Untersuchungen zum Einfluss der Zytokine CD40L, BAFF, IL10 und IL21 auf Proliferation, Überleben und Phänotypänderungen von B-Zellen des Haushuhns *in vitro*

von

Larissa Postrak
Untersuchungen zum Einfluss der Zytokine CD40L, BAFF, IL10 und IL21 auf Proliferation, Überleben und Phänotypänderungen von B-Zellen des Haushuhns in vitro

von

Larissa Postrak

aus

Freiburg im Breisgau

München, 2017
Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät

der Ludwig-Maximilians-Universität München

Lehrstuhl für Physiologie

Arbeit angefertigt unter der Leitung von

Priv.-Doz. Dr. Sonja Härtle
Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, PhD

Berichterstatter: Priv.-Doz. Dr. Sonja Härtle

Korreferent: Priv.-Doz. Dr. Maik Dahlhoff

Tag der Promotion: 29.07.2017
# Inhaltsverzeichnis

1 EINLEITUNG .................................................................................................................. 1

2 LITERATURÜBERSICHT ................................................................................................ 2
  2.1 B-Zellentwicklung bei Mensch und Maus ................................................................. 2
    2.1.1 Von der hämatopoetischen Vorläuferzelle zur B-Zelle ..................................... 3
    2.1.2 B-Zellreifung in der Peripherie .......................................................................... 4
    2.1.2.1 Plasmazellen .................................................................................................. 5
    2.1.2.2 B-Gedächtniszellen ...................................................................................... 6
  2.2 B-Zellentwicklung im Huhn ....................................................................................... 7
    2.2.1 Präbursale und bursale Phase der B-Zellentwicklung beim Huhn ...................... 8
    2.2.2 Postbursale B-Zellentwicklung beim Huhn ......................................................... 9
    2.2.2.1 Germinale Zentren im Huhn ....................................................................... 11
    2.2.2.2 Plasmazellen im Huhn .................................................................................. 11
    2.2.2.3 B-Gedächtniszellen im Huhn ....................................................................... 12
  2.3 Auf B-Zellen einwirkende Zytokine .......................................................................... 12
    2.3.1 Tumornekrosefaktor-Familienmitglieder ............................................................ 13
    2.3.1.1 CD40L .......................................................................................................... 13
    2.3.1.2 CD40L im Huhn ............................................................................................ 15
    2.3.1.3 BAFF ............................................................................................................ 15
    2.3.1.4 BAFF im Huhn ............................................................................................. 16
    2.3.2 Interleukin 10 .................................................................................................... 17
    2.3.3 Interleukin 10 im Huhn ..................................................................................... 18
    2.3.4 Interleukin 21 .................................................................................................... 19
    2.3.5 Interleukin 21 beim Huhn .................................................................................. 21

3 ZIELSETZUNG ............................................................................................................... 22

4 MATERIAL UND METHODEN ................................................................................... 23
  4.1 HÜHNERHALTUNG ...................................................................................................... 23
  4.2 GEWINNUNG VON PRIMÄREN HÜHNERLEUKOZYTEN ....................................... 23
    4.2.1 Gewinnung von Leukozyten aus Blut ................................................................. 24
    4.2.2 Gewinnung von Leukozyten aus Bursa und Milz .............................................. 24
    4.2.3 Mikroskopische Beurteilung der Leukozyten .................................................... 25
  4.3 ZELLKULTUR ............................................................................................................. 25
    4.3.1 Medien und Zusätze .......................................................................................... 25
    4.3.2 Verwendete Zelllinien ....................................................................................... 26
    4.3.3 Kultivierung von Zelllinien ............................................................................... 26
    4.3.4 Kultivierung von primären Zellen ..................................................................... 26
    4.3.5 Einfrieren von Zellen ......................................................................................... 27
    4.3.6 Auftauen von Zellen ......................................................................................... 27
  4.4 Herstellung der rekombinanten Zytokine ................................................................. 27
    4.4.1 Transiente Transfektion von 293-T Zellen mit IL21 ........................................ 27
Inhaltsverzeichnis

4.4.2 Gewinnung der Zytokine aus dem Überstand stabil transfizierter Zelllinien ........ 28
4.4.3 Konzentrierung der rekombinant Zytokine .............................................. 28
4.4.4 Nachweis der rekombinant Zytokine im ELISA ......................................... 29
4.4.4.1 Tabellarische Durchführung der spezifischen ELISA .................................. 31
4.4.5 Nachweis von IL21 im Proliferationsassay mit [³H]-Thymidin ..................... 32

4.5 Proliferationsassay mit [³H]-Thymidin .............................................................. 33
4.6 Durchflusszytometrische Untersuchungen ...................................................... 34
4.6.1 Primäre Antikörper ...................................................................................... 35
4.6.2 Sekundäre Antikörper ................................................................................ 35
4.6.3 Indirekte Färbungen .................................................................................... 35
4.6.4 Direkte Färbungen mit Fluo-chrom-markierten Antikörpern ....................... 36
4.6.5 Lebend/Tot-Färbung ................................................................................... 36
4.6.6 Mehrfachfärbungen mit Antikörpern des gleichen Isotyps .......................... 36
4.6.7 Färbung der Milzleukozyten mit dem Proliferationsfarbstoff eFluor670 .... 37
4.6.8 Zellzahl-Quantifizierung mittels Beads ...................................................... 38

4.7 Statistische Auswertung .................................................................................... 38

5 ERGEBNISSE ......................................................................................................... 39
5.1 Einfluss von CD40L, BAFF, IL10 und IL21 auf die Lymphozytenzahl ............ 39
5.2 Einfluss von CD40L, BAFF, IL10 und IL21 auf die Proliferation von
Lymphozyten ........................................................................................................ 42
5.2.1 Lymphozytenproliferation im [³H]-Thymidin-Assay .................................. 43
5.2.1.1 Einfluss von BAFF, IL10, IL21 auf die Proliferation .................................. 43
5.2.1.2 Einfluss der Zugabe von CD40L auf die Proliferation .............................. 44
5.2.1.3 Effektstärke der Zytokine auf die Proliferation ....................................... 45
5.2.2 Lymphozytenproliferation im Proliferationsassay mit eFluor670 ............. 46
5.2.2.1 Charakterisierung Zytokin-stimulierten proliferierenden Milzlymphozyten ... 47
5.2.2.2 B- und T (CD4⁺ oder CD8⁺)-Zellpopulation in der mit CD40L, BAFF, IL10 und
IL21 stimulierten Milzlymphozyten ................................................................. 47
5.2.2.3 Identifizierung der proliferierenden Zellpopulationen ............................. 49
5.2.2.4 Anteil proliferierender B-Zellen an der gesamten B-Zellpopulation .......... 51

5.3 Vergleich der Effektstärke der Zytokine auf Erhöhung der Zellzahl und
Proliferation ........................................................................................................... 52

5.4 Phänotypische Charakterisierung stimulierter B-Zellkulturen ..................... 54
5.4.1 Expression von Oberflächenmarken auf Hühner-B-Zellen ......................... 55
5.4.1.1 Bu1 ............................................................................................................. 60
5.4.1.2 BAFF-R .................................................................................................. 60
5.4.1.3 Leichte-Kette .......................................................................................... 61
5.4.1.4 CD40 ....................................................................................................... 61
5.4.1.5 CXCR4 ................................................................................................... 62
5.4.1.6 CXCR5 ................................................................................................... 62
5.4.1.7 MHCII .................................................................................................... 63
5.4.1.8 CD80 ....................................................................................................... 63
5.4.2 Am Rezeptor haftende Liganden ................................................................. 65
<table>
<thead>
<tr>
<th>6</th>
<th>DISKUSSION</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Einfluss von CD40L, BAFF, IL10 und IL21 auf die Lymphozytenzahl nach Kultivierungszeit</td>
<td>67</td>
</tr>
<tr>
<td>6.2</td>
<td>Proliferation</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>Zytokin-induzierte Phänotypänderung</td>
<td>71</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Expression von B-Zellmarkern stimulierter B-Lymphozyten</td>
<td>71</td>
</tr>
<tr>
<td>6.3.2</td>
<td>CD40</td>
<td>73</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Aktivierungsmarker</td>
<td>74</td>
</tr>
<tr>
<td>6.3.3.1</td>
<td>MHCII</td>
<td>74</td>
</tr>
<tr>
<td>6.3.3.2</td>
<td>CD80</td>
<td>75</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Chemokinrezeptoren</td>
<td>77</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>CXCR4</td>
<td>77</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>CXCR5</td>
<td>78</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Ausblick</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>ZUSAMMENFASSUNG</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>SUMMARY</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>LITERATURVERZEICHNIS</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>ANHANG</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>DANKSAGUNG</td>
<td>101</td>
</tr>
</tbody>
</table>
ABBILDUNGSVERZEICHNIS

Abbildung 1: Überblick der B-Zellentwicklung bei Mensch und Maus ............................................. 2
Abbildung 2: Embryonale Besiedelung der Bursa und Auswanderung der B-Zellen nach dem Schlupf ................................................................................................................................. 8
Abbildung 3: B-Zellentwicklung vergleichend Maus, Mensch / Huhn .................................................. 9
Abbildung 4: Schematische Darstellung der B-Zellaktivierung .......................................................... 14
Abbildung 5: Einfluss von IL21 auf die Differenzierung von B-Zellen ............................................... 19
Abbildung 6: Absolute Anzahl lebender B-Zellen in mit CD40L, BAFF, IL10 und IL21 stimulierten Bursa- und Milzzellkulturen ......................................................................................... 40
Abbildung 7: Durch BAFF, IL10 und IL21 induzierte Proliferation .................................................. 43
Abbildung 8: Einfluss der Zytokinkombinationen mit CD40L auf die Proliferation von Lymphozyten ........................................................................................................................................ 44
Abbildung 9: Gatingstrategie zur Bestimmung der B- und T-Zellfrequenz in stimulierten Milzlymphozyten ..................................................................................................................................... 47
Abbildung 10: Gatingstrategie zur Bestimmung der B- und T-Zellfrequenz der eFluorlow Zellpopulation ..................................................................................................................................... 49
Abbildung 11: Gatingstrategie zur Bestimmung des proliferierenden B-Zellanteil an der gesamten B-Zellpopulation ........................................................................................................... 51
Abbildung 12: Anteil proliferierender B-Zellen an gesamter B-Zellpopulation ..................................... 51
Abbildung 13: Proliferationsindex und Lebend-Tot-Index in Bursa- und Milzzellkulturen .............. 53
Abbildung 14: Gatingstrategie der phänotypischen Charakterisierung stimulierter B-Zellen. 55
Abbildung 15: Durchflusszytometrische Phänotypisierung der stimulierten Bursa- und Milzleukozyten ..................................................................................................................................... 58
Abbildung 16: Oberflächenfärbung von CD40L und BAFF und zugehörigen Rezeptoren auf Lymphozyten ......................................................................................................................... 65
TABellenverzeichnis

Tabelle 1: Oberflächenmoleküle zur Identifikation von B-Zell-Subtypen ........................................ 7
Tabelle 2: Übersicht der verwendeten Zelllinien ............................................................................. 26
Tabelle 3: Übersicht der im ELISA verwendeten Antikörper ....................................................... 30
Tabelle 4: Durchführung CD40L-ELISA ......................................................................................... 31
Tabelle 5: Durchführung BAFF-ELISA ......................................................................................... 32
Tabelle 6: Durchführung IL10-ELISA ......................................................................................... 32
Tabelle 7: In der Durchflusszytometrie eingesetzte primäre Antikörper ........................................ 35
Tabelle 8: In der Durchflusszytometrie eingesetzte Sekundärantikörper ........................................ 35
Tabelle 9: Durchflusszytometrisch verwendete direktkonjugierte Antikörper ......................... 36
Tabelle 10: Lebend-Tot-Index der in kultivierte Lymphozyten aus Bursa und Milz .............. 41
Tabelle 11: Proliferationsindex der stimulierten Lymphozyten .................................................. 45
Tabelle 12: B- und T-Zellfrequenz der Milz vor Beginn der Kultivierung ................................. 46
Tabelle 13: B- und CD4+ und CD8+ T-Lymphozytenfrequenz nach 48 h in Milzkulturen ...... 48
Tabelle 14: Anteil und Zusammensetzung der proliferierenden Zellen (eFluorlow) pro Stimulationsansatz .................................................................................................................. 50
Tabelle 15: Heat Map Darstellung der Oberflächenexpression der gefärbten Marker auf stimulierten Bursa-und Milzlymphozyten .............................................................................. 59
# Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID</td>
<td><em>activation-induced cytidine deaminase</em></td>
</tr>
<tr>
<td>APC</td>
<td><em>Allophycocyanin</em></td>
</tr>
<tr>
<td>APRIL</td>
<td><em>A proliferation-inducing ligand</em></td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td><em>bidestilliertes Wasser</em></td>
</tr>
<tr>
<td>Aqua dest.</td>
<td><em>destilliertes Wasser</em></td>
</tr>
<tr>
<td>BAFF</td>
<td><em>B cell activating factor of the tumor necrosis factor family</em></td>
</tr>
<tr>
<td>BCL-2</td>
<td><em>B-cell lymphoma 2</em></td>
</tr>
<tr>
<td>Bcl6</td>
<td><em>B-cell lymphoma 6 protein</em></td>
</tr>
<tr>
<td>BCMA</td>
<td><em>B cell maturation antigen</em></td>
</tr>
<tr>
<td>BCR</td>
<td><em>B-cell receptor, B-Zellrezeptor,</em></td>
</tr>
<tr>
<td>Blimp1</td>
<td><em>B lymphocyte-induced maturation protein-1</em></td>
</tr>
<tr>
<td>BLyS</td>
<td><em>B-lymphocyte stimulator</em></td>
</tr>
<tr>
<td>BSA</td>
<td><em>Bovines Serum Albumin</em></td>
</tr>
<tr>
<td>BSA</td>
<td><em>beziehungsweise</em></td>
</tr>
<tr>
<td>CD</td>
<td><em>Cluster of differentiation</em></td>
</tr>
<tr>
<td>CD40L</td>
<td><em>CD40Ligand</em></td>
</tr>
<tr>
<td>CFSE</td>
<td><em>Carboxyfluorescein-Succinimidyl Ester</em></td>
</tr>
<tr>
<td>Con A</td>
<td><em>Concanavalin A</em></td>
</tr>
<tr>
<td>cpm</td>
<td><em>counts per minute</em></td>
</tr>
<tr>
<td>CT</td>
<td><em>Caecaltonsille</em></td>
</tr>
<tr>
<td>CTLA4</td>
<td><em>cytotoxic T-lymphocyte-associated Protein 4</em></td>
</tr>
<tr>
<td>CXCR</td>
<td><em>Rezeptor für CXC-Chemokin</em></td>
</tr>
<tr>
<td>D&lt;sub&gt;H&lt;/sub&gt;</td>
<td><em>Diversity-Segment der schweren Kette</em></td>
</tr>
<tr>
<td>DMSO</td>
<td><em>Dimethylsulfoxid</em></td>
</tr>
<tr>
<td>DNA</td>
<td><em>Desoxyribonukleinsäure, deoxyribonucleic acid</em></td>
</tr>
<tr>
<td>DNA</td>
<td><em>Desoxyribonukleinsäure, deoxyribonucleic acid</em></td>
</tr>
<tr>
<td>E2A</td>
<td><em>Transkriptionsfaktor</em></td>
</tr>
<tr>
<td>EBF</td>
<td><em>Transkriptionsfaktor</em></td>
</tr>
<tr>
<td>eGFP</td>
<td><em>grün fluoreszierende Protein</em></td>
</tr>
<tr>
<td>ELISA</td>
<td><em>Enzyme-Linked Immuno Sorbent Assay</em></td>
</tr>
<tr>
<td>EST</td>
<td><em>Expressed-Sequence-Tag</em></td>
</tr>
<tr>
<td>ET</td>
<td><em>Embryonal Tag</em></td>
</tr>
<tr>
<td>et al.</td>
<td>und andere</td>
</tr>
<tr>
<td>ex vivo</td>
<td><em>außerhalb des Lebendigen</em></td>
</tr>
<tr>
<td>FAS</td>
<td><em>Fas death factor</em></td>
</tr>
<tr>
<td>FBS</td>
<td><em>fötales Rinderserum, fetal bovine serum</em></td>
</tr>
<tr>
<td>FDC</td>
<td><em>follikulär dendritische Zellen</em></td>
</tr>
<tr>
<td>FITC</td>
<td><em>Fluorescein isothiocyanate</em></td>
</tr>
<tr>
<td>Flag-tag</td>
<td><em>Oktapeptid als Epitop zum Nachweis</em></td>
</tr>
<tr>
<td>FSC</td>
<td><em>Forward Scatter</em></td>
</tr>
<tr>
<td>GALT</td>
<td><em>gut-associated lymphoid tissue</em></td>
</tr>
<tr>
<td>GC-Reaktion</td>
<td><em>Germinale Zentrums Reaktion</em></td>
</tr>
<tr>
<td>HCI</td>
<td><em>Wasserstoffchlorid, Salzsäure</em></td>
</tr>
<tr>
<td>HEK</td>
<td><em>Humane embryonale Nierenzellen, human embryonic kidney cells</em></td>
</tr>
<tr>
<td>HSZ</td>
<td><em>Hämatopoetische Stammzelle</em></td>
</tr>
<tr>
<td>Ig</td>
<td><em>Immunglobulin</em></td>
</tr>
<tr>
<td>Ig-Ko</td>
<td><em>Immunglobulin-Knockout</em></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Ig-Loci</td>
<td>Immunglobulin-Loci</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>in vivo</td>
<td>im Lebendigen</td>
</tr>
<tr>
<td>JAK</td>
<td>Januskinase</td>
</tr>
<tr>
<td>JH</td>
<td>Joining-Segment der schweren Kette</td>
</tr>
<tr>
<td>JL</td>
<td>Joining-Segment der leichten Kette</td>
</tr>
<tr>
<td>LFA-1</td>
<td>leucocyte function associated molecule-1</td>
</tr>
<tr>
<td>L-Kette</td>
<td>Leichte Kette des B-Zellrezeptors</td>
</tr>
<tr>
<td>mAB</td>
<td>monoklonaler Antikörper</td>
</tr>
<tr>
<td>mAK</td>
<td>monoklonaler Antikörper</td>
</tr>
<tr>
<td>MALAT</td>
<td>Mucosa Associated Lymphoid Tissue</td>
</tr>
<tr>
<td>MFI</td>
<td>Mittlere Fluoreszenzintensität</td>
</tr>
<tr>
<td>MHC</td>
<td>Haupthistokompatibilitätskomplex, Major Histocompatibility Complex</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid, Transport Ribonukleinsäure</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MZA B-Zelle</td>
<td>Marginalzone B-Zelle</td>
</tr>
<tr>
<td>N2</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>NFκB</td>
<td>nuclear factor kappa B</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>natürliche Killerzellen, natural killer cell</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>PALS</td>
<td>Periarterial lymphoid Sheath</td>
</tr>
<tr>
<td>Pax5</td>
<td>paired box protein 5</td>
</tr>
<tr>
<td>PBL</td>
<td>periphere Blutlymphozyten</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphatgepufferte Salzlösung, phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction, Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PELS</td>
<td>Polymerase-Kettenreaktion, Polymerase Chain Reaction</td>
</tr>
<tr>
<td>POD</td>
<td>Peroxidase</td>
</tr>
<tr>
<td>PRDM1</td>
<td>PR domain zinc finger protein 1 = Blimp1</td>
</tr>
<tr>
<td>PWP</td>
<td>Periellipsoidalen weißen Pulpa</td>
</tr>
<tr>
<td>R</td>
<td>Rezeptor</td>
</tr>
<tr>
<td>RNA</td>
<td>recombination-activating gene</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>STABW</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducers and Activators of Transcription</td>
</tr>
<tr>
<td>T1</td>
<td>Transitional 1, Übergangsstadium 1</td>
</tr>
<tr>
<td>T2</td>
<td>Transitional 2, Übergangsstadium 2</td>
</tr>
<tr>
<td>TACI</td>
<td>transmembrane activator CAML interactor</td>
</tr>
<tr>
<td>Th</td>
<td>T-Helferzelle</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetramethylbenzidin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor-Nekrose-Faktor</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>Tumor Necrosis Factor Superfamily Member 13b</td>
</tr>
<tr>
<td>TNFSF5</td>
<td>Tumor Necrosis Factor Superfamily Member 5</td>
</tr>
<tr>
<td>V_{L/h}</td>
<td>Variable-Segment der leichten / schweren Kette</td>
</tr>
<tr>
<td>ZKÜ</td>
<td>Zellkulturüberstand</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>γ-chain</td>
<td>Gamma-Kette</td>
</tr>
</tbody>
</table>
1 EINLEITUNG

Wichtige grundlegende Erkenntnisse der Immunologie stammen aus der Forschung an Hühnern. Das Huhn (Gallus gallus) entwickelte sich im letzten Jahrhundert, neben seiner weltweiten wirtschaftlichen Bedeutung als lebensmittellieferndes Tier, aufgrund der Verfügbarkeit von Inzuchtlinien und dem leichten Zugang zu Embryonalstadien zu einem wichtigen Modelltier der immunologischen Forschung [1].

Durch Transplantationsversuche mit Hühner-Embryonen fand der Pathologe James Murphy vor fast 100 Jahren heraus, dass Lymphozyten die aktive Komponente in der Transplantatabstoßung und in der Infektionsabwehr darstellen, hierbei ging er (seiner Zeit weit voraus) von einer angeborenen und erworbenen Immunantwort aus [2]. Einige Zeit später (1956) wurden durch die Experimente mit bursektomierten Hühnern von B. Glick die bursalen Lymphozyten als Antikörper produzierende Zellen erkannt [3].


Aufgrund einiger Unterschiede zwischen dem aviären Immunsystem und dem der Säuger ist es nur bedingt möglich Forschungsergebnisse, das B-Zellsystem von Mensch und Maus betreffend, auf die Spezies Huhn zu übertragen. Deshalb ist es notwendig, das B-Zellsystem des Huhns weiter zu charakterisieren, was bislang durch die schnelle Sterblichkeit der Lymphozyten in vitro sehr begrenzt wird.

2 LITERATURÜBERSICHT


Aufgrund der Unterschiede in der B-Zellentwicklung von Säugern und Hühnern wird im Folgenden zunächst die B-Zellentwicklung für Mensch und Maus und nachfolgend für das Huhn beschrieben.

2.1 B-ZELLENTWICKLUNG BEI MENSCH UND MAUS

Abbildung 1: Überblick der B-Zellentwicklung bei Mensch und Maus
(modifiziert nach Rottach [4])
2.1.1 Von der hämatopoetischen Vorläuferzelle zur B-Zelle


2.1.2 B-Zellreifung in der Peripherie

B-Zellen erkennen ihr passendes Antigen in der naiven, nicht prozessierten Form. Dabei wurde gezeigt, dass die Erkennung von membranständigem Antigen durch den B-Zellrezeptor in vivo effektiver ist, aber auch lösliches Antigen erkannt wird [21]. Bis die B-Zelle auf ihr spezifisches Antigen trifft, durchwandert sie die sekundär-lymphatischen Organe und gelangt über das Blut zu den T-Zellzonen in die Milz, um dann schließlich primäre Follikel zu besiedeln, welche hauptsächlich aus B-Zellen, aber auch Stromazellen bestehen und Überlebenssignale bereitstellen, wie zum Beispiel durch von Stromazellen produziertes BAFF [22]. Die Erkennung von exogenem Antigen durch den BCR induziert eine vermehrte Oberflächenexpression von Adhäsionsmolekülen, was dazu führt, dass die B-Zelle beim Durchwandern der Milz in der T-Zellzone festgehalten wird, wodurch der Kontakt mit einer

Die Germinalen Zentren bei Mensch und Maus sind aus einer hellen und einer dunklen Zone aufgebaut, welche von einer Mantelzone aus ruhenden B-Zellen umgeben sind. Die dunkle Zone besteht aus sich kontinuierlich teilenden Zentroblasten, welche dann zu Zentrozyten werden und in die helle Zone wandern, wo follikulär Dendritische Zellen (FDC) ein spezifisches Milieu zur Verfügung stellen [26]. Schlussendlich entwickeln sich die selektierten B-Zellen zu Antikörper-sezernierenden Plasmazellen mit höherer Antigen-Affinität oder zu B-Gedächtniszellen [27, 28].

2.1.2.1 Plasmazellen

festgehalten wird [31]. Die Aktivierungsmarker MHCII und CD80 werden ebenfalls herunterreguliert [32, 33].

2.1.2.2 B-Gedächtniszellen

Oberflächenmarker für die Identifizierung von B-Zell-Subpopulationen bei Mensch und Maus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IgD</td>
<td>+/-</td>
<td>+++</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>CD19</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+/-</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>CD21</td>
<td>+++</td>
<td>++</td>
<td>+/-</td>
<td>++/++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>CD23</td>
<td>+/-</td>
<td>++</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>CD38Maus</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD38Mensch</td>
<td>+++</td>
<td>++/+</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+/-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>CD54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD80/CD86</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>CD138</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHCII</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>CXCR5</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td></td>
<td>-/+</td>
</tr>
<tr>
<td>CXCR4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++/++</td>
<td>+/-</td>
<td>-/+</td>
</tr>
</tbody>
</table>

Tabelle 1: Oberflächenmoleküle zur Identifikation von B-Zell-Subtypen
MZ: Marginalzonen-B-Zelle, GC: Germinale Zentrums-B-Zelle
-: keine Expression +: schwache Expression ++ mittelstarke Expression +++ starke Expression leer: keine Angabe
Zusammenstellung nach Fairfax et al. [32], Smith et al. [42], Tedder et al.[43], Allman et al. [44]

2.2 B-ZELLENTWICKLUNG IM HUHN

postbursale Phase eingeteilt werden [45]. In Abbildung 2 ist die embryonale Besiedlung der Bursa durch Vorläuferzellen und die einsetzende Involution in histologischen Schnitten dargestellt.

### 2.2.1 Präbursale und bursale Phase der B-Zellentwicklung beim Huhn

Die Auswanderung von hämatopoetischen Vorläuferzellen aus dem mesenchymalen Bereich der späteren Aorta in den embryonalen Dottersack, Knochenmark, Milz und Leber beginnt ab Embryonaltag 5 (ET). Diese Vorläuferzellen sind bereits auf die B-Zelllinie festgelegt und exprimieren den Pan-B-Zellmarker Bu1, entwickeln sich Bursa unabhängig und können bereits IgM auf ihrer Oberfläche exprimieren [54].


B-Zellen verlassen nur 5 % die Bursa in Richtung Peripherie, emmigrieren über das Blut und besiedeln sekundär lymphatische Organe wie Cæcaltonsille und Milz, dabei weisen sie einen „recent-bursal-emmigrants“ Phänotyp auf (IL12+/MHCII\textsuperscript{high}), welcher sie als zeitnah aus der Bursa ausgewandert charakterisiert. Die restlichen 95 % der bursalen Lymphozyten sterben in der Bursa ab. Es wurde festgestellt, dass die apoptotisch zu Grunde gehenden Zellen die Expression von IgM auf der Oberfläche verlieren, folglich wurde angenommen, dass nur B-Zellen mit erfolgreich exprimiertem BCR in der Lage sind aus der Bursa auszuwandern [64, 65]. Neuere Erkenntnisse mit generierten Knockout Hühnern (Ig-Ko, leichte Kette-Ko) von Schusser et al. konnten bestätigen, dass die Expression der schweren Kette des Immunglobulins als Signalgeber notwendig ist, damit die immature B-Zelle aus der Bursa emmigrieren kann. [66, 67].

Abbildung 3 zeigt die wesentlichen Unterschiede der B-Zellentwicklung zwischen Maus, Mensch und Huhn.

Abbildung 3: B-Zellentwicklung vergleichend Maus, Mensch / Huhn
Während beim Mensch das VDJ-Rearrangement am Lokus der schweren Kette beginnt und zur Ausbildung eines prä-B-Zellrezeptors führt, erfolgt beim Huhn zeitgleich das Rearrangement der schweren und leichten Kette, was in der Expression von oberflächlichem IgM auf den präbursalen B-Zellen resultiert. In der Bursa erfolgt die Diversifizierung des B-Zellrezeptors durch Genkonversion und durch somatische Hypermutation im geminalen Zentrum (modifiziert nach Kohonen et al. 2007 [68])

2.2.2 Postbursale B-Zellentwicklung beim Huhn


2.2.2.1 Germinale Zentren im Huhn

Analog zum Säuger kommt es nach Antigenkontakt zur Bildung von Germinalen Zentren. Allerdings befinden sich aviäre GCs nicht wie im Säuger in B- sondern in T-Zellarealen und erscheinen histologisch homogener [75, 76]. Immunhistochemische Versuche mit inkorporiertem Bromdesoxyuridin (BrdU) ergaben einen Ring aus stark proliferierenden Zellen unter einer kollagenen Kapsel in dessen Mitte sich CD4⁺-T-Helferzellen und folliculär dendritische Zellen befanden, sodass eine zonale Trennung in eine subkapsuläre dunkle Zone und eine zentrale helle Zone anzug der Aufteilung im Säuger angenommen wird [74]. Der Ursprung des GCs aus wenigen aktivierten B-Zellen wurde im Huhn belegt, ebenso die Modifizierung des BCR durch Genkonversion und somatische Hypermutation [77, 78]. Ebenso wurde IgA und IgY immunhistochemisch nachgewiesen, was die Annahme bestätigte, dass es auch im GC des Huhns zum Ig-Klassenwechsel kommt [74, 79]. Allerdings fehlen noch eindeutige Studien um funktionell zu belegen, dass auch in Vogel-GCs eine durch Antigen induzierte Steigerung der Rezeptoraffinität stattfindet.

2.2.2.2 Plasmazellen im Huhn

Über die Zwischenstufe eines Plasmablasten entwickelt sich die B-Zelle auch im Huhn zu einer Plasmazelle, welche auf die Produktion großer Mengen an Immunglobulinen spezialisiert ist. Beim Huhn kommen neben IgM- und IgA-positiven Plasmazellen auch der Isotyp IgY vor. Strukturell stellt IgY eine Mischung aus dem IgG und IgE des Säugers dar und entspricht funktionell dem Säuger IgG [80]. Um Hühner-Plasmazellen von anderen B-Zellpopulationen eindeutig abzugrenzen fehlen Marker. Die Identifizierung von Plasmazellen im Huhn erfolgt bislang über ihre Morphologogie im Elektronenmikroskop und die stark positive Färbung für Immunglobuline. Jeurissen et al. gelang der immunhistologische Nachweis von IgM-sezernierenden Zellen 48 h nach einer Immunisierung in T-Zellarealen der Milz. 72 h nach Immunisierung fand er diese Zellen dann in der roten Pulpa der Milz, nach 96 h konnten erste IgY-sezernierende Zellen detektiert werden [81]. Auch in anderen Mukosa-assozierten lymphatischen Geweben wie der
Caecaltonsille, der Lamina propria des Darms und der Harderschen Drüse, konnten vermehrt IgY-, IgA- oder IgM-positive Zellen nachgewiesen werden [55]. Über die Lebensdauer der entstehenden Plasmazellen der für sie notwendigen Überlebnsignale im Huhn ist noch nichts bekannt.

### 2.2.2.3 B-Gedächtniszellen im Huhn


### 2.3 AUF B-ZELLEN EINWIRKENDE ZYTOKINE

2.3.1 Tumornekrosefaktor-Familienmitglieder


2.3.1.1 CD40L

Abbildung 4: Schematische Darstellung der B-Zellaktivierung

Das erste Signal (1) der B-Zellaktivierung stellt die Antigenbindung über den BCR dar, das zweite die Kostimulation durch die T-Zellhilfe via CD40 und CD40L (2). Das dritte Signal der durch die T-Zelle sezernierten Zytokine (3) fördert die B-Zellaktivierung. (Modifiziert nach Janeway’s Immunobiology, 2015 [20])

2.3.1.2 CD40L im Huhn


2.3.1.3 BAFF

Gewebe von Stromazellen produziert [111], im Falle einer Entzündungsreaktion kann die Produktion von BAFF in Monozyten, Makrophagen, Dendritischen Zellen und Neutrophilen induziert werden [112], wodurch B-Zellansammlungen am Ort der Entzündung gefördert werden [113]. Das besondere an diesem TNF-Familienmitglied ist, dass es an drei verschiedene Rezeptoren BCMA (B-cell maturation antigen), TACI (Transmembrane activator and CAML interactor) und BAFF-R (BAFF-Rezeptor) binden kann. Während BAFF-R nur von BAFF gebunden werden kann, besitzen BCMA und TACI einen weiteren Liganden APRIL. Dieser spielt beim Überleben von Plasmazellen in Knochenmarknischen mit spezialisiertem Mikromilieu eine Rolle [114]. Die Forschergruppe um Ettinger et al. konnte zeigen, dass BAFF+IL21 synergistisch auf eine spezielle Subpopulation von Marginalzonen B-Zellen (MZA B-Zelle) mit einem IgG+CD21\(^{high}\)CD23\(^{low}\)CD27\(^{high}\) Phänotyp hin zur Differenzierung zu IgG1 sezernierenden Plasmazellen getrieben wird. Diese besondere Zellpopulation zeichnet sich durch ihre Hypersensitivität gegenüber IL21 aus und ihrer Fähigkeit auf exklusiv auf die Kombination von IL21 und BAFF mit einer schnellen Differenzierung zur Plasmazelle zu reagieren. Dies geschieht Antigen unabhängig ohne das Miteinbeziehen des BCR oder des CD40 Signals, auf den Stimulus der Zytokine hin [115]. Die Fähigkeit von BAFF als Ersatz für das CD40-Signaling zu dienen scheint in der Tatsache begründet zu sein, dass Signaltransduktion durch BAFF und durch CD40-Aktivierung über gemeinsame Teilschritte der NFKB-Signalkaskade verfügen [116, 117]. Allerdings ist die Signaltransduktion über BAFF nicht in der Lage den durch IL21 mediierten Zelltod zu überwinden, wenn die Koligation des BCR mit involviert ist [118].

### 2.3.1.4 BAFF im Huhn

codierendes Gen sondern um ein Pseudogen handelt. BAFF-R bindet ausschließlich BAFF. Dagegen bindet TACI auch APRIL, allerdings bestehen momentan nur Hinweise auf das Vorkommen von APRIL im Hühnergenom. Im Gegensatz zum Säuger wird BAFF-R ausschließlich auf B-Zellen exprimiert [119, 120].


### 2.3.2 Interleukin 10


Auch auf B-Zellen wirkt IL10 in allen Entwicklungsstadien angefangen von der Vorläufer- hin zur reifen B-Zelle [133] proliferativ. Dazu ist die Ligierung des kostimulatorischen Moleküls CD40 auf der B-Zelle notwendig und kann durch die Zytokine IL2 und IL4 synergistisch verstärkt werden [134]. IL10 fördert das Überleben über die Regulation der Expression

### 2.3.3 Interleukin 10 im Huhn

2.3.4 Interleukin 21


Abbildung 5: Einfluss von IL21 auf die Differenzierung von B-Zellen
(modifiziert nach Tangye 2015)[146]

Es wurde gezeigt, dass IL21 bei Mensch und Maus B-Zell stimulierende Eigenschaften hat und hauptsächlich von T-Helferzellen (Th1, Tfh, Th17) [148, 149] produziert wird. Der zugehörige IL21-Rezeptor findet sich vermehrt auf B-Zellen. IL21 wirkt an der Germinalen Zentrumsreaktion mit, induziert in B-Zellen einen Klassenwechsel zu IgG3, IgG1 und IgA [150-152] und fördert in B-Zellen eine Differenzierung zur Antikörper-sezernierenden Plasmazelle [148]. In der Literatur wird IL21 als das potentesste der humanen...
B-Zell-tropischen Zytokine neben IL2, IL4, IL6 und IL10 beschrieben, welches fähig ist die humorale Immunantwort zu beeinflussen [118, 153].


Zusammengefasst kann gesagt werden, dass IL21 Überleben und Proliferation von adäquat aktivierten B-Zellen fördert. Im Gegensatz dazu, inhibiert IL21 die Proliferation oder induziert Apoptose in den B-Zellen, welche ein unspezifisches Signal durch den BCR oder ein starkes Signal via TLR erfahren haben [153].
2.3.5 Interleukin 21 beim Huhn

Das orthologe Gen für IL21 im Huhn, wurde durch RT-PCR auf RNA aus stimulierten Milzzellen gewonnen. Es zeigt eine 20-30 % Übereinstimmung zu anderen Säuger-Orthologen. Im Huhn wird IL21 in den meisten lymphoiden Organen exprimiert, überdurchschnittlich von CD4⁺ TCRαβ⁺ T-Zellen. Wie auch für Säuger gezeigt wurde, verstärkt IL21 die T-Zellproliferation und inhibiert die Reifung von Dendritischen Zellen [166].
3 ZIELSETZUNG

Das Ziel dieser Arbeit war es die Wirkung von ausgewählten Zytokinen auf immature und mature B-Zellen des Haushuhns zu analysieren.

Hierfür wurden Lymphozyten aus Bursa und Milz mit CD40L, BAFF, IL10 und IL21 stimuliert und die Reaktion der Zellen mit verschiedenen Methoden untersucht.

Neben der Induktion von Zellproliferation wurde auch die Zahl lebender Zellen nach Kultivierung sowie eine Veränderung der Expression verschiedener Oberflächenmarker untersucht.
4 MATERIAL UND METHODEN

Die Hochzahlen beziehen sich auf die im Anhang alphabetisch aufgeführten Bezugsquellen. Zur besseren Lesbarkeit wurden im Ergebnisteil Tausendertrennpunkte verwendet.

4.1 HÜHNERHALTUNG


4.2 GEWINNUNG VON PRIMÄREN HÜHNERLEUKOZYTEN

Material

Phosphatgepufferte Salzlösung (PBS), pH 7,2 1
8,00 g Natriumchlorid (NaCl)¹
1,45 g Di-Natriumhydrogenphosphat-dihydrat (Na₂HPO₄ x2H₂O)¹
0,2 g Kaliumchlorid (KCl)¹
0,2 g Kaliumhydrogenphosphat (KH₂PO₄)¹
ad 1000 ml Aqua dest.
Einsatz in der Zellkultur nach Sterilisation durch autoklavieren
Einstellen des pH-Werts mit HCl und NaOH auf 7,4

Biocoll Separating Solution²
Trypanblau-Lösung³, Zählkammer (modifiziert nach Neubauer)³
Heparinlösung (500 IU ml)
5 ml Heparin-Natrium (25.000 IU/5 ml)⁴
45 ml RPMI 1640 mit Glutamax⁵
Spritzenstempel²⁰ und Metallsieb⁷ (Maschenweite 0,75 x 0,75 mm)
4.2.1 Gewinnung von Leukozyten aus Blut


4.2.2 Gewinnung von Leukozyten aus Bursa und Milz

4.2.3 Mikroskopische Beurteilung der Leukozyten

Nach der Präparation der Leukozyten durch Dichtezentrifugation wurden 10 µl der Zellsuspension in einem Verhältnis 1:1 mit Trypanblau versetzt, in einer modifizierten Zählkammer nach Neubauer gezählt und gleichzeitig die Vitalität der Zellen mikroskopisch beurteilt. Tote Zellen erscheinen dunkelblau angefärbt, vitale Zellen dagegen rundlich transparent.

4.3 ZELLKULTUR

4.3.1 Medien und Zusätze

Sofern nicht anders angegeben, wurden alle Medien und Zusätze bei 4 °C gelagert.

**Standardmedium**

450 ml RPMI 1640

50 ml fetales Rinderserum (*fetal bovine serum, FBS*)

**Hühnerleukozyten-Medium / Kulturmedium**

445 ml Basal Iscove Medium

40 ml FBS

10 ml Hühnerserum

5 ml Penicillin-Streptomycin-Lösung (Penicillin 100 IU/ml und Streptomycin 100 µg/ml)

Lagerung des FBS und der Penicillin-Streptomycin-Lösung als Aliquot von 10 ml bei 20 °C.

**Einfriermedium**

9 ml FBS

1 ml DMSO (Dimethylsulfoxid, (CH₃)₂SO)

Lagerung als Aliquots von 10 ml bei 20 °C

**Coolcell Einfrierbox**

Puromycin, 2 µg/ml

Geniticin, 250 µg/ml

CD40L Zellkulturüberstand (ZKÜ), BAFF ZKÜ, IL10 ZKÜ, IL21 ZKÜ
4.3.2 Verwendete Zelllinien

<table>
<thead>
<tr>
<th>Name</th>
<th>Herkunft, Spezies</th>
<th>Transformation</th>
<th>Vektor/ Tag</th>
<th>Selektions-antibiotikum</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEK-293-T</td>
<td>Embryonale Zellen, Niere, Mensch</td>
<td>Humanes Adenovirus</td>
<td>-</td>
<td>-</td>
<td>[167]</td>
</tr>
<tr>
<td>HEK-293-Flag-BAFF</td>
<td>Embryonale Zellen, Niere, Mensch</td>
<td>Humanes Adenovirus</td>
<td>PCR3-HA-Flag PS</td>
<td>Geneticin(^{23}) G418 250 µg/ml</td>
<td>[122]</td>
</tr>
<tr>
<td>2C10 (HEK-293-msCD8-CD40L)</td>
<td>Embryonale Zellen, Niere, Mensch</td>
<td>Humanes Adenovirus</td>
<td>pcIpc</td>
<td>Puromycin(^{1}) 2 µg/ml</td>
<td>[100, 168]</td>
</tr>
<tr>
<td>2B6 (HEK-293-Flag-IL10)</td>
<td>Embryonale Zellen, Niere, Mensch</td>
<td>Humanes Adenovirus</td>
<td>PCR3-HA-Flag PS</td>
<td>Geneticin(^{23}) G418 250 µg/ml</td>
<td>[102]</td>
</tr>
</tbody>
</table>

Tabelle 2: Übersicht der verwendeten Zelllinien

Zur Gewinnung der Zytokine CD40L, BAFF, IL10 wurden die mit dem für das jeweilige Zytokin kodierende Plasmid stabil transfizierten Zelllinien in Standardmedium kultiviert. Das Zytokin IL21 wurde durch die transiente Transfektion von 293-T Zellen generiert (siehe 4.4.1).

4.3.3 Kultivierung von Zelllinien

Alle zwei bis drei Tage wurden die semi-adhären Zellen im Standardmedium sorgfältig vom Boden des Kulturgefässes abgeklopft, zwei Drittel des Volumens abgenommen und durch frisches Standardmedium ersetzt. Zur Erhaltung des Selektionsdrucks wurde bei jeder dritten Passage das für das jeweilige Resistenzgen das spezifische Antibiotikum zugegeben. Die Kultivierung der Zellen erfolgte im Brutschrank bei 37 °C und 5 % CO\(_2\).

4.3.4 Kultivierung von primären Zellen

Nach der Präparation der Leukozyten aus Bursa und Milz (siehe 4.2.2) wurden die Zellen auf die gewünschte Zellkonzentration eingestellt und in die vorgelegte Zytokin-Mediumlösung gegeben, so dass die Zellen ohne größere Unterbrechung ihrer Stoffwechselaktivität in den Brutschrank bei 40 °C und 5 % CO\(_2\) verbracht werden konnten. Die Kultivierung von Bursalymphozyten erfolgte in allen Versuchen für 24 h, wohingegen Milzleukozyten immer für 48 h in Kultur verblieben. Je nach Versuchsansatz erfolgte die Kultivierung in 24-Flachlochplatten mit 1 ml Kulturmediumzellsuspension je Kavität, wobei die Konzentration der Bursalymphozyten 5x10\(^6\) Zellen pro ml betrug, die Konzentration der Milzleukozyten hingegen 2,5x10\(^6\) Zellen pro ml. Wurden 96-Flachlochplatten mit 200 µl je Kavität verwendet, betrug die Dichte der Bursazellen 5x10\(^5\) Zellen pro Kavität, die Dichte der
Milzleukozyten hingegen 2,5x10^5 Zellen pro Vertiefung. Die zur Stimulation der Leukozyten verwendeten Zytokin-haltigen Zellkulturüberstände wurden in unterschiedlicher Konzentration eingesetzt, CD40L in einer 1:10 Verdünnung, BAFF und IL10 in einer 1:50 Verdünnung und IL21 in einer 1:20 Verdünnung in Hühnerleukozytenmedium.

4.3.5 Einfrieren von Zellen
Zur Langzeitaufbewahrung wurden die Zellen in flüssigem Stickstoff gelagert. Pro Kryovial wurden 5x10^6 bis 1x10^7 Zellen bei 225xg für 10 Minuten zentrifugiert und in 1,8 ml Einfriermedium aufgenommen und zügig in eine Coolcell-Einfrierbox transferiert, die ein langsames Einfrieren von 1°C/min im -80°C Gefrierschrank gewährleistet. Nach einem Mindestaufenthalt von 12 h bei -80°C konnten die Kryovials in die Tanks mit flüssigem Stickstoff verbracht werden.

4.3.6 Auftauen von Zellen

4.4 HERSTELLUNG DER REKOMBINANTEN ZYTOKINE

4.4.1 Transiente Transfektion von 293-T Zellen mit IL21
Material

HEK-293-T Zellen
Sterile Petrischalen
Transfektionsreagenz Fugene
IL21-pCIneo Plasmid DNA
Positivkontrolle: pEGFP-N1 Plasmid DNA

Am Tag vor der Transfektion der HEK-293-T Zellen wurden diese in einer Petrischale mit 60 cm² Wachstumsfläche in einer Konzentration von 2,5x10^6 Zellen pro Schale ausgesät und
Material und Methoden

über Nacht bei 37 °C und 5 % CO₂ im Brutschrank inkubiert, so dass die Zellen am Tag der Transfektion 50-60 % konfluent waren. Vor Arbeitsbeginn wurden alle benötigten Reagenzien auf RT erwärmt. 10 µg der IL21 Plasmid DNA wurden in 500 µl RPMI in einem 1,5 ml Reaktionsgefäß zunächst gemischt und dann mit 30 µl des Transfektionsreagens Fugene für 10 Minuten bei RT inkubiert. Dabei war wichtig, dass das Transfektionsreagenz ohne Wandkontakt in das Medium-DNA-Gemisch pipetiert wurde, da es sonst zu unerwünschten Reaktionen des Transfektionsreagens mit der Kunststoffwand kommen konnte. Nach einmaligem Invertieren des Gefäßes wurde das Gemisch vorsichtig auf die, zuvor mit frischem Medium versorgten Zellen gegeben und nach leichten Schwenken wurde das Kulturgefäss zurück in den Brutschrank gestellt und für weitere 48 h bei 37 °C und 5 % CO₂ inkubiert. Nach 48 h wurde der Zellkulturüberstand vorsichtig abgenommen, für 10 Minuten bei 225xg zentrifugiert und bis zur weiteren Analyse bei 4 °C gelagert.

4.4.2 Gewinnung der Zytokine aus dem Überstand stabil transfizierter Zelllinien

Alle zwei bis drei Tage wurde Zellkulturüberstand der stabil transfizierten Zelllinien gewonnen und für 10 Minuten bei 225xg zentrifugiert. Bis zu einem Volumen von 1200 ml wurde der gewonnene Überstand in einem sterilen Gefäß zur weiteren Verarbeitung bei 4 °C gelagert.

4.4.3 Konzentrierung der rekombinanten Zytokine

Material

400 ml Amicon Rührzelle

Filter Diaflo Ultrafiltration Membranen, 10.000 Da, 76 mm

Spritzenvorsatzfilter für Sterilfiltration 0,22 µm

CD40L ZKÜ, BAFF ZKÜ, IL10 ZKÜ, IL21 ZKÜ

Durchführung

Das gesammelte ZKÜ-Volumen von 1200 ml wurde mithilfe einer Amiconrührzelle durch eine Filtrermembran gedrückt und auf ein Volumen von 60 ml eingeengt. Vor Arbeitsbeginn wurde die Filtrermembran für 30 Minuten in Aquadest. gelegt, nach Hersteller-Angaben in die Apparatur eingespannt und anschließend die Rührzelle unter einer Stickstoff (N₂)- Atmosphäre bei 3,5 bar betrieben. Es wurden jeweils 300 ml ZKÜ in die Rührzelle eingefüllt und gleichzeitig der Durchfluss in einem sterilen Becherglas aufgefangen. Dieser Vorgang wurde mehrmals wiederholt, dabei stand die Rührzelle auf einem Magnetrührer, der
Material und Methoden

durch gleichmäßiges langsames Rühren Ablagerungen auf dem Filter verringern konnte. Der Vorgang der Konzentrierung wurde bei 4 °C in einem Kühlraum durchgeführt und im Anschluss durch einen 0,22 µm-Spritzenvorsatzfilter sterilfiltriert, in 2 ml Reaktionsgefäß aliquotiert und bei 4 °C aufbewahrt.

4.4.4 Nachweis der rekombinanten Zytokine im ELISA

Zum Nachweis der rekombinanten Zytokine CD40L, BAFF und IL10 im konzentrierten Zellkulturüberstand wurde ein Enzyme-Linked Immunosorbent Assay (ELISA) verwendet. Es wurde entweder das Flag-Epitop (BAFF, IL10) oder das Maus-CD8-α-Tag (CD40L) detektiert.

Material

NUNC-Maxisorp Polystyren 96-Lochplatten

Beschichtungspuffer pH 9,6

3,11 g Natriumcarbonat (Na₂CO₃)¹
6 g Natriumhydrogencarbonat (NaHCO₃)¹
ad 1000 ml Aqua bidest.

Der pH-Wert wurde mit NaOH auf 9,6 eingestellt, die Lagerung erfolgte bei 4 °C.

Magermilchlösung 4 % (wurde kurz vor Gebrauch angesetzt)

4 g Magermilchpulver¹
ad 100 ml PBS

PBS-T (0,05 % Tween20)

0,5 ml Tween20¹
ad 1000 ml PBS

TMB-Puffer

8,2 g Na-Azetat (CH₃COONa)¹
3,15 g Zitronensäure-Monohydrat (C₆H₇O₇xH₂O)¹
ad 1000 ml Aqua bidest

Lagerung bei 4 °C

TMB-Stammlösung

6mg 3,3´,5,5´ Tetramethylbenzidin (TMB)¹
ad 1 ml DMSO
Lagerung lichtgeschützt bei Raumtemperatur

**TMB Gebrauchslösung**

10 ml TMB-Puffer 37°C

332 μl TMB Stammlösung

3,0 μl 30 % H₂O₂

kurz vor Gebrauch ansetzen und sofort verwenden

**Schwefelsäure 1 M¹**

**Proben**

CD40L ZKÜ, CD40L ZKÜ konzentriert

BAFF ZKÜ, BAFF ZKÜ konzentriert

IL10 ZKÜ, IL10 ZKÜ konzentriert

**Verwendete Antikörper** siehe Tabelle 3

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Gebundenes Antigen</th>
<th>Isotyp</th>
<th>Tierart</th>
<th>Konzentration/Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CD40L-ELISA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV71</td>
<td>CD40L/chCD154</td>
<td>IgG1</td>
<td>Maus</td>
<td>5 μg/ml</td>
<td>8</td>
</tr>
<tr>
<td>anti-muCD8a-Biotin</td>
<td>muCD8a</td>
<td>IgG2a</td>
<td>Ratte</td>
<td>0,5 μg/ml</td>
<td>25</td>
</tr>
<tr>
<td>Streptavidin-POD</td>
<td>Biotin</td>
<td></td>
<td></td>
<td>1:4000</td>
<td>9</td>
</tr>
<tr>
<td><strong>BAFF-ELISA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-Flag M2</td>
<td>Flag-Epitop</td>
<td>IgG1</td>
<td>Maus</td>
<td>1 μg/ml</td>
<td>12</td>
</tr>
<tr>
<td>anti-BAFF S120</td>
<td>BAFF</td>
<td>IgG (polyklonal)</td>
<td>Kaninchen</td>
<td>5 μg/ml</td>
<td>laborintern</td>
</tr>
<tr>
<td>anti-rabbit-IgG-POD</td>
<td>rbIgG (H+L)</td>
<td>IgG (polyklonal)</td>
<td>Ziege</td>
<td>1:10.000</td>
<td>26</td>
</tr>
<tr>
<td><strong>IL10-ELISA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Flag-Epitop</td>
<td>IgG1</td>
<td>Maus</td>
<td>1 μg/ml</td>
<td>12</td>
</tr>
<tr>
<td>M2-POD</td>
<td>Flag-Epitop</td>
<td>IgG1</td>
<td>Maus</td>
<td>5 μg/ml</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabelle 3: Übersicht der im ELISA verwendeten Antikörper

**Durchführung**

Alle Volumenangaben beziehen sich auf eine Kavität einer *NUNC-Maxisorp Polystyren* 96-Lochplatte. Zwischen den einzelnen Arbeitsschritten wurde die Platte mit Hilfe eines ELISA-Washers dreimal mit PBS-T gewaschen. Die Inkubationen erfolgten für 60 Minuten bei RT. Sofern nicht anders angegeben, erfolgten die AntikörpERVERDÜNNUNGEN in PBS. Eine
Material und Methoden


### 4.4.4.1 Tabellarische Durchführung der spezifischen ELISA

<table>
<thead>
<tr>
<th>Ablauf</th>
<th>Verwendete Antikörper</th>
<th>Menge</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschichtung</td>
<td>AV71</td>
<td>100 µl/well</td>
<td>Über Nacht 4 °C</td>
</tr>
<tr>
<td>Blockierung</td>
<td>4 % Magermilch in PBS</td>
<td>200 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Proben</td>
<td>CD40L-ZKÜ CD40L-ZKÜ konz.</td>
<td>100 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Sekundärentikörper</td>
<td>rt-anti-muCD8a-Biotin</td>
<td>50 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Detektion</td>
<td>Streptavidin-POD</td>
<td>50 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Entwicklung</td>
<td>TMB-Gebrauchslösung</td>
<td>100 µl/well</td>
<td>10 min</td>
</tr>
<tr>
<td>Abstoppen</td>
<td>Schwefelsäure</td>
<td>50 µl/well</td>
<td>sofort messen</td>
</tr>
</tbody>
</table>

Tabelle 4: Durchführung CD40L-ELISA
**Material und Methoden**

### Tabelle 5: Durchführung BAFF-ELISA

<table>
<thead>
<tr>
<th>Ablauf</th>
<th>Verwendeter Antikörper</th>
<th>Menge</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschichtung</td>
<td>M2-anti-Flag</td>
<td>100 µl/well</td>
<td>Über Nacht 4 °C</td>
</tr>
<tr>
<td>Blockierung</td>
<td>4% Magermilch in PBS</td>
<td>200 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Probe</td>
<td>BAFF-ZKÜ</td>
<td>100 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Sekundä rantikörper</td>
<td>S120 anti - BAFF</td>
<td>100 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Detektion</td>
<td>S120 anti - BAFF</td>
<td>100 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Entwicklung</td>
<td>TMB-Gebrauchslösung</td>
<td>100 µl/well</td>
<td>10 min</td>
</tr>
<tr>
<td>Abstoppen</td>
<td>Schwefelsäure</td>
<td>50 µl/well</td>
<td>sofort messen</td>
</tr>
</tbody>
</table>

### Tabelle 6: Durchführung IL10-ELISA

<table>
<thead>
<tr>
<th>Ablauf</th>
<th>Verwendeter Antikörper</th>
<th>Menge</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschichtung</td>
<td>M2-anti-Flag</td>
<td>100 µl/well</td>
<td>Über Nacht 4 °C</td>
</tr>
<tr>
<td>Blockierung</td>
<td>4% Magermilch in PBS</td>
<td>200 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Probe</td>
<td>IL10-ZKÜ</td>
<td>100 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Sekundä rantikörper</td>
<td>M2 anti-Flag-POD</td>
<td>50 µl/well</td>
<td>1 h RT</td>
</tr>
<tr>
<td>Entwicklung</td>
<td>TMB-Gebrauchslösung</td>
<td>100 µl/well</td>
<td>10 min</td>
</tr>
<tr>
<td>Abstoppen</td>
<td>Schwefelsäure</td>
<td>50 µl/well</td>
<td>sofort messen</td>
</tr>
</tbody>
</table>

#### 4.4.5 Nachweis von IL21 im Proliferationsassay mit $[^{3}\text{H}]-\text{Thymidin}$

Das Vorhandensein des Zytokins IL21 im ZKÜ der transient transfizierten 293-T-Zellen wurde durch den Nachweis der biologischen Funktion im Proliferationsassay mit $[^{3}\text{H}]-\text{Thymidin}$ bestätigt (Durchführung siehe 4.5). IL21 wurde $\log_2$ titriert; in Medium allein und mit CD40L zusammen.
4.5 PROLIFERATIONSASSAY MIT $[^3\text{H}]-\text{THYMIDIN}$

Die Proliferation von stimulierten Bursa- und Milzlymphozyten wurde durch den Einbau von radioaktiv markiertem $[^3\text{H}]-\text{Thymidin}$ in die DNA von sich teilenden Zellen quantifiziert.

**Material**

- **Bursa- und Milzlymphozyten in Einzelzellsuspension**
- **CD40L, BAFF, IL10, IL21 ZKÜ konzentriert**
- **Hühnerleukozyten-Medium**
- **$[^3\text{H}]-\text{Thymidin}$**
- **Szintillationsflüssigkeit**
- **Glasfilter**
- **Unifilter-9erGF/C, Microplate**

**Durchführung**

Die Verdünnung der zu untersuchenden Zytokine wurde in einer sterilen 96-Flachlochplatte mit Hühnerleukozytenmedium vorgelegt und im Brutschrank auf 40 °C erwärmt. Die Dichte der Lymphozyten betrug für die Milz 2,5x10$^5$ Zellen pro Kavität und für die Bursa 5x10$^5$ Zellen pro Kavität. Die Lymphozyten wurden in einem Volumen von 100 µl auf die vorgelegten Zytokinverdünnungen gegeben, so dass die Zellen nach Präparation schnellst möglich zur Inkubation in den Brutschrank verbracht werden konnten. Zur Stimulation wurde CD40L in einer 1:10 Verdünnung, IL21 1:20, BAFF und IL10 in einer 1:50 Verdünnung eingesetzt. Alle Zytokinkombinationen wurden als Triplikate angesetzt, als Kontrollen dienten unstimulierte Zellen. Das Markieren der Zellen erfolgte durch die Zugabe von 20 µl $[^3\text{H}]-\text{Thymidin}$ pro Delle, was einer Aktivität von 0,5 µCi/ml bzw. 18,5 kBq pro Delle entspricht, nach einer Stimulationszeit der Bursalymphozyten von 24 h bzw. Milzlymphozyten von 48 h im Brutschrank bei 40 °C und 5 % CO2. Beide Lymphozytenkulturen wurden nach Markierung für weitere 16 h bei 40 °C und 5 % CO2 inkubiert und bis zur Messung bei -20°C tiefgefahren aufbewahrt. Nach dem Auftauen der 96-Flachlochplatten konnten die Lymphozyten mit Hilfe eines Zellerntegeräts (*Topcount Perkin Elmer*) auf einen Glasfilter überführt werden. Dieser wurde bei 70 °C für 15 Minuten getrocknet und danach in eine Multiscreeenplatte eingespannt. Pro Delle wurden 20 µl der Szintillationsflüssigkeit („Microscint“) aufgetragen und die Platte mit einer transparenten Klebefolie abgedichtet. Der Zerfall des in die Zell-DNA integrierten $[^3\text{H}]-\text{Thymidin}$ wurde als Funktion der Zerfälle pro Minute (cpm=counts per minute) dargestellt.
4.6 DURCHFLUSSZYTOMETRISCHE UNTersuchungen

Die durchflusszytometrischen Messungen wurden am FACS CantoII (Becton Dickinson) durchgeführt. Die Auswertung der Daten erfolgte mit Hilfe der Programme BD FACS DIVA Version 3.0 und FlowJo10.0.8.

Material

Fluo-Puffer

5 g Bovines Serum Albumin (BSA)\textsuperscript{12}

50 mg Natrium Azid (Na\textsubscript{3}N)\textsuperscript{1}

ad 500 ml PBS pH 7,2, Lagerung bei 4 °C

Normal-Mausserum: 1:20 in Fluo-Puffer

Lebend/Tot-Färbung: 7AAD (7-Actinomycin-D)\textsuperscript{1}

Primäre und sekundäre AK verdünnt in Fluo-Puffer

PBS

Bursa- und Milzleukozyten in Einzelzellsuspension (Präparation 4.2.2)

Für die durchflusszytometrische Untersuchung wurden, wenn nicht anders angegeben, 5x10\textsuperscript{5} Zellen auf einer 96-Lochplatte ausplattiert, auf ein Volumen von 200 µl Fluopuffer aufgefüllt und bei 716xg für eine Minute zentrifugiert. Das vorliegende Zellpellet wurde den Protokollen für die direkte und indirekte Färbung entsprechend bearbeitet siehe (4.6.3; 4.6.4 und 4.6.5.) Die verwendeten primären und sekundären Antikörper sowie direktenkonjugierte Antikörper werden in den Tabellen 6-8 aufgeführt. Die Inkubation der Zellen mit der Antikörperverdünnung fand stets auf Eis gekühlt und im Dunkeln statt. Als Kontrollen wurden für jede Färbung entsprechende Isotypkontrollen mitgeführt. Ein Waschschnitt in der Vorbereitung für durchflusszytometrische Messungen bedeutet (wenn nicht gesondert beschrieben) das Resuspendieren der Zellen in 200 µl Fluopuffer nach einer Inkubation mit einem Färbeantikörper und die nachfolgende Zentrifugation der Zellsuspension bei 716xg für eine Minute, sodass die Zellen wieder als Pellet vorliegen und erneut in einer Antikörperlösung oder in Fluopuffer resuspendiert werden können.
4.6.1 Primäre Antikörper

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Klon</th>
<th>Spezies</th>
<th>Isotyp</th>
<th>Konzentration</th>
<th>Referenz o.Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAFF-R</td>
<td>2C4</td>
<td>Maus</td>
<td>IgG1</td>
<td>2 µg/ml</td>
<td>laborintern</td>
</tr>
<tr>
<td>CD40</td>
<td>AV79</td>
<td>Maus</td>
<td>IgG2a</td>
<td>1 µg/ml</td>
<td>8</td>
</tr>
<tr>
<td>L-Kette</td>
<td>2G1</td>
<td>Maus</td>
<td>IgG1</td>
<td>7,5 µg/ml</td>
<td>laborintern</td>
</tr>
<tr>
<td>CXCR4</td>
<td>9D9</td>
<td>Maus</td>
<td>IgG2a</td>
<td>2,5 µg/ml</td>
<td>[169]</td>
</tr>
<tr>
<td>CXCR5</td>
<td>6A9</td>
<td>Maus</td>
<td>IgG1</td>
<td>1 µg/ml</td>
<td></td>
</tr>
<tr>
<td>CD80</td>
<td>IAH: F864:DC7</td>
<td>Maus</td>
<td>IgG2a</td>
<td>1 µg/ml</td>
<td>16</td>
</tr>
<tr>
<td>MHCI</td>
<td>2G11</td>
<td>Maus</td>
<td>IgG1</td>
<td>0,5 µg/ml</td>
<td>9</td>
</tr>
<tr>
<td>Maus-CD8-α-Tag</td>
<td></td>
<td>Ratte</td>
<td>IgG2a</td>
<td>2,5 mg/ml</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabelle 7: In der Durchflusszytometrie eingesetzte primäre Antikörper

4.6.2 Sekundäre Antikörper

<table>
<thead>
<tr>
<th>Name</th>
<th>Spezies</th>
<th>Fluorochrom</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-muIgG1</td>
<td>Ziege</td>
<td>APC</td>
<td>1:1000</td>
<td>26</td>
</tr>
<tr>
<td>anti-muIgG1</td>
<td>Ziege</td>
<td>RPE</td>
<td>1:300</td>
<td>9</td>
</tr>
<tr>
<td>anti-muIgG2a</td>
<td>Ziege</td>
<td>AlexaFluor647</td>
<td>1:2000</td>
<td>5</td>
</tr>
<tr>
<td>anti-muIgG2a</td>
<td>Ziege</td>
<td>RPE</td>
<td>1:300</td>
<td>9</td>
</tr>
<tr>
<td>anti-muIgG2b</td>
<td>Ziege</td>
<td>APC</td>
<td>1:200</td>
<td>26</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>Streptomyces avidinii</td>
<td>APC</td>
<td>1:1500</td>
<td>26</td>
</tr>
</tbody>
</table>

Tabelle 8: In der Durchflusszytometrie eingesetzte Sekundärantikörper

4.6.3 Indirekte Färbungen

Die pelletierten Zellen wurden in 50 µl der primären Antikörper-Lösung resuspendiert und für 20 min auf Eis inkubiert. Vor der zweiten Inkubation für 20 Minuten mit 40 µl der sekundären Antikörperformverdünnung wurde zum Waschen 200 µl Fluopuffer zugegeben und erneut bei 716xg für eine Minute zentrifugiert. Zur Messung wurde das Zellpellet in 100 µl Fluopuffer aufgenommen und in ein mit 300 µl Fluopuffer beschichtetes Messröhrchen überführt.

Bei Mehrfachfärbungen mit Antikörpern unterschiedlichen Isotyps wurden die primären Antikörper in 50 µl einer gemeinsamen Lösung auf die jeweilige Endkonzentration verdünnt. Auch die sekundären, fluoreszenzmarkierten Antikörper wurden in gemeinsamen Antikörperlösungen in einem Volumen von 40µl auf die jeweilige Endkonzentration verdünnt hergestellt.
4.6.4 Direkte Färbungen mit Fluochrom-markierten Antikörpern

Die pelletierten Zellen wurden in 40 µl der verdünnten Antikörperlösung resuspendiert und für 20 Minuten auf Eis im Dunkeln inkubiert.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Klon</th>
<th>Isotyp</th>
<th>Fluorochrom</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>chBu1(B6)</td>
<td>AV20</td>
<td>IgG1</td>
<td>RPE</td>
<td>1:100</td>
<td>9</td>
</tr>
<tr>
<td>chBu1(B6)</td>
<td>AV20</td>
<td>IgG1</td>
<td>FITC</td>
<td>1:300</td>
<td>laborintern</td>
</tr>
<tr>
<td>chBu1(B6)</td>
<td>AV20</td>
<td>IgG1</td>
<td>APC</td>
<td>1:500</td>
<td>laborintern</td>
</tr>
<tr>
<td>BAFF-R</td>
<td>2C4</td>
<td>IgG1</td>
<td>FITC</td>
<td>1:400</td>
<td>laborintern</td>
</tr>
<tr>
<td>chCD4</td>
<td>CT4</td>
<td>IgG1</td>
<td>FITC</td>
<td>1:1000</td>
<td>17</td>
</tr>
<tr>
<td>chCD8a</td>
<td>CT8</td>
<td>IgG1</td>
<td>RPE</td>
<td>1:1000</td>
<td>17</td>
</tr>
</tbody>
</table>

Tabelle 9: Durchflusszytometrisch verwendete direktskonjugierte Antikörper

4.6.5 Lebend/Tot-Färbung

Zur Diskriminierung zwischen lebenden und toten Zellen wurde 7-Actinomycin-D (7AAD) in einer Konzentration von 5 µg/ml verwendet. Hierzu wurden kurz vor Messung der Proben 10 µl der 7AAD-Stammlösung (200 µg/ml) in 400 µl Zellsuspensionsvolumen gegeben und die Proben 10-15min auf Eis im Dunkeln inkubiert.

4.6.6 Mehrfachfärbungen mit Antikörpern des gleichen Isotyps

4.6.7 Färbung der Milzleukozyten mit dem Proliferationsfarbstoff eFluor670


Material

eFluor670\textsuperscript{15}-Stocklösung: 5 µM in PBS

Milzlymphozyten

Durchführung

Nach Gewinnung der primären Milzleukozyten durch Dichtezentrifugation (siehe 4.2.2) wurde sofort im Anschluss die Markierung mit dem Proliferationsfarbstoff eFluor670 durchgeführt. Dazu wurde die benötigte Zellzahl in ein 15 ml-Röhrchen überführt und bei 225xg für 1 Minute bei Raumtemperatur zentrifugiert. Der Überstand wurde verworfen und pro 1x10\textsuperscript{7} Zellen je 1 ml eFluor670-Arbeitslösung in einer Konzentration von 5 µM zugegeben und resuspendiert. Die Zellen wurden im Probenröhrchen im Wasserbad bei 37 °C für zehn Minuten im Dunkeln inkubiert und nach 5 Minuten für 10 Sekunden auf dem Schüttler aufgewirbelt, um eine gleichmäßige Verteilung des Farbstoffes zu gewährleisten. Im ersten Waschschritt wurde das Probenröhrchen mit warmem FBS-haltigem Standardmedium aufgefüllt, um die Färbereaktion abzustoppen. Nach erneuter Zentrifugation bei 225xg für 10 Minuten bei RT wurde das nun sichtbar bläulich gefärbte Zellpellet in 5 ml warmem RPMI resuspendiert, in ein 50 ml-Röhrchen überführt und mit RPMI auf ein Volumen von 50 ml aufgefüllt. Nach diesem dritten Waschschritt erfolgte die letzte Zentrifugation bei 225xg für 10 Minuten bei RT, der Überstand wurde verworfen und das Zellpellet in Hühnerleukozyten-Medium resuspendiert, die Zellen gezählt und auf die gewünschte Zellkonzentration eingestellt. Die APC-Fluoreszenz der Zellen wurde durchflusszytometrisch kontrolliert und die erfolgreich markierten Zellen in Kultur genommen.
4.6.8 Zellzahl-Quantifizierung mittels Beads

Material

Stimulierte Bursa- und Milzleukozyten in Einzelzellsuspension

123count ebears\textsuperscript{15}

Durchführung


Die Laser des Durchflusszytometers wurden so eingestellt, dass die Beads im FITC versus PE Kanal dargestellt werden konnten. Je Probe wurden 10.000 Beads gezählt. Zur Auswertung der absoluten B- und T-Zellzahlen pro Stimulation wurde das Programm \textit{FlowJo} benutzt und die Zellzahl mithilfe der Formel:

\[
\text{Absolute Zellzahl} = \frac{\text{gezählte lebende Zellpopulation} \times \text{zugefügte Beads}}{\text{gezählte Beads}}
\]

4.7 STATISTISCHE AUSWERTUNG


Grafiken wurden mit GraphPad Prism\textsuperscript{®} von GraphPad Software, Inc., La Jolla, USA oder mittels Microsoft\textsuperscript{®} Power Point 2010 angefertigt.

Zur besseren Lesbarkeit wurden Tausendertrennpunkte verwendet.
5 ERGEBNISSE


5.1 EINFLUSS VON CD40L, BAFF, IL10 UND IL21 AUF DIE LYMPHOZYTENZAHL

Durch Kultivierung der Lymphozyten in Zytokin-Mediummischungen erhöhte sich die B-Lymphozytenzahl gegenüber der zur Kontrolle in Medium allein kultivierten Bursa- und Milzlymphozyten, welche rasch abstarben und auf wenige Prozent (1-5 %) der Ausgangszahl reduziert wurden.

Abbildung 6: Absolute Anzahl lebender B-Zellen in mit CD40L, BAFF, IL10 und IL21 stimulierten Bursa- und Milzellkulturen
Um die Effektstärke der Zytokine auf die verbleibenden lebenden B-Zellzahlen in den Kulturen darzustellen wurde der Lebend-Tot-Index (LT-Index) berechnet, indem die Zahl lebender B-Zellen je Stimulation durch die Anzahl lebender B-Zellen im Kontrollansatz mit Medium ohne Zytokine geteilt wurde. Definitionsgemäß ist der LT-Index für die Kultivierung von Lymphozyten in Medium gleich 1.

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Bursa</th>
<th>Milz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>1±0</td>
<td>1±0</td>
</tr>
<tr>
<td>CD40L</td>
<td>25±4</td>
<td>70±8</td>
</tr>
<tr>
<td>BAFF</td>
<td>3±0</td>
<td>5±1</td>
</tr>
<tr>
<td>IL10</td>
<td>1±0</td>
<td>1±0</td>
</tr>
<tr>
<td>IL21</td>
<td>2±0</td>
<td>1±0</td>
</tr>
<tr>
<td>IL10+IL21</td>
<td>2±0</td>
<td>1±0</td>
</tr>
<tr>
<td>BAFF+IL10</td>
<td>3±0</td>
<td>8±2</td>
</tr>
<tr>
<td>BAFF+IL21</td>
<td>7±1</td>
<td>29±9</td>
</tr>
<tr>
<td>BAFF+IL10+IL21</td>
<td>7±2</td>
<td>30±4</td>
</tr>
<tr>
<td>CD40L+BAFF</td>
<td>24±5</td>
<td>81±12</td>
</tr>
<tr>
<td>CD40L+IL10</td>
<td>25±6</td>
<td>195±48</td>
</tr>
<tr>
<td>CD40L+IL21</td>
<td>55±22</td>
<td>215±49</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10</td>
<td>26±0</td>
<td>215±55</td>
</tr>
<tr>
<td>CD40L+IL10+IL21</td>
<td>50±22</td>
<td>236±50</td>
</tr>
<tr>
<td>CD40L+BAFF+IL21</td>
<td>52±13</td>
<td>255±55</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10+IL21</td>
<td>56±16</td>
<td>302±72</td>
</tr>
</tbody>
</table>

Tabelle 10: Lebend-Tot-Index der in kultivierte Lymphozyten aus Bursa und Milz

Dargestellt sind die LT-Indices (Zellzahl Stimulation/Zellzahl im Medium) der in Zytokinkombinationen stimulierten Bursa- und Milzlymphozyten. Angegeben sind Mittelwert±STABW dreier 8 Wochen alter Hühner.

Die zur Kontrolle in Medium ohne Zytokin zusätze kultivierten Lymphozyten starben rasch ab und waren nach 24 h in Bursazellkulturen auf 1 % der ursprünglich eingesetzten Lymphozytenzahl dezimiert. In Milzkulturen waren nach 48 h noch 5 % der ursprünglich eingesetzten Lymphozyten vorhanden. IL10 und IL21 alleine wirkten sich nicht auf die lebende B-Zellzahl nach Kultivierung aus und zeigten keinen synergistischen Effekt.

BAFF konnte die Anzahl der lebenden B-Milzlymphozyten um das 5-fache, die Anzahl der Bursalymphozyten um das 3-fache steigern im Vergleich zur Kultivierung in Medium allein.

Interessanterweise zeigte sich BAFF mit IL21 synergistisch und führte zu einer 7-fach erhöhten B-Zellrate in Bursakulturen. In der Milz war dieser Effekt mit durchschnittlich 30-facher Steigerung vielfach stärker ausgeprägt. In Milzlymphozyten zeigte auch BAFF mit
IL10 einen synergistischen Effekt und erhöhte die B-Zellrate 10-fach gegenüber der Mediumkontrolle, in der Bursa nur 3-fach.

Auch die Wirkung von CD40L allein zeigte sich mit einer 70-fachen Erhöhung der B-Zellzahl in Milzzellkulturen stärker ausgeprägt, als die 25-fache Erhöhung der B-Zellzahlen in Bursazellkulturen.


In Milzzellkulturen konnten die lebenden B-Zellder B-Zellen um das 200-fache gesteigert werden, die gemessene Zahl lebender B-Zellen in Milzzellkulturen war mit 4x10^5 (CD40L+BAFF, CD40L+IL10, CD40L+IL21) bis 6x10^5 (CD40L+IL10+IL21, CD40L+BAFF+IL21, CD40L+BAFF+IL21+IL10) Zellen pro Ansatz in der Kombination aus allen verwendeten Zytokinen zusammen höher als für Lymphozytenkulturen der Bursa.

Die weitere Zugabe von BAFF konnte im Gegensatz zu Bursalymphozyten die Anzahl lebender B-Zellen in Kultur zur Kostimulation mit CD40L+IL10 und CD40L+IL21 gering erhöhen.

Mit diesem Versuchsansatz konnte gezeigt werden, dass bei Kostimulation mit CD40L durch Zugabe von IL10 (Milz) und IL21 (Milz und Bursa) die Zahl lebender B-Zellen in Kultur durch Synergie-Effekte der Zytokine deutlich steigerbar ist.

5.2 EINFLUSS VON CD40L, BAFF, IL10 UND IL21 AUF DIE PROLIFERATION VON LYMPHOZYTEN

5.2.1 Lymphozytenproliferation im $[^3]$H-Thymidin-Assay

In Vorversuchen mit verschiedenen Zellzahlen und Kultivierungszeiten, hat sich die unterschiedliche Kultivierungszeit für Bursa- und Milzlymphozyten mit der ausgewählten Zellzahl bewährt. Als unstimulierter Kontrollansatz wurden Bursa- und Milzlymphozyten in Medium ohne Zytokinzusätze kultiviert, dabei wurde für Bursalymphozyten eine niedrige basale Countrate von durchschnittlich 200 cpm detektiert, für Milzlymphozyten eine etwas höhere Rate von knapp 3.000 cpm. Der biologische Effekt der rekombinant hergestellten Zytokine wurde in früheren Arbeiten hinreichend belegt [101, 102, 122, 166], sodass auf einen Stimulationsansatz mit einem biologisch funktionslosen Kontrollprotein verzichtet werden konnte.

5.2.1.1 Einfluss von BAFF, IL10, IL21 auf die Proliferation

Zytokinkombinationen ohne die Kostimulation durch CD40L induzierten niedrigere Countraten als mit CD40L und sind mit einer angepassten Achsenskala in Abbildung 7 dargestellt.

Abbildung 7: Durch BAFF, IL10 und IL21 induzierte Proliferation

Proliferationsraten von Bursa- und Milzlymphozyten nach 24 h (Bursa schwarze Balken) bzw. 48 h (Milz graue Balken) unter Einfluss der Zytokinen IL10, IL21 und BAFF. Dargestellt sind drei unabhängige Experimente (MW+STABW) von drei 8 Wochen alten Hühnern. Die statistische Signifikanz gegenüber Medium-kultivierten Lymphozyten ist mit *p<0,05 gekennzeichnet.

Für das Zytokin IL10 allein konnte kein proliferativer Effekt nachgewiesen werden. IL21 allein induziert in der Milz niedrige Proliferationsraten. In Ansätzen mit BAFF wurden geringgradige Proliferationsraten in Milzlymphozytenkulturen gemessen. Äußerst interessant ist, dass BAFF+IL21 als einzige Kombination ohne Kostimulation mit CD40L in Lymphozytenkulturen beider Organe eine mittlere Proliferationsrate von durchschnittlich 20.000 cpm induziert.
5.2.1.2 Einfluss der Zugabe von CD40L auf die Proliferation

Abbildung 8 zeigt die induzierte Proliferationsrate der Stimulationsansätze von Bursa- und Milzlymphozyten mit Zytokinkombinationen in Anwesenheit von CD40L nach 24 h (Bursa) bzw. 48 h (Milz).

Die Stimulation mit CD40L induzierte in Bursalympohzyten eine mittlere Proliferationsrate von ca. 25.000 cpm, in Milzlymphozyten etwa 80.000 cpm. Der proliferative Effekt von CD40L war durch die Zugabe von IL21 in Bursakulturen und in Milzzellkulturen durch IL10 und IL21 deutlich steigerbar. Die höchsten Proliferationsraten in Bursalympohzytenkulturen wurden durch den Synergismus von CD40L+IL21 (350.000 cpm) hervorgerufen. Auch in Milzzellkulturen induzierte die Kombination CD40L+IL21 eine sehr hohe Proliferationsrate von durchschnittlich 280.000 cpm und war durch Zugabe von BAFF und IL10 nicht weiter steigerbar. Allerdings war in der Milz auch die Kombination von CD40L+IL10 in der Lage, eine maximale Proliferation der Zellen zu induzieren (340.00 cpm), was die Wirkung dieser Kombination auf Bursalympohzyten um ein Vielfaches übertraf. So lässt sich zusammenfassend sagen, dass für die Bursa der proliferative Effekt, der durch die Kombination aus CD40L+IL21 induziert, wurde dem Maximum entsprach und eine Zugabe von weiteren Zytokinen keine Steigerung der Proliferationsrate bewirkte; in der Milz konnte die maximale Proliferation hingegen sowohl durch CD40L+IL21 als auch durch CD40L+IL10 induziert werden.
Die Zugabe von BAFF zur CD40L Stimulation dagegen, ergab weder in Bursa- noch in Milzlymphozytenkulturen eine Steigerung der mit CD40L bzw. CD40L-Zytokinkombinationen induzierten Proliferation.

5.2.1.3 Effektstärke der Zytokine auf die Proliferation

Um die Effektstärke der Zytokine im Zusammenspiel der Zytokinwirkungen auf Bursa- und Milzlymphozyten besser vergleichen zu können, wurde der Proliferationsindex (PI) berechnet und in Tabelle 11 dargestellt. Hierbei wurden die Werte der Stimulationen durch den Mediumwert geteilt. Stimulierte Bursalymphozytenkulturen erzielten per se höhere Proliferationsindices, da die basale Courtrate für in Medium allein kultivierten Bursalymphozyten deutlich niedriger war als der Mediumwert für Milzlymphozyten.

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Bursa</th>
<th>Milz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>1±0</td>
<td>1±0</td>
</tr>
<tr>
<td>CD40L</td>
<td>120±29</td>
<td>42±28</td>
</tr>
<tr>
<td>BAFF</td>
<td>8±2</td>
<td>2±0</td>
</tr>
<tr>
<td>IL10</td>
<td>1±1</td>
<td>1±0</td>
</tr>
<tr>
<td>IL21</td>
<td>2±1</td>
<td>3±0</td>
</tr>
<tr>
<td>IL10+IL21</td>
<td>2±1</td>
<td>2±0</td>
</tr>
<tr>
<td>BAFF+IL10</td>
<td>12±2</td>
<td>4±1</td>
</tr>
<tr>
<td>BAFF+IL21</td>
<td>94±19</td>
<td>28±18</td>
</tr>
<tr>
<td>BAFF+IL10+IL21</td>
<td>110±22</td>
<td>21±13</td>
</tr>
<tr>
<td>CD40L+BAFF</td>
<td>151±21</td>
<td>37±26</td>
</tr>
<tr>
<td>CD40L+IL10</td>
<td>231±45</td>
<td>250±17</td>
</tr>
<tr>
<td>CD40L+IL21</td>
<td>1720±121</td>
<td>210±29</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10</td>
<td>272±35</td>
<td>248±25</td>
</tr>
<tr>
<td>CD40L+IL10+IL21</td>
<td>1652±119</td>
<td>198±60</td>
</tr>
<tr>
<td>CD40L+BAFF+IL21</td>
<td>1750±183</td>
<td>196±20</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10+IL21</td>
<td>1960±298</td>
<td>195±32</td>
</tr>
</tbody>
</table>

Tabelle 11: Proliferationsindex der stimulierten Lymphozyten

Dargestellt sind die Proliferationsindices der mit Zytokinkombinationen stimulierten Bursa- und Milzlymphozyten. Angegeben sind die Mittelwerte ±STABW dreier 8 Wochen alter Hühner.

Die Zytokine IL10, IL21 allein oder deren Kombination zeigten keinen proliferativen Effekt auf die kultivierten Lymphozyten aus Bursa und Milz. Die Stimulation mit BAFF und die Kombination BAFF+IL10 induzierten geringgradige Proliferation auf Bursalymphozyten und Milzlymphozyten. Bei gleichzeitiger Anwesenheit von IL21 zur Stimulation von BAFF, kommt es zum Synergismus der beiden Zytokine, wodurch auch ohne die Kostimulation mittels CD40L ein mittleres Proliferationsniveau induziert wurde. CD40L allein erzeugt in

5.2.2 Lymphozytenproliferation im Proliferationsassay mit eFluor670

Im Fokus dieser Arbeit stehen die B-Zellen des Haushuhns. Aufgrund der Tatsache, dass es sich in der Milz um eine gemischte Lymphozytenpopulation handelt (siehe Tabelle 12), kann durch die beschriebenen Versuche mit radioaktiv gepulsten gesamten Milzlymphozyten nicht ausgeschlossen werden, dass auch andere durch CD40L, BAFF, IL10 und IL21 stimulierbare Zellen zur Proliferation angeregt wurden.

<table>
<thead>
<tr>
<th></th>
<th>Bu1</th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milz</td>
<td>32,1±5</td>
<td>16,5±4</td>
<td>31,7±7</td>
</tr>
</tbody>
</table>

Tabelle 12: B- und T-Zellfrequenz der Milz vor Beginn der Kultivierung

Milzleukozyten wurden nach Präparation durch Dichtezentrifugation gegen Bu1, CD4 und CD8 gefärbt und die B- und T-Zellfrequenz (CD4⁺ oder CD8⁺) durchflusszytometrisch bestimmt. Die Tabelle zeigt Mittelwerte in Prozent ±STABW von fünf Tieren im Alter zw. 8 und 12 Wochen.
5.2.2.1 Charakterisierung Zytokin-stimulierten proliferierenden Milzlymphozyten

Um zu untersuchen, welche Zellen unter den ausgewählten Zytokineinflüssen proliferieren, wurde in dieser Arbeit der Proliferationsfarbstoff eFluor670 eingesetzt. Die Zellen wurden vor Stimulationsbeginn mit eFluor670 markiert, der im Falle von Zellteilung zu gleichen Teilen an die Tochterzelle weitergegeben wird. Diese Fluoreszenzabnahme der markierten Milzlymphozyten wurde durchflussytometrisch erfasst und ausgewertet.

Zunächst sollte bestimmt werden aus welchen Subpopulationen sich die stimulierten Lymphozyten zusammensetzen.

5.2.2.2 B- und T (CD4⁺ oder CD8⁺)-Zellfrequenz in den mit CD40L, BAFF, IL10 und IL21 stimulierten Milzzellkulturen

Um die B- und T-Zellzusammensetzung pro Stimulationsansatz nach Kultivierung zu quantifizieren wurde das Gating in Abbildung 9 angewendet.

Abbildung 9: Gatingstrategie zur Bestimmung der B- und T-Zellfrequenz in stimulierten Milzlymphozyten

In Messfenster A wurden die Lymphozyten umrahmt, in B wurden durch die Lebend-Tot Färbung mit 7AAD die toten Zellen von der Analyse ausgeschlossen. C zeigt die Markersetzung auf Bu1 positive Zellen der lebenden Population.
Ergebnisse

Die durchschnittliche Frequenz der B- und T-Zellpopulation nach 48 h Zytokinstimulation für die Milzlymphozyten dreier Tiere im Alter von 8-10 Wochen ist in Tabelle 13 dargestellt.

<table>
<thead>
<tr>
<th>Stimulationsansatz</th>
<th>Zellzusammensetzung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-Zellen</td>
</tr>
<tr>
<td>Medium</td>
<td>23±4</td>
</tr>
<tr>
<td>CD40L</td>
<td>65±9</td>
</tr>
<tr>
<td>BAFF</td>
<td>45±10</td>
</tr>
<tr>
<td>IL10</td>
<td>32±4</td>
</tr>
<tr>
<td>IL21</td>
<td>35±3</td>
</tr>
<tr>
<td>IL10+IL21</td>
<td>43±11</td>
</tr>
<tr>
<td>BAFF+IL10</td>
<td>48±2</td>
</tr>
<tr>
<td>BAFF+IL21</td>
<td>67±13</td>
</tr>
<tr>
<td>BAFF+IL10+IL21</td>
<td>72±15</td>
</tr>
<tr>
<td>CD40L+BAFF</td>
<td>68±6</td>
</tr>
<tr>
<td>CD40L+IL10</td>
<td>86±4</td>
</tr>
<tr>
<td>CD40L+IL21</td>
<td>89±2</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10</td>
<td>83±6</td>
</tr>
<tr>
<td>CD40L+IL10+IL21</td>
<td>90±3</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10+IL21</td>
<td>92±1</td>
</tr>
<tr>
<td>Con A</td>
<td>31±1</td>
</tr>
</tbody>
</table>

Tabelle 13: B- und CD4⁺- und CD8⁺-T-Lymphozytenfrequenz nach 48 h in Milzkulturen

Milzleukozyten wurden nach Kultivierung in Zytokininhaltigem Medium gegen Bu1, CD4 und CD8 gefärbt und die B- und T-Zellfrequenz (CD4⁺ oder CD8⁺) durchflusszytometrisch bestimmt. Die Tabelle zeigt Mittelwerte ±STABW von drei Tieren im Alter zw. 8-10 Wochen.

Die lebende Population in Medium ohne Zytokin zusätze kultivierter Milz lymphozyten bestand aus 23 % Bu1 positiven Zellen 17 % CD4 und 7 % CD8 positiven Zellen.

Zur Kontrolle der T-Zellproliferation wurde Con A eingesetzt. Die Con A stimulierten Milzlymphozyten bestanden nach 48 h aus 26 % CD4⁺- und 28 % CD8⁺-positiven T-Zellen, deren B-Zellfrequenz betrug 31 %.

Die Zugabe von IL10 und IL21 zu Milzzellkulturen allein hielt die B-Zellfrequenz auf dem Ausgangswert vor Kultivierung von ca. 30 %. In Kombination zeigten sich die beiden Zytokine synergistisch und erhöhten die B-Zellfrequenz im Vergleich zur Mediumkultivierung um das 1,8-fache. Unter Anwesenheit von BAFF erhöhte sich die B-Zellfrequenz ebenfalls um das 1,9-fache auf durchschnittlich 45 %. Dagegen wirkte BAFF mit IL10 nicht synergistisch, so dass die B-Zellfrequenz annähernd auf dem Niveau (48 %) der Stimulation von BAFF allein blieb. Hervorzuheben ist die Kombination von BAFF+IL21. Hier erhöht das Zusammenspiel zwischen BAFF und IL21 ohne Kostimulation durch CD40L
die B-Zellfrequenz auf 67 % Bu1 positive Zellen, dem 2,9-fachen verglichen zur Mediumkultivierung. Dies entspricht dem deutlichen Anstieg der B-Zellfrequenz, die durch Anwesenheit von CD40L (65%) detektiert wurde.

Nahezu reine B-Zellkulturen (über 90 % Bu1 positive Zellen) wurden in Kombinationen mit mindestens CD40L+IL21 und bei Zugabe von BAFF oder IL10 zu CD40L+IL21 gemessen. Der bis zu 4-fache Anstieg der B-Zellfrequenz gegenüber in Medium kultivierten Milzlymphozyten belegt, dass auch in mit CD40L und CD40L-Kombinationen stimulierten Milzlymphozytenkulturen hauptsächlich B-Zellen vorhanden waren.

5.2.2.3 Identifizierung der proliferierenden Zellpopulationen

In der weiteren Auswertung der Daten wurde nun die proliferierende Zellpopulation (=eFluor_{low}) bezüglich ihrer Zugehörigkeit zu B- oder T (CD4^+ /CD8^+) -Zellpopulation analysiert, eine Übersicht ist in Tabelle 14 dargestellt. Das Gating erfolgte wie in Abbildung 10 dargestellt.

Abbildung 10: Gatingstrategie zur Bestimmung der B- und T-Zellfrequenz der eFluor_{low} Zellpopulation

In Messfenster A wurden die Lymphozyten umrahmt, in B wurden durch die Lebend-Tot-Färbung mit 7AAD die toten Zellen von der Analyse ausgeschlossen. C zeigt die Markersetzung auf proliferierende Zellen mit niedrigerer eFluor670 Fluoreszenz (eFluor_{low} Population). Von diesen wurde in D die Marker positive Population (hier Bu1) bestimmt.
Ergebnisse

Tabelle 14: Anteil und Zusammensetzung der proliferierenden Zellen (eFluor_{low}) pro Stimulationsansatz

<table>
<thead>
<tr>
<th>Stimulationsansatz</th>
<th>Proliferierende Zellen (% von Gesamt)</th>
<th>Zusammensetzung der eFluor_{low} Population (% von eFluor_{low})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eFluor_{low}</td>
<td>B-Zellen</td>
</tr>
<tr>
<td></td>
<td>12±9</td>
<td>8±2</td>
</tr>
<tr>
<td>CD40L</td>
<td></td>
<td>40±15</td>
</tr>
<tr>
<td>BAFF</td>
<td></td>
<td>13±8</td>
</tr>
<tr>
<td>IL10</td>
<td></td>
<td>8±2</td>
</tr>
<tr>
<td>IL21</td>
<td></td>
<td>14±4</td>
</tr>
<tr>
<td>IL10+IL21</td>
<td></td>
<td>16±8</td>
</tr>
<tr>
<td>BAFF+IL10</td>
<td></td>
<td>19±5</td>
</tr>
<tr>
<td>BAFF+IL21</td>
<td></td>
<td>51±9</td>
</tr>
<tr>
<td>BAFF+IL10+IL21</td>
<td></td>
<td>53±11</td>
</tr>
<tr>
<td>CD40L+BAFF</td>
<td></td>
<td>41±8</td>
</tr>
<tr>
<td>CD40L+IL10</td>
<td></td>
<td>76±2</td>
</tr>
<tr>
<td>CD40L+IL21</td>
<td></td>
<td>84±5</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10</td>
<td></td>
<td>72±10</td>
</tr>
<tr>
<td>CD40L+IL10+IL21</td>
<td></td>
<td>85±5</td>
</tr>
<tr>
<td>CD40L+BAFF+IL21</td>
<td></td>
<td>73±12</td>
</tr>
<tr>
<td>CD40L+BAFF+IL10+IL21</td>
<td></td>
<td>78±15</td>
</tr>
<tr>
<td>Con A</td>
<td></td>
<td>26±8</td>
</tr>
</tbody>
</table>

12 % der in Medium ohne Zytokinzusätze kultivierten Milzlymphozyten proliferierten wahrscheinlich unspezifisch und bestanden aus 8 % B-Zellen, 7 % CD4^- und 2 % CD8^-T-Zellen.

Dass im etablierten Kultursystem auch T-Zellen zur Proliferation angeregt werden konnten, zeigte die Stimulation mittels ConA. Hier bestand die proliferierte Zellpopulation aus 64% CD4^-Zellen, 18 % CD8^-Zellen und zu 12 % aus B-Zellen. Unter Anwesenheit von BAFF allein besteht die proliferierte Population zu 30 % aus B-Zellen. Die Zugabe von IL21 zur Stimulation mit BAFF zeigte einen starken synergistischen Effekt durch die Erhöhung des B-Zellanteils an der proliferierten Population auf 75 %.

Bei Anwesenheit von CD40L setzte sich die geteilte Zellpopulation aus 91 % B-Lymphozyten zusammen, CD4^- und CD8^- Zellen sind mit unter 5 % in geringer Anzahl nachweisbar. Die B-Zellfrequenz der proliferierten Population stieg durch Zugabe weiterer Zytokine zur CD40L Stimulation auf bis zu 98 %.
**5.2.2.4 Anteil proliferierender B-Zellen an der gesamten B-Zellpopulation**

Um zu untersuchen, ob die gesamte B-Zellpopulation auf Signale durch die Zytokinstimulation hin proliferierten, oder nur Subpopulationen wurden die Zellen wie in Abbildung 11 gezeigt analysiert.

**Abbildung 11: Gatingstrategie zur Bestimmung des proliferierenden B-Zellanteil an der gesamten B-Zellpopulation**


Abbildung 12 zeigt den prozentualen Anteil der proliferierenden B-Zellen an der gesamten B-Zellpopulation.

**Abbildung 12: Anteil proliferierender B-Zellen an gesamter B-Zellpopulation**

Aus eFluor670 markierten Milzlymphozytenkulturen wurde durchflusszytometrisch der Anteil proliferierender B-Zellen bestimmt. Dargestellt sind die Mittelwerte +STABW dreier unabhängiger Experimente mit Hühnern im Alter von 8-10 Wochen.
Wie Abbildung 8 zeigt, proliferierten 5 % der zur Kontrolle in Medium ohne Zytokinzusätze kultivierten B-Lymphozyten aus der Milz. Bei alleiniger Gegenwart von BAFF oder IL21 zeigte sich ein 4-facher Anstieg (21 %) der proliferierenden B-Lymphozyten in Milzzellkulturen.

Die Zugabe von IL21 zur Stimulation mit BAFF zeigte einen synergistischen Effekt und erhöhte den Anteil proliferierender B-Zellen auf 71 %. Die Zugabe von IL10 zu BAFF+IL21 ergab keine weitere Steigerung des proliferierenden B-Zellanteils. IL10+IL21 gemeinsam zeigte keinen synergistischen Effekt auf die Proliferationsrate von B-Zellen in Milzzellkulturen.

CD40L allein führte zu einer Proliferation von 62 % der B-Zellpopulation. Die Zugabe von BAFF erhöhte die Anzahl proliferierender B-Zellen auf 72 %.

Der stark synergistische Effekt zwischen CD40L und IL21 wird dadurch sichtbar, dass sich fast alle B-Zellen (95 %) bei gleichzeitiger Anwesenheit der beiden Zytokine teilten.

IL 10 und BAFF zeigten sich ebenfalls synergistisch zur Kostimulation mit CD40L und erhöhten die Proliferationsraten in B-Zellen ebenfalls stark auf 88 % (CD40L+IL10) bzw. 72 % (CD40L+BAFF).

5.3 VERGLEICH DER EFFEKTSTÄRKE DER ZYTOKINE AUF ERHÖHUNG DER ZELLZÄHL UND PROLIFERATION

Der Vergleich von Proliferationsindex und Lebend-Tot-Index gibt einen Hinweis über die Effektstärke der Zytokinwirkung auf Proliferation und die Anzahl an lebenden Zellen nach Kultivierungszeit.

In Abbildung 13 sind die erhobenen Indices vergleichend dargestellt. Auffällig sind hierbei die extrem hohen induzierten Proliferationsindices in CD40L+IL21 stimulierten Bursalymphozyten.

In B-Lymphozytenkulturen zeigen die Zytokine IL10, IL21 allein und in der Kombination keinen Einfluss, weder auf die Induktion von Proliferation noch auf die Erhöhung der B-Lymphozytenzahl nach Kultivierung. Für BAFF zeigte sich einen geringer Effekt auf die Induktion von Proliferation sowie die Lymphozytenzahl nach Kultivierung.

Der Proliferation induzierende Effekt in Anwesenheit von CD40L+IL21 zeigt durch die hohen PIs das Potential der synergistisch wirkenden Zytokine Proliferation in Bursalymphozyten zu induzieren. Der LT-Index bleibt auf einem niedrigeren Niveau.
Zum Vergleich der Effektstärke der Zytokinwirkung auf Überleben und Proliferation wurden PI und LT-Index berechnet. Dargestellt sind die Mittelwerter +STABW von drei Tieren im Alter von 8-10 Wochen.

Betrachtet man den PI vergleichend zum LT-Index in Milzzellkulturen (siehe Abbildung 13 B) fällt im Unterschied zur Bursa auf, dass die Proliferationsindices deutlich niedriger sind und in einigen Stimulationen vom Lebend-Tot-Index übertroffen werden.


In Milzlymphozytenkulturen wird durch die Induktion der Proliferation auch eine erhöhte Zellzahl nach Kultivierung erreicht. Starke Proliferation induzierende Zytokine in Milzzellkulturen sind vor allem IL10 und IL21 in Kostimulation mit CD40L. BAFF in
Anwesenheit von CD40L erhöht die lebende Zellzahl nach Kultivierung und wirkt sich auch auf Erhöhung des LT-Index aus.

5.4 PHÄNOTYPISCHE CHARAKTERISIERUNG STIMULIERTER B-ZELLKULTUREN

Zur näheren Charakterisierung des Phänotyps der mit Kombinationen der Zytokine CD40L, BAFF, IL10 und IL21 stimulierten Lymphozytenkulturen aus Bursa und Milz wurde die Expression verschiedener Oberflächenmoleküle durchflusszytometrisch untersucht.

Es wurden die B-Zellmarker Bu1, BAFF-Rezeptor (BAFF-R) und die L-Kette des B-Zellrezeptors (L-Kette) ausgewählt.

Zusätzlich wurden das zur Kostimulation von B-Zellen wichtige Oberflächenprotein CD40 aus der Familie der Tumornekrosefaktor-Rezeptoren, sowie die beiden Chemokinrezeptoren CXCR4 und CXCR5 angefärbt.

Als Aktivierungsmarker wurde die Expression des MHC-Klasse-II-Moleküls (MHCII) und CD80, ein Typ-I-Membranprotein der Immunglobulin-Superfamilie, untersucht.

Da es sich bei den aus der Milz gewonnenen Lymphozyten um eine heterogene Population aus B- und T-Lymphozyten und zu einem geringeren Teil auch aus Makrophagen und anderen Zellen des hämatopoetischen Systems handelt, wurden Mehrfachfärbungen durchgeführt (siehe 4.6.3+4.6.6) und zunächst auf die lebende Bu1 positive B-Zellpopulation gegated. So konnte die Markerexpression exklusiv auf der B-Zellpopulation analysiert werden. Danach wurde die mittlere Fluoreszenzintensität (MFI) der lebenden Bu1 positiven Zellen (Lebend-Tot Färbung siehe Abbildung 14 B+F) für die verwendeten Antikörper bestimmt. Diese Gatingstrategie wird in Abbildung 14 erläutert und wurde sofern das Gating nicht gesondert beschrieben wird, auch für nachfolgende Versuche angewendet.
Abbildungen 14: Gatingstrategie der phänotypischen Charakterisierung stimulierter B-Zellen

5.4.1 Expression von Oberflächenmarkern auf Hühner-B-Zellen
Über die gemessene mittlere Fluoreszensintensität (MFI), welche ein Maß für die Menge des gebundenen Fluoreszenzfarbstoffes pro Zelle darstellt, wurde die Höhe der Markerexpression quantifiziert.

Die Abbildung 15 zeigt eine beispielhafte durchflusszytometrische Untersuchung für jeden untersuchten Oberflächenmarker. Die dazugehörigen MFIs wurden in Tabelle 15 als Heat Map visualisiert, indem eine im Vergleich zum Ausgangswert bei Isolation der Zellen niedrige bis hohe Fluoreszenzintensität einer Farbskala von rot über orange, gelb nach grün bis dunkelgrün zugeordnet wurde.

Interessanterweise führte die Kultivierung von Bursazellen in Medium ohne Zytokin zusätze zu einer Erhöhung der Expression fast aller ausgewählter Oberflächenmarker, außer der L-Ketten Expression; besonders stark ausgeprägt war dieser Effekt bei der BAFF-Rezeptor (B:2,5-fach), CXCR4 (B:4-fach) und CD80 (B:8-fach) Expression. In Medium kultivierten Milzzellen zeigte sich eine Zunahme der BAFF-R (1,5-fach) und CXCR4 (60-fach) Expression, während die Werte für L-Kette, CXCR5, MHCII und CD80 weitgehend konstant blieben.
Abbildung 15: Durchflusszytometrische Phänotypisierung der stimulierten Bursa- und Milzleukozyten

Mit Zytokinkombinationen aus CD40L, BAFF; IL10 und IL21 stimulierte Bursa- und Milzzellkulturen wurden nach Präparation zum Zeitpunkt (0 h), nach 24 h (B=Bursa) und nach 48 h (M=Milz) gegen die angegebenen Oberflächenmarker gefärbt und durchflusszytometrisch analysiert. Abgebildet ist eine exemplarische Untersuchung von mehreren unabhängigen Experimenten. Dargestellt ist die Markerexpression auf lebenden Bu1⁺ Zellen, die Isotypkontrolle für den jeweiligen Antikörper ist im ersten Fenster exemplarisch auf CD40L stimulierten Zellen als schwarze gepunktete Linie dargestellt.
Ergebnisse

Tabelle 15: Heat Map Darstellung der Oberflächenexpression der gefärbten Marker auf stimulierten Bursa-und Milzlymphozyten

Dargestellt ist die mittlere Fluoreszenzintensität (MFI) der Oberflächenfärbungen der Marker Bu1, BAFF-R, L-Kette, CD40, CXCR4, CXCR5, MHCII und CD80 auf lebenden Bu1+ Zellen aus stimulierten Bursa- und Milzzellkulturen nach 24 h (Bursa) bzw 48 h (Milz) im Vergleich zur Expression zum Zeitpunkt 0 h und zur Expression in Medium ohne Zytokinzusätze kultivierter B-Lymphozyten. Dargestellt sind die Mittelwerte dreier unabhängiger Experimente mit Hühnern im Alter von 8-10 Wochen. Die Heat Map wird von links nach rechts pro Marker gelesen, dabei geben die Abstufungen der Farbskalierung von dunkelrot (niedrig) über orange, gelb (mittel) nach hellgrün bis grün (hoch) die Markerexpression wieder. Zur besseren Lesbarkeit wurden Tausendertrennpunkte verwendet.

<table>
<thead>
<tr>
<th>Bursa</th>
<th>0 h</th>
<th>Medium</th>
<th>CD40L</th>
<th>BAFF</th>
<th>IL10</th>
<th>IL21</th>
<th>BAFF+IL21</th>
<th>BAFF+IL10+IL21</th>
<th>CD40L+BAFF</th>
<th>CD40L+IL10</th>
<th>CD40L+IL21</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCR5</td>
<td>5.100</td>
<td>6.015</td>
<td>6.035</td>
<td>8.721</td>
<td>6.465</td>
<td>5.875</td>
<td>6.396</td>
<td>5.303</td>
<td>5.735</td>
<td>5.358</td>
<td>2.504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milz 0h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu-1</td>
</tr>
<tr>
<td>CXCR5</td>
</tr>
<tr>
<td>CD80</td>
</tr>
</tbody>
</table>

Tabelle 15: Heat Map Darstellung der Oberflächenexpression der gefärbten Marker auf stimulierten Bursa-und Milzlymphozyten
5.4.1.1 Bu1
Vor Kultivierung exprimierten alle B-Zellen der Bursa ein mittleres Niveau des etablierten Hühner B-Zellmarkers auf ihrer Oberfläche, durch Zytokinstimulation zeigte sich ein mittleres bis hohes Expressionsniveau von Bu1; das höchste Expressionsniveau des Markers fand sich in BAFF stimulierten B-Zellen. Eine Ausnahme zeigte sich mit CD40L+IL21; in diesem Stimulationsansatz wurde die Expression des Bu1 Markers gegenüber dem Niveau zum Zeitpunkt 0 h erniedrigt. Abgesehen von dieser Ausnahme wurde in bursalen B-Zellen ein relativ einheitliches Expressionsniveau induziert, in der Stimulation mit BAFF wurde ein mittleres und ein hohes Expressionsniveau induziert.


5.4.1.2 BAFF-R
Neben einer erhöhten BAFF-R Expression in Medium allein, führte auch die Kultivierung mit IL10 und IL21 als Einzelstimulation auf B-Zellen aus Bursa und Milz zu vermehrter BAFF-R Expression.

CD40L induzierte unterschiedliche Expressionsniveaus in beiden Organen. Auf Bursalymphozyten bewirkte CD40L eine Erhöhung der BAFF-R Expression um das 2,5-fache im Vergleich zum 0 h Wert, wohingegen das Expressionslevel auf Milzlymphozyten durch die Stimulation mit CD40L um die Hälfte erniedrigt wurde.

Auffällig war, dass in allen BAFF-haltigen Bursa- und Milzkulturen im Vergleich zu Stimulationen ohne BAFF eine erniedrigte MFI des BAFF-R gemessen wurde.

Auch dieser B-Zellmarker wies für BAFF+IL21+IL10 stimulierte Milzlymphozyten Subpopulationen mit unterschiedlicher mittlerer Fluoreszenzintensität auf. Es entstand eine größere BAFF-R_{med} Population mit mittlerer MFI und eine kleinere BAFF-R_{high} Subpopulation mit erhöhter Expression des BAFF-R.
5.4.1.3 Leichte-Kette
Der B-Zellrezeptor wurde in Bursalymphozytenkulturen von einem niedrigen Expressionsniveau zum Zeitpunkt 0 h in allen Stimulationen unterschiedlich stark hochreguliert.

Die Kultivierung in Medium allein führte in Bursalymphozyten zu einem mittleren erhöhten Expressionsniveau des BCRs, in der Milz hingegen zu einer Abnahme der MFI um die Hälfte. Eine 5,3-fache Steigerung des Expressionsniveaus wurde bei Anwesenheit von CD40L detektiert, durch Zugabe additiver Zytokine CD40L+BAFF und CD40L+IL10 war die Steigerung(4,5-fach) gegenüber CD40L allein verringert.

Im Gegensatz dazu zeigten B-Zellen der Milz zum Zeitpunkt 0 h ein deutlich höheres Expressionsniveau, welches bei Anwesenheit von CD40L, CD40L+BAFF, CD40L+IL10 noch geringradig erhöht wurde. Die Kultivierung in Anwesenheit von IL21 führte zu einer starken Verminderung der MFI um das 4-fache des Ausgangswerts und zur Induktion einer größeren L-Kette\textsuperscript{med} und einer kleineren L-Kette\textsuperscript{negativ} Population. Auch die Kombination von BAFF+IL10+IL21 induzierten zwei Populationen.

5.4.1.4 CD40
Die Zytokine CD40L, BAFF, IL10 und IL21 zeigten auf das Expressionsniveau des CD40 Rezeptors großen Einfluss. So wurde vor Kultivierung der Bursa- und Milzlymphozyten ein niedriges bis mittleres Expressionsniveau des CD40 Moleküls detektiert. Besonders auffällig war die starke Erniedrigung der MFIs von CD40 in CD40L-haltigen Stimulationen in Bursazellkulturen. Die Ausnahme war die Stimulation CD40L+IL21 hier wurde das Expressionsniveau auf einem ähnlichen Level der Expression zum Zeitpunkt vor Kultivierung gehalten. In Milzlymphozytenkulturen dagegen enstand in CD40L-haltigen Stimulationsansätzen CD40\textsuperscript{high}, CD40\textsuperscript{med}, und CD40\textsuperscript{negativ}. Phänotypen die sich durch ihre MFI in Subpopulationen abgrenzen ließen. Die MFI in Tabelle 15 muss hier als durchschnittliche MFI der enstandenen Subpopulationen betrachtet werden.

Die Kultivierung in Medium ohne Zytokin zusätze führte zu einer 2-fachen Erhöhung des Expressionslevels auf Bursalymphozyten, in Milzlymphozytenkulturen enstandenen auch in Medium allein zwei Populationen von CD40\textsuperscript{high} und CD40\textsuperscript{med}.

Sowohl BAFF+IL21 als auch BAFF+IL21+IL10 führte in Bursa- und Milzlymphozyten zu einer Verdopplung der MFI für CD40.
IL21 induzierte in stimulierten Milzlymphozyten eine Subpopulation mit CD40\textsuperscript{high} und CD40\textsuperscript{med} sodass die MFI dem Ausgangswert vor Kultivierung entsprach.

In Bursalymphozyten kam es nicht zur Induktion von Subpopulation mit verschiedenen Abstufungen der Expressionshöhe.

5.4.1.5 CXCR4

Vor Kultivierung exprimierten bursale Lymphozyten den Chemokinrezeptor CXCR4 stärker (CXCR4\textsuperscript{med} und CXCR4\textsuperscript{high} Populationen) als Lymphozyten, die aus der Milz (CXCR4\textsuperscript{negativ} und CXCR4\textsuperscript{low}) isoliert wurden. Deshalb war der gemessene relative maximale Expressionsanstieg in Milzlymphozyten deutlich höher als für Bursalymphozyten.

Besonders stark wurde dieser Marker in beiden Organkulturen durch die Kultivierung in Medium ohne Zytokinzusätze hochreguliert (Milz: 60-fach, Bursa 4-fach).

Die höchsten MFIs auf Bursalymphozyten zeigte sich in Anwesenheit von CD40L und IL21 in Kombination und einzeln, allerdings wurden für alle Stimulationen ähnliche Werte wie bei Kultivierung in Medium allein detektiert.

Auffällig für Milzlymphozyten war einerseits der starke Expressionsanstieg bei in Medium kultivierten Lymphozyten gegenüber dem Zeitpunkt 0 h (bis 63-fach) und andererseits die reduzierte Expression von CXCR4 durch alle Stimulationen im Vergleich zur Mediumkultivierung, besonders stark durch BAFF+IL21+IL10. Durch die Anwesenheit von CD40L oder BAFF und additiven Zytokinen, mit Ausnahme der Stimulation CD40L+IL21, enstanden Subpopulationen mit unterschiedlicher CXCR4 Expression von CXCR4\textsuperscript{med} bis CXCR4\textsuperscript{high}.

5.4.1.6 CXCR5

Der Chemokinrezeptor CXCR5 wurde auf Bursa- und Milzlymphozyten vor Kultivierung auf einem mittleren Niveau exprimiert. In kultivierten Bursalymphozyten induzierte die Stimulation mit CD40L+IL21 eine Halbierung der MFI. Auffällig in allen mit CD40L (außer CD40L+IL21) kultivierten Milzlymphozyten zeigte sich neben einer Halbierung der MFI eine CXCR5 kleine negative Population neben einer Population mit anhaltender CXCR5 Expression. Die Stimulation mit CD40L+IL21 induzierte auf B-Zellen der Milz ein zum 0 h Wert vergleichbares Niveau und eine kleine CXCR5 negative Population.
5.4.1.7 MHCII
Bursalymphozyten zeigten vor Kultivierung eine heterogene Expression (MHCII\textsubscript{low} und MHCII\textsubscript{med}) des Aktivierungsmarkers MHCII. Nach 24 h in Kultur war der Marker außer auf einer Zellpopulation mit einem MHCII\textsubscript{med} Phänotyp, auf den meisten Zellen verstärkt 6-fach exprimiert, auch ohne Zytokinzusätze. Maximale Expressionsniveaus wurden durch die Anwesenheit von CD40L und in der Stimulation mit BAFF+IL10+IL21 hervorgerufen.

Der in Milzlymphozytenkulturen auffällige Effekt war, dass neben der starken Erhöhung des Expressionsniveaus einer entstandenen MHCII\textsuperscript{high} Population eine kleine MHCII\textsuperscript{neg} Population in allen Stimulationen mit CD40L entstanden ist.

Die Kultivierung in Medium ohne Zytokinzusätze erzeugte in Milzlymphozyten ein mittleres Expressionsniveau des Aktivierungsmarkers vergleichbar mit dem Expressionsniveau vor In-Kulturnahme der Zellen.

5.4.1.8 CD80
Die Analyse des kostimulatorischen Moleküls CD80 machte deutlich, dass nicht alle B-Zellen gleichermaßen durch die Zugabe der Zytokine aktiviert wurden, sondern in einigen Stimulationen Subpopulationen durch Zytokinzugabe zur Aktivierung angeregt wurden.

Vor Kultivierung der Lymphozyten wurde CD80 auf Milzlymphozyten nicht exprimiert und war auf 10\% der Bursalymphozyten nachweisbar.

In Medium ohne Zytokinzusätze kultivierte Milzlymphozyten bleiben CD80\textsuperscript{negativ}, das Expressionsniveau auf allen Bursalymphozyten stieg 8-fach an.

Die Anwesenheit von CD40L führte zu einer Aktivierung der Lymphozyten und äußerte sich in einem Anstieg der MFI von CD80. In Bursazellkulturen resultierte die Anwesenheit von IL21 in der Induktion von zwei Populationen unterschiedlicher MFI. Alle Kombinationen mit CD40L (außer CD40L+IL21) führten zu einem einheitlichen CD80\textsuperscript{high} Phänotyp unter Stimulationseinfluss, allerdings steigerte sich die MFI nicht im Vergleich zur Kontrollkultivierung in Medium. BAFF+IL21, sowie BAFF+IL10+IL21 induzierten eine Population negativer und mittlerer MFI. In Milzlymphozytenkulturen dagegen bildet sich eine CD80 negative sowie eine CD80\textsuperscript{veryhigh} B-Zellpopulation.

Die Ausnahme unter den CD40L Kombinationen bildet CD40L+IL21. In beiden Organkulturen führt der Einfluss von CD40L+IL21 zu einem verminderten Expressionsniveau verglichen mit den maximalen Expressionniveaus der anderen
Ergebnisse

Zytokinkombinationen mit CD40L, aber dennoch zu einer Zunahme gegenüber dem Ausgangsniveau zum Zeitpunkt 0 h und zur Kultivierung in Medium ohne Zytokineinflüsse.

Unter Anwesenheit von BAFF und IL21 erhöht sich das Expressionsniveau in Bursazellkulturen 7- und in Milzzellkulturen 5-fach gegenüber der CD80 Expression vor Kultivierung. Dabei entstanden in beiden Organkulturen CD80\textsuperscript{med} und CD80\textsuperscript{negativ} Populationen, was dafür spricht, dass nicht alle Lymphozyten sondern Subpopulationen aktiviert werden.

Auch die Kombination von BAFF+IL10+IL21 induzierte in beiden Organen eine CD80\textsuperscript{med} und eine CD80\textsuperscript{negativ} Population.

Die Zytokine IL21 und IL10 einzeln hinzugefügt, führten nur in Bursalymphozyten zu Erhöhung der MFI der B-Zellen, wobei IL21 zwei Populationen ähnlich der Kombination mit BAFF+IL10 induziert, IL10 allein aber zu einer einheitlichen Erhöhung der MFI aller B-Zellen führt.
5.4.2 Am Rezeptor haftende Liganden

In den durchflusszytometrischen Untersuchungen zur Phänotypisierung mit den Oberflächenmarkern fiel auf, dass in allen CD40L- und BAFF-haltigen Stimulationen die gemessene MFI des dazugehörigen gefärbten Rezeptors vermindert war. Deshalb wurde nachfolgend untersucht, ob der zugegebene Ligand eventuell dauerhaft an seinen Rezeptor bindet und damit eine Färbung mittels Antikörper blockiert wurde. Hierzu wurde eine Färbung gegen CD40L und BAFF durchgeführt. CD40L konnte über sein Maus-CD8-α-Tag und BAFF über das im Protein enthaltene Flag-Epitop durchflusszytometrisch mit den Antikörpern anti-mouse-CD8 (anti-CD40L) und M2-Flag (anti-Flag) detektiert werden.

Abbildung 16: Oberflächenfärbung von CD40L und BAFF und zugehörigen Rezeptoren auf Lymphozyten

Nach Kultivierung von Bursa- (A+C) und Milzlymphozyten (B+D) in CD40L (A+B)- bzw. BAFF-haltigem (C+D) Medium, wurden Einfachfärbungen mit den Antikörpern anti-mouse-CD8 zum Nachweis des löslichen CD40L und anti-Flag (M2) zum Nachweis des löslichen BAFF auf der Zelloberfläche durchgeführt. Auch die Rezeptoren der Liganden, CD40 und BAFF-R wurden gefärbt. Dabei wurde auf die gesamte lebende Zellpopulation ge gated. Die Abbildung zeigt eine beispielhafte durchflusszytometrische Untersuchung mehrerer unabhängiger Experimente.

Wie Abbildung 16 belegt, sind die zur Stimulation eingesetzten Zytokine CD40L und BAFF an der Oberfläche der Zellen nach Ablauf der Kultivierungszeit durchflusszytometrisch nachweisbar. Die Liganden führen dabei nicht zu einer vollständigen Blockierung der Rezeptor-Färbung, denn die Lymphozyten sind gleichzeitig positiv für die Rezeptoren der Liganden CD40L und BAFF-R. Allerdings muss die in 5.4.1.4 auffällige Verminderung der MFI von CD40 und BAFF-R in Liganden-haltigem Medium kritisch interpretiert werden und kann nicht als verminderte Expression des Rezeptors angesprochen werden.
6 Diskussion


6.1 EINFLUSS VON CD40L, BAFF, IL10 UND IL21 AUF DIE LYMHPHOZYTENZAHL NACH KULTIVIERUNGSZEIT

Zunächst wurden die lebenden B-Zellen nach Kultivierung in den verschiedenen Stimulationsansätzen bestimmt.


Überraschenderweise zeigte sich in Kulturen dieser Arbeit BAFF mit IL21 synergistisch und erhöhte sowohl lebende Bursa- als auch Milzlymphozyten nach Kultivierung, wobei der Effekt in Milzlymphozyten stärker ausgeprägt war. Dies könnte darauf hindeuten, dass BAFF

6.2 PROLIFERATION


Auswirkung auf Lymphozyten bei Langzeitkultivierungen mit weiteren Versuchen überprüft werden.


CD40L+IL10 nicht auszureichen für eine maximale Stimulation. Aus Untersuchungen im Säuger ist bekannt, dass das Differenzierungsstadium einer B-Zelle zum Zeitpunkt der Zytokinstimulation durch IL10 von Bedeutung ist [172].


Auch die Proliferation betreffend zeigten sich BAFF+IL21 synergistisch durch erhöhte Proliferationsraten in Bursa- und Milzlymphozyten, was nahelegt, dass die erhöhten B-Zellraten nach BAFF+IL21-Stimulation durch Zellteilung entstanden sind. Der Effekt war in der Milz stärker ausgeprägt als in der Bursa, was darauf hinweist, dass mature Milzlymphozyten auf die alleinige Stimulation durch BAFF+IL21 besser ansprechbar sind, als die immatures B-Zellen aus der Bursa, welche für eine adäquate Aktivierung weitere bzw. andere Signale benötigen. Diese Ergebnisse sind weitere Hinweise dafür, dass BAFF auch im Huhn in der Lage ist die Wirkung von CD40L bezüglich der Kostimulation mit IL21 zu

6.3 ZYTKIN-INDUZIERTE PHÄNOTYPÄNDERUNG

Im Rahmen dieser Arbeit wurden einige für das Huhn vorhandene Antikörper verwendet, um Hinweise auf Zytokin induzierte B-Zellaktivierung zu bekommen. Der entstehende Phänotyp unter Zytokineinfluss wurde anhand dieser Antikörper durchflusszytometrisch charakterisiert.

6.3.1 Expression von B-Zellmarkern stimulierter B-Lymphozyten

Um die Expression von Oberflächenmarkern gezielt auf Hühner B-Zellen zu analysieren, wurde der etablierte Hühner B-Zellmarker Bu1 (Klon AV20), welcher sowohl gegen die Antigene Bu1a als auch Bu1b gerichtet ist, verwendet [173]. Der Marker wird auf allen Differenzierungsstadien der B-Zellen im Huhn exprimiert, außer auf Plasmazellen, diese verlieren ihn, je weiter die Differenzierung fortgeschritten ist [174]. In den angewendeten Stimulationen war auffällig, dass Bu1 in Milzlymphozytenkulturen stärker reguliert war als in gleichen Ansätzen stimulierter Bursalymphozyten. So zeigen alle Stimulationen mit CD40L in dieser Arbeit eine Herabregulation des Bu1-Markers auf Milzlymphozyten, was auf ein eingeleitetes Differenzierungsprogramm Richtung Plasmazelle hindeutet, wie es auch in vorangegangenen Arbeiten gezeigt wurde [101]. Dass auch die Stimulation mit BAFF+IL21 die Induktion einer Population mit geringerer Bu1 Expression, neben einer fortbestehenden Bu1 exprimierenden Population bewirkt, gibt Hinweise darauf, dass BAFF hier in der Lage war das Signal durch CD40L zu ersetzen und ebenfalls ein Differenzierungsprogramm
Diskussion

Richtung Plasmazelle eingeleitet wurde; oder aber BAFF+IL21 war in der Lage in einem Teil der B-Zellen die Bu1-Expression aufrechtzuerhalten.


Zelluntergang ihre Marker verlieren, kann beispielsweise mit intrazytoplasmatischen Immunglobulinfärbungen weiter abgeklärt werden.

6.3.2 CD40

CD40 wird beim Huhn neben Monozyten, Makrophagen und T-Zellsubpopulationen auf allen Bu1-positiven Zellen des B-Zellsystems exprimiert [175]. Kothlow et al. zeigten, dass durch CD40L stimulierte proliferierende Milzlymphozyten teilweise Bu1 herunterregulieren, vermehrt CD40 exprimieren und sich zu einem Plasmablast-ähnlichen Phänotyp vergrößern. Der andere Teil der B-Zellen, welche nicht durch die imitierte T-Zellhilfe aktiviert wurden bleibt klein und exprimiert CD40 vermindert [101].


Das Färbebild in CD40L-stimulierten Milzlymphozytenkulturen konnte die im ersten Absatz beschriebenen früheren Ergebnisse bestätigen. Obwohl auch auf Milzlymphozyten nach Kultivierungszeit CD40L auf der B-Zelloberfläche nachweisbar war, konnte trotzdem eine erhöhte CD40-Expression gegenüber dem Ausgangswert festgestellt werden, was für eine deutliche Aktivierung der stimulierten Milzlymphozyten spricht. Zusätzlich zeigte sich in CD40L-haltigen Stimulationen eine deutlich abgrenzbare CD40-negative B-Zellpopulation, die den Rezeptor wahrscheinlich herunterreguliert. Allerdings sollten zum endgültigen Nachweis ebenfalls die Doppelfärbungen gegen CD40 und CD40L durchgeführt werden.

Die Stimulation mit BAFF+IL21 resultierte auf Bursa und Milzlymphozyten mit einer vermehrten CD40-Expression, ein Hinweis, dass es auch durch BAFF+IL21 zur Aktivierung der B-Zellen kommt und die vermehrte Epression kostimulatorischer Moleküle angeregt wurde; die Zugabe von IL10 machte keinen signifikanten Unterschied.

### 6.3.3 Aktivierungsmarker


#### 6.3.3.1 MHCII

In den Untersuchungen dieser Arbeit war auffällig, dass allein die Entnahme der Lymphozyten aus dem Gewebeverband und ihre Kultivierung in Medium die Expression von MHCII sowohl auf Bursa- als auch auf Milzlymphozyten verstärkte.

In Bursalymphozytenkulturen dieser Arbeit kam es zu einem weitestgehenden Verlust der MHCII\textsubscript{low}-Population. Mike Ratcliffe postulierte anhand seiner Studien mit \textit{in situ} FITC- (Fluorescein isothiocyanate) gelabelten Bursalymphozyten, dass nur die MHCII-positiven Lymphozyten die Bursa verlassen. Demnach ist die Annahme wahrscheinlicher, dass es in Kulturen dieser Arbeit zum Absterben der MHCII\textsubscript{low} Population \textit{in vitro} gekommen ist und nur bursale Lymphozyten eines MHCII\textsuperscript{high} Phänotyps überleben, als die Hypothese,
Diskussion

dass die ursprüngliche aus der Bursa isolierte MHCII\textsubscript{low} Population durch Zytokin-Stimulation in der Lage war, MHCII hochzuregulieren.


6.3.3.2 CD80

vitro allerdings konnte die CD80-Expression nur durch Zugabe des Zytokins CD40L aufrechterhalten werden [154].


Das Färbebild von stimulierten Bursalymphozyten spricht eher für eine einheitlichere Hochregulation von CD80. Interessanterweise führte die Kultivierung von Bursalymphozyten in Medium ohne Zytokin zusätze zu einer verstärkten Expression von CD80, während in Medium kultivierte Milzlymphozyten CD80-negativ blieben. Das wirft die Frage auf, was zur Aktivierung der in Kultur verbrachten Bursalymphozyten führt. Denkbar wäre, dass Bursalymphozyten einen Faktor ins Medium abgeben, welcher autokrin auf B-Zellen wirkt. Dies würde auch die verstärkte Expression weiterer in dieser Arbeit gefärbter Oberflächenmarker von in Medium kultivierten Bursalymphozyten erklären. Erste Hinweise ergeben die nahezu deckungsgleiche Histogrammkurve der CD80-Fluoreszenz von in BAFF bzw. Medium kultivierten B-Zellen aus der Bursa und den resultierenden ähnlichen mittleren Fluoreszenzintensitäten der durchflusszytometrischen Färbungen. Da bekannt ist, dass BAFF autokrin von B-Zellen produziert wird [119-121] wäre eine ex vivo anhaltende BAFF-
Produktion durch B-Zellen zur Überlebenssicherung durchaus denkbar. Ebenfalls wurde in der Literatur das Vorkommen von CD40L in der Bursa bestätigt [100]. Da es sich bei den ca. 2 % der in der Bursa vorkommenden T-Zellen um CD8+-T-Zellen handelt, ist eine Produktion des in der Bursa anwesenden CD40L durch Stromazellen wahrscheinlicher.

Anhand von Proteomanalysen könnte weiterführend untersucht werden, welche Proteine sich im Überstand kultivierter Bursa- und Milzlymphozyten nach Kultivierungszeit befinden und so weiteren Hinweis auf physiologische Unterschiede zwischen Bursa- und Milzlymphozyten aufdecken.

6.3.4 Chemokinrezeptoren

Die homöostatischen Chemokine CXCL12 und CXCL13 binden an ihre Rezeptoren CXCR4 bzw. CXCR5. Durch Regulation und Verteilung der Rezeptoren wird die Entwicklung lymphoider Strukturen sowie die Migration von Lymphozyten gesteuert.

6.3.4.1 CXCR4


In allen Stimulationsansätzen mit bursalen B-Zellen dieser Arbeit zeigte sich CXCR4 hochreguliert, wobei kein Unterschied zwischen der Stimulation mit oder ohne CD40L ermittelbar war. Die Kultivierung von Milzlymphozyten in Medium allein steigerte die Expression von CXCR4 stark, die Zugabe von Zytokinen erniedrigte dagegen die Expressionshöhe von CXCR4 wieder. In allen Stimulationen mit CD40L und auch in BAFF+IL21 entstand in Milzlymphozyten eine dem physiologischen Expressionsniveau vor Kultivierung ähnlichere niedrigere CXCR4-Expression gegenüber der alleinigen Medium Stimulation, nicht jedoch durch Behandlung mit den einzelnen Zytokinen. Für die unspezifische verstärkte CXCR4-Expression nach Entnahme der Lymphozyten aus dem Gewebeverband müssen auch andere Mediatoren wie ph-Wertänderung des Mediums und durch Zellstress abgegebene Moleküle bedacht werden, durch welche die verstärkte Oberflächenexpression bewirkt wurde. Zum Beispiel wurde in murinen Stammzellen nachgewiesen, dass Hypoxie die Hochregulation von CXCR4 induziert und so die Stammzell-Migration beeinflusst wird [179]. Vorstellbar wäre, dass der kurzzeitige
hypoxische Zustand durch Präparation der Lymphozyten aus dem Gewebeverband ausreichte, um die Expression von CXCR4 aufrecht zu erhalten.

Im Säuger wurde gezeigt, dass in Richtung Plasmazelle differenzierte Lymphozyten durch eine anhaltend hohe Expression von CXCR4 charakterisiert sind, welche die Zellen befähigt, in andere Gewebe einzuwandern [180]. Das anhaltend hohe CXCR4-Niveau bursaler Lymphozyten passt zum übrigen Phänotyp der stimulierten Bursalymphozyten und könnte dafür sprechen, dass die B-Zellen durch CXCR4-Expression Kontakt mit Stromazellen herstellen, um im Gewebeverband festgehalten zu werden. Wobei die Signale durch Zytokinsimulation in Milzlymphyozyten ausreichten, um die CXCR4-Expression zu senken; ein Hinweis darauf, dass die reiferen Lymphozyten aus der Milz in ihrer Differenzierung etwas weiter fortgeschritten sind.

6.3.4.2 CXCR5


In Bursalymphozytenkulturen dieser Arbeit zeigt die Zytokinstimulation fast keine Regulierung der CXCR5-Expression. Wie auch in Medium allein kultiviert, exprimieren alle Bursalymphozyten unter Zytokinstimulation ein dem Ausgangswert vor Kultivierung entsprechendes Niveau von CXCR5. Eine Ausnahme stellt die Stimulation mit CD40L+IL21 dar, hier wurde die Expression von CXCR5 halbiert. Alle mit CD40L-stimulierten B-Zellen der Milz zeigten eine kleine Population CXCR5 negative B-Zellen.

in Richtung Plasmazelle differenzierte Lymphozyten handeln könnte, sollte mittels intrazytoplasmatischer Immunglobulinfärbungen weitergehend überprüft werden.

6.3.5 Ausblick

Im Rahmen dieser Arbeit konnte gezeigt werden, dass B-Zellen aus Bursa und Milz durch CD40L und synergistisch wirkende Zytokine sehr stark zur Proliferation angeregt werden können.


Signaltransduktionswege geben.


7 ZUSAMMENFASSUNG

Ziel dieser Arbeit war es, das aus der Säuger-B-Zellentwicklung bekannte, potente Zytokin IL21 in Kombination mit CD40L, BAFF und IL10 zur Stimulation von Hühner-B-Zellen aus Bursa und Milz einzusetzen und deren Effekte auf Proliferation, Überleben und phänotypische Änderungen in der Expression wichtiger Oberflächenmoleküle zu untersuchen.


Interessanterweise konnte ein, wenn im Vergleich zu CD40L auch schwächerer, Synergismus zwischen BAFF und IL21 in B-Zellen aus Bursa- und Milz nachgewiesen werden. Da BAFF und CD40L gemeinsame Teilschritte der NFκB-Signalkaskade aktivieren, scheint BAFF hier als abgeschwächter Ersatz für das CD40-Signaling zu dienen. Mit Hilfe des Proliferationsfarbstoffes eFluor670 wurde nachgewiesen, dass in gemischten Lymphozytenpopulationen der Milz durch die verwendeten Zytokine fast ausschließlich B-Zellen zur Proliferation angeregt wurden und sich in Ansätzen mit CD40L+IL10 und CD40L+IL21 annähernd 100 % der B-Zellen geteilt haben.

Die Anzahl lebender B-Zellen war in den Stimulationen mit hohen Proliferationsraten am größten. Aber auch BAFF war in der Lage, die Anzahl lebender B-Zellen zu steigern und zeigte dabei einen größeren Effekt auf die immatures B-Zellen der Bursa. Durch Vergleich des Lebend-Tot-Index mit dem Proliferationsindex fiel auf, dass auf Bursalymphozyten die Zytokin-induzierte Proliferation bei weitem überwog. In Milzlymphozyten war dagegen der Lebend-Tot-Index für alle Stimulationen entweder gleich dem Proliferationsindex bzw. überstieg diesen für die Kombination aus CD40L+BAFF+IL21+IL10 sogar deutlich. Während die Zytokine folglich in den immatures B-Zellen aus der Bursa massiv Proliferation induzieren, die Zellen aber auch sehr rasch absterben lassen, führen die gleichen Stimuli in den weiter differenzierten, maturen B-Zellen aus der Milz nicht nur zur Proliferation, sondern erhöhen auch ihre Überlebensrate.
Zusammenfassung

Die durchflusszytometrischen Färbungen zeigten, dass durch die Stimulation mit den ausgewählten Zytokinkombinationen die Expression von B-Zell-Rezeptor, Zytokinrezeptoren (CD40, BAFF-R), Aktivierungsmarkern (CD80, MHCII) und Chemokinrezeptoren (CXCR4, CXCR5) stark verändert wurde, wobei sich auch hier deutliche Unterschiede zwischen kultivierten Bursa- und Milzlymphozyten zeigten.

Bei den B-Zellen aus der Bursa führte alleine die Kultivierung in Medium zu einer deutlichen Aktivierung und verstärkten Expression aller untersuchten Oberflächenproteine, besonders deutlich war dies für CXCR4. Dieser Effekt wurde auch durch die Zugabe von BAFF, IL10 oder IL21 kaum beeinflusst. Alle Stimulationen, die CD40L enthielten, führten jedoch zu einer weiteren Erhöhung der Expression von B-Zellrezeptor und MHCII, einem Phänotyp, der in vivo den aus der Bursa emigrierenden Zellen entspricht. Die Kombination CD40L+IL21 verminderte außerdem die Expression von CXCR5, was eine Voraussetzung für die Emigration darstellen könnte.


8 SUMMARY

Aim of this study was to use IL21, a cytokine well known for its role in mammalian B-cell development, in combination with CD40L, BAFF and IL10 to stimulate chicken B-cells from the bursa of Fabricius and the spleen and analyse the cytokines’ effects on proliferation, survival and expression of selected surface molecules.

Regarding proliferation, on B-lymphocytes from both organs neither IL10 nor IL21 showed an effect on their own. Adding of BAFF to the cultures, lead to a minor increase, the addition of CD40L to a considerable increase of cell proliferation. While IL10 and IL21 showed a very strong synergism with CD40L and resulted in an extremely high $^3$H-thymidine uptake (>300,000 cpm), combining CD40L and BAFF did not further enhance cell proliferation. In bursal cell cultures the maximal proliferation rate was solely obtained with CD40L+IL21, in spleenocytes this worked with both combinations CD40L+IL21 and CD40L+IL10.

Interestingly, for B-cells from both organs also a synergism between BAFF and IL21 was observed, though weaker than the effect of CD40L+IL21. As BAFF and CD40L share parts of the NFκB signaling cascade, BAFF seems to function as a partial replacement for CD40L in this setting. Experiments with the proliferation dye eFlour670 demonstrated that in mixed leucocyte cultures from the spleen by the selected cytokine combinations proliferation was almost exclusively induced in B-cells and in cultures with CD40L+IL21 and CD40L+IL10 not only a subpopulation but virtually 100% of B-cells proliferated.

Stimulations with a high proliferation rate also obtained the highest numbers of viable cells per culture. In addition, BAFF did increase the number of viable cells with a more pronounced effect on immature bursal then more mature splenic B-cells. Comparison of viability-index and proliferation-index revealed that in cultures from bursal B-cells cytokine induced proliferation clearly outweighed the pro-survival effect. In contrast, in cultures of splenic B-cells for most cytokine combinations the viability-index was quite similar to the proliferation-index and exceeded it even clearly for CD40L+IL10+IL21+BAFF. Thus the applied cytokine combinations induce strong proliferation in bursal cells, which is combined with rapid cell death, while the very same stimuli in cultures from further differentiated, mature B-cells from the spleen do induce proliferation and at the same time increase viability.
As shown by flow cytometry, stimulation with selected cytokines did strongly affect surface expression of B cell receptor (BCR), cytokine receptors (BAFF-R, CD40), activation markers (CD80, MHCII) and chemokine receptors (CXCR4, CXCR5), again revealing significant differences between cells from bursa and spleen.

Culture of the cell in medium only lead in bursal B-cells already to a strong activation and increased the expression of all analyzed surface proteins, which was most pronounced for CXCR4. Addition of BAFF, IL10 or IL21 did hardly induce additional changes. However, all stimulations containing CD40L further increased the expression of BCR and MHCII, a phenotype corresponding to cells, which \textit{in vivo} emigrate from the bursa. In addition, CD40L+IL21 reduced CXCR5 expression, which could be a prerequisite for emigration.

Phenotyping of stimulated splenic B-cells resulted in a more heterogeneous picture. As in bursal cells cultivation in medium alone did strongly induce CXCR4, but did not increase the expression of CD80 and MHCII and BCR expression was even reduced by halve. BAFF; IL10 and IL21 alone showed partly an enhancing and partly an inhibiting effect on marker expression. However, their combination with CD40L consistently induced a strong upregulation of CD80 and MHCII. Interestingly, in spleen cell cultures several cytokine combinations induced a small subpopulation with very low expression of activation markers, CD40, BAFF-R and BCR, whose function has to be resolved.

In summary, this work demonstrated that stimulation with synergistically acting cytokines is able to induce a highly proliferative, activated state in bursal lymphocytes, which is similar to the situation in the follicle cortex \textit{in vivo}. B-lymphocytes from the spleen were as well stimulated to strong proliferation, a state \textit{in vivo} occurring in germinal centers. In addition, marker expression on those cells showed signs of further differentiation towards a plasmablast like phenotype with the formation of further subpopulations. Hence, in cultures mimicking chicken B-cell differentiation identical cytokine signals induces different cellular reactions in cells from bursa and spleen.
9 LITERATURVERZEICHNIS


149. Chtanova, T., et al., *T follicular helper cells express a distinctive transcriptional profile,*


10 ANHANG

A Verwendete Chemikalien und Reagenzien

Die Bezugsquellen wurden als Hochzahlen entsprechend nachfolgender Tabelle in Kapitel 4 (Material und Methoden) integriert:

1. Applichem, Darmstadt
2. Biochrom, Berlin
3. Brand, Wertheim
4. Rotexmedica, Trittau
5. Invitrogen GmbH, Karlsruhe
6. Amicon Corporation, Witten
7. Sigma, Deisenhofen
8. freundlicherweise von Dr. J. Young, Institute of Animal Health, Compton/UK zur Verfügung gestellt
9. Southern Biotechnologies, Birmingham/USA
10. AIR LIQUIDE Deutschland GmbH, Düsseldorf
11. Amersham/GE Healthcare, München
12. Sigma Aldrich, Saint Louis, USA
13. Linaris, Wertheim
14. Merck, Darmstadt
15. eBioscience, Frankfurt
16. Bio-Rad AbD Serotec GmbH, Puchheim
17. Beckmann Coulter GmbH, Krefeld
18. Peqlab Biotechnologie GmbH, Erlangen
19. Sarstedt, Nümbrecht
20. Henry Schein, Berlin
21. ThermoFisher Scientific, Waltham, USA

22. Promega GmbH. Mannheim

23. Roth, Karlsruhe

24. PerkinElmer, Waltham, Massachusetts, USA

25. Biolegend, Fell

26. Jackson ImmunoResearch Europe Ltd., New Market/UK
### B. Laborgeräte in alphabetischer Reihenfolge

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bezeichnung</th>
<th>Herstellerfirma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysewaage</td>
<td>Mettler PJ400</td>
<td>Mettler-Toledo GmbH, Gießen</td>
</tr>
<tr>
<td>Amiconrührzelle</td>
<td>UFSC40001, Rührzelle, 8400, 400 ml</td>
<td>Merck Millipore, Billerica,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massachusetts, USA</td>
</tr>
<tr>
<td>Beta-Counter</td>
<td>Topcount Counter NXT Scintillation</td>
<td>Packard, USA</td>
</tr>
<tr>
<td>Brüter (Stall)</td>
<td>BSS 200/8203</td>
<td>Grumbach Brütergeräte GmbH, Asslar</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>CO2-Auto-Zero</td>
<td>Heraeus Instruments, München</td>
</tr>
<tr>
<td>Brutschrank für die Zellkultur</td>
<td>MCO-5AC</td>
<td>Sanyo, München</td>
</tr>
<tr>
<td>Chromatographie-Anlage</td>
<td>Biol-Rad Biologics LP mit Model2100 Fraction Collector</td>
<td>Bio-Rad, München</td>
</tr>
<tr>
<td>Dampfsterilisator</td>
<td>Varioklav Typ 500E</td>
<td>Thermo Scientific, München</td>
</tr>
<tr>
<td>Durchflusszytometer</td>
<td>FACSCantoII</td>
<td>Becton Dickinson, Heidelberg</td>
</tr>
<tr>
<td>ELISA-Washer</td>
<td>Tecan M8/4R Columbus plus</td>
<td>SLT Labinstruments, Crailsheim</td>
</tr>
<tr>
<td>Flockeneisbereiter</td>
<td>Scotsman AF100</td>
<td>Scotsman Ice Systems, Mailand, Italien</td>
</tr>
<tr>
<td>Hybridisierungsofen</td>
<td>G2545A</td>
<td>Sheldon Manufacturing, Inc., Cornellius/USA</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>IKAMAG®RCT</td>
<td>IKA® Werke GmbH + Co.KG, Staufen</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axioskop</td>
<td>Zeiss, Jena</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Leica DMIL Kamera DF340XF</td>
<td>Leica, Bensheim</td>
</tr>
<tr>
<td>Mikrozentrifuge</td>
<td>5415R</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>Sartorius PB-11 mit Glaselektorde PY-P10</td>
<td></td>
</tr>
<tr>
<td>Platten-Photometer</td>
<td>Sunrise-Remote</td>
<td>Tecan, Crailsheim</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Kombischüttler KL-2</td>
<td>Johanna-Otto GmbH, Hechingen</td>
</tr>
<tr>
<td>Sicherheitswerkbank</td>
<td>Mikroflow</td>
<td>Nunc, Wiesbaden</td>
</tr>
<tr>
<td>Stickstofftank</td>
<td>Locator 6 Plus</td>
<td>Barnstead Thermolyne, Dubuque/USA</td>
</tr>
<tr>
<td>Thermoschüttler</td>
<td>TS 1 Thermoshaker</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Vortex-Mixer</td>
<td>GVLab®</td>
<td>Gilson Inc., Middleton, USA</td>
</tr>
<tr>
<td>Wärmeschrank</td>
<td>neoLab Universal Wärmeschrank Basic 39l</td>
<td>neoLab Migge Laborbedards-Gm</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>GFL1004</td>
<td>GFL Gesellschaft für Labortechnik, Burgwedel</td>
</tr>
<tr>
<td>Zählkammer</td>
<td>Modifizierte Zählkammer nach Neubauer</td>
<td>Brand, Wertheim</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Sigma 4K15C</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Centrifuge 5810</td>
<td>Eppendorf, Köln</td>
</tr>
</tbody>
</table>
11 DANKSAGUNG

Zuerst möchte ich mich bei Prof. Dr. Bernd Kaspers für die Bereitstellung des Arbeitsplatzes bedanken.

Ganz besonders bedanken möchte ich mich bei Frau Priv.-Doz Dr. Sonja Härtle für die Überlassung des Dissertationsthemas und ihre große Leidenschaft für die B-Zellen des Huhns.


Herzlichen Dank an die gesamte AG Göbel, für die gute Zusammenarbeit am Institut und die enge wissenschaftliche Kooperation.

Für die Betreuung der Hühner danke ich Herrn Fritz Meggendorfer, Daniela Hölle, Andreas Schöffmann und Thomas Hoschka. Vielen Dank auch an die Rechnerbetriebsgruppe, besonders an Gerhard Moll.

Ein ganz besonderer Dank geht an alle meine Mitdoktoranden Anke Staudt, Bernhard Mutze Dorothea Aumann, Sarah Lettmann und Maria Laparidou und unsere Postdoc Dr. Susanne Röll, die mich in einer besonderen Zeit begleitet und aufgemuntert haben. Dies war weitaus mehr als ich von Arbeitskollegen erwartet hätte.

Für die finale Rechtschreibkorrektur bedanke ich mich außerordentlich bei Gernot Schoch und Lisa Fenzl.

Von ganzem Herzen bedanke ich mich bei Fabian für die partnerschaftliche Unterstützung, den mentalen, emotionalen und sportlichen Ausgleich zur Arbeit.

Unendlich dankbar bin ich meinen Eltern, ohne die mein Tiermedizinstudium gar nicht möglich gewesen wäre.