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Zusammenfassung

Diese Dissertation beschaftigt sich mit neuen Hintergriinden und Konzepten in ‘Double
Field Theory’ (DFT) [1], einer T-Dualitéat invarianten Reformulierung der Supergravi-
tation (SUGRA). Es ist eine effektive Theorie, die die Dynamiken eines geschlossenen
Strings auf einem Torus beschreibt. Fiir ein konsistentes Framework benotigt die Theorie
das Hinzufiigen von D Windungskoordinaten zu den D physischen Koordinaten und fiihrt
damit zu einem gedoppelten Raum. Eine wichtige Konsistenzbedingung fiir die Theorie ist
die sogenannte ‘strong constraint’. Nach dem Fordern dieser ‘strong constraint’ reduziert
sich die Abhéngigkeit aller Felder auf die Halfte der Koordinaten. Wir fangen damit an,
die grundlegenden Konzepte und Ideen von DFT zu wiederholen. In diesem Zusammen-
hang betrachten wir die generalisierten Diffeomorphismen, welche die lokalen Diffeomor-
phismen und Eichtransformationen implementieren, sowie deren assoziierte Eichalgebra
gegeben durch die C-Klammer. Hierbei untersuchen wir die Rolle der ‘strong constraint’
fiir das Schlieflen der Eichalgebra. Weiterhin analysieren wir die Wirkung, sowohl in der
Generalisierten Metrik Formulierung als auch in der Flussformulierung, und die zugrun-
deliegenden Symmetrien.

Anschliefend widmen wir uns der ‘Double Field Theory on group manifolds’ (DF Ty )
[2-5], einer Verallgemeinerung von DFT, dessen ‘Worldsheet’-Darstellung durch ein Wess-
Zumino-Witten Modell beschrieben wird. Um die Wirkung und die dazugehorigen Eich-
transformationen zu erhalten, fiihrt man Rechnungen mithilfe geschlossener String Feldthe-
orie (CSFT) auf ‘tree level” bis zu kubischer Ordnung in den Feldern sowie fithrender Ord-
nung in o durch. Hier setzen wir uns wieder mit den generalisierten Diffeomorphismen
und deren Eichalgebra auseinander, welche nun mittels einer modifizierten ‘strong con-
straint’ schlieflen. In diesem Setup wird es offensichtlich, dass sich die originale DFT und
DFTyyw auf einem sehr fundamentalen Level unterscheiden. Allerdings sind sie miteinan-
der verbunden. All diese Schritte erlauben es uns DFTyy,w durch gedoppelte, general-
isierte Objekte mittels Extrapolation zu allen Ordnungen in den Feldern zu ersetzen. Dies
fiihrt zu einer Generalisierten Metrik Formulierung [3] und einer Flussformulierung [4] der
Theorie. Jedoch im Gegensatz zu originaler DFT spalten sich die Fliisse in einen Hinter-
grundanteil als auch einen Fluktuationsanteil auf, wahrend das generalisierte Hintergrund-
vielbein die Rolle des Twist in dem generalisierten Scherk-Schwarz Ansatz iibernimmt.
In dieser Arbeit studieren wir die zugrundeliegenden Symmetrien und Feldgleichen bei-
der Formulierungen. Ein entscheidender Unterschied zwischen DFTyy,w und originaler
DFT liegt in dem Auftreten einer 2D-Diffeomorphismen Invarianz unter der standard
Lie-Ableitung. AuBerdem tritt eine zuséatzliche Nebenbedingung in Erscheinung, die ‘ex-



tended strong constraint’, welche falls gefordert DFTyy,w zu originaler DFT reduziert
und beide Theorien werden aquivalent, wobei die 2D-Diffeomorphismen Invarianz zusam-
menbricht. Folgt man weiteren Schritten, kann man mithilfe eines generalisierten Scherk-
Schwarz Kompaktifizierungsansatz den bosonischen Subsektor von halb-maximaler, elek-
trisch geeichter Supergravitation reproduzieren. Ferner 16sen wir das lang stehende Prob-
lem zur Konstruktion eines Twists bei vorgegebener Einbettungstensorlosung, indem wir
eine Maurer-Cartan Form benutzen um das Hintergrundvielbein aufzubauen.

Zu guter Letzt verallgemeinern wir unsere Ideen und Konzepte von DFTyzw zu ge-
ometrischen ‘Exceptional Field Theories’ (gEFT) [6, 7]. Im Anschluss présentieren wir
eine Prozedur, welche die Konstruktion von generalisierten, parallelisierbaren Raumen in
dim M = 4 SL(5) ‘Exceptional Field Theory’ (EFT) erlaubt. Diese Rédume lassen eine
vereinheitlichte Behandlung von konsistenten, maximal supersymmetrischen Trunkierun-
gen von zehn sowie elf dimensionaler Supergravitation zu, und ihre Konstruktion ist schon
immer eine offene Frage gewesen. Hinzu gestatten sie ein generalisiertes ‘Frame’-Feld iiber
einer Nebenklasse M = G/H, dass die Lie-Algebra g von G unter der generalisierten Lie-
Ableitung reproduziert. Hierfiir identifizieren wir die Gruppenmannigfaltigkeit G mit dem
erweiterten Raum der EFT. Im néchsten Schritt muss die ‘section condition’ (SC) gelost
werden, um unerwiinschte, unphysische Richtungen von diesem erweiterten Raum zu ent-
fernen. Schlussendlich konstruieren wir ein generalisiertes ‘Frame’-Feld mithilfe einer
links-invarianten Maurer-Cartan Form auf G. All diese Schritte fithren zu zuséatzlichen
Bedingungen auf die Gruppen G und H.
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Abstract

This thesis deals with new backgrounds and concepts in Double Field Theory (DFT) [1], a
T-Duality invariant reformulation of supergravity (SUGRA). It is an effective theory cap-
turing the dynamics of a closed string on a torus. For a consistent framework, the theory
requires to add D winding coordinates to the D physical spacetime coordinates and gives
rise to a doubled space. An important constraint for the consistency of the theory is the
strong constraint. After imposing this constraint, all fields are only allowed to depend on
half the coordinates. We begin by reviewing the basic concepts and notions of DFT. With
regard to this context, we consider generalized diffeomorphisms, implementing the local
diffeomorphisms and gauge transformations from SUGRA, and their associated gauge al-
gebra which is governed by the C-bracket. In this setting, we examine the importance of
the strong constraint for the closure of the gauge algebra. Subsequently, we investigate
the action, in both the generalized metric formulation and the flux formulation, and its
underlying symmetries.

Afterwards, we turn to Double Field Theory on group manifolds (DFTvyzw) [2-5],
a generalization of DFT, whose worldsheet description is governed by a Wess-Zumino-
Witten model on a group manifold. In order to obtain an action and the gauge transfor-
mations, Closed String Field Theory (CSFT) computations at tree level up to cubic order
in fields and leading order in o’ have to be performed. Again, we consider generalized
diffeomorphisms and their gauge algebra, which closes under a modified strong constraint.
From this setup, it is going to become clear that original DFT and DFT\y, differ on a
very fundamental level. However, they are related to each other. All these steps allow
us to recast DFTyy,w in terms of doubled generalized objects by extrapolating it to all
orders in fields. It yields a generalized metric formulation [3] and a flux formulation [4]
of the theory. Although, in contrast to original DFT the fluxes split into a background
and a fluctuation part, while the background generalized vielbein takes on the role of
the twist in the usual generalized Scherk-Schwarz ansatz. In this thesis, we are going
to study the underlying symmetries and field equations for both formulations. A strik-
ing difference between between DF Ty ,w and original DFT lies in the appearance of an
additional 2D-diffeomorphism invariance under the standard Lie derivative. On top of
this, we observe the emergence of an additional extended strong constraint, which when
imposed, reduces DFT\y,w to original DFT and both theories become equivalent while
the 2D-diffeomorphism invariance breaks down. Following these steps, one can perform
a generalized Scherk-Schwarz compactification ansatz to recover the bosonic subsector of
half-maximal, electrically gauged supergravities. Moreover, we are going to solve the long
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standing problem of constructing a twist for each embedding tensor solution by using
Maurer-Cartan forms to derive an appropriate background vielbein.

Last but not least, we generalize the ideas and notions from DFT\y;w to geometric
Exceptional Field Theory (gEFT) [6, 7]. Subsequently, we show a procedure which allows
for the construction of generalized parallelizable spaces in dim M = 4 SL(5) Exceptional
Field Theory (EFT). These spaces permit a unified treatment of consistent maximally
supersymmetric truncations of ten- and eleven-dimensional supergravity in Generalized
Geometry (GG) and their construction has always been an open question. Furthermore,
they admit a generalized frame field over the coset M = G/H reproducing the Lie algebra
g of G under the generalized Lie derivative. Therefore, we identify the group manifold G
with the extended space of the EFT. In the next step, the section condition (SC) needs to
be solved to remove unwanted, unphysical directions from this extended space. Finally,
we construct the generalized frame field using a left invariant Maurer Cartan form on G.
All of these steps cast additional constraints on the groups G and H.
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1. Introduction

1.1. Unification

The hunt for a world formula has been on going since the antiquities. In a permanent
effort to understand the universe, humanity attempts to dive further and further into the
world of physics until there has been an explanation for everything. But it is not as easy
as it may sound. The idea of unification seems to be more intricate than it appears.

However, we first want to give a brief history of unification. So, let us go back in time
and work ourselves back to the present. One of the first achieved unifications is classical
electrodynamics [8]. Maxwell combined electricity and magnetism into electromagnetism
in 1865 following two remarkable observations by Faraday and Orsted. His theory pre-
dicted amongst other things the existence of electromagnetic waves traveling at speed of
light c¢. Their existence was subsequently been shown with experiments 20 years later by
Hertz. Many years afterwards, based on the ideas of Lorentz and Poincaré, Einstein was
able to unify space and time. A first offspring was the theory of special relativity [9] and
his most famous formula E = mc*. Next, Einstein was able to unite the idea of spacetime
with gravity. It resulted in general relativity [10]. Although, he did not want to stop
there and dedicated the rest of his life to the search of a world formula, unifying all four
fundamental forces. Sadly, he failed in his attempt.

Thus far, we have made contact with two of the four fundamental forces. The re-
maining two forces have been experimentally observed during the last century after the
discovery of quantum mechanics. They are called the weak and strong nuclear force.
These two forces can be described through the means of Quantum Field Theory (QFT).
Elementary particles like electrons and quarks as well as their interactions can be described
by QFT. Again, electrodynamics pushed the way forward with its quantum formulation
called Quantum Electrodynamics (QED). Nevertheless, observing these ideas made the
development of particle colliders essential, as it requires extremely high energies for their
detection. During a collision of subatomic particles massive amounts of energy are re-
leased and cause the creation of new particles. Their inherent properties such as charge
and momentum are then analyzed by several detectors. This allows the reconstruction
of the fundamental interaction between all the involved particles. In this context, one
has to differentiate between two kinds of particles: fermions forming the matter content
as we know it and bosons which mediate their interactions. Additionally to the photon,
the mediator of the electromagnetic force, there have been found other bosons as well.
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The W', W™, Z° bosons which mediate the weak force as well as eight gluons for the
strong interaction. All of them emerge naturally in the concept of gauge theories and
their corresponding QFT frameworks. Furthermore, they are connected to different gen-
erators of Lie groups which take on the role of the respective gauge group and therefore
are symmetries of their theory.

Now, it is further possible to unify electrodynamics and the weak nuclear force to an
electroweak interaction given by the gauge group SU(2)xU(1)y. For low energies, it gets
broken down to QED’s gauge group U(1) through the Higgs mechanism and the weak
gauge bosons acquire a mass [11-13]. The Higgs mechnism is based on an additional
massive, spin-0 scalar field called the Higgs boson. Physicists have undertaken extreme
efforts to detect this particle with the Large Hadron Collider (LHC). In 2012, it was finally
made public by the ATLAS and CMS collaborations at CERN that they had observed a
particle matching the properties of the Higgs particle [14, 15]. It fixes the energy scale of
mgw, at which the unification occurs, to mgy, = 246 GeV. The full theory, containing
the strong interaction as well, is called the standard model. However, it should be noted
that it does not include gravity.

A

Strong

Force
Weak
Strength @

Electroweak GUT

ToE

EM Gravity

Y

Energy

Figure 1.1.: Energy scales for the unification of all four fundamental forces. Unifications above mpgy, are
only conjectured.

All these results raise the hope that it might even be feasible to unify the four fun-
damental forces into a single one at a certain energy scale my, g, see fig. 1.1. Under the
assumption of a minimal supersymmetric standard model (MSSM), mathematical physi-
cists conjecture the combination of the electroweak and strong forces at an energy scale
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of meyr = 10'° GeV [16, 17]. Clearly, this energy scale is far out of reach for present
particle colliders such as the LHC which produce center of mass energies of around 10*
GeV. Nevertheless, it is extremely important for a theory describing physics shortly af-
ter the Big Bang. A viable energy scale for a theory of everything is the Planck scale
mp; = 1.22-10" GeV. At this scale, one assumes that all fundamental forces unify and
yield the world formula as mentioned above. Fig. 1.1 visualizes this unification picture.

Due to a lack of empirical data it is hard to predict how such a theory, describing
physics at the Planck scale, might look like. Although, there exist a number of possible
candidates for it. string theory, quantum loop gravity' [19, 20], and non-commutative
geometry are the most famous of them [21, 22]. Yet, all of them try to address the
common topics:

1. They want to reproduce standard model physics at low energies.
2. They attempt to conjecture new physics beyond the standard model.
3. They strive to make as little assumption as possible.

At present, string theory appears to be the most probable candidate.

1.2. String theory

What is today known as string theory was initially an attempt to describe strong inter-
actions in the late 1960s. As opposed to standard quantum field theories which consider
point particles, string theory makes use of one-dimensional extended objects called strings.
In general, one has to distinguish between open and closed strings, with closed strings
satisfying additional boundary conditions. However, it was discarded very quickly as it
required the existence of a critical dimension much larger than four. Furthermore, the
existence of a spin two particle emerged in strong contradiction to the observations of
quantum chromodynamics. During the year of 1974 two physicists named Scherk and
Schwarz had the idea to use this unknown massless spin two particle, a massless string
excitation, to their advantage by identifying it with the graviton. Moreover, they observed
that this mysterious particle behaves at low energies in accordance to the covariance laws
of general relativity. As a result, the theory became an immediate candidate for a possi-
ble description of quantum gravity and therefore might even be a suitable contender for
a theory of everything [23]. Nevertheless, it possesses many more string excitations as
well. For instance, there exist even additional massless string excitations which can be
interpreted as gauge bosons. Thus, it can be regarded as a theory unifying quantum grav-
ity with the other gauge interactions and thereby highlights its significance as a possible

! 1t should be noted that loop quantum gravity is only a quantum theory of gravity and hence is not a
true theory of everything. Although there are endeavors to introduce gauge interactions as well [18]
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11d SUGRA
compact.

on I

compact.

het. E8 on Sl

type ITA
T-duality

T-duality

het. SO(32)
S-duality tpr_e)IIB
type 1 S-duality

Figure 1.2.: Dualities connecting the five different superstring theories with M-theory. Here, I denotes the
compactification on a line interval.

true theory of everything. It comes in two descriptions, a worldsheet and a target space
description which we are going to scrutinize in the next two subsections.

During the course of this thesis, we are mainly interested in the bosonic sector of
superstring theory but let us begin by giving some remarks about bosonic and superstring
theory, including fermionic fields as well. Bosonic string theory is plagued by several major
issues. One of them regards the existence of a tachyon, a negative mass squared excitation,
appearing in the spectrum of the theory. It is a highly instable ground state. The second
major disadvantage lies in the fact that it, thus far, only describes bosonic fields. Yet,
in reality we detect fermions, too. Ergo, the fields describing the matter content are
missing. The solution to these problems is given by superstring theory, a supersymmetric
extension of bosonic string theory. Hence, it also considers fermionic degrees of freedom
on the worldsheet and successively yields a supersymmetric theory with fermionic fields in
target space [24-28]. Furthermore, the requirement of a vanishing Weyl anomaly reduces
the critical spacetime dimension from bosonic string theory with D = 26 down to D = 10
for superstring theory. On top of that, a GSO projection removes the tachyonic degrees
of freedom from the spectrum and leads to a modular invariant partition function.

Although, there actually exist five different stable and consistent superstring theories.
They are:

e Type I It describes unoriented closed and open strings in ten dimensions. The
low energy effective action is of N = 1 super Yang-Mills with gauge group SO(32)
coupled to type I SUGRA.
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e Type ITA and IIB These contain oriented closed strings in ten dimensions. The
low energy effective descriptions are given by type ITA or IIB SUGRA.

e Heterotic They combine a bosonic string part in the left moving sector with a
superstring in the right moving sector of a closed string. Again, its critical dimension
is ten and its corresponding gauge groups are SO(32) as well as Eg x Eg while their
low energy effective descriptions are given through N = 1 super Yang-Mills coupled
to type I SUGRA.

Additionally, we are left with two non-supersymmetric and unstable theories. These are
type OA and 0B. However, they are not viable to describe real world physics.
Last but not least, we have two theories related to string theory:

e M-theory The strong coupling limit of type ITA superstring theory. Furthermore,
it possesses eleven-dimensional Poincaré invariance.

e F-theory A geometric description of type IIB superstring theory formulated on 12-
dimensional space-time which is subsequently compactified on a elliptically fibered
Calabi-Yau manifold.

All of the aforementioned superstring theories are conntected by dualities, see fig 1.2.

1.2.1. Worldsheet

String theory can be cast as a two-dimensional conformal field theory on a Riemannian
surface ¥ called the worldsheet. It describes open as well as closed strings, based on
whether ¥ once all the punctures have been removed, is compact or not. Here, a puncture
refers to a point which misses in the worldsheet. During the course of this thesis, we mainly
consider the bosonic subsector of closed string theory. Its dynamics are derived from the
Polyakov action

1 S
Sp = ——— / d*ovh haﬁ(?axlaﬁxj (9:j + Bij) + S, (1.1)
dra S
with ,
S, =— / PovhoR = ox (%) (1.2)
47 )

being the Gauss-Bonnet term coupled to a dilaton field ¢. In the last equation, R repre-
sents the curvature scalar R of the metric 2*. It can also be expressed in terms of the
topological invariant Euler number (%) which can be calculated by

X(X)=2-29g—0 (1.3)
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with g being the genus of the surface > and b the number of boundaries. The Gauss-
Bonnet term has locally the form of a total derivative and therefore does not contribute
to the field equations. Yet, it plays a role in the string perturbation theory. Furthermore,
the Polyakov action is the starting point for the path integral quantization procedure of
string theory [23]. However, this is beyond the scope of this thesis.

1.2.2. Target space

At this point, we can solve the field equations for the worldsheet metric h* of the Polyakov
action (1.1). When considering a two-punctured sphere i.e. a cylinder, S, vanishes and
moreover dropping the B-field in the Polyakov action, we obtain the Nambu-Goto action

1
2o

Sng = —

,/Ed20\/_% (1.4)

where ¥ denotes the area of the worldsheet and  is the induced metric’s determinant,
given by

oz’ oz’
Yag = ngij- (1.5)
It originates from the ambient d-dimensional Minkowski space the string moves through
and subsequently z'(7,0) with i = 0,...,d — 1 maps the worldsheet into d-dimensional

Minkowski space. Thus, the string propagates through a d-dimensional target space.
In this context, it becomes important to distinguish between open and closed strings.
Furthermore, we identify the explicit worldsheet parametrization

o'=7cR and o' =0€|0,27). (1.6)

A closed string has to fulfill the additional boundary condition
2 (1,0) = ' (1,0 + 27). (1.7)

Therefore, its corresponding worldsheet has the form of a cylinder, whereas for open
strings it has the shape of a strip [23].

1.3. Low energy effective theory

Ultimately, one should be able to derive the standard model at low energies from string
theory if it truly is the theory of everything. The standard model is based on quantum field
theory (QFT) with a finite particle content. However, all the particle masses, coupling
constants etc. have to be introduced by hand. Now, returning back to string theory
the particles correlate to different string excitations in target space. Clearly, this would
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produce an unlimited amount of particles. Although, for a low energy effective theory
we are only focusing on the lightest of them. Therefore, we are interested in formulating
a low energy description of string theory. One of the intrinsic choices for the required
energy cut-off is given by the string mass

mg N (1.8)
Up to now, there exist only very few restrictions on its scale. Yet, it must be much higher
than the currently available energy at the Large Hadron Collider (LHC) as no signatures
have been detected. The string mass could even be as high as the Planck mass mp,
There exist two possible ways to obtain an effective action from string theory’s world-
sheet description [29]:

e We can derive the string amplitudes on worldsheets with different topologies and
match them with a low energy effective field theory in target space whose Feynman
diagrams reproduce the same amplitudes. Finding such a field theory which de-
scribes the string at classical level with weak coupling can be achieved by analyzing
two and three punctured spheres. Then, the most general ansatz must consider
terms quadratic, cubic, and quartic in fields with arbitrary coupling constant for
the effective action. Subsequently, these constants can be fixed by comparing the
amplitudes of the target space tree-level Feynman diagrams with the ones obtained
from the worldsheet.

e We compute the one-loop S-function for the coupling constants on the worldsheet.
As a consequence, it is possible to perturb/fluctuate the coupling constants around
a given background, e.g. a flat one, which coincides with massless string excitations.
In the end, the S-function has to vanish, if the conformal symmetry of the worldsheet
theory holds at quantum level. This allows to obtain the field equations of the
effective field theory. Finally, one finds the accompanying action.

It should be mentioned that both procedures produce exactly the same results. Neverthe-
less, they only describe the string classically but for quantum effects, it becomes necessary
to consider String Field Theory (SFT) calculations as well.

1.3.1. Compactifications and T-Duality

For string theory to make contact with experimental observations we need more than
just a low energy effective description. So far, we have only encountered four dimensions
in nature. This raises the question to what happens with the remaining six dimensions
required for a consistent superstring theory in D = 10 dimensions? A possible explanation
could be the existence of small extra dimensions which allow the strings to elude detection
by particle accelerators currently at our disposal. The energies for detecting the string
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are simply too high for present colliders such as the Large Hadron Collider (LHC). The
idea of small, compact, extra dimensions goes back to Kaluza and Klein who proposed a
fifth dimension to unify electrodynamics with general relativity in 1921 [30-32].

The procedure of going from a higher dimensional theory down to a lower dimensional
theory by assuming small compact dimensions is called compactification. Moreover, the
shape of the compact space determines the properties of the effective theory in four dimen-
sions. For instance, one tries to find a four dimensional theory with Minkowski vacuum
and minimal supersymmetry to implement the Minimal Supersymmetric Standard Model
(MSSM). Then, the internal space can be chosen to be a Calabi-Yau threefold [29, 33, 34].
There exists an infinite variety of these manifolds and they are distinguished by their
moduli. These are counted by their hodge numbers "' and h*'. Each moduli in the
four-dimensional theory gives rise to a massless scalar field. However, this poses severe
consequences to observations and predictions of cosmology, as even if they would decouple
from three fundamental forces, they still couple to gravity and therefore affect the cosmol-
ogy of our universe. As a consequence, in string phenomenology intense efforts are being
made into giving mass to the moduli and stabilize them at certain vacuum expectation
values. This technique is called moduli stabilization.

One approach is to stabilize the moduli at tree-level by using flux compactifica-
tions [35-38]. Now, giving non-vanishing vacuum expectation values to the fluxes, such
as the H-flux, yields a scalar potential for the moduli. Ideally, this potential would have
at least one minimum stabilizing all moduli. But generally, it is impossible to find tree-
level fluxes which stabilize all moduli, and the scalar potential possesses at least one flat
or runaway direction. However, it is possible to apply non-perturbative effects to the
remaining moduli, but normally there exists no procedure to stabilize all moduli.

For a full grasp of Double/Exceptional Field Theory it is crucial to completely under-
stand the notion of T/U-Duality, as Double/Exceptional Field Theory makes T /U-Duality
a manifest symmetry of the theory. T-Duality is a symmetry that unfolds during certain
compactifcations, mostly in context of circular and toroidal compactifications. It connects
different background topologies with each other. We start with the demonstration of an
illustrative example, a circular compactification on a circle i.e. S' in 1.9. In this context,
we make contact with string winding, and the concept of T-Duality. Subsequently, we
generalize this idea to toroidal compactifications in D-dimensions 1.17 and see the emer-
gence of the Buscher rules 1.40. Moreover, we can combine T-duality with S-duality and
obtain U-duality. We mainly follow [39].

T-Duality: S' compactification

Understanding T-Duality thoroughly requires several important steps. In order for us to
understand it properly, we begin by introducing the concept of circular compactifications,
the most straight forward example [23, 40]. We can identify the compact dimension of
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such a compactification with a circle
S' =R/(2rR7Z), (1.9)

while the total space takes the form
RVP™H 5 RYP2 5 gt (1.10)

Here, R denotes the radius of our compact direction. Note, if we have a closed string
curled around the compact dimension, it is obviously not possible to contract said closed

string to a point anymore. Let now x be our compact coordinate, then the periodicity
condition for this coordinate requires

x ~ x4+ 271R. (1.11)

(After going a full loop around the circle, we have to be in the initial point again.) On
the other hand, this constrains our worldsheet coordinates to fulfill the equation

X(1,0+2m) =X(1,0)+27Rp, (1.12)

where p € Z represents the winding number and thus counts how many times the string
wraps around the compact dimension, i.e. see figure 1.3. Here, string (a) wraps twice
around the compact direction while string (b) winds only once. The winding numbers

Figure 1.3.: Closed string winding, when compactified on circle.

(conserved charges) generate so-called winding states. They possess no classical counter-
part, and are topologically stable solitons [23]. The reason for this lies in the existence of
non-contractible loops i.e. that the closed strings can’t be shrunk to a point anymore. At
this point, we can perform the usual mode expansion and complete some straightforward
calculations [40]. It allows us to obtain the mass formula

M2:<%>2+<]%R)2+(N+N—2), (1.13)

where we choose o = 2. In this equation, p and p denote the quantized momentum and
winding, while N and N count the number of oscillators. The first two terms emerge due
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S -
R 0

R O — Q R=2/R
< = D

Figure 1.4.: T-Duality between circle with radius R and circle with dual radius R

to the compactification around the circle R, whereas the last term is a remnant of the
uncompactified external directions. Additionally, the level matching Ly — Ly = 0 gives us
the following condition

N—N =pp. (1.14)

If we apply the decompactification limit, i.e. R > 2, to equation (1.13), the winding modes
become very heavy, as the energy to wrap around the compact dimension increases, and
hence the mass spectrum becomes continuous.

In the opposite limit, where R < 2, the momentum modes become exceedingly heavy
while the winding modes are very light (requires small energy to wrap around the compact
dimension), and the spectrum becomes continuous [41] as well.

Already by examining equations (1.13) and (1.14) it should become quite obvious that
there should exist a symmetry between momentum modes p and winding modes p. This
symmetry is called T-Duality. It is given by the transformation, see figure 1.4,

RHR:}—%, pp. (1.15)

The fact that our equations are invariant under the interchange of momentum modes
p with radius R and winding modes § with dual radius R is very astonishing. In fact, it
implies that we are incapable to distinguish between small and large compact directions
when compactifying on a circle. Much more, these two different compactifications are
physically indistinguishable [40] and as a result T-Duality relates different background
topologies with each other.

Thus, at the string scale ordinary geometric concepts and intuitions break down [42].
However, at the self-dual radius R* = /2 these two different compactifications coincide,
and hence it marks a fixed point under the T-Duality transformation. It comes along with
the occurrence of non-abelian gauge groups at this special point [42], also called symmetry
enhancement. The particular symmetry group depends on the excitation of the string.
As a result, the radius defines a continuous parameter of spacetimes which allow for a
consistent string theory. In particular, it is a modulus which forms the one-dimensional
moduli space of this compactification.

Double Field Theory is currently restricted to massless states not in the decompact-
ification limit. From (1.13), we obtain N + N = 2, and the level matching condition

10
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(1.14) cancels out the states (NV, N) = (2,0), (N,N) = (0,2) which restricts us to

(N,N) = (1,1). The state
k&, 10y, (1.16)

with o, and &”; being oscillators of the mode expansion, allows us to acquire the fol-
lowing field content: a symmetric metric g;;, a two-form field B;;, and the dilaton ¢.

Now, we want to generalize this idea and turn to toroidal compactifications in D
dimensions.

T-Duality: Toroidal compactification

Generalizing the above discussion to a bosonic closed string compactified on a D-dimensional
torus T [23] yields the periodicity condition

X'~ X4+ 27P", (1.17)
with
P=> je, ne€i, (1.18)
i=1

where e;, i € {1,..., D} are the linear independent basis vectors spanning the lattice Ap,
and I € {1,..., D} labels the internal directions. Hence, the winding Pe Ap becomes an
integral lattice vector. Therefore, after compactification on the torus 77, the lattice Ap
is given by

TP =R”/(2nAp). (1.19)

In worldsheet coordinates the periodicity conditions takes on the form
X'o+2m,7) = X(0,7) + 27P". (1.20)

Now, we can introduce the dual lattice A}, by using the state condition

. . I ~I1 ~
X P — (X 2m PP pIp e (1.21)
This gives us
D .
P = Zpi el (1.22)
i=1

with e € A%. Thus, the momentum P lies on the dual lattice A}p and is integral.

The basis vectors e; on the lattice Ap, and basis vectors e on the dual lattice A7,
satisfy the following properties
e;-e” = ejef =67, (1.23)

I=1

11
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D .
Zei[ef}l =4, (1.24)
i=1
Moreover, the metric on the lattice Ay is given by
D
Gij =€ € = Z efe;]éu, (1.25)
1,J=1

and for the dual lattice A}, through

D

gi=g7=e"eV =Y efeyd = (7). (1.26)
1,J=1

Again, we execute some straightforward calculations, and make use of the well-known
mode expansion for D compact directions, we finally arrive at the mass formula

D
1. -
M*=(N+N-2)+Y (PIPJ + ZPIPJ)(S,J (1.27)
I=1

D
N i 1.,
=(N+N-2)+> (pigjpﬁzp gz-jpj>
ij=1

=(N+N-2)+p'g'p+-P'gp.

e

Subsequently, the level matching condition (1.14) takes on the form
N-N=P.-P=PP =) pjpel. (1.28)
i=1

We can now generalize equations (1.27) and (1.28) further, by turning on an additional
2-form field b. Equation (1.27) then becomes

~ B 1~ _ 5 N _
M*=(N+N-2)+p'g 1ersz(g—bg "b)p+p'bg 'p, (1.29)

which can be rewritten in an equivalent form
. 1 -
M?>=(N+N-2)+ §7>T7{_1 P, (1.30)

by introducing a generalized vector P
i

P = (g) ,  whose components are given by P, = <§ ) , (1.31)

i

12
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and the O(D, D) valued generalized metric H ' € O(D, D)

- 2(g —bg 'b) bg*
H 1::<:(g_g_§b ) li‘l) . (1.32)
2
Removing factors of 2 by g — ¢g/2 and b — b/2, we obtain
- —bg 'b bg! un _ (9 =g by birg"
H1=G ¢ > ), MY = (T 0w Dy Pkg ) 1.33
-g'b gt —g" by, g” (1:33)

The indices M and N are raised and lowered with the O(D, D) invariant metric

(0 1p (0 &

Subsequently, the metric and the generalized metric need to fulfill the following identities:

HTﬁH =n, HMY = UMPUNQHPQ ) HMNHNP = 5MP- (1.35)
Although, the level matching condition (1.28) remains unaltered, and can also be written
in terms of the generalized vector P

-1
N—N:EMWM. (1.36)

Finally, the massless states are given by N = N = 1 in this case as well and reduce to
the orthogonality condition p; p* = 0.

From equation (1.30) we can directly see the emergence of the T-Duality group
O(D, D) [42]. In particular, equation (1.30) is invariant under exchange of

ﬁi < Dis 7-[MN < HMN ) (137)

and discrete shifts of an antisymmetric matrix n,;

1 ) i i »
bij = by + o "ig > with  p* = p', pi = pi + nyp (1.38)

When combined, the inversion symmetry, and the shift symmetry generate the group
O(D, D,Z) which acts geometrically on the torus [41].

Buscher Rules

It is possible, to reduce any element of the group O(D, D) further as a product of the
following transformations [41]:
£

; O), E € GL(D) (1.39)

Diffeomorphisms:  hyy = (0 Iy

13
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Shifts:  hy) = (51 Oj) , nij
ij 0

i i iJ
Factorized T-Dualities: h,) = (6jt_ £ 5jt tj) , t;; = diag(0,...,1,...,0).

] 7 2
(T-Duality is applied in the k-th direction and thereby, 7,,y corresponds to the applica-
tion of D successive T-Duality transformations.) The diffeomorphisms correspond to a
change in the basis of the lattice underlying the torus, whereas the factorized T-Dualities
generalize the R <+ R = 2 /R symmetry. Hence, carrying out T-Duality along the k-th
direction, we obtain the well-known Buscher Rules [43, 44]:

1 br; Gkik; — Okib;
gk ——  OGki i> Gij > Gij — == =9, (1.40)
Jkk Jkk Jkk
. by — by
by g’“’ binbij—M,
Ikk Jkk

where T-Duality is performed in an isometric direction. In the k-th direction g is being
exchanged with ¢~' and thus corresponds to a generalization of equation (1.15). These
transformation rules were obtained by Buscher [43, 44] through gauging an U(1) isometry
in the worldsheet action and successively obtaining a way in which T-Duality acts on
the target space. They map solutions of the theory to other ones. However, they are
not a manifest symmetry of the SUGRA action (1.43) and motivated the development of
Double Field Theory [1, 45, 46], which we are going to discuss in the next chapter.

Now, we want to obtain the moduli space generated by these toroidal compactifica-
tions [42]. We find

M., = O(D, D;R)/[O(D;R) x O(D;R)]. (1.41)

Nevertheless, we still have physically identical states related by T-Duality O(D, D,7Z)
which have to be divided out. This gives us the physical moduli space

As a result, we obtain fixed points under O(D, D;Z) transformations which cause sin-
gularities. It implies that we must have special values (g,;,b;;) resulting in additional
massless gauge bosons and therefore yielding a non-abelian gauge symmetry. In general,
toroidal compactifications T only allow for U(1)” isometries, and are non-chiral, i.e.
they don’t have a chiral matter content. Furthermore, they can’t reproduce non-abelian
gauge interactions. Consequently, it becomes impossible to explain extensions of the stan-
dard model [23]. Yet, at the self dual radius we observe a symmetry enhancement, similar
to circular compactifications, as well.

Another important duality in string theory is S-duality. It relates weakly and strongly
coupled string theories with another. Later on, we are going to combine it with the T-
duality group which gives rise to U-duality. U-duality plays a crucial role in the context
of Exceptional Field Theories (EFTs).

14



1.3. Low energy effective theory

1.3.2. Supergravity

First, we want to address the question, what exactly supergravity (SUGRA) is [39].
SUGRA is an effective field theory that attempts to unify supersymmetry (SUSY) with
general relativity, while the invariance under local SUSY transformations has been made
manifest. (We are only interested in the bosonic part of the action. Hence, we do not
consider SUSY transformations which exchange bosons and fermions.) In general, super-
gravity can be seen as the low energy limit (E < M,) of superstring theory, i.e. in 11
dimension it is the low energy effective theory of M-Theory. One of the most natural
questions in physics to ask is, whether there exists a generalization, i.e. a generalization
of supergravity? However, let us first give a short review about supergravity. In this
context, we want to consider D-dimensional supergravity in the type II bosonic sector
where we only focus on massless fields, implying that we neglect fermionic fields such as
gravitinos, and dilatinos as they would only impede the discussion. After integrating out
the massive modes, all of the information and degrees of freedom of the theory are em-
bedded in a symmetric metric g;;, a two-form field b;;, and the dilaton ¢. (The variables
depend on the coordinates z’ in D-dimensions.) As we have already seen in the previous
section, these are the only allowed massless excitations. Thus, the supergravity action for
the N' =2 NS/NS sector is given by

1.

5— / APy /Ge ™ (R+4(00)° — S HV M) (1.43)
and involves the metric g;; making up the Ricci scalar R, the 3-form field H,;;, consisting
of the 2-form field b;;, and the dilaton ¢. Here, g;; and b;; are invariant under the usual
diffeomorphisms, and gauge transformations b;; + b;; + ;A — 0;A. Additionally, the
three-form field H,j;, given by

satisfies the Bianchi identity

Varying the action (1.43) with respect to the three individual fields, one obtains the
equations of motion

1
1 g iy
EakH”k — H7"%9.¢=0, (1.47)
1
R+4(0%¢ — (09)%) — EH2 =0. (1.48)

In the first equation we used that the trace is zero.
At this point, let us revisit the notion of diffeomorphism invariance. This topic will
become of great importance, when generalizing the concept to Double Field Theory later

15
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in this thesis and hence it is crucial to fully understand it [41]. We start by introducing
well-known Lie derivative (Lie bracket)

Ly =\V]' =N,V —VIg;\N, (1.49)

which is antisymmetric under the exchange of fields and satisfies the Jacobi identity. It
allows us to write the transformation properties under local coordinate changes for the
three individual fields g,;, b;;, and ¢ as

9i; 7 9ij + Lxgij, Lrgij = )‘kakgij + gkjai)‘k + gikaj)‘k

bij = bij + Labij,  Labiy = A'Okbyj + b0\ + by ;A"

b ¢+ Ld, Ly=N0,0. (1.50)

During the course of this thesis, we will see how these transformations are implemented
in Double Field theory.

Unfortunately, T-Duality is not a manifest symmetry of the SUGRA action (1.43). In
fact, we always have to be in the large volume limit to not violate the low energy limit
of supergravity. This implies that we cannot consider small dimensions. As a result, we
cannot encounter any winding modes. Thus, we are only left with momentum modes. We
are going to see, how we can overcome these issues by introducing Double Field Theory.

Furthermore, compactifying 11-dimensional SUGRA and M-theory on an d-dimensional
torus gives rise to the U-duality group Eyq) [47-49] and consequently Exceptional Field
Theories [50-59].

1.3.3. Non-geometric backgrounds

An astonishing fact of gauged SUGRAs is that they provide more deformations than those
of geometric compactifications, i.e. twisted tori with two-form flux [41]. In particular,
it is generally not possible to turn on the following non-geometric components of the
embedding tensor

Qabc _ fabc and Rabc _ fabc (151)

through geometric Scherk-Schwarz compactifications of 10-dimensional SUGRA. The other
two components
Habc = fabc and oJabc = fabc (152)

are the geometric fluxes. At this point, it is natural to ask the question which backgrounds
respectively compactifications would produce these gaugings. T-duality has a very explicit
answer to this which we discuss later on.

However, it should be pointed out that this clearly does not answer the question of
the necessity of non-geometric fluxes. E.g. in [60, 61], the SUGRAs are compactified
from D = 10,11 dimensions down to four dimensions with a geometric approach. These

16
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higher dimensional theories, as we already discussed earlier, can be seen as the low energy
effective limit of string theory. Everyone of these compactifications yields a flux action
with only geometric fluxes.

Now, carrying out duality transformations at the level of the four dimensional effective
theory, one observes that even though the original actions have been related by dualities,
the effective theories are not connected anymore [60, 61]. As a result, we have to introduce
new non-geometric fluxes, otherwise the two theories would not match. Thus, gaugings
appearing geometric in one duality frame might be non-geometric in another.

For instance, it is possible to connect a toroidal background with a two-form flux Hq3,
by performing a h T-duality in the y®-direction using the Buscher rules 1.40, with a
twisted torus with metric flux wy,® [41]. Furthermore, one can perform an additional T-
duality transformation h® in the y-direction as the latter case still possesses an isometry.
Doing this, we find the globally non-geometric flux Q,%*. In general, this gives rise to the
duality chain

B(©) o B® he

Hype 64— wyp — Q. ° . (1.53)
Nevertheless, the background associated to the @,** flux depends only on the y'-direction
and subsequently when looking at the monodromy y' — y* + 1 does not map onto itself.
This non-trivial mixing of the metric and two-form is called a T-fold [62-64]. These
backgrounds are globally ill-defined from a SUGRA perspective, as the T-duality element
required to glue the two different patches is not an element of the geometric subgroup
of O(3,3) [41]. However, from the doubled space perspective, which we are going to
introduce in chapter 2, this obstacle does not occur if one admits transition of the full
O(3,3) symmetry group. Then, the monodromy identifications of the coordinates also
include the dual ones and the generalized vielbein is globally well defined.

If we were able to perform an additional T-duality in the y'-direction, we would obtain
the full duality chain

h(c) c h(b) be h(a) abc
Hye ¢— wy' — Q. +— R (1.54)
and would have found the locally non-geometric R-flux. In this case, the arising back-
ground would have to depend on a dual coordinate which results in a loss of locality in
terms of the physical coordinates SUGRA is based on. Although, with a doubled space
at hand, this is not an issue either.

All of these gaugings appearing in the duality chain (1.54) however belong to the same
orbit and are therefore indistinguishable by the theory as they are all connected by T-
duality. This implies that the backgrounds in this orbit can all be seen as geometric since
we were always able to find a geometric uplift. The situation is different once geometric
and non-geometric fluxes are turned on simultaneously. Then, T-duality would replace
geometric by non-geometric fluxes and vice versa. As a consequence, we were never able to
eliminate the non-geometric ones. These belong to the orbit of non-geometric fluxes [65]
which cannot be reached by standard Scherk-Schwarz reductions. Such orbits are actually
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the most fascinating as they avoid all no-go theorems preventing moduli stabilization, de
Sitter vacua, etc. [41, 66-81].

Moreover, as soon as we attempt to consider non-geometric backgrounds [82-91], the
SUGRA action (1.43) becomes obscured due to the interplay between momentum and
winding modes. However, if these non-geometric backgrounds are T-Dual to geometric
ones, as we previously discussed, it is always possible to perform a field redefinition
and lift these aberrations in order to acquire a well-behaved geometric description for
them [82, 92-98]. Unfortunately, traditional methods such as non-linear sigma models
break down and cannot be applied to reproduce those backgrounds [99]. But this raises
the question of, how we can approach these non-geometric representations.

This is one of the starting points of Double/Exceptional Field Theory. They attempt
to overcome the issues with ill defined non-geometric backgrounds.

1.4. Outline and Summary

This thesis is based on the papers [3-7] and organized as follows

e In the chapter 2, we review the basic ideas and principles underlying DFT. We
start with the introduction of the doubled coordinates and its associated doubled
space 2.1. Afterwards, by defining the generalized diffeomorphisms, we implement
the C- and D-bracket which govern the gauge algebra of DFT in 2.3.1-2.3.2. It will
emphasize the importance and role of the strong constraint in this context, especially
with regard to the closure of the algebra. All these steps lead to the DFT action
in its generalized metric formulation 2.4.1 as well as in its flux formulation 2.4.2.
Subsequently, we analyze the corresponding symmetries and field equations.

e The chapter 3 is designed to produce an overview of DFTyzw. DBeginning with
a WZW model on a group manifold, we examine the steps leading to DFTyzw-.
In order to fully grasp this framework it is essential to comprehend some basic
concepts of Lie algebras 3.1.1 and Closed String Field Theory 3.1.2. Then, one is
able to evaluate the corresponding two-point and three-point functions which give
rise to the cubic order action 3.2 and gauge transformations 3.3.1 of DFTyyw-.
Equivalently to original DFT, it is possible to introduce a gauge algebra, dictated
by the C-bracket 3.3.3, which closes under strong constraint for the fluctuations and
Jacobi identity for the background.

e We begin chapter 4 with a rescaling of the DF Ty ,w action 4.1, as we want to get rid
of an undesired 1/2 factor. Consequently, we cast the theory into a more convenient
form, the generalized metric formulation 4.2, by introducing doubled generalized
objects. This makes it easier to compare our result to those of original DF'T. There-
after, we derive the associated equation of motion and define a generalized Ricci
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scalar as well as a generalized curvature tensor 4.3. At this point, we are able to
show DFTyyzw action’s invariance under generalized diffeomorphisms 4.4.1 and 2D-
diffeomorphisms 4.4.2. Finally, we present an additional constraint, the extended
strong constraint 4.5.2, which relates DFTyyzw with the toroidal DFT formulation
and analyze how they are connected 4.5.

During chapter 5, we introduce the covariant fluxes 5.1 and subsequently perform
all steps required to recast the generalized metric formulation’s action of DFTyyzw
through these fluxes 5.2. Conclusively, we argue why in DFTyy,w the strong vio-
lating term 1/6FABCFABC known from original DF'T is absent 5.2.1. It was needed
in the traditional flux formulation in order to reproduce the scalar potential of half-
maximal, electrically gauged supergravities. Moreover, we show the invariance of
the flux formulation under double Lorentz transformations 5.2.2. Afterwards, we
obtain the gauge transformations 5.3 and field equations 5.4 in this formulation.

Chapter 6 is dedicated to generalized Scherk-Schwarz compactifications. We start
with a short review of the embedding tensor formalism 6.1, in particular for n=3
dimensions, and thereafter we are going to discuss generalized Scherk-Schwarz com-
pactifications in the context of original DF'T 6.2. Here, the problem of constructing
the twist becomes evident. In section 6.3, we introduce generalized Scherk-Schwarz
compactifications for the flux formulation of DFTyy,w. The generalized background
vielbein takes on the role of the twist in our framework and can be chosen as the left
invariant Maurer-Cartan form on the group manifold. We demonstrate the explicit
construction procedure, beginning from an arbitrary embedding tensor solution, in
section 6.4. We close this chapter by providing the background generalized vielbeins
for all compact O(3,3) embeddings in appendix A.

In this chapter, we want to extend the DFTyzw framework to gEFT. We begin by
presenting an approach to implement generalized diffeomorphisms on group mani-
folds 7.1. This question is tackled from a slightly different point of view than [6].
Here, we try to keep the treatment as general as possible and only specify explicit
U-duality groups when absolutely required. Subsequently, we highlight the impor-
tant differences and similarities with DFTyzw. Simultaneously, we introduce the
relevant notation and provide a short review of the main results of DFT and EFT.
In this context 7.1.3, we derive the corresponding two linear and the quadratic con-
straints from demanding closure of the gauge algebra once the SC is imposed. As
we are interested in solving these constraints, we now have to fix a specific U-duality
group for which we choose SL(5) 7.1.4. Thus, we observe how a detailed picture
of the SL(5) breaking into group manifolds with dimG < 10, as a result of the
embedding tensor solutions in the 40, emerges. The second part of this chapter is
covered by 7.2 where we want to solve the SC. To do so, we adapt the techniques
known from DFTyyzw [100] to gEFT. The henceforth obtained SC solutions allow
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for a GG description which we discuss in 7.2.3. As a consequence of these results,
we know how to construct a generalized frame field £, 7.2.5. This however requires
some additional linear constraint. Finally, we give some illustrative examples such
as the four-torus with G-flux as well as the backgrounds contained in its duality
chain, and the four-sphere with G-flux 7.3
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2. Double Field Theory

In this chapter, we are going to review the most important aspects of Double Field Theory
(DFT) and set the prerequisites for the upcoming chapters [5, 39]. We start by introducing
the doubled space with its gauge algebra 2.3, governed by the C-bracket, and see how
this setup neatly gives rise to the action in both formulations of DFT. Subsequently,
we consider the action in its generalized metric formulation 2.4.1 with its associated
symmetries and are going to discuss the equation of motions which arise after variation.
Afterwards, we follow an analogous argumentation for the flux formulation 2.4.2 of DFT.
The flux formulation allows for a relaxation of the strong constraint by replacing it with
the weaker closure constraint.

2.1. Double coordinates

Let us start by extending all the notions and principles we introduced in the introduction 1
into a T-Duality invariant formulation of DFT. In order to make T-Duality a manifest
symmetry of the theory, we have to introduce so-called doubled coordinates [1, 101, 102]
given on a toroidal background R** 27 x T, For closed string theory, this is by con-
struction a Double Field Theory [45]. It means that in addition to our D spacetime
coordinates z', D = n + d, which are conjugate to the momentum modes, we incorporate
D new coordinates Z; that are conjugate to the winding modes into the doubled space.
For us to be able to write down a covariant Double Field Theory action, we combine these
two coordinate types to 2D-dimensional generalized coordinates by

XM= (i) D (i) . (2.1)

We raise and lower the indices with the O(D, D) invariant metric and its inverse

n = (5ij O> y NN = (@j 0/ (2-2)

Furthermore, we have to define according generalized partial derivatives
0, 5
M 7l —
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2. Double Field Theory

as well. Naturally, we also have to consider a new generalized metric H,;n (1.33) [40]
made up of the metric g;; and the two-form b;; as well. Tt is given by

g’ —9" b
= . . 2.4
Harw (bikgkj 9ij — bz’kgklblj) (24)

Clearly, the generalized metric lies in O(D, D) (H €O(D, D)) and satisfies the following
identities
HnH =n, H" ="V Hpo, H"VHyp=0"p. (2.5)

Moreover, the dilaton ¢ combined with the determinant of the metric ¢ transforms as an
O(D, D) scalar, particularly for the dilaton d we have

e = Jge . (2.6)

As a consequence, our generalized fields are given by the field content H(X') and d(X) [41].
(With the additional restriction that they have to fulfill the strong constraint (2.12))
It is worth noting that the mass formula takes on the form

M? = (N +N —2) + P"H PV, (2.7)

while the level matching condition (LMC) becomes

~ 1

P — (jj) | (2.9

This immediately raises the questions, whether we can formulate a consistent theory out
of these constituents and whether there exists a procedure to recover supergravity? For
a consistent formulation of DFT it is necessary to constrain the coordinate dependency
of the doubled space. This constraint is called weak constraint and is originating in the
CSFT level matching condition Ly — Ly = 0. It is a remainder of the toroidal background
of the theory. (As we see later, we even have to impose a much more restrictive strong
constraint. )

A field at levels N, N generally fulfills 0"9,,A = N — N [99]. Since we are only
interested in massless states, the constraint reads

where

Moy A=0, Vfields A (2.10)

or for the components B
0;0'(...) =0, Vfields A. (2.11)
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2.1. Double coordinates

The weak constraint is invariant under T-Duality or any other O(D, D) rotations as well,
because 1,y is an invariant under O(D, D) transformations. It has always to be satisfied.
One way to solve this constraint is '(...) = 0. In turn, it can be seen as if the fields are
independent of the winding coordinates Z;, once the weak constraint is imposed. Thus, the
fields live on a D-dimensional subspace of the 2D-dimensional doubled space-time [46, 82].

Another much more powerful constraint which has to be invoked is the strong con-
straint. It takes on the following form for generic field products

Moy (A-B)=0, Vfields A,B. (2.12)

Clearly, this constraint is invariant under global O(D, D) transformations, too. However,
it highly truncates the theory and makes it possible to construct a Double Field Theory
in all orders [45, 46, 99, 103]. It is a direct consequence of the level-matching condition
during string scattering processes.

We will use the strong constraint as a way to check consistency with SUGRA 1.3.2
in the remainder of this chapter. We are going to see that it reduces the DFT action
to the well-known SUGRA action (1.43). The importance of the strong constraint is
going to become much more obvious during the course of this thesis. Nevertheless, it is
worth noting that the strong constraint is generally not invariant under local O(D, D)
transformations. We will always comment whether the strong constraint is invoked or
not.

Furthermore, we can decompose the metric (2.4) through generalized vielbeins EA M
in an O(D, D) generalized frame [82]. We find

Huy = E* vdanE"y (2.13)
Nun = EAMTIABEBNa (2.14)
with 7 defined as in (2.2), indicating B4, € O(D, D) as well. The delta 45 is given by

nab O
Sap = (0 nab> . (2.15)

Without gauge fixing it is possible to express any vielbein in terms of a vielbein belonging

to g;; = eamabebj, a two-form field b;;, and an antisymmetric bi-vector Y

i !
b,
Efy = S Ca Dl . 2.16

M (ealﬁlz eai + ealﬂlkbki ( )
The bi-vector can be gauged away by imposing local double Lorentz symmetry H =

O(1,D —1) x O(1,D — 1). Evaluating the coset G/H reduces the number of generators
for G = O(D, D) elements from d(2D — 1) to D?, and it casts equation (2.16) into upper

triangular form [41] by
il
EA, = (65 egf“) . (2.17)

Now, we turn to generalizing the SUGRA diffeomorphisms into the DFT framework.
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2. Double Field Theory

2.2. Generalized diffeomorphisms

In the previous section 2.1 we introduced the concept of a generalized metric, consisting
of a symmetric metric g;; and an antisymmetric B-field B;;. Further, from the intro-
duction 1.3.2 we are already familiar with how these two fields transform under diffeo-
morphisms, and gauge transformations of the B-Field. This raises the questions in what
extend we can combine these two features into DFT. By introducing so-called generalized
diffeomorphisms [41, 46] we can achieve this goal. Therefore, let us consider the following
generalization of the gauge parameter (1.49)

&= (%) (218)

where through doubling of the underlying manifold the tangent bundles TM and 7™M
are put on an equal standing [1]. It is possible to cast the generalized diffeomorphisms of
the generalized metric in an manifest O(D, D) covariant way by

We raised and lowered indices with the O(D, D) metric n™" (2.2).

From here it is quite obvious that these diffeomorphisms act in a fashion similar to
a Lie derivative, suggesting the identification of a generalized Lie derivative generating
gauge transformations through

SHMY = L HMN (2.20)

This allows us to define a generalized Lie derivative acting on arbitrary generalized tensors
Ay__‘j'év , i.e. for a tensor with one upper and one lower index through

LA™ = P0pAp™ + (00" — 0760 AN + (9Vep — 0pe™N) A" (2.21)

In fact, the change from the standard Lie derivative to the generalized Lie derivative is
essential to preserve the O(D, D) symmetry group. For example, just a term —0"&,,Ap"Y
in (2.21) would be incompatible with the O(D, D) symmetry. Hence, to protect the
invariance, the term needs to be projected into the representation of O(D, D).

Now, it is quite easy to verify that the generalized Lie derivative applied to the O(D, D)
metric n™* and the Kronecker delta 6,,” vanish

e.g.

E§5MN =&"0poy" + (aMfP - anM)(SPN + (apr - aP§N>5MP (2.23)
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2.2. Generalized diffeomorphisms

= (0™ — Vey) + (0Vey — 0ue™) = 0.

Furthermore, using the Leibniz rule, the product of two arbitrary tensors A%jjév , and
BQE‘Ug can be decomposed as

Le(AR:0'BE) = Le (AP0 ) BEE + A0 Le(BR5) (2.24)
For vectors A,;, and AM this gives us

EgAM =& 0p Ay + (8M€P - 8PfM)AP ;

LAM = P, AM 4 (9Mep — 0pe™) AT (2.25)
Moreover, we also have to act with the generalized Lie derivative on the dilaton
Lee ™ =0y (EMe™) (2.26)

which shows that e >? transforms as a density. Subsequently, we can use this result to

apply it onto the O(D, D) condition
HgH =n"" (2.27)

and obtain

Le(H)nH +HnLe(H) = 0. (2.28)

This confirms that the O(D, D) condition is preserved under generalized diffeomorphisms
and that they are compatible with the gauge symmetries [46]. It can be further shown, a
fully equivalent way of writing equation (2.19) is

EfHMN = LHyn + YRMPQanPHRN + YRNPQaQéPrHMRv (2.29)
with the deviance of Riemann geometry Y PNQ given by
YMPNQ = 77MN77PQ ) (2-30)

where L labels the standard Lie derivative in 2D dimensions [41]. (This form is of great
importance for the Exceptional Field Theory setup discussed in the last chapter, where
the Y-tensor takes on a different form.)

In order not to spoil the O(D, D) symmetry group it becomes necessary to introduce
yM PNQ, which projects onto the adjoint representation of O(D, D). With the help of the
strong constraint (2.1) some quantities can be evaluated (Under the assumption that a
vector field AM | and the gauge parameters £ do not depend on the dual coordinates z;).
A short computation shows

R A . O.ENA
ﬁéAM _ (LgAz + (%%4% ajéz)A ) ) (2.31)
13
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2. Double Field Theory

We can also apply the generalized Lie derivative to the gauged vielbein (2.17). This yields
EgEAM = "0p By + (aMfP - aPSM)EAP
_ (Leed (Leed)bji +en [Lebji + (865 — 9,6)] ) (2.32)
0 Léeai
A rather involved calculation shows
Legi; — (lggbik + 0i&k — ak;fi)ﬂklblj (Lebix + 08, —kakfi)gkj
R —birg (Lgij + 0§ — ajfl) +big, (ng j)
LAHYN = | ) . (2.33)
- (Leg™)br; Leg"
—g" (Leby; + O — 036)
From which we can recover the local SUGRA diffeomorphisms (1.49). For the metric
Zggij = Legij, (2.34)
and for the b-field R 3 )
by comparison with
. Legiy = (Lebin) 9"y — big™ (Lebiy)  (Lebin) 9™ + bir(Leg™)
LAHYN = . (2.36)
~(Leg™) iy — 9™ (Leby) Leg”
Altogether, we retrieve the transformation properties known from the SUGRA frame, once
we impose the strong constraint. Nevertheless, one should pay attention to the fact that

certain quantities such as ,, V" transform non-covariantly [41] under the generalized Lie
derivative. We can represent these transformations through

3 (Op V) = 0y (LVY), (2.37)

suggesting that generalized diffeomorphisms only act on tensorial quantities. As a con-
sequence, it is possible to define the failure of an object to transform non-tensorically,
specifically

Ae =6 —Le. (2.38)

2.3. Gauge algebra

In this section, we want to focus on the gauge algebra generated through non-linear acting,
generalized Lie derivatives. For the gauge algebra to close, we investigate the required
consistency constraints, while the transformations itself should remain O(D, D) covari-
ant [102, 103]. As can already be seen from equation (2.21) the ordinary Lie-bracket (1.49)
has to be modified to C-and D-brackets 2.3.1, 2.3.2, which are generalizations of the
Courant-and Dorfman brackets [104].
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2.3. Gauge algebra

2.3.1. C-bracket

The C-bracket governs the gauge algebra on the doubled space generated by generalized
Lie derivatives [102, 103]. It can be seen as an O(D, D) covariant extension of the Courant-
bracket. Restricting the fields independent of the winding coordinates, the C-bracket
reduces precisely to the Courant-bracket [46, 104]. Hence, the antisymmetric C-bracket
is given by

1
(6,60 =i oned — 510" &y, (2.39)

with [ij] = ij — ji. Now, we evaluate the commutator algebra created by the generalized
Lie derivative. Acting on an arbitrary test vector A,; yields

[Le,» Le, ) An = Lig 10 At + Fur (61,6, A) (2.40)

and
1
Far (€162, A) = S6un0°63 0o Arr — 0%€uar008 Ap (241)

Once the strong constraint (2.1) is imposed, implying F, (fl, &, A) = 0, it closes
[£§17£§2}AM - £[51’£2]CAM : (2'42)

This relation holds as well for arbitrary tensor fields A%:é\[ by iterating this relation (2.42).
For their products we have

e B (448 BE) = B (A48 BE2), (23)

since AM = MV Ay as well as EgnMN = 0 with
A 1M S A MN MN 7 = M
[‘Cfl’ ‘Cﬁz]A - [ﬁfl’ £§2} (77 AN) =" £[§17§2}CAN - ‘6[51752}014 ' (2'44)

Subsequently, the gauge transformations close for &, = [£1, &), and therefore under the
strong constraint

[651’ 552}AAP/[C§V - 551214%(5\7 ) (245>

for arbitrary tensor fields. However, the Jacobiator of the C-bracket

J(&1,6,8) = [&, [52753}0}0 + cyclic (2.46)

unfortunately does not vanish and in turn this implies that the C-bracket cannot generate
a Lie algebra. Nevertheless, the failure to fulfill the Jacobi identity is only a trivial gauge
transformation that leaves all fields satisfying the strong constraint invariant.
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2. Double Field Theory

2.3.2. D-bracket

It is intuitive to introduce an analogon to the ordinary Lie bracket, which is given through
[(X,Y] =LyY, (2.47)

by introducing an additional generalized Lie bracket that is invariant under O(D, D)
transformations, the so-called D-bracket [46, 103]

[A,B], =L4B. (2.48)

As can be checked easily, we can recast (2.48), using the C-bracket, in the following way
1
[A.B]), = [4.B] + 50" (ByA"). (2.49)

The structure of the last term is quite similar to a gauge parameter. When restricting the
fields, as in the case for the C-bracket, the D-bracket reduces to the well-known Dorfman
bracket. Intriguingly, as opposed to the C-bracket which does not satisfy the Jacobi
identity, the D-bracket fulfills the Jacobi like identity [46]

[A’ [B’C}D}D: [[A’B]D’C}D+[B’ [A’O]D}D’ (2.50)

and much further, it satisfies the Jacobi identity [41].
Now, that we are equipped with the gauge algebra we can turn to writing down and
analyzing the Double Field Theory action.

2.4. Action

There exist two descriptions to write down an O(D, D) invariant action incorporating
generalized diffeomorphism invariance 2.2. Following [46], it is possible to construct a
gauge invariant action, subsection 2.4.1, in terms of the generalized metric (2.4). Subse-
quently, this action must be manifestly O(D, D) invariant while it also has to possess an
additional Z, symmetry. At this point, we see that a generalized scalar curvature is going
to emerge. On the other hand, the Double Field Theory action can also be expressed in
terms of so-called fluxes [105, 106], as we observe in the latter part of this section 2.4.2.
In the end, both formulations turn out to be entirely equivalent up to a total derivative.

2.4.1. Generalized metric formulation

We are given the O(D, D) transformation properties of HMN | the invariant metric nMN,

the partial derivatives d,,, and the dilaton d out of which we have to build the action [46].
In order to write it down, we start by constructing the corresponding O(D, D) scalars by
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2.4. Action

contracting all indices appropriately. There are various scalars to write down by consider-
ing that the O(D, D) transformations are acting globally. As a result of the globality of the
O(D, D) transformations it is not very difficult to handle the transformation properties
of the partial derivatives

Just to name two examples

HYN o 0nd, AN HMN Oy Hiew - (2.51)

Specifically, we need to find all the terms containing two partial derivatives and are gauge
invariant. Furthermore, we can use our additional knowledge about the presence of an
extra Z, symmetry. This highly reduces the amount of viable terms. Originating in
the antisymmetry of the 2-form b;; — —b;;, this symmetry results in z; — —Z, and
J" — —0' [46]. In terms of double coordinates

O = <g> , (2.52)

the Z, symmetry can be expressed through the matrix representation

~1 0
8, — 20, , Z_(O 1). (2.53)

Here, 0, denotes the column vector corresponding to 0,;. The matrix Z satisfies the
following additional conditions

z=2z"=27" Z7*=1. (2.54)

Transforming b;; — —b;; leads to a flip in the signature of the off-diagonal terms contained

in the generalized metric HMYN as do the off-diagonal elements of H;;n. We achieve this
transformation behavior through the identifications

H® = ZH* 7, Heo > ZHeoZ . (2.55)
For instance,
—1 0 g —g™*b,.. ~1 0
Z MNZ — ) kj
" ( 0 1) (bz‘kgkj i — bz’kgklblj 0 1
g 9" by

= : . 2.56
(_bikgk] 9ij — bikgklblj) ( )

Clearly, Z is not an element of O(D, D) since

2T Z £ 0, Z'neZ # n.., (2.57)
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2. Double Field Theory

pr (306
_ (_01 _01) — N (2.58)

Now, we want to write down all possible combinations of Z, invariant terms, i.e. the
last term in (2.51) is not invariant under Z,. Moreover, terms with two terms of the
generalized metric and more than two derivatives cannot exist without breaking the Z,
invariance.

The dilaton and generalized metric can be combined to give four possible terms, par-
ticularly

1.e.

O d ONHMY . HMN L, dond,  HMNOy0nd, Oy OnHMN. (2.59)

From the multiplication of the last term with the dilaton factor e 2% it can be seen as an
interaction term. The last two terms turn out to be related by partial integration to the
first two. Thus, it reduces the amount of possible combinations even more

O d ONHMY | HMN Oy ddyd . (2.60)

As we already know that there do not exist terms containing two generalized metrics, we
turn to search for terms containing three of them. Due to the Z, constraint, they have to
be built without 7. Hence, the following two possible candidates present themselves

HMN o H O Hyer . HMNONHEE0, Hoxe - (2.61)
Therefore, the DFT action must consist of a linear combination of the above mentioned
terms multiplied with the dilaton prefactor e >*. We can express the gauge invariant
action [46] by
S = /dQDXE, (2.62)
with
1 1
L= 6_2d<§HMN8MHKL8NHKL - §HMN8NHKL8LHMK
— 20, d ONHMN + AHMN 9, d aNd) . (2.63)

At this point, it is possible to define a generalized Ricci scalar

R= 4HMN0,,d0yd — 0,00 HMY
— AHMN Oy d Opd + 40, HM N Oy d (2.64)
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2.4. Action

1 1
+ §HMN3MHKL6NHKL — §HMN8NHKL8LHMK ,

which turns out to be a scalar under generalized diffeomorphisms. Up to total derivatives
action (2.63) can be rewritten in an equivalent way through

S = / dP*PX e R, (2.65)
Using partial integration, we can show that [46]
L=c2R 10, <e_2d [OnHMY — 4HMN8Nd]> . (2.66)

The generalized Ricci scalar can then proven to be a gauge scalar. This is done by showing
that the failure (2.38) of the generalized Ricci scalar is zero [46]. In fact,

§R=LR=MoyR. (2.67)
Furthermore, we know that the dilaton exponential has to behave like a density
(55672d = 3M (€M€72d) . (268)

Combining these two results, it follows that action (2.65) must be gauge invariant, and
specifically
0¢S =0. (2.69)

In analogy to the generalized Ricci scalar, we can also find a generalized Ricci curvature
in Double Field Theory. Varying the action (2.65) after the generalized metric HMN it
can be expressed through

69 = / dEPX e SHMNKC (2.70)
with

1 1
Kun = §6MHKL6NHKL 4 [8L - 2(8Ld)}HLKaKHMN + 20, 0nd (271)

1 1
— 58(MHKL8LHN)K =+ 5 [3L - 2(8Ld)] (HKLG(MHN)K +H" (MaKHLN)) :

However, the variation is still unconstrained and needs to be restricted. This comes from
the fact that H € O(D, D). Remembering the O(D, D) constraint for the generalized
metric HnH = 1", the equations of motions must preserve this constraint [46]. Thus,
considering metric variations H' = H + 6K, which have to fulfill H'nH' = n', yield the
following condition

SHIH + HndH = 0. (2.72)
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By defining

S = Hn, (2.73)
we can recast (2.72), with the use of the symmetry condition for the generalized metric,
as

SHS" + SoH =0. (2.74)
Taking a closer look at (2.5), we find
S*=HnHn=HH ' =1, (2.75)
and additionally derive
oH = —SoHST. (2.76)

At this point, we introduce projection operators %(1 + 5). These project by acting onto
vectors V = VM with upper indices into the subspaces of S with eigenvalues £1. It allows
us to regard any matrix MY as a bivector which can be written as a projection into
four different subspaces

M = }1(1 +S)M(1+ST) + i(l +S)M(1-S")
+i(1—S)M(1+ST) +%(1—S)M(1—ST). (2.77)
The general solution of (2.76) is given by
1= (14 S)M(1 - §7) + 1 (- §)M(1+57). (2.78)

As an immediate result of the symmetry of H, the matrix M has to be symmetric as well.
Inserting the obtained result into equation (2.70) we find

S = / dzdie " Tr(HK) (2.79)
_ /dm:«e—% Tr( [0+ )M~ 57) + (1 - S)M(1+5)|)
_ /dxdgz-e—w Tr(M[300-8T)K(+8) + (14 5TIKQ - 5)]).

where we used the cyclicity of the trace in the last step. Finally, this yields the field
equation

Ry are the components of the matrix R. It is defined through
_1 T 1 T
= (1=K +5)+(1+5)L(1-29). (2.81)
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Ultimately, we restore the individual indices
Ran = i((swf — 8% Kpa (6% + S%) + i((sﬂf + 55 Kpo(6% — S%),  (2:82)
or alternatively [82] we can express it as
Run = P Qny“Kpg =0, (2.83)

with the operators

1
(77MN - HMN) , Qun = §(UMN + HMN) ) (2.84)

N | —

PMN:

projecting on the ’left-handed’ and 'right-handed’ subspaces [107]. If we now impose
the strong constraint 0" = 0 and recast the generalized metric (2.4) in terms of the D-
dimensional objects, in particular the metric g,;, and the two-form b;;, we can recover the

SUGRA action (1.43) from the DFT action (2.65) [1].

YR

2.4.2. Flux formulation

We want to start by remembering the gauged vielbein EA a (2.17) along with the gener-
alized Lie derivative (2.32). This gives rise to the following decomposition

Hun = EAM5ABEBN, NuN = EAMUABEBNa (2.85)
with the elements 7,5, and d,5 given as in (2.1). Specifically, the vielbein takes on the
form ,

A eaz ealbli 2 86
E M — O eai . ( . )

In a very similar fahsion to [102], we can now construct covariant fluzes [41, 82, 105, 106,
108], i.e.

< M
Fape = EomLp,E" = [Ea, Eg| s Eon = 3 (2.87)
Fa=—eLp e = 0%, +2B,M0,d. (2.88)

Here, we used the definition of the C-bracket (2.42) in equation (2.87). Furthermore, we
introduce the Weitzenbock connection

Qupe = EsM 0y Es " Ecy = —Qucs (2.89)

being antisymmetric in the last two components, and obtain

1
Fapc = Ei"0uBs" Ecy — 5Eau0" Eg" Ecy
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1
— EBMaMEANECN + §EBM8NEAMECN
1 1
= Qupc — 5903,4 — Qpac + 590,43
= Qupc +Qpca+ Qoap
= 3QuBcy (2.90)

by using the antisymmetry in the last two components. Moreover, it is possible to work
out the covariant fluxes in small indices in a somewhat lengthy but straightforward com-
putation. However, we will omit these steps and instead refer to [82].

Next, we have to figure out how we construct an O(D, D) invariant action using
these covariant fluxes [105, 108]. Flat indices A, B,C, ... as they occur in the vielbein
are manifestly O(D, D) invariant and therefore any contraction of them will be as well.
Currently, we consider the covariant fluxes as dynamical entities in our theory. However,
when compactifying they reduce to the familiar constant fluxes, or gaugings.

Subsequently, we can express the gauge invariant DFT action using the generalized
frame [105, 108] by

S = /dZDX e R, (2.91)
with
1 1 1
R= FupcFopr LI §APyBE, CF _ = §AD§BESCF _ énADnBEnCF]
+ FaFs [nAB - 5AB} . (2.92)

It has been shown [105, 108] that this action is invariant under generalized diffeomor-
phisms as well as double Lorentz transformations [105, 108, 109]. Additionally, it is
equivalent to the frame formulation introduced in [102]. Showing this requires to know
the transformation behavior of the fluxes under generalized diffeomorphisms

0¢Fapc = ¢P0pFape + AcFupe (2.93)

0eFu=E 0pF s+ AcFy. (2.94)

Making use of the the closure constraint [41] and the definition of the failure to transform
covariantly, we find (2.38)

Aigs = =g, (Le,&") = ([Le, Le)] — Le,)&" =0, (2.95)
which always vanishes upon imposing the strong constraint. Here, we used

{12 = 25152 : (2.96)
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This allows us to derive
AeFape = Ecnle (EEAEBM) =0, (2.97)

AFy=—Ne(Lye™) =0. (2.98)

Subsequently, the covariant fluxes transform as scalars under generalized diffeomorphisms.
Moreover, the dilaton transforms again by

dee >4 = Op(eMe™. (2.99)

Altogether, from (2.97) and (2.98) we observe that the generalized curvature scalar (2.92)
must transform as

6eR =E"ouR, (2.100)
just as we observed in the previous section 2.4.1. Combining these two results leads to the
invariance of the action under generalized diffeomorphisms. When expressing action (2.91)
in terms of the generalized metric H™" it takes up to total derivatives and a term modulo
strong constraint the same form as action (2.65) [105, 108]

S = /dQDX e MR, (2.101)

— AHMNG,,d Ond + 40, HMN Oy d (2.102)
1 1

+ g”HMNaMHKLé)N?{KL — §HMN8N’HKL0L%MK

—|— A(S’C)R .

Altogether, the flux formulation slightly extends the generalized metric formulation as it
contains covariant terms which would vanish under the imposition of the strong constraint.
Naturally, as is the case in the generalized metric formulation 2.4.1, imposing the strong
constraint leads back into the SUGRA frame again 1.3.2. (From here, using 2.4.1, it would
have been trivial to see that this action must be unaffected by the gauge transformations.)
Varying the action (2.91) with respect to the vielbein F M, and the dilaton d yields

0pS = / d?PX e GABSE 5 | (2.103)

645 = / *PX e God . (2.104)
Incorporating the O(D, D) conservation we get

SE g =0EMEpy = —0Fg,. (2.105)
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The individual variations of the fluxes are now given by

6E-FABC — 3<a[A6EBC] + 5E[AD,FBc]D> y (2106)
04Fapc =0, (2.107)
OpF4=0"0Ep,+ 6EFp, (2.108)
and
It gives rise to the field equations
Gl = 2(sP14 — PP F - (Fp — 9p) FPP 4 FOPUE P =0, (2.110)
Gg=-2R=0, (2.111)
with 5 ]
FABC _ 5]_-DBC(SAJ:) _ 5}—DEF(SAJ:)(SBE(SCF _ pABC (2.112)

Decomposing the equations of motion with regard to the single fields g,;, b;;, and imposing
the strong constraint 0" = 0, we retrieve the SUGRA equations of motion (1.46)-(1.48).
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3. Double Field Theory on Group
Manifolds

Starting from the results of the previous chapter 2 in which we introduced Double Field
Theory over a torus, we will now examine Double Field Theory on a group manifold [2,
39]. Starting from a left/right asymmetric Wess-Zumino-Witten (WZW) model one can
employ Closed String Field Theory (CSFT) calculations to evaluate the two-point and
three-point functions at tree level up to cubic order in fields as well as leading order in
o' to derive a Double Field Theory on group manifolds (DFTyw). The doubling of
the coordinates refers to the left- and right-moving currents on the WZW model on a
group manifold and its corresponding Kac-Moody algebra. A related approach can be
found in [110]. Primary fields of the CFT are represented as scalar functions on the
group manifold G = G x Gy [5]. This allows to derive the action 3.2 and the gauge
transformations 3.3 of DFTyy,w. It opens up new intriguing features and possibilities.
Furthermore, we are going to see how the weak and strong constraint emerge in this
picture.

We mainly follow [2] during this chapter.

3.1. DFT,,, origins

In this section, we discuss the prerequisites and underlying concepts leading to the for-
mulation of DFTy,w. We begin by procuring an explicit representation for semisimple’
Lie algebras the theory is based upon 3.1.1. Afterwards, we present the basic concepts
and ideas behind Closed String Field Theory (CSFT) 3.1.2. These CSFT computations
allow to finally obtain an explicit form for the action and its associated gauge transfor-
mations. All of these notions are employed on a Wess-Zumino-Witten model governed by
an underlying group manifold.

! For simplicity we assume that G is semisimple. However, the equations we discuss later also hold for
a more general case.
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3. Double Field Theory on Group Manifolds

3.1.1. Lie algebra representation

A Lie algebra g is build up by its basis elements the generators t,. For two arbitrary
generators t, and t,, the commutator algebra is given by

[twtb] = FabctC' (31)
Moreover, it is useful to normalize these generators with regard to the Killing form [2]

. Tr (tatb) 1

Nap = ’C<ta7tb) = 5. =

——F
21 2h"

R (3.2)
Here, x, marks the Dynkin index, whereas in the adjoint representation it is equal to the
dual Coxeter number h”. For any semisimple Lie algebra g it is now always possible to
find a parametrization in which its Killing form 7,, diagonalizes with entries £1. E.g.
the associated Lie algebra 7),, for a compact Lie group G has always a negative definite
Killing form with the signature n,, = (—,...,—). At this point, we are able to raise and
lower indices using the Killing form 7,, and its inverse nab.

There exists a convenient method to obtain the representation of a semisimple Lie
algebra making use of the scalar functions on the group manifold G = G, x Gi. Hence,
it is useful to switch from the very conceptual Maurer-Cartan forms to more favorable
vielbeins [2]. This relation is given through

Wy = t,e’dx’ . where €% = Kty '0). (3.3)

In this equation, we have to distinguish between two types of indices: the flat ones
labeled with a,b,c,..., and curved ones denoted by 7, j, k,.... As previously mentioned,
flat indices can be raised and lowered with the flat metric n,, given through the Killing
form of the Lie algebra. However, the curved indices have to be raised and lowered using
the target space metric g;;, which is related to the vielbein by
a b

Gij = € i MNap € ;- (3-4)

It allows us to write the H-flux in the following form

HUk = €ai€bj€ckFabc . (35)

Returning to representations, we introduce the coordinates z* of the left-moving (chiral)
part together with the flat derivative

Da = 6aiaia (36)

where we made use of the background vielbein e, on G;. Their commutation relations
implement the Lie algebra, specifically

[D!I?Db] = FabCD07 (37)
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3.1. DFTWZW OrlngS

and when recast through vielbeins, they give rise to

Fu® = e'dier’e’s = Digey'e’;. (38)

J
As a result, we obtained a representation for the flat derivatives D, which are spanned
by the underlying generators t, of the Lie algebra. These flat derivatives act on patches
of the group manifold in contrast to the generators t,. They act on an abstract notion
of the related vector space. Therefore, the functions on these patches, the flat derivatives
are acting on, are a representation of the universal enveloping algebra of the associated
Lie algebra [2, 5].
Furthermore, to implement integration by parts we require boundary terms such as

/dD:c\/EDav = /de(?i(\/ﬁeaiv) =0 (3.9)

to vanish. In this context, v denotes an arbitrary scalar function on the target space.
We assume that such boundary terms will always vanish at +co. Subsequently, we are
allowed to make use partial integration, i.e.

/de\/E(Dav)w = —/dDa:\/ﬁv(Daw). (3.10)
This identity is equivalent to
Vle_w = 816_2(2 — FJUe_Qd_ =0 or Q7 =20,d. (3.11)

Here, we used that the dilaton factor e~ transforms as a scalar density with weight +1.
More general, any Lie algebra fulfilling

E,' =0, orequivalently Tr(ad,) =0 (3.12)

called unimodular, solves this relation.

In the next step one would have to define an highest weight state. This is always
possible for compact Lie algebras. For non-compact Lie algebras the discussion becomes
much more elaborate. However, we will not go into any more detail and instead refer
to [2].

3.1.2. Effective theory

Originating from a WZW model on a group manifold, the CSFT computations for the
DFTywyzw action and corresponding gauge transformation require the evaluation of two-
point and three-point functions. Therefore, it is necessary to derive the correlation func-
tions of the Kaé-Moody primary fields. They can be found in [2].

39



3. Double Field Theory on Group Manifolds

It is worth noting that the chiral and anti-chiral currents possess the same underlying
Kac-Moody algebra. We can understand this through the relations connecting them:
Inverting v and performing a complex conjugation. On the algebra level, an inversion is
isomorph to multiplying the generators with —1. This modifies the structure coefficients
to

[tm tb] = Fabctc = [_tav _tb] = Fabc<_tc) with Fabc = _Fabc : (313)

As a consequence, this result makes it possible to use the operator product expansion
(OPE) defining the chiral Kaé-Moody algebra, and we substitute j,(2) by —j, (%), as well
as replacing F,;° through F,,°. Similarly, a flat derivative has to be introduced using the
background vielbein on Gy acting on the right-moving (anti-chiral) coordinates ' It
gives rise to )

e = K{t", 0y, and D, =e,'0;, (3.14)

where we used bared indices to differentiate between chiral and anti-chiral parts. By
construction, these bared (anti-chiral) flat derivatives reproduce the according Lie algebra
(For convenience F,;° replaced by Fy;°.)

Dy, Dy) = Fy°Ds. (3.15)

a

At this point, it useful to note that the unbared flat derivative only acts on coordinates
2", whereas the bared flat derivative only works on coordinates z'. Ergo, we treat the
left-movers and right-movers independently of each other.

Now, we can combine the D unbared coordinates with the newly introduced D bared
ones to 2D doubled coordinates X' = (z',2"). Of course, it also allows to define an
according doubled derivative by d; = (9;, 9;), and the doubled vielbein

Eyl = (68 Oi) : (3.16)

These are the so-called doubled generalized objects. Furthermore, it also makes it possible
to implement the commutation relations of the chiral and anti-chiral Lie algebras into
doubled objects and obtain

D, = E,'0;, along with [Dy,Dg]l = Faz°Dc, (3.17)

This form poses a striking resemblance to the flux formulation of DFT [2, 106, 109]. We
will go into more detail about formulating DFTyy,w using doubled generalized objects in
the next chapter.

All necessary tools to perform the CSFT computations can be found in [2].

Basis for the CSFT computations are two level-matched string fields |¥), and |A),
which are put in Siegel gauge [2, 111]. As a result, they are annihilated by

LO — EO s and ba = bo — Z_)O y (318)
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3.1. DFTWZW OrlngS

with ghost number two and one, respectively. Moreover, the combination Ly + L, being
equivalent to the string field energy, should be small compared to the energy scale of
the massive string excitations as we are focusing on low-energy excitations of the theory.
Subsequently, we find for the Virasoro operator

! ab

Ly =———(1=0%") D danemiven O, (3.19)

with the modes j,(z) fulfilling the Kac-Moody algebra

. ) ) 2
[]am?]bn] = Fabc.]cm+n - gmnabdern . (320)

Due to the low energy condition L, + Ly < 1, k has to be very large. In fact, this is
equivalent to the large volume limit of the background geometry [2]. We can now express
the two string fields |¥) and |A) by

/

W) =3 (G R)arsrerts + e(R)ere s + e(R)ere
R
+ S RIS vy + L (B enjs ) | 10m) (3:21)
) =3 [ B — R + 0BG o) . (322)
R
with .
& = 5(co + &) (3.23)

These are very similar to the fields given in [1], and present the most general solution to
the aforementioned compatibility conditions. Nevertheless, there is a striking difference.
Equation (3.21) sums over the different representations R = (g, Aq) 3.1.1 as opposed
to [1], where they sum over the momentum and winding modes. Although, in the abelian
limit the summation over the different representation reduces to the sum over the left-
and right-moving momenta. These are a linear combination of the string’s momentum
and winding modes. Hence, they equal another. As a consequence, it results in a natural
extension of toroidal DFT [2].

For a simply-connected group manifold G, we can express each e(X) € L*(G) through

e(X) =) e(R)Yp(X). (3.24)

R

Specifically, the level matching condition (1.14) becomes

(D,D* — D;D%)e=0. (3.25)
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3. Double Field Theory on Group Manifolds

We can recast this expression using doubled indexed objects and find
n*?D,Dy- = D,D* =0, (3.26)
where used the constant tangent space metric
AB N 0 o Nap 0
N = (O _nab> , and it’s inverse Ny = ( 0 _nab) , (3.27)

to raise and lower the doubled indices. Here, - is a placeholder for the physical fields
e,e, e, 1 f°, and the gauge parameters \*, A", . This notation might be a bit mislead-
ing and confuse somebody into mistakenly concluding it would be the weak constraint
known from toroidal DFT. We are dealing in this context with flat indices and not with
curved indices [2]. For a proper comparison it would be necessary to switch into curved
coordinates Therefore, let us make use of the following identities

O = —Q," + 0,97 ¢, (3.28)
with the anholonomy coefficients
Qu’ = e,y ¢ . (3.29)
From the unimodularity of the Lie algebra g (3.12) we obtain
F'=0=0Q4" — Q)" =0, (3.30)

On the other hand, a short calculation yields
- ~ 1
2D =Q%", and d=¢ — §log\/§, (3.31)

with d being the generalized dilaton of DFT, while ¢ marks the string theory dilaton
assumed to be constant in this situation. Combining these two results, we arrive at the
relation

O = —2Dd + 0,9 " . (3.32)

J

Hence, we can recast (3.25) through
D, D% = (Q,"D, + ¢”8,0,)- = ( — 20,d0" + ¢79,0;) - . (3.33)

The argumentation for bared indices follows analogously. Finally, with the curved metric

IJ I AB 1~ J gij 0
N =EaxnTEp = <0 _gij) : (3.34)
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3.1. DFTWZW OrlngS

we derive

(9,0" —20,d0")- = 0. (3.35)

Here, the curved doubled indices are raised and lowered with the non-constant metric 7"’
and 7y, respectively. However, we need to be cautious as 7)1 7 is coordinate dependent,
and as a result cannot be pulled in or out of partial derivatives. In contrast to toroidal
DFT we get an additional term —29;dd". This term comes from the background in
DFTwyzw. Specifically,

Vv,V =0,V 4+ T, VE. (3.36)
Requiring compatibility with the dilaton (see also [2, 107]) we obtain
F[ == FJIJ == —QaJCZ (337)
Altogether, we get the result
Vol =A=0. (3.38)

It is consistent with the definition of the Laplace operator in Riemannian geometry. Sub-
sequently, the newly derived weak constraint (3.38) is invariant under local generalized
transformations as well. This is in stark contrast to toroidal DFT where the weak con-
straint 9;0"- = 0 is only invariant under global O(D, D) transformations.

Furthermore, this new constraint is also invariant under local generalized diffeomor-
phisms, as opposed to toroidal DFT where the constraint 9,0’ = 0 is only invariant
under global O(D, D) transformations. From metric compatibility V7% = 0 we find
v,0" =Vv'o,.

Ultimately, one can evaluate the tree level action of Closed String Field Theory [1, 2,
112]

0615 = 2 (10.QU} + {0, 0, W) + (W00 U+ ), (339)

with the already known string field W. The whole calculation requires a successive ex-
pansion of the string functions {-,-, -}, around the genus zero worldsheet 5%, Clearly,
the computation becomes more challenging with an higher amount of slots for the string
functions. In quadratic order we recover the free theory, whereas the cubic order gives
rise to basic interaction terms.

Moreover, the gauge transformations can be obtained using CSFT as well, in particular

1

They are characterized by the ghost number one string field A. Further, the string product
[-,-]o is related to the string functions by

[317'-'7Bn]0 :Z|¢s> {¢§7B17--~7Bn}07 (341)
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3. Double Field Theory on Group Manifolds

where ¢ are the conjugate fields to ¢,. When evaluating CSFT on the torus, the CFT on
the sphere S? is free and its straightforward to derive the conjugate fields. However, in
general this is not the case. For group manifolds the worldsheet theory typically interacts
and therefore the concept of conjugate fields is more complicated.

A more detailed discussion, including the entire computation of the action and the
gauge transformations, can be found in [2].

3.2. Action

Following the elimination of all auxiliary fields, and performing field redefinitions the
DFTywyzw action can be expressed to cubic order as [2]

1 g 1, 0 o 1,5 o -
(2678 = / dQDX\/ﬁ(Z%De by Z(D €as) + Z(Dbeag) — 2dD, Dy — 4dd

+ —€,3 <DaechgeCJ — DaechJed; — DceaJDgecg) 1+ 4d°0d + 4d ¢ (DQD;,J)

N

. _ . 1 -
€al <FaCdDeedbecé + FbCJDeead€€E> — EFacerdfeagecgeef (3.42)

d((D%)" + (Des)” + %(Dceaa)Z + %(Daeaaf + 26 (Du Dy + DyD'er) )

4

N | —

+

This action depends on the fluctuations €,;, the dilaton CZ, the background vielbeins eai
and e,’, as well as the structure coefficients F;, and Fi.. It looks already very similar
to the action [1] derived by Hull and Zwiebach for toroidal DFT. Imposing the abelian
limit, which implies that all terms containing structure coefficients vanish, the DFTyyzw
becomes identical to the DFT action. The emergence of an additional potential is one of
the most remarkable features of DFTyy,w. Specifically, it takes on the form

V= 1—12F““’def €ab€odbef (3.43)
in contrast to toroidal DFT which only admits kinetic terms.

At this point, several open questions need to be addressed. These concern the pos-
sibility of recasting action (3.42) into a generalized metric formulation and whether we
need to implement covariant derivatives as well. Furthermore, this action is expected from
CSF'T to be invariant under its gauge transformations and we should check it explicitly.
However, all of these open question are going to be answered in the next chapter.

3.3. Gauge algebra

We start out by reviewing the DFTyy,w gauge transformations and are going to take a
closer look at their corresponding gauge algebra. As we already noticed, the occurrence
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3.3. Gauge algebra

of structure coefficient terms in action (3.42) makes it useful to introduce a covariant
derivative 3.3.2 to simplify the expressions. This allows for the study of the strong con-
straint simultaneously. Finally, we observe that the gauge algebra 3.3.3 governed by the
C-bracket closes modulo strong and closure constraint.

3.3.1. Gauge transformations

After the execution of a field redefinition and the removal of all auxiliary fields the gauge
transformations for the fluctuations and the dilaton are given by [2]

1
5)\61113 - Dl;>‘a + 5 [)‘cheal; + Da/\CECB - Dc/\aGCI; + Facd/\cedd

1 _ _ _ .
+ D X; + 5 [\eD€5 + DA eoz — D Ngeuz + Fy"N\e0q] (3.44)
- 1 1 U S B
Sd=—-D XN+ -\ D% —-D)\+-)\-D%. 4
A 4 a + 2 a 4 a + 2 a (3 5)

On top of this, all fields altered by gauge transformations should still satisfy the level
matching condition (1.14). For gauge transformations of cubic order this is generally
not the case. As a result, we need to project all of those fields into the kernel of the
level matching operator A. However, for us to avoid the restraint of always having to
perform this explicit projection, we impose the strong constraint. It ensures that the
string product is always level matched [5]. Explicitly, the strong constraint becomes

D,D* =v,;8" =0, (3.46)

where - marks fluctuations, gauge parameters, and arbitrary products of either. Originally,
in toroidal DFT the strong constraint was only considered in the context of gauge algebra
closure and generalized diffeomorphism invariance. But in DFT\yy,w it is necessary to
impose this constraint even for field redefinitions above the linear level.

In order to further simplify the handling with gauge transformations, we recast most
entities into doubled generalized objects. Subsequently, we obtain for the gaugings and

flat derivatives )
M=%\, and D, = (D,,D,), (3.47)

and after raising and lowering with the flat Killing metric (3.27)
A=\ =), and D* = (D" —D%). (3.48)

The structure coefficients can accordingly be expressed as

Fabc Fabc
Fup¢ = Fuf —  Fapc =1 —Fae : (3.49)
0 otherwise 0 otherwise
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3. Double Field Theory on Group Manifolds

Nevertheless, this recasting requires one non-trivial step. It is still not clear which doubled

generalized object is corresponding to the fluctuations e,

Therefore, we consider the following symmetric O(D, D) transformation H*?
HA e p PP =P (3.50)

An example for a transformation of this form is the matrix SAB

ab
P (3.51)
0 n.

This now allows us to assess small perturbations e of equation (3.50). Clearly, it still
has to be consistent with the features of H*”. As a result, P is symmetric as well and
needs to fulfill

*nepSPP + 54 nape”” + O(€) = 0. (3.52)
The most general solution is given by
AB 0 _EaB . ab T\ba
e = a o ) with € = (e")™. (3.53)
—€

Thus, we can express the generalized metric HAP through

1
HAP = 4B 1 AP §€ACSCD€DB + ... = exp(e*?). (3.54)
It also allows for the introduction of a generalized metric in the form
L&'’ =X Dpe?® + (DN — DA e“P + (DP A — DeAP) et
+ FApNCEPB 4 B NG (3.55)

As can be checked easily, this generalized Lie derivative leaves the target space metric
invariant

Lyn*? =0, (3.56)

and as a result preserves the O(D, D) structure. Furthermore, the imposition of the strong
constraint yields a trivial transformation behavior

Lya VPO=0 (3.57)

for a closed gauge parameter. Moreover, we want to rewrite the gauge transforma-
tions (3.44) in terms of generalized Lie derivatives. As was worked out in [2]

(SAEAB = (;CASAB + £A6AB -+ ﬁ)\S(Ac;S'B)DECD) y (358)

DO | —
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3.3. Gauge algebra

the gauge transformations only affect fluctuations ¢® around the background. The back-
ground remains invariant under them, and as a result

5,848 = 0. (3.59)

At this point, it has become possible to apply the gauge transformations to the generalized
metric. It results in

1 1
(SAHAB = SAB + 5)\€AB + 55/\€ACSCD€DB + §€ACSCD5/\6DB + 0(62)

(;C)\SAB + £>\€AB + EAS(ACsB)DGCD + EC(ASCDE)\SB)D) + O(GQ)

Ox
1
2
1 1

§(£ASAB + L)+ O() = 5@7#3 +0O(%). (3.60)
Here, we make use of the relation

SAc€CB = —SBc€CA (361)

which originates in (3.52).
Similarly, we find for a density like object such as the dilaton

~ 1 - ~ ~ 1
ord = 5Lad,  while Lyd= MD,d— §DA>\A . (3.62)

The derivation in this subsection remind a lot of the approach used in the two papers
by Hohm, Hull, and Zwiebach [45, 46]. However, the striking difference between original
DFT and DFTyyw lies in the occurrence of terms containing structure coefficients [2].
These arise from the background vielbein (3.3).

3.3.2. Covariant derivative

Following from the underlying group manifold, we observe the emergence of structure
coefficients in the whole theory, i.e. the action, generalized Lie derivatives, and gauge
transformations. Subsequently, this raises the question whether we can absorb these
terms by introducing a covariant derivative. Indeed, it is possible by defining a covariant
derivative [2] through

1 1
VaAVE = DaVE 4+ 2FFcVe and VAV = DaVp + 5 FpaVo. (3.63)

Using the antisymmetry of the structure coefficients F4p-, we can rewrite the strong
constraint as

1
VaD% = (DsD" + §FAABDB)' =D,D" - . (3.64)
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3. Double Field Theory on Group Manifolds

Note that the equation implies - to be a scalar. Nevertheless, this arises naturally since
the strong constraint acts on fluctuations which are scalars from the background’s point
of view. It allows us to apply the generalized Lie derivative (3.55) on arbitrary vectors by

LVA =XV VA + (VA — Ve Ve, (3.65)

The generalization to arbitrary tensors follows in the same fashion as in toroidal DFT 2.2.
Thus, yielding the same structure as in the original DF'T formulation. The only difference
lies in the replacement of partial derivatives by covariant ones.

3.3.3. C-bracket

We now examine whether the gauge transformations close to form a gauge algebra [2].
Therefore, it is necessary to introduce a C-bracket analogously to original DFT. It is given
by

1 1
A, Ao]e = AP DR — §A{3D"‘A23 + §FABC)\{9)\§ —(1+2), (3.66)

and using the covariant derivative (3.63) it becomes
1
A, Aolo = APV — §>\fVA/\zB —(1+2). (3.67)

In the abelian limit this gives rise to the C-bracket (2.42) known from toroidal DFT
again. The last term in (3.66) extends it from toroidal backgrounds to the group mani-
fold level. Moreover, it coincides with the results for the C-bracket obtained in [109] for
the flux formulation of DFT. Nevertheless, it is worth to mention that in the flux formu-
lation [105, 113] the O(D, D) metric 7 is constant in curved and flat indices. However, for
the DF Ty zw framework this is not the case. In flat indices the Killing metric 7 remains
constant, whereas in curved coordinates it becomes coordinates dependent.

Subsequently, we want to check whether the algebra closes. Hence, we evaluate the
Jacobiator

(A1, Aoy Ag) = (Mg, Aoy Aslelé + s, My Aaleda + Doy sy Mlcla (3.68)

while we impose that it must vanish up to trivial gauge transformations. This in return
implies
L) =0, (3.69)

or equivalently
£[A17>\2]CVA = [‘Ckl’ £>\2]VA . (370)

But this expression needs to be verified explicitly. Finally, computing the generalized Lie
derivative of the C-bracket yields

LoV = L0 L,V = L5, L0,V
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3.3. Gauge algebra

- é(FBCFFFDA + Fpg" Fro™ + FC’DFFFBA) AP VP

=Ly, L3IV, (3.71)
where the second line vanishes as a result of the Jacobi identity

Fap®Fpc® + Fou"Frp® + Fpe"Fpa® =0 (3.72)

which is always fulfilled by the background vielbein. Thus, the gauge algebra closes up
to trivial gauge transformations.
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4. Generalized Metric Formulation of
DFT on Group Manifolds

In this chapter we are going to introduce a generalized metric formulation [3, 39], similar to
the one presented in the previous subsection 2.4.1. The purpose of this generalized metric
formulation is to cast all entities into doubled generalized objects, such as the generalized
metric H*? etc. We use them to write the action and gauge transformations in an efficient
form. As a result the underlying structure becomes manifest and we are able to extend
the CSF'T results from cubic order to all orders in the fields 4.2. Afterwards, we are going
to derive the equations of motion 4.3 in this formulation and study its symmetries 4.4.
Astonishingly, besides the expected generalized diffeomorphism invariance, DF Ty ,w also
possesses an additional invariance under 2D-diffeomorphisms. This symmetry is missing
in the original DFT framework. The reason for it is the so-called extended strong constraint
which we are going to discuss in the latter part of this chapter 4.5.2. Under it DF Tyy,w
reduces to toroidal DFT.
This chapter is based upon [3].

4.1. Field redefinition and toy example

For us to later be able to compare DFT\y,w with original DFT, we start by performing
the following field redefinition [3]

€y —2e AT 20T, AT s 207, (4.1)
We obtain
(2k%)8 = / dQDX\/E<ea5De“E + (D%)° + (D’€,;)” + 4dD, Dye™ — 4d0ld
9 (DGECJDEGCJ _ Do D% — D%“JD%CJ> +4d°0d — 8d (D, Dyd)
- _ . 2 _—
+ 2¢,5 (FacdDeedbecé + FbcheeadeeE> + gFacerd’feagecgeef (4.2)
+ J(2 (Daeag)z + Z(DEGGE)Q + (Dc€a5)2 + (DEGGB)Q + 46(16 (DaDceag + DEDEGGE)) .

First, we want to illustrate the idea of recasting DF Ty, through doubled generalized
entities. It is going to be an essential part of this chapter and therefore understanding it
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4. Generalized Metric Formulation of DFT on Group Manifolds

entirely is crucial. The DFTyy,w potential serves as a perfect toy example to demonstrate
this procedure
Let us start by reprising the DFTyy,w potential [2, 3]

V= —%F“erdf €ab €cd Eof - (4.3)
We are interested in rewriting it using terms that contain doubled indices e.g. A, B, ...
which combine left- and right-movers. Switching from bared and unbared indices to
doubled coordinates requires the introduction of doubled generalized objects. This change
can be achieved using a perturbative expansion of the fields up to cubic order. As a result,
we start by reintroducing some doubled generalized objects known from the previous
chapter 3. The structure coefficients in doubled indices are given by

Fabc
FABC - F*“E ) (44)

a

0 otherwise

defining the underlying Kac-Moody algebra. For the upcoming computation it will be
essential to work with structure coefficients having only lower indices. Hence, we have to
use the associated doubled flat metric [2, 3]

1 ab O O
AB n Nab
— _T , N = 2 y 45

where the metrics 7, 775”5 are governed by the underlying Lie algebra (3.2). Subsequently,
the structure coefficients can be expressed through

F,

abc

FABC =2 _FaBé

(4.6)

0 otherwise

At this point, we introduce the analogue of the DFT generalized metric [46]. Expanding
to all order in fields € yields

1 1
HAB _ eXp(eAB) _ SAB + EAB + §6ACSCD€DB + EGACSCDEDESEFEFB + 0(64) , (47)
with
1 (n® 0
Sap =2 a0 . as well as the inverse S4% = = g a | s (4.8)
0 7Nap 2\ 0 n
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4.1. Field redefinition and toy example

and the doubled fields

ab
S ( gb 60 ) . with their symmetry condition € = (¢')*. (4.9)
€

The doubled notation is a striking tool to simplify the equation significantly.
Using the perturbative expansion of the generalized metric (4.7), we can evaluate it
up to cubic order

ab ac db ab ac de b
g _ (s e € S g e (4.10)
—\a, 2.a_  de_ __fb 1, ab , _ac_ _db : :

€7+ 36 Nea€ MNef€ N+ € Neaf
Now, rewriting (4.3) requires us to express the potential through terms containing the
symmetric generalized metric H*® and applying the perturbative expansion (4.10). A
first conjecture would be the potential

- 1

V - —EFACEFBDFHABHCDHEF . (411)
(We already fixed the constants for later convenience.) Under consideration of the sym-
metry (4.7), we find

- 1 . - 1
V=- —Fachdeﬁamnfgeyb B _FacerdfnaandnEf
4 24
1 ed _ax ;1 ab, cd, ef
- ZLFaécZFB € %yey - ﬂF&Eé bafm NN
2 — — —
= S FuccFrapee el + O(e"). (4.12)

Hence, we need more additional terms to exactly reproduce (4.3). Bearing DFT’s flux
formulation in mind [105, 113], let us analyze what the following term

1
FaceFaprn P SCPSH (4.13)

would affect. A straight forward computation yields

i Fior FBDFHAB GCD gEF _ i FooFoy (%T]ab 1o Meg 6yb) ncdnef
+ iFaEédef<%n“b + emnxyeyi’) négnéf + O<€4) ) (4.14)
This allows us to conclude
V= _%FACEFBDFHABHCDHEF + iFACEFBDFHABSCDSEF (4.15)
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4. Generalized Metric Formulation of DFT on Group Manifolds

2 ab _cd ef 1 ab_cd_ e 1 ab_cd_ef 4
= _gFaceFBcjfe € € f+ EFacerdfT/ nmn f_’_EFdééFl;an nn f+0(€ )
We now only need to fix the last two constant terms occurring in this equation. It can be

easily achieved by the term

1 ]- ab_cd_ e 1 ab _cd ef
EFACEFBDFSABSCDSEF = EFacerdfn b77 d77 / + E aaéFBJfTI b7l d77 ! + 0(54) . (4-16)

Altogether, we obtain for (4.3)
1 1 1
V= FACEFBDF< _ E,HABHCD,HEF I ZHABSCDSEF _ 6SmBSCJ:)SEF> (4.17)

using doubled generalized objects. As can be verified without effort, our result (4.17) is
in perfect agreement with the flux formulation [105, 113]. We can view it as a natural
extension to non-trivial backgrounds [3].

4.2. Action

In this subsection, we want to rewrite the DFTy,w action using doubled generalized ob-
ject [3]. The best way to do this begins with analyzing the toroidal DFT action [46] and
investigating whether we are able to cast our action into a related form. Our guiding sim-
ply is quite simple, we replace all partial derivatives in original DFT with flat derivatives
and observe the outcome.

But first, we need to comment on the dilaton. It splits into two parts, a background

and a fluctuation part ~ ~
e 2 = 72 — /g2 (4.18)

Furthermore, it should be noted that we assume the dilaton to be covariantly constant
Vaid =D ACZ, implying it transforms as a scalar density. As a result, the background
dilaton d is undynamical.

Let us start by computing the expression

1
e_2d§HCDDCHABDD’HAB . (4.19)

The computation becomes more transparent and better traceable by first expanding the
term
_9gl
€ 2d§SCDDcHABDDHAB R (420)
with S4% and #*? as given in (4.7), (4.8). For simplicity, we drop for the successive
calculations the term v/ H in front of the individual terms. Hence,

—2d

1 B . -
%SCDDCHABDDHAB =3 ( DH,DH™ + DH o, D°H® + D Mg D°H® + D:H g D°H™ )

=0(e")
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4.2. Action

1 ~ o _ L
~1 (Dceacheab + Doegy D°¢™ + D¢ 3 D™ + Déeal;Dceab> + O(e)
_ 1 _Ne¢ ab el ab 4

=-3 D€y D€ + Dze g D€ ) + O(€) (4.21)

1 a - B - -
=5 €ab (D2 + DQ)eab — e,3D.dD €™ — 2¢,3D.dD" + O(e*)
= eagljeag + J(Dc€a5)2 + J(DEEGE)Q + 2CZEQED€GB + O(€),

for which we used

0= %(DQ +D%). (4.22)

In the step from line (i) to (ii) in (4.21) we applied the symmetry of €,;. From line (ii) to
(iii) we used that all terms are standing under an integral and performed integration by
parts. For convenience, we stop writing O(...). Being now familiar with the calculation,
we are able to read off the remaining terms in (4.19). Subsequently,

1 . , S -
eing’HCDDCHABDDHAB = €, — 2¢“ D5 D ze™ + d(Dceag)2 + d(Déealg)2 :
In this equation we used again the symmetry of the fields €,; and that the last term
in (4.21) will cancel with the term originating in the action’s expansion of e,
(Le. e e ;0™ = (1 — 2d)e, ;0™ )
The next term we want to evaluate is

1
— e’2d§HABDBHCDDDHAC . (4.23)

This case requires us to execute a straightforward but rather cumbersome calculation.
Making use of the commutation relations for the flat derivatives

[D,.Dy] = F,°D,, [D,, Dy = Fy°Dy, (4.24)
and performing partial integration we find

_eQd%HABDBHCDDDHAC = (D) + (Dley)”

- (Fd“CDCedEea,; + FgaEDEebJeba> 1 —2d)

~
Q)
Q
S
|

+2de®(D, D) — 2d(D, D™ 2d(D°™) (D,e)
+2d ™ (DyD%€,z) — 2d(DyD%™) ey — 2d(D°e™) (Dpey)
+ 2 (D%CJD%C’" n Dcead_DEecJ) , (4.25)
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4. Generalized Metric Formulation of DFT on Group Manifolds

where we used again that e % stands in front of it. It allows us to combine our two results
into one expression

1 1
e‘zd(g’HCDDCHABDDHAB _ §%ABDBHCDDD%AC)

2

= eaBDEaE + (Daeag)2 + (Di’eag) — (Fdached?’eag + FgaéDéebJeba> (1- QJ)

— 26,5 (Daechge“Z — D“ecd*DUZec5 — DCEGJDBGCJ> + d(Dceal;)Q + J(Déeag)2
+2de® (D,Deg) — ZJ(DGDCGJ)) € — ZJ(DC(—:'J’) (Da€s)
+2d e (DyD%,z) — 2d(Dy D™ e e — 2d(D°€™) (Dyeys) - (4.26)

In the limit of vanishing structure coefficients and no dilaton d this result is already re-
markably similar to the DFETyyw action (4.2). However, we are interested in reproducing
all terms. Therefore, we evaluate the term

AHAP D dDpd = 8¢ D,dDyd + 2D,dD"d + 2D.dD"d . (4.27)
Under consideration of the additional prefactor e 2% it gives rise to
e 2 4H*P D ,dDyd = 8™ D,dDyd — 4d0d + 4d°0d . (4.28)
In this step, we applied the following relation
—4d°0d = —2d°(D* + D*)d = 4dD,dD"d + 4dD,dD"d, (4.29)
which is a result of integrating by parts. The last term we need to expand is

—e 2D ,dDsHP = 4dD,Dye®™ — 8¢™ D,dDyd — 8de™ (D, Dyd)
+2dD,D, (eaénajew) +2dD,D; (ecancdedg)
— 4dD, Dye®™ — 8¢ D, dDyd — 8de® (D, Dyd)
+2d(D%4,;)" + 2d(D’ey;)” + 2d €™ (D, Deey) + 2d e (Dy D)
+2d(D%€™) (Dyep) + 2d(D°€™) (Dyegs) + 2d(D, D) ey
+2d(DyD%€™) e, (4.30)

Finally, we obtain the action

1 1 S

_ 2DAJDBHAB)
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4.2. Action

— / &P XV H (%Deaf’ + (D%)° + (DPeg;)” + 4dD, Dy — 4d00d

9 (Daechl;ecg _ Do D% — DCG“JDBECJ> +4d°0d — 8de™ (D, Dyd)

+d (Q(Daeag)z +2(D%5)” + (Do)’ + (Deeas)” + 4€® (DyDles + DgDéeaé))

— (Fd“CDCedEeag - FgaEDEebJeba> (1 — 2d~) +O(eY . (4.31)
In the abelian limit Fyp~ = 0 this action already coincides with the results from toroidal
DFT [1]. However, we still have not recovered all terms appearing in (4.2). On one hand,
we already recovered some terms containing structure coefficients in this action, but not
all of them. On the other hand, we used only flat derivatives so far. Let us see whether
we can obtain the missing terms by replacing flat derivatives with covariant ones [3], as
given in (3.63).

Thus, we find o
AHABY 4dV pd = AH P D 4dDpd (4.32)

and for the term
. 1
oV ,dV yHAP — —QDAd(DBHAB + (P peHOE + P2 o™ ))
3 et
=0

- ) -
- —QDAdDBHAB - gDAd FABcHCB

- 2 .
= —2D,dDyH"P + 3Dad FA L HEB
— —2D,dDzH*?, (4.33)
we exploited the unimodularity F',5 = 0 of the Lie group (3.12). Additionally, we
applied the symmetry of HAP and the antisymmetry of Fypo in the third line , whereas
from the third to fourth line we relabeled the indices. As a result, the last term needs to

vanish.
This takes us to the more tricky part. We now have to expand

1 1
gHCDVcHABVD’HAB - §HABVB’HCDVD”HAC. (4.34)

For the following computation we can ignore all terms consisting of more than three fields
and more than one derivative. (We already computed terms containing two derivatives
above) The first term gives rise to

1 1 1
g’HCDVCHABVDHAB = EHCDDCHABFADE’HEB + E’HCDFACF’HFBDDHAB

1 1
- %HCDFAC’FHFBFADEHEB + %HCDFACFHFBFBDEHAE :
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4. Generalized Metric Formulation of DFT on Group Manifolds

The second term requires us to apply the symmetry of HMN e,

HOFac" M DpH™? = P o1 " Dot
= HPF o P Dt ag (4.35)

and for the fourth term, we exploit the antisymmetry and cyclicity of the structure coef-
ficients

HO Fac Hpp PP ppH ™ = HOPH WY Facr Fopp

- —FACEFBDFHABHCDHEF . (436)
Altogether, we find the result
1 1
HVHVoH = HDeHapF ppH”” (4.37)
1 1
+ oM Pac F o Hes M — oo Face FaprH "HOVHET

For the second term, we obtain in a similar way

1 1 1
—?HABVB’HCDVDHAC = EHCDDC’HABFADEHEB — EHABDB%CDFCDEHAE

- éHABFDBEHCEDDHAC - %FACEFBDFHABHCDHEF
+ %HCDFACFFADEHFBHEB : (4.38)
Combining these two results yields
%/HCDVCHABVD/HAB _ %/HABVBHCDVDHAC (4.39)
= %HCDDCHABFADE’HEB — éHABDBHCDFCDEHAE
— éHABFDBEHCEDDHAC - %FACEFBDFHAB,HCDHEF

+ %HCDFACFFADEHFBHEB .
We now evaluate them up to third order and derive
e_2d<é’H0DVC’HABVDHAB - %’HABVBHCDVD”HAC) (4.40)
_ Q(Fd“chedBeag n FJ@EDEE’)JE,)&) (1 - 2d)
+ 2¢,5 (F“CdDéedEecé + FEECZDEGQJ€€5) + gFacnggfeaBecgeef

3
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4.3. Equations of motion

- é(Fachdeeaxnxyeyb + F&EJFBEdEazn:cyeyb) (1 - Qd) + O<D27 64) )
where we used (4.3). In this equation, the terms obtained in the first line cancel the
structure coefficients we collected from partial integration and the commutation relations.
From the second line we receive the missing terms of (4.2), we were interested in retrieving.
However, successfully reproducing action (4.2) requires the terms emerging in the last line
to vanish. This might appear difficult at first glance, but we already acquired the necessary
knowledge in section 4.1.
We just need to add the terms

1 1
EFACEFBDFHABSCDSEF — EFACEFBDFSABSCDSEF (4.41)
1 _ _ - - -

Finally, we obtain DF Tyyzw action [3] in the generalized metric formulation by
1 1
S = / dQDXe_Qd(g’HCDVCHABVD’HAB — §HABVB”HCDVDHAC + AHAPY 4dV pd
1 1
— 2V AV HY + S FacnFppei PSP S T - 6FIL,CER_E;DFSMSCDSEF)
= / dQDXﬁ<6agD6a6 + (Daeal‘,)z + (D66a5)2 + 4£DaD5€aB —4d0d
P (D%CJD%J’ n D%“D%CJ) +4d°0d — 8de™ (D, Dyd) (4.43)
_ 7 = - 2 e
+ 26@[3 (FacdDeEdbECé + FbCJDeead(EeE) + gFacerdfeaﬁecJEef
d(2(D%ear)” +2(Dleup)” + (Do)’ + (D) + 4™ (DuDegs + DpD'ec) ) + O
If we ignore constant terms, we are able to recast the covariant DF Ty ,w action as

1 1
S = / dQDXe’m(g’HCDVCHABVD’HAB — §HABVBHCDVD’HAC (4.44)

1
FAHABY AV pd — 2V 4dV g HAE + 6FACEFBDF”H/“-”‘SCDSEF)

in the generalized metric formulation. Considering this action (4.44) in curved indices is
st