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Zusammenfassung

Einleitung Menschen unterscheiden sich darin, wie sie die Antwortkategorien von Frage-
bogenitems mit Likert Skalenformat verwenden (Vaerenbergh & Thomas, 2013). Stu-
dien legen nahe, dass es sich bei diesen Antwortstilen um Personeneigenschaften han-
delt, die zeitlich über lange Zeit stabil bleiben (Weijters, Geuens, & Schillewaert, 2010b;
Wetzel, Lüdtke, Zettler, & Böhnke, 2016) und gleichermaßen in Fragenbögen zu unter-
schiedlichen Konstrukten auftreten (Wetzel, Carstensen, & Böhnke, 2013). Unabhängig
von der zu messenden latenten Eigenschaft tendieren manche Personen dazu extremere Kat-
egorien anzukreuzen, während andere Personen eher mittlere Kategorien bevorzugen. Man
bezeichnet dieses Phänomen als Extremen Antwortstil (EAS). Bleibt EAS unberücksichtigt,
kann dies dazu führen, dass die Varianzen von Skalenwerten (Wetzel & Carstensen, 2015)
sowie Korrelationen zwischen psychologischen Konstrukten (Baumgartner & Steenkamp,
2001) überschätzt werden.

Die beiden häufigsten Modellierungansätze um EAS zu erkennen, sind das ordinale
Mixed Raschmodell (Rost, 1991) und Antwortstilindizes aus heterogenen Items (Green-
leaf, 1992). Das Mixed Raschmodell liefert eine attraktive Operationalisierung von EAS
anhand unterschiedlicher Schwellenabstände im Partial Credit Modell (Masters, 1982). Es
erlaubt eine Trennung von Inhalt und Antwortstil, allein mithilfe der Items aus der betref-
fenden Skala. Allerdings ist eine Konfundierung des gemessenen Antwortstils durch andere
Konstrukte nicht auszuschließen und das Modell nimmt implizit an, dass es sich bei EAS
um eine kategoriale Eigenschaft handelt. Antwortstilindizes aus heterogenen Items liefern
eine bessere Interpretierbarkeit von EAS durch eine objektive Trennung von Inhalt und
Antwortstil, setzen jedoch zusätzliche Items für die Berechnung des Index voraus.

Die vorliegende Arbeit beinhaltet drei Studien zu EAS. Diese bedienen sich moderner
Verfahren der Item Response Theorie (IRT) und der prädiktiven Modellierung, um eine
neue Sichtweise auf Themen zu liefern, die die Psychometrie seit mehr als 60 Jahren
beschäftigen (Cronbach, 1950). In der ersten Studie wird eine neue Methode zur Erkennung
von EAS vorgestellt, die viele Vorteile von Mixed Raschmodellen und Antwortstilindizes
miteinander vereint. Die zweite Studie untersucht erstmals die häufig getroffene Annahme,
dass EAS durch die Verwendung von Items mit nur zwei Antwortkategorien vermieden wer-
den kann. Schließlich wird in der dritten Studie der Versuch unternommen, EAS durch
spezielle Instruktionen auszugleichen, die an den individuellen Antwortstil des Probanden
angepasst werden.
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Studie 1 Partial Credit Bäume (PCBs; Komboz, Strobl, & Zeileis, 2016) sind ein kürzlich
entwickeltes Verfahren zur Erkennung von Differential Item Functioning (DIF), basierend
auf kategorialen oder metrischen Kovariablen. Durch die Verwendung eines extremen
Antwortstilindex aus heterogenen Items als Kovariable, stellen PCBs ein objektives Ver-
fahren zur Entdeckung von EAS dar, das die Operationalisierung von EAS anhand unter-
schiedlicher Schwellenabstände beibehält. Indirekt erlaubt es das Verfahren empirisch zu
überprüfen, ob es sich bei EAS eher um ein kontinuierliches oder um ein diskretes Konstrukt
mit mehreren getrennten Personengruppen handelt. Mit PCBs untersucht wurden Persön-
lichkeitsfacetten der Big Five im deutschen nicht klinischen Normdatensatz des revidierten
NEO-Persönlichkeitsinventars (NEO-PI-R; Ostendorf & Angleitner, 2004), sowie Subskalen
des deutschen Positive and Negative Affect Schedules (PANAS; Krohne, Egloff, Kohlmann,
& Tausch, 1996) und des Fragebogens Räumliche Strategien (FRS; Münzer & Hölscher,
2011), erhoben im Rahmen des Panels des GESIS-Leibniz-Institut für Sozialwissenschaften
(GESIS, 2015). Analysiert wurden die Daten von 11714 Personen im NEO-PI-R Norm-
datensatz und 3835 Personen aus dem GESIS Panel. In allen betrachteten Skalen zeigte
sich ein kontinuierliches Muster von EAS. Dieses zeichnet sich durch engere Schwellenab-
stände und höhere Antwortwahrscheinlichkeiten für die äußeren Kategorien in Gruppen
mit hohen Werten im Antwortstilindex aus. Vor allem im NEO-PI-R Datensatz zeigte
sich ein prägnantes Muster, mit einer großen Anzahl von identifizierten Antwortstilgrup-
pen. Dieser Befund legt nahe, dass es sich bei EAS um eine kontinuierliche Persönlichkeit-
seigenschaft handelt. Weiterhin zeigen die Ergebnisse aus den Daten des längsschnittlichen
GESIS Panels die zeitliche Stabilität von EAS. Obwohl durch die Verwendung von PCBs
in Kombination mit einem Antwortstilindex EAS objektiv erkannt werden kann, eignet
sich das Verfahren nicht zur statistischen Kontrolle von EAS. Spezielle IRT Modelle (Jin &
Wang, 2014; Tutz, Schauberger, & Berger, 2016), die EAS in Form eines kontinuierlichen
Personenparameters modellieren, scheinen dazu besser geeignet. Gegen deren praktische
Verwendung spricht momentan jedoch das Vorliegen von DIF bezüglich demografischer
Variablen wie Geschlecht und Alter in beiden analysierten Datensätzen.

Studie 2 Die Ergebnisse der ersten Studie legen nahe, dass es sich bei EAS um ein
allgegenwärtiges Problem bei Likert Items mit mehrkategoriellem Antwortformat handelt.
Items mit dichotomem Antwortformat werden im Rahmen der psychologischen Testkon-
struktion als wirkungsvolles Mittel diskutiert um EAS zu vermeiden (Bühner, 2011). Ob-
wohl dies plausibel erscheint, liegen dazu bisher keine empirischen Studien vor. Es kann je-
doch nicht augeschlossen werden, dass EAS auch bei dichotomen Itemformaten unbemerkt
eine Rolle spielt. Einige Studien deuten an, dass eine hohe Ausprägung von EAS auch eine
generelle Präferenz für extreme Antworten in einem inhaltlichen Sinne beschreibt (Naemi,
Beal, & Payne, 2009; Zettler, Lang, Hülsheger, & Hilbig, 2015). Es erscheint daher möglich,
dass sich EAS auch bei dichotomen Items auf die Schwellen in IRT Modellen auswirkt.
Mithilfe von Rasch Bäumen (Strobl, Kopf, & Zeileis, 2013) und DIF Lasso Modellen
(Tutz & Schauberger, 2015) kann der Einfluss von EAS auf die Schwellen im dichotomen
Raschmodell untersucht werden. In einem Papier und Bleistift Fragebogen beantworteten
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429 Psychologiestudenten die dichotomen Skalen Schüchternheit aus dem deutschen revi-
dierten Minnesota Multiphasic Personality Inventory (MMPI-2; Engel & Hathaway, 2003)
und Leistungsorientierung aus dem revidierten Freiburger Persönlichkeitsinventar (FPI-
R; Fahrenberg, Hampel, & Selg, 2001). EAS wurde auf drei Arten operationalisiert:
Durch einen Antwortstilindex aus heterogenen Items mit mehrkatigoriellem Antwortfor-
mat, mithilfe der dichotomen Klassifizierung eines ordinalen Mixed Raschmodells basierend
auf der Facette Ordentlichkeit des NEO-PI-R und durch eine dichotome Selbsteinschätzung
zu extremem Antwortverhalten. Sowohl bei der Analyse mit Rasch Bäumen als auch mit
dem DIF Lasso zeigte sich in keiner der beiden dichotomen Skalen ein Einfluss der drei
verwendeten Antwortstilindikatoren auf die Schwellen im Raschmodell. Kontrollanalysen
bestätigten jedoch einen Effekt von EAS auf die ordinale Ordentlichkeitsskala, wodurch
die Validität der drei Antwortstilindikatoren nachgewiesen werden konnte. Wie auch in
Studie 1 wurde in beiden dichotomen Skalen für einige Items DIF basierend auf Geschlecht
und Alter erkannt. Die Ergebnisse legen nahe, dass die Konstruktion von psychologischen
Fragebögen mit dichotomen Itemformaten eine wirksame Strategie darstellt, um EAS zu
vermeiden. Da viele Anwender dichotomen Antwortformaten bisher skeptisch gegenüber
stehen, werden Vor- und Nachteile diskutiert.

Studie 3 Da sich mehrkategorielle Antwortformate in der Psychologie großer Beliebtheit
erfreuen, ist eine Strategie besonders wünschenswert die den Einfluss von EAS bei ordi-
nalen Skalen auszugleichen vermag. Bereits Cronbach (1950) spielte mit dem Gedanken,
Antwortstile durch Probandentrainings und spezielle Instruktionen zu kompensieren. An-
gelehnt an das kognitive Prozessmodell von Tourangeau, Rips, and Rasinski (2000) wird
eine Instruktion vorgeschlagen, bei der Probanden ihre Itemantwort in eine extremere oder
weniger extreme Richtung anpassen sollen, wenn sie sich zwischen zwei Kategorien nicht
entscheiden können. Um die Effektivität der Instruktionen hinsichtlich der Kompensation
von EAS zu untersuchen, wird die Güte der Vorhersage von konstruktrelevanten Verhal-
tensweisen mithilfe von Itemantworten unter verschiedenen Instruktionsbedingungen be-
trachtet: Wir nehmen an, dass die Kriteriumsvalidität zunimmt, falls der Einfluss von EAS
durch passende Instruktionen ausgeglichen werden kann. Es erfolgt eine kurze Einführung
in die moderne prädiktive Modellierung mit Random Forest Modellen (Breiman, 2001) ein-
schließlich wichtiger Grundprinzipien wie Kreuzvalidierung und Overfitting (Hastie, Tib-
shirani, & Friedman, 2009).

In einem Onlinefragebogen beantworteten 788 Probanden dreimal die Facetten Impul-
sivität und Ordentlichkeit aus dem NEO-PI-R unter verschiedenen Instruktionen. Zunächst
absolvierten alle Probanden beide Skalen unter Standardinstruktionen. In randomisierter
Reihenfolge erfolgte in der Experimentalgruppe die zweite und dritte Beantwortung ent-
weder unter einer Instruktion zum extremen Ankreuzen oder einer Instruktion zum mitt-
leren Ankreuzen. Eine Kontrollgruppe beantwortete die Skalen in der zweiten und drit-
ten Runde erneut unter neutraler Instruktion. Als Kriteriumsvariablen in prädiktiven
Modellen dienten Selbstauskunftsfragen zu konkret beobachtbaren impulsiven bzw. or-
dentlichen Verhaltensweisen. Weiterhin erhoben wurden heterogene Items zur Berechnung
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eines Antwortstilindex und eine dichotome Selbsteinschätzung zu extremen Antwortten-
denzen. Mithilfe der beiden Antwortstilindikatoren wurde bestimmt, unter welcher In-
struktion ein Proband seine eigenen Antworttendenzen kompensiert bzw. verschlimmert.
Itemantworten aus der Kompensations- und Verschlechterungsbedingung wurden dann in
neue Pseudodatensätze zusammengefasst, um diese hinsichtlich der Vorhersage der Verhal-
tenskriterien vergleichen zu können. Generell konnte ein Effekt der Instruktionen auf die
Itemantworten nachgewiesen werden. Jedoch zeigten sich zwischen der Kompensations-,
Verschlechterungs- und Kontrollbedingung keine Unterschiede in der Vorhersagegüte der
kreuzvalidierten Random Forest Modelle mit den Impulsivitäts- und Ordentlichkeitsitems
als Prädiktoren. In weiteren Analysen mit PCBs konnte auch in der Kompensationsbedin-
gung ein Einfluss von EAS festgestellt werden. Dieser war nicht eindeutig schwächer als in
der Verschlechterungsbedingung. In prädiktiven Modellen mit den Itemantworten unter
Standardinstruktionen und demografischen Variablen als Prädiktoren zeigte sich keine
Verbesserung der Vorhersagegüte durch die Hinzunahme der beiden Antwortstilindikatoren
in das Modell. Dasselbe Ergebnis lieferte ein Maß für die geschätzte Bedeutung der beiden
Antwortstilindikatoren bei der Vorhersage (Out-Of-Bag Permutation Variable Importance).
Individuelle Partial Prediction Plots (Goldstein, Kapelner, Bleich, & Pitkin, 2015) ließen
bestenfalls einen kleinen Einfluss des Antwortstilindex auf die Vorhersagen mancher Kri-
terien vermuten. Obwohl mithilfe der Kontrollgruppe nachgewiesen werden konnte, dass
durch die wiederholte Darbietung der Items Reihenfolgeeffekte auftraten, kann dies die
Befunde nicht erklären. Die Ergebnisse stehen im Einklang mit zwei Simulationsstudien,
die einen geringen Einfluss von EAS auf die Kriteriumsvalidität von psychologischen Frage-
bögen nahelegen (Plieninger, 2016; Wetzel, Böhnke, & Rose, 2016). Der Einfluss von EAS
auf die Kriteriumsvalidität hat große praktische Relevanz und sollte daher in zukünftigen
Studien weiter erforscht werden. Außerdem werden mögliche Verbesserungsvorschläge für
die verwendeten Instruktionen diskutiert.

Diskussion Die dargestellten Analysen mit PCBs und Antwortstilindizes aus hetero-
genen Items legen nahe, dass EAS bei Items mit mehrkategoriellem Antwortformat all-
gegenwärtig ist und sich am besten als stabile Persönlichkeitseigenschaft mit kontinuier-
licher Struktur beschreiben lässt. Die Vermutung, dass dichotome Antwortformate geeignet
sind um EAS zu vermeiden, konnte mithilfe von Rasch Bäumen und DIF Lasso Modellen
erstmals empirisch bestätigt werden. Die Kompensation von EAS mithilfe von speziellen
Instruktion war in der hier dargestellten Form nicht erfolgreich. Dabei zeigt sich weiterer
Forschungsbedarf hinsichtlich des Einfluss von EAS auf die Kriteriumsvalidität psycholo-
gischer Fragebögen.

Für die zukünftige Erforschung von EAS ergeben sich angelehnt an die präsentierten
Studien zwei Ausrichtungen: Zum einen spielt die Untersuchung von EAS eine wichtige
Rolle für die präzise Messung psychologischer Konstrukte. Um die Itemantworten in psy-
chologischen Fragebögen angemessen statistisch zu beschreiben, müssen systematische Ein-
flüsse wie Antwortstile mitmodelliert werden (Jin & Wang, 2014; Tutz et al., 2016). Dabei
lohnt es sich auch Modellansätze zu betrachten, die nicht nur den Einfluss von Antwort-
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stilen auf die Itemantworten treffend beschreiben, sondern auch kognitive Aspekte des
Antwortprozesses berücksichtigen (Böckenholt, 2012; Zettler et al., 2015). Diese Multi-
prozessmodelle könnten wichtige Hinweise zu den Ursachen von Antwortstilen liefern. Zum
anderen wird derzeit eine stärkere Ausrichtung der Psychologie auf prädiktive Fragestel-
lungen diskutiert (Yarkoni & Westfall, 2017; Chapman, Weiss, & Duberstein, 2016). Dies
geht zunehmend mit der Aneignung von Methoden aus dem Bereich der prädiktiven Model-
lierung einher (Hastie et al., 2009). Werden psychologische Konstrukte als Kriterien
in prädiktiven Modellen verwendet, erscheint eine Kontrolle von Antwortstilen mithilfe
spezieller IRT Modelle (Jin & Wang, 2014; Tutz et al., 2016) notwendig. Andererseits
haben viele Bereiche der Psychologie das Ziel, mithilfe von Fragebögen praktisch relevante
Außenkriterien vorherzusagen. In diesem Fall gilt es in Zukunft zu klären, ob die Vorher-
sagekraft von psychologischen Theorien durch die Aufnahme von Antwortstilindikatoren
als Prädiktoren in nicht lineare prädiktive Modelle deutlich gesteigert werden kann.
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Abstract

Extreme Response Style (ERS) describes individual differences in selecting extreme re-
sponse options in Likert scale items, which are stable over time (Weijters et al., 2010b; Wet-
zel, Lüdtke, et al., 2016) and across different psychological constructs (Wetzel, Carstensen,
& Böhnke, 2013). This thesis contains three empirical studies on the detection, avoidance,
and compensation of ERS:

In the first study, we introduce a new method to detect ERS which uses an ERS index
from heterogeneous items as covariate in partial credit trees (PC trees; Komboz et al.,
2016). This approach combines the objectivity of ERS indices from heterogeneous items
(Greenleaf, 1992) with the threshold interpretation of ERS known from analyses with the
ordinal mixed-Rasch model (Rost, 1991). We analyzed personality facets of 11714 subjects
from the German nonclinical normative sample of the Revised NEO Personality Inventory
(NEO-PI-R; Ostendorf & Angleitner, 2004), and 3835 participants of the longitudinal panel
of the GESIS - Leibniz-Institute for the Social Sciences (GESIS, 2015), who filled out the
Positive and Negative Affect Schedule (Krohne et al., 1996), and the Questionnaire of
Spatial Strategies (Münzer & Hölscher, 2011). ERS was detected in all analyzed scales.
The resulting pattern suggests that ERS reflects a stable trait with a continuous structure.

In the second study, we investigate whether data from items with dichotomous response
formats are unaffected by ERS, as has been assumed in the literature (Wetzel, Carstensen,
& Böhnke, 2013). In a paper and pencil questionnaire, 429 German psychology students
completed the Shyness scale from the Revised Minnesota Multiphasic Personality Inven-
tory (Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) and the Achievement
Orientation scale from the Revised Freiburger Persöhnlichkeitsinventar (Fahrenberg et al.,
2001). ERS was assessed by an ERS index from heterogeneous items, a binary ERS mea-
sure based on the classification of an ordinal mixed-Rasch model, and a binary self-report
measure of ERS. ERS measures were used as covariates in Rasch trees (Strobl et al., 2013)
and DIF Lasso models (Tutz & Schauberger, 2015) of the dichotomous scales. We did not
find any effect of ERS on dichotomous item responses. Adopting dichotomous response
formats seems to be a reasonable strategy to avoid ERS.

In the third study, we test whether instructions to give more or less extreme responses
depending on participants’ individual response tendencies, can counterbalance the impact
of ERS. In an online questionnaire, 788 German subjects completed the Impulsivity and
Order facets of the NEO-PI-R three times under different ERS instructions. In the first
round, a standard instruction was used. Participants in the experimental group received
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instructions for more or less extreme responses in the second and third round, while sub-
jects in the control group responded under neutral instructions. ERS was measured by
an ERS index from heterogeneous items and a self-report measure of ERS. Binary ERS
classifications were used to create artificial datasets in which participants received an in-
struction which should either compensate or aggravate their individual response tendencies.
Predictive performance of Random Forest models (Breiman, 2001), in which self-reported
impulsive and orderly behaviors were predicted by the item responses, was compared be-
tween the compensation, aggravation, and control settings. No differences in predictive
performance were observed between the settings. Likewise, PC tree analyses suggest that
ERS was still present in the compensation setting. Including ERS measures as predictors
did not increase predictive performance when items were answered under standard instruc-
tions. Our findings are in line with simulation studies suggesting that ERS has a small
impact on applied psychological measurement (Plieninger, 2016; Wetzel, Böhnke, & Rose,
2016).

Future research on ERS could improve psychological measurements by considering con-
tinuous models of ERS (Jin & Wang, 2014; Tutz et al., 2016). In light of recent calls to
turn psychology into a more predictive science (Yarkoni & Westfall, 2017; Chapman et al.,
2016), investigating the impact of ERS on criterion validity should also have high priority.



Chapter 1

General Introduction

Individual tendencies of responding to survey items irrespective of item content, commonly
referred to as response styles, still are an important topic in psychometric research. Under
the term “response sets”, Cronbach (1946) did seminal work on response bias in psycholog-
ical measurements and raised many issues which bother the psychometric community up
to this day. The term “response style” was first introduced by Jackson and Messick (1958),
emphasizing that response styles might be trait-like constructs that are stable over time
and consistent across situations (Cronbach, 1950).

While rigorous empirical evidence was lacking in Cronbach’s time, current research has
found that large components of response styles are stable over one (Weijters et al., 2010b)
or even eight years (Wetzel, Lüdtke, et al., 2016), are consistent across different traits
(Wetzel, Carstensen, & Böhnke, 2013), within a longer questionnaire (Weijters, Geuens, &
Schillewaert, 2010a) or across different modes of data collection (Weijters, Schillewaert, &
Geuens, 2008), and are comparable for scales with different numbers of response categories
(Kieruj & Moors, 2013).

The two kinds of response styles which are the focus of current research are Extreme
Response Style (ERS) and Aquiescence Response Style (ARS). ERS refers to the observa-
tion that people differ in their tendency to choose extreme response categories of Likert
scale items, independent of their value on the primary latent trait that is measured by the
items. ARS describes varying tendencies to agree with questionnaire items regardless of
the item content. In this dissertation we examine ERS.1 All methodology could in principle
be applied to ARS or to any other response style postulated in the literature (for a current
review on response styles, see Vaerenbergh & Thomas, 2013).

This thesis contains three empirical studies on ERS: In the first study, a new method-
ological approach to detect ERS is introduced. Two large datasets are used to illustrate
the benefits of the technique. In the second study, we empirically investigate the widely
held assumption that ERS can be avoided by using questionnaire items with dichotomous

1 Henceforth the personal pronoun “we” will be used. Although all work was done by the sole author
of this thesis, he hates forcing his writing into passive speech even more than referring to himself
all the time. Since all of his work was heavily influenced by frequent discussions with his amazing
supervisors, colleagues, and friends, writing in this form feels most natural to him.
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response format. In the third study, we explore the possibility to compensate for the im-
pact of ERS by giving subjects specific instructions which work against their own response
tendencies.

Before presenting those studies, we discuss different definitions of ERS, mention fun-
damental challenges when studying ERS, describe the two most applied methods to detect
ERS, and talk about the impact of ERS on psychological measurement as well as different
strategies to mitigate those effects.

1.1 Definitions of Extreme Response Style

Conceptualizations of ERS found in the literature differ on at least three important at-
tributes, which are rarely explicitly discussed: The meaning of extreme responding refers
to which item responses are considered a symptom of ERS, the dimensionality of extreme
responding refers to whether the phenomenon of ERS reflects one or more latent processes,
and the continuity of extreme responding refers to whether ERS is described as a discrete
or as a continuous variable.

Meaning of Extreme Responding The definition of an extreme response is not con-
sistent across the literature. The majority of researchers define an extreme response as
selecting the highest or lowest response category on a Likert scale (Vaerenbergh & Thomas,
2013). With this definition, ERS reflects a special preference for the most extreme cat-
egories and can be interpreted as a person’s unconditional probability of selecting the
highest or lowest category of a Likert scale (Greenleaf, 1992). Thus, the person’s value
on the latent trait measured by a specific item is not taken into account. ERS can also
be thought of as the unconditional general extremeness of a person’s response on Likert
scale items (Jin & Wang, 2014; Tutz et al., 2016). In this view, the extremeness of an
item response can be visualized as the location of the average item response, compared
to the mid category of the response scale. Thus, selecting the highest or lowest category
reflects a more extreme response than choosing the second highest or lowest category and
so on. However, no specials role is assigned to the most extreme categories or to the middle
category if it exists. Any item response carries information about ERS.

Dimensionality of Extreme Responding The majority of research distinguishes ERS
from midpoint response style (MRS), the tendency to endorse the middle category of a
rating scale (Baumgartner & Steenkamp, 2001; Weijters et al., 2008). In other concep-
tualizations, extreme response tendencies are considered a unidimensional trait. This can
be unipolar with a balanced response pattern on the one side, but high preferences for
the most extreme categories on the other side of the spectrum (Greenleaf, 1992; Wetzel,
Böhnke, Carstensen, Ziegler, & Ostendorf, 2013). It can also be bipolar, ranging from a
high preference for the middle category, to high preferences for the most extreme response
categories (Jin & Wang, 2014; Tutz et al., 2016).
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This differentiation is partly dependent on the definition of extreme responding de-
scribed in the last paragraph. If ERS is defined as the general extremeness of a person’s
responses, MRS is also interpreted as “mild response style”, and thought to be the exact
opposite of ERS (Jin & Wang, 2014). In this line of thought, MRS does not need to be
treated as a separate concept. However, if ERS is defined as a person’s tendency to choose
the highest or lowest response category, MRS should be considered as a unique response
style, which might be driven by different factors in the response process. For example,
Weijters et al. (2010b) argue for a separation of ERS and MRS, given evidence that a sub-
sample of old, less educated subjects shows high proportions of mid and extreme responses
at the same time. If such a pattern were replicated in larger samples, this would suggest
that modeling ERS as a unidimensional construct is inappropriate.

Some authors even go one step further and consider responses to a Likert scale item
as series of cognitive decisions that correspond to different aspects of extreme responding
(Böckenholt, 2012; Plieninger & Meiser, 2014; Zettler et al., 2015; Böckenholt & Meiser,
2017; De Boeck & Partchev, 2012). For example, when dealing with an item with seven
response categories, the first decision process controls if the mid category is chosen or not.
This is comparable to the concept of MRS. If the mid category is not selected, a second
decision process is responsible for the direction of the item response. This should be
the content process, only determined by the primary trait measured. The result of a third
decision process is whether the most extreme category is chosen or not. This is comparable
to the definition of ERS as the tendency to choose the highest or lowest response category.
If the extreme category is not chosen, a fourth process controls which of the remaining two
categories is chosen, which also reflects a certain extremeness of the response. Notably,
the last process would not exist for an item with five or less response categories and the
first process would not exist if there is no mid category. Thus, in this conceptualization of
ERS, the number of dimensions depends on the response scale of the respective items.

Continuity of Extreme Responding In one line or research, ERS is viewed as discrete
differences in item responding, best described by only two distinct groups of people (Rost,
1990; Wetzel, Böhnke, Carstensen, et al., 2013; Ziegler & Kemper, 2013; Meiser & Machun-
sky, 2008; Eid & Rauber, 2000). The groups are described slightly differently, depending
on the two attributes introduced above. Some define “extreme responders” with high pref-
erence for the most extreme categories, and “midpoint responders” with high preference
for the mid category. This constitutes a bi-dimensional concept of ERS, defined by special
preferences for the middle and most extreme categories (Ziegler & Kemper, 2013). Others
use a unidimensional definition with “extreme responders” who prefer the most extreme
categories, and “non-extreme responders” who avoid the most extreme categories but do
not show a special preference for the mid category (Wetzel, Carstensen, & Böhnke, 2013).
Another conceptualization assumes one group with balanced response behavior while the
other is either characterized by a special preference for the most extreme categories (Eid
& Rauber, 2000), or by an avoidance of those (Meiser & Machunsky, 2008). In contrast to
these discrete conceptualizations, other researchers propose that ERS is a continuous trait
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(Greenleaf, 1992; Weijters et al., 2008; Jin & Wang, 2014; Tutz et al., 2016; Baumgartner
& Steenkamp, 2001). Also here, definitions of ERS differ with respect to the other two
ERS attributes. Some authors use continuous unidimensional definitions of ERS, which
may represent the general extremeness of responses (Jin & Wang, 2014; Tutz et al., 2016)
or the tendency to select the most extreme categories (Greenleaf, 1992). Others consider
separate continuous versions of ERS and MRS, representing special preferences for the
most extreme and mid categories (Baumgartner & Steenkamp, 2001; Weijters et al., 2008)

As already mentioned, the three attributes of ERS are rarely discussed explicitly in
the literature. In most cases, they have to be inferred from stated definitions. This is
because the highlighted taxonomy is closely related to the methodological approach by
which ERS is investigated in a specific line of research: So far, all researchers defining ERS
as a discrete trait used mixed Rasch modeling (Rost, 1990; Wetzel, Böhnke, Carstensen,
et al., 2013; Ziegler & Kemper, 2013; Meiser & Machunsky, 2008; Eid & Rauber, 2000).
On the other hand, continuous concepts of ERS based on the special preference for the
most extreme response categories have traditionally been studied by computing response
style indices from heterogeneous items (Greenleaf, 1992; Baumgartner & Steenkamp, 2001;
Weijters et al., 2008). For a more detailed description of these methodological approaches
see chapter 1.3.

In previous studies, it is mostly unclear whether the choice of a methodological ap-
proach was guided by the researchers’ theoretical conceptualization of ERS, or whether
they adapted their definition of ERS to their preferred methodological approach. This
ambiguity is important when thinking about the empirical basis of different concepts of
ERS. In particular, the issue whether ERS is a continuous construct seems to be a principal
question about the true nature of ERS, that is accessible to empirical testing. This issue
has been mentioned by Austin, Deary, and Egan (2006), but directed to future research
as the methodology to study ERS as a continuous trait was considered to little developed
at the time. Meanwhile, ERS has been detected repeatedly with sophisticated techniques
that treat it as a continuous trait (Weijters et al., 2008; Jin & Wang, 2014; Tutz et al.,
2016). However, to test empirically whether ERS is better described as a discrete or a
continuous trait, a technique is needed that will deliver different results depending on the
nature of ERS. In study 1, we introduce an approach to detect ERS, which for the first
time offers the necessary characteristics to shed light on this important question.

Moreover, the new method allows us to investigate whether extreme responding is
limited to the highest and lowest response category of a rating scale, and possibly the
mid category. If this is the case, subjects with high ERS scores should be expected to
show higher response probabilities on these most extreme response categories, only. If
ERS is related to the general extremeness of responses, we should observe higher response
probabilities for categories next to the most extreme ones, too, as long as the measure of
ERS takes this definition of general extremeness into account. Study 1 also investigates
this issue.

Considering the dimensionality of extreme responding, it is less clear how to compare
the different conceptualizations based on data, or whether they are open for empirical test-
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ing at all. The predominant question is whether the most extreme and the mid categories of
a rating scale are qualitatively different from all other response options. Multiprocess mod-
els (Böckenholt, 2012; Plieninger & Meiser, 2014; Böckenholt & Meiser, 2017; De Boeck
& Partchev, 2012) may be a good way to approach this issues among others. Although
we did not apply multiprocess models here, they will be mentioned several times as they
provide an interesting alternative approach to investigate some of our research questions.

In the original work presented in this dissertation, we conceptualize ERS as a stable,
continuous, bipolar, unidimensional trait, that can be interpreted as the unconditional
general extremeness of a person’s responses to Likert scale items, and ranges from high
preference for the mid category to high preferences of the most extreme categories. In the
introduction, the term ERS is used for various definitions of extreme response style, to
simplify the discussion of previous research. However, contrasting definitions of ERS will
be clarified, when necessary.

1.2 Challenges When Studying Extreme Response Style

When studying the impact of ERS on a psychological scale, it is difficult to separate a
high value of ERS from a high value on the primary trait of interest. Baumgartner and
Steenkamp (2001) call this “not to confound stylistic variance with substantive variance”.
The most naive way to measure ERS is to calculate the number of responses on the most
extreme categories in a psychological scale of interest. However, this measure of ERS
is highly confounded with the primary content of the scale. Subjects with high values
on the primary trait will frequently choose the most extreme categories. Therefore, we
would expect some relationship between the ERS score and the trait score derived from
the questionnaire, that results from correlating the primary trait with itself. This fallacy
can be avoided by either measuring ERS based on a separate set of items that were not
used to measure the primary content of interest, or by using psychometric models that
incorporate more sophisticated ways to assess response style and content from the same
set of items. In the next chapter, we describe the most commonly used methodological
approach for each strategy.

The difficulty of separating response style and content is most important when studying
how ERS is associated with other variables. As ERS appears to be stable across time and
situations (Weijters et al., 2010b; Wetzel, Lüdtke, et al., 2016; Wetzel, Carstensen, &
Böhnke, 2013), it seems likely that ERS is a behavioral manifestation of a combination of
certain person characteristics (Naemi et al., 2009). Linking ERS to demographic variables
has yielded mixed results (for a review see Vaerenbergh & Thomas, 2013). While high
levels of ERS have been found to be negatively correlated with education, findings on sex
differences remain inconclusive. Reported results range from no effect, to higher levels of
ERS for both women and men. For age, suggestions range from no effect, over positive or
negative linear effects, to quadratic effects, with both young and old persons showing high
levels of ERS. A possible reason for these inconsistencies is that measures of ERS might
be confounded with primary content in a large number of studies (Beuckelaer, Weijters, &
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Rutten, 2010). If so, the reported associations may vary depending on how demographic
variables are related to the confounded content.

Studying the relations between ERS and demographic variables is straightforward from
a methodological standpoint, as long as ERS measures are not confounded with content
variance. The situation gets more complicated when investigating the association between
ERS and personality traits. To this day, the established approach to measure personality
traits are psychological questionnaires. Correlating self-report measures of personality with
ERS is highly problematic, as any personality score is likely contaminated with response
style variance. The study by Plieger, Montag, Felten, and Reuter (2014) represents an
example in which claimed associations between ERS and personality traits are hard to in-
terpret. The authors report a positive association between ERS and neuroticism. However,
they used the number of extreme responses on a Big Five inventory as their ERS measure,
with one fifth of these items also being used to compute the neuroticism score.

Even when efforts are undertaken to obtain an independent ERS variable that is largely
free of confounding primary content, this does not solve the problem that ERS is somewhat
correlated with itself due to contaminated personality scores. This was demonstrated by
the study by Austin et al. (2006), who report higher extraversion and conscientiousness
scores for subjects in the high ERS class of mixed Rasch models. However, raw personality
scores were used to estimate this relation, instead of person parameters from the two
class solution, which would have been somewhat corrected for ERS. These results should
therefore be interpreted with caution. The literature documents only two serious attempts
to circumvent these limitations. Naemi et al. (2009) determined personality scores using
peer ratings instead of self reports. They have found that subjects’ ERS was positively
related to intolerance of ambiguity, preference for simplistic thinking, and decisiveness
rated by their peers. Lately, another study also used other ratings to show that ERS,
conceptualized as the intensity process in a multiprocess model, is negatively related to
humility (Zettler et al., 2015).2 As other ratings suffer from possible selection bias of the
primary and secondary raters and apparent flaws of using human judgments, Cabooter
(2010) decided to avoid direct measurement scales completely. She constructed a set of
scale-free personality measures, and found ERS to be positively associated to a concept
termed promotion focus.3 Unfortunately, this work which was part of her doctoral thesis
has not been taken up on since.

In light of this discussion, we think that investigating the relationship between ERS
and personal traits is not a very fruitful endeavor at this point. Instead, all three studies
presented here seek to foster our understanding of the true nature of ERS. Hopefully, this
will contribute to the development of better psychological measures which are less affected
by ERS (see chapter 5.2), or alternatively enable the community to model ERS directly
sometime in the future (see chapter 2.4.4).

Until this is achieved, we agree with Cabooter (2010) that ERS should better be related
to personality without using self-report scales. A promising way would be to substitute

2 Humility constitutes the sixth factor in the HEXACO model of personality (Ashton & Lee, 2007).
3 Promotion focused people are likely to take risks and make active choices.
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personality questionnaires by predictions of personality traits based on digital footprints
of personality and behavior. It has been shown that self ratings of personality can be
predicted by Facebook likes with comparable accuracy than by other ratings of spouses
(Youyou, Kosinski, & Stillwell, 2015). They used techniques derived from predictive mod-
eling, demonstrating the great potential of these methods for psychological science. Re-
markable performance was achieved by a simple regularized linear model. Even better
predictions may be possible when using non-linear methods like we did in study 3. Com-
bining direct modeling of ERS with predictive models of personality, might yield the first
reliable insights into how ERS is associated with personality traits.

1.3 Methods of Detecting Extreme Response Style

1.3.1 Mixed Rasch Modeling

One of the two most popular approaches to detect ERS are mixed Rasch models (Rost,
1990), a combination of Rasch models and latent class analysis. Generally, the polytomous
mixed Rasch model is used in this context (Rost, 1991), because rating scale items are
analyzed to detect ERS. Polytomous mixed Rasch models assume that the target popula-
tion consists of several latent classes. In each class, item responses follow a partial credit
model (PCM; Masters, 1982). When fitting a mixed Rasch model, the number of latent
classes must be specified by the researcher. The estimation algorithm then yields latent
classes which maximally differ with respect to their respective model parameters. As with
any discrete mixture model, threshold parameters for the PCMs in all latent classes are
estimated jointly, and a probability that a subject belongs to a class is estimated for each
of the latent classes. Mixed Rasch models can be thought of as a way to detect differences
in the item response patterns, resulting from a combination of unobserved covariates of the
subjects included in the analyzed sample. Therefore, mixed Rasch models can be used as
a rigorous test of measurement invariance in the PCM. Mixed Rasch model solutions with
different numbers of classes can be compared against each other, based on information
criteria. For the special case of one latent class, the polytomous mixed Rasch model is
identical to the PCM. If a mixed Rasch model with two or more classes shows better fit
to a set of item response data than the PCM, the unidimensionality assumption of the
primary trait measured by the scale must be rejected. However, the threshold pattern in
the latent classes can be used to gain useful insights into the source of multidimensionality.
While different primary traits might be measured within each class, another possibility for
the emergence of multiple classes is that subjects differ in their usage of the response scale.
This feature makes the polytomous mixed Rasch model a useful tool to investigate ERS.

Mixed Rasch models have been originally used to investigate measurement invariance
by Rost, Carstensen, and von Davier (1997). Thereby, they discovered signs of ERS in a
personality inventory, the German version of the NEO Five-Factor Inventory (NEO-FFI;
Borkenau & Ostendorf, 2008). They found two latent classes in a mixed Rasch analysis
of the NEO-FFI. In one class, item thresholds where close together and the probability to
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respond on the highest or lowest scale category was high even for subjects with moderately
high or low values on the latent trait. In contrast, threshold parameters were widely spaced
in the second class, with higher probability to use less extreme categories for moderate
values on the latent trait. This pattern is highly intuitive when considering how ERS
should manifest in item responses of psychological questionnaires. The introduction of
mixed Rasch models made it possible to investigate ERS within the sophisticated modeling
framework of item response theory. Similar patterns of ERS have meanwhile been detected
in the English version of the NEO-FFI (Borkenau & Ostendorf, 2008) by Austin et al.
(2006) and in its German long version, the Revised NEO Personality Inventory (NEO-PI-
R; Ostendorf & Angleitner, 2004) by Wetzel, Böhnke, Carstensen, et al. (2013). Two class
patterns of ERS are prevalent not only in the NEO family of personality inventories, but
have also been detected in inventories on anger expression (Gollwitzer, Eid, & Jürgensen,
2005) or leadership performance (Eid & Rauber, 2000).

These findings have had a big impact on describing ERS as a trait that differentiates two
distinct classes of people, one with a high tendency to chose extreme response categories
and the other with a high tendency to chose the mid category. Although this might be a
reasonable conceptualization, it does not mean that these two distinct groups with quali-
tatively different response tendencies actually exist. In contrast, they could likewise be an
artifact of the mixed Rasch methodology. Because of its discrete structure, a mixed Rasch
model can only differentiate between a small number of latent classes. For higher numbers
of classes, differentiation gets harder and convergence problems are common (Böckenholt &
Meiser, 2017). If ERS is better described as a continuum ranging from high to low tenden-
cies to give extreme responses, that structure is insufficiently depicted by a discrete model
like the mixed Rasch model (Bolt & Johnson, 2009). Indeed, mixed Rasch models yield
inappropriate trait estimates when item responses are modeled by a multidimensional item
response theory (IRT) model with a continuous ERS variable (Wetzel, Böhnke, & Rose,
2016). In practice, more than three latent classes in mixed Rasch analyses are rare. Even
when three classes are found, authors usually report the threshold pattern of the third class
to be closely comparable to either the class of extreme or mid responders (for an example,
see Wetzel, Carstensen, & Böhnke, 2013).

The ability of mixed Rasch models to find differences in response patterns resulting from
an unobserved subpopulation, is a great feature when testing for measurement invariance
in the PCM. However, when studying response styles, interpretability of the resulting
multi-class solutions is limited, as response styles are only one possible factor inducing
differences between classes. Even if a pronounced pattern of wide compared to narrow
thresholds emerges, response styles can be confounded with differences in the level of the
primary trait, or by other personality characteristics that were not explicitly observed in
the dataset. Moreover, mixed Rasch models have been found to produce spurious latent
classes under certain conditions (Alexeev, Templin, & Cohen, 2011).

To address these problems, Wetzel and colleagues (Wetzel, Carstensen, & Böhnke,
2013; Wetzel, Böhnke, Carstensen, et al., 2013) use a constrained version of the mixed
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Rasch model, in which item locations are restricted to be equal between latent classes.4
These models provide higher confidence that threshold patterns between latent classes can
be interpreted as differences in response scale usage. Model fit of the constrained mixed
Rasch model can be compared to its unconstrained version based on information criteria. If
the model fit of the constrained version is better, one can be more confident that the same
primary construct is measured in all latent classes. Different threshold patterns between
classes can then be attributed more clearly to differences in response styles.

A big advantage of mixed Rasch models is that ERS can be detected based on the
same items which are used for measuring the construct of interest. In contrast to the
approach described in the next section, no additional items are needed to investigate ERS.
As a consequence, mixed Rasch models can be applied to assess effects of ERS in any
study using psychological scales based on a homogeneous set of rating scale items. More
generally, they can be considered as a flexible, exploratory, all-purpose tool to deal with a
variety of response styles (Böckenholt & Meiser, 2017).

1.3.2 Response Style Indices

The other widely used approach to study response styles focuses on an optimal separation of
response style and content of interest. This is achieved by computing a response style index
from a set of heterogeneous items. The method was originally introduced by Greenleaf
(1992) and extensively developed by Weijters and colleagues (Weijters et al., 2008; Weijters
et al., 2010a; Weijters, Cabooter, & Schillewaert, 2010; Weijters et al., 2010b) under
the label Representative Indicators of Response Styles (RIRS). The basic idea is that an
index representing extreme responding in a set of items is minimally confounded with trait
variance when the items measure widely different psychological constructs.

Such indices for ERS typically estimate a subject’s probability to give an extreme
response by computing how often the highest or lowest response category is chosen on
average for some heterogeneous item set (Greenleaf, 1992). However, different coding
schemes are possible, that also give lower weights to less extreme response categories.
Such a weighting scheme was applied in all three studies presented in this thesis.

Previous studies used different numbers of items to compute response style indices,
ranging from 16 (Greenleaf, 1992) to 112 (Weijters et al., 2010a). As a rough measure,
most studies report the mean absolute inter-item correlation for the items contained by the
index, ranging from 0.071 (Greenleaf, 1992) to 0.12 (Baumgartner & Steenkamp, 2001).

While Weijters et al. (2008) urge researchers to use a minimum of 30 items when
response styles are of major interest, Greenleaf (1992) argues, based on analytical reasoning,
that reducing the inter-item correlations is more effective to maximize the accuracy of a
response style index than increasing the number of items. As items are never completely
uncorrelated in practice, low inter-item correlations are easier to achieve with a smaller
number of items.

An obvious disadvantage of response style indices is that additional items are needed.

4 The location of an item is defined as the sum of its threshold parameters.
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Moreover, as these items have to be highly uncorrelated, they should not be taken from the
small number of scales included in a typical psychological study. In most situations, a set of
heterogeneous items has to be deliberately included in the study design in order to detect
response styles with the index approach. This has been done repeatedly by Weijters and
colleagues (Weijters et al., 2008; Weijters et al., 2010a; Weijters, Cabooter, & Schillewaert,
2010; Weijters et al., 2010b).

Weijters et al. (2008) highly recommend that additional items are randomly sampled
from a relevant item population. This ensures that findings on response style are general-
izable to other items, and that items are heterogeneous in content, thus showing only small
inter-item correlations. In their studies, they sample from a large set of marketing scales,
and then draw one item from each selected scale. We use a similar approach in study 2
and 3. There, we collected our own data, including a set of heterogeneous items that we
sampled from publicly available item banks.

Another possibility to investigate response styles are large scale comprehensive surveys,
that often contain a variety of scales used to study a number of different research questions.
In these datasets, a set of uncorrelated items can be found from scales that were primarily
included for content reasons, as in Baumgartner and Steenkamp (2001), Greenleaf (1992)
or Plieninger and Meiser (2014). However, when working with secondary data, ensuring
a high level of heterogeneity can be challenging (Beuckelaer et al., 2010). By using an
algorithm that automatically selects an uncorrelated set of items from all available items
in a dataset, heterogeneity can be further improved. We used such a procedure in both
analyses of study 1. In the first analysis, we selected items to compute an ERS index from
a large personality inventory that contains several hundred items, measuring constructs
which are theoretically independent. In the second analysis, we analyzed longitudinal panel
data, where we selected a set of uncorrelated items from a large number of questionnaires
that investigate a wide variety of research questions.

Response style indices can be used in different analysis frameworks, to detect response
styles or to study the relationship between response styles, demographic person character-
istics, and psychological constructs of interest. The most common approach is to estimate
a structural equation model, including latent response style variables composed of multiple
parcels of response style indicators (Weijters et al., 2008). In study 1 we present a new pro-
cedure, using an ERS index as a covariate in partial credit trees (PC trees; Komboz et al.,
2016). This combines the rigorous separation of response style and psychological content
from the response style indices framework with the intuitive threshold interpretation of
ERS known from mixed Rasch modeling.

1.4 Mitigating the Impact of Extreme Response Style

Response styles have been declared “an enemy to validity” by Cronbach (1950). Although
some researchers remained skeptical (Rorer, 1965), it is widely assumed today that response
styles have detrimental effects on psychological measurement:

ERS has been shown to affect means and variances derived from Likert scale mea-
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sures. Correcting for ERS in cross-cultural research changes the ranking of countries in
mean conscientiousness (Mõttus et al., 2012). Sex differences in leadership types disap-
pear when considering different levels of ERS between men and women (Moors, 2012). In
facets of the NEO-PI-R, ERS explains 25% of the variance of item responses (Wetzel &
Carstensen, 2015). Moreover, ERS influences the estimated relationship between variables.
Controlling for response styles often changes the correlations between scales (Baumgartner
& Steenkamp, 2001). For example, estimated latent correlations between two dimensions
of Personal Need for Structure decrease when accounting for ERS (Böckenholt & Meiser,
2017).

Although a large body of empirical research supports that ERS poses a threat to psycho-
logical measurement, two recent simulation studies present different results. The authors
claim that as long as the response style is not strongly correlated to the primary construct
of interest, response styles might have a minor impact in practice (Plieninger, 2016; Wetzel,
Böhnke, & Rose, 2016).

Wetzel, Böhnke, and Rose (2016) simulated item response data contaminated with
ERS. They used an ordinal mixed-Rasch model with two response style groups and a
bi-dimensional IRT model with a continuous ERS variable. Trait and ERS were either
uncorrelated or weakly correlated (r = 0.2) in the bi-dimensional model. Simulated data
was analyzed with PCMs, mixed-Rasch models, bi-dimensional IRT models, and a simple
approach in which sumscores were regressed on an ERS index computed from the same
items. Trait recovery was evaluated with the correlation and the average absolute difference
between true and estimated trait parameters. In all conditions, trait recovery with the
PCM which ignored ERS was comparable to trait estimates from the true data generating
model that took ERS into account. The sample size and the number of items in the scale
did not affect these results. When the PCM was used to simulate data without ERS, trait
recovery with the same model was highly biased. This raises some concerns about the
interpretability of the simulation results in general. One possibility for this unexpected
finding might be that implausible priors were used in the expected a posteriori estimates
of the person parameters.

Plieninger (2016) simulated data from multidimensional IRT models extended for ERS
and ARS. This is the same model class which was also used in the simulation study by
Wetzel, Böhnke, and Rose (2016). The correlation between the trait and the response
style variable in the model was varied systematically. To evaluate the influence of ignoring
response styles, several measures were considered: Cronbach’s Alpha estimates (Cronbach,
1951) were compared to a version of Alpha in which true response styles are partialled out
(Bentler, 2016). Correlations between sumscores from two scales were compared to partial
correlations which control for the true response style values. Correlations of true trait
parameters with sumscores were compared between conditions with and without response
style. Finally, dichotomous trait classifications based on different percentiles of the sum-
scores were compared to the corresponding classifications based on the true trait values.
The author concluded that ERS induced little bias, as long as the correlation between
trait and response style is small. The simulation study suffers from several limitations:
First, the effect of ERS on Cronbach’s Alpha is irrelevant. Reliability always depends on
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a certain measurement model. As soon as ERS is present in the data, the essentially tau-
equivalent model of classical test theory (CTT) is violated and Cronbach’s Alpha cannot
be interpreted as reliability. It is not clear whether the corrected version of Cronbach’s
Alpha is based on an appropriate definition of reliability in the ERS model which was used
for the simulation. Only then would it make sense to interpret the observed differences be-
tween the standard Cronbach’s Alpha estimates and the corrected versions. Moreover, the
comparison between the correlation of sumscores and the corresponding partial correlation
cannot be meaningfully interpreted. The partial correlation is not an unbiased estimator
of the true correlation between the latent variables in the data generating IRT model, as
ERS does not have a linear effect on the sumscore of the scale.

A common caveat of both simulation studies is that only the average effect of ERS was
investigated. When averaging across the distribution of both the latent trait and ERS, the
impact of ERS might be small as reported in both simulations. The classification accura-
cies reported by Plieninger (2016) suggest that the impact of ERS is stronger for subjects
with a high or low value on the content trait. Trait and response style are supposed to
follow a multivariate normal distribution with small correlation, which seems like a rea-
sonable assumption. However, this implies that even for extreme trait values, the majority
of subjects have moderate values on ERS, explaining why bias is still small on average.
Ignoring response styles should have the largest impact for people with extreme values on
both the content trait and on ERS. As this applies only to a small number of people, the
impact of ERS appears negligible when averaged across all subjects.

While ERS might be less relevant in studies focusing on correlations and mean differ-
ences between groups, its impact on individual diagnostics could be devastating. In many
applications like clinical psychology and personnel selection, one is genuinely interested
in subjects with extremely high or low values on some latent trait. Under these circum-
stances, not controlling for ERS might yield strongly biased trait estimates for people with
high or low response style values. This can lead to judgment errors that might have serious
consequences for the examined individual (e.g. a patient is denied insurance) or the client
of the psychological measurement (e.g. a company hires an incompetent employee).

If applied researchers want to mitigate possible effect of ERS in their psychological
measurements, two kinds of strategies can be applied (Podsakoff, MacKenzie, & Podsakoff,
2011). Statistical remedies try to correct trait scores for ERS within statistical models,
while procedural remedies try to avoid the confounding of item responses with ERS in the
first place.

1.4.1 Statistical Remedies

In theory, any statistical technique which is capable of detecting ERS can also be used to
correct for the impact of the response style. How the statistical control works in detail,
depends on the applied model class:

In mixed Rasch models, person parameters are regarded as a measure of the latent trait,
which is corrected for differences between the latent classes (Rost et al., 1997). If visual
inspection suggests that classes capture different levels of extreme responding, estimated
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person parameters are supposed to be free of ERS. For this interpretation, it is essential
that the same latent trait is measured within each class, which can be assumed if item
difficulties are the same for all classes (Wetzel, Carstensen, & Böhnke, 2013).

When a response style index from heterogeneous items is used to measure ERS, cor-
rected scores can be obtained by regressing trait scores on the ERS index. In the simplest
approach, sumscores of the scale of interest are regressed on the ERS index in ordinary lin-
ear regression, and the resulting residuals are used as corrected trait scores (Baumgartner
& Steenkamp, 2001). In the representative indicators response style means and covariance
structure (RIRSMAC) approach (Weijters et al., 2008), a linear structural equation model
is estimated. Item responses from the scale of interest load on a common content factor, as
well as a latent response style factor. The response style factor additionally loads on sev-
eral identical ERS indices, which are computed based on separate item parcels. Estimated
factor scores for the content factor are then considered trait scores which are corrected for
ERS.

How well the correction works depends on the fit between the true structure of the
response style, and the structure which is assumed by the applied ERS model. Both
the regression residuals and the RIRSMAC approach assume a linear relationship between
ERS and individual item responses, which makes no theoretical sense. Thus, both methods
should perform poorly when used to correct for ERS in practice. If ERS is best described
by a continuous trait (Greenleaf, 1992; Weijters et al., 2008; Jin & Wang, 2014; Tutz et al.,
2016; Baumgartner & Steenkamp, 2001), mixed Rasch models which implicitly assume a
categorical structure can be expected to perform poorly as correction method (Wetzel,
Böhnke, & Rose, 2016). In contrast, more simple models might yield more robust correc-
tions for ERS, in particular if the sample size or the number of items in the analyzed scale
are small. Wetzel, Böhnke, and Rose (2016) report good performance of using residuals
from linear regressions with an ERS index as predictor, even when the assumed linear
relationship between ERS and item responses was violated in the simulation process. This
leads them to the conclusion that model-based approaches can also do more harm than
good under some circumstances. In addition to model complexity, the degree of structure
in the model might be important as well. Possibly due to their high flexibility, mixed Rasch
models performed worse in the correction of ERS than multidimensional IRT models with
a clear structural representation of ERS (Wetzel, Böhnke, & Rose, 2016). This structural
aspect might explain, why the mixed Rasch model even performed worse than the other
models, when the mixed Rasch model was used to simulate the data.

These findings lead to the conclusion that ERS should be modeled directly with IRT
models that assume an appropriate structure for the response style. When a good model
is found, derived trait estimates should substantially reduce the impact of ERS in psycho-
logical applications. Exploratory studies on the real structure of ERS are important to
choose between the models which have been proposed in the literature and to stimulate
further refinements. In study 1, we introduce a new approach to explore ERS, which is
well suited to detect and depict ERS in an objective way but is not a good candidate to
correct for ERS due to its high flexibility and lack of structure. However, the proposed
method can yield important insights into the structure of ERS. Based on our empirical
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results, we discuss which models might be most promising for direct modeling of ERS in
chapter 2.4.4.

1.4.2 Procedural Remedies

Instead of removing ERS from item response data with statistical techniques, procedural
remedies try to avoid the confounding of item responses with ERS, by adjusting the design
of the measurement process.

One aspect of psychological measurements which is supposed to be related to the im-
pact of ERS, is the response format of items in psychological questionnaires. The literature
on this topic is mixed. It has been suggested that participants tend to choose more in-
termediate item responses when using fully labeled response scales (Weijters, Cabooter,
& Schillewaert, 2010). If only endpoints are labeled, Weijters, Cabooter, and Schillewaert
(2010) find that increasing the number of response categories leads to a smaller rate of
extreme responses, and a higher rate of midpoint responses. In contrast, other researchers
report that the responses rates for the midpoint and the most extreme categories are un-
related to the number of response categories (Kieruj & Moors, 2010, 2013).

Instead of investigating how ordinal item formats should be designed to minimize the
impact of ERS, the most natural strategy to avoid ERS is to use dichotomous items.
Although this advice has been voiced in the psychometric literature multiple times (Bühner,
2011; Cabooter, Millet, Weijters, & Pandelaere, 2016; Wetzel, Carstensen, & Böhnke,
2013), empirical evidence is not available. In study 2, we argue that contrary to the
standard definition of ERS which relies on items with ordinal response formats, extreme
responding might also affect dichotomous item responses. Recently introduced IRT models
are used in combination with ERS indices from heterogeneous items with ordinal response
formats, to investigate whether dichotomous item responses are unaffected by ERS.

Psychological questionnaires do not only consist of the items and their response format.
Another important aspect is how respondents are instructed to answer the questions. In
study 3, we will investigate specific instructions, which urge participants to give more or
less extreme item responses. The appropriate direction of the instruction is selected for
each participants, based on some measure of ERS. As a consequence, individual response
tendencies should be compensated during the response process, and statistical control for
ERS might be unnecessary. Cronbach (1950) also advocated researchers to reduce response
bias by increasing the testwiseness of participants through specific training sessions. This
should be most successful if subjects have some conscious knowledge about their own
response tendencies. In studies 2 and 3, we also explore if the self-reported tendency to
give extreme responses in questionnaires carries valid information about the impact of ERS.
If this is the case, simple training procedures could be developed which focus on increasing
participants’ awareness of their individual response styles, and help them in adjusting their
item responses accordingly.



Chapter 2

Study 1: Detecting Extreme Response
Style with Partial Credit Trees

2.1 Introduction

2.1.1 An Introduction to Partial Credit Trees

An item in a psychological test is said to display differential item functioning (DIF) if the
probability of item responses under a particular item response model varies between people
from different subgroups (e.g. based on age or sex). Rasch trees (Strobl et al., 2013) and PC
trees (Komboz et al., 2016) were recently introduced as procedures to automatically detect
DIF in item response models on the basis of flexible combinations of person covariates. Both
methods rely on the model-based recursive partitioning framework by Zeileis, Hothorn, and
Hornik (2008), and are conceptually related to the decision trees introduced in chapter
4.1.3.

If no DIF is present in a dataset, fitting a joined item response model for the whole
sample is appropriate. Consequently, when the sample is split based on a covariate and an
item response model is computed separately for each subsample (e.g. men and women),
the estimated model parameters should be approximately the same. However, if DIF is
induced by available covariates, there is a partition of the sample based on these covariates,
in which model parameters differ. Rasch and PC trees do not only provide a global test for
DIF (Strobl et al., 2013; Komboz et al., 2016), they also automatically detect subgroups
for which DIF is present based on available covariates.

In Rasch trees, the underlying item response model is the dichotomous Rasch model,
whereas the PCM is used in PC trees. An excellent resource that includes all commonly
used models from IRT is Van der Linden (2016). A Rasch or PC tree takes the responses
on a set of dichotomous or polytomous items that belong to a psychological scale, as well as
a set of person covariates as input. Then the algorithm repeatedly performs the following
three steps (Strobl et al., 2013; Komboz et al., 2016):

1. The item response model with all its item parameters is estimated for the current
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sample. In the first round, the whole sample is provided.

2. Statistical tests are performed to examine the stability of model parameters with
respect to each covariate.1

3. If significant parameter instability is found, the covariate responsible for the strongest
instability is chosen to split the current samples into two subsamples. Then, the split
is performed at the value of the covariate that results in the highest improvement of
model fit in the two subsamples compared to the combined sample.2

These steps are recursively repeated for each subsample until either no significant pa-
rameter instability is detected, or the sample size of the subsamples falls below a specified
threshold. The statistical tests for detecting parameter instability are Bonferroni adjusted
for the number of covariates, to avoid excessive false-positive rates when a large number
of covariates are available. Furthermore, the selection of a splitting variable is made inde-
pendently of choosing the optimal cut point within the splitting variable. This prevents
a phenomenon called variable selection bias, in which covariates with a higher number of
possible cut points have an advantage in being selected as splitting variables due to multi-
ple comparisons (Strobl et al., 2013). As a result, Rasch and PC trees provide a global test
for DIF, that preserves a prespecified level of significance. Owing to their recursive nature,
Rasch and PC trees are powerful tools to detect DIF caused by complex interactions of
covariates, as long as a sufficiently large sample is provided. Naturally, the power of the
statistical tests in step 2 depend on sample size. Thus, fewer splits can be expected if
the total sample size is small, considering that subsamples get approximately halved by
each split. When the recursive splitting algorithm has converged, the same type of item
response model (dichotomous Rasch model or PCM) is estimated independently for each
of the final subsamples.

A Rasch or PC tree analysis can be visualized as a tree-like structure, giving the
procedure its name. The tree plot provides a compact summary containing all necessary
information for interpreting the results. Starting with the full sample on the top of the tree
(this is also called the root), all splits are displayed together with the splitting variable,
the respective cut point, and the corrected p-value of the corresponding test of parameter
instability. At the bottom of the tree when no more splits are justified, a graphical display
of the estimated item response model is presented for each final subsample. These are called
the leaves of the tree. In the leaves of Rasch trees, item difficulties are shown for each item
of the scale. In PC trees, more informative region plots are used in PC trees, which are
based on effect displays by Fox and Hong (2009). In a region plot, each item is represented
by a vertical column, consecutively numbered on the x-axis. The y-axis represents the
common latent trait, measured by all items. Within each item column, the latent variable
1 To assess parameter stability, advanced statistical tests from the class of generalized M-fluctuation

tests are used, which form the basis of the model-based recursive partitioning framework. Further
information for the interested reader can be found in Strobl et al. (2013) and Zeileis et al. (2008).

2 The optimal cut point is chosen by maximizing the partitioned log-likelihood over all possible cut
points of the selected covariate (Strobl et al., 2013).
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on the y-axis is partitioned into regions where different response categories have the highest
response probability. These regions are depicted in greyscale. If the threshold parameters
of an item are in correct order, the borders of the regions of highest category probability
coincide with the threshold parameters of the PCM. However, if thresholds are unordered,
there is no region of highest probability for one or more response categories. Then, those
thresholds not corresponding to borders of highest category probability are indicated by
red lines (Komboz et al., 2016). Above each region plot, the number of subjects contained
in the leaf is reported.

An important caveat of Rasch and PC trees is that DIF can only be detected if the
variables containing DIF were actually observed in the dataset. This is in sharp contrast to
mixed Rasch models, which also detect DIF with respect to unobserved subgroups. How-
ever, their high level of interpretability is a very appealing aspect of Rasch and PC trees.
When a covariate that induces DIF is found, the nature of DIF can be directly observed in
the thresholds patterns of the item response models in the leaves of the tree. This feature
is especially meaningful when using PC trees to detect ERS.

2.1.2 Aim of Study and Research Questions

In the following analyses, we show that PC trees can be used to detect ERS in a psycho-
logical scale of interest, by applying an ERS index from heterogeneous items as described
in chapter 1.3 as a covariate in the PC tree. This approach combines advantages of both
mixed Rasch model and ERS index approaches. A minor disadvantage is that additional
items and a large sample are needed to detect ERS. If the analyzed sample is split based
on the ERS index, measurement invariance is rejected, as a single PCM is not appropriate
for the whole sample (Komboz et al., 2016). In this case, an effect of ERS on the analyzed
scale is detected as model misfit and can be directly linked to the objective ERS index.
More importantly, region plots in the leaves of the PC tree immediately reveal how sub-
jects differ in their response patterns, contingent on their value of the ERS index. Thus,
it is possible to interpret ERS in terms of threshold patterns as known from mixed Rasch
modeling.

The main aim of this study is to present the advantages of our PC tree approach to
detect ERS, by analyzing two different datasets. First we use a well known dataset from
a large Big Five personality inventory, the German NEO-PI-R (Ostendorf & Angleitner,
2004), which has been found to be influenced by ERS using mixed Rasch model analysis.
In a second step, we analyze new data from the longitudinal GESIS panel (GESIS, 2015).
In the NEO-PI-R dataset, the ERS index contains items from the same questionnaire,
but from different factors than the analyzed scales. In the GESIS dataset, the ERS index
contains heterogeneous items from different waves of the longitudinal panel, which were
completed several months apart.

Specific research questions concerning our approach to use PC trees in combination
with an ERS index from heterogeneous items for detecting ERS were:
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Ability of PC trees to detect ERS As previous studies found strong evidence of ERS
in the NEO-PI-R dataset, we expect PC trees to split the sample based on an ERS index
computed from heterogeneous items. It is unclear, if PC trees should split the sample based
on an ERS index in the GESIS panel dataset. On the one hand there is no theoretical
reason why ERS should be restricted to certain personality dimensions or psychological
scales. On the other hand, the ERS index in the GESIS analysis was computed in a more
conservative way, that should make it more challenging to detect extreme responding.
However, if an effect of ERS is found in this setting, stronger conclusions about the nature
of ERS can be drawn.

Validation of the Threshold Interpretation of ERS Our approach to combine PC
trees with an ERS index allows us to validate the interpretation of ERS based on the
threshold pattern within the leaves. As stated in chapter 1.3, this understanding of ERS
stems from analyses using mixed Rasch models. Although theoretically persuasive, the
mixed Rasch methodology can not guarantee that the characteristic threshold pattern
stems from another phenomenon than ERS. If it is appropriate to interpret the threshold
pattern in a mixed Rasch model as an indication of ERS, we expect a similar pattern in the
region plots of a PC tree when an ERS index was selected as splitting variable. In leaves
containing subjects with high ERS, the distances between thresholds in the PCM should be
smaller than in leaves with low ERS. Moreover, in leaves with high ERS, extreme response
categories should have the highest probability for larger regions of the latent variable,
compared to leaves with low ERS.

Validation of the ERS index If the PC tree analyses confirm the ERS interpretation
of threshold patterns in mixed Rasch analyses, this validates the use of ERS indices based
on heterogeneous items to study ERS. The rationale that an ERS index signals differences
in extreme responding relies on the heterogeneity of the items used for its computation.
Although using totally uncorrelated items should eliminate other possible systematic influ-
ences, items are never completely uncorrelated in practice. Furthermore, zero correlation
does not rule out nonlinear dependencies between items that do not represent response
tendencies. If the threshold patterns resulting from splits based on the ERS index can
be convincingly interpreted as different degrees of extreme responding, it strengthens the
argument to use an index from heterogeneous items to investigate extreme responding in
the first place.

In addition to the validation of the method, the features of PC trees in combination
with the characteristics of our datasets allow us to investigate the following questions about
the general nature of ERS:

Impact of ERS Compared to DIF Induced by Sex and Age One positive feature
of PC trees is that they can handle multiple covariates at the same time. When more than
one covariate is available, the variable responsible for the strongest parameter instability
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is used for splitting first. Thus, the impact of ERS in a dataset can be compared to
potential DIF, induced by other demographic variables. For all analyses, we consider sex
and age as additional covariates. These variables are known to have a big impact on the
measurement of psychological constructs and are routinely investigated when considering
measurement invariance. If it turns out that an ERS index can have a stronger impact
on the measurement model than sex and age, which are considered very important factors
in psychometric research, ERS should be more stringently controlled for in psychological
measurement. On a side note, we also register how the ERS index from heterogeneous
items is associated with sex and age, contributing to a debate based on highly inconsistent
findings in the literature.

Suitability of the Categorical Interpretation of Extreme and Mid Responders
The investigation of ERS with mixed Rasch models stresses a conceptualization of ERS
as two separate groups of people, one preferring extreme and the other mid responding.
This is in contrast to concepts that depict ERS as a continuous attribute, ranging from
mid to extreme responding. Our approach can differentiate between these two ideas. If
ERS is appropriately described by a dichotomous model, we expect PC trees to split based
on an ERS index only once. Thresholds in the resulting two groups should mirror the
pattern of two latent classes repeatedly found by mixed Rasch methodology. If ERS is
better described as a continuum, we would expect to see several splits revealing varying
degrees of extreme and mid responding.

Consistency of ERS Across Scales and Across Time We expect to detect ERS
in all scales of the NEO-PI-R, in which ERS has already been detected by mixed Rasch
models. Additionally, we investigate scales from two different psychological questionnaires
in the panel dataset. These scales differ in their measured construct, their general item
design, and their response format. If we also detect ERS in these scales, we can rule out
that ERS shows a distinct pattern in measures of Big Five personality factors, or depends
on the specific questionnaire format of the NEO inventories. Due to the longitudinal
nature of the GESIS panel dataset, we can investigate the stability of ERS over time. The
ERS index is computed from items of different panel waves. If our analyses detect ERS
in the panel dataset, this means that response patterns in a questionnaire at a certain
wave, are associated with extreme responding at earlier and later time points. This would
corroborate findings, suggesting that the ERS response pattern is consistent over time.

Meaning of Extreme Responding While most researchers believe that ERS reflects
a person’s probability to endorse the highest or lowest category of a rating scale, ERS
can also be thought to reflect the general extremeness of a person’s item responses. If we
observe that subjects with higher values of the ERS index are more likely to endorse not
only the most extreme response categories but also categories next to them, this would be
evidence against the notion that the impact of ERS is limited to the lowest and highest
response categories.
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2.2 Methods

2.2.1 Description of the Datasets

NEO-PI-R

In the first analysis, we used the German nonclinical normative sample of the NEO-PI-R
(Ostendorf & Angleitner, 2004), which contains 11724 subjects. This is the same dataset
that was analyzed by Wetzel, Carstensen, and Böhnke (2013). They found strong evidence
for ERS in the NEO-PI-R with mixed Rasch models (see chapter 1.3.1).

The original NEO-PI-R by Costa and MacCrae (1992) as well as its German adaptation
are widely used to measure the Big Five factors of personality: neuroticism, extraversion,
openness, agreeableness, and conscientiousness. The NEO-PI-R consists of 240 items.
Each Big Five factor is divided into 6 more homogeneous facets, measured by 8 items
respectively. Items are rated on a fully labeled five-point Likert scale (“strongly disagree”,
“disagree”, “neutral”, “agree”, “strongly agree”).3

Due to missing values, we could only use a subset of the whole normative sample.
11714 subjects had complete data for at least one of the PC tree analyses. This subsample
contained 4216 men and 7498 women between the age of 16 and 91 (M = 29.92, SD =
12.08).

GESIS

In the second analysis, we used data from the longitudinal GESIS panel (GESIS, 2015)4,
hosted by the GESIS - Leibniz-Institute for the Social Sciences in Mannheim, Germany.
The panel is based on a representative sample of the German population, recruited dur-
ing 2013 in face-to-face interviews. These were followed by welcome surveys, conducted
between June 2013 and February 2014. Since February 2014, panelists attend bimonthly
surveys of about 20 minutes. They either attend online (62% of panelists) or by mail (38%
of panelists), depending on which mode they chose during recruiting. With each survey,
panelists receive five euros, regardless of completion. Surveys contain a longitudinal core
study of the GESIS institute, as well as external studies that researchers have to submit
to a peer-review process in order to get accepted.

Panel data can be requested from the GESIS institute for scientific use. At the time
of our data request in February 2015, panelists had completed five regular survey waves.
During the recruiting phase there were three additional waves in 2013, conducted with
only a subset of the final sample. We do not have access to these waves as they contain
variables under privacy protection not included in the standard version of the dataset.

For the first regular wave in February 2014, 4888 active panelists (2356 men and 2532
women), between the age of 18 and 70 (M = 45.13, SD = 14.58) were invited to par-
ticipate. Due to missing values, we could only use a subset of these participants for our

3 German labels: “starke Ablehnung”, “Ablehnung”, “neutral”, “Zustimmung”, “starke zustimmung”
4 For more information, visit http://www.gesis.org/en/services/data-collection/gesis-panel/.

http://www.gesis.org/en/services/data-collection/gesis-panel/
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analyses. Complete data for at least one of our PC tree analyses was available for 3835
subjects. This subsample contained 1839 men and 1996 women between the age of 18 and
70 (M = 46.34, SD = 14.24).

2.2.2 Scales

NEO-PI-R

We analyzed all scales of the NEO-PI-R for which Wetzel, Carstensen, and Böhnke (2013)
showed superior fit of the constraint mixed Rasch model compared to the unconstraint
mixed Rasch model. We further reduced our analysis to a subset of facets for which two
latent classes, that could be interpreted as extreme and non-extreme response style, were
found to be most appropriate based on information criteria. This resulted in nine scales:
Angry Hostility (N2), Impulsivity (N5), Assertiveness (E3), Activity (E4), Excitement-
Seeking (E5), Openness to Feelings (O3), Compliance (A4), Order (C2), and Self-Discipline
(C5). Notably this selection includes at least one scale from each of the Big Five factors.5

GESIS

In the GESIS dataset, we considered all multi-item scales with Likert response format in
our analyses. The measured psychological constructs had to be one-dimensional at least in
theory, to make sure that fitting a PCM was reasonable. Only two questionnaires in our
dataset fit these criteria:

Positive and Negative Affect Schedule The Positive and Negative Affect Schedule
(PANAS; Watson, Clark, & Tellegen, 1988) is the most widely used questionnaire to mea-
sure self-reported state or trait affect. The PANAS contains two theoretically uncorrelated
factors, although this conceptualization remains controversial (Crawford & Henry, 2004;
Schmukle, Egloff, & Burns, 2002): the Positive Affect scale (PA), involving pleasant emo-
tions like feeling enthusiastic, active, or alert, and the Negative Affect scale (NA), a general
dimension of subjective distress involving feeling nervous, afraid, or upset. In the GESIS
panel, the German translation of the PANAS by Krohne et al. (1996) was used. Each scale
consists of ten adjectives rated on a fully labeled five-point Likert scale (“very slightly or
not at all”, “a little”, “moderately”, “quite a bit”, “extremely”).6 The PANAS can be used
with different time instructions. In our dataset, subjects were asked about their feelings
in general. Notably, the study documentation states that the PANAS was included in the
GESIS panel to investigate whether measurement invariance holds for different groups of
sex, age, and education in a general sample of the German population. PANAS items were
included in the second regular panel wave, collected from April to June 2014.
5 We limited our analysis to this subset of scales because we were not interested in comparing our PC

tree approach to the mixed Rasch methodology directly. As a result, we do not address the possibility
that our PC tree approach might detect ERS also in those scales for which the evidence from mixed
Rasch methodology has been inconclusive.

6 German labels: “gar nicht”, “ein bisschen”, “einigermaßen”, “erheblich”, “äußerst”.
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Questionnaire of Spatial Strategies The German Questionnaire of Spatial Strategies
(Fragebogen Räumliche Strategien, FRS; Münzer & Hölscher, 2011) gathers self-reports
about spatial navigation. Its final version consists of three correlated dimensions: The
ten-item scale Global/Egocentric Orientation (GEO), assessing the ability to orient oneself
based on knowledge of directions and routes, the seven-item scale Allocentric/Mental Map
(AMM), capturing navigation strategies that rely on the formation of a mental map, and
the two-item scale Cardinal Directions, requesting participants to judge their ability to
guess cardinal directions. In our dataset, all items were rated on a seven-point Likert
scale with labeled extreme categories (“fully disagree”, and “fully agree”).7 The study
documentation states that the FRS was included in the GESIS panel to obtain normative
data about self-reported sense of direction and spatial strategies in the German general
population. Notably separate norm data for men and women were planned as men reported
higher orientation abilities as women in the original publication (Münzer & Hölscher, 2011).
The authors reasoned that this does either reflect actual ability differences, or is the result
of gender stereotypes. The finding might also indicate that the construct validity is not
invariant between men and women. FRS items were included in the first regular wave of
the GESIS panel, collected from February to April 2014.

2.2.3 Indices of Extreme Responding

ERS indices in both datasets were computed as follows: The first step was to find a set
of 30 items that correlated among themselves as weakly as possible. This was determined
by the test statistic of the Bartlett test of sphericity (Bartlett, 1951).8 The Bartlett test
compares the correlation matrix from a set of variables to the identity matrix, which implies
zero correlations between variables. The smaller the test statistic, the closer the observed
correlation matrix is to the identity matrix. For our analyses, the final item sets were
selected by minimizing the Bartlett test statistic with a handcrafted version of simulated
annealing. Technical details are described in Appendix A.

In a second step, each of the 30 selected ERS items was recoded to a response style scale,
where extreme categories were coded with one, the middle category was coded with zero
and all other categories were coded equally spaced in-between. Note that item responses
on the new scale reflect how extreme the original responses are in terms of ERS. In the
new scale, the direction of responses is ignored. Thus it does not matter if the original
responses reflect agreement or disagreement with the question. Finally, an ERS score for
each subject was computed as the mean of all item responses on the recoded ERS items.
An ERS index was not computed for a participant if more than 10 responses on the 30
ERS items were missing. We did not require participants to have complete responses to
avoid unnecessary reduction of sample size.

The result of this procedure is an approximately continuous index about the extreme-
ness of subjects’ responses on a variety of comparatively heterogeneous items. An ERS

7 German labels: “trifft überhaupt nicht zu”, “trifft vollkommen zu”.
8 In the computation of the correlation matrix for the Bartlett test, missing values were deleted pairwise.
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index takes values between 0 and 1. It is 0 if the subject chose the mid category on all
of the 30 ERS items. It is 1 if one of the most extreme categories was chosen on all
ERS items. For example, an ERS index of exactly 0.5 would result if the second or forth
response category was endorsed for all ERS items.

NEOPIR Dataset

When computing any response style index, it is essential that the included items are not
only uncorrelated among themselves, but are also unrelated to the items of the primary
scale. As the NEO-PI-R dataset does not contain any additional items except demographic
variables, the ERS index had to be based on NEO-PI-R items. Obviously, items from the
scale to be analyzed should not be included into the ERS index. Considering that facets
belonging to the same Big Five factor also highly correlate given factor construction, all
items of the same Big Five factor as the scale to be analyzed should not be included into
the ERS index. As a result, five different ERS indices were computed, one for each Big
Five factor. From now on, we refer to these indices as neuroERS, extraERS, openERS,
agreeERS and conscERS. For example, when the subscale A4 of the factor Agreeableness
was analyzed, the agreeERS index was used, which only contained items of the Big Five
factors neuroticism, extraversion, openness, and conscientiousness. As all NEO-PI-R items
were rated on a five point Likert scale, the recoded values on the response style scale were:
1, 0.5, 0, 0.5, 1.

GESIS Dataset

We identified 264 items as possible candidates to be selected for the ERS index. These
included items from the welcome survey and the five regular panel waves that were at our
disposal. All items were measured on a Likert scale with at least four response categories,
so that both extreme and non-extreme responses were possible. Items could have an even
or odd number of response categories. For some items all response categories were labeled,
for others only the most extreme response categories were labeled. Items were ignored if the
response categories contained precise quantifications of time, amount, or frequency. We did
not include questions from the face-to-face recruiting interview, as we were only interested
in the effect of ERS in self report questionnaires. Notably, as the number of response
categories were not the same for all ERS items, the recoded values on the response style
scale also differed. Moreover, as not all items contained a mid category, an ERS index of
zero was not possible in this dataset.

2.2.4 Statistical Analyses

For all ERS indices, histograms and descriptive statistics were computed. These included
the mean and the standard deviation of the index, the mean absolute correlation between
items within the index, the maximum absolute correlation between items within the index,
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and 95% confidence intervals for the correlations of the ERS index with sex and age. More-
over, correlations between the five ERS indices were computed. All reported correlations
are Pearson product-moment coefficients.

Two PC trees were computed for all scales described in the section above. In the first
tree, the corresponding ERS index was the only covariate. In the second tree, sex and age
were included as additional covariates. PC tree analyses are only presented graphically,
as more detailed information is unnecessary to answer the research questions detailed in
section 2.1.2.

Pairwise deletion was used for all PC tree analyses and sample sizes are reported for
each tree separately.9 Although listwise deletion would be preferable for simplicity reasons,
it would have resulted in a non-acceptable loss of observations (several thousand subjects
in the NEO-PI-R and several hundreds in the GESIS dataset). Descriptive analyses are
reported based on all subjects that could be included in at least one of the PC tree analyses.
Note that as a result, computations of single coefficients in tables 2.1 and 2.2, correlations
between ERS indices in the NEO-PI-R, as well as descriptions of demographic variables
sex and age in the methods section, are based on slightly different samples. Because of
the large overall sample size, descriptive statistics were highly stable. Therefore, different
sample sizes for descriptive analyses can be safely ignored. For easier understandability we
thus report the exact number of subjects only for the main analyses.

The significance level for parameter instability tests in all PC trees was set to 0.05. The
minimum number of observations, required in a tree node to permit further splitting, was
set to 200. Fitting PCMs to smaller samples would lead to threshold parameter estimates
with too low precision.

A grid of barplots was computed for each PC tree, to better understand the response
patterns in different leaves. Relative response frequencies of each response category are
shown for each combination of leaf and item. In this way, item response patterns can be
directly observed without the additional abstraction layer of PCM parameters.

To further illustrate the structure of threshold patterns in the PC tree analyses of the
NEO-PI-R dataset, we additionally present threshold plots for the respective PC trees. In
these line plots, the mean ERS index in each tree leaf is plotted against the estimated
thresholds of the respective PCMs. Thresholds are represented by colored lines, while
items are depicted in separate plot panels. Threshold plots were not created for the GESIS
dataset, as the number of leaves in the computed PC trees were too small for an insightful
visualization. Moreover, threshold plots were only created for a small subset of all analyzed
NEO-PI-R facets. It can occur that not all response categories are chosen at least once for
each item in the leaves of a PC tree. With the software package we used, it is currently
not possible to fit all threshold parameters of an item if the highest or lowest response
categories are missing. This happened frequently in both datasets. In such cases, items
with missing categories were automatically treated as if their response scale consisted only
of the non-missing categories. As a result, some threshold parameters were not estimated.

9 Complete responses on all items of the analyzed scale and the included covariates are needed for PC
tree analyses, which cannot deal with missing values.
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This poses no problem for our interpretation of the PC trees, as we were interested in the
general patterns. However, missing thresholds are problematic for the interpretation of
threshold plots, as we were interested in the distribution of thresholds across leaves. Thus,
threshold plots were not computed for PC trees with missing threshold parameters. All
statistical analyses were conducted in R (R Core Team, 2016b). PC trees and tree plots
were computed with the psychotree package (Zeileis, Strobl, Wickelmaier, Komboz, &
Kopf, 2016). All remaining plots were created with the ggplot2 package (Wickham &
Chang, 2016). For the selection algorithm of uncorrelated items, Bartlett test statistics
were computed with the psych package (Revelle, 2017), and beta-binomially distributed
random numbers were drawn with the emdbook package (Bolker, 2016). The irace package
(López-Ibáñez et al., 2015) was used for tuning the selection algorithm. Additionally, we
used the packages haven (Wickham & Miller, 2016), plyr (Wickham, 2016a), reshape2
(Wickham, 2016b), tidyr (Wickham, 2017), mvtnorm (Genz, Bretz, Miwa, Mi, & Hothorn,
2016), progress (Csárdi & FitzJohn, 2016), knitr (Xie, 2016), and xtable (Dahl, 2016).

2.3 Results

2.3.1 NEO-PI-R Dataset

Table 2.1: Descriptive Statistics of ERS Indices in the NEO-PI-R Dataset

ERS Index M SD MeanAC MaxAC rSex CI rAge CI

neuroERS 0.50 0.11 0.04 0.17 [ 0.02, 0.06] [ 0.00, 0.03]
extraERS 0.49 0.10 0.05 0.16 [ 0.02, 0.06] [-0.02, 0.02]
openERS 0.49 0.10 0.05 0.18 [ 0.04, 0.07] [ 0.03, 0.06]
agreeERS 0.49 0.10 0.05 0.18 [ 0.00, 0.04] [-0.01, 0.03]
conscERS 0.48 0.11 0.05 0.17 [ 0.03, 0.07] [-0.01, 0.03]

Note. 95% confidence intervals are presented for the correlations of the ERS indices
with sex and age. Females are coded as one, males are coded as zero. Pairwise deletion
was used to compute absolute correlations between items within ERS indices. Descriptive
statistics were computed for all subjects that appear in at least one of the PC tree analyses
(N = 11714). MeanAC = Mean of absolute correlations between all items within an ERS
index. MaxAC = Highest absolute correlation between items within an ERS index.

As illustrated in Table 2.1, descriptive statistics were highly similar for all five ERS
indices of the NEO-PI-R dataset. Means of all indices were close to the midpoint of
possible ERS values. Figure 2.1 shows a histogram of the neuroERS index. Histograms
for the remaining ERS indices looked very similar and can be found in Appendix B.2.
Distributions of ERS indices were clearly unimodal, symmetric, and approximately normal.
Our automatic algorithm was able to find sets of highly uncorrelated items. The mean of
absolute bivariate correlations between all items in an ERS index was very low, as was
the highest absolute bivariate correlation. ERS indices showed only negligible correlations
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Figure 2.1: Histogram of the neuroERS index computed from heterogeneous items (except
neuroticism) in the NEO-PI-R dataset.

with sex and age.10 The five ERS indices were highly correlated, with correlations ranging
between 0.89 and 0.93. For the majority of ERS items in all indices, response distributions
were left-skewed.11 The largest imbalance was noted for the extraERS index with 21 left-
skewed and 9 right-skewed items.

10 Scatterplot smoothing revealed no sign of a non-linear relationship between ERS indices and age.
11 All items were coded in line with their measured Big Five trait.
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Figure 2.2: PC tree of the NEO-PI-R facet Angry Hostility (N2) with the neuroERS index from heterogeneous items as
single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11536.
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The PC tree for the facet Angry Hostility (N2) with neuroERS as single covariate is
presented in Figure 2.2. PC trees of the remaining facets looked very similar and can be
found in Appendix B.3. For all analyzed facets, a single PCM was not appropriate to fit the
item response data. The respective ERS index was repeatedly selected to split the dataset
into smaller subsamples, resulting in PC trees with a very high number of leaves. Note
that for the first split in each tree, the split point for the ERS index corresponding to the
highest parameter instability in the PCM was close to the mean ERS index of about 0.5.
Regarding the region plots in the leaves of the PC trees, a clear pattern emerged: Leaves
on the left side of the tree contained subjects with low ERS values, while leaves on the right
contained high ERS participants. The higher subjects’ ERS values in a leaf, the smaller the
distances between thresholds in the respective PCM. Moreover, regions on the latent trait
where the highest and lowest response categories are most likely to be chosen are wider
in leaves with higher ERS values. On the right side of the PC trees, the most extreme
categories dominate the latent trait, showing the highest response probability across almost
the whole range. However, this does not mean that the most extreme categories were chosen
for the majority of item responses within these leaves. Figure 2.3 shows the actual relative
frequency of response categories of the N2 facet, separately for each item and each leaf
of the corresponding PC tree. Plots for the remaining NEO-PI-R facets can be found in
Appendix B.4.

For all NEO-PI-R facets, a high number of unordered threshold parameters was ob-
served. Threshold crossings were most severe in leaves with high ERS, whereas few or no
unordered thresholds were found in leaves with very low ERS values. This can also be
concluded from the threshold plot of the N2 facet in Figure 2.4. In this facet, thresholds
are in the right order only for the leaves with very low ERS. In leaves with medium ERS
values the second and third thresholds are interchanged and in leaves with very high ERS,
even the first and fourth thresholds have the wrong rank order. Threshold plots for the
facets Assertiveness (E3), Activity (E4), and Excitement-Seeking (E5) can be found in
Appendix B.5. For all remaining facets, PC trees contained leaves with missing response
categories, so no threshold plots were computed.

The pattern of narrowing thresholds and increasing regions of highest probability for the
most extreme response categories was very consistent with regard to the increase in ERS
across leaves. This can be more easily observed in the threshold plots. For all thresholds,
an approximately continuous relationship between the mean ERS index in the leaves and
threshold parameter estimates emerged. The functional relationship seemed close to linear
for the first and fourth threshold. For the second and third threshold, graphs had a non-
linear shape and did not monotonically increase or decrease for all PC trees.

When sex and age were added to the analyses as additional covariates, PC trees grew
larger, such that leaves were nearly impossible to interpret. In each PC tree, both sex and
age were selected as splitting variables at least once. However, the respective ERS index
always contained the highest parameter instability and was selected for the first split in
each PC tree. Figures of all PC trees including sex and age can be found in Appendix B.6.12

12 Unfortunately, trees are too large to visualize the threshold patterns in single nodes on a standard A4
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Figure 2.3: Bar plots presenting the relative frequencies of response categories within
the leaves of the PC tree for the NEO-PI-R facet Angry Hostility (N2). Rows represent
the items of the scale, numbered according to their position in the NEO-PI-R. Columns
represent the leaves of the respective PC tree. Numbers correspond to the node numbers
in the leaves of Figure 2.2. Response frequencies sum up to one in each cell.
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Figure 2.4: Threshold plot for the PC tree of the NEO-PI-R facet Angry Hostility (N2)
with the neuroERS index from heterogeneous items as single covariate. Mean neuroERS
values for each leaf of the PC tree in Figure 2.2 are plotted against parameter estimates
of the respective partial credit model. Items are shown in separate panels. Thresholds are
depicted as lines. N = 11536.
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2.3.2 GESIS Dataset

Descriptive statistics of the ERS index in the GESIS dataset are presented in Table 2.2,
while Figure 2.5 shows the corresponding histogram. Overall, the results are similar to
the NEO-PI-R dataset. The mean of the ERS index was slightly higher than 0.5. The
mean absolute correlation as well as the highest absolute correlation were lower than in
the NEO-PI-R dataset. To get a better feeling for the items included in the ERS index,
a list with the names of all items selected by the automatic algorithm can be found in
Appendix B.1. ERS items from the welcome survey as well as all five regular panel waves
were selected for the ERS index. Only one ERS item was from the same wave as the GEO
and AMM scales (first wave), and two ERS items were from the same wave as the PA and
NA scales (second wave). A majority of 22 ERS items were included in the regular panel
waves three to five. Distributions of item responses were left-skewed for 15 ERS items,
and right-skewed for 15 ERS items. ERS items had four different numbers of response
categories (four-point scale: 3 items, five-point scale: 17 items, six-point scale: 2 items,
seven-point scale: 8 items). Similar to the NEO-PI-R, associations of the ERS index with
sex and age were negligible.13

Table 2.2: Descriptive Statistics of the ERS Index in the
GESIS Dataset

M SD MeanAC MaxAC rSex CI rAge CI

0.54 0.09 0.03 0.13 [-0.03, 0.04] [ 0.06, 0.12]

Note. 95% confidence intervals are presented for the correlations of the
ERS index with sex and age. Females are coded as one, males are coded as
zero. Pairwise deletion was used to compute absolute correlations between
items within the ERS index. Descriptive statistics were computed for all
subjects that appear in at least one of the PC tree analyses (N = 3835).
MeanAC = Mean of absolute correlations between all items within the
ERS index. MaxAC = Highest absolute correlation between items within
the ERS index.

Figures 2.6 and 2.7 show the PC trees of the two PANAS scales, while tree plots of
the two FRS scales are presented in Figures 2.8 and 2.9. Barplots showing the relative
frequencies of response categories in different leaves can be found in Appendix B.4. For
all scales in the GESIS dataset, less splits were performed than for the NEO-PI-R facets.
The number of leaves per PC tree ranged between three for the NA scale of the PANAS
and five for the AMM scale of the FRS. Despite the different number of leaves, the same
threshold pattern emerged as in the NEO-PI-R dataset: the higher the ERS values in a
leaf, the smaller the distance between thresholds, and the wider the regions of highest
probability for the highest and lowest response categories. Compared to the NEO-PI-R

page. However, even under closer inspection, no consistent response patterns were found that would
be relevant for the topics discussed here.

13 Again, we found no sign for a non-linear relationship between the ERS index and age.
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Figure 2.5: Histogram of the ERS index computed from heterogeneous items in the GESIS
dataset.

facets, a smaller number of unordered thresholds was observed. Unordered thresholds were
again more frequent in leaves with higher ERS values.
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Figure 2.6: PC tree of the Positive Affect (PA) scale with the ERS index from heterogeneous items as single covariate.
Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds in the
partial credit model. Missing categories were dropped. N = 3450.
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Figure 2.7: PC tree of the Negative Affect (NA) scale with the ERS index from heterogeneous items as single covariate.
Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds in the
partial credit model. Missing categories were dropped. N = 3487.
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Figure 2.8: PC tree of the Global/Egocentric Orientation (GEO) scale with the ERS index from heterogeneous items as
single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 3592.
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Figure 2.9: PC tree of the Allocentric/Mental Map (AMM) scale with the ERS index from heterogeneous items as single
covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds
in the partial credit model. Missing categories were dropped. N = 3618.
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When sex and age were added to the analyses as additional covariates, both demo-
graphic variables were selected as splitting variables in each PC tree except for the AMM
scale of the FRS in which age was not selected. However, contrary to the NEO-PI-R
dataset, the ERS index was selected for the first split only in the PC tree of the AMM
scale. For the remaining scales, age contained the highest parameter instability. Again,
figures of all PC trees including sex and age can be found in Appendix B.6.

2.4 Discussion

2.4.1 Summary of Results

Overall, results were highly similar for all analyzed scales. In the NEO-PI-R and in the
GESIS dataset, sets of largely uncorrelated items could be found, leading to ERS indices
with an unimodal, symmetric distribution. In both datasets, ERS indices were only neg-
ligibly related to sex and age. For PC trees with the ERS index as a single covariate,
multiple splits were performed. Here, the final number of leaves was much higher in the
NEO-PI-R than in the GESIS dataset. In all PC trees, the same characteristic threshold
pattern emerged. The higher the ERS index, the smaller the distance between thresholds in
the respective PCMs and the larger the regions of highest probability for the most extreme
response categories. The threshold pattern was reflected in the actual item responses,
showing that extreme responses were indeed more prevalent for subjects with high ERS
values. When sex and age were added as additional covariates, at least one demographic
variable was selected as splitting variable within each PC tree. For all PC tree analyses in
the NEO-PI-R, the respective ERS indices were selected in the first splitting process. In
the GESIS dataset, the ERS variable was selected in the first splitting process only once.
For the remaining three analyses, age had the highest parameter instability.

2.4.2 Partial Credit Trees Are a Valid Method to Detect Extreme
Response Style

Our analyses of two different datasets illustrate how PC trees (Komboz et al., 2016) in
combination with an ERS index from heterogeneous items can be used to detect extreme
responding in a variety of psychological measures. An effect of ERS was detected in both
datasets and in all analyzed scales: the ERS indices were repeatedly selected as splitting
variables in the PC trees. Our ERS indices from heterogeneous items were very similar to
the ones previously reported in the literature (Greenleaf, 1992; Baumgartner & Steenkamp,
2001; Weijters et al., 2008). We could not compute ERS indices based on heterogeneous
items that were included specifically for this purpose, as suggested by Weijters et al. (2008)
and Greenleaf (1992). However, we used an optimization algorithm to successfully select
sets of highly uncorrelated items from suitable items in our datasets. This is illustrated
by the mean absolute correlations of ERS items, which are the smallest reported so far.
ERS indices included left-skewed as well as right-skewed items. While the majority of ERS
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items were left-skewed in the NEO-PI-R dataset, skewness was balanced in the GESIS
data. Thus, indices indeed captured ERS and not acquiescence. If all ERS items were left-
skewed, one could argue that our indices mainly represent a subject’s tendency to agree
with rating scale items (ARS), despite our continuous coding scheme of ERS items. With
balanced numbers of left- and right-skewed items, this becomes unlikely. Additionally, bar
plots with relative frequencies of response categories in each leaf clearly show that subjects
with high ERS were more likely to give extreme responses compared to subjects with low
ERS on both sides of the response scale. This was true even for items with heavily skewed
response distribution. PCMs in the leaves of all PC trees showed a parameter pattern
with narrow thresholds if ERS was high, and wide thresholds if ERS was low. This is
reminiscent of the pattern repeatedly observed in investigations of ERS using the mixed
Rasch modeling approach (Rost et al., 1997; Gollwitzer et al., 2005; Eid & Rauber, 2000).

Thus, our results strengthen the validity of both the ERS index or RIRS method to
investigating ERS, as well as the mixed Rasch model approach. In their review on ERS,
Vaerenbergh and Thomas (2013) stress that little is known about the convergent validity
of different kinds of response style analyses. Our results suggest that ERS indices and
mixed Rasch models both carry information about extreme responding. Moreover our
approach contributes to the question of how both are related. When mixed Rasch models
are used on their own, an important caveat is that the familiar threshold pattern may
be confounded by processes unrelated to ERS. In the worst case, ERS groups might even
be considered spurious classes (Alexeev et al., 2011). In our study, the same threshold
pattern can be linked to an ERS index from heterogeneous items. Therefore, the present
findings increase our confidence that threshold patterns in mixed Rasch models indeed
reflect extreme responding. As explained earlier, ERS indices are a conservative way to
avoid confounding of ERS measures by unrelated trait variance. However, if used on
their own, they give little insight into the structure of ERS, compared to the theoretical
understanding provided by the threshold interpretation of the mixed Rasch model. With
our approach, we could not only verify that ERS indices are related to personal differences
in responding. The threshold patterns in the leaves were also in line with our theoretical
understanding of ERS. In this way, results confirm that combining PC trees with an ERS
index from heterogeneous items retains the intuitive threshold interpretation from mixed
Rasch models, and places it on a more solid foundation by linking it to an ERS index that
guarantees minimal confounding of the response style measurement.

Another useful feature of PC trees is the ability to detect which covariate is responsible
for the largest difference in response patterns. Recall that the covariate used in the first
split carries the highest overall parameter instability. In the NEO-PI-R dataset, ERS
indices induced larger model instability compared to demographic variables. This is in
line with previous analyses suggesting that extreme responding is extremely prevalent in
NEO inventories (Austin et al., 2006; Wetzel, Böhnke, Carstensen, et al., 2013; Rost et al.,
1997). In the GESIS dataset, age seemed to have a larger effect on model stability than
ERS. Unfortunately, this discrepancy is hard to interpret. One explanation might be the
different sample characteristics of the two datasets. The normative sample of the NEO-
PI-R is composed of a variety of convenience samples, with a high percentage of young,
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female students. In contrast, the GESIS panel is based on a representative sample of the
German population. This is reflected in a balanced sex distribution, a much higher age
mean, and a higher age variance. It seems reasonable, that age effects in the NEO-PI-
R were smaller due to this restricted age distribution. Note that in both datasets, ERS
indices were only weakly associated with sex and age. In this regard, our results add to
the highly inconsistent findings on the relationship of ERS with demographic variables in
the extant literature(Vaerenbergh & Thomas, 2013).

Smaller effects of ERS in the GESIS panel were also observed with respect to the number
of leaves produced by the ERS index. Both could be a result of different characteristics
of ERS indices between the analyzed datasets. In the GESIS panel, items from different
survey waves were included into the ERS index and few ERS items were selected from the
same wave as the analyzed scales. While it is remarkable that ERS could be detected, it is
reasonable to assume that the effects should be weaker under these circumstances. It has
been previously found that ERS is highly consistent within a single questionnaire (Weijters
et al., 2010a), with consistency increasing if items are closer together. Although ERS was
found to be stable over large periods of time (Weijters et al., 2010b; Wetzel, Lüdtke, et al.,
2016), we would expect ERS effects to be stronger in the NEO-PI-R dataset, where items
were answered in close succession. Moreover, the design of the ERS items and all items
from the analyzed scales was identical in the NEO-PI-R analysis. In the GESIS dataset,
ERS items came from different questionnaires with varying response formats and principles
of item wording. Another point worth mentioning is the difference in sample size between
both datasets. Due to the included hypotheses tests, the PC tree approach to investigate
ERS is a very conservative procedure. Its main appeal stems from good interpretability
and high objectivity. As explained in the introduction, we can expect more splits for bigger
samples, where the hypothesis tests of parameter stability have more power. Smaller effects
of ERS in the GESIS dataset are in line with these considerations, as the sample size in
the NEO-PI-R was nearly four times larger.

2.4.3 Extreme Response Style Is a Continuous Trait

PC tree analyses support the commonly held believe that threshold patterns in mixed
Rasch analyses reflect ERS. However, our results cast doubt on a discrete nature of ERS,
as inferred from the mixed Rasch methodology (Rost, 1990; Ziegler & Kemper, 2013). As
stated in the general introduction, the conceptualization of ERS as discrete or continuous
should be an empirical question. The current approach can be used to test this. Mixed
Rasch analyses typically detected two ERS groups (Böckenholt & Meiser, 2017): a group
of non-extreme responders with about two-thirds of participants, and a smaller group of
extreme responders. If ERS were best described by this dichotomous structure, we would
expect a one-split solution based on the ERS index in our PC tree approach. The two
leaves should then mirror the latent groups of extreme and midpoint responders in the
mixed Rasch model. Yet we clearly observed more than one split in all PC trees. Still, PC
trees of NEO-PI-R facets had a much higher number of leaves compared to the analyzed
scales in the GESIS dataset. We already mentioned several reasons why a smaller impact
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of ERS was observed in the GESIS dataset, with smaller sample size probably being the
most deciding factor. We would expect to observe a comparable number of leaves for
the same sample size. The PC trees of the NEO-PI-R facets suggest that ERS has a
continuous structure. The number of leaves was high and differences in threshold patterns
for adjacent leaves were extremely small, suggesting a continuous functional relationship
between ERS and thresholds in the PCM. Thus, it is unlikely that ERS is based on a
high number of discrete classes. Patterns like the one observed here can be expected when
continuous relationships are modeled with trees. If decision trees are used to model a linear
function, the number of leaves is known to grow infinitely as sample size is increased (Tutz,
2011). Note that PCMs from different leaves of a PC tree are estimated independently
and on separate subsamples. Therefore, PC trees can capture any functional shape of
the thresholds across leaves in a data driven fashion (Komboz et al., 2016). Without an
underlying continuous functional relationship, we would not expect the smooth relationship
between ERS and threshold estimates which was revealed by the threshold plots.

The PC tree approach provides a conservative test against the two-class structure of
ERS. In a strict sense it does not provide a certain test for whether ERS is continuous,
because PC trees are discrete models by definition. However, we are convinced that our
visualizations of the NEO-PI-R facets provide the best evidence for the continuity of ERS
presented in the literature so far. Among others, continuous IRT models for ERS were
proposed by Jin and Wang (2014) and Tutz et al. (2016). In both modeling approaches, it is
possible to test whether ERS was detected. This indirect test for continuity, however, would
be inferior to our analyses. Continuous models can be expected to detect signs of ERS,
even if the structure of ERS were in fact discrete. After all, mixed Rasch models detected
ERS in the NEO-PI-R (Wetzel, Carstensen, & Böhnke, 2013), although our analyses clearly
provide evidence for a continuous structure.

It has been discussed to what extent ERS represents a personal trait (Aichholzer, 2013;
Vaerenbergh & Thomas, 2013). The continuous IRT models by Jin and Wang (2014) and
Tutz et al. (2016) share a trait-like interpretation of ERS. One requirement for ERS to be
considered a trait is that the impact of ERS should be consistent across different content
scales. Austin et al. (2006) showed that class membership in mixed Rasch analyses of the
NEO-FFI was positively correlated between Big Five traits, with Spearman correlations
up to 0.48. Wetzel, Carstensen, and Böhnke (2013) found ERS to be consistent across
nine attitudes scales within the 2006 PISA assessment. They used a second order latent
class analysis to show that subjects had a high probability to fall in the same ERS group
of constrained mixed Rasch models in all scales. Additionally, they analyzed the same
NEO-PI-R dataset like us, finding high consistency across NEO-PI-R facets in their latent
class model. We also observed high consistency of ERS across facets in our PC trees. We
can directly compare PC trees of facets belonging to the same Big Five factor, as they used
the same ERS index. Not only was the general threshold pattern the same for all PC trees.
The partitioning of the ERS index leading to the specific subsamples included in the leaves
was also highly similar. These observations provide strong evidence for the consistency of
ERS across NEO-PI-R facets, as subjects within a certain ERS range are included in leaves
representing highly similar response patterns for all PC trees. For example, subjects with
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neuroERS values of 0.65 were included in the second leaf from the right in the N2 tree
and the third leaf from the right in the N5 tree. Both leaves show a comparable extreme
response pattern, illustrated by both the threshold patterns in the tree plots as well as
actual response frequencies. Moreover, ERS indices in the NEO-PI-R dataset were highly
correlated at about 0.9. Thus, we can expect that roughly the same subjects are contained
in leaves of PC trees from different Big Five factors.

Our NEO-PI-R analysis as well as previous studies about the consistency of ERS across
traits mostly compared different traits within the same measurement instrument. Under
these conditions one can expect higher consistency, as scales usually share many design
characteristics. Moreover, traits within one instrument are connected by a common theory,
otherwise they would not be part of the same measure. These limitations are not present
for the GESIS analyses, which included two unrelated questionnaires, the PANAS and
the FRS, with two subscales each. In addition to investigating consistency of ERS across
traits within the same instrument, we can also compare ERS across traits from different
questionnaires that vary strongly with respect to response format and question wording.
Comparisons are facilitated by the fact that the same ERS index was used here. Due
to the smaller number of splits, subsamples from individual leaves do not match across
scales as well as in the NEO-PI-R data. Nonetheless, we find evidence for consistency of
ERS in the GESIS dataset. Subjects belonging to subsamples showing extreme response
patterns in one scale also did so in the other scales. For example, subjects with an ERS
index below 0.44 were part of the left leaf in all four PC trees, showing the least extreme
response pattern within each tree. Note that this consistency is invariant with respect to
the actual distribution of item responses for the respective scale. Whereas relative response
frequencies for the left leaf in the PA scale are highly symmetric with a high percentage of
mid responses, items in the GEO scale are skewed to the left, and the left leaf of the AMM
scale contains left as well as right-skewed items. Most interesting was perhaps the NA scale,
where all items were heavily right-skewed with the lowest category being endorsed most
frequently in all leaves. However, conditional on the skewed distribution of the NA scale,
the left leaf still reflected a less extreme response pattern, illustrating that our approach
delivers meaningful results even under extreme conditions. On a side note, our results also
provide indirect evidence for the consistency of ERS across response scales, since the ERS
index in the GESIS dataset included items with different numbers of response categories.

Another requirement of a trait is stability over time. One study found that an ERS
index in a representative high school survey correlated at about 0.4 over a four year time
period (Bachman & O’Malley, 1984). More recently, Weijters et al. (2010b) have presented
evidence for one year stability of ERS, MRS, and ARS, based on a complex structural
equation model including response style indicators from two sets of randomly sampled
items. Applying the same methodological approach on a different dataset, Wetzel, Lüdtke,
et al. (2016) even report stability of ERS over an eight year period. Although not our
main focus, our analyses of the GESIS dataset indirectly support the stability of ERS
over intermediate time intervals. Items from the welcome survey and all five regular study
waves of the ERS panel were included in the ERS index, with consecutive waves being
separated by two months. Only a small number of ERS items were from the same waves
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as the analyzed scales. The majority of ERS items were collected in later waves than the
PANAS and the FRS. We found robust patterns of ERS in all scales. This means that
responses to heterogeneous items from earlier and later waves carried information about
extreme responding in our homogeneous scales of interest. This provides further evidence
for the stability of ERS.

2.4.4 Direct Modeling of Extreme Response Style

Our results provide strong evidence, that ERS should be regarded as a continuous trait.
Moreover, the findings clearly suggest a smooth relationship between ERS and item thresh-
olds, best illustrated by the presented threshold plots.

This structure is compatible with two continuous ERS models recently proposed by Jin
and Wang (2014) and Tutz et al. (2016). Both are bi-dimensional IRT models, that extend
the PCM by a second continuous person parameter, reflecting extremeness of responding.
Threshold parameters in these models still reflect the general characteristics of each item.
However, item response functions differ depending on the ERS parameter. The ERS pa-
rameter is directly linked to item thresholds of the model. In this sense, item responses are
controlled by subject-specific thresholds, which are a combination of the item thresholds
and the subject’s ERS parameter. For subjects with high ERS, this leads to larger dis-
tances between adjacent thresholds compared to subjects with low ERS14. While the ERS
parameter has an additive effect on item thresholds in the model by Tutz et al. (2016),
it has a multiplicative effect in the model by Jin and Wang (2014). This poses different
assumptions about the nature of ERS. In the additive model, ERS has the same absolute
impact on all item thresholds. In the multiplicative model, ERS has a bigger effect on
outer compared to inner thresholds, as the degree of expansion depends on the absolute
threshold values.

In both models, ERS has an effect on all thresholds and no exclusive effect on the
most extreme response categories. Therefore ERS is implicitly defined as the general
extremeness of responses. Our empirical results support this design. When considering
the actual relative response frequencies in the leaves of the PC trees, there is evidence
that ERS is not a phenomenon only affecting the lowest and highest response categories
of the rating scale. If this were the case, we would expect an increase of responses on
the most extreme categories as ERS increases, accompanied by a consistent decrease of all
other responses. We observed a steady increase in the most extreme response categories
along with a decrease in midpoint responses. However, the remaining categories showed
a non monotonic trend. Highest relative response frequencies emerged for medium ERS
values. Thus, the overall pattern suggests that an increase of ERS shifts the whole response

14 The domain of the ERS parameter is different between both models. In the model by Jin and Wang
(2014), the parameter is strictly positive. Values below one reflect a higher tendency towards extreme
categories while values greater than one reflect higher tendency towards the midpoint category. In
the model by Tutz et al. (2016), the parameter lies on the real line. Negative numbers reflect a
higher tendency towards extreme categories, while positive values reflect higher tendency towards the
midpoint category
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distribution towards both poles of the response scale, but does not have a specific effect
on the most extreme response categories.

In general, we agree with Jin and Wang (2014) and Tutz et al. (2016) that it would
be preferable to model ERS more directly. Our study shows that PC trees are a great
exploratory tool to investigate the nature of ERS, providing insights about its continuity,
among other things. However, PC trees are discrete models by construction, without useful
structural assumptions between model parameters and covariates in the tree. As a result
they are not well suited to control for ERS in psychometric applications. In principle,
one could get estimates for the trait of interest which are adjusted for ERS, by estimating
person parameters within the PCMs of the leaves. This would be reasonable when facing
a discrete relationship between model parameters and ERS (Rost et al., 1997). However,
for the continuous ERS effect we observed, this is highly unsatisfactory. Theoretically one
would need one PCM for each separate value of the ERS index. To get a useful correction,
a high number of leaves would be necessary. This requires an extremely large sample,
as illustrated by our analyses. Also, it would be unclear how to choose the minimum
amount of subjects within leaves. On the one hand, higher subsamples in the leaves would
increase precision of parameter estimates. On the other hand, this would lead to less
leaves thereby decreasing the effectiveness of the ERS correction. Even if a large sample
were available, the approach would still lead to low precision in parameter estimation, as
PCMs are estimated independently within each tree leaf, leading to an enormous number of
model parameters, each estimated based on small subsamples. Continuous models directly
implement assumptions about the relationship between ERS and threshold parameters,
which is not possible for PC trees. As a result, these models are more parsimonious. The
model is estimated in the whole sample, with only one additional parameter per subject,
compared to the standard PCM. Most important, no additional items are required and
ERS is estimated directly from the primary items of interest.

Our PC tree approach to investigate ERS provides promising evidence that the con-
tinuous structure in the models by Jin and Wang (2014) and Tutz et al. (2016) is a good
model for ERS. From our analyses, it is not clear whether the additive or the multi-
plicative model yields a better approximation of ERS. Nevertheless, both models can be
readily tested against each other, as they have the same number of parameters. For ex-
ample, information criteria can be used, when estimating both models within the same
marginal likelihood or Bayesian framework. Despite their high theoretical appeal, there is
one strong caveat, that speaks against using these continuous models to control for ERS
at this point: Using PC trees, we detected DIF on top of the confounding influence of ERS
for all analyzed scales. Although we only included two demographic variables, at least one
carried parameter instability within each PC tree. Like all multidimensional IRT models,
continuous ERS models are highly flexible. If ERS is estimated from the same items as
the primary trait, the second dimension might also capture multidimensionality, stemming
from other sources than ERS. As a consequence, inferences about the primary trait are
hard to interpret, especially if we already know that multidimensionality in addition to
ERS is present.

Psychometric methods to model item responses are highly developed (Van der Linden,
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2016). Unfortunately, measuring instruments in psychology lag behind the psychometric
literature in ensuring unidimensionality of the primary trait. We are convinced that real
improvements in psychometric measurement require more research about how to construct
better measuring instruments. Questionnaires that precisely measure a psychological trait
with little confounding by demographic variables and other psychological traits are re-
quired to further investigate ERS in a meaningful way. This issue will be continued in
the general discussion in chapter 5.2. Considering that ERS has been repeatedly detected
in the literature for a variety of psychological traits and item designs (Vaerenbergh &
Thomas, 2013), extreme responding may be unavoidable, when using items with Likert
scale formats to measure psychological constructs. Therefore, ERS may still be present for
improved questionnaires and should be corrected for.

In this case, we propose the following procedure:

1. When validating a newly developed questionnaire, also collect possible DIF variables
as well as a set of heterogeneous items to compute an ERS index.

2. Use the PC tree approach presented here with the ERS index from heterogeneous
items and additional DIF variables as covariates.

3. If the ERS index is the only variable chosen to split the sample and the threshold
pattern in the leaves is reminiscent of ERS, use continuous models of ERS like the
ones by Jin and Wang (2014) or Tutz et al. (2016) to compute parameter estimates
of the primary trait, which are corrected for differences in ERS between subjects.



Chapter 3

Study 2: Avoiding Extreme Response
Style with Dichotomous Items

3.1 Introduction

3.1.1 Extreme Response Style and Dichotomous Response For-
mats

The previous study together with the large literature on response styles (Vaerenbergh
& Thomas, 2013) might suggest that ERS is inevitable in psychological measurement
when ordinal response formats are used. One possibility to avoid ERS which has been
repeatedly voiced by experts in psychological test construction is to use questionnaires
with dichotomous response format (e.g. Bühner, 2011). However, this recommendation is
not guided by empirical evidence. It is rather based on the notion that an effect of ERS on
dichotomous items seems “inconceivable” (Plieninger & Meiser, 2014) or even “impossible”
(Cabooter et al., 2016). At first glance, it appears that extreme item responses do not
exist with only two response categories. In a dichotomous item, a given statement can
only be agreed or disagreed with. It is not possible to state different nuances of agreement.
On the other hand, it has been suggested that response styles might just be harder to
detect in dichotomous items (Dolnicar & Grün, 2007). Note that item response models for
dichotomous items are also based on the concept of thresholds. The famous Rasch model
(see for example (Van der Linden, 2016)) assumes that the probability to agree with a
dichotomous item is only a function of the person ability and the item difficulty, which are
both measured in the same unit. If the difficulty of an item is equal to a person’s ability,
the probability to agree with the item is exactly 0.5. The item difficulty can be interpreted
as a threshold: if the person ability is higher than the item difficulty, agreement becomes
more likely than disagreement and vice versa. The crucial point in the unidimensional
models is that item difficulties are the same for all persons. If item difficulties depend on
some characteristics of the respondent, we talk about differential item functioning (DIF).
How could ERS have an effect on dichotomous item responses in this framework? Some
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studies on the relationship between ERS and personality characteristics might suggest that
ERS does not describe a purely methodological preference for specific categories of a rating
scale, but reflects a person’s general tendency to give extreme responses in a more general
sense. It has been indicated that ERS is more prevalent for people who have been rated
by their peers as high on intolerance for ambiguity, preference for simplistic thinking,
and decisiveness (Naemi et al., 2009). Moreover, other ratings of humility have been
linked to low ERS (Zettler et al., 2015). Using scale-free personality measures, extreme
responding has been shown to be more frequent for promotion focused people (Cabooter,
2010), which includes a higher preference for making decisions and taking actions. Midpoint
responses were linked to prevention focus, which includes tendencies to avoid failures and
act conservatively. Cabooter et al. (2016) report that priming subjects with individual
pronouns in contrast to collective pronouns leads to more extreme responses on a set of
heterogeneous items, especially if items are related to how subjects view themselves.

We consider again the situation of a person whose value on the latent variable is equal
to the item difficulty, as conceptualized in the Rasch model, and discuss how an effect
of ERS might come into play: For a person with average ERS, the probability to choose
each category would still be 0.5. However, for a respondent with high ERS, choosing the
extreme category might be more likely than the less extreme category, while a subject
with low ERS might be more likely to chose the less extreme category. The magnitude
of the ERS effect should not be the same for all items, but depend on the difference
in extremeness between the two response options. This still leaves the question, how
extremeness could be defined in dichotomous item responses. The easiest conceptualization
is that extremeness of a dichotomous item response is reflected by its relative response
frequency in the population. For an item with average difficulty, none of the two response
options is more extreme and ERS should have no effect. With excessively high or low
item difficulties, the distinction which response is more extreme gets more pronounced.
As a result, the effect of ERS should increase. One could argue, that the relationship
between the general item difficulty and the magnitude of the ERS effect should be non-
linear. For excessively high or low item difficulties, the attraction of the extreme response
category might decline again. The extremeness of a dichotomous item response might
also be determined by more complicated aspects. The literature on social desirability and
evaluative neutralization emphasizes the fact that many items in personality inventories
are highly evaluatively loaded. An item is considered evaluatively loaded, if its content
heavily complies or disagrees with societal norms (Bäckström & Björklund, 2014). This
might be intrinsically due to the described behaviors and attributes, or simply be a result
of the chosen item wording. For items with high evaluative load, the less popular response
might be considered more extreme. Although the most popular responses are often chosen
most frequently, this is not necessarily so. It should always be possible to construct items
about an unaccepted behavior which is so common, that a majority of people still endorses
the undesirable response category. Thus, when considering evaluative load, ERS effects
might be in the other direction than would be expected based on the relative response
frequencies. Assuming that the evaluative loading of a dichotomous item is related to how
the item is affected by ERS does not necessarily mean that ERS has to be a symptom of
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social desirable responding. In particular when ERS is measured based on uncorrelated
items with different skewness, it seems unlikely that the ERS index is confounded with
social desirability. Also, we know of no studies suggesting a reliable association between
social desirability and ERS.

Based on the above discussion several assumptions could be made: It seems theoretically
possible that dichotomous items are also affected by ERS. Yet, it is not completely clear
how the relationship should look like if it does exist. The most straightforward assumption
within a relative simple IRT framework would be that item difficulties vary for people
depending on their ERS values. While ERS seems to have an effect on all ordinal items,
not all items of a dichotomous scale might be affected. If and how strong an item is affected
might be non-linearly related to the general difficulty of the item, to its evaluative load or
to some other content characteristics. While it would be most plausible that people with
high ERS favor that item response which is less chosen by the respective population, it
could also be the other way round. Furthermore, the direction of ERS for a dichotomous
item might be guided by other aspects of extremeness like social desirability.

To investigate the speculative question if dichotomous items can be affected by ERS,
a methodological technique is needed which can link item response probabilities to person
covariates. The technique has to be flexible enough to capture the variety of structural
aspects discussed above. In chapter 2.1.1, Rasch trees (Strobl et al., 2013) were introduced
as a powerful tool to detect DIF based on person covariates. By using an ERS measures
as covariate, the Rasch tree methodology makes it possible to investigate an effect of ERS
in dichotomous items. In alignment with study 1, our primary operationalization of ERS
is an index based on heterogeneous items with ordinal response format. As independent
Rasch models are estimated for subsamples defined by a combination of covariates, the
approach is flexible enough to model complex effects of ERS on the item difficulties. No
functional relationship is assumed for which items are affected by ERS and which are not.
The direction in which item difficulties are shifted for each item is also not restricted in
any way. If an effect of ERS is found, item characteristics of the affected items can be
easily checked against the item wording of the relevant items. This might give insights into
the mechanisms of ERS in dichotomous items. Another psychometric technique which is
well suited to investigate the effect of ERS in dichotomous items is the DIF Lasso by Tutz
and Schauberger (2015). Before the DIF Lasso model will be introduced in the following
chapter, we shortly address another view on how dichotomous item responses might be
affected by ERS .

Thus far, our discussion assumed that ERS in dichotomous items can be conceptual-
ized as an effect on the item difficulties. This yields a multidimensional model in which
item difficulty varies by person. However, it could be deemed more plausible that item
discriminations are affected instead of item difficulties. In the standard parametrization
of the two parameter logistic item response model (2PL model; for a description see Van
der Linden, 2016), the slope of an item characteristic curve (ICC) is determined by an item
specific discrimination parameter. In the Rasch model, discrimination is the same for all
items. Supposing that high ERS might reflect less ambiguity and clearer decision making,
it is reasonable to assume higher item discriminations for high ERS respondents. Unfortu-
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nately, we know of no existing IRT model which specifies an effect of person covariates on
item discriminations. However, there is an indirect way to investigate this: By splitting a
sample based on an ERS measure and fitting a 2PL model to each subsample, an effect of
ERS on the item discriminations can be graphically explored. For example a median split
of an ERS index based on heterogeneous items could be used as splitting criterion. If high
ERS is connected to better item discrimination, ICCs in the high ERS subsample should
be steeper. This approach will be used as a supplemental analysis in the present study.

3.1.2 An Introduction to the DIF Lasso

The DIF Lasso by Tutz and Schauberger (2015) is based on the following general DIF
model,

log

(
P (Xpi = 1)

P (Xpi = 0)

)
= θp − (βi + xT

p γi) (3.1)

which can be considered an extension of the dichotomous Rasch model. Similar to the
Rasch model, the random variable Xpi ∈ {0, 1} represents the response of person p on a
dichotomous item i, and θp stands for the latent ability parameter of person p. However,
the item parameter of an item i in the Rasch model is replaced by βi+xT

pγi, the sum of the
items specific intercept βi and the dot product xT

p γi. The vector xp contains the values
of person p on a series of C covariates.1 The item specific DIF vector γi quantifies the
effect of the covariates on the difficulty of item i. The covariate vector xp contains possible
candidate variables which might induce DIF. Covariates can be both metric or categorical.
If an item j does not contain DIF, the item specific DIF parameter vector γj contains only
zeros. Then, the difficulty of the item is the same for all persons and represented by βj.
If none of the I items contains DIF, the general DIF model reduces to the Rasch model.
Although the βi are generally called difficulty parameters, the familiar interpretation from
the Rasch model only holds for items without DIF. If an item j contains DIF, the item
difficulty is given by βj + xT

p γj , which is not the same for two persons differing on a
covariate c with γj,c 6= 0. For example, the difficulty of an item might be positively related
to age or be higher for men than for women.

The general DIF model contains many parameters which complicates parameter esti-
mation. Tutz and Schauberger (2015) fit the model with penalized maximum likelihood
estimation (pMLE). While ordinary MLE would maximize the log-likelihood l(α), where
α denotes the total vector of parameters α = (θT ,βT ,γT

1 , ...,γ
T
I ), pMLE maximizes a

penalized log-likelihood of the form

lp(α) = l(α)− λ
I∑

i=1

‖γi‖ = l(α)− λ
I∑

i=1

(γ2i1 + ...+ γ2im)1/2 (3.2)

A penalty term
∑I

i=1‖γi‖ is subtracted from the log-likelihood, thereby punishing high
values of the DIF parameters during maximization. The regularization parameter λ de-
termines the impact of the penalty. For high values of λ, the penalty is strong and only
1 Vectors are depicted in boldface.
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small DIF parameters are acceptable. The penalty is a modification of the grouped lasso
by Yuan and Lin (2006). It has the effect that for the optimal parameter configuration
which maximizes the penalized log-likelihood, γi contains only zeros for some items. For
the remaining items, all entries in γi are unequal to zero. Tutz and Schauberger (2015)
call their approach the DIF Lasso, as it is capable to single out items which contain DIF.
DIF items are those for which pMLE yields γi 6= 0.

How many items are labeled to contain DIF depends on the regularization parameter
λ. The higher λ, the smaller the number of DIF items. Consequently, finding the optimal
value for λ is crucial for the success of the DIF Lasso. If λ is chosen too small, some items
are falsely identified as DIF items. If λ is chosen too high, some true DIF items are not
detected. Tutz and Schauberger (2015) fit the model for a series of decreasing λ parameters
and choose the parameter configuration with the smallest Bayesian Information Criterion
(BIC). This requires a measure for model complexity, which is a non trivial task in penalized
estimation. In the original publication, model complexity in the BIC is operationalized
with degrees of freedom, computed by the method of Yuan and Lin (2006). The software
implementation offers an additional approach, called the L2-norm method. This method
always leads to less or equal degrees of freedom than the method by Yuan and Lin (2006).
Thus, the L2-norm method is the less conservative approach, as a higher number of items
are potentially labeled to contain DIF. Since no method is more appropriate in general, it
makes sense to always consider both solutions in practice.

After choosing the optimal value for the regularization parameter, the estimated item
difficulties β̂i of the final model have to be centered on one item j for which γ̂j = 0. It
ensures that the model is identified. This approach in combination with the properties of
the group lasso penalty and the decision to punish high model complexity by using the
BIC, reflects the implicit assumption that most items of the analyzed scale are indeed
Rasch-compatible. Only few items potentially contain DIF with respect to the applied
covariates. Although this might be a sensible assumption in most circumstances, we will
come back to this when discussing how the DIF Lasso can be used to detect effects of ERS.

To find out which items contain DIF with regard to which covariates, an obvious pro-
cedure is to take the model with the optimal value for the regularization parameter, and
focus on the identified DIF parameter estimates γi of those items with γ̂j 6= 0. By stan-
dardizing all covariates in the DIF Lasso, the importance of any covariate can be measured
by the absolute values of its DIF parameter estimates (Tutz & Schauberger, 2015).

As with all penalization approaches, the penalized DIF parameter estimates for true
DIF items are downwardly biased in magnitude. To decrease this bias, Tutz and Schauberger
(2015) propose an additional refit procedure. In a second step, they estimate the gen-
eral DIF model with unpenalized MLE, but only include DIF parameters γi for those
items which were diagnosed to contain DIF by the pMLE fit. However, the refit proce-
dure increases the variability of the DIF parameter estimates, especially for truly Rasch-
compatible items. DIF analyses are mostly used to improve the items of psychological
questionnaires, or to justify the use of unidimensional models which are widely applied in
practice. One is mostly interested in which items contain DIF, which covariates induce
DIF, which covariates are more important than others, and what is the direction of the
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various DIF effects. The numerical values of the DIF parameters are of minor impor-
tance, as the DIF model will not be used for measurement of the latent ability anyway. In
the described scenario, only the penalized solution is necessary, as it provides all required
information.

Due to the structure of the general DIF model and the penalization approach to select
DIF items, the DIF Lasso can be used to model the hypothesized mechanisms of ERS
discussed in chapter 3.1.1. When measures of ERS are used as covariates, the ERS effect
on items difficulties does not have to be in the same direction for all items. Therefore,
no assumptions about which response category is more extreme have to be made, as no
functional relationship is assumed. Furthermore, it is not necessary that ERS has an effect
on all items, or that the effect is equally strong for all selected DIF items.

The DIF Lasso serves a similar purpose to Rasch trees. Both methods are designed to
detect DIF in scales of dichotomous items, based on a set of person covariates and can be
used to investigate the effect of ERS on dichotomous item responses. However, Tutz and
Schauberger (2015) discuss some important differences: Due to their tree structure, Rasch
trees can easily detect interactions between covariates and highly non-linear relations. In
the presented form, the linear predictor for the item difficulties in the DIF Lasso contains
only main effects. Moreover, the DIF Lasso is currently not available for Likert scale items,
which is the reason why DIF Lasso models were not used in study 1. However, it would
be possible to add linear interactions, replace the linear predictor with smooth additive
functions like splines, or extend the general model to more than two response categories
(Tutz & Schauberger, 2015). A bigger difference between both approaches is on which
level ERS is detected. The DIF Lasso explicitly selects DIF items but estimates DIF
parameters on these items for all covariates. In contrast, Rasch trees identify combinations
of DIF inducing covariates, but do not single out items which are primarily affected by
these covariates. As a consequence, the tree approach might be most sensitive to detect
DIF variables, which have a consistent effect on a majority of items. This was the case for
the effect of the ERS index in study 1. The DIF Lasso might be more sensitive to detect
DIF items, which are affected by a variety of covariates. This is most useful to single out
bad items during the construction process of psychological test.

3.1.3 Aim of Study and Research Questions

The main goal of the present study is to investigate, whether ERS affects dichotomous
item responses. Two dichotomous scales from widely applied psychological questionnaires
are analyzed with DIF Lasso models and Rasch trees. In addition to sex and age, three
measures of ERS are used as covariates in both modeling approaches to assess the impact
of extreme responding. The primary measure is an ERS index from heterogeneous items
with ordinal response format. Additionally, a binary self-report measure of ERS, and a
measure based on the binary classification of a constraint polytomous mixed Rasch model
are used. The polytomous mixed Rasch model is fitted to a scale with ordinal response
format which has been shown to be affected by an ERS index in study 1. The ordinal scale
is also used to assess the effectiveness of the ERS measures. Specific research questions
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can be structured as follows:

Effectiveness of ERS Measures

Comparing the three ERS variables might give important insights into different aspects
of extreme responding: We expect the ERS index of heterogeneous items to be correlated
with the class assignment of a constraint mixed Rasch model which is based on a scale
with ordinal response format. Study 1 suggested that both variables measure ERS but with
different granularity. As a secondary research question, we are interested if subjects have
conscious access to their own extreme response style. As it seems plausible that people
might have at least some understanding if they rather have a tendency to choose midpoint
or extreme categories, we also expect self-reported ERS to be related to the other ERS
measures.

To make sure, that our ERS variables actually capture information about extreme
responding, PC trees of the scale with ordinal response format are computed with the ERS
measures as covariates. Effective ERS measures should induce splits in the PC tree if used
as a single covariate. When both the ERS index from heterogeneous items as well as the
self-report measure of ERS are included in the PC tree, their impact can be meaningfully
compared, by noticing which one is selected as splitting variable first. Trivially, we would
always expect that the ERS measure based on a constraint mixed Rasch model of the same
scale induces the strongest parameter instability, as the mixed Rasch model is supposed
to optimize the differences in response patterns between latent classes. For the ERS index
from heterogeneous items, general threshold patterns in the leaves of the PC tree should be
comparable to study 1. However, as the sample size is lower in the current study, a smaller
number of leaves can be expected. Assuming that respondents are capable to report their
own response tendencies, the binary self-report measure of ERS should also be selected as
splitting variable in the PC tree. If the self-report measure indeed captures ERS instead
of another DIF inducing attribute, threshold patterns in the resulting leaves should reflect
groups of extreme and midpoint responders, comparable to the pattern revealed by the
binary ERS measure of the constraint mixed Rasch model.

ERS in Dichotomous Scales

If dichotomous items do not suffer from effects of ERS, we expect that no DIF items are
detected by the DIF Lasso for a dichotomous scale, when only ERS measures are used
as covariates. When other potential DIF variables like sex and age are included, DIF
parameter estimates of the ERS measures should be close to zero for all selected DIF
items. Similarly, no measure of ERS should be selected as a splitting variable in Rasch
trees, no matter if ERS measures are the only covariates or used in combination with sex
and age.

Rasch trees of the dichotomous scales are a straightforward test of which ERS measure
has the largest impact, as the covariate inducing the highest amount of parameter insta-
bility gets selected as splitting variable first. In the corresponding DIF Lasso analyses, the
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absolute estimates of the DIF coefficients can be compared between ERS measures. In both
modeling approaches, the impact of ERS can be compared to the demographic variables
sex and age, which are likely candidates to induce DIF in any psychological measurement.

Depending on the true nature of ERS in dichotomous item responses, either Rasch trees
or the DIF Lasso should be more sensitive to detect extreme responding, especially if ERS
measures are the only covariates. If all dichotomous items are affected by ERS, as seems
to be the case for ordinal response formats, an ERS measure might be selected as splitting
variable in the Rasch tree but no DIF items might be detected by the DIF Lasso. If ERS
does not have a consistent effect on all dichotomous items but interacts with characteristics
of specific items, as discussed in chapter 3.1.1, DIF items might be detected by the DIF
Lasso but no DIF might be detected by the Rasch tree. Moreover, if each of the three ERS
measures has a non-zero but rather small effect, the DIF Lasso might be more sensitive
compared to Rasch trees which evaluate each covariate separately.

3.2 Methods

3.2.1 Scales and Variables

A paper and pencil questionnaire was constructed, which contained two dichotomous psy-
chological scales as well as several items which were used to compute three different mea-
sures of ERS:

Shyness

The 14 item scale Shyness (SHY) was introduced by Ben-Porath, Hostetler, Butcher, and
Graham (1989) as a content-homogeneous subscale for the Revised Minnesota Multiphasic
Personality Inventory (MMPI-2; Butcher et al., 1989). It was created by factor analyz-
ing the Social Introversion scale of the MMPI-2, and selecting items based on item-total
correlations and an increase in Cronbach’s Alpha (Cronbach, 1951). The SHY scale is
quite homogeneous in content. It captures tendencies to act shy and feel uncomfortable in
the company of other people, including an incapacity to speak with strangers or in front
of others. Estimates for Cronbach’s Alpha have been reported around 0.80 (Ben-Porath
et al., 1989; Sieber & Meyers, 1992), making it one of the most homogeneous scales in the
MMPI-2, despite its comparatively small number of items. Of all MMPI-2 scales, the SHY
scale was considered most appropriate to be analyzed by a Rasch model, which assumes a
single latent variable for all items. In our study, the German translation of the MMPI-2
by Engel and Hathaway (2003) was used. SHY items were rated on the original dichoto-
mous scale with categories labeled as “wrong” and “right”.2 Six items of the SHY scale are
negatively keyed.

2 German labels: “falsch”, “richtig”.
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Achievement Orientation

The 12 item scale Achievement Orientation (ACHI) of the German Revised Freiburger
Persöhnlichkeitsinventar (FPI-R; Fahrenberg et al., 2001) contains statements about com-
petitive behavior, approaching tasks with high ambitions and energetic vigor, and favoring
challenges at work over leisure activities. The manual reports a Cronbach’s Alpha for the
ACHI scale of 0.78, which is an average value within the FPI-R. Nevertheless, the ACHI
scale was considered most homogeneous in content of all FPI-R scales. In general, FPI-R
scales are designed to be rather diverse (Fahrenberg et al., 2001). Analyses from the man-
ual suggest that the Rasch model is generally not appropriate for any of the FPI-R scales,
thus we can expect to detect DIF when analyzing the ACHI scale. It is interesting whether
ERS might play a part in the reported Rasch model misfit. ACHI items were rated on the
original dichotomous scale with categories labeled as “not true” and “true”.3 All items of
the scale are positively keyed.

ERS Index

The questionnaire contained 50 items of heterogeneous content, which were used to com-
pute an ERS index similar to study 1. ERS items were taken from two open access online
databases: the “Zusammenstellung sozialwissenschaftlicher Items und Skalen” (ZIS) pro-
vided by the GESIS - Leibniz-Institute for the Social Sciences,4 and the test archive of
the “Leibniz-Zentrum für Psychologische Information und Dokumentation” (ZPID).5 To
ensure heterogeneous content and low inter-item correlations, we randomly sampled items
from these databases, as has been suggested by (Weijters et al., 2008). On the 5th of
January 2015, 210 scales were contained in the ZIS and 171 in the ZPID archive.6 In a two
step procedure, we sampled from the 381 scales, then randomly selected one item of each
chosen scale. Subsequently, the content of each selected item was checked for suitability.
An item was discarded if the same scale coincidentally was sampled twice, the item asked
about clinical symptoms or was otherwise unsuitable for our population of students, the
item wording was too long to be included in a standard questionnaire, the item required
a special instruction, appeared highly out of context when presented on its own, or could
not be used in combination with a Likert response scale. Moreover, items were excluded if
their content was highly similar either to another ERS item or to any item from the ORD,
SHY, and ACHI scales. In fact, 90 items had to be sampled until 50 suitable items were
found. The wording of the final set of ERS items as well as their original source can be
found in Appendix C.1.

A seven-point Likert scale with labeled extreme categories was used for all ERS items,
irrespective of their original response format. Labels for the extreme categories were taken
from the original item scale. For almost all ERS items, we retained the original item
3 German labels: “stimmt nicht”, “stimmt”.
4 The ZIS can be accessed under http://zis.gesis.org/
5 The test archive of the ZPID can be accessed under

https://www.zpid.de/index.php?wahl=products&uwahl=frei&uuwahl=userlog.
6 Note that an unknown number of scales were included in both databases.

http://zis.gesis.org/
https://www.zpid.de/index.php?wahl=products&uwahl=frei&uuwahl=userlog
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wording. Only in a small number of cases, slight modifications were made to ensure that
the items were easier to understand when encountered out of context.

Some research suggests that in contrast to labeled extreme categories, a fully labeled
response format leads to higher preferences for intermediate response categories (Weijters,
Cabooter, & Schillewaert, 2010). ERS items are used to detect differences in response ten-
dencies, which should be simplified by a high variance of extreme and midpoint responses.
Therefore, labeling only the endpoints seemed most appropriate. It is not clear, whether
the impact of ERS is affected by the number of response categories. When only endpoints
are labeled, Weijters, Cabooter, and Schillewaert (2010) found that more response cat-
egories (up to seven) lead to a smaller rate of extreme responses, and a higher rate of
midpoint responses. However, other researchers report that the preference for extreme
categories is unrelated to the number of response categories, and that midpoint responses
increase only for more than seven response categories (Kieruj & Moors, 2010, 2013). The
main reason we opted for a seven point Likert scale is that Weijters and colleagues (Wei-
jters et al., 2008; Weijters et al., 2010a; Weijters, Cabooter, & Schillewaert, 2010; Weijters
et al., 2010b) always use this format for their randomly sampled response style items.

Self-Reported ERS

We used a dichotomous item to let participants judge their own response tendencies. We
call this measure Self-Reported Extreme Response Style (SRERS). The item stated that
some people often tend to choose one of the outer response options in questionnaires, while
others often tend to choose response options close to the midpoint. Subjects were asked
which of two response options provided a better description for them: “I often tend to
choose one of the outer response options.” or “I often tend to choose response options close
to the midpoint.”7

To our knowledge, this is the first study which includes a self-report measure of ERS.
If it turns out that people have some conscious insight into their own response tendencies,
this might have important consequences for developing procedural approaches to avoid
ERS (see chapter 1.4). For example, it might be possible to give subjects a specific survey
training, which reduces the detrimental effects of ERS on item response data quality.

Mixed Rasch ERS Based on Order

The eight item scale Order (ORD) is a facet of the Big Five factor conscientiousness in
the NEO-PI-R (see chapter 2.2.1). It captures orderly behavior like cleaning, appearing

7 German wording: “Manche Personen tendieren in Fragebögen häufig dazu, eine der äußeren Antwort-
möglichkeiten anzukreuzen, während andere Personen häufig dazu tendieren, eine Antwortmöglichkeit
nahe der Mitte anzukreuzen. Wie würden Sie sich spontan am ehesten einschätzen?”

“Ich tendiere häufig dazu, eine der äußeren Antwortmöglichkeiten anzukreuzen.”

“Ich tendiere häufig dazu, eine Antwortmöglichkeit nahe der Mitte anzukreuzen.”
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meticulous and demanding, as well as tendencies to structure your daily life and plan things
ahead. It is one of the nine NEO-PI-R facets for which Wetzel, Carstensen, and Böhnke
(2013) showed superior fit of the constraint mixed Rasch model, suggesting that it is a
good candidate to reveal effects of ERS. This notion was further supported by the PC tree
analysis of the ORD scale in study 1 (for a reminder, see Figure B.11 in Appendix B.3).
ORD items were rated on the original fully labeled five-point Likert scale of the German
NEO-PI-R (Ostendorf & Angleitner, 2004).

The ORD scale was included in the questionnaire for two reasons. On the one hand, it
was used to compute an ERS measure (MRERS). A constraint polytomous mixed Rasch
model was fitted to the ORD scale, and participants were classified into the two resulting
ERS classes. MRERS could than be used as an additional covariate in the analyses of
the dichotomous scales. On the other hand, as extreme responding has been detected for
the ORD scale in study 1, it serves as a control scale to assure that the ERS index from
heterogeneous items as well as the self-reported ERS measure contain information about
extreme responding. If we do not find an effect of the ERS measures in the ORD scale, we
cannot assume that our method is capable of detecting ERS in the dichotomous SHY and
ACHI scales.

3.2.2 Instructions and Questionnaire Design

At the beginning of the paper and pencil questionnaire, subjects were thanked for their
participation. They were informed that their data would be treated anonymously and
only be used for instructional or scientific purposes. This was followed by questions on
demographic variables: Participants reported their age, sex, field of study, their final edu-
cational degree, and the number of completed semesters. Subsequent instructions informed
them that the questionnaire consisted of 85 items on a variety of topics and with different
response options. They were ensured that there are no right or wrong answers. For all
questions, they should simply choose the single response most applicable to them. They
were further instructed to answer all questions one by one, without skipping any question
or browsing through the pages.

The order of all items (SHY, ACHI, ORD, and ERS items) was randomized once before
the construction of the final questionnaire. For two items, the position was changed after
the randomization, to avoid three consecutive items of the same content scale. The SRERS
question was the last item in the questionnaire. To avoid that subjects who skimmed the
questionnaire immediately noticed the special SRERS item, the same design was used for
all items. Response categories were depicted as small squares without numbers. To our
knowledge, there are no studies investigating the impact of numbered categories on ERS.
Items were numbered and followed in direct succession without any blocks. To increase
readability, consecutive items were separated by horizontal lines. The final questionnaire
with 85 items consisted of five DIN-A4 pages. In our sample of psychology students,
completion time was about 10-15 minutes.
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3.2.3 Participants

Throughout the year 2015, a sample of 493 German speaking students was collected in
psychology lectures and seminars at Ludwig-Maximilians-Universität (LMU) and Fresenius
University of Applied Sciences in Munich. Subjects participated in exchange for course
credit. All analyses are reported for the subsample of 429 subjects (76 men and 353 women)
between the age of 17 and 52 (M = 22.73, SD = 6.44) who gave complete answers on
ORD, SHY, ACHI, SRERS, answered enough ERS items for the computation of the ERS
index, and reported their sex and age.

3.2.4 Statistical Analyses

All 50 ERS items were used for the computation of the ERS index. As in study 1, ERS
items were first recoded to a response style scale. Extreme categories were coded with 1,
the middle category was coded with 0, and all other categories were coded equally spaced
in-between. All ERS items were rated on a seven point Likert scale. Thus, the recoded
values on the response style scale were 1, 0.67, 0.33, 0, 0.33, 0.67, 1. For each subject,
the ERS index was computed as the mean response on the recoded ERS items. The ERS
index was still computed if a subject skipped up to two ERS items.8

For the SRERS measure, subjects were coded as one, if they expressed a tendency to
choose extreme categories and as zero if they expressed a tendency to choose the midpoint
category. To compute the MRERS measure, a constraint mixed Rasch model with two
latent classes was estimated for the items of the ORD scale with the software WINMIRA
(Von Davier, 2001). As suggested by (Wetzel, Carstensen, & Böhnke, 2013), the item
location of each item was fixed between the latent classes. This should make sure that
classes mainly captured diverging response patterns instead of different levels of the primary
construct. The converged model revealed the typical ERS threshold pattern which is
familiar from previous applications of the mixed Rasch model (Rost et al., 1997). To
create the MRERS index, subjects were coded as one if the mixed Rasch model estimated
a higher class probability for the group of extreme responders, and as zero if the estimated
class probability was higher for the group of midpoint responders.

Similar to study 1, we computed the mean and standard deviation of the ERS index,
the mean absolute correlation and the maximum absolute correlation between items within
the index, as well as 95% confidence intervals for the correlations of the ERS index with sex
and age. Furthermore, 95% confidence intervals for the correlations of the ERS index with
the SRERS and MRERS variables were computed. All reported correlations are Pearson
product-moment coefficients.

To assure that ERS measures captured information about extreme responding a PC tree
was estimated for the ORD scale with the ERS index and SRERS as covariates. MRERS
was not included in this analysis, as the constraint mixed PC model was based on the

8 This decision was made in order to avoid unnecessary reduction of sample size. The distribution of
missing values for the ERS items revealed, that 55 subjects skipped one or two ERS items while only
5 participants skipped more.
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same scale. Trivially, MRERS contains parameter instability when used as a covariate,
as the mixed Rasch model detects latent subgroups with maximum differences in response
patterns (Rost, 1990). In a second step, separate PC trees of the ORD scale with only one of
the three ERS measures as covariate were estimated to further investigate the effectiveness
of the ERS measures.

Relative response frequencies, mean sum scores, and Cronbach’s Alpha (Cronbach,
1951) were computed for the dichotomous SHY and ACHI scales. On the one hand, this
served to detect potential irregularities in our sample by comparing our estimates with
the normative sample. On the other hand, response frequencies might be related to which
dichotomous items are affected by ERS.

For the main analyses, DIF Lasso models were estimated for the dichotomous SHY and
ACHI scales with different sets of covariates. In the first model, the ERS index, sex, age,
SRERS, and MRERS were included, while the second model only contained the three ERS
measures. Additionally, Rasch trees were estimated for the SHY and ACHI scales with
the same sets of covariates. In each DIF Lasso, the optimal value for the regularization
parameter was determined by the BIC. The degrees of freedoms were once computed based
on the method by Yuan and Lin (2006) and once based on the alternative L2-norm method.
The group penalty was used in DIF Lasso models, and all covariates were standardized
before entering the analysis. We graphically present estimates of the DIF parameters in the
penalized solution. DIF items labeled by the less conservative L2-norm method are shown.
The importance of the DIF inducing covariates decreases from left to right. The refit
procedure is not used, as we are not interested in the actual values of the DIF parameters,
as discussed in chapter 3.1.2.

For PC and Rasch trees, a significance level of 0.05 was used. For the minimum number
of observations in a tree node, the default value equal to ten times the number of estimated
parameters was used. The main reason for this decision was the generally small sample
size. Similar to study 1, the results of the PC and Rasch trees analyses are presented
graphically.

Following the idea that ERS might affect the discrimination of dichotomous items
instead of their difficulty, we conducted a supplemental analysis of the SHY and ACHI
scales which relied on the 2PL item response model: First, a median split was performed
based on the ERS index. Then 2PL models of both scales were estimated for each of
the two resulting ERS groups. ICCs were plotted for each 2PL model. If ERS had a
considerable effect on item discrimination in dichotomous scales, differences should emerge
in this graphical display. Due to the clearly exploratory nature of this analyses, we refrained
from using a statistical test to examine if the discrimination parameters in the 2PL models
differed between the two ERS groups.9

Except for the constraint mixed Rasch model of the ORD scale, all statistical analyses
were conducted in R (R Core Team, 2016b). PC and Rasch trees as well as the corre-
sponding tree plots were computed with the psychotree package (Zeileis et al., 2016). All

9 For transparency, it should be noted that the idea that ERS might affect item discriminations arose
after no effect of ERS was found in the Rasch tree and DIF Lasso analyses of the dichotomous scales.
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remaining plots were created with the ggplot2 package (Wickham & Chang, 2016). DIF
Lasso models were estimated with the DIFlasso package (Schauberger, 2016). The ltm
package (Rizopoulos, 2013) was used to estimate 2PL models. In addition to those already
cited in study 1, the packages foreign (R Core Team, 2016a), gtools (Warnes, Bolker, &
Lumley, 2015), and gridExtra (Auguie, 2016) were used.
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3.3 Results

3.3.1 Effectiveness of ERS Measures

Table 3.1: Descriptive Statistics of the ERS Index

M SD MeanAC MaxAC rSex CI rAge CI rSRERS CI rMRERS CI

0.57 0.09 0.08 0.47 [-0.10, 0.09] [-0.03, 0.16] [0.22, 0.39] [0.17, 0.35]

Note. 95% confidence intervals are presented for the correlations of the ERS index with sex, age, SRERS,
and MRERS. Females are coded as one, males are coded as zero. Self-reported extreme responding is
coded as one, self-reported mid responding as zero. Extreme responders classified by the mixed Rasch
model are coded as one, midpoint responders as zero. Pairwise deletion was used to compute absolute
correlations between items within the ERS index. MeanAC = Mean of absolute correlations between
all items within the ERS index. MaxAC = Highest absolute correlation between items within the ERS
index. SRERS = self-reported extreme response style. MRERS = extreme response style classified by a
constraint mixed Rasch model of the Order scale.

Descriptive statistics for the primary ERS index from heterogeneous items are shown
in Table 3.1. The ERS index was unrelated to sex and age. In the SRERS question, 32%
of participants reported a tendency to choose extreme categories. In the constraint mixed
Rasch model of the ORD scale (MRERS), 15% of participants were classified as extreme
responders. Higher values on the ERS index were related to the extreme response groups
of both the SRERS and MRERS with a medium effect size. While self-reported extreme
responding in the SRERS was weakly correlated with the group of extreme responders in
MRERS (rSRERS,MRERS 95% CI: [0.05; 0.23]), both measures were unrelated to sex and
age.

The PC tree of the ORD facet with the ERS index, sex, age, and SRERS as covariates
is presented in Figure 3.1. Parameter instability was only detected with respect to the
ERS index, which was chosen to split the sample once at a value close to the mean. In
the two leaves, the familiar pattern emerged: In the subsample with higher ERS values,
thresholds were more narrow and regions of highest probability for the most extreme re-
sponse categories were larger. Although self-reported ERS was not selected as splitting
variable in addition to the ERS index, SRERS was selected to split the sample if it was the
only available covariate. This is shown in Figure 3.2. Trivially, a strong pattern resulted
if MRERS was used as a single covariate. The corresponding PC tree can be found in
Appendix C.3.

3.3.2 Analyses of the Shyness Scale

Relative response frequencies of the SHY items are presented in Appendix C.2. Response
rates were quite low for most items with a median relative response frequency of 0.31.
Mean sum scores were 4.54 for male and 5.00 for female subjects. Compared to the Ger-
man normative sample with mean sum scores of 4.89 and 5.18, our participants described
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Figure 3.1: PC tree of the Order (ORD) scale with the ERS index from heterogeneous
items, sex, age, and SRERS as covariates. Regions of highest response category probability
are shown in greyscale. Red lines indicate unordered thresholds in the partial credit model.
Missing categories were dropped. SRERS = self-reported extreme response style.
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Figure 3.2: PC tree of the Order (ORD) scale with SRERS as single covariate. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. SRERS = self-
reported extreme response style.
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Figure 3.3: Summary of the DIF Lasso model for the Shyness (SHY) scale. The ERS
index, sex, age, SRERS, and MRERS were included as covariates. Females are coded
as one, males are coded as zero. Self-reported extreme responding is coded as one, self-
reported mid responding as zero. Extreme responders classified by the mixed Rasch model
are coded as one, midpoint responders as zero. Degrees of freedom for the BIC were
computed based on the L2-norm method. The fitting procedure excluded 27 subjects who
endorsed none or all SHY items. SRERS = self-reported extreme response style. MRERS
= extreme response style classified by a constraint mixed Rasch model of the Order scale.

themselves as slightly less shy. Cronbach’s Alpha was in line with the previous literature
(95% CI: [0.80; 0.85]).

Results of the DIF Lasso model for the SHY scale with the ERS index, sex, age,
SRERS, and MRERS as covariates are presented in Figure 3.3. As illustrated, two DIF
items were detected by the BIC when the degrees of freedom were computed based on
the L2-norm method. However, when the method by Yuan and Lin (2006) was used, zero
DIF items were detected. Of the two potential DIF items, the covariates seemed to have
a considerable effect only on item nine: “At school, I found it very difficult to speak in
front of the class.”10 This item was easier for older, female subjects. With similar levels
of shyness, speaking in front of the class was generally harder for these participants. All
three response style measures had negligible effects on the difficulties of both potential DIF

10 German wording: “Ich fand es in der Schule sehr schwer, vor der Klasse zu sprechen.”
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Figure 3.4: Rasch tree of the Shyness (SHY) scale with the ERS index from heterogeneous
items, sex, age, SRERS, and MRERS as covariates. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped. SRERS = self-reported extreme response
style. MRERS = extreme response style classified by a constraint mixed Rasch model of
the Order scale.

items. Moreover, when only the three response style variables were included in the DIF
lasso, zero DIF items were detected, irrespective of which method was used to compute
the degrees of freedom. Lasso paths for this model can be found in Appendix C.4. The
optimal value for the regularization parameter was so high, that a noteworthy effect for
any of the three response style measures seems very unlikely.

Figure 3.4 shows the Rasch tree of the SHY scale with the ERS index, sex, age, SRERS,
and MRERS as covariates. Age was selected to split the sample once at an age of 21. None
of the three response style measures was selected as splitting variable. When the ERS
measures were the only covariates included in the Rasch tree, no DIF was detected and
a single Rasch model was estimated for the whole sample. When examining the difficulty
estimates of items nine and eleven, the same age pattern emerged as in the DIF Lasso
model. While item nine was easier in the older group, item eleven was more difficult. Item
ten was also easier in the older group, with an even bigger effect than for item nine.
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Figure 3.5: Summary of the DIF Lasso model for the Achievement Orientation (ACHI)
scale. The ERS index, sex, age, SRERS, and MRERS were included as covariates. Females
are coded as one, males are coded as zero. Self-reported extreme responding is coded as
one, self-reported mid responding as zero. Extreme responders classified by the mixed
Rasch model are coded as one, midpoint responders as zero. Degrees of freedom for the
BIC were computed based on the L2-norm method. The fitting procedure excluded 7
subjects who endorsed none or all ACHI items. SRERS = self-reported extreme response
style. MRERS = extreme response style classified by a constraint mixed Rasch model of
the Order scale.

3.3.3 Analyses of the Achievement Orientation Scale

Relative response frequencies of the ACHI items are presented in Appendix C.2. Response
rates were higher compared to the SHY scale, with a median relative response frequency of
0.62. Mean sum scores were 7.67 for male and 7.31 for female subjects. Compared to the
German normative sample with mean sum scores of 7.63 and 6.53 our female participants
described themselves as more achievement oriented.11 Cronbach’s Alpha was lower than
in the normative sample (95% CI: [0.61; 0.70]).

Results of the DIF Lasso model for the ACHI scale with the ERS index, sex, age,

11 In contrast to the MMPI-2, normative data for different age groups are available for the FPI-R. The
mean sum score of females between the age of 20 and 29 in the normative sample is 7.04. This is
much closer to our sample in which 55% of females were of that age.
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SRERS, and MRERS as covariates are presented in Figure 3.5. As illustrated, four DIF
items were detected when the degrees of freedom for the BIC were computed based on
the L2-norm method. However, when the method by Yuan and Lin (2006) was used, only
item 11 was selected. Of the four potential DIF items, the covariates seemed to have a
considerable effect only on item 11: “I prefer the action to the making of plans.”12 This
item was easier for older, male subjects. With similar levels of achievement orientation,
taking action was generally more preferred by these participants. Similar to the SHY
scale, all three response style measures had negligible effects on the difficulties of the four
potential DIF items. When only the three response style variables were included in the DIF
Lasso, zero DIF items were detected, irrespective of which method was used to compute
the degrees of freedom. Lasso paths for this model can be found in Appendix C.4. While
a noteworthy effect of any of the three response style measures seems unlikely, a special
case might be item 12: “At my work, I am usually faster than others.”13 For decreasing
values of the regularization parameter close to the optimal one, this item gets easier for
participants that reported to frequently choose extreme responses in the SRERS. A weaker
trend can also be observed for the ERS index.

Figure 3.6 shows the Rasch tree of the ACHI scale with the ERS index, sex, age, SRERS,
and MRERS as covariates. It has three leaves: males up to an age of 25, females up to the
same age and a combined sex group of subjects older than 25. Similar to the SHY scale,
none of the three response style measures was selected as splitting variable. This did not
change when the response style measures were the only covariates included in the Rasch
tree. In that case, no DIF was detected and a single Rasch model was estimated for the
whole sample. When examining the difficulty estimates of the four DIF items selected by
the Lasso, the effects of age and sex were highly comparable. For example, item 11 had
the highest difficulty estimate in the group of young females, followed by young males and
older subjects. Furthermore, the ranking of the four items in terms of the amount of DIF
was similar in the Rasch tree. The highest differences between leaves emerged for item 11
and the smallest differences were found for item 12.

3.3.4 Supplemental 2PL Analysis

Figure 3.7 shows the ICCs for the 2PL models of both scales which were fitted to the
subsamples above and below the median ERS value. With few exceptions, ICCs were
highly similar between the two subsamples. No pattern emerged with respect to the slope
of the ICCs for any of the two scales.

12 German wording: “Ich ziehe das Handeln dem Pläneschmieden vor.”
13 German wording: “Bei meiner Arbeit bin ich meist schneller als andere.”
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Figure 3.6: Rasch tree of the Achievement Orientation (ACHI) scale with the ERS index
from heterogeneous items, sex, age, SRERS, and MRERS as covariates. Regions of highest
response category probability are shown in greyscale. Red lines indicate unordered thresh-
olds in the partial credit model. Missing categories were dropped. SRERS = self-reported
extreme response style. MRERS = extreme response style classified by a constraint mixed
Rasch model of the Order scale.
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Figure 3.7: Item Characteristic Curves for 2PL Models of Achievement Orientation (ACHI)
and Shyness (SHY) scales. Separate 2PL Models were estimated for participants with an
ERS index below and above the median. Graphs of the same scale are shaded with the
same color. Within each scale, similar items are marked by the same color in both ERS
groups.
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3.4 Discussion

3.4.1 Summary of Results

The inter item correlations between the randomly sampled ERS items turned out to be
small. The resulting ERS index was unrelated to sex and age but showed medium cor-
relations with SRERS and MRERS. In the PC tree analyses of the ORD scale, all three
response style measures contained parameter instability. The resulting two leaves showed
threshold patterns which suggest that extreme responding was detected by all three mea-
sures. In contrast, no measure of ERS had an effect on response patterns in the dichotomous
SHY and ACHI scales. For items selected by the Lasso, DIF was primarily caused by the
demographic variables sex and age. When only response style measures were included in
the Lasso, no DIF items were detected. Similarly, no response style measure was selected
as split variable in the Rasch tree analyses. Rasch trees also detected DIF that could be
contributed to sex and age. The effects were comparable to the DIF items detected by
the Lasso. Exploratory 2PL models of the dichotomous scales which were estimated for
subsamples resulting from a median split of the ERS index, did not suggest any effect of
ERS on item discriminations.

3.4.2 Comparison of ERS Measures

The applied sampling procedure resulted in a set of uncorrelated ERS items. The mean
absolute inter-item correlation was comparable to previous research (e.g. Plieninger &
Meiser, 2014). Not surprisingly, single correlations between ERS items were a bit higher
than in study 1, where we used an algorithm to find the most uncorrelated items based
on already collected data. On average, ERS values were slightly higher compared to study
1. This might be related to the concrete set of ERS items or our sample of psychology
students. Another possible explanation could be the mixed presentation of dichotomous
and polytomous items in our questionnaire. Without a midpoint category, the dichoto-
mous items always required a clear decision. This might have had the effect that subjects
also chose more extreme and less midpoint responses on the ERS items compared to a
questionnaire which completely lacked dichotomous items.

PC tree analyses of the ORD scale suggest that all three ERS measures carried infor-
mation about extreme responding. They were all selected as splitting variable, if used as
the only covariate. As expected, a strong threshold pattern reflecting extreme responding
was found for the MRERS measure, which was computed based on the same ORD scale.
In the combined analyses with the ERS index, sex, age, and SRERS as covariates, only the
ERS index was selected as splitting variable. In line with study 1, parameter instability
contained by the ERS index was larger than for the demographic variables. In contrast
to study 1, the ERS index was only selected to split the sample once, at least when used
together with the other covariates. Sex and age were not selected as splitting variables in
the ORD analyses at all. This is probably due to the much smaller sample size compared
to study 1, which used the normative sample with several thousand participants.
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Descriptive analyses showed that subjects with high ERS values were more likely to
report tendencies of extreme responding in the SRERS question, and to be classified as an
extreme responder by the constraint mixed Rasch model of the ORD scale. Still, associa-
tions were only moderate, suggesting that the different ERS variables are not exchangeable
in practice, and might measure slightly different aspects of extreme responding. Especially
the relationship between SRERS and MRERS turned out to be rather weak.

When SRERS was used as the only covariate in the PC tree of the ORD scale, thresholds
revealed the familiar ERS pattern although it seemed to be weaker than for the other two
ERS measures. The finding implies that people have at least some conscious knowledge
about their own extreme response tendencies, which has not been investigated in earlier
studies of ERS. This knowledge might be used to find more procedural remedies of ERS.
For example, respondents could be assisted in producing more valid questionnaire data, by
helping them recognize their own response tendencies and guiding their responses to more
appropriate categories. These ideas had a big influence on the construction of the third
study which will be presented later.

3.4.3 No Effect of ERS in the Dichotomous Scales

None of the three ERS measures revealed any effect of ERS on the item responses of the
two analyzed dichotomous scales. No DIF items were detected when ERS measures were
the only covariates in the DIF Lasso and none of the ERS measures was selected as splitting
variable in the Rasch trees. When demographic variables were included, both approaches
detected DIF based on sex and age. When sex and age were included in the model, more
DIF items were detected by the DIF Lasso when using the less conservative L2-norm
method to compute the degrees of freedom for the BIC. However, the method to compute
the degrees of freedom did not matter if the ERS measures were the only covariates. DIF
results were highly similar between the DIF Lasso models and the Rasch trees. This was
also true with respect to DIF based on sex and age. DIF items detected by the Lasso also
showed the biggest differences in threshold parameters in the corresponding Rasch tree.
Also, the effect of the covariate was always in the same direction. Small differences can
possibly be attributed to the relatively small sample size. As separate models are fitted
within each leaf of a Rasch tree, the precision of parameter estimates for small leaves is
very low. In these cases, small differences in threshold parameters can be expected even in
the absence of a true DIF effect. On first glance, the Rasch tree of the ACHI scale might
suggest an interaction effect for sex and age. This could not be modeled by the DIF Lasso
in which interaction terms were not included. However, the high age group was so small
that another split based on sex was not even attempted by the algorithm. Similar reasons
might also explain why sex was not used to split the resulting age groups in the Rasch tree
of the SHY scale. As explained in the introduction, the DIF Lasso results might be more
trustworthy if the focus is not on which variables contain DIF but which items are most
affected. The main DIF item based on the DIF Lasso of the SHY scale suggested that for
equally shy subjects, speaking in front of the class back in school was generally harder for
older women. It is the only item in the SHY scale about a performance situation. DIF
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Lasso results of the ACHI scale indicated that for equally achievement oriented subjects,
older men more preferred taking action to making plans. While several items of the ACHI
scale focus on taking fast actions, the DIF item is the only one mentioning the planning
aspect. We refrain from further post hoc interpretations of these findings. Nevertheless,
they illustrate that the applied methods were generally capable of detecting DIF in in
dichotomous items.

In the supplemental analyses with the 2PL model, we investigated the possibility that
ERS might have an effect on item discrimination instead of item difficulty. More specifi-
cally, the theoretical understanding of ERS might suggest that item discrimination should
be higher for people with high extreme response tendencies. However, the graphical inves-
tigation of ICCs did not indicate an effect in either direction. Note that we did not use a
rigorous statistical test and that the power to detect any effects in the more complex 2PL
model was further reduced by the applied median split. Strobl et al. (2013) mention in
their article on Rasch trees that they would like to extend their methodology to the 2PL
model, which should also be possible for the DIF Lasso approach. If any of these methods
are developed in the future, investigating the effect of ERS on item discrimination based on
a bigger sample should be worthwhile both for dichotomous and ordinal response formats.

3.4.4 Advantages and Disadvantages of Dichotomous Item For-
mats

In this study, we presented the first empirical evidence in favor of the widely held as-
sumption that dichotomous items are unaffected by ERS. As suggested by a number of
researchers (Bühner, 2011; Cabooter et al., 2016; Wetzel, Carstensen, & Böhnke, 2013),
adopting dichotomous response formats for psychological measurements might be a rea-
sonable strategy to deal with ERS.

In light of the mixed opinions in the community about the impact of ERS on psycho-
logical measurements with ordinal response formats, avoiding ERS per design seems like
a good advice. While many authors claim devastating effects of ERS on the precision of
psychological measurement (Baumgartner & Steenkamp, 2001; Mõttus et al., 2012), two
recent simulation studies argue that ERS can be savely ignored as long as extreme re-
sponding and the primary trait in question are not strongly correlated (Plieninger, 2016;
Wetzel, Böhnke, & Rose, 2016). In chapter 1.4, we argued that both simulation studies
have a series of limitations. Until more convincing empirical research suggests that ERS
has a low impact in practical applications, preventing ERS seems to be preferable.

In addition to the illustrated insensitivity against extreme responding, further advan-
tages of dichotomous items are discussed by proponents of the response format: It has been
found that completing a questionnaire with dichotomous items takes less time compared
to a version with ordinal response format (Dolnicar, Grün, & Leisch, 2011). The authors
argue that efficiency is crucial in marketing research, where completion times are nega-
tively related to survey costs and response rates. Recently, shortened personality measures
are becoming more popular in psychological research (Rammstedt & John, 2007). Two
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reasons are an increasing number of large scale panel studies and a higher focus on more
complex research questions which require to assess many psychological constructs at the
same time (Ziegler, Kemper, & Kruyen, 2014). Dichotomous items might be a useful strat-
egy to lower completion times in these settings, while still retaining a high number of items
in a shortened scale. Thereby, constructs could be assessed from different angles, which
increases the content validity of short scales without sacrificing too much efficiency.

Dichotomous items might also have their disadvantages: The prevalent reason why
ordinal response formats are favored by most researchers is the assumption that more
fine grained psychological measurements yield higher reliability (Preston & Colman, 2000;
Weng, 2004). In contrast, Cronbach (1950) already noted that higher reliability estimates
are precisely what should be expected in light of increased response style variance. Note
that the reliability of the sum score of a psychological scale is only a useful quantity if the
essentially tau-equivalent model of CTT holds. Even for the tau-congeneric model, the
sum score is a deficient measure for the latent variable and would not be used by anyone
who takes the measurement model seriously. If factor scores are used, the reliability of
the sum score is not of any interest at all. The pattern found in the PC trees of study 1
suggests that ERS is highly prevalent in item response data with ordinal response format.
In this case, no unidimensional model from CTT is appropriate and more complex IRT
models should be investigated (see the discussion in chapter 2.4.4). As the ERS pattern
is too complex to be described by a simple pattern of correlated errors in classical CTT
models, the fact that reliability could still be estimated under these circumstances (Gu,
Little, & Kingston, 2013; Raykov, 2001) is irrelevant. Of course, the dichotomous response
format only provide a real advantage with regard to the above argument if measurement
models hold for the resulting scales. Although we did not encounter any signs of ERS in the
dichotomous SHY and ACHI scales, the Rasch model had to be rejected in both cases, as
Rasch trees and the DIF Lasso detected violations of the model based on age and gender.
As long as psychological test construction fails to provide dichotomous scales that show
acceptable fit under meaningful measurement models, arguments in favor of dichotomous
items that are mainly based on psychometric properties remain on weak ground. At least,
our results suggest that when developing a psychological measure based on dichotomous
items, ERS is one less thing to worry about.

A more convincing point in favor of ordinal response formats could be made, if studies
would suggest higher criterion validity compared to dichotomous items. However, most
studies on this topic report small increases in validity at best (Preston & Colman, 2000;
Finn, Ben-Porath, & Tellegen, 2015). Unfortunately, all available studies used psycholog-
ical scales as criterion measures instead of genuine external variables that are recorded
without self-report items. We briefly mention the study by Finn et al. (2015), as it used
the MMPI-2 with the original dichotomous and a new four-category format. Similar to
the majority of the remaining MMPI-2 scales, correlations between the SHY sum score
and a series of questionnaires measuring personality or clinical symptoms were indistin-
guishable for both versions. In contrast to other studies, some criterion measures consisted
of dichotomous items. If both the scale of interest and the criterion measure use items
with ordinal response format, response styles and other forms of method bias can trivially
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increase the correlation between the sum scores (MacKenzie & Podsakoff, 2012; Podsakoff
et al., 2011). This makes observed increases in validity hard to interpret.

From a different angle, the study by Plieninger and Meiser (2014) also suggests that
polytomous items do not necessarily contain more information as dichotomous ones. Two
datasets were analyzed with a sequential multiprocess model (Böckenholt, 2012), in which
item responses are determined by a MRS process (choosing the midpoint category or
not), followed by a content trait process (agreement or disagreement) and an ERS process
(choosing the extreme reponse option of not).14 In both datasets, the content process was
correlated with relevant external criteria to the same extend as the ordinary sum score or
the trait estimates from a unidimensional IRT model. A similar result was found in a later
study (Böckenholt & Meiser, 2017), in which two content processes in a two dimensional
multiprocess model were correlated to the same extend as the corresponding trait variables
of a two dimensional polytomous mixed Rasch model. Note that based on the multiprocess
model, the content process should only contain the binary information if the respondent
agrees with the item or not, and is therefore conceptually comparable to a dichotomous
item response on the item. These findings provide empirical evidence for some early work
by Peabody (1962). Through analytical decompositions of the sum score variance of a series
of psychological scales, he anticipated that ordinal item responses might primarily contain
information about direction (agreement vs. disagreement). Moreover, he recognized that
the small part of variance which could be attributed to the intensity of item responses
showed clear indications of ERS.

Another common argument in favor of ordinal items is that the dichotomous response
format is less preferred by respondents. In the study by Preston and Colman (2000), the
dichotomous format was rated by participants as less adequate to express their feelings.
At the same time, it was considered the least easy to use and the quickest to use. This
is in contrast to another study (Dolnicar et al., 2011), where the dichotomous format
was perceived as less complex than the ordinal one. In our study, missing values were
1.52 times more likely for the dichotomous SHY and ACHI items than for the ordinal
ORD and ERS items (95% CI of odds ratio from Fisher’s exact test: [1.20; 1.94]).15 It is
possible that our participants also felt that they could not give adequate responses to some
dichotomous items. As a consequence, they might have refused to respond to dichotomous
items more often compared to items with ordinal response format.16 Finn et al. (2015)
mention an unpublished doctoral thesis by Cox (2011), in which the MMPI-2 has been
compared between the traditional dichotomous and a four-category response format. In
that study, the dichotomous version was completed faster and also considered easier to
complete. However, respondents indicated that they could describe themselves better with
the four-category format, which is in line with the findings of Preston and Colman (2000).

Even if ERS seems to be absent in dichotomous item response data, it has been noted

14 The MRS process is missing if the item does not contain a midpoint category. The ERS process is
repeated if the item has more than five response categories.

15 As missing values were rare, note that the relative risk and the odds ratio are virtually the same.
16 Of course, it is also possible that missing values were related to the content of the SHY and ACHI

scale.
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that other response styles like ARS might still be important (Wetzel, Lüdtke, et al., 2016;
Rorer, 1965). When Cronbach (1950) demanded researchers not to use item forms infested
by response styles, he also discouraged the use of dichotomous agreement/disagreement
response scales. It has been found that ERS might have a bigger impact than ARS in
items with ordinal response formats (Wetzel & Carstensen, 2015; Kieruj & Moors, 2013).
However, this can be hardly generalized to dichotomous items. Recent empirical studies
about ARS in binary items are scarce, although model-based approaches to investigate
this issue are available (Ferrando & Condon, 2006). By changing the coding of the items,
response style indices from heterogeneous items can be used to investigate the occurrence
of ARS. Applying an ARS index in addition to the ERS measures in this study could have
clarified whether ARS was a problem in our data. Before issuing a general recommendation
to rely on dichotomous item formats, the here presented work should be extended to the
investigation of ARS. In the case that further studies find a high prevalence of ARS in
dichotomous items, this response style has to be addressed in scale construction, too.
Multiple studies suggest that ARS can be easily avoided by balancing the number of
positively and negatively keyed items in a particular scale (Plieninger, 2016). Although it
has been shown that reversely keyed items often pose serious measurement problems, it
has been suggested that detrimental effects on psychometric properties should be rather
small (Weijters & Baumgartner, 2012) when avoiding negations in the item wording. With
careful wording, negatively keyed items might be worth the costs if their use leads to
psychological scales which are mostly unaffected by the two most important response styles.
We briefly note that multidimensional forced-choice response formats could be an alternate
strategy to avoid response styles. Methodological advances in analyzing forced-choice item
response data (Brown & Maydeu-Olivares, 2011) have reignited the interest in this item
type. While forced-choice formats had been endorsed by Cronbach (1950) in the context
of response styles many years ago, they have long been neglected due to methodological
problems (Brown &Maydeu-Olivares, 2013). However, a detailed discussion of Thurstonian
IRT is beyond the scope of this thesis. General implications for scale construction and
psychometric practice which can be derived from our work on response styles will be
further discussed in chapter 5.2.
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Chapter 4

Study 3: Compensating Extreme
Response Style with Item Instructions

4.1 Introduction

4.1.1 Instructions for an Experimental Manipulation of Extreme
Response Style

Study 2 suggests that using binary item response formats might be an effective procedure
to avoid ERS. Yet, we also discussed some disadvantages of dichotomous items that dis-
courage researchers to opt for this response format. Procedural approaches to avoid ERS
in items with ordinal response format would be more appealing to the majority of applied
researchers. Cronbach (1950) has brought up the idea to reduce the impact of response
styles by altering the instructions which precede most psychological measurements. While
he gives an example of how to reduce acquiescence by informing test takers about the ratio
of true questions in an ability test, it is not obvious how a similar strategy might be appli-
cable to ERS. To design instructions which could reduce the impact of ERS, a theoretical
framework is necessary that tries to explain how subjects respond to questionnaire items.
This is important, as some critics stress that conceptual ideas about how item responses are
chosen in questionnaires are lacking in most approaches to study response styles (Zettler
et al., 2015).

According to a popular cognitive process model for answering questionnaire items
(Tourangeau et al., 2000), respondents of self-report questions proceed through four stages.
In the comprehension stage, subjects encounter an item and try to interpret its content.
Then, relevant beliefs to answer the question are retrieved from memory in the retrieval
stage. In the judgment stage, beliefs are combined into an internal judgment of how the
subject ranks on the dimension described by the item. Finally, in the response stage, sub-
jects map their internal judgment onto the response categories provided by the item and
select their answer. Several authors have noted that response tendencies can be discussed
within this framework (Podsakoff et al., 2011; Weijters, Cabooter, & Schillewaert, 2010;
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Krosnick, 1991).
Considering how ERS might affect item responses during the answering process, the re-

sponse stage might play the most important role. Per definition, ERS describes differences
in the use of the response format. Thus, two respondents which arrive at the same internal
judgment might not select the same response option due to different levels of ERS. This
idea is corroborated by Weijters, Cabooter, and Schillewaert (2010) who found an effect of
the response format on the impact of ERS and other response styles. However, patterns in
item responses that can be detected by analyses of ERS as demonstrated in study 1 and 2,
might also depend on earlier stages of the response process. For example, ERS could assert
some influence in the judgment phase. Subjects with different levels of ERS might come
to different internal judgments, based on an identical memory recall. Direct testing of this
hypothesis is only possible through extensive cognitive interviews which aim to separate
the internal judgment from the item responses. This has not been done thus far. However,
the body of literature on the relationship between ERS and personality characteristics can
be related to decision making in general (Austin et al., 2006; Naemi et al., 2009; Zettler
et al., 2015). This suggests that ERS might already operate in the judgment stage. Cron-
bach (1950) noted that response styles seem to be more influential for ambiguous items.
If subjects are uncertain how to respond to an item based on its content, response styles
should have a big impact. If responses are fully determined by the item content due to
clear wording, subjects’ individual response tendencies cannot manifest themselves. Thus,
ambiguous item wording might have a moderating effect on the impact of ERS on item
responses, which should take place in the judgment stage.

The last argument might suggest that when designing an instruction to compensate
ERS, the focus should be on item responses for which a subject perceives a high level
of uncertainty. For those responses, ERS should have the largest impact and subjects
should be most inclined to adjust their answers according to some external instruction. In
contrast, the impact of response tendencies should be lower, if a subject is highly certain
about an answer. Even if a small effect of ERS is still present, subjects are probably
unwilling to reorient their decision in those cases. In the following study, we propose an
ERS instruction which urges subjects to adjust their item responses if they are uncertain
about an item. An important question is how respondents should adjust their responses.
By using a self-report measure of ERS in study 2, we showed that respondents have some
conscious knowledge about their own response tendencies. Thus, subjects could be asked
whether they tend to choose mid or extreme categories in a first step. When confronted
with questionnaire items, respondents could then be instructed to adjust their responses
to compensate their individual response tendencies. Although self-reported ERS seems to
be a valid indicator of extreme response tendencies, studies 1 and 2 also suggest that more
information is contained in an objective measure like the ERS index from heterogeneous
items. Thus, relying on subjects’ self-reported ERS is probably not the most effective
way to compensate ERS. Moreover, subjects might be overwhelmed if they are not given
a concrete procedure how to adjust their responses. An effective instruction should be
concrete to give sufficient guidance but flexible enough to ensure that subjects can use
knowledge about their own response tendencies to control whether an item response should
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be adjusted. In this study, we use an ERS instruction with the following rationale: If
subjects cannot decide between two neighboring response categories, they should rather
choose either the more extreme/the less extreme of the two options. For this instruction, it
is necessary to specify if subjects should give more or less extreme responses. In a practical
application, it would be necessary to measure each participant’s level of ERS, either by
self-report or with an index from heterogeneous items, and select either the extreme or mid-
responding instruction, based on a binary ERS classification for each participant. If using
self-reported ERS similar to study 2, such a design could be easily achieved in an online
survey which can be programmed to present a certain instruction dependent on an earlier
response on the SRERS item. The procedure would be more difficult when using an ERS
index, because a binary cutoff has to be specified beforehand. To compare the effectiveness
of both ERS measures, we use a within subject design with an additional control group.
All participants first fill out two psychological scales under standard instructions together
with a series of heterogeneous items which can be used to compute an ERS index. Subjects
in the experimental group answer the scales again under both the extreme, and the mid-
responding instruction. In contrast, the control group fills out the same scales two more
times under neutral instructions to rule out order effects or other confounding factor of the
within subject design. Finally, all subjects answer a self-report question of ERS. During
data analysis, subjects in the experimental group can be classified into extreme and mid
responders based on both the ERS index and self-reported ERS. Different classifications can
then be used to create artificial datasets. Item responses are used from those trials in which
the ERS instruction leads to a compensation of individual ERS. To better understand the
effectiveness of our design ERS manipulation, item responses can also be analyzed under
a matching condition which should lead to an aggravated impact of ERS. If our analyses
suggest that compensating ERS with our instructions is successful, the within subject
design can be omitted in future studies and an a priori classification based on the superior
measure can be used to select the respective ERS manipulation.

In the previous studies, we exclusively used psychometric models to detect patterns of
ERS in item response data. To investigate whether the impact of ERS can be reduced
by specific instructions that are targeted at respondents’ ERS values, a different approach
is chosen in the following study. As described in chapter 1.4 ERS is assumed to have
a detrimental effect on criterion validity of psychological measures (e.g. Baumgartner &
Steenkamp, 2001). Consequently, when item responses with ordinal response format are
used to predict external criteria, including an appropriate measure of ERS in the predictive
model should lead to increased predictive performance. Similarly, the criterion validity
of polytomous item responses should be higher if respondents faced an instruction that
was targeted to compensate their own response style, in contrast to standard instructions
or an instruction which should further aggravate the impact of ERS. To evaluate the
predictive potential of psychological scales, we rely on statistical methods from the field
of predictive modeling. In the following chapters, we contrast predictive modeling with
common practices in mainstream psychology and introduce some basic principles, as well as
a powerful off-the-shelf prediction algorithm that can be used to investigate the effectiveness
of the proposed ERS manipulations.
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4.1.2 An Introduction to Predictive Modeling

The American Psychological Association defines psychology as the science of human expe-
riences and behavior. It claims that “the understanding of behavior is the enterprise of psy-
chologists” (see for example the FAQs on http://www.apa.org/support/about-apa.aspx).
As a consequence, statistical inference in psychology aims at explaining psychological phe-
nomena. The most common approach is to fit a statistical model to a sample of data and
interpret the estimated coefficients with regard to some psychological theory. A prevalent
assumption is that when a model is found which sufficiently describes the relationship be-
tween psychological variables in the sample, this model does help to provide insights into
true psychological processes, but can also be used to predict human experiences and behav-
ior. Although the predictive aspect of psychological science is mostly treated as a secondary
goal in the explanatory approach, this has not hindered scholars to make bold claims about
the success of psychological theories. Supposedly, a variety of concepts with high societal
importance like job performance (Schmidt & Hunter, 1998; Ziegler, Dietl, Danay, Vogel,
& Bühner, 2011) or health issues (Alarcon, Eschleman, & Bowling, 2009; Bogg & Roberts,
2004; McEachan, Conner, Taylor, & Lawton, 2011; Faragher, Cass, & Cooper, 2005) can
be accurately predicted. However, it has been noted that these claims of predictive per-
formance are seldom evaluated by suitable statistical methods (Yarkoni & Westfall, 2017).
Worse, if predictive performance is evaluated in a rigorous way, it often turns out that
the criterion validity is much lower than initially claimed. The authors convincingly argue
that psychology’s focus on “understanding” human behavior might actually be in conflict
with achieving most accurate predictions of it. On the one hand, psychologists postulate
large structural models which incorporate a high number of predictor variables. Due to
generally small samples, parameter estimates are often unstable and show high variability
between samples. On the other hand, researches suggest theoretically elegant models with
a small number of linear relations, which are too simplistic to appropriately account for
complex psychological phenomena. In both scenarios, traditional goodness of fit indices
can easily mislead scholars to assume that they were successful in revealing some invariant
psychological law. Research on the replicability of psychological science shows that many
effects are not recovered if the same model is estimated in new samples (Open Science Col-
laboration, 2015). When original model estimates would be used to make predictions for
new observations, this can be expected to fail even more spectacularly. Nevertheless, indi-
vidual predictions are central goals in many divisions of psychology like personnel selection
in the industrial-organizational setting, or relapse forecasting in clinical applications.

We agree with Yarkoni and Westfall (2017) that psychology could heavily profit from
prioritizing prediction over explanation in a large number of research settings. Unknown to
many psychologists, a similar claim has been made in statistics several years ago (Breiman
et al., 2001). Predictive modeling emerged as a new field in the statistics and machine
learning community which puts a primary focus on maximizing the predictive performance
of statistical models. In contrast to the majority of psychological science, understanding
how a set of predictors is truly related to some target variable is of minor concern here. This
blind spot justifies the use of “black box” model classes that yield powerful predictions but

http://www.apa.org/support/about-apa.aspx
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do not offer human comprehensible model equations which can be easily used to understand
some underlying relationship. Predictive models are primarily evaluated with regard to
their predictive performance, as it is highly difficult to assess their meaningfulness in any
contextual sense. Predictive modeling has developed sophisticated methods to estimate
the predictive performance of statistical models, as this is essential to achieve the main
goal of the field.

Estimating Predictive Performance

Yarkoni andWestfall (2017) note that any statistical model is in some sense also a predictive
model. In any statistical analysis, a frequently asked question is how useful the estimated
model is in predicting new observations. In psychology, the coefficient of determination
(R2) is typically reported to assess the goodness of fit for the predominant linear models
in the field. Yarkoni and Westfall (2017) rightly point out that most authors interpret R2

as the amount of variance, which could be explained if the currently estimated model is
used to predict new observations. However, it has been known for a long time that the
standard R2 and commonly used correction methods are overly optimistic (Yin & Fan,
2001) for this purpose. This is not a fault of the measure per se, but stems from the fact
that R2 is traditionally computed based on model predictions for the same observations
which were already used to estimate the model coefficients. Naturally, any model better
fits some data on which it was “trained” than on new, previously unseen observations. In
predictive modeling where predictive performance is the ultimate goal, this bias is taken
more seriously. Intuitively, an appropriate procedure would be to assess the predictive
performance of a model on different observations than used for model estimation. After
all, this is exactly how predictions of unknown observations work in practice. However,
in many applications only one dataset is available and collecting new data from the same
population to evaluate the model would be very costly or even impossible.

Instead of collecting new data, resampling techniques can be applied to use the dataset
most efficiently. The simplest resampling scheme is to randomly split the dataset into
a training set, which is used to estimate the model, and a test or holdout set for which
predictions are computed based on the estimated model. It makes intuitive sense that the
performance of the estimated model to predict observations in the test set is a reasonable
estimate for the performance of the model fitted to the complete dataset to predict ad-
ditional unobserved data. While the holdout technique might be sufficient for very large
samples, it has several limitations if the sample is rather small: The crucial decision for
holdout is the proportional size of the training and test set. In general, predictive per-
formance of a model increases with the size of the training set up to a certain point, as
parameter estimates improve if more information is available about the true relationship
in the population. If the training set is chosen too small, performance estimation is down-
wardly biased. Predictions of new observations would be of higher quality as they are based
on the whole sample which consists of more training observations. Thus, one goal might
be to make the training set as big as possible, in order to approximate the performance
of the model based on the whole sample. At the same time, performance estimates based
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on small test sets have high variance, as predictive accuracy would greatly vary between
several test sets with few observations. A general principle to reduce variance is to average
across multiple estimates. For example, if equal sample sizes are chosen for the trainings
and test set in the holdout procedure, the variance of the performance estimation can be
reduced by switching the training and test sets, and averaging the two resulting estimates
to gain an aggregated estimate of predictive performance. This approach is called two
fold cross-validation (CV). In the general version of k-fold CV, the complete dataset is
randomly divided in k equally sized parts. Each subsample serves as a test set which is
predicted based on a model estimated on the combined sample of the remaining k − 1
parts. While each observation of the complete sample is used in k − 1 model estimations,
each target value is predicted exactly once based on a model for which this observation
was not included in the estimation process. Finally, the average of the k resulting perfor-
mance estimates is used as an estimate for the full model based on the whole sample. In
two fold CV, models are estimated on trainings samples only half the size of the whole
dataset, which can result in downwardly biased performance estimates in small samples.
Increasing k leads to bigger trainings sets but at the same time reduces the size of the
corresponding test sets. The disadvantage of smaller test sets is somewhat reduced by the
fact that performance is averaged across a greater number of estimates. However, as k
increases, training sets highly overlap. This leads to increasingly correlated predictions
of the k estimated models, which reduces the effectiveness of variance reduction achieved
by averaging the performance estimates. Empirical results suggest that in most settings,
cross-validation with five or ten folds provides a good trade-off between negative bias in-
troduced by small training sets, and high variance introduced by small test sets as well as
strongly correlated predictions of the estimated models (Hastie et al., 2009). In addition
to k-fold CV, a variety of different resampling strategies exist, which might be preferable
in some situations. A detailed description can be found in Bischl, Mersmann, Trautmann,
and Weihs (2012). With the presented resampling techniques, it is possible to fairly assess
the predictive performance of any algorithm, including the linear models dominantly used
in psychological science. When doing this, one can expect that specialized algorithms from
predictive modeling would often yield better results. The next paragraph focuses on the
question why some predictive models might generally perform better than others.

Balancing Model Complexity

Although regularized linear models are highly predictive in many applied settings with
very high numbers of predictors compared to the number of observations (for a detailed
discussion see Hastie, Tibshirani, & Wainwright, 2015), the rise of predictive modeling
is closely related to the development of highly non-linear model classes. Most powerful
prediction algorithms are theoretically capable of reproducing almost arbitrarily complex
relations between predictor and target variables. Flexible algorithms produce statistical
models with very low bias in the sense that given enough data with little noise, they are
able to mimic the true data generating process. However, high flexibility is not a desirable
property without any control mechanism, as each dataset contains spurious peculiarities
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which are not present in the population. When given a single dataset, many algorithms
are flexible enough to perfectly interpolate all data points within the training set, thereby
“predicting” them without error. Obviously, such an overfitted model has bad predictive
performance on new observations, as it does not only incorporates the real target rela-
tionship but also the complete noise in the training set. A model which naturally tends
to overfit in the above sense is said to have high variance. Imagine fitting the model to
a number of training sets and comparing their predictions on a single test set. As every
fitted model incorporates some specific noise, model predictions on the single test set will
strongly differ as they are highly dependent on the respective trainings sets.

Some model classes naturally have low bias and high variance, while for others it is the
other way round. One model class which is very flexible but tends to overfit are classification
and regression trees (CART; Breiman, Friedman, Stone, & Olshen, 1984) which will be
introduced in the next chapter. In the above terminology, the CART algorithm has low
bias but high variance. In contrast, ordinary linear models are on the other side of the bias-
variance spectrum. They are very inflexible and are mostly used to model linear functions
while ignoring all interactions. If the real relationships is highly non-linear or contains
complex interactions, predictions must be biased as, on average, they tend to be be off
the point. At the same time, the inflexibility of the linear model makes it robust against
overfitting, as long as the number of predictors is not too high. Thus, linear models are said
to have low variance, as predictions based on different training sets tend to be be highly
comparable. It can be shown that when predicting previously unobserved test data, the
expected error of some statistical model is positively related to the bias and variance of its
predictions, as well as the amount of random noise in the data. This bias-variance trade-off
helps to explain why some predictive models show different performance under certain data
situations: If there are strong complex relations between predictor and target variables in
combination with high sample size and a high signal to noise ratio, flexible non-linear
models with higher variance should be successful. In contrast, if the true relationship
is weak or linear, data is sparse and the signal to noise ratio is low, inflexible models
with low variance might yield good predictive performance. However, the bias-variance
trade-off also comes into play within a single model class. This helps to understand why
some algorithms are more powerful than others across a wider range of problems. The
generally most successful prediction algorithms combine a high flexibility to reflect non-
linear relationships and interactions, with a series of powerful regularization mechanisms
that prevent the algorithm from overfitting. This makes it possible to efficiently estimate
a predictive model with suitable complexity based on a limited amount of training data.

While many algorithms have some built-in mechanisms to automatically reduce overfit-
ting, regularization is often achieved via some hyper-parameters which control the flexibil-
ity of the estimated model. As the right amount of model flexibility is strongly dependent
on the properties of the data generating process, the degree of regularization needs to be
adjusted to the nature of the problem at hand. Suitable values for the hyper-parameters
have to be found before the final predictive model can be estimated. This tuning process
is typically guided by some resampling strategy like k-fold CV. The algorithm is fitted
with different combinations of hyper-parameter values in the training sets and predictive
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performance is measured on the test sets. For the final model, the parameter combination
is selected which achieved the best average performance on the k test sets.

The presence of hyper-parameters makes it more complicated to correctly estimate
the predictive performance of the final model. If hyper-parameters are determined once
for the whole dataset as described above and then applied in all CV iterations, predictive
performance is typically overestimated, as all observations in the test sets were already used
to find the optimal hyper-parameters. When the final model based on the whole sample is
used to predict new unobserved cases, it can be expected to perform worse than estimated
by the resampling scheme, in which the hyper-parameters were overly adapted to the
respective test observations. This bias which can pose severe problems is still encountered
in applied published research (Simon, 2007). Fortunately, it can be avoided by repeating
the tuning of hyper-parameters in each iteration of the resampling process. This procedure
is sometimes termed “nested resampling” (Bischl et al., 2012). In an outer loop, predictive
performance is evaluated similar to the simple case described earlier. However, another
resampling loop is created within each of the k model estimations to find the most optimal
hyper-parameters in the fold. For example, if 10-fold CV is used for the performance
estimation loop, one test set is predicted by nine tenth of the whole sample. If 5-fold CV
is used in the inner tuning loop, each training set is again divided into five parts. For
different combinations of hyper-parameters, the five inner test sets are predicted based
on the corresponding inner training sets. The combination with the highest performance
averaged over the five inner test sets, is then used for model estimation in the outer loop.
This results in one of the ten outer performance estimates. The ten estimates in the outer
loop are again averaged for an aggregated performance estimate of the final model, which
would be fitted to the whole sample.

In this chapter, we could only give a brief, informal introduction into basic principles of
predictive modeling like the bias-variance trade-off and how to evaluate the performance
of predictive algorithms with or without tuning hyper-parameters. A more careful discus-
sion can be found in the modern classic by Hastie et al. (2009) and its beginner friendly
companion (James, Witten, Hastie, & Tibshirani, 2013).

4.1.3 Predictive Modeling with Random Forests

A predictive algorithm which has been found to be highly successful in many applications
(Biau & Scornet, 2016) is the random forest (RF) invented by Breiman (2001). The RF is
well suited for an introduction to predictive modeling, as its basic mechanisms are easy to
understand and do not require strong mathematical or statistical background. Moreover,
the RF requires little tuning of hyper-parameters and does not overfit, which makes it more
accessible to unexperienced users.

A RF is an ensemble method which combines a large number of decision trees into an
aggregated estimator that yields better predictive performance than its single components.
Each decision tree is constructed with the CART algorithm (Breiman et al., 1984). CART
is a supervised learning algorithm: Some target variable Y is predicted based on a set of
p predictor variables, using training data with known values on both target and predictor
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Figure 4.1: Classification tree of the Titanic dataset in R. Death is predicted by the covari-
ates age, sex, passenger class (pclass), number of siblings or spouses aboard (sibsp), and
number of parents or children aboard (parch).

variables. In classification trees, Y is a categorical variable withm categories. In regression
trees, Y is metric. The main idea is to start with some training data, sequentially split
it into smaller subsamples based on rules derived from the available covariates, and make
constant predictions within each of the final subsamples.

Figure 4.1 shows a classification tree for the Titanic dataset, which is available in R.1
The fitted model predicts if a passenger of the Titanic survived the disaster, based on the
passenger variables age, sex, passenger class, number of siblings or spouses aboard, and
number of parents or children aboard. Each box in the figure is called a tree node and
represents a subsample of the data, with the whole training set displayed on top of the
tree. For each node, we see the number of deceased passengers on the left and the number
of survivors on the right. The label of the most frequent target class is also shown. In our
example, the first node shows that the training set included 1309 passenger of which 809
did not survive. Each non-terminal node further displays the name of a variable in the
dataset which is used to split the current sample. The exact split-point value within this
variable is also shown. Nodes on the bottom of the tree are called leaves. The most frequent

1 The model was estimated with the rpart package. The dataset was taken from the rpart.plot
package, which was also used to create the Figure 4.1. Default settings of rpart were used except for
the complexity parameter which was set to 0.02.
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class label in a leaf can be used to make predictions about other unobserved passengers.
For example, the tree would predict that a seven year old boy traveling together with at
least three siblings died, while it would predict that any woman survived regardless of her
values on the remaining covariates.

The structure of a decision tree is determined by the following algorithm, starting with
the whole training set:

The CART Algorithm

1. Term the current sample the father node F . For all observations in F , compute an
impurity measure I(F ). It quantifies some average error per observation that results
from a constant prediction for all observations in F . In regression trees, the impurity
function is typically the mean squared error (MSE)2, which in this case is identical
to the variance of the target variable in F :

IR(F ) =
1

|F |
∑

(x,y)∈F
(y − ȳF )2 (4.1)

|F | is the total number of observations in F . In classification trees, the simplest
impurity function is the mean misclassification error (MMCE)3, which is just the
ratio of observations not belonging to the biggest class in F :

IC(F ) = 1−max
m

nm

|F |
(4.2)

2. Iterate over all covariates and for each covariate over all possible split-points, defined
by all different covariate values of the observations in F . For each split-point, compute
the impurity reduction (IR):

IR = I(F )− |L|
|F |

I(L)− |R|
|F |

I(R) (4.3)

L and R reflect the left and right child nodes if the split is performed.

3. Split the sample at the point which yields the largest IR. For metric features, the
actual split-point is ambiguous and is typically chosen in the middle between the two
closest observations.

2 In general, the MSE is defined as MSE = 1
n

∑n
i=1(yi − ŷi)

2 and describes the average squared
deviation between some model predictions and the true target values.

3 In general, the MMCE is defined as MMCE = 1
n

∑n
i=1 I(yi 6= ŷi) and describes the proportion of

classification errors made by a prediction models. Here, I is the indicator function, returning 1 if the
statement in brackets is true and 0 if it is not. Although the MMCE is well suited to illustrate the
general principle for classification, other impurity functions typically yield better predictive perfor-
mance in practice. In the classification analyses presented later, the Gini index was used as impurity
function which is also the default in the original CART algorithm. For further details, we refer the
interested reader to Hastie et al. (2009).
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4. Recursively repeat steps 1-3 for both child nodes until one of several stopping criteria
is satisfied: the minimal number of observations in a node to try further splitting,
the minimal number of observations in each leaf, the minimal impurity reduction to
try further splitting, and the maximum number of tree levels.

5. Make an optimal constant prediction in each of the final leaves. In regression trees,
this is the mean of Y for all observations in the leaf. In classification trees, the
constant prediction is the label of the majority class in the leaf. Predicted values
for new observations are obtained by selecting the constant prediction of the leaf to
which they belong, based on their values on all covariates.

CART has several favorable properties: The Titanic example already showed that deci-
sion trees are easily interpretable due to their graphical representation. At the same time,
they can capture complex interactions between variables and model non-linear functions
between the predictors and the target variable. If stopping criteria are chosen in a way
which allow deep trees with a high number of leaves, CART has very little bias. CART is
invariant to monotone transformations of the covariates and can easily handle categorical
variables, outliers in the covariates, as well as missing values. Last but not least, CART
has a built-in selection process to deal with a high number of covariates, as the algorithm
should simply ignore irrelevant variables in the splitting process.

One disadvantage of CART is that constant predictions are made within each leaf of
the tree. Linear or smooth relationships between the predictors and the target variable
can only be approximated by a large number of splits, which typically leads to suboptimal
predictive performance. However, the main problem with CART is its high tendency for
overfitting. Note that in theory, the tree growing algorithm can continue until each leaf
contains only a single observation. At least in this case, strong overfitting occurs, as the
tree captures the complete noise contained in the training data. To avoid this behavior,
the bias-variance trade-off of CART can be controlled by adapting the stopping criteria.4
Increasing the number of leaves and reducing the number of observations in each leaf
decreases the bias of CART. At the same time this leads to overfitting and an increase
in variance. Even with careful tuning of the model complexity, minimal changes to the
training set can lead to highly different structures of the resulting trees (Hastie et al., 2009).
As a consequence, the proclaimed high comprehensibility of CART has to be taken with a
grain of salt, as a changing tree structure may imply a completely different interpretation
of the estimated model. Moreover, the instability of the tree structure also implies highly
variable predictions for new observations. This explains why CART and other tree growing
algorithms usually yield only moderate predictive performance in practice.

Decision trees are conceptually related to the Rasch and PC trees introduced in chapter
2.1.1, which are built on the model-based recursive partitioning framework (Zeileis et al.,
2008). In model-based recursive partitioning, a statistical model is fitted within each leaf of

4 Instead of tuning the stopping criteria, pruning is a popular approach which scales down a fully grown
tree in an attempt to reduce overfitting. Pruning is not described here, as it is unnecessary for the
RF.
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a tree, while only constant predictions are computed in simple decision trees. Consequently,
the splitting criterion in model-based recursive partitioning relies on hypothesis tests, which
assess the parameter stability of the statistical model in the current node.

The Random Forest Algorithm

Breiman (2001) found a simple, but powerful procedure to increase the predictive perfor-
mance of the CART algorithm he invented earlier. The main idea of the RF is to capitalize
on the low bias of deep trees, while reducing their variance. Variance reduction is achieved
by fitting a large number of slightly modified decision trees to bootstrap samples of the
original training set, and averaging the predictions from all individual trees.

In detail, the RF algorithm works as follows:

1. Draw B full bootstrap samples with replacement from the training set.

2. To each bootstrap sample, fit a tree with the CART algorithm described earlier,
except for two modifications:

• Trees are grown as deep as possible with minimal stopping criteria.5

• For each split in the tree, only a sample of mtry randomly drawn covariates are
available to find the optimal split-point.

3. Aggregate the predictions of the B resulting trees. For regression, the RF estimator
is the mean of all predictions for a certain observation, resulting from all trees. For
classification, the estimator is the class which is predicted most frequently for the
observation by the trees. This is often called the “majority vote”.

In the RF, the CART algorithm for growing trees is modified for two reasons: The
first modification aims at reducing the bias as far as possible, in order to guarantee a
high flexibility to capture complex dependencies in the data generating process. The
second modification is a clever mechanism to “decorrelate” the trees, thereby increasing
the effectiveness of the variance reduction achieved by the final averaging. Intuitively,
using lower values of mtry than the total number of predictors p can be thought of as
“giving weaker predictors a better chance”. For simplicity, imagine a variable with a much
stronger effect on the target than all the others. Even if all trees in the RF are estimated
based on slightly different bootstrap samples, the rough structure of all trees might look
highly similar with mtry = p. The important variable is usually used in the early splits,
which have the highest impact on the general tree structure. However, if mtry < p, the
strong predictor might not be available and a weaker variable is chosen instead. The
individual trees, resulting from this shakeup of the general tree structure, produce more
diverse predictions. This leads to a reduced variance of the aggregated RF estimator
without inducing a strong bias. Typically, mtry is tuned by CV or fixed to values around
5 In the randomForest package in R, the minimum node size is 1 for classification and 5 for regression.

No further stopping criteria are applied per default.
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√
p. It can be shown that low values of mtry are especially useful if the correlation between

the covariates is high (Hastie et al., 2009). It makes intuitive sense that with many highly
correlated predictors, the tree structure markedly changes only if none of those variables
are available for splitting. This is much more likely if mtry is small.

Variable Importance

The RF typically shows far better predictive performance than single trees, sacrificing only
one of the important advantages of CART. The interpretability of single decision trees
gets lost with the aggregation of the RF. A graphical inspection of several hundred trees
with deep, highly variable structure is not useful. In order to evaluate the impact of single
features in the predictions, several variable importance measures can be computed. A com-
mon one is the unstandardized out-of-bag (OOB) permutation measure6, although some
improved versions have been suggested (Strobl, Boulesteix, Kneib, Augustin, & Zeileis,
2008). Each tree in the RF is fitted to a full bootstrap sample drawn with replacement.
It can be shown that for the estimation of each tree, about one third of the observations
from the complete training set is not used. These are called the OOB observations. To
assess the importance of one covariate, subject identifiers for this variable are randomly
shuffled within each of the OOB samples. OOB samples are then predicted by their re-
spective trees. The resulting prediction error is compared with the prediction error for the
un-shuffled OOB samples. Prediction error is measured by MSE for regression and MMCE
for classification. To compute the final variable importance measure, the differences in
prediction error are averaged across all trees.

Reshuffling synthetically destroys all associations of the covariate with the target vari-
able. However, as this is done after the model is fit, the decrease in accuracy does not
measure the best possible performance if the covariate of interest was not available. If the
RF were built again without the covariate, other variables might step in (Hastie et al.,
2009). It has been shown that the OOB variable importance measure is upwardly biased
for covariates with a high number of different observed values. This has to be taken into
account when comparing variables with varying granularity (Strobl, Boulesteix, Zeileis, &
Hothorn, 2007). Further note that the OOB permutation variable importance contains
not only main effects but also all modeled interactions with the remaining covariates. One
consequence is that for a variable with high importance, it is unclear how much of its effect
is additive (would be unchanged if other variables were missing) or depends on interactions
(would be lower if other important variables were missing).

Partial Dependence Plots

Individual partial dependence plots (Goldstein et al., 2015) are a graphical method to
visualize the average additive effect of a covariate and to assess how strong the covariate

6 The OOB permutation measure follows a general principle. If slightly adapted, it can be applied to
any predictive modeling algorithm.
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interacts with the remaining ones.7 The RF does not easily reveal how a covariate is
used in its predictions. The main idea of individual partial dependence plots is that the
relationship between one covariate of interest and the target in the estimated model can
be inferred by creating predictions for a series of different values of the covariate. First,
a grid of covariate values is chosen between the observed minimum and maximum in the
dataset. Then, predictions are computed for all observations, with each covariate value
on the grid. Importantly, original values are used for all the remaining covariates. While
the predicted target values are used in regression, predicted class probabilities are used
in classification. In an individual partial dependence plot, the grid of the covariate is
plotted against the target predictions, while each observation in the dataset is represented
by a single line. Individual partial dependence plots help to identify interactions with
the covariate of interest. If the effect of the covariate is exclusively additive, all lines
should have approximately the same form. As the covariate of interest is fixed by the grid,
varying trends can only be attributed to the remaining covariates, on which the observations
naturally differ.8 If interactions are detected and one is particularly interested in how the
covariate interacts with another categorical variable, lines for observations with the same
value on the categorical variable can be labeled by the same color. Color patterns can
reveal if the categorical variable does interact with the covariate of interest and might help
to interpret the interaction. If one is only interested in the average additive effect of a
covariate, individual predictions can be averaged for each value on the grid. This yields
the original dependence plots as introduced by Friedman (2001).

The methods presented in this chapter are powerful tools which can be used by re-
searchers in psychological science to investigate many important questions (see the discus-
sion in Yarkoni & Westfall, 2017). This introduction should help interested psychologists
to delve into the fascinating field of predictive modeling or proceed to other disciplines of
machine learning.

4.1.4 Aim of Study and Research Questions

The main goal of this study is to examine whether an instruction, which is targeted at
compensating each subject’s extreme response tendencies, can counterbalance the impact
of ERS and lead to more valid item responses. The effectiveness of the ERS manipula-
tion is investigated by comparing the criterion validity for related self-reported behavior.
Different conditions of matching the ERS instruction to subjects’ estimates of ERS are
investigated. Criterion validity is determined by methods from predictive modeling, using
all questionnaire items as separate predictors in RF models. A within-subjects design is
used to administer two different ERS instructions to participants in the experimental con-

7 Similar to the out-of-bag variable importance, partial dependence plots are a useful tool that can be
used in combination with any predictive modeling algorithm.

8 To increase the interpretability of the individual partial prediction plots, individual lines are sometimes
centered so that the prediction on the first grid point is zero for each observation. In some cases,
interactions with the covariate of interest can be seen even better in the centered version, as all lines
should strongly overlap here in the case of a perfectly additive effect.
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dition, while a control group with neutral instructions is also included. Previous to the
ERS manipulation, all participants once answered all items under standard instructions.
Extreme responding is assessed by an ERS index from additional heterogeneous items and
self-report measure of ERS. For the main analyses, both ERS estimates are used to choose
those item responses for each subject which were given under the instruction that should
either compensate or aggravate the effect of ERS. The compensation and aggravation set-
tings are compared with item responses from the control group. Building up to the primary
analysis, a series of preliminary analyses are used to check necessary prerequisites. We test
the validity of the ERS instructions, rule out several confounding factors, and investigate
whether measures of ERS contribute to the predictive performance of questionnaire items.

Preliminary Analyses

Presence of ERS Our main research questions require that ERS is present in our data.
To ensure that the scales used in the current study are affected by ERS, we compute PC
trees (see chapter 2.1.1) under standard instructions with an ERS index from heterogeneous
items as covariate. We expect several splits based on the ERS index, revealing the same
threshold pattern as in study 1 and 2. A split should also emerge when a binary self-report
measure of ERS is used as covariate in the PC trees.

ERS Manipulation Checks To make sure that the developed ERS manipulation has
an effect on item responses, we compute PC trees with the type of instruction (extreme-
responding, mid-responding, or neutral) as covariate. If the instructions have an effect on
the subjects’ item responses, PC trees should split the sample in three parts based on the
different manipulation conditions. Moreover, we expect that the threshold patterns in the
resulting leaves do reflect the corresponding instructions. Specifically, we expect narrower
thresholds and larger regions for the highest and lowest response categories under the
extreme-responding instruction than under the mid-responding instruction. The threshold
pattern under the neutral instruction should lie in between. We will also investigate this
graphically, by comparing histograms of item responses under the different instructions.

Potential Order Effects In the experimental group, the order of the within-subjects
extreme and mid-responding instructions is randomized. However, randomization does not
hold when instructions are matched to subject’s ERS estimates for the main analyses. We
investigate potential order effects, by graphically comparing histograms of item responses
for the control subjects who complete the same scales three times under neutral instruc-
tions. Without order effects, histograms from the three parts of the questionnaire should
have approximately the same shape. To rule out that repeatedly answering the same items
has an effect on criterion validity which could confound the main analyses, we also compare
the correlation of scale sum scores with the target variables between the three consecutive
questionnaire rounds of the control group. If order effects do not affect criterion validity,
questionnaire parts should not be systematically related to the size of the correlations.
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Matching ERS Instructions and the Impact of ERS To investigate whether match-
ing ERS instructions to participants’ extreme response tendencies reduces the impact of
ERS, we compute PC trees under different matching conditions with the ERS index as
covariate: In the compensation setting, participants’ item responses will be taken from
the part of the questionnaire in which the given ERS instruction should compensate their
individual ERS tendencies. In the aggravation setting, item responses will be chosen so
that the ERS instruction should further aggravate the response style. In the control set-
ting, we analyze item responses of the control group which always respond under neutral
instructions. Matching is either based on a median split of the ERS index from hetero-
geneous items or based on the binary self-report measure of ERS. If matching the ERS
manipulations to respondents’ own response style reduces the impact of ERS, we would
expect the following pattern: In the control group, the sample should be split based on the
ERS index, similar to the analyses of the whole sample under the standard instruction. In
contrast, we expect no splits in the compensation setting and a higher number of splits
in the aggravation setting. If no clear order in the number of splits can be observed, we
at least expect the respective threshold pattern to suggest a lower impact of ERS in the
compensation setting than in the aggravation setting.

Contribution of ERS Measures to the Prediction of External Criteria The idea
that ERS instructions might compensate effects of ERS, thereby increasing the predictive
performance of questionnaire items, has an important prerequisite: If measures of ERS are
included in a predictive model together with questionnaire items, they should contribute
something to the predictive performance. To investigate this, we fit two RF models to
predict a series of self-reported behaviors. In the first model, item responses from psy-
chological scales under standard instructions, sex, and age are used as predictor variables.
In the second model, we further include the ERS index from heterogeneous items and the
self-report measure of ERS. For both models, we assess predictive performance using re-
sampling techniques. If the ERS measures contribute to the predictions, we expect better
performance of the model in which ERS variables are included. The impact of ERS on
predictions will be further investigated by estimating variable importance of both ERS
measures and visualizing the effect of the ERS index in individual partial prediction plots.

Primary Analyses

Matching ERS Instructions and Predictive Performance In the final analysis,
we investigate whether item responses under instructions targeted at compensating par-
ticipants’ individual ERS tendencies leads to better predictive performance, compared to
instructions that are supposed to aggravate the impact of ERS. In these analyses, we again
apply the RF algorithm but use only item responses from the psychological scales as pre-
dictors. We match the ERS instructions to subjects’ response style either based on the
median split of the ERS index or based on the self-reported ERS measure. The analysis
is then performed under both matching regimes. For all models, predictive performance is
again evaluated with resampling. If matching ERS instructions to subjects’ ERS estimates
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leads to more valid item responses, we expect the highest predictive performance under
the compensation setting and the lowest performance under the aggravation setting. The
performance in the control setting should lie between the other two conditions. If both
ERS measures capture extreme responding, we expect similar results regardless whether
the ERS index from heterogeneous items or the self-report measure of ERS is used in the
matching process.

4.2 Methods

4.2.1 Scales and Variables

Impulsivity and Order

We again used two of the NEO-PI-R facets (see chapter 2.2.1) for which Wetzel, Carstensen,
and Böhnke (2013) showed superior fit of the constraint mixed Rasch model, suggesting
that they are good candidates to reveal effects of ERS. This notion was further supported
by the PC tree analyses of those scales in study 1.9 The eight item scale Impulsivity
(IMP) is a facet of the Big Five factor neuroticism. It captures impulsive behavior like the
inability to control feelings or to suppress the desire for food and other consumer goods. In
contrast to other concepts of impulsivity, it does not entail fast decision making and risk
taking. Similar to study 2, the Order (ORD) scale was also used. For a description of the
scale see chapter 3.2.1. All IMP and ORD items were rated on the original fully labeled
five-point Likert scale of the German NEO-PI-R (Ostendorf & Angleitner, 2004).

ERS Index

Our questionnaire contained 30 items of heterogeneous content, which were used to com-
pute an ERS index similar to the previous studies. ERS items were sampled by the same
procedure and from the same item data banks as in study 2. For a description of the
procedure see chapter 3.2.1. The wording of the final set of ERS items and their original
source can be found in Appendix D.1. We sampled 40 questions until enough suitable items
were found. The original response format of the German NEO-PI-R was also used for the
ERS items. We mostly retained the original item wording. Some slight modifications were
made to increase comprehensibility when encountered out of context, and to ensure that
item wordings were compatible with the response format of the NEO-PI-R.

Self-Reported ERS

Self-reported ERS (SRERS) was measured by the same dichotomous item also used in
study 2 (see chapter 3.2.1). While the question wording was exactly the same as in study 2,

9 As a reminder, check out the presented PC trees in Appendix B.3
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response categories were slightly altered to improve comprehensibility.10

Target Variables

We constructed a series of questions which would be used as target variables in the main
predictive modeling analyses. These are listed in Table 4.1 while the German wording of
the original questions can be found in Appendix D.2. A dichotomous response format with
categories “Yes” and “No” was used for the variables Clothes, Argument, Lying, Electronics,
Desk, Dishes, Document, and Bed. For the Snacking question, a check-box was presented
next to each snack to mark if it was consumed, as well as another box to enter the consumed
amount. As a result of pretesting the Series question, a third category labeled with “I do
not watch any series.” was presented in addition to “Yes” and “No”. Height was reported in
centimeters while Weight was reported in kilograms. Both variables were used to compute
each participant’s body mass index (BMI). Height and Weight were not used as separate
target variables in predictive modeling. For each target variable, either IMP or ORD is
considered the corresponding primary scale in the sense that the target variable can be
expected to be successfully predicted by the items of this scale. The IMP items should be
well suited to predict the variables Argument, Clothes, Electronics, Lying, Series, Snacking,
and BMI. ORD items should be related to Bed, Document, Dishes, Desk, and Vacuum.

As target variables for the IMP scale, we considered impulsive buying and unhealthy
snacking, two behaviors which seem to be positively related (Verplanken, Herabadi, Perry,
& Silvera, 2005). Impulsive buying has been shown to be associated with personality traits
(Verplanken & Herabadi, 2001). Likewise, a general measure of impulsivity which does not
focus on specific behaviors, has been reported to predict self-reported snacking (Churchill,
Jessop, & Sparks, 2008). The IMP scale might be an even better predictor of snacking, as it
contains two items which explicitly target the tendency of eating too much. If impulsivity is
related to snacking, it may have a mediated effect on body weight. Indeed, the IMP facet of
the NEO-PI-R has been found to be a positive predictor of BMI and other obesity measures
like hip-to-waist ratio in two studies with large samples (Terracciano et al., 2009; Sutin,
Ferrucci, Zonderman, & Terracciano, 2011). The relationship even holds prospectively for
BMI measured several years after the personality assessment. Interestingly, both studies
also found a negative relationship between BMI and the ORD facet, although the effect
was weaker than for IMP. In an influential taxonomy of impulsivity, the facet urgency is
described as “the tendency to commit rash or regrettable actions as a result of intense
negative affect” (Whiteside & Lynam, 2001). As urgency seems to be closely related to the
IMP scale of the NEO-PI-R, the target variables Argument and Lying were constructed
10 German wording: “Manche Personen tendieren in Fragebögen häufig dazu, eine der äußeren Antwort-

möglichkeiten anzukreuzen, während andere Personen häufig dazu tendieren, eine Antwortmöglichkeit
nahe der Mitte anzukreuzen. Wie würden Sie sich spontan am ehesten einschätzen?”

“Ich tendiere häufiger dazu Antworten anzukreuzen, die in der Mitte liegen.”

“Ich tendiere häufiger dazu Antworten anzukreuzen, die am Rand liegen.”
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to reflect this aspect of impulsivity. Apart from eating, several IMP items assess a general
inability to resist pleasurable stimuli. The Series variable was considered a contemporary
impulsive behavior which could also be affected by this unspecific aspect of impulsivity.

ORD targets have high face validity, as they are all related to cleaning or other orderly
behaviors of everyday life. All questions were adapted from the Behavioral Indicators of
Conscientiousness (Jackson et al., 2010), which have been shown to be positively related to
conscientiousness in pure self-report studies. Notably, the Behavioral Indicators of Consci-
entiousness also include more impulsive behaviors like shouting at strangers, playing sick
to avoid something, spontaneous shopping in contrast to buying stuff from a shopping list,
telling lies, and eating until feeling sick. These behaviors seem to be negatively correlated
with conscientiousness.

As we used an online questionnaire in order to reach an appropriate sample size, we
had to rely on participants’ self-reports. However, when constructing the target questions,
we tried to maximize the objectivity of our results, by taking the following aspects into
account: Associations between two sets of self-report items can be inflated by ERS and
other forms of method bias (Podsakoff et al., 2011). Therefore, we did not use an ordinal
response format for any of the target variables. A binary response format was used for
the majority of items. According to our results from study 2, Yes/No items are probably
unaffected by ERS. For the remaining questions, subjects could freely report numbers and
check whether they consumed something or not. These formats should also be free of ERS.
Furthermore, we put our focus on concrete behaviors or observations and used a recent
time frame to increase the likelihood that subjects give accurate answers based on active
memory retrieval. We also tried to use precise wording to ensure that subjects interpret
our questions as similar as possible. Target items were validated in a pretest: All variables
showed promising correlations with the sum score of their primary scale. Moreover, we
asked participants whether they were able to remember the respective behavior. This
seemed to be the case.
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Table 4.1: Target Variables

Impulsivity

Argument Last week, did you say something during an argument which you
would have liked to take back?

Clothes Last week, did you spontaneously buy clothes online or in store,
without planning it beforehand?

Electronics In the last two weeks, did you spontaneously buy electronic
devices or consumer electronics, without planning this beforehand?

Lying In the last two weeks, did you lie in order to avoid an appointment
or date?

Series Remember the last time you watched your favorite series. Did you
watch more episodes at a stretch than you had intended?

Snacking Think about yesterday. Which of the following listed snacks/sweets
did you consume yesterday and how much of them?

One chocolate bar/cereal bar
One handful of chips/nuts/saltsticks
One share of chocolate (three pieces)/one chocolate truffle
One large cookie or two small biscuits
One piece of cake/one piece of pastry
One handful of gummy bears/fruit gums/candies
One scoop of ice cream/one Popsicle
One cup of yogurt/pudding

Height How tall are you?
Weight What is your current weight?

Order

Bed Did you make your bed this morning?
Document Remember the last time you received an important document (e.g.

insurance papers, school certificate, contract). Did you immediately
file that document?

Dishes At this moment, are there any unwashed dishes you used outside
of the kitchen area?

Desk At this moment, is your desk or workstation tidy?

Vacuum Think about the last two weeks. In that period, how many times
did you vacuum your bedroom?

Note. Target variables are listed with respect to their primary scale (Impulsivity or Order). Height
and Weight were combined into body mass index (BMI) for all analyses.
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4.2.2 Questionnaire Design and ERS Manipulation

We designed and hosted an online questionnaire on the SoSci Survey framework.11 The
complete questionnaire had 29 pages and was presented in German. A progress bar, the
logo of the university and a link to the author’s university email address was shown on
top of each page. Browsing through the questionnaire was achieved by a forward button.
If subjects did not respond to all questions on a page, proceeding was not possible and a
reminder message appeared.

At the beginning of the questionnaire, subjects were thanked for their participation
in a study about the relationship between personality and attributes which would take
about 15-20 minutes. They would get reimbursed with course credit and have the ability
to participate in a lottery. We instructed them to respond honestly to all questions, no
matter if those appeared unusual or similar to earlier questions. They should carefully read
all questions and instructions. If respondents felt like they did not know an answer on a
question, they should choose the most applicable response options instead of skipping the
question. Finally, subjects were informed that their data would be treated anonymously
and only be used for instructional and scientific purposes.

After the introduction, we retrieved the following demographic variables: sex, age,
highest educational qualification12, and current profession.13 If the student category was
selected in the question about profession, an additional box appeared where participants
had to specify if they are enrolled in psychology or not.

The main part of the questionnaire is visualized in Figure 4.2. It can be structured into
three parts – A, B, and C – followed by the target variables and the SRERS item. Part A
contained the ERS items mixed with the IMP and ORD items. The item order was the
same for all participants. Each page contained a maximum of five items and was always
introduced with the question: “How much do you agree with the following statements?”

Preceding both part B and part C, all participants were informed on a separate page
that they would now complete some questions again, and that they should reconsider which
response is most applicable to them. Moreover, they were ensured that the reason for the
repetition is not how good they can remember what they had responded earlier. This was
followed by one of three different ERS manipulations, which are presented in Table 4.2.

The extreme and mid-responding instructions were followed by two examples: the
decision process was explained for one case in which a subjects was indecisive between
the third and fourth category, as well as another case in which a subject was indecisive
between the first and second category. Examples were supposed to clarify that participants
should only alter their response if they were undecided. Responses should be shifted only
by one category, instead of automatically selecting the midpoint or one of the most extreme

11 For more information, visit https://www.soscisurvey.de/.
12 German education categories: Kein Schulabschluss, Hauptschulabschluss/Volksschulabschluss,

Realschulabschluss/Mittlere Reife, Allgemeine Hochschulreife/Fachhochschulreife,
Hochschul/Fachhochschulabschluss, Promotion.

13 German profession categories: Schüler/in, in Ausbildung/Lehre, Student/in, Angestellte/r, Selbst-
ständig/Freiberuflich, Arbeitslos/Arbeit suchend, Hausmann/Hausfrau.

https://www.soscisurvey.de/
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Figure 4.2: Flowchart describing the structure of the online questionnaire. Impulsivity
(IMP) and Order (ORD) items where encountered in part A, B, and C of the questionnaire.
Within each part, items were presented in mixed order. Participants in the mid-extreme
responding condition answered part B under the mid-responding instruction and part C
under the extreme-responding instruction. For subjects in the extreme-mid responding
condition, the order was reversed. The control group answered part B and part C under
neutral instructions. SRERS = self-reported extreme response style.

Table 4.2: Wording of ERS Instructions

Extreme IMPORTANT: Should you be unable to decide between two response
options, now rather choose that response option which is
closer to the side.

Mid IMPORTANT: Should you be unable to decide between two response
options, now rather choose that response option which is
closer to the center.

Neutral If you cannot decide between two response options, try to
find that response option which is more applicable to you.

Note. Instructions for the ERS manipulations were presented in a green box. The box was repeated
on each of the following pages together with the instruction already used in part A.

categories. Examples consisted of explanatory text in combination with pictures showing
which category to choose. The same item was used for all examples. Screenshots of
questionnaire pages illustrating the three ERS manipulations can be found in Appendix
D.3. On pages displaying the ERS manipulation, the next button stayed invisible for a few
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seconds to avoid that participants accidentally skipped the instructions.
Before facing the ERS instruction in part B of the questionnaire, participants were ran-

domly assigned to one of three experimental conditions. Participants in the mid-extreme
condition encountered the mid-responding instruction in part B, followed by the extreme
responding manipulation in part C. In the extreme-mid condition, participants encountered
the extreme-responding manipulation in part B, followed by the mid-responding manip-
ulation in part C. We also had a control group whose subjects encountered the neutral
manipulation in both part B and part C of the questionnaire. Urn randomization was used
to ensure that participants were evenly assigned to all three conditions. In part B and C,
IMP and ORD items were presented in the same alternating order, starting with the first
IMP item followed by the first ORD item. Four items were shown on each page.

When part C was completed, the target questions were presented in the following or-
der: Snacking, Clothes, Vacuum, Argument, Desk, Dishes, Lying, Document, Electronics,
Series, Bed, Height, and Weight. Except for Snacking, which was presented on a separate
page, always four target questions were shown at the same time. Finally, the SRERS item
was displayed on a separate page.14

14 Target questions were followed by one page, on which participants could enter their email address
if they wanted to take part in the lottery. By design of the survey software, addresses could not
be associated with the subjects identifiers to assure privacy. On a final page, subjects were thanked
again to take part in the study. A link was provided to download a certificate for course credit.
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4.2.3 Participants

From March until July 2015, 934 participants started our online questionnaire and 789
finished it. As participants could not proceed through the questionnaire without answer-
ing all questions, there were no further missing data. However, we excluded one female
participant with a BMI score of 9.47 from all analyses.15 Consequently, the analyzed
sample consisted of 788 subjects (222 men and 566 women) between the age of 18 and 74
(M = 25.35, SD = 8.02). Of 586 included students, 152 were enrolled in psychology. Only
48 subjects did not have at least a subject-related entrance qualification for university.

Participants had the possibility to win one of four Amazon vouchers worth of 50 euro
and all subjects could get a certificate for course credit. An invitation to the online study
was sent to the study mailing list of LMU Munich. Additionally, the study was promoted
in Facebook groups and popular science outlets like www.psychologie-heute.de.

In the analyzed sample, 263 participants were part of the mid-extreme condition, while
262 participants were part of the extreme-mid condition. The control group consisted of
263 subjects.

4.2.4 Statistical Analyses

All 30 ERS items were used for the computation of the ERS index. Similar to the previous
studies, ERS items were first recoded to a response style scale. As all ERS items were
rated on a five-point Likert scale, the recoded values on the response style scale were: 1,
0.5, 0, 0.5, 1. A subject’s ERS index was computed as the mean response on the recoded
ERS items. In the SRERS measure, subjects were coded with one, if they expressed a
tendency to choose extreme categories and zero if they expressed a tendency to choose the
midpoint category. To simplify the predictive modeling analyses, we decided to ignore the
“I do not watch any series.” response option of Series and treated it as another binary
target variable. This increased the accessibility and clarity of our results by avoiding the
peculiarities of classification with more than two classes. Also, we were able to conveniently
report all classification results side by side. Note that as a consequence, all correlations
and predictive modeling analyses which include the Series variable are based on a reduced
sample size, as only subjects who reported “Yes” or “No” were analyzed.

To evaluate whether matching the ERS instruction to the subjects’ own response ten-
dencies might reduce the impact of ERS, we used the within-subjects design to construct
a series of artificially matched datasets. These were used for the main predictive modeling
analysis, and for one PC tree analysis. Matching was done once based on a median split
of the ERS index, and once based on the SRERS variable. The compensation and aggra-
vation settings only included subjects from the experimental conditions mid-extreme and
extreme-mid. The remaining subjects were used in the control setting.

15 The excessively low weight of 30kg with a corresponding height of 1.78m was most likely a responding
error.
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Compensation setting: For each participant with an ERS index above the median,
we included the IMP and ORD item responses from the part of the questionnaire with
the mid-responding instruction. For participants with an ERS index below or equal to
the median, item responses under the extreme-responding instruction were used. When
matching was based on SRERS, responses under the mid-responding instruction were used
for participants in the group of extreme responders and vice versa.

Aggravation setting: IMP and ORD item responses under the extreme-responding in-
struction were used for each participant with an ERS index above the median and responses
under the mid-responding instruction were chosen for subjects with an ERS index below the
median. When matching was based on SRERS, responses under the extreme-responding
instruction were used for participants in the group of extreme responders and vice versa.

Control setting: For each participant in the control group, we randomly selected part
B or C of the questionnaire and took all IMP and ORD item responses from the chosen part.

A series of descriptive statistics were computed: Similar to the previous studies, we
report the mean and standard deviation of the ERS index, the mean absolute correlation,
as well as the maximum absolute correlation between ERS items, and 95% confidence
intervals for the correlations of the ERS index with sex, age, and SRERS. For binary
target variables, the frequency of each response category and the ratio of “Yes” responses
are reported. For metric target variables, we show the minimum, maximum, mean, and
median values, as well as the standard deviation. We further provide the correlations of
the target variables with the demographic variables, the ERS measures, and the sum scores
of the IMP and ORD scale from part A of the questionnaire. To ease the interpretation
of our results, target variables were coded so that a positive correlation could be expected
with the sum score of the respective primary NEO-PI-R scale. All reported correlations
are Pearson product-moment coefficients.

Several PC trees were computed as part of the preliminary analyses: To ensure the
presence of ERS, we fitted PC trees to the IMP and ORD scales from part A, with the
ERS index as the only covariate. As a manipulation check for the ERS instructions,
separate PC trees were computed for the IMP and ORD scale from part B and C with the
type of instruction (mid-responding, extreme-responding, neutral) as single covariate.

As a graphical manipulation check of the administered ERS instructions, we compare
histograms of item responses under the extreme and mid-responding instructions to the
standard instruction in part A. Note that these plots only contain subjects from both
experimental conditions, and ignore which instructions were encountered in part B or C.
To investigate possible order effects, another series of histograms compare item responses
of the control group for part A, B, and C. If item responses differ between the three parts
of the questionnaire in the control group, repeatedly answering the same items could have
an effect on the criterion validity of the scale. This might be a confounding factor for
the main analyses because in the process of matching ERS instructions to subjects’ own
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response style tendencies, it cannot be controlled if item responses stem from part B or C.
To rule out this possibility, we provide another graphical analysis: In the control group,
correlations of the target variables with the sum score of the primary NEO-PI-R scale
were contrasted between the three parts. If repeated responses to the same items under
neutral instructions leads to better answers, as subjects are more invested to find the most
appropriate answer, we expect a clear order in the correlations of the three parts.

In another analysis, PC trees were fitted to both scales under the compensation, aggra-
vation, and control settings. Again, the ERS index was used as the only covariate. For all
PC trees, a significance level of 0.05 was used. The minimum number of observations in a
tree node was set to the default value, which is equal to ten times the number of estimated
parameters. Similar to the previous studies, the results of PC tree analyses are presented
graphically.

Finally, we performed two predictive modeling analyses based on the RF algorithm:
Negatively keyed IMP and ORD items were recoded. As a monotone transformation,
recoding does not have any effect on the fitted RFs. However, it makes the interpretation
of the following partial dependence plots more intuitive. For binary target variables, the
positive class was chosen so that the predicted probability for the positive class should be
higher for high values on the corresponding NEO-PI-R scale.16

In each application of the RF algorithm, we tuned themtry parameter on a grid ranging
from 1 to 10 with 10-fold CV. The number of trees was fixed to 1500 in all analyses. When
estimating the predictive performance of a model on new data, nested resampling was
performed. We used 10-fold CV in the outer loop and repeated the whole procedure 3 times,
in order to further reduce the variance of the performance estimation. This is sometimes
called repeated CV (Bischl et al., 2012). For binary target variables, resampling in the
inner and outer loop was stratified, which ensures that the class distribution in each fold
is the same as in the whole sample.

For binary target variables, Cohen’s κ (Cohen, 1960) was used as the primary perfor-
mance measure. This means that it was used to choose the optimal values of mtry in
the hyper-parameter tuning, and to assess the predictive performance estimated by the
outer loop of nested resampling. Compared to the commonly used accuracy (ACC =
1−MMCE), κ is better suited to capture the performance of a classification model with
a single number: Imagine a binary target variable for which 80% of all observations belong
to the positive class. In such an unbalanced case, useful predictions are typically harder
to achieve, due to the lack of data from the smaller class. Under these circumstances,
algorithms tend to predict the positive class with extremely high probability, rendering the
predictive model almost useless. Unfortunately, this behavior is not reflected by the ACC
measure. In the current example, a model which exclusively predicts the positive class
yields an ACC of 0.8. This shows that interpreting ACC is nearly impossible without ad-
ditional information. In contrast, κ would be zero for this example, as it takes into account
the true ratio of positive observations as well as the ratio of positive predictions made by
the predictive model. In this sense, positive κ can only be achieved if the ACC of a predic-

16 “Yes” was the positive class for all binary target variables except for “Dishes”.
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tive model is higher than can be expected “by chance”. As κ is still a single number, it does
not carry the complete information about predictive performance. To further increase the
interpretability of our results, we also present MMCE, sensitivity (SENS), and specificity
(SPEC) as secondary measures in a table. For metric targets, R2 was used as the primary
performance measure. The MSE and the root mean squared error (RMSE =

√
MSE)

are also reported in tables. R2 was chosen over MSE, as it might be more intuitive to
psychologists who are familiar with its interpretation from linear models. To aggregate the
10 times 3 performance estimates resulting from the repeated CV scheme of each predic-
tive modeling exercise, the mean was used for both classification and regression models.
Estimated predictive performance of RF analyses will be presented graphically in the form
of boxplots. For each predictive model, an observation in the boxplot corresponds to one
of the 10 times 3 performance estimates from the outer loops of nested resampling. Binary
and metric target variables will be presented in separate plots due to the different primary
performance measures.

The first RF analysis contrasts the ability of two different models to predict each target
variable. In the first model, all IMP and ORD items from part A of the questionnaire,
sex, and age were used as predictors. The second model additionally included the ERS
index and the SRERS measure. To evaluate predictive performance, we repeated the
described nested resampling scheme for each target variable. For the prediction models
which included the two ERS measures, we further estimated a final RF based on the whole
dataset and computed the OOB variable importance. Similar to the earlier performance
estimation,mtry was tuned with 10-fold CV. Variable importance is presented in a separate
line plot for each target variable.17 We also present individual partial dependence plots
for this analysis. Partial predictions were computed for the ERS index on an evenly
spaced grid of length 30, ranging from the lowest to the highest ERS value observed in the
complete dataset. Similar to the variable importance, partial predictions were based on
the final models which were fitted to the complete sample. Partial dependence plots show
the grid values for the ERS index on the x-axis. Additionally, individual predictions are
color labeled based on the responses to the NEO-PI-R item with the highest OOB variable
importance for the respective target variable. In chapter 1.4, we noted that ERS might
heavily influence trait estimates for subjects with extremely high or low levels of ERS, but
exert only moderate bias on average. Comparing predictive performance between models
with and without ERS measures highlights the general impact of ERS. In contrast, the
individual partial dependence plots can illustrate the impact of ERS for different levels of
the ERS index.

The second RF analysis compared the predictive performance for each target variable
between the compensation, aggravation, and control settings. For these analyses, matching
was performed by the procedure described earlier. We used the same nested resampling
scheme as in the previous analysis. However, only the IMP and ORD items were used

17 Remember that the OOB variable importance does not provide any information about the direction
of the covariate effects. Negative importance values result if predictive performance is improved by
permuting the respective variable. This can be a sign of overfitting.



102 4. Study 3: Compensating ERS with Item Instructions

as predictors. Demographic variables and ERS measures were omitted. By design, they
are unaffected by our experimental conditions and the corresponding matching process.
Moreover, ERS measures were already used in the matching process.

In the present study, we did not use ERS measures based on polytomous mixed Rasch
models of the IMP and ORD scales. As discussed in chapter 1.3, the mixed Rasch model
is a less objective method to detect ERS compared to the ERS index from heterogeneous
items and SRERS. Latent classes from mixed Rasch models can capture various factors in
addition to ERS. Classes can differ with respect to the latent trait which is measured by the
scale of interest or reflect subgroups based on an unobserved covariate. This confounding
by content is problematic when using an ERS measure derived from the class membership
of a mixed Rasch model as predictor in our predictive models. The RF algorithm is highly
flexible to capture complex relations between the predictors and the target variable. In
contrast to the ERS index from heterogeneous items and SRERS, the classification based
on the mixed Rasch model does not provide strictly new information to the predictive
model. The classification is just a complex transformation of the item responses which are
already included into the model. Thus, if adding the mixed Rasch ERS measure leads to
an increase in predictive performance, the improvement cannot be reliably attributed to
ERS.

All statistical analyses were conducted in R (R Core Team, 2016b). PC trees together
with the corresponding tree plots were computed with the psychotree package (Zeileis
et al., 2016). All remaining plots were created with the ggplot2 package (Wickham &
Chang, 2016). The predictive modeling analyses were conducted within the infrastructure
provided by the mlr package (Bischl et al., 2017). The mlr package provides a convenient
standardized interface to build predictive models in R, which includes all related steps like
hyper-parameter tuning, model fitting, assessing predictive performance, and even model
visualization (Bischl et al., 2016). To fit the RF models, the algorithm in the randomForest
package (Breiman, Cutler, Liaw, & Wiener, 2015) was chosen. The unstandardized OOB
variable importance was computed with the same package. In addition to those already
cited in study 1 and 2, the packages Hmisc (Harrell, 2016), dplyr (Wickham & Francois,
2016), parallelMap (Bischl & Lang, 2015), rpart (Therneau, Atkinson, & Ripley, 2015),
and rpart.plot (Milborrow, 2017) were used.

4.3 Results

4.3.1 Descriptive Statistics

Descriptive statistics of the ERS index from heterogeneous items are presented in Table
4.3. The ERS index was unrelated to sex and age. In the SRERS question, 21% of
participants reported a tendency to choose extreme categories. On average, subjects from
the extreme SRERS group had higher values on the ERS index. They also were slightly
older (rSRERS,Age 95% CI : [0.03; 0.17]).

Tables 4.4 and 4.5 show descriptive statistics for the binary and metric target variables.
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Table 4.3: Descriptive Statistics of the ERS Index

M SD MeanAC MaxAC rSex CI rAge CI rSRERS CI

0.50 0.09 0.07 0.33 [-0.13, 0.01] [-0.08, 0.06] [0.23, 0.36]

Note. 95% confidence intervals are presented for the correlations of the ERS index with
sex, age, and SRERS. Females are coded as one, males are coded as zero. Self-reported
extreme responding is coded as one, self-reported mid responding as zero. MeanAC
= Mean of absolute correlations between all items within the ERS index. MaxAC =
Highest absolute correlation between items within the ERS index. SRERS = self-reported
extreme response style.

Table 4.4: Descriptive Statistics of
Binary Target Variables

Target Yes No Ratio

Argument 137.00 651.00 0.83
Clothes 193.00 595.00 0.76
Electronics 54.00 734.00 0.93
Lying 263.00 525.00 0.67
Series* 391.00 299.00 0.57
Bed 315.00 473.00 0.60
Document 280.00 508.00 0.64
Dishes 283.00 505.00 0.64
Desk 418.00 370.00 0.53

Note. The Ratio column contains the relative
frequency of the majority class.
* In the Series variable, 98 subjects responded
that they did not watch any series. This op-
tion was ignored for computing the ratio.

Table 4.5: Descriptive Statistics of Metric
Target Variables

Target M Med SD Min Max

Snacking 3.17 2.00 3.42 0.00 34.00
BMI 22.69 21.89 4.31 15.02 59.52

Vacuum 1.69 1.00 1.84 0.00 14.00

Note. Med = median. Min = minimum, Max = maxi-
mum.

The binary targets Argument, Clothes, and Electronics had highly unbalanced distribu-
tions. Similarly, the dispersion of the metric variable Vacuum was small as the majority
of participants reported zero or one round of vacuum cleaning.
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Table 4.6: Target Correlations

Sex Age ERS Index SRERS IMP ORD

Argument 0.10* -0.10* 0.05 0.03 0.19* -0.08*
Clothes 0.18* -0.04 -0.02 -0.02 0.11* -0.01

Electronics -0.09* -0.02 0.02 -0.04 0.08* -0.10*
Lying 0.01 -0.06 0.04 0.00 0.15* -0.17*
Series -0.06 -0.17* 0.03 -0.04 0.17* -0.12*

Snacking 0.05 0.07 0.00 -0.01 0.17* -0.06
BMI -0.17* 0.28* 0.00 -0.02 0.15* -0.12*
Bed 0.03 0.11* -0.01 0.06 -0.14* 0.25*

Document 0.06 -0.10* -0.01 0.08* -0.15* 0.31*
Dishes 0.00 0.05 0.01 0.01 -0.08* 0.18*
Desk 0.07* 0.10* -0.07 0.04 -0.11* 0.37*

Vacuum 0.09* -0.02 0.04 0.11* -0.10* 0.21*

Note. Correlations of target variables with demographic variables, ERS measures
and the sum scores of the Impulsivity (IMP) and Order (ORD) scales. IMP is
considered the primary scale for variables Argument to BMI, while Bed to Vacuum
are target variables for ORD. SRERS = self-reported extreme response style.
* p < 0.05.

We present correlations of target variables with demographic variables, ERS measures
and the sum scores of the IMP and ORD scales in Table 4.6. All target variables correlated
with their primary scale in the expected direction, although all correlations were of small
or medium size. The highest correlation of 0.37 was observed for the relationship between
Desk and the sum score of the ORD scale. In most cases, we also observed correlations
with the secondary scale. As sum scores of the IMP and ORD scales were negatively
correlated (rIMP,ORD 95% CI: [−0.35;−0.22]), correlations with the secondary scale were
always in the opposite direction. For Lying and Series, correlations with the secondary
scale were slightly higher in absolute terms than for the primary scale. The ERS index
did not correlate with any of the target variables. SRERS was slightly correlated with
Document and Vacuum. Some correlations emerged for the demographic variables. In
particular, BMI was related to participants’ sex and age.

4.3.2 Presence of ERS

Extreme responding clearly affected item responses of the IMP and ORD scale under
standard instructions. Appendix D.4 shows PC trees fitted to item responses of part A
of the questionnaire, with the ERS index from heterogeneous items as single covariate.
Multiple splits emerged for both scales. The emerging threshold pattern was similar to
the previous studies: In leaves which contain subjects with high values on the ERS index,
distances between thresholds were smaller and regions of highest probability for the most
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Figure 4.3: Histograms for item responses of the Impulsivity (IMP) scale given under the
extreme-responding, mid-responding, and standard instruction. Only subjects in the two
experimental conditions were included. Item responses under standard instructions were
taken from part A of the questionnaire. Items are labeled with I for Impulsivity, the
position of the item in the German NEOI-PI-R, and the letter R if the item has been
recoded.

extreme response categories were larger. As illustrated in Appendix D.5, SRERS was also
selected as splitting variable when it was used as the single covariate in the PC trees.

4.3.3 ERS Manipulation Checks

The effect of the extreme-responding and mid-responding instructions on participants’ re-
sponses on the IMP and ORD items is illustrated in Figures 4.3 and 4.4. Under the
extreme-responding instruction, the highest and lowest response categories were chosen
slightly more often, compared to the mid-responding and standard instructions. At the
same time, the midpoint category was chosen less frequently under extreme-responding.
For some items, midpoint responses seemed to be shifted to the neighboring categories,
however this effect was inconsistent. No clear difference could be observed between the
mid-responding and standard instructions. Importantly, under the mid-responding ma-
nipulation, the frequency of the midpoint category was not consistently higher compared
to the standard instruction. Frequencies of the most extreme categories were also not



106 4. Study 3: Compensating ERS with Item Instructions

O10R O40 O70R O100 O130R O160 O190R O220R

extrem
e

m
id

standard

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

100

200

300

0

100

200

300

0

100

200

300

Item Response

F
re

qu
en

cy

Figure 4.4: Histograms for item responses of the Order (ORD) scale given under the
extreme-responding, mid-responding, and standard instruction. Only subjects in the two
experimental conditions were included. Item responses under standard instructions were
taken from part A of the questionnaire. Items are labeled with O for Order, the position
of the item in the German NEOI-PI-R, and the letter R if the item has been recoded.
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Figure 4.5: PC tree of the Impulsivity (IMP) scale from part B of the questionnaire, with
the type of ERS instruction as single covariate. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped.

consistently lower under the mid-responding instruction.

PC trees of IMP and ORD item responses from part B of the questionnaire with the
ERS instruction as covariate are presented in Figures 4.5 and 4.6. While the IMP scale
was split into three leaves defined by all separate ERS instructions, a combined leaf for the
mid and neutral-responding condition emerged in the tree of the ORD scale. Appendix
D.6 shows the same analyses for part C of the questionnaire. Three splits emerged in both
scales from part C. Otherwise, trees of part B and C were highly similar. In leaves defined
by the extreme-responding condition, narrow thresholds and large regions for the most
extreme categories indicated a more extreme response pattern. Differences in thresholds
between the mid-responding and neutral conditions were rather small. Under the mid-
responding instruction, the region of highest response probability was more pronounced
for the midpoint category.
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Figure 4.6: PC tree of the Order (ORD) scale from part B of the questionnaire, with
the type of ERS instruction as single covariate. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped.
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Figure 4.7: PC tree of the Impulsivity (IMP) scale in the compensation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on a median split of the ERS index. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped.

4.3.4 Potential Order Effects

Comparing item responses in the control group between the three parts of the question-
naires suggested that a small order effect might have affected item response patterns under
different ERS instructions (see Appendix D.7). With repeated presentation of the same
items, responses became slightly more pronounced, in the sense that midpoint responses
were shifted to one of the neighboring categories. Frequencies of the most extreme re-
sponse categories seemed to be unaffected by the shifting process. However, possible order
effects did not influence criterion validity as illustrated in Appendix D.8. Correlations be-
tween each target variable and the sum score of the primary scale, computed based on the
different parts of the questionnaire in the control group, did not show a consistent ranking.
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Figure 4.8: PC tree of the Impulsivity (IMP) scale in the compensation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on SRERS. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped. SRERS = self-reported extreme response
style.
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Figure 4.9: PC tree of the Order (ORD) scale in the compensation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on a median split of the ERS index. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped.



112 4. Study 3: Compensating ERS with Item Instructions

ERS Index
p = 0.005

1

≤ 0.52 > 0.52

Node 2 (n = 322)

1 2 3 4 5 6 7 8

−4

−2

0

2

4

Node 3 (n = 203)

1 2 3 4 5 6 7 8

−4

−2

0

2

4

Figure 4.10: PC tree of the Order (ORD) scale in the compensation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on SRERS. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped. SRERS = self-reported extreme response
style.
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4.3.5 Matching ERS Instructions and the Impact of ERS

Figures 4.7 and 4.8 show the PC trees for the IMP scale in the compensation setting.
For the first plot, instructions were matched to individual response tendencies based on
a median split of the ERS index, while matching was based on SRERS in the second
plot. The same analyses for the ORD scale are presented in Figures 4.9 and 4.10. For all
analyses in this section, PC trees included only the ERS index from heterogeneous items
as covariate.

In spite of the compensatory matching of the ERS instructions, the ERS index was
selected as splitting variable in three of the four models. The PC tree of the ORD scale
with the median ERS index as matching variable was the only condition in which the
ERS index was not selected. Three leaves emerged for the IMP scale, when matching was
based on the median split of the ERS index. Compared to the left leaf, the probability for
midpoint responses was higher in the mid leaf and the probability for the most extreme
categories was lower. Note that the left leaf contained subjects with lower values of the
ERS index. If SRERS was used in the matching process, two leaves emerged for both scales.
The right leaves, which consisted of subjects with higher values on the ERS index, clearly
showed a pattern of more extreme item responses. PC trees in the aggravation setting for
both scales and matching variables are presented in Appendix D.9. In the PC tree of the
IMP scale with SRERS as matching variable, three splits emerged. In each of the remaining
models, the ERS index was selected as splitting variable once. In comparison to the PC
trees in the compensation setting, differences in the threshold pattern between leaves were
slightly more pronounced in the aggravation setting. The analyses of the control setting are
presented in Appendix D.10. For both scales, the ERS index was not selected as splitting
variable and a single PC model was estimated for all subjects in the control group.

4.3.6 Contribution of ERS to the Prediction of External Criteria

Figure 4.11 visualizes the estimated performance when predicting the binary target vari-
ables with item responses of the IMP and ORD scales from part A of the questionnaire.18

Predictive performance for metric target variables is presented in Figure 4.12. For both
variable types, a table with all used performance measures can be found in Appendix
D.11. Predictive performance did not depend on whether the ERS index from heteroge-
neous items and SRERS were included in the models. In general, estimated performance
was higher for ORD targets. Robust above-chance predictions could not be achieved for
the IMP target variables Argument, Clothes, Electronics, and Snacking. This was reflected
in negative values of κ or R2. Specificity values very close to one revealed that in the cases
of Argument, Clothes, and Electronics, models almost exclusively predicted the majority
class.

Figures 4.13 and 4.14 show the estimated variable importance if the predictive models
including both ERS measures were fitted to the whole dataset. In line with the perfor-
18 Only 690 subjects could be included in the predictive model of the Series variable. The remaining

participants reported that they do not watch any TV series in general.
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Figure 4.11: Estimated performance for predicting binary target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale from part A of the questionnaire,
sex, age, the ERS index from heterogeneous items and SRERS. Predictive models were
estimated once with and once without the ERS measures. Performance was measured by
Cohen’s κ. SRERS = self-reported extreme response style.
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Figure 4.12: Estimated performance for predicting metric target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale from part A of the questionnaire,
sex, age, the ERS index from heterogeneous items and SRERS. Predictive models were
estimated once with and once without the ERS measures. Performance was measured by
R2. SRERS = self-reported extreme response style, R2 = coefficient of determination.

mance estimates, both ERS measures mostly ended up in the bottom half of the variable
importance ranking. The ERS index was the most important predictor for Electronics,
and the sixth most important one for Desk. Sex and age seemed to have an effect on
some target variables, especially BMI. In most cases, the NEO-PI-R item with the highest
variable importance did belong to the primary scale of the respective target variable. The
only exceptions were Snacking and BMI. The items with the highest variable importance
differed between target variables. Worth mentioning is the item O40 (“I keep my belong-
ings neat and clean.”), which had the highest variable importance for Bed, Document, and
Desk.

The effect of the ERS index from heterogeneous items was further investigated with the
individual partial prediction plots shown in Figures 4.15 and 4.16. For most binary targets,
two distinct clusters of lines emerged. Except for the variable Desk, individual lines rarely
crossed the 0.5 probability threshold. Thus, for each subject, the models predict the same
class, regardless of the value of the ERS index. Considering the color labeled responses to
the NEO-PI-R item with the highest variable importance (see Figure 4.13), the clearest
pattern in the ranking of item responses emerged for the variable Desk. Subjects who
chose the highest category (violet lines) on the corresponding item O40 were predicted to
have a tidy desk with high probability. In contrast, the model assigned small probabilities
for subjects who chose the lowest or second lowest response category (orange and yellow
lines). To a lesser extent, the same pattern could be observed for the variables Bed and
Document. For Bed, Document, and Desk, the shape of individual partial dependence
lines seemed to be related to the item responses on the item with the highest variable
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Figure 4.13: Variable importance of predictive models for binary target variables, with
item responses of the Impulsivity (IMP) and Order (ORD) scale from part A of the ques-
tionnaire, sex, age, the ERS index from heterogeneous items, and SRERS as predictors.
Items are labeled with O for Order or I for Impulsivity, the position of the item in the
German NEOI-PI-R, and the letter R if the item has been recoded. SRERS = self-reported
extreme response style.
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Figure 4.14: Variable importance of predictive models for metric target variables, with
item responses of the Impulsivity (IMP) and Order (ORD) scale from part A of the ques-
tionnaire, sex, age, the ERS index from heterogeneous items, and SRERS as predictors.
Items are labeled with O for Order or I for Impulsivity, the position of the item in the
German NEOI-PI-R, and the letter R if the item has been recoded. SRERS = self-reported
extreme response style.

importance, which was the item O40 in all three cases. The relationship was U-shaped for
lower item responses and inversely U-shaped for higher item responses. For the variable
Desk, a sharp decrease in target probability can be observed around an ERS index of about
0.57. However, this phenomenon mostly appeared for subjects who chose the highest or
second highest category on item O40 (violet and blue lines). It could not be observed for
subjects who chose the lowest of second lowest category (orange and yellow lines).

4.3.7 Matching ERS Instructions and Predictive Performance

We estimated the performance of predicting target variables with item responses of the IMP
and ORD scales under the compensation, aggravation, and control settings. ERS instruc-
tions were matched to individual response tendencies based on a median split of the ERS
index from heterogeneous items. Results for binary and metric target variables are visual-
ized in Figures 4.17 and 4.18. Tables with additional performance measures are presented
in Appendix D.12. We repeated the analysis under the condition that ERS instructions
were matched to individual response tendencies based on SRERS. The corresponding per-
formance estimates are presented graphically in Appendix D.13 and additional performance
measures are reported in Appendix D.14. Both analyses are based on 525 subjects in the
experimental settings, and 263 subjects in the control setting.19

19 For the target Series, only 464 subjects could be analyzed in the compensation and aggravation
settings, and 226 subjects were analyzed in the control setting. The remaining participants in each
setting reported that they do not watch any TV series in general.
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Figure 4.15: Individual partial dependence plots of predictive models for binary target
variables, with item responses of the Impulsivity (IMP) and Order (ORD) scale from part
A of the questionnaire, sex, age, the ERS index from heterogeneous items, and SRERS as
predictors. The ERS index is plotted against the predicted probability to belong to the
positive class. Individual predictions are color labeled based on the subjects’ responses to
the NEO-PI-R item with the highest variable importance (see Figure 4.13). Negatively
keyed items were recoded. SRERS = self-reported extreme response style.
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Figure 4.16: Individual partial dependence plots of predictive models for metric target
variables, with item responses of the Impulsivity (IMP) and Order (ORD) scale from part
A of the questionnaire, sex, age, the ERS index from heterogeneous items, and SRERS as
predictors. The ERS index is plotted against the targets predictions. Individual predictions
are color labeled based on the subjects’ responses to the NEO-PI-R item with the highest
variable importance (see Figure 4.14). Negatively keyed items were recoded. SRERS =
self-reported extreme response style.

No robust differences in predictive performance emerged between the compensation and
aggravation settings. If small differences could be observed in favor of the compensation
setting, performance in the control setting was still comparable or even higher in spite of
the smaller sample size. The variability of performance estimates was slightly higher in
the control setting for most target variables.
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Figure 4.17: Estimated performance for predicting binary target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale under the compensation, ag-
gravation, and control settings. ERS instructions were matched to individual response
tendencies based on a median split of the ERS index from heterogeneous items. Perfor-
mance was measured by Cohen’s κ.
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Figure 4.18: Estimated performance for predicting metric target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale under the compensation, ag-
gravation, and control settings. ERS instructions were matched to individual response
tendencies based on a median split of the ERS index from heterogeneous items. Perfor-
mance was measured by R2. R2 = coefficient of determination.
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4.4 Discussion

4.4.1 Summary of Results

Descriptive statistics revealed extremely unbalanced response distributions for three bi-
nary target variables, and low dispersion for one of the metric targets. We found small
but consistent correlations of all target variables with their primary NEO-PI-R scale. The
characteristics of the ERS index from heterogeneous items was highly similar to the previ-
ous studies. The ERS index was uncorrelated with all demographic and target variables.
Under standard instructions, response style patterns were detected by PC trees with the
ERS index or SRERS as covariates. An effect of the ERS instruction on the general
extremeness of item responses could be identified with PC tree analyses with type of in-
struction as covariate. This was also shown by the histograms of item responses given
under different instructions. A comparison of item responses in the control group between
the three parts of the questionnaire revealed a small order effect, with less midpoint re-
sponses after repeated presentation of the same items. However, correlations between the
target variables and their primary scale did not vary systematically. PC tree analyses of
the compensation, aggravation, and control settings provided mixed results. Although PC
trees suggested that ERS still had an effect on item responses when ERS instructions were
chosen to compensate individual response tendencies, the impact seemed to be slightly
smaller compared to the aggravation setting. None of the two ERS measures could detect
any signs of ERS in the control setting. Target predictions based on demographic variables
and item responses from part A of the questionnaire could not be improved by including
ERS measures as predictors in the RF models. In general, predictive performance was
higher for ORD targets and target variables with balanced response distributions. Vari-
able importance estimates and individual partial dependence plots also suggested negligible
contributions of both ERS measures. When ERS instructions were matched to individual
response tendencies, predictive performance did not differ between the compensation and
the aggravation setting. This result did not depend on whether a median split of the ERS
index or SRERS was used in the matching process.

4.4.2 No Impact of Extreme Response Style on Criterion Validity

To evaluate the effectiveness of the developed ERS instructions in reducing the impact
of ERS, a necessary prerequisite was that ERS measures can be used to improve the
criterion validity of psychological scales. However, estimated performance of predictive
models based on demographic variables and item responses under standard instructions
did not increase when we added the ERS index from heterogeneous items and SRERS as
predictors. Although item responses in the control group revealed a small order effect of
repeatedly responding to the same items, the relationship between sum scores and target
variables was unaffected.

Our findings are in line with the simulation studies by Plieninger (2016) and Wetzel,
Böhnke, and Rose (2016), which suggest that the impact of ERS on criterion validity is
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negligible under most circumstances. Both simulation studies assume that apart from the
impact of ERS, item responses reflect a homogeneous trait. This assumption seems to
be violated in our study. Estimated variable importance suggested that the relationship
between NEO-PI-R items and target variables was not equally strong for all IMP and ORD
items. In case of a homogeneous trait, the item with the highest reliability should have the
highest variable importance, regardless of the criterion variable. The most important item
was not always the same for all primary targets of the ORD and IMP scale. This suggests
that variable importance was also determined by the item content. It makes intuitive sense
that items I141R (“I seldom give in to my impulses.”)20 and I201 (“Sometimes I do things on
impulse that I later regret.”)21 were more important for Lying, while the items I111 (“When
I am having my favorite foods, I tend to eat to much.”)22 and I171 (“I sometimes eat myself
sick”)23 had a higher rank for BMI. However, these findings should be interpreted carefully,
as some important items had a high rank for the majority of target variables and not all
variable importance estimates were equally intuitive: As already mentioned, item O40 (“I
keep my belongings neat and clean.”)24 was the most important item for the ORD targets
Bed, Document, and Desk. In contrast, for the target variables Dishes and Vacuum, the
item O190R (“I’m not compulsive about cleaning.”)25 was more important. Less intuitive,
the most important item for BMI from both scales was O190R, and the most important
item for Series was I171.

All predictive models achieved unsatisfying performance for the unbalanced binary tar-
get variables Argument, Clothes, and Electronics. In these cases, sensitivity and specificity
revealed that RF models almost exclusively predicted the majority class. A series of tech-
niques like sampling methods, cost-sensitive classification, or threshold tuning are available
to deal with this common problem. For an introduction of these methods, we refer the
interested reader to chapter 16 in Kuhn and Johnson (2013). We did not use any of this
methodology to keep our analyses accessible to our audience in psychology, which is gener-
ally not familiar with these methods. Yet, this decision probably did not affect any of our
main conclusions. For the majority of target variables, distributions were highly balanced
and κ indicated rather moderate predictive performance beyond chance-level. One could
argue that predictive performance in general could be improved if no self-report items were
used to measure target variables. However, target items were designed to be as objective
as possible, which was confirmed by cognitive surveys in the pretest. Thus, we do not
expect results to differ if behavioral observations are used instead of self-reports.

The most important limitation of our study is the relatively small sample size. It is a
well known heuristic in predictive modeling that increasing the amount of data is often the
most effective way to improve predictive performance (Yarkoni & Westfall, 2017). This
is especially relevant for our research questions, which postulate a complex relationship

20 German wording: “Ich gebe selten meinen spontanen Gefühlen nach.”
21 German wording: “Manchmal handle ich aus einem spontanem Gefühl heraus und bereue es später.”
22 German wording: “Ich esse meist zu viel von meinen Lieblingsspeisen.”
23 German wording: “Manchmal esse ich, bis mir schlecht wird.”
24 German wording: “Ich halte meine Sache ordentlich und sauber.”
25 German wording: “Ich bin beim Putzen nicht pingelig.”
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between predictors and target variables. In line with the theory of extreme responding,
descriptive correlations suggested that ERS measures did not have a main effect on the
target responses. In order to reflect the hypothesized effects of extreme responding, inter-
actions between the ERS measures and item responses have to be modeled. As discussed
in the introduction, the RF like many successful predictive modeling algorithms performs
implicit regularization to avoid overfitting. Naturally, if the amount of data is small, higher
order interactions cannot be reliably detected and complexity is reduced by mostly incor-
porating main effects into the predictive model. The expected effect of ERS on predictive
performance might be detectable with bigger samples.

One reason for this assumption are the individual partial dependence plots for variables
with higher predictive performance (Bed, Document, and Desk), which might suggest that
the ERS index from heterogeneous items did play a small role in the predictive models. For
the target variable Desk in particular, individual partial predictions did not have the same
shape. This means that some interactions between the ERS index and other predictor
variables were captured (Goldstein et al., 2015). For subjects with a high response on
item O40, the probability to belong to the tidy desk class sharply decreased with an ERS
index above 0.58. This observation would be in line with the theory on ERS: with a
strong tendency to give extreme responses, a high response on item O40 might reflect
only moderate ORD levels. Consequently, the probability to show tidy behavior should be
lower compared to a subject with the same item response, but a lower value on the ERS
index. The partial dependence plots also suggest that even if we captured some influence
of the ERS index, the modeled effect was very weak. For all binary target variables, two
separated clusters could be observed with respect to the target probability on the y-axis.
For the majority of individuals, the same class was predicted by the model, regardless of
any hypothetical ERS values. This explains why predictive performance estimates were
indistinguishable between models with and without ERS measures, even if a small effect
of ERS might have been captured.

However, the general U-shaped effect for subjects with low item responses on O40 and
the inverse U-shape for subjects with high item responses is not in line with the theory
of ERS. For low values of the ERS index, the probability to belong to the tidy desk class
decreases for high O40 responders and increases for low O40 responders. The theory on ERS
would have suggested the opposite effect, as extreme item responses should have a stronger
impact for subjects, who tend to give extreme responses regardless of their true level on the
latent construct. We can think about two possible explanations for this unexpected result:
The U and inverse U-shapes might be a reflection of some implicit regularization of the RF
algorithm to avoid overfitting. The ERS index was symmetrically distributed around 0.5.
For regions of uncommonly low or high ERS values, model predictions might become more
conservative and are shifted closer to a probability of 0.5 as data with extreme ERS values
is sparse. However, the probability shift already sets in at ERS values close to 0.5. Even
when taking the distribution of item responses on O40 into account, enough observations
are still available for ERS values around 0.4 and 0.6. It is therefore rather unlikely that the
observed effect is purely an artifact. Another explanation might be that instead of treating
ERS as a single construct, MRS has to be modeled separately. In this view, values of the
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ERS index above 0.5 should be mainly related to extreme responding and the shift in class
probability at ERS values around 0.58 might reflect the theoretically expected relationship.
In contrast, very low values of the ERS index would be related to a high tendency of MRS
that might be qualitatively different than just the absence of extreme response tendencies.
Midpoint responses can be a sign of indifference and are sometimes considered an indicator
of bad response quality (MacKenzie & Podsakoff, 2012; Kulas & Stachowski, 2009). Thus,
it would be more difficult to make accurate behavioral predictions for high MRS subjects
if their item responses carry less information about the associated constructs of interest.
This higher uncertainty might be reflected in a class probability closer to 0.5 for low values
of the ERS index. Constructing a separate MRS index from heterogeneous items which
only captures midpoint responses might be a useful endeavor in the future. Including this
index into the predictive models and investigating the corresponding partial prediction
plots could contribute to the discussion of the dimensionality of ERS which was mentioned
in the general introduction (see chapter 1.1).

To argue for the importance of considering ERS in practical applications, it has to be
shown that correcting for ERS does increase criterion validity (Wetzel, Böhnke, & Rose,
2016). This was not the case in our analyses. Nonetheless, investigating whether ERS
measures can improve the criterion validity of psychological scales is a worthy topic for
further research. Large datasets from online panels could be used for this purpose, like we
did in study 1. In such datasets, a large number of heterogeneous items are often available.
The algorithm used in study 1 and described in Appendix A seems to be a reasonable
approach to find a set of uncorrelated items that can be used to compute an ERS index.
Analyzing available panel data with the techniques from predictive modeling introduced
here might give deeper insights into the impact of ERS on criterion validity in applied
work. Thus far, convincing empirical evidence is still missing in the literature.

4.4.3 Instructions Were Ineffective in Reducing the Impact of Ex-
treme Response Style

Our main analysis revealed that matching ERS instructions to compensate individual re-
sponse tendencies did not lead to improved predictive performance compared to when ERS
instructions were chosen to further aggravate the impact of ERS. Considering that our pre-
dictive models were unable to achieve higher predictive performance if ERS measures were
included under standard instructions, it is not surprising that we did not find any effect
on predictive performance between the compensation, aggravation, and control settings.
PC tree analyses of the different settings with the ERS index from heterogeneous items
as covariate also suggested that compensating ERS with varying instructions was not suc-
cessful, as we repeatedly detected parameter instability with the ERS index. Although the
comparison of PC trees between the compensation and aggravation settings suggested a
slightly stronger impact of ERS in the aggravation setting, this difference was small and
only reflected in the threshold patterns, while the number of splits was comparable between
both settings. The PC tree of the ORD scale with the median ERS index as matching
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variable was the only condition in which the ERS index was not chosen as splitting variable
in the compensation setting. We refrain from placing any emphasis on this finding as it
might be a result of the generally low stability of tree models (Strobl et al., 2013). Indeed,
differences in extreme responding for the ORD scale are again observed if SRERS is used as
matching variable. For both scales, the ERS index was not used as splitting variable in the
control setting, which makes the interpretation of those PC trees even more complicated.
Not detecting DIF in the control setting was probably an effect of the smaller sample size
compared to the whole sample. In the complete sample, we clearly detected an effect of
ERS under standard instructions.

It cannot be assumed that the different ERS instructions had no effect on item re-
sponses. This was clearly refuted by the PC tree analyses of item responses from part B
and C of the questionnaire, with the type of instruction as covariate. Threshold patterns in
these trees revealed that different ERS instructions influenced participants item responses
in line with our expectations. PC trees and histograms suggested that the item responses
under the extreme-responding instruction differed more strongly from the standard in-
struction than the mid-responding manipulation. As a consequence, the mid-responding
instruction might have been too weak to compensate extremely high levels of ERS. At the
same time, subjects with low levels of ERS might have overcompensated when confronted
with the extreme-responding instruction. Both arguments might explain the curious find-
ing from the PC tree of the IMP scale in the compensation setting, in which subjects with
low ERS values showed a more extreme response pattern than participants with medium
values on the ERS index.

Multiprocess models (Böckenholt, 2012; Böckenholt & Meiser, 2017) could be used to
further investigate the effect of ERS instructions on item responses. If the manipulation
worked as intended, instruction type should be related to the mid/indifference and inten-
sity process, but not to the content/direction process. In theory, an interaction between
instruction type and ERS index could be specified to investigate whether the effect of the
manipulation on intensity varies for different levels of ERS.

In hindsight, using binary ERS instructions to compensate a continuous response style
poses several difficulties. To mitigate the full impact of ERS, instructions have to be
flexible so that participants can automatically adapt the magnitude of their compensatory
response to their individual level of ERS. By instructing participants to sometimes adjust
their responses if they could not decide between two response categories, we hoped to
achieve higher compensation for subjects with extremely low and high values on the ERS
index. PC tree results suggest that this was not successful. In particular, subjects with
high ERS values did not adequately adjust their responses. Based on studies suggesting
that ERS is related to intolerance of ambiguity and decisiveness (Naemi et al., 2009), it
is possible that response certainty increases with ERS. In this case, low ERS subjects
are often undecided, thus adjusting their responses more strongly than high ERS subjects
who mostly feel certain and do not adjust their extreme responses. Also, the specific
instruction to choose the neighboring category might prevent subjects to flexibly adjust
their item responses.

In future research, different ERS instructions could be tested as procedural remedies
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against ERS. The current results suggest that a less authoritative variant might be most
promising. Cronbach (1950) already recommended to reduce the impact of response bias
by increasing participants’ testwiseness. It would be interesting to investigate whether an
intensive survey training in which respondents’ extreme response tendencies are repeatedly
monitored, could lead to item responses which are not affected by ERS according to PC
tree analyses. Although an extensive training of survey respondents is impractical for
applied psychological research, a compact version might be feasible. Our analyses with
the SRERS measure in both studies 2 and 3 showed that when asked explicitly, subjects
without training already have some valid insight into their own response tendencies. This
knowledge could be used to develop modified instructions which take extreme responding
into account but do not explicitly instruct participants how to adjust their responses: In a
first step, respondents could be informed about extreme responding and confronted with
a self-report measure of ERS in order to raise awareness on their own response tendencies.
Then, subjects could be simply requested to keep their own response style in mind, without
giving specific instructions that depend on self-reported ERS. By giving no explicit advice
into how and when participants should adjust their responses, overall compensation of ERS
might be more effective. Yet, the success of this modified instruction still depends on the
assumption that subjects’ insight into their own response tendencies does not depend on
their own level of ERS. Due to the low cost of such simple instructions, further investigating
these issues might be worthwhile.

4.4.4 General Issues in Predictive Modeling Analyses

When psychological measures are used to predict external criteria, an important point
not discussed so far is whether scale scores or single items should be used as variables in
predictive models. Traditionally, psychologists use sum scores of scales as variables in their
statistical models. While this approach is reasonable from a measurement perspective in
which all items are supposed to measure a single construct, it might not be ideal if the main
goal is predictive performance. Most psychological constructs are based on factor models
and the theory of latent variables. In these models, all items are supposed to measure the
same construct and can therefore be combined into an aggregated score which contains all
available information about the latent variable. The most common aggregated measure is
the sum score of all items in the scale, but factor scores from confirmatory factor analysis
or person parameter estimates from IRT models are also used. All those statistics rely on
a certain measurement model. Aggregated measures are only useful if the measurement
model from which they are derived is an appropriate description of the item response data.
Therefore, model fit is of utmost importance when the central goal is the measurement of
a certain psychological concept. However, when the focus lies on prediction, measurement
models can be ignored and aggregating all item responses into a single score might lead to
lower predictive performance.

Psychological instruments like personality inventories often consist of several hundred
items. With unregularized linear models, which are the standard approach in psychology,
including all items as predictors would lead to overfitting and yield bad predictive perfor-
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mance on unobserved data. However, modern predictive algorithms, like the RF (Breiman,
2001) are designed to effectively incorporate a large number of predictors without overfit-
ting. There are at least two circumstances in which single items can be expected to yield
better predictions. First, when unidimensional measurement models do not hold, items
often contain information about multiple constructs which can be related to the predicted
criterion in different ways. Those varying contributions can be implemented in the predic-
tive model, if single items are used as predictors instead of an aggregated score. Second, if
a construct based on a latent variable model is only weakly related to a certain criterion,
the criterion can still be related to the item errors. This is possible even if errors within
one construct are uncorrelated, which is demanded by most common measurement models
(Cronbach, 1951). Information in the error terms of a latent variable model is completely
lost if only the aggregated score is used as predictor.

Chapman et al. (2016) emphasize that a common latent construct is not necessary to
make useful predictions. In fact, items in a criterion-oriented measure do not have to
be correlated at all. From a theoretical perspective, predictions can be maximized with
independent predictors which make unique contributions to the prediction of the criterion.
In this study, single items were used in predictive models, in order to investigate the effect of
ERS on item responses. Estimated variable importance was higher for items which shared
some content with the respective criteria beyond the latent construct of the scale. Although
items within each analyzed scale were highly correlated, as assumed by the underlying
personality model, unique contributions of single items were possible. We did not compare
our predictive model with single items to a model in which only the sum scores of the
scales were included, as this was not part of our research questions. However, if predictive
performance is the main goal, researchers should routinely use resampling techniques to
compare a predictive model with single items against one in which aggregated scale scores
are used as predictors.

Predictive performance is often affected by the model class used in the analysis. Due
to overfitting, ordinary linear models are not appropriate for a large number of predictors.
Regularized linear models (Hastie et al., 2015) are an obvious extension which should be
added to the methodological toolkit of every psychological researcher. However, nonlinear
relationships might also be present in psychological research. Possibly, some interesting
psychological phenomena are too complicated to be explained by more interpretable mod-
els (Yarkoni & Westfall, 2017). This requires powerful predictive algorithms which can
automatically learn complex nonlinear functions between the predictors and the criterion
variable. Popular non-linear model classes are the RF we used here, gradient boosting, sup-
port vector machines, and neural networks. Introductions to all of these methods can be
found in Hastie et al. (2009) or James et al. (2013). It is generally hard to predict whether
nonlinear methods outperform linear models in a certain setting. Therefore, resampling
techniques are routinely used to compare models from different classes. Psychological sci-
ence would profit from experimenting with non-linear models to find out how they can
be used to answer important research questions in the field. In this study, we used a
non-linear model based on theoretical considerations. With our operationalization of ERS,
the response style is supposed to have a non-linear effect on item responses. To investi-
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gate the expected effect, a non-linear model was necessary. We did not find any effect
of ERS on predictive performance with the RF algorithm but refrained from comparing
different model classes. It is possible that other algorithms might have succeeded in using
our ERS measures to increase predictive performance. Although some experimentation
with a state-of-the-art variant of gradient boosting (Chen & Guestrin, 2016) did not yield
a significant increase in predictive performance, this algorithm was also based on decision
trees. In another unreported analysis, linear models yielded worse predictive performance.
However, these issues were not investigated in a rigorous manner. If predictive performance
for other popular algorithms are also insensitive to whether ERS measures are included as
predictors, this will put further weight on our reported null effect.
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Chapter 5

General Discussion

5.1 Summary of Empirical Studies

In this dissertation, we presented three empirical studies in which we investigated different
aspects of ERS. In study 1, we introduced a new method to detect ERS. PC trees (Kom-
boz et al., 2016) with an ERS index from heterogeneous items (Weijters et al., 2008) as
covariate combine the elegant threshold interpretation of ERS known from ordinal mixed
Rasch models (Rost et al., 1997), with the high objectivity of response style indices from
heterogeneous items. The effectiveness of the new method was shown by two analyses of
large datasets. First, we analyzed the nonclinical normative sample of the NEO-PI-R (Os-
tendorf & Angleitner, 2004) and detected ERS in facets which had already been found to
be affected by ERS in previous studies. PC trees resulted in a large number of leaves with
threshold patterns that could clearly be interpreted as different levels of extreme respond-
ing. The observed pattern suggested that ERS is best understood as a continuous trait. In
a second analysis of data from the GESIS panel (GESIS, 2015), we found the same pattern
of ERS in scales from the PANAS (Krohne et al., 1996) and the FRS (Münzer & Hölscher,
2011). In the GESIS analysis, items for the ERS index were taken from different panel
waves, completed several months apart. Thus, our results can be taken as further evidence
for the stability of ERS across traits and over time. We discussed recent developments of
continuous IRT models of ERS and talked about the challenges of using these models to
control for ERS in scales which are plagued by DIF beyond the impact of response styles.

In study 2, we provided the first empirical evidence that items with dichotomous re-
sponse format are unaffected by ERS. We used three different ERS measures as covariates
in Rasch trees (Strobl et al., 2013) and DIF Lasso models (Tutz & Schauberger, 2015)
to analyze scales from the MMPI-2 (Engel & Hathaway, 2003) and the FPI (Fahrenberg
et al., 2001) in a sample of psychology students: an ERS index from heterogeneous items,
a self-report measure of ERS, and an ERS measure based on the classification of an ordinal
mixed-Rasch model. We did not find any signs of ERS in the analyzed dichotomous item
response data. Yet, control analyses with a NEO-PI-R facet showed that ERS was present
in items with ordinal responses format. This emphasized that not finding an effect of ERS
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in dichotomous items cannot be attributed to deficiencies of our ERS measures. Further-
more, our analyses using the self-report measure of ERS are the first to reveal that subjects
have some conscious knowledge about their own response tendencies. Based on our posi-
tive results, we discussed possible advantages and disadvantages of using dichotomous item
response formats to avoid the impact of ERS in practice.

In study 3, we tested whether individually targeted questionnaire instructions can be
used to compensate for the impact of ERS in items with ordinal response format. We
designed specific ERS instructions which urged subjects to give either more or less ex-
treme responses, when they were uncertain about which category to choose. Respondents
of our online questionnaire completed two NEO-PI-R scales under standard, extreme, and
mid-reponding instructions in a within-subjects design. We created artificial datasets in
which ERS instructions were matched to individual response tendencies, based on either
a median split of an ERS index from heterogeneous items, or a self-report measure of
ERS. The effectiveness of the ERS instructions were investigated in a prediction context,
using the RF algorithm (Breiman, 2001) and general principles from the field of predic-
tive modeling. If the instructions reduce the impact of ERS, we expect an increase in
the criterion validity of the questionnaire items. A series of behavioral target variables,
which are theoretically related to the analyzed NEO-PI-R scales Impulsivity and Order,
were included in the questionnaire. The performance of predicting these criteria under
the artificial settings in which ERS instructions were matched to compensate individual
response tendencies was compared to an aggravated setting and to a control group with
neutral instructions. Matching ERS instructions did not compensate for ERS: predictive
performance did not differ between the compensation, aggravation, and control settings.
Preliminary analyses with PC trees confirmed that ERS was still present in the compensa-
tion setting. Another analysis investigated the performance of predictive models with item
responses under standard instructions and demographic variables as predictors. Adding
the ERS index from heterogeneous items and self-reported ERS to the set of predictors did
not increase predictive performance. This might indicate that ERS does not always have
a high influence on criterion validity which would be in line with recent simulation studies
(Plieninger, 2016; Wetzel, Böhnke, & Rose, 2016). We discussed alternative explanations
for our results and suggested possible improvements for ERS instructions to reduce the
impact of the response style.

5.2 Future Directions for Research on Response Styles
and Test Practice

Response styles have been a flourishing topic in the psychometric literature since the middle
of the 20th century. The three studies we reported in this thesis touched many questions
which were already discussed by Cronbach (1950). Applying recent methods from IRT,
we presented a more rigorous analysis of some topics (study 1), were the first to provide
empirical evidence for some long held assumptions (study 2), and used methods from
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predictive modeling to raise some new ideas which might push the field into uncharted
territory (study 3). In the remainder, we discuss general directions for future research on
ERS. We emphasize how theoretical research on ERS might be useful to applied researchers
for constructing new psychological tests and applying existing measures more effectively.

5.2.1 Improving the Measurement of Psychological Constructs

ERS seems to be omnipresent whenever items with ordinal Likert scale format are used in
psychological research (Vaerenbergh & Thomas, 2013). Theoretically, ERS poses a severe
threat to the measurement of latent variables. Trait estimates can only be considered a
valid representation of the underlying concept, if a measurement model with appropriate
fit can be found. In the presence of ERS, common measurement models from CTT and
IRT do not hold.

In study 1, we introduced a new method to detect ERS, which naturally illustrates
this issue. By using an ERS index from heterogeneous items as a covariate in PC trees
(Komboz et al., 2016), we detected ERS in any scale with ordinal response format that
we analyzed. We observed multiple splits based on the ERS index, showing that a single
PCM is not an adequate description of the item responses. As PC trees are a global model
test for the PCM (Komboz et al., 2016), our analyses also formally rejected the PCM as
an appropriate measurement model.

This emphasizes the necessity for more complex measurement models which take ERS
into account. In practice, multidimensional IRT models that estimate both the trait and
the response style from the item responses of only one scale of interest might be preferred.
As discussed in chapter 2.4.3, multidimensional IRT models are very flexible. However,
trait estimates can still be confounded by a variety of other influences, especially if the
model does not offer a good description of the response style. We argue that exploratory
methods which rely on an objective measure of ERS, like an index from heterogeneous
items, can be used to investigate the structure of the response style. The results can then
inform researchers about the structure of ERS in multidimensional IRT models.

Indeed, PC tree analyses in study 1 gave important insights into what an appropriate
measurement model could look like. Our results suggest that ERS can be understood as a
continuous trait, which influences the item thresholds in the PCM. This was illustrated by
the large number of leafs as well as the smooth relationship between the ERS index and
the estimated threshold parameters. In chapter 2.4.4, we concluded that the continuous
IRT models by Jin and Wang (2014) and Tutz et al. (2016) might be promising candidates.
Future empirical studies on a variety of scales should investigate which model reflects a
more appropriate representation of ERS.

It has been noted that in order to find IRT models which reflect item response data
in their “natural” form, “deeper insights into response processes and the precise way item
properties and human abilities interact are needed” (Van Der Linden & Hambleton, 1997).
In fact, most modeling strategies for ERS do not incorporate conceptual ideas about how
participants choose between response categories (Zettler et al., 2015). This critique also
applies to the continuous ERS models by Jin and Wang (2014) and Tutz et al. (2016).
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Both models offer descriptions of item response data infested by ERS, but do not explain
the cognitive aspects of the response process which lead to the observed item response
pattern. In contrast, multiprocess models (Böckenholt, 2012; Böckenholt & Meiser, 2017;
De Boeck & Partchev, 2012) overcome this caveat by modeling the response process more
directly. These models put less focus on measurement and could be considered part of
mathematical psychology, as they provide a cognitive model for the item response process
(Van Der Linden & Hambleton, 1997). It would be interesting to reanalyze the data from
study 1 with multiprocess models. NEO-PI-R items are measured on a five-point Likert
scale. Thus, the corresponding multiprocess model to study ERS would contain three
response processes (Zettler et al., 2015): The indifference process controls the selection of
the midpoint category. If the mid category is not chosen, the direction process controls
whether agreement or disagreement is expressed and the intensity process reflects whether
the more or less extreme category is chosen. To validate the multiprocess model, the ERS
index from heterogeneous items could be used as a covariate for each of the three response
processes. The ERS index should be negatively related to the indifference process and
positively related to the intensity process.

Multiprocess models can also be used to investigate the dimensionality of ERS (see
chapter 1.1). In our studies, ERS was operationalized as a unidimensional construct, con-
tinuously ranging from a high preference for midpoint responses to a high preference for the
most extreme response categories. The IRT models by Jin and Wang (2014) and Tutz et al.
(2016) share this conceptualization of ERS. In contrast, other researchers postulate a bidi-
mensional concept and differentiate between ERS and MRS. In study 3, we discussed that
the inverse U-shape we observed in the individual partial prediction plots might indicate
that item responses are affected by different ERS and MRS processes. The multiprocess
model clearly differentiates between preferences for the midpoint category and preferences
for the most extreme categories. If person characteristics that have a distinct effect on ei-
ther the indifference of the intensity process could be found, this might indicate that MRS
should be modeled separately from ERS. Moreover, the indifference and intensity processes
in the multiprocess model could be restricted to represent the same latent variable. If the
restricted model shows worse goodness of fit as the unrestricted model with separate MRS
and ERS processes, this would be evidence for the bidimensionality of extreme responding.

Increasing knowledge about response styles should always be reflected in innovations
in psychological test practice. Thus, one important goal of response style research is to
guide applied researchers in developing new psychological measures, which are more robust
against the impact of ERS. We studied multiple procedural remedies against ERS: As
shown in study 2, designing questionnaires with dichotomous items might be a reasonable
strategy to avoid the impact of ERS altogether. Unfortunately, dichotomous response
formats are unpopular for several reasons, although some criticisms seem to be unfounded
(see the discussion in chapter 3.4.4). In study 3, we tested a procedural approach to
remove the influence of ERS using special instructions targeted at individual response
tendencies in polytomous items, but were unable to compensate for ERS. Nevertheless,
the ERS instructions indeed had an effect on item responses. It has been argued that the
impact of response styles might be especially high when subjects are uncertain about their
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item responses (Podsakoff et al., 2011; Cronbach, 1950). ERS instructions in study 3 were
designed based on this assumption. Participants were told to adjust their answers only if
they could not decide between two categories. The fact that subjects clearly altered their
item responses under our instructions implies that they were frequently unsure about their
item responses. This raises the important question whether decreasing the ambiguity of
questionnaire items might be a useful strategy to reduce ERS in forthcoming psychological
tests. Despite many attempts to reduce the impact of ERS, our results suggest that ERS
is omnipresent in ordinal response formats. Hence, statistical control might be the only
viable option to deal with ERS in items with ordinal response format at this point. We
discussed two elegant IRT models which incorporate ERS as a latent person variable that
has an influence on item thresholds (Jin & Wang, 2014; Tutz et al., 2016). In theory, such
methods seem well suited to provide trait estimates for established psychological measures
which are adjusted for ERS. However, using continuous models of response styles that do
not depend on another item set to construct an independent ERS measure is problematic,
when item responses are plagued by further unaccounted sources of systematic variance.
In study 1 and 2, we also detected DIF induced by demographic variables. Removing these
confounding effects might be a necessary first step in test construction, before appropriate
statistical models can be used to deal with the more complex issue of ERS. In any case,
larger samples are necessary to yield satisfying precision for ERS adjusted trait estimates
in practical applications.

5.2.2 Increasing the Predictive Power of Psychological Theories

When the focus lies on the accurate measurement of some psychological trait, an appro-
priate measurement model is required. High criterion validity is still important in these
settings. Otherwise, the psychological construct is almost useless in practice. Psychology
is supposed to study human experiences and behavior but makes little effort to accurately
predict these phenomena (Yarkoni & Westfall, 2017). Psychological science relies heavily
on estimating large linear models. Predictive performance is evaluated based on the same
data used in the estimation process, and the explained variance is often brought up to
make impressive predictive claims (for example Schmidt & Hunter, 1998). However, it
is known that this approach overestimates the predictive power of psychological research
(Yin & Fan, 2001). If appropriate methods are used to assess predictive performance,
psychological effects often decline (Yarkoni & Westfall, 2017). In light of the replication
crisis in psychology (Open Science Collaboration, 2015), it has been argued that a heavier
focus on predictive methodology might be useful to battle some of the field’s problems
(Yarkoni & Westfall, 2017; Chapman et al., 2016). Lately, predictive modeling has risen
beyond its origin in computer science and statistics. This trend includes studies with high
media coverage (Youyou et al., 2015) and special issues about the topic in psychological
journals (Harlow & Oswald, 2016). We used predictive modeling in study 3 and gave a
short introduction on some important principles (see chapter 4.1.2) in the hope that more
psychological research can profit from these methods. In the following, we describe two
settings in which predictive models might be useful for psychological research, and discuss
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the possible role of response styles in these scenarios:

Psychological Constructs As Criteria Psychological concepts like personality traits
are well established beyond the core field of psychology. Consequently, there are appli-
cations in which psychological constructs are the target of predictive modeling analyses.
In a modern classic, Youyou et al. (2015) present simple linear predictive models for Big
Five personality traits. Likes on the social network Facebook serve as predictors in their
models. If based on enough likes, predictions for self-reported personality yield compara-
ble accuracy to other-ratings of spouses. In this analysis setting, sum scores of personality
questionnaires are used as the criterion in predictive models and treated as a manifest vari-
able. This might be problematic, considering that sum scores are only an estimate of the
latent personality trait, which is attenuated by measurement error and other confounding
factors like response styles. When the model is trained to predict sum scores as accurately
as possible, it also learns to predict those systematic response tendencies. Moreover, if
questionnaire measures are additionally used as predictors, models might suggest overly
optimistic performance in predicting psychological constructs. As response styles are in-
cluded in both the predictors and the criterion, performance estimates reflect the ability to
predict both response styles and the psychological trait of interest. This phenomenon has
been frequently discussed in studies which examine the impact of ERS on the estimated
relationship between latent constructs (Plieninger & Meiser, 2014; Böckenholt & Meiser,
2017). The situation should be more severe when using nonlinear predictive models which
are well suited to capture the complex relations caused by response styles. In the worst
case, predictive models might be really good in predicting the response biases contained
in the criterion, but not in predicting the real psychological trait. Thus, when predicting
psychological constructs, it seems especially important to adjust questionnaire measures
for response styles before using them as criteria in predictive models. This closes the gap to
the continuous models of ERS (Jin & Wang, 2014; Tutz et al., 2016), which were discussed
in chapter 2.4.4. If DIF introduced by other covariates like demographic variables can be
removed through more careful test construction, ERS adjusted trait estimates from these
models could be used as criterion in predictive analyses.

In study 3, the inclusion of ERS measures did not increase the predictive performance
of predicting self-reports of every day behaviors. These results are in line with recent
simulation studies, which claim that the effect of ERS on criterion validity might be low
in most practical applications (Plieninger, 2016; Wetzel, Böhnke, & Rose, 2016). Both
findings might lead to the conclusion that ERS also plays a minor role when psychological
constructs are used as criterion in predictive models. However, predictive performance was
only moderate in our analyses and the sample was relatively small, considering the use
of complex nonlinear models. It is possible that ERS can be savely ignored if the signal
to noise ratio is low and only crude predictor-criterion relations can be implemented by
the predictive model. However, Yarkoni and Westfall (2017) and Chapman et al. (2016)
raise the possibility that applying predictive methods on large datasets could lead to an
increase in the predictive power of psychological theories. At some point, response styles
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might become important in improving predictive performance even further.

Psychological Constructs As Predictors In many areas of psychology, the study of
latent constructs is driven by the ultimate goal to predict real life outcomes which are
important for human society in general. In the first sentence of their famous meta anal-
ysis, Schmidt and Hunter (1998) write: “From the point of view of practical value, the
most important property of a personnel assessment method is predictive validity: the abil-
ity to predict future job performance, job-related learning (such as amount of learning in
training and development programs), and other criteria.” In this context, psychological
constructs are used as predictors in statistical models. Predictive modeling is the most
natural methodological approach, as those tools are designed to maximize predictive per-
formance (Yarkoni & Westfall, 2017). In a first step, combining classical linear models
with the resampling strategies described in chapter 4.1.2 would give a more realistic esti-
mate of the predictive performance of psychological constructs. As this will probably yield
unsatisfying results, there are several directions to proceed further:

Most psychological concepts are assessed with questionnaires. Consequently, many
derived measures are likely confounded by response styles. In study 1, we detected a
strong impact of ERS on personality measures of the Big Five, which are frequently used
in personnel assessment. Based on the theory of ERS, it is expected that including a
measure of ERS as predictor in predictive models should increase the performance. On the
one hand, item responses should be a better reflection of the measured construct, when
controlling for different response tendencies. This should lead to more accurate predictions
of related criteria. On the other hand, ERS might by itself be a useful predictor for some
criteria. An increasing number of studies support the idea that response styles should be
treated as personality traits (Aichholzer, 2013; Wetzel, Lüdtke, et al., 2016). This is in line
with our analysis of the GESIS dataset in study 1, where ERS was found to be stable over
time and across questionnaires which measure different constructs. Furthermore, several
studies report that ERS is related to other personality characteristics (Naemi et al., 2009;
Zettler et al., 2015). These findings suggest that measures of ERS could make a unique
contribution to predictions in some cases.

Apart from maximizing the predictive performance of existing psychological measures,
predictive modeling can also be used to construct new instruments which are optimized for
criterion validity (Chapman et al., 2016). The MMPI-2 (Butcher et al., 1989) which was
designed to predict psychiatric diagnosis, is a prominent example for criterion-oriented
measures. Chapman et al. (2016) make a strong case that criterion oriented measures
might be more powerful, if appropriate predictive methodology is used in the construction
process. In some big data applications, a huge amount of data is easily available (Youyou
et al., 2015). In contrast, questionnaires with a small number of items but high potential
to predict relevant life outcomes might be appealing when actively collecting data is ex-
pensive. We think that response styles should also be considered in this process. On the
one hand, it might be possible to increase predictive performance by avoiding ERS alto-
gether. In study 2, we could not detect any effect of ERS in two scales with dichotomous
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items, which included one scale from the MMPI-2. As discussed in chapter 3.4.4, adopting
dichotomous response formats might be a useful strategy to avoid ERS in future test con-
struction. On the other hand, items with a large number of response categories might yield
higher predictive performance, if ERS is controlled for by including an appropriate measure
in predictive models. Predictive modeling provides useful tools like cross-validation (see
chapter 4.1.2) to reveal which strategies are more promising for researchers who want to
construct effective criterion-oriented measures.

Yarkoni and Westfall (2017) explain how methods from predictive modeling can be
useful even if predicting a practically relevant criterion is not the main focus of a research
project. They point out that many topics in psychology could be investigated more clearly
by formulating research questions which can be answered by predictive analyses. Study 3
is a good example for this process. To investigate if the impact of ERS can be reduced by
special instructions, we compared predictive performance for external criteria which should
be closely related to the analyzed scales. As our instructions were explicitly targeted to
alter certain item responses, the traditional approach of using psychometric models to
analyze item responses under different instructions would not have been meaningful on its
own. Using item responses to predict related criteria was necessary to rule out that our
instructions removed the pattern of ERS but simultaneously reduced the amount of valid
information in the item responses.

Many predictive models are sometimes considered “black box” algorithms (Breiman
et al., 2001) because predictions cannot be described by easily interpretable equations, as
is the case in linear models. Nonetheless, shifting the focus on prediction might help to
better understand psychological phenomena (Yarkoni & Westfall, 2017) and lead to the
refinement of theories (Chapman et al., 2016). By estimating predictive models with and
without measures of ERS in study 3, we achieved an interpretable statement about the
impact of ERS on criterion validity in our dataset. Additionally, we used variable impor-
tance measures and individual partial dependence plots (Goldstein et al., 2015) to better
understand the effect of ERS on item responses. We suggest that these methods could be
applied in many psychological research projects. Variable importance measures and indi-
vidual partial dependence plots might be especially useful in large scale test construction
projects like the program for international student assessment (PISA), to better understand
the effectiveness of questionnaire items. PISA datasets have already been used to study
responses styles due to their large sample size (see for example Plieninger & Meiser, 2014).
They would be good candidates to continue our work in study 3 by further investigating
the impact of ERS on criterion validity.

5.3 Conclusion

Although an old topic (Cronbach, 1950), research on response styles has lost none of its
importance. At first glance, responding to simple questionnaire items is one of the least
complex human behavior imaginable. When studying ERS, however, it becomes clear that
the whole item response process is still poorly understood. This is reason for concern,
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given that the majority of psychological research relies on questionnaire measures with
ordinal response formats. Applied psychological measurement is dominated by simple
measurement models that completely ignore response styles. We illustrated that ERS can
be detected in an objective way which leaves little doubt that it is a prevalent phenomenon,
whenever using items with ordinal response format. By taking “Item Response Theory”
literally, psychology should seek to find adequate models that draw a realistic picture of
how psychological measurement with questionnaires can work. Until satisfying approaches
are available, ERS can easily be avoided by using items with dichotomous response formats.
Other procedural remedies against ERS, like targeted instructions to reduce the impact
of the response style might be promising, but require further research. Last but not
least, a shifted focus on predictive modeling in psychological science (Yarkoni & Westfall,
2017) might stimulate new research on response styles. In a predictive setting, a deeper
understanding of the effect of response styles on the criterion validity of psychological
measures could be extremely valuable. Hopefully, this will help to improve the usefulness
of psychology as an applied science.
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Appendix A

Algorithm for the Automatic Selection
of Uncorrelated Items

To find a set of N uncorrelated items in an item pool of M items for the computations of
the ERS indices in study 1, we devised a handcrafted version of simulated annealing:

In the algorithm, the test statistic of the Bartlett test of sphericity (Bartlett, 1951) is
used as the objective function to be minimized. In each of the B iterations, a new set of N
items is proposed in which one of the previous items is replaced by a new one. The item
to be replaced is found as follows:

1. For each item in the current set, the sum of the squared first order correlations with
all other items in the current set is computed. Sums are then ordered decreasingly.

2. A random number x is drawn from a beta-binomial distribution with fixed param-
eters n = N − 1, a = 1 and parameter b which is changed dynamically during the
optimization process.

3. The item corresponding to the position x+1 in the ordered list from Step 1 is replaced
in the new candidate set.

The new candidate item is found as follows:

1. For each item not in the current set, the sum of the squared first order correlations
with all items in the current set is computed. Sums are then ordered increasingly.

2. A random number y is drawn from a beta-binomial distribution with fixed parameters
n = N − 1, a = 1 and dynamical parameter b which is changed dynamically during
the optimization process.

3. The item corresponding to the position y + 1 in the ordered list from Step 1 is the
new candidate item.

The parameter b in both beta-binomial distributions is changed dynamically during the
optimization process. Starting with b = 1, it is increased by 1 after each b.keep iterations.
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Note that for a = b = 1 the beta-binomial distribution is the uniform distribution on
the interval [0, n]. If b is increased, the distribution gets skewed and the probability for
smaller values increases until the value 0 has almost probability 1. Thus, in the beginning
of the optimization process, all items in the current set are equally likely to be replaced,
whereas in later iterations, items with high correlations are much more likely to be replaced.
Similarly, at first the N items showing the lowest correlations with the current item set are
equally likely to be the new candidate item, whereas in later iterations items with lower
correlations are much more likely to be selected.

A new candidate item set is always accepted if its Bartlett test statistic is lower than
the test statistic of the current set (Bartnew − Bartold = ∆Bart < 0). If the test statistic
of the candidate set is higher, the new set is probabilistically accepted according to the
formula,

PAccept = exp

(
− ∆Bart

T

)
(A.1)

in which T is called the temperature. When the temperature is high, PAccept is large, even
for high values of ∆Bart. For low temperatures, PAccept is close to zero for (∆Bart > 0).
The temperature is initiated with a high value T.start and is reduced by a factor T.fac
after each T.keep iterations.

The resulting algorithm has 5 configurable hyperparameters: B, T.start, T.fac, T.keep,
and b.keep. To achieve good optimization performance, we set B = 3000, T.start = 100
and tuned the other parameters using iterated F-Racing (Birattari, Yuan, Balaprakash, &
Stützle, 2010), a general procedure for configuring optimization algorithms, as implemented
in the R package irace (López-Ibáñez et al., 2015).1 We performed 1000 irace experiments.
T.keep and b.keep were treated as integer parameters with feasible region between 1 and
500 each. T.fac was treated as a real parameter between 0 and 1. An instance for the
irace algorithm was generated by drawing 200 observations from a multivariate normal
distribution with zero mean vector and covariance matrix equal to the sample correlation
matrix of all items considered for the ERS index. The sample correlation matrix computed
from these 200 observations was then used in the simulated annealing algorithm instead of
the original correlation matrix of all considered items.

For the analysis of the NEO-PI-R dataset in chapter 2, irace tuning was only performed
once, instead of tuning the algorithm for the computation of each of the five ERS indices
separately. Instances were created by drawing from a multivariate normal distribution with
a correlation matrix based on the sample correlation matrix of all NEO-PI-R items, instead
of only four Big Five factors at a time. This resulted in one hyperparameter set which was
then used in the optimization algorithm for finding the item sets of all five ERS indices.
For the analysis of the GESIS dataset, a seperate tuning process was performed, as the
GESIS dataset and the NEO-PI-R dataset differ with respect to several characteristics.
Table A.1 shows the tuned parameter values used to find sets of uncorrelated items for the
NEO-PI-R and the GESIS analyses.

1 We refrain from describing iterated F-Racing here. Please refer to López-Ibáñez, Dubois-Lacoste,
Cáceres, Birattari, and Stützle (2016) for further details.
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Table A.1: Results of Tuning the
Hyperparameters of the Item Selection
Algorithm in Study 1 with Iterated
F-Racing

T.keep T.fac b.keep

NEO-PI-R 111.00 0.74 284.00
GESIS 355.00 0.52 104.00

Note. Remaining parameters were fixed to
B = 3000 and T.start = 100. B = total
number of iterations, T.start = starting tem-
perature, T.keep = number of iterations until
the temperature is changed, T.fac = factor
by which the temperature is reduced, b.keep
= number of iterations until the b parameter
of the beta-binomial distribution is changed.

In the final item selection process, the item set with the smallest Bartlett test statistic
was used for the computation of ERS indices. Note that this is not necessarily the item
set from the last iteration of the optimization algorithm.2 Also, simulated annealing is not
guaranteed to find the global minimum. We refrained from running simulated annealing
multiple times and choosing the best solution, as results only differed slightly and had no
impact on the interpretation of any further analyses.

2 For irace tuning, the Bartlett test statistic at the end of the optimization process was used to evaluate
the performance of the run. This should give a slight advantage to parameter configurations that
minimize the risk of the algorithm to get stuck in local minima.
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Appendix B

Supplemental Material for Study 1

B.1 Description of ERS Items (GESIS)
Labels of the items which were used to compute the ERS index from heterogeneous items
in the GESIS dataset.
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Table B.1: Labels of Selected ERS Items in the GESIS Dataset

ERS Items

1 EU-Integration-Einstufung: Die Linke
2 Civic duty: Keine Steuern hinterziehen
3 Big Five: Habe nur wenig künstlerisches Interesse
4 Wahrscheinlichkeit Wahl: SPD
5 Verbundenheit: Region
6 Verantwortung Wirtschaftliche Lage: Bundesregierung
7 Big Five: Bin entspannt, lasse mich durch Stress nicht aus der Ruhe bringen
8 Mit Schönheits-Ops auseinandergesetzt
9 Big Five: Erledige Aufgaben gründlich
10 NEP-Skala: Nähern uns Höchstzahl an Menschen
11 NEP-Skala: Menschen Naturgesetzen unterworfen
12 Idealer Beruf: Viel Freizeit
13 Finanzielle Situation Haushalt heute, Vergleich vor 12 Monaten
14 Beeinträchtigung Umwelteinflüsse:Lärmbelästigung
15 NEP-Skala: Genügend natürliche Rohstoffe
16 Parteiidentifikation Stärke
17 Urlaubsmotive: Zeit mit Anderen
18 Wochenmarkt: Lebensmittel hohe Qualität
19 Politische Entscheidungsfindung: Experten
20 Energiewende: Erneuerbare Energien machen Deutschland unabhängig von anderen Län
21 Werte: Anderen sagen was sie tun sollen
22 EU-Integration-Einstufung: CDU
23 Persönliche Priorität: Glückliche Ehe/Partnerschaft
24 Attraktivität: Attraktiven Menschen fliegt alles zu
25 Wochenmarkt: schlecht erreichbar
26 Urlaubsmotive: Unabhängig fühlen
27 Freizeitaktivität: entspannen und erholen
28 Wahrscheinlichkeit Wahl: FDP
29 Wichtigkeit: Arbeit
30 Big Five: Schenke anderen leicht Vertrauen, glaube an das Gute im Menschen

Note. Item labels are presented as in the official GESIS dataset.
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B.2 Histograms of ERS Indices (NEO-PI-R)
Histograms of the extraERS, openERS, agreeERS, and conscERS indices in the NEO-PI-R
dataset.
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Figure B.1: Histogram of the extraERS index computed from heterogeneous items (except
extraversion) in the NEO-PI-R dataset.
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Figure B.2: Histogram of the openERS index computed from heterogeneous items (except
openness) in the NEO-PI-R dataset.
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Figure B.3: Histogram of the agreeERS index computed from heterogeneous items (except
agreeableness) in the NEO-PI-R dataset.
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Figure B.4: Histogram of the conscERS index computed from heterogeneous items (except
conscientiousness) in the NEO-PI-R dataset.
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B.3 PC Trees Without Demographic Variables (NEO-
PI-R)

PC trees for the analyzed personality facets in the NEO-PI-R dataset, with the respective
ERS index from heterogeneous items as single covariate.
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Figure B.5: PC tree of the NEO-PI-R facet Impulsivity (N5) with the neuroERS index from heterogeneous items as
single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11565.
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Figure B.6: PC tree of the NEO-PI-R facet Assertiveness (E3) with the extraERS index from heterogeneous items as
single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11575.
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Figure B.7: PC tree of the NEO-PI-R facet Activity (E4) with the extraERS index from heterogeneous items as single
covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds
in the partial credit model. Missing categories were dropped. N = 11559.
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Figure B.8: PC tree of the NEO-PI-R facet Excitement-Seeking (E5) with the extraERS index from heterogeneous items
as single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11584.
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Figure B.9: PC tree of the NEO-PI-R facet Openness to Feelings (O3) with the openERS index from heterogeneous items
as single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11578.
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Figure B.10: PC tree of the NEO-PI-R facet Compliance (A4) with the agreeERS index from heterogeneous items as
single covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11583.
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Figure B.11: PC tree of the NEO-PI-R Order (C2) with the conscERS index from heterogeneous items as single covariate.
Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds in the
partial credit model. Missing categories were dropped. N = 11611.
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Figure B.12: PC tree of the NEO-PI-R Self-Discipline (C5) with the conscERS index from heterogeneous items as single
covariate. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered thresholds
in the partial credit model. Missing categories were dropped. N = 11563.
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B.4 Relative Response Frequencies in PC Trees (NEO-
PI-R and GESIS)

Relative response frequencies in the PC trees of analyzed scales in the NEO-PI-R and
GESIS datasets.



B.4 Relative Response Frequencies in PC Trees (NEO-PI-R and GESIS) 161

4 6 7 9 11 12 15 16 19 20 21

I21
I51

I81
I111

I141
I171

I201
I231

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Response Categories

R
el

at
iv

e 
F

re
qu

en
cy

Figure B.13: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Impulsivity (N5). Rows represent the items
of the scale, numbered according to their position in the NEO-PI-R. Columns represent the
leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure B.5. Response frequencies sum up to one in each cell.
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Figure B.14: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Assertiveness (E3). Rows represent the items
of the scale, numbered according to their position in the NEO-PI-R. Columns represent the
leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure B.6. Response frequencies sum up to one in each cell.
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Figure B.15: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Activity (E4). Rows represent the items of
the scale, numbered according to their position in the NEO-PI-R. Columns represent the
leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure B.7. Response frequencies sum up to one in each cell.
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Figure B.16: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Excitement-Seeking (E5). Rows represent
the items of the scale, numbered according to their position in the NEO-PI-R. Columns
represent the leaves of the respective PC tree. Numbers correspond to the node numbers
in the leaves of Figure B.8. Response frequencies sum up to one in each cell.
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Figure B.17: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Openness to Feelings (O3). Rows represent
the items of the scale, numbered according to their position in the NEO-PI-R. Columns
represent the leaves of the respective PC tree. Numbers correspond to the node numbers
in the leaves of Figure B.9. Response frequencies sum up to one in each cell.
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Figure B.18: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Compliance (A4). Rows represent the items
of the scale, numbered according to their position in the NEO-PI-R. Columns represent the
leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure B.10. Response frequencies sum up to one in each cell.
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Figure B.19: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the NEO-PI-R facet Order (C2). Rows represent the items of
the scale, numbered according to their position in the NEO-PI-R. Columns represent the
leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure B.11. Response frequencies sum up to one in each cell.
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Figure B.20: Bar plots presenting the relative frequencies of response categories within
the leaves of the PC tree for the NEO-PI-R facet Self-Discipline (C5). Rows represent
the items of the scale, numbered according to their position in the NEO-PI-R. Columns
represent the leaves of the respective PC tree. Numbers correspond to the node numbers
in the leaves of Figure B.12. Response frequencies sum up to one in each cell.
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Figure B.21: Bar plots presenting the relative frequencies of response categories within
the leaves of the PC tree for the Positive Affect (PA) scale in the GESIS dataset. Rows
represent the items of the scale, labeled according to the official dataset. Columns represent
the leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure 2.6. Response frequencies sum up to one in each cell.
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Figure B.22: Bar plots presenting the relative frequencies of response categories within
the leaves of the PC tree for the Negative Affect (NA) scale in the GESIS dataset. Rows
represent the items of the scale, labeled according to the official dataset. Columns represent
the leaves of the respective PC tree. Numbers correspond to the node numbers in the leaves
of Figure 2.7. Response frequencies sum up to one in each cell.
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Figure B.23: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the Global/Egocentric Orientation (GEO) scale in the GESIS
dataset. Rows represent the items of the scale, labeled according to the official dataset.
Columns represent the leaves of the respective PC tree. Numbers correspond to the node
numbers in the leaves of Figure 2.8. Response frequencies sum up to one in each cell.
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Figure B.24: Bar plots presenting the relative frequencies of response categories within the
leaves of the PC tree for the Allocentric/Mental Map (AMM) scale in the GESIS dataset.
Rows represent the items of the scale, labeled according to the official dataset. Columns
represent the leaves of the respective PC tree. Numbers correspond to the node numbers
in the leaves of Figure 2.9. Response frequencies sum up to one in each cell.
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B.5 Threshold Plots of PC Trees (NEO-PI-R)
Threshold plots of PC trees in the NEO-PI-R dataset for which no thresholds were missing
in any of the resulting leafs.
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Figure B.25: Threshold plot for the PC tree of the NEO-PI-R facet Assertiveness (E3)
with the extraERS index from heterogeneous items as single covariate. Mean extraERS
values for each leaf of the PC tree in Figure B.6 are plotted against parameter estimates
of the respective partial credit model. Items are shown in separate panels. Thresholds are
depicted as lines. N = 11575.
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Figure B.26: Threshold plot for the PC tree of the NEO-PI-R facet Activity (E4) with
the extraERS index from heterogeneous items as single covariate. Mean extraERS values
for each leaf of the PC tree in Figure B.7 are plotted against parameter estimates of
the respective partial credit model. Items are shown in separate panels. Thresholds are
depicted as lines. N = 11559.
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Figure B.27: Threshold plot for the PC tree of the NEO-PI-R facet Excitement-Seeking
(E5) with the extraERS index from heterogeneous items as single covariate. Mean ex-
traERS values for each leaf of the PC tree in Figure B.8 are plotted against parameter
estimates of the respective partial credit model. Items are shown in separate panels.
Thresholds are depicted as lines. N = 11584.
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B.6 PC Trees Including Demographic Variables (NEO-
PI-R and GESIS)

PC trees for the analyzed personality facets in the NEO-PI-R and GESIS datasets, with
the respective ERS index from heterogeneous items, sex, and age as covariates.
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Figure B.28: PC tree of the NEO-PI-R facet Angry Hostility (N2) with the neuroERS index from heterogeneous items,
sex, and age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate
unordered thresholds in the partial credit model. Missing categories were dropped. N = 11536.
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Figure B.29: PC tree of the NEO-PI-R facet Impulsivity (N5) with the neuroERS index from heterogeneous items, sex, and
age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11565.
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Figure B.30: PC tree of the NEO-PI-R facet Assertiveness (E3) with the extraERS index from heterogeneous items,
sex, and age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate
unordered thresholds in the partial credit model. Missing categories were dropped. N = 11575.
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Figure B.31: PC tree of the NEO-PI-R facet Activity (E4) with the extraERS index from heterogeneous items, sex, and
age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11559.
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Figure B.32: PC tree of the NEO-PI-R facet Excitement-Seeking (E5) with the extraERS index from heterogeneous items,
sex, and age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate
unordered thresholds in the partial credit model. Missing categories were dropped. N = 11584.
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Figure B.33: PC tree of the NEO-PI-R facet Openness to Feelings (O3) with the openERS index from heterogeneous
items, sex, and age as covariates. Regions of highest response category probability are shown in greyscale. Red lines
indicate unordered thresholds in the partial credit model. Missing categories were dropped. N = 11578.
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Figure B.34: PC tree of the NEO-PI-R facet Compliance (A4) with the agreeERS index from heterogeneous items, sex, and
age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11583.
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Figure B.35: PC tree of the NEO-PI-R Order (C2) with the conscERS index from heterogeneous items, sex, and age
as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11611.
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Figure B.36: PC tree of the NEO-PI-R Self-Discipline (C5) with the conscERS index from heterogeneous items, sex, and
age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 11563.
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Figure B.37: PC tree of the Positive Affect scale (PA) with the ERS index from heterogeneous items, sex, and age
as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 3443.
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Figure B.38: PC tree of the Negative Affect scale (NA) with the ERS index from heterogeneous items, sex, and age
as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 3480.
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Figure B.39: PC tree of the Global/Egocentric Orientation scale (GEO) with the ERS index from heterogeneous items,
sex, and age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate
unordered thresholds in the partial credit model. Missing categories were dropped. N = 3584.
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Figure B.40: PC tree of the Allocentric/Mental Map scale (AMM) with the ERS index from heterogeneous items, sex, and
age as covariates. Regions of highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped. N = 3610.
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Appendix C

Supplemental Material for Study 2

C.1 Description of ERS Items
Wording of the items which were used to compute the ERS index from heterogeneous
items. Items are presented as they were used in study 2. Original wording differed in some
cases. ERS items were sampled from the “Zusammenstellung sozialwissenschaftlicher Items
und Skalen des GESIS - Leibniz-Institut für Sozialwissenschaften” (ZIS) and the “Elektro-
nisches Testarchive des Leibniz-Zentrums für Psychologische Information und Dokumen-
tation” (ZPID).

Item Wording Original Source

1 Ich habe Schwierigkeiten, mein Verhal-
ten an verschiedene Menschen bzw. an
verschiedene Situationen anzupassen.

Schyns, B. & Paul, T. (2014). Deutsche
Self-Monitoring Skala. ZIS.

2 Ich bin jemand, der eine lebhafte Phan-
tasie, Vorstellungen hat.

Schupp, J., & Gerlitz, J.-Y. (2014). Big
Five Inventory-SOEP (BFI-S). ZIS.

3 Selbst wenn mein Partner ärgerlich auf
mich ist, liebe ich ihn stark und bedin-
gungslos.

Bierhoff, H.W. & Grau, I. (1997).
Globalskalen zur Einschätzung von
Beziehungseinstellungen (GSEB).
ZPID.

4 Ich habe, innerhalb der letzten 4
Wochen, in Situationen anders gehan-
delt, als ich es ursprünglich geplant
hatte.

Bankstahl, U.S. & Görtelmeyer, R.
(2013). Attention and Performance
Self-Assessment (APSA) - deutsche
Fassung. ZPID.

5 Für wie wichtig halten Sie persön-
lich gute Aufstiegsmöglichkeiten für die
berufliche Arbeit und den Beruf?

Zentralarchiv für empirische Sozial-
forschung (ZA) & Zentrum für Umfra-
gen, Methoden und Analysen (ZUMA)
e.V. (2014). Wichtigkeit verschiedener
Berufsmerkmale. ZIS.
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6 Wie wichtig ist Rücksichtslosigkeit,
Härte damit jemand in unserer
Gesellschaft Erfolg hat und sozial
aufsteigt?

Sandberger, J. U. (2014). Aufstiegsmo-
bilität. ZIS.

7 Ich schätze meine Fähigkeiten als hoch
ein.

von Collani, G. & Schyns, B. (2014)
Generalisierte Selbstwirksamkeitser-
wartung. ZIS.

8 Für wie wahrscheinlich schätzen Sie es
ein, dass Ihnen während einer Flugreise
der Magen knurrt?

Mühlberger, A., Herrmann, M.J.
& Pauli, P. (1996). Gefahren-
erwartungsfragebogen bei Flugreisen
(GES). ZPID.

9 Es ist nur natürlich und richtig, wenn
jeder seine Familie für besser hält als
jede andere.

Lederer, G. (2014). Respekt für elter-
liche Autorität. ZIS.

10 Wie sehr beunruhigen, belasten oder
stören Sie momentan Probleme mit
Freunden und Nachbarn.

Jaekel, J. & Leyendecker, B. (2008).
Everyday Stressors Index (ESI) -
deutsche Fassung. ZPID.

11 Ich vergesse den Namen einer Person
fast sofort nachdem er mir erstmals
gesagt wurde.

Michalak, J., Heidenreich, T., Ströhle,
G. & Nachtigall, C. (2008). Mind-
ful Attention and Awareness Scale
(MAAS) - deutsche Version. ZPID.

12 Ich weiß, was ich tun muss, um meine
Karriereziele zu erreichen.

Rowold, J. (2004). Karriereplanung
(KP). ZPID.

13 Wenn Sie an Ihre eigenen politischen
Ansichten denken, wo würden Sie diese
Ansichten auf einer Skala von links
nach rechts einstufen?

Breyer, B. (2015). Left-Right Self-
Placement (ALLBUS) - deutsche Fas-
sung. ZIS.

14 Meine Eltern waren für mich da, wenn
ich Probleme hatte.

Bühler, K.-E. (2014). Biographis-
cher Fragebogen für Alkoholabhängige
(BIFA-AL). ZIS.

15 Bei der Vorbereitung für eine wichtige
Prüfung oder einen wichtigen Vortrag
kann ich mich nicht lange auf den Lern-
stoff konzentrieren und schweife immer
wieder ab.

Glöckner-Rist, A., Westermann, S.,
Engberding, M., Höcker, A., & Rist,
F. (2014). Gründe für das Aufschieben
von Prüfungslernen (GAP). ZIS.

16 Pessimisten sind Menschen, die voller
Zweifel in die Zukunft blicken und
meistens Schlechtes erwarten. Wie pes-
simistisch sind Sie im Allgemeinen?

Kemper, C.J., Beierlein, C., Kovaleva,
A. & Rammstedt, B. (2012). Skala
Optimismus-Pessimismus-2 (SOP2).
ZPID.
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17 Mit Grammatik in Englisch habe ich
Schwierigkeiten.

Jensen, L. (2012). Skala zur Er-
fassung des Selbstkonzepts eigener
Grammatikkompetenz in der ersten
Fremdsprache Englisch (gramSK-L2E).
ZPID.

18 In der letzten Woche setzte ich mich
mit meinen Gefühlen auseinander.

Berking, M. & Znoj, H. (2008). Frage-
bogen zur standardisierten Selbstein-
schätzung emotionaler Kompetenzen
(SEK-27). ZPID.

19 Mir kommen regelmäßig Bilder in den
Sinn, in denen ich mich als krank sehe.

Bailer, J. & Witthöft, M. (2014).
Deutsches modifiziertes Health Anxiety
Inventory (MK-HAI). ZIS.

20 Heutzutage kann man sich auf nieman-
den mehr verlassen.

Beierlein, C., Kemper, C., Kovaleva,
A., J. & Rammstedt, B. (2014). Inter-
personales Vertrauen (KUSIV3). ZIS.

21 Als Kind konnte ich kaum vorhersehen,
ob meine Eltern sich freuen oder ärg-
ern würden über etwas, was ich getan
hatte.

Lederer, G. (2014). Autoritäre Fami-
lienstruktur. ZIS.

22 Wenn ich an Bankomaten denke, werde
ich nervös.

Sinkovics, R. (2014). Technophobie-
Skala. ZIS.

23 Mit dem Tod verliere ich mein Wesen. Klug, A. (1997). Einstellungen zu Ster-
ben, Tod und Danach (FESTD). ZPID.

24 So wie die Zukunft aussieht, kann man
es kaum noch verantworten, Kinder auf
die Welt zu bringen.

Zentralarchiv für empirische Sozial-
forschung (ZA) & Zentrum für Umfra-
gen, Methoden und Analysen (ZUMA)
e.V. (2014). Anomie (ALLBUS). ZIS.

25 Wenn ich so auf mein bisheriges Leben
zurückblicke, bin ich zufrieden.

Dalbert, C. (1992). Habituelle sub-
jektive Wohlbefindensskala (HSWBS).
ZPID.

26 Wie gut fühlen Sie sich persönlich in-
formiert über die Antibabypille.

Münch, K., Hübner, M., Reinecke, J.,
& Schmidt, P. (2014). Informations-
grad Sexualität und Verhütung. ZIS.

27 Die Sozialleistungen in Deutschland
machen die Menschen faul.

Giza, A. & Scheuer, A. (2014). Bewer-
tung der Sozialpolitik. ZIS.

28 Manchmal bin ich energielos. Sellin, I., Schütz, A., Kruglanski, A.W.
& Higgins, E.T. (2003). Locomotion-
Assessment-Fragebogen (L-A-F).
ZPID.

29 Jeder Mensch sollte etwas von seiner
Zeit für das Wohl seiner Stadt oder
Gemeinde aufbringen.

Bierhoff, H.W. (2000). Skala der
sozialen Verantwortung (SV). ZPID.
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30 Ich bin mir beim Kauf von Elek-
trogeräten darüber bewusst, wie
umweltverträglich das jeweilige Gerät
ist.

Hunecke, M., Blöbaum, A., Matthies,
E., & Höger, R. (2014). Bewusstheit
von Handlungskonsequenzen: global.
ZIS.

31 Ich bin aggressiv. Krahé, B., Berger, A. & Möller, I.
(2007). Instrument zur Erfassung des
Geschlechtsrollen-Selbstkonzepts im
Jugendalter (GRI-JUG). ZPID.

32 Wie oft wurde bei Ihnen zu Hause
gemeinsam gesungen bevor Sie 10 Jahre
alt waren.

Lüdtke, H. & Neumann, P. (2014).
Musikalische Frühsozialisation. ZIS.

33 In den vergangenen Jahren hatte ich
ein einschneidendes Lebensereignis, an
das ich häufig zurückdenke.

Linden, M., Baumann, K., Lieberei,
B. & Rotter, M. (2009). Post-
Traumatic Embitterment Disorder
Selbstbeurteilungsfragebogen (PTED).
ZPID.

34 Die PolitikerInnen haben die Pflicht,
durch eine Förderung des Radverkehrs
die Luftverschmutzung zu verringern.

Martens, T., Rost, J., & Gresele, C.
(2014). Verantwortung für Umwelt-
probleme. ZIS.

35 Ich versuche, durch starke körperliche
Betätigung mein Gewicht zu kontrol-
lieren.

Böhm, B. (1993). Essverhalten-Test
(EVT). ZPID.

36 Ich finde, dass mir bei wichtigen
Entscheidungen im Großen und
Ganzen Gerechtigkeit widerfährt.

Dalbert, C. (1999). Persönliche
Gerechte-Welt-Skala (GWPER).
ZPID.

37 Vorehelicher Geschlechtsverkehr ist et-
was ganz Normales.

Hebler, M., Booh, A. T., Wieczorek, S.,
& Schneider, J. F. (2014). Right-Wing
Autoritarismus. ZIS.

38 Ich zeige einem Partner nicht gern, wie
es tief in mir aussieht.

Neumann, E., Rohmann, E. & Bierhoff,
H.W. (2007). Bochumer Bindungs-
fragebogen (BoBi). ZPID.

39 Ich komme mir wie abgelöst von meinen
Gedanken vor, so als ob diese unab-
hängig von mir existieren.

Michal, M., Sann, U., Niebecker, M.,
Lazanowsky, C., Kernhof, K., Aurich,
S., Overbeck, G., Sierra, M. & Berrios,
G.E. (2004). Cambridge Depersonal-
isation Scale (CDS) - deutsche Trait
Fassung. ZPID.

40 Wenn ich von jemandem irgendwann
einmal ungerecht behandelt oder ver-
letzt wurde, werde ich es der Person
heimzahlen.

Werner, R. & Appel, C. (2014).
Deutscher Vergeltungsfragebogen. ZIS.



C.1 Description of ERS Items 195

41 Ich fühle mich eng verbunden mit den
Deutschen.

Leszczensky, L. & Gräbs Santiago, A.
(2014). Ethnische und nationale Iden-
tität von Kindern und Jugendlichen.
ZIS.

42 Bei einigen meiner Arbeitsaufgaben
muss ich mich richtig darum bemühen,
dass ich sie nicht zugunsten attrak-
tiverer Aufgaben unerledigt lasse.

Neubach, B. & Schmidt, K.-H. (2007).
Skalen Impulskontrolle, Überwinden
von Widerständen, Ablenkungen
Widerstehen (IK-ÜW-AW). ZPID.

43 Bewerten Sie die Qualität Ihrer
Wohngegend bezüglich der Kinderfre-
undlichkeit insgesamt.

Schulz, W., Kaindl, M., Waska, B.,
Leskovich, I., & Rappold, E. (2014).
ZIS.

44 An der Regierung soll jederzeit Kritik
geübt werden können.

Weiss, H., Gravogl, B., & Oberforster,
C. (2014). Civil-Rights (Wien). ZIS.

45 Rechtschreibregeln meiner Mutter-
sprache verstehe ich nur schwer.

Faber, G. (2007). Fragebogen zur
Erfassung des rechtschreibbezogenen
Selbstkonzepts von Grundschulkindern
(rsSK2, revidierte und erweiterte Form
07-3-24). ZPID.

46 Ich werde niemals zufrieden sein, bevor
ich nicht alles das bekomme, was mir
zusteht.

von Collani, G. (2014). Modifizierte
deutsche Versionen des Narcissistic
Personality Inventory (NIP-d). ZIS.

47 Abends nach der Arbeit bin ich er-
schöpft.

Weyer, G., Hodapp, V., & Neuhäuser,
S. (2014). Subjektive Zufriedenheit
und Belastung von Arbeit und Beruf.
ZIS.

48 Wie sehr bemühen Sie sich der Ein-
nahme von Suchtmitteln zu widerste-
hen?

Nakovics, H., Diehl, A., Geiselhart, H.
& Mann, K. (2009). Mannheimer Crav-
ing Scale (MaCS). ZPID.

49 Wenn eine neue Mode herauskommt,
dann gefallen mir meine älteren Sachen
(nach einiger Zeit) nicht mehr so gut.

Scherhorn, G., Haas, H., Hellenthal, F.,
& Seibold, S. (2014). Gütergebunden-
heit. ZIS.

50 Ich bin entspannt, lasse mich durch
Stress nicht aus der Ruhe bringen.

Rammstedt, B., Kemper, C. J., Klein,
M. C., Beierlein, C. & Kovaleva, A.,
(2014). Big Five Inventory (BFI-10).
ZIS.



196 C. Supplemental Material for Study 2

C.2 Relative Response Frequencies for Dichotomous Scales
Observed relative response frequencies for the dichotomous Shyness and Achievement Ori-
entation scales in study 2.
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Figure C.1: Relative item response frequencies of Shyness (SHY) scale. An item response
of one reflects higher values on the latent variable for all items. Originally negatively keyed
items are indicated by dotted lines.
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Figure C.2: Relative item response frequencies of the Achievement Orientation (ACHI)
scale. An item response of one reflects higher values on the latent variable for all items.
In the ACHI scale, all items are positively keyed.
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C.3 PC Trees of the Order Scale with MRERS as Single
Covariate

MRERS
p < 0.001
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Figure C.3: PC tree of the Order (ORD) scale with MRERS as single covariate. Regions
of highest response category probability are shown in greyscale. Red lines indicate un-
ordered thresholds in the partial credit model. Missing categories were dropped. MRERS
= extreme response style classified by a constraint mixed Rasch model of the Order scale.
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C.4 Lasso Paths of ERS Index, SRERS, and MRERS
Lasso Paths, depicting the estimated DIF parameters γ for the ERS index from heteroge-
neous items, SRERS, and MRERS, as a function of the regularization parameter λ.
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Figure C.4: DIF Lasso Paths of the three extreme response style indices for the Shyness
(SHY) scale. The ERS index, SRERS, and MRERS were included as covariates in the
model. Optimal values of the regularization parameter λ based on the BIC are indicated
by vertical lines. For the dashed line, degrees of freedom were estimated by the L2-norm
method whereas the method by Yuan and Lin (2006) was used for the dotted line. SRERS
= self-reported extreme response style. MRERS = extreme response style classified by a
constraint mixed Rasch model of the Order scale.



200 C. Supplemental Material for Study 2

−0.4

−0.2

0.0

0.2

0 5 10 15 20

γ

ERS Index

−0.4

−0.2

0.0

0.2

0 5 10 15 20

γ

SRERS

−0.4

−0.2

0.0

0.2

0 5 10 15 20

λ

γ

Item 1 2 3 4 5 6 7 8 9 10 11 12

MRERS

Figure C.5: DIF Lasso Paths of the three extreme response style indices for the Achieve-
ment Orientation (ACHI) scale. The ERS index, SRERS, and MRERS were included as
covariates in the model. Optimal values of the regularization parameter λ based on the
BIC are indicated by vertical lines. For the dashed line, degrees of freedom were estimated
by the L2-norm method whereas the method by Yuan and Lin (2006) was used for the
dotted line. SRERS = self-reported extreme response style. MRERS = extreme response
style classified by a constraint mixed Rasch model of the Order scale.
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D.1 Description of ERS Items
Wording of the items which were used to compute the ERS index from heterogeneous
items. Items are presented as they were used in study 3. Original wording differed in some
cases. ERS items were sampled from the “Zusammenstellung sozialwissenschaftlicher Items
und Skalen des GESIS - Leibniz-Institut für Sozialwissenschaften” (ZIS) and the “Elektro-
nisches Testarchive des Leibniz-Zentrums für Psychologische Information und Dokumen-
tation” (ZPID).

Item Wording Original Source

1 Ich halte die Anwendung der An-
tibabypille zur Schwangerschaftsverhü-
tung für sinnvoll.

Münch, K., Hübner, M., Reinecke, J.,
& Schmidt, P. (2014). Determinanten
der Pilleneinnahme. ZIS.

2 Zuhause ist es gemütlich. Krämer, L. & Fuchs, R. (2010).
Sportbezogenes Barrierenmanagement
(SBBM). ZPID.

3 Es fällt mir schwer, meine Gedanken
bei einer Aufgabe oder einer Arbeit zu
behalten.

Lück, H. & Timaeus, E. (2014). Soziale
Erwünschtheit (SDS-E). ZIS.

4 Es ist besser, sein Geld heute
auszugeben, als es für das Alter
aufzusparen.

Mühleck, K. & Scheller, P. (2014).
Gerechtigkeitsideologien mit Bezug zur
Altersvorsorge. ZIS.

5 Während einer Flugreise geht mir der
Gedanke durch den Kopf, dass das
Flugzeug vom Himmel fallen und ab-
stürzen könnte.

Mühlberger, A., Herrmann, M.J.
& Pauli, P. (1996). Gefahren-
erwartungsfragebogen bei Flugreisen
(GES). ZPID.

6 Die Ergebnisse von Umfragen sind in
den meisten Fällen richtig.

Stocké, V. (2014). Einstellungen zu
Umfragen. ZIS.



202 D. Supplemental Material for Study 3

7 Wer sich für die Zwecke anderer aus-
nützen lässt, ohne es zu merken, verdi-
ent kein Mitleid.

Ulbrich-Herrmann, M. (2014). Machi-
avellistische Einstellungen. ZIS.

8 In einer Partnerschaft ist mir Freiraum
für eigene Interessen sehr wichtig.

Münch, K., Hübner, M., Reinecke, J.,
& Schmidt, P. (2014). Bedeutung ver-
schiedener Bereiche in einer Partner-
schaft. ZIS.

9 Falls ein einziges Land die Welt
regieren sollte, könnte die Bundesre-
publik dies besser als alle anderen Na-
tionen.

Lederer, G. (2014). Ausländer-
ablehnung. ZIS.

10 Man muss Dinge entsprechend den Um-
ständen handhaben.

Bierbrauer, G. & Klinger, E.W. (2000).
Skala zur Messung Sozialer Axiome
(SAS). ZPID.

11 Ich bin dankbar für Personen, die mir
genau sagen können, was ich tun soll.

Lederer, G. (2014). Respekt für un-
spezifische Autorität. ZIS.

12 Ich bin ein Morgenmensch. Randler, C. (2008). Composite Scale
of Morningness (CSM) - deutsche Fas-
sung. ZPID.

13 Ich mag das Gefühl, am Rande eines
Abgrundes oder in großer Höhe zu ste-
hen und herunterzuschauen.

Roth, M. & Mayerhofer, D. (2014).
Deutsche Version des Arnett Inventory
of Sensation Seeking (AISS-d). ZIS.

14 Manchmal verärgere ich mir nahe ste-
hende Personen dadurch, dass ich
wiederholt eine Versicherung von ihnen
suche, dass ich ihnen wirklich etwas be-
deute.

Schwennen, C. & Bierhoff, H. W.
(2014). Skala zur exzessiven Bestäti-
gungssuche (BSS). ZIS.

15 Ich habe den Eindruck, dass ich
mir über meine inneren Probleme oft
Gedanken mache.

Giegler, H. & Schürhoff, R. (2014).
Gießen-Test (Kurzform). ZIS.

16 Die Welt ist heute so schwierig gewor-
den, dass ich nicht mehr weiß was los
ist.

Gümüs, A., Gömleksiz, M., Glöckner-
Rist, A., & Balke, D. (2014). Anomie.
ZIS.

17 Ich bin bereit auf Medikamente zu
verzichten, deren Nebenwirkung das
Krebsrisiko erhöht.

Montada, L., Kals, E., & Becker, R.
(2014). Bereitschaften zur persönlichen
Krebsvorsorge. ZIS.

18 Ich habe Angst davor zu sterben. Klug, A. (1997). Einstellungen zu Ster-
ben, Tod und Danach (FESTD). ZPID.

19 Momentan bin ich mit meinem Leben
zufrieden.

Ciccarello, L. & Reinhard, M.-A.
(2011). Lebensglückskala (LGS).
ZPID.

20 Ich halte gerne an alten Traditionen
fest.

Hermann, D. (2014). Individuelle re-
flexive Werte. ZIS.
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21 Kinder sollten immer zu ihren Eltern
stehen.

Gümüs, A., Gömleksiz, M., Glöckner-
Rist, A., & Balke, D. (2014). Einstel-
lungen zu Eigengruppenautoritäten.
ZIS.

22 Beim Kauf eines Artikels fühle mich
wohler, wenn ich diesen vorher durch
Anfassen eingehend geprüft habe.

Nuszbaum, M., Voss, A., Klauer, K.C.
& Betsch, T. (2010). Need for Touch
Scale (NFT) - deutsche Fassung. ZPID.

23 Es stört mich momentan, dass ich nicht
genug Zeit für die Dinge habe, die ich
machen will.

Jaekel, J. & Leyendecker, B. (2008).
Everyday Stressors Index (ESI) -
deutsche Fassung. ZPID.

24 Es ist mir wichtig einen Beruf zu haben,
der für die Gesellschaft nützlich ist.

Zentralarchiv für empirische Sozial-
forschung (ZA) & Zentrum für Umfra-
gen, Methoden und Analysen (ZUMA)
e.V. (2014). Wichtigkeit verschiedener
Berufsmerkmale. ZIS.

25 Wenn ich Zeitungsberichte
über Umweltprobleme lese oder
entsprechende Fernsehsendungen sehe,
bin ich oft empört und wütend.

Wingerter, C. (2014). Allgemeines
Umweltbewusstsein. ZIS.

26 Eine verheiratete Frau, die lieber im
Beruf weiterkommen möchte und keine
Kinder haben will, sollte deswegen kein
schlechtes Gewissen haben.

Krampen, G. (2014). Geschlechtsrol-
lenorientierung. ZIS.

27 Ich mag Gedichte. Lederer, G. (2014). Kernautoritaris-
mus. ZIS.

28 Ich bin froh, dass ich für Reisen,
Wanderungen oder fürs Picknick Er-
frischungsgetränke in leichten Dosen
oder Plastikflaschen kaufen kann.

Scherhorn, G., Haas, H., Hellen-
thal, F., & Seibold, S. (2014).
Naturverträglichkeit. ZIS.

29 Meine Intuition ist ziemlich gut, wenn
es um das Verständnis der Gefühle und
Motive anderer geht.

Schyns, B. & Paul, T. (2014). Deutsche
Self-Monitoring Skala. ZIS.

30 Ich interessiere mich für Politik. Zentralarchiv für empirische Sozial-
forschung (ZA) & Zentrum für Umfra-
gen, Methoden und Analysen (ZUMA)
e.V. (2014). Politikinteresse. ZIS.
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D.2 Original Wording of Target Variables
Original German wording of the behavioral self-report questions that were used as target
variables in the predictive modeling analyses.
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Table D.2: Original German Wording of Target Variables

Impulsivity

Argument Haben Sie in der letzten Woche einer Person im Streit etwas an den
Kopf geworfen, das Sie am liebsten zurück genommen hätten?

Clothes Haben Sie in der letzten Woche online oder im Geschäft spontan
Kleidungsstücke gekauft, ohne dass Sie den Kauf geplant hatten?

Electronics Haben Sie in den letzten zwei Wochen spontan elektronische Geräte oder
Unterhaltungselektronik gekauft, ohne dass Sie den Kauf geplant hätten?

Lying Haben Sie in den letzten beiden Wochen gelogen, um einen Termin oder
eine Verabredung nicht wahrnehmen zu müssen?

Series Erinnern Sie sich an das letzte mal zurück, als Sie ihre Lieblingsserie
gesehen haben. Haben Sie mehr Folgen am Stück angeschaut, als Sie
eigentlich vorhatten?

Snacking Denken Sie an gestern zurück. Welche der folgenden Snacks/Süßigkeiten,
die aufgelistet sind, haben Sie gestern konsumiert und wie viel davon?

Einen Schokoriegel/Müsliriegel
Eine Hand voll Chips/Nüsse/Salzstangen
Eine Portion Schokolade (drei Stück)/eine Praline
Einen großen Cookie bzw. zwei kleine Kekse
Ein Stück Kuchen
Eine Hand voll Gummibärchen/Fruchtgummi/Bonbons
Eine Kugel Eis/ein Eis am Stiel
Ein Becher Joghurt/Pudding

Height Wie groß sind Sie?
Weight Wie viel wiegen Sie momentan?

Order

Bed Haben Sie heute morgen ihr Bett gemacht?
Document Erinnern Sie sich an das letzte mal, als Sie ein wichtiges Dokument

erhalten haben (z.B. Versicherungsunterlagen, Zeugnis, Vertrag). Haben
Sie dieses Dokument sofort in einem Ordner abgeheftet?

Dishes Befindet sich in diesem Moment von Ihnen genutztes, ungespültes
Geschirr außerhalb des Küchenbereichs?

Desk Ist ihr Schreibtisch bzw. Arbeitsplatz in diesem Moment aufgeräumt?

Vacuum Denken Sie an die letzten zwei Wochen. Wie häufig haben Sie in dieser
Zeit in ihrem Schlafzimmer Staub gesaugt?

Note. Target variables are listed with respect to their primary scale (Impulsivity or Order). Height and
Weight were combined into body mass index (BMI) for all analyses.
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D.3 Screenshots of ERS Manipulations
Screenshots depicting the original layout and German wording of the extreme, mid, and
neutral-responding instructions.

Figure D.1: Screenshot of the extreme-responding instruction. The green box was repeated
on the following questionnaire pages.
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Figure D.2: Screenshot of the mid-responding instruction. The green box was repeated on
the following questionnaire pages.
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Figure D.3: Screenshot of the neutral instruction. The green box was repeated on the
following questionnaire pages.
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D.4 PC Trees of Impulsivity and Order from Part A,
with the ERS Index as Single Covariate

PC trees of the Impulsivity and Order scales from part A of the questionnaire, with the
ERS index from heterogeneous items as single covariate.
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Figure D.4: PC tree of the Order (ORD) scale under standard instructions, with the ERS
index from heterogeneous items as single covariate. The analyses is computed for the whole
sample with item responses from part A of the questionnaire. Regions of highest response
category probability are shown in greyscale. Red lines indicate unordered thresholds in the
partial credit model. Missing categories were dropped.
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Figure D.5: PC tree of the Impulsivity (IMP) scale under standard instructions, with
the ERS index from heterogeneous items as single covariate. The analyses is computed
for the whole sample with item responses from part A of the questionnaire. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped.
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D.5 PC Trees of Impulsivity and Order from Part A,
with SRERS as Single Covariate

PC trees of the Impulsivity and Order scales from part A of the questionnaire, with SRERS
as single covariate.
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Figure D.6: PC tree of the Impulsivity (IMP) scale under standard instructions with
SRERS as single covariate. The analyses is computed for the whole sample with item re-
sponses from part A of the questionnaire. Regions of highest response category probability
are shown in greyscale. Red lines indicate unordered thresholds in the partial credit model.
Missing categories were dropped. SRERS = self-reported extreme response style.
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Figure D.7: PC tree of the Order (ORD) scale under standard instructions with SRERS as
single covariate. The analyses is computed for the whole sample with item responses from
part A of the questionnaire. Regions of highest response category probability are shown
in greyscale. Red lines indicate unordered thresholds in the partial credit model. Missing
categories were dropped. SRERS = self-reported extreme response style.
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D.6 PC Trees of Impulsivity and Order from Part C,
with the ERS Instruction as Single Covariate

PC trees of the Impulsivity and Order scales from part C of the questionnaire, with the
type of ERS instruction as single covariate.
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Figure D.8: PC tree of the Impulsivity (IMP) scale from part C of the questionnaire,
with the type of ERS instruction as single covariate. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped.
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Figure D.9: PC tree of the Order (ORD) scale from part C of the questionnaire, with
the type of ERS instruction as single covariate. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped.
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D.7 Item Responses in the Control Group for Parts A,
B, and C

Item responses of the control group in the Impulsivity and Order scales from parts A, B,
and C of the questionnaire.
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Figure D.10: Histograms for item responses of the Order (ORD) scale in the control group,
for all three parts of the questionnaire. Items are labeled with O for Order, the position
of the item in the German NEOI-PI-R and the letter R if the item has been recoded.
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Figure D.11: Histograms for item responses of the Impulsivity (IMP) scale in the control
group, for all three parts of the questionnaire. Items are labeled with I for Impulsivity,
the position of the item in the German NEOI-PI-R and the letter R if the item has been
recoded.
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D.8 Target Correlations in the Control Group for Parts
A, B, and C

Correlations in the control group between the sum scores of the Impulsivity and Order
scales with the target variables, for parts A, B, and C of the questionnaire.
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Figure D.12: Correlation of the target variables in the control group, with the sum score
of their primary scales. Impulsivity (IMP) is considered the primary scale for variables
Argument to BMI, while Bed to Vacuum are target variables for Order (ORD). Sum scores
were computed for all three parts of the questionnaire.
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D.9 PC Trees of Impulsivity and Order in the Aggrava-
tion Setting, with the ERS Index as Single Covari-
ate

PC trees of the Impulsivity and Order scales in the aggravation setting, with the ERS index
from heterogeneous items as single covariate. In the aggravation setting, the instruction
which should increase the impact of ERS was chosen for each participant in the experi-
mental group.
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Figure D.13: PC tree of the Impulsivity (IMP) scale in the aggravation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction to
individual response style was based on a median split of the ERS index from heterogeneous
items. Regions of highest response category probability are shown in greyscale. Red lines
indicate unordered thresholds in the partial credit model. Missing categories were dropped.
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Figure D.14: PC tree of the Order (ORD) scale in the aggravation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction to
individual response style was based on a median split of the ERS index from heterogeneous
items. Regions of highest response category probability are shown in greyscale. Red lines
indicate unordered thresholds in the partial credit model. Missing categories were dropped.
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Figure D.15: PC tree of the Impulsivity (IMP) scale in the aggravation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on SRERS. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped. SRERS = self-reported extreme response
style.
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Figure D.16: PC tree of the Order (ORD) scale in the aggravation setting, with the
ERS index from heterogeneous items as single covariate. Matching the ERS instruction
to individual response style was based on SRERS. Regions of highest response category
probability are shown in greyscale. Red lines indicate unordered thresholds in the partial
credit model. Missing categories were dropped. SRERS = self-reported extreme response
style.
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D.10 PC Trees of Impulsivity and Order in the Control
Setting, with the ERS Index as Single Covariate

PC trees of the Impulsivity and Order scales in the control setting, with the ERS index
from heterogeneous items as single covariate. In the control setting, item responses for
each participant in the control group were randomly chosen form either part B, or part C
of the questionnaire.
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Figure D.17: PC tree of the Impulsivity (IMP) scale in the control setting, with the ERS
index from heterogeneous items as single covariate. All item responses for each participant
were randomly chosen either from part B or part C of the questionnaire. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped.
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Figure D.18: PC tree of the Order (ORD) scale in the control setting, with the ERS
index from heterogeneous items as single covariate. All item responses for each participant
were randomly chosen either from part B or part C of the questionnaire. Regions of
highest response category probability are shown in greyscale. Red lines indicate unordered
thresholds in the partial credit model. Missing categories were dropped.
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D.11 Additional Performance Measures for Predictive
Models from Part A

Aggregated performance measures for the predictive models in which each target variable
was predicted by item responses of the Impulsivity and Order scales from part A of the
questionnaire, sex, and age. The ERS index from heterogeneous items and SRERS were
either included of excluded. Cohen’s κ, MMCE, SENS and SPEC are reported for binary
target variables. R2, MSE, and RMSE are reported for metric target variables.

Table D.3: Additional Performance Estimates from Part A for
Binary Targets

Target ERS Measures κ MMCE SENS SPEC

Argument excluded 0.038 0.173 0.029 0.995
Argument included 0.003 0.176 0.005 0.997
Clothes excluded 0.019 0.249 0.028 0.986
Clothes included 0.019 0.245 0.019 0.994
Electronics excluded 0.000 0.068 0.000 1.000
Electronics included 0.000 0.068 0.000 1.000
Lying excluded 0.046 0.349 0.122 0.915
Lying included 0.054 0.345 0.123 0.922
Series excluded 0.128 0.410 0.779 0.343
Series included 0.103 0.418 0.794 0.304
Bed excluded 0.199 0.369 0.413 0.777
Bed included 0.181 0.374 0.387 0.785
Document excluded 0.189 0.341 0.338 0.837
Document included 0.180 0.345 0.330 0.835
Dishes excluded 0.099 0.366 0.863 0.225
Dishes included 0.095 0.363 0.880 0.203
Desk excluded 0.325 0.336 0.690 0.635
Desk included 0.340 0.328 0.710 0.629

Note. Estimated performance for predicting binary target variables with
item responses of the Impulsivity (IMP) and Order (ORD) scale from part A
of the questionnaire, sex, age, the ERS index from heterogeneous items and
SRERS. Predictive models were estimated once with and once without the
ERS measures. SRERS = self-reported extreme response style, κ = Cohen’s
κ, MMCE = mean misclassification error, SENS = sensitivity, SPEC =
specificity.
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Table D.4: Additional Performance Estimates from
Part A for Metric Targets

Target ERS Measures R2 MSE RMSE

Snacking excluded 0.009 11.405 3.377
Snacking included -0.006 11.527 3.395
BMI excluded 0.121 16.172 4.021
BMI included 0.128 16.013 4.002
Vacuum excluded 0.043 3.185 1.785
Vacuum included 0.043 3.190 1.786

Note. Estimated performance for predicting metric target vari-
ables with item responses of the Impulsivity (IMP) and Order
(ORD) scale from part A of the questionnaire, sex, age, the ERS
index from heterogeneous items and SRERS. Predictive models
were estimated once with and once without the ERS measures.
SRERS = self-reported extreme response style, R2 = coefficient
of determination, MSE = mean squared error, RMSE = root
mean squared error.



226 D. Supplemental Material for Study 3

D.12 Additional Predictive Performance Measures when
Matching ERS Instructions Based on a Median
Split of the ERS Index

Aggregated performance measures for the predictive models in which each target variable
was predicted by item responses of the Impulsivity and Order scales from part B or C of
the questionnaire. We compare predictive models in which item responses were given under
either the aggravation, compensation, or control setting. A median split of the ERS index
from heterogeneous items was used in the matching process. Cohen’s κ, MMCE, SENS
and SPEC are reported for binary target variables. R2, MSE, and RMSE are reported for
metric target variables.
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Table D.5: Performance Estimates for Binary Targets and
Matching ERS Instructions Based on a Median Split of the
ERS Index

Target ERS Setting κ MMCE SENS SPEC

Argument aggravation 0.089 0.159 0.075 0.986
Argument compensation 0.057 0.161 0.048 0.990
Argument control 0.037 0.210 0.050 0.976
Clothes aggravation 0.012 0.248 0.024 0.985
Clothes compensation -0.003 0.250 0.013 0.985
Clothes control -0.007 0.273 0.036 0.958
Electronics aggravation 0.000 0.061 0.000 1.000
Electronics compensation 0.000 0.061 0.000 1.000
Electronics control -0.002 0.085 0.000 0.999
Lying aggravation 0.127 0.329 0.218 0.890
Lying compensation 0.126 0.321 0.197 0.911
Lying control 0.013 0.389 0.156 0.855
Series aggravation 0.041 0.460 0.697 0.343
Series compensation 0.144 0.411 0.738 0.402
Series control 0.168 0.390 0.739 0.425
Bed aggravation 0.066 0.411 0.253 0.808
Bed compensation 0.144 0.384 0.336 0.799
Bed control 0.198 0.374 0.417 0.773
Document aggravation 0.133 0.366 0.288 0.833
Document compensation 0.143 0.358 0.283 0.849
Document control 0.122 0.353 0.286 0.828
Dishes aggravation 0.066 0.364 0.886 0.173
Dishes compensation 0.079 0.364 0.877 0.191
Dishes control 0.012 0.409 0.853 0.158
Desk aggravation 0.278 0.360 0.674 0.603
Desk compensation 0.308 0.345 0.688 0.620
Desk control 0.369 0.303 0.811 0.549

Note. Estimated performance for predicting binary target variables with
item responses of the Impulsivity (IMP) and Order (ORD) scale under the
compensation, aggravation, and control settings. ERS instructions were
matched to individual response tendencies based on a median split of the
ERS index from heterogeneous items. κ = Cohen’s κ, MMCE = mean
misclassification error, SENS = sensitivity, SPEC = specificity.
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Table D.6: Performance Estimates for Metric
Targets and Matching ERS Instructions Based on a
Median Split of the ERS Index

Target ERS Setting R2 MSE RMSE

Snacking aggravation -0.004 11.994 3.463
Snacking compensation -0.001 11.806 3.436
Snacking control -0.134 11.135 3.337
BMI aggravation -0.031 19.370 4.401
BMI compensation -0.009 19.164 4.378
BMI control -0.107 17.642 4.200
Vacuum aggravation 0.016 3.082 1.756
Vacuum compensation -0.007 3.136 1.771
Vacuum control -0.015 3.416 1.848

Note. Estimated performance for predicting metric target vari-
ables with item responses of the Impulsivity (IMP) and Order
(ORD) scale under the compensation, aggravation, and control
settings. ERS instructions were matched to individual response
tendencies based on a median split of the ERS index from het-
erogeneous items. R2 = coefficient of determination, MSE =
mean squared error, RMSE = root mean squared error.
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D.13 Predictive Performance when Matching ERS In-
structions Based on SRERS

Visual display of performance measures for the predictive models in which each target
variable was predicted by item responses of the Impulsivity and Order scales from part B
or C of the questionnaire. We compare predictive models in which item responses were
given under either the aggravation, compensation, or control setting. SRERS was used in
the matching process. Cohen’s κis depicted for binary target variables, while R2 is shown
for metric target variables.
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Figure D.19: Estimated performance for predicting binary target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale under the compensation, ag-
gravation, and control settings. ERS instructions were matched to individual response
tendencies based on SRERS. Performance was measured by Cohen’s κ. SRERS = self-
reported extreme response style.
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Figure D.20: Estimated performance for predicting metric target variables with item re-
sponses of the Impulsivity (IMP) and Order (ORD) scale under the compensation, ag-
gravation, and control settings. ERS instructions were matched to individual response
tendencies based on SRERS. Performance was measured by R2. R2 = coefficient of deter-
mination, SRERS = self-reported extreme response style.
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D.14 Additional Predictive Performance Measures when
Matching ERS Instructions Based on SRERS

Aggregated performance measures for the predictive models in which each target variable
was predicted by item responses of the Impulsivity and Order scales from part B or C
of the questionnaire. We compare predictive models in which item responses were given
under either the aggravation, compensation, or control setting. SRERS was used in the
matching process. Cohen’s κ, MMCE, SENS and SPEC are reported for binary target
variables. R2, MSE, and RMSE are reported for metric target variables.
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Table D.7: Performance Estimates for Binary Targets and
Matching ERS Instructions Based on SRERS

Target ERS Setting κ MMCE SENS SPEC

Argument aggravation 0.085 0.163 0.079 0.981
Argument compensation 0.084 0.157 0.067 0.990
Argument control -0.015 0.224 0.023 0.965
Clothes aggravation -0.003 0.249 0.010 0.987
Clothes compensation 0.014 0.244 0.018 0.992
Clothes control 0.005 0.271 0.049 0.956
Electronics aggravation -0.001 0.062 0.000 0.999
Electronics compensation 0.000 0.061 0.000 1.000
Electronics control 0.000 0.083 0.000 1.000
Lying aggravation 0.111 0.330 0.193 0.901
Lying compensation 0.106 0.331 0.187 0.902
Lying control 0.032 0.378 0.149 0.877
Series aggravation 0.015 0.476 0.659 0.356
Series compensation 0.186 0.392 0.739 0.443
Series control 0.204 0.374 0.741 0.459
Bed aggravation 0.098 0.399 0.286 0.806
Bed compensation 0.154 0.376 0.330 0.815
Bed control 0.176 0.389 0.445 0.727
Document aggravation 0.129 0.368 0.289 0.831
Document compensation 0.160 0.359 0.323 0.825
Document control 0.078 0.364 0.231 0.839
Dishes aggravation 0.001 0.385 0.885 0.115
Dishes compensation 0.113 0.350 0.889 0.209
Dishes control 0.012 0.410 0.843 0.170
Desk aggravation 0.274 0.361 0.704 0.569
Desk compensation 0.266 0.366 0.669 0.596
Desk control 0.285 0.344 0.766 0.514

Note. Estimated performance for predicting binary target variables with
item responses of the Impulsivity (IMP) and Order (ORD) scale under the
compensation, aggravation, and control settings. ERS instructions were
matched to individual response tendencies based on SRERS. κ = Cohen’s
κ, MMCE = mean misclassification error, SENS = sensitivity, SPEC =
specificity, SRERS = self-reported extreme response style.
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Table D.8: Performance Estimates for Metric Targets
and Matching ERS Instructions Based on SRERS

Target ERS Setting R2 MSE RMSE

Snacking aggravation -0.001 12.006 3.465
Snacking compensation -0.014 12.013 3.466
Snacking control -0.208 11.028 3.321
BMI aggravation -0.016 19.219 4.384
BMI compensation 0.011 18.907 4.348
BMI control -0.098 18.081 4.252
Vacuum aggravation 0.029 3.065 1.751
Vacuum compensation -0.018 3.149 1.774
Vacuum control -0.028 3.487 1.867

Note. Estimated performance for predicting metric target vari-
ables with item responses of the Impulsivity (IMP) and Order
(ORD) scale under the compensation, aggravation, and control
settings. ERS instructions were matched to individual response
tendencies based on SRERS. R2 = coefficient of determination,
MSE = mean squared error, RMSE = root mean squared error,
SRERS = self-reported extreme response style.
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