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Abstract 

The initial treatment of acute lymphoblastic leukemia (ALL) leads often to the decrease of 

symptoms in patients. However, potentially remaining leukemic cells after chemotherapy, 

defined as minimal residual disease (MRD), indicate a high risk for relapse. Patients with 

relapse are faced with poor outcome. Novel treatment strategies have to target MRD cells in 

order to minimize the relapse risk. Dormancy and chemotherapy resistance are associated 

with unfavorable and critical features in MRD. However, our knowledge of MRD cells is too 

limited to allow a specific and successful treatment of these cells in patients.  

 

This present work is based on the individualized patient-derived xenograft (PDX) mouse 

model complemented with genetic engineering in PDX cells by expression of molecular 

markers and bioluminescence in vivo imaging. A novel preclinical model which uses 

prolonged chemotherapy treatment in mice to introduce MRD in PDX ALL, mimicking the 

situation in patients, was established. Histochemical studies of the murine bone marrow 

revealed that PDX MRD cells from this mouse model localized to the perivascular niche in 

the bone marrow; in contrast, in an additional, already established PDX mouse model of long-

term dormancy, dormant PDX ALL cells were preferentially enriched in the endosteal niche 

where normal hematopoietic stem cells reside. Gene expression profiles (GEP) of rare, but 

highly enriched bulk and single PDX ALL cells demonstrated high similarities between the 

PDX MRD cells and dormant PDX cells of the two different mouse models; both populations 

showed major adverse characteristics typically associated with unfavorable prognosis in 

patients such as altered metabolism and signs of chemotherapy resistance. Most importantly, 

GEP of primary ALL cells obtained from children at MRD showed a high similarity to PDX 

MRD cells indicating that the new preclinical MRD model resembles the challenging clinical 

situation of MRD in patients with ALL. 

 

The novel platform can now be used for developing innovative treatment strategies. Resistant 

ALL cells might be resolved from the bone marrow niche in order to sensitize them towards 

chemotherapy.   
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Zusammenfassung 

Die Initialtherapie der akuten lymphatischen Leukämie (ALL) führt oft zu einer Minderung 

der Symptome bei betroffenen Patienten. Jedoch bergen persistierende Leukämiezellen nach 

der Chemotherapie, definiert als minimale residuale Resterkrankung (MRD), ein erhöhtes 

Risiko für ein Rezidiv und führen folglich zu einer schlechteren Prognose. Neuartige 

Behandlungsstrategien gegen die MRD Zellen müssen entwickelt werden, um die Rezidivrate 

in ALL zu senken. Dabei werden Zellruhe und Chemotherapie-Resistenz mit kritischen 

Eigenschaften der MRD assoziiert. Jedoch ist unser Wissen über die Zellen der MRD zu 

begrenzt, um diese gezielt und erfolgreich zu bekämpfen. 

 

Diese vorliegende Arbeit basiert auf dem individualisierten Patienten-abgeleiteten Xenograft 

(PDX) Mausmodell. Ergänzt wurde dieses Modell durch Genmanipulationen an den PDX 

Zellen für die Expression von molekularen Markern und für die Biolumineszenz in vivo 

Imaging. Ein neues präklinisches Modell für die Simulation der MRD in der PDX ALL, 

welches auf eine langfristige Chemotherapie in Mäusen beruht und dabei die Situation des 

Patienten nachahmt, wurde etabliert. Histochemische Analysen von murinem Knochenmark 

ergaben, dass sich die PDX MRD Zellen aus diesem Mausmodell  in der perivaskulären 

Nische des Knochenmarks lokalisieren. Im Gegensatz dazu, in einem zusätzlichem, bereits 

etabliertem PDX Mausmodell zur langfristigen Zellruhe, waren die ruhenden PDX ALL 

Zellen in der endostalen Nische angereichert, wo sich auch die hämatopoetischen 

Stammzellen befinden. Genexpressionsprofile (GEP) von seltenen, aber hochangereicherten 

Bulk- und Einzel-PDX ALL Zellen zeigten hohe Ähnlichkeiten zwischen den PDX MRD- 

und den ruhenden PDX Zellen aus den zwei verschiedenen Mausmodellen. Beide 

Populationen wiesen wesentliche Merkmale auf, die typischerweise mit ungünstigen 

Prognosen in Patienten assoziiert sind, wie z.B. veränderter Metabolismus und Anzeichen für 

Chemotherapie-Resistenz. Vor allem zeigten die GEP von primären ALL Zellen, isoliert aus 

Kindern in der MRD, eine hohe Ähnlichkeit zu PDX MRD Zellen. Dies lässt schlussfolgern, 

dass das neue präklinische MRD Modell die klinisch herausfordernde Situation der MRD in 

ALL Patienten wiedergibt. 

 

Diese einzigartige neue Plattform eignet sich für die Entwicklung neuartiger 

Behandlungsstrategien. Resistente ALL Zellen sollten von der Knochenmarksnische zerstreut 

werden, um diese für Chemotherapie angreifbar zu machen 
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1 Introduction 

1.1 Acute Lymphoblastic Leukemia 

Acute lymphoblastic leukemia (ALL) is a malignant disorder of the lymphoblastic progenitor 

lineage. Instead of developing into mature lymphocytes, immature and non-functional blasts 

of B- or T-cells grow at high rates and accumulate in the bone marrow and infiltrate other 

organs via blood vessels. The accumulation of blasts leads to disturbed and suppressed 

hematopoiesis. Due to this dysfunction the symptoms are shown in anemia, increased risk of 

infections and bleedings, fever and the enlargement of spleen and liver (Esparza & Sakamoto. 

2005).    

ALL is the most common cancer in children and around 60% of all ALL cases occur at an age 

of 20 years and younger. Most of the affected children are between 2 and 5 years. The 

incidence is 3-4 cases per 100,000 children and 1 case per 100,000 adults each year. Among 

them B-ALL represent 80% of all ALL cases and is more frequently diagnosed in children as 

well as adults compared to T-ALL (Chiarini et al. 2016; Cobaleda & Sanchez-Garcia. 2009). 

ALL is a heterogeneous disease with genetic alterations including hyperdiploidy, 

chromosomal translocations and deletions. Chromosomal translocations are the most frequent 

alteration in ALL. In more than 20% of all pediatric cases a TEL-AML1 (synonym: ETV6-

RUNX1) translocation is detected, followed by MLL rearrangements (6%), TCF3-PBX1 (4%) 

and BCR-ABL (synonym: Philadelphia-chromosome; 2%)(Inaba et al. 2013). Many 

chromosomal rearrangements disrupt gene loci of important transcription factors regulating 

the hematopoiesis and lymphoid development (e.g. ETV6, RUNX1, TCF3, PBX1). The BCR-

ABL translocation leads to a constitutive tyrosine kinase activity resulting in uncontrolled cell 

divisions, whereas MLL rearrangements disturb the histone methylations provoking altered 

gene expressions (Ferrando et al. 2003; Raitano et al. 1995). Most of the rearrangements are 

well characterized and are used to predict treatment efficiencies. For example, high 

hyperdiploidy and ETV6-RUNX1 translocations are associated with good prognosis in 

contrast to MLL rearrangements (Inaba et al. 2013; Pui et al. 2008).  

 

1.1.1 Treatment  

The high proliferation rate of many leukemic cells is taken advantage in the ALL therapy. 

Therefore, the treatment of ALL patients is based on chemotherapy (Inaba et al. 2013). 

Cytostatic drugs target unspecific all fast dividing malignant as well as healthy cells by 
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suppressing diverse proliferating processes, e.g. inhibition of the chromosome separation 

during cell division by application of Vincristine, which is a commonly used cytostatic drug 

in ALL treatment (Owellen et al. 1972). Thus, such a therapy is correlated with severe side 

effects due to elimination and damage of dividing healthy cells. Hair loss, mouth sores, 

vomiting and increased infection risk are some of the common side effects (Clevers. 2011; 

Zhou et al. 2009). 

Most cytostatic drugs were developed before 1970 and are still very important in clinical 

treatment strategies. During the last decades the therapy protocols were optimized in dosage, 

frequency and the combination of chemotherapeutics leading to higher survival rates and 

better outcome (Inaba et al. 2013). 

The average treatment duration in ALL is 2-3 years and is divided into three phases in which 

the cytostatic drugs, dosages and frequencies are changed. After diagnosis of ALL the 

induction therapy is immediately started. The aim of the first therapy phase is reaching 

remission by reducing the initial leukemic burden and restoring normal hematopoiesis. 

Remission is reached by easing the disease symptoms. After 4-6 weeks of induction therapy, 

the success rate is more than 90%, and the following consolidation therapy aims to eliminate 

residual leukemic cells in the next 20-30 weeks. Finally, by reducing the high dosage of 

cytostatic drugs, the maintenance therapy is carried out for 2-3 years in order to decrease the 

risk of leukemia regrowth, called relapse  (Inaba et al. 2013; Pui et al. 2008). 

The survival rate depends on the ALL classification considering the detected chromosomal 

translocations. Nevertheless, not more than 50% of adults and more than 80% of children 

have a long-term survival rate of more than 5 years after diagnosis (Bassan & Hoelzer. 2011). 

The main reason for treatment failures is the occurrence of relapses. Patients with relapse 

have a dismal prognosis due to chemotherapy resistance of the re-growing leukemia. Two 

different models are described for the evolution of therapy-resistant clones causing ALL 

regrowth. Relapse arises either from an existing clone at diagnosis or from pre-leukemic 

ancestral clone, which gain a new chromosomal abnormality or gene mutation (Kunz et al. 

2015; Mullighan et al. 2008). A recent study in B-ALL compared matched diagnosis and 

relapse samples and showed that 75% of the relapse clones were already found during initial 

diagnosis (Ma et al. 2015).  

The standard ALL therapy with cytostatic drugs was optimized over the last decades and 

reached a level in which a significant increase of patients’ outcome and survival rate is not 

possible by optimizing existing chemotherapy alone. Therefore, new treatment strategies are 

urgently needed (Cooper & Brown. 2015). More and more targeted therapy for ALL becomes 
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important to support the chemotherapy. Disease specific characteristics are attacked by 

targeted therapies. The challenge in developing these personalized therapies is the 

identification of proteins that are ideally expressed in malignant but not in healthy cells or 

display at least significant different expression levels. The advantages of this new approach 

are less toxicity on healthy cells and fewer side effects than cytostatic drugs alone (Portell & 

Advani. 2014).  

The best described drug for targeted therapy in ALL is Imatinib. Imatinib binds specifically to 

the BCR-ABL1 fusion protein, which is presented exclusively in leukemic cells but not in 

healthy cells. This binding leads to the inhibition of the constitutively activated tyrosine 

kinase (Yanada et al. 2006). Thus, Imatinib has resulted in high improvement in the survival 

of BCR-ABL1 positive leukemia patients. In the last decades patients with BCR-ABL1 

translocations had a poor prognosis. Less than 40% of these patients survived after 

chemotherapy. By inhibiting the constitutively activated BCR-ABL1 kinase with Imatinib, 

combined with chemotherapy, the survival rate increased up to 80% (Schultz et al. 2009). 

In addition, many concepts of targeted therapies for ALL are in clinical studies, for example 

therapeutic antibodies as Blinatumomab and Inotuzumab ozogamicin (Portell & Advani. 

2014). Blinatumomab is the first BITE (Bi-specific T-cell engagers)-antibody, which detects 

simultaneously two different antigens, the CD3 receptor of T-cells and the CD19 cell surface 

protein of B-cells. Both proteins are overexpressed in ALL compared to healthy lymphocytes. 

Specific binding of Blinatumomab marks ALL cells for an antibody-dependent cellular 

cytotoxicity reaction of the immune system, resulting in elimination of tumor cells via 

phagocytosis by natural killer cells, monocytes or macrophages (Brower. 2016; Mellor et al. 

2013). 

In contrast, the antibody inotuzumab ozogamicin is linked to a cytostatic drug and binds to the 

cell surface marker CD22, which is highly expressed in mature B-cells and blasts. The 

progenitor B-cells are not affected. Thus, the toxicity on the B-cell lineage is low. 

Furthermore, the high side effects of conventional chemotherapy are reduced by this antibody 

due to the targeted application of the cytostatic drug in specific areas (Kantarjian et al. 2012; 

Morley & Marks. 2016).  
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1.1.2 Minimal residual disease  

Minimal residual disease (MRD) implies small numbers of remaining leukemic cells after 

reaching remission. During and after patients’ treatment the therapeutic success is followed in 

the clinics as depicted in Figure 1. Chemotherapy reduces the leukemia burden within almost 

all patients (green circle) and remission is achieved in a short period of time. Nevertheless, 

treatment has to continue after remission to avoid relapse of the disease. A level of less than 

1% of remaining ALL cells after therapy is defined as MRD (Buckley et al. 2013). Depending 

on patients’ ALL, resistant leukemic cells can persist in different levels (red circle) and cause 

sooner or later relapses. Especially, MRD levels indicate the initial response to therapy and 

serve as prognostic marker for relapse risk. Patients with the lowest detectable MRD levels 

(e.g. 10
-4

) have a better prognosis and lower risk of suffering relapse than patients with high 

levels of MRD cells (e.g. 10
-2

) (Conter et al. 2010; van Dongen et al. 2015). Even in cases of 

a complete MRD response, which is characterized by non-detectable numbers of leukemic 

cells, patients can relapse. The monitoring of the MRD level is important for assessing the 

therapeutic success and for starting treatment upon regrowth of resistant cells (Borowitz et al. 

2008; Stow et al. 2010; Vora et al. 2013).  

 

 

Figure 1: Monitoring of minimal residual disease in clinics. 

Therapeutic effects in ALL treatment are monitored in clinics. Tumor load (proportion of leukemic cells among 

healthy cells) can be reduced by chemotherapy (green circle). Remaining leukemic cells are resistant to the 

current therapy (red circle). MRD level is reached in different levels depending on patients’ ALL and serve as 

prognostic marker for relapse. Adapted from (Bruggemann et al. 2012). 

 

Identification of residual leukemic cells among healthy cells in bone marrow aspirates is 

based on leukemia specific chromosomal translocations, gene mutations, immunoglobulin 
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receptor rearrangements or immunophenotypic abnormalities. Chromosomal translocations 

are highly specific for leukemia and are analyzed by polymerase chain reaction (PCR) as well 

as gene mutations and immunoglobulin receptor rearrangements (Greaves & Wiemels. 2003; 

van Dongen et al. 2015). The sensitivity can be up to 10
-6

 cells by analyzing translocations. 

The disadvantage of this method is that no information about the leukemia immunophenotype 

is gained (Bruggemann et al. 2010). This information might be useful for further therapy 

strategies. In contrast, fluorescence-activated cell sorting (FACS) analysis provides an 

immunophenotypical characterization of patients’ leukemia with the detection limit of 10
-5

 

cells (Bruggemann et al. 2010; Coustan-Smith et al. 2011). However, the challenge is to 

identify leukemia-associated immunophenotypes that are different from present normal bone 

marrow cells. Until now no common MRD signature exists due to the high variation of ALL 

(Basso et al. 2009; Coustan-Smith et al. 2011). Therefore, the leukemic antigen expression 

pattern of every patient has to be adjusted by using a leukemia-associated panel of at least 6 

relevant markers, for example CD19, CD22, CD34, CD38, CD45 are the most common 

markers for identification of ALL cells in the bone marrow (Borowitz et al. 2008; Fiser et al. 

2012). Nevertheless, false positivity still cannot be completely excluded because of 

similarities between leukemic lymphoblasts and normal lymphoid progenitor cells in the 

different phases of regeneration during and after treatment. (Basso et al. 2009; Coustan-Smith 

et al. 2011).  

The challenge in the ALL therapy is not anymore the initial treatment to reach remission. The 

survival rate is more than 90% after the induction therapy (see 1.1.1). Remaining treatment- 

resistant MRD cells after chemotherapy are the main reason for regrowth of the leukemia. 

More ALL patients succumb of relapses than from the initial cancer. A better understanding 

of MRD cells would provide new insights for developing targeted therapies against MRD 

cells (Campana. 2010; Vora et al. 2013). 
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1.1.3 The role of the bone marrow 

It is currently believed that the bone marrow environment plays a pivotal role in dormancy 

and chemotherapy resistance of leukemic cells (Pal et al. 2016). Colmone and colleagues 

presented the first important evidence for the interaction between bone marrow and leukemic 

cells. They demonstrated that leukemic cells are able to change the bone marrow 

microenvironment resulting in a dysfunction of hematopoietic progenitor cells (HPC) 

(Colmone et al. 2008). 

Increasing understanding of the bone marrow structure and healthy hematopoiesis led to new 

insights of the leukemic niche. A niche is defined as a local microenvironment maintaining 

and regulating stem cells and progenitors (Morrison & Scadden. 2014). Two niches exist in 

the bone marrow: the endosteal- and perivascular niche (Chiarini et al. 2016; Ehninger & 

Trumpp. 2011; Lo Celso & Scadden. 2011). The endosteal niche (endosteum) is the region 

around the bone matrix with a distance of less than 100 µm to the closest bone matrix 

(Nombela-Arrieta et al. 2013). The perivascular niche is more central within the bone marrow 

consisting of sinusoids/endothelial cells, CXCL12-abundant reticular (CAR) cells and 

mesenchymal stem cells (MSC). These cell types are also found in the endosteal region, but 

with a lower frequency (Ehninger & Trumpp. 2011). Characteristic cells for the endosteal 

niche are osteoblasts and osteoclasts, which build a cell layer on the bone matrix. The 

function of all cell types are more or less known: Osteoblasts synthesize and osteoclasts 

resorb the bone matrix during bone formation, and CAR cells produce excessively the 

chemokine CXCL12 for homing and maintaining HSC in the bone marrow (Chiarini et al. 

2016; Sugiyama et al. 2006). However, the knowledge about the interaction of these cell types 

within the microenvironment by secreted cytokines and cell surface ligands/receptors is still 

incomplete (Morrison & Scadden. 2014). Furthermore, a controversial issue exists about the 

localization of dormant HSC within the bone marrow. Many groups indicated that the 

endosteal niche maintains a small dormant HSC population in contrast to the perivascular 

niche harboring self-renewing HSC (Arai & Suda. 2007; Calvi et al. 2003; Haylock et al. 

2007; Zhang et al. 2003). However, recent studies from laboratory of Prof. Morrison (UT 

Sothwestern Medical Center, Dallas) showed that the function of the endosteal niche is 

minimized to an indirect role in modulating HSC. The perivascular niche is settled by HSC 

and the endosteal niche by early lymphoid progenitors (Ding & Morrison. 2013). 

Furthermore, it was stated that dividing HSC are localized more likely in the endosteum than 

non-dividing HSC, which are restricted to perivascular subniches (Acar et al. 2015; Morrison 

& Scadden. 2014).   
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Figure 2: Bone marrow is divided into two major niches. 

The bone marrow consists of the endosteal- and the perivascular niche for maintaining self-renewal and lineage 

differentiation of hematopoietic stem cells (HSC). The endosteal niche is close to the bone matrix and the 

perivascular niche is located more in the center of the bone marrow and is not influenced by osteoblasts and 

osteoclasts. The endosteal niche plays an important role for HSC dormancy, and the perivascular niche harbors 

dividing HSC. However this is controversially discussed. Adapted from (Ehninger & Trumpp. 2011). 

 

In contrast to the controversially discussed role of the endosteal niche in the HSC 

maintenance, the role of the endosteum is clearer in the malignant hematopoiesis. Several 

studies demonstrated that the endosteal niche is associated with dormant and chemotherapy-

resistant leukemic cells (Boyerinas et al. 2013; Chen et al. 2014; Ishikawa et al. 2007). Within 

the endosteal region leukemic cells interact with the cellular environment. Often some 

features of osteoblasts and osteoclasts are used or disturbed to gain an advantage in leukemia 

progression (Kode et al. 2014; Lawson et al. 2015; Schepers et al.). For example, Boyerinas 

and colleagues showed that blasts use osteopontin to localize themselves in the quiescent 

endosteal niche. Osteopontin, which is secreted by osteoblasts, acts as a chemokine and as an 

extracellular protein for bone remodeling. After homing in this niche, the leukemic cells start 

to produce and to secrete additional osteopontin into the local microenvironment in order to 

enhance the dormant effect (Boyerinas et al. 2013). 

Next to the leukemia supporting endosteal niche, malignant cells are also able to evolve a 

protective niche by interacting with MSC during chemotherapeutical stress. The formation of 

a therapy-induced niche contributes to the chemotherapeutic resistance of leukemic cells 

(Duan et al. 2014).  
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Recently, new insights were obtained in understanding the interaction of leukemia with the 

microenvironment. The bone marrow supports the dormancy and chemotherapy resistance of 

leukemic cells (Pal et al. 2016). Novel ALL treatment strategies have to consider the bone 

marrow environment. By targeting the interaction of leukemia and bone marrow, drug 

resistant leukemic cells can be sensitized towards chemotherapy.  

 

 

1.2 Challenging characteristics of tumor cells 

In patients’ remission, infinitesimal numbers of MRD cells can remain after conventional 

chemotherapy and indicate a risk for the reappearance of leukemia followed with bad 

prognosis. The final goal of all cancer therapies is to cure the patient by reaching a complete 

recovery without any risk of relapse. In clinics conventional chemotherapies usually do not 

overcome the challenging characteristics of relapse inducing cells. Unfavorable and 

challenging characteristics of these tumor cells are associated with quiescence, drug resistance 

and stemness (Kreso & Dick. 2014).    

  

1.2.1 Dormancy 

Therapeutic success is diminished by the existence of dormant cancer cells. Elimination of 

this inactive and non-dividing subpopulation is limited by the mode of action of conventional 

drugs. Most drugs in cancer therapy are cytostatic agents targeting different cellular processes 

for proliferation. Consequently, dividing cancer cells are killed, and dormant cells remain as 

the drugs are not affecting non-dividing dormant cells. These cells represent the residual 

disease and might be dormant over a long time period until starting to proliferate and resulting 

in relapse. Mechanisms of dormancy are still unclear in cancer cells (Essers & Trumpp. 2010; 

Greaves. 2013; Li et al. 2014). However, the microenvironment is very likely to have a crucial 

role at this critical feature. Novel treatment strategies aim to target dormant cancer cells or 

alter the microenvironment in order to re-activate the cell cycle and sensitize them towards 

chemotherapy (Saito et al. 2010). 
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1.2.2 Drug resistance 

Chemotherapy resistance is another challenging and critical feature influencing patients’ 

outcome. During drug treatment, some cancer cells escape from therapy and lead to a more 

aggressive and resistant disease. Here two different scenarios are conceivable to explain the 

drug resistance: either chemotherapy induces genetic alterations in cancer cells leading to a 

resistance or a chemotherapy-resistant subclone already existed within the initial tumor 

population. The molecular reasons for drug resistance are manifold and poorly understood so 

far. However, proteasome inhibition, altered membrane transport, altered target enzyme, 

decreased drug activation and increased drug degradation are one of many suggestions for 

causing intrinsic drug resistance (Luqmani. 2005; Paiva et al. 2016). 

Extrinsic regulators were also implicated for drug resistance. The tumor microenvironment 

contributes to keep cancer cells in a dormant state (Boyerinas et al. 2013; Chen et al. 2014). 

This acquired dormancy leads to chemotherapy resistance due to downregulation of cell cycle 

processes (Li et al. 2014). Besides, the surrounding microenvironment might also inhibit the 

drug distribution resulting in protection of cancer cells (Meads et al. 2009). 

In summary, new drugs with novel mode of actions are urgently needed to overcome 

resistances during chemotherapy. 

 

1.2.3 Stemness 

Therapy failures are also caused by the heterogeneity of the tumor. A tumor population 

consists of multi-clonal divergent fast-dividing and drug-sensitive cells. The cancer stem cell 

(CSC) model proposes that a tumor arises from a rare subgroup of dormant and drug resistant 

cells with self-renewal capacity. CSC constitute the malignant counterpart to stem cells, 

which are distinguished from CSC by the balance between proliferation and quiescence 

affected by the specific niche (Li & Neaves. 2006). Self-renewal of CSC is crucial for the 

maintenance and also for the relapse of the tumor. Asymmetric division of one CSC gives rise 

to two distinct daughter cells: one copy of the original stem cell and a second cell to 

differentiate into a non-stem tumor cell (Greaves. 2013; Magee et al. 2012; Shackleton. 2010). 

Furthermore, in one tumor several CSC clones might exist with diverse genotypes and 

phenotypes. By targeting and eliminating CSC, the source of tumor growth might be inhibited 

and the disease might become favorable and sensitive for treatments. Therefore, such 

treatment strategies try to target malignant cells with CSC characteristics (Clevers. 2011; 

Kreso & Dick. 2014). 
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The standard assay for identification and quantification of CSC in tumors is based on the 

xenograft tumor model. Cancer cells are transplanted into mice in dilution series allowing the 

calculation of CSC frequency from the number of engrafted cells. In general, CSC frequency 

is considered far below 0.1% of an unsorted cancer cell population (Iwasaki & Suda. 2009; 

Lapidot et al. 1994). However, the used CSC markers in all different types of tumors show 

controversial results. Consequently, these markers cannot be used for a precise detection of 

CSC in tumors  (Clevers. 2011).  

 

An exception of the hierarchical CSC model in tumors is ALL. An enormous cellular 

heterogeneity and clonal evolution is observed in ALL. Besides, all ALL cells have the 

capacity for self-renewal and therefore are attributed with CSC potential, termed as leukemia 

stem cells (LSC). The LSC frequency in ALL is very high compared to other types of cancer 

and leukemia. A stochastic model is even suggested to describe the LSC of ALL (Morisot et 

al. 2010; Vormoor. 2009).  Consequently, no specific LSC markers have been defined so far 

for ALL (Kong et al. 2008).  

 

Taken together, all challenging characteristics of dormancy, drug resistance and stemness 

have to be considered for developing new treatment strategies in order to improve patients’ 

outcome especially after relapses. 

 

1.3 Patient-derived xenograft mouse model of ALL 

The patient-derived xenograft (PDX) ALL mouse model is based on primary patients’ cells 

and is currently the best model for studying many diverse aspects of human leukemia (Poglio 

et al. 2016).  

The PDX model was first described by John Dick and colleagues around 30 years ago 

(Kamel-Reid et al. 1989) and its importance increases continuously each year. This model is 

currently the gold standard model for analyzing the leukemia niche (Duan et al. 2014; 

Hawkins et al. 2016; Ninomiya et al. 2007), studying the clonal evolution of leukemic cells 

(Cheung et al. 2013; Clappier et al. 2011), performing preclinical treatment trials (Gao et al. 

2015; Lee et al. 2007; Townsend et al. 2016) and advancing translational leukemia research 

(Fry & Aplan. 2015; Guezguez et al. 2013; Hidalgo et al. 2014). 

For PDX-based studies in ALL, primary material is obtained from patients’ bone marrow 

aspirates or peripheral blood. By injecting the primary ALL cells into immunocompromised 
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mice, human leukemia engrafts in the living organism and displays similar course of disease 

as in patients. Leukemic cells home and engraft first in the bone marrow before they expand 

and infiltrate other organs like spleen and liver. Leukemic PDX cells can be re-isolated from 

the bone marrow or spleen, and re-injected into the recipient mice for passaging 

(Gopalakrishnapillai et al. 2016).  

An in vivo model is required for primary ALL cells as they are unfortunately reluctant to grow 

in vitro. Amplification of primary ALL cells requires passaging in vivo. In rare occasions, in 

vitro growing cell lines can be generated out of primary ALL cells. These cell lines acquire 

additional mutations and alterations which are not present in patients and introduce a major 

bias into all studies. In contrast, upon in vivo passaging PDX cells retain important 

characteristics of primary ALL cells, for example microenvironment interactions or molecular 

heterogeneity (Cassidy et al. 2015; Townsend et al. 2016). 

The similarity between primary ALL and the PDX model was shown by comparing primary 

samples of diagnosis and relapse with their behavior as PDX. More aggressive types of 

leukemia and especially relapse samples engraft more efficient and faster in recipient mice 

than diagnosis samples. (Lock et al. 2002; Meyer et al. 2011). Furthermore, Clappier and 

colleagues demonstrated that the PDX cell population often arises from minor subclones 

existing in patients’ diagnosis. These subclones are found predominantly in the corresponding 

relapse samples.  Engrafted ALL cells resemble in the xenograft mouse model more 

aggressive relapse samples than diagnosis samples (Clappier et al. 2011). 

Engrafted ALL samples have a high stemness frequency in the xenograft mouse model. Small 

numbers of ALL cells are injected into mice without enriching for any self-renewal marker 

like in other xenograft models. Thus, the efficiency of establishing new PDX ALL samples is 

very high compared to other cancer types or leukemia models (Morisot et al. 2010).  

 

1.3.1 PDX mouse model for identification of dormant leukemic cells 

The PDX mouse model of ALL was developed further in our lab by introducing lentiviral 

transduction for molecular manipulation in PDX cells (Terziyska et al. 2012; Vick et al. 

2015). After a first passage of the primary sample in an immunocompromised mouse, 

lentiviral transduction is performed ex vivo to obtain PDX cells positive for reporter genes 

facilitating enrichment and detection of PDX cells (see Figure 3) (Terziyska et al. 2012; Vick 

et al. 2015). 
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Figure 3: Scheme for production of transgenic PDX ALL cells. 

Primary ALL samples from the clinics can be passaged in the immunocompromised NOD scid gamma (NSG) 

mice. After the first passage lentiviral transduction is performed to the isolated PDX cells from the enlarged 

spleens. PDX cells were transduced with the following transgenes: truncated NGFR for magnetic-activated cell 

sorting (MACS) targeting, mCherry for FACS detection and luciferase for bioluminescence in vivo imaging. 

Enriched transgenic PDX cells are reinjected. Adapted from (Ebinger, Özdemir et al. 2016). 

 

In a parallel independent but collaborative PhD activity, Sarah Ebinger studied dormant ALL 

PDX cells. The identification and isolation of the dormant PDX cells were facilitated by the 

expressed transgenes luciferase, a red fluorochrome and the artificial surface antigen NGFR. 

(Ebinger, Özdemir et al. 2016). While transgenic luciferase was used for in vivo imaging and 

follow-up of the disease, the other two transgenes were used to isolate and enrich minor 

amounts of PDX ALL cells from murine bone marrow by a two-step procedure consisting of 

a magnetic-activated cell sorting (MACS) enrichment step using NGFR followed by a FACS 

enrichment using the fluorochrome. PDX cells were additionally labeled with the fluorescent 

cell staining dye, CFSE (Carboxyfluorescein succinimidyl ester) ex vivo (Weston & Parish. 

1990). CFSE is an accepted marker for dormant cells. Each cell division diminishes the CFSE 

signal by 50%. Loss of the CFSE intensity is associated with continuous proliferation. 

Triple transgenic, CFSE
+
 PDX cells were injected into immunocompromised mice. After 

several weeks of cell injection the bone marrow was isolated and analyzed for the PDX cells. 

A small subpopulation of CFSE
+
 PDX cells was identified after 3 weeks of injection. These 

cells did not lose the staining dye and are called label retaining cells (LRC; see Figure 4). 

Two weeks after cell injection the identified LRC population constitute less than 0.1% of the 

PDX population in almost all analyzed ALL samples. These samples harbor various genetic 

alterations. While almost all PDX cells proliferate in mice and loose consequently the CFSE 

signal, the LRC show a dormant phenotype and retain the CFSE. 
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Figure 4: Scheme of the PDX LRC mouse model for identification of dormant leukemic cells in vivo. 

Freshly isolated transgenic PDX cells from the spleen of the donor mice are labeled ex vivo with the proliferation 

marker CFSE. CFSE
+
 PDX cells are injected into recipient mice. After several days the bone marrow is isolated. 

Resting PDX cells, which are characterized by their high CFSE signal, are called label retaining cells (LRC). 

The more days after injection the mice are sacrificed, the less LRC are isolated. The first time point, in which 

LRC are identified, is at day 10 after cell injection. LRC are defined as less than 2% of the entire PDX 

population and are isolated from the bone marrow and enriched by MACS and FACS via their transgenic PDX 

markers of NGFR, mCherry and the CFSE signal. Adapted from (Ebinger, Özdemir et al. 2016).  

 

In functional studies, performed by Sarah Ebinger, LRC showed the critical cancer stem cells 

properties of dormancy, drug resistance and stemness. Before re-injecting the sorted LRC and 

the dividing PDX cells (non-LRC) into recipient mice, non-LRC were labeled again with 

CFSE as the marker was lost during the first passage. The same previous observed CFSE 

pattern was reproduced for both groups. Non-LRC converted into LRC and vice versa upon 

re-transplantation. Furthermore, in a limiting dilution transplantation assay (Schluter & Kaur. 

2013) LRC were not enriched for stemness compared to the dividing non-LRC. Both 

populations were able to re-engraft with the same frequency and show a high plasticity in 

mice (Ebinger, Özdemir et al. 2016).  

In in vivo treatment experiments LRC were drug resistant. In contrast, non-LRC showed a 

high sensitivity towards chemotherapy and was dramatically reduced. Sorted chemotherapy 

treated LRC inherited still leukemia-initiating potential in recipient mice, which resembled 

patients’ relapse after treatment. By taking the LRC and non-LRC out of the bone marrow 

environment and treating them with chemotherapy in vitro, both groups exhibited same drug 

sensitivities suggesting the important connection between chemotherapy resistance, ALL 

plasticity and bone marrow environment (Ebinger, Özdemir et al. 2016).  

In summary, functional studies showed that LRC obtain all critical features of challenging 

cells in patients’ treatment. The LRC fate of dormancy, chemotherapy resistance and 

stemness are highly associated with the influence of the bone marrow environment. 
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This previously established PDX LRC mouse model was used in the following thesis for 

further characterization of LRC. 

   

1.4 Aim of this work 

Conventional therapy of ALL is based on the excessive application of chemotherapeutic 

drugs. The initial treatment is often successful and patients reach remission. However, certain 

ALL cells might survive in a disease status called minimal residual disease. MRD cells might 

progress into disease relapse with poor prognosis. Novel treatment options are required to 

eliminate tumor cells at MRD in order to prevent disease relapse; but developing such 

treatments requires appropriate preclinical models which were so far lacking.  

The aim of the present study was to characterize ALL cells at MRD in order to lay the ground 

for developing novel therapies against these clinically challenging cells. As a first step, a 

preclinical PDX ALL model of MRD should be established in order to obtain reliable and 

numerous material for research. As a second step, the localization of PDX MRD cells in the 

murine bone marrow should be determined in direct comparison to dormant PDX ALL cells. 

In a third and last step, gene expression profiles should be obtained from PDX MRD cells and 

dormant PDX cells, and be compared to profiles from primary ALL cells from patients at 

MRD. Taken together, the present work aimed at a better understanding of MRD in ALL in 

order to enable developing novel therapies in the future. 
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2 Materials 

2.1 Primary material 

For gene expression profiles of patients’ pediatric B-cell precursor acute lymphoblastic 

leukemia (BCP-ALL), thawed aspirates at the stage of diagnosis and minimal residual disease 

(MRD) were provided and sorted in TCL buffer (see 3.2.9) by the cooperation partner from 

Children's Cancer Research Institute and St. Anna Kinderspital (Department of Pediatrics, 

Medical University of Vienna, Austria) (see Table 1).  

Table 1: Sorted primary ALL samples at the stage of diagnosis and MRD   

sample 
type of 

leukemia 

age
 

[years] 
sex 

multi-center 

study 

BM blasts  at 

MRD* [%] 
Sort 

1 BCP-ALL 4 F BFM 2009 na 
CD19

+
, CD10

+
, 

CD20
-
 

2 BCP-ALL 3 F BFM 2009 na 
CD19

+
, CD99

+
, 

CD10
+
 

3 BCP-ALL 5 M BFM 2009 0.69 
CD19

+
, CD10

+
, 

CD123
+
 

4 BCP-ALL 18 M BFM 2009 1.10 
CD19

+
, CD10

+
, 

CD45
-
 

5 BCP-ALL 3 F BFM 2009 0.13 
CD19

+
, 

CD10
+
,CD20

-
 

F = female; M = male; BFM = Berlin-Frankfurt-Münster; BM = bone marrow; na = not applicable;          

* MRD aspirates were taken at day 33 after onset of treatment; 
 

2.2 Transgenic PDX cells 

In this thesis two pediatric BCP-ALL samples, which were kindly provided from Dr. von 

Haunersches Kinderspital (LMU, Munich, Germany), were used consistently in the patient-

derived xenograft (PDX) mouse models (see Table 2).  

Table 2: Clinical data of patients’ diagnostic ALL cells for xenotransplantation and sample characteristics 

sample 
type of 

leukemia 

disease 

stage 

age
 

[years] 
sex cytogenetics 

passaging 

time
§
 

[days] 

ALL-199 BCP-ALL 2
nd

 relapse 8 F 

somatic trisomy 21; 

leukemic homozygous 

9p deletion 

35 

ALL-265 BCP-ALL 1
st
 relapse 5 F 

hyperdiploidy with 

additional 6, 13, 14, 17, 

18, 21, X chromosome 

40 

§ 
passaging time in mice injected with at least 1 million cells until end stage of leukemia;  
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After transduction with the third-generation lentivirus vector system (Dull et al. 1998) by our 

institute members, both PDX samples, ALL-199 and ALL-265, expressed the following 

transgenes and were enriched to a 100% transgenic population (see Figure 5) (Ebinger, 

Özdemir et al. 2016): firefly luciferase for in vivo imaging (see 3.2.5), mCherry as a PDX 

marker and truncated NGFR without any intracellular part for magnetic-activated cell sorting 

(MACS) enrichment (see 3.2.8).  

 

Figure 5: Lentiviral construct for equimolar expression of 3 transgenes in PDX cells.  

Arrow indicates transcription start site; EF1α = elongation factor 1-alpha promoter; mCherry = red fluorescent 

protein from Discosoma sp.; NGFR = human low affinity nerve growth factor receptor lacking the intracellular 

signaling domain; T2A = self-cleaving peptide from Thosea asigna virus for linking the genes (Kim et al. 2011). 

  

2.3 Antibodies 

Table 3: Antibodies 

name host application supplier 

anti-human-CD38-PE mouse FACS BD Biosciences, Germany 

anti-murine-CD45-APC (30-F11) rat FACS Biolegend, USA 

anti-human NGFR beads - MACS Miltenyi, Germany 

anti-FITC rabbit IHC Thermo Fisher Scientific, USA 

anti-mCherry rabbit IHC Abcam, UK 

anti-rabbit-Alexa594 goat sec. ab Invitrogen, USA 

FACS = fluorescence-activated cell sorting; IHC = immunohistochemistry; sec. ab = secondary antibody; 

 

2.4 Fluorophores 

The lasers, filters and detectors of the BD FACS machines and the Leica TCS SP5 II confocal 

microscope (see 2.7) were adjusted to the following fluorophores with their specific 

spectrums.  

                               Table 4: Fluorophores with maximum excitation and emission 

name excitation [nm] emission[nm] 

DAPI 358 461 

CFSE 492 517 

PE 496 578 

mCherry 587 610 

Alexa 594 590 617 

APC 652 658 
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2.5 Buffer and medium 

Table 5: Buffer and medium 

name composition 

blocking buffer PBS with 5% goat serum & 0.1% Tween-20  

patient medium 
RPMI-1640 supplemented with 20% FCS, 1% pen/strep,  

1% gentamycin and 2 mM glutamine 

PBS 140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, pH 7.2 

PBE PBS with 0.5% BSA & 5 mM EDTA 

TCL-buffer 1x TCL buffer diluted with dd H20 with 1% β-Mercaptoethanol 

 

2.6 Chemicals, reagents & kits 

                  Table 6: Chemicals, reagents & kits 

name supplier 

Baytril 2.5% Bayer, Germany 

bovine serum albumin (BSA) Sigma-Aldrich, Germany 

CellTrace CFSE Kit Life Technologies, USA 

Cyclophosphamide TEVA GmbH, Germany 

DAPI Sigma-Aldrich, Germany 

D-Luciferin, sodium salt *UltraPure Biomol, Germany 

DMSO Sigma-Aldrich, Germany 

DNase Sigma-Aldrich, Germany 

EDTA Sigma-Aldrich, Germany 

ethanol ≥99,8%, p.a Carl Roth, Germany 

FACS Lysing solution BD Biosciences, Germany 

fetal bovine serum (FCS) PAN Biotech, UK 

Ficoll GE Healthcare, UK 

gentamycin Lonza, Switzerland 

glutamine Gibco, USA 

goat serum Gibco, USA 

heparin Ratiopharm, Germany 

isoflurane CP pharma, Germany 

isopropyl alcohol Sigma-Aldrich, Germany 

KCl Sigma-Aldrich, Germany 

Na2HPO4 Merck Millipore; Germany 

NaCl Sigma-Aldrich, Germany 

O.C.T. compound Sakura, USA 

Osteosoft Merck Millipore; Germany 

penicillin-streptomycin 5000 U / ml Gibco, USA 

prolong gold antifade mounting Life Technologies, USA 
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RPMI-1640 Gibco, USA 

sucrose Sigma-Aldrich, Germany 

TCL buffer (2x) Qiagen, Germany 

trypan blue Sigma-Aldrich, Germany 

Tween-20 Sigma-Aldrich, Germany 

Vincristine cell pharm GmbH, Germany 

zinc formalin Sigma-Aldrich, Germany 

β-Mercaptoethanol Calbiochem 

 

2.7 Equipment 

                 Table 7: Equipment 

Equipment Manufacturer 

Axiovert 200M microscope Zeiss, Germany 

Calibration Check pH-Meter HI 221 HANNA Instrument,Germany 

BD FACSCalibur BD Biosciences, Germany 

BD LSRAriaIII  BD Biosciences, Germany 

BD LSRFortessa  BD Biosciences, Germany 

CryoJane tape transfer system Leica, Germany 

Cryostat CM1900UV Leica, Germany 

Fluidgm C1 Fluigm, USA 

Heracell™ 150i CO2 Incubator ThermoFisher Scientific, USA 

IVIS Lumina II Imaging System PerkinElmer, USA 

Laminar Flow Hood Heraeus, Germany 

Leica TCS SP5 II confocal microscope Leica, Germany 

Microcentrifuge 5417C Eppendorf, Germany 

Rotanta 460R centrifuge Hettich, Germany 

 

2.8 Software 

Endnote X7 

FlowJo V10 

Gimp 2 

GraphPad Prism 6 

ImageJ 

javaGSEA Desktop application 

Living Image software 4.4 

Microsoft Office 

R Studio 
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3 Methods 

3.1 Ethical issues 

3.1.1 Patient material 

Written informed consent was obtained from all patients’ parents/carers. For clinical routine 

analysis at the Dr. von Haunersches Kinderspital (LMU, Munich, Germany) and St. Anna 

Kinderspital (Medical University of Vienna, Vienna, Austria) fresh patient material was 

obtained from peripheral blood or bone marrow aspirates before treatment start. The 

remaining material was sent to our institute.  

The study was performed in accordance with the ethical standards of the responsible 

committee on human experimentation (written approval by Ethikkommission des Klinikums 

der Ludwig-Maximilians-Universität München, Ethikkommission@med.unimuenchen.de, 

April 2008, number 068-08, and September 2010, number 222-10) and with the Helsinki 

Declaration of 1975, as revised in 2000.  

 

3.1.2 Animal work 

The maintenance of the NOD scid gamma (NSG; NOD.Cg-Prkdc
scid

 IL2rg
tm1Wjl

/SzJ) mice 

from the Jackson Laboratory (Sweden) was done under specific pathogen-free conditions in 

the research animal facility of the Helmholtz Zentrum München. Free access to food and 

water, a 12 hour light-dark cycle and constant temperature were provided for the animals.  

All animal trials were performed in accordance with the current ethical standards of the 

official committee on animal experimentation (written approval by Regierung von 

Oberbayern, poststelle@reg-ob.bayern.de, July 2010, number 55.2-1-54-2531-95-10; July 

2010, number 55.2-1-54-2531.6-10-10; January 2016, number 55.2-1-54-2532-193-2015; 

May 2010, number 55.2-1-54-2532-193-2015 and August 2016, number 55.2-1-54-2532.0-

56-2016). Animals were sacrificed before first clinical signs of illness became apparent. 
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3.2 Xenograft mouse model of acute lymphoblastic leukemia 

The established acute lymphoblastic leukemia (ALL) xenograft mouse model in our institute 

is based on the immunocompromised NSG mice (Kamel-Reid et al. 1989; Lee et al. 2007; 

Liem et al. 2004; Terziyska et al. 2012).  

 

3.2.1 PDX cell engraftment and expansion 

For reliable engraftment and a shorter passaging time of the samples, 1-10 million fresh or 

freshly thawed ALL patient-derived xenograft (PDX) cells (in 100 µl sterile filtered PBS) 

were injected into 6-8 weeks old NSG mice via tail vein injection. Directly after cell injection, 

Baytril (2.5%, Bayer, Germany) was added to the drinking water of the mice in order to 

prevent infections. 

Every two weeks a blood measurement was performed to detect the expansion of human PDX 

cells in peripheral blood (see 3.2.2). At a certain percentage of PDX cells in blood, which 

correlates with engrafting leukemia, mice were sacrificed and the PDX cells were isolated 

from the enlarged spleen (see 3.2.3) or the bone marrow (see 3.2.4). Definition of high PDX 

percentage in blood was depending on the sample. Mice with ALL-199 had to be sacrificed 

with around 30% of blasts in the blood, in contrast to the sample ALL-265, in which the limit 

was 80%. Re-passaging was always possible in both PDX samples (see 2.2). In addition to the 

blood measurement, in vivo imaging was performed to analyze the leukemia burden in mice. 

The advantage of this method was the high accuracy (see 3.2.5). For the verification of the 

samples, repetitive finger printing analysis, using mitochondrial DNA, was performed 

continuously in our institute (Hutter et al. 2004). 

 

3.2.2 Blood measurement for monitoring the leukemia growth 

Every second week leukemia growth was monitored by blood measurement for each PDX cell 

injected mouse. Blood (around 50 µl) from the tail vein was collected with a heparin coated 

glass capillary into a reaction tube with 5 µl heparin. The blood samples were incubated with 

0.5 µl anti-human CD38 conjugated with phycoerythrin (PE) and 0.5 µl anti-mouse CD45 

conjugated with allophycocyanin (APC) for 30 min at room temperature (RT). Subsequently, 

1 ml FACS Lysing solution was added and incubated for 15 min at RT. Blood samples were 

washed twice with 3 ml FACS buffer. Each washing step included centrifugation at 300 g for 
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5 min at RT. Afterwards flow cytometric analysis was performed with a BD FACSCalibur 

(BD Biosciences, Germany) and the data were analyzed using the FlowJo software.  

 

3.2.3 Isolation of PDX cells from spleen 

High advanced leukemia in mice correlates with an enlarged spleen due to enrichment of ALL 

cells. After isolating the spleen, the organ was homogenized and a cell suspension in 30 ml 

PBS was prepared using a 70 µm strainer. Afterwards, 10 ml Ficoll was added to the cell 

suspension with a long needle and centrifuged with 400 g for 30 min at RT without rotor 

brake. The layer with mononuclear cells in the interphase of the Ficoll gradient centrifugation 

was harvested. Cells were washed twice with PBS (400 g, 5 min, RT) and resuspended in the 

required buffer. 

 

3.2.4 Isolation of PDX cells from bone marrow 

For isolation of PDX cells from bone marrow both femurs, both tibias, hip, backbone and 

sternum of each mouse were crushed by using mortar and pestle. The bone marrow was 

suspended with PBS and a cell suspension was prepared using a 70 µm cell strainer. After 

washing (2x, 400 g, 5 min, RT) the pellets were resuspended in the required buffer  

 

3.2.5 Bioluminescence in vivo imaging for monitoring the leukemia burden 

The transgenic PDX cells (see 2.2) expressed the recombinant codon-optimized form of the 

firefly luciferase (effluc). Therefore, it was possible to monitor the leukemia burden with 

bioluminescence in vivo imaging (Barrett et al. 2011; Bomken et al. 2013; Terziyska et al. 

2012). 

D-Luciferin, the substrate of the firefly luciferase to generate bioluminescence, was dissolved 

in sterile PBS to a final concentration of 30 mg/ml.  After anesthetizing with isoflurane the 

mice were fastened in the imaging chamber of the IVIS Lumina II Imaging System 

(PerkinElmer, USA), and 150 mg/kg D-Luciferin was injected into the tail vein. The 

generated bioluminescence was measured immediately and pictures were taken for several 

seconds up to minutes, depending to leukemia burden. The following settings were used: 

field of view = 12.5 cm; binning = 8, f/stop 1 and open filter.   
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The bioluminescence quantification was done with the software Living Image software 4.4 to 

get the leukemia burden in the unit lg photons s
-1

 (photons per second per cm
2
 per steradian). 

 

3.2.6 Quantification of PDX cell percentage in the bone marrow 

Treatment start, stop and efficiency were determined by quantification of the relative amount 

of PDX cells in the bone marrow. The entire bone marrow was isolated, crushed and collected 

in 10 ml PBS (see 3.2.4). 1/20 of the bone marrow suspension was measured by the FACS 

Fortessa (BD Biosciences, USA) and finally analyzed using the software FlowJo. The number 

of mCherry-positive (mCherry
+
) PDX cells was related to absolute event number without 

debris. The gating strategy is exemplary shown in Figure 6.  

 

      

Figure 6: Gating strategy for determination of the relative PDX cell amount in the murine bone marrow. 

The first gating (left panel) included all events in the forward- and side scatter (FSC &SSC) apart from the 

debris, in the lower left part. Afterwards, the lymphocyte gate (middle panel) was set in the FSC and SSC. 

Finally, the mCherry
+
 and DAPI

-
 PDX population were gated. DAPI was added to the sample before FACS 

analysis. A negative DAPI signal correlates with a functional cell membrane and so for living cells.  

 

3.2.7 In vivo treatment 

In this study the commonly used cytostatic drugs of patients’ ALL therapy, Vincristine (VCR; 

0.25/0.5 mg/kg; i.v.) and Cyclophosphamide (Cyclo; 100 mg/kg; i.p.), were used to generate a 

drug treated/resistant PDX cell population in mice. After reaching high leukemia burden both 

PDX ALL samples (see 2.2) received the same drug concentrations once weekly for several 

weeks. Therapy start and efficiency was determined by bioluminescence in vivo imaging (see 

3.2.5) and analysis of the PDX cell percentage in the bone marrow (see 3.2.4). In combination 

therapy VCR was injected two days before Cyclo because of the longer half-life of VCR (85 
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h) compared to Cyclo (7 h). Control animals received sterile PBS i.p. or i.v.. Drug solutions 

were prepared freshly with sterile PBS. 

Human equivalent doses were calculated for mouse treatments to be close to the clinics (see 

Table 8). Following calculations were used (Nair & Jacob. 2016; Sharma & McNeill. 2009): 

 

                                                       
  

  
  

              
  
  

  
 

 

               
  

  
               

  

  
        

 

The conversion between human dose in mg/kg and mg/m² is done by the defined factor of 37. 

On the basis of the faster metabolism in mice, the human dose in mg/kg has to be multiplied 

with the factor of 12.3 to get the equivalent murine dose.   

                                 Table 8: Used drug concentrations in mice and patients 

drug 
mg/m² 

patient 

mg/kg 

patient 

mg/kg  

mouse 

(theory) 

mg/kg 

mouse 

(used) 

Vincristine 1.4 0.04 0.47 0.5 

Cyclo-

phosphamide 
200 5.4 66.5 100 

 

3.2.8 Enrichment of PDX cells by magnetic-activated cell sorting 

Magnetic-activated cell sorting (MACS) was used for enrichment of small numbers of PDX 

cells from the murine bone marrow. Anti-human NGFR microbeads were used for targeting 

transgenic NGFR
+ 

PDX cells from the entire bone marrow. For this purpose 200 µl of beads 

were added to 10 ml PBE bone marrow suspension. After 45 min of incubation at 4°C under 

rotation, suspension was divided and loaded on two LS column (Miltenyi Biotech, Germany).  

Manufacturer’s instructions were followed for the next washing steps and for the recovery of 

the PDX cells from the columns. 
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3.2.9 Sorting for dormant, drug treated and proliferating PDX cells 

To obtain dormant, drug treated and proliferating PDX cell populations, cells isolated from 

the bone marrow (see 3.2.4) were enriched by MACS (see 3.2.8). Afterwards cell sorting with 

FACS Aria (BD Biosciences, Germany) was performed with similar gating strategies as in 

Figure 6 in the methods. The mCherry transgene in the PDX cells were used as an unique 

marker for PDX cell detection. Dormant PDX cells, which were defined as label retaining 

cells (LRC; see 1.3.1), were CFSE
+
 (see 3.3.4) compared to the CFSE

-
 proliferating cells. 

Therefore, an additional gate on CFSE
+
 cells was used for sorting of LRC. All steps were 

performed at 4°C. The PDX cells were sorted either in FCS for freezing (see 3.3.2), in patient 

medium for single cell RNA-seq with at least 100 cells/µl or in TCL-buffer for bulk RNA-seq 

with the required concentration of 2,000 cells in 80 µl TCL- buffer.  

 

3.3 Ex vivo methods for PDX cells 

3.3.1 Cell counting 

PDX cell numbers were counted with a Neubauer chamber. The cell solution was usually 

diluted 1:100 to count between 100 - 400 cells in all 4 squares of this chamber by using a light 

microscope. Only cells touching the lower and right borders of each square were included to 

the count.  

To differentiate between living and dead cells, 0.4% trypan blue (w/v) were mixed 1:1 (v/v) 

with cell dilutions before counting. Under the microscope living cells appeared colorless 

while dead cells were stained blue. 

Cell concentration was calculated as followed: 

 

                                                                               

 

3.3.2 Freezing  

1x10
7
 PDX cells or 1/3 of the entire bone marrow were frozen in cryotubes with 1 ml fetal 

calf serum (FCS) containing 10% DMSO. For a sensitive freezing, each pellet was 

resuspended in 0.5 ml FCS after centrifugation (400 g, 5 min, RT). Afterwards 0.5 ml 

freezing medium (80% FCS with 20% DMSO) was added dropwise under shaking. Filled 

cryotubes were placed into a freezing container, loaded with isopropyl alcohol, for a cooling 
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rate of 1°C/min, and stored at -80°C for 24 h. For short term storage the cryotubes were kept 

at -80°C and for long-term storage in liquid nitrogen at -196°C.  

 

3.3.3 Thawing   

PDX cells were thawed by the standard protocol from our institute to obtain high viability. 

Frozen cells were defrosted immediately in a 37°C water bath. Under shaking 100 µl DNase 

(1 mg/ml) were added dropwise to the cell suspension. Cell suspensions were transferred to a 

50 ml tube. Within two minutes first 1 ml FCS, then 10 ml PBS with 2% FCS were added and 

finally the suspension was filled up to 30 ml with PBS with 2% FCS. Afterwards the cells 

were centrifuged (400 g, 5 min, RT). 

 

3.3.4 CFSE labeling  

Freshly isolated PDX cells from the spleen of a donor mouse (see 3.2.3) were labeled ex vivo 

with CFSE for detection of dormant cells (LRC) in the next mouse passage. CFSE was a 

fluorescent cell staining dye, which was able to penetrate the cell membrane und bind 

covalently to intracellular molecules. With this covalent binding CFSE was retained in the 

cell.  

1x10
7
 PDX cells were suspended in 10 ml pre-warmed (37 °C) PBS with 0.1% BSA. CFSE 

was suspended in DMSO to a concentration of 5 mM and was added to the cell suspension 

with a final concentration of 10 µM. After 10 min incubation at 37°C, staining was stopped 

by adding five times staining volume of cold RPMI supplemented with 10% FCS, and 

incubated for 5 min on ice. Cells were then centrifuged (400 g, 5min, RT) and resuspended in 

sterile PBS for injection into recipient mice. 
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3.4 Immunostaining of femur cryosections 

3.4.1 Femur preparation for cryosections 

Femurs were treated as follow to allow storage and sectioning. All steps were performed at 

4°C and between all steps femurs were washed with PBS. Freshly isolated femurs of one 

mouse were fixed in 10 ml zinc formalin fixative for 1 day, decalcified with Osteosoft 

(Merck; Germany) for 3 days and finally infiltrated with 30% sucrose PBS solution for 1 day 

before embedding in O.C.T. compound (Sakura; USA). Finally, femurs were stored at -80°C. 

 

3.4.2 Femur cryosections  

Cryosections of decalcified bones were obtained by using the cryostat CM1900UV (Leica; 

Germany) and CryoJane tape transfer system (Leica; Germany). Before sectioning, the 

samples were acclimatized for at least 30 min to the temperature of the cryostat, which was     

-19°C. The section thickness was 7 µm. Each section was captured on an adhesive tape 

window (Leica; Germany) and afterwards put on a CFSA4x slide (Leica; Germany). The 

binding between sections and tape window were broken by UV light from the CryoJane Tape 

transfer system (Leica, Germany) resulting in binding between section and slide. The slides 

could be stored for some days at -20°C. 

 

3.4.3 Immunostaining 

Slides with the cryosections were thawed to room temperature, hydrated with PBS for 10 min 

and blocked with the blocking buffer (PBS with 5% goat serum & 0.1% Tween-20) for 45 

min. The blocking buffer was also used for antibody dilutions and for washing procedures 

(3x5 min) between all the steps. 

The primary antibodies were applied on the sections for 1 day at 4°C in a hydration chamber. 

After washing secondary antibodies were applied for 45 min at room temperature. Sections 

were finally stained with 10 mg/ml DAPI for 15 min and slides were mounted with prolong 

gold antifade mountant (Invitrogen; USA). The stained sections were stored at 4°C.  

Primary antibodies were rabbit-anti-FITC/CFSE (1:100; ThermoFisher; USA) and rabbit-anti-

mCherry (1:100; Abcam; UK). Goat-anti-rabbit antibody conjugated with Alexa 594 (1:500; 

Invitrogen; USA) was used as secondary antibody. 
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3.4.4 Confocal microscopy 

A Leica TCS SP5 II confocal microscope (Leica, Germany) was used to acquire 8-bit images 

of the stained cryosections using the hybrid detectors. With regard to the huge image size, half 

femur was scanned with the objective HCX PL APO LS 20x0.7 IMM UV (Leica; Germany) 

and the function of tile- & Z-Scan. Following settings were chosen to have a high scanning 

speed at the expense of a better resolution and increased noise: 

format = 1024x1024 pixels; speed = 400 Hz; bidirectional scan = on; frame average = 0; 

sequential scan = off 

 

3.4.5 Analysis of PDX localization within femur sections  

The software ImageJ was used for the analysis of the images. A commonly threshold was set 

in the contrast settings to reduce the background noise of all images. Gamma correction was 

never used.  

The endosteal region was defined by a distance as less than 100 µm from the bone matrix 

(Nombela-Arrieta et al. 2013). For determination of the absolute PDX cell numbers in each 

region, mCherry
+
 cells were automatically counted (>10 pixel = one cell). The ImageJ 

function, watershed, was used to separate two overlapping cells. 

The relative amount of PDX cells in the endosteal region was calculated as the absolute PDX 

cell number in the endosteum divided by the absolute PDX cell number in the entire bone 

marrow scan. Mean and standard error were calculated from at least 3 sections from 2 

independent mice. 

To visualize the LRC, which was defined as less than 2% of the PDX population at day 10 

after cell injection (according to FACS data; Ebinger, Özdemir et al. 2016), CFSE signal 

intensity was adapted to the absolute numbers of mCherry
+
 PDX cells from each consecutive 

section. This was done by adjusting CFSE intensity with the 8 bit threshold. 

  

3.5 Analysis of RNA-seq data 

Freshly isolated PDX cells (LRC, PDX MRD cells and their dividing/untreated controls) from 

the bone marrow (see 3.2.4) and frozen patients’ aspirates (see 2.1) were sorted for RNA-seq 

(see 3.2.9) and were handed over to the working group of our cooperation partner Prof. 

Wolfgang Enard (Department Biologie II, LMU, Munich) for preparation of the cDNA library 
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and sending the samples for RNA-seq. In Table 9 all samples are listed which were sequenced 

in this study. Only matched LRC and non-LRC bulk samples were from the same mice.  

 

                                     Table 9: List of sequenced ALL samples 

sample bulk single cell 

ALL-199 LRC 4 - 

ALL-265 LRC 1 15 

ALL-199 non-LRC 4 - 

ALL-265 non-LRC 1 35 
   

ALL-199 MRD cells 14 90 

ALL-265 MRD cells 4 - 

ALL-199 ctrl cells 8 31 

ALL-265 ctrl cells 4 - 
   

patient MRD cells 3 - 

patient diagnosis cells 5 - 
        LRC (label retaining cell) = dormant PDX cells; non-LRC  

        = dividing PDX cells; MRD (minimal residual disease) cells =  

        chemotherapy treated cells; ctrl (control) = untreated cells 

 

Single cell cDNA and library preparation were done with Fluidgm C1 platform (Fluidgm, 

USA) and the bulk RNA-seq preparation was performed by the working group of Prof. Enard. 

The libraries were sent to the Laboratory for Functional Genome Analysis (Gene Center, 

LMU, Munich) for sequencing with Illumina HiSeq1500 (Illumina, USA). RNA-seq data 

were deposited in NCBIS`s Gene Expression Omnibus (GEO) database and is accessible 

through the GEO accession number: GSE83142. Raw count data from all sequencing reads 

were generated by the working group of Prof. Enard (Ebinger, Özdemir et al. 2016) and were 

used for the following analysis in cooperation.  

 

3.5.1 Bioconductor R – DESeq2: from raw counts to fold changes 

The R package DESeq2 was used to make a differential expression (DE) analysis (Love et al. 

2014). For bulk RNA-seq only the cell data sets were taken which obtained at least 1x10
5
 

reads, and for single cell RNA-seq only those with more than 1x10
6
 reads per each cell. 

Log2 fold changes were calculated by using the Wald test. Hierarchical clustering of samples 

was done with the complete linkage based on Euclidian distances of variance stabilizing data 

(VSD) from DE genes. Only the top 500 genes with lowest padj (FDR adjustment) were 
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plotted as heatmap. The reference expression value is the expression average of the control 

cells. 

Principal Component Analysis (PCA) was performed using VSD of the 500 most variable 

genes to display the main sample variance.  

To analyze combined data from all obtained single-cells, count data was normalized 

accounting for batch effects (Risso et al. 2014). For combined LRC signature (ALL-199 & 

ALL-265; top 250 genes with log2 fold change > 1; padj < 0.05) single cell datasets were 

included by summarized gene-wise median read count as one LRC and non-LRC replicate. 

For combined MRD DE genes of both PDX samples, the average of MRD 199 bulk count 

data was created to have identical numbers of MRD 265 bulk samples. 

All used packages in R with the version numbers are listed in 6.3 in the appendix. 

 

3.5.2 Gene Set Enrichment Analysis  

Gene set enrichment analysis (GSEA) was performed using GSEA Desktop Application 

(Subramanian et al. 2005). For ranking all genes, a metric score was calculated and submitted 

to the Pre-RankedGSEA tool, like recommended from the authors: 
 

                                                
 

The statistical significance was determined by 1,000 gene set per mutations. The Molecular 

Signatures Database (MSigDB) (Liberzon et al. 2015) and the KEGG pathways (Kanehisa et 

al. 2012) were used for enrichment terms. Furthermore, published gene signatures from 

patient data were chosen for association with the PDX gene expression profiles. All gene 

signatures contain only upregulated genes. 

 

3.6 Statistics 

All the statistical analysis in this study was calculated with the GraphPad Prism 6 software. 

Two-tailed unpaired t-test was applied to evaluate differences. In case, the standard deviations 

differed significantly in the F-test, Welch´s correction was applied.  
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4 Results 

The two features of dormancy and chemotherapy resistance are the major challenges in the 

conventional acute lymphoblastic leukemia (ALL) treatment. Therefore, the aim of this thesis 

was to characterize dormant and chemotherapy-resistant ALL cells in order to develop novel 

treatment strategies for improving patients’ outcome. Towards this aim, my investigations 

made use of the patient-derived xenograft (PDX) mouse model, as primary dormant and 

chemotherapy-resistant leukemic cells are very low in numbers, difficult to identify in 

biopsies and cannot be cultivated in vitro (see 1.3). 

 

4.1 Preclinical chemotherapy treatment trials in the PDX mouse model 

The first step towards the aim of the thesis was to study chemotherapeutic effects and 

resistance against chemotherapy. Therefore, I established various PDX mouse models using 

different chemotherapy regimens in vivo. 

 

4.1.1 Inducing minimal residual disease (MRD) after chemotherapy 

ALL therapy is based on the excessive use of cytostatic drugs. During and after treatment 

chemotherapy resistance can be detected. Small numbers of leukemic cells remaining after 

therapy and within remission, without signs and symptoms of leukemia, are defined as 

minimal residual disease (MRD). The detection of less than 1% leukemic blasts in the bone 

marrow is termed MRD in the clinics. MRD is the main reason for patients’ relapse and poor 

prognosis (see 1.1.2)(Borowitz et al. 2008; Buckley et al. 2013; Campana. 2010). Due to the 

minute numbers of patients’ MRD cells in the entire bone marrow, no functional research is 

feasible. Thus, I aimed to establish a preclinical model for MRD using patients’ leukemia 

cells growing in mice which, as far as to my knowledge, does not exist as such so far. 

 

The ALL xenograft mouse model is based on the immunocompromised NOD scid gamma 

(NSG) mice (Kamel-Reid et al. 1989; Lee et al. 2007; Liem et al. 2004). NSG mice show 

reduced innate immunity by decreased activity of dendritic cells and macrophages. 

Furthermore, these mice have a disorder in the adaptive immune system by lacking mature T- 

and B-cells in addition to the null mutation in the interleukin 2 receptor gamma chain. These 

characteristics are necessary for the engraftment and growth of human primary material in 
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NSG mice (Ishikawa. 2013; Shultz et al. 2005). In this thesis the two PDX samples, ALL-199 

and ALL-265, from two different ALL patients, were used continuously (see 2.2).  

 

The transgenic PDX samples ALL-199 and ALL-265 were used for the establishment of a 

PDX MRD model (see 2.2). The aim was to mimic patients’ MRD situation as close as 

possible. At diagnosis, patients usually show an advanced state of disease with high tumor 

burden in the bone marrow as clinical symptoms appear late. After initial chemotherapy this 

tumor load is decreased drastically. The defined MRD level of less than 1% blasts in the 

entire bone marrow is often reached (Buckley et al. 2013; Inaba et al. 2013). Thus I aimed at 

mimicking both, high leukemic burden as well as less than 1% MRD blasts after 

chemotherapy, in the PDX MRD mouse model. 

Bioluminescence in vivo imaging for disease monitoring was used to define both disease 

stages in a non-invasive way. In contrast to other methods of disease monitoring like 

measurement of human blasts in mouse blood, imaging is sensitive enough to monitor the 

course of disease even at minor leukemia burden as in MRD (Terziyska et al. 2012; Vick et al. 

2015). 

To demonstrate the correlation of imaging signal and leukemic burden 1x10
6
 thawed or 

freshly isolated  PDX cells from the spleen of a passaging mouse (ALL-199 and ALL-265) 

were injected in several recipient mice (see 3.2.3). The PDX cells were transduced with the 

firefly luciferase reporter gene. The injection of D-Luciferin, the substrate of firefly 

luciferase, induces an enzymatic reaction leading to bioluminescence, which is measured with 

IVIS Lumina II Imaging System (PerkinElmer, USA). With this technique leukemia burden 

was followed in living mice (see 3.2.5).  

In both samples, low imaging signals of a maximum of 2x10
9 

photons per second per cm
2
 per 

steradian (lg photons s
-1

) correlated with less than 1% of PDX cells in the bone marrow. A 

high tumor load with more than 10% of blasts in the isolated bones resulted in high imaging 

signals with at least 1x10
10

 photons per second per cm
2
 per steradian for ALL-265 and 5x10

10
 

photons per second per cm
2
 per steradian for ALL-199 (see Figure 7). In vivo imaging signals 

were reliable and correlated with high significance with the percentage of PDX cells in the 

bone marrow. Thus, bioluminescence in vivo imaging allows monitoring the entire tumor load 

spectrum required for establishing a PDX MRD model. 
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Figure 7: High correlation of in vivo imaging signal and PDX cell percentage in the bone marrow.  

The PDX samples ALL-199 and ALL-265 were transgenic for the firefly luciferase. Before the bone marrow 

was isolated, the mice were imaged for in vivo bioluminescence. The percentage of PDX cells in the bone 

marrow, based on FACS data, shows a high correlation with the in vivo imaging results in both samples.  

 

 

For the PDX MRD mouse model a reduction of high tumor load to MRD level was necessary 

and I aimed to reach this by using a polychemotherapy, which is defined as the use of at least 

two different cytostatic drugs (Lippert et al. 2014). Such treatment strategies are also pursued 

in patients. To establish polychemotherapy, suitable for mice and close to the situation in the 

clinics, pre-experiments were performed with 4 cytostatic drugs to test their tolerance in NSG 

mice and effects on leukemia growth. All drugs, which are commonly used in ALL patients’ 

therapy, were administered once a week and the effects were determined by in vivo imaging. 

The test series indicated that Vincristine (VCR) and Cyclophosphamide (Cyclo) were better 

tolerated by NSG mice and were more effective than Etoposide or Dexamethasone as shown 

by inhibition of tumor growth (see Appendix Figure 37). Treatment with the same drug 

concentration over several weeks without any significant weight loss (<10% after therapy 

start) of mice was defined as a good tolerated drug. Etoposide, which showed high leukemia 

burden reduction, was not considered for a long-term trial due to high toxicity (see Table 10). 
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Table 10: Summary of the tested cytostatic drugs according to tolerance in NSG mice and effects on 

leukemia growth inhibition over several weeks of treatment 

drug 
tolerance in  

NSG mice 

effect in  

PDX ALL cells 

Vincristine high (<0.5 mg/kg) high  

Cyclophosphamide high (<100 mg/kg) low 

Etoposide 
low (30-50 mg/kg) 

 

low (< 10 mg/kg) 

high 
 

low 

Dexamethasone low (2 mg/kg) no effect 

low tolerance = mice had to be sacrificed within 1 week due to high weight loss (>10 % of weight loss since 

therapy start);   

 

 

To mimic patients’ long-term treatment, one additional criterion was the moderate decrease of 

leukemia burden for several weeks. For this reason the concentrations of VCR and Cyclo 

were optimized with respect to a combined therapy over several weeks. The used 

concentrations matched also to patients’ dose in the clinics (see Table 8 in Methods). 

These experiments revealed that a treatment consisting of 0.25 mg/kg VCR (i.v. once per 

week) combined with 100 mg/kg Cyclo (i.p. once per week, two days after VCR) is well 

tolerated in NSG mice and effectively reduces tumor burden with a suitable kinetic. This 

chemotherapy scheme was used in all further experiments in both samples (see Figure 8). 

 

 

 

Figure 8: Scheme for generating PDX MRD cells in vivo.  

1x10
6
 freshly isolated or thawed transgenic PDX cells were injected into each mouse. PDX cells were positive 

for the following transgenes: mCherry, truncated NGFR and firefly luciferase. Leukemia engraftment and 

therapy effects were followed by in vivo imaging. After reaching high tumor load chemotherapy was initiated. 

VCR (0.25 mg/kg; i.v.) and Cyclo (100 mg/kg; i.p.) were injected weekly as single dose for a mono- or 

combination therapies. The untreated control group received PBS. After 2 or 3 weeks, depending on the sample, 

therapy was stopped and the mice were analyzed. Adapted from (Ebinger, Özdemir et al. 2016). 

 

 

Next, we aimed to induce MRD with the established polychemotherapy protocol in order to 

isolate PDX MRD cells from the animals. Towards this aim, PDX cells were grown to an 

advanced disease stage as confirmed by in vivo imaging. Tumor burden of mice was analyzed 

at that time point and indicated approximately 40% blasts in the bone marrow. For treatment, 
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a single dose of each cytotoxic drug was injected weekly as mono- or combination therapies 

(see 3.2.7). Imaging was performed before each new treatment series. Figure 9A displays the 

raw in vivo imaging data as example for treatment effects in ALL-199. The untreated control 

group showed an increased imaging signal over 7 days after treatment start. This group had to 

be sacrificed between days 7 and 10 due to advanced leukemia, as indicated by the enlarged 

spleens at day 7. All treated groups indicated continuously decreasing signal intensities. The 

combination therapy showed higher reduction of leukemia cells compared to monotherapies. 

Figure 9B summarizes all imaging data over time of each sample and therapy group. 

To determine tumor burden and to isolate PDX cells bone marrow of mice was analyzed after 

sacrificing. The untreated control group had to be taken down with approximately 60% of 

blasts after 1 week of therapy start for ALL-199 or after 2 weeks for ALL-265. Cyclo 

treatment (100 mg/kg) alone retarded the leukemia growth of ALL-199 and reduced the 

leukemia load to 10% of ALL-265 cells in the bone marrow after 2 weeks of treatment. In 

comparison, VCR treatment (0.25 mg/kg) reduced drastically the leukemia load to a level of 

approximately 1% blasts in both samples. ALL-199 (0.5% of blasts after two treatment 

rounds) was more sensitive to VCR than ALL-265 (1.8% of blasts after three treatment 

rounds; see Figure 9C). 

MRD level of less than 1% blasts in the bone marrow was only obtained with combination 

therapy of VCR and Cyclo for both PDX samples. It was even possible to reduce the 

leukemia load to blast levels of around 0.1% after 2 or 3 weeks of treatment, depending on the 

PDX sample. Thus, ALL-199 and ALL-265 showed a similar treatment response in 

combination therapy, but differed in monotherapies (see Figure 9C). 

 

In the following VCR and Cyclo treated PDX cells at MRD level are defined as PDX MRD 

cells. From each mouse with a level of 0.1% blasts, approximately 40,000 PDX MRD cells 

were isolated from the entire bone marrow. 
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Figure 9: MRD level is achieved for both PDX samples with the combination therapy. 

One representative experiment for each PDX sample is shown with at least 3 and maximum 8 mice per group. 

VCR (0.25 mg/kg; i.v.) and Cyclo (100 mg/kg; i.p.) were injected weekly as single dose for mono- or 

combination therapies. The untreated control group received PBS. MRD level was defined with less than 1% 

PDX cells in the bone marrow (grey background). (A) Raw in vivo imaging data of three representative mice per 

group of ALL-199 are shown. Units in rainbow color scales are photons per second per cm
2
 per steradian 

(photons s
-1

 cm
2-1

 sr
-1

). (B) The summarized in vivo imaging data over time shows the leukemia burden before 

and during treatment. (C) After sacrificing the mice, the percentages of PDX cells in the bone marrow were 

determined. The left panel summarizes the data for ALL-199 and the right panel the data for ALL-265. 

Statistical significances were calculated using two-tailed unpaired t-test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). Adapted from (Ebinger, Özdemir et al. 2016). 
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Taken together, a PDX MRD mouse model for two PDX samples was established mimicking 

the situation of patients with MRD. With VCR and Cyclo combination therapy, high leukemia 

load was reduced more than 100-fold to the MRD level of 0.1% PDX cells in the bone 

marrow. 

 

4.1.2 Different effects in long-term VCR treatment in PDX samples  

After establishment of the PDX MRD model, the effect of long-term VCR treatment was 

analyzed in both ALL samples according to development of chemotherapy resistance. The 

combination therapy with VCR and Cyclo was too stressful for mice after 3 weeks of 

treatment as the mice started to lose continuously weight. Therefore, monotherapy with VCR, 

which was more efficient than Cyclo, was used for long-term studies (see Figure 9).  

After inducing leukemia with ALL-199 and ALL-265 and reaching high tumor load, 

treatment with VCR (0.5 mg/kg), one dose per week, was initiated. Compared to the 

established PDX MRD model the concentration of VCR was increased to the highest tolerable 

dose in monotherapy in order to raise the chemotherapeutic stress in the PDX cells (see Table 

10). Both ALL samples showed a very different VCR sensitivity in long-term treatment (see 

Figure 10). After 4 weeks VCR treatment was stopped in ALL-199 due to a strong reduction 

of leukemic burden as determined by in vivo imaging. Suspending the VCR treatment in the 

ALL-199 sample led to the regrowth of the leukemia. In contrast, ALL-265 was resistant to 

VCR chemotherapy. Over a course of 10 weeks VCR treatment, the leukemia load decreased 

only slowly but never reached MRD level. The following low increase in in vivo imaging 

signal after this time point indicated an outgrowth of leukemia. After sacrificing the mice of 

the VCR ALL-265 group, the entire bone marrow contained 2.5% of PDX cells. 
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Figure 10: Long-term treatment with VCR shows different effects in PDX samples. 

Both PDX ALL samples were treated weekly with a single dose of 0.5 mg/kg VCR (i.v.). ALL-199 was sensitive 

for VCR in contrast to ALL-265, in which a resistance to VCR was observed. Adapted from (Ebinger, Özdemir 

et al. 2016). 

 

This experiment confirmed the observation that ALL-199 is more sensitive to VCR treatment 

than ALL-265 (see Figure 10). VCR reduced ALL-199 to very low cell numbers and easily 

reached MRD level. However, the remaining PDX ALL cells proliferated quickly after 

withdrawal of VCR. In contrast, a VCR-resistant population of ALL-265 arose after a long-

term therapy.  
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4.1.3 PDX MRD cells reveal certain chemotherapy resistance 

The next question was, whether the PDX MRD cells acquired functional changes by treatment 

influencing homing efficiency and chemotherapy sensitivity compared to untreated control 

cells.  

To address this question, PDX MRD cells and untreated control cells were freshly isolated 

from the bone marrow of the first treatment round and PDX cells were enriched specifically 

using the mCherry transgene. All MRD cells of all mice in the MRD group (VCR & Cyclo;   

n = 6) were merged due to low cell numbers. The same was performed with the control group 

(n = 3). At the end the sorted cells were injected in 8 recipient mice per group with equal cell 

numbers of 4x10
4 

cells (see Figure 11). 

 

 

Figure 11: Scheme for re-passaging and retreatment of PDX MRD cells in ALL-265.  

After first round of treatment with combination therapy with VCR (0.5 mg/kg; i.v.) and Cyclo (100 mg/kg; i.p.) 

for 3 weeks and reaching the MRD level, PDX cells were isolated from the bone marrow. Due to low MRD cell 

numbers, PDX cells of all 6 mice of the VCR & Cyclo group and PDX cells of the 3 mice of the untreated 

control group were combined in each case and 4x10
4
 of the sorted MRD or control cells were injected into each 

recipient mice per group (n=8) for the second treatment round. Upon engraftment cells were allowed to grow out 

to a high tumor load, potential differences in homing efficiency were determined and both groups were treated 

with the same combination therapy to investigate changes in treatment sensitivity. 

 

In vivo imaging was performed to investigate potential differences in homing and engraftment 

between the untreated control cells and the PDX MRD cells from the first treatment round. 

No significant differences for homing and engraftment were observed between the two groups 

(see Figure 12A).  

After reaching high tumor load, combination therapy with VCR and Cyclo was repeated for 

the MRD as well as the untreated control group from the first round. The treatment was 

initiated by reaching 50% PDX cells in the bone marrow (see Figure 12B). After 3-weeks of 

combination therapy, 0.1% of PDX cells in the bone marrow in the control group and 0.3% in 

the MRD group were reached. A 2.5-fold higher amount of PDX cells was isolated from the 

MRD group (2.2x10
5
 cells) compared to the control group (0.9x10

5
 PDX cells), which 
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received therapy for the first time (see Figure 12C). These significant differences were also 

observed in the in vivo imaging.  

 

 
Figure 12: ALL-265 PDX MRD cells re-engraft in recipient mice and display higher chemotherapy 

resistance compared to the control group. 

4x10
4
 of ALL-265 untreated or PDX MRD cells were injected into each mouse for both groups (n=8). After 

reaching high leukemia load, the MRD group as well as the untreated control group was treated with the 

combination therapy of 0.5 mg/kg VCR (i.v.) and 100 mg/kg Cyclo (i.p.) as one passage before for the PDX 

MRD cells.  (A) The summarized in vivo imaging data over time shows the leukemia burden before and during 

treatment. After sacrificing the mice, the percentage (B) and the absolute numbers (C) of PDX cells in the bone 

marrow were determined. Statistical significance was calculated using two-tailed unpaired t-test (ns = no 

significane, **p<0.01). 

 

In summary, no differences in homing and engraftment were observed between the PDX 

MRD and control cells. Three weeks of combination therapy had no effect on PDX MRD 

cells for the outgrowth of leukemia in the next passage compared to the untreated control 

group.  

However, the chemotherapy sensitivity was significantly different between the both groups. In 

the second treatment round, the MRD group was more resistant to combination therapy than 

the control group. The treatment in the first passage had an influence in the next therapy 

round. The PDX MRD cells acquired a certain drug resistance after the first combination 

therapy compared to the control group. In conclusion, an innovative mouse model of in vivo 

induced chemotherapy resistance was established. 

 

Taken together, I developed the worldwide first preclinical PDX mouse model of MRD and a 

model of long-term treatment using VCR. I could show that PDX MRD cells develop certain 

chemotherapy resistance after treatment in mice. 

 



                                                                                                                                           Results 

50 

 

4.2 Localization of dormant and chemotherapy-resistant PDX cells in the 

bone marrow 

Dormancy and chemotherapy resistance in ALL is increasingly attributed to influence of the 

bone marrow environment (see 1.1.3) (Schepers et al. 2015). Furthermore, in our institute this 

concept was confirmed by the previously established label retaining cell (LRC) mouse model. 

In the LRC mouse model PDX cells were labeled with the fluorescent proliferation marker 

CFSE before cell injection into NSG mice. CFSE signal is halved by every cell doubling. A 

minute ALL subpopulation did not lose any CFSE signal over time. The retaining CFSE 

signal is associated with no cell division and consequently with dormancy. These dormant 

PDX cells (LRC) were chemotherapy-resistant in vivo, but chemotherapy sensitive in vitro 

like dividing PDX cells (non-LRC). Furthermore, a high plasticity within the both populations 

was observed. LRC and non-LRC were able to engraft in the next passage and showed the 

identical engraftment pattern of dormant and dividing cells (see 1.3.1; Ebinger, Özdemir et al. 

2016). 

These findings led to the hypothesis that the localization of LRC and PDX MRD cells in the 

bone marrow is crucial to gain the challenging features of dormancy and drug resistance. 

Therefore, my next aim was to identify the localization of dormant and chemotherapy-

resistant leukemic PDX cells within the bone marrow. 

 

4.2.1 After engraftment, the two PDX samples show different localization patterns 

First, the bone marrow localization of PDX samples ALL-199 and ALL-265 was investigated 

directly after PDX cell injection and engraftment. The mCherry reporter gene, which is 

expressed in both PDX samples, allows their unambiguous identification and visualization in 

the femurs of transduced mice. The schematic outline of the protocol is shown in Figure 13. 

To identify the localization of the PDX cells within the bone marrow, I newly established 

generating cryosections of femurs. Unfortunately, the fixation step of the femur preparation 

protocol destroyed the mCherry signal. For this reason, an antibody staining against mCherry 

had to be established for the detection of PDX cells. In contrast to the mCherry signal, the 

CFSE fluorescence signal of the PDX cells was still detectable after fixation. Therefore, 

mCherry
+
 CFSE

+ 
PDX cells were used to establish the mCherry antibody staining while the 

CFSE signal was used as a positive control (see Figure 13). At day 3 after cell injection all 

PDX cells were still CFSE
+
.  
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A high correlation between the CFSE and the mCherry antibody signal was observed in these 

femur sections. The mCherry signal was always detectable in CFSE
+
 cells in the bone marrow 

(see Figure 38 in the appendix). The negative controls were femur sections without any PDX 

cell injection or with mCherry
-
 PDX cells. These sections were completely negative for 

mCherry antibody staining. 

 

After establishing the mCherry antibody staining for PDX cell detection in the bone marrow, 

an engraftment kinetic of leukemia growth was performed. Therefore, freshly isolated PDX 

cells from the spleen of a donor mouse were labeled with CFSE and 1x10
7
 CFSE

+
 mCherry

+ 

PDX cells were injected into recipient mice. At days 3, 7, 10 and 14 after cell injection one 

mouse was sacrificed at each time point and the localization of the PDX cells was analyzed 

for both samples ALL-199 and ALL-265 (see Figure 13). 

 

                   

Figure 13: Scheme for the PDX cell localization in femur sections during engraftment. 

mCherry
+
 PDX cells were freshly isolated from the spleen of the donor mice and labeled with CFSE ex vivo. 

Recipient mice were injected with 10
7
 CFSE

+
 mCherry

+
 PDX cells into the tail vein. After several days the 

femurs were taken for histological analysis. Adapted from (Ebinger, Özdemir et al. 2016). 

 

The engraftment pattern was similar for all time points of each sample. PDX ALL-199 cells 

were randomly distributed in the bone marrow during engraftment (see Figure 14), whereas 

the sample ALL-265 engrafted close to the bone matrix (see Figure 15). 

 

 

 

 

  



                                                                                                                                           Results 

52 

 

 

Figure 14: ALL-199 PDX cells engraft randomly in the femur. 

ALL-199 PDX cells were positive for mCherry and were visualized by mCherry antibody staining shown in a 

kinetic at different days after cell injection. The nuclei were counterstained with DAPI. The left magnification 

box of each time point shows the area around the endosteum and the right magnification box of each time point 

shows perivascular regions. (red = mCherry; blue = DAPI) 
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Figure 15: ALL-265 PDX cells engraft primarily in endosteal regions. 

ALL-265 PDX cells were positive for mCherry and were visualized by mCherry antibody staining shown in a 

kinetic at different days after cell injection. The nuclei were counterstained with DAPI. The left magnification 

box of each time point shows the area around the endosteum and the right magnification box of each time point 

shows perivascular regions. (red = mCherry; blue = DAPI) 

 

Femur sections were analyzed with the software ImageJ to quantify PDX cells localized in the 

endosteal region at day 3, 7 and 10 after cell injection. At day 14 after cell injection the PDX 

cell density was too high for precise quantification. 

For the PDX cell localization of both samples similar kinetics were determined. At day 3 after 

cell injection the majority of the PDX cells were close to the endosteum. The region around 

the bone matrix is called endosteum or endosteal niche (see Figure 2 in the introduction). The 

endosteum is defined as the region with a distance of less than 100 µm from the bone matrix 

(Nombela-Arrieta et al. 2013). At day 3 after cell injection approximately 50% of ALL-199 

PDX cells and approximately 70% of ALL-265 PDX cells localized in this region. Until day 
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10 the percentage of PDX cells in the endosteum decreased significantly (see Figure 16). 

However, ALL-265 engraftment remained more associated to the endosteal region than ALL-

199 cells. 

 

                          

Figure 16: The PDX samples ALL-199 and ALL-265 show a similar distribution kinetic in the endosteum 

during engraftment. 

Quantification of PDX cells in femur sections was performed using ImageJ. The endosteum is defined as the 

region with a distance of less than 100 µm from the bone matrix. At least 2-3 sections from both femurs of 2 

mice per data point were analyzed. Statistical significance was calculated using two-tailed unpaired t-test 

(*p<0.5, **p<0.01). Adapted from (Ebinger, Özdemir et al. 2016). 

 

The PDX samples showed a different engraftment pattern but a similar distribution kinetic 

over time in the endosteum. At day 3 after cell injection, most PDX cells were localized to the 

endosteum in both samples. In the following days the percentage of PDX cells in the 

endosteal region decreased constantly. However, ALL-265 cells were closely localized to the 

endosteal region at all-time points. In contrast, ALL-199 cells exhibited a more random 

engraftment pattern in the bone marrow. 

 

4.2.2 Enhancing the CFSE signal by antibody staining 

One hypothesis is that the dormant and drug resistant LRC and PDX MRD cells gain these 

features through a specific localization in the femur. Therefore, the next aim was to identify 

the localization of dormant PDX cells during engraftment in the LRC mouse model (see 

Figure 4 in the introduction). The fluorescent cell staining dye CFSE was used as proliferation 

marker for identification of dormant LRC (CFSE
+
 PDX cells). With each cell division the 

CFSE intensity is reduced by half and consequently dividing PDX cells lose their CFSE 
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signal. Only non-dividing, dormant PDX cells keep the CFSE over time (Ebinger, Özdemir et 

al. 2016).  

However, the CFSE signal at time points later than day 3 after cell injection was too weak for 

detection by confocal microscopy. Additionally, high autofluorescence signal in the spectrum 

of the CFSE signal (green light spectrum around λ=500 nm) made the detection of the CFSE 

signal complicated. This phenomenon was described in fixed bone marrow sections by Lo 

Celso and colleagues (Lo Celso et al. 2007). To increase the sensitivity of the experiment, a 

CFSE antibody staining had to be established allowing the detection of LRC within femur 

sections later than 3 days after cell injection.  

The chemical structures of CFSE and FITC are very similar. Thus, a FITC-antibody (Thermo 

Fisher Scientific, USA) was tested for CFSE antibody staining (Willfuhr et al. 1989). Similar 

to the validation of the mCherry antibody staining, femur sections of day 3 after CFSE
+
 PDX 

cell injection were used. The high CFSE signal at day 3 functioned as a positive control for 

the CFSE antibody staining. A secondary antibody, binding the primary FITC/CFSE 

antibody, was conjugated with the fluorophore Alexa 594 in order to separate the fluorescence 

spectra of the CFSE and the CFSE antibody signal.  

The signal of the CFSE antibody staining correlated with the CFSE signal (see Figure 17). 

Femur section without any PDX cells or with CFSE
-
 PDX cells used as negative controls, 

were indeed negative.  

 

 

Figure 17: High correlation of the CFSE antibody signal with the CFSE signal. 

Femur sections of day 3 after CFSE
+
 PDX cell injection were stained with the CFSE antibody (purple). The 

CFSE signal (green) served as positive control for the staining. The nuclei were counterstained with DAPI 

(blue). 
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In femur sections of day 7 after cell injection the problem of low CFSE signal was obvious 

(see Figure 18). Without signal amplification of CFSE, LRC were not detectable in femur 

sections at later time points than 3 days after cell injection. Therefore, the CFSE antibody 

staining was necessary and I used the FITC/CFSE antibody to visualize low numbers of LRC 

in the femur with high specificity and sensitivity. 

 

 

Figure 18: CFSE antibody staining is sensitive enough to detect CFSE
+
 PDX cells in femur sections later 

than 3 days after cell injection. 

Femur sections of day 7 after CFSE
+
 PDX cell injection were stained with the CFSE antibody (purple) in order 

to amplify the CFSE signal (green) for further analysis. 

 

 

4.2.3 LRC are localized in the endosteum  

After establishment of the required CFSE antibody staining for signal amplification, the 

visualization of LRC was feasible in femur cryosections. Freshly isolated PDX cells from the 

spleen of a donor mouse were labeled with CFSE ex vivo and 10
7 

CFSE
+
 PDX cells were 

injected into each recipient mouse (see Figure 13). At day 10 after cell injection most PDX 

cells proliferate in the bone marrow as reasoned from the decreased CFSE labeling. At this 

time point LRC were identified by their high CFSE signal in FACS analysis, and defined as 

less than 2% of the entire PDX population or as approximately 0.01% of the entire cells in the 

bone marrow (see Table 11 in the appendix). A meaningful quantification at later time points 

was not possible due to continuously decreasing numbers of LRC in the bone marrow. Hence 

LRC localization was analyzed at day 10 after cell injection via CFSE stainings.  

Furthermore, it was not possible to stain one section simultaneously for LRC (CFSE staining) 

and PDX cells (mCherry staining) as both antibodies had the same species type and required 

consequently the identical secondary antibody. Thus two consecutive sections were performed 

and stained either for PDX cells or for LRC. 

The endosteal region of the bone marrow was described as the niche for dormancy as 

demonstrated for hematopoietic stem cells (HSC) (Haylock et al. 2007; Morrison & 
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Spradling. 2008). Therefore, the hypothesis was that LRC, showing a quiescent phenotype, 

were localized near to the endosteum. 

 

 

Figure 19: In both PDX samples, ALL-199 & ALL-265, LRC are concentrated to the endosteum 

compared to proliferating PDX cells. 

Consecutive femur sections of day 10 after CFSE
+
 PDX cell injection were stained with antibodies either for 

mCherry (PDX cell marker, red) or CFSE (LRC marker, green). The endosteum is defined as the region with a 

distance of less than 100 µm from the bone matrix. The left magnification box of each femur scan shows 

perivascular regions and the right magnification box of each femur scan shows the area around the endosteum. 

The nuclei were counterstained with DAPI (blue). Adapted from (Ebinger, Özdemir et al. 2016). 
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In both PDX samples LRC localized close to the endosteum, whereas PDX cells were 

detected in the entire bone marrow (see Figure 19). However, the ALL-265 PDX cells were 

preferably localized in the endosteal region, as already shown in Figure 15. Besides, ALL-199 

exhibited a higher percentage of LRC at day 10 after cell injection than ALL-265 (see Figure 

19). This observation was also demonstrated by FACS analysis. In ALL-199 ten times more 

LRC are present than in ALL-265 at day 10 after cell injection (see Table 11 in the appendix; 

Ebinger, Özdemir et al. 2016). 

All consecutive sections stained for mCherry and CFSE were analyzed with the software 

ImageJ to quantify the amount of cells localized in the endosteum. Approximately 30% of 

ALL-199 PDX cells and 50% of ALL-265 PDX cells were located close to the endosteal 

region as already shown in Figure 16. Both PDX samples showed a complete different 

tendency to the endosteum during engraftment. However, 70% of LRC of both samples were 

localized to the endosteum (see Figure 20).   

 

                                       

Figure 20: In both PDX samples significantly more LRC are localized in the endosteum compared to the 

entire PDX cell population. 

Quantification of all consecutive femur sections, stained either for mCherry (PDX cells) or CFSE (LRC), at day 

10 after cell injection was performed with ImageJ. At least 3 sections from both femurs in 2 mice were analyzed. 

Endosteal region was defined as less than 100 µm to the bone matrix. Statistical significance was calculated 

using two-tailed unpaired t-test (***p<0.001, ****p<0.0001). Adapted from (Ebinger, Özdemir et al. 2016). 

 

Taken together, the hypothesis, that LRC are preferably localized in the endosteum, was 

confirmed. In ALL-199 as well as in ALL-265 the critical subpopulation of dormant PDX 

cells (LRC) preferably localized close to the endosteum. Although the rate of engrafted PDX 

cells differed significantly within both samples, LRC localization to the endosteal region was 

similar for ALL-199 and ALL-265 at day 10 after cell injection.  
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4.2.4 PDX MRD cells are localized randomly in the bone marrow  

Next to dormancy, chemotherapy resistance is the second challenging feature of patients’ 

MRD in clinics. The importance of the bone marrow environment of chemotherapy-resistant 

leukemic cells was shown in various studies (see 1.1.3). Leukemic cells interact with the bone 

marrow microenvironment in order to survive chemotherapy (Boyerinas et al. 2013; Duan et 

al. 2014). To the best of our knowledge the localization of MRD cells of B-ALL was not 

investigated so far. Consequently, I next analyzed the localization of chemotherapy-resistant 

PDX MRD cells in the bone marrow.  

The endosteal region provided a niche for dormant PDX ALL cells during engraftment (see 

4.2.3 and Figure 19). However, cytostatic drugs can lead to an altered microenvironment in 

the bone marrow and the chemotherapy induced environmental changes are misunderstood 

(Wang et al. 2006). 

To obtain femurs of chemotherapy treated blasts at MRD level, mice were treated with a 

combination therapy of VCR and Cyclo after reaching high tumor load. The therapy was 

administered for 2-3 weeks depending on the PDX sample as previously described in the PDX 

MRD model (see 4.1.1). At MRD level of around 0.1% blasts in the bone marrow, mice were 

sacrificed and femurs were prepared for bone marrow sectioning (see Figure 21). PDX MRD 

cells were positive for the transgenic mCherry and therefore suitable for mCherry antibody 

staining. 

 

 

Figure 21: Scheme for generating PDX MRD cells for localization studies in femur sections. 

1x10
6
 freshly isolated or thawed transgenic PDX cells were injected into each mouse. PDX cells were positive 

for the following transgenes: mCherry, truncated NGFR and firefly luciferase. Leukemia engraftment and 

therapy effects were followed by in vivo imaging. After reaching high tumor load chemotherapy was initiated. 

VCR (0.25 mg/kg; i.v.) and Cyclo (100 mg/kg; i.p.) were injected weekly as combination therapy. The untreated 

control group received PBS. At MRD level of about 0.1% blasts in the bone marrow after 2-3 weeks of 

treatment, mice were sacrificed and the femurs were analyzed by staining for transgenic mCherry which is 

exclusively expressed by PDX cells. 
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After a long-term combination therapy with VCR and Cyclo the remaining PDX MRD cells 

of both samples, ALL-199 and ALL-265, were distributed randomly in the femoral bone 

marrow. No distinct morphological areas for PDX MRD cell accumulation were observed 

(see Figure 22). 

 

 

Figure 22: ALL-199 and ALL-265 PDX MRD cells are randomly distributed in the femur after 

combination therapy. 

PDX MRD cells (less than 0.1% blasts in bone marrow after VCR and Cyclo treatment) were positive for 

mCherry and were detected by specific antibody staining (green = mCherry signal). The left magnification box 

of each PDX sample shows perivascular regions and the right magnification box of each PDX sample shows the 

area around the endosteum. The nuclei were counterstained with DAPI (blue).  

 

ImageJ was used for the analysis of the bone marrow scans and revealed that only 30% of the 

PDX MRD cells were localized close to the endosteum after the combination therapy with 

VCR and Cyclo. This PDX MRD population showed a sample independent distribution 

similar to the LRC. In ALL-199 no difference in localization pattern of engrafted PDX cells 

and PDX MRD cells was observed. In contrast, engrafted PDX ALL-265 cells localized 

closer to the endosteum than the chemotherapy treated MRD cells (see Figure 23). 
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Figure 23: Less PDX MRD cells are localized in the endosteum than LRC or engrafted PDX cells after 

combination chemotherapy. 

Quantification of femur sections, stained for mCherry at MRD level of less than 0.1% blasts in the bone marrow, 

was performed with ImageJ. At least 2 sections from both femurs in 4 mice were analyzed. Endosteal region was 

defined as less than 100 µm to the bone matrix. For a better overview the quantification of engrafting PDX cells 

and LRC at day 10 after cell injection was added (see Figure 20). Statistical significance was calculated using 

two-tailed unpaired t-test (ns = no significance, ***p<0.001, ****p<0.0001). 

 

In summary, the PDX samples ALL-199 and ALL-265 exhibited a complete different 

engraftment pattern in the bone marrow. Both PDX samples own a different affinity to the 

endosteum during leukemia growth. ALL-199 PDX cells engrafted randomly in the bone 

marrow and ALL-265 PDX cells exhibited an engraftment concentrated to the endosteum. 

However, the challenging (sub)-populations like LRC and PDX MRD cells showed similar 

localization patterns. The LRC accumulate to a higher degree in the endosteum compared to 

engrafted PDX cells. The PDX MRD cells are less concentrated to this area and are even 

randomly distributed within the bone marrow.  
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4.3 Gene expression profiles of dormant and chemotherapy-resistant PDX 

samples 

The LRC and PDX MRD cells are characterized by the clinically challenging features of 

dormancy and chemotherapy resistance. Both populations depict a high plasticity in 

functional studies. They have the capacity to engraft in the next passage but are not enriched 

in stemness according to self-renewal frequency as compared to control cells (1.3.1 and 

4.1.3). During one passage in mice the dormant LRC and chemotherapy treated PDX MRD 

cells differ highly from the proliferating untreated control cells. 

It is very likely that dormant and proliferating PDX cells differ in their gene expression 

patterns. One method to determine the differences in gene expression is RNA-seq. The 

greatest advantage of RNA-seq compared to microarray is the accurate detection of 

differently expressed genes (especially with low expression levels) due to the sequencing at 

nucleotide level. In contrast, microarrays have a high false-positive rate because of unspecific 

nucleotide binding to the oligos on the microarray chip (Wang et al. 2014; Zhao et al. 2014). 

 

Gene expressions of LRC, PDX MRD cells and the proliferating untreated control cells were 

determined by RNA-seq. Therefore, the mRNA of these PDX cells were isolated as bulk or 

single cell, and were sequenced with Illumina HiSeq1500 (Illumina, USA). Gene expression 

profiles (GEP) of LRC and PDX MRD cells were obtained by direct comparison of the gene 

expressions between these challenging PDX cells and their proliferating untreated controls. A 

detailed analysis of the RNA-seq data was performed with the GEP in order to improve our 

understanding according the challenging features of dormancy and chemotherapy resistance. 

 

RNA-seq of the PDX cells was performed by our cooperation partner Prof. Wolfgang Enard 

and colleagues (Department Biologie II, LMU, Munich). After alignment of sequencing reads 

the obtained raw counts were forwarded to me for further bioinformatic analysis under 

supervision of our cooperation partner (see 3.5). 
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4.3.1 Gene expression profiles of LRC 

First, GEP of LRC were obtained and analyzed in order to gain new insights into the observed 

reversible dormancy in the LRC mouse model. ALL-199 and ALL-265 PDX cells were 

isolated freshly from the spleen of the donor mice and labeled ex vivo with CFSE before 

injection into recipient mice. LRC and non-LRC were obtained from isolated bone marrow of 

the recipient mice approximately 14 days after PDX cell injection (see Figure 24). At this 

time point less than 0.05% of the PDX population consisted of LRC in both samples (see 

Table 11 in the appendix). In addition to the mCherry reporter gene, the PDX cells were also 

transduced for the truncated cell surface protein NGFR. Both transgenes in the PDX cells 

were used for the enrichment of the PDX population from the murine bone marrow. By using 

the NGFR transgene for magnetic-activated cell sorting (MACS) enrichment and the mCherry 

transgene for fluorescence-activated cell scanning (FACS) enrichment, a fast and effective 

sorting of LRC, CFSE
+
 PDX cells, and non-LRC, CFSE

-
 PDX cells, was feasible (see 3.2.9; 

Ebinger, Özdemir et al. 2016). At least approximately 2,000 LRC were harvested from the 

entire bone marrow from both samples (see Table 11 in the appendix). This amount is 

sufficient to perform RNA-seq.  

The freshly isolated and enriched PDX cells were sorted directly either into lysis buffer for 

bulk RNA-seq or into patient medium for single cell RNA-seq (see 3.2.9). The laboratory of 

our cooperation partner Prof. Enard prepared the RNA libraries and all steps necessary for 

RNA-seq. 

 

              

Figure 24: Scheme for preparation of LRC and non-LRC for single cell and bulk RNA-seq.  

Freshly isolated PDX cells from the spleen of a donor mouse were labeled with CFSE ex vivo. Approximately 

1x10
7
 CFSE

+
 PDX cells were injected into the recipient mice. 14 days after cell injection the bone marrow was 

isolated. The PDX cells were enriched by using the NGFR and mCherry transgenes for MACS and FACS 

enrichment, and  sorted for LRC and non-LRC either 1,000 cells in 10 µl patient medium for single cell RNA-

seq or 2,000 cells in 80 µl in TCL-buffer for bulk RNA-seq. Adapted from (Ebinger, Özdemir et al. 2016). 
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4.3.1.1 GEP of LRC are clearly distinguished from non-LRC  

The analyzed RNA-seq raw counts were depicted as a heatmap with hierarchical clustering 

and as a principal component analysis (PCA). This was performed in R using the DeSeq2 

package (see 3.5.1). The differences between the GEP of LRC and non-LRC were highlighted 

by these two different visualization tools.  

In a heatmap the most differentially regulated and significant genes are plotted for each 

sample. The disparate color patterns visualize the differences in the GEP of the compared 

populations. In contrast, PCA is a statistical procedure to sum up variables from each sample 

by reducing the dimension. The main purpose of the PCA is the analysis of data to identify 

patterns of different GEP (Raychaudhuri et al. 2000). 

 

 

Figure 25: GEP of ALL-265 LRC and non-LRC are distinct in single cell RNA-seq. 

For each LRC and non-LRC sample, PDX cells of one mouse was sorted for single cell RNA-seq. (A) 

Hierarchical clustering and gene expression heatmap across the 500 most differentially expressed genes (padj < 

0.01) in 15 LRC and 35 non-LRC single cells were performed. Values are plotted relative to the average of non-

LRC. (B) Principal component analysis (PCA) of the 500 most variable genes in all 50 single cells is shown. 

Each dot indicates a single cell. Adapted from (Ebinger, Özdemir et al. 2016). 

 

Single cell RNA-seq was performed for the LRC sample ALL-265. GEP for 15 single cell 

LRC and 35 single cell non-LRC were obtained. In the heatmap the 500 most differentially 

expressed genes of the single cell LRC and non-LRC were depicted. LRC gene expression 

was more homogenous between the single cells of the LRC group compared to the gene 

expressions of the non-LRC group indicating a higher heterogeneity in the non-LRC 
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population (see Figure 25A). Furthermore, GEP of LRC and non-LRC in the single cell 

analysis were clearly distinct in the PCA. The non-LRC population was located on the left 

side of the PCA, whereas the LRC population was across, demonstrating a different GEP 

pattern between both cell populations (see Figure 25B). Some LRC were more similar in their 

GEP to the non-LRC population than to the LRC population and vice versa. This observation 

in the PCA confirmed the high plasticity, which was already described in the LRC mouse 

model (see 1.3.1). 

Bulk RNA-seq was performed for ALL-199 LRC and non-LRC. The advantage of bulk RNA-

seq was the higher sequencing depth allowing the detection of genes expressed at low levels 

(Bacher & Kendziorski. 2016). However, no statements about the homogeneity or 

heterogeneity of a population were obtained. The heatmap and the PCA in Figure 26 

demonstrated the differences in the GEP of ALL-199 LRC and non-LRC.  

 

          

Figure 26: GEP of ALL-199 LRC and non-LRC are distinct as determined by bulk RNA-seq. 

(A) Hierarchical clustering across the 500 most differentially expressed genes (padj < 0.01) in 4 biological 

replicates was performed and depicted as heatmap. Values were plotted relative to the average of non-LRC. (B) 

PCA of the 500 most variable genes in all 8 bulk samples is shown. Each dot indicates a bulk sample. 

 

The LRC and non-LRC from both samples were distinct in the GEP.  It was possible to detect 

gene expression differences in these two phenotypically different samples despite the high 

plasticity in this model.  
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All LRC and non-LRC sequencing data including ALL-199 and ALL-265 were summarized 

in one common GEP for further analysis and characterization of LRC (see 3.5.1). A combined 

LRC signature was defined. This LRC signature contained all significantly upregulated genes 

compared to non-LRC (around 250 genes with fold change > 1 and padj < 0.05; see Figure 39 

and Table 12 in the appendix). 

 

4.3.1.2 KEGG terms belonging to cell surface interactions are upregulated in LRC 

Characterization of LRC based on their GEP was performed using gene set enrichment 

analysis (GESA). GSEA is a statistical bioinformatic tool to identify enrichment of specific 

gene sets in a GEP. Over-represented gene sets result in a positive normalized enrichment 

score (NES) and vice versa. The more genes from a gene set are regulated in the same 

direction, the more significant and higher the NES is (Subramanian et al. 2005).  

For the first round of enrichment analysis, the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathway terms were used as gene sets for GSEA. The KEGG database offers a 

collection of different pathways and terms (Kanehisa et al. 2012).  

A GSEA on the common LRC GEP (including ALL-199 and ALL-265) was performed with 

all available KEGG terms. The highly significant terms are summarized in Figure 27. All 

significantly downregulated KEGG terms are associated with cell cycle and proliferation 

confirming the dormant state of LRC. 

In the upregulated KEGG terms cell adhesions molecules and cytokine-cytokine receptor 

interactions were highly enriched in GEP of LRC as compared to non-LRC. However, no 

specific pathway with a high enrichment score was significantly upregulated in LRC.  
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Figure 27: KEGG pathways for proliferation are downregulated and cell-cell interactions are upregulated 

in LRC. 

Significantly enriched KEGG pathways (padj < 0.01) are listed as determined by gene set enrichment analysis 

(GSEA). All RNA-seq data from ALL-199 and ALL-265 are combined for one common LRC GEP. Bars show 

the normalized enrichment score (NES). 

 

The metabolism in dormant cells differ highly from proliferating cells, for example in 

expression levels of genes, which are involved in the cell cycle (Whitfield et al. 2006).  

Therefore, the major difference of the GEP of LRC compared to non-LRC was associated 

with the dormant state of LRC. 

 

4.3.1.3 Patient signatures with challenging features are enriched in LRC  

To obtain a better idea about the challenging role of LRC, I next investigated the association 

of the LRC gene expression profile with patients’ signatures. Therefore, GSEA was 

performed with published patients’ gene signatures. All gene signatures contained only highly 

significantly upregulated genes. 

First, a gene signature of ALL with high risk for relapse was correlated with the LRC GEP 

(see Figure 28A). In this signature gene expression profiles from 207 uniformly treated 

children with ALL were obtained before therapy start, and 15 genes were identified as high 

risk genes for relapse by consideration of patients’ outcome (Kang et al. 2010). 11 out of the 

15 genes were also detected in the RNA-seq data of LRC. These 11 genes were significantly 

upregulated in LRC indicated by the high enrichment of this gene signature with the LRC 

GEP. Unfortunately, the role of these enriched genes cannot be classified to one specific 

cellular function. 
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Next, a gene set from dormant CD34
+
 CML populations was compared with the GEP of LRC. 

This gene signature was obtained by profiling dormant CD34
+
 CML patient populations 

against dividing CD34
+
 CML cells (Graham et al. 2007), and was also enriched more in LRC 

than non-LRC. This result confirmed the quiescent phenotype of LRC (see Figure 28B). 

Furthermore, a leukemia stem cell (LSC) signature, created by the comparison of LSC and 

hematopoietic stem cells (HSC), was enriched in upregulated genes of LRC (see Figure 28C) 

(Saito et al. 2010). The detection of LSC in patients is associated with worse prognosis, 

leading to the hypothesis that also the presence of LRC might be a bad prognosis factor. 

 

 

Figure 28: LRC GEP shows a high correlation with published critical patients’ signatures. 

Gene set enrichment analysis (GSEA) for published signatures on high risk ALL cells (Kang et al. 2010), 

dormant CD34
+
 CML (Graham et al. 2007) and leukemia stem cells (Saito et al. 2010) were performed. All 

RNA-seq data from ALL-199 and ALL-265 are combined for one common LRC GEP. Adapted from (Ebinger, 

Özdemir et al. 2016). 

 

Taken together, all critical patients’ signatures for ALL high risk, dormancy and malignant 

stemness, are significantly enriched in the GEP of LRC compared to non-LRC. These results 

indicate that LRC resemble a high-risk population in ALL. The LRC mouse model can be 

used as a novel platform to develop new treatment strategies for eliminating challenging cells 

in the ALL therapy.  
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4.3.2 Gene expression profiles of PDX MRD cells 

Next, GEP of chemotherapy-resistant PDX MRD cells and untreated control cells for the 

samples ALL-199 and ALL-265 was determined by RNA-seq in order to understand the 

challenging feature of chemotherapy resistance on transcriptome level (see 4.3.1).  

PDX MRD cells were generated by polychemotherapy as described 4.1.1 and the cells were 

isolated from the bone marrow by making use of the transgenes (truncated NGFR for MACS 

enrichment and mCherry for FACS enrichment). From the bone marrow of a chemotherapy 

treated mouse around 40,000 PDX MRD cells (0.1% of PDX cells in the bone marrow) were 

isolated and sorted either directly into lysis buffer for bulk RNA-seq or into patient medium 

for single cell RNA-seq (see Figure 29).  

 

 

Figure 29: Scheme for generating PDX MRD and control cells for RNA-seq analysis. 

1x10
6
 freshly isolated or thawed transgenic PDX cells were injected into each mouse. PDX cells were positive 

for the following transgenes: mCherry, truncated NGFR and firefly luciferase. Leukemia engraftment and 

therapy effects were followed by in vivo imaging. After reaching high tumor load chemotherapy was initiated. 

VCR (0.25 mg/kg; i.v.) and Cyclo (100 mg/kg; i.p.) were injected weekly as combination therapy. The untreated 

control group received PBS. At MRD level of about 0.1% blasts in the bone marrow after 2-3 weeks of 

treatment, mice were sacrificed and the isolated PDX cells from the bone marrow were sorted either in 10 µl 

patient medium with 1,000 cells for single cell RNA-seq or in 80 µl TCL-buffer with 2,000 cells for bulk RNA-

seq. Adapted from (Ebinger, Özdemir et al. 2016). 

 

 

 

4.3.2.1 GEP of PDX MRD cells are distinguished from the controls  

Single cell RNA-seq was performed with the ALL-199 PDX MRD cells. GEP of 90 MRD 

and 31 control single cells were obtained. To compare the GEP of both populations, a 

heatmap with hierarchical clustering and a PCA were performed as described before in 

4.3.1.1. 
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Figure 30: GEP of PDX MRD and untreated control cells from ALL-199 are clearly distinct in single cell 

RNA-seq. 

For each PDX MRD and control sample, PDX cells of one mouse were sorted for single cell RNA-seq. (A) 

Hierarchical clustering and gene expression heatmap across the 500 most differentially expressed genes (padj < 

0.01) in 90 PDX MRD and 31 control single cells were performed. Values were plotted relative to the average of 

untreated control cells. (B) PCA of the 500 most variable genes in all 121 single cells is shown. Each dot 

indicates a single cell. Adapted from (Ebinger, Özdemir et al. 2016). 

 

The heatmap of the 500 most differentially expressed genes indicated that the PDX MRD 

cells differed from the untreated control cells and displayed a more homogenous population 

compared to control cells. Furthermore, both populations were clearly distinguishable in the 

PCA, although an overlap between both PDX populations was observed (see Figure 30).  

Bulk RNA-seq data was obtained for both PDX MRD samples (ALL-199 and ALL-265). In 

order to characterize the PDX MRD cells independent of any specific PDX sample features, 

all bulk RNA-seq data of both PDX samples were combined to one common PDX MRD GEP 

for further analysis (see 3.5.1). The 250 most significantly differentially expressed genes were 

plotted as a heatmap. The overlap between both PDX samples was not high. The highest 

upregulated genes in one sample were not the same in the other sample. However, the 

direction of the regulation was always the same indicating a common gene expression 

between the different PDX MRD samples (see Figure 31A). 

Additionally, the PCA with the 500 most variable genes of all bulk RNA-seq data confirmed 

the diversity between the two PDX samples, ALL-199 and ALL-265. The first component 

(PC1) with 87% variance separated both PDX samples. The sample ALL-199 was localized 

on the left side of the PCA and on the right side ALL-265. Nevertheless, both PDX MRD 

populations differed from their controls with a variance of 4% in the second component (PC2) 

and thereby showed a small overlap within gene expressions for PDX MRD cells independent 

to the PDX sample (see Figure 31).   
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Figure 31: ALL-199 and ALL-265 differ highly in their GEP, whereas the PDX MRD GEP are similar. 

(A) Combined PDX MRD hierarchical clustering and gene expression of ALL-199 and ALL-265 are depicted in 

a heatmap across the 250 most differentially expressed genes (padj < 0.01; PDX MRD/Ctrl of ALL-265:each 

n=4; PDX Ctrl of ALL-199: n=8; PDX MRD of ALL-199: n=14). Values are plotted relative to the average of 

the control. ALL-265 bulk samples are symbolized in grey lines and ALL-199 bulk samples resulted in black 

lines. (B) PCA of the 500 most variable genes was performed for all 30 bulk samples. Each symbol indicates a 

bulk sample. 

 

In summary, the GEP of both PDX MRD populations differed from the untreated controls. 

Although a substantial difference in gene expression was observed between the two PDX 

samples ALL-199 and ALL-265, the existing overlap between the two PDX MRD 

populations enabled determining a common PDX MRD GEP signature for both samples. 

 

4.3.2.2 KEGG terms belonging to metabolism are downregulated in PDX MRD cells 

Next, a KEGG pathway enrichment analysis was performed using the common PDX MRD 

GEP of both PDX samples (ALL-199 and ALL-265) in order to identify the changes in the 

transcriptome of the PDX MRD cells induced by chemotherapy. Besides, the final question 

was to understand the chemotherapy resistance in the PDX MRD cells by using this 

bioinformatic analysis. 

KEGG terms for metabolism and proliferation were the most significant downregulated terms 

in the MRD population. In contrast, the cytokine-cytokine receptor interaction and cell 

adhesion molecule terms were upregulated in GEP of PDX MRD cells compared to the 
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untreated controls. Furthermore, some pathways were also significantly enriched in the 

upregulated genes of PDX MRD cells, for example the JAK-STAT pathway and diverse 

chemokine signaling pathways (see Figure 32).  

 

 
Figure 32: KEGG pathways for proliferation are downregulated in the GEP of PDX MRD cells. 

Significantly enriched KEGG pathways (padj < 0.01) were listed as determined by GSEA. All RNA-seq data 

from ALL-199 and ALL-265 are combined for one common PDX MRD GEP. Bars show the normalized 

enrichment score (NES).  

 

The results from the PDX MRD KEGG pathway analysis let assume a dormant state of the 

PDX MRD cells due to the downregulation of cell cycle associated KEGG terms. 

Chemotherapy resistance in the PDX MRD cells might be based on this dormant phenotype. 

Furthermore, the high upregulation of KEGG terms for microenvironment interactions 

indicate the dependency of the PDX MRD cells to the bone marrow environment.  

 

4.3.2.3 PDX MRD cells exhibit a dormant GEP 

The KEGG pathway analysis indicated a low metabolic and low cell cycle activity in the PDX 

MRD cells compared to untreated control cells. To investigate this observation GSEA were 

performed with gene signatures of E2F and MYC targets from the Molecular Signatures 

Database (Liberzon et al. 2015). The two gene signatures contain genes, which are 

upregulated by the transcription factors E2F or MYC. The downregulation of the E2F and 

MYC target genes correlated with a dormant and low proliferating cell cycle state (Dimova & 

Dyson. 2005; Zeller et al. 2003). In contrast, genes with pretended controversial functions are 

also summarized to one KEGG term. Therefore, these two signatures confirm more 

specifically and precisely the low cell cycle activity in the PDX MRD cells than KEGG terms.  
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Figure 33: PDX MRD cells exhibit a dormant GEP. 

GSEA for E2F and MYC targets from Molecular Signatures Database (MSigDB) were performed (Liberzon et 

al. 2015). All bulk RNA-seq data from ALL-199 and ALL-265 were combined for one common PDX MRD 

GEP. Adapted from (Ebinger, Özdemir et al. 2016). 

 

Targets genes from E2F and MYC were highly significant downregulated in the GEP of PDX 

MRD cells in the GSEA (see Figure 33). This observation correlated the PDX MRD GEP 

with a dormant phenotype. In conclusion, the combination chemotherapy over several weeks 

selected for PDX cells with low cell cycle activity.  

 

4.3.3 Gene expression profiles of LRC and PDX MRD cells are similar 

PDX MRD GEP correlates with a dormant phenotype and LRC are selected by their dormant 

state. Therefore, possible similarities in GEP of these two populations were investigated. 

GSEA with the LRC signature (see Figure 39) was performed on the PDX MRD GEP, and all 

single cell RNA-seq data of LRC and PDX MRD cells were combined in one PCA in order to 

identify similarities and differences between the different PDX populations with challenging 

features.  

The LRC signature was significantly enriched in the GEP of PDX MRD cells. Significantly 

upregulated genes in LRC were also mostly upregulated in PDX MRD cells (see Figure 34A). 

Furthermore, GEP of LRC and PDX MRD single cells were clearly distinguishable from their 

either proliferating or untreated controls in the PCA. All 105 dormant and chemotherapy-

resistant single cells of LRC and PDX MRD cells were uniformly localized in the lower part 

of the PCA in contrast to the proliferating, untreated control PDX cells, which were localized 

in the upper part (see Figure 34B).  
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Figure 34: High correlation between the GEP of LRC and PDX MRD cells. 

(A) GSEA with the LRC signature was performed on the combined PDX MRD GEP. (B) All single cell RNA-

seq data from ALL-265 LRC/non-LRC and ALL-199 MRD/control cells are plotted using all shared expressed 

genes. Each dot indicates a single cell. Adapted from (Ebinger, Özdemir et al. 2016). 

 

Taken together, LRC constitute a small subpopulation of dormant PDX cells during 

engraftment of the leukemia. In comparison, the PDX MRD cells are a population of 

chemotherapy treated cells. Modern next generation sequencing techniques including single 

cell RNA-seq enabled comparing both populations despite the fact that only very minor cell 

numbers were available for analysis. The data of GEP showed that the two populations 

associated either with dormancy or drug resistance show high similarities and share adverse 

and clinically challenging features. 

 

4.4 LRC and PDX MRD cells resemble primary patient MRD cells  

In the ALL PDX mouse model two distinct and clinically relevant populations were 

described. LRC were identified by dormancy during leukemia engraftment, whereas drug 

resistance in long-term chemotherapy characterized PDX MRD cells.  

As a last step, I aimed at estimating the relevance of these challenging PDX populations from 

the mouse model to patients’ disease. In patients MRD cells are the most challenging cells for 

the treatment of leukemia and correlate with a high risk for relapse and a poor prognosis (see 

1.1.2) (Conter et al. 2010; van Dongen et al. 2015). 

Five patient samples at diagnosis and corresponding MRD samples were provided and sorted 

for RNA-seq by Prof. Renate Panzer-Grümayer and colleagues (St. Anna Kinderspital, 
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Vienna; see 2.1). These samples were derived from children with newly diagnosed B-cell 

precursor ALL at time point of diagnosis and after the first block of chemotherapy and 

regeneration at day 33. Cells were sequenced by our cooperation partner Prof. Wolfgang 

Enard. GEP of primary MRD cells were compared with matched diagnosis samples (see 

Figure 35A). The sequencing quality from 3 out of 5 primary MRD samples was of sufficient 

quality for further analysis. All 220 significantly differentially expressed genes are plotted in 

the heatmap shown in Figure 35B. The gene expression of diagnosis and MRD samples 

differed. The GEP of primary MRD samples was associated with a dormant phenotype in 

GSEA compared to GEP of diagnosis samples (see Figure 40 in the appendix).  

 

Figure 35: GEP from diagnosis and MRD of primary ALL samples are distinct. 

(A) Bulk RNA-seq was performed from primary diagnosis (n=5) and primary MRD (n=3) samples. Primary 

MRD samples were obtained after 33 days of treatment onset. 2,000 cells were sorted into 80 µl TCL-buffer for 

bulk RNA-seq. (B) Hierarchical clustering and gene expression heatmap across all differentially expressed genes 

(padj < 0.05) is shown. Values were plotted relative to the average of diagnosis. Adapted from (Ebinger, 

Özdemir et al. 2016). 

 

After obtaining RNA-seq data from primary MRD samples the next step was to show the 

relevance of LRC and PDX MRD cells to patients’ disease. In the first approach the LRC 

signature (see Figure 39 in the appendix) was used for GSEA in order to compare GEP of 

primary MRD cells with the PDX cells. The LRC signature was significantly enriched in the 

primary MRD GEP (see Figure 36A). Furthermore, in the second approach all GEP from 

RNA-seq bulk samples, including LRC, PDX MRD cells and patient MRD cells, were plotted 

with all the controls in one PCA. All the bulk samples with the challenging features were 

localized within the same cluster. The first variance (PC1) shows the difference between GEP 
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of LRC, PDX MRD and primary MRD bulk samples on the left side of the PCA and the 

control bulk samples  on the right side (see Figure 36B). 

 

 

Figure 36: GEP of dormant and chemotherapy-resistant PDX cells show a high correlation with the GEP 

of primary MRD cells. 

(A) GSEA with the LRC signature was performed on the primary MRD GEP. (B) All bulk RNA-seq data from 

LRC, PDX MRD, primary MRD and their controls are plotted using all shared expressed genes. Each symbol 

indicates a bulk sample. Adapted from (Ebinger, Özdemir et al. 2016). 

 

GEP of LRC and PDX MRD cells correlated significantly with GEP of primary MRD 

samples. Thus, the two PDX populations with the challenging features of dormancy and 

chemotherapy resistance reflect patients’ disease at the stage of MRD on the transcriptome 

level. Both PDX NSG mouse models provide a novel platform for studying patients’ MRD in 

further functional studies.         

 

Taken together, in the present work I established several preclinical PDX mouse models of 

chemotherapy and treatment resistance and were able to show that dormant ALL cells during 

engraftment localize to the same endosteal bone marrow region as normal hematopoietic stem 

cells. In contrast, the PDX MRD cells are localized more to perivascular regions after 

surviving long-term chemotherapy. Gene expression profiles revealed that dormant and drug 

resistant PDX ALL cells in the bone marrow display substantial similarities to similar cells in 

patients. Thus, the PDX models can be used in the future to better characterize and finally 

efficiently treat treatment resistant tumor cells in patients with ALL. 
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5 Discussion 

Acute lymphoblastic leukemia (ALL) patients reach often remission upon initial treatment 

with cytostatic drugs (Inaba et al. 2013; Pui et al. 2008). Remaining leukemic cells in 

remission, which are defined as minimal residual disease (MRD) cells, indicate a high risk for 

relapse resulting in poor prognosis. Novel therapies targeting MRD cells are urgently needed 

for the improvement of patients’ treatment (Buckley et al. 2013).  

However, the biology of MRD cells is currently not very well understood. In clinics, MRD 

cells are detected in bone marrow aspirates but are not functionally characterized 

(Bruggemann et al. 2010). So far in one trial a dormant subpopulation of patients’ MRD cells 

was identified in bone marrow aspirates, but was not further analyzed (Lutz et al. 2013). 

 

In the present study, I established a novel patient-derived xenograft (PDX) mouse model that 

mimics patients’ MRD. This model enables us for the first time to perform functional studies 

on these cells and provides new insights into the characteristics of MRD cells. Furthermore, 

the recently established label retaining cell (LRC) mouse model for identification of dormant 

PDX ALL cells was also characterized and compared with the PDX MRD mouse model in 

order to understand the relation between dormancy and chemotherapy resistance in ALL. 

 

5.1 PDX MRD mouse model mimics patients’ MRD in ALL  

The feasibility to study the biology of patients’ MRD is limited by the minute numbers of 

remaining leukemic cells isolated from bone marrow aspirates. In addition, the identification 

of the MRD cells from healthy bone marrow is challenging and inefficient in FACS due to the 

high phenotypic MRD variability regarding cell surface markers (van Dongen et al. 2015). To 

overcome these limitations, the PDX MRD mouse model was established. The transgenes 

(mCherry, truncated NGFR, luciferase) introduced in the PDX cells, simplified the detection 

and isolation of remaining chemotherapy treated leukemic cells in the xenograft model.  

While PDX models in acute leukemia are mostly used for preclinical treatment trials and for 

studying the role of the bone marrow environment, the PDX MRD mouse model provides a 

tool for the characterization of a critical cell population in patients’ treatment (Gao et al. 

2015; Liem et al. 2004; Townsend et al. 2016). This established mouse model is the first 

mouse model mimicking the MRD in acute leukemia. Several groups established also an 

acute leukemia PDX model in which the leukemia was treated by chemotherapy. However, 
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the focus of these studies was set on simulation of standard chemotherapy. Treatment 

responses of the induction chemotherapy were analyzed rather than the functional 

characterization of remaining leukemic cells after treatment. Nevertheless, these studies 

demonstrate the relevance of the PDX model for the prediction of therapeutic agents in 

clinics. The same anti-leukemic effects of cytostatic drugs are observed in patient as well as in 

the xenograft mouse model (Liem et al. 2004; Samuels et al. 2014; Zuber et al. 2009). This 

close proximity in treatment effects between mouse and human was made use for the 

establishment of the PDX model mimicking MRD. 

Thus, the PDX MRD mouse model is based on the treatment with conventional cytostatic 

drugs in ALL therapies in order to reach the MRD level (of less than 0.1% blasts in the bone 

marrow) as close as possible to clinics. The combination therapy of Vincristine (VCR) and 

Cyclophosphamide (Cyclo) and treatment over prolonged periods of time reduce high tumor 

loads to MRD level in contrast to monotherapies (see Figure 9). The used drug concentrations 

in the PDX MRD model are based on optimized treatment protocols for ALL (see Table 8 in 

methods). The leukemia is decreased by more or less the same chemotherapeutic stress as in 

patients. Several studies showed that a specific cellular response to cytostatic drugs depends 

on the used drug concentrations (Meng et al. 2007; Morgan & Holguin. 2002). Consequently, 

the cellular response of the PDX MRD cells to chemotherapy might be the same like in 

patients due to the same provided chemotherapeutic stress. 

The initial induction therapy in patients is based on a polychemotherapy and takes usually 4-6 

weeks until remission and detection of the first remaining MRD cells. A combination therapy 

of more than two cytostatic drugs, as it is used in patients, is not feasible in mice due to high 

toxicity. A reason for this limitation is most likely the different metabolic activity in humans 

and mice as the higher metabolic activity in mice causes different pharmacokinetics of the 

used cytostatic drugs (Demetrius. 2005; Nair et al. 2016; Sharma & McNeill. 2009). 

Nevertheless, the combination therapy with VCR and Cyclo was administered for 2-3 weeks 

under clinical relevant drug concentrations. The established PDX MRD model is as close as 

possible to patients’ treatment and MRD. 

 

In order to demonstrate the clinical relevance of the PDX MRD and the LRC mouse model, 

gene expression profiles (GEP) of the PDX cells and primary MRD cells were analyzed. 

MRD cells are the most critical cell population of patients’ treatment. They are 

chemotherapy-resistant, dormant and highly self-regenerative (Buckley et al. 2013; Lutz et al. 
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2013). These features related also to LRC and PDX MRD cells, which were shown in the 

functional in vivo studies (see 4.1; Ebinger, Özdemir et al. 2016). 

So far no GEP of primary ALL MRD cells existed. In clinics the MRD cells are identified to 

monitor therapy efficiencies but have not been isolated for further studies (Bruggemann et al. 

2010). With the help of our cooperation partners (Prof. Renate Panzer-Grümayer and Prof. 

Wolfgang Enard), GEP of primary ALL MRD cells could be obtained for the first time. A 

comparative RNA-seq data analysis of LRC, PDX MRD cells and primary MRD cells 

demonstrates a significant correlation between all populations (see Figure 36). PDX cells with 

challenging features of dormancy and chemotherapy resistance display a similar gene 

expression profile as primary MRD cells. In conclusion, both minor cell populations in the 

two distinct PDX mouse models mimic features of patients’ MRD cells. Additionally, several 

studies report also a high correlation in GEP between PDX cells and primary malignant cells 

and underline the proximity of the PDX models to patients’ disease as for example in lung 

cancer biology or in acute leukemia (Daniel et al. 2009; Wong et al. 2014). These results 

confirm the relevance and ability of the PDX models for characterizing patients’ diseases in 

vivo. 

In conclusion, the established PDX MRD mouse model provides an unique tool to study the 

biology of MRD as close as possible to patients’ MRD.  

 

5.2 Detection of acquired chemotherapy resistance in the PDX model 

The initial treatment after diagnosis is often successful in ALL patients. The leukemia burden 

is drastically reduced and consequently patients reach the remission. However, remaining 

MRD cells often give relapses with poor outcome due to chemotherapy resistance (Foo & 

Michor. 2014; Inaba et al. 2013; Pui et al. 2008). The evolution of chemotherapy resistance is 

poorly understood and so far no model exists to study this critical aspect in ALL biology. In 

functional studies of the PDX MRD model first evidences for evolution of chemotherapy 

resistance in ALL was observed.  

The two used PDX samples, ALL-199 and ALL-265, exhibit different sensitivities to VCR 

during long-term treatment. Over three months a VCR resistant subpopulation in ALL-265 

remained stable despite weekly treatment. In contrast, PDX ALL-199 cells were immediately 

eradicated by the same therapy (see Figure 10). Genetic differences between the PDX samples 

are most probably the reason for the different VCR sensitivities.  
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The VCR resistance in ALL-265 is either based on a resistant subpopulation within the 

sample or an acquired resistance favored by genetic alterations. In the PDX models the 

conservation of heterogeneity was already known and proven. PDX samples can consist of 

different subpopulations, which are not lost during passaging in mice (Cassidy et al. 2015). 

Furthermore, the mechanism for VCR resistance is also described for PDX B-ALL cells. The 

mode of action of VCR is based on binding to tubulin resulting in microtubule destabilization 

followed with mitotic arrest and cell death (Owellen et al. 1972). Ong and colleagues 

demonstrated that VCR resistant PDX B-ALL cells exhibit an increased level of polymerized 

tubulin. Mechanisms regulating the microtubule stability are involved in VCR resistance (Ong 

et al. 2008). However, this experiment in the present work cannot provide insights into the 

question whether the long-term VCR therapy selected either for a subpopulation with a 

genotype favoring the acquisition of VCR resistance or for an existing resistant subpopulation 

in ALL-265. Nevertheless, the formation of a VCR resistant population for several months 

was observed in vivo. This model can be used for further studies in order to understand 

treatment failures based on chemotherapy resistance.  

 

In contrast, the established PDX MRD model suggests an acquired chemotherapy resistance. 

PDX MRD cells were generated by the combination therapy with VCR and Cyclo, and were 

re-passaged. In the next in vivo treatment round with the same therapy the PDX MRD cells 

were slightly more resistant than the control cells, which were treated to MRD level for the 

first time. At the end of the therapy 2.5-fold more PDX MRD cells were detectable in the 

bone marrow compared to the control cells (see Figure 12). Homing and engraftment of both 

groups were identical. This observation is also consistent with the reported high leukemia 

stem cell (LSC) frequency in ALL. The ability of self-renewal is conserved in all ALL cells 

independent of any subpopulations. Therefore no differences in homing and engraftment was 

expected in this experiment (Abdullah & Chow. 2013; le Viseur et al. 2008; Morisot et al. 

2010; Pal et al. 2016).  

Predetermination might be the (or one) reason for the significant increase of remaining cells 

in the PDX MRD group, and can be explained by epigenetic mechanisms. Bhatla and 

colleagues suggested also that chemotherapy resistance in B-ALL may be driven by 

epigenetic changes (Bhatla et al. 2012). After first round of treatment the PDX cells might 

obtain an epigenetic predetermination resulting in faster adaption to the next round of 

chemotherapeutic stress. Most probably such a predetermination in the leukemic cells is based 
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on acquiring faster a dormant state in order to get resistant towards chemotherapy as the GEP 

of PDX MRD cells suggests a dormant phenotype (see Figure 33). 

A selection for a resistant subpopulation during the first treatment round is unlikely. The PDX 

MRD cells were as sensitive to chemotherapy at the beginning of the second treatment round 

as the control cells; otherwise the PDX MRD cells would show a clear drug resistance in the 

next passage. In the PDX MRD model three weeks of combination therapy with two drugs 

was sufficient to exhibit the process of acquiring chemotherapy resistance. To the best of our 

knowledge this model provides the first tool to monitor and study the evolution of 

chemotherapy resistance in ALL in vivo. 

Our data indicate that chemotherapy resistance in ALL-265 is acquired over a long period of 

drug treatment rather than the existence of a drug resistant subpopulation. 

 

5.3 Bone marrow mediated dormancy is crucial for chemotherapy 

resistance 

The functional LRC and PDX MRD studies reveal the importance of the bone marrow 

microenvironment. In both in vivo models a high plasticity between the PDX cells is 

observed. The two critical populations of LRC and PDX MRD cells are able to re-engraft in 

mice with the same efficiency as untreated and dividing control cells. No isolated cell 

population is enriched for self-renewal or stemness in the next mouse passage compared to 

the control cells. Besides, dormant LRC or chemotherapy-resistant PDX MRD cells arise 

even within the control cell population in the next passage (see 4.1.3; Ebinger, Özdemir et al. 

2016). The observed high plasticity in the two PDX mouse models is consistent with the non-

hierarchical and random ALL stem cell model as described before in 5.2. No ALL stem cell 

population, enriched in self-renewal, has been identified so far (le Viseur et al. 2008; Morisot 

et al. 2010).  

Our two distinct mouse models for identification of LRC and PDX MRD cells show 

microenvironment mediated dormancy and chemotherapy resistance (Ebinger, Özdemir et al. 

2016). Consequently, the localization of LRC and PDX MRD cells within the bone marrow 

were analyzed to understand the role of the microenvironment for the critical acquired 

features of dormancy and chemotherapy resistance.  

 

In the LRC model the dormant subpopulation of PDX cells localizes close to the endosteum 

in both samples, ALL-199 and ALL-265. During homing and engraftment the PDX cells 
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interact with the endosteal region in order to settle within the niche. Most probably the 

interaction with the bone marrow environment stimulates these cells to become quiescent. 

Some unidentified factors such as cytokines and cell surface receptors within in the niche 

might contribute to the induction of dormancy. This hypothesis is supported by our findings 

that in GSEA (gene set enrichment analysis) terms for cell surface and cytokine cytokine 

interactions are highly upregulated in LRC indicating the necessity of LRC-microenvironment 

interactions for dormancy (see Figure 27 in the results). Several groups also described the role 

of the endosteum in diverse hematopoietic disorders for the induction of dormancy. 

Osteoblasts and osteoclasts, which are the characteristic cells of the endosteum, are 

responsible for harboring dormant malignant cells by expressing diverse cytokines. 

(Boyerinas et al. 2013; Chen et al. 2014; Lawson et al. 2015).  

 

In contrast to LRC, the chemotherapy resistance in vivo initially let to the identification of 

PDX MRD cells. However, the observed resistance in the PDX MRD model is based most 

probably on the dormant state of PDX MRD cells. GEP of these cells clearly indicate a non-

dividing phenotype. Gene sets including E2F- and MYC target genes are highly 

downregulated in PDX MRD cells, which associates these cells with dormancy (Dimova & 

Dyson. 2005; Liberzon et al. 2015; Zeller et al. 2003). This acceptance is also confirmed by 

GEP of the sorted primary MRD cells, which exhibit also a dormant phenotype. Therefore, an 

endosteal cell localization was assumed for the remaining leukemic cells after 

ploychemotherapy. Besides, drug resistance in the bone marrow is associated with 

localization close to the endosteum (Duan et al. 2014; Jin et al. 2008).  

However, the PDX MRD cells from both samples, ALL-199 and ALL-265, are randomly 

distributed in the perivascular regions of the bone marrow without accumulation in the 

endosteum like observed for LRC. There is a clear discrepancy between the localization of 

PDX MRD cells and LRC.  

Recently, Hawkins and colleagues were the first to describe the localization of chemotherapy 

treated T-ALL PDX cells. Using intravital microscopy and analyzing the entire calvarium 

bone marrow in real time, a stochastic mechanism for chemotherapy resistance in T-ALL was 

developed. The remaining PDX cells during and after treatment are randomly distributed in 

their model. No specific accumulation pattern in the bone marrow was identified confirming 

the PDX MRD localization results (Hawkins et al. 2016). Furthermore, the authors observed a 

nearly complete depletion of osteoblasts during high tumor load in mice. In patients’ bone 
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marrow aspirates with more than 75% blast infiltration the loss of osteoblasts was also 

confirmed by Hawkins and colleagues (Hawkins et al. 2016).  

This described dramatic change of the endosteal region can be translated to our PDX model 

and can explain why the dormant PDX MRD cell population is not localized to the endosteum 

but is rather randomly distributed in the bone marrow. At day 10 after cell injection the 

leukemia in both samples was less than 1% of the entire bone marrow population (Ebinger, 

Özdemir et al. 2016). The structure of endosteal region including the osteoblasts should not 

undergo a drastic change at this early time point. As one possible explanation, the endosteum 

might provide a niche for untreated ALL cells such as LRC, but osteoblast depletion changes 

the endosteum dramatically disabling a protective niche in the post-treatment situation of 

PDX MRD cells. 

 

A yet undefined niche for dormancy could influence the perivascular localization of the PDX 

MRD cells. In the last decades the endosteum was associated with localization of dormant 

HSC. Even osteoblasts were described as the key component of the niche supporting HSC 

maintenance (Guezguez et al. 2013; Haylock et al. 2007; Xie et al. 2009; Zhang et al. 2003). 

In contrast, Kiel and colleagues doubted the influence of osteoblasts on HSC (Kiel et al. 

2007). Furthermore, Ding and Morrison were able to show two distinct niches of HSC and 

early lymphoid progenitors (ELP) in the bone marrow. HSC localized in a perivascular niche 

and ELP in an endosteal niche (Ding & Morrison. 2013). Nevertheless, the endosteal niche 

harboring ELP has to provide factors supporting dormancy due to the reversible quiescent 

state of ELP (Pelayo et al. 2006). Besides, it has been shown recently, that dividing as well as 

non-dividing HSC reside in small areas of the perivascular niche indicating an additional 

niche for dormant cells within the bone marrow (Acar et al. 2015). These controversies 

indicate that next to the endosteum a second niche for dormancy might exist in perivascular 

regions in the bone marrow. 

New insights in the malignant bone marrow niche are always associated with the healthy 

hematopoiesis. Leukemic cells always interact with normal healthy bone marrow cells, before 

capturing niche elements of HSC and disrupting the healthy hematopoiesis (Boyd et al. 2014; 

Colmone et al. 2008). Therefore, my assumption is that the PDX MRD cells localize in 

dormant perivascular niches as recently described for HSC (Acar et al. 2015). However, the 

question remains open, why LRC predominantly use the endosteal niche for dormancy and no 

other niches during engraftment. 
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A possible explanation for the endosteal localization of LRC might be an observation during 

the engraftment at day 3 and day 10 after cell injection. The percentage of PDX cells localized 

to the endosteum is significantly higher at day 3 compared to day 10. The endosteum seems to 

contribute mainly to PDX ALL homing and engraftment. Ishikawa and colleagues reported 

similar observations for the acute myeloid leukemia (AML) in their PDX model (Ishikawa et 

al. 2007).  

During homing in the endosteum, some PDX cells may get dormant and reside as LRC in this 

niche during engraftment. However, the necessity of the endosteal region for engraftment 

differs between ALL-199 and ALL-265. ALL-265 is highly enriched in the endosteal region 

during the first two weeks after cell injection. In contrast, ALL-199 localize to a lower degree 

to the endosteum. Nevertheless, the LRC and PDX MRD cells of both samples show a similar 

localization pattern within the bone marrow indicating the importance and the unique 

functions of these two different niches for dormancy and chemotherapy resistance. 

 

Taken together, dormancy of LRC and PDX MRD cells is based on the interactions with the 

bone marrow environment. However, both PDX populations localize to different niches. 

During engraftment LRC reside in the endosteal niche, which is associated with dormancy. At 

high leukemia burden the endosteal niche undergoes a change due to the depletion of 

osteoblasts, and consequently the function of this niche to localize dormant cells might be 

destroyed (Hawkins et al. 2016). The PDX MRD cells, which survive combination 

chemotherapy for several weeks, predominantly localize in the perivascular regions of the 

bone marrow suggesting that some areas of the perivascular niche replace the dormant 

function of the endosteal niche.  

 

 

5.4 High correlation of GEP from two populations within distinct PDX 

models is based on dormancy 

In this study the method of RNA-seq was used for transcriptome analysis of LRC and PDX 

MRD cells in order to characterize and understand the challenging features of dormancy and 

chemotherapy resistance in ALL. The first step towards this aim was to obtain GEP of both 

critical PDX cell populations. A clear difference in the gene expressions from LRC/PDX 

MRD cells and their proliferating untreated controls was confirmed by principle component 

analysis (PCA) and let to the generation of each GEP. 
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Since almost two decades GEP are used as data sets to explore the relations and associations 

between different cells, diseases and therapies (Alizadeh et al. 2000; Khan et al. 2001; van 't 

Veer et al. 2002). Consequently, the GEP of LRC was classified by several gene set 

enrichment analysis (GSEA) with published gene signatures to confirm the challenging 

features of LRC observed in the functional studies. The applied gene signatures correlated 

highly with the LRC GEP, for example genes associated for dormant CML (chronic myeloid 

leukemia) cells or AML LSC (leukemia stem cell) were enriched in the GEP of LRC (Graham 

et al. 2007; Saito et al. 2010). The dormant state of LRC shows a similar regulation in the 

transcriptome like the dormant primary CML cells indicating a universal GEP for dormancy 

independent of diverse malignancies.  Besides, the GEP of LRC includes genes that are 

involved in stemness, like in the AML LSC. These bioinformatical results confirm the 

observed LRC features of dormancy and self-renewal in the functional studies (Ebinger, 

Özdemir et al. 2016).  

Due to the high capacity of self-renewal in ALL no gene signatures of sorted ALL 

subpopulation with challenging features are available (le Viseur et al. 2008). In AML the 

CD34
+
 CD38

-
 cell population is associated with stemness. Therefore, many gene signatures 

for AML LSC are published (Gal et al. 2006; Gentles et al. 2010; Hackl et al. 2015). 

However, Kang and colleagues generated a signature for ALL to predict the risk for relapse. 

This signature for relapse prediction was generated by comparing patients’ outcomes and 

gene expressions before therapy start (Kang et al. 2010). GSEA with this gene signature 

showed a high enrichment in the GEP of LRC. LRC seems to be a surrogate for relapse 

inducing cells. Unfortunately, the enriched genes in this signature cannot be assorted to one 

particular/specific pathway or cellular mechanism in order to understand the risk for relapse in 

detail. 

 

We were the first who identified and isolated dormant as well as chemotherapy-resistant cells 

from a single sample by using two distinct PDX models. PDX MRD cells are characterized by 

chemotherapy resistance after 2-3 weeks of treatment, and LRC are characterized by 

dormancy during leukemia engraftment. Therefore, it is more surprising that the GEP of both 

critical PDX populations are similar (see Figure 34). Most probably the similarity of the GEP 

is based on the dormant phenotype of both populations. GSEA of PDX MRD cells revealed 

also a dormant phenotype (see Figure 33).   

Dormancy seems to be a common and reversible feature in ALL cells like described for HSC 

(Wilson et al. 2008). Hence, novel therapies aiming to reduce the relapse risk and increase 
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patients’ outcome have to target ALL dormancy. Dormant ALL cells have to be turned into 

proliferating cells in order to sensitize them towards chemotherapy. Such treatment strategies 

are also suggested in different hematological disorders. However, the proof of concept for this 

novel treatment approaches is still missing (Boyerinas et al. 2013; Takeishi et al. 2013). 

Functional studies from LRC and PDX MRD cells showed a microenvironment mediated 

dormant phenotype in ALL (see 4.1.3; Ebinger, Özdemir et al. 2016). Nevertheless, the 

leukemic cells have to be targeted instead of the bone marrow microenvironment. The high 

controversy in the bone marrow niche and our limited knowledge about the interaction of 

bone marrow cells prevent to use the microenvironment as a therapy target (see 5.3) (Boyd et 

al. 2014; Calvi & Link. 2014; Hawkins et al. 2016). Furthermore, the obtained RNA-seq data 

of LRC and PDX MRD cells offer an unique platform to identify targets/candidates on the 

ALL cells.  

However, the question remains, whether it is possible to target both critical PDX populations 

by inhibiting one candidate. The bone marrow localization of LRC and PDX MRD cells are 

completely different and so the neighboring cells in the two distinct niches are most probably 

disparate. In contrast, the GEP of LRC and PDX MRD cells are very similar and an overlap 

of candidates exists for sure. Therefore, the chance might be high that the inhibition of 

LRC/PDX MRD cell interaction with the niche is possible by using one candidate. The 

assumption is that both niches of LRC and PDX MRD cells use the identical mechanism for 

keeping these cells dormant.  

 

5.5 Conclusion and outlook 

The present study developed a novel preclinical mouse model and enabled novel insights into 

the biology of dormant and treatment resistant ALL cells. The data obtained allow the 

conclusion that resolving resistant cells from their protective bone marrow niche supporting 

dormancy might sensitize them towards chemotherapy. 

The present work allows future studies to prove this concept and to test novel treatment 

options against MRD in a preclinical setting. The data approximate the global aim to develop 

novel therapies which eliminate resistant and dormant tumor cells in ALL, to prevent ALL 

relapse and to finally improve the prognosis of patients with ALL.  
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6 Appendix 

6.1 Supplemental figures 

 

Figure 37: Commonly used cytostatic drugs in patients’ ALL therapy show a different and dose-

dependent growth inhibition of ALL-265. (related to 4.1.1) 

After reaching high tumor load, different cytostatic drugs were applied once a week into mice. Each therapy 

group consists of two mice. * Eto 50 mg/kg therapy group had to be sacrificed due to high weight loss (> 10% 

after therapy start). 

 

 

 

Figure 38: The mCherry antibody staining correlates with the CFSE signal of PDX cells. (related to 4.2.1) 

CFSE
+
 mCherry

+
 PDX cells were injected into mice. Femurs were fixed with zinc formalin for femur 

preparation. Fixation destroyed the mCherry signal, but not the CFSE signal. Femur sections of day 3 after cell 

injection were stained with an anti-mCherry antibody. The CFSE signal at day 3 was strong enough to be 

detected by confocal microscopy and served as positive control. 
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Figure 39: LRC signature from combined RNA-seq data of ALL-199 and ALL-265. (related to 4.3.1) 

LRC signature genes (padj < 0.05 and log2 fold-change >1) were derived from combined bulk and single-cell 

RNA-seq analysis from 6 animals carrying either ALL-265 or ALL-199 and are shown ranked by fold-change 

and colored by significance. In Table 12 (in the appendix) the genes of the LRC signature are listed. Adapted 

from (Ebinger, Özdemir et al. 2016). 

 

 

 

 

Figure 40: Primary ALL MRD samples are dormant compared to their diagnosis samples. (related to 4.4) 

GSEA for E2F and MYC targets from Molecular Signatures Database (MSigDB) (Liberzon et al. 2015) were 

performed. All bulk RNA-seq data from patients’ diagnosis and MRD samples were combined for a primary 

MRD GEP. 
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6.2 Supplemental tables 

                              Table 11: Expected absolute and relative LRC numbers in the  

    entire bone marrow/femur based on FACS data (related to 4.2.3) 

 ALL-199 

dpi 
abs. LRC 

number  

% of LRC 

to PDX 

% of LRC 

in one femur 

day 10 35,000 2% 0.015 

day 14 7,000 0.06% 0.003 
    

 ALL-265 

dpi 
abs. LRC 

number in bm 

% of LRC 

to PDX 

% of LRC 

in one femur 

day 10 3,000 1.1% 0.001 

day 14 2,100 0.02% 0.0007 
                             dpi = days post injection; abs. = absolute; assumption of around  

                             11x10
6
 hematopoietic cells in one femur  

  

 

 

Table 12: Common LRC signature (log2 fc > 1 

and padj < 0.05) of ALL-199 and ALL-265 

(related to Figure 39) Adapted from (Ebinger,  

Özdemir et al. 2016). 

Rank Gene Name log2 fc padj 

1 H1F0 3.49 1.17E-45 

2 HSD11B1 3.17 3.12E-22 

3 NEIL1 2.83 1.72E-23 

4 AC116366.5 2.65 2.00E-16 

5 MTUS2 2.58 2.45E-17 

6 HIST1H2AC 2.57 1.01E-33 

7 FLT3 2.30 2.95E-21 

8 C10orf10 2.29 1.19E-19 

9 CYTL1 2.22 4.16E-60 

10 MS4A6A 2.21 4.84E-11 

11 CD97 2.21 1.34E-13 

12 TMEM173 2.10 2.51E-19 

13 NFE2 2.10 1.94E-13 

14 NT5E 2.04 8.22E-13 

15 CD86 2.04 1.14E-09 

16 TP53INP1 2.01 6.96E-14 

17 SETBP1 1.99 9.12E-09 

18 LGALS1 1.99 4.99E-10 

19 GSN 1.97 1.25E-22 

20 HSH2D 1.96 5.20E-16 

21 RAB37 1.95 2.38E-16 

22 ABHD4 1.94 1.14E-11 

23 HIST1H4H 1.91 1.26E-10 

24 EMR2 1.91 4.26E-08 

25 ENSG00000229164 1.89 2.47E-12 

26 EMP1 1.89 6.49E-12 

27 ITGA6 1.87 4.50E-18 

28 LINC00114 1.86 3.59E-09 

29 HRK 1.85 1.51E-07 

30 CST7 1.82 1.26E-07 

31 MYO1F 1.81 6.28E-10 

32 PDGFA 1.81 2.11E-07 

33 NOTCH2 1.81 8.35E-13 

34 SERPINE1 1.80 1.83E-07 

35 FAIM3 1.80 4.01E-20 

36 NRXN3 1.80 3.73E-07 

37 TOX2 1.79 4.63E-07 

38 NCF1C 1.78 1.29E-12 

39 HIST2H2BE 1.77 5.41E-14 

40 DUSP26 1.77 6.33E-07 

41 C15orf52 1.76 9.58E-08 

42 CD70 1.75 4.89E-09 

43 METTL7A 1.74 7.41E-11 

44 LINC00707 1.74 3.52E-08 

45 MYRIP 1.72 6.08E-10 

46 SAMHD1 1.72 3.95E-14 

47 NCF1B 1.72 4.66E-13 

48 RP11-473M20.9 1.71 7.25E-08 

49 TNFSF4 1.71 2.01E-07 

50 RIN2 1.68 9.90E-09 

51 TPST1 1.68 2.88E-08 

52 SERPING1 1.66 8.31E-08 

53 PIK3IP1 1.65 2.72E-16 

54 NCF1 1.65 3.95E-14 

55 ADAM19 1.63 1.38E-07 

56 DHRS7 1.61 4.66E-13 

57 P4HA2 1.59 3.06E-08 

58 DNASE2 1.58 1.17E-05 
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59 ADAM8 1.57 4.48E-06 

60 CD1C 1.56 9.35E-11 

61 MYLIP 1.55 3.81E-11 

62 SDK2 1.55 6.26E-06 

63 LINC01021 1.54 2.33E-06 

64 IL24 1.54 1.71E-05 

65 PLEKHG1 1.54 6.34E-06 

66 HIP1 1.52 3.71E-05 

67 Y_RNA 1.50 9.13E-06 

68 PTGER4 1.49 3.64E-05 

69 ZMAT3 1.49 2.19E-09 

70 KLF4 1.49 6.68E-06 

71 ARL4C 1.49 3.62E-05 

72 FERMT2 1.48 7.36E-05 

73 GBP2 1.46 8.50E-05 

74 LPAR6 1.45 1.14E-20 

75 IL1B 1.45 3.21E-18 

76 ZNF555 1.44 2.84E-06 

77 TERF2 1.43 4.69E-23 

78 FOLR2 1.43 2.20E-06 

79 FCGRT 1.40 1.12E-13 

80 S100A10 1.40 1.70E-04 

81 PAN3 1.40 2.36E-17 

82 LRMP 1.40 1.34E-20 

83 NOTCH2NL 1.39 1.60E-04 

84 CDKN2D 1.38 1.05E-15 

85 CTSH 1.37 6.18E-14 

86 DUSP1 1.37 5.47E-10 

87 OSBPL10 1.37 8.69E-05 

88 ANTXR1 1.36 1.14E-04 

89 FOSB 1.35 8.89E-06 

90 SELM 1.35 2.26E-04 

91 OSER1-AS1 1.34 4.08E-04 

92 LGR6 1.34 1.42E-04 

93 C10orf25 1.33 1.20E-05 

94 RHOC 1.33 3.39E-05 

95 PLAUR 1.33 4.85E-07 

96 FBXO25 1.33 2.08E-04 

97 B3GNT5 1.32 4.35E-04 

98 ENSG00000117289 1.32 1.36E-12 

99 CLMN 1.32 4.80E-06 

100 FAM3C 1.31 4.11E-07 

101 CA5B 1.30 5.54E-08 

102 LYST 1.30 1.83E-07 

103 RASSF4 1.29 1.71E-04 

104 RGS16 1.28 1.34E-04 

105 SH3BP2 1.28 3.32E-08 

106 TNFRSF10D 1.28 5.70E-05 

107 PPP1R15A 1.28 8.19E-09 

108 ITGAM 1.27 9.23E-04 

109 MACROD2 1.27 7.80E-05 

110 ITGB2 1.27 8.88E-08 

111 GADD45B 1.26 1.84E-07 

112 HGSNAT 1.26 7.85E-04 

113 CLEC4E 1.26 3.31E-04 

114 IPCEF1 1.26 2.47E-12 

115 PLXNB1 1.25 1.30E-03 

116 CRMP1 1.25 1.24E-05 

117 LGALS3BP 1.25 4.55E-13 

118 SULF2 1.25 1.18E-03 

119 N4BP2L1 1.25 8.36E-07 

120 C16orf54 1.24 6.83E-10 

121 NEAT1 1.24 7.66E-11 

122 CEP112 1.24 4.56E-04 

123 TIMP1 1.23 1.29E-09 

124 SMAD3 1.23 3.45E-06 

125 OAS1 1.23 9.07E-07 

126 RASAL2 1.22 1.57E-04 

127 FOS 1.22 8.28E-04 

128 THEMIS2 1.22 7.43E-09 

129 AC005154.6 1.22 4.05E-05 

130 CXCR4 1.22 6.43E-10 

131 CSRNP2 1.21 1.95E-04 

132 CD44 1.21 6.85E-09 

133 TNFAIP2 1.21 2.22E-03 

134 GPR183 1.21 1.18E-03 

135 SPRY1 1.20 1.37E-03 

136 TSC22D3 1.20 7.17E-10 

137 RP11-154D3.1 1.20 2.33E-03 

138 PLXND1 1.19 1.71E-03 

139 LSP1 1.19 4.49E-05 

140 ID2 1.19 1.92E-03 

141 YPEL2 1.19 3.78E-04 

142 LINC01013 1.18 2.55E-09 

143 ENSG00000182217 1.18 8.67E-08 

144 ENSG00000183941 1.17 7.75E-08 

145 CTD-3252C9.4 1.17 3.26E-03 

146 MS4A7 1.17 1.39E-04 

147 BHLHE40 1.17 1.21E-03 

148 TLR1 1.17 5.47E-05 

149 HSPB1 1.16 5.70E-10 

150 ANKRD28 1.16 5.80E-07 

151 RAP1GAP2 1.16 2.00E-03 

152 HLA-E 1.15 3.21E-18 

153 GIMAP4 1.15 1.66E-05 

154 DDIT4L 1.15 6.09E-10 

155 BTG1 1.15 3.21E-07 

156 CD37 1.15 2.07E-05 

157 HCST 1.15 1.58E-05 

158 HVCN1 1.15 1.88E-08 

159 KIAA1407 1.15 4.51E-03 

160 RP11-325F22.2 1.14 3.69E-04 

161 RYBP 1.14 5.63E-07 

162 ENSG00000163386 1.14 7.60E-07 

163 EMP3 1.14 3.39E-05 

164 ANTXR2 1.14 2.49E-06 

165 SMAGP 1.13 3.71E-06 

166 HIST1H1C 1.13 1.58E-09 

167 KLF6 1.13 1.40E-06 

168 LITAF 1.13 1.42E-06 

169 ARID5B 1.12 2.04E-07 

170 LINC-PINT 1.12 2.25E-04 

171 CBR3 1.12 7.85E-04 

172 SFXN3 1.12 5.04E-03 

173 RP11-474J18.1 1.11 5.38E-03 

174 NR4A1 1.11 6.30E-03 
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175 HIST1H2BK 1.11 7.97E-08 

176 RAB29 1.10 1.58E-03 

177 NEGR1 1.10 2.22E-04 

178 GCSAM 1.10 4.30E-05 

179 TGFBR2 1.10 6.20E-05 

180 ICAM3 1.10 1.70E-04 

181 PSAT1 1.10 2.53E-08 

182 ARMCX4 1.10 1.92E-03 

183 IGFBP7 1.10 6.35E-03 

184 AMICA1 1.09 6.80E-03 

185 F11R 1.09 2.73E-04 

186 IFITM3 1.09 8.49E-08 

187 RP11-556E13.1 1.09 6.34E-03 

188 PSAT1P3 1.09 1.24E-03 

189 PCNXL2 1.09 7.63E-03 

190 RYK 1.08 8.32E-03 

191 EFNA1 1.08 3.59E-05 

192 KLF3 1.08 3.55E-05 

193 NEDD9 1.08 1.08E-03 

194 HSBP1L1 1.07 2.93E-03 

195 CDC42EP3 1.07 9.17E-03 

196 CMTM2 1.06 1.47E-06 

197 CECR1 1.06 1.65E-03 

198 CASC15 1.06 1.04E-02 

199 SYNE2 1.06 9.08E-04 

200 TMCO4 1.06 3.53E-04 

201 RHOB 1.06 7.70E-03 

202 RGL1 1.05 2.79E-08 

203 FOSL2 1.05 1.58E-04 

204 ENSG00000183558 1.05 8.21E-05 

205 CD9 1.04 1.10E-09 

206 ZNF252P 1.04 1.59E-06 

207 SPNS3 1.04 1.00E-02 

208 HSPB1P2 1.04 2.51E-03 

209 ARHGEF3 1.04 6.03E-04 

210 C9orf89 1.04 1.24E-04 

211 DPEP1 1.03 7.85E-03 

212 RP11-301G19.1 1.03 1.52E-07 

213 GDPD1 1.03 9.85E-03 

214 PCDH9 1.03 1.15E-02 

215 HIST2H2AA4 1.03 1.23E-04 

216 MX1 1.03 3.31E-04 

217 CAP2 1.03 4.68E-03 

218 KIAA2026 1.03 4.82E-05 

219 TEX41 1.02 1.47E-02 

220 CAPG 1.02 1.45E-10 

221 PLP2 1.02 2.53E-05 

222 ZNF441 1.02 1.03E-02 

223 ATF3 1.02 6.04E-03 

224 ZBTB20 1.02 9.32E-03 

225 IRAK2 1.02 1.34E-02 

226 SPTA1 1.02 1.61E-04 

227 RP4-725G10.4 1.02 1.27E-06 

228 CAPN2 1.02 3.59E-04 

229 S100A6 1.02 3.45E-09 

230 WWC3 1.02 8.93E-03 

231 ZCCHC7 1.01 9.36E-13 

232 HLA-G 1.01 4.50E-09 

233 RNASET2 1.00 5.45E-10 

234 HLA-W 1.00 6.03E-04 

235 ZBTB4 1.00 1.54E-02 

236 FAM3C2 1.00 1.14E-02 

237 HSPB1P1 1.00 4.69E-04 

238 UBXN11 1.00 3.56E-04 

239 TP53INP2 1.00 1.94E-02 

240 XAF1 1.00 1.08E-04 

241 ZFP36 1.00 1.09E-02 

242 KCTD7 1.00 5.88E-03 

243 RP11-705C15.2 1.00 3.71E-05 

244 GLDC 1.00 1.02E-02 

245 KLHL24 1.00 6.51E-05 

246 GCHFR 1.00 1.20E-03 

247 C20orf194 1.00 3.31E-04 

248 IGLL1 1.00 6.68E-12 

249 PLXNC1 1.00 1.12E-02 

250 IL3RA 1.00 2.07E-02 
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6.3 R-packages and version numbers 

R version 3.3.1 (2016-06-21) 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

Running under: Windows >= 8 x64 (build 9200) 

 

locale: 

[1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252    

[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                    

[5] LC_TIME=German_Germany.1252     

 

attached base packages: 

 [1] grid      parallel  stats4    stats     graphics  grDevices 

 [7] utils     datasets  methods   base      

 

other attached packages: 

 [1] BiocInstaller_1.22.3       org.Hs.eg.db_3.3.0         

 [3] AnnotationDbi_1.34.4       ggplot2_2.1.0              

 [5] ComplexHeatmap_1.10.2      DESeq2_1.14.0              

 [7] SummarizedExperiment_1.2.3 Biobase_2.32.0             

 [9] GenomicRanges_1.24.3       GenomeInfoDb_1.8.7         

[11] IRanges_2.6.1              S4Vectors_0.10.3           

[13] BiocGenerics_0.18.0        

 

loaded via a namespace (and not attached): 

 [1] mclust_5.2           Rcpp_0.12.7          locfit_1.5-9.1       

 [4] mvtnorm_1.0-5        lattice_0.20-33      circlize_0.3.9       

 [7] class_7.3-14         plyr_1.8.4           chron_2.3-47         

[10] acepack_1.4.1        RSQLite_1.0.0        GlobalOptions_0.0.10 

[13] zlibbioc_1.18.0      diptest_0.75-7       data.table_1.9.6     

[16] annotate_1.50.1      whisker_0.3-2        kernlab_0.9-25       

[19] GetoptLong_0.1.5     rpart_4.1-10         Matrix_1.2-6         

[22] splines_3.3.1        BiocParallel_1.6.6   geneplotter_1.50.0   

[25] foreign_0.8-67       RCurl_1.95-4.8       munsell_0.4.3        

[28] shape_1.4.2          nnet_7.3-12          gridExtra_2.2.1      

[31] Hmisc_3.17-4         dendextend_1.3.0     XML_3.98-1.4         

[34] MASS_7.3-45          bitops_1.0-6         xtable_1.8-2         

[37] gtable_0.2.0         DBI_0.5-1            magrittr_1.5         

[40] scales_0.4.0         XVector_0.12.1       genefilter_1.54.2    

[43] flexmix_2.3-13       latticeExtra_0.6-28  robustbase_0.92-6    

[46] Formula_1.2-1        rjson_0.2.15         RColorBrewer_1.1-2   

[49] tools_3.3.1          fpc_2.1-10           trimcluster_0.1-2    

[52] DEoptimR_1.0-6       survival_2.39-5      colorspace_1.2-7     

[55] cluster_2.0.5        prabclus_2.2-6       modeltools_0.2-21   
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8 Abbreviations 

°C   degree Celsius 

µm   micrometre (10
-6

 m) 

ALL   acute lymphoblastic leukemia 

APC   allophycocyanin 

BCP   B-cell precursor 

BM   bone marrow 

BSA   bovine serum albumin 

CAR   CXCL12-abundant reticular   

CD   cluster of differentiation  

cDNA   complementary deoxyribonucleic acid 

CFSE   carboxyfluorescein succinimidyl ester 

cm   centrimetre (10
-2

 m) 

CML   chronic myelogenous leukemia 

CSC   cancer stem cell 

ctrl   control  

Cyclo   Cyclophosphamide 

d   days  

DAPI   4′,6-Diamidin-2-phenylindol 

dd H20   double-distilled water  

DE   differential expression 

Dexa   Dexamethasone 

DMSO   Dimethylsulfoxid 

DNA   deoxyribonucleic acid 

EDTA   Ethylenediaminetetraacetic acid 

ELP   early lymphoid progenitor 

Eto   Etoposide 

F    female 

FACS   fluorescence-activated cell scanning 

fc   fold change   

FCS   fetal calf serum 

FSC   forward scatter 

g    relative centrifugal force 

g    gram 

GEO   gene expression omnibus 

GEP   gene expression profile 

GSEA   gene set enrichment analysis 

h   hour   

HPC   hematopoietic progenitor cell 

HSC   hematopoietic stem cell 

Hz   Hertz (60/min) 

i.p.   intraperitoneal 

i.v.   intravenous 
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IHC   immunohistochemistry 

KEGG   Kyoto Encyclopedia of Genes and Genomes 

kg   kilo gram (10
3
 g)  

lg   logarithm 

LIC   leukemia initiating cell 

LRC   label retaining cell 

LSC   leukemia stem cell  

m    meter 

M    molecular mass 

MACS   Magnetic Activated Cell Sorting 

mg   milligram (10
-3 

gram)  

min   minute 

ml   millilitre (10
-3 

litre)  

mM   millimolar (10
-3 

molecular mass) 

MRD   minimal residual disease 

mRNA   messenger ribonucleic acid 

MSC   mesenchymal stem cell 

MSigDB  Molecular Signatures Database 

n    absolute number 

na   not available  

NES   normalized enrichment score 

NGFR   human low affinity nerve growth factor receptor 

nm    nanometer (10
-9

 m) 

NSG   NOD scid gamma 

padj   p-value adjusted 

PBE   PBS including EDTA 

PBS    phosphate buffered saline 

PC   principle component 

PCA   principle component analysis 

PCR   polymerase chain reaction 

PDX   patient-derived xenograft 

PE   Phycoerythrin 

pen/strep  penicillin streptomycin 

RNA-seq  ribonucleic acid sequencing 

RT   room temperature   

s    second 

sr    steradian 

SSC   side scatter 

untr.   untreated 

UV   ultraviolett     

v/v   volume/volume 

VCR   Vincristine 

VSD   variance stabilizing data 

w/v   weigth/volume 
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