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Zusammenfassung
Hauptgegenstand dieser Arbeit, bestehend aus einem theoretischen und einen phänome-
nologischen Teil, sind exklusive semileptonische B Zerfälle vom Typ B → M`+`−. Da
solche Zerfälle durch Flavour-ändernde neutrale Ströme bei sehr kurzen Abständen
hervorgerufen werden, sind sie im Standardmodell stark unterdrückt, woraus sich vielver-
sprechende Möglichkeiten für die indirekte Suche nach neuer Physik ergeben.

Im ersten, theoretischen Teil geht es um die Kontrolle der langreichweitigen Effekte
der Quark-Loops. Diese gehen allein aus dem hadronischen Teil des schwachen Hamilto-
nians hervor, genauer gesagt, aus Pinguin-Diagrammen, bei denen zwei Quarks einer
lokalen (s̄b)(q̄q) Wechselwirkung über Photon-Austausch in `+`− annihilieren.
Ein Problem stellt hierbei der Austausch weicher Gluonen zwischen dem Kaon und

dem q̄q-System dar. Während der etablierte Formalismus der QCD-Faktorisierung eine
störungstheoretische Berechnung bei großem Kaon-Rückstoß erlaubt, ist der geeignete
theoretische Rahmen bei kleinem Rückstoß (q2 & 15GeV2) durch die hier ausgearbeite-
te Operator-Produkt-Entwicklung (OPE) gegeben. Sie ermöglicht eine systematische
Berechnung der Zerfalls-Amplitude in Potenzen von Λ/

√
q2, wobei die Standard Form-

faktoren zu allen Ordnungen in αs ausreichen, um die hadronische Physik der führenden
OPE-Terme zu beschreiben. Im chiralen Limes ms = 0 sind die ersten Korrekturen be-
reits von relativer Ordnung 1/q2 und, wie eine quantitative Abschätzung der entsprechen-
den Matrixelemente zeigt, vernachlässigbar klein (ca. 0.5%).
Das andere Problem – die Verletzung der Quark-Hadron-Dualität – wird durch die

Anwesenheit der Charmonium-Resonanzen verursacht und betrifft somit allein den
Charm-Loop bei höherem q2. Unter Verwendung von Shifmans auf Resonanzen basieren-
dem Modell des hadronischen Korrelators werden die zugrunde liegenden Mechanismen,
insbesondere die Verbindung zur Existenz der OPE, abgeklärt. Ferner wird der Einfluss
Dualitäts-verletzender Effekte auf die über den Bereich hoher q2 integrierte B → K`+`−

Zerfallsrate explizit abgeschätzt (±2%).

Im zweiten, phänomenologischen Teil geht es dann um die langreichweitige Physik der
hadronischen Matrixelemente. Vorhersagen für exklusive Zerfälle leiden noch immer an
den großen Unsicherheiten (±15%), mit denen die Formfaktoren, welche der Beschrei-
bung der hadronischen Physik dienen, behaftet sind. Andererseits sind Formfaktoren ver-
gleichsweise universelle Größen und faktorisieren zudem von der spezifischeren kurzreich-
weitigen Physik, was durch eine gleichzeitige Betrachtung verwandter Zerfalls-Kanäle zur
Konstruktion von Präzision-Observablen ausgenutzt werden kann.
Im einzelnen werden hier die drei Zerfalls-Paare B+→ π+µ+µ− und B̄0→ π+`− ν̄ ,

B → K∗`+`− und B → K∗νν̄ , sowie B → K`+`− und B → Kνν̄ , betrachtet, wobei
sich eine Reduktion der Formfaktor-Unsicherheit auf 1.6%, 1% und 0.3% in dem
vollständig integrierten π,K∗ bzw. K Verhältnis ergibt.
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Abstract
The main subject of this thesis, which consists of a theoretical and a phenomenological
part, are exclusive semileptonic B decays of the type B → M`+`−. Since such decays
are induced by flavour-changing neutral currents at very short distances, they are heavily
suppressed in the Standard Model, which results in promising opportunities for the
indirect search of new physics.

The first, theoretical part is about the control of the long-distance effects of the
quark loops. They arise solely from the hadronic part of the weak Hamiltonian, more
specifically, from penguin-type diagrams where two quarks of a local (s̄b)(q̄q) interaction
annihilate into `+`− via virtual photon exchange.
One difficulty here is the exchange of soft gluons between the kaon and the q̄q

system. While the established formalism of QCD factorization allows for a perturba-
tive calculation at large kaon recoil, the appropriate framework for decays at low re-
coil (q2 & 15GeV2) is given by the operator product expansion (OPE) developed here. It
allows for a systematic computation of the decay amplitude in powers of Λ/

√
q2, whereat

the standard form factors are, to all orders in αs, sufficient to describe the hadronic
physics of the leading-power matrix elements. In the chiral limit ms = 0, the first sublead-
ing terms are already of relative order 1/q2 and, as a quantitative estimate of the corre-
sponding matrix elements shows, negligibly small (roughly 0.5%).

The other difficulty – the violation of quark-hadron duality – is caused by the presence
of charmonium resonances and consequently concerns only the charm-loop at higher q2.
Using Shifman’s resonance-based model for the hadronic correlator, the systematics
of duality violation, in particular the connection to the existence of the OPE, are
clarified. Furthermore, we estimate explicitly the impact of duality violating effects on
the B → K`+`− decay rate integrated over the high-q2 region (±2%).

The second, phenomenological part addresses the long-distance dynamics of the
hadronic matrix elements. Predictions for exclusive decays still suffer from the sizeable
uncertainties (±15%) of the form factors used to describe the hadronic physics. Then
again, form factors are rather universal quantities and factorize from the more specific
short-distance dynamics, which can be exploited by a combined analysis of related decay
channels for the construction of precision observables.
In detail, we consider here the three decay pairs B+→ π+µ+µ− and B̄0→ π+`− ν̄ ,

B → K∗`+`− and B → K∗νν̄ , as well as B → K`+`− and B → Kνν̄ , finding a reduc-
tion of the form factor uncertainty to 1.6%, 1% and 0.3% in the fully integrated π, K∗
and K ratio, respectively.
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Introduction
Standard Model – Success and Shortcomings

The Standard Model (SM) of particle physics [2, 3] is the most fundamental theory
of nature at short distances we currently have. As a (renormalizable) quantum field
theory, it has incorporated in its formalism the acknowledged principles of quantum
mechanics and special relativity. It is further based on the general postulate of lo-
cal gauge invariance, which is an elegant way to obtain interacting fields: The inter-
nal SU(3)⊗ SU(2)L ⊗ U(1)Y symmetry of the Lagrangian gives rise to the electromag-
netic, the weak and the strong interaction, which are described by the exchange of
gauge bosons.

At the same time, the experimental success of the SM is unprecedented. In particle
accelerators and colliders all around the world, its predictions have been confirmed
in countless experiments with extreme precision. The prime example for this is the
anomalous magnetic moment of the electron ae , where theory and experiment are
consistent at an accuracy of roughly 1ppb. Also, with the recent discovery of the
Higgs boson at CERN, the last missing particle predicted by the SM has finally been
found.

Nevertheless, despite its remarkable success, the SM is commonly considered to be
incomplete, or rather the effective low-energy description of a more fundamental theory.
This expectation is based mainly on the following considerations:

• The parameter space of the SM is widely seen as too arbitrary and unnatural for a
truly final theory. The first criticism is based on the large number of independent
parameters that must be determined experimentally before predictions can be
made (at least 19, mostly fermion masses (9), CKM entries (4) and gauge couplings
(3)). The second objection comes into play once the parameters have actually
been measured: Fermion masses of different generations differ by many orders of
magnitude; the entries of the CKM-matrix exhibit an, a priori, unexpected hierar-
chic structure, and the vacuum angle of quantum chromodynamics (QCD) θQCD
is found to be extremely small. All of this indicates that the underlying principles
are not fully understood.

• Quantum corrections to the squared mass of the Higgs boson m2
H are highly

sensitive to physics at short distances – be it through the ultraviolet cutoff ΛUV or
the masses of virtual non-SM particles. The circumstance that the measured value
for mH is several orders of magnitude lower than the scales where the arrival of
new physics (NP) is expected (e.g. the Planck scale) is known as the hierarchy or
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fine tuning problem. Strictly speaking, however, this is not a problem of the SM
itself, but rather one that immediately arises once the existence of NP is assumed.

• Another shortcoming of the SM is related to the fourth fundamental force, gravity,
which is usually neglected for its small impact. While in most cases an accurate
description is given by Einstein’s general relativity, quantum corrections can
in principle be included consistently. There is, however, also the fact that the
quantum field theory of gravity is non-renormalizable. This indicates the missing
of the UV completion, which becomes relevant towards the Planck scale and thus
hampers a profound understanding of black holes and the early universe.

• Finally, there are (mainly cosmological) observations that lack a proper explana-
tion in the SM. This refers to the existence of dark matter and energy but also
the unsettled question if the SM has sufficient sources of CP violation to account
for the observed matter-antimatter asymmetry in the universe.

Search for New Physics with B → M`+`− Decays

In general, there are two different ways to search for physics beyond the SM:
Firstly, there is the direct approach: the production and subsequent detection of

the unknown particles themselves. This method, however, is limited by the accessible
energies in present colliders.

Secondly, at energies below their production threshold, the heavy unknown parti-
cles still have an influence on the SM decay channels through quantum effects, which
can be exploited for an indirect detection. However, with the SM being such a well
confirmed theory, this requires high precision in theoretical predictions and experi-
mental measurements alike as well as the selection of particularly sensitive modes.
In this respect, rare B decays of the type B → M`+`− are promising candidates, in
particular as several modes already show some tension (up to 3.7σ) with the corre-
sponding SM prediction [4, 5], indicating a reduction of the effective coefficient C9 due
to NP.

A short review of the most important properties of rare B decays – at the center of
this work for the above reasons – is given below:

• As the top quark is not sufficiently stable, B mesons are the heaviest mesons,
the decay of which can be studied. Apart from a large phase-space and a great
diversity of decay channels, B decays therefore represent the most direct way to
probe some of the less explored areas of the SM (notably in the flavour sector).

• Rare B decays are induced by flavour-changing neutral currents (FCNCs), which
are heavily suppressed in the SM: They occur only at second order in the elec-
troweak interaction and involve at least one off-diagonal element of the Cabibbo-
Kobayashi-Maskawa (CKM)-matrix. In particular, this implies a small absolute
uncertainty in theoretical predictions already at leading order in perturbation
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theory. The impact of NP, not necessarily suppressed in the same way, should
therefore be easier to identify in these modes.

• In comparison to inclusive modes, such as B̄ → Xs `
+`−, where the problem can be

reduced virtually to the one of free quarks, the exclusive B → M`+`− modes are
theoretically less clean, as they necessarily involve the non-perturbative dynamics
of the hadronization process. But then again, the exclusive decays, discussed
in this work, are experimentally easier to handle, and consequently meaningful
experimental results will be available for them earlier than for the inclusive decays.

• The different contributions to the B → M`+`− amplitude can be divided into
two distinct categories:
On the one hand, there are the matrix elements of the non-hadronic oper-

ators O7,9,10 , which dominate the spectrum outside the domain of the narrow
charmonium resonances due to the size of the semileptonic Wilson coefficients C9,10 .
These contributions are theoretically also rather clean and simple, as short- and
long-distance dynamics factorize completely into coefficient functions and stan-
dard B → M form factors, respectively.
On the other hand, there are the theoretically more challenging, non-local

contributions of the hadronic operators O1−6,8 . These are typically penguin-type
diagrams, where two quarks of a local (s̄b)(q̄q) interaction annihilate into the final
leptons via virtual photon exchange. Although small in comparison (about 10%),
precise predictions require reliable results for these contributions as well.

• The properties (and with them the theoretical challenges and the treatment) of
the non-local term strongly depend on the size of the dilepton invariant mass q2:
At low q2, that is, at large kaon recoil, QCD factorization [6] represents the

appropriate framework.
In the middle part of the spectrum 7GeV2 . q2 . 15GeV2, the narrow char-

monium resonances give rise to large violations of quark-hadron, which exceed
the perturbative contributions by two orders of magnitude [7]. This part of the
spectrum is therefore frequently removed by suitable cuts.
The domain of high q2, finally, is best addressed by performing an operator

product expansion (OPE) for the non-leptonic part of the Hamiltonian. In addition,
violations of duality – though (presumably) dampened by the broadening of the
resonances – must still be quantified for (precise) theoretical predictions to be
meaningful. Both these issues of the high-q2 domain are discussed in the theoretical
part of this work.

• As is apparent from the above, form factors are inherently non-perturbative
quantities. Hence, their theoretical determination is limited to other, currently
not very precise methods (±15%), such as lattice QCD [8] or QCD sum rules on
the light-cone [9].
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Then again, form factors are quite universal, which can be exploited by extracting
the non-perturbative input needed for the prediction of one decay from the
experimental data of another. Alternatively (which is also the general idea inspiring
the phenomenological part of this work), one can take advantage of this by
considering suitable ratios of related branching fractions, in which the form factor
uncertainties are eliminated almost completely.

Structure of Thesis

This thesis is structured as follows:
The chapters 1 – 3 provide a brief review of the basic tools and concepts in B physics

particularly relevant to the later discussed exclusive rare modes. In addition, this part
serves as a summary of the employed conventions and notations for future reference.
The individual chapters are about the kinematics and phase-space of 3-body decays (1),
the formalism of effective weak Hamiltonians (2), and the treatment of the hadronic
matrix elements encountered in B → M`+`− decays (3).

The actual work is divided into a theoretical part, which is based on [1], and a
phenomenological part. In the first, theoretical part, consisting of the chapters 4 – 6,
the two main theoretical issues of exclusive b → s`+`− transitions at low recoil are
addressed. This includes a short review of the current correlator, responsible for the
problems (4), the construction of an OPE, a suitable framework for calculations at
high-q2 (5), and the investigation of duality violating effects, caused by the presence of
charmonium resonances (6).

The second, phenomenological part is devoted to the construction of precision
observables virtually free of form factor uncertainties. To this end, in each of the
chapters 7 – 9, two decays with similar long- but different short-distance dynamics are
considered together. In detail, we perform a combined NLO analysis of B+→ π+µ+µ−

and B̄0→ π+`− ν̄ (7), B → K∗νν̄ and B → K∗`+`− (8), as well as a combined NNLO
analysis of B → Kνν̄ and B → K`+`− (9).

Finally, in the conclusions (V) the most important aspects and implications of this
work are highlighted and summarized.

In the appendix, we give the numerical values of our input parameters (A) as well as
the parametrizations employed for the B → K(∗), π form factors and light-cone wave
functions (B). Furthermore, it contains some rather technical details, such as the 3-loop
beta-function (C), the RGE evolution of the Wilson coefficients (D), a proof for the
completeness of the operator basis used in the OPE (E), and the calculation of some
Feynman integrals, relevant to B → K`+`− at NNLO (F).
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Part II

Fundamentals





1 Kinematics
This chapter is intended as a brief introduction to the kinematics of B → K(∗)`+`−

decays. Special attention is given to the general structure of 3-body decay spec-
tra.

1.1 Basic Formulas and Notation
The four-vectors (masses) of the B and K (∗) meson are denoted as pµ(mB) and kµ(mK),
respectively. The two momenta of the dilepton system, denoted as qµ1,2 , then sat-
isfy

qµ1 + qµ2 ≡ qµ = pµ − kµ (1.1)

and consequently the dilepton invariant mass squared attains values in the interval

4m2
l ≈ 0 6 q2 6

(
mB − mK

)2 (1.2)

To simplify the notation, one frequently makes use of the dimensionless invariants

s ≡ q2

mB
2 r ≡ mK

2

mB
2 (1.3)

It is usually convenient to describe the decay in the center of mass frame, that is, in the
rest frame of the B meson. In this frame of reference, the energy of the kaon is given
as

E ≡ EK = mB

2


1 − q2

mB
2 +

mK
2

mB
2


 = mB

2
(
1 − s + r

)
(1.4)

and thus, considering the boundaries of the dilepton mass (1.2), has a kinematically
permitted range of

mK 6 E 6
mB

2
+

mK
2

2mB

(1.5)

At times, the clarity of presentation can also be improved by introducing the two
light-like four-vectors (rest frame)

nµ± ≡ (1,0,0,±1) (1.6)

9



1 Kinematics

which satisfy the invariant constraints

n±
2 = 0 and n± · n∓ = 2 (1.7)

Without loss of generality, the meson momenta can then be written as

qµ = mB − E

2
(
nµ+ + nµ−

)
− |~k|

2
(
nµ+ − nµ−

)
(1.8)

kµ = E

2
(
nµ+ + nµ−

)
+
|~k|
2

(
nµ+ − nµ−

)
(1.9)

Vice versa, we have
mB

2
(
nµ+ + nµ−

)
≡ mBv

µ = pµ (1.10)

mB

2
(
nµ+ − nµ−

)
= mB

|~k|

[
kµ − k · p

p2 pµ
]

(1.11)

Furthermore, in the case of a decay into a longitudinally polarized vector meson, the
polarization vector can be expressed as

ε∗µ‖ =
|~k|

2mK

(
nµ+ + nµ−

)
+ E

2mK

(
nµ+ − nµ−

)
=
√
r

|~k|

[
q · k
k2 k

µ − qµ
]

(1.12)

which can be derived exploiting the invariant conditions ε2 = −1 and ε · k = 0. The
above formula further implies

ε∗‖ · q =
|~k|√
r

(1.13)

Finally, there is a close relation between the spatial part of kµ

|~k| = E

√
1 −

(
mK

E

)2
=
√

(q · k)2 − q2k2

mB

= mB

2
λ1/2(s) (1.14)

and the phase-space function

λ(s) ≡ 1 + r2 + s2 − 2r − 2s − 2rs (1.15)

The more prevalent (eponymous) interpretation of λ(s), however, is given in the following
section.

1.2 Phase-Space and Dilepton-Mass Spectra
The general structure of (partially integrated) B → M`+`− decay spectra is derived from
first principles. Since the only information relevant to us is about particle interactions,

10



1.2 Phase-Space and Dilepton-Mass Spectra

all kinematic parameters on which the Feynman amplitude does not depend will be
removed by integration. Furthermore, we assume vanishing lepton masses ml = 0 and
average over spin and polarization of outgoing particles. As we will see, this leads to
dilepton mass spectra, constrained to a very specific form.

Taking into account the conservation of four-momentum as well as the energy-
momentum relations, a 3-body decay may depend on five independent (kinematic)
parameters. If, furthermore, rotational symmetry is exploited (e.g. by integration),
the differential decay rate can be expressed in terms of just two variables, for in-
stance

dΓ
dsdu

=
mB

256π3

∣∣∣M(s,u)
∣∣∣
2

u =
(
p − q1

)2
/mB

2 (1.16)

This ultimately derives from the fact that only two independent variable Lorentz scalars
can be build from the available momenta p,k,q1 and q2 (for B → V `+`−, ε∗µ drops out
once the polarization sum is taken), and consequently can appear in the (invariant)
Feynman amplitude M.

Besides, for a given s, the parameter u ranges within the boundaries

E
mB

− λ1/2

2
6 u 6

E
mB

+ λ1/2

2
(1.17)

which also explains the name of the phase-space function λ(s).
Next, the Feynman amplitude is decomposed into a vector and an axial vector

component according to

iM(s,u) ≡
〈
M̄`+`−

∣∣∣Heff

∣∣∣B̄
〉

= AµV (s)ū(q1)γµv(q2) + AµA(s)ū(q1)γµγ5v(q2) (1.18)

After eliminating the lepton spinors ū,v in the squared amplitude via spin summation,
e.g. by using ∑s v

s v̄s → q2 , we have
∣∣∣M ∣∣∣2 =

(
AµVA∗νV + AµAA∗νA

)
tr
[
q1γµq2γν

]
+ 2Im

[
AµVA∗νA

]
tr
[
q1γµq2γνγ5

]
(1.19)

It is usually sensible to consider just the leading contributions in the electroweak interac-
tion. In this case, one can immediately rule out any dependence of the amplitudes AµV,A
on the individual lepton momenta q1,2 or, equivalently, on the parameter u. As a conse-
quence, the u integration can then be performed, without further specifying the decay.
By Lorentz invariance, one may thereby replace

12
∫
du qµ1 q

ν
2 =

[
2qµqν + q2gµν

]∫
du =

[
2qµqν + q2gµν

]
λ1/2(s) (1.20)

Thus, when integrating the squared amplitude over u, the different symmetry behaviour
of the two terms in (1.19) under the exchange q1 ↔ q2 turns out to be crucial: The
second term vanishes, and we obtain

dΓ
ds

(
B → M`+`−

)
=

mB λ
1/2(s)

192π3

[
qµqν − q2gµν

](
AµVA∗νV + AµAA∗νA

)
(1.21)
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1 Kinematics

1.2.1 B → P Decays
As the lepton masses are here neglected, a term in the partial amplitudes AµV,A propor-
tional to qµ gives no contribution to the decay rate. This can be seen by contracting qµ
into (1.18) and applying the equations of motion (e.o.m.) for the leptons. But then again,
this property is already incorporated in the general form (1.21).

As far as decays into pseudoscalar mesons are concerned, one may thus assume

AµV,A(s) = AV,A(s)pµ (1.22)

Inserting in (1.21), the differential decay rate simplifies to

dΓ
ds

(
B → P`+`−

)
=

mB
5 λ3/2(s)
768π3

{∣∣∣AV (s)
∣∣∣
2 +

∣∣∣AA

∣∣∣
2
}

(1.23)

where, in the SM, the axial amplitude AA is a purely short-distance quantity, induced
at the weak scale.

1.2.2 B → V Decays
Considering the strict separation of the two amplitudes AµV,A in (1.21), the branching
fraction may be decomposed according to

dΓ
ds

(
B → V `+`−

)
= dΓV

ds
+ dΓA

ds
(1.24)

which allows to restrict the explicit discussion to, for instance, just the vector compo-
nent ΓV .

Since there is now additionally the polarization vector ε∗µ, on which the Feyn-
man amplitude depends linearly, a general Lorentz decomposition of AµV is given
by AµV mB = 2V(s)iεµkpε∗ − A1(s)mB

2 ε∗µ + 2A2(s)(ε∗· q)pµ (1.25)

Once considering the squared amplitude, ε∗µ can be eliminated by taking the polarization
sum ∑

ε

ε∗µεν → −gµν + kµkν

k2
(1.26)

What then remains of the decomposition (1.25) is a characteristic kinematic prefactor,
with which each partial amplitude appears in the differential decay rate

dΓV
ds

=
mB

5 λ1/2(s)
768π3

{
8s

(∣∣∣V
∣∣∣
2
λ(s) +

∣∣∣A1
∣∣∣
2) + 1

r

∣∣∣A2λ(s) − 2k · q
mB

2 A1
∣∣∣
2
}

(1.27)

As a final note, it is pointed out that the first term in (1.27) (round bracket) corre-
sponds to a transversely, the second term to a longitudinally polarized vector meson.
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2 Effective Weak Hamiltonians
B decays are by nature inseparably linked to two vastly different energy scales: Firstly, the
scale of the inducing weak interaction and, secondly, the scale of the decaying B meson
itself. Unfortunately, when calculating quantum corrections, the simultaneous presence
of physics from such distinct scales gives rise to sizable logarithms lnMW

2 /mb
2 ≈ 6,

which thwarts the direct perturbative approach. This being said, both scales are still
hard in comparison to the QCD scale ΛQCD , which indicates that the perturbative
breakdown at hand is not related to long-distance dynamics of the strong interaction.
In other words, perturbation theory is in principle justified, even at the much lower
scale mb .

The problem is usually addressed by the construction of an effective weak Hamil-
tonian Heff , a procedure shortly described in the following sections. An exhaustive
discussion of weak Hamiltonians, however, is certainly beyond the scope of this work.
The interested reader is encouraged to consult the relevant literature [10, 11, 12].

2.1 OPE and RG Evolution
The intuitive understanding underlying the OPE is that low momenta k2 ∼ mb

2 resolve
the physics at short distances rather poorly. This train of thought naturally leads to
the approximation illustrated in Fig. 2.1: The non-local W-exchange is described by a
series of local operators Oi(µ) with Wilson coefficients Ci(µ)

(s̄Lγµc)
igµν

k2 − MW
2 (c̄Lγν b) + QCD ⇒

∑

i

Ci
(
MW/µ,αs

)
Oi(µ) + O

(
k2/MW

2 )
(2.1)

In the effective theory (r.h.s of (2.1)), the heavy particles no longer represent active de-
grees of freedom. What is left of them are the different induced interactions, in particular,
the dependence of the corresponding coefficient functions on their masses.

Technically speaking, the OPE represents an expansion of the amplitude in the
small parameter mb

2/MW
2 . Thereby, the leading term consists of operators of energy

dimension 6 – the contributions of higher dimensional operators are power suppressed
and can in general be neglected.

As a first step, the coefficient functions are determined by matching the effective onto
the full theory. This, however, can perturbatively be accomplished at a renormalization
scale µ ∼ MW only. Admittedly, the coefficient functions, or rather the Hamiltonian, are
actually needed at µ ∼ mb , for this is the appropriate scale to renormalize the matrix

13



2 Effective Weak Hamiltonians

b c

cs

W ± + QCD ⇒ Ci



MW

µ , αs


 ·

b q

qs

Γi
+ ...

Figure 2.1: OPE at the weak scale: The non-local W-exchange is approximated by a series of
local operators. The presence of QCD leads to a multitude of four-quark operators, which
differ in their colour-, flavour- and/or Dirac-structure. Depending on the decay considered,
local operators with less quark content may contribute as well.

elements of the local operators. That being so, the Wilson coefficients have then to be
evolved down to lower energies. As further described in appendix D.1, this is accomplished
by solving the relevant renormalization group equation (RGE)

d
d lnµ

~C(µ) = γ̂T~C(µ) (2.2)

In so doing, all contributions up to the considered order in the counting

αs
m(αs lnmb

2/MW
2 )n ∼ O(αsm) (2.3)

are resummed in the coefficients ~C(mb), which indicates that all (short-distance) dy-
namics above the scale µ ∼ mb (therefore also called factorization scale) are now
absorbed into the coefficients. The matrix elements of the local operators, on the
other hand, contain only (long-distance) dynamics below µ and thus, in particular, no
longer suffer from large logarithms. This is clearly the most important feature of effec-
tive Hamiltonians: the systematic disentanglement of the physics governed by distinct
scales.

Finally, it should be stressed that, as a matter of consistency, any arbitrariness
must (to the given order) drop out in physical quantities. This refers in particular
to the concrete choice of the scale µ. In order to ensure this, consistent usage of
the same specific renormalization scheme is mandatory. Throughout this work, the
naive dimensional regularization (NDR) [13] in combination with the modified minimal
subtraction scheme (MS scheme) [14] is continuously put to use.

2.2 Flavour Structure
With respect to b → s(d)`+`− transitions, it is easily seen that all relevant SM processes
are proportional to one of the CKM-combinations

λp ≡ V
∗
pq Vpb where q = s(d) (2.4)
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2.3 Operator Bases

Of course, this circumstance is also reflected in the general flavour structure of the
effective weak ∆B = 1,∆C = 0 Hamiltonian

Heff = ~C T
ex(0) ·

{
λu ~Q

u
ex + λc ~Q

c
ex

}
+
{(
λu + λc

)
~C T
in(0) + λt ~C

T
in(mt)

}
· ~Qin (2.5)

Here the individual interactions of the Hamiltonian have been divided into two cate-
gories:

On the one hand, there are the (4-quark) operators ~Qu,c
ex of the first term. They

originate from current-current diagrams, where the weak interacting up-type quarks
are external (ingoing/outgoing, that is). Thus, the corresponding contributions from
the light quarks differ just by the replacement u ↔ c in the induced local operators.
Meanwhile, since the top quark is integrated out, there is no top equivalent in the first
term.

The second term, on the other hand, is due to diagrams where the W-boson is
interacting with internal (virtual, that is) up-type quarks, for instance, penguin diagrams.
Since the exchange of virtual quarks u ↔ c ↔ t can only effect the coefficient functions,
each quark sector induces the same set of local operators ~Qin. However, in case of
the top contribution, the quark mass can not be neglected which results in a different
Wilson coefficient ~Cin(mt).

If we now exploit the unitarity relation

λt + λc + λu = 0 (2.6)

the second term in (2.5) simplifies to

Heff = ~C T
ex ·

{
λu ~Q

u
ex + λc ~Q

c
ex

}
− λt

{
~C T

in(0) − ~C T
in(mt)

}
· ~Qin (2.7)

Furthermore, in the specific case of a b → s transition, there is a hierarchic structure
between the flavour sectors, namely

λu � λt, λc (2.8)

This then allows to further simplify the structure of the effective Hamiltonian

Heff = −λt
[
~C T
ex · ~Qc

ex +
{
~C T
in(0) − ~C T

in(mt)
}
· ~Qin

]
≡ −λtCiQi (2.9)

2.3 Operator Bases
In the following, two different sets of operators, henceforth denoted as

{
Oi

}
and

{
Qi

}
,

are introduced. While, in principle, these two sets represent equally legitimate operator
bases for the effective Hamiltonian, one of them is usually better suited for a specific
task.

The traditional operator basis
{
Oi

}
[10, 11] is in general more transparent and

will therefore be employed throughout most of this work. The basis
{
Qi

}
, established
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2 Effective Weak Hamiltonians

by the authors of [15, 16, 17, 18, 19], however, is more convenient for higher order
calculations which, in the context of this work, only concerns the next-to-next-to-leading
order (NNLO) analysis performed in chapter 9. The transfer of results from one basis
to another is shortly discussed in appendix D.5.

2.3.1 Conventions
So that operators and Wilson coefficients can unambiguously be defined, let us clar-
ify the conventions that complement the two Hamiltonians (2.20) and (2.16) before-
hand:

• It is common practice, to factor out the constant

GF√
2

= g2

8MW
2 where g2 = e2

sin2θW
(2.10)

At this, GF , g and θW are the Fermi constant, the weak coupling constant and
the Weinberg angle, respectively.

• For the covariant derivatives of quarks and charged leptons, we take

Dµ = ∂µ + ieQeAµ and Dµ = ∂µ + ieQqAµ + igsT
aAaµ , (2.11)

respectively. Here Qf denotes the charge quantum number of the fermion in ques-
tion (Qee = −e is the charge of the electron), and the SU(3) generators satisfy

[
T a, T b

]
= ifabcT c T a

ij T
a
kl = 1

2
δilδkj − 1

2N
δijδkl (2.12)

The specification (2.11) is required for an unambiguous definition of operators
containing the field strength tensor of electromagnetic or strong interaction

Fµν = ∂µAν − ∂νAµ Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAbµA
c
ν (2.13)

The conventions chosen here imply negative magnetic Wilson coefficients C7,8(C7,8),
which is the prevalent convention in the literature as well.

• It is stressed that by C7,8(C7,8) we always mean the corresponding effective
coefficients as defined in (D.12)((D.13)).

• Lastly, regarding the notation of chiral fields, it should be kept in mind that left-
and right-handed fields are defined by means of projection operators

q̄L,R = 1
2
q̄ (1± γ5) and qL,R = 1

2
(1∓ γ5)q (2.14)
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2.3 Operator Bases

In contrast to this, the vector and axial vector current are normalized as

(q̄q)V = (q̄ γµq) (q̄q)A = (q̄ γµγ5q) (2.15)

All in all, this introduces a relative factor of two when switching between these
two notations.

2.3.2 Traditional Basis
With the effective weak Hamiltonian for b → s`+`− (νν̄) transitions defined as

Heff = −GF√
2
λt




10∑

i=1
Ci(µ)Oi(µ) + Cν(µ)Oν(µ)


 + h.c. (2.16)

our “standard” operator basis
{
Oi

}
reads [10, 11]

O1 = (s̄c)V−A(c̄b)V−A O2 = (s̄icj)V−A(c̄jbi)V−A

O3 = (s̄b)V−A
∑

q
(q̄q)V−A O4 = (s̄ibj)V−A

∑
q
(q̄jqi)V−A

O5 = (s̄b)V−A
∑

q
(q̄q)V+A O6 = (s̄ibj)V−A

∑
q
(q̄jqi)V+A

O7 = e

8π2 mb s̄σ
µν(1 + γ5)bFµν O8 =

gs

8π2 mb s̄σ
µν(1 + γ5)T abGa

µν

O9 = αe
2π

(s̄b)V−A
∑

`
( ¯̀̀ )V O10 = αe

2π
(s̄b)V−A

∑
`
( ¯̀̀ )A

Oν = αe
2π

(s̄b)V−A
∑

ν
(ν̄ν)V−A (2.17)

Here αe = e2

4π is the well known fine-structure constant and a summation over repeated
colour indices i, j is – as always – implicitly understood.

As explained in the previous section (2.2), there are also contributions of relative
order λu/λt , which can be summarized in the Hamiltonian

Hu
eff ≡

GF√
2
λuHu ≡

GF√
2
λu

∑

i=1,2
Ci(Ou

i − Oi) (2.18)

where

Ou
1 = (s̄u)V−A(ūb)V−A Ou

2 = (s̄iuj)V−A(ūjbi)V−A (2.19)

17



2 Effective Weak Hamiltonians

While, in principle, (2.18) should be added to the Hamiltonian (2.16), this is only
necessary when considering the variant of a b → d`+`− (νν̄) transition, where no
Cabibbo suppression is active.1

Lastly, it is worth mentioning that with respect to [10] the labels of the operators O1,2
are interchanged and, furthermore, the semileptonic operators O9,10 in [10] lack the
prefactor αe

2π of our operators.

2.3.3 Basis Ensuring γ5-free Traces
The crucial difference of this basis lies in its different definition of the penguin oper-
ators Q3−6 . Owing to this, no γ5 can appear in loop-induced traces to leading order
in weak but to all orders in electromagnetic and strong interaction [16]. By adopting
this basis, one therefore avoids the technical difficulties that otherwise arise at higher
orders when using dimensional regularization in conjunction with a fully anticommut-
ing γ5 .

Following the convention of [15], the effective Hamiltonian is now defined with an
additional prefactor of four with respect to (2.16)

H̃eff = −4GF√
2
λt




10∑

i=1
Ci(µ)Qi(µ) + Cν(µ)Qν(µ)


 + h.c. (2.20)

In this work, every use of the operator basis
{
Qi

}
implicitly includes the above redefinition

of the Hamiltonian. Otherwise retaining the previous conventions, the operator basis
{
Qi

}

is given as

Q1 = (s̄LγµT ac)(c̄LγµT ab) Q2 = (s̄Lγµc)(c̄Lγµb)

Q3 = (s̄Lγµb)
∑

q
(q̄ γµq) Q4 = (s̄LγµT ab)

∑
q
(q̄ γµT aq)

Q5 = (s̄Lγµγ νγρb)
∑

q
(q̄ γµγνγρq) Q6 = (s̄Lγµγ νγρT ab)

∑
q
(q̄ γµγνγρT aq)

Q7 = e

16π2 mb(s̄Lσµνb)Fµν Q8 =
gs

16π2 mb(s̄LσµνT ab)Ga
µν

Q9 = αe
αs

(s̄Lγµb)
∑

`
( ¯̀γµ`) Q10 = αe

αs
(s̄Lγµb)

∑
`
( ¯̀γµγ5`)

Qν = αe
2π

(s̄Lγµb)
∑

ν
(ν̄Lγµν) (2.21)

1Furthermore, in this case, all explicit strange quarks in the operators (2.17) and (2.19) are to be
replaced by down quarks and the λp adjusted according to (2.4).

18



3 Hadronic Matrix Elements
With the effective Hamiltonian at our disposal, it essentially remains to evaluate the ma-
trix elements of the local operators in between the respective meson states

〈
M̄`+`−

∣∣∣Heff

∣∣∣B̄
〉
∝ Ci ·

〈
M̄`+`−

∣∣∣Oi
∣∣∣B̄

〉
(3.1)

The fundamental difficulty of the task at hand lies in the non-perturbative nature of the
long-distance dynamics involved, which refers in particular to the hadronization process,
where the typical relative momentum between the constituent quarks is set by the
soft QCD-scale ΛQCD . But then again, considering the large mass of the initial B meson,
there is a scale for hard contributions as well. In exploiting the hierarchy between
these two scales mb � ΛQCD the hadronic matrix element (3.1) can be simplified
significantly.

As far as inclusive decays, for instance B̄ → Xs `
+`−, are concerned, the standard

practice consists in performing a so-called heavy quark expansion (HQE) [6]. As a result,
the problem is reduced virtually to the one of free quarks.

For exclusive decays, such as B̄ → K̄(∗)`+`−, however, the situation turns out to be
more complicated. While it is at least possible to disentangle short- and long-distance
dynamics systematically, predictions still suffer from the large uncertainties in the form
factors, containing the hadronic information. Moreover, depending on the energy of
the kaon, the theoretical tools to achieve the aforementioned factorization are quite
different:

At large kaon recoil E � ΛQCD , exclusive decays are properly described using
the established framework of QCD factorization (QCDF) [6]. This approach, briefly
discussed in the following section, however, is not justified in case of a soft final
meson.

Indeed, at low kaon recoil E ∼ mK , the hadronic matrix element should be addressed
by performing an OPE for the non-leptonic part of the Hamiltonian. More about
this formalism, developed and discussed at length in chapter 5, can also be found
in [1, 20, 21].

3.1 QCD Factorization
The intuitive reasoning underlying QCDF is known by the name of colour trans-
parency [6]. It refers to the decoupling of a small-sized, highly energetic and, in particular,
colour neutral meson from soft external gluons. In other words, interactions with the
light meson system are dominated by the exchange of hard gluons. The most important
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3 Hadronic Matrix Elements

implication of this is the factorization of perturbative and non-perturbative dynamics
in the limit of a large kaon energy

mB ,E � ΛQCD,mK (3.2)

With respect to the exclusive B → M`+`− decays discussed in this work, this circum-
stance can be represented schematically by means of the factorization formula
〈
M̄`+`−

∣∣∣Heff

∣∣∣B̄
〉

= T I
µ ·

〈
M̄

∣∣∣ s̄Γµb
∣∣∣B̄

〉
+

〈
M̄

∣∣∣ s̄β qα
∣∣∣ 0

〉
⊗ T II

βαρη⊗
〈
0
∣∣∣ q̄ρbη

∣∣∣B̄
〉

(3.3)

≡ T I
µ (q2) · F µ

B→M(q2) +
∫∫
du dω ΦM

βα(u)T II
βαρη(q2,u,ω)ΦB

ρη(ω) (3.4)

Here Γµ denotes a generic Dirac structure and the variables u,ω parametrize the
distribution of the respective meson momentum among the constituent quarks. The
neglected soft contributions on the r.h.s. of (3.3) are, in accordance with (3.2), of
relative order ΛQCD/mB . The aforementioned factorization is thereby realized as fol-
lows:

• The form factors F µ
B→M and distribution amplitudes ΦB,M describe the long-distance

dynamics of the respective process. As of this, they are inherently non-perturbative
quantities, which limits their theoretical determination to other methods, such
as lattice QCD [8] or QCD sum rules on the light-cone [9]. Fortunately, they are
rather universal in the sense that each respective quantity appears in a variety of
(related, but different) decays. In fact, this can be exploited by extracting the non-
perturbative input needed for the prediction of one decay from the experimental
data of another.

• The hard-scattering kernels T I,II, on the other hand, contain exclusively short-
distance dynamics and therefore represent perturbative quantities. On the down-
side, they are specific to a given decay, that is, they must be calculated for every
decay separately.

In short, the factorization (3.3) represents a substantial simplification, for the evaluation
of the matrix element (3.1) is reduced to the calculation of quantities that are either
universal or perturbatively accessible.

3.2 Heavy-to-Light Form Factors
Quite generally, a form factor describes the non-perturbative dynamics contained in the
matrix element of a local current in between two meson states. At this, it is common
practice to decompose the matrix element into a full set of possible Lorentz structures

〈
M(k,ε)

∣∣∣ s̄Γµb
∣∣∣B̄(p)

〉
≡ F µ

B→M(p,k,ε) =
∑

i

V µ
i (p,k,ε)fi(q2) (3.5)
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3.2 Heavy-to-Light Form Factors

where every such Lorentz structure V µ
i is associated with different hadronic dynamics

and thus comes with its own scalar form factor fi(q2).
For the sake of clarity, let us now introduce the shorthand notations

S = s̄b P = s̄ γ5b V µ = s̄ γµb (3.6)

Aµ = s̄ γµγ5b T µν = s̄σµνb T µν
5 = s̄σµνγ5b (3.7)

for scalar, pseudoscalar, vector, axialvector, tensor and pseudotensor current, re-
spectively. Furthermore, the auxiliary momentum q̃ = p+ k is assigned. The “stan-
dard” heavy-to-light form factors, employed throughout this work, are then defined
as [22]

〈
P̄ (k)

∣∣∣V µ
∣∣∣B̄(p)

〉
= f+(q2)

[
q̃µ − q̃ · q

q2
qµ
]

+ f0(q2)
q̃ · q
q2 qµ

= f+(q2)q̃µ + f−(q2)qµ (3.8)

〈
P̄ (k)

∣∣∣T µν
∣∣∣B̄(p)

〉
= 2ifT (q2)

mB + mP

(pµqν − pνqµ) (3.9)

〈
V̄ (k,ε)

∣∣∣V µ
∣∣∣B̄(p)

〉
= 2iV (q2)

mB + mV

εµναβε∗ν kα pβ (3.10)

〈
V̄ (k,ε)

∣∣∣Aµ
∣∣∣B̄(p)

〉
= 2mVA0(q2)

ε∗· q
q2 qµ

+ A1(q2)(mB + mV )
[
ε∗µ− ε∗· q

q2
qµ
]

− A2(q2) ε∗· q
mB + mV

[
q̃µ − q̃ · q

q2
qµ
]

(3.11)

qν
〈
V̄ (k,ε)

∣∣∣T µν
∣∣∣B̄(p)

〉
= − 2T1(q2)εµναβε∗ν kα pβ (3.12)

qν
〈
V̄ (k,ε)

∣∣∣T µν
5

∣∣∣B̄(p)
〉

= − iT2(q2)(q̃ ·q ε∗µ − ε∗·q q̃µ)

− iT3(q2)
ε∗· q
q̃ · q (q · q̃ qµ − q2 q̃µ) (3.13)

At this, the sign convention for the totally antisymmetric Levi-Cevita tensor is
ε0123 = −1, which, however, is contrary to the convention adopted in [22]. The em-
ployed form factors parametrizations, finally, are presented in appendix B.1.
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3 Hadronic Matrix Elements

3.3 Form Factor Symmetries
As it turns out, the form factors defined in (3.9) – (3.13) are not completely independent
from one another. Not surprisingly, this is related to the large mass of the B meson, which
allows for several different hierarchies one may consider. First of all, the hadronic matrix
elements can be investigated in the heavy quark limit (HQL)

mB � ΛQCD,mK (3.14)

Instead of or in addition to this, one may also assume the limit of a very large

E � ΛQCD,mK (3.15)

or, alternatively, a very small kaon recoil

mB � E (3.16)

By exploiting these hierarchies, it is possible to derive so-called form factor relations,
which make connection between the different form factors of the same transition. At
this, each kinematic scenario uses different simplifications, and thus obtains slightly
different but nevertheless consistent form factor relations.

Before discussing the hierarchies (3.14) – (3.16) in detail, some useful formulas, which
hold independently of the concrete kinematics, are presented.

Useful Formulas of General Validity

In any kinematic setting, one may utilize the QCD e.o.m. as well as the translation invari-
ance of QCD. Most notably, they can be combined into the identity

s̄Lqb = i∂µ(s̄Lγµb) = is̄L
(
D

##»» + D
##»»
)
b = mb s̄Lb (3.17)

which, however, implicitly assumes a B → K(∗) matrix element in the first step.1
With the help of (3.17), a connection between the “scalar” and “vector” matrix

elements can already be established:

qµ
〈
P
∣∣∣V µ

∣∣∣B
〉

= mb

〈
P
∣∣∣S

∣∣∣B
〉

= (mB
2 − mK

2 )f+(q2) + q2f−(q2) (3.18)

−qµ
〈
V
∣∣∣Aµ

∣∣∣B
〉

= mb

〈
V
∣∣∣P

∣∣∣B
〉

= −2mV (ε∗· q)A0(q2) (3.19)

Besides, the other “scalar” matrix elements vanish by reason of parity
〈
P
∣∣∣P

∣∣∣B
〉

= 0
〈
V
∣∣∣S

∣∣∣B
〉

= 0 (3.20)

Furthermore, we will repeatedly resort to the B → V matrix elements of tensor currents

1More precisely, we require that b and s quark taken together generate a momentum qµ pointing into
the s̄Lγ

µb vertex.
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in their respective uncontracted form [23]
〈
V
∣∣∣T µν

∣∣∣B
〉

= T1(s)εµνq̃ε
∗ +

[
T2(s) − T1(s)

] q̃ · q
q2 εµνqε

∗

+
[
T2(s) − T1(s) + T3(s)

q2

q̃ · q

]
ε∗· q
q2 εµνq̃q (3.21)

〈
V
∣∣∣T µν

5
∣∣∣B

〉
= iT1(s)(ε∗νq̃µ − ε∗µ q̃ν ) + i

[
T2(s) − T1(s)

] q̃ · q
q2 (ε∗νqµ − ε∗µqν )

+ i

[
T2(s) − T1(s) + T3(s)

q2

q̃ · q

]
ε∗· q
q2 (q̃µqν − q̃νqµ) (3.22)

3.3.1 Heavy Quark Limit mb � ΛQCD

To start with, the hadronic matrix elements are considered assuming the heavy-quark
limit mb � ΛQCD [24]. In consequence, the strong interactions of the b quark simplify
and are best described using heavy quark effective theory (HQET) [6]. In this formalism,
the large heavy-quark field Ψb is decomposed into two components

b±(x) ≡ eimbv·x
1 ± v

2
Ψb(x) (3.23)

Exploiting the QCD e.o.m, the “minus” projection is then found to be subleading in
the Λ/mB counting

Ψb(x) = e−imbv·x b+(x) + O(Λ/mb) (3.24)

With this piece of information, the effective e.o.m. for the b quark can be directly read
off of (3.23):

vb+ = b+ (3.25)

In order to take full advantage of (3.25), the hadronic matrix elements are contracted
with pν , which yields
〈
P
∣∣∣V p

∣∣∣B
〉

= mB

〈
P
∣∣∣S

∣∣∣B
〉 〈

P
∣∣∣T µp

∣∣∣B
〉

= i
〈
P
∣∣∣(mBV

µ − pµS )
∣∣∣B

〉
(3.26)

〈
V
∣∣∣V p

∣∣∣B
〉

= mB

〈
V
∣∣∣S

∣∣∣B
〉 〈

V
∣∣∣T µp

∣∣∣B
〉

= i
〈
V
∣∣∣(mBV

µ − pµS )
∣∣∣B

〉
(3.27)

〈
V
∣∣∣Ap

∣∣∣B
〉

= −mB

〈
V
∣∣∣P

∣∣∣B
〉 〈

V
∣∣∣T µp

5
∣∣∣B

〉
= −i

〈
V
∣∣∣(mBA

µ + pµP )
∣∣∣B

〉
(3.28)

As a next step, the matrix elements in (3.26) – (3.28) are to be replaced by the ex-
plicit parametrizations, given on the right-hand sides of the equations (3.8) – (3.13)
and (3.18) – (3.20) respectively. By comparing the terms proportional to q̃µ, qµ and ε∗µ
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3 Hadronic Matrix Elements

separately, one then obtains two independent B → P

f−(s) = −f+(s) 1 − s + 3r
1 − s − r

(3.29)

2fT (s)
1 +
√
r

= f+(s) − f−(s) = 2f+(s) 1 − s + r

1 − s − r
(3.30)

and four independent B → V constraints

2
√
rA0(s) = A1(s)(1 +

√
r) − A2(s)

1 +
√
r

λ(s)
1 − s − r

(3.31)

2V (s)
1 +
√
r

= T1(s) +
[
T1(s) − T2(s)

] 1 − r

s
(3.32)

2T1(s) = A1(s)(1 +
√
r) + (1 + s − r) V (s)

1 +
√
r

(3.33)

A2(s)
1 +
√
r

(1 − r) = 1 − s − r

1 − s + r

[
T1(s) + T3(s) − (1 + r) V (s)

1 +
√
r

]
(3.34)

Finally, it is reminded that, since

mB − mb ∼ Λ → 0 (3.35)

the heavy-quark limit does not allow to distinguish between the mass of the B meson
and the mass of the b quark.

3.3.2 Large Kaon Recoil E � ΛQCD,mK

Alternatively (or additionally), the hadronic matrix elements can be investigated in the
limit of a highly energetic kaon E � ΛQCD,mK [22, 25]. This kinematic domain is the
application area of soft-collinear effective theory (SCET) [26, 27], where now, in analogy
to the previous section, two components of the strange quark-field, featuring a distinct
scaling behaviour in the high-energy limit, can be identified

s+(x) ≡ eiE·x
n+v

2
Ψs(x) s−(x) ≡ eiE·x

vn+

2
Ψs(x) (3.36)

Since the “minus” projection is (again) power-suppressed with respect to the “plus”
projection, the effective e.o.m. for the strange quark reads

s̄+n+ = 0 (3.37)
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3.3 Form Factor Symmetries

In order to make use of the effective e.o.m (3.37), one should now consider hadronic
matrix elements contracted with kν :

〈
P
∣∣∣V k

∣∣∣B
〉

= 0
〈
P
∣∣∣T µk

∣∣∣B
〉

= ikµ
〈
P
∣∣∣S

∣∣∣B
〉

(3.38)

〈
V
∣∣∣V k

∣∣∣B
〉

= 0
〈
V
∣∣∣T µk

∣∣∣B
〉

= ikµ
〈
V
∣∣∣S

∣∣∣B
〉

(3.39)

〈
V
∣∣∣Ak

∣∣∣B
〉

= 0
〈
V
∣∣∣T µk

5
∣∣∣B

〉
= ikµ

〈
V
∣∣∣P

∣∣∣B
〉

(3.40)

Proceeding as in the previous section, one eventually arrives at two independent B → P

f+(s) = −f−(s) 1 − s − r

1 − s + 3r
= fT (s)

1 +
√
r

mb

mB

(
1 + 4rs

λ(s)

)
(3.41)

and three independent B → V form factor relations

2
√
rA0(s) = A1(s)(1 +

√
r) − A2(s)

1 +
√
r

λ(s)
1 − s − r

(3.42)

= 1 − s − r

1 − r

mb

mB

[
T1(s) − T3(s)

]
(3.43)

T2(s) = 1 − s − r

1 − r
T1(s) (3.44)

Note that the kaon mass has only been kept here if it represents a “kinematic” correction,
that is, if it stems from the form factors definitions (3.8) – (3.13).

3.3.3 Combined Limit mB ,E � ΛQCD,mK

In the literature, heavy-quark and high-energy limit are usually taken together [22, 25].
Based on this, it can be shown that the B → P form factors are already completely de-
termined by a single universal function ζ (mB,E ) according to [22]

f+(s) = −f−(s) = fT (s)
1 +
√
r

= 1 − r

1 − s − r
f0(s) = ζ (mB,E ) (3.45)

Likewise, the B → V matrix elements can be reduced to two independent functions,
denoted as ζ⊥(mB,E ) and ζ‖(mB,E ). Expressed in terms of these functions, the standard
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3 Hadronic Matrix Elements

form factors read [22]

V (s) = (1 +
√
r)ζ⊥(mB,E ) (3.46)

A0(s) =
√
r ζ⊥(mB,E ) + 1 − s − r

1 − s + r
ζ‖(mB,E ) (3.47)

A1(s) = 1 − s + r

1 +
√
r
ζ⊥(mB,E ) (3.48)

A2(s) = (1 +
√
r)
[
ζ⊥(mB,E ) − 2

√
r

1 − s + r
ζ‖(mB,E )

]
(3.49)

T1(s) = ζ⊥(mB,E ) (3.50)

T2(s) = 1 − s − r

1 − r
ζ⊥(mB,E ) (3.51)

T3(s) = ζ⊥(mB,E ) − 2
√
r (1 − r)

1 − s + r
ζ‖(mB,E ) (3.52)

As required by consistency, these findings are equivalent to the heavy-quark rela-
tions (3.29) – (3.34) combined with the large-recoil relations (3.41) – (3.44) up to and
including terms of relative order (mK/mB).

Furthermore, it is pointed out that all form factor relations presented up to now hold
only to leading order in Λ/mB and, in particular, αs. The symmetry breaking diagrams
(hard vertex correction and hard spectator interactions) have been calculated by the
authors of [25]. This issue is discussed in more detail in the context of the NNLO-analysis
of B → K`+`− in chapter 9.

More information about form factor relations at high recoil in general can be found
in [28, 29, 30].

3.3.4 Low Kaon Recoil mB � E,mK

Lastly, one may also consider the limit of a very soft kaon mB � E,mK . It is then
justified to drop matrix elements that contain a covariant derivative acting on the
strange quark 〈

K̄(∗) ∣∣∣ s̄LD
##»»µΓb

∣∣∣B̄
〉
∼ O(E/mB) → 0 (3.53)

which are typically encountered when evaluating matrix elements of the tensor cur-
rents T µν

(5) contracted with qν . In general, matrix elements of the type (3.53) would
then require the introduction of additional hadronic form factors, thereby rendering
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the resulting form factor relations rather useless. However, exploiting (3.53), one now
obtains 〈

P
∣∣∣T µq

∣∣∣B
〉

= i
〈
P
∣∣∣(mbV

µ − qµS )
∣∣∣B

〉
(3.54)

〈
V
∣∣∣T µq

∣∣∣B
〉

= i
〈
V
∣∣∣(mbV

µ − qµS )
∣∣∣B

〉
(3.55)

〈
V
∣∣∣T µq

5
∣∣∣B

〉
= −i

〈
V
∣∣∣(mbA

µ + qµP )
∣∣∣B

〉
(3.56)

By comparing once again the terms proportional to q̃µ, qµ and ε∗µ separately, one then
finds (here s = 1)

f−(s) = −f+(s) fT (s)
1 +
√
r

= mb

mB
f+(s) (3.57)

and

T1(s) = V (s)
1 +
√
r

mb

mB
T2(s) = A1(s)

1−√r
mb

mB
T3(s) = A2(s)

1 +
√
r

mb

mB
(3.58)

for pseudoscalar and vector meson, respectively. Note that again only the “kine-
matic” mK -dependence has been retained, and furthermore, on account of the scaling
A1/A2 ∼ ΛQCD/mB at low recoil, a term proportional to A1 has been dropped in the
last relation of (3.58).

3.3.5 Universal Relations
In what follows, we investigate the question of universal form factor relations, that is,
identities that hold independently of a specific kaon energy. While the heavy-quark
relations (3.29) – (3.34) obviously fall into this category, it is the main objective of this
section to establish further identities. Following the reasoning initially put forward
in [31], we therefor assume that relations that can be derived in both energy-specific
limits in fact apply to the entire spectrum. Related discussions can also be found
in [28, 29].

Since only the leading-power terms of the three scenarios (3.14) – (3.16) are actually
parametrically comparable, we henceforth drop the respective subleading terms of
relative order

mK
2 /mB

2 ≡ 0 and mB − mb ∼ ΛQCD ≡ 0 (3.59)

which does not represent a substantial reduction in accuracy anyway. The “kine-
matic” mK -corrections, however, will again be kept.
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Figure 3.1: B → P form factor ratios for the pion (left) and kaon (right) as functions
of s. For all form factors, the parametrization (B.1), along with the parameter values given
in (B.10) – (B.11) (pion) and (B.16) – (B.19) (kaon), is employed. Note that the “f− /f+” ratios
are not used in this work.

Universal B → P Relations

As regards the form factors of B → P transitions, all three limits individually lead to
the same relations

f+(s) = −f−(s) = fT (s)
1 +
√
r

(3.60)

which puts them on a firm footing indeed.
As can be observed from Fig. 3.1, the relevant relations are, in general, quite well

fulfilled. Considering the fact that the contributions from f− (or f0) are, in the present
context, practically irrelevant and even the fT -term is generally more of a correction to
the dominant f+ component, the usage of (3.60) in the entire q2-range seems tenable.
Correspondingly, the natural approach would be to express the form factors fT and f−
in terms of the dominant f+.

Universal B → V Relations

In case of the B → V form factors, it is most convenient to compare the soft kaon
identities (3.58) directly with the HQET/ SCET combinations (3.46) – (3.52). In so
doing, one obtains the universal relations

T1(s) = V (s)
1 +
√
r

T2(s)
1 +
√
r

= A1(s) T3(s) = A2(s)
1 +
√
r

(3.61)

which can be used to eliminate the tensor form factor from theoretical expressions. The
fourth universal identity

A1(s)(1 +
√
r) = V (s)

1 +
√
r

(1 − s) (3.62)

can then be derived by combining the identities (3.61) with the heavy-quark rela-
tion (3.32) or (3.33). Note that the middle equation in (3.61) (compare, for instance,
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Figure 3.2: B → V form factor ratios for the K∗-vector meson as functions of s. For all
form factors, the parametrization (B.1), along with the parameter values given in Tab. B.1
and (B.34) – (B.37), is employed.

with (3.58)) has been adjusted by a term of O(r) so that the kinematic condi-
tion T1(0) = T2(0) is exactly fulfilled.

Lastly, there is the relation (3.31), which is universal and may be used in unchanged
form

2
√
rA0(s) = A1(s)(1 +

√
r) − A2(s)

1 +
√
r

λ(s)
1 − s − r

(3.63)

for it follows already from the heavy-quark limit alone.
Concerning the actual implementation, it is in general preferable to express the tensor

form factors in terms of V (or A1) and A2 . The form factor T3(s), however, enters
the B → K∗`+`− decay rate only in the linear combination

T̃3(s) ≡ T2(s) + s

1 − r
T3(s) (3.64)

In fact, the authors of [23] only provide an explicit parametrization for T̃3(s). Numerical
values for T3(s 6= 0) must therefore be obtained through (3.64), which is, in particular
for small values of s, rather imprecise.

For instance, using (3.64) together with the provided parametrizations for T̃3(s)
and T2(s), one finds T3(0) = 0.175. However, the value directly calculated from light-
cone sum rules, which is given in [23] as well, is T3(0) = 0.205.2 Similarly, the “di-
rect” value of the corresponding form factor ratio is T3(0)(1 +

√
r)/A2(0) ≈ 0.93 and

not ≈ 0.80, as depicted in Fig. 3.2.
In order to gauge the quality of the form factor relations, it might therefore be more

conclusive to examine the relation

T̃3(s) = A1(s)(1 +
√
r) + s

1 − r

A2(s)
1 +
√
r

(3.65)

instead of the T3(s)/A2(s) relation in (3.61).
2or T3(0) = 0.202 without the Gegenbauer update (see discussion around equation (B.30))
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In any case, as can be observed from Fig. 3.2, all relevant ratios are, for our purposes,
sufficiently well satisfied.

3.4 Light-Cone Distribution Amplitudes
Light-cone projectors, also known as distribution amplitudes, describe the long-distance
dynamics contained in the matrix element of a bilocal current in between a single
meson state and the vacuum. Such matrix elements are typically encountered when the
spectator quark actively participates in a process. At this point, the interested reader is
made aware of the relevant literature [25, 32, 33].

3.4.1 Projections of Light Mesons
The light-cone projector of the kaon or, more generally, of a light meson, is defined in
coordinate space through the bilocal matrix element

ΦK(∗)

βα (z)(δij/N ) ≡
〈
K̄(∗)(k,ε)

∣∣∣ s̄i,β(z)P (z,0)dj,α(0)
∣∣∣ 0

〉
(3.66)

where the color indices i, j as well as the Wilson line P (z,0), ensuring gauge invariance,
will be suppressed from now on. It is usually convenient to break down the matrix
element (3.66) into the possible Dirac-structures [34, 35, 36]

ΦK
βα(z) = ifK

4

∫ 1

0
du eiuk·z

{
kγ5φ(u) − µK γ5

(
φP (u) − σkz

φσ(u)
6

)}

αβ

(3.67)

ΦK∗

βα (z) = − i
4

∫ 1

0
du eiuk·z

{
k
ε∗ · z
k · z f‖φ‖(u) + ε∗⊥kf⊥φ⊥(u)

}

αβ

(3.68)

where the total meson momentum kµ is distributed between quark and antiquark
momentum, kµ1 and kµ2 , according to (u = 1− ū)

kµ1 = uEnµ+ + kµ⊥ +
~k2
⊥

4uE
nµ− kµ2 = ūEnµ+ − kµ⊥ +

~k2
⊥

4ūE
nµ− (3.69)

Further note that the second term in (3.67) is actually a twist-3 contribution, and thus
formally subleading. This is directly linked to the scaling of

µK(µ) ≡ µπ(µ) =
m2
π

mu(µ) + md(µ)
∼ ΛQCD (3.70)

in the heavy-quark limit. This being said, there is a chiral enhancement of µK which
makes said power suppression numerically rather ineffective. For this reason, the
contributions ∝ µK are occasionally taken into account as well.
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3.4 Light-Cone Distribution Amplitudes

The desired momentum space representations of the projectors (3.67) – (3.68) can
be derived via Fourier transformation. For this purpose, the spatial coordinate is first
replaced by its momentum space representation

zµ −→ −i∂µk1 = −i
(
nµ−

2E
∂u + ∂µk⊥ + ...

)
(3.71)

Next, the derivative with respect to u, which initially acts on the corresponding hard
scattering amplitude, can be made to act on the distribution amplitudes via integration
by parts. In this way, one finds the following expressions for the momentum space
projectors [37]

ΦK
βα(u) = ifK

4

{
kγ5φ(u) − µK γ5

k2k1

k2 · k1
φP (u)

}

αβ

(3.72)

ΦK∗

βα (u) = − i
4

{
k
mK

2E
(ε∗·n−)f‖φ‖(u) + ε∗⊥kf⊥φ⊥(u)

}

αβ

(3.73)

Note that, since the two orientations of the polarization vector scale as (ε∗·n−) ∼ E/mK

and ε∗⊥ ∼ 1, respectively, the two terms in (3.73) are indeed of the same order in
the E/mK counting.

Finally, it is mentioned that all kaon distribution amplitudes are normalized to unity∫
du φ = 1. This is essentially a consistency requirement, for in the limit z → 0 the

projection operators (3.67) – (3.68) must reproduce the definitions of the decay constants
〈
K̄(k)

∣∣∣ s̄ γµγ5d
∣∣∣ 0

〉
= −ifKkµ (3.74)

〈
K̄∗‖(k,ε)

∣∣∣ s̄ γµd
∣∣∣ 0

〉
= −if‖mK ε

∗µ (3.75)

〈
K̄∗⊥(k,ε)

∣∣∣ s̄σµνd
∣∣∣ 0

〉
= f⊥

(
kµε∗ν − kνε∗µ

)
(3.76)

Explicit parametrizations of the kaon wave functions can be found in appendix B.2.1.

3.4.2 Projection of the B Meson
To start with, the B meson projector is defined in coordinate space by means of the
bilocal matrix element

Φ̃B
βα(z)(δij/N ) ≡

〈
0
∣∣∣ q̄i,β(z)P (z,0)bj,α(0)

∣∣∣B̄(p)
〉

(3.77)

where the hadronic dynamics contained therein are parametrized as [38] (t ≡ v · z = z0)

Φ̃B
βα(z) = − ifBmB

4

{
1 + v

2

[
2φ̃+(t) + φ̃−(t) − φ̃+(t)

t
z

]
γ5

}

αβ

(3.78)
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3 Hadronic Matrix Elements

In order to proceed, we require a (convenient) representation of the individual B meson
momenta, for instance

pµb = mbv
µ + O(Λ/mB) lµ = l+

2
nµ+ + l−

2
nµ− + lµ⊥ (3.79)

Now, as it turns out, the hard scattering amplitude depends only on one of the momentum
components l± . More precisely, the perturbative part of the relevant diagram is always
found to have the structure

A(l) = A(0)(lx) + lµ⊥A
(1)
µ (lx) + O(Λ/mB) (3.80)

where lx = l± , depending on the diagram in question. For instance, the hard-spectator
scattering processes contributing to B → M`+`− have lx = l− if the virtual photon is
emitted from the loop (Fig. 9.3). If, on the other hand, the photon is emitted from one
of the mesons’ valence quarks (Fig. 9.2) the relevant momentum component is, as in
the case of weak annihilation, lx = l+.

Either way, as a consequence of (3.80), the matrix element Φ̃B
βα(z) has to be evaluated

on the light-cone (z2 = 0) only. This then allows to derive the momentum space
representation of the projection operator from
∫
d4z Φ̃B

βα(z)Aβα(z) =
∫

d4l

(2π)4 A(l)
∫
d4z eil·z Φ̃B(z) ≡

∫ ∞

0
dωΦB(ω)A(l)

∣∣∣
l=ω

2nx
(3.81)

Note that the sign in the exponential is in fact positive. The reason being that, on the
hard scattering side of the diagram, there is a total momentum flow of −l, which points
into the z -vertex.

Defining the momentum space representations of the projection amplitudes through

φ̃±(t) ≡
∫ ∞

0
dω e−iωtφ±(ω) (3.82)

an explicit calculation yields [25]

ΦB
βα(ω) = − ifBmB

4

{
1 + v

2

[
φ+(ω)nx + φ−(ω)

(
2v − nx − ωγµ

∂
∂l⊥µ

)]
γ5

}

αβ

(3.83)

The derivative, which acts on the hard scattering amplitude, must of course be performed
before the antiquark momentum is set to l = ω

2
nx . Also, just like before, the definition

of the B meson decay constant
〈
0
∣∣∣ d̄ γµγ5b

∣∣∣B̄(p)
〉

= ifB p
µ (3.84)

imposes the normalization of the momentum wave functions to unity
∫
dω φ = 1.

Finally, the model functions employed for the B meson projectors can be found in
appendix B.2.2.
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Part III

Theory of B → M`+`−

at high q2





4 Current Correlator and Role of
Dilepton-Mass

The transition amplitude of exclusive B → M`+`− decays can be written as
〈
M̄`+`−

∣∣∣Heff

∣∣∣B̄
〉

= −GF√
2
α

2π
λt

[(
Aµ9(s) + λu

λt
Aµu(s)

)
ūγµv + Aµ10 ūγµγ5v

]
(4.1)

Employing the operator basis (2.17), the different sub-amplitudes in (4.1) read

Aµ9(s) = C9
〈
M̄

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
− C7

2imb

q2

〈
M̄

∣∣∣ s̄σµq(1 + γ5)b
∣∣∣B̄

〉

− 8π2

q2 i
∫
d4x eiq·x

〈
M̄

∣∣∣T jµ(x)Hh(0)
∣∣∣B̄

〉
(4.2)

Aµu = 8π2

q2 i
∫
d4x eiq·x

〈
M̄

∣∣∣T jµ(x)Hu(0)
∣∣∣B̄

〉
(4.3)

Aµ10 = C10
〈
M̄

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
(4.4)

where

Hh ≡
6,8∑

i=1
CiOi and jµ =

∑

q

Qq (q̄ γµq) (4.5)

are the hadronic part of the effective weak Hamiltonian and the electromagnetic current
of quarks, respectively.

The amplitude Aµu contains the contributions from the “up” sector of the effective
weak Hamiltonian. More specifically, we have

Hu =
√

2
GFλu

Hu
eff =

∑

i=1,2
Ci(Ou

i − Oi) (4.6)

where the Ou
i are the operators defined in (2.19). Note that, as far as b → s`+`−

transitions are concerned, the contribution (4.3) is suppressed by the smallness of its
relative prefactor λu/λt and therefore can usually be neglected.
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4 Current Correlator and Role of Dilepton-Mass

b

s ℓ̄

ℓ
c̄

c

q →
jµ(x)Hh(0)

Figure 4.1: Charm correlator (4.7) at leading order in perturbation theory: The two charm
quarks, created by one of the 4-quark operators O1−6, annihilate into the outgoing leptons via
virtual photon exchange.

Two Types of Contributions

The contributions to the amplitudes Aµ9,10,u can be divided into two categories, featuring
quite distinct properties:

• On the one hand, there are the matrix elements of the non-hadronic opera-
tors O7,9,10 They dominate the spectrum outside the domain of the narrow char-
monium resonances owing to the size of the semileptonic Wilson coefficients C9,10 .
These contributions are also rather clean and simple from the theoretical point of
view, as short- and long-distance dynamics factorize completely into coefficient
functions and standard B → M form factors, respectively.

• On the other hand, there are the contributions from the hadronic operators, which
can be subsumed in the current correlator

〈Kµ(q)〉 ≡ − 8π2

q2 i
∫
d4x eiq·x

〈
M̄(k)

∣∣∣T jµ(x)Hh(0)
∣∣∣B̄(p)

〉
(4.7)

Although small in comparison to the semileptonic contributions, this term must be
taken into account as well in order to obtain an accurate prediction. Unfortunately,
however, a straightforward perturbative calculation of this term suffers from two
major difficulties.

Role of Dilepton-Mass

One of said obstacles when evaluating the non-local matrix element (4.7) consists in non-
factorizable soft contributions.1 While a systematic calculation of these contributions is
in general still possible, the appropriate framework to perform this task differs at low
and high kaon recoil.

The other issue is the existence of the charmonium resonances in the middle and
upper part of the q2-spectrum, which gives rise to violations of quark-hadron duality.

1In particular, these contributions can not be expressed in terms of form factors or distribution
amplitudes.
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Since this represents an inherent limitation of the quark model itself, the corresponding
theoretical uncertainty is qualitatively different from other uncertainties, usually related
to neglected orders in some expansion parameter. In the upper part of the spectrum,
where sensible predictions are again possible, a quantitative estimate of duality violating
effects is nevertheless mandatory.

On account of the things just mentioned, the properties (and with them the theoretical
challenges and the treatment) of the correlator differ significantly depending on the size
of the momentum flow through the loop q2. For this reason, the theory of B → M`+`−

decays recognizes three characteristic kinematic domains:
• q2 . 7GeV2: In the domain below the first charmonium resonance, there are
essentially no duality violating effects. This is also where the kaon is highly
energetic

E � ΛQCD,mK (4.8)

which allows to address the non-local term in the QCDF framework, using the
formalisms of HQET [6, 32, 39] and SCET [22, 26, 27].
For most decays this domain is already well explored. As for B → K(∗)`+`−

in particular, this was initially done by the authors of [40] (For a more recent
analysis see also [41]). An exhaustive list of references concerning B decays at
high recoil can be found in [42].

• 7GeV2 . q2 . 15GeV2: This part of the spectrum is governed by the presence
of the first, narrow charmonium resonances. Indeed, the decay B → K(∗)ψ ,
followed by ψ → `+`−, gives rise to large violations of duality, which exceed the
perturbative contributions by two orders of magnitude [7]. For this reason, the
middle domain is frequently removed from experimental data by suitable cuts.

• 15GeV2 . q2: With increasing q2, the resonances continuously broaden, and, as a
consequence thereof, duality violation is dampened. When this mechanism finally
takes full effect, the kinematics are characterized by the hierarchy

mB ,
√
q2 � E,ΛQCD (4.9)

Historically, little attention has been paid to the domain of low (kaon) recoil (4.9),
which suffers mainly from the following two issues:

For one thing, as one approaches the kinematic endpoint, the kaon becomes
soft E ∼ mK and the familiar SCET/QCDF framework loses its justification.
The appropriate framework to address the non-local term (4.7) is then given by
the OPE [1, 20, 21], which is developed and further investigated in the following
chapter 5.
For another thing, while duality violations are presumably rather small, they

must still be quantified for (precise) theoretical predictions to be meaningful. This
issue is thoroughly discussed in section 6.
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4 Current Correlator and Role of Dilepton-Mass
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5 Systematic Framework:
OPE for Current Correlator

Towards the kinematic endpoint, the hierarchy (4.9), defining the domain of low kaon
recoil, transitions into the OPE limit

mB ∼
√
q2 � E,ΛQCD (5.1)

For the correlator (4.7) this implies that two different types of interactions are involved:
On the one hand, perturbative dynamics, governed by the hard scales mB ,

√
q2 and, on

the other hand, non-perturbative dynamics, governed by the soft scales E,ΛQCD .
In the OPE limit (5.1), the short-distance dynamics appear to be local at distances set

by E and ΛQCD. This can be exploited by performing an OPE for the non-local matrix
element (4.7). In so doing, one obtains a framework in which the B → M`+`− amplitude
can systematically be expanded in powers of E/

√
q2 (or equivalently ΛQCD/mB ). In

particular at the endpoint E ∼ mK , where the QCDF framework is not legitimate at
all, the OPE allows for reliable theoretical predictions.

5.1 General Structure
In performing the OPE, the non-local interactions contained in the correlator are
approximated by a series of local operators with increasing dimension. This instance
may formally be written as

Kµ(q) = − 8π2

q2 i
∫
d4x eiq·x T jµ(x)Hh(0) =

∑

d,n

Cd,n(q)Oµ
d,n (5.2)

whereat the index n labels different operators Oµ
d,n of the same mass dimension d. Similar

to the construction of the weak Hamiltonian, the expansion (5.2) leads to a factoriza-
tion of physics from distinct scales into Wilson coefficients (mB ,

√
q2), calculable in

perturbation theory, and matrix elements of local operators (E,ΛQCD), which simplifies
the calculation of 〈Kµ(q)〉 significantly.

39



5 Systematic Framework: OPE for Current Correlator

Dimensionality and Scaling

Since the individual terms on the r.h.s. of (5.2) must all have the same dimensionality,
each local operator is necessarily accompanied by a Wilson coefficient of complementary
dimension:

[
Kµ

]
=

[
Cd,n

]
+

[
Oµ
d,n

]
= 3 =⇒

[
Cd,n

]
= 3 − d (5.3)

The coefficients, which may depend on the hard scales only, therefore scale as

Cd,n(q) ∼ mB
3−d (5.4)

in the OPE limit. Consequently the individual matrix elements behave as

〈
K̄(∗)(k,ε)

∣∣∣Cd,n(q)Oµ
d,n

∣∣∣B̄(p)
〉
∼

√
ΛmB

(
Λ
mB

)d−3

(5.5)

which also showcases the power suppression of contributions from higher dimensional
operators.

General Properties of the Local Operators

On the basis of quite general considerations, the following assertions about the local
operators appearing in the OPE can be made:

• The Ward identity, imposed by current conservation, is individually satisfied by
each operator

qµOµ
d,n = 0 (5.6)

• The operators are gauge invariant combinations of quark and gluon fields that
reproduce the flavour quantum numbers of (s̄b).

• As shown in appendix E, only covariant derivatives acting on the strange quark
generate a soft momentum and thus can increase the operator dimension (in
the OPE counting). Since additional derivatives acting on the bottom quark give
no independent operators of the same dimension, the generic (d+ 3)-dimensional
two-quark operator appearing in the OPE can be written as

s̄L(D
##»»dΓ)µb (5.7)

Explicit Structure of the Leading Operators

In the following, we discuss the explicit structure of the leading terms in the OPE expan-
sion, which begins with the operators of dimension d = 3. Thereby we frequently draw on
the results of the (rather technical) analysis presented in appendix E.

• d 6 4,ms = 0 : In the chiral limit, a complete basis for the operators up to
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5.1 General Structure

dimension 4 is given by

Oµ
3,1 =

(
gµν − qµqν

q2

)
s̄ γν(1 − γ5)b (5.8)

Oµ
3,2 = imb

q2 s̄σµq(1 + γ5)b (5.9)

It is worth mentioning that the two operators Oµ
3,1 and Oµ

3,2 differ only by a
dimension-4 operator. Thus, strictly speaking, there is only one independent
operator at leading order in the power counting.
This being said, any operator of dimension d = 4 can be expressed in terms

of the dimension-3 operators (5.8) – (5.9) multiplied by kinematic prefactors. In
case of a dimension-4 operator not proportional to the difference Oµ

3,1 − Oµ
3,2 , the

kinematic prefactors must be of O(E/mB).

• d 6 4,ms 6= 0 : Assuming Λ ∼ ms in the OPE limit, there are principally two
additional (independent) operators, namely

Oµ
4,1 = ms

(
gµν − qµqν

q2

)
s̄ γν(1 + γ5)b (5.10)

Oµ
4,2 = imsmb

q2 s̄σµq(1 − γ5)b (5.11)

They are counted as operators of dimension-4, for the (admittedly purely kinematic)
suppression is closely linked to the chiral structure of the operators and therefore
always present. The Oµ

4,n do, however, not emerge at the αs0 level, and hence have
a relative impact of only αsms/mb ≈ 0.5%. On this account, we will henceforth
neglect the Oµ

4,n and perform the OPE in the chiral limit (ms = 0).
In any case, the most important implication of (5.8) – (5.11) is certainly that

(independent of the chiral limit) no non-standard form factors are required at the
dimension-3 and -4 level.

• d = 5 : The first power corrections that require the introduction of additional
hadronic form factors to describe the corresponding B → M`+`− matrix elements
are encountered at the dimension-5 level. Of course, such corrections can only
arise from genuine dimension-5 operators, which contain the gluon field strength
tensor Ga

µν (see appendix E) and have the general form

Oµ
5,n = gs s̄L(ΓnGaT a)µb (5.12)

with different Lorentz/Dirac-structures Γn.
Note that we give a full treatment of the dimension-5 level. The “non-genuine”

second-order power corrections, however, are contained in the coefficient functions
of the dimension-3 operators and not mentioned explicitly.
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5 Systematic Framework: OPE for Current Correlator

• d = 6 : As an example for a dimension-6 term, weak annihilation processes
will be considered here as well. After all, weak annihilation represents the only
remaining αs0-contribution and, furthermore, becomes of leading-power at low-q2.
The relevant diagrams are shown in Fig. 5.1 (d ) and give rise to four-quark

operators with the general structure

Oµ
6a,n = (r̄Γnb s̄ Γ̃nr)µ (5.13)

where r stands for the light quark in the B meson.

Summarizing the above, the explicit OPE discussion will cover the three terms on the
r.h.s. of

Kµ(q) ≡ Kµ3 + Kµ5 + Kµ6a + O
(
(Λ/mB )3, αs

)
(5.14)

whereat the lower indices indicate the dimension of the local operators contained.

5.2 Coefficient Functions at Leading Order in αs
In this section, we present analytic expressions for the coefficient functions of the three
terms on the r.h.s of (5.14). They are given in the MS scheme to leading order in
perturbation theory, which is sufficient for a next-to-leading order (NLO) analysis
of B → M`+`− decays.

Leading Power Term Kµ
3 (d = 3)

The Feynman diagrams relevant to the dimension-3 term are displayed in Fig. 5.1 (a).
One finds Kµ3 = C3,1 · Oµ

3,1 , where

C3,1 =
(
C1 + NC2

)
hc −

1
2
(
C3 + NC4

)[
hs + hb

]

+
(
NC3 + C4 + NC5 + C6

)[
hc −

hb

2
+ 2

9

]
(5.15)

Each row in (5.15) corresponds to all contributions from one of the two Fierz-related vari-
ants of diagram Fig. 5.1 (a), and the function hq ≡ h(q2,mq) is given as (x = 4mq

2/q2)

h(q2,mq) = −8
9

lnmb

µ
− 8

9
ln
mq

mb

+ 8
27

+ 4
9
x

− 2
9

(2 + x)
√
|1 − x| ·





2arctan 1√
x−1 x > 1

ln 1+
√

1−x
1−
√

1−x − iπ x < 1
(5.16)
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5.2 Coefficient Functions at Leading Order in αs

b s

O1−6

b sO1−6
b s

O8

b s

rr

O3−6

(a) (b) (c) (d )

Figure 5.1: OPE for Kµ at leading order in αs: More specifically, diagram (a) gives rise to
the leading-power term Kµ3 , the diagrams (b) and (c) to the gluon term Kµ5 , and diagram (d )
to the weak annihilation term Kµ6a . The crossed circles denote possible insertion points for
the electromagnetic current operator jµ =

∑
qQq (q̄ γµq).

In the case of a (approximately) massless quark (q = u,d,s), the loop function simplifies
to

h(q2,0) = 8
27
− 8

9
ln mb

µ
− 4

9
ln

q2

mb
2 + 4

9
iπ (5.17)

If required, the exact position in the complex plane can always be determined by
restoring the Feynman prescription mq

2 → mq
2− iε , which corresponds to the replace-

ment x → x− iε in (5.16).
Note that, in keeping the q2-dependence in the coefficient functions, Kµ3 also contains

contributions of dimension 4 and higher.
Finally, it is pointed out that (5.15) depends on the chosen scheme for the UV renor-

malization. This, however, only influences the constant terms, such as the “2/9” in the
second row of (5.15), which corresponds to theMS scheme, used here. This ambiguity is
cancelled by an opposing scheme dependency of the Wilson coefficient C9 , which results in
an overall scheme independent amplitude A(∗)µ

9 to the given order.

Second-Order Power Corrections Kµ
5 (d = 5)

At next, we already have the dimension-5 term, which has its origin in the Feynman dia-
grams shown in Fig. 5.1 (b) and (c). The calculation yields1 (ε0123 = −1)

Kµ5 = 2gs
q4

{
Qc f(q2,mc)

(
C1 + C4 − C6

)
+ Qbf(q2,mb)

(
C3 + C4 − C6

)

+ Qsf(q2,ms)C3

}(
εαqµβqν − εαqµνqβ

)
Ga
αβ s̄LγνT

ab

+ 8gs
q2

C8Qb

mB
(gµαqν − gµν q

α)Ga
αβ s̄Lσ

βνT ab (5.18)

1At this point, special thanks go to Prof. Jürgen Körner for drawing our attention to the Schouten
identity, which allowed for a simplification of our original result.
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5 Systematic Framework: OPE for Current Correlator

where (x = 4mq
2/q2)

f(q2,mq) = −x√
1 − x

(
ln 1 +

√
1 − x

1 − √1 − x
− iπ

)
− 2 (5.19)

which simplifies for a massless quark to f(q2,0) = −2. The entire loop contribution, i.e.
the first two rows of (5.18), can also be extracted from [43].

Further note that this term is, to a large extent, scheme independent. In particular,
the expression (5.18) does not depend on the chosen operator basis. This is due to the
cancellation of the infinities between the two symmetric diagrams of Fig. 5.1. More
details on this and the calculation in general can be found in section 9.2.3, where the
more general case of an arbitrary kaon energy is addressed.

Weak Annihilation Term Kµ
6a (d = 6)

At last, we have the weak annihilation term, induced by the processes of Fig. 5.1 (d ).
This completely scheme independent term may be written as

Kµ6a = 16π2

q4

∑

r=u,d

{
(
δijδklC4 + δilδkjC3

)
[
i

3
εqµαβ + Qr

(
gµαqβ − gµβqα

)
]

· r̄iγα(1 − γ5)bj s̄kγβ(1 − γ5)rl

+ i
(
δijδklC6 + δilδkjC5

)
[(
Qr − 1

3

)
r̄i(1 − γ5)bj s̄kσµq(1 + γ5)rl

+
(
Qr + 1

3

)
r̄iσ

µq(1 − γ5)bj s̄k(1 + γ5)rl
]}

(5.20)

Of course, only the component of Kµ6a for which r coincides with the respective spectator
quark contributes to a given decay.

5.3 Impact of O(αs) Corrections
The Feynman diagrams responsible for the non-factorizable O(αs) corrections to the
leading-power term Kµ3 are shown in Fig. 5.2. Owing to the smallness of the penguin coeffi-
cients, the contributions from the operators O3−6 will be neglected.

Beforehand, attention is drawn to the peculiar colour structure of the LO term
(Fig. 5.1 (a)). In combination with the numerical size of the Wilson coefficients C1,2
at µ ∼ mb , this entails a suppression of this term. The NLO term, on the other hand,
allows for a cc̄ pair in the colour-octet state and, due to this, has no such suppression.
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5.4 Impact of O(E/mB ) Corrections

b sO1−6 b sO1−6

(a) (b)

Figure 5.2: OPE for Kµ : Diagrams responsible for the O(αs) corrections to the leading-power
termKµ3 . The crossed circles denote possible insertion points for the electromagnetic current
operator jµ =

∑
qQq (q̄ γµq). Diagrams related to (b) by symmetry are not shown.

Schematically, this instance reads

LO ∝ C1 + NC2 ≈ 1.137 + 3 ·(−0.303) = 0.23 (5.21)

NLO ∝ CF C1 ≈ 4
3
·(1.137) = 1.52 (5.22)

In consequence, the LO charm-loop (Fig. 5.1 (a)) and the corresponding O(αs) cor-
rections (Fig. 5.2) are comparable in size and, as it turns out, compensate each other
to a large extent. It is stressed that even higher order contributions ∼ O(αsn) with n > 2
do not come with enhanced colour structures and thus should indeed be small.

For mc = 0, the q2-dependency of the charm-loop correction was first presented
in analytic form in [44]. Later, a Taylor series in the small parameter z = mc

2/mb
2

was presented in [45]. The authors of [45] also affirm a good convergence behaviour
for ŝ = q2/mb

2 > 0.6, which corresponds to q2 > 10.5GeV2 and thus applies to the OPE
domain. Consequently, the MATHEMATICA input files attached to [45] may be used
to compute the O(αs) corrections to Kµ3 .

Now, as for the actual results, real and imaginary part of the correction term are both
found to be negative and roughly of the same size. Adding the O(αs) corrections to the
amplitude Aµ9 , the real part and hence the absolute value of Aµ9 are reduced by 7−14%,
whereat, however, a strong dependence of the impact on the chosen scheme for the
charm mass can be observed. While the imaginary part of Aµ9 is changed drastically,
this has virtually no impact on |Aµ9| (and consequently the branching fractions), for Aµ9
is and remains almost completely real.

The above findings qualitatively agree with the corresponding results for the high-q2

region of the inclusive B → Xs `
+`− decay rate, discussed in [45]. Furthermore, the effect

found for exclusive B → M`+`− decays at low-q2 is similar [46].

5.4 Impact of O(E/mB ) Corrections
In principle, the OPE allows for a systematic expansion of B → M`+`− decay am-
plitudes in powers of E/mB . This being said, at low recoil, the matrix elements of
higher-dimensional operators can not be expressed in terms of the “standard” form
factors (3.8) – (3.13). Instead they require the introduction of new, presently unknown,
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Figure 5.3: In the OPE framework, the leading-power contributions to the B̄ → K̄(∗)`+`−

amplitude are obtained from the matrix elements of the local operators Kµ3 , Kµ5 and Kµ6a.

form factors, which renders the actual (numerical) calculation of power corrections at
high-q2 currently unfeasible.

While power-counting arguments indicate the smallness of these contributions, it is
certainly preferable to quantify the possible impact of power corrections more concretely.
To this end, we henceforth assume the kinematic setting

√
q2 � E � ΛQCD,mK (5.23)

for this allows to a the matrix elements of the local operators, shown in Fig. 5.3,
within the framework of QCDF. Admittedly, towards the kinematic endpoint q2 ∼ mB

2 ,
the results obtained in this way can only serve as very rough estimates. Nevertheless,
drawing qualitative conclusions should still be justified. A discussion similar to the one
below was given in [1].

5.4.1 Evaluation of B → P Matrix Elements
Approaching the pseudoscalar matrix elements as outlined above, one finds

〈
K̄(k)

∣∣∣Kµ3
∣∣∣B̄(p)

〉
= 2f+(q2)C3,1(q2)

[
kµ − k · q

q2 qµ
]

(5.24)

〈
K̄(k)

∣∣∣Kµ5
∣∣∣B̄(p)

〉
= −παs(E )CF

N
C1Qcf(q2,mc)

mBfBfK
q2λ+

[
kµ − k · q

q2 qµ
]

(5.25)

〈
K̄(k)

∣∣∣Kµ6a
∣∣∣B̄(p)

〉
= −16π2Qr

(
C3

N
+ C4

)
fBfK

q2

[
kµ − k · q

q2 qµ
]

(5.26)

where, in (5.25), the penguin coefficients have been neglected and the function λ−1
+ ,

specified in appendix B.2.2, is the first inverse moment of the B meson. Furthermore, in
the dimension-6 term (5.26), Qr denotes the charge quantum number of the spectator
quark, which is the light quark in the B meson.

Note that the contributions from the matrix elements (5.24) and (5.26) to the
decay rate coincide with the results from “naive” QCDF (that is, if no OPE is per-
formed first). The contribution due to the dimension-5 term (5.25), on the other hand,
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Figure 5.4: Power-suppressed contributions to B → K`+`−: Correction terms ∆9i , normalized
to the amplitude coefficient Ceff

9 ≈ 4, as functions of q2[GeV2 ]. The weak annihilation term
corresponds to Qr = Qu . Only ∆95 develops an imaginary part, namely for q2 > 4m2

c .

differs slightly from its QCDF-based counterpart, which is discussed at length in
section (5.5).

Finally, it is pointed out that the matrix element of the C8 term in (5.18) is heavily
constrained by its three antisymmetries and Lorentz invariance (in particular the limited
number of independent momenta available). In consequence, this matrix element vanishes
completely in the pseudoscalar case

(gµαqν − gµν q
α)
〈
K̄(k)

∣∣∣Ga
αβ s̄Lσ

βνT ab
∣∣∣B̄(p)

〉
= 0 (5.27)

Numerical Impact: Effective Coefficient and Correction Terms

In order to investigate the relative size of the higher-dimensional contributions, the
matrix elements (5.24) – (5.26) are expressed as corrections to the effective coefficient Ceff

9 ,
which multiplies the local operator 2π

αe
O9 = (s̄b)V−A

∑
`( ¯̀̀ )V . More specifically, the

amplitude (4.2) is expressed as (omitting terms ∝ qµ)

Aµ9(s) ≡ Ceff
9 (s)

〈
K̄

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
= 2Ceff

9 (s)f+(s)kµ (5.28)

The effective coefficient is then given as

Ceff
9 = C9 + 2mb

mB + mK

fT (s)
f+(s)

C7 + ∆93 + ∆95 + ∆96a + ... (5.29)

where the correction terms ∆9i are obtained from the expressions (5.24) – (5.26) via nor-
malization to the matrix element of the local operator (s̄b)V−A according to

∆9i ≡
〈
K̄(k)

∣∣∣Kµi
∣∣∣B̄(p)

〉

〈
K̄

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉 (5.30)

The ∆9i can essentially read off of (5.24) – (5.26), but are nevertheless given explicitly
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∆95 ∆95‖ ∆95⊥ ∆(u)
96a ∆(u)

96a‖ ∆(u)
96a⊥ ∆(d)

96a ∆(d)
96a‖ ∆(d)

96a⊥

[10−3 ] 18 − 11i 20 − 11i 14 − 9i 2.6 2.8 3.1 −1.3 −1.4 −6.1

Table 5.1: Maximum values of the corrections terms ∆9i , attained at q2 = 15GeV2.

for the sake of completeness:

∆93 = C3,1(q2) (5.31)

∆95 = −παs(E)CF
2N

C1Qc f(q2,mc)
mBfBfK

f+(q2)q2λ+
(5.32)

∆96a = −8π2Qr

(
C3

N
+ C4

)
fBfK

f+(q2)q2
(5.33)

The two subleading terms, ∆95 and ∆96a, are displayed in Fig. 5.4, where a continuous
decrease with increasing q2 can be observed. This behaviour is in line with the power-
suppression of these terms in the OPE limit and implies that the maximum values,
given in Tab. 5.1, are attained at our lower bound q2 = 15GeV2.

Comparing the maximum values with the leading-power coefficient Ceff
9 ≈ 4.1 + 0.8i

(using NNLO Wilson coefficients and q2 = 15GeV2), one finds for the dimension-5
term an impact to real and imaginary part of 0.5% and 1.4%, respectively. However,
since Im[Ceff

9 ] is strongly order and scheme dependent, the impact on the imagi-
nary component can potentially go up to 5%. This being said, the real component
of Ceff

9 is much larger than the imaginary, and therefore the total impact of ∆95
to the decay rate is only about 0.5% and stems, in any case, almost exclusively
from Re[∆95].

As far as the weak annihilation term is concerned, the large numerical prefactor “8π2”
is, for the most part, compensated by the smallness of the penguin coefficients. The
overall impact of this contribution to the decay rate stays well below 0.1% and thus is
completely negligible.

Again, these results are based on QCDF, which loses its validity if the kaon becomes
soft. Nevertheless, qualitatively these results should hold even towards the kinematic
endpoint q2 ∼ mB

2 , particularly in view of the fact that the power suppression be-
comes fully effective there. In other words, the impact of the power-suppressed terms
should be the largest where the QCDF-based estimates presented here are most reli-
able.

5.4.2 Evaluation of B → V Matrix Elements
It is convenient to consider the decay into a longitudinally and transversely polarized
vector meson separately. Once again, the kinematic setting (5.23) is assumed. Fur-
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Figure 5.5: Power-suppressed contributions to B → K∗‖ `
+`−: Correction terms ∆9i‖ , normal-

ized to the amplitude coefficient Ceff
9‖ ≈ 4, as functions of q2[GeV2 ]. The weak annihilation

term corresponds to Qr = Qu . Only ∆95‖ develops an imaginary part, namely for q2 > 4m2
c .

thermore, the universal form factor relations (3.61) – (3.63) are utilized to simplify the
matrix elements of the leading operator O9 to (dropping terms of relative order mK

2 /mB
2

or proportional to qµ )
〈
K̄∗‖

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
= 2ε∗‖ · q

mB + mK

A2(q2)kµ − A1(q2)(mB + mK)ε∗µ‖ (5.34)

= −2A0(q2)kµ (5.35)

〈
K̄∗⊥

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
= 2iV (q2)

mB + mK

εµkpε
∗
⊥ − A1(q2)(mB + mK)ε∗µ⊥ (5.36)

= −2V (q2)
mB + mK

[
iεµqkε

∗
⊥ + k ·q ε∗µ⊥

]
(5.37)

The decay into a longitudinal vector meson is (then) very similar to the preceding
pseudoscalar case. In the calculations, one simply has to replace

f+(q2) → −A0(q2) and fK → −f‖ (5.38)

and, consequently, the longitudinal matrix elements are found to be
〈
K̄∗‖(k,ε)

∣∣∣Kµ3
∣∣∣B̄(p)

〉
= −2C3,1(q2)A0(q2)

[
kµ − k · q

q2 qµ
]

(5.39)

〈
K̄∗‖(k,ε)

∣∣∣Kµ5
∣∣∣B̄(p)

〉
=

παs(E)CF
N

C1Qc f(q2,mc)
mBfBf‖

q2λ+

[
kµ − k · q

q2 qµ
]

(5.40)

〈
K̄∗‖(k,ε)

∣∣∣Kµ6a
∣∣∣B̄(p)

〉
= 16π2Qr

(
C3

N
+ C4

)
fBf‖

q2

[
kµ − k · q

q2 qµ
]

(5.41)
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Figure 5.6: Power-suppressed contributions to B → K∗⊥`
+`−: Correction terms ∆9i⊥ , normal-

ized to the amplitude coefficient Ceff
9⊥ ≈ 4, as functions of q2[GeV2 ]. The weak annihilation

term corresponds to Qr = Qu . Only ∆95⊥ develops an imaginary part, namely for q2 > 4m2
c .

The transverse polarizations, on the other hand, presents itself somewhat different, and
one obtains
〈
K̄∗⊥

∣∣∣Kµ3
∣∣∣B̄

〉
= 2C3,1(q2)V (q2)

mB

[
iεµqkε

∗
⊥ + k ·q ε∗µ⊥

]
(5.42)

〈
K̄∗⊥

∣∣∣Kµ5
∣∣∣B̄

〉
=

παs(E )CF
2N

[
C1Qc

f(q2,mc)
s

+ 8C8Qb

]
fBf⊥
q2λ+

[
iεµqkε

∗
⊥ + k ·q ε∗µ⊥

]
(5.43)

〈
K̄∗⊥

∣∣∣Kµ6a
∣∣∣B̄

〉
= 16π2

(
Qr − 1

3

)(C5

N
+ C6

)
mBfBf⊥

q4

[
iεµqkε

∗
⊥ + k ·q ε∗µ⊥

]
(5.44)

As before, penguin suppressed contributions have been neglected in (5.40) and (5.43),
and the Qr in (5.41) and (5.44) refers to the charge quantum number of the respective
spectator quark.

Numerical Impact: Effective Coefficients and Correction Terms

The effective coefficients, one for each polarization, are now defined as

Aµ9‖(s) ≡ Ceff
9‖(s)

〈
K̄∗‖

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
= −2Ceff

9‖A0(s)kµ (5.45)

Aµ9⊥(s) ≡ Ceff
9⊥(s)

〈
K̄∗⊥

∣∣∣ s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
= −2Ceff

9⊥V (s)
mB + mK

[
iεµqkε

∗
⊥ + k ·q ε∗µ⊥

]
(5.46)

which results in power expansions of the form

Ceff
9‖(s) = C9 + 2C7

mb

mB
+ ∆93‖ + ∆95‖ + ∆96a‖ + ... (5.47)

Ceff
9⊥(s) = C9 + 2C7

s
mb

mB
+ ∆93⊥ + ∆95⊥ + ∆96a⊥ + ... (5.48)
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Defined analogous to (5.30), the correction terms appearing in (5.47) and (5.48)
read

∆95‖ = −παs(E )CF
2N

C1Qc f(q2,mc)
mBfBf‖

A0(q2)q2λ+
(5.49)

∆95⊥ = −παs(E )CF
4N

[
C1Qc

s
f(q2,mc) + 8C8Qb

]
mBfBf⊥

V (q2)q2λ+
(5.50)

∆96‖ = −8π2Qr

(
C3

N
+ C4

)
fBf‖

A0(q2)q2
(5.51)

∆96⊥ = −8π2
(
Qr − 1

3

)(C5

N
+ C6

)
mB

2 fBf⊥

V (q2)q4
(5.52)

They are displayed as functions of q2 in Fig. 5.5 and 5.6; the respective maximum values,
attained at q2 = 15GeV2, are given in Tab. 5.1. The numerical situation is for both direc-
tions of polarization quantitatively and, in particular, qualitatively similar to the pseu-
doscalar case, and thus we refrain here from an explicit discussion.

5.4.3 Scaling and Power Suppression
Individual Components

First of all, the scaling behaviour in the heavy-quark limit of the individual scale-
dependent components is listed separately. Let us begin with the quantities where the
scaling does not depend on the size of q2, which are

fB ∼ (Λ3/mB)1/2 fK ∼ f‖ ∼ f⊥ ∼ Λ λ+ ∼ Λ (5.53)

As for the remaining quantities, the size (or the scaling) of q2 is decisive. For the form
factors, we have

f±(q2 ' m2
B) ∼ (Λ/mB)−1/2 and f+,0(q2 ' 0) ∼ (Λ/mB)3/2 (5.54)

where the relation on the l.h.s. can be derived from the Isgur-Wise scaling law [47];
the relation on the r.h.s. from QCD sum rules [48] or, alternatively, SCET [22]. The
corresponding form factors of the vector meson behave similarly in the heavy-quark
limit f+(q2) ∼ A0(q2) ∼ V (q2). Finally, we have the scaling

λ−(q2 ' m2
B) ∼ mB and λ−(q2 ' mBω0) ∼ Λ (5.55)
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However, note that

λ−1
− (q2� mBω0) = 1

ω0

[
iπ − γ − ln smB

ω0
+ O

(
smB

ω0

) ]
(5.56)

is divergent in the limit q2 → 0.

Correction Terms

In avoidance of repetition, only the scalar case is discussed explicitly; both polarized
cases are analogous to and can easily be obtained from the scalar case by performing
the appropriate replacements (e.g. via (5.38) in the case of a K∗‖ ).

Putting everything together, the proper scaling behaviour of the correction terms in
the OPE limit (mB ∼

√
q2 � Λ)

∆95 ∼
mBfBfK

f+(q2)q2λ+
∼ (Λ/mB)2 ∆96a ∼

fBfK

f+(q2)q2
∼ (Λ/mB)3 (5.57)

can easily be verified. Moreover, as a direct consequence of the different scaling of f+(q2)
and λ−1

− (q2) at high- and low-q2, it can be shown that ∆95 and ∆96a are leading-power
contributions at low-q2. For this, however, the λ−1

− in the weak annihilation term needs
to be recovered first (e.g. by undoing the replacement (B.45), or by resorting directly to
a QCDF-based expression, such as (9.4)).

5.5 Transition Domain: OPE vs.QCD Factorization
Transition Domain

It is instructive to compare the OPE-based results with those obtained in the framework
of QCDF. Admittedly, these two theoretical approaches address, in principle, the
opposing endpoints of the spectrum. This being said, what OPE and QCDF require
are, strictly speaking, only the hierarchies

√
q2 � E,ΛQCD and E � ΛQCD,mK (5.58)

respectively. However, the two kinematic limits (5.58) are not mutually exclusive.
As a matter of fact, they can be combined, which formally defines a transition re-
gion √

q2 � E � ΛQCD,mK (5.59)

where both theoretical frameworks are equally well justified. Not surprisingly, (5.59)
coincides with the setting (5.23), assumed above to calculate the matrix elements
of the local operators with the help of QCDF. In other words, in the transition do-
main (5.59), “naive” (pure) QCDF is just as justified as the “mixed” approach of the
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previous sections, and it is the relation between these two we want to investigate in this
section.

Now let us continue to determine the range in q2 where the hierarchies (5.59) are at
least roughly realized. For obvious reasons constraining the search to our default OPE
domain, the lowest point that comes into question is q2 = 15GeV2. At this value
of q2, (5.59) numerically reads (kaon)

3.87GeV � 1.24GeV � 0.5GeV (5.60)

which can be considered halfway decent hierarchies. From here the transition region
stretches a few GeV2 upwards until both QCDF-based approaches eventually lose their
remaining validity.

For definiteness, the following discussion will be restricted to the case of a pseu-
doscalar kaon (which is equivalent to a longitudinal vector meson). Also, in order to
keep the following discussion as simple as possible, the small penguin coefficients are
dropped.

OPE and QCDF Expressions for Leading Correction Terms

In both theoretical frameworks, the result obtained for the leading contribution to
the charm loop, given by the diagram in Fig. 5.1 (a), is identical.2 Consequently, we
will focus our attention on the respective first correction term, which arises from the
spectator processes shown in Fig. 5.1 (b) and (c).

The required QCDF expression may be extracted from [40], where it is decomposed
into two components ∆9‖±, each proportional to one of the B meson projectors.3 The
minus component is given as (mK = 0)

∆9‖− = −παs(E)CF
2N

Qr

fBfK

f+(q2)
mb

mB

∫ dωφ−(ω)
ωmB − q2 − iε

·
∫ 1

0
du φK(u)

[
8C8

ū + us
+ 6mB

mb

C1h(q2,mq)
∣∣∣
q2→ūm2

B+uq2

]
(5.61)

where h(q2,mq) is the function defined in (5.16) and Qr refers to the charge quantum
number of the spectator quark.

Actually, related to the scaling of λ−1
− in this kinematic region (see (5.55)), the contri-

bution (5.61) is subleading in the OPE limit ∆9‖− ∼ 1/mB
3 . Using Wilson coefficients in

leading logarithmic approximation (LLA), this term amounts to (Qr = Qu)

∆9‖−(q2 = 15GeV2) = (0.091 + 3.90i) · 10−3 (5.62)

from where it further diminishes continuously with increasing q2. Noteworthy, using
2As an aside, the same holds for the weak annihilation term Fig. 5.1 (d ).
3The notation for the lower indices is adopted from [40], which only discusses the vector meson
explicitly.
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Figure 5.7: Comparison of OPE - and QCDF-based result as given in (5.63) and (5.64),
respectively. The shaded areas illustrate the expected deviation between the two curves due
to the “missing” terms of relative order E/

√
q2.

NLLA coefficients, almost halves the result to ∆9‖− = (0.048 + 3.77i) · 10−3 . In any
case, at high-q2, the minus component is negligible for sure, which is in perfect agreement
with the absence of such a term in the OPE expression ∆95.4

Turning our attention now to the plus component, the corresponding OPE expression
is given as well (or rather once again) to allow for a direct comparison. The two correction
terms read

∆95 = −παs(E)CF
2N

C1Qc
fBfK

f+(q2)

∫
dω
ωmB

φ+(ω) · f(q2,mc)
mB

2

q2 (5.63)

∆9‖+ = −παs(E)CF
2N

C1Qc
fBfK

f+(q2)

∫
dω
ωmB

φ+(ω) ·
∫ 1

0
du φ(u) t‖(q2,mc , u) (5.64)

where (t ≡ mq
2/mB

2 , ū = 1− u)

t‖(s, t, u) = 4t
ū2(1 − s)2

[
F 2

( 4t
ū + us

)
− F 2

(4t
s

)]
− 4

s
(5.65)

F (x) = ln 1 +
√

1 − x

1 − √1 − x
− ū + us

2t
√

1 − x − iπ (5.66)

It is to be stressed that, even though our definitions for ∆9‖+, i.e. the equations
(5.64) – (5.66), look significantly simpler than the ones used in [40], they are never-
theless equivalent (most notably, the functions ∆9‖+ and t‖ are identical). In this
context, further note that the imaginary part has been made explicit for high values
of q2 > 4mc

2 .
4In particular, the OPE result is proportional to λ−1

+ and lacks a C8 term.
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Numerical Comparison

Comparing the OPE result (5.63) with the QCDF result (5.64), the close resemblance is
easy to recognize. The two expressions differ just by the replacement

∫ 1

0
du φ(u) t‖(q2,mc , u) = −5.04 + 2.61i → f(q2,mc)

s
= −5.81 + 3.36i (5.67)

where the numerical values correspond, once again, to our reference point q2 = 15GeV2.
The shift in (5.67) represents a change of real and imaginary part by 16% and 30%,
respectively. This corresponds to the expected size, for the expansion parameter that
separates the two is E/

√
q2 ≈ 0.3. In accordance therewith, the absolute and relative

difference between the two expressions in (5.67) decreases from here with the kaon
energy. All of this can also be observed in Fig. 5.7.

Analytical Comparison

In order to complement the picture, the relation between OPE and QCDF is investigated
with analytical methods as well. To this end, the energy relation of the kaon is utilized
in the form s = 1− 2E/mB to rewrite t‖(q2,mq, u) as a function of E/mB , thereby
eliminating q2 completely. An expansion in E/mB , subsequently performed, then reveals
that

s · t‖(q2,mc , u) = f(q2,mc) + O(E/mB) (5.68)

In particular, the square bracket in (5.65) is proportional to (ūE/mB )2 in the OPE
limit. Also note that, apart from subleading terms, both sides of (5.68) depend solely
on the ratio t/s = mc

2/q2, and this is how the remaining q2-dependence is to be under-
stood. Furthermore, the finding (5.68) immediately clarifies the parametric situation
in (5.67); OPE and QCDF differ indeed just by terms of O(E/mB).

Conclusions and Implications

On the basis of the above findings, it can be concluded that, even at values of q2 as
low as 15GeV2, the OPE still gives sensible results. As a matter of fact, the numerical
difference between OPE and QCDF is virtually negligible, as it concerns only the second
order correction, which is fairly small to begin with.

This applies to B → M`+`− decays in general, for the difference between OPE
and QCDF lies in the treatment of the charm-loop and therefore is independent from the
outer (hadronic) dynamics. For instance, in the case of a transversely polarized vector
meson, we have5 t⊥ = t‖ +O(E/mB), implying that an equation of the form (5.68)
can be derived for t⊥ as well.

5The function t⊥ , which is given in [40] as well, plays a similar role in ∆9⊥+ as t‖ in ∆9‖+ .
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5 Systematic Framework: OPE for Current Correlator

5.6 Comments on the Literature
A similar OPE framework for the study of B → M`+`− decays at high-q2 to the one pre-
sented in this work has been established by the authors of [21]. It has already been put to
use for the calculation of the low recoil domain of B → K∗`+`− [49].

The two approaches, however, also differ in several respects. Apart from some minor
differences and the additional content provided here, there are two major differences in
the conceptual implementation of the OPE formalism. These points are now discussed
in turn.

Additional Content and Smaller Differences

To begin with, the present discussion includes an extensive investigation of quark-hadron
duality and its connection to the OPE. The issue of duality violation is of particular
importance, since the charmonium resonances are located in the relevant high-q2 part
of the spectrum.

Moreover, we go one full step further in the OPE by calculating the coefficient
functions of the dimension-5 term and partly the dimension-6 term as well (weak
annihilation only). In addition, the B → K(∗) matrix elements of these subleading terms
are estimated quantitatively.

Finally, it should be mentioned that, whereas the coefficient functions in [21] are
presented in expanded form around q2 = mb

2 , they are given here with their full
(kinematic) q2-dependence.

Treatment of Bottom Quark

The local operators in this work are composed of b quark fields in full QCD. As a
consequence, one finds a simpler operator basis, and the leading-power matrix element is
given in terms of the known standard B → K(∗) form factors. While this makes the OPE,
in particular the evaluation of higher dimensional matrix elements, more transparent,
the mb -dependence is not fully explicit. However, power corrections can still be included
consistently and this is what matters in practice. The present approach has already
been adopted for an OPE of the inclusive mode to calculate the lifetime difference of Bs

mesons, including power [50] and O(αs) corrections [51].
The local operators in [21], on the other hand, are build from effective heavy-quark

fields. Due to this, the OPE yields a multitude of local operators, the matrix elements
of which can not be expressed just by the standard form factors. In [21], the matching
onto HQET fields is therefore partly undone back to full QCD fields in order to simplify
the obtained expressions.

Treatment of Charm Quark

We here assume the hierarchy mb ∼ mc � ΛQCD and integrate out the charm along
with the bottom quark at the scale mb ≈

√
q2 , thereby absorbing all charm quark
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effects into the coefficient functions.
In contrast to this, the authors of [21] assume the hierarchy mb � mc , resulting

in a charm quark field that remains an active degree of freedom below the expansion
scale mb . The coefficients functions are then evaluated at mc = 0, and local operators,
containing the charm quark field, such as (Γα = γα(1−γ5))

Kµ6c = 16π2

q4 Qc

(
δijδklC1 + δilδkjC2

)(
gαµqβ − gβµqα

)
c̄iΓαbj s̄kΓβ cl (5.69)

appear additionally in the OPE at operator dimension 6 or higher. Assuming further
the hierarchy mc � ΛQCD , the charm quark is then integrated out in a separate step,
performed at the scale µ ∼ mc , as well.

The main advantage that arises from an active charm below µ ∼ mb is that
it allows, in case of a strong hierarchy mc � mb , the resummation of large loga-
rithms lnmb/mc . In reality, however, this is hardly necessary, for the logarithms are not
large at all lnmb/mc ≈ 1.2 and appear earliest at order 1/mb

3 in the power counting.
Therefore, it seems preferable to opt for the simpler operator basis that is offered by
an OPE performed in a single step at µ ∼ mb .
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6 Quark-Hadron Duality
Quark-hadron duality refers to a correspondence between partonic and hadronic
world [52]: Perturbative calculations implicitly rely on duality, they are performed in
terms of quarks and gluons. The actual world, however, consists of hadrons.

More precisely, in order to speak of duality, the difference between theory and
experiment should not significantly exceed the neglected orders in αs or ΛQCD/

√
q2 .

Conversely, discrepancies larger than the ones naively expected qualify as violations of
quark-hadron duality.

As far as b → s`+`− transitions are concerned, in particular the matrix element of
the non-local term (jµ = ∑

qQq (q̄ γµq))

〈Kµ(q)〉 ≡ − 8π2

q2 i
∫
d4x eiq·x

〈
M̄(k)

∣∣∣T jµ(x)Hh(0)
∣∣∣B̄(p)

〉

(6.1)

is susceptible to such duality violating effects. Of course, this is related to the existence
of the charmonium resonances and thus concerns primarily the charm correlator in
the upper part of the q2-spectrum. It is no coincidence either that, in this kinematic
domain, theoretical calculations are justified by the OPE.

In order to shed some light on this relation between OPE and the violation of duality,
let us consider the coordinate formulation of the OPE

jµ(x)Hh(0) =
∑

d

Cd(x)Od(0) (6.2)

Clearly, the approximation in terms of local operators is most fitting in the limit of a
small current separation x → 0. In momentum space, this is mirrored by the well known
fact that coefficient of higher dimensional operators are power suppressed, in this case
as Cd(q) ∼ (q2)(3−d)/2 . However, due to the presence of the charmonium resonances,
a perturbative calculation of the Wilson coefficients is not justified at large timelike
momenta q2 > 0. In fact, the calculation should be performed far off any intermediate
states, that is, in the deep Euclidean domain [2], at large spacelike momenta q2→ −∞.
The results obtained in this way can then analytically be continued to the Minkowski
domain, where the experiments take place.

Of course, for practical reasons alone, both the OPE series as well as the perturbative
expansions of the individual coefficients have to be truncated eventually. But this
translates only to a similar polynomial uncertainty in the Minkowski domain and
therefore does not cause a violation of duality.

Indeed, the origin of duality violation lies in the existence of terms exponentially sup-
pressed in the q2→ −∞ limit. The OPE, which is performed in this limit, is oblivious
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6 Quark-Hadron Duality

to their existence, as they are beyond (i.e. parametrically smaller than) any order
in the 1/q2 expansion. However, as long as q2 remains finite, at some order the
missing, exponentially suppressed terms become numerically more relevant than the
next term in the 1/q2 series. Mathematically speaking, the OPE yields a non-convergent
asymptotic series, which must, to obtain the best approximation, be truncated when
the individual terms start to rise again. In principle, already this sets a limit to the
theoretical (OPE-based) accuracy.

The main issue, however, is the transition from the Euclidean to the Minkowski
domain. Thereby, the exponential suppression is converted into a characteristic oscillatory
behaviour and thus, to a large extent, lost. Although some damping still remains, the
enhancement is in many cases large enough to cause a serious violation of quark-hadron
duality.

The existence of duality violation implies an uncertainty in theoretical predictions,
which must – as any other uncertainty – be quantified, so that effects from new physics
can reliably be identified. With this in mind, the following chapter, based on [1],
investigates the issue of duality, with particular emphasis on B → K(∗)`+`− decays in
the kinematic domain of large q2 > 15GeV2.

Meanwhile, quark-hadron duality is already known to fail for semileptonic decays
in the regime of the narrow charmonium resonances 7GeV26 q26 15GeV2 by over two
orders of magnitude [7]. A theoretical explanation for this is given by the approximate
form of the correlator in the vicinity of the J/ψ resonance [7]

|Π(M 2
ψ)| = |ImΠ(M 2

ψ)| = f 2
ψ/(MψΓψ) (6.3)

For a narrow resonance, the resonant contribution (6.3) exceeds the partonic result,
which remains a quantity of O(1), locally by a factor of |Π(M 2

ψ)| ≈ 560. This leads
to a violation of global duality of similar size if an observable is quadratic in the
correlator.1

6.1 Shifman’s Resonance-Based Model
For the theoretical study of duality, it seems to be almost essential to have a hadronic
expression for the correlator. The corresponding partonic expression is then easily
obtained – it is just the power series of the hadronic expression obtained in the q2 → −∞
limit. Based on this, the mechanisms of duality can be investigated and even the typical
size of violating effects can, at least qualitatively, be estimated.

To this end, we will adopt Shifman’s resonance-based model of the (charm) correla-
tor [52] (jµq = q̄ γµq)

Πµν(q2) = i
∫
d4x eiq·x

〈
0
∣∣∣ Tjµq (x)jνq (0)

∣∣∣ 0
〉
≡ (qµqν − q2gµν )Π(q2) (6.4)

1Indeed, if an observable is only linear in the correlator, global duality in general still holds. This
happens, for instance, in the case of the R-ratio [7].
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6.1 Shifman’s Resonance-Based Model

which has already been utilized to study the violation of duality in the R-ratio [52, 53, 54]
and τ decays [55].

Intended as an introduction to the conceptual aspects, a simplified version of Shifman’s
model is presented first. It is then gradually refined in the subsequent sections to be
closer to the real world.

6.1.1 Zero -Width Approximation
Shifman’s model [52] understands the correlator (6.4) as an infinite series of resonances,
describing the individual resonance by means of the Breit-Wigner formula

fn
2

q2 − Mn
2 + iΓnMn

(6.5)

The other basic assumption underlying Shifman’s model is a resonance spectrum that
follows a so-called linear Regge trajectory, meaning that the squared masses are assumed
to be equidistant

Mn
2 = M0

2 + nλ2 n = 0,1,2, ... (6.6)

On the theoretical side, (6.6) represents the asymptotic high-energy behaviour predicted
by confinement [56, 57]. Since duality violation is governed by the resonances at infinitely
high n’s [58], the present context allows to use (6.6) freely for the entire mass spectrum.
Apart from that, the pattern (6.6) can, in many cases, be observed experimentally
already at low energies. This applies, for instance, to the case of light mesons [59, 60]
as well as charmonia [61].

Finally, for the time being, let us assume resonances of zero width, which, according
to the scaling of the resonance widths Γn ∼ O(1/N ) [53, 62], corresponds to the large
colour limit N → ∞.

Putting everything together, Shifman’s zero-width correlator then reads

Πhad
Shif (q2) ≡ − Nλ2

12π2

∞∑

n= 0

1
q2 − λ2n − M0

2 = N

12π2

∞∑

n= 0

1
z + n

(6.7)

where

z = M0
2 − q2 − iε

λ2
(6.8)

As a matter of fact, the sum in (6.7) is, up to an infinite constant, a common series
expression of the digamma function ψ(z). In exploiting this, Shifman’s correlator can
be written as

Πhad
Shif (q2) = − N

12π2

[
ψ(z) + γ −

∞∑

n=1

1
n

]
=̂ − N

12π2
ψ(z) (6.9)
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Note that constant terms, such as the Euler-Mascheroni constant

γ = −ψ(1) = 0.5772 ... (6.10)

and the (divergent) harmonic series in the square bracket of (6.9), are at this point mean-
ingless, for a renormalization scheme has not yet been specified.

Since there is a close relation between Shifman’s correlator and the digamma function,
the most relevant properties of this important mathematical function are recapitulated
below. Thereafter, the properties of Shifman’s hadronic correlator (6.9) and its partonic
counterpart are discussed in turn.

Digamma Function ψ(z)

The digamma function ψ(z) is usually defined as

ψ(z) ≡ d

dz
lnΓ(z) =

Γ′(z)
Γ(z)

(6.11)

At this, Γ(z) is the gamma function, which is for Re[z ] > 0 identical with Euler’s
integral of the second kind

Γ(z) ≡
∫ ∞

0
dt tz−1e−t (6.12)

By means of analytic continuation, the definition (6.12) can then be extended unam-
biguously to the entire complex plane, except for z ∈ N−0 , where the simple poles of
Γ(z) are located.

Furthermore, the two meromorphic functions satisfy the (related) recurrence rela-
tions

Γ(z + 1) = zΓ(z) ⇒ ψ(z + 1) = ψ(z) + 1
z

(6.13)

which are particularly useful in combination with the “starting values” Γ(1) = 1
and ψ(1) = −γ . Finally, since both functions are real valued on the real axis, they
satisfy the analytic identities

Γ(z) = Γ(z ) and ψ(z) = ψ (z ) (6.14)

Hadronic Zero-Width Correlator Πhad
Shif (q2)

Drawing on the existing knowledge about ψ(z), the following analytic properties of
Shifman’s hadronic (zero-width) correlator (6.9) are easily inferred:

• The zero-width correlator is a meromorphic function with (isolated) singularities
on the positive real axis, located at

q2 = M0
2 + nλ2 n = 0,1,2, ... (6.15)
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6.1 Shifman’s Resonance-Based Model

• Furthermore, the correlator (6.9) is a single-valued function and, consequently,
there is no branch cut.

• The analytic identities (6.14) transfer directly to Shifman’s correlator

Πhad
Shif (q2) = Πhad

Shif (q2) (6.16)

Actually, this represents an important (known) property of the correlator, which
Shifman’s model is able to reproduce. In the SM, it derives from the optical
theorem and assures that Πhad

Shif (q2) is real valued for q2 < M0
2 [2].

• From (6.16) we infer that Πhad
Shif is, in general, real valued and continuous on the

real axis. Near a singular point z0 , however, the correlator behaves as

Πhad
Shif (z0 + dz) = 1/(4π2dz) + O(dz0) (6.17)

Thus, the correlator has a non-zero imaginary part close to the poles, at z = z0 ± iε,
which, in accordance with (6.16), changes its sign when crossing the real axis. As
in the SM, this allows to derive the dispersion relation

Π(q2) = 1
π

∞∫

0

dt
Im Π(t)

t − q2 − iε
(6.18)

Partonic Zero-Width Correlator ΠOPE
Shif (q2)

The OPE expression corresponding to the correlator (6.9) (the hypothetical result of
an OPE performed in Shifman’s (model) “world”) is given as the asymptotic expansion
of ψ(z) in the deep Euclidean domain

series
z→∞

{
ψ(z)

}
= lnz − 1

2z
−

∞∑

n= 1

B2n

2n
z−2n ≡ − 12π2

N
ΠOPE

Shif (q2) (6.19)

whereat the B2n are known as Bernoulli numbers. The series expression in (6.19) reveals
the following properties of the partonic correlator:

• In the asymptotic limit q2 → ∞, Shifman’s OPE expression (as well as the
hadronic correlator (6.9), for that matter) coincides with the corresponding QCD
expression, given in (6.51)

ΠOPE
Shif (q2) q2→∞∼ − N

12π2
ln−q

2 − iε

λ2

q2→∞∼ ΠSM
OPE(q2) (6.20)

Note that this is exactly what motivates the choice of normalization in (6.7).
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• Applying Stirling’s approximation to the Bernoulli numbers

B2n = (−1)n+1 2(2n)!
(2π)2n ζ(2n) n→∞∼ 4(−1)n+1√πn

(
n

πe

)2n
(6.21)

one finds the following high-n behaviour for the individual summands of the
asymptotic series in (6.19)

2√
ez

∞∑

n�1
(−1)n

(
n

πez

)2n−1/2
(6.22)

which makes the factorial divergence of the series coefficients easy to recognize.
In consequence, the series must be truncated eventually. Since, in the present
context (alternating series, factorial divergence), the deviation from the true value
is always smaller than the first neglected term, the highest precision is achieved
just before the smallest summand, which can be determined via

∂n

(
n

πez

)(2n−1/2) != 0 ⇒ ln n

πz
− 1

4n
= 0 (6.23)

The turning point is thus reached around nmax ' πz , which sets the minimal OPE
uncertainty in Shifman’s model to the extremely small value of (using z = 3)

∆OPE
min = ± N

6π2
√
|z|

e−2πz ≈ 2 · 10−10 (6.24)

• In the Minkowski domain q2 > 0, the OPE result for the correlator has a constant
imaginary part:

Im
[
ΠOPE

Shif (q2)
]

= − N

12π2
Im

[
lnz

]
= N

12π
(6.25)

Since the imaginary part of the hadronic correlator (6.9) is actually an infinite sum
of δ-functions, this may be seen as the largest violation of local duality possible [52].
More importantly, the zero-width model fails to reproduce the damping of duality
violation at high energies, observed in experiments. Considering the dispersion
relation (6.18), this concerns the real part as well.

6.1.2 Finite Resonance Width
So far we have assumed resonances of zero width, leading us to a model that already
reproduces many important properties the correlator is known to have. This being said,
the zero-width model also has its shortcomings, which became apparent at the end of
the last section.

What makes the zero-width assumption problematic is ultimately the fact that the
resonances at infinitely large n’s (and exactly these determine duality violation) do
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6.1 Shifman’s Resonance-Based Model

actually not have a small width at all. This is a direct consequence of the asymptotically
constant width to mass ratio [53, 62]

b ≡ lim
n→∞

Γn
Mn

= O(1/N ) ⇐⇒ Γn
n→∞∼ Mn b =

√
nλb (6.26)

Thus, as long as the number of colours remains finite (their actual number is only N = 3),
the resonance widths will become arbitrarily large. Eventually, the initially separated
resonances will start to overlap, which should lead to the desired improvement of local
quark-hadron duality at high energies [52].

To incorporate a finite resonance width into the model, let us insert the width to
mass relation (6.26) into the Breit-Wigner formula

fn
2

q2 − Mn
2 + iΓnMn

= fn
2

q2 − Mn
2(1 − ib)

q2=M2
n+iε

−→ fn
2

ibMn
2 (6.27)

The Breit-Wigner description (6.27), however, is only accurate in the proximity of
the respective excitation, that is, close to the corresponding pole, at q2 = Mn

2 + iε.
It fails far off the pole, which is reflected in singularities on the physical sheet,
at q2 = (1− ib)Mn

2 . This would carry over to the correlator, resulting in a wrong
analytic behaviour.

In order to obtain a correlator without poles on the physical sheet, the resonance
description (6.27) is modified to [52]

−f̃n2

−q2 (−q2/λ2 )−b/π + M̃2
n

q2=M2
n+iε

−→ fn
2

ibMn
2 (6.28)

where the shifted quantities

f̃n
2 = fn

2(Mn
2/λ2 )−b/π sinb

b
and M̃2

n = Mn
2(Mn

2/λ2)−b/π cosb (6.29)

are determined by the fact that the two expressions (6.27) and (6.28) must coincide
in the vicinity of the pole. This property is exactly what justifies to use the above
modification, for it shows that (6.28) is an equivalent representation of a “Breit-Wigner
resonance”.

So that Shifman’s resonance summation can still be carried out, some conceptually
unimportant (small) shifts of O(b) have to be neglected. The finite-width correlator
then reads

Πhad
Shif (q2) ≡ N

12π2
1

1 − b/π

∞∑

n= 0

1
(
(M0

2− q2)/λ2 )1−b/π + n
(6.30)

= − N

12π2
1

1 − b/π

[
ψ(z) + const.

]
(6.31)
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with the modified variable
z = (−r − iε)1−b/π r = (q2 − M0

2)/λ2 (6.32)

Note that the sole purpose of the different normalization in (6.31) is to maintain the
asymptotic behaviour (6.20) in view of the modified variable (6.32). Furthermore, it is
worth mentioning that, since z(q2 ) = z̄(q2), the dispersion relation is still satisfied. This
being said, let us turn to the changes in the finite-width model.

Finite-Width Model - Notable Changes

The crucial difference of the finite-width model lies in its definition of the variable z
in (6.32), which results in the following changes for the correlator:
• There is a branch cut on the positive real q2-axis, starting at q2 = M0

2 . The
singularities, however, are shifted away from the real axis to unphysical sheets. To
demonstrate this, polar coordinates are most convenient

z = |r|1−b/πei·arg(−r)(1−b/π) (6.33)

According to (6.32), we have arg(−r)∈ [−π,π [ on the physical sheet, and thus

|arg(z)| = |arg(−r)|(1 − b/π) < π (6.34)

which shows that z /∈ R− . Admittedly, the z = 0, that is, the first (n = 0)
singularity remains on the physical sheet. While this is, in principle, immaterial
for duality violation at high q2, the n = 0 pole may as well be removed by
redefining M0

2 → M0
2 − λ2 and shifting the starting point of the summation

to n = 1. This results in a correlator Π ∝ ψ(z′ + 1), which differs from Π ∝ ψ(z)
by terms of O(b), which are not consistently kept track of anyway.

• At this point, we only state that the finite-width model reproduces the soft-
ening of local duality violation at high energies in the form of an exponential
suppression e−2πbz . In section 6.2.4, we shall return to this issue in more detail.

6.1.3 Model Fit on BES Data of R-ratio
Based on Shifman’s model, a suitable fit ansatz for the BES data of theR-ratio [63, 64, 65]
is developed. In this way, realistic parameter values for a model description of the charm
correlator can be determined. Furthermore, this allows to convince oneself of the quality
of Shifman’s model.

BES Data

The provided data represents a measurement of the R-ratio

R ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= R light + 12πQ2
c ImΠc(q2) (6.35)
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6.1 Shifman’s Resonance-Based Model

Charmonium Resonances [66]
n3S1 J/ψ(1S) ψ(2S) ψ(4040) ψ(4415)

m[MeV] 3096.916 ± 0.011 3686.109 +0.012
−0.014 4039 ± 1 4421 ± 4

Γ[MeV] 0.0929 ± 0.0028 0.299 ± 0.008 80 ± 10 62 ± 20
n3D1 ψ(3770) ψ(4160) – –
m[MeV] 3773.15 ± 0.33 4191 ± 5 – –
Γ[MeV] 27.2 ± 1.0 70 ± 10 – –

Table 6.1: Charmonium states with quantum numbers IG(JPC ) = 0−(1−−).

at a center of mass energy between 2 and 5GeV. Since this is the kinematic domain
of the cc̄ resonances, the R-ratio is – up to a constant R light, which stems from the
continuum of light quarks (u,d,s) – essentially the imaginary part of the charm correlator.
As is evident from the dispersion relation (6.18), the information contained in the R-ratio
is to completely determine the real part of the correlator up to a scheme dependent
subtraction constant as well.

Fit Ansatz

Taking a closer look at the BES data, displayed in Fig. 6.1, as well as the rele-
vant JPC = 1−− charmonia, summarized in Tab. 6.1, the following observations can be
made:

• The masses of the first n3S1 states already exhibit the general pattern assumed
in the derivation of Shifman’s model

Mn
2 = 4mc

2 + nλ2 n = 1,2, ... (6.36)

• This being said, the first two n3S1 resonances, ψ(3097) and ψ(3686), are extremely
narrow and can not decay into open charm. Thus, in general, they must be described
separately using explicit Breit-Wigner terms.

In the present context, however, this is not advisable, for these two resonances
are actually not visible in the BES data. Therefore, only the starting point of
Shifman’s resonance summation will be shifted from n = 1 to n = 3.

• There is a second trajectory, consisting of the n3D1 states. To keep the fit ansatz
simple, we will exploit that the n3D1 are rather close to the (n+ 1)3S1 excitations
and subsume each of these pairs into a single peak.

• The ψ(3770) resonance is still too narrow to be captured by Shifman’s model.2

2As can be seen in Fig. 6.1, the ψ(3770) peak is completely “ignored” when fitting Shifman’s model
onto the BES data. Using n = 2 does not change this.
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Figure 6.1: BES data and model description of the R-ratio, plotted against q2 [GeV2 ]. The
right hand side shows an enlarged view of the resonance region.

Therefore, the starting point of the resonance summation will be kept at n = 3.

• However, unlike the narrow n3S1 resonances, the ψ(3770) state can decay into
open charm and the BES date clearly exhibits a peak at the corresponding position.
Since a single resonance should, in principle, not affect duality (violation), our first
ansatz will ignore the existence of ψ(3770) completely. In order to demonstrate
the stability of the continuum parameters, we then consider a second, more refined
ansatz, which has an explicit ψ(3770) term.

Everything combined, we thus employ the following fit ansatz for the BES data

R = R light − 4
3(π − b)

Im
[
ψ(3 + z)

]
z =

(−q2 + 4mc
2 − iε

λ2

)1−b/π

(6.37)

where R light, b, mc and λ2 are treated as fit parameters.

Simple Model - Fit Results

Performing a numerical fit on the ansatz (6.37), one finds

R light = 2.312 b = 0.0818 (6.38)

mc = 1.333GeV λ2 = 3.080GeV2 (6.39)

which corresponds to a χ2/d.o.f. ' 2.47.The quality of this fit, (6.37) – (6.39), can be
surveyed on the basis of Fig. 6.1 as well.

Besides, the fit value for R light is in agreement with the experimental measurement of
the R-ratio below charm threshold Ruds = 2.141± 0.09 [64] and the theoretical predic-
tion Ruds = 2.15± 0.03 [65, 67, 68]. Furthermore, the values found for the parameters of
the mass trajectory are consistent with the findings mc = 1.3GeV and λ2 = 3.2GeV2,
presented in [61].
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6.2 Mechanism of Duality Violation in a Toy Model

Refined Model - Explicit ψ(3770) Resonance

For the explicit description of the ψ(3770) excitations, we resort to Shifman’s modifica-
tion of the Breit-Wigner formula (6.28) and shift the variable in order to reproduce the
analytic behaviour introduced by the DD̄-threshold

∆Rψ(3770) = −fψ Im
[(
− q2 + 4m2

D − iε
)1−bψ/π +

(
m2
ψ − 4m2

D

)1−bψ/π cosbψ
]−1

(6.40)

Adding the above term to the original ansatz (6.37) improves the quality of the fit signif-
icantly χ2/d.o.f. → 1.78.Thereby, the fit parameters describing the ψ(3770) resonance
are found to be

mψ = 3.771GeV (3.773 [66]) mD = 1.872GeV (1.865 [66]) (6.41)

fψ = 0.0819 bψ = 0.3207 (6.42)

Note that the fit values for the mass parameters in (6.41) almost exactly coincide
with the corresponding experimental measurements, given in the parentheses. Calcu-
lating the resonance width from the fit values, however, gives only the right order of
magnitude:

Γψ = sinbψ(m2
ψ − 4m2

D)/mψ ≈ 17MeV (6.43)

Meanwhile, the impact on the original parameters, which are the ones relevant to the
violation of duality, is rather small

R light = 2.259 b = 0.0793 (6.44)

mc = 1.349GeV λ2 = 3.030GeV2 (6.45)

This is to be expected, for the continuum parameters reflect the asymptotic high-energy
behaviour and thus, in theory, are independent from the treatment of a particular
resonance (or any finite number, for that matter). Furthermore, the ψ(3770) reso-
nance is below our – admittedly somewhat arbitrary – lower limit of the high-q2 re-
gion, q2 = 15GeV2. In consequence, the model description based on the original, simple
ansatz (6.37) will be employed in the B → K`+`− analysis.

6.2 Mechanism of Duality Violation in a Toy Model
The toy model suggested in [7] provides a simpler framework for an analysis of duality
violation in the charm-loop than the standard model decay B → K(∗)`+`−. At the same
time, the characteristic features of quark-hadron duality are maintained and therefore
can be discussed in a more transparent way.
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6 Quark-Hadron Duality

6.2.1 Description of the Model
In order to remove the disturbance caused by external hadronic dynamics, two lep-
tons `1,2 , which will take the role of bottom and strange quark, respectively, are
introduced. In more specific terms, we assign the lepton masses m1,2 = mb,s and
impose the effective weak Hamiltonian

Heff = GF√
2
[
( ¯̀2`1)V−A (c̄c)V−A − ( ¯̀2`1)V−A (t̄t)V−A

]
(6.46)

inducing the model process `1 → `2 e
+e− via penguin-type diagrams. Apart from the

above adjustment, all particles, in particular the leptons `1,2 , are subject to the Standard
model electromagnetic and strong interactions.

Further note the destructive interference between charm and top sector in (6.46),
which intends to mimic the GIM mechanism of the SM. This is particularly convenient,
for it avoids some issues related to scheme dependency and renormalization in the
following discussion.

Then, by construction, the entire hadronic dynamics of the model decay `1 → `2 e
+e−

are contained in the familiar two-point functions (jµq = q̄ γµq)

Πµν
q (q2) = i

∫
d4x eiq·x

〈
0
∣∣∣ Tjµq (x)jνq (0)

∣∣∣ 0
〉
≡ (qµqν − q2gµν )Πq(q2) (6.47)

Defining the scheme independent quantity Π ≡ Πc − Πt , the decay amplitude can be
written as

A(`1 → `2 e
+e− ) = −GF√

2
Qc e

2 Π(q2) ¯̀2γ
µ(1 − γ5)`1 ēγµe (6.48)

This general form holds to leading order in the weak but to any order in the strong
and electromagnetic interaction. The corresponding differential decay rate is then easily
derived as (s = q2/m1

2, m2 = ms = 0)

dΓ
ds

(
`1 → `2 e

+e−
)

=
GF

2αe
2m1

5

27π
g(s)

∣∣∣Π(q2)
∣∣∣
2 (6.49)

whereat
g(s) = (1 − s)2(1 + 2s) (6.50)

is a purely kinematic, phase-space related quantity.

6.2.2 Charm Correlator in Standard Model
Using the OPE framework developed in section 5, the correlator (6.47) can be calculated
in perturbation theory, which yields (one-loop level)

ΠOPE
SM,q(q2) = 3N

16π2
h(q2,mq) (6.51)
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Figure 6.2: Hierarchic structure of the Standard model correlator ΠSM
OPE(s). Left: Real and

imaginary part of ∆SM
OPE , which are added to the short-distance quantity ln(mt/mc) = 4.88.

Right: Relative impact of the subleading terms in (6.55) on the squared correlator.

where h(q2,mq) is the function defined in (5.16). Using the decomposition3

ΠSM
OPE(q2) = ΠSM

OPE(0) + ∆SM
OPE(q2)/(2π2) (6.52)

we explicitly have

ΠSM
OPE(0) ≡ ΠOPE

SM,c(0) − ΠOPE
SM,t = N

6π2
ln mt

mc
= 0.242 (6.53)

and (x = 4mc
2/q2)

∆SM
OPE(q2) = 5

6
+ x

2
− 1

4
(2 + x)

√
|1 − x| ·





2arctan 1√
x−1 x > 1

ln 1+
√

1−x
1−
√

1−x − iπ x < 1
(6.54)

Hierarchic Structure of ΠSM
OPE(q2)

Using the above decomposition, the squared correlator breaks down into three parts of
distinct hierarchy

4π4
∣∣∣ΠSM

OPE ∣∣∣
2 = ln2 mt

mc
+ 2ln mt

mc
Re

[
∆SM

OPE(q2)
]

+
∣∣∣∆SM

OPE(q2)
∣∣∣
2 (6.55)

The term of first order in the small quark-level quantity ∆SM
OPE(q2) reaches its peak

at q2 = 4mc
2, corresponding to a relative impact of 55% (Fig. 6.2). Meanwhile, the im-

pact of the second order term grows monotonically, but stays below 10%.
In short, just as the SM decay B → K`+`−, the model decay `1 → `2 e

+e− is domi-
nated numerically and parametrically by its short-distance component.

3This is in contrast to the decomposition (6.59): Since the corresponding hadronic expression Π(0) is
unknown, we have set ∆OPE(0) = 0 (instead of ∆(0) = 0).
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6 Quark-Hadron Duality

6.2.3 Shifman Model for Charm Correlator
In order to proceed with the toy model analysis of duality, Shifman’s model (6.31) is
now employed for the charm correlator. For the sake of transparency, we will drop the
charm mass M0

2 = 4mc
2 = 0 and set the starting point of the resonance summation

to n = 1, which corresponds to a shift ψ(z) → ψ(z + 1). Meanwhile, the top quark
contribution does not violate duality and is most accurately described by the SM/OPE
result (6.51).

That is, everything combined we take

Πc(q2) = − N

12π2
1

1 − b/π
ψ(z + 1) + Cc(µ) (6.56)

Πt = 3N
16π2

h(0,mt ) + Ct(µ) (6.57)

where the renormalization constants Cc,t(µ) are yet to be determined.

Decomposition of Π(q2)

For the subsequent analysis, it will be convenient to define the quantities

∆(q2) ≡ 2π2
[
Π(q2) − Π(0)

]
(6.58)

∆OPE(q2) ≡ 2π2
[
ΠOPE (q2) − Π(0)

]
(6.59)

Roughly speaking, they represent the long-distance components of the hadronic correlator
and OPE approximation, respectively. The difference of the two contains all duality
violation:

∆DV(q2) ≡ ∆(q2) − ∆OPE(q2) = 2π2 ΠDV(q2) (6.60)

While each of the above quantities is, a priori, composed of a charm and a top contribu-
tion, the hierarchy 0 6 q2 6 m1

2 � mt
2 implies that the entire top sector consists just

of a (real) constant
Πt (q2) = Πt

OPE (q2) = Πt (0) ≡ Πt (6.61)

Consequently, all “∆” quantities, in particular ∆DV(q2), are determined by the charm
correlator alone.

Explicit Hadronic Expressions

Since ∆(0) = 0, the long-distance component is independent from the renormalization
scheme and can immediately be specified as

∆(q2) = −N
6

1
1 − b/π

[
ψ(z + 1) + γ

]
(6.62)
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where

z = (−us − iε)1−b/π u = m1
2

λ2 s = q2

m1
2 (6.63)

The short-distance component

Π(0) = Πc(0) − Πt (6.64)

on the other hand, is not so easily obtained. First, we must impose the same renormaliza-
tion scheme on the two terms on the r.h.s of (6.64). To this end, both terms are expressed
by means of the dispersion relation (6.18) regularized by a cutoff (using b = 0)

6π2

N
Πt =

µ∫

2mt

dq

q4

(
q2 + 2mt

2 )
√
q2 − 4mt

2 = ln
µ

mt
− 5

6
+ O(mt/µ) (6.65)

6π2

N
Πc(0) = 1

2

µ2∫

0

dt
∞∑

n= 1

δ(n − t)
t

= 1
2

bµ2/λ2c∑

n= 1

1
n

µ/λ→∞
= ln

µ

λ
+
γ

2
(6.66)

Since the short-distance component, which is given as the difference between the above
two expressions (using λ2 = 2.3GeV2)

Π(0) = N

6π2

[
lnmt

λ
+
γ

2
+ 5

6

]
= 0.295 (6.67)

is finite, the limit µ → ∞ may then formally be taken to send the neglected contribu-
tions in (6.67) to zero.

Numerically, the zero-width approximation (6.67) is only 0.277% smaller than
the result of a numerical integration using b = 1/6. Furthermore, it is of similar
size as the partonic SM/OPE finding ΠSM

OPE(0) = 0.242, presented in the last sec-
tion.

Decomposition into OPE and Duality Violating Component

The decomposition of Shifman’s correlator into an OPE and a duality violating com-
ponent is now performed explicitly. To this end, one best starts in the deep Euclidean
domain, where the partonic expression is given as the asymptotic series of the hadronic
correlator. One then continues with an analytic continuation of the series – term by
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6 Quark-Hadron Duality

term – to the Minkowski domain:
−6
N

∆OPE
Shif (q2) − γ = series

|z |→∞
arg(z)6=±iπ

{
ψ(z + 1)

}
= lnz − 1

2z
−

∞∑

n=1

B2n

2n
z−2n + 1

z
(6.68)

Im[z]<0
= ln(−z) − iπ + 1

2z
−

∞∑

n=1

B2n

2n
(−z)−2n (6.69)

= series
|z |→∞

arg(z)6=0

{
ψ(−z) − iπ

}
(6.70)

Here “series” denotes the asymptotic series of the expression in the respective curly
bracket in the specified limit. According to (6.68) – (6.70), the two functions ψ(z + 1)
and ψ(−z)− iπ have the same asymptotic series if Im[z] < 0, which happens for
physical values of q2. Alternatively, this can be derived from Euler’s reflection for-
mula

ψ(z + 1) = ψ(−z) + π cot(−πz) (6.71)

in conjunction with the fact that an asymptotic series – which is exactly what the OPE
represents – is oblivious to exponentially suppressed terms. Therefore, the second term
on the r.h.s. of (6.71) is seen as

π cot(−πz) = (iπ) 1 + e2iπz

1 − e2iπz

Im[z]→−∞
= −iπ (6.72)

At finite values of z > 1, the truncated OPE series gives an excellent numerical approx-
imation4 for ψ(−z)− iπ (not so for ψ(z + 1)) and thus is henceforth identified with
it.5 Consequently, we will decompose Shifman’s correlator in the Minkowski domain
according to the two square brackets on the r.h.s of

[
ψ(z + 1) + γ

]
had =

[
ψ(−z) + γ − iπ

]
OPE

+
[
π cot(−πz) + iπ

]
DV

(6.73)

6.2.4 Parametric Dependencies in Duality Violation
In order to clarify the parametric dependencies of the duality violating effects in the inte-
grated `1 → `2 e

+e− decay rate, the duality violating component

∆DV
Shif (q2) = N

6
π

1 − b/π

[
cot(πz) − i

]
= Ni

3
π

1 − b/π

e−2iπz

1 − e−2iπz
(6.74)

is simplified using the approximation

z = −eib(us)1−b/π = −(1 + ib)us + O(b2, b ln(us)/π) (6.75)

4At z = −2 , for instance, just the first two terms of the series already give ln2− 1
4 ≈ 1.05ψ(2).

5This is mainly a matter of convenience. Strictly speaking, the OPE result is the series expression.
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Figure 6.3: Shifman model for charm correlator, using b = 1/6: Real (left) and imaginary
part of ∆(us) (right) as functions of us = q2/λ2 . The hadronic correlator (6.62) (oscillating)
is compared with the corresponding OPE expression, obtained from the decomposition (6.73).

In this way, one finds

∆DV
Shif (q2) = Ni

3
π

1 − b/π
e2πus(i−b) + O(e−4πbus) (6.76)

First of all, (6.76) showcases that both characteristic features of duality violation, oscil-
lation and exponential suppression at high-q2, are reproduced by Shifman’s model of the
charm correlator. The exponential suppression becomes effective around 2πbus ≈ us ' 1,
corresponding to q2 ' λ2 . Though there is a slight numerical enhancement from the
prefactor, local duality can in general be expected to set in already after a few resonances.
All of this can also be observed in Fig. 6.3.

For the discussion of global duality in the toy model, we will consider the `1 → `2 e
+e−

decay rate integrated over a variable upper part of the spectrum s ∈
[
s0,1

]
. Since the

duality violating component enters schematically as

Γ ∝
∣∣∣2π2 Π(0) + ∆OPE

Shif
∣∣∣
2 + 2Re

[(
2π2Π(0) + ∆OPE

Shif
)∗∆DV

Shif

]
+

∣∣∣∆DV
Shif

∣∣∣
2 (6.77)

there are three different duality violating terms, investigated in turn now.

Linear Term ∝ Π(0)Re
[
∆DV

Shif (q2)
]

The first duality violating term in (6.77) is linear in ∆DV
Shif (q2) and gives a contribution

to the integrated decay rate proportional to
∆DV,1

4π2 Π(0)
=

∫ 1

s0
ds g(s)Re

[
∆DV

Shif (s)
]
≈ −Nπ

3

∫ 1

s0
ds g(s)sin(2πus)e−2πbus (6.78)

= −N
6u

g(s0)cos(2πus0)e−2πbus0 + O
(
b/u,1/u2 ) (6.79)

where, in the last step, we have used integration by parts and the vanishing of the phase
space at the endpoint g(1) = 0. By inspecting Fig. 6.4 one can convince oneself that
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Figure 6.4: Shifman model for charm correlator, using b = 1/6 and u = 10: Duality violating
terms ∆DV,1 (left, solid) and ∆DV,2 (right, solid) and the corresponding approximations, (6.79)
and (6.81) (both dashed), all as functions of the lower limit of integration s0 .

the approximate expression (6.79) gives qualitatively the right picture. The following
aspects of (6.79) are to be emphasized:
• The exponential suppression carries over from the local expression (6.74). Its
effectiveness is now determined by the size of the exponent 2πbus0 , and thus
the lower limit of integration should be at least q2

0 & λ2/(2πb) ≈ λ2 . In practise,
this usually does not represent a severe restriction as the OPE requires a not to
small q2 anyway.

• In addition, there is a power suppression in 1/u = λ2/m1
2 . It is independent from

the lower limit of integration s0 , for it stems from the cancellation caused by
the oscillatory behaviour of the integrand: In the integral (6.78), effectively only
some fraction of the first period contributes.6 Hence, in a first approximation, the
integral is proportional to “value of the integrand at s0”× “period length T = 1/u”
× “oscillating function of s0”.

• The impact of ∆DV,1 on the decay rate is suppressed numerically and parametrically
by one power of 1/(2π2Π(0)).

Linear Term ∝ Re
[
∆DV

Shif (q2)∆OPE
Shif
∗(q2)

]

The second duality violating term (see r.h.s. of Fig. 6.4)
∆DV,2

2
=

∫ 1

s0
ds g(s)Re

[
∆DV

Shif ∆OPE
Shif
∗] ≈ −Nπ

3

∫ 1

s0
ds g(s)Im

[
e2πus(i−b)∆OPE

Shif
∗(s)

]
(6.80)

= −N
6u

g(s0)Re
[
e2πu(i−b)s0 ∆OPE

Shif
∗(s0)

]
+ O

(
b/u,1/u2,1/bu3 ) (6.81)

6This is related to the fact that the value of an alternating series with decreasing summands lies
between the first and second partial sum (in fact, between any two successive partial sums).
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Figure 6.5: Shifman model for charm correlator, using b = 1/6 and u = 10. Left: ∆DV,3
(solid) and corresponding approximation (6.83) (dashed) as functions of s0 . Right: Relative
uncertainty of the OPE-based prediction for the partially integrated b → s`+`− decay rate
again as a function of s0 .

is linear in the duality violating component as well. With respect to b and u, it has the
same parametric behaviour as ∆DV,1 : An exponential suppression, governed by 2πbus0 ,
and a power suppression in 1/u. In contrast to ∆DV,1 , however, the contribution of ∆DV,2
to the decay rate is suppressed as 1/(2π2Π(0))2 .

Quadratic Term ∝ |∆DV
Shif (q2)|2

The term quadratic in the duality violating component can be simplified as

∆DV,3 =
∫ 1

s0
ds g(s)|∆DV

Shif (q2)|2 ≈
(
Nπ

3

)2 ∫ 1

s0
ds g(s)e−4πbus (6.82)

= πN2

36bu
g(s0)e−4πbus0 + O

(
1/b2u2 ) (6.83)

which has the following implications:

• There is a strong exponential suppression, governed by the exponent 4πbus0 .

• An oscillatory cancellation in the integrand, and consequently a pure 1/u sup-
pression, is absent. Closely related to this, the quadratic term always causes a
positive deviations from the OPE-based expectation.

• The expression (6.83) is obtained via repeated integration by parts, which yields
a formal expansion in powers of 1/(bu), ending at 1/(bu)4 . Admittedly, since
the 1/u power suppression and the 1/b enhancement usually compensate each
other, the quantity 1/(bu) = O(1) is, in itself, a poor expansion parameter. The
actual expansion parameter, however, is 1/(4πbu), which makes (6.83) in most
cases a reasonable numerical approximation (see l.h.s. of Fig. 6.5).
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• The quadratic term is qualitatively different from the linear terms. It features a
particular susceptibility to small values of b, which may cause large violations of
duality. This finding is in general agreement with [7], where the impact of a single
narrow resonance on the squared correlator |Π(q2)|2 is investigated.

• Finally, the contribution of the quadratic term to the decay rate is of second order
in the 1/(2π2Π(0)) counting.

6.2.5 Numerical Example
The toy model analysis concludes with a short numerical example of duality vio-
lation in the integrated `1 → `2 e

+e− decay rate. For this, we use the parameter
values

b = 1/6 and u = 10 (6.84)

where the latter could, for instance, be the result of the semi-realistic setting

λ2 = 2.3GeV2 m1 = 4.8GeV (6.85)

When estimating the potential size of duality violation, it is important to keep in mind
that all three duality violating terms are, to some extent, oscillating. In first approxima-
tion, the dominant term ∆DV,1 can be maximized by starting the numerical integration
at one of the zero points of Re

[
∆DV

Shif (q2)
]
, located at (n ∈ N+)

us =
[

n

2cosb

] π

π−b ≈ 0.488,1.015,1.557,2.110... (6.86)

Besides, for even n, (6.86) describes the resonance spectrum in units of λ2 . It deviates
somewhat from an ideal Regge trajectory q2/λ2 = 1,2, .. , since the mass shift (6.29) is not
counteracted in our model. Taking a conservative approach, the lower limit of integration
is chosen to be the first resonance s0 = 0.1015, which gives

4π4
∫ 1

s0
ds g(s)|ΠOPE (s)|2 = 11.21 +0.27

−0.27
+0.02
−0.02

+0.08
−0.00 (6.87)

where the bold errors correspond to the ∆DV,i , and the plain errors assume a symmetric
oscillation. The result (6.87) is composed of the contributions

4π4 |Π(0)|2
∫ 1

s0
ds g(s) = 13.55 (6.88)

4π2 Π(0)
∫ 1

s0
ds g(s)Re

[
∆OPE

Shif (s)
]

= −3.59 [−0.266] (6.89)

∫ 1

s0
ds g(s) |∆OPE

Shif (s)|2 = 1.24 [+0.015][+0.077] (6.90)
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At this, the central values correspond to Shifman’s OPE; the square brackets to the
shift caused by the replacement ∆OPE

Shif (s) → ∆OPE
Shif (s) + ∆DV

Shif (s) in the integrands on
the left hand side.

However, only the dominating term ∆DV,1 is maximized; the duality violating
terms ∆DV,2-3 potentially exceed the values given in (6.90) significantly. This issue may
be addressed by replacing z → z + ϕ in (6.74) and finding the “optimal phase” ϕ±(s0),
which maximizes (minimizes) the integrals. In this way, the dashed lines on the r.h.s. of
Fig. 6.5, which illustrate the actual total uncertainty in the integrated decay rate due
to violations of duality, are obtained.

At s0 = 0.1015, this procedure numerically yields 11.21 +0.189
−0.269

+0.065
−0.061

+0.086
−0.054 for the

individual (separate optimization) and +0.267
−0.204, or +2.4%

−1.8%, for the total “uncertainty”. Note
that the oscillation of ∆DV

Shif is not symmetric, that is, the positive amplitude of Re
[
∆DV

Shif
]

is smaller than the negative, i.e. |0.189| < | − 0.269|. In consequence, the total positive
uncertainty maximized is only 0.267, which significantly smaller than what one might
naively expect from (6.89) – (6.90) (say 0.27 + 0.08 = 0.35).

6.3 Duality Violation in B → K`+`−

The general principles of duality violation discussed in the previous sections certainly
apply to B → K`+`− as well. However, even qualitative statements about the size
of duality violating effects are better based on an investigation of B → K`+`− it-
self.

6.3.1 Simplifications
The charm-loop enters the decay rates of b → s`+`− transitions via the matrix element
of the correlator between the respective initial and final hadron state

〈Kµ(q)〉 ≡ − 8π2

q2 i
∫
d4x eiq·x

〈
K̄(k)

∣∣∣T jµ(x)Hc(0)
∣∣∣B̄(p)

〉
(6.91)

Without reducing the overall accuracy, the duality violations caused by the non-local
term (6.91) will be investigated using the following simplifications:

• The penguin operators are dropped on account of their small coefficients, leaving
the effective weak Hamiltonian

Hc = C1Oc1 + C2Oc2 ≡ a2(s̄b)V−A(c̄c)V−A (6.92)

In the following, the coefficient a2 is assumed to be real and treated as a phenomeno-
logical parameter. Its numerical value may then be extracted from measurements
of the B → Kψ decay rate, which gives a2 = 0.3.
It should be noted that this is significantly larger than the perturbative

value ath2 = C1/N + C2 , which corresponds to aLO2 = 0.10 and aNLO2 = 0.17 at
leading and next-to-leading order, respectively.
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• The charm fields from Hc are always contracted with those in the electromagnetic
current. In other words, we neglect annihilation processes of the charm pair
into gluons, which are of higher order in αs. As a consequence, only the charm
component of the electromagnetic current may contribute, and hence we effectively
have

jµ ≡ Qc c̄ γ
µc (6.93)

• Finally, a factorization of the charm-loop and the B̄ → K̄ system is assumed. The
neglected contributions are, again, of higher perturbative order and, according to
the OPE, atleast power-suppressed as 1/q2.

6.3.2 Analytic Structure
In order to discuss its analytic properties, the matrix element (6.91) is rewritten using
the completeness relation 1̂ =

∑
X

∣∣∣X
〉〈
X

∣∣∣ :

− q2

8π2

〈
K̄

∣∣∣Kµ
∣∣∣B̄

〉
= i

∫
d4x eiq·x

〈
K̄(k)

∣∣∣T jµ(x)Hc(0)
∣∣∣B̄(p)

〉
(6.94)

=
∑

X

(2π)3δ(~q + ~k − ~pX)
pX0 − q0 − k0 − iε

〈
K̄(k)

∣∣∣ jµ(0)
∣∣∣X

〉〈
X

∣∣∣Hc(0)
∣∣∣B̄(p)

〉

+
∑

X

(2π)3δ(~q + ~pX − ~p )
pX0 + q0 − p0 − iε

〈
K̄(k)

∣∣∣Hc(0)
∣∣∣X

〉〈
X

∣∣∣ jµ(0)
∣∣∣B̄(p)

〉
(6.95)

So that k0 and p0 can be treated as fixed at their physical values, a spurion 4-
momentum [69] r = (r0,0,0,0) is injected into the Hc vertex p+ r = q + k . The matrix
element (6.94) can then be treated as a function of q0, and the physical kinematics are
recovered for r = 0.

Assuming the simplifications specified in the previous section, the intermediate states
of the first term in (6.95) always contain a cc̄ pair and a strange quark, and consequently
we have pX0 − k0 & 2mc . Since the denominator corresponds to a delta function which
switches its sign upon crossing the real axis (to be explicit, a denominator with “∓iε”
corresponds to a ±iπδ(pX0 − q0 − k0)), the first term has a branch cut on the positive
real axis at 2mc . q0 < ∞.

Likewise, in the second term, the intermediate state always contain a cc̄ pair and
a b quark, and thus we have pX0 − p0 & 2mc . Again, the sign of the delta func-
tion from the denominator ±iπδ(pX0 + q0 − p0) depends on the exact position in
the complex plane “∓iε”, which now implies a branch cut on the negative real axis
at −∞ < q0 < −2mc .

If we allow for intermediate states without a cc̄ pair, the cuts would simply extend
to lower values of |q0|.
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6.3 Duality Violation in B → K`+`−

Relation OPE - Duality Violation

It follows from the above that the OPE is justified for q0 on the imaginary axis far
away from the resonances, that is, in the deep Euclidean domain −iq0 ≡ q0E � ΛQCD .
Predictions for large q0 � ΛQCD can then be obtained via analytic continuation of
the individual OPE terms. However, through this transfer to the Minkowskian domain,
terms exponentially suppressed in ΛQCD/q0E partially lose their suppression and acquire
a characteristic oscillatory behaviour [69]. As these terms are invisible at any finite
order in the OPE, they can be identified as those responsible for the violation of
duality.

6.3.3 Charm-Loop Contribution
Using the above simplifications and further neglecting the longitudinal component ∼ qµ ,
the matrix element (6.94) assumes the form

〈
K̄

∣∣∣Kµ
∣∣∣B̄

〉
= 8π2Qca2

〈
K̄

∣∣∣s̄ γµ(1 − γ5)b
∣∣∣B̄

〉
Πc(q2) (6.96)

In order to quantitatively estimate the duality violating component of the charm
correlator Πc , we now make use of the modified version of Shifman’s model developed in
section 6.1.3. Expressed as a correction to the effective coefficient Ceff

9 , the contribution
of the charm-loop to the B → K`+`− amplitude then reads

∆charm(q2) ≡ 16π2

3
a2 Πc(q2) = −4

3
a2

1 − b/π
ψ(z + 3) (6.97)

where

z = (−r − iε)1−b/π r = q2 − 4mc
2

λ2
≡ u(s − sc) u = mB

2

λ2
(6.98)

For the numerical values of the parameters, we take the fit results (6.38) – (6.39)

b = 0.0818 mc = 1.333GeV λ2 = 3.080GeV2 (6.99)

which brings with it u = 9.05 and sc = 0.255.
In analogy to the discussion around equation (6.73), the charm contribution (6.97) is

decomposed into an OPE and a duality violating component according to
[
ψ(z + 3)

]
had ≡

[
ψ(−z − 2) − iπ

]
OPE

+
[
−π cot(πz) + iπ

]
DV

(6.100)

The duality violating component thus explicitly reads

∆DV(q2) = 4π
3

a2

1 − b/π

[
cot(πz) − i

]
≈ 8πi

3
a2e

2πu(s−sc)(i−b) (6.101)

where, in the second step, the hierarchy π � b ln q2/λ2 was assumed.
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Figure 6.6: Duality violation in B+ → K+`+`−: Local duality (l.h.s.): OPE-based (solid)
and hadronic (dashed) dilepton-mass spectrum, that is, (6.102) with and without ∆DV(s), in
units of [10−7 ]. Global duality (r.h.s.): RDV,1 (solid), the corresponding approximation (6.105)
(dotted), and RDV,2 (dashed) as functions of s0 and in units of [10−2 ].

Finally, it is pointed out that the perturbative contribution of the charm-loop is
described more accurately by the actual Standard model OPE result (6.53) – (6.54), and
thus Shifman’s OPE expression, defined through (6.100), will not be used to describe
the charm-loop contributions contained in Ceff

9 (s).

6.3.4 Quantitative Estimate

The general structure of the B̄ → K̄`+`− decay spectrum with respect to the duality
violating component ∆DV(s) can schematically be written as

dΓ
ds

(
B̄ → K̄`+`−

)
= const. ×

{
|Ceff

9 (s) + ∆DV(s)|2 + |C10|2
}
λ3/2(s)f 2

+(s) (6.102)

One may discern two duality violating terms - one being linear, the other quadratic
in ∆DV(s). The relative impact of these terms on the partially integrated decay rate is
now discussed in turn.

Term Linear in ∆DV

When integrating the branching fraction from some lower limit s0 = q2
0/mB

2 to the
endpoint of the spectrum sm = (mB −mK )2/mB

2 , the relative size of the linear term is
given as

RDV,1 ≈
2
∫ sm
s0
dsλ3/2(s)f 2

+(s)Re [Ceff∗
9 (s)∆DV(s)]

∫ sm
s0
ds
(
|Ceff

9 (s)|2 + C 2
10
)
λ3/2(s)f 2

+(s)
(6.103)
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6.3 Duality Violation in B → K`+`−

To clarify the parametric situation, this term may be approximated as

RDV,1 ≈
−16π

3
a2C9

C 2
9 + C 2

10

∫ sm
s0
dsλ3/2(s)f 2

+(s)e−2πbu(s−sc) sin(2πu(s − sc))
∫ sm
s0
dsλ3/2(s)f 2

+(s)
(6.104)

.
8
3u

a2C9

C 2
9 + C 2

10

λ3/2(s0)f 2
+(s0)

∫ sm
s0
dsλ3/2(s)f 2

+(s)
e−2πbu(s0−sc) (6.105)

At this, the first steps assumes Ceff
9 (s) ≡ C9 along with the simplification (6.101), the

second step an integration by parts, similar to (6.79).
We note an 1/u = λ2/mB

2 power suppression due to the oscillating integrand as
well as an exponential suppression for sufficiently large 2πbu0 . This being said, the
potential impact of RDV,1 grows, as can be observed in Fig. 6.6, with increasing s0 ,
reaching 5.1% towards the end of the spectrum. This is ultimately a consequence of
the fact that, towards the kinematic endpoint s0 → sm , the integral over a single
period (length T = 1/u) represents a larger fraction of the integral over the entire
interval [s0, sm ]. For a lower limit of integration between 0.5 6 s0 6 0.6, however, the
impact of the linear term stays below 2.1%.

Term Quadratic in ∆DV

For the relative impact of the quadratic term we have

RDV,2 =
∫ sm
s0
dsλ3/2(s)f 2

+(s) |∆DV(s)|2
∫ sm
s0
ds
(
|Ceff

9 (s)|2 + C 2
10
)
λ3/2(s)f 2

+(s)
(6.106)

≈ 64π2

9
a2

2

C 2
9 + C 2

10

∫ sm
s0
dsλ3/2(s)f 2

+(s)e−4πbu(s−sc)

∫ sm
s0
dsλ3/2(s)f 2

+(s)
(6.107)

.
16π
9bu

a2
2

C 2
9 + C 2

10

λ3/2(s0)f 2
+(s0)

∫ sm
s0
dsλ3/2(s)f 2

+(s)
e−4πbu(s0−sc) (6.108)

As already discussed in section 6.2.4, the quadratic term differs qualitatively from the
linear: There is (practically) no oscillation in the integrand, and, related to this, RDV,2
is a strictly positive, monotonously decreasing function of s0 (see r.h.s. of Fig. 6.6).
Furthermore, while there is still an exponential 2πbu0 suppression, the power suppression
in 1/u is counteracted by an 1/b enhancement. In practice, the second order term is
kept in check by the size of the ratio |a2/C9,10|2 .

Numerically, one finds RDV,2 = 0.67% at our reference value s0 = 15GeV2/mB
2 ≈ 0.55,

and thus RDV,2 is completely negligible.
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7 Precision Flavour Physics with
B̄0 → π+`−ν̄ and B± → π±µ+µ−

Theoretical predictions for the decay rates of B̄0→ π+`− ν̄ and B±→ π±µ+µ− suffer
from large uncertainties in the relevant form factors. Since both decays share similar
hadronic dynamics, this problem may be addressed by considering ratios of the corre-
sponding branching fractions. To investigate the quality of such (precision) observables
is the main objective of the following chapter.

On a related note, a precise (NNLO) prediction of the B±→ π±µ+µ− branching frac-
tion, using measurements of B̄0→ π+`− ν̄ as input, can be found in [70].

7.1 Dilepton-Mass Spectra
From a theoretical point of view, the decay B+→ π+µ+µ− is in many respects analogous
to the already discussed B → K`+`−. There is, however, a non-trivial difference, which
stems from the non-hierarchic flavour structure of b → d transitions. More specifically,
the relevant CKM-entries

λp = V
∗
pd Vpb with p = u,c, t (7.1)

are all of the same order of magnitude. Thus, the so far neglected component of the
effective Hamiltonian Hu

eff , defined in (2.18), must now be taken into account as well.
Apart from said inclusion of Hu

eff , the effective Hamiltonian for b → d transitions
only differs by the replacement of all (explicit) strange quarks in the operators (2.17)
(and (2.19)) by down quarks.

As regards the decay B̄0→ π+`− ν̄ , the theoretical picture is extremely simple and
clean. The decay is induced by the tree-level process shown in Fig. 7.1 (a) at the weak
scale. As a consequence, all strong interactions are contained in the standard form
factor f π+ (s). In particular, there are no perturbative corrections.

The two differential decay rates read [9, 70, 71] (` = e or µ)

dΓ
ds

(
B̄0 → π+`− ν̄

)
=

GF
2mB

5

192π3

∣∣∣Vub
∣∣∣
2
λ3/2(s)

∣∣∣f π+ (s)
∣∣∣
2 (7.2)

dΓ
ds

(
B± → π±µ+µ−

)
=

GF
2αe

2mB
5

1536π5
λ3/2(s)

∣∣∣f π+ (s)
∣∣∣
2(∣∣∣λtC10

∣∣∣
2 +

∣∣∣Ceff
9 (s)

∣∣∣
2 ) (7.3)
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Figure 7.1: The Feynman diagrams responsible for the semileptonic decays B̄0→ π+`− ν̄
and B±→ π±µ+µ− are shown of Fig. (a) and (b)− (e), respectively. The crossed circles in
(d ) and (e) denote the possible insertion points for the electromagnetic current opera-
tor jµ =

∑
qQq (q̄ γµq).

where

Ceff
9 (s) = λt

{
C9 +

(
C1 + NC2

)
hc −

1
2
(
C3 + NC4

)[
hs + hb

]

+
(
NC3 + C4 + NC5 + C6

)[
hc −

hb

2
+ 2

9

]

+ 2mb

mB + mπ±

f πT (s)
f π+ (s)

C7 +
[
C3 + NC4 −

2µπ
mB

(
C5 + NC6

)]
∆WA(s)

}

+ λu

{(
C1 + NC2

)[
hc − hu

]
−

(
NC1 + C2

)
∆WA(s)

}
(7.4)

The function hq ≡ h(q2,mq) coincides with the one defined in (5.16), and

∆WA(s) = 8Qu
mB

fBfπ

f π+ (s)
π2

N
λ−1
− (s) (7.5)

describes the contributions from the weak annihilation diagrams in Fig. 7.1 (e). At this
point, a few remarks on weak annihilation seem necessary:

• The proper scale to renormalize the weak annihilation term (including the Wilson
coefficients) is not µ = O(mb), but rather the hard-collinear scale µh =

√
µΛh ,

where Λh = 0.5GeV [33].

• Admittedly, the term proportional to µπ = m2
π/(mu +md) ∼ ΛQCD is formally

power-suppressed in the heavy-quark limit. Since, however, the actual size of
2µπ/mB ≈ 0.75 is close to unity, it is nevertheless taken into account.

• As discussed in the context of the OPE, ∆WA(s) develops a power-suppression
at large invariant mass q2. Even though there are now contributions with the
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B̄0→ π+`− ν̄ [10−4 ] B±→ π±µ+µ− [10−8 ]

Figure 7.2: Differential branching fractions (dB/ds)(s) of B̄0→ π+`− ν̄ and B±→ π±µ+µ−

as functions of s: The shaded areas correspond to a separate variation of the form factor
parameters in the intervals specified in (B.10).

dominant coefficients C1,2 as well, the impact of weak annihilation is already
below 0.5% at q2 = 15GeV, and thus remains negligible at high-q2.

• For s → 0, on the other hand, ∆WA(s) becomes singular (though still integrable).
This can be observed in Fig. 7.2 and follows from the asymptotic behaviour of

λ−1
− (s) s�1−→ 1

ω0

[
iπ − γ − ln smB

ω0
+ ...

]
(7.6)

• Finally, attention is drawn to the fact that, in the case of B±→ π±µ+µ−, weak
annihilation actually generates a relevant contribution to the integrated decay rate
(roughly 7%). This is in contrast to similar kaon decays, e.g.B0,+→ K 0,+µ+µ− ,
where the contributions from weak annihilation are suppressed by the smallness
of the penguin coefficients (K 0,+) or the off-diagonal elements of the CKM
matrix (K+) [29].

7.2 Numerical Results
Before investigating the matter of precision observables, the numerical results for the
individual decays are presented first. To allow for comparison, for each integrated
branching fraction, both the SM prediction as well the current experimental status are
presented.

For the theoretical predictions, the form factor relation (3.60) is used to elimi-
nate f πT (s) in favor of f π+ (s). The parametrization employed for the latter can be found
in appendix (B.1.2).

In order to estimate the form factor uncertainties, the form factor parameters are
varied separately in their default ranges, given in (B.10). The individual parameter
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7 Precision Flavour Physics with B̄0 → π+`−ν̄ and B± → π±µ+µ−

errors obtained in this way are, however, not independent from one another. Thus,
adding them naively severely overestimates the total uncertainty.

7.2.1 Integrated B̄0→ π+`− ν̄ Branching Fraction
For our tree-level process, we have

B(B̄0 → π+`− ν̄ )exp = (1.45 ± 0.05) · 10−4 ([66]) (7.7)

B(B̄0 → π+`− ν̄ )th = (1.40+0.36
−0.32[f+(0)]+0.19

−0.17[a0]+0.06
−0.08[b1]) · 10−4 (7.8)

where, to be explicit, the “`” stands for either an e or a µ. There is a good agreement
between theoretical prediction and experiment, albeit – as anticipated – at a rather
large form factor uncertainty.

7.2.2 Integrated B±→ π±µ+µ− Branching Fraction
Taking the lower limit of integration q2

0 = 4mµ
2, we find for the rare mode

B(B± → π±µ+µ−)exp = (2.3 ± 0.6(stat.) ± 0.1(syst.)) · 10−8 ([72]) (7.9)

B(B± → π±µ+µ−)th = (2.69+0.13
−0.08[µ]+0.65

−0.58[f+(0)]+0.34
−0.31[a0]+0.11

−0.13[b1]) · 10−8 (7.10)

where, in accordance with standard practice, the perturbative uncertainty is estimated
by varying the renormalization scale in the interval mb/2 6 µ 6 2mb . Note that
the B±→ π±µ+µ− branching ratio has been measured only recently, and, in consequence,
there is a sizeable uncertainty on the experimental side as well.

For the sake of comparison, we also quote the following theoretical predictions from
the literature

B(B± → π±µ+µ−)th = (1.88 +0.32
−0.21) · 10−8 ([70]) (7.11)

B(B± → π±µ+µ−)th = (2.03 ± 0.23) · 10−8 ([73]) (7.12)

The numerical discrepancy between the two results (7.8) and (7.12) can be accounted
for by the following different input parameters1, used in [73],

λt = 0.00827 (−13%) αe = 1/137 (−11%) (7.13)

sin2θMSW (MZ) = 0.22306 (+7.4%) mt,pole = 174.2GeV (−3%) (7.14)

1The percentages in the parentheses refer to the change in the B±→ π±µ+µ− branching fraction
when using the respective value in place of the one given in appendix A.

90



7.2 Numerical Results

q2[(GeV/c2)2 ] 4mµ
2 − 2.00 2.00 − 4.30 4.30 − 8.68 10.09 − 12.86

B(B̄0→ π+`− ν̄ )th 1.21 +0.00
−0.00

+0.31
−0.27 1.44 +0.00

−0.00
+0.37
−0.33 2.74 +0.00

−0.00
+0.73
−0.65 1.71 +0.00

−0.00
+0.49
−0.44

B(B±→ π±µ+µ− )th 0.35 +0.01
−0.00

+0.07
−0.06 0.29 +0.01

−0.00
+0.07
−0.06 0.51 +0.03

−0.03
+0.13
−0.12 0.31 +0.02

−0.02
+0.09
−0.08

Rπ
th 3490 +2

−75
+194
−230 4919 +13

−122
+90
−113 5347 +274

−320
+18
−23 5485 +300

−348
+3
−3

q2[(GeV/c2)2 ] 14.18 − 16.00 > 16.00 1.00 − 6.00 0.00 − max

B(B̄0→ π+`− ν̄ )th 1.08 +0.00
−0.00

+0.34
−0.31 4.11 +0.00

−0.00
+1.54
−1.41 3.12 +0.00

−0.00
+0.80
−0.71 13.97 +0.00

−0.00
+4.09
−3.69

B(B±→ π±µ+µ− )th 0.19 +0.01
−0.01

+0.06
−0.05 0.72 +0.03

−0.02
+0.26
−0.23 0.64 +0.02

−0.00
+0.15
−0.13 2.69 +0.13

−0.08
+0.74
−0.66

Rπ
th 5587 +219

−302
+1
−2 5674 +146

−257
+3
−3 4848 +25

−130
+95
−120 5196 +151

−239
+69
−85

Table 7.1: Results for the individual standard bins: Standard model predictions for the
partial branching fractions of B̄0→ π+`− ν̄ and B±→ π±µ+µ− in units of 10−4 and 10−5,
respectively; ratio Rπ in units of 100. The uncertainties correspond to the perturbative (first)
and the combined form factor uncertainty (second), respectively.

in combination with the complete neglect of weak annihilation (−7%). Through these
adjustments alone, our SM predictions would become B(B±→ π±µ+µ−)th = 2.01 · 10−8 ,
which is already in good agreement with (7.12).

As far as the NNLO prediction (7.11) is concerned, we only remark that a contribution
from weak annihilation is missing in [70] as well.

7.2.3 Precision Observables
In the present context, the obvious candidates for precision observables are ratios of the
form

Rπ ≡ B(B̄0 → π+`− ν̄ )
B(B± → π±µ+µ−)

=
8π2τB 0

αe
2τB+

∣∣∣Vub
∣∣∣
2
∫
λ3/2(s)f 2

+(s)
∫
λ3/2(s)f 2

+(s)
(∣∣∣λtC10

∣∣∣
2 +

∣∣∣Ceff
9 (s)

∣∣∣
2 )

(7.15)

In general, the cancellation of the hadronic uncertainties in (7.15) is most effective if
the two branching fractions are integrated over the same domain. Then, the only thing
that prevents a complete elimination is the s-dependence of Ceff

9 (s), which is dominated
by the weak annihilation term.

Numerically, an integration over the entire spectrum 4mµ
2 6 q2 6 (mB −mπ±)2

yields
Rπ
th = 5196+151

−239[µ]+50
−65[f+(0)]+44

−51[a0]+18
−23[b1] = (5.20 +0.17

−0.25) · 103 (7.16)

which is to be compared with the experimental value

Rπ
exp = (6.3 ± 1.7) · 103 (7.17)

The total theoretical uncertainty in the precision observable (7.16) is roughly 5% and
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dominated by the perturbative error, which can be reduced systematically. Correspond-
ingly, the remaining hadronic uncertainties are found to be rather small ∼ 1.6%.

The cancellation of form factor uncertainties, though still effective, is, however, not
as complete as in similar kaon decays [29]. In particular, the variation of f+(0) has a
substantial impact on the ratio (7.16). This mainly harks back to the lack of a strong sup-
pression of the weak annihilation term in B±→ π±µ+µ− decays.

In order to avoid the domain of the narrow charmonium resonances, one may opt
to exclude the middle part 0.25 6 s 6 0.6 from the integration. For this modified
observable, one finds

Rπ
th,cut = 5006 +62

−170[µ] +79
−101[f+(0)]+69

−77[a0]+34
−42[b1] = (5.01 +0.13

−0.22) · 103 (7.18)

which is qualitatively similar to the result (7.16). The moderate increase of the form
factor uncertainties in (7.18) can be attributed to the higher weighting of the low-q2

region s . 0.2, where the impact of weak annihilation is felt the most. This can also be
inferred from the numerical results obtained for the individual standard bins, displayed
in Tab. 7.1.
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8 Precision Flavour Physics with
B → K∗νν̄ and B → K∗`+`−

In the spirit of the previous chapter, a combined analysis of the decays B → K∗νν̄
and B → K∗`+`− is performed. While the underlying concept remains the same, the
multitude of different form factors involved requires a somewhat more elaborate imple-
mentation.

8.1 Dilepton-Mass Spectra
The dilepton mass spectra of the two rare decays B → K∗νν̄ and B → K∗`+`− can
be written as [74]

dΓ
ds

(
B → K∗νν̄

)
=

GF
2αe

2mB
5

1024π5

∣∣∣V
∗
ts Vtb

∣∣∣
2
λ1/2(s)

∣∣∣Cν
∣∣∣
2
R9(s) (8.1)

dΓ
ds

(
B → K∗`+`−

)
=

GF
2αe

2mB
5

6144π5

∣∣∣V
∗
ts Vtb

∣∣∣
2
λ1/2(s)

{(∣∣∣Ceff
9 (s)

∣∣∣
2 +

∣∣∣C10
∣∣∣
2
)
R9(s)

+ R7(s)mb
2

mB
2

∣∣∣C7
∣∣∣
2 + R97(s) mb

mB
Re
[
Ceff

9 (s)C∗7
]}

(8.2)

At this, for reasons of experimental feasibility, all three families are counted in the
neutrino mode (8.1). In the formula for the charged mode (8.2), on the other hand,
the “`” stands for either an e or a µ.

The effective coefficient in (8.2) reads

Ceff
9 (s) = C9 +

(
C1 + NC2

)
hc −

1
2
(
C3 + NC4

)[
hs + hb

]

+
(
NC3 + C4 + NC5 + C6

)[
hc −

hb

2
+ 2

9

]
(8.3)

where hq ≡ h(q2,mq) is the function defined in (5.16).
Note that the weak annihilation contribution to B → K∗`+`−, which is proportional

to the small penguin coefficients, would require the introduction of two effective coeffi-
cients Ceff

9‖,⊥ and has therefore been neglected for the sake of simplicity.
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Finally, we have [74]

R9(s) = 1
r

[
A2(s)

1 +
√
r
λ(s) − A1(s)(1 +

√
r)(1 − s − r)

]2

+ 8s
[

V 2(s)
(1 +

√
r)2 λ(s) + A2

1(s)(1 +
√
r)2

]
(8.4)

R7(s) = 4
rs2

[
T̃3(s)λ(s) − T2(s)(1 − r)(1 − s − r)

]2

+ 32
s

[
T 2

1 (s)λ(s) + T 2
2 (s)(1 − r)2

]
(8.5)

R97(s) = 4
rs

[
A2(s)

1 +
√
r
λ(s) − A1(s)(1 +

√
r)(1 − s − r)

]

·
[
T̃3(s)λ(s) − T2(s)(1 − r)(1 − s − r)

]

+ 32V (s)
1 +
√
r
T1(s)λ(s) + 32A1(s)T2(s)(1 − r)(1 +

√
r) (8.6)

where
T̃3(s) ≡ T2(s) + s

1 − r
T3(s) (8.7)

It is worth mentioning that the respective first term in (8.4) – (8.6) corresponds to a longi-
tudinally, the second to a transversely polarized vector meson.

8.2 Variation of Form Factors
In order to estimate the hadronic uncertainties in observables, the different form fac-
tors are to be varied. The effective number of independent form factor parameters
can be reduced significantly by exploiting the form factor symmetries (3.61) – (3.62).
While this course of action is certainly preferable in terms of convenience and trans-
parency, it is most of all necessary to avoid a severe overestimation of the hadronic
uncertainties.

Now, in principle, the decision which of the six form factors appearing in (8.4) – (8.6)
to eliminate is arbitrary. This being said, the tensor form factors Ti have (at least in
the largest part of the spectrum q2 & 1GeV2) a comparatively small numerical impact.
Since the form factor relations are not exact identities, and thus introduce an error of
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B0 → K∗0νν̄ [10−5 ] B0 → K∗0`+`− [10−6 ]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

Figure 8.1: Differential branching fractions (dB/ds)(s) of the rare decays B → K∗νν̄
and B → K∗`+`− as functions of s: The dashed curves show the default predictions; the solid
curves correspond to the two “form factor scenarios” as explained in the text. The form factor
uncertainties (shaded areas) are obtained from a separate parameter variation; darker shaded
areas (essentially overlaps) belong to both scenarios. The data points represent the averaged
measurements provided by the HFAG [75] (also given in Tab. 8.1).

their own, it therefore seems more natural to remove the Ti in favour of the dominant
form factors V , A1 and A2.

In this spirit, the tensor form factors are always eliminated using the relations

T1(s) = V (s)
1 +
√
r

T2(s) = V (s)
1 +
√
r

(1 − s) T3(s) = A2(s)
1 +
√
r

(8.8)

In addition, this ensures that the kinematic constraints

T2(0) = T1(0) = T̃3(0) (8.9)

are always exactly maintained, in particular also when the individual form factor
parameters are varied.

There is one further relation we may exploit, namely

A1(s)(1 +
√
r)2 = V (s)(1 − s) (8.10)

which can be used to eliminate either A1(s) or V (s) from theoretical expressions. Both
variants will be considered here – mostly to get an impression of the error introduced
by the relations themselves: Just by imposing the form factor symmetries in one way or
another, theoretical predictions are shifted differently. The difference between the two
implementations of (8.10), for instance, can be observed in Fig. 8.1.

Thus, in summary, we are in both cases left with two independent form factors;
in the first scenario with (V,A2), and in the second with (A1,A2). Using the form
factor parametrizations (B.31) – (B.33), this corresponds to 6 and 5 independent pa-
rameters, respectively, which will be varied separately within the boundaries specified
in (B.34) – (B.35).
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8 Precision Flavour Physics with B → K∗νν̄ and B → K∗`+`−

8.3 Numerical Results
The numerical results for the integrated branching fractions and precision observables
are presented and compared with the current experimental findings. At this, for each
observable, up to three different theoretical predictions are given. One, usually the
first, forgoes the form factor relation entirely and may be seen as the default value.
The other two results, carrying a subscript i = 1,2, have the relations implemented
(differently) as discussed in the previous section (8.2), which allows to estimate the
hadronic uncertainties in a sensible way.

8.3.1 Integrated B → K∗νν̄ Branching Fraction
As far as the neutrino mode is concerned, experimental measurements still only allow
to specify upper bounds for the total branching fractions [75]

B(B → K∗νν̄ )exp < 76 · 10−6 (8.11)

B(B0 → K∗0νν̄ )exp < 55 · 10−6 (8.12)

B(B+ → K∗+νν̄ )exp < 40 · 10−6 (8.13)

For the corresponding SM prediction, we employ the NLO approximation of the Wil-
son coefficient Cν , given in (D.17). Not yet exploiting any form factor symmetries,
one then obtains for the fully (starting at q2

0 = 0) integrated B → K∗νν̄ branching
fraction

B(B0 → K∗0νν̄ )th = 10.6 · 10−6 (8.14)

While this result is virtually free of perturbative uncertainties, it comes with a quite
substantial hadronic uncertainty of about 40%: Imposing now the form factor relations
as described in the previous section, a separate variation of the remaining form factor
parameters yields

B(B0 → K∗0νν̄ )1 = (96+28
−24[V0]+19

−17[aV ] +8
−10[bV ]+12

−10[A20]+5
−4[aA2]+4

−3[bA2]) · 10−7 (8.15)

= (96 +37
−33) · 10−7 (8.16)

B(B0 → K∗0νν̄ )2 = (109+36
−30[A10]+16

−13[bA1]+12
−10[A20]+5

−5[aA2]+4
−3[bA2]) · 10−7 (8.17)

= (109 +41
−35) · 10−7 (8.18)
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8.3 Numerical Results

q2[(GeV/c2)2 ] 0.00 − 2.00 2.00 − 4.30 4.30 − 8.68 10.09 − 12.86
HFAG [75] 1.02 +0.09

−0.10 0.80 ± 0.08 1.85 +0.17
−0.16 1.58 ± 0.12

Bth1 1.77 +0.27
−0.17

+0.70
−0.58 1.20 +0.06

−0.04
+0.62
−0.52 2.76 +0.29

−0.24
+1.17
−1.02 2.00 +0.17

−0.14
+0.74
−0.69

Bth2 1.61 +0.25
−0.16

+0.74
−0.59 1.14 +0.06

−0.03
+0.68
−0.54 2.93 +0.30

−0.26
+1.31
−1.10 2.38 +0.21

−0.17
+0.82
−0.71

q2[(GeV/c2)2 ] 14.18 − 16.00 > 16.00 1.00 − 6.00 0.00 − max

HFAG [75] 1.09 ± 0.08 1.33 ± 0.11 1.90 ± 0.18 10.5 ± 1.0
Bth1 1.15 +0.08

−0.06
+0.45
−0.43 1.22 +0.08

−0.05
+0.53
−0.49 2.73 +0.14

−0.08
+1.36
−1.14 12.00 +0.68

−0.40
+4.59
−4.09

Bth2 1.49 +0.10
−0.08

+0.50
−0.42 1.68 +0.11

−0.07
+0.60
−0.48 2.64 +0.14

−0.08
+1.49
−1.20 13.50 +0.82

−0.52
+5.20
−4.36

Table 8.1: Partial branching fractions of B → K∗`+`− in units of 10−7. The theoretical
uncertainties correspond to the perturbative (first) and the combined form factor uncertainty
(second), respectively.

8.3.2 Integrated B → K∗`+`− Branching Fraction
As for the charged mode, the total branching fractions, extrapolated from the measured
non-resonant part of the spectrum, are measured to be [75]

B(B → K∗`+`−)exp = (1.05 ± 0.10) · 10−6 (8.19)

B(B0 → K∗0`+`−)exp = (0.99 +0.13
−0.11) · 10−6 (8.20)

B(B+ → K∗+`+`−)exp = (1.29 +0.22
−0.21) · 10−6 (8.21)

In contrast to the neutral mode, the charged mode has a (non-integrable) 1/s divergence,
related to the increasing difficulty to experimentally distinguish between B → K∗`+`−

and B → K∗0γ . Therefore, the q2-integration is cut at q2
0 = 0.05GeV2, which yields

B(B0 → K∗0`+`−)th = (1.31+0.08
−0.05[µ]) · 10−6 (8.22)

This corresponds to a moderate perturbative error of 6%, which is significantly exceeded
by the large (about 40%) hadronic uncertainties, in detail estimated to be

B(B0 → K∗0`+`−)1 ·108 = 120+7
−4[µ]+35

−30[V0]+23
−21[aV ]+10

−12[bV ]+15
−13[A20]+6

−6[aA2]+5
−4[bA2] (8.23)

= 120+7
−4(scale) +46

−41(hadronic) (8.24)

B(B0 → K∗0`+`−)2 ·108 = 135+8
−5[µ]+45

−38[A10]+19
−15[bA1]+15

−13[A20]+6
−6[aA2]+5

−4[bA2] (8.25)

= 135 +8
−5(scale) +52

−44(hadronic) (8.26)
A comparison between the theoretical predictions and the experimental measurements
of the individual standard bins, as given in Tab. 8.1, shows qualitatively the same
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8 Precision Flavour Physics with B → K∗νν̄ and B → K∗`+`−

q2[(GeV/c2)2 ] 0.00 − 2.00 2.00 − 4.30 4.30 − 8.68 10.09 − 12.86
RK∗
th1[10−2 ] 444 +47

−58
+68
−86 899 +27

−45
+48
−34 878 +85

−82
+32
−27 849 +65

−68
+10
−9

RK∗
th2[10−2 ] 432 +48

−59
+77
−100 902 +27

−45
+55
−36 874 +85

−82
+32
−26 846 +64

−68
+9
−8

q2[(GeV/c2)2 ] 14.18 − 16.00 > 16.00 1.00 − 6.00 0.00 − max

RK∗
th1[10−2 ] 836 +45

−55
+3
−3 829 +37

−49
+1
−1 873 +26

−43
+35
−25 797 +28

−43
+7
−8

RK∗
th2[10−2 ] 835 +45

−55
+3
−3 828 +37

−49
+1
−1 875 +27

−44
+40
−28 804 +32

−46
+6
−6

Table 8.2: Precision observable RK∗ for the individual standard bins. The first error represents
the perturbative; the second error the combined form factor uncertainty.

picture (general agreement of theory and experiment, small perturbative, large hadronic
uncertainty).

8.3.3 Precision Observables
For our precision observables we will consider ratios of the form

RK∗ ≡

∫ b

a
ds dB(B → K∗νν̄ )/ds

∫ b

a
ds dB(B → K∗`+`−)/ds

(8.27)

where, to ensure an efficient cancellation of the hadronic uncertainties, the two branching
fractions are always integrated over the same part of the q2-spectrum.

Again, the numerical findings for the entire spectrum 0.05GeV2 6 q2 6 (mB −mK∗)2

are presented in detail first. For the current experimental status and our theoretical
default value, we have

RK∗

exp ·102 < 3101+603
−452 RK∗

th ·102 = 809+34
−47(scale) (8.28)

While the perturbative uncertainty is unchanged at 6%, the hadronic uncertainties are
now estimated to be

RK∗

th1 ·102 = 797+28
−43[µ]+2

−2[V0]+5
−6[aV ]+2

−4[bV ]+3
−3[A20]+1

−1[aA2]+1
−1[bA2] = 797+28

−43
+7
−8 (8.29)

RK∗

th2 ·108 = 804+32
−46[µ]+3

−3[A10]+3
−3[bA1]+3

−3[A20]+2
−2[aA2]+1

−1[bA2] = 804+32
−46

+6
−6 (8.30)

which represents a significant reduction down to the 1% level.
The results for the individual bins, presented in Tab. 8.2, reveal that at low-q2 the

cancellation of hadronic uncertainties is less effective, though still quite significant.
This is mainly a consequence of the divergent 1/s component in the C7 term of
the B → K∗`+`− branching fraction.
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9 Precision Flavour Physics with
B → Kνν̄ and B → K`+`−

For our last precision observable, we simultaneously consider the integrated branching
fractions of B̄ → K̄νν̄ and B̄ → K̄`+`−. The two decay rates are presented at NNLO
accuracy, using the more suitable operator basis (2.21). We then proceed to investigate
the residual hadronic uncertainty in the corresponding ratios. A similar analysis, though
only at NLO, was given in [29].

9.1 Dilepton-Mass Spectra
The differential branching fractions of the decays B̄ → K̄νν̄ and B̄ → K̄`+`− can, to
any order in αs, be written as

dΓ
ds

(
B̄ → K̄νν̄

)
=

GF
2αe

2mB
5

256π5
|λt|2λ3/2(s)f 2

+(s)
∣∣∣Cν

∣∣∣
2 (9.1)

dΓ
ds

(
B̄ → K̄`+`−

)
=

GF
2αe

2mB
5

1536π5
|λt|2λ3/2(s)f 2

+(s)
{∣∣∣ 4π

αs
C10

∣∣∣
2

+
∣∣∣Ceff9 (s)

∣∣∣
2
}

(9.2)

At this, the Wilson coefficients C10 and Cν are simple short-distance quantities, induced
at the weak scale, and consequently are known very precisely.

The effective coefficient Ceff9 , on the other hand, is more complicated: Next to
the contributions from Q7,9 , it also contains the non-local matrix element of Q1−6 ,
which requires a virtual photon to create the outgoing lepton pair. At NLO, one
finds [10, 76, 77] (µ̂K ≡ µK/mB)

Ceff9,NLO = 4π
αs
C9 + 2mb

mK + mB

fT (s)
f+(s)

C7 + (CF C1 + C2)hc + 2NC3

[
hc −

hb

2
+ 2

9

]

− (C3 + CF C4)
[
hs

2
+ hb

2
+ (2µ̂K − 1)∆WA

]
+ 20NC5

[
hc −

hb

2
+ 4

45

]

− 8(C5 + CF C6)
[
hs + hb − 2

9
+ (µ̂K − 2)∆WA

]
(9.3)

where the penguin contributions from the four-quark operators (Fig. 9.1 (c)) are
described by the function hq = h(q2,mq), defined in (5.16).
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b s

Q9,10

ℓℓ

b sQ7

ℓℓ

γ

b sQ1−6

ℓℓ
γ

b s

dd

Q3−6

(a) (b) (c) (d )

Figure 9.1: Feynman diagrams responsible for the leading and next-to-leading order contribu-
tions to the B̄ → K̄`+`− amplitude.

Weak Annihilation (NLO)

The effective coefficient Ceff9 receives contributions from the weak annihilation diagrams
in Fig. 9.1 (d ). They are here expressed in terms of the function

∆WA(s) = 8Qr

mB

fBfK
f+(s)

π2

N
λ−1
− (s) (9.4)

where Qr denotes the charge quantum number of the spectator quark. In contrast to the
other terms in the effective coefficient (9.3), the weak annihilation term (9.4) should not
be evaluated at µ ∼ mb , but rather the hard-collinear scale µh =

√
µ/2.

While power suppressed ∼ (ΛQCD/mB )3 at high-q2 (as already discussed in the
context of the OPE), the expression (9.4) becomes of leading power at low-q2. Even
then, however, weak annihilation is still penguin-suppressed and, as a consequence,
remains negligibly small (below 1%) in the entire spectrum [29]. This being said, for
reasons of principle alone, the (NLO) weak annihilation term (9.4) should certainly be
included at the NNLO level.

9.2 Ceff9 at Next-to-Next-to Leading Order
In order to obtain the NNLO decay rate of B̄ → K̄`+`−, two different types of corrections
have to be included.

Firstly, the Wilson coefficients are now required with next-to-leading logarith-
mic (NLL) accuracy, except for C9 , which is now required with next-to-next-to-leading
logarithmic (NNLL) accuracy. This rather technical procedure is explained in ap-
pendix D.

Secondly, the NNLO matrix elements of the local operators give rise to addi-
tional contributions, in the following written as corrections to the effective coeffi-
cient

Ceff9,NNLO = Ceff9,NLO + ∆spec
− + ∆spec

+ + ∆2-loop + ∆8 (9.5)

The different correction terms ∆i are now discussed in turn.
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9.2 Ceff9 at Next-to-Next-to Leading Order

b s

dd

g

Q1−6 b s

dd

g

Q8

(a) (b)

Figure 9.2: B̄ → K̄`+`− at NNLO: Hard spectator scattering ∝ φ−(ω). The crossed circles
denote possible insertion points for the electromagnetic current operator jµ =

∑
qQq (q̄ γµq).

9.2.1 Weak Annihilation (NNLO)
At NNLO, weak annihilation receives additional contributions due to “vertex corrections”,
which can be obtained from Fig. 9.1 (d ) by attaching a virtual gluon.

However, as stated above, already the leading contribution of weak annihilation,
which ranges at the 1% level, is very small. Thus, the perturbative corrections to weak
annihilation, further suppressed in αs, are numerically completely insignificant and
therefore can safely be neglected.

9.2.2 Hard Spectator Scattering ∝ φ−(ω)
As far as processes involving the spectator quark are concerned, the diagrams where
the virtual photon is emitted from an external quark line (Fig. 9.2) are considered
first. Since the calculation essentially factorizes into “loop function” × “weak anni-
hilation structure”, this contribution is proportional to the minus projector of the
B meson φ−(ω).

The corresponding correction to the effective coefficient Ceff9 is given by [40]

∆spec
− = −παs(µ)3Qr

mB

CF

N

fBfK
f+(s)

λ−1
− (s)

∫
duφ(u)

{
4mb

3mB

C8

ū + us
+
(
C2 − C1

2N

)
hc

+
(
C3 − C4

2N

)[
hb + h0

]
+ 16

(
C5 − C6

2N

)[
hb + h0 − 2

9

]

+ C4

[
hc + hb + 3h0 + 20

9

]
+ 10C6

[
hc + hb + 3h0 + 8

9

]}
(9.6)

where, for this contribution, hq ≡ h(ūmB
2 + uq2,mq ) and Qr denotes the charge quan-

tum number of the respective spectator quark. The proper scale to renormalize this
contribution is µh =

√
µΛh .
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As already known from the discussion in section (5.5), this contribution is power-
suppressed ∼ (Λ/mB)3 and, as a consequence, negligible at high-q2.

9.2.3 Hard Spectator Scattering ∝ φ+(ω)
The spectator processes where the virtual photon is emitted from the loop (see Fig. 9.3)
is responsible for the corrections proportional to the light-cone distribution ampli-
tude φ+(ω) [40]. The result presented in [40] has been checked by an independent
calculation as a part of this work, the individual steps of which are outlined be-
low.

General Structure

Inserting the generic four-quark operator Q = (s̄iΓ1)ν̃ (bi)µ̃(q̄jΓ2)α̃(qj)β̃ , the diagrams
shown in Fig. 9.3 give rise to an amplitude of the form

iM = e2gs
2Qq

Eq2
CF

2N
v̄γµu

∫∫
dudω

ūω
(LηµΓ2)β̃α̃ (ΦBγηΦKΓ1)µ̃ν̃ (9.7)

At this, {α̃, β̃, ν̃, µ̃} denote spinor, {i, j} colour, and {η,µ} Lorentz indices. Further-
more, Qq is the charge quantum number of the quark in the loop, and ΦK(u) and ΦB(ω)
are the momentum space projectors, defined in (3.72) and (3.83), respectively. Note that,
in the present context, the projector φ+(ω) in ΦB multiplies n− : The amplitude depends
(only) on the “minus” component of the spectator quark momentum ps , namely via the
denominator of the gluon propagator k′2 = −2ūk ·ps = −2ūωE .

Feynman Parameters

Since the two diagrams in Fig. 9.3 are related by symmetry, it is advantageous to treat
them together. Then, regardless of the concrete operator Q, the loop contribution Lηµ
can always be written as (γαmq

α ≡ mq ,
∫
pi

=
∫
dDpi/(2π)D )

i
[
γαγηγβγµγγ − γγγµγβγηγα

]∫

p′

(p′ + mq)α
p′2 − mq

2

(p′ + k′ + mq)β
(p′ + k′)2 − mq

2

(p′ + k′ + q + mq)γ
(p′ + k′ + q)2 − mq

2
(9.8)

where each Dirac structure corresponds to one of the two diagrams in Fig. 9.3. As for the
second diagram (b), this requires a substitution, e.g. p′ = −p′′ − q − k (afterwards p′′
is relabeled as p′) and exploits the fact that mq enters the amplitude only quadratically
(this becomes apparent in (9.18)), for this allows to replace mq → −mq .

Using the Feynman parametrization

1
ABC

=
1 1∫∫

0 0

2xdxdy
[
(Axy + B(1 − y)x + C(1 − x)

]3 (9.9)
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p uk
Q1−6

η

η

ūkps = ω
2 n−

µ↓

q

↓ k′ = ūk − ps

p uk
Q1−6

η

η

ūkps = ω
2 n−

µ ↓

q

↓ k′ = ūk − ps

(a) (b)

Figure 9.3: B̄ → K̄`+`− at NNLO: Hard spectator scattering ∝ φ+(ω).

the loop contribution Lηµ = (9.8) assumes the form

Lηµ = i
[
γαγηγβγµγγ − γγγµγβγηγα

]
1 1∫∫

0 0

∫

l

2xdxdy
(
l2 − a2)3

(Λ̄ − k′)αΛ̄β(Λ̄ + q)γ (9.10)

where (s = q2/mB
2 , t = mq

2/mB
2 , ū = 1− u)

l = p′ + k′(1 − xy) + q(1 − x) (9.11)

a2 = mB
2
[
t − x(1 − x)(s + yū(1 − s))

]
(9.12)

Λ ≡ Λ̄ − l − mq = k′xy − q(1 − x) (9.13)

Performing the momentum integration is now straight forward (D = 4− 2ε)
∫

l

l2
(
l2 − a2)3

= iΓ(ε)
(4π)2−ε

(
1 − ε

2

)
a−2ε

∫

l

1
(
l2 − a2)3

= −i
(4π)2

1
2a2

(9.14)

Divergent Term

After exploiting the symmetry constraint lαlβ→ l2gαβ/D, the (potentially) divergent
part of Lηµ consists of the terms proportional to l2. Collecting these terms and performing
the momentum integration, one finds

(
1 − ε

2

)[
γαγµγη − γηγµγα

] 1 1∫∫

0 0

∫

l

xdxdyl2
(
l2 − a2)3

[
(3 + 2ε)Λ − k′ + q

]α (9.15)

= iΓ(ε)
(4π)2−ε

[
γα...

]
(1 − ε)

1 1∫∫

0 0

dxdy

a2ε

[
(3x2y − x)k′ + (3x2 − 2x)q + 2εΛx

]α (9.16)

= i

(4π)2

[
γα...

] 1 1∫∫

0 0

dxdy
[
lna−2

[
(3x2y − x)k′ + (3x2 − 2x)q

]
+ 2Λx

]α
(9.17)
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As expected by gauge invariance, the divergences of the two diagrams, that is to say, the
1/ε terms in (9.17), cancel each other out, resulting in the finite expression (9.17). In
consequence, the remaining part of the calculation can be done in D = 4 dimensions,
which in turn implies that the two diagrams combined are independent of the chosen
operator basis.

Dirac Structure

Assuming for now that the generic operator Q = (s̄ibj)V−A (q̄jqi)V±A is inserted in (9.7),
the two Dirac structures stay separate, each of them becoming a trace. Exploiting
the invariance of the trace under cyclic permutations in combination with the reverse
identity tr[γαγβγγ ...] = tr[...γγγβγα] , the loop trace simplifies to

tr
[
(γαγηγβγµγγ − γγγµγβγηγα)γ ν(1 ± γ5)

]
= ∓2tr

[
γ νγαγηγβγµγγγ5

]
(9.18)

It now becomes crucial that the number of γ matrices in (9.18) can always be reduced to
four: In the nontrivial case where all three indices αβγ are contracted with momenta q,k′ ,
this can be achieved by using identities of the general form ..qγηq.. = ..(qηq − q2γη).. .
The trace (9.18) thus always gives a tensor ενηµpx , which can only result in a non-zero
contribution to the amplitude when contracted with another ε-tensor. Since this second
tensor must come from the other trace, we may thus replace

tr
[
ΦBγηΦKγν(1 − γ5)

] →= − i
4
φ(u)φ+(ω)fBfK εqkνη (9.19)

Contracting (9.18) with (Λ̄− k′)αΛ̄β(Λ̄ + q)γ , one then finds (omitting terms ∝ qµ)

tr
[
γ νγαγηγβγµγγγ5

]
εqkνη(Λ̄ − k′)αΛ̄β(Λ̄ + q)γ = −8i

{
l2

2
[
(3 + 2ε)Λ + q − k′

]
·q

− mq
2
[
Λ + q − k′

]
·q + Λqqqq4 +

[
Λqkq + Λqqk + Λkqq

]
q2(k ·q) + 2(k ·q)2Λqkk

}
kµ (9.20)

where, in the l2-term, the “ε” has only been kept if it actually leads to a finite contribution
(in other words, terms ∝ εl2(3Λ+ q− k′) have been dropped) and, for instance, Λqkq
is the coefficient multiplying qαkβqγ in (Λ− k′)αΛβ(Λ + q)γ ≡ ∑Λpipjpk pαi p

β
j p

γ
k . The

coefficients Λpipjpk appearing in (9.20) are explicitly given as

Λqqq = x(1 − x)2 Λqqk = (1 − x)2xyū (9.21)

Λqkq = −(1 − x)x2yū Λkqq = (1 − x)x(1 − xy)ū (9.22)

Λqkk = (x − 1)x2y2 ū2 (9.23)
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Important Steps in the Calculation

Putting everything together, the most important steps leading to the Feynman amplitude
of the operator Q = (s̄ibj)V−A (q̄jqi)V±A read (û = ū(1− s), omitting terms ∝ qµ)

8π2

mB
2

∫
dω

ω
(LηµΓ2)α̃α̃ (ΦBγηΦKΓ1)ν̃ν̃ = ∓8π2fBfK

mB
2 λ+

φ(u)
1 1∫∫

0 0

∫

l

xdxdy
(
l2 − a2)3

· (9.20) (9.24)

= ∓fBfK
λ+

kµφ(u)
1 1∫∫

0 0

dxdyx
{4Λ · q
mB

2 − 2lna2

mB
2

[
3Λ + q − k′

]
·q + 2t

a2

[
Λ + q − k′

]
·q

− mB
2

a2

[
2Λqqqs2 +

(
Λqkq + Λqqk + Λkqq

)
ûs + û2Λqkk

]}
(9.25)

= ∓fBfK
λ+

kµφ(u)
{
û − 2s

3
− 3ûỸ 1

2,0 + 6sỸ 0
1,1 + (û − 2s)Ỹ 0

1,0

+
[
ûY 1

2,0 − ûY 0
1,0 + 2sY 0

2,0

]
− 1

t

[
2s2Y 0

2,2 + 2sûY 0
2,1 − 3sûY 1

3,1 − û2Y 2
3,1

]}
(9.26)

= ∓fBfK
λ+

kµφ(u)
{
û − 5s

6
+ s

2û
(û + s)X10

0,0 + t

û

[
2ûX1

0,0 − (û + s)X10
−1,0

]

+ t

û

[
(û − s)X10

−1,0 − ûX1
0,0

]
+
[
s

2û
(û + s)X10

0,0 − tX1
0,0 −

û + s

6

]}
(9.27)

= ±fBfK
λ+

kµφ(u) sû
4
t‖(s, t, u) (9.28)

The integration over Feynman parameters (last 2 steps) as well as the functions appearing
in (9.26) – (9.27) are discussed in appendix F. The corresponding matrix element is then
found to be
〈
M̄`+`−

∣∣∣(s̄ibj)V−A (q̄jqi)V±A
∣∣∣B̄

〉
= ±ααsQq

CF

2N
fBfK
mB λ+

v̄ku
∫
du φ(u)t‖(s, t, u) (9.29)

where

t‖(s, t, u) = 4t
ū2(1 − s)2

[
F 2

( 4t
ū + us

)
− F 2

(4t
s

)]
− 4

s
(9.30)

F (x) = ln 1 +
√

1 − x

1 − √1 − x
− ū + us

2t
√

1 − x − iπ (9.31)
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Contribution to the effective coefficient Ceff9

If we would use the operator basis
{
Oi

}
, the structure of Wilson coefficients C1−6

would be identical with the one in the OPE term Kµ5 , given in (5.18). Since ∆spec
+

is independent from the chosen operator basis, just by using the transformation ma-
trix (D.65) the correct expression corresponding to the operator basis

{
Qi

}
can be

obtained (tq ≡ t‖(q2,mq, u))

∆spec
+ = −παs(µ)CF

2N
fBfK

f+(q2)λ+mB

∫
du φ(u)

{
Qutc(C2 − C1

2N
)

+ Qd (tb + t0
)(
C3 − C4

2N
+ 16C5 − 8

N
C6) + 6C6(Qd tb + Qutc)

}
(9.32)

As with the other spectator term, ∆spec
+ has to be evaluated at µh =

√
µ/2 and becomes

power-suppressed at high-q2. Finally, note that (9.32) is in agreement with the result
presented in [40].

9.2.4 Two-Loop Contributions
The two-loop diagrams contributing to the NNLO decay rate of B̄ → K̄`+`− are
displayed in Fig. 9.4 (a)-(b). The corresponding matrix elements are usually expressed
as

〈
s`+`−

∣∣∣Qi

∣∣∣b
〉
2-loop = −

( αs
4π

)1
F

(7)
i 〈Q7〉tree −

( αs
4π

)2
F

(9)
i 〈Q9〉tree (9.33)

Neglecting the penguin contributions on account of the small coefficients C3−6 , the
correction to the effective coefficient Ceff9 is then given as

∆2-loop = −αs(µ)
4π

[
2mb

mB
(C1 − 2NC2)F (7)

1 + C1F
(9)
1 + C2F

(9)
2

]
(9.34)

The functions F (7,9)
1−2 have been presented as expansions in ŝ = q2/mb

2 , z = mc
2/mb

2

and ŝ/(4z) in [78, 79, 80, 81]. Consequently, these expansions are valid in the domain of
high recoil or, more precisely, in the energetic range 0.05 6 ŝ 6 0.25. In the domain of
low recoil, on the other hand, we will rely on the results presented in [45]. The provided
expansions in mc

2/mb
2 , which go up to the tenth order, show a good convergence behaviour

for ŝ > 0.6 [45], and thus can be used in our entire high-q2 region s > 15GeV/mB
2 .

In short, the MATHEMATICA input files attached to [45], which contain the low as
well as the high recoil results just mentioned, are employed for the numerical analysis.
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b sQ1−6 b sQ1−6 b sO8

(a) (b) (c)

Figure 9.4: B̄ → K̄`+`− at NNLO: Diagrams related by symmetry to (b) and (c) are not
shown. The crossed circles denote possible insertion points for the electromagnetic current
operator jµ =

∑
qQq (q̄ γµq).

Dependence on Scheme of Charm Mass

The authors of [45] provide functions F (9)
1,2 , which correspond to the pole scheme of the

charm mass, along with functions 4(9)
1,2 , which have to be added to the pole functions in

order to obtain the correspondingMS functions F̄ (9)
1,2 . The 4(9)

1,2 can also be calculated
from the relation between pole andMS mass

m̄c(µc) = mc

(
1 + αs(µc)

4π
CF
[
3ln mc

2

µ2
c

− 4
]

+ O(αs2)
)

(9.35)

and the fact that the effective coefficient Ceff9 must be scheme independent to the given
order in αs: (x = 4mq

2/q2, ∂xh(x,µ) = −f(x)/3)

4(9)
1 (m̄c) ≡ F̄

(9)
1 (m̄c) − F

(9)
1 (mc) = 4π

αs(µb)
CF

[
hc(m̄c) − hc(mc)

]
(9.36)

= 4π
αs(µb)

CF
∂h(q2,mc)
∂mc

[
m̄c(µc) − mc

]
(9.37)

= −2
3
C 2
F xf(x) αs(µc)

αs(µb)
[
3ln mc

2

µ2
c

− 4
]

(9.38)

where h(q2,mq) and f(q2,mq) are the functions defined in (5.16) and (5.19), respectively.
In addition, it is evident from the above that 4(9)

2 = 4(9)
1 /CF .

9.2.5 Chromomagnetic Contributions

The 1-loop contributions of the operator Q8 , shown in Fig. 9.4 (c), can be written
as 〈

s`+`−
∣∣∣Q8

∣∣∣b
〉
1-loop = −

( αs
4π

)1
F

(7)
8 〈Q7〉tree −

( αs
4π

)2
F

(9)
8 〈Q9〉tree (9.39)
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dd

b s

Q7

g

dd

b s

Q7
g

dd

b s

Q7
g

(a) (b) (c)

Figure 9.5: B̄ → K̄`+`− at NNLO: Symmetry-breaking corrections to the B → K form factor
relations. Diagram (a) displays the vertex correction; the diagrams (b) and (c) the corrections
due to hard spectator scattering.

Similar to before, the corresponding correction to the effective coefficient Ceff9 reads

∆8 = −αs(µ)
4π
C8

[
2mb

mB
F

(7)
2 + F

(9)
8

]
(9.40)

The analytic expressions for the F (7,9)
8 presented in [45] are fairly simple and hence can

be given explicitly:

F
(7)
8 = 4π2

27
2 + ŝ

(1 − ŝ)4 −
4
9

11 − 16ŝ + 8ŝ2

(1 − ŝ)2 − 8
9

√
ŝ
√

4 − ŝ

(1 − ŝ)3 (9 − 5ŝ + 2ŝ2)arcsin
(√

ŝ

2

)

− 16
3

2 + ŝ

(1 − ŝ)4 arcsin2
(√

ŝ

2

)
− 8ŝ

9(1 − ŝ)
ln ŝ − 32

9
ln µ

mb
− 8

9
πi (9.41)

F
(9)
8 = − 8π2

27
4 − ŝ

(1 − ŝ)4 + 8
9

5 − 2ŝ
(1 − ŝ)2 + 16

9

√
4 − ŝ√

ŝ (1 − ŝ)3 (4 + 3ŝ − ŝ2)arcsin
(√

ŝ

2

)

+ 32
3

4 − ŝ

(1 − ŝ)4 arcsin2
(√

ŝ

2

)
+ 16

9(1 − ŝ)
ln ŝ (9.42)

These findings are valid for arbitrary ŝ = q2/mb
2 . In particular, both functions are finite

at and holomorphically extendable over ŝ= 1.

9.2.6 Corrections to Form Factor Ratio fT /f+

Though the contribution from Q7 itself remains unchanged at NNLO, the form factor
relation (3.60) (which we intend to use), describing the ratio fT (q2)/f+(q2), receives
O(αs) corrections from the diagrams in Fig. 9.5. The calculation yields [25]

fT (s)
f+(s)

=
(
1 +
√
r
)
(

1 + αs(µ)CF
4π

[
lnmb

2

µ2 + 2L
]
− αs(µH)CF

4π
mB

2E
∆FK
ζK

)
(9.43)
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where

ζK (mB,E ) =
(mB

2E

)2
fK+ (0) L ≡ s − 1

s
ln(1 − s) (9.44)

and (ū = 1− u)

∆FK = 8π2fBfK
NmB

λ−1
+

∫
du

φ(u)
ū

(9.45)

Note that the vertex diagram gives rise to the first; the hard spectator diagrams to the
second correction term in (9.43). In consequence, the first term has to be evaluated
at the usual renormalization scale µ ∼ mb , whereas the second at the hard scattering
scale µH = 1.47GeV [25]. Furthermore, only the second term is power suppressed at
high-q2.

9.3 Numerical Results
First, the B → Kνν̄ and B → K`+`− branching fraction are considered separately.
This includes a short review of the current experimental situation and the presentation
of the corresponding Standard Model predictions. We then proceed to discuss the
numerical results for the precision observables.

9.3.1 Integrated B → Kνν̄ Branching Fraction
In case of the neutrino mode, the current experimental results only allow for the
specification of upper bounds [75, 82]

B(B → Kνν̄ )exp < 17 · 10−6 (9.46)

B(B0 → K0νν̄ )exp < 49 · 10−6 (9.47)

B(B+ → K+νν̄ )exp < 16 · 10−6 (9.48)

Assuming the Standard Model, the fully integrated B+ → K+νν̄ branching fraction is
expected to be

B(B+ → K+νν̄ )th = (4.83+1.43
−1.24[f+(0)]+0.55

−0.51[a0]+0.15
−0.19[b1]) · 10−6 (9.49)

= (4.8 +1.5
−1.4) · 10−6 (9.50)

It is noteworthy that the prediction for the neutrino mode is essentially free of pertur-
bative uncertainties. The overall form factor uncertainty of ±31%, on the other hand,
is quite substantial.
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B+ → K+νν̄ [10−6 ] B+ → K+`+`− [10−7 ]

0.0 0.2 0.4 0.6 0.8
0
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Figure 9.6: NNLO differential branching fractions (dB/ds)(s) of the rare decays B+ → K+νν̄
(left) and B+ → K+`+`− (right) as functions of s: The shaded areas correspond to a separate
variation of the form factor parameters in the intervals specified in (B.16) and (B.18); the
data points represent the experimental data provided by the HFAG [75, 82]. The discontinuity
in the B → K`+`− branching fraction stems from switching off the 2-loop functions in the
interval 0.25 6 ŝ 6 0.6.

9.3.2 Integrated B → K`+`− Branching Fraction
At present, the different B → K`+`− branching fractions are measured to be [75, 82]

B(B → K`+`−)exp = (0.48 ± 0.04) · 10−6 (9.51)

B(B0 → K0`+`−)exp = (0.31 +0.08
−0.07) · 10−6 (9.52)

B(B+ → K+`+`−)exp = (0.51 ± 0.05) · 10−6 (9.53)

With respect to theoretical predictions for B → K`+`−, it is reminded that the
two-loop functions F (7,9)

1−2 are only known in expanded form. As mentioned before,
there is a middle domain, specified in [45] as 0.25 6 ŝ 6 0.6, where neither of the
two available expansions should be used. If not explicitly mentioned otherwise, the
two-loop functions are therefore set to zero in this domain. Fortunately, this domain
largely coincides with the part of the spectrum dominated by the narrow charmonium
resonances, roughly 0.25 6 s 6 0.6 [29], which is frequently cut from the spectrum
anyway. It is, however, stressed that both these kinematic regions are not precisely
defined and, to some extent, arbitrary.

This being said, our SM prediction for the entire branching fraction reads

B(B+ → K+`+`−)smax0 · 108 = 65.6+2.9
−1.8[µ]+19.2

−16.8[f+(0)]+7.4
−6.8[a0]+2.0

−2.5[b1] (9.54)

= 65.6+2.9
−1.8(scale) +20.7

−18.3(hadronic) (9.55)

where, as expected, the perturbative uncertainty of 4% is small in comparison to the
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Re ∆2-loop(s) Im ∆2-loop(s)
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Figure 9.7: Real (left) and imaginary part (right) of ∆2-loop as functions of s: The dots mark
the points ŝ = 1/4, s = 1/4 and ŝ = 3/5. In the dashed segments, the low-q2 expansions of
the two-loop functions F (7,9)

1−2 are less reliable, which motivates the comparison (9.57) – (9.58).

hadronic uncertainty of 32%.
The numerical results for the individual standard bins are collected in Tab. 9.1. While

the hadronic uncertainty is consistently found at the 30% level, with respect to the
perturbative uncertainty, the picture is more diverse: In observables where the two-loop
functions can fully be used the scale dependency is reduced to 2− 3%, or even below 1%
(first bin). In particular the third bin (which should be considered a NLO prediction),
however, suffers from a large perturbative uncertainty of 11%.

Impact of Two-Loop Term

In order to investigate the impact of the two-loop term ∆2-loop, the cut point

sc = (mb/mB )2/4 ≈ 0.16 (9.56)

is introduced. It is then instructive to compare the two results

B(B+ → K+`+`−)0.25
sc = (9.47+0.99

−0.90[µ]+2.78
−2.43[f+(0)]+0.52

−0.51[a0]+0.03
−0.05[b1]) · 10−8 (9.57)

B̃(B+ → K+`+`−)0.25
sc = (8.36+0.26

−0.24[µ]+2.46
−2.14[f+(0)]+0.46

−0.45[a0]+0.03
−0.04[b1]) · 10−8 (9.58)

where B̃ continues to use the low-q2 expansions of the two-loop functions F (7,9)
1−2 up to

the endpoint s = 0.25.
In consequence, the partial branching fraction B̃ is decreased by roughly 10%, and,

formally, the perturbative uncertainty is reduced from 10% down to 3%. Since, however,
the expansions used for the functions F (7,9)

1−2 are not as reliable between sc 6 s 6 0.25,
the actual perturbative uncertainty of (9.58) is larger for sure.
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q2[(GeV/c2)2 ] 0.00 − 2.00 2.00 − 4.30 4.30 − 8.68 10.09 − 12.86
B(B+→K+``)exp 5.3 ± 0.4 7.5 ± 0.5 7.2 ± 0.5 5.5 ± 0.4
B(B+→K+``)th 6.49 +0.05

−0.00
+1.89
−1.65 7.17 +0.14

−0.10
+2.13
−1.86 16.17 +1.73

−1.58
+4.85
−4.25 8.91 +0.27

−0.09
+2.83
−2.51

Rth 778 +0
−6

+3
−4 804 +11

−15
+0.5
−0.4 670 +72

−65
+1.4
−1.8 741 +8

−22
+2
−2

q2[(GeV/c2)2 ] 14.18 − 16.00 > 16.00 1.00 − 6.00 0.00 − max

B(B+→K+``)exp 4.1 ± 0.3 3.7 ± 0.3 12.6 +0.9
−0.8 48 ± 4

B(B+→K+``)th 5.31 +0.09
−0.00

+1.83
−1.64 12.38 +0.27

−0.01
+4.85
−4.38 16.31 +0.75

−0.62
+4.85
−4.23 65.58 +2.86

−1.82
+20.68
−18.25

Rth 761 +0
−12

+1
−2 768 +1

−16
+1
−1 768 +31

−34
+0.9
−0.8 736 +21

−31
+1.7
−2.1

Table 9.1: Results for the individual standard bins: Experimental measurements [75, 82]
(HFAG) and SM predictions for the partial branching fractions of B+ → K+`+`− in units of
10−6; precision observables (9.59) in units of 10−2. The theoretical uncertainties correspond
to the perturbative (first) and the combined form factor uncertainty (second), respectively.

9.3.3 Precision Observables
As precision observables we take ratios of the two branching fractions both integrated
over the same range in s

Rb
a ≡

∫ b

a
ds dB(B → Kνν̄ )/ds

∫ b

a
ds dB(B → K`+`−)/ds

(9.59)

An integration over the entire spectrum 0 6 q2 6 (mB −mK)2 yields

Rsmax
0 = 7.36+0.21

−0.31[µ]+0.013
−0.018[f+(0)]+0.007

−0.007[a0]+0.007
−0.008[b1] (9.60)

= 7.36+0.21
−0.31(scale)+0.017

−0.021(hadronic) (9.61)

corresponding to a perturbative and hadronic uncertainty of 4% and 0.3%, respec-
tively.

Results for the individual standard bins can be found in table (9.1), where, most
notably, all ratios are found to be virtually free of form factor uncertainties. Since the
perturbative uncertainty of the ratios is solely due to the B+ → K+`+`− branching
fractions, it ranges in the same way between 1% and 10%.
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Conclusions





Theory of B → M`+`− at high q2

The amplitude of B̄ → M̄`+`− decays, given in (4.1), contains the non-local term

〈Kµ(q)〉 ≡ − 8π2

q2 i
∫
d4x eiq·x

〈
M̄(k)

∣∣∣T jµ(x)Hh(0)
∣∣∣B̄(p)

〉
(9.62)

which stems from the hadronic part of the effective weak Hamiltonian Hh . Although small
in comparison to the semileptonic contributions (about 10%), precise theoretical predic-
tions require reliable results for the matrix element (9.62) as well.

Operator Product Expansion

The OPE framework established in this work offers a systematic expansion of the
decay amplitude in powers of E/

√
q2 (or equivalently ΛQCD/mB ). It thus allows for

a theoretical computation of the correlator (9.62) in the low-recoil domain, where
the QCDF formalism is no longer justified (somewhere above q2 & 15GeV2). The
following aspects and findings of the OPE formalism presented in this work are most
relevant:

• The OPE yields a series of local operators multiplied by coefficient functions,
calculable in perturbation theory. The local operators are of increasing mass di-
mension d > 3 and composed of b quark fields in full QCD; the entire dependence
on mb , mc and q2, factorized into the coefficient functions, is retained.

• In the chiral limit ms = 0 and up to operator dimension 4, a basis for the
operators possibly appearing in the OPE is given by two dimension-3 operators of
the form s̄Lγ

µb and s̄Lσµqb . However, these two operators are equivalent at d = 3,
and the second operator does not arise at O(αs0).

• For ms 6= 0, the operator basis has to be extended by two right-handed operators
of the form ms s̄Rγ

µb and ms s̄Rσ
µqb , formally counted as of dimension 4. Such

operators, however, do not arise at αs0 and therefore can safely be neglected, as
their impact is suppressed by a relative factor of αsms/mb ∼ 0.5%.

• The above implies that the matrix element of any local operator of dimension d 6 4
appearing in the OPE can be expressed in terms of the standard B → M form
factors. This statement holds to any order in αs and independently of whether
the chiral limit is assumed.

• The OPE is explicitly performed up to operator dimension d = 5. Moreover,
the coefficient functions of the weak annihilation term, a dimension-6 effect, are
presented.

115



Conclusions

• In the chiral limit ms = 0, the first genuine power corrections are due to dimension-5
operators of the general form gs s̄L(ΓnGaT a)µb. They contain the gluon field
strength tensor, and thus their matrix elements require, in general, the introduc-
tion of new, currently unknown, form factors.

• In the transition domain
√
q2 � E � Λ, however, the matrix element of the

dimension-5 term can be calculated explicitly, or rather estimated, within the QCDF
framework. The result differs (numerically and parametrically) from the di-
rect QCDF approach by terms of order E/

√
q2 ≈ 0.3 and has an an impact

of 0.5% on the amplitude Aµ9 . Considering the power suppression ∼ 1/q2, this
should hold qualitatively also towards the kinematic endpoint E ∼ Λ.

• In the same way, the weak annihilation term is investigated and found to be
completely negligible < 0.1%.

Duality Violation

The other main obstacle to the precise theoretical prediction of the correlator (9.62)
at high q2 is the violation of quark-hadron duality, caused by the presence of charmo-
nium resonances. Using Shifman’s model [52], which understands the correlator as an
infinite series of equidistant excitations, our investigation of global duality violation
reveals:

• In order to clarify the analytic structure of the correlator, we have formally defined
the OPE with the help of a spurion momentum, injected into the Hc vertex.
Defined thus, q2 can be varied while keeping E and mB fixed at their physical
values. It then becomes clear that the OPE is to be defined in the deep Euclidean
domain and that duality violation is linked to the existence of the OPE through
the terms exponentially suppressed for large imaginary q2.

• The term linear and quadratic in the duality violating component are qualitatively
different in their sensitivity to duality violation. The quadratic term is particularly
susceptible to a small resonance width but represents an effect of second order in
the charm-loop and, on this account, features a strong numerical suppression.

• The duality violation related uncertainty of the B → K`+`− decay rate integrated
over the high-q2 region is estimated at roughly ±2%. This estimate is rather
conservative, for it is based on the global use of the phenomenological value for
the parameter a2 = 3, which is substantially larger than the perturbative value.
We thus assume a simplified analytic structure, where the different (oscillating)
duality violating contributions add up coherently.
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Conclusion

In conclusion, the high-q2 region of B → M`+`− decays is theoretically well under
control: The only non-perturbative quantities required for accurate predictions are the
standard form factors; the impact of power-corrections and violations of quark-hadron
duality is at the level of a few percent and thus negligible.

Phenomenology - Precision Observables
Theoretical predictions for exclusive B → M`+`− decays still suffer from large un-
certainties in the relevant form factors. This problem is addressed in the second,
phenomenological part of this work by investigating the quality of precision observables
constructed from pairs of related decay channels.

In detail, we consider here the three decay pairs B+→ π+µ+µ− and B̄0→ π+`− ν̄ ,
B̄ → K̄∗`+`− and B̄ → K̄∗νν̄ , as well as B̄ → K̄`+`− and B̄ → K̄νν̄ , finding a reduc-
tion of the form factor uncertainties to 1.6%, 1% and 0.3% in the fully integrated π, K∗
and K ratio, respectively. The corresponding perturbative uncertainties amount to 5%,
6% and 4%, respectively, and hence are significantly larger. On the other hand, these
can still be reduced systematically.

Conclusion

The main conclusion is that the considered ratios are essentially free of hadronic
uncertainties and, consequently, excellent probes for the search of NP. While, admittedly,
the sensitivity to some NP is lost in the ratios, going to higher perturbative orders will
ultimately allow for precision tests at the percent level.
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A Numerical Input
Apart from the CKM matrix, discussed below, the numerical values of the phenomeno-
logical input parameters are summarized in Tab. A.1.

CKM Matrix - Wolfenstein Parametrization and Global Fit

As far as the entries of the CKM matrix V ≡ VCKM are concerned, it is reminded that, as-
suming the SM, there are just four independent observable parameters. This circumstance
finds its expression in the well-known Wolfenstein parametrization

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




=




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1




(A.1)

which also showcases the hierarchic structure of the individual entries, known from
experiments, through an expansion in the small quantity λ.

The Wolfenstein parameters can be determined most precisely by combining all
available data in a global fit, whereby unitarity is imposed on the matrix. In this way,
one finds [66]

λ = 0.22537 ± 0.00061 A = 0.814 ± 0.023
0.024 (A.2)

ρ̄ = 0.117 ± 0.021 η̄ = 0.353 ± 0.013 (A.3)

where (ρ̄− iη̄) = (ρ− iη)(1− λ2/2 + ...).
Unless explicitly stated otherwise, the numerical results presented in this work are

based on the CKMmatrix defined through (A.1) – (A.3) and not (A.4) – (A.5).

CKM Matrix - Individual Entries

For most semileptonic decays, only the magnitudes of the respective CKM-entries are rele-
vant. At present, the individual entries are experimentally constraint as [66]

|V | =




0.97425 ± 0.00022 0.2244 ± 0.0024 0.00422 ± 0.00042

0.225 ± 0.008 0.986 ± 0.016 0.0411 ± 0.0013

0.0084 ± 0.0006 0.0400 ± 0.0027 1.021 ± 0.032




(A.4)
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Quark masses in MeV [66]
mu

MS(2GeV) md
MS(2GeV) ms

MS(2GeV) mc
MS(mc) mb

MS(mb) mt
MS(mt)

2.3+0.7
−0.5 4.8+0.5

−0.3 95(5) 1275(25) 4180(30) (167.2+3.8
−3.3) ·103

Masses of light mesons in MeV [66]
mπ0 mπ± mK± mK0 mK∗± mK∗0

134.9766(6) 139.57018(35) 493.677(16) 497.614(24) 891.66(26) 895.81(19)

Masses of B mesons in MeV [66]
mB± mB0 mB∗ mB0

s
mB∗s

5279.26(17) 5279.58(17) 5325.2(4) 5366.77(24) 5415.4+2.4
−2.1

Electroweak parameters [66]
αe GF

2 [GeV−5 ps−1] MW [GeV] MZ [GeV] sin2θMSW (MZ)
1/129 206.687 80.385(15) 91.1876(21) 0.23126(5)

Other phenomenological parameters [66]

αs(MZ) ΛMS,5[MeV] (mu + md)/2 (2GeV) µπ (2GeV)
0.1185(6) 214+8

−7 3.5 +0.7
−0.2 MeV 2.8 +0.2

−0.5 GeV

Table A.1: Numerical values of the different input parameters. The given values for u-, d-, and
s-quark mass correspond to the “current quark” mass, the values for c-, b- and t-quark mass
to the “running” mass of the respective quark.

The complex information contained in the CKM-matrix is then expressed in terms of
the unitary triangle angles [66]

α = (85.4+3.9
−3.8)◦ sin2β = 0.682 ± 0.019 γ = (68.0+8.0

−8.5)◦ (A.5)

which are determined, for example, from CP -violating processes. In the context of
this work, however, we only require the angle α, which enters the B+→ π+µ+µ−

branching fraction in form of the ratio

λu
λt

=
∣∣∣∣∣
V
∗
udVub

V
∗
tdVtb

∣∣∣∣∣e
iπ(1+α/180◦) (A.6)
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B Hadronic Input
In this part of the appendix, the parametrizations employed for the form factors and
distribution amplitudes are presented. While most of the input given in the previous
section is purely phenomenological, the hadronic information that is required for the
parametrizations can either be extracted from experimental data or, alternatively, deter-
mined by means of theoretical, albeit non-perturbative methods.

B.1 Form Factors
Since the form factor parametrization employed in this work are essentially rewritten
versions of the ones presented in [9, 23], the two-step process in which the latter were
obtained is briefly outlined below.

To begin with, the form factors are numerically determined using QCD sum rules
on the light-cone. This step comes with a total uncertainty of 10− 13% at q2 = 0, of
which 7% are considered irreducible, that is intrinsic to the sum rule approach. With
respect to the K(∗) , there is an additional uncertainty, introduced by the Gegenbauer
coefficient α1(K) (presently about 3%).

However, the numerical results obtained in this way are reliable only in the domain of
high recoil q2 . 14GeV2. Also, this procedure does not yield simple expressions, which
could be varied in a straightforward way. These issues can be addressed by fitting the
sum rule data on parametrizations that are consistent with physical constraints, such
as scaling laws [22, 47, 48] or the position of a physical pole.

It is then postulated that the fits correctly extrapolate the sum rule data to the entire
spectrum. This expectation is based, firstly, on the proper analytic behaviour of the
parametrizations, and, secondly, the stability of the fit parameters. The latter refers to
the fact that the parameters are found to be rather insensitive to the particular choice
of q2

max , which is the – somewhat arbitrary – point up to which the sum rule results are
used as input. In concrete terms, the variation of q2

max from 7GeV2 to 14GeV2 changes
the form factor value at 20GeV2 by 8% in the case of T2(q2) and by 1−2% in all other
cases [9, 23].

The fits themselves are rather accurate, that is, the deviation of the employed
parametrizations from the directly calculated values in the regime of low-q2 stays
below 2.5% for T2(q2) and 1.2% for all other form factors. Thus, the overall uncertainty
of the parametrizations taken from [9, 23] is roughly 15%.
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B.1.1 Different Types of Parametrizations
In this work, form factors are in general parametrized as [29, 30]

fi(s) = fi(0) 1 − (b0i + bi − aib0i)s
(1 − b0is)(1 − bis)

= fi(0)
(
1 + aib0is

)
+ O(s2) (B.1)

The main advantage of the form (B.1) over the parametrizations (B.2) and (B.4), em-
ployed in [9, 23], is that the parameters fi(0) and ai have a clear graphical interpretation
as normalization and gradient at q2 = 0, respectively. This makes the behaviour of the
precision observables (ratios of branching fractions) under variation of the form factor
parameters, in particular fi(0), more transparent. Moreover, the ansatz (B.1) is more
flexible, meaning it contains the other parametrizations, presented below, as special
cases.

Apart from (B.1), we have the following parametrizations: The two-pole parame-
trization (b0i > bi,(B.2)), the double-pole parametrization (b0i = bi,(B.4)) and, lastly,
the single-pole parametrization (b0i = 0). Note that, in case of the two-pole parame-
trization, the parameter b0i always represents a physical pole and therefore is treated
as fixed. Thus, in any case, there is one independent (variable, that is) pole parameter
only.

Becirevic/Kaidalov: Two-Pole Parametrization b0i > bi

This parametrization, originally put forward by Becirevic and Kaidalov, reads [71]

f+(x) = cB

(
1

1 − x
− α

1 − x/γ

)
where x = q2

m2
B∗(s)

(B.2)

It is used in the situation where the first pole of the form factor is known to stem from a
particular meson and therefore treated as fixed. The second pole, an effective fit pole, then
serves to subsume the contributions from the higher lying states (γ > 1).

The parameters of the parametrizations (B.1) and (B.2) are related by

fi(0) = cB (1 − α) ai = 1 − α/γ

1 − α
b0i/bi = γ (B.3)

It is pointed out that for b0i = bi (B.1) becomes a double-pole parametrization, which
is discussed next. The parametrization (B.2), on the other hand, collapses for γ = 1 to
a single pole.

Double-Pole Parametrization b0i = bi

In addition to the parametrization (B.2), the authors of [9, 23] also employ

f(q2) = r1

1 − q2/m1
2

+ r2

(1 − q2/m1
2)2 (B.4)
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B.1 Form Factors

from which the parameters for the parametrization (B.1) can be obtained via the
relations

fi(0) = r1 + r2 ai = r1 + 2r2

r1 + r2
b0i = mB

2 /m1
2 (B.5)

B.1.2 Parametrizations of B → π Form Factors
The B → π form factor parametrizations provided in [9] read

f π+ (q2) = 0.744
1 − q2/mB∗

2 − 0.486
1 − q2/40.73GeV2 (B.6)

f π0 (q2) = 0.258
1 − q2/33.81GeV2 (B.7)

f πT (q2) = 1.387
1 − q2/mB∗

2 − 1.134
1 − q2/32.22GeV2 (B.8)

Employed Parametrizations and Parameter Space

For the semileptonic decays B̄0→ π+`− ν̄ and B±→ π±µ+µ− we only require the
form factors f π+ (s) and f πT (s), which are now rewritten as

f π+,T (s) = f π+,T (0) 1 − sb+,T − smB
2 (1 − a+,T )/mB∗

2

(1 − smB
2 /mB∗

2 )(1 − b+,T s)
(B.9)

The two form factors have a single pole at s = mB∗
2 /mB

2 ≈ 0.98, which is treated
as fixed by reason of its clear physical interpretation as the pole introduced by the
B∗ vector meson. Since the original parametrizations (B.6) and (B.8) are of the two-pole
type (B.2), the parameters in (B.9) can be obtained using the parameter relations (B.3),
which gives

f π+ (0) = 0.258± 0.031 a+ = 1.572± 0.15 b+ = 0.684+0.075
−0.125 (B.10)

f πT (0) = 0.253± 0.028 aT = 1.537± 0.11 bT = 0.865+0.032
−0.049 (B.11)

At this, the individual parameter uncertainties were determined as follows: The error mar-
gins of f π+,T (0) are explicitly specified in [9], and Furthermore, for the parameters a+,T
and b+,T , we take the maximum range consistent with a form factor uncertainty of 15%
(separate variation of a+,T and b+,T ).
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B.1.3 Parametrizations of B → K Form Factors
As before, we first quote the form factor parametrizations presented in [9]:

fK+ (q2) = 0.162
1 − q2/mB∗s

2 + 0.173
(1 − q2/mB∗s

2 )2 (B.12)

fK0 (q2) = 0.330
1 − q2/37.46GeV2 (B.13)

fKT (q2) = 0.161
1 − q2/mB∗s

2 + 0.198
(1 − q2/mB∗s

2 )2 (B.14)

Employed Parametrizations and Parameter Space

Again, we only require the form factors fK+,T (s) in the rewritten form

fK+,T (s) = fK+,T (0)
1 − sb+,T − smB

2 (1 − a+,T )/mB∗s
2

(1 − smB
2 /mB∗s

2 )(1 − b+,T s)
(B.15)

In this case, the original descriptions (B.12) and (B.14) correspond to the double-pole
parametrization (B.4). However, instead of using the first relation in (B.5), the nor-
malization parameters fK+,T (0) will be determined using a formula, provided in [9], as
this allows for an update with a more recent value of the Gegenbauer coefficient α1 :

fK+ (0) = 0.331 ± 0.041 + 0.25(α1(K) − 0.17) = 0.304 ± 0.042 (B.16)

fKT (0) = 0.358 ± 0.037 + 0.31(α1(K) − 0.17) = 0.324 ± 0.038 (B.17)

While the single pole at s = 1/b0+,T = mB∗s
2 /mB

2 ≈ 0.95 is treated as fixed, the remain-
ing parameters are determined through the relation (B.5)

a+ = 1.569± 0.128 b+ = b0+
+0.049
−0.078 (B.18)

aT = 1.611± 0.134 bT = b0T
+0.048
−0.075 (B.19)

where, again, the parameter ranges correspond to a form factor uncertainty of 15%. Note
that the variation of b+,T generalizes the original double poles to effective fit poles.

As an aside, it is finally pointed out that the pseudoscalar form factors are subject
to the important kinematic constraint

f−(q2) ≡
[
f0(q2) − f+(q2)

]1 − r

s
=⇒ f0(0) = f+(0) (B.20)

which is not exactly fulfilled by the kaon parametrizations (B.12) – (B.13). Since, however,
the (light) lepton masses are in the context of this work consistently neglected, this is
inconsequential to us.
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B.1.4 Parametrizations of B → K∗ Form Factors
The (slightly adjusted, see below) B → K∗ form factor parametrizations provided
in [23] read

V (q2) = 0.923
1 − q2/mB∗

2 − 0.511
1 − q2/49.40GeV2 (B.21)

A0(q2) = 1.364
1 − q2/mB

2 −
0.990

1 − q2/36.78GeV2 (B.22)

A1(q2) = 0.290
1 − q2/40.38GeV2 (B.23)

A2(q2) = −0.084
1 − q2/52.00GeV2 + 0.342

(1 − q2/52.00GeV2)2 (B.24)

T1(q2) = 0.823
1 − q2/mB∗

2 − 0.490
1 − q2/46.31GeV2 (B.25)

T2(q2) = 0.333
1 − q2/41.41GeV2 (B.26)

T̃3(q2) = −0.036
1 − q2/48.10GeV2 + 0.369

(1 − q2/48.10GeV2)2 (B.27)

where

T̃3(s) = T2(s) + s

1 − r
T3(s) (B.28)

At this point, it is reminded that the tensor form factors should satisfy [23]

T1(0) = T2(0) = T̃3(0) (B.29)

Unfortunately, the original parametrizations, specified in [23], exhibit slight devia-
tions ±0.001 from (B.29).1 It is, however, important that the kinematic constraints (B.29)
are exactly fulfilled, for otherwise, the B → K∗`+`− decay rate develops an artificial
1/s2 divergence in the longitudinal component. For this reason, the parametrizations
above have already been adjusted accordingly.

1This is presumably caused by rounding errors or the fit on the parametrizations.
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F L F L,α1 F T F T,α1 Old Value [23] New Value
V0 0.1415 0.0060 0.2234 0.0403 0.411± 0.033± 0.44δα1 0.406(36)
A00 0.2071 0.0403 0.1269 −0.0001 0.374± 0.034± 0.39δα1 0.360(35)
A10 0.1034 0.0059 0.1545 0.0281 0.292± 0.028± 0.33δα1 0.287(30)
A20 0.0614 −0.0080 0.1658 0.0395 0.259± 0.027± 0.31δα1 0.257(29)
T10 0.1301 0.0059 0.1665 0.0303 0.333± 0.028± 0.34δα1 0.328(30)
T30 0.0436 −0.0103 0.1386 0.0299 0.202± 0.018± 0.18δα1 0.205(19)

Table B.1: Update of normalization parameters, using Tab. B.2 as input. Note: Owing to the
kinematic constraint T1(0) = T2(0), the parameters T10 and T20 (which is therefore not given)
are identical.

Employed Parametrizations and Parameter-Space

The authors of [23] present their results at q2 = 0 also in the form

F B→K∗
i (0) = f‖

217MeV

[
F L
i + F L,α1

i α
‖
1

]
+ f⊥

170MeV

[
F T
i + F T,α1

i α⊥1

]
(B.30)

to allow for an update with more recent values of f‖,⊥ and α‖,⊥1 . The updated normaliza-
tion parameters are summarized along with the coefficients F (..)

i in Tab. B.1.
As explained in detail in section (8.2), only the form factors V , A1 and A2 will be var-

ied. In accordance with (B.21) – (B.27), they are now parametrized as

V (s) = V0
1 − sbV − smB

2 (1 − aV )/mB∗
2

(1 − smB
2 /mB∗

2 )(1 − sbV )
(B.31)

A1(s) = A10

1 − sbA1
(B.32)

A2(s) = A20
1 − sbA2(2 − aA2)

(1 − sbA2)2 (B.33)

The numerical values of the remaining parameters are obtained from the parametriza-
tions (B.21) – (B.27) via the relations (B.3) and (B.5):

aV = 1.528± 0.214 aA2 = 2.326± 0.455 (B.34)

bV = 0.564+0.256
−0.606 bA1 = 0.690+0.099

−0.134 bA2 = 0.536+0.057
−0.070 (B.35)

The uncertainties correspond – as usual – to the maximum range consistent with a 15%
form factor uncertainty (separate variation).
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As far as the other form factors are concerned, only the central values of the
parameters are required. The parameters not given in Tab. B.1 read (using (B.3)
and (B.5))

aA0 = 1.641 aT1 = 1.570 aT̃3 = 2.108 (B.36)

bA0 = 0.758 bT 1 = 0.602 bT 2 = 0.673 bT̃3 = 0.580 (B.37)

B.2 Distribution Amplitudes

B.2.1 Kaon
The distribution amplitudes of light mesons are usually expanded in terms of the
Gegenbauer polynomials C (3/2)

n (x) as follows [33, 83] (ū = 1− u)

φ(u,µ) = 6uū
{

1 +
∞∑

n=1
αn(µ)C (3/2)

n (2u − 1)
}

(B.38)

This ansatz is physically motivated by the asymptotic form φ(u) ∼ 6uū of the leading-
twist amplitudes in the µ → ∞ limit. Consequently, the Gegenbauer coefficients αn(µ)
are scale-dependent quantities and vanish in this limit.

Most of the time, it is sufficient to keep just the first two terms of the series in (B.38).
The corresponding polynomials read

C
(3/2)
1 (x) = 3x C

(3/2)
2 (x) = 3

2
(5x2 − 1) (B.39)

and hence the light-cone wave functions will be described as

φ(u,µ) = 6uū
{
1 + 3α1(µ)(u − ū) + 6α2(µ)(1 − 5uū)

}
(B.40)

The numerical values for the Gegenbauer coefficients of K, K∗ and π meson are given
in Tab. B.2.

B.2.2 B Meson
The light-cone wave functions of the B meson may be modeled as [38, 40]

φ+(ω) = ω

ω2
0
e−ω/ω0 φ−(ω) = 1

ω0
e−ω/ω0 (B.41)

where ω0 = (460 ± 110)MeV at µ = 1GeV [92, 93, 94]. In the context of the semilep-
tonic decays discussed in this work, however, the distribution amplitudes appear only
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B meson mean lifetimes [66]
τB+[fs] τB 0[fs] τB 0

s
[fs]

1638(4) 1519(5) 1512(7)

Decay constants in MeV
fB [84] fK [9, 85] fπ[9, 85] f‖[42, 86] f⊥(1GeV)[42, 86]

194(10) 160 131 220(5) 185(10)

Gegenbauer coefficients of the K∗ vector meson (µ = 1GeV)
α
‖
1(K∗)[42, 87, 88] α

‖
2(K∗)[89, 90] α⊥1 (K∗)[42, 87, 88] α⊥2 (K∗)[89, 90]

0.03 ± 0.02 0.11 ± 0.09 0.04 ± 0.03 0.10 ± 0.08

Gegenbauer coefficients of pseudoscalar mesons (µ = 1GeV)
α1(K)[42, 87, 88] α2(K)[42, 87, 91] α1(π) α2(π)[42, 87, 91]

0.06 ± 0.03 0.27+0.37
−0.12 0 0.26+0.21

−0.09

Table B.2: B meson lifetimes, Decay constants and Gegenbauer coefficients.

in the form of the two “moments” [40]

λ−1
+ =

∫ ∞

0
dω

φ+(ω)
ω

= 1
ω0

(B.42)

λ−1
− (q2) =

∫ ∞

0
dω

φ−(ω)
ω − q2/mB − iε

= e−q
2/(mB ω0)

ω0

[
iπ − Ei

(
q2/(mBω0)

)]
(B.43)

where Ei(z) is the exponential integral

Ei(z) =
∫ z

−∞
dt

et

t
(B.44)

Note that at high-q2 (and consequently in the context of the OPE), the second moment
simplifies to

λ−1
− (q2� mBω0) = −mB

q2 (B.45)
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C Running Coupling and
Three-loop β-Function

In order to remove the divergences that arise at higher orders in perturbation theory,
every component of the (bare) Lagrangian must be renormalized at an, in principle,
arbitrary scale µ [10]. To this end, the divergences are first parametrized, usually by
means of dimensional regularization, and subsequently absorbed into the renormalization
constants.

As far as the strong coupling constant is concerned, the renormalization is usually
realized through

g(0)
s = Zgs(µ)gs(µ)µε (C.1)

At this, the last factor serves to keep the physical coupling gs(µ) dimensionless, even
in arbitrary space-time dimension D = 4− 2ε. Also, as already indicated by the nota-
tion, the bare coupling g(0)

s is scale-independent; the renormalization constant Zgs(µ)
and the running coupling gs(µ), on the other hand, depend on the renormalization
scale µ.

The shift in the strong coupling that comes with a change of the renormalization
scale is formally governed by the RGE [10, 11, 95]

d
d lnµ

(
αs(µ)
4π

)
= 2β(ε, αs(µ)) (C.2)

which at the same time is also the defining equation for the β -function. With the
help of (C.1), the β -function can immediately be related to the renormalization con-
stant

β(αs(µ)) ≡ β(ε, αs(µ)) + αs(µ)
4π

ε = − αs(µ)
4π

Z
−1
gs (µ) dZgs(µ)

d lnµ (C.3)

which allows for a calculation in perturbation theory. Consequently, it is convenient to
express the β -function in terms of powers in αs

β(αs(µ)) = −
∞∑

i=0
βi

(
αs(µ)
4π

)i+2

(C.4)

and present the solution of the differential equation (C.2) in terms of the expansion
coefficients βi .
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To three-loop accuracy, the solution to the RGE can then be written as

αs(µ)
4π

= 1
β0 ln µ2

Λ2

[
1 − β1

β2
0

ln ln µ2

Λ2

ln µ2

Λ2

+ β2
1

β4
0 ln2 µ2

Λ2

((
lnln µ2

Λ2 −
1
2

)2
+ β0β2

β2
1
− 5

4

)]
(C.5)

The integration constant Λ is the scale that formally determines the breakdown of
perturbative QCD and can only be obtained from experiment. Though related and of
similar size, it should not be confused with the conceptually somewhat different QCD
scale ΛQCD . For f = 5 active quark flavours, the numerical value of Λ is found to
be [66]

ΛMS,5 = 0.214(7)GeV (C.6)

The coefficients of the β -function, finally, have been calculated independently by the au-
thors of [95] and [96]. Employing theMS scheme, they are given as (N = 3, f = 5)

β0 = 11N − 2f
3

= 23
3

(C.7)

β1 = 34
3
N2 − 2CFf − 10

3
Nf = 116

3
(C.8)

β2 = 2857
54

N3 + C2
F f −

205
18

CFNf − 1415
54

N2f + 11
9
CFf

2 + 79
54
Nf 2 = 9769

54
(C.9)

CF = N2 − 1
2N

= 4
3

(C.10)
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D.1 Renormalization Group Equation
In constructing the weak Hamiltonian, the heavy particles are removed as active degrees
of freedom from the full theory, which gives rise to new local interactions. The removed
particles, however, are crucial to control the high-energy behaviour of the loop diagrams
now involving the aforementioned low-energy effective interactions. As a consequence,
the effective theory suffers from new ultraviolet divergences and requires an additional
renormalization, the operator renormalization [10, 11]

~O (0) = Ẑ(µ) ~O(µ) ⇐⇒ ~C (0)T = ~C T(µ)Ẑ −1(µ) (D.1)

Of course, for the most part, this is analogous to the renormalization of the strong cou-
pling constant (C.1). There is one difference, though, namely the occurrence of operator
mixing which requires the introduction of a renormalization matrix Ẑ(µ).

Now, the most important consequence of (D.1) is certainly that the Wilson coeffi-
cients, so to say the coupling constants of the local operators, become scale dependent
quantities. As the Wilson coefficients can be calculated in perturbation theory only
at the weak scale µ0 ∼ MW but are actually needed at the much lower scale of the
B meson µ ∼ mb , they have to be evolved down in an evolution process, governed by
the RGE

d
d lnµ

~C(µ) = d
d lnµ

Ẑ T (µ) ~C (0) ≡ γ̂T(µ)~C(µ) (D.2)

Exploiting the µ-independency of the bare coefficients ~C (0), the matrix of anomalous
dimensions γ̂ can be obtained from

γ̂(µ) ≡
∞∑

n=0
γ̂ (n)

(
αs(µ)
4π

)n+1

= Ẑ
−1(µ) d

d lnµ
Ẑ(µ) (D.3)

Besides, if only the divergences are subtracted during the renormalization (MS scheme),
that is to say, if

Ẑ(µ) = 1̂ +
∞∑

k=1

1
εk
Ẑk(αs(µ)) Ẑk =

∞∑

n=k
Ẑ

(n)
k

(
αs(µ)
4π

)n
(D.4)

the anomalous dimensions are already completely determined by the 1/ε - divergences
according to [10]

γ̂ (n) = −2(n + 1)Ẑ (n+1)
1 (D.5)
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This is related to the fact that the γ̂ matrix is, in any case (thus, in particular, in
the MS (MS) scheme), a finite quantity, implying that the higher pole terms ∼ Ẑ

(n)
k>2

must cancel on the r.h.s. of (D.3). This circumstance can be exploited to simplify the
perturbative calculations at higher orders significantly [10].

NNLO Evolution Matrix

The solution to the RGE (D.2) is usually presented in terms of the evolution ma-
trix Û(µ,µ0) defined through

~C(µ) ≡ Û(µ,µ0)~C(µ0) (D.6)

The evolution matrix is actually subject to the same differential equation as the
coefficients (D.2), but with the more convenient boundary condition Û(µ0,µ0) = 1̂. Its
general form can be written as [10, 40]

Û(µ,µ0) = V̂ M̂(µ)




αs(µ0)
αs(µ)




~γ (0)

2β0



diag

M̂
−1(µ0)V̂ −1 (D.7)

where the matrix V̂ diagonalizes γ̂ (0)T according to
(
V̂
−1
γ̂ (0)T V̂

)
ij = γ

(0)
i δij ≡ ~γ

(0)
i δij (D.8)

If the matrix M̂ is then expanded in powers of αs

M̂(µ) = 1̂ +
∞∑

n=1
M̂

(n)
(
αs(µ)
4π

)n
(D.9)

the first two coefficients read [40]

M̂
(1)
ij = β1

2β2
0
γ

(0)
i −

(
V̂
−1
γ̂ (1)T V̂

)
ij

2β0 + γ(0)
i − γ(0)

j

(D.10)

M̂
(2)
ij = β2

4β2
0
γ

(0)
i −

(
V̂
−1
γ̂ (2)T V̂

)
ij

4β0 + γ(0)
i − γ(0)

j

+
∑

k

2β0 + γ(0)
i − γ(0)

k

4β0 + γ(0)
i − γ(0)

j

[
M̂

(1)
ik M̂

(1)
kj −

β1

β0
M̂

(1)
ij δjk

]
(D.11)
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D.2 Coefficient Functions at the Weak Scale
The initial values for the RGE evolution, that is, the perturbative expressions for the
Wilson coefficients at the weak scale (MS scheme), are given below. Some general
remarks beforehand:
• The Wilson coefficients of both basis can be expressed – up to trivial constants –

as linear combinations of the same functions. Thus, in avoidance of repetition, the
analytic expressions for these functions are explicitly stated once only, namely in
section D.2.3.

• Throughout this work, we employ the effective coefficients

C eff
7,8 ≡

8∑

j=1
y

(7,8)
j Cj where





y(7) = (0,0,0,0,−1
3 ,−1,1,0)

y(8) = (0,0,0,0,1,0,0,1)
(D.12)

Ceff7,8 ≡
8∑

j=1
y

(7,8)
j Cj where





y(7) = (0,0,−1
3 ,−4

9 ,−20
3 ,−80

9 ,1,0)

y(8) = (0,0,1,−1
6 ,20,−10

3 ,0,1)
(D.13)

in place of the “standard” coefficients of the magnetic-penguin operators [97]. This
always applies – even if there is no explicit superscript “eff ”.

• The initial conditions for C9 refer to the rescaled operator

O′9 = 2π
αs(µ)

O9 = 2Q9 = α
αs

(s̄b)V−A
∑

`
( ¯̀̀ )V (D.14)

• We use the short-hand notations

xt ≡
(
mMS
t (µ0)
MW

)2

L ≡ ln µ2
0

MW
2 (D.15)

• The Wilson coefficients are given through the coefficients of the expansion

Ci(µ0) =
∞∑

n=0

(
αs(µ0)

4π

)n
Ci

(n)(µ0) (D.16)

The only exception to this is the scale-independent coefficient (Oν = 4Qν)

Cν = Cν = −X0(xt)
sin2θW

ηX (D.17)

where the O(αs) corrections are contained in the factor ηX = 0.994, which is
almost completely independent from mt ≡ m̄t(mt) [98, 99, 100].
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D.2.1 Traditional Basis

As far as the operator basis
{
Oi

}
is concerned, the matching results required for a NLO-

treatment of semileptonic decays, read [10]

C
(0)
i (µ0 =MW) =





1 for i = 1

−1
2D

′
0(xt) for i = 7

−1
2E

′
0(xt) for i = 8

− Y0(xt)
sin2θW

for i = 10

0 else

(D.18)

C
(1)
i (µ0 =MW) =





−11
6 for i = 1

11
2 for i = 2

Ẽ0(xt)
6 for i = 3,5

Ẽ0(xt)
2 for i = 4,6

Y0(xt)
sin2θW

− 4Z0(xt) + 4
9 for i = 9

(D.19)

D.2.2 γ5-free Basis

Since the NNLO analysis of B → K`+`− is performed in this basis, each coefficient
is now required to one higher order in αs. The relevant initial conditions are given
as [18, 19]

C (0)
i (µ0) =





1 for i = 2

−1
2A

t
0(xt) − 23

36 for i = 7

−1
2F

t
0 (xt) − 1

3 for i = 8

0 else

(D.20)
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C (1)
i (µ0) =





15 + 6L for i = 1

−7
9 + 2

3L + E t
0(xt) for i = 4

713
243 + 4

81L − 1
2A

t
1(xt) − 4

9C
(1)
4 (µ0) for i = 7

91
324 − 4

27L − 1
2F

t
1 (xt) − 1

6C
(1)
4 (µ0) for i = 8

38
27 − 4

9L − 4C t
0(xt) − Dt

0(xt) + 4Ct0(xt)− 4Bt0(xt) + 1
4sin2θW

for i = 9
4Bt0(xt)− 4Ct0(xt)− 1

4sin2θW
for i = 10

0 else

(D.21)

and

C (2)
1 (µ0) = 7091

72
+ 17

3
π2 + (16xt + 8)

√
4xt − 1 Cl2

(
2arcsin 1

2√xt

)

−
(
16xt + 20

3

)
lnxt − 32xt + 475

6
L + 17L2 (D.22)

C (2)
2 (µ0) = 127

18
+ 4

3
π2 + 46

3
L + 4L2 (D.23)

C (2)
3 (µ0) = Gt

1(xt) − 680
243

− 20
81
π2 − 68

81
L − 20

27
L2 (D.24)

C (2)
4 (µ0) = E t

1(xt) + 950
243

+ 10
81
π2 + 124

27
L + 10

27
L2 (D.25)

C (2)
5 (µ0) = 2

15
E t

0(xt) − 1
10
Gt

1(xt) + 68
243

+ 2
81
π2 + 14

81
L + 2

27
L2 (D.26)

C (2)
6 (µ0) = 1

4
E t

0(xt) − 3
16
Gt

1(xt) + 85
162

+ 5
108

π2 + 35
108

L + 5
36
L2 (D.27)

C (2)
9 (µ0) = 1

sin2 θW

[
C t

1(xt) − B t
1(xt,−1

2) + 1
]
− 4C t

1(xt) − Dt
1(xt)

+ 524
729

− 128
243

π2 − 16
3
L − 128

81
L2 (D.28)

C (2)
10 (µ0) =

B t
1(xt,−1

2) − C t
1(xt) − 1

sin2θW
(D.29)
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It is pointed out that the constants in the coefficients C (0−2)
3−10 represent the sector

of light quarks, the functions (with the upper index t) the top sector according
to

C (0−2)
3−10 ∝ λuE(0) + λcE(0) + λtE(mt) = λt

[
E(mt) − E(0)

]
(D.30)

= λt
[
E t(xt) − E(0)

]
(D.31)

D.2.3 Functions
The functions just used to describe the matching conditions at the weak scale are
specified below.

NLO Functions - Semileptonic Coefficients

While the individual contributions from box and penguin diagrams are gauge dependent,
the Wilson coefficients themselves, and therefore the following linear combinations, are
gauge independent [10, 18, 98]

X0(x) = C t
0(x) − 4B t

0(x) + 1 = x

8

[
x + 2
x − 1

+ 3x − 6
(x − 1)2 lnx

]
(D.32)

Y0(x) = C t
0(x) − B t

0(x) + 1
4

= x

8

[
4 − x

1 − x
+ 3x

(x − 1)2 lnx
]

(D.33)

Z0(x) = C t
0(x) + 1

4
Dt

0(x) − 13
54

(D.34)

= 18x4 − 163x3 + 259x2 − 108x
144(x − 1)3 + 24x4 − 6x3 − 63x2 + 50x− 8

72(x − 1)4 lnx (D.35)

NLO Functions - Magnetic and QCD Penguin Coefficients

The remaining functions required at the NLO level read [10, 18]

D
′

0(x) = At0(x) + 23
18

= −3x3 + 2x2

2(x − 1)4 lnx + 8x3 + 5x2 − 7x
12(x − 1)3 (D.36)

E
′

0(x) = F t
0 (x) + 2

3
= 3x2

2(x − 1)4 lnx + x3 − 5x2 − 2x
4(x − 1)3 (D.37)

Ẽ0(x) = E t
0(x) − 7

9
= x3 + 11x2 − 18x

12(x − 1)3 + −9x2 + 16x − 4
6(x − 1)4 lnx − 2

3
(D.38)
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NNLO Functions

The functions required for a NNLO analysis of rare B decays decays are given as [18]

At1(x) = 32x4 + 244x3 − 160x2 + 16x
9(x − 1)4 Li2

(
1 − 1

x

)
+ 774x4 + 2826x3 − 1994x2 + 130x− 8

81(x − 1)5 lnx

+ −94x4 − 18665x3 + 20682x2 − 9113x + 2006
243(x − 1)4 +

[
12x4 + 92x3 − 56x2

3(x − 1)5 lnx

+ −68x4 − 202x3 − 804x2 + 794x − 152
27(x − 1)4

]
ln µ0

2

mt
2 (D.39)

B t
1(x,−1

2) = −2x
(x − 1)2 Li2

(
1 − 1

x

)
+ x2 − 17x

3(x − 1)3 lnx + 13x + 3
3(x − 1)2

+
[
−2x2 − 2x

(x − 1)3 lnx + 4x
(x − 1)2

]
ln µ0

2

mt
2 (D.40)

C t
1(x) = −x3 − 4x

(x − 1)2 Li2
(

1 − 1
x

)
+ −3x3 − 14x2 − 23x

3(x − 1)3 lnx + 4x3 + 7x2 + 29x
3(x − 1)2

+
[
−8x2 − 2x

(x − 1)3 lnx + x3 + x2 + 8x
(x − 1)2

]
ln µ0

2

mt
2 (D.41)

Dt
1(x) = 380x4 − 1352x3 + 1656x2 − 784x + 256

81(x − 1)4 Li2
(

1 − 1
x

)

+ −304x4 − 1716x3 + 4644x2 − 2768x + 720
81(x − 1)5 lnx

+ −6175x4 + 41608x3 − 66723x2 + 33106x − 7000
729(x − 1)4

−
[

648x4 − 720x3 − 232x2 − 160x + 32
81(x − 1)5 lnx

+ 352x4 − 4912x3 + 8280x2 − 3304x + 880
243(x − 1)4

]
ln µ0

2

mt
2 (D.42)
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E t
1(x) = 515x4 − 614x3 − 81x2 − 190x + 40

54(x − 1)4 Li2
(

1 − 1
x

)

+ 1030x4 − 435x3 − 1373x2 − 1950x + 424
108(x − 1)5 lnx

+ −29467x4 + 45604x3 − 30237x2 + 66532x − 10960
1944(x − 1)4

+
[

1125x3 − 1685x2 − 380x + 76
54(x − 1)5 lnx

+ 133x4 − 2758x3 − 2061x2 + 11522x − 1652
324(x − 1)4

]
ln µ0

2

mt
2 (D.43)

F t
1 (x) = 4x4 − 40x3 − 41x2 − x

3(x − 1)4 Li2
(

1 − 1
x

)
+ 144x4 − 3177x3 − 3661x2 − 250x + 32

108(x − 1)5 lnx

+ −247x4 + 11890x3 + 31779x2 − 2966x + 1016
648(x − 1)4

−
[

17x3 + 31x2

(x − 1)5 lnx + 35x4 − 170x3 − 447x2 − 338x + 56
18(x − 1)4

]
ln µ0

2

mt
2 (D.44)

Gt
1(x) = 10x4 − 100x3 + 30x2 + 160x − 40

27(x − 1)4 Li2
(

1 − 1
x

)

+ 30x3 − 42x2 − 332x + 68
81(x − 1)4 lnx + 6x3 + 293x2 − 161x − 42

81(x − 1)3

+
[

90x2 − 160x + 40
27(x − 1)4 lnx + −35x3 − 105x2 + 210x + 20

81(x − 1)3

]
ln µ0

2

mt
2 (D.45)

For the sake of completeness, integral representations for the Clausen function Cl2(x),
used in (D.22), and the related dilogarithm Li2(z) are provided here as well:

Cl2(x) = Im
[
Li2

(
eix

)]
= −

∫ x

0
dθ ln |2sin(θ/2)| (D.46)

Li2(z) = −
∫ z

0

ln(1 − t)
t

dt (D.47)
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D.3 Anomalous Dimension Matrix
The anomalous dimensions of the two operator bases are now presented in turn, em-
ploying the perturbative expansion

γ̂(µ) ≡
∞∑

n=0
γ̂ (n)

(
αs(µ)
4π

)n+1

(D.48)

It is pointed out that, in accordance with the previous section, the given matrices describe
the evolution of the effective coefficients, defined in (D.12) and (D.13), respectively, as
well as C ′9 = αs(µ)

2π C9 = 2C9 in case of the basis (2.17). Finally, note that the Wilson
coefficients C10,ν , to be renormalized at µ0 = mt , are scale-independent, and also that
the entries γ̂ (′)(n)

i>6, j<7 ≡ 0 are omitted below.

D.3.1 Traditional Basis
Starting with our “standard” basis

{
Oi

}
, the non-zero entries of γ̂ (0) , relevant to the lead-

ing logarithmic approximation (LLA) of the coefficients, read [10] (CF = N2−1
2N )

γ̂
(0)
i66, j66 =




−6
N

6 −2
3N

2
3

−2
3N

2
3

6 −6
N

0 0 0 0

0 0 −22
3N

22
3

−4
3N

4
3

0 0 6 − 2f
3N

2f
3 − 6

N
−2f
3N

2f
3

0 0 0 0 6
N

−6

0 0 −2f
3N

2f
3

−2f
3N

2f
3 − 12CF




(D.49)

γ̂
(0)
i, j>7 =




104
27 CF

11
9 N − 29

9N −16
9

0 3 −16
9 N

−116
27 CF

22
9 N − 58

9N + 3f 16
9 N( 1

N
+ d

2 − u)

(104
27 u − 58

27d)CF (11N − 29
N

)f9 + 6 16
9 (N + d

2 − u)
8
3CF

4
N
− 2N − 3f 16

9 N(d2 − u)

(50
27d − 112

27 u)CF (25
N
− 16N)f9 − 4 16

9 (d2 − u)

8CF 0 0

−8
3CF 16CF − 4N 0

0 0 −2β0




(D.50)
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where f = u+ d denotes the sum of active up- and down-type quarks. The coefficients
of the β -function are specified in (C.7) – (C.9).

Furthermore, the entries of γ̂ (1) required for the next-to-leading logarithmic approxi-
mation (NLLA) of C9 are found to be [10]

γ̂
(1)
i66, j66 =




−21
2 −

2f
9

7
2 + 2f

3 −202
243

1354
81 −1192

243
904
81

7
2 + 2f

3 −21
2 −

2f
9

79
9 −7

3 −65
9 −7

3

0 0 71f
9 −

5911
486

5983
162 +f

3 −2384
243 −

71f
9

1808
81 −

f
3

0 0 56f
243 + 379

18
808f
81 −

91
6 −130

9 −
502f
243

646f
81 −

14
3

0 0 −61f
9 −11f

3
71
3 + 61f

9
11f
3 − 99

0 0 −682f
243

106f
81

1676f
243 −

225
2

1348f
81 −1343

6




(D.51)

and

γ̂
(1)
i, j>7 =




? ? 400
81 CF

? ? −16
3 NCF

? ? 16
3 CF (N d

2−Nu−
58
27)

? ? 16
3 CF (N−35

27u−
8
27d)

? ? 16
3 CFN(d2−u)

? ? 16
81CF (55u − 53d)

4CF (137
9 N−4CF−14

9f) 0 0

4
3CF (8CF−101

9 N+ 14
9 f) 214

9 N
2+ 56f

9N −
458
9 −

12
N2−

13
9 fN 0

0 0 −2β1




(D.52)
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D.3.2 “γ5-free” Basis
Let us continue with the γ̂ ′-matrix, which governs the evolution in the

{
Qi

}
basis. At

the LLA level, we have [16, 17]

γ̂
′(0)
i66, j66 =




−4 8
3 0 −2

9 0 0

12 0 0 4
3 0 0

0 0 0 −52
3 0 2

0 0 −40
9

4
3f − 160

9
4
9

5
6

0 0 0 −256
3 0 20

0 0 −256
9

40
3 f − 544

9
40
9 −2

3




(D.53)

and [18]

γ̂
′(0)
i, j>7 =




−208
243

173
162 −32

27

416
81

70
27 −8

9

−176
81

14
27 −16

9

−152
243 −587

162
32
27

−6272
81

6596
27 −112

9

4624
243

4772
81

512
27

32
3 0 0

−32
9

28
3 0

0 0 −2β0
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Next, at NLLA, one finds [16, 17]

γ̂
′(1)
i66, j66 =




16
9f−

145
3

40
27f−26 −1412

243 −1369
243

134
243 − 35

162

20
3f−45 −28

3 −416
81

1280
81

56
81

35
27

0 0 −4468
81 −29129

81 −52
9 f

400
81

3493
108 −

2
9f

0 0 368
81f−

13678
243

1334
81 f−

79409
243

509
486−

8
81f

13499
648 −

5
27f

0 0 −244480
81 −160

9 f −29648
81 −2200

9 f
23116

81 + 16
9f

3886
27 + 148

9 f

0 0 77600
243 −

1264
81 f

164
81f−

28808
243

400
81f−

20324
243

622
27f−

21211
162
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and [18]

γ̂
′(1)
i, j>7 =




−818
243

3779
324 −2272

729

508
81

1841
108

1952
243

22348
243

10178
81 −6752

243

−17584
243 −172471

648 −2192
729

1183696
729

2901296
243 −84032

243

2480344
2187 −3296257

729 −37856
729

4688
27 0 0

−2192
81

4063
27 0

0 0 −2β1




(D.56)

Finally, we also require the entries of γ̂ ′(2) relevant to the NNLO evolution of C9 . They
depend on the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

(D.57)

and are given as [15] (ζ3 ≡ ζ(3) = 1.2020569...)

γ̂
′(2)
i, j>9 =




−1359190
19683 + 6976

243 ζ3

−229696
6561 − 3584

81 ζ3

−1290092
6561 + 3200

81 ζ3

−819971
19683 − 19936

243 ζ3

−16821944
6561 + 30464

81 ζ3

−17787368
19683 − 286720

243 ζ3

0

0

−2β2
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D.3 Anomalous Dimension Matrix

and [17]

γ̂
′(2)
i, j66 =




−1927
2 + 257

9 f + 40
9 f

2 + (224 + 160
3 f)ζ3

475
9 + 362

27 f − 40
27f

2 − (896
3 + 320

9 f)ζ3

307
2 + 361

3 f − 20
3 f

2 − (1344 + 160f)ζ3
1298

3 − 76
3 f − 224ζ3

0 0

0 0

0 0

0 0

269107
13122 − 2288

729 f − 1360
81 ζ3 −2425817

13122 + 30815
4374 f − 776

81 ζ3

69797
2187 + 904

243f + 2720
27 ζ3

1457549
8748 − 22067

729 f − 2768
27 ζ3

−4203068
2187 + 14012

243 f − 608
27 ζ3 −18422762

2187 + 888605
2916 f + 272

27 f
2 + (39824

27 + 160f)ζ3

−5875184
6561 + 217892

2187 f + 472
81 f

2 + (27520
81 + 1360

9 f)ζ3 −70274587
13122 + 8860733

17496 f − 4010
729 f

2 + (16592
81 + 2512

27 f)ζ3

−194951552
2187 + 358672

81 f − 2144
81 f

2 + 87040
27 ζ3 −130500332

2187 − 2949616
729 f + 3088

27 f
2 + (238016

27 + 640f)ζ3

162733912
6561 − 2535466

2187 f + 17920
243 f

2 + (174208
81 + 12160

9 f)ζ3
13286236

6561 − 1826023
4374 f − 159548

729 f 2 − (24832
81 + 9440

27 f)ζ3

−343783
52488 + 392

729f + 124
81 ζ3 −37573

69984 + 35
972f + 100

27 ζ3

−37889
8748 − 28

243f − 248
27 ζ3

366919
11664 − 35

162f − 110
9 ζ3

674281
4374 − 1352

243 f − 496
27 ζ3

9284531
11664 − 2798

81 f − 26
27f

2 − (1921
9 + 20f)ζ3

2951809
52488 − 31175

8748 f − 52
81f

2 − (3154
81 + 136

9 f)ζ3
3227801

8748 − 105293
11664 f − 65

54f
2 + (200

27 − 220
9 f)ζ3

14732222
2187 − 27428

81 f + 272
81 f

2 − 13984
27 ζ3

16521659
2916 + 8081

54 f − 316
27 f

2 − (22420
9 + 200f)ζ3

−22191107
13122 + 395783

4374 f − 1720
243 f

2 − (33832
81 + 1360

9 f)ζ3 −32043361
8748 + 3353393

5832 f − 533
81 f

2 + (9248
27 − 1120

9 f)ζ3
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D Wilson Coefficients

Traditional coefficients at µ = mb = 4.18GeV

C1 C2 C3 C4 C5 C6

LLA 1.1178 −0.2684 0.0121 −0.0274 0.0080 −0.0342
NLLA 1.0814 −0.1905 0.0137 −0.0358 0.0087 −0.0420

Ceff
7 Ceff

8 C9 C10 Cν

LLA −0.3184 −0.1510 2.0473 0 0
NLLA – – 4.1764 −4.2473 −6.6080

“γ5-free” coefficients at µ = mb = 4.18GeV

C1 C2 C3 C4 C5 C6

LLA −0.5368 1.0283 −0.0056 −0.0730 0.0005 0.0011
NLLA −0.3232 1.0093 −0.0053 −0.0881 0.0004 0.0010
NNLLA −0.3058 1.0118 −0.0062 −0.0722 0.0006 −0.0002

Ceff7 Ceff8 C9 C10 Cν
LLA −0.3184 −0.1510 0.0368 0 0
NLLA −0.3065 −0.1693 0.0751 −0.0764 −6.6080
NNLLA – – 0.0754 −0.0772 −6.5683

Table D.1: Wilson coefficients at the scale µ = 4.18GeV. The relevant input parameters
are Λ

MS,5 = 214MeV, mt = 167.2GeV, MW = 80.385 and sin2θW = 0.23126. 3-loop run-
ning is continuously used for αs.

D.4 Wilson Coefficients at µ = O(mb)
Utilizing the procedure outlined in the preceding sections, the Wilson coefficients
are evolved from the initial scale µ0 = O(MW) down to the scale µ = O(mb). The
numerical results are summarized in Tab. D.1.

As an aside, the (independently calculated) Ci and Ci coefficients given in Tab. D.1
indeed satisfy the basis transformation (D.62), explained in the following section.
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D.5 Change of Basis

D.5 Change of Basis
In general, the Fierz-identities [101, 102, 103] allow to express the operators of two
different bases as linear combinations of one another. At LO, this also applies to the
Wilson coefficients – they are scheme and basis independent.

At higher orders, however, the Wilson coefficients are basis dependent: Using di-
mensional regularization, calculations are performed in D = 4− 2ε dimensions and
require the definition of so-called evanescent operators [104]. While these operators
vanish in D = 4 dimensions, they still give relevant (even divergent) contributions,
responsible for the basis dependence of the result. Strictly speaking, however, this
represents a scheme dependence which is not introduced by the operator basis per se,
but rather the associated (often implicit, but in principle arbitrary) choice of evanescent
operators.

Of course, a transfer of results from one basis to another is still feasible. In [16],
the corresponding procedure is explained and explicitly performed step by step for a
transition from the (2.21) to the (2.17) basis. The overall transformation is presented
below, thereby we refer to the effective coefficients of the magnetic-penguin operators,
as defined in (D.12) – (D.13).

To begin with, the semileptonic coefficients Cν = Cν and C10 are scheme independent
quantities, given by their perturbative expressions at the weak scale. Furthermore, since
the coefficient

C10(µ) = αs(µ)
4π

C10 (D.59)

is merely rescaled, it is scheme independent as well and its scale dependency is only
due the running of the strong coupling.

Before proceeding with the remaining operators, it is reminded that there is a relative
factor of 4 in the definition of the two Hamiltonians which implies

4~C T(µ)~Q(µ) = ~C T(µ)~O(µ) (D.60)

and leads to an “asymmetric” transformation of coefficients and operators. At LO, for
instance, we have

~C(µ) = M̂(µ)~C(µ) 4~Q(µ) = M̂ T(µ)~O(µ) (D.61)

This being said, the NLO transformations for the Wilson coefficients and corresponding
anomalous dimensions are given as [16] (γ̂ ′ corresponds to theQi basis)

~C(µ) =

1̂ + αs(µ)

4π
Ẑ(µ)


M̂(µ)~C(µ) (D.62)

γ̂ (0) = M̂−1T γ̂ ′(0)M̂ T (D.63)

γ̂ (1) = M̂−1T γ̂ ′(1)M̂ T +
[
γ̂ (0), Ẑ T

]
− 2β0Ẑ

T (D.64)
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where [16, 40]

M̂(µ) =




−1
2N 1 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0
0 0 1 −1

2N 16 −8
N

0 0 0
0 0 0 1

2 0 8 0 0 0
0 0 1 −1

2N 4 −2
N

0 0 0
0 0 0 1

2 0 2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 4π

αs(µ)




(D.65)

and

Ẑ(µ) =




2
3 −1 0 0 0 0 0 0 0
−2 −7

3 0 0 0 0 0 0 0
0 0 178

27
4
9

−160
27

−13
9 0 0 0

0 0 −34
9

−20
3

16
9

13
3 0 0 0

0 0 −164
27

−23
9

146
27

32
9 0 0 0

0 0 20
9

23
3

−2
9

−16
3 0 0 0

? ? ? ? ? ? 0 0 0
? ? ? ? ? ? 0 0 0
0 0 −56π

27αs(µ)
8π

9αs(µ)
56π

27αs(µ)
−8π

9αs(µ) 0 0 0




(D.66)

Finally, it is pointed out that in the evolution process of the
{
Oi

}
basis (section D.2

and D.3) the rescaled operator O′9 = 2πO9/αs(µ) is used instead of O9 . This corre-
sponds to the replacement αs(µ) → 2π in the matrices M̂(µ) and Ẑ(µ).
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E Operator Basis for the OPE up
to Dimension 5

In this part of the appendix, we show that

Oµ
3,1 =

(
gµν − qµqν

q2

)
s̄ γν(1 − γ5)b Oµ

3,2 = imb

q2 s̄σµq(1 + γ5)b (E.1)

Oµ
4,1 = ms

(
gµν − qµqν

q2

)
s̄ γν(1 + γ5)b Oµ

4,2 = imsmb

q2 s̄σµq(1 − γ5)b (E.2)

represents a complete basis for all operators of dimension 3 and 4 that can possibly
emerge in the OPE performed for the correlator Kµ in chapter 5. This holds expressly
to any order in QCD [1].

For the time being, let us assume the chiral limit (ms = 0). Before, however, proceed-
ing with the actual proof by exhaustion, let us establish the following facts:

• The generic structure of any (n+ 3)-dimensional operator containing (only) the
quark fields s̄L and b can be written as

s̄LD
##»»nΓb where Γ = 1, γα, σαβ (E.3)

Most notably, an ansatz where the covariant derivatives act exclusively on the
strange quark already covers all possibilities. In other words, adding a covariant
derivative acting on the bottom quark does not yield a new, that is, independent
operator – a fact that can be derived from translation invariance alone:1

s̄LD
##»»nΓDµb = ∂µ

(
s̄LD

##»»nΓb
)
− s̄LD

##»»nD
##»»µΓb (E.4)

= −iqµ
(
s̄LD

##»»nΓb
)

+ dim(n+ 4) (E.5)

• In order to obtain operators with a single open Lorentz index µ, the Dirac-
structures in (E.3) can be contracted with the metric g, the ε-tensor and factors
of q.

1The replacement ∂µ→ −iqµ , based on translation invariance, implicitly assumes a B → K(∗) matrix
element where b and s quark taken together generate a momentum qµ pointing into the s̄LD

##»»nΓb
vertex.

149



E Operator Basis for the OPE up to Dimension 5

Contractions of the Dirac-structures γα, σαβ with qα, however, can immediately
be disregarded on a general basis:

s̄LD
##»»nqb = i∂α

(
s̄LD

##»»nγαb
)

= is̄LD
##»»n
[
D

##»» + D
##»»
]
b

= mb s̄LD
##»»nb + dim(n+ 4) (E.6)

s̄LD
##»»nσαqb = is̄LD

##»»n
(
mbγ

α − qα
)
b + dim(n+ 4) (E.7)

They only reproduce structures that can also be obtained through contractions of
other instances of Γ. In particular, this also applies to

Oµ
3,2 = Oµ

3,1 −
qν
q2 s̄σ

µνD
##»»(1 + γ5)b (E.8)

witch effectively reduces the basis at the dimension-3 level to one independent
operator only.

• It is sufficient to demonstrate that all operators can be expressed in terms of

qµ s̄Lb s̄Lγ
µb s̄Lσ

µqb (E.9)

Since current conservation imposes

qµOµ
d,n = 0 (E.10)

it is then clear that only the two linear combinations of (E.9) that match our
basis (E.1) may actually appear in the OPE.

Operators of Dimension d = 3

Starting with d = 3, the operators have the general form s̄LΓb. Thus, the following
contractions have to be considered for the respective choice of Γ

s̄Lb −→ qµ s̄Lb (E.11)

s̄Lγ
αb −→ s̄Lγ

µb, qµ s̄Lqb (E.12)

s̄Lσ
αβb −→ s̄Lσ

µqb, εµqαβ s̄Lσαβb (E.13)

While the second operator of (E.12) is a special case of (E.6), the full contraction
of σαβ with the antisymmetric tensor in (E.13) can be reduced by means of universal
Dirac-identities:

εµqαβ s̄Lσαβb = 2is̄Lσµqγ5b = 2is̄Lσµqb (E.14)

With this, the proof already concludes at the dimension-3 level.
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Operators of Dimension d = 4

As far as the dimension-4 operators are concerned, the different instances of Γ = 1, γα1, σαβ
are better approached separately. In the course of this, operators of dimension 5 will be
dropped immediately.

• For Γ = 1, the generic structure becomes s̄LD
##»»νb. There are two possible contrac-

tions, which can be reduced according to

s̄LD
##»»µb = 1

2
s̄L

[
D

##»»

γµ + γµD
##»»
]
b = 1

2

[
∂ν(s̄Lγµγ νb) − s̄Lγ

µD
##»»

b
]

= i

2
mb s̄Lγ

µb − 1
2
s̄Lσ

µqb − i

2
qµ s̄Lb (E.15)

qµqν s̄LD
##»»νb = i

2
(mb

2 − q2)qµ s̄Lb (E.16)

Note that (E.16) can be obtained directly from (E.15) via contraction with qµ.

• Next, for Γ = γα, one starts with the general operator s̄LD
##»»νγαb, which can be

contracted in five different ways:

qµ s̄LD
##»»

b = 0 (E.17)

s̄LD
##»»µqb = is̄LD

##»»µD
##»»

b = mb s̄LD
##»»µb (E.18)

qν s̄LD
##»»νγµb = is̄LD

##»»νγµDν b = i

2
∂ ν∂ν (s̄Lγµb) − i

2
s̄Lγ

µDνDν b

= i

2
(mb

2 − q2)s̄Lγµb (E.19)

qµqν s̄LD
##»»νqb = i

2
mb(mb

2 − q2)qµ s̄Lb (E.20)

εµqαν s̄LD
##»»

αγν b = −is̄LD
##»»

α(γαγµq − gαµq − qµγα + qαγµ)b

= imb s̄LD
##»»µb − iqν s̄LD

##»»νγµb (E.21)

The r.h.s. of (E.18) then reduces to the basic operators (E.9) via (E.15); the two
operators on the r.h.s. of (E.21) reduce via (E.15) and (E.19), respectively.
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E Operator Basis for the OPE up to Dimension 5

• For Γ = σαβ, finally, the generic operator assumes the form s̄LD
##»»νσαβb, which

requires an even number of q ’s to be contracted. For zero q ’s, we have

s̄LD
##»»

ν σ
µνb = is̄LD

##»»

ν(gνµ − γ νγµ)b = is̄LD
##»»µb (E.22)

εµναβ s̄LD
##»»

νσαβ b = 2is̄LD
##»»

νσ
µνb = −2s̄LD

##»»µb (E.23)

Contractions with two q ’s always involve the ε-tensor and fall a priori into two
categories. Firstly, instances where one q is contracted with the σαβ

s̄LD
##»»νσαqb = is̄LD

##»»ν(mbγ
α − qα)b (E.24)

and thus (E.7) applies. Secondly, full contractions of the ε-tensor and σαβ

εqηαβ s̄LD
##»»νσαβ b = 2is̄LD

##»»νσqηb (E.25)

which, however, immediately leads us back to the first case (E.24).

Through this, the completeness of the basis (E.1) up to and including operators of
dimension 4 is shown by exhaustion.

General Case ms 6= 0

If one takes into account the mass of the strange quark, its e.o.m. becomes

−is̄LD
##»» = ms s̄R 6= 0 (E.26)

This gives rise to a new type of dimension-4 operator with the general form ms s̄RΓb.
Since this is essentially a dimension-3 operator times a constant, the prove that reduces
the new operators to the second row of our basis (E.2) closely resembles the dimension-3
case. Indeed, the only difference is the replacement s̄L → ms s̄R and a minus sign on the
r.h.s. of (E.14).

Operators of Dimension d = 5

With respect to a similar prove for dimension-5 operators, there is one qualitative
difference, which arises from the fact that covariant derivatives do not commute with
one another [

D
##»»

α,D
##»»

β

]
=

[
D
##»»

α,D
##»»

β

]
= −igGa

αβT
a (E.27)

As a consequence, there are two different types of dimension-5 operators. Firstly,
operators that can be expressed in terms of dimension-3 operators times a purely
kinematic power suppression, for instance (mb

2 − q2)2. Secondly, operators of the
general form Oµ

5,n = gs s̄L(ΓnGaT a)µb (E.28)

which we recognize as genuine dimension-5 operators.
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F Feynman Integrals
y-Integration

After integrating over the undetermined loop momentum l, two different types of integrals
appear in the calculation of the Feynman diagrams in Fig. 9.3:

Ỹ l
j,k ≡

∫∫
dxdyxj (1 − x)kyl ln(a0 + (a1 − a0)y) (F.1)

Y l
j,k ≡

∫∫
dxdy

xj (1 − x)kyl

a0 + (a1 − a0)y
(F.2)

At this, the quantity a2, defined in (9.12), has been decomposed according to

a2/mq
2 = a0 + (a1 − a0)y = a0 − x(1 − x)c10y (F.3)

where (c10 = c1 − c0 = ū(1− s)/t)

ai = 1 − x(1 − x)ci c0 t = s c1t = su + ū (F.4)

Note that integrals of the form (F.1) arise from the l2-term, and integrals of the
form (F.2) from the l0-term. Both types, (F.1) and (F.2), can be reduced to integrals
of the form

X i
j,k ≡

∫
dx xj (1 − x)k ln(1 − x(1 − x)ci) (F.5)

First, the integrals (F.1) are reduced to (F.2) and (F.5) using integration by parts

(l + 1)Ỹ l
j,k = X1

j,k + c10Y
l+1
j+1,k+1 (F.6)

Second, to reduce the integrals (F.2), the y-integration has to be performed explicitly. The
relevant instances of l are given as (X10

j,k ≡ X1
j,k −X0

j,k,B(j,k) = Γ(j)Γ(k)/Γ(j + k))

c10Y
0
j,k = −X10

j−1,k−1 (F.7)

c2
10Y

1
j,k = −X10

j−2,k−2 + c0X
10
j−1,k−1 − c10 B(j,k) (F.8)

2c3
10Y

2
j,k = −2X10

j−3,k−3 + 4c0X
10
j−2,k−2 − 2c2

0X
10
j−1,k−1

− 2c10 B(j− 1,k− 1) + c10(2c0 − c10)B(j,k) (F.9)
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F Feynman Integrals

x-Integration

For the integration over the x parameter, it is convenient to introduce the quanti-
ties

ci± = 1
2

(
1 ±

√
1 − 4/ci

)
(F.10)

Using the identities

ai = c(x − c+)(x − c−) = (1 − x

c+
)(1 − x

c−
) = (1 − xcc+)(1 − xcc−) (F.11)

the logarithm of ai can then be decomposed as (the subscript i on all c(±)’s is dropped
from (F.12) through (F.18))

ln(1 − x(1 − x)c) = ln(1 − xcc+) + ln(1 − xcc−) (F.12)

Exploiting the two basic relations X i
j,k = X i

k,j and X i
j,k = X i

j,k+1 +X i
j+1,k , any integral

X i
j,k with j + k 6 2l + 1 and j,k > −n can be described as linear combination of

the integrals X i
−n,0,X

i
1−n,0, ...,X

i
0,0,X

i
2,0, ...,X

i
2l,0. Thus, in the present context, only the

following integrals have to be calculated explicitly

X i
2,0 = c − 1

3c
X i

0,0 −
1
18

(F.13)

X i
0,0 =

[
(x − c+) ln(1 − x(1 − x)c) + (c+ − c−) ln(1 − cc+x) − 2x

]∣∣∣
1

0
(F.14)

= (c+ − c−) ln(1 − cc+) − 2 = −B0(s,mq ) − 2 (F.15)

X i
−1,0 =

[
− Li2(xcc+) − Li2(xcc−)

]∣∣∣
1

0
= 1

2
ln2(1 − cc±) = 1

2
ln2(−c±/c∓) (F.16)

X i
−2,0 =

[
(cc+ − 1/x) ln(1 − x(1 − x)c) − c(c+ − c−) ln(x − c+) − c lnx

]∣∣∣
1

0
(F.17)

= c(c+ − c−) ln(1 − cc+) − c − c lnx = c(X i
0,0 + 1 − lnx) (F.18)

where B0(s,mq ) is the function used in [40] to express t‖(s, t, u). The function F (x),
which is used in this work and, for instance, defined in (9.30), is related to the integrals
above via

F 2(4/ci) = 2X i
−1,0 − c1X

i
0,0 + (c2

1/4)(1 − 4/ci) (F.19)

One then finds for the curly bracket in (9.27)
{
...
}

= s

û
(û + s)X10

0,0 −
2st
û
X10
−1,0 − s = −st

û
(F 2(4/c1) − F 2(4/c0)) + û (F.20)

= −sû
4
t‖(s, t, u) (F.21)
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