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I. GENERAL INTRODUCTION 

I.1 INTRODUCTION 

Years of intensive research in pharmaceutical industry and academic have resulted in about 

300 biotechnology products which are approved in the US, thereby covering 16 medical areas 

and about 250 indications [1, 2]. Most protein based drugs are used in therapy of serious 

diseases such as diabetes, cancer or autoimmune diseases [3]. Especially a combination with 

conventional low molecular weight drugs results in a better treatment compared to the 

administration of one single therapeutic protein drug [4]. 

The key obstacle of any drug delivery system - especially in delivering proteins - is accurately 

defined by van de Weert et al. [4]: «The main aim […] is to deliver the drug to the active site at 

the right time, at a therapeutically effective concentration, at the highest patient 

convenience/compliance, with the lowest possible side effects and at the lowest possible 

costs». The key to a successful protein formulation and its delivery is therefore the knowledge 

of chemical, physical and biological properties of the protein, including immunogenicity, stability 

and pharmacokinetic properties. For example, the chemical and physical stability is influenced 

by pH, ionic strength, temperature and surface interactions [5].  

All these factors can be influenced by different formulation strategies. One may differentiate 

between formulation stabilisation using stabilisers or the direct modification of the protein 

structure. Stabilisation of proteins in the liquid and dry state (freeze-dried) is implemented using 

excipients, e.g. hydroxypropyl-beta-cyclodextrine (HP-β-CD) [6-8], sucrose [9-11], or by using 

surfactants. For instance, a well-known representative of this class are polysorbates [12-14]. 

Modifying the protein structure itself to improve its properties represents another strategy [5]. 

This includes the use of protein analogues with more promising properties, e.g. insulin lispro for 

type 2 diabetes or aldesleukin (IL-2 analogues) for therapy of renal cell carcinoma. Another 

approach is the attachment of fatty acids to the protein structure (acylation) which can increase 
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the half-life or the affinity to blood protein albumin. This principle has been applied for proteins 

like interferon-α [15] or desmopressin [16]. Likewise, the attachment of polyethylene glycol 

(PEGylation) or hydroxyethyl starch (HESylation) increases the half-life of proteins [5]. 

Additionally, these modifications improve the safety profile by shielding antigenic epitopes [17]. 

For example, a commercial product is PEG-interferon-α with an improved pharmacokinetic 

profile compared to native interferon-α [18]. To quote just one example, HESylation of Anakinra 

has been investigated by Liebner et al. [19, 20]. 

For protein and peptide based drugs, oral administration is still not possible (except for 

cyclosporine) since proteins and peptides are degraded by enzymes of the gastrointestinal tract, 

which results in poor bioavailability of the drugs [4, 21]. Furthermore, most proteins have a short 

half-life within the body due to hydrolysis and denaturation within the stomach. The intestinal 

mucosa of the small intestine is poorly permeable for larger molecules being an additional factor 

for poor bioavailability [22]. 

Alternative routes for protein administration have been studied such as buccal [23], rectal [24] 

nasal [25, 26], or pulmonary [27, 28] delivery. There is a need to develop a delivery system for 

proteins and peptides to the human body which show higher bioavailability and a longer half-

life, which consequently results in lower doses and fewer side effects. 
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I.2 CONTROLLED PROTEIN DELIVERY 

I.2.1 CURRENTLY MARKETED PEPTIDE AND PROTEIN DEPOTS 

So far, parenteral application of pharmaceutical proteins and peptides is indispensable due to 

their instability in the gastrointestinal tract and/or bioavailability limitations. To circumvent these 

problems, parenteral application of protein drugs including subcutaneous injection and 

intravenous infusion is common practice. As most proteins exhibit short half-lives compared to 

small molecule drugs [29], frequent administration is required which is associated with high 

costs in the health care system [30]. Therefore, depots have been investigated for parenteral 

administration to minimise dosing frequency and improve patients’ convenience.  

In 1990, Zoladex® was approved, which is a depot system containing the peptide Goserelin, a 

gonadotropin releasing hormone (GnRH) super agonist for the treatment of prostate cancer and 

breast cancer [31]. Zoladex® is available as a one-month or three-months depot formulation and 

is formulated within a poly-lactic-co-glycolic acid (PLGA) and poly-lactic acid (PLA) matrix. The 

approval of Zoladex® was the initial impulse for other GnRH analoga formulated within a 

PLGA/PLA matrix: Lupron Depot®, which is composed of a microparticulate system (PLA and 

leuprorelin acetate), was approved in 1993 for the treatment of prostate cancer, endometriosis, 

fibroids, and central precocious puberty (CPP) for children [32-35]. Also, Profact Depot® 

containing a GnRH analogon (buserelin acetate) is formulated in a PLA/PLGA matrix. The in-

situ forming depot Eligard® was launched in 2002 and contains leuprorelin acetate for treatment 

of prostate cancer [36, 37]. It is formulated in PLGA and N-methyl-2-pyrrolidon (NMP) and forms 

a depot once administered subcutaneously. So far, all depots described have in common that 

there are releasing peptides from a PLGA/PLA matrix.  

Also formulated as an injectable suspension of PLGA microparticles is Nutropin Depot®, which 

represents the only marketed product delivering the protein drug somatropin, a recombinant 

human growth hormone. It was approved by the FDA in 1999 for the treatment of growth failure 

due to a lack of adequate endogenous GH secretion [38]. Nutropin Depot® was intended to 
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release somatropin over a period of one month, but was withdrawn in 2004 which was explained 

by «significant resources required by both companies (Alkmers Inc. and Genentech Inc.) to 

continue manufacturing and commercializing the product». Sandostatin LAR® represents a 

further depot based on PLGA microparticles for the treatment of acromegaly or tumors of the 

gastroenteropancreatic endocrine system. It contains octreotide acetate and is administered 

monthly.  

In 2011, the last approved depot for sustained delivery of a peptide was Bydureon®, which 

represents a further development of Byetta® (approved in 2007). Bydureon® contains the 

glucagon-like-peptide-1 (GLP-1) analoga exenatide and is encapsulated within PLGA 

microspheres [39]. Bydureon® is administered once a week for the treatment of diabetes type 2 

[40-42].  

In summary, all marketed products in which a protein drug is encapsulated within a matrix 

(without further direct modification) are based on PLGA/PLA matrices. Protein drugs 

encapsulated within such depots are rather small, ranging from approximately 1.2 kDa for the 

GnRH analoga to up to 22 kDa for somatropin, meaning that depots for monoclonal antibodies 

or other protein formats are not yet commercially available. 

 

I.2.2 MATRIX MATERIALS FOR CONTROLLED RELEASE OF PROTEINS AND 

PEPTIDES  

For sustained release of peptides and proteins, a wide variety of matrix materials has been 

described in literature, including a broad variation of synthetic (HEMA, PVA, EVA, PLGA/PLA, 

PEG) and natural polymers (alginate, chitosan, silk, casein, zein, cellulose derivates, collagen, 

triglycerides, phospholipids, cholesterol) forming implants, gels, micro- and nanospheres or 

films. In the following, the most recently used materials are briefly described with a special focus 

on PLA/PLGA matrices as they represent the most commonly used material and had been used 
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within this study as well. Lipids have also been investigated as parenteral sustained release 

depots and will be discussed separately (I.2.3).  

I.2.2.1 PLA/PLGA & PLGA COMPOSITES 

Although PLA/PLGA can be categorised as synthetic materials (which will be discussed in 

I.2.2.3), this paragraph is dedicated due to its intensive use. This polymer had been approved 

by regulatory agencies and is the only one being in use for marketed products (described 

above). Thus, research groups along the globe have investigated this matrix since decades. 

Between 1998 and 2008, predominantly the preparation of PLGA based microparticles for the 

sustained release of model proteins like bovine serum albumin (BSA) [43] but also 

pharmaceutical proteins such as erythropoietin [44-46] human growth hormone [47, 48], insulin 

[49], insulin-like growth factor-I [50], or bone morphogenetic protein-2 (BMP-2) [51] have been 

described. PLGA based implants [52, 53] and in-situ forming gels [54, 55] have been 

investigated as well. 

Along the preparation of PLGA based depots, the use of organic solvents is problematic in terms 

of protein stability as proteins tend to aggregate within a hydrophobic environment and at 

interfaces [56, 57]. The erosion of the matrix has negative effects on protein stability because 

degradation of PLA and PLGA results in an acidic microclimate, inducing a pH drop within the 

depot [58, 59]. Thus, chemical degradation, e.g. deamidation [60] and acylation [61], of the 

proteins has been observed.  

To overcome these drawbacks, two strategies had been pursued: the addition of excipients or 

the modification of the matrix itself. To prevent protein degradation, excipients like PEG [62, 63], 

HP-β-CD [64] or basic salts [53, 65] have been added. The modification of the matrix has been 

followed since 2007 as more and more literature can be found describing PLA/PLGA-

composites to overcome protein instability issues and to improve release kinetics. This includes 

conjugates with amino cyclodextrins [66], copolymers with monomethoxy-PEG [67], histidine 

[68], oligo(vinyl sulfadimethoxine) [69], or chitosan-graft-PLA micelles [70]. In addition, new 
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preparation methods like electrostatic adsorption of proteins onto PLGA nanoparticles have 

been investigated as described by Pakulska et al. [71] in 2016. Chang et al. investigated PLGA-

triacetin depots for sustained release applications of a fab-fragment [72] reporting on a sustained 

release of 80 days.  

In conclusion, it can be stated that PLGA based depots have been improved including both 

protein stability and release behaviour. Nevertheless, still major problems need to be addressed 

as protein instabilities [72] and incomplete release profiles [73] can still be found.  

I.2.2.2 NATURAL POLYMERS 

Natural polymers occur in nature and are often water-based. Examples of naturally occurring 

polymers are for example chitosan, collagen, silk, or cellulose.  

Chitosan have been extensively investigated within the last 10 years. Especially the preparation 

of particulate systems is reported, for instance nanoparticles and microparticles [74, 75]. 

Chitosan based depots have been described for tissue engineering applications of bone and 

cartilage. Hou et al. and Zhang et al. investigated the controlled release of NEL-like molecule-1 

(NELL-1) from chitosan nanoparticles [76] or chitosan/hydroxyapatite particles [76, 77] whereas 

BMP-6 was formulated within chitosan scaffolds [78]. In addition, the controlled release of insulin 

from chitosan microspheres [79], thermoresponsive chitosan hydrogels [80], chitosan-zinc 

copolymers [81], or chitosan composite hydrogels [82] has been described. However, chitosan 

has not yet been approved by regulatory agencies for parenteral applications.  

Alginate based depots are a further representative of natural polymers. Especially in recent 

publications, alginate composites rather than pure alginate based depots have been described. 

As already reported for chitosan depots, bone remodeling applications represent the major 

research field for alginate based systems. For instance, NELL-1 was encapsulated into apatite 

coated alginate/chitosan microparticles and was delivered for up to 30 days [83]. A 

thermoresponsive chitosan/dextran-polylactide/glycerophosphate hydrogel and selected 

alginate microspheres for the controlled release of BMP-2 for up to 42 days has been described 
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by Zhu et al. [84]. Likewise, Zuo et al. reported on heparin-conjugated alginate microspheres 

for the delivery of basic fibroblast growth factor (bFGF) addressing bone remodeling [85]. 

However, about a broader possible use of alginate scaffolds for sustained protein delivery has 

been reported as well [86]. Despite the application orientated research, research is still on-going 

towards a fundamental understanding of the underlying interaction mechanisms between 

proteins and alginate matrices as reported by Schweizer et al. [87]. They observed that ionic 

interactions between polyanions of the matrix and monoclonal antibodies occur which can be 

exploited for sustained release delivery. In 2016, Bazban-Shotorbani et al. reported on a new 

technology to synthesise alginate nanogels with tunable pore size for controlled protein delivery 

[88]. 

Another representative of the class of natural polymers is collagen. In the early 1990s, Marks et 

al. has already reported on dermal wound healing applications using fibroblasts seeded onto 

collagen matrices [89]. More recently, collagen and collagen composites have been described 

for tissue engineering applications. For instance, Friess et al. investigated the delivery of BMP-

2 from collagen sponges [90, 91]. The controlled release of BMP-2 from collagen fibers [92], 

collagen-hydroxyapatite scaffolds [93], and conjugated collagen scaffolds [94] have been 

utilised and show the potential of collagen in the field of bone regeneration.  

Beyond the «classical» polymers used for controlled release applications, silk represents a new 

and promising natural polymer and has been extensively studied within the last years. It should 

be stated that silk based depots can be divided into recombinant spider silk based systems and 

systems containing of the silk from the cocoons of Bombyx mori. Recombinant spider silk 

particles have been described by Hofer et al. releasing lysozyme for up to 28 days [28]. 

Furthermore, recombinant spider silk was used to produce films for controlled release 

applications. Agostini et al. studied the release of BSA from differently coated spider silk films 

that could deliver the protein in a close to zero order kinetic for 90 days. The other type of silk 

can be extracted from the cocoons of Bombyx mori as described by Hayden et al. [95]. A broad 

variety of depots has been described using this type of silk including hydrogels for intraocular 
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delivery of Bevacizumab [96], the sustained release of cytokines from films [97] or systemic 

investigations on monoclonal antibody stabilisation by silk biomaterials [98]. 

I.2.2.3 SYNTHETIC POLYMERS 

As an alternative to PLA/PLGA and natural polymers, synthetic materials have been studied as 

matrix material for controlled protein delivery.  

Among others, this includes polyanhydrides comprising fatty acids and sebacic acid, thereby 

enabling better controllable polymer properties. Polyanhydrides have been already studied 

since the early 1990s for controlled protein applications using model proteins such as BSA, 

ovalbumin or lysozyme [99-101]. Still, further research needs to be carried out addressing the 

molecular structure descriptors which appear to have the greatest impact on the release kinetics 

in order to optimise release behaviour [102]. 

The class of poly(ɛ-caprolactone) (PCL) represents a further synthetic polymer. PCL is a widely-

used polymer and has been approved by the FDA. It is a biocompatible and biodegradable 

polymer, which is non-toxic. PCL degradation does not create an acidic environment which 

could possibly negatively affect the integrity of encapsulated protein drug [103]. With PCL as 

matrix material, versatile depots can be produced including nanoparticles, fiber meshes or 

implants. For example, electrospun fiber meshes composed of PCL and polyethylene oxide 

(PEO) have been described for the controlled release of lysozyme for up to 300 hours. It was 

demonstrated that the initial burst can be reduced by adjusting the PCL/PEO ratio [104]. Within 

another publication, Rayaprolu et al. reported on BSA loaded PCL nanoparticles using D-α-

tocopheryl polyethylene glycol 1000 as an emulsifier [105]. By this, a sustained BSA release of 

5 days was achieved. Stanković et al. described long-term release of up to 170 days of various 

proteins and peptides including goserelin, lysozyme and carbonic anhydrase from hot melt 

extruded poly(ɛ-caprolactone-PEG)-b-poly(ɛ-caprolactone) multiblock-copolymer implants 

[106]. The structurally related polymer dihydroxyacetone-based poly(carbonate ester) has also 

been described for controlled release applications of BSA and lysozyme [107]. 
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Beyond the already known and established polymers (EVA, PVA, polyanhydrides, PCL), more 

and more very specific and unique polymers can be found in literature. As an example, the use 

of trimethylopropane ethoxylated-ethyl 2-mercaptoproprionate (TMPE-TL) or trimethylo-

propane ethoxylated ethyl thioglycolate (TMPE-TG) hydrogels has been described for the 

controlled delivery of bioactive horseradish peroxidase (HRP) for up to 16 days [108]. 

Furthermore, thermosensitive hydrogels consisting of multi-block Pluronic copolymers linked by 

lactide oligomers has been investigated delivering hGH over 13 days [109]. 

Generally, within the last few years, more and more sophisticated and highly complex release 

systems have been described in literature. This suggests that the «classical materials» have 

been replaced by completely new platform technologies or new composites with well-known 

materials. This opens entirely new research fields with innumerable possibilities. Just to name 

a few, within recent years it has been reported on glycidyl methacrylated dextran/gelatin 

hydrogel scaffolds [110], Diels-Alder hydrogels [111-113], nanogels made of hybrid 

hydroxyapatite nanoparticles with chitosan/polyacrylic acid [114], PEGylated fibrin gels [115], 

calcium phosphate based nanorods and nanowires for intracellular protein delivery [116], or 

photoactivated depots for the controlled release of insulin [117, 118]. 

It should be further mentioned that protein crystals for controlled release applications represent 

a very interesting and challenging research field at once [119-122].  

 

I.2.3 LIPID VEHICLES FOR CONTROLLED RELEASE OF PROTEINS AND PEPTIDES 

The Oxford Dictionary of Biochemistry and Molecular Biology defines lipids as biological 

substances that are generally hydrophobic in nature and in many cases soluble in organic 

solvents [123] such as fatty acids, phospholipids, sterols, sphingolipids, terpenes and others 

[124]. Other references divide this group of elements into different categories based on their 

chemistry, containing classes and subclasses of molecules, e.g. fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids and polyketides 
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[125]. All definitions have one thing in common: lipids are predominantly hydrophobic but partly 

also have a hydrophilic component. Various types of lipids, many of them physiological 

substances such as triglycerides, cholesterol or phospholipids, have been investigated for lipid 

based implants [126]. 

As already mentioned before (I.1), oral application of proteins and peptides is in most cases not 

possible due to their degradation by the harsh conditions within the stomach and gastro-

intestinal tract [21]. Thus, efforts have been made to explore alternative administration routes 

for protein drugs for lipid-based carriers covering the pulmonary, transdermal or parenteral route 

[127-130]. 

I.2.3.1 SOLID LIPID NANOPARTICLES 

Solid lipid nanoparticles (SLNs) have attracted increasing attention as carrier for protein and 

peptide drugs. Mostly, SLNs are composed of physiological lipids, which make them an 

interesting alternative to synthetic polymers. Synthetic polymers have been used as common 

pharmaceutical excipient but also in food and cosmetic industry and thus considered to be save 

[131-133]. To prepare SLNs, the lipid raw material, emulsifier and water or solvent are needed. 

Commonly used lipids are triglycerides (e.g. Compritol® 888 ATO, Dynasan® 114), partial 

glycerides, steroids (cholesterol), fatty acids (trilaurin, trimyristin, tripalmitin), and waxes (cetyl 

palmitate) [134]. Various preparation methods are described in literature, e.g. ultrasonication, 

micro emulsion based technologies, solvent emulsification/evaporation, double emulsion 

methods, or spray drying methods. However, two main production techniques (high-pressure 

homogenisation and microemulsion-based techniques) are prevailed [135]. These techniques 

do not require potentially toxic organic solvents, which may also have deleterious effects on the 

protein drugs.  

Since the early 1990s, SLNs have been used as drug delivery system (DDS) for proteins and 

peptides including topical, oral, pulmonary and parenteral administration routes [136]. The use 
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of this vector as depot for protein drugs has been addressed within several publications, e.g. for 

yak interferon-α [137], insulin [138], or human recombinant epidermal growth factor [139].  

Within recent years, SLNs have gained more and more interest as DDS for peptides and nucleic 

acids. For instance, Sacchetti et al. described the use of SLNs to deliver the octapeptide 

LSCQLYQR for the treatment of resistant ovarian carcinoma. SLNs were formulated by a double 

emulsion method using stearic acid or Compritol® 888 ATO and different surfactants which 

resulted in SLNs being 130 nm to 1140 nm in size, all with a negative zeta potential [140]. 

However, SLNs showed substantial cytotoxic effect on ovarian carcinoma cells indicating that 

SLNs could carry efficiently the peptide to its target. In the course of an increased interest in the 

delivery of nucleic acids, SLNs have been used for RNA delivery [141]. For this purpose, usually 

cationic SLNs are needed due to the electrostatic interactions between negatively charged 

nucleic acids and positively charged lipids, which enables the formation of so-called lipoplexes 

[142-144]. As an example, it was demonstrated that cationic SLNs are capable to form 

complexes with DNA plasmids [143]. Jin et al. developed SLNs able to delivery siRNA to 

glioblastoma by overcoming the blood-brain-barrier with no apparent systemic toxicity [145]. 

Successful RNA delivery has also been described by Montana et al. using cationic SLNs as 

non-viral vectors for gene delivery [146]. Furthermore, lipid composites for nucleic acid delivery 

have been described as well [147, 148].  

I.2.3.2 SOLID LIPID IMPLANTS 

Within first publications describing solid lipid implants (SLIs) as DDS, SLIs were produced by 

compression or casting methods and were focused on fundamental questions, e.g. drug release 

mechanisms or solid-state behaviour of the lipids using exclusively small non-proteinaceous 

molecules. Then, model proteins have been encapsulated and in-vitro release behaviour was 

described followed by first in-vivo applications. Consequently, the composition of SLIs was 

optimised to prolong release periods ending up with the introduction of release modifiers, 

precipitating agents and pore formers. Compression as standard manufacturing technique was 

replaced by twin-screw (tsc)-extrusion, which has become the leading manufacturing technique 
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for SLIs so far. Applying tsc-extrusion to manufacture SLIs, research was carried out to prolong 

the release of proteins up to 240 days. Further, protein-lipid-interactions (which has been 

neglected up to now) has gained more and more interest because this aspect might play a major 

role in controlled protein release form lipid based DDS. Most recent, the field of possible 

applications was spread including vaccination, tumour therapy or intraocular applications. 

This «evolution» of SLIs within the last 20 years will be spotlighted more in detail in the following 

section. At this point it should be briefly mentioned that quite a significant number on 

publications is available addressing the «fundamental research» in the field of SLIs. This 

includes dissolution aspects [149-152], mathematical modeling [153-156], elucidation of 

underlying release mechanisms [157-159], solid-state behaviour of triglycerides [160-163], or 

casting as preparation method [164-166]. However, since all these publications used small 

molecules as model drugs rather than proteins and peptides, they are not enclosed within the 

following text. 

COMPRESSED SOLID LIPID IMPLANTS FOR PROTEIN AND PEPTIDE DELIVERY 

Compression represents a very fast, easy and inexpensive manufacturing technique and was 

the method of choice in the early stages of SLI manufacturing. Versatile lipids have been used 

to prepare compressed SLIs by applying hydraulic presses. Direct compression has been used 

by different research groups for approximately 20 to 25 years for controlled release applications 

of proteins and peptides [126, 167-170].  

In 1987, Wang et al. incorporated insulin in lipidic matrices consisting of different fatty acids, 

anhydrides of fatty acids, triglycerides and cholesterol [171]. SLIs were administered 

subcutaneously and controlled release of insulin was measured for approximately 1 month, as 

measured by the blood glucose level of diabetic Wistar rats. Moreover, the authors already 

reported on erosion of the SLI once administered subcutaneously, thereby already underlining 

the potential as biodegradable DDS [126].  
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On the sustained release of labelled BSA and hyaluronidase was reported by Vogelhuber et al. 

in 2003 using a compressed glycerol trimyristate matrix. In-vitro investigations revealed a high 

initial burst and incomplete protein release, which was explained by insufficient amounts of pore-

forming agents. In addition to in-vitro testing, the implants were tested under in-vivo conditions 

by subcutaneous implantation in mice showing a good in-vivo stability after 15 days [170, 172].  

The biocompatibility of lipid implants was addressed by Guse et al. [173] in 2006. The authors 

observed that a blend of glycerol tripalmitate with either lecithin or cholesterol showed good 

biocompatibility after subcutaneous implantation in mice while an increasing amount of lecithin 

led to increased inflammatory reactions at the site of administration. The incorporation of lecithin 

led to clearly visible signs of degradation which was not the case for cholesterol. 

Also published in 2006, Appel et al. investigated insulin loaded implants with the background of 

cartilage engineering [169]. Lipid matrix cylinders with dimensions of 2 mm x 2 mm were 

manufactured from glycerol tripalmitate by compression without further additives. SLIs were 

loaded with different concentrations of insulin (0.2 % to 2 %) and the bioactivity of released 

insulin was measured for up to 4 weeks. The authors reported that the bioactivity of 

encapsulated and released insulin was preserved as the weights of cartilaginous cell-polymer 

constructs increased compared to the control [169]. 

Compression as manufacturing technique was also used for the controlled release of 

interleukin-18 (IL-18), reported by Koennings et al. [174]. A cell culture assay was established 

for the bioactivity determination of released IL-18 showing a continuous release of 10 ng to 

100 ng IL-18 per day for up to 12 days. An incomplete release (< 35 %) of IL-18 from the 

matrices was explained by insufficient amounts of pore-forming agents (as stabiliser and pore 

forming agent, PEG was used). Furthermore, it was reported on an integrity loss with ongoing 

release, which would be related to protein degradation during incubation. Within a second 

publication, Koennings et al. addressed the sustained release of brain-derived neurotrophic 

factor (BDNF) with an additional focus on different manufacturing strategies [175]. Four different 

manufacturing techniques performed with the model protein lysozyme (all counting to 
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compression based approaches) were applied: (i) direct mixing of lyophilised lysozyme with lipid 

powder, (ii) a solid-in-oil dispersion of lyophilised lysozyme in tetrahydrofuran mixed with a 

solution of the triglycerides, (iii) a water-in-oil emulsion (the protein was dissolved in the aqueous 

phase and the lipid in dichloromethane), and (iv) a co-lyophilisation of lysozyme with PEG 6000 

prior to compression. Slowest release was observed for more than 60 days applying the water-

in-oil emulsion technique and the co-lyophilisation approach. Interestingly, the water-in-oil 

emulsion technique induced higher levels of aggregates, thus the co-lyophilisation technique 

was found to be most appropriate. Consequently, this technique was used for the preparation 

of BDNF loaded SLIs. In-vitro release studies revealed a sustained release of BDNF for up to 

30 days, although total amount of released protein was only 60 % [175].  

Starting in 2004 with the publication «Continuous release of rh-interferon a-2a from triglyceride 

matrices» by Mohl et al. [167], the research group of Prof. Winter addressed the topic of lipid 

based depots for controlled protein release. Mohl et al. described compressed SLIs consisting 

of glycerol tristearin, PEG 6000 and lyophilised rh-interferon α-2a. In contrast to Koennings et 

al., Mohl et al. reported on an almost complete release of incorporated rh-interferon α-2a (more 

than 90 %) over a period of 1 month. The authors further stated, that the release rate was 

controlled by the amount of PEG 6000, which was added to the formulation acting as a pore-

forming agent. In addition, compressed SLIs were stored for 6 months prior to in-vitro release 

in order to investigate the storage stability of the SLIs including protein stability and release 

[176]. After a 6-month storage, the release patterns were comparable to those from non-stored 

SLIs. Furthermore, rh-interferon α-2a was released in its monomeric form when HP-β-CD was 

used as stabiliser even after storage of the implants at room temperature. It turned out that the 

use of trehalose as excipient resulted in increased levels of aggregated and oxidized species 

after storage and release [176].  

The role of PEG as release modifier was investigated by Herrmann et al. [177]. The release of 

rh-interferon α-2a was monitored as a function of different PEG percentages within the 

formulation. For this, SLIs were prepared by compression comprising 0 to 20 % PEG. The 
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addition of PEG substantially changed both the protein release rate and the underlying mass 

transport mechanisms [177]. If no PEG was added, the release of rh-interferon α-2a was purely 

diffusion controlled. Contrarily, in PEG-containing SLIs the release rate remained constant over 

prolonged periods of time pointing into the direction that also other release mechanisms (which 

were not observed before) were involved. Interestingly, the release of PEG itself from SLIs 

persisted purely diffusion controlled, irrespective of the amount of PEG added. Herrmann et al. 

concluded that different mass transport mechanisms govern the release of rh-interferon α-2a 

out of the lipidic implant. Further work showed that at a physiological pH rh-interferon α-2a tends 

to precipitate in the presence of PEG which was reflected in the release kinetics [156, 178]. By 

this, it was shown for the first time that the release of pharmaceutical proteins can be controlled 

by an in-situ precipitation. 

The in-vivo rh-interferon α-2a release from compressed SLIs was studied by Schwab et al. [168]. 

SLIs were implanted subcutaneously in rabbits and sustained protein release was measured 

over 9 days. A modelling of the data revealed that the in-vivo release correlated closely with the 

in-vitro release. The lipase induced degradation of lipid implants was also investigated by 

Schwab et al. to obtain information about degradation time frames of SLIs once administered. 

SLIs were compressed from either 100 % of a single triglyceride or a blend of two of the following 

lipids: Dynasan® D112 (trilaurin), D114 (trimyristin), D116 (tripalmitin) or D118 (tristearin). The 

authors stated that the triglyceride D112 seems to play a major role in the degradation and 

erosion processes of the implants [179]. This is due to the melting point of D112, which is below 

the human body temperature leading to disintegration and loss of physical integration, which is 

also of special interest of the present work. 

Jensen et al. reported on the in-vitro release of insulin from compressed lipid implants being the 

first author after nearly 10 years using again compression as preparation technique [180]. The 

work described the investigation of UV imaging-based in-vitro methods to enable the 

visualisation of released drug to mimic the subcutis. Jensen et al. stated that «Insulin release 

from 10 % (w/w) implants into agitated solution was faster as compared to release into agarose 
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hydrogel. This was ascribed to the additional mass transfer resistance provided by the agarose 

hydrogel. » [180]. 

TWIN-SCREW EXTRUDED SOLID LIPID IMPLANTS FOR PROTEIN AND PEPTIDE DELIVERY 

Schulze et al. [181] introduced tsc-extrusion as manufacturing technique for lipid implants which 

meanwhile became one of our standard manufacturing techniques besides the direct 

compression technique described above [168, 175, 177].  

Lipid implants consisted of 10 % rh-interferon α-2a co-lyophilised with HP-β-CD and 10 % PEG 

6000 incorporated into a lipid matrix. The lipid matrix consisted of D118 with either H12 or E85 

both low melting lipids. Extrusion was performed at 40°C with a screw speed of 40 rpm. The 

authors stated that sustained release occurred in a sustained manner over 15, 40, or 60 days 

as a function of the composition [181]. Moreover, the preparation process did not affect the 

stability of rh-interferon α-2a which was studied by FT-IR and SDS-PAGE. 

Tsc-extrusion was systematically investigated by Sax et al. approaching the influence of melting 

events on the in-vitro release of lysozyme [182]. For this purpose, D118 was admixed with 

different low melting lipids (having slightly different melting points) and PEG 4000 or PEG 6000 

was added as pore forming agent. A more sustained release (for up to 240 days) of lysozyme 

was achieved when the amount of PEG was reduced. Interestingly, the inner structure of the 

implant changed during release as measured by DSC and XRPD. The authors explained that 

phenomenon by a partial melting of the lipid matrix. Thus, Sax et al. concluded that partial 

melting of the implants during in-vitro release was found to be a major factor for the controlled 

protein release being a useful tool to trigger release. To study this phenomenon more in detail, 

single molecule fluorescence microscopy revealed that two release pathways were present. 

Surprisingly, it was observed that «proteins were not only released via water-filled pores 

(created by dissolution of the pore-former), but surprisingly also through diffusion in a phase of 

molten lipid.» [183]. This represented a completely new finding which is crucial for the future 

development of lipid-based depots also being important for this thesis. 
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The in-vivo biodegradation was described in a rabbit model by Sax et al. [184]. Different 

formulated SLIs were implanted subcutaneously in rabbits and implant mass was measured for 

6 months. After 6 months, recovered implant mass was only 24 % in average. Furthermore, 

biodegradation was a function of formulation: the presence of pore forming agent resulted in 

higher mass loss and an accelerated degradation rate. The unique composition of a low melting 

and a high melting lipid was claimed to be responsible for the good biodegradability due to a 

partial melting of the implant at physiological temperatures. 

Neuhofer used this formulation investigated by Schulze et al. and Sax et al. for the 

encapsulation of the hydrophobic protein native interferon-β-1b (nIFN-β-1b) [185]. The 

sustained release of nIFN-β-1b was described for up to 10 days when surfactants (0.1 % SDS 

or 0.15 % laureth-12) were added to the release medium. Since almost no release was 

observed when no surfactants were added (approximately 5 % after 7 days), it was assumed 

that the high hydrophobicity and solubility effects might play a role for triggering the release of 

proteins. This hypothesis was strengthened by the more complete release of more hydrophilic 

PEGylated interferon-β-1b (60 % within 7 days). Thus, Neuhofer was the first studying possible 

interactions between the proteins and the matrix materials by adsorption experiments and QCM 

studies. QCM studies revealed a tendency to fewer protein adsorption of PEG-IFN-β-1b to a 

tristearin surface than nIFN-β-1b. This indicates a stronger affinity of nIFN-β-1b to hydrophobic 

surfaces [185]. 

Interactions between triglycerides and peptides were studied by Even focussing on interactions 

between peptides (being different in charge and hydrophobicity) and the lipids D114 (trimyristin), 

soybean lecithin and cholesterol [186]. Even found that adsorption to D114 was a function of 

hydrophobicity of the peptide.  

Moreover, Even et al. explored new application fields for SLIs. The authors described the in-

vivo investigation of SLIs as depot for vaccines [186] using the model antigen Quil-A in a mice 

model. Quil-A was released for 14 days and the overall immune response (CD4+ and CD8+ T-

cell proliferation, IgG production, cytokine secretion) revealed a successful proof of concept. 
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Addressing the field of immunotherapies, the peptide tyrosinase-related protein-2 (TRP-2), 

being an antigen in tumour therapy approaches, was successfully incorporated into SLIs and 

tested in mice. The in-vivo study showed that mice which received TRP-2 loaded implants had 

delayed tumour growth for 3 days compared to groups having received no TRP-2 [187]. Within 

this publication, Even et al. was the first one using the ZE-5 mini-extruder from Three-Tec for 

the production of tsc-extruded implants. They stated that «The type of extruder used to produce 

the implants had a major influence on implant properties and the release behaviour, 

demonstrating that extrusion parameters and lipid formulations have to be individually adapted 

to each extrusion device.» [187]. These aspects are of special interest of the present work since 

the ZE-5 mini-extruder was intensively used.  

 

I.2.4 INTRAOCULAR DELIVERY  

The treatment of several serious eye diseases, e.g. age related macular degeneration (AMD), 

is up to now associated with significant side effects due the penetration of the posterior segment 

of the eye by a needle [30, 96]. AMD is the leading cause of blindness in industrialised nations 

for people over 50 years [188]. The wet AMD accounts for only 15 % of all AMDs, but causes 

about 90 % of blindness [189]. The pathology is based on weak blood vessels underneath the 

macula and retina affecting a leakage of fluids (e.g. blood) into the eye and finally causing 

macular damage [190]. This causes the distribution of inflammatory markers (cytokines or 

VEGF) generating ischemia and inflammation, which leads to choroidal neovascularisation 

(CNV) [191]. New blood vessels grow irregular under the macula supporting rapid central vision 

loss. Furthermore, CNV has a strong link to increased expression of the VEGF gene [192]. 

Currently, the management with anti-VEGF drugs such as Bevacizumab (Avastin®), 

Ranibizumab (Lucentis®) and Aflibercept (Eylea®) are representing the state of the art therapy 

[193-197]. Besides the stress for the patient, the required monthly injections into the vitreous 

causes injection-related adverse effects like endophthalmitis [96]. Hence, it would be preferable 

to prolong the period between two intravitreal injections by using sustained release devices to 
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improve patient convenience, safety, and efficacy. With these limitations, efforts are being made 

to develop ocular inserts releasing therapeutic drugs over a long time to reduce application 

intervals. 

I.2.4.1 MARKETED PRODUCTS FOR INTRAOCULAR ADMINISTRATION 

Currently, there are four commercially available ocular implants providing long-term release 

from either biodegradable or non-biodegradable polymeric systems over several months to 

years.  

Vitrasert®, the first non-biodegradable intravitreal implant approved by the FDA in 1996, 

contains ganciclovir for the therapy of cytomegalovirus retinitis. It is consisting of a drug pellet, 

coated with PVA allowing drug release of 5 to 8 months [198]. The outer and inner permeable 

PVA layers sandwiching a discontinuous layer of impermeable EVA controlling the release. 

Other intravitreal devices based on this technology are on the market such as Retisert® from 

Bausch and Lomb which contains fluocinolone acetonide and is approved for the treatment of 

chronic non-infectious uveitis [199]. Iluvien™ is another injectable intravitreal insert which 

delivers a very low dose of the corticosteroid fluocinolone acetonide (0.5 µg to 0.2 µg/day) to 

the retina over a period of about 3 years [200]. The implant consists also of a drug-loaded core 

coated with a PVA layer and has a release opening. All these implants are non-biodegradable 

and need to be surgically removed.  

Ozurdex® is commercially available since June 2009 and was approved by the FDA for the 

treatment of macular edema [201]. The implant consists of a PLGA matrix, which degrades 

slowly to lactic acid and glycolic acid allowing the long-term release of dexamethasone of up to 

6 months [202-204]. 

In summary, it can be concluded that an ocular insert loaded with a therapeutic protein or 

peptide has not yet reached the market. 
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I.2.4.2 VEHICLES FOR INTRAOCULAR DELIVERY OF PROTEINS AND PEPTIDES 

The development of intravitreal inserts for the sustained release of therapeutic proteins and 

peptides is currently in the focus of research. Delivery platforms described in literature are 

multifaceted including implants, hydrogels and particulate systems affirming the efforts, which 

had been made within the last years. Interestingly, irrespective of the depot used within those 

studies, it is noteworthy that in most (but not all) cases Bevacizumab was used.  

In 1999, the first intravitreal controlled release application of a monoclonal antibody was 

described by Mordenti et al. [205]. Trastuzumab was encapsulated into PLGA microspheres 

and injected into rabbit eyes. The depot was well tolerated in the eye and suitable for ocular 

applications as no relevant side effects were reported. However, the total cumulative release of 

Trastuzumab was only 32 %, thereby indicating large portions of non-released and/or nonnative 

antibody [29]. 

The most represented dosage form are hydrogels and semisolid depots including thermo-

responsive hydrogels [206], Diels-Alder hydrogels [111], or silk hydrogels [96]. As an example, 

thermoresponsive hydrogels consisting of poly(N-isopropyl acrylamide) were cross-linked with 

PEG-diacrylate and Bevacizumab and Ranibizumab were encapsulated within this matrix. A 

sustained release for approximately 3 weeks was observed whereby the release rate was 

controllable by varying the cross-linking degree [206]. Bevacizumab had also been 

encapsulated within silk hydrogels, which were administered into rabbit eyes. Release 

concentrations were achieved after 90 days equivalent than those achieved at 30 days with the 

positive standard dose control (a single injection of 50 µl Bevacizumab intravitreally 

administered). Thus, a comparable therapeutic threshold based on a dosage administration 

schedule of one injection/month was achieved [96]. 

The sustained-release of a fab-fragment has been described by Asmus et al. Here, the authors 

considered the use of a hydrophobic polyester hexylsubstituted PLA (hexPLA) as matrix. The 

fab-fragment exhibited an excellent compatibility with the matrix and the protein was released for 
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6 to 14 weeks [207]. Furthermore, the antibody fragment structure remained intact during 

incorporation and release. 

A representative of particulate systems is described by Chen et al. where the encapsulation of 

connexin43 mimetic peptide into PLGA micro- and nanoparticles is broached for treatment of 

retinal ischaemia [208]. The use of PLGA based nano- and microspheres for Bevacizumab 

delivery was shown by Li et al. showing a sustained release for over 90 days [209].  

Another interesting approach is the use of nanostructured mesoporous silica films loaded with 

Bevacizumab. By this technique an in-vitro release of bioactive Bevacizumab over one month 

has been observed [210]. A fascinating but completely different technology has been described 

by Gooch et al. and Molokhia et al., the so-called capsule drug ring (CDR). The CDR is designed 

to serve as refillable reservoir and being placed within the capsular bag during cataract surgery 

with the ability to release Bevacizumab close to zero order kinetic [211, 212].  

I.2.4.3 LIPID BASED VEHICLES FOR INTRAOCULAR USE 

Only a few publications are available regarding the intraocular delivery of proteins from lipid 

based systems. The study of Abrishami et al. is one of the few describing the in-vivo 

performance of Bevacizumab encapsulated within a nanoliposomal formulation [213]. 

Liposomes were prepared by the dehydration-rehydration method and were scaled to nano size 

even though the exact diameter is not mentioned. However, the Bevacizumab containing 

liposomal formulation was tested in rabbit eyes and Bevacizumab concentration was monitored 

for 42 days. The depot was well tolerated over 42 days and Bevacizumab clearance was slower 

for the liposomal formulation compared to the soluble form.  

A single publication is available addressing the in-vivo performance of SLIs for intravitreal 

purposes. In 2014, Tamaddon et al. reported on SLIs consisting of a glyceride tripalmitate 

matrix. The implants had a diameter of 0.4 mm and were fabricated via a hot melt extrusion 

method. In-vitro release of clindamycin was up to 10 days and in-vivo biocompatibility was 

tested in rabbit eyes showing no abnormalities up to 2 months after implantation into the rabbit 
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eye [214]. Even though the SLIs did not contained a protein drug, the similarity to the SLIs 

described within this thesis is noteworthy. 

It is apparent, that lipid based intravitreal depots are in the early stages and that much more 

research should be done. On the other hand, this highlights that the work presented here is 

intended to exactly address this gap considering it as an incentive for further research. 

 

I.2.5 PROTEIN STABILITY CONSIDERATIONS FOR CONTROLLED RELEASE 

SYSTEMS 

The controlled release of pharmaceutical protein drugs is a key strategy to reduce both systemic 

side effects and the frequency of drug administration [71]. However, developing protein delivery 

systems which ensure both suitable release and at the same time maintaining the stability of 

the protein drug represents the major challenge [215]. Jiskoot et al. already underlined the 

importance of knowledge on possible protein instability and immunogenicity even before 

considering it for a sustained release depot. [216]. 

During a «life time» of a DDS, the proteins are exposed to multiple unfavorable conditions, e.g. 

during the manufacturing process, storage of the DDS prior to use and during release. 

Considering the great diversity and number of DDS for protein and peptide drugs, it is surprising 

that numerous publications do not pay any or not sufficient attention to this important topic.  

Generally, each single protein – even among the same subclass – has its own unique 

physicochemical «fingerprint» which needs to be taken into consideration when developing a 

DDS. For instance, each protein is unique by its isoelectric point (pI), surface charge distribution, 

hydrophobic patches or buffer capacity dedicated by its primary structure [29]. Moreover, when 

considering different protein formats such as bispecific antibodies, fab-fragments, PEGylated 

proteins or fusion proteins, these differences become even more enhanced.  
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A protein encapsulated within a DDS is even more exposed to additional stress conditions than 

a protein administered intravenous. These additional stresses can occur during 

encapsulation/manufacturing, storage, and in-vivo release.  

Harsh conditions can arise during encapsulation/manufacturing of the DDS and can be 

exemplarily illustrated by the production of PLGA particles where vigorous stirring and 

emulsification of a protein solution into a polymer solution is obligatory [60]. Moreover, proteins 

are exposed to organic solvents and interfaces and the high hydrophobicity of PLGA favours 

interactions [217]. Of course, these issues can also be encountered when other technology 

platforms than PLGA are used. For instance, in case of particular lipid-based DDS including the 

preparation of liposomes [218]. 

Once administered, e.g. subcutaneously, the protein need to retain its integrity at the 

administration site at the conditions prevailing in-vivo. In the case of subcutaneously 

administered DDS (e.g. in-situ forming gels), the depot retains the drug for long time periods at 

the administration site often exceeding their endogenous half-life [219]. This is because under 

in-vivo conditions, proteins tend to degrade much faster than under in-vitro storage conditions 

(2°C to 8°C). Additionally, after administration the protein is exposed to 37°C and the present 

of matrix degradation products, interstitial fluid, proteolytic enzymes, various cells and cellular 

by-products (reactive oxygen species) which could result in adverse side effects [216, 220]. 

Moreover, «stabilizers present within the original formulation rapidly dissipate and are usually 

not available to protect the drug during drug release inside the matrix» as stated by Schweizer 

et al. [29]. 

Despite protein instability considerations, also the immunogenicity aspects should be 

considered since a number of immunological risks are associated with the application of DDS 

including hypersensitivity reactions [221]. Moreover, pharmacokinetics, biodistribution and 

targeting capability can be negatively affected [220]. The highest risk are anti-drug-antibodies 

against the protein drug itself [222], its aggregates [223-226], the matrix material or targeting 
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ligands associated with the DDS. This could cause reactions and formation of membrane attack 

complexes or accelerated clearance as stated by Rojko et al. [227].  

Jiskoot et al. perfectly summarised this topic and formulated three approaches for the adequate 

characterisation of proteins in DDS to «obtain as complete a picture as possible of the quality 

of the drug product»: (i) characterisation of the protein encapsulated within the DDS, (ii) 

characterisation of released protein and (iii) characterisation of protein which remained within 

the depot [216].  

During this work, it was intended to take these approaches into consideration. 
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II. OBJECTIVES OF THE THESIS 

 

The applicability of parenteral depots has been studied intensively within the last two decades. 

Besides the thoroughly investigated PLA/PLGA depots [48, 73], those depots include PLGA-

composites [68, 70, 72], alginate [84], chitosan [76, 77, 80], silk [28, 96, 98], or casein [228], 

just to name a few. Due to the drawbacks of PLA/PLGA materials in terms of protein stability 

[49, 72, 229], lipid based depots have gained more and more importance as material for long 

term delivery of proteinaceous drugs. Preserving the integrity of incorporated proteins [176, 181] 

is the most valuable benefit over commonly used PLA/PLGA polymers.  

Previous works on triglyceride based implants have already demonstrated the suitability of such 

depots to maintain stability of both encapsulated and released protein [176, 181]. Furthermore, 

the long-term release of protein drugs from triglyceride implants was demonstrated by a rather 

simple and straightforward compression technique [167, 177]. Within our group, tsc-extrusion 

was established and meanwhile became one of the standard manufacturing techniques. It was 

shown that tsc-extruded SLIs exhibit a more sustained release and a more homogenous drug 

distribution compared to SLIs manufactured by direct compression [230]. For instance, long-

term release of protein drugs was successfully demonstrated for interferon α-2a, which was 

delivered for more than 60 days [181] and for lysozyme, for which a release of more than 

200 days was described [182]. Also, it has already been demonstrated that SLIs are a promising 

platform for various applications, e.g. vaccination [231], tumour therapy [187], subcutaneous 

administration [184], or intraocular use (data not published).  

The starting point of the present work was an established extrusion process on the MiniLab® 

Micro Rheology Compounder which was used for the sustained long-term release of different 

model proteins and therapeutic proteins [232]. Also, in-vivo investigations had revealed 

excellent biocompatibility after subcutaneous [184] and intravitreal administration (data not 
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published). Within those works, sustained release of different commercially available protein 

formats has not yet been reported. Also, protein stability and biological activity aspects had not 

been investigated systematically with regards to tsc-extrusion as manufacturing technique. 

Furthermore, the impact of different extrusion parameters (e.g. extrusion temperature, screw 

speed) on implant characteristics and release patterns had not been investigated systematically 

[182, 186, 233, 234]. 

Consequently, the present work was aimed to address the following objectives: 

(i) further optimisation of the manufacturing process (extrusion parameters, 

formulation) with a focus on intraocular use is described in chapter IV. For this, a 

new extruder (ZE-5 mini extruder) was acquired allowing to manufacture small 

batches. In a first step, the established process was transferred from a MiniLab® 

Micro Rheology Compounder to a ZE-5 mini extruder. It was aimed to optimise the 

process to reach delivery time frames of at least 3 months. Second, as a potential 

intraocular use was considered, reducing implant dimensions and increasing the 

protein load while ensuring release patterns and storage stability was intended. To 

study the impact of the incorporated protein on release patterns, different protein 

formats were used including three commercially available products: Ranibizumab 

(Lucentis®), Bevacizumab (Avastin®) and Aflibercept (Eylea®). Additionally, another 

model mAb was used. To further tailor the release, triglycerides were pre-melted 

prior to extrusion to intentionally change their thermal and physicochemical 

properties. 

(ii) A 3-month in-vivo study in rabbit eyes using Ranibizumab loaded SLIs was executed 

to evaluate the in-vitro-in-vivo release correlation and pharmacodynamic effects 

within a choroidal neovascularisation (CNV) model (chapter V).  
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(iii) Within chapter VI, the bioactivity of fractions released from SLIs of the natural 

complement regulator Factor H (mini-FH) was studied to obtain information on its 

biological activity once released. 

(iv) Further work included the systematic investigation on stability of released protein 

over the complete release duration covering colloidal, chemical and conformational 

stability (chapter VII). Comparison of stability profiles delivered from SLIs to PLGA-

based implants was performed. 

(v) Recent work pointed into the direction that not only the manufacturing settings 

influence release patterns but also the properties of the protein itself [185, 186]. 

Consequently, the influence of possible triglyceride-protein-interactions on protein 

stability was investigated within chapter VIII.  

(vi) Solid lipid extrusion (SLE) has been used previously within different works [162, 163, 

235-237]. However, the extrusion process itself and its impact on the lipid matrix and 

release patterns has not yet been described. It was therefore the aim of chapter IX 

to characterise the SLE process with regards to how changing process parameters 

affect the properties of the lipid matrix and the release patterns of the model mAb. 

Therefore, the impact of process parameters such as extrusion speed, temperature, 

and lipid composition on implant properties was investigated systematically. 
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III. MATERIALS AND METHODS 

III.1 MATERIALS 

III.1.1 PROTEINS 

In this thesis, the following proteins were utilised for the preparation of long-term release lipid 

depot systems: 

A monoclonal IgG1 antibody (mAb) formulated in a 10.5 mM sodium phosphate buffer at pH 6.4 

at a concentration of 17.3 mg/ml was utilised.  

Bevacizumab (Avastin®) is a recombinant humanised monoclonal IgG1 antibody that binds to 

human vascular endothelial growth factor (VEGF) [195, 238, 239] and has an approximate 

molecular weight of 149 kDa. Bevacizumab is formulated at a concentration of 25 mg/ml in a 

50 mM sodium phosphate buffer containing 60 mg/ml α, α-trehalose and 0.04 % polysorbate 20 

at a pH of 6.2.  

Ranibizumab (Lucentis®) is a recombinant humanised IgG1 monoclonal antibody fragment from 

Bevacizumab (Avastin®), inhibiting the biologic activity of VEGF [193, 196]. Ranibizumab has a 

molecular weight of approximately 48 kDa and is formulated in 10 mM histidine-HCl, 10 % α, α-

trehalose dihydrate and 0.01 % polysorbate 20 at pH 5.5. 

The recombinant fusion protein Aflibercept (Eylea®) consists of portions of human VEGF 

receptors and extracellular domains fused to the Fc portion of human IgG1 [191, 197]. It is a 

dimeric glycoprotein with a molecular weight of 97 kDa containing 15 % glycosylation which 

results in an overall molecular weight of 115 kDa. Aflibercept is formulated in 10 mM sodium 

phosphate at a concentration of 40 mg/ml, also containing 40 mM sodium chloride, 5 % sucrose 

and 0.03 % polysorbate 20 at pH 6.2. 
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Bevacizumab (Avastin®), Ranibizumab (Lucentis®) and Aflibercept (Eylea®) were kindly 

provided by the Moran Eye Center (Salt Lake City, Utah, USA). 

The C3-opsonin targeted complement inhibitor mini-FH having a molecular weight of 43.3 kDa 

[240, 241] was available as freeze-dried powder without further stabilisers. It was provided by 

the group of Dr. Christoph Schmidt from the Institute of Pharmacology and Natural Products 

and Clinical Pharmacology, Ulm University, Germany.  

 

III.1.2 TRIGLYCERIDES 

The triglycerides Dynasan® D118, Witepsol H12, H12 and H12A were a kind gift from Cremer 

Oleo (Hamburg, Germany). The high melting lipid D118 consists of nearly 100% tristearin, 

whereas the low melting lipids Witepsol H12, H12 and H12A are a mixture of trilaurin, trimyristin 

and tripalmitin (Table III-1).  

Table III-1: Properties of the triglycerides H12, H12A, Witepsol H12 and D118. 

 H12 H12A Witepsol H12 D118 

Hydroxyl value [mg KOH/g) 0.0 0.0 5.0 2.4 

C12 fatty acid (trilaurin) [%] 70.2 74.2 70.8 0.0 

C14 fatty acid (trimyristin) [%] 27.1 25.3 26.0 0.0 

C16 fatty acid (tripalmitin) [%] 2.3 0.2 2.4 0.0 

C18 fatty acid (tristearin) [%] 0.0 0.0 0.0 98.2 

Triglyceride content [%] 99.7 99.9 96.5 99.9 

Tonset [°C] 36.8 37.4 32.0 70.0 

Tmelting [°C] 43.1 42.4 39.9 72.7 
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III.1.3 POLY(D,L-LACTIC-CO-GLYCOLIC) 

The Poly(D, L-lactic-co-glycolic) (PLGA) Resomer® RG 502, Resomer® RG 502 H and 

Resomer® RG 755 S were purchased from Evonik Industries (Essen, Germany). Based on the 

different ratios of lactide to glycolide acid and different end groups, properties of PLGAs varied 

in their molecular weight, degradation time and chemical end groups (Table III-2). 

Table III-2: Properties of the Resomer® polymers RG 502, RG 502 H and RG 755 S. 

Type of 
Resomer® 

Molecular weight 
Ratio Poly(D,L-lactic-co 
glycolic) 

Degradation time 
frame 

End group 

RG 502 7.000 to 17.000 Da 50:50 < 3 months alkyl ester 

RG 502 H 7.000 to 17.000 Da 50:50 < 3 months free COOH 

RG 755 S 76.000 to 116.000 Da 75:25 < 6 months ester 

 

III.1.4 CHEMICALS AND SALTS 

All reagents and chemicals used within this work are listed in Table III-3. All chemicals and salts 

were of analytical grade. 

Table III-3: List of chemicals and salts used within this work. 

Substance Abbreviation purchased from 

4,4′-Dianilino-1,1′-binaphthyl-5,5′-

disulfonic acid dipotassium salt 

Bis-ANS Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Ammonium sulfate (NH4)2SO4 Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

di-Sodium hydrogen phosphate 

dihydrate p.A. 

Na2HPO4*2H2O AppliChem GmbH & Co. KG, Darmstadt, 

Germany 

Hydroxypropyl-β-cyclodextrine HP-β-CD Wacker Chemie AG, Burghausen, 

Germany 

Imidazole - Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 
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n-Hexane - Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Piperazine - Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Polyethylene glycol 6000 PF PEG 6000 Clariant GmbH, Frankfurt am Main, 

Germany 

Potassium chloride KCl AppliChem GmbH & Co. KG, Darmstadt, 

Germany 

Potassium dihydrogen phosphate KH2PO4 Merck KGaA, Darmstadt, Germany 

Sodium azide NaN3 Merck KGaA, Darmstadt, Germany 

Sodium chloride NaCl Prolabo, Leuven, Belgium 

Sodium dihydrogen phosphate 

dihydrate 

NaH2PO4*2H2O AppliChem GmbH & Co. KG, Darmstadt, 

Germany 

Tris(hydroxymethyl)aminomethane Tris Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

 

III.2 METHODS 

III.2.1 PREPARATORY STEPS 

III.2.1.1 DIALYSIS 

Dialysis of the protein formulations was performed to deplete the formulations of buffer salts 

and stabilisers and to substitute them with hydroxypropyl-β-cyclodextrine (HP-β-CD). HP-β-CD 

was used as lyoprotectant to assure protein stabilisation during freeze drying and storage as 

reported previously for rh-interferon α-2a [176] and erythropoietin [242]. The protein bulk 

materials were dialysed against 50 mM sodium phosphate buffer pH 6.2 at 4°C by complete 

buffer exchange thrice resulting in 20 liters total buffer volume. The theoretical dilution factor 

was calculated with 1200. Dialyses was performed in a CelluSep® T1 tube from Orange 
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Scientific (Braine-l’Alleud, Belgium) with a molecular weight cut off (MWCO) of 3.5 kDa. After 

dialysis, the protein concentration was determined spectrophotometrically by applying an UV-

VIS spectrometer Agilent 8452 (Böblingen, Germany). The protein concentration was set to 

10 mg/ml and HP-β-CD was added to obtain a ratio of 1:1 [w/w], 2:1 [w/w] or 3:1 [w/w]. 

III.2.1.2 LYOPHILISATION PROCESS 

Aliquots of 2.0 ml of the formulations were filled into 10R vials and lyophilised using an Epsilon 

2-6D freeze dryer from Christ (Osterode, Germany) (Figure III-1). In brief, the solution was 

frozen to -50°C at a rate of 1°C/min and the temperature was held for 30 min. Primary drying 

was performed at a shelf temperature of -10°C and a pressure of 0.09 mbar for 24 h. Afterwards, 

the temperature was increased to 25°C within 4 h. Secondary drying was then performed at 

25°C for 7 h. After the cycle was finished, freeze dried samples were held at 5°C at 0.09 mbar. 

Product temperature was monitored with thermocouples placed at the edges and in the middle 

of the shelf. Finally, the freeze dryer was vented with filtered nitrogen gas to approximately 

800 mbar. Vials were stoppered and crimped after unloading. 

 

Figure III-1: Shelf temperature and pressure traces of an examplary freeze-drying run. Thermocouples were 

placed in the formulations to monitor the product temperature. 
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III.2.1.3 PRE-MELTING OF LIPIDS 

For specific experiments, lipids were pre-melted prior to extrusion by simultaneous melting of 

the high and low melting lipid at 80°C to obtain a homogenous molten mass. The molten mass 

was not further stirred. The melt was allowed to cool down to room temperature at approximately 

23°C. The solidified melt was ground using mortar and pestle, sieved (< 180 µm) and stored at 

4°C. 

 

III.2.2 PREPARATION OF IMPLANTS  

III.2.2.1 TSC-EXTRUSION OF SLIS ON A MINILAB® MICRO RHEOLOGY COMPOUNDER 

Applying the MiniLab® Micro Rheology Compounder (Thermo Haake GmbH Karlsruhe, 

Germany) the composition listed below was extruded according to the formulation described by 

Sax et al. [182]. Tsc-extrudates were prepared from a powder mixture comprising 10 % protein 

lyophilisate, 10 % PEG 6000 lyophilisate, 24 % H12 and 56 % D118. Equal masses of 

lyophilisates and triglycerides were weighed into a mortar and mixed to create a uniform powder 

mixture. Afterwards, remaining H12 and D118 was added to ensure a homogenous distribution 

of the single components. Extrusion was performed at 41°C with closed bypass channel, screw 

speed was adjusted to 40 rpm and the extruder outlet was set to 1.9 mm. Approximately 5 g of 

the material was fed into the barrel by compressing it manually. The obtained lipid strand was 

cut into pieces of approximately 20 mm resulting in an average weight of 67 mg per implant. 

III.2.2.2 TSC-EXTRUSION OF SLIS ON A ZE-5 MINI-EXTRUDER 

Formulations consisting of 10 % to 20 % protein lyophilisate and different ratios of the low 

melting lipid H12 and the high melting lipid D118 were extruded on a ZE-5 mini extruder. H12, 

D118 and lyophilised protein were weighed into a mortar and admixed by hand to create a 

uniform powder mixture. When extrusion was performed with pre-melted lipids, protein 
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lyophilisate was added to the sieved (< 180 µm) cooled down solidified melt and the powder 

mixture was homogenised manually using pestle and mortar. Tsc-extrusion was performed 

using a ZE-5 mini-extruder from Three-Tec (Seon, Switzerland) comprising three heating zones. 

Approximately 1 g of the powder mixture was fed manually into the barrel of the ZE-5 mini-

extruder and extrusion was performed between 33°C to 42°C. The rotation speed of the screws 

was set between 20 rpm to 80 rpm. The implant diameters were adjusted by applying outlet 

plates with 0.8 mm, 1.5 mm, 1.7 mm and 2.0 mm diameter, respectively. Extruded implants 

were cut into a length of 15 mm resulting in an implant weight of around 30.7 mg ±0.78 mg 

(1.5 mm diameter) and 39.3 mg ±0.96 mg (1.7 mm diameter). 

III.2.2.3 TSC-EXTRUSION OF SLIS ON ZE-5 MINI-EXTRUDER USING A FEEDING TUBE 

The inlet die to the ZE-5 mini-extruder barrel was equipped with a custom-made feeding tube 

of 22 cm length and 0.9 cm diameter and a custom-made pestle to feed the material into the 

barrel. The material was filled into the feeding tube (3 g) and the powder mixture was fed into 

the barrel by applying a constant weight on the pestle. Extrusion of various formulations (30 % 

to 70 % H12) was performed at extrusion temperatures ranging from 33°C to 42°C at different 

screw speeds (40 rpm to 80 rpm).  

III.2.2.4 DOUBLE EXTRUSION OF SLIS ON ZE-5 MINI-EXTRUDER WITH FEEDING TUBE 

In a first approach, extrudates with 10 % lyophilisate were produced using a lipid matrix 

consisting of 50 % H12 and 50 % D118 extruded at 35°C and 40 rpm. The lipid strand was 

ground, sieved (< 180 µm) and extruded a second time at 33°C, 35°C or 37°C.  

In a second approach, a formulation comprising 20 % protein lyophilisate and 80 % D118 was 

first extruded at 65°C. Afterwards, the extrudates were ground and sieved (< 180 µm), H12 was 

added to get a lipid matrix composed again of 50 % H12 and 50 % D118. Second extrusion was 

then performed at 35°C.  
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In a third approach, 20 % protein lyophilisate and 80 % H12 were extruded at 35°C within the 

first extrusion run. D118 was added to the ground and sieved (< 180 µm) extrudate to obtain a 

50:50 lipid matrix of H12 and D118 which was then extruded at 35°C a second time. During all 

double extrusion runs, rotation speed was set to 40 rpm.  

III.2.2.5 PREPARATION OF PLGA BASED IMPLANTS 

PLGA implants were prepared by mixing 10 % protein lyophilisate (1:1 [w/w] protein to HP-β-

CD) with 90 % Resomer® RG 502, Resomer® RG 502 H or Resomer® RG 755 S, respectively, 

in a mortar to obtain a homogenous powder blend. The powder mixture (approximately 1.5 g) 

was fed manually to the ZE-5 mini-extruder and extrusion was performed at 70°C at a screw 

speed of 60 rpm. Extruded PLGA rods with a diameter of 1.5 mm were cut into a length of 

15 mm resulting in a weight of 52.9 mg (±4.15 mg) and a protein load of 2.66 mg (±0.21 mg). 

 

III.2.3 PROTEIN RELEASE TESTS  

Extrudates (n=4) were cut into a length of 15 mm and were placed in 2.0 ml micro-centrifuge 

tubes (VWR, Radnor, PA, USA) and incubated at 37°C in a Certomat® IS (Sartorius BBI, 

Göttingen, Germany) horizontal shaker at 40 rpm in 1.0 ml PBS buffer pH 7.4 comprising 10 mM 

sodium phosphate, 137 mM NaCl and 2.7 mM KCl. At predetermined time points, the release 

medium was exchanged completely and tempered incubation medium was added. Protein 

concentration was analysed spectrophotometrically at 280 nm applying an UV-VIS 

spectrometer (Agilent 8453, Böblingen, Germany). For all proteins, linearity of measurements 

was established for a concentration range of 0.001 mg/ml to 1.0 mg/ml. 
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III.2.4 DETERMINATION OF IMPLANT PROPERTIES 

III.2.4.1 DYNAMIC SCANNING CALORIMETRY (DSC) 

Thermal properties of lipid raw material and implants were measured using a Netzsch DSC 204 

(Selb, Germany). Approximately 15 mg sample (accurately weighed) was weighed into 

aluminium sample pans and crimped before heating from 0°C to 90°C with a heating rate of 

5 K/min. Tonset, Tmelting and the melting energy of the lipids were assessed. 

III.2.4.2 X-RAY POWDER DIFFRACTION (XRPD) 

To determine lipid modifications and crystallisation events, XRPD was performed using an 

Empyrean powder diffractometer (PANalytical, Almelo, The Netherlands) equipped with a 

copper anode (45 kV, 40 mA, Kα1 emission at a wavelength of 0.154 nm) and a PIXceI3D 

detector. Approximately 100 mg of finely sieved sample material were placed onto the sample 

holder and analysed in the range of 0° to 50° 2-theta with steps of 0.05° 2-theta. 

III.2.4.3 SCANNING ELECTRON MICROSCOPY (SEM) 

The morphology of extrudate surfaces and cross sections were analysed either using a 

JSM6500F Field Emission Electron Microscope (Jeol, Eching, Germany) or a FEI Helios G3 UC 

(Hillsboro, Oregon, USA) without any further processing or coating. SEM micrographs were 

taken at an operating voltage of 2.0 kV at a magnification of 40x, 300x and 2500x (JSM6500F) 

or at a voltage of 1.5 kV at a magnification of 80x, 300x and 2000x (FEI Helios G3 UC). 

III.2.4.4 MECHANICAL PROPERTIES 

Mechanical properties of extrudates were analysed using a Texture Analyser TA XT2i (Stable 

Microsystems, Godalming, UK). Compressive strength was assessed by compressing the 

samples with a cylindrical piston having a diameter of 13 mm (Figure III-2 A). Settings were 

adjusted to a pre-test speed of 1.0 mm/s, test speed of 0.1 mm/s, post-test speed of 10 mm/s 
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and a trigger force of 0.05 N. The maximal force at the point of breakage was defined to be the 

compressive strength. 

 

Figure III-2: Experimental setup of (A) compressive strength and (B) bending strength. 

 

For analysis of bending strength, the sample was located on two holders being 10 mm apart 

from each other (Figure III-2 B). The sample was levitating were the piston touched the 

extrudate. Bending strength was measured by pressing a piston (4 mm in diameter) with a 

speed of 0.1 mm/s until the sample broke. The maximal force measured before the sample 

broke was defined as bending strength. Trigger force was set to 0.05 N. Per batch, experiments 

were performed six times at room temperature. 

III.2.4.5 TRUE DENSITY MEASUREMENTS 

Samples were cut into pieces with a length of approximately 5 mm, transferred to a measuring 

insert and weighed accurately before placing the insert into a helium pycnometer AccuPyc® 

1330 (Micromeritics, Norcross, USA). After the chamber was flushed ten times with helium, the 

replaced volume was measured six times. For each sample, triplicates were measured resulting 

in eighteen single measurements per sample. Based on these volumes and with the exact mass, 

true density was calculated. 

 

A B 
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III.2.5 METHODS USED FOR THE IN-VIVO STUDY IN RABBIT EYES 

III.2.5.1 MATERIALS 

The fab-fragment Ranibizumab (Lucentis®) was dialysed as described above (III.2.1.1). After 

dialysis, the protein concentration was determined spectrophotometrically by applying an UV-

VIS spectrometer Agilent 8452 (Böblingen, Germany). The protein concentration was set to 

10 mg/ml and HP-β-CD was added to obtain a ratio of 1:1 [w/w]. Afterwards, the solution was 

filtered into sterile 50 ml tubes (Sarstedt, Nürnbrecht, Germany) using a 0.22 µm sterile syringe 

filter (VWR, Radnor, PA, USA). The sieved (< 180 µm) triglycerides H12 and D118 were gamma 

irradiated with 30.5 kGy (Synergy Health, Allershausen, Germany).  

III.2.5.2 LYOPHILISATION PROCESS 

Samples of 2.0 ml of the sterile protein solution were filled into autoclaved 10R vials under 

aseptic conditions. Lyophilisation was performed using an Epsilon 2-12D freeze dryer from 

Christ (Osterode, Germany) following the lyophilisation protocol described in III.2.1.2. After the 

cycle was finished, freeze dried samples were held at 5°C at 0.09 mbar. Finally, the freeze dryer 

was vented with filtered nitrogen gas (0.22 µm) to approximately 800 mbar. Vials were 

stoppered and crimped after unloading. 

III.2.5.3 IMPLANT PREPARATION 

Parts of the ZE-5 mini-extruder that could potentially be in contact with the product were 

autoclaved, glass ware and further equipment was heat sterilised applying a GTA 50 heat 

steriliser (Medizin- und Labortechnik KG, Hamburg, Germany). Extrusion was performed as 

described above (III.2.2.2) at an extrusion temperature of 35°C and a screw speed of 40 rpm. 

To prevent any contamination of Ranibizumab loaded implants before, during or after the 

preparation process, extrusion was performed in a laminar air flow cabinet (Hera Safe, Kendro 

Laboratory Products GmbH, Germany) under aseptic conditions.  
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Figure III-3: Semicircle shaped Ranibizumab loaded implants manufactured under aseptic conditions. 

 

The lipid strand was formed manually with the aid of a sterile glass rod (9.4 mm in diameter) to 

obtain semicircle shaped rods fitting into a rabbit eye (Figure III-3). Finally, implants were placed 

into sterile 2.0 ml micro-centrifuge tubes (VWR, Radnor, PA, USA). 

III.2.5.4 CHOROIDAL NEOVASCULARISATION MODEL  

Neovascularisation was induced by an adeno-associated virus (AAV) mediated expression of 

vascular endothelial growth factor (VEGF) as previously described [243]. Recombinant AAV 

vector was chosen because it was extensively used in retina and other systems to deliver 

transgenes with little toxicity and inflammation [244]. To induce this into dutch-belted rabbit 

eyes, AAV-VEGF was injected subretinally. The AAV vector transfected the retinal pigmented 

epithelium to induct VEGF expression. Disease model induction was examined by fluorescein 

angiography. A fluorescein solution with 100 mg/ml was injected (100 µl) into the vitreous, 

enabling an imaging for up to 30 minutes. Although it was intended to induce choroidal 

neovascularisation, evidence suggested it was only retinal neovascularisation.  

III.2.5.5 IMPLANT INCISION AND RANIBIZUMAB PHARMACOKINETIC STUDY 

Semicircle shaped SLIs were inserted into dutch-belted rabbit eyes by a small incision. The 

rabbits were sacrificed after 14, 28, 42 and 84 days and Ranibizumab amounts were measured 
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in different compartments namely cornea, vitreous, lens, iris, retina/choroid, aqueous humor, 

conjunctiva, and sclera. Ranibizumab concentrations were measured using an enzyme-linked 

immunosorbent assay (ELISA) as already described [245, 246]. In brief, samples were diluted 

to be within the linear range of the assay (0.375 ng/ml to 12 ng/ml) using StabilCoat reagent 

(Surmodics Inc., Eden-Prairie, MN, USA) and 100 µl were aliquoted onto VEGF coated 96-well 

plates. The 96-well plates were incubated for 2 h at room temperature with agitation. To remove 

unbound Ranibizumab, plates were washed with 0.05 % Tween 20 in PBS pH 7.4. Bound 

Ranibizumab was detected using an antihuman IgG antibody labelled with horseradish 

peroxidase (HRP) (Pierce Biotechnology Inc., Rockford, IL, USA). The labeled antihuman IgG 

antibody was diluted 1:20.000 in StabilCoat reagent. Aliquots of 100 µl of the diluted antihuman 

IgG antibody were pipetted onto 96-well plates and incubated for 45 min at room temperature 

with agitation. Unbound IgG was removed by washing the plates 3 times with 0.05 % Tween 20 

in PBS pH 7.4. Chemiluminescence was triggered by the SuperSignal ELISA Pico 

Chemiluminescent Substrate (Pierce Biotechnology Inc., Rockford, IL, USA) and measured 

using a PHERAstar Microplate Reader (BMG Labtech, Durham, NC). Ranibizumab 

concentration of the samples was calculated from the standard curve.  

The induction of choroidal neovascularisation and the pharmacokinetic studies were performed 

by the Moran Eye Center, Salt Lake City, Utah, USA. 

 

III.2.6 PROTEIN STABILITY DETERMINATION 

III.2.6.1 DETERMINATION OF THE CONCENTRATION OF RELEASED PROTEIN FRACTIONS 

Vivaspin® 20 Ultrafiltration Tubes equipped with a PES membrane (Sartorius Stedim Biotech, 

Goettingen, Germany) with a MWCO of 50.000 Da for mAb and Bevacizumab, a MWCO of 

30.000 Da for Aflibercept or a MWCO of 10.000 Da for Ranibizumab were used to concentrate 

the released protein fractions. Tubes were filled with collected release medium and centrifuged 
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at 8000 x g for 20 min at 20°C using a Sigma® 4K-15 centrifuge (Sigma, Osterode, Germany). 

Protein concentration was determined using a NanoDrop 2000 UV-VIS Spectrophotometer 

(Thermo Scientific, Wilmington, USA), and protein concentration was adjusted to 1.0 mg/ml with 

PBS pH 7.4 for further analysis. 

III.2.6.2 LIGHT OBSCURATION (LO) 

Subvisible particles were counted and allocated cumulative in a range of 1 µm to 200 µm by 

using a SVSS (PAMAS, Rutesheim, Germany). The system is equipped with an HCB-LD-25/25 

sensor which allows a detection of maximal 120,000 particles > 1 µm/ml. Before measurements, 

the system was rinsed with highly purified water until total particle count was less than 

30 particles per ml. For analysis, the system was rinsed with 0.5 ml sample followed by three 

measurements of 0.3 ml sample. Between each sample measurement, the system was flushed 

with 10 ml of highly purified water. If necessary, 250 µl of sample were diluted to 3.00 ml with 

highly purified water to not exceed the total particle count of 120,000. Data analysis was 

performed using the PAMAS PMA software and particle diameters in a range of > 1 µm to 

200 µm were assessed. If not otherwise noted, all results are given in cumulative particle count 

per ml of non-diluted sample. 

III.2.6.3 TURBIDITY 

Turbidity was measured using a Hach Lange Nephla nephelometer (Hach Lange GmbH, 

Düsseldorf, Germany). For measurements, 1.0 ml sample were pipetted in turbidity glass 

cuvettes with flat bottom. Each measurement was performed three times. The measured 

scattered light (wavelength = 860 nm) is given in FNU (formazine nephelometric units), detected 

in an angle of 90°. 
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III.2.6.4 SIZE EXCLUSION HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (SE-HPLC) 

Protein monomer content, fragments and high molecular weight (HMW) soluble aggregates 

were determined via SE-HPLC using a Waters 2695 Separations Module with a Waters 2487 

Dual λ Absorbance Detector (Waters, Milford, USA). Linearity of measurements was 

established for a concentration range of 0.01 mg/ml to 1.0 mg/ml. For separation, the flow rate 

was adjusted to 0.5 ml/min. A sample volume of 25 µl with a concentration of 1.0 mg/ml were 

injected onto a TSKgel G3000SWXL size exclusion column (300 mm x 7.8 mm; Tosoh Bioscience, 

Tokyo, Japan). The running buffer consisted of 50 mM sodium phosphate containing 300 mM 

NaCl and was adjusted to pH 7.0. 

III.2.6.5 ION EXCHANGE CHROMATOGRAPHY (IEX) 

For charge variant separation of the mAb and Bevacizumab, IEX was used according to a 

method previously described by Farnan et al. [247]. IEX was performed on a Waters 2695 

Separations Module with a Waters 2487 Dual λ Absorbance Detector (Waters, Milford, USA). 

For separation, 50 µl of sample (1.0 mg/ml) was injected onto a 4 mm x 50 mm Dionex ProPac® 

WCX-10G guard column coupled to an analytical 4 mm x 250 mm Dionex ProPac® WCX-10 

column. Mobile phases A and B consisted of 2.4 mM Trizma® Base, 1.5 mM imidazole and 

11.6 mM piperazine at a pH of 6.0 (mobile phase A) and 9.5 (mobile phase B), respectively. For 

separation of the different charge variants of mAb and Bevacizumab, the gradient of mobile 

phase B was adjusted for each protein (Figure III-4). The column was washed with 100 % eluent 

B for 5 minutes before it was equilibrated with 100 % eluent A for 5 minutes prior to the next 

injection. The flow rate was set to 1.0 ml/min. Eluted protein was monitored 

spectrophotometrically at 280 nm. 
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Figure III-4: Gradient of mobile phase B for charge variant separation of (A) mAb and (B) Bevacizumab. 

 

III.2.6.6 HYDROPHOBIC INTERACTION CHROMATOGRAPHY (HIC) 

For charge variant separation of Ranibizumab and Aflibercept, HIC was performed using a 

Waters 2695 Separations Module with a Waters 2487 Dual λ Absorbance Detector (Waters, 

Milford, USA). A sample volume of 50 µl with a concentration of 1.0 mg/ml was injected onto an 

analytical 4.6 mm x 250 mm Dionex MAbPac™ HIC-10 column for separation. Flow rate was 

adjusted to 1.0 ml/min and eluted protein was detected at 280 nm. Mobile phase A consisted of 

1.5 M ammonium sulfate and 50 mM sodium phosphate. Mobile phase B consisted of 50 mM 

sodium phosphate. Mobile phases were adjusted to pH 7.0. Prior to sample injection, the column 

was allowed to equilibrate with eluent A. For separation of the different charge variants of 

Ranibizumab and Aflibercept, for each protein the gradient of mobile phase B was adjusted 

(Figure III-5). Post-gradient, the column was washed with 100 % eluent B for 3 min before the 

composition was returned to 100 % A for 5 min in preparation for the next injection. 
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Figure III-5: Gradient of mobile phase B for charge variant separation of (A) Ranibizumab and (B) Aflibercept. 

 

III.2.6.7 NON-REDUCING DENATURATING SODIUM DODECYL SULFATE – POLYACRYLAMIDE 

GEL ELECTROPHORESIS (SDS-PAGE) 

Non-reducing denaturating SDS-PAGE was used to monitor aggregation and fragmentation of 

the proteins. Analysis was performed using a XCell SureLock™ Mini-Cell Electrophoresis 

System (Novex by Life Technologies, Carlsbad, CA, USA). For separation and resolution of the 

mAb, Bevacizumab and Aflibercept, NuPAGE® Novex® 3-8 % Tris Acetate Protein Gels 1.0 mm 

x 10 wells and NuPAGE® Tris-Acetate SDS Running Buffer were used. Separation was 

accomplished at a constant voltage of 150 V and a running time of 50 to 55 min using a Bio Rad 

PowerPac 200 (Bio-Rad Laboratories, Hercules, CA, USA).  

Ranibizumab was analysed using NuPAGE® Novex® 4-12 % Bis-Tris Protein Gels 1.0 mm x 

12 wells and NuPAGE® MOPS SDS Running Buffer. For separation, a constant voltage of 

200 V for approximately 50 min was applied.  
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All samples were diluted with NuPAGE® LDS Sample Buffer to an initial concentration of 

37.5 µg/ml and were denatured at 90°C for 5 min. Each well was loaded with 12 µl sample 

resulting in a total mass of 0.45 µg protein per well. Gels were stained with the SilverXPress® 

Silver Staining Kit according to the manufacturer’s recommendations. The performance of the 

system was monitored by a BSA sensitivity control. Each gel was loaded with 1.80 ng and 

0.36 ng BSA, respectively. Gels were stained until both bands became visible before staining 

was stopped by adding the stopping solution. Molecular weight of protein bands was calculated 

using a molecular weight marker on each gel. For the mAb, Bevacizumab and Aflibercept the 

HiMark™ Pre-stained Protein Standard was used, while for Ranibizumab the Mark12™ 

Unstained Standard was used. 

III.2.6.8 CAPILLARY GEL ELECTROPHORESIS 

As an orthogonal method to classical non-reducing denaturating SDS-PAGE, capillary gel 

electrophoresis applying an Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, CA, USA) 

was carried out for Ranibizumab. The system offers a fast and reliable separation, sizing and 

quantification of proteins in a range of 14 kDa to 230 kDa. Due to these limitations, analysis of 

mAb, Bevacizumab and Aflibercept was not performed. Ranibizumab samples were analysed 

under non-reducing conditions using a Protein 230 Kit (Agilent, Santa Clara, CA, USA). 

According to the Agilent Protein 230 Assay Protocol, 4 µl of sample (1.0 mg/ml) and 2 µl of 

sample buffer were admixed and incubated at 95°C for 5 min. After samples were allowed to 

cool down, 84 µl highly purified water were added and 6 µl were then pipetted into the sample 

wells of the protein chip. The protein chip was prepared by loading it with the gel-dye mix, 

destaining solution und molecular weight marker according to the protocol provided by the 

manufacturer. The chip was then placed into the system and analysis was started immediately.  

In addition, capillary gel electrophoresis was performed under reducing denaturating conditions 

for all proteins. Analysis was performed as described above except one adjustment: before 
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adding 2 µl of sample buffer to 4 µl sample, the sample buffer was spiked with 1 M Dithiothreitol 

(DTT) solution resulting in 4.83 mM/µl DTT. 

III.2.6.9 CAPILLARY ISOELECTRIC FOCUSING (CIEF)  

Imaged capillary isoelectric focusing (cIEF) was conducted using an iCE280 instrument coupled 

with a PrinCE Microinjector (ProteinSimple, San Jose, CA, USA), where the molecules are 

detected across the whole IEF column (capillary). UV light at a wavelength of 280 nm was 

focused on the UV-transparent capillary and images were captured at regular intervals by aid 

of a charge-coupled device (CCD) camera. Prior to analysis, the fused, silica-coated (FC) 

cartridge was installed according to the provider’s instructions. Reservoirs for the anode were 

filled with 0.08 M phosphoric acid (in 0.1 % methylcellulose, electrolyte kit, ProteinSimple, San 

Jose, CA, USA) and for the cathode with 0.1 M sodium hydroxide (in 0.1 % methylcellulose, 

electrolyte kit, ProteinSimple).  

During analysis of Ranibizumab and Bevacizumab (0.5 mg/ml), isoelectric focusing of the 

samples took place by pre-focusing for 1 min at 1500 V followed by focusing for 5 min at 3000 V. 

The focusing process was monitored while images were captured every 30 sec. The UV 

absorption image was analysed using the software ChromPerfect (Version 5.5.6). Protein 

sample was mixed with carrier ampholytes, methyl cellulose, and water as reported in Table 

III-4. The sample mixtures were vortexed and spun using a bench top centrifuge (Espresso, 

Thermo Fisher Scientific, Waltham, MA, USA) for 3 min at 10.000 rpm. An aliquot of 150 µl of 

the supernatant was transferred into an iCE280 glass vial insert (300 µl, ProteinSimple, San 

Jose, CA, USA). Finally, the glass vial insert was spun for 1 min at 7.500 rpm to remove air 

bubbles (potentially causing “spikes” in the electropherogram). Glass vial inserts were then 

loaded into a sample holder and placed into the temperature-controlled auto sampler. 
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Table III-4: Overview of experimental conditions and composition of Ranibizumab and Bevacizumab samples 

used for cIEF. 

 
Servalytes 

pH 2-9 [µl] 

Low pI marker 

5.85 [µl] 

High pI marker 

10.1 [µl] 

MC 1 % 

[µl] 

MQ 

[µl] 

Sample 

[µl] 

Final 

volume [µl] 

Ranibi-

zumab 
4.0 1.0 1.0 50.0 94.0 50.0 200.0 

Bevaci-

zumab 
4.0 1.0 1.0 50.0 94.0 50.0 200.0 

 

III.2.6.10 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FT-IR) 

To determine the conformation of proteins, a Bruker Tensor 27 FT-IR Spectrometer (Bruker 

Optics, Ettlingen, Germany) equipped with a BIO ATR II cell was used. The mercury cadmium 

telluride detector was allowed to cool down prior to each measurement by cooling it with liquid 

nitrogen for one hour. The beam path was purged with nitrogen and the temperature was kept 

constant at 25°C. Sample concentration was 1.0 mg/ml and 30 µl of sample was used for each 

determination. Each spectrum was recorded in 100 scans between 1000 cm-1 to 4000 cm-1 

whereat a blank spectrum was subtracted. The collected spectra were Fourier transformed 

using the Opus software (Version 6.8, Bruker Optics, Ettlingen, Germany). The spectra were 

further normalised and the second derivative was calculated using the smoothing algorithm with 

17 smoothing points. Each sample was recorded in triplicates and mean spectrum was 

calculated. 

III.2.6.11 EXTRINSIC FLUORESCENCE 

Extrinsic fluorescence was measured using a Cary Eclipse Spectrofluorimeter (Varian, Santa 

Clara, CA, USA). Samples were diluted with PBS pH 7.4 to an initial concentration of 100 µg/ml 

and 50 µl of a 2 mM Bis-ANS solution were added. For measurements, 50 µl were transferred 

into a submicro fluorescence glass cuvette (Hellma Analytics, Müllheim, Germany). Each 
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sample was scanned in triplicates in steps of 5 nm with an excitation wavelength of 390 nm and 

an emission wavelength of 400 nm to 600 nm. 

III.2.6.12 INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY (ICP-AES) 

To test the raw materials and implants towards metal impurities, ICP-AES was performed using 

a ICP AES VISTA RL radial equipped with a CCD dual detector and a SPS 5 auto sampler 

(Varian, Santa Clara, CA, USA). Prior to analysis, the samples were stored in 10R vials at 4°C. 

For analysis, approximately 2 mg of sample (accurately weighed) was dissolved in 1.5 ml 

concentrated HNO3 at 110°C and was diluted with highly purified water to a final concentration 

of 3 % [v/v]. Each sample was measured ten times at two different wavelengths to identify 

possible impurities with aluminium (Al), cobalt (Co), chrome (Cr), copper (Cu), iron (Fe), 

manganese (Mn), nickel (Ni), lead (Pb) and tin (Zn) against standard solutions of known 

concentrations. Plasma temperature was set to 10.000 K and flow rate was adjusted to 

1.0 ml/min. 

 

III.2.7 ONLINE PRESSURE MEASUREMENT DURING EXTRUSION 

To monitor the pressure within the extruder barrel during an extrusion run, the outlet plate was 

equipped with a custom-made resistance strain gauge (nanoFaktur GmbH, Ettlingen, 

Germany), which was inserted into the outlet plate (Figure III-6). Thus, it was ensured that the 

sensor did not change the dimensions of the barrel and had no influence on extrusion 

performance. It was possible to measure directly the force in real time when the material was 

pressed against the outlet plate by the rotating screws. The signal of the resistance strain gauge 

was amplified using a data logger SensorData Easy (Soemer Messtechnik GmbH, Lennestadt, 

Germany) and was recorded with the software H&B DOP 4P (Hauch & Bach, Lynge, Denmark).  
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Figure III-6: Images of the barrel of the ZE-5 mini-extruder equipped with the custom-made resistance strain 

gauge manufactured by nanoFaktur GmbH, Ettlingen, Germany.  

 

For calibration of the sensor, defined weights ranging from 0.5 kg to 50 kg were attached 

(weights were hanging downwards) to the outlet plate. The correlation between applied weight 

and read out of the data logger was found to be linear (R2 = 0.9987) and was converted into 

extrusion pressure in kPa by dividing the force (in Newton) by the area the material was 

compressed to (6.127*10-5 m2) shown on Figure III-6 D. For all experiments, extrusion runs were 

performed in triplicates. 

 

III.2.8 RABBIT ERYTHROCYTE HEMOLYSIS ASSAY 

The rabbit erythrocyte hemolysis assay was performed to determine the biological activity of the 

mini-FH released from SLIs. The protein mini-FH is a C3-opsonin targeted complement inhibitor 

with a molecular weight of 43.3 kDa [240]. The assay was performed by the group of Dr. 

Christoph Schmidt from the Institute of Pharmacology and Natural Products and Clinical 

Pharmacology, Ulm University, Germany, as previously described [241]. In brief, 10 µl human 

C 

B A 

D 
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serum containing Mg-EDTA was mixed with 20 µl sample in PBS pH 7.4 and 10 µl of a rabbit 

erythrocyte suspension in PBS/Mg-EDTA. The final serum concentration was 25 %. The mixture 

was incubated for 30 min at 37°C before it was stopped by adding 120 µl PBS/EDTA with a 

concentration of 5 mM on an ice bath. Hemolysis was determined via optical density 

measurement of 100 µl of the supernatant at 405 nm using a spectrophotometer. 
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IV. IN-VITRO RELEASE STUDIES FROM LIPID AND 

PLGA IMPLANTS 
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IV.1 INTRODUCTION 

Within the last years, controlled release of pharmaceutical proteins from implantable/insertable 

devices has received more and more attention. The need for such devices can easily be 

illustrated using the example of intraocular treatment of AMD with anti-VEGF drugs such as 

Ranibizumab (Lucentis®), Bevacizumab (Avastin®), or Aflibercept (Eylea®). To date, anti-VEGF 

drugs are the standard treatment for AMD [248], but their frequent application causes high costs 

on the health care system [30]. Besides the stress for the patient, the required monthly injections 

- for example of Lucentis® - into the vitreous causes injection-related adverse effects like 

endophthalmitis [96]. Hence, it would be preferable to prolong the period between two 

intravitreal injections by using sustained release devices to improve patient convenience, safety, 

and efficacy. For this study, anti-VEGF drugs were used, namely the recombinant humanised 

monoclonal IgG1 antibody Bevacizumab (Avastin®), the fab-fragment Ranibizumab (Lucentis®) 

and the recombinant fusion protein Aflibercept (Eylea®). Furthermore, another IgG1 antibody 

(model mAb) was used as well. 

Since the early 2000s, lipid based drug delivery systems have gained more and more interest 

as platform for sustained release of proteins [167, 173, 174, 249, 250]. Lipid implants were 

shown to have excellent properties for in-vivo applications as demonstrated by good 

biodegradability and biocompatibility [184]. Moreover, long-term release of protein drugs was 

successfully demonstrated: interferon α-2a was delivered for more than 60 days [181], and 

sustained release of lysozyme was described for more than 200 days [182]. To date, several 

research groups are working on lipid based depots including implants for sustained 

erythropoietin release as described by Appel et al. [169] and Jensen et al. [180], or the 

intravitreal use of clindamycin phosphate loaded lipidic implants as published by Tamaddon et 

al. or using solid lipid nanoparticles (SLNs) for an immense variety of application possibilities 

[134, 141, 214, 251, 252]. 
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Preserving the integrity of incorporated proteins such as interferon α-2a [176, 181] or brain-

derived neurotropic factor (BDNF) [175], is the most valuable benefit over the commonly used 

and well investigated PLA/PLGA polymers. Indeed, these polymers provide a biodegradable 

system as well, but erosion/degradation of the polymer creates difficulties associated with the 

biodegradation process: a drop in pH and an increase in osmotic pressure, particularly inside 

the matrix, often results in degradation products caused by acylation, deamidation or 

aggregation [49, 253, 254], and incomplete release [54, 68, 242, 255]. 

Within our group, Schulze et al. [181] introduced tsc-extrusion as manufacturing technique for 

lipid implants, which meanwhile became our standard manufacturing technique besides direct 

compression or casting methods described in early studies [168, 175, 177]. Compared to 

release profiles of compressed implants, we observed a more sustained release of extruded 

implants in addition to a more homogenous drug distribution [256]. Tsc-extrusion was already 

used in several of our studies [182, 183, 233], allowing the manufacturing of triglyceride blends 

of a low melting and a high melting lipid at comparatively low temperatures of 42°C [181, 183]. 

The overall aim of the present chapter was to establish formulation and extrusion settings which 

result in an implant that ensures a long-term release of at least 3 months and is sufficiently small 

for intravitreal use. To reach this goal, the following steps were performed:  

(i) reproduction: Reproduction of existing data [232] as a proof of concept using a 

MiniLab® Micro Rheology Compounder. 

(ii) transfer: A transfer from a MiniLab® Micro Rheology Compounder to a ZE-5 mini-

extruder to reduce the batch size was carried out.  

(iii) optimisation: As the release profile was not identical for the same formulation 

extruded on different extruders, the formulation and extrusion settings were 

adapted to the ZE-5 mini-extruder. 

(iv) increase of protein load: Since an adequate amount of drug substance should 

be provided when release time frames of several months are considered, 
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increasing protein load was attempted by three different approaches. The 

increase of the protein lyophilisate percentage, the change of protein lyophilisate 

composition, and the change of implant diameter were tested.  

(v) Storage stability: storage stability of extruded SLIs was determined to ensure 

that implants guarantee comparable release characteristics particularly after 

storage. Therefore, lipid implants were stored for 4 and 12 weeks after 

production at 4°C prior to in-vitro release. Due to potential changes in lipid 

modifications occurring upon storage, lipid characteristics were also assessed. 

Protein stability of released protein of stored and non-stored was analysed as 

well and will be presented in chapter VII. 

(vi) Pre-melting of lipids: The effect of melting point, melting energy and lipid 

modifications on release patterns and storage stability of SLIs was studied. For 

this, H12 and D118 were simultaneously molten at 80°C, the molten mass was 

allowed to cool down before it was ground and sieved (< 180 µm) prior to 

extrusion.  

Additionally, PLGA based extrudates were produced using different polymers (Resomer® RG 

502, RG 502 H and RG 755 S) in order to compare those data with release profiles obtained 

from SLIs. PLGAs with different degradation time frames were used for two reasons: first, to 

evaluate the impact of depot erosion in addition to diffusion and second, to determine the impact 

of different end groups on release profiles. Protein stability aspects of protein released from lipid 

and PLGA matrices will be addressed within chapter VII. 
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IV.2 RESULTS AND DISCUSSION 

IV.2.1 LYOPHILISATE STABILITY STUDY  

SLIs were produced via tsc-extrusion where the protein was embedded within the lipid matrix 

as a lyophilisate. HP-β-CD was used as lyoprotectant to assure protein stabilisation during 

freeze drying and storage as reported previously for rh-interferon α-2a [176] and erythropoietin 

[242]. Furthermore, it was described by Ressing et al. that HP-β-CD increased stability and 

activity of IgG antibodies compared to samples which were formulated with dextran or sucrose 

[257]. The stability of the proteins within the freeze-dried matrix was determined to ensure 

sufficient protein stability at the point of SLI production. The stability of freeze-dried protein was 

investigated over 24 weeks since stability of released protein was extensively studied within this 

work (chapter VII). However, produced lyophilisates were used within 8 weeks. 

IV.2.1.1 DIALYSIS AND LYOPHILISATION 

The protein bulk was dialysed as described above (III.2.1.1) to deplete the formulations of buffer 

salts and stabilisers and to substitute them with 50 mM sodium phosphate pH 6.2.  

Table IV-1: Monomer content of the protein bulk (mAb), marketed formulation and after dialysis. 

 Monomer content before dialysis [%] Monomer content after dialysis [%] 

mAb 97.74 (±0.15) 97.42 (±0.19) 

Ranibizumab 99.97 (±0.01) 100.00 (±0.00) 

Bevacizumab 96.10 (±0.56) 95.37 (±0.06) 

Aflibercept 98.62 (±0.06) 98.56 (±0.01) 

 

This was essential because all proteins were formulated with different stabilisers (III.1.1) which 

could potentially have an impact on release behaviour, for instance trehalose, sodium chloride, 

or sucrose. 
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After dialysis, the monomer content was measured by SE-HPLC showing no negative impact 

caused by the dialysing procedure (Table IV-1). The protein concentration within the dialysed 

formulations was adjusted to 10 mg/ml and HP-β-CD was added to obtain a ratio of 1:1 [w/w], 

2:1 [w/w] or 3:1 [w/w]. 

IV.2.1.2 PHYSICAL STABILITY OF PROTEINS 

Freeze-dried samples were stored at 4°C for 24 weeks and samples were taken at pre-

determined time points after 2, 4, 8, 12 and 24 weeks. Lyophilisates were reconstituted with 

highly purified water (0.2 µm filtered) to obtain a protein concentration of 1.0 mg/ml. 

 

Figure IV-1: (A) Light obscuration measurements and (B) turbidity measurements of reconstituted samples 

measured after 0, 2, 4, 8, 12 and 24 weeks of storage at 4°C.  

 

The formation of subvisible particles upon storage was measured using LO and turbidity (Figure 

IV-1). The samples were not diluted prior to measurements. For mAb, cumulative particle count 

and turbidity was found to have the highest values ranging between 716 (±24) and 1979 (±46) 

cumulative particle count per ml and 1.47 FNU (±0.06 FNU) and 2.12 FNU (±0.14 FNU) turbidity 

over the observation period. An increase in cumulative particle count and turbidity upon storage 
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was not observed. This also applies to Aflibercept, where no increase of both cumulative particle 

count and turbidity was observed. LO results for Ranibizumab and Bevacizumab showed a 

continuous increase, starting after approximately 8 weeks of storage and a final maximal particle 

count of 559 (±81) for Ranibizumab and 587 (±36) for Bevacizumab after 24 weeks of storage. 

The corresponding turbidity measurements after 24 weeks where measured at 0.52 FNU 

(±0.03 FNU) and 0.89 FNU (±0.14 FNU). Turbidity measurements did not show a continuous 

increase over the storage period. 

Table IV-2: Monomer content before lyophilisation and after reconstitution of the lyophilisates with highly 

purified water (0.22 µm filtered) at week 0 and week 24. 

 
Monomer content before 

lyophilisation [%] 

Monomer content at week 

0 after lyophilisation [%] 

Monomer content at week 

24 after lyophilisation [%] 

mAb 97.74 (±0.15) 97.55 (±0.06) 96.01 (±0.05) 

Ranibizumab 99.97 (±0.01) 100.00 (±0.00) 100.00 (±0.00) 

Bevacizumab 96.10 (±0.56) 95.45 (±0.04) 94.26 (±0.69) 

Aflibercept 98.62 (±0.06) 98.33 (±0.02) 97.89 (±0.29) 

 

Table IV-2 illustrates the monomer content of samples before lyophilisation and after 

reconstitution directly after the freeze-drying run (week 0) and after a storage of 24 weeks at 

4°C. There is no major difference in monomer content before and after lyophilisation, meaning 

that the lyophilisation process did not negatively impacted protein stability. Upon storage of the 

freeze-dried product, the monomer content decreased maximally by 1.54 % for mAb. 

Ranibizumabs` monomer content stayed constantly at 100 %. In addition to SE-HPLC, non-

reducing SDS-PAGE was performed to determine possible aggregates and fragments which 

were not detected by SE-HPLC. For mAb, the loss of 1.54 % monomer upon storage was most 

likely caused by aggregation rather than fragmentation, as aggregates having a size of 

approximately 250 kDa were observed (Appendix, Figure XII-1). The same trend was observed 

for Bevacizumab and Aflibercept. For both proteins, aggregates with an approximate size of 
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260 kDa (Bevacizumab) and 224 kDa (Aflibercept) were detected directly after lyophilisation 

(Appendix, Figure XII-3 and Figure XII-4). In contrast, for Ranibizumab mainly fragments with a 

size of about 25 kDa were detected (Appendix, Figure XII-2) but no aggregation occurred over 

the storage period. However, for all proteins degradation was found to be negligible. 

Based on the results for physical stability assessed by LO, turbidity, SE-HPLC and SDS-PAGE, 

it can be concluded that all proteins were physically stable over the storage period of 24 weeks. 

Slightly elevated particle counts were observed for Ranibizumab and Bevacizumab as well as 

minor degradation products for all proteins obtained by SDS-PAGE. Since the lyophilisates were 

further processed within 8 weeks, physical stability was considered as sufficient. 

IV.2.1.3 CHEMICAL STABILITY OF PROTEINS 

In addition to physical stability, lyophilisates were further analysed towards chemical stability. 

After reconstitution with 0.22 µm filtrated highly purified water to a concentration of 1.0 mg/ml, 

chemical stability was measured by IEX (mAb and Bevacizumab) and HIC (Ranibizumab and 

Aflibercept) and the change of main charge variant percentage was determined. Samples were 

analysed directly after lyophilisation and after a 24-week storage showing a small decrease of 

main charge variant percentage for all proteins.  

Table IV-3: Percentage of main charge variant after reconstitution of the lyophilisates with highly purified 

water (0.22 µm filtered) at week 0 and week 24. 

 
Percentage of main charge variant  

at week 0 [%] 

Percentage of main charge variant  

at week 24 [%] 

mAb 43.79 (±0.61) 41.37 (±0.05) 

Ranibizumab 99.37 (±0.02) 96.22 (±0.20) 

Bevacizumab 70.83 (±1.24) 68.12 (±0.95) 

Aflibercept 95.91 (±0.35) 95.02 (±0.30) 
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Table IV-3 illustrates that Ranibizumab samples showed highest loss after 24 weeks (3.15 % 

±0.20 %), whereas the main charge variant of Aflibercept decreased only by 0.89 % (±0.30 %). 

The chemical stability was considered as sufficient because the lyophilisates were further 

processed within 8 weeks. 

 

IV.2.2 EXTRUDER TRANSFER 

The sustained long-term release of a mAb was already described by Sax over a period of 

approximately 150 days [232]. First, an experiment was carried out to reproduce these data. All 

formulation and extrusion parameters were adjusted exactly to those used within the previous 

experiments. SLIs consisted of 10 % protein lyophilisate, 10 % PEG 6000 lyophilisate, 24 % 

H12 and 56 % D118. Extrusion temperature was set to 41°C at a screw speed of 40 rpm using 

a MiniLab® Micro Rheology Compounder (Thermo Haake GmbH Karlsruhe, Germany). In-vitro 

release was executed at 37°C. 

Sax reported on a sustained release of mAb over 150 days in a linear fashion without any burst 

events [232]. Figure IV-2 A represents the release profile obtained by the reproduction 

experiment. The mAb was released in an almost linear manner over approximately 170 days. 

An initial burst release was not observed. Both release curves of mAb - reported in 2012 by Sax 

and described within the present work - are comparable to each other, leading to the conclusion 

that tsc-extrusion as preparation method can be considered as reliable and reproducible.  

The main drawback of the MiniLab® Micro Rheology Compounder is a minimal batch size of 

approximately 5 g. To reduce the batch size from 5 g to 1 g, the identical formulation was 

extruded using a ZE-5 mini-extruder from Three-Tec (Seon, Switzerland), to test if the 

developed formulation was transferable to a different extruder ensuring the same release 

patterns. 
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Figure IV-2: In-vitro release of mAb from SLIs extruded using a (A) MiniLab® Micro Rheology Compounder 

and a (B) ZE-5 mini-extruder from Three-Tec. Formulation of SLIs and extrusion settings were identical.  

 

Therefore, the exact formulation listed above was extruded with identical settings used before. 

The release profile of mAb is illustrated in Figure IV-2 B. A linear release over the first 28 days 

delivering approximately 85 % of total incorporated protein can be observed, followed by a 

phase where no more protein was delivered. Comparable release profiles using both extruders 

were not achieved. To clarify why release rates were so dramatically different, SLIs were further 

investigated towards mechanical properties and optical appearance.  

Compressive strength and true density of implants were determined. The results are depicted 

in Table IV-4, showing that both compressive strength and true density were lower for SLIs 

manufactured with the ZE-5 mini-extruder. This points into the direction that implants were 

compressed less with the ZE-5 mini-extruder compared to the MiniLab® Micro Rheology 

Compounder (for further details on considerations about extrusion pressure and its impact on 

release patterns, please see chapter IX). This allows the incubation medium to penetrate faster 

into the lipid matrix and may be one explanation for the accelerated release.  
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Table IV-4: Compressive strength and true density of SLIs manufactured with both extruders. Formulation 

and extrusion parameters were identical. 

 Compressive strength [N] True density [g/cm3] 

MiniLab® Micro Rheology Compounder 1.75 (±0.072) 1.085 (±0.005) 

ZE-5 mini-extruder 1.42 (±0.015) 1.069 (±0.002) 

 

To prove this hypothesis, SEM micrographs of freshly extruded SLIs were acquired (Figure 

IV-3). The surface of SLIs manufactured with the MiniLab® Micro Rheology Compounder were 

characterised by a non-porous and smooth surface without obvious irregularities (the 

irregularities which can be seen in the right lower part of Figure IV-3 A are due to breakage 

caused by handling).  

 

Figure IV-3: SEM micrographs of SLIs extruded with a (A and B) MiniLab® Micro Rheology Compounder and 

(C and D) a ZE-5 mini-extruder from Three-Tec. Displayed are implants` surfaces at a magnification of 40x 

and 300x.  

 

Only at a magnification of 300x, the surface appeared slightly rough and uneven; the platelet-

like structures are non-molten lipids (Figure IV-3 B). In contrast, SLIs produced with the ZE-5 

A 

D C 

B 
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mini-extruder exhibited a surface with numerous pores and channel-like structures. Looking 

more closely on surface morphology, pores with a size of approximately 20 µm were present as 

well as irregularities with a diameter of up to 80 µm (Figure IV-3 D). 

 

IV.2.3 SETUP OPTIMISATION ON ZE-5 MINI-EXTRUDER 

Since the release of mAb was accelerated and implant properties were found to be different 

when extruding the identical formulation on different extruders, optimisation was necessary. 

It was aimed to increase the pressure within the extruder barrel by the following approaches: (i) 

elongating the outlet die, (ii) using a smaller outlet die and (iii) increasing the screw speed. 

Release experiments were performed with mAb only and were discontinued after 28 days 

because difference in release was already noticeable after this time.  

IV.2.3.1 ELONGATION OF OUTLET DIE 

In a first approach, the outlet die of the barrel was elongated (Figure IV-4). With respect to fluid 

mechanics, it is understood that an elongation should lead to an increase in pressure within the 

barrel and therefore generating a denser lipid matrix releasing the mAb in a slower fashion. 

 

Figure IV-4: Pictures of the outlet plate of the ZE-5 mini-extruder with elongated outlet die. The elongated 

outlet die was custom-made and was produced by the LMU workshop. 

 

A B 
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The formulation and extrusion parameters were kept as before: 10 % protein lyophilisate, a lipid 

matrix of 30 % H12 and 70 % D118. Extrusion was performed at 41°C at 40 rpm. Importantly, 

already at this early stage of setup optimisation, PEG 6000 was avoided, as it can promote 

protein degradation [258, 259]. This represents one of the major advantages of the lipid implants 

described here.  

 

Figure IV-5: Cumulative release of mAb delivered from SLIs with a diameter of 2.0 mm. The extruder barrel 

was either equipped with or without an additional elongation of the outlet die.  

 

As Figure IV-5 indicates, release rate of mAb was slowed down by equipping the outlet plate 

with an additional elongated outlet die, especially within the first days. For instance, after 7 days, 

37.2 % mAb was liberated compared to 23.9 % when the extruder was equipped with the 

elongated outlet die. Although it was possible to slow down the release, it was intended to tailor 

release further. Therefore, the implant diameter was reduced to increase pressure within the 

barrel even more. 



CHAPTER IV 

66 

IV.2.3.2 REDUCTION OF IMPLANT DIAMETER 

The implant diameter was reduced from initially 2.0 mm to 0.8 mm for two reasons: first, by 

increasing the pressure within the barrel, a further slowdown was intended and second, to obtain 

implant dimensions suitable for intraocular use.  

 

Figure IV-6: Cumulative release of mAb delivered from SLIs with different diameters ranging from 2.0 mm to 

0.8 mm. The outlet plate was equipped with an additional elongation of the outlet die. 

 

By reducing the implant diameter, it was possible to reduce the release further and additionally 

linearise it. For both implant diameters, 1.5 mm and 0.8 mm, a linear release over the first 

28 days was observed. However, because the cumulative percentage of mAb released was 

only reduced by 14 % (78.0 % for 2.0 mm compared to 61.9 % for 0.8 mm) after 28 days, 

optimisation of extrusion settings was further continued.  
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IV.2.3.3 ADJUSTMENT OF SCREW SPEED 

Adjustment of screw speed was performed with 1.5 mm implant diameter because protein load 

was too low for 0.8 mm diameter, especially when considering long-term release of several 

months.  

The screw speed was varied from 10 rpm to 80 rpm, meanwhile all other extrusion parameters 

were not changed. Figure IV-7 illustrates the impact on the release of mAb: the slowest release 

can be observed for 40 rpm (22.3 % after 7 days). After 7 days, 72.5 % mAb was released at 

80 rpm and 39.8 % at 10 rpm. Thus, it can be concluded that for this specific formulation using 

the ZE-5 mini-extruder the optimal extrusion settings were so far identified. The reason for the 

faster in-vitro release from implants extruded at 60 rpm and 80 rpm was most likely that implants 

were more porous comparing to slower screw speeds. This aspect is described within chapter 

IX.3.3.2.  

 

Figure IV-7: Cumulative release of mAb delivered from SLIs using different screw speeds ranging from 

10 rpm to 80 rpm. The outlet plate was equipped with an additional elongation of the outlet die. 

 

As an interim summary, it can be stated that all adjustments improved the release profile of mAb 

as the release rate was slowed down and release was linearised. However, since the release 
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rate was still too fast and far away from the desired 3 months, it was decided to change the 

system more profoundly by changing the lipid composition.  

IV.2.3.4 CHANGE OF LIPID COMPOSITION 

While changing the lipid composition of the extrudates, the percentage of protein lyophilisate 

was kept constant at 10 % and screw speed was adjusted to 40 rpm. First, lipid composition 

was changed from 30 % H12 stepwise to 50 % H12 (reduction of D118 from 70 % to 50 %) at 

a constant extrusion temperature of 41°C (Figure IV-8 A). Then, at a lipid composition of 50:50, 

the extrusion temperature was reduced from 39°C to 37°C and 35°C (Figure IV-8 B). For this 

experiment, release of mAb was monitored over 14 days. 

 

Figure IV-8: Cumulative release of mAb from SLIs consisting either of (A) different lipid compositions 

applying the same extrusion temperature or (B) a 50:50 lipid blend extruded at 39°C, 37°C or 35°C.  

 

In Figure IV-8 A the release profiles of mAb delivered from SLIs consisting of different lipid 

matrices are depicted. The most promising release was observed for the 50:50 formulation, as 

especially during the initial phase a very slow release was observed. The overall release after 
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14 days was comparable, but due to the very slow release within the first days, the 50:50 

formulation was chosen for further investigations.  

The 50:50 formulation was therefore extruded at different temperatures ranging from 35°C to 

39°C. A lower extrusion temperature was not feasible, as no continuous and homogenous lipid 

strand was formed. Higher extrusion temperatures than 41°C resulted in a molten lipid mass 

not forming a solid matrix. Slowest release of mAb was detected for an extrusion temperature 

of 35°C: after 14 days, only 14.8 % mAb were released compared to 56.3 % when 37°C were 

applied.  

It was also tested if the H12 percentage could be increased even more (up to 90 %), but it turned 

out that a too high percentage of H12 leads to a disintegration of SLIs at the incubation 

temperature of 37°C, resulting in burst release (data not shown). Therefore, the optimal 

formulation and extrusion settings were identified as: 10 % protein lyophilisate, 45 % H12, 45 % 

D118 extruded at 35°C and 40 rpm. 

 

Figure IV-9: Cumulative release of mAb and Ranibizumab from SLIs consisting of a 50:50 lipid blend. 

Extrusion temperature was set to 35°C and screw speed was 40 rpm. The protein load was set to 5 % 

resulting in 1.53 mg (±0.06 mg) protein per implant. 
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This setup was also tested incorporating Ranibizumab into SLIs (Figure IV-9). Appropriate 

release profiles over 126 days for both tested proteins were obtained from a formulation 

consisting of 45 % H12 and 45 % D118 with 10 % protein lyophilisate (1:1 [w/w]), resulting in a 

protein load of 1.53 mg (±0.06 mg) per implant. The release profile of mAb is characterised by 

triphasic release behaviour without any initial burst release. An initial phase for the first 28 days, 

releasing approximately 22.9 µg protein per day, is followed by a phase lasting from day 28 to 

day 100 where in average 8.2 µg/day protein was released. During the last phase, (lasting from 

day 100 until day 126) only small amounts of protein were released (approximately 5 %; 

2.7 µg/day). In total, approximately 85 % of incorporated protein was released. 

Results from the Ranibizumab release study showed qualitatively the same triphasic release 

behaviour (Figure IV-9). During the first phase lasting for 4 weeks, 53 % of incorporated protein 

was released (28.9 µg/day) followed by an almost linear phase lasting from day 28 to day 110 

in which approximately 34% of incorporated protein (equivalent to 6.5 µg protein per day) was 

liberated. In general, Ranibizumab release was faster compared to mAb and discontinued after 

110 days at approximately 90 % of total protein amount. For both proteins, no burst release 

occurred.  

Lipid implants were intentionally formulated without any pore forming agents. This, however, 

raises the question how proteins were set free. Even if the lipid matrix was strongly compressed, 

compacted and molten together by the extrusion process and applied temperature, micro-

channels and tiny pores were still present, allowing the incubation medium to penetrate into the 

matrix as observed by SEM (Figure IV-10). Micrographs of the surface, taken with a 

magnification of 40x, showed a dense and smooth surface (Figure IV-10 A). Small pores having 

a size of 5 µm to 10 µm can be observed at 300x as displayed in Figure IV-10 C. Slightly larger 

pores and channels ranging between 10 µm to 25 µm can be found in the cross-section 

micrographs (Figure IV-10 D). Based on these observations, it can be assumed that the lipid 

implants contained an interconnected pore network, even if no pore forming agents were 
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incorporated. The protein lyophilisate itself will generate channels and pores in-situ due to its 

water solubility.  

 

Figure IV-10: SEM micrographs of the surface and cross-section of lipid implants after extrusion and prior 

to incubation are shown. Micrographs (A) and (C) displaying the surface of the implant at magnifications of 

40x and 300x, (B) and (D) are the corresponding micrographs of the cross sections, also taken at 40x and 

300x. 

 

IV.2.3.5 DISCUSSION OF PROPERTIES OF THE LEAD FORMULATION 

In previous studies, a matrix with a protein load of 10 % protein lyophilisate, 10 % PEG 6000, 

24 % H12 and 56 % D118 [181, 182] was extruded at 41°C and showed promising long-term 

release of lysozyme [182] and a monoclonal antibody [232] and was therefore the starting point 

for our study. Based on this formulation, screening studies were performed to identify the most 

promising formulation and settings on the ZE-5 mini-extruder. The most appropriate formulation 

for the ZE mini-extruder comprised 10 % protein lyophilisate and a lipid matrix consisting of 

50 % H12 and 50 % D118; no PEG was added. An adequate extrusion temperature was 

determined at 35°C. Thus, a manufacturing setup was established to ensure the production of 

A B 
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CHAPTER IV 

72 

SLIs which provide a constant and almost complete release (up to 95 %) of incorporated protein 

without any burst effects.  

The intentional absence of PEG as a precipitant represents one of the major features of the 

developed formulation. It has been reported that PEG can slow down the release and minimise 

the initial burst due to precipitating events [177]. Sax et al. [182] already demonstrated that long-

term release of proteins from SLIs without addition of PEG is feasible. The controlled release of 

lysozyme was reported for 230 days in which 80 % of protein was released. This study was 

performed with the rather small and robust protein lysozyme. Now, we demonstrated that SLIs 

can be produced without any further excipients showing no initial burst and ensuring long-term 

release of more complex and sensitive molecules such as monoclonal antibodies. Furthermore, 

as PEG can promote protein degradation [258, 259], avoiding PEG is favorable concerning 

protein stability, especially when release time frames of several months are considered. 

Furthermore, a reduction of the extrusion temperature to 35°C is beneficial as it reduces thermal 

stress on the protein. 

The observed release curves of the proteins are a result of different release mechanisms 

complementing each other. It is well known that release from lipid matrices is mainly controlled 

by diffusion, (see Guse et al. and Koennings et al. [158, 260]). Furthermore, release can be 

influenced by the addition of hydrophilic pore forming agents, e.g. PEG [160, 177, 178] or 

trehalose [216] to modify release patterns. Once the implant is placed into the incubation 

medium, hydrophilic components dissolve quickly and are released through an interconnected 

pore-network. In 2012, Sax et al. described an additional release pathway of proteins from a 

lipid matrix which relies on a partial melting of the low melting lipid within the matrix [182]; the 

molecules diffuse in a phase of molten lipid [234]. It was shown, that both melting points (Tonset 

and Tmelting) of the low melting lipid are very important parameters playing a major role in 

triggering protein release. Due to the similarity of our lipid matrix described here with the system 

Sax et al. characterised, we assume that also in our study Tonset and Tmelting of the low melting 

lipid are crucial parameters affecting release patterns. Therefore, the obtained long-term 
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release profiles for mAb and Ranibizumab are most likely an interplay of different release 

mechanisms mentioned above.  

 

IV.2.4 INCREASE OF PROTEIN LOAD  

Since an adequate amount of drug substance should be provided when release time frames of 

several months are considered, an increase of protein amount per implant was intended. 

Increasing protein load was attempted by three different approaches: (i) increase of the protein 

lyophilisate percentage, (ii) change of protein lyophilisate composition and (iii) change of implant 

diameter. 

IV.2.4.1 PROTEIN RELEASE FROM IMPLANTS WITH INCREASING AMOUNTS OF PROTEIN 

LYOPHILISATE 

With a protein load of 5 % and the minimal dimensions of the implants, total protein content of 

one single implant was on average approximately 1.53 mg. The percentage of protein was 

increased stepwise from initially 5 % to 7.5 % and 10 % to encapsulate more protein per implant. 

Lyophilisates comprised a mixture of protein and HP-β-CD in a ratio of 1:1 [w/w]. Consequently, 

the amount of lipids was reduced from 90 % to 80 %, while the lipid composition and extrusion 

settings were kept constant.  

With increasing amounts of protein lyophilisate, the release of proteins was accelerated. For 

mAb, a substantial burst release was seen for the formulations containing 7.5 % and 10 % 

protein, respectively: after 1 day, 22.0 % mAb was released from the formulation comprising 

7.5 % protein, whereas 23.1 % protein was quantified released from the formulation with 10 % 

mAb (Figure IV-11 A). For comparison, after 1 day only 4.4 % mAb was released from the lead 

formulation. Release stopped after 56 days of incubation for the formulations with 7.5 % and 

10 % protein content between 85 % to 87 % of total protein load.  
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Ranibizumab release from the different formulations is illustrated in Figure IV-11 B. The release 

profiles for the formulations with 7.5 % and 10 % protein load were characterised by a high initial 

burst release: 12.8 % (7.5 % protein load) and 17.9 % (10 % protein load) were already released 

after 1 day compared to the lead formulation with 5 % protein content (2.3 % after 1 day). 

Additionally, release stopped 6 weeks earlier when protein content was increased. 

Bevacizumab release was also accelerated with increasing lyophilisate percentage as 

illustrated in Figure IV-11 C. The comparatively short release duration of approximately 21 days 

for the lead formulation was even accelerated, especially during the first days of release. After 

1 day, 38.8 % and 47.5 % were released from the formulations containing increased lyophilisate 

percentages compared to 11.8 % released from the lead formulation. Additionally, release 

stopped already after 14 days (7.5 % protein load) and 7 days (10 % protein load).  

Qualitatively, similar observations were made for Aflibercept release, showing a faster release 

with increasing percentage of protein lyophilisate (Figure IV-11 D). 

In summary, for all proteins release was observed to be faster, especially during the initial 

phase. Therefore, this attempt was not further pursued. The more water soluble lyophilisate 

generated a larger pore-network in-situ by dissolution leading to faster release rates. This is in 

accordance with previous results described by Mohl et al. for interferon α-2a [167]. Up to 20 % 

of PEG 6000 was added to the lipid matrix before lipid implants were manufactured by 

compression. The same phenomena was also observed by Sax et al. for lysozyme [182] where 

a higher proportion of PEG 4000 resulted in faster release rates. However, care must be taken 

when considering pore-forming effects of excipients, especially in terms of PEGs. The addition 

of PEG can lead to either an in-situ precipitation of the protein [178] or a larger pore-network 

[177] depending on the protein. The increase of lyophilisate exclusively generates a larger pore-

network.  
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Figure IV-11: Cumulative release of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept from 

SLIs. Lipid implants were produced with different percentages of protein lyophilisate in a 1:1 [w/w] 

formulation with HP-β-CD resulting in a final protein load of 5 %, 7.5 % and 10 % per implant. Please note 

that the x-axis is scaled differently.  
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IV.2.4.2 PROTEIN RELEASE FROM LIPID IMPLANTS WITH DIFFERENT LYOPHILISATE 

COMPOSITIONS 

In a next attempt, the composition of the protein lyophilisate was changed to increase protein 

load per implant. The protein ratio within the lyophilisate was increased from 50 % to 75 %, 

whereas the percentage of lipid portion was retained constant at 90 %. Due to the poor release 

patterns of Bevacizumab and Aflibercept, the following experiments were carried out with mAb 

and Ranibizumab only. 

Figure IV-12 A and Figure IV-12 B display the release of mAb and Ranibizumab with lyophilisate 

formulations 1:1 [w/w] and 3:1 [w/w]. This time, the sustained release profiles were not 

significantly altered (no burst observed), and sustained release lasted equally long as for the 

low dose lead formulation. By changing the lyophilisate composition, 50 % more protein could 

be incorporated into the lipid implant without negatively affecting the release patterns. 

 

Figure IV-12: Cumulative release profiles of (A) mAb and (B) Ranibizumab from lipid implants. Protein 

lyophilisate percentage was kept at 10 % while the lyophilisate formulation was changed from 1:1 [w/w] 

protein:cyclodextrine ratio to 3:1 [w/w]. Protein load per implant was thus increased from 1.53 mg (±0.06 mg) 

to 2.40 mg (±0.23 mg). 
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The ratio of water-soluble (lyophilisate) to water insoluble (lipids) components stayed constant. 

Consequently, the micro structure of the lipid implant (pores and interconnected channels) of 

the implant was retained better. Figure IV-13 shows that both formulations, either comprising 

the 1:1 [w/w] protein lyophilisate (Figure IV-13 A) or the 3:1 [w/w] protein lyophilisate (Figure 

IV-13 B) have a comparable appearance of the micro structure in the cross sections. Due to a 

reduction of the stabilising agent, protein stability must be studied with care.  

 

Figure IV-13: SEM micrographs of lipid implants after extrusion and prior to incubation. Micrographs 

displaying the cross section of SLIs manufactured with (A) 1:1 [w/w] protein lyophilisate and (B) 3:1 [w/w] 

protein lyophilisate at magnifications of 40x. 

 

IV.2.4.3 PROTEIN RELEASE FROM IMPLANTS WITH DIFFERENT DIAMETERS 

Another aspect towards increasing protein load was to change implant dimensions rather than 

varying the composition. The diameter was increased from 1.5 mm to 1.7 mm. Thus, the surface 

area was increased by 14 % and the implant volume by 25 %, resulting in an increased 

(approximately 25 %) protein mass per implant.  

A diameter of 1.7 mm is still suitable for potential intravitreal incision and was realised by 

changing the outlet die of the ZE-5 mini-extruder. A further decrease of release rates was 

expected, based on the hypothesis that an increase in implant diameter increases diffusion path 

lengths. 

Figure IV-14 indicates that both proteins were released within the same time frame and fashion 

from implants being 1.5 mm or 1.7 mm in diameter. For mAb, a biphasic release behaviour 

A B 
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comprising an initial phase of 4 weeks followed by a phase lasting from day 28 to day 100 was 

noticeable. The cumulative release of mAb released from 1.7 mm implant was slightly faster 

compared to 1.5 mm even though approximately 85 % to 90 % of total incorporated protein was 

released in both cases (Figure IV-14 A). Ranibizumab release was monitored over 154 days, 

showing that from both diameters release discontinued nearly after 120 days at 90 % to 95 % 

of total protein load (Figure IV-14 B). 

 

Figure IV-14: (A) displays the cumulative release profile of mAb, (B) shows cumulative Ranibizumab release. 

Implant diameter was increased from 1.5 mm to 1.7 mm comprising the 3:1 [w/w] lyophilisate formulation.  

 

Release of both proteins from the larger diameter was faster than expected. Due to larger 

diffusion pathways of molecules diffusing out of the matrix, release was expected to be 

prolonged. In contrast to hot melt extrusion (HME), triglycerides were not completely molten 

during extrusion. Applying an extrusion temperature of 35°C induced merely a softening and 

sintering of the lipids, especially of the low melting lipid H12. Because of the semisolid state of 

the material, compression and compacting were the major mechanisms of implant formation. It 

can be speculated that during extrusion of SLIs with 1.7 mm diameter, the material was less 

compacted than at 1.5 mm which overcompensated the impact of larger diffusion pathways. 

However, this aspect requires further investigations.  
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IV.2.4.4 SUMMARY ON ATTEMPTS TOWARDS PROTEIN INCREASE 

Overall, it was successfully demonstrated that protein load can be increased without negatively 

impacting the desired release time frame of 4 months. As illustrated in Table IV-5, protein load 

was increased from initially 1.53 mg to 3.00 mg per implant by changing the lyophilisate 

composition and implant diameter. This results in an increase of protein load by nearly 100 %. 

The desired release kinetic was not influenced by that. Assuming a sustained release of 

120 days, the daily delivery rate was increased from approximately 11 µg/day to 23 µg/day.  

Table IV-5: Protein load per implant and average released protein per day in dependency of the different 

formulations and settings. A release time frame of 120 days and 90 % of total released protein was basis for 

calculations. 

Diameter 1:1 [w/w] lyophilisate formulation 3:1 [w/w] lyophilisate formulation 

 Total protein load 

per implant 

Average released 

protein per day  

Total protein load 

per implant 

Average released 

protein per day 

1.5 mm 
1.53 mg 

(±0.06 mg) 
10.93 µg 

2.40 mg 

(±0.23 mg) 
18.23 µg 

1.7 mm 
2.00 mg 

(±0.05 mg) 
14.93 µg 

3.00 mg 

(±0.08 mg) 
22.58 µg 

 

IV.2.5 IMPACT OF IMPLANT STORAGE  

IV.2.5.1 IN-VITRO RELEASE PATTERNS 

A major aspect concerning lipid based drug delivery matrices is their stability regarding 

properties and release patterns upon storage. It is well known that triglycerides exist in different 

modifications [261], such as α-, β- or β’-modifications which have an impact on properties like 

melting behaviour or crystallinity/amorphous state [181, 261]. Additionally, triglycerides can 

undergo an aging process upon storage, namely the conversation from the thermodynamically 

unstable α-modification to the more stable β-modification. These conversions can be prevented 

by curing of the implants at defined temperatures [233]. The system described here, consisted 
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of a binary triglyceride blend. Therefore, those aspects were of special interest as they can 

possibly change release patterns. 

Lipid implants consisted of 45 % D118, 45 % H12 and 10 % protein lyophilisate with both 1:1 

[w/w] and 3:1 [w/w] formulations resulting in a final protein load of 5.0 % and 7.5 %, respectively. 

For the following experiments, mAb and Ranibizumab were used only. 

 

Figure IV-15: Cumulative release profiles of (A) mAb and (B) Ranibizumab directly after production (week 0) 

and after storage of 4 and 12 weeks at 4°C prior to in-vitro release.  

 

Release studies were performed either directly after production (week 0) or after storage for 

4 weeks or 12 weeks at 4°C in micro-centrifuge tubes. Release profile was then monitored over 

126 days for both proteins (Figure IV-15). Displayed are the results for the formulation with 1:1 

[w/w] lyophilisates, illustrating that release patterns were not affected by the storage; both 

proteins retained their characteristic release profiles. Comparable release curves were obtained 

for the 3:1 [w/w] lyophilisate formulation for both proteins (data not shown). Consequently, it can 

be concluded that SLIs can be stored for at least 3 months at 4°C prior to use ensuring same 

release properties. These observations are in line with results from a previous storage study of 

lipid implants described by Mohl et al. [176]. 
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IV.2.5.2 STABILITY OF TRIGLYCERIDES IN THE LIPID MATRIX UPON STORAGE 

DSC was performed to identify possible alterations in melting points and/or melting energy 

indicating changes in lipid modifications or crystal growth.  

 

Figure IV-16: Melting curves of lipid implants consisting of 10 % protein lyophilisate, 45 % H12 and 45 % 

D118 after storage for 0, 4 and 12 weeks at 4°C. 

 

Thermograms (Figure IV-16) obtained after 0, 4 and 12 weeks did not show differences in the 

course of the melting curves. The maximum melting points (Tmelting) are summarised in Table 

IV-6. Tmelting of H12 was measured between 42.70°C and 43.23°C; the same was observed for 

D118. Melting energy was assessed as it is an indicator for the presence of amorphous lipids 

[233]. The melting energies for H12 and D118 remained constant upon storage, meaning no 

shifts in amorphous/crystallinity status of both triglycerides occurred (Table IV-6). No changes 

in Tmelting and melting energy values occurred, signifying that both triglycerides remained in their 

thermodynamically stable modifications. 



CHAPTER IV 

82 

Table IV-6: Tmelting and melting energy of H12 and D118 upon storage for 0, 4 and 12 weeks at 4°C. 

Time point 
Tmelting 

H12 [°C] 

Tmelting 

D118 [°C] 

Melting energy  

H12 [J/g] 

Melting energy 

D118 [J/g] 

week 0 42.70 (±0.46) 69.43 (±0.42) 75.74 (±3.21) 86.64 (±3.85) 

week 4 43.10 (±0.46) 70.10 (±0.26) 76.19 (±1.68) 89.95 (±1.51) 

week 12 43.23 (±0.42) 70.17 (±0.29) 74.40 (±0.65) 90.27 (±1.59) 

 

Figure IV-17 A shows the XRPD patterns of H12 bulk material revealing two strong reflections 

at 2θ=20.9° d=0.42 nm and at 2θ=23.2° d=0.38 nm which are typical for orthorhombic chain 

packaging of the β’-modification [181]. The D118 bulk material diffraction patterns were 

characterised by three main reflection peaks at 2θ=19.4°, 2θ=23.2° and 2θ=24.3° (Figure IV-17 

B) typical for the β-modification [167] with the corresponding short spacings at 0.46 nm, 0.38 nm 

and 0.37 nm. The reflection peak at 2θ=21.0° d=0.42 nm represents a small percentage of α-

modification. 

 

Figure IV-17: (A) shows diffraction patterns of H12 bulk material, (B) represents D118 bulk material diffraction 

patterns. 
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As displayed in Figure IV-18, the reflections of extruded SLIs are intermediates from those of 

pure H12 and D118, respectively [181]. The distinct diffraction lines at 2θ=19.6°, 23.4° and 24.5° 

match to the crystal spacings of the β-modification of D118 discussed above. At an angle of 

2θ=23.4° d=0.38 nm, an overlay of the H12 β’-modification and the β-modification of D118 can 

be observed due to similar appearance at this angle. However, the XRPD patterns of the stored 

implants and the non-stored ones were identical. 

 

Figure IV-18: Patterns of lipid implants after storage for 0, 4 and 12 weeks at 4°C. For a better visualisation, 

the plots are displayed vertically. 

 

Identical XRPD patterns of stored and non-stored implants (Figure IV-18) indicate that the same 

modifications were present. Due to comparable diffraction patterns observed before and after 

storage it can be concluded that H12 stayed in its β’-modification whereas D118 was present in 

the β-modification, also previously observed by Schulze et al. for implants containing interferon-

α and PEG [181]. 
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IV.2.6 PRE-MELTING OF TRIGLYCERIDES 

The impact of storage on SLI characteristics has already been described in chapter IV.2.5 

showing no aging of the triglycerides and therefore no changes in release patterns and thermal 

characteristics.  

The present chapter is aimed to investigate the effect of different lipid modifications (coming 

along with different thermal characteristics of the lipids) on release patterns. For this, H12 and 

D118 were simultaneously molten at 80°C intentionally inducing unstable lipid modifications. 

Then, the molten mass was allowed to cool down before it was ground and sieved (< 180 µm) 

prior to extrusion. It was systematically investigated if the «pre-melting» has an impact on 

properties of lipid raw material and of extruded implants including thermal and physical 

properties as well as release patterns. In the following, the standard extrusion technique already 

described will be named as «conventional extrusion». 

SLIs were manufactured with both extrusion techniques (conventional extrusion and extrusion 

with pre-melted lipids) using the established settings (50:50 lipid blend, 35°C extrusion 

temperature, 40 rpm, 1.5 mm x 15 mm). First, the characteristics of pre-melted lipid itself were 

investigated followed by investigating the impact on release patterns. Then, SLIs were stored 

for 0, 4 and 12 weeks at 4°C and thermal properties and release patterns were monitored. 

IV.2.6.1 IMPACT OF PRE-MELTING ON LIPID CHARACTERISTICS 

The pre-melted lipid raw material was prepared according to III.2.1.3. As a benchmark, thermal 

characteristics from SLIs extruded with the standard settings for conventional extrusion were 

studied. 
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Table IV-7: Tonset and Tmelting of H12 and D118 of freshly pre-melted raw material and after extrusion using pre-

melted lipids. As a comparison, Tonset and Tmelting of H12 and D118 applying the conventional extrusion 

technique are listed. 

 Pre-melting 
Pre-melting and 

extrusion 

Conventional  

extrusion 

H12onset [°C] 32.55 (±0.71) 32.56 (±0.21) 34.10 (±0.99) 

H12melting [°C] 39.05 (±0.92) 41.00 (±0.14) 42.80 (±0.70) 

D118onset [°C] 64.53 (±1.14) 65.83 (±0.76) 63.93 (±1.12) 

D118melting [°C] 71.33 (±1.46) 71.60 (±0.20) 69.43 (±0.42) 

 

In Table IV-7, the values for Tonset and Tmelting for H12 and D118 are summarised. The pre-melting 

reduced Tonset of H12 by 1.6°C from 34.1°C to 32.6°C. Also, Tmelting of H12 was shifted from 

42.8°C to 39.1°C. Equally, Tonset and Tmelting for D118 were slightly higher after pre-melting 

(approximately 1.5°C). Since the extrusion and the incubation temperatures are very close to 

the melting points of H12, they are of special interest. Therefore, pre-melting might substantially 

influence the release patterns since the melting point of the low melting lipid is a crucial 

parameter in terms of controlled release [183]. It is also worth to note, that Tmelting of pre-melted 

material was impacted by the extrusion process: Tmelting was 2°C higher than before extrusion. 

This means, that the applied temperature of 35°C (which is about 2.5°C higher than the Tonset of 

H12) already impacted the thermal characteristics of the pre-melted lipids. To study the impact 

of pre-melting not only on melting points but also on release patterns, SLIs were manufactured 

using both extrusion techniques (see IV.2.6.2). 

XRPD was used to analyse lipid modifications. Diffraction patterns of extruded SLIs using both 

extrusion techniques and of the pre-melted lipids prior to extrusion are shown in Figure IV-19. 

The diffractograms of pre-melted lipid raw material (trace 1) and SLIs manufactured with those 

(trace 2) show no qualitative differences indicating that extrusion itself did not alter lipid 

characteristics, e.g. crystallinity. However, for SLIs produced with conventional extrusion (trace 

3), patterns changed signifying that the pre-melting step altered lipid modifications.  
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Figure IV-19: Diffraction patterns of pre-melted lipids prior to extrusion and of extruded SLIs produced with 

both conventional extrusion and extrusion with pre-melted lipids. 

 

IV.2.6.2 IMPACT OF PRE-MELTING ON IN-VITRO RELEASE 

SLIs were manufactured with freshly prepared pre-melted lipids to eliminate possible aging 

effects of the raw material on release patterns. Both extrusion techniques, conventional 

extrusion and extrusion with pre-melted lipids (Figure IV-20), were used. The extrusion settings 

and the composition of the lead formulation was used.  

Figure IV-20 illustrates the cumulative release of mAb from SLIs using both extrusion 

techniques. Release was slowed down using pre-melted lipids. The triphasic release behaviour 

for the conventional extrusion technique was not observed anymore, instead the release was 

more linear over a longer period. A sustained and almost linear release can be described lasting 

from the very first day to day 140; an initial burst was not noticed. Between day 140 and day 

200, little amounts of mAb were still released. An overall biphasic rather than a triphasic release 

behaviour was observed. Therefore, the release time frame could be extended from 

approximately 120 days to 200 days without changing the overall composition. 
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Figure IV-20: Cumulative release of mAb released from SLIs manufactured using the () conventional 

extrusion technique and () extrusion with pre-melted lipids.  

 

In 2012, Sax et al. described a release pathway of proteins from a lipid matrix which relies on a 

partial melting of the low melting lipid within the matrix [182]; the molecules diffuse in a phase 

of molten lipid [234]. It was shown, that Tonset and Tmelting of the low melting lipid are very 

important parameters playing a major role in triggering protein release. A nearby explanation of 

the prolonged release in our case could be that at the incubation temperature of 37°C the H12 

is already partially molten due to the low Tonset (Table IV-7) and thereby «closing» the pores and 

interconnected pores within the lipid matrix in-situ. Thereby, the molecules are hindered to 

diffuse out of the depot which results in prolonged release periods. The pre-melted lipids were 

exposed twice to a thermal input, which reduced the melting point of H12 and thereby softened 

and changed the flowability of the material. Measurements of the extrusion pressure supposedly 

favours that hypothesis: within the extruder barrel a pressure of 975 kPa (±74 kPa) for 

conventional extrusion was measured and 556 kPa (±41 kPa) were measured when pre-melted 

lipids were manufactured (see chapter IX).  
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INCREASE OF PROTEIN LOAD OF SLIS EXTRUDED WITH PRE-MELTED LIPIDS 

By pre-melting of the lipids, it was possible to prolong and linearise the sustained release profile 

of mAb from 120 days to almost 200 days. Due to the very promising results, it was further 

investigated, if the protein load could be increased as previously described for SLIs produced 

with the conventional extrusion technique (IV.2.4) and if this technique is also applicable for the 

other proteins used.  

 

Figure IV-21: Cumulative release profiles of mAb from implants being (A) 1.5 mm and (B) 1.7 mm in diameter. 

Protein lyophilisate percentage was kept at 10 % while the lyophilisate formulation was changed from 1:1 

[w/w] protein:cyclodextrine ratio to 3:1 [w/w]. SLIs were prepared with pre-melted lipids. 

 

The approach to increase the percentage of lyophilisate was not successful (Appendix, Figure 

XII-5) since accelerated release rates were observed for all proteins with increasing percentage 

of lyophilisate. Simultaneously to the approaches already discussed in IV.2.4 for SLIs produced 

with conventional extrusion technique, the lyophilisate composition was changed from 1:1 [w/w] 

to 3:1 [w/w] to encapsulate 50 % more protein within the same amount of lyophilisate. The 

implant diameter was increased from 1.5 mm to 1.7 mm as well. Both approaches were 

performed with mAb and Ranibizumab. Release patterns for both proteins were not negatively 

influenced by the attempts (Figure IV-21 and Figure IV-22). It was therefore possible to 
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encapsulate 3 mg mAb and Ranibizumab into an SLI and deliver it over approximately 200 days 

using pre-melted lipids.  

 

Figure IV-22: Cumulative release profiles of Ranibizumab from implants being (A) 1.5 mm and (B) 1.7 mm in 

diameter. Protein lyophilisate percentage was kept at 10 % while the lyophilisate formulation was changed 

from 1:1 [w/w] protein:cyclodextrine ratio to 3:1 [w/w]. SLIs were prepared with pre-melted lipids. 

 

IV.2.6.3 IMPACT OF PRE-MELTING ON STORAGE STABILITY OF SLIS 

As pre-melting had a strong impact on thermal characteristics (Table IV-7), lipid modifications 

(Figure IV-19) and the associated prolonged release, it was tested if triglycerides underwent an 

aging process upon storage. Since possibly unstable lipid modifications were induced (and 

therefore a change of crystallinity/amorphous status was induced), aging of triglycerides also 

affecting release patterns may be possible.  

To systematically investigate the storage effect, SLIs were manufactured with both extrusion 

techniques (conventional extrusion and extrusion with pre-melted lipids) using the established 

settings (50:50 lipid blend, 35°C extrusion temperature, 40 rpm, 1.5 mm x 15 mm). SLIs were 

stored for 1, 2, 4 and 12 weeks at 4°C and were analysed towards thermal characteristics and 

release patterns. 
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IMPACT OF STORAGE ON THERMAL CHARACTERISTICS OF SLIS 

After a storage of 1, 2, 4 and 12 weeks, SLIs were analysed towards Tonset and Tmelting of both 

lipids (Figure IV-23). Figure IV-23 A represents the melting points of H12 measured over 

12 weeks upon incubation of SLIs produced with both extrusion techniques. 

 

Figure IV-23: Overview of Tonset and Tmelting of both lipids (A) H12 and (B) D118. Implants were manufactured 

using both extrusion techniques, conventional extrusion and extrusion with pre-melted lipids. 

 

For conventional extrusion, both values remained rather constant over time (Tonset: 33.2°C to 

33.5°C; Tmelting: 42.7°C to 43.2°C). This is also valid for SLIs produced with pre-melted lipids 

because Tmelting values stayed constantly at 40.2°C over time. The value for Tonset decreased 

from 32.5°C (week 0) to 32.1°C (week 12). Generally, changes of melting points as a function 

of the different extrusion techniques were not apparent for H12 melting points.  

Tonset and Tmelting of D118 incorporated into the SLIs was also monitored over 12 weeks (Figure 

IV-23 B). Applying conventional extrusion, Tonset and Tmelting of D118 decreased by approximately 

2°C during incubation time. Due to no obvious differences in release profiles after storing SLIs 

produced with conventional extrusion (Figure IV-15), a change in melting points was not 
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expected raising the question if the melting points of D118 (and H12) are affecting the release 

at all. The same trend was also observed for extrusion with pre-melted lipids: both melting points 

dropped by approximately 1°C within 12 weeks. The thermal characteristics of D118 changed 

more than those of H12 even though H12 is the low melting lipid and its melting points are very 

close to the extrusion and incubation temperature. It seems that a correlation between melting 

points and release patterns is not present probably due to the complexity of the system where 

other parameters are affecting the release (extrusion temperature, extrusion pressure, screw 

speed). 

 

Figure IV-24: Overview of melting energies of both lipids manufactured within SLIs. Implants were 

manufactured using both extrusion techniques, conventional extrusion and extrusion with pre-melted lipids. 

 

In addition to melting points, the melting energy was assessed as it is an indicator for the 

presence of amorphous lipids [233]. In Figure IV-24 the melting energies of H12 and D118, 

manufactured with both extrusion techniques and stored over 12 weeks, are displayed. 

Regarding conventional extrusion, melting energies of H12 and D118 demonstrated rather 
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constant values (H12: 75 J/g to 78 J/g; D118: 85 J/g to 90 J/g). Contrarily, for pre-melted lipids 

ΔH increased by 10 J/g (from 63 J/g to 72 J/g) for H12 and decreased from 105 J/g to 95 J/g 

concerning D118. The melting energies of both lipid components changed due to the pre-

melting procedure. In general, a change in melting energy indicates a change in amorphous 

state of the lipids while a decrease designates an increase in amorphous amounts [233].  

The crystallinity status of stored and non-stored SLIs was evaluated as well but results did not 

show any changes in XRPD patterns for both extrusion techniques (Appendix Figure XII-6 and 

Figure XII-7). 

IMPACT OF STORAGE ON RELEASE PATTERNS OF SLIS  

In addition to thermal characteristics, release patterns of stored and non-stored SLIs were 

evaluated to determine if the changes in melting points, melting energy and lipid modification 

have an impact on release patterns. SLIs extruded with conventional extrusion technique did 

not show any differences in release behaviour upon storage (Figure IV-15). 

 

Figure IV-25: Cumulative release of mAb from SLIs extruded with pre-melted lipids and after a storage of 0, 

4 and 12 weeks at 4°C. Lipid implants were produced with different protein lyophilisate compositions: either 

in a ratio of (A) 1:1 [w/w] or (B) 3:1 [w/w]. 
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Figure IV-25 displays the release of mAb from SLIs stored for 0, 4 and 12 weeks at 4°C prior to 

release. SLIs were extruded with pre-melted lipids. Compared to the release profile obtained 

from non-stored SLIs (week 0), release was accelerated after a 4-week storage. Especially 

during the initial phase, substantially higher release rates were observed. For instance, after 

7 days, 8.4 % mAb was released from non-stored SLIs but 25.9 % and 50.3 % from SLIs stored 

for 4 weeks and 12 weeks, respectively (Figure IV-25 A). These accelerated release rates are 

present over the complete release time of 160 days. Observations made for the 1:1 [w/w] 

lyophilisate hold also true for the 3:1 [w/w] lyophilisate (Figure IV-25 B). 

 

Figure IV-26: Cumulative release of Ranibizumab from SLIs extruded with pre-melted lipids and after a 

storage of 0, 4 and 12 weeks at 4°C. Lipid implants were produced with different protein lyophilisate 

compositions: either in a ratio of (A) 1:1 [w/w] or (B) 3:1 [w/w]. 

 

Interestingly, Ranibizumab release patterns were much less affected by storage: especially over 

the first 28 days, the characteristic release profile was retained for both lyophilisate 

compositions (Figure IV-26). Starting from day 28, release rates were accelerated from stored 

SLIs. A difference in release rates of 4-week stored and 12-week stored SLIs cannot be 

observed as it was the case for mAb described previously.  
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Therefore, not only the properties of the lipids affecting release patterns, also the proteins itself 

which are encapsulated within the depot. This is one of the most important aspects within this 

work and will also be addressed in chapter VIII. 

IV.2.6.4 SUMMARY ON PRE-MELTING OF TRIGLYCERIDES AND THEIR IMPACT ON IMPLANT 

PROPERTIES 

It can be summarised that the melting points, melting energies and crystallinity of the lipids was 

changed by the pre-melting technique. By a simultaneous pre-melting of both lipids prior to 

extrusion, it was demonstrated that release was prolonged for up to 200 days tested with mAb 

and Ranibizumab. However, when storing SLIs, differences between conventionally extruded 

SLIs and SLIs manufactured with pre-melted lipids can be observed (especially for melting 

energy). XRPD diffraction patterns stayed unchanged over time signifying no change in 

modifications for both extrusion techniques. Nevertheless, in terms of release patterns, major 

differences were apparent (even protein dependent). Thus, it seems that a straightforward 

correlation of thermal and physical characteristics and release patterns cannot be made 

probably due to the complexity of the system. Other parameters, e.g. extrusion temperature, 

extrusion pressure, screw speed, or other effects occurring during release (wettability) may 

affect the release more than expected. Since the only major difference of conventional extruded 

SLIs to those extruded with pre-melted lipids is the melting energy, the question raises if that 

might be the most crucial parameter for the different release behaviours observed. 

The fact that also a protein dependent difference in release patterns was observed, points into 

the direction that this topic is much more complex than previously thought. In other words: the 

very promising release profiles obtained with this simple and straightforward technique, makes 

this topic even more attractive for further research. For instance, the process of melting both 

lipids simultaneously together offer great potential as the rate of heating, the final temperature 

or the cooling rate can be varied most likely impacting the properties of the lipids.  
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IV.2.7 PROTEIN RELEASE TESTS FROM PLGA MATRICES 

This section describes the release of proteins from different PLGA matrices including Resomer® 

RG 502, RG 502 H and RG 755 S. It was aimed to evaluate how proteins are released from 

PLGA matrices and to compare those data with release profiles obtained from SLIs. PLGAs 

with different degradation time frames were used for two reasons: first, to evaluate the impact 

of depot erosion in addition to diffusion, and second, to determine the impact of different end 

groups on release profiles. 

For this, PLGA implants were prepared by mixing 10 % protein lyophilisate (1:1 [w/w] 

protein:HP-β-CD) with 90 % Resomer® RG 502, Resomer® RG 502 H or Resomer® RG 755 S 

in a mortar to obtain a homogenous powder blend. The powder mixture (approximately 1.5 g) 

was fed manually to the ZE-5 mini-extruder from Three-Tec® (Seon, Switzerland) and extrusion 

was performed at 70°C at a screw speed of 60 rpm. In-vitro release was performed at 37°C. 

The stability of released protein from PLGA matrices was assessed additionally and is described 

within chapter VII. 

IV.2.7.1 RELEASE FROM RESOMER® RG 755 S MATRICES 

Resomer® RG 755 S was chosen since the estimated degradation time frame of this PLGA 

(equipped with an ester as end group) is about 6 months. The polymer is characterised by a 

ratio of 75:25 and with a molecular weight of 76,000 to 116,000 Da (Table III-2). This rather long 

degradation time allows to exclude erosion as additional release mechanism because no 

considerable erosion was observed during in-vitro release experiments of SLIs.  

For all proteins, no initial burst was observed. For mAb, a sustained released over approximately 

98 days was observed delivering 9.8 % over this time (Figure IV-27). After this time, release 

stopped. For all other proteins, release rates were very slow delivering almost no protein (0.2 % 

to 3.1 % after 126 days). Due to the very low release rates and the beginning degradation of 

the PLGA matrix, the experiment was stopped after 126 days.  
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Figure IV-27: Cumulative release of () mAb, () Ranibizumab, () Bevacizumab and () Aflibercept from a 

Resomer® RG 755 S matrix. Please note, that for better visualisation the y-axis is scaled from -5 % to 20 %. 

 

The pH was monitored over the complete incubation time as erosion of the polymer would 

impact on the release kinetics. It was expected that a major decrease in pH value would indicate 

the erosion of the polymer because the PLGA is hydrolysed in its components lactic and glycolic 

acid creating an acidic pH. During this incubation of the PLGA extrudates, the incubation 

medium was not exchanged. 

As Figure IV-28 Illustrates, the pH of all solutions stayed rather constant at pH 7.4 over the first 

42 days and decreased slightly to approximately 6.5 after 98 days. A major drop in pH can be 

observed between day 98 and day 126 for all proteins down to pH 2.5 to 3.0 signifying the 

starting degradation of the PLGA matrix. After 98 days, the PLGA extrudates started to degrade 

but no release was seen (Figure IV-27). This leads to the assumption that the non-released 

protein (90 % to 100 % of incorporated protein) precipitated within the PLGA matrix.  

Because generally no protein was released from this particular Resomer®, another Resomer® 

with a degradation time frame of approximately 3 months was chosen.  
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Figure IV-28: Overview of pH measured within the incubation medium in which PLGA extrudates were 

incubated. Extrudates were loaded with () mAb, () Ranibizumab, () Bevacizumab and () Aflibercept 

lyophilisate. 

 

IV.2.7.2 RELEASE FROM RESOMER® RG 502 AND RG 502 H MATRICES 

In a next experiment, Resomer® RG 502 and Resomer® RG 502 H were used both with a ratio 

of 50:50 and a molecular weight of 7,000 to 17,000 Da. The estimated degradation time frame 

of those PLGAs is less than 3 months (Table III-2). Two different polymers were chosen to study 

the effect of different end groups on the release behaviour: Resomer® RG 502 comprises an 

esterified end group, Resomer® RG 502 H is equipped with a free carboxyl group.  
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Figure IV-29: Cumulative release of () mAb, () Ranibizumab, () Bevacizumab and () Aflibercept from 

(A) Resomer® RG 502 and (B) Resomer® RG 502 H matrices. Please note, that for better visualisation the y-

axis is scaled from -5 % to 20 %. 

 

Figure IV-29 provides an overview of sustained release of the proteins delivered from Resomer® 

RG 502 (Figure IV-29 A) and Resomer® RG 502 H (Figure IV-29 B). For Resomer® RG 502, a 

cumulative release of mAb and Ranibizumab can be observed. Both proteins were released 

without initial burst and release was almost linear over the complete incubation period of 

84 days. In total, 14.4 % mAb and 8.9 % Ranibizumab was released after 84 days meaning that 

85.6 % mAb and 91.1 % Ranibizumab remained within the polymer. A release of Bevacizumab 

and Aflibercept has not taken place. The release experiment was stopped after 84 days 

because the PLGA matrix totally disintegrated. This corresponds to the estimated degradation 

time frame of this polymer (< 3 months). 

A sustained release from Resomer® RG 502 H depot was only noticed for mAb. After 84 days, 

6.2 % mAb were released and 93.8 % remained within the PLGA matrix. The other proteins did 

not show any release (Figure IV-29 B).  

A possible explanation that in some cases a sustained release was not noticed could be due to 

precipitation of the encapsulated protein already within the depot. The degradation of the 
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polymer creates a pH drop and an increase in osmotic pressure which results in aggregation of 

the encapsulated proteins [49, 253, 254] and incomplete release [54, 68, 242, 255]. This 

phenomenon is even more pronounced when the end group is a carboxylic acid which would 

correspond with our results (Figure IV-29). To prove this hypothesis, the pH was measured over 

the complete incubation time.  

 

Figure IV-30: Overview of pH measured within the incubation medium in which PLGA extrudates were 

incubated. Extrudates were loaded with () mAb, () Ranibizumab, () Bevacizumab and () Aflibercept 

lyophilisate and PLGA matrix consisted of either (A) Resomer® RG 502 or (B) Resomer® RG 502 H. 

 

Measurements of pH confirm the hypothesis that pH dropped faster at the Resomer® RG 502 H 

based extrudates due to the free carboxylic group (Figure IV-30 B). It is important to note, that 

the incubation medium was not changed during pH measurements whereas the incubation 

medium has been exchanged when release was measured. Therefore, a direct correlation of 

release patterns (and their explanations) and the change of pH is not given.  

It was further analysed if incomplete release (and the associated protein aggregation) was 

caused by the acidic microclimate within the PLGA matrix or by the acidic pH of the surrounding 

medium (chapter VII). 
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IV.2.7.3 COMPARISON OF OUR RESULTS TO CURRENT STATUS OF RESEARCH 

The very incomplete release profiles observed during this study are corresponding to release 

profiles of proteins described in literature. For instance, the release of erythropoietin (EPO) from 

PLGA depots also showed incomplete release [45, 46, 242]. This is also true for different protein 

formats including BSA [255], insulin [49], recombinant human growth hormone (r-hGH) [47, 48] 

or insulin-like growth factor-I [50]. In most cases, the proteins encapsulated within PLGA depots 

showed poor release patterns namely incomplete release and/or substantial initial burst release. 

To overcome this problem, different strategies had been pursued, for instance PLGA 

composites such as PLGA-triacetin depots [72] or conjugates with amino cyclodextrine [66]. 

Also, the addition of excipients has been investigated like PEG-block-oligo(vinyl 

sulfadimethoxine) [69], PEG-poly(l-histidine) [43] or Mg(OH)2 [52]. In some cases, protein 

release was improved which was reflected by a reduced burst release and a more continuous 

and complete release.  
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IV.3 CONCLUSION 

The sustained long-term release of different protein formats from SLIs including therapeutically 

relevant proteins was successfully demonstrated. A controlled release over approximately 

4 months of a mAb and the fab-fragment Ranibizumab was achieved. Both protein drugs were 

delivered in a sustained fashion without any initial burst release events for about 110 to 

120 days. It is the first time that long-term release of two different molecules from SLIs have 

been reported. The formulation and extrusion settings previously developed within our group 

were further improved. The most appropriate formulation for the ZE-5 mini-extruder comprised 

10 % protein lyophilisate and a lipid matrix consisting of 50 % H12 and 50 % D118; no PEG 

was added. An adequate extrusion temperature was determined at 35°C. This allows the 

production of SLIs which provided a constant and almost complete release (up to 95 %) of 

incorporated protein without any burst effects.  

Several advantages in terms of the extrusion process were accomplished by an optimisation of 

the process: First, the avoidance of PEG as precipitant represents the most valuable 

improvement as it is known for its potential negative impact on protein integrity [262] and its 

allergic potential [263-265]. Also, the implant diameter was reduced by 25 % from 2.0 mm to 

1.5 mm without negatively impacting the release duration. Furthermore, a manufacturing setup 

using extremely mild processing conditions and a most elegant excipient composition was 

established. By introducing the ZE-5 mini-extruder as new extruder, the minimum batch size 

was reduced by 80 %. Moreover, the protein load was increased to 3.00 mg protein per implant 

without negatively affecting the desired release time frame. It was also ensured that extruded 

SLIs can be stored for at least 3 months without impacting their properties considering release 

patterns, thermal properties and status of crystallinity, respectively.  

Finally, it was possible to develop a depot releasing the fab-fragment Ranibizumab over 

110 days in-vitro from SLIs being small enough for intravitreal use (the excellent stability profile 
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of released Ranibizumab will be discussed in chapter VII). Based on these very good results, 

an in-vivo study in rabbit eyes was performed (chapter V). 

 

Beyond the principal scope of this chapter, the possibilities offered by triglycerides as depot 

were further investigated. Both triglycerides were pre-melted together prior to extrusion to 

change their properties and to study the effects on release patterns. By this, a prolongation of 

the release profiles of mAb and Ranibizumab was demonstrated. Release duration of mAb was 

prolonged by approximately 63 % up to 200 days and Ranibizumab release was extended to 

160 days being 40 % longer compared to conventional extrusion. Additionally, the release was 

further linearised by this approach. However, it was not yet possible to associate the improved 

release profiles to individual lipid characteristics (e.g. melting points, melting energy or status of 

crystallinity) and release was substantially different when SLIs were stored prior to release. To 

systematically investigate those aspects, more research is necessary. 

As a head to head comparison to lipid implants, PLGA implants having the same size and shape 

were manufactured using different Resomer® polymers. A sustained release of maximal 15 % 

and 10 % over 84 days was observed for the mAb and Ranibizumab, respectively, before the 

PLGA matrix completely degraded; no Bevacizumab or Aflibercept were released at all. As no 

burst release was seen when PLGA matrices degraded, incorporated protein most likely 

precipitated already within the depot.  
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V. IN-VIVO STUDY IN RABBIT EYES 

V.1 INTRODUCTION 

The intravitreal release of therapeutic peptides and proteins drugs is currently one of the most 

intensively investigated research areas. Table V-1 provides an overview of research which has 

been carried out in this field. Irrespective of the type of depot used within these studies, it is 

noteworthy that in most cases Bevacizumab was used. The depots already described in 

literature are highly diverse in terms of their size, method of production, and use of excipients. 

Reports can be found on implants [266], micro- and nanospheres [208, 209, 213], or hydrogels, 

which represent the most commonly used platforms including thermo-responsive hydrogels 

[206, 267], hydrogels prepared by Diels-Alder-reaction [112], or silk hydrogels [96]. In recent 

years, also more sophisticated depots have been investigated, for instance electrochemically 

prepared mesoporous silicon oxide [210], hexyl-substituted PLA [207], a capsule drug ring 

device [211, 212, 268], or stimuli-responsive nanomaterials [269, 270], just to name a few. If 

disclosed at all, Bevacizumab or a single-chain VEGF antibody fragment (most likely 

Ranibizumab) were used. 

Also, new in-vitro models mimicking the vitreous have been described. Loch et al. introduced a 

vitreous model to obtain data on permeability coefficients of ophthalmic drugs, simulating the 

vitreous body or simulating drug distribution once administered into the eye [271-273]. Patel et 

al. reported on an ex-vivo vitreous humor model to evaluate or even predict protein stability after 

intravitreal administration [274, 275].  
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Table V-1: Literature overview of controlled release systems for intravitreal peptide and protein release. 

LIPID BASED DELIVERY PLATFORMS 

Peptide or protein Analytical 
technique 

Delivery platform in-vitro 
release  

Reference comment 

Bevacizumab ELISA Nanoliposomes not available Abrishami et al. 

(2009) [213] 
• intravitreal injection of liposomes 

• encapsulated bevacizumab was well 
tolerated through 42 days in rabbits  

• clearance of this drug in vitreous from 
liposomal formulations was slower than 
soluble form. 

OTHER DELIVERY PLATFORMS 

Peptide or protein Analytical 
technique 

Delivery platform in-vitro 
release 

reference comment 

Bevacizumab ELISA Silk hydrogel up to 90 days Lovett et al. 
(2015) [96] 

• concentrations in vitreous humor after 
90 days equivalent to those levels for the 
positive control at 1 month 
 

single-chain VEGF 
antibody fragment 

SE-HPLC, SDS-
PAGE 

Semi-solid 
hexylsubstituted 
poly(lactic acid) (hexPLA) 
 

up to 98 days Asmus et al. 
(2015) [207] 

• structure was kept intact during 
incorporation and release 

connexin43 mimetic 
peptide 

retinal ischaemia–
reperfusion rat 
model 
 

PLGA nano- and 
microparticles 

up to 
120 days 

Chen et al. 
(2015) [208] 

• promising results for Cx43 down-regulation 
and RGC rescue in acute injury mode 

Bevacizumab MTT, 3-D 

angiogenesis 

culture 

Thermoresponsive 

hydrogel 

up to 60 days Hu et al. (2014) 

[267] 

• after 1 month of intravitreal injection, the 
histomorphology of rabbit’s retina was 
preserved 

• released bevacizumab inhibited anti-
angiogenesis in 3-D cultures 
 

Bevacizumab ELISA Nanostructured 
mesoporous silica (SiO2) 
films 
 

up to 30 days Andrew et al. 

(2011) [210] 
• antibody released in its active form over 

1 month; approx. 98 % of drug released 
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Peptide or protein Analytical 
technique 

Delivery platform in-vitro 
release 

reference Comment 

Bevacizumab induced choroidal 
neovascularization 
(CNV) in rat eyes 

PLGA nanoparticles not available Pan et al. (2011) 

[276] 
• reduction in CNV area suggests successful 

creation of formulations while retaining 
bevacizumab’s active antiangiogenic 
properties 
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V.2 IN-VIVO STUDY IN RABBIT EYES WITH PLACEBO LIPID IMPLANTS 

In 2012, a study using placebo SLIs was performed to assess the biocompatibility and 

biodegradability of SLIs inserted into rabbit eyes. SLIs were produced aseptically using a 

MiniLab® Micro Rheology Compounder (Thermo Haake GmbH Karlsruhe, Germany). The 

formulation consisted of 30 % H12 and 70 % D118, screw speed was set to 40 rpm and 

extrusion temperature was adjusted to 41°C. SLIs were inserted into rabbit eyes by a small 

incision, and biocompatibility and biodegradability were assessed over 84 days. 

 

Figure V-1: SLIs inserted into the vitreous of rabbit eyes. The pictures were taken at pre-determined time 

points starting from (A) day 14 and then after (B) 28 days, (C) 42 days, (D) 56 days, (E) 70 days and (F) 

84 days. 

 

The pictures displayed in Figure V-1 show SLIs inserted into the vitreous of rabbit eyes. The 

macroscopic appearance was monitored over 84 days. Within this observation period, no 

adverse effects, e.g. inflammation, irritation or swelling occurred. It was therefore concluded 

that SLIs show very good biocompatibility in rabbit eyes, thereby underlining their potential for 

use as an intravitreal depot. After the SLIs were removed from rabbit eyes after 7, 30 and 

90 days, the mass of explanted SLIs was assessed and compared to the original masses to 

monitor the implant degradation. After 90 days, SLIs were degraded by 25.6 % on average. The 

degradation profile was found to be linear (R2 = 0.9766), which resulted in a theoretical 
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C 
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degradation time frame of approximately 1 year. The data of this study have not yet been 

published. 

Based on the promising results obtained by the biocompatibility/biodegradability study, it was 

decided to perform a study with Ranibizumab loaded SLIs. Therefore, a formulation was 

developed (see chapter IV.2.3) which ensured the sustained release of Ranibizumab over 

approximately 110 days from SLIs being 1.5 mm in diameter, which is still a suitable diameter 

for intraocular use. Additionally, protein stability of released Ranibizumab was found to be 

excellent, making it to the most promising candidate (chapter VII.2.1) for this study.  

The in-vivo study in rabbit eyes was performed by the Moran Eye Center, Salt Lake City, Utah, 

USA. 
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V.3 CHOROIDAL NEOVASCULARISATION (CNV) MODEL  

Neovascularisation was induced as described in III.2.5.4. It was induced by an adeno-

associated virus (AAV) mediated expression of vascular endothelial growth factor (VEGF) [243, 

277]. AAV-VEGF was injected subretinally to induce neovascularisation in dutch-belted rabbit 

eyes. An increased expression of VEGF in the retina is sufficient to induce retinal 

neovascularisation [277].  

 

Figure V-2: Isolectin staining of flatmounts for choroidal neovascularisation lesions. Illustrated are the (A) 

choroid control, the (B) choroid lesions induced, (C) the control of retina, and the (D) increased retina vessel 

proliferation.  

 

A fluorescein solution with 100 mg/ml was injected (100 µl) into the vitreous, enabling an 

imaging for up to 30 min. Figure V-2 illustrates that neovascularisation was successfully induced 

as choroidal lesions (Figure V-2 B) and an increased proliferation of retina vessels were 

observed (Figure V-2 D) compared to the controls (Figure V-2 A and Figure V-2 C). Although it 

was intended to induce choroidal neovascularisation, evidence suggested only retinal 

neovascularisation was achieved. 

A 

C 

B 

D 
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V.4 RESULTS AND DISCUSSION 

V.4.1 IN-VITRO RELEASE OF RANIBIZUMAB 

In-vitro release of Ranibizumab was evaluated additionally to in-vivo release. Thus, it was 

possible to perform an in-vitro-in-vivo correlation. Extrusion of aseptically SLIs was performed 

as described previously (III.2.5). The semicircle shaped SLIs had a final weight of 32.93 mg 

(±2.39 mg) and in average 1.65 mg (±0.12 mg) Ranibizumab were loaded onto an implant. 

 

Figure V-3: In-vitro release of Ranibizumab from the same batch which was manufactured for the in-vivo 

study.  

 

Results from Ranibizumab release study (Figure V-3) showed qualitatively comparable release 

behaviour as described before (chapter IV.2.3). During the first phase lasting for 4 weeks, 51 % 

of incorporated protein was released (30.1 µg/day), followed by a phase ranging from day 28 to 

day 112 in which approximately 36 % of incorporated protein equivalent to 7.1 µg protein per 

day was liberated. No burst release occurred, after 3 days of incubation only 4.8 % of 

Ranibizumab was released. 
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V.4.2 MACROSCOPIC OBSERVATIONS 

SLIs were inserted into the vitreous of dutch-belted rabbits by a small incision. The vitreous was 

examined after 15, 22, 30, 51, 63 and 87 days after implantation of the SLI. Both placebo SLIs 

and Ranibizumab loaded SLIs were inserted.  

Differences between placebo and Ranibizumab loaded SLIs were not observed, therefore the 

following descriptions do not distinguish between them.  

 

Figure V-4: Pictures of dutch-belted rabbit eyes where retinal neovascularisation was not induced (negative 

control). Ranibizumab loaded SLIs were inserted and the eyes examined after (A) day 6, (B) day 22, (C) day 

30, (D) day 51, (E) day 63 and (F) day 87.  

 

Within the observation period of 87 days, no adverse reactions or impairments like inflammation, 

encapsulation, swelling, or redness occurred. Also, the inserted SLIs stayed at the side of 

implantation (Figure V-4). Therefore, it can be concluded that the SLIs were well tolerable and 

biocompatible.  
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D 

B 
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Figure V-5: Pictures of retinal neovascularisation induced dutch-belted rabbit eyes. SLIs were inserted and 

the eyes examined after (A) day 6, (B) day 22, (C) day 30, (D) day 51, (E) day 63 and (F) day 87. 

 

Figure V-5 illustrates that also in some cases small pieces of SLIs floating in the vitreous were 

observed right from the beginning. This means that those small parts of the implant broke apart 

most likely already during to the incision procedure.  

 

Figure V-6: Pictures of retinal neovascularisation induced dutch-belted rabbit eyes. SLIs were inserted and 

the eyes examined after (A) day 6, (B) day 22, (C) day 30, (D) day 51, (E) day 63 and (F) day 87. 

 

Also, a breakage of the complete implant was noticed. As shown in Figure V-6, during the first 

22 days of observation, no anomalies were observed, but at day 30 it was observed that the 

complete SLI broke apart into two pieces. This points into the direction that the breakage 

occurred during the incubation and was not caused by the incision as mentioned above. 
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In total, in 28.5 % of examined rabbit eyes a haze or debris of the cornea was observed after 

1 month. The percentage increased over time ending up at 66.7 % where a haze/debris was 

noticed after 3 months. The migration of the SLI into the anterior chamber was observed for 

25.0 % after 1 month and for 45.8 % after 2 months.  

Compared to the biocompatibility/biodegradability study from 2012, SLIs used here were 

mechanically less stable. Breakage and disintegration observed within the present study (Figure 

V-6) had not been observed in 2012 (Figure V-1). There are several reasons for this 

observation: dutch-belted rabbit eyes are smaller than those of New Zealand rabbits used in 

2012. Therefore, more force is required to place implants into the vitreous, possibly damaging 

the SLIs. Implants used here were smaller in diameter (1.5 mm) than the ones used previously 

(2.0 mm). Furthermore, a different formulation was used, comprising a higher percentage of 

H12 which could have possibly affected the mechanical stability of the SLIs. This aspect was 

further evaluated in detail and will be described below (V.4.5). As no difference was observed 

between placebo and Ranibizumab loaded implants in the current study, it is unlikely that the 

presence of Ranibizumab caused implant breakage. 

Further reasons leading to the break-up of implants could be external/environmental factors. As 

published by Lorget et al. [278] and Schwartz et al. [279], the temperature within rabbit eyes is 

not exactly 37°C as it was the case for in-vitro conditions. It is known that the temperature 

ranges from 35.8°C to 38.2°C in rabbit eyes, and that temperatures within the vitreous of rabbits 

are higher in comparison to mini pig or monkey eyes. Furthermore, «significant regional 

differences […] particularly between the lateral and the medial locations where the delta was 

approximately 2.5°C in the rabbit» are described [278]. The average temperature in the lower 

vitreous is 37.5°C, which is the region were the implants were located. Based on our previous 

studies, it is known that the percentage of H12 substantially impacts mechanical stability of SLIs; 

at a very high percentage even causing complete disintegration at 37°C (IV.2.3.4). To 

determine, if a higher external temperature than 37°C could cause a mechanical weakening of 

the implants (and therefore causing a break-up), a study was performed discussed in V.4.5.  
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V.4.3 PHARMACOKINETIC STUDY 

Released Ranibizumab was quantified according to III.2.5.5. In the following, the 

pharmacokinetic data from four different eyes are presented representing the pharmacokinetic 

profile of Ranibizumab within this study. Table V-2 provides an overview of Ranibizumab 

amounts in nanograms (ng) which was quantified within the different compartments of those 

eyes after the first months. 

Table V-2: Overview of Ranibizumab amounts measured within the different rabbit eye compartments 

1 month after implantation of SLIs. Amounts are given in ng. 

Compartment Eye 437 L Eye 437 R Eye 438 L Eye 438 R 

Cornea 53.13 35.59 72.90 4.85 

Vitreous 8.52 0.72 22.91 1.21 

Lens 137.29 106.07 483.63 41.68 

Iris 3.89 2.30 46.94 3.77 

Retina/choroid 1.21 3.77 5.35 2.67 

Aqueous humor 31.21 90.60 189.74 15.72 

Conjunctiva 0.60 0.48 1.21 0.84 

Sclera 3.28 1.94 48.40 3.77 

Total 239.15 241.46 871.10 74.51 

 

The overall quantified amount of Ranibizumab varied between 871 ng (eye 438 L) and 75 ng 

(eye 438 R). Nonetheless, the overall amount of quantified Ranibizumab was very similar to 

each other regarding the other two eyes (239 ng and 241 ng). Most Ranibizumab was found in 

the lens (192.2 ng ±198.3 ng), cornea (41.6 ng ±28.9 ng), and aqueous humor (81.8 ng 

±78.9 ng) in all examined eyes.  
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Table V-3: Overview of Ranibizumab amounts measured within the different rabbit eye compartments 

2 month after implantation of SLIs. Amounts are given in ng. 

Compartment Eye 433 L Eye 433 R Eye 434 L Eye 434 R 

Cornea 0.00 0.00 7.65 46.75 

Vitreous 0.00 0.00 0.00 0.06 

Lens 0.85 0.00 97.76 103.50 

Iris 282.35 347.06 260.21 262.21 

Retina/choroid 0.00 0.00 2.46 27.75 

Aqueous humor 0.20 0.77 83.47 222.79 

Conjunctiva 0.00 0.00 8.31 0.00 

Sclera 1.13 0.00 17.22 37.80 

Total 284.53 347.83 477.08 700.87 

 

The same results were observed for Ranibizumab quantified after 2 months (Table V-3): the 

overall amount of released Ranibizumab ranged from 285 ng (eye 433 L) to 701 ng (eye 434 

R). The highest levels of Ranibizumab were measured within the lens (50.5 ng ±57.9 ng) and 

aqueous humor 102.3 ng (±112.2 ng). This time, also notable amounts were found in the iris 

(288.0 ng ±40.7 ng). 

After 3 months, no noticeable amounts of Ranibizumab were quantified any more.  

Ranibizumab concentrations were further measured within the retina/choroid after 1 month and 

2 months as shown in Table V-4. The target concentration for total inhibition of proliferation was 

observed at Ranibizumab concentrations ≥ 1.3 nM which are 62 ng/g. The necessary 

Ranibizumab concentration to inhibit the biological activity of VEGF by 50 % (IC50) was 

measured with 11 ng/g to 27 ng/g (data provided by Moran Eye Center, Salt Lake City, Utah, 

USA).  
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Table V-4: Overview of Ranibizumab concentrations in retina/choroid in ng/g after 1 and 2 months for all 

eyes.  

 1 month [ng/g] 2 months [ng/g] 
Target concentration for 

total inhibition [ng/g] 

Eye 1 15.59 0.00 

62 

Eye 2 56.27 0.00 

Eye 3 50.66 27.81 

Eye 4 120.03 376.47 

 

The data presented in Table V-4 indicate, that after 1 month at all eyes the concentration 

reached the IC50 of VEGF. In the case of eye 4, the target concentration of 62 ng/g was 

exceeded as 120 ng/g Ranibizumab were measured. After 2 months, only for two eyes 

measurable concentrations were calculated with 28 ng/g and 376 ng/g Ranibizumab. As 

observed previously, concentrations were found to greatly vary from each other. 

The in-vivo release of Ranibizumab was monitored over 3 months. Measurable amounts were 

found at the 1-month time point at all compartments and partly after 2 months. After 3 months, 

no noticeable amounts of Ranibizumab were quantified any more. Within the retina/choroid, 

especially after 1 month, concentrations were measured being above the IC50 of VEGF, partly 

even exceeded the concentration of total proliferation inhibition. However, in-vivo release was 

largely complete after 4 weeks and thus faster than measured in-vitro. Therefore, an in-vitro-in-

vivo correlation could not be established. 

V.4.4 COMPARISON OF OUR RESULTS TO CURRENT STATUS OF RESEARCH 

Abrishami et al. [213] describes the encapsulation of Bevacizumab within phospholipid based 

liposomes using the well-known film method which was used previously to encapsulate versatile 

drugs into liposomes [231, 280-283]. The liposomes were further processed to reach the 

nanoscale. Liposomal encapsulated Bevacizumab was injected intravitreally into rat eyes and 
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concentration was determined over 42 days by ELISA. The authors stated, that the 

Bevacizumab concentration was measured up to five times higher in rat eyes which received 

liposomal encapsulated Bevacizumab compared to those where Bevacizumab was 

administered in an aqueous solution. This points into the direction that the encapsulated 

Bevacizumab was prevented from clearance better than the soluble drug showing the beneficial 

effects of liposomes as carrier. However, a disease model was not tested within this work. 

A silk hydrogel as potential depot for intravitreal delivery of Bevacizumab was described by 

Lovett et al. in 2015 [96]. The concentration of Bevacizumab released from silk hydrogels was 

measured over 90 days within the vitreous humor of dutch-belted rabbit eyes. Bevacizumab 

concentrations measured at day 90 were equivalent or greater than those analysed at day 30 

after administration of the positive (standard dose) control, which was a single injection of 

1.25 mg Bevacizumab. Again, a disease model was not considered.  

Nanostructured mesoporous silica films represent another option. Here, Bevacizumab was 

released in its active form over approximately 1 month, but was only measured in-vitro [210]. 

Hu et al. reports on the anti-angiogenetic effect of Bevacizumab released from thermo-

responsive hydrogels [267]. Those gels consisted of block copolymers of methoxy-PEG-block-

PLGA cross-linked with 2,2-bis (2-oxazoline) (BOX). This special polymer can reverse the sol-

gel-sol phase transition. The mPEG-PLGA-BOX gel was injected intravitreally into rabbit eyes 

and released Bevacizumab was collected after 1 month. The bioactivity of released 

Bevacizumab was tested by different assays including the human umbilical vein endothelial 

cells (HUVECs) assay, Macaca mulatta retina epithelial cells (RF/6A) assay and 3-D 

angiogenesis assay. It was found that anti-angiogenesis took place, therefore demonstrating 

the bioactivity of released Bevacizumab. 

The performance of Bevacizumab in a CNV rat model induced by laser photocoagulation has 

been reported by Pan et al. [276]. Within the study, different long-acting Bevacizumab 

formulations (PEG-bevacizumab conjugate and PLGA-encapsulated bevacizumab) were 
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compared to Bevacizumab as an aqueous solution. The authors reported on a reduction of CNV 

area for all long-acting Bevacizumab formulations compared to the aqueous Bevacizumab 

solution. The authors concluded that a reduction in CNV area suggests successful formulations 

while retaining bevacizumab’s active antiangiogenic properties. 

A study describing the in-vivo behaviour of Ranibizumab released from a depot in a disease 

model was not found in literature. 

Biocompatibility issues were not reported in the studies described above. Also, within our study, 

biocompatibility of lipid implants was excellent since no adverse reactions or inflammation was 

observed over 3 months. Within our study, a sustained release of Ranibizumab over at least 

28 days was measured. Partly, also after 42 days Ranibizumab was still released which 

corresponds to the deliver time frames described by Abrishami et al. [213] and Hu et al. [267]. 

Other references reported on longer release durations [96]. Since the breakage of SLIs occurred 

rather early within our in-vivo study, a further examination (e.g. histological examination) was 

not performed. By this, a comparison to published data is not possible.  

 

V.4.5 MECHANICAL STABILITY OF IMPLANTS 

During the in-vivo study, breakage of SLIs was observed, which did not occur during the 

biocompatibility study performed in 2012. A reason for this might be temperature gradients being 

present in rabbit eyes, which has been already reported [278, 279]. Those gradients are ranging 

from 35°C to 38°C and could therefore negatively impact mechanical properties of the implants, 

hence leading to breakage. Additionally, a higher percentage of the low melting lipid H12 was 

used within the study, which most likely influenced mechanical properties of the SLIs.  

To verify these hypotheses, a study was performed focusing on the mechanical properties of 

SLIs. In a first experiment, implants of the same formulation used within the in-vivo study were 

incubated at different temperatures (35°C, 37°C, 39°C) and bending strength was measured 
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after 7 days and 28 days, respectively. Second, the composition of the lipid matrix of SLIs was 

varied (30 % to 50 % H12) and bending strength of implants was determined after an incubation 

at 37°C for 7 days and 28 days. All formulations tested here comprised 10 % protein 

lyophilisate. Implants were placed in 1.0 ml PBS pH 7.4 and were incubated in a Certomat IS 

(Sartorius BBI, Göttingen, Germany) horizontal shaker at 40 rpm. After 7 days and 28 days, 

SLIs were removed, dried in a vacuum chamber for 24 h at 25°C at 10 mbar (Memmert GmbH 

& Co KG, Schwabach, Germany) and bending strength was determined. 

 

Figure V-7: Bending strength of lipid implants consisting of 10 % protein lyophilisate, 45 % H12 and 45 % 

D118 incubated at 35°C, 37°C and 39°C over 28 days. Bending strength was measured prior to release (day 

0) and after 7 days and 28 days of release, respectively. 

 

Figure V-7 displays the bending strength of SLIs incubated at 35°C, 37°C and 39°C. Irrespective 

of the incubation temperature, bending strength decreased upon incubation. Most importantly, 

mechanical stability was less the higher the incubation temperature was. After 28 days of 

incubation, bending strength was measured with 0.88 N (±0.06 N), 0.76 N (±0.03 N) and 0.66 N 

(±0.05 N) for the incubation temperatures 35°C, 37°C and 39°C, respectively. Thus, a 

correlation between mechanical stability and incubation temperature can be described. 
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Figure V-8: Bending strength of lipid implants consisting of 10 % protein lyophilisate and different lipid 

matrices comprising 30 % and 50 % H12 were incubated at 37°C over 28 days. Bending strength was 

measured prior to release (day 0) and after 7 days and 28 days of release, respectively. 

 

Second, SLIs were tested including both the exact lipid matrix used within the biocompatibility 

study from 2012 (30 % H12, 70 % D118) and the study described here (50 % H12, 50 % D118). 

The results of these experiments are displayed in Figure V-8. The formulation with 30 % H12 

was mechanically more resistant than SLIs containing 50 % H12. As more mechanically stable 

SLIs were used for the biocompatibility study than used within the present study, the breakage 

which occurred within this study can be explained. Both aspects (temperature and implant 

composition) could be a possible explanation of SLI breakage occurring during the in-vivo study 

and the faster release in-vivo compared to in-vitro release.  
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V.5 CONCLUSION 

Ranibizumab loaded SLIs were inserted into dutch-belted rabbit eyes and the in-vivo release 

was monitored over 3 months additionally to macroscopic observations.  

In 2012, excellent biocompatibility of placebo lipid implants inserted into the vitreous of New 

Zealand rabbits was reported. Over 90 days, no inflammation, encapsulation or other adverse 

reactions and complications were observed, thereby highlighting the great potential of lipid 

implants for intravitreal applications. 

Within our study, biocompatibility of lipid implants inserted into dutch-belted rabbit eyes was 

excellent, since no adverse reactions or inflammation was observed over the complete 

observation time of 3 months. After 2 months, in 45.8 % a break-up of implants occurred and in 

2/3 of rabbit eyes a haze/debris was noticed after 3 months. Associated with the partial break-

up of implants, in-vivo release was found to be faster than in-vitro going in line with high standard 

deviations. In-vivo release was tested over 3 months, but no more Ranibizumab was released 

after 8 weeks. 

It was hypothesised that the formulation used here was mechanically more sensitive compared 

to the one used in 2012 for two reasons. First, the formulation used here, comprised a relatively 

high percentage of H12. Second, the temperature within dutch-belted rabbit eyes might be 

higher than 37°C possibly impacting mechanical properties of SLIs. We could confirm that both 

the relatively high percentage of H12 and slightly higher incubation temperatures (modelling 

elevated temperatures within the rabbit eye) than 37°C do negatively impact mechanical stability 

of SLIs. It is therefore likely that this was the reason for implant break-up and faster in-vivo 

release. Furthermore, another possible reason could be that due to the CNV induction the 

temperature within the rabbit eyes changed and hence influenced the mechanical stability of 

the implants additionally. 
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VI. BIOLOGICAL ACTIVITY OF RELEASED MINI-FH 

FROM LIPID IMPLANTS 

VI.1 INTRODUCTION 

This chapter describes the sustained release of the protein mini-Factor H (mini-FH) from SLIs 

and the determination of its biological activity following the release from the depot. Mini-FH is a 

protein having a molecular weight of 43.3 kDa and is a C3-opsonin targeted complement 

inhibitor for potential use against paroxysmal nocturnal hemoglobinuria (PNH) [240, 241]. PNH 

is characterised by haemolytic anaemia caused by the expansion of hematopoietic progenitor 

cells. In turn, PNH results in anaemia, hemoglobinuria, fatigue, and other hemolysis-related 

disabling symptoms [284-287]. Currently, Eculizumab is the only therapy available for patients 

suffering from PNH [288, 289]. Schmidt et al. recently described a novel therapeutic approach, 

which involves C3-opsonin targeted complement inhibitors, which are engineered from parts of 

the natural complement regulator Factor H (FH) or the complement receptor 2 (CR2) [240, 241]. 

The FH inhibitor class includes three variants of the so-called mini-FH which was used within 

this experiment. Schmidt et al. observed that mini-FH was more efficient in preventing 

complement activation on PNH erythrocytes which represents a promising therapeutic 

alternative [241]. 

PNH is a disease of the so-called alternative pathway (AP) [290-292] as it is also the case for 

wet AMD [293]. That is the reason why AP inhibitors (like mini-FH) are first tested in the «model 

disease» PNH before they are subsequently tested in other AP-mediated disease models as it 

is the case here. Currently, mini-FH is also being tested in canine and monkey eyes (not 

published). Meanwhile, other AP inhibitors than mini-FH have already been tested in AMD 

animal models. It is described that «Targeted complement inhibitors such as TT30 and its 

homologs have not only shown promising potential in PNH, but also in a variety of other AP-
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mediated clinical conditions ranging from collagen induced arthritis and ischemia/reperfusion 

injury to AMD» [294, 295]. Further, Schmidt et al. stated that «in the case of AMD, mini-FH may 

have particular advantages» [240]. In the case of chronic and progressive eye diseases (as it is 

the case for AMD), the loss of vision and neovascularisation of the retinal tissue is strongly 

associated with the complement regulation by Factor H. Factor H was identified as a major 

binding protein for lipid peroxidation, which is a marker of oxidative stress accumulating under 

various diseases conditions including AMD as described by Weismann et al. [296, 297]. 

The aim of this chapter is to evaluate the potential of mini-FH loaded SLIs as depot for the 

treatment of AP-mediated diseases like wet AMD. The preparation of mini-FH loaded SLIs and 

their in-vitro release behaviour is described in the following. Additionally, the biological activity 

of released mini-FH was measured by a rabbit erythrocyte hemolysis assay. The assay was 

performed by the group of Dr. Christoph Schmidt at the Institute of Pharmacology and Natural 

Products and Clinical Pharmacology, University of Ulm, Germany.  
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VI.2 RESULTS AND DISCUSSION 

VI.2.1 IN-VITRO RELEASE OF MINI-FH 

Lipid implants were produced using a ZE-5 mini extruder. The lipid matrix consisted of 50 % 

H12 and 50 % D118, mini-FH load was adjusted to 5 %, resulting in a final protein load of 

1.45 mg (± 0.03 mg) per implant. Mini-FH was available as freeze-dried powder without any 

further excipients. Extrusion temperature was set to 35°C and screw speed was adjusted to 

40 rpm. 

 

Figure VI-1: Cumulative release of mini-FH from SLIs being 1.5 mm x 15 mm in size. Protein load was set to 

1.45 mg (± 0.03 mg) per implant. 

 

According to the in-vitro incubation protocol described in chapter III.2.3, extrudates were placed 

into 2.0 ml micro centrifugation tubes, 1.0 ml PBS pH 7.4 was added and release was monitored 

at 37°C and 40 rpm using a Certomat IS (Sartorius BBI, Göttingen, Germany) horizontal shaker. 

Released mini-FH was measured spectrophotometrically at 280 nm applying an UV-VIS 

spectrometer (Agilent 8453, Böblingen, Germany). Linearity of measurements was established 
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for a concentration range of 0.001 mg/ml to 0.5 mg/ml (R2 = 0.9997). The samples were stored 

at -80°C directly after protein concentration was measured. 

Cumulative mini-FH release was monitored over 98 days. In total, 43.7 % of total incorporated 

mini-FH was released. The release curve did not show an initial burst, and the first phase was 

followed by a phase lasting until day 14 (25.4 µg mini-FH per day were delivered during this 

phase). Starting from day 14, release rate was slower (approximately 3.3 µg/day) lasting until 

day 98. After 98 days of release, the experiment was stopped because only minimal amounts 

of mini-FH were released. Those amounts would not be sufficient for biological activity 

determination. In contrast to the other proteins tested within this thesis (Figure IV-11), mini-FH 

was not completely released. In total, approximately 45 % of incorporated mini-FH were 

released. The non-recovered fraction of 55 % was probably still incorporated within the lipid 

matrix as this was already described for other proteins using triglyceride based SLIs [185]. As 

this phenomenon is more pronounced for hydrophobic proteins [185], it can be assumed that 

mini-FH is a rather hydrophobic protein. However, this was not evaluated within the present 

study and should be addressed in the future. 

 

VI.2.2 BIOLOGICAL ACTIVITY OF RELEASED MINI-FH 

Released mini-FH was collected at predetermined time points and frozen at -80°C prior to 

biological activity measurements. The biological activity of released mini-FH was determined as 

previously described [241]. In brief, 10 µl human serum containing Mg-EDTA was mixed with 

20 µl sample in PBS pH 7.4 and 10 µl of a rabbit erythrocyte suspension in PBS/Mg-EDTA. The 

final serum concentration was 25 %. The mixture was incubated for 30 min at 37°C and reaction 

was stopped with 120 µl PBS/EDTA (5 mM) on an ice bath. Hemolysis was determined via 

optical density measurement of 100 µl of the supernatant at 405 nm using a spectrophotometer. 

Rabbit erythrocytes lyse in presence of active human serum due to the complement activation 
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and formation of membrane attack complexes on rabbit erythrocytes. Mini-FH inhibits the 

human complement system and therefore protects rabbit erythrocytes.  

 

Figure VI-2: Hemolysis in dependence of mini-FH concentration. Positive and negative control in this 

experiment are displayed as open circles or filled triangles.  

 

Figure VI-2 displays the mini-FH reference curve at a concentration range of 12.5 nM to 

1600 nM and the controls (negative and positive). The reference of 100 % is defined by reagent 

red blood cells (rRBCs) in MQ water, having the same volume and ratio as the samples. The 

positive control (total hemolysis) consisted of rRBCs diluted with human serum without the 

addition of any inhibitors, e.g. mini-FH. The value of total hemolysis is slightly above 100 % (5 % 

to 9 %) which is within the error limit of the assay. The negative control was a dilution of the 

serum where 5 mM EDTA were added. In the absence of Mg2+ ions (present in EDTA), the AP 

of the cascade does not function, although all complement proteins are present. 

Mini-FH data points were analysed in duplicates, whereas the positive and negative control 

were analysed in quadruplicates.  



CHAPTER VI 

126 

 

Figure VI-3: Hemolysis of mini-FH released from SLIs determined over 98 days. 

 

The hemolysis percentage in dependence of mini-FH released from SLIs is illustrated in Figure 

VI-3. It can be observed that hemolysis was measured between 2.6 % and 3.1 % within the first 

14 days of release meaning a complete inhibition of hemolysis occurred pointing into the 

direction of a strong biological activity of released mini-FH. Mini-FH released on day 21 still 

revealed clear biological activity (14.3 % inhibition of hemolysis). Samples taken between day 

28 and day 98 showed a hemolysis of 92.3 % and 81.2 %. This leads to the conclusion that 

released mini-FH lost its biological activity upon release compared to the fractions released 

within the first 21 days. Nevertheless, still after 98 days of in-vitro release, mini-FH comprised 

biological activity. 

The biological activity of proteins released from lipid based systems has been described in 

literature before. For instance, Koennings et al. described the biological activity of the brain-

derived neurotrophic factor (BDNF), released in-vitro from compressed implants over 1 month. 

The biological activity of BDNF was measured with up to 60 % intact protein assessed by ELISA 

[175]. Also, the activity of released interleukin-18 (IL-18) from compressed lipid implants was 
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observed over 12 days, showing a progressive integrity loss down to 20 % to 40 % [174]. Even 

et al. demonstrated that the in-vivo release of the peptide TRP-2 delayed tumor growth for 

3 days compared placebo groups, indicating that TRP-2 was biologically active [187]. 

Despite SLIs, solid lipid nanoparticles (SLNs) as delivery platform have been used as well. 

Human thymidylatesynthase inhibitor peptide, an octapeptide, was encapsulated within SLNs 

and apoptosis was measured using a cell culture model over 4 h once the SLNs were spiked to 

the cell media. The increase of apoptosis percentage observed indicated that SLNs could carry 

the peptide efficiently to its enzymatic target in its biologically active form [140]. In 2009, 

Abrishami et al. reported on the encapsulation of Bevacizumab within nanoliposomes [213]. 

Nanoliposomes were administrated intravitreally into rabbit eyes and Bevacizumab 

concentration was assessed by ELISA over 42 days, showing that the clearance of 

Bevacizumab from nanoliposomes was slower than from the soluble form and that Bevacizumab 

was still active. 
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VI.3 CONCLUSION 

The protein mini-FH was encapsulated within SLIs and release was monitored over 98 days in 

a sustained fashion. Release started to level off after 70 days of incubation. However, even after 

98 days, small amounts of mini-FH were still released from SLIs. The biological activity of 

released mini-FH was determined, showing a clear biological activity over the first 21 days. 

Furthermore, mini-FH released between day 56 and day 98 still exhibited biological activity. 

In literature, lipid based systems have already been described for the sustained release of 

biologically active peptides and proteins [140, 187, 213]. To the best of our knowledge, none of 

those reports assessed the biological activity over a period of more than 42 days. Here, mini-

FH biological activity was measured over a time frame of 98 days which is unique. These 

findings underline the great potential of lipid based implants, as they can ensure long-term 

release of proteins but at the same time preserve biological activity of encapsulated protein.  

The present study demonstrated the feasibility of SLIs for long-term release of the complement 

factor mini-FH over several weeks. Based on these promising results, future work should 

progress with evaluating the source of incomplete mini-FH release, in-vitro release optimisation 

(further tailoring of release, more complete release) and consequently the in-vivo performance 

of the system, e.g. in rabbit eyes. 
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VII. STABILITY OF RELEASED PROTEIN 

FRACTIONS FROM LIPID AND PLGA MATRICES  
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VII.1 INTRODUCTION 

Developing protein delivery systems ensuring the stability of the protein drug remains a 

challenge [215]. Extensively investigated delivery systems for protein delivery are PLGA based 

systems [45, 71, 242], PLGA composites [68, 298] or other polymers like chitosan [79] including 

different delivery platforms such as hydrogels [111], nanogels [88, 114] or silk [96]. Protein drugs 

investigated for controlled release include model proteins, for instance bovine serum albumin 

(BSA) [114], lysozyme [175] or pharmaceutical proteins, e.g. erythropoietin (EPO) [45, 242], 

insulin [68, 79, 298], goserelin (Zoladex®) or monoclonal antibodies like bevacizumab [96].  

Table VII-1 and Table VII-2 display a review of controlled release systems for peptides and 

proteins delivered from lipidic and non-lipidic depots which address protein stability (Table VII-1) 

and bioactivity aspects (Table VII-2) of encapsulated and/or released protein. The references 

provided in the tables illustrate that significant research has been performed in this field within 

the last years, while the focus was mainly on PLGA based depots or hydrogels. Beyond 

«classical» analytical techniques to characterise proteins, e.g. SE-HPLC, SDS-PAGE or CD, 

also the bioactivity of released proteins (Table VII-2) have been investigated. Nonetheless, little 

research has been performed with respect to lipidic depots.  

In the past, only a few studies have reported on protein stability after encapsulation into the 

matrix [68, 242], but stability of the released protein has often not been taken into account. But, 

protein stability and activity should be addressed more intensively in future, as a drug delivery 

system is useless when the delivered protein comprises no acceptable stability and biological 

activity, respectively.  

More recently, several papers have been published also addressing protein stability and activity 

aspects of released protein for insulin [49] exenatide [217] or a fab-fragment [72] delivered from 

PLA/PLGA microspheres [49, 217] or PLGA-triacetin depots [72]. A major focus was on 

chemical degradation of insulin and exenatide during release from PLA/PLGA microspheres. 

The authors demonstrated deamidation of insulin [49] and acylation for exenatide [217] in the 
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time frame of 18 to 20 days upon release. Contrarily, stability of a fab-fragment released over 

approximately 80 days from a PLGA-triacetin based depot was described to be promising even 

though relative antigen binding capacity dropped to 80 % and peak area measured by IEX was 

found to be halved after 12 weeks of release [72].  

Moreover, reports can be found on biological activity [63, 77, 84] and binding capacity [72] of 

released proteins of different size and structure, e.g. NEL-like molecule-1 (NELL-1), bone 

morphogenetic protein-2 (BMP-2), platelet-derived growth factor (PDGF-AA) or a fab-fragment 

from modified chitosan particles [77] or hydrogels [63, 84]. Irrespectively of the different delivery 

depots and proteins studied, biological activity and antigen binding capacity was found to be 

retained even after several weeks of release.  

For lipid based (mainly triglycerides) depots, which have been investigated since the early 

2000s, research has been focused on release profiles and underlying release mechanisms 

[155, 157, 158, 182, 299], the solid-state behaviour for the lipids [161, 163], effect of release 

modifiers [149, 160, 177, 178] or in-vivo-in-vitro correlations [168] of various drugs including 

small molecular drugs [163, 236, 299], model proteins [182] and pharmaceutical proteins [178]. 

However, protein stability aspects have not been investigated in depths until now. Analysis of 

encapsulated and released protein from lipidic systems has been described for the first time in 

2004 [167]. The integrity of rh-interferon α-2a after incorporation into SLIs and after 28 days of 

in-vitro release was assessed by SDS-PAGE, showing no noticeable aggregation or 

fragmentation of the protein [167, 176]. The released fractions where further analysed by SE-

HPLC for up to 60 days, confirming that the protein was mainly released in its monomeric form. 

(> 95 %) [167]. These promising results were underlined by a study by Sax et al. demonstrating 

that also a monoclonal antibody can be delivered over 150 days with a consistent monomer 

content [234]. Conversely, SDS-PAGE analysis of extracted brain-derived neurotropic factor 

(BDNF) from a glyceryl tripalmitate matrix revealed the formation of dimers upon incubation for 

1 month [175]. On biological activity of extracted protein or liberated protein fractions was not 

reported.  



CHAPTER VII 

132 

In this chapter, the stability of released protein fractions is described. Three aspects were 

considered: First, released proteins were analysed over a period of 26 weeks (mAb), 18 weeks 

(Ranibizumab), 14 weeks (Aflibercept) and 3 weeks (Bevacizumab), respectively. Fractions 

were collected from in-vitro release experiments from SLIs (chapter IV). Second, fractions 

liberated from PLGA matrices (Resomer® RG 502 and RG 502 H) were collected and analysed 

over 14 weeks. In a third approach, protein released over the first week after a 1 or 3-month 

storage of SLIs at 4°C was performed. Analysing these three aspects assist to obtain 

information on protein stability during long-term release from triglyceride and PLGA matrices 

and on stability while the proteins are incorporated into a highly hydrophobic triglyceride matrix. 
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Table VII-1: Literature overview on controlled release systems for peptides and proteins from lipidic and non-lipidic depots including protein stability evaluations of 

encapsulated and/or released protein. The references provided in table are sorted by year of publication starting from 2015 to 1998. 

LIPID BASED DEPOTS 

Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Ovalbumin SE-HPLC Tsc-extruded 
implants (Chol, 
lecithin, D114) 
 

up to 14 days Even et al. 
(2015) 
[233] 

• 40 % monomer loss after 14 days of release due to 
aggregation 

Interferon-α SDS-PAGE, 
FT-IR 

Tsc-extruded 
implants (H12, D118) 

up to 60 days Schulze et 
al. (2009) 
[181] 
 

• preservation of the protein integrity after manufacturing 

Brain-derived 
neurotrophic factor 
(BDNF), Lysozyme 

SDS-PAGE Compressed implants up to 80 days Koennings 
et al. 
(2007) 
[175] 

• Lysozyme: tendency towards aggregation during 
preparation 

• BDNF: no change directly after preparation, after 1 
month dimers detected 
 

rh-interferon α-2a SE-HPLC, RP-
HPLC 

Compressed tristearin 
implants 

up to 30 days Mohl et al. 
(2006) 
[176] 

• formation of 15 % to 20 % aggregates and up to 16 % 
oxidised protein after 3 weeks of release after implant 
storage 
 

rh-interferon α-2a SDS-PAGE Compressed tristearin 
implants 

up to 30 days Mohl et al. 
(2004) 
[167] 

• slight aggregation during in-vitro release 

NON-LIPIDIC DEPOTS 

Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Single-chain VEGF 
antibody fragment 

SE-HPLC, 
SDS-PAGE 

Semi-solid 
hexylsubstituted 
poly(lactic acid) 
(hexPLA) 
 

up to 98 days Asmus et 
al. (2015) 
[207] 

• antibody structure was kept intact during incorporation 
and release 

fab-fragment IEX, SE-HPLC PLGA-triacetin depot up to 80 days Chang et 
al. (2015) 
[72] 

• 5 % monomer loss and 55 % loss in main peak area 
(IEX)  
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Exenatide RP-HPLC, 
HPLC-MS/MS 

PLGA microspheres 20 days Liang et al. 
(2013) 
[217] 

• rapid acylation of exenatide dependent on water 
content 

Exenatide HPLC-MS/MS, 
optical rotation, 
UV 
 

PLGA solution 
mimicking depot 

incubation 
time: 5 days 

Liang et al. 
(2013) 
[300] 

• formation of non-native conformational changes 

• acylation as main degradation route 

IgG1 mAb SE-HPLC, 
SDS-PAGE, 
IEF-PAGE, CD, 
peptide 
mapping  
 

Silk hydrogels and 
lyogels 

up to 80 days Guziewicz 
et al. 
(2013) [98] 

• slight fragmentation (SE-HPLC), not seen in SDS-
PAGE  

• secondary and tertiary structure unchanged 

• elevated levels of oxidized mAb 

Insulin CD, DSC, SDS-
PAGE, RP-
HPLC, MALDI-
TOF-MS, FT-IR 

Chitosan-Zn-Insulin-
Complex incorporated 
into PLA-PEG-PLA 
copolymer 

up to 84 days Oak et al. 
(2011) [81] 

• formation of non-covalent aggregates upon release 

• FT-IR: significant depletion of α-helix and increase of 
random coils after 60 days of release  

• CD: changes in tertiary structure 

• DSC: dissociation of chitosan-Zn-insulin complex 

• RP-HPLC: complete degradation after 30 days 

• MALDI-TOF-MS: hydrolysis, deamidation; complete 
degradation after 30 days 
 

Octreotide, modified 
with maleic anhydride 
(MA) 

RP-HPLC, LC-
MS 

PLGA microspheres 42 – 56 days Ahn et al. 
(2011) 
[301]  

• 100 % acylation after 56 days of octreotide release 

• MA-octreotide: less acylation but faster release 
(42 days) 
 

Recombinant human 
growth hormone (r-
hGH) 

SDS-PAGE PLGA microparticles up to 28 days Rafi et al. 
(2010) [48] 

• no aggregation or fragmentation over 1 month 

insulin SDS-PAGE pH- and 
thermosensitive 
hydrogel 
 

up to 3 days Shi et al. 
(2010) [82] 

• neither aggregation nor fragmentation of insulin upon 
72 h of release 

Growth hormone-
releasing peptide-6 
(GHRP-6) 
 

RP-HPLC, 
MALDI-TOF-MS 

PLGA microspheres up to 30 days Park et al. 
(2010) 
[229] 

• acylation of GHRP-6 

• after 30 days of release 21 % to 78 % intact peptide 

Lysozyme DSC PLA in situ forming 
depot (triacetin) 

up to 60 days Al-Tahami 
et al. 
(2008) [54] 

• better conformational stability than control (protein in 
buffer) after 2 weeks of release 

• increased polymer concentration stabilise protein 
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Lysozyme, trypsin 
inhibitor 

SE-HPLC Recombinant gelatin 
hydrogel (HU4) 

up to 5 days Sutter et 
al. (2007) 
[302] 
 

• formation of mainly aggregates upon release; slight 
increase in fragment percentage 

BSA, ribonuclease A, 
avidin 

CD Sol-gel derived silica 
gels 

up to 3.5 days Teoli et al. 
(2006) 
[303] 

• no modification of the tertiary structure after entrapment 

Tetanus toxoid (TT), 
Ova, lysozyme 

SDS-PAGE, 
CD, FL 

Monomers of PLGA 
mimicking 
degradation 

incubation 
time: 20 days  

Determan 
et al. 
(2006) 
[304] 

• TT:  aggregation, formation of β-sheets, partial 
unfolding 

• Ovalbumin: no formation of aggregates, increase of α-
helix content and tertiary structure 

• Lysozyme: no aggregate formation, increase of α-helix 
content, tertiary structure unchanged  
 

BSA SDS-PAGE, 
SE-HPLC, FT-
IR 

Release model for 
PLGA depots: acidic 
pH of 2 
 

incubation 
time: 20 days 

Estey et al. 
(2006) 
[253] 

• Rapid aggregation and hydrolysis, secondary and 
tertiary changes 

Insulin RP-HPLC Chitosan 
microspheres 

up to 80 days Wang et al. 
(2006) [79] 

• In dependency of loading method, partially significant 
loss of insulin main peak 
 

BSA SDS-PAGE, CD PLG-amino 
cyclodextrine 
conjugates 
 

up to 28 days Gao et al. 
(2006) [66] 

• No aggregation of released BSA 

• Secondary structure unchanged over 21 days 

Insulin RP-HPLC, LC-
MS 

PLA and PLGA 
microspheres 

6 h Ibrahim et 
al. (2005) 
[49] 

• Insulin mainly destabilized by deamidation rather than 
acylation  

• Observation time: 18 days 
 

BSA CD, FL,  PEG-poly(L-histidine) 
copolymer in PLGA 
microspheres 
 

up to 60 days Kim et al. 
(2005) [43] 

• Rapid unfolding in secondary and tertiary structure 

Diphteria toxoid (Dtxd) SE-HPLC Incubation with PLGA 
microspheres 

incubation 
time: 56 days 

Namur et 
al. (2004) 
[305] 
 

• Monomer loss mainly caused by fragmentation 

Recombinant human 
growth hormone (rHGH) 

FT-IR PLGA microspheres up to 42 days Capan et 
al. (2003) 
[47] 

• Decrease in α-helix content and increase in β-sheet  
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Atrial natriuretic 
peptide (ANP) 

RP-HPLC, 
HPLC-MS 

PLA and PLGA 
solutions mimicking 
PLGA matrix 
 

incubation 
time: 60 days 

Lucke et 
al. (2003) 
[61] 

• Rapid acylation of ANP 

BSA Insoluble and 
soluble residue 
analysis 
 

PLGA implants up to 28 days Kang et al. 
(2002) [52] 

• BSA mostly released as insoluble form 

Insulin-like growth 
factor-I (IGF-I) 

RP-HPLC PLGA microspheres up to 21 days Meinel et 
al. (2001) 
[50] 
 

• Protective effect of various excipients after entrapment 
of IGF-I 

Lysozyme, α-
lactalbumin, BSA, 
VEGF 

SE-HPLC, 
Heparin-affinity 
chromatography 
(HAC) 
 

Semisolid, self-
catalyzed poly(ortho 
ester)s (POEs) 

up to 15 days van de 
Weert et 
al. (2001) 
[306] 

• BSA: increase of soluble aggregates up to 35 % over 
release time frame; occurred also for the other proteins 
(data were not shown) 
 

Human erythropoietin 
(rhEPO) 

SDS-PAGE PLGA microspheres 1 to 2 days Bittner et 
al. (1998) 
[45] 
 

• Substantial aggregate formation after encapsulation 

Erythropoietin SDS-PAGE LPLG-PEO-LPLG 
triblock copolymer 
microspheres 

up to 15 days Morlock et 
al. (1998) 
[44] 

• Rapid and significant reduction in monomer content (up 
to 100 % aggregate formation) 
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Table VII-2: Literature overview on controlled release systems for peptides and proteins from lipidic and non-lipidic depots including protein bioactivity aspects of 

encapsulated and/or released protein. The references provided in the table are sorted by the year of publication starting from 2015 to 2000. 

LIPID BASED DEPOTS 

Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Human 
thymidylatesynthase 
inhibitor peptide 
(octapeptide) 
 

MTT SLNs up to 4 h Sacchetti et al. 

(2015) [140] 
• increase of apoptosis percentage observed 

indicating that SLNs were able to carry the 
peptide efficiently to its enzymatic target 

Apolipoprotein E MTT and LDH 
assays in human 
cerebral 
microvascular 
endothelial cells 
 

SLNs functionalized with 
apolipoprotein E 

not avaiable Neves et al. 

(2015) [252] 
• no toxicity and a 1.5-fold increment in the 

blood-brain-barrier permeability 

Protamine, anionic 
polysaccarides 

Cell viability (CCK-
8 assay) 

SLNs not avaiable Apaolaza et al. 

(2015) [148] 
• partial recovery of retina  

• successful RS1 gene transfer to Rs1h-
deficient animals using non-viral 
nanocarriers demonstrated 
 

Ovalbumin CD4+ and CD8+ T 
cell proliferation, 
IgG titer, IFN-γ and 
IL4 secretion 
 

Tsc-extruded implants 
platform (Chol, lecithin, 
D114) 

up to 7 days Even et al. 

(2014) [186] 
• generation of cellular and humoral immune 

responses 

siRNA, antisense 
oligonucleotides 

Transfection Assay ketal nucleoside lipid 
(KNL) nanoparticles 

not available Luvino et al. 

(2013) [147] 
• siRNA exhibits protein knockdown 

• suitable transfecting reagent for novel 
therapeutic approaches against prostate 
cancer 
 

Bevacizumab ELISA Nanoliposomes not available Abrishami et al. 

(2009) [213] 
• intravitreal injection of liposomes 

• encapsulated bevacizumab was well 
tolerated through 42 days in rabbits  

• clearance of this drug in vitreous from 
liposomal formulations was slower than 
soluble form 
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Brain-derived 
neurotrophic factor 
(BDNF), Lysozyme 

ELISA Compressed implants up to 80 days Koennings et al. 

(2007) [175] 
• Lysozyme: in the first 30 days, 60 % to 

75 % were found in its enzymatically active 
form 

• BDNF: 20 % or 60 % intact protein over 
1 month  
 

Insulin ELISA Triglyceride based 
compressed implants 

up to 14 days Appel et al. 

(2006) [169] 
• Preserved bioactivity of incorporated and 

released protein 

• strong dose-dependent effects on tissue 
engineered cartilage 
 

Interleukin-18 (IL-18) ELISA Compressed implants up to 12 days Koennings et al. 

(2006) [174] 
• progressive integrity loss (down to 20 % to 

40 %) observed with ongoing release 

NON-LIPIDIC DEPOTS 

Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Nel-like molecule-1 
(Nell-1) 

Alkaline 
phosphatase 
activity (ALP) 

Chitosan/hydroxyapatite-
modified tricalcium 
phosphate (TCP) particles 

up to 28 days Zhang et al. 

(2016) [77] 
• About 78 % of the loaded protein’s 

bioactivity was preserved over the period of 
investigation 
 

Coumarin-6, 
fluocinolone 
acetonide (FA), BSA, 
BMP-2 

Alkaline 
phosphatase 
activity (ALP), 
calcium deposition, 
gene expression 
 

Chitosan-graft-poly(lactic 
acid) copolymers 

up to 14 days Niu et al. (2016) 

[70] 
• Enhanced odontogenesis and significantly 

enhanced mineralized tissue regeneration  

• suppressed inflammation  

Connexin43 mimetic 
peptide 

retinal ischaemia–
reperfusion rat 
model 
 

PLGA nano- and 
microparticles 

up to 
120 days 

Chen et al. 

(2015) [208] 
• promising results on Cx43 down-regulation 

and RGC rescue in acute injury mode 

Single-chain VEGF 
antibody fragment 

Surface plasmon 
resonance analysis 

Semi-solid 
hexylsubstituted 
poly(lactic acid) (hexPLA) 
 

up to 98 days Asmus et al. 

(2015) [207] 
• released protein monomer maintained its 

high affinity to human VEGF-A 

Bevacizumab ELISA Silk hydrogel up to 90 days Lovett et al. 

(2015) [96] 
• concentrations in vitreous humor after 

90 days equivalent to those levels for the 
positive control at 1 month 
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Bone morphogenetic 
protein 2 (BMP-2) 

Alkaline 
phosphatase 
activity (ALP) 
 

Hydrogel embedded with 
alginate microspheres 

up to 42 days Zhu et al. (2015) 

[84] 
• released BMP-2 retained bioactivity, 

maintaining of osteogenesis functions 

Platelet-derived 
growth factor (PDGF-
AA) 

ELISA Hydrogel/nanoparticle 
composite 

up to 21 days Elliott Donaghue 

et al. (2015) [63] 
• Released PDGF-AA remained bioactive 

demonstrated by NSPC oligodendrocyte 
differentiation 
 

fab-fragment Antigen binding 
capacity 

PLGA-triacetin depot up to 80 days Chang et al. 

(2015) [72] 
• 80 % remaining binding capacity after 

80 days of release  

Fibroblast growth 
factor 2 (FGF-2), bone 
morphogenetic 
protein 2 (BMP-2) 

Alkaline 
phosphatase 
activity (ALP), 
calcium 
accumulation 
 

Core-shell PLGA 
microspheres 

up to 30 days Lei et al. (2014) 

[51] 
• Accelerated differentiation of stem cells into 

osteogenic lineage 

• Higher calcium accumulation 

Bevacizumab MTT, 3-D 
angiogenesis 
culture 

Thermoresponsive 
hydrogel 

up to 60 days Hu et al. (2014) 

[267] 
• After 1 month of intravitreal injection, the 

histomorphology of a rabbit’s retina was 
preserved 

• Released bevacizumab inhibited anti-
angiogenesis in 3-D cultures 

IgG1  TGFβ induced 
release of IL-11 

Silk hydrogels and lyogels up to 80 days Guziewicz et al. 
(2013) [98] 

• No change in mAb potency represented by 
IL-11 inhibition 

BSA, Lysozyme Enzyme activity dihydroxyacetone-based 
poly(carbonate ester) 
matrices 
 

up to 80 days Weiser et al. 

(2013) [107] 
• Lysozyme: at least 50 % activity over the 

first month of release; 14 % to 16 % 
bioactivity after 60 days 

Insulin Glucose oxidase 
(GOD) assay 

Multi-arm histidine 
copolymer-PLGA 
composite microspheres 
 

up to 30 days Park et al. (2012) 

[68] 
• controlled blood-glucose levels and 

maintained lower glucose levels without a 
loss of body weight  

Nel-like molecule-1 
(Nell-1) 

Alkaline 
phosphatase 
activity (ALP) 
 

β-tricalcium phosphate (β-
TCP) particles 

up to 14 days Hu et al. (2012) 
[307] 

• Bioactivity preserved during loading 

• Bioactivity was preserved over 4 weeks in 
the lyophilized state 

Nel-like molecule-1 
(Nell-1) 

Alkaline 
phosphatase 
activity (ALP) 
 

Chitosan/tripolyphosphate/ 
Chondroitin sulfate 
nanoparticles 

up to 14 days Hou et al. (2012) 
[76] 

• Bioactivity was preserved during 
encapsulating procedure 
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Basic fibroblast 
growth factor (FGF-2) 

ELISA Polyelectrolyte multilayer 
microcapsules 

up to 3 days She et al. (2012) 

[308] 
• Bioactive FGF-2 decreased from 0.6 ng to 

0.4 to 0.1 ng 

Bone morphogenetic 
protein-6 (BMP-6) 

Alkaline 
phosphatase 
activity (ALP) 
 

Chitosan scaffolds up to 7 days Soran et al. 

(2012) [78] 
• Enhanced osteoblastic differentiation of 

bone marrow-derived rat mesenchymal 
stem cells 

Bone morphogenetic 
protein-2 (BMP-2) 

Alkaline 
phosphatase 
activity (ALP) 
 

Core-shell PLLACL-
collagen fibers 

up to 21 days Su et al. (2012) 
[92] 

• Increased ALP activity, mineralization and 
osteoblast marker expression 

Bevacizumab ELISA Nanostructured 
mesoporous silica (SiO2) 
films 
 

up to 30 days Andrew et al. 
(2011) [210] 

• antibody released in its active form over 
1 month; approx. 98 % of drug released 

Fibroplast growth 
factor (FGF) 

Alkaline 
phosphatase 
activity (ALP) 
 

Silica-chitosan hybrid 
coating on Ti 

up to 35 days Jun et al. (2011) 
[309] 

• Improved osteoblast cell response 

Bevacizumab induced choroidal 
neovascularization 
(CNV) in rat eyes 

PLGA nanoparticles not available Pan et al. (2011) 
[276] 

• reduction in CNV area suggests successful 
creation of formulations while retaining 
bevacizumab’s active antiangiogenic 
properties 

Recombinant human 
growth hormone (r-
hGH) 

r-hGH bioactivity on 
rat lymphoma nB2 
cell line 
 

PLGA microparticles up to 28 days Rafi et al. (2010) 
[48] 

• Bioactivity of release protein maintained 
over 4 weeks after single i.m. injection 

Insulin sodium oleate Diabetic rat model PLGA nanoparticles not available Sun et al. (2010) 
[298] 

• plasma glucose level reduced to 23.85 % 
from the initial one 12 h post-administration 
and this continued for 24 h in diabetic rats 
 

Nel-like molecule-1 
(Nell-1) 

Rat spinal fusion 
model 

Biomimetic apatite-coated 
alginate/chitosan 
microparticles 
 

up to 30 days Lee et al. (2009) 
[83] 

• Enhanced spinal fusion rates measured by 
manual palpation, radiographs and µCT 

Lysozyme Enzyme activity Thermosensitive mPEG–
PLGA–mPEG copolymer 

up to 28 days Tang et al. 
(2009) [67] 

• depot preserved lysozyme in its biologically 
active form 

Lysozyme Enzyme activity PLA in-situ forming depot 
(triacetin) 

up to 60 days Al-Tahami et al. 

(2008) [54] 
• Better enzyme activity than control (protein 

in buffer) after 2 weeks of release 
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Peptide or protein 
Analytical 
technique 

Delivery platform 
in-vitro 
release 

Reference Comment 

Lysozyme Enzyme activity PLGA microspheres up to 28 days Taluja et al. 
(2008) [69] 

• Enzymatic activity decreased by approx. 
10 % over 21 days of release 

BSA and nerve growth 
factor (NGF) 

ELISA Nano-fibrous collagen 
microspheres 

up to 28 days 
(only for BSA) 

Chan et al. 

(2008) [310] 
• Released NGF retained most of its 

bioactivity; but no comment on release 
duration of NGF and only 3 to 6 % delivered 
  

Lysozyme Enzyme activity Electrospun poly(ε-
caprolactone) and 
poly(ethylene oxide) fiber 
mesh  
 

up to 12 days Kim et al. (2007) 

[104] 
• Released lysozyme retained sufficient 

bioactivity (90 % after 12 days) 

Insulin Glucose oxidase 
(GOD) assay 

Insulin-phospholipid 
complex  

up to 12 h Cui et al. (2006) 

[311] 
• Reduced plasma glucose levels in diabetic 

rats 

Tetanus toxoid (TT), 
Ovalbumin, lysozyme 

ELISA Monomers of PLGA 
mimicking degradation 

incubation 
time: 20 days  

Determan et al. 

(2006) [304] 
• TT: loss of antigenicity  

• Ovalbumin: increased antigenicity 

• Lysozyme: only little lost in enzymatic 
activity  
 

Diphteria toxoid 
(Dtxd) 

ELISA Incubation with PLGA 
microspheres 

incubation 
time: 56 days 

Namur et al. 

(2004) [305] 
• Complete loss of bioactivity after 56 days 

Lysozyme Enzyme activity Poly(ether–ester) 
multiblock copolymers for 
macro-porous scaffolds 

up to 70 days Sohier et al. 

(2003) [312] 
• Encapsulation of protein into depot did not 

reduced enzyme activity 

• 80 % – 90 % remaining bioactivity after 
60 days of release  
 

Tissue plasminogen 
activator (t-PA) 

Serine protease 
activity 

PLGA implants up to 28 days Kang et al. 

(2002) [52] 
• No activity at all of t-PA after 4 weeks 

Insulin-like growth 
factor-I (IGF-I) 

Radioimmunoassay 
(RIA), fat cell assay 
(FCA) 
 

PLGA microspheres up to 21 days Meinel et al. 
(2001) [50] 

• Partially, up to 50 % less activity already 
after 0.2 days 

Insulin, met-
enkephalin, 
leuprolide, octreotide 

Suppression of 
testosterone by 
Radioimmunoassay 
(RIA) for leuprolide 

DepoFoam™ up to 25 days Ye et al. (2000) 
[313] 

• Prolonged suppression of testosterone 
levels in rats similar to Lupron® Depot after 
a single 1.m. injection 
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VII.2 RESULTS AND DISCUSSION 

VII.2.1 STABILITY OF RELEASED PROTEIN FRACTIONS FROM LIPID IMPLANTS  

VII.2.1.1 ANALYSIS OF SOLUBLE AGGREGATES AND FRAGMENTS 

Released proteins were collected, concentrated and analysed via SE-HPLC.  

 

Figure VII-1: Monomer content of released (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept 

monitored over 3 weeks to 26 weeks. Displayed are the relative percentages of monomer and the relative 

change of retention times compared to reference. 
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Figure VII-1 illustrates the monomer content over the period the proteins were released from 

the lipid matrix. If not otherwise noted, protein lyophilisate was formulated 1:1 [w/w] with HP-β-

CD. Displayed are the relative percentages of the monomer content compared to the reference 

defined as 100 % (reference: protein solution after dialysis and prior to lyophilisation). The 

monomer content of released mAb fractions alternated between 93 % and 98 % over 26 weeks 

(Figure VII-1 A).  

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 week 2 

6 week 4 

7 week 6 

8 week 10 

9 blank 

10 MW Marker 

Figure VII-2: Non-reducing denaturating SDS-PAGE gels using NuPAGE® Novex® 3-8% Tris Acetate Protein 

Gels of released mAb fractions collected between week 2 and week 10. 

 

The decrease in monomer content was caused by fragmentation rather than aggregation of the 

mAb, as observed by non-reducing denaturating SDS-PAGE using silver staining (Figure VII-2 

and Figure VII-3).  
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1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 week 14 

6 week 18 

7 week 22 

8 week 26 

9 blank 

10 MW Marker 

Figure VII-3: Released mAb fractions between 14 and 26 weeks of release analysed with non-reducing 

denaturating SDS-PAGE using NuPAGE® Novex® 3-8% Tris Acetate Protein Gels. 

 

As indicated in Figure VII-2, a monomer band (#2, 136 kDa), and high molecular weight (HMW) 

species (#1, 258 kDa) were present in the released fractions. Compared to the reference, low 

molecular weight (LMW) species were particularly detectable, pointing into the direction of slight 

fragmentation, such as fab-fragments (#6, 45 kDa) or one-armed mAbs (#3, 111 kDa). 

SE-HPLC of Ranibizumab revealed a monomer content of 100 % over the release duration 

(18 weeks) compared to the reference material (Figure VII-1 B). In addition, non-reducing SDS-

PAGE was performed as an orthogonal method. Compared to the reference, additional bands 

were detected after 10 weeks, especially fragments ranging between 16 kDa to 18 kDa (Figure 

VII-4). Further, aggregates were identified having a size of approximately 151 kDa (#5) and 

98 kDa to 109 kDa (#6) after 4 weeks.  
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1 2 3 4 5 6 7 8 9 10 11 12 No. Sample name 

 
1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 week 2 

6 week 4 

7 week 6 

8 week 10 

9 week 14 

10 week 18 

11 blank 

12 MW Marker 

Figure VII-4: Non-reducing denaturating SDS-PAGE gels using NuPAGE® Novex® 4-12% Bis-Tris Protein Gels 

of released Ranibizumab fractions collected over 18 weeks. 

 

These results were complemented by capillary gel electrophoresis, applying an Agilent 2100 

Bioanalyzer. Capillary gel electrophoresis showed Ranibizumab monomer content ranging 

between 94 % to 96 % (Figure VII-5 A). Additionally, a slight increase in LMW species from 4 % 

to 6 % was identified, HMW species percentage remained constant at 0.2 % over time. 

Therefore, these results are qualitatively in line with SDS-PAGE results. A typical 

electropherogram is displayed in Figure VII-5 B. 
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Figure VII-5: (A): Capillary gel electrophoresis of released Ranibizumab under non-reducing denaturating 

conditions. Shown are (○) monomer content, (●) low molecular weight (LMW) species and (▼) high molecular 

weight (HMW) species over the release period of 18 weeks. (B): typical electropherogram displaying markers, 

system peaks and signals of Ranibizumab.  

 

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 reference 

2 blank 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 day 1 

6 day 3 

7 day 7 

8 day 14 

9 day 21 

10 MW Marker 

Figure VII-6: Non-reducing denaturating SDS-PAGE gels using NuPAGE® Novex® 3-8% Tris Acetate Protein 

Gels of released Bevacizumab fractions collected over 3 weeks of release. 
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The monomer content of Bevacizumab substantially dropped by 15 % within the first 3 weeks, 

highlighting the high sensitivity of Bevacizumab compared to the other proteins (Figure VII-1 C). 

Non-reducing SDS-PAGE underlined these results, pointing into the direction of aggregation 

(physical instability) and fragmentation (chemical instability) as displayed in Figure VII-6.  

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 week 2 

6 week 4 

7 week 6 

8 week 10 

9 week 14 

10 MW Marker 

Figure VII-7: Non-reducing denaturating SDS-PAGE gels using NuPAGE® Novex® 3-8% Tris Acetate Protein 

Gels of released Aflibercept fractions collected over 14 weeks. 

 

Figure VII-1 D displays the monomer content of Aflibercept over 14 weeks, illustrating a 

continuous decrease from 100 % to nearly 85 % compared to the reference. The loss of 

monomer is caused by the formation of aggregates having a size of 219 kDa (#1), 335 kDa (#6) 

and 500 kDa (#7), respectively, which were already detectable at week 4 as indicated by non-

reducing SDS-PAGE (Figure VII-7).  

In literature, protein stability after incorporation into lipid matrices has already been discussed 

for smaller and less complex molecules like ovalbumin [233], rh-interferon α-2a [176, 181], 

lysozyme [175] or brain-derived neuropathic factor (BDNF) [175]. All references reported on no 

changes in the aggregation/fragmentation profile after incorporation and were assessed by 

SDS-PAGE. Used lipids were mainly triglycerides (C12 to C18) and additives like PEG or 
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trehalose processed within the protein lyophilisate were used. These observations are in line 

with our results, as no protein instabilities were observed after incorporation into the lipid matrix. 

In terms of stability of released protein, Koennings et al. [175] described the dimerisation of 

BDNF during release from lipid depots measured after 1 month by SDS-PAGE. In contrast, Mohl 

et al. [176] observed only a minimal increase of rh-interferon α-2a aggregates (approximately 

1 %) from compressed lipid implants comprising D118, PEG or trehalose over 20 days of 

release. Also, neither aggregation nor fragmentation of released rh-interferon α-2a after 28 days 

was observed. Rh-interferon α-2a was identified to be stable after 6-month storage of the SLIs 

when formulated with HP-β-CD as lyophilisate stabiliser. The aggregation level of released 

fractions over the first 3 weeks after 6 months remained constant at approximately 3 %. In 

addition, Schulze et al. reported that rh-interferon α-2a monomer content, delivered from a 

binary triglyceride matrix, stayed at 95 % over a release period of up to 60 days [181]. However, 

all studies mentioned reported on aggregation – if any - rather than fragmentation as main 

degradation pathway. This stands in contrast to our results most likely due to the different 

proteins used. 

VII.2.1.2 CHEMICAL STABILITY OF PROTEINS 

To determine possible chemical changes of the proteins, IEX methods for mAb and 

Bevacizumab were developed (III.2.6.5). Using this method, the separation of acidic and basic 

species from the main charge variant is possible by applying a salt or pH gradient for separation 

[247, 314-328]. Figure VII-8 A illustrates that the main charge variant of mAb decreased from 

initially 100 % (relative to reference) to 84 % over 26 weeks. Simultaneously, the percentage of 

acidic subspecies continuously increased whereas the level of basic residues stayed constant 

(Appendix, Figure XII-8 A). The retention time of the main charge variant stayed constant over 

26 weeks pending between 98 % and 102 % compared to retention time of the reference. 
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Figure VII-8: Relative change of the main charge variant area of (A) mAb and (B) Bevacizumab assessed by 

IEX. Retention time of the main peak eluting from the column relative to reference material is displayed as 

black dots. 

 

As illustrated in Figure VII-8 B, the relative percentage of Bevacizumab’s main charge variant 

decreased substantially and continuously over 3 weeks by 40 %. At once, more acidic 

subspecies eluting earlier than the main charge variant were identified (Appendix, Figure 

XII-8 B). Retention times did not change considerably throughout the 21 days of release.  

Chemical degradation products from Ranibizumab and Aflibercept were identified and 

quantified by a HIC method (III.2.6.6) developed for each protein. HIC allows the separation of 

differently charged protein species and has already been described in literature [329-336]. As 

Figure VII-9 A demonstrates, the main charge variant of Ranibizumab decreased from 100 % 

to 90 %. The chromatograms of Ranibizumab did not change noteworthy during the first 

6 weeks; a notable change occurred firstly after 10 weeks. Analysis of the chromatograms 

showed an increase of subspecies eluting later than the main peak, therefore signifying the 

formation of more hydrophobic residues. More hydrophilic residues (eluting faster than the main 

peak) were not detected (Appendix, Figure XII-9 A). Noticeably, the retention time of the main 
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charge variant shifted towards shorter elution times, highlighting that more hydrophilic 

subspecies were formed which were not separated by the gradient. 

 

Figure VII-9: Relative change of the main charge variant area of (A) Ranibizumab and (B) Aflibercept as 

assessed by HIC. 

 

The main charge variant of Aflibercept decreased by 8 % over 14 weeks as displayed in Figure 

VII-9 B. The formation of more hydrophobic rather than hydrophilic residues was detected. 

Additionally, the retention time of the main charge variant changed towards higher retention 

times, indicating that residues of slightly elevated hydrophobicity were formed. 

To obtain more detailed information with respect to chemical stability, capillary gel 

electrophoresis was performed under reducing denaturating conditions to detect possible 

covalent bonds, e.g. disulfide bonds. Samples taken at each predetermined time point were 

compared to reference material as shown in Figure VII-10. For mAb, the percentage of heavy 

chain, light chain, LMW species and HMW species stayed rather constant over 26 weeks 

designating no formation of covalent bonds (Figure VII-10 A). In contrast, for Ranibizumab the 

heavy chain percentage slightly increased by 2 % over 18 weeks whereas the level of light chain 

decreased by 2.5 %. Levels of other sized fragments did not change (Figure VII-10 B). For 
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Bevacizumab, the percentage of the heavy chain declined from 69 % (day 1) to 58 % (day 21). 

In the same course, the percentages of the light chain, small sized and larger sized residues 

increased pointing into the direction of covalent bond formation (Figure VII-10 C). 

 

Figure VII-10: Capillary gel electrophoresis applying the 2100 Bioanalyzer under reducing denaturating 

conditions of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept released fractions. Shown are 

the () light chain and () heavy chain percentages as well as the amount of () LMW and () HMW species 

over the specific release durations. 
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Figure VII-10 D displays the results obtained for Aflibercept: the percentage of heavy and light 

chain decreased by 5% and 10%, respectively. Concurrently, the formation of LMW and HMW 

species can be observed. 

IEX and HIC analysis revealed formation of differently charged subspecies (IEX) or subspecies 

having a different hydrophobicity (HIC). Thus, more chemical degradation than physical 

degradation of proteins was observed when released from a hydrophobic matrix over time. 

Possible reactions forming acidic species are deamidation (asparagine, glutamine, c-terminal 

amides), cleavage of disulfide bonds, oxidation (proline, phenylalanine, o-tyrosine, tryptophan), 

conversation of arginine and hydrolysis [337]. Chemical subspecies of Ranibizumab and 

Aflibercept were measured by HIC, whereby exclusively subspecies were found being more 

hydrophobic than the main charge variant (Figure VII-9). This can be explained by the potential 

formation of disulfide bonds caused by oxidation, isomerisation of asparagine to succinimide 

[337] or unfolding of the protein. During partial unfolding of the protein, hydrophobic areas are 

turning to proteins` surface generating hydrophobic patches. While this happens, chemical 

reactions are not obligatory necessary.  

In addition, a decrease in heavy chain percentage measured under reducing conditions 

(especially for Bevacizumab and Aflibercept) might have occurred due to the formation of 

covalent disulfide bonds. The disulfide bonds formed new linkers between protein helices where 

there were none before. The reducing agent DTT cleaved those bonds leading to more fractions 

being smaller in size than before. 

In literature, little information is provided on chemical stability of proteins delivered from lipidic 

matrices. The chemical stability of released rh-interferon α-2a from compressed lipid matrices 

comprising the triglyceride D118 has already been discussed by Mohl et al. [176]. Oxidized 

species levels were measured using RP-HPLC taking also into account the storage of loaded 

implants prior to in-vitro release. For rh-interferon α-2a formulated with HP-β-CD, the level of 
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oxidized species did not change over release duration of 22 days. After 6-month storage prior 

to release, the level increased after 2 weeks of release from 1 % to 2 %. 

VII.2.1.3 CONFORMATIONAL STABILITY OF PROTEINS 

FT-IR is a well-established and widely used method to determine protein secondary structure 

[338-343] and was therefore used to obtain information on the conformational status of released 

protein. FT-IR spectra at every single predetermined time point were measured. For a better 

visualisation, only spectra of reference and selected samples, representing the progress upon 

release, are displayed in Figure VII-11. It should be noted, that the sample concentration of 

1.0 mg/ml was at the lower end of instrument sensitivity. This fact may explain the not perfectly 

matching overlays.  

Figure VII-11 A displays the FT-IR spectra of mAb between 1600 cm-1 and 1700 cm-1. The 

amide I band, which is mainly generated by C=O stretching vibrations, represents the β-sheet 

band structure [340, 343] and can be identified between 1635 cm-1 and 1645 cm-1. Apparently, 

the single peak present at the reference (1635 cm-1 to 1637 cm-1) turned into a split peak with a 

left side shoulder at 1645 cm-1 starting at week 6. Additionally, an increase in band intensity at 

1680 cm-1 and 1615 cm-1can be observed, being characteristic for protein unfolding events 

[341]. Shifts towards higher wavenumbers represent unordered random coil like structures 

[341]. On the expense of regular structures, the formation of intermolecular hydrogen-bonded 

antiparallel β-sheet structures are pointing into the direction of partial unfolding of the mAb [344]. 

Changes in secondary structure of mAb might have arisen due to the hydrophobic environment 

(triglycerides) the antibody was exposed to. 

Ranibizumab FT-IR spectra are shown in Figure VII-11 B, including the reference and the 

samples of week 4, 10 and 18, respectively. The spectra are characterised by a pronounced 

amide I band at 1636 cm-1. Intensity of the amide I band slightly decreased over time whereas 

the band at 1678 cm-1 became more prominent. Overall, Ranibizumab is present in its native 
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state over the complete release period. Compared to mAb, the better conformational stability is 

most likely due to the less complex structure of the fab-fragment. 

 

Figure VII-11: FT-IR spectra of collected released fractions from (A) mAb, (B) Ranibizumab, (C) Bevacizumab 

and (D) Aflibercept. 

 

Figure VII-11 C shows the FT-IR spectra of Bevacizumab reference and released fractions 

collected over 21 days. The reference comprised a weak amide I single band at 1636 cm-1. After 
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3 days, the spectra changed dramatically, pointing into the direction of substantial changes in 

secondary structure. The amide I band was shifted towards 1640 cm-1 (day 21), representing 

more unordered random coil like structures and band intensity at 1690 cm-1 increased (protein 

unfolding).  

Aflibercept reference material is characterised by an amide I band consisting of two peaks: the 

main band having a maximum at 1640 cm-1 and a right-side shoulder band at 1630 cm-1 (Figure 

VII-11 D). While the protein was released, the band intensity of the amide I band at 1630 cm-1 

declined considerably. Moreover, an increase in band intensities at 1680 cm-1 and 1697 cm-1 

was observed.  

Schulze et al. was the first assessing the conformational status of a protein after encapsulation 

into a lipid matrix, showing that the protein (lysozyme) was still in its native state [181]. To the 

best of our knowledge, our study is the first describing the conformational status of three 

different protein formats released from SLIs. 

 

VII.2.2 STABILITY OF RELEASED PROTEIN FRACTIONS FROM PLGA MATRICES  

PLA and PLGA polymers provide a biodegradable system for sustained release of protein drugs, 

but erosion/degradation of the polymer is associated with a drop in pH and an increase in 

osmotic pressure (particularly inside the matrix), which may result in degradation products 

caused by acylation, deamidation or aggregation [49, 253, 254].  

Within our study, released protein from a PLGA matrix (Resomer® RG 502 or Resomer® RG 

502 H) was collected over 12 weeks to investigate protein stability and compare these results 

to data obtained from SLIs (VII.2.1). The pH of the release medium was measured accordingly.  
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Figure VII-12: Displayed are the pH values of incubation medium in which protein loaded Resomer® RG 502 H 

matrices were incubated. The course of pH was monitored for extrudates containing () no protein, () mAb, 

() Ranibizumab, and () Aflibercept. 

 

When completely exchanging the release medium at predetermined time points (as it was 

performed for in-vitro release studies), the measured pH described a curve with a minimum of 

pH 2 after 4 weeks (Figure VII-12). Since the pH was around 3 from week 3 to week 7, an 

incubation study at pH 3 was performed to hedge that possible instabilities were due to the pH 

drop and osmotic pressure increase inside the PLGA matrix. Therefore, proteins were incubated 

in PBS pH 3.0 for 4 weeks at 37°C in a horizontal shaker (40 rpm). Samples were analysed 

after 2 weeks and 4 weeks.  
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VII.2.2.1 ANALYSIS OF SOLUBLE AGGREGATES AND FRAGMENTS 

SE-HPLC data were obtained for released mAb and Ranibizumab over 12 weeks. The monomer 

content of reference, pH 3 incubated samples, released fractions from SLIs after 12 weeks and 

from a Resomer® matrix (Figure VII-13) were compared. Monomer content of mAb declined to 

86 % after 4 weeks of incubation at pH 3. After 4 weeks of release from the PLGA matrix, 

monomer content was measured with 72 % (Figure VII-13 A). The lower value can be explained 

by the acidic microenvironment generated while PLGA eroded, namely a drastic change in pH 

and elevated osmotic pressure. Unfortunately, data from other time points were not available 

due to the very small amount of protein released within this time frame (IV.2.7).  

 

Figure VII-13: Monomer content of (A) mAb and (B) Ranibizumab of reference, pH 3 incubated samples, 

released fractions from SLIs after 12 weeks and released fractions from a Resomer® matrix. 

 

The incubation at pH 3 did not affect the monomer content of Ranibizumab. Therefore, it can 

be assumed that incubation for even longer time would not negatively affect the monomer 

content. A head to head comparison of Ranibizumab released from SLIs after 12 weeks 

(100.1 %) and Resomer® RG 502 H (4.4 %) clearly showed that the PLGA matrix (and its 
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degradation products) degraded Ranibizumab dramatically. These results also highlight that 

SLIs provide an outstanding delivery matrix for proteins.  

Additionally, non-reducing denaturating SDS-PAGE was performed for mAb, Bevacizumab and 

Aflibercept (for Ranibizumab capillary gel electrophoresis was performed and will be discussed 

in the following).  

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 pH3_week 2 

6 pH3_week 4 

7 
Resomer® RG 
502_week 4 

8 
Resomer® RG 
502_week 6 

9 
Resomer® RG 
502_week 12 

10 MW Marker 

Figure VII-14: Non-reducing denaturating SDS-PAGE of mAb. Shown is the head-to-head comparison of 

samples being incubated at pH 3 and those which were released from a PLGA matrix. 

 

Illustrated in Figure VII-14, SDS-PAGE of mAb revealed a pH-induced degradation resulting in 

the formation of aggregates with a size of 250 kDa (#6) and 200 kDa (#7) and fragments being 

51 kDa (#8) and 48 kDa (#9) in size compared to the reference (lane 2, 5 and 6). Interestingly, 

between week 2 and week 4 of incubation in the acidic solution, qualitatively no more 

degradation of mAb was observed leading to the conclusion that the pH-induced degradation 

was already complete after 2 weeks. Results for the released fractions of mAb from a Resomer® 

RG 502 matrix can be seen at lane 7 to 9. Comparable additional bands can be detected as it 

was the case for the pH 3 incubated samples. Moreover, intensity of fragment bands increased 

while the monomer band was less intense. After 12 weeks, the mAb was completely degraded 

and only bands with a MW of 37 kDa (#11) to 41 kDa (#10) were present pointing into the 
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direction of complete fragmentation. MAb fractions released from the PLGA matrix were much 

more degraded than the samples incubated at pH 3. Thus, it can be concluded that the instability 

of mAb was mainly caused by chemical interactions with PLGA and its degradation products. 

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 pH3_week 2 

6 pH3_week 4 

7 
Resomer® RG 
502_week 4 

8 
Resomer® RG 
502_week 12 

9 blank 

10 MW Marker 

Figure VII-15: Non-reducing denaturating SDS-PAGE gel of released Bevacizumab fractions from a Resomer® 

RG 502 matrix. Due to the very incomplete release of Bevacizumab, only samples taken after 4 weeks and 

12 weeks were accessible for analysis. 

 

Figure VII-15 displays the results for separation of MW species of the pH 3 study (lane 5 and 6) 

and the released fractions of Bevacizumab from a Resomer® RG 502 matrix (lane 7 and 8). Due 

to the very incomplete release of Bevacizumab, only samples taken after week 4 and week 12 

were accessible for analysis. Surprisingly, after a 2-week incubation at pH 3, no additional bands 

were detected; only slightly more intense HMW aggregates and fragment bands were observed. 

No obvious differences between the samples taken after 2 and 4 weeks of incubation at pH 3 

were found. For the sample taken after 4 weeks of release from the PLGA matrix, no apparent 

differences in band patterns are noticeable (compared to the pH 3 samples), thereby 

demonstrating that Bevacizumab was not further degraded by the PLGA matrix. This result was 

surprising because in previous studies (VII.2.1) Bevacizumab was the most sensitive protein. 

After 12 weeks of release, a clear and distinct tendency towards fragmentation was observed: 

the monomer band almost completely disappeared and was replaced by a broad spectrum of 
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bands ranging in a size of 50 kDa to 150 kDa (#7). In addition, intense bands at 45 kDa and 

30 kDa were present. In case of Bevacizumab, a concluding answer if the acidic pH of the 

incubation media or the acidic microclimate inside the PLGA matrix were responsible for its 

degradation, remains unanswered. 

1 2 3 4 5 6 7 8 9 10 No. Sample name 

 

1 MW Marker 

2 reference 

3 BSA 1.80 ng  

4 BSA 0.36 ng 

5 pH3_week 2 

6 pH3_week 4 

7 
Resomer® RG 
502_week 6 

8 
Resomer® RG 
502_week 8 

9 blank 

10 MW Marker 

Figure VII-16: Non-reducing denaturating SDS-PAGE gel of Aflibercept samples incubated at pH 3 and of 

released fractions of Aflibercept from a Resomer® RG 502 matrix. 

 

The results for the recombinant fusion protein Aflibercept are displayed in Figure VII-16. The 

reference material was characterised by weak bands at approximately 246 kDa (#1), most likely 

aggregates, whereas bands at 129 kDa (#2) represented the monomer in its glycosylated form; 

an additional band was identified at 106 kDa (#3) which was probably the deglycosylated form. 

After 2 weeks at pH 3 (lane 5), bands already seen for the reference became more intense; very 

weak bands around 37 kDa (#4) and 34 kDa (#5) were also identified. Qualitatively, the 

aggregation profile did not change between week 2 and week 4 upon incubation at pH 3, 

meaning that a further degradation of Aflibercept would be unlikely. Lane 7 and 8 are illustrating 

the degradation profile of released fractions taken after 6 and 8 weeks. The monomer band 

disappeared almost completely and was replaced by strong bands in the MW region of 20 kDa 

to 30 kDa. A similar profile can be seen after 8 weeks. These results proof, that Aflibercept was 
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mainly degraded by products formed due to the PLGA erosion. Degradation took also place 

upon incubation at pH 3, but the differences between the sample at lane 6 (4 weeks at pH 3) 

and lane 7 (6 weeks of release) were substantial. Consequently, the major degradation can be 

reduced to PLGA erosion. 

Table VII-3: Non-reducing denaturating capillary gel electrophoresis of Ranibizumab samples. 

 LMW species [%] Monomer [%] HMW species [%] 

reference 2.05 (±0.49) 97.85 (±0.64) 1.10 (±0.14) 

week 2_pH 3 1.47 (±0.15) 98.47 (±0.21) 0.06 (±0.12) 

week 4_pH 3 1.60 (±0.36) 98.03 (±0.25) 0.03 (±0.06) 

week 12_lipid matrix 2.10 (±0.14) 97.90 (±0.14) 0.00 (±0.00) 

week 12_Resomer® RG 502 31.65 (±0.92) 65.85 (±2.05) 2.50 (±1.13) 

week 12_ Resomer® RG 502 H 27.75 (±0.78) 64.05 (±3.04) 8.20 (±2.26) 

 

Table VII-3 displays the results from non-reducing capillary gel electrophoresis of Ranibizumab. 

No difference can be observed between the reference and the samples incubated at pH 3 as 

the monomer content stays constant at 98 %. Released Ranibizumab from both Resomer® 

polymers (ester terminated and free COOH-group), showed 28 % to 32 % fragments and up to 

8 % aggregates were formed. This clearly illustrates that not the low pH of the incubation 

medium predominantly caused protein degradation, rather the direct chemical interaction of 

Ranibizumab and PLGA/PLGA degradation products inside the matrix as reported previously 

[49, 253].  

Finally, it was possible to confirm that the degradation of the proteins was mainly driven by the 

erosion of the PLGA matrix and the direct interaction of the proteins with PLGA and its 

degradation products rather than the acidic pH of the surrounding incubation medium. This 

statement holds true for mAb, Aflibercept and Ranibizumab whereby it was not possible to 

unequivocally answer this question for Bevacizumab. 
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VII.2.2.2 CHEMICAL STABILITY OF PROTEINS 

Samples were further analysed towards chemical stability. IEX and HIC was not applicable due 

to the very little sample volume. Instead, capillary gel electrophoresis under reducing conditions 

was executed to detect possible covalent bonds potentially formed (Figure VII-17). Shown are 

the percentages of light and heavy chain as well as of LMW and HMW species for samples 

incubated at pH 3 for 2 weeks and 4 weeks and of released protein after 12 weeks from lipid 

implants and from Resomer® RG 502 and RG 502 H matrix as head-to-head comparison of both 

delivery platforms.  

Figure VII-17 A illustrates the results for mAb. Upon incubation at pH 3, a significant increase 

in LMW species can be detected by a similarly decrease of the heavy chain percentage already 

after 2 weeks. The light chain percentage increased by 10 %. No major differences between 

samples taken after 2 weeks and after 4 weeks were detected, meaning that the chemical 

degradation of mAb took place rapidly and was complete already after 2 weeks of incubation. 

Interestingly, no significant differences were identified between the reference and the released 

mAb from SLIs after 12 weeks pointing out, that no additional covalent bonds were formed 

during release. Contrarily, released mAb from Resomer® RG 502 was characterised by a drastic 

increase in LMW species and light chain at the expense of heavy chain percentage. MAb 

released from Resomer® RG 502 H was almost exclusively present as LMW species in the 

range of molecular weight of the light chain (no single peaks were isolated; more a multi-peak 

region was observed). The difference in degradation profile of mAb between both PLGAs can 

be explained by the acidic end group Resomer® RG 502 H is equipped with promoting the 

cleavage of the peptide bonds. 
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Figure VII-17: Reducing denaturating capillary gel electrophoresis of (A) mAb, (B) Ranibizumab, (C) 

Bevacizumab and (D) Aflibercept samples incubated at pH 3 for 2 and 4 weeks and of released fractions from 

both lipid and PLGA matrices after 12 weeks of release.  
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In case of Ranibizumab, the incubation in acidic PBS buffer did not lead to any alterations in 

light chain and heavy chain percentage, thereby showing the remarkable stability of 

Ranibizumab (Figure VII-17 B). The released Ranibizumab from SLIs did not revealed any 

changes, which indicates that no covalent bonds were formed during release. In contrast, no 

heavy chain was detected released from Resomer® RG 502, but instead an increase of about 

60 % of smaller sized fragments was found. Even more (approximately 75 %) LMW species 

were measured for Ranibizumab samples released from Resomer® RG a carboxyl group). Both 

PLGAs heavily promoted the formation of additional covalent bonds whereas for the samples 

released from SLIs no differences compared to the reference were apparent. 

As it was already the case for SE-HPLC analysis, Bevacizumab samples were not available for 

all time points due to the short release duration (for SLIs) of only 3 to 4 weeks or the very small 

amount released which was the case for the Resomer® matrices. Therefore, the data set 

presented at Figure VII-17 C gives no conclusive results and will not be further discussed. 

Aflibercept samples are illustrated in Figure VII-17 D. Upon incubation in PBS at pH 3, the 

formation of LMW species was observed after 2 weeks; even more LMW species were formed 

after 4 weeks of incubation indicating that additional covalent bonds were formed also after a 

longer incubation period. Similarly, the heavy chain and light chain percentage dropped over 

the time. Collected and concentrated Aflibercept liberated from SLIs was distinguished by slight 

changes in the chain profile compared to the reference. In contrast, once released from both 

Resomer® matrices, the fraction of LMW species (approximately 60 % more compared to 

reference) increased dramatically whereas almost no heavy chain was detectable anymore.  

In summary, it was demonstrated that the formation of additional covalent bonds was mainly 

driven by erosion of the PLGA matrix. But also, a shift in chain profile upon incubation at pH 3 

was detectable, meaning that also the pH of the incubation medium promoted partially the 

formation of chemical alterations. However, proteins were chemically modified more intensively 

when released from PLGA, even differences between Resomer® RG 502 and RG 502 H were 



STABILITY OF RELEASED PROTEIN FRACTIONS FROM LIPID AND PLGA MATRICES 

165 

observed, which can be explained by the different end groups the polymers are equipped with. 

Contrarily, only slight changes - if any - were noticed when proteins were released from SLIs 

highlighting the benefit of this delivery platform. For Bevacizumab, it was not possible to 

unmistakably answer this question due to the limited sample available.  

Other reports in the literature also addressed the topic of chemical protein stability during 

release from PLGA based depots [44, 46]. Estey et al. [44] reported on BSA stability under 

acidic conditions (pH 2) by modelling the microclimate within PLGA matrices. BSA monomer 

dropped to 0 % within 14 days to 28 days due to the formation of aggregates and fragments 

measured by SE-HPLC and SDS-PAGE. The chemical degradation (mainly deamidation) of 

insulin from PLGA microspheres [49, 345] over 18 days [49] or the acylation of atrial natriuretic 

peptide (ANP) has been described. The acylation of ANP over 60 days has also been described 

by Lucke et al. modelling the microclimate within PLGA matrices by lactic acid solutions [254]. 

The same holds true for exenatide as reported by Liang et al. [217] with the additional 

background of water uptake onto PLGA microspheres. Chang et al. [72] measured the main 

peak area of a released fab-fragment by IEX from PLGA-triacetin depots over 80 days showing 

a continuous decrease from almost 100 % to approximately 50 %. In our study, for SLIs (Table 

VII-3) the main charge variant of Ranibizumab dropped only by 10 % over 18 weeks of release. 

All references reported on a fast and distinct chemical degradation, which was not the case in 

our study, highlighting the benefit of lipid based depots in terms of chemical protein stability.  

 

VII.2.3 STABILITY OF RELEASED PROTEIN FRACTIONS AFTER STORAGE OF LIPID 

IMPLANTS 

Besides the stability analysis performed with protein released from freshly prepared implants, it 

was also analysed if mAb and Ranibizumab show sufficient stability when stored for up to 

3 months within the highly hydrophobic lipid matrix. SLIs were stored at 4°C after production for 

4 weeks and 12 weeks prior to in-vitro release. The protein fraction released over the first 7 days 
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after storage was then collected, concentrated and analysed. For this study, the 3:1 

protein:cyclodextrine [w/w] lyophilisate formulation was used. 

 

Figure VII-18: Monomer content of (A) mAb and (B) Ranibizumab released within the first 7 days after storage 

of lipid implants for 0, 4 and 12 weeks at 4°C. Displayed is the variation relative to the reference. 

 

In Figure VII-18, SE-HPLC results are displayed showing the monomer content of the reference 

and samples directly after production (week 0) and after storage of 4 and 12 weeks, 

respectively. For mAb, the monomer content remained unchanged ranging from 96.9 % to 

100.9 % relative to the reference also after a 12-week storage. Non-reducing denaturating SDS-

PAGE was performed orthogonally showing slightly more intense bands of stored samples at 

276 kDa (#6) and 178 kDa (#7) (aggregates) and bands of different sized fragments (45 kDa, 

64 kDa) compared to reference (Appendix, Figure XII-10).  

Ranibizumab monomer content was measured with 98.1 % to 98.9 % relatively to the reference, 

also showing no decrease after storage. Orthogonally, capillary gel electrophoresis was 

performed as illustrated in Table VII-4. The monomer content slightly decreased by 1 % 

between week 0 and week 12. A significant change in HMW and LMW upon storage was not 

detected. 
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Table VII-4: Results of non-reducing denaturating on-chip gel electrophoresis of Ranibizumab fractions 

stored for 12 weeks at 4°C prior to release compared to reference. 

 Reference Week 12 

LMW species [%] 2.05 (±0.49) 1.90 (±0.00) 

Monomer [%] 97.85 (±0.63) 97.00 (±0.00) 

HMW species [%] 0.10 (±0.14) 0.10 (±0.00) 

 

Regarding chemical stability, the percentage of mAb’s main charge variant decreased by 

approximately 5 % upon storage while the percentages of acidic (+6 %) and basic species 

increased (+0.7 %) (Figure VII-19 A). For Ranibizumab, exclusively more hydrophobic 

subspecies were formed (+2 %) upon storage equivalent to a decrease in main charge variant 

by 2 % (Figure VII-19 B). 

In addition to IEX and HIC, reducing denaturating capillary gel electrophoresis was performed 

(Table VII-5). The heavy chain percentage of mAb decreased by 3 % after a 12-week storage 

whereas slightly more LMW and HMW species were detected compared to the reference. The 

percentage of light chain stayed constant. Ranibizumab samples also showed a slight reduction 

in heavy chain percentage (1.5 %) as well as a minor increase of light chain and LMW species 

(together 1.5 %). 
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Figure VII-19: Chemical stability of (A) mAb and (B) Ranibizumab released within the first 7 days after storage 

of lipid implants for 0, 4 and 12 weeks at 4°C.  

 

Table VII-5: Reducing denaturating capillary gel electrophoresis of mAb and Ranibizumab released fractions 

after a 12-week storage. Displayed are the light and heavy chain percentages as well as the amount of LMW 

and HMW species compared to reference. 

 mAb Ranibizumab 

 Reference Week 12 Reference Week 12 

LMW species [%] 0.95 (±0.00) 1.80 (±0.14) 0.30 (±0.28) 1.15 (±0.35) 

Light chain [%] 29.10 (±0.14) 28.85 (±0.92) 34.50 (±0.14) 34.66 (±1.98) 

Heavy chain [%] 67.90 (±0.00) 64.75 (±0.49) 64.55 (±0.35) 63.00 (±1.41) 

HMW species [%] 2.05 (±0.07) 2.70 (±0.14) 0.65 (±0.07) 1.40 (±0.00) 

 

The FT-IR spectra of mAb and Ranibizumab samples are given in Figure VII-20. Spectra of the 

reference and of the released protein after 0, 4 and 12 weeks are illustrated. The amide I band 

region (1635 cm-1 to 1645 cm-1) of mAb samples did not alter in band maxima but band intensity 
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differed. Furthermore, increasing band intensities were noticed at 1680 cm-1 and 1615 cm-1, 

leading to the conclusion that unfolding events must have taken place. FT-IR spectra of 

Ranibizumab samples did not show any deviations including band intensity and wavenumber of 

band maxima (Figure VII-20 B). Compared to mAb, the better conformational stability was due 

to the less complex structure of the fab-fragment [346]. 

 

Figure VII-20: FT-IR spectra of released (A) mAb and (B) Ranibizumab samples collected over the first 7 days 

of release. Lipid implants were stored at 4°C for 0, 4 or 12 weeks prior to in-vitro release. 

 

When stored in the dry state at 4°C, mAb and Ranibizumab showed very good stability even 

after a period of 3 months. Both proteins were more stable compared to the stability profile 

obtained after 12 weeks of release. This can easily be explained by the elevated temperatures 

during incubation and the aqueous environment which are well-known triggers for protein 

degradation [347-351]. 
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VII.3 CONCLUSION 

Within this chapter, the stability of four different proteins was analysed, including three 

commercial products.  

The stability of the proteins was assessed released either from lipid or PLGA depots. As a model 

protein, an IgG1 antibody (mAb) was used which was characterised by an adequate stability 

over more than 6 months (26 weeks) when released from SLIs. Monomer content stayed 

between 93 % and 98 % over the release duration, even though major chemical and 

conformational instabilities were detected. Ranibizumab was delivered over 18 weeks, showing 

excellent physical, chemical and conformational stability over the complete release period. 

Therefore, Ranibizumab was the most promising therapeutic. Aflibercept comprised an 

acceptable stability profile over 14 weeks, therefore being an additional candidate for further 

studies. Only Bevacizumab was characterised by poor stability and comparatively short release 

durations.  

The stability of released protein from a PLGA matrix was assessed as well. All proteins showed 

a rapid and substantial degradation – physically and chemically – which was mainly caused by 

the micro environment within the PLGA matrix rather than the pH of the incubation medium. 

These results are in line with reports in the literature (Table VII-1). 

For fractions released from SLIs, such promising protein stability data have - to the best of our 

knowledge - not yet been published (Table VII-1), neither regarding the period of release nor 

the variety of proteins, most of them being therapeutically relevant proteins. Various publications 

have already addressed this topic describing the stability of peptides [301], small sized proteins 

[43, 45, 49, 253] or fab-fragments [72], but none of them reported over such long release 

durations and comprehensive stability data, irrespective of the delivery platform. Compared to 

other delivery platforms described in literature such as PLGA [43, 49] or chitosan [79], the lipid 

based depot described here provides an adequate stability for at least the mAb and 
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Ranibizumab over a long-term release period of 18 weeks to 26 weeks as well as after storage 

of the implants.  

Overall, the benefit of lipid based systems was demonstrated, as it can retain the stability of the 

incorporated protein during long-term release and storage. Especially the excellent stability 

profile of Ranibizumab is promising basis for future work. 
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VIII. TRIGLYCERIDE-PROTEIN-INTERACTION 

STUDIES 

VIII.1 INTRODUCTION 

Within chapter IV and chapter VII, release patterns and stability profiles of two IgG1 antibodies, 

the fab-fragment Ranibizumab (Lucentis®) and the fusion protein Aflibercept (Eylea®) were 

described. However, the complexity of the lipid depot systems in particular with regard to lipid-

protein interactions has not been studied. In this chapter, experiments were performed to study 

possible interactions between the proteins and triglycerides with the aim to identify if the lipids 

may potentially be accountable for the different release profiles and protein instability issues 

observed. Considering such interactions is crucial since lipid based depots are not considered 

to be inert. Even et al. already described the interactions between differently charged peptides 

and lipids including D114, soy lecithin and cholesterol [187]. The interactions between interferon 

β-1b and the triglycerides H12 and D118 has been addressed by Neuhofer [185]. 

Interactions between proteins and lipids have been studied extensively before, but exclusively 

phospholipids have been analysed. In such studies, the focus was mainly on interactions at a 

cellular level, for instance interactions of proteins with membranes [352-368], or between 

proteins and liposomes [185], or hexosomes [369] using methods like surface plasmon 

resonance (SPR), isothermal titration calorimetry (ITC), dynamic scanning calorimetry (DSC), 

dynamic light scattering (DLS) or flow cytometry.  

However, triglycerides differ from phospholipids by structure, solubility, hydrophobicity and 

charge [125, 370]. To our knowledge, Neuhofer was the first describing interactions between a 

pharmaceutical protein and triglycerides, namely H12 and D118, which have also been used in 

this study [185]. Interactions have been studied by performing incubation studies with native 

and PEGylated interferon β-1b and the relevant triglycerides. Neuhofer described that in the 
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presence of lipids, interferon β-1b formed soluble aggregates and oxidized subspecies. 

Furthermore, the biological activity of the protein decreased in presence of triglycerides. At the 

same time, protein recovery was significant lower upon incubation with triglycerides. 

Triglyceride-protein-interactions were further investigated by using QCM to study adsorption 

and desorption events of interferon β-1b on tristearin coated chips. Additionally, Neuhofer 

observed substantial different release patterns of native and PEGylated interferon β-1b released 

from the same lipid depot. This raised the question, if such interactions may influence protein 

release from lipidic depots in addition to diffusion and erosion which are well-known release 

mechanisms. 

The present chapter describes how two IgG1 antibodies, the fab-fragment Ranibizumab and the 

fusion protein Aflibercept behave upon contact with H12, D118 or Resomer® RG 755 S, 

respectively. The aim was to identify possible interactions between the different compounds 

Therefore, rods consisting of pure H12, D118 or RG 755 S, respectively, were extruded and 

incubated with protein solutions to study possible interactions. After an 8-week incubation period 

at 35°C, the protein was analysed with regards to colloidal, chemical and conformational 

stability. Additionally, raw material and extruded rods were tested for the presence of heavy 

metals. Heavy metals could potentially be introduced into the lipid matrix during the 

manufacturing process and may be a cause for protein instabilities [371-373]. 
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VIII.2 RESULTS AND DISCUSSION 

VIII.2.1 INCUBATION STUDY OF PROTEIN SOLUTIONS WITH TRIGLYCERIDE AND 

PLGA RODS 

To study possible interactions between proteins and the depot forming materials used within 

this work, lipid and PLGA rods were extruded and incubated with the proteins for 8 weeks at 

35°C and 40 rpm in a horizontal shaker. Implants were extruded consisting of 100 % H12 

(extrusion temperature 35°C), 100 % Dynasan® D118 (extrusion temperature 60°C) or 100 % 

Resomer® RG 755 S (extrusion temperature 70°C), respectively, using a ZE-5 mini-extruder. 

Resomer® RG 755 S was chosen, as it has a degradation time frame of approximately 6 months. 

Thereby, it was ensured that during an 8-week incubation study no erosion of the RG 755 S rod 

occurred, which could have caused elevated particle counts or could have otherwise interfered 

with protein analysis. Extruded implants had a size of 2.0 mm x 15 mm, resulting in a surface of 

approximately 100 mm2. Rods were placed in 2.0 ml micro-centrifuge tubes (VWR, Radnor, PA, 

USA) and 1.0 ml protein solution was added at a concentration of 2.0 mg/ml (protein stock 

solutions comprising 10 mg/ml in 50 mM sodium phosphate buffer pH 6.2 were diluted with 

0.22 µm filtered PBS pH 7.4). As a negative control, proteins were also incubated in PBS pH 

7.4 for 8 weeks without any additives. After 2, 4 and 8 weeks, samples were taken for each 

incubation protocol (incubation protocol: the material the protein was exposed to) and analysed 

using the following techniques: Light obscuration (LO), turbidity, SE-HPLC, electrophoretic 

techniques (SDS-PAGE and capillary gel electrophoresis under reducing and non-reducing 

conditions), protein recovery, IEX, HIC, cIEF, extrinsic fluorescence and FT-IR. 

In the following, the results of the incubation study will be discussed separately in terms of 

colloidal, chemical and conformational stability. Furthermore, the phenomena of possible 

protein absorption onto lipids/PLGA surfaces will be discussed. Therefore, it is clearly stated, 

that the behaviour of the proteins will be evaluated covering two completely different aspects 

(protein stability and adsorption phenomena) in the presence of lipids/PLGA.  
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VIII.2.1.1 COLLOIDAL STABILITY OF PROTEINS 

The colloidal stability of incubated proteins was measured using different methods covering the 

formation of subvisible particles (LO, turbidity) and soluble aggregates (SE-HPLC, non-reducing 

denaturating electrophoresis). In previous studies, an incubation temperature of 37°C had been 

applied as it mimics the physiological temperature. Here, the incubation temperature was set to 

35°C due to the low Tonset (36.8°C) of the extrudates consisting of 100 % H12 as it was expected 

that an incubation temperature of 37°C would lead to a complete disintegration of the H12 rods. 

LIGHT OBSCURATION (LO) AND TURBIDITY 

The results of LO measurements are displayed in Figure VIII-1. The particle count of the 

negative controls (rods incubated in PBS) after 8 weeks of incubation was well below 

100 counts indicating that an elevated particle count at the protein containing samples was not 

due to disintegration (particle formation) of the rods. However, at the negative control of the H12 

rods, about 500 particles were counted pointing into the direction of a slight disintegration of the 

H12 rod even though the incubation temperature was below its Tonset. Nevertheless, particle 

counts of protein solutions were higher. It can therefore be hypothesised that the elevated 

particle count measured was based on protein aggregates. The mechanism and kinetics of 

particle formation is highly relevant and would deliver additional information [348, 349, 351, 374-

386], however, this aspect was not further investigated as it was beyond the scope of this work. 

As a control, protein solutions were incubated without any lipids/PLGA rods (Figure VIII-1). 

Particle counts were found to comprise the lowest levels; in maximum 650 particles were 

measured for Bevacizumab after 8 weeks of incubation. Turbidity measurements confirming this 

observation as the values were found to be the lowest ones for each protein ranging between 

0.73 (±0.07) and 1.07 (±0.08) (Table VIII-1). 
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Figure VIII-1: Cumulative particle count (> 1 µm) of protein solutions incubated with H12, D118 and RG 755 S 

rods and without any additives (PBS, negative control) after 8 weeks at 35°C and 40 rpm.  

 

Upon incubation with D118 and PLGA rods, both particle count and turbidity were very low for 

all proteins as illustrated by Figure VIII-1 and Table VIII-1. Merely, slightly elevated particle count 

and turbidity can be seen for Bevacizumab containing solutions. 

The highest particle counts can be identified when proteins were incubated with H12 rods. 

Particle counts for the protein containing samples were between 850 particles/ml (mAb) up to 

77.000 particles/ml for Aflibercept. Regarding the Aflibercept containing samples, the high 

particle count was caused by the complete disintegration of the H12 rods. Interestingly, 

disintegration of the H12 rod only occurred when Aflibercept was present. For mAb, 

Ranibizumab and Bevacizumab, H12 rods did not fully disintegrated although a partial 

«softening» and disintegration was observed. If incubated without any proteins (negative 

control), the H12 rods remained solid. Turbidity values were in line with particle measurements: 

for all proteins turbidity of protein solutions incubated with H12 showed the highest values 

ranging from 1.07 (±0.02) to 24.56 (±1.21). Again, the high value for Aflibercept samples 
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incubated with H12 rods (24.56 FNU ±1.21 FNU), was caused by the total disintegration of the 

H12 rod which was only observed for this protein.  

Table VIII-1: Turbidity of samples incubated with H12, D118 and RG 755 S rods and without any additives 

(PBS, negative control) after 8 weeks at 35°C and 40 rpm. Results are given in FNU. 

 PBS mAb Ranibizumab Bevacizumab Aflibercept 

PBS 0.53 (±0.03) 0.73 (±0.07) 0.73 (±0.01) 0.74 (±0.05) 1.07 (±0.08) 

H12 1.09 (±0.11) 1.07 (±0.02) 1.25 (±0.05) 2.36 (±0.14) 24.56 (±1.21) 

D118 0.56 (±0.03) 0.79 (±0.13) 1.13 (±0.03) 0.91 (±0.08) 1.35 (±0.09) 

RG 755 S 0.58 (±0.02) 0.89 (±0.05) 0.94 (±0.16) 1.01 (±0.12) 1.02 (±0.10) 

 

Both particle count and turbidity for proteins incubated with PLGA rods were comparatively low. 

That signifies that PLGA is more inert than the triglycerides tested here from a colloidal stability 

perspective. However, it should not be forgotten that proteins were incubated with the 

lipids/PLGA rather than encapsulated within the matrix material.  

When comparing H12 and D118 head-to-head, it is striking that both cumulative particle count 

and turbidity are clearly higher for H12 than for D118 for all proteins tested. As the particle count 

for H12 rods incubated in PBS (negative control) revealed less counts, a disintegration of the 

H12 rod due to the incubation close to Tonset was most likely not the cause for the elevated 

particles observed. In fact, it can be concluded that an interaction between proteins and H12 

took place. 

Based on these results, it can be assumed that even the protein itself might has an impact on 

lipid disintegration due to its amphiphilic character. For Aflibercept, even a complete 

disintegration of the H12 rods was observed.  

As additional factors, pH and surface-active additives (residues from the marketed formulations 

which were not removed by the dialysis) can possibly lead to disintegration of the H12 rods. As 
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the pH represents a critical parameter, the pH was monitored over 8 weeks and is displayed in 

the Appendix, Table XII-1. For all proteins, the pH value stayed constant (a change of a 

maximum of 0.12 was observed) over the complete incubation time. Furthermore, the pH of the 

protein containing samples was measured between 6.79 (Bevacizumab) and 7.00 

(Ranibizumab) at week 8. These results pointing into the direction that a different pH as possible 

source of H12 rod disintegration can be excluded. Since all proteins (except mAb) were 

originally formulated with PS 20 (III.1.1), the presence of surface-active additives should be 

considered. Although all marketed formulations were dialysed, small amounts of PS 20 were 

most likely still present within all formulations. Therefore, the disintegration of the H12 rods was 

probably not caused by surface-active additives. These theories were not further investigated 

and need to be thoroughly studied in future experiments. For instance, to distinguish between 

protein aggregates and particles with a lipidic origin, microflow imaging (MFI) would be a 

suitable method.  

Elevated particle count and turbidity could be explained by a potential partial unfolding of the 

proteins in presence of the highly hydrophobic surfaces the proteins were exposed to [387]. It 

is known, that partially unfolded proteins can act as nuclei for protein aggregation [350, 380, 

388] and therefore for the formation of small soluble and large insoluble aggregates. The surface 

charge distribution and presence of hydrophobic patches at proteins’ surface are also factors 

influencing the propensity to unfold. For instance, that could be a reason for the comparable 

high particle count for Bevacizumab samples. It has the highest tendency to interact with 

hydrophobic surfaces probably due to its propensity to unfold. This is caused by hydrophobic 

patches present at Bevacizumab`s surface. HIC analysis revealed the longest retention time for 

Bevacizumab, signifying the highest hydrophobicity of this protein compared to the other 

proteins. This would also explain the incomplete release patterns of Bevacizumab observed 

during in-vitro release studies described in chapter IV. 
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SE-HPLC AND ELECTROPHORETIC ANALYSIS 

The percentage of monomer content was monitored in samples collected after 0 (before 

incubation started), 2, 4 and 8 weeks. For the detailed course of monomer depletion upon 

incubation with lipid/PLGA rods, please see Appendix Figure XII-11. Protein recovery was 

assessed as well but will be discussed separately within VIII.2.1.4 as it is an indication for 

adsorption of proteins onto lipid/PLGA surfaces.  

Table VIII-2: SE-HPLC results of mAb incubated with H12, D118 and RG 755 S rods and without any additives 

(PBS, negative control) after 0 weeks (reference) and 8 weeks at 35°C and 40 rpm. Results are given in %. 

 Reference Week 8 

 Aggregates  Monomer  Fragments  Aggregates  Monomer  Fragments  

PBS 

1.11 (±0.13) 98.19 (±0.06) 0.69 (±0.07) 

0.63 (±0.16) 95.05 (±0.39) 4.34 (±0.22) 

H12 0.43 (±0.12) 89.88 (±0.29) 9.69 (±0.19) 

D118 0.45 (±0.16) 94.21 (±1.07) 5.34 (±0.98) 

RG 755 S 0.46 (±0.10) 93.61 (±0.17) 5.93 (±0.20) 

 

Table VIII-2 provides an overview of the monomer content of mAb upon incubation. 

Interestingly, the monomer content after 8 weeks of incubation with H12 rods dropped down to 

90 % compared to 93 % to 95 % if incubated with D118 or PLGA rods, respectively. The 

monomer loss for all incubation protocols was due to fragmentation but approximately 5 % more 

fragments were observed upon incubation with H12 rods. Formation of soluble aggregates was 

not detected. However, these differences were not seen by non-reducing denaturating SDS-

PAGE (Appendix, Figure XII-12). 
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Table VIII-3: SE-HPLC results of Bevacizumab incubated with H12, D118 and RG 755 S rods and without any 

additives (PBS, negative control) after 0 weeks (reference) and 8 weeks at 35°C and 40 rpm. Results are given 

in %. 

 Reference Week 8 

 Aggregates  Monomer  Fragments  Aggregates  Monomer  Fragments  

PBS 

2.90 (±0.04) 96.73 (±0.09) 0.38 (±0.11) 

4.25 (±0.16) 94.06 (±0.10) 1.69 (±0.06) 

H12 3.79 (±0.03) 94.16 (±0.23) 2.04 (±0.24) 

D118 4.34 (±0.08) 93.91 (±0.14) 1.75 (±0.06) 

RG 755 S 3.93 (±0.13) 94.26 (±0.11) 1.81 (±0.17) 

 

For Bevacizumab, the monomer content ranged between 93.9 % to 94.3 % after an 8-week 

incubation without any differences between lipids, PLGA and PBS, respectively (Table VIII-3). 

In contrast to mAb, the monomer loss can be traced back to the formation of soluble aggregates 

rather than the formation of fragments. Again, major differences between the 

aggregation/fragmentation profile as a function of the incubation protocol was not noticed as it 

was also confirmed by SDS-PAGE (Appendix, Figure XII-13).  

Table VIII-4: SE-HPLC results of Ranibizumab incubated with H12, D118 and RG 755 S rods and without any 

additives (PBS, negative control) after 0 weeks (reference) and 8 weeks at 35°C and 40 rpm. Results are 

displayed in %. 

 Reference Week 8 

 Aggregates  Monomer  Fragments  Aggregates  Monomer  Fragments  

PBS 

0.00 (±0.00) 98.66 (±0.31) 1.34 (±0.31) 

0.00 (±0.00) 97.93 (±0.35) 1.96 (±0.25) 

H12 0.00 (±0.00) 98.40 (±0.05) 1.60 (±0.05) 

D118 0.00 (±0.00) 99.06 (±0.21) 0.94 (±0.21) 

RG 755 S 0.00 (±0.00) 97.20 (±0.80) 2.80 (±0.80) 
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The monomer content of Ranibizumab after an incubation for 8 weeks in the presence of lipid 

or PLGA rods ranged between 97.2 % to 99.1 % meaning no differences were observed. If any, 

slightly more fragmentation might be observed (2.80 %) upon incubation with PLGA compared 

to the lipid rods (in maximum 1.60 %).  

Table VIII-5: SE-HPLC results of Aflibercept incubated with H12, D118 and RG 755 S rods and without any 

additives (PBS, negative control) after 0 weeks (reference) and 8 weeks at 35°C and 40 rpm. Results are given 

in %. 

 Reference Week 8 

 Aggregates  Monomer  Fragments  Aggregates  Monomer  Fragments  

PBS 

0.71 (±0.02) 99.29 (±0.02) 0.00 (±0.00) 

0.52 (±0.02) 99.48 (±0.02) 0.00 (±0.00) 

H12 2.56 (±0.00) 97.44 (±0.06) 0.00 (±0.00) 

D118 0.52 (±0.03) 99.48 (±0.03) 0.00 (±0.00) 

RG 755 S 0.54 (±0.07) 99.46 (±0.07) 0.00 (±0.00) 

 

The same scenario as described for mAb was also observed for Aflibercept: the monomer 

content stayed constant at 99.5 % for all incubation protocols except for samples incubated with 

H12 rods (decrease to 97.4 %), which was due to aggregation rather than fragmentation (Table 

VIII-5). These results were not confirmed by non-reducing denaturating SDS-PAGE (Appendix, 

Figure XII-14). 

In conclusion, for two proteins – mAb and Aflibercept - a H12 promoted monomer loss was 

noticeable. Interestingly, for mAb the monomer loss was caused by an elevated formation of 

fragments (Table VIII-2) whereas for Aflibercept the formation of soluble aggregates was the 

reason for enhanced monomer loss (Table VIII-5). However, fragmentation and aggregation, 

respectively, could not be confirmed by non-reducing denaturating SDS-PAGE (Appendix, 

Figure XII-12 and Figure XII-14). The reason for the monomer loss promoted by H12 rods 

remains to be investigated further. Another possibility could be impurities or contaminations of 

the H12 raw material with heavy metals which are known for their potency to induce protein 
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aggregation [371-373, 389-394]. To answer this question, ICP-AES analysis of all raw materials 

and extruded implants were analysed towards their heavy metal impurities (VIII.2.1.4). 

Neuhofer [185] already performed an incubation study with the same triglycerides used here 

but using another protein. He investigated native interferon (nIFN) and PEGylated interferon β-

1b. In terms of aggregation, he stated that «The formation of aggregates is slightly more 

pronounced in the presence of lipids in comparison with the pure buffer […]. In PBS buffer pH 

7.4 +0.1 % SDS a slight trend towards the formation of soluble aggregates is visible with 

increased incubation time. Also the presence of placebo extrudates slightly promotes the 

formation of aggregates […]» [185]. This is in accordance with our results even though interferon 

is different by molecular weight and structure compared to the proteins used within our study.  

VIII.2.1.2 CHEMICAL STABILITY OF PROTEINS 

In addition to physical stability analysis, proteins were also analysed towards chemical changes 

by IEX, HIC, reducing capillary gel electrophoresis, and cIEF.  

ION EXCHANGE CHROMATOGRAPHY (IEX) 

An IEX method was developed for the separation of the charge variants of mAb and 

Bevacizumab as described previously (III.2.6.5). As indicated in Figure VIII-2 A, the fingerprint 

of mAb was divided into 5 subspecies, whereas the signal of Bevacizumab was classified into 

4 different charge variants (Figure VIII-2 B). 

Table VIII-6 displays the results obtained after an 8-week incubation in PBS (negative control) 

or in presence of H12, D118, or RG 755 S rods, respectively. MAb`s main peak area was slightly 

more reduced upon incubation with the lipid/PLGA rods with lowest percentage upon incubation 

with D118 rods (approximately 2.5 % less compared to samples incubated for 8 weeks in PBS). 

The same was true for Bevacizumab: main charge variant showed the most decrease upon 

incubation with D118 rods (approximately 3 %).  
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Figure VIII-2: Exemplary chromatographic profile of (A) mAb and (B) Bevacizumab using a WCX column for 

separation of charge variants upon incubation in PBS at 35°C over 8 weeks. As indicated, the fingerprint of 

mAb was divided into 5 subspecies whereas the signal of Bevacizumab was classified into 4 different charge 

variants.  

 

The main charge variant of both proteins decreased distinctly upon incubation compared to the 

reference material: for mAb and Bevacizumab the percentage of main charge variant was 

halved after incubation. This result was expected, as an 8-week incubation at 35°C and 40 rpm 

represents relatively harsh environmental conditions leading to degradation [315, 395]. For both 

proteins, the retention time of the main peak was monitored additionally. A constant retention 

time underlines that the separation method was suitable to isolate differently charged 

subspecies which were formed during the incubation. Contrarily, a shift in retention time would 

point into the direction of differently charged subspecies which were not isolated by the 

separation method. In terms of mAb and Bevacizumab, the retention time of the main peak was 

found be to constant after 8 weeks of incubation irrespectively of the incubation protocol 

compared to the reference (Table VIII-6). 
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Table VIII-6: Area and retention time of the main charge variant of mAb and Bevacizumab after 8 weeks of 

incubation with H12, D118, or RG 755 S rods and in PBS (negative control) compared to the reference. 

 mAb Bevacizumab 

 
Main charge 

variant [%] 

Retention time 

main peak [min] 

Main charge 

variant [%] 

Retention time 

main peak [min] 

Reference 37.44 (±0.69) 29.95 (±0.05) 62.77 (±0.29) 28.88 (±0.01) 

PBS_week 8 20.36 (±0.05) 29.86 (±0.02) 39.40 (±0.70) 28.87 (±0.03) 

H12_week 8 19.56 (±0.10) 29.80 (±0.00) 38.47 (±0.57) 28.92 (±0.01) 

D118_week 8 17.86 (±0.20) 29.78 (±0.01) 36.45 (±0.12) 28.92 (±0.01) 

RG 755 S_week 8 19.21 (±0.14) 29.80 (±0.00) 37.81 (±1.16) 28.88 (±0.01) 

 

In general, both IgG1 antibodies formed more acidic rather than basic subspecies as shown in 

the chromatographic fingerprint (Figure VIII-2). Those chemical alterations include deamidation 

(asparagine, glutamine, c-terminal amides), cleavage of disulfide bonds, oxidation of proline, 

oxidation of phenylalanine to o-tyrosine, oxidation of tryptophan (formation of oxindolyalanine, 

dioxindolyalanine, kynurenine, N-formylkynurenine), conversion of arginine to ornithine and/or 

citrulline or hydrolysis [337]. For both proteins, the formation of covalent bonds was not detected 

as measured by reducing capillary gel electrophoresis (Appendix, Figure XII-15 A and B). 

However, most degradation was seen at the D118 incubated samples. 

HYDROPHOBIC INTERACTION CHROMATOGRAPHY (HIC) 

Charge variants of Ranibizumab and Aflibercept were analysed applying HIC (III.2.6.6). The 

signal of Ranibizumab was sectioned into two areas (Figure VIII-3 A). Area 1, the area of the 

main charge variant, decreased marginally over the incubation time, whereas a minimal 

increase of area 2 was observable.  
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Figure VIII-3: Exemplary chromatographic profile of (A) Ranibizumab and (B) Aflibercept applying a 

MAbPac™ HIC-10 column for separation of charge variants upon incubation in PBS for 8 weeks at 35°C. As 

indicated, the fingerprint of Ranibizumab and Aflibercept was divided into 2 species. 

 

The formation of hydrophilic isoforms eluting at approximately 9.5 min was noticeable. In 

addition, a shift of the main peak to shorter retention times pointed into the direction of more 

hydrophilic isoforms. The signal of Aflibercept featured by a shift to longer retention times, 

representing more hydrophobic variants arisen between week 2 and week 4 (Figure VIII-3 B). 

Table VIII-7 displays the percentages of Ranibizumab`s main charge variant after the 8-week 

incubation. After 8 weeks, the main charge percentage decreased by 8 % in average compared 

to the reference. A difference upon incubation with lipids, PLGA or PBS was not detected as 

the percentage of the main charge differed less than 1 % from each other. However, the elution 

of the main peak shifted to shorter retention times from 18.48 min (reference) to 17.13 min and 

17.89 min after incubation. The main peak eluted earliest upon incubation with D118 rods.  

  



TRIGLYCERIDE-PROTEIN-INTERACTION STUDIES 

187 

Table VIII-7: Area and retention time of the main charge variant of Ranibizumab and Aflibercept after 8 weeks 

of incubation with H12, D118, or RG 755 S rods and in PBS (negative control) compared to the reference. 

 Ranibizumab Aflibercept 

 
Main charge 

variant [%] 

Retention time 

main peak [min] 

Main charge 

variant [%] 

Retention time 

main peak [min] 

Reference 99.26 (±0.11) 18.48 (±0.01) 96.89 (±0.44) 12.25 (±0.01) 

PBS_week 8 92.18 (±0.10) 17.89 (±0.11) 93.78 (±0.43) 12.91 (±0.12) 

H12_week 8 91.87 (±0.36) 17.74 (±0.02) 96.06 (±0.45) 12.73 (±0.01) 

D118_week 8 91.41 (±0.47) 17.13 (±0.08) 96.16 (±0.80) 12.82 (±0.03) 

RG 755 S_week 8 91.25 (±0.26) 17.58 (±0.13) 96.44 (±0.27) 12.71 (±0.03) 

 

Conversely, the main charge percentage of Aflibercept had the lowest percentage when 

incubated in PBS without any additives - approximately 3 % less compared to the samples 

incubated with the lipid/PLGA rods (93 % versus 96 %). However, the retention time of the main 

peak shifted to longer retention times from 12.25 min (reference) to 12.8 min in average (Table 

VIII-7). This demonstrates the formation of more hydrophobic subspecies interacting more with 

the hydrophobic column material.  

Interestingly, Ranibizumab and Aflibercept behaved completely different. The Ranibizumab 

chromatographic peak migrated to shorter retention times, especially for samples incubated with 

D118 (Figure VIII-3, Table VIII-7). This could be due to possible chemical reactions triggered by 

D118, for instance oxidation (tryptophan, methionine, proline, histidine, phenylalanine), 

isomerisation (e.g. aspartic acid isomerisation), N- and O-glycosylation, serine fucosylation, 

deamidation (e.g. asparagine, glutamine, C-terminal amides), hydrolysis or β-elimination [337]. 

Contrarily, the main peak of Aflibercept shifted to longer retention times, which is an indicator 

for the formation of more hydrophobic subspecies which can be possibly promoted by chemical 

alterations or partial unfolding. When the protein unfolds, hydrophobic patches arise at the 

surface of the protein, thereby changing its overall surface charge and making it more 
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hydrophobic [346, 350, 380, 396-403]. However, unfolding was not detected by FT-IR (see also 

VIII.2.1.3). Alternatively, chemical reactions like oxidation (formation of disulfide bonds) or 

isomerisation (e.g. asparagine to succinimide) [337] are conceivable. For Aflibercept, results 

from reducing denaturating capillary gel electrophoresis suggests the formation of disulfide 

bonds in presence of the PLGA rod: a higher percentage of LMW species and less heavy chain 

percentage was found (Appendix, Figure XII-15 D).  

Finally, the question raises if the slight differences which were observed were caused by the 

different triglycerides/PLGA the proteins were exposed to. Interestingly, the main peak area for 

mAb, Bevacizumab and Ranibizumab decreased most in presence of D118. 

CAPILLARY ISOELECTRIC FOCUSSING (CIEF) 

The investigations towards chemical modifications using IEX and HIC revealed slightly more 

chemically modified subspecies when proteins were incubated with D118 rods. To verify the 

obtained data, cIEF was applied for Ranibizumab and Bevacizumab as an orthogonal method, 

as it is a more precise and more sensitive method than IEX and HIC and has been widely used 

in protein characterisation [404-408].  

The Ranibizumab signal was classified into an acidic isoform, the main isoform (main peak) and 

a single basic isoform, whereas for Bevacizumab, two different acidic isoforms were identified. 

As Figure VIII-4 A illustrates, the 8-week incubation promoted the formation of mainly more 

acidic subspecies by a simultaneous depletion of the main peak. Addition of lipid/PLGA rods to 

the Ranibizumab containing solution resulted in more acidic isoforms upon incubation with D118 

rods (approximately 5 %); all other results were comparable to each other. Consequently, it can 

be concluded that D118 promoted the formation of acidic isoforms. The percentage of basic 

isoforms was not affected. These data confirm the results obtained by HIC, where the shortest 

retention time of the main peak (more hydrophilic subspecies) was observed for samples 

incubated with D118 rods. It can be speculated that these changes were caused by deamidation 

or oxidation [337]. For Bevacizumab, Figure VIII-4 B illustrates that the area of the basic isoform 
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was more pronounced (approximately 4 %) in the presence of H12 rods. This finding contrasts 

with the obtained IEX results, where D118 was identified to promote most chemical alterations. 

Besides H12 and D118 rods, Ranibizumab and Bevacizumab were incubated with RG 755 S 

rods as well. For both proteins, levels of acidic and basic isoforms were in the same course as 

measured for both lipids and the negative control.  

Overall, for both proteins differences in areas between the different incubation protocols are 

negligible. A decrease in main charge variant on account of more acidic isoforms compared to 

the reference was detected but differences between samples incubated with lipids/PLGA or 

PBS were not observed. 

 

Figure VIII-4: Results of cIEF measurements of (A) Ranibizumab and (B) Bevacizumab. Protein containing 

solutions were incubated over 8 weeks in presence of H12, D118, or RG 755 S rods, respectively, or without 

any additives (PBS, negative control).  

 

Neuhofer already addressed the chemical stability of proteins upon incubation with lipids. The 

level of oxidized IFN β-1b in presence of lipids was investigated applying RP-HPLC. Within his 

work, he demonstrated that up to 20 % more oxidized species were formed upon the incubation 
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with lipid rods consisting of H12 and D118 in comparison to PBS. To clarify the origin of the 

elevated oxidation levels, he incubated nIFN β-1b with H12, D118 and paraffin wax rods over 

7 days. The highest oxidation levels were found upon incubation with D118 rods. This is in 

accordance with the results reported by us even though the proteins used were completely 

different by structure.  

The lipid-induced oxidation of proteins has already been described in literature. During 

peroxidation of lipids, unsaturated lipid species can form peroxides or radicals which can react 

with proteins. For instance, lipoxidation [409] is an important factor in atherosclerosis [410, 411]. 

It is well known that lipoxidation is often catalysed by metal impurities, as described by Wills 

[412] where oxidized unsaturated fatty acids inhibited specific enzymes. The lipids used within 

the present work were all saturated C12 to C18 triglycerides and therefore not prone to oxidation 

or lipoxidation. It was proven that even at high temperatures, an oxidation of saturated fatty 

acids (and their corresponding esters) did not correlate with the chain length of the triglycerides 

[185]. This means that the chemical changes, which were observed upon incubation with D118 

rods (consisting of tristearin), were not due to a preferred autoxidation of stearic acid. However, 

most chemical changes were observed in the presence of D118. In summary, it could be 

speculated that the presence of impurities was the reason for the increase in protein oxidation. 

As this is only speculative, it would be worth to invest more efforts to answer this question. As 

a follow-up study to the presented results, the presence of heavy metal was analysed as 

described in VIII.2.1.4. 

VIII.2.1.3 CONFORMATIONAL STABILITY OF PROTEINS 

Secondary structure analysis applying FT-IR was performed. Spectra were recorded of the bulk 

material (defined as reference) and of the samples after 8-week incubation in PBS (negative 

control) or in the presence of H12, D118, or RG 755 S rods, respectively.  
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Figure VIII-5: FT-IR spectra of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept recorded after 

8 weeks of incubation in PBS (negative control) or with H12, D118 or RG 755 S rods compared to reference. 

 

FT-IR spectra of Ranibizumab and Aflibercept did not show any deviations, neither in band 

intensity nor in band wavenumber, therefore suggesting that the proteins were conformationally 

stable over the incubation period and that the presence of lipids or PLGA did not promoted 

unfolding (Figure VIII-5 B, Figure VIII-5 D).  
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Figure VIII-5 A shows the FT-IR spectra of mAb recorded between 1600 cm-1 and 1700 cm-1. 

The amide I band, representing the β-sheet structure [340, 343], can be identified between 

1635 cm-1 and 1645 cm-1. The single peak present at the reference (1635 cm-1) turned into a 

split peak with a left side shoulder at approximately 1645 cm-1 which was most pronounced for 

the samples which had been in contact with RG 755 S. Additionally, the band intensity at 

1680 cm-1 and 1615 cm-1 indicated protein unfolding events [339]. Shifts towards higher 

wavenumbers represent unordered random coil like structures [338]. On the expense of regular 

structures, the formation of intermolecular hydrogen-bonded antiparallel β-sheet structures 

indicated partial unfolding of the mAb [342]. Changes in the secondary structure of mAb were 

also apparent when incubated with H12 and D118, but most pronounced for RG 755 S. In 

particular, an additional band at 1645 cm-1 was observed.  

Conformational changes were also observed for Bevacizumab. In Figure VIII-5 C, the FT-IR 

spectra of Bevacizumab reference and samples measured after 8 weeks incubated with H12, 

D118 or RG 755 S rods are given. Bevacizumab`s secondary structure changed slightly but a 

difference between the differently incubated samples was not observed.  

As an orthogonal method, extrinsic fluorescence was utilised using a Bis-ANS assay. In theory, 

Bis-ANS interacts with hydrophobic patches present at the protein surface, which leads to an 

increased fluorescence signal [380, 413-417]. If an enhanced signal is observed, it can be 

concluded that hydrophobic patches were formed upon partial unfolding. However, extrinsic 

fluorescence measurements did not confirm FT-IR results, as an enhanced signal was only 

measured for the positive control (proteins were exposed to 80°C and 400 rpm for 10 min) 

(Appendix, Figure XII-16). 

VIII.2.1.4 ADSORPTION OF PROTEINS ONTO LIPID/PLGA SURFACES 

To study absorptive effects of proteins on lipid/PLGA surfaces, protein recovery was measured 

via SE-HPLC assessing the AUC of the protein signal including the signal of soluble aggregates, 
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monomer and fragments. For the detailed course of protein recovery upon incubation with 

lipid/PLGA rods, please see Appendix Figure XII-17. 

The recovery of mAb did not change during incubation irrespective of the material the protein 

was exposed to (Table VIII-8). Recovery was measured with 101 % in general, therefore, no 

absorption of the mAb to the lipid/PLGA rods was observed.  

The protein recovery of Ranibizumab was characterised by a loss of recovery during incubation, 

especially if incubated with D118 rods (84.6 %). But also, protein recovery at the negative 

control decreased to 92 % within 8 weeks.  

Table VIII-8: Protein recovery of mAb, Ranibizumab, Bevacizumab, and Aflibercept after an 8-week incubation 

in PBS (negative control) or with H12, D118 or RG 755 S rods, respectively, measured by SE-HPLC. 

 PBS H12 rods D118 rods RG 755 S rods 

mAb 101.84 (±3.88) 101.75 (±1.80) 101.52 (±1.73) 102.83 (±0.13) 

Ranibizumab 91.99 (±0.44) 98.99 (±1.49) 84.56 (±1.57) 96.27 (±1.27) 

Bevacizumab 101.56 (±0.64) 94.08 (±0.82) 99.13 (±1.79) 100.59 (±1.53) 

Aflibercept 96.36 (±2.53) 80.65 (±2.18) 95.40 (±1.37) 95.16 (±0.42) 

 

Protein recovery for Bevacizumab and Aflibercept remained rather constant over 8 weeks 

regarding D118 and RG 755 S rods. More importantly, the recovery for both proteins was found 

to be 94 % (Bevacizumab) and 81 % (Aflibercept) when exposed to H12 rods.  

Neuhofer also addressed protein recovery within his studies, showing a correlation between 

hydrophobicity of the protein (interferon β-1b in its native state and PEGylated interferon) and 

protein recovery. A loss of protein recovery of nIFN β-1b of 50 % already after 7 days of 

incubation with lipid rods was demonstrated [185]. He also measured protein recovery of nIFN 

β-1b after incubation with H12/D118 rods, and rods consisting of pure H12 and D118. After 

7 days of incubation with H12/D118, recovery was only 50 % compared to the rods consisting 

of pure H12 (20 % loss) and D118 (25 % loss). 
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Lipid-protein-interactions were also studied by Even focussing on interactions of peptides 

(having different charges and hydrophobicity) and the lipids D114 (trimyristin), soybean lecithin 

and cholesterol [186]. Even concluded that neither the size nor the hydrophobicity of the 

peptides allows to predict the release behaviour or the interactions with the lipids, assuming that 

the three-dimensional protein structure should also be taken into account. 

Especially for Bevacizumab and Aflibercept, distinct adsorptive phenomena were observed. As 

the same phenomenon can be observed for different protein formats described by Neuhofer 

and us, it can be speculated that adsorption of proteins to triglyceride surfaces might be a 

function of protein hydrophobicity. When considering adsorptive phenomena, the isoelectric 

point of the proteins is of special interest as it provides information on the surface charge of a 

protein at a given pH [418-421]. The theoretical isoelectric points of the studied proteins were 

given with 8.3 (mAb), 8.8 (Ranibizumab), 8.8 (Bevacizumab) and 8.2 (Aflibercept) according to 

Hirvonen et al. [422]. The authors calculated the theoretical values using ExPASy. For mAb, the 

isoelectric point was determined experimentally via isoelectric focusing. Since the isoelectric 

points of the proteins were very similar, it can be considered that they were all positively charged 

at the incubation pH of 7.4. Therefore, differences in the overall net charge of the surface were 

most likely not responsible for the different behaviour. Rather than the net charge of the overall 

surface, isolated hydrophobic areas on the protein surface (hydrophobic patches) might be a 

driving factor for protein adsorption. These «hydrophobic patches» have a higher density of 

hydrophobic amino acids (alanine, leucine, isoleucine, phenylalanine, tryptophane) than other 

regions of the protein and are not affected by the surrounding pH in their hydrophobicity. To 

verify this hypothesis, further experiments would be needed facing the three-dimensional 

structure of the proteins. 

It should be stated that beyond diffusion and erosion, also the adsorption and desorption of the 

proteins to the highly hydrophobic lipid matrix should be considered also possibly explaining the 

different sustained release patterns observed (chapter IV). For instance, Ranibizumab is more 

hydrophobic than Aflibercept because it interacts more with the hydrophobic stationary phase 



TRIGLYCERIDE-PROTEIN-INTERACTION STUDIES 

195 

during HIC (Figure VIII-3, Table VIII-7). This might be a reason for a more sustained release of 

Ranibizumab compared to Aflibercept (Figure IV-11), even though Ranibizumab is smaller in 

size. 

 

VIII.2.2 METAL IMPURITIES AND THEIR IMPACT ON PROTEIN STABILITY  

During the preparation process of implants, many sources could theoretically act as an origin 

for possible contaminations of the material with traces of heavy metals. For instance, extruder 

parts, being in contact with the material during extrusion, are possible sources for metal 

abrasions. It is well-known that heavy metals can promote protein degradation [389, 390, 393]. 

In the present study, the level of diverse metals (Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was 

measured within the raw material (lipids, HP-β-CD), protein lyophilisates and extruded implants 

manufactured with both extruders (Table VIII-9). The samples were analysed according to 

III.2.6.12 using ICP-AES. Levels of titanium (serves as a catalyst during the bleaching step of 

triglyceride production) were not evaluated, as it is regularly monitored by Cremer Oleo. The 

certificates provided by Cremer Oleo showed that the titanium content was less than 1 ppm 

measured by a suitable method included in the European Pharmacopoeia (Ph. Eur. 2.2.23). 

The results of the ICP-AES analysis are displayed in Table VIII-9 as milligram heavy metal per 

gram of sample. Levels for all elements were below the limit of detection (LOD) and are therefore 

not displayed in Table VIII-9, except for aluminium, were traces were identified. Within 

Ranibizumab, Bevacizumab and Aflibercept protein lyophilisates, aluminium was detected. 

Aluminium was also found in Witepsol H12. Consequently, aluminium was also found in all 

extruded implants, with the highest amount of 3 µg aluminium per implant. 

To clarify if aluminium was a driving force for protein degradation within the lipid implants, 

protein solutions were incubated with highest aluminium content found (0.111 µg aluminium per 

mg protein). 
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Table VIII-9: Overview of samples analysed towards metal content with ICP-AES. Only results for aluminium 

content are displayed as for all other metals the level was below the LOD. Results are given in mg/g.  

Sample code Sample description 
Concentration aluminium 

[mg/g] 

#1 Lyophilisate mAb < LOD 

#2 Lyophilisate Ranibizumab 0.0348 

#3 Lyophilisate Bevacizumab 0.0233 

#4 Lyophilisate Aflibercept 0.2350 

#5 HP-β-CD < LOD 

#6 H12 < LOD 

#7 H12A < LOD 

#8 Witepsol H12 0.0051 

#9 Dynasan® D118 < LOD 

#10 SLI produced on a MiniLab® extruder (mAb) 0.0088 

#11 SLI produced on a MiniLab® extruder (Ranibizumab) 0.0685 

#12 SLI produced on a MiniLab® extruder (Bevacizumab) 0.0870 

#13 SLI produced on a MiniLab® extruder (Aflibercept) 0.1045 

#14 SLI produced on a ZE-5 mini-extruder (mAb) 0.1080 

#15 SLI produced on a ZE-5 mini-extruder (Ranibizumab) 0.0585 

#16 SLI produced on a ZE-5 mini-extruder (Bevacizumab) 0.0560 

#17 SLI produced on a ZE-5 mini-extruder (Aflibercept) 0.0435 

 

According to Table VIII-9, the highest aluminium content was found to be 0.1080 mg/g. Based 

on the average weight of an SLI (dimensions of 1.5 mm x 15 mm considered), which is 30.7 mg, 

in theory 3.2 µg aluminium per SLI were found. This amount aluminium is equal to 0.1 µg 

aluminium per mg protein (protein formulated 1:1 [w/w] with HP-β-CD). To evaluate, if an 
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aluminium content of 3.2 µg per SLI can cause protein degradation and therefore provide an 

explanation for protein instability observed during release (chapter VI), an incubation study with 

different aluminium concentrations was performed. Even though the study was performed in the 

liquid state, which cannot be transferred 1:1 to the dry state (protein lyophilisate incorporated 

into SLIs and not being released), it shall provide a first impression what could have happened 

within the SLIs. Protein solutions at a concentration of 1.0 mg/ml (diluted from stock solutions 

comprising 10 mg/ml in 50 mM sodium phosphate buffer pH 6.2 with PBS pH 7.4) were spiked 

with aluminium (as AlCl3*6H20) to obtain a final concentration of 0.1 µg/ml (maximum level found 

by ICP-AES) and 1.0 µg/ml (positive control). As negative control, non-spiked protein solutions 

were incubated. Samples were incubated for 4 weeks at 37°C in a horizontal shaker (40 rpm) 

and samples were analysed applying LO, SE-HPLC, IEX and HIC. 

At a concentration of 0.1 µg/ml Al3+, particle count was not elevated for all proteins compared 

to negative control (PBS). At the ten times higher concentration of Al3+ (positive control), particle 

count was higher for all proteins pointing towards metal induced formation of subvisible 

particles. 

Table VIII-10: Cumulative particle count (> 1 µm) of protein solutions spiked with different concentrations of 

Al3+ incubated over 4 weeks at 37°C and 40 rpm. 

 mAb Ranibizumab Bevacizumab Aflibercept 

PBS 380 (±203) 141 (±104) 806 (±175) 397 (±138) 

0.1 µg/ml 241 (±42) 153 (±34) 607 (±110) 276 (±12) 

1.0 µg/ml 489 (±110) 2134 (±189) 1899 (±240) 1166 (±168) 

 

The monomer content of all tested proteins did not differ after 4 weeks upon incubation with 

Al3+. Even in the positive control, no impact of aluminium to monomer content was observed.  
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Protein recovery of mAb and Ranibizumab were unaffected, whereas protein recovery of 

Bevacizumab and Aflibercept decreased to 77 % and 57 %, respectively, already at 

concentrations of 0.1 µg/ml Al3+. 

 

Figure VIII-6: (A) Monomer content and (B) protein recovery of proteins spiked with different concentrations 

of Al3+ incubated over 4 weeks at 37°C and 40 rpm. 

 

Supplemental to particle count and SE-HPLC, IEX and HIC were applied to detect possible 

metal induced chemical alterations compared to the negative control (Table VIII-11). For all 

proteins, the percentage of main peak area was not negatively affected by the addition of Al3+, 

not even for the positive control with the ten times higher aluminium concentration. 

In summary, aluminium-induced protein degradation was not observed; neither elevated particle 

count, nor higher rates in monomer loss were detected. Likewise, more pronounced chemical 

degradation was not detected. 
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Table VIII-11: Main peak area in % of proteins spiked with different concentrations of Al3+ incubated over 

4 weeks at 37°C and 40 rpm. As control, samples were incubated in PBS. For mAb and Bevacizumab, main 

peak percentage was assessed by IEX whereby main peak area for Ranibizumab and Aflibercept was 

assessed using HIC. 

 mAb Ranibizumab Bevacizumab Aflibercept 

Reference 35.61 (±0.18) 99.26 (±0.11) 62.77 (±0.29) 96.89 (±0.44) 

PBS 30.13 (±0.36) 94.46 (±0.08) 53.70 (±0.68) 98.63 (±0.12) 

0.1 µg/ml 30.89 (±0.44) 95.47 (0.17) 54.79 (±1.61) 96.08 (±1.40) 

1.0 µg/ml 33.35 (±0.35) 96.48 (±0.13) 53.28 (±0.35) 95.68 (±0.69) 

 

On the contrary, protein recovery of Bevacizumab and Aflibercept decreased to 77 % 

(Bevacizumab) and 57 % (Aflibercept), respectively, compared to the negative control. As no 

elevated particle count was observed at this aluminium level, metal induced formation of large 

sized and insoluble aggregates forming precipitates was most likely. Those precipitates 

precipitated out of the solutions and were therefore not measured by LO. Metal induced 

aggregation (also forming large sized particles) has already been described in literature [373, 

394], which supports our explanation. Our explanation was further confirmed by the observation 

of milky sediments. 
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VIII.3 CONCLUSION 

Triglyceride-protein-interactions were studied within an incubation study, where extruded rods 

consisting of 100% H12, D118, or Resomer® RG 755 S were incubated with protein solutions 

over 8 weeks at 35°C and 40 rpm. Proteins were characterised towards colloidal, chemical and 

conformational stability as well as adsorptive effects upon incubation with either triglycerides or 

PLGA rods.  

If incubated with H12 rods, elevated particle count and turbidity were observed for all proteins, 

especially for Aflibercept. H12 rods partially disintegrated upon incubation with proteins (total 

disintegration upon incubation with Aflibercept). It can be therefore speculated that the 

disintegration of the H12 rod could be due to the amphiphilic character of the proteins. For mAb 

and Aflibercept, monomer content decreased upon contact with H12, contrarily, monomer 

content of Ranibizumab and Bevacizumab stayed constant. For Bevacizumab and Aflibercept, 

protein recovery decreased over time, resulting in a recovery of 94 % (Bevacizumab) and 81 % 

(Aflibercept) after 8 weeks. This points into the direction of protein adsorption onto H12. 

Interestingly, for these two proteins highest particle count (suggesting the formation of subvisible 

particles) was observed. Regarding chemical and conformational stability, no differences were 

observed. Finally, it can be concluded that proteins partly interacted with H12 resulting in the 

formation of subvisible particles, the loss of monomer and adsorptive effects.  

For D118 rods, another picture can be drawn. In terms of physical and conformational stability, 

no distinct differences between the proteins were noted. However, mAb and Ranibizumab 

comprised more chemical isoforms on the account of a loss of main charge variant in the 

presence of D118 (not seen upon contact with H12). It is noteworthy, that exclusively 

Ranibizumab recovery decreased (84.6 % after 8 weeks) compared to the other proteins. Since 

no elevated particle count or turbidity was observed, it can be assumed that the loss in protein 

recovery was due to adsorption onto D118 rather than formation of particles. Overall, interaction 

between D118 and proteins was less compared to H12.  
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Proteins were incubated with rods consisting of Resomer® RG 755 S. Overall, proteins revealed 

no reduced physical, chemical and conformational stability. Additionally, protein recovery was 

not affected. These results are in a strong contrast to the results described within chapter 

VII.2.2. There, substantial physical and chemical instabilities were observed when proteins were 

encapsulated within a PLGA matrix. Here, proteins were incubated with placebo PLGA rods for 

sure not fully mimicking the environment within a PLGA matrix.  

Studies towards heavy metal impurities revealed detectable levels only of aluminium within the 

protein lyophilisates and H12 and consequently also in extruded SLIs. However, particle 

formation, monomer content and main charge variant were not negatively affected by the 

presence of Al3+ at a concentration of 3.2 µg per implant (highest Al3+ concentration found). 

However, protein recovery of Bevacizumab and Aflibercept decreased in the presence of Al3+. 

Finally, it can be concluded that proteins interacted most with H12 but also partly with D118. 

Thereby, the observed instabilities were not caused by heavy metal impurities of the raw 

materials. Other impurities possibly being present at the lipid raw material (peroxides or 

aldehydes) could be a further reason for protein degradation. 
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IX. PRESSURE MEASURMENT AS A NEW 

ANALYTICAL TOOL FOR TWIN-SCREW 

EXTRUSION OF SOLID LIPID IMPLANTS 

IX.1 INTRODUCTION 

This chapter is aimed to systematically investigate the extrusion process on a ZE-5 mini-

extruder. The formulation comprising 10 % protein lyophilisate and a lipid matrix consisting of 

50 % H12 and 50 % D118 (from now on referred to as 50:50 lipid composition) was used as 

starting point. The mAb as model protein for in-vitro release was used. The ZE-5 mini-extruder 

was equipped with a resistance strain gauge located at the outlet plate of the extruder barrel as 

an online pressure monitoring tool. This allows to measure extrusion forces in real time. The 

impact of process parameters such as extrusion speed, temperature, and lipid composition on 

implant properties was studied. Bending strength, true density and microscopic appearance of 

extruded implants was assessed. Extrusion temperature (33°C to 42°C), screw speed (40 rpm 

to 80 rpm) and the lipid composition (30 % to 70 % of each triglyceride) were modified. 

Furthermore, SLIs were double-extruded to evaluate this technique as a potential tool to further 

modify implant properties.  
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IX.2 DISTINCTION BETWEEN HOT MELT EXTRUSION (HME) AND SOLID LIPID 

EXTRUSION (SLE) 

It is important to differentiate between HME and SLE. Generally, synthetic polymers such as 

EVA, PEO, PLA, or PLGA are used for HME, and processing takes place at temperatures far 

above 100°C [423]. This is normally performed at 15°C to 60°C above the Tm or Tg [424] of the 

used material. At these process temperatures, the material is completely molten and in a liquid-

like state. For SLE, mainly fatty acids (myristic acid, stearic acid), polyoxylglycerides (Gelucire, 

Compritol) or acylated glycerides (Dynasan, Imwitor, Precirol ATO) [425] have been used. 

Irrespective of the lipid, the extrusion temperature is below the Tm of the components, which 

leads to a semi-solid state of the material.  

Regarding HME, the process has been thoroughly characterised and the impact of process 

parameters – mixing [426], shape of screws [427], impact of degassing [428], screw speed, 

effect of plasticisers, process temperature - on product properties has been described within 

numerous publications [424, 429]. 

For SLE, research focused on release profiles and underlying release mechanisms [155, 157, 

158, 182, 299, 430], the solid-state behaviour [161, 163], effect of release modifiers [149, 160, 

177, 178] or in-vivo-in-vitro correlations [168] for various drugs [163, 182, 236, 299] including 

pharmaceutical relevant proteins such as rh-interferon-α [178] and interleukin-18 [174]. 

However, the extrusion process in pharmaceutical applications itself has not been investigated 

in depths until now.  
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IX.3 RESULTS AND DISCUSSION 

IX.3.1 ANALYSIS OF PRESSURE-TIME CURVES DURING EXTRUSION  

Pressure curves were recorded for each batch produced on the extruder. A representative 

pressure profile is displayed in Figure IX-1, illustrating the course of pressure during an 

extrusion run of a 50:50 composition at 35°C and 60 rpm. The pressure profile can be separated 

in four different phases, namely the feeding phase (I), compacting phase (II), implant formation 

phase (III) and termination of implant formation (IV). During section I, the material is fed via a 

feeding tube and pestle to the inlet of the barrel (Figure III-6 C). During this step, no pressure 

at the outlet plate is measured because the material did not yet reach the outlet plate. During 

this time, the components are merged, melted, admixed, and pre-compressed as a function of 

screw speed, extrusion temperature and extrudates’ formulation.  

 

Figure IX-1: Representative extrusion pressure profile of a 50:50 lipid composition extruded at 35°C and 

60 rpm. The extrusion run can be divided into four different phases, namely (I) feeding, (II) compacting, (III) 

implant formation and (IV) termination of implant formation. 
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In phase II, the material has reached the end of the extruder barrel. The material has been 

transported to the space between the end of the screws and the outlet plate. Due to this, first 

little pressure peaks can be observed (Figure IX-1, phase II). While the pressure is increasing, 

lipid strand formation already started. 

During the plateau phase, lipid strand formation takes place (Figure IX-1, phase III). An initial 

pressure peak can be observed followed by a phase where the extrusion pressure reaches a 

steady-state plateau. When no further material is fed to the inlet of the barrel, the steady-state 

is no longer maintained, which is indicated by a continuous decrease in pressure until it reaches 

a plateau again. Once the pressure started to decrease, implant formation started to slow down 

and stopped subsequently. The low plateau represents the end of the extrusion run (Figure IX-1, 

phase IV). For calculation of the average extrusion pressure, the mean values measured during 

the steady-state plateau were taken. The comparatively low remaining pressure after the run 

has been completed (approximately 500 kPa for the run depicted in Figure IX-1) is generated 

by the remaining material left behind within the barrel. 

 

IX.3.2 INVESTIGATION OF INNER-STRAND HOMOGENEITY 

The inner-strand homogeneity was assessed by extruding a 50:50 lipid composition at 35°C 

and 40 rpm, which represents the standard extrusion settings within this study (Figure IX-2). 

The resulting lipid strand had a total length of approximately 130 cm to 140 cm. For this run, 

implant formation (phase III) started after approximately 40 sec and lasted for 40 sec which 

equates an extrusion speed of 3.4 cm/sec. The last 15 cm to 20 cm were discarded and not 

further analysed since the implant strand formed during this phase (phase IV) was 

inhomogeneous and lipid strand formation was non-continuous. Thus, the first 120 cm were 

divided into four sections, each 30 cm in length. From each section four replicates (15 mm in 

length) were taken randomly.  
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Each phase was analysed towards true density, mechanical properties, and in-vitro release of 

the mAb. The average extrusion pressure was calculated by taking all pressure values into 

consideration measured during the steady-state plateau. For this particular run, the average 

pressure was calculated between 50 sec and 80 sec (Figure IX-2) resulting in an average 

pressure of 975 kPa ±74 kPa. Even if the pressure reaches a constant level during the implant 

formation section, it is not self-evident that the characteristics of the implants formed during this 

period comprise the same properties, e.g. true density or release patterns. Importantly, it should 

be noted that the first section (0 cm to 30 cm) was produced while the extrusion pressure 

plateau was not yet reached (45 to 50 sec, Figure IX-2) whereas all other sections (30 cm to 

120 cm) were extruded during the steady-state phase (between 50 sec and 80 sec of the run). 

  

Figure IX-2: Representative extrusion pressure profile of a 50:50 lipid composition extruded at 35°C and 

60 rpm. 

 

As shown in Table IX-1, both true density and bending strength measurements had lower values 

for the first section (0 cm to 30 cm) compared to the following three sections. The sections taken 

between 30 cm to 120 cm were comparable in terms of true density and bending strength. 

Additionally, cumulative release of the mAb was monitored over 4 weeks. Release from SLIs 
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taken from section 30 cm to 120 cm was comparable ranging from 45.62 % to 46.21 % after 

4 weeks. Release from the first section (0 cm to 30 cm) was faster (64.66 % after 4 weeks). 

Consequently, within the following experiments, the first 30 cm were discarded and not used for 

further analysis. 

Table IX-1: Summary on true density, bending strength, and release of mAb for the different sections of the 

lipid strand. 

Section 
True density 

[g/cm3] 

Bending strength  

[N] 

Cumulative release of mAb 

after 4 weeks [%] 

0 cm to 30 cm 0.974 (±0.004) 0.757 (±0.169) 64.66 (±2.89) 

30 cm to 60 cm 1.032 (±0.002) 1.967 (±0.220) 45.86 (±1.83) 

60 cm to 90 cm 1.031 (±0.002) 2.090 (±0.381) 45.62 (±3.23) 

90 cm to 120 cm 1.030 (±0.001) 2.064 (±0.387) 46.21 (±2.25) 

 

The low standard deviation, especially with regards to the in-vitro release, indicated that the 

protein was homogenously distributed within the lipid matrix. This means that the preparation 

technique provides an adequate distribution of the individual components even though the 

screws are rather short and were not equipped with any special mixing and kneading zones. 

Additionally, a pre-melting or full melting of the lipids is not necessary either.  

Generally, it is important to consider that implant formation already started during the 

compacting phase (phase II). Collecting the lipid strand therefore started approximately after 

40 sec of the corresponding run (Figure IX-2). The differences between the first (0 cm to 30 cm) 

and the following sections (30 cm to 120 cm) can be explained by the fact that during the very 

first formation of the lipid strand, the pressure did not reach completely the steady-state plateau 

as illustrated in Figure IX-2 at phase II. Consequently, the lipid strand showed macroscopic 

irregularities, e.g. a very rough surface or even gaps and cut-outs. This goes in line with a more 

porous implant. By this, the faster release is plausible as well because incubation medium can 

penetrate faster into the micro-pores and channels running through the lipid matrix. After the 
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steady-state phase (phase III), extrusion pressure decreased and lipid strand formation 

subsequently ended.  

Throughout all experiments, the standard deviations of average extrusion pressures between 

independent runs (triplicates) were low which indicates a good reproducibility of the extrusion 

runs and a low batch to batch variety of the resulting lipid implant. Especially at lower extrusion 

temperatures, standard deviations ranged between 2 % to 5 %. Nevertheless, within a single 

run, isolated pressure peaks were observed as it is displayed in Figure IX-2.  

 

IX.3.3 IMPACT OF PROCESS PARAMETERS ON EXTRUDATE CHARACTERISTICS 

IX.3.3.1 EXTRUSION TEMPERATURE 

The impact of extrusion temperature was evaluated using the 50:50 lipid composition. Three 

different extrusion temperatures were chosen, covering the complete temperature range where 

this specific formulation is extrudable (33°C to 37°C).  

Figure IX-3 illustrates the pressure profiles at extrusion temperatures of 33°C, 35°C and 37°C, 

respectively. The lower the extrusion temperature the higher the steady-state pressure is: at 

33°C 2373 kPa (±48 kPa) was measured, whereas 975 kPa (±74 kPa) and 487 kPa (±240 kPa) 

were measured when extrusion was performed at 35°C and 37°C, respectively (Figure IX-4 A). 

At 37°C, the formulation was problematic to extrude, as the lipid melt resulted in implant 

irregularities and a non-constant implant formation. Moreover, isolated pressure peaks, a less 

constant steady-state, and relatively high standard deviations were observed. 

In addition to measuring the steady-state extrusion pressure, also the time of implant formation 

varied substantially. The speed at which implants were formed was strongly dependent on 

extrusion temperature.  
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Figure IX-3: Representative extrusion pressure profiles of a 50:50 lipid composition extruded at 33°C, 35°C, 

and 37°C at 40 rpm. 

 

 

Figure IX-4: (A) Average extrusion pressure, (B) bending strength, and (C) cumulative release of mAb after 

4 weeks of a 50:50 lipid composition as a function of extrusion temperature ranging from 33°C to 37°C 

extruded at 40 rpm. 

 

As shown in Figure IX-3, at 33°C a steady-state plateau was present for approximately 50 sec, 

whereas this time was reduced to 30 sec at 37°C. Considering that the formed lipid strand had 
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a length of 120 cm, the extrusion speed can be calculated with 2.4 cm/sec at 33°C, 3.4 cm/sec 

at 35°C and 4.0 cm/sec at 37°C. 

Mechanical properties of SLIs were highly dependent on the extrusion temperature as it can be 

seen in Figure IX-4. A strong correlation for extrusion pressure and bending strength can be 

observed: both decreasing with higher extrusion temperature. 

In contrast to bending strength, release kinetics did not directly correlate with average extrusion 

pressure. Figure IX-4 C displays the cumulative released amount of mAb after 4 weeks as a 

function of the extrusion temperature. Compared to the standard extrusion temperature (35°C), 

release rates were comparably faster when extrusion temperature was either elevated (37°C) 

or reduced (33°C), as illustrated in Figure IX-4 C.  

In Figure IX-5, microscopic appearance of SLIs in dependence of the extrusion temperature is 

depicted. At lower extrusion temperatures of 33°C (Figure IX-5 A) and 35°C (Figure IX-5 C), 

implants had a smooth surface with no irregularities (e.g. pores). At 37°C, a rather rough and 

uneven surface is noticeable (Figure IX-5 E). The micro-structure of the implants was affected 

by the extrusion temperature as well. At 33°C, needle-like structures are present with sharp 

edges and well-defined forms (Figure IX-5 B). In contrast, if 35°C or 37°C were applied, 

platelets-like structures instead of needles were observed (Figure IX-5 D and Figure IX-5 F), 

possibly due to the higher extrusion temperatures which were very close to the Tonset of H12 

(36.8°C).  
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Figure IX-5: SEM micrographs of lipid implant surfaces consisting of a 50:50 lipid composition, which were 

extruded at (A, B) 33°C, (C, D) 35°C and (E, F) 37°C. Micrographs were taken at a magnification of (A, C, E) 

80x, and (B, D, F) 2000x, respectively. 

 

DISCUSSION 

Within this experiment, the impact of extrusion temperature on implant properties was 

investigated for a 50:50 lipid composition which was extruded at 33°C, 35°C and 37°C at 40 rpm. 

At 33°C, the average extrusion pressure was nearly five times higher compared to pressure 

measured at 37°C (Figure IX-3 and Figure IX-4 A). Additionally, implant formation speed was 

practically doubled (2.4 cm/sec at 33°C versus 4.0 cm/sec at 37°C.). At temperatures close to 

the Tonset of H12 (36.8°C), the lipid is in a waxy condition rather than in a solid state, which 

creates a lower resistance and rigidity during feeding to the extruder inlet. For this reason, H12 

is easier to compact because the waxy H12 is pressed between the interspace of non-molten 
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D 
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D118 particles more easily. Thus, the overall resistance and rigidity of the formulation generated 

less pressure, hence resulting in lower average extrusion pressure and a faster implant 

formation speed. Bending strength measurements support this explanation. Due to less 

compaction at higher extrusion temperatures, the material was less compacted resulting in a 

lower mechanical stability (2.21 N at 33°C compared to 1.31 N at 37°C).  

At an extrusion temperature of 35°C, a perfect balance between waxy H12 and non-molten 

material (D118) resulted in the slowest release. The non-molten material (D118) acted as the 

solid phase; the waxy H12 served as a «kit» between the solid lipid platelets of the D118 during 

extrusion. Thereby, a tight and dense lipid matrix was formed. At lower extrusion temperatures 

than 35°C, less waxy H12 was present. Consequently, the solid lipid platelets of the D118 were 

less interconnected by molten H12. Thus, compression rather than melt extrusion might be the 

predominant implant formation process at this temperature. At higher extrusion temperatures 

than 35°C, no suitable implant was formed due to low compaction force.  

No change in lipid modifications were observed neither due to the extrusion process nor upon 

incubation as monitored by differential scanning calorimetry (data not shown).  

In conclusion, a correlation of extrusion pressure, mechanical stability and extrusion 

temperature was observed: the higher the extrusion temperature, the lower the average 

extrusion pressure associated with a faster implant formation. Mechanical stability decreased 

as a function of extrusion pressure. Contrarily, in-vitro release data did not correlate with 

extrusion temperature. The slowest release was observed for implants prepared at 35°C. In 

summary, both sufficient pressure and adequate molten material is needed to form a suitable 

implant. 

IX.3.3.2 SCREW SPEED 

In a next step, the impact of different screw speeds on implant properties was studied. For this 

approach, the lipid matrix consisted of the 50:50 lipid composition. Extrusion temperatures were 
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set to 33°C, 35°C, and 37°C. Additionally, screw speed was varied between 40 rpm and 80 rpm, 

respectively.  

The resulting extrusion pressure profiles are given in Figure IX-6. At all extrusion temperatures, 

a strong relationship between extrusion pressure, duration of steady-state and screw speed can 

be observed. At 33°C, a steep onset and offset of pressure curves was noticeable. Further, at 

higher screw speeds the onset occurred earlier and consequently the steady-state plateau was 

reached faster. At 35°C, a steep onset and offset was observed for 60 rpm and 80 rpm, whereas 

the onset of the 40 rpm-pattern increased slower. Additionally, the steady-state plateau of the 

40 rpm-pattern showed isolated peaks. Pressure curves recorded for 40 rpm and 60 rpm at 

37°C were characterised by an even slower increase in pressure onset compared to 33°C and 

37°C. Moreover, a higher degree of oscillation during the steady-state plateau was noticeable, 

especially at 40 rpm. 

 

Figure IX-6: Representative extrusion pressure profiles of lipid implants consisting of a 50:50 lipid 

composition applying various screw speeds at an extrusion temperature of (A) 33°C, (B) 35°C, and (C) 37°C. 

Please note that the extrusion pressure axis is scaled differently. 

 

Figure IX-7 A provides a summary of average extrusion pressures measured for all screw 

speeds at the different extrusion temperatures. For example, at 35°C, the average extrusion 

pressure increased from 975 kPa (±74 kPa) at 40 rpm to 2830 kPa (±539 kPa) at 80 rpm, which 
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represents a threefold increase by doubling the screw speed. This relationship was also valid 

for the other extrusion temperatures.  

 

Figure IX-7: (A) Average extrusion pressures, (B) bending strength and (C) cumulative release after 4 weeks 

of a 50:50 lipid composition extruded at various screw speeds (40, 60 and 80 rpm) and different extrusion 

temperatures ranging from 33°C to 37°C. 

 

Regarding the mechanical properties of SLIs, a tendency towards decreasing bending strength 

as a function of screw speed was observed (Figure IX-7 B). Moreover, slightly lower values can 

be detected for SLIs extruded at 35°C compared to 33°C. At 37°C, no differences in bending 

strength were observed between the applied screw speeds.  

The cumulative release of the mAb was monitored over 4 weeks and is displayed in Figure 

IX-7 C as a function of extrusion temperature and screw speed. Release rates depended on the 

screw speed, although to a different extent. Generally, a slower screw speed resulted in slower 

release rates. 

 



CHAPTER IX 

216 

 

Figure IX-8: SEM micrographs of lipid implant cross sections taken at a magnification of 80x. Implants were 

composed of a 50:50 lipid composition and were extruded at (A, B) 33°C, (C, D) 35°C and (E, F) 37°C. Shown 

SLIs were manufactured with a screw speed of (A, C, E) 40 rpm or (B, D, F) 80 rpm.  

 

SEM micrographs were acquired to determine the impact of different screw speeds on implant 

morphology (Figure IX-8). As demonstrated in Figure IX-8 A and Figure IX-8 B, at an extrusion 

temperature of 33°C implants contained more pores when extruded at 80 rpm compared to SLIs 

manufactured at 40 rpm, where a rather dense matrix can be noticed. At 35°C, only very small 

and isolated pores can be observed irrespectively of the applied screw speed (Figure IX-7 C). 

More pronounced pore formation was observed at 37°C. At 40 rpm, a few isolated pores were 

present, whereas at 80 rpm numerous pores and even channels running through the cross 

section can be noted. This is also in accordance with acquired in-vitro release data, since the 

fastest release was observed when implants were extruded at 80 rpm (Figure IX-7 C).  

A B 

C D 
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DISCUSSION 

Within this experiment, the impact of screw speed on the implants´ mechanical stability and 

release patterns at three different extrusion temperatures was investigated. Higher screw speed 

resulted in higher extrusion pressure for all extrusion temperatures (Figure IX-7 A). Due to the 

higher screw speed, more material is transported per time interval. Therefore, at a constant 

implant diameter, the pressure during the compacting phase (phase II) of the extrusion process 

(where the sensor is located) is higher. Logically, once the compacting phase is completed, a 

faster screw speed results in faster lipid strand formation (Figure IX-6).  

Interestingly, the higher pressures did not correlate with increased mechanical stability, as the 

bending strength decreased with increased screw speed for implants extruded at 33°C and 

35°C. This can be explained by the retention period of the material within the barrel: faster 

transported material was less molten which resulted in lower bending strength. By this, the faster 

in-vitro release can be explained as well. Consequently, it can be concluded that the material 

requires a minimum time period to allow sufficient energy transfer from the barrel and screws. 

Only after this minimum retention time is reached, higher screw speed would lead to higher 

mechanical stability and lower release rates. This can easily be realized by a longer barrel 

during upscaling. 

Additionally, it can be speculated that once the lipid strand is pressed through the outlet, it 

expands again (cavitation). This phenomenon has already been described during extrusion of 

PLGA-lipid blends using a RAM-extruder [431]. This effect might be more pronounced the faster 

the screws rotate, which is underlined by more porous implants (Figure IX-8) and a lower 

bending strength (Figure IX-7 B). This would also explain in-vitro release data, as the incubation 

medium can penetrate faster into more porous implants. 
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IX.3.3.3 LIPID COMPOSITION 

Above, for the 50:50 lipid composition the impact of different screw speeds and extrusion 

temperatures on implant properties was described. Next, the impact of the lipid composition 

itself on implant properties was studied. The lipid composition was varied between 30 % (30:70 

lipid composition) to 70 % of H12 (70:30 lipid composition) with the corresponding portions of 

D118 (70 % to 30 %); lyophilisate percentage was kept constant at 10 %. Implants were 

extruded at 33°C, 35°C and 37°C at a fixed screw speed of 40 rpm. The 30:70 lipid composition 

was additionally extruded at 39°C and 42°C.  

 

Figure IX-9: Representative extrusion pressure profiles of different lipid compositions extruded at (A) 33°C 

(B) 35°C and (C) 37°C. Lyophilisate percentage was kept constant at 10 %. Please note that the y-axis is 

scaled differently. 

 

The pressure curves of the different compositions extruded at 33°C, 35°C and 37°C are 

displayed in Figure IX-9. For the 30:70 lipid composition, the average steady-state pressure was 

2-3 times higher as the average steady-state pressure measured for the 50:50 and 70:30 lipid 

composition at all extrusion temperatures. The pressure patterns of the 50:50 and 70:30 lipid 

composition were comparable with respect to the duration of the plateau phase. However, the 

average steady state pressure (Figure IX-10 A) was lower for the 50:50 lipid composition 

compared to the 70:30 lipid composition for implants extruded at 33°C and 35°C. For the 
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implants extruded at 37°C, no difference in average steady-state pressure between the 50:50 

and 70:30 lipid composition was detectable (Figure IX-10 A).  

Furthermore, it should be noted that the plateau phase of the 30:70 lipid composition was almost 

twice as long and increased steadily, whereas a constant pressure was not reached (for all 

extrusion temperatures). Further, the pressure peak (most pronounced at 35°C) right at the 

beginning of the plateau phase and the irregular, oscillating course of the pattern was 

noticeably. For the 30:70 lipid composition, an approximately four times higher remaining 

pressure was determined compared to the other compositions for all extrusion temperatures 

(Figure IX-9). 

 

Figure IX-10: (A) Average extrusion pressure and (B) bending strength of implants consisting of different 

lipid compositions (30 % to 70 % H12) at various extrusion temperatures ranging from 33°C to 42°C.  

 

Bending strength results are depicted in Figure IX-10 B. No noticeable trend with respect to the 

lipid composition at the different extrusion temperatures was determined.  
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Figure IX-11: SEM micrographs of cross sections of lipid implants consisting of different lipid compositions. 

Micrographs (A) and (C) show implants consisting of the 30:70 lipid composition extruded at (A) 33°C and 

(C) 37°C. The right-hand side micrographs depict the 70:30 lipid composition extruded at (B) 33°C and (D) 

37°C, respectively. The magnification was set to 80x. 

 

The impact of lipid compositions on implant morphologies are illustrated in Figure IX-11. 

Exemplarily, micrographs of the 30:70 and 70:30 lipid compositions extruded at 33°C at 37°C 

are depicted, as they represent the «extreme cases» of this experiment. For the 30:70 lipid 

composition, the different extrusion temperatures did not impact implant microstructure as in 

both cases a dense matrix can be observed (Figure IX-11 A and Figure IX-11 C). Regarding the 

70:30 lipid composition, differences in the microstructure were apparent: at an extrusion 

temperature of 33°C, tiny pores and channels were present (Figure IX-11 B). At 37°C, larger 

pores and channels running through the complete cross section were observed thereby 

generating an interconnected pore-network (Figure IX-11 D). 

A 

D C 
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Figure IX-12: Cumulative release of mAb over 4 weeks in PBS pH 7.4 at 37°C. Lipid implants were prepared 

at different extrusion temperatures ranging from 33°C to 42°C. Additionally, lipid compositions were varied: 

(A) 30:70, (B) 50:50, (C) 70:30. 

 

A detailed insight into in-vitro release is provided in Figure IX-12 illustrating the release profiles 

of all tested compositions over 4 weeks. For the 30:70 lipid composition, release was slower the 

higher the extrusion temperature. After 14 days, release of the implants extruded at 39°C and 

42°C of the 30:70 lipid composition started to level off, already suggesting that release would 

stop rather early. SLIs prepared at 33°C, 35°C or 37°C provided a constant release. (Figure 

IX-12 A). The 70:30 lipid composition showed this trend after 14 days, even more considerably, 

also for the higher extrusion temperatures of 35°C and 37°C (Figure IX-12 C). Regarding the 

50:50 lipid composition, Figure IX-12 B signifies that no levelling occurred at all extrusion 

temperatures.  

In summary, formulations comprising slowest and most steady release were composed of 30:70 

lipid composition extruded at 35°C and 37°C and 50:50 lipid composition extruded at 35°C 

(which was the lead formulation described earlier).  

DISCUSSION 

As expected, the highest extrusion pressures were observed for the 30:70 lipid composition 

comprising 70 % D118, because of the higher amount of solid D118. The higher pressure during 
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extrusion also resulted in more compact (less porous) implants, which was confirmed by SEM 

micrographs (Figure IX-11). According to this fact (higher solid D118 content leads to higher 

pressures), our findings of the higher extrusion pressure for the 70:30 lipid composition instead 

of the 50:50 lipid composition are controversy (for 33°C and 35°C). At this point of knowledge, 

it can only be speculated that dependent on the amount of molten lipid other effects, e.g. change 

from a laminar flow towards a more turbulent flow could have contributed to the extrusion 

pressure measured with our setup. Overall, more molten material within the 70:30 lipid 

composition caused more interaction and higher viscosity than a lower amount of molten 

material (30:70 lipid composition) with dispersed solid D118. 

The detected differences in duration and course of the plateau phase between the 30:70 and 

50:50 or 70:30 lipid composition, respectively, correlates with our observations during the 

extrusion process: the formation of the lipid strand of the 30:70 lipid composition took twice as 

long as for the other two lipid compositions (in all cases 3 g were processed) which was reflected 

by the longer plateau phase. The irregular, oscillating course of the pressure pattern during the 

«plateau phase» of the 30:70 lipid composition correlates to a non-continuous strand formation 

noticed during extrusion. This was true for all extrusion temperatures from 33° to 42°C. 

With respect to the microstructure, it would have been expected, that at higher D118 

percentages more pores were generated due to a lack of waxy H12 (as described in IX.3.3.1), 

therefore resulting in a faster release. However, SEM micrographs showed a dense matrix, most 

likely caused by compression rather than melt extrusion, which is in accordance with the 

comparatively high extrusion pressures. The dense matrix also explains the slow release rates. 

Further, the observed decrease in release for higher extrusion temperatures (less pressure) can 

be explained by a change from compression to melt extrusion as a function of extrusion 

temperature. It can be assumed that melt extrusion leads to a more permanent connection of 

the lipids compared to compression. Thus, melt extrusion could be the reason for the slower 

and levelling off release of implants produced at higher extrusion temperatures. 
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At percentages of 70 % H12, a dense and compact matrix was expected as the solid D118 

would be completely surrounded by molten H12. In contrast, SEM micrographs showed a 

porous matrix. The micrographs indicated even more and larger pores for implants processed 

at higher extrusion temperatures. From the very low pressures measured using this setup, it 

can be assumed that not enough solid D118 was present to generate the minimum extrusion 

pressure, which is necessary to compact the material. Thus, no proper strand was formed 

(Figure IX-11 B and Figure IX-11 D). Having this in mind, it would have been expected that the 

release of the 70:30 lipid composition would have been faster compared to the non-porous 

matrix of the other composition. However, the measured slow release could be caused by a 

change in microstructure (from porous to dense) due to the incubation temperature of 37°C. 

This assumption was supported by the fact that the implant deformed upon incubation.  

 

IX.3.4 DOUBLE TSC-EXTRUSION 

Now, the aim was to study how extrusion pressure, implants´ mechanical properties and release 

patterns are changing when the same material was extruded twice. Lipid implants were extruded 

(first extrusion run), then ground and sieved (< 180 µm) prior to the second extrusion run. For 

all extrusions described in this section, the batch size was set to 3 g and screw speed was 

adjusted to 40 rpm.  

Three different approaches were tested. First, extrudates comprising the 50:50 lipid composition 

(10 % lyophilisate) were extruded at 35°C and 40 rpm. The ground and sieved material was 

then extruded a second time at 33°C, 35°C, or 37°C, respectively. In a second approach, a 

formulation comprising 20 % lyophilisate and 80 % D118 was first extruded at 65°C (named 

«20% in 0:100» in Table IX-2). Afterwards, the strand was ground and sieved (< 180 µm), H12 

was added to obtain a ratio of 50:50 and the second extrusion was performed at 35°C. Third, 

within the first extrusion run a formulation consisting of 20 % lyophilisate and 80 % H12 was 

extruded at 35°C (named «20% in 100:0» in Table IX-2). D118 was then added to the ground 
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and sieved (< 180 µm) material to obtain a 50:50 lipid composition which was then extruded at 

35°C. 

Table IX-2: Overview over formulations and settings applied for the different double tsc-extrusion 

experiments. 

 First extrusion Second extrusion 

 Formulation Settings Formulation Settings 

10% in 50:50/35°C_33°C 

10% lyophilisate, 

50:50 lipid matrix 

35°C 

10% lyophilisate, 

50:50 lipid matrix 

33°C 

10% in 50:50/35°C_35°C 35°C 35°C 

10% in 50:50/35°C_37°C 35°C 37°C 

20% in 0:100/65°C_35°C 
20% lyophilisate, 

D118 lipid matrix 
65°C 35°C 

20% in 100:0/35°C_35°C 
20% lyophilisate, 

H12 lipid matrix 
35°C 35°C 

 

Figure IX-13 A provides a summary of the average extrusion pressures measured during the 

first and second extrusion runs. Within the first approach, the 50:50 lipid composition was 

extruded at 35°C providing an average pressure of 975 kPa (±74 kPa). Within the second 

extrusion run, temperature was set to 33°C, 35°C and 37°C which resulted in an average 

pressure of 3085 kPa (±251 kPa), 907 kPa (±115 kPa) and 334 kPa (±97 kPa), respectively. 

The pressure values measured were similar to those already observed previously (Figure 

IX-4 A).  

An average pressure of 4438 kPa (±83 kPa) was measured for the extrusion of 20 % lyophilisate 

embedded within a pure D118 matrix (second approach). During this extrusion run, temperature 

was set to 65°C. This was the optimal extrusion temperature, as it is close to the Tonset of D118 

(70.0°C). After H12 was added to give a lipid ratio of 50:50, a pressure of 1531 kPa (±168 kPa) 

was measured during the second extrusion. Throughout the third approach, both extrusion runs 

comprised comparable average extrusion pressures (1065 kPa and 1247 kPa). 
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Figure IX-13: (A) Average extrusion pressure measured during the first and second extrusion run of the 

different approaches described above. (B) displays the average extrusion pressure only during the second 

extrusion run in comparison to the pressure values from the same formulations only extruded once. 

 

Within Figure IX-13 B, the average extrusion pressures during the second extrusion run were 

compared to the pressure values of the same formulations only extruded once (single 

extrusion). Only at 33°C, different extrusion pressures can be observed. A 24 % higher extrusion 

pressure was recorded (2373 kPa compared to 3085 kPa) when the formulation was extruded 

twice compared to a single extrusion using the same settings. For extrusions performed at 35°C 

and 37°C, respectively, average extrusion pressures were comparable. 

Mechanical properties were assessed by bending strength determination (Appendix, Table 

XII-2) and true density measurements (Appendix, Table XII-3). Regarding the first approach, 

bending strength stayed constant at approximately 2 N for all different approaches. True density 

values were found to correlate with average extrusion pressures as true density considerably 

decreased with decreasing temperature during the second run. This relation can also be 

described concerning the second approach. For lipid implants consisting of 100 % D118, true 
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density was measured at 1.086 g/cm3. After H12 was added to a give a 50:50 lipid composition, 

true density decreased to 1.057 g/cm3, which is in accordance with the reduced pressure. For 

the third approach, extruded implants consisting of 100 % H12 demonstrated a substantial 

softness indicated by the low bending strength of 0.87 N (±0.35 N). After D118 was added in a 

defined quantity, bending strength increased again to 1.42 N (±0.19 N), while true density 

reached the value as measured for the second approach. 

 

Figure IX-14: Cumulative release over the first 4 weeks of SLIs manufactured with the different double 

extrusion approaches compared to the lead formulation extruded only once. For a better visualisation, y-

axis was scaled to 60 %. 

 

As illustrated in Figure IX-14, cumulative release of mAb from double extruded implants was 

measured over 4 weeks. As a benchmark, release of mAb from the lead formulation (which was 

only extruded once) is shown additionally. When following the first approach, independent of 

the extrusion temperature during the second extrusion, release rates were slowed down clearly 

compared to the lead formulation: 40.3 % (±4.1 %) mAb was released from the lead formulation, 

compared to 24.0 % to 27.4 % released from double extruded SLIs after 4 weeks. Thus, release 

rates were almost halved.  
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Concerning the release patterns of SLIs prepared by the second and third approach, the release 

rates were comparable to the single extruded lead formulation (41.5 % compared to 47.6 %). 

Hence, a further retardation of release was not achieved. 

DISCUSSION 

The first approach of double extrusion did not influence average extrusion pressure much 

compared to a single extrusion run (Figure IX-13 B). The mechanical properties of double 

extruded SLIs were comparable to those only extruded once. Although, bending strength and 

true density were slightly higher, which is plausible because the material was extruded (and 

thereby compressed) twice (Appendix, Table XII-2 and Table XII-3).  

Interestingly, release was slowed down almost by one half when the same formulation was 

extruded twice (Figure IX-14). This observation was most likely caused by changes within the 

microstructure of the lipid matrix. However, SEM micrographs showed comparable dense 

matrices in all cases and did not provide any additional information (data not shown). The 

protein was more thoroughly embedded within the lipid matrix by double extrusion, because the 

lipid material was compressed twice. True density measurements support this explanation 

(Appendix, Table XII-3). Consequently, this resulted in a slower release. To prove this 

assumption, a labelling of protein with fluorescence dyes might be beneficial. If a more effective 

encapsulation of the mAb was the reason for the slower release, it should be considered that 

the mAb could theoretically be encapsulated irreversibly into lipid cavities.  

Release was not further slowed down by the second and third approach compared to the lead 

formulation (single extrusion), but release rates were within the same corridor. This leads to the 

conclusion that the double extrusion technique in general results in SLIs with very slow release 

rates.  

In summary, very promising sustained release data were generated by a rather simple 

adjustment of the established extrusion process.  
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IX.4 CONCLUSION 

Within this chapter we described the thorough investigation on process monitoring to 

understand solid lipid extrusion using a tsc-extruder for lipid protein depots. 

A pressure measurement tool allowed us to monitor the process online. Thereby, we could 

describe and characterise an extrusion run in four different phases: feeding (I), compacting (II), 

implant formation (III) and end of implant formation (IV). Implant formation took place mainly 

during the steady-state phase (phase III). We would recommend discarding the first 30 cm of 

formed lipid strand and the parts which were formed during phase IV. In general, up to 100 cm 

product was manufactured utilising a batch size of 3 g. 

Furthermore, the preparation process can ensure both a homogenous distribution of the protein 

encapsulated within the lipid matrix and consistent mechanical properties of SLIs (first 30 cm 

formed are not considered). Additionally, a low batch to batch variety demonstrated the good 

reproducibility and robustness of the extrusion process. 

Insights into how a change of process parameters affects extrusion pressure, mechanical 

properties and release kinetics were gained. By changing process parameters, e.g. screw 

speed, mechanical properties of SLIs can be adjusted. Furthermore, it is now possible to 

estimate how and to which extent a change of a certain process parameter will impact 

mechanical properties or release patterns of SLIs. This allows us to assess if an extrusion 

process is either susceptible or robust against process parameter changes.  

It should be pointed out, that an independent systematical investigation of extrusion temperature 

and screw speed could not completely be realized due to the short screws resulting in short 

retention times and incomplete heat transfer. The two parameters will be studies fully 

independent from each other with an elongated extruder barrel in the course of future scale up 

work.  
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The double extrusion technique slowed down mAb release by almost one half. This process 

reveals a great potential because versatile parameters can be adjusted creating a wide range 

of possible product features. 
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X. FINAL SUMMARY AND OUTLOOK 

 

Within this thesis, solid lipid implants were manufactured by twin-screw extrusion and were 

evaluated with respect to their potential for intraocular use. The study included investigations 

on long-term release of different therapeutic protein formats (monoclonal antibody, fab-fragment, 

fusion protein), the in-vivo performance of SLIs which have been intravitreally administered in 

rabbit eyes, and the stability profile of both encapsulated and released protein. Also, the 

biological activity of released protein was evaluated. Triglyceride-protein interactions were 

further examined to study the influence of these interactions on the protein stability and release 

profile. Towards a better understanding of the extrusion process, a pressure measurement 

system was set up and the extrusion pressure was measured online. SLIs were analysed in 

terms of mechanical properties, morphology and release patterns to correlate those 

characteristics with extrusion parameters.  

 

Chapter I and II include the general introduction and the objective of the thesis. In chapter III, 

the materials and methods are described. 

 

In chapter IV, investigations on improving in-vitro release kinetics were described. In-vitro 

release for up to 120 days of different protein formats from implants being only 1.5 mm x 15 mm 

in size was achieved. The formulation developed ensured a constant release without any burst 

release by a load of 3.00 mg protein per implant. The avoidance of the precipitant PEG as a 

possible source for protein degradation represents a major improvement. The extrusion process 

was established on a ZE-5 mini-extruder, allowing to extrudate very small batch sizes (only 

500 mg) at gentle temperatures of 35°C. It was also ensured that extruded lipid implants can be 
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stored for at least 3 months without any negative impact on the release patterns, thermal 

properties, and status of crystallinity, respectively.  

To further prolong the release duration, triglycerides were pre-melted prior to extrusion. Release 

duration of mAb was prolonged to up to 200 days (increase of approximately 63 %) and 

Ranibizumab release was extended to circa 160 days (40 % longer release duration), compared 

to conventional extrusion. Since the release was substantially different after SLI storage in this 

case, more research is required to elucidate these aspects further.  

For comparison, proteins were also incorporated into PLGA matrices by tsc-extrusion having 

the same dimensions as SLIs. In general, release was, if at all observed, very slow (maximum 

15 % over 98 days). Even after matrix degradation no burst release was noticed, which 

underlines the problems with protein degradation when using PLGA.  

 

The in-vivo performance of Ranibizumab (Lucentis®) loaded SLIs was evaluated within a 3-

month in-vivo study in rabbit eyes using a choroidal neovascularisation model (CNV) and is 

reported in chapter V. We showed that biocompatibility was excellent throughout the 3 months 

of observation. Unfortunately, a partial break-up of implants was observed which was the reason 

for a faster in-vivo release compared to the release observed in-vitro. In-vivo release was 

measured over 3 months, but generally no more Ranibizumab was released after 8 weeks. It 

was identified that the formulation was mechanically sensitive, which was the cause for the 

break-up of implants. Possible reasons were: the relatively high percentage of H12 and the 

temperature within the rabbit eye. Even though the results did not fulfil the expectations, once 

the problem of mechanical stability can be solved, SLIs still represent an interesting depot for 

intravitreal delivery of pharmaceutical proteins.  

The marketed products available for intravitreal applications should be taken into consideration 

as a benchmark. The depots Retisert® (5 mm x 2 mm x 1.5 mm), Ozurdex® (0.45 mm x 6.5 mm) 

and Iluvien® (0.37 mm x 3.5 mm) are all smaller in size compared to SLIs described here. 
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Therefore, investigating smaller sized SLIs by ensuring an adequate protein load should be 

considered for further work. Nevertheless, the size of SLIs used in this work was already suitable 

for intravitreal use.  

 

Chapter VI was intended to extend our technology to other protein formats. For this, the in-vitro 

release of the complement factor H (mini-FH) and determination of its biological activity over a 

period of 98 days was reported. Even after 98 days, the mini-FH released from SLIs still 

exhibited biological activity.  

 

The stability of both encapsulated and released proteins was reported in chapter VII. Moreover, 

the stability of proteins delivered from PLGA implants was assessed and compared to those of 

proteins delivered from SLIs. The IgG1 monoclonal antibody was characterised by an adequate 

stability over more than 6 months, even though minor chemical and conformational instabilities 

were observed. This is a unique finding, since a delivery duration of 6 month of a protein 

therapeutic displaying such a good stability over the complete time frame can rarely be found 

in literature. Released Ranibizumab showed excellent physical, chemical and conformational 

stability over 4 months. Furthermore, Aflibercept stability was monitored over 3 months. 

Instabilities with respect to physical, chemical and conformational stability started approximately 

after 1 month and increased continuously. Bevacizumab instability was already observed after 

1 week, and at the end of the observation time (1 month), the antibody was fully chemically and 

conformationally degraded. 

In addition, the stability of mAb and Ranibizumab was assessed upon storage. For that, loaded 

SLIs were stored for 3 months at 4°C prior to in-vitro release in the dry state. MAb and 

Ranibizumab showed perfect stability after 3-month of storage.  
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The stability of released protein from a PLGA matrix was also assessed in chapter VII. For all 

proteins, a rapid and substantial degradation was observed, being in accordance with literature 

[49, 217, 300]. SE-HPLC and SDS-PAGE results revealed a distinct monomer loss of released 

proteins mainly caused by fragmentation (VII.2.2.1). For instance, comparing Ranibizumab 

monomer content released from SLIs after 12 weeks (100.1 %) and Resomer® RG 502 H 

implants (4.4 %) underlines this. Also, analysis towards chemical stability (IEX, HIC, reducing 

capillary gel electrophoresis) pointed into the direction of rapid degradation of all tested proteins 

in PLGA matrices. Especially higher percentages of LMW species and light chain were 

observed. These results highlight that SLIs provide an outstanding delivery matrix for proteins, 

as the stability of the incorporated protein during long-term release and storage was retained 

compared to the PLGA implants used here.  

 

In chapter VIII, studies on triglyceride-protein-interactions are described. Incubation studies 

were performed, where extruded rods consisting of 100 % H12, D118, or Resomer® RG 755 S 

were incubated with solutions of mAb, Ranibizumab, Bevacizumab and Aflibercept over 

8 weeks. Colloidal, chemical and conformational stability of proteins were assessed at 

predetermined time points. Elevated particle counts, monomer loss and less protein recovery 

upon incubation with H12 rods were observed. This was especially the case for Aflibercept and 

Bevacizumab, whereas for the other proteins the increase in particle counts was smaller. 

Neither H12 nor D118 were identified as trigger for inadequate release patterns or chemical 

degradation.  

It was also tested if possible heavy metal impurities of the raw materials could cause protein 

degradation. Only aluminium was found by ICP-AES, which did not promote chemical 

instabilities. Other impurities possibly being present in the lipid raw material, e.g. peroxides or 

aldehydes, could be the reason for protein degradation. This should be further investigated. 

Lastly, it should be noted that adsorption phenomena play a major role affecting sustained 



FINAL SUMMARY AND OUTLOOK 

235 

release of proteins form triglyceride based depots that should be more extensively examined in 

future.  

 

Within chapter IX, the extrusion process was studied with regards to process parameters and 

how changing these parameters affected the properties of the lipid matrices. For this, a custom-

made resistance strain gauge was designed and established to measure the pressure within 

the barrel during an extrusion run. The impact of process parameters such as extrusion speed, 

temperature, and lipid composition on implant properties was investigated systematically. 

Bending strength, true density and microscopic appearance of extruded implants was assessed. 

Furthermore, in-vitro release profiles were addressed using a monoclonal antibody. This 

allowed to characterise an extrusion run which can be defined into four different phases: 

feeding, compacting, implant formation, and end of implant formation. Additionally, the inner-

strand homogeneity was investigated displaying a homogenous distribution of the protein within 

the lipid matrix. The batch to batch variation was very low, demonstrating good reproducibility 

and robustness of the extrusion process.  

It was possible to correlate implant properties to the different process parameters (extrusion 

temperature, screw speed, lipid composition). In summary, we now know that both sufficient 

extrusion pressure and an appropriate ratio of molten to solid lipid is needed to form a suitable 

implant. 

Furthermore, double extrusion was investigated as an additional preparation method. By this, 

the release rate of mAb was almost halved over the first 4 weeks by simply performing the 

extrusion twice with slightly different extrusion temperatures or even the same settings. 

Therefore, it reveals a great potential, because versatile parameters can be adjusted creating a 

great scope for further research. As lipids are exposed to extrusion temperatures twice, possible 

re-crystallisation of the triglycerides should be taken into consideration for further research. 

  



CHAPTER XI 

236 

 



ADDENDUM 

237 

XI. ADDENDUM 

XI.1 LIST OF ABBREVIATIONS 

AAV   adeno-associated virus 

AMD   age related macular degeneration 

ANP   atrial natriuretic peptide 

AP   alternative pathway 

AUC   area under the curve 

BDNF   brain derived neurotropic factor 

bFGF   basic fibroblast growth factor 

BMP-2   bone morphogenetic protein-2 

BSA   bovine serum albumin 

CD   circular dichroism 

CDR   capsule drug ring 

cIEF   capillary isoelectric focussing 

CNV   choroidal neovascularisation 

CPP   central precocious puberty  

DDS   drug delivery system 

DLS   dynamic light scattering 

DNA   deoxyribonucleic acid 
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DR   diabetic retinopathy 

DSC   differential scanning calorimetry 

DTT   dithiothreitol 

EDTA   ethylene diamine tetra acetic acid 

ELISA   enzyme-linked immunosorbent assay 

EPO   erythropoietin 

EVA   ethylene vinyl acetate 

Fab   fragment antigen binding 

Fc region  fragment crystallisable region 

FDA   food and drug administration 

FFF   front face fluorescence 

FNU   formazine nephelometric unit 

FT-IR   fourier transform infrared spectroscopy 

GLP   glucagon-like-peptide 

GnRH   gonadotropin releasing hormone 

HCl   hydrochloride 

HEMA   hydroxyethyl methacrylate 

HES   hydroxyethyl starch 

HIC   hydrophobic interaction chromatography 

HME   hot melt extrusion 
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HMW   high molecular weight 

HNO3   nitric acid 

HP-β-CD  hydroxypropyl-beta-cyclodextrine 

HRP   horseradish peroxidase 

IC50    half maximal inhibitory concentration 

ICP-AES  inductively coupled plasma atomic emission spectroscopy 

IEX   ion exchange chromatography 

IgG   immunoglobulin G 

ITC   isothermal titration calorimetry 

KOH   potassium hydroxide 

LMW   low molecular weight 

LO   light obscuration 

LOD   limit of detection 

mAb   monoclonal antibody 

MC    methylcellulose 

MFI   microflow imaging 

mPEG   monomethoxy polyethylene glycol 

MQ water  milli-Q water 

MW   molecular weight 

MWCO  molecular weight cut off 
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NELL-1  NEL-like molecule-1 

nIFN   native interferon 

NIR   near-infrared 

NMP   N-methyl-2-pyrrolidon 

PBS   phosphate buffered saline 

PCL   poly(ɛ-caprolactone) 

PDGF   platelet-derived growth factor 

PEG   polyethylene glycol 

PEO   polyethylene oxide 

pI   isoelectric point 

PLA   poly-lactic acid 

PLGA   poly-lactic-co-glycolic acid 

PNH   paroxysmal nocturnal hemoglobinuria 

PVA   poly vinyl acetate 

QCM   quartz crystal microbalance 

rRBCs   reagent red blood cells 

RNA   ribonucleic acid 

SDS   sodium dodecyl sulfate 

SDS-PAGE  sodium dodecyl sulfate poly acryl gel electrophoresis 

SE-HPLC  size exclusion high performance liquid chromatography 
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SEM   scanning electron microscopy 

siRNA   small interfering ribonucleic acid 

SLE   solid lipid extrusion 

SLI   solid lipid implant 

SLM   solid lipid microparticle 

SLN   solid lipid nanoparticle 

SPR   surface plasmon resonance 

Tg`   glass transition temperature 

TMPE-TL  trimethylopropane ethoxylated-ethyl 2-mercaptoproprionate 

TMPE-TG  trimethylopropane ethoxylated ethyl thioglycolate 

Tsc    twin screw 

UV-VIS  ultraviolet-visible spectrophotometry 

VEGF   vascular endothelial growth factor 

WCX   weak cation exchange 

XRPD   X-ray powder diffraction 
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XII. APPENDIX 
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Figure XII-1: Non-reducing denaturating SDS-PAGE of reconstituted mAb lyophilisates after a storage period 

of 0, 4, 8, 12 and 24 weeks at 4°C. 
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Figure XII-2: Non-reducing denaturating SDS-PAGE of reconstituted Ranibizumab lyophilisates after a 

storage period of 0, 4, 8, 12 and 24 weeks at 4°C. 
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Figure XII-3: Non-reducing denaturating SDS-PAGE of reconstituted Bevacizumab lyophilisates after a 

storage period of 0, 4, 8, 12 and 24 weeks at 4°C. 
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Figure XII-4: Non-reducing denaturating SDS-PAGE of reconstituted Aflibercept lyophilisates after a storage 

period of 0, 4, 8, 12 and 24 weeks at 4°C. 
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Figure XII-5: Cumulative release of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept from SLIs 

manufactured with pre-melted lipids. Lipid implants were produced with different percentages of protein 

lyophilisate in a 1:1 [w/w] formulation with HP-β-CD resulting in a final protein load of 5 %, 7.5 % and 10 % 

per implant.  
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Figure XII-6: Diffraction patterns of SLIs produced with conventional extrusion technique. SLIs were stored 

for 0, 4 and 12 weeks at 4°C. 

 

 

Figure XII-7: Diffraction patterns of SLIs extruded with pre-melted lipids. SLIs were stored for 0, 4 and 

12 weeks at 4°C. 
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Figure XII-8: Chromatogram of (A) mAb and (B) Bevacizumab using a Dionex ProPac® WCX-10 column for 

separation of charge variants. For mAb, samples were analysed after 6, 14 and 26 weeks of release. Released 

Bevacizumab was analysed after 3, 14 and 21 days. For both proteins, the main charge variant decreased 

while the percentage of acidic subspecies increased. 

 

 

Figure XII-9: Chromatograms of (A) Ranibizumab and (B) Aflibercept using a Dionex MAbPac™ HIC-10 

column for separation of charge variants. For Ranibizumab, samples were analysed after 4, 10 and 18 weeks 

of release. Released Aflibercept was analysed after 4, 10 and 14 weeks. For both proteins, the main charge 

variant shifted to shorter retention times upon incubation. 
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1 2 3 4 5 6 7 8 9 10 No. Sample name 
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Figure XII-10: Non-reducing denaturating SDS-PAGE gel of released mAb fractions from the first week of 

release after different storage times (0 weeks to 12 weeks). Only samples comprising the 3:1 [w/w] 

lyophilisate are displayed. 
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Table XII-1: Overview of pH of samples incubated with H12, D118 and RG 755 S rods and without any 

additives (PBS, negative control) after 0 weeks and 8 weeks at 35°C and 40 rpm. 

 PBS H12 rods D118 rods PLGA rods 

 week 0 week 8 week 0 week 8 week 0 week 8 week 0 week 8 

PBS 7.40 

(±0.02) 

 

7.37 

(±0.01) 

 

7.40 

(±0.02) 

 

7.37 

(±0.01) 

 

7.40 

(±0.02) 

 

7.37 

(±0.01) 

 

7.40 

(±0.02) 

 

7.37 

(±0.01) 

 

mAb 6.89 

(±0.11) 

 

6.94 

(±0.01) 

 

6.94 

(±0.05) 

 

6.90 

(±0.00) 

 

6.96 

(±0.07) 

 

6.91 

(±0.00) 

 

6.88 

(±0.03) 

 

6.83 

(±0.08) 

 

Ranibizumab 6.99 

(±0.02) 

 

7.07 

(±0.02) 

 

6.98 

(±0.07) 

 

7.01 

(±0.02) 

 

6.99 

(±0.04) 

 

7.04 

(±0.01) 

 

7.00 

(±0.03) 

 

7.06 

(±0.01) 

 

Bevacizumab 6.78 

(±0.02) 

 

6.91 

(±0.02) 

 

6.84 

(±0.06) 

 

6.89 

(±0.01) 

 

6.87 

(±0.05) 

 

6.90 

(±0.01) 

 

6.79 

(±0.03) 

 

6.92 

(±0.01) 

 

Aflibercept 6.88 

(±0.03) 

6.89 

(±0.01) 

6.89 

(±0.05) 

6.87 

(±0.02) 

6.89 

(±0.02) 

6.89 

(±0.02) 

6.89 

(±0.06) 

6.89 

(±0.01) 
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Figure XII-11: Monomer content of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept upon 8-

week incubation in PBS (negative control) or with H12, D118 and RG 755 S rods. 
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1 2 3 4 5 6 7 8 9 10 No. Sample name 
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8 RG 755 S_week 8 

9 blank 

10 MW Marker 

Figure XII-12: Non-reducing denaturating SDS-PAGE gel of mAb incubated for 8 weeks with H12, D118 and 

RG 755 S rods or in PBS (negative control) at 35°C. 

 

1 2 3 4 5 6 7 8 9 10 No. Sample name 

   1 MW Marker 

2 BSA 1.80 ng  

3 BSA 0.36 ng 

4 reference  

5 PBS_week 8 

6 H12_week 8 

7 D118_week 8  

8 RG 755 S_week 8 

9 blank 

10 MW Marker 

Figure XII-13: Non-reducing denaturating SDS-PAGE gel of Bevacizumab incubated for 8 weeks with H12, 

D118 and RG 755 S rods or in PBS (negative control) at 35°C. 
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Figure XII-14: Non-reducing denaturating SDS-PAGE gel of Aflibercept incubated for 8 weeks with H12, D118 

and RG 755 S rods or in PBS (negative control) at 35°C. 

460 kDa 

 

171 kDa 

 117 kDa 

 

71 kDa 

 
51 kDa 

 44 kDa 

 31 kDa 

 



APPENDIX 

263 

 

Figure XII-15: Capillary gel electrophoresis applying a 2100 Bioanalyzer under reducing denaturating 

conditions of (A) mAb, (B) Ranibizumab, (C) Bevacizumab, and (D) Aflibercept samples after an 8-week 

incubation with H12, D118 or RG 755 S rods. The protein bulk is defined as reference whereby incubation in 

PBS without any rods served as negative control. 
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Figure XII-16: Extrinsic fluorescence measurements of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) 

Aflibercept samples after an 8-week incubation with H12, D118 or RG 755 S rods. The protein bulk is defined 

as reference whereby incubation in PBS without any rods served as negative control. As positive control, 

proteins were exposed to 80°C and 400 rpm for 10 min. 
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Figure XII-17: Protein recovery of (A) mAb, (B) Ranibizumab, (C) Bevacizumab and (D) Aflibercept upon 8-

week incubation in PBS (negative control) or with H12, D118 or RG 755 S rods, respectively, measured by 

SE-HPLC. 
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Table XII-2: Overview of bending strength measured after the first and the second extrusion in comparison 

to single extrusion. 

Extrusion settings Bending strength [N]  

 First extrusion Second extrusion Single extrusion 

10% in 50:50/35°C_33°C 

2.025 (±0.39) 

1.978 (±0.43) 2.212 (±0.14) 

10% in 50:50/35°C_35°C 2.393 (±0.10) 2.025 (±0.39) 

10% in 50:50/35°C_37°C 1.966 (±0.38) 1.312 (±0.22) 

20% in 0:100/65°C_35°C 1.448 (±0.29) 1.458 (±0.33) - 

20% in 100:0/35°C_35°C 0.875 (±0.34) 1.424 (±0.19) - 

 

Table XII-3: True density of lipid implants measured after the first and second extrusion run applying different 

extrusion settings in comparison to single extrusion. 

Extrusion settings True density [g/cm3]  

 First extrusion Second extrusion Single extrusion 

10% in 50:50/35°C_33°C 1.031 (±0.002) 1.050 (±0.002) 1.049 (±0.002) 

10% in 50:50/35°C_35°C 1.031 (±0.002) 1.048 (±0.002) 1.031 (±0.002) 

10% in 50:50/35°C_37°C 1.031 (±0.002) 0.977 (±0.002) 1.008 (±0.005) 

20% in 0:100/65°C_35°C 1.086 (±0.002) 1.057 (±0.004) - 

20% in 100:0/35°C_35°C 1.080 (±0.001) 1.056 (±0.002) - 
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