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Zusammenfassung

Im letzten Jahrzehnt haben sich Quantengasexperimente als gut kontrollierbare Modell-
systeme zur Untersuchung komplexer Fragestellungen aus diversen Bereichen der Physik
etabliert. Ultrakalte Quantengase zeichnen sich insbesondere dadurch aus, dass sie einen
direkten und experimentell einfach realisierbaren Zugang zu ihrer Wechselwirkung bieten.
Das gezielte Einstellen der Wechselwirkungsstiarke und die Erforschung der daraus resul-
tierenden Aggregatzustinde erlaubt es ein tiefes Verstandnis der kondensierten Materie
zu gewinnen. Insbesondere erdalkalidhnliche Atome wie Ytterbium bieten die Moglich-
keit Phanomene der Festkorperphysik zu untersuchen, die durch die Wechselwirkung von
Elektronen in verschiedenen Orbitalen oder durch eine grof3ere Rotationssymmetrie des
Spins als in gewohnlichen Spin-1/2 Systemen hervorgerufen werden.

Diese Doktorarbeit prasentiert die experimentelle Charakterisierung der Wechselwir-
kung ultrakalter, fermionischer Ytterbium-Atome (72Yb) in verschiedenen elektronischen
Orbitalen. Dabei wird nachgewiesen, dass sich die Wechselwirkungsstarke mit Hilfe eines
externen Magnetfeldes, analog zu einer Feshbach-Resonanz bei Alkali-Atomen, einstel-
len lasst. Bei Ytterbium wird diese Resonanz durch eine starke Spinaustauschwechselwir-
kung zwischen den verschiedenen Orbitalen hervorgerufen. Der Nachweis der einstell-
baren Wechselwirkung erfolgt tiber Thermalisierungsexperimente in einer harmonischen
Falle und mit Hilfe von hochauflésender Spektroskopie in einem dreidimensionalen Gitter.
Des Weiteren wird mit Hilfe der neu entdeckten Resonanz zum ersten Mal experimentell
ein stark wechselwirkendes Fermigas in verschiedenen Orbitalen erzeugt und spektrosko-
pisch untersucht. Die Moglichkeit, die interorbitale Wechselwirkung direkt zu manipulie-
ren und somit stark wechselwirkende Quantengase zu erzeugen, ebnet den Weg fiir die
Realisierung und Untersuchung neuartiger Aggregatzustdnde der kondensierten Materie.
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Introduction

The most diverse phases of condensed matter emerge from the underlying interactions.
Interactions drive phase transitions, induce spontaneous symmetry breaking and lead to
the build up of strong correlations. Modelling these fascinating phenomena, requires a
fundamental understanding of how quantum many-body systems are shaped by the inter-
actions. The possibility to directly control the interaction strength and to explore the asso-
ciated states of matter is an intriguing notion. Yet, condensed-matter systems rarely offer
such a far-ranging degree of control. Furthermore, in contrast to classical systems, most
interacting quantum mechanical many-body systems defy computational approaches [1].
Instead, for the investigation of unresolved problems originating from condensed matter,
few- and many-body physics controllable qunatum systems are needed [2-5]. Here, ultra-
cold atomic quantum gases represent a versatile platform, offering a remarkable degree
of control combined with innovative detection methods [5, 6]. In particular, we find
the exquisite possibility of tuning the interatomic interaction strength to arbitrary values.
This enables the access to repulsive and attractive interactions in the same physical system.
Even the continuous crossover between the two contrary regimes can be explored.

Atomic quantum gases are formed from dilute gases at ultra-low temperatures. In
this limit, the interatomic interactions can be characterised by a single parameter, the
so-called s-wave scattering length. Typically, the scattering length is much shorter than
the interparticle spacing and the quantum gas is weakly interacting. In this regime, the
many-body properties of a bosonic as well as fermionic quantum gas can be described
by an effective single-particle theory based on non-interacting quasiparticles [7, 8]. In
contrast, for strong interactions, where the interaction energy is on the order of the Fermi
energy, analytic and numerical approaches are expensive, since the system is free of small
parameters. Therefore creating strong interactions is of particular interest. A quantum gas
enters the regime of strong interaction when the scattering length is on the order of the
interparticle spacing. In this context, Feshbach resonances have become an indispensable
tool as they provide a simple experimental protocol to control the interaction strength
over multiple orders of magnitude by means of an external magnetic field [9].

As an example, employing a Feshbach resonance allows to continuously modify the
superfluid ground state of a Fermi gas. In the limit of attractive interaction, fermions
form Cooper pairs, as described by the Bardeen-Coper-Schriefer (BCS) theory [10]. For
repulsive interactions, the atoms are strongly bound into molecules, which form a Bose-
Einstein-Condensate (BEC), as they are composite bosons. The experimentally observed
connection between these two limits, the so-called BEC-BCS crossover [11, 12], is one
of the most celebrated successes of interaction tuning via Feshbach resonances [13-15].
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Directly on resonance, experiments [16, 17] provide a valuable insight into strongly-
interacting states of matter, as they are predicted to exist in the crusts of neutron stars [18].

An alternative route towards strong interactions is offered in optical lattices. In con-
trast to Feshbach resonances, this technique relies on the limitation of the kinetic energy
instead of the direct variation of the scattering length. In addition, ultracold atoms in
optical lattices resemble the Hubbard model [19], one of the most prominent and ex-
tensively studied models in condensed matter physics. In particular, the fermionic Hub-
bard model is believed to incorporate the effect of high-temperature superfluidity [20].
Tuning the ratio of kinetic to interaction energy grants access to the strongly interacting
regime, as demonstrated by the observation of Mott insulating states with bosons [21]
and fermions [22, 23].

By completely suppressing the motion along one or more directions, optical lattices
have paved the way towards low-dimensional systems. In lower dimensions, quantum
fluctuations become more dominant and can suppress the build up of long-range or-
der [24], as demonstrated by the observation of the Kosterlitz-Thouless crossover in two
dimensions [25]. In one dimension, the influence of the interaction becomes completely
counter-intuitive. The 1D gas becomes strongly interacting with decreasing density, i.e.
increasing particle separation. In this limit, strongly interacting bosons behave as if they
are identical ferminons [26].

Besides this high degree of control, ultracold atomic gases offer numerous possibilities
to probe global as well as local properties. Conventionally, after the atoms have been re-
leased from the confining potential, the shadow of the expanded atomic cloud is imaged
onto a CCD camera. This technique grants access to global properties such as the inter-
atomic interaction strength [27], the dispersion relation [28] or even correlations inside
the trap [29]. In recent years, high-resolution in-situ imaging techniques have been de-
veloped and allow to directly measure the in-trap atomic distribution [30]. In particular,
the possibility to resolve and manipulate single atoms on individual lattice sites has to
be mentioned [31, 32]. All these techniques go far beyond typical detection methods of
condensed matter experiments.

Ultracold atomic gases have proven to exhibit an immense potential for quantum sim-
ulations. In particular, alkali atoms are well suited for laser cooling and trappind due to
their simple hydrogen-like electronic structure. At the same time, this simplicity poses ma-
jor limitations to the range of phenomena that can be explored. As an example, electrons
in solids often possess an additional orbital degree of freedom besides their spin. The
interplay between the spin and orbital degree of freedom gives rise to effects like Kondo
screening [33], heavy-Fermi liquids [34] and unconventional superconductivity [35], be-
yond the single-orbital Hubbard model. Therefore, new experiments based on more com-
plex systems such as magnetic atoms, polar molecules and alkaline-earth atoms have been
constructed lately.

In contrast to alkali atoms, alkaline-earth like (AEL) atoms, such as ytterbium, exhibit
a helium-like electronic structure, i.e. two valence electrons in addition to a set of com-
pletely filled shells. The peculiar electronic structure gives rise to low-lying, long-lived
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excited states and a vanishing electronic angular momentum in the atomic ground state,
both for the electronic spin singlet 'S, and for the triplet >P,. For the fermionic isotopes,
the large nuclear spin is strongly decoupled from the orbital degree of freedom, giving
rise to an extended SU(N) symmetry in the interaction [36-39]. Therefore, the produc-
tion of AEL degenerate Fermi gases [40, 41] has paved the way for the implementation
of otherwise inaccessible many-body phenomena, such as the realisation of SU(N) Mott
insulators [42, 43].

In the case of a SU(2) spin model, naturally realisable with alkali atoms, the ground
state always breaks the SU(2) symmetry and possesses magnetic order [44-46]. The
enlarged SU(N > 2) spin rotation symmetry of fermionic AEL atoms gives rise to a strong
frustration [36, 39]. For example, in a cubic lattice, with increasing number of degrees of
freedom (), magnetic order vanishes and the ground state is expected to preserves the
full SU(N) symmetry of the model [47-49].

As already mentioned, in many condensed-matter systems such as transition metal
oxides [35] or manganese oxide perovskite [50], electrons have both orbital and spin
degree of freedom. Fermionic AEL atoms exhibiting these degrees of freedom have been
suggested for the simulation of these materials [38, 51, 52].

Furthermore, the large nuclear spin of AEL atoms can even be employed to go beyond
condensed matter and investigate highly symmetric gauge theories from the field of high-
energy and particle physics. The interactions within a nucleus are described by a global
flavour SU(3) symmetry group within the framework of quantum chromodynamics. The
implementation of gauge theories with SU(N) symmetric quantum gases [53-55] would
allow to study particle physics with table-top experiments rather than large colliders.

The realisation of the aforementioned models crucially depends on the actual strength
of the interorbital interaction. At the time of the construction of our experimental appa-
ratus, the orbital interaction properties were unknown for 73Yb. Therefore, the first ex-
periments addressed the characterisation of these interactions. For the states 'S, and °P,,
we could prove that the intra- and interorbtial interactions are indeed SU(N) symmet-
ric [56]. In particular, the observation of a strong orbital exchange interaction [56, 57],
the elementary building block for the aforementioned models, brings the implementation
of orbital magnetism within experimental reach.

Previously, we have argued that the ability to tune the interatomic interaction is a de-
sirable ingredient for quantum gas experiments. So far, the regime of strong interactions
in AEL atoms could only be reached in an optical lattice. Based on this technique, we
were able to study the metal to Mott insulator crossover and reveal the non trivial influ-
ence of the SU(N) symmetry [43]. Tuning of the interaction strength outside the lattice
or changing the sign of the interaction seems out of reach. The strong suppression of hy-
perfine interactions for states with vanishing electronic angular momentum implies that
no magnetic Feshbach resonances are expected within the 'S, and P, states.

However, the strong orbital exchange interaction in 73Yb [56, 57] is based on two
starkly different interaction channels. This peculiar configuration, has led to the prediction
of a magnetically accessible interorbtial scattering resonance [58].
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This thesis provides a detailed investigation of the interorbital interaction between
173Yb atoms in the 'Syand 3P, state. In order to understand how a Feshbach resonance
can arise from the orbital exchange interaction, we start by reviewing the physics of Fesh-
bach resonances in alkali atoms. There, we will identify three major ingredients for the
appearance of a Feshbach resonance: (i) two collision channels (ii) a coupling and (iii)
a differential magnetic moment between the channels. Afterwards, we turn to 73Yb,
where we find that the interorbital interaction fulfils these three requirements. There-
fore, we construct a new two-channel model for the interorbital interactions. In the main
part of this thesis, we experimentally reveal the existence of this novel orbital Feshbach
resonance [59]. We map out the magnetic-field dependence of the interorbital s-wave
scattering length in the bulk as well as the pair interaction energy in a deep isotropic lat-
tice. Both experimental results are in excellent agreement with our two-channel model.
Although the orbital Feshbach resonance is a so-called narrow resonance, we show that
the strongly interacting, degenerate Fermi gas exhibits a long lifetime. In the last part of
this thesis, we present preliminary results concerning the strongly interacting two orbital
quantum gas in a quasi two-dimensional geometry. There, we quench the system from the
weakly into the strongly interacting regime and find evidences of metastable, strongly in-
teracting impurities, i.e. attractive and repulsive polarons. These measurements are a first
step towards the realisation of novel Fermi superfluids with an orbital degree of freedom.
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Outline

In Chapter 1, the fundamental principle of interactions in ultracold quantum gases are
reviewed. Particularly with regard to the emergence of Feshbach resonances, the influence
of the underlying molecular potential on the s-wave scattering length is discussed.

Chapter 2 surveys the distinct properties of ytterbium, a member of the alkaline-earth
like family. The implication of long-lived excited states and SU(N) symmetry on the inter-
atomic interaction are considered.

Chapter 3 introduces the experimental apparatus and sequence. The construction
of the experimental apparatus has already been discussed in great detail in previous
works [60, 61]. Here, we focus on the recent updates, necessary for the experiments
presented in this thesis.

In Chapter 4, we report on the observation of a novel type of Feshbach resonance,
arising from the orbital exchange interaction. In the bulk, the magnetic field dependence
of the elastic and inelastic scattering cross section are determined by cross-dimensional
thermalisation and loss spectroscopy respectively. Additionally, employing high-resolution
clock line spectroscopy in an isotropic lattice, we directly probe the pure two-body in-
teraction properties of a two-orbital atom pair. All our experimental results are in good
agreement with a tow-channel scattering model, incorporating effective ranges and con-
finement effects.

In Chapter 5, we present the create a strongly interacting two-orbital Fermi gas in
quasi two dimensions. The influence of the reduced dimensionality on the interorbtial
interaction is probed spectroscopically. We demonstrate the existence of a confinement
induced dimer and the universal scaling of the binding energy. Furthermore, a regime
strongly interacting impurities is investigated. Here, the measured interaction shifts are
well described by a polaron theory.

In the final Chapter, the main results of this thesis are summarised. We discuss the fea-
sibility of new experiments based on the novel ability of tuning the two-orbital interaction
strength.
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CHAPTER 1

Interactions in ultracold quantum gases

The most fundamental process of interaction for two atoms is a binary collision, whether
they are bosons or fermions. The process of scattering is common to many different fields
of physics, ranging from high energy physics to ultracold quantum gases for charged and
neutral particles. Before introducing the central part of this thesis, presenting the obser-
vation of a novel interorbital interaction induced Feshbach resonance, we have to shine a
light on the way ultracold atoms in a dilute gas interact with each other.

In this chapter, we will first give a brief review of the quantum mechanical treatment
of scattering between two neutral atoms in free space. Here, we focus on the introduction
of the terminology widely used in scattering theory, especially the interpretation of the
s-wave scattering length as an effective hard sphere radius. Using the example of the
van der Waals potential, we will demonstrate how the scattering length is influenced by
the position of the least-bound state in the potential. Subsequently, we investigate the
influence of a harmonic confinement on the atomic interactions.

The second major topic of this chapter are Feshbach resonances. For alkali atoms,
Feshbach resonances allow for tuning the scattering length via an external magnetic field.
We demonstrate how the internal structure of alkali atoms gives rise to multiple coupled
scattering channels. Due to a differential magnetic moment, an external magnetic field
can tune the energy of the least-bound state and thus the interaction strength between
two atoms. Later, in chapter 4, we will compare the novel interorbital Feshbach resonance
in AEL atoms to the magnetic Feshbach resonances in alkali atoms.

1.1 Elastic scattering of cold atoms

In the following, we will discuss the elastic scattering of two neutral atoms under typ-
ical conditions found in ultracold quantum gases. In most experiments, dilute gases of
ultracold atoms are trapped in a harmonic potential. First we will study the implications
of this terminology on the way two atoms interact. We present the textbook solution of
the scattering problem in free space based on the partial-wave expansion. Thereupon, we
demonstrate how the underlying interaction potential influences the scattering properties
base on the example of the van der Waals potential. Finally, we present the solution to the
scattering problem under the influence of confinement.
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Figure 1.1 — Schematic drawing of an ultracold and dilute gas. The impenetrable, i.e. hard-core atoms (dark
blue spheres) are surrounded by a short-range interaction potential (light blue sphere) with a characteristic
length rg. In an ultracold and dilute gas the inter particle spacing n—1/3 and the thermal wavelength Ay, have
to be larger than ry. Under typical experimental conditions with an atomic density of 10™3 atoms/cm3 and a
temperature around 100 nK we find n=1/3 ~ Ay, &~ 0.5 um, whereas rq is usually on the order of one to
hundred Bohr radii ry &~ 100ap &~ 5nm and thus ry < n~1/3, Ap.

1.1.1 Two atoms in a central potential

The interaction of neutral atoms can be modelled by an isotropic and short-range inter-
atomic molecular potential. A typical example is the van der Waals type potential which
we will study in the next section. Yet, the following consideration holds for any isotropic
and short-range potential. Short range implies that the potential falls of quickly to zero
beyond a characteristic length scale r,. We want to focus on the case of binary collisions.
This simplification is justified in a dilute and cold gas, as we will show. Since the typical
atomic densities n in quantum gases are very low, the mean particle separation n~'/ is
much larger than ry

nrg <L 1. (1.1

Here, the probability to find more than two atoms in a sphere with radius r is strongly
suppressed and the gas is called dilute. Furthermore, we work at ultra-low temperatures,
therefore we can assume that the atoms move slowly through the gas. By this, we mean
that the thermal wavelength Ay, = h/+/2mmkgT is much larger than ry. In terms of the
momentum of the free atoms k o< 1/Ay,, we require the atoms to move so slowly that only
up to two at a time are found within a sphere of the radius r

kro <L 1. (1'2)

Only if the gas satisfies (1.1) and (1.2), we can restrict our description to binary collisions
and the scattering process is a reduced to a two-body problem.

Isotropic interactions are given by a conservative central potential V(r), where r = |r;—
r,| is the radial distance between the two atoms. Hence, we can separate the relative from
the centre-of-mass motion. The relative motion can be reduced to the motion of a single
particle with the reduced mass M = m;m,/(m; + m,) in the same potential. Furthermore,
the kinetic energy is conserved and the collisions are elastic, i.e. the relative momentum
before and after the collision ( k and k’ ) have the same modulus k = k’, as illustrated
by Figure 1.2. Thus, the elastic scattering of two atoms only leads to a phase shift in the
wave function.
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Figure 1.2 — (a) Schematic drawing of two-atom scattering. The two incoming atoms with mass m; are repre-
sented by the blue plane waves k; and are scattered into the outgoing yellow spherical wave with the centre-
of-mass coordinate R = (m1r1 + mgrg)/mlmz and the corresponding momentum K, as well as the relative
position r = r; —ra. (b) Representation of the scattering in the centre-of-mass reference frame. The incoming
reduced mass M with the relative momentum k (blue) is scattered on the central symmetric potential (gray
circle) into the outgoing spherical wave f(&)e"k/r/r (yellow) under the angle 6.

Derivation of the scattering amplitude

As mentioned above, we can reduce the two-body problem into a one-body problem in the
centre-of-mass frame. The relative wave function is determined by the time-independent
Schrodinger equation [62]

v
[_ 2M

+V(r)] Y(r) = Eqp(r), (1.3)

where E is the relative energy of the atoms. At large separation, the atoms are non-
interacting V(r > r,) = 0 and the energy is purely kinetic E = h%k?/2M . Here, the
solution of the free Schrédinger equation is given by incoming and outgoing plane waves.
Since the solution to the total Schrédinger equation has to asymptotically fulfil this bound-
ary condition, we construct the scattering wave function from an incoming plane wave
with wave vector k and an outgoing spherical wave

P
elkr

Y(r) o< e + (K, k) (1.4)

—
We introduce the scattering amplitude f (K’, k), i.e. the probability amplitude for scattering
from k into the new direction k’. Due to the centrally symmetric potential, it is convenient
to treat the problem in spherical coordinates r = (r,60,¢). The general solution for a
particle in a central potential is given by the product of angular and radial eigenfunctions
Y™(6,¢) and R;(k,r). Applying the partial-wave expansion to the scattering amplitude
yields

FOIK ) = £(8) =Y fi(k)P(cos 0), (1.5)
=0

with P; being the Legendre polynomial of order [, and f; the corresponding partial wave
amplitude. We subtract the incident plane wave from the general solution, both expanded
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into plane waves. Imposing the regularity of the solution in the origin r = 0, we find that
the partial wave amplitudes f;(k) are given by

20+1 .
k) = ——— (e2mk) —1 1.6
filk) == (e ), (1.6)

where 7;(k) is the scattering phase shift of the [-th partial wave.

s-wave scattering length and effective range

In the limit of low energy scattering k — 0, the only relevant term in the partial wave
expansion is [ = 0, the so-called s-wave. All higher partial waves are strongly suppressed
for very low scattering energies due to the centrifugal barrier in the effective potential
of the radial Schrodinger equation, as illustrated in Figure 1.4. Exploiting trigonometric
identities, we can rewrite the s-wave scattering amplitude as

1

folk) = k cotno(k)— ik

(1.7)
For arbitrary short-range potentials, we can apply the effective range expansion to the
scattering phase shift [62]

1 1
k cotny(k) ~ 3 + Erefsz, (1.8)

where a is the s-wave scattering length and r. the effective range.
We can illustrate the physical meaning of the s-wave scattering length a by investigat-
ing the radial wave function in the far field. Here, the asymptotic wave function takes the

form
—a

P(r) o< — (1.9)

The, s-wave scattering length gives rise to a node in the radial wave function, which is
real for a > 0 and virtual for a < 0. Thus we can interpret a as an effective hard sphere
radius, leading to repulsive interaction for a > 0 and attractive for a < 0, as illustrated in
Figure 1.3. The interpretation as effective hard sphere radius can also be seen from the
scattering cross section ¢ that is fully determined by the s-wave scattering length, as we
will derive in the next section.

The effective range cannot be interpreted in terms of an intuitive classical picture like
for the scattering length. It is a measure for how the potential V(r) influences the energy

dependence of the cross section and it sets the upper bound for the low energy limit [62].

The scattering cross section

The differential cross section do (6, ¢)/dQ = |f(8)|?> measures the probability that a parti-
cle is scattered into the solid angle d2 around the angle 0. By integrating the differential
cross section over all scattering angles we obtain the total scattering cross section, which
determines the absolute likelihood of a scattering event. Since the contribution of higher
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Figure 1.3 — Reduced radial wave function for continuum states (e > 0) in the limit k — 0 on the example
of a square well potential for (a) positive and (b) negative scattering length. A positive scattering length leads
to a node in the wave function (1.9) at r = a, whereas a negative scattering length induces a virtual node at
negative distances. The sign of the scattering length is determined by the position of the least-bound state in
the potential. A real bound state (EB < 0) causes a positive scattering length, whereas a virtual bound state
(eg > 0) leads to a negative scattering length. As the bound state energy approaches the continuum energy
(eB — O) the scattering length diverges. The dashed circles represent the effective size of the colliding atoms
as hard spheres with radiu a.

partial waves is negligible, we replace the total scattering cross section by the s-wave cross
section
o = 4nlfo(k). (1.10)

Applying the effective range expansion in f,(k) we arrive at

1 2
= . 1.11
1+ k2a2(1 —reg/a) | k—0 dma ( )

o = 4na®

The probability of a collision between two atoms is proportional to the area of a disc
with radius a and thus increasing |a| leads to a higher scattering probability. This result
demonstrates once more the interpretation of a as an effective hard sphere radius.

So far, we have only discussed the case of elastic scattering. Yet, inelastic two-body
processes are possible, e.g. part of the internal energy of the atoms is converted into
kinetic energy. In the case of atoms in a trap, this process typically leads to a loss from the
trap. We can account for such events by introducing an imaginary part into the scattering
length a = A+iB [63, 64]. In the limit of low energy scattering, this results in an elastic
and inelastic s-wave cross section

4
Oel = 47'5(A2 +BZ): Oinel = %B' (1.12)

1.1.2 The van der Waals potential

For an isotropic and short-range potential, we have seen that the interaction of two ul-
tracold atoms can be reduced to a single parameter a, the s-wave scattering length. In
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the following, we want to understand how the details of the actual molecular potential
determine the value of a.

The molecular potential between two neutral atoms is governed at large distances by
the van der Waals attraction, caused by induced dipole forces o< r—3. At short distances
r < r., on the order of the of the atoms size, where the electron clouds are squeezed
together, the repulsive exchange interaction dominates. We can model this type of inter-
actions with an attractive r—° tail at long distances and a repulsive hard core potential at
short distances:

_ 6
V(r)={ Ce/r® for r>r, (1.13)

fo%e) for r<r,.
Here, C¢ = Vorc6 is the van der Waals coefficient with V;, = hzkf /2M the well depth at the
boundary to the hard core. The potential can be neglected for distances r > r, where the
zero point energy hi2/2M exceeds the potential energy V(ry) [62] (see Figure 1.4(a)). In
this context, r, is conventionally called the van der Waals length

1(2MCg\Y/*
lvdw:E( f 6) . (1.14)

As shown by Gribakin and Flambaum [65, 66], for any short range potential of the type
C,/r", there exists an analytic solution to the two-body problem (1.3). Based on the
semi-classical WKB approximation, it is possible to relate the s-wave scattering length and
effective range to the characteristic parameters of the potential. The WKB approximation
assumes, that the solution of the Schrodinger equation is given by plane waves with a
slowly varying complex phase ®. In the lowest order of the WKB approximation, & is
obtained by integration of the potential from the classical turning point r, outwards [65]

1 (% l
$= %f \/2M|V(r)|dr=2( vdw
re ¢

r

2
) _ (1.15)

For the van der Waals potential, we find that the s-wave scattering length
a=al[l—tan(®—371/8)], (1.16)

is given by two contributions: the background or mean scattering length @ ~ 0.956 4.,
determined by asymptotic behaviour of the potential, and the resonant part influenced by
the phase ® and thus the short range behaviour of the potential. The small phase factor
371/8 is determined by the boundary condition at the turning point r.. As illustrated in
Figure 1.4(b), the mean scattering length shows a smooth behaviour as a function of the
parameters of the potential, whereas the scattering length diverges and changes sign when
the phase satisfies the condition ®—37/8 = /2 + mNy. These resonances in the scattering
length are called shape resonances and they appear every time the potential can support a
new bound state. The condition between the total number of bound states in the potential
Ny and the occurrence of a new shape resonance is known as the Levinson’s theorem [66].

The relation between the energy of the least-bound state and the scattering length can
be derived by solving the radial Schrodinger equation for negative energies, i.e. inside the
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Figure 1.4 — (a) Molecular potentials with their bound state energies as a function of the interatomic separation.
The blue line shows the van der Waals potential for zero angular momentum / = 0, the s-wave channel. The
effective potential including the potential barrier for / = 1 (p-wave) is drawn in yellow. The classical turning
point of each potential is marked by r.. For low collision energies (black dashed line) the atoms are reflected
on the centrifugal barrier at r. and cannot enter the attractive part of the potential. In the s-wave channel
the classical turning point r. is given by the short-range part of the potential. (b) Dependence of the mean
scattering length a (yellow) and the scattering length (blue) on the phase ®. While the mean scattering length
a shows only a weak dependence on the parameters of the potential, the scattering length a diverges every
time the potential can support a new bound state.

potential well. Taking into account the boundary conditions that the wave function inside
and outside the well has to be smoothly connected, we find Nz bound states within the
potential for (Nz —1/2)nr < ®—3/8 < (Ng + 1/2)n. Close to the resonance, the energy of
the least-bound state is given by

V2M [hPep ~ cotd/a~al. (1.17)

Form this, we arrive at the famous relation that connects the scattering length to the
energy of the least-bound state

12
2Ma?’
A shallow bound state just below the continuum with ez < 0 leads to a large and positive
scattering length and thus a repulsive interaction. If the least-bound state is only virtually
bound, i.e. possesses positive energy ez > 0, the scattering length becomes negative,
giving rise to attractive interactions.

The universal formula (1.18) is only valid in the vicinity of a resonance, where a > a.
Further away, higher order corrections due to the van der Waals potential have to be taken
into account, leading to [67]

€p = (1.18)

hz ClC_l CzC_lz
=— 1+ 5 4 +ol, 1.19
BT T oMa—a?) [ a—a  (a—ay (525

with ¢; =T(1/4)*/6n2 and ¢, = (5 /4)cf — 2, where T" denotes the Euler gamma function.
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The effective range in the van der Waals can be expanded in orders of the mean scat-
tering length

- ~\2
reff=2.92a(1—29+2(9) ) (1.20)
a a

By using the expression for the mean scattering length (1.16), we see that r.gis constant
with ~ 2.97[,4,, in most cases and diverges as a — 0. This result agrees with the exact
quantum defect solution of Gao [68].

1.1.8 Interactions in a harmonic trap

In the previous section, we have treated binary collisions in free space. We have solved the
scattering problem by investigating the asymptotic behaviour of the incident and outgoing
plane waves. We showed that an elastic collision leads to a phase shift in the scattered
wave, which is determined by the effective hard sphere radius of the atoms, the s-wave
scattering length.

However, in experiments, atoms are usually confined to a finite volume by means of a
trapping potential. The trap prohibits the construction of asymptotic scattering states and
imposes a discrete energy spectrum on the atoms. The potential created by two crossed
and focused Gaussian laser beams is well approximated by a 3D harmonic oscillator (see
Section 2.3). The energy spectrum of an atom in this potential is simply given by the har-
monic oscillator levels. In the following, we will investigate how the free-particle energy
levels are modified for pairs of interacting atoms.

In order to simplify the mathematical treatment, we make two approximations. We
assume, that the atoms are still further apart than the range of their interaction potential
nrg < 1. Under this assumption, interactions can be modelled by a zero-range pseudo-
potential with a contact interaction strength proportional to the scattering length a, as
introduced by Fermi [69]

4mh?

m

V(r)= a6reg(r). (1.21)
Here, 6,¢4(r) =0 (r)%r is the regularized delta function [70].

Furthermore, we restrict ourselves to the case of a three-dimensional isotropic har-
y = w;). In the case of harmonic confinement, we can again
separate the centre-of-mass motion and the relative motion of the atoms. We reduce the
two-body problem to an effective one-body problem for the relative motion in the trap

monic oscillator (w, = w

(HOSC + \/Ena05(r)%r) Y(r) = Ey(r), (1.22)

where H,. is the Hamiltonian of the harmonic oscillator of the relative motion. The
interaction strength a, = a/l;,, is parametrised in units of the harmonic oscillator length
o = VA/(Mw) and the energy E in units of the harmonic oscillator energy fico. This
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Figure 1.5 — Energy spectrum of two atoms in a three dimensional isotropic trap as a function of the inter-
action strength. The energy is parametrised by the harmonic oscillator spacing fiw, the scattering length by
the harmonic oscillator length /. The blue lines are the solutions for harmonic confinement (1.23) with the
asymptotic behaviour a — Fo0o marked by the gray dashed lines. The yellow lines are calculated for an
anharmonic potential, here a lattice site around the minimum, expanded up to the 6th order. We use a lattice
depth Vy = 30 E,, the value employed later in the clock-line spectroscopy experiments. The inset illustrates
the difference between a harmonic potential and a lattice potential around one minimum.

model can be solved analytically, as shown by Busch et al. [71]. The energy E of two
interacting atoms in a harmonic trap is given by [71]

T(=E/2+3/4) _ l’ (1.23)
['(—E/2+1/4) aqq
where T is the Euler gamma function.

The energy spectrum of the two-particle interacting states from (1.23) is represented
in Figure 1.5. For a = 0, the two atoms are non-interacting and their energy is given by
the unperturbed oscillator levels E, = (3/2 + 2n)hw with n labelling the oscillator level.
For repulsive interactions a > 0, the energy of the atom pair in the trap is raised compared
to the non-interacting case. However, as a — oo the energy is bounded from above by
the next oscillator level. As the scattering length increases, the atoms repel each other
as far as possible in order to minimize their interaction energy. This eventually leads
to the appearance of a node in the relative wave function. Since the modulus of the
wave function is identical to that of two identical fermions, this phenomenon is known
as fermionization and happens for identical bosons [26, 72] as well as for distinguishable
fermions [73]. The ground state of the system for both negative and positive scattering
length is a bound state of the two atoms. Therefore, it has an energy lower than the
non-interacting ground state, i.e. the lowest harmonic oscillator level. In free space the
delta-like potential of Eq. (1.21) only supports a single bound state for positive scattering
length. Here the bound state also exists for a < 0, where it is supported by the confining
potential.

In section 2.3 we introduce optical lattices as a key ingredient for quantum simulation.
In the following, we extend the model of two atoms in a harmonic trap to the case of
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a sinusoidal lattice potential. A sinusoidal potential can be approximated by a harmonic
potential around its minimum. We expand the potential in a Taylor series

1 2
Viae = Vo sin?(kx) ~ Vy(k?x? + §k4x4 + 4—5k6x6 +...). (1.24)

The leading term is the harmonic one, whereas higher orders account for the anharmonic-
ity of the actual sinusoidal potential. Owing to this anharmonicities, the centre-of-mass
and relative motion are coupled. Therefore, we need to consider the Schrodinger equation
for the full pair wave function (R, r), where r and R are the relative and centre-of-mass
coordinates of the atom pair, respectively. We can write:

osc osc

h
@#mh4ﬁw+%}&@ﬂ+%mmﬁ)wﬁﬂ=EMKﬂ, (1.25)

where the harmonic term of the Taylor expansion is included in H,., whereas V,,,, con-
tains all higher orders. The Schrdédinger equation is no longer separable; therefore, no
analytic solution can be found. Deuretzbacher et al. have performed numerically exact
diagonalization of the total Hamiltonian [74], in order to obtain the energy spectrum. We
have calculated the corrections to the harmonic energy spectrum by including the effects
of the anharmonicity by second order perturbation theory. Our results match very well the
ones obtained by Deuretzbacher.

In Figure 1.5, the results obtained for a deep isotropic lattice are compared to the
solution for a purely harmonic potential. The calculation is performed for a lattice depth
of V, = 30E,, the value employed for the interaction spectroscopy in chapter 4. As the
pair energy increases, the anharmonic corrections become more substantial. This can
be easily understood by considering the spatial extent of the corresponding state. With
increasing scattering length, the atoms repel each other more strongly. Thus, they explore
regions further away from the trap center and become more susceptible to the anharmonic
character of the potential.

1.2 Feshbach resonances

In the previous section, we have seen that the actual value of the scattering length a is de-
termined by the long-range behaviour of the underlying molecular potential. In particular,
as the least-bound state approaches the free-particle continuum threshold, the scattering
phase shift changes rapidly by = leading to a resonance in the scattering length. There-
fore, it is highly desirable to gain control over the bound state energy and thus over the
s-wave scattering length.

So far we have only discussed the scattering of atoms in a single channel, i.e. in
the presence of one inter-atomic potential. However, the internal structure of the atoms
can lead to the presence of several collision channels. For alkali atoms, these different
channels are typically given by the spin singlet and triplet molecular potentials. A bound
state in the energetically inaccessible potential can couple to the scattering continuum
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and thus cause a scattering resonance. This phenomenon is called a Feshbach resonance
in honor of Herman Feshbach, who developed a model to describe nuclear reactions based
on this mechanism [75, 76]. Although the term Feshbach resonance is very common in
the cold atom community, we owe the introduction of this concept in atomic physics to
Ugo Fano [77].

In the following, we briefly introduce the molecular interaction potentials for alkali
atoms with internal structure. We show that the hyperfine interaction couples the different
potentials, and how their relative energies can be tuned by means of an external magnetic
field. Based on this qualitative understanding, we present a coupled channel model, which
allows to link the microscopic properties of the resonance to the scattering phase shift.
Finally, we derive a simple expression for the magnetic field dependence of the scattering
length. More details on the theory of resonant scattering in ultracold atoms can be found
in [78-82], while a general review about the physics of Feshbach resonances is given
in [9, 83].

1.2.1 Scattering of atoms with spin and hyperfine interaction

Let us consider a scattering process of two alkali atoms with electronic spin § = 1/2 in
their ground state, which is typically a 2S; /2 state with no orbital angular momentum
L = 0. The combined molecular potential in its electronic ground state is a ¥ potential
with a rotational symmetry around the bond axis [84]. The total electronic spin S = S;+S,
determines the symmetry of the molecular potential; whether the two spins are in a singlet
S =0 or triplet S = 1 configuration determines the bonding 12g+ (denoted here by V,(r))
and anti-bonding 321’ (v (r)) potentials, as depicted in Figure 1.6(a).

In the presence of a magnetic field, the two atoms experience a Zeeman energy shift
dependent on total electron spin

VZS == 2‘U,BS . B, (1.26)

where ug is the Bohr magneton. Therefore, the triplet potential with mg = —1 is shifted
by a finite magnetic field to lower energies compared to the singlet potential with mg = 0.
This gives rise to a differential magnetic moment éu ~ 2.8 MHz/G between the two po-
tentials for S = 1/2. The triplet potential is called open channel, since atoms can enter
and leave in this channel. The singlet potential is referred to as closed channel, because its
