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Abstract 

 

The overarching goal of this thesis is to identify potential targets and 

signatures of cold adaptation in Drosophila melanogaster with a particular 

focus on regulatory evolution. The results can roughly be subdivided in three 

parts: 

In the first, I will present cold tolerance related phenotypes in different natural 

populations and illustrate to what extent they are influenced by environmental 

variations. Additionally, I will present phenotypic data regarding important life 

history traits and explore potential fitness trade offs. Two of the studied 

populations, namely the ones from Sweden and Zambia, exhibit a particularly 

diverging cold tolerance phenotype, which makes them suitable for the 

subsequent examination of the genetic basis of this trait difference. While the 

environment is the major factor influencing cold tolerance, the effects of 

hereditary adaptation and phenotypic plasticity are additive. Hence, 

differences between populations persist over a range of environmental 

conditions. Finally, increased cold tolerance of European strains is not 

associated with a decrease in reproductive output under standard laboratory 

conditions. 

The second part is based on the transcriptional response towards a cold 

shock, as measured via qPCR and RNAseq in cold tolerant and cold sensitive 

populations. Here, I will describe general patterns of the cold shock response 

and highlight population differences that potentially underlie cold adaptation. 

Furthermore, I will compare the expression data with a range of similar studies 
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to identify pervasive characteristics of the transcriptional cold shock response 

and regulatory adaptation to temperate environments. Irrespective of origin, 

the transcriptional cold shock response is above all characterized by the swift 

and massive upregulation of molecular chaperones. Signatures of gene-

specific regulatory adaptation regarding the cold shock response are only 

subtle. However, European populations exhibit a decreased thermosensitivity 

of gene expression on a genome-wide scale. 

The third part is dedicated to functional analyses of candidate genes for cold 

tolerance. Here, I will report the phenotypic implications of lowered transcript 

levels for specific candidate genes by employing a genome-wide transgenic 

RNAi library. Contrary to previous studies, I could not demonstrate a definite 

phenotypic effect regarding cold tolerance after a single gene knockdown for a 

range of candidate genes. This further strengthens the conception of cold 

tolerance as a multigenic trait with presumably minor effect sizes for individual 

genes. 
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Zusammenfassung 

 

Das übergeordnete Ziel dieser Studie ist die Identifizierung von potentiellen 

Angriffspunkten und Charakteristiken der Kälteanpassung in Drosophila 

melanogaster unter besonderer Berücksichtigung regulatorischer Evolution. 

Die Ergebnisse können grob in drei Teile gegliedert werden: 

Im ersten Teil stelle ich die jeweiligen Kältetoleranz-Phänotypen in 

verschiedenen natürlichen Populationen dar und zeige auf, inwiefern diese 

von unterschiedlichen Umweltbedingungen beeinflusst werden. Zusätzlich 

präsentiere ich Daten bezüglich grundlegender Fitness-Parameter und 

erkunde mögliche Wechselwirkungen zwischen Kälteanpassung und 

Reproduktionserfolg. Von den untersuchten Populationen zeichnen sich in 

erster Linie diejenigen aus Schweden und Sambia durch eine stark 

abweichende Kältetoleranz aus und eignen sich hiermit in besonderem Maße 

für eine nachfolgende Analyse der genetischen Grundlage dieses 

Merkmalunterschieds. Die Umwelt ist der Faktor, welcher Kältetoleranz am 

stärksten beeinflusst, die Auswirkungen von ererbter und erworbener 

Anpassung sind jedoch additiv. Folglich haben phänotypische Unterschiede 

zwischen den Populationen über eine große Bandbreite verschiedener 

Umweltbedingungen Bestand. Die gesteigerte Kältetoleranz europäischer 

Fliegenlinien geht dabei unter Standardbedingungen nicht mit einem 

verminderten Fortpflanzungserfolg einher. 

Der zweite Teil beruht auf der durch qPCR und RNAseq gemessenen 

transkriptionellen Reaktion auf einen Kälteschock in kältetoleranten und 
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kälteempfindlichen Populationen. In diesem Teil beschreibe ich generelle 

Charakteristika der transkriptionellen Kälteschockreaktion und beleuchte 

Populationsunterschiede, welche der abweichenden Kälteanpassung 

zugrunde liegen könnten. Des Weiteren vergleiche ich die Expressionsdaten 

mit einer Reihe ähnlicher Studien um allgemeingültige Merkmale der 

Kälteschockreaktion und regulatorischer Anpassung an gemäßigte 

Klimazonen zu ermitteln. Ungeachtet der Herkunft ist die Kälteschockreaktion 

vor allem durch die schnelle und umfassende Hochregulierung molekularer 

Chaperone gekennzeichnet. Genspezifische Anzeichen für regulatorische 

Anpassung hinsichtlich der Kälteschockreaktion sind lediglich geringfügig 

ausgeprägt, jedoch weisen europäische Populationen genomweit betrachtet 

eine verminderte Temperaturempfindlichkeit betreffend ihrer Genexpression 

auf. 

Der dritte Teil behandelt die funktionelle Analyse von Kandidatengenen für 

Kältetoleranz. Hier untersuche ich die phänotypischen Auswirkungen 

erniedrigter Transkriptmengen für spezifische Kandidatengene unter 

Zuhilfenahme einer genomweiten transgenen RNAi-Kollektion. Im Gegensatz 

zu vorhergehenden Studien konnte ich keine eindeutigen phänotypischen 

Effekte bezüglich der Kältetoleranz nach einem genspezifischen Knockdown 

für eine Reihe von Kandidatengenen nachweisen. Dies unterstreicht die 

Auffassung von Kältetoleranz als einem komplexen Phänotyp mit mutmaßlich 

geringen Effektgrößen für einzelne Gene. 
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1. Introduction 

 

In summary, this study constitutes a forward genetic screen. The particular 

rationale is to use transcriptomic data from cold-tolerant and cold-sensitive 

populations of Drosophila melanogaster at baseline and cold-stressed 

conditions to identify differences in the cold shock response between the 

populations and, in the wake thereof, potential targets of cold adaptation. 

 

1.1 The demographic history of Drosophila melanogaster 

Drosophila melanogaster - nowadays a cosmopolitan human commensal - is 

of Afrotropical origin and has colonized temperate Eurasian habitats not until 

after the last glaciation event about 10,000 to 15,000 years ago [Lachaise et 

al., 1998; Stephan & Li, 2007]. Subsequent spread to the New World has only 

occurred within the past few hundred years [David & Capy, 1988; Townsend & 

Rand, 2004; Keller, 2007]. This is supported by the fact that sub-Saharan 

populations show the most genetic variation [Caracristi & Schlötterer, 2003; 

Pool et al., 2012] and that polymorphism properties are consistent with 

population expansion for African populations and with a strong bottleneck for 

European populations [David & Capy, 1988; Begun & Aquadro, 1993; Glinka 

et al., 2003]. New World populations are likely the product of admixture 

between ancestral African and derived European populations [Duchen et al., 

2013]. Considering the vast environmental differences between the ancestral 

species range and newly acquired habitats, local adaptation has been a 

critical process during this range expansion and has influenced change in 
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various phenotypic traits [David & Capy, 1988]. Since climate is the major 

factor influencing insect persistence [Clarke, 1996], the ability to cope with 

colder temperatures is of prime importance in this regard. 

 

1.2 Chill coma recovery time (CCRT) as a metric for cold tolerance 

Chill coma recovery [David et al., 1998] is a widely used and practical 

laboratory assay to quantify cold tolerance in insects. Below a certain 

threshold exposition to low temperatures leads to a disruption of osmotic 

homeostasis resulting in failure of the neuromuscular system and coma 

[MacMillan et al., 2011; MacMillan et al., 2015]. Restoring the osmotic 

homeostasis by means of active ion transport is crucial for recovery and 

metabolically costly [MacMillan et al., 2012]. In D. melanogaster, chill coma 

recovery time (CCRT) has been shown to depend on temperature regimes 

from the geographical origin of respective strains, in a sense that the colder 

the climate is in its natural range the faster the strain tends to recover [David 

et al., 1998; Ayrinhac et al., 2004]. The presence of such latitudinal clines 

[Endler, 1977], i.e. the gradual decrease of CCRT with latitude, has been 

identified on different continents [Ayrinhac et al., 2004; Hoffmann & Weeks, 

2007]. This independent parallel evolution strongly suggests that the trait is 

under selection due to the climate. This also holds true for other species in the 

genus Drosophila, where frequent changes between temperate and tropical 

lifestyle seem to have occurred, and for more distantly related insects [Gibert 

et al., 2001]. Apart from the geographical origin, CCRT is heavily influenced 

by plastic changes. In fact, environmental variations affect CCRT to a much 
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greater extent than genetic differences between populations [Ayrinhac et al., 

2004].  

 

1.3 The significance of regulatory evolution 

Non-neutral mutations may either be classified as “structural” or “regulatory”. 

Structural mutations lead to changes in the amino acid sequence of a given 

protein, thereby possibly altering its conformation and, thus, molecular 

function. Regulatory mutations, on the other hand, modify spatial, temporal 

and quantitative patterns of gene expression. The significance of regulatory 

change in evolution has long been recognized [King & Wilson, 1975; Wray et 

al., 2003; Whitehead & Crawford 2006; Wray 2007] and is likely brought forth 

by several advantages of this class of mutations. Since most genes are 

pleiotropic, i.e. relevant for more than one distinct phenotypic trait, structural 

mutations that are advantageous in one aspect often have deleterious 

consequences in another. On the contrary, regulatory mutations theoretically 

allow for an independent fine tuning of gene expression in different tissues, 

cell types and developmental stages and in response to various 

environmental cues. Additionally, the so-called coordinated pleiotropy, i.e. the 

potential of a transcriptional regulator to influence the expression of a whole 

set of functionally related genes in a coordinated fashion, and the presumably 

higher evolvability of promotor structures due to their modularity theoretically 

further regulatory evolution [Wray et al., 2003]. Consequentially, one can 

assume that regulatory evolution accounts for a considerable share of the 

adaptive genetic difference between cold-tolerant and cold-sensitive 
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populations of D. melanogaster. Hence, investigations of the transcriptome, 

which serves as a link between genotype and phenotype, may provide 

important insights into the adaptive process and may help to identify particular 

genes that have undergone regulatory evolution to confer greater cold 

tolerance. 

 

1.4 Expression analysis via RNAseq 

Since the regulation of transcription initiation is the most important factor for 

the control of gene expression in eukaryotes [Wray et al., 2003], mRNA 

abundance can be used as a meaningful proxy for overall gene expression. 

Though, of course, one should keep in mind that the actual amount of 

functional protein is influenced by factors other than mRNA levels [Lewin, 

2000]. The relative abundance of mRNAs can be quantified by qPCR for 

individual genes and on a genome-wide scale by microarrays [Duggan et al., 

1999] and its successor methodology RNAseq [Wang et al., 2009], which 

provides certain benefits, e.g. more or less absolute transcript quantification, 

higher accuracy etc.  

Briefly, the RNAseq workflow and rationale is as follows: After extraction of 

total RNA the mRNA-fraction is enriched and reverse-transcribed into cDNA. 

The resulting cDNA library is then sequenced using next generation 

sequencing methods resulting in reads with a typical read-length of 30-400 bp. 

These reads are then mapped to the genome or transcriptome. The number of 

reads per gene (possibly after correction for gene length) corresponds to the 
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number of mRNAs of the respective gene, thus providing information about its 

expression.  

Thanks to the well-annotated genome of D. melanogaster and established 

research pipelines, RNAseq data evaluation is relatively straightforward and 

suffers significantly less drawbacks than comparable projects in non-model 

organisms. 

 

1.5 Advantages of the study design 

Genome-wide expression analyses to uncover regulatory differences between 

ancestral and derived D. melanogaster populations have been mostly 

conducted at standard lab conditions [Hutter et al. 2008; Müller et al. 2011]. It 

is, however, anticipated that a huge share of regulatory differences regarding 

environmental stressors is not apparent under standard conditions, but only 

becomes detectable when the respective stress, in the present case a cold 

shock, is applied. Moreover, many transcriptomic studies regarding cold 

tolerance in D. melanogaster have been performed in a single [Qin et al., 

2005; Zhang et al., 2011] or few and often old lab strains. Differences in cold 

tolerance between these strains are likely the result of random genetic drift 

due to relaxed environmental constraints and inbreeding [Vermeulen et al., 

2013] or have been established due to artificial selection [Telonis-Scott et al., 

2009]. In contrast, this study employs natural populations of D. melanogaster 

that have spent considerably less time in the laboratory and that differ 

phenotypically because they have adapted to vastly different environments. 

To be able to observe a good portion of the adaptive change, populations 
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were chosen from the climatic extremes of the species range. These 

populations are vastly different in their CCRT and also represent ancestral 

and derived cases with respect to the demographic process of range 

expansion and global dispersal. 

A particularly important advantage of the transcriptomic approach in this study 

is that alternative methods, like, for example, quantitative trait locus (QTL) 

analyses and genome-wide association studies (GWAS) are limited in a 

sense, that they require extremely high-resolution and accurate trait 

quantification before the calling of candidate genes. In the case of CCRT, 

however, it is highly dubitable if such a resolving power can be achieved. The 

problem of low signal to noise ratio for the determination of small differences 

in CCRT is of course still a crucial challenge in the context of this study. But 

importantly and in contrast to QTL mapping and GWAS, this challenge comes 

only after the calling of candidate genes during functional validation. 

 

1.6 The importance of functional proof in genetic screens 

Genome-wide transcriptomic screens (and alternative methods) can often only 

provide lists of candidate genes that possibly contain many false positives. 

Consequentially, the overlap in reported candidate genes for cold tolerance in 

D. melanogaster between different independent studies is considerably small. 

This is the case when different experimental approaches are used [e.g. Qin et 

al., 2005; Telonis-Scott et al., 2009; Zhang et al., 2011; Svetec et al., 2011; 

Wilches et al., 2014; Pool et al., 2016] and even when the same methodology 

is applied to different fly populations [Mackay et al., 2012; Huang et al., 2012]. 
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To obtain hard evidence that a gene is in fact involved in a certain trait, 

functional (i.e. phenotypic) proof is highly desirable, but often difficult to come 

by. This is especially true in the case of an in all likelihood quantitative trait 

like CCRT that is determined by a multitude of genes with presumably, for the 

most part, minute individual effect sizes and complex epistatic interactions 

[Huang et al., 2012]. Further intricacies arise due to the intrinsic and extrinsic 

variability of CCRT, which render it somewhat imprecise to measure. These 

properties likely apply to other cold tolerance related traits as well. 

Consequentially, the acquisition of convincing phenotypic data that 

demonstrates the involvement of individual genes is often quite laborious and 

unsuccessful despite considerable effort. Nonetheless, functional evidence is 

usually the only way a gene can surpass the dubious “candidate” status and, 

moreover, of importance as proof of concept to give general credence to the 

employed genetic screening methods. 

 

1.7 Gene knockdown via a genome-wide transgenic RNAi library 

As one of the prime model organisms in the field of life sciences Drosophila 

melanogaster has a wide range of genetic tools available for researchers. Of 

particular use for the functional testing of a whole range of candidate genes is 

a genome-wide RNAi library [Dietzl et al., 2007], which facilitates the 

knockdown of almost every gene in the fly genome with relatively little 

experimental effort. It employs the binary UAS/GAL4-system, consisting of an 

upstream activating sequence (UAS), i.e. a GAL4-inducible enhancer, and the 

GAL4 transgene. To achieve the knockdown of an individual gene a strain that 
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carries a gene specific inverted repeat (IR) under the control of the UAS is 

crossed to a so-called driver line that expresses GAL4 under the control of a 

particular promotor. Upon transcription the IR folds into a hairpin structure that 

induces the RNAi pathway and ultimately leads to the degradation of the 

corresponding mRNA, thus knocking down target gene expression. Driver 

lines differ in the promotor that controls GAL4 expression and, furthermore, 

may contain additional copies of genes that play a part in the RNAi pathway 

(e.g. Dicer2), thereby enhancing RNAi efficiency. The “simplest” driver lines 

are those with ubiquitously active promotors (e.g. α-Tubulin and Actin5). 

When these driver lines are used, the knockdown in the respective cross 

affects all life stages and tissues likewise. Besides, there are conditional 

promotors that allow for a gene knockdown in specific life stages or tissues, or 

after a certain stress has been applied. 

 

1.8 Functional data on cold tolerance candidate genes in the literature 

Few genes have been functionally implicated in cold tolerance in D. 

melanogaster. Notably, a substantial reduction of the expression of Hsp70, 

which is the gene with the highest upregulation after a cold shock, has been 

found to have no marked effect on cold tolerance in adult flies [Nielsen et al., 

2005] and larvae [Stetina et al., 2015]. A major disruption of cold tolerance 

after an individual gene knock down has been reported only for Frost [Colinet 

et al., 2010a] and the two small heat shock proteins Hsp22 and Hsp23 

[Colinet et al., 2010b]. In the example of Frost, a substantial increase in CCRT 

for both female and male flies after a ubiquitous Frost knockdown induced by 
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Actin5 and α-Tubulin driven RNAi activation has been reported [Colinet et al., 

2010a]. The knockdown, additionally, resulted in a drastic reduction of cold 

shock survival 24h after a 12h cold shock [Colinet et al., 2010a]. For Hsp22 

and Hsp23 all in all similar results were reported [Colinet et al., 2010b]. 

However, another study completely failed to replicate these results for the 

gene Frost [Udaka et al., 2013]. Thus, functional evidence regarding 

candidate genes for cold tolerance remains scarce and inconclusive.  
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2. Results 

 

2.1 CCRT in fly populations from the Netherlands, Denmark, Sweden, 

Rwanda, Zimbabwe and Zambia 

To identify fly strains and populations that evolved particularly diverging cold 

tolerance phenotypes, CCRT was analyzed after a 7h cold shock 

(experimental procedure according to [Svetec et al., 2011]) in strains of three 

tropical African and three temperate European populations in a common 

garden setting under standard laboratory conditions (21±1°C, see Material & 

Methods for details). The African populations stem from Lake Kariba, 

Zimbabwe (population identifier: A), Gikongoro, Rwanda (RG) and Siavonga, 

Zambia (ZI). The European populations originate from Leiden, the 

Netherlands (E), Odder, Denmark (DK) and Umea, Sweden (SU). Ambient 

temperatures are vastly different in the respective locations of origin (see for 

example www.worldweatheronline.com, which provides detailed climate 

information for all aforementioned locations). CCRT was always assessed 

separately for the two sexes. However, differences in CCRT between the 

sexes are generally marginal after a 7h cold shock (see also Table 1 in 

Chapter 2.4). Therefore, given CCRT values are usually averaged over 

female and male flies, unless indicated otherwise. The CCRT of all individual 

strains of the respective populations is depicted in Figure 1. CCRT displays 

substantial variation within populations and across replicate experiments 

within the same inbred strain (Figure 1). Average CCRT values of the 

Rwandan, Zambian, Danish, and Swedish population are depicted in Figure 2. 

http://www.worldweatheronline.com/
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A157 and E14 are the only strains tested from the Zimbabwean and Dutch 

population (Figure 1). They have been included because their particularly fast 

and particularly slow chill coma recovery, respectively, has been 

demonstrated previously [Svetec et al., 2011]. Additionally, they have been 

formerly employed for QTL analyses to identify candidate genes affecting cold 

tolerance [Svetec et al., 2011; Wilches et al., 2014]. 
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Figure 1 | CCRT of individual strains 
The y-axis shows chill coma recovery time (CCRT) in minutes. On the x-axis are the different strains: red: E14 (Leiden, the 
Netherlands), purple: A157 (Kariba, Zimbabwe), light blue: RG (Gikongoro, Rwanda), green: DK (Odder, Denmark), grey: ZI 
(Siavonga, Zambia), orange: SU (Umea, Sweden); different shading within the Zambian and Swedish population denotes 
different inbreeding status, strains from these populations chosen for further analysis are highlighted in turquoise (ZI197, 
ZI216, ZI418) and pink (SU07, SU08, SU58); choice was also based on criteria other than CCRT such as sequence 
availability. CCRT is calculated as the time flies need to recover after being brought back to room temperature following a 7h 
cold shock in an ice water bath. Depicted values are averaged over several (5-20) independent replicate experiments and over 
both sexes. Error bars denote the standard deviation. 
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Figure 2 | CCRT of populations 
The y-axis shows chill coma recovery time (CCRT) in minutes. CCRT is 
calculated as the time flies need to recover after being brought back to room 
temperature following a 7h cold shock in an ice water bath. Depicted values 
are averaged over 8 (Rwanda & Denmark) or ~30 (Zambia & Sweden) strains 
per population, several independent experimental replicates and both sexes. 
Error bars denote the standard deviation. 
 

Results demonstrate the importance of population phenotyping, as one cannot 

always infer differences in cold tolerance from climatic distinctions. For 

example, there is unexpectedly little difference between the Rwandan flies 

from Gikongoro (RG) and the Danish flies from Odder (DK). This may be, 

amongst other things, explained by the high altitude (1927 m above sea level) 

of Gikongoro. Additionally, factors other than climate may influence cold 

tolerance. The Rwandan population also displays a relatively high level of 

European admixture. The lines assessed here, however, were explicitly 

chosen on the basis of the criterion that they are almost free from genomic 

regions of European ancestry.  

On the other hand, the populations from Zambia and Sweden display 

substantial differences in CCRT with little overlap in the recovery times of 

individual strains (Figure 1). 
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2.2 CCRT under varying environmental conditions and the importance of 

phenotypic plasticity 

Phenotypic plasticity (see [Forsman, 2015] for a recent review) is commonly 

defined as the ability of a single genotype to generate multiple different 

phenotypes in dependence of environmental variations. This ability is 

considered especially important for insects with short generation times, like 

e.g. Drosophila, in temperate regions with vastly differing environmental 

regimes throughout the course of the year. Consequently, it has been 

previously shown that the environment strongly influences cold tolerance, as 

determined via CCRT, in D. melanogaster and even that the relative 

importance of plastic changes greatly exceeds genetic population 

differentiation [Ayrinhac et al., 2004]. In an effort somewhat similar to this 

study the effects of cold rearing (17°C vs. 22°C), an acclimation treatment 

(12h at 6°C prior to the CS vs. no acclimation), and a combination of the two 

on CCRT were tested in ten Swedish and ten Zambian strains. Additionally, 

the relative contributions of genetic and environmental factors on the 

observed variation in CCRT were likewise assessed via a multifactorial 

ANOVA (Table 1). In both populations cold rearing and the acclimation 

treatment substantially decrease CCRT (Figure 3). The plastic changes 

elicited by cold rearing and the acclimation treatment appear to be at least 

partially independent, since CCRT is most strongly reduced when flies are 

both reared at 17°C and subjected to the acclimation treatment. The effects of 

cold rearing, however, are more pronounced (Figure 3, Table 1). Importantly, 

differences between the populations persist over all four environmental 
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regimes. Thus, the effects of hereditary adaptation, cold rearing temperature 

and the acclimation treatment are additive, while sex has no significant 

influence on CCRT under the tested conditions (Table 1).  

 

 
 
Figure 3 | The effect of cold rearing and acclimation on CCRT 
The y-axis shows chill coma recovery time (CCRT) in minutes after a 7h cold 
shock, on the x-axis are the different treatment combinations for the Swedish 
(SU) and Zambian (ZI) population. RT / 17°C = 22°C / 17°C rearing 
temperature, acc = acclimation treatment (6°C for 12h before the cold shock). 
Depicted values are averaged over 10 strains per population, 4 independent 
experimental replicates per treatment and ~10 flies of each sex per repeat. 
Thus, every column represents the average CCRT of ~800 flies. Error bars 
denote the standard deviation. 
 

 

Table 1 | Relative contribution and significance of factors influencing 
CCRT according to a multifactorial ANOVA 

Factor P-value variation explained 

Population (Sweden vs. Zambia) 1.5E-14 22.2% 
Sex 2.7E-01   0.3% 

Rearing temperature (17°C vs. 22°C) 2.2E-16 48.6% 
Acclimation (12h 6°C vs. no acclimation) 4.1E-12 16.2% 

Error n.a. 12.7% 
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2.3 CCRT after repeated cold shocks 

In another set of experiments, the changes in CCRT after repeated cold 

shocks were tested in the Rwandan and Danish population and in the 

Zimbabwean strain A157 and the Dutch strain E14. To this end, flies were 

returned to food vials after the first CCRT experiment and shocked again on 

the following day. For the Danish flies and for A157 and E14 this procedure 

was repeated twice. Accordingly, flies spent 17h hours at room temperature in 

between the subsequent 7h cold shocks. In the Rwandan population flies 

recover slightly faster after the second cold shock, whereas in the Danish 

population recovery time gradually increases after each subsequent cold 

shock (Figure 4). The total differences in CCRT, however, are relatively small.  

 

 
 
Figure 4 | CCRT after repeated cold shocks for Rwanda and Denmark 
The y-axis shows chill coma recovery (CCRT) in minutes. Flies stem from 
Gikongoro, Rwanda (RG) and Odder, Denmark (DK). They were subjected to 
repeated 7h cold shocks (CS) with intermittent recovery periods of 17h in food 
vials at room temperature. Values are averaged over eight independent 
experimental replicates with mostly eight strains per population and ~10 flies 
of each sex per repeat. Thus, every column represents the average CCRT of 
~1200 flies. Error bars denote the standard deviation. 
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Figure 5 | CCRT after repeated cold shocks for E14 and A157 
The y-axis shows chill coma recovery (CCRT) in minutes. Flies stem from 
Leiden, the Netherlands (E14) and Lake Kariba, Zimbabwe (A157). They were 
subjected to repeated 7h cold shocks (CS) with intermittent recovery periods 
of 17h in food vials at room temperature. Values are averaged over seven 
independent experimental replicates (n = total number of flies) and both 
sexes. Error bars denote the standard deviation. 
 

E14 shows a slightly diminished CCRT after the second and third cold shock 

(Figure 5). Again, the differences in recovery time are relatively small. In 

A157, however, CCRT increases by roughly five minutes after every 
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especially in female flies where it reaches 20% between the second and third 

cold shock. This gradual decline in cold shock recovery and survival might be 

another characteristic of the limited cold tolerance of tropical strains beside 

their higher initial CCRT. However, A157 is the only truly tropical strain for 
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the food etc). Overall, the great majority of flies survive multiple cold shocks 

and CCRT values do not change drastically. These results corroborate the 

fully reversible nature of chill coma and demonstrate the potential relevance of 

chill coma recovery in nature, which, in principle, enables flies two withstand 

several cold nights in a row. 

 

2.4 Life history traits and potential cold tolerance related trade offs 

Two distinct traits of an organism are frequently not independent of one 

another. This means that a (beneficial) increase in one trait may result in a 

(detrimental) decrease in the other due to certain constraints. This 

phenomenon is called a trade off (see [Garland, 2014] for a short explanatory 

introduction). 

To assess general fitness parameters of European and African flies the egg 

laying capacity in a 24h time interval (Figure 6) and the subsequent egg-to-

larva- and larva-to-imago-viability (Figures 7&8) were evaluated. Additionally, 

CCRT experiments with eclosed adult flies from these experiments (Figure 9) 

were performed. Finally, long term survival of experimental male flies, with or 

without having experienced a single 7h cold-shock, was monitored (Figure 

10). European flies perform consistently and substantially better in all these 

tests (Figures 10 & 11). 
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Figure 6 | Oviposition rates of European and African D. melanogaster 
The y-axis shows the mean number of eggs laid by 15 young females during a 
24h time span. Female flies were kept in a mating cage together with 15 
young males on a molasses plate. Oviposition was recorded after three days 
of acclimatization. Flies stem from temperate Europe (E, SU) and tropical 
Africa (A, ZI). Values are averaged over a number of independent 
experimental replicates (n). Error bars denote the standard deviation. 
 

 
 
Figure 7 | Hatching rates of European and African D. melanogaster 
The y-axis shows the percentage of hatched larvae from the total number of 
eggs five days after oviposition. Flies stem from temperate Europe (E, SU) 
and tropical Africa (A, ZI). Values are averaged over a number of independent 
experimental replicates (n). Error bars denote the standard deviation. 
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Figure 8 | Eclosion rates of European and African D. melanogaster  
The y-axis shows the percentage of eclosed flies 22 days after oviposition out 
of ~50 larvae picked and transferred to a fresh vial on day 5. Flies stem from 
temperate Europe (E, SU) and tropical Africa (A, ZI). Values are averaged 
over a number of independent experimental replicates (n). Error bars denote 
the standard deviation. 
 

 
 
Figure 9 | CCRT of European and African D. melanogaster  
The y-axis shows chill coma recovery time (CCRT) in minutes. CCRT is 
calculated as the time flies need to recover after being brought back to room 
temperature following a 7h cold shock in an ice water bath. CCRT was 
assessed 19 days after oviposition. Flies stem from temperate Europe (E, SU) 
and tropical Africa (A, ZI). Values are averaged over a number of independent 
experimental replicates (n). Error bars denote the standard deviation. 
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Figure 10 | Longevity of European and African D. melanogaster  
The y-axis shows the percentage of living flies. The x-axis shows the days 
after oviposition. Flies stem from temperate Europe (E, SU) and tropical Africa 
(A, ZI). Values are calculated with 711 (Europe) and 524 (Africa) males out of 
five strains per population and out of ~14 independent repeats per strain with 
~10 male flies per repeat. ~50% of the flies were subjected to a single cold 
shock before. No difference between shocked and unshocked flies was 
observed. 
 

 
 
Figure 11 | Reproductive output of 5 European and 5 African strains 
The y-axis shows the number of eggs and the number of larvae and flies that 
developed from these. Eggs = number of eggs laid by 15 young females 
during a 24h time span. Larvae = number of larvae to develop from these 
eggs within 5 days after oviposition. Flies = calculated value (mean 
percentage of ~50 picked larvae that developed into adult flies 22 days after 
oviposition times the total number of hatched larvae). All three values are 
given as the sum of five strains per population. Values are averaged over 
eight (eggs) or seven (larvae & flies) independent experimental replicates. 
Error bars denote the standard deviation. 
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Due to the high variation in all measured life history traits it is not possible to 

establish a meaningful correlation of general fitness traits and CCRT within 

the respective populations. However, both CCRT and life history traits clearly 

demonstrate increased vigor of European in contrast to African flies. These 

results are likely the consequence of suboptimal conditions for tropical strains 

in a standard lab environment. Especially humidity seems to be an important 

factor. One of the eight replicate experiments was characterized by 

particularly high humidity, which even resulted in dew droplets on the agar 

plates used for oviposition. In this particular replicate the African flies laid 

substantially more eggs than in the other replicate experiments, albeit still less 

than the European flies (data not shown). It is noteworthy in this regard, that 

although experimental conditions could not be kept completely constant due 

to limited fly housing facilities, each replicate experiment was conducted in 

parallel and, thus, at identical conditions for European and African flies. In 

conclusion, the results provide no evidence for a trade off between cold 

tolerance and reproductive success or longevity.  
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2.5 qPCR for eight candidate genes following a cold shock in one 

European and one African strain 

Eight genes were chosen that have been previously shown to change their 

expression in response to cold temperatures or have been otherwise 

implicated in cold tolerance:  

Frost [Goto, 2001; Colinet et al. 2010a, Qin et al., 2005],  

Hsp23 [Qin et al., 2005; Colinet et al., 2010c],  

brinker [Wilches et al., 2014], 

smp30 [Goto, 2000], 

TotA [Zhang et al., 2011],  

TotC [Zhang et al., 2011], 

CG10912 [Qin et al., 2005; Zhang et al., 2011],  

CG12164 [Graveley et al., 2011]. 

For these genes expression was analyzed via quantitative real time PCR 

(qPCR) in one Swedish (SU08) and one Zambian (ZI418) strain on a fine 

timescale: before the cold shock, 3.5h into the cold shock, right at the end of 

the 7h cold shock, 15, 30, 45, 60, 90, 120, and 240 minutes after the cold 

shock. Additional samples were taken at the timepoint of 50% recovery (20+6 

and 43+12 minutes recovery + handling time for SU08 and ZI418, 

respectively), separately for recovered and unrecovered flies. Results are 

depicted in Figures 12-17.  

For Frost, Hsp23 and CG10912 results show a strong upregulation upon cold 

shock with a peak around 90 - 120 minutes in the recovery phase (Figures 12-

14). For the other genes results are less clear. brinker reaches a peak of 
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upregulation with almost twofold expression 30 minutes after the cold shock 

(Figure 15). smp-30 appears to be slightly downregulated during early 

recovery and slightly upregulated late in recovery (Figure 16). Expression of 

CG12164 is relatively constant at all conditions but always higher in African 

flies (Figure 17). Results for TotA & TotC (not shown) are inconclusive, 

because of huge variations between biological replicates, but show a high 

correlation of expression in identical samples. Notably, expression of all eight 

genes is virtually independent of recovery status as recovered and 

unrecovered flies display very similar transcript amounts at the timepoint when 

50% of flies have recovered. Expression during the cold shock remains, in 

general, unchanged compared to RT and differences between the populations 

are quantitative rather than qualitative for the examined genes. 
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Figure 12 | Expression of Frost 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
 
 
 

Figure 13 | Expression of Hsp23 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
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Figure 14 | Expression of CG10912 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
 
 
 

Figure 15 | Expression of brinker 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
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Figure 16 | Expression of smp30 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
 
 
 

Figure 17 | Expression of CG12164 
The y-axis shows expression relative to the first column (SU08 at RT), which 
is set to one. Expression values are calculated as the geometric mean of four 
biological replicates. SU08(Sweden) = light gray, ZI418(Zambia) = dark gray; 
RT = room temperature, CS = during cold shock, rec = during recovery (time 
in minutes), 50%rec/unrec = at the timepoint when 50% of flies had recovered 
(with handling time to transfer flies, this equals 26 minutes for SU08 and 55 
minutes for ZI418) separately for recovered and unrecovered flies. Error bars 
denote the standard deviation. 
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2.6 RNAseq in four temperate and four tropical strains following a cold 

shock 

High-throughput RNA sequencing (RNAseq) of mRNA extracted from whole 

male flies was performed at four different experimental conditions: before, 

during and 15 & 90 minutes in the recovery phase after a 7h cold-shock. 

Whereas the timepoint before the cold shock serves as a baseline control, the 

15 minutes timepoint was chosen, because some of the expression change at 

this time might be directly related to the process of recovery itself, since this is 

also the timepoint when the first fast-recovering European flies tend to wake 

up from their cold-induced coma [Svetec et al., 2011]. The 90 minute 

timepoint, on the other hand, was chosen, because the preceding qPCR 

experiments showed that the genes that are known to strongly respond 

towards a cold shock peak in expression around this timepoint (Chapter 2.5, 

but see also [Colinet et al., 2010a; Colinet et al., 2010b; Colinet et al., 2010c]). 

RNAseq was performed on three Swedish strains with particular short CCRT 

and on three Zambian strains with particular long CCRT. To broaden the 

scope, one additional fast-recovering European strain from the Netherlands 

and one additional slow-recovering African strain from Zimbabwe were 

included. The latter two have been previously employed in QTL analyses to 

identify genes affecting cold tolerance [Svetec et al., 2011; Wilches et al., 

2014]. The CCRT of all eight strains is shown in Figure 18. 
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Figure 18 | CCRT for the eight focal strains 
The y-axis shows chill coma recovery time (CCRT) in minutes. CCRT was 
determined following a 7h cold shock in an ice-water bath. Depicted values 
are averaged over both sexes and a multitude of independent experiments. 
Strains originate from Umea, Sweden (SU07, SU08, SU58), Leiden, the 
Netherlands (E14), Siavonga, Zambia (ZI197, ZI216, ZI418), and Lake Kariba, 
Zimbabwe (A157). Error bars denote the standard deviation. Modified from 
[von Heckel et al., 2016]. 
 

Exploring the transcriptomic data, genes that are differentially expressed due 

to either experimental condition or due to continental origin, and, most 

interestingly, genes that respond to the cold shock in a population-specific 

way, i.e. genes that exhibit a genotype by environment interaction (GEI) were 

determined. To my knowledge, this is the first study in which the genome-wide 

transcriptional response to a cold shock is measured and compared between 

a derived cold tolerant European and an ancestral cold sensitive African 

population of D. melanogaster. 

 

Transcriptome overview 

To investigate population differences in the transcriptional cold shock 

response, five day old male flies of the four African and the four European 
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strains were subjected to a 7h cold shock. Total RNA was isolated from whole 

flies of each strain at four distinct timepoints: before the cold shock (RT), 3.5h 

into the cold shock (CS) and 15 & 90 minutes after flies have been brought 

back to room temperature (rec15, rec90). After library preparation and 

sequencing, in total, over 1.8 billion 51 bp reads were obtained from 64 cDNA 

libraries, which comprise two biological replicates of each strain-and-

timepoint-combination. Read quality is generally very high, with a mean Phred 

score of 35.7. Notably, for the first and last positions the mean Phred score 

does not drop below 30. Overall, more than 90% of the reads map to 

annotated transcripts, just under 4% map to rRNA, about 1% to other 

noncoding RNAs, and a little over 4% of all reads could not be mapped to the 

D. melanogaster genome. Of the 13,955 annotated protein-coding genes in 

FlyBase release 5.57 [St Pierre et al., 2014], 13,821 have at least one 

mapped read in at least one library, whereas 12,617 genes have at least one 

mapped read in every library.  

 

A principle component analysis (PCA) [Pearson, 1901] demonstrates tight 

clustering of biological replicates and related samples and reveals ample 

differences between populations and conditions (Figure 19). The first principle 

component accounts for 23% of the total variance and clearly separates the 

different conditions with the exception of RT and CS. The second principal 

component separates the African from the European samples and accounts 

for 18% of the total variance. Since the Dutch and the Zimbabwean strain 

strongly resemble the Swedish and Zambian strains, respectively, all 
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European and all African strains were treated as a single population in most 

subsequent analyses. However, all of these analyses were also performed 

with only the Swedish and Zambian lines (results not shown) without strong 

effects on the outcome. 

 

 

 

Figure 19 | Transcriptome overview: PCA 

PCA (principal component analysis) was calculated using the built-in methods 
provided by DESeq2 [Love et al., 2014] for variance stabilizing transformation 
of read counts and PCA on the 500 genes with the highest overall expression 
variance. RT = room temperature, CS = 3.5h cold shock, rec15/90 = 15/90 
minutes after a 7h cold shock. Strains originate from Umea, Sweden (SU07, 
SU08, SU58), Leiden, the Netherlands (E14), Siavonga, Zambia (ZI197, 
ZI216, ZI418), and Lake Kariba, Zimbabwe (A157). Note that samples are 
clearly separated according to continent and condition with the exception of 
RT and CS samples, which cluster tightly together in both populations such 
that symbols partly overlap. Published in [von Heckel et al., 2016]. 
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Moreover, the RNAseq results are in very good agreement to the 

aforementioned qPCR results (Chapter 2.5) for eight genes in one Swedish 

and one Zambian strain, thus corroborating the accuracy of the produced 

gene expression data. A direct comparison between the RNAseq and qPCR 

results is shown in Table 2.  

 

Table 2 | Comparison of gene expression in RNAseq and qPCR 

Gene Strain Contrast L2FC qPCR L2FC RNAseq 

Frost SU08 rec15 vs. RT 3.40 2.45 

  
rec90 vs. RT 5.63 4.61 

 
ZI418 rec15 vs. RT 4.09 4.44 

  
rec90 vs. RT 6.14 7.03 

Hsp23 SU08 rec15 vs. RT 0.75 0.63 

  
rec90 vs. RT 4.73 4.09 

 
ZI418 rec15 vs. RT 0.50 0.26 

  
rec90 vs. RT 3.98 4.01 

CG10912 SU08 rec15 vs. RT 0.14 0.03 

  
rec90 vs. RT 1.83 1.33 

 
ZI418 rec15 vs. RT 0.37 0.13 

  
rec90 vs. RT 1.84 1.59 

brinker SU08 rec15 vs. RT 0.63 0.92 

  
rec90 vs. RT 0.21 0.37 

 
ZI418 rec15 vs. RT 0.73 0.47 

  
rec90 vs. RT 0.54 -0.30 

smp-30 SU08 rec15 vs. RT -0.34 -0.09 

  
rec90 vs. RT -0.70 -0.50 

 
ZI418 rec15 vs. RT -0.04 -0.45 

  
rec90 vs. RT 0.26 -0.67 

CG12164 SU08 rec15 vs. RT -0.24 0.41 

  
rec90 vs. RT -0.37 -0.21 

 
ZI418 rec15 vs. RT 0.14 -0.05 

  
rec90 vs. RT 0.02 -0.26 

For TotA & TotC, which were also measured via qPCR, expression is 
extremely inconsistent between biological replicates and appears to be 
irrespective of condition in both the qPCR and the RNAseq data. 
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Global expression differences between conditions 

In order to identify the common properties of the cold shock response, the 

numbers of mapped reads for each gene in the three cold treatments (CS, 

rec15, rec90) were compared to the respective numbers at RT across all eight 

strains. For CS, in general, only minute changes in gene expression are 

apparent, which probably reflects the strong reduction in overall transcription 

at ~0°C. Still, 38 genes show consistent, if only moderate downregulation at a 

5% FDR-cutoff ([von Heckel et al., 2016] Table S3). These genes are 

functionally enriched for being involved in the (negative) regulation of cellular 

metabolism and for being located in the nucleus. Prominent examples hereof 

are the genes hairy and extramacrochaetae, which are named according to 

their role in bristle patterning, but play a part in a wide variety of physiological 

and developmental processes via protein dimerizing with a range of 

transcription factors and thus abolishing their DNA binding capability [Costa et 

al., 2014]. In contrast, not a single gene is found to be upregulated at the CS 

timepoint. 

 

The most striking characteristic of the cold shock response in the recovery 

phase is the swift and massive increase in the expression of molecular 

chaperones. Already 15 minutes after the end of the cold shock several heat 

shock proteins (Hsp) are strongly upregulated compared to their expression at 

RT. This is in line with similar findings in previously published studies (e.g. 

[Colinet et al., 2010c]) and equally true for African and European flies. The 

gene with the highest fold-change is Hsp70 (the six copies of Hsp70 are 
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treated as a single gene, see also Material & Methods, Ambiguous mapping) 

with a roughly 60-fold increase in expression at rec15. This is accompanied by 

a more than 4-fold upregulation of DNAJ1/Hsp40 and starvin, which are both 

known to closely interact with Hsp70 at the protein level [Fan et al., 2003; 

Takayama et al., 1999]. In total, 364 and 518 genes are significantly up- and 

downregulated, respectively, at rec15 ([von Heckel et al., 2016] Tables S4 & 

S5). For these gene sets, the majority of GO enrichment found at a 

significance cutoff of 5% is for the set of upregulated genes. Here, a few 

stress/stimulus response terms, which mostly are driven by Hsps, and a few 

broader terms related to regulation and development are enriched in the 

category “biological process”. For the downregulated genes the only 

significantly enriched GO term is “RNA export from nucleus”. 

 

At rec90, 1535 genes are higher expressed than at RT and 1979 genes are 

less expressed ([von Heckel et al., 2016] Tables S6 & S7). Again, many 

genes that are highly upregulated belong to the Hsp gene family and the list is 

topped by Hsp70 with a more than hundredfold increase in expression 

compared to RT. Besides molecular chaperones, notable examples of the 

utmost upregulated genes are Frost, which has been identified for being one 

of only few known genes that respond strongly towards a cold- but not a heat-

shock [Goto, 2001], and a couple of genes involved in immunity (see also 

Discussion), e.g. Jun-related antigen [Kim et al., 2007], Drosomycin-like 2 

[Tian et al., 2008], and Cecropin C [Hoffmann et al., 1993]. Overall, the 

upregulated genes are enriched for a wide variety of often broad GO terms, 
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including regulation, localization, response to stimulus, immune response, 

(protein) binding, plasma membrane, cytoplasm, cell cortex and junction, 

cytoskeleton and ESCRT complex. The downregulated genes, on the other 

hand, are enriched for e.g. oxidation-reduction, lipid metabolism and 

intracellular membrane bounded organelle. Interestingly, four of the 16 genes 

with a log2 fold-change (L2FC) significantly below -1 contain a major facilitator 

transmembrane transport domain. Another three of these 16 genes have a 

poorly characterized domain of unknown function (DUF-227), which based on 

sequence similarity might be involved in the deactivation of ecdysteroid 

growth hormones.  

 

General expression differences between populations 

In order to identify general characteristics of differentiation between the 

continents, the numbers of mapped reads for each gene were compared 

between European and African samples across all experimental conditions. 

3486 genes show a significantly higher expression in Europe ([von Heckel et 

al., 2016] Table S8) and 3440 genes a significantly higher expression in Africa 

([von Heckel et al., 2016] Table S9), meaning that almost 50% of all genes are 

differentially regulated due to continental origin. The heavily Europe-biased 

genes include well known examples as Cyp6g1 [Daborn et al., 2002] and 

Cyp6g2 [Daborn et al., 2007], which are involved in insecticide resistance. 

Cyp6g1 is consistently about fourfold upregulated in Europe in the present 

study and in two other transcriptomic studies [Hutter et al., 2008; Müller et al., 

2011], in both of which it is the gene with the strongest overexpression in 



 

- 47 - 

Europe. Overall, the Europe-biased genes are GO enriched most prominently 

for terms related to protein biosynthesis. A GO analysis of the Africa-biased 

genes, in turn, reveals, for instance, an overrepresentation of genes that play 

a part in development, regulation, binding, and/or belong to the nucleus.  

 

Genotype by environment interactions 

Overall, the transcriptional cold shock response is fairly similar in Europe and 

Africa. There is not a single gene that is at the same time significantly 

upregulated due to the cold shock in one population and downregulated in the 

other. Furthermore, almost all genes that respond strongly towards the cold 

shock do so in a similar fashion in both populations. Looking for a statistical 

interaction between the effects of origin and condition, 16 such genotype-

environment-interaction (GEI) genes (Table 3) were identified. Two of those, 

namely HR38 and CG44247, display GEI for rec15 vs. RT. In both cases 

expression first decreases at rec15 in the European population before it 

increases at rec90. In the African population, on the contrary, expression 

gradually increases after the cold shock. At RT and rec90 the two genes are 

similarly expressed in both populations. The other 14 GEI genes exhibit a 

population specific regulation for rec90 vs. RT. For six of these genes the 

L2FC is smaller in Africa and for eight genes larger. Interestingly, for 14 and 

15 of the 16 GEI genes the absolute extent of the cold-induced change in 

expression is greater in the African population at rec15 and rec90, 

respectively (Table 3). There is only a single gene (cwo) for which the 

absolute change in mRNA abundance is substantially larger in Europe. 
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Table 3 | Genes with significant genotype by environment interaction 

Gene 

Significance  
of  

interaction 
FDR(BH) 

L2FC  
rec15  
vs. RT  
Europe 

L2FC  
rec15 
vs. RT  
Africa 

L2FC  
rec90  
vs. RT  
Europe 

L2FC  
rec90  
vs. RT  
Africa 

HR38 4.04E-02a -0.21 0.59 3.10 3.24 
CG44247 4.05E-02a -0.26 0.24 0.41 0.55 

GATAe 9.71E-04 -0.11 -0.61 -0.36 -1.63 
CG13607 1.06E-03 -0.40 -0.72 -0.83 -2.67 
CG11897 1.09E-03 -0.06 -0.35 -0.10 -0.69 
CG11741 1.99E-02 -0.74 -1.03 -0.62 -1.86 

cwo 1.41E-02 -0.17 -0.44 0.81 0.04 
rudimentary 1.63E-02 0.07 -0.31 0.08 -0.44 

wunen 7.82E-06 0.04 0.18 0.49 1.14 
brummer 1.33E-04 -0.19 0.15 0.39 1.26 
CG18744 4.51E-04 0.43 1.29 0.93 2.29 
CG7017 1.73E-03 -0.25 0.41 0.93 3.75 

Lnk 3.24E-03 -0.04 0.12 0.14 0.69 
CG15126 1.12E-02 0.17 0.48 0.86 1.66 
CG13482 1.99E-02 0.70 1.25 1.22 2.55 

GstE8 4.96E-02 0.11 0.50 0.49 1.42 

Significance of interaction applies to rec90 vs. RT except noted otherwise 
aInteraction is significant for rec15 vs. RT 
Bold L2FC values indicate greater absolute L2FC for the African population 
Published in [von Heckel et al., 2016]. 
 

 

Genome-wide canalization of European gene expression 

To further explore this pattern on a genome-wide scale, the cold-induced 

L2FC in expression (rec90 vs. RT) was computed for all genes with sufficient 

read count in both populations (n = 13803 genes) separately for African and 

European flies using DESeq2 [Love et al., 2014]. Genes were then grouped 

into distinct bins with a width of 0.2 according to their L2FC (Figure 20). Bins 

range from extreme downregulation to no change in expression to strong 

upregulation. The majority of genes exhibit only minor changes in gene 

expression and the amount of up- and down-regulated genes is comparable, 

resulting in an approximately normally distributed histogram in both 



 

- 49 - 

populations. In the overlay of the histograms for the European and the African 

population, however, one can see that in the European population bin size is 

relative to the African population larger for bins with a small absolute L2FC 

and smaller for bins with a high absolute L2FC (Figure 20). In other words, 

more genes show a particularly strong cold-induced up- or downregulation in 

the African population. Thus, gene expression is canalized across control and 

post cold shock conditions in Europe.  

 

 
Figure 20 | Genome-wide L2FC per population 
Using DESeq2 [Love et al., 2014] the log2 fold-change (L2FC) in expression 
between rec90 and RT was calculated for 13803 genes with sufficient read 
count in both populations separately for African and European flies. Genes 
were then grouped into distinct bins according to their L2FC. Bin width is 0.2. 
The area where the African and European histograms overlap is depicted in 
dark red.  
(A) All genes, (B) genes with an absolute L2FC > 0.6 
Published in [von Heckel et al., 2016]. 
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To corroborate these findings, this pattern was additionally verified in the 

individual strains. In this case, the genewise L2FC for each strain was 

calculated after normalization of read counts by the TPM method [Li & Dewey, 

2011; Wagner et al., 2012] for all 12617 genes with at least one read in every 

sample. In all four African strains the amount of genes with a high absolute 

L2FC between rec90 and RT exceeds the numbers in all four European 

strains (Figure 21). For the expression change between rec15 and RT this 

pattern is much less clear. Still, numbers of genes with an absolute L2FC > 1 

are on average higher for the African strains. 

 
 

 
 
Figure 21 | Amount of highly plastic genes per strain rec90 vs. RT 
The y-axis shows the number of genes that fall into the respective bins. The 
first column per strain shows the amount of genes with an absolute log2 fold-
change (L2FC) between 1.0 and 2.0, the 2nd column genes with an L2FC 
between 2.0 and 3.0, and the 3rd genes with an L2FC above 3.0. Genewise 
L2FC was calculated for each strain after normalization of raw counts using 
the TPM method [Li & Dewey, 2011; Wagner et al., 2012]. All genes with zero 
read count in one sample were excluded resulting in 12617 genes in total. 
Depicted are only genes with an absolute L2FC > 1 with no respect to up- or 
down-regulation. Modified from [von Heckel et al., 2016]. 
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2.7 Functional testing of candidate genes 

It has been previously reported that an RNAi induced single gene knockdown 

of Frost, Hsp22, and Hsp23 measurably diminishes cold tolerance [Colinet et 

al., 2010a; Colinet et al., 2010b]. However, an effort to replicate these results 

for Frost was unsuccessful [Udaka et al., 2013]. Following the reported 

experimental approach, 47 candidate genes for cold tolerance, including the 

three aforementioned, were knocked down in expression using the VDRC 

RNAi library [Dietzl et al., 2007] and two ubiquitous driver lines (α-Tubulin and 

Act5C).  To this end, virgin females of the driver lines were crossed to young 

males of the respective IR lines from the VDRC RNAi library. Since the driver 

lines are not homozygous, F1 progeny was screened using phenotypic 

markers to obtain the desired knockdown cross. Efficiency of the knockdown 

was determined via qPCR for the example of the gene Frost. Finally, the 

consequences of the individual gene knockdowns on cold tolerance were 

assessed in comparison to the appropriate control crosses. The experimental 

approach was directed at identifying genes, for which the knockdown results 

in strong effects on cold tolerance that are in the range of the effects that have 

been reported for Frost by Colinet et al. [Colinet et al., 2010a]. The rationale 

was to perform an initial screen for a relatively large number of single gene 

knockdowns at various experimental conditions and, if some knockdowns 

show promising results to then repeat the experiment for these knockdowns at 

the proper conditions. This would allow for extensive testing of the respective 

gene(s) in the follow up phase, the quantification of the particular knockdown 

efficiency and, additionally, would minimize multiple testing. Because it was 
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not possible to test all knockdowns at all conditions and with both driver lines 

due to the enormous experimental effort, they were mostly assigned to a 

particular group that was tested only at one distinct experimental condition 

and with only one driver line. As a result, the initial screen is somewhat 

unsystematic. 

 

Viability of individual gene knockdowns 

Twenty-six single gene knockdowns yielded viable offspring without any 

apparent morphological abnormalities in at least one of the two crosses. In 

three of these cases (Hsp26, CG31689 and brinker) the knockdown was 

viable only when using the αTub driver. For one gene (Hsp68) the knockdown 

was viable only in female flies. Thus, for 22 genes the knockdown was viable 

with either driver line and in both sexes, whereas the knockdown was 

completely lethal for 18 genes. For three genes (Hsp27, CG11897 and 

CG13321) the knockdown yielded only few adult flies, which in most cases 

also had severely malformed wings and strongly reduced longevity. An 

impaired cold tolerance in these flies is likely the result of a general reduction 

in vigor and the genes, therefore, cannot be specifically linked to cold 

tolerance. 

An overview of the viability of the knockdown for all 47 tested genes is shown 

in Table 4. 
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Table 4 | Viability after a ubiquitous gene knockdown 

VDRC_ID CG number Gene name Viability 
100095KK CG10449 Catsup not viable 
100619KK CG5670 Atpα not viable 
100955KK CG4183 Hsp26 viable/not viable* 
101019KK CG13762 brivido-3 viable 
101174KK CG10369 Irk3 viable 
101669KK CG4466 Hsp27 low, malformed 
101887KK CG9653 brinker viable/not viable* 
102049KK CG9434 Frost viable 
102097KK CG31689 CG31689 viable/not viable* 
102270KK CG7084 CG7084 not viable 
102426KK CG9568 CG9568 not viable 
102403KK CG12164 CG12164 viable 
102493KK CG4463 Hsp23 viable 
103009KK CG13510 CG13510 viable 
103377KK CG7390 smp-30 not viable 
103646KK CG17367 Lnk viable 
103666KK CG5925 desat2 not viable 
103919KK CG5232 sas viable 
104178KK CG1864 HR38 not viable 
104618KK CG10578 DnaJlike not viable 
104883KK CG1615 Ork1 not viable 
105174KK CG11897 CG11897 low, malformed 
105442KK CG8778 CG8778 viable 
105510KK CG13321 CG13321 low, malformed 
105551KK CG10912 CG10912 not viable 
105596KK CG43690 fok viable 
105655KK CG5290 CG5290 not viable 
105893KK CG34413 NKAIN not viable 
106548KK CG31509 TotA viable 
106655KK CG33135 KCNQ viable 
106787KK CG17752 CG17752 viable 
107356KK CG5436 Hsp68 ♀viable/♂not viable 
107389KK CG6747 Irk1 viable 
108269KK CG15678 pirk viable 
108300KK CG3152 Trap1 viable 
108568KK CG1242 Hsp83 not viable 
108683KK CG3478 pickpocket not viable 
109475KK CG5953 CG5953 viable 
110058KK CG16700 CG16700 not viable 
03245GD CG10913 Serpin55B not viable 
06198GD CG14205 CG14205 viable 
28480GD CG34329 Diedel3 viable 
34408GD CG32130 starvin not viable 
36640GD more than 1 Hsp70 viable 
41748GD more than 1 Hsp70 not viable 
43632GD CG4460 Hsp22 viable 
44395GD CG7130 CG7130 viable 

*knockdown was viable with the αTub driver but lethal with Act5 
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Efficiency of the gene knockdown in expression 

The RNAi induced knockdown of Frost was verified via qPCR. Female and 

male flies of the knockdown cross using the α-Tubulin driver and the 

respective control were tested 90 minutes after a 7h cold shock. For the 

Act5C driver expression was analyzed 90 minutes after an 18h cold shock. 

According to expectations, expression of Frost is greatly (more than tenfold) 

reduced in the knockdown compared to the control with both driver lines and 

for both sexes (Figures 22&23). The knockdown efficiency is in line with 

similar experiments that have been carried out for other genes using the same 

framework (Amanda Glaser-Schmitt, personal communication) and with the 

results reported by Colinet et al. [Colinet et al. 2010a; Colinet et al. 2010b]. 

 

 

 
 
Figure 22 | Efficiency of the Frost knockdown using the α-Tubulin driver 
The y-axis shows expression relative to the first column (female control), 
which is set to one. Samples were taken 90 minutes after a 7h cold shock for 
female and male flies of the control and the Frost knockdown (α-Frost). 
Expression values are calculated as the geometric mean of four biological 
replicates. In the knockdown expression is reduced to 6.7% for females and to 
7.3% for males compared to the respective control. Error bars denote the 
standard deviation. 
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Figure 23 | Efficiency of the Frost knockdown using the Act5C driver 
The y-axis shows expression relative to the first column (female control), 
which is set to one. Samples were taken 90 minutes after an 18h cold shock 
for female and male flies of the control and the Frost knockdown (α-Frost). 
Expression values are calculated as the geometric mean of four biological 
replicates. In the knockdown expression is reduced to 9.4% for females and to 
8.7% for males compared to the respective control. Error bars denote the 
standard deviation. 
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Figure 24 | CCRT after ubiquitous Frost KD relative to control 
The y-axis shows CCRT values relative to the respective control with the 
same driver line, cold shock duration and sex. Underlying data is detailed in 
the Appendix (Tables A1-A10). For comparison: [Colinet et al., 2010a] report a 
strong increase in CCRT for female and male flies after a 12h CS using the α-
Tubulin driver. 
 
 

 
 
Figure 25 | 24h survival after ubiquitous Frost KD relative to control 
The y-axis shows 24h survival values relative to the respective control with the 
same driver line, cold shock duration and sex. Underlying data is detailed in 
the Appendix (Tables A1-A10). For comparison: [Colinet et al., 2010a] report a 
>50% reduction in survival for female flies and a slight reduction in survival for 
male flies after a 12h CS using the α-Tubulin driver. 
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Figure 26 | CCRT after ubiquitous Hsp22/Hsp23 KD relative to control 
The y-axis shows CCRT values relative to the respective control with the 
same driver line, cold shock duration and sex. Underlying data is detailed in 
the Appendix (Tables A1-A10). For comparison: [Colinet et al., 2010b] report a 
substantial increase in CCRT for female and male flies after a 12h CS using 
the Act5C driver. 
 
 

 
 
Figure 27 | 24h survival after ubiquitous Hsp22/Hsp23 KD relative to 
control 
The y-axis shows 24h survival values relative to the respective control with the 
same driver line, cold shock duration and sex. Underlying data is detailed in 
the Appendix (Tables A1-A10). For comparison: [Colinet et al., 2010b] report a 
marginal decrease in survival for female and male flies after a 12h CS using 
the Act5C driver. 
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- 58 - 

Likewise, for all other tested genes the consequences of the gene 

knockdowns are marginal. When multiple testing correction is applied, the 

only cases of a significantly impaired cold tolerance are increased CCRT 

values for the knockdown of CG12164 and TotA with the Act5C driver after an 

18h CS (Table A9). However, these observations do not correspond to a 

decrease in cold shock survival and apply only to one sex. Additionally, the 

assessment of CCRT after such a long cold shock is somewhat imprecise 

(see Discussion, Chapter 3.3).  
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3. Discussion 

 

3.1 Cold tolerance phenotypes in tropical and temperate populations of 

Drosophila melanogaster 

The populations from Siavonga, Zambia (ZI) and Umea, Sweden (SU) are 

particularly suitable for the subsequent examination of the genetic basis of 

cold adaptation. The Siavonga population (ZI) from Zambia stems from a truly 

tropical environment and shows the highest genetic variation that has been 

observed for any D. melanogaster population to date [Pool et al., 2012]. Thus, 

this population is potentially close to the source of all extant cosmopolitan D. 

melanogaster populations. The Swedish population from Umea (SU), on the 

other hand, constitutes a derived case from the northernmost tip of the 

species range [Wollstein et al., unpublished]. Accordingly, CCRT of Zambian 

flies is consistently and considerably longer than for Swedish flies. While there 

are huge variations within populations, this pattern holds on average with a 

mean CCRT of 41.1 - 42.8 minutes (95% CI, n=437; every n represents the 

average CCRT of ~10 flies) for ZI and 28.3 - 29.2 minutes (95% CI, n=484) for 

SU. Notably, these population differences in CCRT persist over a wide range 

of environmental conditions. Within the respective populations SU07, SU08 

and SU58 are the fastest and ZI197, ZI216 and ZI418 the slowest recovering 

strains whose complete genome sequences are readily available. The Dutch 

strain E14 has the shortest CCRT of all strains investigated, while the 

Zimbabwean strain A157 displays a very long CCRT, which is in the range of 

the slowest Zambian strains. Thus, it was chosen to use these eight strains for 
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the genome-wide analysis of regulatory differences related to cold tolerance. 

 

3.2 The transcriptional response towards a cold shock in tropical and 

temperate populations of Drosophila melanogaster 

The genome-wide transcriptional response towards a cold shock was 

measured in temperate European and tropical African populations of 

Drosophila melanogaster via RNA sequencing. The data shows, first of all, 

that there is very little change in expression during the cold shock, which is 

probably due to a general halt of transcription at 0°C. Secondly, already 15 

minutes after the end of the cold shock several hundred genes are 

differentially expressed compared to RT and after 90 minutes of recovery this 

number further increases to encompass roughly a third of all genes. Many of 

the genes that are most strongly upregulated belong to the heat shock protein 

family or to other classes of molecular chaperones. Thirdly, despite ample 

population differences in baseline expression, the cold shock response 

appears fairly similar in both populations, with only 16 genes showing a 

statistical interaction between the effects of origin and condition. It is precisely 

this kind of genotype-environment interaction (GEI) that is considered to be 

the hallmark of local regulatory adaptation. Interestingly, the great majority of 

these GEI-genes exhibit a stronger extent of cold-induced change in the 

African population. A similar pattern is visible on a genome-wide scale, where 

numbers of genes with exceedingly sharp up- and downregulation in response 

to the cold shock are much higher in Africa. 
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Decreased thermosensitivity of gene expression in temperate flies 

Phenotypic variability in nature is constrained. Strikingly uniform phenotypes 

appear in high frequency in a population despite genetic and environmental 

variation. The phenomenon that results in this phenotypic robustness has 

been termed canalization [Waddington, 1942]. Its conception is diverse (see 

[Flatt, 2005] for a review) and debated in many aspects, e.g. whether or not it 

is necessarily promoted by natural selection [Siegal & Bergmann, 2002]. 

Canalization is often invoked with regard to the morphological development of 

an organism, but likewise applies throughout adult stages (e.g. [Hatle et al., 

2003]) and to more subtle phenotypic features like gene expression [Manu et 

al., 2009; Shaw et al., 2014; Chanderbali et al., 2010].  

Ninety minutes after the cold shock (and to a lesser extent also 15 minutes 

after the cold shock) the genome-wide cold-induced change in expression is 

considerably smaller in the cold-tolerant European population. While the 

direction of transcriptional change for a given gene, i.e. up- or downregulation, 

is mostly the same in the two populations, the extent of the cold-induced 

change is often larger in the cold-sensitive African population (Figure 20). This 

pattern of canalization of gene expression in temperate flies has been 

observed in other studies in D. melanogaster [Levine et al., 2011; Voigt et al., 

2015; Zhao et al., 2015] and there is evidence that it is under positive 

selection [Voigt et al., 2015]. On the other hand, extreme cold sensitivity has 

been associated with an exaggerated transcriptional stress response 

[Vermeulen et al., 2013]. Accordingly, exposure to zero degrees, which is a 

novel stressor for the African flies, might elicit an overshooting stress 
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response or disturbance of regulatory networks, while European flies have 

adapted to better maintain certain optimal transcript levels. The rec90 time 

point was chosen, because in the qPCR experiments (Chapter 2.5) and in the 

literature [e.g. Colinet et al., 2010a&b&c] some prominent stress response 

genes peak in expression around this timepoint. This is true for both European 

and African flies and there is no evidence that this peak in expression 

generally occurs later in the African population and that thus the canalization 

pattern at this time point is solely the result of a timing shift. Though even if 

this would be the case, the faster return towards baseline expression patterns 

in the European flies might still present a case of canalization and be 

potentially adaptive. It is, however, difficult to directly relate these regulatory 

differences to differences in CCRT based on the expression data alone. Most 

parts of the transcriptional cold shock response are likely not overly relevant 

for chill coma recovery. Rather, faster chill coma recovery and canalization of 

gene expression of European flies are both phenotypic characteristics of cold 

adaptation. It would require additional timepoints in the recovery phase to 

identify individual genes whose expression directly follows the particular chill 

coma recovery dynamics in the different populations. 

 

Transcriptional change during the cold shock 

Several genes with GO terms related to the (negative) regulation of 

metabolism/transcription are downregulated during the cold shock. Since de 

novo transcription in D. melanogaster is apparently very limited at 0°C as the 

transcriptomic data suggests (see also [Sinclair et al., 2007; Colinet et al., 
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2010c]), this pattern might be caused by active and specific RNA degradation, 

which remains possible at very low temperatures [Ma et al., 2004]. The 

downregulation of genes that play a part in regulatory processes in the 

nucleus may represent a preparation for the burst of gene expression in 

recovery phase. However, due to the small change in expression of all of 

these genes, further work is required to confirm these findings, possibly after a 

prolonged cold shock to allow for the accumulation of slow changes.  

 

Chaperones, the cytoskeleton and the stabilization of membranes  

The cold shock response in the recovery phase is characterized by the 

massive upregulation of molecular chaperones. These proteins bind to other 

proteins and are responsible for the reversion of undesirable conformational 

changes induced by stressors and assist in the degradation of irreversibly 

misfolded proteins [Kriegenburg et al., 2012]. Several of these chaperones, 

most prominently members of the heat shock protein family, have previously 

been shown to be strongly upregulated after a cold shock in Drosophila 

[Colinet et al., 2010c; Qin et al., 2005] and other insect species [Teets et al., 

2012; Dennis et al., 2015]. The chaperonin-containing T-complex (CCT) is a 

ring-shaped complex, which consists of eight different subunits and is involved 

in the folding of nascent cytoskeletal proteins [Sternlicht et al., 1993]. The 

cytoskeleton plays an important role in cold hardening in plants [Orvar et al., 

2000] and cytoskeletal genes have been shown to be upregulated in several 

insects after cold exposure [Kim et al., 2006; Colinet et al., 2007; Teets et al., 

2012]. In pupae of the onion fly Delia antiqua high mRNA levels of CCT genes 
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correlate with cold hardiness and prevent actin-depolymerization, thus 

stabilizing the membrane [Kayukawa & Ishikawa, 2009]. All eight subunits of 

the CCT are strongly upregulated at rec90. Additionally, there is an 

upregulation of the major component of the actin cytoskeleton Actin5C, of all 

eight subunits of the Arp2/3-complex, which is responsible for Actin-

polymerization and branching, and of rhea, which is responsible for the 

anchoring of the cytoskeleton in the plasma membrane. Altogether, this has 

the potential to strengthen the cytoskeleton and its connection to the 

membrane and hence to increase membrane stability and to prevent 

extensive ion leakage. Besides, the actin cytoskeleton takes part in 

intracellular protein transport [Stamnes, 2002], which might be in particular 

demand after the cold shock to get rid of denatured proteins and to provide for 

repair and structural adjustments. The importance of protein degradation is 

further corroborated by an upregulation of the endosomal sorting complex 

required for transport (ESCRT) [Vaccari et al., 2009], which is GO enriched 

among the upregulated genes at rec90. Again, processes related to vesicular 

transport have been found to be upregulated in response to a cold shock in 

other insects as well [Teets et al., 2012]. 

 

The expression of immune genes in response to the cold shock 

In D. melanogaster the response towards a cold shock has been associated 

with an increased expression of immune related genes [Zhang et al., 2011; 

Vermeulen et al., 2013] and there are various hypotheses why this might be 

the case [Marshall & Sinclair, 2012]. In the present study the 120 genes that 
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are consistently more than twofold upregulated at rec90 show a significant 

enrichment of the GO term “response to biotic stimulus”. The 11 genes that 

drive this pattern are Hsp27, Relish, ets at 21c, pdgf- and vegf-receptor 

related, poor imd response upon knock-in, Drosomycin-like 2, unc-45, 

daughter of sevenless, unpaired 3, pancreatic eif-2alpha kinase, and Cecropin 

C. Likewise, several immune related terms are GO enriched among all 

upregulated genes at rec90. The upregulation of immune related genes is on 

average marginally stronger in the African population, but it is often very 

inconsistent among strains and even among biological replicates. The flies 

that were used for the generation of the transcriptomic data were healthy in 

appearance, but they were grown under standard lab conditions and not in a 

sterile environment, so it is not possible to rule out differences in microbial 

load and other factors that might influence the immune system. Still, the data 

suggests considerable crosstalk between the cold shock response and the 

immune system, albeit for several genes in a somewhat erratic fashion. 

 

Conserved patterns of the transcriptional cold shock response  

Gene expression studies that try to answer very similar questions using 

different biological material and/or different methodologies often arrive at 

vastly different results. Patterns that are conserved despite of these minor 

experimental differences, are likely more reliable and relevant in nature. Here, 

the results of the present study are compared with few other studies that 

likewise examine the transcriptional cold shock response using different fly 

populations, experimental approaches and means of quantifying gene 
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expression [Qin et al., 2005; Sinclair et al., 2007; Colinet et al., 2010c; Zhang 

et al., 2011].  Qin et al. [Qin et al., 2005] measured the change in gene 

expression 30 minutes after a 2h cold shock via microarrays in 5-7d old 

males. They identify 31 upregulated genes, grouped into five functional 

categories: stress response, membrane, mitochondrial and energy, 

expression, and other. Whereas all five stress response genes (Hsp83, Hsp 

26, Hsp23, Ubiquitin-63E, and Frost) are also upregulated in the present study 

at rec90, only 11 of the remaining 26 genes including CG10912 show this 

pattern as well. Of the six downregulated genes [Qin et al., 2005], three show 

a downregulation at rec90 including smp-30. Sinclair et al. [Sinclair et al., 

2007] monitored expression of five genes, namely Frost, smp-30, Hsp23, 

Hsp70 and Desat2 during a 3h cold shock and in the subsequent 3h recovery 

period in 5d old males. They see no change in expression during the cold 

shock, but an upregulation for Frost and Hsp70 and a downregulation for smp-

30 in the recovery phase. In contrast to the present study, they observe no 

upregulation of Hsp23 and a slight increase in the expression of Desat2, 

which is strongly downregulated after the cold shock in our study. In 

agreement with Colinet et al. [Colinet et al., 2010c], who subjected 4d old 

virgin male flies to a 9h cold shock, all Hsp are strongly upregulated in 

response to the cold shock, with the exception of Hsp60 and Hsp67, which 

consistently show only relatively weak upregulation. Zhang et al. [Zhang et al., 

2011] subjected virgin females to three different cold treatments with short (2h 

CS), prolonged (10h CS) and repeated (2h CS on five consecutive days) 

exposures to cold, which results in largely non-overlapping gene expression 
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changes 6h after recovery. They find only three genes (TotA, hephaestus, 

CG11374) to be upregulated in all three treatments. Of these hephaestus is 

the only gene to be upregulated in the present study, albeit only to a marginal 

extent (L2FC rec90 vs. RT = 0.10) and with a FDR slightly above 5% (0.079). 

Expression of CG11374 remains relatively constant over the different 

conditions, whereas the expression of TotA is characterized by huge 

variations between biological replicates and, thus, likely influenced by factors 

other than the cold shock. The same is true for the other members of this 

gene family (TotC, TotM) that were also upregulated in at least one of the cold 

treatments in the study by Zhang et al. Of the 20 genes that are differentially 

regulated in two cold treatments in their study, six are likewise affected at 

rec90. CG15043, Attacin A, urate oxidase, and Attacin B are consistently 

upregulated, whereas CG9463 and CG15533 are strongly downregulated. 

 

Conserved regulatory population differences  

Additionally, baseline differences in gene expression are compared with three 

studies that likewise assess regulatory differences between African and 

European populations in whole male [Hutter et al., 2008; Paparazzo et al. 

2015] and female [Müller et al., 2011] flies. Performing differential expression 

analysis on the RT samples only, i.e. on unstressed flies for a dataset 

encompassing eight samples per population, 867 genes display Europe-

biased and 793 genes Africa-biased expression at a 5 % FDR cutoff. The only 

study that uses an identical technical framework, i.e. RNAseq plus the same 

mapping procedure and genome annotation, is Paparazzo et al. [Paparazzo et 
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al. 2015]. They have performed RNAseq in threefold biological replication for 

mass bred Dutch and Zimbabwean populations that were generated by 

outcrossing 12 Dutch (including E14) and 10 Zimbabwean (including A157) 

inbred lines. Their baseline controls, however, may technically not have been 

completely unstressed, since stripes with oil were inserted into the fly vials 

(see [Paparazzo et al. 2015] for details). For these six samples 206 Europe-

biased and 322 Africa-biased genes are identified. Only 27 (13.1 %) and 25 

(7.8 %) genes are significantly overexpressed in Europe and Africa, 

respectively, in both the present study and their dataset. The 27 shared 

Europe-biased genes include Cyp6g1, Cyp6g2, Cyp6t3, and Cyp313a1, all of 

which belong to the Cytochrome P450 gene family and are implicated in the 

response to insecticides. An example of the shared Africa-biased genes is 

Amyrel. Furthermore, 17 genes are differentially expressed in an opposite 

fashion in the two datasets. The comparison between the present study and 

Hutter et al. [Hutter et al., 2008] and Müller et al. [Müller et al., 2011] is 

hampered by technical differences, since these two studies use microarrays 

and different genome annotations. Thus, datasets that only include genes that 

are represented in each of the respective studies were generated. For the 

comparison with Hutter et al. [Hutter et al., 2008] this dataset encompasses 

4,500 genes, for the comparison with Müller et al. [Müller et al., 2011] 5,216 

genes, and for a comparison between all three datasets 2,354 genes. Both 

studies compare gene expression differences between several (8-12) Dutch 

and Zimbabwean inbred lines. For Hutter et al. [Hutter et al., 2008], eight of 

the 74 genes (10.8%) overexpressed in Europe overlap with the present 
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study, including Cyp6g1, CG9509, and Malic enzyme. Twenty-three of 85 

genes (27.1%) are, on the other hand, consistently upregulated in Africa. 

Interestingly, the sole gene with an opposing expression pattern is CG10912, 

which is strongly upregulated in response to the cold shock in the present 

study and other studies [Qin et al., 2005; Zhang et al., 2011]. This gene is 

Africa-biased in [Hutter et al., 2008] and Europe-biased in the present study. 

For Müller et al. [Müller et al., 2011], 19 of 312 genes (6.1%) are Europe-

biased in the present study as well and 15 of 244 genes (6.1%) are Africa-

biased, whereas 31 genes show an opposing pattern. The smaller proportion 

of overlapping genes and the higher amount of genes that display differential 

expression in opposite directions when comparing the present study to Müller 

et al. [Müller et al., 2011] relative to comparing it with Hutter et al. [Hutter et 

al., 2008] is likely owed to sex-specific differences in gene expression. 

Cyp6g1 is the only gene that is overexpressed in Europe in both of these 

studies and the present study, whereas two genes, namely Actin 88F and 

retinin, are consistently Africa-biased. If the study by Paparazzo et al. 

[Paparazzo et al., 2015] is included, Cyp6g1 and retinin are the sole genes to 

be overexpressed in Europe and Africa, respectively, in all four studies. While 

expression of Cyp6g1, which is also overexpressed in European D. simulans 

[Wurmser et al., 2013], is associated with DTT resistance [Daborn et al., 

2002], retinin is a cornea-specific protein and likely secreted into extracellular 

space [Kim et al., 2008]. Overall, the amount of genes that show a consistent 

pattern with regard to regulation differences between Europe and Africa is 

considerably small. 
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Limitations and perspectives 

Though the genome-wide transcriptional response towards a cold shock was 

analyzed at three different timepoints and in natural fly populations of vastly 

differing cold tolerance in extensive replication, the present study remains 

limited with respect to several aspects. First, only male flies were employed to 

avoid the impact of pregnancy while at the same time not being forced to 

separate virgin females early on. There are, however, huge regulatory 

differences between the sexes [Ellegren & Parsch, 2007; Müller et al., 2012]. 

Thus, results from male flies cannot easily be generalized. Additionally, the 

topic of reproductive diapause [Saunders et al., 1989], which is considered to 

be crucial for overwintering and population persistence in temperate 

environments, is not covered. Secondly, RNA was extracted from whole flies 

since there is no conclusive indication for a particular tissue to be of primary 

importance in the cold shock response and since the cold shock should in 

principle affect the whole fly. Nevertheless, the cold shock response might 

vary greatly between tissues, even in opposite directions, and this might partly 

obscure the obtained results. Thirdly, the transcriptional response towards a 

single 7h cold shock was measured without any acclimation pretreatments. 

Different cold shock durations and repeated cold shocks with intermittent 

recovery periods, however, elicit varied gene expression changes [Zhang et 

al., 2011]. Moreover, cold rearing and preceding exposures to cold greatly 

alter cold tolerance related phenotypes (Figure 3) [Kelty & Lee, 1999; 

Ayrinhac et al., 2004] and patterns of gene expression [Levine et al., 2011; 

Chen et al., 2015]. Hence, in order to obtain a more comprehensive picture of 
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the cold shock response and of regulatory population differences that form the 

basis of cold adaptation, it is necessary to evaluate the cold-induced changes 

in gene expression in both sexes, different life stages, and for individual 

tissues over an extensive set of preferably natural conditions. Finally, a 

common challenge that stress-related transcriptomic studies on sensitive and 

tolerant organisms face is the difficulty to discern if deviating patterns of 

stress-induced gene expression in the tolerant organism are in itself adaptive 

or simply the result of reduced intrinsic stress. This distinction is particularly 

complicated since functional evidence is often hard to come by. 

 

3.3 Functional consequences of reduced transcript levels of candidate 

genes for cold tolerance 

It has in general been very challenging and often unsuccessful to link 

differences in gene expression with phenotypic changes. Here, the functional 

consequences of a single gene knockdown on cold tolerance were evaluated 

for 26 individual genes, for which the knockdown was viable. The approach 

was aimed at detecting relatively large and general effects. Although the 

knockdown reduces expression more than tenfold, it elicits no clear-cut and 

general phenotypic effect on cold tolerance for any of the 26 genes, though of 

course this is by no means a proof that there is no such effect.  

CCRT and other cold tolerance related traits are highly plastic, intrinsically 

variable and presumably multigenic. Therefore, the effect size of a single gene 

knockdown will often be very small and may vary due to minor environmental 

fluctuations and/or in a random fashion. While the chill coma recovery assay 
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in the present setup (7h cold shock, experimental procedure according to 

[Svetec et al., 2011]) is suitable to distinguish temperate and tropical 

populations, it is associated with a variety of problems that may interfere with 

the determination of small differences in CCRT: Flies are monitored only in 

five minute intervals. Sometimes flies get attached to the experimental vials 

because of condensed water or excretions, which means that they cannot 

stand up despite being clearly awake. It is not uncommon to observe flies 

even tearing off their own wings when they are stuck to the plastic vial. 

Recovered flies may run around in the vials, thereby waking up other flies. 

Many of these issues can be solved by putting single flies into individual vials 

and by decreasing observation intervals. This procedure, however, would 

greatly increase the experimental effort and, thus, is only suitable for the 

testing of few strains/knockdown crosses. With increasing duration of the cold 

shock, additional problems arise: flies often do not stand up in an instance, as 

they usually do after a 7h cold shock, but maneuver themselves in an upright 

position over the course of a longer period of time, which makes the calling of 

the exact CCRT somewhat arbitrary. Furthermore, it becomes increasingly 

widespread that flies that have initially recovered, i.e. have already put 

themselves on their six legs in an upright fashion, then lose this posture again. 

Possibly, different means to quantify cold tolerance could be used to 

overcome these problems. Some authors advocate the use of the critical 

thermal minimum, i.e. the temperature at which coma sets in, over CCRT for 

the quantification of cold tolerance [Andersen et al., 2015]. This method, 

however, would require a device that allows for an exact and gradual 
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decrease of temperature. Another alternative approach is to measure the 

proportion of female flies still standing after 96h at 4°C [Pool et al., 2016]. 

Besides the quantification of cold tolerance, an additional point that may 

interfere with functional validation of candidate genes is that many of the 

genes investigated in the present study belong to multigene families and, 

thus, might be at least partially redundant in function. Furthermore, CCRT and 

cold survival are just proxies for cold tolerance. Changes in gene expression 

that do not influence these particular traits might very well still be relevant for 

cold tolerance. The fact that the replication of the previously reported 

phenotypic consequences of a knockdown of Frost, Hsp22, and Hsp23 

[Colinet et al., 2010a; Colinet et al., 2010b] failed, despite closely following the 

outlined experimental procedure, might also be attributed to minor differences 

in fly culture or a different genomic background due to different driver lines 

used for the knockdown crosses. In any case, these findings together with 

those of Udaka et al. [Udaka et al., 2013], who likewise observe no such effect 

on cold tolerance after knocking down expression of Frost, suggest that the 

reported phenotypic implications of altered transcript levels of these genes are 

not general. Moreover, the lack of any clear-cut effect of the gene knockdown 

for all 26 analyzed genes further strengthens the notion of cold tolerance as a 

multigenic phenotype with presumably minor effect sizes for individual genes.  
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4. General conclusion 

 

The present study did not reveal major candidate genes for cold tolerance. 

Rather than identifying individual genes with vast regulatory population 

differences, relatively subtle population differences over a wide range of 

genes were detected. The salient pattern, in this respect, is that many more 

genes respond strongly towards the cold shock in the cold sensitive African 

population. The ability to maintain favorable expression levels can be key to 

cope with extreme environmental fluctuations [Shaw et al., 2014], since plastic 

changes induced by novel environments are often non-adaptive [Ghalambor 

et al., 2015]. In D. melanogaster, gene expression is known to be more 

canalized in temperate populations [Levine et al., 2011; Voigt et al., 2015; 

Zhao et al., 2015]. Furthermore, an exaggerated stress response has been 

associated with extreme cold sensitivity [Vermeulen et al., 2013]. Taken 

together, these findings highlight the importance of canalization of gene 

expression for cold adaptation and emphasize its polygenic nature. On the 

other hand, however, phenotypic plasticity is the major factor influencing cold 

tolerance (Table 1) [Ayrinhac et al., 2004] and plastic responses to cold 

conditions, which also involve changes in gene expression [Levine et al., 

2011; Chen et al., 2015], appear to be adaptive at large even in tropical 

populations (Figure 3) [Ayrinhac et al., 2004]. Thus, special consideration 

should be directed towards the expression patterns that remain relatively 

conserved over a wide range of environmental conditions in temperate 

compared to tropical populations. 
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5. Material and Methods 

 

5.1 Fly populations and culture 

The fly populations that were analyzed in this study, consist of a Swedish 

(Umea, collected in 2012 by R. Wilches and S. Laurent, described in 

[Wollstein et al., unpublished]), a Danish (Odder, collected in 2010 [Schou et 

al., 2014]), a Dutch (Leiden, collected in 1999, [Bubliy & Loeschcke, 2002]), a 

Zambian (Siavonga, collected in 2010 by R. Corbett-Detig, [Pool et al., 2012]),  

a Rwandan (Gikongoro, collected in 2008 by John Pool [Pool et al., 2012], 

and a Zimbabwean (Lake Kariba, collected in 1994 by T. Mutangadura, 

[Glinka et al., 2003]) population. All strains of the respective populations are 

isofemale and their heterozygosity has been further reduced due to five to ten 

rounds of full sib inbreeding, with the exception of ZI81, ZI173, ZI212, ZI261, 

ZI303, ZI395, ZI468 and ZI504, which are not inbred. For the initial 

phenotyping (=standard condition), flies were cultured in 50ml glass or plastic 

vials under standard lab conditions at 21°C ± 1°C, 25-50% air humidity and a 

14h/10h light/dark cycle on a sugar beet molasses and cornmeal medium 

containing agar-agar for medium consistency, dry yeast for oviposition 

promotion and propionic acid and nipagin as preservatives.  

 

5.2 Chill coma recovery assays 

To quantify cold tolerance chill coma recovery time (CCRT) was used as 

metric [David et al., 1998]. Briefly, CCRT is defined as the time it takes for a 

fly to recover, i.e. to stand upright on its six legs, after being brought back to 
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room temperature following a cold-induced coma. Sorting and sexing of flies 

prior to the experiments was conducted using CO2-anesthetization. Flies were 

always allowed to recover in food vials for at least 24h before the onset of the 

cold shock. Age of flies was two to six days at the onset of the cold shock. For 

the cold shock, they were flipped into empty plastic vials, immediately put into 

an ice-water bath and kept in the dark for the entire duration (7h) of the cold 

shock. Experiments were conducted with ~10 flies per experimental vial. 

Recovery status was monitored for 90 minutes in 5 minute intervals at 

ambient temperatures (22±1 °C). Living flies that had not recovered after 90 

minutes were assigned a recovery time of 95 minutes. Dead flies were 

excluded from the analysis. Mortality during the experiments, however, was 

very low (below 1%). 

 

5.3 Plasticity experiments 

CCRT experiments were conducted at four distinct experimental conditions:  

1. Standard (as described above for the initial phenotyping) 

2. Acclimation (rearing like standard with an additional acclimation treatment 

of 12h at 6°C prior to the cold shock) 

3. Cold rearing (fly culture in an incubator at 17°C) 

4. Cold rearing + acclimation (fly culture at 17°C plus an additional acclimation 

treatment of 12h at 6°C prior to the cold shock) 

To account for slower growth rates at 17°C those flies were allowed to recover 

for two days after CO2-anesthetization and sorting instead of one day for flies 

reared at 22°C. 
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5.4 Repeated cold shocks 

To assess the ability to fully recover from a cold shock, flies were subjected to 

two or three cold shocks of 7h in a row. After the initial calling of CCRT 

following the standard procedure described above flies were flipped back to 

their prior food vials and kept at 22°C before they were subjected to the next 

7h cold shock, which took place 24h after the onset of the first cold shock. 

 

5.5 Assessment of general fitness parameters 

All experiments were conducted at standard conditions (21°C ± 1°C, 25-50% 

air humidity) in parallel for five European and five African strains in eightfold 

replication, though few replicates had to be excluded for individual strains due 

to various reasons (accidental loss of vials during flipping, reduced growth so 

that not enough flies were available, etc). The number of tested replicates per 

strain is indicated in the results figure. 

Egg laying capacity: Fifteen female and 15 male flies of five days of age were 

sorted using CO2-anesthetization and put into a fine wire mesh mating cage 

(ø = 8.1cm; height = 9.9cm) on a nutrient medium plate containing sugar beet 

molasses, agar-agar for medium consistency, propionic acid and nipagin as 

preservatives, and an additional 50µl of 20% live yeast solution applied on the 

surface ~30 minutes before the start of the experiment to allow drying. The 

plate was sealed to the cage with parafilm. After three days the plate was 

replaced with a fresh nutrient plate without yeast to alleviate the subsequent 

counting of eggs. After another 24h the flies were removed and the number of 

laid eggs was counted under a microscope. 
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Egg hatchability: The number of hatched larvae was counted three days after 

the removal of parental flies and checked again on day five. 

Larva-to-adult viability: Three days after oviposition 50 larvae were manually 

transferred with a needle to a 50ml vial containing standard fly medium. The 

number of eclosed flies was counted 18 days later.  

CCRT: After counting, ~10 female and ~10 male flies were subjected to a 7h 

cold shock. On day 19, CCRT was assessed following the standard procedure 

described above. 

Longevity: Remaining male flies and male flies from after the CCRT 

experiment were transferred to separate fresh 50ml standard vials. Survival 

was monitored in two day intervals until all flies were dead. Flies were not 

transferred to new vials during the course of this experiment, putatively 

introducing desiccation as a major influencing factor. 

  

5.6 Evaluation of phenotypic data 

Statistical analysis was performed with Microsoft Excel 2007 and R (version 

3.2.1) [R Core Team, 2015]. Unless noted otherwise, CCRT was averaged 

over all experiments of the respective conditions and both sexes. For the 

multifactorial ANOVA CCRT-values were log-transformed to obtain a normal 

distribution. Normality was confirmed by visual inspection of a Q-Q plot. 

 

5.7 Sample preparation, RNA extraction and RNA sequencing 

Extractions were performed in January and February of 2014. Samples were 

obtained at four distinct conditions: Without cold treatment at room 
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temperature, 3.5h after beginning of the cold shock, and 15 and 90 minutes 

after flies have been brought back to room temperature following a 7h cold 

shock at 0°C in an ice-water bath. For every strain-condition-combination two 

biological replicates were produced roughly two weeks apart and with flies 

stemming from different vials to account for vial effects. For every sample 16 

male flies at five days of age were frozen in liquid nitrogen. Nucleic acid 

extraction was performed using Epicentre MasterPure Complete DNA and 

RNA Purification Kit according to the manufacturer’s protocol without DNAse 

treatment. Sample quality was assessed using Nanodrop (Thermo Fisher 

Scientific) and Bioanalyzer (Agilent Technologies). All samples were free from 

considerable amounts of contaminants and showed no signs of RNA 

degradation. Samples were stored at minus 80°C prior to shipment to a 

sequencing company (GATC Biotech, Konstanz, Germany) for PolyA-

enrichment, random primed cDNA synthesis, library preparation and 

sequencing on an Illumina HiSeq2000 yielding >>20 million 51bp single reads 

per sample with an average Phred score above 30 for the bps with lowest 

quality. 

 

5.8 Read mapping 

The obtained reads were mapped to the D. melanogaster transcriptome 

(FlyBase release 5.57 [St Pierre et al., 2014]) using NextGenMap [Sedlazeck 

et al., 2013]. For every read, only the first best hit was counted. All reads 

mapping to multiple transcripts of a single gene were collapsed. The per 

sample library size ranges from 16 to 37 million reads. Average library size is 
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25.4 million reads. All reads that did not map to any transcript were then 

mapped to other features of the D. melanogaster genome. The reads that did 

not map to any of these as well were considered unmapped.  

 

5.9 Ambiguous mapping 

With special regard to Hsp70, which is the gene with the highest cold-induced 

fold-change in expression, it must be noted that there are actually six different 

copies of Hsp70 annotated in FlyBase 5.57. It would, however, require 

sophisticated approaches to be able to tell them apart due to their extremely 

high sequence similarity. Thus, they are commonly treated as a single gene in 

studies of gene expression [Sinclair et al., 2007; Colinet et al., 2010c]. The 

issue of ambiguous mapping further extends to other gene families and 

virtually to any two genes that share stretches of identical transcript sequence. 

Since within-gene-family-differences in expression are not of prime concern in 

this study and since this should affect both populations in a similar fashion, it 

is assumedly of little consequence for the overall results. 

 

5.10 Calling of differentially expressed genes and enriched gene 

properties 

Differentially expressed genes (DEG) were called using the DESeq2 package 

(version 1.6.3) [Love et al., 2014] for R (version 3.2.1) [R Core Team, 2015] 

and a 5% FDR cutoff based on Benjamini-Hochberg adjusted P-values 

[Benjamini & Hochberg, 1995]. A model with three factors was used, namely 

continent (Europe, Africa), condition (RT, CS, rec15, rec90), and an 
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interaction term between the two. Thus, there are eight samples per continent-

condition-combination, consisting of 4 strains in twofold biological replication. 

For the multilevel contrasts of the factor condition (RT vs. CS, RT vs. rec15, 

RT vs. rec90) the Benjamini-Hochberg-correction was performed over all P-

values of the three tests combined. The number of significant genes was 

maximized by applying independent filtering [Bourgon et al., 2010] with the 

mean expression over all 64 samples as independent filter criterion. The same 

correction approach was also applied to the multilevel interaction contrasts. 

GO term enrichment was calculated using GOrilla [Eden et al., 2009] against 

the background of all annotated genes in the genome and with regard to 

multiple testing (<5% FDR) [Benjamini & Hochberg, 1995]. 

 

5.11 qRT-PCR 

Each sample was prepared with approximately eight male flies at five days of 

age. Four biological replicates were produced for every strain-timepoint-

combination. RNA extraction was performed as described above, with the 

exception of an additional 1h DNAse I treatment at 37°C to get rid of genomic 

DNA. Absence of genomic DNA was determined using a highly sensitive 

Phusion polymerase (NEB) and a set of primers that only amplifies genomic 

DNA (X-01435+: 5’-TGC GAA ACA GGT ACA AGT-3’; X-01435-: 5’-GGA TTC 

GTG AAC GGG AAA-3’). Furthermore, for a few samples noRT controls were 

run in the qPCR. cDNA was synthesized using random hexamers and 

SuperScript II reverse transcriptase (Invitrogen) according to the 

manufacturer’s protocol. Gene specific primer sequences for qPCR were 
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created with quantprime [Arvidsson et al., 2008]. All primers were obtained 

from Metabion (Planegg, Germany). The ribosomal genes RpL32 and RpS20 

were used as reference genes [Voigt et al., 2015]. Primer sequences and 

annealing temperatures are shown in Table 5. SYBR green Master Mix (Bio-

Rad) was used as reaction and detection reagent on a Real-Time thermal 

cycler CFX96 (Bio-Rad). Every sample was assessed in threefold technical 

replication. Gene expression was quantified using the ΔΔCt method 

[Hellemans et al., 2007]. 

 

Table 5 | Primers for qPCR 

Gene Forward primer Reverse primer Annealing 
temperature 

RpL32 ATCGTGAAGAAGCGCACCAAGC TTGCGCCATTTGTGCGACAG 62.1 °C 

RpS20 TTCGCATCACCACCCGTAAGAC TTGTGGATTCTCATCTGGAAGCG 61.3 °C 

Frost TGCAGGAACAGAGGTGGAATAGC TGACCCTGACCGTTGCCATTTG 59.5 °C 

Hsp23 AGCGAACTGGTGGTCAAAGTGC ATCTTCGCGCTCCTCATGGTTG 63.0 °C 

CG10912 TCCTGCTGGACTGCGATAAACAG GCTTGGAATATGTCGGACCCTCAG 61.0 °C 

brinker TGCGAGGACATCATCCGTCAAC TCAGGTTTGTGGGCGCAGTATC 62.2 °C 

smp-30 ACCGTCTTCAAGGTCAATCCAAGC AAAGCCACCGAGGTGATTTGGG 60.9 °C 

CG12164 GCATGAGATCCCTAAGTCTGTTGC TCTTCCACACCTGGACCCAATC 65.0 °C 

TotA TTCCGGTTTGCTTCAGCGTTCC AGCAGCAGTGCAAAGCACATAAG 58.8 °C 

TotC TCTACTATGCCTTGCCCTGCTC ATCTTCGATTCGGCGTCGTTGG 62.4 °C 

 

 

5.12 Functional assessment of the knockdown of individual genes 

Fly lines containing gene-specific inverted repeats (IR) were ordered from the 

VDRC [Dietzl et al., 2007] and belong either to the GD or KK library. In these 

lines the IR is under the control of a GAL4-inducible promoter (=upstream 

activating sequence (UAS)), i.e. only expressed in presence of GAL4. To 

activate expression of the IR and, thus, the RNAi-mediated knockdown of the 

respective gene, young males of the IR lines and of their respective controls 
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(w1118 for the GD library and KK60100 for the KK library) were crossed to 

young virgin females of two driver lines that ubiquitously express GAL4 under 

the control of either the Act5C- (Act5C-GAL4 / CyO) or the α-Tubulin-promoter 

(UAS-Dicer2; αTub-GAL4 / TM3, Kr-GFP). Progeny was screened for straight 

vs. curly wings (Act5C) or normal vs. stubble bristles (αTub) to obtain the 

desired cross. The efficiency of the knockdown was determined via qPCR. 

The knockdown- and control-crosses were phenotyped in parallel for changes 

in cold tolerance. CCRT was determined as described above. For the survival 

assays, flies were transferred back to food vials after the recovery 

experiments and kept at 22°C±1°C in separate vials for each sex. The 

proportion of living flies was counted roughly 24h after the end of the cold 

shock. Mortality clearly peaks within this period of time, as subsequent checks 

at 48h revealed identical numbers of fatalities in the great majority of cases.   
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Appendix 

 

Table A1 | CCRT (12h CS) using the αTub driver and the KK-library 

 
gene/sex 

avg. 
CCRT SD n p-Value* 

p-Value 
corrected** 

control♀ 39.4 4.0 15 
  control♂ 41.5 4.0 15 
  Frost♀ 42.1 6.0 17 0.1395 1.0000 

Frost♂ 39.2 4.4 17 0.1427 1.0000 
CG12164♀ 40.5 4.3 03 0.6605 1.0000 
CG12164♂ 42.4 5.5 04 0.6996 1.0000 
Hsp23♀ 39.8 6.1 04 0.8707 1.0000 
Hsp23♂ 38.1 3.5 04 0.1420 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 

 

Table A2 | Survival (12h CS) using the αTub driver and the KK-library 

 
gene/sex 

avg. 24h 
survival SD n p-Value* 

p-Value 
corrected** 

control♀ 87.3% 12.8% 15 
  control♂ 93.3% 12.6% 15 
  Frost♀ 86.4% 12.6% 17 0.8394 1.0000 

Frost♂ 98.9% 03.0% 17 0.0857 1.0000 
CG12164♀ 78.8% 18.9% 03 0.3416 1.0000 
CG12164♂ 88.1% 08.6% 04 0.4516 1.0000 
Hsp23♀ 79.5% 15.5% 04 0.3161 1.0000 
Hsp23♂ 97.7% 04.5% 04 0.5099 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (41 comparisons in total) 
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Table A3 | CCRT (9h CS) using the αTub driver and the KK-library 

 
gene/sex 

avg. 
CCRT SD n p-Value* 

p-Value 
corrected** 

control♀ 37.3 06.1 43 
  control♂ 38.3 06.2 43 
  CG17752♀ 35.2 06.4 18 0.2187 1.0000 

CG17752♂ 34.6 04.5 18 0.0260 1.0000 
Hsp23♀ 35.3 04.3 12 0.2786 1.0000 
Hsp23♂ 34.1 03.5 12 0.0301 1.0000 
brinker♀ 37.9 06.2 14 0.7457 1.0000 
brinker♂ 40.9 07.2 14 0.2027 1.0000 
Frost♀ 37.5 10.0 18 0.9330 1.0000 
Frost♂ 35.9 05.5 18 0.1570 1.0000 
fok♀ 39.8 04.8 23 0.0910 1.0000 
fok♂ 39.2 05.4 23 0.5564 1.0000 
pirk♀ 38.4 04.6 21 0.4611 1.0000 
pirk♂ 38.8 04.8 21 0.7507 1.0000 
CG31689♀ 41.0 07.3 12 0.0821 1.0000 
CG31689♂ 38.5 11.0 11 0.9289 1.0000 
CG5953♀ 38.9 14.2 27 0.5124 1.0000 
CG5953♂ 39.1 09.3 27 0.6895 1.0000 
CG12164♀ 43.9 03.5 02 0.1424 1.0000 
CG12164♂ 39.8 03.5 02 0.7452 1.0000 
CG13510♀ 37.0 08.4 17 0.8876 1.0000 
CG13510♂ 37.3 05.8 17 0.5792 1.0000 
Lnk♀ 36.8 06.0 25 0.7247 1.0000 
Lnk♂ 35.7 04.4 25 0.0669 1.0000 
Hsp26♀ 37.5 08.3 18 0.9257 1.0000 
Hsp26♂ 33.6 03.5 18 0.0035 0.2545 
Hsp68♀ 37.6 03.2 06 0.9216 1.0000 

Hsp68 knockdown is lethal for males 
n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 
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Table A4 | Survival (9h CS) using the αTub driver and the KK-library 

 
gene/sex 

avg. 24h 
survival SD n p-Value* 

p-Value 
corrected** 

control♀ 69.5% 29.0% 39 
  control♂ 78.8% 28.6% 43 
  CG17752♀ 66.5% 27.2% 18 0.7089 1.0000 

CG17752♂ 94.2% 09.6% 18 0.0306 1.0000 
Hsp23♀ 75.2% 22.3% 11 0.5507 1.0000 
Hsp23♂ 97.7% 05.7% 12 0.0277 1.0000 
brinker♀ 76.4% 19.9% 14 0.4184 1.0000 
brinker♂ 61.7% 35.6% 14 0.0738 1.0000 
Frost♀ 68.6% 35.5% 15 0.9236 1.0000 
Frost♂ 93.3% 14.1% 18 0.0453 1.0000 
fok♀ 67.6% 26.7% 22 0.8011 1.0000 
fok♂ 94.8% 08.3% 23 0.0112 0.4590 
pirk♀ 71.4% 25.9% 21 0.8011 1.0000 
pirk♂ 91.0% 19.3% 21 0.0815 1.0000 
CG31689♀ 68.6% 23.8% 12 0.9195 1.0000 
CG31689♂ 85.9% 18.9% 11 0.4369 1.0000 
CG5953♀ 61.8% 34.6% 24 0.3464 1.0000 
CG5953♂ 87.4% 21.6% 27 0.1843 1.0000 
CG12164♀ 45.5% 25.7% 02 0.2587 1.0000 
CG12164♂ 81.8% 12.9% 02 0.8834 1.0000 
CG13510♀ 77.6% 29.1% 13 0.3875 1.0000 
CG13510♂ 92.3% 11.3% 17 0.0643 1.0000 
Lnk♀ 84.4% 14.8% 25 0.0211 0.8645 
Lnk♂ 96.7% 06.9% 25 0.0031 0.1291 
Hsp26♀ 52.5% 20.8% 18 0.0293 1.0000 
Hsp26♂ 91.2% 12.3% 18 0.0836 1.0000 
Hsp68♀ 85.9% 10.9% 06 0.1825 1.0000 

Hsp68 knockdown is lethal for males 
n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (41 comparisons in total) 
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Table A5 | CCRT (9h CS) using the αTub driver and the GD-library 

 
gene/sex 

avg. 
CCRT SD n p-Value* 

p-Value 
corrected** 

control♀ 36.1 11.3 13 
  control♂ 38.1 05.0 13 
  Hsp22♀ 33.1 04.9 28 0.2348 1.0000 

Hsp22♂ 36.3 05.6 28 0.3162 1.0000 
Hsp70♀ 33.7 07.4 26 0.4233 1.0000 
Hsp70♂ 35.2 04.5 26 0.0740 1.0000 
Diedel3♀ 31.3 06.3 26 0.0952 1.0000 
Diedel3♂ 35.9 06.1 27 0.2533 1.0000 
CG7130♀ 28.9 04.3 27 0.0052 0.3790 
CG7130♂ 31.3 04.1 27 0.0001 0.0037 
CG14205♀ 29.9 05.5 26 0.0243 1.0000 
CG14205♂ 33.4 04.9 26 0.0083 0.6072 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 

 

Table A6 | survival (9h CS) using the αTub driver and the GD-library 

 
gene/sex 

avg. 24h 
survival SD n p-Value* 

p-Value 
corrected** 

control♀ 83.8% 33.0% 09 
  control♂ 90.9% 27.8% 13 
  Hsp22♀ 82.2% 24.8% 24 0.8781 1.0000 

Hsp22♂ 97.6% 06.4% 28 0.2315 1.0000 
Hsp70♀ 75.1% 29.7% 22 0.4774 1.0000 
Hsp70♂ 94.2% 10.8% 26 0.5928 1.0000 
Diedel3♀ 87.0% 22.4% 23 0.7595 1.0000 
Diedel3♂ 87.9% 19.3% 27 0.6963 1.0000 
CG7130♀ 93.6% 17.2% 23 0.2778 1.0000 
CG7130♂ 99.0% 03.9% 27 0.1412 1.0000 
CG14205♀ 86.0% 22.1% 22 0.8299 1.0000 
CG14205♂ 98.8% 04.3% 26 0.1579 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (41 comparisons in total) 

  



 

- 88 - 

Table A7 | CCRT (7h CS) using the Act5C driver and the KK-library 

 
gene/sex 

avg. 
CCRT SD n p-Value* 

p-Value 
corrected** 

control♀ 30.4 7.5 9 
control♂ 35.6 4.4 9 

  Frost♀ 30.5 6.6 9 0.9658 1.0000 
Frost♂ 33.7 6.2 9 0.4690 1.0000 
CG12164♀ 31.4 7.3 9 0.7800 1.0000 
CG12164♂ 30.8 5.5 9 0.0579 1.0000 
TotA♀ 33.3 7.2 9 0.4107 1.0000 
TotA♂ 29.4 4.2 9 0.0077 0.5649 
Hsp23♀ 32.0 7.6 7 0.6775 1.0000 
Hsp23♂ 34.4 2.4 5 0.6029 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 

 

Table A8 | CCRT (15h CS) using the Act5C driver and the KK-library 

 
gene/sex 

avg. 
CCRT SD n p-Value* 

p-Value 
corrected** 

control♀ 61.5 6.9 14 
  control♂ 66.8 5.9 14 
  CG8778♀ 57.7 6.5 14 0.1561 1.0000 

CG8778♂ 64.8 5.9 14 0.3779 1.0000 
CG13510♀ 63.6 8.6 14 0.4641 1.0000 
CG13510♂ 70.3 5.0 14 0.1027 1.0000 

control♀ 58.5 7.1 12 
  control♂ 66.6 6.4 12 
  brv3♀ 53.7 6.1 12 0.1010 1.0000 

brv3♂ 64.6 9.0 12 0.5575 1.0000 
irk3♀ 61.8 7.1 12 0.5296 1.0000 
irk3♂ 67.4 4.5 12 0.7259 1.0000 
KCNQ♀ 57.4 4.5 12 0.6518 1.0000 
KCNQ♂ 67.9 2.9 12 0.5296 1.0000 

control♀ 58.1 5.0 10 
  control♂ 62.7 6.5 10 
  Trap1♀ 54.6 3.7 10 0.0922 1.0000 

Trap1♂ 62.2 6.1 10 0.8617 1.0000 
sas♀ 55.2 6.0 10 0.2475 1.0000 
sas♂ 64.6 6.0 10 0.5237 1.0000 

Three different controls correspond to three different experimenters 
n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 
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Table A9 | CCRT (18h CS) using the Act5C driver and the KK-library 

gene/sex 
avg. 

CCRT SD n p-Value* 
p-Value 

corrected** 

control♀ 065.5 09.2 21 
  control♂ 083.9 10.5 21 
  Frost♀ 071.3 11.4 23 0.0712 1.0000 

Frost♂ 095.2 11.3 23 0.0014 0.1008 
CG12164♀ 079.7 13.2 10 0.0016 0.1185 
CG12164♂ 103.8 07.5 10 0.0000 0.0007 
brv3♀ 070.4 12.7 07 0.2769 1.0000 
brv3♂ 082.8 06.7 07 0.8140 1.0000 
TotA♀ 081.0 11.7 14 0.0001 0.0085 
TotA♂ 090.1 14.2 14 0.1421 1.0000 
Hsp23♀ 064.7 09.5 20 0.7815 1.0000 
Hsp23♂ 083.1 10.1 20 0.8132 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (73 comparisons in total) 

 

Table A10 | Survival (18h CS) using the Act5C driver and the KK-library 

 
gene/sex 

avg. 24h 
survival SD n p-Value* 

p-Value 
corrected** 

control♀ 057.3% 42.1% 17 
  control♂ 094.0% 07.9% 17 
  Frost♀ 072.1% 29.3% 20 0.2169 1.0000 

Frost♂ 098.6% 04.4% 20 0.0301 1.0000 
CG12164♀ 063.9% 31.1% 10 0.6715 1.0000 
CG12164♂ 100.0% 00.0% 10 0.0244 1.0000 
brv3♀ 070.1% 29.6% 07 0.4733 1.0000 
brv3♂ 080.1% 17.6% 07 0.0132 0.5414 
TotA♀ 076.6% 21.5% 14 0.1322 1.0000 
TotA♂ 091.4% 17.4% 14 0.5947 1.0000 
Hsp23♀ 061.0% 33.9% 17 0.7824 1.0000 
Hsp23♂ 097.8% 04.9% 16 0.1050 1.0000 

n = number of replicate experiments with ~10 flies each 
*two-sided T-test for difference to respective control 
**Bonferroni correction to account for multiple testing (41 comparisons in total) 
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