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Abstract 

Biomarkers to guide optimal treatment selection are lacking for major depressive 

disorder (MDD). Despite some promising findings, candidate gene and genome-wide 

association studies (GWAS) of antidepressant response have met with little success 

and none has focused on differential outcome to mechanistically different treatments. 

Development of such biomarkers would allow to better match patients with their most 

favorable treatment and has direct implications for the development of precision 

biology-based clinical practice. The overall aim of this thesis is to provide a 

framework for developing easily accessible predictors of individualized treatment 

response.  

Combining imaging techniques with genetic variation and considering coexisting 

clinical entities may facilitate identification of novel genetic contributors and enhance 

our understanding of the neural basis and networks involved in treatment response 

variation. Using a neuroimaging-based genomics approach, we constructed 

polygenic predictors based on structural (hippocampus (HC) volume differences) and 

functional (brain glucose metabolism) neuroimaging endophenotypes of (1) overall 

treatment outcome and (2) treatment-specific outcome in MDD patients. 

The first part of this thesis investigates whether polygenic scores (PGS) derived 

from single nucleotide polymorphisms (SNPs) influencing HC volume from the 

Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) study (Hibar et 

al., 2015) could predict clinical improvement of depression in three independent 

samples. Additionally, we hypothesized that reduction in clinical/environmental 

heterogeneity could identify subtype specific biomarkers and improve HC-PGS 

prediction. HC structure and function are implicated in the neurobiology of MDD and 

treatment response. Better response to treatment has been observed in patients with 

larger HC volume, patients who have not been exposed to early life adversity, or 

patients with non-anxious depression.  
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HC-PGS were unable to predict treatment outcome overall, or when exposure to 

early life adversity was considered. However, HC-PGS significantly predicted 

outcome scores in non-anxious patients. Higher HC-PGS reflecting increased  

HC-volume correlated with better outcomes, agreeing with previous findings relating 

anxiety and reduced HC-volume with poor outcomes in depression. Gene profiles 

tagged by the predictive variants are enriched in cortical and hippocampal adult brain 

regions and cortical and striatal brain cell-type specific expression patterns. 

The second part of this thesis focuses on identifying predictors of treatment-

specific outcome. Previously resting state activity patterns of six distinct brain regions 

were reported to predict differential response to either escitalopram (ESC) or 

cognitive behavior therapy (CBT) (McGrath et al., 2013). We investigate whether 

PGS based on genetic associations with metabolic activity of these regions or PGS 

derived from SNPs influencing HC volume differences could predict treatment-

specific outcome in an independent cohort; the Prediction of Remission in 

Depression to Individual and Combined Treatments (PReDICT) sample (B. W. 

Dunlop et al., 2012). PReDICT enrolled treatment-naïve patients and randomized 

them to three antidepressant treatments; CBT, ESC and duloxetine (DUL). As such, it 

is the largest single-site MDD randomized trial comparing CBT to antidepressant 

medication (ADM) ever performed.  

HC-PGS, Insula-PGS and left premotor cortex-PGS predicted differential 

outcomes to CBT vs. ADM in PReDICT with clinically relevant effect sizes. Genes 

tagged by SNPs from neuroimaging-based predictive PGS overlapped with 

previously identified schizophrenia risk variants and were enriched for disease 

relevant gene ontology (GO) terms and convergent cortical and striatal brain cell-type 

specific expression patterns. 

 The approach used in this work contributes to the identification of molecular 

pathways possibly critical for antidepressant outcomes and offers novel insights into 

MDD pathophysiological subtypes. We demonstrate that combining neuroimaging 

and genetic markers as well as accounting for clinical subtypes is essential to identify 

predictors of antidepressant response and may allow selection of a specific treatment 

for a specific patients. Figure 1 provides an overview of this work.  
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Figure 1.  Overview of neuroimaging-based genomic predictors of antidepressant 
response approach 
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The following section provides a general background on the main topics relevant for 

this research. First, core concepts such as major depressive disorder (MDD) and 

antidepressant treatment outcome are defined, followed by an overview of the most 

important risk factors, available treatments and existing biomarkers of antidepressant 

treatment outcome. The challenges and weaknesses faced in the field are discussed, 

providing as such a rationale for the aims of this research. To conclude a “combined-

approach” strategy to possibly advance future biomarker research in depression is 

proposed.   
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1.1. Major Depressive Disorder  

MDD is a highly prevalent psychiatric disorder that is currently the third leading cause 

of disability worldwide and is projected to be the number one cause of disease 

burden by the year 2030 (Judd et al., 2000; R. C. Kessler et al., 2003; Lepine & 

Briley, 2011). Lifetime prevalence is estimated to be 17% and it is twice more 

common in women than in men (R. C. Kessler et al., 2005; Weissman et al., 1993). 

The impact of MDD on individuals and societies is to a great extent due to the chronic 

and recurring course of illness, which is often resistant to current available treatments 

(Paul E. Holtzheimer & Mayberg, 2011; R. C. Kessler, et al., 2003). Persistence of 

depressive symptoms contributes to increased suicide risk, health-related costs, and 

productivity loss (Ronald C. Kessler et al., 2006). Predicting which patients will 

respond to which initial treatment could therefore be of great benefit.  

MDD is characterized by a highly heterogeneous range of symptoms. According to 

the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), 

MDD patients experience a pathological change of mood for at least two weeks 

characterized by anhedonia or depressed mood alongside three or more of the 

symptoms presented in Table 1. One of the instruments most used by clinicians to 

evaluate the presence of depression symptoms or to assess clinical treatment 

outcomes is the Hamilton Depression Rating Scale (HDRS); a depression-screening 

questionnaire originally consisting on 17-items (HAMILTON, 1960). A score of twenty 

or higher indicates at least moderately severe MDD, clinical remission is often 

defined as a score of zero to seven at the end of treatment and non-remission as a 

change in HDRS score of ≤ 30% from start to end of treatment, while response is 

typically considered as a reduction in HDRS of ≥ 50 % (HAMILTON, 1960). 
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Table 1.  DSM-IV MDD diagnosis criteria. Source: (Association, 2000) 

A Change from previous functioning present during the same two-week period 

characterized by anhedonia or depressed mood along with five or more of the 

following symptoms:  

1. Depressed mood most of the day, nearly every day, as indicated either 

by subjective report (e.g., sadness, emptiness) or observation made by 

others (e.g., appears tearful)  

2. Noticeably diminished interest or pleasure in all (or almost all) activities 

most of the day, nearly every day (as indicated either by subjective 

account or observation made by others)  

3. Change of ≥ 5% of body weight in a month (weight loss/weight gain when 

not dieting), or decrease or increase in appetite nearly every day  

4. Insomnia or hypersomnia nearly every day  

5. Psychomotor agitation or retardation nearly every day  

6. Fatigue or loss of energy nearly every day  

7. Feelings of worthlessness or excessive or inappropriate guilt (may be 

delusional) nearly every day  

8. Decreased concentration or indecisiveness, nearly every day (either by 

subjective account or observation made by others)  

9. Recurrent suicidal ideation without a specific plan, or a suicide attempt or 

specific plan for committing suicide  

B Symptoms do not meet criteria for a mixed episode  

C Symptoms cause clinically significant distress or impairment in social, 

occupational, or other important areas of functioning  

D The symptoms are not due to the direct physiological effects of a substance 

(e.g., a drug of abuse, a medication) or a general medical condition (e.g., 

hypothyroidism)  

E The symptoms are not better accounted for by bereavement, i.e., after the loss 

of a loved one, the symptoms persist for longer than 2 months or are 

characterized by marked functional impairment, morbid preoccupation with 

worthlessness, suicidal ideation, psychotic symptoms, or psychomotor 

retardation 
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In addition to the extensive variety of symptoms comprising MDD, comorbid 

conditions and concomitant symptoms that are not required for DSM-IV diagnosis, 

may affect the course of the disorder. For example, anxiety, which co-occurs in 40-

50% of patients with MDD (Melartin et al., 2002) is associated with higher illness 

severity, greater functional impairment (Fava et al., 2004; Fava et al., 2008; Joffe, 

Bagby, & Levitt, 1993), increased risk of suicide (Fava, et al., 2004; Fava, et al., 

2008; Tollefson, Holman, Sayler, & Potvin, 1994) and delayed response to treatment 

(Clayton et al., 1991; Fava, et al., 2008).  

Although anxious depression is currently not categorized as a diagnostic subtype 

of MDD, evidence suggests that it might be a valid diagnostic class (Fava, et al., 

2004; Fava, et al., 2008). Symptom heterogeneity in MDD suggests that distinct 

depression subtypes may benefit from tailored treatment strategies. 
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1.2. Pathophysiology of MDD  

The pathophysiology of MDD is poorly understood, current findings point to an 

“individual”-depression hypothesis, where therapies should be tailored to each 

patients distinct biological features (Hasler, 2010). Among systems observed to be 

affected in MDD are for example alterations in the hypothalamus-adrenal-pituitary 

(HPA) axis, structural brain changes (Schmaal et al., 2015), environmental risk 

factors (e.g., early life adversity), genetic variation and gene by environment (GxE) 

interactions (Patel, 2013).  

In addition, the mechanism of action of many antidepressant drugs points to the 

involvement of altered neurotransmitter regulation in individuals suffering MDD. 

Disruptions in dopamine (Dunlop & Nemeroff, 2007; Tham, Woon, Sum, Lee, & Sim, 

2011), norepinephrine and serotonin systems have been implicated in the 

pathogenesis of depression. In the following sections, environmental, genetic, GxE 

interactions and structural brain changes influencing MDD susceptibility risk are 

discussed in detail.  

1.2.1. Environmental Risk Factors  

Adverse traumatic life events, particularly early in life are among the most robust risk 

factors for depression (R. C. Kessler, 1997). Early life stress (ELS) like childhood 

trauma, abuse or neglect has been repeatedly linked to greater susceptibility to 

several psychiatric disorders including MDD (Heim, Newport, Mletzko, Miller, & 

Nemeroff, 2008). Beyond disease risk, such environmental influences (Nemeroff et 

al., 2003) are also strong predictors of antidepressant treatment outcomes (Chapman 

et al., 2004).  

For example, in a meta-analysis of ten clinical trials, response to depression 

treatment was reported to be significantly better in patients who did not experience 

childhood abuse in contrast to those who did (Nanni, Uher, & Danese, 2012). ELS 

can induce potential long-lasting epigenomic changes (Divya Mehta et al., 2013) and 

is considered more profound when compared to stressors during adulthood also in 

animal studies (Russo, Murrough, Han, Charney, & Nestler, 2012).  
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Exposures to stress and adversity activate the stress hormone system, in particular 

during specific developmental stages (Heim & Binder, 2012; Heim, et al., 2008; 

Kendler, 1998; R. C. Kessler, 1997; Lupien, McEwen, Gunnar, & Heim, 2009). 

Activation of glucocorticoid receptors (GR) in the brain results from glucocorticoid 

release following stress exposure. Subsequently, homeostasis of the HPA axis is 

sought through transcriptional regulation of genes that activate the HPA axis 

feedback loop. Increased risk to depression and other mood disorders often results 

when stress exposure becomes chronic, or when this regulation is disturbed. MDD 

patients for example, show HPA axis hyperactivity and increased levels of cortisol 

due to glucocorticoid resistance (i.e., impairment of GR-mediated negative feedback) 

(Pariante, 2006). A disrupted regulation of the stress hormone system has been 

reported in at least a subset of patients with depression (F. Holsboer, 2000; Pariante 

& Miller, 2001) and clinical response to treatment has been associated with its 

normalization (Schüle, 2007). Variation in modulators of the stress-hormone system, 

like FK506 binding protein 5 (FKBP5), have in fact been linked to antidepressant 

response (E. B. Binder et al., 2004). 

While the stress hormone system has central effects on neural processing, it also 

impacts peripheral tissues, including peripheral blood cells and the immune system. 

A number of studies reviewed by Raison & Miller highlight the importance of immune 

function in depression (Raison & Miller, 2011). For instance a recent peripheral blood 

transcriptome study in a large sample of depressed patients and controls has pointed 

to immune signaling as an important factor, with increased expression of genes in the 

interferon α/β signaling pathway observed in MDD patients (Mostafavi et al., 2014).  

Greater risk to develop psychiatric disorders due to stressful life events varies 

among individuals; some individuals are particularly more sensitive than others. 

These differences in vulnerability may be, to some extent, explained by interaction of 

these environmental exposures with genetic components or additional environmental 

factors as well as the presence or absence of clinical concomitant entities (i.e., 

anxiety). Expressly, the effects of environmental exposures may occur solely on the 

presence of predisposing genetic factors (Klengel & Binder, 2013). The latter 

highlights the importance of studying not just genetic or environmental factors, but 

their interactions influencing disease susceptibility.  
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1.2.2. Genetic Risk Factors (Polygenic Architecture) 

The proportion of variance in liability that can be attributed to genetic risk factors for 

MDD (i.e., heritability) is estimated to be around 40% (P. F. Sullivan, Neale, & 

Kendler, 2000); recurrent episodes and early age onset are associated with higher 

familial aggregation (Kendler, Gatz, Gardner, & Pedersen, 2005). To date, most 

variants associated to increased risk for complex psychiatric disorders like MDD, 

contribute however to merely a small fraction of the genetic variation and explain only 

a small proportion of the heritability (N.R. Wray et al., 2010). Recent findings show 

that risk-associated single nucleotide polymorphisms (SNPs) are shared between 

many psychiatric disorders (Lee et al., 2013).  

Table 2 shows a summary of MDD genome-wide association studies (GWAS) 

results. Up to now only very few loci have achieved genome-wide significance  

(Kohli et al., 2011). Recently whole-genome sequencing analyses identified two 

novel loci associated with MDD (Figure 2) (consortium, 2015). The polygenic 

architecture of MDD (Patrick F. Sullivan, Daly, & O'Donovan, 2012), where many 

genes of small effect are likely to contribute to disease risk, suggests that , outcome 

to antidepressant treatment is likely to be influenced too by multiple genes, as well as 

by their interactions with each other or with the environment  

(Almasy & Blangero, 2001).  
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Table 2.  Summary of MDD GWAS studies. Table lists the number of cases and 
controls for each GWAS and summarizes results. Meta-analyses = M, 
Replication = R. Ripke et al., 2013; N. R. Wray et al., 2012, include imputed 
data. Top associated SNPs are listed for each study. Source: Flint & 
Kendler, 2014 

 

P
o

s
it

io
n

  

 M
/R

* 

c
h

r1
: 
 

1
9

3
9

2
1

2
9

8
 

c
h

r1
2

: 
 

4
1

1
8

0
6

7
 

c
h

r7
: 
 

8
2

4
4

9
7

8
5

 

c
h

r8
: 
 

2
0

0
6

5
7

9
9

 

 

c
h

r1
6

: 
 

7
3

5
0

1
7

8
6

 

c
h

r3
: 
 

1
8

3
8

7
6

2
6

2
 

c
h

r1
2

: 
 

8
4

5
6

3
8

1
8

 

c
h

r5
: 
 

7
8

8
2

8
9

9
9

 

c
h

r1
0

: 
 

6
9

6
2

4
1

8
0

 

c
h

r1
0

: 
 

1
2

6
2

4
4

9
7

0
 

P
-v

a
lu

e
 

M
/R

* 

2
.5

 ×
 1

0
−

6
 

5
.8

 ×
 1

0
−

6
 

8
.2

 ×
 1

0
−

1
* 

6
.7

 ×
 1

0
−

7
 

 

1
.1

 ×
 1

0
−

6
 

4
.7

 ×
 1

0
−

6
* 

1
.4

 ×
 1

0
−

9
* 

1
.4

 ×
 1

0
−

6
 

7
.7

 ×
 1

0
−

4
 

1
.6

 ×
 1

0
−

5
 

S
N

P
 M

/R
* 

rs
6
0
6

1
4
9

 

rs
4
2
3

8
0
1

0
 

rs
2
7
1

5
1
4

8
 

rs
1
1
0

6
6
3

4
 

 

rs
1
2
4

4
6
9

5
6

 

rs
1
9
6

9
2
5

3
 

rs
1
5
4

5
8
4

3
 

rs
7
7
1

3
9
1

7
 

rs
1
2
4

1
5
8

0
0

 

rs
3
5
9

3
6
5

1
4

 

M
/R

* 

S
a
m

p
le

 

3
,3

3
6

 

3
,1

4
1

 

1
1

,9
7

2
 

7
,3

8
5

 

 

1
2

,6
6

4
 

5
7

,4
7

8
 

1
4

,3
7

3
 

2
,9

1
8

 

6
,4

1
7

 

6
,4

1
7

 

P
o

s
it

io
n

 

D
is

c
o

v
e
ry

 

c
h

r1
0

: 
 

6
0

5
4

2
4

4
4

 

 

c
h

r7
: 

8
2

4
4

9
7

8
5

 

c
h

r1
9

: 
 

2
9

2
6

3
4

4
0

 

c
h

r1
8

: 
 

6
5

2
8

5
2

7
9

 

c
h

r1
: 
 

9
7

4
6

2
9

0
0

 

c
h

r1
: 
 

2
2

4
5

3
8

6
9

0
 

c
h

r1
2

: 
 

8
4

5
6

3
8

1
8

 

c
h

r1
: 
 

1
5

7
7

9
7

7
5

0
 

c
h

r1
0

: 
 

6
9

6
2

4
1

8
0

 

c
h

r1
0

: 
 

1
2

6
2

4
4

9
7

0
 

P
-v

a
lu

e
 

D
is

c
o

v
e
ry

 

1
.3

 ×
 1

0
−

7
 

 

7
.7

 ×
 1

0
−

7
 

1
.7

 ×
 1

0
−

6
 

1
.8

 ×
 1

0
−

7
 

8
.8

 ×
 1

0
−

6
 

1
.0

 ×
 1

0
−

7
 

5
.5

 ×
 1

0
−

8
 

2
.2

 ×
 1

0
−

7
 

1
.9

 ×
 1

0
−

8
 

1
.2

 ×
 1

0
−

8
 

S
N

P
 

D
is

c
o

v
e
ry

 

rs
9
4
1

6
7
4

2
 

 

rs
2
7
1

5
1
4

8
 

rs
1
2
4

6
2
8

8
6

 

rs
1
7
0

7
7
4

5
0

 

rs
1
8
2

3
5
8

 

rs
1
1
5

7
9
9

6
4

 

rs
1
5
4

5
8
4

3
 

rs
2
7
6

5
4
9

3
 

rs
1
2
4

1
5
8

0
0

 

rs
3
5
9

3
6
5

1
4

 

D
is

c
o

v
e
ry

 

s
a

m
p

le
 

3
,2

3
0

 

 

3
,5

4
1

 

2
,8

5
7

 

2
,6

5
6

 

6
,1

0
4

 

1
8

,7
5

9
 

7
1

9
 

1
,9

6
8

 

1
0

,6
4

0
 

1
0

,6
4

0
 

S
tu

d
y

 

L
e
w

is
  

e
t 

a
l.

, 
2

0
1

0
 

M
u

g
li
a
  

e
t 

a
l.

, 
2

0
1

0
 

S
u

ll
iv

a
n

  

e
t 

a
l.
, 
2

0
0
9

 

S
h

y
n

  

e
t 

a
l.
, 
2

0
1
1

 

S
h

i 
 

e
t 

a
l.
, 

2
0

1
1
 

W
ra

y
  

e
t 

a
l.
, 
2

0
1
2

 

R
ip

k
e

 e
t 

a
l.
, 

2
0

1
3

b
 

K
o

h
li
  

e
t 

a
l.
, 
2

0
1
1

 

R
ie

ts
c
h

e
l 

 

e
t 

a
l.
, 
2

0
1
0

 

C
O

N
V

E
R

G
E

, 

2
0

1
5

 

C
O

N
V

E
R

G
E

, 

2
0

1
5

 



12 1  Introduction 

 

 

Figure 2.  Loci associated with MDD in the CONVERGE sample. a) Manhattan plot of 

genome-wide association for MDD. b) LocusZoom20 regional association 

plot of the SIRT1 region on chromosome 10. c) LocusZoom20 regional 

association plot at the LHPP gene on chromosome 10. For b and c the  

-log10 (P-value) of imputed SNPs associated with MDD is shown on the left 

y axis. The recombination rates expressed in centimorgans (cM) per Mb 

(NCBI Build GRCh37) are shown on the right y axis. Position in Mb is on 

the x axis. Linkage disequilibrium of each SNP with the top SNP, displayed 

as a large purple diamond, is indicated by its color.  

Source: (consortium, 2015) 
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1.2.3. Gene by Environment Interactions  

Depression risk is influenced to different degrees by a combination of environmental 

and genetic factors in each particular individual. Disease predisposition variability 

highlights the importance of studying GxE interactions (i.e., the influence of 

environmental factors while taking into account genetic risk as well) in relation to 

MDD.  

The first evidence of genetic predisposition modulating environmental exposure 

linked to depressive symptoms was shown for a polymorphism in the promoter of the 

serotonin transporter (5-HTT or SERT) gene interacting with stressful life events 

(Caspi et al., 2003). Polymorphisms in the corticotrophin receptor 1 (CRHR1) 

increased MDD risk in adulthood in individuals exposed to ELS (Bradley et al., 2008). 

Further evidence demonstrates a CRHR1 by childhood trauma interaction modulating 

HPA axis reactivity in depression (Heim, et al., 2008; Tyrka et al., 2009). Other 

examples of GxE interactions on MDD include the GR gene (Bet et al., 2009), FKBP5 

gene (Appel et al., 2011; Zimmermann et al., 2011), brain-derived neurotrophic factor 

(BDNF) (Aguilera et al., 2009; J. M. Kim et al., 2007), and dopamine receptor 2 

(Vaske, Makarios, Boisvert, Beaver, & Wright, 2009) are illustrated in Figure 3.  

Epigenetic modifications, particularly deoxyribonucleic acid (DNA) methylation has 

been proposed as a possible mechanism underlying GxE interactions in relation to 

stress-related psychiatric disorders like MDD, specifically for FKBP5 and childhood 

trauma (Klengel et al., 2013). Growing evidence of GxE interactions (Bradley, et al., 

2008; Caspi, et al., 2003; Heim, et al., 2008; Klengel, et al., 2013; Divya Mehta, et al., 

2013; Zimmermann, et al., 2011) supports the existence of possibly more biologically 

homogeneous MDD subtypes, further emphasizing that subjects with different types 

of depression will likely respond to specific treatments customized to their individual 

biology.  
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Figure 3.  Gene by environment interactions resulting in major depressive disorder. 

Serotonin transporter linked-promoter region = 5-HTTLPR, corticotrophin 

receptor 1 = CRHR1, brain-derived neurotrophic factor = BDNF, FK506 

binding protein 5 = FKBP5. Colored bars in genes represent genetic 

variation. Based on: (Klengel & Binder, 2013) 
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1.2.4. Structural Brain Changes  

Neuroimaging techniques emerged as a tool for non-invasive exploration of neural 

mechanisms involved not just in normal cognition processes but also in psychiatric 

disease states. The association between depression and regional brain volume 

abnormalities has been of interest since more than two decades. Functional and 

structural modulation of the hippocampus (HC) by antidepressant medication (ADM) 

and stress (Rao et al., 2010) (a highly relevant environmental MDD risk factor (see 

section 1.2.1)), has motivated the investigation of HC volume changes related to 

depression. By dissecting the extent and temporal trajectories of HC structural 

differences, studies have sought to elucidate the link between environmental risk-

factors, HC integrity and MDD features such as treatment resistance and chronicity 

(G. MacQueen & Frodl, 2011).  

To date, several magnetic resonance imaging (MRI) meta-analyses have sought 

to identify structural brain alterations in depressed patients (Campbell, Marriott, 

Nahmias, & MacQueen, 2004; Cole, Costafreda, McGuffin, & Fu, 2011; Du et al., 

2014; Hajek, Kozeny, Kopecek, Alda, & Höschl, 2008; Hamilton, Siemer, & Gotlib, 

2008; Kempton et al., 2011; Koolschijn, van Haren, Lensvelt-Mulders, Hulshoff Pol, & 

Kahn, 2009; Videbech & Ravnkilde, 2004; Zhao et al., 2014). The most consistent 

finding across studies was decreased bilateral HC volume in recurrent MDD as 

compared to controls. Data on volumetric changes in healthy at-risk populations is 

sparse, but taken together evidence is in favor of reduced HC volume in healthy 

individuals at familial risk for depression (Chen, Hamilton, & Gotlib, 2010; Lenze, 

Xiong, & Sheline, 2008). 

The largest effort to identify regional brain volume alterations in MDD was carried 

out by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)-

MDD working group. This study comprised 1,728 MDD patients and 7,199 controls 

from fifteen research centers. The main finding was in fact reduced bilateral HC 

volume in MDD patients relative to controls; this effect was driven mainly by recurrent 

MDD (Schmaal, et al., 2015).  

Changes in grey matter (GM) and HC volume have not just been linked to MDD 

but also to treatment outcomes. For instance poor treatment outcome after five 

weeks has been observed in patients with reduced baseline left HC  
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volume (Samann et al., 2013). This result was consistent with a previous study that 

observed increased baseline bilateral HC volume and better treatment outcome after 

eight weeks of ADM (G. M. MacQueen, Yucel, Taylor, Macdonald, & Joffe, 2008). 

While findings reflect early treatment outcomes only (6-8 weeks), long-term outcome 

to antidepressant treatment has also been related to changes in HC volume. For 

example, increased relapse during a 2-year follow-up was observed in MDD patients 

with baseline reduced bilateral HC volume while no differences were found between 

HC volume of non-relapsing patients and healthy controls (Kronmüller et al., 2008). A 

previous study found significantly smaller baseline HC in patients whole relapsed 

within a 1-year follow-up as well (Frodl et al., 2004). Taken together, these findings 

point to reduced HC volume as an important determinant of short and long-term 

outcomes in depression.  

1.2.5. Genetic Contribution to Brain Structures and Psychiatric Risk 

Common genetic variation contributes to enduring structural brain changes which 

occasionally result in behavioral changes and increase disease risk. Several imaging-

genomics studies have investigated the association of common gene variants, brain 

volume and stress-related phenotypes.  

A number of candidate gene studies have reported suggestive SNP influences on 

GM volumes. For example, variants in the glycogen synthase kinase-3beta 

(GSK3beta) gene have been associated with right HC volumes as a function of MDD 

status (Inkster et al., 2009). Recent findings showed GxE interaction effects on HC 

volume between three gene-variants (Catechol-o-methyl transferase Val158Met, 

BDNF Val66Met, 5-HTTLPR) and cumulative environmental adversity  

(Rabl et al., 2014).  

Structural brain volume differences, similar to other complex traits, are likely to 

exhibit an underlying polygenic architecture. Efforts carried out by the ENIGMA 

consortium to identify genome-wide significant risk variants influencing brain 

structures investigated seven subcortical regions including the hippocampus. This 

large effort included more than thirty thousand subjects from 50 cohorts. Five novel 

genetic variants were associated with putamen and caudate nucleus volumes and 

two with HC (rs77956314, rs61921502) (Hibar et al., 2015) (Figure 4).  
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Figure 4.  Common genetic variants associated with subcortical volumes and 

intracranial volume (ICV). Grey dotted line shows genome-wide 

significance threshold of p = 5 × 10−8 and red dotted line shows multiple 

tests-corrected threshold of p = 7.1 × 10−9. Source: (Hibar, et al., 2015) 
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1.3. Antidepressant Treatments and Outcome 

Antidepressant treatment outcome is highly variable; approximately only 30% of 

patients achieve remission after the first given treatment (Gaynes et al., 2009). Due 

to the high prevalence and recurrence of MDD, prevention and adequate treatment 

selection are considered a worldwide health priority. MDD treatment outcome has 

improved with the development of several classes of ADM, which have shown more 

efficacy than placebo (Fountoulakis & Möller, 2011; Fournier et al., 2010), however 

high rates of treatment resistance and non-remission are still an important contributor 

of disease burden.  

Effective treatments of depression aim to completely restore psychological 

functioning as well as social and work-related productivity. Failure to achieve 

remission is related to greater functional impairment and earlier reversion of 

depression symptoms (Gaynes, et al., 2009; Papakostas et al., 2004). Achieving 

remission in the early stages of MDD is consequently of high importance for outcome 

in the long-term. Optimal treatment selection could help maintain favorable long-

standing outcomes. 

Common clinical outcome measures used in pharmacogenetic (Investigators, 

Investigators, & Investigators, 2013; Rudolf Uher et al., 2010) or neuroimaging 

(Dunlop, Kelley, McGrath, Craighead, & Mayberg, 2015; McGrath, et al., 2013) 

studies aiming to identify predictors of antidepressant treatment outcomes, are 

percentage improvement (i.e., continuous measure of change) and remission or 

response (i.e., categorical measures). These are defined by HDRS scores 

(HAMILTON, 1960) or outcome scores from other depression rating scales like the 

Quick Inventory of Depression Symptomatology (QIDS) (A. John Rush et al.). 

The recommended first-line treatment options for MDD are cognitive behavior 

therapy (CBT), ADM or a combination of both. Variable rates of remission to ADM 

and/or CBT highlight the different molecular mechanisms possibly underlying these 

treatments. While different neural circuits and brain regions are affected by these 

treatments in depressed patients (Boccia, Piccardi, & Guariglia, 2015), these may 

partially overlap (Barsaglini, Sartori, Benetti, Pettersson-Yeo, & Mechelli, 2014). To 

date, there are no available methods to match initial treatment choices to each 

patient’s unique biological type appropriate for clinical implementation. 
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1.3.1. Cognitive Behavior Therapy 

CBT aims to increase awareness of abnormal negative thoughts, and introduce 

better adaptive behaviors. Initially CBT screens for irrational or maladaptive beliefs, 

replaces them with new concepts and coping skills and ultimately consolidates the 

learned behaviors through practice and follow-up sessions (Gatchel & Rollings, 

2008). How and which neural mechanisms are exactly influenced by CBT in 

depressed patients is still under investigation. Ideal treatment outcome biomarkers 

would assist identification of those patients who would profit more from CBT in 

comparison to one of the other first-line treatments or vice versa.  

1.3.2. Antidepressant Medication 

Several classes of ADM are known, for example selective serotonin reuptake 

inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), tryciclic 

antidepressants, monoamine oxidase inhibitors (MAOI), serotonin modulators, 

dopamine-norepinephrine reuptake inhibitors (DNRIs), serotonin-norepinephrine 

reuptake inhibitors (SNRIs), and norepinephrine-serotonin modulators, among others 

(Nelson, Pikalov, & Berman, 2008). The scope of this research focuses on SSRIs 

and SNRIs.  

SSRIs are the most commonly prescribed antidepressants due to the lower 

presence of side effects and their high selectivity for the serotonin transporter (SERT) 

(Papakostas, Thase, Fava, Nelson, & Shelton, 2007). SSRIs increase serotonin  

(5-HT) levels in the central nervous system (CNS) by selectively inhibiting reuptake of 

the neurotransmitter in neuronal synapses. In contrast, SNRIs block the reuptake of 

not just serotonin but also norepinephrine resulting in indirect increase of dopamine 

levels (Stahl, Grady, Moret, & Briley, 2005). Most studies so far have focused on 

identifying biomarkers of antidepressant response to different ADM, however the lack 

of reliable effect sizes and results make these unsuitable for clinical application.  
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1.3.3. Deep Brain Stimulation  

Approximately 10 to 20% of patients with depression do not respond to standard 

interventions, including electroconvulsive therapy (ECT) (Lozano et al., 2008). Deep 

brain stimulation (DBS) of particular brain target areas (i.e., subcallosal cingulate 

gyrus) (P. E. Holtzheimer et al., 2012) represents an adequate option for such 

treatment-resistant depression (TRD) patients. In fact, it has been shown that 75% of 

patients with treatment-resistant depression experienced a prolonged response after 

DBS in this brain region (Lozano, et al., 2008).  

DBS appears to block the firing of neurons, thus regulating the metabolic 

equilibrium in the brain. However, the precise mechanism of action is still unknown. 

Typically electric pulses are delivered fourteen hours a day through a pacemaker 

which can be controlled and programmed from outside the body after it is inserted in 

a surgical procedure, (Volkmann, Herzog, Kopper, & Deuschl, 2002). Usually MDD 

patients that undergo DBS have not responded to various treatments (i.e., minimum 

3 to 4 antidepressant treatments) and have had MDD for a long period of time  

(i.e., one year) (P. E. Holtzheimer, et al., 2012).  
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1.4. Biomarkers of Antidepressant Treatment Outcome 

Depression is common and treatable, similar to other medical illnesses, developing 

biomarkers to optimize treatment selection in MDD for a given patient is a current 

goal. Biomarker studies for antidepressant response have focused to a great extent 

on single candidate gene variants influencing response to ADM, however a large 

amount of depressed patients does not benefit from ADM, and sometimes remission 

is only achieved after multiple trials with diverse doses or ADM classes (Trivedi et al., 

2006). 

The ability to predict treatment outcomes at the level of individual patient could be 

improved by the development of easily obtainable biomarkers that beyond foreseeing 

if a patient will improve over the course of overall treatment, also, predict whether an 

individual will respond to a specific treatment and not to an alternative treatment. 

Such biomarkers should be able to differentiate among current first-line 

antidepressant treatments (i.e., antidepressant medications and CBT).  

Up to now no study has searched for genetic predictors of differential response to 

mechanistically different treatments. Development of such treatment-specific 

biomarkers would allow clinicians to offer treatment possibilities tailored to each 

patient’s individual pathology (Florian Holsboer, 2008). In addition, careful 

consideration of possible MDD subtypes and simultaneously occurring clinical 

entities, above improving biomarker identification, might provide insight into subtype-

specific pathological mechanisms of depression. The below sections briefly describe 

current available depression treatment outcome biomarkers.  
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1.4.1. Pharmacogenetic Biomarkers  

Variability in treatment response is to some extent influenced by genetic variation. In 

fact the proportion of variance in antidepressant response explained by common 

genetic variants is estimated to be around 42% (Tansey et al., 2013). 

Pharmacogenetic studies aim to elucidate the genetic background underlying 

differences in treatment outcome by investigating the influence of gene variants on 

either pharmacokinetics or pharmacodynamics of drug treatment. Despite efforts 

made so far, results from studies focused on candidate genes are controversial, 

identification of genes possibly regulating antidepressant response failed to replicate 

often. Table 3 and Table 4 include a summary of the most relevant pharmacokinetic 

and pharmacodynamic findings in depression (Chiara Fabbri & Serretti, 2015).  

1.4.2. Pharmacokinetic Biomarkers 

Studies of pharmacokinetic biomarkers in depression focus on genes regulating 

metabolism, absorption, distribution and excretion of ADM (Lanni, Racchi, & Govoni, 

2013) like cythocrome P450 (CYP); a large gene family encoding drug metabolism 

enzymes. Among those currently used in clinical practice are CYP2D6 and CYP2C19 

(Table 3); highly polymorphic enzymes involved in ADM metabolism (Narasimhan & 

Lohoff, 2012). Based on CYP polymorphisms individuals are classified according to 

the allele-dependent rate at which ADM is metabolized (Drago, De Ronchi, & Serretti, 

2009). The metabolizer status (i.e., poor, intermediate, extensive and ultra-rapid 

metabolizer (Charlier et al., 2003; Tsai et al., 2010)) determines the efficacy of the 

drug, whether an individual is prone to side effects, and ideally how this relates to 

clinical response. CYP2D6 and CYP2C19 genotypes can be obtained using 

genotyping chips such as the AmpliChip CYP450 (Roche Diagnostics) to guide ADM 

choice and dose. Their direct association with response is debatable, making clinical 

application limited (Narasimhan & Lohoff, 2012).  

Candidate gene studies have correlated ADM outcomes with genetic variation in 

the gene  encoding an ATP-binding P-glycoprotein transporter; ABCB1 (Manfred Uhr 

et al., 2008) (Table 3) situated in the blood-brain barrier from which many ADMs are 

known to be substrates. Polymorphisms in the ABCB1 gene (Table 3) regulate thus 

intra-cerebral concentrations of these drugs which may perhaps consequently affect 

clinical response (Manfred Uhr, et al., 2008). Nevertheless these findings require 

replication in larger clinical samples in order to achieve clinical application.   
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Table 3.  Summary of pharmacokinetic studies including known associations with 

antidepressant outcomes. Source: (Chiara Fabbri & Serretti, 2015) 

Gene Function Polymorphisms Main findings Study 

CYP2D6 Enzyme 
involved in 
ADM 
metabolism 

*1 (wild type), 
*4, *5, and  
*10 (none or 
reduced 
activity), gene 
duplications 

Increased 
treatment efficacy 
in the intermediate 
metabolizer group; 
Increased risk of 
treatment failure in 
ultrarapid 
metabolizers; 
Increased side 
effects in non-
extensive 
metabolizers 

Kawanishi et 
al., 2004; 
Müller et al., 
2013; Peters 
et al., 2008; 
Rau et al., 
2004; Tsai et 
al., 2010; 
Zackrisson et 
al., 2010 

CYP2C19 Enzyme 
involved in 
ADM 
metabolism 

*1 (wild type), 
*2, and *3 (no 
activity), *17 
(increased 
activity) 

Increased side 
effects in poor 
metabolizers; poor 
metabolizers 
classified as 
citalopram tolerant 
may show 
increased 
remission 
probability 

Müller et al., 
2013; Yin et 
al., 2006; 
Mrazek et al., 
2011 

ABCB1 Encodes 
ATP-
dependent P-
glycoprotein 
transporter 
located in 
blood-brain 
barrier 

rs2032582, 
rs1045642, 
rs2032583, 
rs2235040 

Increased 
treatment efficacy 
in rs2032582 TT 
genotype, 
rs2032583 C 
allele, rs2235040 
A allele 

Niitsu et al., 
2013; Kato et 
al., 2008; 
Nikisch et al., 
2008; Uhr et 
al., 2008; 
Sarginson et 
al., 2010 
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1.4.3. Pharmacodynamic Biomarkers 

Pharmacodynamic studies investigate genes involved directly with ADM effects, and 

their target systems. Even though the exact pharmacodynamic mechanisms of ADM 

remain unclear, candidate gene studies have focused on systems previously linked to 

the pathophysiology of depression (see section 1.2) like the serotonin, dopamine, 

monoaminergic, norepinephrine, glutamatergic and stress hormone systems (Drago, 

et al., 2009; C. Fabbri, Di Girolamo, & Serretti, 2013; Narasimhan & Lohoff, 2012; 

Perlis, 2014).  

Among genes proposed to regulate antidepressant response are BDNF (Aguilera, 

et al., 2009; J. M. Kim, et al., 2007), FKBP5 (Appel, et al., 2011; E. B. Binder, et al., 

2004; Klengel, et al., 2013; Zannas & Binder, 2014; Zimmermann, et al., 2011), 

CRHR1 (Bradley, et al., 2008; Tyrka, et al., 2009) and 5-HTTLPR (Aguilera, et al., 

2009; Caspi, et al., 2003; J. M. Kim, et al., 2007; Porcelli, Fabbri, & Serretti, 2012; 

Serretti, Kato, De Ronchi, & Kinoshita, 2007) (see Table 4). Some of these have 

been suggested to interact with environmental factors like childhood trauma 

(Aguilera, et al., 2009; Appel, et al., 2011; Bet, et al., 2009; Klengel, et al., 2013) or 

life stress (Caspi, et al., 2003; J. M. Kim, et al., 2007) to influence treatment outcome 

variability. The field has in recent years mostly shifted to an unbiased genome-wide 

approach (see section 1.4.4), without improved success or clinical practice 

applications possibly in part due to lack of consideration of MDD’s polygenic 

architecture. 
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Table 4.  Summary of pharmacodynamic studies  of antidepressant outcomes. 

Source: (Chiara Fabbri & Serretti, 2015) 

Gene Function Polymorphisms Main findings Study 

FKBP5 Regulation of 
Akt activity; 
regulation of 
gluco-
corticoid 
receptor 
sensitivity 

rs1360780, 
rs3800373, 
rs4713916, 
rs352428 

Increased 
treatment 
efficacy in 
rs1360780 TT 
genotype, 
rs352428 G 
allele, rs4713916 
A allele, and 
rs3800373 C 
allele 

Binder et al., 2004; 
Niitsu et al., 2013; 
Lekman et al., 2008; 
Kirchheiner et al., 
2008; Ellsworth et 
al., 2013; Zou et al., 
2010 

BDNF Neurotro-
phic factor 

rs6265 (196G/A; 
Val66Met) 

Better response 
in the rs6265 
heterozygous 
genotype, 
especially in 
Asians, or better 
response in Met 
allele carriers 

Niitsu et al., 2013; 
Tsai et al., 2003; 
Yoshida et al., 2007; 
Zou et al., 2010 and 
Choi et al., 2006; 
Alexopoulos et al., 
2010; Taylor et al., 
2010; Kocabas et al., 
2011; El-Hage et al., 
2015 

HTR2A Serotonin 
main 
excitatory 
receptor 

rs7997012, 
rs6311,  
rs6313 

SNPs in the 
downstream or 
first intron region 
may modulate 
SSRI response 

Fabbri et al.,2014; 
Noordam et al.,2015; 
Niitsu et al., 2013; 
Tiwari 2013 

GNB3 G protein 
beta 
polypeptide 
3, involved in 
generation of 
second 
messenger 
cascades 

rs5443  
(C825T) 

Better response 
in rs5443 T allele 
carriers 

Niitsu et al., 2013; 
Zill et al., 2000; 
Serretti et al., 2003; 
Lee et al., 2004; 
Keers et al., 2010; 

SLC6A4 Serotonin 
reuptake into 
the pre-
synaptic 
neuron; 
target of 
several anti-
depressant 
classes 

5-HTTLPR, 
rs25531,  
STin2 

5-HTTLPR S 
allele correlates 
with poor 
outcome in 
Caucasians 
treated with 
SSRI. LG 
variants (5-
HTTLPR L allele 
+ rs25531 G 
allele equivalent 
to 5-HTTLPR S 
allele 

Porcelli et al., 2012; 
Gudayol-Ferre et al., 
2012; Bousman et 
al., 2014; Staeker et 
al., 2014 
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1.4.4. Genome-wide Genetic Biomarkers 

Among candidate biomarkers, genotypes are easily obtainable in clinical settings and 

have been extensively studied as predictors of outcomes to depression treatments. 

However, despite some promising initial findings (M. Uhr et al., 2008), efforts to 

identify genetic predictors of antidepressant response have met with particularly little 

success (Clark et al., 2011; Garriock et al., 2010; Gvozdic, Brandl, Taylor, & Muller, 

2012; Ising et al., 2009; Laje & McMahon, 2011; Rudolf Uher, Investigators, 

Investigators, & Investigators, 2013; Rudolf Uher, et al., 2010). These studies were 

underpowered, as several genes with small effects are likely to influence treatment 

outcome variability and a large number of samples are required to detect such 

associations. 

Even in a large meta-analysis of three large cohorts; the Genome-Based 

Therapeutic Drugs for Depression (GENDEP) project (Rudolf Uher, et al., 2010), the 

Munich Antidepressant Response Signature (MARS) project, and the Sequenced 

Treatment Alternatives to Relieve Depression (STAR*D) study, including a total of 

more than 2,200 patients, only one imputed loci was found associated with treatment 

outcome at genome-wide significance level (p < 5 × 10-8) but could not be confirmed 

after follow-up genotyping (Figure 5) (Investigators, et al., 2013). Additionally, SNPs 

suggestively associated (p < 5 × 10-6), explained only 2% variance in treatment 

response (Investigators, et al., 2013). 
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Figure 5.  Manhattan plot of genome-wide meta-analytic results of antidepressant 

treatment outcome (percentage improvement after 12 weeks) in entire 

analyzed samples from three studies. The y axis plots indicate -log10  

P-values of association. Gene symbols indicate the gene on which the 

associated SNP (p ≤ 5 × 10−6) is located, or, if the gene symbol is in 

parentheses, the nearest gene up to 100 kb away from the associated 

SNP. Source: (Investigators, et al., 2013) 
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1.4.5. Epigenetic Biomarkers 

Depression risk factors identified so far, comprise genetic and environmental 

influences as well as their interactions. Increasing evidence suggests the additional 

role epigenetic modifications contributing to susceptibility for complex traits possibly 

through gene expression regulation. Epigenetic mechanisms like DNA methylation 

(DNAm) have been proposed as one of the plausible underlying mechanisms of GxE 

interactions influencing neuropsychiatric disorders.  

Even though DNAm has tissue specific patterns, its validity as a biomarker in brain 

relevant disorders cannot be disregarded (E. Hannon, Lunnon, Schalkwyk, & Mill, 

2015; Shah et al., 2015). Several studies have now actually showed concordance 

between brain and blood DNAm patterns, increasing as such the reliability of 

peripheral tissues to study the involvement of epigenetic mechanisms on psychiatric 

traits (Davies et al., 2012; Farre et al., 2015; E. Hannon, et al., 2015; Walton et al., 

2015). DNAm changes influenced by DNA sequence variation in the developing 

human brain are actually enriched amongst SNPs increasing risk for 

neurodevelopmental disorders (i.e., schizophrenia) (Eilis Hannon et al., 2015). 

Among candidate genes, altered DNAm in FKBP5 (Klengel, et al., 2013) and 

BDNF (Kundakovic et al., 2015) mediated by ELS increases risk for developing 

psychiatric disorders later in life. BDNF methylation is as a matter of fact proposed as 

a plausible relevant biomarker for early detection of psychiatric disease development 

in adulthood (Kundakovic, et al., 2015). Global epigenetic modifications are altered in 

depressed patients as well (Byrne et al., 2013), suggesting that epigenetic alterations 

may also be relevant in antidepressant treatment outcome variability. Changes in 

BDNF methylation and antidepressant response in MDD patients have in fact been 

reported (Lopez et al., 2013). Larger studies with better symptomatically 

characterized samples comparing different antidepressant treatments in previously 

untreated patients are to date not available.  
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1.4.6. Gene Expression Biomarkers 

Gene expression signals measured in peripheral blood can aid the development of 

biomarkers for psychiatric disorders. In fact, several molecular signatures associated 

to psychiatric traits like postpartum depression (D. Mehta et al., 2014), Parkinson’s 

disease (Scherzer et al., 2007), post-traumatic stress disorder (Divya Mehta, et al., 

2013), suicidality (Le-Niculescu et al., 2013), bipolar disorder (Le-Niculescu et al., 

2009), among others, have been identified in peripheral-blood gene expression. 

Most biomarkers studies of antidepressant outcomes have not been performed in 

human samples (Mamdani et al., 2011), and no study so far has looked for 

transcriptome signatures across mechanistically different treatments. Recently, 

expression profiling related changes in 127 transcripts to depression and proposed 

retinoid-related orphan receptor alpha as a biomarker for antidepressant response 

(Hennings et al., 2015). 

Given that both CNS and peripheral processes like immune responses, are 

involved in the etiology of depression, blood gene expression transcripts represent 

more than just a surrogate measure of brain-related processes. In addition, there is a 

significant correlation between the transcriptome of several CNS tissues and whole-

blood in humans, with relevant candidate genes for disorders like schizophrenia also 

expressed in both tissues (P. F. Sullivan, Fan, & Perou, 2006). Use of peripheral 

blood gene expression may be consequently a useful molecular signature for 

complex psychiatric diseases.  

1.4.7. Neuroimaging Biomarkers 

Another approach to address challenges faced when trying to identify biomarkers of 

antidepressant response is to study the correlation between genetic risk and 

quantitative endophenotypes, measurable constructs that may lie in greater 

etiological proximity to the underlying genetic risk for MDD, thus serving as more 

powerful starting point to explore genetic risk than clinical outcomes (i.e., percentage 

improvement or remission after treatment) itself (Almasy & Blangero, 2001; 

Gottesman, II & Gould, 2003). In this context, neuroimaging structural measures and 

metabolic activity represent a promising endophenotype to examine.  
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Previous studies have shown for example that pre-treatment activity of specific brain 

regions may predict likelihood and efficacy to respond to particular antidepressant 

treatments (Brody et al., 2001; Conway et al., 2012; Dougherty et al., 2003; Ketter et 

al., 1999; Konarski et al., 2009; Mayberg et al., 1997; C. L. McGrath et al., 2014; 

Pizzagalli et al., 2001; Siegle et al., 2012). Specifically, McGrath and colleagues 

showed that resting state pre-treatment brain activity (measured by 

fluorodeoxyglucose positron emission tomography, FDG-PET) of six brain regions of 

interest (ROI), including the right anterior insula (RAI), right motor cortex (RMC), left 

premotor cortex (LPMC), right inferior temporal cortex (RITC), left amygdala (LAM), 

and left precuneus (LPCUN) identified patient subgroups responding to either 

Escitalopram (ESC) or CBT (Dunlop, et al., 2015; McGrath, et al., 2013). 

As for structural neuroimaging biomarkers decreased HC volume predicts poor 

treatment outcomes in depression, correlating not only with early response (Samann, 

et al., 2013) but also long-term treatment outcome (Frodl et al., 2008; Kronmüller, et 

al., 2008). Even after 3 years post-depressive episode, patients with smaller 

hippocampal volumes show a correlation to negative clinical outcome (Figure 6).  

 

 

Figure 6.  HDRS scores for patients with depression hippocampal volume. Large 

hippocampal volume (N = 11), compared with those with a small 

hippocampal volume (N = 8). P-value derived by multivariate analysis of 

variance, and it refers to the difference between groups in the HDRS 

scores at 1, 2 and 3 years. Source: (Frodl, et al., 2008)  
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1.5. A Neuroimaging-based Genomics Approach 

Depression treatments exhibit a diverse degree of success; 70% of patients fail to 

achieve clinical remission with the first treatment. Currently no method or biomarker 

exists to match the initial antidepressant treatment option to each patient depression 

type and only one test based on ADM metabolizing enzyme polymorphisms has been 

translated into clinical practice (see section 1.4.2). Even though several gene 

candidates influencing outcome together with well known environmental factors like 

ELS have been identified, results are still inconclusive. Candidate gene studies or 

single SNP associations are unlikely to reflect MDD’s polygenic nature and GWAS of 

antidepressant response have not yet identified robust candidates. Limited 

neuroimaging studies have acknowledged preferential outcomes to CBT or ADM 

based on pre-treatment metabolic rates of specific brain areas, providing some 

validity to the existence of biologically distinct depression subtypes with need for 

customized therapies (Konarski, et al., 2009; McGrath, et al., 2013).  

The aims of this thesis (see section 2) are motivated by the urgent need to bring 

insight into the possible mechanisms influencing variation in treatment response 

overall and specific to first line treatments of depression. We sought to take into 

consideration MDD’s complexity and heterogeneous clinical features by combining 

not only multiple genetic factors but several stratums of information  

(e.g., neuroimaging structural and functional phenotypes previously related to 

antidepressant treatment outcome) with special consideration of comorbid 

phenotypes and environmental exposure. Combining multiple layers of information 

may bring additional insights into the multiple systems involved in MDD.  

Recent identification of genetic variation associated to HC volume differences has 

become available (Hibar, et al., 2015). The correlation of smaller HC volumes with 

bad outcomes to antidepressant treatment, makes HC volume differences an ideal 

candidate to enhance biomarker identification. Brain imaging measures are not as 

easily obtained as genotype variants; genome-wide genotyping comes at reduced 

time and costs. The approach introduced in this research used genetic variants 

modifying HC volumes identified by ENIGMA (see section 1.2.5) as easily obtainable 

“surrogates” of HC volume instead of HC volume per se to predict antidepressant 

response.  
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This is also the first attempt to look at mechanistically different treatments like CBT 

and ADM. In this context, pre-treatment activity of specific brain regions predicted 

efficacy to respond to CBT or ESC (see section 1.4.7) (McGrath, et al., 2013). 

Availability of genome-wide genotypes and brain activity of these ROIs motivated the 

idea to use these as functional “endophenotype” of outcome to specific treatments. 

The work in this thesis involved the largest single site randomized trial of treatments 

for MDD ever performed (see section 4.2.3) with only previously untreated patients 

randomized into CBT or ADM. Identifying biomarkers that classify 

pathophysiologically comparable individuals who respond to a particular treatment 

strategy would be meaningful in order to optimize clinical treatment choices and 

improve the patient’s quality of life.  
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This section states the aims of this thesis which are motivated by the present 

challenges faced in the field, where the polygenic nature and phenotypic complexity 

of MDD slows the advances in development of individually-tailored treatments. The 

approach presented here combines multiple layers of information including genetics 

and neuroimaging techniques; starting with structural, followed by functional 

neuroimaging methods like FDG-PET. The following studies sought to gain insight 

into specific signatures of clinical response and frame the sections in which the 

methods and results are divided in this work. 



34 2  Aims 

 

The overall aims of this thesis are to make use of alternative frameworks that  

assist the identification of: (1) treatment outcome biomarkers as well as 

clinical/environmental-feature specific biomarkers (see section 2.1) and  

(2) biomarkers of mechanistically different treatments (CBT or ADM)  

(see section 2.2) in human samples.  

2.1. Treatment Outcome Polygenic Predictors  

Common genetic variation influences HC volume. MDD as well as treatment 

outcomes have been associated with HC volume changes (see section 1.2.4). The 

purpose of this study is to build HC-based polygenic predictors of MDD treatment 

outcomes from summary association results from the largest to date genome-wide 

association study on human subcortical brain structures from the ENIGMA 

consortium (see section 1.2.5) (Hibar, et al., 2015).  

Additionally, we hypothesized that taking into account MDD clinical diagnostic 

subtypes or environmental exposure to stress would increase power and allow 

uncovering of robust subtype-specific predictors of treatment outcomes. We tested 

whether HC-derived polygenic constructs could predict response overall and in 

subgroups of depression with specific clinical features that have been associated with 

differential treatment response in three independent samples; the STAR*D sample 

(see section 4.2.2), the Prediction of Remission in Depression to Individual and 

Combined Treatments (PReDICT) sample (see section 4.2.3) sample, and the 

Combining Medications to Enhance Depression Outcomes (COMED) sample  

(see section 4.2.4). Particularly we assessed for differences in anxious and non-

anxious diagnostic subtypes within MDD patients as well as for exposure to early life 

stress. Both anxiety (Fava, et al., 2008) and ELS (Nemeroff, et al., 2003) are related 

to negative antidepressant outcomes. 
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2.2. Treatment-Specific Polygenic Predictors 

We hypothesized that the combined use of quantitative structural and functional 

neuroimaging endophenotypes (i.e., HC-volume and metabolic activity) and multiple 

genetic variants could predict differential treatment outcome to CBT or ADM in MDD. 

To examine this hypothesis, HC-based polygenic predictors from summary 

association results from the ENIGMA consortium GWAS on human subcortical brain 

structures (see section 1.2.5) (Hibar, et al., 2015) were constructed for an 

independent sample (PReDICT) and then tested whether these could predict 

treatment-specific outcomes.  

Next, we identified genetic variants associated with metabolic activity of six brain 

regions previously shown to predict treatment-specific response (McGrath, et al., 

2013). Subsequently, polygenic scores based on the identified variants were 

calculated for individuals in a second independent MDD sample, and tested whether 

these polygenic scores could predict treatment-specific outcomes in this cohort. 

Beyond providing a framework for developing easily measured predictors of 

individualized treatment response, this approach may contribute to the identification 

of molecular pathways critical for treatment-specific outcomes, thereby offering novel 

insights into mechanisms of antidepressant action and MDD pathophysiological 

subtypes.  
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The purpose of this section is to describe critical methods involved in the construction 

of polygenic scores (PGS). As GWAS summary results constitute the first step in 

PGS calculation, quality control of genome-wide genotypes and other decisive factors 

in GWAS such as population stratification are discussed in this section. This section 

provides a general mini-guide for PGS computation and discusses the most common 

confounders and available methods.   
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3.1. Genome-wide Genotyping  

Methods for identification of common genetic variation specifically SNPs, have 

become widely available and affordable. SNPs are single base pair DNA sequence 

variations present within a population. SNPs are composed in general by two alleles; 

one is typically less frequent (i.e., minor allele); the minor allele frequency (MAF) is 

characteristically not less than 1%.  

In the human genome, about one polymorphism exists per every 300 bases on 

average, that is, close to ten million single sites. These ten million SNPs represent 

90% of the common sequence variation among individuals (Consortium, 2003; 

Kruglyak & Nickerson, 2001). Genotyping methods screen for the presence of 

specific alleles in an individual, within this work we focused on the technical 

description of whole-genome SNP genotyping arrays.  

Genome-wide genotyping enables fast detection of thousands of genetic variants 

in a given sample. Genotyping arrays are usually composed of a solid surface of 

oligonucleotide probe-containing beads (“SNP tags”) targeting a specific locus in the 

genome. These SNP tags take into account linkage disequilibrium (LD) correlation 

coefficients (r2) (see section 3.1.1) allowing thus for SNP detection beyond the array 

content.  

The array content is often chosen based on information provided by sequence 

variation catalogues like the HapMAP project (Consortium, 2003); a catalogue 

describing which, where and how common genetic variation occurs in the human 

population. In the genotyping assay, the sampled DNA binds to its complementary 

sequence in the array as it is hybridized. Then, single base extension incorporates 

one of four labeled nucleotides, which confers the allele specificity. Two color 

readouts, one for each allele, are then detected for every SNP by a scanner once 

laser-excited. Lastly, intensity values for each color convey information about the 

present alleles at a given locus (Perkel, 2008). 
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3.1.1. GWAS Quality Control  

GWAS pre-processing includes stringent quality control (QC) measures to avoid 

confounding of results. Alleles of SNPs around 1 MB in the genome are in LD  

(i.e., correlated and possibly inherited together) (Consortium, 2005). LD is preferably 

measured as the correlation coefficient r2; ranging from 0 to 1, where one is 

complete LD and zero represents LD independence. According to the Hardy-

Weinberg equilibrium (HWE) principle, in absence of disturbing factors and random 

mating, genetic variation (i.e., allele frequencies and genotypes) remains unchanged 

(in equilibrium) across generations in a large population (Hardy, 1908). HWE rarely 

occurs in nature since it can be influenced by multiple factors like non-random 

mating, mutations, natural selection, genetic drift, etc. (Hardy, 1908). Allele 

frequencies can be estimated under HWE for a given population. For a locus with two 

alleles, the HWE equation states:  

                  

where p2 is the genotype frequency of homozygotes for one allele, 

2pq the frequency of heterozygotes and, q2 the frequency of the 

homozygotes for the other allele (Hardy, 1908). 

Significant deviations from expectation serve in GWAS as a measure of genotype 

quality (J. Xu, Turner, Little, Bleecker, & Meyers, 2002), for example sample 

contamination, which induces identical by descent (IBD) (see more details below) 

inflation estimates (Purcell et al., 2007).  

Another confounding factor in GWAS is unknown relatedness in the sample. 

Relatedness can be estimated from uncorrelated SNPs (i.e., not in LD) as the 

proportion of alleles that are IBD. By definition alleles are IBD in two (or more) 

individuals if they were inherited from a common ancestor (Powell, Visscher, & 

Goddard, 2010). LD-independent markers with sample-wise genotype call rate ≥ 

0.98, SNP call rate ≥ 0.98, HWE P-value ≥ 1 × 10-5 and MAF ≥ 1 to 5% are generally 

kept and carried forward in GWA studies. Typically only unrelated individuals  

(IBD proportion (Pihat) < 0.0625) are kept in association analyses. 
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3.1.2. Population Stratification 

Genetic predictors of disease risk and predictors of antidepressant response are 

often specific for one population (Elisabeth B. Binder et al., 2010; Garriock, et al., 

2010; Porcelli, et al., 2012). The use of multi-ethnic cohorts can allow detection of 

potentially stable predictors and improve application in clinical practice across 

ancestries (Yudell, Roberts, DeSalle, & Tishkoff, 2016). Spurious associations 

however, can result from population structure (i.e., systematic allele frequency 

ancestry differences between controls and affected individuals) (A. L. Price, Zaitlen, 

Reich, & Patterson, 2010).  

This problem can be accounted for by methods like EIGENSTRAT; a method 

using principal component analysis (PCA) to compute ancestry-independent 

genome-wide associations. PCA is typically applied as a reduction method of high-

dimensional data; lower numbers of axes (eigenvectors) of continuous variation 

independent of each other are identified. EIGENSTRAT includes this eigenvectors 

representing genomic regions that cause specific groupings of individuals as 

covariates in the association analyses (A. L. Price et al., 2006). Other methods like 

Genome-wide Complex Trait Analysis tool (GCTA) (Yang, Lee, Goddard, & Visscher, 

2011) uses PCA as well, to calculate eigenvectors that can be included as covariates 

in association analyses performed in whole-genome association tools like PLINK 

(Purcell, et al., 2007). 
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3.2. Polygenic Scores  

The phenotypic complexity and polygenic etiology of MDD complicates the 

identification of relationships between single genes and clinical outcomes (Patrick F. 

Sullivan, et al., 2012) and contributes to the lack of consistency in genetic predictors 

identified for antidepressant response. Rather than examining the influence of single 

gene variants in complex traits like MDD, biomarker identification may profit from 

methods that reflect the polygenic nature of the disease.  

Polygenic contribution to complex disorders like depression (i.e., schizophrenia) 

was proposed nearly half a century ago (I. I. Gottesman & Shields, 1967). The largest 

GWAS performed so far including 36,989 schizophrenia patients and more than 

113,000 controls found 108 loci contributing to disease risk, further suggesting that 

common complex diseases have a polygenic architecture (Ripke et al., 2014). GWAS 

findings thus far stimulated the development of methods to capture this signature. 

Polygenic scores (PGS) add the allelic effects of multiple genetic variants (Naomi R. 

Wray et al., 2014) and as such, may provide better insight into the genetic 

architecture of complex traits.  

PGS require a minimum of two independent samples – a discovery and a target 

sample - with no close relatives included. First a GWAS is conducted in the discovery 

sample, from which the effects sizes (i.e., odds ratios in case-control GWAS or Betas 

in quantitative trait GWAS) and reference alleles from SNPs below certain P-value 

thresholds (pT) of association are used to create PGS in the target sample. Figure 7 

shows the general steps involved in PGS construction.  
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Figure 7.  Miniguide to method: polygenic scores. Adapted from (Naomi R. Wray, et 

al., 2014) 

 

PGS are calculated for each individual by summing the count of reference alleles at 

each locus (in the target sample) weighted by the value of the effect size (from the 

discovery sample) for each respective SNP, divided by the total number of SNPs at a 

given P-value of association. Lastly, PGS are regressed on the target sample 

phenotypes accounting for possible confounding factors by including them as 

covariates in the models (Naomi R. Wray, et al., 2014).  

When building PGS, the correlation structure of the genome is important to 

consider; keeping LD independent SNPs in r2 < 0.2 within 500 kb is usually 

recommended (Naomi R. Wray, et al., 2014). In addition, to avoid confounding, the 

major histocompatibility complex (MHC) region of chromosome six is usually 

excluded due to high levels of LD. Given the absence of set criteria to establish  

P-value thresholds in polygenic scoring a recent (Euesden, Lewis, & O'Reilly, 2015); 

PRSice, creates high-resolution PGS by testing a large range of P-value thresholds 

and evaluates which pT maximizes the variance accounted for (R2) by the scores. 
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Discovery sample with genome-wide summary statistics1
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Determine SNPs in common3
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General methods that apply to both (1) treatment outcome and (2) treatment-specific 

outcome studies are first described in this section (i.e. general parameters and 

procedure used in high-resolution PGS calculation, functional annotation of 

significant PGS, enrichment of specific brain cell-types and regions and enrichment 

with psychiatric susceptibility GWAS SNPs). Next, samples used to derive and further 

construct PGS are described in detail, including treatment outcome variables and 

clinical subgroup definitions, as well as genotyping QC. In addition, specific 

parameters used in PGS calculation and outcome prediction, schematic overviews 

and statistical power are explained in the respective methods section for each study.  
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4.1. General Methods 

4.1.1. Neuroimaging-based High-resolution PGS Construction 

SNPs and weight effect sizes based on GWAS summary statistics results from 

discovery samples (i.e., ENIGMA for HC-PGS or FDG-PET sample for ROI-PGS) are 

used to generate neuroimaging-based PGS (i.e., HC-PGS for treatment and 

treatment-specific outcome overall or ROI-PGS for treatment-specific) to test whether 

the multiallelic effect of respective SNP associations with HC-volume or ROI-

metabolism could predict (1) treatment response overall in STAR*D, PReDICT and 

COMED and (2) treatment-specific response in PReDICT. 

Given the absence of set criteria to establish thresholds in polygenic scoring and 

to evaluate which threshold maximizes the variance R2 accounted for by the scores, 

we used PRSice (Euesden, et al., 2015), which uses a range of P-value thresholds 

creating high-resolution PGS. Lists of SNPs based on association pT, ranging from a 

minimum P-value threshold to a maximum P-value threshold were produced based 

on HC and ROI summary statistics. Number of thresholds tested and specific 

parameters used are stated in the respective methods section for each study.  

HC or ROI association results were clumped individually using a stringent linkage 

disequilibrium threshold (r2 < 0.2 across 500 kb) to ensure only independent signals 

formed part of the scores (Naomi R. Wray, et al., 2014). Due to high levels of linkage 

disequilibrium in the MHC region of chromosome six, this locus was excluded from 

HC and ROI GWAS summary statistics to avoid confounding.  

HC-PGS or ROI-PGS were calculated for individuals in each of the target samples 

as defined by PLINK’s scoring method (Purcell, et al., 2007) through PRSice. Each 

score is computed by summing the number of reference alleles at each locus in each 

individual in a given target sample (i.e., STAR*D, COMED or PReDICT) multiplied by 

the value of the Beta (derived from HC-volume associations or ROI-metabolism 

associations) for that respective SNP, divided by the total number of SNPs at each of 

the different pT defined by the upper and lower P-value threshold limits  

(see section 3.2 or Figure 7 for details on PGS general method).  
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Linear regressions were then used to assess whether neuroimaging-based PGS 

could predict percentage change in outcome scores overall or treatment-specific 

according to each study (see section 4.2.5 and 4.2.6 for treatment outcome overall 

and section 4.3.4 for treatment-specific outcome) on the target samples. 

Significance was set as suggested in PRSice at P < 0.004 (Euesden, et al., 2015). 

Specific parameters and significance thresholds accounting for number of brain 

regions tested in the ROI-PGS predictions are included in the respective methods 

section for that study (see section 4.3.4). For all neuroimaging-based PGS we report 

the proportion of variance R2 for the best-pT PGS after fitting covariates (specific 

covariates described in respective sections of each study). To further validate 

predictions, percent change in outcome scores was permuted 1000 times, and 

permutation-based P-values were derived for significant PGS respectively.  

4.1.2. Functional Annotation and Ontology Enrichment of PGS  

Gene annotation (hg19 assembly) of significant HC-PGS and ROI-PGS, as well as 

enrichment of loci within different gene ontology (GO) terms was performed with the 

Genomic Regions Enrichment of Annotation Tool (GREAT) (McLean et al., 2010). 

SNPs from significant HC-PGS in target samples were annotated together and 

carried out to cell type enrichment. Because ROI-PGS SNPs are derived from 

different brain regions, significant ROI-PGS SNPs were annotated and used in 

enrichments separately. In addition SNPs in common between significant ROI-PGS 

SNPs were also annotated.  

4.1.3. Enrichment of Specific Brain Cell Types and Brain Regions 

Cell type-specific and brain region-specific enrichment for genes annotated  

to HC-PGS SNP overlap, ROI-PGS overlap and individual ROI-PGS was  

performed using the Cell Specific Expression Analysis (CSEA) Tool 

(http://genetics.wustl.edu/jdlab/csea-tool-2/) (Doyle et al., 2009). We assessed 

significant neuroimaging-based PGS annotated genes for enrichment of 35 broad 

and specific cell type/region gene sets across multiple brain regions  

(CSEA specificity threshold set to 0.05) derived from a translational profiling 

approach isolating transcriptomes in mouse and humans. We report enrichments at 

Benjamini-Hochberg corrected P < 0.05 calculated in CSEA.  

  

http://genetics.wustl.edu/jdlab/csea-tool-2/
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4.1.4. Enrichment of Psychiatric Susceptibility GWAS SNPs 

To test whether neuroimaging-based PGS SNPs were enriched among SNPs 

associated with psychiatric disorder first the overlap of PGS SNPs with variants 

conferring susceptibility for psychiatric disorders of the Psychiatric Genomics 

Consortium (PGC) was calculated. Then we performed permutation analysis to 

determine if this overlap was significant by sampling 1000 sets of SNPs (drawn 

without replacement). The SNP sets were LD independent (r2 < 0.2 across 500 kb), 

matched on SNP count and MAF distribution by dividing the SNPs into non-

overlapping MAF-bins, each of the width 0.05 as previously described (Nicolae et al., 

2010). Permutations resulted in 1000 overlapped null proportions. Empirical P-values 

were defined as the number of null proportions greater than the observed overlap 

proportion. The PGC MDD, PGC schizophrenia-2, PGC cross-disorder and non-

psychiatric trait data (height and diabetes) was downloaded from the PGC website 

(http://www.med.unc.edu/pgc) 

  

http://www.med.unc.edu/pgc
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4.2. Treatment Outcome Polygenic Predictors 

4.2.1. ENIGMA Sample (Discovery Sample) 

Sample Description 

The ENIGMA consortium is a network of researchers from more than seventy 

institutions world-wide seeking to comprehend brain function, structure, and disease 

through integration of clinical, genetic and neuroimaging measures  

(Thompson et al., 2014). Findings of the ENIGMA-MDD working group linked 

reduced HC-volume to MDD (see section 1.2.4). Recently, ENIGMA conducted the 

largest meta-analysis GWAS of intracranial volume (ICV) and seven subcortical 

regions derived from MRI. This study included 30,717 individuals from fifty cohorts; 

among other findings they identified two genome-wide association signals influencing 

HC-volume (see section 1.2.5).  

The ENIGMA sample was been described in detail in Hibar et al., 2015. In brief, 

the sample was comprised by a discovery sample of 13,171 and a replication sample 

of 17,546 subjects of European descent, with age range of 9 to 97 years old. Healthy 

subjects as well as individuals with several mood disorders including anxiety, 

Alzheimer’s disease, attention-deficit/hyperactivity disorder, bipolar disorder, 

epilepsy, MDD and schizophrenia were included. Written informed consent was 

obtained from all participants. 

Imaging Protocols and Meta-GWAS Results 

Standardized imaging processing, genotyping QC and imputation protocols were 

designed and performed by ENIGMA. Imaging protocols are available online 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/) and described in detail in 

Schmaal et al., 2015. Heribitability (h2) estimation of mean volumes of the eight brain 

structures and calculation methods are described in Hibar et al., 2015. All region 

volumes showed high heritability (e.g., hippocampus (h2 = 0.79; 0.74 – 0.83)). 

Meta-GWAS were initially run in the discovery sample (N = 13,171) for ICV and 

seven subcortical brain regions (nucleus accumbens, caudate, putamen, pallidum, 

amygdala, hippocampus and thalamus) aiming to identify SNPs contributing to 

volume differences. Multi dimensional scaling (MDS) was implemented to calculate 

components that were included as covariates in models to avoid confounding due to 

http://enigma.ini.usc.edu/protocols/imaging-protocols/
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population stratification. All analyses controlled for age, age2, gender, MDS 

components, ICV (for subcortical regions) and diagnosis (if applicable) (Hibar, et al., 

2015). A significance P-value threshold of 7.1 × 10−9 was set after calculating the 

number of trait independent tests (N = 7).  

All significant SNPs (p < 7.1 × 10−9) identified in the discovery sample were 

replicated in the second sample, including those contributing for HC-volume  

(Table 5). Further analyses showed that SNP contributions were not correlated to 

mean age of samples, suggesting that effects are stable across lifetime. Furthermore 

results remained consistent after excluding diagnosed mood disorder patients. For 

SNPs associated at p < 1 × 10-5, effect size correlation of full sample and when 

patients were excluded was high (r > 0.99), further supporting no contribution of 

disease status to these effects. Detailed results are described in Hibar et al., 2015.  

The scope of this research focuses only on HC-volume GWAS findings, since  

HC-volume differences have been linked to MDD and antidepressant response  

(see section 1.2.4). Full summary association results from HC-volume  

meta-analysis (discovery cohort), were used to build HC-based PGS for this study  

(see section 4.2.5). 
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Table 5.  Genome-wide significant SNPs contributing to Hippocampal volume . Effect 

sizes are given in units of mm3 per effect allele. The variance explained 

gives the percentage variance explained by a given SNP after correcting for 

covariates. The percentage difference in volume per effect allele (Diff. / 

Allele) is based on the absolute value of the final combined effect divided 

by a weighted average of the brain volume of interest across all sites in the 

discovery sample multiplied by 100. Source: (Schmaal, et al., 2015) 

Hippocampal volume associated variants  

 

Marker rs77956314 rs61921502 

A1 T T 

A2 C G 

Allele Frequency  0.91 0.84 

Discovery 
cohort 

Effect (se) −54.21 (8.37) 43.40 (6.89) 

P-value  9.33 × 10−11 2.92 × 10−10 

Sample size 13.163 13.163 

Replication 
cohort 

Effect (se) −57.43 (12.69) 26.81 (13.32) 

P-value  6.04 × 10−6 0.044 

Sample size 4.027 3.046 

Discovery + 
replication 
cohorts 

Effect (se) −55.18 (6.99) 39.90 (6.12) 

P-value  2.82 × 10−15 6.87 × 10−11 

Total sample size 17.19 16.209 

Variance explained (%) 0.36 0.26 

Diff. / Allele (%) 1.40 1.01 
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4.2.2. STAR*D Sample (Target Sample 1) 

Sample Description 

The STAR*D is a clinical trial assessing antidepressant treatment (A. J. Rush et al., 

2004) initially including 4,041 MDD outpatients recruited across more than forty 

centers in the United States. Eligible participants were 18 to 75 years old with a 

primary diagnosis of non-psychotic unipolar MDD, assessed by the Structured 

Clinical Interview for DSM-IV Axis I Disorders (Association, 2000) and confirmed 

through an evaluation by a study psychiatrist.  

Participants required a score of ≥ 14 at baseline on the HDRS (17-items) to be 

eligible for participation. Written informed consent was obtained from all participants. 

The sample considered in this work consisted only of subjects of European descent, 

with complete outcome measures as well as genotype information. This sample has 

been previously utilized and described in a treatment outcome meta-GWAS 

(Investigators, et al., 2013). STAR*D phenotype and genotype data are available 

through the National Institute of Mental Health (NIMH) Human Genetic Initiative 

(https://www.nimhgenetics.org/). 

Treatment Protocol 

Patients were treated with 20-60 mg/day doses of ESC. Depression severity was 

rated every two weeks for the initial six weeks using the clinician rated and self-report 

versions of the 16-item QIDS (A. John Rush, et al.).  

Clinical Outcome 

The primary outcome measure was the 17-item HDRS, however percent change in 

QIDS was available for a higher number of individuals (Investigators, et al., 2013) 

and consequently used for this study (N = 838). Antidepressant response to 

treatment was defined as a reduction in the QIDS self report score of ≥ 50% after six 

weeks of treatment. Anxious depression was defined as MDD with high levels of 

anxiety symptoms, as reflected in a HDRS anxiety/somatization factor score including 

six items (psychiatric anxiety, somatic anxiety, gastrointestinal somatic symptoms, 

general somatic symptoms, hypochondriasis, and insight) ≥ 7 (Fava, et al., 2008). 

Out of 838 patients, 436 had non-anxious depression and 402 had anxious 

depression. Early life stress measures were unavailable for this sample.  

https://www.nimhgenetics.org/
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Genotyping and QC 

Genome-wide genotypes were obtained from 1,948 participants; of whom 1,491 were 

of European descent (Investigators, et al., 2013) and were considered for this study. 

Genome-wide (Affymetrix Human Mapping 500K and Genome-wide Human SNP 

array 5.0) genotypes were measured in peripheral blood DNA drawn at baseline. 

SNPs with sample-wise call rate ≥ 0.99, SNP call rate ≥ 0.98, HWE P-value ≥ 1 × 10-5 

and MAF ≥ 0.05 were selected, allowing for a total of 264,466 markers. Subjects of 

European ancestry that passed QC and had complete outcome measures at week 

six (N = 838) were included in PGS analyses. Based on IBD (see section 3.1) 

estimates in PLINK (Purcell, et al., 2007), all subjects in the sample were unrelated 

(Pihat < 0. 0625). 

4.2.3. PReDICT Sample (Target Sample 2) 

PReDICT included never treated MDD patients randomized to twelve weeks of ADM 

or CBT. As the PReDICT study was used only as a secondary target sample for 

these analyses, and is of higher relevance for the second study included in this 

thesis, the sample is described in detail in a following section (see section 4.2.3).  

Clinical and Environmental Subgroups 

Anxious depression in PReDICT was defined as MDD with high levels of anxiety 

symptoms, as reflected in a HDRS anxiety/somatization factor score ≥ 7 including the 

same items as for the STAR*D sample (Fava, et al., 2008). ELS was defined with the 

childhood trauma questionnaire (CTQ). The CTQ assesses five types of childhood 

trauma: physical, sexual and emotional abuse, and physical and emotional neglect. 

CTQ scores for none, mild, moderate and severe trauma have been established for 

each type of abuse (Bernstein et al., 2003). First participants were classified into two 

categories for each type of abuse (physical, sexual, and emotional): those with CTQ 

scores in the none to mild range and those with CTQ scores in the moderate to 

severe range. Then a compound variable across all of the 3 types of abuse was 

created. Participants were lastly classified into two categories: those with no type of 

abuse in the moderate to severe range and those with at least 1 type of abuse in the 

moderate to severe range.  
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From the entire sample, 215 subjects had valid outcome data (HDRS score) over 

twelve weeks (see section 4.3.3). Of these, 128 had non-anxious depression and 87 

had anxious depression, 97 had no ELS and 118 had ELS.  

4.2.4. COMED Sample (Target Sample 3) 

Sample Description  

The COMED study was a single-blind, randomized, placebo-controlled trial for first-

step MDD treatment. Subjects were 18 to 75 years of age, met DSM-IV criteria for 

either recurrent (≥ 1 prior major depressive episode, MDE) or chronic (current MDE 

for ≥ 2 years) MDD based on a clinical interview. Eligible participants had to be in the 

index episode for ≥ 2 months to reduce the likelihood of placebo response and to 

have a score ≥ 16 on the HDRS. Eligible subjects could not have had any psychotic 

illness, bipolar disorder, or be in need of hospitalization (A. J. Rush et al., 2011).  

Treatment Protocol 

Subjects were randomized to one of three treatment possibilities: the SSRI-ESC + 

placebo (PBO); bupropion-sustained release (BUP-SR) + ESC; or venlafaxine-

extended release (VEN-XR) + mirtazapine (MIRT). The consent and study 

procedures were approved by the Institutional Review Boards at the National 

Coordinating Center (The University of Texas Southwestern Medical Center at 

Dallas), the University of Pittsburgh Data Coordinating Center, each participating 

Regional Center, and relevant clinical site. 

Sociodemographic and illness features were gathered at baseline. The anxiety 

subscale of the baseline HRSD established the presence of anxious features (Fava, 

et al., 2008) and the self-report Psychiatric Diagnostic Screening Questionnaire was 

used to establish the presence of current Axis I disorders (A. J. Rush et al., 2005). 

Outcome assessments were collected at baseline and at all subsequent treatment 

visits for 12 weeks.  
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Clinical Outcomes 

The primary outcome measure was the 16-item QIDS self report (A. John Rush, et 

al.). Antidepressant response to treatment was defined as a reduction in the QIDS 

score of ≥ 50% after six weeks of treatment. Genotypes were obtained for 476 

subjects (3 of which were replicates); 373 subjects had valid outcome data (QIDS-SR 

score) over six weeks. 

Clinical and Environmental Subgroups 

Anxious depression was defined as MDD with high levels of anxiety symptoms, as 

reflected in a HDRS anxiety/somatization factor score ≥ 7 including the same items 

as for the STAR*D sample. ELS was defined as in the PReDICT sample. Of the 373 

subjects with valid outcome data, 92 had non-anxious depression and 281 had 

anxious depression, 174 had no ELS and 199 had ELS.  

Genotyping and QC 

Genotyping was performed for 476 individuals using the HumanOmni2.5S Illumina 

array. All relatives of individual subjects (n = 14, Pihat ≥ 0.125) based on mean IBD 

in PLINK (Purcell, et al., 2007)) values were excluded from the sample. After also 

removing three replicate samples, 459 remained for further QC. We selected for 

SNPs with sample-wise call rate ≥ 0.98, SNP call rate ≥ 0.98, HWEP-value ≥ 1 × 10-5 

and MAF ≥ 0.05, allowing for a total of 1,301,806 markers in 444 individuals. 

Because of the extensive coverage of the genotyping array, and the population 

admixture of the sample, no imputation was performed.  
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4.2.5. HC-based Polygenic Predictors of Treatment Outcome  

SNPs and weight effect sizes based on ENIGMA GWAS for HC volume (Hibar, et al., 

2015) were used to generate HC-based polygenic scores (HC-PGS) to test whether 

the multiallelic effect of these SNP associations with HC-volume could predict 

treatment response in STAR*D, PReDICT and COMED.  

Lists of SNPs (N = 5557) based on association pT, ranging from P = 1 × 10-5 to  

P = 0.5 (increments of 0.00009) were produced based on HC summary statistics 

(PRSice command line: slower 0.00001 \ sinc 0.00009 \ supper 0.5 \ remove.mhc T \ 

report.individual.scores T \ clump.r2 0.2 \ clump.kb 500). Clumping parameters are 

stated in the general section 4.1.1. HC-PGS were calculated for individuals in each 

of the target samples; first in STAR*D (N = 838), then PReDICT (N = 215) and finally 

COMED (N = 373). Scores were calculated as described in section 4.1.1 at each of 

the different pT (P-value of association derived of HC-GWAS).  

Linear regressions were then used to assess whether HC-PGS could predict 

percentage change in outcome scores (QIDS scores from baseline to week six in 

STAR*D, as well as in COMED and HDRS change from baseline to week twelve in 

PReDICT) in target samples. PCAs were calculated for each of the target samples 

using GCTA (Yang, et al., 2011) and included as covariates, as well as gender, and 

treatment (applicable for COMED and PReDICT only). Age was not included as 

covariate given that ENIGMA SNP HC-volume associations effects were corrected 

for and independent of age (Hibar, et al., 2015). Significance was set at P < 0.004 for 

HC-PGS prediction. Given the sample size of STAR*D, this was defined as 

“discovery”-target sample and COMED and PReDICT as “replication”-target samples 

for HC-PGS predictions, where nominal significance (P < 0.05) was considered as 

replication P-value. 

  



54 4  Methods 

 

4.2.6. HC-based Polygenic Predictors of Clinical/Environmental Feature-

Specific Treatment Outcome  

To test whether reduction in clinical heterogeneity in MDD could improve  

HC-prediction of antidepressant outcome, the target samples were stratified into 

anxious and non-anxious subsamples. HC-PGS were calculated for the  

“discovery”-target (STAR*D) and “replication”-target (PReDICT and COMED) anxious 

and non-anxious sub-samples (N = 3 anxious subsamples, N = 3 non-anxious 

subsamples). Linear regressions to predict treatment response were conducted in 

each subsample as described for the main HC-analyses (section 4.2.5). As STAR*D 

patients underwent ESC treatment only, post-hoc models were also tested only in the 

ESC and ESC-PBO subsets of PReDICT and COMED samples (N = 78, N = 122, 

respectively) to investigate the direction of significant PGS.  

We also explored whether ELS in MDD patients influenced HC-prediction of 

treatment outcome following the same procedure as for anxiety. In this case, 

because information on early life adversity was not available for STAR*D, COMED 

was used as “discovery”-target sample and PReDICT as “replication”-target sample. 

A general overview of the methods used in sections 4.2.5 and 4.2.6 is illustrated in 

Figure 8. 

4.2.7. Statistical Power  

Statistical power was estimated for a quantitative trait (percent change in QIDS or 

HDRS score from baseline to end of treatment) using R (Gauderman, 2002; Lee & 

Wray, 2013) (https://www.r-project.org/). Assuming a significance threshold of 0.004, 

we have 100% power to detect whether HC-PGS explain clinically relevant effect 

sizes (6.3% of variation in percent improvement) in STAR*D sample (N = 838), 

97.2% in PReDICT (N = 215) and 99.6% in COMED (N = 371) (Gauderman, 2002; 

Lee & Wray, 2013; Team, 2014). This amount of explained variance has been 

described as clinically relevant for pharmacogenetic studies of antidepressant 

response (R. Uher, Tansey, Malki, & Perlis, 2012). 

https://www.r-project.org/
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Figure 8.  Overview of polygenic predictors of treatment outcome methods 
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4.3. Treatment-Specific Outcome Polygenic Predictors 

4.3.1. ENIGMA Sample (Discovery Sample 1) 

The ENIGMA sample is described in a previous section (see section 4.2.1) and in 

full detail in Hibar et al., 2015. Full summary association results from HC-volume 

meta-analysis, were used to build HC-based PGS for the entire PReDICT sample 

(see section 4.2.3). 

4.3.2. FDG-PET Sample (Discovery Sample 2) 

Sample Description 

Subjects were recruited through the Mood and Anxiety Disorders Program (MAP) at 

Emory University. Study protocol and inclusion/exclusion criteria have been 

previously described (Boadie W. Dunlop et al., 2012; McGrath, et al., 2013). Briefly, 

eligible participants were 18-60 year old outpatients with a primary diagnosis of MDD, 

assessed by the Structured Clinical Interview for DSM-IV Axis I Disorders 

(Association, 2000) and confirmed through an evaluation by a study psychiatrist. 

Participants required a score of ≥ 18 at screening and ≥ 15 at baseline on the HDRS 

(17 items) to be eligible for randomization. The Emory Institutional Review Board 

approved the study as registered at clinicaltrials.gov (NCT00367341). Written 

informed consent was obtained from all participants. 

Treatment Protocol 

Although treatment consisted of two phases (Callie L. McGrath et al., 2014; McGrath, 

et al., 2013), only phase1 was considered in this study. Briefly, in phase 1, 

participants underwent FDG-PET scans and were afterwards randomly assigned 

(1:1) to a 12-week regimen of ESC (10-20 mg/day) or 16 sessions of CBT. Raters, 

blind to treatment assignment, assessed changes in symptom severity weekly for the 

initial six weeks, then every two weeks through week twelve.  
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Clinical Outcomes 

Remission was defined as an HDRS score ≤ 7 at both weeks 10 and 12. Non-

remission was defined as a change in HDRS score of ≤ 30% from baseline to phase 

one endpoint. Partial responders defined by a HDRS score > 30% but not achieving 

remission (≥ 50% but with HDRS score > 7) as well as non-completers were not 

included in the analyses to remain consistent with the initial analyses of these data 

(Dunlop, et al., 2015; McGrath, et al., 2013).  

Neuroimaging Endophenotypes 

Prior to treatment randomization, a resting state FDG-PET scan was performed. 

Image pre-processing and analysis have been previously described (C. L. McGrath, 

et al., 2014; Callie L. McGrath, et al., 2014; McGrath, et al., 2013). The six brain 

regions (right anterior insula, right motor cortex, left premotor cortex, right inferior 

temporal cortex, left amygdala, and left precuneus) found to significantly differentiate 

patients by response outcomes to ESC or CBT (McGrath, et al., 2013) were used as 

quantitative traits to conduct GWAS. Activity in regions without significant 

associations with differential treatment outcome (four with previously reported 

metabolic changes in MDD: right and left occipital cortex, right Brodmann area 9, left 

Brodmann area 9, and two not associated with either MDD or treatment outcome: 

right cerebellum and left cerebellum) was used as negative control. 

Genotyping and QC 

Genome-wide genotypes (Illumina OmniExpress array) were measured in peripheral 

blood DNA drawn at baseline randomization visit. SNPs with sample-wise call rate  

≥ 0.99, SNP call rate ≥ 0.98, HWEP-value ≥ 1 × 10-6 and MAF ≥ 0.05 were selected, 

allowing for a total of 604,640 markers for subsequent analysis. Out of 38 individuals 

included in the analysis of McGrath et al., 2013, one did not agree to DNA collection 

and two were excluded for low genotyping. A total of 35 patients were included in the 

GWAS (11 remitters and 7 non-remitters to CBT, 11 remitters to and 6 non-remitters 

ESC). Based on IBD (see section 3.1) estimates in PLINK (Purcell, et al., 2007), all 

subjects in the sample were unrelated (Pihat < 0. 0625). 
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4.3.3. PReDICT Sample (Target Sample) 

Sample Description 

The PReDICT study enrolled subjects through MAP at Emory University. The study 

design has been published previously (B. W. Dunlop, et al., 2012). Ethical approval 

was given by The Emory Institutional Review Board and the Grady Hospital 

Research Oversight Committee and the study was registered at clinicaltrials.gov 

(NCT00360399). Briefly, PReDICT enrolled 344 treatment-naïve 18-65 year old 

adults with primary diagnosis of non-psychotic MDD.  

Participants were eligible for randomization if they met DSM-IV criteria for current 

MDD (HDRS score ≥ 18 at screening and ≥ 15 at baseline) and if they had never 

previously received treatment for mood disorders. The current study included 

subjects from the per-protocol completer dataset (N = 234); patients who met all 

inclusion/exclusion criteria, had no major protocol violations, completed 12 weeks of 

treatment, and whose week 12 given ADM did not contradict the randomized 

treatment assignment. Of these participants who agreed to provide DNA, five did not 

pass genotyping-QC and three were removed for relatedness based on IBD (see 

more details below). A total of 215 patients were included in the analyses. Basic 

demographic and clinical variables are reported in Table 8.  

Treatment Protocol 

Participants were randomly assigned to one of three possible treatments: ESC 10-20 

mg/day; Duloxetine (DUL) 30-60 mg/day; or CBT delivered as 16 one-hour individual 

sessions. The initial phase treatment consists of a 12-week period with one of these 

monotherapies. Non-responders were eligible for an additional 12-week combined 

treatment of medication and CBT (results to be reported elsewhere). Symptoms 

severity was assessed weekly by blinded raters for the first 6 weeks, then every two 

weeks for the second 6 weeks. 

Clinical Outcomes 

Identically to the discovery sample 2, remission was defined as an HDRS score ≤ 7 

at week 10 and week 12 and non-remission as an HDRS score improvement of  

≤ 30% from baseline to endpoint.  
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Genotyping and QC 

Genome-wide genotypes (Illumina OmniExpress array) were measured in peripheral 

blood DNA drawn at baseline randomization. SNPs with sample-wise call rate ≥ 0.99, 

SNP call rate ≥ 0.98, HWEP-value ≥ 1 × 10-6 and MAF ≥ 0.05 were selected, allowing 

for a total of 587,665 markers. All relatives of individual subjects (N = 3, Pihat  

≥ 0.125) were excluded, as well as those with low genotyping (N = 5). The entire 

PReDICT sample after QC (N = 215) was included in the HC-PGS treatment specific 

polygenic prediction (see section 4.3.4). Genotyped remitters and non-remitters who 

completed 12-week treatment were included in the functional neuroimaging-based 

polygenic prediction analysis (N = 138) (28 remitters and 14 non-remitters to CBT,  

36 remitters and 13 non-remitters to ESC, 40 remitters and 7 non-remitters to DUL). 

Confirmatory secondary analyses include the entire sample (N = 215)  

(see section 4.3.4).  

4.3.4. HC-based Polygenic Predictors of Treatment Specific Outcome  

SNPs and weight effect sizes based on ENIGMA meta-GWAS for HC volume (Hibar, 

et al., 2015) were used to generate HC-PGS to test whether SNP associations with 

hippocampal volume could predict treatment response to CBT or ADM in PReDICT. 

Lists of SNPs (N = 5,557) based on association pT, ranging from P = 1 × 10-5 to  

P = 0.5 (increments of 0.00009) were produced based on HC summary statistics 

(PRSice command line: slower 0.00001 \ sinc 0.00009 \ supper 0.5 \ remove.mhc T \ 

report.individual.scores T \ clump.r2 0.2 \ clump.kb 500). Clumping parameters are 

stated in the general section (see section 4.1.1). 

HC-PGS were calculated for individuals in the entire PReDICT (N = 215) sample. 

Scores were calculated as described in section 4.1.1 at each of the different pT  

(P-value of association derived of HC-GWAS). Linear regressions were then used to 

assess whether HC-PGS could predict percent change in HDRS from baseline to 

week 12 in PReDICT depending on treatment (as interaction term; treatment:  

HC-PGS) with either CBT or ADM. PCAs were calculated using GCTA (Yang, et al., 

2011) and included as covariates, as well as gender in predictions. Age was not 

included as covariate given that ENIGMA SNP HC-volume associations effects were 

corrected for and independent of age (Hibar, et al., 2015). Post-hoc, models were 

also tested in the Caucasian subset of the entire PReDICT sample (N = 113). 

Significance was set at P < 0.004 for HC-PGS prediction. 
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4.3.5. Functional Neuroimaging Polygenic Predictors of Treatment Specific 

Response  

To test whether the combined effect of SNP associations with the activity of each of 

the ROIs associated with differential response could predict treatment-specific 

response in a second sample (PReDICT), we first conducted association analyses 

between RAI , RMC, LPMC, RITC, LAM, LPCUN (N = 6 regions) brain activity and 

genome-wide SNPs in the first sample of 35 MDD patients (McGrath, et al., 2013). 

Principal components to account for population stratification were calculated using 

GCTA (Yang, et al., 2011) and included as covariates together with age and gender 

in every GWAS. Summary statistics from these GWAS were then used to generate 

polygenic scores in PReDICT using PRSice (Euesden, et al., 2015). Clumping 

parameters are stated in the general section (see section 4.1.1). 

Due to the sample size of the GWAS discovery sample 2 (N = 35) a more stringent 

range of P-value thresholds was used to create PGS. Lists of SNPs (N = 1113) 

based on association pT, ranging from P = 1 × 10-5 to P = 0.1 (increments of 

0.00009) were produced based on each ROI activity summary statistics separately 

(PRSice command line: slower 0.00001 \ sinc 0.00009 \ supper 0.1 \ remove.mhc T \ 

report.individual.scores T \ clump.r2 0.2 \ clump.kb 500). Each individual's PGS was 

calculated as defined as described section 4.1.1.  

Linear regressions were then used to assess whether these functional 

neuroimaging-based PGS could predict percent change in HDRS from baseline to 

week 12 in PReDICT depending on treatment (as interaction term; treatment : PGS) 

with either CBT or ADM. Because PReDICT participants were ethnically diverse 

(Figure 9), PCAs were calculated and included as covariates, as well as age and 

gender (for general methods on population stratification see section 3.1.2) To be 

consistent with McGrath et al., 2013 (FDG-PET sample) only remitters and non-

remitters were included in these analyses (N = 138). Post-hoc, models were also 

tested only in the Caucasian subset of this sample (N = 70).Confirmatory secondary 

analyses, however, evaluated outcomes in all subjects (N = 215). Significance was 

set at P < 0.004 for each ROI-PGS prediction; however, because of the correlation 

between the brain activity of the six brain regions (Figure 10), we calculated the 

number of independent tests (Cheverud, 2001) (N = 5) and set P < 0.0008 as 

threshold accounting for number of scores and regions tested.   
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Figure 9.  PCA plot of PReDICT sample shows good concordance between self-

reported ethnicity (legend) and estimated ethnicity by principal 

component analysis. Asian (ASI), African-American (BLA), Multiple 

(MUL), Native-American (NAT), Caucasian (WHI), Unknown (UNK) 

 

 

Figure 10.  Pearson correlation between brain activitiesof right anterior insula (RAI), 

right inferior temporal cortex (RITC), left amygdala (LAM), left premotor 

cortex (LPMC), right motor cortex (RMC) and left precuneus (LPCUN). 

Size of circle represents strength of correlation and the color gradient 

represents the strength and direction of correlation, where blue is positive 

and orange is negative correlation 
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To verify that PGS based on activity from non-associated brain regions or clinical 

response alone based PGS could not predict treatment-specific response, we 

conducted further GWAS between the brain activity from six non-associated regions 

(right and left occipital cortex, right and left Brodmann area 9, and right and left 

cerebellum) in the first sample (N = 35), including PCAs, gender and age as 

covariates.  

Quantitative trait association analysis was then performed to test for association 

between SNPs and percentage improvement in HDRS scores after 12 weeks of 

treatment. PGS based on each of the results of these seven association analyses 

were calculated and linear regressions to predict treatment response in the second 

sample were conducted as described for the main analyses in this section. A general 

overview of the methods used in this section is illustrated in Figure 11. 

4.3.6. Statistical Power  

Statistical power was estimated for a quantitative trait (percent change in HDRS 

score from baseline to twelve weeks) using R (Gauderman, 2002; Lee & Wray, 2013) 

(https://www.r-project.org/). Assuming a significance threshold of 0.004, we have 

97.2% power to detect whether HC-PGS explain clinically relevant effect sizes (6.3% 

of variation in percent improvement) in PReDICT (N = 215). ROI-PGS were 

sufficiently powered (88.7%) to detect clinically relevant effect sizes of the PGS in the 

remitters and non-remitters (N = 138) PReDICT sample at P < 0.0008 (Gauderman, 

2002; Lee & Wray, 2013; Team, 2014). This amount of explained variance has been 

described as clinically relevant for pharmacogenetic studies of antidepressant 

response (R. Uher, et al., 2012). 

https://www.r-project.org/
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Figure 11.  Overview of polygenic predictors of treatment-specific response methods
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5. Results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following results demonstrate that combining neuroimaging and genetic markers 

as well as accounting for clinical subtypes is essential to identify predictors of 

antidepressant response. The first results show that clinical heterogeneity dissection 

in MDD reveals potential structural neuroimaging-based polygenic predictors of 

antidepressant response. Both structural and functional neuroimaging-based PGS 

predict outcomes to CBT and ADM as well. Gene profiles tagged by predictive  

HC-PGS variants are enriched in cortical and hippocampal adult brain regions.  

ROI-PGS SNPs overlap with previously identified schizophrenia risk variants from the 

Psychiatric Genomics Consortium. Finally convergent cortical and striatal brain cell-

type specific expression patterns for both HC-PGS and ROI-PGS variants were 

identified.  
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5.1. Treatment Outcome Polygenic Predictors  

Socio-demographic factors baseline depression rating scale scores, response rates, 

medication and comorbidity rate of anxiety disorders for the STAR*D, COMED and 

PReDICT samples are listed in Table 6, Table 7 and Table 8. There were no 

differences in demographic and clinical characteristics in the STAR*D sample and 

between treatment groups in the PReDICT sample or the COMED sample.  

Table 6.  Characteristics of MDD patients in STAR*D sample (N = 838) 

MDD Patients in STAR*D Sample  p 

Response Status (N / %)  

Non-responders  376 (44.96) 

 Partial-responders  462 (55.14) 

Anxious Status (N / %) 0.24 

Non-anxious  436 (52.02) 

 Anxious  402 (47.98) 

Gender (N / %) 0.78 

Female  495 (59.06) 

 Male 343 (40.94) 

 Mean SD p 

HDRS Baseline  21.23 5.06 0.087 

Age 43.11 13.26 0.33 
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Table 7.  Characteristics of MDD patients in COMED sample(N = 373) 

 Bup / Escit 
(N = 123) 

Escit / Placebo 
(N = 122) 

Ven / Mirt  
(N = 128) 

p 

Response Status (N / %)  

Non-responders  58 (47.16) 56 (45.90) 53 (41.40) 

 Responders  65 (52.84) 66 (54.10) 75 (58.60) 

Early Life Stress (N / %) 0.08 

no ELS 56 (45.52) 54 (44.26) 64 (50) 

 ELS 67 (54.48) 68 (55.74) 64 (50) 

Anxious Status (N / %) 0.18 

Non-anxious  24 (19.51) 38 (31.14) 30 (23.43) 

 Anxious  99 (80.49) 84 (68.86) 98 (76.56) 

Ethnicity (N / %) 0.56 

Asian 3 (2.4) 0 0 

 

Black 28 (22.76) 25 (20.4) 29 (22.65) 

Hawaiian, Pacific 

Islander 1 (0.08) 0 0 

Native-American 1 (0.08) 4 (3.27) 0 

Other 7 (5.6) 4 (3.27) 5 (3.9) 

White 87 (70.73) 91 (74.59) 94 (73.43) 

Gender (N / %) 0.65 

Female  87 (70.74) 84 (68.85) 90 (70.31) 

 Male 36 (29.26) 38 (31.14) 38 (29.69) 

 Mean SD Mean SD Mean SD p 

HDRS Baseline  24.08 4.41 23.04 4.71 24.5 5.14 0.49 

Age 42.92 12.77 45.45 12.28 42.64 11.62 0.33 
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5.1.1. HC-based PGS do not Predict Treatment Response Overall in 

Independent Samples  

To test whether HC-based PGS could successfully predict treatment response in 

independent samples we constructed high-resolution HC-PGS from SNPs at many  

P-value thresholds (NpT = 5,557) and determined the most informative pT predicting 

treatment outcome in the target samples (STAR*D, PReDICT and COMED). None of 

the pT from HC-based PGS were able to predict response in either of the target 

samples at P < 0.004 (Figure 12a, b and c). 

 

 

 

Figure 12.  High-resolution PRSice plots. Red line represents PRSice multiple testing 

threshold P < 0.004. X axis shows range of pT tested, y axis shows -log10 

P-value of treatment outcome prediction. (a) HC-PGS STAR*D plot,  

(b) HC-PGS PReDICT plot and (c) HC-PGS COMED plot 
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5.1.2. Reduction of Clinical Heterogeneity Improves HC-PGS Prediction of 

Treatment Response in Independent Samples 

Non-anxious MDD might represent a more homogeneous phenotype with more 

robust genetic predictors for antidepressant response. We hypothesized that 

reduction in clinical heterogeneity in MDD could improve prediction of treatment 

outcome. Consequently, target samples were stratified into anxious and non-anxious 

subsamples. High-resolution HC-based PGS were constructed at several P-value 

thresholds (NpT = 5,557) and the most informative HC-PGS pT predicting treatment 

outcome in the target subsamples (STAR*D, PReDICT and COMED) was 

determined.  

None of the pT from HC-based PGS were able to predict response in either of the 

anxious target sub-samples at P < 0.004. On the other hand, HC-PGS predicted 

percent improvement in outcome scores (QIDS scores from baseline to week six in 

STAR*D and HDRS week twelve scores in PReDICT) in the non-anxious STAR*D  

(P = 0.003) and PReDICT (P = 0.006) target subsamples (NSTAR*D = 436,  

NPReDICT = 128) with moderate percentages in variance explained (R2
STAR*D = 3.6, 

R2
PReDICT = 2.4, respectively), suggesting that reducing clinical heterogeneity might 

indeed advance the identification of molecular predictors of response.  

Replication was not achieved in the non-anxious COMED sample (P = 0.112), 

possibly due to the low number of subjects with non-anxious depression (N = 92) as 

compared to those with anxious-MDD (N = 281) (Figure 13). In addition after 

predicting randomly permuted response status 1000 times with the best-fit HC-PGS 

from STAR*D and PReDICT non-anxious subsamples, only two and six P-values 

respectively were lower than those initially achieved (ppermSTAR*D < 0.002, ppermPReDICT 

< 0.006).  

The best-fit HC-PGS predicted outcome at PSTAR*D = 0.003, PPReDICT = 0.006, 

respectively and included similar amount of SNPs; 114 SNPs-STAR*D and 145  

SNPs-PReDICT with a portion of them in common across samples (N = 61 SNPs) 

(Figure 14).  
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Figure 13.  High resolution PRSice plots anxious and non-anxious MDD. Red line 

represents PRSice multiple testing threshold P < 0.004, blue line 

represents replication P-value threshold P < 0.05. X axis shows range of 

pT tested, y axis shows -log10 P-value of treatment outcome prediction. 

(a) HC-PGS anxious STAR*D plot, (b) HC-PGS anxious PReDICT plot, 

(c) HC-PGS anxious COMED plot, (d) HC-PGS non-anxious STAR*D 

plot, (e) HC-PGS non-anxious PReDICT plot and (f) HC-PGS  

non-anxious COMED plot 
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Figure 14.  Circular plot of annotation of HC-PGS STAR*D (red) and HC-PGS 

PReDICT SNPs (purple). Blue lines represent location of common SNPs 

between PGS 
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Higher HC-PGS (reflecting a genetic load for increased HC volume) associated better 

outcomes, while lower HC-PGS (reflecting a genetic load for decreased HC volume) 

associated nonresponse (Figure 15) in STAR*D and PReDICT non-anxious 

subsamples. Post-hoc analyses when only ESC patients from PReDICT where 

included significantly predicted differential response and in the same direction  

(P = 0.0046, R2 = 1.02, N = 78) as in the non-anxious STAR*D MDD sample 

(Supplementary Figure 1). For ESC-PBO patients from COMED, prediction was not 

significant, possibly due to the reduced power resulting from low non-anxious MDD 

patients (N = 38).  

 

 

Figure 15.  HC-based polygenic scores in STAR*D and PReDICT. (a) Scatter plot of 

HC-PGS in STAR*D non-anxious sample (N = 436, P = 0.003)  

(c) Scatter plot of HC-PGS in PReDICT non-anxious sample (N = 128,  

P = 0.006). (b, d) Scatter plots of HC-PGS in STAR*D and PReDICT 

anxious samples (N = 402, N = 87, P > 0.05) 
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5.1.3. Early Life Stress does not Improve HC-PGS Prediction of Treatment 

Response in Independent Samples 

ELS contributes to depression risk later in life, thus we hypothesized that taking into 

account early life adversity could improve HC-prediction of outcome. Target samples 

were stratified into MDD subsamples with and without ELS. None of the pT  

(NpT = 5,557) from HC-based PGS were able to predict response in either the 

discovery-target sample (in this case COMED) at P < 0.004 or the replication target 

samples (PReDICT) at P < 0.05 (Supplementary Figure 2).  

5.1.4. Gene Annotation of HC-PGS and GO Enrichment 

Gene annotation (Figure 14) and GO enrichment was performed separately for 

SNPs in the top HC-PGS of STAR*D and PReDICT together. Out of 198 HC-PGS 

SNPs (NSTAR*D-SNPs = 53, NPReDICT-SNPs = 84, Ncommon-SNPs = 61), 194 mapped to at 

least one gene locus. No GO terms where enriched. 

5.1.5. HC-PGS Genes Map to Brain Cell-type Specific Expression Patterns  

To explore which cellular populations may be most representative of the significant 

HC-PGS SNPs from non-anxious target subsamples together, enrichment for  

cell-type specific genes across multiple cell-types was performed. HC-PGS gene 

profiles of annotated SNPS (198 SNPs, Figure 14) were enriched for  

Ntsr+ (neurotensin receptor positive) neurons (PBonferroni = 0.009) as well as dopamine 

receptor type 2 positive (Drd2+) medium spiny neurons of the striatum  

(PBonferroni = 0.011)  (Figure 16). 

5.1.6. HC-PGS Genes Map to Brain Region Specific Expression Patterns  

HC-PGS gene profiles of annotated SNPS (198 SNPs, Figure 14) were enriched for 

cortex and hippocampal adult brain regions (P = 0.002, PBonferroni = 0.006,  

P = 4.27 × 10-4, PBonferroni = 0.003) (Figure 17). 

 



5.1  Treatment Outcome Polygenic Predictors 73 

 

 

Figure 16.  Cell-type specific enrichment of HC-PGS gene profiles. Color gradient 

represents Bonferroni corrected significant –log10 P-values. Transcripts 

were enriched for Ntsr+ and Drd2+ neurons (PBonferroni = 0.009, PBonferroni 

= 0.011) 

 

Figure 17.  Brain-region specific enrichment of HC-PGS gene profiles. Transcripts 

were enriched in the cortex and hippocampus regions (P = 0.002, 

PBonferroni = 0.006, P = 4.27 × 10-4, PBonferroni = 0.003). Red line represents 

Bonferroni corrected P-value. Blue line represents nominal significance  

P < 0.05 
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5.2. Treatment-Specific Outcome Polygenic Predictors  

There were no differences in demographic and clinical characteristics between 

treatment groups in the PReDICT sample (Table 8). 

Table 8.  Characteristics of MDD patients in PReDICT sample(N = 215) 

 CBT (N = 64) ESC (N = 78) DUL (N = 73) p 

Response Status (N / %)  

Remitters 28 (43.75) 36 (46.15) 48 (65.75) 

 

Non-responders  14 (21.87) 13 (16.67) 7 (9.59) 

Partial-responders  22 (34.37) 29 (37.18) 26 (35.62) 

Early Life Stress (N / %) 0.3577 

no ELS 33 (51.5) 30 (38.5) 34 (46.57) 

 ELS 31 (48.5) 48 (61.5) 39 (53.43) 

Anxious Status (N / %) 0.0605 

Non-anxious  39 (60.93) 45 (57.70) 44 (60.27) 

 Anxious  25 (39.07) 33 (42.30) 29 (39.73) 

Ethnicity (N / %) 0.115 

Asian 0 2 (2.56) 0 

 

Black 5 (7.81) 17 (21.79) 15 (20.55) 

Multiple 3 (4.69) 6 (7.69) 4 (5.48) 

Native-American 11 (17.19) 18 (23.08) 17 (23.29) 

Unknown  2 (3.12) 2 (2.56) 0 

White 43 (67. 19) 33 (42. 31) 37 (50.68) 

Gender (N / %) 0.998 

Female   35 (54.68) 43 (55.12) 40 (54.79) 

 Male 29 (45.32) 35 (44.88) 33 (45.21) 

 Mean SD Mean SD Mean SD p 

HDRS Baseline  18.75 3.52 19.62 3.69 18.84 3.37 0.256 

Age 39.8 11.7 42.2 11.7 38.9 11.66 0.205 
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5.2.1. HC-based PGS Predict Treatment-specific Response in a Second Sample 

To test whether HC-based PGS could successfully predict treatment response in 

PReDICT we constructed high-resolution HC-PGS from SNPs at 5,557 P-value 

thresholds and determined the most informative pT predicting treatment-specific 

outcome. Three pT from HC-PGS were able to predict response specific to CBT or 

ADM at P < 0.004 (Figure 18). The best-fit HC-PGS included 145 SNPs (Figure 19) 

and predicted differential treatment response with P = 0.00053 and R2 = 4.6. In 

addition after predicting randomly permuted response status 1000 times with the 

best-fit HC-PGS, only one P-value was lower than those initially achieved  

(pperm < 0.0009).  

 

 

Figure 18.  High-resolution PRSice Plot for HC-PGS in PReDICT sample. Red line 

represents PRSice multiple testing threshold P < 0.004. X axis shows 

range of pT tested, y axis shows -log10 P-value of treatment outcome 

prediction 
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Figure 19.  Circular plot of annotation of HC-PGS PReDICT SNPs (purple).  
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Higher HC-PGS (reflecting a genetic load for increased HC volume) associated with 

response to ADM and nonresponse to CBT, while lower HC-PGS (reflecting a genetic 

load for decreased HC volume) associated response to CBT and non-response to 

ADM (Figure 20a and b). Post-hoc analyses when only Caucasian patients from 

PReDICT where included (N = 113) while not significant at P < 0.004 (possibly due to 

reduced sample size), the direction remained the same (P = 0.03) (Figure 20c  

and d). 

 

 

Figure 20.  Hippocampal-based polygenic scores in PReDICT by treatment groups. 

R: responders, NR: non-responders. (a) Scatter plot of HC-PGS and 

%change in HDRS score at week12 stratified by treatment (N = 215,  

P = 0.00053). (b) Interaction plot of mean HC-PGS stratified by outcome 

group and treatment (c) Caucasians scatter plot of HC-PGS and 

%change in HDRS score at week12 stratified by treatment (N = 113,  

P = 0.03). (b) Caucasians interaction plot of mean HC-PGS stratified by 

outcome group and treatment 
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5.2.2. Gene Annotation of HC-PGS and GO Enrichment 

Gene annotation (Figure 19) and GO enrichment was performed for SNPs in the 

best-fit HC-PGS. Out of 145 HC-PGS SNPs, 143 mapped to at least one gene locus. 

No GO terms where enriched. 

5.2.3. HC-PGS Genes Map to Brain Cell-type Specific Expression Patterns  

To explore which cellular populations may be most representative of the significant 

HC-PGS SNPs enrichment for cell-type specific genes across multiple brain regions 

and cell-types was performed. HC-PGS gene profiles of annotated SNPS (145 SNPs, 

Figure 19) were enriched for Ntsr+ (neurotensin receptor positive) neurons  

(PBonferroni = 0.013) as well as dopamine receptor type2 positive (Drd2+) medium 

spiny neurons of the striatum (PBonferroni = 0.013) (Figure 21). 

5.2.4. HC-PGS Genes Map to Brain Region Specific Expression Patterns  

HC-PGS gene profiles of annotated SNPS (145 SNPs, Figure 19) were enriched for 

cortex and hippocampal adult brain regions (P = 0.008, PBonferroni = 0.025, P = 0.006, 

PBonferroni = 0.025) (Figure 22). 
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Figure 21.  Cell-type specific enrichment of HC-PGS gene profiles. Color gradient 

represents Bonferroni corrected significant –log10 P-values. Transcripts 

were enriched for Ntsr+ and Drd2+ neurons (PBonferroni = 0.013, PBonferroni = 

0.013) 

 

Figure 22.  Brain-region specific enrichment of HC-PGS gene profiles. Transcripts 

were enrichted in the cortex and hippocampus regions (P = 0.008, 

PBonferroni = 0.025, P = 0.006, PBonferroni = 0.025). Red line represents 

bonferroni corrected P-value. Blue line represents nominal significance  

P < 0.05 
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5.2.5. PGS Derived from GWAS with Insula and LPMC Activity Predict 

Treatment-specific Response in a Second Sample 

To test whether neuroimaging-based PGS could successfully predict treatment 

response in an independent sample (PReDICT), we ran GWAS with the activity of the 

6 predictive brain regions (see Figure 10 for correlation matrix of ROIs brain activity). 

No genome-wide significant results were observed and inflation factor λ was < 1.02 

for all analyses (Supplementary Figure 3), indicating no or negligible population 

stratification. Next, we constructed high-resolution PGS from each of these GWAS 

from SNPs at several P-value thresholds (NpT = 1113 for each region) and 

determined the most informative pT predicting differential treatment outcome in the 

second sample.  

RMC, RITC, LAM and LPCUN-PGS did not predict response in the second sample 

at any pT at P < 0.0008 or P < 0.004. Insula and LPMC-PGS, however, predicted 

treatment-specific percent improvement in HDRS after twelve weeks in the PReDICT 

sample (N = 138 patients, excluding partial responders) at several thresholds (N = 12 

thresholds for PGS-Insula and N = 6 for PGS-LPMC) at P < 0.0008, with relatively 

large percentages in variance explained (R2 = 10.4–10.8, R2 = 10.5–10.9, 

respectively). At P < 0.004 N = 317 and N = 150 thresholds were significant for  

PGS-Insula and PGS-LPMC, respectively (Figure 23). A threshold P-value of  

pT < 0.01198 was the best-fit for PGS-Insula; it included 4,292 SNPs and predicted 

differential treatment response with P = 0.00053 and R2 = 10.8. For PGS-LPMC  

pT < 0.0199 was the best-fit including 6,500 SNPs, and predicting the outcome at  

P = 0.00061 with R2 = 10.8. In addition after predicting randomly permuted response 

status 1000 times with the best-fit pT PGS-Insula and PGS-LPMC no P-values were 

lower than those achieved by both best-fit PGS (pperm < 0.001). 
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Figure 23.  High resolution PRSice plots. Red line represents region-wide 

significant threshold P < 0.0008, blue line represents PRSice multiple 

testing threshold for a single region P < 0.004. X axis shows range of pT 

tested, y axis shows -log10 P-value of treatment outcome prediction.  

(a) PGS-Insula plot. (b) PGS-LPMC plot. (c) PGS-Left Brodmann area 9 

plot (d) PGS-percent change in HDRS after twelve weeks plot 

 

For both PGS-Insula and PGS-LPMC, higher PGS associated with remission to CBT, 

while lower PGS associated with non-remission to CBT (Figure 24a, b, e and f) in 

the remitter/non-remitter sample (N = 138). Moreover, both PGS-Insula and PGS-

LPMC differed more between remitters and non-remitter in the CBT than in the ADM 

group. When only Caucasians where included, PGS-LPMC significantly predicted 

differential response and in the same direction (P = 0.017, R2 = 5.5, N = 70). For 

PGS-Insula, while not significant, the direction remained equal (P = 0.291, R2 = 1.3, 

N = 70) (Supplementary Figure 4). 
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Figure 24.  Polygenic scores in PReDICT based on right anterior insula and left 

premotor cortex activity stratified by groups. R: remitters, NR: non- 

remitters. (a) Boxplot of insula Z-score transformed PGS (Z-PGS) 

stratified by treatment and outcome (N = 138, P = 0.00053), white dot 

represents the mean. (b) Interaction plot of mean Insula Z-PGS stratified 

by outcome group and treatment (N = 138, P = 0.00053). (c, d) Scatter 

plots of Insula-based Z-PGS and %change in HDRS score at week 12 

stratified by treatment group for most significant pT prediction in the 

whole PReDICT sample (N = 215, P = 0.00234). (e) Boxplot of LPMC  

Z-PGS stratified by treatment and outcome (N = 138, P = 0.00061).  

(f) Interaction plot of mean LPMC Z-PGS stratified by outcome group and 

treatment (N = 138, P = 0.00061). (g, h) Scatter plots of LPMC-based 

polygenic Z-scores and %change in HDRS score at week 12 stratified by 

treatment group for most significant pT prediction in the whole PReDICT 

sample (N = 215, P = 0.0052)      
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Secondary analyses showed that treatment-specific PGS-Insula predicted response 

at eleven pT in the whole PReDICT sample (N = 215) at P < 0.004 (R2 = 5.3–5.8).  

pT < 0.00928 (3,366 SNPs, P = 0.00234, R2 = 5.8) accounted for the highest 

variance and predicted response in the same direction as in the smaller sample 

(Figure 24c and d). PGS-LPMC did not predict response at P < 0.004 in the whole 

PreDICT sample, however pT < 0.0199 was, as in the previous analysis, the most 

predictive pT (P = 0.0052, R2 = 5.5) (Figure 24g and h). 

To examine specificity of these endophenotype-based PGS, we conducted GWAS 

with the activity of six non-predictive regions as well as with percent change in HDRS 

in the first sample and constructed high-resolution PGS based on these in PReDICT. 

None of the pT from any of the random neuroimaging-based or clinical response 

based PGS (Figure 23c and d) were able to predict response in PReDICT (neither in 

the whole sample or when excluding partial responders). 

5.2.6. Genes Annotated to PGS-Insula and PGS-LPMC SNPs are Enriched for 

Relevant GO Terms 

Gene annotation (Figure 25) and GO enrichment was performed separately for 

SNPs in the top PGS-Insula, top PGS-LPMC and overlapping SNPs between both 

PGS. Out of 4,292 PGS-Insula SNPs, 4,149 mapped to at least one gene locus. The 

most enriched GO for PGS-Insula genes was myelin assembly (GO:0032288, 

Binomial FDRq-value = 5.045 × 10-4, Fold Enrichment = 2.669, which corresponds to 10 

of the 17 genes in the GO) (Supplementary Figure 5). 

Out of 6,500 PGS-LPMC SNPs, 6,311 mapped to at least one gene locus. Genes 

annotated to PGS-LPMC were enriched for regulation of membrane repolarization 

(GO:0060306, Binomial FDRq-value = 2.33 × 10-3, Fold Enrichment = 2.0041), 

regulation of potassium ion transmembrane transporter activity (GO:1901016, 

Binomial FDRq-value = 2.53 × 10-3, Fold Enrichment = 2.2456) and dopamine transport 

(GO:0015872, Binomial FDRq-value = 3.01 × 10-2, Fold Enrichment = 2.3560), among 

others (Supplementary Figure 5). The overlap between PGS-Insula and PGS-

LPMC consists of 536 SNPs (Figure 25), out of which 524 mapped to at least one 

gene. Genes annotated to overlapping SNPs showed enrichment for 

glycosaminoglycan binding (GO: 0005539, Binomial FDRq-value = 4.01 × 10-2,  

Fold Enrichment = 2.3741). 
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Figure 25.  Circular plot of genome-wide annotation of PGS-Insula (green) and PGS-

LPMC SNPs (orange). Blue lines represent location of common SNPs 

between PGS. Gene names represent the suggestive associations for 

either PGS-Insula or PGS-LMPC (P < 5 × 10-4). Grey gradient represents 

strength of association in GWAS with Insula brain activity and GWAS 

with LPMC brain activity, where lighter grey represents the most 

associated SNPs for each GWAS 
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5.2.7. PGS-Insula and PGS-LPMC Genes Map to Convergent Brain Cell-type 

Specific Expression Patterns  

To explore which cellular populations may be most representative of the PGS-Insula 

and PGS-LPMC gene profiles, enrichment for cell-type specific genes across multiple 

brain regions and cell-types was performed. Despite low overlap in genes and SNPs 

between PGS-Insula and PGS-LPMC (Figure 25), both were enriched for cortical 

neurons (PBonferroni = 0.011, PBonferroni = 0.01), particularly Ntsr+ (neurotensin receptor 

positive) neurons (PBonferroni = 2.54 × 10-6, PBonferroni = 3.46 × 10-9) as well as 

dopamine receptor type1 (Drd1+ (PBonferroni = 0.005, PBonferroni = 0.019)) and type 2 

positive (Drd2+) medium spiny neurons of the striatum (PBonferroni = 3.59 × 10-6, 

PBonferroni = 2.61 × 10-4) (Figure 26). The overlapped genes between PGS-Insula and 

PGS-LPMC were enrichment only for Ntsr+ cortical neurons (PBonferroni = 1.71 × 10-5). 
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Figure 26.  Cell-type specific enrichment of PGS-Insula and PGS-LPMC transcripts. 

Color gradient represents Bonferroni corrected significant -log10 P-values. 

Genes mapped by both PGS were enriched for cortical neurons  

(PBonferroni = 0.011, PBonferroni = 0.01), particularly Ntsr+ (Neurotensin 

receptor positive / Corticothalamic) neurons (PBonferroni = 2.54 × 10-6, 

PBonferroni = 3.4 × 10-9) and also Drd1+ (dopamine receptor type 1 

positive) (PBonferroni = 0.005, PBonferroni = 0.019) and Drd2+ (dopamine 

receptor type 2 positive) medium spiny neurons of the striatum  

(PBonferroni = 3.59 × 10-6, PBonferroni = 2.61 × 10-4). The transcripts that 

overlapped between PGS-Insula and PGS-LPMC transcripts were 

enrichment only for Ntsr+ cortical neurons (PBonferroni = 1.71 × 10-5).  

PGS-Insula transcripts were enriched also for striatum (caudate and 

putamen) (PBonferroni = 6.11 × 10-4) and stellate and basket cells of 

cerebellum (PBonferroni = 0.027). PGS-LPMC transcripts also showed 

significant enrichment for Pnoc+ (prepronociceptin positive)  

(PBonferroni = 0.006), Cort+ (Cort+ interneurons of cortex)  

(PBonferroni = 0.016) and Glt25d2 (Glycosyltransferase 25 family member 2 

positive/ Corticospinal, corticopontine) neurons of cortex  

(PBonferroni = 0.006), habenula (epithalamus) (PBonferroni = 0.006), 

myelinating oligodendrocytes (PBonferroni = 0.019) and oligodendrocyte 

progenitor cells of cortex (PBonferroni = 0.027) 
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5.2.8. PGS-Insula and PGS-LPMC SNPs Overlap with Genome-wide Significant 

Schizophrenia Associated Loci 

Risk genetic loci have shown to overlap across psychiatric disorders (Lee, et al., 

2013), thus we examined the overlap between the best threshold SNPs of  

PGS-Insula and PGS-LMPC with loci previously shown to confer risk for psychiatric 

disorders (MDD, Schizophrenia and cross-disorder) (Ripke, et al., 2014; Ripke et al., 

2013; Smoller et al., 2013). Both PGS-Insula SNPs and PGS-LMPC SNPs were 

significantly enriched (P = 0.0009, P = 0.0049) among genome-wide associated 

schizophrenia loci, and the enrichment was consistent also across lower association 

P-value thresholds; P < 5 × 10-7 (P = 0.0009, P = 0.0199) and P < 5 × 10-6  

(P = 0.0109, 0.0029) (Supplementary Figure 6a and b). Next we tested for overlap 

with SNPs in the PGC MDD and cross-disorder GWAS at P < 5 × 10-6, P < 5 × 10-5, 

and P < 5 × 10-4. Neither PGS-Insula nor PGS-LPMC SNPs were enriched for SNPs 

in either of these studies at any of the thresholds tested. 

Lastly we conducted the analysis with non-psychiatric traits using genome-wide 

significant loci associated with height (Lango Allen et al., 2010) and diabetes (Morris 

et al., 2012). There was no significant overlap of either PGS-Insula or PGS-LPMC 

with loci associated with height (P = 0.0739, 0.0529) (Supplementary Figure 6c  

and d) or diabetes (P = 0.172, P = 0.359) associated SNPs. 



 

 

6. Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section summarizes the findings of this thesis. It states the strengths, limitations 

and novel features of the neuroimaging-based polygenic predictors approach. As a 

final point, the potential importance of cell-types and brain regions expression 

patterns in the context of MDD and treatment response is discussed.   
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Prediction of antidepressant response has proven a difficult task, especially with 

easily obtainable biomarkers, such as genotypes. Favored outcomes to 

mechanistically different antidepressant treatments, such as CBT, ADM, ECT, or 

DBS support the existence of biologically distinct subtypes of depression. Identifying 

the underlying differences would allow to better match patients to their biological 

optimal treatment and is therefore of tremendous importance. Symptom improvement 

observed in depressed patients if the adequate treatment is chosen is often identical, 

suggesting the existence of a common signature of clinical response across 

treatments too, possibly via effects in converging downstream systems, such as the 

stress hormone system or the immune system. Furthermore, the presence of clinical 

entities like anxiety or stress exposure influencing MDD susceptibility and treatment 

response suggests that depression subtypes might benefit from tailored therapeutic 

strategies.  

Using a combined approach this thesis presents an alternative framework to 

address the above statements. Polygenic scores derived from genetic variants 

influencing structural brain volume changes, expressly HC-volume, predicted 

treatment outcome scores in MDD non-anxious patients in two independent samples. 

Gene profiles based on these HC-PGS were enriched for hippocampal and cortical 

brain regions, as well striatal brain cell-type signatures. HC-based PGS and 

functional neuroimaging endophenotype-based PGS were also successful at 

predicting treatment-specific outcomes in depressed patients and were enriched as 

well for disease relevant GO terms and convergent cortical and striatal brain cell-type 

specific expression patterns and overlap with previously identified risk loci for 

schizophrenia.  

This novel technique for identifying treatment selection biomarkers combines four 

features that differ from previous approaches. First, for genetic associations, we did 

not use treatment outcome per se but structural brain differences (HC-volume) 

related to treatment outcome (Samann, et al., 2013) and MDD (Hibar, et al., 2015; 

Schmaal, et al., 2015) as well as functional neuroimaging endophenotypes (brain 

metabolic activity) predictive of outcome (McGrath, et al., 2013). Second, to 

acknowledge the polygenic nature of such phenotypes we built polygenic predictors 

from these associations. Another important factor was the application of high-

resolution PGS. As illustrated in Figure 12, Figure 18 and Figure 23 fixed 
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thresholds, as opposed to the sliding ones used here, would have missed the most 

predictive thresholds in both studies. Lastly, we aimed to reduce sample 

heterogeneity by considering clinical and environmental factors in outcome prediction 

and for the second study we did not attempt to predict treatment outcome overall, but 

focused on differential outcome to CBT versus ADM phenotypes. Taken together, 

these features provide a framework with possible implications for the development of 

precision medicine-based clinical practice.  

In the first study included in this thesis, we hypothesized that taking into account 

depression diagnostic subtypes (anxious and non-anxious) or environmental 

exposure to stress would increase power and allow identification of genetic predictors 

for antidepressant treatment response. This is particularly relevant given the high 

comorbidity between depression and anxiety (Melartin, et al., 2002) and the 

differential response between anxious and non-anxious subtypes of MDD (Clayton, et 

al., 1991; Fava, et al., 2004; Fava, et al., 2008; Joffe, et al., 1993; Tollefson, et al., 

1994). Early life stress is also a strong predictor of stress-related psychiatric 

disorders in adulthood (Aguilera, et al., 2009; Chapman, et al., 2004; Heim, et al., 

2008) and poor treatment outcomes for depression (Nanni, et al., 2012; Nemeroff, et 

al., 2003).  

Heritability estimation of HC-volume is around 80%, which is a much higher 

genetic contribution than treatment response alone (h2 ~ 42%). HC-PGS were unable 

to predict treatment outcome overall in any of the target samples, or when exposure 

to early life stress was considered (Supplementary Figure 2). As previously 

proposed, ELS interaction with genetic variation, might be mediated by epigenetic 

mechanisms (Klengel, et al., 2013), which may explain in part the lack of improved 

prediction. Epigenetic signatures have proved to improve phenotypic prediction over 

and above genetic factors for complex traits (Shah, et al., 2015). Future studies 

exploring gene by environment interactions on depression or treatment outcome, 

should considered the contribution of epigenetic modifications such as DNAm.  

When only non-anxious STAR*D patients were included in the analyses HC-PGS 

predicted outcome scores (Figure 12). Replication of HC-PGS outcome prediction 

was achieved in the PReDICT non-anxious target subsample, and in the same 

direction as in STAR*D (Figure 15). In both STAR*D and PReDICT non-anxious 

subsamples, higher HC-PGS reflecting larger HC-volume correlated with better 
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outcomes, and lower HC-PGS reflecting smaller HC-volume with non-response. This 

is in agreement with previous findings relating anxious depression (Fava, et al., 2008; 

A. J. Rush et al., 2008) and decreased HC-volumes (Frodl, et al., 2008; Kronmüller, 

et al., 2008; Samann, et al., 2013) with poor outcomes. No replication was achieved 

in the COMED replication-target sample, most likely due to the small sample size of 

the non-anxious subgroup (N = 92). 

Gene profiles of predictive HC-PGS mapped to expression profiles of 

hippocampus and cortex in adulthood as well as to particular neuronal subtypes  

(X. X. Xu, Wells, O'Brien, Nehorai, & Dougherty, 2014). HC-PGS genes were 

enriched for Ntsr+ cortical neurons and Drd2+ medium spiny neurons of the striatum. 

D2 neurons receive a broad number of signals from cortical areas, evidence indicates 

the importance of the corticostriatal neurocircuity in antidepressant response 

(Gershon, Vishne, & Grunhaus, 2007; Lobo et al., 2013; Nestler, 2015; Schmidt et 

al., 2012; Vialou et al., 2010). For instance animal studies show that induction of 

∆FosB -a relevant transcription factor promoting reward and motivation- in the 

striatum, mainly in Drd1+ and Drd2+ medium spiny neurons is required for fluoxetine 

antidepressant action (Lobo, et al., 2013; Nestler, 2015; Vialou, et al., 2010). Human 

imaging studies show abnormal activity both in cortex and striatum in patients with 

MDD (J. L. Price & Drevets, 2012). Abnormal striatum activity mediates for example 

the appearance of depressive symptoms in relation to early life stress in humans 

(Hanson, Hariri, & Williamson). These studies further suggest that HC-PGS tag 

previously identified pathways and mechanisms relevant not just for major 

depression but for neural mechanisms involved in treatment response as well.  

A number of limitations should be considered, to start, one has to note some 

differences between the target samples (STAR*D, PReDICT and COMED) that may 

limit their comparability, which include differences in outcome measures (clinician 

rated HDRS vs. patient rated QIDS) as well as the treatment regimen (diverse fixed 

randomized regimen). The QIDS assessment questionnaire is considered closely 

equivalent to the HDRS and the majority STAR*D reports have relied on this outcome 

score (A. J. Rush, et al., 2008; Trivedi, et al., 2006). Despite of these differences  

HC-PGS were able to predict outcome scores in STAR*D and across treatment 

groups in PReDICT, which consisted of never before treated patients. These findings 

propose that careful selection of clinical subtypes within MDD is important when 
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examining genetic predictors of antidepressant response and that non-anxious 

depression may represent a more homogeneous subtype of depression. 

The second study demonstrates the effectiveness of PGS derived not only from 

structural brain changes, but also from brain metabolism endophenotypes as a 

potential biomarker of CBT or ADM outcomes. Notably, PGS derived from activity of 

brain regions not associated with differential outcome in the FDG-PET sample  

(see section 4.3.2) or from clinical response alone were not predictive in the second 

sample. In contrast to previous pharmacogenetic studies (Chiara Fabbri, Porcelli, & 

Serretti, 2014; Kato & Serretti, 2010; Rudolf Uher, et al., 2013), ours is the first to 

investigate predictors for differential response to two mechanistically different 

treatments, CBT and ADM. 

HC-PGS were able to predict differential response to treatment in the entire 

PReDICT sample. Higher HC-PGS, reflecting a genetic load for increased HC 

volume associated with favorable outcome to ADM and poorer outcomes to CBT. 

Larger HC volume has in fact been associated with increased response to ADM 

(Samann, et al., 2013). Interestingly HC volume differences observed in post-

traumatic stress disorder patients undergoing CBT (Levy-Gigi, Szabó, Kelemen, & 

Kéri) and social anxiety (Kawaguchi et al., 2014) have been associated with clinical 

response as well. A number of studies have in fact pointed HC volume differences as 

a crucial determinant for favorable outcomes in depression (Frodl, et al., 2008; 

Goldapple et al., 2004; Kronmüller, et al., 2008; G. MacQueen & Frodl, 2011; 

Samann, et al., 2013). 

Even though HC-PGS were derived from a sample of individuals with European 

descent, response prediction was achieved in a multi-ethnic cohort. Notably, the 

direction of the prediction was the same in the Caucasian sample (Figure 20) of 

PReDICT but, as expected, power was limited. Gene profiles were enriched in 

cortical and hippocampal adult regions as well as for Ntsr+ cortical neurons and 

Drd2+ medium spiny neurons of the striatum. The fact that all neuroimaging-based 

PGS were enriched for these cell types, suggest an important role of these particular 

cells and structures in the pathophysiology of depression and its treatment.  
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PGS-Insula and PGS-LPMC successfully predicted treatment-specific clinical 

response in PReDICT. Importantly, the effect sizes of PGS-insula and PGS-LPMC 

were in a range that has been described as clinically relevant for antidepressant 

response. A 3-point decrease in HDRS has been described as clinically significant 

(NICE, 2004) and in a placebo-controlled trial. This reduction corresponds to 6.3% of 

the variance in outcome explained by treatment and has been defined as a 

benchmark for pharmacogenetic studies (R. Uher, et al., 2012). Our polygenic 

predictors explained a higher amount of variance (10.8%) than this benchmark in the 

sample of remitters vs. non-remitters.  

Although the prediction of non-response vs. remission is most relevant clinically, 

the PGS from these two regions were also able to significantly predict differential 

response in the whole sample (up to 5.8% of variance explained) including 

intermediate responders, supporting the robustness of the predictions across a range 

of clinical improvement. The polygenic predictors from both the RAI and LPMC brain 

regions were in the same direction, congruent with the initial prediction in the 

neuroimaging study (McGrath, et al., 2013), and it is especially noteworthy that, PGS 

from both regions were best at predicting remission vs. non-response to CBT. 

Psychotherapy-responsive MDD may represent a more homogenous biological 

subtype than ADM-responsive depression. In addition there may be added 

heterogeneity within ADM remitters and non-remitters due to potential 

responsiveness to alternative ADM classes or presence of drug resistant patients 

requiring non pharmacological interventions.  

Besides clinically relevant effect sizes, a robust biomarker should optimally work in 

different populations. Often, genetic predictors, including for antidepressant 

response, are specific for one ethnicity (Elisabeth B. Binder, et al., 2010; Garriock, et 

al., 2010; Porcelli, et al., 2012). In our study, both the genome wide association study 

with ROIs and the test of the predictors were performed in multi-ethnic cohorts. To 

avoid confounding due to population stratification, we used PCAs from genotype 

distributions as covariates in all analyses and this allowed detecting predictors with 

some stability across ethnicities. In fact, when using the same predictors from the 

multi-ethnic cohort in the largest ethnic subset of PReDICT (Caucasians),  

the direction of the prediction was identical to the whole sample  

(Supplementary Figure 4), but, as expected in a smaller sample, less significant.  
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Polygenic scores are likely more robust across different ethnicities than single variant 

predictors as ethnic variability in minor allele frequency of a subset of markers may 

be buffered by the remaining variants of the scores, which in our case included up to 

6,500 SNPs for PGS-Insula and PGS-LPMC. Studies in larger, ethnically more 

homogenous samples will, however, be needed to fully explore the validity of 

predictors derived from multi-ethnic cohorts in specific ethnicities.  

PGS derived from the activity of two of the six ROIs initially described to predict 

differential treatment response in the first sample were also predictive of the same 

phenotype in the second sample. However, no PGS derived from the activity of six 

non-predictive brain regions or from clinical response alone were predictive in the 

second sample (Figure 23c and d). This suggests that PGS derived from 

endophenotypes associated with the outcome are more powerful than those derived 

from the outcome itself. Unfortunately, unlike the ENIGMA sample, our neuroimaging 

sample was too small to identify reliable SNP h2 for the neuroimaging traits in 

questions, so we can only speculate that these have a higher genetic contribution 

than treatment response alone.  

Of the six ROIs predictive of differential response in (McGrath, et al., 2013) only 

PGS derived from RAI and LPMC predicted treatment-specific response in the 

second sample. The insula was the strongest neuroimaging predictor in the first 

sample, lending face validity to the PGS from this region as strong predictors. The 

correlation between LPMC and RAI metabolism was not the strongest (r = 0.52) 

among the 5 other regions contributing to the initial outcome prediction (Figure 10), 

suggesting some independent contribution of these regions. This is also supported 

by the small overlap of SNPs (N = 536 SNPs or 12 to 8.2%) and associated genes  

(N = 524 genes or 12.6 to 8.3 %) between the two predictive PGS derived from these 

regions (Figure 25). 

SNPs within the most predictive PGS from both the insula and the LMPC were 

significantly enriched among SNPs with genome-wide and also sub-threshold 

significance in schizophrenia (Ripke, et al., 2014) but not height or diabetes, 

suggesting some specificity to psychiatric disorders. No significant overlap with 

associated SNPs in other psychiatric disorders could be observed, however, except 

for schizophrenia, a large number of robust genome wide significant associations 

have not yet been observed for these disorders, likely for current lack of larger 
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samples (Patrick F. Sullivan, et al., 2012). Nonetheless, the significant overlap with 

SNPs associated with schizophrenia is of high interest, as first, this disorder has the 

second highest genetic correlation with depression (0.43 ± 0.06) (Lee, et al., 2013) 

and second, the right insula is one of three brain regions for which convergent gray 

matter loss has been reported across six different psychiatric disorders, including 

schizophrenia and major depression (Goodkind et al., 2015). 

In addition to significant overlap with genetic associations with schizophrenia, 

predictive PGS from both regions showed significant enrichments for disease- and 

region-relevant GO terms. Genes annotated to PGS-Insula were most enriched for 

the myelin assembly GO term. Interestingly, myelin maps in humans show distinct 

features for the insular cortex, this region being the most lightly myelinated cortical 

region (Glasser & Van Essen, 2011).  

Genes annotated to PGS-LPMC activity were enriched for GOs related to 

membrane repolarization and potassium transport but also dopamine transport.  

A number of publications have noted the relevance of dopamine and dopamine 

transport for the function and connectivity of the premotor cortex (Habak et al., 2014; 

Damian Marc Herz et al., 2014; Damian M. Herz et al., 2014; Kwon & Jang, 2014).  

In addition, dysregulation in both myelin and dopamine have been implicated in the 

pathogenesis of depression (Dunlop & Nemeroff, 2007; Gershon, et al., 2007; Tham, 

et al., 2011).  

Finally, we mapped the genes annotated to predictive PGS to gene expression 

signatures of specific brain regions and neuronal cell types (X. X. Xu, et al., 2014). 

Both PGS-Insula and PGS-LPMC genes were most enriched for signatures of cortical 

and striatal neurons, in particular Ntsr+ cortical neurons and Drd1+ and Drd2+ 

medium spiny neurons of the striatum. This overlapping enrichment resulted from a 

direct overlap in annotated genes for the two PGS for the cortical Ntsr+ cells, as well 

as a functional convergence of independent gene sets from the two PGS for the 

medium spiny neurons. This overlap in functional annotation suggests that the PGS 

from these regions may contribute to common neurocircuit functions. Dopamine 

function was enriched, within GOs and cell types and, in fact, a number of recent 

studies have implicated dopaminergic inputs into medium spiny neurons of the 

ventral striatum with stress-induced behaviors (Francis et al., 2015; Plattner et al., 

2015; Tye et al., 2013). Ntsr+ neurons are corticothalamic projection neurons from 
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layer 6 which have been shown to activate layer 5a output neurons (J. Kim, Matney, 

Blankenship, Hestrin, & Brown, 2014). Layer 5 neurons provide the strongest cortico-

striatal input and previous studies have shown a critical role for cortico-striatal 

projection neurons in antidepressant response, predominantly to SSRIs (Habak, et 

al., 2014). Furthermore, neurotensin has been associated with the  

pathology of other psychiatric disorders like schizophrenia (E. B. Binder, Kinkead, 

Owens, & Nemeroff, 2001). 

 



 

 

7. Conclusions 

The analyses described above suggest that a combined approach using quantitative 

neuroimaging endophenotypes and polygenic markers could be a promising method 

to identify molecular predictors that could ultimately be used in clinical settings to 

inform individualized antidepressant treatment selection.  

While these findings are assuring, they have to be considered preliminary as they 

were generated from small samples and additional validation in other cohorts will be 

necessary. The PReDICT cohort included patients never treated for depression in the 

past; this might facilitate prediction at initial presentation for treatment. It is also 

apparent that genetic predictors alone will not be able to explain all variance. 

Combined predictors, joining genetic, endophenotype and clinical measures will likely 

be necessary. Previous studies have shown success in combining clinical with 

genetic factors in enhancing prediction of antidepressant treatment response  

(Ising, et al., 2009). 

We note that these results should be considered preliminary as they resulted from 

a novel approach that to our knowledge has not been implemented before. Overall, 

these results represent an initial step towards optimizing prediction of treatment 

response and highlight the fact that MDD is a heterogeneous clinical entity consisting 

of several clinical subtypes, each with possibly specific genetic makeup. Stratifying 

MDD into clinical subtypes in order to decrease phenotypic heterogeneity can 

enhance identification of genetic predictors of treatment response. Enhancing our 

ability to match patients to optimal treatment modalities will be an exciting step 

forward in the march towards more effective treatments of depression. We 

emphasize that structural and functional neuroimaging in combination genetic 

markers have significant potential for the development of prognostic biomarkers of 

clinical response to treatments for depression.  



 

 

8. Supplementary Figures 

 

Supplementary Figure 1.  HC-PGS Scatter plot PReDICT escitalopram sample.  

Y axis represents HC-PGS. X axis represents change in 

HDRS outcome score 
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Supplementary Figure 2.  HC-PGS barplots of most significant pT stratified by early 

life stress  (ELS) in (a) ELS (b) no ELS COMED 

subsamples, (c) ELS and (d) no ELS PReDICT 

subsample. No pT was significant at P < 0.004 

(a) COMED no ELS (N=174) (b) COMED ELS (N=199)

(c) PReDICT no ELS (N=97) (d) PReDICT no ELS (N=118)
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Supplementary Figure 3.  QQ plots for genome-wide association analysis in FDG-

PET sample. Inflation factor lambda shows no indication 

of population stratification 

 

 

Supplementary Figure 4.  Interaction plot of mean Insula Z score transformed-PGS 

(a) and mean LPMC Z score transformed-PGS (b) 

stratified by outcome group and treatment in remitters 

and non-remitters for Caucasians only (N = 70) 
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Supplementary Figure 5.  Gene ontology enrichment for Insula-based PGS and 

LPMC-based PGS. Dashed line represents significant 

binomial FDR-q value after correction for multiple testing 

 

 

Supplementary Figure 6.  Enrichment of PGS-Insula and PGS-LPMC with PGC 
Schizophrenia and Giant SNP variants 
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