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Zusammenfassung

Atmosphärische Feuchtkonvektion hat einen wichtigen Anteil an der Unsicherheit in der
Vorhersage der zukünftigen Entwicklung des Klimas. Da Konvektion den Zustand der At-
mosphäre beeinflusst aber die einzelnen konvektiven Zellen zu klein sind um von Klimamo-
dellen explizit dargestellt werden zu können, muss der Effekt von Konvektion parametrisiert
werden. Konvektionsparametrisierungen vernachlässigen in der Regel jegliche Korrelatio-
nen zwischen Wolken, obwohl bekannt ist dass Konvektion die Bildung weiterer Konvekti-
on auslösen oder beeinflussen kann. Wo sich neue Konvektion bildet hängt insbesondere von
der voran gegangenen Konvektion ab. Zum einen bilden sich neue Wolken bevorzugt an den
Rändern von Cold Pools, den von vorheriger Konvektion erzeugten kalten Abwinden, und
zum anderen können konvektiv bedingte Feuchtigkeitsstörungen in der freien Troposphäre
dazu führen, dass sich Konvektion über viele Generationen hinweg, selbst organisiert, auch
bekannt als Self-Aggregation. Obwohl sowohl über das Auslösen von Konvektion an den
Rändern von Cold Pools, als auch über die Ursache und die Eigenschaften der konvektiv er-
zeugten Feuchtigkeitsstörungen viel bekannt ist, ist unklar wie diese Wechselwirkungen zur
Bildung von großskaligen konvektiven Systemen beitragen und so den von Klimamodellen
aufgelösten Zustand der Atmosphäre beeinflussen. In der vorliegenden Arbeit untersuchen
wir diesen Zusammenhang mit Hilfe einfacher Modelle. Dazu stellen wir die lokalen Pro-
zesse, insbesondere das Auslösen von Konvektion durch Cold Pools und die Auswirkungen
von konvektiv erzeugten Feuchtigkeitsstörungen, vereinfacht dar und vergleichen die sich
ergebenden Modelle mit Modellen aus der statistischen Physik.

Wir beginnen mit der Einführung eines Modells welches, auf Perkolation basierend, die
beobachteten Größenverteilungen von flachen Kumuluswolken reproduzieren kann. Insbe-
sondere zeigen wir, dass sich durch das Zusammenfügen einzelner Wolkenzellen zu größe-
ren Wolken, Wolkengrößenverteilungen ergeben, die zumindest innerhalb eines limitierten
Bereiches, einem Potenzgesetz folgen was qualitative, mit aus Satellitenbildern bestimm-
ten Wolkengrößenverteilungen übereinstimmt. Erweiterung des Perkolationsmodells um die,
Cold Pool bedingte, räumliche Anhäufung von Wolken führt zu quantitativer Übereinstim-
mung.

Im zweiten Modell stellen wir die Ausbreitung konvektiver Aktivität in einem 2D Gitter-
modell dar, welches auf gerichteter Perkolation basiert. Ausgehend von der Annahme, dass
sich konvektive Aktivität durch Cold Pools ausbreitet, erörtern wir ob wiederholtes Auslösen
von Konvektion durch vorangegangene Konvektion den beobachteten kontinuierlichen Pha-
senübergang in Niederschlagsintensität erklären kann. Als ersten Test für diese Hypothese
zeigen wir, dass das von uns eingeführte Modell die Ausbreitung von Konvektion in einem
Atmosphärenmodell reproduziert und erläutern wie diese Hypothese in einem Atmosphä-
renmodell weiter untersucht werden kann.

Das dritte Modell beschreibt die räumliche Entwicklung von Self-Aggregation, der großflä-
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chigen und auf langen Zeitskalen stattfindenden Organisation von Konvektion. Wir zeigen
zunächst, dass unter bestimmten Voraussetzungen, die konvektiv bedingten Feuchtigkeits-
störungen durch einen diffusiven Feuchtigkeitsaustausch dargestellt werden können und ar-
gumentieren, dass damit die Bildung zunehmend größerer, feuchter und trockener, Gebie-
te durch Coarsening, und damit als Phasentrennung, beschrieben werden kann. Der Ver-
gleich mit früheren Studien zeigt, dass Coarsening zum einen erklären kann warum Self-
Aggregation von der Größe und Form des simulierten Gebiets abhängt und zum anderen,
zumindest anfänglich, die beobachtete Ausdehnung der feuchten und trockenen Gebieten
korrekt beschreibt.

Dass die in dieser Arbeit verwendeten einfachen Modelle aus der statistischen Physik nicht
nur zu einer qualitativen Beschreibung der entstehenden großskaligen Systeme sondern auch
zu quantitativen Vorhersagen führen liegt daran, dass die Modelle einige universell gültige
Eigenschaften besitzen.
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Abstract

Atmospheric moist convection is an important source of uncertainty in current climate mod-
els. Compared to the resolved spatial scales, convective updrafts are small scale processes
which, however, have an important influence on the atmospheric state. To determine their ef-
fect on the resolved scales, clouds are usually approximated as non-interacting despite their
ability to trigger or favor new convection in their surrounding. In particular, convectively
induced cold pools trigger new updrafts along their boundaries and thus induce correlations
between successive generations of clouds, while convectively induced humidity perturba-
tions accumulate over many generations and cause self-aggregation of convection on time
scales much longer than the individual cloud life times. While the cold pool triggering and
the instability of the atmosphere to humidity perturbations have been studied in detail, there
is a lack of understanding of how these interactions affect the large scale properties of a con-
vective field and thus impact the resolved scales. In this thesis we will introduce minimally
simple models to represent the effects of cold pool triggering and convectively induced hu-
midity perturbations and relate them to models known from statistical physics to determine
how these processes lead to the formation of large scale structures.

We start by introducing a modified percolation model which can reproduce the observed size
distributions of shallow cumulus clouds. Analyzing size distributions using satellite data, we
argue that it is the merging of smaller subclouds to larger clouds which leads to power law
size distributions over a range of scales which increase as the total cloud fraction approaches
a critical value. Modifying the standard percolation model to include clustering leads to
quantitative agreement.

The second model describes the spreading of convective activity using a 2D lattice model
based on directed percolation. Motivated by the cold pool induced spreading of convective
activity we argue that the ability of convection to trigger new convection can explain the
observed continuous phase transition in precipitation strength. While we find that the model
can reproduce the spreading of convection in an atmospheric model simulation, we also
propose a more direct test for this hypothesis.

The third model addresses the spatial evolution of self-aggregation, which organizes con-
vection on long space and time scales. We argue that the convectively induced humidity
perturbations lead to a diffusive spatial interaction and conclude that the upscale growth
of moist and dry regions can be described as a phase-separation process called coarsening.
Comparison with previous studies shows that coarsening can explain the frequently noted
domain shape and size dependence and, at least initially, the upscale growth of moist and
dry regions.

Using models known from statistical physics we find that we are not only able to qualitatively
describe the emergence of large scale properties but that, due to universal properties of these
models, we are able to make quantitative predictions.
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1. Introduction

1.1. The role of convection in the climate system

Cumulus clouds are manifestations of moist atmospheric convection: buoyant air rises and
cools and, as soon as water condenses, this upward movement of air becomes visible as
clouds. The horizontal and vertical extent of these clouds varies significantly. During a hot
summers day in Munich, for example, the formation of shallow cumulus clouds, sometimes
described as small and fluffy clouds, is often followed by the formation of deep precipitat-
ing cumulus clouds which extend high into the sky and frequently bring hail, thunder and
lightning as well as heavy rain.

1.1.1. Clouds as tracers of large scale circulations

The appearance of atmospheric moist convection, to which we will refer as convection in
the following, is strongly influenced by larger-scale circulations. This is particularly obvious
in convection over the tropical oceans where the Hadley Cell is the dominant meridional
circulation. As the solar heating of the surface is strongest near the equator, surface tem-
peratures are highest there and decrease to the north and the south. Driven by this surface
temperature gradient, the mean circulation of the Hadley Cell is described by ascending air
above the highest surface temperatures which, as it cannot ascent farther than the tropopause
(~17 km), flows polewards, descends in the subtropics and flows back in the direction of the
equator, creating the trade winds.

The Intertropical Convergence Zone (ITCZ), where the equatorward flow from the northern
hemisphere meets the equatorward flow from the southern hemisphere, is marked by so
called deep convection, strongly precipitating clouds which extend up to the tropopause.
Upon reaching the tropopause, the clouds spread horizontally, covering areas large enough
to be seen from space, an example of which is shown in Fig. 1.1 where the ITCZ is marked
by a band of very bright white clouds just north of the equator. In the regions of the trade
winds, the tropical oceans are largely covered by shallow cumulus clouds, visible as much
smaller and less brightly colored clouds to the north and south of the ITCZ in Fig. 1.1.
Shallow cumulus clouds extend only up to about 2 km and are associated with, if at all, light
precipitation.

1



1. Introduction

Fig. 1.1.: Satellite image of the eastern pacific part of the ITCZ which appears as a horizontal band
of bright white clouds just north of the equator. The image is a combination of cloud data
collected by the GOES-11 satellite and color land cover classification data.

1.1.2. Impact of convection on large scale circulations

Clouds, however, are more than mere markers of the large scale circulation as they strongly
influence and shape the circulations in which they are embedded (Bony et al., 2015). In
particular, the presence of clouds affects the radiative properties of the atmosphere and the
upward transport of moisture and heat caused by convection, the dominant source for clouds
in the tropics, affects the atmospheric state.

Interaction with radiation

An important mechanism through which clouds feedback on the climate, though not the topic
of this dissertation, is radiation. Clouds interact with radiation by reflecting the incoming
shortwave radiation and, as cloud tops are generally colder than the surface, by emitting less
longwave radiation than the surface.

As the cloud tops of shallow cumulus clouds are not significantly colder than the surface,
shallow cumulus clouds primarily affect the reflectance of shortwave radiation, which has
been shown to not only depend on cloud coverage fraction but also on the horizontal distri-
bution of clouds (Cahalan et al., 1994). Still, Muller and Held (2012) show that as shallow
cumulus clouds lead to a vertical shift in the position of longwave cooling, they can induce a
low level circulation where cooling at cloud tops induces a horizontal transport of humidity
into regions with deep convection.

2



1.1. The role of convection in the climate system

Deep convective clouds, which often span the depth of the troposphere (the portion of the
atmosphere which reaches from the surface to the tropopause), have cloud tops which are
significantly colder than the surface. A standard temperature threshold value for identifying
deep convection, for example, is −65 ◦C (e.g. Chen et al., 1996) which is about 90 ◦C colder
than the tropical mean sea-surface temperature. An increase in deep convective cloud amount
has therefore two opposing effects on the temperature: while increased reflection leads to
cooling, reduced emission leads to warming. Together, these feedbacks have been shown to
have an important, but difficult to quantify, impact on the large scale circulation (e.g. Slingo
and Slingo, 1988).

Effect of vertical transport

Atmospheric convection is essentially an upward transport process of mass, heat, moisture
and momentum.

The upward transport of humidity caused by shallow clouds has been said to partly fuel the
Hadley circulation (Stevens, 2005). Together with increased surface evaporation, the upward
transport of humidity provides the trade winds with moist air which is then transported into
the ITCZ where it has been shown to affect the width and intensity of the ITCZ (Neggers
et al., 2007).

While we have seen in Fig. 1.1 that the ascending branch of the Hadley cell is marked by
deep convection it is important to note that in fact all the upward transport within the ITCZ
is confined to the deep convective clouds, which cover only a few percent of the area. This
leads to the seemingly paradox statement that most of the air in the ascent region is actually
descending (Stevens, 2005). It would therefore be an understatement to say that the vertical
transport of deep convection influences the Hadley Cell as it really is a central component of
it.

1.1.3. Parametrization of the convective impacts

As convective clouds cannot be resolved by current climate models, which can only resolve
processes on the order of 100 km, the effect of convection and cloud-radiation feedbacks on
the larger scale circulations have to be parametrized.

Convection parameterization

The goal of convection parametrizations is to determine how the unresolved convective trans-
port affects the resolved scale temperature and humidity content.

3



1. Introduction

Convection parametrization is made possible by a scale separation between the large-scale
disturbances, which drive convection, and the convective scales. On the one hand, there
is a spatial scale separation which allows the use of an ensemble approach (Arakawa and
Schubert, 1974): each column in a climate model is small enough to cover only a fraction
of the large scale disturbance but large enough to contain a number of convective clouds.
On the other hand, there is also a temporal scale separation as convection has been shown
to adjust to changes in the forcing much faster than the forcing usually changes (e.g. Cohen
and Craig, 2004).

Together, these two scale separations allow the assumption that the convective ensemble
tends to relax the mean atmospheric state to an equilibrium state on a characteristic time
scale. While it has indeed been found that the effect of convection on the temperature can
be well approximated by a relaxation towards an empirically determined reference state this
is not true for the change in the humidity content (see section 1.4). Most current parame-
trization schemes, therefore, use a so called mass-flux approximation where the effect of
the convective ensemble on the large scale humidity state is determined from the amount of
convective updraft and the in-cloud excess of humidity with respect to the mean humidity
content.

If, as is commonly done, the convective ensemble is a deterministic function of the resolved
conditions it has been shown that this approach is missing important fluctuations resulting
from finite domain sizes (Craig and Cohen, 2006) and spatial and temporal correlations
between convective events (Majda and Khouider, 2002). Understanding the physical origin
and determining the impact of these correlations forms the main subject of this thesis.

Radiation parametrization

To parametrize the effect of clouds on radiation one starts by approximating the properties
of the unresolved clouds from the resolved conditions. First, the fraction of each grid-cell
covered by clouds, the so called cloud fraction, is determined from the relative humidity
content using an empirical function (e.g. Quaas, 2012). Then, the optical properties of the
clouds are parameterized. To this end one needs to estimate the properties of liquid water
and ice content and the effective size and shape of the respective particles. Finally, as the
result of radiative transfer will also strongly depend on the vertical overlap of the subgrid
clouds, further assumptions have to be made about the horizontal distribution of the cloud
fraction.

Once having estimated the radiative properties of the subgrid scale cloud field, the radiative
fluxes are calculated by solving the radiative transfer equation, which accounts for absorp-
tion, emission and scattering. As fully solving the radiative transfer equation is computation-
ally not feasible, several approximations have been introduced. The most commonly used
approximation is the so called independent column approximation. As the name suggests,

4



1.2. Organization of convection

each column in an atmospheric model is assumed independent of all other columns and the
radiative fluxes are calculated by solving the radiative transfer equation for each column
separately.

Missing representation of convective correlations

Even though it is well known that there exist strong correlations between clouds which im-
pact the atmospheric mean state (as we will discuss in detail in the next section), both of the
parametrization schemes introduced above rely on the assumption that individual clouds are
independent of each other. This assumption enters into convection parametrizations when
assuming that the convective ensemble is solely determined by the large scale conditions and
thus independent of the position of other convection and into the radiation scheme via the
assumptions about the horizontal distribution.

Cloud feedbacks have been identified as a major source of uncertainty in climate models and
determining the importance of convective organization or, likewise, correlations in convec-
tive fields has been proposed as a central research question for improving climate prediction
(Bony et al., 2015). In this thesis we will investigate the basic mechanisms by which con-
vective clouds organize and explore potential impacts of the arising large scale structures.

1.2. Organization of convection

1.2.1. Definition of organization

Before we can discuss properties and impact of convective organization we first need to
define what we mean by organization. Even though organization has advanced to become
a research focus in climate science, the term is often used very vaguely. Mapes and Neale
(2011) for example summarize organization as “non-randomness in meteorological fields in
convecting regions ”.

In this thesis, we say that convection is organized if it is spatially or temporally correlated to
other convection and if it is convection itself which induces these correlations. While convec-
tion can also be organized by external mechanisms, a classic example being a low pressure
system where convection is spatially correlated with the position of the cold front, we are
here interested in organization which arises despite homogeneous boundary conditions and
forcing.

To make this description of organization more clear it is best to compare it to the alternative,
unorganized case. As we will discuss in more detail later, the average amount of convec-
tion is in general determined by the large scale forcing. Assuming that the total amount of
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1. Introduction

convection is split onto a number of clouds, the unorganized and the organized case accord-
ing to our description differ in the following way. If convection is unorganized, the clouds
should be randomly distributed in space and their properties (like size and lifetime) should
be independent draws from the same probability density function. If convection is organized,
however, the different clouds depend on each other. In particular, if they are spatially cor-
related their position is no longer random but might be clustered or regular and if they are
temporally correlated they will depend on previous convection.

1.2.2. Different types of organization

In the following we will shortly review three types of organization which have been found
in observations and atmospheric model simulations.

Clusters of shallow cumulus clouds

(a) (b)

Fig. 1.2.: Snapshots of a shallow cumulus cloud field in an atmospheric model simulation, showing
(a) the synthetic cloud albedo and (b) the moisture deviation in the sub-cloud layer (color)
and cloud contours (black lines; 0.001 g m−2 and 1.0 g m−2 isolines of liquid water path)
(Seifert and Heus, 2013).

A number of observational studies suggest that shallow cumulus clouds over the ocean tend
to cluster. On investigating shallow cumulus clouds over the tropical ocean, Plank (1969)
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noted that their spatial distribution appeared to be random in the morning but became clus-
tered later in the day. Sengupta et al. (1990) found the average nearest neighbor distance to
be significantly smaller than expected from a random distribution. Clustering was also found
by Nair et al. (1998), who note that small clouds cluster around large clouds, and by Zhao
and Di Girolamo (2007), who show that 75% of the clouds have nearest neighbors within a
distance less than ten times their radius.

Clustering of shallow cumulus clouds has also been observed in high resolution numerical
simulations. An example, taken from the study conducted by Seifert and Heus (2013), is
shown in Fig. 1.2. While most of the observational studies described above are based on
reflectance fields, as emulated by Fig. 1.2(a), numerical studies allow the examination of
additional fields. In particular, Seifert and Heus (2013) show that clouds appear on top
of positive perturbations in the boundary layer moisture content, see Fig. 1.2(b). These
perturbations are caused by previous convection via cold pools which we will discuss in
more detail later.

Clusters of deep convection

Fig. 1.3.: Schematic radar echo of a squall line. A line of deep convective cells with high radar
reflectivity, marked by the dark gray or black cells at the leading edge of the squall line,
with trailing stratiform precipitation with weaker radar reflectivity, marked by the light gray
region (Houze Jr, 1993).

Deep convection frequently organizes into so called mesoscale convective systems (MCSs).
MCSs are an important type of weather system as they contribute a large fraction of the rain
falling within the tropics and the warmer midlatitudes. Usually defined in terms of large
scale precipitation clusters, which extend at least 100 km in one direction, they consist of
deep convecting clouds with strong precipitation contained within regions of stratiform high
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Fig. 1.4.: Daily accumulated precipitation amount [mm d−1] in a cloud resolving model at day 10,
day 20 and day 50 (left to right) (Bretherton et al., 2005).

level clouds and weaker precipitation (f.e. Emanuel et al., 1994; Houze Jr, 2004). They can
live for up to one day and extend up to several hundreds of kilometers.

Depending on the large scale environment, these systems can take different shapes. The most
distinct type of a MCS is perhaps the squall line: a propagating line of deep convective cells
followed by a region of high clouds, the typical radar echo of which is shown schematically
in Fig. 1.3. In addition to the spatial organization along a line, the propagation of squall lines
can be described by the successive formation of new cells at the leading front of the MCS.
New cells are triggered ahead of the, now heavily precipitating, previous generation of cells
schematically shown by the dark gray or black cells in Fig. 1.3, while the older cells merge
to form the trailing stratiform rain, the trailing light gray region in Fig. 1.3.

Self-aggregation of convection

A very different type of organization of deep convection is observed in idealized simulations
of the tropical atmosphere. Despite homogeneous initial conditions, spontaneous organiza-
tion of convection develops on timescales of days to weeks, i.e. on significantly longer time
scales than the lifetime of MCSs. Starting from convection which initially is approximately
randomly distributed, simulations exhibit the formation of convecting and non-convecting
regions which grow upscale with time. This phenomena is known as self-aggregation (SA)
of convection. An example of this is shown in Fig. 1.4, where convective active regions
are indicated by precipitation. This transition from an initially randomly distributed to a
spatially organized state of convection was first pointed out by Held et al. (1993). Start-
ing from a state of homogeneous humidity and randomly distributed convection, the domain
eventually separated into moist and dry regions with convection confined to the moist re-
gions. These regions grow upscale until eventually a steady state is reached with a single
moist, convecting region surrounded by a dry subsiding region. Since then, self-aggregation

8
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of convection, following the evolution described above, has been observed in a large num-
ber of simulations, though a steady state is not always reached in very large domains or
for short simulation times (Tompkins and Craig, 1998; Bretherton et al., 2005; Muller and
Held, 2012; Kempf , 2013; Jeevanjee and Romps, 2013; Wing and Emanuel, 2014; Muller
and Bony, 2015; Holloway and Woolnough, 2016; Hohenegger and Stevens, 2016; Tomp-
kins, 2001a; Posselt et al., 2012; Wing and Cronin, 2016). Because in reality the large
scale conditions are neither homogeneous nor constant long enough, the real atmosphere
is not expected to show full self-aggregation as observed in the idealized simulations. How-
ever, self-aggregation has been proposed to explain the mechanisms leading to the so called
Madden-Julian Oscillation of rainfall patterns in the tropical Pacific and to influence the
width and intensity of the ITCZ (e.g. Bony et al., 2015).

1.2.3. Impact of organization on size distributions

As we have seen for mesoscale convective systems in the previous section, the successive
triggering of new convective cells can lead to the formation of convective structures which
have significantly larger spatial dimensions and longer lifetimes than the individual cells of
which they are made up. Determining the impact of spatial and temporal correlations on size
distributions is one of the key points of this thesis.

If the external forcing determines the amount of convective mass-flux, the question remains
how the mass-flux is divided onto the different clouds. How many clouds will there be? What
sizes will these clouds have? How long do they live? One way to address these questions is
to determine the size and the event size distribution of convective clouds.

Size distributions, which give the average number of clouds of a given size per unit area,
can be determined using snapshots of cloud fields. Size distributions of shallow cumulus
clouds, for example, have been estimated, initially using photographs from high altitude
aircraft (e.g. Plank, 1969) and later high resolution satellite images, using either reflectance
fields determined from visible or near-infrared channels (e.g. Wielicki and Welch, 1986) or
brightness temperatures fields from infrared channels (e.g. Kuo et al., 1993), and numerical
simulations of cloud fields (e.g. Neggers et al., 2003). Shallow cumulus clouds are then
identified using a threshold value for reflectance, brightness temperature and liquid water
content, respectively. Size distributions of deep convection have also been analyzed using
satellite data (microwave channel) with precipitation as indicator for deep convection (Peters
et al., 2009).

Convective event size distributions are generally determined as the number of events with
a given amount of rain. The total amount of rain which falls during rain events has been
obtained from observations by Peters et al. (2001) and Peters et al. (2010) using vertically
pointing Doppler radar and optical rain gauge data respectively.
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A particular aspect of the observed size and event size distributions, which has both fasci-
nated and puzzled atmospheric scientists for decades, is that they often exhibit power-law
scaling.

Power-laws in shallow cumulus size distributions

Analyses of shallow cumulus clouds in satellite data have shown that the smallest observed
cloud sizes are most probable. While early studies have suggested exponential (Plank, 1969;
Hozumi et al., 1982; Wielicki and Welch, 1986) or lognormal (López, 1977; LeMone and
Zipser, 1980) decay of the size distributions, recent studies suggest a power-law decay, al-
though often only over a restricted range of scales, with clouds larger than a scale break less
common than expected (Cahalan and Joseph, 1989; Sengupta et al., 1990; Machado and
Rossow, 1993; Kuo et al., 1993; Nair et al., 1998; Benner and Curry, 1998; Zhao and Di
Girolamo, 2007). Similar results have been found in numerical simulations (Neggers et al.,
2003; Dawe and Austin, 2012; Heus and Seifert, 2013). While none of the papers which
find power-law scaling in the size distributions suggest a mechanism which leads to this
type of scaling, a number of studies note that most of the larger clouds consist of multiple
cells (Hozumi et al., 1982; Wielicki and Welch, 1986; Cahalan and Joseph, 1989; Kuo et al.,
1993).

Power-law rain cluster and event size distributions

Power-law like scaling has also been observed for rain events (Peters et al., 2001; Andrade
et al., 1998; Peters et al., 2010) and cluster size distributions of deep convection (Peters
et al., 2009), though in the latter case only within a limited range of humidity values.

Peters and Neelin (2006), Peters et al. (2009) and Peters et al. (2010) suggest that the power-
law scaling of cluster and event size distributions of deep convection is related to diverging
spatial and temporal correlation lengths. In particular, they show that the atmosphere appears
to be close to the critical point of a continuous phase transition. The importance of criticality
for deep convection was first suggested by Peters and Neelin (2006), who used satellite data
to determine the relationship between column integrated water vapor and precipitation rate
over the major tropical ocean basins. They found that the transition to strong precipitation
can be described in terms of a nonequilibrium continuous phase transition. In particular, they
found that the precipitation strength increased like a power-law above a critical water vapor
content, that the variance in precipitation strength peaked at the critical value and long range
(power-law) spatial correlations. This in good agreement with the properties of continuous
phase transitions where an order parameter (here precipitation) increases as a power-law
when the tuning parameter (water vapor) crosses the critical value, the fluctuations of the
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order parameter diverge at the critical value and the spatial decay of correlations between
order-parameter fluctuations becomes scale-free.

Peters and Neelin (2006) suggest that the spatial correlations stem from mesoscale convec-
tive systems and relate them to critical clusters found in other systems with nonequilibrium
continuous phase transition. As size distributions of critical clusters follow power-laws this
agrees well with the findings by Peters et al. (2009) and Peters et al. (2010) who show
that, in the vicinity of the critical humidity value, size distributions and rain-fall event size
distributions follow power-law scaling.

Power-law size distributions arising at the critical point of continuous phase transitions will
play an important role throughout the thesis.

1.2.4. Effect of organization on large scale state

In the previous section we have reviewed three types of observed organization of convection
(clustering of shallow cumulus clouds, mesoscale convective systems, self-aggregation) and
discussed the impact of organization on size distributions. In the following we will discuss
how the respective size distributions affect the large scale state.

The size distributions of shallow cumulus clouds have been found to have an important effect
on the earth’s radiation budget due to the impact on the albedo, i.e. the fraction of incoming
shortwave radiation that is reflected instead of being absorbed (Cahalan et al., 1994). In
particular, they showed that it is not enough to consider a field of horizontally homogeneous
clouds of a given size but that one needs to account for size distribution and spatial structure
to obtain realistic values for the albedo. They even find that, in their setup, the horizontal
variance in the cloud water field is more important for the estimated average albedo than the
cloud fraction.

While size distributions of shallow cumulus clouds will affect the radiation budget, the ob-
served critical properties of deep convection have important implications for the variability
in convection parameterization. As we have seen in section 1.1.3, traditional parameteriza-
tion schemes of deep convection, based on the assumption that the amount of convection is
solely determined by the mean state, cannot represent the observed variability. In particular,
close to the critical humidity value, the emergence of large scale clusters and the peak in vari-
ability can lead to very different amounts of convection despite the same mean atmospheric
state.

Finally, self-aggregation has received much interest in recent years due to its potential nega-
tive feedback on climate change by opposing rising sea-surface temperatures. This feedback
on rising sea-surface temperatures is caused by three factors. Firstly, self-aggregation has
been found to only occur above a critical sea-surface temperature, close to the warmest ob-
served sea-surface temperatures in the current climate (e.g. Khairoutdinov and Emanuel,
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2010). Secondly, studies of self-aggregation show that with increasing degree of organiza-
tion the free troposphere becomes increasingly dry (e.g. Bretherton et al., 2005). Thirdly, a
decrease in mean humidity results in a significant increase in the outgoing longwave radia-
tion and thus cooling of the sea-surface temperature (e.g. Hohenegger and Stevens, 2016).
While simulations agree on the increase of radiative cooling with increased self-aggregation,
observational studies suggest that the negative feedback due to longwave radiation is largely
balanced by a positive feedback due to shortwave radiation, which results from a reduced
cloud fraction and thus a reduced albedo with increasing self-aggregation (Tobin et al., 2012,
2013).

1.3. Basic properties of atmospheric convection

The aim of this thesis is to understand the reason and consequences of moist convective
organization. To understand how convection can induce spatial and temporal correlations
we first need to review some basic properties of convection.

Atmospheric convection indicates the presence of an unstable mass distribution and is as-
sociated with the upward transfer of mass by buoyant air. Note that in atmospheric science
the term convection usually refers to fluid motion that results from an instability along the
direction of the gravitational field thus excluding motion resulting from horizontal density
differences or forced convection (Emanuel et al., 1994) .

There are two fundamentally different types of convection: dry and moist convection. The
main difference between moist and dry air is that if moist air rises and cools adiabatically
it can fall below the critical temperature for condensation and gain extra buoyancy from the
release of latent heat. It is this extra supply of buoyancy stored in the water vapor content
which makes conditional instability, which we will discuss below, possible. While dry con-
vection is important for example for forming the atmospheric boundary layer, we will focus
on moist convection for the remainder of this thesis.

1.3.1. Large scale forcing

The atmosphere is rendered unstable to convection by radiation and surface fluxes. As the
atmosphere is nearly transparent to the incoming shortwave radiation, radiation warms the
earth’s surface more strongly than the atmosphere. By warming the air close to the surface
through sensible and latent heat fluxes, this results in an unstable density distribution.

The importance of convection for the atmospheric mean state becomes apparent when re-
garding the radiation budget. While the surface absorbs more energy than it emits, the at-
mosphere emits more energy than it absorbs. Unopposed by any other process this would
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induce warming of the surface and cooling of the atmosphere until a radiative equilibrium
is reached. The most important process preventing a purely radiative equilibrium is moist
convection, which transports energy into the free atmosphere by latent heating.

1.3.2. Parcel view of convection

One can determine whether the current state of the atmosphere is stable or unstable to con-
vection by evaluating whether air parcels become buoyant if lifted pseudo adiabatically, i.e.
accounting for adiabatic expansion and, in case of moist convection, condensation. Displac-
ing a parcel upward the expansion of air will lead to cooling and, in case the air becomes
saturated, condensation will lead to latent heat release partially offsetting the cooling. If,
after this hypothetical lifting, the air is colder than the surrounding air, the parcel will be
forced back down and can be considered stable. If it is lighter, however, the air parcel is
unstable and will keep rising.

There are two types of instability in the atmosphere: a parcel can be unstable to infinitely
small lifting or it can be unstable only if being lifted a finite distance. The latter type of
instability, often called conditional instability, is only possible because air can become satu-
rated by lifting and the subsequent latent heat release can allow a saturated parcel to remain
buoyant where an unsaturated parcel would be stable.

Fig. 1.5.: Schematic representation of conditional instability. An air parcel in the lower minimum
needs to be lifted to its level of free convection (LFC) before it can release its buoyant
instability and ascent to its level of neutral buoyancy (LNB). The energy necessary to lift
the air parcel to its LFC is given by the convective inhibition (CIN) while the amount of
energy the air parcel can release is called the convective available potential energy (CAPE).
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Conditional instability is the most common form of instability in the atmosphere. One can
think of a conditionally unstable parcel as a particle moving in a potential with two minima
as shown schematically in Fig. 1.5. As the particle is stable to infinitely small perturbations
it is trapped in one of the two minima, typically the one which is energetically less favorable.
Lifting the particle to height z it first becomes unstable at the level of free convection (LFC)
from which it rises and remains unstable until reaching the level of neutral buoyancy (LNB)
and where, due to friction, it eventually comes to rest. The energy necessary to lift the parcel
to its LFC is called convective inhibition (CIN) and the energy which is released by the
parcel on its way from the LFC to the LNB is called convective available potential energy
(CAPE).

The level of neutral buoyancy determines the maximum height convection can reach and
is usually just above a layer of sudden increase in atmospheric stability. For example the
maximum height convection can reach anywhere on the planet is limited by the tropopause,
above which the ozone layer heats the air by increased absorption of the incoming sunlight.

1.3.3. Life cycle of a convective cloud

In the following we will shortly describe the typical life cycle of a single convective cloud.
Besides the properties arising from the parcel view discussed above, clouds are strongly
affected by turbulent mixing and microphysical processes like the formation of rain, snow
and ice.

Byers and Braham (1949) describe the life cycle of a single deep convective cell in three
stages: cumulus, mature and dissipating, shown schematically in Fig.1.6. In summarizing
the properties of the three stages below, we will also discuss how shallow convection differs
from this view.

The cumulus stage is characterized by updrafts throughout the cloud and convergence in
the surface wind field. As conditional instability is released, intense updrafts transport heat,
moisture and also momentum from the surface into the free troposphere. The updrafts are
turbulent, with typical wind speeds of five to ten meters per second, which induces strong
mixing with the environmental air at the cloud top and boundary. This mixing, also called
entraining, of comparatively drier and colder air reduces the buoyancy. As the air rises and
cools, the continued formation of liquid cloud droplets and, below 0 ◦C, ice crystals leads
to a continuous release of latent heat. Note that as supercooled droplets can exist up to
temperatures as low as −40 ◦C, there are still liquid cloud droplets above the freezing level
in Fig. 1.6. At the end of this stage, these water droplets and ice crystals become large
enough to fall as rain. This stage is very similar for shallow and deep convection though the
updrafts in deep convection are often stronger and shallow clouds do not rise high enough
for the formation of ice particles, both of which leads to weaker precipitation in shallow
cumulus clouds than in deep convection.
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Fig. 1.6.: Schematic of the three stages of the life cycle of a deep convective cloud according to Byers
and Braham (1949): cumulus state (a), mature stage (b) and dissipating stage (c). The lower
red line indicates the 0 ◦C and the upper red line indicates the −40 ◦C isotherm. Note that
the horizontal scale is compressed by about 30% relative to the vertical scale [Figure from
Wallace and Hobbs (2006)].

The transition to the mature stage is defined by rain first reaching the surface. While updrafts
still prevail in the upper part of the cloud, precipitation leads to the formation of strong down-
drafts in the lower part of the cloud. The downdrafts result from the partial reevaporation of
precipitation which cools the air and makes it negatively buoyant and the drag precipitation
induces on the ascending air. Once the comparatively cool and dry air from the middle tro-
posphere hits the surface, it is forced to spread horizontally causing a gust front associated
with a strong drop in temperature. This phenomena, usually referred to as a spreading cold
pool, has probably been observed by everyone during the approach of a thunderstorm.

The Rain in Cumulus over the Ocean experiment (Rauber et al., 2007) has shown that trade
wind cumulus clouds frequently precipitate and, while precipitation rates are significantly
lower than in deep convection, Seifert and Heus (2013) have highlighted the importance of
the precipitation induced cold pools for shallow cumulus clouds. This suggests that there is
a mature stage of precipitating shallow cumulus clouds, more similar to the mature stage of
deep convection than has long been believed.

The dissipating stage is characterized by weak downdrafts prevailing throughout the cell.
When the air in the upper level updraft becomes neutrally buoyant, cloud water and ice is
detrained which leads to moistening and, through reevaporation, cooling of the surrounding
air. When downdrafts extend cover the entire lower cloud boundary, the cumulus cloud is
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effectively cut off the buoyant updrafts that feeds it. Wallace and Hobbs (2006) call this a
“self-destruct mechanism”.

1.4. Interaction of convective clouds

In the previous chapter we focused on the properties of a single cloud, given a conditionally
unstable atmosphere. To understand how convective clouds can induce organization, it is
important to understand how clouds affect the formation of other clouds.

Clouds influence the formation of further convection by perturbing the atmosphere in their
surrounding. In particular, they induce perturbations in the free troposphere, by advecting
moist and warm air from the boundary layer, and in the boundary layer, where the convec-
tively induced cold pools lead to temperature, moisture and velocity perturbations. In the
following we will shortly summarize the properties of these perturbations and their role in
organizing convection in the following order:

1. Convection induced temperature perturbations in the free troposphere

2. Cold pool induced perturbations in the boundary layer

3. Convection induced humidity perturbations in the free troposphere

We have sorted them according to the time scales on which the perturbations act, as the way
in which they influence the formation of new clouds in the surrounding not only depends
on the strength of the perturbations but also on how long they are present. As the cold pool
induced perturbations act on the same time scale we treat them together.

1.4.1. Temperature perturbations in the free troposphere

Convection leads to temperature and thus buoyancy perturbations by latent heat release, the
net amount of which is given by the amount of precipitation reaching the surface. While
latent heat is released throughout the troposphere it is horizontally localized to the cloud
area, which in most cases only covers a few percent.

If the atmosphere is locally stable, these perturbations are quickly dispersed by gravity
waves. Gravity waves occur between stable layers of fluids of different density, as for ex-
ample the interface of a pool of water and the atmosphere, if one of the fluids is locally
perturbed, for example by dropping a stone into the pool. When the force of gravity acts
to restore the equilibrium it causes a local oscillation which propagates as waves, visible as
spreading ripples in the water surface.

As indicated by the horizontal lines in Fig. 1.7, one can think of a locally stable atmosphere
as consisting of a number of stable layers where gravity waves can spread along the interfaces
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of these layers. Bretherton and Smolarkiewicz (1989) showed how the buoyancy differences
caused by the latent heat release of a (idealized) deep convective cloud is quickly spread by
gravity waves. Approximating the local buoyancy perturbation as completely localized hor-
izontally and varying sinusoidally in the vertical, they compared an atmospheric model sim-
ulation with theoretical calculations to show that the resulting adjustment of the atmosphere
is induced by an outward traveling discontinuous jump from a state of increased buoyancy
to the background state. This adjustment process is shown schematically in Fig. 1.7 where
the region of increased buoyancy is shown by the light gray area and the discontinuous jump
to the white background state propagates with the spreading gravity wave.

The speed with which the adjustment propagates is given by the gravity wave speed, which
depends only on the wave number of the vertical perturbation and the stratification, i.e. the
stability, of the atmosphere. For real convection, the heating source comprises a superposi-
tion of many vertical sine waves, which will induce adjustments traveling at different speeds,
reaching maximum speeds of about 50 m s−1 for deep convection in the tropics. Calculating
the associated velocity field, as indicated by the small black arrows in Fig. 1.7, shows that
the adjustment process results from an outflow at the top, an inflow at the bottom and subsi-
dence at the edge. As subsidence leads to adiabatic compression this leads to a warming and
thus stabilization of the atmosphere.

Fig. 1.7.: Schematic of adjustment of the buoyancy field (equivalent to the virtual potential temper-
ature Θv) due to cumulus heating following Bretherton and Smolarkiewicz (1989). The
transient adjustment is accomplished by a spreading gravity wave front. As the subsidence
wave moves away from the region of convection, it induces adiabatic compression (Stevens,
2005).

In an atmosphere which contains a number of convective cells, gravity waves quickly dis-
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perse temperature perturbations, leading to a horizontally almost homogeneous temperature
field, and, on average, induce domain wide subsidence, stabilizing the atmosphere. As the
resulting stabilization acts almost homogeneously within the entire domain gravity waves
mainly affect the amount of further convection.

While convection stabilizes the large scale environment on time scales given by the gravity
wave speed, the large scale forcing acts on much slower timescales. In particular, while the
large scale forcing changes on time scales of about a day or longer (Arakawa and Schubert,
1974), Cohen and Craig (2004) used an atmospheric model simulation to show that con-
vection adjusts to a change in the forcing within approximately one hour. This time-scale
separation has led to the so called quasi-equilibrium hypothesis, introduced by Arakawa and
Schubert (1974), which suggests that convection is in statistical equilibrium with the forc-
ing. As the large scale forcing renders the atmosphere unstable to convection at a given
rate, convection stabilizes the atmosphere at the same rate. In case of a constant external
forcing, this would not be surprising, but that it is a valid approximation despite continually
changing external forcing is due to the timescale separation between convective adjustment
and the time scale on which the large scale forcing changes. We have already mentioned in
section 1.1.3, that this hypothesis is a key ingredient of convection parametrization schemes
as it allows the estimation of the convective mass flux from the large scale conditions.

So far we have discussed how the combined effect of gravity waves, induced by convective
cells, results in large scale stabilization and thus affects the amount, rather than the spatial
distribution, of convection. For completeness, we note however that some studies have sug-
gested that, as gravity waves spread, they may play a role in the triggering or intensification
of convection (e.g. Mapes, 1993; Stephan et al., 2016). On comparing an atmospheric model
simulation with observations Stephan et al. (2016), for example, investigated the spreading
of gravity waves from two independent convective regions, separated by about 700 kilome-
ters. They found that the arrival of a gravity-wave-related, low level, positive vertical velocity
perturbation caused by one of the convective cells coincided with a significant increase in
convective activity at the second convective cell, potentially indicating a gravity wave in-
duced intensification of convection. As the relevance of the impact of gravity wave induced
triggering and intensification of new convection is still uncertain we will not consider this
mechanism in this thesis.

1.4.2. Boundary layer perturbations

Cold pool induced boundary layer perturbations have been found important for the triggering
and thus spatial distribution of new convection.

Cold pools have a distinct signature in temperature, moisture and vertical velocity (e.g.
Tompkins, 2001b; Schlemmer and Hohenegger, 2014; Torri et al., 2015) which enables air
at the cold pool boundaries to locally overcome CIN. The velocity perturbations stem from
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the horizontal spreading of cold air after hitting the surface which pushes the surrounding
air upwards. As this leads to strong positive vertical velocity perturbations along the cold
pool boundary, this can lead to lifting of air above the convective inhibition layer (e.g. Pur-
dom, 1976). While the center of the cold pool is marked by dry and cool air, imported from
above the boundary layer and unfavorable for convection, cold pool boundaries are mainly
marked by positive humidity perturbations. These moisture perturbations lead to a local de-
crease of CIN and increase of CAPE (Tompkins, 2001b) which allows even small vertical
velocity perturbations to trigger convection. A recent study by Torri et al. (2015) shows that
the humidity and the velocity perturbations are important at different stages of the triggering
process.

Note that cold pools, which have on average life times on the order of two or three hours and
extend within that time to radii of about ten kilometers (e.g. Tompkins, 2001b), propagate
significantly slower than the gravity waves discussed in the previous section. Thus convec-
tion on the one hand induces large scale subsidence which stabilizes the atmosphere while
on the other hand increases the probability for the formation of new convection within its
vicinity.

The central role of cold pools in triggering new convection has strong implications for the
spatial and temporal distribution of updrafts. In particular, it affects the observed size distri-
bution and the propagation of convective activity.

That clustering is likely to affect the observed size distributions can be seen in Fig. 1.2,
taken from a study conducted by Seifert and Heus (2013). In their study they use a high-
resolution simulation to investigate the organization of shallow cumulus clouds and the role
of cold pools therein. As they find that the cold pools are best seen in the humidity field,
in particular during the later stages of their evolution, Fig. 1.2(b) shows the deviation of
the vertically averaged sub-cloud layer moisture from the horizontal mean. The increase of
humidity in ring like structures marks the position of the cold pool boundaries. In addition,
clouds are indicated in Fig. 1.2(b) by contours of the cloud liquid water path. It is obvious
that most clouds are clustered on top of the cold pool induced regions of increased humidity.
This clustering makes merging of individual clouds to cloud clusters or equivalently clouds
containing multiple cloud cells, as previously observed by Hozumi et al. (1982), Wielicki and
Welch (1986), Cahalan and Joseph (1989) and Kuo et al. (1993), likely. Many of the isolines
indicating cloud boundaries close to (-20 km,-20 km) in Fig. 1.2(b) for example, are so close
to each other that it is difficult to distinguish whether they indicate single or multiple clouds.
In chapter 2 of this thesis we will investigate how size distributions are affected if cloud size
distributions are really size distributions of cloud clusters, i.e. of clouds forming too close to
each other to be distinguished.

Triggering of new convection not only affects the spatial distribution of updrafts but also
leads to the spreading of convective activity. Tompkins (2001b) analyzed snapshots of suc-
cessive boundary layer temperature fields and showed that most of the convective events
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occur on the cold pool edges of previous convective events, see Fig. 1.8. A full discussion
is given in Tompkins (2001b) but the induced spreading of convection can be exemplified
by focusing on convective activity spreading from a preexisting cold pool which must have
originated from convection situated somewhere near A. At time zero, three events (B, C, D)
have been triggered by this cold pool. One and a half hours later, the cold pool stemming
from convection close to A is no longer discernible, while the cold pools resulting from the
events at B,C and D have grown substantially. Tompkins (2001b) note that the outflow of
events C and D trigger two new events, M and N, where they meet the outflow of a convec-
tive event at L. Thus, convection has spread within the domain: originally located close to
A, it triggered new convection at C and D which in turn triggered convection at M and N.

Fig. 1.8.: Two successive snapshots of temperature perturbations [K] at a height of 50 m in an atmo-
spheric model simulation of deep convection performed by Tompkins (2001b). The right
snapshot is taken 90 minutes after the left snapshot.

1.4.3. Humidity perturbations in the free troposphere

On transporting moist boundary layer air into the free troposphere, convection induces lo-
cal humidity perturbations. While some part of upward transported humidity will fall out
as precipitation, and induce the formation of cold pools as discussed above. The remaining
part of the upward transported humidity, however, will lead to a local moistening of the free
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1.4. Interaction of convective clouds

troposphere. Bretherton and Smolarkiewicz (1989) showed that these moisture perturbations
are spread by turbulent mixing and detrainment on a much longer time-scale than buoy-
ancy differences and Tompkins and Craig (1998) found that it took about 30 days in their
simulation to remove humidity perturbations as they have to be vertically advected through
the free troposphere by large scale subsidence. Thus, while the horizontal temperature field
in the tropics is almost homogeneous, the moisture distribution is found to be only locally
correlated.

The longevity of humidity perturbations is important as the horizontal distribution of hu-
midity affects the spatial distribution of convection. In particular, Parsons et al. (2000)
and Redelsperger et al. (2002) showed that anomalously dry air suppresses the formation
of deep convection. Using observational and modeling data respectively, they showed that
the intrusion of dry air into a domain with active deep convection strongly decreased the
likelihood for the formation of further deep convection. Testing the sensitivity to the ver-
tical distribution of humidity distribution suggests that deep convection is most sensitive
to the free tropospheric humidity content (Derbyshire et al., 2004; Holloway and Neelin,
2009; Bretherton et al., 2004). Derbyshire et al. (2004), using different single column and
cloud resolving model simulations, found that deep convection was predominant only for
high midtropospheric humidity. Holloway and Neelin (2009) and Bretherton et al. (2004)
evaluated observational data which also showed that high free tropospheric moisture con-
tent is favorable for deep convection, and thus high precipitation rates, while boundary layer
moisture had no significant influence on convection.

This dependence of convection on humidity is important as idealized simulations of the
tropical atmosphere, based on the so called radiative-convective equilibrium (RCE) approxi-
mation, show self-amplification of humidity perturbations. In RCE simulations, the tropical
atmosphere is represented neglecting dynamical forcing, rotational effects, temporal varia-
tions resulting from the diurnal cycle and, in addition, the lower boundary is assumed to
be an ocean surface of fixed temperature. If started from slightly perturbed, homogeneous,
initial conditions, humidity perturbations in RCE simulations, in contrast to temperature and
cold pool perturbations, have been found to amplify and grow. Once started, the simulations
often reach a new equilibrium state, with a single, moist and convecting region surrounded
by a dry, subsiding region. To reach this new equilibrium takes days or weeks, however,
which is significantly longer than the life time of a single deep convective event.

Instability of the tropical atmosphere to humidity perturbations is also found in weak-temperature
gradient (WTG) simulations. Simulating a small subdomain within a large tropical region,
the response of the atmosphere to a temperature perturbation can be expressed as a relax-
ation of the temperature to a reference profile, as any perturbations in a large domain would
be quickly removed by a compensating vertical velocity. Compared to temperature pertur-
bations, humidity perturbations are long-lived and thus the humidity profile cannot simply
be relaxed to a reference profile. In fact, besides the resolved humidity perturbations caused
by convection, humidity in a large domain would also be affected by the compensating ver-
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tical velocity. Determining a, hypothetical, vertical velocity necessary for the temperature
adjustment, mass continuity allows to determine the amount of inflow, outflow and vertical
transport of humidity. If there is any inflow from the outside, a reference humidity profile is
used.

Introduced by Sobel et al. (2007), the stability of humidity perturbations in WTG simulations
can be tested with the two following steps. First, an equilibrium humidity profile is deter-
mined by using a small domain RCE simulation1. Second, the stability of the atmosphere is
tested by reducing or increasing the humidity content. Depending on setup details like sea-
surface temperature and strength of surface fluxes, the atmosphere responds in two different
ways. It either returns to a humidity profile similar to the unperturbed profile, showing that
the atmosphere is stable to the perturbation, or the initial humidity perturbation amplifies
until a new, dry or moist, equilibrium state is reached. While deep convection persists in the
moist state, no convection occurs in the dry state. As the results obtained by Sessions et al.
(2010) suggest that the final dry or moist state does not depend on the amplitude of the per-
turbation this indicates that the atmosphere is bistable. An atmosphere that supports a stable
moist and a stable dry state is generally referred to as an atmosphere with multiple equilibria.
Multiple equilibria have been observed in a number of subsequent studies (Sessions et al.,
2015, 2016; Emanuel et al., 2014).

1.5. Idealized models of convection

In the main chapters of this thesis we will address the question of how the properties of
convection, reviewed above, lead to the observed power-law size distributions and self-
aggregation. To this end we will represent the respective mechanisms using minimally sim-
ple models. As a number of conceptual models, fulfilling different aspects of this objective,
have already been introduced, we will now give a short review of these models. In particular
we categorize the models according to their original purpose and, after shortly describing
the formulation of each model, discuss the relation to the objective outlined above.

1.5.1. Models for convection parameterization

As already summarized in section 1.1.3, one of the main reasons for introducing simple mod-
els of convection is the need to represent convection in atmospheric models whose resolution
is too coarse to resolve convection explicitly. The focus of these models is to describe the
convective response triggered by the large scale state of the atmosphere and to determine how

1As self-aggregation only occurs for large domain sizes with a minimal horizontal domain length of about
200-300 km (e.g. Bretherton et al., 2005), it does not affect the equilibrium profiles.
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the resulting convection feeds back onto the larger scales. As we have noted above, com-
mon parameterization schemes do not account for spatial or temporal correlations between
different convective cells.

To remedy this shortcoming, a number of studies have used two dimensional lattice models
to represent sub-grid scale convection in global circulation models (Majda and Khouider,
2002; Khouider et al., 2010; Bengtsson et al., 2011; Dorrestijn et al., 2013). Each site of
the lattice is in one of a small set of states, for example clear sky and cloudy. As grid-
cells represent single clouds, they have length scales on the order of one kilometer. By
specifying the transition rules, lattice models provide an easy way to include spatial and
temporal correlations between convective events.

Majda and Khouider (2002) were the first to describe convection in this way, using two
possible states: convection inhibited and potential for deep convection. Randomly choosing
a site, this site flips with a certain probability. While the probability for a site with potential
for deep convection to flip to the convection inhibited state is fixed, the probability for a site
to flip in the opposite direction depends on the large scale state and on the neighboring sites.
In particular it is more likely to switch form a convection inhibiting state into a convection
permitting state if the large scale forcing favors convection and the site is surrounded by
other convection permitting sites. One time step is given by having, on average, chosen each
grid site once. These rules are defined in an ad hoc manner.

In contrast to Majda and Khouider (2002), in the models introduced by Khouider et al.
(2010), Bengtsson et al. (2011) and Dorrestijn et al. (2013) all sites are updated at the same
time with the transition probabilities depending on the model state of the previous time step
but not on any state before that. Note that the transition rates may still depend on large scale
variables supplied by the atmospheric model or on neighboring states.

Khouider et al. (2010) use a set of four possible states (clear sky, congestus cloud, deep
cloud, stratiform cloud) with transition rates which depend on the state at the previous time
step and the environment but not on the states of the neighboring sites. The different states
allow the model to mimic the natural life-cycle of a cloud and the dependence of cloud type
on the mean atmospheric condition, in particular CAPE and relative humidity content of the
middle troposphere. Again the transition rates are motivated by physical intuition.

Bengtsson et al. (2011) used a cellular automaton (CA) to include interaction with neigh-
boring sites but limited the set of states to two (clear sky and cloud). The transition rules
are based on the rules of the famous game of life cellular automata model (see Chopard and
Droz (1998) for an introduction to cellular automata and a description of the game of life
CA): a cloudy site will remain unchanged if, at the last time step, it had two or three cloudy
neighbors, while a non-cloudy site becomes cloudy if it is surrounded by exactly three neigh-
boring cloudy sites. As their aim is to represent the formation of convective clouds triggered
by quickly traveling gravity waves, they use a short time-step of only two minutes. To cor-
rectly represent cloud life times, which are on the order of hours, each cloudy site survives
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exactly 30 time steps in unfavorable conditions (i.e. other than two or three cloudy neigh-
bors).

In contrast to the previously described models, Dorrestijn et al. (2013) determine the tran-
sition rates from an atmospheric model simulation. They discretize the model domain and
define five different states, one clear sky and four cloud type states, according to rain rate
and cloud height. Comparison of successive time steps allows them to estimate the transition
rates. In addition to simple averages over all time-steps, they condition the transition rates on
external conditions and on nearest neighbor states. Comparison of the resulting models with
and without nearest neighbor interaction shows that spatial coupling is necessary to obtain
realistic variability in the coverage fractions of the different cloud types.

While validation of these schemes has focused on whether the lattice models lead to an im-
proved representation of variability and cloud fraction, they have, to the best of our knowl-
edge, not considered the resulting size distributions. The simple way in which these lattice
models include interaction between different convective clouds will however serve us as a
starting point for introducing a model that describes spreading of convective activity in chap-
ter 3. In contrast to the ad hoc way in which the transition rules are defined above, we will
motivate our transition rules by a detailed examination of the cold pool triggering process.

1.5.2. Model of cold pool interaction

Instead of defining ad hoc transition rules to represent spatial and temporal correlations as in
the previously reviewed lattice models, Böing (2016) introduced a coupled two layer lattice
model which includes some of the key dynamical features of precipitating convection, in
particular cold pools. The aim of the model is to assess what determines the spatial pattern
of shallow cumulus clouds.

Each lattice site contains particles which, in the lower layer, represent air parcels that are
becoming unstable to moist convection and in the upper layer, air parcels undergoing moist
convection. Radiative cooling is modeled by randomly adding particles to the lower layer.
Convection starts when the particle number in a lower layer site exceeds a threshold and
is modeled by transporting all the particles of that site to the corresponding upper layer
site. After a given delay time, upper layer particles turn into precipitation particles, which
disappear after a fixed length of time. Rainy clusters are defined as connected sites which
precipitate. Particles in the lower layer are blown away under rainy clusters to mimic the
effect of cold pools. As the velocity is chosen to be largest below the center of the rainy
cluster and decreases with increasing distance, cold pools can lead to a local increase of
particle density and thus the triggering of new convection.

While visual comparison with simulations and observations shows realistic looking cloud
fields, the model introduced by Böing (2016) is still comparatively complicated and relies on
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the specification of a large number of free parameters. We will argue in chapters 2 and 3 of
this thesis that an even more basic representation of cold pool clustering and triggering can
explain the emergence of power-law scaling.

1.5.3. Models to explain power-law scaling and self-aggregation

Power-law scaling

The two models for convection investigated by Muller et al. (2009) and Stechmann and
Neelin (2014) were introduced with the aim to explain the observed power-law pick up of
precipitation above a critical humidity content and the peak in variance at the critical value,
as observed by Peters and Neelin (2006), and the power-law distribution of precipitation
events (Peters et al., 2001). The models contain no spatial information but represent the
mean humidity content and precipitation strength on scales of about 20 km.

The model introduced by Muller et al. (2009) has three basic properties. First, it assumes
that the humidity content of the boundary layer and the free troposphere are uncorrelated
and each drawn from a Gaussian distribution with the same mean and standard deviation.
Second, convection only occurs if the boundary layer humidity content crosses a given hu-
midity threshold. Third, the height of the resulting convection and therefore the amount
of precipitation is a linear function of the sum of the two humidity values. Based on only
these three properties, they find that repeated drawings can roughly reproduce the functional
dependence of precipitation rate and variance on humidity but not the power-law scaling.

Also based on a precipitation onset above a critical humidity content, Stechmann and Neelin
(2014) introduce a time evolution equation for the humidity content, which evolves accord-
ing to a stochastic differential equation. In the absence of convection, the humidity content
increases, representing evaporation at the surface, while in the presence of convection hu-
midity decreases, as water condenses and falls out as precipitation. Convection and precipi-
tation rate are, similar to the lattice models introduced above, characterized by two (or three)
states: no convection and deep convection (and stratiform convection). In case of two pos-
sible states, the state of deep convection is first entered when the humidity content crosses a
critical threshold and left when it falls below a second threshold, lower than the first thresh-
old. During the state of deep convection a constant precipitation rate is assumed. Analytic
calculation shows that the event size distributions follow a power-law with an exponent of
-1.5, above a lower and below an upper cut-off. While the functional form compares well
with the observational data the exponent is larger than the observed power-law exponents.

While both models are thus able to approximately reproduce at least some of the observa-
tions we want to explain in this thesis we note two draw-backs. First, neither of the models
considers spatial interactions though these seem to be intimately related to the other obser-
vations (Peters et al., 2009). Second, both models simply assume a critical humidity value
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without explaining its origin, even though the existence of the critical value is one of the
most interesting observations.

Self-aggregation

While the models discussed so far consider the properties of interactions of single convec-
tive events, the models introduced by Bretherton et al. (2005), Craig and Mack (2013) and
Emanuel et al. (2014) show how enhanced or decreased convective activity can contribute to
a positive feedback loop which allows moist or dry perturbations to grow and thus leads to
self-aggregation.

Bretherton et al. (2005) use a semi-empirical model to determine the processes which lead to
the origin of bistability in the humidity content. They show that while convection is increased
in moist regions, increased convection leads to a positive feedback from radiation, surface
fluxes and horizontal advection.

The feedback of convection on humidity perturbations in the model proposed by Craig and
Mack (2013) is motivated by the process of detrainment. Convection, occurring preferen-
tially in regions with a moist free troposphere, will transport humidity out of the boundary
layer into the free troposphere, as increased surface fluxes quickly remoisten the boundary
layer this induces a net increase in the humidity content. Again this positive feedback leads
to bistability in the humidity content. They show in addition that, assuming that the horizon-
tal exchange of humidity can be described as diffusive, self-aggregation can be described by
a process called coarsening.

Emanuel et al. (2014) showed that positive (negative) perturbations in the tropospheric hu-
midity content can lead to reduced (increased) radiative cooling. These temperature pertur-
bations are quickly removed by gravity waves which induce increased subsidence in the cool
regions and thus a decrease in convective mass flux which, in turn, leads to a decrease in
moistening, yielding a third possible explanation of the bistability of the atmosphere.

Our objective in chapter 4 of this thesis is to describe the spatial evolution of self-aggregation.
So far, only the model introduced by Craig and Mack (2013) can describe the spatial evo-
lution which has however two important limitations. First, analysis of simulations showing
self-aggregation suggest that the relevant feedback mechanism might be different from the
feedback proposed in Craig and Mack (2013) and second, their assumption of a diffusive
interaction term lacks physical motivation.
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1.6. Outline

The aim of this thesis is to introduce physically motivated but maximally simple models
to give quantitative predictions of the following observed phenomena (reviewed in section
1.2.2):

P1 Size distribution of shallow cumulus clouds and the impact of cold pool induced clus-
tering

P2 Spreading of convective activity, the role of cold pool triggering and its relation to the
continuous phase transition of precipitation

P3 Spatial evolution of self-aggregation

The three phenomena are different manifestations of convective organization. We have se-
lected them due to their important feed backs on the larger scales, in particular their impact
on the radiative properties of the atmosphere, the expected variance in convective activity
and the mean humidity content of the atmosphere (1.2.4).

We base these models on the properties of convection reviewed above (1.4), from which we
infer the following simplified view on convectively induced spatial and temporal correla-
tions: while the average amount of convection is determined by the large scale forcing, the
spatial and temporal evolution of convective cells on short time scales is determined by cold
pools while on larger time-scales it is determined by free tropospheric moisture perturbations
to which convection itself contributes by an upward transport of humidity.

Comparison of our objective with the theoretical models introduced in section 1.5 shows
that different models already address parts of these questions. On the one hand, temporal
and spatial correlations between convective events have been represented in lattice models,
though with either intuitively chosen or complicated transition rules. On the other hand,
models which have attempted to explain power-law scaling in size distributions and self-
aggregation generally lack spatial interactions, with one noted exception (Craig and Mack,
2013). The models we introduce in this thesis will therefore, at least partly, build on some of
these models.

The outline of the thesis is as follows: we dedicate one chapter to each of the observed
phenomena with the order of chapter given by the listing above. For better readability we
will begin each chapter with a short literature review on the observed properties and the
properties of the associated simple model.

To address P1 in chapter 2 we start by assuming that size distributions result from merging of
randomly distributed cloud cells. We test the resulting implications on a large satellite data
set from which we deduce that we need to account for clustering. To determine the effect of
clustering we introduce a simple model which reproduces the spatial distribution of clouds
observed in the satellite scenes.
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At the beginning of chapter 3, in which we address P2, we review results from Peters and
Neelin (2006) and some aspects of non-equilibrium phase transitions and self-organized crit-
icality. This prompts us to introduce a 2D lattice model which represents spreading of con-
vection caused by cold pool triggering and which shows an underlying phase transition of
convective activity as a function of trigger probability. We then introduce methods to deter-
mine the free parameters from an atmospheric model simulation and compare the spreading
observed in the atmospheric model with spreading observed in the lattice model.

Based on the results of the previously introduced models of self-aggregation (1.5.3), we
address P3 in chapter 4 by determining under what conditions the spatial evolution is indeed
described by coarsening (Craig and Mack, 2013). To this end, we review the proposed
positive feedbacks and introduce a physical explanation for the horizontal interaction term.
Using these results we compare properties of three modified versions of the original self-
aggregation model introduced by Craig and Mack (2013) to properties frequently observed
in radiative-convective equilibrium simulations.

Finally we summarize our main conclusions and discuss the relation between the three dif-
ferent models in the first part of chapter 5. In the second part, we discuss some additional
tests necessary to verify the simple models and also how one could proceed to use the here
introduced models for an improved representation of convection in climate models and to
increase our physical understanding of how organization can impact large scale circulations.
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2.1. Introduction

Size distributions of shallow cumulus clouds have been frequently shown to exhibit power-
law scaling, although often only over a restricted range of scales (see section 1.2.3). In
this chapter, we investigate the relation of the observed power-law scaling to the geometrical
phase transition of percolation. Percolation has already been shown to, at least partly, explain
observed properties of size distributions in deep convection (Peters et al., 2009). We start by
a short review on percolation, which we base on the books by Stauffer and Aharony (1994)
and Gould et al. (2005).

2.1.1. Percolation

Percolation, which discusses the properties of randomly distributed objects and the clusters
they form through overlapping, is a geometric problem rather than a physical one. While
its rules are readily explained in a few sentences, the arising behavior is far from trivial and
only few analytic solutions are known in dimensions higher than one.

Imagine an infinitely large square lattice, where each site is either occupied with probability
p or not occupied with probability 1 − p. As p has the same value for all lattice sites, the
lattice sites are completely independent of each other and the total fraction of occupied sites,
which we call the coverage fraction, is also given by p. An example for a small square lattice
with p = 0.30 is shown in Fig. 2.1, where the black sites correspond to occupied sites.

All occupied sites which are connected via nearest neighbors correspond to a cluster, indi-
cated by the red circles in Fig. 2.1. The properties of these clusters play a central role in
percolation theory. It can be readily believed that the size of the formed clusters tends to
increase with increasing coverage fraction. In an infinite domain, the first appearance of
an infinitely large cluster (also called percolating cluster) is marked by a phase transition
at p = pc. Below the critical coverage fraction pc, also called the percolation threshold,
the probability for an infinite cluster is zero, while the probability is one above the critical
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Fig. 2.1.: Random realization of a small square lattice with occupation probability p = 30%. Occu-
pied sites are shown in black and the resulting clusters of occupied sites are encircled in
red.

coverage fraction. In a finite domain, the phase transition is marked by a sharp increase in
the probability for a cluster which spans the entire domain. The value of the percolation
threshold for the square lattice model introduced above is not known analytically but has
been estimated to be approximately pc ≈ 0.59.

Phase transitions in general are described by a control parameter and an order parameter.
As the control parameter is increased, in case of percolation the control parameter is the
coverage fraction, an order parameter, which describes the macroscopic state of the system,
changes abruptly. A common choice for the order parameter in percolation is the strength of
the percolating cluster Ps, which is given by the fraction of occupied sites which belong to
the infinite cluster. Below pc there is no infinite cluster and thus Ps = 0. It has been found
that Ps is still zero at the percolation threshold but increases as a power-law above:

Ps(p) ∼ (p− pc)β (2.1)

where β is one of the critical exponents of the phase transition and β = 5/36 for 2D perco-
lation. The phase transition is called a continuous phase transition because, as the control
parameter passes through the critical probability, it shows a singular albeit continuous be-
havior.

Apart from a power-law increase of the order parameter, the percolation threshold is also
marked by a power-law decay in the cluster size distribution. In the square lattice model, the
size of a cluster s is given by the number of occupied sites which make up the cluster and
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the cluster size distribution ns is defined as the number of clusters with size s per lattice site.
At criticality

ns(pc) ∼ s−τ (2.2)

where τ is an other critical exponent with τ = 187/91 in two dimensions.

The applicability of percolation to physical systems is largely due to the universality of many
of the properties listed above. Universality refers to the insensitivity of certain quantities
of continuous phase transitions, foremost critical exponents like β and τ , to details of the
setup. For example, while we have above introduced percolation on a 2D square lattice,
the functional dependence and the values of the critical exponents in the scaling relations
given in Eqs. 2.1 and 2.2 are the same for different lattice structures (triangular, hexagonal,
etc.) or for the continuum case where, instead of sites in a lattice, objects (e.g. disks) are
randomly distributed within a domain until a given fraction of the domain is covered. Note
however that the percolation threshold is non-universal and that the critical exponents depend
on dimensionality. All models which have the same universal behavior are said to belong to
a universality class and it is commonly assumed that all continuous phase transitions belong
to a finite set of universality classes (e.g. Hinrichsen, 2006).

For the following discussion of shallow cumulus size distributions in the context of contin-
uum disk percolation, we also note that the universal properties of percolation have been
suggested to remain unchanged if the individual disks are drawn from a power-law distri-
bution, at least as long as the power-law drops fast enough, (Sasidevan, 2013) and if the
disks are not randomly distributed in space but attract each other (Duckers and Ross, 1974;
Cooper et al., 1989; Martin et al., 1987) though in the latter case, results have been found to
be inconclusive.

As cloud fractions in shallow cumulus cloud situations are in general much smaller than the
2D percolation threshold of continuum disk percolation (approximately 68%; e.g. Mertens
and Moore, 2012), we suggest that subcritical percolation is more appropriate for the de-
scription of cloud fields. While universal behavior is usually confined to the behavior near
criticality, Ding et al. (2014) found some degree of universality in a numerical analysis of the
cluster size distributions for coverage fractions smaller than the critical coverage fraction.

In particular, on comparing cluster size distributions for different lattice types and different
coverage fractions they find that all size distributions are described by

log ns(p) = as− b log s+ c. (2.3)

Rewriting (2.3) as
ns(p) = exp(as)s−b exp(c)

shows that, as in the critical case, the cluster size distribution ns(p) scales with cluster size
s as a power-law, with an exponential cutoff (note that a is expected to be negative). The
parameters a, b and c depend on coverage fraction such that on approaching the critical
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fraction, the power-law regime steepens and extends to larger cluster sizes. Ding et al.
(2014) moreover show that the dependence of the parameters on coverage fraction shows
some universal properties, for example the functional dependence of a on coverage fraction
is independent of lattice type.

In this chapter, we first investigate the hypothesis that size distributions of shallow cumulus
clouds are described by subcritical percolation by testing whether the properties predicted by
subcritical percolation are observed in cloud size distributions obtained from a large set of
satellite images. We find agreement in the shape of the distribution and its sensitivity to cov-
erage fraction. Using a modified percolation model that includes an underlying exponential
distribution of convective cell size and a simple representation of cell clustering, we obtain
quantitative predictions of the power law slope and the position of the scale break.

2.2. Data

2.2.1. Satellite Data Set

Using satellite data we now test whether observations of shallow cumulus cloud fields yield
cloud size distributions with a functional dependence as predicted by subcritical percola-
tion including the sensitivity to coverage fraction. To determine size distributions from
satellite scenes, a reflectivity threshold is chosen for each scene, dividing the domain into
cloudy (high reflectivity) and background (low reflectivity) pixels and then defining clouds
as groups of nearest neighboring cloudy pixels. The 152 satellite scenes chosen for this
study were previously used by Zhao and Di Girolamo (2007) for a comprehensive study
of trade wind cumulus clouds over the tropical southwestern Atlantic ocean 1 The data was
taken by a multispectral imager, the Advanced Spaceborne Thermal Emission Reflection
Radiometer, on-board the EOS Terra spacecraft. All scenes use the 3N near infrared chan-
nel (0.78 µm to 0.86 µm), have a spatial resolution of 15 m and cover an area of approx-
imately 60 km× 60 km, but are divided into four equal subregions for our analysis to im-
prove sample size. The same thresholds as in the preceding study are used and an example of
a 10 km× 10 km subsection of an image after thresholding is shown in the inset in Fig. 2.2,
with cloudy pixels in white and background pixels in black.

2.2.2. Cloud Size Distributions

The cloud coverage in the analyzed satellite images varies from 0.1% up to nearly 40% so to
test the hypotheses that the cloud size distributions are sensitive to coverage fraction and that,

1The complete list of filenames and thresholds can be found in the study by Zhao and Di Girolamo (2007).
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for a given coverage fraction, the size distribution fits Eq. 2.3, we divide the satellite scenes
into subgroups according to cloud fraction. To this end we first sort the scenes by cloud
fraction and then divide them into 15 subgroups, each with the same number of scenes. The
size distributions ns of four of these subgroups are shown in Fig. 2.2, together with best
fit curves following Eq. 2.3. Here, ns is the number of clouds with areas in the interval
[s, s + ∆s) per domain area and divided by ∆s. All size distributions are calculated using
exponentially increasing bin-widths. We only consider bins for which the number of clouds
is larger than the number of satellite scenes in each subgroup and note that among the thus
neglected clouds are clouds with areas significantly larger than expected from Eq. 2.3.

104 105 106 107

s [m2]

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

n
s
(p

)

〈
p
〉
 =  2%〈

p
〉
 =  4%〈

p
〉
 =  8%〈

p
〉
 = 16%

0 2 4 6 8 10
x [km]

0

2

4

6

8

10

y
 [

km
]

Fig. 2.2.: Cloud size distributions determined from satellite scenes most similar in cloud fraction
(colored lines) and best fit curves following Eq. 2.3 (dashed black line) with the average
coverage fraction given in the legend. The inset shows a section of a sample satellite scene.

Inspection of Fig. 2.2 shows that for each subgroup the size distribution can be fitted by
Eq. 2.3, as predicted by subcritical percolation theory (Ding et al., 2014). The dependence
of the fitted parameters a, b and c on cloud fraction is shown in Fig. 2.3. According to
Eq. 2.3 parameter a determines the position of the exponential drop-off, in particular as a
decreases the range of power-law scaling extends to larger clusters, while an increase in
parameter b corresponds to a steeper power-law decay and an increase in parameter c is
related to an increase in the total number of clusters. Figure 2.3 therefore shows that the
size distribution changes with increasing coverage fraction in a systematic way: the power-
law scaling extends to larger clusters and the power-law exponent increases. While this is
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Fig. 2.3.: Dependence of the size distribution parameters in the satellite data (black lines) and in
the modified subcritical percolation model (colored lines) on coverage fraction p, where
different colors correspond to different clustering widths cw.

in qualitative agreement with lattice percolation (Ding et al., 2014), power-law scaling is
already apparent at lower cloud fractions than expected from standard percolation theory.

In percolation, power law size distributions are associated with the presence of large ob-
jects that occur when the density is great enough that merging of the randomly distributed
elements becomes frequent. An obvious hypothesis why merging could be more common
is the observed clustering of clouds (Sengupta et al., 1990; Nair et al., 1998; Zhao and Di
Girolamo, 2007; Seifert and Heus, 2013). As we have reviewed in section 1.4.2, convective
updrafts are organized by boundary layer circulations, particularly those created by previous
generations of clouds via cold pools. This motivates us to construct a percolation model that
favors the presence of clouds near existing cells.
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2.3. Model

2.3.1. Modified Continuum Percolation Model

To evaluate the hypothesis that clustering will lead to power law scaling at smaller coverage
fractions, we introduce a modified version of the standard continuum percolation model
with a simple representation of cloud clustering. We will not attempt to model the shapes of
individual convective cells, which will be represented by circular disks, and will focus the
analysis on larger clouds that consist of overlapping disks. A potentially complicating factor
is that individual cells are not of uniform size, but appear to follow a size distribution closer
to exponential (Kuo et al., 1993). An exponential distribution of cell size is also predicted
by theory and numerical simulations for deep convection (Craig and Cohen, 2006; Cohen
and Craig, 2006; Scheufele, 2014). Rather than distributing identically sized disks, disk
sizes are therefore drawn from an exponential distribution with expected value 〈sd〉 = sdm.
Clustering is included by increasing the probability for the appearance of a new cell center in
the vicinity of existing clouds. Two parameters will be introduced to describe the clustering:
the clustering strength cs, which determines how much the probability is increased, and the
clustering width cw, which determines the area of increased probability.

The model successively distributesN cloud disks within a square domain of length L. To es-
timate N we use the results from Chandrasekhar (1943) and Shante and Kirkpatrick (1971),
who show that the fraction of area covered by N randomly distributed disks with area sdm
within a domain of size L2 is given by

p = 1− exp(−Ns
d
m

L2
) (2.4)

in the limit of a infinite domain and a finite but nonzero density of disks. Solving for N we
can estimate the number of disks necessary to cover a fraction p of the domain.

The area of the individual cells sdi with i in {1, ..., N} are drawn from the exponential dis-
tribution with expected value 〈sd〉 = sdm and the corresponding radius rdi is computed from
the area. To avoid larger clouds completely overlapping smaller clouds, we sort them in
descending order before distributing them successively.

Clustering is included by increasing the probability for the appearance of a new disk center
in the vicinity of existing disks. To this end, the cloud centers xi = (xi, yi) are no longer
distributed independently but are drawn from a two-dimensional probability density function
(PDF) fPDFi (x, y), with x and y in [0, L], which is constructed from disks {1, ..., i − 1}
through the following steps:

1. fPDFi (x, y) = 1 within the entire domain, i.e. ∀x, y, to have a constant background
probability
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2. Size distribution of shallow cumulus clouds

2. fPDFi (x, y) = cs within the surrounding of all previously distributed disk centers, in
particular ∀x, y for which |x−xj| ≤ cw ·rdj for j in {1, ..., i−1}, to induce clustering

3. fPDFi (x, y) = 0 within the area covered by the previously distributed disks, i.e. ∀x, y
for which |x − xj| ≤ rdj with j in {1, ..., i − 1}, to avoid new cloud centers to fall
within other clouds

4. fPDFi (x, y) is normalized using
∫∫

fPDFi (x, y)dxdy = 1 to obtain a PDF

Thus the center of the first disk is drawn from a uniform distribution, as in the standard
percolation model, but the distribution of all further disks is modified by the previously
distributed disks.

Note that we use Eq. 2.4 only to estimate the number of clouds, the actual coverage fraction
is determined from the final model realizations. This is important as we observe increasing
deviations from Eq. 2.4 for large coverage fractions in consequence of clustering.

The resulting model is completely determined by the global coverage fraction p and three
parameters that are assumed to be local properties of the cells and independent of the overall
cloud fraction: the mean area of the individual convective cells sdm and the cluster width
factor cw which gives the maximum distance to the cloud center where the probability is
increased by cluster strength factor cs. We will refer to these three parameters as the local
parameters in the following.

2.3.2. Estimation of the Local Parameters

Estimates for the three local model parameters are deduced from the satellite data as fol-
lows. We first estimate the average cell size sdm by assuming that for satellite scenes with
very low cloud fractions the vast majority of clouds consist of a single, non-overlapping
cell. In this case, sdm is simply the total cloud area A divided by the number of clouds N .
Figure 2.4 shows N versus A for all satellite scenes. As expected, the number of clouds
increases rapidly with covered area for small cloud fractions, while for larger cloud frac-
tions the formation of clusters becomes important and the number of clouds increases more
slowly. The mean cell size sdm is estimated from a linear fit for the smallest cloud fractions,
indicated in Fig. 2.4, which gives a mean radius of approximately rdm = 60 m (corresponding
to sdm = 11.3× 103 m2).

To estimate the clustering parameters we find values that approximately reproduce the radial
distribution functions (RDFs) calculated from the satellite data. RDFs have previously been
used to study the spatial distribution of clouds (e.g. Cohen and Craig, 2006) and describe
how the number of cloud centers varies as a function of distance from a reference cloud
center. It is rescaled such that a completely random distribution of clouds would give a value
of one for all distances. RDFs of all satellite scenes with cloud fractions between 4% and

36



2.3. Model

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4. 0
covered area [108 m2]

0

1

2

3

4

5

n
u
m

b
e
r 

o
f 

cl
o
u
d
s 

[1
0

3
]

0 5 10 15 20 25 30 35 40 45 50
p [%]

Fig. 2.4.: Number of clouds and area covered by the clouds for each satellite image (gray dots).
Satellite scenes chosen for the linear fit (dashed line) to determine the average cell size are
highlighted in red.

6% are shown in Fig. 2.5. Within a certain distance of the origin we find, for all scenes, that
RDF(r) is significantly larger than one, indicating a clustering of cloud centers.

We now identify the parameter pair cw and cs that leads to the best correspondence with the
satellite RDFs at small radii, where the sensitivity is largest. In addition to the satellite data,
Fig. 2.5 shows the RDFs calculated from model output with cw = 2.25 and four different
values for the clustering strength cs with the coverage fraction set to p = 5%. The shape of
the model and observed RDFs are qualitatively similar.

We find however that the RDF depends not only on the distance r but also on the cloud
fraction. If, as assumed, the clustering parameters are local cloud properties that do not
depend on total cloud fraction, the same values of cw and cs should apply to the entire
data set. As we find that the RDF for r < 200 m is very sensitive to computation details,
we compare satellite and model RDFs at r = 265 m to estimate our parameters (inset of
Fig. 2.5). We find that cs = 300 provides a good fit across the range of cloud fractions.
A more precise determination is impossible as we find only weak dependence of the RDF
on cs, despite varying the cluster strength by almost one order of magnitude. A similar
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analysis was performed for different values of cluster width cw, and values of cs = 300
and cw = 2.25 were found to give a reasonable approximation to the observed RDF for all
scenes.
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Fig. 2.5.: RDF of model output with four different clustering strengths and coverage fraction set to
p = 5% (colored lines) is shown together with the RDF of all satellite scenes with coverage
fraction in 4% ≤ p ≤ 6% (gray lines), the black line shows the uncorrelated limit. The inset
shows a comparison of the RDF of the model (colored lines) and the mean and standard
deviation of RDF of the satellite scenes (gray error-bars) at r = 265 m as a function of
cloud coverage. The dotted lines indicate the value of the radius (percentage) at which the
RDF is evaluated in the inset (main figure).

To summarize, the estimated values for the local model parameters are sdm = 11.3× 103 m2,
cs = 300 and cw = 2.25. The sensitivity of the results to variations of each parameter about
its reference value is explored below. A qualitative impression of the cloud fields produced
using the reference parameters can be seen from the example sub-region shown in the inset
in Fig. 2.6.
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Fig. 2.6.: Cluster size distributions determined from modified subcritical percolation model for dif-
ferent coverage fractions (colored lines) and best fit curves following Eq. 2.3 (dashed black
line). The inset shows a section of a sample model output.

2.3.3. Sensitivity to Cloud Fraction

For comparison with classical percolation and with satellite data we test the sensitivity of
the size distributions of our model to cloud fraction. The comparison with observations will
be confined to scales larger than the mean cell area of the exponential distribution since,
even at large coverage fraction, smaller clouds are mainly single disks whose shape is not
comparable with real clouds.

To determine cluster size distributions in our model, we simply determine the areas of the
clusters formed by cloudy pixels. Sample cloud size distributions are shown in Fig. 2.6,
which also shows the corresponding fit of Eq. 2.3. We find that the modified percolation
model leads to cloud size distributions which, while still described by Eq. 2.3, now show a
power-law scaling range for low cloud fractions in agreement with the observations. Close
examination of the curves for the largest coverage fractions shows a slight excess of large
clouds in comparison to the distribution given by Eq. 2.3. This deviation resembles the
distributions produced in percolation systems of finite size (Hoshen et al., 1979), and may
result from the model approaching the percolation threshold only in local regions due to the
induced clustering.

For a quantitative comparison of the model with observations, Fig. 2.3 shows the variation of
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the three fitting parameters (a, b, c) with coverage fraction for the model- and the satellite size
distributions. The model parameters sdm and cs are set to their reference values and results
are shown for four different values of cw, including its reference value. While the largest
differences occur for the smallest cloud fractions, which are more likely to be influenced by
the details of the underlying exponential distribution of circular cells, the overall agreement
between the reference model set-up and satellite parameters is good.

2.3.4. Sensitivity to local parameters

In the following we will briefly discuss the sensitivity to the clustering parameters and the
cell size distribution.

Clustering Parameters

Changing either clustering width (Fig. 2.3) or clustering strength (Fig. 2.8) has an effect on
the scaling properties comparable with an increase in coverage fraction as we find fewer but
larger cloud clusters at a given overall cloud fraction. This similarity in the sensitivity of
the two clustering parameters is consistent with the hypothesis that the induced clustering
allows cloud merging to occur at smaller coverage fractions.

Cell size distribution

Size distributions for different average cell sizes can be seen in Fig. 2.7(a). Under the as-
sumption that the horizontal resolution is small enough and the size of the domain is large
enough not to influence the size distribution, the only relevant length scale is given by the
mean radius of disks, rdm. The size distributions for different average cell sizes should there-
fore be rescalable by the corresponding area sdm. To rescale the size distributions for a given
average cell size sdm to the size distribution of a reference average cell size sd,refm , we need to
rescale all areas s by a factor fscale = sd,refm /sdm. We therefore have to rescale the abscissa
by fscale. As the number of clusters of a given size s per area, i.e. the ordinate, is inversely
depended on the area it also has to be rescaled by a factor f−1

scale. The effect of rescaling the
size distributions in Fig. 2.7(a) to sd,refm = 60 m is shown in Fig. 2.7(b) which confirms that
the size distributions for different average cell sizes are identical apart from a scaling factor
fscale.

Testing the sensitivity of our results to the type of underlying size distribution, we repeat
the comparison with observations performed above using uniform instead of exponential
size distributions. We find the results to be qualitatively similar, but that the exponential
distribution is required for quantitative agreement (not shown).
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(a) (b)

Fig. 2.7.: Cluster size distribution calculated from the modified subcritical percolation model for dif-
ferent cloud fractions (different colors) with all parameters set to their reference values
excepting the average cell size, for which three different values are tested: the dashed
line shows sdm = 0.50 × 104 m2 (rdm = 40 m), the solid line shows the reference value
sdm = 1.13 × 104 m2 (rdm = 60 m) and the dotted line shows sdm = 3.14 × 104 m2

(rdm = 100 m). The unmodified size distributions are shown in (a) and the correspond-
ing rescaled size distributions to rdm = 60 m are shown in (b). For better distinction, size
distributions corresponding to different cloud fractions are shown with an offset.

2.4. Conclusions

In this chapter we have addressed the question whether the frequently observed power law
scaling and scale break in size distributions of shallow cumulus clouds can be explained by
subcritical percolation theory.

In section 2.2, we show that the sensitivity of the size distributions to cloud-fraction and the
functional dependence is in agreement with results from subcritical percolation. With in-
creasing cloud fraction, the power-law scaling region steepens and extends to larger clouds.
In contrast to lattice percolation, power-law scaling is already apparent at lower cloud frac-
tions than expected.

This difference is explained in section 2.3 by the clustering of cloud cells. Modifying the
standard continuum percolation model by including a clustering tendency and an underlying
exponential size distribution of cloud cells, we find that, for a given coverage fraction, the
range of power law scaling increases with increasing clustering. Estimating the parameters
of this model from the satellite data set results in accurate quantitative predictions of the
power-law exponent and the position of the scale break.
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Fig. 2.8.: As in Fig. 2.3 but for varying cluster strengths.

While these results show the importance of the clustering tendency to the observed size
distributions, we have not attempted to construct a detailed physical model for the clustering
mechanism. Such a model has been proposed for example by Böing (2016), but the result
is rather complex, and the details of the mechanism are unimportant for the resulting size
distribution, as long as the observed cluster strength and width are reproduced.

The emergence of power law size distributions over a limited range of scales as a generic re-
sult of local clustering suggests that a similar process may occur for deep convection, where
power laws are also seen in the size distribution of precipitation regions (Peters et al., 2009).
Indeed the appearance of a power law distribution of deep convective clouds emerging from
an underlying exponential distribution has been seen in numerical simulations (Scheufele,
2014).
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3. Spreading of convective activity

3.1. Introduction

While we focused on the local clustering of updrafts, caused by cold pools, in the previous
chapter we will now explore how cold pools induce spreading of convective activity. In
particular, we will introduce a lattice model, based on directed percolation, to reproduce the
spreading of convective activity via cold pools and investigate its relation to the continuous
phase transition in convective activity observed by Peters and Neelin (2006).

3.1.1. Cold Pool Triggering

Updrafts preferentially occur on top of cold pool boundaries as cold pool boundaries act as
an important trigger for convection. The mechanisms by which cold pools can trigger con-
vection have been discussed in section 1.4.2, where we have also discussed how the subse-
quent formation of convection and cold pools can lead to the spreading of convective activity
(Tompkins, 2001b). We will now use a RCE simulation for a more detailed illustration of
the space and time scales on which convection, via the expansion of cold pools, induces fur-
ther convection. The simulation was conducted by Scheufele (2014) on a 128 km× 128 km
domain with a horizontal resolution of 250 m and a constant forcing of −8 K d−1.

Figure 3.1 shows a snapshot of the boundary layer vertical velocity and temperature per-
turbations. To better distinguish the different features of interest, only a subsection of the
domain is shown. Cold pools appear as regions of downdraft with negative temperature
perturbations surrounded by narrow regions of positive vertical velocities. To show the posi-
tion of convection in relation to the cold pool boundaries, regions of convective updrafts are
superimposed on the fields.

In this chapter we define convective updrafts using the vertical velocity field in 2.4 km height.
Using the standard velocity threshold for updraft cores of 1 m s−1 (e.g. LeMone and Zipser,
1980), velocities larger or equal than 1 m s−1 correspond to convecting sites and velocities
smaller than 1 m s−1 to non-convecting sites.

The position of convective updrafts is, as expected, strongly linked to the cold pools. In
particular we find that convection occurs either on top of the cold pool boundaries, as we

43



3. Spreading of convective activity

have seen for shallow cumulus clouds in the previous chapter or in the center of a newly
forming small but intense cold pool as remnant of the cloud which originally caused the cold
pool. An example of the first is shown by the ring of updrafts marked as A and for the latter
by the cold pool marked by B.

Fig. 3.1.: Subsection of vertical velocity in 200 m height (left) and boundary layer temperature per-
turbations (right) snapshots of RCE simulation performed by Scheufele (2014). Masked in
black are regions with updrafts larger than 1 m s−1 in 2400 m height. A and B mark two
cold pools discussed in the text.

To illustrate the ability of cold pools to trigger new convection as they expand, we now focus
on convection forming during the expansion of cold pool B. Figure 3.2, shows snapshots of
the temperature perturbation, the vertical velocity and the vertically integrated cloud water
content, within a small region around cold pool B. For each field, five successive snapshots,
separated by 30 min, are shown. Initially, the cold pool is marked by a region of strong
downdraft and weak temperature perturbation, with the cloud which led to the formation
of the cold pool still visible as updraft region and in the cloud water content. These signs
of the initial convection disappear, while new clouds form on top the expanding cold pool
boundary. This appears to be particularly strong after one and after one and a half hours,
where updrafts and cloud water appear in a circular region around the cold pool center. After
two hours, the temperature perturbation and the vertical velocity at the boundary weaken as
do the fields indicating convection. In fact, we already see the development of a new cold
pool forming due to convection previously triggered at the left boundary of the cold pool.

While the probability for new convection is enhanced at the cold pool boundary, we find that
no convection is triggered within the cold downdraft regions.
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Fig. 3.2.: Successive snapshots of the boundary layer temperature perturbation (top row), the vertical velocity in 200 m height with
updrafts larger than 1 m s−1 in 2400 m height masked in black (middle row) and the vertically integrated cloud water content
(bottom row) within a small region around cold pool B. The first column corresponding to the time step shown in Fig. 3.1.
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3.1.2. Continuous phase transition in convective activity

The process of convection triggering new convection via cold pools reviewed above has been
investigated in a large number of studies. While most studies focus on the mechanism by
which cold pools trigger new convection, we are here interested in how convective activity
spreads from one generation to the next. In particular, we ask whether cold pool triggering
can explain the continuous phase transition in convective activity observed by Peters and
Neelin (2006).

Before we can introduce a model which explains how the dependence of convective activity
on cold pool triggering can lead to a phase transition, we will need to review the results of
Peters and Neelin (2006) and discuss their relation to known properties of non-equilibrium
phase transitions.

We start in section 3.1.2.1 by describing how the ability of the atmosphere to self-organize
to a critical state, as observed by Peters and Neelin (2006), is produced by the interaction of
two independent processes:

1. a process whose dependence on the mean atmospheric state leads to a phase transition
between a convectively active and a convectively inactive state

2. a process which drives the atmosphere into the critical state of the phase transition

Peters and Neelin (2006) themselves suggest that the atmosphere is driven towards the crit-
ical state by the combination of radiative forcing and compensating subsidence, in short by
the mechanisms by which convection is driven or feeds back onto the mean atmospheric
state.

As the two processes listed above need to be independent to result in self-organized critical-
ity, we will discuss how convective activity depends on cold pool triggering in the absence
of radiative forcing and compensating subsidence. We will moreover show how the assump-
tion that convective activity depends entirely on previous convective activity suggests that
the observed phase transition is in the universality class of directed percolation, whose key
properties we introduce in section 3.1.2.2.

In section 3.1.2.4 we finally introduce a model based on the properties of cold pool triggering
which describes the spreading of convective activity and belongs to the universality class of
directed percolation.

3.1.2.1. Self-organized criticality in observations

Peters and Neelin (2006) were the first to suggest that the atmosphere is in a self-organized
critical state. In particular, they suggest that the atmosphere self-tunes towards the critical
point of an underlying continuous phase transition in convective activity.
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As indications for the phase transition they show that convective activity, i.e. the order
parameter, given in terms of precipitation P shows a power-law increase above a critical
value of the column integrated water vapor, the control parameter, wc:

P (w) ∼ (w − wc)β with β ≈ 0.215. (3.1)

In addition, they find a peak in variance of the precipitation strength at the critical value as
well as long range spatial correlations, as expected for a continuous phase transition.

As they find that the atmospheric humidity content is predominantly close to the critical value
wc, they suggest that the critical state of the atmosphere is attractive. This can be explained
by the so called absorbing state (AS) mechanism, illustrated in Fig. 3.3 (e.g. Pruessner,
2012). Instead of manually tuning the control parameter, in this case tropospheric humidity,
to the critical value of the underlying phase transition, a coupling between the control and
order parameter drives the control parameter close to the critical value, resulting in a delta
distribution peaking at the critical value in the limit of an infinitely large domain size.

Fig. 3.3.: The order parameter ρa (activity) as a function of the control parameter ζ (particle density)
in an AS transition. In the AS mechanism, the particle density is increased by the external
driving, h, and reduced by dissipation, ε, (bold arrows). (Pruessner, 2012)

The control parameter is driven towards the critical point by two opposing processes. On
the one hand, an external drive constantly increases the energy i.e. the control parameter of
the system, while, on the other hand, energy is dissipated, the control parameter reduced, as
long as the system is active which is equivalent to its being above the critical value.

The two corresponding processes in the atmosphere are radiative cooling, constantly driving
the atmosphere into an increasingly unstable state, and latent heat release, quickly spread
over large regions by gravity waves and stabilizing the atmosphere. For these processes to
effectively pin the control parameter to its critical state, there has to be a clear time scale
separation between the time scale on which activity spreads, i.e. the time scale on which
convection triggers new convection, the time scale on which energy is dissipated and the
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time scale on which energy is increased by the driving process. The necessary conditions
can be expressed as a double limit on the driving h and the dissipating rate ε (Dickman et al.,
2000): ε → 0 and h/ε → 0. The double time scale separation ensures that the spreading of
activity, and thus the size of the convective event, is not affected by dissipation and that the
forcing acts slow compared to dissipation.

While the proposed physical processes driving the system towards the critical point are the
same processes which lead to the quasi-equilibrium assumption, the underlying phase tran-
sition, i.e. the phase transition of convective activity in the absence of a feedback between
convection and large scale forcing, has not been explained so far but “begs for a simple
model of the atmospheric dynamics”(Peters and Neelin, 2006).

In this chapter we explore whether the underlying phase transition in convection can be
explained in terms of cold pool induced spreading of convective activity. In particular, we
suggest that the atmospheric state will not only determine the strength of convection and the
resulting cold pool, it will also determine the average amount of new convection triggered by
each convective cell. Depending on the mean state of the atmosphere, convection will either
continue to spread or cease if the atmospheric state does or does not support the formation
of enough new convection.

The subcritical phase in Fig. 3.3 contains only one state, namely the state without convection
because we assume here that convective activity depends entirely on previous convective ac-
tivity. The non-convecting state is the only state which cannot be left again if once entered
into and thus corresponds to a single absorbing state in the parlance of non-equilibrium
phase transitions. There is strong evidence in the literature that all non-equilibrium phase-
transitions with a single absorbing state belong to the universality class of directed percola-
tion (e.g. Dickman et al., 2000) and we therefore expect from our hypothesis that the phase
transition observed by Peters and Neelin (2006) is in the universality class of directed per-
colation.

3.1.2.2. Directed Percolation

As directed percolation will play an important role in this chapter, we here give a short sum-
mary of its key properties based on Hinrichsen (2006). In contrast to isotropic percolation1,
which we considered in the last chapter, directed percolation is a dynamical process where
activity can spread to surrounding sites with time. The rules of directed percolation are
illustrated in Fig. 3.4. As the name implies, directed percolation can only spread along a
preferred direction, usually interpreted as time. In the setup shown in Fig. 3.4, one can think
of directed percolation as water, percolating through a porous medium. At each time step,

1Note that we have so far omitted the word isotropic as percolation by itself generally refers to isotropic
percolation.
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activity (water) can spread to its two nearest neighbors in the preferred direction if the bond
to this neighbor is open. The percolation probability p for a bond to be open is fixed.

Arguably the most important property of directed percolation is that it shows, at the critical
percolation probability pc, a continuous phase transition from a fluctuating into an absorb-
ing, non-fluctuating state. Starting multiple experiments with an initially equal density of
active sites but different percolation probabilities p, all activity eventually ceases in the case
of p < pc, the absorbing non-fluctuating state, while activity never dies for p ≥ pc, the
fluctuating state. Note however that these results are only exactly true if the domain size
and the experiment duration were infinite. In accordance with the properties of a continuous
phase transition the spatial and temporal correlation length diverge at the critical point pc
and, which is most relevant for the discussion here, the density of active sites at t =∞ picks
up as a power-law according to

ρa(t =∞) ∼ (p− pc)β (3.2)

with the universal critical exponent β. As there are virtually no analytic results for directed
percolation, the critical exponents have been determined numerically with β ≈ 0.58 in two
dimensions (Hinrichsen, 2006).

While comparison of β with the exponent of the power-law pickup of precipitation in ob-
servations, β ≈ 0.215, yields no agreement, we note that the exponent β strongly depends
on the choice of order and control parameter. For example Peters and Neelin (2006) them-
selves find β ≈ 0.13 when they use cloud water instead of precipitation as an indicator of
convective activity.

We now address the question whether we can find a model in the directed percolation univer-
sality class which can reproduce the spreading of convective activity observed in atmospheric
models.

3.1.2.3. Population model with global control

While we have argued that large scale forcing and compensating subsidence cannot explain
the continuous phase transition but drive the atmosphere to the critical point, we will have to
account for their effect when trying to reproduce convective spreading in a RCE simulation.
In particular, while cold pools determine the position where new convection can be triggered,
the amount of convection triggered during each time step should be approximately constant
in the case of constant forcing.

Broeker and Grassberger (1999) introduce a control-switched version of directed percola-
tion, a slightly modified version of a plant population model first introduced by Wallinga
(1995). Given in terms of a lattice model, activity can only spread to nearest neighbors of
active sites while the total number of active sites is kept constant with time.

49



3. Spreading of convective activity

Fig. 3.4.: Starting with a single active site at the origin, activity spreads at each time step from an
active site to its two nearest neighbors in the preferred direction if the respective bonds
are open. The preferred direction is here indicated by the time arrow and an open bond is
represented by a solid rather than dotted connecting line. The probability for a bond to be
open corresponds to the percolation probability p. The total number of active sites at any
time t is given by N(t) (Figure taken from Hinrichsen, 2006).

The model was originally designed to describe the dynamics and the spatial patterns emerg-
ing in a weed population. The underlying idea is that within a field, Nf weed plants grow.
Each year, the plants drop seeds within their vicinity and die. In spring new plants grow
in the surrounding of the old plants. Not all of these new plants are allowed to grow and
distribute seeds however, the farmer of the field only tolerates exactly Nf weed plants and
removes all excessive plants in a completely random fashion. They formalized this spreading
mechanism of weed in terms of a population model on a two-dimensional square lattice of
size L2 with periodic boundary conditions and the following rules:

1. Initially Nf sites of the lattice are randomly chosen to contain a plant seed

2. At each time ti all plants drop four seeds, one onto each of their four nearest neighbors,
and die, while the number of sites which have received at least one seed, M , is strictly
larger then Nf

3. The population size at ti+1 is kept constant by randomly choosing exactlyNf of theM
sites to grow into a new plant or, equivalently, by randomly removing M −Nf plants,
with the fraction of surviving plants given by p̃ = Nf/M

The reason for calling this model a control-switched version of directed percolation can best
be explained with regard to Eq. 3.2: instead of varying the percolation probability p and
estimating the density of active sites ρa(t = ∞), Broeker and Grassberger (1999) fix the
density of active sites (the new control parameter) and determine the fraction of surviving
plants (the new order parameter). The fraction of surviving plants corresponds to the perco-
lation probability as it gives the ratio of the number of sites where activity has been triggered
and the number of sites where activity could have been triggered.
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They show that, at least in one and two dimensions, the fraction of surviving plants p̃(t) =
Nf/M(t) self-adjusts to

〈p̃〉 − pc ∼ ρ
1
β
a (3.3)

in the limit of large domain sizes and small population densities, with p̃(t =∞)→ pc in the
case ρa → 0.

They claim that this is an instance of self-organized criticality. While critical behavior in
directed percolation is only observed close to pc, critical behavior in the population model is
found in the limit of large populations and low densities, i.e. without tuning the population
density to a critical point.

3.1.2.4. Cold Pool Model

We now propose a simple model for describing the propagation of convective activity. The
model is based on the population model with global control but has an additional inhibition
state to account for cold pool recovery.

Comparison of the population model with the picture of cold pool induced spreading of con-
vective activity we reviewed at the beginning of this chapter leads to the following analogy.
An active site, i.e. a plant site, corresponds to deep convection and the effect of cold pools
triggering convection at their boundary corresponds to the distribution of seeds onto the
neighboring grid-cells. The large scale forcing, which determines the amount of convection,
corresponds to the farmer and the probability p̃ is a measure of the ability of the cold pool to
trigger new convection.

As cold pools spread however, they not only trigger convection at their boundaries but also
suppress further convection within. To also account for this effect, we include an inhibition
state. In particular, the inhibition state prevents the formation of new active sites at a site
which has been active within the last time steps. Note, that we do not expect that the in-
troduction of an inhibition state will affect the universal properties of the model as directed
percolation is remarkably robust to changes in the local interaction rules. It has in fact been
shown by de Souza and Tomé (2010) and Cruz et al. (2012) that introducing an inhibition
state in the contact process, another model belonging to the directed percolation universality
class, does not affect the universal properties.

To include the effect of cold pool recovery we change the rules of the original population
model in the following three points:

• Old clouds turn to inhibition sites, not neutral sites

• New convection can only form on neutral sites

• Cold pools turn back to neutral sites with fixed probability 1/τlt
2

2This corresponds to an exponential distribution of cold pool lifetimes with an expected value of τlf .
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As in the modified version of the model each site is in one of three (inhibited, neutral, active)
instead of one of two (neutral, active) possible states, we will refer to the new model as
three-state and the original model as two-state model.

We will test whether including an inhibition state improves the model’s ability of represent-
ing the spreading of convective activity in the RCE simulation by comparison with the two
state model.

3.1.3. Outline

The outline of the chapter is as follows. In section 3.2 we introduce two methods to eval-
uate the spreading of convective activity in an atmospheric model and in the simple model.
Applying these methods to the RCE simulation introduced in section 3.1.1 enables us to
estimate the necessary parameters and compare the two- and three-state model to the atmo-
spheric model simulation. In section 3.4, we propose a test for the hypothesis of an absorbing
state phase transition in convective activity using an atmospheric model simulation.

3.2. Method

In order to determine the parameters necessary for the lattice model and to quantify the
spreading of convective activity to compare the RCE simulation with the lattice model we
introduce two methods. The first method allows us to determine whether new convection
preferentially forms at cold pool boundaries. While the second method does not relate newly
triggered convection to cold pools, it is a more objective method for determining the spread-
ing of convective activity.

3.2.1. Cold pool diagnostic

For the lattice model introduced above, we need to estimate the grid length, the model time
step and the average lifetime of the inhibition state τlt. We determine the length of the
grid cell from the typical spacing between the position of the old convective cell and the
cell triggered in the next generation and the model time step from the respective temporal
separation. For τlt, we estimate the time it takes the cold pool induced perturbations to
recover.

To determine how much convection is triggered by the expanding cold pool as a function
of time and cold pool size, we now introduce a diagnostic which allows us to determine the
amount of updraft close to the cold pool boundary as a function of time. The diagnostic
involves two steps:
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1. determine the position of the cold pool boundary

2. determine the position of the convection forming in the surrounding of the cold pool
center

Comparison allows us to verify that convection is primarily triggered close to the cold pool
boundary and to determine when most of the new convection is triggered.

To determine the mean position of the cold pool boundary as a function of time we calculate
a radially integrated statistic of a set of cold pools. To this end we determine the cold pool
center by eye, calculate the mean radial dependence of the temperature perturbation field and
then average over all cold pools. The position of the cold pool boundary is then defined as
the position of sign change in the temperature perturbation. Note that we need to take care
that the initial extent of the chosen cold pools is comparable.

Having determined the position of the cold pool boundary as a function of time, we then
determine the amount of convection triggered in the surrounding of the cold pool center as
a function of time and distance and relate it to the position of the cold pool boundary. As
before, we use a binary field to indicate the presence of convection, with updraft vertical
velocities in 2.4 km height larger or equal than 1 m s−1 corresponding to convecting sites
and below to non-convecting sites. Assuming that the cold pool spreads isotropically from
the cold pool center, we calculate the radially averaged amount of convection for each time-
step. We thus obtain the amount of convection as a function of time after the cold pool is
detected and the distance to the cold pool center. Comparison with the position of the cold
pool boundary allows us to assess on what time and spatial scales new convection is triggered
by the propagating boundary.

3.2.2. Cross-Correlation Function

In addition to the method based on manually chosen cold pools introduced above we will
also use a more objective method to investigate how convective activity propagates within
the domain using normalized cross-correlation functions. If the reader is familiar with cross-
correlation functions, this section can be skipped.

Cross-correlation functions indicate the similarity between two fields as a function of the
relative displacement of the two fields. The two fields we use here are two subsequent scalar
fields f(t; ~x) and f(t + ∆t; ~x), separated by a time difference ∆t. The corresponding two
dimensional cross-correlation function is defined as follows:

Ct+∆t,t(~x) =

∫
d~x′

(f(t+ ∆t; ~x′)− 〈f(t+ ∆t)〉)(f(t; ~x′ + ~x)− 〈f(t)〉)
σ(f(t+ ∆t))σ(f(t))

(3.4)

where 〈·〉 is the domain mean and σ(·) the standard deviation.
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3. Spreading of convective activity

Assuming again that there is no preferred direction in which convection is triggered, we
focus our attention on the radially averaged cross correlation function:

Ct+∆t,t(r) =

∫
Γ
Cdl

2πr
(3.5)

where Γ corresponds to a circular path with radius r and center at the origin and dl is the
corresponding line element.

To illustrate how this method applies to a field of clouds, i.e. isolated features, we compute
the cross-correlation function for an artificial setup. The “convection” field at time t has a
single cloud at the origin of the domain, modeled by a narrow Gaussian distribution. Each
time-step ∆t, the cloud moves five grid-cells in x-direction, see Fig. 3.5a). In addition to the
position of the cloud centers, Fig. 3.5 shows the corresponding cross-correlation functions
of the initial field with the field at each of the three subsequent time-steps. In particular,
Fig. 3.5b) shows the cross-correlation function calculated only in x-direction. It shows that
there is a perfect correlation of the initial field and the propagated field at the relative distance
by which the cloud center was shifted. The x values corresponding to the maxima indicate
the distance the field has moved in this direction. This is still true after radial integration,
though the signal weakens with increasing distance to the cloud center. As we average a
single cloud over a region which increases proportionally to r, we find a decrease in the
correlation function by r−1. Performing the same test with a field containing many clouds

Fig. 3.5.: Position of the cloud center at the different time-steps (a) and the Cross-Correlation function
of the following fields with the initial field along x-axis (b) and radially integrated (c). The
radially integrated Cross-Correlation functions show in addition a r−1 decrease (dashed
line).

shows that the maximum correlation is still at the distance by which the field was shifted
though correlations with other clouds in the domain make the dependency more noisy (not
shown). This shows that we can extract the displacement of features per time-step from the
cross-correlation function.
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To determine the spreading of convective activity, we calculate the cross-correlation function
of cloud fields, again defined by vertical velocities larger or equal than 1 m s−1. Note that we
use the velocity rather than e.g. humidity field due its smaller persistence in time.

3.3. Results

3.3.1. Cold pool diagnostic applied to RCE Simulation

We now apply the cold pool diagnostic introduced in 3.2.1 to ten visually chosen cold pools
in the RCE simulation performed by Scheufele (2014).

The mean, radially integrated temperature perturbation, from which we determine the cold
pool boundary as a function of time, is shown in Fig. 3.6, where td denotes the time at which
the cold pool was first detected. The initial negative temperature perturbation systematically
extends in space and weakens with time.

Fig. 3.6.: Mean radial dependence of potential temperature in cold pools with different colors corre-
sponding to different times after detection.

The position of the cold pool boundary, determined from the position of sign change in the
temperature perturbation, is given in the following table as a function of time.
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3. Spreading of convective activity

t− td [h] 0.0 0.5 1.0 1.5 2.0

rcp [km] 2.75 4.75 6.5 9.75 12.25

A corresponding linear fit (not shown) gives a mean cold pool size at td of 2.4 km and a
propagation speed of 4.8±0.3 km h−1. Extrapolation suggests that we detect the cold pools
approximately half an hour after their formation. We note that the thus determined propa-
gation speed is comparable though slightly faster than the 4 km h−1 which can be estimated
from Fig. 9 in Tompkins (2001b), where the cold pool radius expands approximately linearly
from 2 km to 10 km in two hours.

We can now compare the position of the cold pool boundary to the amount and position of
newly triggered convection. Figure 3.7 shows the radially averaged amount of convection
as a function of the distance to the cold pool center (abscissa) for subsequent time steps
(ordinate). To determine whether the newly forming updrafts are related to the expanding
cold pool boundaries, we use the mean velocity and radius of the cold pool boundary at td,
determined above, to indicate the position of the cold pool boundary as a function of time.
While the initial updraft persists for about half an hour close to the cold pool center we
see clear indications that the cold pool boundary is at the leading edge of the majority of
the newly forming updrafts. In particular, the position of the cold pool boundary marks the
edge of the region of increased probability for updrafts within the following time-steps. The
probability of new updrafts is particularly increased up to a distance of about 10 km from
the cold pool center and within the first two hours after cold pool detection. While there is
a local maximum after about one hour and at a distance of about 5 km, its significance is
doubtful due to the small sample size.

In addition to the region of increased updraft probability, we also note that once the initial
updraft dissolves, convection is suppressed for about four hours. This suggests that in the
here investigated RCE simulation, cold pools influence the triggering of new convection in
two ways:

• the probability of triggering new convection is increased at the cold pool boundary

• the probability of triggering new convection is decreased within the cold pool

which agrees well with previous studies and our assumptions for the simple model.

Apart from the increased likelihood of new convection along the cold pool boundary within
the first two hours, there is an additional region of increased probability close to the cold
pool boundary after about two or three hours. This signal might indicate a second generation
of clouds triggered by the first generation.
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Fig. 3.7.: Radially averaged amount of convection (see text for more details) in 2.4 km height as a
function of distance to the cold pool center and time passed after the detection of the cold
pool (colors) and the position of the cold pool boundary (line).

3.3.2. Cross-correlation diagnostic applied to RCE simulation

In the following we determine the cross-correlation functions of the cloud fields calculated
in the RCE simulation by Scheufele (2014). Figure 3.8 shows the cross-correlation function
averaged over all possible starting times at day ten of the simulation. While Fig. 3.8(a) shows
the cross-correlation function for different time lags allowing to easily identify the position
of the maxima, Fig. 3.8(b) shows a filled contour plot of the cross-correlation function as a
function of distance and time lag to ease comparison with Fig. 3.7. As the cross-correlation
function is always equal to one at the origin but quickly drops to significantly smaller values
we truncate the colorbar.

We find that initially the cross-correlation function rapidly decreases at the origin before it
starts to recover, while the position of the maximum is shifted to increasingly large distances.

Taking the distance between two subsequent maxima in Fig. 3.8(a), gives an estimate of how
far convection has spread within one time-step. We use this to calculate a propagation speed
of convective activity:
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3. Spreading of convective activity

time [h] 0.5 1.0 1.5 2.0 2.5

position of maximum [km] 1.00 4.75 7.25 9.50 11.75

Using a linear fit gives an average propagation speed of 5.3±0.3 km h−1. This compares
well with the cold pool propagation speed we estimated above.

In accordance with triggering of new clouds at an expanding cold pool boundary, the maxi-
mum in the cross-correlation function propagates away from the origin with a speed similar
to the one estimated for the propagation of the cold pool boundary. Though the local max-
imum observed in Fig. 3.7 is no longer discernible, suggesting it to be noise resulting from
our small set of cold pools, we again find that the probability for the formation of new con-
vection is increased at the cold pool boundary within the first two hours and up to a distance
of about 10 km. In addition, the anti-correlation close to the origin again indicates a local
suppression of new convection inside the cold pools for about four hours.

We use these results together with the results from the cold pool diagnostic to determine the
necessary parameters for the simple model. In particular, we set the characteristic time and
length scale at which convection triggers new convection, corresponding to time step and
length of grid cell in the simple model, to half the time and distance at which the signal of
increased probability disappears, i.e. dx = 5 km and dt = 1 h. The average life-time of
the inhibition state is given by the average time new convection is suppressed inside the cold
pool and therefore τlf = 4 h.

We find, as in Fig. 3.7 but more pronounced, a second region of increased probability at
about 15 km and 3 h potentially indicating a second generation of triggered clouds.

Repeating the analysis above for different setups we find similar behavior to what has been
shown. In particular, Scheufele (2014) performed a number of RCE simulations with differ-
ent horizontal resolutions, ranging from 250 m up to 2 km, and different forcing, ranging
from −2 K d−1 up to −12 K d−1. The dependence of the propagation velocity on time, reso-
lution and forcing is shown in Fig. 3.9. Note that we can show only the hourly average of the
propagation speed as we have no higher temporal output for some of the simulation setups.

As long as the horizontal resolution is high enough to represent the relevant processes, a
change in resolution should not affect the spreading of convective activity. While Fig. 3.9(a)
shows little difference between resolutions of 0.25 km, 0.5 km and 1 km, which consistently
give values of about 5 km h−1, the 2 km simulation shows, at least initially, much higher
propagation speeds. It is interesting to note that Scheufele (2014) also found a distinctly
different spatial distribution of convective updrafts for the 2 km simulation in comparison
with the higher resolution simulations. This indicates that the 2 km resolution simulation
cannot resolve the relevant cold pool processes correctly, at least during the early stages of
the cold pool lifetime.

In accordance with Craig and Cohen (2006) and Cohen and Craig (2006), Scheufele (2014)

58



3.3. Results

0 5 10 15 20 25 30
r [km]

0.010

0.005

0.000

0.005

0.010

0.015

0.020

C t
+

t,
t(r

)
0.5h
1.0h
1.5h
2.0h
2.5h

(a)

0 5 10 15 20 25 30
r [km]

0

1

2

3

4

5

t [
h]

0.0050 0.00250.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150

(b)

Fig. 3.8.: (a) Radially averaged cross-correlation function of cloud fields for different time lags (col-
ors). (b) Radially averaged cross-Correlation function of cloud fields as a function of dis-
tance (x-axis) and time lag (y-axis) (colors). The position of the cold pool boundary at each
time is indicated by the black line.

showed that the forcing mainly affects the density not the intensity of the individual con-
vective clouds. We therefore expect that the ability of the individual clouds to trigger new
clouds remains the same. This agrees with Fig. 3.9(b) which shows that there is no clear
dependence of the propagation velocity on the forcing. Note that we have excluded the re-
sults of the simulation with 2 km resolution as they take, at least initially, very distinct values
from the other resolutions.

3.3.3. Minimal model

Applying the parameters determined above, we will now compare the properties of the two-
and the three-state model to the observed spreading of activity in the RCE simulation. In
particular, we set the length of the grid-cells to 5 km, the time-step to 1 h and, in case of
the three state model, the cold pool life time to 4 h. Thus, if convection in the middle of
one grid-cell triggers convection in the middle of the neighboring grid-cell, their centers are
separated by 5 km, which corresponds to the characteristic distance determined above, and
the formation of new convection is suppressed within the area covered by the cold pool for
the four following time steps.

3.3.3.1. Snapshots

Randomly chosen snapshots of the two- and three-state models are shown in Fig. 3.10. For
better comparison with the RCE simulation, the snapshots show, in addition to the cold pools
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(a) (b)

Fig. 3.9.: Average velocity and corresponding standard deviation depending on time, where (a) shows
the dependence on the horizontal resolution while averaging over the different forcings and
(b) explicitly shows the dependence on the forcing while averaging over the resolution
(excluding the 2 km resolution results).

represented by the grid cells, regions of updrafts within the cold pools. Note that the updrafts
themselves do not influence the time-evolution of the models and are merely used to facilitate
the comparison with the diagnostics used for the updraft regions above. From the correlation
length of the initial updraft, as seen for example in Fig. 3.7 for t =0.5 h, we approximate the
size of the updraft as about one third of the length of a grid-cell. As we find in Fig. 3.1 that
the updrafts are not always in the center of the downdraft, we divide each cold pool grid cell
into three by three sub cells and randomly place an updraft site at one of them. The coverage
fraction is chosen such that 1% of the domain is covered by updrafts, which corresponds to
the mean coverage fraction found in the RCE simulation above.

As in the RCE simulations we find clustering of convection, though with significantly smaller
number of updrafts. This, however, is not surprising as our model is intended to represent
conglomerations of updrafts rather than individual updrafts.

3.3.3.2. Cross-correlation diagnostic

We now compare the spatial evolution of the convection field in the RCE simulation to the
two and three state population model. In particular, we assess whether the lattice models
can reproduce the spreading of convection as seen in the cross-correlation functions above,
Fig. 3.8. The cross-correlation functions of the two- and the three-state population model
are shown in Fig. 3.11 and in Fig. 3.12 respectively.
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(a) (b)

Fig. 3.10.: Snapshots of the two-state model (a) and three-state model (b). The active cold pool sites
shown in light blue, the non-active sites in white and the updrafts as black. The inhibition
state in the three-state model is shown in dark blue colors.

Comparison with the RCE results highlights the importance of the third inhibition state for
reproducing the observed spreading. While the three state model is able to approximately
reproduce the spreading properties observed in section 3.3.1, the two state model shows a
strong back and forth oscillation of convective activity. The oscillatory behavior of the two
state model can be seen very clearly in Fig. 3.11(b), where the propagation towards succes-
sively larger distances is almost imperceptible compared to the back and forth oscillation
between the cold pool center and convection at a distance of one grid-length. In contrast,
convection moves away from the initial convection with a velocity of approximately one
grid cell per time step, i.e. 5 km h−1, in the three state model, see Fig. 3.12, with suppression
of new convection close to the updraft center which starts relaxing towards the uncorrelated
state after about 5 h. Different to the results above however, the new maxima are not very
distinct and the quantization of the lattice is clearly visible in the sharp peaks.

These findings show that the minimal model can qualitatively reproduce the spreading of
convective activity observed in RCE simulations. In view of the previously introduced lattice
models by Majda and Khouider (2002), Khouider et al. (2010), Bengtsson et al. (2011) and
Dorrestijn et al. (2013), it is interesting to note that we need a set of at least three states to
represent the spatial spreading convection.
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Fig. 3.11.: As in Fig. 3.8 but calculated for the updraft sites in the two state population model.
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Fig. 3.12.: As in Fig. 3.8 but calculated for the updraft sites in the three state population model.
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3.4. Discussion

In this chapter we have suggested a relation between the spreading of convective activity via
cold pools and the continuous phase transition of deep convection, observed by Peters and
Neelin (2006). We first introduced a 2D lattice model which, based on cold pool trigger-
ing of convection, has an underlying continuous phase transition and leads to self-organized
criticality as observed by Peters and Neelin (2006). In the lattice model, the ability of con-
vection to trigger new convection at the boundary of the expanding cold pools is represented
by active sites which, during each time step, can cause nearest neighboring sites to become
active likewise. After triggering activity at neighboring sites, the initially active sites turn,
for a number of time-steps, into inhibition sites to represent the local suppression of the for-
mation of new convection within a region covered by cold pools. To also account for the
quasi-equilibrium state of the atmosphere, where the amount of convection is determined by
the large scale forcing, the total number of active sites is fixed. Without the global constraint
on the number of active sites, the model would, at a critical triggering probability, exhibit a
continuous phase-transition, belonging to the directed percolation universality class. Includ-
ing the global constraint, the model shows, in the low density limit, self-organized criticality
(Broeker and Grassberger, 1999).

Our hypothesis is therefore that the underlying phase transition is caused by cold pool trig-
gering while self-organized criticality results from the atmosphere being driven to the crit-
ical point by the large scale forcing and compensating subsidence. As a first test for our
hypothesis, we have compared the spreading of activity in the lattice model with spreading
of convection in an atmospheric model. To this end, we have used a cloud-resolving model
simulation performed by Scheufele (2014) to quantify the spreading of convection and also to
estimate the relevant model parameters. Setting the parameters of the idealized model to the
thus determined values, we find that the model can approximately reproduce the observed
spreading of convective activity.

We will now discuss how, using an atmospheric model, one could investigate the underlying
phase transition in convective activity explicitly though its realization is beyond the scope
of this thesis. It is in fact the driving towards the critical point, caused by the coupling of
convective activity and the atmospheric state, which hinders us from directly accessing the
phase transition. We therefore propose to decouple the atmosphere from the mechanisms
which, supposedly, drive it to the critical point by turning off the driving and the dissipating
mechanisms (h and ε in Fig. 3.3). Starting from a state which already contains convection, by
first using a standard RCE setup and running it into equilibrium, further destabilizing of the
system can be removed by turning off radiative cooling. Removing the stabilizing effect of
convection is more difficult as we need to be careful not to affect the formation and spreading
of convection itself. The principle mechanism by which convection stabilizes the atmosphere
is latent heat release spread via gravity waves which induce subsidence warming. Following
the key idea of the weak-temperature gradient simulation, this feedback on the atmosphere is
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3. Spreading of convective activity

replaced by a relaxation to the mean temperature sounding, obtained by the initial radiative-
convective equilibrium simulation. The choice of the relaxation time scale is important as it
will have to be long compared to the timescale of triggering new convection but faster than
the stabilizing effect.

Before we can probe convective activity for the phase transition, we still need to define a
control parameter. While Peters and Neelin (2006) used column integrated humidity, the
vertical profile of humidity is known to play an important role. In particular, we expect
cold pools to be mostly affected by low tropospheric humidity, which affects the available
potential energy and thus the strength of the updrafts and also the amount of reevaporation
and thus the strength of the resulting downdrafts.

Once the control parameter is defined and dissipation and driving is turned off, convective
activity can be determined as a function of the control parameter. For a continuous phase
transition we expect that convection eventually dies out below a critical value of the control
parameter and shows a power-law increase of the order parameter above the critical value.

While the simple model above was introduced to explain the continuous phase transition
observed by Peters and Neelin (2006), we note that the resulting model is in itself an impor-
tant result as it may be useful for improving convection parameterizations. In particular, most
current convection parameterizations do not account for the effect of temporal and spatial in-
teractions on the variability of convective mass flux. While, as reviewed in the introduction
of this thesis, lattice models have already been introduced by Majda and Khouider (2002),
Bengtsson et al. (2011), and Dorrestijn et al. (2013) to remedy the lack of local interactions
and memory their interaction rules were either defined in an ad hoc manner (Majda and
Khouider, 2002; Bengtsson et al., 2011) or determined numerically (Dorrestijn et al., 2013).
In contrast, we have here introduced a model with physically motivated transition rules, de-
rived the necessary properties from a RCE simulation and shown its ability to reproduce the
observed temporal and spatial correlations. We will give a more detailed outline of how one
could include the model introduced above into a parameterization scheme in chapter 5.
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self-aggregation

4.1. Introduction

So far we have considered spatial and temporal correlations resulting from cold pool induced
boundary layer perturbations. Now, we turn to self-aggregation (SA) of convection and its
relation to the convectively induced humidity perturbations (see section 1.4.3). While we
have seen in the previous chapter that cold pools induce correlations between individual
clouds on length scales of a few kilometers and time scales of a few hours, the humidity
perturbations associated with self-aggregation grow upscale on time scales much longer than
the individual cloud or cold pool life time. In particular, most cloud resolving radiative
equilibrium simulations take weeks before an approximately steady state with a single moist
region (diameter on the order of 100 km) is reached.

Even though the relevant feedback mechanism, whose determination has been the key goal
of most related studies, has been shown to depend on the chosen model, the chosen setup and
the stage of self-aggregation, the spatial evolution of self-aggregation is always described by
an upscale growth of moist and dry regions. In this chapter, we will focus on this universality
in the spatial evolution of self-aggregation which has been largely overlooked so far. In par-
ticular, we here suggest that self-aggregation is described by a pattern-formation mechanism
called coarsening, which is insensitive to the details of the feedback mechanism as long as
they lead to an intensification of local humidity perturbations.

4.1.1. Spatial evolution of self-aggregation in RCE simulations

Even though humidity perturbations in self-aggregation are invariably described by an up-
scale growth, the shape of the emerging moist and dry regions has been found to depend
on the shape of the domain. In particular, self-aggregation in small or channel-like domains
leads to the formation of moist and dry bands, spanning, in the channel-like domains, the
shorter horizontal direction while the characteristic appearance of self-aggregation in larger
square domains, is the formation of a circular shaped moist region.
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The formation of a moist band was first observed by Tompkins and Craig (1998). In order to
correctly resolve three dimensional effects, they were the first to perform a three dimensional
RCE simulation though computational constraints limited them to a small square domain
with a horizontal size of 100 km× 100 km. After about four days, a slowly propagating
moist band develops which spans the domain with an angle of about 45%. All convective
activity is limited to this domain of high water vapor content.

Tompkins (2001b) was the first to use a channel-like domain, which extended 1024 km in
the one but only 64 km in the other horizontal direction. Within five days, the domain again
self-organized into stripes of convectively active moist and subsiding dry bands. Owing to
increased computational possibilities, Posselt et al. (2012) could increase the length of the
domain size of Tompkins (2001b) by almost one order of magnitude. As before, convection
organized itself within few days into stripes which merged and intensified with time. Using
a comparable though even more elongated domain setup, Wing and Cronin (2016) find self-
aggregation very similar to Posselt et al. (2012).

Self-aggregation leading to the formation of a single, circular shaped moist region, was
first described by Bretherton et al. (2005), who performed a RCE simulation on a domain
with a horizontal area of 576 km× 576 km. After an initial period of randomly distributed
convection, the domain separated into dry, subsiding regions and moist, precipitating regions
which grew in time until, by day 50, only one moist region remained. The self-aggregation of
the column integrated water vapor path (WVP) can be seen in Fig. 4.1 with the corresponding
precipitation fields shown in Fig. 1.4. This simulation has become the benchmark study for
SA in three dimensional cloud-resolving RCE simulations.

Using setups similar to the one described by Bretherton et al. (2005), self-aggregation into a
single circular convecting region has been found in the studies conducted by Khairoutdinov
and Emanuel (2010), Muller and Held (2012), Wing and Emanuel (2014), Muller and Bony
(2015), Holloway and Woolnough (2016) and Hohenegger and Stevens (2016).

Some deviations to the spatial evolution described above have however been noted by Wing
and Emanuel (2014) and Holloway and Woolnough (2016). Wing and Emanuel (2014) found
that the shape of the moist region varied between simulations with different sea-surface
temperature but otherwise identical setup. Despite a large square domain, they observed that
for some sea-surface temperatures self-aggregation led to the formation of persistent moist
bands rather than circular regions. The moist regions observed by Holloway and Woolnough
(2016) were, while not band-like, less circular than in previous studies.

The formation of large dry subsiding and moist convectively active regions has also been
observed in studies with general circulation models in a RCE setup but with parameterized
convection (Popke et al., 2013; Coppin and Bony, 2015). With the domain size given by
the earth’s surface, multiple moist regions form, some of which reach the size of continents.
While the moist regions in the study conducted by Popke et al. (2013) are more or less circu-
lar, Coppin and Bony (2015) note that their moist regions have long filaments extending into
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Fig. 4.1.: Daily mean water vapor path [mm] in a cloud resolving model at day 10, day 20 and day
50 (left to right) (Bretherton et al., 2005).

the dry regions. This appearance of moist filaments is somewhat comparable to the moist
region in Holloway and Woolnough (2016), mentioned above. It is interesting to speculate
whether these filaments are caused by the formation of significant circulations within the do-
main. As we will discuss in more detail below, low level circulations have been found to lead
to upgradient horizontal transport during later stages of self-aggregation. This process may
perhaps lead to the formation of elongated moist regions, which indicate the convergence
zone of lateral humidity transport.

While the spatial appearance of self-aggregation has thus been found to depend on the shape
of the domain, with band-like moist regions for channel-like simulations and circular moist
regions in square or global domains, self-aggregation has in addition been shown to only
occur in large domains. Apart from the early study by Tompkins and Craig (1998), all
subsequent studies find self-aggregation is limited to domains which are larger than 200 or
300 km in at least one horizontal direction. In particular, Bretherton et al. (2005) tested a
small set of (square) domain sizes and found that self-aggregation occurred for 384 km (or
above) but not for 288 km (or below). Repeating this sensitivity study with a larger set of
domain sizes, Muller and Held (2012) found that self-aggregation only occurred for domains
larger than about 200 km. Again testing different domain sizes for their tendency of self-
aggregation, Jeevanjee and Romps (2013) find self-aggregation only above approximately
300 km.

4.1.2. Proposed mechanisms causing self-aggregation

Many studies have explored the potential feedback mechanisms leading to self-aggregation.
The arising picture is complicated and it has been shown that in most cases multiple feed-
backs act at the same time. Note that while the feedbacks are usually described by their
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effect on humidity, rather than convection, humidity perturbations and convective aggrega-
tion occur together as convection is limited to moist regions.

Three physical mechanisms causing a feedback have been identified: surface fluxes, radia-
tion and convection itself. Each of these feedbacks can be either positive, i.e. leading to an
increase of humidity in already moist regions, or negative and thus remove perturbations in
the humidity field. Self-aggregation thus depends on the sum of positive feedbacks being
larger then the sum of negative feedbacks. In the following we shortly describe how the
processes listed above affect the local humidity distribution. For a more detailed review see
Wing et al. (2017).

Surface fluxes

It has been suggested that surface fluxes can be a positive or a negative feedback. On the one
hand, the positive feedback is due to the increased surface winds, and therefore increased
surface fluxes, in convectively active regions. Surface winds are affected by the presence
of convection as the onset of convection is connected with low-level convergence while the
decay of convection is associated with cold pools and thus low-level divergence. On the other
hand, the negative feedback is due to the decrease in the latent heat flux if the boundary layer
is anomalously moist.

While earlier studies suggest that a positive surface flux feedback is necessary for self-agg-
regation (Tompkins and Craig, 1998; Bretherton et al., 2005), more recent studies find that
surface fluxes act as a positive but not necessary feedback (Muller and Held, 2012; Holloway
and Woolnough, 2016).

Radiation

As we have discussed in section 1.1.1, radiation can interact with convection and humidity
perturbations in a number of ways. As shortwave and longwave radiative interactions with
clouds and humidity are quite distinct, we describe them separately.

The relevant question for the longwave radiative feedback is whether dry columns emit more
or less longwave radiation than moist columns. In particular, if longwave emission is in-
creased this leads to radiative cooling, which by virtue of the weak temperature gradient
approximation will induce subsidence drying. Longwave radiation therefore leads to a posi-
tive feedback if emission is increased in dry while decreased in moist regions. This feedback
has been found to be very sensitive as the amount of emitted longwave radiation is strongly
influenced not only by the amount of humidity in an air column but by the vertical profile
of the humidity distribution and the presence of clouds. Analysis of the budget equation
of the variability of the moist static energy, a diagnostic introduced by Wing and Emanuel
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(2014) to assess the contribution of the different mechanisms to self-aggregation, suggests
that longwave radiation feedbacks are important positive feedbacks at least during the early
stages of self-aggregation (Wing and Emanuel, 2014; Holloway and Woolnough, 2016).

For shortwave radiation, the relevant question is how much of the incoming shortwave ra-
diation is absorbed in the respective columns. If absorption is reduced, this again leads to
cooling and thus subsidence drying. As for surface fluxes, the feedback has been found to
be either positive or negative. On the one hand, dry regions are optically thinner then other
regions which leads to reduced absorption and thus cooling. On the other hand, much of the
incoming shortwave radiation in the moist regions can be reflected at cloud tops thus also
inducing a cooling. While this latter effect has been shown to be important in particular in
the aggregated state, comparison with the longwave feedback suggests that shortwave feed-
backs are positive throughout but generally weaker then the longwave feedbacks (Wing and
Emanuel, 2014; Holloway and Woolnough, 2016).

Convective entrainment and detrainment

Up to now, the introduced feedbacks discuss the effect on humidity rather than convection,
with the idea that increased humidity will lead to increased convection. The entrainment-
detrainment feedback however argues that not only does humidity increase the amount of
convection but that in turn the convection induced humidity perturbations lead to a signif-
icant increases in humidity. As discussed in more detail in the introduction (section 1.4),
convection transports humidity out of the boundary layer into the free troposphere, while
some of it falls out as precipitation, the rest remains in the free troposphere. As surface
fluxes quickly remoisten the boundary layer, this leads to a net increase in column humidity.
While the increase in humidity due to convection is thus caused by detrainment, the depen-
dence of convection is due to entrainment, as entraining of dry air will reduce the buoyancy
and thus suppress the formation of deep convection.

Models for local humidity feedback

Three studies have introduced simplified models to describe a single or a combination of
these feedbacks on the local humidity content: Bretherton et al. (2005), Craig and Mack
(2013) and Emanuel et al. (2014). Despite describing different feedback mechanisms, they
all suggest that the local humidity content is unstable: dry perturbations want to dry while
moist perturbations want to moisten. While we will discuss these models in detail in sec-
tion 4.2, we will argue in section 4.4 that the spatial structure of self-aggregation is indepen-
dent of the model details.
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4.1.3. Spatial interaction

Besides the feedbacks reviewed above, which act locally and thus contain no information
about how humidity is exchanged within the domain, the formation of connected moist and
dry regions from an initially randomly disturbed field shows that such an exchange takes
place. To understand the spatial evolution of self-aggregation one therefore needs to assess
how humidity is exchanged between different model columns.

Bretherton et al. (2005) were the first to suggest that horizontal humidity exchange is due
to an upgradient transport of humidity, caused by a shallow circulation. Muller and Held
(2012) showed that this circulation is mainly driven by longwave cooling at low level cloud
tops in the dry region. The strong cooling induces strong subsidence which induces diver-
gence at the surface and convergence at the cloud top height. It has been shown that this
circulation leads to a net humidity export out of dry regions, thus strengthening anomalies
in the humidity distribution. Analysis of the budget equation of the variability of the moist
static energy (Wing and Emanuel, 2014; Coppin and Bony, 2015; Holloway and Woolnough,
2016) suggests however that the upgradient transport of humidity is not important during the
initial phase of self-aggregation.

To describe the spatial evolution during the onset of self-aggregation we therefore need to
introduce a spatial interaction term which accounts for moisture exchange with neighboring
grid cells. In this study we propose that the spatial interaction, at least during the early stages
of self-aggregation, is diffusive. A diffusive interaction term models random advection and
leads to a downgradient moisture transport. We will show in this chapter that it approxi-
mately represents the effect of moisture increase due to stochastically triggered convection.
This choice is in agreement with the initially negative contribution of the convergence term
found by Wing and Emanuel (2014) and Coppin and Bony (2015) but not with with the
neutral or even positive convergence term observed by Holloway and Woolnough (2016).

4.1.4. Coarsening

Assuming that the atmosphere is in a bistable state, i.e. depending on initial humidity con-
tent each grid cell wants to become either moist or dry, what time evolution do we expect
in a spatially extended system? In case of diffusive spatial interaction, the time evolution
equation belongs to a specific type of Reaction-Diffusion Equation: the Time-Dependent
Ginzburg-Landau Equation (TDGL), sometimes also called Allen-Cahn Equation. Starting
from a slightly perturbed homogeneous field in the unstable state, the TDGL equation de-
scribes the time evolution of a phase separation by a process called coarsening. A short
summary of this process, based on the respective chapters in Sethna (2006), Henkel and
Pleimling (2010) and Krapivsky et al. (2010), is given in the following.
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The general form of a Reaction-Diffusion equations of a scalar field q is given by

∂q

∂t
= R(q) +D∇2q (4.1)

where R(q) accounts for all local interactions which affect q and D is the diffusion co-
efficient. In TDGL equations, the local interactions can be represented as the functional
derivative of a double-well potential V (q)

∂q

∂t
= −δV

δq
+D∇2q. (4.2)

The double-well potential accounts for the bistability of the system with respect to q as
without the diffusive term, i.e. without spatial interaction, every site of the domain would
relax into one of the two potential minima, depending on its initial value of q. The two
potential minima thus correspond to the two stable states.

Starting from a field in the unstable state (the maximum of the potential) with added random
noise, will first lead to the formation of small, coherent regions of the two stable phases, fol-
lowed by an upscale growth. An example of which is shown in Fig. 4.2 for the Ising model,
first introduced to describe ferromagnetism and the classic example of a model showing
coarsening.

Fig. 4.2.: Spin configuration of an Ising-model at zero temperature after a) 20 time steps and b) 200
time steps (Sethna, 2006, p. 247).

The key property of TDGL equations is the self-similarity of the upscale growth of the stable
regions. This means that the morphology is (statistically) time-independent, apart from a
rescaling of all length scales according to

L(t) ∼ t1/2. (4.3)

The dynamical exponent of 1/2 is universal for all non-conserved scalar order parameters.
In particular, it is independent of details of the potential and, unlike the critical exponents
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discussed in the context of continuous phase transitions, of the considered dimension d if
d ≥ 2.

The time evolution described by the TDGL is purely dissipative, minimizing the Landau
Free Energy

F [q(~x)] =

∫
[
1

2
(∇q(~x))2 + V (q(~x))]d~x. (4.4)

In order to minimize Eq. 4.4, the domain will eventually contain only three distinct regions:
regions in the two stable phases (black and white) and domain walls between them. While the
functional dependence of the barrier width depends on the details of the considered potential,
some properties which apply to all potentials are summarized in the following.

Starting with the one-dimensional case and a potential with two degenerate minima at q1 and
q2, it has been shown (e.g. Krapivsky et al., 2010) that the domain wall evolves towards a
functional dependence given by

x =

√
D

2

∫ q(x)

q(−∞)

dq√
V (q)

. (4.5)

Solving Eq. 4.5 for q(x), given the potential V (q), gives the humidity profile of a single
barrier between a dry (q(−∞) = q1) and a moist region (q(∞) = q2). As the distance
between two given humidity values, according to Eq. 4.5, scales with the square root of the
diffusion coefficient, this implies in that the barrier width, defined as the distance over which
q1 + ∆q increases to q2−∆q with ∆q small, is proportional to

√
D. See the Appendix A for

further details.

Extending their argument to a potential with two non-degenerate minima, say V (q1) <
V (q2), we argue in part A of the Appendix that this relation for the barrier width still holds
but that now the stable region (q1) will in addition propagate into the metastable region (q2).

4.2. Three Local Feedback Models

In this chapter we suggest that the type of pattern formation observed during self-aggregation
of convection is independent of the details of the positive feedback, as long as this feedback
acts locally. In order to illustrate this we start by comparing the three theoretical models
introduced by Bretherton et al. (2005), Craig and Mack (2013) and Emanuel et al. (2014).
Each model describes the time evolution of a local humidity perturbation, resulting from a
single or a combination of feedback mechanisms and thus corresponds toR(q) in a Reaction-
Diffusion model, see Eq. 4.1.
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4.2.1. Model introduced by Bretherton et al. (2005)

Bretherton et al. (2005) use a RCE simulation to derive a semi-empirical model for the time
evolution of the column relative humidity rhum. They start by deriving an approximate bud-
get equation for the column relative humidity from the budget equation of the vertically
integrated frozen moist static energy, using the weak-temperature gradient approximation.
They find that the time evolution depends on radiation, surface fluxes and moisture con-
vergence. To determine these component forcings, they fit the dependence of each of the
forcing terms on precipitation rate P . They motivate using precipitation rather than column
relative humidity by stating that, on physical grounds, they anticipate it to be the amount of
convection which alters the forcing terms.

They find that the radiation as well as the surface flux forcing increase linearly with pre-
cipitation rate, suggesting that in regions of increased convection the relative humidity will
increase due to both radiation and surface fluxes. The dependence of the convergence term
on precipitation is more difficult but shows that convergence will transport humidity out of
regions with little convection.

To obtain a closed equation for the time evolution of a humidity perturbation (their Eq. 9)

∂tr
hum = [cs + cr − αh(rhum − rhumh )][P (rhum)− PRCE]/W∗ (4.6)

they also use the dependence of the precipitation rate on humidity (their Eq. 2)

P (rhum) = PRCE(exp(am(rhum − rhumRCE))− 1), (4.7)

where cs, cr, αh, rhumh and am are fit parameters for the forcing terms, PRCE is the horizontal
mean radiative-convective equilibrium rain rate, rhumRCE the corresponding column relative
humidity and W∗ is the saturation water-vapor-path. .

All parameters were estimated by Bretherton et al. (2005) using their RCE simulation:

cs cr αh rhumh PRCE W∗ rhumRCE am

Value 0.12 0.17 1.8 0.62 3.5 57 0.72 16.6

Unit 1 1 1 1 mm day−1 mm 1 1

Combining Eq. 4.6 with Eq. 4.7 and replacing rhum − rhumRCE by rhum′ yields the following
interaction term:

RB(rhum
′
) = (cs + cr − αh(rhum

′ − rhumh + rhumRCE))PRCE(exp(amr
hum′)− 1)/W∗ (4.8)

Note that while R in Eq. 4.1 only represents local interactions, Eq. 4.8 includes the non-
local effect of the horizontal convergence term. As the diagnostic they use to derive this
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convergence term is based on a diagnostic in “humidity space” rather than physical space its
interpretation in form of a spatially extended circulation is not possible. We here include this
term but note that strong spatial circulations would modify the spatial evolution equation.

4.2.2. Model introduced by Craig and Mack (2013)

The model introduced by Craig and Mack (2013) is based on a positive feedback between
convection and the humidity content of the free troposphere. On the one hand, convec-
tion will increase the humidity in the free troposphere by transporting humidity out of the
boundary layer into the free troposphere. While on the other hand, deep convection is more
likely to occur in moist regions then in dry regions, as the entrainment of dry air reduces the
buoyancy. They formalized this local feedback on the humidity content as:

RC(Iv/I
∗
v ) = −αIv/I∗v +

λ

I∗v
(ebmIv/I

∗
v − 1)

(
I∗v
βpIv

− 1

)
(4.9)

where Iv is vertically integrated free tropospheric moisture content and I∗v is the correspond-
ing saturation value. The first term on the right hand side of Eq. 4.9, represents the subsi-
dence drying term which accounts for the loss of humidity due to subsidence, with subsi-
dence rate α. The second term is the convective moistening term and represents the increase
in humidity due to convection, where λ(exp(bIv/I

∗
v )− 1) gives the amount of precipitation

for a given value of (Iv/I
∗
v ), see Eq. 4.7, and (1/(βpIv/I

∗
v )−1) is the complement of the pre-

cipitation efficiency and gives the amount of humidity that does not drop out as precipitation.
The parameters λ, bm and βp are fit parameters.

These parameters are estimated from RCE simulations, described in Kempf (2014), by fitting
the subsidence drying and the convective moistening term (see Kempf (2014) for details on
how these terms were extracted) for a sea surface temperature (SST) of 300 K at day 60,
see Fig. 4.3. Note that we use the results from Bretherton et al. (2005) as first guess values
for fitting the convective moistening part. In addition to the fit, which gives only a value for
the fraction of λ/I∗v , we extract the mean saturation water vapor content I∗v = 29.6 kg m−2

from the simulation, which allows us to estimate λ separately. Finally, we estimate the
homogeneous humidity content in the RCE state, IRCEv , using RC(IRCEv /I∗v ) = 0 which
yields IRCEv = 12.6 kg m−2

For comparability with the other models we ignore the global constraint, introduced in Craig
and Mack (2013) to ensure that the domain can neither become completely dry nor com-
pletely moist, as is the case for an RCE simulation. Dropping this constraint corresponds to
simulating only a small sub-region of an area in RCE, which allows a uniform dry or moist
state, as observed for weak-temperature gradient simulations (e.g. Sessions et al., 2010).
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Fig. 4.3.: Absolute values of the subsidence drying (blue) and convective moistening (green) terms as
a function of vertically integrated free tropospheric humidity content determined by Kempf
(2014) (markers) with corresponding fit (solid lines).

α βp λ bm I∗v IRCEv

Value 2.0 · 10−6 1.1 1.7 · 10−7 11.4 29.6 12.6

Unit s−1 1 kg m−2 s−1 1 kg m−2 kg m−2

4.2.3. Model introduced by Emanuel et al. (2014)

Emanuel et al. (2014) derive a time-evolution equation for humidity perturbations by lin-
earizing the budget equation of moist static energy around the radiative-convective equilib-
rium state. Changes in the moist static energy are caused by radiative heating, convective
transport and advection. By determining how each of these processes depends on the hu-
midity content and then linearizing it, Emanuel et al. (2014) show that, at least for high
SST, the combined effect of these processes leads to a positive feedback on small humidity
perturbations. As radiative heating, which was found to be the most relevant process in the
accompanying simulations (Wing and Emanuel, 2014), depends not only on the vertically in-
tegrated moisture content but also on the moisture profile, they introduce a two-layer model
for the moisture perturbations:

Lv

(
∂tq
′
1

∂tq
′
2

)
=

(
c11 c12

c21 c22

)(
q′1

q′2

)
, (4.10)

where Lv is the latent heat of vaporization, q′i is the deviation from the mean RCE specific
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humidity in the lower (i = 1) and upper layer (i = 2) and cij are the four linearization coef-
ficients, derived from the dependence of radiative heating, convective transport and vertical
advection on humidity.

Evaluating which of these three processes leads to a positive feedback for humidity perturba-
tions, Emanuel et al. (2014) find, in contrast to Craig and Mack (2013) but in agreement with
their simulations, that it is the feedback between longwave radiation and humidity rather than
the increase in humidity due to convection. While the vertical advection term is important for
the positive feedback it is in fact determined by the two other processes through the weak-
temperature gradient approximation, which removes the radiative heating perturbations, and
mass conservation, which balances the convective mass-flux.

While we do not go into details of the derivation or the discussion of the individual terms,
the proposed feedback mechanism can be summarized as follows. In case of a moist lower
troposphere, negative (positive) moisture perturbations lead to stronger (weaker) radiative
cooling inducing mean descent (ascent) as horizontal temperature differences are removed
by the compensating vertical motion in WTG. This leads to a reinforcing of the original
perturbation. As a moist lower troposphere, which is necessary for this feedback to work,
is expected only for high sea-surface temperatures, Emanuel et al. (2014) argue that this
dependence can explain why self-aggregation has been found to only occur for large sea-
surface temperatures (e.g. Khairoutdinov and Emanuel, 2010).

As we here focus on the spatial evolution of SA, rather than its SST dependence we consider
the model in the limit of high SST, and thus a moist lower troposphere, where humidity
perturbations are unstable. We find that in this limit, the two layer model can be represented
in terms of only one layer as shown in the following. In the case of a very moist lower layer
(the condition required for self-aggregation) the lower layer has a high emissivity with weak
sensitivity to changes in humidity.

Applying this limit by setting ε1 → 1 (high emissivity) and ∂ε1
∂q1
→ 0 (weak humidity de-

pendence) in the equations for cij given in Emanuel et al. (2014), we find that c11 → 0 and
c21 → 0 and thus the perturbation humidity content of the second layer (q′2) decouples from
the first layer. Its time evolution and therefore the local interaction term RE for the model
introduced by Emanuel et al. (2014) can be expressed as:

RE(q′2) =
1

Lv
c22q

′
2 (4.11)

where c22 is the relevant linearization coefficient, given in Emanuel et al. (2014) as

c22 =
∂ε2
∂q2

σT 4
2

1

H

(
εp
ρ1

S2

S1

+
1

ρ2

((
T1

T2

)4

− 2

)
(1− εp)

)
, (4.12)

with σ the Stefan-Boltzmann constant, H the height of one layer, ρi, Ti and Si the density,
temperature and dry static stability of layer i. As ∂ε2/∂q2 denotes the dependence of the
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emissivity of the second layer on humidity, the first three terms describe the change in radia-
tive cooling of the upper troposphere due to a change in humidity. We do not go into detail
on the meaning of the remaining terms, but note that εp is the ratio of the updraft mass-flux
to the total mass-flux, i.e. the mass-flux also including convective downdrafts, introduced in
the context of determining the amount of subsidence necessary for compensating the updraft
convective mass-flux.

We estimate the parameters in part B of the Appendix and here only summarize the corre-
sponding values:

H T1/T2 ρ1/ρ2 S1/S2 ∂q2ε2 εp

Value 6000 264.7 / 220.4 0.647 / 0.333 3.9 / 2.3 750 0.8

Unit m K kg m−3 J K−1 m−1 1 1

4.2.4. Model Comparison

(a) (b)

Fig. 4.4.: Stability analysis of the three models introduced by Bretherton et al. (2005) (blue), Craig
and Mack (2013) (orange) and Emanuel et al. (2014) (green). The local evolution equation
of humidity as a function of humidity (a) and the corresponding potential (b).

Each model introduced above describes how a small perturbation in humidity content will
evolve in time. While they are based on different mechanisms, are derived in different ways
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and even account for the humidity content of different layers, they have one important com-
mon property: humidity perturbations grow in time. This can readily be seen in Fig. 4.4(a),
where we show the local interaction terms (R) for each model, using the parameters in-
troduced above. While the models use different measures of column humidity we replace
them by a generic relative humidity parameter q as this is sufficient for our discussion here.
Deviations of q from the corresponding horizontal mean radiative-convective equilibrium
humidity content qRCE are denoted as q′. Note that qRCE in Bretherton et al. (2005) is dif-
ferent from qRCE in Craig and Mack (2013) (which we also use for Emanuel et al., 2014),
which means that while q always extends from zero to one, q′ extends over different inter-
vals, [−qRCE, 1 − qRCE]. While R(q′ = 0) = 0 shows that q′ = 0 is a time-independent
solution in each model, ∂qR(q′ = 0) > 0 shows that in all three models any small pertur-
bation will grow in time, i.e. moist perturbations will become increasingly moist while dry
perturbations become increasingly dry.

In order to characterize the behavior of the different feedbacks and to relate them to coars-
ening, we represent each local interaction model also in terms of the potential V (q), see
Eq. 4.2. The, numerically integrated, potentials are shown in Fig. 4.4(b). The physical limits
on humidity, given by complete dryness (q = 0) and saturation (q = 1), show up in the
potentials as infinite walls at these humidity values. In agreement with coarsening, the po-
tentials represent double-well potentials. We can now visualize the time evolution of any
humidity perturbation by “rolling down” into one of the potential minima. In particular, any
initial humidity content smaller (larger) than qRCE , the maximum of the potential, will tend
to the stable dry (moist) minimum with the drying/moistening rates given by the steepness
of the potential.

Comparing the three models suggests that the dry perturbations always tend to an entirely
dry state, while Bretherton et al. (2005) and Craig and Mack (2013) suggest that the moist
equilibrium is below saturation, note that the moist minimum in Bretherton et al. (2005) is
so close to q′ = 0 that it is hardly visible in Fig. 4.4. In addition to the humidity value of the
stable moist and dry state, the differences in the potentials suggest that the time evolution
will be different. Since the model introduced by Emanuel et al. (2014) has been linearized
with respect to qRCE , the corresponding potential is symmetric with respect to qRCE and thus
moistening and drying progress at the same speed. For the model based on Craig and Mack
(2013), moistening is faster than drying, in contrast to the model based on Bretherton et al.
(2005) where drying is much faster than moistening.

Regarding the time evolution equations given by Eq. 4.8, Eq. 4.9 and Eq. 4.11 as double well
potentials compares well with results obtained by weak-temperature gradient studies which
examine multiple-equilibria solutions (Sobel et al., 2007; Sessions et al., 2010, 2015, 2016;
Emanuel et al., 2014). These studies suggest that, under certain conditions, the final state of
a model in WTG depends on the initial humidity content, with dry initial conditions evolv-
ing towards a unique dry equilibrium state while moist initial conditions develop towards a
unique moist equilibrium state, hence the name ”multiple equilibria”. Comparison with the
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potentials introduced above suggests that the multiple equilibria correspond to the moist and
dry potential minima and that the performed experiments are a good framework to explore
the properties of the potential.

4.3. Spatial Interaction

The formation of coherent moist and dry regions during self-aggregation suggests, however,
that the humidity content within an atmospheric model column is not only affected by a
strictly local feedback mechanism but also exchanged between neighboring columns. While
the feedback mechanisms in the three models introduced above differ, the cause of the local
increase in humidity is convection. Bretherton et al. (2005), for example, formulate the
forcing terms of their humidity equation in terms of precipitation because they argue that,
on physical grounds, the forcing terms should depend on the amount of convection. The
increase of humidity by convection is a central component of the model introduced by Craig
and Mack (2013) and though in the model introduced by Emanuel et al. (2014), convection
is not the reason for the feedback mechanism, it is again a source of increased humidity.

In the following we show that the humidity content of neighboring columns is coupled if
we assume that the convectively-induced increase in humidity is not strictly local but spread
within a finite region around the center of the convective updrafts. In addition, we find that
we can approximate this coupling by a strictly local increase in humidity combined with a
diffusive interaction term.

4.3.1. Stochastic Model

To account for the increase of humidity within a finite region around the convective updraft,
we introduce a model where each cloud leaves a humidity footprint of finite size. In par-
ticular, the total moisture increase due to one cloud, q0, is distributed in space according to
φ(∆) where ∆ is the distance to the cloud center and the spatial distribution function φ(∆)
is normalized to one, i.e.

∫∞
−∞ φ(∆)d∆ = 1. The increase in humidity at a given location x

due to convection depends thus on the rate of clouds n whose centers form close enough to
x. This increase in humidity can be expressed by the following integral:

∂tq(x) =

∫ ∞
−∞

n[q(x+ ∆)]q0φ(∆)d∆ (4.13)

where a cloud at x + ∆ increases the humidity at x by q0φ(∆). The rate at which clouds
form within [x, x + dx] is given by n[q(x, t)]dx and depends only on the relative humidity
q(x, t).
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We first consider a linear increase of cloud number with humidity, i.e. n[q] = n0 + n1(q −
qRCE) and note that this also represents a first order Taylor expansion of a more complicated
n[q] around qRCE . For the spatial distribution function, we assume for simplicity that each
cloud leads to a constant increase in humidity, up to a distance of rfp from the cloud core.
To numerically model this equation we need to estimate the following parameters:

• qRCE: the homogeneous humidity content in an RCE simulation

• n0: the average number of clouds per time and area at qRCE
• n1: the additional number of clouds per time, area and ∆q at qRCE + ∆q

• q0: the total increase in humidity associated with one cloud

• rfp: the radius of the humidity footprint

To estimate the parameters we start from the dependency of precipitation on humidity, given
in Eq. 4.7, found by Bretherton et al. (2005). They find qRCE = 0.72 and am = 16.6.
Assuming that precipitation is a proxy for the amount of convection, we estimate n[q] =
n0 exp(am(q − qRCE)) ≈ n0 + n0am(q − qRCE), i.e. n1 = n0am. Scheufele (2014) found
on average about 1000 deep convective clouds within a 128 km× 128 km domain in an
RCE simulation at 125 m resolution with a radiative forcing of −4 K d−1. Assuming an
average cloud life-time of one hour allows us to estimate n0 = 1.7× 10−11 s−1 m−2 and
n1 = n0am = 2.8× 10−10 s−1 m−2. For q0 we assume that one cloud increases the humidity
from qRCE to saturation (i.e. q = 1) within a radius of 500 m around the cloud center, which
gives q0 = (1 − qRCE)πr2 =. 2.4× 105 m2. Finally we estimate the radius of the humidity
footprint as rfp = 10× 103 m.

Starting from a humidity field with a step-function profile in x-direction, as can be seen in
the top row of Fig. 4.5, a cloud is assigned with probability n[q(i, j)] at every site (i,j). Note
that we enforce a lower and an upper limit on the humidity content of qRCE−1/am ≤ q ≤ 1.
While the upper limit is a physical limit, the lower limit ensures that the rate of clouds cannot
become negative. If a cloud is assigned to site (i,j), its humidity together with the humidity
of all cells with a distance less or equal to rfp is increased by q0/πr

2
fp. Here we choose that,

during each time-step, at maximum one cloud can form per grid cell as the chosen horizontal
resolution of 1 km and the corresponding time step of 60 min approximately correspond to
the size and lifetime of a deep convective cloud. The profile of a sample model output
after ten hours is shown in addition to the initial profile in the top row of Fig. 4.5 and the
corresponding snapshot in the middle row. The front between the moist and the dry region
after ten days has propagated into the dry regions and the gradient has been smoothed.

4.3.2. Deterministic Approximation

In the following we will show that the model described by Eq. 4.13 can be approximated by
a Reaction-Diffusion Equation. Using, as above, a first order Taylor expansion of n[q] and
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Fig. 4.5.: Top row shows the initial humidity profile (blue) and humidity profiles after ten hours for
the stochastic model (green) and the deterministic model (red). The middle and bottom
rows show snapshots of the stochastic and deterministic model after ten hours respectively.

in addition a second order Taylor expansion of q(x+ ∆):

n[q] ≈ n0 + n1q

q(x+ ∆) ≈ q(x) + ∆∂xq|x +
∆2

2
∂2
xq|x

Eq. 4.13 can be written as

∂tq(x) ≈ (n0 + n1q(x))q0

∫ ∞
−∞

φ(∆)d∆︸ ︷︷ ︸
=1

+n1q0∂xq

∫ ∞
−∞

∆φ(∆)d∆︸ ︷︷ ︸
=0

+

+
1

2
n1q0∂

2
xq

∫ ∞
−∞

∆2φ(∆)d∆︸ ︷︷ ︸
depends only on choice of φ

(4.14)

= (n0 + n1q(x))q0 +D∂2
xq (4.15)

where the integral in the first term is one due to the normalization constraint of φ(∆), the
integral in the second term vanishes as we integrate an asymmetric function over a symmetric
interval while the integral in the last term is determined by the choice of φ(∆).
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4. Spatial Evolution of self-aggregation

Eq. 4.15 has the same functional dependence as a Reaction-Diffusion equation, see Eq. 4.1.
The reactive part is given by (n0 + n1q(x))q0 and the diffusive part by D∂2

xq(x, t), with the
diffusion coefficient

D ≡ 1

2
n1q0

∫ ∞
−∞

∆2φ(∆)d∆. (4.16)

This derivation is similar to Einstein’s famous “proof” of the existence of Brownian motion
(Einstein, 1905). It runs analogously in the two dimensional case.

Assuming φ(∆) is constant up to a distance rfp and zero for distances larger than rfp:

φ(∆) =

{
1

πr2fp
for ∆ ≤ rfp

0 else

the 2D diffusion coefficient is given by

D =
n1q0

8
r2
fp. (4.17)

Using Eq. 4.17 and the parameters estimated above, results in D = 3.1× 102 m2 s−1.

Starting from the same initial humidity profile previously used for the stochastic model, a
snapshot of the time evolution after ten hours of this deterministic model is shown in the
bottom row of Fig. 4.5 with the corresponding humidity profile shown in the top row. It
closely resembles the evolution of the stochastic model but is completely symmetric in the
y-direction, without any fluctuations in propagation speed and boundary width as in the
stochastic model.

Equation 4.15 therefore shows that if convection is more likely to occur in moist regions and
we assume that clouds increase the humidity in the free troposphere within a finite region
around the cloud center this can be approximated by a strictly local increase of humidity due
to the number of clouds at that location and a diffusion term.

4.4. Spatial Evolution

Section 4.3 shows that the moistening of the atmosphere within finite regions around convec-
tive updrafts can be approximated by a Reaction-Diffusion Equation. The model described
by Eq. 4.15 so far only includes the tendency of the atmosphere to moisten regions of in-
creased convection, but we know from Section 4.2 that there exists a positive feedback where
not only moist regions get moister but also dry regions drier. As we have seen that the three
local interaction terms RB (Eq. 4.8), RC (Eq. 4.9) and RE (Eq. 4.11) can be described as
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derivatives of a double well potential, combining them with a diffusive interaction term leads
to three TDGL equations.

Starting from a slightly perturbed homogeneous state of q = qRCE we now examine the time
evolution of two dimensional humidity fields resulting from the three models.

4.4.1. Snapshots

As expected from coarsening, snapshots of the three models show the formation and upscale
growth of coherent moist and dry regions, see Figs. 4.6-4.8. While all three models show this
generic behavior, there are significant differences between them which reflect the differences
in the potentials. For example, the humidity values of the dry and the moist regions are
clearly different in the three models. These are given by the two minima of the potentials, see
Fig 4.4(b), with the humidity content of the dry region given by the potential minimum below
qRCE and the humidity content of the moist region by the potential minimum above qRCE .
While for all three models the dry minimum is at q = 0, the moist minimum has different
humidity values, clearly reflected in the different humidity values of the moist regions in
Figs. 4.6-4.8. An other difference is the rate of drying and moistening, which for each value
of q is given by the gradient of the potential at q. The steeper the gradient, the larger the
drying or moistening rate. Note that the snapshots we show for the model based on the
results by Bretherton et al. (2005) are taken after a longer simulation time than the snapshots
for the two other models. This is necessary as the gradient of RB close to zero is small
compared to the other two models. As we do not have a constraint on the global amount
of convection, different drying and moistening rates also affect the proportion of moist in
comparison to dry regions.

Fig. 4.6.: Snapshots of the humidity perturbations obtained by numerical simulation of the model
based on the results from Bretherton et al. (2005). Starting from a slightly perturbed homo-
geneous state, the snapshots show the model domain after 15 days (left), 30 days (middle)
and 45 days (right)
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4. Spatial Evolution of self-aggregation

Fig. 4.7.: As in Fig. 4.6 but for the model based on the results from Craig and Mack (2013) and days
5 days (left), 10 days (middle) and 15 days (right).

Fig. 4.8.: As in Fig. 4.6 but for the model based on the results from Emanuel et al. (2014) and days 5
days (left), 10 days (middle) and 15 days (right).
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4.4.2. Scaling

As one of the central properties of coarsening is dynamical self-similarity, we now show the
average scaling of the typical length scale with time for the three models and compare them
to the expected t1/2 scaling, see Eq. 4.3.

In particular, Fig. 4.9 shows the scaling of the auto-correlation length lcor with time for all
three models. For each model the average of ten runs is calculated. We show the plot with a
double logarithmic scale, as a power-law dependence will then appear as a straight line. In
addition to the scaling of the model, Fig. 4.9 shows the scaling we expect from Eq. 4.3. We
find that, after an initial transition phase, the time evolution of the auto-correlation length in
all three models is well described by Eq. 4.3, during the formation and the upscale growth
of moist and dry regions.

Fig. 4.9.: Scaling of the average auto-correlation with time for the three different models (colored
lines) and the theoretically expected dependence (dashed line).

4.4.3. Domain Wall Properties

Finally, we determine the dependence of the boundaries between moist and dry regions on
diffusion. As we have seen above, we expect the barrier width between the two stable regions
to be proportional to the square root of the diffusion coefficient.

To determine the average width of the barrier between a moist and a dry region we again use
simulations initialized with a step-function as shown in Fig. 4.5 but now q in the drier region
is set to zero. We simulate the propagating barrier for five days and determine average
profiles of the domain barriers for the last three days. Defining the barrier width as the

85



4. Spatial Evolution of self-aggregation

distance over which q increases from the humidity content of the dry state (plus a small
offset ∆ = 5 · 10−3) to the humidity content of the moist state (minus ∆), the resulting
dependence on the diffusion coefficient D is shown in Fig. 4.10.

We find the expected dependence of the barrier width on D for all three models introduced
above. In addition we note that for a given diffusion strength, the barrier width is always
smallest for the model based on Emanuel et al. (2014) and largest for the model based on
Bretherton et al. (2005). In particular, we find that for the diffusion strength determined in
section 4.3 the resulting barrier widths for the individual models are approximately 47 km
for the model based on Bretherton et al. (2005), 39 km for the model based on Craig and
Mack (2013) and 21 km for the model based on Emanuel et al. (2014). This difference in
barrier width is also clearly visible in Figs. 4.6-4.8.

Fig. 4.10.: Test scaling hypothesis for barrier width for three different models (dots) and correspond-
ing fits (line). The black dotted line marks the diffusion coefficient determined in sec-
tion 4.3.

4.5. Comparison of coarsening and self-aggregation
in RCE simulations

The results from the previous section suggests that self-aggregation of convection in RCE
simulations might be explained by a process called coarsening. In this section we will com-
pare properties of coarsening with properties observed in RCE simulations.
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4.5.1. Upscale Growth

Fig. 4.11.: Snapshots of WVP field in RCE simulation performed by Hohenegger and Stevens (2016).

Figure 4.11 shows snapshots of the water-vapor path in the RCE simulation described in
Hohenegger and Stevens (2016). For this simulation they used the University of California
Los Angeles Large-Eddy Simulation model coupled to a slab-ocean with a depth of 500 m,
a horizontal domain size of 576 x 576 km and a spatial resolution of 3 km, see Hohenegger
and Stevens (2016) for more details on the simulation. As expected for coarsening and
seen in Figs. 4.6-4.8, by day 5 coherent moist and dry regions have formed, which show
a clear upscale growth in the following. The barrier width between moist and dry regions
in Fig. 4.11 at day 15 is approximately 50 km, which is larger though comparable with
the barrier widths we found for the simple models in the previous section. Hohenegger
and Stevens (2016) noted that drying is faster then moistening, resembling the evolution in
the model based on Bretherton et al. (2005). It is interesting to note that also numerical
simulations differ with respect to whether drying or moistening happens faster. While some
studies find drying to be significantly faster than moistening (Wing and Emanuel, 2014;
Hohenegger and Stevens, 2016), other studies find a simultaneous drying and moistening
(Holloway and Woolnough, 2016).

4.5.2. Scaling in RCE simulations

We now determine whether the observed upscale growth in moist and dry regions agrees
with the scaling expected for coarsening, see Eq. 4.3. After an initial phase of rapid growth
in the correlation length, associated with the initial separation into dry and moist regions
also seen in Fig. 4.9, scaling follows the expected scaling for days 3 to 10, after which it
grows more rapidly, with small deviations up to day 23 and strong deviations afterward.
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Fig. 4.12.: Scaling of the auto-correlation length with time for the WVP in Hohenegger and Stevens
(2016) (blue dots) and the expected scaling (black line).

This suggests that coarsening may be important during the early stages of self-aggregation
but becomes less important during later stages. Perhaps this departure denotes the transition
to a circulation dominated phase of self-aggregation, as discussed in the introduction of this
chapter. Note that one must be cautious about drawing conclusions from a single realization
on a very limited domain as scaling is usually averaged over many runs in large domains.

In an other RCE simulation, performed by Wing and Cronin (2016), they find scaling of
the autocorrelation length with time but with an exponent of approximately one. We note,
however, that they used a very elongated, channel-like, domain which led to the formation
of persistent moist and dry stripes, and thus a quasi-one-dimensional humidity field, while
power-law scaling with an exponent of 1/2 is only expected for dimensions d ≥ 2. The
observed dependence of self-aggregation on domain shape is discussed in the next section.

4.5.3. Domain Shape Dependence

The appearance of SA is strongly influenced by the shape of the domain, in particular the
final shape of the moist region is found to be either circular or band-like. Which of these
two is realized seems to depend on whether the domain is square, resulting in circular moist
regions (e.g. Bretherton et al., 2005; Muller and Held, 2012; Kempf , 2013; Jeevanjee and
Romps, 2013; Hohenegger and Stevens, 2016), or channel-like, resulting in moist bands (e.g.
Tompkins, 2001a; Posselt et al., 2012; Wing and Cronin, 2016). One exception to this rule is
the RCE simulation performed by Tompkins and Craig (1998), who found a band-like moist
region despite using a square domain. Note however that this simulation was performed on a
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very small domain, the extent of which being on the order of or even smaller than the smaller
extent in the channel-like geometries.

Holloway and Woolnough (2016) have pointed out that this dependence on the shape of the
domain is explained if SA tends to minimize the length of the boundary. Assuming a moist
region of area Amoist, they showed that for a domain with the shortest domain side of length
L, there exists a critical area Amoistc = L2/π above which the minimal boundary length is
given by a moist band rather than a moist circle. A minimization of the boundary length is
exactly what we expect from coarsening, where the stable solution must minimize the free
energy given in Eq. 4.4. If the final solution contains a moist and a dry region, corresponding
to the humidity values of the two potential minima, energy minimization necessarily means
that the boundary between these two regions will be minimized, as any humidity values
between q1 and q2, the respective humidity values of the dry and the moist minimum, will
necessarily have higher V (q) > Vmin, i.e. higher free energy.

As explained above, our models are supposed to represent a small subdomain of a larger
domain and we therefore have no constraint on e.g. latent heat release (as is the case in
RCE) so our domains are allowed to become completely moist or completely dry. Neverthe-
less, the tendency of coarsening to favor banded versus circular moist regions can already
be seen during the evolution, as shown in Fig. 4.13. Figure 4.13 shows snapshots of two
simulations, both using the model based on Craig and Mack (2013), after 12 days. The two
simulations are identical apart from the domain size. The domain in Fig. 4.13(a) is channel-
like, with a domain size of 60 km× 600 km, and square in Fig. 4.13(b), with a domain size
of 600 km× 600 km. In the channel-like domain, multiple moist bands have formed while
in the square domain circular moist regions have formed, in agreement of boundary length
minimization.

4.5.4. Domain Size Dependence in RCE Simulations

We have seen in Section 4.1.4 that the barrier width is completely determined by the potential
and the diffusion coefficient and should thus be independent of the domain size. This can
explain the sensitivity of self-aggregation to domain size which was found by Bretherton
et al. (2005), Muller and Held (2012) and Jeevanjee and Romps (2013), who show that
self-aggregation only occurs for domains greater then 200-300 km.

If, in a domain with periodic boundary conditions, the domain size is of the order of the
barrier width or smaller, diffusion is too strong and the two stable regions can no longer occur
within the same, periodic, region. As in RCE the domain can neither become completely dry
nor completely moist, diffusion will tend to a homogeneous humidity content within the
domain.

An example for this is shown in Fig. 4.14, where we initialize two simulations by the hu-
midity distribution shown in the top row. To set the front propagation speed to zero, we
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(a) (b)

Fig. 4.13.: Snapshot of simulation based on Craig and Mack (2013) after 12 days in channel-like
domain (a) and square domain (b).

here consider a symmetric version of the model with the local interaction term described
in Eq. 4.11 by setting qRCE to 0.5. The only difference between the two simulations is the
domain size, which is 10 km× 20 km in the left figure and 100 km× 200 km in the right
figure. We find that after 50 days, the large domain has reached a steady state with a single
moist and a single dry region, now separated by a smooth domain wall, while the smaller
domain has evolved to a completely homogeneous state of q = qRCE .

4.6. Conclusion

In this chapter we have shown that the upscale growth of moist and dry regions during self-
aggregation of convection can be described by a process called coarsening if the relevant
feedback acts locally and the spatial coupling is diffusive.

To derive spatial evolution equations for self-aggregation, we combined three positive feed-
back mechanisms introduced in previous studies (Bretherton et al., 2005; Craig and Mack,
2013; Emanuel et al., 2014) with a spatial interaction term. We chose a diffusive interaction
which, as we have shown, approximates a humidity increase due to convection within a fi-
nite region around convective cores if the amount of convection depends only on humidity
content. The upscale growth of moist and dry regions in the three resulting spatial evolution
equations is described by coarsening.
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Fig. 4.14.: Domain size dependence of humidity fields. Numerical simulations, identical apart from
domain size, are started from the initial humidity distributions given in the top row and the
corresponding humidity field after 50 days is given in the bottom row.

Comparing properties of coarsening with properties of self-aggregation observed in atmo-
spheric model simulations we find that we can explain why the shape of the final moist
region changes with domain shape (channel vs. square) and why self-aggregation depends
on domain size. Comparison of the upscale growth of the moist and dry regions in an RCE
simulation with the predictions from coarsening are however ambiguous, suggesting that
coarsening is relevant mainly during the onset of self-aggregation, potentially followed by a
moisture advection dominated phase.

These findings emphasize two important points. First, the similarity in the appearance of
self-aggregation in different numerical simulations does not mean that there is a unique feed-
back mechanism but rather that they have the same underlying pattern formation mechanism.
Second, to understand which pattern formation mechanism is relevant we need to better un-
derstand how humidity is exchanged horizontally.
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5.1. Summary

In this thesis we have established three simple models to determine the consequences of
convective organization. Focusing on organization which results from convection itself, we
have investigated how cold pool induced boundary layer perturbations and free tropospheric
humidity perturbations lead to spatial and temporal correlations in the convective field. In
chapters 2 and 3 we have examined how the cold pool induced clustering of updrafts and
the cold pool induced propagation of convective activity can explain the observed power-
law scaling in convective size and event-size distributions, respectively. Finally, we have
shown in chapter 4 how a positive local feedback on humidity can lead to upscale growth
of convectively active and inactive regions, commonly observed in numerical simulations
and known as self-aggregation of convection. In each chapter, we have introduced a simple
model and related it to a model known from statistical physics, which has enabled us to profit
from the extensive research that has gone into them. Before summarizing the individual
models, we shortly describe the idealized picture of convection which motivates them.

While the amount of convection is determined by the large scale forcing, the spatial distribu-
tion of convection depends on cold pools and humidity perturbations. As cold pools spread,
updrafts form along their boundaries. In snapshots of the spatial distribution of individual
updrafts this shows up as a clustering of updrafts along the cold pool boundaries. In addition
to this clustering, cold pools induce correlations between different generations of convective
cells. While the cloud, which initially caused the cold pool, dies and locally suppresses con-
vection until it has recovered, some of the updrafts formed along the boundary grow large
enough to, in their turn, produce precipitation and induces a new cold pool. While the indi-
vidual updrafts have length scales of the order of 100 m, the cold pools extend, on the time
scale of hours, to several kilometers. The two models we have introduced in chapters 2 and
3 represent these two aspects of cold pool induced correlations.

Despite homogeneous forcing and boundary conditions, a large number of radiative-convective
equilibrium simulations show self-aggregation of convection, i.e. a spontaneous partitioning
of an initially homogeneous domain into moist convecting and dry non-convecting regions.
Convection is known to contribute to the intensification of the humidity perturbations by
preferentially occurring in moist regions where they lead to a local increase in free tropo-
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spheric humidity. Compared to cold pool perturbations, self-aggregation acts on timescales
of the order of days and leads to humidity perturbations with length scales of 100 km. We
have introduced a model to describe the spatial evolution of self-aggregation in chapter 4.

Size distributions of shallow cumulus clouds

In chapter 2, we have shown that the clustering of updrafts is important to understand the
observed size distributions of shallow cumulus clouds. In particular, we have introduced a
model based on percolation but modified it to account for cold pool induced clustering.

Standard percolation describes the properties of clusters which form from overlapping of
randomly distributed objects. At a critical coverage fraction, spatial correlation diverges
and, in the limit of an infinite domain size, an infinite cluster forms. Using a large satellite
data set in section 2.2 we have sorted the satellite scenes according to cloud fraction and
thus determined the cloud size distributions as a function of coverage fraction. We have
found that the size distributions follow the same functional dependence and show the same
sensitivity to coverage fraction as clusters in percolation below the critical coverage fraction.

Without clustering however, the merging of randomly distributed objects at low coverage
fractions is not frequent enough to explain the observed power-law scaling. Only by in-
cluding a simple representation of clustering and an underlying exponential distribution of
convective cell size in the percolation model in section 2.3 did we obtain accurate quan-
titative prediction of the power law slope and position of the scale break. As we could not
determine the clustering and cell size distribution directly, we used the satellite data to extract
approximations for the mean cell size and the necessary clustering parameters.

Propagation of convective activity

The question we have addressed in chapter 3 is whether convection triggering new con-
vection via cold pools can explain the continuous phase transition in convective activity,
observed by Peters and Neelin (2006). Before we introduced a model to explain how the
dependence of convective activity on cold pool triggering can lead to a phase transition at
the end of section 3.1, we reviewed the results of Peters and Neelin (2006) and discuss their
relation to known properties of non-equilibrium phase transitions. From this we have ar-
gued that the phase transition should result from a process which is independent of radiative
forcing and compensating subsidence. Assuming that, in the absence of large scale forcing,
convection depends on being triggered by cold pools generated by previous convection, we
have proposed that this can explain the origin of the observed phase transition and also that
this places the phase transition in the universality class of directed percolation.

As a first step of testing this hypothesis, we have represented the subsequent triggering of
clouds via cold pools using a population model with global control. In the 2D lattice model,
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activity can spread from active sites to neighboring sites, as long as they are not in the
inhibition state, while the total number of active sites is fixed. Based on the picture of
convection introduced above, active sites correspond to convective sites, spreading of activity
and local inhibition is caused by cold pools and the global control on number corresponds
to the amount of convection fixed by the large scale forcing. The model is based on directed
percolation and shows not only an underlying phase transition with respect to the trigger
probability but also critical behavior in the low density limit. Note that, apart from the
inhibition state which we included to represent the time it takes the cold pool perturbations
to recover, it corresponds to the population model originally introduced by Broeker and
Grassberger (1999). In section 3.2 we introduced two complementary methods to determine
the necessary model parameters and to quantify the spreading of convective activity using
an atmospheric model simulation. After applying these methods to a radiative-convective
equilibrium simulation performed by Scheufele (2014) and using the respective parameters to
set up the lattice model, we found in 3.3 that the simple model can approximately reproduce
the spreading of convective activity observed in the atmospheric model.

While this is promising, in particular as the simple model in itself may prove useful in
the development of a future convection parameterization, this can really only be seen as
a first step in verifying our hypothesis. We therefore concluded the chapter by discussing
in section 3.4 how, as a next step, one could decouple convection from the mean state in an
atmospheric model to investigate the underlying phase transition in convective activity more
explicitly.

Spatial evolution of self-aggregation

In chapter 4 we have addressed the question whether self-aggregation, the upscale growth of
precipitating moist regions and dry regions without deep convection, corresponds to a phase
separation of moist and dry air by a process called coarsening. Coarsening relies on two
basic ingredients: local bistability and diffusive spatial interaction.

Reviewing the literature in 4.1, we concluded that weak-temperature gradient simulations
show direct evidence for local bistability of the atmosphere to perturbations in the humidity
content. Starting from a range of different humidity values, the humidity content evolves
either to a stable moist or to a stable dry state (e.g. Sessions et al., 2010). Despite varying
feedback mechanisms we have argued in section 4.2 that local bistability is also the key
property of all theoretical models attempting to explain self-aggregation (Bretherton et al.,
2005; Craig and Mack, 2013; Emanuel et al., 2014).

While a diffusive spatial interaction has already been suggested by Craig and Mack (2013) it
lacked physical motivation. We have shown, in section 4.3, that diffusion correctly approx-
imates the humidity increase due to stochastically triggered convection, if the interaction of
convection and humidity is based on two assumptions. First, the probability of convection
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depends only on the humidity content and second, the increase in humidity due to convec-
tion is distributed within a finite region. Based on these assumptions we have shown that this
can, in the limit of infinitely many clouds, where each leads to an infinitely small increase in
humidity, be expressed in terms of a strictly local increase in humidity and a diffusive, down
gradient transport of humidity. This result prompted us to combine the positive feedbacks
proposed by Bretherton et al. (2005), Craig and Mack (2013) and Emanuel et al. (2014)
with a diffusive interaction term in section 4.4 and to discuss which properties of the result-
ing spatial evolution depend on the feedback details and which are the same for all three
feedback models because they are a universal property of coarsening.

Finally, in section 4.5, we have compared properties of coarsening with properties observed
in radiative-convective equilibrium simulations. We started by showing that the upscale
growth of moist and dry regions in a radiative convective equilibrium simulation follows, at
least initially, the scaling law predicted by coarsening. In addition we found that regarding
self-aggregation as a coarsening process we were able to explain two properties frequently
observed in numerical simulations. First, as the upscale growth of moist and dry regions in
coarsening models is driven by the minimization of the boundary length between the two sta-
ble regions, coarsening can explain why channel like domains lead to the formation of moist
and dry bands while large square domains lead to the formation of circular moist regions.
Second, we have argued that the dependence of the width of the boundary on diffusion ex-
plains the observed dependence of self-aggregation on domain size. If the domain size gets
too small to support a moist and a dry region separated by a boundary of a given width we
have shown that this can, despite bistability, result in a homogeneous humidity distribution.

What unites these models?

Comparing the three introduced models and in particular their underlying theoretical models:
isotropic percolation, directed percolation and coarsening, we find that universal scaling laws
are an important property of each. Universality, as mentioned in section 2, has first been
introduced in the context of continuous phase transitions and describes the insensitivity of,
for example, the critical exponents to model details.

Both types of percolation, isotropic and directed, show a continuous phase transition when
the coverage fraction or the triggering probability, respectively, crosses a critical value.

While, for the size distribution model, we have argued that we are actually below the critical
point, Ding et al. (2014) suggest that, for a range of different lattice types, the cluster size
distribution approaches the critical distribution in a quantitatively similar way. In particular
they find that all size distributions are described by power-law scaling with exponential drop-
off, with a pure power-law scaling recovered at the critical point, and suggest scaling, at least
for the cut-off parameter.

For deep convection, the concepts of universality applies more directly as the atmosphere has
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been suggested to be in a self-organized critical state. If the atmosphere self-tunes towards
its critical point, knowledge of the universality class should give the correct exponents for
the observed scaling of size distributions and the power-law pick up in the order parameter.
We have here suggested that the underlying phase transition falls in the universality class of
directed percolation.

The behavior of coarsening is not determined by the critical point of a continuous phase
transition but a number of properties are nevertheless found to be independent of feedback
details, i.e. details in the shape of the underlying double well potential. Above all, the
dynamical exponent in the upscale growth of the stable regions has been described as be-
ing even “more universal” (Sethna, 2006, p. 250) than critical exponents as it is not only
independent of feedback details but also independent of dimension.

The importance of universality for the introduced simple models and thus potentially the
atmosphere is a key result of this thesis and something that we did not envisage at the begin-
ning.

5.2. Future Work

Studying convective organization using models from statistical physics is a novel approach.
As such, it is perhaps not surprising that there remain a number of tasks for future research.
We divide these tasks into three groups:

• how can we assess the limitations of our models?

• how can we include the effects of convective organization in parametrizations?

• how can we further increase our understanding of convection?

5.2.1. Limitations

Rather than attempting to give a complete list of limitations or possible verification methods,
we will now discuss what we believe to be the most relevant test for each of the models
introduced above.

Size distributions of shallow cumulus clouds

The key assumption we have made in explaining the size distribution of shallow cumulus
clouds using a percolation model in chapter 2 is that power-law scaling results from clouds
being clusters of cloud cells. This hypothesis could be tested explicitly if the clouds were
separated into cloud cells.
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A possible method for dividing clouds into cloud cells using infrared satellite images has
been introduced by Kuo et al. (1993). While most studies have determined size distribu-
tions from reflectance fields, using visible or near-infrared channels, Kuo et al. (1993) used
brightness temperature fields determined from a 11.5 µm infrared channel. As cloud top
temperatures, and thus also cloud top heights, are approximately given by the brightness
temperature, they investigated, in addition to the cloud areas, also the height profiles of the
clouds to determine cloud cells. In particular, after applying an initial temperature threshold
to each satellite image to separate the clouds from the background, this threshold is suc-
cessively decreased, i.e. the height threshold is increased. If the cloud splits up into more
than one cell candidate and, if these candidates fulfill some further requirements on size and
depth, they are considered cloud cells.

Similarly, Scheufele (2014) introduced a method for dividing convective clouds in an atmo-
spheric model into cloud cells. Motivated by the cloud tracking algorithms of Dawe and
Austin (2012) and Heus and Seifert (2013), cloud cores are identified as local maxima in the
vertical velocity field at a height of 2.4 km with non-zero cloud water content. Following
Heus and Seifert (2013), a region growing process divides the cloudy grid points to cloud
cells by assigning them to cloud cores depending on their distance to and the strength of the
cloud cores.

After having separated the clouds into cloud cells, one can determine the cell size distribution
and compare it to the cloud size distribution. For a direct test of the model, one could supply
the cell size distribution and the clustering properties to the introduced modified percolation
model and test whether it can, within the limit of random variations, reproduce the observed
size distribution.

Determining the cloud cells directly would, in addition, allow testing of our assumptions
regarding the underlying cloud cell size distribution. In particular, the cell size distribution
should be independent of coverage fraction and follow an exponential distribution.

Propagation of convective activity

As we have already noted at the end of chapter 3, additional research is necessary to deter-
mine whether spreading of convective activity via cold pools leads to a phase transition of
tropical convection first proposed by Peters and Neelin (2006). In fact, additional work is
necessary to prove the existence of the phase transition. Muller et al. (2009) and Stechmann
and Neelin (2014), for example, have proposed alternative explanations for the power-law
increase in precipitation. We have therefore outlined a test to directly assess the sensitivity
of convective activity on the mean atmospheric state in section 3.4. In particular, we pro-
pose to turn off radiative cooling and compensating subsidence in an atmospheric model, the
mechanisms which have been suggested to drive the atmosphere to the critical point of the
phase transition and which prevent us from accessing different parts of the phase transition.
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Starting from a state which initially contains convective activity, its dependence on the at-
mospheric mean state could then be probed by systematically changing a, yet to be defined,
control parameter. Note that, for a quantitative comparison with directed percolation, not
only the choice of control parameter but also the chosen measure of convective activity, i.e.
the order parameter, is important.

If the observed phase transition can be thus reproduced, it still remains to determine whether
it is caused by cold pool triggering. This could for example be done by determining how
the amount of newly triggered convection depends on the control parameter and tracking
whether it originates at cold pool boundaries.

Spatial evolution of self-aggregation

As we have shown in chapter 4, self-aggregation is a coarsening process of moist and dry
regions if the positive humidity feedback fulfills two conditions. First, the atmosphere is
locally bistable to humidity perturbations and second, the spatial exchange of humidity can
be approximated by a diffusive process. While the bistability of the atmosphere with re-
spect to humidity perturbations has been been explicitly shown in simulations (e.g. Sessions
et al., 2010), similar evidence for the diffusive interaction term is missing. In fact, studies
assessing the contribution of the convergence term show different results. While we expect
downgradient transport of humidity from diffusion, and therefore a negative contribution
from the convergence term, this only agrees with some studies (Wing and Emanuel, 2014;
Coppin and Bony, 2015). Other studies suggest that the convergence term is, even during the
onset of self-aggregation, positive (Holloway and Woolnough, 2016).

We propose therefore to test the role of the upgradient moisture transport for self-aggregation.
One possibility to assess the importance of lateral humidity transport would be to enforce a
diffusive interaction. In particular, one could compensate the moisture advection tendencies
by introducing moisture tendencies of equal strength but opposite sign. While this would
effectively prevent any horizontal humidity exchange with neighboring cells one could add
synthetic moisture tendencies, determined assuming diffusion of a given strength. In case
self-aggregation is driven by upscale transport of humidity, this setup should prevent self-
aggregation. If self-aggregation is however driven by local processes, this change should not
hinder self-aggregation, in fact one could even test whether the width of domain boundaries
increases as a function of diffusion strength. A potential problem with this setup, however,
is that it might affect not only the developing circulation but also the formation of convec-
tion. It thus requires a careful choice of the space and time scales on which the moisture
tendencies are canceled.
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5.2.2. Convective organization in parametrization schemes

One of the primary aims of this work is to contribute to an improved representation of con-
vection and, in particular, convective organization in climate models If the additional tests
described above confirm the applicability of the simple models introduced in this thesis, an
important next step will be to include these results into parametrization schemes. While pre-
dictions of the modified percolation model for shallow cumulus clouds will mainly affect the
radiation parametrization scheme, the discussed properties of deep convection will primarily
affect the convection parametrization scheme.

Radiation Parametrization

To include the effect of clustering of shallow cumulus clouds into radiation parametrization
schemes one could use the modified percolation model to supply synthetic cloud fields. The
model so far only accounts for horizontal distribution though the thickness of the clouds
is important for radiative transfer. An important addition to the two-dimensional model
introduced in chapter 2 would therefore be to also account for the thickness of the individual
cloud cells. Cloud thickness has been found, at least for small clouds, to rapidly increase
with cloud size (e.g. Benner and Curry, 1998). Assigning cell heights depending on cell size
could therefore give a more realistic vertical structure of clouds.

For a full 3D solution of the radiative transfer equation, the horizontal distribution itself is
important as, for example, large high clouds could cast shadows which could completely
cover neighoring small clouds. For the commonly used 1D radiation schemes the horizon-
tal distribution is, however, only important for the overlap with unconnected higher level
clouds. For remnants of high level cloud, for example, the spatial distribution of the low
level clouds will affect the overlap and thus the total albedo. While in most radiation pa-
rametrization schemes the assumptions about cloud structure and the methods for solving
the radiative transfer equation are entwined (Pincus et al., 2003), new schemes are being
developed which decouple these two processes and can handle complicated cloud fields and
account for overlap with higher level clouds (f.e. Barker et al., 2015).

Convection Parametrization

The results of chapter 3 could have important implications for future convection parametri-
zation, in particular for the sub-grid variability of the convective mass flux. While variability
resulting from an exponential cloud cell size distribution has already been included into a
convection parametrization scheme (Plant and Craig, 2008), the population model suggests
that the fluctuations of the total convective mass flux within the grid-cell of a general cir-
culation model are different from fluctuations arising from purely random variability (Craig
and Cohen, 2006).
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The effect of spatial and temporal correlations could be implemented into a convection pa-
rametrization by embedding a sub-grid cellular automata model into each model cell as pre-
viously shown for example by Dorrestijn et al. (2013). In contrast to the cellular automata
model introduced in section 3.1.2.4, the probability for the spreading of activity should be
determined from the large scale conditions. In particular, having identified the control and
order parameter of the underlying continuous phase transition, the probability of triggering
new convection in the surrounding of old convective cells should depend on the control pa-
rameter and the initial density of activity should be determined from the order parameter. The
time evolution of the model could then provide the number of active sites, i.e. the intensity
of convection, for the large scale model. Note that as the number of active sites depends on
the previous time step and has a stochastic component, two sites under the same large scale
conditions could result in very different amounts of convection. The number of active sites
should than feed back on the atmospheric mean state, and thus the control parameter, via
moisture and temperature tendencies. This is of course only a schematic representation of
a new convection parametrization and leaves a number of important questions, like the ran-
dom seeding of additional convection or the communication between lattices corresponding
to different cells of the climate model, unanswered.

5.2.3. Understanding Convection

Apart from improving the representation of convection by including the findings of this thesis
into parametrization schemes, how can we proceed to advance our physical understanding of
convection? While self-aggregation of convection has been hypothesized to play an impor-
tant role in determining the properties of the Intertropical Convergence Zone (ITCZ), direct
evidence and, in particular, understanding of the contributing mechanisms is still limited.

The convection in the ITCZ has at the same time important similarities and differences to
convection observed in the self-aggregated simulations. On the one hand, convection in
the ITCZ is also confined to moist regions and surrounded by dry regions, while on the
other hand the boundary conditions in the ITCZ are not homogeneous and convection is
collocated with highest sea-surface temperatures. While self-aggregation therefore is not
the mechanism which organizes convection, the arising question is whether it is important
in determining properties like the width and intensity of the highly precipitating regions.
To address this question, i.e. to add the effect of spatial inhomogeneity, we can now use a
coarsening model, as proposed in chapter 4, and include the inhomogeneity in the boundary
conditions as an additional component. In particular, one could combine the model with a
model which accounts for the effect of the sea-surface temperature gradient (e.g. Neggers
et al., 2007). As self-aggregation has been found to be very sensitive to an increase in sea-
surface temperature, understanding its role in determining the properties of the ITCZ might
help to understand how the updraft region of one of the most important global circulations
will change in a warming climate.

101



5. Conclusion

Even more influential, but also more speculative, is the role self-organized criticality could
play for our understanding of convection. If convective activity does indeed undergo a con-
tinuous phase transition and if the atmosphere is driven to this critical point, long range
spatial and temporal correlations emerge from short range interactions. In this thesis we
have suggested that the underlying phase transition is in the universality class of directed
percolation. As directed percolation has been found to be remarkably robust to details in
microscopic dynamics (e.g. Hinrichsen, 2006), including, even a rough representation, of
these interactions may lead to a significantly more realistic representation of convection.
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A. Domain Wall Calculations

The here presented discussion of the domain walls in coarsening is, up to the non-degenerate
potential, a short summary of the argument outlined in Krapivsky et al. (2010). Assuming
that there exists a stationary solution of the one dimensional Time-Dependent Ginzburg-
Landau Equation, which consists of the two stable regions q1 and q2, separated by a domain
wall, Eq. 4.2 reduces to

0 = −δV
δq

+D∂2
xq. (A.1)

Replacing space (x) with the time (t) and humidity (q) with space (x) in Eq. A.1, leads to an
interesting analogy with a virtual particle of mass D moving in a potential −V :

D∂2
t x =

δV

δx
. (A.2)

There are now two cases, as shown in Fig. A.1, we must distinguish:

• Degenerate case: depths of both wells in V (q) are identical (left hand side of Fig. A.1)

• Non-degenerate case: Depths of the two wells are different (right hand side of Fig. A.1)

For the first case, a particle of mass D, after having received an infinitely small push, travels
from one potential maximum of −V (x), across the potential well, to the other potential
maximum, where it comes to rest. In other words, there exists a stationary solution with a
domain wall connecting the two stable regions and the shape of this domain wall is given by
D and the potential V (q). This has been described in more detail in Krapivsky et al. (2010),
where they show that the corresponding profile is determined by Eq. 4.5. The width of the
barrier width is defined as the “time” it takes to move from x2 −∆x to x1 + ∆x, where x2

and x1 correspond to the right and the left potential maxima in Fig. A.1, respectively and
∆x is a small offset. Applying this definition to Eq. 4.5 shows that, at least in the degenerate
case, the barrier width is proportional to

√
D.

We will now discuss the non-degenerate case. It is obvious that, if energy is conserved, there
is no solution to Eq. A.2 where a particle, initially at rest at either of the maxima of −V (x),
comes to rest at the other maxima. This means there is no stationary solution to Eq. A.2
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Fig. A.1.: Schematic of the analogy for determining the barrier profile as a function of diffusion
strength D. A virtual particle of mass D travels from one potential minima to the other po-
tential minima in a potential with two degenerate minima (left) and non-degenerate minima
(right).

in this case. If, however, there is a loss of energy due to friction there is a solution to this
problem. Including a friction term into Eq. A.2 leads to

D∂2
t x =

δV

δx
− k∂tx. (A.3)

Note that this is the same equation we would get if, instead of assuming a stationary solution,
we would assume a solution that does not change its shape but travels at a constant speed
k, i.e. q(x, t) = q(x − kt). We thus suggest that, while there is no stationary solution for
the second case, there is a solution where the stable solution (the deeper well) invades the
metastable solution with constant speed and constant domain wall profile.

While the details of the solution again depend on the potential, can we state how the solu-
tion changes with changing diffusion coefficient D? Assuming that, for a given diffusion
coefficient D1, we have a solution, x1(t), to Eq. A.3, i.e.

D1∂
2
t x1(t) =

δV

δx1

− k1∂tx1(t). (A.4)

where the friction coefficient k1 is such that the fictive particle comes to rest at the second
potential maxima. If we now change D1 to D2, without changing the potential, how is the
corresponding solution x2(t) related to x1(t)? Note that, as we are still looking for a solution
where the fictive particle travels to the second potential maxima, we expect that the friction
coefficient will also change. The solution x2(t) again fulfills Eq. A.3:

D2∂
2
t x2(t) =

δV

δx2

− k2∂tx2(t). (A.5)
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Rescaling time by a factor
√
D1/D2, i.e. t̃ =

√
D1/D2t, Eq. A.5 can be written as

D1∂
2
t̃ x2(t̃/

√
D1/D2) =

δV

δx2

−
√
D1/D2k2∂t̃x2(t̃/

√
D1/D2) (A.6)

and renaming t̃ as t yields

D1∂
2
t x2(t/

√
D1/D2) =

δV

δx2

−
√
D1/D2k2∂tx2(t/

√
D1/D2). (A.7)

Comparison with Eq. A.4 shows that x2(t/
√
D1/D2) = x1(t) is a solution to Eq. A.7 with

k2 = k1/
√
D1/D2.

We thus find that a change in diffusion coefficient leads to a rescaling of the original solu-
tion and a change in friction coefficient. The rescaling will affect the barrier width and the
propagation speed (friction coefficient). In particular, if the barrier width in x1 is given by
∆t1, remember that we have exchanged x and t for our analogy, the barrier width in x2 is
given by ∆t2 = ∆t1/

√
D1/D2, i.e. ∆t ∼

√
D, and the ratio of the propagation speeds

is k1/k2 =
√
D1/D2, i.e. k ∼

√
D. To summarize, we find that the barrier width is still

proportional to
√
D, as in the degenerate case, but that now there is a propagation into the

metastable state at a speed k, also proportional to
√
D. While the scaling of the barrier width

is tested for the three models in the main part of the thesis, see Fig. 4.10, the corresponding
scaling of the propagation speed is shown in Fig. A.2.

Fig. A.2.: Test scaling hypothesis for propagation speed for three different models (dots) and corre-
sponding fits (line). The black dotted line marks the diffusion coefficient determined in
section 4.3.
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et al. (2014)

We use the mean annual West Indies sounding data for isobaric surfaces obtained by Jordan
(1958) to estimate the necessary parameters for the model based on Emanuel et al. (2014).
Choosing the heights of the two layers as H1 = 6 km and H2 = 12 km, the first layer is
located within the lower troposphere, while the second layer is in the upper troposphere,
as sketched in Fig. (1) in Emanuel et al. (2014). Evaluating the temperature and density
soundings, shown in Fig. B.1, at z = 6 km and z = 12 km, gives the values T1 = 264.7 K,
T2 = 220.4 K, ρ1 = 0.647 kg m−3 and ρ2 = 0.333 kg m−3.

Fig. B.1.: Mean annual West Indies sounding of temperature (left), density (middle) and dry static
energy (right) determined from Jordan (1958).

To estimate the dry static stability we first need to calculate the dry static energy as a function
of height z. The dry static energy is given by

hd(z) = cpT (z) + gz (B.1)

where cp is the specific heat capacity of air at constant pressure and g is the gravitational
acceleration. Using the temperature profile used above, the calculated profile of hd(z) is also
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shown in Fig. B.1. Determining the gradient at the two height levels, gives the following
estimates for the dry static stability: S1 = 3.5 J K−1 m−1 and S2 = 2.3 J K−1 m−1.

In addition we need to estimate how the emissivity in the upper model layer depends on the
humidity within this layer (∂q2ε2). To this end we use Eq. 28 from Emanuel et al. (2014):

∂Q̇2

∂q2

=
¯̇Q2

ε2

∂ε2
∂q2

(B.2)

and solve it for ∂q2ε2 and approximate each term separately:

∂ε2
∂q2

=
∂Q̇2

∂q2

ε2
¯̇Q2

(B.3)

≈

(
∆Q̇2

Q̇2

)(
q2

∆q2

)
ε2
q2

(B.4)

(B.5)

We estimate the first two terms on the right from Fig. 5 in Emanuel et al. (2014), where a
reduction of the humidity (initially close to saturation) by 20% (q2/∆q2 ≈ 1.0/0.2), leads
to a radiative cooling perturbation (∆Q̇2) of approximately 0.1 K d−1. Assuming standard
values for the mean radiative cooling over tropical oceans of Q̇2 ≈ 2 K d−1 (e.g. Tompkins
and Craig, 1998), the mean emissivity of the upper troposphere of ε2 ≈ 0.3 (Pierrehumbert,
2010) and the specific humidity of approximately q2 ≈ 1× 10−4 kg kg−1 (Jordan, 1958).
The resulting estimate for ∂q2ε2 is 750.

Finally we estimate εp which, as noted by Emanuel et al. (2014), is related to a bulk pre-
cipitation efficiency. Assuming εp = 1.1 · qRCE , the relationship between precipitation effi-
ciency and relative humidity proposed by Craig and Mack (2013), and setting qRCE = 0.72
(Bretherton et al., 2005) yields εp ≈ 0.8.
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Nomenclature

Acronyms

AS Absorbing state

CA Cellular automaton

CAPE Convective available potential energy

CIN Convective inhibition

GOES Geostationary Operational Environmental Satellite

ITCZ Intertropical Convergence Zone

LFC Level of free convection

LNB Level of neutral buoyancy

MCS Mesoscale Convective System

PDF Probability density function

RCE Radiative-convective equilibrium

RDF Radial distribution function

SA Self-aggregation

SST Sea surface temperature

TDGL Time-Dependent Ginzburg-Landau Equation

WTG Weak-temperature gradient

WVP Column integrated water vapor path

Greek Symbols

α Subsidence rate
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Nomenclature

αh Fit parameter for moisture convergence term (Bretherton et al., 2005)

β Critical exponent

βp Fit parameter for precipitation efficiency term (Craig and Mack, 2013)

ε Dissipation rate

ε1, ε2 Lower and upper level longwave emissivity (Emanuel et al., 2014)

εp Ratio of updraft to total mass-flux

Γ Circular integration path

λ Fit parameter for convective moistening term (Craig and Mack, 2013)

φ Spatial distribution function of humidity increase

ρ1, ρ2 Lower and upper level density (Emanuel et al., 2014)

ρa Density of active sites

σ Standard deviation

τ Critical exponent

τlt Cold pool life time

Θv Virtual potential temperature

ζ Particle density

Roman Symbols

A Total area covered by clouds

a, b, c Fit parameter according to Ding et al. (2014)

Amoist Area of moist region in self-aggregation

Amoistc Critical area of the moist region Amoist

am Scaling parameter for precipitation-humidity dependence (Bretherton et al.,
2005)

bm Scaling parameter for precipitation-humidity dependence (Craig and Mack,
2013)
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Nomenclature

C Cross-correlation function

cs, cr Constants of proportionality for increase of surface flux and radiative forcing
(Bretherton et al., 2005)

c11, c12, c21, c22 Linearization coefficients introduced by Emanuel et al. (2014)

cs Clustering strength

cw Clustering width

D Diffusion coefficient

d Dimension

F Landau Free Energy

fPDF Two-dimensional probability density function

h External driving rate

H1, H2 Lower and upper model level (Emanuel et al., 2014)

Iv Vertically integrated free tropospheric moisture content

I∗v , IRCEv Saturation value of Iv, RCE value of Iv

L Domain length

Lv Latent heat of vaporization

lcor Auto-correlation length

M Number of potential sites for new clouds (or new plants)

N Number of cloud disks

n Average number of clouds per time and area

n0 Average number of clouds per time and area at qRCE

n1 Additional number of clouds per time, area and ∆q at qRCE + ∆q

Nf Fixed number clouds (or plants)

ns Cluster size distribution

P Precipitation strength
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Nomenclature

p, pc Probability for a site to be occupied (isotropic percolation) or open (directed
percolation), Critical probability

p̃ Fraction of triggered clouds (or surviving plants in the weed population
model)

Ps Strength of the percolating cluster

PRCE Horizontal mean radiative-convective equilibrium rain rate

q Generic scalar (humidity) field

q′ Deviation of q from qRCE

q0 Total humidity increase due to one cloud

q1, q2 Respective values of q at the two potential minima of V

q′1, q′2 Deviation of q1 and q2 from qRCE1 and qRCE2

qRCE1 , qRCE2 Radiative-convective equilibrium values of q1 and q2

qRCE Radiative-convective equilibrium value of q

R Local interaction term of Reaction-Diffusion Equation

r Radial distance

rd, rdm Disk radius, mean disk radius

rhum, rhumRCE Column relative humidity, Column relative humidity of RCE state

rhumh Fit parameter for moisture convergence term (Bretherton et al., 2005)

RB, RC , RE R for model based on Bretherton et al. (2005), Craig and Mack (2013),
Emanuel et al. (2014)

rcp Cold pool radius

rfp Radius of humidity footprint

s Cluster size

sd, sdm Disk area, mean area of disks

S1, S2 Lower and upper level dry static stability (Emanuel et al., 2014)

T1, T2 Lower and upper level temperature (Emanuel et al., 2014)
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Nomenclature

td Time at which cold pool is first detected

V Double well potential

w, wc Column integrated water vapor, Critical column integrated water vapor

W∗ Saturation water-vapor-path

x, y Horizontal coordinates

z Height
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