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Zusammenfassung

Im letzten Jahrzehnt haben sich Quantengasexperimente als gut kontrollierbare Modell-
systeme zur Untersuchung komplexer Fragestellungen aus diversen Bereichen der Physik
etabliert. Ultrakalte Quantengase zeichnen sich insbesondere dadurch aus, dass sie einen
direkten und experimentell einfach realisierbaren Zugang zu ihrer Wechselwirkung bieten.
Das gezielte Einstellen der Wechselwirkungsstärke und die Erforschung der daraus resul-
tierenden Aggregatzustände erlaubt es ein tiefes Verständnis der kondensierten Materie
zu gewinnen. Insbesondere erdalkaliähnliche Atome wie Ytterbium bieten die Möglich-
keit Phänomene der Festkörperphysik zu untersuchen, die durch die Wechselwirkung von
Elektronen in verschiedenen Orbitalen oder durch eine größere Rotationssymmetrie des
Spins als in gewöhnlichen Spin-1/2 Systemen hervorgerufen werden.

Diese Doktorarbeit präsentiert die experimentelle Charakterisierung der Wechselwir-
kung ultrakalter, fermionischer Ytterbium-Atome (173Yb) in verschiedenen elektronischen
Orbitalen. Dabei wird nachgewiesen, dass sich die Wechselwirkungsstärke mit Hilfe eines
externen Magnetfeldes, analog zu einer Feshbach-Resonanz bei Alkali-Atomen, einstel-
len lässt. Bei Ytterbium wird diese Resonanz durch eine starke Spinaustauschwechselwir-
kung zwischen den verschiedenen Orbitalen hervorgerufen. Der Nachweis der einstell-
baren Wechselwirkung erfolgt über Thermalisierungsexperimente in einer harmonischen
Falle und mit Hilfe von hochauflösender Spektroskopie in einem dreidimensionalen Gitter.
Des Weiteren wird mit Hilfe der neu entdeckten Resonanz zum ersten Mal experimentell
ein stark wechselwirkendes Fermigas in verschiedenen Orbitalen erzeugt und spektrosko-
pisch untersucht. Die Möglichkeit, die interorbitale Wechselwirkung direkt zu manipulie-
ren und somit stark wechselwirkende Quantengase zu erzeugen, ebnet den Weg für die
Realisierung und Untersuchung neuartiger Aggregatzustände der kondensierten Materie.
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Introduction

The most diverse phases of condensed matter emerge from the underlying interactions.
Interactions drive phase transitions, induce spontaneous symmetry breaking and lead to
the build up of strong correlations. Modelling these fascinating phenomena, requires a
fundamental understanding of how quantum many-body systems are shaped by the inter-
actions. The possibility to directly control the interaction strength and to explore the asso-
ciated states of matter is an intriguing notion. Yet, condensed-matter systems rarely offer
such a far-ranging degree of control. Furthermore, in contrast to classical systems, most
interacting quantum mechanical many-body systems defy computational approaches [1].
Instead, for the investigation of unresolved problems originating from condensed matter,
few- and many-body physics controllable qunatum systems are needed [2–5]. Here, ultra-
cold atomic quantum gases represent a versatile platform, offering a remarkable degree
of control combined with innovative detection methods [5, 6]. In particular, we find
the exquisite possibility of tuning the interatomic interaction strength to arbitrary values.
This enables the access to repulsive and attractive interactions in the same physical system.
Even the continuous crossover between the two contrary regimes can be explored.

Atomic quantum gases are formed from dilute gases at ultra-low temperatures. In
this limit, the interatomic interactions can be characterised by a single parameter, the
so-called s-wave scattering length. Typically, the scattering length is much shorter than
the interparticle spacing and the quantum gas is weakly interacting. In this regime, the
many-body properties of a bosonic as well as fermionic quantum gas can be described
by an effective single-particle theory based on non-interacting quasiparticles [7, 8]. In
contrast, for strong interactions, where the interaction energy is on the order of the Fermi
energy, analytic and numerical approaches are expensive, since the system is free of small
parameters. Therefore creating strong interactions is of particular interest. A quantum gas
enters the regime of strong interaction when the scattering length is on the order of the
interparticle spacing. In this context, Feshbach resonances have become an indispensable
tool as they provide a simple experimental protocol to control the interaction strength
over multiple orders of magnitude by means of an external magnetic field [9].

As an example, employing a Feshbach resonance allows to continuously modify the
superfluid ground state of a Fermi gas. In the limit of attractive interaction, fermions
form Cooper pairs, as described by the Bardeen-Coper-Schriefer (BCS) theory [10]. For
repulsive interactions, the atoms are strongly bound into molecules, which form a Bose-
Einstein-Condensate (BEC), as they are composite bosons. The experimentally observed
connection between these two limits, the so-called BEC-BCS crossover [11, 12], is one
of the most celebrated successes of interaction tuning via Feshbach resonances [13–15].
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Directly on resonance, experiments [16, 17] provide a valuable insight into strongly-
interacting states of matter, as they are predicted to exist in the crusts of neutron stars [18].

An alternative route towards strong interactions is offered in optical lattices. In con-
trast to Feshbach resonances, this technique relies on the limitation of the kinetic energy
instead of the direct variation of the scattering length. In addition, ultracold atoms in
optical lattices resemble the Hubbard model [19], one of the most prominent and ex-
tensively studied models in condensed matter physics. In particular, the fermionic Hub-
bard model is believed to incorporate the effect of high-temperature superfluidity [20].
Tuning the ratio of kinetic to interaction energy grants access to the strongly interacting
regime, as demonstrated by the observation of Mott insulating states with bosons [21]
and fermions [22, 23].

By completely suppressing the motion along one or more directions, optical lattices
have paved the way towards low-dimensional systems. In lower dimensions, quantum
fluctuations become more dominant and can suppress the build up of long-range or-
der [24], as demonstrated by the observation of the Kosterlitz-Thouless crossover in two
dimensions [25]. In one dimension, the influence of the interaction becomes completely
counter-intuitive. The 1D gas becomes strongly interacting with decreasing density, i.e.
increasing particle separation. In this limit, strongly interacting bosons behave as if they
are identical ferminons [26].

Besides this high degree of control, ultracold atomic gases offer numerous possibilities
to probe global as well as local properties. Conventionally, after the atoms have been re-
leased from the confining potential, the shadow of the expanded atomic cloud is imaged
onto a CCD camera. This technique grants access to global properties such as the inter-
atomic interaction strength [27], the dispersion relation [28] or even correlations inside
the trap [29]. In recent years, high-resolution in-situ imaging techniques have been de-
veloped and allow to directly measure the in-trap atomic distribution [30]. In particular,
the possibility to resolve and manipulate single atoms on individual lattice sites has to
be mentioned [31, 32]. All these techniques go far beyond typical detection methods of
condensed matter experiments.

Ultracold atomic gases have proven to exhibit an immense potential for quantum sim-
ulations. In particular, alkali atoms are well suited for laser cooling and trappind due to
their simple hydrogen-like electronic structure. At the same time, this simplicity poses ma-
jor limitations to the range of phenomena that can be explored. As an example, electrons
in solids often possess an additional orbital degree of freedom besides their spin. The
interplay between the spin and orbital degree of freedom gives rise to effects like Kondo
screening [33], heavy-Fermi liquids [34] and unconventional superconductivity [35], be-
yond the single-orbital Hubbard model. Therefore, new experiments based on more com-
plex systems such as magnetic atoms, polar molecules and alkaline-earth atoms have been
constructed lately.

In contrast to alkali atoms, alkaline-earth like (AEL) atoms, such as ytterbium, exhibit
a helium-like electronic structure, i.e. two valence electrons in addition to a set of com-
pletely filled shells. The peculiar electronic structure gives rise to low-lying, long-lived
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excited states and a vanishing electronic angular momentum in the atomic ground state,
both for the electronic spin singlet 1S0 and for the triplet 3P0 . For the fermionic isotopes,
the large nuclear spin is strongly decoupled from the orbital degree of freedom, giving
rise to an extended SU(N) symmetry in the interaction [36–39]. Therefore, the produc-
tion of AEL degenerate Fermi gases [40, 41] has paved the way for the implementation
of otherwise inaccessible many-body phenomena, such as the realisation of SU(N) Mott
insulators [42, 43].

In the case of a SU(2) spin model, naturally realisable with alkali atoms, the ground
state always breaks the SU(2) symmetry and possesses magnetic order [44–46]. The
enlarged SU(N > 2) spin rotation symmetry of fermionic AEL atoms gives rise to a strong
frustration [36, 39]. For example, in a cubic lattice, with increasing number of degrees of
freedom (N), magnetic order vanishes and the ground state is expected to preserves the
full SU(N) symmetry of the model [47–49].

As already mentioned, in many condensed-matter systems such as transition metal
oxides [35] or manganese oxide perovskite [50], electrons have both orbital and spin
degree of freedom. Fermionic AEL atoms exhibiting these degrees of freedom have been
suggested for the simulation of these materials [38, 51, 52].

Furthermore, the large nuclear spin of AEL atoms can even be employed to go beyond
condensed matter and investigate highly symmetric gauge theories from the field of high-
energy and particle physics. The interactions within a nucleus are described by a global
flavour SU(3) symmetry group within the framework of quantum chromodynamics. The
implementation of gauge theories with SU(N) symmetric quantum gases [53–55] would
allow to study particle physics with table-top experiments rather than large colliders.

The realisation of the aforementioned models crucially depends on the actual strength
of the interorbital interaction. At the time of the construction of our experimental appa-
ratus, the orbital interaction properties were unknown for 173Yb. Therefore, the first ex-
periments addressed the characterisation of these interactions. For the states 1S0 and 3P0 ,
we could prove that the intra- and interorbtial interactions are indeed SU(N) symmet-
ric [56]. In particular, the observation of a strong orbital exchange interaction [56, 57],
the elementary building block for the aforementioned models, brings the implementation
of orbital magnetism within experimental reach.

Previously, we have argued that the ability to tune the interatomic interaction is a de-
sirable ingredient for quantum gas experiments. So far, the regime of strong interactions
in AEL atoms could only be reached in an optical lattice. Based on this technique, we
were able to study the metal to Mott insulator crossover and reveal the non trivial influ-
ence of the SU(N) symmetry [43]. Tuning of the interaction strength outside the lattice
or changing the sign of the interaction seems out of reach. The strong suppression of hy-
perfine interactions for states with vanishing electronic angular momentum implies that
no magnetic Feshbach resonances are expected within the 1S0 and 3P0 states.

However, the strong orbital exchange interaction in 173Yb [56, 57] is based on two
starkly different interaction channels. This peculiar configuration, has led to the prediction
of a magnetically accessible interorbtial scattering resonance [58].



4 Introduction

This thesis provides a detailed investigation of the interorbital interaction between
173Yb atoms in the 1S0 and 3P0 state. In order to understand how a Feshbach resonance
can arise from the orbital exchange interaction, we start by reviewing the physics of Fesh-
bach resonances in alkali atoms. There, we will identify three major ingredients for the
appearance of a Feshbach resonance: (i) two collision channels (ii) a coupling and (iii)
a differential magnetic moment between the channels. Afterwards, we turn to 173Yb,
where we find that the interorbital interaction fulfils these three requirements. There-
fore, we construct a new two-channel model for the interorbital interactions. In the main
part of this thesis, we experimentally reveal the existence of this novel orbital Feshbach
resonance [59]. We map out the magnetic-field dependence of the interorbital s-wave
scattering length in the bulk as well as the pair interaction energy in a deep isotropic lat-
tice. Both experimental results are in excellent agreement with our two-channel model.
Although the orbital Feshbach resonance is a so-called narrow resonance, we show that
the strongly interacting, degenerate Fermi gas exhibits a long lifetime. In the last part of
this thesis, we present preliminary results concerning the strongly interacting two orbital
quantum gas in a quasi two-dimensional geometry. There, we quench the system from the
weakly into the strongly interacting regime and find evidences of metastable, strongly in-
teracting impurities, i.e. attractive and repulsive polarons. These measurements are a first
step towards the realisation of novel Fermi superfluids with an orbital degree of freedom.
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Outline

In Chapter 1, the fundamental principle of interactions in ultracold quantum gases are
reviewed. Particularly with regard to the emergence of Feshbach resonances, the influence
of the underlying molecular potential on the s-wave scattering length is discussed.

Chapter 2 surveys the distinct properties of ytterbium, a member of the alkaline-earth
like family. The implication of long-lived excited states and SU(N) symmetry on the inter-
atomic interaction are considered.

Chapter 3 introduces the experimental apparatus and sequence. The construction
of the experimental apparatus has already been discussed in great detail in previous
works [60, 61]. Here, we focus on the recent updates, necessary for the experiments
presented in this thesis.

In Chapter 4, we report on the observation of a novel type of Feshbach resonance,
arising from the orbital exchange interaction. In the bulk, the magnetic field dependence
of the elastic and inelastic scattering cross section are determined by cross-dimensional
thermalisation and loss spectroscopy respectively. Additionally, employing high-resolution
clock line spectroscopy in an isotropic lattice, we directly probe the pure two-body in-
teraction properties of a two-orbital atom pair. All our experimental results are in good
agreement with a tow-channel scattering model, incorporating effective ranges and con-
finement effects.

In Chapter 5, we present the create a strongly interacting two-orbital Fermi gas in
quasi two dimensions. The influence of the reduced dimensionality on the interorbtial
interaction is probed spectroscopically. We demonstrate the existence of a confinement
induced dimer and the universal scaling of the binding energy. Furthermore, a regime
strongly interacting impurities is investigated. Here, the measured interaction shifts are
well described by a polaron theory.

In the final Chapter, the main results of this thesis are summarised. We discuss the fea-
sibility of new experiments based on the novel ability of tuning the two-orbital interaction
strength.
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zer, and M.K. Oberthaler, Observation of Scaling in the Dynamics of a Strongly Quenched
Quantum Gas, Physical Review Letters 115, 245301 (2015).



CHAPTER 1

Interactions in ultracold quantum gases

The most fundamental process of interaction for two atoms is a binary collision, whether
they are bosons or fermions. The process of scattering is common to many different fields
of physics, ranging from high energy physics to ultracold quantum gases for charged and
neutral particles. Before introducing the central part of this thesis, presenting the obser-
vation of a novel interorbital interaction induced Feshbach resonance, we have to shine a
light on the way ultracold atoms in a dilute gas interact with each other.

In this chapter, we will first give a brief review of the quantum mechanical treatment
of scattering between two neutral atoms in free space. Here, we focus on the introduction
of the terminology widely used in scattering theory, especially the interpretation of the
s-wave scattering length as an effective hard sphere radius. Using the example of the
van der Waals potential, we will demonstrate how the scattering length is influenced by
the position of the least-bound state in the potential. Subsequently, we investigate the
influence of a harmonic confinement on the atomic interactions.

The second major topic of this chapter are Feshbach resonances. For alkali atoms,
Feshbach resonances allow for tuning the scattering length via an external magnetic field.
We demonstrate how the internal structure of alkali atoms gives rise to multiple coupled
scattering channels. Due to a differential magnetic moment, an external magnetic field
can tune the energy of the least-bound state and thus the interaction strength between
two atoms. Later, in chapter 4, we will compare the novel interorbital Feshbach resonance
in AEL atoms to the magnetic Feshbach resonances in alkali atoms.

1.1 Elastic scattering of cold atoms

In the following, we will discuss the elastic scattering of two neutral atoms under typ-
ical conditions found in ultracold quantum gases. In most experiments, dilute gases of
ultracold atoms are trapped in a harmonic potential. First we will study the implications
of this terminology on the way two atoms interact. We present the textbook solution of
the scattering problem in free space based on the partial-wave expansion. Thereupon, we
demonstrate how the underlying interaction potential influences the scattering properties
base on the example of the van der Waals potential. Finally, we present the solution to the
scattering problem under the influence of confinement.
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r0

n-1/3

ΛT

Figure 1.1 – Schematic drawing of an ultracold and dilute gas. The impenetrable, i.e. hard-core atoms (dark
blue spheres) are surrounded by a short-range interaction potential (light blue sphere) with a characteristic
length r0. In an ultracold and dilute gas the inter particle spacing n−1/3 and the thermal wavelength Λth have
to be larger than r0. Under typical experimental conditions with an atomic density of 1013 atoms/cm3 and a
temperature around 100 nK we find n−1/3 ≈ Λth ≈ 0.5µm, whereas r0 is usually on the order of one to
hundred Bohr radii r0 ≈ 100a0 ≈ 5nm and thus r0 � n−1/3,Λth.

1.1.1 Two atoms in a central potential

The interaction of neutral atoms can be modelled by an isotropic and short-range inter-
atomic molecular potential. A typical example is the van der Waals type potential which
we will study in the next section. Yet, the following consideration holds for any isotropic
and short-range potential. Short range implies that the potential falls of quickly to zero
beyond a characteristic length scale r0. We want to focus on the case of binary collisions.
This simplification is justified in a dilute and cold gas, as we will show. Since the typical
atomic densities n in quantum gases are very low, the mean particle separation n−1/3 is
much larger than r0

nr3
0 � 1. (1.1)

Here, the probability to find more than two atoms in a sphere with radius r0 is strongly
suppressed and the gas is called dilute. Furthermore, we work at ultra-low temperatures,
therefore we can assume that the atoms move slowly through the gas. By this, we mean
that the thermal wavelength Λth = h/

p

2πmkBT is much larger than r0. In terms of the
momentum of the free atoms k∝ 1/Λth, we require the atoms to move so slowly that only
up to two at a time are found within a sphere of the radius r0

kr0� 1. (1.2)

Only if the gas satisfies (1.1) and (1.2), we can restrict our description to binary collisions
and the scattering process is a reduced to a two-body problem.

Isotropic interactions are given by a conservative central potential V (r), where r = |r1−
r2| is the radial distance between the two atoms. Hence, we can separate the relative from
the centre-of-mass motion. The relative motion can be reduced to the motion of a single
particle with the reduced mass M = m1m2/(m1 +m2) in the same potential. Furthermore,
the kinetic energy is conserved and the collisions are elastic, i.e. the relative momentum
before and after the collision ( k and k′ ) have the same modulus k = k′, as illustrated
by Figure 1.2. Thus, the elastic scattering of two atoms only leads to a phase shift in the
wave function.
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k1 k2 k

k

θ

k1

k2a b

K
R

z

Figure 1.2 – (a) Schematic drawing of two-atom scattering. The two incoming atoms with mass mi are repre-
sented by the blue plane waves ki and are scattered into the outgoing yellow spherical wave with the centre-
of-mass coordinate R = (m1r1 + m2r2)/m1m2 and the corresponding momentum K, as well as the relative
position r = r1− r2. (b) Representation of the scattering in the centre-of-mass reference frame. The incoming
reduced mass M with the relative momentum k (blue) is scattered on the central symmetric potential (gray
circle) into the outgoing spherical wave f (θ)e ik′r/r (yellow) under the angle θ.

Derivation of the scattering amplitude

As mentioned above, we can reduce the two-body problem into a one-body problem in the
centre-of-mass frame. The relative wave function is determined by the time-independent
Schrödinger equation [62]

�

−
ħh2∇2

2M
+ V (r)

�

ψ(r) = Eψ(r), (1.3)

where E is the relative energy of the atoms. At large separation, the atoms are non-
interacting V (r � r0) = 0 and the energy is purely kinetic E = ħh2k2/2M . Here, the
solution of the free Schrödinger equation is given by incoming and outgoing plane waves.
Since the solution to the total Schrödinger equation has to asymptotically fulfil this bound-
ary condition, we construct the scattering wave function from an incoming plane wave
with wave vector k and an outgoing spherical wave

ψ(r)∝ eikr + f (k′,k)
eik′r

r
. (1.4)

We introduce the scattering amplitude f (k′,k), i.e. the probability amplitude for scattering
from k into the new direction k′. Due to the centrally symmetric potential, it is convenient
to treat the problem in spherical coordinates r = (r,θ ,φ). The general solution for a
particle in a central potential is given by the product of angular and radial eigenfunctions
Y m

l (θ ,φ) and Rl(k, r). Applying the partial-wave expansion to the scattering amplitude
yields

f (k′,k) = f (θ ) =
∞
∑

l=0

fl(k)Pl(cosθ ), (1.5)

with Pl being the Legendre polynomial of order l, and fl the corresponding partial wave
amplitude. We subtract the incident plane wave from the general solution, both expanded



10 Chapter 1. Interactions in ultracold quantum gases

into plane waves. Imposing the regularity of the solution in the origin r = 0, we find that
the partial wave amplitudes fl(k) are given by

fl(k) =
2l + 1
2ik

�

e2iηl (k) − 1
�

, (1.6)

where ηl(k) is the scattering phase shift of the l-th partial wave.

s-wave scattering length and effective range

In the limit of low energy scattering k → 0, the only relevant term in the partial wave
expansion is l = 0, the so-called s-wave. All higher partial waves are strongly suppressed
for very low scattering energies due to the centrifugal barrier in the effective potential
of the radial Schrödinger equation, as illustrated in Figure 1.4. Exploiting trigonometric
identities, we can rewrite the s-wave scattering amplitude as

f0(k) =
1

k cotη0(k)− ik
. (1.7)

For arbitrary short-range potentials, we can apply the effective range expansion to the
scattering phase shift [62]

k cotη0(k)≈ −
1
a
+

1
2

reffk
2, (1.8)

where a is the s-wave scattering length and reff the effective range.
We can illustrate the physical meaning of the s-wave scattering length a by investigat-

ing the radial wave function in the far field. Here, the asymptotic wave function takes the
form

ψ(r)∝k→0
r − a

r
. (1.9)

The, s-wave scattering length gives rise to a node in the radial wave function, which is
real for a > 0 and virtual for a < 0. Thus we can interpret a as an effective hard sphere
radius, leading to repulsive interaction for a > 0 and attractive for a < 0, as illustrated in
Figure 1.3. The interpretation as effective hard sphere radius can also be seen from the
scattering cross section σ that is fully determined by the s-wave scattering length, as we
will derive in the next section.

The effective range cannot be interpreted in terms of an intuitive classical picture like
for the scattering length. It is a measure for how the potential V (r) influences the energy
dependence of the cross section and it sets the upper bound for the low energy limit [62].

The scattering cross section

The differential cross section dσ(θ ,φ)/dΩ= | f (θ )|2 measures the probability that a parti-
cle is scattered into the solid angle dΩ around the angle θ . By integrating the differential
cross section over all scattering angles we obtain the total scattering cross section, which
determines the absolute likelihood of a scattering event. Since the contribution of higher
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Figure 1.3 – Reduced radial wave function for continuum states (ε > 0) in the limit k → 0 on the example
of a square well potential for (a) positive and (b) negative scattering length. A positive scattering length leads
to a node in the wave function (1.9) at r = a, whereas a negative scattering length induces a virtual node at
negative distances. The sign of the scattering length is determined by the position of the least-bound state in
the potential. A real bound state (εB < 0) causes a positive scattering length, whereas a virtual bound state
(εB > 0) leads to a negative scattering length. As the bound state energy approaches the continuum energy
(εB → 0) the scattering length diverges. The dashed circles represent the effective size of the colliding atoms
as hard spheres with radiu a.

partial waves is negligible, we replace the total scattering cross section by the s-wave cross
section

σ = 4π| f0(k)|2. (1.10)

Applying the effective range expansion in f0(k) we arrive at

σ = 4πa2

�

�

�

�

1
1+ k2a2(1− reff/a)

�

�

�

�

=
k→0

4πa2. (1.11)

The probability of a collision between two atoms is proportional to the area of a disc
with radius a and thus increasing |a| leads to a higher scattering probability. This result
demonstrates once more the interpretation of a as an effective hard sphere radius.

So far, we have only discussed the case of elastic scattering. Yet, inelastic two-body
processes are possible, e.g. part of the internal energy of the atoms is converted into
kinetic energy. In the case of atoms in a trap, this process typically leads to a loss from the
trap. We can account for such events by introducing an imaginary part into the scattering
length a = A+ iB [63, 64]. In the limit of low energy scattering, this results in an elastic
and inelastic s-wave cross section

σel = 4π(A2 + B2), σinel =
4π
k

B. (1.12)

1.1.2 The van der Waals potential

For an isotropic and short-range potential, we have seen that the interaction of two ul-
tracold atoms can be reduced to a single parameter a, the s-wave scattering length. In
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the following, we want to understand how the details of the actual molecular potential
determine the value of a.

The molecular potential between two neutral atoms is governed at large distances by
the van der Waals attraction, caused by induced dipole forces ∝ r−3. At short distances
r < rc, on the order of the of the atoms size, where the electron clouds are squeezed
together, the repulsive exchange interaction dominates. We can model this type of inter-
actions with an attractive r−6 tail at long distances and a repulsive hard core potential at
short distances:

V (r) =

�

−C6/r
6 for r > rc ,

∞ for r ≤ rc .
(1.13)

Here, C6 = V0r6
c is the van der Waals coefficient with V0 = ħh2k2

c /2M the well depth at the
boundary to the hard core. The potential can be neglected for distances r � r0 where the
zero point energy ħh2/2M exceeds the potential energy V (r0) [62] (see Figure 1.4(a)). In
this context, r0 is conventionally called the van der Waals length

lvdw =
1
2

�

2MC6

ħh

�1/4

. (1.14)

As shown by Gribakin and Flambaum [65, 66], for any short range potential of the type
Cn/r

n, there exists an analytic solution to the two-body problem (1.3). Based on the
semi-classical WKB approximation, it is possible to relate the s-wave scattering length and
effective range to the characteristic parameters of the potential. The WKB approximation
assumes, that the solution of the Schrödinger equation is given by plane waves with a
slowly varying complex phase Φ. In the lowest order of the WKB approximation, Φ is
obtained by integration of the potential from the classical turning point rc outwards [65]

Φ=
1
ħh

∫ ∞

rc

Æ

2M |V (r)|dr = 2
�

lvdw

rc

�2

. (1.15)

For the van der Waals potential, we find that the s-wave scattering length

a = ā [1− tan(Φ− 3π/8)] , (1.16)

is given by two contributions: the background or mean scattering length ā ' 0.956 lvdw,
determined by asymptotic behaviour of the potential, and the resonant part influenced by
the phase Φ and thus the short range behaviour of the potential. The small phase factor
3π/8 is determined by the boundary condition at the turning point rc. As illustrated in
Figure 1.4(b), the mean scattering length shows a smooth behaviour as a function of the
parameters of the potential, whereas the scattering length diverges and changes sign when
the phase satisfies the condition Φ−3π/8= π/2+πNB. These resonances in the scattering
length are called shape resonances and they appear every time the potential can support a
new bound state. The condition between the total number of bound states in the potential
NB and the occurrence of a new shape resonance is known as the Levinson’s theorem [66].

The relation between the energy of the least-bound state and the scattering length can
be derived by solving the radial Schrödinger equation for negative energies, i.e. inside the
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Figure 1.4 – (a) Molecular potentials with their bound state energies as a function of the interatomic separation.
The blue line shows the van der Waals potential for zero angular momentum l = 0, the s-wave channel. The
effective potential including the potential barrier for l = 1 (p-wave) is drawn in yellow. The classical turning
point of each potential is marked by rc . For low collision energies (black dashed line) the atoms are reflected
on the centrifugal barrier at rc and cannot enter the attractive part of the potential. In the s-wave channel
the classical turning point rc is given by the short-range part of the potential. (b) Dependence of the mean
scattering length ā (yellow) and the scattering length (blue) on the phase Φ. While the mean scattering length
ā shows only a weak dependence on the parameters of the potential, the scattering length a diverges every
time the potential can support a new bound state.

potential well. Taking into account the boundary conditions that the wave function inside
and outside the well has to be smoothly connected, we find NB bound states within the
potential for (NB − 1/2)π < Φ− 3/8 < (NB + 1/2)π. Close to the resonance, the energy of
the least-bound state is given by

q

2M/ħh2εB ≈ cotΦ/ā ≈ a−1. (1.17)

Form this, we arrive at the famous relation that connects the scattering length to the
energy of the least-bound state

εB = −
ħh2

2Ma2
. (1.18)

A shallow bound state just below the continuum with εB < 0 leads to a large and positive
scattering length and thus a repulsive interaction. If the least-bound state is only virtually
bound, i.e. possesses positive energy εB > 0, the scattering length becomes negative,
giving rise to attractive interactions.

The universal formula (1.18) is only valid in the vicinity of a resonance, where a� ā.
Further away, higher order corrections due to the van der Waals potential have to be taken
into account, leading to [67]

εB = −
ħh2

2M(a− ā2)

�

1+
c1ā

a− ā
+

c2ā2

(a− ā)2
+ ...

�

, (1.19)

with c1 = Γ (1/4)4/6π2 and c2 = (5/4)c2
1 − 2, where Γ denotes the Euler gamma function.



14 Chapter 1. Interactions in ultracold quantum gases

The effective range in the van der Waals can be expanded in orders of the mean scat-
tering length

reff = 2.92ā

�

1− 2
ā
a
+ 2

�

ā
a

�2
�

, (1.20)

By using the expression for the mean scattering length (1.16), we see that reffis constant
with ≈ 2.97 lvdw in most cases and diverges as a → 0. This result agrees with the exact
quantum defect solution of Gao [68].

1.1.3 Interactions in a harmonic trap

In the previous section, we have treated binary collisions in free space. We have solved the
scattering problem by investigating the asymptotic behaviour of the incident and outgoing
plane waves. We showed that an elastic collision leads to a phase shift in the scattered
wave, which is determined by the effective hard sphere radius of the atoms, the s-wave
scattering length.

However, in experiments, atoms are usually confined to a finite volume by means of a
trapping potential. The trap prohibits the construction of asymptotic scattering states and
imposes a discrete energy spectrum on the atoms. The potential created by two crossed
and focused Gaussian laser beams is well approximated by a 3D harmonic oscillator (see
Section 2.3). The energy spectrum of an atom in this potential is simply given by the har-
monic oscillator levels. In the following, we will investigate how the free-particle energy
levels are modified for pairs of interacting atoms.

In order to simplify the mathematical treatment, we make two approximations. We
assume, that the atoms are still further apart than the range of their interaction potential
nr3

0 � 1 . Under this assumption, interactions can be modelled by a zero-range pseudo-
potential with a contact interaction strength proportional to the scattering length a, as
introduced by Fermi [69]

V (r) =
4πħh2

m
aδreg(r). (1.21)

Here, δreg(r) = δ(r)
∂
∂ r r is the regularized delta function [70].

Furthermore, we restrict ourselves to the case of a three-dimensional isotropic har-
monic oscillator (ωx = ωy = ωz). In the case of harmonic confinement, we can again
separate the centre-of-mass motion and the relative motion of the atoms. We reduce the
two-body problem to an effective one-body problem for the relative motion in the trap

�

Hosc +
p

2πa0δ(r)
∂

∂ r
r
�

ψ(r) = Eψ(r), (1.22)

where Hosc is the Hamiltonian of the harmonic oscillator of the relative motion. The
interaction strength a0 = a/lho is parametrised in units of the harmonic oscillator length
lho =

p

ħh/(Mω) and the energy E in units of the harmonic oscillator energy ħhω. This
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Figure 1.5 – Energy spectrum of two atoms in a three dimensional isotropic trap as a function of the inter-
action strength. The energy is parametrised by the harmonic oscillator spacing ħhω, the scattering length by
the harmonic oscillator length lho. The blue lines are the solutions for harmonic confinement (1.23) with the
asymptotic behaviour a → ±∞ marked by the gray dashed lines. The yellow lines are calculated for an
anharmonic potential, here a lattice site around the minimum, expanded up to the 6th order. We use a lattice
depth V0 = 30Er , the value employed later in the clock-line spectroscopy experiments. The inset illustrates
the difference between a harmonic potential and a lattice potential around one minimum.

model can be solved analytically, as shown by Busch et al. [71]. The energy E of two
interacting atoms in a harmonic trap is given by [71]

p
2
Γ (−E/2+ 3/4)
Γ (−E/2+ 1/4)

=
1
a0

, (1.23)

where Γ is the Euler gamma function.
The energy spectrum of the two-particle interacting states from (1.23) is represented

in Figure 1.5. For a = 0, the two atoms are non-interacting and their energy is given by
the unperturbed oscillator levels En = (3/2 + 2n)ħhω with n labelling the oscillator level.
For repulsive interactions a > 0, the energy of the atom pair in the trap is raised compared
to the non-interacting case. However, as a →∞ the energy is bounded from above by
the next oscillator level. As the scattering length increases, the atoms repel each other
as far as possible in order to minimize their interaction energy. This eventually leads
to the appearance of a node in the relative wave function. Since the modulus of the
wave function is identical to that of two identical fermions, this phenomenon is known
as fermionization and happens for identical bosons [26, 72] as well as for distinguishable
fermions [73]. The ground state of the system for both negative and positive scattering
length is a bound state of the two atoms. Therefore, it has an energy lower than the
non-interacting ground state, i.e. the lowest harmonic oscillator level. In free space the
delta-like potential of Eq. (1.21) only supports a single bound state for positive scattering
length. Here the bound state also exists for a < 0, where it is supported by the confining
potential.

In section 2.3 we introduce optical lattices as a key ingredient for quantum simulation.
In the following, we extend the model of two atoms in a harmonic trap to the case of
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a sinusoidal lattice potential. A sinusoidal potential can be approximated by a harmonic
potential around its minimum. We expand the potential in a Taylor series

Vlat = V0 sin2(kx)≈ V0(k
2 x2 +

1
3

k4 x4 +
2

45
k6 x6 + . . .). (1.24)

The leading term is the harmonic one, whereas higher orders account for the anharmonic-
ity of the actual sinusoidal potential. Owing to this anharmonicities, the centre-of-mass
and relative motion are coupled. Therefore, we need to consider the Schrödinger equation
for the full pair wave function ψ(R, r), where r and R are the relative and centre-of-mass
coordinates of the atom pair, respectively. We can write:

�

H(com)
osc +H(rel)

osc +
4πħh
M
δreg(r) + Vcorr(R, r)

�

ψ(R, r) = Eψ(R, r), (1.25)

where the harmonic term of the Taylor expansion is included in Hosc, whereas Vcorr con-
tains all higher orders. The Schrödinger equation is no longer separable; therefore, no
analytic solution can be found. Deuretzbacher et al. have performed numerically exact
diagonalization of the total Hamiltonian [74], in order to obtain the energy spectrum. We
have calculated the corrections to the harmonic energy spectrum by including the effects
of the anharmonicity by second order perturbation theory. Our results match very well the
ones obtained by Deuretzbacher.

In Figure 1.5, the results obtained for a deep isotropic lattice are compared to the
solution for a purely harmonic potential. The calculation is performed for a lattice depth
of V0 = 30 Er , the value employed for the interaction spectroscopy in chapter 4. As the
pair energy increases, the anharmonic corrections become more substantial. This can
be easily understood by considering the spatial extent of the corresponding state. With
increasing scattering length, the atoms repel each other more strongly. Thus, they explore
regions further away from the trap center and become more susceptible to the anharmonic
character of the potential.

1.2 Feshbach resonances

In the previous section, we have seen that the actual value of the scattering length a is de-
termined by the long-range behaviour of the underlying molecular potential. In particular,
as the least-bound state approaches the free-particle continuum threshold, the scattering
phase shift changes rapidly by π leading to a resonance in the scattering length. There-
fore, it is highly desirable to gain control over the bound state energy and thus over the
s-wave scattering length.

So far we have only discussed the scattering of atoms in a single channel, i.e. in
the presence of one inter-atomic potential. However, the internal structure of the atoms
can lead to the presence of several collision channels. For alkali atoms, these different
channels are typically given by the spin singlet and triplet molecular potentials. A bound
state in the energetically inaccessible potential can couple to the scattering continuum
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and thus cause a scattering resonance. This phenomenon is called a Feshbach resonance
in honor of Herman Feshbach, who developed a model to describe nuclear reactions based
on this mechanism [75, 76]. Although the term Feshbach resonance is very common in
the cold atom community, we owe the introduction of this concept in atomic physics to
Ugo Fano [77].

In the following, we briefly introduce the molecular interaction potentials for alkali
atoms with internal structure. We show that the hyperfine interaction couples the different
potentials, and how their relative energies can be tuned by means of an external magnetic
field. Based on this qualitative understanding, we present a coupled channel model, which
allows to link the microscopic properties of the resonance to the scattering phase shift.
Finally, we derive a simple expression for the magnetic field dependence of the scattering
length. More details on the theory of resonant scattering in ultracold atoms can be found
in [78–82], while a general review about the physics of Feshbach resonances is given
in [9, 83].

1.2.1 Scattering of atoms with spin and hyperfine interaction

Let us consider a scattering process of two alkali atoms with electronic spin S = 1/2 in
their ground state, which is typically a 2S1/2 state with no orbital angular momentum
L = 0. The combined molecular potential in its electronic ground state is a Σ potential
with a rotational symmetry around the bond axis [84]. The total electronic spin S = S1+S2

determines the symmetry of the molecular potential; whether the two spins are in a singlet
S = 0 or triplet S = 1 configuration determines the bonding 1Σ+g (denoted here by Vs(r))
and anti-bonding 3Σ+u (VT (r)) potentials, as depicted in Figure 1.6(a).

In the presence of a magnetic field, the two atoms experience a Zeeman energy shift
dependent on total electron spin

VZS = 2µBS ·B, (1.26)

where µB is the Bohr magneton. Therefore, the triplet potential with mS = −1 is shifted
by a finite magnetic field to lower energies compared to the singlet potential with mS = 0.
This gives rise to a differential magnetic moment δµ ≈ 2.8 MHz/G between the two po-
tentials for S = 1/2. The triplet potential is called open channel, since atoms can enter
and leave in this channel. The singlet potential is referred to as closed channel, because its
asymptote is shifted by δµB and atoms in the low energy limit cannot enter it. Further-
more, a bound state in the closed channel can hence be brought into resonance with the
continuum energy of the scattering atoms.
Alkali atoms also possess a nuclear spin I, which in turn is coupled for each atom individ-
ually to the electronic spin via hyperfine interactions

VHF = αHF/ħh2Si · Ii (1.27)
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Figure 1.6 – (a) Schematic drawing of a simple two channel model for the occurrence of a Feshbach resonance
in the presence of a finite magnetic field. Both potentials are caused by the same van der Waals interaction.
They differ strongly at short distances, where the atoms are allowed on top of each other in the singlet potential,
thus giving rise to a deeper attractive well and more bound states. The triplet potential is open for s-wave
collisions, whereas the singlet is closed since its asymptote is shifted by δµB . The coupling of the molecular
bound state εb in the closed channel to the free atoms is created by the hyperfine interaction. (b) Energies of
the bare bound state (yellow dashed lines) and the free particle state (blue dashed line), as well as the dressed
states (solid line) as a function of an external magnetic field. The bare bound state εb in the closed channel
(yellow) crosses the dissociation threshold at B∗. The Feshbach resonance appears where the dressed state
crosses the dissociation threshold and is shifted due to the coupling to B0.

with αHF being the hyperfine structure constant and i = 1,2 for the two atoms. For an
atom pair, we can now write down the total hyperfine interaction in the following form
VHF = V+HF + V−HF, with the two contributions [62]

V±HF =
αHF

2ħh2 (S1 ± S2)(I1 ± I2). (1.28)

While V+HF conserves the total electronic spin S, the part V−HF converts a singlet state into a
triplet and thus induces an off diagonal coupling between the two potentials. Due to this
coupling, the bare triplet and singlet scattering states become dressed and the scattering
phase in the open channel can be influenced by a resonant bound state in the closed
channel.

In conclusion, we can identify three essential ingredients that are required for the
appearance of a magnetic Feshbach resonance: (i) two possible collision channels, an
open and a closed one, (ii) a coupling between the two channels and (iii) a differential
magnetic moment allowing for a tuning of their relative energies.

1.2.2 Coupled channel approach

The physics of Feshbach resonances within the regime of dominant two-body collisions
can be well described by a model of only two coupled scattering channels [78, 83, 85].
The two orthogonal scattering channels are labelled open |o〉 and closed |c〉, depending on
whether their asymptotic values are energetically accessible for the free atoms. In the case
of alkali atoms these channels are given by the spin singlet |s〉 (triplet |t〉) configuration of
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the total angular momentum. Here we find |o〉 = |t〉|ψo〉 and |c〉 = |s〉|ψc〉, where |ψo,c〉 is
the relative radial wave function in the corresponding channel. The coupling between the
two channels leads to the emergence of dressed energy states composed of the initially
uncoupled channels |o〉 and |c〉. The strength of the mixing between the two channels is
determined by a set of coupled Schrödinger equations

Ho|o〉+W |c〉=E|o〉,

W |o〉+Hc|c〉=E|c〉.
(1.29)

Here, the off-diagonal element W is composed of all interactions that induce a coupling of
the two channels. The two single-channel Hamiltonians Ho,c are given by the kinetic and
potential energy in the respective uncoupled channels. We have set the energy scale such
that the dissociation threshold in the open channel is zero.

The closed channel Hamiltonian incorporates the magnetic field dependence of the
total system and experiences a shift of δµB with respect to the open channel. Furthermore,
it supports a bound state close to the dissociation threshold

Hc(B)|b〉= εb(B)|b〉, (1.30)

where |b〉= |s〉|ψb〉 is the bare Feshbach resonance state and εb(B) = δµ(B−B∗) its energy,
which crosses the dissociation threshold at the magnetic field B∗ [85] .

In order to solve the set of coupled Schrödinger equations, we introduce the dressed
continuum states based to the relative momentum k of the free atom pair with the spin
configuration of the open channel. Their asymptotic behaviour is similar to the ansatz
(1.4) for the single channel scattering. The open channel component |ψo

k〉 is given for
large separation by a superposition of a ingoing plane wave |ψ+k 〉 and an outgoing spher-
ical wave |ψ−k 〉. The closed channel component |ψc

k〉 decays exponentially outside of the
potential well. Using the Green’s function Go,c, which solves the corresponding unper-
turbed Hamiltonian, we can rewrite the coupled Schrödinger equation as

|ψo
k〉= |ψ

+
k 〉+ Go(E + i0)W |ψc

k〉,

|ψc
k〉= Gc(B, E)W |ψo

k〉,
(1.31)

where we have made the energy E+ i0 imaginary by an infinitesimal amount. The detailed
calculation of the scattering amplitude of the open channel scattering wave function is
presented in [83]. In the low energy limit k→ 0, we derive the dependence of the s-wave
scattering length in the open channel on the magnetic field [85]

a(B) = abg

�

1−
∆B

B − B0

�

. (1.32)

Here, abg is the so-called background scattering length, given by the scattering length in
the unperturbed open channel. The width of the resonance ∆B measures the distance
from the singularity to the zero crossing of the scattering length

∆B =
m(2πħh3)

4πħh2abgδµ
|〈ψb|W |ψ+k=0〉|

2 (1.33)
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Figure 1.7 – Magnetic field dependence of the s-wave scattering length a around a Feshbach resonance.
The magnetic field where the scattering length diverges a → ±∞ is called the resonance position B0. The
width of the resonance ∆ measures the distance of the zero crossing of the scattering length to the singularity.
Far away from the resonance, the s-wave scattering length approaches the background value abg which is
determined by the asymptotic behaviour of the open channel potential.

and is determined by the coupling strength of the continuum state to the bound state in
the closed channel. The position of the Feshbach resonance B0 is shifted from the crossing
of the bare bound state B∗ by

B0 − B∗ = 〈ψb|W Go(E = 0)W |ψb〉/δµ. (1.34)

The resonance shift B0 − B∗ is determined by the admixture of the closed-channel bound
state to the scattering state. Including precise molecular potentials and van der Waals
coefficients into the coupled-channel calculation allows for ab initio predictions for the
position B0 of Feshbach resonances. This proved very successful, leading to the experi-
mental observation of many resonances after they were predicted theoretically [86–90].

In the unperturbed closed channel the bound state |b〉 is usually tightly bound and
therefore stable. However due to the inter channel coupling it experiences a decay rate
proportional to the coupling strength. In order to account for the decay of the bound state
and thus the limited lifetime of the scattering state, we insert an additional imaginary part
into Eq (1.32) [63, 64]:

ã = a− i b = abg

�

1+
Γ0

−E0 + i(γ/2)

�

, (1.35)

with the decay rate γ/ħh. Here, we have introduced the width in energy Γ0 = δµ∆B and
the bound state energy E0 = δµ(B− B0) close to the resonance. For γ= 0, Eq. (1.35) takes
again the form of Eq (1.32). However, the representation as an imaginary scattering
length in Eq. (1.35) offers the advantage that it can also model the behaviour of an optical
Feshbach resonance, as we will discuss in the next section.
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1.2.3 Classification of Feshbach resonances

Feshbach resonances appear for all alkali atoms, for bosonic as well as for fermionic iso-
topes. In order to allow for a comparison among the different systems, Chin et al. have
introduced the dimensionless resonance strength parameter sres, as follows [9]

sres = rbg
Γ0

Ē
=

abg

ā
δµ∆B

Ē
, (1.36)

with the dimensionless background scattering length rbg = abg/ā.
This parameter classifies the resonances based to the resonance strength abgΓ0 and

compares it to the mean scattering length ā of the underlying van der Waals potential
(1.16) and its corresponding energy Ē = ħh2(2Mā2). As sres is always positive, resonances
are classified by the two limiting cases sres ≷ 1.

Resonances with a large strength parameter sres � 1 are called entrance or open-
channel dominated. As sres � 1 usually stems from a large ∆B (up to a few hundred
Gauss [9]), they are also referred to as broad resonances. In this case, the bound state in
the dressed scattering state preserves the initial spin character of the open channel over a
wide range of ∆B and its energy follows, in this regime, the universal formula (1.18). Due
to the weak coupling of the metastable bound state in the closed channel to the scattering
state, these resonances have shown a very low loss rate γ.

Resonances with a weak strength sres� 1 and thus a narrow width∆B are called closed-
channel dominated or narrow resonances. Here, the closed channel bound state dominates
over a wide magnetic field range the character of the scattering state and only close to
B0 a universal bound state is found. Since the atoms effectively spend a long time in the
closed channel they are strongly susceptible to the decay γ of the bound state and thus
experience a strong decay into lower lying states. This leads to a gain in kinetic energy
during the collision and hence atoms escaping from a trap.

1.2.4 Optical Feshbach resonances

Magnetic Feshbach resonances allow a global tuning of the scattering length via an exter-
nal uniform magnetic field. The idea to control the value and the sign of the scattering
length with a nearly resonant light field and thus gaining local, i.e. spatially resolved con-
trol, was first proposed by Fedichev et al. [91]. Here, the light couples a bound state in
the excited molecular potential to the two colliding ground state atoms. Tuning the light
frequency ν across the resonance, the free atoms become dressed with the bound state in
the excited potential and thus the scattering length is modified. Owing to the strong ra-
diative decay in the excited state, the bound state has a limited lifetime and the scattering
length becomes complex [64]. Another limitation is the possibility of photoassociation,
where the atoms absorb a photon, decay to deeply bound states and are subsequently lost.
Although optical Feshbach resonances have been observed [92] and their ability to locally
influence the scattering length has been demonstrated [93], they are always accompanied
by strong atom loss restricting their experimental application.
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Compared to alkali atoms, AEL atoms offer narrow transitions with long-lived ex-
cited states, which have been proposed to allow for large changes of the scattering length
through the associated optical Feshbach resonances, while limiting atom losses [94]. For
ytterbium [95] as well as strontium [96] the ground state scattering length has been mod-
ified by coupling the atoms on the intercombination line to the 3P1 state. Even though
beneficial ratios of coupling strength to decay rate Γ0/γ compared to alkali atoms could be
reached, the lifetimes were still limited to a few milliseconds [95, 96].

1.2.5 Experimental investigation of Feshbach resonances

The various experimental techniques to identify and characterize the magnetic field depen-
dence of Feshbach resonances can be grouped according to three different approaches [9]:
(i) inelastic loss spectroscopy, (ii) measurements of the elastic cross section and (iii) de-
termination of the dimer binding energy.

The most frequently employed technique to determine the position of a Feshbach res-
onance is the observation of trap losses. The two major processes are inelastic two-body
collisions and three-body recombination. In the vicinity of a resonance, both processes are
enhanced. The two-body decay is caused by the divergent imaginary part (1.35) of the
scattering length [97]. As the scattering length near a Feshbach resonance diverges, the
gas leaves the regime of binary collisions. When three atoms interact, they can form a di-
atomic molecule and a free atom, where the binding energy is released as kinetic energy.
For two atoms this process is forbidden due to momentum conservation. This process
is known as three-body recombination. For typical molecular binding energies, all three
atoms are lost from the trap. Since the three-body cross section scales with the scattering
length as a4 it is the dominant process near a Feshbach resonance. The first Feshbach
resonance in ultracold atoms was identified in this way [98]. However, this technique is
only suited to identify the position of the resonance and map out the imaginary part of
the scattering length near the resonance. Furthermore, the three-body recombination is
suppressed in a two-component Fermi gas.

The elastic scattering cross section is determined by the modulus of the s-wave scat-
tering length. Therefore, it is suited to determine the position as well as the zero crossing
of the resonance. It can be measured via the efficiency of evaporation [99, 100], the
thermalisation of an out of equilibrium state [101–103] or the dephasing of trap oscil-
lations [104]. By carefully calibrating densities and temperatures of the trapped atoms,
these measurements even provide the exact value of the scattering length at a given mag-
netic field.

The most precise determination of the scattering properties near a Feshbach reso-
nance can be achieved via radio-frequency spectroscopy [90, 105, 106]. Here, Feshbach
molecules are prepared and afterwards dissociated on the bound-to-free transition. This
allows a precise determination of the dimer binding energy and thereby the s-wave scat-
tering length.



CHAPTER 2

Ytterbium – an alkaline-earth-like atom

A large variety of elements with a common electronic structure is referred to as alkaline-
earth-like (AEL). Additional to a set of completely filled inner shells, these atoms possess
two outer s-shell electrons. In contrast, alkali atoms have only one valence electron. We
find this electronic configuration for all alkaline earth elements, i.e. beryllium, magne-
sium, calcium, strontium, barium and radium. Further, this electronic configuration is
displayed by some transition metals from the d-block and f -block of the periodic table,
namely zinc, cadmium, mercury, ytterbium and nobelium.

The two s-shell electrons give rise to a helium-like electronic level structure, where
orbitals are grouped depending on the alignment of the electronic spins. Two manifolds
exist: the spin singlet with a total electronic spin S = 0 and the spin triplet manifold with a
total electronic spin S = 1. Within the singlet manifold we find strong optical transitions,
which are well-suited for laser cooling. Optical transitions connecting the two manifolds
are forbidden since they involve a spin flip (∆S = 1). Therefore, they are generally more
narrow with natural linewidths ranging from several kilohertz down to sub-millihertz. As
a consequence, the corresponding excited states in the triplet manifold are metastable
with lifetimes up to hundreds of seconds. The ground state of all AEL atoms possesses
neither electronic spin S = 0 nor orbital angular momentum L = 0, giving rise to a total
electronic angular momentum J = 0. In this state, the nuclear and electronic degrees of
freedom are highly decoupled. In the fermionic isotopes, exhibiting a finite nuclear spin,
an enhanced SU(N) symmetry emerges.

In the following chapter, we will discuss the aforementioned distinctive properties of
AEL on the example of ytterbium. First, we give a short introduction of the physical
properties of ytterbium. Then, we emphasise the difference in how alkali and AEL atoms
interact with each other and study the emergence of SU(N) symmetric interactions for
AEL atoms. Afterwards, we will review the electronic level structure. Here, we focus on
the forbidden transitions between the singlet and triplet manifold and discuss why they
are actually weakly allowed. Later, we present possibilities for creating state-dependent
optical potentials and their application for quantum simulation. We discuss the feasibility
of studying the SU(N) Heisenberg model and the Kondo lattice model
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Ytterbium

Ytterbium (Yb) is a lanthanide and thus a member of the rare-earth elements with an
atomic number Z = 70. The configuration of the 70 electrons is based on the noble gas
xenon with additionally the 4f- and 6s-shells completely filled [Xe] 4f14 6s2. The electronic
properties are therefore determined by the two 6s2 valence electrons.

Like all rare-earth elements, ytterbium possesses a large number of isotopes, with a
total number of seven stable isotopes. Among these are five bosonic isotope 168Yb, 170Yb,
172Yb, 174Yb and 176Yb as well as two fermionic isotopes 171Yb and 173Yb. Due to the
high natural abundance of bosonic and fermionic isotopes, no specially enriched samples
are needed for the production of either quantum gases. This makes Ytterbium a unique
candidate for the creation of Bose-Bose, Bose-Fermi and Fermi-Fermi mixtures composed
of the same element.

For all AEL atoms, the nucleus of the bosonic isotopes is composed from an even
number of protons and neutrons. In this so-called gg-nucleus, all the individual spins
couple to a total nuclear spin of zero I = 0. Therefore, the total spin F = J + I = 0 of
the1S0 ground state vanishes for all bosonic isotopes.

The fermionic isotopes possess a half integer nuclear spin of I = 1/2 and I = 5/2
for 171Yb and 173Yb, respectively. For the 1S0 and 3P0 state, interatomic interactions are
SU(N)-symmetric, owing to the decoupling between the nuclear and orbital degree of
freedom. Here, N ≤ 2I + 1 can be as large as N = 6 in the case of 173Yb.

2.1 SU(N) symmetric two-orbital interactions

For alkali atoms, we have studied the scattering process on the example of a pair of spin-
1/2 atoms. There, we demonstrated how the hyperfine interaction couples different scat-
tering channels and gives rise to Feshbach resonances.

However, for AEL atoms with large nuclear spin, we have to extend our scattering
model beyond the spin-1/2 case. Furthermore, we find the nuclear and electronic degrees
of freedom strongly decoupled for states with J = 0. In the following, we will demon-
strate how this decoupling causes the emergence of SU(N) symmetry and discuss the
implications of this extended symmetry on the interactions of AEL atoms. We restrict our
description to the interaction of fermions since the bosonic isotopes of AEL atoms possess
neither electronic nor nuclear spin, resulting in a single uncoupled inter-atomic potential
that determines the scattering length.

2.1.1 Interactions for high spin fermions

The Hamiltonian of a free fermion with total angular momentum F = 1/2, 3/2, 5/2, · · · is
symmetric under three-dimensional rotation and possesses therefore a SU(2) symmetry.
As we have seen previously, the singlet and triplet interaction potentials between two
alkali atoms do not break this symmetry and the individual F and mF of the atoms are still
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Figure 2.1 – (a) Illustration of fermionic AEL atoms with orbital and nuclear spin degree of freedom. The
two orbitals exhibiting SU(N) symmetric interactions are given by the two J = 0 states, the ground state
|g〉 =1S0 (blue) and the lowest energy triplet state |e〉 =3P0 (yellow). A nuclear spin I > 1/2 and thus
SU(N > 2)symmetric interactions within each orbital are found in 9Be, 135,137Ba, 201Hg with I = 3/2, 25Mg,
67Zn, 173Yb with I = 5/2, 43Ca with I = 7/2 and 87Sr with I = 9/2. (b) Elastic scattering of high spin
fermions I > 1/2. For AEL atoms with SU(N = 2I +1) symmetry (left) the individual projection of the spin is
conserved. For alkali atoms with SU(2) symmetry (right) only the pair projection is conversed.

good quantum numbers. However, at short distances, the hyperfine interaction leads to a
mixing of the two interaction channels and breaks this symmetry. For collisions without
relative angular momentum (s-wave scattering), only the total angular momentum of the
pair Fpair and its projection mFpair

are conserved, creating a new SU(2) symmetry. This
implies for high-spin Fermions with F > 1/2, atoms can leave the collision with an angular
momentum that differs from the initial one. Therefore the zero-range pseudo-potential
(1.21) needs to be generalized in the following form [107]

V (r) =
4πħh2

m

2F−1
∑

Fpair=0,2,···
aFpair

PFpair
δ(r), (2.1)

where PFpair
is the projector on states with even total spin. The condition of an even

Fpair ensures an anti-symmetric spin wave function and thus an anti-symmetric total wave
function, because the radial part is symmetric in the case of s-wave collisions. In order
to account for all possible collision channels in (2.1), a single scattering length does not
suffice. In total (2F + 1)/2 scattering lengths aFpair

are needed. These can vary drastically
with the position of the last bound state in the corresponding molecular potential. The
diverse scattering lengths among the atoms with same F but different mF give rise to spin
changing collisions [108, 109].

2.1.2 Emergence of SU(N) symmetry in AEL atoms

For AEL atoms for states with vanishing electronic angular momentum J = 0 we find a
starkly different situation. Here, the total angular momentum is exclusively determined
by the nuclear spin F = J+ I = I and nuclear and electronic degrees of freedom are decou-
pled. Investigating the intraorbital collision between two atoms in either the 1S0 ground
or the 3P0 metastable state, we find that both electronic orbitals give rise to only a single
collision channel. The splitting into singlet and triplet collision channels for alkali atoms
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is caused by the exchange interaction between the electron clouds. However, for J = 0
the only possible combination is a molecular potential with again vanishing total angular
momentum. Due to the lack of hyperfine interactions the single collision channel remains
independent of the nuclear spin for the fermionic isotopes. Therefore not only the pair
momentum Fpair and its projection mFpair

are conserved but also the individual F and mF

of the colliding atoms are still good quantum numbers.

In this cases, we find all scattering lengths aFpair
to be equal. This reduces the in-

teraction potential (2.1) back to the previously introduced form of Eq. (1.21), i.e. a
single scattering legnth for all pairs, whereas the symmetry of the system is extended to
SU(N = 2F+1). This means that the total Hamiltonian of the interacting system commutes
with all spin-permutation operators [38, 39].

For the seven stable isoptops of ytterbium the entire set of intra- and inter-isotope
ground state scattering length has been reported by the Kyoto group [110]. The intra-
isotope scattering lengths have been obtained by two-color photoassociation spectroscopy
on the 1S0→3P1 transition. In 173Yb, the 1S0 -1S0 scattering length, denoted agg has been
determined to be 199.4 a0.

In order to estimate the residual variation of the scattering length with the differ-
ent nuclear spin components δa/a, we recall the definition of the scattering length in
the van der Waals potential (1.16). The scattering length is determined by the phase Φ
(1.15) the atoms acquire in the molecular potential. Thus a variation in the scattering
length δa is induced by a difference in the phase δΦ. We can rewrite (1.15) as a time
integral over a classical trajectory r(t) in the molecular potential V (r) [38]. The differ-
ent nuclear spin projections can only influence the phase during the time ∆t the atoms
spend inside the short-range part of the potential. We estimate the relative variation by
δa/a ∼ δΦ ∼ ∆tδV/h, where δV is the energy difference in the interaction potentials for
the various spin projections. This difference is mainly caused by the lowest lying state
with hyperfine splitting, the 3P1 state. Since the 3P0 state is the closest to the 3P1 , we
expect a stronger variation here. As the hyperfine splitting reduces towards the lighter
AEL elements, ytterbium shows the largest variation of the scattering length. The residual
variation δa/a is prediceted to be smaller than 10−8 for collisions in the 1S0 state and 10−2

for the 3P0 state [38].

We have obtained an experimental upper bound for the variation of the scattering
length among the six different spin components for 173Yb in both the 1S0 and 3P0 state.
By measuring the absence of spin relaxation in a two component Fermi gas kept in an
harmonic trap for up to 15 s, we can report an upper limit of δagg/agg < 10−4 in the
1S0 state [60]. The variation of the scattering length in the 3P0 state was determined by
clock-line spectroscopy. Here we can give an upper bound of δaee/aee < 10−2 [60]. The
strong suppression of spin changing collisions allows to prepare any mixture composed
out of the six possible spin states without depolarisation.
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Figure 2.2 – Schematic drawing of the four possible interaction states and their corresponding energies of an
AEL atom with orbital and nuclear spin degree of freedom in a harmonic trap or on a lattice site. The energy
UXX measures the energy of an interacting atom pair compared to two non-interacting atoms in a harmonic
oscillator. Here, only repulsive interaction energies UXX > 0 are drawn. In the bottom, the corresponding
scattering lengths for 173Yb are displayed. They are reported in Refs. [56, 59, 110].

2.1.3 Two-orbital SU(N)-symmetric interactions

Let us now consider collision between fermionic AEL atoms with orbital and nuclear spin
degree of freedom. We focus on collisions between the two J = 0 states, the ground
1S0 (denoted |g〉) and the metastable state 3P0 (|e〉). Both orbitals possess SU(N) symmetry
and their intraorbital interactions are fully characterised by a single scattering channel
|g g〉|s〉 and |ee〉|s〉, respectively. For s-wave collisions, the radial and orbital part of the
wave function are symmetric, enforcing an anti-symmetric combination (singlet) in the
nuclear spin |s〉= 1/

p
2 (|↑↓〉 − |↓↑〉).

For interorbital collisions both degrees of freedom can either be symmetric or anti-
symmetric, while ensuring antisymmetry of the total wave function under particle ex-
change. Due to the SU(N) symmetry only a total of four scattering channels is required to
describe all possible combinations

|g g〉= |g g〉 ⊗ |s〉, |eg+〉= (|eg〉+ |ge〉)/
p

2⊗ |s〉,

|ee〉= |ee〉 ⊗ |s〉, |eg−〉= (|eg〉 − |ge〉)/
p

2⊗ |t〉,
(2.2)

with the nuclear spin triplet state |t〉= {|↑↑〉, 1/
p

2 (|↑↓〉+ |↓↑〉), |↓↓〉}.
In analogy to (2.1), we generalise the pseudo-potential (1.21) to the case of two orbital

interactions
V (r) =

4πħh2
m

δ(r)
∑

X

axPX . (2.3)

Here X denotes the four possible scattering channels |g g〉, |eg+〉, |eg−〉 and |ee〉 with their
corresponding scattering lengths agg, a+eg, a−eg and aee. PX is the projector onto these
states.

As we have seen in section 1.1.3, the interaction energy of two atoms in a harmonic
trap depends on the scattering length. Therefore, the four intra- and interorbital scattering
lengths give rise to different interaction energies. Figure 2.2 illustrates the four possible
interaction states in a harmonic trap with the corresponding interaction energies UX , given
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by (1.23). A difference in the scattering length a+eg and a−eg causes an energy offset between
the orbital singlet and triplet state. This energy difference is called exchange energy, in
analogy to the energy splitting between the spin singlet and triplet scattering channel in
alkali atoms with SU(2) symmetry.

We have obtained the values of the interorbital scattering lengths a+eg and a−eg via clock-
line spectroscopy on a two component Fermi gas in a three-dimensional lattice [56, 59].
In order to demonstrate the SU(N) symmetry of interorbital interaction, we repeated the
measurements with various two component spin mixtures. Within our experimental pre-
cision we extracted the same interaction shift at zero magnetic field for the various spin
mixtures. As an upper bound for the variation we extract δaeg/aeg < 10−2. The values of
the interorbital scattering lengths are presented at the bottom of Figure 2.2.

2.2 Electronic structure and optical transitions

After the investigation of the peculiar scattering properties of AEL atoms, we turn our
attention to the second distinct feature of AEL atoms, metastable excited states. In the
following, we explain the mechanism causing the long lifetimes of certain excited state as
well as the narrow linewidth of the clock transition.

For all AEL atoms, ranging from Mg (Z = 12) up to Hg (Z = 80), the two valence elec-
trons are in the intermediate coupling regime. Yet, the total angular momentum J= S+ L
is still a fairly good quantum number. Thus, we can label the states in the Russell-Saunders
notation 2S+1 LJ , where S is the total spin of the electrons and L the orbital angular mo-
mentum [111]. Here, the LS-coupling is able to produce an adequate description of the
level structure. However, the corresponding selection rules for optical dipole transitions
are violated with increasing Z .

2.2.1 Level structure of ytterbium

The ground state of the two 6s2 electrons in ytterbium is the spin singlet state 1S0 . In this
state the two electron spins align anti-parallel with S = 0 and possess no orbital angular
momentum L = 0. This leads to a vanishing total angular momentum J = 0 and the
complete absence of a hyperfine structure. The next higher-lying states have the structure
6s6p with one of the electrons excited to thep-orbital. For this configuration, we find one
state in the spin singlet manifold 1P1 and three states 3P0 , 3P1 , and 3P2 in the spin triplet
manifold, where the two electron spins align parallel S = 1. Here, the 3P0 is the excited
state with the lowest energy and again has no angular momentum J = 0. In the fermionic
isotopes, the P states with J 6= 0 exhibit a hyperfine structure due to the coupling of J
and I .

Within each of the two electronic manifolds we find strong dipole allowed transitions.
In our experiment, we employ the broad 1S0→1P1 transition with a linewidth of 29 MHz
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Figure 2.3 – Level diagram for the electronic and hyperfine structure of 173Yb. The spacing between the
electronic orbitals and the hyperfine levels is not to scale. The diagram is restricted to the relevant levels
in the context of this work. The coloured arrows illustrate optical transitions between different orbitals. The
characteristic properties of the optical transitions (wavelength λ, lifetime τ , natural linewidth Γ = 1/τ and
Doppler temperature TD = ħhΓ/(2kB)) are summarised next to them. The data for the excited state lifetimes
are obtained from Refs. [112–114]. The thick dashed arrow represents the LS-coupling between the 1P1 and
3P1 orbitals (α, β). The thin arrows indicate the hyperfine induced (HFI) state mixing (α0, β0) of states with
the same total angular momentum F .

at a wavelength of 398.9 nm for Zeeman-slowing and absorption imaging of ytterbium
atoms in the ground state.

Although optical transitions between the two manifolds are forbidden by dipole selec-
tion rules (namely ∆S = 0) , they can still be addressed due to a small mixing between
the singlet and triplet P states. The strongest transition from the ground state to the
triplet manifold is the so-called intercombination line 1S0→3P1 at 555.8 nm with a natural
linewidth of 182 kHz. Owing to its narrow and closed-transition character, it is frequently
employed for magneto-optical trapping, as in our experiment.

The 1S0→3P0 transition is doubly forbidden by dipole selection rules, namely ∆S = 0
and J = 0→ J ′ = 0. Its natural linewidth is only on the order of a few milihertz and the
corresponding states, both with J = 0, show the least sensitivity to an external magnetic
field. Therefore, it is an ideal candidate for an optical frequency standard and referred to
as clock transition or clock line.

In the following section, we study the mechanisms that lead to a violation of the dipole
selection rules, enabling the transitions between singlet and triplet states. The structure
of the lowest energy levels for ytterbium and the corresponding optical transitions are
schematically represented in Figure 2.3.
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2.2.2 Forbidden transitions are not forbidden

In this section, we show how the hyperfine interaction of fermionic ytterbium leads to
a single-photon E1 coupling between the ground state and the triplet P states. In order
to describe the LS-coupling and hyperfine quenching rates of the lowest energy states in
ytterbium, we follow the relativistic many-body ansatz introduced by Breit and Wills [115]
as well as Luiro [116]. We can decompose the wave functions of the P states in the bare
LS eigenstates |i Po

j 〉 as follows [117]

|1P1〉= α|1Po
1〉+ β |

3Po
1〉,

|3P0〉= |3Po
0〉,

|3P1〉= α|3Po
1〉 − β |

1Po
1〉,

|3P2〉= |3Po
2〉,

(2.4)

with the mixing angles α,β that satisfy the relation α2+β2 = 1. Among all LS eigenstates,
only the |1Po

1〉 state couples via an electric dipole moment to the ground state. The finite
mixing β of the |1Po

1〉 into the |3P1〉 state induces an E1 decay channel to the ground state
and thus a finite lifetime of the |3P1〉 state

τ(3P1) =
|α|2

|β |2

�

ν(1P1)

ν(3P1
)

�3

τ(1P1). (2.5)

The strength of the mixing is experimentally determined by measuring the corresponding
transition frequencies and state lifetimes. The ratio of the two lifetimes and transition
frequencies (listed in Figure 2.3) together with the normalisation yields to α2 = 0.9834
and β2 = 0.0166 for ytterbium.

For all bosonic AEL atoms with no nuclear spin, the |3P1〉 is the only state of the triplet
manifold coupled to the singlet ground state via an electric dipole transition. Due to the
lack of hyperfine interaction, the |3P0〉 state exhibits a lifetime of several years since it only
decays to the ground state via a very weak two-photon E1-M1 transition [114]. However,
an external magnetic field quenches the P-states and thus allows a direct optical excitation
on the clock transition for the bosonic isotopes [118, 119].

In contrast, the fermionic isotopes possess a finite nuclear spin and thus a hyperfine
structure for all state with J 6= 0, as illustrated in Figure 2.3. Here, the hyperfine interac-
tion leads to an additional coupling of states with the same total angular momentum F .
Following the ansatz for the lifetime of the 3P1 state, we decompose the |3P0〉 state in the
LS eigentsates [117]

|3P0〉= |3Po
0〉+α0|3Po

1〉+ β0|1Po
1〉+ γ0|3Po

2〉,

= |3Po
0〉+ (α0α− β0β)|3Po

1〉+ (α0β + β0α)|1Po
1〉+ γ0|3Po

2〉,
(2.6)
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where α0,β0,γ0 are the hyperfine quenching rates. As shown by Luiro [120], the quench-
ing rates can be obtained from the corresponding hyperfine structure constants. The mix-
ing of the |1Po

1〉 induces a finite lifetime of the 3P0 state [117]

τ(3P0) =
β2

(α0β + β0α)2

�

ν(3P1)

ν(3P0
)

�3

τ(3P1). (2.7)

The influence of the violation of the LS coupling and hyperfine quenching can be deter-
mined by ab initio relativistic many-body atomic structure calculations [114]. Porsev et al.
obtained a hyperfine-coupling limited lifetime for the |3P0〉 state of 20 s (171Yb) and 23 s
(173Yb), corresponding to a natural linewidth of Γ = 2π× 6.9 mHz and Γ = 2π× 6.1 mHz,
respectively. Based on the high agreement between the ab initio calculated and experi-
mentally measured hyperfine constants, Porsev et al. expect that the computed lifetimes
of th 3P0 state are accurate within at least a few per cent [114].

The most precise evaluation of the absolute clock transition frequency has been re-
ported for the fermionic isotope ν(171Yb) = 518295 836590 863.55(28)Hz, [121] with an
isotope shift of δν = −1259 745597(10)Hz for 173Yb [122]. For the fermionic isotopes,
the maximum Q-factor for the interrogation of clock transition is Q = Γ/2πν' 1× 10−17.

In contrast, the |3P2〉 shows a drastically reduced lifetime even for the bosonic isotope.
Here, a weak single photon M1 decay is allowed, limiting the lifetime to 15 s [114]. For the
fermionic isotopes this lifetime is further reduced due to the additional E1 decay channel,
resulting in a lifetime of 10 s and a natural linewidth of Γ = 2π× 15 mHz [114].

2.2.3 Differential Zeeman shift of the clock transition

The fermionic isotope 173Yb exhibits a finite nuclear spin of F = 5/2. Hence, the two clock
states 1S0 and 3P0 both possess six mF -states. An external magnetic field will lift the energy
degeneracy of the Zeeman sub-levels. Because the total angular momentum of both states
vanishes, the Zeeman energy shift is simply given by

∆Z(B) = gF mFµBB, (2.8)

where µB is the Bohr magneton and mF is the spin projection along the field axis. For
F = I and J = 0, the Landé g-factor gF reduces to the nuclear g-factor gI = µI/(µB I),
with the nuclear magnetic moment µI = −0.6776(25)µN for 173Yb [123]. Thus, both
clock states experience a Zeeman splitting of ∆Z(B) ≈ h mF B · 1.3 kHz/G. However, the
transition frequency 1S0 (5/2, mF )→3 P0 (5/2, mF ′) is only susceptible to this Zeeman shift
for mF 6= mF ′ , i.e. if probed with σ±-polarised light (mF ′ = mF ± 1). The π-transition, i.e.
mF = mF ′ , remains unaffected, as illustrated in Figure 2.4(a).

So far, we have neglected the hyperfine mixing higher lying states into the 3P0 state.
Here, the admixture of the3P1 state perturbs the 3P0 wave function and gives rise to a
slightly different nuclear g-factor for the excited state δg = g e

I − g g
I = −8.1× 10−5 [124]

for 173Yb. The difference δg leads to a differential Zeeman shift for the π-polarised clock
transition frequency

∆δZ(B) = δgmFµBB, (2.9)
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Figure 2.4 – (a) Schematic illustration of the differential Zeeman shift between 1S0 and 3P0 state for 173Yb.
The thickness of the yellow arrows indicates the transition strength of the corresponding π-transition. The
Clebsch-Gordon coefficients (yellow numbers) are inherited from the 1S0 →1 P1 transition. (b) Breit-Rabi-
like diagram of the clock-line Zeeman shift for the different mF states. The lines are calculated from (2.10)
with the theoretical values for the linear and the quadratic Zeeman shift. The symbols indicate measured
resonances on the six π-transitions. The left figure shows a zoom into the low field region, where the quadratic
Zeeman shift is negligible within our experimental precision. The right figure presents the entire experimentally
accessible magnetic field range.

where the theoretically calculated value of ∆B = h mF B · 113 Hz/G [124] is in good agree-
ment with the value reported by our experiment ∆B = h mF B · 112(1) Hz/G [56].

The quadratic Zeeman shift is induced by the mixing of the fine structure due to an
external magnetic field and therefore present for all isotopes. For all ytterbium isotopes
the differential quadratic Zeeman shift is given by ∆(2)

δZ = B2 ·6.2×10−2 Hz/G2 [125]. The
total shift of the π-polarised clock transition due to a magnetic field is given by

δνπ(B) = 112 Hz/G ·mF · B − 0.062 Hz/G2 · B2. (2.10)

Figure 2.4(b) displays δνπ(B) for all mF -states within the magnetic field range of our ex-
perimental setup. In the entire experimental field range, we verify the predicted magnetic
field dependence of δνπ(B).

Besides an external magnetic field, the black body radiation from the surrounding
vacuum vessel leads to a shift of the clock transition frequency. At room temperature
T = 300 K, the black body radiation causes a -1.3 Hz shift of the clock transition [113].
This shift is well below the resolution of our laser system driving the clock transition and
we will neglect it in the following.
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2.3 Traps for alkaline-earth-like atoms

One of the building blocks of the success of ultracold neutral atoms for quantum simula-
tions is the ability to trap and confine them in almost arbitrary potentials. These potentials
are based on the electric dipole interaction of neutral atoms with far detuned light. Al-
though the achievable trap depths are typically below milikelvin, optical traps offer vast
advantages compared to magnetic traps relying on state-dependent forces in different Zee-
man sub-levels. Especially for AEL atoms with no magnetic sub-levels in the ground state,
optical dipole traps are an indispensable tool.

In the following we will briefly review the interaction of an atom with a classical
light field. We show how harmonic and lattice potentials are tailored from Gaussian laser
beams. Furthermore, we investigate the polarisabilty of the 1S0 and 3P0 states of 173Yb.
Here, the existence of the meta-stable state provides the possibility of engineering state-
dependent potentials.

2.3.1 Optical potentials

A light beam incident on a neutral atoms induces an atomic dipole moment d which os-
cillates with the driving frequency ω of the electric field E. The strength of the induced
dipole moment d = α(ω)E is determined by the dynamic polarisability α(ω) at the driv-
ing frequency and the amplitude of the electric field E0. The polarisability is in general
complex, where the imaginary accounts for the dissipative part of the interaction. By time-
averaging over many oscillations of the light field, one derives the dispersive interaction
potential between the light field and the atom, also referred to as the AC-Stark shift [126].
The imaginary part of the polarisability results from out of phase oscillations of the dipole
moment. In this dissipative processes, light is absorbed by the atom and spontaneously
reemitted. This process can be described by scattering of photons on the atom [126]. In
the vicinity of a strong transition ω0, we can approximate the atom as a two-level system.
For small detunings between the driving field and the atomic transition ∆=ω−ω0�ω0,
the rotating wave approximation holds and the AC-Stark shift and the scattering rate are
written as follows [126]

V (r) =
3πc2

2ω3
0

�

Γ

∆

�

I(r),

ΓSC(r) =
3πc2

2ħhω3
0

�

Γ

∆

�2

I(r),
(2.11)

with the intensity of the light field I(r) = 2ε0c|E0(r)|2. These two equations demonstrate
nicely the fundamental working principles of optical potentials as they are utilized in
experiments. As the scattering rate scales with I/∆2, whereas the light shift only with
I/∆, high intensity light with large detuning is employed to create deep potentials, while
keeping the scattering rate as low as possible. The force exerted by the light on the atoms
is given by the gradient of the conservative potential F(r) = −∇V (r). Thus, a so-called
red-detuned light field with ∆ < 0 attracts atoms to the position of the maximum light
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intensity, whereas atoms are repelled out of the beam for blue detuning ∆ > 0. In the
following, we will introduce two configurations of optical traps, frequently employed in
our experiment.

Crossed-beam dipole trap

Most experiments carried out within this thesis are performed in a harmonic trap. This
kind of traps are typically formed by crossing two focused, red-detuned laser beams. The
radial intensity distribution I(r) is given by a two-dimensional Gaussian. Since the in-
tensity gradient is usually much steeper in the radial direction than along the beam, two
beams are crossed to create a step potential in all directions.

Typically, the spatial extension of the atomic ensemble is much smaller than the waist
of the Gaussian laser beam ω0. Here, the potential around the intensity maximum can be
well approximated by a harmonic oscillator [126]. By intersecting two identical beams at
their foci, an isotropic three-dimensional harmonic oscillator is created

Vho = −U0
x2 + y2 + 2z2

ω0
, (2.12)

where the absolute depth of the potential U0 is determined by 2.11 for I(r = 0). In section
1.1.3, we have already study the effect of the harmonic potential on the atomic interaction.

Optical lattices

Optical lattices confine the atoms in a periodic potential. This allows to simulate the
properties of electrons in a solid, where the electrons move through the periodic potential
created by a crystal of immobile ions [5, 19, 127]. Therefore, optical lattices have become
an important and versatile tool for quantum simulation. Furthermore, they are also em-
ployed for optical lattice clocks. They allow for the recoil free excitation of atoms and thus
have enable to build the most precise atomic clocks in the world [128, 129].

For ultracold atoms, we can create periodic potentials by interfering a single or mul-
tiple laser beams. A common experimental method is to retro-reflect a laser beam such
that the forward and the backward-travelling beams are aligned and interfere with each
other. This creates a standing wave with a periodicity of half of the laser wavelength λ.
By orthogonally intercepting three retro-reflected laser beams, a three-dimensional square
lattice potential is formed,

Vlat =
∑

ξ=x ,y ,z

Vi cos2(kξ) (2.13)

where k = 2π/λ is the wave vector of the laser light and Vξ is the the lattice depth given
by (2.11) of the ξ-axis . Conventionally, the lattice depth is expressed in units of the recoil
energy Er = ħh2k2/2m of the laser creating the lattice. For red detuned lasers the atoms are
trapped in the anti-nodes of the standing wave.

Here, we have approximated the laser beams with plane waves, neglecting the Gaus-
sian intensity profile of the laser beams. This creates an additional harmonic confinement
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and an energy between adjacent sites. However, as long as the spatial extension of the
atomic cloud is small compared to the waist of the laser beam, we can assume a homoge-
neous lattice depth throughout the atomic ensemble.

2.3.2 State-dependent optical potentials

For alkali atoms, optical dipole potentials offer the possibility of trapping atoms indepen-
dent of the Zeeman sub-level, since the difference in detuning of the individual states is
very small. By choosing a wavelength between the D1 and D2 line one can furthermore tai-
lor state-dependent potentials for the two hyperfine manifolds. However, such potentials
are considered impractical for experimental purposes, since they are always closely tuned
to the atomic transitions and therefore cause heating via substantial photon scattering.

In AEL we find a different situation. Here, the ground state 1S0 and the metastable
states 3P0 and 3P2 are separated by several eV and belong to different electronic manifolds.
In the following discussion, we will focus on the two states 1S0 (denoted |g〉) and 3P0 (|e〉)
employed in our experiment. Due to their opposite symmetry, they are coupled to different
states. This results in a different frequency dependence in the polarisability for each state.
Figure 2.5 displays the AC-Stark shift for the |g〉 and |e〉 states of ytterbium. It is based on
the results obtained by Dzuba et al. by ab initio relativistic many-body calculations [130,
131].

As illustrated by Figure 2.5, the polarisabilities of the two states are in general not
the same. Yet, we can identify special configurations, where the two states experience
the same AC-Stark shift Vg(ω) = Ve(ω). The corresponding wavelengths are called magic
wavelengths.

Four magic wavelengths have been predicted λm = 759.35, 551, 465 and 413 nm for
ytterbium [131]. So far, only the one at λm = 759.35 has been employed in experiments.
Since the ultra narrow clock transition is highly sensitive to the residual AC-Stark shifts
between the two clock states, magic wavelength lattices have become an indispensable
tool for optical clocks. In such a potential, the clock transition can be probed in a pseudo
Stark shift free environment, enabling longer interrogation times [129] which allowed to
push the precision of optical lattice clocks to the 10−18 level [132, 133]. Exact evaluations
of the magic wavelength are employed to improve the precision of the ab initio calculations
of the polarisabilities [134].

At the so-called anti-magic wavelengths, the polarisabilities for both states are equal
in magnitude, but opposite in sign. For ytterbium, this happens at λam = 1117, 619, 436
nm. Here, the atoms experience either a red or blue detuned potential of same magnitude
Vg(ω) = −Ve(ω). Therefore, |e〉 and |g〉 atoms are separated into two sub-lattices. Since
each of this sub-lattices is given by the nodes or the anti-node of the standing wave,
they are shifted by λ/4 with respect to each other. Applying a strong coupling between
|e〉 and |g〉 on the clock line, allows to create adiabatic sub-wavelength lattices for the
dressed states [135]. Furthermore, this setup has been proposed as a building block for
the creation of strong artificial gauge fields [136, 137].
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Figure 2.5 – (a) AC-Stark shift of the ground 1S0 (blue) and metastable 3P0 (yellow) state of ytterbium. The
wavelength dependence of the dynamic polarisability was is obtained from relativistic many-body calcula-
tions [131]. The two visible poles in displayed wavelength range result for the ground state from the1S0→3P1

transition at 556 nm and for the excited state from the 3P0 →3S1 transition at 649 nm. (b) Schematic rep-
resentation of lattice potentials for ground and excited state atoms created by a monochromatic light field of
a wavelength corresponding to the marks in figure (a). The shaded areas represent the magnitude of the
Wannier functions on the lattice sites.

In general, the polarisabilities of |e〉 and |g〉 are not the same and lead to state-
dependent optical potentials. The region between the magic wavelength at 759 nm and
the resonance3P0 →3S1 at 649 nm offers a red detuning for both states. Close to the
3P0→3S1 resonance, the potential for the |e〉 atoms can be made substantially deeper than
for the |g〉 atoms, as illustrated in 2.5(b). It is thus possible to achieve strong localization
of atoms in the |e〉 state, while keeping atoms in the |g〉 state mobile. This configuration
is particularly interesting because atoms in the |e〉 state have to be isolated in all experi-
ments. While colliding, two |e〉 atoms can relax into the ground state and are lost from the
trap due to the excess energy. Such state-dependent potentials are proposed for simulating
condensed matter models with electrons in different orbitals [38, 51, 52].

2.4 Alkaline-earth-like atoms for quantum simulation

In the previous section, we have introduced the optical lattices allowing to create periodic
potentials, as they are found in solid-state systems. Furthermore, we have investigated the
polarisabilities of the two lowest electronic states (1S0 an 3P0 ) in ytterbium. We have seen
how we can utilize the different polarisabilities to create state-dependen potentials. In the
following, we give a brief overview of the physics that can be realized by AEL atoms.

First, we briefly review the properties of the SU(N) Fermi liquid in a harmonic trap
Then, we turn the attention to optical lattices and introduce the Fermi Hubbard model.
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This model developed for electrons in solids can be simulated by neutral atoms in optical
lattices. In a second step, we extend the Hubbard model to the case of SU(N) symmetry
and two-orbital interactions. Finally, we present the scattering properties of 173Yb and
discuss the experimental feasibility of the proposed models.

2.4.1 SU(N) Fermi liquid

In 173Yb we find a SU(6) symmetric configuration for the interactions in the ground state.
Let us consider the implications of the enlarged symmetry on an interacting Fermi gas
under typical experimental conditions. We confine the atoms in a harmonic trap and cool
them down to temperatures about ten percent of the Fermi temperature TF. In this regime,
an interacting Fermi gas is well described by Landau’s Fermi liquid theory [138]. Such a
Fermi liquid exhibits a gapless Fermi surface with a radius kF, the so-called Fermi wave
vector. The elementary excitations are known as quasi-particles and have a fermionic
character, they are long-lived and weakly interacting. In a uniform SU(N) symmetric
Fermi liquid, the Fermi surface reflects the full symmetry of the system. However, if the
Fermi surface is unstable against deformation, the systems’s underlying symmetry can be
spontaneously broken. The Fermi surface is deformed and has a lower symmetry than the
initial state, a mechanism know as Pomeranchuk instability. Thus, the ground state of the
interacting SU(N) Fermi liquid, would not reflect the full SU(N) symmetry.

It is relevant to ask whether, we can expect for an 173Yb quantum gas a SU(N) symmet-
ric Fermi liquid or a ground state with lower symmetry. One famous example of a Pomer-
anchuk instability for repulsive interaction is Stoner magnetism. Here, the unpolarised
Fermi gas becomes unstable against phase segregation and the formation of polarised, i.e.
ferromagnetic domains. The Stoner criterion for ferromagnetism can be generalised to the
SU(N) case [36, 39]. The criterion for ferromagnetism is predicted to be nearly indepen-
dent of N and has the same form as in the SU(2) case [107]. For kFa < π/2 the Fermi
surface is stable against deformation. In 173Yb with ag g = 199.4 a0, we find kFa ≈ 0.1 for
typical experimental parameters. Hence, for 173Yb the Fermi liquid phase is stable against
ferromagnetic correlations.

For attractive interactions, the Fermi surface is unstable against pairing and the forma-
tion of Cooper pairs. This instability exists for any arbitrary weak interaction and leads to
s-wave pairing. The SU(N > 2) symmetric Fermi gas is proposed to show a rich phase dia-
gram of paired states [53–55, 139]. In the case of SU(3), a color superfluid state emerges.
Here, in analogy to QCD, the formation of trimers can be understood as baryon produc-
tion [54]. However, for 173Yb as well as 87Sr, the only SU(N > 2) symmetric atoms cooled
to quantum degeneracy, the interactions in the ground state are weak and repulsive. Kohn
and Luttinger showed that also in the presence of repulsive interaction the Fermi gas is
instable against Cooper-pair formation, giving rise to triplet p-wave superfluidity [140].
Yet, in this regime, the demands on the temperature are even more challenging than for
s-wave pairing. Due to the absence of magnetic Feshbach resonances and because optical
Feshbach resonances break the SU(N) symmetry, it is not possible to tune the scattering
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length to large and negative values and promote the pairing instability. Therefore, unless
one of the yet unexplored AEL atoms with I > 1/2 possesses such a scattering length in
the ground state, these phases may remain unexplored.

2.4.2 The SU(N)-symmetric Fermi Hubbard model

In the following, we will study the implications of the enlarged spin rotation symmetry
on the behaviour of fermionic AEL atoms in optical lattices. Therefore, we introduce
the Fermi-Hubbard model. This model, originally designed to describe the properties of
electrons in the ionic lattice structure of a solid, is exactly realised by ultracold neutral
atoms in the lowest vibrational level of an optical lattice [19].

The wave function of a particle in a periodic potential can be expressed in the basis
of so-called Bloch waves [6]. These waves are given by the product of a plane wave and
a periodic function that reflects the periodicity of the underlying potential. The energy
eigenstates of the Bloch waves can be grouped into continuous bands. Owing to their
composition, Bloch waves are delocalised on the whole lattice. Therefore, they are not
suited for the description of local effects on an individual lattice site.

However, by the appropriate superposition of Bloch waves, we can construct a new
basis set of localised wave functions, which are called Wannier functions. These functions
are maximally localised on the individual lattice sites and represent a good description of
the system in the tight-binding limit. Here, we assume that all energy scales are small
compared to the gap between the first two Bloch bands and we can restrict our self to
the lowest energy Bloch band. This allows us to expand the field operators, creating an
annihilating particles at an arbitrary point, in the basis of Wannier functions and we can
reduce the Hamiltonian of fermions in an optical lattice to the Hubbard Hamiltonian [19],

Ĥ = −J
∑

〈i, j〉,σ

ĉ†
i,σ ĉ j,σ +

U
2

∑

i,σ 6=σ′
n̂i,σ n̂i,σ′ . (2.14)

Here, ĉ(†)i,σ are the creation and annihilation operators of a fermion with spin index σ on

a lattice site i and n̂i,σ = ĉ†
i,σ ĉi,σ the corresponding number operator. In the conventional

case of spin one-half fermions, the spin index σ = 1, . . . , N runs only upto 2. However, in
the case of AEL atoms N can be as large as 10 and (2.14) represents in the given form
directly the extended SU(N) symmetric FHM. This means that the Hamiltonian is invariant
under a change of spin components.

The first term in the FHM describes the tunnelling of atoms from a lattice site i to
a neighbouring one j. The tunnelling rate J is given by the tunnelling matrix element
between adjacent sites

J = Ji, j =

∫

d3 xw∗(x − x i)

�

−
ħh2

2m
∇2 + Vlat(x)

�

w(x − x j), (2.15)

where w(x − x i) is the Wannier function on lattice site i and Vlat(x) the potential of the
optical lattice. The energy width of a Bloch band in a three dimensional lattice, can be
expressed as W = 12J .
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Figure 2.6 – A schematic of the Fermi Hubbard model and its characteristic parameters: the tunneling rate
J , the interaction energy U and the super-exchange energy Vex = 4J2/U . (a) A shallow lattice, where the
tunnelling rate is high and the atoms can hop around the lattice freely. (b) A deep lattice, where tunnelling is
suppressed and the atoms interact only via virtual processes.

The second term of the FHM accounts for the interaction of different fermions σ 6= σ′

on a single lattice site. Assuming a zero-range pseudo potential for the interaction, the
on-site interaction strength is given by the Wannier functions overlap

U =
4πħh2

m
a

∫

d3 x |w(x)|4. (2.16)

Due to the SU(N) symmetry, the interactions are the same for all possible spin combina-
tions. Therefore, the Hamiltonian (2.14) commutes with all spin permutation operators
�

Sm
n , H

�

= 0, where Sm
n =

∑

i ĉ†
i,m ĉi,n.

The physics of the FHM are govern by the interplay between the tunnelling strength
and interaction energy. Depending on the temperature and the magnitude and sign of U/J
many different phases can be found. For the SU(2) case, the phase diagram of the FHM
has been extensively studied.

For attractive interaction U < 0, the ground state of the FHM is a superfluid. Depend-
ing on the strength of the attraction, the nature of the superfluid changes from BCS-like
for small U to a BEC of composite bosons. Here, no spin order exists in the ground state.
For repulsive interaction U > 0, the system undergoes a crossover from a conducting metal
to a Mott insulating state with increasing U/J [22, 23]. In this regime, tunnelling is sup-
pressed and we can map the SU(N) FHM onto a SU(N) Heisenberg spin model [141, 142]

ĤHeis =
2J2

U

∑

m,n,〈i, j〉

Sm
n (i)S

n
m( j). (2.17)

Here, the atoms can only interact via a virtual tunnelling process. For temperatures below
the super exchange energy 4J2/U , the ground state spontaneously breaks the spin symme-
try and possesses anti-ferromagentic spin ordering. The formation of anti-ferromagnetic
ordering has been recently observed in the one- and two-dimensional FHM [44, 46].

In the following, we will study the implications of the enhanced SU(N) symmetry
on ground state in the lattice and the experimental important procedure of adiabatically
loading the lattice. In a typical experimental realization of the Hubbard model, the atoms
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are first evaporatively cooled in a harmonic trap. Afterwards, the optical lattice is slowly
turned on and the atoms are adiabatically transferred. Let us consider a non-interacting
gas, in a harmonic trap, the entropy per particle scales as Si ∼ N1/3. In the lattice the
entropy per particle on a site grows as Si ∼ log N , because it is equally likely for any of the
N spins to occupy a site [143]. Thus, while adiabatically loading the lattice, more entropy
can be stored in the spin degree of freedom. This effect is the so-called Pomeranchuk cool-
ing and well known from 3He. It has led to the production of SU(N > 2) Mott insulators
at temperatures, that would not support a Mott insulating state for SU(2) [42, 43].

For fermionic AEL atoms, so far only positive scattering lengths have been reported.
Therefore, we focus on the case of repulsive interactions. The ground state of a SU(N)
Fermi gas on a lattice depends strongly on N . For SU(3) it is supposed to be a flavour
density-wave [47], for SU(4) a valence bond solid [48] and for SU(N ≥ 6) a staggered
flux phase[36, 47]. Here, the staggered flux phase is of particular interest, since it breaks
the translation symmetry of the lattice, while preserving the full SU(N) symmetry. How-
ever, it is questionable if this phase can be created with 173Yb. For SU(N ≤ 6) renor-
malization group studies show, that SU(N) breaking phases like the flavour density-wave
possess a lower energy [47]. Here, 87Sr with N = 10 seems to be a more suitable candidate
for the studies of SU(N) magnetism. However, the exploration of SU(N) magnetism re-
quires as for the SU(2) case temperatures on the super-exchange scale. Recent Quantum
Monte-Carlo calculations hint, that even in this regime the final temperature decreases
with increasing N [143, 144].

So far, the currently achievable temperatures have enabled us to experimental study
the equation of state across the metal to Mott transition [43]. Especially in the regime,
where the kinetic and interaction energy scales are comparable, the experimental findings
go beyond current theoretical state-of-the-art models.

2.4.3 Two-orbital SU(N)-symmetric models

For AEL atoms, we find SU(N) symmetric interaction for the two J = 0 states. Therefore,
we can generalise the SU(N) FHM to the case of two electronic orbitals

Ĥ =−
∑

〈i, j〉,σ,α

Jα ĉ†
i,σ,α ĉ j,σ,α +

∑

i,σ 6=σ′,α

Uα,α

2
n̂i,σ,αn̂i,σ′,α

+ Vex

∑

i,σ,σ′
ĉ†

i,σ,g ĉ†
i,σ′,e ĉi,σ′,g ĉi,σ,e + Vd

∑

i

n̂i,g n̂i,e,
(2.18)

with the index α = {|g〉, |e〉} for the electronic states. The first line of 2.18 is similar to
the single orbital FHM, with in intraorbital interaction Uα,α, calculated analogue to (2.16)
for agg and aee. The interorbital interactions with the two scattering lengths a+eg and a−eg
give rise to the two additional terms in the second line. In analogy to the pseudo spin-
1/2 language, these therms are called the direct energy Vd = (U+eg + U−eg)/2 and exchange
energy Vex = (U+eg − U−eg)/2, where U±eg are given by (2.16) for a+eg and a−eg. Examining the
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Figure 2.7 – (a) Realisation of the Kondo lattice model with AEL atoms in a state-dependent optical lattice.
The |e〉 atoms are strongly localised and their tunneling is suppressed Je/Jg ≈ 0. The |g〉 atoms have a
high mobility and interact with the localised |e〉 atoms via the on-site exchange interaction Vex. (b) Schematic
T = 0 phase diagram of the two dimensional KLM for ferromagnetic Vex < 0 and anti-ferromagnetic Vex >

0 exchange coupling. The different phases denote the magnetic order of the localised spins, i.e. the |e〉
atoms. Here, AF, FM, IC, PM, and PS denote regimes with anti- or ferromagnetic correlations, incommensurate
correlations, paramagnetic correlations, and with phase separation between AF and FM regions, respectively.
The phase diagram of the ferromagnetic side is based on [146, 148]. For the IC-PS crossover no phase
boundary has been determined yet. The anti-ferromagnetic phase diagram was obtained by [51]. Both sides
are based on dynamical mean-field calculations.

corresponding operators, we see that Vex leads to an on-site orbital exchange process for
atoms with different spin.

A prominent realization of a two orbital system is the Kondo lattice model (KLM).
In solid state physics the KLM is applied to describes the interaction of mobile conduction
electrons with strongly localized spins. These are usually given by unpaired electrons close
to the nuclear core in the f -shells. AEL atoms are an ideal candidate for the simulation
of the KLM. We can make use of the different polarisabilites of the |g〉 and |e〉 states and
create state-dependent potentials. Choosing a suitable lattice wavelength, the |e〉 atoms
become localised (Je = 0), while keeping the |g〉 atoms mobile. Thus, the full two-orbital
Hamiltonian 2.18 reduces to the KLM Hamiltonian [38]

ĤKLM = −Jg

∑

〈i, j〉,σ

ĉ†
i,σ,g ĉ j,σ,g + Vex

∑

i,σ,σ′
ĉ†

i,σ,g ĉ†
i,σ′,e ĉi,σ′,g ĉi,σ,e (2.19)

Here, the interplay between the strength of the ground state tunnelling rate Jg and the
exchange energy Vex gives rise to a rich phase diagram [38, 51, 145–147]. Depending on
the sign of the exchange coupling, we can either realize the anti-ferromagnetic (AF) or
ferromagnetic (FM) KLM with AEL atoms.

Let us first consider AF coupling Vex < 0. This type of coupling is found in heavy
fermion materials [34] and gives rise to the Kondo effect in the case on a single impu-
rity [33]. Here, strong exchange coupling |Vex| > Jg leads to the formation of on-site spin
singlets between the mobile |g〉 and localised |e〉 atoms, also referred to as Kondo singlets.
Due to the screening of the localised spins, the formerly mobile |g〉 atoms acquire a large
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effective mass and enter the heavy fermion phase. At weak exchange coupling |Vex| < Jg ,
the mobile |g〉 atoms can mediate long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teractions between the localised spins. At half filling ng = 0.5, the correlations in the |e〉
atoms change from FM to AF [51].

The FM KLM is associated with the appearance of the colossal magneto resistance in
manganese oxides with perovskite structure [149, 150]. Here, the exchange coupling
favours the formation of spin triplets. Thus, in the weak as well as in the strong coupling
limit ferromagnetic order arises. Only for high |g〉 densities a paramagnetic phase, com-
posed by phases of separated AF and FM regions, exists [148]. In the weak coupling limit,
this phase extends down to half filling. Around half filling, a phase with incommensurate
correlations can be found [146].

Let us now study the feasibility of the aforementioned with AEL atoms. Looking at
Figure 2.5, we identify a region suited for a state-dependent lattice for the implementation
of the KLM between 650 nm and 750 nm. In this region, the lattice light is red detuned for
both states and creates a stronger confinement for the |e〉 atoms. Adopting a wavelength
of 670 nm, we measure a ratio of approximately three in the polarisabilities and in the
lattice depth. This wavelength is still far detuned from the 3P0→3S1 transition and offers
an experimentally feasible lifetime of 1.7 s for the |e〉 atoms in a 30 Er (measured for |e〉)
deep lattice. For the KLM, the essential energy scale is the exchange coupling, caused
by the difference between the two interorbital scattering lengths a+eg and a−eg. In 173Yb,
we find a large difference ∆a ≈ 1600a0 [59], making 173Yb an ideal candidate for the
implementation of the KLM. In comparison, for 87Sr this difference is rather small ∆a ≈
100a0. Let us consider a state-dependent lattice depth of 3 Er (9 Er) for the |g〉 (|e〉) atoms
in two dimensions and a strong magic lattice of 30 Er in the third direction. In the two-
dimensional plane, the |g〉 atoms are still mobile (Jg ≈ 290 Hz), while the |e〉 atoms are
sufficiently localised (Je ≈ 50 Hz) and the exchange energy is Vex ≈ h · 8 kHz. Therefore,
we expect 173Yb to be in the strong coupling limit Vex > Jg .



CHAPTER 3

Experimental apparatus and sequence

Our experiments are based on the reproducible production of an ensemble of ultracold
atoms. Repetitively, we create a degenerate Fermi gas, vary an external parameter and
observe the influence on the atoms. In this chapter, we will give a brief overview of the
experimental apparatus and sequence employed in this thesis for the investigation of the
scattering properties of 173Yb. First, the vacuum and laser system used for trapping, cool-
ing and manipulating the atoms are introduced. Then, we explain the experimental cycle.
Starting from the magneto-optical trap (MOT), we describe the all-optical production of a
two-component degenerate Fermi gas of 173Yb. Finally, we present the techniques for the
coherent and incoherent manipulation of the orbital degree of freedom.

3.1 Experimental apparatus

The experimental apparatus consists of a vacuum system, surrounded by magnetic field
coils and an extensive optical system steering the light onto the atoms. The main chamber
of the vacuum system exhibits a background pressure below 10−11 mbar. Here, we obtain
a background collision limited lifetime of the degenerate Fermi gas on the order of several
tens of seconds [60]. These long lifetimes are essential for the experiments presented in
this thesis, where we have observed the suppression of thermalisation up to five seconds.
Another coupling to the environment is given by black-body radiation from the walls of
the vacuum vessel. In order to ensure reproducible conditions, the entire optical table is
boxed in and the air temperature around the apparatus is stabilised. A detailed discussion
of the vacuum system, including the custom design of the ytterbium oven, can be found in
Ref. [60]. We will restrict the overview of the experimental apparatus to the components
of particular influence for the experiments presented in this thesis; the magnetic field
setup and the so-called clock laser addressing the 1S0→3P0 transition.

3.1.1 Magnetic field coils

As we want to study the magnetic field dependence of the scattering length in 173Yb, a
good control over the magnetic field is needed. Around the main vacuum chamber various
pairs of coils are placed, allowing to create magnetic fields along all three dimensions.
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Figure 3.1 – Schematic drawing of the magnetic field coils (a) in the x − y plane and (b) the x − z plane. The
steel parts of the vacuum chamber are drawn in gray, the copper parts of the magnetic field coils in orange.
For clarity, we only present the high-field coils and omit the three sets of shim coils, used for the compensation
of stray fields. In order to create the strongest possible fields, the MOT coils are immersed inside the bucket
windows. The MOT coils are used in Helmholtz configuration to generate the bias fields for the optical pumping
or excitation on the clock line. The TV coils in Helmholtz configuration create a field along the y -axis. They are
employed to set the quantization axis during the optical Stern-Gerlach and ensure σ+ polarised OSG light.

There are two water-cooled, high-current pairs of coils for the creation of strong magnetic
fields, the so-called MOT coils and transverse (TV) coils. Furthermore, there are three
pairs of small coils for the compensation of the earth magnetic field. The MOT and TV
coils can be switched from Helmholtz to anti-Helmholtz configuration, by reversing the
current in one of the coils via a MOSFET-based H-bridge. In Helmholtz configuration, the
MOT coils create a uniform magnetic field along the z-axis. The field of the TV coils is
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along the y-axis and thus transverse to the Zeeman slower and the propagation of the
atomic beam (see Figure 3.1).

The central part of the magnetic field setup is the pair of MOT coils, creating a magnetic
field of 1200 G for I = 220A at the position of the atoms. This is the maximum current the
connected power supply is capable of delivering. A detailed description of the coils can be
found in Ref. [61]. In Helmholtz configuration, the MOT coils are used for the generation
of the bias field during the optical pumping and the excitation on the clock transition. In
the presence of the this field, the linearly polarised clock light is π-polarised.

The TV coils are connected to a power supply delivering up to 100 A and creating a
maximum field of 25 G at the position of the atoms. In the presence of the TV field, the
circular optical Stern-Gerlach light is σ+ polarised. Furthermore, the TV field decomposes
the linear clock light into σ+ and σ− polarised light. In anti-Helmholtz configuration, the
combination of the MOT and TV coils creates the magnetic field gradient for the magneto-
optical trap.

The three sets of small coils are not water cooled and can carry a current of up to 2 A.
They create a field of ∼ 1 G at the position of the atoms. We employ them to cancel the
earth magnetic field (∼ 400 mG) and stray fields from the ion pumps and other magnetic
components.

3.1.2 Optical setup

In order to minimize thermal fluctuations on the main table, all laser sources are placed on
individual tables. On the experimental table, all laser beams originate from polarisation
maintaining, single-mode optical fibres. These fibres ensure a stable spatial position of
the beams, a well-defined polarisation axis and a transverse Gaussian mode. As illustrated
in Figure 3.2, the main chamber has an octagonal shape, where two sides are connected
to the vacuum system. This grants optical access to the atoms via six viewports in the
horizontal plane, as well as two viewports in the vertical direction. The entire optical
setup consists of the MOT beams, two crossed optical dipole traps (ODT), a cubic three-
dimensional lattice, one beam for optical Stern Gerlach (OSG), one for the clock light and
two imaging beams.

The MOT is formed by six independent beams, two in the vertical and four in the hor-
izontal direction. Since the vertical MOT beams can be intensity controlled individually,
they are further used for the manipulation of the nuclear spin via optical pumping. In
the presence of the MOT field, the vertical beams have opposite polarisation (σ+ and σ−)
allowing to create any desired spin mixture.

The main ODT operates at 1064 nm and is employed for evaporative cooling of ytter-
bium in the 1S0 state. The ODT is composed of two beams intersecting at their foci. The
horizontal beam is strongly elliptical and has a waist of wh = 153µm and wv = 20µm
in the focus. The vertical beam is circular with a waist of w = 86µm. At the maximum
light power (Ph = 10.5 W and Pv = 1 W) this creates an 82µK deep trap with frequencies
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Figure 3.2 – Schematic drawing of the optical beam paths, delivering the light to the atoms in (a) the horizontal
plane and (b) the vertival plane. Parts of the steel vacuum chamber are drawn in gray, the copper parts of the
magnetic field coils in orange. The main octagon chamber offers six small viewports in the horizontal plane
and two large viewports in the vertical plane. The various colours correspond to the following wavelengths:
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figure is an update of the optical setup presented in [60]. Compared to [60], we have removed the vertical path
of the clock light and the imaging path on the lattice 2 axis. We have installed an additional magic dipole trap
(mHDT and mVDT) and included a state-dependent lattice (SDL) coalinged to the L2 axis. Furthermore, we
have have split the vertical imaging into two paths (V + and V−) allowing spin-resolved in-situ detection at
high magnetic bias fields.
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ω = 2π × (20, 103,1432)Hz. At the end of the evaporation, the typical trap frequencies
are ω= 2π× (22,27, 215)Hz.

The cubic, 3D lattice is formed by three perpendicular retro-reflected beams. Two
lattice beams (L1 and L2) propagate in the horizontal plane and a third one (L3) along the
vertical direction. The lattice operates at the magic wavelength λ = 759 nm and creates
a state-independent potential for the 1S0 and 3P0 state. With the available light power, we
can create an isotropic lattice with a depth of 40 Er in each arm.

The second ODT, the so-called magic ODT (mDT), also operates at the magic wave-
length and allows simultaneous trapping of atoms in the 1S0 and 3P0 states. For the experi-
ments reported in this thesis, it was formed by intersecting the horizontal mDT beam with
the ingoing L2 beam. This configuration creates a cigar-shaped trap. For 0.7 W in the hor-
izontal mDT and a power corresponding to 50 Er in L2, we obtain a trap with frequencies
ω= 2π× (20,120, 160)Hz.

The beam path of the λ = 578 nm clock light propagates along the L1 beam. The
λ= 556 nm OSG beam is coaligned to the horizontal imaging λ= 399 nm beam employed
for time-of-flight imaging. A second imaging beam along the vertical direction is used for
high-resultion, in-situ absorption imaging. Here, an objective with a numerical aperture
of NA= 0.27 allows for a resolution of 1.2µm [61].

3.1.3 Laser sources

In the following, we will give a brief overview of the laser sources employed in the ex-
periments presented in this thesis. The optical transitions connecting to the 1S0 ground
state are all in the visible part of the spectrum. In this regime, no commercial high-power
laser sources are available. Therefore, we create the desired wavelengths by second har-
monic generation (SHG). The light of high-power, near-infrared laser sources is frequency
up-converted in custom designed doubling cavities. We employ the 1S0 →1P1 and the
1S0→3P1 transition for laser cooling and trapping of ytterbium. Furthermore, we want to
address the 1S0→3P0 transition and prepare atoms in the meta-stable state. In total, three
custom designed laser systems are employed, operating at λ = 399 nm, λ = 556 nm and
λ= 578 nm.

For the creation of a far-off-resonance optical dipole trap for ytterbium in the 1S0 state,
a laser operating λ= 1064 nm is employed. This wavelength is far detuned from the strong
1S0→1P1 transition at 399 nm and commercial high-power laser sources are available. The
light for the magic-wavelength lattice as well as for the magic-wavelength dipole trap are
both generated by a commercial Titanium-Sapphire ring laser. A detailed description of
the laser sources can be found in Ref. [60].

In the following, we will briefly introduce the so-called clock laser. As we want to
investigate the interaction properties between the two orbitals 1S0 and 3P0 , a laser system
capable of addressing the 6.1 mHz [114] wide 1S0→3P0 transition is required. In order to
achieve strong couplings to this ultra-narrow transition and to resolve interaction-induced
shifts to the clock transition frequency with a precision on the level of a few hundred
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Hertz, a significant reduction of the initial laser linewidth is necessary. We achieve the re-
duction of the laser linewidth by means of a high bandwidth locking scheme to a reference
cavity [151, 152]. The clock laser is based on a high-power infrared laser diode with an
elongated external cavity, which reduces the linewidth of the free-running laser well below
100 kHz. The laser is locked to a high-finesse reference cavity with the Pound-Drever-Hall
(PDH) locking technique [153, 154]. The reference cavity is made from ultra-low expan-
sion (ULE) glass and exhibits a finesse of 8.46(6)× 104 [155]. The PDH technique serves
as a phase lock with the leakage of the intracavity field as phase reference, i.e. the instan-
taneous laser phase is compared to its historical average [151]. Thus, the laser linewidth
can be reduced well below the cavity transmission linewidth. In order to reduce the laser
linewidth, a control loop with a high bandwidth is required. We achieve a control-loop
bandwidth of 800 kHz and reduce the laser linewidth down to ∼ 30 Hz in the infrared, i.e.
∼ 60 Hz after the SHG (see Figure 3.4). The initial construction of the clock laser is docu-
mented in Ref. [155]. A detailed discussion of the current setup, as well as an evaluation
of the control loop can be found in Ref. [60].

During the course of this thesis, we have set out for the construction of a second-
generation clock laser. With the new setup, we want to overcome several limitations of
the current setup. In particular, we have introduced a second, so-called pre-stabilisation
cavity. The clock light is first locked to the pre-stabilisation cavity in transmission before
the lock to the high-finesse cavity is employed. This technique is expected to allow for a
more efficient linewidth reduction. In Ref. [156], the construction and characterisation of
the new clock laser is presented in detail.

3.2 Experimental sequence

In this section, we present the experimental sequence for the production of a two-component
degenerate Fermi gas of 173Yb. It consists of three stages. First, a magneto-optical trap
(MOT) is loaded from a Zeeman slower (ZS), decelerating the ytterbium atoms leaving a
hot oven. Secondly, the atoms are transferred from the MOT into an ODT and evapora-
tively cooled down to quantum degeneracy. Then, the actual experiments are performed.
Finally, information about the state of the atoms is retrieved via absorption imaging. Since
this destroys the atomic sample, we have to restart the experimental sequence. The entire
experimental cycle and thus the acquisition of a single data point takes about 35 seconds.

3.2.1 Production of a degenerate Fermi gas

Ytterbium atoms, upon leaving the 400◦C hot oven, enter the ZS with an average thermal
velocity of 340 m/s. In the ZS, the atoms are longitudinally decelerated with resonant
light on the 1S0→1P1 transition. Due to the high scattering rate, a reasonably short ZS is
sufficient to slow the atoms below the capture velocity of the MOT (8 m/s), operating on
the 1S0→3P1 transition [60].
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In the MOT, the atoms are trapped and their velocity in all three dimensions is re-
duced. After 8 s of loading, the ZS is turned off and the MOT is compressed by increasing
the magnetic field gradient and simultaneously decreasing the light power and detuning.
This leads to an increase in the atomic density in the MOT, while reducing the temperature
at the same time. Owing to the narrow linewidth of the 1S0→3P1 transition, temperatures
down to the Doppler temperature of 4.4µK can be reached. We aim for an efficient trans-
fer of the atoms into the ODT, which is turned on during the MOT compression. The
highest transfer efficiencies are achieved for hotter samples containing more atoms. Un-
der optimal conditions for 173Yb, we transfer 5×107 atoms at a temperature of 20µK into
the ODT.

Initially, the ODT has a trap depth of 80µK. The trap depth is lowered in an exponential
ramp over 14 s to a final value of 0.3µK. During the evaporation process, atoms with the
highest kinetic energy leave the trap. The change in the trapping potential is so slow that
the atomic ensemble can largely rethermalise via elastic collisions. With our evaporation
scheme, we routinely produce degenerate Fermi gases at T ≈ 0.14 TF, where TF is the Fermi
temperature. The temperatures are determined by fitting a Thomas-Fermi distribution to
the momentum distribution of the atoms, obtained from time of flight absorption images.

The harmonically trapped, degenerate Fermi gas is the starting point for all experi-
ments presented in this thesis. The atoms are either adiabatically transferred into the
magic dipole trap or into a 3D isotropic lattice.

3.2.2 Manipulation and detection of the nuclear spin

After the MOT, all six nuclear-spin states of 173Yb are equally populated. For the experi-
ments presented in this thesis, we commonly work with a two-spin mixture. Therefore,
we have to transfer atoms from one spin state into another. Unlike in alkali atoms, in AEL
atoms, the total angular momentum F cannot be manipulated by microwave radiation,
due to the absence of a hyperfine structure in the ground state. For this reason, we em-
ploy optical pumping on the 1S0 (F = 5/2) → 3P1 (F ′ = 7/2) transition in the beginning
of the evaporation. In the presence of an external magnetic field, the Zeeman sub-levels
of the 3P1 state split by mF × 170 kHz/G. The optical pumping is performed at a bias
field of BMOT = 50 G, which ensures a splitting of several linewidths. Using subsequent
σ±-polarised pulses, resonant to the various 1S0 (F = 5/2, mF ) → 3P1 (F ′ = 7/2, mF ± 1)
transitions, we can prepare any combination of spin states. Due to the SU(N) symmetry,
any prepared spin mixture is stable against depolarisation on experimentally relevant time
scales [60].

The detection of the different nuclear spin states also requires an optical technique. In
alkali atoms, different spin states can be separated in time of flight employing the Stern-
Gerlach effect. Here, the magnetic moment in the ground state is so strong that for mag-
netic field gradients of a few Gauss per cm different, mF states can be spatially separated.
In AEL atoms, the magnetic moment in the ground state is about 2000 times weaker com-
pared to alkali atoms. Thus, magnetic field gradients of Tesla per cm would be required for
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Figure 3.3 – Illustration of the working principle of the optical Stern-Gerlach technique on the 1S0 (F =

5/2) → 3P1 (F ′ = 7/2) transition. (a) Alignment of the OSG beam. (b) The green arrows indicate the σ+

transitions with the associated Clebsch-Gordon coefficients. (c) Absorption picture of a balanced SU(6) gas
after OSG splitting of the mF states.

a comparable splitting. Therefore, we have implemented a so-called optical Stern-Gerlach
technique (OSG) [42, 157]. Here, a σ+-polarised, blue detuned laser beam is incident on
the atoms. As the light is only 850 MHz detuned from the 1S0(F = 5/2) →3 P1(F′ = 7/2)
transition, the optical dipole force is mF dependent due to the different Clebsch-Gordon
coefficients. For σ+-polarised light, the Clebsch-Gordon coefficients and thus the dipole
force increase monotonically with mF , as illustrated in Figure 3.3 . The center of the Gaus-
sian OSG beam is placed slightly above the atoms. Thus, the atoms are in the region of the
steepest gradient, where the dipole force is strongest (see Section 2.3). The force of the
OSG adds to the acceleration from gravity during the time of flight and leads to a splitting
between the different mF states.

3.2.3 Clock-line spectroscopy

The clock laser is locked to a high finesse ULE cavity. The cavity is thermally isolated from
the environment and temperature stabilised to the zero-crossing of the ULE glass. At this
temperature, the ULE glass shows the least susceptibility to thermal fluctuations, because
the thermal expansion coefficient of the ULE vanishes to first order. Nevertheless, the
reference frequency of the cavity is still susceptible to the ageing of the glass. As the ULE
spacer is sagging between the suspension points, the optical length of the cavity shortens.
This leads to an increase in the reference frequency. This process is slowing down over
time and with it the drift rate of the reference frequency. Therefore, we have to carry out
regular reference frequency measurements, in order to cancel this effect.

We perform the frequency reference measurements in an isotropic, 3D magic lattice.
The value of the magic wavelength has been measured for 174Yb [158] and 171Yb [134]. By
measuring the differential light shift of the clock transition for three different wavelengths,
we obtain a magic wavelength of λm = 759.30(4)nm [60] for 173Yb, which is in good
agreement with the previously reported values.

For the reference frequency measurements, we employ a spin-polarised Fermi gas
(mF = −5/2). The spin-polarised sample is prepared by optical pumping, as discussed
above. Here, we achieve temperatures of T ≈ 0.3TF. This temperature is sufficiently low
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Figure 3.4 – Clock-line spectroscopy of a spin-polarised Fermi gas (mF = −5/2) in a 3D magic lattice at a
magnetic bias field of 10 G. (a) High power spectroscopy. A 1500 ms pulse with an intensity of 1.5 W/cm2 is
used. The bandwidth of the control loop can be estimated from the two servo bumps, 800 kHz apart from the
carrier. The solid line is a guide to the eye. (b) High resolution spectroscopy. A 250 ms pulse with an intensity
of 0.4 mW/cm2, corresponding to a Rabi frequency Ω = 2π × 40 Hz, is employed. The errorbars represent
the standard error around the mean value of six measurements. For our experimental cycle time of 35 s, it
takes about 10 min to acquire a single resonance line. The six measurements were taken subsequently within
90 min. A minimum Lorentzian absorption linewidth of 60 Hz is observed. The averaged linewidth for the six
measurements is 70 Hz. We can estimate the stability of the laser by comparing the measured linewidth to the
absolute transition frequency. The averaged linewidth of 70 Hz corresponds to a fractional long-term stability
of 1.4× 10−13 at 90 min.

to avoid the transfer of atoms into excited bands of the lattice. Typically, we work at an
isotropic lattice depth of 30 Er , corresponding to a band gap of 19.5 kHz and a bandwidth
of 4 Hz in the ground band. In such a deep lattice, the atoms are strongly confined to a lat-
tice site, and the corresponding harmonic oscillator length is shorter than the clock-light
wavelength. Motional (band excitations in the lattice) and internal degrees of freedom
(|g〉 and |e〉) are decoupled, thus satisfying the Lamb-Dicke conditions during the excita-
tion. Furthermore, the deep lattice leads to a flattening of the dispersion relation of the
Bloch bands. For bandwidths well below the Rabi frequency of the spectroscopy pulse,
the coupling becomes independent of the quasimomentum. As our clock laser offers a
linewidth below 100 Hz, we can resolve the band structure of the lattice. Scanning over
the red sideband, we find no occupation of atoms in the first excited band [60].

During the excitation process, we apply a bias field of 10 G via the MOT coils. The
MOT field sets a well-defined quantisation axis. In the presence of the MOT field, the linear
polarised clock light is π-polarised. Therefore, we exclusively drive the transition 1S0(mF =
−5/2)→3 P0(mF = −5/2). The bare reference frequency is extracted by extrapolating the
measured frequency to zero magnetic field.

We obtain the best evaluation of the clock transition frequency by incoherent spec-
troscopy. Here, long pulses with low light intensity are employed. The time of the clock
excitation pulse is much longer than the coherence time of the laser, as well as the time
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Figure 3.5 – Coherent manipulation of the 3P0 population. All measurements are performed with a spin-
polarised Fermi gas (mF = −5/2) trapped in a magic-wavelength lattice with a depth of 30Er at a bias field
of 10 G. (a) Rabi flopping: the transition is driven on resonance with a light intensity of 0.7 W/cm2, resulting in
a Rabi frequency of Ω = 2π × 1.5 kHz . (b) Fourier-limited Rabi spectroscopy: the transition is probed by a
single π-pulse with intensity 40 mW/cm2 corresponding to Ω = 2π × 335Hz (c) Ramsey fringe: both π/2-
pulses are on resonance, after a dark time of T = 100µs, the phase of the second π/2-pulse with respect
to the first one is varied. (d) Ramsey spectroscopy: the detuning of the two π/2-pulses with a fixed dark time
of T = 500µs is scanned. Since the second π/2-pulse is phase delayed by π phase shift, all atoms are
transferred back into the ground state on resonance.

corresponding to a π-pulse at the given intensity. In this regime, the measured resonance
has a Lorentzian lineshape. A maximum excitation fraction of 0.5 can be obtained. The
frequency resolution is limited by the linewidth of the clock laser (see Figure 3.4(b)).

By comparing two subsequent measurements of the absolute clock transition frequency
under identical conditions, we determine the drift of the ULE cavity. We compensate this
drift by applying the measured drift in a feed-forward scheme to the clock laser frequency.
Thus, repeated measurements of the resonance result in the same transition frequency.

Figure 3.5 presents two possible coherent manipulation schemes on the clock line. The
frequency of the clock light is controlled via an AOM. As the rf frequency for the AOM is
generated by direct digital synthesis, we gain control over the frequency and phase of the
clock light. Therefore, we can interrogate the clock transition by Rabi as well as Ramsey
spectroscopy. The most robust state preparation is achieved by coupling both states via a
rapid adiabatic passage.
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Orbital Feshbach resonance

In this chapter, we report on the experimental observation of a novel interorbital Fesh-
bach resonance. First, we will discuss the underlying mechanism, that leads to a coupling
between the orbital and spin degree of freedom. Here, we will especially emphasise the
differences and similarities of the orbital Feshbach resonance with respect to the com-
mon Feshbach resonances in alkali atoms, induced by hyperfine interactions. Afterwards,
we present two types of experiments, where the resonance is observed at experimentally
accessible magnetic field strengths and the universal occurrence for all hyperfine state
combinations is demonstrated. We characterize the resonance in a degenerate Fermi gas
via interorbital cross thermalisation as well as in a three-dimensional lattice using high-
resolution clock-line spectroscopy. Our measurements are well described by a generalized
two-channel model of the orbital-exchange interaction. The main result of this chapter
have been published in [59].

4.1 An interorbital Feshbach resonance

The basic principles of resonant scattering have already been introduced in Section 1.2,
using the example of alkali atoms. Here, we will briefly recall the three major ingredients
that are required for the appearance of magnetic Feshbach resonance. Turning to AEL
atoms, we show that these conditions are not fulfilled for intraorbital collisions in states
with vanishing total angular momentum. However, for interorbital collisions, we demon-
strate that these conditions can be matched also by J = 0 states. In the end, we derive a
formula for the magnetic field dependence of the interorbital scattering length in analogy
to the famous Feshbach formula (1.32).

4.1.1 Absence of intraorbital Feshbach resonances for AEL atoms

By studying the collisions between alkali atoms, we have worked out three major ingre-
dients for the appearance of a Feshbach resonance. First, the existence of two coupled
collision channels is required. Here, one channel is energetically accessible and connects
to the continuum states of the free atoms and is therefore called open channel and a
second energetically closed channel. Secondly, if the two channels possess a differential
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magnetic moment, their relative energy can be tuned by means of an external magnetic
field. And thirdly, a bound state in the closed channel can be brought into resonance with
the energy of the incoming atoms due to the differential magnetic moment.

In alkali atoms, the two scattering potentials are caused by the symmetric or antisym-
metric alignment of the electron spins during the collision. Since the resulting singlet and
triplet potential possess either a total electronic spin of zero or one, their relative energy
can be tuned by typically 2µB ≈ 2.8 MHz/G. The hyperfine interaction does not conserve
the total electronic angular momentum during the collisions and therefore gives rise to a
coupling of the two collision channels.

In contrast to alkali atoms, AEL atoms possess no unpaired electron and thus have
vanishing electronic angular momentum J = 0 in the atomic ground state for the electronic
spin singlet 1S0 as well as for the triplet 3P0 . Hence, the only contribution to the magnetic
moment stems from the nucleus and we expect a very limited tunability of relative energies
by a magnetic field. Furthermore, for 173Yb, the reasonably small intraorbital scattering
lengths ag g = 199.4 a0 [110] and aee = 300 a0 [56], suggest that the last bound states of
the associated molecular potentials are very deeply bound, on the order of a few MHz.

As already introduced in Section 2.1, for states with J = 0, we find a strong decoupling
of nuclear and electronic degrees of freedom, the total angular momentum being given
by F = |J + I | = I . Due to this decoupling and the associated suppression of hyperfine
coupling, all scattering processes are independent of the nuclear spin projection mF . Thus,
only a single scattering channel exists for all intraorbital collisions. For these reasons, no
magnetic Feshbach resonances are expected for collisions within each of the two orbitals

So far, Feshbach resonances in AEL atoms have been observed exclusively in the col-
lisions involving at least one state with a strong magnetic moment. The only long-lived
state with a large magnetic moment is the 3P2 state. Here, Feshbach resonances in the colli-
sion between 1S0 and 3P2 atoms have been observed for two bosonic isotopes of ytterbium,
170Yb and 174Yb [159]. For the mixtures between alkali atoms in the ground and AEL earth
atoms in one of the 3PJ state, various Feshbach resonances have been prediceted [160].
The 6Li-174Yb(3P2 ) mixture is of special interest due to the strong anisotropy of the inter-
action [161].

Also, optical Feshbach resonances have been proposed [94] and observed [95, 96] for
collisions between 1S0 and 3P1 atoms. Owing to their limited tunability and lifetime, they
have been difficult to exploit in experiments (see Section 1.2.4).

Now, we want to focus on the sates 1S0 and 3P0 in 173Yb, where we find an SU(N = 6)-
symmetric configuration for the intra- and interorbital interactions. As we have shown in
Section 2.1.3, two scattering channels exist for interorbital collisions between atoms in
different nuclear spin states. The first experiments concerning the interorbital interaction
properties obtained two vastly different scattering lengths for the orbital singlet a−eg =
220 a0 [56] and orbital triplet channel a+eg > 2000 a0 [56, 57]. Recalling the results from
Section 1.1.2, we know that such an extremely large scattering length is related to the
existence of a shallow bound state. For 173Yb, we estimate a binding energy of the least-
bound state εB = −ħh2/(ma2) of less than 10 kHz below the continuum energy for the
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aforementioned values. This has motivated the prediction of a magnetically tuneable
scattering resonance for 173Yb [58]. Note the models applied for the evaluation of the
experiments [56, 57] neglected finite range effects. In particular, the value of a+eg was
strongly overestimated. The following calculations are already based on the value a+eg =
1878 a0 [59], determined in the course of these thesis.

4.1.2 Orbital interaction-induced Feshbach resonance

In the following section, we will first give an illustrative picture of the orbital Feshbach
resonance. Afterwards, we will construct the Hamiltonian describing the scattering pro-
cess and solve the two-body problem in free space in order to derive the magnetic field
dependence of the scattering amplitude for an interorbital collision.

Let us consider a scattering event between two atoms in the orbital 1S0 (denoted |g〉)
and 3P0 (|e〉) states. For 173Yb with I = 5/2, both atoms possess orbital and nuclear spin
degrees of freedom. We focus on the case, where the two atoms are in different nuclear
spin states (|↓〉, |↑〉) with m↓F , m↑F ∈ −

5
2 . . . 5

2 . The focus on atom pairs with m↓F 6= m↑F will
become apparent in the next paragraph.

While constructing the relative wave function of the two colliding fermionic atoms,
we have to ensure anti-symmetrisation under particle exchange. At ultracold tempera-
tures, where all higher partial waves are frozen out, only the s-wave scattering channel
is available. Hence, the spatial part of the relative wave function is symmetric and thus
enforces an anti-symmetric distribution of the combined orbital and nuclear spin degree of
freedom. This results for s-wave collisions in two possible scattering channels: the orbital
triplet channel

|+〉= (|eg〉+ |ge〉)/
p

2⊗ (|↓↑〉 − |↑↓〉)/
p

2 (4.1)

and the orbital singlet channel

|−〉= (|eg〉 − |ge〉)/
p

2⊗ (|↓↑〉+ |↑↓〉)/
p

2. (4.2)

The corresponding s-wave scattering lengths are a+eg > 2000 a0 and a−eg = 220 a0, where

the superscript +,− denotes the orbital configuration. Since we have assumed m↓F 6= m↑F
the aligned nuclear spin triplet states |↑↑〉 and |↓↓〉 are not possible. Thus, the interorbital
scattering for atoms in different mF -states fulfils the first requirement for a Feshbach reso-
nance, two different scattering channels. For atoms with m↓F = m↑F only the orbital singlet
exists, because the nuclear spin is forced into the aligned triplet configuration.

Let us now introduce a finite magnetic field B and study the effect on a pair of sep-
arated, non-interacting atoms. We are interested in the pair energies for the Zeeman
Hamiltonian magnetic field eigenstates |e↓〉|g ↑〉 and |e↑〉|g ↓〉, as shown in Figure 4.2. In
both states |g〉 and |e〉, the degeneracy of the Zeeman sub-levels is lifted in the presence
of an external magnetic field due to the finite nuclear Landé g-factors. In the case of
an isolated two level system of 1S0 and 3P0 , both states would share the same g-factors.
Thus, spin up-down symmetry would be conserved at finite fields and there would be no
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Figure 4.1 – Illustration of the magnetic field dependence of the scattering potential for (a) a regular magnetic
Feshbach resonance and (b) an orbital Feshbach resonance in AEL atoms. Blue solid lines represent the
scattering potentials at zero magnetic field, whereas the yellow solid lines show the influence of a finite mag-
netic field. (a) For alkali atoms, the two scattering potentials are given by the spin singlet and triplet channels.
Here, open (triplet) and closed (singlet) channel are split by the hyperfine interaction at zero magnetic field. At
finite field, the closed channel energy relative to the energy of two far-apart atoms typically scales with twice
the Bohr magneton ≈ 2.8 MHz/G. (b) For AEL atoms, the interaction potential at short distances is given by
the orbital singlet and triplet scattering channel. Here, the open and closed channel are given by the nuclear
spin product states. These are degenerate at zero magnetic field and atoms can enter and leave in both of
them, leading to an orbital-exchange interaction. For finite magnetic field, open and closed channel are split
by ≈ 112 Hz/G due to different Landé g-factors.
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Figure 4.2 – Illustration of the origin of the differential magnetic moment δµ due to different Landé g-factors
for the 1S0 (dark symbols) and 3P0 (light symbols) states. As drawn, the 3P0 state experiences a larger energy
splitting between |↓〉 and |↑〉 compared to the 1S0 state. Therefore, the atom pair in (a) |e ↓〉|g ↑〉 has a lower
energy compared to the pair in (b) |e ↑〉|g ↓〉, giving rise to the labelling of open- and closed channel. (c)
Magnetic field dependence of the energy splitting δµB = δmFB · 112(1)Hz/G between open and closed
channel. Due to the nuclear spin independence of the quadratic Zeeman shift, the linear energy splitting
persists for all magnetic fields.

energy difference between the two atom pairs. Therefore, we would not be able to tune
the energy of one channel with respect to the other.

However, as discussed in Section 2.2.2, a small admixture of the 3P1 state into the
3P0 state, causesed by hyperfine interaction, leads to a difference in the nuclear Landé
g-factors of δg = gg − ge = −8.1 × 10−5 [124] for 173Yb. Consequently, the symmetry
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between singlet and triplet states is broken under finite magnetic fields and the energy of
the depicted atom pairs experiences a shift

δµB = δgδmFµBB

= hδmF B · 112(1) Hz/G.
(4.3)

Because the interaction eigenstates |±〉 are composed of the nuclear singlet and triplet
combinations, they cannot be eigenstates of the Zeeman Hamiltonian at the same time.
The eigenbasis of the non-interacting system, i.e. two separated atoms, in a magnetic
field, is given by the nuclear product states

|o〉= (|g ↑〉|e↓〉 − |e↓〉|g ↑〉)/
p

2≡ |e↓〉|g ↑〉,

|c〉= (|e↑〉|g ↓〉 − |g ↓〉|e↑〉)/
p

2≡ |e↑〉|g ↓〉.
(4.4)

Since we are effectively dealing with distinguishable fermions, we can omit the anti-
symmetrisation of the wave function. Due to the larger Landé g-factor ge, the energy
of |e↓〉|g ↑〉 is lower than the one of |e↑〉|g ↓〉 in a finite magnetic field, as illustrated in
Figure 4.2. Therefore, we introduced the two labels |o〉 and |c〉 for the open and closed
channel.

With the two sets of eigenstates, we can write down the total Hamiltonian Ĥ = Ĥ0+ V̂ .
The non-interacting part is given by the Zeeman and kinetic part

Ĥ0 =
∑

k

2εk |o, k〉〈o, k|+
∑

k

(2εk +δµB)|c, k〉〈c, k| (4.5)

with the differential Zeeman energy δµB and the kinetic energy εk = ħh2k2/2m. Here, k is
the relative momentum of two colliding atoms.

The interaction part is given by

V̂ = U+
∑

k,k ′
|+, k ′〉〈+, k|+ U−

∑

k,k ′
|−, k ′〉〈−, k| (4.6)

where U± is the corresponding interaction strength in the singlet and triplet channel. Here,
we employ a zero-range pseudo potential for the interaction. In this notation, we see that
the non-interacting part of the Hamiltonian is diagonal in the basis of the open and closed
channel, whereas the eigenbasis of the interaction part are the orbital singlet and triplet
states, which we rewrite as

|+〉= (|o〉+ |c〉)/
p

2,

|−〉= (|o〉 − |c〉)/
p

2.
(4.7)

From this we deduce that the interaction part of the Hamiltonian is not conserving the
orbital configuration and leads to an exchange of the orbital degree of freedom. Two
separated atoms, approaching each other in the open channel are not in the eigenstate of
the interaction Hamiltonian and thus become coupled to the closed channel.

Thus, we finally realise, that all three requirements for a Feshbach resonance are ful-
filled. For interorbital collisions in 173Yb there are two scattering channels, where one is
supporting a shallow bound state. The energies of a free atom pair in the open channel
can be tuned into resonance with the bound state. There is a coupling between open and
closed channel based on the orbital exchange interactions.
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Figure 4.3 – Magnetic field and energy dependence of the open-channel scattering amplitude f (E ) ∼
〈o|T (E )|o〉. For each collision energy, the scattering amplitude is normalised to the maximum value along
the dashed line. As f (E ) changes over several orders of magnitude, log{f (E )} is plotted. The color scale
is limited to two orders of magnitude. (b) Reduction of the maximum in f (E ) along the dashed line in (a) with
increasing collision energy.

4.1.3 A two-channel model for the interorbital interaction

In order to obtain the magnetic field dependence of the s-wave scattering length in the
open channel, we have to solve the two-body problem

�

Ĥ0 + V̂
�

|ψ〉= E|ψ〉, (4.8)

as shown in Section 1.1.1, where we have studied the elastic scattering of two atoms. We
have to calculate the scattering amplitude, i.e. how much of the incident plane wave |k〉
is scattered into the outgoing spherical wave |k ′〉.

Here, we will apply the transition matrix (T-matrix) approach, as another formal
treatment of the scattering process. The two-body T-matrix is determined by the Lipp-
mann–Schwinger equation T̂ (E) = V̂ − V̂/(E − Ĥ0)T̂ (E) [79]. A detailed derivation of the
T-matrix can be found in the Appendix A. The two-body T-matrix fully determines the
scattering amplitude. By projecting the T-matrix onto the open channel, we obtain the
scattering amplitude in the open channel (see App. A)

f (E) = −
m

4πħh2 〈o|T (E)|o〉. (4.9)

For s-wave scattering, the T-matrix and thus the scattering amplitude, is independent of
the angle between |k〉 and |k〉′ and only depends on the collision energy E ∼ k2. Here, the
T-matrix is determined by the matrix equation

T (E) =
4πħh2

m

��

1/a−eg 0

0 1/a+eg

�

+
p
−mE
2ħh

�

1 1
1 1

�

+

p

m(δµB − E)
2ħh

�

1 −1
−1 1

�

�−1

. (4.10)

As usual in scattering theory we use the convention that
p
−E = −i

p

|E| if E > 0.
The energy and magnetic field dependence of the scattering amplitude (4.9) as de-

termined by the T-matrix is illustrated in Figure 4.3. We clearly see that the scattering



4.1 An interorbital Feshbach resonance 59

-10

-5

0

5

10

a
/a

0
(
×

1
0

3
)

0 20 40 60 80 100
Magnetic field [G]

-8

-4

0

ε B
/Γ

0
 (
×

10
−

2
)

finite energy collisions
zero energy collisions
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amplitude exhibits a well-defined maximum and minimum, both strongly dependent on
the collision energy. With increasing energy, i.e. temperature of the gas, both values shift
to higher magnetic fields. In order to retrieve the scattering length, we apply the effective
range expansion to the scattering amplitude, as demonstrated in Section 1.1.1. In the
limit of low energy scattering k→ 0, we can write f (E)−1 + ik ≈ −a−1 + 1

2 reffk
2. Thus, we

obtain the open-channel s-wave scattering length

a =
1
2

1/a−eg + 1/a+eg − 2
Æ

mδµB/ħh2

�

1/a−eg −
Æ

mδµB/ħh2/2
��

1/a+eg −
Æ

mδµB/ħh2/2
�

−
�Æ

mδµB/ħh2/2
�2 (4.11)

and the corresponding effective range

reff = −
ħh

p

mδµB

 

1/a−eg − 1/a+eg

1/a−eg + 1/a+eg − 2
Æ

mδµB/ħh2

!2

. (4.12)

The magnetic field dependence of (4.11) is displayed in 4.4. There, we can identify
the divergence of the scattering scattering length typical for a Feshbach resonance. The
denominator of (4.11) becomes zero and the open channel scattering length diverges
when the differential Zeeman shift matches the energy of the bound state in the closed
channel. We find the resonance position to be

B0 =
1
δµ

ħh2

ma2
c

, (4.13)
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Figure 4.5 – Finite-range effects on the magnetic field and energy dependence of the open-channel scattering
amplitude. Here, the scattering amplitude is drawn in a logarithmic scale and normalised to the maximum for
each temperature. (a) displays f (E ), as it is shown in Figure 4.3. (b) includes finite-range effects in the orbital
singlet and triplet channel via the effective range expansion a−1 → a−1 − 1

2 reffk2. The maximum (minimum)
of f (E ) is indicated by the white (blue) dashed line.

where ac = (a−eg+a+eg)/2 is the closed-channel scattering length. Inserting the known values
for scattering lengths yields a resonance position of B0 ≈ 33 G for zero temperature and
δmF = 5. A smaller differential magnetic moment shifts the resonance to higher magnetic
fields. As for regular Feshbach resonances, the orbital Feshbach resonance appears when
the bound state in the closed channel crosses the continuum energy. We find the zero
crossing of the scattering length by setting the nominator of (4.11) to zero:

B∆ =
1
δµ

ħh
4m

�

1
a+eg
+

1
a−eg

�2

. (4.14)

We calculate B∆ ≈ 238 G, leading to a resonance width of ∆B = B∆ − B0 ≈ 200 G.
We have used a zero-range pseudo potential for the interaction and thereby we disre-

gard the finite range of the actual van-der-Waals potential. However, at short distances, we
have to consider finite-range effects. These are particularly important for the singlet chan-
nel, where the s-wave scattering length a−eg is only slightly larger than the van-der-Waals
length r0 = 80 a0. Hence, we underestimate the strength and the magnetic field at which
the resonance occurs. Applying the effective range expansion to the singlet and triplet
channel, we can account for finite-range effects. This is accomplished by the substitution
a−1

i → a−1
i −

1
2 reff,ik

2 in (4.11). The effective ranges for the two channels r+eff = 216 a0 and
r−eff = 122 a0 are calucalted as in (1.20), assuming a long-range van-der-Waals potential
with C6 = 2561 a.u. [162].

By including the effective range, the position of the orbital Feshbach resonance be-
comes energy dependent and shifts to higher fields for finite collision energy, as shown in
Figure 4.4 and 4.5. In particular, the minimum of the scattering amplitude is very sen-
sitive to finite-range effects. For zero collision energy, the minimum shifts 71 G towards
higher fields. The effective range in the open channel (4.12) is large and negative close
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to the orbital Feshbach resonance reff = −960 a0. For Feshbach resonances in alkali atoms,
such large effective ranges are usually found for narrow or closed-channel dominated res-
onances.

As introduced in (1.2.3), a Feshbach resonances is called narrow for resonance strength
sres� 1. Here, we find it to be in this regime, with sres = 0.15. This implies a strong atom
loss near the Feshbach resonance, due to the strong coupling to the bound state. Owing to
the small differential magnetic moment δµ, the width of the resonance is several hundred
Gauss (see Figure 4.4). This is in contrast to alkali atoms, where sres � 1 typically is
accompanied by a narrow width in the magnetic field.

By solving the two-body problem, we showed that the scattering length in the open
channel can be tuned via an external magnetic field and possesses a resonance at an
experimentally accessible field. Furthermore, we find a resonance width of several hun-
dred Gauss, although the resonance shows the characteristics of a narrow resonance with
sres < 1. Since the effective range is large, the resonance position is highly dependent
on the collision energy. Therefore, in an experiment, we expect to measure a resonance
position shifted to higher magnetic fields.

4.2 Determination of the scattering amplitude

In the following, we will determine the elastic and inelastic part of the scattering ampli-
tude and map out the magnetic field dependence of the s-wave scattering length.

In Section 1.2, we have presented various experimental techniques for this. The most
precise determination of the position of a Feshbach resonance has been obtained by spec-
troscopy of the associated bound state [90, 105, 106]. However, this technique cannot
be employed for measuring the dimer energy in the bulk in our setup. Instead of an rf
transition, we have to excite the bound-to-free transition with an optical photon. Without
confining the atoms in an optical lattice and thus ensuring the Lamb-Dicke condition, this
is not possible. Therefore, we directly measure the elastic scattering cross section and
perform inelastic loss spectroscopy.

4.2.1 Measurement of the elastic cross section

First, we will present our measurements of the interorbital scattering amplitude in the
bulk, i.e. in a 3D harmonic trap. We determine the magnetic field dependence of the
elastic scattering length by cross dimensional thermalisation (CDT) measurements. After-
wards, we compare our experimental findings to the two-body scattering theory.

Cross dimensional thermalisation

A thermalisation measurement is based on the observation of the relaxation of an out of
equilibrium state back into the equilibrium. For the CDT measurement, an anisotropic
thermal energy distribution η= Ez− Ey along two major axes of the trap is created, where
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Ei is the mean energy per particle in the axis i. This anisotropic out-of-equilibrium state
decays back into an isotropic thermal distribution by elastic collisions. Due to the elastic
collisions, the relative momentum of two scattering atoms is changed, but the total energy
is conserved. Chapmann and Enskog derived from Boltzmann’s transport equation, that
in a gas governed by binary collisions, the thermalisation rate is proportional to the mean
rate of collision [163]

Γth =
1
α
〈n〉σel〈vrel〉. (4.15)

Here, σel = 4π| f (E)|2 is the elastic scattering cross section 〈n〉 is the atomic density and
〈vrel〉 is the relative collision speed, both averaged over the thermal distribution. The
dimensionless proportionality factor α is given by the mean number of collisions per
particle required for rethermalisation. Numerical simulations have shown that α has a
value between 2.5 and 2.7 [164] for s-wave collisions and diverges to 10.5 in the uni-
tary limit [165]. In the limit of low energy scattering k → 0, the elastic scattering cross
section σel = 4πa2 is proportional to the square of the s-wave scattering length. Thus, a
divergence in a leads to an enhanced thermalisation rate, whereas thermalisation becomes
strongly suppressed for a→ 0.

The relaxation of the energy anisotropy is, in very good approximation, described by a
single exponential decay [166]

η(t) = 1+η0e−Γth t , (4.16)

where the amplitude η0 is fixed by the initial condition η(0) = 1+η0. The in-trap energy
distribution is measured by releasing the atoms from the trap and imaging them after a
sufficiently long time of flight. This maps out the in-trap momentum distribution. The
anisotropic energy distribution is therefore mapped onto an anisotropic aspect ratio of the
cloud: η(t)∝ χ(t).

The method of CDT is suited to measure minima and maxima in the elastic scattering
cross section. However, it is limited in the case of strong interactions where the gas enters
the hydrodynamic regime. In this regime, the collision rate exceeds the trap frequency
and the assumption of binary collisions breaks down. Instead collective modes govern the
relaxation process [167]. The thermalisation rate is then limited by the trap frequency
and becomes independent of temperature and density.

Experimental procedure

In order to measure the elastic scattering cross section of in the open channel, we need
a mixture of |e↓〉|g ↑〉 atoms. Therefore, we create a degenerate two-component Fermi
gas |g ↓〉|g ↑〉, as described in chapter 3. If not mentioned otherwise, we employ the two
nuclear spin states mF = ±5/2. The |g ↓〉|g ↑〉 mixture is prepared in an optical dipole trap
operating at 1064 nm. This wavelength is anti-trapping for the atoms in |e〉. Therefore,
we transfer the |g ↓〉|g ↑〉 mixture into a magic-wavelength, i.e. state-independent dipole
trap operating at λm = 754 nm. Here, atoms in both states feel the same potential and the
CDT is not influenced by differences in the trap frequencies.
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Figure 4.6 – a) Experimental configuration for the observation of cross-dimensional thermalisation of a two-
orbital mixture in a harmonic trap. A two-component Fermi gas |e ↓〉|g ↑〉 in the magic dipole trap is heated
along the vertical direction by repeated Bragg pulses. Imaging perpendicular to the heating direction allows to
observe the redistribution of the energy. b) Experimental sequence: after preparation of the two-orbital mixture,
the 1D lattice is ramped down and the atoms are released into the magic dipole trap. 20 heating pulses with
1,2 kHz repetition rate and 7% duty cycle are applied to heat up the mixture along the vertical direction. The
subsequent thermalisation into the perpendicular direction is observed after a variable hold time and 12 ms of
time of flight.

In a second step, a one-dimensional (1D), magic-wavelength lattice is adiabatically
turned one before the clock-line excitation to the |e〉 state. Without the lattice, the atoms
would be Doppler shifted after the excitation and gain one recoil energy Er = h·2.7 kHz per
photon. This would lead to substantial heating. Therefore, the 1D lattice is coaligned with
the 579 nm clock excitation beam which ensures Lamb-Dicke conditions. The π-polarized
clock light is resonant with the single atom |g ↓〉 → |e↓〉 transition at the applied magnetic
field of B = 1200 G. In order to compensate for mean field interaction shifts in the two-
dimensional planes and to achieve a high transfer efficiency, we apply a large Ω= 2π · 1.5
kHz π-pulse with a corresponding pulse duration of 320µs. After the preparation, the
|e↓〉|g ↑〉 mixture is again released from the 1D lattice into the magic dipole trap. This trap
has a cigar shape with trap frequencies ωx ,y ,z = 2π× (20, 120,160) Hz. Simultaneously,
the magnetic field is lowered within 100 ms from the preparation value to a value of 100 G
above the desired final field strength. In a second ramp, the magnetic field is ramped to
the final value with a fixed speed of 2 G/ms. In particular for magnetic fields below the
resonance, a fixed ramp speed is required. This ensures, that always the same number
of molecules is potentially created during the sweep. The directional heating is applied
at the final magnetic field value by pulsing of the vertical lattice beam with an intensity
corresponding to a lattice depth of 1 Er and a repetition rate of 1.2 kHz. In total, twenty
square pulses with a duty cycle of 7 % are applied over a time of three trap oscillation
periods. This ensures thermalisation of the cloud along the excitation direction. After
the preparation of the energy anisotropy, we allow for thermalisation of the atoms for
a variable hold time in the harmonic trap. At the end of the experiment, the traps and
magnetic fields are simultaneously switched off. The atoms cloud is expanded for 12 ms
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Figure 4.7 – Time evolution of the could aspect ratio at different magnetic fields for (a) a |g ↓〉|g ↑〉 mixture
and (b) a |e ↓〉|g ↑〉 mixture. The insets in (a) display absorption pictures of the atoms after 12 ms ToF for two
different evolution times. The white dashed line indicates the fit results from a 2D Gaussian fit to the cloud.
The relaxation from a strongly anisotropic cloud back to a cloud in thermal equilibrium is clearly visible for both
mixtures. Only the thermalisation rate of the |e ↓〉|g ↑〉 mixture depends on the magnetic field.

time of flight and the fraction of the atoms in the |g ↑〉 state is imaged via absorption
imaging. By fitting a 2D Gaussian function to the spatial distribution of the atoms, we
extract the width along the two trap axes y and z. Sample images at the beginning and
the end of the thermalisation are shown in the inset of Figure 4.7. We define the cloud
aspect ratio as

χ(t) = wz(t)/w y(t), (4.17)

with wi(t) being the width along the axis i after a certain evolution time t. Thermalisation
measurements are carried out at various magnetic fields from 10 G up to 1200 G, typical
data sets of χ(t) are shown in Figure 4.7. At every magnetic field value, we determine the
thermalisation rate Γeg(B) by fitting (4.16) to the time dependence of χ(t). Furthermore,
we perform additional thermalisation measurements with a |g ↓〉|g ↑〉 mixture, where the
clock π-pulse in the preparation sequence is omitted. Thus, the thermalisation rate Γg g

under the same experimental conditions is observed. As we expect the Γg g to be indepen-
dent on the magnetic field, we use this measurements together with the known value of
agg as a reference.

Magnetic field dependence of the scattering cross section

The magnetic field dependence of the thermalisation rate for both a |e↓〉|g ↑〉 and a |g ↓〉|g ↑〉
mixture with δmF = 5 is presented in Figure 4.8. While Γg g shows no dependence on
the magnetic field, as expected for an SU(N) symmetric situation, we observe a change
over two orders of magnitude for the thermalisation rate Γeg . The magnetic field de-
pendence of Γeg resembles the characteristic shape of a Feshbach resonance, with a peak
position B0 = 55(8)G and a zero crossing at B∆ = 417(7)G. Both values are determined by
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Figure 4.8 – Cross dimensional thermalisation rate as a function of the magnetic field for one orbital (yellow)
and two orbital (blue) mixtures, with δmF = 5(mF = −5/2;+5/2). Error bars denote the 1σ uncertainty of
the fit to the cloud aspect ratio. The blue shaded area at the top indicates the hydrodynamic regime, where the
color gradient area accounts for the error due to the uncertainty in the trap frequencies. The yellow shaded
area is a lower bound due to the thermalisation with residual |g ↓〉 atoms. The blue solid line is the expected
thermalisation rate (4.15) based on the magnetic field dependence of the scattering amplitude (4.9) for an
|e ↓〉|g ↑〉 mixture at a temperature of 290 nK. The calculation is based on the values of a±eg obtained by clock-
line spectroscopy in the 3D lattice. The dashed lines indicate the change in Γeg due to ±5% variation in
a±eg.

quadratic fits within ±15 G (±40 G) regions around the resonance (zero-crossing) position,
respectively.

We make use of the linear dependence of the thermalisation rate on the atomic density
(4.15), in order to influence the time scales of the CDT. We carry out CDT measurements
with two different atomic densities. At high magnetic fields, where we expect a low scat-
tering cross section, we employ a high atomic density to counteract the diverging time
scales. For magnetic fields below 200 G, close to the Feshbach resonance, the thermal-
isation rate of the high density sample is faster than the excitation process. After the
excitation, no anisotropy can be measured. Therefore, we compensate for the large scat-
tering cross section by lowering the atomic density. The two data sets are merged using the
reference CDT measurements performed with the |g ↓〉|g ↑〉 mixture for the two densities
at the same magnetic field.

Since intraorbital collisions within the |e↓〉 or |g ↑〉 atoms are blocked by the Pauli-
exclusion principle, thermalisation can only happen through interorbital collisions. There-
fore, observing the thermalisation of the |g ↑〉 atoms is sufficient and yields all required
information. We verify that the thermalisation is prohibited with a spin polarized |g ↑〉
sample, where no change in χ(t) is observed over several seconds of thermalisation.

As discussed above, close to the resonance, where the scattering amplitude diverges,
the gas enters the hydrodynamic limit. The thermalisation rate is bounded from above
by the mean trap frequency of the two observed axes ωr =

p

ωyωz. Thus, the maximum
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possible thermalisation rate is Γmax = 139(5)1/s. The error stems from the uncertainty
in the determination of the trap frequencies. The hydrodynamic regime is marked in
Figure 4.8 by the blue shaded area and nicely bounds the experimental data from above.
The fastest measured thermalisation rates are all within the color gradient area, which
indicates the error on Γmax caused by the uncertainty in the trap frequency evaluation.

Due to the finite bandwidth of the clock π-pulse, not all of the |g ↓〉 atoms are trans-
ferred into |e↓〉. A residual fraction of ≈10% |g ↓〉 atoms remains. These atoms open up
an additional thermalisation channel for the |g ↑〉 atoms. The total thermalisation rate is
thus given by Γth = Γeg + Γres. Since the thermalisation rate is linear in density (4.15), we
approximate the contribution of the residual |g ↓〉 atoms to be Γres = 0.1 ·Γg g = 2.17 1/s. In
our experiment, the thermalisation rate Γth = Γeg + Γres is then bounded from below by the
magnetic field independent rate Γres, as indicated by the yellow shaded area in Figure 4.8.

In the regime of moderate scattering amplitudes, the measured thermalisation rates
are in good agreement with the theoretical prediction given by Equation (4.15). Away
from the hydrodynamic regime, the thermalisation rate is determined by three free para-
meters, the temperature T and the orbital singlet and triplet scattering length a±eg . The
temperature determines the mean density 〈n〉 = N0 · ω̄3(4πkB T/m)−3/2 for the total atom
number N0 and the averaged velocity 〈vrel〉 =

p

16kB T/(πm). Furthermore, the tempera-
ture enters in the scattering cross section σeg via the effective range. Therefore, the three
parameters are highly entangled and a fit to all three parameters simultaneously does not
converge. In order to make the fit more robust, we have to eliminate one of the parame-
ters. Thus, we use values for a±eg, obtained independently by clock-line spectroscopy in a
3D lattice (see section 4.3). With the scattering length fixed, the temperature remains as
a single free parameter in our model. We find the best agreement of Γeg with our experi-
mental data for a temperature of 290 nK. In Figure 4.8, the dashed lines indicate a change
in Γ eg due to ±5% variation in a±eg.

Universal appearance of the orbital Feshbach resonance

A unique property of this new type of orbital Feshbach resonance is, that it exhibits a uni-
versal coupling between open and closed channel with respect to the involved mF states.
Since the interaction channels are fully SU(N) symmetric in the absence of a magnetic
field, the choice of the mF states scales the strength of the coupling only via the varying
differential magnetic moment δµ ∼ δmF . Thus, the orbital Feshbach resonance exists for
all mF combinations with δmF 6= 0. The position B0 and width B∆ are scaled by 1/δmF , as
shown by Equation (4.13) and (4.14). The strength of the resonance sres, proportional to
the product of δµ∆B , is therefore independent of δmF . The orbital Feshbach resonance
shows the same character for any possible mF combination. This is in stark contrast to
all other Feshbach resonances in alkali atoms, where the choice of the hyperfine levels is
crucial for the appearance of a resonance and its character.

In order to demonstrate this unique property, we perform thermalisation measure-
ments with different δmF . In Figure 4.9 we compare the thermalisation rates for the two
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Figure 4.9 – Cross dimensional thermalisation rate as a function of the magnetic field for two-orbital mixtures,
with δmF = 5, i.e. mF = −5/2;+5/2 (blue dots) and δmF = 1, i.e. mF = −5/2;−3/2 (yellow squares).
Error bars denote the 1σ uncertainty of the fit to the cloud aspect ratio. The blue shaded area at the top
indicates the hydrodynamic regime. The yellow shaded area at the bottom is excluded due to thermalisation
with residual |g ↓〉 atoms. The thermalisation rate is drawn as a function of the absolute magnetic field (a)
and for an effective magnetic field B → 1/δmFB , rescaled with respect to the δmF . The coincidence of the
two data sets demonstrates the universal appearance of the orbital Feshbach resonance for the different mF

combinations.

extreme cases with δmF = 5 and δmF = 1. As predicted, the resonance exists independent
on the involved mF states. For δmF = 1 we identify a resonance position of B0 = 275(16)G.
This corresponds to B0(δmF = 1) = 5 · B0(δmF = 5) and thus demonstrates the univer-
sal behaviour with respect to different mF combinations. The expected zero crossing
B∆(δmF = 1) ≈ 2100 G is outside of our experimental magnetic field range. When δmF is
taken into account by rescaling the magnetic field axis correspondingly B→ 1/5δmF B, the
data sets collapse onto a single curve without further adjustments (see Figure 4.9(b)).

4.2.2 Determination of the inelastic scattering cross section

In order to gain a complete understanding of the behaviour of the scattering amplitude
f (E), we further have to investigate the inelastic part of the scattering cross section σinel,
which is given by Im{ f (E)}. The most common way of mapping out the magnetic field
dependence of σinel is by observing atom loss from the trap.

Spin resolved losses

We perform two types of loss measurements, where the experimental procedure is the
same as for the CDT but without the heating pulses. In a first experiment, we keep the
atoms the magnetic field of interest for a fixed time of 150 ms and apply the optical Stern-
Gerlach technique to resolve the different nuclear spin states after a short time of flight.
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Figure 4.10 – Atom loss in a |e ↓〉|g ↑〉 mixture after a fixed evolution time of 150 ms as a function of the mag-
netic field B close to the orbital Feshbach resonance. Number of atoms in the state |g ↑〉 with mF = +5/2

(circles) and the residual |g ↓〉 fraction with mF = −5/2 (diamonds), resolved by spin sensitive measure-
ment using an optical Stern-Gerlach technique. All data points represent averages of at least eight individual
measurements.

As shown in Figure 4.10, we observe a magnetic field dependent loss in the |g ↑〉 pop-
ulation close to the orbital Feshbach resonance. However, we cannot identify a maximum
in the loss around the orbital Feshbach resonance, but observe increasing losses towards
lower fields. As the magnetic field approaches zero, the energy splitting between the open
and closed channel vanishes (δµB → 0). Thus, the closed channel can no longer be con-
sidered energetically closed. Due to the orbital exchange interaction, atoms can leave via
this channel after a scattering event. This leads to a depletion of the |g ↑〉 fraction and
suggests a stronger loss than actually caused by the inelastic cross section of the open
channel. The process is monitored by the repopulation of |g ↓〉 atoms for low magnetic
fields.

We account for the exchange process by normalizing the |g ↑〉 population with respect
to the one of |g ↓〉, as presented in Figure 4.11. Even after this normalization the maximum
of the atom loss is still at zero magnetic field, whereas the maximum in the elastic scatter-
ing is at B0 = 50 G. This strong shift between the maximum of the elastic and inelastic part
has already been reported for other two-component Fermi mixtures [168, 169]. There,
the maximum in the decay rate is shifted by half the width of the Feshbach resonance
towards the repulsive side [169]. The shift is caused by the decay of the halo Feshbach
molecules.

Since we prepare our |e↓〉|g ↑〉 mixture at high magnetic fields and slowly ramp through
the Feshbach resonance, we will transfer a fraction of the |e↓〉|g ↑〉 pairs into the molecular
branch. As these molecules are highly vibrationally excited, one expects these molecules
to collide inelastically. During a collision, they can decay into deeper bound states and
in consequence are lost from the trap as the binding energy is released as kinetic energy.
However, close to the resonance, where the molecules are very weakly bound, their size
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Figure 4.11 – Atom loss in a |e ↓〉|g ↑〉 mixture after a fixed evolution time of 150 ms as a function of the
magnetic field B close to the orbital Feshbach resonance. Relative population of |g ↑〉, i.e. number of atoms
in |g ↑〉 normalized to Ñg↑(B) = N̄g − Ng↓(B), where N̄g is the ground-state atom number without losses,
averaged for fields B > 120G, and Ng↓(B) is the residual atom number in|g ↓〉. All data points represent
averages of at least eight individual measurements.

diverges and their wave function is more similar to two free atoms. Hence, the Frank-
Condon overlap to deeper bound and thus smaller molecules is drastically reduced. This
leads to an enhanced lifetime of the molecules close to the resonance. At lower magnetic
fields, where the molecules are more tightly bound, the loss increases. Therefore, the
maximum of the inelastic scattering is shifted to the left.

Time resolved losses

In a second experiment, we measure the lifetime of an |e↓〉|g ↑〉 mixture on the attractive
side of the resonance. Here, no bound state is present and the only possible collisions
are pure two-body collisions. We use the same preparation scheme as in the previous
experiments. After a variable hold time at the magnetic field of interest, we switch of all
traps and count the remaining |g〉 atoms after a short time of flight. A typical time trace
of such an experiment is shows in Figure 4.12. We assume that all inelastic collisions are
only due to two-body collisions and that thermalisation by elastic collisions is much faster.
Therefore, the time evolution of the atomic density is given by

˙̄n(t) = −β n̄2(t), (4.18)

where β is the two-body decay rate and n̄ = Nω̄3(4πkB T/m)−3/2 is the mean density for
the given temperature T and ω̄ is the geometric mean of the trap frequencies. Since this
is an ordinary differential equation, we can directly give the solution

n̄(t) =
1

α+ β t
. (4.19)

Here, α is determined by the initial density n̄(0) = 1/α. The 1/e lifetime equivalent of the
two-body decay (4.19), can be calculated via α/β(e1 − 1). The solid line in 4.12 is a fit
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Figure 4.12 – (a) Time trace of the total atom number decay of a |e ↓〉|g ↑〉 mixture held at a magnetic field
of 50 G, close to the Feshbach resonance. The line shows the best fit of the solution of the two-body decay
rate equation. (b) The two-body decay rate as a function of the magnetic field (blue circles) and in addition a
conversion into the 1/e-lifetime is given (yellow diamonds).

of the two-body decay (4.19) to the data. On resonance at 50 G, we extract a two-body
loss rate of β = 2.2(3) × 10−13 cm3/s. The initial density n̄(0) ≈ 5 × 1013 atoms/cm3 is
calculated for a temperature of T ≈ 0.3TF, which was independently determined. The
corresponding 1/e-lifetime on resonance is τ1/e = 348(4)ms. A simple exponential decay
yields a lifetime of τ1/e = 386(9)ms. The magnetic field-dependence of β close to the
Feshbach resonance is shown in the inset of Figure 4.12. We measure very low loss rates
and long lifetimes on the order of seconds on the attractive side of the resonance. They
compare well to the ones reported for other fermionic Feshbach resonances [168, 169].

It is important to point out, that these long lifetimes have so far only been observed
for broad, i.e. open-channel dominated resonances with sres � 1. For the first time, we
report long lifetimes for a narrow Feshbach resonance. The long lifetimes exceed the trap
oscillation times by far. Therefore, the atoms can undergo multiple elastic collisions before
they are lost from the trap. This opens up the possibility of producing strongly interacting
and even superfluid Fermi gases close to a narrow Feshbach resonance [58, 170, 171].
Furthermore, it allows to study the interplay of two large length scales, the scattering
length and the effective range. It is still unclear, if the unitary regime can be reached
under such conditions.

4.2.3 The s-wave scattering length

As a final result, we present the magnetic field dependence of the s-wave scattering length.
We extract the elastic, i.e. real part of the scattering length from the CDT measurement
and the inelastic, i.e. imaginary part, from the decay rates.

The CDT rate only depends on the scattering length via the scattering amplitude. In
the limit of low energy scattering, the scattering amplitude is proportional to |a|2. Since
the different CDT experiments have been performed under the same conditions, all further
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Figure 4.13 – Open channel s-wave scattering length ae↓g↑ as a function of the magnetic field. The elastic,
respectively real part of the scattering length is based on the cross-thermalisation measurement, where the
conversion from the thermalisation rate to the scattering length is based on the reference provided by the
background scattering length agg. The inelastic, respectively imaginary part of the scattering length is based
on the loss measurements and converted from the two-body decay rate.

parameters are constant. Thus, we rewrite the thermalisation rate as Γth = κ|a|2, where
κ= 4π/α〈n〉〈vrel〉 is a proportionality factor combining all constants. In order to determine
this factor, we make use of the known ground state intraorbital scattering length agg =
199.9 a0 [110]. Thus, we can extract the proportionality factor by κ = Γgg/|agg|2. The
modulus of open-channel scattering length is therefore given by

|aeg|=
q

Γeg/κ. (4.20)

The sign of the scattering length is fixed by the knowledge about the resonance position
and width, i.e. between B0 and B0 +∆B the scattering length has to be negative.

The two-body loss rate coefficient can be related to the thermal average over the in-
elastic scattering cross section β = 2ħh/m〈kσin〉 [64]. Employing Equation (1.12), we can
obtain a scattering length from the two-body loss rate [64]

beg = −
m

8πħh
βeg, (4.21)

where beg = Im{aeg}.
The results from this conversion are presented in Figure 4.13. As predicted by our

model (4.11), we gain the classic resonance shape for the s-wave scattering length across
the orbital Feshbach resonance. The ratio between elastic and inelastic collisions is favourable
and will in future allow for further investigations of the strongly interacting two orbtial
quantum gas.

However, Figure 4.13 should be recognised as an illustrative demonstration. Note that
the maximum measured scattering length is limited to ≈ 500a0. Above, the gas enters the
hydrodynamic regime and the thermalisation rate is limited by the trap frequency. Hence,
we expect the real value of the scattering length to be much larger. Due to the directional
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heating for the CDT, we heat up the atoms to T ≈ 290 nK. Therefore, the assumption σel =
4πa2 in the limit of low energy scattering is violated. Instead we measure σel = 4π| f (E)|2,
with f (E) + ik = a−1 + 1/2reffk

2. Owing to the large effective range, the collisions are
highly energy dependent. Different collision energies will thus result in other resonance
positions. As we work with a harmonic trap, we can only measure values averaged over
the thermal distribution. This smears out the position of the resonance and the zero
crossing.

4.3 Interaction spectroscopy in the isotropic magic lattice

In the previous section, we introduced the new concept of an orbital Feshbach resonance
and presented the first experimental observation on such a resonance in an ultracold gas
of AEL atoms. We have determined the position and the zero crossing of the resonance in
the bulk and have shown that this new kind of resonance appears universally throughout
the different mF -components.

Nevertheless, the quantitative results still exhibit large uncertainties intrinsic to the
bulk measurements, because it is hard to disentangle the possible many-body effects from
the pure two-body physics. The scattering amplitude is calculated on the basis of the two-
body T-matrix, neglecting the effects of the surrounding Fermi sea. Furthermore, due to
the narrow character of this Feshbach resonance, i.e. the large effective range, the scatter-
ing amplitude is strongly energy dependent. As we keep our atoms in a shallow harmonic
trap, we will always perform a measurement averaged over the thermal distribution.

In order to overcome these difficulties, we perform clock-line spectroscopy of a two-
component Fermi gas in a three-dimensional (3D) magic-wavelength lattice. In contrast
to the measurements in the bulk, we can now probe the two-particle interaction energy
of an atom pair on an isolated lattice site. Here, we achieve a high spectral resolution,
only limited by the linewidth of our clock laser. We confine the atoms in a deep isotropic
lattice with a depth of Ṽ = 29.8Er , where Er is the recoil energy of the lattice light.
This corresponds to a band gap of h · 19 kHz to the first excited band and a bandwidth
of h · 4 Hz in the ground band. In this regime, the lattice sites are decoupled and can
be approximated as isolated harmonic oscillators (see Section 1.1.3). We employ large
atom numbers, leading to singly and doubly occupied lattice sites. Hence, we limit the
interaction to two atoms at most and suppress all many-body effects.

Figure 4.14 presents the spectral response of the two-component Fermi gas for varying
magnetic field. Since the differential Zeeman shift and the lattice band structure are well
characterised, we can easily identify the resonances, stemming from singly occupied sites
(dashed black lines). Further resonances are associated to doubly occupied sites. By
scanning the clock laser frequency, we probe the interaction energy of an |e〉|g〉 atom pair
compared to the initial energy of the |g〉|g〉 pair. Therefore, at zero detuning both pairs
have the same interaction energy. The contrast of a resonance, i.e. the number of atoms
transferred into the |e〉 state, depends on the overlap of the final and initial state. We
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Figure 4.14 – Clock-line spectroscopy spectra of a two-spin Fermi gas (mF = −5/2;+5/2) in a Ṽ = 29.8Er

deep 3D isotropic magic lattice. (a) Low-intensity spectroscopy for determining the |e〉|g〉 atom pair interaction
energy with high fidelity. The black lines indicate the position of the single atom transitions. Since the detuning
axis is given relative to the transition |g ↓〉 → |e ↓〉 (dashed lined), the transition |g ↑〉 → |e ↑〉 (dotted line)
shows twice the differential Zeeman shift. The dashed line at 19 kHz marks the position of the first excited
band. (b) High intensity spectroscopy to reveal the binding energy of the molecular branch in the 3D lattice.

use the measured contrast for the assignment of different resonances to the respective the
final state. Furthermore, as shown in Figure 4.14 (a) and (b), we perform spectroscopy
with high and low intensity at the same magnetic field. Thereby, we can also detect states
like the confinement-induced bound state, which possesses a very weak coupling to the
initial sate.

4.3.1 Two atoms on an isotropic lattice site

In this section, we want to extend our free space scattering model to deep lattices, in
order to described the measured |e〉|g〉 interaction shifts from the clock-line spectroscopy.
Therefore, we have to calculate the magnetic-field dependence of the interaction energy
on a lattice site. In Section 1.1.3, we have already introduced a model, derived by Busch
et al., for the interaction of two particles in a harmonic trap. As we work in a deep and
isotropic 3D lattice, we can approximate a lattice site by a harmonic oscillator.

Let us now extend the above formalism of the two-channel scattering process to the
case of isotropic confinement with V (r) = 1

2 mω2r2. As shown in Section 1.1.3, the centre-
of-mass and relative motion can be decoupled for harmonic confinement. In the centre-
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of-mass frame, the Hamiltonian of the relative motion is given by Ĥ = Ĥ0 + V̂ , with the
non-interacting part

Ĥ0 =
∑

n

εn|o, n〉〈o, n|+
∑

n

(εn +δµB) |c, n〉〈c, n|. (4.22)

Here, n labels the relative harmonic oscillator states with angular momentum l = 0, which
are the only ones involved in short-range interactions [71]. The non-interacting energy
in the harmonic oscillator is given by εn = (2n+ 3/2)ħhω, where ω is the radial harmonic
oscillator frequency. The magnetic field dependent energy shift δµB is caused by the dif-
ferential magnetic moment δµ. For the non-interacting system, the eigenbasis is composed
of the open |o〉 and closed channel |c〉. The interaction part is diagonal in the basis of the
orbital singlet and triplet states |±〉

V̂ =
∑

n,n′
ϕn(0)ϕn′(0)

�

U+|+, n〉〈+, n′| + U−|−, n〉〈−, n′|
	

, (4.23)

where U± are corresponding on-site interaction strengths. Here, ϕn(0) is the real-space
harmonic oscillator wave function at r = 0. In order to investigate the scattering properties
of this potential, we will use again the T-matrix formalism. A detailed derivation of the
T-matrix from the interaction Hamiltonian is presented in the Appendix A. The general
shape of the T-matrix is the same as in free space

T(E) =
�

τ−1 +Π(E)
�−1

. (4.24)

However, here Π(E) is the equivalent of the one-loop polarization bubble on the lattice
site

Π(E) = Π(E)|o〉〈o|+Π(E −δµB)|c〉〈c| (4.25)

with Π(E) being the renormalized pair propagator in the lattice site, as it was introduced
in Eq. 1.23 As we incorporate finite-range corrections, the interaction matrix τ−1 becomes
dependent on the collision energy

τ−1(Ec) =
p

E
�

cotη−eg(Ec)|−〉〈−|+ cotη+eg(Ec)|+〉〈+|
�

(4.26)

where η±eg is the s-wave phase shift and the collision energy is Ec = E−δµB/2+3/2ħhω. We
apply a low-energy expansion up to and including the effective range of both channels.
Thus, we can rewrite the scattering phase shift as

p

mEc

ħh
cotη±eg(Ec)' −(a±eg)

−1 +
1
2

r±eff

mEc

ħh2 (4.27)

Finally, we arrive at an expression for the interaction energies of the two-particle states in
the harmonic trap, given by the poles of the T-matrix

det(T(E))−1 = det[τ−1(Ec) +Π(E)]
!
= 0. (4.28)

So far, we have assumed harmonic confinement. As we have already shown in Sec-
tion 1.1.3, this approximation is only valid for low interaction energies compared to the
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Figure 4.15 – Magnetic field dependence of the |e〉|g〉 atom-pair interaction energy on a lattice site. The
values are given relative to the energy of two non-interacting atoms. The assignment of the spectroscopy
resonances (circles, squares and diamonds) is based on the observed transition strengths. Solid lines are
solutions of the two-particle problem (4.28). Light blue bands indicate a range of variation of the theoretical
model spanned by varying a±eg by ±10%. This figure has been adapted from Ref. [59]

band gap. However, in Figure 4.14, we see that the |e〉|g〉 interaction energy exceeds for
high magnetic fields the energy of the first excited band. For such high energies, the pair
wave function becomes strongly modified by the anharmonic character of the potential.
In analogy to section 1.1.3, we expand the lattice potential in a Taylor series up to the 6th
order and correct the harmonic energy spectrum using second-order perturbation theory.

We solve (4.28) numerically by using Newton’s root finding algorithm. The effective
ranges for the two channels r+eff = 216 a0 and r−eff = 122 a0 are calculated analytically,
based on the C6 coefficent[66, 68]. Therefore, the only free parameters in our model are
the singlet and triplet scattering lengths a±eg .

The new model, incorporating the effective range, is first applied to the zero magnetic
field data in [56]. Here, the unperturbed state |−〉 is probed. A best fit of (4.28) yields
a−eg = 219.7± 2.2 a0. The deviation from the previously published value a−eg = 219.5(29)
stems from the incorporation of the effective range.

In a second step, we fit (4.28) with a+eg as the only free parameter to the magnetic field
dependence of the interaction energy. We obtain a best fit value a+eg = 1878 a0 with a fit
uncertainty of 37 a0. However, we expect that the uncertainty due to simplifications in our
model such as the expansion of the lattice potential in a Taylor series and the first order
expansion of the scattering phase shift are comparable or large than this error.

Figure 4.15 demonstrates the good agreement of the best fit of our model 4.28 (solid
lines) to the measured interaction shifts. The shaded areas result from a 10% variation
of both scattering length in order to illustrate how the model is affected by a variation
of these parameters. The model reproduces very well the observed resonances. We have
assigned the resonances based on the transition strength to different interaction states
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a

b

Figure 4.16 – On-site |e〉|g〉 pair energies as a function of (a) the ratio 3D scattering length to the harmonic
oscillator length and (b) the inverted ratio. The interaction energies are normalized to the harmonic oscillator
spacing ħhω. The symbols (circles, squares and diamonds) correspond to the data presented in Figure 4.15.
The 3D scattering length is calculated from (4.11) for zero collision energy. The yellow shaded area is ex-
perimentally not accessible, since the corresponding 3D scattering length could only be obtained for negative
magnetic fields. On the top, the corresponding magnetic fields are indicated. In (a) zero corresponds to the
zero crossing of the scattering length, whereas in (b) it marks the positions on the resonance.

(indicated by the three different symbols). As the same symbols correspond to the same
branch in the interaction model, this assignment is confirmed.

By calculating the 3D scattering length for each magnetic field, we can parametrise
the interaction energies by a3D/lho. The transformation of the x-axis in Figure 4.16 re-
sults in a similar structure of the interaction states, as known from single-channel model
(1.23) derived by Busch et al. [71]. Comparing Figure 4.15 to Figure 4.16, we can easily
identify the molecular branch. For low magnetic fields we identify the branch with neg-
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ative interaction energy as the molecular branch of |+〉. Extrapolating with our model to
zero magnetic field, we extract an on-site bound state energy of ε+B/h = −32(2) kHz. For
the bound state of the |−〉 state, we predict an energy of ε−B/h ≈ −1 MHz. This demon-
strates once more the sensitivity of the bound state energy on the scattering length and
the importance of this shallow bound state ε+B for the orbital Feshbach resonance.

4.3.2 Spectroscopic determination of the interaction states symmetry

Our two-channel interaction model reproduces nicely the observed magnetic field depen-
dence of the interaction shift. Now, we want to further verify the proposed coupling
mechanism of the orbital Feshbach resonance, i.e. the evolution of the orbital singlet and
triplet states at zero field into the open and closed channels at high fields.

First, we will investigate the symmetry of the low field interaction states. So far,
we have performed spectroscopy with π-polarised light on a two-component Fermi gas
with opposite mF states. For these states, the Clebsch-Gordan coefficients of the corre-
sponding single-atom π-transitions have the same magnitude but opposite sign. Owing
to this change in sign, the π-light changes the sign of the nuclear spin state, |s〉

π
→ |t〉

and vice versa. Since the initial state is |g g〉 ⊗ |s〉, the π-light can only couple to the state
|−〉 = 1/

p
2(|eg〉 − |ge〉) ⊗ |t〉. The excitation into the state |+〉 = 1/

p
2(|eg〉 + |ge〉) ⊗ |s〉

is forbidden. A detailed derivation of the two-particle spectroscopy Hamiltonian can be
found in [60].

Accordingly, we see in Figure 4.15, that only the |−〉 is experimentally observed at
low fields. However, in order to verify that the low-field state is indeed the state |−〉, we
carry out spectroscopy with σ-polarised clock light in the same lattice configuration. We
now employ a spin mixture composed of two adjacent spins mF = −5/2;−3/2, denoted by
|−5/2〉= |↓〉 and |−3/2〉= |↑〉. We detect, by means of an OSG measurement, the loss in each
of the two ground-state spin components. The initial spectroscopy state is |g g〉⊗|s〉. Let us
consider the influence of σ− light on this state. Since we are addressing the 1S0(5/2, mF)→
3P0(5/2,mF − 1) transition, the σ−-light exclusively drives atoms from the state |g,−3/2〉
into |e,−5/2〉 . After the excitation, both atoms have the nuclear spin mF = −5/2. As
both nuclear spins are aligned, the final state must be 1/

p
2(|eg〉− |ge〉)⊗ |↓↓〉. Associated

to this state is the interaction energy U↓↓eg . Following the same argument for σ+-light, we
derive that the final state has the structure 1/

p
2(|eg〉−|ge〉)⊗|↑↑〉 with the corresponding

interaction energy U↑↑eg .
Figure 4.17 presents the spin-resolved clock-line spectra. The main graph displays

the splitting between the π and σ± transitions in a spin-polarised gas in a weak mag-
netic bias field of 10 G. The inset of Figure 4.17 shows the spectra obtained from the
mF = −5/2;−3/2 mixture. Using σ− light, we detect a resonance in the |g ↑〉 atoms shifted
by 0.4 kHz from the single particle transition. This corresponds to the transition into the
|↓↓〉 state. In the |g ↓〉 atoms, we observe using σ+ light, the transition into the |↑↑〉 state
with the same interaction shift. Therefore, the final states have the same interaction en-
ergy U↓↓eg = U↑↑eg . This interaction energy matches the energy of the central spin-triplet
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↓↓ ↓↓

1S0 (F= ⁵/2 )

3P0 (F’= ⁵/2 )

-5/2 -3/2 -1/2

Figure 4.17 – Spin resolved clock-line spectroscopy with π as well as σ± light in a 3D isotropic magic lattice
at a bias field of 10 G on a spin polarized Fermi gas. The data shows the normalized ground state population
of (a) mF = −3/2 and (b) mF = −5/2, where the frequency axes are referenced to the corresponding π-
transition. The insets show a detailed scan of the interaction peak in a two spin mixture ( mF = −3/2;−5/2).
The detection is spin resolved and the data shows the normalized ground state population of (a) mF = −3/2
and (b) mF = −5/2. As illustrated in the schematic drawing, the σ-light couples the initial spin singlet state
to a spin triplet state. In (a) the σ−-light drives the atoms into the |↓↓〉 state, whereas the σ+-light in (b) drives
into the state |↑↑〉

branch in Figure 4.15, which was measured with π light in the mF = −5/2;+5/2 mixture.
This result verifies that this state is indeed the orbital singlet state |−〉. The actual config-
uration of the spins (|↓↓〉, |↓↑〉+ |↑↓〉, |↑↑〉 is unimportant for the interaction energy. Only
the orbital singlet structure determines the interaction strength.

In a second experiment, we turn back to π-polarised light and mF = −5/2;+5/2 mix-
ture. Now, we will verify by spin-sensitive measurements that the state |−〉 at low fields
evolves into the the open channel state |o〉 at high fields. The high field regime is de-
termined by the differential magnetic moment. The atom pair enters this regime for
δµB ≥ Vex. At low fields, the π-polarised light drives the atoms into the state |−〉 =
1/
p

2(|eg〉 − |ge〉)⊗ |t〉. Because this state possesses a symmetric spin configuration |t〉 =
1/
p

2(|↓↑〉+ |↑↓〉), we expect to observe a loss in both ground state spin components. In
contrast, at high fields, the final state is the nuclear spin product state |o〉= |e↓〉|g ↑〉. Thus,
we expect to see only a loss feature in the |g ↓〉 atoms.
We perform clock spectroscopy at two different magnetic fields. An equal loss in both
spin components at low fields indicates that the final state is indeed a superposition of
both spin states, as depicted in Figure 4.18. At high fields, the clock light addresses atoms
from the state |g ↓〉 exclusively, indicating that the final state is the nuclear spin product
state |o〉.
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+

B = 25 G

B = 50 G

Figure 4.18 – Spin resolved clock-line spectra of a two-spin Fermi gas (mF = −5/2;+5/2) in a 3D isotropic
magic lattice at two different magnetic fields. The blue (yellow) dots show the normalized ground state popu-
lation for 25 G (50 G). The |e〉|g〉 atom pair resonance is chosen as reference for the detuning axis in order to
illustrate that the state |−〉 evolves with increasing magnetic field into |o〉, i.e. the nuclear spin product state
|o〉 = |e ↓〉|g ↑〉.

The results from the high-resolution clock-line spectroscopy provide a clear verifica-
tion of the orbital interaction induced Feshbach resonance. We verified the coupling
mechanism between the orbital singlet and triplet states in the presence of a magnetic
field through spin-selective imaging. We have show that the zero-field orbital singlet and
triplet state evolve into the open and closed channel states at high magnetic fields. We
have developed a new scattering model (4.28) which goes beyond the usual solution of the
two-body problem in a harmonic trap, since it incorporates the effect of confinement on
both open and closed channel. This model is in very good agreement with the measured
magnetic field-dependent interaction energies.

4.3.3 Position of the Feshbach resonance in the bulk

As a final remark, we want to turn back to the Feshbach resonance in the bulk. By remov-
ing the many-body effects via the deep 3D lattice, we probe the pure two-body interac-
tions. We employ the values of the singlet and triplet scattering length from the best fit
of (4.28) in our scattering theory for the bulk. This enables us to derive a better estimate
of the resonance position and zero crossing compared to the cross-thermalisation mea-
surement. For a gas at zero temperature, we calculate a resonance position in the bulk of
B̃0 = 4211

8 G and a zero crossing at B̃∆ = 31987
62 G. Since the scattering is strongly depen-

dent on the collision energy of the particles due to the narrow character of the Feshbach
resonance, the values B̃0 and B̃∆ are not observed directly in the bulk experiment. For a
finite temperature of T = 290 nK, we calculate a resonance position B0 = 5011

8 G and the
zero crossing B∆ = 32789

62 G. Both values are in good agreement with the results obtained
from the independent cross-thermalisation measurement.
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CHAPTER 5

A strongly interacting Fermi gas in two
dimensions

In this chapter, we study the strongly interacting Fermi gas in two dimensions (2D). The
reduction of the dimensionality has dramatic consequences on interacting many-body sys-
tems [172]. Already at the level of the bare two-body interaction, the 2D system exhibits
completely different scattering properties compared to the three-dimensional (3D) sys-
tem. Due to the influence of the confinement, a bound state exists for repulsive as well as
attractive interactions. This gives rise to an effective 2D scattering length, which is always
positive [173]. For Feshbach resonances, we find the pole shifted by the confinement to
lower mangentic fields compared to the 3D situation [174]. Also, the many-body physics
are strongly altered. Owing to the increased role of fluctuations, the ground state of the
2D system possesses no true long-range order [24]. In solid state systems, we can find
strongly interacting 2D Fermi gases for example in the layered structure of cuprate high
temperature superconductors [20]. Therefore, studying the attractive 2D Fermi gas may
provide a deeper understanding of unconventional superconductivity.

In our experiment, the 2D geometry is realized by means of a one-dimensional (1D)
optical lattice. This enables us, to perform spectroscopy of the strongly interacting Fermi
gas near the orbital Feshbach resonance. We verify the existence of the confinement-
induced dimer at all magnetic fields. Furthermore, we demonstrate the universal scaling
of the dimer binding energy at the position of the orbital Feshbach resonance with the
confinement depth [173]. By driving the system from the weakly interacting state |g ↓〉|g ↑〉
into the strongly interacting state |e↓〉|g ↑〉, we reveal the existence of a repulsive and
attractive polaronic branch.

5.1 Interactions in a quasi-2D geometry

Before we discuss the experimental findings in detail, we will first review the scattering
process in 2D. In the first chapter, we have discussed the scattering problem in free space
as well as in the presence of an isotropic confinement. Following [175], we will now
study how the scattering properties are changed due to the reduced dimensionality. We
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directly apply the 2D scattering formalism to our two-channel model for the interorbital
interaction.

In our experiment, we confine the atoms in two dimensions by superimposing a deep
1D optical lattice on top of the 3D harmonic trap. The initial 3D Fermi gas is distributed
in a set of separated 2D ensembles along the axis of the 1D optical lattice. Each ensemble
experiences a transverse harmonic potential Vz = 1/2mω2

z z2, where we choose the coordi-
nate system such that the 2D system extends in the x y-plane. In the Gaussian vibrational
ground state of the potential, the gas has a finite extension along the transverse direction,
the so-called harmonic oscillator length

lz =
Æ

ħh/2mωz . (5.1)

As long as lz is much smaller than the inter-particle spacing and the thermal wavelength,
all transverse degrees of freedom are frozen out. In our experiment, the inter-particle
spacing and thermal wavelength are on the order of 500 nm, whereas the harmonic oscil-
lator length is typically 50 nm or shorter. Under these conditions, the gas is considered to
be in a quasi two-dimensional (quasi-2D) regime [176, 177].

Due to the harmonic character of the confining potential, we can separate the centre-
of-mass motion from the relative motion. The relative motion along the z-axis, i.e. per-
pendicular to the 2D plane is simply given by a harmonic oscillator. Therefore, the non-
interacting part of the quasi-2D Hamiltonian can be written as

H0 =
∑

k,n

2εk,n|o,k n〉〈o,k n|+
∑

k,n

(2εk,n +δµB)|c,k n〉〈c,k n|, (5.2)

where εk,n = ħh2k2/2m+(n+1/2)ħhωz with n being the harmonic oscillator quantum number
for the z-direction and k the in-plane momentum. Once again, |o〉 and |c〉 denote the open
and closed channel.

We can derive the two-body interaction strength in the quasi-2D geometry from the
bare interaction in 3D by the following consideration. Since the harmonic oscillator length
( lz ¦ 1000 a0) is much larger than the range of the van der Waals interaction potential
(r0 ∼ 100 a0), the bare two-body interaction remains unaffected by the confinement. We
assume that the 3D interaction strength can be separated into a component in the 2D-
plane and a perpendicular component. The scattering event k3D → k′3D gives rise to a
change of the in plane momentum k→ k′, whereas the relative motion in the transverse
harmonic potential changes by n → n′ [175]. A detailed derivation, of the quasi-2D in-
teraction is presented in the Appendix C. In the quasi-2D basis, the interaction part of the
Hamiltonian is given by

V̂q2D =
∑

k,k′,n,n′
fn fn′

�

U+|+,kn〉〈+,k′n′| + U−|−,kn〉〈−,k′n′|
	

, (5.3)

with the f -coefficient determined by f2n = (−1)n/(2πl2
z )

1/4
p

(2n)!/(2nn!) and f2n+1 =
0. The states |±〉 label the orbital singlet and triplet state. In analogy to the treatment
presented in the previous chapter, we construct the T-matrix

T̂n,n′(E) =
p

2πlz fn fn′
�

V−1
q2D −Πq2D(E)

�−1
(5.4)
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2D 3D

Figure 5.1 – (a) Magnetic field and energy dependence of the quasi-2D open-channel scattering amplitude
f (E ), calculated for a transverse confinement depth of 25Er . For each energy, the scattering amplitude is
normalised to the maximum value along the dashed line. As f (E ) changes over several orders of magnitude,
we choose a logarithmic color scale. The white and blue dashed line highlight the energy-dependent shift of
the maximum and minimum respectively. (b) Confinement-induced shift of the maximum in f (E ). In quasi-2D,
the pole of T is shifted towards lower magnetic fields compared to the situation in 3D.

with Πq2D(E) the quasi-2D polarization bubble. In the limit of low-energy scattering and
strong confinement |E| < ωz, we only have to consider scattering in the lowest level n =
n′ = 0. In order to obtain the scattering amplitude, we project the T-matrix onto the open
channel. Hence, the scattering amplitude in the quasi-2D geometry in the lowest harmonic
oscillator level for low collision energies is given by

fq2D(E) = 2
p
πlz f0 f0T00, (5.5)

with the matrix element 〈k′, 0|T̂00(E + i0)|k, 0〉 evaluating to

T00 =
p

2π

lz
a−eg
+ lz

a+eg
+ 2F

�

ε′
�

�

lz
a−eg
− [F (ε) +F (ε′)]

��

lz
a+eg
− [F (ε) +F (ε′)]

�

− [F (ε) +F (ε′)]2 /4
. (5.6)

Here, we have used the substitution ε = −E/(ħhωz) and ε′ = −(E + δµB)/(ħhωz). Analo-
gous to the treatment in free space and isotropic confinement, we incorporate finite range
effects by the effective range expansion: a−1→ a−1− 1

2 r0(mEc)/ħh2, where the collision en-
ergy is given by Ec = E− δµB

2 +1/2ħhωz. The F function is determined by the transcendental
equation [175]

F(ε) =

∫ ∞

0

du
1

p
4πu3

�

1−
e−εu

p

(1− e−2u)/2u

�

. (5.7)

Figure 5.1(a) present the magnetic field dependence of the quasi-2D scattering amplitude
5.4 for collision energies up to 1/2ħhωz. The confinement-induced shift of the pole of
the T-matrix towards lower magnetic fields [174] is illustrated in Figure 5.1(b) . For
low collision energies close to the scattering threshold, i.e. ε,ε′ � 1 we can expand the
F-function into [175]

F0(x) =
1
p

2π
ln(πx/χ) +

ln2
p

2π
x +

π2 − 12 ln2 2

48
p

2π
x2 +O(x3), (5.8)
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where χ = 0.905 is a numerically determined value [173]. Based on the first term of this
expansion, we define the effective 2D scattering length [173]

a2D = lz
Æ

π/χexp
�

−
Æ

π/2lz/a3D

�

, (5.9)

where a3D is the bare 3D s-wave scattering length in the open channel, defined by (4.11).
In the limit, where the harmonic oscillator length is larger than the 3D scattering length
|lz/a3D| � 1, the scattering amplitude can be approximated by [176]

f (k)≈ 2
p

2πa3D/lz . (5.10)

In this regime, the two-body scattering amplitude becomes independent of the collision
energy.

5.2 Clock-line spectroscopy of the quasi-2D dimer

Before we start to investigate possible many-body effects of the strongly interacting quasi-
2D gas, we want to probe its two-body properties. Therefore, we perform spectroscopy of
the two-body bound state, the quasi-2D dimer. In a 3D geometry this technique has been
employed by many experiments for a precise determination of the scattering properties
near a Feshbach resonance [90, 105, 106]. We perform so-called inverse spectroscopy,
where the system is driven from the free states into the bound state. Probing the bound-
to-free transition is conventionally called direct spectroscopy. We have the atoms confined
in a tight 1D optical lattice, in order to create the quasi-2D quantum gas. The optical
lattice is coaligned with the propagation axis of the yellow clock excitation light, as illus-
trated in Figure 5.2. This geometry ensures Lamb-Dicke conditions during the excitation.
Therefore, we can directly probe the quasi-2D gas spectroscopically.

For all experiments presented in the following, the experimental procedure is the same.
First, a degenerate two-component Fermi gas |g ↓〉|g ↑〉 with a temperature of T = 0.2TF

is produced by evporative cooling in the 1064 nm dipole trap (see Section 3.2). Here, we
employ the two nuclear spin states mF = ±5/2. We transfer the |g ↓〉|g ↑〉 mixture into
a magic-wavelength, i.e. state-independent dipole trap operating at λm = 759 nm. In a
second step, the 1D magic-wavelength lattice is adiabatically turned on. The 2D planes
are formed perpendicular to the long axis of the cigar shaped dipole trap. Depending on
the atom number, we typically distribute the Fermi gas over 140 to 220 planes. If not men-
tioned otherwise, we ramp the lattice to a final depth of Vlat = 25 Er , which corresponds to
a transverse trapping frequency of ωz = 2

p

VlatEr ≈ 2π×20 kHz and a harmonic oscillator
length of lz = 1013 a0. An uncertainty of ±1 Er in the calibration of the lattice depth cor-
responds to 2π×0.8kHz in the trap frequency and 10 a0 in the harmonic oscillator length.
The radial frequency in the 2D plane is ωr = 2π × 140 Hz. Finally, the magnetic field is
ramped to the desired value. We apply a spectroscopy pulse with varying frequency in
order to measure the spectral response of the Fermi gas at the given magnetic field. The
overlap of the bound state with the initial state of two free atoms is very weak. In order
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Figure 5.2 – (a) A schematic of the experimental setup. The quasi-2D planes are stacked along the L1 axis.
The planes are spaced by half the lattice wavelength and have a finite width of lz = 1013 a0 for a lattice
depth of 25Er . The clock light is coaligned with L1, ensuring the Lamb-Dicke condition during the excitation.
The interparticle distance and the harmonic oscillator length are not to scale. (b) Illustration of the transverse
harmonic oscillator levels. As long as the Fermi energy in the planes and the temperature are smaller than the
harmonic oscillator spacing, the transverse degrees of freedom are frozen out.

to achieve a good spectral resolution, we employ long pulses of duration τ = 1 s with low
intensities I1 ∼3 mW/cm2 and I2 ∼0.03 mW/cm2, corresponding to single-particle Rabi
frequencies of 100 Hz and 10 Hz respectively. As we drive the system into the bound state,
we perform inverse spectroscopy. Directly after the excitation, all traps are switched off
and the atoms are released. After a time of flight of 12 ms, the remaining ground-state
atoms are imaged.

5.2.1 Magnetic field dependence of the binding energy

Figure 5.3 displays the magnetic field dependence of the quasi-2D dimer across the orbital
Feshbach resonance. The data in Figure 5.3(a) is obtained with the higher intensity I1.
Here, the detuning of the clock light is given relative to the unperturbed single atom
transition |g ↓〉 → |e↓〉. Towards lower magnetic fields, where the dimer is more tightly
bound, the contrast of the resonance is strongly reduced. For magnetic fields above 60 G,
the power broadened resonance of the free transition |g ↓〉 → |e↓〉 overlaps with the dimer
resonance. Thus, we employ pulses with the lower intensity I2 and reduce the power
broadening. For this intensity, we can resolve the dimer up to 140 G, i.e. far beyond the
resonance position in 3D and thus into the attractive side.

In Figure 5.3(b), the energy of the dimer εB is plotted relative to the continuum energy
E3D

th in 3D. In quasi-2D, the dissociation threshold is the energy of the zero-point motion
of the harmonic oscillator ħhωz/2. The binding energy εB is determined by the poles of the
two-body T-matrix. The blue lines in Figure 5.3(b) are obtained from solving the equation
det [T(εB)]

−1 = 0 numerically by using Newton’s root finding algorithm. The solid line,
shows the result for the solution of the quasi-2D T-matrix (5.6), whereas the dashed line
represents the free-space T-matrix (4.10). For a−eg and a+eg, we employ the values obtained
from the high-resolution clock-line spectroscopy in the previous chapter. Thus, there are
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Figure 5.3 – Binding energy of the quasi-2D dimer across the orbital Feshbach resonance. (a) Spectral
response of a two-spin Fermi gas (mF = −5/2;+5/2) in a quasi-2D geometry with ωz ≈ 2π × 20 kHz. The
normalized ground-state population is shown as a function of the magnetic field and the detuning relative to
the single particle transition |g ↓〉 → |e ↓〉. (b) Binding energy of the quasi-2D (solid line) and 3D (dashed
line) dimer relative to the corresponding threshold energy Eth. The solid black lines display the threshold
energies ħhωz/2 for quasi-2D and 0 for 3D. The errorbars indicate the 1σ uncertainty of the Lorentzian fit, used
to determine the position of the resonance.

no free parameters in this model. The measured resonances are very well reproduced by
the two-channel model adapted to the quasi-2D geometry.

In Figure 5.3(b), we can identify two regions, corresponding to the repulsive and
attractive side of the Feshbach resonance in 3D. For magnetic fields B ¦ 50 G, where
the 3D scattering length is negative, the 3D dimer vanishes. However, in quasi-2D, the
continuum energy is raised by ħhωz/2 because of the harmonic confinement. Therefore,
for all magnetic fields a dimer with binding energy εB < ħhωz/2 is found. In this regime,
the dimer is induced by the confinement. The existence of a bound state for all magnetic
fields implies that the effective scattering length in 2D is always positive.

Far away from the resonance, the 3D scattering length (4.11) is smaller than the
harmonic oscillator length lz/|a3D| � 1. For the given confinement (Vlat = 25 Er), we
reach this regime for magnetic fields beyond 100 G. Here, the 3D scattering length is
small and negative (lz/a3D < −1) and the dimer spreads out in the 2D plane. Thus,
the system approaches the pure 2D regime, where the binding energy takes the form
εB = ħh2/(2ma2

2D) [175]. Based on the expression for the 2D scattering length (5.9), we
can write the dimer energy as

εB ≈ ħhωz
χ

π
exp

�p
2πlz/a3D(B)

	

. (5.11)

In the region of small and positive scattering length (lz/a3D > 1), the dimer is tightly
bound. Here, the dimer is so small that it is not influenced by the confinement. The
system becomes effectively 3D and the binding energies of the quasi-2D and 3D dimers
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Figure 5.4 – Binding energy of the quasi-2D dimer as a function of the 2D confinement near the orbital Fesh-
bach resonance. (a) Binding energies measured at different magnetic fields as a function of the confinement
frequency ωz . The x -axis is parametrised by the ratio lz/a3D , where lz =

√
ħh/2mωz and a3D(B) is given

by (4.10). The dashed lines are guides to the eye. (b) Binding energy as a function of the harmonic confine-
ment frequency at the position of the resonance in 3D. The dashed line indicates the predicted scaling [173],
whereas the solid line is a fit to the data.

are the same. This regime can not be reached in our experiment. For zero magnetic field,
the 3D scattering length is still as large as the harmonic oscillator length.

Close to the Feshbach resonance, where the scattering length is large, the dimer is
strongly modified by the confinement. At the position of the resonance, the dimer becomes
a universal function of the 2D confinement [6]

εB ≈ 0.244×ħhωz . (5.12)

As shown in Figure 5.3(b), the biding energy of the quasi-2D dimer acquires this energy
at B ≈ 50 G, the position of the Feshbach resonance in 3D.

5.2.2 Confinement dependence of the binding energy

In a second experiment, we want to investigate the influence of the transverse confine-
ment on the binding energy of the quasi-2D dimer. In order to reveal the universal scaling
(5.12), we measure the binding energy as a function of the confinement at different mag-
netic fields near the orbital Feshbach resonance. Again, the binding energy is determined
via inverse spectroscopy, i.e. by associating two free |g ↓〉|g ↑〉 atoms in to the dimer. The
experimental sequence is the same as for the previous measurements with the exception
that we vary the final depth of the 1D optical lattice as follows:

Vlat [Er] 5 10 20 40 60 80
ωz/(2π) [kHz] 9 13 18 26 32 36
lz [a0] 1515 1274 1072 901 814 758

For the strongest confinement achievable in our experiment, the harmonic oscillator length
is much larger than the range of the van der Waals interaction. Hence, the short-range



88 Chapter 5. A strongly interacting Fermi gas in two dimensions

Figure 5.5 – Binding energy of the quasi-2D dimer relative to the dissociation threshold energy as a function of
the ratio lz/a3D . The diamonds correspond to the data already presented in Figure 5.3, whereas the circles are
the data points from (a). The data has been obtained as a function of the magnetic field at a fixed confinement
depth (diamonds) and as a function of the confinement at a fixed magnetic field (circles) respectively.

physics are unaffected and the assumptions made for the derivation of the two-body T-
matrix are valid for all confinements.

Figure 5.4 presents the binding energy of the quasi-2D dimer as a function of the
confinement depth. In the previous discussion, we have already used the ratio of the
harmonic oscillator length to the 3D scattering length lz/a3D for characterising the quasi-
2D system. Here, in order to pronounce the effect of the confinement, we parametrise
the binding energy by the ratio lz/a3D. In Figure 5.4 (a), data points connected by a
dashed line show the confinement dependence of the binding energy at a fixed magnetic
field. On both sides of the resonance a stronger confinement causes a deeper bound
state. The exponential behaviour of the binding energy (5.11) is not observed, because
lz/a3D > −1. As the resonance is approached (a3D→±∞), the parameter lz/a3D becomes
independent of lz. On resonance, this gives rise to the linear dependence of the binding
energy on the confinement strength, as illustrated in Figure 5.4(b). Here, a best fit of the
linear dependence (5.12) results in εB = 0.27(1)ħhωz. This is in good agreement with the
theoretical value and similar to other experimentally reported values [178, 179]. Figure
5.5 demonstrates that the binding energy relative to the confinement frequency εB/ħhωz is
a universal function of the parameter lz/a3D [173]. When the binding energy is rescaled by
the corresponding confinement frequency, all data points collapse and are well reproduced
by the solution of the two-body T-matrix.

5.2.3 Many-body effects on the dimer

In a third experiment, we want to study possible many-body effects on the quasi-2D dimer.
In the previous chapter, we have performed spectroscopy in a deep 3D lattice. There, we
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Figure 5.6 – Binding energy of the quasi-2D dimer at a fixed magnetic field for different total atom numbers.
(a) Spectral response of the two-component Fermi gas around the transition into the dimer. The detuning is
given relative to the single particle transition |g ↓〉 → |e ↓〉. The ground state population is normalised to the
total atom number. The legend gives the atom number per spin state. Here, the binding energy corresponds
to εB = 0.45ħhωz . (b) The energy axis is given relative to the binding vacuum two-body energy εB . Each
spectrum is normalised to the Fermi energy in the central plane.

could selectively probe the interaction properties of an isolated atom pair on a single
lattice site and found very good agreement with our two-body scattering model. Here, we
have also treated the bound state as a pure two-body problem. However, as we typically
employ atom numbers up to several ten thousand, the dimer is actually surrounded by a
Fermi sea of ground state atoms. Yet, the binding energy, calculated from the two-body
T-matrix, reproduces very well the measured binding energies (see Figure 5.3 and 5.4).
Based on the assumption that we are probing the transition of two free atoms into a bound
state, the transition linewidth is limited by the lifetime of the dimer. Therefore, we would
expect to resolve the same linewidth, independent on the total atom number.

Figure 5.6 displays the observed transition spectra for different total atom numbers.
Each spectrum is normalised to the corresponding total atom number. For each atom
number, we observe the same maximum depletion, about 40 percent. Yet, the width of the
resonance depends on the total atom number. With increasing atom number the resonance
widens.

We can understand the broadening by considering the effect of the Fermi sea on the
dimer. As the associated atoms are initially immersed in a Fermi sea, they originate from
different energy levels. Thus, atoms from different initial energies are paired into the
dimer. With increasing atom number, the Fermi energy εF grows and thus the spread
in energy. Therefore, we expect all transitions to show the same spectral broadening
with respect to the Fermi energy. Figure 5.6(b) shows that after rescaling each resonance
with the corresponding Fermi energy, the data sets overlap. The width (FWHM) of the
resonance is roughly εF.

In direct spectroscopy, the high frequency tail of the spectrum is proportional to the
contact [180] and exhibits a ω−3/2 decay [181]. The contact can be interpreted as a mea-
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surement of the local pair density. The contact is of particular interest in the strongly
interacting regime, where strong correlations defy a pertubative treatment. Still, a sys-
tem in this regime can be described by universal relations based on the contact [12]. To
measure the contact, the strongly interacting system has to be prepared in an equilib-
rium state and probed by direct spectroscopy, i.e. transferred into a non-interacting final
state [182]. However, as we have performed inverse spectroscopy, our measurements
would only reveal the contact of the weakly interacting initial state. Further, due to the
strong final-state interaction an interpretation along these lines is challenging. A possi-
ble protocol for future experiments would be to first prepare an |e↓〉|g ↑〉 mixture at high
magnetic field, where the interorbital interaction is weak. Afterwards the system would be
slowly ramped into the strongly interacting regime. There, the contact can be measured
via direct spectroscopy back into the weakly interacting state |g ↓〉|g ↑〉.

In this section, we have presented the results of inverse clock-line spectroscopy of
the quasi-2D dimer. The existence of the quasi-2D dimer was observed on both sides
of the orbital Feshbach resonance. The demonstration of the magnetic field dependence
of the binding energy is a further verification of the existence of the orbital Feshbach
resonance. The measured binding energies of the quasi-2D dimer are well reproduced
by the two-channel model based on the orbital scattering length obtained in the previous
experiments. On resonance, we have showed the universal scaling of the binding energy
with the 2D confinement frequency.

5.3 Spectroscopy of the quasi-2D many-body system

After the detailed spectroscopic study of the dimer properties, we want to probe possible
many-body interaction effects of the quasi-2D Fermi gas. For alkali atoms, the technique of
inverse spectroscopy has already been applied to measure the the mean-field interaction
shift in a strongly interacting Fermi gas [183]. Furthermore, recent studies of strongly
interacting Fermi gases have revealed the existence of metastable polarons in 3D [184,
185] and 2D [186, 187].

So far, we have employed long and low-intensity pulses, in order to achieve a good
resolution of the dimer binding energy. We have ensured a good contrast of the dimer res-
onance, by adapting the pulse intensities to suite the decreasing overlap with the tightly
bound dimer. Now, we will employ short pulses with a fixed intensity for the entire mag-
netic field range. Thus, by measuring the spectral response of the Fermi gas via inverse
spectroscopy we are susceptible to possible short time dynamics in the strongly interacting
Fermi gas, e.g. metastable quasiparticles such as polarons. Further, using a constant pulse
intensity in the various interaction regimes allows us to observe how the overlap into the
final state changes.

The experiment starts, with the preparation of a weakly interacting two-component
Fermi gas |g ↓〉|g ↑〉 at a temperature of 0.2TF in the dipole trap. In order to promote
density dependent interaction shifts, we employ a large atom number. Both spin states are
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Figure 5.7 – Characteristic properties of the two-component quasi-2D Fermi gas. 50 × 103 atoms per spin
state are adiabatically transferred from the dipole trap into the 1D lattice. In total 220 planes are occupied by
the atoms. As the distribution along the lattice is symmetric, only one half of the planes are shown. In order to
further reduce visual clutter, only every third plane is drawn. The planes are counted from the center outwards.
Each point corresponds to the (a) peak density, (b) temperature and (c) Fermi energy in a plane. The values
are calculated for an initial temperature of 0.2TF in the dipole trap. The gray shaded areas indicate the regions
containing 50% (75%) of the atoms.

equally populated with a total of 50× 103 atoms per nuclear spin state (mF = ±5/2). For
the transfer into the 1D lattice, we assume that the gas is always in thermal equilibrium
and that the total entropy is largely conserved. We model the density profile inside the
2D planes by a 2D Thomas-Fermi density distribution. Transverse to the planes the gas
is assumed to be in the Gaussian vibrational ground state. The lattice is aligned along
the long axis of the cigar shaped trap and we find around 220 planes occupied. The
peak in-plane density in the central plane is ng↓ = ng↑ = 4.7× 1013 atoms per cm3. This
results, with a transverse trapping frequency of 20 kHz and a mean radial frequency of
140 Hz, in a Fermi energy of εF = h · 4 kHz. The distribution of the atomic density and
the corresponding Fermi energies across the 220 planes are displayed in Figure 5.7. Since
the scattering length agg is small and lz/agg = 5.1 � 1, the initial spectroscopy state
|g ↓〉|g ↑〉 is weakly interacting. In this regime, we use the energy-independent mean-field
approximation (5.10) for the scattering amplitude. We calculate the interaction energy of
one |g ↓〉 atom in the initial state with the |g ↑〉 atoms through

Eg g =
2
p

2πħh2

mlz
aggng↑. (5.13)

For the central planes, we obtain an interaction energy of h · 0.7 kHz. All interaction
energies of the final state are measured relative to this energy.

5.3.1 Mean-field interaction shift

For the spectroscopy, we employ short and intense pulses with τ= 1.4 ms and I ∼ 19 mW/cm2.
Theses pulses correspond to π-pulses with a Rabi frequency of 250 Hz on the unperturbed
single particle |g ↓〉 → |e↓〉 transition. The detuning δν is measured relative to this tran-
sition. We convert the detuning into the dimensionless ratio (hδν + Eg g)/εF, where we
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Figure 5.8 – Trap averaged measurements of the spectral response of the quasi-2D Fermi gas near the orbital
Feshbach resonance. (a) Normalized population of atoms remaining in the |g ↓〉 as a function of the magnetic
fied and for different values of the clock laser detuning relative to the single particle transition |g ↓〉 → |e ↓〉.
(b) Cuts through the data from (a) at two magnetic fields, below and above the Feshbach resonance. The data
clearly illustrates the non-trivial lineshape of the resonance, that cannot be described by a single Lorentzian.
The solid lines are fits of a double Lorentzian used to determine the position of the polaronic branches.

compare the measured interaction energy to the Fermi energy of the initial system. By
adding the initial state interaction energy to the measured detuning, zero energy corre-
sponds to the energy of non-interacting atoms.

The measured spectral response of the quasi-2D Fermi gas around the orbital Feshbach
resonance is presented in Figure 5.8. We see that the obtained spectral response does not
resemble a simple Rabi or Lorentzian lineshape. The lineshape suggests the existence of
two overlapping resonances. Indeed, by fitting a double Lorentzian profile to the data,
we obtain a smaller sum of squared errors compared to a single Lorentzian. From this
heuristic model, we obtain two resonance positions. One of the resonances shows only
a relatively small detuning compared to the single particle transition as well as a narrow
width. We attribute this signal to atoms from the edges of the cloud. There, the densities
are very low and thus the corresponding interaction shift. This assumption is supported by
the low and magnetic field-independent depletion, as illustrated in Figure 5.9. The second
resonance is found for magnetic fields below the Feshbach resonance at large positive and
above the Feshbach resonance at large negative detunings, as illustrated in 5.8 (b). As the
resonance is approached, the detuning, i.e. interaction energy increases monotonically on
the repulsive as well as on the attractive side. Furthermore, the resonance is significantly
broader than the first one and the depletion shows a strong magnetic field dependence.
Based on these criteria (the magnetic field dependence of the detuning and depletion) we
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Figure 5.9 – Magnetic field dependence of the excitation fraction in the two resonances of the heuristic line-
shape model. The excitation fraction is normalised to the population of the |g ↓〉 state, i.e. 1 corresponds to
100% transfer efficiency of the pulse. The circles (diamonds) correspond to the resonance with small (large)
detuning respectively. Errorbars correspond to the 1σ uncertainty of the fits. Below 25 G and above 400 G,
only a single resonance can be resolved.

attribute the second resonance to the strongly interacting gas in the central planes. The
interaction shift, obtained from this resonance is shown in Figure 5.10.

For magnetic fields above 400 G, where the interorbital scattering length is small and
repulsive, the final state |e↓〉|g ↑〉 is weakly interacting. Here, only a single resonance is
resolved by the spectroscopy. We transfer nearly all |g ↓〉 atoms into the |e↓〉 state (see
Figure 5.9) and we produce an equal mixture of |e↓〉 and |g ↑〉 atoms. In this regime, the
measured interaction shift is proportional to the scattering length and the density. Thus,
we approximate the interaction shift in the final state by a simple mean-field treatment,
where an |e↓〉 atom is interacting with all the |g ↑〉 atoms. Since the scattering length
diverges at the resonance, we cannot employ the energy independent mean-field approxi-
mation as for the initial state interaction. In order to take the energy dependence of the 2D
interaction into account, we calculate the interaction shift based on the two-body T-matrix
averaged over the whole Fermi sea in the central plane

δE =

∫

d2k
(2π)2

T00(E). (5.14)

The solid line in Figure 5.10 presents the resulting mean-field interaction shift of the clock
line. Far away from the resonance, i.e. for small scattering lengths, Equation 5.14 repro-
duces very well the measured interaction shifts. However, close to the resonance, where
the final state is strongly interacting, this approach fails to capture the experimentally
observed behaviour. In particular, on the repulsive side of the resonance, the measured
interaction energies exceed the mean-field prediction. So far, the two-channel model was
capable of describing all measured interaction energies correctly. Therefore, we attribute
the discrepancy between the experimental data and the theory to the mean-field approach.
In particular, the mean-field approach does not take into account Pauli blocking of inter-
mediate states in the interactions. Furthermore, in Figure 5.9, we see that the excitation
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Figure 5.10 – Magnetic field dependence of the interaction energy of the attractive and repulsively interacting
quasi-2D gas. The interaction energies corresponding to the diamond symbols are obtained from the res-
onances corresponding with larger detunings, as illustrated in Figure 5.8. Errorbars correspond to the 1σ

uncertainty of the fit determining the resonance position. The solid blue line is the mean field shift, calculated
from Equation (5.14). The black dashed line indicates the initial state interaction energy.

fraction close to the orbital Feshbach resonance is strongly reduced. The final state is not
an equal mixture of |e↓〉 and |g ↑〉 atoms but rather a few |e↓〉 atoms immersed in a Fermi
sea of |g ↓〉|g ↑〉 atoms. This scenario is known as the Fermi polaron problem.

5.3.2 Repulsive and attractive polarons

The idea of the polaron was first introduced to describe electrons moving through an ionic
crystal [188]. Owing to the coulomb attraction, the electron distorts the ionic crystal and
becomes dressed by virtual phonons. In ultracold, neutral atom experiments, typically a
single |↓〉 impurity in a polarised |↑〉 Fermi sea is considered [189]. Following Landau’s
theory, we can describe the impurity interacting with the medium by a quasiparticle. Here,
the quasiparticle is formed by the bare impurity dressed with particle-hole excitations of
the surrounding Fermi sea. The surrounding |↑〉 atoms tend to screen the impurity spin.
Therefore, while moving through the medium, the impurity acquires a large effective
mass. Depending on the underlying two-body scattering length, the polaron either attracts
or repels the surrounding medium. Recently, Feshbach resonances in alkali atoms have
allowed to study the polaron problem in both regimes [184–187].

The interaction energy of the impurity in the medium can be obtained via two ap-
proaches: a many-body variational wave function, the so-called Chevy ansatz [190] and
the T-matrix approximation [181, 191]. Both methods lead to the same results [192]. So
far, we have based our scattering model on the T-matrix approximation and will also apply
it to the polaron problem. In the following, we present a many-body T-matrix based treat-
ment of the polaron problem, tailored by M. Parish and J. Levinsen [193] for the peculiar
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situation of the orbital Feshbach resonance, i.e. an |e↓〉 impurity immersed in a |g ↓〉|g ↑〉
Fermi sea. The energy shift of the impurity is determined by the equation [193]

E = Re{Σ(E)}, (5.15)

where Σ(E) is the impurity self energy [193]

Σ(E) =
∑

q

Tmed(q, E + εq). (5.16)

Here, Tmed is the many-body T-matrix of the medium and q the wave vector of the quasi-
particle. Using the many-body T-matrix, we also take into account Pauli blocking of in-
termediate states in the interaction, which we have neglected in the mean-field approach.
Owing to the constant density of states in 2D, the many-body T-matrix can be written
as the two-body T-matrix, energetically shifted due to the Pauli blocking [191]. In our
experimental configuration, Pauli blocking can happen in two different channels. Trans-
lating the typical polaron problem to the orbital Feshbach resonance, we have a single |e↓〉
impurity immersed in a |g ↑〉 Fermi sea. In this scenario, the closed channel is unoccupied
and is available as an intermediate state during a scattering event (see Figure 5.11(a)).
Here, we only have to take Pauli blocking in the open channel into account . However, via
the inverse spectroscopy, we have prepared a scenario, where we find a few |e↓〉 impuri-
ties immersed in a |g ↓〉|g ↑〉 Fermi sea. Here, the open and closed channel are occupied
(see Figure 5.11(b)). Therefore, the intermediate scattering scattering states in the closed
channel are Pauli blocked. The medium T-matrix can be related to the vacuum two-body
matrix T via [193]

T−1
med(q, x) = RT−1(x − εq/2)R−

�

Π(q, x)− Π̃(x − εq/2) 0
0 Π(q, y)− Π̃(y − εq/2)

�

(5.17)

with x = E+εq and y = E−δµB+εq. The two terms on the diagonal of the second matrix
account for the Pauli blocking. The first term is related to Pauli blocking in the open chan-
nel, whereas the second therm is only included if the closed channel is also occupied. The
rotation matrix R between the orbital singlet-triplet and open-closed channel basis is de-
fined in the Appendix A. The difference between the medium Π and vacuum polarization
bubbles Π̃ is given by [193]

Π(q, E + εq)− Π̃(E − εq/2) = −
∑

|k|<kF

1
E + εq − εk − εq−k + i0

. (5.18)

The blue and yellow lines in Figure 5.11(c) present the solution of (5.16) for the two
depicted scenarios, i.e. Pauli blocking in the open (blue) and in both channels (yellow).
We call the second scenario a frustrated polaron. Here, the paring channel, i.e. the bound
state in the closed channel is blocked, decreasing the energy of the attractive polaron. At
the same time, the frustration enhances the energy of the repulsive polaron. This may
be understood by considering the picture of the avoided crossing between the coupled
scattering channels, which was introduced in the first chapter. The shift of the attractive,
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Figure 5.11 – Schematic of the two possible polaron scenarios around the orbital Feshbach resonance. (a)
Regular Fermi polaron: an |e ↓〉 impurity immersed in a |g ↑〉 Fermi sea. Here, Pauli blocking occurs only
in the open channel. (b) Frustrated polaron: an |e ↓〉 impurty immersed in a |g ↓〉|g ↑〉 Fermi sea. Here,
intermediate interaction states in both open and closed channel are Pauli blocked. (c) Polaron energies as
a function of the magnetic field: The blue (yellow) lines show the energy of the regular (frustrated) polaron,
respectively. The solid lines are obtained for εF = h · 4 kHz in both channels. For the dashed lines, the
Fermi energy matches the differential Zeeman energy at the resonance (εF = h · 20 kHz), causing maximum
frustration. The calculation of the polaron energies was kindly provided by M. Parish and J. Levinsen [193].

i.e. lower branch to smaller interaction energy and thus higher total energy also causes
a shift of the upper, i.e. repulsive branch to higher energies. The effect of frustration
becomes more pronounced as the Fermi energy approaches the energy splitting between
open and closed channel at the resonance. For εF = h ·δµB0, the shift between the regular
and the frustrated polaron is as large as εF/2.

In Figure 5.12, the thick blue lines are the solutions of the polaron energy (5.16) for
εF = h · 4 kHz in both open and closed channel. On the attractive side of the resonance,
the frustrated polaron theory agrees well with the measured interaction energies. On the
repulsive side, the measured energies are significantly lower than the calculated ones. Yet,
the polaron theory agrees qualitatively better with the data than the mean-field approxi-
mation. The remaining discrepancy is potentially caused by two reasons. The polaron en-
ergies are calculated based on the Fermi energy of the central planes. In our experiment,
we measure the polaron energy averaged over all 220 planes. This trap average leads to a
shift towards lower energies. Furthermore, the high final state population (∼ 20%) breaks
the assumption of a single impurity.

The repulsive polaron is of particular interest. Close to a Feshbach resonance, where
the scattering length is large and positive, the energy of the polaron can exceed the Fermi
energy of the surrounding medium. In this regime, the polaron is belived to give rise to
itinerant ferromagnetism [194, 195]. However, as we have shown in Chapter 1, strong
repulsive interaction is caused by a shallow two-body bound state below the continuum.
Thus, the repulsive polaron is only metastable and the gas is unstable towards the forma-
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Figure 5.12 – Energy spectrum of the attractively and repulsively interacting quasi-2D gas as a function of
the magnetic field. Diamonds represent the measured interaction energies, as displayed in Figure 5.10. The
solid blue lines are the repulsive and attractive polaron energies Σ (E ) Ep.(5.16). Yellow circles indicate the
binding energies of the quasi-2D dimer, as shown in Figure 5.3. The quasi-2D dimer energy, determined by
the poles of the vacuum T-matrix (5.6), is given by the yellow line with the dimer-hole continuum ranging form
εB to εB + εF on top, marked by the yellow shaded area. Errorbars correspond to the 1σ uncertainty of the
fit determining the resonance position. The insets are schematic drawings on the corresponding interaction
regimes.

tion of bound pairs [196]. In order to comment on the feasibility of observing the phase
separation of the paramagnetic Fermi liquid into spatially-separated polarised domains,
further experiments are necessary. In particular, the lifetime of the repulsive polaron has
to be determined. Employing coherent excitation, i.e. driving Rabi flopping, the quasipar-
ticle properties of the polaron such as the residue and lifetime can be probed [185, 187].

The results from the inverse spectroscopy demonstrate that we have created a strongly
interacting two-orbital Fermi gas in a quasi-2D geometry. The quasi-2D geometry enables
us to directly probe spectroscopically the many-body effects on the two-body interaction.
In particular, the measurements of the confinement-induced dimer present a strong valida-
tion of our two-channel scattering model, incorporating effective ranges and confinement.
In the limit of weak final state interaction, we find the measured interaction energies to
be well reproduced by a quasi-2D mean-field approach. For magnetic fields, where the 3D
scattering length diverges, the strongly interacting many-body system can no longer be
described in terms of a mean field. In this regime, we notice the emergence of two distinct
branches in the spectral response of the quasi-2D Fermi gas. We attribute these to attrac-
tive and repulsive polarons. A many-body T-matrix based treatment of the interaction is
in qualitative agreement with the experimental data.
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Conclusion and Outlook

In this thesis, we have presented the experimental observation of a new type of Feshbach
resonance between different atomic orbitals of 173Yb arising from strong interorbital spin-
exchange interactions. For collisions between fermionic AEL atoms in different orbitals as
well as nuclear spin states, two interaction channels exist. The extremely large scattering
length in one of the interorbital interaction channels and the corresponding shallow bound
state lead to the appearance of the orbital Feshbach resonance at experimentally accessible
magnetic fields for. Owing to the SU(N)-symmetric nature of the exchange interaction, the
resonance occurs universally for any combination of two different nuclear spins.

We have revealed the existence of the orbital Feshbach resonance via cross-dimensional
thermalisation measurements in the bulk. Here, a resonance at a magnetic field of 55 G
and a zero crossing at 417 G have been found for a mixture of atoms in the nuclear spin
states mF = ±5/2. The universal coupling with respect to the choice of the mF states
has been demonstrated by repeating the thermalisation measurements with another mF

combination. Both experiments have led to the same results when rescaling the mag-
netic field according to the change in the differential magnetic moment. Furthermore, we
have performed inelastic loss spectroscopy. Spin resolved measurements have allowed to
identify the two main loss processes. Towards lower magnetic fields, the repopulation of
the initially unoccupied closed channel due to the orbital exchange interaction has been
observed. For magnetic fields close to the resonance, we have characterised the inelastic
two-body decay rate in the open channel. Although the orbital Feshbach resonance is a
narrow resonance, a long lifetime for the degenerate Fermi gas on resonance has been
discovered. So far, long lifetimes on resonance have been reported only for alkali Fermi
gases exhibiting broad Feshbach resonances.

We have generalised the coupled two-channel model to the case of isotropic con-
finement and energy-dependent collisions. The model was benchmarked against the re-
sults obtained by high-resolution clock-line spectroscopy in an isotropic three-dimensional
magic lattice. Here, a remarkable agreement between the measured and calculated atom
pair interaction energy across the entire experimentally accessible magnetic field range
was found. Furthermore, the initially introduced illustrative model of the orbital Fesh-
bach resonance has been verified. Using spin resolved detection in combination with the
high-resolution clock line spectroscopy, we demonstrated the evolution of anti-symmetric
superposition states into the open-channel state with increasing magnetic field.

In a third experiment, we have created a strongly interacting Fermi gas in quasi two
dimensions. In the quasi-2D geometry, the threshold energy of two atoms is raised by
the energy of the transversal harmonic oscillator. The existence of the confinement in-
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duced quasi-2D dimer is proven by inverse spectroscopy. On resonance, we demonstrate
the universal scaling of the dimer energy with the confinement. The observed scaling
factor is in good agreement with the theoretical prediction. The technique of inverse spec-
troscopy quenches the system from the weakly into to the strongly interacting regime.
Employing low excitation fractions, we study the regime of strongly interacting impurities
immersed in a Fermi sea. The measured interaction energies are in qualitative agreement
with a many-body T-matrix based treatment of the interaction. The interpretation of the
experimental data along this line allows us to identify an attractive as well as a repulsive
polaronic branch.

Outlook

Our findings are a first step towards the investigation of new two-orbital few- and many-
body phenomena with AEL atoms. They pave the way for the experimental realisation
of a strongly interacting Fermi superfluid around a narrow resonance and have already
stimulated many theoretical proposals [170, 171, 197, 198]. Furthermore, the tunability
of the interorbital interaction strength suggests novel avenues for the realisation of two-
orbital many-body lattice models [199–201]. In the following, we will discuss based on
three different example,s how this new experimental tool allows the implementation of
hitherto inaccessible models with ultracold quantum gases.

First, let us consider the BEC-BCS crossover, the most prominent example of interac-
tion tuning via a Feshbach resonance. Strongly interacting Fermi gases close to a narrow
Feshbach resonance have been experimentally realised [202–204]. However, the super-
fluid state as well as the BEC-BCS crossover have so far only been observed with Fermi
gases offering a broad resonance [13–15]. In experiments, narrow Feshbach resonances
typically suffer from strong limitations. In order to stay in the strongly interacting regime,
the narrow width of the resonance requires precise control of the magnetic field. The
universal bound state exists only close to the resonance, and over a wide magnetic field
range, the molecular branch has a strong closed channel admixture. Therefore, narrow
Feshbach resonances typically suffer from limited lifetimes.

For the orbital Feshbach resonance, we have demonstrated a long lifetime on reso-
nance, making the superfluid state accessible. The narrow character of the resonance
is caused by the small differential magnetic moment between open and closed channel.
Hence, the requirements on the magnetic field control in the experiment can be relaxed.
Additionally, the small energy gap between open and closed channel is predicted to in-
crease the critical temperature for reaching superfluidity away from unitarity [171]. The
BEC-BCS crossover is conventionally studied using a single-channel, or a two-channel
model, where only the bound state in the closed channel is considered [8, 12]. However,
when the energy gap to the closed channel becomes smaller than the Fermi energy, the
continuum scattering states in the closed channel have to be taken into account. This leads
to the appearance of pairing not only in the open but also in the closed channel and thus
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two independent order parameters, i.e. pairing gaps [58]. NSR calculations yield a higher
critical temperature on the BCS side for the two-gapped superfluid [171] compared to
the single channel superfluid [11]. This opens the door for the investigation of two-band
superconductors with anomalously high critical temperatures [205]. Furthermore, the or-
bital Feshbach resonance offers a more accurate realisation of the much quoted analogue
between a strongly interacting atomic Fermi gas and the low-density matter in the crust
of neutron stars [18]. In contrast to the interactions around broad Feshbach resonances,
the neutron-neutron interaction is dominated by a large effective range. This is similar to
the situation for the orbital Feshbach resonance, where our two-channel model predicts
an effective range of 960 a0 around the resonance.

Our experimental setup offers all necessary ingredients for the study of the BEC-BCS
crossover. With our magnetic field setup, we can cover the whole interaction range from
non-interacting to strongly attractive and repulsive interactions. Furthermore, our high-
resolution objective grants us direct access to local thermodynamic properties and allows
to measure the equation of state [16, 17].

In a second example, let us consider the implications of the orbital Feshbach resonance
for the study of two-orbital magnetism. With the implementation of a state-dependent lat-
tice in our experimental setup, we are en route towards the realisation of the Kondo lattice
model. In a one-dimensional system, the tunablity of the interorbital scattering length
leads to the appearance of confinement induced resonances. Such confinement induced
resonances are envisioned to enhance the spin-exchange scattering and hence dramati-
cally increase the Kondo temperature [199]. Here, an increase of the Kondo temperature
to ten percent of the Fermi temperature has been predicted [199]. So far, within our ex-
periment, we have realised temperatures of 0.07 TF for a single-orbital mixture and 0.14 TF

for a two-orbital mixture, respectively. Thus, the enhanced Kondo temperature is in the
range of experimentally accessible temperatures. Furthermore, the orbital Feshbach reso-
nance should enable us to produce even colder two-orbital mixtures. With this new tool,
we can maintain a strong thermalisation rate and thus perform more efficient evaporation
towards lower temperatures.

In the last example, we turn to the regime of few-body physics and our studies of
the polaron problem in quasi-2D. Once again, the small energy gap as well as the or-
bital exchange coupling between the open and closed channel create a peculiar situation.
Populating the spin state of the impurity with ground state atoms leads to a blocking
of interaction states in the closed channel and thus causes a frustration of the polaron
energy. This frustration should promote the repulsive polaron energy beyond the Fermi
energy [193] and thus may give rise to itinerant ferromagnetism [194, 206]. Although, it
has been shown that the growth rate of the pairing instability (formation of tightly bound
dimers) is dominant over the Stoner instability (formation of spatially separated, polarised
domains) [196], the orbital Feshbach resonance may provide a new route towards this
regime. For Feshbach resonances with a large effective range, such as the orbital Feshbach
resonance, the pairing instability is expected to be weaker [207]. Furthermore, in the
case of the frustrated polaron, it is likely that some of the decay channels are effectively
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blocked [193]. Here, a detailed study of the repulsive polaron lifetime is necessary in
order to judge the feasibility of these models. In addition, as the impurity and majority
atoms originate from different orbitals, a state-dependent lattice enables us to tune the
effective mass of the polaron. Depending on the impurity to majority atom mass ratio, a
rich phase diagram for the strongly interacting Fermi gas is predicted [208]. Changing the
wavelength of the state-dependent lattice allows us to continuously tune from a mobile
to a static impurity. The two extremes, where impurities are much lighter than majority
atoms or very heavy, i.e. static impurities, are of particular interest. Depending on the
mass ratio, the ground state of the light impurities is expected to consist of trimers or
to have non-zero momentum, an FFLO-like phase [208]. The case of a static impurity
immersed in a Fermi sea is also known as Anderson orthogonality catastrophe. In this
regime, the quasi-particle picture of the impurity breaks down because the static impurity
can excite multiple low-energy particle-hole pairs [209]. These excitations give rise to a
characteristic power-law singularity in the spectral response of the impurity. As the or-
thogonality catastrophe belongs to the small group of solvable nonequilibrium many-body
problems, a comparison between theory and experiment is particularly interesting.

Based on these three examples, we see that our experimental setup indeed presents
a versatile platform for the investigation of diverse problems originating from condensed
matter, few- and many-body physics. In this spirit, the orbital Feshbach resonance is an
exquisite tool, enhancing the flexibility of 173Yb for the purpose of quantum simulation.



APPENDIX A

Two-body problem in free space

Here we present the detailed solution of the two-body problem as it was introduced in
Chapter 4. We will employ the T-matrix formalism to solve the two-body problem and
obtain the scattering amplitude. We start again from the time-independent Schrödinger
equation

�

Ĥ0 + V̂
�

|ψ〉= E|ψ〉. (A.1)

The solution for the free particle states is given by plane waves k. The non-interacting
part of the Hamiltonian, given by the Zeeman and kinetic part is diagonal in the basis of
the open channel |o〉,

Ĥ0 =
∑

k

2εk |o, k〉〈o, k|+
∑

k

(2εk +δµB)|c, k〉〈c, k| (A.2)

with the differential Zeeman energy δµB and the kinetic energy εk = ħh2k2/2m. The
interaction part is given in the basis of the orbital single and triple state |±〉.

V̂ = U+
∑

k,k ′
|+, k ′〉〈+, k|+ U−

∑

k,k ′
|−, k ′〉〈−, k| (A.3)

where g± = 4πħh2/ma±eg is the corresponding interaction strength in the singlet and triplet
channel. Here, we employ a zero-range pseudo potential V = gδ(r) for the interaction.

The total Hamiltonian is a 2-by-2 matrix. We choose the basis such, that the interaction
potentials are on the diagonal. In this basis, the orbital singlet and triplet states have the
eigenvectors (1,0) and (0, 1). The open and closed channel live on the equator of the
corresponding Bloch sphere 1/

p
2 (1,1) and 1/

p
2 (1,−1). The two sets of states are linked

via the rotation matrix

R=
1
p

2

�

1 1
1 −1

�

. (A.4)

Let us now calculate the scattering amplitude. The scattering amplitude is fully deter-
mined by the two-body T-matrix

f (k′,k) = −
m

4πħh2 〈k
′|T̂ |k〉, (A.5)

where the T-matrix is given by the Lippmann-Schwinger equation

T̂ (E) = V̂ + V̂ Ĝ0 T̂ (E). (A.6)
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Figure A.1 – Schematic represantation of the T-matrix (yellow square) as the sum of all possible scattering
processes of two atoms. Solving the Lippmann-Schwinger equation for the two-body T-matrix lead to the so-
called Born series T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + . . .. Here, Ĝ0 is the non-interacting propagator, i.e. the
Greens function solving the free Hamiltonian Ĥ0. The yellow circles represent the interaction V̂ of a possible
scattering process and the blue lines the free propagation Ĝ0.

Here, Ĝ0 =
�

E+ − Ĥ0

�−1
is the free Green’s funciton, i.e. the noninteracting propagator of

the atoms. In order to avoid the singularity at E − Ĥ0, we have made the energy slightly
complex E+ = E + i0. Therefore, we can rewrite the matrix element in the scattering
amplitude as

〈k′|T̂ (E)|k〉= 〈k′|V̂ |k〉+
∑

k′′
〈k′|V̂ |k′′〉〈k′′|Ĝ0|k′′〉〈k′′|T̂ (E)|k〉. (A.7)

We will evaluate this sum in the basis of the orbital interaction states. The interaction is
given in this basis by

〈k′|V̂ |k〉=
�

U− 0
0 U+

�

≡ V . (A.8)

Since the interaction is independent on the change in momentum, we can rewrite the
T-matrix as

T (E) = V + V
∑

k

〈k|Ĝ0|k〉T (E). (A.9)

In the next step, we write the free propagation in the same basis and get rid of the sum-
mation of the momentum. Here, we use that |k〉 is the solution for of the non-interacting
Hamiltonian Ĥ0|k〉= 2εk|k〉,

∑

k

〈k|Ĝ0|k〉= R

�
∑

k
1

E+−2εk
0

0
∑

k
1

E+−2εk+δµB

�

R= R

�

Π(E) 0
0 Π(E −δµB)

�

R= Π(E),

(A.10)
where we have introduced the one-loop polarisation bubbleΠ(E) =

∑

k 1/(E+ − 2εk). Thus,
we can finally write the T-matrix as

T (E) = [1− VΠ(E)]−1 V =
�

V−1 −Π(E)
�−1

. (A.11)

We want to rewrite everything in terms of the orbital singlet and triplet scattering length,.
The bare coupling constant U± is related to the s-wave scattering length via the Lippmann-
Schwinger equation

U−1
± =

m

4πħh2a±eg

−
∑

k

1
2εk

. (A.12)

Hence, we obtain
T(E) =

�

τ−1
0 − Π̃(E)

�−1
, (A.13)
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where τ0 contains the interaction strengths

τ0 =
4πħh2

m

�

a− 0
0 a+

�

(A.14)

and Π̃(E) has the same form as in (A.10), but the one-loop polarisation bubble Π(E)
replaced by

Π(E) =
∑

k

�

1
E+ − 2εk

+
1

2εk

�

=
m

4πħh2

p
−mE. (A.15)

Now, by projecting the T-matrix on the open channel |o〉, we retrieve the scattering ampli-
tude in the open channel

f (E) = −
m

4πħh2 〈o|
�

τ−1
0 − Π̃(E)

�−1 |o〉. (A.16)

Substituting the definitions of τ0 and Π̃(E)) we arrive at

f (E) = −
1
2
(1 1)

��

a−
−1 0

0 a+
−1

�

+
p
−mE
2ħh

�

1 1
1 1

�

+

p

m(δµB − E)
2ħh

�

1 −1
−1 1

��−1�
1
1

�

(A.17)
which leads to

f (E) = −
1
2

a−1
− + a−1

+ − 2
Ç

m(δµB−E)
ħh

�

a−1
− −

�
q

−mE
ħh +

Ç

m(δµB−E)
ħh

�

/2
��

a−1
+ −

�
q

−mE
ħh +

Ç

m(δµB−E)
ħh

�

/2
�

−
�
q

−mE
ħh −

Ç

m(δµB−E)
ħh

�2
/4

.

(A.18)

In the limit of low energy scattering k→ 0, we can write f (E)−1 + ik ≈ −a−1 + 1/2reffk
2.

Thus, we obtain the open channel s-wave scattering length

a =
1
2

1/a−eg + 1/a+eg − 2
Æ

mδµB/ħh2

�

1/a−eg −
Æ

mδµB/ħh2/2
��

1/a+eg −
Æ

mδµB/ħh2/2
�

−
�Æ

mδµB/ħh2/2
�2 (A.19)

and the corresponding effective range

reff = −
ħh

p

mδµB

 

1/a−eg − 1/a+eg

1/a−eg + 1/a+eg − 2
Æ

mδµB/ħh2

!2

. (A.20)
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APPENDIX B

Two-body problem in a harmonic trap

To model two 173Yb atoms of mass m on a single site, we first consider the two-body
problem in a 3D harmonic trap, V (r) = 1

2 mω2r2. In this case, the center-of-mass and
relative coordinates decouple, and in the relative basis, we have Hamiltonian Ĥ = Ĥ0+ V̂ ,
with

Ĥ0 =
∑

n

εn|o, n〉〈o, n|+
∑

n

(εn +∆µB) |c, n〉〈c, n| (B.1)

and interaction part

V̂ =
∑

n,n′
ϕn(0)ϕn′(0)

�

U+|+, n〉〈+, n′| + U−|−, n〉〈−, n′|
	

(B.2)

Here, n labels the relative harmonic oscillator states with angular momentum l = 0 (these
are the only ones that are affected by the short-range interactions), ϕn(0) is the real-
space harmonic oscillator wavefunction at r = 0, and the non-interacting energy εn =
2nħhωr . The triplet and singlet configurations are defined as |±〉 = 1p

2
(|o〉 ± |c〉), with

corresponding interaction strengths U±, which do not depend directly on the nuclear spin.
For simplicity, we focus on a zero-range interaction here, but finite-range corrections are
easily incorporated into the formalism provided the range of the interactions is much
smaller than the harmonic oscillator length lr ≡

p

ħh/mω.
To determine the two-body eigenstates, we consider the general wavefunction in the

singlet-triplet basis

|ψ〉=
∑

n

�

b+n |+, n〉+ b−n |−, n〉
�

(B.3)

and then insert this into the Schrödinger equation as follows:

1
2

�

1 1
1 −1

��

εn − E 0
0 εn +∆µB − E

��

1 1
1 −1

��

b+n
b−n

�

+ϕn(0)

�

U+ 0
0 U−

�

∑

n′
ϕn′(0)

�

b+n′
b−n′

�

= 0 (B.4)

By summing over n and replacing the bare interactions U± with the scattering lengths
a±eg , we arrive at the matrix equation for the regular part of the two-channel wave function
Ψ:

�

τ−1
0 +Π(E)

�

Ψreg = 0 (B.5)
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where

τ0 = −
p

m
ħh

�

a+eg 0

0 a−eg

�

(B.6)

and the quantity

Π(E) =
Π(E)

2

�

1 1
1 1

�

+
Π(E −∆µB)

2

�

1 −1
−1 1

�

. (B.7)

contains the pair propagator in a harmonic potential

Π(E) =
p

2ħh
p

mlr

Γ (−E/2ħhω)
Γ (−E/2ħhω− 1/2)

(B.8)

The interaction energies are thus obtained from the condition det
�

τ−1
0 +Π(E)

�

= 0, lead-
ing to:

�

2lr

a−eg

− F0

�

−E
ω

�

− F0

�

−E +δ
ω

�

��

2lr

a+eg

− F0

�

−E
ω

�

− F0

�

−E +δ
ω

�

�

−
�

F0

�

−E
ω

�

− F0

�

−E +δ
ω

��2

= 0

(B.9)

For finite-range corrections, we need to replace τ−1
0 by an energy-dependent matrix

that depends on the scattering phase shifts, as in Eq. (4.28) of the main text:

τ−1(Ec) =
p

Ec

�

cotδ+eg(Ec) 0

0 cotδ−eg(Ec)

�

(B.10)

where the collision energy is Ec = E − ∆µB
2 + 3

2ħhω. We are interested in the leading order
terms of the low-energy expansion:

p

mEc

ħh
cotδ±eg(Ec)' −(a±eg)

−1 +
1
2

r±eff

mEc

ħh2 (B.11)

where r±eff denotes the effective range. Formally, such an effective range may be included
by using a two-channel model for each of the singlet and triplet interactions. For the
trapped two-body problem, the low-energy expansion of τ is thus equivalent to making
the replacement 1/a±eg 7→ 1/a±eg −

1
2 mr±eff

�

E − ∆µB
2 + 3

2ħhω
�

.
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Two-body problem in quasi-2D

We will now investigate the scattering properties of a two-orbital mixture in a quasi-
2D geometry. The transverse confinement is given by the harmonic potential V (z) =
1
2 mω2

z z2. In such a confinement the quantum gas has a finite extension along the z-
axis lz =

p

ħh/(mωz). Again, the harmonic confinement allows us to separate the relative
and centre-of-mass motion. In relative coordinates, the transverse motion reduces to the
harmonic oscillator equation [175]

�

−
1

2M
d2

dz2
+

1
2

Mω2z2

�

φn(z) =
�

n+
1
2

�

ωzφn(z). (C.1)

Here, M is the reduced mass, φn(z) is the harmonic oscillator wave function and n labels
the harmonic oscillator quantum number for relative motion. The non-interacting part of
the two-channel quasi-2D Hamiltonian becomes

H0 =
∑

k,n

2εk,n|o,k n〉〈o,k n|+
∑

k,n

(2εk,n +δµB)|c,k n〉〈c,k n|, (C.2)

with εk,n = ħh2k2/2M+(n+1/2)ωz and k the in plane momentum. If the harmonic oscillator
spacing is larger than all other energy scales in the system, we can restrict the description
to the lowest oscillator level n= 0 . In this regime, the gas is considered to be kinematically
two dimensional.

We can derive the two-body interaction strength in the quasi-2D geometry from the
bare interaction in 3D by the following consideration. Under typical experimental con-
ditions, the confinement length lz is much larger than the range of the van-der-Waals
interaction potential and the bare two-body interaction remains unaffected by the con-
finement. We assume, that the 3D interaction strength can be separated into a component
in the 2D-plane and a perpendicular component [175]

V (k′3D,k3D) = 〈k′3D|V̂ |k3D〉= Ve−(k
2+k′2+k2

z+k′2z )/Λ
2
, (C.3)

where Λ is a large ultraviolet cut-off, up to which the interaction V is taken constant and is
the magnitude of the in plane momentum k =

q

k2
x + k2

y . The scattering event k3D → k′3D
gives rise to a change of the in plane momentum k → k′, whereas the relative motion
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in the transverse harmonic potential changes by n → n′. The matrix element of the 3D
interaction in the quasi-2D basis is therefore given by [175]

〈k, n|V̂ |k′, n′〉=
∑

k3D,k′3D

〈k′n′|k′3D〉〈k
′
3D|V̂ |k3D〉〈k3D|kn〉

=V fn fn′e
−(k2+k′2)/Λ2

(C.4)

where fn =
∑

qz
φ(qz)e−q2

z /Λ and φ(qz) is the Fourier transform of the harmonic oscillator
wave function. The f coefficients are given by [175]

f2n = (−1)n
1

(2πl2
z )1/4

p

(2n)!
2nn!

1
p

1+λ

�

1−λ
1+λ

�n

,

f2n+1 = 0.

(C.5)

Under typical experimental conditions, the ratio λ = 1/(Λlz)2 between the length scale
of the short distance physics and the harmonic oscillator length is very small In the limit
λ→ 0,we can finally write down the interaction part of the quasi-2D Hamiltonian

V̂2D =
∑

k,k′,n,n′
fn fn′

�

U+|+,kn〉〈+,k′n′| + U−|−,kn〉〈−,k′n′|
	

, (C.6)

with U± being the interaction strength of the orbital triplet and singlet channel. From
here, we construct the T-matrix via the Lipmann-Schwinger equation

T̂n,n′(E) = fn fn′
�

V−1 −Πq2D(E)
�−1

(C.7)

with the quasi-2D polarization bubble given by [175]

Πq2D(E) =
∑

q,n

| fn|2

E − (n+ 1/2)ωz − q2/2M + 0i
. (C.8)

In the limit of low energy scattering and strong confinement |E| < ωz, we only have
to consider scattering in the lowest level n = n′ = 0. In order to obtain the scattering
amplitude, we project the T-matrix on to the open channel. The scattering amplitude in
the quasi-2D geometry in the lowest harmonic oscillator level for low collision energies, is
hence given by

fq2D(E) = 2M f0 f0〈k′, 0|T̂00(E + i0)|k, 0〉 (C.9)

with the matrix element evaluation to

T00 =
p

2π
M

lz
a−eg
+ lz

a+eg
+ 2F

�

ε′
�

�

lz
a−eg
− [F (ε) +F (ε′)]

��

lz
a+eg
− [F (ε) +F (ε′)]

�

− [F (ε) +F (ε′)]2 /4
. (C.10)

Here, we have used the substitution ε = −E/ωz and ε′ = −(E + δµB)/ωz. The F function
is given in the limit λ→ 0 by [175]

F0(ε) =

∫ ∞

0

du
1

p
4πu3

�

1−
e−εu

p

(1− e−2u)/2u

�

. (C.11)

Once again, finite range effects can be incorporated by the effective range expansion:
a−1→ a−1 − 1

2 M r0(E −
δµB

2 + 1/2ωz).
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