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SUMMARY 

Polycomb group (PcG) proteins repress transcription of many developmental 

regulator genes including homeotic selector (Hox) genes in multicellular organisms. 

PcG proteins form a variety of distinct multimeric complexes and modify target 

chromatin. For instance, the Polycomb repressive complex 2 (PRC2) consists of E(z), 

Su(z)12, Esc and Nurf55 as core subunits, and the complex mono-, di-, and tri-

methylates histone H3 lysine 27  (H3K27me1/2/3). The H3K27me3 is critical for 

repression of Polycomb target genes. In order to generate sufficiently high levels of 

H3K27me3 at Polycomb target genes in vivo, PRC2 requires being associated with 

accessory subunits such as Polycomblike (Pcl). To date, the molecular mechanism of 

Pcl in the PRC2 has remained elusive. Here I show the crystal structure of conserved 

central domains of Pcl in Drosophila melanogaster (Dm), uncovering the presence of 

a winged-helix (WH) domain. I demonstrate that Dm Pcl and its human homologue 

PHF1 bind DNA via the conserved WH domain, and that this binding increases DNA 

binding of PRC2 in the context of a PHF1-PRC2 complex. In addition, I show that a 

conserved C-terminal domain of PHF1 is crucial for the PHF1 to form a stable 

complex with PRC2. Moreover, I present that the PHF1 WH and C-terminal domains 

enhance nucleosome binding of PRC2, and this is pivotal for generating high levels of 

H3K27me3 by PRC2 in vitro. Taken together, this study provides molecular insight 

into how the Pcl/PHF1 promotes H3K27 methylation by PRC2. 
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I. INTRODUCTION 
1. EARLY DEVELOPMENT IN EUKARYOTES 

In eukaryotes, meticulous gene regulation during development is crucial to 

establish and maintain cell fates. Extensive studies of early development in 

Drosophila melanogaster (Dm; many studies, collected in Gilbert, 2014) have helped 

our understanding of the eukaryotic cell fate decisions to a great extent.  

Early Dm embryos undergo nuclear divisions (karyokinesis) for 13 cycles without 

cell divisions (cytokinesis) generating a syncytium. At the nuclear division cycle 10, 

the nuclei migrate to the periphery of the embryos, and the embryos at this stage are 

called the syncytial blastoderm. After the division cycle 13, the cell membrane folds 

inwardly to partition the nuclei off and creates the cellular blastoderm (Gilbert, 2014; 

Figure 1).  

 

Figure 1. Syncytial nuclear divisions and migrations in the Dm embryo 

Laser confocal micrograph of Dm embryos with stained chromatin; numbers indicate the cell 

division cycles (1 to 14); A, anterior; P, posterior; the figure was adapted from Gilbert, 2014. 
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In the early Dm embryo, maternal effect genes specify cell fates, and 

segmentation genes determine the cell fates (Figure 2). In sections below, I provide a 

brief overview of the early development of Dm anterior (A)-posterior (P) body plan. 

 

Figure 2. Anterior-posterior pattern formation in the early Dm embryo 

Left: simplified scheme of homeotic gene regulation during the early Dm embryo development; 

PcG, Polycomb group; TrxG, Trithorax group; blue arrows indicate activation of gene 

expression; red, repression; middle: some examples of early maternal or zygotic gene 

expressions in the Dm embryo (embryo cartoons from http://www.mun.ca/biology/desmid/ 

brian/BIOL3530/DEVO_02/devo_02.html); right: the nuclear division cycle of which each gene 

group starts to be expressed is indicated; please refer Figure 1 for embryo confocal micrographs 

at different division cycles. 

1.  Maternal effect genes 
   

 During oogenesis, the Dm oocyte begins to specify the A-P axis of the body. 

This specification starts with a localization of maternal effect messenger RNA 

(mRNA) by a cellular microtubule network: bicoid  (bcd) mRNA in the anterior tip 

and nanos (nos) in the posterior. Upon fertilization of the oocyte, these maternal 

effect mRNAs are translated into proteins, which diffuse and establish gradients 

along the A-P axis. The Bcd protein forms an A-to-P gradient (Figure 2 and Figure 
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3A), whereas the Nanos a P-to-A gradient (Driever and Nüsslein-Volhard, 1988; 

Wang and Lehmann, 1991).  

 

Figure 3. Maternal effect protein gradients in the 

Dm embryo at different developmental stages. 

Bcd protein localization in the Dm embryo (A) shortly after 

egg deposition; (B) at syncytial blastoderm; (C) at cellular 

blastoderm; A, anterior; P, posterior; figure was adapted 

from (Driever and Nüsslein-Volhard, 1988). 

 

 

2. Segmentation genes 

After the cell fates are specified by maternal effect proteins, the cell fates are 

determined by segmentation gene products. The segmentation genes were first 

identified by which zygotic mutations led to the disruption of the Dm body plan. They 

are classified in three categories: gap genes, pair-rule genes and segment polarity 

genes (Nüsslein-Volhard and Wieschaus, 1980). These genes are expressed in a 

hierarchical manner and regulated by an extensive network of their gene products 

(Figure 2). 

Firstly, at the end of nuclear division cycle 12, the gap genes start to be expressed 

in broad domains along the A-P axis of Dm. The expression is tightly regulated by the 

gradient of maternal effect proteins and gap proteins themselves. Next, upon the 

cycle 13, the pair-rule genes begin to be expressed in every other segment, which will 

develop into each part of the body. The maternal effect and the gap proteins control 
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the expression of pair-rule genes. Hereafter, the first indication of embryo 

segmentation can be observed. Then upon the cycle 14, when the Dm embryo 

undergoes cellularisation and forms the cellular blastoderm, the segment polarity 

genes begin to be expressed in every segment. The pair-rule gene products and the 

segment polarity gene products themselves regulate expression of the segment 

polarity genes. After this, every segmental boundary is set and each segment 

primordium obtains its identity. The segmentation gene products then regulate the 

expression of homeotic selector genes (Hox genes). 

3. Homeotic selector genes 

Hox genes are a group of genes encoding transcription factors that generate 

specific identity of body parts. The Hox genes are highly conserved and their 

expression pattern is similar in almost every bilateral animal (Pearson et al., 2005) 

(Figure 4). In Dm, the Hox genes are clustered in the chromosome 3, consisting of 

Antennapedia and bithorax complex (Lewis, 1978). 

The Hox gene expression is a highly dynamic process throughout the 

development, being controlled not only by segmentation gene products but also by 

the Hox gene products themselves. For instance, Antennapedia (Ant) gene 

expression is repressed by the other Hox proteins such as Ultrabithorax, whose 

spatial expression is posterior to the Ant expression (Gonzalezreyes and Morata, 

1990). 

The segmentation genes are only transiently expressed, thus other factors are 

required to maintain the precise expression pattern of the Hox genes during the 

development. This is where Polycomb group (PcG) and Trithorax group (TrxG) 

proteins come into play: PcG proteins are required for maintaining the repressed 

state of Hox gene expression (Mckeon and Brock, 1991; Simon et al., 1992), whereas 
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TrxG proteins for the active state. More information about the PcG proteins is 

described in detail in the following sections. 

 

Figure 4. Hox gene colinearity 

(A) Expression domains of Hox genes in the Dm embryo at stage 13 (left) and the Mus musculus 

(Mm) embryo at embryonic day 12.5 (right); segment abbreviations; Md, mandibular; Mx, 

maxillary; Lb, labial; T1-T3, thoracic segment 1-3; A1-A9, abdominal segment 1-9; R1-R7, 

rhombomere 1-7; A: anterior; P: posterior. (B) Hox gene loci in Dm and Mm chromosomes; 

gene abbreviations: lab, labial; pb, proboscipedia; zen, zerknullt; bcd, bicoid; Dfd, Deformed; 

Scr, Sex combs reduced; ftz, fushi tarazu; Antp, Antennapedia; Ubx, Ultrabithorax; abd-A, 

abdominal-A; Abd-B, Abdominal-B; schematics were adapted from (Pearson et al., 2005). 

2. POLYCOMB GROUP PROTEINS 

 
1. History 

The Polycomb (Pc) gene was first identified by Dm genetic screens as a coding 

gene of the bithorax complex repressor (Lewis, 1978). Subsequently, Ian Duncan 

isolated another gene, whose mutation leads to segmental transformation of 

Drosophila. He suggested that this gene product regulates the expression of the 

genes in Antennapedia complex as well as the bithorax complex. Since the mutant 
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phenotype was similar to the one of Polycomb, the newly discovered gene was named 

as Polycomblike (Pcl; Duncan, 1982). Thereafter, a number of scientists identified 

dozens of genes exhibiting similar phenotypes as the Pc. These genes are thus now 

classified as PcG genes (Jürgens, 1985). The PcG genes and the function of their 

encoded proteins are highly conserved in multicellular organisms (Whitcomb et al., 

2007).  

2. PcG proteins form multimeric complexes 

Years later, a number of research groups demonstrated that PcG proteins 

form multimeric complexes by biochemical purifications. In 1998 Harte et al. 

presented that Extra sex combs (Esc) and Enhancer of zeste (E(z)) are directly 

associated in vivo by showing their co-localization in Dm larval polytene 

chromosomes1 (Tie et al., 1998). Then, following the identification of another novel 

PcG gene, suppressor of zeste 12 (Su(z)12; Birve et al., 2001), several research groups 

reported that the E(z) is directly associated not only with Esc but also with Su(z)12 

and Nucleosome-remodelling factor 55 kDa subunit (Nurf55), a histone chaperone. 

This association was shown both in the Drosophila embryo and the mammalian cells 

(Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002). 

This complex was called as Polycomb repressive complex-2 (PRC2; Kuzmichev et al., 

2002), named after Polycomb repressive complex-1 (PRC1), which had been purified 

by Kingston and his colleagues in 1999 (Shao et al., 1999). Subsequently, several 

more PcG complexes were purified: Pho repressive complex (Pho-RC; Klymenko, 

2006), RING-associated factor (dRAF; Lagarou et al., 2008) and Polycomb 

repressive deubiquitinase (PR-DUB; Scheuermann et al., 2010) (Figure 5). Besides, 

most recently, a number of PRC1 variants, each including the RING1A/B and distinct 

                                                        

1 Polytene chromosomes are over-sized chromosomes as a result of sister chromatid fusions 
by multiple rounds of DNA replication without cell devision (endomitosis). The polytene 
chromosomes are commonly found in Drosophila salivary glands. 
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PCGF, have been identified in mammals (Gao et al., 2012). The PcG protein 

complexes contain also some non-PcG proteins (e.g. Nurf55, AEBP2, JARID2 and 

KDM2). 

3. PcG proteins modify chromatin 

An inherent feature of all the Polycomb repressive complexes is to bind and 

modify target chromatin. Among these, solely PhoRC has been shown to bind to DNA 

in a sequence-specific manner (Klymenko, 2006). PRC1 and dRAF ubiquitinate 

histone H2A Lys 118, and PRC2 methylates histone H3 Lys 27 (Figure 5). More 

details of the PcG subunits and their human homologues are described in Table 1. 

Among the PcG complexes, PRC2 is discussed further in the section I.2.7 (p. 14). 

 

Figure 5. Schematics of Dm PcG 

complexes 

Key functions of the PcG complexes 

are described below each schematic; 

catalytic subunits to modify chromatin 

are in bold. Subunits drawn distantly 

from the PRC2 represent sub-

stoichiometric subunits of PRC2 

(Jarid2, Jing and Pcl); PRE, Polycomb 

response element; full names of the 

subunits are listed in Table1. 
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Table 1. List of subunits of PcG protein complexes and their functions 

Tables were adapted from (Di Croce and Helin, 2013; Piunti and Shilatifard, 2016). 

Drosophila melanogaster Homo sapience Conserved function
Polycomb repressive complex 1 (PRC1)

RING1B/RNF2
RING1A/RNF1

Posterior sex combs (Psc) PCGF4/BMI1 Enhances E3 Ligase activity of RING,               
compacts chromatin

Suppressor of zeste 2 (Su(z)2) PCGF2/MEL18
Polycomb (Pc) CBX2/PC1

CBX4/PC2
CBX6
CBX7
CBX8/PC3

Polyhomeotic-proximal/distal (Ph-P/D) PHC1-3 compacts chromatin
Sexcombs on midleg (SCM) SCMH1-2, SCML2 binds to H3-K9me1 and Sfmbt
Lysine (K)-specific demethylase 2 (Kdm2) KDM2B demethylates H3-K36me3

Polycomb repressive complex 2 (PRC2)
Enhancer of zeste (E(z)) EZH2

EZH1

Supressor of zeste 12 (Su(z)12) SUZ12 required for HMTase activity, binds target chromatin

Extra sexcombs (Esc) EED1-4
Extra sexcombs-like (Escl)
Nucleosome remodeling factor 55 (Nurf55) RBBP7/RBAP46

RBBP4/RBAP48
Polycomblike (Pcl) PHF1/PCL1

MTF2/PCL2
PHF19/PCL3

Jing AEBP2 stimulates H3-K27me3,                                        
sub-stiochiometric subunit of PRC2

Jumonji, AT rich interactive domain 2 (JARID2) JARID2 sub-stiochiometric subunit of PRC2

Pho repressive complex (PhoRC)
Pleiohomeotic (Pho) binds to DNA sequence-specifically
Pleiohomeotic-like (Phol) PHO paralog
Scm-like with four MBT domains (Sfmbt) L3MBTL2, MBTD1, hSFMBT1/2 binds to H3-K9me1/2 , H4-K20me1/2

Polycomb repressive deubiquitinase (PR-DUB)
Calypso BAP1 deubiquitylates H2A-K118 (K119) Ub
Anterior sex combs (Asx) ASXL1, ASXL2, ASXL3 activates deubiquitylase activity

dRING-associated factors (dRAF)
Ring/Sexcomb extra (Ring/Sce) E3 Ligase for H2A-K118 (K119) ubiquitylation
Posterior sex comb (Psc) Enhances E3 Ligase activity of RING
Lysine (K)-specific demethylase 2 (Kdm2) KDM2B demethylates H3-K36me3

YY1, YY2

binds to H3-K27me3 for H3-K27me3 propagation,                               
required for HMTase activity

Sex comb extra (Sce/dRING) E3 Ligase for H2A-K118 (K119) ubiquitylation

binds to H3-K27me3 through chromodomain

catalytic subunit of H3-K27 methylation

binds target chromatin

stimulates H3-K27me3,                                        
sub-stiochiometric subunit of PRC2
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4. Polycomb target genes 

Genome-wide chromatin immunoprecipitation (ChIP) on microarray analyses 

performed in Drosophila cultured S2 cells and in mouse/ human embryonic stem 

(ES) cells revealed many novel Polycomb target genes in addition to the Hox genes 

(Boyer et al., 2006; Lee et al., 2006; Oktaba et al., 2008; Schwartz et al., 2006; 

Tolhuis et al., 2006). These newly identified Polycomb target genes include many 

transcriptional and developmental regulators and tumour suppressor genes. 

5. PcG protein recruitment 

In Dm, Polycomb response elements (PREs) have been described as cis-

regulatory elements to recruit PcG proteins (Chan et al., 1994). The PREs span 

several hundreds to a few thousand base pairs in length and can be located upstream 

or downstream of the Polycomb target genes. The PREs contain various conserved 

short consensus motifs of different DNA binding proteins including Pho (Pho-RC 

subunit; Fritsch et al., 1999), GAF and ZESTE (Schwartz and Pirrotta, 2007). One 

recent report showed that the recruitment of PcG proteins to the PRE transgene is 

abolished when Pho consensus sequences are mutated (Frey et al., 2016). 

PRC1 has been reported to interact directly with PhoRC (Mohd-Sarip, 2005; 

Mohd-Sarip et al., 2002). More recently, the Müller group provided structural and 

biochemical evidences of the interaction between two Sterile alpha motif (SAM) 

domains of the Scm (PRC1 subunit) and the Sfmbt (PhoRC subunit; Frey et al., 2016). 

In addition, non-canonical mammalian PRC1 variants were shown to be recruited to 

CpG islands1 by KDM2B, which binds to non-methylated CpG  

                                                        

1 CpG islands: a region with at least 200bp with a GC percentage of at least 60%. Unlike other 
regions in the vertebrate genome, the CpG sites in the CpG islands of promoters are 
unmethylated if the genes are expressed (reviewed in Deaton and Bird, 2011). 
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sequences via its CXXC Zinc finger1 domain (Blackledge et al., 2014; Farcas et al., 

2012).  

However, our understanding of PRC2 recruitment is yet limited. Several research 

groups suggested that the long noncoding (lnc) RNA2 helps PRC2 targeting (reviewed 

in Blackledge et al., 2015). For instance, the Cech group showed that the PRC2 binds 

to the lncRNA promiscuously by gel shift assays, and suggested that this non-specific 

binding of PRC2 to RNA transcripts allows the PRC2 to scan for the target genes 

(Davidovich et al., 2013). In addition, several groups proposed that accessory 

subunits of PRC2 (Pcl, AEBP2 and JARID2) facilitate the PRC2 recruitment. For 

example, the Pcl mutant Dm embryo shows diminished levels of Su(z)12 bound to the 

PREs (Nekrasov et al., 2007). Additionally, PRC2 associated with JARID2 and 

AEBP2 is suggested to be recruited to the ubiquitinated H2A, which is catalysed by 

PRC1 (Blackledge et al., 2014; Cooper et al., 2014; Kalb et al., 2014). Besides, Helin 

and his colleagues proposed that a transcriptionally repressed state itself could be 

responsible for recruiting PRC2 to the CpG islands in mouse embryonic stem (mES) 

cells (Riising et al., 2014).  

6. Structural studies of PcG protein 

Cooperation amongst the PcG subunits and crosstalk between PcG proteins and 

covalently-modified nucleosomes play crucial roles in the PcG enzymatic action. For 

instance, E(z), the catalytic subunit of PRC2, can methylate its target chromatin only 

in the presence of other subunits of PRC2 (Müller et al., 2002). In addition, 

nucleosomes harbouring active marks (e.g. trimethylation on H3 Lys4 (H3K4me3) or 

                                                        

1 CXXC Zinc (ZN) finger: characterized by two CXXC repeats, found in many chromatin-
associated proteins. Some CXXC ZN fingers exhibit non-methylated CpG binding activity 

2 Long noncoding (lnc) RNA: RNA transcript of longer than 100 nucleotides, which does not 
encode proteins 
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on H3K36 (H3K36me3)) inhibit enzymatic activity of the PRC2 (Schmitges et al., 

2011). Thus, elucidating the cooperativity of the PcG subunits and the crosstalk 

between the PcG proteins and the modified nucleosomes has been of particular 

interest in Polycomb research. In order to unravel these, many research groups have 

used structural approaches. 

Regarding PRC1, the Dm Polycomb (Pc) chromodomain structure was first solved 

in the presence of a histone H320-30K27me3 peptide (Fischle, 2003; Min et al., 2003). 

The Pc-H320-30K27me3 co-crystal structure consolidated previous genetic studies, 

which had revealed the crucial role of E(z) in stabilizing Psc/Su(z)2-Pc to the target 

loci via the Pc chromodomain (Platero et al., 1996; Rastelli et al., 1993). In addition, 

Buchwald et al. solved a crystal structure of the PRC1 ubiquitination module, the 

Ring-Ring heterodimeric complex of murine Ring1b and Bmi1, and uncovered that 

the E3 ligase activity of the Ring1b is enhanced by the Bmi1 (Buchwald et al., 2006). 

A number of years later, McGinty et al. provided a crystal structure of a complex 

containing the PRC1 ubiquitination module and human E2 ligase UbcH5c on a 

nucleosome core particle (NCP) (Figure 6B). This structure shows that the Ring1b 

recognizes the NCP by binding to the histone H2A-H2B acidic patch1 via the arginine 

anchor (Figure 6C; McGinty et al., 2014). 

Regarding PRC2, Margueron et al. presented a crystal structure of human EED 

bound to a histone H3 peptide with K27me3 via an aromatic cage, and showed that 

the H3K27me3-bound EED activates PRC2 allosterically (Margueron et al., 2009). In 

addition, Schmitges et al. solved a crystal structure of the Dm Nurf55 bound to the 

histone H3 peptide via an acidic pocket (Figure 6D), and demonstrated that the 

                                                        

1 acidic patch: acidic surface of H2A/H2B in a nucleosome generated by acidic side chains 
such as H2A E61, D90, and E92.  
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Nurf55 compromises binding to methylated H3 peptides (Schmitges et al., 2011). 

Besides, the EED and the Nurf55 structures have been solved together with short 

peptides of the other PRC2 subunits: EZH239-68 (Han et al., 2007) and Su(z)1279-91 

(Schmitges et al., 2011) respectively. Next, using a hybrid approach of negative 

staining electron microscopy (EM) and cross-linking mass spectrometry (MS), the 

Nogales group presented a 21 Å resolution structure of human AEBP2-PRC2 (Figure 

6E), granting an overview of the molecular architecture of the PRC2 (Ciferri et al., 

2012). A few years later, the Liu group solved the first high resolution structure of 

PRC2 multi-subunits, including EZH2-EED-SUZ12 VEFS1 domain (EZH2-EED-

SUZ12VEFS), in Chaetomium thermophilum (Ct) in the presence of a histone H3 

peptide containing a paediatric brain cancer mutation, the H3 Lysine 27 to 

methionine (H3K27M) (Figure 6F; Jiao and Liu, 2015). The crystal structure of the Ct 

EZH2-EED-SUZ12VEFS fits well with the upper half part of the human full-length 

AEBP2-PRC2 EM structure (Figure 6G). Shortly after the Ct EZH2-EED-SUZ12VEFS 

structural report, sub-human PRC2 crystal structures (Hs EZH2-EED-SUZ12VEFS) 

were solved by two groups (Deng et al., 2016; Justin et al., 2016). The Hs EZH2-EED-

SUZ12VEFS structure exhibits high similarity with the Ct EZH2-EED-SUZ12VEFS 

structure. More details of the PRC2 structures are explained in the section I.7.1) (p. 

14). 

 

                                                        

1 VEFS domain: VRN2-EMF2-FIS2-Su(z)12 domain 
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Figure 6. Examples of PcG protein structures 

(A) An aromatic cage of Pc chromodomain binding to H320-30K27me3 (PDBcode: 1PFB). (B) 

PRC1 ubiquitination module onto NCP (PDBcode: 4R8P). (C) An arginine anchor of Ring1B 

binding to the histone H2A-H2B acidic patch. (D) An acidic pocket of Nurf55 binding to the H3 

N-term peptide (PDBcode: 2YBA). (E) EM structure of AEBP2-PRC2, docked on di-

nucleosomes (model); figure taken from (Ciferri et al., 2012). (F) and (G) Ct EZH2-EED-SUZ12VEFS 

structure in surface presentation (F) and in cartoon presentation fitted to the human AEBP2-

PRC2 EM map (G); figures taken from (Jiao and Liu, 2015). 
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7. Polycomb repressive complex 2 

The core subunits of PRC2 consist of E(z), Su(z)12, Esc and Nurf55 in Dm and 

EZH1/2, SUZ12, EED1-4 and RBBP4/7 in Hs (Figure 7; Cao et al., 2002; Czermin et 

al., 2002; Kuzmichev et al., 2002; Müller et al., 2002). In addition to these core 

subunits, some of the early biochemical purification reports have shown the 

association of PRC2 with other proteins such as histone deacetylase HDAC1/2 (Tie et 

al., 2001), Adipocyte enhancer-binding protein 2 (AEBP2; Cao et al., 2002) and Pcl 

(Tie et al., 2003).  Among those, AEBP2 and Pcl are now generally accepted as 

accessory subunits of PRC2 together with Jarid2, which was identified years later 

(Peng et al., 2009). 

 

Figure 7. Dm and Hs PRC2 subunit compositions 

(A) Subunits of Dm PRC2. (B) Subunits of Hs PRC2; two uncharacterized proteins, C17orf96 

and C10orf12 were identified by mass spectrometry from human PRC2 pull-downs 

(Alekseyenko et al., 2014; Smits et al., 2012). Their counterparts in Dm are not present (or not 

identified yet). 

1) Histone methyltransferase 

The early reports of PRC2 purification presented the enzymatic function of the 

complex: the site-specific methyltransferase activity on histone H3K27 (Cao et al., 



 

15 

2002; Czermin et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002) as well as 

H3K9 in vitro in some reports (Czermin et al., 2002, Kuzmichev et al., 2002). The 

Reinberg group suggested that PRC2 methylates histone H1K26 depending on which 

isoform of EED protein is integrated into the complex (Kuzmichev et al., 2004). 

However, many subsequent works have demonstrated that the H3K27 tri-

methylation is the critical function of PRC2 in Polycomb repression (Simon and 

Kingston, 2009). Notably, the cells harbouring a specific point mutation of Lysine 27 

of histone H3 to Arginine (H3K27R) in Dm phenocopy the PRC2 mutant, 

misexpressing some Polycomb target genes (Pengelly et al., 2013).  

i. Contribution of different PRC2 subunits to the H3K27 

methylation  

E(z) mono-, di- and tri-methylates Lysine 27 of histone H3 as a catalytic 

subunit of PRC2 (Ebert et al., 2004; Müller et al., 2002). However, without other 

PRC2 core subunits, the enzymatic activity of E(z) has been shown to be reduced at 

least a 1000-fold by in vitro histone methyltransferase (HMTase) assays (Müller et 

al., 2002). Several extensive biochemical reports have demonstrated that the Esc and 

the Su(z)12 are essential for the HMTase activity, whereas the Nurf55 and the Su(z)12 

are required for nucleosome binding (Ketel et al., 2005; Nekrasov et al., 2005; Pasini 

et al., 2004). Specifically, the Simon group reported that the Su(z)12 VEFS domain is 

the minimal requirement for the HMTase activity of PRC2 in vitro. They also mapped 

a region that stimulates the HMTase activity and a section that interacts to the E(z) in 

the VEFS domain (Rai et al., 2013). In addition, they suggested that the Su(z)12 Zinc 

finger (ZnF) domain is required for PRC2 targeting to the PREs by ChIP experiments 

in Drosophila S2 cells. 

A recently reported crystal structure of the Ct sub-PRC2 (Jiao and Liu, 2015) 

visualized the previous biochemical characterizations at the atomic details (Figure 
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8B). This structural analysis revealed that the catalytic domain of the EZH2 is 

bipartite, composed of both SET1 and SAL2 domains. The SET and SAL domains are 

remotely located in the primary amino acid sequence of EZH2 (Figure 8A), but the 

two domains are brought together in the tertiary structure, stabilized by the EED and 

the SUZ12 VEFS domain to maintain the active conformation of EZH2 (Figure 8C).  

 

Figure 8. Crystal structure of Ct EZH2-EED-SUZ12VEFS 

(A) Domain architecture of Ct EZH2. (B) Overall crystal structure of Ct EZH2-EED-SUZ12 VEFS in 

cartoon representation. (C) Zoomed view of interaction amongst Ct EZH2 (SAL-SET), SUZ12VEFS 

and EED in surface representation. Figures were adapted from (Jiao and Liu, 2015). 

 

                                                        

1 SET domain: su(var)3-9, enhancer-of-zeste and trithorax domain 

2 SAL domain: SET activation loop domain 
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ii. Regulation of histone methyltransferase activity of PRC2 

A steady-state kinetic parameter analysis showed that the turnover number 

(kcat )1 for PRC2 of the H3K27me2 substrate is about ten times lower than that of the 

H3K27me0 or H3K27me1 (Sneeringer et al., 2010). In addition, the crystal structure 

of the Ct PRC2 implies that the substrate binding channel in the EZH2 confers a 

spatial restriction to the H3K27me2 (Jiao and Liu, 2015). In other words, converting 

the H3K27me2 to H3K27me3 by PRC2 is not catalytically favourable.  

 In order to generate the H3K27me3 efficiently, therefore, the PRC2 requires 

other factors. For example, accessory subunits of PRC2, such as PCL, AEBP2 and 

JARID2, enhance the catalytic efficiency of PRC2 (Cao et al., 2008; Herz et al., 2012; 

Kalb et al., 2014; Li et al., 2010; Nekrasov et al., 2007; Peng et al., 2009; Sarma et al., 

2008).  In addition, a recent biochemical report showed that PRC2 is activated in 

dense chromatin environments, presumably by sensing unmodified histone H3 tails 

spanning the residues from 31 to 42 (Yuan et al., 2012). Besides, the Reinberg group 

demonstrated that EED binding to K27me3 on histone H3 tails in trans promotes the 

enzymatic activity of PRC2, and proposed that the H3K27me3 is propagated by this 

(Margueron et al., 2009). Furthermore, the Ct PRC2 crystal structure shows that not 

only the EED but also the SRM2 domain in EZH2 binds to the H3K27me3 peptide. 

Moreover, the structure shows that the EZH2 SRM domain mediates the crosstalk 

between the H3K27me3 peptide and the SET domain of EZH2 to stimulate the 

catalysis (Jiao and Liu, 2015). 

 

                                                        

1 kcat: turnover number, the maximum number of chemical conversions of substrate molecules 
per second that each catalytic site will execute for a given enzyme concentration 

2 SRM domain: stimulation-responsive motif domain 
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Figure 9. Crosstalk between the H3K27me3 

peptide and the SET domain through the SRM 

domain 

H3 peptide in magenta represents the stimulating 

peptide (H3K27me3) bound to the EED; yellow, the 

substrate peptide (H3K27M) bound to the SET 

domain, figure was taken from the (Jiao and Liu, 

2015). 

On the other hand, PRC2 is inhibited by active histone marks such as 

H3K4me3 and H3K36me3 in cis. As briefly mentioned in the section I. 2. 6 (p. 10), 

the Nurf55 binds to the histone H31-11 via its acidic pocket, where any methylation on  

Lys 4 in the H31-11 repulses the stable binding to the Nurf55 (Figure 6D). Although 

that report did not provide the detailed mechanism concerning how the H3K36me3 

peptide regulates PRC2, the report showed that the nucleosomes possessing either 

H3K4me3 or H3K36me3 decrease the HMTase activity of PRC2 (Schmitges et al., 

2011). 

iii. Distribution of H3K27 methylations and PcG proteins 

Mass spectrometry analysis of the methylated status of the H3K27 in wild-

type Dm larval nuclear extracts revealed that around 50 % of the H3K27 is 

dimethylated, whereas only 10 % is trimethylated (Ebert et al., 2004). Another more 

recent genome-wide ChIP sequencing (ChIP-seq) experiment performed in mES cells 

demonstrated that 72 % of the H3K27 residue is modified to the H3K27me2, whereas 

only 7 % is to the H3K27me3 (Ferrari et al., 2013). 

In addition, a number of ChIP experiments have provided insights about the 

distribution of H3K27me3 and PcG proteins in Polycomb target genes (Gutiérrez et 

al., 2012; Papp and Muller, 2006; Schwartz et al., 2006; Tolhuis et al., 2006). For 
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instance, H3K27me3 is shown to form broad domains beyond the localization of PcG 

proteins, shown by ChIP-chip analysis in Dm S2 cultured cells. Interestingly, the 

distribution of the Pc (the reader of H3K27me3) is broader than the one of E(z) (the 

writer of H3K27me3) (Schwartz et al., 2006).  

Besides, the Müller group performed ChIP-quantitative PCR experiments in 

the Polycomb target gene (Ubx) region using two distinct Dm larval tissues: wing 

imaginal discs1, where the Ubx gene is transcriptionally inactive; haltere/3rd leg 

imaginal discs, where the Ubx is active. They demonstrated that the repressive 

marks, such as H3K27me3, H3K9me3 and H4K20me3, decorate the upstream 

control region of Ubx in both tissues, whilst the repressive marks demarcate the 

promoter and 5’-coding regions solely in the wing disc tissue. Moreover, they 

presented that the PcG and TrxG proteins (except for the Ash1 protein) are localized 

to the PRE regions in both tissues (Papp and Muller, 2006).  

2) PRC2 and cancer 

As mentioned in the section I. 2. 4 (p. 9), Polycomb targets include tumour 

suppressor genes. Thus, up-regulation of PRC2 function is closely linked to 

malignant tumours. The PRC2 function can be up-regulated by (i) overexpression of 

PcG genes owing to intergenic or intronic mutations (Vogelstein et al., 2013) or (ii) 

hyperactive PcG proteins due to missense mutations, such as EZH2Y641F/N (Table 2; 

Sneeringer et al., 2010). Specifically, the PRC2 with EZH2Y641F/N favours H3K27me2 

as the substrate, leading to elevation of H3K27me3 (Sneeringer et al., 2010).  

                                                        

1 imaginal disc: one of the parts of a holometabolous insect larva that will become a portion of 
the outside of the adult insect during the pupal transformation. 
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However, interestingly, loss of function mutations of PRC2 have also been 

reported in many cancer cases, exhibiting reduction of H3K27me3 (Conway et al., 

2015). In addition, recent sequencing analysis of paediatric glioma samples revealed 

the somatic mutations of K27M in HIST1H3B and H3F3A, coding genes of the 

histone H3.1 and the histone H3.3, respectively (Table 2; Schwartzentruber et al., 

2012; Wu et al., 2012). A subsequent systematic study demonstrated that the 

H3K27M mutation specifically inhibits the enzymatic activity of PRC2 through 

interaction with EZH2, causing remarkable reduction of H3K27me2 and H3K27me3 

(Lewis et al., 2013). 

The Bracken group proposed that both up- and down-regulation of PRC2 function 

would affect redistribution of H3K27me3 in the genome: increasing the levels of 

H3K27me3 in differentiation-associated genes and decreasing the H3K27me3 in 

cancer-associated genes (Conway et al., 2015).  

 

Table 2. Mutations 

of PRC2 and histone 

H3 coding gene in 

different cancer 

types 

MDS, myelodysplastic 

syndrome; MPNST, 

malignant peripheral 

nerve sheath tumours, 

the table was adapted 

from (Conway et al., 

2015). 

Gene Aberration Cancer type
H3K27 methylation 
status

PRC2 mutations

EZH2 Y641X 
Lymphoma, parathyroid 
adenoma, melanoma

elevated H3K27me3, 
reduced H3K27me2 

A677G Lymphoma, Ewing sarcoma
elevated H3K27me3, 
reduced H3K27me2 

A687V Lymphoma
elevated H3K27me3, 
reduced H3K27me2 

Homozygous mutation Leukemia, myeloid disorders reduced H3K27me3
Heterozygous Leukemia, myeloid disorders reduced H3K27me3

SUZ12 mutation MDS/MPN, leukemia, MPNST reduced H3K27me3
Heterozygous deletion MPNST reduced H3K27me3
Heterozygous deletion/ mutation MPNST reduced H3K27me3
Homozygous deletion MPNST reduced H3K27me3

EED Heterozygous deletion/ mutation MPNST reduced H3K27me3
Heterozygous deletion MPNST reduced H3K27me3
Homozygous deletion MPNST reduced H3K27me3

Histone H3 mutations 

H3F3A K27M mutation 
High grade glioma,                     
low grade glioma, leukemia

reduced H3K27me3, 
reduced H3K27me2

HIST1H3B K27M mutation High grade glioma
reduced H3K27me3, 
reduced H3K27me2
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8. Polycomblike 

Pcl is one of the earliest isolated PcG genes in Drosophila (Duncan, 1982). The 

Pcl-/- Drosophila dies as of the mature embryo stage and shows the posteriorly 

directed homeotic transformation (e.g. the abdominal segment 7 (A7) is transformed 

to the A8, and the A6 to the A7; Figure 10). The transformation phenotype is more 

severe in the Pcl-/- Dm embryo lacking maternally-loaded Pcl protein (Pclmaternal-zygotic-, 

Pclm-z-) than in the Pcl-/- Dm embryo having the maternally-deposited Pcl protein 

(Pclm+z-) (Breen and Duncan, 1986).  

 

Figure 10. Posteriorly directed homeotic transformation in Pcl mutant embryonic 

cuticles 

Ventral cuticle of (A) a wild-type (Canton-S) first instar larva, (B) a Pclm+z- embryo and (C) a Pclm-z- 

embryo. Arrows indicate transformation of embryonic segments; abbreviations: A2-A8: 

Abdominal segment 1-8; figures were adapted from (Breen and Duncan, 1986). 

Mammalian homologues of Pcl consist of three different paralogues: PHD 

finger protein 1 (PHF1/Phf1), Metal-response element-binding transcription factor 2 

(MTF2/Mtf2) and PHD finger protein 19 (PHF19/Phf19) (Table 1; Figure 11). The Pcl 

homologues share conserved domain architectures including the Tudor domain and 

the Plant homeodomains (PHD1 and PHD2) (Figure 11).  The Phf1 and the Mtf2 were 
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first studied in different contexts than the Polycomb repression: spermatogenesis 

(Ha et al., 1991) and Zn-dependent metallothionein promoter binding (Inouye et al., 

1994; Remondelli and Leone, 1997), respectively. Later, bioinformatic analyses 

identified that these proteins are the mammalian homologues of the Dm Pcl (Coulson 

et al., 1998). 

 

Figure 11. Domain architecture of Pcl homologues 

Upper numbers indicate the amino acid residue numbers; abbreviations: WH, winged-helix; C, 

C-terminal domain. 

1) Pcl is associated with PRC2 

The Jones group first reported the association of Pcl with the Esc-E(z) 

complex in the Dm embryo nuclear extracts, showing co-migration of the three 

proteins on the gel filtration (O'Connell, 2001). Later, the Müller group showed that 

the Pcl forms a stable complex with the PRC2 core subunits by a tandem affinity 

purification (TAP) strategy. They presented that the TAP-tagged Pcl were eluted with 

substantial amounts of PRC2 core subunits, whereas the TAP-tagged E(z) with much 

less amounts of Pcl, indicating that the Pcl is a sub-stoichiometric subunit of PRC2 

(Nekrasov et al., 2007).  

The Jones group suggested that the Pcl PHD1 and PHD2 mediate the 

interaction with E(z) by yeast two-hybrid assays. Furthermore, they presented that 
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this PHD finger mediating interaction is conserved in the human PHF1 with the 

EZH2 (O'Connell, 2001). However, the Brockdorff group showed that the Mtf2 

constructs lacking the Tudor domain, the PHD1, or the PHD2 still form a stable 

complex with EZH2 by co-immunoprecipitation (co-IP) (Casanova et al., 2011). In 

addition, the Di Croce group showed that the C-terminal domain of Phf19 is essential 

to interact with the SUZ12 by co-IP (Ballaré et al., 2012). 

2) Pcl is required for PRC2 to generate H3K27me3 efficiently 

A few years after the first report of association of the Pcl with PRC2 

(O'Connell et al., 2001; Tie et al., 2003), several groups showed that Pcl/PHF1 helps 

PRC2 generate high levels of H3K27me3 by in vitro HMTase assays (Cao et al., 2008; 

Nekrasov et al., 2007; Sarma et al., 2008). In addition, the levels of H3K27me3 are 

reduced in Polycomb target genes in Pcl-/- Dm embryos (Nekrasov et al., 2007) or 

Phf1-knock down mouse male germ cells (GC1Spg) (Cao et al., 2008), shown by ChIP 

experiments. Moreover, antibody staining experiments showed that a subset of 

Polycomb target genes are misexpressed in the Pcl-/- Dm embryo (Nekrasov et al., 

2007), indicating that the efficient H3K27me3 by Pcl-PRC2 is crucial for Polycomb 

repression.  

3) Pcl facilitates PRC2 recruitment 

Another reported function of the Pcl is to facilitate PRC2 recruitment to target 

genes (Cao et al., 2008; Nekrasov et al., 2007; Sarma et al., 2008; Casanova et al., 

2011; Ballaré et al., 2012; Brien et al., 2012a; Hunkapiller et al., 2012). Upon down-

regulation of Pcl/Phf1, the levels of the Su(z)12/Suz12 (PRC2 subunit) enrichment on 

Polycomb target genes are reduced, whereas the levels of Pho (Pho-RC subunit) or Ph 

(PRC1 subunit) are unaffected, shown by ChIP analyses in Dm embryos and GC1spg-

derived Phf1-knockdown cells (Cao et al., 2008; Nekrasov et al., 2007). In addition, 
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the Brockdorff group showed that the PRC2 recruitment is reduced in Mtf2-

knockdown mES cells by ChIP experiments. This group also demonstrated that Ezh2 

recruitment to the inactive X chromosome loci is impaired upon down-regulation of 

the Mtf2 in the 3-day differentiated XX mES cell by immuno-RNA fluorescent in situ 

hybridisation (FISH) analysis (Casanova et al., 2011). Besides, several articles 

presented that the bindings of SUZ12 and EZH2 to a subset of target genes in mES 

cells are diminished upon Phf19 knockdown (Ballaré et al., 2012; Brien et al., 2012a; 

Hunkapiller et al., 2012). Of note, the Di Croce group performed the vice versa 

experiment. They showed that Phf19 binding to Polycomb target genes is almost 

entirely abolished in Eed-/- mES cells (Ballaré et al., 2012), indicating that the Phf19 

requires the intact PRC2 to bind to Polycomb target genes.  

Whereas many studies have suggested the role of Pcl in helping PRC2 

recruitment as mentioned above, one report proposed that the Pcl is the actual 

recruiter of PRC2. This report showed that the binding of the E(z) to a PRE region is 

completely abolished in Pcl-knockdown Dm larval wing discs (Savla et al., 2008).  

4) Mammalian Pcl proteins bind to H3K36me3 via Tudor domains 

A number of research groups showed that mammalian PCL proteins (i.e. Phf1, 

Mtf2 and Phf19) bind to the H3K36me3, whose mark is found in the actively 

transcribed chromatin (Kouzarides, 2007), via an aromatic cage in their Tudor 

domains (Ballaré et al., 2012; Brien et al., 2012a; Cai et al., 2013; Musselman et al., 

2012). Remarkably, the Dm Pcl lacks the aromatic cage in the Tudor domain to bind 

to the methylated histone tails (Friberg et al., 2010). 

The binding of Phf19 to the H3K36me3 is suggested to play a crucial role in the 

lineage transition in mES cells, which changes the transcription status of the actively 
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transcribed genes to the repressed status. To be specific, the Phf19 is suggested to 

recruit the histone demethylase of H3K36me3 to the loci, which allows PRC2 to 

methylate the H3K27 in turn (Ballaré et al., 2012; Brien et al., 2012; Cai et al., 2013). 

Similarly, the Wang group proposed that the PHF1 tudor domain recruits the 

PRC2 to the actively transcribed genes and increases the levels of H3K27me3 in the 

HeLa cell (Cai et al., 2013). However, the Kutateladze group suggested that the 

binding of PHF1 Tudor domain to the H3K36me3 sterically hinders PRC2 to bind the 

target chromatin, and that this inhibits the H3K27 methylation by PRC2 in the HeLa 

cell (Musselman et al., 2012).  

5) PHF1-specific roles 

The Phf1 is highly expressed in testis (Kawakami et al., 1998) and quiescent cells 

(Brien et al., 2015), whereas the Mtf2 and the Phf19 are highly expressed in 

embryonic stem cells (Walker et al., 2010; Hunkapiller et al., 2012). Accordingly, the 

MTF2/Mtf2 and the PHF19/Phf19 seem to have some shared roles, e.g. regulation of 

stem cell renewal and differentiation (Ballaré et al., 2012; Brien et al., 2012a; 

Hunkapiller et al., 2012; Walker et al., 2010), whilst the PHF1/Phf1 seems to have 

distinctive roles.  

Firstly, the PHF1 has been suggested to be recruited to the double-stranded-DNA 

(ds-DNA) break sites, shown by co-IP with the Ku70/Ku80 in the HeLa cell (Hong et 

al., 2008). A few years later, the Kutateladze group showed that PHF1 recruitment to 

the ds-DNA break sites is the Tudor domain dependent (Musselman et al., 2012). 

Secondly, the PHF1 has been proposed to stabilize the p53, a tumour suppressor, 

in quiescent cells (Brien et al., 2015). The turnover of p53 is regulated by MDM2-
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mediated ubiquitination. Yang et al. showed that the PHF1 binds to the C-terminus of 

p53 and this binding protects the p53 from the MDM2-mediated ubiquitination and 

degradation (Yang et al., 2013). Interestingly, the Bracken group showed that the 

expression of PHF1 gene is regulated by the p53 in the quiescent cell (Brien et al., 

2015).   

3. AIM AND SCOPE 

As described in previous sections, the key function of the Pcl homologues in PRC2, 

promotion of H3K27 trimethylation by PRC2, is crucial for the Polycomb repression 

in both Dm and mammals (Cao et al., 2008; Nekrasov et al., 2007; Sarma et al., 

2008). However, our understanding of the molecular mechanism of this has 

remained elusive. Thus, I attempted to shed light on the molecular roles of the Pcl in 

PRC2 (i) by solving the crystal structure of the previously uncharacterized PHD and 

WH domain in the Pcl, (ii) by demonstrating the DNA binding activity of the 

Pcl/PHF1 WH domain using biophysical assays, (iii) by mapping the PRC2 binding 

domain in the PHF1, (iv) by determining the DNA and nucleosome binding activities 

of various PRC2 complexes (e.g., PRC2, PHF1-PRC2, PHF1WH(E)-PRC2) and (v) by 

comparing histone methyltransferase activities of the various PRC2 complexes in 

vitro. 
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II. MATERIALS AND METHODS 
1. MATERIALS 

 

Table 3. List of cell strains used in this study 

 

Table 4. List of plasmids used in this study 

The numbers in the second column indicate the residue numbers of the constructs. When no 

number is described in the second column, the constructs encode full-length protein. 

Abbreviations: Clea., cleavage site; Res., antibiotics resistance; Kan., Kanamycin; Amp., 

Ampicillin. 

Strain Organism Source
Top 10 F´ Escherichia coli Invitrogen
BL21-CodonPlus-RIL Escherichia coli Agilent
DH10EMBacY Escherichia coli Geneva Biotech
IPLB-Sf21 (Sf21) Spodoptera frugiperda Invitrogen
BTI-TN-5B1-4 (High Five) Trichoplusia ni Invitrogen

Number Protein name_constructs Vector Affinity tag Clea. Res. Species Specifications Source

JC10 Pcl_491-694 pEC-K-3C-His 6xHis 3C Kan. Dm this study
JC17 Pcl_419-694 pEC-K-3C-His 6xHis 3C Kan. Dm this study
JC14 Pcl_491-694 pEC-K-3C-His 6xHis 3C Kan. Dm K650A,R651A this study
JC15 Pcl_491-694 pEC-K-3C-His 6xHis 3C Kan. Dm R631A,Q634A,K637A this study
JC16 Pcl_491-694 pEC-K-3C-His 6xHis 3C Kan. Dm Q634A,K637A, K650A,R651A,R631A this study
JC20 Pcl_511-694 pEC-K-3C-His 6xHis 3C Kan. Dm this study
JC28 PHF1_165-363 pEC-K-3C-His 6xHis 3C Kan. Hs this study
JC35 PHF1_165-363 pEC-K-3C-His 6xHis 3C Kan. Hs K323A, K324A this study
JC212 PHF1 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC227 PHF1_WH(A) pFastBac 2xStrepII-6xHis TEV Amp. Hs K323A, K324A, R304A, S307A, N310A this study
JC228 PHF1_WH(E) pFastBac 2xStrepII-6xHis TEV Amp. Hs K323E, K324E, R304E, S307E, N310E this study
JC269 PHF1(TEV@432) pFastBac 2xStrepII-6xHis TEV Amp. Hs TEV site insertion @ 432 this study
JC232 PHF1_28-end pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC233 PHF1_1-363 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC234 PHF1_28-363 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC238 PHF1_del(364-510) pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC257 PHF1_515-end pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC297 PHF1_186-end pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC213 PHF19 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC241 PHF19_38-end pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC242 PHF19_1-375 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC243 PHF19_38-375 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC244 PHF19_del(378-529) pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC258 PHF19_529-end pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
EZH2 EZH2 pFastBac 6xHis TEV Amp. Hs C.Müller lab
JC235 EZH2 pFastBac 2xStrepII-6xHis TEV Amp. Hs this study
JC303 EZH2_107-129_259-end pFastBac 6xHis TEV Amp. Hs this study
JC304 EZH2_107-160_259-end pFastBac 6xHis TEV Amp. Hs this study
SUZ12 SUZ12 pFastBac 6xHis TEV Amp. Hs C.Müller lab
JC286 SUZ12_71-end pFastBac 6xHis TEV Amp. Hs this study
EED EED pFastBac 6xHis TEV Amp. Hs C.Müller lab
RBBP4 RBBP4 pFastBac 6xHis TEV Amp. Hs C.Müller lab
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Table 5. List of fluorescein (Flc)-labelled oligo nucleotides used in the DNA binding 

assays 

 

Table 6. List of oligo nucleotides used for PCR amplification of the nucleosomal 601 

DNA  

 

Table 7. List of antibodies used in this study 

 

Table 8. List of growth media used in this study 

name DNA sequence (Forward, 5´-3´)

30bp DNA TCCCTCTCTCCGCAGTCGCGGCGCAGTCGC

PRE01 CGTGCGTAAGAGCGAGATAC

PRE02 AGCGAGATACAGATAAGACT

PRE03 AGATAAGACTACGCGCACCA

PRE04 ACGCGCACCATAATGGCTGC

PRE05 TAATGGCTGCGCCGTAAAGC

PRE06 GCCGTAAAGCGAGAGCGATC

PRE07 GAGAGCGATCCGAGCGAGAA

PRE08 CGAGCGAGAAGGCTAACCGT

PRE09 GGCTAACCGTATCTCTCCCT

PRE10 ATCTCTCCCTCTCTCCGCAG

PRE11 CTCTCCGCAGTCGCGGCGCA

PRE12 TCGCGGCGCAGTCGCTGCCT

PRE13 GTCGCTGCCTCTGCAGCTCC

PRE14 CTGCAGCTCCGTCGCCATAA

PRE15 GTCGCCATAACTGTCGTTCG

PRE16 CTGTCGTTCGTAATGGCCGT

PRE17 TAATGGCCGTTTTAAGTGCG

PRE18 TTTAAGTGCGACTGAGATGG

PRE19 ACTGAGATGGCCTCATAATC

PRE20 CCTCATAATCGTTTGCTGAA

PRE21 GTTTGCTGAATCTGAATGGT

Number Name DNA sequence (Forward, 5´-3´)

YN 281 601_215_Fwd ATATCTCGGGCTTATGTGATGGAC

YN 282 601_215_Rev ATATCCCGAGTCGCTGTTCAATAC

DB 85 601_215_Fwd-flc flc-ATATCTCGGGCTTATGTGATGGAC

YN 285 601_147_Fwd CTGGAGAATCCCGGTGCC

YN 286 601_147_Rev ACAGGATGTATATATCTGACACGTGCC

DB 87 601_147_Fwd-flc flc-CTGGAGAATCCCGGTGCC

Antibody Dilutions Host Source
H3K27me1 1:6000 rabbit Milipore (07-448)
H3K27me3 1:1000 rabbit Milipore (07-449)
H4 1:200000 rabbit Abcam (ab 10156)
Pcl (PHD-WH) 1:3000 rabbit this study
Nurf55 1:50000 rabbit C. Müller lab
HRP 1:5000 donkey GE Healthcare (NA934)

Media Application Description Source
L-Broth (LB) cloning with E.coli - In-house
Terrific broth (TB) expression with E.coli supplemented with 10% Phosphate buffer In-house
SOC cloning with E.coli - In-house
TiterHigh virus generation with Sf21 cells - Sigma
Express Five protein expression with High five cells supplemented with L-Glutamine Gibco
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Table 9. List of general buffers used in this study 

 

2. METHODS 

1. General methods 

1) Molecular cloning 

i. Polymerase Chain Reaction (PCR) 

 10-30 ng template DNA, 0.2 µmol forward and reverse primers (Table 5 and 

Table 6), and Phusion polymerase 2 x master mix (Finnzymes) were used in a 50 µl 

reaction volume with a PCR program described in Table 10. Mutagenesis PCR was 

performed with the same procedure but with a 10 min extension time.  

 

Table 10. PCR program 

 A part of the PCR products were loaded to 0.8 to 1.5 % agarose gel (pre-

stained with 10000 x GelRed Nucleic acid gel stain, Biotium) to check the specificity 

of the PCR reaction. Once the specificity was confirmed by a single band in the 

agarose gel, all the PCR products were treated with DpnI (NEB) at 37 °C for 1 hr to 

Name Composition Application
Phosphate buffer 0.17M KH2PO4, 0.72M K2HPO4H2O supplement for TB media
Phosphate-buffered saline (PBS) 10mM Na2HPO4, 1.8mM KH2PO4, 137mMNaCl, 2.7mM KCl insect cell harvest, TBS
20X TBE 1M Tris, 0.89M Boric acid, 20mM EDTA pH 8.0 agarose gel electrophoresis (used in 0.4X)
10X Lämmli 0.25M Tris, 1.92M Glycine, 1% SDS acrylamide gel electrophoresis (used in 1X)
1X transfer buffer 25mM Tris, 192mM Glycine, 0.05% SDS, 10% Methanol wet transfer
TBS PBS, 0.2% Tween 20 western blot

Step Temperature Time (min) No. of cycles

1 98 °C 5 1

2 98 °C 0.5

3 72 °C 0.5 per kb template DNA

4 72 °C 5 1

25 (repeat the step 2-3)
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digest the template DNA. The reaction was then purified using the QIAquick PCR 

purification kit (Qiagen). 

ii. Restriction digestion and ligation 

 A classical restriction enzyme based cloning strategy was used to generate 

clones with the pFastBac vectors. The purified PCR products and the pFastBac 

vectors were digested with appropriate enzymes in their corresponding reaction 

buffers (Buffer 1 to 4; NEB) for 1 hr at 37 °C.  Subsequently, pFastBac vectors were 

incubated with Calf intestinal alkaline phosphatase (CIP, NEB) to prevent the self-

ligation. The digestion reactions of both inserts and vectors were purified by using 

the QIAquick PCR purification kit (Qiagen). A molar ratio of 3: 1 insert to vector was 

used for ligation in 20 µl reaction volumes using the Quick ligation kit (NEB).  

iii. Ligation independent cloning (LIC) 

 The LIC system was used to generate clones with the pEC-K-3C-His vectors (a 

kind gift from the Elena Conti lab). The LIC system uses the T4 DNA polymerase (T4 

DNA pol, Novagen), which cleaves the nucleotides until the T4 DNA pol reaches a 

Thymine (T) by the 3’ to 5’ exonuclease activity. By incubating the vectors with the T4 

DNA pol and dTTP and the inserts with the T4 DNA pol and dATP, 12 to 15 bp 

overhang sequences are generated. The inserts and vectors are annealed with the 12 

to 15 bp overhangs. Nicks are then repaired during transformation in E.coli. 

 All components added for processing of the vectors and inserts are listed in 

Table 11. The mixture was incubated at room temperature for 30 min, and 

subsequently at 75 °C for 20 min to inactivate the enzyme. For annealing, 1 µl of the 

vector processing reaction and 2 µl of the insert processing reaction were incubated 



 

31 

at room temperature for 10 min, and subsequently 1 µl 25 mM EDTA was added at 

room temperature for 10 min.  

 

Table 11. LIC reaction mix for the vector (left) and the insert (right) 

ddH2O, double-distilled water 

iv. Vector transformation 

2- 5 µl DNA (ligated DNA, mixture of LIC reactions, or mutagenesis PCR 

product) were added to 50 µl chemically competent cells (Top10F’, Invitrogen, Table 

3) and incubated on ice for 30 min. Then the cells were transformed by heat shock at 

42 °C for 45 sec and subsequent rest on ice for 10min. Next, the cells were recovered 

in 900µl LB medium at 37 °C for 45 min to 1 hr with shaking at 600 rpm. The cells 

were then spun down at 5500 rpm for 2min. The cell pellet was resuspended in 100 

µl LB medium and spread onto an LB-Agar plate containing the appropriate 

antibiotic. The plate was incubated overnight at 37 °C. 

v. Verification of clones 

 On the next day of the transformation, two to three colonies were picked and 

grown in separate tubes with LB medium supplemented with the respective 

antibiotics. Simultaneously, PCR was performed with picked colonies (colony PCR) to 

verify insertion of the gene of interest. On the following day, plasmids of the colonies 

which had been verified by the colony PCR were isolated with the Miniprep 

Components amount Components amount
Linearised vector 450 ng Purified PCR product 600 ng
T4 DNA Pol. buffer (10X) 3 µl T4 DNA Pol. buffer (10X) 2 µl
dTTP (25mM) 3 µl dATP (25mM) 2 µl
DTT (100mM) 1.5 µl DTT (100mM) 1 µl
T4 DNA Pol. LIC qualified 0.6 µl T4 DNA Pol. LIC qualified 0.4 µl
ddH2O to 30 µl ddH2O to 20 µl
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purification kit (Qiagen) and sent for DNA sequencing (core facility, Max Planck 

Institute of Biochemistry). Sequences were analysed by using SeqManPro (Lasergene 

12). 

2) SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) of proteins 

Samples were heated in the 4 x Lithium dodecyl sulphate (LDS) sample buffer 

(Invitrogen) supplemented with 400 mM Dithiothreitol (DTT) at 70 °C for 5min. 

Samples were loaded onto self-casted 12-13 % (for PRC2 complexes) or 15 % (for Pcl 

constructs) SDS-polyacrylamide gels. Histone methyltransferase reactions were 

heated at 95 °C for 5 min and loaded onto the NuPAGE Novex 4- 12 % Bis-Tris 

gradient gels (Invitrogen). Electrophoresis was run in 150 V for 50 min to 90 min. 

3) Coomassie Brilliant Blue staining 

First of all, the SDS-PAGE gels were rinsed with the double-distilled water 

(ddH2O) for 5 min three times. Then the gels were incubated with the PageBlue 

protein staining solution (Thermo Scientific) for 30 min with gentle agitation. 

Finally, the gels were destained with ddH2O for 10 min with gentle agitation.  

2. Specific methods used in this study 

1) Protein sequence alignment 

Protein sequence alignment was performed using Clustal omega (Sievers et al., 

2011), and figures were prepared by Jalview2 (Waterhouse et al., 2009). 

2) Secondary structure prediction 

Secondary structure prediction was performed on the PSIPRED server (Buchan 

et al., 2013). 
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3) Generation of Pcl constructs 

The genes encoding Dm Pcl amino acid (a.a.) residue 419-694, 491-694, 511-

694 and Hs PHF1 a.a. 165-363 were subcloned into the pEC-LIC-3C-His vector, 

containing a hexa-histidine tag and a 3C protease cleavage site at the N-terminus. 

Mutant constructs were cloned by site-directed mutagenesis based on the Quick-

Change protocol (Stratagene).   

4) Protein expression of Pcl constructs using bacterial system 

50 - 100 ng plasmids were used to transform BL21 codon plus (DE3) RIL cells 

(Agilent, Table 3). Next morning, the colonies were picked and cultured in 50 - 

100 ml TB medium (Table 8) at 37 °C, 225 rpm for 4 to 5 hrs. The pre-cultures were 

then inoculated into 500 ml TB medium supplemented with phosphate buffer (Table 

8) and selective antibiotics in tune air flasks (2.5 L in volume), and incubated at 

37 °C, 225 rpm. Usually 6-12 flasks (3 to 6L TB medium in total) were used for large-

scale expression to produce 20-40 mg purified protein. When the optical density at 

600 nm (OD600) of the cell suspension was 0.6, the temperature setting was switched 

to 18 °C. Around 2 hrs later, when the incubator was at 18 °C, 0.4 mM Isopropyl β-D-

1-thiogalactopyranoside (IPTG) was added to the culture to induce the protein 

expression. Usually the OD600 was between 1.2 and 1.5 at this point. The cultures 

were then incubated overnight (16-18 hrs) at 18 °C, 225 rpm. Next morning the 

induced cells were harvested by spin-down at 5500 rpm for 15 min in the JA-16 rotor 

in a centrifuge (Avanti J-26XP, Beckman Coulter). The pellets were resuspended with 

buffer A (20 mM Tris-HCl (pH8.0 at 4 °C) 150 mM NaCl 1 mM 4-(2-Aminoethyl) 

benzenesulfonyl fluoride hydrochloride (AEBSF) and either used directly for 

purification or stored at -80 °C after flash freezing with liquid nitrogen. 
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5) Purification of Pcl constructs 

Bacterial cell suspension was lysed by Emulsiflex c-3 (Avestin) and the lysates 

were centrifuged for 1 hr at 4 °C, 21500 rpm. Subsequently, the supernatants were 

loaded onto Ni-Nitrilotriacetic acid (NTA) resin (Qiagen) by gravity flow. Unspecific 

proteins were washed with buffer B (20 mM Tris-HCl (pH8.0 at 4 °C) 1 M NaCl) and 

buffer A supplemented with 40 mM Imidazole. Then desired proteins were eluted 

with buffer A supplemented with 250 mM imidazole. The eluents were diluted twice 

with 20 mM Tris-HCl (pH8.0 at 4 °C) 4 mM DTT, and hexa-His tag was cleaved with 

3C protease overnight at 4 °C. Next day, the tag-free proteins were loaded onto three 

pre-packed 1 ml HiTrap Heparin HP columns (GE Healthcare) connected in series 

and eluted by gradient of buffer A and buffer B with 2 mM DTT. The eluent did not 

contain any contaminant bands shown by SDS-PAGE analysis. The eluents 

subsequently were loaded onto Superdex75/10/300 column equilibrated with 20 mM 

Tris-HCl (pH8.0 at 4 °C) 150 mM NaCl. Purity of all purified protein constructs was 

confirmed by total MS. 

6) Limited proteolysis 

Pcl419-694 was incubated with 0.05 mg/ml Trypsin (Sigma) for 45 min and the 

reaction was stopped by adding AEBSF. The digested protein fragments were 

separated by Superdex75 (GE Healthcare), equilibrated with 20 mM Tris-HCl (pH8.0 

at 4 °C) 150 mM NaCl. Eluted fractions were analysed by total MS, N-term 

sequencing and SDS-PAGE.   

7) Crystallization  

1 µl Pcl491-694 (10 mg/ml) was mixed with 0.5 µl reservoir (12.5 % polyethylene 

glycol (PEG) 3350, 50 mM Potassium Phosphate (dibasic) and 2 mM Manganese 
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Chloride). 1 µl Pcl511-694 (3.4 mg/ml) was mixed with 0.5 µl reservoir (22.5 % PEG 

6000, 50 mM Potassium Phosphate (dibasic) and 3 mM Manganese Chloride). Both 

crystals were grown by hanging drop vapour diffusion method at 20 °C. Crystals were 

flash frozen in the presence of cryo-protectant, 25 % (v/v, in final) ethylene glycol. 

8) Data collection and structure determination 

Anomalous and native data sets were collected for the Pcl491-694 crystal with a 

PILATUS 6M detector using the Swiss Light Source (SLS) PXI beam line. Phases 

were calculated by the single wavelength anomalous dispersion (SAD) method at the 

zinc peak using Phenix-Autosol (Terwilliger et al., 2009). Native data sets were 

collected for the Pcl511-694 crystal with a PILATUS 6M detector using the SLS PXII 

beam line. The Pcl511-694 structure was solved by molecular replacement with Phenix-

AutoMR (Adams et al., 2010) using the Pcl491-694 structure as a search model. In both 

cases, I used the program package XDS (Kabsch, 2010) for data processing, Phenix-

refine (Afonine et al., 2012) for refinement and COOT (Emsley and Cowtan, 2004) 

for building atomic models. All structural figures were prepared with PyMol (ver.1.8, 

Schrödinger) and the superpositions were performed by using COOT SSM superpose 

(Emsley and Cowtan, 2004). 

9) Generation of PHF1 constructs 

 Human PHF1 cDNA (codon optimized for S.frugiperda, GenScript) was 

subcloned into pFastBac vector with two consecutive strep-II tags, a hexa-histidine 

tag and a Tobacco Etch Virus (TEV) protease-cleavable site in the N-terminus. PHF1 

point mutants (PHF1WH(A) and PHF1WH(E)) were cloned by site-directed mutagenesis 

based on the Quick-Change protocol (Stratagene). The pFastBac plasmids containing 

cDNA of human PRC2 core subunits with N-terminal hexa-histidine tags were a kind 

gift from Christopher Müller lab (Kalb et al., 2014). 
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10) Protein expression of various PRC2 complexes using baculoviral 

system 

i. General insect cell culture  

Sf21 cells (Invitrogen, Cat no.12682-019, Table 3) were cultured in EX-

CELL®TitherHigh™ medium (Sigma, Table 8) and used for transfection and virus 

amplification. High Five cells (Invitrogen, P/N 51-4005, Table 3) were cultured in 

ExpressFive medium (gibco, Table 8) supplemented with 18 mM L-Glutamine 

(Gibco, Table 8) and used for protein expression. Both cell lines were maintained as 

500 mL suspension culture in 3L Erlenmeyer flasks (Corning) with appropriate cell 

density (0.7-1 x 106 cells/ml for Sf21 cells; 0.4-0.8 x 106 cells/ml for High Five cells), 

and kept until approximately passage 30. Cell density, diameter and viability were 

monitored with a Vi-cell XR cell viability analyzer (Beckman coulter). 

ii. Transformation of DH10EMBacY  

100-200 ng pFastBac vectors containing the genes of interest were 

transformed into 100 µl DH10EMBacY (Geneva Biotech, Table 3) cells. All 

transformation procedures were the same as those for bacterial transformation, 

except that cells were recovered in SOC medium for 4 hrs after heat shock. The 

recovered cells were spun down at 1500 x g for 4 min and resuspended in 200 µl LB.  

The suspension was spread onto two LB plates supplemented with antibiotics  

(50 µg/ml Kanamycin, 10 µg/ml Tetracycline, 7 µg/ml Gentamicin, 34 µg/ml 

Chloramphenicol, 100 µg/ml Blue-gal, 40 µg/ml IPTG): one with 20 µl and the other 

with 160 µl. Then the plates were incubated in 37 °C for 48 hrs. The positive colonies, 

which gene of the interest is transposed from the pFastBac vector to the bacmid, were 

distinguished by their white colours. True white colonies were picked for mini-

culture in 2.5 ml LB (with 50 µg/ml Kanamycin, 10 µg/ml Tetracycline, 7 µg/ml 
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Gentamicin, 34 µg/ml Chloramphenicol) for 24 hrs at 37 °C, and re-streaked on a 

new LB plate (with 50 µg/ml Kanamycin, 10 µg/ml Tetracycline, 7 µg/ml Gentamicin, 

34 µg/ml Chloramphenicol, 100 µg/ml Blue-gal, 40 µg/ml IPTG) to confirm their 

white colour. 

iii. Bacmid purification 

Confirmed bacmids were purified by alkaline lysis from the mini cultures. First, 

mini cultures were spun down at 19000 x g for 3 min. Then the pellets were 

resuspended in 300 µl P1 (resuspension buffer with RNase, QIAGEN). Subsequently, 

300 µl P2 (alkaline lysis buffer, QIAGEN) and 300 µl N3 (neutralization buffer, 

QIAGEN) were added, and the suspension was mixed. Next, the lysates were spun 

down at 19,000 x g for 10 min at 4 °C. The supernatants were transferred to sterile 

2 ml Eppendorf tubes, and centrifuged at 19,000 x g for 5 min at 4 °C. The 

supernatants were then transferred to sterile 2 ml-Eppendorf tubes and incubated 

with 800 µl isopropanol for 10 min on ice. Next, the samples were centrifuged at 

19,000 x g for 20 min at 4 °C. Subsequently, the pellets were washed with 500 µl 

70 % ethanol, and spun down at 19,000 x g for 10 min at room temperature. The 

pellets were air-dried at 37 °C. Finally, the pellets were resuspended in 100 µl sterile 

ddH2O. 

iv. Transfection of Sf21 cells 

Firstly, 2 ml 0.4 x 106 cells/ml Sf21 cell suspension were incubated in each well of 

a 6-well tissue culture (TC) plate (BD Falcon) for 30-60 min at 27 °C. Then, 

transfection was performed using the purified bacmid and transfecting reagents, 

cellfectin II (Invitrogen), including negative controls (transfecting reagents only). 

After 4 hrs of incubation with the transfecting agents, all liquid in the wells was 
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removed and 2 ml fresh TiterHigh medium was added to the each well. Then the TC 

plates were sealed with parafilm and incubated at 27 °C for 72 hrs. Then the 

supernatants were collected: passage 1 (P1) virus. 

v. Virus amplification 

50 ml 0.4 x 106 cells/ml Sf21 cells were infected with 2ml harvested P1 viruses, 

and the infected cells were cultured at 27 °C, 90 rpm. The cell density was inspected 

every 24 hrs, and duplicated cells (cell density of more than 1.0 x 106 cells/ml) were 

diluted with fresh medium to below 1.0 x 106 cells/ml. 48 hrs after the cells stopped 

proliferating, passage 2 (P2) viruses were harvested by centrifugation at 2000 rpm 

for 15 min. Then 2.5 ml P2 viruses were infected to 250 ml 0.4 x 106 cells/ml Sf21 

cells, and the cells were cultured for in suspension. 72 hrs after the P2 infection, the 

supernatant (P3 viruses) were harvested. The P2 and P3 viruses were kept at 4 °C 

(protected from the light). Subsequently, various amounts of P3 viruses were used to 

infect 3 ml High Five cells at a density of 0.4 x 106 cells/ml in order to test the titre.  

vi. Protein expression 

In this study, the High Five cells were co-infected by four to five single viruses. 

Thus, prior to expression, a number of small-scale expression tests were performed 

to determine the optimal ratio of the mixture of the different P3 viruses. In order to 

obtain 10-40 mg purified PRC2 complexes, 4 to 8 L High Five cells (0.8 x 106 

cells/ml) were infected with the optimal ratio of each virus. The infected cells were 

cultured for 50-72 hrs and harvested by centrifugation at 2000 rpm for 15 min. The 

pellets were resuspended in PBS and spun down for 15 min at 2000 rpm to wash the 

residual growth medium. Pellets were frozen with liquid nitrogen or used directly for 

protein purification. 
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11) Purification of various PRC2 complexes 

The harvested cells were then lysed by a glass homogenizer in a lysis buffer (50 

mM Phosphate-sodium pH8.0, 150 mM NaCl, 20 mM Imidazole, 4 % glycerol, 2.5 

mM MgCl2, 0.05 % Nonidet-P40 (NP40), 1 mM Dithiothreitol (DTT), 1 mM AEBSF 

and cOmplete EDTA free protease inhibitor cocktail tablets (Roche)). The cleared 

lysates were loaded onto Ni-NTA resin (Qiagen) by gravity flow. The unspecific 

proteins were washed with a wash buffer (50mM Phosphate-sodium pH8.0, 500 mM 

NaCl, 50 mM imidazole and 4 % glycerol), and the desired proteins were eluted with 

a His-elution buffer (50mM Phosphate-sodium pH8.0, 150 mM NaCl, 250 mM 

imidazole and 4 % glycerol). The eluents were subsequently loaded onto strep tactin 

sepharose (IBA) and eluted with a strep-elution buffer (25 mM HEPES pH7.9, 150 

mM NaCl and 10 mM Desthiobiotin (Sigma)). SDS-PAGE analysis showed that the 

complexes are highly pure and stoichiometric after this purification step. The 

complexes were then incubated with TEV protease (Core facility of Max Planck 

Institute of Biochemistry) and Lambda protein phosphatase (Core facility of Max 

Plnack Institute of Biochemistry) overnight at 4 °C. The tag-free protein complexes 

were purified over MonoQ resins by salt gradient in 25 mM HEPES pH7.9, and 

finally polished by Superose6 resins (GE healthcare) equilibrated with a buffer 

containing 25 mM HEPES pH7.9 and 100 mM NaCl. Purity of all purified protein 

constructs was confirmed by using total MS.  

12) Preparation of Flc-labelled DNA  

 Various 5’-Flc-labelled single stranded oligos (Table 5) and their 

complementary non-labelled oligos (Sigma) were mixed with their complementary 

non-labelled oligos (Sigma) and incubated for 10 min at 80 °C. The mixture was then 

slowly cooled down for annealing. The annealed oligos were verified by 18 % TBE 

acrylamide gel electrophoresis.  
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 Flc-labelled 147 bp 601 DNA (Lowary and Widom, 1998) was generated by 

PCR using the 5’ Flc-labelled forward primer and the non-labelled reverse primer 

(Table 6) to reconstitute Flc-labelled nucleosomes used in native gel shift assays. 

13) Nucleosome reconstitution 

The 147 bp and 215 bp DNA harbouring 601 sequences (Lowary and Widom, 

1998) were amplified by PCR using corresponding primer sets (Table 6) and purified 

over a 1 ml HiTrapQ column (GE Healthcare) by salt gradient in 25 mM HEPES pH 

7.9. The amplified 601 DNA (either 147 bp or 215 bp) was eluted around a 

conductivity of 67 % (around 700 mM NaCl; Figure 12A). The purity was verified by 

1.2 % agarose gel electrophoresis (Figure 12A) and concentrated up to 1 to 2 mg/ml 

by ethanol precipitation. Histone octamer refolding (Figure 12B) and nucleosome 

reconstitution (Figure 12C) were performed as described previously (Luger et al., 

1999). After the reconstitution, the absence of uncoupled DNA of the reconstituted 

nucleosome was verified by 1.2 % native agarose gel electrophoresis (Figure 12C). 

14) Fluorescence Polarization (FP) 

 45 nM 30bp Flc-labelled ds DNA oligos were incubated with increasing 

amounts of proteins in a buffer C (25 mM HEPES-NaOH pH7.9, 50 mM NaCl, 0.05 

% tween-20, 5 mM MgCl2 and 4 % Glycerol) for 5 min at 20 °C. The fluorescence was 

measured by a Synergy H1 plate reader (excitation wavelength at 485 nm and 

emission at 528 nm; BioTek), and the polarization was monitored by Gen5 2.05 

software. All measurements were performed in triplicates. Hill function fitting and 

graphical representation of the triplicate measurements were carried out using Origin 

9.0 software (OriginLab, Northampton, MA). 
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Figure 12. Nucleosome reconstitution 

(A) Top: HiTrapQ elution profile of 601 DNA PCR products; Bottom: a 1.2 % agarose gel 

containing the input (IN), flow-through (F.T.) and the eluents (1-4) of the HiTrapQ purification.  

(B) Top: a gel filtration profile of refolded histone octamer on Superdex200 increase;  

Bottom: a 14 % polyacrylamide-SDS gel containing the eluents of the gel filtration.  

(C) A 1.2 % native agarose gel containing reconstituted nucleosomes (Nuc147). 
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15) Microscale thermophoresis (MST) 

45 nM 30bp Flc-labelled ds-DNA oligos were incubated with increasing amounts 

of proteins in the buffer C for 5 min on ice. The samples were loaded into standard 

capillaries for the DNA binding measurements. Thermophoresis was measured with 

30 % LED and 50 % MST power by a Monolith NT.115 (Nanotemper). All 

measurements were performed in triplicates. Hill function fitting and graphical 

representation of the triplicate measurements were carried out using Origin 9.0 

software (OriginLab, Northampton, MA).   

16) Native gel shift assay 

45 nM Flc-labelled oligos and nucleosomes were incubated with increasing 

amounts of proteins in buffer C for 5 min on ice. 10 µl of the sample were loaded into 

1.2 % agarose (Seakem) gel. Gel electrophoresis was performed with cold 0.4 x TBE 

buffer (4°C) at 60 V for 45 min. Fluorescence signals were acquired by a Typhoon 

FLA 9500 (GE Healthcare) using the Cy2 filter. Each native gel analysis presented 

here was performed in triplicates. Densitometry was performed with Fiji software 

(Schindelin et al., 2012). Hill function fitting and graphical representation were 

carried out using Origin 9.0 software (OriginLab, Northampton, MA). 

17) Histone methyltransferase (HMTase) assay 

Indicated amounts of various versions of PRC2 complexes were incubated with 

446 nM mononucleosomes in a reaction buffer (20 mM HEPES pH7.4, 50 mM NaCl, 

2.5 mM MgCl2, 5 % glycerol, 0.25 mM EDTA, 0.5 mM DTT and 80 µM  

S-adenosylmethionine (SAM)) in a total volume of 15 µl at 25 °C for indicated 

durations. 4 x LDS sample buffer (Invitrogen) supplemented with 400 mM 
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Dithiothreitol (DTT) was added to the reaction and immediately heated at 95 °C for 5 

min to terminate the methylation activity. 

18) Western blotting of histone methyltransferase reaction samples 

The histone methyltransferase reactions were run on a poly-acylamide SDS gel, 

and then transferred to membranes (Amersham Hybond ECL Nitrocellulose Blotting 

Membrane, 0.22 µM, GE Healthcare) by wet transfer.  

Prior to wet transfer, three Whatman papers (Chromatography paper, 3 mm, 

Whatman) and one membrane (Amersham Hybond ECL Nitrocellulose Blotting 

Membrane, 0.22 µM, GE Healthcare) per each polyacrylamide-SDS gel were 

equilibrated with 1 x transfer buffer (Table 9). Then, a “sandwich” was prepared as 

follows: one thick sponge, one Whatman paper, the polyacrylamide-SDS gel, the 

membrane, two Whatman papers, and one thin sponge. The cassette was then 

inserted to a transfer tank filled with 1 x transfer buffer, with the gel facing on the 

cathode side and the membrane on the anode side. Wet transfer was performed  

at 90 V for 10 min and at 60 V for 30 min at 4 °C under mild agitation. Membranes 

were blocked with TBS supplemented with 4 % BSA (w/v) (4 % BSA TBS; Table 9) at 

4 °C for overnight. Next day, the membranes were washed with TBS three times and 

then incubated with H3K27me3 antibody (milipore, Table 7) diluted in 4 % BSA TBS 

at 4 °C for 8 hrs. Next, H4 antibody (milipore, Table 7) was added to the membrane 

and incubated further for 2 hrs at room temperature. Next day, the membrane was 

washed with TBS three times and incubated with horseradish peroxidase (HRP) 

conjugated secondary antibody for 1 hr. Finally, the membrane was washed three 

times with TBS and covered with 1:1 mixture of detection reagent A and B (ECL 

Select, Amersham). The chemiluminescence was detected by an ImageQuant 
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LAS4000 (GE Healthcare). Densitometry of the western blot was carried out with Fiji 

software (Schindelin et al., 2012). 
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III. RESULTS 
1. STRUCTURAL AND FUNCTIONAL ANALYSIS OF PCLP H D 2-W H 

1. Purification and limited proteolysis of Pcl419-694 

In order to obtain molecular insights into Pcl function in promoting H3K27 

methylation by PRC2, I pursued to solve the crystal structure of conserved domains 

in Pcl. First, I designed a construct spanning from the PHD1 to a conserved domain 

next to the PHD2 (Pcl419-694; Figure 13A). I sub-cloned the Pcl419-694 to a vector 

containing N-terminal hexa-histidine tag cleavable by 3C protease. The Pcl419-694 was 

expressed in E.coli and purified over Ni-NTA, Heparin and Superdex 75 resins 

(Figure 13B). The final gel filtration profile and SDS-PAGE gel analysis demonstrated 

the homogeneity and high purity of the Pcl419-694 (Figure 13C). I tried to crystallize the 

purified Pcl419-694 in myriads of different crystallizing conditions, but the construct 

was not crystallized.  

Thus, I went on to perform limited proteolysis with the purified Pcl419-694 to obtain 

more crystallizable construct. After a number of screenings using different proteases, 

I found that the Pcl419-694 is cleaved into two pieces upon treatment with 0.05 mg/ml 

trypsin, where the two fragments do not interact with one another (Figure 14A and 

B). Then total MS and N-term sequencing analyses revealed that the Pcl419-694 is 

cleaved between the two PHD fingers (Figure 14C). Hence, I designed a new 

construct containing the PHD2 and the conserved domain next to the PHD2, which 

spans a.a. 491 to 694 (Pcl491-694; Figure 15A). 
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Figure 13. Purification of Pcl419-694 construct 

(A) Domain composition of Pcl419-694 construct. (B) Purification scheme. (C) Top: a gel filtration 

profile; A280, absorption at 280 nm; A260, absorption at 260 nm; bottom: SDS-PAGE analysis 

of the eluents. 
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Figure 14. Limited proteolysis of Pcl419-694 construct 

(A) A gel filtration profile (Superdex 75) of tryptic digested Pcl419-694. (B) SDS-PAGE analysis of the 

input (IN, tryptic digested Pcl419-694) and the eluents of peak1 and peak2 of the gel filtration in (A). 

Peak 3 and 4 did not contain any protein (data not shown). (C) Schematics showing where 

trypsin digests the Pcl419-694 construct. 
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2. Purification and crystallization of Pcl491-694 

I cloned the proteolytically stable construct (Pcl491-694; Figure 15A) into the same 

vector as the one used for Pcl419-694, and followed the same purification procedure. 

Final gel filtration profile and the SDS-PAGE analysis demonstrated that the purified 

Pcl491-694 is highly homogenous and pure (Figure 15B and C).  

 

Figure 15. Purification of Pcl491-694 construct 

(A) Domain composition of Pcl491-694. (B) A gel filtration profile of Pcl491-694 on Superdex 75. (C) 

SDS-PAGE analysis of the eluents of gel filtration in (B). 
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 With the purified Pcl491-694, I obtained several crystals in a number of 

conditions containing PEG 3350 in neutral pH. The initial crystals were small in size  

(Figure 16A), so I attempted to optimize the crystallization by adjusting the 

precipitant concentrations and adding various additives. I was then able to obtain a 

single crystal in a reasonably large size (Figure 16B). The optimized Pcl491-694 crystal 

was flash frozen with a cryo-protectant, 25 % ethylene glycol, and mounted (Figure 

16C). The optimized Pcl491-694 crystal resulted in a diffraction data set with a 

resolution limit of 2.5 Å (Figure 16D and Table 12). 

 

Figure 16. Crystallization of Pcl491-694 construct 

(A) Initial crystal of Pcl491-694 in a 96 well plate, sitting-drop (0.2 μl protein + 0.1 μl reservoir). (B) 

Optimized crystal of Pcl491-694 in a 24 well linbro plate, hanging-drop (1 μl protein + 0.5 μl 

reservoir). (C) Mounted Pcl491-694 crystal in a nylon-loop (left) and its 90° rotation (right); red oval, 

beam focus. (D) A screen shot showing the diffraction of the Pcl491-694 crystal. 

 

*The sections below includes contents from the manuscript prepared for publication. 
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3. Overall structure of PCLPHD2-WH 

 The Pcl491-694 crystal structure was solved by Zn-single wavelength anomalous 

dispersion (SAD) method (Figure 17 and Table 12). Notably, the Pcl491-694 crystal 

structure shows that the conserved domain next to the PHD2 possesses a canonical 

WH domain fold (Figure 17A), in agreement with bioinformatic predictions 

(Callebaut and Mornon, 2012; Söding, 2005). The PHD2 and the WH domain 

stabilize each other by extensive van der Waals and electrostatic contacts along the 

interface, especially the loop regions between βB and βC, and between β2 and α5  

(Figure 17B and C).  

  

Table 12. Data collection and refinement statistics of Pcl419-694 and Pcl491-694 crystal 

[1] Highest resolution shell shown in parentheses. 

 

Construct Pcl511-694

Data set native Peak (Zn) native

Wavelength (Å) 1.00005 1.28344 0.97935

Space group C 1 2 1 C 1 2 1 P 1 21 1

a, b, c (Å) 307.42 53.12 86.84 307.42 53.12 86.84 94.2, 50.57, 95.51

α, β, γ (°) 90 105.47 90 90 105.47 90 90, 113.1, 90

83.69  - 2.45 83.69  - 2.45 79.15  - 2.3

(2.53  - 2.45) (2.59  - 2.50) (2.27  - 2.19)

R-merge 0.045 (0.64) 0.11 (1.33) 0.08 (1.31)

CC1/2 0.997 (0.828) 0.998 (0.696) 0.999 (0.552)

CC* 0.999 (0.952) 1 (0.906) 1 (0.844)

Mean I/sigma(I) 17.09 (2.25) 14.27 (1.39) 12.00 (0.87)

Completeness (%) 98.65 (98.18) 98.06 (91.36) 98.61 (86.43)

Multiplicity 3.4 (3.4) 6.6 (6.6) 6.6 (4.8)

No. Molecule per A.U. 6 6 4

83.69  - 2.447 79.15  - 2.3

(2.534  - 2.447) (2.266  - 2.188)

Total reflections 167531 (16931) 280326 (17801)

Unique reflections 49847 (4912) 42581 (3688)

R-work 0.2365 (0.3483) 0.2303 (0.4329)

R-free 0.2780 (0.3708) 0.2680 (0.4483)

No. of non-hydrogen atoms 9076 5756

Wilson B-factor 59.74 54.25

RMS(bonds) 0.016 0.004

RMS(angles) 1.41 0.89

Ramachandran favored (%) 98 98

Ramachandran outliers (%) 0 0

Average B-factor 77.1 67

Resolution (Å)

Pcl491-694

Data collection

Resolution (Å)[1]

Refinement
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Figure 17. Crystal structure of PclPHD2-WH 

(A) A ribbon view of the overall Pcl491-694 crystal structure; PHD2 is coloured slate; WH domain 

coloured orange; two Zn atoms are represented by spheres and coloured light pink; Zn-

coordinating residues in stick representation; secondary structure elements (α: alpha-helix and 

β: beta-sheet), wing (w), N-terminus (N) and C-terminus (C) of the constructs are labelled.  

(B) Sequence alignment of PHD2-WH domains in Dm and Hs Pcl proteins; secondary structural 

elements based on Pcl491-694 crystal structure are described; the numbers on the left- and right 

ends indicate a.a. residue numbers; blue boxes, Zn-coordinating residues; blue asterisks, 

residues composing an aromatic cage; blue or orange circles, residues involved in the 

interaction between PHD2 and WH domain; orange reversed triangles, residues mutated for 

DNA binding assays (Figure 19). (C) An expanded view of the interface between the PHD and 

WH domain; salt bridges in dotted lines. 

4.  Pcl PHD2 contains a closed aromatic cage  

The Pcl PHD2 possesses seven Cys and one His that coordinate two Zinc ions 

(Figure 17A; reviewed in Sanchez and Zhou, 2011). Some PHD finger domains form 

an aromatic cage, which binds to covalently modified histone peptides such as di- or 

tri-methylated lysine 4 of histone H3 (H3K4me2/3; Wang et al., 2010). The PclPHD2-

WH structure shows that the Pcl PHD2 forms an aromatic cage with conserved 

residues: Phe523, Met527 and Trp536 (Figure 18A and B), the latter corresponding to 

the highly conserved Trp that forms the sidewall of the cage in most PHD finger 

domains (Sanchez and Zhou, 2011). However, the Pcl PHD2 aromatic cage is closed 

by the phenyl-ring of the Phe523 residue (Figure 18B), in contrast to the wide-open 

cage of MLL1 PHD3 in the absence of its ligand (Figure 18C).  

In order to abolish the possibility of crystallization artefacts, I purified and 

crystallized Pcl511-694 construct, which still possesses the PHD2 and the WH domain 

but lacks the extra loop region in the N-terminus of the Pcl491-694 construct. The Pcl511-

694 was indeed crystallized in a different space group (P1 21 1) to Pcl491-694 (C 1 2 1; 

Table 12). However, the aromatic cage of Pcl511-694 is still blocked by the phenyl-ring of 

the Phe523, whereas the loop region of the Pcl511-694 PHD2 is deviated from the one of 
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Pcl491-694 (Figure 18D). In addition, the Pcl constructs do not show any binding to a 

variety of methylated histone peptides in solution binding assays (data not shown). 

Thus, this structural analyses show that the Pcl PHD2 aromatic cage is closed in the 

Pcl constructs. Hereafter, all represented structures are the crystal structure of  

Pcl491-694, and I call the Pcl491-694 as PclPHD2-WH.  

 

Figure 18. A closed aromatic cage in Pcl PHD2 

(A) Sequence alignment of the Pcl PHD2 and the MLL1 PHD3. (B) Expanded view of the Pcl419-

694 PHD2 aromatic cage. (C) Structural superposition of the Pcl419-694 (in slate) onto the MLL1  

(in grey; PDB code: 3LQH) PHD aromatic cage. (D) Structural superposition of the Pcl419-694 (in 

slate) onto the Pcl491-694 (in light blue) PHD aromatic cage. 

5. Pcl binds to DNA via the conserved WH domain in a sequence 
non-specific manner 

 WH domains are found in many nucleic acid binding proteins. Although the 

WH domains retain the overall conserved fold, the DNA recognition modes are 

diverse (Harami et al., 2013). For example, canonical WH domains such as the one 

found in FOXO1 recognize their consensus DNA sequence by binding to the DNA 

major groove via the α3, referred as the recognition helix (Brent et al., 2008). On the 
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other hand, some other non-canonical WH domains such as the one found in hRFX1 

contact mainly DNA phosphate backbones (Gajiwala et al., 2000). In addition, 

depending on their binding profiles, the detailed structural folds of WH domains vary 

(Harami et al., 2013).    

 In order to examine the role of Pcl WH domain in DNA binding, I first 

superimposed the PclPHD2-WH structure onto a crystal structure of the FOXO1 WH 

domain that was solved together with its consensus DNA sequences (Brent et al., 

2008). This structural comparison proposed that Arg631, Gln634 and Lys637 of the 

α3 region in the Pcl WH domain might engage in binding to the DNA major groove, 

and Lys650 and Arg651 of the w1 region to the DNA phosphate backbone contacts 

(Figure 19A, PDBcode: 3CO6). I next generated and purified three different PclPHD2-

WH proteins harbouring point mutations on these residues: PclPHD2-WH
R631A/Q634A/K637A 

(α3mut), PclPHD2-WH
K650A/R651A (w1mut) and PclPHD2-WH

R631A/Q634A/K637A/K650A/R651A (α3-w1 

mut; Figure 19A and B).  I then measured the DNA binding activities of the wild-type 

PclPHD2-WH and the point mutants by using FP assays. The wild-type PclPHD2-WH binds 

to the DNA probe (Flc-labelled 30 bp-long ds DNA) with a dissociation constant (Kd)1 

of 9.7 µM, whilst the α3 mut and the w1 mut compromise the binding (Figure 19C). 

Moreover, the α3-w1 mut causes even further reduction in DNA binding activity of 

PclPHD2-WH (Figure 19C). This DNA binding activity via the WH domain is conserved 

in human PHF1PHD2-WH as determined by FP assays (Figure 19D). 

  

                                                        

1 Dissociation constant, Kd: a specific type of equilibrium contant that measures the 
propensity of a larger object to dissociate reversibly into smaller components. The Kd has a 
dimensions of concentration. In case of event that molecule A and B binds reversibly (AxBy ⇌ 
xA + yB), and the Kd equals the concentration of a free A at which half of the total B are 
associated with A.  
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Figure 19. DNA binding activity of the Pcl WH domain 

(A) Structural superposition of the PclPHD2-WH (in slate and orange) onto the FOXO1 WH domain-

DBE (in grey; PDB code: 3CO6). (B) Coomassie staining of a 15 % polyacrylamide-SDS gel 

containing wild-type (wt) and point mutant (α3 mut, w1 mut and α3-w1 mut) PclPHD2-WH proteins. 

(C, D and F) Quantitative measurement of DNA binding of PclPHD2-WH (C and F) or PHF1PHD2-WH (D) 

by FP; dots represent the mean values of the triplicate measurements; error bars, standard 

deviation of the triplicates; curve fitting was preformed by Hill function; Kd in parenthesis. (E) 

Schematics of bxd PRE DNA sequences used in FP measurements shown in (F); six lollipops on 

bxd PRE box represent Pho binding sites. (F) Quantitative measurement of PclPHD2-WH binding to 

PRE probes. 
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 Pcl has been proposed to facilitate the PRC2 recruitment (Ballaré et al., 2012; 

Brien et al., 2012b; Casanova et al., 2011; Nekrasov et al., 2007; Savla et al., 2008). I 

thus questioned whether the Pcl binds DNA in a sequence-specific manner. To test 

this, I generated a set of Flc-labelled 20 bp-long ds DNA probes spanning a 200 bp 

interval that forms the core bxd Polycomb response element (PRE), where the PcG 

proteins are specifically localised in Drosophila (Papp and Muller, 2006; Figure 19E). 

I then compared the binding affinities of PclPHD2-WH to these different PRE probes by 

using FP assays. I observed that the PclPHD2-WH possesses comparable affinities to all 

the PRE probes with the Kd of between 2.9 and 13.3 µM (Figure 19F), indicating that 

the PclPHD2-WH binds to the bxd PRE in a sequence non-specific manner. In line with 

this, the solvent exposed residues in α3 are only poorly conserved among the Pcl 

homologues (Figure 17B). Together, these results show that the Pcl binds to DNA via 

the conserved WH domain in a sequence non-specific manner. 

2. FUNCTIONAL ANALYSIS OF PHF1-PRC2 

1. Purification of PHF1-PRC2 

Given the structural and biophysical evidence of Pcl/PHF1 in DNA binding via the 

conserved WH domain, I next asked about which role the Pcl/PHF1 WH domain 

would play in the context of a full-length Pcl/PHF1-PRC2 complex. To do this, I 

attempted to purify homogeneous and stoichiometric recombinant PHF1-PRC2 

complex. By the previous reports, purifying homogenous Pcl/PHF1-PRC2 seems to 

be challenging (Cao et al., 2008; Nekrasov et al., 2007; Sarma et al., 2008). First 

trials to express PHF1-PRC2 in HiFive cells using the DH10Bac strain as the bacmid 

donor cell showed that the PHF1 protein was degraded in the cells (data not shown). I 

then tested the expression using a new strain, DH10EMBacY, which the v-cath gene 

that encodes a viral cathepsin-type cysteine protease (V-CATH) is deleted in the 

baculoviral genome. The deletion of v-cath has been reported to improve protein  
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Figure 20. Purification of PHF1-PRC2 

(A) Coomassie staining of a 15 % polyacrylamide-SDS gel containing the High Five cell lysates 

expressing PHF1-PRC2. (B) Purification scheme. (C) Coomassie staining of a 4-12 % gradient 

polyacrylamide-SDS gel containing eluents from each purification step. (D) A gel filtration profile 

of PHF1-PRC2 on a Superose 6 column. (E) Coomassie staining of a 12 % polyacrylamide-SDS 

gel containing eluents from the gel filtration. 
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expression through reducing virus-dependent proteolytic activity (Berger et al., 

2004). Using the DH10EMBacY as the bacmid donor cell enabled me to express 

stable PHF1-PRC2 complex in insect cells (Figure 20A). I then purified the PHF1-

PRC2 with a series of chromatography (Figure 20B and C). Since PHF1 showed lots 

of phosphorylation, I treated the PHF1-PRC2 eluents with lambda protein 

phosphatase (LPP). Final gel filtration profile and its corresponding SDS-PAGE 

analysis verified the homogeneity of the stoichiometric PHF1-PRC2 (Figure 20D and 

E).  

2. PHF1 C-terminal domain is essential for PHF1 to form a stable 
complex with PRC2 

 Next, I attempted to map the PRC2 interacting domain(s) in the PHF1. To do 

this, I generated a number of different constructs of PHF1 (Figure 21A) harbouring a 

strep tag in the N-terminus, and coexpressed each of them with his-tagged PRC2. I 

then performed strep-pull down experiments, and discerned the interaction profile of 

the different PHF1 constructs to PRC2 by SDS-PAGE analysis (Figure 21B). 

 First of all, the construct without the N-terminal part of PHF1 (PHF1ΔN; 

Figure 21A) is unstable; no intact PHF1ΔN was eluted from the purification (Figure 

21B lane 1). Secondly, the constructs without the C-terminal part (PHF1ΔC and 

PHF1ΔNΔC; Figure 21A) are stable, but do not interact with PRC2 (Figure 21B lane 2 

and 3). Thirdly, the construct spanning from the PHD2 to the C-terminus (PHF1 

(PHD2-C); Figure 21A) forms a complex with PRC2 (Figure 21B lane 4), but the 

construct is highly unstable indicated by the degradation of the PHF1 (PHD2-C) upon 

the strep-tag cleavage (data not shown). Finally, either having only the conserved C-

terminal domain of PHF1 (PHF1(C); Figure 21A) or deleting the loop region between 

the WH and the C-terminal domains (PHF1Δloop; Figure 21A) gives rise to the stable 

association of the PHF1 constructs with PRC2 (Figure 21B lane 5 and 6).  
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Figure 21. Mapping of PRC2 interacting domain in PHF1 

(A) Domain composition of PHF1 constructs (left) and their ability to form a stable complex with 

PRC2 (right): +, stable complex; (+), form a complex but the PHF1 construct itself is unstable;  

(-), the PHF1 construct is unstable, potentially does not form a complex; -, no complex 

formation. (B) SDS-PAGE analysis of various PHF1 constructs-PRC2 pull-downs; T, TEV 

protease; L, LPP; asterisks, PHF1 constructs. (C and D) Gel filtration profiles (top) and 

coomassie staining of gels (bottom) of PHF1Δloop-PRC2 (C) and PHF1(C)-PRC2 (D).  
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 After this screening, I further purified the two positive constructs 

(PHF1Δloop-PRC2 and PHF1(C)-PRC2) by the same procedure used for the 

purification of PHF1-PRC2 (Figure 20B). Both of the purified PHF1Δloop-PRC2 and 

PHF1(C)-PRC2 exhibit homogenous and stoichiometric complex indicated by gel 

filtration and SDS-PAGE analysis (Figure 21C and D).  

 Next, I performed the domain mapping in the PHF19 by using the same 

experimental setup used for the PHF1 constructs, and I observed that the PHF19 C-

terminal domain is also essential for the PHF19 to be associated with PRC2 (data not 

shown). Of note, the importance of the PHF19 C-terminal domain in interacting with 

SUZ12 has been described beforehand (Ballaré et al., 2012).  

 On the other hand, the Jones group suggested that the Pcl binds to the E(z) 

through two PHD fingers shown by yeast two hybrid (O'Connell et al., 2001). 

However, given by the structural analysis of this study, I noticed that the Pcl 

construct they used in that study spans from the PHD1 to the middle of WH domain 

(PclPHD1-PHD2-1/2WH), of which structural stability is presumably lacking. Moreover, in 

order to suggest that the Pcl PHD fingers are important for the interaction with the 

E(z), they mutated key residues coordinating Zn ions in the Pcl PHD fingers, which 

might have led to aggregation of the whole PclPHD1-PHD2-1/2WH construct. Furthermore, 

when I tried to reproduce their experiments by using a PclPHD1-PHD2-WH construct and 

various E(z) constructs, or the human counterparts, I could not obtain a stable 

complex (data not shown).   

 Interestingly, DNA sequencing analysis of the Dm strain Pcl22M21, which was 

generated by ethyl methanesulfonate (EMS) mutagenesis and described as an allele 

of Pcl (Gaytán de Ayala Alonso et al., 2007), showed that the Pcl22M21 strain has a 

mutation in the coding sequence of E701 to a stop codon (Nekrasov et al., 2007). I 
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thus examined whether the Pcl22M21 Dm embryo produces Pcl1-700 protein, which 

would contain all conserved domains but the C-terminal domain, by western blot 

analysis. The western blot analysis of heterozygous Pcl22M21 Dm embryo nuclear 

extracts shows that the truncated Pcl protein (Pcl1-700) is made in the Pcl22M21 Dm 

embryo (Figure 22). Therefore, the fact that the Pcl22M21 Dm shows a null Pcl 

phenotype is obviously due to the fact that Pcl1-700, without the C-terminal domain, is 

not be able to be integrated into the PRC2. 

 Therefore, these results manifest that the conserved C-terminal domains in 

Pcl homologues are crucial for the Pcl homologues to form a stable complex with 

PRC2. 

 

 

Figure 22. Whole nuclear extracts of 

heterozygous Pcl and wild-type Dm embryos 

A western blot analysis of whole nuclear extracts of the 

heterozygous Pcl (Pcl22M21/CyOUbiGFP) and the wild-

type (OregonR) Dm embryos (0 – 14 hours (hrs) after 

egg deposition). The Pcl22M21/CyOubiGFP Dm embryos 

show an extra band around 84kDa (asterisk), which 

corresponds to the size of Pcl1-700, by Pcl antibody. 

Nurf55 was probed as a loading control. 
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3. Additional DNA contact by PHF1 WH domain increases DNA 
binding of PRC2   

In order to examine the role of the DNA binding activity of PHF1 WH domain in 

the context of the PHF1-PRC2, I carried out microscale thermophoresis (MST) and 

native gel shift assays using various versions of recombinant PRC2 (i.e. PRC2, PHF1-

PRC2 and PHF1R304E/S307E/N310E/K323E/K324E-PRC2 (PHF1WH(E)-PRC2); Figure 23A). 

Unexpectedly, I observed that the PRC2 binds to DNA with high affinity shown by the 

MST (Kd: 218 nM; Figure 23B) and the native gel shift assay (Kd: 76 nM; Figure 23C - 

E), of which DNA binding activity has not been reported to date. The PHF1-PRC2 

shows higher affinity (Kd: 142 nM by MST and 25 nM by gel shift assay; Figure 23B - 

D) to DNA than the PRC2 does. As expected, the DNA binding affinity of PHF1WH(E)-

PRC2 is similar to the one of PRC2 (Figure 23B and C). Thus, these data indicate that 

the additional DNA contact by the PHF1 WH domain enhances the DNA binding of 

the PRC2. 

4. PHF1 WH and C-terminal domains enhance nucleosome binding of 
PRC2 

 I next questioned whether PHF1 enhances nucleosome binding of PRC2. The 

nucleosome binding activity of Dm PRC2 has been previously analysed by band shift 

assays. This earlier report showed that the Su(z)12 and the Nurf55 are the minimal 

requirement for the PRC2 to bind to the nucleosome, and the Esc increases the 

nucleosome binding affinity of the PRC2 (Nekrasov et al., 2005). In order to 

investigate the effect of the PHF1 on the nucleosome binding of PRC2, I first 

reconstituted Flc-labelled mononucleosomes, ensuring the absence of any uncoupled 

DNA to exclude the possibility of observing unspecific DNA binding of PRC2. I then 

measured the nucleosome binding activities of various PRC2 complexes (Figure 23A) 

by native gel shift assays (Figure 24). The PHF1-PRC2 binds to the nucleosome with 

the Kd of 51 nM, whereas PRC2 binds the nucleosome with Kd of 138 nM (Figure 24).  
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Figure 23. DNA binding activity of various versions of PRC2 

(A) Coomassie staining of a 13 % polyacrylamide-SDS gel containing various recombinant PRC2 

complexes used in Figure 23 to Figure 26; PHF1WH(A/E): point mutation on K323, K324, R304, 

S307, N310 to A or E.  (B) Quantitative measurements of DNA binding affinities of various PRC2 

complexes (from 4 nM to 4 μM) to 45 nM 30 bp Flc-DNA by Microscale thermophoresis (MST); 

dots represent the mean values of the triplicate measurements; error bars, standard deviation of 

the triplicates; curve fitting was performed by Hill function; Kd values in parenthesis. (C and D) 

Native gel shift assays of 30 bp Flc-DNA (45 nM) using various PRC2 complexes. (E) Binding 

curves were determined by densitometry of fluorescence signals obtained in the gel shift assays 

(see Figure 23C and D). 
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Mutation of the DNA binding residues in the WH domain slightly impairs the 

nucleosome binding (Figure 24), but the reduction is not as significant as the one 

shown in the DNA binding (Figure 23).  

 

Figure 24. Nucleosome binding activity of various PRC2 

Native gel shift assays of 45 nM mononucleosomes reconstituted with Flc-labelled  (A) 147 bp 

601 DNA (Nuc147) and (B) 215 bp 601 DNA (Nuc215) using various PRC2 complexes  

(from 17 nM to 4 μM). (C) Binding curves of various PRC2 complexes to Nuc147 were 

determined by densitometry of fluorescence signals obtained in the gel shift assays (see Figure 

24A and Figure 25).  

 I then queried whether this trait, which the effect of certain binding mutation 

is alleviated in the context of the nucleosome, could be found in other cases. Recently, 
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Justin et al. reported that the binding affinity of the histone H3 peptide harbouring 

the H3K27M mutation to PRC2 (Kd ~0.6 µM) is 20-fold higher than the one of the 

wild-type H3 peptide to the PRC2 (Kd ~13 µM) (Justin et al., 2016). I thus questioned 

whether the H3K27M mutation in the nucleosome (H3K27M nucleosome) increases 

the binding affinity to PRC2. To investigate this, I compared the binding affinity of 

the recombinant H3K27M nucleosome to the PRC2 with the one of the wild-type 

nucleosome to PRC2. I observed that the H3K27M mutation in the nucleosome 

slightly enhances the binding to the PRC2 (Figure 25), but the increase is not as 

significant as the one shown in the H3K27M peptide. This indicates that the H3K27M 

in the nucleosome increases the binding affinity to the PRC2 less efficiently than the 

H3K27M in the peptide does.  

 

Figure 25. Native gel shift assays of nucleosomes with PRC2 and PHF1(C)-PRC2 

Nuc (M): 45 nM H3K27M nucleosomes reconstituted with 147 bp DNA; Nuc: 45 nM wild-type 

nucleosomes with 147 bp DNA. 

 In addition, I observed that that the complex of the PRC2 and the nucleosome 

exhibits smeary bands in the native gel (Figure 24A, left, lanes of the concentration 

points of 0.3µM onwards), which imply highly dynamic interaction between the 

PRC2 and the nucleosome. Interestingly, however, the complex of the PHF1-PRC2 

and the nucleosome shows defined bands (Figure 24A, middle, lanes of the 

concentration points of 0.2 µM onwards), which implicate that the interaction 
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between the PHF1-PRC2 and the nucleosome is stable. Thus, it seems that the PHF1 

stabilizes the interaction between the PRC2 and the nucleosome. Intriguingly, 

however, the complex of the PHF1WH(E)-PRC2 and the nucleosome also exhibits 

defined bands in the native gel (Figure 24A, right, lanes of the concentration points of 

0.2µM onwards). This suggests that (an)other domain(s) of the PHF1 might be 

involved in stabilizing the association of PRC2 with the nucleosome. Since I 

determined that the PHF1 C-terminal domain is essential to form a stable complex 

with PRC2 (Figure 21), I investigated the influence of the PHF1 C-terminal domain 

on the nucleosome binding of PRC2. Interestingly, the complex of the PHF1(C)-PRC2 

and the nucleosome also exhibits the defined bands in the native gel (Figure 25), 

indicating that the PHF1 C-terminal domain is responsible for stabilizing the 

association of PRC2 with the nucleosome. Additional DNA binding assays show that 

the PHF1 C-terminal domain does not enhance the DNA binding of PRC2 (Figure 

23B and D), indicating that this stabilizing PRC2 binding to the nucleosome by the 

PHF1 C-terminal domain is the outcome of other properties than the DNA binding 

activity.  

 Together, these results strongly suggest that the combinational contribution 

of the PHF1 WH and the C-terminal domains enhances the nucleosome binding of 

PRC2. 

5. PHF1 WH and C-terminal domains are crucial for efficient H3K27 
methylation by PRC2 

 I next questioned whether the enhancement of nucleosome binding of PRC2 

by PHF1 WH and C-terminal domains is critical in promoting the H3K27 tri-

methylation by PRC2. In order to examine this, I performed in vitro HMTase assays 

on recombinant mononucleosomes using various versions of PRC2.  
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Figure 26. HMTase assays with various PRC2 complexes 

(A) HMTase assays on 446 nM mononucleosomes (with 215 bp DNA) of increasing amounts of 

various PRC2 with fixed incubation time (90 min) (left) or of fixed amounts of the various PRC2 

(192 nM) with increasing incubation time (right). (B) HMTase assay of various PRC2 complexes 

on 446 nM mononucleosomes (215 bp DNA) with fixed incubation time (90 min). (A and B) H4 

was probed as a loading control. Histograms represent band intensities of H3K27me3 bands. 
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 Firstly, the PHF1-PRC2 generates H3K27me3 more efficiently than the PRC2 

does (Figure 26), in agreement with the previous reports (Cao et al., 2008; Sarma et 

al., 2008). Further quantification analysis revealed that the PHF1-PRC2 exhibits 

approximately three-fold higher activity than the PRC2 (Figure 26). Importantly, the 

point mutation in DNA binding residues to Ala (PHF1WH(A)-PRC2) results in decrease 

of the H3K27me3 levels, and the mutation to Glu (PHFWH(E)-PRC2) causes even 

further reduction of the H3K27me3 levels (Figure 26A). Secondly, the PHF1(C)-PRC2 

generates higher levels of H3K27me3 than the PRC2 does (Figure 26B).    

 Thus, these results strongly support that enhancing the nucleosome binding 

of PRC2 by PHF1 WH and C-terminal domains is pivotal for the efficient H3K27 

methylation by PRC2. 

6. PHF1 does not alter the regulatory effect of in trans histone 
modifications on the PRC2 enzymatic activity 

 H3K27me3 binding in trans by EED aromatic cage and EZH2 SRM domain 

stimulates enzymatic activity of PRC2 (Jiao and Liu, 2015; Justin et al., 2016; 

Margueron et al., 2009). On the other hand, H3K36me3 binding in trans does not 

affect on PRC2 enzymatic activity. Only the H3K36me3 binding in cis (i.e. when the 

target nucleosome harbours H3K36me3) inhibits the PRC2 enzymatic activity 

(Schmitges et al., 2011).  

 In order to assess whether the regulation of the PRC2 HMTase activity by in 

trans histone modification is altered in the presence of the PHF1, I performed 

HMTase assays with PRC2 and PHF1-PRC2 by adding two different modified histone 

peptides (i.e. H319-35K27me3 and H328-43K36me3).  



 

69 

 The HMTase assay using PRC2 and additional histone peptides shows the 

consistency with the previous findings (Figure 27). Next, the HMTase assay of PHF1-

PRC2 in the presence of the histone peptides demonstrate the same trend as the one 

of PRC2, i.e., H319-35K27me3 peptides increase the HMTase activity of PHF1-PRC2, 

and H328-43K36me3 does not affect on the HMTase activity (Figure 28). I suppose 

that the inhibition observed in the last lane of Figure 28 is not well meaningful, 

because the concentration of H328-43K36me3 (267 µM) is much higher than the 

concentration of the substrate nucleosomes (446 nM).  

 Thus, these results show that PHF1 does not alter the regulatory effect of in 

trans histone modifications on the PRC2 enzymatic activity. 

 

 

Figure 27. HMTase assay of PRC2 with histone peptides 

A western-blot based HMTase assay on 446 nM mononucleosomes (reconstituted with 215 bp 

DNA) using 153 nM PRC2 with increasing amounts of H319-35K27me3 or H328-43K36me3 

peptides; H4 and SUZ12 were probed as a loading control. 
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Figure 28. HMTase assay of PHF1-PRC2 with histone peptides 

A western-blot based HMTase assay on 446 nM mononucleosomes (reconstituted with 215 bp 

DNA) using 153 nM PHF1-PRC2 with increasing amounts of histone peptides; H4 and SUZ12 

as a loading control. 
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IV. CONCLUSION AND DISCUSSION 

   Previous studies showed that the Pcl/PHF1 is required for efficient methylation of 

H3K27 by PRC2 (Cao et al., 2008; Nekrasov et al., 2007; Sarma et al., 2008). 

Structural and biochemical analyses of this study reveal that the Pcl/PHF1 reinforces 

nucleosome binding of PRC2 by the conserved WH and C-terminal domains, and that 

this is crucial for the efficient H3K27me3 by PRC2. This study thus provides a 

molecular rationale for how Pcl/PHF1 helps PRC2 generate H3K27me3 efficiently. 

1. A CLOSED AROMATIC CAGE OF THE PHD2 IN PCLP H D 2-W H 

 Aromatic cages in many PHD fingers function as epigenetic readers, which 

bind to modified histone tails (Sanchez and Zhou, 2011). However, the two 

independent crystal structures solved in this study (Table 12) showed that the 

aromatic cage of the Pcl PHD2 is closed by the phenyl-ring of the Phe523 (Figure 18). 

The corresponding residue of the Phe523 in mammalian Pcl proteins is Trp (Figure 

17), which seems to ensure its closure with the bulkier residue during the course of its 

evolution. Still, there could be a chance that the closed aromatic cage in the PHD2 is 

a regulatory element of the Pcl, which could be opened conditionally. For example, 

additional domains of the Pcl protein itself or from the PRC2 core subunits, in the 

context of the full-length Pcl-PRC2 complex, might alter the conformation of the 

aromatic cage to permit the potential ligand binding. Solving a high-resolution 

structure of the Pcl together with PRC2 could provide a decisive answer to this 

question. 
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2. MILD DNA BINDING ACTIVITY OF THE WH DOMAIN IN 

PCLP H D 2-W H 

 This study demonstrated the presence of the WH domain adjacent to the 

PHD2 in Pcl by the crystal structure of Pcl construct (Figure 17). In addition, this 

study showed that the Pcl WH domain binds DNA in a sequence non-specific fashion 

(Figure 19). One similar example of this is the case of ASH2L WH domain. ASH2L is 

a core subunit of MLL family histone methyltransferase, which methylates histone 

H3K4 (Ruthenburg et al., 2007). The ASH2L WH domain also folds next to the PHD 

finger domain, and binds to DNA in a sequence non-specific manner with mild 

affinity (Chen et al., 2011; Sarvan et al., 2011).  

 One possible explanation for this could be that because both Pcl and ASH2L 

are a component of multi-subunit histone methyltransferase complex (PRC2 and 

MLL respectively), the WH domains of Pcl and ASH2L might not need to take the 

whole responsibility to bind the target DNA. Rather, the responsibility might be 

shared among the subunits of the complex, and all the contributions from the 

subunits could be added up in order to exert the optimal binding to the target DNA. 

3. UNVEILED DNA BINDING ACTIVITY OF PRC2 

 This study revealed, for the first time to my knowledge, the direct DNA 

binding activity of PRC2 (Figure 23). Indeed, the Su(z)12 ZnF domain has been 

suggested to bind to the PRE region in vivo, although the ZnF domain is dispensable 

in histone methyltransferase activity in vitro (Rai et al., 2013). In addition, the EZH2 

includes two SANT domains, which exhibit similarity to the DNA binding domain of 

Myb-related proteins (Boyer et al., 2004).  
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 Several reports provided the lncRNA binding activity of PRC2 (reviewed in 

Davidovich and Cech, 2015). The common consensus from the reports could be 

merged to sequence non-specificity of PRC2 in the lncRNA binding. In addition, 

recent UV cross-linking followed by IP (CLIP; Hafner et al., 2010) experiments 

showed that the SUZ12 binds to RNA directly with or without PRC2 (Beltran et al., 

2016). The DNA binding affinity of PRC2 obtained in this study is comparable to the 

RNA binding affinity of PRC2 described in the other study (Davidovich et al., 2013). 

Davidovich et al. showed that the PRC2 binds to lncRNA with higher affinity in low 

salt buffer conditions (Davidovich et al., 2013). Thus, I suggest that PRC2 binds to 

nucleic acids promiscuously perhaps mainly via charge-based phosphate backbone 

contact.  

 This finding of DNA binding activity of PRC2 seems to reinforce the point 

discussed in the section IV.2 (p. 72), that the DNA binding activity required for the 

complex could be distributed amongst Pcl and the other PRC2 subunits. Of note, the 

Pcl homologue strengthens DNA binding affinity of PRC2 by two fold (Figure 23). 

4. INDISPENSABLE ROLES OF THE PHF1 C-TERMINAL 

DOMAIN IN PHF1-PRC2 

 This study uncovered two important features of the PHF1 C-terminal domain: 

(i) interacting with PRC2 (Figure 21) and (ii) stabilizing the nucleosome binding of 

PRC2 (Figure 24), which is critical to promote the histone methyltransferase activity 

of PRC2 (Figure 26).  

 Ballàre et al. demonstrated that the C-terminal domains of Pcl homologues 

exhibit a ‘reversed chromodomain’ structure by secondary structure prediction 

analysis (Ballaré et al., 2012). Canonical chromodomains are comprised of three β-
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sheets and one following α-helix (Figure 29A). The C-terminal domains of Pcl 

homologues are suggested to contain one α-helix and two following β-sheets (Ballaré 

et al., 2012). Most chromodomains have been reported for their ability to bind to 

methylated lysines or nucleic acids via the aromatic cage with three conserved 

hydrophobic residues (Figure 29B; Eissenberg, 2012). Interestingly, the C-terminal 

domains of Pcl homologues have the conserved Trp in β2 in all Pcl homologues, 

implying its potential to form an aromatic cage. 

 

Figure 29. Similarity of PHF1 C-terminal domain to the HP1 chromodomain 

(A) Sequence alignment of the HP1 chromodomain and Pcl C-terminal domain; secondary 

structural elements of HP1 were depicted in green by the crystal structure shown in (B); 

secondary structural elements of Pcl homologues were drawn in brown by secondary structure 

prediction; asterisks indicate the residues involved in forming an aromatic cage of HP1. (B) A 

crystal structure of the HP1 chromodomain with the H3 peptide harbouring K9me3 (PDB code: 

1KNE). 

 I currently do not understand how the PHF1 C-terminal domain stabilizes the 

association of PRC2 with the nucleosome. I speculate (i) that a part of the C-terminal 
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domain might bind to PRC2 and the other part to the nucleosome or (ii) that the C-

terminal domain might alter the conformation of PRC2 to allow the PRC2 to bind to 

the nucleosome more stably. High-resolution structure of PHF1(C)-PRC2 onto the 

NCP could provide an insight on this.  

5. PCL AND PRC2 RECRUITMENT 

 Previous ChIP analysis showed the reduced PRC2 recruitment to the 

Polycomb targets in the murine Pcl-knockdown cells (Cao et al., 2008; Casanova et 

al., 2011) and in the Pcl-/- Drosophila embryo (Nekrasov et al., 2007), suggesting that 

Pcl/Phf1 facilitates the recruitment of PRC2. However, I could not find any evidence 

of sequence specificity of DNA binding by the Pcl WH domain. I propose that 

stabilizing the association of PRC2 with the nucleosome by Pcl homologues could 

have permitted capturing more abundant PRC2 during the ChIP procedure in the 

wild type than in the Pcl homologue mutants. In other words, I suggest that the Pcl 

homologues are responsible for anchoring PRC2 to the nucleosome stably, rather 

than de-novo recruitment. However I cannot exclude the possibility that Pcl might be 

involved in the PRC2 recruitment by different mechanism via other domains.   
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LIST OF ABBREVIATIONS 
a.a.  amino acid 

AEBSF  4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride  

ChIP    Chromatin immunoprecipitation 

Co-IP  Co-immunoprecipitation 

Ct  Chaetomium thermophilum 

ddH2O  Double-distilled water (ddH2O) 

Dm    Drosophila melanogaster  

DNA  Deoxyribonucleic acid  

dRAF  Drosophila Ring-associated factors  

DTT  1,4-dithio-D,L-threitol  

Esc  Extra sex combs 

ES  Embryonic stem 

E(z)    Enhancer of zeste 

Flc  fluorescein 

FP  fluorescence polarization 

His-tag  histidine-tag 

HMTase Histone methyltransferase 

Hox  Homeobox 

hr(s)  hour(s) 

Hs  Homo sapiens 

IPTG  Isopropyl β-D-1-thiogalactopyranoside 

Kan  Kanamycin  
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kb  Kilobases 

kDa  Kilodaltons 

lncRNA long non-coding RNA 

me1  monomethylation  

me2  dimethylation 

me3  trimethylation 

mES  mouse embryonic stem  

MS  Mass spectrometry 

MST  microscale thermophoresis  

Nurf55  Nucleosome-remodelling factor 55 kDa subunit 

OD600  optical density at 600 nm  

PAGE  polyacrylamide gel electrophoresis  

PBS  phosphate buffered saline 

PcG  Polycomb group  

Pcl   Polycomblike  

PCR  polymerase chain reaction 

PDB  Protein data bank  

PEG  polyethylene glycol  

PHD  Plant homeodomain 

PhoRC  Pho repressive complex 

PRC1  Polycomb repressor complex-1  

PRC2  Polycomb repressor complex-2 

PR-DUB Polycomb repressive deubiquitinase 
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PREs  Polycomb response elements 

SAD  single wavelength anomalous dispersion 

SAM  S-adenosylmethionine 

SANT  Swi3, Ada2, N-CoR, TFIIIB 

SDS  Sodium dodecylsulfate  

SET   Su(var)3-9, Enhancer-of-zeste, Trithorax 

Su(z)12 Suppressor of zeste 12 

TrxG   Trithorax group 

Ub   Ubiquitin 

Ubx   Ultrabithorax 

VEFS   VRN2-EMF2-FIS2-Su(z)12 

Zn  Zinc  
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APPENDIX 
 

The tables below show the list of clones generated and used for crystallization trials 
or biochemical studies during the PhD study, but not described in this thesis. All 
abbreviation is the same as ones in Table 4. 
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