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Zusammenfassung
Die beobachtende Kosmologie trat in den letzten Jahren in eine Ära hoher statistischer Präzi-
sion ein. Beobachtungsprogramme wie das Dark Energy Survey erlauben die Messung der
Position und Form von Galaxien in bislang unerreichter Genauigkeit und Tiefe. Die Eigen-
schaften des Dichtefelds der dunklen Materie und dessen zeitliche Entwicklung können anhand
dieser Daten vorhergesagt werden, was in den nächsten Jahren unser Verständnis von dunk-
ler Energie, dunkler Materie und kosmischer Strukturbildung stark verbessern wird. Genaue
Messungen der Distanzen dieser Galaxien basierend auf ihrer Photometrie, die sogenannten
photometrischen Rotverschiebungen, stellen eine der größten Herausforderungen für diese Pro-
gramme dar. Deren hohe statistische Präzision benötigt daher eine genaue Kontrolle der sys-
tematischen Fehlerquellen in der Bestimmung dieser photometrischen Rotverschiebungen. Das
Ziel dieser Arbeit ist daher die Entwicklung von Algorithmen und Methoden, welche die Qua-
lität dieser photometrischen Rotverschiebungen verbessern, ihre Fehler genau quantifizieren
und diese Systematiken in kosmologische Analysen miteinbeziehen.

Ich schlage einen neuen Algorithmus vor, der mithilfe der Methoden des Maschinellen
Lernens die Modellierung von photometrischen Rotverschiebungen und deren Fehlern deutlich
verbessert. In §3 demonstriere ich anhand öffentlicher Beobachtungsdaten aus dem CFHTLenS
Programm, dass meine Methoden systematische Fehler in einer Reihe von wichtigen kosmo-
logischen Messungen, verglichen mit etablierten Methoden, reduzieren können. Dazu gehören
die Bestimmung der Masse von Galaxienhaufen mittels des Gravitationslinseneffektes, sowie
die Modellierung von Winkel- und kosmischer Scherkorrelationsfunktionen. Ich schlage auch
effiziente und genaue Kompressionstechniken vor, die den Speicherbedarf von photometrischen
Beobachtungsprogrammen erheblich reduzieren können.

Um photometrische Rotverschiebungen präzise kalibrieren zu können, werden sehr genaue
Referenzrotverschiebungen benötigt, die üblicherweise durch spektroskopische Beobachtungen
bereitgestellt werden. Diese Messungen setzen vor allem bei lichtschwachen Galaxien, lange
Belichtungszeiten voraus und sind daher kostenintensiv. Infolgedessen gibt es typischerweise
wenig Spektren für lichtschwache Galaxienstichproben. Ich werde in §4 aufzeigen, dass dieser
Mangel an Referenzdaten, in Kombination mit ungenau bestimmten photometrischen Rotver-
schiebungsverteilungen, die Genauigkeit der Messung von kosmologischen Parametern stark
beeinträchtigen kann. Als Lösung schlage ich daher eine neuartige Methode vor, die es er-
möglicht, genaue kosmologische Parameterschätzungen unter Verwendung einer kleinen Zahl
wie etwa 5,000 repräsentativer spektroskopischer Referenzgalaxien vorzunehmen.

In §5 diskutiere ich Fehlerquellen, welche die Validierung von photometrischen Rotver-
schiebungen im Rahmen des Dark Energy Surveys beeinflussen können. Ich zeige, dass räum-
liche Variationen der Photometriegenauigkeit zu erheblichen Ungenauigkeiten in der Bestim-
mung von Rotverschiebungsfehlern führen können. Die bereits erwähnte Unvollständigkeit von
spektroskopischen Referenzdaten kann die Validierung von photometrischen Rotverschiebung-
en zusätzlich erschweren. Ich untersuche daher, welche Galaxienrotverschiebungen sich nicht
durch spektroskopische Daten kalibrieren lassen, und quantifiziere den erwarteten Fehler im
Leistungsspektrum der Gravitationslinsenkonvergenz des projezierten Dichtefeldes. Darüber
hinaus evaluiere ich die Genauigkeit von Kompressionstechniken für photometrische Rot-
verschiebungsverteilungen im Rahmen des Dark Energy Surveys.
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Abstract
Observational cosmology has entered an era of high statistical precision in recent years. In
particular, ongoing and future photometric surveys like the Dark Energy Survey observe the
position and shape of galaxies to an unprecedented precision and depth. These measurements
can then be used to estimate the properties of the dark matter density field and its evolution
over time. The images of hundreds of millions of galaxies obtained by these programs are
therefore expected to shed light on the greatest enigmas of modern cosmology and to refine
our understanding of dark energy, dark matter and the growth of structure. One of the great-
est challenges for these surveys are accurate measurements of distance, or redshift, from the
galaxy photometry. As their high statistical power sets demanding requirements on the con-
trol of systematic errors, the development of methods and algorithms to control photometric
redshift uncertainty is a vital prerequisite to enter the era of precision cosmology. The goal
of this thesis is the development of algorithms and methods that improve the quality of pho-
tometric redshift estimates, accurately quantify their error and incorporate these systematics
into cosmological analyses.

I propose a novel photometric redshift algorithm based on Machine Learning, that signif-
icantly improves the modelling of photometric redshift distributions. Using public imaging
data from the CFHTLens survey, I demonstrate in §3 that my approach reduces systematic bi-
ases in gravitational lensing cluster mass estimates, modeling of angular correlation functions,
and modeling of cosmic shear correlation functions compared with results obtained using con-
temporary algorithms. I further propose efficient and accurate compression techniques, that
can significantly reduce the storage requirements of large area photometric surveys.

Accurate photometric redshift estimation requires calibration samples of high-precision
redshifts, that are usually provided by spectroscopic surveys. Taking spectra of faint galaxies
requires long exposure times and is therefore costly. As a result, spectroscopic calibration
data is typically not abundant at the faint end of the color-magnitude space. The lack of
calibration data, in combination with inaccuracies in the estimated redshift distributions, can
severely bias cosmological parameter constraints as shown in §4. I propose a novel strategy
to correct these errors, which enables us to obtain unbiased cosmological parameter estimates
using a small number of, e.g. 5,000, representative spectroscopic calibration galaxies per
redshift distribution.

In §5, I analyse sources of error, that can bias the validation of photometric redshifts
in the context of the Dark Energy Survey. I demonstrate that field-to-field variations in
photometric noise can lead to a severe misestimation of photometric redshift error. The afore-
mentioned incompleteness of spectroscopic samples of faint galaxies, can make photometric
redshift validation difficult. I therefore investigate which galaxies cannot be well calibrated
by spectroscopic data and quantify the expected error in terms of biases in the lensing con-
vergence power spectrum. Furthermore I quantify the accuracy of compression techniques for
photometric redshift distributions in the context of the Dark Energy Survey.
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Chapter 1
Introduction

Cosmology is one of the most fundamental, exciting and ambitious branches of modern physics,
having the goal to understand no less than the whole Universe and all its contents on all scales
of length, temperature and time. Connecting the world at the largest scales with the properties
of elementary particles is not only the final frontier of fundamental physics, but also perhaps
one of the only opportunities to test its limitations.

In recent years, modern cosmology entered a golden age of progress, where the rapid
advancements in observational techniques and instruments culminated in the development of
the cosmological standard model (e.g. Fließbach, 1990; Dodelson, 2003; Carroll & Ostlie, 2007).
This theory combines the concept of an isotropic and homogeneous universe with the ‘Big Bang
picture’ (Fig. 1.1) that postulates that the Universe developed from a spacetime singularity,
the ‘Big Bang’, where all energy and matter components where compressed into a singular
point. The physical processes at the earliest moments until t ≈ 10−35s after the Big Bang are
still largely beyond our current knowledge of physics (see Fließbach, 1990, §54). It can however
be speculated that the Universe underwent a phase of rapid expansion, the inflation era, that
disconnected neighboring quantum fluctuations and put the Universe into a homogeneous and
isotropic state (see e.g. Schneider, 2006a, §4.5). The continued expansion of the Universe
rapidly decreased its temperature until we reach energy scales that are well within our current
understanding of physics. About an hour after the Big Bang, nuclear fusion sets in, which led
to the formation of ionized light elements like hydrogen, helium and a small amount of lithium
(see Fließbach, 1990, §54). The Universe was then filled with free electrons and light ions,
that constantly scattered with the hot photon gas, establishing a thermodynamic equilibrium
between matter and radiation (see Fließbach, 1990, §54). While the universe cooled down, the
electrons and ions assembled together to form neutral atoms. The thermodynamic equilibrium
between matter and radiation was interrupted and the photons propagated freely through the
now optically transparent Universe (see Fließbach, 1990, §54). The highly isotropic Cosmic
Microwave Background (CMB) radiation, that is a relict of this era of recombination, can
be observed today and is the most important currently observable signature of the young
Universe (see e.g. Hu & Dodelson, 2002).

After this recombination era, our Universe was filled with cool neutral hydrogen and, except
for the CMB, mostly devoid of radiation (Loeb, 2006). However even in these proverbial ‘dark
ages’, the small amount of kinetic energy of the atoms in conjunction with some free electrons
and the CMB radiation was enough to trigger the hyperfinestructure transition of hydrogen.
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Figure 1.1: Artists illustration of the evolution of the universe and the formation of
structure. Image credit: NASA/WMAP Science team http://science.nasa.gov/missions/
wmap/, modified by Natascha Greisel and Anna Monna

This 21 cm line gives modern astrophysics a unique opportunity to study this very onset of
structure formation (Loeb, 2006). About 100 Myrs after the Big Bang, the massive hydrogen
clouds began to collapse under their own gravity to form the first generation of stars. Their
light filled the universe with UV radiation and ionized the surrounding medium (Loeb, 2006).

The first generation of stars that formed during this era of ‘reionization’, where extremely
massive and short lived (Schneider, 2006a, §9.4.1). They ended their lives in massive su-
pernovae explosions that enriched the Universe with heavy elements, ultimately laying the
foundation for the emergence of life (Schneider, 2006a, §9.4.1). Following the onset of struc-
ture formation, stars merged into galaxies, which then assembled to form galaxy clusters (see
Carroll & Ostlie, 2007, §30.2). As the Universe continued to expand, its matter density de-
creased and dark energy became the dominant constituent (see e.g. Carroll & Ostlie, 2007,
§29.3, Fig. 29.19). It is now widely accepted that the Universe is currently undergoing a state
of accelerated expansion, driven by this dark energy content (e.g. Riess et al., 1998; Perlmutter
et al., 1999; Frieman et al., 2008; Planck Collaboration et al., 2016). The exact nature of dark
energy is currently one of the most active research areas in modern cosmology (Frieman et al.,
2008). At the present time, the universe contains about ≈ 69.1% dark energy, ≈ 25.9% dark
matter and only ≈ 4.9% baryonic matter (taken from Planck Collaboration et al., 2016, Tab.
4, last column).

The groundbreaking discoveries that led to this picture of the Universe and its evolution,
mark not only the biggest success of modern cosmology but also demanded measurements of
drastically increased precision (Albrecht et al., 2006). Especially because the exact nature of
dark energy and dark matter are largely unknown.

With the established goal to better understand the proverbial nature of this dark com-

http://science.nasa.gov/missions/wmap/
http://science.nasa.gov/missions/wmap/
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ponent, large area sky surveys like the Sloan Digital Sky Survey (SDSS) (e.g. Blanton et al.,
2017) have revolutionized the methodological aspects of cosmological research. These experi-
ments are able to gather imaging information for hundreds of millions of galaxies and provide a
chance to study the formation of structure to an unprecedented statistical precision. However
the strong increase in statistical power gained by these surveys, requires the accurate control
of systematic errors. One of the most pressing challenges in these surveys is to obtain accu-
rate distance information for the observed galaxies. Inaccurate distance measurements distort
the line-of-sight distribution of the cosmological density field in the modeling of cosmological
probes. These errors can then propagate into systematic shifts in the derived quantities that
parametrize the state and evolution of the Universe, like the fraction of dark matter or dark
energy. To improve our current understanding of the Universe, it is therefore vital to control
these sources of systematic error to high accuracy. The distance to a galaxy is commonly
quantified by its cosmological redshift. When a light wave propagates through the expand-
ing background Universe, its wavelength is ‘stretched’ and its spectrum therefore shifted to
longer, redder wavelengths. This ‘redshift’ measures how long the light wave travelled through
the expanding universe and therefore quantifies the distance to that galaxy. The traditional
method to measure the redshift of galaxies compares the relative position of spectral emission
and absorption lines to derive the global redshift of the spectrum. The instruments used in
state-of-the-art spectroscopic surveys have a high spectral resolution and are able to resolve
wavelength differences of up to ∆λ ∼ 1Å−3Å (e.g. Smee et al., 2013). Spectroscopic redshifts
are therefore typically highly accurate, but require long exposure times especially for faint
galaxies. Taking large samples of spectra is therefore not tractable for surveys, that observe
faint galaxies in large areas of the sky. These large area photometric surveys instead image
galaxies in different filters that typically cover the spectrum from the ultraviolet to the in-
frared, where the filter response functions have a width of ∆λ ∼ 1000Å (see Fig. 1.9). The
redshift is then estimated using the flux of the galaxy in these optical and near infrared filters.
These ‘photometric redshifts’ are generally less accurate than their spectroscopic counterparts
due to the broad photometric filter kernel. On the other hand, this strategy is much more
efficient at observing large numbers of galaxies, since light can be collected efficiently over a
large field of view. In order to use these less accurate photometric redshift measurements for
precision cosmology, it is therefore of vital importance to devise techniques that accurately
quantify their error and incorporate them into the analysis.

This thesis contributes to this topic as follows. In §3 we propose techniques to accurately
model the photometric redshift error and demonstrate that our methodology significantly im-
proves over contemporary approaches. While these methods allow the accurate estimation
of photometric redshifts, their statistical accuracy is limited by the amount of available cal-
ibration data. In §4 we therefore propose a method to incorporate this statistical error into
the cosmological analysis. §5 then discusses possible sources of error in the context of the
photometric redshift validation of the Dark Energy survey and §6 summarizes our findings
and discusses prospects for future research.

The following sections provide the reader with a short introduction into the concepts of
cosmology that are used in this work. To simplify the notation, we will use natural units ~ =
c = kB = 1 in the presented equations and quote numerical values in SI, cgs or astrophysical
units as appropriate.
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1.1 Distance and Redshift

One of the foundations of modern cosmology, known as the ‘cosmological principle’, is the
assumption that the matter distribution in the universe is isotropic and homogeneous at
sufficiently large scales. An impressive experimental proof of isotropy is the Cosmic Microwave
background radiation, a relic of the era of recombination, that shows remarkably small spatial
temperature fluctuations of δT/T ∼ 10−5 (Banday et al., 1997; Rubakov & Vlasov, 2012).
Isotropy implies homogeneity, if we further assume that we do not live at a special location
in the Universe (Copernican Principle). While a direct proof of homogeneity is not possible,
we can search for its violation using a variety of techniques reviewed in Maartens (2011). A
metric that obeys this cosmological principle is the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric (cf. Bartelmann & Schneider, 2001; Kilbinger, 2015; Sànchez, 2017)

ds2 = −dt2 + a2(t)
(
dχ2 + fK(χ)2

[
dθ2 + sin2(θ)dφ2

])
, (1.1)

where

fK(χ) =


1√
K

sin
(√

K χ
)

if K > 0

χ if K = 0
1√
|K|

sinh
(√
|K| χ

)
if K < 0

. (1.2)

Here χ is the radial coordinate and θ and φ denote the respective angular coordinates. The
function a(t) is the cosmological scale factor and describes the time dependent spatial expan-
sion of the universe. The FLRW metric either describes a closed universe with positive spatial
curvature K > 0, a flat universe K = 0 or an open universe K < 0 with negative spatial
curvature. To draw an analogy with our three dimensional view, a closed universe would cor-
respond to a sphere, a flat universe would correspond to a plane and an open universe would
correspond to a hyperboloid (see e.g. Carroll & Ostlie, 2007, Fig. 29.17). The coordinate χ
is fixed with respect to the expansion of the universe and is therefore called ‘comoving coor-
dinate’. As a result, the comoving distance between two points that move with the expansion
of the universe is also constant (Hogg, 1999). This notion of distance has to be distinguished
from the distance one would measure with a ruler, the ‘proper distance’1 dp, which is related
to the comoving distance as (cf. Hogg, 1999; Dodelson, 2003; Carroll & Ostlie, 2007)

dp = a(t)χ , (1.3)

and therefore increases with the cosmic expansion.
Following Carroll & Ostlie (2007, §29.4), we now consider a lightwave travelling from a

distant galaxy to us. Two successive wave crests separated by the light waves period ∆t need
to traverse the same distance until we receive the signal, where the line element of the FLRW
metric can be written as

χ =

∫ to

te

dt

a(t)
, (1.4)

where to denotes the time at which the light wave is observed and te denotes the time at
which the light wave is emitted. Defining the period at the time of observation as ∆to and at

1I follow the notation in Dodelson (2003); Carroll & Ostlie (2007).
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the time of emission as ∆te, we note that both wave crests need to travel the same comoving
distance, and therefore ∫ to+∆to

te+∆te

dt

a(t)
−
∫ to

te

dt

a(t)
= 0 . (1.5)

After expanding the integral limits, we can rewrite this equation as∫ to+∆to

to

dt

a(t)
−
∫ te+∆te

te

dt

a(t)
= 0 . (1.6)

Assuming that the scale factor a(t) doesn’t change significantly during the period of the
light wave, we can approximate these integrals as (cf. Fließbach, 1990)

∆to
a(to)

=
∆te
a(te)

. (1.7)

The cosmological redshift zcosmo is then defined as the relative wavelength difference between
the wavelength at the position of the emitter λe and the observer λo (cf. Fließbach, 1990)

zcosmo =
λo − λe
λe

. (1.8)

Using Eq. 1.7 we can express zcosmo in terms of the cosmological scale factor a(t) as (cf.
Fließbach, 1990)

zcosmo =
a(to)

a(te)
− 1 , (1.9)

or, by setting the scale factor at the present time to unity, a(to) = 1

a(z) =
1

z + 1
. (1.10)

We note that the cosmological redshift defined in Eq. 1.9 originates purely from the expan-
sion of the universe and has to be distinguished from local frequency shifts produced by the
peculiar velocity that originates from gravitational interactions of galaxies with their neigh-
bors. These motions relative to a fixed comoving position can cause an additional redshift by
the Doppler effect. We also note that strong gravitational fields at the position of the source
or the observer can also shift the spectrum. This work will however exclusively focus on the
cosmological redshift and, in the following uses the term ‘redshift’ as its synonym.

Expanding the scale factor around the present time, we obtain a simple relationship be-
tween the redshift of a galaxy and its proper distance (cf. Fließbach, 1990)

z ≈ H0 dp +
(1 + q0)H2

0

2
d2
p , (1.11)

where we introduced the ‘Hubble constant’ as (cf. Fließbach, 1990)

H0 =
ȧ(t0)

a(t0)
, (1.12)

and the deceleration parameter q0 (cf. Fließbach, 1990)

q0 = − ä(t0) a(t0)

ȧ(t0)2
. (1.13)
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The linear term in Eq. 1.11 is commonly known as the ‘Hubble law’ and was already estab-
lished by Edwin Hubble in the 1920’s (Hubble, 1929). The Hubble constant2 is proportional
to the expansion speed and has been measured to high precision, e.g. using supernovae and
Cepheid distances (e.g. Zhang et al., 2017), as

H0 = 72.5± 3.1 (stat)± 0.77 (sys)
km

s Mpc
, (1.14)

where the errors quote the statistical and systematic uncertainties. The second term of Eq. 1.11
introduces corrections at higher redshift z > 0.1 and accounts for changes in the expansion
rate. Measurements hint towards a negative value of q0, indicating that the expansion of the
Universe is indeed accelerating (e.g. Riess et al., 1998; Perlmutter et al., 1999; Cattoën &
Visser, 2008; Cai & Tuo, 2011).

The relation Eq. 1.11 implies that the basic strategy to constrain cosmic acceleration
requires the measurement of the redshifts of sources and their proper distances.

In analogy to elementary trigonometry we define the distance dA to an object of known
physical size s as (cf. Dodelson, 2003)

dA =
s

tan (θ)
≈ s

θ
, (1.15)

where θ denotes the subtended angle. An object with known physical size is called a ‘standard
ruler’ and its measured distance dA is the ‘angular diameter distance’. The comoving size of
the object can be derived as s/a and the angle θ can therefore be written in terms of the
line-of-sight comoving distance χ (cf. Dodelson, 2003)

θ =
s/a

χ
. (1.16)

Plugging Eq. 1.16 into Eq. 1.15 then relates the angular diameter distance dA with the redshift
and the line-of sight comoving distance χ (cf. Dodelson, 2003)

dA =
χ

1 + z
. (1.17)

We note that this relation is only valid for a flat universe K = 0. In the case of an open or
closed universe we have to correct the comoving distance by the curvature of space as (see
Hogg, 1999)

dA =
χM

1 + z
, (1.18)

where (see Hogg, 1999)

χM =


√
|k|/H3

0 sin
(√
|k|H0 χ

)
K > 0 ,

χ K = 0 ,√
|k|/H3

0 sinh
(√
|k|H0 χ

)
K < 0 ,

(1.19)

Instead of considering standard rulers, we can also determine the distance dL to a source
with known luminosity L, so called ‘standard candels’, by measuring the incoming flux f as
(cf. Dodelson, 2003)

f =
L

4π d2
L

. (1.20)

2For historical reasons, it is sometimes expressed as a fraction of 100 km
s Mpc

, i.e. H0 = 100h km
s Mpc

.
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While this relation is defined for a static coordinate system, we can generalize it to an ex-
panding universe as follows. Consider a comoving coordinate system centered on the source.
The light emitted by that source would propagate outwards and we would observe it on a
comoving shell with radius χ. In this coordinate system the observed flux then reads (cf.
Dodelson, 2003)

f =
L(χ)

4πχ2(a)
. (1.21)

As the universe expands, the number of photons that cross our shell per unit time decreases
proportional to a, since the physical distances that the photons need to travel increase over
time. Similarly, the energy of the photons decreases due to the wavelength increase induced
by the expanding background universe. In total the luminosity at shell radius χ scales as
L(χ) = La2, which can be combined with Eq. 1.21 to (cf. Dodelson, 2003)

f =
La2

4π χ2(a)
. (1.22)

Comparing with Eq. 1.21, we see that the classical relation between luminosity and flux can be
extended to an expanding universe, if we define the luminosity distance dL as (cf. Dodelson,
2003)

dL =
χ(a)

a
. (1.23)

Again this relation is only valid for a flat spacetime and generalizes to an open and closed
universe as (cf. Dodelson, 2003)

dL =
χM
a

(1.24)

where χM is defined in Eq. 1.19.

1.2 Expansion of the Universe

As discussed in the previous section, the FLRW metric describes a homogeneous and isotropic
universe. To derive an equation that governs the dynamics of spacetime, i.e. the time evolution
of the scale factor a(t), we need to relate the energy content of the universe with its curvature.
In general relativity this relation is given by Einsteins field equations (Einstein, 1915, 1916;
Carroll, 1997; Sànchez, 2017)

Gµν = 8πGTµν , (1.25)

where we will follow the notation in Sànchez (2017). The left hand side of Eq. 1.25 is the
Einstein tensor that characterizes the curvature of spacetime, the right hand side describes
the energy-momentum content of the universe with the energy-momentum tensor Tµν . The
constant of proportionality that relates both sides is the gravitational constant G. We note
that Einsteins equations obey energy-momentum conservation as (cf. Carroll, 1997; Sànchez,
2017)

∇µ Tµν = 0 . (1.26)

The following discussion will assume that the contents of the Universe, i.e. dark matter,
baryonic matter, dark energy and radiation behave as perfect fluids, where their equation of
state only depends on a single parameter w (cf. Carroll & Ostlie, 2007; Sànchez, 2017)

p = w ρ , (1.27)
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and is therefore completely described by their rest frame energy density ρ and their pressure
p. The energy-momentum tensor of a perfect fluid then reads (cf. Dodelson, 2003; Sànchez,
2017)

T ν
µ =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.28)

Using these relations as well as the ansatz of the FLRW metric in Eq. 1.25 allows us to derive
the Friedmann equations that describe the time evolution of the scale factor (cf. Sànchez,
2017) (

ȧ

a

)2

=
8πG

3
ρ− K

a2
(1.29)

ä

a
= −4πG

3
(ρ+ 3p) . (1.30)

Here a(t) is the cosmic scale factor, ρ is the density of the different matter and energy com-
ponents of the universe and p is their pressure. The curvature parameter K was defined in
the FLRW metric Eq. 1.1 and describes the curvature of space. Differentiating Eq. 1.29 and
substituting Eq. 1.30 then leads to (cf. Sànchez, 2017)

ρ̇+ 3 (ρ+ p)

(
ȧ

a

)
= 0 (1.31)

which can be seen as the first law of thermodynamics3 with dQ = 0 (cf. Sànchez, 2017)

dU + p d V = d(ρ a3) + p d(a3) = 0 . (1.32)

For a perfect fluid with an equation of state given by Eq. 1.27, we can solve the conservation
equation by the ansatz (cf. Sànchez, 2017; Carroll & Ostlie, 2007)

ρ(a) =
ρ0

a3 (1+w)
, (1.33)

where ρ0 is the present day density of the respective component.
Using this general scaling relation, we can rewrite Eq. 1.29 by summing over all N matter

and energy components of the Universe (cf. Sànchez, 2017)(
ȧ

a

)2

=
8πG

3

N∑
i=1

ρi,0

a3(1+wi)
− K

a2
, (1.34)

where ρi,0 and wi denote the present day density and equation of state parameter of the
respective component i. It is convenient to normalize the density parameters ρi,0 by a reference
density, which is the present day ‘critical density’ ρc of a flat universe

ρc =
3H2

0

8πG
, (1.35)

3We refer the interested reader to Carroll & Ostlie (2007, §29) for a very accessible derivation of Eq. 1.30
using the first law of thermodynamics in classical newtonian theory.
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that is obtained by setting K = 0 in Eq. 1.29 and using Eq. 1.12. Normalizing the differ-
ent density components ρi,0 by this critical density, conveniently expresses them as density
parameters Ωi

Ωi =
ρi,0
ρc

=

(
8πG

3H2
0

)
ρi,0 , (1.36)

where we define the spatial curvature density parameter in analogy to Eq. 1.36 as (cf. Sànchez,
2017)

ΩK = − K

H2
0

. (1.37)

With these definitions we can recast Eq. 1.34 into the more convenient form (cf. Sànchez,
2017) (

H

H0

)2

=

[
N∑
i=0

Ωia
−(1+3wi) + ΩK

]
, (1.38)

where we introduced the time dependent Hubble parameter H = ȧ/a. The inverse Hubble
parameter (cf. Bartelmann & Schneider, 2001; Trodden & Carroll, 2004)

dh ≈ H(a)−1 (1.39)

coincides, for flat universes that contain matter and radiation, to good accuracy with the size
of the horizon, i.e. the distance photons can have travelled after the Big Bang (see Bartelmann
& Schneider, 2001; Trodden & Carroll, 2004; Carroll & Ostlie, 2007).

1.2.1 A catalog of the Universe

The previous section discussed the dynamics of the expansion of the universe in terms of the
respective density and equation of state parameters of its contents, i.e. matter, radiation and
dark energy. In order to complement the dynamical picture of the universe, we now briefly
discuss this cosmic inventory in the following subsection.

Matter

We start our overview over the different constituents of the universe in a self-centric manner
with baryonic matter, the component that constitutes our own existence. Its most fundamental
property in the context of astrophysics is its interaction with radiation, which makes the baryon
density directly observable. This can be done for example by relating the observed fraction
of Helium, Deuterium and Lithium with predictions of nuclearsynthesis in the early universe
(Walker et al., 1991) or by analyzing absorption features in the spectrum of high redshift
quasars produced from hydrogen clouds along the line of sight (e.g. Rauch et al., 1997). The
CMB also provides highly accurate measurements of the baryon density (Planck Collaboration
et al., 2016). All these approaches provide striking evidence for a low value for the baryon
density of around 5% of the critical density.

On the other hand measurements e.g. of the CMB, weak gravitational lensing or the
clustering of galaxies (see §1.3) measure the total matter density to be much higher and
around 30% of the critical density (e.g. Planck Collaboration et al., 2016; Hildebrandt et al.,
2017; Salazar-Albornoz et al., 2017). This obvious mismatch is explained by the existence of a
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matter component that interacts gravitationally, but does not interact with radiation4. This
‘dark matter’ component therefore constitutes the majority of matter in the Universe, but has
not yet been detected in either direct (collider) or indirect searches. The two basic candidate
particles for dark matter are hot dark matter and cold dark matter.

Hot dark matter particles, for which massive neutrinos are a likely, existing candidate,
have a relativistic velocity dispersion that leads to a top-down structure formation. Hot dark
matter does not form clumps, but instead fragments from large conglomerates into smaller
structures like galaxy halos (cf. Carroll & Ostlie, 2007). The basic problem of the hot dark
matter model is, that top-down structure formation would likely be too slow to explain e.g.
observations of the highest redshift galaxies today (see e.g. Primack & Gross, 2001; Carroll &
Ostlie, 2007).

An alternative theory that agrees much better with the current observations of structure
formation is the slow moving cold dark matter paradigm. While there exist no direct detections
of cold dark matter particles, the most likely candidate is the weakly interacting particle
(WIMP). WIMPs interact only gravitationally and should have very high rest mass ranging
from 10 GeV−TeV (see e.g. Olive et al., 2014). The low velocities of cold dark matter favours
‘bottom up’ structure formation. Smaller clumps merge together to from larger structures,
where galaxies form preferentially in high density regions.

Since matter is pressureless (w = 0), its density decreases proportional to the volume
increase of the Universe. Relating the matter density ρm with the cosmic scale factor using
Eq. 1.33 we find (e.g. Dodelson, 2003)

ρm
ρcr

= Ωma
−3 . (1.40)

Radiation Besides dark matter and a fraction of baryonic matter, the Universe also contains
radiation in the form of photons ργ and neutrinos ρν . We can estimate the photon density
from the cosmic microwave background radiation using Plancks radiation law as (see e.g.
Bartelmann & Schneider, 2001; Sànchez, 2017)

ργ =

(
π2

15

)
T 4

CMB . (1.41)

Here TCMB is the temperature of the cosmic microwave background radiation and ργ is the
radiation density of photons. Given a CMB temperature of TCMB = 2.725 K (e.g. Fixsen,
2009) and the value for H0 given in Eq. 1.14, we obtain for the radiation density parameter
Ωγ using Eq. 1.36, Eq. 1.35 and Eq. 1.41

Ωγ = 4.7 · 10−5 . (1.42)

Following Bartelmann & Schneider (2001), the density of the neutrino species can be estimated
from Ωγ by considering a time in the early universe where neutrinos and photons where in
thermal equilibrium with the baryonic matter. When the temperature of the plasma dropped
to 1 MeV, the expansion timescale of the universe exceeded the timescale of the weak inter-
action and the neutrinos decoupled from the hot baryon-photon plasma. At around 0.5 MeV

4The first observations, that suggested the existence of Dark Matter, where studies of cluster dynamics
(Zwicky, 1933; Smith, 1936; Zwicky, 1937) and measurements of spiral galaxy rotation curves (Freeman, 1970;
Bosma, 1978; Rubin et al., 1980; Bosma, 1981a,b).
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positron-electron annihilation sets in, which heated up the medium. Since neutrinos decoupled
earlier, they have a lower temperature than the generated photons. This difference can be
easily calculated by considering entropy conservation before and after the electron-positron
annihilation (see Bartelmann & Schneider, 2001)

(Se + Sγ)before = (Sγ)after . (1.43)

Following Bartelmann & Schneider (2001), the entropy per particle species scales with tem-
perature as S ∝ g T 3. Here, the factor g denotes the particles statistical weight, where bosons
contribute g = 1 and fermions g = 7/8 for each spin state. In total the left hand side has
a statistical weight of g = 2 · 1 + 4 · 7/8 = 11/2 and the right hand side g = 2. For the
temperature increase we therefore obtain (cf. Bartelmann & Schneider, 2001; Dodelson, 2003)

Tν =

(
4

11

)1/3

TCMB . (1.44)

We can now calculate the energy density of the neutrino species in terms of the photon energy
density. As for photons, the energy density of the massless neutrinos is proportional to T 4

and since we have three massless neutrinos species we obtain5 (cf. Dodelson, 2003)

ρν = 3

(
4

11

)4/3

ργ , (1.45)

where we inserted Eq. 1.44 into Eq. 1.41. Using Eq. 1.35 and Eq. 1.42 we can then calculate
the density parameter for the neutrino species as

Ων ≈ 3.7 · 10−5 . (1.46)

In total this then leads to a total critical density of the radiation component of

ΩRAD = Ωγ + Ων ≈ 8.4 · 10−5 , (1.47)

which is a negligible contribution to the critical density today. The early universe was however
dominated by radiation, which implies that the radiation density has decreased rapidly with
the expansion of the universe.

Using the equation of state parameter of photons wγ = 1/3 (e.g. Dodelson, 2003; Sànchez,
2017) we find from Eq. 1.33

ργ
ρcr

= Ωγa
−4 . (1.48)

Thus the radiation energy declines proportional to the volume increase of the universe with an
additional factor of a−1 accounting for the wavelength increase due to its expansion (Carroll
& Ostlie, 2007; Sànchez, 2017).

5Neutrinos are fermions and therefore follow the fermi-dirac statistic, which introduces a small correction
of 7/8 to Eq. 1.45. Furthermore, they haven’t fully decoupled during positron-electron annihilation, which
slightly increases the prefactor Neff = 3.046 > 3. We have neglected these aspects for simplicity, and refer to
the literature (see Eq. (1) Planck Collaboration et al., 2014) for a more thorough treatment.
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Dark Energy Since the early observations from Hubble and Slipher provided first hints
for an expanding universe in 1929, more precise measurements (e.g. Perlmutter et al., 1999;
Planck Collaboration et al., 2016) hint towards an accelerated expansion driven by a proverbial
dark energy component. However relatively little is known about the exact properties of dark
energy which is currently one of the most important active research areas in observational
cosmology. The easiest model introduces an additional energy component to the universe as
(see e.g. Einstein, 1917; Zel’Dovich, 1967; Carroll et al., 1992)

ΩΛ =
Λ

2H2
0

, (1.49)

that counteracts the influence of gravity. We note that the effect of introducing Λ to the
Einstein equations is indistinguishable from the effect of zero point fluctuations of the vac-
cuum, that curve spacetime even in the absense of matter (Carroll et al., 1992; Fließbach,
1990; Sànchez, 2017). While both effects are physically equivalent, their interpretation is
fundamentally different, since vacuum energy would allow us to explain the observed accel-
erated expansion of the universe based on known quantum field theory (Carroll et al., 1992;
Fließbach, 1990).

Since the vacuum ground state has to obey Lorentz invariance, the stress-energy-momentum
tensor diag(ρ,P) of dark energy has to be proportional to the Minkowski metric diag(−1, 1, 1, 1),
which implies wΛ = −1 (Carroll et al., 1992), i.e. the dark energy density stays constant with
the expansion of the universe. Unfortunately the vacuum energy density derived based on
our knowledge of quantum field theory is about 120 orders of magnitude larger than the ob-
servational results from cosmology (Carroll et al., 1992). It is one of the great mysteries of
cosmology, that the sum of the well motivated vacuum energy density and an unknown dark
energy component therefore has to cancel almost exactly in order to explain these observa-
tions (Carroll et al., 1992). In the following discussion we will not explicitly use Λ in any
equations and simply assume wΛ = −1 as our fiducial model. This formalism is physically
equivalent to introducing a cosmological constant to the Einstein equations, however provides
more flexibility for the discussion of alternative equation of state parametrizations (Sànchez,
2017). We further denote the density parameter of dark energy as ΩΛ.

The value of the dark energy equation of state parameter w has important consequences
for the expansion history of the Universe, where we follow Caldwell et al. (2003) in this
paragraph. If we consider a flat or an open universe without dark energy and 0 ≤ Ωm ≤ 1,
the scale factor increases at a smaller rate than the horizon. In this case, while the universe
would become cooler and darker due to the continued expansion, more and more galaxies
would enter the horizon and would therefore become observable. In contrast, if we consider
the case of accelerated expansion for −1 ≤ w ≤ −1/3, the scale factor expands faster than the
horizon. Thus, while the universe becomes cooler and darker, we could observe less galaxies
in the future. For w < −1 the expansion of the universe is not only accelerating, but the scale
factor also diverges in a finite time (e.g. Caldwell et al., 2003; Astashenok et al., 2012). The
consequences are rather apocalyptic as gravitationally bound systems would be ripped apart
as we come closer to this end-time. Ultimately this ‘Big Rip’ will also affect structures bound
by the other elementary forces like molecules and even atoms. Constraining the exact value
of w is therefore not only a considerable academic feat, but also answers the question about
the ultimate fate of the Universe and the end of time.

Besides determining the value of the dark energy equation of state parameter, it is of par-
ticular interest to investigate a possible time dependence using the parametrization (Huterer
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& Turner, 2001; Weller & Albrecht, 2002)

w(a) = w0 + (1− a) wa . (1.50)

The Λ-CDM model that describes dark energy as a cosmological constant and dark matter
as ‘cold’ particles that trigger bottom-up structure formation, remains the state-of-the-art in
modern cosmology that future experiments will seek to challenge. Following Carroll et al.
(1992) and Carroll & Ostlie (2007), the following subsection will describe the different cos-
mologies that are possible under this Λ-CDM paradigm.

The dynamics of the Universe

The dynamics of Λ-CDM cosmologies are governed by the opposing forces of dark energy and
dark matter. We established in the previous section, that the dark energy density is constant
irrespective of the size of the universe, whereas the matter density decreases proportional to
its volume. Thus if the universe reaches a certain size, dark energy will always drive the scale
factor towards unlimited expansion.

Figure 1.2: Cosmologies for different Ωm−ΩΛ combinations. The red star indicates currently
likely values for our Universe.

This will not happen only if the dark matter density is so high that the universe will
recollapse before dark energy becomes dominant (cf. Carroll et al., 1992). Fig. 1.2 plots the
diversity of different cosmologies in the Ωm − ΩΛ plane. Unbounded expansion occurs for all
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universes with (Carroll et al., 1992)

ΩΛ ≥

0, if 0 ≤ Ωm ≤ 1

4Ωm

(
cos
[

1
3 arccos

(
1−Ωm

Ωm

)
+ 4π

3

])3
, if Ωm > 1

. (1.51)

If the dark energy component is abundant enough to avoid recollapse, the expansion can
be either decelerated, uniform or accelerated. The critical line that separates both cases is
obtained by setting ä = 0 in Eq. 1.34, which leads to ΩΛ = Ωm

2 as shown by the green
line. The blue line ΩΛ = 1 − Ωm corresponds to flat universes with vanishing curvature
density, separating closed and open cosmologies. For very large values of ΩΛ, as illustrated by
the region in the upper left corner, the dark energy component is so large that the universe
cannot reach a singular state and there will never be a ‘Big Bang’. Instead these universes
‘bounce’ from an infinite size to a finite radius and then continue to expand forever. Universes
that are barely outside this ‘bouncing region’, still have a Big Bang but stay at a constant
size for some time. This ‘loitering phase’ is unstable and after some time they transition into
exponential expansion. The boundary of universes that have no Big Bang is given by (Carroll
et al., 1992)

ΩΛ ≥

4 Ωm

(
cosh

{
1
3 arccosh

(
1−Ωm

Ωm

)})3
, if Ωm < 1

2

4 Ωm

(
cos
{

1
3 arccos

(
1−Ωm

Ωm

)})3
, if Ωm ≥ 1

2

. (1.52)

While the Friedman equations allow a large variety of different cosmologies, experimental
results strongly hint towards a flat Λ-CDM universe with (Ωm,ΩΛ) ≈ (0.3, 0.7) as illustrated
by the red star in Fig. 1.2.

The previous section discussed how the energy density of matter, radiation and dark energy
scales with the size of the universe. At early times, i.e. for a small scale factor, the radiation
term in Eq. 1.38 dominates over dark matter and dark energy, leading to a(t) ≈ t1/2 (cf. Carroll
& Ostlie, 2007; Sànchez, 2017). After decoupling, the evolution of the universe becomes matter
dominated, which leads to a faster expansion than during radiation domination a(t) ≈ t2/3 (cf.
Carroll & Ostlie, 2007; Sànchez, 2017). Closely before our present time, dark energy began to
dominate the cosmic expansion. The Universe is therefore currently transitioning into an era
of exponential expansion a(t) ∝ exp (H0t) (cf. Carroll & Ostlie, 2007; Sànchez, 2017).

1.2.2 The Formation of Structure

The previous section introduced the cosmological standard model, gave an overview over
the cosmic inventory and reviewed the different cosmologies that result from the Friedmann-
Lemaître equations. Up until now we have described the universe at large scales, i.e. larger
than 260 Mpc/h (Yadav et al., 2010), where the universe can be assumed to be isotropic and
homogeneous. At smaller scales the universe shows a plethora of structure and a fine, web-like
pattern of galaxies. Fig. 1.3 shows a 4◦ slice from the 2dF Galaxy Redshift survey (Peacock
et al., 2001) that illustrates the rich structure of the cosmic web.

The previous discussion introduced our Universe as being homogeneous, isotropic and flat.
However it is a priori unclear, which physical process is responsible to generate such remarkably
‘simple’ initial conditions. The flatness of space observed today, requires that the total density
of matter, radiation and dark energy ρtot = ρm + ρRAD + ρΛ has to be finely tuned to the
critical density, e.g. |ρtot

/
ρc| ≤ 10−15 for z ∼ 1010 (cf. Schneider, 2006a). Furthermore, in
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Figure 1.3: Plot of a 4◦ wide slice of the Galaxy distribution from the 2dF Galaxy Redshift
Survey taken from Peacock et al. (2001). Image credit: Peacock et al. (2001)

order to obey the cosmological principle, the early Universe has to set highly isotropic initial
conditions6(cf. Schneider, 2006a). Both these fundamental problems of the standard Big Bang
picture can be resolved by an era of exponential expansion in the early Universe, the inflation
era (Guth, 1981; Linde, 1982; Albrecht & Steinhardt, 1982). The rapid expansion of space
during this period ‘washes out’ the curvature of space and allows small, causally connected
regions to expand into sizes that equal the observable Universe (cf. Schneider, 2006a). Inflation
also sets the initial conditions for the growth of structure, predicting that the early universe
was filled with small, independent fluctuations that evolve under the influence of gravity to
form larger structures (cf. Schneider, 2006a). Over time these initial density fluctuations grow
and begin to interact with neighboring structures, which leads to nonlinear structure growth
(cf. Schneider, 2006a). The expansion of the universe detaches neighboring density flucuations
and therefore counteracts the formation of structure. This preserves, at large scales, the form
of the primordial density field as will be discussed in the following.

In order to describe the time evolution of these density fluctuations, we note that gravita-
tional fields in the context of cosmology are typically rather weak and we can instead use a de-
scription based on classical physics within local regions of the universe (see e.g. Tegmark, 1994,
§2.4). This description will be valid as long as the gravitational fields are weak (Φ << c2),
the velocities are nonrelativistic (v << c) and the region we consider is much smaller than
the Hubble horizon dH = 1/H0 (e.g. Coles, 2001).

The following description mainly follows Coles (2001), where I used Tegmark (1994); Pea-
cock (1999); Mukhanov (2005); Schneider (2006a); Albornoz (2016) as additional references.

We describe the evolution of density fluctuations using the Euler equations of a Newtonian
fluid evolving under gravity. Using comoving coordinates χ and peculiar velocities vp = a χ̇,

6For example, CMB photons observed under a spatial separation of more than 1deg have been causally
disconnected since their last matter interaction, due to the light speed limit (Schneider, 2006a).
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the energy-momentum conservation equation then reads (Coles, 2001)

∂ (avp)

∂t
+ (vp∇χ) vp = −1

ρ
∇χp−∇χφ , (1.53)

where φ is the peculiar gravitational potential, which describes fluctuations in the gravita-
tional potential over a uniform background universe. Similarly we can formulate the mass
conservation equation as

∂ρ

∂t
+ 3

ȧ

a
ρ+

1

a
∇χ (ρvp) = 0 (1.54)

and the poisson equation for Newtonian gravity as

∇2
χφ = 4πGa2ρ0δ . (1.55)

Here we introduced the density contrast

δ(x) =
ρ(x)− ρ0

ρ0
. (1.56)

with respect to the average density of the universe ρ0.
To provide an analytic solution to these equations, we can expand ρ and vp to first order

assuming |vp|, |δ|, |φ| << 1 (Tegmark, 1994; Coles, 2001; Albornoz, 2016). Ignoring pressure
terms, the linearized Euler equations then read (cf. Tegmark, 1994; Peacock, 1999; Mukhanov,
2005; Schneider, 2006a; Albornoz, 2016)

∂vp
∂t

+

(
ȧ

a

)
vp +

1

a
∇χφ = 0 (1.57)

∂δ

∂t
+

1

a
∇χ · vp = 0 (1.58)

∇2
χφ− 4πGa2ρ0δ = 0 (1.59)

We can combine these equations by taking the time derivative of Eq. 1.58, the divergence
of Eq. 1.57 and substitute Eq. 1.59, which then leads to (see e.g. Coles, 2001; Schneider, 2006a;
Albornoz, 2016)

δ̈(χ, t) + 2H(t)δ̇(χ, t)− 4πGρ0δ = 0 , (1.60)

where we used H(t) = ȧ(t)
a(t) . This second order differential equation has the solution (see e.g.

Tegmark, 1994; Albornoz, 2016)

δ(χ, t) = A(χ)D+(t) +B(χ)D−(t) , (1.61)

where D+ is a growing mode and D− is the decaying mode. In the simple case Ωm = 1 these
solutions scale as D+(t) ∝ t2/3 and D−(t) ∝ t−1 respectively (see e.g. Schneider, 2006a). As
the initial fluctuations start out at very early times, the following discussion only considers
the growing mode D+(t), where we simplify the notation by setting D+(t) = D(t). The
generalization for universes that contain matter and a cosmological constant reads (Heath,
1977; Eisenstein, 1997; Hamilton, 2001)

D(a) =
5Ωm

2
H(a)

∫ a

0

da
′

a′
3
H(a′)3

, (1.62)

where D(a) is normalized such that D(a)→ a as a→ 0 (cf. Eisenstein, 1997).
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1.2.3 The Power Spectrum

In the previous section we reviewed how a single density fluctuation mode evolves with time.
The evolution of the full density field δ(x), can be described in fourier space (cf. Coles, 2001)

δ̃(k) =
1

(2π)3

∫
d3x e−ik·x δ(x) . (1.63)

If δ(x) is a Gaussian random field, as predicted by inflation (Guth, 1981; Guth & Pi, 1982),
its properties are completely determined by its variance. Assuming translational symmetry,
reality and isotropy for the density field we obtain the matter power spectrum as (cf. Coles,
2001) 〈

δ̃(k1)δ̃(k2)
〉

= P (k1)δD(k1 + k2) . (1.64)

Inflationary models (Guth, 1981; Guth & Pi, 1982) predict that the primordial random field
has a scale invariant ‘Harrison-Zeldovic’ spectrum of the form (Harrison, 1970; Zeldovich,
1972)

P0(k) = Ask
ns (1.65)

with a spectral index7 ns ≈ 1. We note that assuming that the fluctuations are small, each
individual Fourier mode of the density field grows proportional to D(t) and thus the power
spectrum will scale proportional to D(t)2.

Fluctuations that formed during the inflation era at different scales will reenter the horizon
at different times during the expansion of the universe. As explained in e.g. Bartelmann &
Schneider (2001), small scale fluctuations enter the horizon during radiation domination, which
prevents them to grow until the matter density equals the radiation density. In contrast, large
scale fluctuations that enter the horizon much later, i.e. after this time of matter-radiation
equality, could grow unsupressed and proportional to the scale factor. Fig. 1.4 shows the
present time matter power spectrum for a Λ-CDM model. As can be seen, the matter power
spectrum scales quite differently at small and large scales. At small scales, or large k, the
suppression of growth during radiation domination produces a scaling of P (k, t) ∝ k−3 (e.g.
Tegmark, 1994; Baugh, 2000; Trodden & Carroll, 2004; Schneider, 2006a; Sànchez, 2017). At
large scales, or small k, the fluctuations were not supressed and the matter power spectrum
scales as P (k, t) ∝ k, following its primordial shape (e.g. Tegmark, 1994; Baugh, 2000; Trodden
& Carroll, 2004; Schneider, 2006a; Sànchez, 2017). Additional effects like acoustic sound waves
also alter the shape of the matter power spectrum (see e.g. Eisenstein & Hu, 1998; Bassett &
Hlozek, 2010). Incorporating all these effects into the modelling is a numerically challenging
task that results in a prediction of the transfer function T (k) that, together with the growth
function, connects the primordial power spectrum with its present time shape (e.g. Tegmark,
1994; Coles, 2001; Albornoz, 2016)

P (k, t) = P0(k)T 2(k)
D2(k, t)

D2(k, tini)
, (1.66)

where tini is set to be a very early reference time. In practise these predictions are obtained
using dedicated codes like CLASS (Blas et al., 2011) or CAMB8 (Lewis et al., 2000).

7The results from CMB measurements, performed by the Planck-satellite (Planck Collaboration et al.,
2016) measure ns = 0.9655± 0.0062, which slightly ‘tilts’ the Harrison-Zeldovic form.

8http://camb.info/
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Figure 1.4: Present day (z = 0) power spectrum for a flat Λ-CDM model, estimated using
the cosmosis (Zuntz et al., 2015) software.

The linear theory of structure formation we just described is only applicable on large
scales and breaks down as soon as one enters scales of gravitational bound systems like galaxy
clusters. This can be seen in Fig. 1.4 where the nonlinear power spectrum begins to deviate
from the linear prediction at wavelengths of λ ≈ 10 Mpc, which is about the size of a galaxy
cluster. As an analytic treatment of the non-linear power spectrum is not practical, numerical
simulations are used instead to derive suitable fitting formulas (Hamilton et al., 1991; Smith
et al., 2003; Takahashi et al., 2012).

An alternative quantity that can be used to describe the density field in real space is the two
point correlation function ξ(r). The function ξ(r) can be related to the probability density
dP1,2 to find two objects, e.g. galaxies, separated at distance r in the respective volume
elements d V1 and d V2 as (Peacock, 1999; Baugh, 2000; Sànchez, 2017; Albornoz, 2016)

dP1,2 = ρ0 (1 + ξ(r)) d V1 d V2 , (1.67)

where ρ0 is the average object density and the two point correlation function is therefore
defined as the Fourier transform of the matter power spectrum

〈δ(x) δ(x+ r)〉 = ξ(r) . (1.68)

We can therefore relate the matter power spectrum with the two point correlation function as
(see e.g. Peebles, 1980)

ξ(r) =
1

2π2

∫
dk k2 P (k)

(
sin(k r)

k r

)
, (1.69)
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1.3 Cosmological Probes in Photometric Surveys

The matter power spectrum and the two point correlation function are elegant and powerful
tools to describe the three dimensional cosmic density field and its evolution. In order to
directly measure them on data, one generally requires very accurate distance (i.e. redshift)
information to trace the three dimensional structure of the cosmic web. Since redshifts pro-
vided by large area photometric surveys are obtained using photometry alone9, they are in
general not accurate enough for this purpose. Instead large area photometric surveys use
cosmological probes that consider projected density fields along the line of sight. Two of the
most important probes will be described in the next subsection.

1.3.1 Angular Clustering

Starting in the 70s, redshift projects like the Lick (Seldner et al., 1977, and references therein),
CFA (Tonry & Davis, 1979; Davis et al., 1982; Davis & Peebles, 1983) and APM (Maddox
et al., 1990) surveys established galaxy correlation functions as an important cosmological
probe in modern observational cosmology. Clustering measurements today mainly consider the
two point correlation function of the three dimensional density field. As these measurements
typically require a high redshift resolution, they are performed in the context of spectroscopic
surveys like WiggleZ (Drinkwater et al., 2010; Hinton et al., 2017), BOSS (Dawson et al.,
2013; Alam et al., 2017) and VVDS (Le Fèvre et al., 2005; Guzzo et al., 2008). However in
recent years measurements of the angular correlation function, i.e. the correlation function
of the projected galaxy density field along the line of sight, have been advocated (Asorey
et al., 2012, 2014) and applied in spectroscopic (e.g. Salazar-Albornoz et al., 2017) as well
as photometric surveys (Asorey et al., 2016). A major challenge in the modeling of angular
correlation functions is redshift uncertainty. If the distribution of galaxies is inaccurately
determined, the projection of the three dimensional density field is distorted, which propagates
into biases in the derived cosmological parameters. Furthermore, these measurements consider
correlation functions of the galaxy density field, which in general do not perfectly trace the
underlying dark matter density field. In the following we will describe how this galaxy-dark
matter bias can be incorporated into the modeling of clustering measurements.

Galaxy Bias

The power spectrum of the galaxy density field does not coincide with the dark matter power
spectrum, but instead is offset, or biased, by a galaxy-dark matter bias function that in
general depends on galaxy type, redshift and scale. We can expand the function that relates
the galaxy density contrast δg(x) with the underlying dark matter contrast δm(x) locally in a
Taylor series as (cf. Albornoz, 2016; Sànchez, 2017)

δg(x) =
∑
n

bn
n!
δm(x)n , (1.70)

where bn are the galaxy-dark matter bias parameters. To first order we can therefore assume
that the galaxy-dark matter bias function is a constant defined as

δg(x) = b δm(x) , (1.71)
9For an introduction into photometric redshift estimation we refer the reader to §1.4.
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where b is the linear galaxy-dark matter bias parameter. Providing accurate models for the
galaxy-dark matter bias requires a detailed knowledge about how galaxies form in dark matter
halos, and there exists a large literature about more advanced models and precriptions10.
However in this work we assume a simple redshift dependent bias in the form of the Fry model
(Fry, 1996; Clerkin et al., 2015). Following Clerkin et al. (2015), we assume that galaxies are
stationary after forming at an initial redshift z0. They do not merge and their density field
‘passively’ follows the evolution of the underlying dark matter density field δ̇g = δ̇m = const..
We can then write

δg(x, z0)− δg(x, z) = δm(x, z0)− δm(x, z) , (1.72)

and divide this equation by δm(x, z0), which then leads to

δg(x, z0)

δm(x, z0)
− δg(x, z)

δm(x, z0)
= 1− δm(x, z)

δm(x, z0)
. (1.73)

The first term quantifies the initial galaxy-dark matter bias b0, the second term can be written
as b(z)D(z) and the third term is the growth function D(z). We therefore obtain for the
redshift dependent galaxy-dark matter bias b(z)

b(z) = 1 +
b0 − 1

D(z)
. (1.74)

The Angular Correlation Power Spectrum

Measuring the galaxy correlation function of the three dimensional density field ξg(r) or alter-
natively, its power spectrum Pg(k), can be challenging in the context of large area photometric
surveys, due to inaccurate redshift information. In the context of large area photometric sur-
veys we instead typically consider the two dimensional projection of the three dimensional
galaxy density field along the line of sight. We start by decomposing the two dimensional
projected density contrast of galaxies on the sky into spherical harmonics Y`m (cf. Peebles,
1973; Crocce et al., 2011)

δ(n̂) =
∑
`≥0

∑̀
m=−`

a`mY`m(n̂) , (1.75)

where n̂ is a vector on the sky. The angular correlation power spectrum C` is defined as the
variance of the coefficients a`m (cf. Crocce et al., 2011)〈

a`ma`′m′
〉

= δ``′ δmm′ C` , (1.76)

where δ`,`′ and δm,m′ are Kronecker delta functions.
Projecting the three dimensional density field δg(x, z) along the line of sight direction n̂

leads to (cf. Crocce et al., 2011)

δ(n̂) =

∫
dz n(z) δg(n̂, z) (1.77)

where n(z) is the redshift distribution of galaxies and δ(n̂) the projected density contrast.

10We refer the interested reader to the extensive review of Desjacques et al. (2016).
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Performing the Fourier transformation of δg(n̂, z), using the spherical harmonics expansion
of the plane wave

ei k χ k̂·n̂ = 4π
∑
l≥0

∑̀
m=−`

i` j`(kχ)Y`m(k̂)Y ∗`m(n̂) , (1.78)

and comparing with Eq. 1.75 we obtain (cf. Crocce et al., 2011)

a`m = 4π i`
∫
dz n(z)

∫
d3k

(2π)3
δ(k, z) j`(kχ(z))Y ∗`m(k̂) . (1.79)

With the orthogonality relation for spherical harmonics we can then derive the angular corre-
lation power spectrum as (cf. Crocce et al., 2011; Kirk et al., 2015)

C` =
2

π

∫
dk k2 P (k)φ`(k)2 , (1.80)

where

φ`(k) =

∫
dz D(z)n(z) b(z) j`(kχ(z)) . (1.81)

Here P (k) denotes the matter power spectrum today (z = 0), that is convolved with a window
function φ`(k). The window function of galaxy clustering contains an evolution factor ∝ D(z)
and corrects for galaxy-dark matter bias ∝ b(z). The terms j`(kχ(z)) are spherical bessel
functions and n(z) represents the galaxy redshift distribution over which the three dimensional
density field is projected.

In analogy to the three dimensional case considered earlier, the real space analog of the
angular correlation power spectrum is given as the angular correlation function w(θ) (cf.
Peebles, 1973; Crocce et al., 2011)

w(θ) =
〈
δg(n̂) δg(n̂ + θ̂)

〉
. (1.82)

The angular correlation function can then be related to the angular correlation power
spectrum using Eq. 1.75, Eq. 1.76 and the addition theorem for spherical harmonics

P`(n̂ · n̂
′
) =

4π

2`+ 1

∑̀
m=−`

Y`m(n̂′)Y ∗`m(n̂) , (1.83)

where P`(n̂ · n̂
′
) are Legendre polynomials. After collecting terms we obtain (cf. Crocce et al.,

2011)

w(θ) =
∑
`≥0

(
2`+ 1

4π

)
P`(cos (θ))C` . (1.84)

We reiterate, that angular correlation functions are less sensitive to photometric redshift uncer-
tainty than the correlation function of the three dimensional density field. Galaxy clustering
measurements in large area photometric surveys therefore use projected quantities like angular
correlation functions or angular correlation power spectra.
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1.3.2 Gravitational Lensing

The magnification and shear pattern of light, emitted by high redshift sources and lensed by
the intervening matter distribution, provides another powerful tool to study the growth of
structure. This gravitational lensing effect, i.e. the bending of the light trajectory under the
influence of gravity, was first predicted around 1800 by Cavendish and Soldner (Valls-Gabaud,
2006). In 1919 Arthur Eddington, Frank Watson Dyson and colleagues (Dyson et al., 1920)
then measured the change of the observed position of stars very close to the sun during a
solar eclipse. The measured deflection angle was twice that of the prediction from Newtonian
gravity, which provided the first experimental confirmation of General Relativity. Since these
early measurements, modern Gravitational Lensing has evolved into a powerful tool for cos-
mology and astrophysics. Strong lenses like galaxy clusters are used e.g. as ‘cosmic telescopes’
to observe very faint galaxies that would otherwise not be detectable with current instruments
(Goobar et al., 2009; Monna & Covone, 2012; Coe et al., 2013; Rydberg et al., 2015; Chan
et al., 2017) or to measure their masses within the central regions (see e.g. Abdelsalam et al.,
1998; Hoekstra et al., 2013; Monna et al., 2017). In a more cosmological context strong lensing
also provides a method to measure the Hubble constant using gravitational time delays (Suyu
et al., 2013; Hojjati & Linder, 2014; Treu & Marshall, 2016). The majority of cosmological
applications however considers lensing by weak gravitational fields of the large scale mass
distribution of the universe. This method has evolved into a powerful probe for dark matter
and dark energy, especially in the context of large area photometric surveys like CFHTLens
(Heymans et al., 2013), KiDS (Hildebrandt et al., 2017) and DES (Abbott et al., 2016).

Fundamentals of Gravitational Lensing

Up until now we have considered light propagation through a homogeneous universe described
by the FLRW metric. In the presence of gravitational fields produced by the matter distri-
bution of the universe, the light trajectories have to be corrected for their influence. I follow
Narayan & Bartelmann (1996, §2.1.1 - §2.1.2) in the next paragraphs. If the peculiar velocity
of the lens is small and the gravitational potential weak, we can define the effective index of
refraction produced by the gravitational potential of the lens Φ(x, χ

′
) as

neff(x, χ
′
) = 1− 2 Φ(x, χ

′
) . (1.85)

Here χ′ is the transverse comoving distance to the lens along the line of sight and x is the
comoving separation vector. Using Fermats principle we can derive the diffraction angle as

α̂ = −
∫

∇⊥neff(x, χ
′
) dχ

′
= 2

∫
∇⊥Φ(x, χ

′
) dχ

′
, (1.86)

where∇⊥ = (∂/∂x1, ∂/∂x2) is the transverse comoving gradient of the potential perpendicular
to the light trajectory.

The most simplistic lensing system is a point mass, which the photons pass at an impact
parameter b. The gravitational potential for this system then reads

∇⊥φ(b, z) =
GM b

(b2 + z2)3/2
, (1.87)

where z is the position of the photon along the line-of-sight. From Eq. 1.86 we obtain a
deflection angle of

α̂ =
4GM

b
. (1.88)
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Figure 1.5: Geometry of Weak Gravitational Lensing. Image credit: (Bartelmann & Schnei-
der, 2001)

For the more realistic case of an extended lens, we can assume that the lens is thin compared
with the distance between lens and source and lens and observer. Considering the configuration
shown in Fig. 1.5, we project the mass distribution ρ(ξ, z) along the line-of-sight to yield the
surface mass density

Σ(ξ) =

∫
ρ(ξ, z) dz . (1.89)

Here ξ is a two dimensional vector and describes the position on the lens plane. The deflection
angle α̂ can then be obtained as

α̂(ξ) = 4G

∫
(ξ − ξ′)Σ(ξ)

|ξ − ξ′ |2
d2ξ

′
. (1.90)

From Fig. 1.5 we can relate the unperturbed deflection angle β and the perturbed angle
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θ with the distance to the lens and source as (see Bartelmann & Schneider, 2001, §3.1.2)

β =
η

Ds
(1.91)

θ =
ξ

Dd
. (1.92)

While these angles can be trivially defined in Euclidean space, it is nontrivial to see why they
should be valid in curved spacetime. As discussed in §1.1, the distance measure where this
relation holds by construction is the angular diameter distance Eq. 1.18, which we associate
with Dd,s,ds.11

Following Bartelmann & Schneider (2001, §3.1.2) we obtain for the deflection angle β

β = θ − Dds

Ds
α̂(Dd θ) . (1.93)

Introducing the scaled deflection angle

α(θ) =
Dds

Ds
α̂(Ddθ) , (1.94)

we can simplify the lens equation as

β = θ −α(θ) . (1.95)

The scaled deflection angle α can then be expressed as a function of θ

α(θ) =
1

π

∫
d2θ

′
κ(θ

′
)
θ − θ′

|θ − θ′ |2
, (1.96)

where we introduced the dimensionless surface mass density

κ(θ) =
Σ(Dd θ)

Σcrit.
. (1.97)

The critical surface mass density

Σcrit. =
1

4πG

Ds

DdDds
, (1.98)

separates between the two regimes of gravitational lensing. In the strong lensing limit κ > 1,
i.e. Σ > Σcrit. the lens can produce multiple images, which is not possible in the weak lensing
regime κ << 1.

1.3.3 Weak Lensing by Large-scale structure

Previously we reviewed the basic geometry of gravitational lensing, assuming a singular object,
e.g. a galaxy or a galaxy cluster, as the lens. Of particular interest for cosmology is the lensing
effect by the three dimensional matter distribution along the line of sight. We will now see, that
the density contrast of the matter distribution along the line of sight acts, to first order, as an

11Specifically we note that Dd + Dds 6= Ds. Here we changed the notation from dA, which denoted the
angular diameter distance in Eq. 1.18.



1.3. COSMOLOGICAL PROBES IN PHOTOMETRIC SURVEYS 25

χ′

~θ

~x(χ)

d~x(χ)
∇⊥φ(χ

′ )
d~α

~β

χ
χ − χ′

Figure 1.6: Bending of an incoming light wave by Weak Gravitational Lensing. The inital,
undeflected separation of two parallel light waves x(χ) would appear under the angle β as
shown by the dotted lines. The gravitational potential ∇⊥Φ(χ

′
) bends the light by an angle

of dα. The observer then sees the light ray under the total deflection angle θ. The comoving
distance χ denotes the distance from the observer to the source plane and χ

′ denotes the
comoving distance to the lens plane. Image credit: (Kilbinger, 2015)

effective surface mass density κ for sources located at a certain redshift. The effective surface
mass density produced by the matter distribution is the line of sight integral of the density
contrast weighted by the geometrical factor (DdDds)

/
Ds introduced earlier (see Schneider,

2006b, Eq. 95, page 359). Photometric redshift uncertainty enters this geometrical factor
as a distortion of the redshift distribution of sources. While the mathematical treatment is
rather technical, the fundamental equations that will be derived are very similar to the ones
considered in the previous section. However we will use a slightly different notation for the
lensing geometry as shown in Fig. 1.6, for consistency with the literature (e.g. Bartelmann &
Schneider, 2001; Schneider, 2006b; Kilbinger, 2015). In the following discussion we will mainly
follow Kilbinger (2015, §3.2).

Considering the lensing geometry shown in Fig. 1.6, we see that an infinitesimal deviation
in the source plane dx induces a change in the deflection angle dα as

dx = fK(χ− χ′)dα , (1.99)

where fK(χ) was defined in the FLRW metric (Eq. 1.2) to correct for the effect of curvature.
Using Eq. 1.86, we can then relate the infinitesimal shift in the deflection angle dα with an
infinitesimal shift in the distance to the lens dχ′ as

dα = −2∇⊥Φ(x, χ
′
) dχ

′
(1.100)

Plugging Eq. 1.100 into Eq. 1.99 and integrating over the line of sight we obtain

x(χ,θ) = fK(χ)θ − 2

∫ χ

0
dχ
′
fK(χ− χ′)

[
∇⊥Φ(x(θ, χ

′
), χ

′
)−∇⊥Φ(0)(χ

′
)
]
, (1.101)
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where Φ(0)(χ
′
) denotes the gravitational potential along the unperturbed ray. The apparent

deflection angle θ is then given by the lens equation Eq. 1.95

θ = α+ β . (1.102)

Solving this equation for α we obtain

α(θ) = 2

∫ χ

0
dχ
′
(
fK(χ− χ′)
fK(χ)

)[
∇⊥Φ(x(θ, χ

′
), χ

′
)−∇⊥Φ(0)(χ

′
)
]
. (1.103)

We can now connect the unlensed angle β with the lensed deflection angle θ by the
magnification matrix, or Jacobian matrix, A = ∂β/∂θ. Expanding A to linear order in Φ we
obtain (cf. Kilbinger, 2015)

Aij(θ, χ) = δij −
∂αi
∂θj

(1.104)

= δij − 2

∫ χ

0
dχ
′ fK(χ− χ′) fK(χ

′
)

fK(χ)

∂2

∂xi ∂xj
Φ(fK(χ

′
)θ, χ

′
) . (1.105)

In the case of weak gravitational lensing, A is invertible, i.e. there exist no multiple images.
The components of this matrix can be written more concisely

Aij = δij − ∂i∂jψ , (1.106)

where ∂i denotes partial derivatives w.r.t. θ and we define the lensing potential as

ψ(θ, χ) = 2

∫ χ

0
dχ
′
(

fK(χ− χ′)
fK(χ) fK(χ′)

)
Φ(fK(χ

′
)θ, χ

′
) . (1.107)

The components of the magnification matrix then describe how the lensed image of a
background source is distorted and magnified. We can parametrize A as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (1.108)

where the respective components can be expressed in terms of the lensing potential

κ =
1

2
(∂1∂1 + ∂2∂2)ψ (1.109)

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ (1.110)

γ2 = ∂1∂2ψ (1.111)

As illustrated in Fig. 1.7, the convergence κ describes the magnification, and the shear
coefficients γ1 and γ2 the distortion of the shape of the background source.

The two shear components parametrize the orientation of the sheared galaxy as shown in
Fig. 1.8. We see that the two component shear vector γ = (γ1, γ2) can be written as

γ = |γ| exp (2iφ) , (1.112)
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Figure 1.7: Effect of Weak Gravitational Lensing on the shape of a circular source. The pure
convergence effect leads to a magnification of the circular source, whereas the shear makes the
circular source more elliptical. Image credit: Umetsu (2010)

where φ is the polar angle between γ1 and γ2. Since we recover the original orientation for
φ = π, shear transforms like a spin-2 quantity.

Before we consider the lensing effect on the full cosmic density field, we want to note that
weak lensing is a powerful tool to measure the mass of e.g. galaxy clusters. The weak gravi-
tational lensing effect of a single lens will align the shape of background galaxies tangentially
relative to the lens. Following Hoekstra et al. (2013), we introduce the azimuthal angle φ wrt.
the lensing galaxy, and define the tangential shear signal as

γT = −(γ1 cos (2φ) + γ2 sin (2φ)) . (1.113)

The average tangential shear signal 〈γT 〉 (averaged over φ) can then be connected with the
mass contrast that is defined wrt. the critical surface mass density Σcrit (Eq. 1.98) as (Miralda-
Escude, 1991; Kaiser, 1995)

〈γT 〉 =
Σ(< r)− Σ(r)

Σcrit.
. (1.114)

Here, Σ(< r) is the mean surface mass density within the radius r and Σ(r) is the surface
mass density at the (border) radius r. We note that the critical surface mass density Σcrit.

depends on the redshift of the background sources. Photometric redshift uncertainties of
these background sources can therefore bias Eq. 1.114 and therefore the derived cluster mass
estimate.

Coming back to our main goal, i.e. to use the weak lensing effect on the cosmological
density field as a tool for cosmology (following Kilbinger, 2015, §3.2), we need to connect the
convergence κ, with the underlying matter density contrast. This relation is found by the 3D
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Figure 1.8: Schematic illustration of the influence of gravitational shear on a perfectly round
galaxy shape, with respect to the two shear components γ1 and γ2. Image credit: (Kilbinger,
2015)

Poisson equation in comoving coordinates (cf. Schneider, 2006b, §6.2)

∇2Φ =
3H2

0 Ωm

2 a
δ , (1.115)

where Φ is the gravitational potential, δ is the density contrast, a is the cosmic scale factor
and H0 and Ωm are the Hubble and matter density parameters respectively. Using Eq. 1.109
we can then express the lensing convergence as

κ(θ, χ) =
3H2

0 Ωm

2

∫ χ

0
dχ
′ fK(χ

′
)fK(χ− χ′)
fK(χ)

δ(fK(χ
′
)θ, χ

′
)

a(χ′)
. (1.116)

We note that for a flat universe, the geometrical factor χ′ (χ − χ′) parametrizes the lensing
efficiency. It is a parabola with a maximum at χ′ = χ

2 , which means that the lensing effect is
strongest for lenses that are exactly between (in terms of χ) the observer and the source. As we
are typically considering an ensemble of sources distributed along the line of sight following
the redshift distribution n(z), we need to average the convergence over this distribution of
source redshifts as

κ(θ) =

∫ χH

0
dχn(χ)κ(θ, χ) . (1.117)
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The convergence can be written as

κ(θ) =
3H2

0 Ωm

2

∫ χH

0
dχ q(χ) fK(χ)

δ (fK(χ)θ, χ)

a(χ)
(1.118)

with the lensing weight function q(χ)

q(χ) =

∫ χH

χ
dχ
′
n(χ

′
)

(
fK(χ

′ − χ)

fK(χ′)

)
. (1.119)

Here χ(a) → χH as a → 0 (cf. Schneider, 2006b, §6.2). Note that we express the redshift
distribution in terms of the comoving line-of-sight distance χ instead of the redshift z, where
both parametrizations can be related as

n(z) d z = n(χ) dχ . (1.120)

Comparing Eq. 1.116 with Eq. 1.97 we see that the lensing convergence is indeed the effec-
tive surface mass density of the density contrast, where the geometrical factor fK(χ

′
)fK(χ−χ′ )
fK(χ)

corresponds to the respective term in the inverse critical surface mass density Σcrit.
In close analogy to the last section where we introduced the angular correlation power

spectrum, we can relate the convergence in Fourier space to the convergence power spectrum,
following Kilbinger (2015, §3.7), as〈

κ̃(`) κ̃∗(`
′
)
〉

= (2π)2δ(`− `′)Cκ` (`) (1.121)

where δ(` − `′) is the Dirac delta function. The derivation that leads to the expression of
Cκ` (`) closely follows the derivation of the angular correlation function and is presented in Kirk
(2011, page 37-40). We expand the convergence into spherical harmonics, perform a fourier
transformation of the density contrast, expand the plane wave into spherical harmonics and
use the definition of the convergence power spectrum in Eq. 1.121. After collecting terms
using the orthogonality relation of spherical harmonics, we use a simplification known as the
Limber approximation (Limber, 1953; Kaiser, 1992; Simon, 2007; Kirk, 2011; Giannantonio
et al., 2012) that omits correlations along the line of sight, assuming that these structures are
sufficiently small, such that the projection ‘smears’ them out (see also Schneider, 2006b; Kirk,
2011; Kilbinger, 2015). After a lengthy calculation one arrives at (e.g. Blandford et al., 1991;
Kaiser, 1992; Bartelmann & Schneider, 2001; Takada & Jain, 2004; Joachimi & Bridle, 2010;
Kirk et al., 2015)

Cκ` (`) =
9

4
Ω2
mH

4
0

∫ χH

0
dχ

q2(χ)

a2(χ)
Pδ

(
k =

`

fK(χ)
, χ

)
. (1.122)

The convergence power spectrum, similar to the angular correlation power spectrum,
projects the matter power spectrum Pδ

(
k = `

fK(χ) , χ
)
along the line of sight using the lensing

weight function q(χ) defined in Eq. 1.119. As the lensing geometry critically depends on the
photometric redshift distribution of sources, the accurate control of photometric redshift errors
is a primary requirement to effectively use this probe for precision cosmology. The convergence
power spectrum is directly sensitive to the matter density Ωm and the Hubble parameter H0.
Furthermore, the geometrical factor q(χ) depends, via Eq. 1.2, on the curvature of space. As
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Cκ` (`) also depends on the power spectrum (Eq. 1.66) and the scale factor (Eq. 1.34), it is
sensitive to the density parameters (Eq. 1.36), the power spectrum amplitude As and the
dark energy equation of state parameters w0 and wa.

Instead of measuring the convergence power spectrum, weak gravitational lensing anal-
yses usually instead use the cosmic shear correlation functions ξ±(θ) (see e.g. Kaiser, 1992;
Schneider, 2006b)

ξ±(θ) =
1

2π

∫ ∞
0

d`Cκ` (`)J0,4(`θ) , (1.123)

where J0 (J4) are the Bessel functions of the first kind that correspond to ξ+ (ξ−). These cor-
relation functions have the decisive advantage that they relate to shear two point correlations
functions that are easy to estimate by averaging the product of the measured shear of galaxy
pairs as further discussed in Kilbinger (2015). In this work we will however mainly work with
convergence power spectra.

In summary we note, that the modeling of both the angular correlation power spectra and
the convergence power spectra depend on accurate redshift distributions. If these measure-
ments are performed in the context of large area photometric surveys, we need to derive the
redshift information using the photometry alone. The next section describes the photometric
redshift methodologies that can be used to extract redshift information for photomerically
observed galaxies.

1.4 Photometric redshift estimation

The radiation emitted by an astronomical source is measured as the incoming radiative energy
per unit time and unit area (cf. Carroll & Ostlie, 2007; Greisel, 2015). As the incoming light
of galaxies and stars is emitted in broad spectral ranges, we express its flux density either as
a function of wavelength [fλ] = 1 erg

cm2sÅ or as a function of frequency [fν ] = 1 erg
cm2sHz

, where
both parametrizations are related as (Hogg et al., 2002)

ν fν = λ fλ . (1.124)

Photometric surveys observe the galaxy through a set of photometric filters that are convolved
with the SED of the galaxy to produce a flux measurement (see e.g. Hogg et al., 2002; Greisel,
2015)

fi =

∫
Bi(λ) fλ(λ)dλ . (1.125)

Here Bi is the filter throughput in the photometric band and fi is the measured flux of the
galaxy in the filter. Instead of fluxes, photometry is typically quoted in terms of the apparent
magnitudes (see e.g. Hogg et al., 2002; Greisel, 2015)

mapp,AB = −5

2
log10

(
f

fref

)
, (1.126)

where fref is a reference flux. The choice of reference flux can vary, however it has be-
come standard to use the AB system (Oke & Gunn, 1983), where fν,ref = 3631 Jansky and
1 Jansky = 10−23 erg

s Hz cm2 .
The apparent magnitude of a galaxy depends on its distance, or redshift, and it is therefore

customary to define the absolute magnitude M as the apparent magnitude that of the object



1.4. PHOTOMETRIC REDSHIFT ESTIMATION 31

would have in 10 pc distance (see e.g. Hogg et al., 2002)

M = mapp −DM−Kcorr , (1.127)

where the distance modulus DM is defined as a function of the luminosity distance dL
(Eq. 1.24) as (see e.g. Hogg et al., 2002)

DM = 5 log10

(
dL

10 pc

)
. (1.128)

The measured flux of a galaxy in a certain filter band does not only depend on its distance, but
also on the relative position between the filter response and the redshifted SED. This means
that a certain position at the SED can fall into different filter bands, if we observe them in our
restframe or 10 pc away from the galaxy. We therefore need to apply a correction term, the
k-correction Kcorr, to the absolute magnitude to account for this effect, which then requires
knowledge, or an approximation, of the spectrum of the source (see e.g. Blanton et al., 2003;
Hogg et al., 2002; Oke & Sandage, 1968). Instead of magnitudes, we frequently use galaxy
colors cij, i.e. the difference between two magnitude measurements (see e.g. Greisel, 2015)

cij = mi −mj = −5

2
log10

(
fi
fj

)
, (1.129)

to quantify the photometry of a galaxy12.
If the source is redshifted, the luminosity Lν that we observe changes as (cf. Hogg et al.,

2002)

Lν(νe) =

(
4π d2

L

1 + z

)
fν(ν0) (1.130)

νe = (1 + z)ν0 , (1.131)

where νe is the frequency at emission and ν0 is the observed frequency. The photometric filter
function will therefore traverse the redshifted SED and the measured flux in the filter bands
therefore represent a good predictor for the redshift of the galaxy.

A typical example of a photometric filter system is the filter set of the Dark Energy survey
(see §8.2) shown in Fig. 1.9, where we overplot the SED of an elliptical galaxy. When the
spectrum is observed in the respective photometric filter, the full spectral information of the
SED is reduced to a set of flux measurements. Methods that estimate photometric redshifts
thus need to rely on prominent features in the galaxy’s SED that propagate through the
filter set to derive a redshift. This is illustrated in Fig. 1.9 for the example of an elliptical
galaxy. As can be seen, the SED shows a characteristic break around λ = 4000Å. The
stellar population of ellipticals is old and therefore dominated by cool red giant stars and
their SED therefore shows strong absorption features at the blue end of the spectrum (see e.g.
Schneider, 2006a; Greisel, 2015). When the galaxy is redshifted, this 4000Å break shifts to
higher wavelength and traverses through the filter set. The colors of the galaxy in the filters
around this characteristic feature, are therefore excellent predictors for the galaxy’s redshift.

12In combination with the magnitude of e.g. the first band, colors are in my experience better input features
for Machine Learning algorithms (see §2), than the set of magnitudes.

14http://www.iasf-milano.inaf.it/~polletta/templates/swire_templates.html

http://www.iasf-milano.inaf.it/~polletta/templates/swire_templates.html
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Figure 1.9: Filter response functions used in the DES Y1 analysis (see §8.2) plotted together
with a SED template of a 2 Gyr old elliptical galaxy from the SWIRE library14(Silva et al.,
1998; Polletta et al., 2007), at different redshifts. The SED was normalized at its value at
5500Å, the filter functions are normalized by the maximum i-band throughput. The solid
vertical line shows the characteristic 4000Å break at z = 0.

Not all galaxies show such a clear feature in their SED. For example spiral and irregular
galaxies have a much less pronounced 4000Å break, as their stellar population also contains
young blue stars (see e.g. Greisel, 2015). It is therefore typically easier to derive photometric
redshifts for red galaxies, compared with blue ones.

We distinguish two basic strategies to derive photometric redshifts from the available
photometry. Template based methods fit model SEDs, or ‘SED templates’, to the observed
photometry to derive a redshift and a spectral type. This is done by redshifting the SED
template and then deriving synthetic photometry using the respective filter functions of the
survey. We can then perform a χ2 fit against the original photometry. The redshift of the
template SED that best reproduces the original photometry, as measured by the χ2 fit, is then
reported as the final photometric redshift prediction.

The second class of photometric redshift algorithms are based on Machine Learning and
use galaxies with available spectroscopic redshifts to ‘learn’ the mapping between the galaxies
photometry and the redshift. In contrast to template fitting methods that model the SED
of the galaxy, Machine Learning methods interpolate the photometry-redshift mapping using
galaxies, for which both photometry as well as spectroscopic redshift measurements are avail-
able. The following section gives a brief overview over both methodologies and highlights their
differences.
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1.4.1 Template Fitting

The following subsection introduces the basic concepts of Template Fitting using concepts of
Bayesian statistics that will be introduced in §2.1. The notation and derivations I present are
similar, and consistent, with Benítez (2000); Feldmann et al. (2006a); Ilbert, O. et al. (2006);
Greisel (2015), however I present a more explicit treatment of the different terms in view of
§2.1. Template Fitting methods fit synthetic models of the galaxy’s SED to the observed
photometry to derive a redshift. Besides the redshift z of the galaxy, we would also like to
predict its absolute magnitudes M; where we will summarize the target values as µ = {M, z}
(see Greisel, 2015) and the input variables, i.e. the magnitudes and colors, as f . Since not
all galaxies have the same SED, the fitting routine uses a set of model SEDs that ideally
is representative of all galaxy types in the respective catalog. These SED models, or SED
‘templates’, will be denoted as T = {Ti, for i...nT }.

The goal of template fitting is to estimate the probability that a galaxy has a certain
redshift and absolute magnitude µ given its measured photometry f . This information is
expressed as the predictive distribution p(µ|f), which can be decomposed as

p(µ|f) =

nT∑
i=1

[
p(f |µ, Ti)p(µ|Ti)p(Ti)

p(f)

]
. (1.132)

Note that this equation has the form of Bayes theorem Eq. 2.4, where the left hand side is
the posterior probability, or predictive distribution, that quantifies our knowledge about µ of
the galaxy after its photometry has been fitted by our model. The right hand side is a sum
over all n template models Ti. For each individual model, we try to maximize the likelihood
p(f |µ, Ti), i.e. the probability that the observed photometry f is well reproduced by our model.
This model is quantified by the respective template Ti and the redshift/absolute magnitude
values µ. The posterior will however also depend on our prior knowledge about likely values
for µ given a particular galaxy template. This is quantified in the prior terms p(µ|Ti) and
p(Ti), where p(µ|Ti) quantifies our prior knowledge about reasonable redshift and absolute
magnitude values for a given template galaxy, and p(Ti) quantifies our prior knowledge about
the correctness of the templates themselves.

The denominator p(f) does not depend on our model and can therefore be seen as a
normalization factor.

Assuming a uniform p(Ti) and omitting the normalization p(f), we can then simplify the
equation as (cf. Benítez, 2000; Greisel, 2015)

p(µ|f) ∝
n∑

T=1

p(f |µ, Ti)p(µ|Ti) . (1.133)

The Gaussian likelihood is assumed to be of the typical χ2 form (cf. Benítez, 2000; Ilbert, O.
et al., 2006; Greisel, 2015)

p(f |µ, Ti) ∝ exp
(
−χ2/2

)
, (1.134)

where the χ2(z) function is given as (cf. Ilbert, O. et al., 2006; Greisel, 2015)

χ2(z) =
∑
i∈F

[
fobs,i − αfTi,i(z)

σobs,i

]2

. (1.135)
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Here F denotes the set of photometric filters and α is a fitting parameter that scales the model
flux to match the observations.

The accuracy of the derived photometric redshift posterior p(µ|f) depends on the avail-
ability of a template set T that is representative of the galaxy SEDs in the full sample.
Furthermore we note that the likelihood function in Eq. 1.134 assumes that the photometry
and the photometric noise of each galaxy are known and well calibrated. As the prior term
in Eq. 1.133 needs to be manually chosen, we should further require that the derived reshifts
are relatively robust against these choices.

In practice however it can be difficult to guarantee the validity of these modeling as-
sumptions without comparing the photometric redshift estimates with accurate spectroscopic
reference data.

Despite these limitations, template fitting remains one of the primary methods for pho-
tometric redshift estimation. It has the decisive advantage, that it uses physically motivated
models for the SED of galaxies and it does not directly require the availability of spectroscopic
data during model fitting. Over the years, a variety of different template fitting methods have
been developed, which are to a large degree, consistent with the framework we just discussed
and differ mainly in the way priors and template sets are constructed. Among the more pop-
ular codes are ‘LePhare’ (Arnouts et al., 1999; Ilbert, O. et al., 2006), ‘BPZ’ (Benítez, 2000;
Benítez et al., 2004; Coe et al., 2006), ‘HyperZ’ (Bolzonella et al., 2000), ‘PhotoZ’ (Bender
et al., 2001), ‘ZEBRA’ (Feldmann et al., 2006b) and ‘EAZY’ (Brammer et al., 2008). More
recent developments (Leistedt et al., 2016) aim towards an even more aggressive Bayesian
modelling of photometric redshift distributions of samples of galaxies.

Due to the good performances in recent data challenges (e.g. Sánchez et al., 2014; Bonnett
et al., 2016; Hildebrandt et al., 2010), Machine Learning based photometric redshift estimation
was established as a powerful alternative to template fitting methods. The following section
gives a brief overview over this class of methods, and §2 provides a more detailed description
of Machine Learning.

1.4.2 Machine Learning methods

Machine Learning based photometric redshift estimation uses data from the overlapping re-
gions between the photometric and the spectroscopic reference survey, to ‘learn’ the global
mapping between the photometry and the redshift. This mapping can be derived using a wide
variety of algorithms and methods like Neural Networks (e.g. Firth et al., 2003; Collister &
Lahav, 2004; Bonnett, 2015), Support Vector Machines (Wadadekar, 2005; Wang et al., 2008),
Self Organizing Maps (Carrasco Kind & Brunner, 2014a; Speagle & Eisenstein, 2015a,b), tree
based methods (e.g. Carliles et al., 2010; Gerdes et al., 2010; Carrasco Kind & Brunner, 2013;
Rau et al., 2015) or Diffusion Maps (Richards et al., 2009; Freeman et al., 2009).

While these methods differ in the way the mapping between photometry and redshift is
derived, their basic application is model independent. Their underlying flexible model function
is fit to a training dataset that provides measurements of both photometry and redshift. Once
the model is optimized, it can then provide redshift predictions for new galaxies without
spectral information. The Machine Learning approach therefore does not depend on choosing
a set of representative templates to obtain a photometric redshift.

Instead Machine Learning derives, or ‘learns’, the mapping between photometry and red-
shift using a training dataset, that has to be representative of the sample of galaxies, for
which photometric information needs to be obtained. If the training data does not accurately
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resemble the full photometric catalog, i.e. because some regions of the training set color space
are insufficiently populated by spectroscopic redshifts, we can expect large prediction errors
for galaxies that reside in these regions. Since the training data of a photometric sample is
typically obtained from spatially overlapping spectroscopic surveys, this situation is not the
exception, but rather the norm. Taking spectra at the faint end of the color-magnitude space
requires long exposure times and the target selection of spectroscopic surveys is therefore typi-
cally not well optimized to generate representative spectroscopic calibration data for large area
photometric surveys. Instead these surveys often preferentially target certain galaxy types like
e.g. emission line galaxies (e.g. Escoffier et al., 2013) or high redshift quasars.

While these effects are often discussed in the context of Machine Learning based photo-
metric redshift estimation, they more importantly affect the process of validating photometric
redshift estimates using spectroscopic reference data. Since every method of photometric red-
shift estimation makes implicit assumptions that can be violated in the data, accurate photo-
metric redshift validation is a vital prerequisite to use photometric redshifts for applications in
cosmology, irrespective of the chosen photometric redshift methodology. As discussed in more
detail in §5.1, there exists a rich literature about different photometric redshift methods, but
comparatively little work has been done on analyzing sources of error in photometric redshift
estimation and validation. This thesis therefore contributes to the literature by introducing
methods to more accurately quantify the error distribution in photometric redshift estimates
by proposing accurate Machine Learning methods that significantly outperform more tradi-
tional methodologies in §3. In §4 we then propose resampling methods to incorporate the
error in photometric redshift distributions into cosmological parameter constraints. In the
final chapter §5 we study sources of error in the context of the DES photometric redshift
validation pipeline and analyse their impact on cosmological observables.

Since the following chapters make frequent use of basic concepts of Machine Learning, we
provide a brief introduction into its most fundamental aspects in the following chapter.
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Chapter 2
Machine Learning

The process of extracting patterns and relationships from data is the essence of empirical
sciences since the mid of the 16th century. Since then, data analysis has layed the foundation
for modern physical sciences, induced drastic changes in society and ultimately contributed
to the unprecedented standard of living in many parts of the world entering the 21th century.
The methods and techniques developed by pioneers like Edmond Halley, studying the life
expectancy in Breslau around 1693 (Senn, 2003), or Legendre and Gauss, who developed the
concepts of regression to study planetary orbits (Hald, 2008) around 1809, are the foundations
of data analysis to this day. The rapid development of computer science and Machine Learning
(ML) is currently revolutionizing the well established field of data analysis. For the first time
in history, tasks like classification or the derivation of regression functions can be performed
by computer algorithms in a self-guided manner. If used correctly, and in conjunction with
scientific intuition, these techniques can be an invaluable tool to efficiently and accurately
process and analyze large amounts of scientific data.

Especially data intensive branches of astrophysics and cosmology benefit from the appli-
cation of ML to a wide variety of problems like the classification of galaxies (e.g. Huertas-
Company et al., 2011; Dieleman et al., 2015), variable stars (e.g. Richards et al., 2011; Sesar
et al., 2017), supernovae (e.g. Kessler et al., 2010; Charnock & Moss, 2017) and photometric
redshift estimation (Collister & Lahav, 2004; Rau et al., 2015; Hoyle et al., 2015a), just to
name a few.1 This chapter will give a brief introduction into Machine Learning, to prepare the
reader for its specific application to the problem of photometric redshift estimation, presented
in the following chapters. As Machine Learning is based on statistics, we start the discussion
with a quick primer on basic probability theory.

References and Resources The following introduction in §2.1 is based on Sivia & Skilling
(2006); Arnborg & Sjödin (2001); Horn (2003) and Bishop (2006), the subsequent sections
§2.2, §2.3 and §2.4 largely follow Bishop (2006). For §2.5 there exist many good descriptions
and resources, most notably Bishop (2006); Hastie et al. (2009). In my personal opinion, they
are either too technical (Hastie et al., 2009) or too simplistic (Bishop, 2006) for my purposes.
§2.5 therefore adapts aspects from both references. In the discussion about sample selection
bias in §2.6.1, I do not follow a particular reference, however I recommend Quionero-Candela

1We refer to Ball & Brunner (2010) for a detailed review over the various applications of Machine Learning
in astronomy.
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et al. (2009) as a general reference on this topic. The discussion on input noise in §2.6.2
follows Pischke (2007) with slightly adapted notation, however there exist numerous more
general resources, where I recommend Carroll et al. (2006). The description on unconditional
density estimation in §2.7 is based on Bishop (2006). References for the brief introduction
into conditional density estimation presented in §2.7.1 are Rosenblatt (1969); De Gooijer &
Zerom (2003); Holmes et al. (2012).

Nearly all analyses that I performed in this thesis use the following software packages:
‘python’ (Rossum, 1995), ‘SciPy’ (Jones et al., 2001–), ‘Numpy’ (van der Walt et al., 2011),
‘IPython’ (Perez & Granger, 2007), ‘Matplotlib’ (Hunter, 2007), ‘Pandas’ (McKinney, 2010),
‘scikit-learn’ (Pedregosa et al., 2011), ‘R’ (R Core Team, 2015).

For the preparation of the images I used the ‘Matplotlib’ package (Hunter, 2007). Fig. 2.2
was created incorporating a code snippet from Joe Kington2. To create Fig. 2.4 and Fig. 2.5
I used the scikit-learn (Pedregosa et al., 2011) package.

2.1 Basic probability theory

The classical view on statistics defines the probability of an event as the frequency of its occur-
rence in a repeatable random experiment. However, in astrophysics and cosmology we often
deal with scenarios, where this perspective seems to be unnatural. As an example consider
the problem of measuring the distance to a supernovae using its lightcurve. The distance itself
is just a fixed number and not a random variable and the experiment cannot be practically
repeated, since the object under consideration exploded. While it is certainly possible to
phrase this problem in terms of a random experiment, it seems more natural to regard the
uncertainty in the derived distance as our degree-of-belief in the measurement process and our
modeling. This ‘Bayesian’ interpretation of probability goes back to 19th century pioneers
like Bernoulli, Bayes and Laplace, but was rejected by many of their colleagues at that time,
because the definition of probability based on frequencies seemed to be the more rigorous
approach (Sivia & Skilling, 2006). Even today, Bayesian statistics is often criticized as being
subjective. As it interprets probability as a ‘degree-of-belief’, one can indeed correctly criticize
that this notion might change from person to person. This is however not a criticism on the
Bayesian approach itself, but on improper quantification and justification of the presumptions
in its practical application (see e.g. Jaynes, 1989; Sivia & Skilling, 2006).

In 1946, Richard Cox derived rules3 that need to be fulfilled to ensure that our reasoning
within Bayesian statistics is consistent and meaningful (Cox, 1946). As a first rule he required
that our degree-of-belief in a statement should be measured in real numbers and has to depend
on all prior information we have on the matter. If new information is obtained we have to
update our assessment in a sensible way. Finally we should derive our belief in a statement
in a consistent manner, i.e. if there exist more than one way to reason, all approaches have
to yield the same result (see also Arnborg & Sjödin, 2001). It can be shown (see e.g. Horn,
2003; Sivia & Skilling, 2006), that Cox’s rules can be related to the basic rules of probability
that we will discuss in the following.

2https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py, Accessed: Mo
28 Aug 2017

3An excellent review over the Cox theorems can be found in Arnborg & Sjödin (2001); Sivia & Skilling
(2006). Especially Sivia & Skilling (2006) provides an excellent introduction into Bayesian statistics on which
some of the following discussion is based.

https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py
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If we specify our confidence that a certain statement X is true, we automatically quantify
our doubt in the reverse statement X. Measuring our degree-of-belief as a real valued number
in the interval [0, 1], then immediately leads to the summation rule (see Sivia & Skilling, 2006)

prob(X) + prob(X) = 1 , (2.1)

where X denotes the negation of the statement X. Consider the case where we have confidence
that the proposition Y is true. If we can further quantify our confidence that the statement
X is true, given that our proposition Y is true, we have implicitly quantified our confidence
that both X and Y are true. Introducing the conditional probability prob(X|Y ), i.e. the
probability of X given Y is true, we can write (see Sivia & Skilling, 2006)

prob(X|Y )× prob(Y ) = prob(X,Y ) . (2.2)

If we further require that the joint distribution prob(X,Y ) is symmetric prob(X,Y ) = prob(Y,X)
we immediately obtain Bayes theorem (see Sivia & Skilling, 2006)

prob(X|Y ) prob(Y ) = prob(Y |X) prob(X) . (2.3)

Eq. 2.3 is central for applications in parameter inference, where we want to gain information
about the validity of a theory given new data. From Bayes theorem we can write (see Sivia &
Skilling, 2006)

prob(hypothesis|data) =
prob(data|hypothesis) prob(hypothesis)

prob(data)
. (2.4)

Here prob(hypothesis|data) is the posterior probability and quantifies our degree-of-belief in
our hypothesis, given the available data. The term prob(hypothesis) is the prior probability
and specifies how much we trust our hypothesis before we considered the data. The prior
is then modified by the ‘likelihood’ prob(data|hypothesis) that gauges how well the data
is supported by our hypothesis. The ‘evidence’ prob(data) doesn’t play an important role
in parameter estimation and can be regarded as a normalization factor (see Sivia & Skilling,
2006). However we will consider this term in more detail, when we discuss how different models
can be compared in §2.4.3. The right hand side of Eq. 2.4 therefore reconciles our prior degree-
of-belief in our hypothesis by the information gained from the new data via the likelihood.
Instead of quantifying our prior confidence, or if we are largely oblivious about our hypothesis,
we can instead simply adapt our hypothesis, such that the likelihood prob(data|hypothesis) is
maximized for the current data. This ‘maximum likelihood’ approach (see Bishop, 2006; Sivia
& Skilling, 2006) treats the optimized hypothesis as a fixed value, in contrast to the Bayesian
approach, where the posterior is a probability function as explained shortly.

We would now like to generalize Eq. 2.1 to multiple statements by considering the sum
over the joint probabilities (see Sivia & Skilling, 2006)

prob(X,Y ) + prob(X,Y ) , (2.5)

which can be decomposed using Eq. 2.2 as (see Sivia & Skilling, 2006)

prob(X,Y ) + prob(X,Y ) = (prob(Y |X) + prob(Y |X)) prob(X) . (2.6)
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The first term on the right hand side has to sum to unity following Eq. 2.1 and we obtain (see
Sivia & Skilling, 2006)

prob(X,Y ) + prob(X,Y ) = prob(X) . (2.7)

Thus if we sum over all possible states of Y , the result will no longer depend on Y , i.e. Y has
been ‘marginalized’ over.

The previous discussion introduced the notion of probability in abstract terms as a degree-
of-belief in a statement. In the following discussion we will make this notion more concrete and
instead use the concept of a random variable X that represents a range of values distributed
according to p(x). A discrete random variable X can have multiple discrete states s, where we
quantify the probability of each state by the probability mass function p(X = s). In contrast,
a continuous random variable can take on a continuous range of values x and is therefore
described by a probability density function (pdf), denoted as p(x). An example for a discrete
random variable is the cube number in a gambling game, whereas a continuous variable could
report the height of a random individual drawn from a large population.

Considering two discrete random variables X and Y , having n and m states respectively,
the sum and marginalization rules then generalize as (see Sivia & Skilling, 2006)

n∑
k

p(X = sk) = 1 (2.8)

m∑
k

p(Y = sk, X) = p(X) . (2.9)

In the case of a continuous random variable, the sum over discrete states is replaced by an
integral over a continuum as (see Sivia & Skilling, 2006)∫ ∞

−∞
dx p(x) = 1 (2.10)∫ ∞

−∞
dy p(x, y) = p(x) . (2.11)

The probability that e.g. the continuous random variable X takes on a value within the
interval x ∈ (a, b) is therefore given as (see Sivia & Skilling, 2006)

p(x ∈ (a, b)) =

∫ b

a
p(x) dx . (2.12)

The Normal Distribution

In many applications of data analysis, random variables are distributed according to a normal,
or Gaussian, distribution N (x|µ, σ2) where (see Bishop, 2006)

p(x) = N (x|µ, σ) =
1√

2πσ2
exp

(
− 1

2πσ2
(x− µ)2

)
. (2.13)
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The shape of this function is characterized by its mean µ and standard deviation σ (see Bishop,
2006)

µ =

∫ ∞
−∞

x p(x) dx (2.14)

σ =

√∫ ∞
−∞

(x− µ)2 p(x) dx , (2.15)

as illustrated in Fig. 2.1. We note that the squared standard deviation σ2(X) = Var(X)
is the variance of the random variable. If the input vector x is D dimensional, the normal
distribution N (x|µ,Σ) reads (see Bishop, 2006)

p(x) = N (x|µ,Σ) =
1√

(2π)d det (Σ)
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
. (2.16)

The mean µ is now a d dimensional vector and the variance generalizes to a d×d dimensional
covariance matrix Σ

Σij =

∫ ∞
−∞

∫ ∞
−∞

(xi − µi) (xj − µj) p(xi, xj) dxi dxj , (2.17)

that is required to be symmetric and positive semi-definite. The diagonal entries of Σ quantify
the variance of the individual components and the cross entries their interdependence.

This can be visualized for a two dimensional normal distribution by considering the el-
liptical region that corresponds to the 1σ interval in the one dimensional case. In 2D, the
orientation and size of the elliptical 1σ region is determined by the entries of the covariance
matrix

Σ =

(
Σ11 Σ12

Σ12 Σ22

)
(2.18)

To illustrate this, Fig. 2.1 plots the 1σ covariance ellipses for a variety of zero mean normal
distributions, where

Σ1/2 =

(
1 ±0.5
±0.5 1

)
Σ3 =

(
1.5 0
0 1.5

)
Σ4/5 =

(
1.5/0.1 0

0 0.1/1.5

)
. (2.19)

We see that the diagonal covariance matrices Σ3, Σ4 and Σ5 quantify a different error in
x1 and x2, but are all aligned along the axes. In contrast the covariance ellipses for Σ1,
Σ2 show a correlation between the variables x1 and x2. If the cross term Σ12 in Eq. 2.18 is
positive, the variables are said to be correlated. This means that a large x1 makes it likely that
the corresponding x2 variable will also be large. In contrast a negative cross term indicates
anticorrelation, i.e. a large x1 makes it likely that the corresponding x2 will be small. We
further note, that the ellipses that correspond to Σ1,2 have a different area than those that
correspond to Σ4,5 and Σ3. If x1 and x2 are interpreted as parameters that need to be
estimated, covariance ellipses with different areas therefore describe measurements that have
a different total accuracy. We will regularly encounter these covariance ellipses in §4, when
we discuss how photometric redshift uncertainties affect cosmological parameter constraints.

We now consider the problem of estimating the parameters in Eq. 2.13 using a sample
of values that was drawn independently from the same normal distribution4. Denoting the

4Such a sample is called independent and identically distributed, which we will always assume to be the
case, if not stated otherwise.
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Figure 2.1: A normal distribution with mean µ = 0 and standard deviation σ = 1.0. The
colored regions show the 1σ − 3σ intervals, that contain 68.27%, 95.45% and 99.72% of the
area under the curve, as measured from the mean.

gaussian model as N (x|µ, σ2), we can formulate the likelihood, i.e p(data|hypothesis), as (see
Bishop, 2006)

p(x|µ, σ2) =

N∏
n=1

N (xn|µ, σ2) . (2.20)

If we place the Gaussian at a wrong position in parameter space, its likelihood will be small.
In contrast, if we guess the parameters correctly, we will obtain a large likelihood value, since
the majority of samples will fall into a region where the probability density function is large, as
can be seen in Fig. 2.1. Maximizing the likelihood is therefore a very reasonable and natural
criterion to select the model parameters. Since the product over normal distributions is a bit
difficult to handle both analytically and numerically, we instead maximize the logarithm of
the likelihood, or log-likelihood (see Bishop, 2006)

log p(x|µ, σ2) = − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
log σ2 − N

2
log (2π) . (2.21)

In general the log-likelihood is maximized simultaneously for all parameters in the model,
however for the special case of a normal distribution this optimization can be done separately
for the mean and the standard deviation. Taking the derivative with respect to the log-
likelihood in Eq. 2.21, we can easily obtain the optimal solutions 5 for µ and σ2 as (e.g.

5Note that the maximum likelihood estimate for the variance is biased, because it is estimated with
respect to the sample mean µML instead of the true mean. A better estimate can be obtained using σ2

corr =
1

N−1

∑N
n=1 (xn − µML)

2. This underestimation of variance is a general problem of the maximum likelihood
approach and we refer to the literature (e.g. Bishop, 2006) for further details.
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Figure 2.2: Elliptical 1σ regions described by the covariance matrices defined in Eqs. 2.19.

Bishop, 2006)

µML =
1

N

N∑
n=1

xn (2.22)

σ2
ML =

1

N

N∑
n=1

(xn − µML)2 . (2.23)

In this example we considered the task of estimating the parameters of a normal distri-
bution. However, in Machine Learning applications we want to infer a functional mapping
between a set of inputs and a target variable. In photometric redshift estimation for example,
we predict the redshift of a galaxy given its photometry. The redshift cannot be predicted
perfectly based on the photometry in a limited number of filter bands. As a result, the pho-
tometric redshift predicted for a certain galaxy will be distributed according to a probability
density function. Since the photometric redshift zphot of the galaxy depends on its photometry
f , this ‘predictive distribution’ is a conditional probability density function p(zphot|f).

If we assume the conditional pdf to be Gaussian, its shape will be completely determined
by its mean and variance. In contrast to the unconditional case discussed previously, the
conditional pdf depends on a set of inputs, e.g. the photometry f . As a result, the two
parameters that describe its shape, will be functions of these input variables. This problem
of ‘regression’ will be discussed in a broader context in §2.2.

The Bernoulli Distribution

Besides continuous probability density functions, many random processes have discrete states
and are therefore described by discrete random variables. The classical example of a discrete
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random variable in the context of Machine Learning is the class of an object like the morpho-
logical type of a galaxy, or the type of a variable star. One of the simplest discrete random
experiments is the coin toss, where a potentially biased coin is thrown to yield either heads or
tails. If we parametrize the possible states as s = {0, 1}, the probabilities for the individual
outcomes p(X = 1) = µ and p(X = 0) = 1 − µ depend only on the ‘success rate’ µ (e.g.
Bishop, 2006). The corresponding probability distribution for this process is then given as
(e.g. Bishop, 2006)

p(X = s) = µs (1− µ)1−s . (2.24)

For a dataset D = {x1, . . . , xN}, the likelihood of the Bernoulli distribution can be obtained
as (see Bishop, 2006)

p(D|µ) =

N∏
i=1

µxi (1− µ)1−xi , (2.25)

and the value for µ that maximizes the log-likelihood function (see Bishop, 2006)

log p(D|µ) =
N∑
i=1

(xi logµ+ (1− xi) log (1− µ)) , (2.26)

is given by the sample mean

µML =
1

N

N∑
i=1

xi . (2.27)

With the introduction of the normal distribution to describe continuous random variables and
the Bernoulli distribution for discrete binary random variables, we have layed the foundation
for the following discussion on Regression and Classification. Up until now, these probability
functions have been unconditional, i.e. they depend on fixed valued parameters. In the
following sections, we will instead describe e.g. the mean or the success rate, using functional
models that depend on input variables x. This simple modification will make the Normal
distribution and Bernoulli distribution conditional on these sets of inputs x, and enables us
to use them for Regression and Classification tasks respectively.

2.2 Regression

The basic task of regression it to estimate the functional relationship between a given set of
inputs x and a target variable t. In Fig. 2.3 we illustrate a typical regression setting, where
the blue points correspond to the data that we want to model. We see that these datapoints
do not follow an exact functional relationship, but instead have an intrinsic scatter around
the true function shown in red. The modelling is therefore not restricted to determining this
function, but also includes the estimation of the predictive distribution p(t|x) of the target
variable t given the input x. We follow Bishop (2006) in this section.

In analogy to the discussion in the previous section, we model the predictive distribution
as a Gaussian, where the mean is given by a polynomial function y(x,w) and the variance β
is assumed to be independent of x

p(t|x,w, σ2) = N
(
t|y(x,w), σ2

)
. (2.28)
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Figure 2.3: Illustration of a typical regression setting. The blue points illustrate the data,
that needs to be modeled by the predictive distribution p(t|x,w, σ2). The function y(x,w)
parametrizes its mean and depends on the model parameters w. The parameter σ2 is the
variance of the predictive distribution and is assumed to be independent of the input x.
Image credit: Christopher M. Bishop (Bishop, 2006), modified.

If we do not have any prior information about the functional form of y(x,w) we can assume
a very complex function that will adapt to the data. A simple choice could be a polynomial
model or, more general a linear basis function model

y(x,w) =
M−1∑
j=0

wj φj(x) = wTφ(x) , (2.29)

where w = (w0, . . . , wM−1)T is a M dimensional vector of free model parameters, or weights.
In the corresponding basis function vector φ = (φ0, . . . , φM−1)T we define φ0 = 1 such, that
the first weight is an offset to the function. The basis functions φ themselves can be e.g.
linear combinations, polynomial terms or Gaussians that depend on the input x. To give an
example, consider the case of a single input variable x, where we obtain a polynomial model
by setting φj(x) = xj . The choice of suitable basis functions will strongly depend on the data
at hand and has to be carefully chosen in advance to reflect our intuition about the data.
With a linear basis function model for the mean of the predictive distribution, we obtain the
likelihood as

p(t|X,w, σ2) =
N∏
i=1

N (ti|y(xi,w), σ2) , (2.30)

where the data D consists of a set of N input variables X = {xi for i = 1, . . . , N} with their
associated target values t = {ti for i = 1, . . . , N}. In analogy to the previous section, we
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jointly optimize the log-likelihood with respect to the free parameters w of the mean function
y(x,w) and the variance6 σ2 (e.g. Bishop, 2006)

log (p(t|X,w, σ)) = − 1

2σ2

N∑
n=1

(tn − y(x,w))2 − N

2
log σ2 − N

2
log (2π) . (2.31)

We can first optimize the log-likelihood with respect to the weights vector w by minimizing
the sum-of-squares error function

SSE =
1

2

N∑
i=1

[ti − y(xi,w)]2 . (2.32)

For the linear basis function model this optimization can be performed analytically to yield
the maximum likelihood estimate (see Bishop, 2006)

wML =
(
ΦTΦ

)−1
ΦTt , (2.33)

where the components of the matrix Φ are given as Φnj = φj(xn) and t denotes the column
vector of the target observations {ti for i = 1, . . . , N}. In analogy to the previous section, the
variance can then be estimated using the optimized model for the mean as

σ2
opt. =

1

N

N∑
i=1

[ti − y (xi,wopt.)]
2 . (2.34)

We finally note that the sum-of-squares loss function Eq. 2.32 can also be used as a metric to
evaluate the performance of the regression model, as discussed in more detail in §2.4.2. While
the linear basis function model has an analytic solution for the optimal weights vector, this is in
general not the case for other Machine Learning architectures and model functions, as we will
see in the next section. In these cases, we have to resort to numerical optimization methods
and efficient algorithms to calculate the necessary gradients. Furthermore, instead of a simple
Gaussian, we can consider more complex distributions or mixtures of distributions, that may
be advantageous in some applications. However besides changes in the parametrization of the
predictive distribution and the optimization routine, all concepts that have been developed in
this section remain valid.

2.3 Classification

In contrast to the regression setting, where the goal was to predict a continuous target vari-
able, a classifier assigns discrete classes to the objects. In this section, we focus on binary
classification for simplicity. However we will discuss in §3, how an ensemble of binary classifiers
can be combined to produce multiclass outputs.

In analogy to the previous discussion on the regression task, we start by formulating the
predictive distribution for binary classification. In §2.1 we introduced the Bernoulli distribu-
tion of a coin toss experiment, that depends only on a single free parameter µ which is the
probability of the positive result, i.e. the success rate. Associating the states of a Bernoulli

6Here we assume that the variance is independent of x for the sake of simplicity. In more complex scenarios,
we can parametrize the variance as a function, just as we did for the mean.
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distributed random variable with the target class values, the class probabilities for an object
with features x are given as p(class 1|x) = µ and p(class 2|x) = 1− p(class 1|x) (see Bishop,
2006). We can use the basis function model Eq. 2.29 to parametrize p(class 1|x), if we scale
its output such, that it represents probabilities (see Bishop, 2006).

This can be done by the sigmoid function, that scales the output of the linear basis function
model to an interval [0, 1] (see Bishop, 2006)

p(class 1|x) = y(x,w) =
1

1 + exp (−wTφ(x))
, (2.35)

where we defined the weights w and the basis functions φ(x) in analogy to Eq. 2.29.
Considering a dataset D that consists of a set of N inputs X = {xi for i = 1, . . . , N} and

associated target class variables t = {ti for i = 1, . . . , N} with ti ∈ [0, 1], we can derive the
Bernoulli likelihood as (see Bishop, 2006)

p(t|X,w) =

N∏
i=1

y(xi,w)ti (1− y(xi,w))1−ti . (2.36)

Taking the logarithm of Eq. 2.36 then leads to the so called cross-entropy error function
defined as (see Bishop, 2006)

log p(t|X,w) =
N∑
i=1

(ti log (y(xi,w)) + (1− ti) log (1− y(xi,w))) , (2.37)

which is maximal7 if the prediction is perfect y(xi,w) = ti and penalized if the classifier
predicts the wrong class. In contrast to the linear basis function model, it is not possible
to derive an analytical solution for the weights w that optimizes the log-likelihood, due to
the nonlinearity introduced by the sigmoid (see Bishop, 2006). However the optimization can
be performed efficiently by the Newton-Raphson method as detailed in the literature (see
Bishop, 2006). While the discussion in this section focussed on the two-class problem, the
generalization to multiple classes is streight-forward, and the interested reader is referred to
the standard literature on the topic (e.g. Bishop, 2006; Hastie et al., 2009)

We finally note that the evaluation of classifiers is more complex than in the regression
setting. Consider for example a very simple metric that measures classification accuracy as the
average fraction of incorrect classifications. While this approach is sensible, if we can guarantee
an equal number of objects in each class and balanced classification performance for all classes,
it turns out to be suboptimal in the majority of applications, where this is not the case. This
can be easily understood by considering the hypothetical example of automatically detecting
diseases, like HIV or Hepatitis, in a blood donation sample. In general only a small fraction of
the active blood donors will have one of these diseases, due to the extensive screening process
before the donation. Let us for instance assume that only 0.1% of the blood donors are infected
and thus a ‘classifier’ that always predicts a clean blood sample, will only make mistakes 0.1%
of the time. A naive interpretation would lead us to believe that we have a very accurate
classifier, whereas in reality the classifier performs catastrophically. On the other hand we
don’t want to mistakenly diagnose too many clean blood samples as being infected, due to

7Instead of maximizing the log-likelihood as done here, it is sometimes customary to minimize the negative
log-likelihood in accordance with the notion of a ‘loss function’ that needs to be minimized.
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the enormous psychological stress imposed on the blood donors. Clearly the problem arises
because the dataset we are considering is extremley inbalanced, which makes loss functions
like the misclassification rate or the cross entropy error suboptimal choices to interpret the
accuracy of the predictions.

Let us denote the subset of infected blood samples as the ‘true class’ and the subset of clean
blood samples as the ‘false class’. When a classifier is applied to this problem, its predictions
can be partitioned into four subsets. The ‘true positive’ (tp) sample contains all infected
samples that have been correctly classified as being infected. Accordingly the ’true negative’
(tn) sample will contain all samples that have been correctly identified as being clean. If these
two subsamples already constitute the full sample, the classifier provides perfect predictions.

In the presence of classification error, we will encounter a fraction of objects that are
incorrectly classified as being infected, but are in reality clean. We call this subsample the
false positives (fp). Equivalently the false nagatives (fn) are those samples, that are incorrectly
classified as being clean, but are actually infected.

Counting the number of samples that fall into each category, we can define two performance
metrics that correctly account for class inbalance. The ‘purity’ metric measures which fraction
of those samples that have been classified as being infected, are actually infected (e.g. Witten
et al., 2011)

purity =
tp

tp+ fp
, (2.38)

and the completeness of a sample measures how many of the total number of infected samples
have been correctly identified as such (e.g. Witten et al., 2011)

completeness =
tp

tp+ fn
. (2.39)

To obtain a summary statistic we define the F1-score as the harmonic mean between purity
and completeness as (e.g. Witten et al., 2011)

F1 = 2

(
purity · completeness

purity + completeness

)
. (2.40)

The classification performance in terms of the F1-score is worst if F1 = 0 and best if F1 = 1.
We finally note that in the Machine Learning literature, purity is usually referred to as the
precision and completeness is referred to as recall.

This concludes our brief introduction into the basic concepts of regression and classification.
In the following section we will introduce the reader to sources of error that have to be
considered when Machine Learning algorithms are applied in practise.

2.4 Model Complexity

A critical question in Machine Learning is how complex of a model should be in order to fit
the data appropriately. In the basis function model described in the previous section, one
can increase the complexity by adding additional basis function terms. If we do not have a
clear idea about the underlying structure of the data, a naive approach would select a very
complex model in order to guarantee a perfect fit to the data. However this methodology runs
a severe risk of overfitting, where the model fits the intrinsic noise of the data, rather than
the underlying structure.
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Figure 2.4: Illustration of the impact of model complexity on the accuracy of Machine
Learning models. The black dashed line shows the exponential function from which N = 60
grey data points have been generated by adding zero mean Gaussian noise with σ = 20. The
red curves show the polynomial models of order M that have been fitted to this data set. The
bottom right panel shows the performance of a polynomial model with M = 10 fitted on a
larger sample with N = 2000.

This issue is illustrated in Fig. 2.4, where we estimate an exponential function from the
underlying data shown in grey using a polynomial model. While the simple linear model (‘Poly
1’) is not complex enough to capture the nonlinear structure in the data, adding higher order
polynomial terms does not always improve the quality of the recovered model, but can instead
lead to overfitting as shown in the lower left panel for a 10th order polynomial (‘Poly 10’).
Here the complex model is adapting too tightly to the small amount of available data and
thus strongly fluctuates around the truth. For this small sample, a quadratic model (‘Poly 2’)
produces the best fit. Increasing the data sample to N = 2000 points, significantly stabilizes
the high order polynomial, which now perfectly recovers the underlying exponential function.
This simple experiment demonstrates, that the complexity of the model needs to be balanced
with the nonlinearity of the data, as well as the number of available data samples. If we have
more data available, we can increase the model complexity to more accurately capture the
complex structure in the data. In contrast, if data is sparse, increasing the complexity of the
fit, can even lead to greater errors than a more simplistic model.
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2.4.1 The Bias-Variance Tradeoff

In order to gain more insights into the tradeoff between model complexity and fitting accuracy,
I follow Bishop (2006) in this subsection, and consider the sum of squared error function (Eq.
2.32) for a sample that is distributed according to p(x, t)

E[L] =

∫ ∫
[y(x)− t]2 p(x, t) dx dt , (2.41)

where y(x) is assumed to be a very flexible model function. We can determine the function
that minimizes Eq. 2.41 by setting the variational derivative of E[L] with respect to y(x) to
zero (see Bishop, 2006)

δE[L]

δy(x)
= 2

∫
[y(x)− t] p(x, t) dx dt = 0 . (2.42)

Rearranging terms using Eq. 2.11 and Eq. 2.2 we obtain

y(x) =

∫
t p(t|x) dt . (2.43)

Thus the function that minimizes the sum of squared error is given by the conditional mean
of the predictive distribution p(t|x) irrespective of its shape. This generalizes the result we
obtained earlier, where we derived the sum-of-squares error function for the specific model of
a Gaussian predictive distribution. We note that this derivation implicitly assumes knowledge
of the joint distribution p(x, t) and imposes no restrictions on the form of y(x). The function
Eq. 2.43 can therefore be interpreted as the best performing model that would be obtained, if
a very complex model is fitted to an infinitely large dataset.

If the dataset is limited, we will in general not obtain this perfect solution, which we show
by evaluating the expected sum-of-squared error for our estimated, potentially suboptimal,
model ŷ(x)

E[L] =

∫ ∫
[ŷ(x)− t]2 p(x, t) dx dt , (2.44)

and expanding the loss function using the optimal prediction y(x)

E[L] =

∫
(ŷ(x)− y(x))2 p(x) dx +

∫ ∫
(y(x)− t)2 p(x, y) dx dt . (2.45)

The first term on the right hand side characterizes the deviation of our estimate from the op-
timal solution, i.e. the conditional mean. The second term describes the intrinsic, irreducible
noise in the data that does not dependent on our estimate ŷ(x).

Obtaining near optimal regression functions in real world applications is primarily compli-
cated by the limited amount of data available to construct an estimate ŷ(x) for the function
y(x). As discussed in the last section, this leads to two forms of error that largely depend on
the complexity of the model. If we select a too simplistic model, we will not be able to fit
the complex underlying structure of the data. In contrast, if we select a too flexible model,
we will overfit the intrinsic noise in the data. These two forms of error can be disentangled
by taking a frequentist position and assuming that we fit a certain model to a large number
of datasets, each generated by the same underlying distribution. If we take the expectation
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value with respect to this ensemble of datasets D, we can decompose the total expected loss
as

expected loss = (bias)2 + variance + noise (2.46)

where (see Bishop, 2006)

(bias)2 =

∫
{ED [ŷ(x;D)]− y(x)}2 p(x) dx (2.47)

variance =

∫
ED
[
{ŷ(x,D)− ED [ŷ(x;D)]}2

]
p(x) dx (2.48)

noise =

∫ ∫
{y(x)− t}2 p(x, t) dx dt . (2.49)

The bias term (Eq. 2.47) quantifies how well our estimate on average coincides with the
conditional mean. This term is large, if we select a model that is not complex enough to
capture the underlying structure in the data and it is small, if we consider complex models.
The variance (Eq. 2.48) does not depend on the true function y(x) and quantifies how strongly
the fitted models vary between the generated datasets. This variance term is in general large,
if a too complex model is fitted to a relatively small dataset as shown in the lower left panel of
Fig. 2.4. If the variance contributes significantly to the total error, it is advisable to consider
less complex models that are more stable and thus have a smaller variance or, even better,
collect more data. The intrinsic noise (Eq. 2.49) does not depend on our estimate ŷ(x;D)
and represents the irreducible error in the data. We conclude, that in order to optimize
the complexity of the model, we have to trade-off the bias and variance terms that both
contribute to the expected sum of squared loss for regression. This can be achieved by varying
the complexity of the model and subsequently estimating the expected loss on unseen data
using the methods described in the following section.

2.4.2 Evaluating Machine Learning Models

The bias-variance tradeoff (Eq. 2.46) decomposes the error of a Machine Learning model into
three additive effects, i.e. the squared bias, the variance and the intrinsic error of the data. Es-
pecially the variance component makes the tuning and evaluation of Machine Learning models
challenging. Since the error functions described so far, always favour more complex models,
we have to perform training, evaluation and testing on three disjunct datasets. Otherwise we
will select a too complex model during tuning, or more importantly underestimate the error of
our model on unseen data. For instance consider fitting a highly complex model that simply
connects all datapoints. This model will perform perfectly on this particular dataset, but
very poorly on unseen data, drawn from the same parent distribution. We therefore split the
complete data randomly into three disjunctive parts, the training data, the validation data
and the test data. The model is trained on the training data, tuned on the validation data
and, after all these steps have been finished, applied to the test data, to evaluate the perfor-
mance of the model. We want to highlight, that it is very important to hold out and blind the
test data from all prior steps of data processing and model tuning. While there are no strict
rules which fraction of the data should reside in each of these catalogs, I suggest based on my
own experience that using a 50%/25%/25% split for the respective training/validation/test
samples yields good results.

If there is not enough data available to obtain model and performance estimates with
reasonable statistical accuracy, by simply splitting the available data, we can instead use the
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k-fold cross-validation technique (e.g. Bishop, 2006; Hastie et al., 2009; Witten et al., 2011).
The data is randomly split into k disjunctive parts. We train the model on k− 1 of them and
apply the trained model to the single remaining subset to obtain a performance estimate. We
then continue to hold out the next subsample and train the model on the remaining parts until
we have used each of the k subsamples once for testing purposes. The result of this algorithm
are then k performance estimates that allow us to obtain a mean performance as well as a
quantification of its statistical uncertainty, where a typical number of cross validation folds
is k = 10. We note that if we want to incorporate a model tuning step into this algorithm,
we can apply the k-fold cross validation technique during each training step on the respective
training data. This effectively nests two k-fold cross validation runs, where the outer one is
used to obtain k performance estimates of the model performance, and the inner ones are
applied to each of the respective training sets to select the best model. This ensures that the
outer test sets are never used during their respective training runs.

Besides estimating the performance of a Machine Learning algorithm on unseen data, we
would also like to obtain confidence intervals to report the error of our model. A popular
method to derive these confidence intervals is the bootstrap technique (Hastie et al., 2009).
From the training sample, we randomly select N elements with replacement, where N is
the sample size of the training set. This sampling process is then repeated until we reach a
large enough number of resampled datasets. We then fit our model function to each of these
datasets to generate a model ensemble. We can then apply the test sample to each model in
the ensemble to generate a variety of possible model predictions for each element in the test
set. The distribution of predictions generated by this ensemble of models then quantifies our
uncertainty about the true model. We want to highlight that these confidence intervals are
not estimates of the width of the predictive distribution, but of the accuracy of the model
itself. In the case of regression, where we parametrized the mean of a gaussian predictive
distribution as a flexible basis function model, these intervals would for example correspond
to our uncertainty w.r.t. the true conditional mean. We finally note, that the bootstrap
technique can also be used in the same manner as k-fold cross validation to estimate the
model performance on unseen data. Here the training set contains all objects that have been
selected during resampling and the test set consist of the disjunctive set of samples, that have
not been selected. In this way we ensure that training and test set don’t contain the same
objects, which is a vital requirement for accurate model validation as noted earlier.

The k-fold cross-validation and bootstrap techniques are inherently frequentistic. While
these methods are very powerful and almost always used in practise, we can gain further
insights into the problem of model selection by considering an elegant Bayesian framework
following Bishop (2006) in the next subsection.

2.4.3 Bayesian model comparison

In the previous sections, we always applied a single model to a dataset and derived a maximum
likelihood solution for its parameter vector. As discussed in § 2.1 a fully Bayesian treatment
would specify our confidence in the model via the prior and use the likelihood to derive the
full posterior distribution. In the context of multiple modelsMi that are applied to the same
dataset D, we can calculate the posterior as (see Bishop, 2006)

p(Mi|D) ∝ p(Mi)p(D|Mi) . (2.50)
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Here p(Mi) is the prior model probability and p(D|Mi) is the model evidence that quantifies
how well the data supports this particular model. If we have no prior preference for a certain
model, i.e. p(Mi) is uniform, we should select the model, that maximizes p(D|Mi). Denoting
the parameters of the respective modelMi as wi, we can marginalize over the set of parameters
as (see Bishop, 2006)

p(D|Mi) =

∫
p(D|w,Mi) p(w|Mi) dw . (2.51)

This integral can be approximated analytically, under a couple of simplifying assumptions. We
assume that the posterior distribution p(Mi|D) is sharply peaked around the optimal weight
vector wopt and has a width of ∆wposterior and further, that the prior for each parameter
has the form p(w|Mi) = 1/∆wprior. For an M parameter model we can then obtain an
approximation for the logarithm of the model evidence as (see Bishop, 2006)

log p(D|Mi) ≈ log p(D|wopt) +M log

(
∆wposterior

∆wprior

)
, (2.52)

where we note that the ratio log
(
∆wposterior

/
∆wprior

)
is negative as ∆wposterior < ∆wprior.

To develop intuition about Eq. 2.52, consider a scenario where we fit a very complex model
to a low number of data samples. In this case, the width of the prior would be large in
comparison to the width of the posterior, as the model would be very tightly fit to the data.
The likelihood term p(D|wopt) would then be penalized by this ratio proportional to the
number of parameters M in the model. In contrast a too simplistic model would be penalized
less strongly by the second term, but would also produce a worse fit, which decreases the first
term. Thus Eq. 2.52 reflects our basic scientific intuition, that a good model should not only
fit the data well, but also minimize the number of free parameters.

2.5 Decision trees and the Random Forest

Machine Learning algorithms based on decision trees are one of the most important techniques
used in Data Mining up to date (Wu et al., 2007)8. The simple idea behind these architectures
is to separate the input space of the training set in such a way, that each cell contains objects
of the same class or with similar target values. The tree based architecture then allows
the algorithm to efficiently find the cell that corresponds to a new object. The training set
objects that reside in the selected cell then constitute a reference sample of similar objects,
from which we can derive a prediction. Despite their simplicity, tree based Machine Learning
architectures often provide very accurate predictions; and visualizations of the tree structure
can be an invaluable information for domain experts.

In the following discussion we will first describe the general workings of the decision tree
algorithm and then move to their specific application to regression and classification. We
denote the input space of our training set as xT and the target variables as tT . The goal of
the decision tree is then to partition the input space of the training set xT such, that the

8Even though other architectures like Deep Convolutional Neural Networks (see e.g. Schmidhuber, 2014)
became more relevant in applications like image (e.g. Cun et al., 1990; Gu et al., 2015; Rawat & Wang, 2017) or
speech recognition (Hinton et al., 2012), the Random Forest can still be regarded as one of the most influential
Machine Learning algorithms, especially if input variables can be designed based on human intuition.
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elements in each partition have similar target values, where classification and regression use
different ‘measures of similarity’ as explained shortly.

The tree is grown recursively on the training data in the following manner:

1. start by considering the whole input space xT which represents the root node of the tree

2. perform an exhaustive search for the split in the variable i at position j that makes the
elements in the two resulting partitions most similar, as quantified by the minimum of
the ‘split selection function’ SSF(i, j)

min
ij

(SSF(i, j)) (2.53)

If the globally best split is identified, we branch the input space into the respective
regions, which then constitute the new child nodes of the tree.

3. Step (2) is recursively performed, until a stopping criterion is reached. In our context
the tree building process is stopped, if the leaf nodes contain a minimum number of
elements.

If we want to predict the target value for a new element, we can query it down the tree to
its corresponding leaf node, which will then contain similar training set elements. Using their
known target values, we can then estimate the target value for the new element.

2.5.1 Regression

In the regression setting, the splits are selected based on the sum of squared error function
defined in Eq. 2.32. More concretely we consider a split on the ith variable at position j, that
branches the tree into a left and a right leaf node. The region that corresponds to one of these
leaf nodes l is then referred to as Rl,ij, where l ∈ {left, right}. We then calculate the sum of
squared error (e.g. Hastie et al., 2009) for the training set samples that reside in region Rl,ij

as
SSE(Rl,ij) =

∑
xT
n∈Rl,ij

(
tn − E[t]Rl,ij

)2 (2.54)

where

E[t]Rl,ij
=

 1

NRl,ij

∑
xT
n∈Rl,ij

tn

 . (2.55)

Here NRl,ij
denotes the number of training set elements in region Rl,ij.

After evaluating Eq. 2.54 for the left (l = left) and the right (l = right) leaf nodes,
corresponding to a split in the ith variable at the position j, we assess the split selection
function SSF(i, j) as

SSF(i, j) = SSE(Rleft,ij) + SSE(Rright,ij) . (2.56)

The tree constructed in such a manner can then be used to make predictions for new elements
that are queried down the tree. Denoting the region into which the new element with input
value x is placed as R(x), we obtain the final prediction as

y(x) =
1

NR(x)

∑
xT
n∈R(x)

tn , (2.57)

where the sum goes over all NR(x) training set elements in the region R(x).
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2.5.2 Classification

In the context of classification, the general structure of the algorithm remains the same, but
the split selection, as well as the prediction function are different.

In §2.3 we introduced the cross-entropy loss function for binary classification (Eq. 2.37),
which we will use to select the input parameter splits for a decision tree in the classification
context. The split selection function SSF(i, j) evaluated for a split at the ith feature at position
j reads then

SSF(i, j) = CE(Rleft,ij) + CE(Rright,ij) . (2.58)

We define the fraction of elements pRl,ij
(k) within a certain region Rl,ij that are member of

class k as
pRl,ij

(k) =
1

NRl,ij

∑
xT
n∈Rl,ij

δtn=k , (2.59)

where NRl,ij
denotes the number of training samples in region Rl,ij and δti=k is the Kronecker

delta function, that is 1 for all samples of class k and 0 otherwise. We can then define the
cross entropy (e.g. Hastie et al., 2009) by summing over all K classes as

CERl,ij
= −

K∑
k=1

pRl,ij
(k) log

{
pRl,ij

(k)
}
, (2.60)

which is just the generalization of Eq. 2.37 to multiple classes.
If a new sample with input feature x is queried down the tree, we predict the majority

class of all training samples that reside in the respective region Rl,ij as

y(x) = majority
k

{txT
i ∈R(x) for i = 1, . . . , NR(x)} , (2.61)

where NR(x) denotes the number of training samples in region R(x).

2.5.3 The Random Forest

While the decision tree is a powerful tool to generate predictions in regression and classifi-
cation, it is typically quite sensitive to the noise in the training set (see e.g. Hastie et al.,
2009, Sec. 15.2, page 588). This means that small fluctuations can lead to very different, and
potentially suboptimal, split selections, whose effect can propagate down into the subsequent
nodes. As a result, decision trees tend to have a high variance. The Random Forest is an
attempt to stabilize the decision tree by bootstrap aggregation. In this method we generate
a set of bootstrap realizations of the training set and grow a separate tree on each individual
dataset in the ensemble. The prediction for a new instance is then the average (regression) or
majority vote (classification) of the tree predictions in the ensemble. The averaging process
reduces the variance of the individual trees in the ensemble prediction. Optionally we can
randomly select a subset of features to be considered before each split selection, which can
further improve the performance of the Random Forest method.

In summary the procedure then reads

1. generate b bootstrap realizations of the training data

2. grow a tree on each bootstrap realization of the training data as follows
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(a) Randomly select p input variables from the full set of input variables

(b) Select the best attribute/split combination from these p input variables

(c) Perform the selected split and recursively continue to grow the tree while iterating
all prior steps (a) - (c)

3. After all trees in the ensemble have been grown, return the ensemble.

The Random Forest is a powerful, practical Machine Learning algorithm, that provides
highly accurate predictions and requires, based on my own experience, a very small amount
of tuning compared with other contemporary techniques like e.g. Neural Networks (see e.g.
Bishop, 1995; Haykin, 2009) or Support Vector Machines (see e.g. Hearst et al., 1998; Bishop,
2006).

2.6 Sources of error in Machine Learning

The previous section gave a brief introduction into the basic concepts of Machine Learning
and presented the Random Forest algorithm, a state-of-the art practical Machine Learning
method. Besides the aforementioned sources of error, i.e. bias and variance, the accuracy of a
Machine Learning system also strongly depends on the quality of the training set. Specifically
we require, that the training set is a good representation of the test data. The following
discussion therefore considers scenarios, where differences between the training and test data
can lead to biases in the final prediction.

2.6.1 Sample Selection Bias

The training data used in a Machine Learning algorithm is representative by construction, if it
was drawn from the same parent distribution as the test data. In many practical applications
however, this cannot be guaranteed and we have to consider several effects, that can bias the
training data.

Training samples with input variables xT and target values tT can be biased either in terms
of the marginal distribution p(xT ) or in terms of their conditional distribution p(tT |xT ). The
former simply means that some areas of the full test set attribute space are not well populated
by training samples. Biases in the distribution of target values are more subtle and appear e.g.
if the target values and the input variables have been obtained from inconsistent data sources.
The source that provides the target values might use unknown selection criteria, or can be
subject to systematic biases, that cannot be reproduced in the test set. As a result, some
target values might be incorrect or systematically missing, where we give an example of this
below. In the following discussion we will refer to biases in the input variables as ‘covariate
shifts’ and biases in the target direction as ‘target shifts’.

We illustrate the effect of these types of sample selection biases in Fig. 2.5, where a dataset
(x, t) is generated using an exponential function with additive Gaussian noise

t = exp (x) + ε . (2.62)

Here ε is a zero mean random variable with σε = 20 and we generate 4 separate datasets,
three training sets and one test set. The test set is obtained by drawing 2000 values x from
a uniform distribution U(0, 5) between 0 and 5. We then obtain an unbiased training set and



2.6. SOURCES OF ERROR IN MACHINE LEARNING 57

Figure 2.5: Illustration of several sources of sample selection bias. The grey points illustrate
the test data, that was generated by adding zero mean Gaussian noise with σ = 20 to an
exponential function evaluated on uniformly distributed points. The black line shows the
linear regression model obtained using an unbiased training set with N = 2000 data points.
The red and blue lines show the corresponding result obtained using a training set with a
target shift or covariate shift as explained in the text.

two training sets that are subject to a covariate shift and a target shift respectively. We then
fit a linear regression function to each of these training sets. The training set that is subject
to a covariate shift is generated by reducing the number of samples for x > 2.5 to 10% of its
original size. As can be seen by comparing the black and the blue curves, the covariate shift
focusses the regression curve on the flat part of the exponential function. As a result, the blue
curve performs very poorly for x > 2.5, where the exponential function steeply rises.

The effect of a target shift is illustrated by the red line in Fig. 2.5, where we systematically
bias the mean of the target noise by δε = −8, which biases the function to lower t values.
It is notable, that the target shift cannot be detected based on the distribution of x, which
is the same as for the unbiased data. In contrast, covariate shifts can be detected relatively
easily and corrected either by a weighting scheme or using a culling method9. We will provide
a more detailed discussion of sample selection biases and the methods that can be used to
correct them in §5.4.

9Culling methods are Machine Learning methods that detect outliers in a dataset. A simple culling method
could be obtained by fitting a multidimensional normal distribution to a dataset, flagging all datapoints that
lie in its tails.
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2.6.2 Input noise

Another common source of error in the practical application of Machine Learning algorithms
arises, if the noise properties of the input variables in the training data are not representative
of those in the test set. For example, in many astrophysical applications a Machine Learn-
ing architecture is trained on simulations or high quality data, and subsequently applied to
data that is subject to larger measurement errors. If this measurement error is not properly
incorporated into either the training set or the model, the derived predictions will be biased.
I follow Pischke (2007) in this subsection.

While the effect of measurement errors can become very complex depending on the Machine
Learning model, the problem domain and the noise model, we can gain a basic understanding
by considering the simple linear regression setting

t = ax+ ε (2.63)

where t is the response variable and x is the attribute. Here we assume that the target noise
ε is a zero mean random variable with standard deviation σε. The optimal solution for a in
this simple regression setting is given as

aopt =
Cov [x, t]

Var [x]
. (2.64)

We now assume that the attribute x is subject to a zero mean error u with standard deviation
σu, where u is uncorrelated with x, t and ε. Under the new attribute error we do not measure
the true attribute x but instead the noisy version (see Pischke, 2007)

w = x+ u , (2.65)

and the estimate for the model parameter ã that is subject to the covariate noise σu can then
be obtained as (see Pischke, 2007)

ãopt =
Cov [x+ u, t]

Var [x+ u]
=

Cov [x, t]

Var [x] + Var [u]
=

(
σ2
x

σ2
x + σ2

u

)
aopt = λaopt , (2.66)

where we used that u is uncorrelated with t and substituted Eq. 2.64. The slope of the
regression curve is therefore tilted and the corresponding target error (see Pischke, 2007)

ε̃ = t− ãoptw = ε− (t− aoptx) + t− ãoptw = ε+ (aopt − ãopt)x− ãoptu , (2.67)

will also increase as a result of the measurement error as (see Pischke, 2007)

σ̃ε
2 = σ2

ε + (1− λ)2a2
optσ

2
x + λ2a2

optσ
2
u . (2.68)

We conclude, that the measurement error not only biases the parameters in the regression
function, but also leads to a significantly larger residual error. As the shape of the nonlinear
regression function can change in a complex manner, as a result of additional covariate noise,
we cannot directly generalize these simple considerations. However we will demonstrate in §5
that similar errors arise in the context of photometric redshift validation. A general method
to alleviate these errors is to match the attribute noise in the training set and the test set by
artificially degrading the one that has the lower noise level.
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2.7 Density Estimation

In the previous sections we have always assumed, that the predictive distribution is a Gaussian,
where its mean is given by the regression function and the standard deviation is assumed to be
a constant. In practical applications, this assumption will not always hold, and it is desirable
to introduce techniques that estimate densities in a model independent way.

Figure 2.6: The effect of selecting a too large bandwidth h on the accuracy of the recovered
distribution. We show the recovered distribution using kernel density estimates Eq. 2.75 with
a Gaussian kernel and a bandwith of h = 0.1 (red) and h = 0.01 (blue) respectively. The
density estimates are applied to a sample of size N = 1000. The black line shows the original,
true distribution.

Following Bishop (2006) we start by considering the probability PR to find a sample within
a region R of the feature space x. Assuming that we knew the true pdf of the underlying
distribution that generated the sample, we can write

PR =

∫
R
p(x)dx . (2.69)

Provided a sufficiently large sample of size N , the number of objects k that fall into region R
are then distributed according to a binomial distribution10, and we can estimate k as

k = NPR . (2.70)
10The Binomial distribution quantifies how likely it is, to find a certain number of successes in a coin toss,

or Bernoulli experiment. We refer to the statistics literature (see also Bishop, 2006) for a further introduction.
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Figure 2.7: The effect of selecting a too small bandwidth h on the accuracy of the recovered
distribution. We show the recovered distribution using a kernel density estimate Eq. 2.75
with a Gaussian kernel and a bandwith of h = 0.001 (red). The density estimate is applied to
a sample of size N = 1000. The black line shows the original, true distribution.

If R is small enough, such that the density p(x) doesn’t change much across this region with
volume V , we can write

p(x) =
PR
V

. (2.71)

If we combine Eq. 2.70 and Eq. 2.71 the density p(x) is given as

p(x) =
k

NV
. (2.72)

We see that Eq. 2.72 is determined by two free parameters, the number of objects k within
the region and its volume V . To estimate the density p(x) we therefore either fix the number
of points k and constrain V from the data, or we fix the volume V and count the number of
objects k within it. Fixing k leads to the k-nearest neighbor estimate that will be considered
in §5, the latter option motivates the kernel density estimate introduced in the following.

We consider a hypercube in input space of side length h. The total number of objects k
that fall into this box centered at the point x is

k =

N∑
i=1

K
(

x− xi
h

)
. (2.73)
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In the following we will refer to K(a) as the kernel function, where our kernel is given by a d
dimensional hypercube

K (a) =

{
1, |ai| ≤ 1/2, for i = 1, . . . , d

0, otherwise
. (2.74)

Filling the volume of the input space x with hypercubes leads to an estimate for the density
as (see Bishop, 2006)

p̂(x) =
1

Nhd

N∑
i=1

K
(

x− xi
h

)
. (2.75)

Instead of using hypercubes, which have discontinuous boundaries, we can instead use smooth
functions like normal distributions as kernel functions. In the multidimensional case the
gaussian kernel density estimate reads (see Scott & Sain, 2005)

p̂(x) =
1

N

N∑
i=1

1

(2πh2)d/2
exp

(
−||x− xn||2

2h2

)
, (2.76)

where the standard deviation of the gaussian σ is associated with the ‘bandwidth’ h of the
kernel function.

We note that we can in principle use any kernel function that is positive for all inputs
K(a) ≥ 0 and that integrates to unity (see Bishop, 2006).

One of the main challenges in the application of kernel density estimates is the selection of
a suitable bandwidth h as illustrated in Fig. 2.6 and Fig. 2.7. Selecting a too large bandwidth
h leads to a density estimate that can oversmooth a distribution as shown in Fig. 2.6. This
is especially problematic for peaked or multimodal distributions as illustrated here for the
case of a student-t distribution11 with r = 1 degrees of freedom. In contrast, selecting a too
small bandwidth will correctly capture the peak, but will also produce a very noisy estimate
as shown in Fig. 2.7. This again is an example of the trade-off between bias and variance
that we considered previously in the context of regression. Applied to the problem of density
estimation, an estimate with a large bias would have a too large bandwidth. Similarly a high
variance estimate would be constructed on a too small bandwidth. The trade-off between bias
and variance in density estimation will be discussed in more detail in §4.

Up until now we have reviewed how a kernel density estimate can be applied to estimate
unconditional distributions. In the next section we extend this method to conditional distri-
butions, generalizing the previous discussion on regression, that was restricted to Gaussian
predictive distributions.

2.7.1 Conditional Density estimation

In order to estimate the conditional density of the target variable t given the input variables
x, we can use the density ratio estimate

p̂(t|x) =
p̂(t,x)

p̂(x)
, (2.77)

11We refer to the statistics literature (e.g. Bulmer, 1967) for a detailed description of the student-t distri-
bution.
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between the joint distribution of the target-attribute space p̂(t,x) and the marginal distribu-
tion x.

The joint density p̂(t,x) can be estimated by the product kernel (see Scott, 1992)

p̂(t,x) =
1

N ht hdx

N∑
i=1

K
(

x− xi
hx

)
K
(
t− ti
ht

)
(2.78)

where N is the sample size, d is the dimension of x, and the parameters hx, ht are the
bandwidths for the attribute and target dimensions. Estimating the function p̂(x) using
Eq. 2.75, we can write the conditional density estimate of the predictive distribution as (see
Rosenblatt, 1969; De Gooijer & Zerom, 2003; Holmes et al., 2012)

p(t|x) =

N∑
i=1

wi(x)K
(
t− ti
ht

)
, (2.79)

where we define the weights as (see De Gooijer & Zerom, 2003)

wi(x) =
1

N ht

K
(
(x− xi)

/
hx
)∑N

i=1K
(
(x− xi)

/
hx
) . (2.80)

While Eq. 2.79 provides a simple way to estimate conditional densities, its performance will
in general strongly depend on the selection of suitable bandwidth values.

The concepts introduced in this chapter are the basis for the techniques that will be
discussed in the rest of this thesis. In the next chapter, we will discuss a method for conditional
density estimation, that is based on the highly accurate Random Forest algorithm. In §4 we
will use the bootstrap method to quantify the accuracy of density estimates, and §5 will discuss
the effect of sample selection biases and field-to-field variations in photometric noise on the
accuracy of photometric redshift distributions. We will also use a nearest neighbor density
estimate to investigate which regions of the photometric input space are sufficiently populated
by spectra.



Chapter 3
Accurate photometric redshift PDF
estimation

In the following I attach the preprint version of my paper ‘Accurate photometric redshift prob-
ability density estimation - method comparison and application’, published in the ‘Monthly
Notices of the Royal Astronomical Society, Volume 452, Issue 4, p.3710-3725’. The authors
of this paper are: Markus Michael Rau, Stella Seitz, Fabrice Brimioulle, Eibe Frank, Oliver
Friedrich, Daniel Gruen, Ben Hoyle. This preprint version was updated to match the published
version.

Scientific Context Accurate photometric redshift estimation is a vital requirement in or-
der to fully exploit large area photometric surveys like CFHTLenS (see §8.1) or DES (see
§8.2). In this paper we present a variety of novel approaches to estimate photometric redshift
distributions of individual galaxies and samples of galaxies and demonstrate the effectiveness
of these methods in a variety of applications, that are relevant for cosmology, like the model-
ing of angular correlation power spectra, cosmic shear correlation functions and cluster mass
estimates.

As mentioned in §1.4.2 there exist a large variety of different photometric redshift codes
to estimate photometric redshift distributions. Most notably, the methods proposed by Bon-
nett (2015) and Carrasco Kind & Brunner (2013) use a classification based approach, that is
structurally similar to the method used in my paper to reconstruct the photometric redshift
distribution. In contrast to their work, our approach additionally incorporates the ordering
in consecutive redshift bins into the prediction process, which improves the accuracy of the
photometric redshift distributions, as will be demonstrated in §5.1 of the paper. This ordinal
classification approach was previously proposed in Frank & Hall (2001), however we com-
plement this method with efficient bandwidth selection schemes for Kernel density estimates
and a Gaussian mixture model estimator. The former technique singificantly improves the
accuracy of the reconstructed photometric redshift distributions, while the latter enable the
efficient parametrization of photometric redshift distributions as mixtures of Gaussians. For
many applications in cosmology, estimates of the photometric redshift distribution of an indi-
vidual galaxy is not required, and we are instead mainly interested in the photometric redshift
distribution of samples of galaxies. For these specific applications we propose a method that
allows the estimation of photometric redshift distributions of samples of galaxies, using only
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a single floating point number per galaxy. In contrast to other approaches that draw a single
redshift value from the photometric redshift distribution of an individual galaxy (Carrasco
Kind & Brunner, 2014b), the ‘Highest Weight Element’ estimator proposed in this work does
not require this sampling step and is therefore structurally more efficient.

We apply these methods to data from the CFHTLenS survey and demonstrate that our
methods are able to significantly reduce photometric redshift induced biases in cluster mass
estimates, the modelling of angular correlation power spectra and the modelling of cosmic
shear correlation functions.

Challenges During the course of this project it became apparent, that the accuracy of indi-
vidual galaxy redshift distributions is more sensitive to the selection of an accurate bandwidth
for the kernel density estimate, than to the hyperparameters of the Random Forest algorithm.
The photometric redshift distribution of an individual galaxy is typically estimated using a
small number of galaxies, that are strongly upweighted. This then leads to a very unstable
estimate that will have a high error. This was the ultimate motivation to investigate methods
to derive accurate error intervals on these density estimates, leading to the paper discussed
in the next section. During my work to investigate efficient bandwidth selection techniques,
I compared a variety of bandwidth selection techniques (see Jones et al. 1996 for a review),
e.g. cross validation bandwidth selection methods or plug-in methods. While these more
advanced techniques seemed to perform better with respect to the negative log-likelihood loss
(MNLP) defined in Eq. 15 of the paper, they are computationally expensive, especially if they
are applied to a large number, e.g. 100M, galaxies. After visual inspection of the individual
density estimates I had the impression, that kernel density estimates selected by the MNLP
loss tend to be undersmoothed, which agrees with the statistics literature (see Zambom &
Dias, 2013). Since elaborated bandwidth selection schemes didn’t seem practical, I decided to
choose a starting bandwidth based on the Scott’s rule (see Scott, 1992) and choose a global
prefactor based on the MNLL criterion to adapt the smoothing based on the ‘average’ shape
of the redshift distributions in the sample. This method produced good results, while still
remaining computationally tractable. A possible alternative is the usage of Gaussian mixture
models, which are analytical functions and therefore potentially a more appropriate choice, if
a photometric redshift distribution has to be fitted on a small number of samples. However
even with Gaussian mixture models one needs to select the number of components in the
model. We tested resampling/cross validation methods like the bootstrap (Eibe Frank per-
sonal communication). However again I found these methods computationally too expensive
to be applicable to large galaxy samples. I therefore decided to select the number of Gaussian
components based on the negative entropy criterion, which I found to be much faster com-
pared with the usage of contemporary cross validation techniques, while still providing highly
accurate estimates of the individual galaxy photometric redshift distribution.

We note that these issues are not unique to Machine Learning based photometric redshift
estimation, but are also problematic in the more general context of photometric redshift
validation, if the sample sizes are small as discussed in §4.

We also found, that the accuracy of photometric redshift distributions of samples of galax-
ies does not always translate into a lower bias in terms of the cosmic shear correlation function,
as discussed in the Appendix of the paper. This was not the case for the angular correlation
power spectrum, where improvements in the overall shape of the photometric redshift dis-
tribution also led to a reduction in the angular correlation function modeling bias. This
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strongly suggests, that the angular correlation power spectrum and the cosmic shear correla-
tion function have a different sensitivity to the moments of the estimated photometric redshift
distribution, where we refer to §5 for a further discussion.

Contributions and Acknowledgements I performed the majority of the analyses, matched
the datasets, performed the reweighting of the catalog, wrote the text and prepared the figures.
Furthermore I implemented all Machine Learning algorithms, except the ANNz code that was
used from Collister & Lahav (2004). My Quantile Regression Forest (QRF) implementation is
based on the original package by Nicolai Meinshausen1 (Meinshausen, 2006), that I modified
to return a weighted training set instead of the conditional quantiles. My implementation of
the Ordinal Class PDF (OCP) method uses some advanced statistics functionality from the R
language (R Core Team, 2015) like the preimplemented ‘isoreg’ function for isotonic regression,
and the R implementation of the RandomForest method (Liaw & Wiener, 2002). Further-
more, my implementation of the OCP method was adapted and added to the UBL package
by Paula Branco2 (Branco et al., 2016). I used the Rmixmod package (Biernacki et al., 1999;
Auder et al., 2014) and preimplemented statistics functions in R to implement the Gaussian
mixture model and the cross-validation bandwidth selection extensions to the OCP method.
I also implemented the HWE method based on the QRF package (Meinshausen, 2006) that I
modified, and performed the analyses in §5.1 and §5.2. I also prepared the distributions and
performed all tasks of data processing, including the re-weighting of the spectrophotometric
data to the shape catalog, for the analyses in §5.3.

FB provided the catalogs used in this work and wrote the dataset description (§4). EF
contributed useful discussions and helped in the verification of the algorithms via code com-
parisons. OF provided the modelling of the shear correlations functions, the critical surface
mass density estimates, provided the results that I plotted in Fig. 19 and helped in the analysis
presented in the appendix. BH contributed the modelling of the angular correlation functions.
All authors contributed useful discussions and helped in the writing of the text.

1https://cran.r-project.org/web/packages/quantregForest/quantregForest.pdf
2https://cran.r-project.org/web/packages/UBL/UBL.pdf
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ABSTRACT
We introduce an ordinal classification algorithm for photometric redshift estimation,
which significantly improves the reconstruction of photometric redshift probability
density functions (PDFs) for individual galaxies and galaxy samples. As a use case
we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats
distinct redshift bins as ordered values, which improves the quality of photometric
redshift PDFs, compared with non-ordinal classification architectures. We also propose
a new single value point estimate of the galaxy redshift, that can be used to estimate
the full redshift PDF of a galaxy sample. This method is competitive in terms of
accuracy with contemporary algorithms, which stack the full redshift PDFs of all
galaxies in the sample, but requires orders of magnitudes less storage space.

The methods described in this paper greatly improve the log-likelihood of indi-
vidual object redshift PDFs, when compared with a popular Neural Network code
(ANNz). In our use case, this improvement reaches 50% for high redshift objects
(z > 0.75).

We show that using these more accurate photometric redshift PDFs will lead to a
reduction in the systematic biases by up to a factor of four, when compared with less
accurate PDFs obtained from commonly used methods. The cosmological analyses we
examine and find improvement upon are the following: gravitational lensing cluster
mass estimates, modelling of angular correlation functions, and modelling of cosmic
shear correlation functions.

Key words: galaxies: distances and redshifts, catalogues, surveys.

1 INTRODUCTION

The determination of distance, or redshift, estimates to
galaxies is a vital requirement before using large scale pho-
tometric galaxy surveys for many cosmological analyses.
Large scale surveys, such as the SDSS (York et al. 2000a),
PanSTARRS (Tonry et al. 2012), DES (Flaugher 2005) and
LSST (Tyson et al. 2003) rely on a combination of photomet-
ric and more accurate spectroscopic redshifts when provid-
ing distance estimates to photometrically identified galaxies.

Photometric redshifts are used throughout astrophysics
and cosmology, for example in large scale structure analyses
(Staniszewski et al. 2009; de Simoni et al. 2013), in galaxy

cluster weak lensing analyses (Gruen et al. 2013), and in
galaxy-galaxy lensing analyses (Brimioulle et al. 2013). Pho-
tometric redshifts are obtained using either machine learn-
ing methods or template fitting techniques (see e.g., Beńıtez
2000; Csabai et al. 2000; Bender et al. 2001; Ilbert et al.
2006; Feldmann et al. 2006; Greisel et al. 2013). Machine
learning techniques range from early works employing ar-
tificial Neural Networks (Firth, Lahav & Somerville 2003;
Collister & Lahav 2004) as photometric point predictors,
to recent developments that estimate the full photometric
redshift PDF of the galaxy (Lima et al. 2008; Cunha et al.
2009; Carrasco Kind & Brunner 2013; Bonnett 2015). For
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2 Rau et al.

detailed reviews and comparisons of different photometric
redshift techniques we refer the reader to Sánchez et al.
(2014); Hildebrandt et al. (2010); Dahlen et al. (2013). This
work focuses on machine learning methods for photometric
redshift PDF estimation for samples of galaxies (hereafter
sample PDF) as well as individual galaxies (hereafter indi-
vidual PDFs). We apply the results to a range of analyses
in weak gravitational lensing, cosmic shear and large scale
structure.

In general, machine learning algorithms learn a map-
ping between the photometry of an object and the spec-
troscopic redshift. To train the machine learning models to
learn this mapping, one typically identifies spectrophotomet-
ric data that overlaps with the photometric feature space of
the final data sample for which one would like to estimate
redshifts. However, recent work shows that machine learning
can also be performed with spectroscopic reference data that
is brighter than the photometric sample (Hoyle et al. 2015a).
Many photometric surveys include a dedicated spectroscopic
follow up program, which allows such a machine learning
system to be built, e.g., SDSS-I/II (York et al. 2000b), 2dF
(Colless et al. 2001), VVDS (Le Fèvre et al. 2005), WiggleZ
(Drinkwater et al. 2010).

The mapping obtained with machine learning is only
approximate: the redshift of an object cannot be exactly de-
termined by its corresponding photometry. Moreover, most
machine learning methods produce a point estimate, which
reduces the individual PDF to one number. The point es-
timate only predicts the most likely value of the redshift,
irrespective of the quality of the photometry, and the shape
of the distribution. In order to enter the era of precision
cosmology, one must be able to incorporate the uncertainty
in the redshift estimate into the cosmological analysis. This
means that the use of single point redshift predictions is no
longer sufficient. To achieve precision cosmology, we are re-
quired to incorporate the full redshift uncertainty using the
individual PDFs.

We can obtain a sample PDF by stacking the individual
PDFs. This distribution describes the probability that a ran-
domly sampled galaxy has a certain redshift. The accurate
estimation of the redshift distribution of the full sample is
important for many cosmological analyses, e.g, in large scale
structure, weak gravitational lensing, and cosmic shear.

However, effectively estimating and storing the photo-
metric redshift PDF instead of the point estimate, for each
object in a large astronomical dataset, is a challenging task.
This process requires efficient and accurate photometric es-
timation algorithms, and scalable data storage solutions.
These algorithms must be benchmarked using carefully con-
structed performance metrics to be useful for the next gen-
eration large scale structure photometric surveys (e.g., Lau-
reijs et al. 2011).

We discuss such metrics to quantify performance of pho-
tometric redshift PDF estimation in §2. We describe the Or-
dinal Class PDF (OCP) algorithm in §3.2, which improves
the estimation accuracy over commonly used non-ordinal
classification architectures. We continue in §3.4 by showing
how the OCP method can become more storage efficient, by
combining it with the Gaussian mixture model. This enables
the storage of the PDFs of individual galaxies even within
massive datasets without significant demands on disc space.

Many applications in cosmology require an estimation

of the sample PDF. We propose a single point estimator for
this quantity in §3.5, and show how this single floating point
number can be computed very efficiently, and achieves good
performance when compared with algorithms that stack in-
dividual PDFs. The performance of the proposed techniques
is demonstrated and analysed in a method comparison in
§5.1 and §5.2 using a spectrophotometric dataset (§4) ob-
tained from the public CFHTLS WIDE survey.

Finally, we demonstrate in §5.3 that the methods in-
troduced in this work improve the precision of gravitational
lensing cluster mass estimates, measurements of angular cor-
relation functions, and analyses of cosmic shear correlation
functions, when compared with results obtained using a
common Neural Network code. We conclude and summa-
rize in §6.

2 FUNDAMENTAL CONCEPTS

The following section gives a brief review of important statis-
tical concepts needed in this work. We start with a short in-
troduction to density estimation, introduce metrics to quan-
tify the performance of density estimators and finally de-
scribe a scheme to assess the performance of a machine
learning model.

2.1 Kernel Density Estimation

The goal of kernel density estimation is to find a good es-
timator1 p̂(x) for the probability density function p(x) of
a random variable X using N samples xi. Consider a small
region R centred on a point x. We can then assume that
p(x) is approximately constant across R. Based on this as-
sumption we can estimate the density at point x as

p̂(x) =
k

NVR
. (1)

The number of objects2 k in Eq. 1 can be estimated by
considering a D dimensional hyper cube with volume

VR = hD (2)

centred on the point x with side length h. Using Eq. 1, we
obtain k as

k =
N∑

i=1

K
(x− xi

h

)
, (3)

where

K(d) =

{
1, |di| 6 1/2, 1 6 i 6 D

0, otherwise
(4)

is an example of a kernel function. Note that this kernel
has discontinuities at the boundaries. The bandwidth h de-
termines how much the kernel density estimate interpolates
(or smoothes) between the given data points. A bandwidth
that is too large oversmooths important structures in the

1 In the following we will mark the estimator for a quantity with

a hat.
2 Fixing the number of points k that fall into R and estimating

the volume VR leads to the k nearest neighbour density estima-

tion technique (see e.g. Scott 1992).
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density whereas one that it too small leads to a noisy den-
sity estimate. The density estimate p̂(x) can then be written
as

p̂(x) =
1

N

N∑

i=1

1

hD
K
(x− xi

h

)
=:

1

N

N∑

i=1

K̃ (x,xi, h) . (5)

Instead of using Eq. 4, which has discontinuities at the
boundaries, we can alternatively use smooth and symmetric
functions, for example, a Gaussian.

The estimation of photometric redshift PDFs for indi-
vidual objects (individual PDFs) is an application of con-
ditional probability density function estimation, since the
individual PDF p(z|f) is conditional on the objects pho-
tometry f . The estimation of conditional probability density
functions can be formulated in close analogy to Eq. 5. We
can estimate the individual PDF p(z|f) as a weighted kernel
density estimate in redshift space of the form

p̂(z|f) =

Ntr∑

i=1

wi(f)K(z, zspec
i , h) , (6)

using a dataset, the so called training set, containing Ntr

objects. K(z, zspec
i , h) denotes a kernel function with band-

width h centred on the spectroscopic redshift values zspec
i .

The weights wi(f) sum to unity and depend on the photom-
etry f of the object.

The conditional cumulative distribution function F (z|f)
defined as

F (z|f) =

∫ z

−∞
p(z′|f)dz′ (7)

can be estimated (Meinshausen 2006) as

F̂ (z|f) =

Ntr∑

i=1

wi(f)I(zspec
i 6 z) . (8)

I(zspec
i 6 z) equates to unity if zspec

i 6 z and to zero other-
wise.

The redshift distribution p̂(z) of a sample (sample PDF)
containing N objects can be estimated by stacking the indi-
vidual PDFs

p̂(z) =
N∑

i=1

wstack,i p̂(z|fi) . (9)

The normed weights wstack,i can be set to 1/N or chosen
to give more weight to certain sub populations. For example,
we can favour certain redshift intervals z ∈ [a, b] by defining
weights as

wstack =

∫ b

a

p(z|f)dz = F̂ (b|f)− F̂ (a|f) , (10)

and we show an example of such a weighting in §5.2. The
above weights are normalized afterwards to sum to unity.

2.2 The Gaussian Mixture Model

In this paper, we consider kernel density estimators and
Gaussian mixture models for density estimation. A Gaus-
sian mixture model (see, for example, Bishop 2006) for the
probability density function p(x) of a random variable X is
a linear combination of K normal densities defined as

p(x) =
K∑

i=1

αiN (x, µi, σi) (11)

where αi is the amplitude, µi is the mean, and σi is the
standard deviation of the mixture component i.

We define the weight proportion γk(x) of component k
as

γk(x) =
αkN (x, µk, σk)∑K
j=1 αjN (x, µj , σj)

, (12)

where γk(x) determines how much a certain component of
the Gaussian mixture model contributes to the total density
at point x.

2.3 Evaluation Metrics

Consider an estimate p̂(x) of the true probability density
function p(x) describing the distribution of the random vari-
able X. We can measure the quality of the estimate p̂(x)
by its distance D(p̂(x)||p(x)) to the true distribution p(x),
which is generally unknown. The Kullback-Leibler diver-
gence between the true density p(x) and the estimate p̂(x)
is defined using the natural logarithm as,

D(p||p̂) =

∫ ∞

−∞
p(x) log

(
p(x)

p̂(x)

)
dx . (13)

A good estimate p̂ for p should minimize D(p||p̂). Rewriting
the logarithm we obtain

D(p||p̂) =

∫ ∞

−∞
p(x) log (p(x)) dx−

∫ ∞

−∞
p(x) log (p̂(x)) dx ,

(14)
and we note that the first term is a constant that does not
depend on the model parameters, for example bandwidth,
kernel or shape of kernel function. Thus, the second term in
Eq. 14 can be used as a relative measure of the accuracy of
p̂(x). If we use the sample mean to estimate the expectation
with respect to p(x), we obtain the mean negative log likeli-
hood loss, hereafter MNLL, (Habbema, Hermans & Van den
Broek 1974; Duin 1976)

MNLL = − 1

N

N∑

i=1

log (p̂(xi) + ε) , (15)

where we set ε = 10−6 to avoid floating point underflow.
The Kullback-Leibler Divergence is a distance and thus non
negative and it is smallest if the MNLL is smallest.

A suitable loss function for individual PDFs can be de-
fined analogously (see e.g., Takeuchi, Nomura & Kanamori
2009; Frank & Bouckaert 2009; Sugiyama et al. 2010). We
estimate p(z|fi) for each of the N objects in the sample, in
order to establish performance using a sample of objects for
which spectroscopic redshift values have been observed. We
then evaluate p̂(z|fi) at the object’s observed spectroscopic
redshift p̂(z = zspec,i|fi). In the rest of the paper, the ab-
breviation MNLL refers to the mean negative log-likelihood
loss evaluated for individual PDFs.

2.4 Model Training

We randomly sample three non-overlapping datasets with-
out replacement from the available data: the training set,
the validation set and the test set. The model is trained on
the training set and the model parameters are chosen by
testing the performance of the trained model with different
parameter settings on the validation set.

c© 2014 RAS, MNRAS 000, 1–??
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The validation set is used during model tuning and
therefore it does not provide a good estimate of the per-
formance on unseen data. We measure this generalization
performance on a test set that is not used during training
and tuning.

To evaluate the machine learning algorithms, we con-
struct a training set containing 9000 objects, a validation
set containing 3000 objects and a test set containing 22072
objects. After the validation set has been used to determine
the best combination of model parameters, we merge the
training set and the validation set and train the respective
model again with this best setup. In this way, we make op-
timal use of the available data to build the final model. All
results described in §5 are obtained on the test set, which,
we reiterate, was not used in all prior steps of model training
and tuning.

In this work we choose to use the aperture magnitudes
of the CFHTLS WIDE five band photometry as input at-
tributes. Other photometric features may be used, for exam-
ple see Hoyle et al. (2015b) for a feature importance analy-
sis.

3 ALGORITHMS

We have introduced the estimator for the photometric red-
shift PDF of individual objects (individual PDF) in Eq. 6
as a weighted kernel density estimate that depends on the
weights w(f). The following section discusses two algorithms
that can be used to estimate these weights.

3.1 Quantile Regression Forest (QRF)

The Quantile Regression Forest3 (Meinshausen 2006) is a
generalization of the Random Forest (Breiman 2001) that
can be used to reconstruct individual PDFs, an algorithm
known as TPZreg (Carrasco Kind & Brunner 2013) in as-
trophysics.

A regression/classification tree partitions the input
space and returns the mean/majority vote of the response
values (i.e., the redshift values) of the training set objects in
each partition as the final prediction for new objects falling
into that partition. The tree partitions the input data such
that the training set objects in each partition are most sim-
ilar with respect to their response values. In regression, we
measure similarity using the sum of squares loss function
SSE, defined as

SSE =
l∑

τ=1

∑

fi∈Rτ
(zspec,i − 〈zspec,τ 〉)2 . (16)

The sum runs over all l leaf nodes of the tree 1 6 τ 6 l, which
each represents a certain partition Rτ in input space, and
over all objects in the training set (fi, zspec,i) with attribute
values fi that fall into Rτ . The term 〈zspec,τ 〉 denotes the
mean spectroscopic redshift of all training set objects that
fall into Rτ .

3 The method was originally developed to estimate conditional

quantiles hence the name Quantile Regression Forest.

The binary tree is recursively grown by choosing a split-
ting attribute and split point for each region using brute-
force search such that the SSE is minimized.

The Random Forest algorithm combines several trees
by bootstrap aggregation which is described as follows. New
training sets are drawn from the original training set with
replacement, which is also known as bootstrapping. We train
a tree model on each of these bootstrapped training sets, to
obtain an ensemble of trees. Combining the estimates from
all trees in the ensemble reduces variance. In addition, the
Random Forest algorithm makes the resulting models even
more diverse by modifying the way each tree is grown. Before
each split selection, the routine randomly selects a certain
number of attributes, as specified by the ‘mtry’ parameter,
on which the algorithm can perform the split.

The complexity of the tree model is governed by the size
of the leaves of the tree. We stop the recursive tree build-
ing process when a specified minimum number of objects in
each leaf, denoted as ‘nodesize’ is reached. If the nodesize
is small, very complex trees are grown and the tree might
overadapt to the training set. This is an example of overfit-
ting. The prediction from the Random Forest is the mean,
in regression, or the majority vote, in classification, of the
predictions from the ensemble of trees.

A single tree in the Random Forest splits the space
spanned by the input attributes derived from the photom-
etry of the objects into partitions which are represented by
the tree leaves. Each leaf defined in this manner is associated
with the mean spectroscopic redshift value of the training
set objects in this leaf. The tree therefore approximates the
underlying smooth function by a step function. If a new
object is queried, it will be placed in a leaf containing ob-
jects with similar photometry. Following the formulation by
Meinshausen (2006), we can write the photometric redshift
prediction

zphot(f) =

Ntr∑

i=1

wi(f)zspec,i (17)

as a weighted sum over the spectroscopic redshift values
zspec,i of the Ntr training set objects. In order to distin-
guish the different trees in the ensemble, which are charac-
terized by different split selections, we introduce a parameter
θ, which characterizes each tree. All training set objects with
photometry f tr

i that are located in the same region Rl(f ,θ)
(defined by the leaf l(f , θ)) as the newly queried object with
photometry f , get a constant weight, and all other training
set objects get zero weight. This can be written as

wi(f , θ) =
I
(
f tr
i ∈ Rl(f ,θ)

)
∑Ntr
j=1 I

(
f tr
j ∈ Rl(f ,θ)

) , (18)

where the weights are normalized such that they sum to
unity.

The same concept holds for the Random Forest predic-
tion, in which the weights associated with each training set
object are averaged over k trees, each grown on different
bootstrapped datasets, and therefore each described by a
different parameter θb:

wi(f) =
1

k

k∑

b=1

wi(f , θb) . (19)

The weights can be used to estimate the individual PDF and

c© 2014 RAS, MNRAS 000, 1–??
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QRF/HWE OCP NOCP OCP GMM

nodesize 3,5,7,10 1,2,3,5,7,9 1,2,3,5 1,2,3,5,7,9

mtry 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

BW mod 0.5,0.6,...,1.8,...,3.0 0.5,0.6,...,2.5,...,3.0 0.5,0.6,...,2.0,...,3.0 -
Gauss Comp. - - - 1,2,3

Table 1. Model parameters of the Quantile Regression Forest (QRF), the classification based PDF estimation algorithms (OCP/NOCP)

and the OCP algorithm used with the Gaussian mixture model OCP GMM. ‘nodesize’ and ‘mtry’ are model parameters of the Random

Forest described in §3. ‘BW mod’ is the bandwidth modification factor employed in the Scott’s rule (Eq. 24) and Gauss Comp. denotes
the maximum number of components allowed in the Gaussian mixture model. The best parameter configuration for each algorithm picked

on the validation set during model tuning (§2.4) is marked in bold type.

Figure 1. An illustrative example of a nominal classification
problem with four redshift bins. These bins can be reformulated

into three binary classification problems by merging neighbouring

bins. The class probabilities from the binary classification prob-
lems can be recombined to incorporate the ordering between the

redshift bins (see text) into the final classification.

corresponding statistics like the conditional mean, the con-
ditional cumulative distribution function or the conditional
standard deviation defined as

σ̂2(z|f) =

Ntr∑

i=1

w(fi) (zspec,i − zphot(fi))
2 . (20)

The following section introduces an alternative way of esti-
mating the weights in Eq. 6, using a classification scheme.

3.2 Ordinal Class PDF (OCP) estimation

The basic idea of classification-based PDF estimation is to
bin the spectroscopic data by redshift and use a classification
algorithm that outputs probabilities for bin membership to
reconstruct the PDF. Bin membership is viewed as an ordi-
nal variable. Ordinal scale variables, in contrast to nominal
ones, exhibit an intrinsic order. If the classes in a classifi-
cation problem are ordinal, we can use this information to
improve the classification (Frank & Hall 2001).

Current classification-based PDF estimation methods
in the astrophysics literature (e.g., Bonnett 2015; Carrasco
Kind & Brunner 2013) treat redshift bins as nominal classes.
In the following, we will refer to the latter as the non-ordinal
class PDF (NOCP) algorithm. The ordinal class PDF (OCP)
algorithm trains a separate classifier that estimates the prob-
ability p(z > zi) that a new object has redshift z above a
certain threshold zi given by the edge of the respective red-
shift bin. This scheme is illustrated in Fig. 1. The probability
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Figure 2. Ordinal classification can result in non monotonic cu-

mulative distribution functions. We calibrate them using isotonic

regression. Isotonic Regression (black) approximates the original
estimate (red) as a monotonically increasing step function.

that the redshift of an object resides in the original bins is
then calculated from these separate classification models as
(Frank & Hall 2001)

1 p(z ∈ [z1, z2[) = 1− p(z > z2)
2 p(z ∈ [zi−1, zi[) = p(z > zi−1)− p(z > zi)
3 p(z ∈ [zk−1, zk[) = p(z > zk−1) , 1 < i < k .

The reconstruction of the class probabilities p(zi) has the
idealistic assumption that each of the classifiers used to es-
timate the probability p(z > zi) outputs perfect probabil-
ities. In practice, this will not be the case and the recov-
ered cumulative distribution function, which is a monotoni-
cally increasing function, has to be calibrated. Schapire et al.
(2002); Frank & Bouckaert (2009) use a heuristic approach
to ensure this monotonicity requirement. Alternatively, we
use the ‘isotonic’ regression technique to calibrate the class
probabilities. Isotonic regression is synonymous for mono-
tonically increasing regression and is a technique for which
efficient implementations are available (de Leeuw, Hornik &
Mair 2009). For increasing bin index, isotonic regression op-
timizes the mean squared error between the original function
values and the isotonic fit such that the fit is a monotonic
increasing step function as shown in Fig. 2.

We use bins of fixed size ∆z = 0.01 in the range between
the minimum and the maximum spectroscopic redshift value
in the training set, since we found that equal frequency bin-
ning degrades photometric redshift accuracy for catalogues
with long-tailed sample PDF. The weights sum to unity and
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are calculated using

wi(f) =
p̂(bi|f)
nbi

, (21)

where nbi is the number of training objects with a red-
shift value in bin bi. The quantity p̂(bi|f) is an estimate
for the class probability that a newly queried object with
photometry f has a spectroscopic redshift inside the bin bi.
The method used to obtain the class probability estimates
p̂(bi|f) is interchangeable (e.g., using Neural Networks Bon-
nett 2015, or the Random Forest Frank & Bouckaert 2009;
Carrasco Kind & Brunner 2013). We use the Random For-
est algorithm for consistency with the Quantile Regression
Forest and implemented the OCP algorithm using the ‘ran-
domForest’ (Liaw & Wiener 2002) package for the R pro-
gramming language (R Core Team 2013).

The original paper by Schapire et al. (2002) used the
histogram estimator defined in Frank & Bouckaert (2009)
as

p̂(z|f) =

Ntr∑

i=1

wi(f)
I(bzi = bz)

rbz
. (22)

Here bz is defined as an index denoting the bin in which
z is located and rbz denotes the corresponding bin width.
We can interpret this histogram as a weighted kernel den-
sity estimate with value r−1

bz
for all training set objects in

a bin specified by bz and zero outside. Frank & Bouckaert
(2009) improved the algorithm using a Gaussian kernel func-
tion and demonstrated its superiority over the histogram
kernel in numerical experiments on machine learning bench-
mark datasets that are unrelated to the photometric redshift
problem.

3.3 Bandwidth Selection

The algorithms we use to obtain PDFs for individual objects
require the selection of an appropriate bandwidth for the
weighted kernel density estimator (Eq. 6). This section pro-
poses a bandwidth selection scheme that selects the band-
width for the Gaussian kernel during model tuning using the
MNLL.

The choice of a proper bandwidth depends on the shape
of the underlying distribution and the number of objects
available to construct the estimator. Assuming a normal dis-
tribution and a Gaussian kernel function one can obtain the
optimal bandwidth as

σscott = 1.06
σ̂

N1/5
, (23)

where σ̂ is the sample standard deviation and N denotes the
number of objects. This so-called ‘Scott’s rule’ is commonly
used in the machine learning and statistics literature (e.g.
Takeuchi, Nomura & Kanamori 2009; Wang & Wang 2007).
To apply this bandwidth selection rule to weighted data,
we need to calculate the weighted standard deviation from
the weighted training set using Eq. 20. Scott’s rule gives a
good first estimate of a suitable bandwidth for distributions
which are approximately normal.

Photometric redshift PDFs are in general not Normal
distributions and Eq. 23 can pick a non-optimal bandwidth.

Thus, we modify Eq. 23

σscott = a
σ̂

N1/5
, (24)

with a pre-factor a that is chosen to minimize the MNLL
on the validation set. We can stack the Nte individual PDFs
in the test set using an individual bandwidth σa for each
object

p̂(z) =

Nte∑

a=1

wstack,a

Ntr∑

i=1

wi(fa)N (z, zi, σa) , (25)

or we can use a global bandwidth σa = σ.

3.4 The Gaussian Mixture Model Estimator

Storing the individual PDFs obtained by weighted kernel
density estimation for every element in the test set requires
a large amount of storage. Carrasco Kind & Brunner (2014)
proposed several different methods, including a Gaussian
mixture model, to more efficiently store a previously ob-
tained estimate. The authors store individual PDFs using
10 - 20 numbers compared with 200 used previously. Instead
of giving a previously estimated individual PDF a sparse
representation, we fit the Gaussian mixture model directly
to the weighted spectroscopic redshift values in the train-
ing set and ensure model sparsity by penalizing the model
likelihood dependent on the number of components in the
mixture model.

More specifically, we fit the Gaussian mixture to the
weighted spectroscopic data with the expectation maximiza-
tion algorithm (for an introduction see Chen & Gupta 2010)
as implemented in the Rmixmod package (Biernacki et al.
2006; Auder et al. 2014). In §5.1 and §5.2 during the analy-
sis using CFHTLS, we select the number of Gaussian com-
ponents for each object in the test set using the normal-
ized entropy criterion (Celeux & Soromenho 1996; Biernacki,
Celeux & Govaert 1999), appreviated as NEC in the follow-
ing. The maximum number of Gaussian components that
can be included in the mixture model is a parameter that is
selected during model tuning as described in §2.4.

For a K -component Gaussian mixture model fitted on
the weighted training data, the NEC criterion reads

NEC(K) =
E(K)

L(K)− L(1)
(26)

where L(K) denotes the maximum weighted log-likelihood

L(K) =
N∑

i=1

w(fi) log

(
K∑

k=1

αkN (zspec,i, µi, σi)

)
(27)

for the K component Gaussian mixture model. The entropy
E(K) is defined as

E(K) = −
K∑

k=1

N∑

i=1

w(fi)γk (zspec,i) log (γk (zspec,i)) 6 0 ,

(28)
where the definition of the component weight proportions,
following Eq. 12, is used. We pick the number of compo-
nents K such that the NEC criterion is minimized, where
NEC(1) = 1 (Biernacki, Celeux & Govaert 1999).

The NEC criterion normalizes the entropy by the max-
imum weighted log-likelihood, in which the offset for a one-
component mixture is substracted. There are two reasons
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(Celeux & Soromenho 1996) why we cannot use the en-
tropy E(K) directly. The entropy for K = 1 provides a
lower bound

E(K) > E(1) ∀K > 1 (29)

and the maximum weighted log-likelihood function is an in-
creasing function of K, which makes E(K) unequal for dif-
ferent values of K. The entropy term E(K) measures how
much overlap there is between the different components of
the Gaussian mixture model. In the case where the compo-
nents in the model fit completely separated data clusters,
the entropy term approaches zero. If we select too many
components, the quantity E(K) will increase because the
components will overlap strongly. This can be compensated
by the higher likelihood of the more complex model. In this
way, we can efficiently determine a suitable number of com-
ponents to include into the mixture.

3.5 Highest Weight Element

A common application for individual PDFs is the estima-
tion of the sample PDF. Storing and processing individual
PDFs is computationally expensive. We propose the Highest
Weight Element (hereafter HWE), a single point estimate
for each object from which we can accurately reconstruct
the sample PDF. We first run the QRF algorithm to deter-
mine weights as for individual PDF estimation. Instead of
using the individual PDF, we select the spectroscopic red-
shift value that is associated with the maximum weight. If
more than one spectroscopic redshift value has the same
maximum weight, we randomly select one of those values.

4 DATASET

We use photometric imaging data from the CFHTLS Wide
survey using the following bands u∗, g′, r′, i′ and z′-band
as obtained from the public CFHTLenS data release (Er-
ben & CFHTLenS Collaboration 2012) 4. We obtain the
photometry analogously to Brimioulle et al. (2013), i.e., we
degrade all images to match the band with the worst see-
ing, and use the unconvolved i′-band as the detection band
and the convolved frames as the extraction band. Then we
correct for the remaining zeropoint calibration uncertainties
and varying galactic extinction by comparing the measured
star colours from the catalogues with predictions of the Pick-
les star library (Pickles 1998). In this way, we eliminate pos-
sibly remaining field-to-field variations in the photometric
calibration.

We then match our photometric catalogues to public
spectroscopic redshift samples. These samples are the Vis-
ible Multiobject Spectrograph (VIMOS) VLT Deep Survey
(VVDS) (Le Fèvre et al. 2004; Garilli et al. 2008), VVDS-
F22, the Deep Extragalactic Evolutionary Probe-2 (DEEP-
2) program (Davis et al. 2007; Vogt et al. 2005; Weiner et al.
2005) and the VIMOS Public Extragalactic Redshift Survey
(VIPERS) (Garilli et al. 2014; Guzzo et al. 2014). We only
make use of spectroscopic redshifts with confidence values

4 http://www.cfhtlens.org

Figure 3. Spectroscopic redshift and MAG AUTO i′ distributions

of the compiled dataset described in §4. Objects matched from
different spectroscopic surveys are indicated by different colors.

We limit the spectroscopic redshift range to zspec < 1.5 in the
plots excluding 34 objects with higher redshift.

of at least 95% and only use pointings where the i’-data is
available and where the i’-band serves as detection band.

This produces a total sample of 28159 objects with i′ 6
22.5 and additional 5893 objects with 22.5 < i′ 6 24.5 with
spectroscopic redshifts and five band photometry.

5 RESULTS

Future large area photometric surveys will produce large
amounts of photometric data for which we need to obtain
redshift information. Efficiency in terms of runtime and disk
space will be important in order to use algorithms for photo-
metric redshift estimation effectively on these large datasets.
Additionally we are required to produce high quality photo-
metric redshift PDFs in order to obtain accurate constraints
on, for example, cosmological parameters or cluster masses.

We use the public CFHTLS data described in §4, to
compare the accuracy of photometric redshift PDFs esti-
mated by the algorithms described in §3. We show that
these methods improve the modelling of angular correla-
tion functions, cluster mass estimates, and the modelling
of shear correlation functions compared to results obtained
with the Neural Network code ANNz (Collister & Lahav
2004) commonly used in the literature (e.g., Sheldon et al.
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η σ(∆z) 〈∆z〉 σ68

ANNz 1.23% 0.092 -0.001 0.044

PhotoZ 2.27% 0.129 -0.008 0.050

Table 2. Point prediction performance of the Neural Network

code ANNz and the template fitting code PhotoZ quantified by
the metrics described in §5.1.
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Figure 4. Density contours of photometric redshift estimates

from ANNz against the spectroscopic redshift.

2009; Williamson et al. 2011; Smith et al. 2012; Planck Col-
laboration et al. 2015).

5.1 Comparison with ANNz

We train an ensemble of 20 Neural Networks with two hidden
layers, each consisting of 12 nodes, following the methodol-
ogy described in §2.4.

The photometric redshift estimates obtained from
ANNz are competitive compared to those obtained with the
template fitting code PhotoZ (Bender et al. 2001; Brimioulle
et al. 2008; Greisel et al. 2013) in terms of common pho-
tometric redshift performance metrics. As shown in Table
2, ANNz improves upon the photometric redshift perfor-
mance obtained with PhotoZ by 46%, 29%, 88% and 12% in
terms of outlier rate, scatter, bias and spread of the resid-
uals. The outlier rate η is defined as the fraction of objects
with |zspec − zphot| > 0.15. The bias 〈∆z〉 and scatter σ(∆z)
are the mean and standard deviation of the distribution of
the residuals ∆z = zphot − zspec. The spread of the residual
distribution is measured by the σ68 metric which is defined
as half the difference between the 16% and 84% quantile.

The quality of the photometric redshifts obtained with
ANNz is illustrated in Fig. 4. It shows a tightly aligned
correlation between photometric and spectroscopic redshift.
We estimate sample PDFs from the ANNz point predic-
tions and the stacked Normal densities constructed from
the ANNz error estimates, in the following referred to as
‘ANNz-stack’. While showing excellent point prediction per-
formance, ANNz and ANNz-stack do not accurately esti-
mate the sample PDF as shown in Fig. 5. The sample
PDF constructed from ANNz-stack deviates from the true
spectroscopic redshift distribution in the central redshift
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Figure 5. Sample PDF estimated using ANNz and the High-

est Weight Element. The histogram shows the true spectroscopic
redshift distribution.

Total [0, 0.585[ [0.585, 0.7488[ [0.7488, 3.818[

OCP -1.3577 -1.3905 -1.6432 -1.0395
NOCP -1.2847 -1.3029 -1.5880 -0.9648

QRF -1.3483 -1.3627 -1.6470 -1.0347

GMM -1.3181 -1.3591 -1.5606 -1.0354
ANNz -1.1588 -1.3138 -1.4891 -0.6731

Table 3. MNLL of the Quantile Regression Forest (QRF), the

classification based PDF estimation algorithms (OCP/NOCP)

and the OCP algorithm used with the Gaussian mixture model
(GMM). The values are evaluated over the full spectroscopic red-

shift range and in three bins. The result is illustrated in Fig. 6.

range [0.45, 0.85]. We will show in the following sections
that these deviations from the true spectroscopic redshift
PDF introduce a systematic bias in several important anal-
yses in cosmology. To compare the quality of photomet-
ric redshift PDFs of individual objects (individual PDFs),
we evaluate the MNLL (Eq. 15) of the four discussed al-
gorithms (QRF, NOCP, OCP and OCP GMM) on the full
range of redshift values and in three redshift bins ([0, 0.585[,
[0.585, 0.7488[ and [0.7488, 3.818[). The results are shown in
Table 3 and illustrated in Fig. 6. QRF, NOCP and OCP
employ the weighted kernel density estimate. OCP GMM
denotes the Gaussian mixture model applied in combina-
tion with weights determined using the ordinal classification
method described in §3.2.

We illustrate the relative improvement MNLLrel gained
by applying these algorithms compared with ANNz-stack

MNLLrel =

(
MNLLANNz −MNLLalg.

|MNLLANNz|

)
(30)

in Fig. 6. A high value in terms of MNLLrel translates into
an improvement in the log-likelihood of the individual PDFs
over those obtained with ANNz-stack. The boundaries of the
redshift intervals are picked such that they contain approx-
imately the same number of test set objects. All discussed
methods improve over ANNz-stack. For the highest redshift
objects, our methods show improvement of up to 50%. The
OCP routine performs the best and improves the NOCP
routine. This verifies the superiority of the ordinal classifi-
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Figure 6. Relative improvement in MNLL over the performance
of ANNz-stack. We compare the classification-based PDF esti-

mators (OCP, NOCP), the ordinal classification PDF estimator

combined with a Gaussian mixture model (OCP GMM) and the
Quantile Regression Forest (QRF) in three spectroscopic redshift

bins. The plotted points show the average improvement over the

full spectroscopic redshift range.

cation technique. The Quantile Regression Forest performs
on par with OCP. OCP GMM shows mediocre results, but
provides the most efficient parametrization using a single
Normal density per object.

5.2 Stacked photometric redshift distribution

Applications like shear tomography require the photometric
selection of objects in a certain redshift range. We stack the
individual PDFs compared in §5.1 using weights that quan-
tify their overlap with a certain redshift interval using Eq.
10. These estimates are compared with the weighted ker-
nel density estimate obtained from the spectroscopic red-
shift values using the same weights. The weights are deter-
mined using each of the OCP, NOCP, OCP GMM and QRF
methods individually. The Highest Weight Element (HWE)
uses the weighted kernel density estimate with weights de-
termined using the QRF algorithm. We use Scott’s rule to
choose the bandwidth for the weighted kernel density es-
timates of the HWE and the spectroscopic redshift values.
The sample PDFs obtained with the OCP, NOCP and QRF
algorithms are very similar. We therefore restrict the follow-
ing discussion to the OCP method.

The results shown in Fig. 7 compare the weighted sam-
ple PDFs obtained with the HWE, OCP and OCP GMM
methods in the redshift intervals [0, 0.585[, [0.585, 0.7488[
and [0.7488, 3.818[. They differ mainly in the amount of
smoothing present in the estimate. Notably the OCP GMM
method oversmooths features in the density estimate. This
is because a single Gaussian was selected during model tun-
ing based on the performance of individual object PDFs.
Allowing more components reduces the amount of smooth-
ing. The HWE is competitive with methods that estimate
the individual PDFs, with the advantage that the HWE is
extremely efficient to calculate and, being a point estimate,
requires storing only a single floating point number per ob-
ject.

The weighted distributions of all methods have tails
that extend outside the desired redshift range. We can re-
duce these tails by stacking only the objects with the high-
est weight in the respective redshift bin as demonstrated
in the lower right panel of Fig. 7. We estimate the sample
PDF from the HWE predictions of the objects with the 5000
highest weights in the respective redshift bin. The estimated
weighted sample PDF of these objects has less overlap with
neighbouring redshift bins, compared with the estimate that
incorporates all objects. Furthermore it agrees well with the
equally weighted spectroscopic redshift distribution of the
corresponding objects.

Instead of weighting the objects in the respective red-
shift range, we can select objects based on a photometric
redshift point estimate in analogy to Benjamin et al. (2013).
We perform the same cut in MAG AUTO i′ < 23.0 and estimate
the sample PDF in the same photometric redshift intervals
selected after our ANNz estimate. The results for the HWE
are shown in Fig. 8 and agree well with the spectroscopic
redshift distribution. The agreement is better in the central
bins, which contain more objects, because the histogram ap-
proximates the underlying distribution better.

5.3 Applications to Cosmology

We now investigate how the previously discussed meth-
ods can be used to improve analyses that use photometric
redshifts. We estimate the sample PDF using the Highest
Weight Element and ANNz. We use kernel density estimates
with bandwidths selected using Scott’s rule.

Where required, we impose a flat Λ-CDM cosmology
with Ωm = 0.3, ΩΛ = 0.7, ns = 0.96, H = 0.7, σ8 = 0.79.

5.3.1 The Angular Power Spectrum

The angular power spectrum measures the clustering of
galaxies and is an important tool to constrain cosmologi-
cal models.

In the following we adopt the notation of Thomas, Ab-
dalla & Lahav (2010). Consider the line-of-sight projection
of the 3D mass distribution in the universe, δ2D. The har-
monic modes of δ2D are given by

δ` = i`
∫

d3k

(2π)3
δ(k)W`(k) , (31)

where the window function W`(k) is sensitive to the sample
PDF of light sources, p(z), and can be computed by the
integral

W`(k) =

∫
p(z)D(z)

(
dz

dx

)
j`(kz)dz . (32)

Here D(z) is the linear growth factor, j`(kz) are the Bessel
functions and

(
dz
dx

)
relates the redshift to the radial comov-

ing coordinate x.
The angular power spectrum C`, is the variance of the

modes δ`
5,

C` = 〈δ`δ∗` 〉 = 4π

∫
∆2(k)W 2

` (k)
dk

k
, (33)

5 In our analysis, we are assuming a galaxy-dark matter bias

equal to one.
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Figure 7. Sample PDFs weighted in three redshift intervals [0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[. The PDFs are obtained using

the Highest Weight Element (upper left), the ordinal classification PDF estimator (upper right) and the ordinal classification PDF

estimator combined with a Gaussian mixture model (lower left). The histograms show the weighted spectroscopic redshift distribution
using weights determined using the respective algorithms. The lower right panel shows the weighted distribution of the HWE predictions

for the objects with the 5000 highest weights in the three intervals (blue) and the corresponding weighted histogram of spectroscopic

redshifts (red).

where the dimensionless 3D power spectrum ∆2(k) is given
in terms of the usual 3D matter power spectrum Pδ(k) as

∆2(k) =
4πk3Pδ(k)

(2π)3
. (34)

From Eq. 32 is can be seen, that the modelling of C` de-
pends highly on the assumed sample PDF of the data. We
use the distributions shown in Fig. 5 to model the angular
correlation power spectrum with the CLASS software pack-
age (Blas, Lesgourgues & Tram 2011). We define the bias
introduced by the Cphot

` of the angular correlation function
estimated using photometric redshifts, as the relative dif-
ference to the results based on the PDF of spectroscopic
redshifts Cspec

` :

BiasC` =

(
Cphot
` − Cspec

`

Cspec
`

)
. (35)

The resulting biases are shown in Fig. 9. We find that the
results obtained with the Highest Weight Element have a
lower systematic bias in C` by a factor of four compared
to the ANNz results and that the improvement is almost
independent of `.

5.3.2 Gravitational Lensing

We investigate two important applications in gravitational
lensing: quantifying cluster masses by the light deflection
from background sources, and obtaining cosmic shear corre-
lation functions. In contrast to the previously considered
analysis of the angular correlation function, applications
in gravitational lensing require careful selection of sources
with successfully measured shapes. Since the spectropho-
tometric dataset used previously is not representative for
datasets generally used in gravitational lensing analyses, we
first weight our catalogue such that it mimics a CFHTLS
shape catalogue. To do this, we obtain a photometric shape
catalogue from public CFHTLS data, which is then used as
the reference to weight the spectrophotometric dataset.

5.3.3 Catalogue Creation and Weighting

Whether the shape of an object can be measured, depends
primarily on its intrinsic size and magnitude in the respec-
tive band. We therefore reweight our spectrophotometric
catalogue such that it resembles a CFHTLS shape catalogue
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Figure 9. Bias in the angular correlation power spectrum ob-

tained for different estimates for the sample PDF. We restrict the

comparison to ` < 1200.

in terms of these properties. We obtain the shape catalogue
in analogy to Brimioulle et al. (2013) for the full CFHTLS
survey region. Intrinsic sizes sintr are calculated for each ob-
ject from the measured FWHMimage and corrected for seeing

as follows

sintr =

√
FWHMimage

2 − 〈FWHMpsf〉2 , (36)

where 〈FWHMpsf〉 is the average size of the point spread
function for the respective chip6.

In this way, we obtain sintr and MAG AUTO i′ entries for
each object in the shape and spectrophotometric catalogue.
We now determine weights for the spectrophotometric cat-
alogue such that, after weighting, it matches the size and
magnitude distribution of the shape catalogue. Furthermore,
the results obtained with the reweighted spectrophotomet-
ric catalogue have to be robust against the removal of the
objects with the highest weights (Sánchez et al. 2014). Since
we do not have enough spectroscopically observed objects to
mimic the shape catalogue at the faint end, we have to em-
ploy a magnitude cut in order to fulfill both requirements.
For the analyses presented in §5.3.4 and §5.3.5, we employ a
magnitude cut at MAG AUTO i′ < 23.5 and MAG AUTO i′ < 23.0,
respectively. We give a detailed discussion of these cuts in
the appendix.

6 We work on image stacks, but (as in Brimioulle et al. 2013) only

consider objects, for which all images contribute to the stack from

the same CCD-chip.
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Figure 10. Distributions in MAG AUTO i′ band for the original
spectrophotometric dataset, the re-weighted spectrophotometric

dataset and the shape catalogue for MAG AUTO i′ < 23.5.

We combine bootstrap re-sampling with the k nearest
neighbour estimator to determine weights for the elements
in the spectrophotometric catalogue, such that the weighted
catalogue mimics the distribution of the shape catalogue in
the two dimensional space spanned by the intrinsic size of
the objects and their magnitude MAG AUTO i′. To this end, we
draw bootstrap samples from the shear catalogue and find
the k nearest neighbours in the spectrophotometric cata-
logue. The nearest neighbour of an object in the spectropho-
tometric catalogue is the object in the shear catalogue with
the lowest Euclidean distance to this object. Accordingly,
the k nearest neighbour algorithm selects the k nearest ob-
jects with respect to the Euclidean distance. The number
of times an object in the spectrophotometric catalogue is
selected as one of the k nearest neighbours corresponds to
its weight. This process is similar to previous work done
by Lima et al. (2008), which employs a nearest neighbour
based approach to determine weights for objects in a spec-
troscopic sample to estimate the sample PDF of the pho-
tometric data. In contrast to our method, which is based
on bootstrap re-sampling, they calculate the density ratio
between the distributions characterizing the two catalogues
using a nearest neighbour approach. For the data at hand,
we draw 106 bootstrap samples and consider three nearest
neighbours k = 3. This method accurately weights the spec-
trophotometric data to mimic the size and i-band magni-
tude distributions of the shape catalogue, as shown in Figs.
10 and 11. The following analysis uses the estimated weights
to weight the sample PDF of ANNz, ANNz-stack, the High-
est Weight Element and the spectroscopic data as shown in
Fig. 12.

5.3.4 Cluster Mass Measurement

Galaxy Clusters are one of the primary tools to probe the
Λ-CDM model (for a review, see e.g. Allen, Evrard & Mantz
2011). Cluster masses can be determined by measuring the
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Figure 11. Distributions in intrinsic size (Eq. 36) for the original
spectrophotometric dataset, the re-weighted spectrophotometric

dataset and the shape catalogue for MAG AUTO i′ < 23.5.
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Figure 12. Weighted stacked sample PDF estimated using

ANNz, ANNz-stack and the Highest Weight Element. The his-
togram shows the weighted spectroscopic redshift distribution.

We use a cut on MAG AUTO i′ < 23.5. The used weights and cuts

are described in §5.3.3.

tangential alignment of gravitationally lensed galaxies7 lo-
cated behind the clusters. The accuracy of these weak lens-
ing mass estimates suffers from uncertainties in the photo-
metric redshift of the lensed sources. In combination with
other effects such as cluster mass profile variances, they can
introduce systematics at the 5% to 10% level (see e.g. Ap-
plegate et al. 2014). In the following, we will only consider
uncertainties due to errors in photometric redshift estimates
(Seitz & Schneider 1997; Mandelbaum et al. 2008; Dawson
et al. 2012; Gruen et al. 2013, 2014; Applegate et al. 2014).
The excess surface density inside radius R

〈Σ(r)〉r<R − Σ(R) = Σcrit γtan(R) (37)

7 For a introduction into gravitational lensing we refer to Bartel-

mann & Schneider (2001).
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Figure 13. Relative bias in the mean critical surface density (Eq.

39) for different lens redshifts obtained using different estimates
for the sample PDF. The filled area shows the 1σ error interval.

is proportional to the critical surface density

〈Σcr〉 ∝
∫ ∞

zLens

dz p(z)

(
Dd(zLens)Dds(zLens, z)

Ds(z)

)
(38)

of the lens at redshift zLens. Here Dd, Ds and Dds denote
the angular diameter distance to the lens, the source and
between the lens and the source respectively. Uncertainties
in the sample PDF of background sources p(z) will propa-
gate into systematic errors in the determination of the criti-
cal surface density. This introduces systematic errors in the
excess surface density and therefore in the cluster mass es-
timate.

We quantify the systematic bias of the critical surface
density as

Bias〈Σcr〉 =

(
〈Σcr〉photo − 〈Σcr〉spec

〈Σcr〉spec

)
, (39)

where 〈Σcr〉photo is estimated from the photometry of the
objects (e.g., using machine learning) and 〈Σcr〉spec from the
spectroscopic redshifts. We estimate the error σ on this bias
with respect to our test set containing N objects as

σ2 =

(
σphoto(Σcr)√
N 〈Σcr〉spec

)2

. (40)

The mean and standard deviation of the distribution
of Σcr are estimated using the probability density function
estimates obtained from ANNz and the Highest Weight El-
ement and we present the results in Fig. 13.

The Highest Weight Element estimate for the sample
PDF reduces the systematic bias in the critical surface den-
sity compared with ANNz by a factor of four for medium
lens redshifts z ∈ [0.45, 0.6]. The systematic bias in 〈Σcr〉
obtained from the HWE is consistent with zero for lens red-
shifts z < 0.7 and, in general, outperforms the results ob-
tained with ANNz. Higher lens redshifts are however unre-
alistic for current survey depths.
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Figure 14. Relative bias in the shear correlation function esti-
mate for ξ− (Eq. 43) obtained using different estimates for the

sample PDF.
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Figure 15. Relative bias in the shear correlation function esti-

mate for ξ+ (Eq. 43) obtained using different estimates for the
sample PDF.

5.3.5 Cosmic Shear

Cosmic shear is the weak lensing effect generated by the
inhomogenous matter distribution of the universe and has
became an important tool to constrain cosmological param-
eters (see, e.g., Kilbinger et al. 2013, and references therein).
Similar to our discussion of the angular correlation function,
we derive a power spectrum Pκ(`) of the lensing convergence
κ, which is the source of the lensing potential, defined with
respect to the radial co-moving coordinate x

Pκ(`) =

∫ ∞

0

dx

(
q2(x)

x2

)
Pδ

(
`

x
, x

)
. (41)

We calculate the power spectrum Pδ
(
`
x
, x
)

using the halofit
formula from Smith et al. (2003). The lensing efficiency q(x)
quantifies how strongly the objects in an infinitesimal shell
of radial comoving coordinates deflect the light coming from
background sources. Since the radial comoving coordinates
of the objects are related to their redshifts, the lensing ef-
ficiency q(x) depends on the sample PDF p(z). From the
lensing convergence power spectrum, we can obtain the two
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shear correlation functions (Kaiser 1992) as

ξ±(θ) =
1

2π

∫ ∞

0

d` ` Pκ(`) J0,4(`θ) , (42)

where the Bessel function J0 (J4) corresponds to the ξ+ (ξ−)
correlation function. In analogy to the previous sections we
quantify the bias in the shear correlation functions obtained
from photometric data ξphot

± by their relative error with re-
spect to the results obtained from the spectroscopic data
ξspec
± ,

Biasξ± =

(
ξphoto
± − ξspec

±
ξspec
±

)
. (43)

The results are presented in Figs. 14 and 15. We reduce the
bias in the shear correlation function estimates, using the
Highest Weight Element estimate instead of the photometric
redshift estimates from ANNz, by a factor of 12 for ξ− and
a factor of 6 for ξ+.

6 SUMMARY AND CONCLUSIONS

The next generation photometric surveys will measure the
positions on the sky of thousands of millions of galaxies.
We must be able to reliably estimate the distance to, or the
redshift of, each photometrically identified galaxy before we
can use these galaxies in analyses to derive the values of
cosmological parameters. Furthermore to maximize the pre-
cision and accuracy of any derived parameters, we require a
complete understanding of the full shape of the photomet-
ric redshift probability density function (hereafter PDF) for
both each individual object, and the entire galaxy sample.

In this work we develop and discuss methods drawn
from machine learning, to accurately estimate photometric
redshift PDFs, which will meet both the future storage de-
mands of large surveys, and the precision demands for cos-
mological parameter estimation.

As a working example, we apply these algorithms to
a sample of galaxies selected from the CFHTLS survey for
a set of cosmological analyses. We demonstrate that these
methods reduce the biases in all of the analyses examined.
We also show that these biases result from the mishandling
of the full shape of the photometric redshift PDFs.

This advancement is quantified by comparing several
accurate methods to estimate photometric redshift PDFs for
individual objects (hereafter individual PDFs). We estimate
individual PDFs using a classification scheme that classifies
objects into redshift bins and thereby constructs the PDF
using the probabilities for bin membership. In contrast to
the classification-based PDF estimation methodology com-
monly used in the astrophysics literature, we incorporate
the order of consecutive redshift bins into the classification
framework. This produces more accurate individual PDFs.
We quantify the performance of the methods by measuring
the average log-likelihood of all PDF estimates in a test sam-
ple. Our method outperforms other non-ordinal classifica-
tion and regression schemes, for example classification trees
and Neural Networks. Specifically, for high redshift objects,
our method reaches performance gains of over 50% in aver-
age log-likelihood when compared with the results obtained
using the common Neural Network code ANNz. We con-
struct the individual PDFs using kernel density estimation

which inherently requires the selection of a suitable band-
width to govern the smoothing scale. We propose an efficient
method to choose the smoothing scale on an object by ob-
ject basis. We further discuss a Gaussian mixture model,
whose complexity is adaptively selected for each individ-
ual object, using a criterion that penalizes model complex-
ity. This method shows solid performance compared with
kernel density estimates, while providing a more efficient
parametrization of individual PDFs.

Many cosmological analyses require an accurate knowl-
edge of the full shape of the galaxy sample PDF, instead
of estimates for the individual PDFs of each galaxy. Sam-
ple PDFs are typically obtained by stacking the PDFs of
individual galaxies, and so their estimation and storage is
required. This reconstruction of the individual PDF typi-
cally requires the storage of several hundred floating point
numbers. Complex post processing algorithms can reduce
this number to 10 - 20 floating point numbers per object
at the expense of additional computation time. However in
this work, we propose a new single point estimator for each
galaxy, called Highest Weight Element (HWE), which can
be used to accurately reconstruct the full sample PDF. This
leads to a significant reduction in the storage requirements
of future photometric surveys. Furthermore, we note that re-
constructing the full sample PDF using the point estimator
method described in this paper requires orders of magnitude
less computation time than using other common redshift
codes.

Applications such as shear tomography require the ac-
curate photometric selection of objects in redshift bins. We
weight photometrically observed galaxies such that their
sample PDF lies within the predefined redshift range. The
weights are estimated from the overlap between the indi-
vidual redshift PDFs and the redshift selection interval. We
further use these weights to improve the selection of a sam-
ple of galaxies, such that their sample redshift PDF is more
accurately confined to be within the predefined redshift bin.

We now return our attention to the specific use case
highlighted above using CFHTLS galaxies. In particular we
examine the following cosmological analyses: the estimation
of cluster masses using weak gravitational lensing, the mod-
elling of galaxy angular correlation functions, and the mod-
elling of cosmic shear correlation functions. In each case we
compare the results, and estimate biases, using results ob-
tained with ANNz.

For lensing clusters within the redshift interval 0.45 <
z < 0.6, we show that our methods reduce the relative bias
in the cluster mass reconstruction by up to a factor of 4.
Furthermore our methods improve the relative biases in the
modelling of the explored large scale structure, and cosmic
shear correlation functions by similar values.

In this paper we have shown that the usual point es-
timate of a photometric redshift is a poor estimator when
used to reconstruct the full sample redshift PDF. We note
that these point estimates are still used in many recent anal-
yses, and we have shown that their continued use can lead
to large biases in cosmological analysis. By using the new
HWE point estimator method, highlighted in this paper, we
show that the full shape of the sample PDF can be estimated
more accurately and that this reduces the biases incurred by
mis-estimating the sample PDF.

The results discussed in this paper have been obtained
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under the idealized assumption that the data used to train
the models is completely representative of the test data. In
applications where this is not the case, data augmentation
techniques (Hoyle et al. 2015a) can be used to artificially
populate regions of color-magnitude space, that are not fully
covered by spectroscopy. These techniques assume a model
for the data distribution and can be seen as a form of extrap-
olation. Weighting methods (§5.3.3) are in some cases an al-
ternative to data augmentation. If all relevant attributes are
included, these algorithms can be used to determine weights,
such that the weighted dataset resembles a reference dataset.

To aid the common adoption of these tools and tech-
niques we will make the source code of all algorithms pub-
licly available on the homepage of the first author.
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APPENDIX: TESTS OF WEIGHTING SCHEME

The analyses in §5.3.5, §5.3.4 have been carried out by
weighting the photospectroscopic dataset such that it re-
sembles a shape catalogue. If only a few objects in the
reweighted catalogue are given high weights, the analyses
can strongly depend on these objects. We lack spectrocopi-
cally observed objects at the faint end of the shape catalogue
and therefore employ a magnitude cut to avoid giving large
weight to the faint, unrepresentative part of the spectropho-
tometric catalogue. In analogy to Sánchez et al. (2014), we
test the robustness of our weighting scheme with respect to
the considered applications by excluding the top 5% of the
objects that are given the highest weights.

The bias in the critical surface density is robust against
the exclusion of the highest weighted objects for a magnitude
cut at MAG AUTO i′ < 23.5 as shown in Fig. 16. The results
improve for all algorithms if these objects are removed. The
conclusions of the analysis, i.e. that the Highest Weight El-
ement (HWE) leads to a lower bias compared with ANNz,
remain valid.

The analysis of the biases incurred in estimates of the
cosmic shear correlation functions requires a more conser-
vative cut at MAG AUTO i′ < 23.0, to be robust against the
removal of a small number of highly weighted objects, as
can be seen in Fig. 17 and Fig. 18. For a magnitude cut
at MAG AUTO i′ < 23.5, ANNz8 gives a better overall result
compared with the HWE, while the opposite is true if the
5% objects with the highest weight are left out.

8 The results for ANNz-stack are very similar. Therefore we do

not show them here.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Lens Redshift z

20

15

10

5

0

5

10

15

20

25

R
e
la

ti
v
e
 B

ia
s 

in
 Σ

cr
it
 [

%
] ANNz

ANNz-stack

HWE

ANNz 95

ANNz-stack 95

HWE 95

Figure 16. Relative bias in the mean critical surface density (Eq.
39) for different lens redshifts obtained using different estimates

for the sample PDF. We show the relative biases obtained for

the weighted dataset cut at MAG AUTO i′ < 23.5 in solid lines, and
the corresponding results with the 5% highest weighted objects

removed in dashed lines.

Note that this is not because the p(z) reconstruction of
ANNz is superior at faint magnitudes. Instead this can be
explained by considering the bias in the integrand in Eq. 42
with respect to the spectroscopic result given as

Bias =
`

2π
J0,4(lθ)

(
P phot
κ (`)− P spec

κ (`)
)
. (44)

As shown in Fig. 19, ANNz both partly underestimates and
overestimates the true spectroscopic integrand at different
redshift values such that these two effects compensate each
other. Since the lensing efficiency is dominated by the high
redshift tail of the stacked PDF, the peculiar shape of the
ANNz reconstruction in this range happens to outperform
the otherwise superior HWE method. The shape of the high
redshift tail strongly depends on a small number of faint
objects, which are given a high weight. Accordingly, this ar-
tifact is no longer present if the top 5% of the objects with
the highest weights are left out. For a more conservative cut
at MAG AUTO i′ < 23.0, the analysis is no longer dominated
by a few highly weighted objects at the faint end of our
spectrophotometric catalogue, the ANNz analysis does not
outperform the HWE, and the interpretation does not de-
pend on the removal of the objects with the highest weights.
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Figure 17. Relative bias in the shear correlation function es-
timate for ξ− (Eq. 43) obtained using different estimates for

the sample PDF. We show the relative biases obtained for the

weighted dataset cut at MAG AUTO i′ < 23.5 in solid lines and
MAG AUTO i′ < 23.0 in dashed lines and the corresponding results

with the 5% highest weighted objects removed.
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REFERENCES

Allen S. W., Evrard A. E., Mantz A. B., 2011, Annu. Rev.
Astron. Astrophys., 49, 409

Applegate D. E. et al., 2014, MNRAS, 439, 48
Auder B., Lebret R., Iovleff S., Langrognet F., 2014, Rmix-
mod: An interface for MIXMOD. R package version 2.0.2

Bartelmann M., Schneider P., 2001, Physics Reports, 340,
291

Bender R. et al., 2001, in Deep Fields, Cristiani S., Renzini
A., Williams R. E., eds., p. 96
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Le Fèvre O. et al., 2005, Astron. & Astrophys., 439, 845
Liaw A., Wiener M., 2002, R News, 2, 18
Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H.,
Sheldon E. S., 2008, MNRAS, 390, 118

Mandelbaum R. et al., 2008, MNRAS, 386, 781
Meinshausen N., 2006, Journal of Machine Learning Re-
search, 7, 983999

Pickles A. J., 1998, PASP, 110, 863
Planck Collaboration et al., 2015, preprint
(arXiv:1502.01595)

R Core Team, 2013, R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria

Sánchez C. et al., 2014, MNRAS, 445, 1482
Schapire R. E., Stone P., McAllester D. A., Littman M. L.,
Csirik J. A., 2002, in ICML, Sammut C., Hoffmann A. G.,
eds., Morgan Kaufmann, pp. 546–553

Scott D. W., 1992, Multivariate Density Estimation: The-
ory, Practice, and Visualization, 1st edn. Wiley

Seitz C., Schneider P., 1997, Astron. & Astrophys., 318,
687

Sheldon E. S. et al., 2009, ApJ, 703, 2217
Smith D. J. B. et al., 2012, MNRAS, 427, 703
Smith R. E. et al., 2003, MNRAS, 341, 1311
Staniszewski Z. et al., 2009, ApJ, 701, 32
Sugiyama M., Takeuchi I., Suzuki T., Kanamori T.,
Hachiya H., Okanohara D., 2010, IEICE Transactions on
Information and Systems, E93-D, 583

Takeuchi I., Nomura K., Kanamori T., 2009, Neural Com-
putation, 21, 533

Thomas S. A., Abdalla F. B., Lahav O., 2010, preprint
(arXiv:1011.2448)

Tonry J. L. et al., 2012, ApJ, 750, 99
Tyson J. A., Wittman D. M., Hennawi J. F., Spergel D. N.,
2003, Nuclear Physics B Proceedings Supplements, 124,
21

Vogt N. P. et al., 2005, ApJS, 159, 41
Wang B., Wang X., 2007, preprint (arXiv:0709.1616)
Weiner B. J. et al., 2005, ApJ, 620, 595
Williamson R. et al., 2011, ApJ, 738, 139
York D. G. et al., 2000a, AJ, 120, 1579
York D. G. et al., 2000b, AJ, 120, 1579

c© 2014 RAS, MNRAS 000, 1–??



Chapter 4
Fixing biases from estimating z-distributions

In the following I attach the preprint version of my paper ‘Correcting cosmological parameter
biases for all redshift surveys induced by estimating and reweighting redshift distributions’,
published in the ‘Monthly Notices of the Royal Astronomical Society, Volume 466, Issue 3,
p.2927-2938’. The authors of this paper are: Markus Michael Rau, Ben Hoyle, Kerstin Paech,
Stella Seitz. This preprint version was updated to match the published version.

Scientific Context We demonstrated in the last section, how Machine Learning can be used
to estimate accurate photometric redshift distributions for individual galaxies and samples of
galaxies. However, we did not answer the question, how one can derive error intervals for these
estimates. Photometric redshift distributions can be biased by a variety of effects, e.g. due to
cosmic variance, errors in the photometry or selection effects introduced by the spectroscopic
targeting strategy. This paper exclusively focuses on the intrinsic error in density estimates
like e.g. histograms, kernel density estimates or Machine Learning based conditional density
estimation. We perform a galaxy clustering forecast to demonstrate, that this intrinsic error
can be large enough to propagate into significant biases in cosmological parameter constraints.
We resolve these errors using a modification of the classical bootstrap method. This modified
bootstrap, or smoothed bootstrap, improves upon the classical bootstrap technique, that is
typically applied in this context (e.g. Bonnett et al., 2016), since it is able to estimate the bias
in the density estimate. This bias is produced by the oversmoothing of the redshift distribution
estimate, due to the selection of a too large bandwidth; an effect that cannot be quantified
using the classical bootstrap approach. As a result, we can first correct the parameter contours
for the bias in the density estimate and then marginalize over its statistical uncertainty, i.e.
its variance. When both corrections are applied, we are able to recover the original, unbiased
cosmological parameter constraints to sufficient accuracy. We want to highlight, that even
in the absence of other sources of error, photometric redshift accuracy will be limited by the
intrinsic accuracy of density estimates. This also defines requirements on the minimum number
of unbiased spectroscopic calibration redshifts, that are necessary to constrain cosmological
parameters with a given statistical precision.

We note that resampling methods have been applied in previous work, not only to correct
for the variance in the photometric redshift distribution, but also to quantify the effect of large-
scale structure correlations between neighboring photometric redshift bins (e.g. Mandelbaum
et al., 2008). We want to reiterate, that the purpose of this work is to correct for the intrinsic



84 CHAPTER 4. FIXING BIASES FROM ESTIMATING Z-DISTRIBUTIONS

error in a density estimate, that is different from large-scale structure induced redshift biases.
To the best of my knowledge the resampling method proposed in the following paper

was not yet applied in the context of photometric redshift estimation, nor was the effect
of inaccurate selection of bin width explicitly studied in the photometric redshift literature.
Finally I would like to note, that the smoothed bootstrap method, while previously proposed in
the statistics literature (see e.g. Scott, 1992), is to the best of my knowledge not yet established
in the Machine Learning literature on conditional density estimation. Furthermore I found
no mention of my approach to apply the smoothed bootstrap to weighted samples in the
literature.

In the following paragraph I briefly comment on challenges that arose during the analyses.

Challenges In the following paper we use a Fisher forecast to propagate biases in the photo-
metric redshift distribution into biases in the cosmological parameter constraints. This choice
is motivated by the immense computational workload of a full MCMC approach. Fisher fore-
casts require considerable tuning to ensure an accurate numerical calculation of the derivatives.
I start with a large parameter difference in the calculation of the numerical derivative, that I
successively decrease. If this parameter difference is too small, the calculated derivative be-
gins to fluctuate, since I hit the numerical accuracy of the angular correlation power spectrum
calculation.1 In contrast, if I select a difference that is too large, I obtain an insufficient nu-
merical accuracy. The goal of my tuning procedure is therefore to select the smallest possible
parameter difference step, while still ensuring numerical stability. I repeated my tuning for
all cosmological parameters in turn, which led to stable results. I would also like to highlight,
that I tested ‘rule of thump’ approaches of choosing the difference size equal to the expected
1σ error of the particular parameter. Neither of these approaches yielded overall satisfactory
results. In my opinion, careful tuning of the derivative in each individual parameter with
subsequent consistency checks using the full parameter set, is the only viable option to ensure
sufficient numerical accuracy.

I also extensively checked for numerical errors in my calculations, which I suspected e.g.
in the matrix inversion of the covariance matrix.

In this project the usage of Fisher forecasts was necessary due to computational limitations.
Due to the aforementioned problems, I would highly discourage their use, if a full MCMC
approach is feasible.

Contributions and Acknowledgements I prepared the text and performed the analyses
as detailed in the following. I implemented the Fisher forecast code including a module that
propagates the photometric redshift uncertainties into the cosmological parameter constraints.
For the calculation of the angular correlation power spectrum I used the cosmosis software
(Zuntz et al., 2015). I further prepared the tomographic redshift distributions, where I used
the mock catalog from Jouvel et al. (2009). To bin the tomographic redshift distributions I
obtained photometric redshifts using the randomForest package (Liaw & Wiener, 2002). To
estimate the histograms and kernel density estimates I used the following packages: astroML
(Vanderplas et al., 2012), SciPy (Jones et al., 2001–), Numpy (van der Walt et al., 2011),
statsmodels (Seabold & Perktold, 2010). I implemented the smoothed bootstrap methods,
wrote the whole analysis pipeline and prepared the figures.

1I use the cosmosis software (Zuntz et al., 2015) in this work.
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BH helped in the early stages of the project by cross checking some results I obtained
using his modification of the CLASS software. BH, KP, SS provided useful discussion during
the project and proof read the text.
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ABSTRACT
Photometric redshift uncertainties are a major source of systematic error for ongoing
and future photometric surveys. We study different sources of redshift error caused by
choosing a suboptimal redshift histogram bin width and propose methods to resolve
them. The selection of a too large bin width is shown to oversmooth small scale struc-
ture of the radial distribution of galaxies. This systematic error can significantly shift
cosmological parameter constraints by up to 6σ for the dark energy equation of state
parameter w. Careful selection of bin width can reduce this systematic by a factor
of up to 6 as compared with commonly used current binning approaches. We further
discuss a generalised resampling method that can correct systematic and statistical
errors in cosmological parameter constraints caused by uncertainties in the redshift
distribution. This can be achieved without any prior assumptions about the shape of
the distribution or the form of the redshift error. Our methodology allows photomet-
ric surveys to obtain unbiased cosmological parameter constraints using a minimum
number of spectroscopic calibration data. For a DES-like galaxy clustering forecast
we obtain unbiased results with respect to errors caused by suboptimal histogram
bin width selection, using only 5k representative spectroscopic calibration objects per
tomographic redshift bin.

Key words: galaxies: distances and redshifts, catalogues, surveys.

1 INTRODUCTION

Ongoing and future photometric surveys such as DES
(Flaugher 2005), KIDS (de Jong et al. 2013) and Euclid
(Laureijs et al. 2011) will photometrically observe hundreds
of millions of galaxies. With this rapid increase in statistical
power, comes the need to control systematic uncertainties
with even higher accuracy, if we wish to remain in the era
of precision cosmology. One of the dominant sources of sys-
tematic error in these broad band photometric surveys is
our ability to obtain accurate distance information charac-
terised by the photometric redshift for the observed galaxies.
The accuracy in the photometric redshift distribution for a
selected galaxy sample is particularly important, since it en-
ters into the modelling of a wide variety of measurements.
Examples of these include projected two point statistics like
angular correlation power spectra, or estimates of the crit-

ical surface density of a cluster that is important for weak
lensing cluster mass measurements (Rau et al. 2015; Bon-
nett et al. 2016). Misestimating the photometric redshift dis-
tribution will introduce biases in the respective theoretical
models that will cause errors in the modelling of the sig-
nal and hence lead to biased estimates for e.g. cosmological
parameters or cluster masses.

The main goal of these large area photometric surveys is
to improve our understanding of dark energy and the growth
of structure. A particularly important probe for this are ac-
curate measurements of two point statistics which are, as
mentioned, quite sensitive to errors in the photometric red-
shift distribution. Since the lack of accuracy in photometric
redshift estimates already challenges current multiband pho-
tometric surveys like CFHTLens (Choi et al. 2016; Kitching
et al. 2016), DES (Sánchez et al. 2014; Bonnett et al. 2016)
or KIDS (Hildebrandt et al. 2016), it will likely retain its
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2 Rau et al.

relevance in the next decade where Euclid will probe the
Universe to even fainter magnitudes.

The primary methods to obtain photometric redshift
point estimates and estimates of the redshift distribution for
individual galaxies are template fitting methods (e.g. Koo
1985; Beńıtez 2000; Bender et al. 2001; Leistedt, Mortlock &
Peiris 2016), empirical methods based on machine learning
(e.g. Carrasco Kind & Brunner 2013; Bonnett 2015; Rau
et al. 2015) and combinations of the two (Hoyle et al. 2015;
Speagle et al. 2016; Speagle & Eisenstein 2015b,a; Beck et al.
2016). Alternatively one can use cross correlations between
photometric and spatially overlapping spectroscopic samples
to obtain photometric redshift information (Newman 2008;
Ménard et al. 2013). While these cross correlation techniques
show great promise and are already applied to photometric
data sets (Hildebrandt et al. 2016; Rahman et al. 2016), the
aforementioned established methods remain the state of the
art in photometric redshift estimation and are therefore the
main focus of this paper.

Template fitting uses models of the spectral energy
distribution (SED) of the different types of galaxies and
fits them against the measured photometry to constrain
their redshift. As a limited number of broad photometric
bands only provides limited information about the SED,
the color space spanned by these templates is typically de-
generate. This means that the galaxy photometry can be
represented by several SED templates and redshifts. If the
wrong template is fit to the photometry, large photometric
redshift errors can occur that can shift cosmological con-
straints (Hearin et al. 2010). Empirical methods using ma-
chine learning have recently became a popular and accurate
method for photometric redshift estimation that often out-
perform contemporary template fitting techniques (Sánchez
et al. 2014). Instead of using theoretical SED templates to
model the mapping between photometry and redshift, these
methods ‘learn’ it directly from spectroscopic calibration
data. This data is taken from the spatially overlapping re-
gions between a spectroscopic and the photometric survey
and thus provides both photometric and spectroscopic infor-
mation. Flexible machine learning methods can then use this
data to mimic the mapping between photometry and red-
shift. The result of this fitting process is a model that can
provide photometric redshifts for all galaxies in the photo-
metric data set. The process of fitting these flexible models
to the color-redshift space of the calibration data can also be
supported by extending the available calibration data using
artificial galaxies from simulations or SED templates (Hoyle
et al. 2015). In this way we can incorporate our understand-
ing of galaxy evolution and the shape of galaxy SEDs into an
otherwise completely data driven process. However empiri-
cal methods assume, that the calibration data is representa-
tive of the true photometric science sample. If the calibra-
tion data is not representative of the full science sample, the
algorithm can produce biased photometric redshifts, since
the model is forced to extrapolate into unknown regions of
color-magnitude space.

While empirical methods based on machine learning
naturally dependent on representative spectroscopic data,
both methods require them to verify their results. These
calibration data sets are usually much smaller than the pho-
tometric catalogues for which they provide redshift calibra-
tion. The main reason for this is the lack of accurate spectro-

scopic redshift measurements for faint galaxies. Overlapping
spectroscopic surveys are not able to completely cover the
faint end of the color-magnitude distribution of the photo-
metric survey, because taking spectra at high magnitudes
is extremely expensive and requires long exposure times.
As a result, the photometric redshifts of significant portions
of the faint photometric science sample cannot be verified
using accurate spectroscopic redshifts (e.g. Bonnett et al.
2016). Photometric data from these regions is unreliable for
usage in cosmological analyses. Thus it needs to be removed
(Cunha et al. 2014; Bonnett et al. 2016; Hildebrandt et al.
2016) or small samples of spectroscopic redshifts need to be
upweighted to obtain a representative validation catalogue
(Sánchez et al. 2014; Rau et al. 2015). The spectroscopic
redshift distributions constructed on these weighted spec-
troscopic validation catalogues can then be used to test the
quality of the photometric redshift distributions. However
as these spectroscopic redshift distributions are constructed
with a limited number of data that is strongly upweighted in
the sparsely populated high redshift tail, they will be noisy
and thus show a large error. This limits our ability to accu-
rately validate photometric redshift distributions and thus
contributes to the total error of the final measurement.

We note that this source of error is relevant indepen-
dent of the method used to generate photometric redshift
estimates. Even methods that fit SED templates and do not
directly use spectroscopic galaxies during training, also need
to be validated on spectroscopic data. The spectroscopic red-
shift distributions that are constructed during the validation
process are then subject to the aforementioned sources of er-
ror. This in turn limits the accuracy of photometric redshift
validation.

In this paper we study how this statistical error propa-
gates into cosmological parameter shifts in a DES like galaxy
clustering forecast. The goal is to explore how the error in
the redshift distribution can be reduced and how the re-
maining uncertainty can be incorporated into the parameter
likelihood. In §4.1 we will show that the selection of a too
large histogram bin width can shift cosmological parameter
constraints. Subsequently we compare several different bin-
ning strategies to reduce this error and provide guidelines
for their successful application. The following section §4.2
then considers how cosmological parameter constraints are
affected by introducing weights to a sample. Some previous
work has been done to incorporate errors in the photomet-
ric redshift distribution into the parameter likelihood. Most
notably the recent work by Bonnett et al. (2016) uses an
analytical model for the bias in the tomographic redshift
bins and selects a prior on this parameter by comparing
several photometric redshift codes. In contrast we study the
application of bootstrap techniques to incorporate the un-
certainty in photometric redshifts into the parameter likeli-
hood without imposing a specific model. The bootstrap was
used in the work from Cunha et al. (2009); Sánchez et al.
(2014) and more recently Bonnett et al. (2016); Hildebrandt
et al. (2016) to quantify photometric redshift uncertainty
from statistical shot noise. In §5 we improve upon the boot-
strap by studying the ‘smoothed bootstrap’, a modification
of this popular resampling method. In addition to the accu-
rate treatment of the statistical shot noise, this new method
is also able to correct for systematic shifts in the parameter
likelihoods caused by the selection of a too large bin width.
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In §6 we conclude with a discussion on how these methods
can be best applied in ongoing and future large area photo-
metric surveys.

2 DATA

To mimic the typical shape of photometric redshift distribu-
tions, we use the public galaxy mock catalogue from Jouvel
et al. (2009), that resembles the color-redshift space of future
imaging surveys like DES or Euclid. We remove data with
large magnitude errors σmag > 0.1 to produce a catalogue
that contains 13k objects with a median value in the i band
magnitude of 21. Spectroscopic surveys measure accurate
redshifts for their observed galaxies. In contrast, the photo-
metric redshifts available to imaging surveys have a higher
redshift uncertainty and photometric tomographic redshift
bins can therefore have broad, non Gaussian, or even muti-
modal shapes (e.g. Benjamin et al. 2013; Sánchez et al. 2014;
Becker et al. 2015; Bonnett et al. 2016).

If the shape of a distribution shows non Gaussian struc-
ture, it becomes increasingly hard to estimate this more
complicated function with a limited number of samples. In
order to obtain the shape of realistic photometric tomo-
graphic redshift bins, we need to simulate the way samples
of galaxies are selected by their photometric redshift. We
therefore first estimate photometric redshift predictions for
our sample using the Random Forest (Liaw & Wiener 2002)
algorithm. This method is a popular algorithm for photo-
metric redshift estimation (Carrasco Kind & Brunner 2013;
Sánchez et al. 2014; Rau et al. 2015) and was adopted as
one of the standard photometric redshift codes within the
DES collaboration.

Using 5 band photometry in g, r, i, z and Y , we obtain
a photometric redshift performance with a mean and scat-
ter on the residuals ∆z = zphot − zspec of 〈∆z〉 = −0.0010
and σ(∆z) = 0.095. This is comparable with the photo-
metric redshift performance obtained for the DES science
verification data as reported in Sánchez et al. (2014). Using
these predictions, we split the sample into 5 photometric
tomographic redshift bins, such that each tomographic bin
contains approximately the same number of objects. The
true redshifts of these galaxy samples is then used to esti-
mate the distribution of the tomographic redshift bins. We
define these five tomographic redshift distributions as the
true underlying redshift distributions. In the remaining pa-
per we will draw new catalogues of varying sizes from these
tomographic redshift distributions. This allows us to com-
pare various estimators for the redshift distribution on these
samples. Their accuracy can then be compared with the true
underlying redshift distributions. We note that it is there-
fore important for this analysis to use simulated datasets, as
the true underlying redshift distribution has to be known.
In real data this underlying truth is never perfectly known.
As will be shown in §4.1 biases can persist even in the pres-
ence of a very large number of calibration galaxies. In using
the true redshift, we implicitly assume that the algorithm
used to produce the photometric redshift distributions does
not contribute to further biases in the redshift distribution.
This is an optimistic assumption as there is typically a not-
icable disagreement between codes (e.g. Sánchez et al. 2014;
Bonnett et al. 2016) that estimate photometric redshift dis-

tributions and this will further contribute to the total error
budget. Accordingly the total error of the estimated redshift
distributions used in the next sections will likely be higher
in practise than assumed here.

3 METHODOLOGY

In the following section we give a brief introduction into den-
sity estimation and describe the methods used to select the
smoothing scale, i. e. the bin width, in the density estimate.
We discuss the different sources of error in density estimates
and describe a resampling method to estimate and correct
these errors. Finally we describe the Fisher formalism used
to propagate the error in the redshift distribution into shifts
in the cosmological parameters. To avoid confusion between
the ‘bias’ in redshift distributions and the ‘bias’ in cosmo-
logical parameters, we will refer to biases on cosmological
parameters as cosmological parameter ‘shifts’.

3.1 Density Estimation

The modelling of cosmological observables like angular cor-
relation functions depends on the accurate modelling of the
redshift distribution of the tracers. The most common es-
timator for these distributions is the histogram. To obtain
a smooth function that allows for accurate integration, the
density at the midpoints is interpolated using spline inter-
polation. An alternative estimator to obtain smooth density
estimates is the kernel density estimate (KDE) that inter-
polates the density by placing Gaussians on each sample
point.1 Each of these estimators p̂(z) only approximate the
underlying distribution p(z), and their mean squared error
can be decomposed into a bias and variance component as

E [p̂ (z)− p (z)]2 = Var {p̂(z)}+ Bias2 {p̂(z)} , (1)

where the variance and bias terms are defined as

Var {p̂(z)} = E
[
(p̂(z)− E [p̂(z)])2] (2)

and

Bias {p̂(z)} = E [p̂ (z)]− p (z) . (3)

The bias and variance of a density estimate as defined in
Eq. 2 and 3 are functions of redshift and quantify the error
from the full shape of the redshift distribution. The bias of
a density estimate determines how closely the model fits the
data. Picking a small bin width leads to a very noisy den-
sity estimate. It has a low bias as the small scale features of
the particular sample are closely fit. However the variance in
this estimate will be large, since some of its bumps may be
spurious and not actual features of the underlying distribu-
tion to be estimated. Thus the same density estimate, e.g. a
histogram with the same fine grained binning, will look quite
different for multiple samples independently drawn from the
same parent distribution. In contrast, picking a large bin
width leads to very smooth functions with a low variance.

1 Instead of Gaussians other so called kernel functions can be

used instead. These are non-negative real-valued integrable func-

tions that integrate to unity and exhibit axis symmetry.
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Figure 1. Histogram applied to 16000 objects sampled from the
second tomographic bin shown in Fig. 2. The bin width ∆z = 0.05

was chosen in analogy to Benjamin et al. (2013).

The density estimate is very stable but can oversmooth im-
portant small scale structure in the underlying distribution
as shown in Fig. 1. We randomly sample 16000 galaxies from
the second tomographic bin shown in Fig. 2 and apply a
histogram with the same bin width used in Benjamin et al.
(2013). The estimate significantly underestimates the peak
of the true t-shaped distribution. Increasing the number of
samples will not significantly improve upon this result, as
the fixed bin width does not allow the histogram to further
adapt to the narrow peak. In order to gain improvement, it is
necessary to select a smaller bin size, which will also reduce
the risk of oversmoothing. As illustrated in this example,
the accuracy of a density estimate like the histogram will
primarily depend on the amount of smoothing, i.e. the bin-
or kernel width, in the estimate2. The optimal bin width de-
pends on the number of data samples as well as the shape of
the underlying distribution to be estimated. Larger samples
allow for smaller bins without producing noisy histograms.
Narrow distributions also require narrower bins, to properly
estimate the structure of the peak. The selected bin width
affects the bias and variance terms in Eq. 1 in opposite ways
and the tradeoff between both types of error needs to be
balanced in any real density estimate to produce the lowest
possible total error. Thus we need to adapt the bin size as a
function of the number of samples and the shape of the dis-
tribution. In the following section we will discuss methods
that optimize the size of the bins for this purpose.

3.1.1 The Histogram Estimate

The histogram is a density estimate that approximates the
underlying density as a step function. The height of each
step is proportional to the number of objects falling into
a particular grid cell and the smoothing scale of the his-
togram is determined by the width of these bins. As the
modelling of cosmological observables contains integrals over

2 To simplify the notation, we refer to the bin size as the param-

eter that governs the smoothing of all density estimates that will

be discussed in this work.

Figure 2. Tomographic redshift distributions generated from the

mock catalogue as discussed in §2. The legend shows the pho-
tometric redshift bins used to generate the distributions. These

tomographic bins are used as reference densities to generate new
mock catalogues in a Monte Carlo experiment as explained in §4.

the redshift distribution, software packages like cosmosis
(Zuntz et al. 2015) interpolate the midpoints of the his-
tograms with splines to perform this integration accurately
and efficiently. Following the cosmosis software package we
use the Akima spline interpolation scheme (Akima 1970).
This method minimizes spurious wiggles for low density val-
ues that otherwise pose a problem when using cubic spline
interpolation. As the density estimate can still be negative
due to numerical errors, we set all negative density values to
zero and renormalize. We want to ensure the same numerical
accuracy for all considered density estimates, irrespective of
the selected bin width. Thus we evaluate each interpolated
histogram on a fixed grid with 1000 equally spaced grid-
points over the whole redshift range z ∈ (0.0, 1.5). For the
following analysis we compare a histogram evaluated on a
fixed grid using a bin width of ∆z = 0.05 in analogy to Ben-
jamin et al. (2013), with a bin width selection scheme that
adapts the size of the bin as a function of the number of sam-
ples and the shape of the distribution. Assuming a Gaussian
reference distribution, one can show (Scott 1992) that the
optimal bin width for a linearly interpolated histogram is

h = 2.15 σ̂ n−1/5 , (4)

where σ̂ is the estimator for the standard deviation and n is
the number of galaxies.3 Even though this rule was derived
for the case of a linarly interpolated histogram, it performs
well for the case of an Akima spline interpolation as shown
later in §4.1. Note that Eq. 4 also depends on the shape
of the distribution as parametrized by the sample standard
deviation. This ensures that the density estimate favours
smaller bin widths for strongly peaked distributions which
reduces the chance of ‘oversmoothing’ peaks in the density
estimate. In the following we will refer to the histogram bin
width selection rule defined in Eq. 4 as the adaptive bin
width selection rule.

3 The bin width relates to the number of bins as k = d(max z −
min z)/he.
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3.1.2 Kernel Density Estimate

The kernel density estimate (KDE) approximates the un-
derlying distribution as a sum of Gaussians centered on the
sample points. More formally, the density p(z) is determined
by interpolating the density between the weighted sample
points zi with weights wi using Gaussians N (z|zi, σ) cen-
tred on each sample point zi

p̂(z) =
n∑

i=1

wiN (z|zi, σ) . (5)

The standard deviation σ of the Gaussians determines how
smooth the resulting estimate will be. Broad Gaussians over-
smooth the small scale structure of the underlying density
and have a similar effect to selecting a too large histogram
bin width. In contrast, a standard deviation that is too small
can lead to spurious wiggles in the resulting estimate. For
simplicity, the following discussion will globally refer to the
bin width as the smoothing parameter of kernel density es-
timates. Assuming that the underlying distribution is Gaus-
sian or close to Gaussian, the Scott rule selects a bin width
that minimizes the error in the density estimate. To esti-
mate the underlying density using a sample of size n, the
optimal value for σ is given as

σscott = 1.06 σ̂ n−1/5 , (6)

where σ̂ denotes the standard deviation of the sample.

3.1.3 The Knuth Rule

In the previous sections we considered simple rules for bin
width selection, that assume parent distributions of close
to Gaussian shape. This has computational advantages and
also allows for an easy application to weighted data. The
next section compares these simple methods with a more
advanced method developed in Knuth (2006), that uses
Bayesian inference to fix the number of bins in the his-
togram. The idea is to maximize the posterior probability
for the number of bins M given the data vector d

M̂ = arg max{log p(M |d)} . (7)

Using bayes theorem this posterior is constructed as a nested
integral over π that denotes the vector of probabilities that
samples are drawn from each of the M histogram bins

p(M |d) ∝
∫

dπ p(π|M) p(M) p(d|π,M) , (8)

where the data likelihood p(d|π,M) takes the form of a
multinominal distribution, however with a different normal-
ization factor. They continue by choosing a noninformative
prior for the bin probabilities p(π|M), known as the Jef-
freys’s prior for the multinominal likelihood (Jeffreys 1961)
and a uniform prior for the number of bins p(M). We use the
implementation in the astroML package (Vanderplas et al.
2012) which at the time of this work does not support the
application to weighted data. The Knuth rule selects bins
of equal width. We also tested the Bayesian Blocks method
(Scargle et al. 2013) which adapts the width of the individual
bins, again using the implementation in the astroML pack-
age. However the results we obtained using Bayesian Blocks
were much worse compared with all algorithms considered
in this work.

Figure 3. Weighting scheme applied to the highest tomographic

redshift bin to mimic the lack of spectroscopic calibration data at
high redshift. The weighted distributions are generated by mul-

tiplying the fiducial analytical distribution of the highest tomo-
graphic redshift bin with the sigmoid weighting function defined

in Eq. 9. The distributions are normalized afterwards and the

parameter α parametrizes the position of the sigmoid used to
penalize the high redshift tail.

3.1.4 Weighting

As already described in the introduction, some weighting
schemes are usually applied to the galaxy sample, when com-
puting photometric redshifts. These weights are often the re-
sult of empirical photometric redshift codes that interpolate
the photometric redshift of a large number of galaxies using
a small number of spectroscopic calibration data. The high
redshift tail of a photometric redshift distribution is then
obtained by giving large weight to a small number of spec-
trosopic training objects. We mimic this depletion of avail-
able spectroscopic objects in high tomographic redshift bins
by multiplying a sigmoid weighting function to the highest
tomographic redshift bin

w(z|α) = [1 + exp (10 (z − α))]−1 , (9)

where α is a parameter that parametrizes the redshift posi-
tion of the sigmoid. This weighting scheme is illustrated in
Fig. 3 where the fiducial density (red) is penalized at the
high redshift tail by the weighting functions w(z|α = 1.0)
(green) and w(z|α = 0.84) (blue). The high redshift tail is
supressed after applying the weights which mimics the de-
crease in the number density of spectroscopically observed
galaxies beyond z > 1.0. During photometric redshift esti-
mation the penalized distributions shown in green and blue
would then be remapped onto the red distribution by the in-
troduction of weights. These weights will give more weight
to the few galaxies drawn from the high redshift tail of the
blue and green curves and downweight the bulk of the dis-
tribution at lower redshift. As there are only few objects at
high redshift, the histogram constructed on this weighted
data set can be quite noisy. In the analysis in §4.2 we study
how shifts in cosmological parameters are affected by this
increase in noise after applying weights to a sample. This
is studied in a Monte Carlo experiment by first generating
samples from the penalized distribution with w(z|α = 0.84)
(blue line in Fig. 3). For each of the drawn samples we then
use the inverse of the weighting function 1/w(z) to attach a

c© 2014 RAS, MNRAS 000, 1–??
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weight that maps the penalized distribution back onto the
original red one. Weighting a sample introduces a correlation
between the individual samples, which reduces the statisti-
cal power of the full sample. In order to compensate for this,
we use the effective sample size (Gray 1969)

neff =

(∑n
i=1 wi

)2
∑n
i=1 w

2
i

, (10)

that replaces n in Eqs. 4 and 6. The mean and the standard
deviation of a weighted sample are then computed using
equations

〈z〉 =
n∑

i=1

wizi (11)

and

σ2 =
n∑

i=1

wi (zi − 〈z〉) (12)

respectively.

3.2 The Smoothed Bootstrap

As discussed previously, the total error of density estimates
can be split into a bias component and a variance compo-
nent. The bias quantifies how closely the obtained density
estimate fits the underlying distribution. The variance mea-
sures the noise in the estimate. Drawing an analogy to a
similar cosmological effect, it can be viewed as the shot noise
across bins. In practise these contributions need to be esti-
mated using a limited number of samples. This can be done
using resampling techniques like the bootstrap. A commonly
used way to incorporate the variance in photometric red-
shift predictions into the analysis is the popular bootstrap
method, here ‘normal bootstrap’, as used more recently in
Bonnett et al. (2016); Hildebrandt et al. (2016).

We generate new normal bootstrap samples from our
available calibration data set by sampling with replacement
new data sets of the same size as the original catalogue.
In this work we generate 100 of these bootstrap samples
and apply the respective density estimate to each of them.
Following Scott (1992) the point wise error bands generated
by these bootstrapped density estimates reflect the variance
of the histogram.

While the normal bootstrap is able to estimate the vari-
ance contribution to the total error, it does not quantify the
bias generated by oversmoothing the histogram by picking
a too large bin width. A resampling method that properly
reflects this bias is the smoothed bootstrap (Scott 1992).
The basic goal is to estimate both the bias and the variance
of a given density estimate. We generate the new smoothed
bootstrap data sets by sampling from this density estimate,
instead of drawing from the original data set with replace-
ment as done in the normal bootstrap. This smears out the
bootstrap samples on the same smoothing scale used to con-
struct the estimate. As for the normal bootstrap, the density
estimate is then reapplied to the generated samples and the
bias and variance can be measured. This can be seen as a
form of Monte Carlo experiment, where our density estimate
approximates the true underlying distribution. We reiterate
that the only difference between the normal bootstrap and

the smoothed bootstrap lies in the way the bootstrap sam-
ples are generated. The normal bootstrap generates them
by sampling from the data with replacement, the smoothed
bootstrap samples from the density estimate whose bias and
variance needs to be estimated.

In the following we consider a kernel density estimate
(KDE) of the form given by Eq. 5 from which it is partic-
ularly easy to draw samples. The KDE can be seen as a
Gaussian mixture model, where the Gaussians are centered
on the sample points. In order to generate a single smoothed
bootstrap realisation of a particular density estimate, we
first draw neff samples from the estimate and then reapply
the density estimate to this newly generated sample. For the
aforementioned case of a kernel density estimate constructed
on a weighted sample (wj , zj) with j ∈ {1, . . . , n} of size n,
sampling from the density estimate is done as follows:

(i) Randomly pick one component j with replacement
(ii) Draw a sample z∗ from N (z|zj , σ)
(iii) Return z∗ and the weight (z∗, wj) attributed to zj

In this way we obtain an ensemble of density estimates p̂∗(z).
If the original density estimate p̂(z) is a proper approxima-
tion of the underlying distribution p(z), then samples gen-
erated from them should have comparable statistical prop-
erties. The bias between the original density estimate p̂(z)
and its smoothed bootstrap realisations p̂∗(z) should thus be
similar to the bias between the true unknown density p(z)
and the original density estimate p̂(z). This fact will later
allow us to correct for the shifts in the cosmological param-
eters. The variance of the smoothed bootstrap realizations
will also be similar to the variance in the original density
estimate. Note that the normal bootstrap is the special case
of the smoothed bootstrap where σ → 0. In this work we
will construct estimates using 100 bootstrap samples. In the
following section, we briefly describe the Fisher forecast for-
malism (e.g. Knox, Scoccimarro & Dodelson 1998; Huterer
2002; Joachimi & Schneider 2009) used to propagate the er-
rors in the photometric redshift distribution into shifts in
the cosmological parameters.

3.3 Forecasting the parameter shifts

In this work, we focus on biases introduced into the mod-
elling of the angular clustering of galaxies, where the corre-
sponding angular correlation power spectrum for a combi-
nation of tomographic bins (i, j) is defined as

Ci,j(`) =
2

π

∫
Wi(`, k)Wj(`, k) k2 P (k) dk . (13)

Here P (k) is the matter power spectrum, k is the wavevec-
tor and the galaxy clustering window functions for galaxy
clustering are defined as

Wi(`, k) =

∫
bg(k, z) pi(z) j`[kχ(z)]D(z) dz . (14)

The modelling of Wi(`, k) depends on the galaxy-dark mat-
ter bias bg(k, z), the redshift distribution of the galaxy sam-
ple pi(z), the comoving distance χ(z) and the linear growth
factor D(z).

The offset in the angular correlation power spectrum
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caused by the inaccurate estimation of the redshift distribu-
tion is defined as

∆Cl = C(`)bias −C(`)fid , (15)

where C(`)bias denotes the vector of angular correlation
power spectra estimated using the non optimal estimator
for the tomographic redshift distributions and C(`)fid the
fiducial, unbiased, vector of angular correlation power spec-
tra obtained from the tomographic distributions in Fig. 2.

The shift in cosmological parameters ∆p caused by this
systematic error in the cosmological observable is given to
linear order as

∆p = F−1 D Σ−1 ∆Cl , (16)

where F is the Fisher matrix defined in Eq. 18, Σ is the cor-
responding covariance matrix and D contains the derivatives
with respect to the cosmological parameters pα

Dα,β =
∂Cβ(`)

∂pα
. (17)

Here the index β runs over all elements in the data vector
C(`), i.e. over all auto and cross correlation power spectra.
The Fisher matrix F is estimated from the data covariance
matrix Σ as

Fα,β =

`max∑

`=`min

∑

(i,j),(m,n)

∂Ci,j(`)

∂pα
Σ−1 ∂C(`)m,n(`)

∂pβ
. (18)

The covariance Σ is modelled as

Σ
(k,l)

(i,j)(`) = A(`)
(
C(i,k)(`)C(j,l)(`) + C(i,l)(`)C(j,k)(`)

)
,

(19)
where

A(`) =
δ`,`′

(2`+ 1)fsky
(20)

weights the covariance by the inverse fractional sky cover-
age fsky and C(i,j)(`) denotes the angular power spectra
estimates, including the shot noise contribution

C(i,j)(`) = C(i,j)(`) +
δi,j
nig

. (21)

Here nig is the number of galaxies per steradian in the re-
spective sample. The angular correlation power spectra are
estimated using the cosmosis software (Zuntz et al. 2015).
In this work we follow Huterer, Cunha & Fang (2013) and
Shafer & Huterer (2015) by using a five dimensional fiducial
parameter space (Ωm, w0, wa, As, ns) in our forecast. This
neglects the uncertainty in the parameters Ωb = 0.04 and
h = 0.72 which we fix to default values used in the cosmosis
software package. Huterer, Cunha & Fang (2013) and Shafer
& Huterer (2015) justify this simplification by arguing that
these remaining parameters are well constrained by other
probes like Planck. Additionally we marginalize over a mul-
tiplicative galaxy-dark matter bias and include modes from
[`min, `max] = [10, 1000] assuming a fractional sky coverage
of fsky = 0.12 with a number density of 2 arcmin−2 for each
of the five tomographic redshift bins shown in Fig. 2. We
use the redshift dependent bias model by Fry (1996)

bg(z) = 1 +
bg − 1

D(z)
, (22)

where D(z) is the linear growth function and bg is the Fry

Table 1. Fiducial cosmological parameter values and correspond-

ing cosmological constraints for our DES like galaxy clustering
forecast.

Parmeter p Error σp Fiducial value

Ωm 0.013 0.3

w0 0.093 -1.0

wa 0.42 0.0

As 1.6 · 10−10 2.1 · 10−9

ns 0.023 0.96

bg 0.021 1.0

parameter that we set to the fiducial value of bg = 1, such
that the fiducial galaxy-dark matter bias model coincides
with a constant value bg = 1. We summarize the fiducial
cosmological parameter values and constraints in Table 1.

4 COSMOLOGICAL BIASES

A density estimate has two sources of error which contribute
to its total mean squared error, as shown in Eq. 1. The
bias of the density estimate increases if we introduce more
smoothing by choosing a larger bin width. This stabilizes the
density estimate but can oversmooth the density thereby de-
stroying its small scale structure. The second contribution
to the total error is the variance of the density estimate.
This statistical error occurs, since we use a limited num-
ber of spectroscopic calibration data to obtain the density
estimate, which leads to errors across bins. As a result the
same density estimate applied to multiple catalogues inde-
pendently drawn from the same parent distribution will be
different. This effect is larger when the sample size of the cat-
alogue is small. The introduction of weights to the sample
can decrease its effective sample size, which further increases
the variance of the density estimate.

In the next subsection we will study how errors in the
redshift distribution propagate into shifts in the cosmologi-
cal parameters in a Monte Carlo (MC) experiment. We note
that performing a simulation is necessary as the parent dis-
tribution from which real spectroscopic data sets are drawn
is unkown. A particular catalogue corresponds only to a sin-
gle realization of the MC experiment. This makes it impos-
sible to estimate the true cosmological parameter shift with
respect to this true unknown distribution using real data.

We generate 100 samples from the distributions shown
in Fig. 2 and subsequently apply the density estimates dis-
cussed in §3.1 to these samples. For each method, we end up
with an ensemble of 100 density estimates. If the density es-
timate would be perfect, each of the obtained distributions
would coincide with the (theoretical) parent distributions
shown in Fig. 2. However as we have a limited amount of
data available to construct the estimate, it is not possible
to obtain perfect estimates of the redshift distribution. As
discussed in Bonnett et al. (2016), errors on the mean and
the width of the redshift distribution are expected to be the
dominant source of photometric redshift error for weak grav-
itational lensing. However it can be expected that higher or-
der statistics like skewness also contribute to the total error
budget. This can be especially important for galaxy clus-
tering and cross correlations like galaxy-galaxy lensing. We
therefore take a more general approach and include the full
shape of the redshift distribution into our analysis without
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making any assumptions about the shape of the photomet-
ric redshift error. We use the Fisher forecast formalism de-
scribed in §3.3 to estimate the shift in cosmological param-
eters with respect to the values obtained using the theoret-
ical parent distributions. In order to study the distribution
of parameter shifts composed of the 100 Monte Carlo ex-
periments as a function of the number of galaxies available
to construct the estimate, we repeat the MC experiment us-
ing a variety of different sample sizes. We investigate sample
sizes per tomographic redshift bin ranging from Nbin = 5000
to Nbin = 30000, which results in a fully representative cali-
bration sample of 25k - 150k galaxies distributed in 5 tomo-
graphic redshift bins. These numbers have to be compared
with the 50k spectroscopic validation objects that are cur-
rently used in DES (Bonnett et al. 2016) and the 25k used
in KIDS (Hildebrandt et al. 2016, Tab. 2). However we also
discuss the large sample limit of Nbin = 13 · 106 per tomo-
graphic redshift bin, which results in 65 · 106 for the full
sample.

In §4.1 we compare the various density estimates using
unweighted data, §4.2 then investigates the effect of intro-
ducing weights. In the following analyses we will normalize
the cosmological parameter shifts ∆p defined in Eq. 16 by
the fiducial constraint σp for the respective parameter p
quoted in Table 1:

pnorm = ∆p

/
σp . (23)

In the following we will refer to the normalized quantities
pnorm defined in Eq. 23 as the cosmological parameter shifts.

4.1 Oversmoothing Errors

Fig. 4 shows the parameter shift distributions in the set of
four parameters (Ωm, bg, w0, As) obtained using the different
density estimates introduced in §3.1. The results for wa are
not shown, because they are very similar to those obtained
for w0 due to the intrinsic correlation between w0 and wa.
For each parameter we plot the distribution of parameter
shifts on the vertical axis as a function of the number of
galaxies Nbin per tomographic bin in units of 1000 objects
on the horizontal axis. We showcase these distributions by
the respective mean parameter shift and the standard de-
viation of parameter shifts. The dashed regions denote the
±1σ regions of this distribution, the points denote the mean
values. The following discussion refers to the mean and stan-
dard deviation of the distribution of parameter shifts as the
mean parameter shift and the parameter shift scatter respec-
tively. The horizontal lines illustrate the large sample limit
of the respective method, showing the mean parameter shift
evaluated on a large sample of Nbin = 13 · 106 galaxies per
tomographic bin. The parameter shift scatter decreases with
increasing sample size for all methods. The relative sensitiv-
ity to errors in the redshift distribution strongly depends on
the cosmological parameter. While the galaxy-dark matter
bias parameter bg is least sensitive to errors in the redshift
distribution, the dark energy equation of state parameter w0

shows large parameter shifts. The performance of the four
bin width selection algorithms differs especially in terms of
their mean parameter shift values. Algorithms that adapt
the bin width with the shape of the distribution and the
number of objects are consistent, i. e. the mean parame-
ter shift vanishes in the large sample limit. In contrast the

histogram with ∆z = 0.05 always produces a large mean
parameter shift even in the large sample limit, where the
estimator is very stable and the parameter shift scatter van-
ishes. The histogram with ∆z = 0.05 therefore oversmoothes
the underlying distribution. The Knuth rule, being the most
sophisticated bin width selection method considered in this
work, tightly adapts the histogram to the underlying den-
sity and produces very small mean parameter shifts almost
independent of the sample size. The parameter shift scatter
is however significant for all considered methods even for
moderate sample sizes of Nbin = 30000 per tomographic bin.
We reiterate that the parameter shift obtained on a single
catalogue will be a single sample from the distribution of pa-
rameter shifts, where the parameter shift scatter is its stan-
dard deviation. The simple bin width selection algorithms
like the Scotts rule for the Kernel density estimate and the
adaptive bin width selection rule for the histogram produce
larger mean parameter shifts compared with the more elab-
orate Knuth rule. As the implementations of the Knuth rule
currently do not support the application to weighted data,
its practical applicability is limited for photometric redshift
estimation.

So far we have considered the performance of density
estimators applied to unweighted data. In practice, photo-
metric galaxy samples are typically weighted for the cosmo-
logical analysis. These weights can parametrize the quality
of a particular measurement like the error on the measured
galaxy shape in cosmic shear. Furthermore empirical meth-
ods for photometric redshift estimation weight a spectro-
scopic training sample to resemble a photometric sample. In
the next section we study how the introduction of weights
can affect the distribution of parameter shifts.

4.2 Weighting Errors

The introduction of weights to a sample introduces an
artificial correlation between previously independent sam-
ples, which increases the variance of density estimates con-
structed on the weighted sample. We study the resulting
shifts in the cosmological parameters by slightly modifying
the experimental setup described in the previous sections.

Instead of considering an unweighted sample, we gener-
ate a weighted sample choosing α = 0.84 in Eq. 9, following
the methodology described in §3.1.4. The resulting weighted
sample then resembles the original distribution of the last to-
mographic bin. The MC experiment can then be performed
as explained in the previous sections, with the only modifi-
cation that we construct the respective density estimate for
the last tomographic bin using a weighted sample.

We want to study the effect of introducing weights to a
sample independently of possible modifications to the error
of the density estimate that occurs from changing the bin
width. Thus we concentrate on the histogram with a fixed
bin width of ∆z = 0.05 instead of adapting the bin width
with the shape of the distribution and the effective sample
size. The result of this experiment is shown in Fig. 5, where
we compare the distribution of parameter shifts for the case
of weighted data, with the result for unweighted data. To
make the visual comparison between the unweighted and
weighted case easier, we substract the mean parameter shift
obtained on the unweighted catalogues. In close analogy to
the previous section, we show the distribution of parameter
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Figure 4. We show the distribution of cosmological parameter shifts caused by the statistical errors in the estimated redshift distributions

as a function of the number Nbin of galaxy redshifts available to construct the estimate of the tomographic bin; given in units of 1000

galaxy redshifts. All parameter shifts are normalized by the respective fiducial constraints quoted in §3.3. The left plot considers shifts in
the dark energy equation of state parameter w0 and the primordial power spectrum amplitude As, the right plot in the matter density

Ωm and the galaxy-dark matter bias parameter bg . We compare the performance of the Scotts rule applied to a kernel density estimate
‘Scott KDE’, a simple histogram with a bin width of ∆z = 0.05, the adaptive bin width selection rule ‘Adaptive’ and the Knuth rule for

histograms ‘Knuth’. The respective distributions of parameter shifts are constructed on 100 simulated catalogues drawn from Fig. 2 as

described in the text. The points show the mean and the dashed curves enclose the ±1σ error regions of the respective distribution. The
mean of the distribution of relative parameter shifts evaluated on a large sample (Nbin = 13 · 106) is illustrated by the horizontal lines.

We show this large sample limit for the simple histogram with ∆z = 0.05 (dashed black line) and the adaptive bin width selection rule

(solid black line).

Figure 5. In analogy with Fig. 4 we compare the distribution of cosmological parameter shifts caused by the statistical errors in the
estimated redshift distributions used to reconstruct each tomographic redshift bin for weighted and unweighted data, as a function of

the sample size Nbin. The parameter shifts are normalized by the respective fiducial constraints quoted in §3.3, the sample size Nbin

is given in units of 1000 galaxies. The dots show the mean, the dashed regions the standard deviation of the distribution of parameter
shifts. For both the weighted and the unweighted case, we substract the mean of the distribution of parameter shifts of the unweighted

case. Therefore note that the red stars are centered at zero. The left plot considers the dark energy equation of state parameter w0 and
the primordial power spectrum amplitude As, the right plot the matter density Ωm and the galaxy-dark matter bias parameter bg . We

use the histogram with ∆z = 0.05 as the density estimate.

c© 2014 RAS, MNRAS 000, 1–??



10 Rau et al.

Figure 6. Typical example of the effect of the cosmological pa-

rameter shift correction. The black contour shows the fiducial
dark energy parameter constraint. The dark green contour is

shifted due to the typical photometric redshift distribution error

expected from a KDE with a bandwidth selected by the Scotts
rule and applied to a sample of galaxies with Nbin = 5000. The

magenta contour shows the corrected bias using the smoothed

bootstrap technique. The red ellipse uses the smoothed bootstrap
to marginalize the corrected magenta contour over the remaining

statistical uncertainty in the redshift distribution. The dashed

blue contour shows the result of marginalizing over the statisti-
cal uncertainty using the normal bootstrap technique without the

bias correction from the smoothed bootstrap. All contours are 1σ

constraints.

shifts for the dark energy equation of state parameter w0,
the primordial power spectrum amplitude As, the matter
density Ωm and the galaxy-dark matter bias parameter bg
as a function of the sample size per tomographic redshift bin
Nbin. The parameter shift scatter for the weighted case is in
general larger than for the unweighted case. The magnitude
of this increase in parameter shift scatter is especially large
for the dark energy of state parameter w0 and small for the
galaxy-dark matter bias parameter bg. We further note that
the mean parameter shifts are only weakly affected com-
pared with the increase in parameter shift scatter. This is
to be expected as the introduction of weights to a sample
primarily decreases the effective sample size and in turn in-
creases the variance of the density estimate.

We have seen in the last sections that cosmological pa-
rameter constraints can be significantly shifted by errors
in the tomographic redshift distributions. The two main
sources of error are the effect of oversmoothing and the intro-
duction of weights. Efficient algorithms can closely adapt the
bin width to the shape of the distribution and the available
sample size to reduce the effect of oversmoothing. However
there still remains a statistical error, especially in the pres-
ence of weighted samples. In the next section we investigate
resampling techniques, that can be used to incorporate both
sources of error into the parameter likelihood.

5 CORRECTING COSMOLOGICAL
PARAMETER SHIFTS

In the last section we assumed perfect knowledge of the un-
derlying parent redshift distribution to investigate how the
systematic and statistical errors in the redshift histograms
lead to shifts in the cosmological parameters. We have seen
that the selection of a too large bin width oversmoothes
small scale structure in the density estimate. This systematic
bias in the redshift distribution propagates into a global shift
in the cosmological parameters; the mean parameter shift.
This systematic shift is persistent in the large sample limit
where the statistical noise in the density estimate vanishes.
In addition to this systematic error in the density estimate,
we also need to correct for the statistical uncertainty given
by the noise in the density estimate. We can incorporate
this error into the final parameter constraint by adding its
covariance, i.e. the parameter shift scatter, to the fiducial
covariance. In practice, the true parent distribution of the
tomographic redshift bins is unknown and both sources of
error need to be estimated on a single sample.

This can be done in two steps using the smoothed boot-
strap technique as illustrated in Fig. 6. In dark green we
show a parameter ellipse shifted by the typical error in the
redshift distribution obtained from a KDE with a bandwidth
selected by the Scotts rule and Nbin = 5000. This total sam-
ple size of 25k representative spectroscopic calibration ob-
jects amounts to approximately the number of spectra used
by KIDS (Hildebrandt et al. 2016). Using an estimate of
the systematic error, i. e. the mean parameter shift, we can
correct this biased constraint by shifting it to the magenta
contour. Marginalizing over the remaining statistical uncer-
tainty, i. e. the parameter shift scatter4, we can produce the
red contour which then almost completely overlaps with the
unbiased fiducial contour (black). This has to be compared
with the result from the normal bootstrap (dashed blue) that
is, like the smoothed bootstrap, able to marginalize over the
statistical uncertainty. However in contrast to the smoothed
bootstrap, the normal bootstrap is not able to correct for
the mean parameter shift. As a result the parameter con-
tour produced by the normal bootstrap is still significantly
biased in contrast to the result from the smoothed boot-
strap.

In the following we compare the smoothed bootstrap
technique with the normal bootstrap in a Monte Carlo (MC)
experiment. We reiterate, that a simulation is necessary as
the true underlying redshift distribution of real samples is
unknown. Thus, in order to investigate the statistical per-
formance of the bootstrap techniques, we need to define this
true underlying distribution. This experiment is carried out
by drawing 50 samples from the theoretical distributions
in Fig. 2 and applying the kernel density estimate with a
bandwidth selected by the Scotts rule. We choose the kernel
density estimate because it is well suited for the generation
of new samples which is an important step in the smoothed
bootstrap method. To illustrate how we can correct param-
eter shifts even on a small data set, we choose a sample
size of Nbin = 5000 objects per tomographic bin. For each

4 For simplicity we will refer to estimates of the covariance of the

distribution of parameter shifts in two dimensions, e.g. w0 and

wa, as the parameter shift scatter, too.
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MC experiment, parameter shifts need to be determined for
each of the 100 bootstrap samples. As this is computation-
ally expensive, we choose to perform 50 MC experiments
which gives us sufficient statistical accuracy while still be-
ing computationally managable. In the following discussion
we will refer to the 50 catalogues as the orignal catalogues
and to the corresponding 50 density estimates as the origi-
nal density estimates. For each of the original catalogues we
estimate the mean parameter shift and the parameter shift
scatter using the smoothed bootstrap and the normal boos-
trap. We apply the Fisher forecast method to propagate the
uncertainties in the redshift distribution into shifts in cos-
mological parameters in analogy to the previous sections.
This gives us 50 estimates for the mean parameter shift and
the parameter shift scatter from both resampling methods.
The distribution of these estimates is then compared with
the true mean parameter shift and scatter obtained on the
original density estimates in Fig. 7. The left panel of this
figure shows the quality of the estimation of the mean pa-
rameter shift using the smoothed bootstrap and the normal
bootstrap for the example of the dark energy equation of
state parameter. As the mean parameter shift is a constant
offset, each estimate should give the same value, indepen-
dent on the particular sample. In practise this is of course
not the case, which we quantify by calculating the mean and
the standard deviation of this distribution. For illustration
we normalize the respective mean parameter shift estimates
by the true mean parameter shift. On this x-axis scale, 0
corresponds to no mean parameter shift correction and 1
corresponds to a perfect correction.

We find that the normal bootstrap is not able to esti-
mate the mean parameter shift, while the smoothed boot-
strap is able to recover the majority of the mean parameter
shift. The right panel of Fig. 7 shows the average quality of
the parameter shift scatter estimation for the example of the
covariance between w0 and wa. The smoothed bootstrap and
the normal bootstrap produce the same estimation quality
and are both able to accurately estimate the true parameter
shift scatter. The dashed ellipses show the individual pa-
rameter shift scatter estimates from the 50 experiments. As
can be seen, the scatter around the mean value is in general
quite small for both methods.

We have shown that the smoothed bootstrap is able
to correct shifts in cosmological parameter constraints pro-
duced by errors in the redshift distribution. This includes
errors suffered from oversmoothing small scale features in
the redshift distribution, as well as statistical errors pro-
duced by noisy density estimates.

The mean parameter shift correction using the
smoothed boostrap technique implicitly assumes that the
bias between the true unknown distribution p(z) and the
original density estimate p̂(z) is approximately equal to the
bias between the original density estimate p̂(z) and the den-
sity estimates constructed on its smoothed bootstrap sam-
ples p̂∗(z). In the context of this section, this implicitly as-
sumes that the parameter shift bias is linear with respect to
the smoothing parameter. This will likely not be the case
in practise. Smoother density estimates are less sensitive to
the smoothing parameter, than noisy density estimates, es-
pecially in the variance component (Eq. 2). The density es-
timates constructed on the smoothed bootstrap samples are
smoother than the original estimate. As can be seen in Fig.

4, the original density estimate constructed using the Scott
rule produces a small mean parameter shift. It is therefore
a bit too smooth compared to the true unknown density
estimate. As discussed, smoother density estimates will be
more stable with respect to changes in the bin width com-
pared with more noisy density estimates. Thus the mean
parameter shift between the original density estimate con-
structed using the Scott rule and the unknown true density
estimate will be higher than between the original density
estimate and the smoothed bootstrap samples. We identify
this non linear dependency of the mean parameter shift on
the bin width as the reason why the smoothed bootstrap
underestimates the mean parameter shift.

In contrast the parameter shift scatter is relatively in-
sensitive to changes in the bin width. This can be seen in the
Fig. 4 where the parameter shift scatter values for different
bin width selection algorithms have been shown to be quite
similar. Thus making the density estimate smoother in the
smoothed bootstrap method has an negligible effect on the
quality of the estimated parameter shift scatter as shown in
Fig. 7. The likely reason for this is that the sample size often
dominates the error of a statistical estimator over changes in
the shape of the distribution. For instance the error on the
sample mean scales with ∝ σ̂

/√
n where n is the sample size

and σ̂ is the sample estimator for the standard deviation. A
small increase in σ̂ produced by e. g. the smoothed boot-
strap is therefore strongly supressed (1

/√
Nbin = 0.01) even

for a relatively small sample size of Nbin = 5000 galaxies per
tomographic redshift bin as considered here.

6 SUMMARY AND CONCLUSIONS

Current and next generation large area photometric surveys
like DES or Euclid are expected to measure cosmological pa-
rameters with unprecedented accuracy. To enter this era of
precision cosmology, our understanding of systematic errors
needs to increase faster than the statistical power of these
measurements. Errors in the distribution of distance, or red-
shift are already challenging for current multiband photo-
metric suveys like CFHTLens, DES or KIDS and are likely
to become an even greater burden for next generation sur-
veys like Euclid.

To prepare for these upcoming challenges, this work
studies how photometric redshift distributions can be esti-
mated without causing systematic errors in the cosmological
parameters. We start the discussion in §4.1 by considering
the statistical properties of a simple histogram estimate of
the redshift distribution. We have seen that the selection of
a bin width that is too large can bias redshift distributions in
each tomographic bin. This ‘oversmoothing effect’ destroys
information about small scale features in the density like
multimodal or sharp peaks. As a result, the estimated den-
sity then no longer coincides with the true underlying dis-
tribution. This effect can even be significant for bin widths
used in current analysis like the constant redshift binning of
∆z = 0.05 used in Benjamin et al. (2013). We note that their
continued usage can become a significant error source when
parameter constraints become tighter in future surveys.

To reduce these errors in the redshift distribution, we
studied methods to adaptively select the bin width as a func-
tion of the number of objects and the shape of the distri-
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Figure 7. Left panel: Quality of the cosmological mean parameter shift correction using the smoothed bootstrap compared with the

normal bootstrap. The x-axis scale shows the estimated over the true mean parameter shift. The vertical line at the origin corrsponds
to no mean parameter shift estimation and therefore no possible correction. The vertical line at 1.0 corresponds to a perfect mean

parameter shift estimation and therefore a perfect correction. Right panel: Quality of the variance estimation using bootstrap methods.

The black ellipse shows the true 1σ parameter shift scatter. The red and the meshed red contours show the respective parameter shift
scatter estimates from the smoothed bootstrap. The blue and the meshed blue contours show the corresponding result for the normal

bootstrap. As explained in the text, the results in both panels are obtained using 50 Monte Carlo experiments, where each time 100

bootstrap samples were drawn.

bution. We specifically investigate small sample sizes of 25k
spectroscopic validation galaxies which are currently avail-
able in state-of-the-art photometric surveys, where KIDS
and DES use approximately 25k and 50k spectroscopic val-
idation galaxies respectively (Hildebrandt et al. 2016, Tab.
2 and Bonnett et al. 2016). In §4.1 we demonstrated for
the case of a DES like galaxy clustering forecast, that these
methods can reduce the relative shift in cosmological pa-
rameters by a factor of up to 6 for the dark energy equa-
tion of state parameters w0 and wa, as compared with the
aforementioned constant redshift binnning. We obtained the
most accurate redshift distributions using the Knuth rule.
Using this method we were able to produce cosmological pa-
rameter constraints with an especially low systematic error,
even for small sample sizes of 5000 galaxies per tomographic
redshift bin. However current implementations of the Knuth
rule do not support the application to weighted data. This
severely limits its practical applicability, as some form of
weighting scheme is usually applied to redshift samples. The
generalization of the algorithm to weighted data should be a
straightforward modification of the multinominal data like-
lihood and the prior on the bin probabilities (see §3.1.3).
We leave this for future work. Irrespective of the chosen
method, there still remains a statistical uncertainty in the
redshift distribution that cannot be removed even if the bin
width is carefully selected as discussed in §4.

In §4.2 we demonstrated that the introduction of sam-
ple weights drastically deteriorates the quality of the redshift
histograms. The size of this effect naturally depends on the
weighting scheme and the shape of the considered distribu-
tions. For our choices the statistical error in the measured
dark energy equation of state parameters w0 and wa in-
creased by a factor of up to two while other parameters like

the matter density Ωm or the galaxy-dark matter bias bg
were shown to be much more robust.

The magnitude of the aforementioned types of error
scale with the size of the spectroscopic catalogue. In prac-
tise the amount of calibration data available for photometric
redshift estimation is limited. Especially broad band photo-
metric surveys require accurate calibration as their photom-
etry often does not allow a unique and accurate evaluation
of distance, independent of the chosen photometric redshift
estimation algorithm. As spectroscopic surveys use differ-
ent strategies to select their targets than their photometric
counterparts, their selection functions in color-magnitude
space are typically different. In particular the estimation
of spectra for fainter objects requires long exposure times.
Therefore faint regions of color-magnitude space are typi-
cally incompletely covered by spectroscopy.

In order to validate photometric redshifts using spec-
troscopic surveys, weights need to be introduced such that
these incompatible selection functions are corrected (e.g.
Cunha et al. 2014; Bonnett et al. 2016). In regions of color-
magnitude space where no spectroscopic calibration is avail-
able, we even need to exclude subsets of the photometric
sample to guarantee unbiased results. While the weighted
spectroscopic calibration data will mimic the photometric
science sample, the resulting density estimates will be more
noisy, as the sparsely populated high redshift tail will be
strongly upweighted (see §3.1.4). This uncertainty in the
redshift distribution has to be incorporated into the final
parameter likelihood, as it cannot be avoided even by the
most accurate bin width selection methods. In §5 we com-
pared two resampling methods to accomplish this. The first
is the commonly used bootstrap method, that failed to cor-
rect for the effect of oversmoothing. Instead we showcase
a modified version of the bootstrap. The ‘smoothed boot-

c© 2014 RAS, MNRAS 000, 1–??
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strap’ smears out the individual bootstrap samples in the
same smoothing scale as used in the original density esti-
mate. We demonstrate that this method is able to correct
for the effect of oversmoothing to good accuracy. At the
same time the smoothed bootstrap shows the same quality
in estimating the statistical noise in the redshift distribution
as the normal bootstrap. This means that we can accurately
marginalize over this remaining statistical uncertainty after
the systematic bias from oversmoothing is accounted for. In
this way we can correct the final parameter likelihood from
both sources of error.

While this work mainly adresses redshift distributions
in photometric surveys, the results presented here are read-
ily applicable to all problem settings where a distribution
needs to be estimated. This includes for example the spec-
troscopic validation of photometric redshift algorithms that
otherwise do not require a representative spectroscopic cal-
ibration dataset like template fitting or redshift estimation
using cross correlations. In order to accurately validate pho-
tometric redshift distributions, we require a sample of rep-
resentative spectroscopic galaxies. The photometric redshift
distribution that has been estimated by any photometric
redshift method can then be compared against an estimate
of this reference distribution. This distribution of spectro-
scopic calibration redshifts is however subject to the sources
of error discussed in this work. This limits our ability to
calibrate photometric redshift distributions which indirectly
contributes to the total photometric redshift error of the
respective method. We want to highlight that this applies
to photometric redshift methods that reconstruct redshift
distributions for individual galaxies as well as special pho-
tometric redshift point estimates (see e.g. Rau et al. 2015)
that estimate, in analogy to this paper, redshift distributions
of samples of galaxies. It is however especially important for
empirical photometric redshift methods based on machine
learning. These methods estimate individual object redshift
distributions and point predictions by reweighting accurate
calibration data in color space. Estimates of the individ-
ual object redshift distributions are constructed as weighted
density estimates of spectroscopic calibration data. Photo-
metric redshift point predictions can be seen as the mean or
median estimated on the weighted calibration dataset. We
refer the interested reader to (Rau et al. 2015) for a more
detailed explanation. As photometric redshift distributions
estimated using machine learning are in essence density es-
timates constructed on a weighted spectroscopic calibration
dataset, the methods discussed in this work readily apply
to them. The estimation of these weights requires a density
estimate in color space that can be the source of additional
errors that haven’t been explicitly discussed in this work.
However the same resampling techniques should also apply
here, which we highlight as a direction for future research.
While we focussed on the application to the modelling of
angular correlation power spectra, we note that the meth-
ods developed in this work will also be potentially relevant
for other two point statistics like cosmic shear spectra.

In summary, uncertainties in the photometric redshift
distribution are a limiting source of systematic error for on-
going and future photometric surveys. Their quality can only
be guaranteed by validating against highly accurate spectro-
scopic redshift measurements. Weighting methods are able
to correct for the mismatch between the spectroscopic and

photometric selection functions and the efficient bin width
selection algorithms investigated in this work are able to
avoid being systematically biased by oversmoothing the re-
sulting density estimates. We finally demonstrated, that the
smoothed bootstrap can correct the remaining cosmological
parameter biases without assuming a particular model for
the redshift uncertainty. In this way future photometric sur-
veys will be able to obtain unbiased cosmological parameter
estimates using a minimum amount of spectroscopic calibra-
tion data.
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Chapter 5
Accurate photometric redshift validation

The previous chapters provided the reader with all necessary tools to obtain redshift infor-
mation for photometrically observed galaxies using Machine Learning. We started in §3 by
proposing methods to more accurately estimate photometric redshift distributions for individ-
ual galaxies and samples of galaxies. These techniques allow us to obtain photo-z distributions
without making any assumptions about their shape or functional form. However the accuracy
of photometric redshift estimation and validation is still limited by the number of spectro-
scopic reference galaxies available to construct the estimate. As discussed in §4, a low number
of spectroscopic reference galaxies introduces significant errors in redshift distributions. We
demonstrated how these errors can be reduced and incorporated into cosmological parameter
constraints by the application of more accurate density estimates and resampling techniques.
Using the methods proposed in §4, we were able to obtain unbiased cosmological parameter
constraints using a very moderate number of accurate calibration galaxies.

This discussion however ignored additional sources of error, such as sample selection bi-
ases, or field-to-field variations in photometric noise, that strongly depend on the considered
dataset. If we expect these errors to play a significant role for the accuracy of the photo-z
estimate, we need to perform careful photometric redshift validation, which is especially im-
portant for large area photometric surveys like the Dark Energy Survey (DES) that provides
deep photometry. This chapter therefore complements the previous discussion by considering
how sample selection biases and field-to-field variations in photometric noise can lead to bi-
ased estimates of redshift performance. These effects will be discussed in the context of the
photometric redshift validation strategy of the Dark Energy survey.

Contributions and Acknowledgements The text of the chapter is based on my first
author paper ‘Sources of Error in photometric redshift calibration’, that I currently prepare
for the final review circle within the DES collaboration. I wrote the text to both the original
paper and the following chapter. I designed and performed all analyses presented in §5.3,
§5.4 and §5.5 and prepared the plots. In §5.3, I performed the described matching procedures,
obtained BPZ photometric redshift distributions and wrote the analysis pipeline to process the
photometric redshift distributions. In §5.4, I obtained the weights that match the photometric
input space to the spectrophotometric space for different numbers of nearest neighbors. All
subsequent data processing steps have also been performed by me. In §5.5, I developed the
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spline compression algorithm. I also provide a public implementation of this algorithm1.
Furthermore I ran the sparse representation code and implemented the Monte Carlo sampling
procedures. All subsequent steps of data processing have also been performed by me.

The data products and procedures described in §5.2 are the joint work from several mem-
bers of the DES photometric redshift group, most notably Ben Hoyle and Daniel Gruen. I
initially started investigating the problem of field-to-field variations in photometric noise us-
ing photometric data, that was observed several times, with varying number of exposures.
Later Ben Hoyle developed the initial version of the resampling algorithm; Daniel Gruen de-
veloped the final version. The photometric reduction of the data I use is described in detail
in Drlica-Wagner et al. (2017). Ben Hoyle contributed a script that runs the stilts program
(Taylor, 2006) and a script that calculates the k-nearest neighbor density estimate using the
sklearn package (Pedregosa et al., 2011). I use the cosmosis software (Zuntz et al., 2015) to
obtain the convergence power spectra models and the BPZ code (Benítez, 2011) using the
standard configuration of the DES photometric redshift group (Will Hartley, Boris Leisted,
Carles Sánchez). I thank my internal referees Dragan Huterer and Carles Sánchez as well
as Ben Hoyle, Michael Troxel and Gary Bernstein for valuable feedback, that improved the
content and presentation of the text.

5.1 Introduction

Data based photometric redshift validation estimates the quality of potentially inaccurate
redshift distributions of photometric galaxy samples by comparing them with more accurate
redshift distributions extracted from overlapping spectroscopic or multiband, narrow filter
photometric surveys (Hildebrandt et al., 2010; Sánchez et al., 2014; Bonnett et al., 2016;
Hildebrandt et al., 2017; Gruen & Brimioulle, 2016). Typically only a small fraction of the
full footprint of the photometric survey overlaps spatially with these validation fields and many
spectroscopic datasets only cover a small part of the full color-magnitude space of the photo-
metric science sample. As a result, photometric redshift validation is only possible for those
subsamples of the full photometric data, for which validation samples of sufficient complete-
ness are available. To validate the redshift distributions of the full sample, we therefore need
to estimate the quality of photometric redshifts using a subsample where spectroscopic, or al-
ternatively high-precision multiband, narrow filter photo-z, are available. The error estimates
obtained on these subsamples, can then be used in the science analysis of the full sample. The
DES photometric redshift validation strategy uses the COSMOS field that spatially overlaps
with DES in an ≈ 1 deg2 large footprint as its main source of photometric redshift validation.
Since this validation field is quite small, we have to additionally correct for the effect of cosmic
variance, if we want to extrapolate photometric redshift performance estimates to the much
larger footprint of the science sample. This can be achieved by performing redshift validation
on small random patches extracted from simulations and interpreting the variance between
the obtained redshift errors as a cosmic variance induced error contribution. The discussion
presented here instead focuses on possible biases within a validation field as listed in Fig. 5.1.
A detailed discussion of the cosmic variance effect can be found in Hoyle et al. (2017).

The DES photometry in the COSMOS field is significantly deeper than the photometry
of the full DES science sample. The higher quality of the photometry can be expected to
naturally translate into more accurate photometric redshift estimates as demonstrated in

1https://github.com/MarkusMichaelRau/PDFZip

https://github.com/MarkusMichaelRau/PDFZip
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Figure 5.1: Schematic illustration of the different sources of error in photometric redshift
(‘photo-z’) validation investigated in this work. To estimate the error of the photometric red-
shifts obtained on the DES science sample, we compare them with high-precision photometric
redshift estimates from the COSMOS field. To ensure that the resulting error estimate is un-
biased, we need to match the photometric noise level of the DES photometry in the COSMOS
field to the photometric depth of the DES science sample. Furthermore we investigate the
intrinsic error in the high-precision photometric redshifts used for validation. In order to effi-
ciently distribute and process the generated photo-z, we propose more accurate and efficient
compression algorithms, compared with the current state-of-the art. The last row refers to
the sections in this paper that address the respective problems.
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Sánchez et al. (2014) on DES Science Verification data. A photometric redshift algorithm
that is evaluated on this field would therefore perform significantly better compared with the
expected performance in the remaining footprint, which would result in an underestimation of
redshift error. The DES photometric redshift validation strategy therefore artifically degrades
the photometry in the COSMOS field to match the noise level in the science fields. Since this
method is based on data resampling to degrade the DES photometry in the COSMOS field, it
increases the statistical error budget on the photometric redshift error estimates as discussed
in §5.3.

As mentioned previously, unbiased photometric redshift validation requires a validation
sample, that is representative of the color-magnitude space of the full photometric science
sample and covers its full redshift range. This is typically not the case for spectroscopic
samples, that are usually quite incomplete at the faint end of the color-magnitude space. In
the DES photometric redshift validation strategy we therefore use high-precision photometric
redshifts in the COSMOS field as a substitute. The decisive advantage of this approach is, that
we find COSMOS multiband, narrow filter photometry for each DES galaxy, which guarantees
a complete photometric redshift validation sample (see Hoyle et al., 2017). While the COSMOS
high-precision photometric redshifts are of exceptional quality, they are not perfect and their
intrinsic photometric redshift error needs to be incorporated into the full validation procedure.
Incidentally this is done using spectroscopic redshifts (‘spec-z’) which are, as noted earlier,
often incomplete in color-magnitude space. The goal of §5.4 is therefore to identify those
regions of color-magnitude space, where the COSMOS high-precision photometric redshifts
can be calibrated well with spectra. This enables us to selectively set more stringent priors
on the accuracy of the COSMOS high-precision photometric redshifts in regions where our
spectroscopic validation is complete. On the other hand, we can remove those regions from
the analysis, where we expect large photometric redshift errors.

In the era of large area photometric surveys that observe hundreds of millions of galax-
ies, it is important to efficiently process and store photometric redshift distributions (see e.g.
Carrasco Kind & Brunner, 2014b). In order to reduce the storage requirements for DES, we
compare several methods to efficiently store photometric redshift distributions using a mini-
mum amount of floating point numbers per galaxy. While compression power is an important
aspect of these algorithms, they can potentially bias redshift estimates by loosing information
about the accurate form of the redshift distribution during compression. One of the most
popular techniques to compress photometric redshift distributions of individual galaxies (Car-
rasco Kind & Brunner, 2014b; Rau et al., 2015) is the Monte Carlo sampling approach. This
method ‘stores’ photometric redshift distributions by drawing a sample from each individual
galaxy redshift distribution. Having to store only a single floating point number per galaxy
is extremely efficient in terms of storage requirements and computation time. However the
reconstruction of the photometric redshift distribution of a galaxy sample using these Monte
Carlo draws, requires the application of a density estimate, that can be subject to the types
of error investigated in §4. In §5.5 we study these sources of error and discuss their impact on
the modeling of the weak lensing convergence power spectrum introduced in Eq. 1.122.

Metrics

Efficient photometric redshift validation needs to judge photometric redshift accuracy with
respect to a specific science goal, which requires the definition of a suitable performance metric.
Traditionally these metrics are aimed towards the quality of point predictions like the bias
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in the mean of the photometric redshift distribution of individual galaxies (e.g. Hildebrandt
et al., 2008, 2010; Abdalla et al., 2011; Dahlen et al., 2013; Sánchez et al., 2014). However as
discussed in §4, even if point predictions are perfect, unbiased samples from the underlying
redshift distribution, the process of constructing histograms is imperfect and can lead to errors
in the modeling of cosmological probes like angular correlation power spectra. These biases
are caused by the intrinsic error in the density estimate due to the limited sample size and
the inaccurate selection of the smoothing, i.e. the histogram bin width. As a result, it is in
general advisable to quantify photometric redshift error by the redshift induced bias in the
modeling of cosmological observables.

As weak gravitational lensing is one of the most important cosmological probes in DES,
we choose to directly quantify the photometric redshift error as the relative bias in the conver-
gence power spectrum (Eq. 1.122). We define this error metric in our analysis as the relative
difference between the convergence power spectrum calculated using the error free, unbiased,
distribution Cκ,unbiased

` and the biased redshift distribution Cbias
` :

∆ (Cκ` ) =
Cκ,bias
` − Cκ,unbiased

`

Cκ,unbiased
`

. (5.1)

The following discussion will refer to this metric as the ‘relative bias in the convergence power
spectrum’. We also define its average over the modes 20 ≤ ` ≤ 10, 000

〈∆ (Cκ` )〉 =

10,000∑
`=20

∆ (Cκ` ) (5.2)

as a summary statistic. The convergence power spectra used in this analysis where obtained
using the cosmosis software (Zuntz et al., 2015).

Probability Density Estimation

In this work we will often estimate redshift distributions of samples of galaxies from discrete
point values like spectroscopic redshifts. We will use the histogram as a density estimate and
select the histogram bin width using the Scott’s rule (Scott, 1992), which is one of the standard
bin width selection criteria implemented in many statistics packages (e.g. Jones et al., 2001–;
Astropy Collaboration et al., 2013; R Core Team, 2015). The bin width h is then selected as:

h = 3.5
σ

n1/3
(5.3)

where σ is the sample standard deviation of the redshift values and n is the number of galaxies
in the sample. We note that there exists a plethora of different methods to select the bin width
of a histogram (see e.g. Scott, 1992; Sheather, 2004; Rau et al., 2017). However the Scott’s rule
in the form of Eq. 5.3 is a standard method that can be applied efficiently to large catalogs.

We note that, if the sample is weighted, the mean and the standard deviation are modified
as

〈z〉 =

n∑
i=1

wizi (5.4)

and

σ2(z) =

n∑
i=1

wi(zi − 〈z〉)2 (5.5)
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respectively. Here the weights wi are normalized to sum to unity and n denotes the sample
size. In the case of a weighted sample, we modify the sample size used in Eq. 5.3, to be the
effective sample size defined as

neff =
(
∑n

i=1wi)
2∑n

i=1w
2
i

. (5.6)

The following discussion refers to the ‘normalized effective sample size’ Neff as the effective
sample size divided by number of galaxies n:

Neff =
neff

n
. (5.7)

We will now describe the datasets used in this analysis, concentrating on the COSMOS
validation sample. For a further description of the data and the DES survey, we refer the
reader to §8.2.

5.2 The Cosmos Validation Data

The DES Y1 analysis validates photometric redshifts in the 1 deg2 large footprint that overlaps
with the Cosmic Evolution Survey (COSMOS) (Scoville et al., 2007; Laigle et al., 2016). The
COSMOS survey provides accurate imaging information in 16 narrow photometric bands. As
a result, a complete sample of high-precision template fitting photo-z is available (Laigle et al.,
2016) to compare against the broad band DES photo-z. In addition to multiband photo-z,
spectroscopic surveys provide redshifts for 22,429 galaxies, where the zCosmos (Lilly et al.,
2007a), PRIMUS (Coil et al., 2011) and 3D-HST (Momcheva et al., 2016) surveys provide 9841,
9620 and 2176 spectroscopic redshifts each. About 792 additional spec-z have been matched
from other surveys like VVDS (Le Fèvre et al., 2005) and FMOS_COSMOS (Silverman et al.,
2015).

Using this data we generate two catalogs by combining the spectroscopic redshifts (‘COS-
MOS spec-z’) and the multiband photo-z (‘COSMOS photo-z’) with the DES photometry in
the COSMOS field. Fig. 5.2 shows, that the density of spectroscopic redshifts drops signifi-
cantly for z > 1.0, while the COSMOS photo-z sample still contains a large number of high
redshift galaxies. This is also reflected in the magnitude distributions plotted in Fig. 5.3,
where the COSMOS spec-z sample becomes very sparse for MAG i > 23. In addition we
overplot the 10% and 90% percentiles of the i band magnitude distribution of the WIDE field
sample (‘DES WIDE’), that contains the SPT and Stripe 82 regions. We see, that the DES
photometry in the COSMOS field is about 2 magnitudes deeper compared with the WIDE
field. In addition to a larger magnitude coverage, the DES photometry also has a lower pho-
tometric noise in the COSMOS field compared with the WIDE field as shown in Fig. 5.4. We
already discussed in §2.6.2, that differences in photometric noise need to be corrected to avoid
biases in the derived regression functions. To use the COSMOS field for photo-z validation,
we degrade the photometry in the COSMOS field to match the depth of the DES WIDE field
(Hoyle et al., 2017). We also note that DES is currently not using Y band photometry.2

In a first step random Stellar Locus Regression (SLR) corrections (High et al., 2009) are
drawn from the DES WIDE footprint and applied to all galaxies in COSMOS. A random

2Adding Y band is unlikely to improve the photometric redshift performance, due to its wavelength overlap
with the z band. Furthermore Y band photometry doesn’t have the same depth and coverage as the remaining
bands (see Hoyle et al., 2017).
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Figure 5.2: Redshift distributions for the spectroscopic dataset (‘COSMOS spec-z’) and the
full COSMOS high-precision calibration sample (‘COSMOS photo-z’).

galaxy ‘Rgal’ is selected in the DES Y1 footprint outside the COSMOS field and all COSMOS
galaxies that have a flux error in the DES i-band larger than that DES Y1 reference galaxy
are removed. Subsequently we determine the additional error component required to equalize
the magnitude of the flux error of Rgal and each remaining COSMOS galaxy using,

σadd-error =

√
σ (FLUX_Rgal)2 − σ (FLUX_COSMOS)2 . (5.8)

Assuming a Gaussian noise model, we then perturb the mean value of each COSMOS flux by
the corresponding value of σadd-error.

The result of this procedure is a catalog with COSMOS galaxies that have the same signal-
to-noise ratio as the DES Y1 reference galaxy. The galaxy that has the most similar magnitude
values compared with the DES Y1 reference galaxy is then identified using a χ2 fit.

In order to obtain a single catalog of N=100,000 galaxies, one repeats these steps by se-
lecting random galaxies from DES Y1 and using the same SLR corrections N times. After
generating a single catalog, the full procedure is iterated, including the random SLR correc-
tions, to obtain 180 catalogs.

The result of this resampling procedure is shown in Fig. 5.4 where we plot the fluxerror
distribution in the i-band for the datasets (‘res DES COSMOS’) that have been resampled by
the aforementioned recipe. The 2σ areas of photometric error (red) obtained on the resam-
pled datasets is in excellent agreement with the corresponding distribution of DES WIDE.
The χ2 fit used in the resampling procedure selects only those COSMOS galaxies that have
similar photometry than the galaxies in the WIDE field. As a result, the photometric selec-
tion function of the DES WIDE sample is automatically implemented in our resampled files,
i.e. the i band magnitude distribution of the resampled COSMOS validation files (‘res DES
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Figure 5.3: DES i band magnitude distributions for the spectroscopic dataset (‘COSMOS
spec-z’) and the COSMOS high-precision calibration sample (‘COSMOS photo-z’). The solid
vertical line shows the median, the dashed lines the 10% and 90% percentiles of the DES i
band magnitude distribution of the DES Year 1 WIDE sample (‘DES WIDE’).

COSMOS’) matches the one of DES WIDE as shown in Fig. 5.5. We now match the available
spectra to each of the 180 resampled COSMOS validation files to obtain the corresponding 180
spectrophotometric catalogs. The green contours in Fig. 5.5 compare the i band magnitude
distributions of these spectrophotometric subsamples (‘res COSMOS spec-z’) with the i-band
magnitude distribution of the resampled photometry ‘res DES COSMOS’. We see that there
persists a shortage of spectroscopic redshifts for faint galaxies between the resampled valida-
tion files and the spectroscopic subsample. However this discrepancy is much less pronounced
than for the original COSMOS sample prior to the application of the matching algorithm.

To avoid confusion between the various datasets used in this chapter, we strictly adhere to
the following naming convention. The spectroscopic and COSMOS high-precision photometric
redshifts available for DES galaxies in the COSMOS footprint will be referred to as ‘COSMOS
spec-z’ and ‘COSMOS photo-z’ respectively. The prefix ‘res’ indicates that the catalog has
been resampled using the recipe described previously. If the respective catalog contains DES
photometry, this method additionally degrades the flux measurements to match the signal-
to-noise ratio in DES WIDE. If the respective catalog does not contain DES photometry it
simply means that the catalog is matched against the resampled DES photo-z catalogs. Fur-
thermore the suffix ‘sp’, abbreviating ‘spectrophotometric’, indicates that only those galaxies
are selected for which spectroscopic redshifts are available.
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Figure 5.4: Distribution of i band flux error for the full DES science sample (‘DES WIDE’),
the original DES photometry in the COSMOS field (‘DES COSMOS’) and the resampled DES
photometry in the COSMOS field (‘res DES COSMOS’). The 2σ errorbars are obtained using
the 180 resampled catalogs as described in the text. Note that we show the distribution of
flux error in the i band on a logarithmic scale.

DES Photometric Redshifts

We estimate photometric redshift distributions using the template fitting code BPZ (Benítez,
2000) using the four band DES photometry in the resampled and degraded datafiles. Fig. 5.6
compares the sample redshift distribution of the DES photometric redshifts obtained on the
degraded DES photometry in the COSMOS field (‘res DES photo-z sp’) with the COSMOS
high-precision photometric redshifts (‘res COSMOS photo-z sp’) and the spectroscopic redshift
distribution (‘res COSMOS spec-z’). We reiterate, that these results have been obtained on
the resampled catalogs with artificially degraded photometry as explained in the previous
section, and only galaxies with spec-z are considered. We see that the COSMOS high-precision
photometric redshift distributions are of higher quality, as measured by their agreement with
the spec-z distribution, compared with the photometric redshift distributions obtained on the
broad band DES photometry. Especially the peaked structure of the spectroscopic redshift
distribution is washed out by the broad kernel of the DES photometric redshift estimates.
The better performance of the COSMOS multiband photometric redshifts is a result of the
higher number of photometric bands that are available in COSMOS. In contrast to DES, this
enables the COSMOS multiband photometric redshifts to more accurately trace the peaked
structure of the spectroscopic redshift distribution.
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Figure 5.5: Distribution of i band magnitude for the full DES science sample (‘DES WIDE’),
the original DES photometry in the COSMOS field (‘DES COSMOS’) and the resampled DES
photometry in the COSMOS field (‘res DES COSMOS’). The 2σ errorbars are obtained using
the 180 resampled catalogs as described in the text.

5.3 Variations in photometric noise

In this section we investigate how an increased photometric noise level degrades the photo-z
quality in the context of the COSMOS validation sample.

For this study we will compare photometric redshift estimates obtained on the DES pho-
tometry with the corresponding spectroscopic redshifts and therefore exclusively consider the
spectrophotometric subsample (‘DES photo-z sp’). To simplify the notation we will abbre-
viate ‘DES photo-z sp’ as ‘photo-z’ within this section. In addition to the photo-z obtained
on the degraded photometry (‘res photo-z), we obtain BPZ photometric redshift estimates on
the nondegraded, original DES photometry (‘orig photo-z), which are then matched to the
180 resampled data files described in the last section.

Fig. 5.7 shows the residual distributions for res photo-z and orig photo-z, where we
define the residuals as the difference between the mean zphoto of the individual galaxy photo-z
distribution and the spectroscopic redshift zspec

∆z = zphoto − zspec . (5.9)

We see that the error in ∆z is much larger for the photo-z estimates obtained on the resam-
pled photometry compared with the results obtained on the original photometry. Furthermore
the mean redshift bias for ‘res photo-z’ is larger than for ‘orig photo-z’. This suggests that
the effect of increasing the photometric noise level not only induces a bias, but also increases
the residual variance of the photo-z estimate, as to be expected from the simplified discussion
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Figure 5.6: Photometric redshift distributions obtained with the BPZ template fitting code
on the resampled and degraded photometry (‘res DES photo-z sp’), the corresponding COS-
MOS high-precision photometric redshifts (‘res COSMOS photo-z sp’) and the spectroscopic
redshift distributions (‘res DES photo-z sp’). Note that we consider only galaxies which have
spectroscopic redshift measurements. The 2σ errorbars are obtained using the resampled
datafiles as explained in the text.

in §2.6.2.
To investigate how this would affect a weak gravitational lensing analysis, we estimate the

distribution of convergence power spectra using the stacked redshift distributions, i.e. the sum
over the individual galaxy photometric redshift distributions, obtained on the resampled and
the original photometry. In order to compare with the spectroscopic ‘truth’, we obtain the
corresponding spectroscopic redshift distributions using histograms as described in §5.1.

Fig. 5.8 shows that the distribution of relative biases in the convergence power spectrum
(Eq. 5.1) is significantly wider and shows a larger bias for the BPZ predictions obtained on
the degraded photometry (‘res photo-z’) compared with the corresponding result using the
original photometry (‘orig photo-z’). Furthermore, the relative bias in the lensing convergence
power spectrum is quite high in both cases, which can be explained by the very peaked
spectroscopic redshift distribution of the spectrophotometric COSMOS sample. As shown in
Fig. 5.6 the photometric redshifts obtained on the DES photometry are not able to resolve
these large scale structure peaks. The poor performance of the DES photometric redshifts on
the spectrophotometric COSMOS sample then propagates into large biases in the convergence
power spectrum. We further note, that the relative biases in the convergence power spectrum
as a function of ` obtained for the different resampled catalogs, to good accuracy, only differ
by an offset and are highly correlated. This justifies using Eq. 5.2 as a summary statistic for
the relative bias in the convergence power spectrum.
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Figure 5.7: Distribution of photometric redshift residuals ∆z = zphot − zspec, where zphot

denotes the mean of the individual galaxy photo-z distribution and zspec the spectroscopic
reference redshifts. We show the residual distributions for the BPZ template fitting method
applied to the degraded DES photometry (‘res photo-z’) and the original DES photometry
(‘orig photo-z’) in the COSMOS field. The blue and red regions are obtained by plotting the
corresponding results for the 180 resampled datasets as described in the text.

Current weak lensing analyses (e.g. Bonnett et al., 2016; Troxel et al., 2017; DES Col-
laboration et al., 2017) assume that uncertainties in the mean of the photometric redshift
distribution are the main contributer to biases in weak gravitational lensing analyses. We
repeat the previous analysis, but center all photometric redshift distributions to the mean of
the respective spectroscopic redshift distribution. The result is shown in Fig. 5.8 for both the
original (‘orig photo-z corr’) and the resampled photometry (‘res photo-z corr’). We see, that
indeed both the bias and the variance in ∆(Cκ` ) are much smaller for the corrected photometric
redshift distributions. However there remains a significant residual error of ≈ 1% − 2% that
suggests, that errors in other statistics of the photometric redshift distribution also contribute
in a significant way to the total error budget.

5.4 Spectroscopic Incompleteness

As described in the previous sections, photometric redshifts obtained on the DES photometry
are not accurate enough to trace the narrow large scale structure peaks in the COSMOS spec-
z distribution and therefore show substantial photo-z errors. As we can reasonably expect
the redshift distribution of the full DES sample to be much smoother than this spectroscopic
reference sample, the error estimates obtained in the previous section are likely to be quite
conservative for the photo-z accuracy of DES WIDE. Furthermore, the incompleteness of the
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Figure 5.8: Bias in the convergence power spectrum for the BPZ photometric redshift predic-
tions using the degraded (‘res photo-z’) and original (‘orig photo-z’) DES photometry in the
COSMOS field. We also show the respective results if the photometric redshift distributions
are shifted such, that their mean coincides with the true, spectroscopic result (‘res photo-z
corr’ and ‘orig photo-z corr’). The 1σ error contours have been obtained using the resampled
datasets as explained in the text.

spectroscopic validation sample at the faint end of the color-magnitude space would require
removing a substantial fraction of faint, high redshift galaxies from DES WIDE. The DES
photometric redshift validation strategy therefore uses the multiband photometric redshifts
in COSMOS, as a substitute for spectroscopic redshift validation. Since the COSMOS data
extends to much greater photometric depth, we are able to maintain the high statistical
accuracy of the DES analysis without the need to remove data from our science samples.

However while the COSMOS high-precision photometric redshifts are obtained on narrow
band photometry and are therefore substantially more accurate than the DES photo-z, they
can still be subject to photo-z errors. In the following section we will quantify this error by
comparing the COSMOS multiband photo-z with spectroscopic redshifts in those regions of
color-magnitude space where spectroscopic redshifts are available.

Methodology

The general ansatz for the selection function of the spectrophotometric dataset, i.e. a dataset
with both photometry and spectroscopic redshift information, S(f , z) would depend on both
the photometric color space f as well as the spectroscopic redshift z. A selection function in
redshift dimension cannot be derived without either accurately modeling the data generation
process or using detailed simulations, as the redshift is a ‘hidden variable’ in the photomet-
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ric dataset. The simplifying assumption made in this chapter therefore assumes a selection
function that depends on the photometry alone.

We define the selection function S(f) for the joint probability distribution of the photo-
metric features f , i.e. the set of magnitudes, colors and fluxes, and the redshifts z of the
spectrophotometric sample pspec(f , z) as

pspec(f , z) = S(f) pphoto(f , z) . (5.10)

Here pphoto(f , z) denotes the joint probability distribution of the color-redshift space of the full
photometric sample, where the redshift z is unknown. For simplicity, we assume in Eq. 5.10
that the spectroscopic redshifts have negligible error compared with the true redshift. The
selection function S(f) = pspec(f)

/
pphoto(f) is therefore given as the density ratio between the

color space populated by the spectrophotometric subsample pspec(f) and the full photometric
color-magnitude space pphoto(f). Given an estimate for S(f), we can obtain weights for each
galaxy in the photometric dataset. The distribution of these weights in color-magnitude space
quantifies relative under and overdensities of spectroscopic redshifts and is therefore a metric
for the spectroscopic ‘representativeness’.

In this work we use the method of Lima et al. (2008); Cunha et al. (2009) which is based on
the nearest neighbor density estimate, that is constructed by selecting nphoto nearest neighbors
for each galaxy in the photometric dataset. This effectively constructs a hypersphere around
each photometric galaxy with radius given as the distance to its farthest nearest neighbor.
Afterwards we count the number of spectrophotometric galaxies nspec in this hyper volume.
The weights for each galaxy in the photometric dataset are then given as

wi =
1

nspec,tot

(
nspec(fi)

nphoto(fi)

)
(5.11)

where nspec,tot is the total number of galaxies in the spectrophotometric catalog. The result is
a weighted photometric dataset, that has the same (weighted) color-magnitude space as the
corresponding spectrophotometric dataset, where we use the four magnitudes in g, r, i, z as
input features. The number of nearest neighbors nphoto is a tuning coefficient that governs
the ‘smoothing’ of the density ratio estimate. It is important to note that this parameter
requires careful tuning. Choosing a small value leads to a very ‘local’ density ratio estimate,
where the weighted photometric sample will then have a very similar color-redshift distribution
compared with the spectrophotometric reference sample. On the other hand, this can also
lead to more galaxies being downweighted. The correct number of nearest neighbors therefore
needs to be chosen such, that there exists a good tradeoff between the effective sample size and
the agreement between the weighted redshift distribution and the reference distribution. The
metric that quantifies the similarity between two redshift distributions ultimately depends
on the particular science case, where we choose the relative bias in the convergence power
spectrum (Eq. 5.2).

To quantify over- and underdensities in the weighting, we define the relative weight of the
photometric galaxy as

wrel,i =
wi

1/nphoto
, (5.12)

which is the weight excess over a uniformly weighted dataset. We assume here that the set of
weights wi has already been normalized to sum to unity. We finally note, that this approach
is the inverse from the traditional methodology of weighting a spectrophotometric dataset to
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the full photometric sample. The objective of this more traditional approach is to validate a
photometric sample given a representative spectrophotometric sample. If the spectrophoto-
metric sample does not cover the full color-magnitude space of the photometric sample, the
obtained weighting scheme is not well behaved, as very few spectrophotometric galaxies are
attributed a very large weight. In contrast, our methodology would weight down the galaxies
in the full photometric sample in those regions of color-magnitude space, that are insufficiently
populated by spectroscopic calibration redshifts. This will give us both information about the
spatial extend of the incompleteness and makes these weights usable in following analyses by
defining a photometric sample of galaxies with well calibrated photometric redshifts.

Figure 5.9: Distribution of i band magnitude for the matched sample and the weighted
COSMOS multiband sample (‘NkNN = 1, 000’). The 2σ error contours are obtained using the
resampled datafiles.

5.4.1 Analysis and Results

The following analysis uses the high-precision multiband photo-z from COSMOS (‘res COS-
MOS photo-z’), the respective spectrophotometric subsample (‘res COSMOS photo-z sp’) as
well as the spectroscopic redshifts (‘res COSMOS spec-z’). We will use the weighting scheme
described in the previous section to weight ‘res COSMOS photo-z’ onto ‘res COSMOS photo-z
sp’. This means instead of matching the multiband photo-z from COSMOS onto the spectro-
scopic dataset (‘res COSMOS photo-z sp’), we attach weights to the full COSMOS photo-z
sample (‘res COSMOS photo-z’), such that it matches the color-magnitude distribution of the
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spectroscopic subsample. Ideally, the accuracy of the weighted ‘res COSMOS photo-z’, as
measured by ∆(Cκ` ), has then to coincide with the accuracy of ‘res COSMOS photo-z sp’.

To unclutter the notation, this section refers to the weighted ‘res COSMOS photo-z’ sam-
ple, simply with the number of nearest neighbors selected during weighting, e.g. NkNN = 1000.
The corresponding spectrophotometric sample, i.e. ‘res COSMOS photo-z sp’, will be simply
called the ’matched sample’. All performance estimates are obtained with respect to the re-
spective spectroscopic distributions. The statistical error estimates are obtained from the 180
resampled datafiles.

As noted earlier, we obtain a weight for each photometric galaxy, that quantifies the
relative density of surrounding spectroscopic galaxies in color-magnitude space. In order to
calculate the weights using Eq. 5.11, we need to tune the number of nearest neighbors NkNN

to consider in the density ratio estimate. Typically the accuracy of these weighting schemes
is quantified as the agreement between weighted and target magnitude distribution (see e.g.
Sánchez et al., 2014; Bonnett et al., 2016). This is shown in Fig. 5.10, where we compare the
distribution in the DES i band magnitude for the matched sample and NkNN = 1, 000. Both
distributions are in excellent agreement, which suggests that the weighting scheme is sufficient
to mimic the color-magnitude space of the spectrophotometric sample.

Fig. 5.10 shows the corresponding mean relative bias in the convergence power spectrum
for various numbers of nearest neighbors. Despite the consistency in terms of the magnitude
distribution, the weighted photometric redshift distribution using 1,000 nearest neighbors
(‘NkNN = 1000’), shows a noticeably larger bias, compared with the results that use a lower
number of nearest neighbors and therefore a more local culling. The improved accuracy gained
by reducing the number of nearest neighbors comes at the price of a reduced normalized
effective sample size (Eq. 5.7). Comparing with the error obtained using the matched sample,
we see that the weighted COSMOS multiband photo-z still perform considerably worse even
if we cull away almost half of the data, as shown by the extreme point NkNN = 10.

We can therefore conclude that while the matched sample of COSMOS has almost an order
of magnitude lower error than the DES photometric redshifts, it is difficult to extrapolate this
result in color space. Even a very stringent weighting scheme using NkNN = 10 will increase
the error budget by a couple of percent. Furthermore, judging the number of nearest neighbors
purely in terms of the agreement in the magnitude distributions is not accurate enough, if the
selection function is very local, as is the case for the spectrophotometric COSMOS sample.

We further illustrate the sample selection bias in Fig. 5.11 using a scatter plot of the g− r
color against the r−i color of the DES COSMOS sample in several bins of the COSMOS high-
precision photometric redshift using NkNN = 100, which is a modest weighting scheme that
still maintains a decent sample size (Neff = 0.75). The color coding illustrates the relative
weight (Eq. 5.12), which is a measure of how representative the spectrophotometric sample
is for the full DES photometric color space in the COSMOS footprint. Each tomographic bin
contains the same number of galaxies, where we plot 3,000 galaxies in each bin, randomly
drawn from all resampled datasets of the DES photometry in the COSMOS field. Dark
areas correspond to a low relative weight, i.e. a weight decrement over an equally weighted
sample, light regions indicate overdensities of spectroscopic calibration redshifts. We see
that underpopulated regions can be especially found in the highest photometric redshift bin
zphot = [0.98, 5.87] and on the edges of the color-magnitude space in lower redshift bins. This
shows, that the spectroscopic surveys cover the color-magnitude space very irregularly and
especially sparse at the faint end.
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Figure 5.10: Average relative bias in the convergence power spectrum as a function of the
normalized effective sample size Neff (Eq. 5.7). A low value indicates that many galaxies in
the photometric dataset (res COSMOS photo-z sp) are downweighted due to the incomplete
coverage with spectroscopic galaxies in these regions. The points correspond to a different
number of nearest neighbors NkNN used during weighting. The brown 1σ contour corresponds
to the relative bias obtained using the matched sample. All 1σ errrorbars are estimated using
the resampled datasets as described in the text.
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Figure 5.11: Scatter plot of the g− r color against the r− i color of the full DES photometric color space in the COSMOS field. The
subplots show the color space g− r vs r− i equal frequency binned in terms of COSMOS photo-z, where the interval limits are quoted
in the subplot titles. The color coding is a measure of how representative the spectrophotometric subsample is for this full photometric
color space. Light yellow areas correspond to a large relative weight (Eq. 5.12) and dark blue areas to a low relative weight.
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5.5 Compressing photometric redshift distributions

Figure 5.12: Average relative bias in the convergence power spectrum (Eq. 5.2) obtained for
different compression methods, where we compare the accuracy of the compressed distribution
with the original uncompressed distribution. We show the performance of the Sparse repre-
sentation method (‘Sparse’), the Spline compression method that uses 16/25 floating point
numbers per galaxy (‘Spl 16/25’), and the Monte Carlo sampling method that draws 10 (‘MC
10’), 20 (‘MC 20’) and 1,000 (‘MC 1000’) samples per individual galaxy redshift distribution.
The case MC 1000 used the same bin width (∆z = 0.01) as the Y1 science analysis. In all
other applications of the MC method, we used the Scotts rule (Eq. 5.3) to select the bin
width. The dashed blue line highlights the origin, i.e. the best possible performance. The 2σ
errorbars are obtained using the resampled datasets as described in the text.

The accurate and efficient representation of photometric redshift distributions becomes
increasingly important, especially if hundreds of millions of galaxies need to be processed in
current and future large area photometric surveys. It is therefore timely to devise efficient
and accurate methods to compress and represent photometric redshift distributions.

This section investigates, how inaccurate compression and representation of redshift distri-
butions can lead to biases in the convergence power spectrum. We evaluate several compression
algorithms using the BPZ photo-z distributions obtained on the 180 resampled datafiles of
DES photometry within the spectrophotometric subsample, that each contain about 15,500
galaxies. The following section will introduce the methods and the evaluation strategy used
in this section.
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5.5.1 Compression Algorithms

The current DES photometric redshift strategy uses the Monte Carlo Sampling algorithm
as their primary technique to distribute photometric redshift distributions. The following
sections will quantify the error in this technique in comparison with contemporary methods.

Monte Carlo Sampling

The Monte Carlo (MC) sampling approach draws a single redshift from each individual galaxy
redshift distribution in the galaxy catalog. These Monte Carlo samples are then used to
reconstruct the redshift distribution of the galaxy sample. The MC approach is extremely
storage efficient, as it allows the estimation of sample redshift distributions using a single
floating point number per galaxy. On the other hand, this recipe loses information about
the exact shape of the individual galaxy redshift distributions in the sampling process. The
application of density estimates, e.g. histograms, can then lead to an intrinsic error in the
reconstruction as discussed in §4.

Spline Compression

The Spline compression algorithm is based on the simple idea to interpolate a smooth photo-
metric redshift distribution using Spline interpolation and evaluate this density on a coarser
grid. As photometric redshift distributions are typically peaked closely around a best fitting
redshift, we can significantly reduce the total number of density values to store, by cutting
out regions of the photometric redshift distribution that do not contribute much to the overall
density. The total number of data points that need to be stored are the density values at the
grid points, that are above a predefined threshold, as well as the start and end indices on the
grid. In this way we are cutting away the leftmost and rightmost part of the distribution until
we reach density values above the predefined threshold. The accuracy and efficiency of this
discretization will therefore depend on the number of grid points used in the interpolation,
the threshold and the redshift range of the photometric redshift distribution. The number of
floating point numbers that need to be stored using this method is typically around 20 num-
bers per galaxy, even for a large redshift range of 0.0 < z < 3.0. The accuracy of the Spline
compression method is quite insensitive to the floating point accuracy of the stored density
values. We can therefore store them as 16 bit floats and the two indexes as 8 bit unsigned
integers. In contrast to using Monte Carlo samples from the distribution, the Spline compres-
sion method directly compresses the shape of the distribution. As noted earlier, the method
interpolates each individual galaxy redshift distribution on a fixed grid. Redshift distributions
of samples of galaxies are therefore efficiently constructed by summing up the density values
evaluated at these grid points. It has to be emphasized that this method is computationally
extremely efficient and easy to implement and use.

Sparse Representation

The Sparse representation method (Carrasco Kind & Brunner, 2014b) is based on the concept
of ‘dictionary learning’ (Mairal et al., 2009) and decomposes a photometric redshift distri-
bution pk(z) of the galaxy k as a linear combination of basis functions at each grid point

pk(z) = D δk , (5.13)
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where D is the ‘dictionary matrix’ and δk is the solution vector. The dictionary matrix has
n ×m dimensions where n is the number of points in the original photometric redshift dis-
tribution and m is the number of basis functions. In general the number of basis functions is
much larger than the number of points in the original redshift distribution m > n. The Sparse
representation technique optimizes this overdetermined system of equations, to optimally rep-
resent the original shape of the redshift distribution. The basis functions are selected to be
Gaussian and additionally include Voigt profiles to mimic the extended wings that are present
in some photometric redshift distributions. We refer the interested reader to Carrasco Kind
& Brunner (2014b) for a more in depth description of the method.3 For the following analysis
we use a set of 20 basis functions.

5.5.2 Analysis and Results

To evaluate the quality of the compression, we will first compress and subsequently decom-
press the individual galaxy redshift distributions. If the compression scheme is inaccurate,
the decompressed sample redshift distributions will no longer coincide with the original dis-
tributions. We then quantify this error in terms of the average bias in the convergence power
spectrum (Eq. 5.2).

In analogy to the previous sections, Fig. 5.12 shows the photometric redshift accuracy
in terms of the relative bias in the convergence power spectrum (Eq. 5.2), where we plot
2σ error bars. We see that the Sparse representation and Spline compression algorithm that
use 25 floating point numbers per galaxy perform quite well, while the Sparse representation
algorithm shows a much greater variance compared with Spl 254. The compression power of
both algorithms is comparable, where the Sparse representation algorithm uses 20 bases per
galaxy and the Spline compression about 25 step points. Decreasing the number of step points
to be stored in the Spline compression method leads to a slight increase in error as shown for
the case of Spl 16. However even this accuracy is still well below 0.5 % and therefore negligible
compared with the typical biases to be expected for the high precision photo-z in COSMOS.
While the Sparse representation method produces quite accurate results, we note that it
requires considerable computation time. We therefore evaluated its performance not on the full
set of redshift distributions but on a smaller random subset containing about 1,500 individual
galaxy redshift distributions. We also compared the performance of the Spline compression
algorithm with a Wavelet compression algorithm (Julia Gschwend personal communication)
of similar compression power, finding that both techniques produce a comparable error.

In contrast, the Monte Carlo sampling methods can lead to significant errors, especially if
only a single Monte Carlo draw (‘MC 1’) is used. However this error is quickly reduced, if we
increase the number of MC samples. For 20 Monte Carlo samples we even reach comparable
accuracy with the more sophisticated compression strategies, which suggests that for the
purpose of storing photometric redshift distributions to reconstruct redshift distributions of
samples of galaxies, this method suffices. We further simulated a ‘DES-like’ sample size
by drawing 1000 Monte Carlo samples. Since the spectrophotometric datasets we consider
contain about 15,500 galaxies, the ‘MC 1000’ result corresponds approximately to the expected
performance of the MC method on a weak lensing photometric reshift distribution in DES.
For this case we made sure to use the same binning scheme (h = 0.01) that is used in the DES
cosmic shear analysis. As can be seen ‘MC 1000’ performs very well and we do not expect that

3We used the implementation of this method as available at https://github.com/mgckind/SparsePz.
4If the errorbars are not visible, they are smaller than the pointsize.
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the Monte Carlo method contributes in any significant way to the error budget at these large
sample sizes, at least if we consider smooth redshift distributions in a weak lensing analysis.

5.6 Summary

The accurate estimation of photometric redshift distributions for large area photometric sur-
veys like DES is an important prerequisite to use these surveys for precision cosmology. The
broad band filters used in these surveys however provide only limited information about the
spectral energy distribution of the galaxies. Measurements of their redshift are therefore typi-
cally subject to errors, that need to be accurately controlled, to ensure unbiased cosmological
parameter constraints.

Photometric redshift calibration compares the photometric redshift estimates obtained on
this broad band photometry with more accurate calibration data typically taken from over-
lapping spectroscopic surveys. However previous studies in DES Science Verification (Bonnett
et al., 2016) suggest that the available spectroscopic samples for DES are highly incomplete,
especially at the faint end of the color-magnitude space. In the DES Y1 photometric redshift
validation pipeline we therefore use complete and accurate multiband, narrow filter photomet-
ric redshifts in the COSMOS field as the main source of redshift calibration. To ensure that the
redshift performance estimates obtained on this COSMOS validation data agree with the per-
formance on the full Dark Energy Survey Year 1 (DES WIDE) sample, we need to accurately
control several sources of systematic error. This paper focuses on three of the most dominant
effects, that need to be controlled to ensure accurate photometric redshift validation. The first
effect we addressed, is the larger depth of the DES photometry in the COSMOS field compared
with the DES WIDE sample. As higher quality photometry naturally translates into more
accurate photometric redshift estimates, we would underestimate the photometric redshift er-
ror budget without adapting the DES photometry in the COSMOS field to be representative
of the signal-to-noise in the DES WIDE sample. The DES photometric redshift validation
pipeline corrects this, by degrading the DES photometry in the COSMOS field to ensure a
consistent signal-to-noise ratio between the COSMOS validation field and the DES Y1 science
sample. This is done using a resampling technique, that generates a set of validation files that
can then be used to validate the DES photometric redshifts. In §5.3 we demonstrate that the
differences in photometric noise significantly degrade the quality of the photometric redshift
estimate both in terms of a systematic bias, as well as in terms of an increased statistical
variance. We also discuss that the large biases in the lensing convergence power spectrum we
obtain using the DES photo-z as compared with the results obtained using spec-z is a result
of the large-scale-structure peaks in the spectroscopic dataset, that are largely oversmoothed
by the broad resolution of the DES photometric redshifts. The distributions in larger fields
will very likely be much smoother and the DES photo-z will perform significantly better.

The ill-controlled selection functions in spectroscopic data make the validation of DES
photo-z using spectroscopic redshifts difficult. Furthermore, the spectroscopic validation data
available for DES is very sparse at the faint end of the color-magnitude space. The DES Y1
photometric redshift validation strategy is therefore based on using high-precision photometric
redshifts in the COSMOS field as the main source of photometric redshift validation (Hoyle
et al., 2017). While this strategy largely provides a complete source of validation, it is still
important to validate the high-precision photo-z in COSMOS, to control their intrinsic photo-
z error. In §5.4 we analyze which areas of color-magnitude space are populated by accurate
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spectroscopic validation data, by weighting the full DES photometric sample in the COSMOS
footprint onto the spectrophotometric subsample. This method gives very low weight to all
galaxies in the photometric sample that occupy regions with few spectroscopic redshifts and
therefore effectively removes all regions of color-magnitude space with incomplete spectroscopic
coverage. The photo-z performance of this weighted photometric sample can then be compared
with the matched spectrophotometric sample, where an exact spectroscopic redshift estimate
is available for each photometric galaxy. By carefully tuning this weighting procedure, we
find that we can validate the full DES photometric sample in the COSMOS footprint up
to an normalized effective sample size (Eq. 5.7) of 75% of its full, unweighted sample size.
However we still obtain a relatively large relative bias of ≈ 4% in the lensing convergence
power spectrum compared with the results obtained using the spectroscopic distribution. This
is larger than the corresponding 1% relative bias for the spectrophotometric subsample. The
inconsistency between the performance obtained on the spectrophotometric dataset and the
weighted photometric dataset makes it problematic to extrapolate the 1% error to other regions
of color magnitude space. We therefore suggest the usage of conservative error estimates for
the accuracy of the COSMOS multiband photo-z, as their accuracy cannot be quantified in a
reliable way using the available spectroscopic data.

Ongoing and future large area photometric surveys will obtain photometric information for
hundreds of millions of galaxies. The rapid increase in the size of the photometric data sets,
raises the demand for the accurate and efficient storage of photo-z distributions of individual
galaxies. A commonly used technique to efficiently compress photometric redshift distributions
is the Monte Carlo sampling method, that draws a single sample from each individual galaxy
redshift distribution. The redshift distribution of samples of galaxies is then reconstructed
using these Monte Carlo draws. As shown in §5.5.2 this methodology can lead to a significant
error of 1% within 2σ when applied to a relatively small sample size of about 15,500 galaxies.
In these cases, where the sample size is small, we suggest using the more accurate compression
algorithms described in this work e.g. the Spline compression method. However for a large,
‘DES Y1-like’ sample size of ≈ 15, 000, 000 galaxies, this error component is negligible. This is
also in agreement with similar work from Carrasco Kind & Brunner (2014b); Rau et al. (2015)
and the analyses presented in §4. We however note that the accuracy of density estimates, and
therefore of the MC technique, is strongly dependent on the shape of the photometric redshift
distribution and the cosmological probe under consideration. In this regard, the smooth DES
photo-z distribution did favour this method.

Future large area photometric surveys are expected to observe hundreds of millions of
galaxies to an unprecedented depth and accuracy. While these datasets provide exciting
chances to improve our understanding of the Universe and the growth of structure, it also
sets high requirements on the control of systematic sources of error. Photometric redshift
uncertainty is a major component of the overall error budget in these surveys. It is there-
fore paramount to incorporate all sources of error into the photometric redshift validation
pipeline. This work contributes to this effort by studying the effect of sources of error that
bias photo-z distributions: variations in the photometric noise level, incomplete spectroscopic
calibration samples and the intrinsic error from misrepresenting photometric redshift distri-
butions. The combined error budget from these sources of error can then be incorporated into
the cosmological analysis.
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Chapter 6
Conclusions and Future Work

Photometric redshift estimation is one of the most exciting technical challenges for precision
cosmology. This thesis developed a complete photometric redshift methodology based on
Machine Learning, that not only enables the accurate estimation of photometric redshifts, but
also incorporates modeling errors in photometric redshift distributions into the subsequent
cosmological analysis. In addition to the development of algorithms to estimate photometric
redshifts, I also investigated several different sources of error that can bias the validation of
photometric redshifts in the context of the Dark Energy Survey.

I developed accurate methods to estimate photometric redshift distributions for individual
galaxies and samples of galaxies using Machine Learning. As demonstrated in §3 using public
CFHTLenS data, these methods significantly improve the modeling of cosmological probes,
such as angular correlation functions and cosmic shear correlation functions, as well as cluster
mass estimates, over results obtained using more traditional methodologies like Neural Net-
works. The algorithms developed in §3 not only enable the accurate modeling of photometric
redshift distributions, but make their storage and processing more efficient. The Highest
Weight Element method enables the accurate estimation of photometric redshift distributions
for samples of galaxies using a single floating point number per galaxy, and a method based on
Gaussian Mixture models expresses individual galaxy redshift distributions using on average
between 2 to 5 floating point numbers.

However the accuracy of the constructed redshift distributions depends on the number of
available calibration galaxies and the selected model parameters. Especially their estimation
using histograms or kernel density estimates can lead to biased distributions, if the sample
size is low or the bin width inproperly chosen. It is worthy to note that this issue affects all
cases where a distribution needs to be estimated on a finite sample, like photometric redshift
validation using spectroscopic redshifts. To avoid cosmological parameter biases, I investigated
in §4 how this statistical error can be incorporated into the cosmological analysis. This will
be especially important for cosmological probes that are particularly sensitive to photometric
redshift errors like galaxy clustering. I demonstrated that the selection of a too large bin
width oversmoothes the small scale structure of the cosmic density field, which can lead to
systematic biases in the derived cosmological parameters. To reduce these errors, I discussed
more accurate bin width selection algorithms that adapt the size of the bins with the shape
of the distribution and the available sample size. However even if more advanced bin width
selection algorithms are used, errors can still persist. I sucessfully incorporated these sources of
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error into the cosmological analysis using a resampling technique, that quantifies the bias and
the variance in the redshift distribution estimate and then corrects the parameter constraints
accordingly. I demonstrate the success of this method using a DES-like galaxy clustering
forecast.

In §5, I investigated sources of error that bias photometric redshift distributions in the
context of the Dark Energy Survey photometric redshift validation strategy, that uses the
COSMOS field as their primary source of redshift validation. I demonstrated, that field-to-
field variations in photometric noise severely degrade the accuracy of photometric redshift
estimates and can therefore severely bias the photometric redshift validation. In a subsequent
analysis, I investigated which areas of the COSMOS color-magnitude space are sufficiently
populated with spectroscopic reference galaxies. I find that the spectroscopic subsample cov-
ers the color-magnitude space of COSMOS only insufficiently. As a result, spectroscopic
validation samples in the Dark Energy Survey are too incomplete to provide accurate esti-
mates of photometric redshift performance. The alternative option is a validation using the
high-precision photometric redshifts provided by the COSMOS survey. These redshifts are of
much higher quality than the broad band photometric redshifts obtained on the DES photom-
etry. While these photometric redshifts still have an error, I find that by adding a relatively
modest error budget of 3-4 times the expected photometric redshift accuracy to the analysis,
one can extend the validation to about 75% of the full photometric sample. As large area
photometric surveys require the estimation of photometric redshifts for hundreds of millions
of galaxies, compression algorithms for photometric redshift distributions are an important
aspect of the photometric redshift strategy. I therefore investigated the compression accuracy
of several compression methods in the context of the accurate modeling of convergence power
spectra. I found that for this science goal, the simple Monte Carlo sampling method provides
sufficient accuracy given the large sample sizes in the DES catalogs. However especially for
smaller sample sizes, alternative methods that store the full shape of the individual galaxy
redshift distributions, like the Spline compression method I developed, can be preferable. My
work in the DES photometric redshift group significantly contributed to the development of
the photometric redshift validation procedure and therefore to the accurate validation of the
DES Y1 photometric redshift distributions. These derived errors are an important part of the
DES Y1 cosmological analysis (DES Collaboration et al., 2017).

Looking ahead, photometric redshift uncertainty will likely remain an important systematic
in large area photometric surveys for years to come. Especially the lack of complete and accu-
rate spectroscopic validation data at the faint end of the color-magnitude space is a significant
problem, as it prevents a direct estimation of redshift quality. Extended follow-up programs
using multiband photometric and spectroscopic surveys, will definitely contribute to a solu-
tion. However performing representative spectroscopic follow-up to magnitudes of i < 24, in
a large enough footprint to avoid cosmic variance, is certainly ambitious and perhaps even
impractical. A more realistic alternative might be follow-up by narrow filter, multiband pho-
tometric surveys, which would certainly reduce the danger of incomplete calibration samples.
However we might also run into the risk of misestimating the error in the derived redshifts
that have been, after all, obtained using template fitting or Machine Learning techniques.
These considerations should however not be seen as a statment against these programs, but
against the overreliance on them. The problem of photometric redshift estimation will not be
solved by a single method or strategy, but requires the combination of various approaches and
follow-up programs to complement each other.

Alternative methods that cross correlate spectroscopic with photometric samples to derive
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photometric redshift information (e.g. Newman, 2008; Ménard et al., 2013; Morrison et al.,
2017) are already an integral part of modern photometric redshift strategies (Hildebrandt
et al., 2017; Hoyle et al., 2017). As these methods do not require the spectroscopic refer-
ence sample to be representative of the photometric sample, they provide complementary
information to template fitting and Machine Learning approaches. Especially if photometric
redshift strategies begin to rely heavily on cross correlation estimates, we have to account for
additional systematics and might even reconcile future survey designs. The shape of the pho-
tometric redshift distribution, as estimated by cross correlations, is degenerate with a redshift
dependent galaxy-dark matter bias of both the reference sample and the photometric sam-
ple. As a result, it is advantageous for these methods, if photometric samples can be selected
within thin redshift slices. This can be done, for instance, by traditional photometric redshift
techniques using photometry of high enough quality in a sufficient number of bands. Besides
relying on spatial overlap, cross correlation methods have to cover the full redshift range of
the unknown sample. This is by no means a trivial assumption and the clustering redshift
analysis in DES Y1 is currently unable to calibrate redshifts z > 0.9, because of the redshift
limit in their reference sample (Hoyle et al., 2017). It is therefore vital to ensure that samples
of suitable, high redshift sources, e.g. emission-line galaxies, quasars or luminous red galaxies,
are available in sufficient density and spatial coverage, to optimize the effectiveness of these
methods. Future spectroscopic follow-up programs dedicated to improve redshift validation
for large area photometric surveys, therefore have to optimize their target selection not only to
meet the demands of data based photometric redshift methodologies, but also to meet those
of cross correlation methods.

The possible degeneracy of cross correlation redshifts with cosmological parameters might
be avoided by including the respective cross correlation measurements into the joint data vec-
tor. This will also enable the consistent parametrization of various sources of systematic error,
to facilitate self calibration of redshift systematics by cross correlations between neighboring
photometric redshift bins and cosmological probes (e.g. Zhang et al., 2010; Benjamin et al.,
2010; Zhang et al., 2016). In addition, redshift calibration based on shear ratios (Jain &
Taylor, 2003; Taylor et al., 2007; Kitching et al., 2015; Schneider, 2016) can provide not only
a diagnostic tool for shear systematics but also for photometric redshift error.

The field of photometric redshift estimation is clearly not lacking ideas and techniques that
can complement the well established methods based on template fitting and Machine Learning.
However combining all these approaches into a self consistent framework, will be one of the
main challenges in the following years. State-of-the-art weak gravitational lensing and galaxy
clustering analyses already parametrize the mean of the tomographic redshift distributions as
free parameters (e.g. Bonnett et al., 2016; Troxel et al., 2017; DES Collaboration et al., 2017)
and select the priors based on the result of photometric redshift validation. However extensive
studies that investigate more flexible parametrizations, as well as the synergy between differ-
ent photometric redshift methods are still somewhat lacking. Future work in this direction
would develop a better understanding of the complementarity of different photometric redshift
techniques and therefore prevent systematic biases in the cosmological analysis.
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Chapter 7
Additional Projects

During my PhD I contributed to several projects that have not been explicitly mentioned in
the previous chapters. In the following, I would like to present a selection of these projects,
where my complete publication list is attached at the end of this thesis.

7.1 Dark Energy Survey Year 1 Results: Redshift distributions
of the weak lensing source galaxies

Motivation and Goal The Dark Energy Survey (DES) is a large area photometric survey
in the southern sky that covers a total area of 5000 deg2. Its main science goal is to study
dark energy and cosmic acceleration to high statistical precision, where we give a more de-
tailed description of the survey and its science goals in §8. DES is one of the most powerful
experiments for weak gravitational lensing today, due to its large area and deep photometry.
The modeling of lensing observables however requires accurate photometric redshift estimates
for the weak lensing source galaxies. In the paper Hoyle et al. (2017), we present the pho-
tometric redshift distributions and the validation results for the Dark Energy Survey Year 1
(DES Y1) weak lensing source galaxies, that are used in the DES Y1 science analyses (Troxel
et al., 2017; Prat et al., 2017; DES Collaboration et al., 2017).

Analysis We use the template fitting photometric redshift code BPZ (Benítez, 2000) to de-
rive the tomographic redshift distributions1 within the redshift ranges (z-range) quoted in Tab.
7.1. However, as discussed throughout this thesis, these photometric redshift distributions are
likely to be inaccurate. The DES Y1 analysis therefore parametrizes the redshift error in a to-
mographic photometric redshift bin ni(z) as a shift δz in its mean as ni(z) = niphoto−z(z−∆zi)
(Hoyle et al., 2017). We demonstrated in the previous section §5.3, that biases in the mean of
a redshift distribution are the dominant source of error for the modelling of the lensing conver-
gence power spectrum. In this paper (Hoyle et al., 2017) we further test this assumption and
verify, that cosmological parameter shifts induced by differences in the shape of the redshift
distribution, as opposed to shifts in the mean, are negligible for the DES Y1 analysis. Photo-
metric redshift error estimates are therefore quoted as shifts in the mean of the tomographic

1Tomographic photometric redshift distributions are redshift distributions for samples of galaxies that are
binned using a photometric redshift point estimate into photometric redshift bins.
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Table 7.1: Photometric redshift bias parameters ∆z for the tomographic photometric redshift
distributions estimated using BPZ. Adopted from Hoyle et al. (2017).

Value Bin 1 Bin 2 Bin 3 Bin 4
z-range 0.20–0.43 0.43–0.63 0.63–0.90 0.90-1.30
COSMOS ∆zi ±0.013 ±0.013 ±0.011 ±0.014

METACALIBRATION

COSMOS final ∆zi −0.006± 0.020 −0.014± 0.021 +0.018± 0.018 −0.018± 0.022
WZ final ∆zi +0.007± 0.026 −0.023± 0.017 +0.003± 0.014 —
Total final ∆zi −0.001± 0.016 −0.019± 0.013 +0.009± 0.011 −0.018± 0.022

im3shape

COSMOS final ∆zi +0.001± 0.020 −0.014± 0.021 +0.008± 0.018 −0.057± 0.022
WZ final ∆zi +0.008± 0.026 −0.031± 0.017 −0.010± 0.014 —
Total ∆zi +0.004± 0.016 −0.024± 0.013 −0.003± 0.011 −0.057± 0.022

photometric redshift distributions

∆zi = ∆i
sys ±∆i

stat , (7.1)

where ∆i
sys is the systematic error contribution and ∆i

stat is the statistical error of the ith
tomographic photometric redshift bin. The subsequent cosmological analysis then marginalizes
over these shifts.

We derive photo-z error estimates using both clustering redshift methods and data based
photometric redshift validation using the COSMOS field. Both methods are complementary in
their sources of systematic error and their data dependence. While the data based validation
strategy uses the multiband photometric redshifts from COSMOS as a source of redshift
validation, the cross-correlation methods employ high-precision photometric redshifts from
red-sequence galaxies, obtained using the redMaGiC algorithm (Rozo et al., 2016), as their
reference sample2. The complementarity of both the calibration data and the validation
methodology, is a vital consistency check to derive meaningful photometric redshift errors.

In §5 we discussed three of the most important sources of photometric redshift error that
are incorporated into the data based DES photometric redshift validation strategy: field-to-
field variations in photometric noise, nonrepresentative calibration redshifts and inaccurate
compression methods for individual galaxy photometric redshift distributions. An additional,
important adverse effect, that was neglected in these previous discussions is cosmic variance.
Since the accuracy of photometric redshifts varies spatially due to local variations in the
galaxy density field, error estimates obtained in a small field, are not representative for the
photo-z performance of the full survey. With an area of ≈ 1 deg2, the COSMOS field is a
relatively small validation field compared with the 1800 deg2 large area of DES Y1. Cosmic
variance therefore contributes significantly to the overall photometric redshift error budget
and needs to be incorporated into the photo-z validation. This is done by extracting small
COSMOS-like patches from the Buzzard simulations (DeRose et al. in prep.; Wechsler et

2The redMaGiC photo-z are used as a substitute for spectroscopic data, because there are currently no
suitable spectroscopic surveys available that have sufficient spatial overlap with the Y1 footprint.
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al. in prep.; MacCrann et al. in prep.) to measure the corresponding photometric redshift
error on these subsamples. The distribution of photometric redshift error obtained on these
simulation samples then quantifies the cosmic variance error budget. For a detailed discussion
of the various error components, we refer the reader to Hoyle et al. (2017).

The DES photometric redshift validation pipeline evaluates the performance of a particular
photometric redshift code for a given set of tomographic photometric redshift bins. The error
estimates are quantified as offsets in the mean of the tomographic redshift distributions and
incorporate all of the aforementioned sources of photometric redshift error, that are to be
expected in the DES Y1 analyses. The algorithm is then applied to a set of resampled
datafiles that resemble the photometric noise properties of the DES Y1 science sample. The
dispersion of redshift performance evaluated on these datafiles is then added in quadrature
to the other sources of error from e.g. cosmic variance or the intrinsic uncertainty of the
COSMOS photometric redshifts. The final result of the pipeline is a set of offsets in the
mean of the tomographic photometric redshift distributions, that is then combined with the
clustering based photometric redshift validation performance estimates.

Clustering based redshift estimation (‘WZ’) cross-correlates a reference catalog with accu-
rate redshifts with a spatially overlapping photometric redshift sample to derive photometric
redshift information. These clustering redshift estimates can then be used as a complemen-
tary photometric redshift validation technique, alongside the data based approaches. However,
clustering based photometric redshift estimation can also be subject to a variety of systematic
biases. The clustering estimate depends on accurately accounting for a redshift dependent
galaxy-dark matter bias in both the reference sample, as well as in the photometric sample.
Furthermore, the intrinsic redshift error in the redMaGiC sample, which is |∆z| < 0.01 (Gatti
et al., 2017), contributes as an additional source of error, that needs to be quantified, to avoid
systematic biases in the derived cross correlation photometric redshift estimates. We refer to
our paper (Gatti et al., 2017) for an in-depth study of these sources of error. Most importantly
however we note, that the redMaGiC galaxies only cover a redshift range of 0.15 < z < 0.9
(Rozo et al., 2016). Accordingly the last tomographic bin can only be validated using the data
based methodology on the COSMOS field.

Results Fig. 7.1 shows the photometric redshift distributions of the 4 tomographic photo-
metric redshift bins of the weak lensing source galaxy sample, with error estimates obtained
from both photometric redshift validation strategies. We see, that the results obtained using
the two redshift validation approaches differ significantly in shape for the first three tomo-
graphic photometric redshift bins. The large error contours around the ‘COSMOS’ estimate,
that corresponds to the data based strategy in the COSMOS field, is a result of the aformen-
tioned error contributions, i.e. cosmic variance, field-to-field variations in photometric noise
and the intrinsic uncertainty of the COSMOS photo-z. The error bars on the clustering red-
shift estimates (WZ) account for its statistical shot noise. As noted earlier, we verified that
differences in the shape of the tomographic photometric redshift distributions don’t contribute
significantly to the overall error budget, at least at the level of accuracy required in the DES
Y1 analysis. Tab. 7.1 summarizes the final error estimates in terms of shifts in the mean of
the tomographic photometric redshift distributions ∆z. The combined error from effects like
e.g. cosmic variance or photometric calibration uncertainties, shown in the ‘COSMOS ∆zi’
row, are corrected for correlations between tomographic redshift bins to yield the statistical
error estimate ∆stat (see Eq. 7.1), in the ‘COSMOS final ∆zi’ row. The systematic error ∆sys
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(see Eq. 7.1) is obtained by validating the BPZ photometric redshift distributions against the
COSMOS validation data. We then combine this result with the calibration from the clustering
redshift estimate, quoted in the ‘WZ final ∆zi’ row. Both of these results directly depend on
the BPZ photometric redshift estimates and therefore on the photometry. We therefore con-
sider the two photometric reductions used in the DES Y1 analysis, ‘METACALIBRATION’
and ’im3shape’ separately, as explained in detail in Rozo et al. (2016). For each separate
photometry, we compute the total error, quoted in the ‘Total ∆zi’ row, by combining the
error from the clustering redshift method and the data based COSMOS photometric redshift
validation pipeline, as independent measurements3.

Contributions and Acknowledgements During my work in the DES photo-z group, I
contributed to the development of the various parts of the photo-z validation pipeline. Most
notably I was involved in the early study of field-to-field variations in photometric noise and
investigated sample selection biases using simulation data. The goal was to estimate how
many galaxies with inaccurately validated photometric redshifts need to be removed to ensure
a good enough overall redshift accuracy. This work was one of the main motivations to rely
on multiband photometric redshifts as the main source of photometric redshift calibration.
I further provided photometric redshift estimates to the DES collaboration and significantly
contributed to the cross correlation redshift estimation efforts, that contribute to this paper.
Specifically I prepared a blind-challenge to investigate the accuracy of cross correlation meth-
ods for photometric redshift estimation. The preparation of this dataset involved estimating
photometric redshifts on the simulation data, performing selection cuts, applying systematics
masks, as well as performing consistency checks by measuring correlation functions. These
efforts contributed to another paper Gatti et al. (2017), on which I am one of the leading
coauthors.

7.2 Anomaly detection for machine learning redshifts applied
to SDSS galaxies

Motivation and Goal In this thesis we generally assumed that the spectroscopic redshift
(spec-z) measurements have a negligible error. This is in general a sound assumption in
comparison with the much larger photometric redshift errors to be expected from a broad band
photometric survey like DES. However, especially if we consider low resolution spectroscopy
from surveys like PRIMUS (Coil et al., 2011; Cool et al., 2013), the spectroscopic redshift error
can be significant. Cool et al. (2013) compared the highest quality PRIMUS redshifts (quality
flag Q = 4) with more accurate data from higher resolution experiments like COSMOS (Lilly
et al., 2007b), DEEP2 (Newman et al., 2013), and VVDS (Le Fèvre et al., 2005), finding
that 8% deviated by more than 5σ from these high precision spec-z. Since the low resolution
PRIMUS spectroscopy cannot resolve individual spectral lines, redshift estimation is based
on fitting spectral template models to the observed spectrum, similar to the template fitting
photo-z approach. As a result, PRIMUS redshift estimates can be subject to degeneracies
between spectral templates, which contributes to the redshift error. However even spectra from
high resolution instruments that are redshifted by humans can be subject to errors, and can

3We obtain the total error σtot from the independent measurements σi as σtot =
√

1
/∑

i σ
−2
i (see e.g. Ku,

1966).



7.2. ANOMALY DETECTION FOR PHOTO-Z 133

Figure 7.1: Tomographic photometric redshift distributions used in the Y1 analysis. The
dashed lines show the photometric redshift distributions of the WL source bins obtained using
the BPZ template fitting code. The error contours show the results from the photometric
redshift validation pipeline, that incorporates various sources of error as explained in the text.
The points with corresponding errorbars denote the result of the clustering redshift method
within a redshift range of 0.15 < z < 0.9, where the errorbars correspond to the statistical
noise in the clustering redshift estimate. Outside the restricted redshift range we chose an
arbitrary normalization for the clustering redshift distributions. Image credit: (Hoyle et al.,
2017)

have a significant failure rate, especially at the faint end of the color magnitude space (Hartley,
et al. in prep.). This can lead to highly incomplete spectroscopic samples, thereby introducing
punishing selection effects in photometric redshift estimation and validation (Hartley, et al.
in prep.). Particularly, Machine Learning derived photometric redshift estimates that use
these samples as training sets, can be severely affected by spectroscopic redshift errors. In
Hoyle et al. (2015b) we therefore investigate the usage of outlier detection methods to remove
faulty spec-z from the training and validation samples. These methods identify galaxies with
spectroscopic redshift values that deviate strongly from the typical spec-z values of the bulk
of galaxies with similar photometry, and removes them from the training sample.

The goal of this work is to study the effectiveness of outlier detection methods to remove
these faulty spectroscopic redshift measurements. We further investigate the photometric
redshift accuracy of Machine Learning methods, so called robust regression methods, that are
less biased by contaminated training samples.
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Analysis We demonstrate the effectiveness of our approach using spectroscopic data from
the Sloan Digital Sky survey (SDSS) III data release 12 (Alam et al., 2015), that contains
photometric and spectroscopic observations for 2.5M galaxies. A subsample of 9115 galaxies
has been spectroscopically observed multiple times, as the initial observations produced faulty
redshift measurements. These galaxies therefore have both SDSS photometry, as well as
inaccurate zerror and accurate spectroscopic redshift measurements ztrue from the initial and
follow-up observations. We select all unique galaxies with a difference between accurate ztrue

and faulty zerror spectroscopic redshifts of |ztrue − zerror| > 0.01. The selected galaxies then
provide a suitable dataset to study the effect of inaccurate spectroscopic measurements on
photometric redshift accuracy.

We contaminate a clean training sample, that contains galaxies with a small spectroscopic
redshift error, with inaccurate spectroscopic redshift measurements, which are subsequently
identified and removed with an outlier detection algorithm. In our analysis we use the elliptical
envelope method (Rousseeuw & Driessen, 1998), as implemented in the scikit-learn package
(Pedregosa et al., 2011), and vary a hyperparameter, defined as contamination fraction nc,
that introduces the expected fraction of galaxies with a large spectroscopic redshift error.
The elliptical envelope is then constructed such, that approximately this fraction of objects is
removed from the dataset. In this process, the algorithm prefers likely outliers, i.e. galaxies
that have very untypical spec-z values given their photometry.

Since we know, which galaxies have inaccurate spectroscopic redshift measurements, we
can investigate how well the outlier detection algorithm performs. For this, we train a Ma-
chine Learning photometric redshift code on a dataset that is augmented with a fraction of
inaccurate spectroscopic redshifts and a dataset that was cleaned by the algorithm. The rela-
tive performance improvement due to the cleaning process then quantifies the accuracy of our
approach. We note, that the model performance is always evaluated on an independent test
set, with well known spectroscopic redshifts. If the training set however contains a significant
fraction of inaccurate redshift measurements, the model will ‘learn’ these errors and produce
suboptimal photometric redshift predictions. To evaluate the performance of our model, we
define the redshift scaled residuals as ∆z′ = (zphot − zspec)

/
(1 + zspec), where zphot denotes

the photometric redshift estimate and zspec the spectroscopic redshift. The photometric red-
shift performance metrics used in this work are the median of the scaled residual distribution
|µ| and σ68, σ95, that denote the 68%, 95% spread around |µ|. The outlierrate is defined as
the fraction of objects at the tails of the scaled residual distribution |∆z′ | > 0.15. We compare
the performance of two Machine Learning algorithms: median regression and mean regression.
Mean regression is the classical regressor, that predicts the mean of the predictive distribution,
whereas median regression predicts its median. The median however can be expected to be
much more robust against outlier in the data. For both schemes we use Gradient boosted trees
(Friedman, 1999, 2001) implemented in the Scikit-learn software package (Pedregosa et al.,
2011), a Machine Learning method, that is also based on the concept of the decision tree, that
was introduced in §2.5.

Results We generate 250 datasets with accurate spectroscopic redshifts and add a random
fraction of inaccurate spectroscopic redshift measurements. We then apply the elliptical en-
velope technique with various contamination fraction hyperparameters nc and apply both the
median and the mean regression techniques to this training dataset. We evaluate the perfor-
mance of these methods relative to the original estimates obtained without outlier removal in
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Figure 7.2: Relative improvement in photometric redshift performance after outlier removal
as a function of the contamination rate hyper-parameter nc of the Elliptical Envelope method.
The contours correspond to the results obtained on 250 datasets, where each dataset has a
different fraction of contaminated galaxies as drawn from the range of values shown by the
black horizontal line. For a small nc we therefore keep a large number of contaminated
galaxies in the sample, whereas a large nc culls a significant amount of data. The left/right
panel shows the performance for the mean/median regression method as described in the text.
Image credit: (Hoyle et al., 2015b)

Fig. 7.1. We note that a higher contamination rate parameter forces the elliptical envelope to
remove more data and the performance therefore increases for all metrics. If too much data is
removed, the performance of the model decreases again, due to the higher statistical noise. We
further note, that median regression is much more robust against the contamination fraction
and the corresponding performance curve begins to rise much later. This implies, that one has
to remove a very significant fraction of the data, before the median regression algorithm shows
better performance. Accordingly, median regression is much more robust against outliers in
the data as compared with mean regression. It can therefore be advantageous to use median
regression instead of the more traditional mean regression for photometric redshift estimation,
if one expects a large fraction of faulty spectroscopic redshift measurements in the training
data.

Contributions and Acknowledgements In this project I contributed the idea of using
robust regression methods, more specifically median regression, for photometric redshift es-
timation, if the spectroscopic training sample contains a significant fraction of spectroscopic
failures. I demonstrated the effectiveness of this approach and helped the first author (Ben
Hoyle) to include this analysis into the paper. I also contributed by commenting and proof
reading the text.

7.3 Utility Optimization in Regression Tasks

Motivation and Goal Point predictions like the conditional mean are not always the best
photometric redshift estimates in all settings. Specifically for the modelling of angular cor-
relation power spectra and cluster mass estimates, we saw that the Highest Weight Element
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point prediction produces more accurate models than more traditional estimates like the con-
ditional mean. This is not a fundamental weakness of the traditional regression approach, but
rather a result of the different optimization directive that needs to be fulfilled in these science
cases. More specifically we saw in §1.3, that the goal of photometric redshift estimation is to
facilitate the accurate modeling of cosmological observables, and there is no a priori reason
to expect this to perfectly coincide with the optimization of the sum-of-squared error in re-
gression. Similar problems appear quite often in regression applications, especially if data is
sparse, or there exists a large uncertainty in the input variables. As a fictive example consider
predicting the impact time of a hurricane or a water wave: it will be much better to predict
an earlier arrival time than one that is too late.4

If the optimization directive is more complex, we need to take into account the ‘utility’ and
the ‘cost’ of a prediction, rather than just minimizing the sum-of-squared error. Utility based
regression is a novel Machine Learning technique that incorporates this problem dependent
optimization directive into the prediction task by convolving the predictive distribution with
a utility function, that describes the utility-cost tradeoff in regression. It can be seen as the
generalization of the well known concept of cost-sensitive learning in classification (Domingos,
1999; Elkan, 2001; O’brien et al., 2008) to regression. However besides the early works by Torgo
& Ribeiro (2007); Ribeiro (2011), very little has been done on refining utility based regression.
In our paper Branco et al. (2017) we study the usage of conditional density estimation as a
powerful tool for utility based learning.

Analysis The basis of utility based learning is the utility function U(t, t̂) that attributes to
each target value t a number between [−1, 1]. Negative values represent a cost, positive values
a benefit, or utility. This means that the algorithm will give more weight to training samples,
that have a higher utility than to those that have a higher cost. The optimal prediction t̂max

then maximizes the predictive distribution p(t|x) convolved with the utility function as

t̂max = argmax
t̂

∫
p(t|x)U(t, t̂) dt . (7.2)

While there exists an infinite number of utility functions, not all functional forms can be
considered reasonable. Specifically we require that every utility function (Torgo & Ribeiro,
2007; Ribeiro, 2011)

U(t, t̂) = B(t̂, t)− C(t̂, t) (7.3)

should consist of a term B(t̂, t) that parametrizes the benefit of a certain prediction, and
a cost function Cp(t̂, t) that will depend on a tuning parameter p ∈ [0, 1], indicating how
much certain target values are penalized. A detailed description and an algorithm to obtain
meaningful utility functions is presented in Ribeiro (2011). As a conditional density estimator
we use the classification based method described in §3, where we evaluate the quality of the
utility based regression estimate using the Normalized Mean Utility (NMU) metric (Ribeiro,
2011)

NMU =

∑N
i=1 U(ti, t̂i) +N

2N
(7.4)

4This is very similar to the problem of imbalanced datasets in the context of the evaluation of classifiers
(§2.3). The under representation of a certain class in the training set, can introduce a bias towards preferentially
predicting the majority class.
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where t̂ is the model prediction and t is the true response value in the test set that contains
N objects.

Results We apply the utility based regression framework to a large variety of datasets and
utility surfaces using the Random Forest (§2.5.3) and the Support Vector Machine algorithms5

as a classifier. We could show that our methodology significantly improves over the traditional
regression estimate for a variety of datasets and utility functions. We refer to Branco et al.
(2017) for further details. However our analyses also showed that the benefit in applying
utility based regression strongly depends on the dataset and the choice of utility surface.
While these studies have been performed in a general Machine Learning context, utility based
regression can be readily applied to photometric redshift estimation. As mentioned previously,
different cosmological probes are not necessarily sensitive to the same types of photometric
redshift error. Utility based regression could therefore provide a way to optimize the prediction
towards a certain science goal or provide a framework to compensate for potential selection
effects. We leave these problems for future work.

Contributions and Acknowledgements An important aspect of the proposed method
of utility based regression is the estimation of conditional distributions p(t|x) of the response
t given the input variables x. I contributed to this project by providing source code and
explanatory material for the conditional density estimation methods described in §3. I also
contributed to the text. I want to highlight that the conditional density estimation routine im-
plemented in the UBL package6 (Branco et al., 2016), is based on my original implementation
and was modified and adapted by Paula Branco.

5We refer to the literature (Suykens & Vandewalle, 1999; Smola & Schölkopf, 2004; Bishop, 2006; Hastie
et al., 2009) for a detailed description of the Support Vector Machine.

6https://cran.r-project.org/web/packages/UBL/UBL.pdf

https://cran.r-project.org/web/packages/UBL/UBL.pdf
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Chapter 8
Appendix

The following sections give a brief overview over two large area photometric surveys: the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) survey and the Dark Energy
survey (DES). This thesis uses data from CFHTLenS in §3 and DES data in §5. A general
description of the CFHTLenS survey, on which the following discussion is based, can be
found in Erben et al. (2013); Hildebrandt & CFHTLenS collaboration (2014); CFHTLenS-
collaboration (2017); CFHTLS-collaboration (2017a). By the time of this writing, the DES
collaboration completed the analysis of the first year (Y1) DES observations, that will be
described in §8.2. The description of the DES survey, its current status and future prospects
is based on The Dark Energy Survey Collaboration (2005); Dark Energy Survey Collaboration
et al. (2016); Drlica-Wagner et al. (2017).

8.1 The CFHTLens survey

Survey characteristics and systematics CFHTLenS is a 154 deg2 large photometric
survey (see e.g. Erben et al., 2013), that provides deep imaging information up to a magnitude
of i′ ∼ 24.5, in the 5 photometric filters shown in Fig. 8.2. The survey uses the MegaCam
instrument (CFHTLS-collaboration, 2017b), that has a 1x1 deg2 field-of-view and with a
resolution of 0.187 arcsec2/pixel. MegaCam is mounted at Mount Kea and has a median
seeing of 0.7 arcsec, where the i′ band has the best seeing conditions and is therefore used as
the main detection band (Brimioulle, 2013; Hildebrandt & CFHTLenS collaboration, 2014).
Tab. 8.1 summarizes important properties of the CFHTLens photometric data (see also Erben
et al., 2013) including the 5-σ depth in the respective photometric filter bands. We note that
the i′ filter broke during the observations and was replaced by the y′ . While a total of 33 fields
only have imaging information in y′ , this description only considers the i′ band, since we do
not use y′ band photometry in this thesis. The large area of the survey in combination with its
deep photometry and excellent seeing conditions make CFHTLenS perfectly suited for weak
gravitational lensing analyses. One of the most important systematics for the CFHTLenS, as
for all imaging surveys, is the estimation of galaxy shapes and photometric redshifts, which
requires accurate photometry. An important systematic in this context are inhomogeneities
in the point spread function (PSF).

When the light from an e.g. point like source is processed by an optical instrument, its
shape is ‘blurred out’ and distorted by the convolution with the PSF of the imaging system. A
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Table 8.1: Basic properties of the CFHTLens science data. Taken from Erben et al. (2013).

Filter expos. time [s] mlim [AB mag] seeing [′′]
in a 2.′′0 aperture 5-σ lim. mag.

u∗ 5× 600 (3000) 25.24± 0.17 0.88± 0.11

g′ 5× 500 (2500) 25.58± 0.15 0.82± 0.10

r′ 4× 500 (2000) 24.88± 0.16 0.72± 0.09

i′ 7× 615 (4305) 24.54± 0.19 0.68± 0.11

y′ 7× 615 (4305) 24.71± 0.13 0.62± 0.09

z′ 6× 600 (3600) 23.46± 0.20 0.70± 0.12

Figure 8.1: Constraint on the power spectrum amplitude σ8 and Ωm for a flat Λ-CDM model,
obtained from the tomographic cosmic shear analysis presented in Heymans et al. (2013).
The blue, green and white contours show the constraints incorporating external datasets as
explained in the text. Image credit: Heymans et al. (2013)

varying PSF between photometric bands and between different seeing conditions can therefore
lead to inaccurate galaxy colors (cf. Hildebrandt & CFHTLenS collaboration, 2014; Brimioulle,
2013). Similarly, if the PSF is elliptical, weak gravitational lensing measurements will be
biased by this systematic distortion of galaxy shapes 1. It is therefore essential to correct
the photometry and shape measurements for this important systematic. The CFHTLenS
collaboration uses the method of Kuijken (2008) to correct the PSF in the different bands for
a single pointing, such that is is gaussian and of equal size (cf. Hildebrandt & CFHTLenS

1The ellipticity of a galaxy is quantified by the components e1 and e2 that quantify the shape of an ellipse
parametrized by the axes a and b, where b < a. The total ellipticity is then given as |e| =

√
e2

1 + e2
2 = a−b

a+b
(cf.

Bartelmann & Schneider, 2001) .
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Figure 8.2: Filter bands of the CFHTLenS survey. Image credit: Brimioulle (2013)

collaboration, 2014; Brimioulle, 2013). To correct for elliptical PSFs one uses stellar objects
to estimate the PSF ellipticity. The galaxy shapes can then be corrected by this PSF pattern
(Brimioulle, 2013). The upper left panel of Fig. 8.3 shows the PSF anisotropy pattern for
a particular pointing (m1m2 in the W1 field). The upper left panel shows the orientation
of the PSF anisotropy pattern before the shape correction, where the corresponding values
for e1 and e2 are quoted in the corresponding lower left panel. We clearly see a correlation
of the ellipcity coefficients that will bias any shape measurements, if left uncorrected. The
right panels show the corresponding pattern after a PSF correction has been applied. We see
that the anisotropy has been significantly reduced and the correlation between the ellipticity
parameters is greatly improved (Brimioulle, 2013).

Correcting for the biasing effect of the PSF is not always possible and additional consis-
tency checks have to be performed to detect fields with ill controlled PSF. The CFHTLens
collaboration therefore rejected 25% of the fields with a bad PSF, where we refer to Hildebrandt
& CFHTLenS collaboration (2014) for a more indepth discussion on the shape measurement
procedure used for the CFHTLenS analyses.

Science Goals The CFHTLens survey is primarily focussed on weak gravitational lensing
as its main cosmological probe. As discussed in §1.3.3 weak gravitational lensing is a powerful
probe of the expansion of the universe and the growth of structure. Especially the tomographic
cosmic shear analyses of Heymans et al. (2013) provided accurate constraints of important
cosmological parameters like the amplitude of the linear matter power spectrum2 at 8h−1Mpc.
Specifically we see that the constraints in the Ωm−σ8 plane for weak gravitational lensing are
complementary, i.e. orthogonal, to those of other surveys that measure the CMB (WMAP7,

2Like As which we introduced in Eq. 1.65, σ8 is a parameter that describes structure growth. In a simplified
interpretation it can be seen as the analog to As at late times. (see e.g. Peacock, 1999)
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Figure 8.3: Illustration of PSF anisotropy for the case of the m1m2 pointing in the W1
field. The respective upper left and lower left panel show the PSF anisotropy pattern and
its corresponding ellipticity values before applying a correction. The upper and lower right
panels show the corrected PSF anisotropy. Image credit: Brimioulle (2013)

Larson et al. 2011), the clustering of galaxies (BOSS, Anderson et al. 2012) and supernovae
(R11, Riess et al. 2011). This showcases the great importance of including constraints from
weak gravitional lensing into a multiprobe analysis. Assuming a flat cosmology, Heymans
et al. (2013) was able to constrain the dark energy equation of state parameter parameter
w0 = −1.02 ± 0.09, by combining CFHTLenS constraints with the aforementioned external
probes.

Cosmic shear measurements are subject to several sources of systematic uncertainty, most
importantly uncertainties in the photometric redshift distributions, as discussed in great detail
in this thesis, and systematics in the shear measurement from e.g. PSF anisotropies. An im-
portant science goal of CFHTLenS was therefore the development of methods to control these
sources of systematic error precisely enough to avoid major systematics in the cosmological
measurements.

For example, Heymans et al. (2012) developed an important technique to control system-
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atics in the shape measurement pipeline: the method cross correlates corrected galaxy shapes
with the uncorrected stellar shapes. In the absense of residual shape systematics, this cor-
relation should be zero, where the significance of a nonzero signal requires calibration using
simulations (see e.g. Hildebrandt & CFHTLenS collaboration, 2014). We refer to Heymans
et al. (2012) for further details.

Besides errors in the measured shear, photometric redshift uncertainty is another impor-
tant systematic in the CFHTLenS survey. To ensure high quality photometric redshift dis-
tributions, the CFHTLenS collaboration worked extensively on improving both photometry
and photometric redshift methodologies (Hildebrandt et al., 2012). Most notably CFHTLenS
was one of the main motivations to develop methods that self calibrate photometric redshift
distributions using angular cross correlations between neighboring tomographic photometric
redshift bins (Benjamin et al., 2013).

The statistical power of CFHTLenS even allowed the study of alternatives to General
Relativity in the form of modified gravity models, showcasing the great potential of cosmic
shear as a tool for cosmology. In combination with redshift space distortion measurements3

using spectroscopic data from WiggleZ (Drinkwater et al., 2010) and 6dFGS (Jones et al.,
2009), CFHTLens could exclude a variety of alternative models to GR (Simpson et al., 2013).
One of the most exciting properties of gravitational lensing is its sensitivity to the full dark
matter structure of the universe, which makes it a potent tool to generate maps of the dark
matter distribution (Van Waerbeke et al., 2013). These dark matter maps provide exiciting
opportunities to study the relation between luminous and dark matter and facilitate interesting
analyses from their cross correlation with other probes (Van Waerbeke et al., 2014).

The scientific applications described in this paragraph only cover a fraction of the po-
tential scientific usecases for this dataset. In fact, the CFHTLenS survey is itself part of
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), that additionally consists of
the Super Novae Legacy Survey (SNLS) and the CFHTL Deep programs, that obtain deep
photometry up to a magnitude of r′ = 28 (CFHTLS-collaboration, 2017a) in two selected
fields. Furthermore CFHTLS also has a specialized ‘very wide’ program (CFHTLS-VW), that
covers 410 deg2 in 3 photometric bands (g′ , r′ , i′) (CFHTLS-collaboration, 2017a). SNLS is
mainly targeted towards supernovae and transient science, whereas CFHTLS-VW facilitates
solar system science.

8.2 The Dark Energy Survey

Survey characteristics and systematics The Dark Energy Survey (DES; The Dark En-
ergy Survey Collaboration 2005) is an ongoing large area imaging survey that covers a total
area of 5000 deg2 in the southern sky. DES observations are performed in five years and are
expected to produce accurate photometry for 300 million galaxies, as well as accurate shape
measurements for 200 million. The galaxies are observed in the 5 photometric filter bands
g, r, i, z and Y shown in Fig. 8.6 with the Dark Energy Camera (DECAM; Diehl & Dark
Energy Survey Collaboration 2012; Flaugher et al. 2015) that is installed on the Blanco-4m
telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. In addition to its
Wide field program, DES facilitates supernovae science with deep observations in g, r, i, z in

3The peculiar velocity of galaxies causes a doppler shift that ‘alongates’ galaxies in redshift space. These
redshift space distortions can be used as a cosmological probe. We refer to Percival et al. (2011) for a detailed
explanation.
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Figure 8.4: Footprint of the DES Y1 sample. We show the current science samples in the
Stripe 82 (S82) and SPT regions, as well as the supernovae (SN) fields and the two auxillary
calibration fields VVDS-14h and COSMOS. The footprint of the final Y5 observations is
indicated by the solid black contour. Image credit: Drlica-Wagner et al. (2017)

Table 8.2: Properties of the Y1A1 GOLD dataset. We note that the magnitude limitsmlim and
their respective error intervals are obtained using the mode and the 10% and 84% percentile of
the magnitude limit distribution, where using the median instead reduces this value by ∼ 0.05
mag (see Drlica-Wagner et al., 2017). Taken from Drlica-Wagner et al. (2017).

Parameter g r i z Y

Median PSF FWHM 1.25′′ 1.07′′ 0.97′′ 0.89′′ 1.07′′

All Band Sky Coverage 1786 deg2 1773 deg2

Absolute Photometric Error (mmag) 14 4 2 15 32
Completeness Limit (95%) 23.6 23.4 22.9 22.4

Coadd Galaxy mlim (10σ) 23.4+0.14
−0.40 23.2+0.13

−0.37 22.5+0.14
−0.34 21.8+0.12

−0.37 20.1+0.18
−0.33

Multi-Epoch Galaxy mlim (10σ) 23.7+0.07
−0.40 23.5+0.16

−0.29 22.9+0.14
−0.30 22.2+0.14

−0.32

Galaxy Selection (i ≤ 22) Efficiency > 98%; Contamination < 3%

Stellar Selection (i ≤ 22) Efficiency > 86%; Contamination < 6%

10 smaller fields.
The survey saw first light in September 2012 and started its first observation circle from

Nov 2012 - Feb. 2013, to obtain a representative dataset for science verification (Dark Energy
Survey Collaboration et al., 2016). For this purpose, observations where concentrated on a
smaller field, with comparable photometric depth to the completed survey. In addition, two
smaller fields, that overlap with the ‘COSMOS’ (Scoville et al., 2007) and ‘VVDS-14h’ (Le
Fèvre et al., 2005) surveys where observed, to provide deep spectroscopic calibration data for
photometric redshift estimation and star-galaxy classification algorithms. At the time of this
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Figure 8.5: Cosmological parameter constraints of the DES Y1 combined analyses of weak
gravitational lensing and galaxy clustering. The green ellipse shows the result obtained using
shear alone, the red contours show the constraint from galaxy-galaxy lensing and galaxy
clustering and the blue ellipse their combination. Image credit: DES Collaboration et al.
(2017)

writing, the DES collaboration finished the main analyses of the first year data (DES Y1),
that was taken from August 2013 - Feb. 2014. In the following paragraph, I will give a brief
overview over this dataset and summarize the main science interests of DES Y1.

Fig. 8.4 shows the footprint of the DES Y1 observations, that covers a total area of
1839 deg2. The main science fields for galaxy clustering and weak gravitational lensing are the
Stripe 82 (S82) field at the celestial equator and a larger region in the south, that overlaps with
the footprint of the South Pole telescope (SPT)4 (Ruhl et al., 2004; Carlstrom et al., 2011;
Austermann et al., 2012). Tab. 8.2 summarizes the basic properties of the DES Y1 science
sample (Y1A1 GOLD). We note that the observations in the Y band have a lower depth
than observations in the other filters. Furthermore Y band observations have an incomplete
coverage of the full Y1 area. We therefore currently do not include them into the analysis,
especially due to the high overlap of the Y band with the z band (cf. Hoyle et al., 2017). We
note that DES provides both coadded photometry as well as multi-epoch photometry (see e.g.
Drlica-Wagner et al., 2017), where we use the latter in the analyses described in §5.

Comparing with the CFHTLenS dataset described earlier, DES Y1 already has an area
that is larger by a factor of 10. DES Y1 is therefore, alongside KiDS (de Jong et al., 2013),

4The South Pole telescope is a 10 meter radio telescope operating in the millimeter-submillimeter spectral
range to facilitate galaxy cluster science and the study of CMB anisotropies.
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Figure 8.6: Filter functions of the Dark Energy Survey.

one of the most powerful large area photometric surveys to date. In the coming years, DES
will increase its survey area to 5000 deg2 and its photometric depth by ∼ 2 mag (The Dark
Energy Survey Collaboration, 2005).

Science Goals The main science goal of DES is the study of the dark energy equation
of state using galaxy clusters, weak gravitational lensing, galaxy clustering and supernovae
measurements. It is therefore quite similar to the program pursued by the CFHTLenS survey,
however using a dataset that facilitates much better cosmological parameter constraints.

While weak gravitational lensing was the main cosmological probe used in the context
of the CFHTLenS survey, DES performs joint measurements of cosmic shear and angular
clustering, constraining the accelerated expansion of the universe and the growth of structure
to unprecedented precision (DES Collaboration et al., 2017). We illustrate this in Fig. 8.5
that shows the cosmological parameter constraints obtained using a joint analyses of cosmic
shear, galaxy-galaxy lensing5 and angular clustering for a flat Λ-CDM model. Comparing
with Fig. 8.1, we note that the statistical power of DES Y1 exceeds the results of CFTHLenS
by a factor of 4 in σ8 and a factor of 3 in Ωm (DES Collaboration et al., 2017). The DES Y1
analyses alone, i.e. without using external data, is already able to constrain w = −0.8+0.2

−0.22

(DES Collaboration et al., 2017). In the ongoing Y3 analysis DES will increase its area by
a factor of 3 to greater photometric depth and include additional cosmological probes like
supernovae and galaxy cluster constraints into the cosmological data vector, which will lead
to significant improvements in the constraining power (DES Collaboration et al., 2017).

5Galaxy-galaxy lensing uses the lensing effect from background galaxies on individual foreground galaxies.
We refer to Brimioulle (2013) for an in depth introduction.
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Figure 8.7: Left: Mean ellipticity of the PSF binned by focal plane position. Right: Residual
ellipticity after correcting using PSFEx (Bertin, 2011). The residuals are inflated by a factor
of 10 for visualization purposes. Image credit: Zuntz et al. (2017)

The significant increase in statistical precision also sets high requirements on the control
of systematic uncertainties in the analysis. As for the CFHTLenS survey, DES also needs to
accurately control shape and photometric redshift measurements to high accuracy. The left
panel of Fig. 8.7 shows the pattern of the mean PSF ellipticity at different focal positions.
The corresponding right side shows the residual pattern after the PSF correction. While
these residuals are in general quite small, they still have a significant pattern that needs to
be corrected in the analysis (see e.g. Zuntz et al., 2017). Another important systematic in
the Dark Energy Survey is photometric redshift uncertainty, where I refer to the detailed
discussions in §5 and §7.1.

Besides providing better constraints on cosmological parameters like the dark energy equa-
tion of state, DES can be expected to provide unprecedented constraints on modified gravity
models, especially in its final year (Kirk et al., 2015). Furthermore DES provides the largest
weak lensing mass maps to date (Chang et al., 2017) and also has a dedicated supernovae
survey that will significantly contribute to the cosmological analyses in DES Y3 (Dark Energy
Survey Collaboration et al., 2016).
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