denote the state of the population before
the update step as p̃i, j = (p1, . . . , pi−1, p̃i, pi+1 . . . , p̃ j, . . . , pN ); the production degrees of
individual i and j , which might change during the update step, are labeled with a tilde. For
the sake of readability, we do not distinguish notationally between a random variable and the
value that this random variable attains; both are labeled with the same symbol. The master
equation for the joint N -particle probability distribution P for the individuals’ production
degrees p = (p1, . . . , pN ) at time t can be written as [16–18]:

∂tP (p, t ) =
N∑
i=1

N∑
j,i

ˆ

[0,1]2

dp̃idp̃ j P (̃pi, j, t )φi (̃pi, j )ψ j (̃pi, j )Ai (̃pi, j ; i)A j (̃pi, j ; i)

− P (p, t )
N∑
i=1

N∑
j,i

φi(p)ψ j (p) ,

= “gain” − “loss” ,

(3)

with reproduction rate of individual i (fitness) given by (and selection strength 0 ≤ s < 1):

φi(p) = φ(pi) = 1 − spi , (4)

and death rate of individual j given by (random death):

ψ j (p) =
1

N − 1
. (5)

The transition probabilities Ai and A j account for the ensuing changes of at most two
production degrees in the population due to nongenetic inheritance and sense-and-response
(see detailed description below equations (6) and (7)). The initial condition to the master
equation (3) is given as P (p, t = 0) = P0(p).

The master equation (3) involves two contributions: gain terms yielding an increase and
loss terms yielding a decrease of the probability weight in state p at time t . Loss terms occur
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when the population is in state p and an individual reproduces. The probability of finding
the population in this state is given by P (p, t ). Individual i is selected for reproduction at rate
φi(p) and splits into two offspring individuals, and a different individual j , i is removed
with probability 1/(N − 1) at the same time (random death). Gain terms involve all events
that take the population from an arbitrary state p̃i, j to state p, and involve again reproduction
for individual i and neutral death for individual j . The transition probabilities Ai and A j
account for these changes due to nongenetic inheritance and sense-and-response through
quorum sensing, and are given as:

Ai (̃pi, j ; i) = λ · δ
(
pi − R(〈p̃ i, j〉)

)
+ (1 − λ) · δ

(
pi − p̃i

)
, (6)

A j (̃pi, j ; i) = λ · δ
(
p j − R(〈p̃ i, j〉)

)
+ (1 − λ) · δ

(
p j − p̃i

)
. (7)

We abbreviate 〈p̃ i, j〉 = 1/N ∑
k (̃pi, j )k as the average production degree before the update step.

Both transition probabilities Ai and A j quantify the probability of attaining the production
degrees pi and p j , respectively, for the two offspring individuals of ancestor i. The first
summand in both Ai and A j captures the response to the perceived average production (pi/ j
attains the value R(〈p̃ i, j〉)) with probability λ as the updated production degree, and the
second summand accounts for the nongenetic inheritance of the production degree from
the ancestor i (pi/ j attains the value p̃i ) with probability 1 − λ. Note that for the transition
probability A j , also p j attains the value p̃i due to our convention that individual i is labeled
as the reproducing individual and individual j is chosen for the death event, see figure 1.

In our prescription of the master equation (3), the introduced gain and loss terms also
involve terms that actually do not change the state of the population. Such is the case, for
example, when the two individuals i and j have the same production degree ( p̃i = p̃ j ) and
both offspring individuals retain the production degree from their ancestor i (pi = p j = p̃i ,
that is both offspring individuals do not update their production through sense-and-response).
Such events do not change the state of the population ( p̃i, j = p), but are included in the master
equation (3). However, these terms always occur both in the gain and loss terms. Therefore,
they cancel each other and the master equation can be written in form of equation (3).

The master equation (3) conserves normalization of P because ∂t
´

dp P (p, t ) = 0; see
analysis below.
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B.2 Coarse-grained description: Reduced one-particle probability
distribution

The reduced one-particle probability distribution ρ(1) is defined as:

ρ(1)(p, t ) = 1
N

〈 N∑
i=1

δ(p − pi)
〉
P (p,t )

, (8)

=

ˆ

[0,1]N−1

dp2dp3 . . . dpN P (p, t ) = P (1)(p, t ) , (9)

and agrees with the marginal probability distribution for the production degree of the first
individual P (1). The equality between the normalized reduced one-particle distribution ρ(1)

and the one-particle probability distribution P (1) follows from the symmetry of P with
respect to permutation of identical (that is indistinguishable) individuals [100].

We also define the more general reduced n-particle probability distribution:

ρ(n)(p1, . . . , pn, t ) B
(N − n)!

N !

〈 N∑
i1=1

δ(p1 − pi1) . . .
N∑

in=1
in,i2,...,in−1

δ(pn − pin )
〉
P (p,t )

, (10)

=

ˆ

[0,1]N−n

dpn+1dpn+2 . . . dpN P (p, t ) = P (n)(p1, · · · , pn, t ) , (11)

which agrees with the marginal probability distribution for the production degrees of the
first n individuals, P (n). In particular, one also has P (p, t ) = P (N )(p, t ) = ρ(N )(p, t ).
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B.3 Towards the macroscopic dynamics: Temporal evolution of the
reduced one-particle probability distribution

In the following we show that the temporal evolution equation of the reduced one-particle
probability distribution is obtained from the master equation (3) as:

∂t ρ
(1)(p, t ) = 2λ

ˆ

[0,1]N

dp1dp2 . . . dpN ρ(N )(p, t )
(
1 − sp

)
δ(p − R(〈p〉))

− 2λ
(
ρ(1)(p, t ) − s

ˆ 1

0
dp2 ρ

(2)(p, p2, t ) p2

)
+ (1 − 2λ)s

(ˆ 1

0
dp2 ρ

(2)(p, p2, t ) p2 − p ρ(1)(p, t )
)
.

(12)

To derive the temporal evolution equation for ρ(1), we specify the production degree of
one particular individual (here p1), and integrate out the production degrees of the other
N − 1 individuals in the master equation (3):

∂t ρ
(1)(p1, t ) =

=

ˆ

[0,1]N−1

dp2 . . . dpN
N∑
i=1

N∑
j,i

ˆ

[0,1]2

dp̃idp̃ j P (̃pi, j, t )
φ(p̃i)
N − 1

Ai (̃pi, j ; i)A j (̃pi, j ; i)

−
ˆ

[0,1]N−1

dp2 . . . dpN P (p, t )
N∑
i=1

N∑
j,i

φ(pi)
N − 1

,

=

ˆ

[0,1]N−1

dp2 . . . dpN
(
“gain” − “loss”

)
C Igain − Iloss .

(13)

For the loss term Iloss, we split the sum
∑

i ∗(i) into two contributions,∑
i ∗(i) = ∗(i=1) +

∑
i>1 ∗(i), and deal with both contributions separately to obtain:

Iloss = N P (1)(p, t ) − spP (1)(p, t ) − s(N − 1)
ˆ 1

0
dp2 P (2)(p, p2, t ) p2 . (14)

For the gain term Igain, we split up the sum
∑

i
∑

j,i ∗(i, j) that occurs in the master equation (3)
into three terms as follows:∑

i≥1

∑
j≥1
j,i

∗(i, j) =
∑
j>1

∗(i=1, j) +
∑
i>1

∗(i, j=1) +
∑
i>1

∑
j>1
j,i

∗(i, j) . (15)

We also introduce the notation dp̃i, j,k̂ B dp1dp2 . . . dp̃i . . . dp̃ j . . . dp̂k . . . dpN in which vari-
ables in the superscript are labeled with a tilde in the product (indices i and j in the example),
and variables with a hat in the superscript are missing in the product (that is, they are not



122 Ecological feedback in quorum-sensing microbial populations

integrated over; index k in the example). This way, the integral measure in the gain term can
be decomposed as follows:

ˆ

[0,1]N−1

dp2 . . . dpN
N∑
i=1

N∑
j,i

ˆ

[0,1]2

dp̃idp̃ j

=

ˆ

[0,1]N+1

N∑
j=2

dp̃1, jdp j +
ˆ

[0,1]N+1

N∑
i=2

dp̃1,idpi +
ˆ

[0,1]N+1

N∑
i=2

N∑
j=2
j,i

dp1̂,i, jdpidp j .
(16)

Upon plugging in the specific form of the transition probabilities and decomposing the
integral measure into the three contributions, the gain term can be written as follows (note
the asymmetry between the first summand ( i = 1 term) and the second summand ( j = 1
term); integration over suitable δ-functions of the transition probabilities was carried out as
well, for example,

´
dp j A j (̃pi, j ; i) = 1):

Igain =
1

N − 1

ˆ

[0,1]N

N∑
j=2

dp̃1, j P (̃p1, j, t )φ(p̃1)
(
λδ(p1 − R(〈p̃1, j〉)) + (1 − λ)δ(p1 − p̃1)

)
+

1
N − 1

ˆ

[0,1]N

N∑
i=2

dp̃i,1 P (̃pi,1, t )φ(p̃i)
(
λδ(p1 − R(〈p̃ i,1〉)) + (1 − λ)δ(p1 − p̃i)

)

+
1

N − 1

ˆ

[0,1]N−1

N∑
i=2

N∑
j=2
j,i

dp̃1̂,i, j P (̃pi, j, t )φ(p̃i) .

(17)
Making use of the fact that P is symmetric with respect to permutation of individuals
(individuals are identical), carrying out possible integrals over δ-functions, plugging in the
explicit form of the fitness function (4), and relabeling variables, one obtains for the gain
term:

Igain = 2λ
ˆ

[0,1]N

dp P (p, t )δ(p − R(〈p〉))(1 − sp1)

+ 2(1 − λ)(1 − sp)P (1)(p, t )

+ (N − 2)P (1)(p, t ) − s(N − 2)
ˆ 1

0
dp2 P (2)(p, p2, t ) p2 .

(18)

Combining loss terms Iloss and gain terms Igain leads to the result for the equation of motion
of the reduced one-particle probability distribution ρ(1) that is given in equation (12).
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B.4 Heuristic derivation of the macroscopic dynamics: Mean-field
approximation

Upon assuming that correlations are negligible, one may approximate ρ(1) by its mean-field
approximation ρ, which we refer to as the production distribution. The temporal evolution
equation for ρ(1) serves as a suitable starting point to guess the mean-field equation for ρ,
which is the mean-field approximation of ρ(1). Thus, we naively approximate ρ(1) ≈ ρ and
ρ(N ) ≈∏N ρ. From the temporal evolution of ρ(1) in equation (12), the mean-field equation
for ρ is suggested as:

∂t ρ(p, t ) ≈ 2λ
ˆ

[0,1]N

dp1dp2 . . . dpN
N∏
i=1

ρ(pi)
(
1 − sp t

)
δ(p − R(p t ))

− 2λ
(
ρ(p, t ) − s

ˆ 1

0
dp2 ρ(p, t )ρ(p2, t )p2

)
+ (1 − 2λ)s

(ˆ 1

0
dp2 ρ(p, t )ρ(p2, t )p2 − p ρ(p, t )

)
,

(19)

where ·t denotes averaging with respect to ρ at time t . Further collection of terms yields the
mean-field equation (1):

∂t ρ(p, t ) = 2λφt
(
δ(p − R(p t )) − ρ(p, t )

)
+ (1 − 2λ)

(
φ(p) − φt

)
ρ(p, t ) , (20)

with initial condition ρ(p, t = 0) = ρ0(p), φ(p) = 1− sp, φt = 1− sp t , and p t =
´ 1
0 dp p ρ(p, t ).

Alternatively, this mean-field equation can also be written as:

∂t ρ(p, t ) = 2λ
(
φt δ(p − R(p t )) − φ(p)ρ(p, t )

)
+

(
φ(p) − φt

)
ρ(p, t ) . (21)

We emphasize that the mean-field equation (1) is to be understood in distributional
sense, that is, it needs to be integrated over observables (for example, suitable test functions
g : [0, 1] → R, g smooth) and ρ is interpreted as a linear functional on the space of these
observables. This way, ρ can be a continuous probability density function or a discrete
probability mass function, or a probability distribution with both density parts and mass
parts. For further mathematical details and a more rigorous notation, see appendix C.

The proof that ρ(1) converges in probability to ρ as N →∞ for any finite time if initial
correlations are not too strong is outlined in appendix C.
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C Proof for the convergence towards the mean-field
equation (1)

In this appendix, we prove that the temporal evolution of the quorum-sensing model converges
to the macroscopic mean-field equation (1). To prove this, we introduce an “auxiliary
stochastic mean-field process” that mimics the temporal evolution of the mean-field equation
and updates the production degrees of the individuals in the population in an independent
manner. This way, the law of large numbers can be separated from the propagation of errors
that build up due to correlations of the individuals’ production degrees. We expect that our
developed method of an auxiliary stochastic mean-field process will be helpful to prove the
convergence of mean-field equations in other stochastic many-particle processes as well.

The results presented in this appendix were obtained in close collaboration with Peter
Pickl and are in preparation for publication in a mathematical physics journal. The main
ideas of the proof go back to Peter’s suggestions.

C.1 Main result and outline of the proof

In this appendix, we prove that for any time t > 0 the empirical distribution ρ
(1)
N (t ) of the

stochastic many-particle process (the microscopic description, here referred to as “micro-
scopic system”) converges in probability to the mean-field distribution ρ (the macroscopic
description, here referred to as the “macroscopic system”) as the number of individuals
becomes large and if initial correlations are not too strong. The notion of the empirical
distribution ρ

(1)
N (t ) as the one-particle distribution function was introduced in appendix B.

In other words, the mean-field equation (1) captures exactly the collective dynamics of the
stochastic many-particle process of the quorum-sensing model as N →∞.

First, let us define the notion of closeness between the microscopic and the macroscopic
system, and formulate our main result. Since the empirical density ρ

(1)
N is a a sum of delta

functions (a histogram) while ρ is a continuous function, closeness of the two can only hold in
a weak sense. Consequently, we now introduce a weak notion of distance between functionals
(for example, ρ(1)N and ρ ) in (L∞)∗, which denotes the dual space of L∞ (the space of all
essentially bounded measurable functions). We then measure distances between probability
distributions with the bounded Lipschitz metric, which is based on the bounded Lipschitz
norm defined as follows. First, defining the Lipschitz norm of a function f ∈ C [0, 1] (the
space of all continuous functions on [0, 1]) as:

‖ f ‖L B sup
x,y∈[0,1]

| f (x) − f (y)|
|x − y | , (22)

the bounded Lipschitz norm of any functional g ∈ (L∞)∗ is given by:

‖g ‖BL B sup
‖ f ‖L=1; f (0)=0

����ˆ 1

0
dp f (p)g (p)

���� . (23)
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Note that (L∞)∗ can be identified with the space of all finitely additive finite signed measures.
Furthermore, any normalized g ∈ (L∞)∗ (such that

´ 1
0 dp g (p) = 1) can naturally be identified

with a probability distribution. For such a normalized g one may drop the boundary
condition f (0) = 0 in the definition (23) of the bounded Lipschitz norm. Note that:

‖g ‖BL ≤
����ˆ 1

0
dp p |g (p)|

���� ≤ ‖g ‖1 = ˆ 1

0
dp |g (p)| . (24)

The bounded Lipschitz metric measures the distance between two functionals g and ℎ ∈ (L∞)∗
as:

d(g, ℎ) B ‖g − ℎ‖BL = sup
‖ f ‖L=1; f (0)=0

����ˆ dp f (p)g (p) −
ˆ

dp f (p)ℎ(p)
���� . (25)

The convergence of the empirical density of the microscopic system ρ
(1)
N against the

solution ρ of the macroscopic mean-field equation (1) can at most hold in a probabilistic
sense: With very small probability, always the same individual might be reproduced in a single
realization of the stochastic process. Such a realization would lead to a big deviation from
the solution of the mean-field equation (1). However, the occurrence of such a trajectory
is improbable. To capture this intuition in mathematical terms, we define convergence in
probability as follows:

Definition 1. Let (νN )N be a sequence of probability densities and ν be a probability density. We
write:

νN
in prob
−−−−−→
N→∞

ν , if for any ε > 0 : lim
N→∞

P
(
d(νN , ν) > ε

)
= 0 . (26)

With this notion, the main result of this appendix is formulated as follows:

Theorem 1. Let ρ(1)N (t ) be the empirical one-particle probability distribution of the stochastic
many-particle process (the microscopic system) and ρ(t ) a solution of the mean-field equation (1)

(the macroscopic system). We assume for the initial distribution that ρ(1)N (0)
in prob
−−−−−→
N→∞

ρ(0). Then:

ρ
(1)
N (t )

in prob
−−−−−→
N→∞

ρ(t ) for any t > 0 . (27)

It is not surprising, that one of the crucial steps in proving our result exploits the law
of large numbers. However, controlling the propagation of errors, which build up upon
neglecting correlations of the individuals’ production degrees, with mathematical rigor is not
trivial. The skeleton of the proof is summarized in figure 5.

The key idea of our proof is to separate the law of large numbers argument from the
estimate of the error propagation by introducing an auxiliary stochastic mean-field process.
By virtue of this auxiliary process, individuals are created and annihilated in an explicitly
independent manner between consecutive update steps such that the temporal evolution of the
auxiliary process mimics the mean-field dynamics (1). The auxiliary process is characterized
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Microscopic description
Stochastic many-particle process, Figure 1

N→∞

��

ρ
(1)
N

Grönwall’s inequality

(Lemma 4)
// ηaux

N

Law of
large numbers
(Lemma 1)

��
Macroscopic description

Mean-field equation (1)
ρ ηauxContinuous time limit

(Lemma 7)
oo

Figure 5. Sketch of the main steps of the proof for the convergence of mean-field in
the quorum-sensing model. We prove that the microscopic description of the stochastic
many-particle process (see figure 1) converges to the macroscopic description of the quorum-
sensing model (given by the mean-field equation (1)) as N →∞. More precisely, we establish
that the empirical density of the microscopic process ρ(1)N converges in probability to the
macroscopic mean-field density ρ as N → ∞ if initial correlations are not too strong, see
theorem 1. The steps of the proof are summarized on the right hand side of the figure. The
central idea lies in the introduction of an auxiliary process, which mimics the time evolution
of the mean-field equation as a stochastic process and updates the production degrees of the
individuals in an independent manner between different update steps (“auxiliary stochastic
mean-field process” with probability density ηaux). This way, arguments involving the law
of large numbers can be separated from controlling the propagation of errors that build up
due to correlations of the individuals’ production degrees. Along all arrows, we show weak
convergence in probability (see definition 1). The central argument and the lemma, in which
the respective convergence is proven, are written next to the according arrows. Empirical
densities ( ρ(1)N and ηaux

N ) are denoted by the subscript N while average densities ( ρ and ηaux)
do not carry a subscript.

by the average density ηaux, and a single realization of the auxiliary process is denoted as ηaux
N

(the empirical distribution of the auxiliary process). Note that we denote empirical densities
( ρ(1)N and ηaux

N ) by the subscript N , whereas average densities ( ρ and ηaux) do not depend on
the system size.

The idea of an auxiliary stochastic mean-field process with independent birth and death
between consecutive update steps may seem paradox because the annihilation of an individual
in the microscopic, stochastic process always depends upon the actual state of the population:
an individual with degree p can only be annihilated if it is existing. Thus, for the realization
of the auxiliary process, we count an individual with a positive mass +1 at a birth event
and an individual with a negative mass −1 at a death event. In other words, instead of
creating/annihilating an individual, an individual with a positive/negative mass is created.
The auxiliary process is implemented in such a way that we do not lose independence between
consecutive update steps, see definition 8. As a consequence, the convergence of the empirical
distribution of the auxiliary process ηaux

N to the average density ηaux as N →∞ is controlled
with a standard law of large numbers argument (see lemma 1).
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The propagation of errors for the convergence of the microscopic process ( ρ(1)N ) to the
empirical auxiliary process (ηaux

N ) is then controlled by Grönwall’s inequality (see lemma 4).
Grönwall’s inequality was also applied for for the convergence of the average auxiliary process
(ηaux) to the mean-field density ρ (see lemma 7; the law of large numbers was also implicitly
applied).

Most of the following sections do not include the “real” time t as a variable: the mi-
croscopic system, the empirical auxiliary system, and the average auxiliary system are syn-
chronized in time. That is, we use k = 0, 1, 2, . . . as a variable to count the ordinal number
of creation/annihilation steps of the various processes. In other words, k labels the update
steps. Since the time intervals between two creation/annihilation processes are distributed
independently, the discrete label k is approximately a function of the continuous time t . Only
when we compare the macroscopic system ( ρ ) and the auxiliary system (ηaux) is the time
variable recovered, and convergence is controlled by a law of large numbers argument (see
lemma 7).

Remark 1. The basic idea of the proof is to estimate the expectation value of the distance
d(ρ(1)N (t ), ρ(t )) as follows:

E
(
d(ρ(1)N (t ), ρ(t ))

)
≤ Const (t ) ·

(
E

(
d(ηauxN ,0, ρ0)

)
+ N −1/4

)
, (28)

with some constant 0 < Const < ∞ for any chosen time t > 0.
Applying Markov’s inequality then establishes an error estimate of the convergence for any

t > 0:

P
(
d(ρ(1)N (t ), ρ(t )) > εN

)
≤
E

(
d(ρ(1)N (t ), ρ(t ))

)
εN

≤ Const (t )
εN

·
(
E

(
d(ηauxN ,0, ρ0)

)
+ N −1/4

)
.

(29)

This estimate gives a quantitative control of the propagation of errors with respect to the population
size N . For example, if initial correlations vanish with N as E

(
d(ηauxN ,0, ρ0)

)
< Const · N −1/8,

the choice εN = N −1/8 yields the estimate:

P
(
d(ρ(1)N (t ), ρ(t )) > N −1/8

)
≤ Const (t ) · N −1/8 . (30)

This statement quantifies our intuitive reasoning from above. Realizations of the stochastic
many-particle process whose one-particle distribution deviate significantly (d(ρ(1)N (t ), ρ(t )) >
N −1/8) from the solution of the mean-field equation (1) do occur, as is actually seen in numerical
simulations of the quorum-sensing model. However, the probability P of such an occurrence is
bounded from above by P ≤ Const (t ) · N −1/8. Pictorially speaking, as the population size N
grows, such occurrences become less and less likely and the magnitude of such deviations becomes
smaller and smaller.
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C.2 The auxiliary stochastic mean-field process — the central idea of
the proof

C.2.1 The microscopic process revisited

Before the auxiliary stochastic mean-field process is defined in definition 8, let us first revisit
the set-up of the microscopic process. In the following, we give an alternative formulation of
the stochastic many-particle process that is suitable for our mathematical proof.

As described above, individual i reproduces at rate φi (equation (4)) that depends both on
the individual’s production degree pi and the average production level in the whole population
〈p〉. The time taken until the next reproduction event of individual i occurs is exponentially
distributed with mean φi . In other words, the waiting time is drawn from the probability
density φie−φi t .

For our purposes it is useful to reformulate the stochastic process in the spirit of Gillespie’s
stochastic kinetic Monte Carlo method [96, 97]. Instead of randomly choosing a time of
reproduction for every individual independently, one can choose the time steps at which some
individual of the population is reproduced randomly and, in a second step, define another
random variable that selects which of the individuals reproduces. This reformulation does not
change the dynamics of the microscopic, stochastic many-particle process.

For this reformulation, let τ0 = 0 and τk with k = 1, 2, . . . be the time at which for the
kth time the configuration of the population is updated (the kth update step), that is, for the
kth time an individual is created (and another individual is annihilated at the same time). The
total rate of creating any individual is given by the sum of the fitnesses of all individuals:∑N

i=1 φi = N 〈φ〉 = N (1 + s(b − c)〈p〉). It follows that all time differences ∆τk+1 = τk+1 − τk
are exponentially distributed with mean µk . Because the configuration is updated at every
time τk , also the fitness and, thus, the parameter µk depend on the update step k. Writing
〈p〉k for the average production degree at time τk (that is 〈p〉k = 1

N
∑N

i=1 pi(τk)), it follows
that µk = N (1 + s(b − c)〈p〉k) = N 〈φ〉k .

Definition 2. Let ∆τk+1 be the random variable for the length of the time interval between the
kth and (k + 1)th update step of the stochastic many-particle process of the quorum-sensing model,
that is 〈∆τk+1〉 B 1/µk = N −1

(
1 + s(b − c)〈p〉k

)−1. We define τk B
∑k−1

l=1 ∆τl as the update
times and 〈τk〉 B

∑k−1
l=1 〈∆τl 〉 as their according average. Furthermore, we define M (t ) to be the

maximal natural number such that 〈τM (t )〉 ≤ t , and κ(t ) as the random variable given by the
maximal number such that τκ(t ) ≤ t . Note that, due to the definition of the fitness, the number
of update steps up to time t scales linearly with N on average, that is M (t ) ∼ O(N ) such that
〈τM (t )〉 ∼ O(N 0).

Having defined the update times τk for k ≥ 1, we next define the random variables that
select two new individuals with production degree pmicro,+

N+2k−1 and pmicro,+
N+2k for creation, and two

new individuals with production degree pmicro,−
2k−1 and pmicro,−

2k for annihilation at time τk . The
random variables pmicro,+

N+2k−1, p
micro,+
N+2k , pmicro,−

2k−1 , and pmicro,−
2k map from some probability space

Ωk onto the interval [0, 1] at update step k for all k. Before we define this probability space,
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we first define the distribution of production degrees that we consider in the microscopic
system.

The description of the microscopic system begins with a set of N individuals and their
according production degrees pmicro,+

1 , . . . , pmicro,+
N . The sequence of production degrees that

were initially present and that have been created until time τk are denoted as Pmicro,+
k B

(pmicro,+
1 , . . . , pmicro,+

N , pmicro,+
N+1 , . . . , pmicro,+

N+2k ); the sequence of production degrees that have been
annihilated until τk is denoted as Pmicro,−

k B (pmicro,−
1 , . . . , pmicro,−

2k ).

Definition 3. For any pair of sequences Pmicro,+
k , Pmicro,−

k , the empirical one-particle distribution
of the microscopic process after k update steps is given by:

ρ
(1)
N ,k(p) = ρ

(1)
N (p; P

micro,+
k , Pmicro,−

k ) B 1
N

©«
N+2k∑
j=1

δ(p − pmicro,+
j ) −

2k∑
j=1

δ(p − pmicro,−
j )ª®¬ . (31)

Note that ρ(1)N ,k is positive and fulfils
´

dp ρ(1)N ,k = 1 for all update steps k. Thus, ρ(1)N ,k is a
probability distribution for all k. Note also that only existing particles may be annihilated in
the microscopic process. On the other hand, in the auxiliary process (see definition 8 below),
individuals may be created with a negative mass at any production degree according to the
present distribution of particles. Therefore, the creation and annihilation of individuals at
a certain production degree is independent of the previous existence of individuals at that
production degree. This way, positivity of the empirical density (ηaux

N ) is lost for the auxiliary
process, but the normalization is still valid.

For easier comparison of the random variables pmicro,+ and pmicro,− of the microscopic
model with the yet to be defined random variables of the auxiliary model (see definition 8
below), it is convenient to assume a constant probability density on Ωk and choose the maps
pmicro,+ and pmicro,− in such a way that the creation and annihilation probabilities coincide
with those of the microscopic process.

To sample a random variable from an arbitrary probability density ν , we use the following
definition:

Definition 4. For any probability density ν ∈ (L∞)?, we define the random variable X ν , with
[0, 1] → X ν , through the so-called quantile function:

X ν (ω) B inf
{
x :
ˆ x

0
dp ν(p) > ω

}
. (32)

Note that, because distribution functions are continuous from the right, the infimum is in fact a
minimum. Thus, the random variable X ν (ω), with ω being uniformly distributed on [0, 1], is the
inverse function to the cumulative distribution function of ν that is given by x 7→

´ x
0 dp ν(p); see

also figure 6 (upper part) for an illustration.

Following this definition, the random variable X ν (ω), withω being uniformly distributed
on [0, 1], has probability density ν . For a given probability density ν , we also define the
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reproduction density that accounts for how production degrees change at an update step of
the stochastic many-particle process defined by the quorum-sensing model.

Definition 5. For any probability density ν : [0, 1] → R+0 , let Φ(ν) be the reproduction density
of the quorum-sensing model, that is the probability density given by:

Φ(ν)(p) B 2λδ
(
p − R(〈p〉ν )

)
+ (1 − 2λ)

1 + s
(
b 〈p〉ν − c p

)
1 + s(b − c)〈p〉ν

ν(p) , (33)

where we abbreviated the mean of ν as 〈p〉ν =
´ 1
0 dp p ν(p).

The reproduction density consists of two parts: (i) response to the average by increasing
probability mass at the production degree R(〈p〉ν ) with prefactor 2λ and (ii) reproduction
according to relative fitness differences φ(p)/φ(p) · ν(p) with prefactor (1 − 2λ). The form
of the reproduction density is chosen such that the temporal evolution of the one-particle
density at discrete time steps can be recovered as we explain further below.

With these definitions, the microscopic, stochastic many-particle process can be reformu-
lated as follows.

Definition 6. Let the sample space Ω be given by the sequence Ω B (Ω1,Ω2, . . .) where the
individual sample spacesΩk at update step k are given byΩk = (Ωk

1,Ω
k
2,Ω

k
3,Ω

k
4 )withΩ

k
1 = Ω

k
2 =

[0, 1] and Ωk
3 = Ω

k
4 = {0, 1}. We assume that all of the Ωk

j are independent (both in the indeces j
and k), that ωk

1 and ωk
2 are uniformly distributed on [0, 1], and that P(ωk

3 = 0) = P(ωk
4 = 0) = λ.

We use this sample space to formulate now the microscopic process of the quorum-sensing
model. In the kth update step ωk

1 and ωk
2 determine the two individuals that are subsequently

annihilated (with production degrees pmicro,−
2k−1 and pmicro,−

2k ), and ωk
3 and ωk

4 determine the
production degrees of the two created individuals (pmicro,+

N+2k−1 and pmicro,+
N+2k ). If ωk

3/4 = 0, then
the first/second newly created individual attains the production degree given by the value
R(〈p〉ν ); if ωk

3/4 = 1 then the first/second newly created individual takes over the production

degree of the first annihilated individual, that is, it attains the production degree pmicro,−
2k−1 ;

compare with figure 1. Using this sample space and definition 4, the microscopic system of the
quorum-sensing model can be reformulated as follows to reproduce the correct distribution
of the individuals’ production degrees:

Definition 7. Let pmicro,+
j be the initial production degree of the j th individual for 1 ≤ j ≤ N .

The random variables pmicro,+
N+2k and pmicro,+

N+2k−1 denote the values of the production degrees of the two
individuals that are created in the kth update step, and the random variables pmicro,−

2k−1 and pmicro,−
2k

denote the values of the production degrees of the two individuals that are annihilated in the kth
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update step. These random variables are given by:

pmicro,−
2k−1 (ω

k) B XΦ(ρ
(1)
N ,k−1)(ωk

1 ) , (34)

pmicro,−
2k (ωk) B X ρ

(1)
N ,k−1−δ(p−p

micro,−
2k−1 (ω

k
1 ))(ωk

2 ) , (35)

pmicro,+
N+2k−1(ω

k) B pmicro,−
2k−1 ωk

3 + R(〈p〉
ρ
(1)
N ,k−1
)(1 − ωk

3 ) , (36)

pmicro,+
N+2k (ω

k) B pmicro,−
2k−1 ωk

4 + R(〈p〉
ρ
(1)
N ,k−1
)(1 − ωk

4 ) . (37)

Let Pmicro,+
k B (pmicro,+

1 , pmicro,+
2 , . . . , pmicro,+

N , . . . , pmicro,+
N+2k ) and P

micro,−
k B (pmicro,−

1 , pmicro,−
2 , . . . , pmicro,−

2k ).
Together with definition 3, the empirical density of the microscopic system after k = 1, 2, . . . update
steps follows as:

ρ
(1)
N ,k(p) = ρ

(1)
N (p; P

micro,+
k , Pmicro,−

k ) . (38)

Note that the values of the random variables at the update step k depend upon the
probability distribution of production degrees at the update step k − 1. The definition above
assures that only individuals present at τk−1 can be chosen for annihilation and, thus, to
inherit their production degree pmicro,−

2k−1 . It follows by induction that ρ(1)N ,k is in fact positive
for all update steps k, as claimed above.

Note that ρ(1)N (t ) denotes the empirical probability density at time t , and ρ
(1)
N ,k denotes

the empirical probability density after k update steps of the coupled creation-annihilation
(birth-death) process. Thus, with definition 2, it follows that ρ(1)N (t ) = ρ

(1)
N ,κ(t ).

C.2.2 Definition of the auxiliary stochastic mean-field process

We now define the auxiliary stochastic mean-field process. Heuristically speaking, the
temporal evolution of the production degrees of the population in the auxiliary process mimic
the mean-field dynamics evaluated at time τk . The central idea of the proof for the convergence
of mean-field is to construct the auxiliary process in such a way that the production degrees of
the individuals at one update step are created with positive and negative masses independently
of the realization of the previous update step (in contrast to the microscopic process). At one
update step two particles of positive mass and two particles of negative mass will be created.
However, their production degrees are correlated in general. Important for our purpose is the
independence between consecutive update steps. The respective random variables are given
by paux,+

N+2k−1 and paux,+
N+2k for the production degrees of the created individuals, and paux,−

2k−1 and
paux,−
2k denote the production degrees of the annihilated individuals at the kth update step of

the auxiliary process.
In mathematical terms, a realization of the auxiliary process proceeds as follows:



132 Ecological feedback in quorum-sensing microbial populations

Definition 8. The average density of the auxiliary system at the (k + 1)th update step follows from
the average density at update step k as:

ηauxk+1 = η
aux
k −

1
N
ηauxk +

1
N
Φ(ηauxk ) , (39)

and mimics the temporal evolution of the mean-field equation (1) at discretized time steps. The
initial distribution of production degrees in the population for the auxiliary process is given by
ηaux0 = ρ0. Importantly, the update of ηaux is independent of the realization of the auxiliary process
at the previous update step, whereas in the microscopic process the time evolution depends upon the
realization of the stochastic process.

In a realization of the auxiliary stochastic mean-field process at the update step k, individuals
with negative and positive masses are created independent from the production degrees of the
individuals present at update step k − 1. The respective random variables describing the values of
the production degrees created and annihilated at the kth update step are given by (two individuals
are created and two individuals are annihilated per update step):

paux,−2k−1 (ω
k) B XΦ(η

aux
k )(ωk

1 ) , (40)

paux,−2k (ωk) B X ηauxk (ωk
2 ) , (41)

paux,+N+2k−1(ω
k) B paux,−2k−1ω

k
3 + R(〈p〉ηauxk

)(1 − ωk
3 ) , (42)

paux,+N+2k(ω
k) B paux,−2k−1ω

k
4 + R(〈p〉ηauxk

)(1 − ωk
4 ) . (43)

The values of paux,+N+2k−1 and paux,+N+2k depend on paux,−2k and indirectly also on each other. This
dependence, however, is not problematic for our proof because independence holds still true for the
vast majority of the individuals’ production degrees.
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C.3 Proof of the theorem for the convergence to mean-field

C.3.1 Convergence of the auxiliary process
(
ηaux
N ,K

in prob
−−−−−→
N→∞

ηaux
K

)
– Law of large

numbers argument

Because individuals are created and annihilated in an independent manner between consecutive
update steps in the auxiliary process, one expects that the empirical distribution function
ηaux
N ,k converges to the average density ηaux

k of the auxiliary process as N →∞. Here we show

that indeed ηaux
N ,k

in prob
−−−−−→
N→∞

ηaux
k . More precisely, we have lemma 1.

Lemma 1. One finds a constant 0 < Const < ∞ such that for a given update step K the expected
difference between a single realization of the auxiliary process (ηauxN ,K ) and the average density (η

aux
K )

is estimated as:

E
(
d(ηauxN ,K , η

aux
K )

)
≤ Const · K

3/4

N
+ E

(
d(ηauxN ,0, η

aux
0 )

)
. (44)

Proof. Note, that we are dealing with the auxiliary process and, thus, have independence of
the random variables for the created and annihilated production degrees between consecutive
update steps. The proof of the lemma is based on a law of large numbers argument. Such an
argument is standard, of course. However since the proof of the lemma is short and we deal
with a special notion of the bounded Lipschitz distance d(·, ·) ( in equation (23)) we provide it
in the following.

We first split the interval [0, 1] into n pieces I j B [ j−1n ,
j
n ] with 1 ≤ j ≤ n. Later on, n is

chosen as a function of the total number of update steps K . The definition of d(·, ·) involves
taking a supremum. Taking the supremum does not commute with taking the expectation
value. Therefore, we first estimate the distance d(ηaux

N ,K , η
aux
K ) of the empirical density ηaux

N ,K
from the average density ηaux

K and take the expectation value later. This distance is given as:

d(ηaux
N ,K , η

aux
K ) = ‖η

aux
N ,K − η

aux
K ‖BL , (45)

= sup
‖ f ‖L=1

����ˆ 1

0
dp f (p)ηaux

N ,K (p) −
ˆ 1

0
dp f (p)ηaux

K (p)
���� . (46)

We now make use of the Lipschitz continuity of f on every interval I j , that is:

f (p) ≤
���� f (

j − 1
n

)���� + ���� j − 1
n
− p

���� , (47)

because ‖ f ‖L = 1 on every interval I j .
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Therefore, one estimates:

d(ηaux
N ,K , η

aux
K )

≤
n∑
j=1

sup
‖ f ‖L=1

�����ˆI j dp f (p)
(
ηaux
N ,K (p) − η

aux
N ,0(p) − η

aux
K (p) + η

aux
0 (p)

)�����
+ d(ηaux

N ,0, η
aux
0 ) , (48)

≤
n∑
j=1

ˆ
I j

dp
���� f (

j − 1
n

)���� ���ηaux
N ,K (p) − η

aux
N ,0(p) − η

aux
K (p) + η

aux
0 (p)

���
+

n∑
j=1

ˆ
I j

dp
���� j − 1

n
− p

���� ���ηaux
N ,K (p) − η

aux
N ,0(p) − η

aux
K (p) + η

aux
0 (p)

���
+ d(ηaux

N ,0, η
aux
0 ) , (49)

≤ Const ·
(
1 +

1
n

) n∑
j=1

ˆ
I j

dp
���ηaux

N ,K (p) − η
aux
N ,0(p) − η

aux
K (p) + η

aux
0 (p)

���
+ d(ηaux

N ,0, η
aux
0 ) . (50)

It follows that:

E(d(ηaux
N ,K , η

aux
K )) ≤ Const ·

(
1 +

1
n

) n∑
j=1
E

(ˆ
I j

dp
���(ηaux

N ,K (p) − η
aux
N ,0(p) − η

aux
K (p) + η

aux
0 (p))

���)
+ E

(
d(ηaux

N ,0, η
aux
0 )

)
. (51)

For each interval I j we now give a law of large numbers argument. We define the random
variable Y j,+

k,1 that takes value 1 if the individual N + 2k − 1 with a positive mass is sampled
inside the interval I j in the kth update step, and that takes value 0 otherwise. Accordingly,
the random variable Y j,+

k,2 takes value 1 if individual N + 2k is sampled inside the interval I j .

Furthermore, the random variables Y j,−
k,1/2 indicate whether an individual is created with a
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negative mass in the interval I j at the kth update step:

Y j,−
k,1 (ω

k) B
{
1 if paux,−

2k−1 (ω
k) ∈ I j , that is, if XΦ(η

aux
k )(ωk

1 ) ∈ I j ,
0 else ;

(52)

Y j,−
k,2 (ω

k) B
{
1 if paux,−

2k (ωk) ∈ I j , that is, if X ηaux
k (ωk

2 ) ∈ I j ,
0 else ;

(53)

Y j,+
k,1 (ω

k) B
{
1 if paux,+

N+2k−1(ω
k) ∈ I j ,

0 else ;
(54)

Y j,+
k,2 (ω

k) B
{
1 if paux,+

N+2k(ω
k) ∈ I j ,

0 else .
(55)

By definition 8 of the auxiliary process, the Y j,±
k are independent for different values of k,

that is consecutive updates with birth and death are independent. Therefore, the difference
between positive and negative masses in the interval I j after K update steps in one realization
of the auxiliary process is obtained as:

K∑
k=1

(
Y j,+
k,1 (ω

k) +Y j,+
k,2 (ω

k) −Y j,−
k,1 (ω

k) −Y j,−
k,2 (ω

k)
)
= N

ˆ
I j

dp
(
ηaux
N ,K (p) − η

aux
N ,0(p)

)
. (56)

By the definition of the average probability distribution ηaux of the auxiliary process, it is:

E

( K∑
k=1

(
Y j,+
k,1 (ω

k) +Y j,+
k,1 (ω

k) −Y j,−
k,1 (ω

k) −Y j,−
k,1 (ω

k)
))
= N

ˆ
I j

dp
(
ηaux
K (p) − η

aux
0 (p)

)
.

(57)

Using independence between the different update steps, we have a law of large numbers
argument for every interval I j and every sequence of random variables,

(Zk)k∈{1,...,K } ∈
{(
Y j,+
k,1

)
k∈{1,...,K }

,
(
Y j,+
k,2

)
k∈{1,...,K }

,
(
Y j,−
k,1

)
k∈{1,...,K }

,
(
Y j,−
k,2

)
k∈{1,...,K }

}
, (58)

as follows:

E

(����� 1
N

K∑
k=1

Zk − E
(

1
N

K∑
k=1

Zk

)�����
)
≤

(
Var

(
1
N

K∑
k=1

Zk

))1/2

≤ 1
N
√
K

1
2
. (59)

The last estimate exploits the independence of random variables between consecutive steps
of the sampling process, and the boundedness of the variance with Var(Y j,±

k,1/2) ≤ 1/4 for all
k = 1, . . . ,K .
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Using triangle inequality and linearity of the expectation value we obtain:

E

(����� 1
N

K∑
k=1

(
Y j,+
k,1 +Y

j,+
k,2 −Y

j,−
k,1 −Y

j,−
k,2

)
− E

(
1
N

K∑
k=1

(
Y j,+
k,1 +Y

j,+
k,2 −Y

j,−
k,1 −Y

j,−
k,2

))�����
)
≤ 2
√
K

N
.

(60)

Therefore, we obtain with equation (51):

E
(
d(ηaux

N ,K , η
aux
K )

)
≤ Const ·

(
1 +

1
n

) n∑
j=1

2
√
K

N
+ E

(
d(ηaux

N ,0, η
aux
0 )

)
. (61)

Choosing n = K 1/4 yields the estimate:

E
(
d(ηaux

N ,K , η
aux
K )

)
≤ Const · K

3/4

N
+ E

(
d(ηaux

N ,0, η
aux
0 )

)
, (62)

which proves the lemma. �

C.3.2 Convergence of the microscopic to the auxiliary process
(
ρ
(1)
N ,K

in prob
−−−−−→
N→∞

ηaux
N ,K

)
– Control of error propagation with Grönwall’s inequality

We now show that the propagation of errors, which build up over time due to the correlation
of production degrees, can be controlled with Grönwall’s inequality. In other words, the
empirical density of the microscopic process ρ(1)N ,K converges to the empirical density of the
auxiliary process ηaux

N ,K , as N →∞ for any finite update step K , see lemma 4.

Lemma 2. Let ν ∈ (L∞)? and ψ ∈ (L∞)? be two one-particle probability densities, f some
globally Lipschitz continuous function on [0, 1]. Then:��〈 f 〉ν − 〈 f 〉ψ �� ≤ ‖ f ‖Ld(ν, ψ) . (63)

Here 〈·〉ν and 〈·〉ψ means averaging with respect to ν and ψ, respectively, and ‖ f ‖L is the global
Lipschitz constant of f .

Proof. Plugging in the definitions, one obtains:��〈 f 〉ν − 〈 f 〉ψ �� = ����ˆ 1

0
dp f (p)

(
ν(p) − ψ(p)

) ���� , (64)

= ‖ f ‖L
����ˆ 1

0
dp

f (p)
‖ f ‖L

(
ν(p) − ψ(p)

) ���� . (65)

Since
 f (p)
‖ f ‖L


L
= 1 we can use it to test the supremum in the definition of the bounded

Lipschitz distance d(·, ·) and obtain that the right hand side of the last equation is indeed
bounded by ‖ f ‖Ld(ν, ψ). �
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Lemma 3. Let ν ∈ (L∞)? and ψ ∈ (L∞)? be two one particle probability densities. Then:

E(|X ν − Xψ |) ≤ d(ν, ψ) , (66)

see definition 4 of the quantile function X ν and Xψ .

Proof. Laisant’s formula for inverse functions states that for any invertible function g , it is:

ˆ b

a
dy g−1(y) +

ˆ d

c
dx g (x) = bd − ac . (67)

Applying Laisant’s formula to the random variables X ν and Xψ , it follows that:

E
(��X ν − Xψ

��) = ˆ 1

0
dω

��X ν (ω) − Xψ(ω)
�� = ˆ 1

0
dp

����ˆ p

0
dy (ν(y) − ψ(y))

���� , (68)

see figure 6(A) for a sketch.

A

B

Figure 6. (A) Illustration of the application of Laisant’s formula to the expected difference
of two random variables, see equation (68). The expected difference of the two random
variables X ν and Xψ is obtained as the area enclosed by the two curves X ν (ω) and Xψ(ω)
for ω ∈ [0, 1]. Thus, the area is given by

´ 1
0 dω

��X ν (ω) − Xψ(ω)
��. On the other hand, the

area between the two curves can be computed from the inverse functions to X ν and Xψ ,
which are the cumulative distribution functions F ν (p) =

´ p
0 dy ν(y) and F ψ(p) =

´ p
0 dy ψ(y),

respectively, see definition 4. Therefore, the area is also given by
´ 1
0 dp

��F ν (p) − F ψ(p)
��. The

rigorous argument follows with Laisant’s formula. (B) Definition of the function ℎ that is
used to estimate d(ν, ψ). ℎ ′(x) = 1 if F ν (p) > F ψ(p) and ℎ ′(x) = −1 if F ν (p) < F ψ(p), and
thus ‖ℎ‖L ≤ 1.
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Now, let ℎ : [0, 1] → R be given by ℎ(x) B
´ x
0 dp sgn

(´ p
0 dy ν(y) − ψ(y)

)
(here sgn

is the signum function), that is ℎ ′(x) = 1 if
´ p
0 dy ν(y) >

´ p
0 dy ψ(y) and ℎ ′(x) = −1 if´ p

0 dy ν(y) <
´ p
0 dy ψ(y), see figure 6(B) for a sketch. In particular, it is ‖ℎ‖L ≤ 1. Therefore,

one may use ℎ to estimate the supremum in the definition of the bounded Lipschitz metric
d(·, ·) as:

d(ν, ψ) ≥
ˆ 1

0
dp ℎ(p)(ν(p) − ψ(p)) . (69)

Integration by parts yields:

d(ν, ψ) ≥
ˆ 1

0
dp ℎ ′(p)

ˆ p

0
dy (ν(y) − ψ(y)) , (70)

=

ˆ 1

0
dp

����ˆ p

0
dy (ν(y) − ψ(y))

���� . (71)

Since both ν and ψ are normalized to 1, the boundary termsarising in the integration by parts
above vanish.

Together with equation (68) from above, one obtains the estimate of the lemma:

E(|X ν − Xψ |) ≤ d(ν, ψ) . (72)

�

Lemma 4. There exists a constant 0 < Const < ∞ such that for a given update step K one
estimates: ���E (

d(ρ(1)N ,K , η
aux
N ,K )

)��� ≤ eConst · KN
(
E

(
d(ρ(1)N ,0, η

aux
N ,0)

)
+

K 3/4

N

)
. (73)

Proof. The proof of the lemma is based on a discrete Grönwall’s inequality.
We first estimate how the distance between a realization of the microscopic process ( ρ(1)N ,k )

and a realization of the auxiliary process (ηaux
N ,k ) propagates from at a certain update step k to

step k + 1. This distance measures the error that occurs upon neglecting correlations of the
individuals’ production degrees. This error propagates on average from one update step k to
the next update step k + 1 as follows:���E (

d(ρ(1)N ,k+1, η
aux
N ,k+1)

)
− E

(
d(ρ(1)N ,k, η

aux
N ,k)

)��� ≤ Const
N
E

(����X ρ
(1)
N ,k − X ηaux

k

����) . (74)
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To see this estimate, we write:

d(ρ(1)N ,k+1, η
aux
N ,k+1)

= sup
‖ f ‖L=1

����ˆ 1

0
dp f (p)ρ(1)N ,k+1(p) −

ˆ 1

0
dp f (p)ηaux

N ,k+1(p)
���� , (75)

≤ sup
‖ f ‖L=1

����ˆ 1

0
dp f (p)

(
ρ
(1)
N ,k(p) − η

aux
N ,k(p)

)���� (76)

+
Const
N

sup
‖ f ‖L=1

ˆ 1

0
dp f (p)

ˆ 1

0
dωk+1 ��“realization (micro)” − “realization (aux)”

�� .
The latter estimate follows because the distance of the densities between consecutive update
steps involves the change of at most four production degrees in the population and, thus, a
change of probability mass of order O(1/N ) from ρ

(1)
N ,k to ρ

(1)
N ,k+1 and from ηaux

N ,k to ηaux
N ,k+1.

We further estimate:

d(ρ(1)N ,k+1, η
aux
N ,k+1)

≤ d(ρ(1)N ,k, η
aux
N ,k)

+
Const
N

sup
‖ f ‖L=1

ˆ 1

0
dp f (p)

ˆ 1

0
dωk+1

����X ρ
(1)
N ,k (ωk+1

1 ) − XΦ(η
aux
k+1)(ωk+1

1 )
����

+
Const
N

sup
‖ f ‖L=1

ˆ 1

0
dp f (p)

ˆ 1

0
dωk+1

����X ρ
(1)
N ,k−δ(p−p

micro,−
2k+1 (ω

k+1
1 ))(ωk+1

2 ) − X ηaux
k+1(ωk+1

2 )
����

+
Const
N

sup
‖ f ‖L=1

ˆ 1

0
dp f (p)

ˆ 1

0
dωk+1

����ωk+1
3

(
X ρ

(1)
N ,k (ωk+1

1 ) − XΦ(η
aux
k+1)(ωk+1

1 )
)

+ (1 − ωk+1
3 )

(
R(〈p〉

ρ
(1)
N ,k
) − R(〈p〉ηaux

k+1
)
)����

+
Const
N

sup
‖ f ‖L=1

ˆ 1

0
dp f (p)

ˆ 1

0
dωk+1

����ωk+1
4

(
X ρ

(1)
N ,k (ωk+1

1 ) − XΦ(η
aux
k+1)(ωk+1

1 )
)

+ (1 − ωk+1
4 )

(
R(〈p〉

ρ
(1)
N ,k
) − R(〈p〉ηaux

k+1
)
)���� .
(77)
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This estimate can be further summarized and estimated as follows:

d(ρ(1)N ,k+1, η
aux
N ,k+1)

≤ d(ρ(1)N ,k, η
aux
N ,k) +

Const
N
E

(����X ρ
(1)
N ,k − X ηaux

k+1

����) + Const
N
E

(����R(〈p〉ρ(1)N ,k ) − R(〈p〉ηaux
k+1
)
����) ,

(78)

≤ d(ρ(1)N ,k, η
aux
N ,k) +

Const
N
E

(����X ρ
(1)
N ,k − X ηaux

k

����) . (79)

The last estimate follows with the triangle inequality, the definition of the average auxiliary
density (8), and lemma 3. By applying lemma 2 to the last line above, estimate (74) follows.

We now determine how the growth of the average error from update step k to k + 1
depends upon the error at step k. By applying lemma 3 to the estimate (74), which involves
the average density of the auxiliary process and not the empirical density, one obtains (also
note the different meanings of the expectation values taken above and below):���E (

d(ρ(1)N ,k+1, η
aux
N ,k+1)

)
− E

(
d(ρ(1)N ,k, η

aux
N ,k)

)���
≤ Const

N
E

(
d(ρ(1)N ,k, η

aux
k )

)
, (80)

≤ Const
N
E

(
d(ρ(1)N ,k, η

aux
N ,k)

)
+
Const
N
E

(
d(ηaux

N ,k, η
aux
k )

)
, (81)

≤ Const
N
E

(
d(ρ(1)N ,k, η

aux
N ,k)

)
+
Const
N

(
k3/4

N
+ E

(
d(ηaux

N ,0, η
aux
0 )

))
. (82)

The estimate in the first line above follows with the triangle inequality, and the second
estimate follows with the law of large numbers argument from lemma 1. Essentially, the
growth of the average error from update step k to k + 1 can be attributed to the following
sources: (i) propagation of errors from update step k, ( ii) creation of “new” errors at the
update step k + 1 because of the law of large numbers, and (iii) propagation of initial errors.

From the growth of errors between two consecutive update steps, the growth of errors
for any given finite number of update steps K can be controlled with Grönwall’s inequality
as we show next. Grönwall’s inequality for differentiable functions u states that if u ′(t ) is
bounded by u ′(t ) ≤ αu(t ) + αβ with α, β ∈ R, then it follows that u(t ) is bounded by the
solution of the differential equation given of the right-hand side (u ′(t ) = αu(t ) + αβ ) as
u(t ) ≤ u(0)eαt + β(eαt −1). In the spirit of a discrete version of Grönwall’s inequality applied
to the estimate (82), one finds a constant 0 < Const < ∞ such that for a given update step K :���E (

d(ρ(1)N ,K , η
aux
N ,K )

)��� ≤ eConst · KN
(
E

(
d(ρ(1)N ,0, η

aux
N ,0)

)
+

K 3/4

N

)
, (83)

which concludes the proof of lemma 4. �
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C.3.3 Convergence of the macroscopic to the auxiliary process
(
ηaux
κ(t )

in prob
−−−−−→
N→∞

ρt
)

–

Continuous time limit and control of time synchronization

We now show that the mean-field density of the macroscopic process ( ρt ) converges in
probability to the average density of the auxiliary process (ηaux

κ(t )) as N →∞, see lemma 7.

Definition 9. Let ν ∈ (L∞)? be a time-dependent density function. We define the time evolution
operator:

Tt (ν) B
ˆ t

0
dt ′

[
2λ(1 + s(b − c)〈p〉νt′ )

(
δ(p − R(〈p〉νt′ )) − ν(p, t

′)
)

+ (1 − 2λ)sc
(
〈p〉νt′ − p

)
ν(p, t ′)

]
, (84)

with 〈p〉νt′ =
´ 1
0 dp p ν(p, t ′).

With this definition, the time evolution of the production distribution, that is, the
probability density of the macroscopic process, is given by (see definition (4) of the fitness
and the mean-field equation (1)):

ρ(p, t ) = Tt (ρ)(p) + ρ0(p) . (85)

Lemma 5. Let ν ∈ (L∞)? and ψ ∈ (L∞)? be one-particle probability densities. Then:

d (Tt (ν),Tt (ψ)) ≤ Const ·
ˆ t

0
dt ′ d(νt ′, ψt ′) . (86)

Proof. First, we rewrite d (Tt (ν),Tt (ψ)) as follows:

d (Tt (ν),Tt (ψ)) = ‖Tt (ν) − Tt (ψ)‖BL (87)

=
 ˆ t

0
dt ′

[
2λ(1 + s(b − c)〈p〉νt′ )

(
δ(p − R(〈p〉νt′ ) − ν(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉νt′ − p

)
ν(p, t ′)

− 2λ(1 + s(b − c)〈p〉ψt′ )
(
δ(p − R(〈p〉ψt′ ) − ψ(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉ψt′ − p

)
ψ(p, t ′)

]
BL ,

(88)

=
 ˆ t

0
dt ′

[
2λ(1 + s(b − c)〈p〉νt′ )

(
δ(p − R(〈p〉νt′ ) − ν(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉νt′ − p

)
ν(p, t ′)

− 2λ(1 + s(b − c)〈p〉ψt′ )
(
δ(p − R(〈p〉ψt′ ) − ψ(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉ψt′ − p

)
ψ(p, t ′)

+ 2λ(1 + s(b − c)〈p〉νt′ )
(
δ(p − R(〈p〉νt′ ) − ψ(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉νt′ − p

)
ψ(p, t ′)

− 2λ(1 + s(b − c)〈p〉νt′ )
(
δ(p − R(〈p〉νt′ ) − ψ(p, t

′)
)
+ (1 − 2λ)sc

(
〈p〉νt′ − p

)
ψ(p, t ′)

]
BL .

(89)
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We now estimate with triangle inequality from the last line above:

d (Tt (ν),Tt (ψ))

≤
 ˆ t

0
dt ′

[
2λ(1 + s(b − c)〈p〉νt′ )

(
ψ(p, t ′) − ν(p, t ′)

)
+ (1 − 2λ)sc

(
〈p〉νt′ − p

) (
ν(p, t ′) − ψ(p, t ′)

) ]
BL

+
ˆ t

0
dt ′

[
2λ(1 + s(b − c)〈p〉νt′ )δ(p − R(〈p〉νt′ )

− 2λ(1 + s(b − c)〈p〉ψt′ )δ(p − R(〈p〉ψt′ )
+ s(c − 2λb)

(
〈p〉νt′ − 〈p〉ψt′

)
ψ(p, t ′)

]
BL . (90)

Since c, b, s, λ, 〈p〉νt′ , 〈p〉ψt′ , ‖ν ‖BL and ‖ψ‖BL are uniformly bounded, it follows that there
exists a constant 0 < Const < ∞ such that:

d (Tt (ν),Tt (ψ)) ≤ Const ·
ˆ t

0
dt ′

[ψ(p, t ′) − ν(p, t ′)BL + ��〈p〉νt′ − 〈p〉ψt′

�� ] . (91)

Using lemma 2 it follows that there exists (another) constant 0 < Const < ∞ such that:

d (Tt (ν),Tt (ψ)) ≤ Const ·
ˆ t

0
dt ′ d(νt ′, ψt ′) . (92)

�

To prepare the continuous time limit, we show that the average time τk , at which updates
of the population occur, stays on average close to the real time. The proof proceeds by
applying a law of large numbers argument. Recall from definition 2 that we denoted the
random variable for the length of the time interval between the kth and (k + 1)th update
step as ∆τk with 〈∆τk〉 = N −1

(
1 + s(b − c)〈p〉k

)−1. We also defined τk =
∑k−1

l=1 ∆τl and
〈τk〉 =

∑k−1
l=1 〈∆τl 〉; M (t ) denotes the maximal natural number such that 〈τM (t )〉 ≤ t and κ(t )

is the random variable given by the maximal number such that τκ(t ) ≤ t .

Lemma 6. Let t > 0. Then:

P(|κ(t ) − M (t )| ≥ N 3/4) ≤ Const · N −1/2 . (93)

Proof. The lemma is based on the law of large numbers. Since the κ(t ) is monotonously
increasing, it follows that:

P(κ(t ) < M (t ) − N 3/4) ≤ P(τM (t )−N 3/4 > t ) , (94)

= P(τM (t )−N 3/4 − 〈τM (T )−N 3/4〉 > t − 〈τM (t )−N 3/4〉) , (95)

≤ P
(��τM (t )−N 3/4 − 〈τM (t )−N 3/4〉

�� > ��t − 〈τM (t )−N 3/4〉
��) . (96)
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Because the τk are independent of each other, it follows with Chebyshev’s inequality that for
any (possibly N -dependent) εN > 0:

P
(��τM (t )−N 3/4 − 〈τM (t )−N 3/4〉

�� > εN

)
≤ ε−2N Var(τM (t )−N 3/4) , (97)

= ε−2N

M (t )−N 3/4∑
k=1

Var∆τk , (98)

≤ Const · N
ε 2
NN 2

. (99)

Since the average lengths of time intervals between two update steps, 〈∆τk〉, are bounded for
all k by some constant times N −1, the respective variances are of order N −2. The estimate in
the last line above then follows by recalling that M (t ) ∼ O(N ).

We choose εN B
��t − 〈τM (t )−N 3/4〉

�� and estimate:

εN = |〈τM (t )−N 3/4〉 − t | , (100)

=

������
M (t )−N 3/4∑

k=1

〈∆τk〉 − t

������ , (101)

≤

������
M (t )−N 3/4∑

k=1

〈∆τk〉 −
M (t )∑
k=1

〈∆τk〉

������ + Const
N

, (102)

≤ N 3/4Const
N

= Const · N −1/4 . (103)

Therefore, one obtains from Chebyshev’s inequality with the chosen εN :

P
(��τM (t )−N 3/4 − 〈τM (t )−N 3/4〉

�� > εN

)
≤ Const · N −1/2 . (104)

From equation (96) one obtains:

P(κ(t ) < M (t ) − N 3/4) ≤ CN −1/2 . (105)

In the same way one shows that:

P(κ(t ) > M (t ) + N 3/4) ≤ CN −1/2 , (106)

and the lemma follows. �

After these preparatory steps, we now proceed with the following lemma:

Lemma 7. For any t > 0, one estimates:

E
(
d(ηauxκ(t ), ρt )

)
≤ Const (t ) · N −1/4 . (107)
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Proof. We apply the triangle inequality and estimate:

E
(
d(ηaux

κ(t ), ρt )
)
≤ E

(
d(ηaux

κ(t ), η
aux
M (t ))

)
+ d(ηaux

M (t ), ρt ) . (108)

Note that the expectation values above are taken with respect to sampling the update times.
The first summand (i) addresses the distance of the average auxiliary distribution between
different update steps; namely between a single realization of update steps ( κ(t )) up to the
given time t and the average number of update steps (M (t )) up to time t . By a law of large
numbers argument, we show below that:

E
(
d(ηaux

κ(t ), η
aux
M (t ))

)
≤ Const · N −1/4 , (109)

The second summand (ii) governs the distance of the auxiliary process at average times to the
macroscopic process at the real time t . We show below that the propagation of errors due
to different timings of the auxiliary process and the macroscopic process are controlled by
applying Grönwall’s inequality, and estimate:

d(ηaux
M (t ), ρt ) ≤

1
N

eConst ·t . (110)

(i) First, we estimate E
(
d(ηaux

κ(t ), η
aux
M (t ))

)
in equation (109) by splitting up the expectation

value as follows:

E
(
d(ηaux

κ(t ), η
aux
M (t ))

)
≤ sup

{
‖ηaux

κ(t ) − η
aux
M (t )‖BL : |κ(t ) − M (t )| ≥ N 3/4

}
P(|κ(t ) − M (t )| ≥ N 3/4)

+ sup
{
‖ηaux

κ(t ) − η
aux
M (t )‖BL : |κ(t ) − M (t )| ≤ N 3/4

}
P(|κ(t ) − M (t )| ≤ N 3/4) , (111)

≤ sup
{
‖ηaux

κ(t ) − η
aux
M (t )‖BL

}
P(|κ(t ) − M (t )| ≥ N 3/4)

+ sup
{
‖ηaux

κ(t ) − η
aux
M (t )‖BL : |κ(t ) − M (t )| ≤ N 3/4

}
. (112)

Using the fact that for any probability densities ν and ψ it is dBL(ν, ψ) ≤ ‖ν ‖1 + ‖ψ‖1 = 2,
one estimates:

sup
{
‖ηaux

κ(t ) − η
aux
M (t )‖BL

}
≤ 2 . (113)

From lemma 6, we obtain:

P(|κ(t ) − M (t )| ≥ N 3/4) ≤ Const · N −1/2 . (114)

Since ‖ηaux
k ‖BL and ‖Φ(ηaux

k )‖BL are bounded, it follows that:

‖ηaux
k+1 − η

aux
k ‖BL = N −1‖ − ηaux

k + Φ(ηaux
k )‖BL ≤ Const/N . (115)
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Therefore, one obtains:

sup
{
‖ηaux

κ(t ) − η
aux
M (t )‖BL : |κ(t ) − M (t )| ≤ N 3/4

}
≤ Const · N 3/4N −1 = Const · N −1/4 ,

(116)

and the estimate in equation (109) follows as:

E
(
d(ηaux

κ(t ), η
aux
M (t ))

)
≤ Const · N −1/4 . (117)

(ii) Second, we show the estimate (110) for d(ηaux
M (t ), ρt ). Recall that by definition 5, we

have:

Φ(ηaux
k )(p) = 2λδ

(
p − R(〈p〉ηaux

k
)
)
+ (1 − 2λ)

1 + s
(
b 〈p〉ηaux

k
− c p

)
1 + s(b − c)〈p〉ηaux

k

ηaux
k (p) . (118)

We write the average density of the auxiliary process at update step k by applying definition 8
iteratively:

ηaux
k (p)

= ηaux
k−1(p) −

1
N
ηaux
k−1(p) +

1
N
Φ(ηaux

k−1)(p) , (119)

= ηaux
0 (p) +

1
N

k−1∑
j=0

[
Φ(ηaux

j )(p) − η
aux
j (p)

]
, (120)

= ηaux
0 (p) +

k−1∑
j=0

[
2λ
N
δ

(
p − R(〈p〉ηaux

j
)
)
+

1 − 2λ
N

1 + s
(
b 〈p〉ηaux

j
− c p

)
1 + s(b − c)〈p〉ηaux

j

ηaux
j (p) −

1
N
ηaux
j (p)

]
,

(121)

= ηaux
0 (p) +

k−1∑
j=0

N −1
(
1 + s(b − c)〈p〉ηaux

j

)−1 [
2λ

(
1 + s(b − c)〈p〉ηaux

j

) (
δ(p − R(〈p〉ηaux

j
) − ηaux

j

)
+ (1 − 2λ)sc

(
〈p〉ηaux

j
− p

)
ηaux
j (p)

]
, (122)

= ηaux
0 (p) +

ˆ 〈τk 〉
0

dt ′
[
2λ(1 + s(b − c)〈p〉ηaux

M (t′)
)
(
δ
(
p − R(〈p〉ηaux

M (t′)
)
)
− ηaux

M (t ′)(p)
)

+ (1 − 2λ)sc
(
〈p〉ηaux

M (t′)
− p)

)
ηaux
M (t ′)(p)

]
, (123)

where, in the last line, it was exploited that the j th update step occurs after an average time

〈∆τj〉 = N −1
(
1 + s(b − c)〈p〉ηaux

j

)−1
. Furthermore, the L1-norm of the above integrand is
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bounded. Thus, one finds a constant 0 < Const < ∞ such that:

‖ηaux
M (t ) −Tt (ηaux

M (t )) − η
aux
0 ‖BL

≤
 ˆ t

〈τk 〉
dt ′

[
2λ(1 + s(b − c)〈p〉ηaux

M (t′)
)
(
δ
(
p − R(〈p〉ηaux

M (t′)
)
)
− ηaux

M (t ′)(p)
)

(124)

+ (1 − 2λ)sc
(
〈p〉ηaux

M (t′)
− p)

)
ηaux
M (t ′)(p)

]
BL ,

≤ Const · (t − 〈τk〉) , (125)
≤ Const/N . (126)

Therefore, one estimates with the triangle inequality:

‖ηaux
M (t ) − ρt ‖BL
= ‖ηaux

M (t ) −Tt (ηaux
M (t )) − η

aux
0 +Tt (ηaux

M (t )) + η
aux
0 − ρt ‖BL , (127)

≤ ‖ηaux
M (t ) −Tt (ηaux

M (t )) − η
aux
0 ‖BL + ‖Tt (ηaux

M (t )) + η
aux
0 −Tt (ρ) − ρ0‖BL , (128)

≤ Const/N + ‖Tt (ηaux
M (t )) − Tt (ρ)‖BL + d(ηaux

0 , ρ0) , (129)

≤ Const/N +Const ·
ˆ t

0
dt ′

ηaux
t ′ − ρt ′


BL . (130)

The last line follows with lemma 5 and with d(ηaux
0 , ρ0) = 0 because ηaux

0 = ρ0. By applying
Grönwall’s inequality to the last line above, one obtains the estimate in equation (110):

d(ηaux
M (t ), ρt ) ≤

1
N

eConst ·t . (131)

Combining the estimates for summand (i) in equation (109) and summand (ii) in equa-
tion (110), lemma 7 follows. �

C.3.4 Proof of the theorem

Proof. We estimate the expectation value of the distance between the empirical one-particle
density of the microscopic stochastic many-particle process and the mean-field distribution by
the estimates obtained in lemmata 1, 4 and 7. In total, one finds a 0 < Const < ∞ such that:

E
(
d(ρ(1)N (t ), ρ(t ))

)
≤ E

(
d(ρ(1)N ,κ(t ), η

aux
N ,κ(t ))

)
+ E

(
d(ηaux

N ,κ(t ), η
aux
κ(t ))

)
+ E

(
d(ηaux

κ(t ), ρt )
)
, (132)

≤ eConst · M (t )N

(
E

(
d(ρ(1)N ,0, η

aux
N ,0)

)
+

M (t )3/4
N

)
+Const · M (t )

3/4

N
+ E

(
d(ηaux

N ,0, η
aux
0 )

)
+Const (t ) · N −1/4 . (133)

Note that ηaux
0 = ρ0. Note also that expectation values above are taken with respect to both

sampling production degrees and sampling update times. Furthermore, for a given time t ,
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M (t ) is of order N . Thus, one estimates:

E
(
d(ρ(1)N (t ), ρ(t ))

)
≤ Const (t ) ·

(
E

(
d(ηaux

N ,0, ρ0)
)
+ N −1/4

)
, (134)

with some constant 0 < Const < ∞ that depends on the chosen time t . Applying Markov’s
inequality establishes an error estimate of the convergence with an (even N -dependent) εN :

P
(
d(ρ(1)N (t ), ρ(t )) > εN

)
≤
E

(
d(ρ(1)N (t ), ρ(t ))

)
εN

(135)

≤ Const (t )
εN

·
(
E

(
d(ηaux

N ,0, ρ0)
)
+ N −1/4

)
, (136)

which proves theorem 1.
�
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D Analysis of the mean-field equation (1)

D.1 Moment and cumulant equations

Mean-field equation for moment and cumulant-generating functions

The moment-generating function M (u, t ) for the production degree p, which is the random
variable of interest, and its corresponding cumulant-generating function C (u, t ) are defined
as:

M (u, t ) B
ˆ 1

0
dp eup ρ(p, t ) = L[ρ](−u, t ) , (137)

C (u, t ) B ln (M (u, t )) , (138)

with argument u ∈ (−∞,∞) at time t . The moment-generating function M is the (one-sided)
Laplace transform L of ρ with negative argument at time t . Moments and cumulants of the
degree distribution ρ are obtained as:

Mk(t ) B ∂kuM (u, t )|u=0 and Ck(t ) B ∂kuC (u, t )|u=0 , for k ≥ 1 . (139)

For the mean production, that is for the expectation value of the production distribution, it
holds that p = M1 = C1 and the variance is given by Var(p) = p2 − p2

= M2 − M 2
1 = C2. By

applying transformations (137, 138) to the mean-field equation (1) and plugging in the form
of the fitness function in equation (4), one obtains:

∂tM (u, t ) = (1 − 2λ)s (M1(t )M (u, t ) − ∂uM (u, t ))

+ 2λ (1 − sM1(t ))
(
euR(M1(t )) − M (u, t )

)
,

∂tC (u, t ) = (1 − 2λ)s (C1(t ) − ∂uC (u, t ))

+ 2λ(1 − sC1(t ))
(
euR(C1(t ))e−C (u,t ) − 1

)
.

(140)

Solution strategy for the moment and cumulant-generating functions: Method of
characteristics

This mean-field equation in moment/cumulant space (140) is more conveniently written as a
semilinear partial differential equation (PDE) of first order in t and u, for example for C :

∂tC (u, t ) + (1 − 2λ)s∂uC (u, t ) = F (C , u, t ) , (141)

with F (C , u, t ) B (1 − 2λ)sC1(t ) + 2λ(1 − sC1)
(
euR(C1(t ))e−C (u,t ) − 1

)
and initial condition

C (u, t = 0) = C0(u). This PDE admits the straight lines r (u, t ) = u − (1 − 2λ)s t as
characteristics. Restricted to these characteristic curves, the PDE reduces to a nonlinear
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ordinary differential equation (ODE) of first order in time for z(r , t ) = C (u(r , t ), t ):

d
dt

z(r , t ) = ∂t u(r , t )∂uC (u, t ) + ∂tC (u, t ) , (142)

= F (C (u(r , t ), t ), u(r , t ), t ) , (143)
= F (z, r , t ) , (144)

with initial condition z(r , t = 0) = C (u(r , t = 0), t = 0) = C0(r ). The solution for the
cumulant-generating function is then obtained from the solution of the above ODE as
C (u, t ) = z(r (u, t ), t ) = z(u − (1 − 2λ)s t, t ). For the two cases λ = 0 and λ = 1/2 with linear
response function, an insightful, analytical solution of the mean-field equation (1) for the
production distribution for all times t was found this way; see below.

Moment and cumulant equations

A different approach to characterize the dynamics of the quorum-sensing model is to analyze
the equations of motions for the moments and cumulants. The moment equations are derived
from equation (140) by applying the definition of the moments (139), which yields for k ≥ 1,

∂tMk(t ) = (1 − 2λ)s(M1(t )Mk(t ) − Mk+1(t ))

+ 2λ (1 − sM1(t ))
(
Rk(M1(t )) − Mk(t )

)
.

(145)

The evolution equations for the first three cumulants are obtained as,

∂tC1(t ) = −(1 − 2λ)sC2(t ) + 2λ(1 − sC1(t )) (R(C1(t )) −C1(t )) , (146)

∂tC2(t ) = −(1 − 2λ)sC3(t ) + 2λ(1 − sC1(t ))
(
−C2(t ) + (R(C1(t )) −C1(t ))2

)
, (147)

∂tC3(t ) = −(1 − 2λ)sC4(t ) (148)

+ 2λ(1 − sC1(t ))
(
−C3(t ) − 3(R(C1(t )) −C1(t ))C2(t ) + (R(C1(t )) −C1(t ))3

)
.

For figure 2(E), the cumulant equations (146-148) were numerically integrated after applying
a Gaussian approximation, that is a cumulant closure with Ci(t ) = 0 for i ≥ 3 and all t , and
plotted for p t = C1(t ).
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D.2 Without sense-and-response to the environment: unimodal
stationary distributions (homogeneity)

Homogeneous stationary distributions

For the case without sense-and-response through quorum sensing, λ = 0, it is readily seen
from equation (1) that stationary production distributions are given by δ-peaks as ρ∞(p) B
ρ(p, t → ∞) = δ(p − plow) for all plow ∈ [0, 1]. However, the distribution with solely non-
producers, plow = 0, is the only asymptotically stable solution of the mean-field equation (1);
see below.

When sense-and-response is absent, the analytical solution of the mean-field equation (1)
for ρ can be obtained by applying the method of characteristics to equation (141) as outlined
above. The implicit solution is given by:

C (u, t ) = C0(u − s t ) + s t 〈p〉t , with 〈p〉t B 1/t
ˆ t

0
dt ′ p t ′ (149)

as the temporal average of the mean production p t . Back-transformation and exploiting
normalization of ρ yields:

ρ(p, t ) = ρ0(p)e−s t (p−〈p 〉t ) = ρ0(p)e−s t p/L[ρ0](s t ) . (150)

For example, if the initial production distribution ρ0 is a uniform distribution on [0, 1],
ρ evolves in time as ρ(p, t ) = s t/(1 − e−s t )e−s t p , which is plotted in figure 2(A) (black, solid
lines). Every production degree that is different from p = 0 decays exponentially fast and the
time scale of the decay is set by the inverse of the value of that production degree. As p → 0,
this time scale diverges and, hence, the stationary distribution,

ρ∞(p) = δ(p) , (151)

is approached algebraically slowly; see figure 2(D).

Approach of homogeneous stationary distributions

To quantify the dependence of the time scales to approach stationarity on the initial distribu-
tion in more generality, we analyzed the temporal solution of the mean p t , which is obtained
from the solution for the cumulant generating function as:

p t = −∂v lnL[ρ0](v)|v=s t . (152)

Therefore, the temporal evolution of the mean production depends only on the initial
distribution ρ0 via its Laplace transform L[ρ0]. For the asymptotic behavior of Laplace
transforms it is known that if ρ0(p) ∼ p µ as p → 0 with µ > −1, then L[ρ0](v) ∼ 1/v (µ+1)
for v � 1 [133]. Therefore, it follows that the mean evolves as p t ∼ 1/t for t � 1 if the
initial production distribution is a continuous probability density with non-vanishing weight
at plow = 0 (chosen for simplicity as the lowest production degree). The condition that the
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exponent satisfies µ > −1 is always fulfilled for a continuous probability distribution to
ensure integrability at zero. In the same manner, the decay of the variance is shown to evolve
algebraically as Var(p)(t ) ∼ 1/t 2 for t � 1.

In contrast, if the lowest production degree is separated from all other degrees in the
population by a gap ∆ > 0 in production space, mean and variance approach their stationary
value exponentially fast at a time scale set by ∆. To see this qualitative difference in the
approach of stationarity, we consider an initial probability distribution with probability
mass y0 > 0 at degree plow = 0 (chosen again for simplicity) and a remainder probability
distribution ρ̃0 with support on [∆, 1]: ρ0(p) = y0δ(p) + (1 − y0) ρ̃0(p)I[∆,1](p) (here I[∆,1]
denotes the indicator function, which takes value 1 on the interval [∆, 1] and 0 otherwise, and
highlights the support of ρ̃0 on [∆, 1]). Using this form for ρ0 and plugging in its Laplace
transform into the solution for the mean in equation (152), one estimates p t . (1 + ∆)e−s∆·t
for t � 1. This result generalizes the exponentially fast approach of stationarity that is
known, for example, from the discrete Prisoner’s dilemma in evolutionary game theory [26,
88–90].

In total, p t vanishes exponentially fast if and only if the production degree at the smallest
production degree is separated by a gap ∆ from all other production degrees that are present
in the population. On the other hand, if the lowest production degree is part of an interval
with continuously distributed production degrees (that is, ∆ = 0), p t decreases algebraically
slowly.
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D.3 With frequent sense-and-response to the environment: unimodal
stationary distributions (homogeneity)

Homogeneous stationary distributions

For the case with sense-and-response through quorum sensing, λ > 0, one obtains from equa-
tion (1) or from the cumulant equations (146-148) that stationary production distributions
are given by δ-peaks as:

ρ∞(p) = δ(p − p∗) , with R(p∗) = p∗ ∈ [0, 1] . (153)

In other words, fixed points of the response function give rise to homogeneous stationary
distributions. Whether these stationary distributions are stable against small perturbations
around stationarity depends on the stability of the fixed points (see linear stability analysis of
homogeneous stationary distributions below). Whether they are approached for long times
depends, in addition to the dependence on the stability of the fixed points, also on the initial
distribution, and on the response function and the value of λ (see heterogeneous stationary
distributions).

Linear stability analysis of homogeneous stationary distributions

Here, we supplement the statements from sections 2 and 4 on the stability of homogeneous
stationary distributions in the linear approximation around stationarity if sense-and-response
is present (λ > 0). For the sake of simplicity and feasibility, we carry out the stability analysis
in the space of cumulants. To this end, we define the vector:

C(t ) = (C1(t ),C2(t ),C3(t ), . . .) , (154)

which is at stationarity (see equation (153)):

C∞ B C(t →∞) = (C1,∞,C2,∞,C3,∞, . . .) = (p∗, 0, 0, . . .) . (155)

With this notation, the equations of motion for the cumulants of ρ are given as follows:

∂tCi(t ) = Fi(C(t )) , for i ≥ 1 . (156)

Here, the functions Fi for i ≥ 0 are defined by the right hand side of the cumulant equa-
tions (146-148). Upon introducing the distance ∆C to the stationary vector C∞, that is
∆C = C −C∞, one obtains the temporal behavior of ∆C as:

∂t∆Ci(t ) = Fi(C∞ + ∆C(t )) =
∞∑
j=0

Ji j (C∞)∆C j (t ) +O(‖∆C‖2) , for i ≥ 0 , (157)
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with Jacobian Ji j (C∞) = ∂Fi (C)
∂C j
|C=C∞ , whose entries are obtained after some algebra as:

J11 = −2λ(1 − sp∗)(1 − R′(p∗)) , (158)
Ji,i = −2λ(1 − sp∗) , for i ≥ 2 , (159)

Ji,i+1 = −(1 − 2λ)s , for i ≥ 1 , (160)
Ji, j = 0 , otherwise . (161)

The eigenvalues of the upper triangular matrix J determine the stability of the stationary
distribution up to linear order in perturbations at the level of cumulants around stationarity.
Because of the upper triangular structure of the Jacobian J , its eigenvalues are given by the
diagonal entries of J :

γ1 = −2λ(1 − sp∗)(1 − R′(p∗)) , (162)
γi = −(1 − 2λ)s < 0 , for i ≥ 2 . (163)

Thus, local stability of homogeneous stationary distributions ( ρ∞(p) = δ(p − p∗) with
R(p∗) = p∗) is determined by the stability of the fixed points, that is whether R′(p∗) is less or
greater than 1.

In total, homogeneous stationary distributions are unstable up to linear order in pertur-
bations at the level of cumulants around stationarity if R′(p∗) > 1. In other words, stationary
distributions located at a fixed point p∗ are linearly unstable if p∗ is an unstable fixed point
of the response function (R′(p∗) > 1). On the other hand, linear stability of the response
function at p∗ (R′(p∗) ≤ 1) yields linearly stable homogeneous stationary distributions
located at p∗.

With sense-and-response (λ = 1/2) and linear response function (R(p) = p):
Analytical solution and approach of homogeneous stationary distribution

For the choice of linear response function (R(p) = p, that is, R′(p) = 1 for all p ∈ [0, 1])
and λ = 1/2, the mean remains constant in time (see equation (146)). Furthermore, one
obtains the analytical solution of the mean-field equation (1) by applying the method of
characteristics (most conveniently in the space of moment generating functions) as:

M (u, t ) = M0(u)e−φ0t + eup0

(
1 − e−φ0t

)
, (164)

which yields after back-transformation:

ρ(p, t ) = y(t )ρ0(p) + (1 − y(t ))δ(p − p0) , with y(t ) = exp(−φ0t ) . (165)

The initial production distribution ρ0 decays exponentially fast on a time scale that is set by
the average initial fitness in the population φ0, whereas a singular probability mass at the
initial mean production degree p0 builds up concomitantly due to sense-and-response through
quorum sensing. The population approaches the stationary distribution ρ∞(p) = δ(p − p0)
exponentially fast.
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With sense-and-response (λ = 1/2) and polynomial response function: Divergence
of time scales at bifurcations of parameters of the response function

For λ > s/2, the approach of stationarity is typically exponentially fast. However, upon
fine-tuning parameters of the response function one observes an algebraically slow approach
of stationarity. We exemplify this qualitative change in the temporal evolution by setting
the response probability to λ = 1/2 and by considering the following nonlinear response
function, see supplementary figure A.3 (for the sake of readability, we label the argument of
R by p instead of 〈p〉):

R(p) = p + A · p(p − (pcr − ε ))(p − pcr)(p − (pcr + ε ))(p − 1) , (166)

with some real constant A > 0. The chosen response function (166) is a polynomial of 5th
order with R(0) = 0 and R(1) = 1, and parameter 0 < pcr < 1, which is set to pcr = 1/2 in
supplementary figure A.3. The bifurcation parameter 0 ≤ ε ≤ min(pcr, 1 − pcr) controls a
supercritical pitchfork bifurcation of the response function (166) at p∗ = pcr: Whereas p∗ = 0
and p∗ = 1 are unstable fixed points for all ε , the fixed points at p∗ = pcr ± ε are stable for
ε > 0 and merge with p∗ = pcr for ε = 0. The fixed point p∗ = pcr is unstable for ε > 0 and is
a three-fold degenerate, stable fixed point for ε = 0, see supplementary figure A.3(A, B).

For λ = 1/2 and upon plugging in the explicit form of the response function (166), the
temporal evolution equation of the mean (146) is given by the ODE:

∂tC1 = A(1 − sC1)C1(C1 − (pcr − ε ))(C1 − pcr)(C1 − (pcr + ε ))(C1 − 1) , (167)

with initial condition C1(t = 0) = p0. From integrating this temporal evolution equation,
one obtains the implicit solution for the mean p = C1 as:

t =
∑
p∗
αp∗

ˆ p t

p0

dC1

C1 − p∗
. (168)

The sum is performed over all non-degenerate fixed points of the right hand side of the
equation for the mean (167), that is over the roots p∗ ∈ {0, pcr − ε, pcr, pcr + ε, 1, 1/s} of both
the response function (166) and the mean fitness φt = 1− sp t . The coefficients αp∗ arise from
the partial fraction decomposition with αpcr,pcr±ε ∼ O(1/ε 2) and α0,1,1/s ∼ O(ε 0). Therefore,
one concludes that:

|p t − p∞ | ∼ e−t/α , for ε > 0 , (169)

for large times and with a decay constant α that diverges as the bifurcation is approached
as α ∼ 1/ε 2. In other words, stationarity is approached exponentially fast when all fixed
points of the response function (166) are non-degenerate, see supplementary figure A.3(D)
inset. Which of the two stable fixed points p∗ = pcr ± ε constitutes the stationary distribution
ρ∞(p) = δ(p − p∗) depends on the initial distribution (and demographic fluctuations of the
initial dynamics in the stochastic process). The prediction that the decay constant τ diverges
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as the bifurcation of the response function is approached (ε → 0) is in good agreement with
numerical simulations of the stochastic process, see supplementary figure A.3(D).

In contrast to the exponentially fast approach away from the bifurcation, stationarity is
approached algebraically slowly at the bifurcation of the nonlinear response function, that
is for ε = 0. Since the stable fixed point p∗ = pcr is three-fold degenerate, one finds by
integration of equation (168) the implicit solution for the mean as:

t =
∑
p∗,pcr

αp∗

ˆ p t

p0

dC1

C1 − p∗
+

z∑
i=1

α
(i)
pcr

ˆ p t

p0

dC1

(C1 − pcr)i
. (170)

In addition to the sum over the non-degenerate fixed points (p∗ , pcr), a second sum accounts
for the degeneracy z = 3 of the fixed point pcr, which is reflected by the singularities in the
integrand up to order z . Consequently, the mean production approaches its stationary value
as:

|p t − p∞ | ∼ t−1/ν , for ε = 0 , (171)

for large times with critical exponent ν = z − 1 = 2, that is −1/ν = −1/2. Supplementary
figure A.3(C) shows the excellent agreement of our theoretical predictions with numerical
simulations of the stochastic process for the algebraically slow approach of stationarity at the
bifurcation.
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D.4 With rare sense-and-response to the environment: bimodal
stationary distributions (heterogeneity)

Heterogeneous stationary distributions

To analyze heterogeneous stationary distributions, we decompose the production distribution
as follows:

ρ(p, t ) = y(t )ρlow(p, t ) + (1 − y(t ))ρhigh(p, t ) , (172)

where ρlow and ρhigh denote two probability distributions with support on the interval [0, 1].
Their respective means are denoted as:

plow,t =

ˆ 1

0
dp p ρlow(p, t ) , and phigh,t =

ˆ 1

0
dp p ρhigh(p, t ) , (173)

such that p t = y(t )plow,t+(1−y(t ))phigh,t ; their stationary values are denoted as plow,∞ C plow
and phigh,∞ C phigh, respectively. We decompose the initial distribution ρ0(p) = y0ρlow,0(p) +
(1 − y0)ρhigh,0(p) such that min(supp(ρlow,0)) = min(supp(ρ0)). For a numerical integration
of the mean-field equation (1) that not only reproduces the stationary distribution, but also
the temporal approach towards stationarity, it turns out suitable to choose the following
decomposition: ρlow,0 = ρ0, ρhigh,0 = δ(· − R(p0)), and y0 = 1 − ε with 0 < ε . 0.01.

With decomposition (172), the mean-field equation (1) for ρ can be rewritten in terms of
equations for ρlow, ρhigh, and y as follows:

∂t ρlow(p, t ) = −s(1 − 2λ)
(
p − plow,t

)
ρlow(p, t ) , (174)

∂t ρhigh(p, t ) = −s(1 − 2λ)
(
p − phigh,t

)
ρhigh(p, t ) (175)

+ 2λ
1 − sp t
1 − y(t )

(
δ(p − R(p t )) − ρhigh(p, t )

)
,

∂t y(t ) = y(t )
(
−2λ(1 − splow,t ) + s(1 − y(t ))(phigh,t − plow,t )

)
. (176)

We note that the decomposition (172) of ρ with equations (174-176) is not unique, but this
choice of decomposition enables the characterization of heterogeneous stationary distribu-
tions and, thus, phenotypic heterogeneity.

The temporal evolution equation (174) for ρlow has the form of the continuous replicator
equation (see equation (1) with λ = 0) with renormalized selection strength s(1 − 2λ).
Following the analysis that resulted in equation (150), the solution for ρlow is given by:

ρlow(p, t ) = ρlow,0(p)e−s(1−2λ)t p/L[ρlow,0](s(1 − 2λ)t ) ,
with ρlow,0(p) = ρlow(p, t = 0) ,

(177)

if λ ≤ 1/2. As shown in section 2, the condition λ ≤ 1/2 is consistent with the condition for
the upper threshold of the response probability λ ≤ s/2 < 1/2, above which heterogeneous
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stationary distributions cannot occur. For the mean plow,t , one obtains:

plow,t = −∂v lnL[ρlow,0](v)|v=s(1−2λ)t . (178)

In other words, ρlow approaches a stationary δ-distribution:

ρlow(p, t →∞) = ρlow,∞(p) = δ(p − plow) ,
with plow = plow,∞ = min(supp(ρlow,0)) = min(supp(ρ0)) .

(179)

The temporal evolution equation (175) for ρhigh has a similar form as the original
mean-field equation (1): it involves the sense-and-response term with prefactor 2λ, and the
replicator term with prefactor 1 − 2λ. The sense-and-response term, however, couples to the
full production distribution ρ through the argument R(p t ) in the δ-function and the prefactor
(1 − sp t )/(1 − y(t )), whereas the replicator term does not couple to ρlow or y. Equation (175)
is most suitably analyzed in the space of moment and cumulant generating functions with
(u ∈ (−∞,∞)):

Mhigh(u, t ) B
ˆ 1

0
dp eup ρhigh(p, t ) , (180)

Chigh(u, t ) B ln
(
Mhigh(u, t )

)
. (181)

The moments and cumulants of ρhigh are obtained as Mhigh,k(t ) B ∂kuMhigh(u, t )|u=0 and
Chigh,k(t ) B ∂kuChigh(u, t )|u=0 for k ≥ 1. With this notation, it is phigh,t = Mhigh,1(t ) =
Chigh,1(t ). By applying these transformations to the temporal evolution equation (175) of
ρhigh, one obtains:

∂tMhigh(u, t ) = −(1 − 2λ)s
(
∂uMhigh(u, t ) − Mhigh,1(t )Mhigh(u, t )

)
+ 2λ

1 − sp t
1 − y(t )

(
euR(p t ) − Mhigh(u, t )

)
,

(182)

and,
∂tChigh(u, t ) = −(1 − 2λ)s

(
∂uChigh(u, t ) −Chigh,1(t )

)
+ 2λ

1 − sp t
1 − y(t )

(
euR(p t )e−Chigh(u,t ) − 1

)
,

(183)

in which the coupling of ρhigh to ρlow and y is apparent explicitly through the occurrence of
the factor 1 − y(t ) and implicitly through the occurrence of p t = y(t )plow,t + (1 − y(t ))phigh,t .
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The corresponding equations of motion for the first three cumulants are, thus, obtained as:

∂tChigh,1(t ) = −(1 − 2λ)sChigh,2(t ) + 2λ
1 − sp t
1 − y(t )

(
R(p t ) −Chigh,1(t )

)
, (184)

∂tChigh,2(t ) = −(1 − 2λ)sChigh,3(t ) (185)

+ 2λ
1 − sp t
1 − y(t )

(
−Chigh,2(t ) + (R(p t ) −Chigh,1(t ))2

)
,

∂tChigh,3(t ) = −(1 − 2λ)sChigh,4(t ) (186)

+ 2λ
1 − sp t
1 − y(t )

(
−Chigh,3(t ) − 3(R(p t ) −Chigh,1(t ))Chigh,2(t )

+ (R(p t ) −Chigh,1(t ))3
)
.

At stationarity, it is ∂t y(t ) = 0 and y(t ) ≡ y∞ with (see equation (176); recall also that
p∞ = y∞plow + (1 − y∞)phigh):

2λ(1 − splow) = s(1 − y∞)(phigh − plow) ,
or, equivalently, (1 − 2λ)(1 − splow) = 1 − sp∞ .

(187)

Assuming that a stationary value 0 < y∞ < 1 exists, it fulfils the self-consistency relation:

y∞ = 1 − 2λ
s

1 − splow

phigh − plow
=

phigh − p∞
phigh − plow

. (188)

Note that we denoted y∞ simply as y in sections 2 – 4. If 0 < y∞ < 1 exists, it follows that the
stationary solution for ρhigh can be obtained via equation (182) in terms of the stationary
moment generating function Mhigh,∞(u) = Mhigh(u, t →∞) with:

∂uMhigh,∞(u) − plowMhigh,∞(u) = (phigh − plow)euR(p∞) ,
and phigh = ∂uMhigh,∞(u)|u=0 ,

(189)

where the relation between plow, phigh, and y∞ in equation (187) was exploited and the
definition phigh = phigh,∞ translates into the boundary condition. In total, one obtains
Mhigh,∞(u) = euphigh with the self-consistency relation phigh = R(p∞). In other words, ρhigh
approaches a stationary δ-distribution:

ρhigh(p, t →∞) = ρhigh,∞(p) = δ(p − phigh) , (190)
with phigh = phigh,∞ = R(p∞) = R(2λ/s + (1 − 2λ)plow) . (191)

For plow = min(supp(ρ0)) = 0, one recovers from equations (179, 188, 190) the heterogeneous
stationary distribution (2).

For figure 2(F), equations (176), (178), and (184-186) were numerically integrated with
Chigh,i(t ) = 0 for i ≥ 3 and for all t , and initial conditions y0 = 0.99, ρlow,0 ∼ Uniform(0, 1),



D Analysis of the mean-field equation (1) 159

and ρhigh,0 ∼ δ(· − R(0.5)). The choice of initial conditions, however, is not important for
the asymptotic behavior, see supplementary figure A.1.

Linear stability analysis of heterogeneous stationary distributions

Here, we supplement the statements from sections 2 and 4 on the stability of heterogeneous
stationary distributions (2) in the linear approximation around stationarity. For the sake of
simplicity and feasibility, we carry out the stability analysis in the space of cumulants. To
this end, we define the vector:

c(t ) = (y(t ),Clow,1(t ),Chigh,1(t ),Clow,2(t ),Chigh,2(t ), . . .) , (192)

= (c0(t ), c1(t ), c2(t ), . . .) , (193)

which is at stationarity:

c∞ B c(t →∞) , (194)
= (y,Clow,1,Chigh,1,Clow,2,Chigh,2, . . .) , (195)

= (y, plow, phigh, 0, 0, . . .) , (196)

= (c0, c1, c2, . . .) . (197)

The cumulants of ρlow are obtained in the same way as for ρhigh, that is as Clow,k(t ) B
∂kuClow(u, t )|u=0 for k ≥ 1 from Mlow(u, t ) B

´ 1
0 dp eup ρlow(p, t ) andClow(u, t ) B ln (Mlow(u, t ))

for u ∈ (−∞,∞). With this notation, the equations of motion for y(t ) in equation (176) and
the cumulants of ρlow and ρhigh, respectively, are cast into the compact form:

∂t ci(t ) = Fi(c(t )) , for i ≥ 0 . (198)

Upon introducing the distance ∆c to the stationary vector c∞, that is ∆c = c− c∞, one obtains
the temporal behavior of ∆c as follows:

∂t∆ci(t ) = Fi(c∞ + ∆c(t )) =
∞∑
j=0

Ji j (c∞)∆c j (t ) +O(‖∆c‖2) , for i ≥ 0 , (199)

and with Jacobian Ji j (c∞) = ∂Fi (c)
∂c j
|c=c∞ .

The entries of the Jacobian J are obtained after some algebra as:

J00 = −sy(phigh − plow) , J01 = −sy(1 − y)
1 − sphigh

1 − splow
, J02 = sy(1 − y) , (200)

J10 = 0 , J11 = 0 , J12 = 0, (201)
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and, furthermore,

J20 = −s(1 − 2λ)(phigh − plow)2R′(p∞) , (202)
J21 = s(1 − 2λ)y(phigh − plow)R′(p∞) , (203)

J22 = s(1 − 2λ)(phigh − plow)((1 − y)R′(p∞) − 1) , (204)

and,

Ji,i+2 = −s(1 − 2λ) , for i ≥ 1 , (205)
J2i,2i = −s(1 − y)(phigh − plow) , for i ≥ 2 , (206)
Ji, j = 0 , otherwise . (207)

The eigenvalues of the matrix J determine the stability of the heterogeneous stationary
distribution up to linear order in perturbations at the level of cumulants around stationarity.
Its eigenvalues are given by:

• the two eigenvalues γ1,2 of the 2 × 2 matrix,

J̃ =
(
J00 J02
J20 J22

)
(208)

=

(
−sy(phigh − plow) sy(1 − y)

−s(1 − 2λ)(phigh − plow)2R′(p∞) s(1 − 2λ)(phigh − plow)((1 − y)R′(p∞) − 1)

)
,

• one eigenvalue 0,

• and infinitely many pairs of eigenvalues with values 0 and −s(1 − y)(phigh − plow) < 0
(because phigh − plow > 0 and 1 − y > 0 for the considered bimodal distributions).

For simplicity of the discussion, we assume plow = min(supp(ρ0)) = 0 in the following, and
also introduce the parameter β = 2λ/s as in section 2. The two eigenvalues γ1,2 of J̃ are given
by:

γ1,2 =
1
2
Tr( J̃ ) ±

(
1
4
Tr( J̃ )2 −Det( J̃ )

)1/2
, (209)

with Tr( J̃ ) = s(1 − 2λ)(βR′(β) − R(β)) − s(R(β) − β) , (210)

and Det( J̃ ) = s2(1 − 2λ)R(β)(R(β) − β)) . (211)

Linear stability for small λ.
Under the assumptions R(0) = 0 and 1 < R′(0) < ∞, one checks that for 0 < λ � 1 the
eigenvalues of the Jacobian J̃ in equation (209) are given by:

γ1,2 = −λ(R′(0) − 1) +O(λ3) ± iλ
(
(R′(0) − 1)(3R′(0) + 1) +O(λ))1/2 , (212)

and, thus, Re(γ1,2) < 0 as λ ↘ 0.
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Therefore, for small response probabilities, the heterogeneous stationary distribution
(equation (2)) is stable up to linear order in perturbations at the level of cumulants around
stationarity (here shown under the assumptions plow = min(supp(ρ0)) = 0, R(0) = 0, and
1 < R′(0) < ∞).

Linear stability for the specific response function R(β) = β + κ · sin(π β).
Upon choosing the response function R(β) = β + κ · sin(π β) with β ∈ [0, 1] (that is
λ ∈ [0, s/2]) and with κ ∈ [0, 1/π], one checks that all eigenvalues of the Jacobian J̃ in
equation (209) have negative real part.

Therefore, for the special choice of the response function that up-regulates the cellular
autoinducer production for all sensed average productions in the population, all heterogeneous
stationary distributions (equation (2)) for choices of the parameters λ ∈ [0, s/2] and κ ∈
[0, 1/π] are stable up to linear order in perturbations at the level of cumulants around
stationarity.



 ❦
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