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Abstract  

The importance of the vestibular system usually goes unnoticed in our daily lives and its 

significance is only experienced by patients suffering from vestibular diseases. The vestibular 

system is essential for orientation in space, and perception of motion, as well as keeping 

balance, and maintaining stable visual perception while moving in a three-dimensional world.  

Functional imaging has long been used to study the multisensory vestibular network in 

healthy subjects, as well as in patients with diseases of the vestibular system. The majority of 

these previous studies sought to associate brain areas with vestibular processing, by 

evaluating increases or decreases in blood-oxygen-level dependent signal (BOLD-signal) 

during application of artificial vestibular stimulations.  

However, many basic network properties of the multisensory vestibular cortical network still 

remain unknown. Since it is now possible to infer networks from functional connectivity 

analysis, that associates areas into networks based on their spatiotemporal signal behavior , a 

few of the remaining questions can be addressed. 

The dynamics of the vestibular networks and other co-activated networks in regard to the 

processing of a multisensory stimulation remain largely unknown. Do subjects of different 

ages respond differently to a vestibular challenge? Furthermore, a new form of vestibular 

stimulation, termed magnetic vestibular stimulation (MVS), has recently been discovered. It 

occurs in strong  magnetic  fields  (≥1.5  tesla), that are commonly used in functional magnetic 

resonance imaging (fMRI), and raises questions about a possible modulation of vestibular 

networks during fMRI, potentially biasing functional neuroimaging results. 

The purpose of this thesis is to develop suggestions for studying the multisensory vestibular 

network and the influence of vestibular modulations on resting-state networks with fMRI. The 

focus lies on basic scientific investigations of  

(1) the influence of aging on the ability of subjects to respond to a challenge of the 

multisensory vestibular network and  

(2) the modulatory influence of magnetic fields (the MR environment) on functional imaging 

and resting-state networks in general. To this end, we carried out two studies.   
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The first study was a cross-sectional aging study investigating the modulation of vestibular, 

somatosensory and motor networks in healthy adults (N=39 of 45 in total, age 20 to 70 years, 

17 males). We used galvanic vestibular stimulation (GVS) to stimulate all afferences of the 

peripheral vestibular end organs or vestibular nerve in order to activate the entire multisensory 

vestibular network, as age-associated changes might be specific to sensory processing. We 

also controlled for changes of the motor network, structural fiber integrity (fractional 

anisotropy – FA), and volume changes to simultaneously compare the effects of aging across 

structure and function. 

The second study investigated the influence of the static magnetic field of the MR 

environment in a group of healthy subjects (N=27 of 30 in total, age 21 to 38 years, 19 

females), as it was recently shown that a strong magnetic field produces a vestibular 

imbalance in healthy subjects. We examined MVS at field strengths of 1.5 tesla and 3 tesla. 

The associated spontaneous nystagmus, the scaling of the nystagmus’  slow  phase  velocity 

(SPV) across field strengths, the between subject variance of the SPV were analysed, and the 

analogous scaling relationship was identified in the modulation of resting-state network 

amplitudes, like the default mode network (DMN), between 1.5 tesla and 3 tesla to reveal its 

effect on fMRI results.  

Aging and MVS modulated networks associated with vestibular function and resting-state 

networks known for vestibular interactions. 

The results from our aging study imply that the dynamics of vestibular networks is limited by 

the influence of aging even in healthy adults without any noticeable vestibular deficit. 

Vestibular networks show a decline of functional connectivity with age and an increase of 

temporal variability (in excess of stimulation induced changes) with age. In contrast 

somatosensory and motor networks did not show any significant linear relationship with age 

or any significant changes between the youngest and oldest participants. Age-associated 

structural changes (gray matter volume changes or structural connectivity changes) did not 

explain the decline in functional connectivity or increase in temporal variability. Furthermore, 

stimulation thresholds did not change with age (nor did they correlate with the functional 

connectivity amplitudes or temporal variability), indicating that the age-associated changes 

that were found for the vestibular network, were not dependent on peripheral decline, as GVS 

is thought to directly stimulate the vestibular nerve. 
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The results from our study of the influence of the static magnetic field of the MR environment 

showed that MVS was already present at a field strength of 1.5 tesla, as evident from the 

induced nystagmus, indicating a state of vestibular imbalance. Furthermore, MVS scaled 

linearly with field strength between 1.5 tesla and 3 tesla, and identified the effects of MVS in 

the scaling of functional resting-state network fluctuations, showing that MVS does indeed 

influence resting-state networks due to vestibular imbalance. Specifically, MVS does 

influence DMN resting-state network dynamics in accordance with the predicted scaling of 

MVS based on the Lorentz-force model for MVS. These results taken together not only imply 

that subjects were in a vestibular state of imbalance, but also that the extent and direction of 

the state of imbalance showed more variance between subjects with increasing field strength.  

In summary, the following suggestions for vestibular research can be delineated to extend the 

kind of questions that can be answered by functional MRI experiments and to improve these 

investigations for the benefit of clinically relevant research of healthy controls and patients. 

Regarding the influence of age, we suggest that researchers comparing patients with 

vestibular deficits and healthy controls should separate the age-matched group into age-strata 

(non-overlapping subgroups with different age spans, e.g. 20-40 years, 40-60 years and above 

60 years of age). Each stratum should be compared and interpreted separately given that 

different age-groups have different levels of vestibular network dynamics available for 

compensation (or responding to a challenge). This is particularly relevant when patients show 

a wide age-distribution, e.g. in the case of vestibular neuritis patients. 

With respect to the influence of magnetic fields, we suggest that MVS should be seen as a 

new way of manipulating networks that either process vestibular information or show 

vestibular  interactions,  by  using  strong  magnetic  fields  (≥1.5  tesla),  as  commonly  used  in 

MRI. The potential of modulating vestibular influences on networks via MVS lies in being 

able to induce or manipulate vestibular imbalances. In the healthy this can be used to create 

states that are similar to the diseased state, but without peripheral or central lesions. In 

patients this will allow to extend or reduce vestibular imbalances. In both cases this can be 

done while performing functional MRI simply by using the magnetic field of the MRI scanner 

and adjusting the head position of the subject in question. In studies that need to avoid 

vestibular perturbations MVS should be controlled by adjusting the head position of the 

subject and measuring the resulting eye movements. This should then be seen as an effort to 

remove unwanted variance, i.e., as an effort to homogenize the group, and achieve better 
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statistical results due to less (uncontrolled) MVS interference that increases bias and variance 

with increasing field strength.  

In summary, these suggestions result in three short questions that researchers could ask 

themselves when thinking about vestibular research projects in the future. 

Age-grouping:  

 “Is  the  response  to  a  challenge  different  for  younger  adults  than  older  adults,  i.e.,  does 

each age-group compensate differently?” 

MVS modulation:  

“Can  a  manipulation  of  the  imbalance  state  of  our  subjects  with  MVS help us to reveal 

more  about  the  vestibular  network’s  response  to  a  challenge  or  should  we  avoid 

interference by MVS  in the  imbalance state of our subjects?”  

Sensitivity:  

“Is the measure that I want to use sensitive enough to show the differences that I am 

looking for?” Connectivity and temporal variability might be sensitive enough, but many 

clinical tests might not be sufficient. 
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List of abbreviations 

• MRI  - magnetic resonance imaging 

• fMRI  - functional magnetic resonance imaging 

• BOLD  - blood-oxygen-level dependent 

• CVS  - caloric vestibular stimulation 

• GVS  - galvanic vestibular stimulation 

• STB  - short tone bursts 

• MVS  - magnetic vestibular stimulation 

• SPV  - slow phase velocity 

• OKS  - optokinetic stimulation 

• OKN  - optokinetic nystagmus 

• VOR  - vestibular ocular reflex 

• MVN  - medial vestibular nuclei 

• SVN  - superior vestibular nuclei 

• LVN  - lateral vestibular nuclei 

• DVN  - descending vestibular nuclei 

• MST  - middle superior temporal area 

• VIP  - ventral intraparietal area 

• CSv  - cingulated sulcus visual 

• DTI  - diffusion tensor imaging 

• FA  - fractional anisotropy 

• DMN  - default mode network 
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General Introduction 

The vestibular system 

The importance of the vestibular system usually goes unnoticed in our daily lives and its 

significance is only experienced by people suffering from damages to one or several 

components of the vestibular system (Brandt et al., 2005; Cullen and Sadeghi, 2008; Dieterich 

and Brandt, 2008). The vestibular system is essential for orientation in space, and perception 

of motion, as well as keeping balance, and maintaining stable visual perception while moving 

in a three-dimensional world (Cullen and Sadeghi, 2008; Goldberg et al., 2012). Considering 

that these functions are essential for any animal’s survival, it is not surprising that vestibular 

structures are one of the oldest structures that have developed during evolution, and are 

basically  as  old  as  the  “Kingdom Animalia”  (Metazoa) itself (Graf, 2009). Evidence for 

peripheral vestibular structures has been found in fossils that are over 400 million years old 

(Graf, 2009). For our purposes, we will distinguish the vestibular system into two parts, the 

peripheral vestibular end organs and the central nervous system with its multisensory 

vestibular network. 

The peripheral vestibular system 

The peripheral vestibular end organs are located in the temporal bone in direct vicinity of the 

cochlea, and are believed to be evolutionarily older than the cochlea (Graf, 2009). They are 

contained within a structure called the membranous labyrinth of the inner ear, (see figure 1A). 

The membranous labyrinth consists of five parts, the three semicircular canals and the two 

otolith organs, the utricle and the saccule (see figure 1B). The semicircular canals detect 

rotations while utricle and saccule detect translations of the head as well as head orientation 

with respect to gravity (Goldberg and Hudspeth, 2004; Goldberg et al., 2012).  

Rotations of the head are sensed via detection of inertial flow (i.e., opposite to the head 

rotation) of endolymph fluid leading to deflections of the hair cells in the ampullary cupula of 

each respective semicircular canal (figure 1B). The membrane of the ampullary cupula is a 

gelatinous structure containing hair cells (i.e. cells with mechanosensitive ion channels) that 

influence the bipolar cells of the eighth cranial nerve (nervus vestibulocochlearis) in response 

to a deformation induced by inertial flow of the endolymph during head rotations (see detail 

inlays in figure 1B). The ion-channels of the hair cells are opened when the cells are bent in 
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one direction and closed when bent in the opposite direction, leading to an increase or 

decrease of their firing rate, respectively.  

 

Figure 1: The anatomy of the ear (A) and the anatomy of the membranous labyrinth (B). [Images, 

used (and modified) under license from Shutterstock.com. (A) Alila Medical Media/Shutterstock.com, 

and (B) Designua/Shutterstock.com] 

The three semicircular canals (horizontal, anterior, and posterior canals) of the left and right 

ear work in reciprocal pairs. The two horizontal canals work together, while each anterior 

canal is paired with the posterior canal of the opposite ear. This means that rotations can be 

sensed  with  “double”  precision  due  to  the reciprocal  interaction of  the pairs.  If head motion 

occurs in a plane specific to a pair of canals, flow in one canal will lead to excitation while 

flow in the opposite paired canal will lead to inhibition.  

In general, firing rate changes transmitted through the eighth cranial nerve are the way 

vestibular sensations are transmitted to the central nervous system. Note that the firing rate of 

the hair cells is reported to be near 100 Hz at rest, allowing for a wide range of modulation 

and the whole apparatus is sensitive to angular accelerations of >0.1°/s² (Shumway-Cook and 

Woollacott, 2007). However, during continuous rotations a steady-state of zero flow can be 

reached and the cupula returns to its resting position, i.e., the cells go back to the resting firing 

rate, analogous to keeping the head still.  

Translations and the orientation of the head relative to gravity are detected by the utricle and 

saccule. The utricle, by virtue of its orientation, senses linear accelerations and head-tilts in 

the horizontal plane. Analogously, the saccule is sensitive to vertical plane movements and 

head-tilts. Both structures together are termed the otolith organs (from the greek word 

“lithos”,  meaning  “stone”)  containing  hair  cells  that  are surrounded by a gelatinous structure 
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with embedded calcium carbonate stones that by virtue of inertial acceleration allow sensing 

of the direction of gravitation or translation during movements (Goldberg and Hudspeth, 

2004).   

The multisensory central vestibular network 

The multisensory vestibular cortical network interprets signals from the vestibular end organs, 

but it also does far more than just interpretation of these signals. Our sense of self motion and 

orientation in space, as well as a stable visual perception, and the control of posture and 

balance is dependent on a proper functioning of the multisensory vestibular network 

(Goldberg and Hudspeth, 2004; Shumway-Cook and Woollacott, 2007; Cullen and Sadeghi, 

2008; Goldberg et al., 2012). To achieve these feats of perception and motor control, the 

multisensory vestibular cortical network has to engage in integration of information coming 

not only from the peripheral vestibular sensory end organs, but also from the visual, the 

proprioceptive, the somatosensory and the auditory systems (Cullen and Sadeghi, 2008).  

The central multisensory vestibular network consists of the respective brain stem nuclei 

(mainly the medial (MVN), superior (SVN), lateral (LVN), and descending vestibular nuclei 

(DVN)), as well as cerebellar regions (nodulus, uvula, flocculus, and paraflocculus, as well as 

vermis, and fastigial deep cerebellar nucleus), and several cortical areas (e.g., the medial 

superior temporal (MST) area, posterior insula, parietal operculum, ventral intraparietal (VIP) 

area, anterior cingulum, and cingulate sulcus visual (CSv) area) which receive secondary 

input from the brain stem and cerebellum via the dorsolateral, and presumable the ventral 

anterior thalamus (Goldberg et al., 2012). It was recently shown that there might also be a 

direct ipsilateral connection bypassing the thalamus connecting the brain stem via the 

midbrain to the opercular-insular region (Kirsch et al., 2016). 

The brain stem regions receive direct primary afferents from the vestibular periphery, as well 

as modulatory secondary inputs from the cerebellum, visual, somatosensory, proprioceptive 

and oculomotor regions of the cortex, making its processing truly multisensory even at the 

early stage (Goldberg et al., 2012).  

The cerebellar regions receive direct afferents from the vestibular periphery and secondary 

inputs from the vestibular nuclei of the brain stem and provide an integrated signal back to the 

brain stem. One example of this feedback signal is the selective encoding of translational 

motion that remains relatively insensitive to changes in head orientation relative to gravity. It 

is generated via the processing in cerebellar regions nodulus and uvula as well as the fastigial 
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nucleus that provide an integration of signals from canal afferents which are activated during 

head tilt but not during pure translation. This signal is then combined with otolith signals to 

subtract out the influence of gravity from inertial motion, yielding a signal that selectively 

encodes translational motion (Cullen and Sadeghi, 2008; Goldberg et al., 2012).  

The nodulus and uvula play a critical role in controlling the three-dimensional dynamics of 

the velocity storage system. In particular the integration of both canal and otolith inputs at the 

level of individual neurons facilitates the computation of head motion relative to space. The 

flocculus and adjacent paraflocculus are involved in the generation of ocular-visual following 

responses (i.e., optokinetic nystagmus (OKN) and pursuit). In addition, these regions are a 

critical component of the neural substrate underlying the plasticity of the optokinetic reflex 

and the VOR. The oculomotor vermis and anterior lobes make use of extra-vestibular inputs 

(visual and proprioceptive information, respectively) to ensure that the motor responses 

produced by vestibular pathways remain appropriately calibrated. Lastly, the deep nuclei, 

most notably the fastigial nucleus, play an important role in the generation of postural reflexes 

and orienting behaviors. Projections from the anterior lobe of the vermis and most medial 

zones of the nodulus and ventral uvula converge in the fastigial nucleus, which in turn 

projects to the brain stem structures (including the vestibular nuclei) to control and modulate 

behaviors (Cullen and Sadeghi, 2008; Goldberg et al., 2012). 

Cortical processing of vestibular input is important for generating appropriate modulations of 

motor responses and the subjective sense of movement and orientation in three-dimensional 

space (Cullen and Sadeghi, 2008; Goldberg et al., 2012). The middle superior temporal area 

(MST) responds to optic flow and provides a signal for the direction of the visual signal or 

heading direction of the animal that allows smooth pursuit responses to follow and stay on 

target, but it does not respond to multiple patches of optical flow that are inconsistent with 

egomotion (Wall and Smith, 2008). The areas VIP (ventral intraparietal sulcus) and CSv 

(cingulate sulcus visual) are believed to be further processing stations in regard to egomotion, 

i.e., self-induced (visual) motion of the environment (Wall and Smith, 2008; Fischer et al., 

2012). The posterior insula and the parietal operculum are believed to be multisensory 

integration hubs that receive strong vestibular input. They seem to act as the central vestibular 

relay regions in the cortex, i.e., all vestibular input goes into these regions and is integrated 

with  all  other  sensory  modalities  from  there  as  a  central  region  “in  the middle” of all  these 

inputs (zu Eulenburg et al. 2012; Lopez et al. 2012). All these areas project back to the 
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vestibular nuclei and modulate the motor response depending of the behavioral context 

(Goldberg et al., 2012). 

The functioning of the vestibular system as a whole is therefore based on the meaningful 

fusion of sensors. Vertigo and dizziness may occur if these multisensory interactions are 

disturbed, either at the periphery sensory end organs or the central level (Brandt et al., 2005; 

Dieterich and Brandt, 2008).  

Thus, one main feature of the vestibular system is the integration of multisensory information 

and can best be understood in terms of interconnectivity of distant brain regions, i.e., 

networks in the brain.  
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Vestibular stimulation methods and their neural correlates 

The functioning of the vestibular end organs and the neural correlates of the multisensory 

vestibular system have previously been studied using stimulations of the vestibular end organs 

during neuroimaging (e.g. see (Dieterich and Brandt, 2008; Lopez et al., 2012; zu Eulenburg 

et al., 2012; Wiest, 2015)). The most common forms of vestibular stimulation are caloric 

irrigation (CVS) of the horizontal semicircular canal with water or air, galvanic vestibular 

stimulation (GVS) of the irregular and to a lesser extend also regular afferents in the 

vestibular nerve, or “Clicks”,  loud short tone burst (STB) vestibular stimulation, i.e., sound 

pressure induced otolith stimulation (for an overview see (zu Eulenburg et al. 2012; Lopez et 

al. 2012)). A more recent variant of stimulating the vestibular end organs with strong 

magnetic fields (>1 T), termed magnetic vestibular stimulation (MVS) has recently emerged 

(Roberts et al., 2011), although it was long known that strong magnetic fields cause dizziness 

(Schenck, 1992). Due to the multisensory nature of the vestibular network and the interaction 

with other sensory systems different sensory stimuli can be used to create vestibular  (e.g. 

dizziness) or self-motion sensations. Optokinetic stimulation (OKS) for example can be 

applied to elicit nystagmus and induce a vection sensation (the feeling of self-motion), by 

exploiting visual-vestibular interactions (Brandt et al., 1998; Dieterich et al., 1998; Bense et 

al., 2006; Dieterich, 2007).  

It is important to note here, that all these stimulations have confounding effects but they have 

to be used during functional neuroimaging, because more natural stimulation of the vestibular 

periphery via actual head movements will lead to severe artifacts in MRI and correction 

methods for free movement are still under development (for a review see Zaitsev et al. 2015). 

Caloric vestibular stimulation 

It is mostly believed that caloric vestibular stimulation (CVS) acts upon the semicircular 

canals by inducing a convective flow caused by temperature changes relative to the body 

temperature (Barany, 1906; Friberg et al., 1985; Aw et al., 2000; Arai, 2001; Maes et al., 

2007). However, it was also demonstrated that CVS induced nystagmus occurs in 

microgravity, suggesting that there might also be another mechanism of stimulation, possibly 

shifting discharge rates of hair cells (Scherer and Clarke, 1987). The stimulation can be done 

by using hot (>40°C) or cold (≤30°C) water (air) irrigation of one (monothermal stimulation) 

or both ears (bithermal stimulation). A maximal stimulation of the horizontal canal with CVS 

can be achieved by putting subjects in a supine position with their head tilted 30° forward in 
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order to align the horizontal canal perpendicular to the direction of gravity. CVS then leads to 

a horizontal-rotatory nystagmus and a profound rotatory vertigo.  

The confounding effects of CVS are the simultaneous stimulation of the vagal nerve, the 

somatosensory (tactile, thermal, pain), and auditory system due to the injection of water into 

the external ear canal. 

Galvanic vestibular stimulation 

Galvanic vestibular stimulation uses electrical current flow (>1 mA) with an electrode placed 

over the mastoid bone. It was suggested that it stimulates the entire vestibular nerve (eighth 

cranial nerve) at the axon hillock, where the electrical potential needed for generating action 

potentials is lowest (Goldberg et al., 1982, 1984; Zink et al., 1998; Schneider et al., 2002; 

Fitzpatrick and Day, 2004; Curthoys and MacDougall, 2012). This means GVS influences the 

firing rate at the eighths nerve to cause vestibular sensations. Note that this can result in a 

stimulation of all afferents of the vestibular end organs, canals and otolith organs alike, as the 

whole nerve is stimulated. It is believed that GVS increases the firing rate at the side of the 

cathode and decreases the firing rate at the side of the anode at those time intervals of the 

stimulation when the stimulation current is changing (Goldberg et al., 1984). This implies that 

a constant or direct current stimulation will change the firing rate only during the onset (or 

offset) of the direct current galvanic vestibular stimulation (DC-GVS), but not during the 

phase of the stimulation when the current is constant. This also means that the firing rate 

changes continuously during an alternating current galvanic vestibular stimulation (AC-GVS), 

e.g., when applying a sinusoidal stimulation current (Goldberg et al., 1982, 1984; Schneider et 

al., 2002; Fitzpatrick and Day, 2004; Stephan et al., 2005, 2009; Lopez et al., 2012). GVS 

modulates and excites all aspects of the vestibular network, as it stimulates the whole nerve 

and leads to vertigo, ocular torsion and rotatory nystagmus in the case of AC stimulation 

(Schneider et al., 2002; Fitzpatrick and Day, 2004; Stephan et al., 2005). In the case of DC 

stimulation, GVS leads to a feeling of head tilt, and torsion of the eyes around the gaze 

direction (Zink et al., 1997, 1998). The  perceptual  effect  is  akin  to  feeling  “pushed”  or 

“nudged”,  and  occurs  in the onset and offset phase of the stimulation, and subsides over the 

course of the constant stimulation when the current does not change (Zink et al., 1998; 

Schneider et al., 2002; Stephan et al., 2009).  

The confounding effects of GVS are the stimulation of the skin around the electrodes leading 

to tactile and nociceptive sensations activating the somatosensory system and possibly a 



 

8 
 

stimulation of the vagus nerve, metallic taste on the tongue and increased saliva production 

due to stimulation of the chorda tympani, as well as the potential elicitation of phosphenes 

due to the electrode placement in the vicinity of the inferior occipital cortex. Using sustained 

DC-GVS it was possible to distinguish the vestibular and somatosensory response in fMRI 

(Stephan et al., 2009). This is possible due to the different time courses of the vestibular 

sensation, occurring especially at the onset and offset of stimulation, in contradistinction to 

the somatosensory sensations that are continuously present throughout the stimulation 

(Stephan et al., 2009).  

Short tone burst (“Clicks”) vestibular stimulation 

Tone  burst  “clicks”  (usually 500 Hz sounds of 110 dB-SPL or louder) are believed to 

influence mainly the otolith organ saccule, (probably also to a smaller amount the utricle), due 

to the differential pressure of the sound waves leading to motion of the otoliths (Colebatch et 

al., 1994; Rosengren et al., 2005).  Tone  burst  “clicks”  do  not  influence  the  flow  in  the 

semicircular canals of the labyrinth, but the stimulation of the otoliths have been shown to 

create interactions with signals from the semi-circular canals. This means  tone burst “clicks” 

only interfere with signals from semi-circular canals by virtue of stimulating the otoliths, but 

do not stimulate the canals themselves (Miyamoto et al., 2007; Janzen et al., 2008; 

Schlindwein et al., 2008; Lopez et al., 2012).  

Tone bursts and “clicks” are confounded by  the activation of  the auditory system and, if loud 

enough, may be experienced as a painful sensation.     

Magnetic vestibular stimulation 

Magnetic vestibular stimulation (MVS), has recently been proposed as another form of 

vestibular stimulation that occurs in the presence of strong magnetic fields (>1 tesla). MVS 

might potentially be present during all fMRI experiment (Roberts et al., 2011; Antunes et al., 

2012; Glover et al., 2014; Ward et al., 2014a, 2015; Boegle et al., 2016). It was shown that 

healthy subjects exposed to the static magnetic field of a MR scanner developed a persistent 

nystagmus (in total darkness), while patients with bilateral peripheral vestibular failure did not 

show any nystagmus (Roberts et al., 2011). This supports the hypothesis that MVS actually 

originates in the inner ear. It was proposed that the ionic currents coming from hair cells in 

the inner ear are diverted by a Lorentz-force (Roberts et al., 2011). This creates an endolymph 

flow diverting the cupula,  “the  rotatory  motion  sensor”  of  the  inner ear, resulting in a 

nystagmus akin to an accelerating rotatory stimulation (Glover et al., 2014; Jareonsettasin et 
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al., 2016). The orientation-dependency of the Lorentz-force in the magnetic field of an MRI 

scanner also explains why the nystagmus’ slow phase velocity (SPV) depends on the subject’s 

head orientation within the magnetic field (Roberts et al., 2011). This model was further 

supported by several studies (Antunes et al., 2012; Glover et al., 2014; Ward et al., 2014a; 

Jareonsettasin et al., 2016). Analogous behavioral and neural effects were reported for 

animals (e.g. see: (Saunders, 2005; Houpt et al., 2013; Ward et al., 2015)).   

Consequently, it was speculated that this magnetic vestibular stimulation (MVS) might 

influence fMRI results (Roberts et al., 2011), as nystagmus is indicative of an imbalance in 

the vestibular system, potentially influencing also other systems via multisensory vestibular 

interactions (Boegle et al., 2016). 

Summary of the neural correlates for vestibular stimulations 

Functional imaging has long been used to study the multisensory vestibular network in 

healthy subjects, as well as diseases of the vestibular system (e.g. for review see: Dieterich & 

Brandt 2008; zu Eulenburg et al. 2012; Lopez et al. 2012; Besnard et al. 2015).  

While neural correlates due to MVS had not been investigated until our study (Boegle et al., 

2016), there are a many studies with respect to the other three stimulation methods CVS 

(Bottini et al., 1994, 2001; Suzuki et al., 2001; Becker-Bense, 2003; Dieterich et al., 2003; 

Marcelli et al., 2009), GVS (Lobel et al., 1998; Bense et al., 2001; Stephan et al., 2005; 

Eickhoff et al., 2006; Cyran and Boegle et al., 2016), and STB “Clicks” (Miyamoto et al., 

2007; Janzen et al., 2008; Schlindwein et al., 2008).  

These show a convergence of activated areas over a larger network with activations mainly in 

the insular, and retroinsular cortex, parietal operculum, the superior temporal gyrus, the 

supramarginal gyrus, the inferior parietal lobe, the inferior frontal gyrus, the anterior cingulate 

gyrus, the thalamus, the cerebellum, the basal ganglia, and the hippocampus in both 

hemispheres, with a particular preponderance of activation on the right hemisphere for right-

handed individuals, and on the left hemisphere for left-handed individuals (Bottini et al., 

1994; Lobel et al., 1998; Brandt and Dieterich, 1999; Bense et al., 2001; Dieterich et al., 

2003; Stephan et al., 2005; Schlindwein et al., 2008; Lopez and Blanke, 2011; Lopez et al., 

2012; zu Eulenburg et al., 2012).   
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The state of knowledge with respect to the cortical 

vestibular network 

Many basic network properties of the multisensory vestibular cortical network remain 

unknown, despite multiple studies researching the neural correlates of stimulations of the 

vestibular end organs. This is mainly due to the fact that the areas that have been found in 

terms of “analysis of co-activation”. This means that the areas were identified with vestibular 

processing by evaluating increases or decreases in activation level during application of CVS, 

GVS, and STBs (“clicks”). The association of these areas into networks was previously 

inferred by considering other sources, e.g. animal research. However, it is now also possible 

to infer networks from fMRI functional connectivity analysis that associates areas into 

networks based on their spatiotemporal signal behavior (Beckmann and Smith, 2004; 

Beckmann et al., 2005; Smith et al., 2009; Garrett et al., 2010, 2011).  

Open questions 

The network relationship of the aforementioned co-activated areas is not established. The 

dynamics of the networks in regard to the progression of the stimulation remain largely 

unknown. Furthermore, the confounding effects of the stimulation methods (see above) make 

a distinction of vestibular and other influences difficult.  

Therefore, the following questions were addressed:  

“Is it possible to distinguish networks associated with the confounding effects from 

networks associated with the vestibular response?”  

“Which areas overlap between these networks, i.e., which areas are potentially 

multisensory, or integration areas?”  

“Is there a purely vestibular area in the cortex or are all cortical areas receiving vestibular 

input multisensory, i.e., mixed with other sensory signals?” 

 

The dynamics of the networks over the lifespan remain unknown. Note that any effects that 

occur during healthy aging can have important implications for the various studies that have 

investigated responses for patient versus controls. Most of the patients involved in such 

studies have already reached a stage of advanced age post-maturation (>50 years of age), but 

patients suffering from an acute vestibular failure (e.g. vestibular neuritis) can be of any age 

and the status of their network dynamics may be an important factor in how they respond to 

this challenge during rehabilitation.  
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The associated questions here were:  

“Is the response from the network under a challenge different across the  lifespan?”   

“Does the compensation in response to disease change over the ages based on the 

underlying  properties of the network across the ages?”  

 

For almost 25 years dizziness in MR-scanners has been reported and linked with the strong 

magnetic fields used in MRI (e.g. Schenck 1992), but it is still unclear how this affects the 

vestibular system and BOLD-responses in functional imaging. It has recently been shown that 

healthy subjects develop a persistent nystagmus in the magnetic field of a MR environment 

(Roberts et al., 2011). The presence of a spontaneous nystagmus is indicative of a vestibular 

imbalance and it was speculated that this magnetic vestibular stimulation (MVS) might lead to 

modulations of fMRI results, given that modulations of resting-state networks have been 

shown in response to vestibular imbalances caused by peripheral vestibular dysfunctions 

(Roberts et al., 2011; Göttlich et al., 2014; Helmchen et al., 2014; Klingner et al., 2014).  

Therefore, the question remains  

“Does MVS influence network dynamics via an interaction due to vestibular imbalance as 

indicated by the spontaneous  nystagmus?”  
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Aim of the thesis 

The thesis focuses on the study of vestibular function and vestibular interaction with an array 

of brain areas, and sensory systems by means of functional neuroimaging. We have conducted 

basic scientific research to fill some of the knowledge gaps with regard to network properties, 

the influence of aging, and strong magnetic fields encountered in a MR environment upon 

these network properties.  

The purpose of this doctoral thesis is to derive suggestions for researchers interested in the 

vestibular system, to extend the kind of questions that can be answered by functional MRI 

experiments and improve these investigations for the benefit of clinically relevant research of 

patients and healthy controls.  

The effects of aging on the vestibular network 

A cross-sectional aging study of 45 mature subjects (>20 years of age to 70 years of age) was 

performed with DC-GVS (Cyran and Boegle et al., 2016). The aim was to explore the 

changes of the connectivity and temporal variability of brain networks that are available to the 

average healthy adult throughout their post-adolescence lifespan. This is based on the idea 

that connectivity can be interpreted as the foundation for responding to challenges, be it either 

to an artificial stimulation or compensating a peripheral vestibular disease. The study used 

DC-GVS to activate all afferents of the vestibular end organs and employs a square-shape 

time course for the stimulation, i.e., a sustained current. This stimulation shape allows the 

differentiation of vestibular and somatosensory responses, as it was previously shown that the 

perceived vestibular sensations occur at the onset and offset while the somatosensory 

sensations occur continuously during the stimulation (Stephan et al., 2009). We set out to 

characterize the stimulated networks across the lifespan. For this we went beyond the usual 

examination of response amplitudes, and included analysis of spatiotemporal correlatedness, 

as well as temporal dispersion of the responses (Beckmann and Smith, 2005; Garrett et al., 

2010; Cyran and Boegle et al., 2016). The study also included a motor-task control 

experiment, as well as analysis of anatomical changes in grey matter volume, and structural 

fiber integrity using diffusion tensor imaging (DTI) to account for non-specific changes with 

age (general vascular, atrophic, or structural changes).  

The effects of strong magnetic fields on resting state networks 

This experiment aimed to identify and delineate the modulatory effects of magnetic vestibular 

stimulation (MVS) on resting-state network fluctuations of 30 healthy adults (Boegle et al., 
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2016). This study also wanted to verify the effects of previous studies suggesting a Lorentz-

force model as the cause for the nystagmus slow phase velocity in a magnetic environment 

(Roberts et al., 2011) and established that MVS does scale linearly with field strength giving 

further support to the Lorentz-force model of MVS (Boegle et al., 2016). We recorded eye 

movements as well as resting-state fMRI of 30 healthy subjects in darkness at 1.5 tesla and 

3.0 tesla magnetic field strength. We hypothesized that the scaling of MVS, as established 

from the nystagmus’  SPV, should be identifiable in the scaling of the resting-state network 

fluctuations, indicating modulations due to a varying vestibular arousal. We demonstrated that 

this is indeed the case, focusing on the default mode network (DMN). This network was 

previously shown to be modulated in patients with peripheral vestibular dysfunction, i.e., the 

DMN was indicated to be modulated due to vestibular imbalances and therefore MVS was 

also expected to have a similar effect on this network (Göttlich et al., 2014; Helmchen et al., 

2014; Klingner et al., 2014; Boegle et al., 2016).   
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Cumulative Thesis 

This cumulative thesis consists of two articles published in peer-reviewed journals. The title 

and abstract of each publication are presented together with the author contributions. The full 

publications with the copyright forms can be found in the appendix of this thesis.  
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Abstract 

In the elderly, major complaints include dizziness and an increasing number of falls, possibly 

related to an altered processing of vestibular sensory input. In this study, we therefore 

investigate age-related changes induced by processing of vestibular sensory stimulation. 

While previous functional imaging studies of healthy aging have investigated brain function 

during task performance or at rest, we used galvanic vestibular stimulation during functional 

MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on 

central vestibular processing, which might only become apparent during stimulation 

processing. Since aging may affect signatures of brain function beyond the BOLD-signal 

amplitude -such as functional connectivity or temporal signal variability- we employed 

independent component analysis and partial least squares analysis of temporal signal 

variability. We tested for age-associated changes unrelated to vestibular processing, using a 

motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to 

control for general age-related modifications, possibly originating from vascular, atrophic or 

structural connectivity changes. Age-correlated decreases of functional connectivity and 

increases of BOLD-signal variability were associated with multisensory vestibular networks. 

In contrast, no age-related functional connectivity changes were detected in somatosensory 
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networks or during the motor paradigm. The functional connectivity decrease was not due to 

structural changes but to a decrease in response amplitude. In synopsis, our data suggest that 

both the age-dependent functional connectivity decrease and the variability increase may be 

due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal 

vestibular integration of sensory inputs. (Cyran and Boegle et al., 2016) 

Author contribution 

The Author of this thesis participated in measuring the subjects, analyzed the functional 

imaging data for functional connectivity and performed the data denoising for the analysis of 

temporal variability, as well as writing substantial parts of the manuscript, and created figures 

2, 3, and 4 of the attached publication. 

  



 

17 
 

Magnetic vestibular stimulation modulates default mode 

network fluctuations 

R. Boeglea,b, T. Stephana,b,c, M. Ertlb,c, S. Glasauera,b,d, and M. Dietericha,b,c,e 

aGerman Center for Vertigo and Balance Disorders (DSGZ-IFBLMU),  
Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany 

bGraduate School of Systemic Neurosciences,  
Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany 

cDepartment of Neurology,  
Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany 

dCenter for Sensorimotor Research,  
Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany 

eSyNergy: Cluster for Systems Neurology, Munich, Germany 

Abstract 

Strong magnetic fields (>1 Tesla) can cause dizziness and it was recently shown that healthy 

subjects (resting in total darkness) developed a persistent nystagmus even when remaining 

completely motionless within a MR tomograph. Consequently, it was speculated that this 

magnetic vestibular stimulation (MVS) might influence fMRI results, as nystagmus is 

indicative of an imbalance in the vestibular system, potentially influencing other  systems via 

multisensory vestibular interactions. The objective of our study was to investigate whether 

MVS does indeed modulate BOLD signal fluctuations. We recorded eye movements, as well 

as, resting-state fMRI of 30 volunteers in darkness at 1.5 T and 3.0 T to answer the question 

whether MVS modulated parts of the default mode resting-state network (DMN) in 

accordance with the Lorentz-force model for MVS, while distinguishing this from the known 

signal increase due to field strength related imaging effects. Our results showed that 

modulation of the default mode network occurred mainly in areas associated with vestibular 

and ocular motor function, and was in accordance with the Lorentz-force model, i.e., double 

than the expected signal scaling due to field strength alone. We discuss the implications of our 

findings for the interpretation of studies using resting-state fMRI, especially those concerning 

vestibular research. We conclude that MVS needs to be considered in vestibular  research to 

avoid biased results, but it might also offer the possibility of manipulating network dynamics 

and may thus help in studying the brain as a dynamical system. (Boegle et al., 2016) 
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Author contribution 

The Author of this thesis planned the experiment, measured the subjects, performed the data 

analysis, wrote major parts of the manuscript, and created all figures.  



 

19 
 

General Discussion 

Purpose of this thesis 

The purpose of this thesis is to develop suggestions for studying the multisensory vestibular 

network and the influence of vestibular modulations on resting-state networks with functional 

magnetic resonance imaging (fMRI). The focus lies on basic scientific investigations of (1) 

the influence of aging on the ability of subjects to respond to a challenge of the multisensory 

vestibular network, and (2) the modulatory influence of magnetic fields (the MR 

environment) on functional imaging and resting-state networks in general. To this end, two 

studies were carried out, one focusing on the effects of galvanic vestibular stimulation (GVS) 

on the multisensory vestibular network across the lifespan, and another study focusing on the 

effects of magnetic vestibular stimulation (MVS) on resting-state networks, in particular the 

default mode network (DMN).   

Summary of the studies performed 

The first study was a cross-sectional aging study investigating the modulation of vestibular, 

somatosensory and motor networks in healthy adults (N=39 of 45 in total, age 20 to 70 years, 

17 males; of the total N=14 with age 20 to 40 years, mean age=27.3±4.4 years, 6 males; N=12 

with age 40 to 60 years, mean age=52.3±5.0 years, 5 males, and N=13 with age >60 years, 

mean age= 67.1±2.4 years, 6 males). We used GVS to stimulate all afferences of the 

peripheral vestibular end organs in order to activate the entire multisensory vestibular network 

as age-associated changes might be specific to sensory processing (Goldberg et al., 1982, 

1984; Zink et al., 1998; Schneider et al., 2002; Stephan et al., 2005, 2009; Cyran and Boegle 

et al., 2016). The time course of stimulation was designed to allow for a separation of 

vestibular and somatosensory processing based on the temporal properties of sustained DC-

GVS (Stephan et al., 2009). In addition to vestibular and somatosensory stimulation, we also 

controlled for changes of the motor network, structural fiber integrity (fractional anisotropy – 

FA), and volume changes to simultaneously compare the effects of aging across structure and 

function. 

The second study investigated the influence of the static magnetic field of the MR 

environment in a group of healthy subjects (N=27 of 30 in total, age 21 to 38 years, mean 

age= 26.5±4.6 years, 19 females), as it was recently shown that a strong magnetic field 

produces a vestibular imbalance in healthy subjects (Roberts et al., 2011). It was speculated 
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that this magnetic vestibular stimulation (MVS) might influence fMRI results (Roberts et al., 

2011; Boegle et al., 2016). We examined MVS at field strengths of 1.5 tesla, and 3 tesla and 

analyzed the associated spontaneous nystagmus, the scaling of the nystagmus’  slow  phase 

velocity (SPV) across field strengths, and identified the analogous scaling relationship in the 

modulation of DMN amplitudes between 1.5 tesla, and 3 tesla to reveal its effect on fMRI 

results (Boegle et al., 2016). Furthermore, the between subject variance associated with MVS 

across field strengths was investigated by  analyzing  the  nystagmus’  SPV  in  four  different 

head positions across field strengths of 1.5 tesla, and 3 tesla. 

Summary of the main results and conclusions of our two studies 

We were able to demonstrate that aging and MVS modulate networks associated with 

vestibular function and resting-state networks known for vestibular interactions (Göttlich et 

al., 2014; Helmchen et al., 2014; Klingner et al., 2014; Boegle et al., 2016; Cyran and Boegle 

et al., 2016). 

The results from our aging study imply that the dynamics of vestibular networks are limited 

by the influence of aging even in healthy adults without any noticeable vestibular deficit 

(Cyran and Boegle et al., 2016). Vestibular networks show a decline of functional 

connectivity with age and an increase of temporal variability (in excess of stimulation induced 

changes) with age (Cyran and Boegle et al., 2016). Most notably, aging modulates vestibular 

networks differently than somatosensory or motor networks. Somatosensory and motor 

networks did not show any significant linear relationship with age, or any significant changes 

between the youngest and oldest participants, in contradistinction to the vestibular networks 

(Cyran and Boegle et al., 2016). We were also able to show that the somatosensory and 

vestibular networks overlap in a region covering the posterior insula, which we infer as an 

indication of multisensory integration in this area (Cyran and Boegle et al., 2016). We were 

able to demonstrate that age-associated structural changes (gray matter volume changes or 

structural connectivity changes) did not explain the decline in functional connectivity or 

increase in temporal variability (Cyran and Boegle et al., 2016). Furthermore, stimulation 

thresholds did not change with age (nor did they correlate with the functional connectivity 

amplitudes or temporal variability), indicating that the age-associated changes that were found 

for the vestibular network, were not dependent on peripheral decline, as GVS is thought to 

directly stimulate the vestibular nerve (Goldberg et al., 1982, 1984, 2012). 
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The results from our study of the influence of the static magnetic field of the MR environment 

showed that MVS was already present at a field strength of 1.5 tesla, as evident from the 

induced nystagmus (Boegle et al., 2016). Furthermore, we were able to show that MVS scaled 

linearly with field strength between 1.5 tesla, and 3 tesla (Boegle et al., 2016). We identified 

the effects of MVS in the scaling of functional resting-state network fluctuations, showing 

that MVS does indeed influence resting-state networks due to vestibular imbalance (Boegle et 

al., 2016). Specifically, MVS does influence DMN resting-state network dynamics in 

accordance with the predicted scaling of MVS based on the Lorentz-force model for MVS 

(Roberts et al., 2011). The between subject variance in SPV was increased with magnetic field 

strength, which further supports the Lorentz-force model that posits a multiplicative influence 

of the magnetic field (Roberts et al., 2011). Taken together, these results not only imply that 

subjects were in a vestibular state of imbalance, but also that the extent and direction of the 

state of imbalance showed more variance between subjects with increasing field strength. This 

is in line with a multiplicative relationship with the magnetic field strength, as expected for an 

effect governed by a Lorentz-force relationship (Roberts et al., 2011; Boegle et al., 2016).  
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Does aging impact vestibular research results?  

Aging of peripheral and central vestibular structures 

It is well known that peripheral vestibular end organs, like any other sensory organ, 

deteriorate with age (for an overview see (Ishiyama, 2009; Fernández et al., 2015; Maheu et 

al., 2015)). Peripheral vestibular structures such as hair cell counts, the number of nerve 

fibers, and the size of the otoconia have been demonstrated to decrease with age (Bergström, 

1973; Rosenhall, 1973; Ross et al., 1976; Igarashi et al., 1993; Lopez et al., 2005; Walther and 

Westhofen, 2007). Behavioral testing of physiology such as head thrust dynamic visual acuity 

testing, ocular and cervical vestibular evoked myogenic potentials, as well as timed balance 

tests show declining trends (in the case of timed balance tests it is an increase in time needed 

for stable execution) (Bohannon et al., 1984; Furman and Redfern, 2001; Welgampola and 

Colebatch, 2001; Agrawal et al., 2012; Wiesmeier et al., 2015). However, it is interesting to 

note that some clinical tests such as caloric testing or video head impulse test (HIT) remain 

relatively unaffected during aging, e.g., gain reduction was estimated to be 0.012 per decade 

and significant gain difference has only been found from 90 years of age (Matiño-Soler et al., 

2015). In other words, the behavioral function of the overall system is maintained until high 

age. This means that central mechanisms have adapted to preserve performance despite the 

change in nerve cells at the periphery. 

It is important to note here that most of what is known about compensation in the vestibular 

system is known from studies regarding the response of the system to vestibular disease, i.e., 

sudden and dramatic changes of vestibular input to the system, e.g., following unilateral 

peripheral vestibular failure. The compensatory mechanisms mainly involve shifts towards 

other sensory inputs as the system as a whole is multisensory in nature (Bles et al., 1983, 

1984; Möller and Ödkvist, 1989; Cass and Goshgarian, 1991; Curthoys and Halmagyi, 1995; 

Curthoys, 2000; Bense et al., 2004a, 2004b; Dieterich et al., 2007; zu Eulenburg et al., 2010; 

McCall and Yates, 2011; Devèze et al., 2015; Micarelli et al., 2016; Lacour et al., 2016). It is 

therefore possible that such a shift, i.e., a reweighting of the inputs in the multisensory 

processing may also occur during age-associated deterioration of the vestibular end organs. In 

the case of disease, if the vestibular nerve is severely and permanently damaged, this shift 

towards other sensory inputs is especially strong as the input from the vestibular system is 

either permanently lacking or very noisy (Curthoys and Halmagyi, 1995; Dieterich et al., 

2007; zu Eulenburg et al., 2010; Lacour et al., 2016). It has been shown that this shift first 

occurs towards visual inputs (Bense et al., 2004a, 2004b; Dieterich, 2007; zu Eulenburg et al., 
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2010; Becker-Bense et al., 2013) which are especially dominant in humans and other apes, 

and that this can also a followed by a shift towards the somatosensory system (Bles et al., 

1983, 1984), and even the auditory system if special prosthetics are used (Hegeman et al., 

2005), that deliver meaningful input for the auditory system (head motion transformed to 

sound). In squirrel monkeys it has been shown that exercise is beneficial for compensation 

(Igarashi et al., 1979, 1989). For humans reweighting towards visual signals are the first and 

fastest changes, as patients perform significantly better in eyes-open condition one month 

after disease onset while eyes-closed performance has not improved much at that point and 

can be shown to need a longer time and depends strongly on somatosensory input (Lacour et 

al., 1997, 2016; Gauchard et al., 2001; Devèze et al., 2015).  

There are two interpretations for these results in relation to our aging study. Either, these 

results imply that the sensitivity of the system (as a whole) is only slightly reduced, indicating 

that an adaptation of vestibular gains or compensation via sensory substitution has occurred 

that has stabilized the overall sensitivity despite cell loss (Maheu et al., 2015). The alternative 

interpretation is that the aforementioned measures may not have been sensitive enough to 

detect early or subtle age-related changes that occur before disease onset (Dowiasch et al., 

2015; Scheltinga et al., 2016). In other words, the function is preserved because central 

adaptations, possibly by compensation via sensory substitution has occurred that cannot be 

detected in behavior. 

What approach is necessary for detecting aging effects?  

The results from our neuroimaging aging study imply that the dynamics of vestibular 

networks were already limited by the influence of aging in healthy subjects (Cyran and 

Boegle et al., 2016). The change in connectivity and temporal variability might on one hand 

be related to the preservation of the behavioral response only leading to a slow decline prior 

to age 90 (Matiño-Soler et al., 2015). In other words our results might indicate that a form of 

central vestibular compensation has taken place. This might have slowed the decline, but it 

also cannot fully preserve the function of the balance system, hence the slow decline in 

functional connectivity. On the other hand, the decline in connectivity (and temporal 

variability increase) might be an early sign of a reduced ability to respond to a challenge when 

clinical behavioral tests still show little to no deficits (Dowiasch et al., 2015; Cyran and 

Boegle et al., 2016; Scheltinga et al., 2016).  
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Note that aging may be defined as ongoing damage and compensation that will eventually 

lead to a state where further damage cannot be compensated adequately, and nonlinear 

descent into chaos occurs, i.e. disease.  

Two recent studies have shown that clinical laboratory tests (e.g., head impulse test and 

caloric stimulation test of canal paresis) are not as sensitive as real world tests such as free 

gaze while walking or stance balance tests (Dowiasch et al., 2015; Scheltinga et al., 2016). 

Subtle changes, specifically that older patients with unilateral peripheral deficits recover 

balance control slower than younger patients, have been missed in previous studies 

(Scheltinga et al., 2016). This corroborates our hypothesis of early asymptomatic vestibular 

decline as indicated by the functional connectivity changes (Cyran and Boegle et al., 2016; 

Scheltinga et al., 2016). It is particularly noteworthy that Scheltinga and coauthors showed 

that their patients did not recover peripheral function, as canal paresis could be shown to 

persist while patients improved in stance balance test performance, indicating central 

compensation (Scheltinga et al., 2016). In fact, younger patients showed almost no difference 

from normal controls for stance balance tasks in the course of a unilateral peripheral failure. 

This indicates that their balance control was very robust early on while the balance control of 

the middle-aged and elderly was strongly affected and needed a substantial amount of time to 

recover, and the time to recovery increased with the age of participants (Scheltinga et al., 

2016).  

As noted above, studies examining the same parameters as accessed in vestibular disease did 

not find any significant changes during most of the lifespan, although it is known that cell loss 

occurs, suggesting that compensation must have happened, and that the changes found in 

neuroimaging may be related to the reported longer recovery time for balance tests (Cyran 

and Boegle et al., 2016; Scheltinga et al., 2016). 

Does functional connectivity represent a “reservoir of resilience”? 

Thus, we interpret the vestibular network dynamics as the central “reservoir of resilience” that 

is available for adjusting responses when facing a vestibular challenge. The idea is that the 

remaining  functional  connectivity  of  the  vestibular  system  can  be  used  as  a  “reserve”  for 

compensation and  therefore a greater “reserve”  is present (on average) at a younger age.  This 

does also imply that monitoring of the functional connectivity of a subject could be used as a 

predictor for how well that subject can respond to a vestibular challenge.  
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Patients with unilateral hypofunction or complete loss of one side (i.e., loss of 50% vestibular 

sensory input) have the capability to adjust their central processing to respond to this 

enormous change in peripheral sensory input (e.g. see (Bense et al., 2004a; Becker-Bense et 

al., 2014; Göttlich et al., 2014; Helmchen et al., 2014; Klingner et al., 2014)). That is by far a 

more extensive and sudden change that has to be adjusted for via central adaptation and 

sensory substitution than the age-related decline of the vestibular end organs. This also 

reinforces the view that the pattern of decline seen in our study is an early sign of central 

compensation even when no behavioral effects are noticeable (Cyran and Boegle et al., 2016; 

Scheltinga et al., 2016).  

Based on this idea of functional connectivity strength as a “reservoir of resilience”, we predict 

that younger patients that suffer from a peripheral vestibular failure should also (on average) 

recover better due to the (on average) higher functional connectivity of the vestibular system 

and (on average) lower temporal variability, than older patients who should have (on average) 

lower functional connectivity and (on average) higher temporal variability.   

Therefore, in consideration of our results and the literature it is clear that the initial question, 

whether vestibular research is influenced by age, should be answered in the affirmative. 
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Does magnetic vestibular stimulation impact vestibular 

research results? 

The study of the influence of magnetic fields on biological systems has a long history and 

many significant advances have only been made in the last 25 years since the advent of MRI 

(Schenck, 1992). Even before MRI was available, effects of magnetic stimulation and 

associated vertigo were described ever since the advent of MR-spectroscopy using high 

magnetic field strengths (Schenck, 1992). However, MRI made the application of strong 

magnetic fields on a large area that humans can enter possible and necessitates the study of its 

effects for safety regulations (Schenck, 1992).  

Overview of human and animal studies regarding magnetic vestibular 
stimulation 

Studies with mammals (e.g., rats, mice, and humans) have revealed signs of vestibular 

imbalance and dizziness in magnetic fields above 1.5 tesla (Weiss et al., 1992). For rats and 

mice in particular it has been shown that the behavioral effects in response to magnetic field 

exposure depend on the intact labyrinth of the animals (Houpt et al., 2007). Furthermore, 

neuronal activity in the brain stem due to the presence of a magnetic field was indicated via 

immunohistochemistry labeling of c-fos, (a protein associated with the generation of action 

potentials), and it was shown that this signal was abolished by labyrinthectomy (Cason et al., 

2009). Motion seemed to intensify the effects, but the effects were also present when the 

animals were restrained (Lockwood et al., 2003; Houpt et al., 2011). 

Since the proposal of the Lorentz-force model (Roberts et al., 2011) all the behavioral  and 

neuronal correlates in animals can be explained more thoroughly (Houpt et al., 2013). 

Specifically, the distribution of c-fos in the vestibular nuclei of the rats was shown to depend 

on the  angle  of  the  rat’s  inner ear relative to the field, and this was also reflected in the 

behavior of the rats, i.e., they swam in circles (“circling behavior”) after 15 min exposure to 

the magnetic field (Houpt et al., 2013). If the mice were oriented 90° relative to the field, no 

significant c-fos induction (relative to sham treatment group) could be shown and these mice 

did not show circling behaviors. In contrast, an orientation at 0° and 180° relative to the field 

produced significant c-fos induction in the vestibular nuclei with a left-right asymmetry. This 

asymmetry was reverse for 180° vs 0° orientation and reflected in the circling behavior which 

was either clockwise or counter-clockwise, respectively (Houpt et al., 2013).  



 

27 
 

In humans it was shown that  the  temporal  dynamics  of  the  nystagmus’  SPV  are  similar  to 

those known from rotational stimulation or caloric irrigation studies (Glover et al. 2014; 

Jareonsettasin et al. 2016). A simulation study regarding the magneto-hydrodynamic forces 

acting on the cupula showed that the expected Lorentz-force should be strong enough to cause 

nystagmus (Antunes et al., 2012). A study of patients with unilateral labyrinthine disorders 

showed that the nystagmus direction is dependent on the interaction of signals from the 

semicircular canals from both ears, further supporting the idea that the labyrinth is the part of 

the inner ear that is mainly affected by the magnetic field (Ward et al. 2014). More 

specifically, MVS stimulates all three canals of both ears, but due to the reciprocal interaction 

of the anterior and posterior canals of opposite ears, only healthy subjects show a horizontal 

nystagmus, while patients with unilateral loss show an additional vertical component in the 

nystagmus because the inhibitory opposite side is lost (Ward, Roberts, et al. 2014). This 

supports the idea that the labyrinth is the part of the inner ear that is mainly affected by the 

magnetic field (Roberts et al., 2011; Glover et al., 2014; Ward et al., 2014a).  

In short, various animal and human studies using behavioral and neural correlates showed that 

magnetic fields influence the peripheral vestibular end organs, and that the central nervous 

system is affected via the multisensory vestibular system (e.g. (Weiss et al., 1992; Schenck, 

1992; Snyder et al., 2000; Lockwood et al., 2003; Saunders, 2005; Glover et al., 2007, 2014; 

Cason et al., 2009; Roberts et al., 2011; Houpt et al., 2013; Ward et al., 2014a, 2014b; Boegle 

et al., 2016; Jareonsettasin et al., 2016)). 

How neuroimaging studies of vestibular function might be affected by MVS 

These results support that our approach for identifying the modulations due to MVS in 

resting-state fMRI data, based on transferring the scaling relationship of the Lorentz-force 

model to fMRI modulations, was well justified (Triantafyllou et al., 2005; Duyn, 2012; 

Boegle et al., 2016).  

Our results raise questions about the influence of MVS on fMRI above 1.5T field strength, 

and in particular about fMRI studies on the function of the vestibular system and the influence 

of vestibular deficits. It is important to keep in mind that the effect of MVS is not like the 

constant acoustic noise stimulation during fMRI. MVS induces an imbalance state with a 

directional preponderance, i.e., has a signed difference effect, unlike acoustic noise that can 

be supposed to be equal and balanced for the auditory network and its connections. Thus, 

healthy subjects measured under MVS influence (i.e., in a MR scanner) might be more like a 
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“special  patient  group  with  a  vestibular  imbalance”  but  without  lesions  in  the  inner  ear  or 

central nervous system (Boegle et al., 2016). 

Recent studies examining patients with vestibular deficits using resting-state fMRI showed 

widespread changes in various networks that also included the DMN similar to our findings 

for MVS (Göttlich et al., 2014; Helmchen et al., 2014; Klingner et al., 2014; Boegle et al., 

2016). Our results suggest caution when interpreting such studies.  

In the case of bilateral vestibular loss (Göttlich et al., 2014), it should be noted that the 

patients will not show a MVS influence (Roberts et al., 2011), but the healthy control group 

will be under the influence of MVS (Boegle et al., 2016). This might then lead to changes in 

the comparison of differences between the two groups as examined with fMRI that are not 

expected to appear in imaging methods without the use of strong magnetic fields. In this case, 

the healthy controls might be more akin to patients with acute unilateral vestibular neuritis, 

given that such patients also show a directional imbalance with a horizontal nystagmus, not 

unlike that evoked by MVS (Roberts et al., 2011; Ward et al., 2014a; Boegle et al., 2016).  

For studies of vestibular neuritis patients versus healthy controls (e.g. (Helmchen et al., 2014; 

Klingner et al., 2014)), MVS effects should be expected for both, the patients and the healthy 

controls (Ward et al., 2014a; Boegle et al., 2016). However, MVS will affect patients with 

unilateral vestibular deficits differently than healthy controls (Ward et al. 2014), which will 

then further obscure the real differences between the two groups. This means that the reported 

differences at every time interval during the compensation period relative to the healthy 

control group will be obscured or biased by MVS (Boegle et al., 2016). However, the 

trajectory of recovery of the patients and therefore the trajectory of associated relative 

differences to the healthy controls might not be affected by MVS influence. Thus, the trend of 

the change of the differences over the time intervals of compensation should be unaffected by 

MVS (Boegle et al., 2016). This requires, however, that the subjects are imaged in, at least, 

very similar head positions and field strength at every time interval of compensation to stay 

comparable over the time intervals (Boegle et al., 2016). In the resting-state study on 

vestibular neuritis patients (Klingner et al., 2014) it is interesting to note that no significant 

correlations were found for the caloric testing covariate, although this is usually a good 

indicator of impairment or restoration of vestibular function. One might speculate that MVS 

had obscured this correlation, because MVS seems to share important characteristics in terms 

of temporal dynamics with caloric stimulation (Glover et al., 2014; Jareonsettasin et al., 

2016). 
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In summary, in  a sufficiently strong (e.g. ≥1.5 tesla) magnetic field, MVS will induce a state 

of vestibular imbalance in each healthy subject. The variability between subjects will increase 

with field strength due to the multiplicative nature of the Lorentz-force.  These effects may 

lead to biased results and reduced statistical significance when testing for the statistical 

significance of mean responses related to vestibular stimulation (Boegle et al., 2016). 
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Potential implications for vestibular research with fMRI 

We derive suggestions for studies of the vestibular system with fMRI in healthy controls and 

patients from the results of our studies and the associated literature.  

Effects of age on vestibular research  

In regard to the influence of age, we suggest that researchers comparing patients with 

vestibular deficits and healthy controls should separate the age-matched group into age-strata 

(non-overlapping subgroups with different age spans, e.g. 20-40 years, 40-60 years and above 

60 years of age). Each stratum should be compared and interpreted separately given that 

different age-groups have different levels of vestibular network dynamics available for 

compensation (or responding to a challenge). This is particularly relevant when patients show 

a wide age-distribution, e.g., in the case of patients with unilateral vestibulopathy. 

Further research should be directed towards uncovering factors related to the decline, and if 

possible for improving network dynamics and its relationship to subject performance. This 

may also include an exploration of questions we could not answer with our cross-sectional 

aging study. For example, by performing prospective aging studies including training or 

interventions together with follow up examination. Possible questions which could be 

addressed are:  

“What prevents a connectivity or behavioral decline at higher age?”  

“Can network dynamics be elevated again by training and is this related to balance 

improvements at any age?”  

The idea for an experiment would be to determine the connectivity and temporal variability 

via fMRI during rest and vestibular stimulation (e.g. GVS) and then have the subjects train 

and evaluate them again in several time intervals. 

Furthermore, it is important to note that the sensitivity of brain and behavioral measures 

should be considered when planning a study. As discussed before, certain behavioral 

measures or clinical tests are not sensitive enough to reveal age-related changes, while 

functional neuroimaging is only sensitive enough when measures of network dynamics are 

considered (Garrett et al., 2010; Dowiasch et al., 2015; Cyran and Boegle et al., 2016; 

Scheltinga et al., 2016). 
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Effects of strong magnetic fields on vestibular research 

In regard to the influence of magnetic fields, we suggest that MVS should be seen as a new 

way of manipulating networks that either process vestibular information or show vestibular 

interactions, by using strong magnetic fields (≥1.5 tesla), as commonly used in MRI. The 

potential of modulating vestibular influences on networks via MVS lies in being able to 

induce or manipulate vestibular imbalances. In the healthy this can be used to create states 

that are similar to the diseased state, but without peripheral or central lesions. In patients this 

will allow to extend or reduce vestibular imbalances. In both cases this can be done while 

performing functional MRI simply by using the magnetic field of the MRI and adjusting the 

head position of the subject.  

In studies that need to avoid vestibular perturbations, MVS might be considered a side effect 

or nuisance during functional imaging and should be controlled by adjusting the head position 

and measuring the resulting eye movements. This should then be seen as an effort to remove 

unwanted variance, i.e., as an effort to homogenize the group and achieve better statistical 

results due to less (uncontrolled) MVS interference that increases bias and variance with 

increasing field strength.  

In general, MVS as a method allows the investigation of brain states from the viewpoint of 

“the brain as a dynamic system”. The assumption here is similar to the ideas regarding aging 

and  the  “connectivity  reservoir”  available  for  responding  to  challenges,  in  the sense  that  the 

brain has a vast complex dynamic  that  is  for  the most part “invisible” unless a  response  to a 

challenge is examined. Given methods like MVS it is possible to exert influences on this 

“invisible” dynamic and  then examine how the response  to a challenge  is differing, as a way 

of examining  the “invisible” dynamics of the system. This will also present an opportunity to 

study the influences of vestibular imbalance on higher cognitive functions and multisensory 

interaction that has been raised previously as an important research topic by various authors  

(Hanes and McCollum, 2006; Smith and Zheng, 2013; Mast et al., 2014). 

One exemplary idea regarding the study of patients with an imbalance state would be the 

study of patients that show an upbeat nystagmus when lying down. MVS can be used to 

compensate their nystagmus via an adjustment of the head position (moving ear to shoulder 

induces vertical, i.e., upbeat nystagmus in healthy subjects) while acquiring resting fMRI. 

These subjects can then be compared with healthy controls without the respective nystagmus. 

Another interesting condition would be the comparison of healthy controls that lie in a 

position that produces a nystagmus akin to the patients and have the patients place in such a 
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way that MVS have no influence on their nystagmus and compare these states as well. With 

these comparisons one could account for the effect of the pure nystagmus of patients and 

controls to examine the residual differences that are not related to the pure eye movement but 

the imbalance state itself. 

Summary of suggestions for study design 

In summary, we can rephrase all our suggestions into three short questions that researchers 

could ask themselves when thinking about vestibular research projects in the future. 

Age-grouping:  

 “Is  the  response  to  a  challenge  different  for  younger  adults  than  older  adults,  i.e.,  does 

each age-group compensate differently?” 

MVS modulation:  

“Can  a  manipulation  of  the  imbalance  state  of  our  subjects  with  MVS  help  us  to reveal 

more about the vestibular  network’s  response  to  a  challenge  or  should  we  avoid 

interference by MVS  in the  imbalance state of our subjects?”  

Sensitivity:  

“Is the measure that I want to use sensitive enough to show the differences that I am 

looking for?” Connectivity and temporal variability might be sensitive enough, but many 

clinical tests might not be sufficient. 
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Abstract In the elderly, major complaints include dizzi-

ness and an increasing number of falls, possibly related to

an altered processing of vestibular sensory input. In this

study, we therefore investigate age-related changes induced

by processing of vestibular sensory stimulation. While

previous functional imaging studies of healthy aging have

investigated brain function during task performance or at

rest, we used galvanic vestibular stimulation during func-

tional MRI in a task-free sensory stimulation paradigm to

study the effect of healthy aging on central vestibular

processing, which might only become apparent during

stimulation processing. Since aging may affect signatures

of brain function beyond the BOLD-signal amplitude—

such as functional connectivity or temporal signal vari-

ability—we employed independent component analysis

and partial least squares analysis of temporal signal

variability. We tested for age-associated changes unrelated

to vestibular processing, using a motor paradigm, voxel-

based morphometry and diffusion tensor imaging. This

allows us to control for general age-related modifications,

possibly originating from vascular, atrophic or structural

connectivity changes. Age-correlated decreases of func-

tional connectivity and increases of BOLD-signal vari-

ability were associated with multisensory vestibular

networks. In contrast, no age-related functional connec-

tivity changes were detected in somatosensory networks or

during the motor paradigm. The functional connectivity

decrease was not due to structural changes but to a decrease

in response amplitude. In synopsis, our data suggest that

both the age-dependent functional connectivity decrease

and the variability increase may be due to deteriorating

reciprocal cortico-cortical inhibition with age and related to

multimodal vestibular integration of sensory inputs.

C. A. M. Cyran and R. Boegle contributed equally to the study.

Present Address:

C. A. M. Cyran

Institute of Neurology, University College London,

Queen Square, London WCN1 3BG, UK

C. A. M. Cyran (&) � T. Stephan � M. Dieterich

Department of Neurology, Ludwig-Maximilians-University

Munich, Marchioninistr. 15, 81377 Munich, Germany

e-mail: carolin.cyran.14@ucl.ac.uk

R. Boegle � T. Stephan � M. Dieterich � S. Glasauer

Graduate School of Systemic Neurosciences, Ludwig-

Maximilians-University Munich, Marchioninistr. 15,

81377 Munich, Germany

R. Boegle � T. Stephan � M. Dieterich � S. Glasauer

German Center for Vertigo and Balance Disorders, (IFBLMU),

Ludwig-Maximilians-University Munich, Marchioninistr. 15,

81377 Munich, Germany

T. Stephan � S. Glasauer

Institute for Clinical Neurosciences, Ludwig-Maximilians-

University Munich, Marchioninistr. 15, 81377 Munich, Germany

M. Dieterich

SyNergy: Cluster for Systems Neurology, Munich, Germany

S. Glasauer

Center for Sensorimotor Research, Ludwig-Maximilians-

University Munich, Marchioninistr. 15, 81377 Munich, Germany

123

Brain Struct Funct (2016) 221:1443–1463

DOI 10.1007/s00429-014-0983-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-014-0983-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-014-0983-6&amp;domain=pdf


Keywords Aging � Vestibular � fMRI � Functional

connectivity � Independent component analysis � Temporal

BOLD-signal variability

Introduction

Most fMRI studies examining the effects of healthy aging

on brain activity have so far focused on the traditional

analysis of the BOLD amplitude of task-related responses

(Aizenstein et al. 2004). More recently, however, imaging

research has emphasized the importance of other aspects of

brain activity like spontaneous fluctuations of the BOLD

signal, expressed as functional connectivity (Fox and Rai-

chle 2007) or temporal variability (e.g. see Garrett et al.

2010). Studies of age-related brain activity in particular

have demonstrated the importance of underlying dynamic

functional networks and of temporal BOLD-signal vari-

ability to the performance of the aging brain (Grady and

Garrett 2014; Madhyastha and Grabowski 2014). Measures

of functional connectivity such as the independent compo-

nent analysis (ICA) reveal the strength of relations between

spatially distinct regions of the brain. Imaging of the rest-

ing-state brain demonstrated spatially distinct, but tempo-

rally correlated neural systems also called functional

connectivity maps, which have been shown to depend on

age (Biswal et al. 2010). Balance and spatial orientation

have long been known to involve various sensory systems,

integrating information from the visual, vestibular and

proprioceptive systems (Angelaki and Cullen 2008). Con-

sequently, cerebral vestibular processing seems predestined

to be examined in terms of functional network behavior.

Furthermore, increases and decreases of temporal variabil-

ity of the BOLD signal have been demonstrated to be a

signature of the aging brain (Garrett et al. 2010). Notably,

although temporal variability is increasing and decreasing

with age in different parts of the brain and can generally be

used as a predictor of age (Garrett et al. 2010), an interac-

tion seems to exist between task performance and aging

(Garrett et al. 2011, 2013; Samanez-Larkin et al. 2010;

Wutte et al. 2011). However, since task performance is

often confounded with age, it can be difficult to disentangle

task-related and age-related effects. Several studies, there-

fore, strove to avoid this confound altogether by investi-

gating resting-state activity (Allen et al. 2011; Meier et al.

2012) involving no task and only minimal sensory input.

Nevertheless, many age-related problems in the elderly are

explicitly linked to the processing of sensory information

and may thus only become evident with stimulation.

In the elderly, major problems are complaints about

dizziness and the increasing number of falls with age

(Sturnieks et al. 2008; Barin and Dodson 2011), which,

among other reasons, may be related to changes in central

processing of vestibular sensory input (Jahn et al. 2003).

Besides many seniors suffering from peripheral vestibular

deficits, their balance may be influenced by various age-

dependent modifications such as changes in the supraspinal

locomotor network (Zwergal et al. 2012). Given that

changes of sensory processing may be a key aspect in the

aforementioned deficits, possibly starting to occur prior to

the deficits, this study aimed to assess age-related modifi-

cations of central vestibular sensory processing in healthy

aging from a young age. Since several studies report that

age-related brain changes vary in the context of more or

less preserved function (Cabeza et al. 2002; Garrett et al.

2010, 2011, 2013; Samanez-Larkin et al. 2010; Wutte et al.

2011), we recruited volunteers who had maintained a

healthy vestibular function in their daily lives and had no

history of vestibular dysfunction or falls. Furthermore, we

chose a task-free paradigm to activate brain networks

specifically devoted to the processing of vestibular sensory

input while avoiding confounds with task-related activa-

tions. Consequently, we used galvanic vestibular stimula-

tion (GVS) (Schneider et al. 2002; Stephan et al. 2005;

Dieterich and Brandt 2008) inside the MRI scanner to

engage the vestibular system in sensory processing,

focusing our volunteers on the feeling of being ‘‘nudged’’

or tilted. Vestibular stimulation in healthy volunteers has

been shown to consistently activate a widespread cortical

network including areas such as the insular cortex, the

superior temporal gyrus, the supramarginal gyrus, the

inferior parietal lobe, the inferior frontal gyrus, the anterior

cingulate gyrus, and the hippocampus (Lobel et al. 1998;

Brandt and Dieterich 1999; Stephan et al. 2005; Sch-

lindwein et al. 2008; Lopez et al. 2012).

Vestibular cerebral processing is fundamentally multi-

modal and dependent on the integration of several sets of

sensory information. Hence, we hypothesized that the

effect of healthy aging on cortical processing of sensory

information in the brain may not simply result in a change

in relative amplitude of BOLD signal, but may affect

functional connectivity as well as temporal variability of

the BOLD signal (Biswal et al. 2010; Garrett et al. 2013;

Wutte et al. 2011). Functional connectivity is a measure for

the relationship of distinct areas interacting during multi-

modal integration. Temporal variability is a measure for

variations in either input-related noise or in noise associ-

ated with deteriorating neuronal processing of specific

areas in the vestibular network. We therefore used, in

addition to the standard GLM analysis of BOLD-signal

amplitudes, ICA and partial least squares (PLS) analysis of

temporal BOLD-signal variability to investigate these sig-

natures of brain function for age-related changes. To be

misled by age-related changes unrelated to vestibular pro-

cessing, we performed a simple motor paradigm, voxel-

based morphometry and diffusion tensor imaging as a
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control to detect age-related changes that might be unre-

lated to vestibular processing, due to vascular modifica-

tions, atrophy of brain structures or structural connectivity

changes. Jointly, these methods permitted us to character-

ize our networks more precisely, both locally and tempo-

rally. In combination with our experiment setup aimed at

creating a subjectively equal level of stimulation, our

methods of temporal analysis in particular lead us to con-

sider the possibility of a peripheral vestibular or general

cerebral effect as the reason for our findings unlikely.

Methods

Volunteers

Forty-five healthy right-handed Caucasian healthy volun-

teers aged 20–70 years were recruited by newspaper ads

and word-of-mouth. All were screened by telephone to

exclude health problems and/or medications that might

affect cognitive function and brain activity, such as strokes,

previous balance problems, antihypertensive drugs and

antidepressants. Only volunteers with no previous history

of falls or dizziness were accepted to partake in the study.

Due to the reasons stated below, 39 of these 45 volunteers

aged 20–70 were included in the final analysis. These were

divided into three age groups [Group 1 (20–40 years of

age, n = 14, average age 27.3 ± 4.4 years, 6 were male),

Group 2 (40–60 years of age, n = 12, average age

52.3 ± 5.0 years, 5 were male) and Group 3 (over 60 years

of age, n = 13, average age 67.1 ± 2.4 years, 6 were

male)]. The average age of these participants was

48.3 years, 17 were male. The ethics committee of the

medical faculty of the Ludwig-Maximilians University

approved the investigation. All volunteers gave their

written informed consent.

In addition to the fMRI examination of GVS-related

activity, volunteers were asked to complete a short-hand-

edness test (Salmaso and Longoni 1985) and a Montreal

Cognitive Assessment (MoCA) test (Nasreddine et al.

2005) to investigate age-correlated cognitive impairment.

None of the volunteers had a known history of vestibular

deficits; nonetheless, we additionally performed a head-

impulse test (Halmagyi and Curthoys 1988; Halmagyi

2005) to assure normal horizontal vestibular-ocular reflex

functioning. No further vestibular testing was performed,

since feeling ‘‘nudged’’ or tilted by switching on the

stimulus was a prerequisite of taking part in the study,

thereby testing the peripheral function and assuring a suf-

ficient level of stimulation. Volunteers were informed

beforehand that the vestibular sensation was the subject of

examination and one volunteer did not partake because of

an insufficient vestibular feeling even at higher amplitudes.

Six volunteers had to be excluded due to technical prob-

lems or strong motion artefacts in the scanner, among them

one from the young age group, three middle-aged volun-

teers and two over the age of 60. Thus, 39 volunteers (age

20–70) were included in the subsequent analysis. For the

motor paradigm, one additional female volunteer from the

young age group had to be excluded due to motion arte-

facts, for this analysis a total of 38 datasets were taken into

account.

fMRI experimental design

Tasks and stimuli

Volunteers were stimulated by unilateral GVS with direct

current, i.e. rectangular sustained stimulation with constant

current over whole duration of a stimulation block. Two

pairs of MRI-compatible cup electrodes (MRI-compatible

electromyography-cup electrodes, Brain Products) with an

integrated 5 kX resistance for added safety were applied to

the volunteer’s mastoid bone and neck after careful skin

preparation and connected to custom-made stimulators

placed inside the Faraday cage to allow independent

stimulation of the right or left vestibular nerve. Simulta-

neous timing of stimulation and MRI data acquisition was

controlled from the control room via optical data trans-

mission. The cathode was placed over the mastoid bone

and the anode on the neck paravertebrally of C7.

It is known that GVS induces both vestibular sensation

and cutaneous pain at the electrode site, both intensifying

with increasing current amplitude (Lobel et al. 1998; Bense

et al. 2001). To maximize the vestibular stimulus intensity

in different individuals and minimize somatosensory sen-

sation, thereby optimizing the vestibular/somatosensory

sensation ratio, volunteers were asked after demonstration

to choose the lowest amplitude that would still produce a

distinct vestibular sensation of being tilted or ‘‘nudged’’.

This individual current amplitude varied between 1.25 and

2.75 mA and was established while volunteers lay supine

on the scanner bed before being transported into the MRI

bore. Current intensity was gradually increased in steps of

0.25 mA and volunteers were asked after every three steps

if they had already experienced a feeling of being tilted. If

the vestibular sensation felt comparable at two different

amplitudes, the lower one was chosen for stimulation.

Before testing, all volunteers were informed that the ves-

tibular sensation was the one of interest and should be

maximized, while cutaneous pain should be minimized.

Volunteers were therefore asked during demonstration to

choose the amplitude that elicited a maximally intense

feeling of being tilted while only causing a non-distracting

amount of pain. They were instructed to opt for the weaker

current amplitude if two intensities were perceived as
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almost equal in terms of vestibular and cutaneous sensa-

tions. While the actual current intensity differed between

individuals, this procedure ensured that a comparable

intensity of perception could be assumed.

A motor paradigm was employed to account for possible

general effects of aging in our group of volunteers. Vol-

unteers were first shown a cross flashing at 1 Hz and then

asked during scanning to reproduce the speed tapping their

right index finger when instructed to do so by visual verbal

cues (‘‘Go’’ and ‘‘Stop’’). Data from the motor paradigm

were then analyzed for age-dependent changes in BOLD-

signal amplitude, in functional connectivity and in tem-

poral variability. As explained below, general cerebral

volume changes as well as changes in fractional anisotropy

were controlled by the analysis of the anatomical images of

all volunteers. All of these may possibly be affected by

vascular aging. In this case, this should have become evi-

dent in both, the control motor paradigm and the vestibular

stimulation paradigm.

Hearing protection was provided and volunteers’ heads

were fixated by means of adhesive tape and cushions to

keep head movements to a minimum.

fMRI data acquisition

MRI scans were acquired on a 3-Tesla scanner using an

eight-channel standard head coil (Signa Hdx platform; GE

Medical Systems, Milwaukee, WI, USA). Functional MRI

images were obtained by a T2 9 weighted echo-planar

imaging (EPI) sequence (TE = 40 ms, TR = 2,800 ms,

flip angle 90�, FOV = 200 mm, matrix 64 9 64 9 44,

voxel size 3.125 9 3.125 9 3.5 mm). Additionally, we

used a FSPGR sequence (TE out of phase, preparation time

500 ms, flip angle 15 ms, FOV 22 cm, Locs per Slap 128,

matrix 256 9 256, voxel size 0.86 9 0.86 9 0.7 mm) to

obtain a high resolution T1 weighted whole brain ana-

tomical scan of all volunteers. Diffusion tensor imaging

(DTI) data were acquired using a diffusion-weighted single

shot spin echo sequence (15 diffusion directions, matrix

256 9 256 9 39, b value = 1,000 s/mm2, FOV 240 mm,

slice thickness 3 mm).

Two GVS runs of 120 functional images each were

acquired for each volunteer. An alternating block design

of stimulation and rest was used. Block lengths for both

stimulation and rest were randomized in the range from

two to five scans of 2.8 s lengths starting with a block

of GVS after six scans. Two runs were acquired each

with 18 stimulation blocks (9 left and 9 right-sided

stimulations).

For the motor paradigm, 84 functional images were

acquired in a single run, while volunteers tapped in blocks

of six scans of 2.8 s each, interjected with six scans of rest.

Seven blocks of finger tapping were performed.

Data analysis

fMRI data pre-processing

Data processing was performed in MATLAB (The Math-

Works Inc., Natick, MA) using the SPM5 toolbox (revision

3381, http://www.fil.ion.ucl.ac.uk/spm/). For each volun-

teer, all functional images from all runs were realigned to

the first image of the first run. The anatomical image was

coregistered to the mean image of the functional images.

The coregistered anatomical and functional MRI data were

normalized to MNI space using the unified segmentation

and normalization method (Ashburner and Friston 2005)

implemented in SPM5. The voxel size after normalization

was 2 9 2 9 2 mm3 for the functional, and 1 9 1 9

1 mm3 for the anatomical image. The functional images

were spatially smoothed by convolving the voxel values of

the images with an isotropic Gaussian kernel of 8 mm

FWHM. Statistical analysis included high-pass filtering of

each voxel’s time course with a cutoff frequency of

0.009 Hz (i.e. a cutoff period of 108.8 s). We determined

the cutoff period in consideration of the Nyquist-Shannon

sampling theorem as the double of the longest time interval

(i.e. the lowest frequency) between the onsets of two

identical stimulation or task conditions. The principle at the

base of this approach is that any variation that is based on

longer cycles than this can be assumed not to be stimula-

tion or task related and hence can be removed by the high-

pass filter.

General linear model-based analysis

Functional MRI data The data were analyzed using the

general linear model (GLM) as implemented in SPM5 with

all updates installed (revision 3381). In the first-level

analysis, effects of DC-GVS were modeled separately with

a combination of event- and block-regressors as described

in (Stephan et al. 2009). Periods of stimulation were

modeled as block regressors convolved with the canonical

HRF, separately for blocks of left and right stimulation

(Left block, Right block). In addition to that, the phases of

switching the DC-GVS on and off were modeled as events

convolved with the canonical HRF, separately for left and

right-sided stimulation and switching on and off (Left on,

Right on, Left off, and Right off). Therefore, the first-level

design matrix contained 6 regressors for the stimulation

and one constant regressor per imaging run. Linear con-

trasts were defined to compute representative maps (con-

trast images) for the effects of: Left on, Right on, Left off,

Right off, Left block, Right block, Left on and Right on for

each subject.

The contrast images from the first-level analysis were

entered into the second-level analysis to test for group
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effects on a between subject basis (Frison and Pocock

1992; Woods 1996). We used an ANOVA (analysis of

variance) and included the factors ‘‘stimulation side’’ (Left

or Right) and ‘‘stimulation phase’’ (on, block, and off), as

well as the factor ‘‘subject’’ and the covariates ‘‘age’’ and

‘‘current amplitude’’. Data were evaluated with regard to

localization of BOLD effect increases and decreases, as

well as their linear correlations with age or amplitude.

In addition, we tested for differences between age

groups in the conditions Left on and Right on using two-

sample t tests. Separate second-level models were con-

structed for each comparison (Group 1 vs Group 2, Group 1

vs Group 3, Group 2 vs Group 3) and for the stimulus

conditions Left on and Right on.

For all analyses, results exceeding a threshold of

p B 0.05, corrected for multiple comparisons (FWE) were

considered significant.

Voxel-based morphometry The VBM8 toolbox (http://

dbm.neuro.uni-jena.de/vbm/) was used to test for changes

in the local amount of gray matter with age. The high

resolution T1-weighted images (FSPGR) of all subjects

were analyzed using the default parameters of the VBM8

toolbox. To ensure a good starting point for the spatial

normalization and segmentation procedures, we manually

set the origin (i.e. the coordinate x, y, z = 0, 0, 0 mm) to

the anterior commissure. Then, images were segmented,

registered to the MNI space, followed by a non-linear

normalization to the MNI template space using the high-

dimensional DARTEL algorithm (Ashburner 2007) and the

DARTEL templates included in the toolbox. The normal-

ized and bias-corrected gray matter images were modulated

using the non-linear components of the applied spatial

transformations. This modulation step changes the voxel

values in the images based on the amount of expansion or

contraction applied during normalization. Modulation

using the non-linear components only (without the affine

components) allows to analyse the absolute amount of

tissue corrected for individual brain sizes. Prior to statis-

tical analysis, the images were smoothed with a 12-mm

FWHM Gaussian kernel (Ashburner and Friston 2000,

2005; Good et al. 2001). Age-associated local changes in

gray matter volume were tested for by multiple regression

using the SPM implementation of the GLM. Using a design

matrix that contained age, sex, and MoCA test results

(compare Behavioral data in Results) as covariates, we

tested for increases and decreases in the local amount of

tissue associated with age. Results exceeding a threshold of

p\ 0.05 corrected for multiple comparisons (FWE) were

considered significant.

Diffusion tensor imaging data analysis DTI data pre-

processing and analyses were performed using the FMRIB

Software Library FSL, version 4.1.8 (http://www.fmrib.ox.

ac.uk/fsl/) following the protocol described in (Smith et al.

2007). Diffusion data from every subject were corrected for

head motion and eddy current effects using affine regis-

tration to a brain extracted b0 volume (without diffusion

weighting). Voxelwise statistical analysis of the fractional

anisotropy (FA) data was carried out using TBSS [Tract-

Based Spatial Statistics, (Smith et al. 2006)], part of FSL

(Smith et al. 2004). First, FA images were created by fitting

a tensor model to the raw diffusion data using FDT

(FMRIB’s diffusion toolbox, part of FSL), and then brain

extracted using BET (Smith 2002). All subjects’ FA data

were then aligned into a common space (defined by the

FMRIB58_FA template included in FSL) using the non-

linear registration tool FNIRT (Andersson et al. 2007a, b)

that uses a b-spline representation of the registration warp

field (Rueckert et al. 1999). Next, the mean FA image was

created and thresholded at 0.3 to create a mean FA skele-

ton, which represents the centers of all tracts common to

the group. Each subject’s aligned FA data were then pro-

jected onto this skeleton and the resulting data fed into

voxelwise cross-subject statistics.

Hypothesis testing for the DTI data was performed using

permutation testing in Randomize (part of FSL) with 5,000

permutations. A model containing age as a covariate of

interest was used to test for changes of skeletonized FA with

age. Maps of the statistical results were generated as p value

statistical images using threshold-free cluster enhancement

(p\ 0.05, FWE corrected) (Smith and Nichols 2009).

Model-free analysis

Functional connectivity analysis (Tensor independent

component analysis) We analyzed our multi-volunteer

fMRI data using TICA, the tensorial extension of proba-

bilistic independent component analysis as described by

Beckmann and Smith (2004, 2005) and implemented in the

FSL toolbox MELODIC (http://www.fmrib.ox.ac.uk/fsl/

melodic/). Before TICA was conducted, a voxelwise

demeaning and normalization of the voxelwise variance

were performed. Pre-processed data were whitened and

projected into a subspace using probabilistic principal

component analysis. The number of dimensions for the

subspace was estimated using the Laplace approximation

to the Bayesian evidence of the model order (Minka 2000;

Beckmann and Smith 2004). Component maps were then

estimated and afterwards normalized using the residual

noise standard deviation. These normalized component

maps were then thresholded by fitting a mixture model to

the histogram of intensity values (Beckmann et al. 2003;

Beckmann and Smith 2004).

Tensor-independent component analysis allows us to

extract functional networks from the data, as well as
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associated relative weighting factors for the volunteers in

the group which enable us to evaluate general trends of

increase or decrease of this functional network weighting

(and therefore a change in functional connectivity) with

age (or other covariates) via correlation testing.

A functional network is defined here as ‘‘multi-voxel

structured responses with one shared time course’’, i.e. the

spatial-independent component maps (ICs) in combination

with their associated time courses called temporal modes.

It is important to note here that based on this analysis

alone, it cannot be distinguished if every voxel in the

network is driven in the same way by the periphery sensory

inputs or if they all communicate with each other and only

one receives input from the periphery sensory inputs. The

collection of the relative weighting factors for all volun-

teers per IC is called volunteer modes. It should be noted

that the functional networks (ICs and temporal modes) are

representative for the group and that the variation over the

group is captured in the volunteer modes (the relative

weighting factors), due to the formulation of the tensor ICA

model for trilinear expansion of the multi-volunteer fMRI

data.

Determination of covariate-related variations in functional

network responses

We can, therefore, test for (linear) changes in the functional

network responses with respect to volunteer covariates by

correlating the volunteer modes with covariate values (e.g.

correlation of the volunteer modes with the age of the

volunteers). All volunteer-wise covariates were tested for

significant correlation between each other using SPSS 16.

Analysis of temporal modes via event-related averaging

(ERA)

We will show in the results section that the volunteer modes

(the relative weighting factors for functional connectivity)

obtained from the tensor ICA correlate with age for certain

networks and will visualize the cause of this correlation in

terms of temporal stimulus responses. Furthermore, we will

demonstrate that the statistical significance of this correla-

tion with age (or absence thereof, depending on the IC), is

caused by a statistically significant decline in average

temporal stimulus response amplitudes (or absence thereof,

depending on the IC) from the youngest (Group 1) to the

oldest volunteers (Group 3) in our sample.

The temporal responses of a functional network (IC)

associated with stimulation (e.g. GVS) or task execution

(e.g. finger tapping) were evaluated, via averaging the time

courses of the respective temporal mode taken from a

window of 1 TR before and 10 TRs after the onset of each

event, respectively (also known as event-related averaging,

ERA). Furthermore, we applied ERA on the time courses

of each single volunteer taken from the mixing matrix of

the ICA. We used these ERA to calculate the representative

responses of each age group by assigning subjects to the

age groups Group 1 (20–40 years of age), Group 2

(40–60 years of age) and Group 3 (over 60 years of age)

and calculating the mean and standard deviation of the

ERAs for all subjects of each group, respectively. This

resulted in one average ERA per age group for displaying.

We also used the single volunteer ERA amplitudes in two-

sample t tests between the age groups Group 1 and Group 3

to test for significant differences between age group

response amplitudes, as a demonstration that a significant

negative correlation of age with volunteer modes does

correspond to a decline in response amplitudes. All time

courses were shifted prior to averaging to set the onset

values to zero.

Criteria for selection of independent components

of interest

Selection of ICs proceeded in three steps. First, all ICs

were selected which individually describe more than 1 %

of the total variance. In the second step, all ICs corre-

sponding to head motion, head motion and magnetic field

inhomogeneity interaction, physiological artefacts (e.g.

pulsation), registration error or CSF fluctuations were

removed from the list generated in the first step. In the third

step, those ICs were selected which show spatial overlap

with vestibular, somatosensory or motor areas corre-

sponding with the respective experiment (GVS or motor

paradigm). In the case of the GVS experiment, this resulted

in eight ICs. In the case of the motor paradigm this resulted

in one IC.

IC residual analysis

So as to test if ICA sufficiently modeled all age depen-

dency in the fMRI data, we adopted the partial least

squares (PLS) method introduced by Garrett et al. (2010)

and McIntosh et al. (1996) to investigate IC residuals for

eventual age dependence, beyond the aging effects found in

ICA. We calculated the single volunteer time course for

each voxel from the group-average tensor ICA results via

dual regression (Beckmann 2009; Filippini et al. 2009) and

subtracted each IC of interest from the volunteer’s raw data

to get the residual time series per volunteer. We then

determined regions of interest using the thresholded spatial

maps of each IC of interest (see above). For each of these

eight ROIs, we calculated the voxelwise residual temporal

variability as standard deviation of the residual time series.

The correlation of this residual variability to age was

determined using the PLS analysis. For none of the ROIs
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we found any significant age dependence (permutation test,

1,000 permutations).

Temporal variability analysis We also used the partial

least squares (PLS) method (McIntosh et al. 1996; Garrett

et al. 2010) with a slight modification to investigate pos-

sible age-related changes of BOLD signal variability. As a

first step, we removed extra variability, that we considered

noise, from the fMRI data of each individual run of each

individual volunteer. This was done using the results of the

group ICA and performing a dual regression analysis

(Beckmann CF 2009; Filippini et al. 2009) to obtain the

individual time courses and residuals of the ICA associated

with each functional imaging run of each volunteer corre-

sponding to all group ICs and subtracting the residuals

artefacts, judged as noise. Additionally, instead of using the

block normalization procedure introduced by Garrett et al.

(2010) to remove stimulus-related variability, we adopted a

different method. In contrast to block normalization, which

relies on block design with BOLD responses mirroring the

block design, our group-mean normalization method is

hypothesis free and only requires identical stimulation time

courses for all subjects, as in the present study. For the

group-mean normalization, we first masked the spatially

aligned functional images using a gray matter mask [gray

matter definition from the Talairach daemon database

(www.talairach.org) as a binary mask, dilated by smooth-

ing with a Gaussian kernel (FWHM 2 mm) and thres-

holding at 0.2], then normalized the voxel time series by

subtracting the individual voxel means, and determined the

average time course of each voxel over the whole group.

We then regressed these group-mean time courses into the

individual time series to get a residual time series for each

voxel and participant. The variability of these residual time

series was then analyzed using the PLS method for age

dependence as described in Garrett et al. (2010). The sig-

nificance of the correlation between the resulting brain

scores and age was determined by permutation analysis

(1,000 permutations). To further investigate which voxels

contributed most to the age dependence, we thresholded the

brain saliences resulting from the PLS analysis by a

bootstrap ratio of 3 corresponding approximately to a 99 %

confidence interval (Garrett et al. 2010).

Results

Unilateral galvanic vestibular stimulation

Behavioral data

After the experiment, the volunteers reported a feeling of

their head being nudged every time the current was

switched on; this feeling subsided gradually over the

stimulation period. Statements concerning the turning

direction differed and were generally inconsistent. Cuta-

neous pain was reported to be sharp, pinpoint like at the

beginning of stimulation, but then continued as a slightly

burning sensation. Current amplitude did not generally

increase with age and no correlation between age and

amplitude could be observed (R = 0.04; p = 0.79). Vol-

unteers had an average current amplitude of 1.6 mA

(1.64 mA with standard deviation of 0.4 mA), in Group 1

the average current amplitude was 1.7 mA (1.67 mA with

standard deviation of 0.47 mA), in Group 2 it was 1.5 mA

(1.5 mA with standard deviation of 0.31 mA) and in Group

3 it was 1.7 mA (1.73 mA with standard deviation of

0.37 mA).

Volunteers averaged 27 (26.97 with standard deviation

of 2.5) points in the MoCA test. In Group 1 the average

number of points scored in the MoCA was 28 (28.29 with

standard deviation of 1.8), in Group 2 27 (26.7 with stan-

dard deviation of 3) and in Group 3 26 (25.85 with standard

deviation of 2.1). MoCA showed a significant negative

linear correlation with age, as expected, but the relationship

was only weakly present (R = -0.36; p = 0.02).

General linear model analysis

The following BOLD signal increases could be found

during GVS. Only the subjectively more intense effects of

switching the current on or off induced significant BOLD

signal changes, bilaterally in the posterior insula, the cer-

ebellum, the hippocampus, the thalamus, the cingulus and

the inferior and superior parietal lobe (see Table 1; Fig. 1

for more detail). Both switching the current on and off

induced a similar activation pattern involving the typical

multisensory areas.

More specifically, for the contrast ‘‘Left On’’, activations

included the right middle frontal gyrus, the right middle

temporal gyrus, the right and left premotor cortex, the right

secondary somatosensory cortex in the parietal operculum,

the right insula, the right inferior parietal lobule, the right

anterior intra-parietal sulcus, as well as the left Broca’s

area, the left middle frontal gyrus, left cerebellar culmen,

tonsil and pyramis as well as the right cerebellar uvula.

Cluster dimensions also encompassed the insula and the

thalamus bilaterally, as well as the posterior cingulum.

The contrast ‘‘Right On’’ showed activations in the left

superior frontal gyrus, the left premotor cortex, the left sec-

ondary somatosensory cortex in the parietal operculum OP1,

OP2, OP3 and OP4, the left superior (7M, 7L) and inferior

(PFop) parietal lobule, the left inferior occipito-frontal fas-

cicle, the left Insula (Ig2, Id1), left Cuneus, the callosal body,

the right middle temporal gyrus, the right temporal lobe, as

well as the right cerebellar uvula, tonsil and pyramis.
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Among the other contrasts, only ‘‘right off’’ showed a

significant activation in the right primary somatosensory

cortex, and the right primary motor cortex in the precentral

gyrus.

The BOLD signal increases induced by switching the

current on either on the left (A) or on the right (B) hand

side are shown in Fig. 1. During the block stimulation, no

significant effects could be found. Furthermore, no nega-

tive BOLD signal changes could be detected at any time

during GVS. BOLD signal changes were not correlated

significantly to age or amplitude.

In the following text, BOLD signal increases will be

denominated as ‘‘activations’’, while BOLD signal

decreases will be denominated as ‘‘deactivations’’.

Table 1 Significant increases in BOLD signal induced by GVS and detected by GLM analysis

MNI coordinates

x, y, z (mm)

Voxel p (FWE

corrected)

Anatomical location BA

Activations induced by powering on the current on the left hand side

64, -18, 24 25,815 0.000 Right inferior parietal lobule PFop and PFt, secondary

somatosensory cortex/parietal operculum OP1 and OP4

3ab

38, -14, 20 0.000 Right secondary somatosensory cortex/parietal operculum OP3, OP2, OP4; right Insula 13

52, -28, 28 0.000 Right inferior parietal lobule PFop and Pfcm right secondary

somatosensory cortex/parietal operculum OP1; right anterior intra-parietal sulcus hIP2

-28, -66, -28 2,744 0.000 Left cerebellar culmen

-2, -62, -34 0.000 Left cerebellar tonsil

-8, -80, -30 0.000 Left cerebellar pyramis

50, -50, 0 657 0.000 Right middle temporal gyrus

-46, 8, 38 331 0.000 Left Broca’s area, left premotor cortex, left middle frontal gyrus 44, 6

-32, 0, 46 0.011 Left premotor cortex, left middle frontal gyrus 6

32, -74, -24 203 0.001 Right cerebellar uvula

-4, 6, 62 48 0.005 Left premotor cortex, left medial frontal gyrus 6

4, 8, 62, 0.006 Right premotor cortex, right medial frontal gyrus 6

Activations induced by powering on the current on the right

-60, -24, 16 23,207 0.000 Left secondary somatosensory cortex/parietal operculum

OP1, left inferior parietal lobule PFop

40

-38, -2, -14 0.000 Insula Id1

-38,-18, 16 0.000 Left Insula Ig1 and Ig2, left secondary somatosensory cortex/parietal

operculum OP3, OP2, OP41

13

28, -70, -24 1,768 0.000 Right cerebellar uvula

-2, -62, -40 0.000 Left cerebellar tonsil

14, -78, -26 0.000 Right cerebellar pyramis

0, -24, 26 579 0.000 Callosal body

0, -36, 16 0.001 Callosal body

-10, 18, 54 160 0.001 Left premotor cortex, left superior frontal gyrus 6

62, -52, 0 168 0.001 Right middle temporal gyrus

54, -48, -4 0.001 Right temporal gyrus

56, -56, -10 0.013 Right middle temporal gyrus

-6, -76, 36 17 0.024 Left superior parietal lobule 7M, 7L, left Cuneus

Activations induced by powering off the current on the left

No significant activations at FWE p\ 0.05

Activations induced by powering off the current on the right

62, -2, 24 29 0.019 Right premotor somatosensory cortex, right primary motor cortex, right precentral gyrus 4a, 6

Activations induced by sustained GVS on the left

No significant activations at FWE p\ 0.05

Activations induced by sustained GVS on the right

No significant activations at FWE p\ 0.05

All results are FWE corrected for false positives. Clusters containing more than 15 voxels are displayed. Anatomical locations determined using

the Juelich Histological Atlas and the Tailarach Demon Atlas as in the FSL Atlas toolbox
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Functional connectivity analysis (Tensor ICA)

The final estimated dimensionality for the tensor ICA

expansion was 44 retaining 83.99 % of total variance. Of

these 44 ICs, 13 ICs described less than 1 % of total var-

iance and 14 were identified as artefacts, i.e. noise sources.

The artefacts included ten ICs, which were identified as

head motion or head motion and magnetic field inhomo-

geneity interaction artefacts, two ICs were identified as

pulsation artefacts and two ICs were identified as CSF

fluctuations. From the remaining 17 ICs, we chose eight

ICs for further study, which collectively explained 32.83 %

of the total variance of the group data (the other nine ICs

were labeled as ‘‘not interpretable’’ in the above sense).

The first six of these eight ICs of interest (all eight in order

of their respective percentage of variance explained)

overlapped with vestibular areas (also identified by means

of the GLM analysis) and furthermore showed an event-

like transient response associated with switching of the

current, collectively explaining 26.88 % of the total vari-

ance. The remaining last two ICs of interest, collectively

explaining 5.95 % of the total variance, overlapped mainly

with somatosensory areas. Each of these two ICs showed

block-like, (i.e. sustained) reciprocal responses in the

respective left or right somatosensory areas, whereas the

‘‘first six’’ ICs of interest were bilateral and largely sym-

metric, i.e. the right somatosensory cortex (responding with

a positive block-like response associated with direct cur-

rent stimulation of the left side and negative block-like

response associated with direct current stimulation of the

right side) was represented solely in IC-9 whereas the left

somatosensory cortex (responding with a positive block-

like response associated with direct current stimulation of

the right side and negative block-like response associated

with direct current stimulation of the left side) was solely

represented in IC-12. Details on the retained ICs are shown

in Table 3. All volunteer modes of the ‘‘first six’’ ICs

showed significant negative correlations with age, while

neither of the other two exhibited a significant correlation

with age. Consistent with this finding, the ERAs for the age

groups Group 1 and Group 3 differed significantly in their

amplitudes for all of the ‘‘first six’’ ICs, while neither of the

last two ICs showed a significant difference of ERA

amplitudes between age groups Group 1 and Group 3.

Figure 2 shows two ICs from the ‘‘first six’’ ICs with a

significant correlation with age [R(IC-2) = -0.64,

p\ 0.001 and R(IC-3) = -0.57, p\ 0.001] in their vol-

unteer modes, displayed in Fig. 2 parts d1 and d2 as well as

Fig. 1 Significant activations in the GLM analysis induced by

switching on the direct current mediating the galvanic vestibular

stimulation on the left (a) and right (b) hand side, as well as

significant activations induced by tapping of the right index finger at

approx. 1 Hz (c). Significant negative correlation of brain volume

with increasing age (d). All results FWE corrected, p\ 0.05
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a significant difference between ERA amplitudes of age

groups Group 1 and Group 3 [p(IC-2)\ 0.001 and p(IC-

3)\ 0.001], displayed in Fig. 2 parts c1 and c2. Figure 3

shows the last two ICs which show no significant correla-

tion with age [R(IC-9) = -0.072, p = 0.66 and R(IC-

12) = -0.19, p\ 0.22] in their volunteer modes, dis-

played in Fig. 3 parts D1 and D2 as well as no significant

differences between age groups Group 1 and Group 3

[p(IC-9) = 0.85 and p(IC-12) = 0.31] displayed in Fig. 3

parts C1 and C2. The other four of the ‘‘first six’’ ICs (not

shown) all had significant negative correlations with age

for their volunteer modes, R (IC-1) = -0.50 (p = 0.0011),

R(IC-4) = -0.54 (p\ 0.001), R(IC-5) = -0.58

(p\ 0.001), and R (IC-6) = -0.53 (p\ 0.001), the dif-

ferences in ERA amplitudes between age groups Group 1

and Group 3 were all significant [p(IC-1)\ 0.001, p(IC-

4)\ 0.001, p(IC-5)\ 0.001 and p(IC-6) = 0.0016]. All

statistical tests were multiple comparison corrected

according to the number of ICs tested using the Bonferroni

correction method.

In the two ICs representing the ‘‘first six’’ networks (IC-

2 and IC-3), increased BOLD-signal activity could be

detected in IC-2 bilaterally in the superior temporal gyrus,

the middle temporal gyrus, the thalamus (right medial

dorsal nucleus, left ventral posterior lateral nucleus, ventral

lateral nucleus bilaterally, left ventral posterior lateral

nucleus) and the posterior insula, as well as in the left

inferior parietal lobe, the midbrain bilaterally, the left

cuneus, the right superior frontal gyrus and the right cau-

date body. In IC-3, activated areas comprised the right

inferior frontal gyrus, the complete insula bilaterally, the

thalamus (including the right and left ventral lateral, medial

dorsal nuclei) bilaterally and parts of the midbrain down to

the substantia nigra and subthalamic nucleus, the parahip-

pocampal gyrus bilaterally (left more than right), the lin-

gual gyrus bilaterally, the right middle temporal gyrus, the

left superior temporal gyrus, the inferior parietal lobe

bilaterally and the posterior cingulate gyrus.

In the ICs exemplifying the remaining two networks

(IC-9 and IC-12), increased BOLD-signal activity could be

detected in IC-9 in the left postcentral gyrus and in the left

paracentral lobule, as well as in IC-12 in the right pre-

central gyrus, the right postcentral gyrus, the right superior

parietal lobe, the right inferior parietal lobe and the right

posterior insula.

Analysis of the residual time series (see ‘‘Methods’’)

showed that the residual BOLD variability unexplained by

the tensor ICA was not significantly related to age, thus

corroborating that the ICs modeled BOLD variability for

young and old subjects equally well. Consequently, it

appears implausible that analysis-related factors such as an

insufficient number of ICs could be the reason for the

described age dependence.

Temporal variability analysis

As demonstrated by the PLS analysis, the temporal vari-

ability of the BOLD signal expressed as PLS brain scores

derived from the voxelwise standard deviation of the

group-mean normalized BOLD signal time series exhibited

a significant correlation with age (R = 0.68, p = 0.034).

Further analysis of the PLS brain saliences revealed that

local BOLD variability increased with age bilaterally in the

thalamus and the posterior insula (see Fig. 4). Decreases in

variability were observed in regions of the frontal cortex.

The regions with increasing variability partly overlap with

the ROIs of the ‘‘first six’’ ICs described above, which

showed significant age dependence of the associated ICs.

Regions of interest are detailed in Table 2. To further

investigate whether age-dependent variability was associ-

ated with the stimulus, we separated the time series into

stimulation periods and rest periods. Temporal variability

analysis of these separated time series showed a significant

effect for stimulation (R = 0.71, p = 0.016) but not for

rest (R = 0.58, p = 0.082), although it should be noted

that this result for the rest periods was near significance. To

further illustrate the temporal variability of the BOLD

signal, we extracted the BOLD time course of a voxel in

the insula (which also coincides with the networks of the

‘‘first six’’ ICs described above) that contributed strongly to

the correlation between age and temporal variability (see

Fig. 5). While the group-mean time series of this exem-

plary voxel resembles the event-like response of the ‘‘first

six’’ ICs (Fig. 5a, cf. Fig. 2), the group-mean normalized

BOLD signal (Fig. 5b, c) suggests that temporal BOLD-

variability is neither time locked to stimulus onset nor does

it shows a direct relation to the IC time series, suggesting

that the effect of increasing temporal variability occurs

over the whole time course equally and is not very different

during rest periods than it is during stimulation periods.

Motor paradigm

General linear model analysis The GLM analysis of the

finger tapping motor paradigm showed BOLD signal increa-

ses in the corresponding motor cortex (left precentral gyrus),

the anterior lobe of the right cerebellum, in the left medial

frontal gyrus, leftmedial insula, the right inferior frontal gyrus

and the left ventral posterior medial thalamic nucleus.

Functional connectivity analysis (Tensor ICA) A tensor

ICA of the ‘‘finger tapping data’’ conducted in the same

manner as for the GVS experiment showed similar activa-

tions in the spatial components as in the GLM results and a

blocked response associated with blocks of finger tapping,

but no significant linear age correlations (R = -0.01;

p = 0.96) could be found in the respective volunteer modes.
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Fig. 2 Two exemplary ICs (IC-2 and IC-3, shown in a1 and a2,

respectively) showing a significant age-related decrease in their

respective volunteer mode (shown in d1 and d2, respectively) as well

as a significant difference of the amplitudes of the event-related

average (ERA) (shown in c1 and c2, respectively) between the age

groups Group 1 and Group 3, [p(IC-2)\ 0.001 and p(IC-3)\ 0.001].

In c1 and c2, the ERA for the age groups Group 1, Group 2 and Group

3 are marked in red, blue and gray, respectively. In c1 and c2, the

ERA is shown for left- and right-GVS averaged. The correlation

coefficient between the volunteer mode and age was determined to be

(d1) R(IC-2) = -0.64 (p\ 0.001) and (d2) R(IC-3) = -0.57

(p\ 0.001). In d1 and d2 the volunteer mode amplitudes are plotted

as black crosses and the least squares regression line is plotted in red.

ERA of the temporal mode revealing the temporal response charac-

teristics of these ICs with respect to left- and right-GVS (shown in

purple and orange, respectively) are displayed in (b1 and b2) together

with simulated BOLD-response curves (shown in black). The BOLD-

response curves are simulated under the assumption of an event-like

response to switching the direct current GVS ON convolved with the

canonical hemodynamic response function. The amplitudes of the

peaks of the ERA of the BOLD simulation have been manually

adjusted to match the peak amplitude of the ERA of the ICs. Shaded

areas in ERA plots indicate the standard error of the mean interval

around the mean. All amplitudes are given in arbitrary units, time is

given in seconds relative to the onset of stimulation and age is given

in years since birth
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Fig. 3 Two exemplary ICs (IC-9 and IC-12, shown in a1 and a2,

respectively) without a significant age-related change in their

respective volunteer mode (shown in d1 and d2, respectively) as well

as no significant difference of the amplitudes of the event-related

average (ERA) (shown in c1 and c2, respectively) between the age

groups Group 1 and Group 3, [p(IC-9)\ 0.85 and p(IC-12)\ 0.31].

In c1 and c2, the ERA for the age groups Group 1, Group 2 and Group

3 are marked in red, blue and gray, respectively. In c1 only the ERA

for left-GVS is shown and in c2 only the ERA for right-GVS is shown

(the positive response for the respective IC). The correlation

coefficient between the volunteer mode and age was determined to

be (d1) R(IC-9) = -0.072 (p = 0.66) and (d2) R(IC-12) = -0.19

(p = 0.22). In d1 and d2 the volunteer mode amplitudes are plotted as

black crosses and the least squares regression line is plotted in red.

ERA of the temporal mode revealing the temporal response charac-

teristics of these ICs with respect to left- and right-GVS (shown in

purple and orange, respectively) are displayed in (b1 and b2) together

with simulated BOLD-response curves (shown in black). The BOLD-

response curves are simulated under the assumption of a block-like

response to sustained continuous direct current stimulation of the

skin, with a reciprocal relationship between left- and right-GVS. The

amplitudes of the peaks of the ERA of the BOLD simulation have

been manually adjusted to match the peak amplitude of the ERA of

the ICs. Shaded areas in ERA plots indicate the standard error of the

mean interval around the mean. All amplitudes are given in arbitrary

units, time is given in seconds relative to the onset of stimulation and

age is given in years since birth
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Temporal variability analysis The variability of the

BOLD signal, calculated as PLS brain scores in the same

manner as for the GVS experiment, presented no signifi-

cant correlation with age (p[ 0.5). This demonstrates that

the age-related changes in temporal BOLD-signal vari-

ability revealed in the GVS experiment are not due to

generalized age-related changes affecting, i.e. the motor

system.

Structural MRI data

Diffusion tensor imaging analysis

We detected a generalized decrease of fractional anisotropy

with age across our sample of volunteers, but no correla-

tions with the covariates from our behavioral data.

Voxel-based Morphometry: Age-related cerebral changes

in volume

Cerebral volume decreased linearly with age, particularly

in the primary somatosensory cortex, inferior parietal

lobule and postcentral gyrus bilaterally. Furthermore,

decreases in volume could be detected in the left anterior

intra-parietal sulcus, in the right operculum, in the left

rectal and fusiform gyrus, in the left amygdala, the right

middle and bilaterally in the inferior frontal gyrus, in the

left entorhinal cortex, in the cingulate gyrus bilaterally, as

well as bilaterally in the superior and in the right middle

temporal gyri. For more detail, see Table 2.

Discussion

In the present study, galvanic vestibular stimulation (GVS)

induced BOLD signal increases bilaterally in the posterior

insula, the cerebellum, the hippocampus, the thalamus, the

cingulus and the inferior and superior parietal lobe. This is

consistent with previous studies, which found activity in

this bihemispheric network induced by vestibular stimula-

tion (Schneider et al. 2002; Stephan et al. 2005; Dieterich

and Brandt 2008; Lopez et al. 2012). Balance and orien-

tation being primarily multimodal, they seem destined for a

network analysis. Furthermore, previous studies have

shown the importance of investigating temporal variability

in healthy aging (Garrett et al. 2010, 2011, 2013; Samanez-

Larkin et al. 2010). We focused on whether the aging of

vestibular processing would affect the BOLD-signal

Fig. 4 Overlay of functional brain mapping results on a template

brain for the resulting brain scores of the PLS temporal variability

analysis method applied to the group-mean normalized data for the

galvanic vestibular stimulation periods only (R = 0.71, p = 0.016).

Additionally IC-1, IC-2 and IC-3 (the ICs describing the most amount

of total variance of the ICs of interest) are shown for comparison.

Color bars indicate activity in terms of PLS brain scores for the

temporal variability analysis or z statistic values of the alternative

hypothesis test of the probabilistic ICA
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amplitude, functional connectivity or temporal variability.

In the general linear model (GLM) analysis, we found no

age-correlated changes in BOLD-signal amplitude. Tensor-

independent component analysis (ICA) (Beckmann and

Smith 2005), however, identified an age-related pattern of

functional connectivity associated with vestibular net-

works. Furthermore, age-related changes in BOLD-signal

variability were also associated with these vestibular

networks.

The eight selected independent components (ICs) of

interest could be separated into two groups, which were

related to the two GVS-induced sensations. The

‘‘vestibular’’ feeling of being tilted was represented by the

‘‘first six’’ ICs of interest, ICs 1-6, while the cutaneous pain

was represented by the ‘‘last two’’ ICs of interest, IC 9 and

IC 12, as could be inferred from the ICs time courses and

the areas covered by their spatial maps. The ‘‘first six’’

were labeled the ‘‘multisensory vestibular networks’’ since

they showed an event-like, transient temporal response

characteristic associated with switching of the currents and

thus corresponded best with the time course of the feeling

of being tilted. These components included multisensory

vestibular cerebral areas. The ‘‘last two’’ were labeled the

‘‘multisensory somatosensory networks’’, because they

Table 2 Significant decreases in cerebral volume with age as detected by Voxel-based morphometry analysis

MNI coordinates

(x, y, z (mm))

Voxel p (FWE

corrected)

Anatomical location BA

6, 42, 22 8,936 0.000 Right medial frontal gyrus

15, 48, 7 0.000 Right medial frontal gyrus

10, 44, 33 0.000 Right medial frontal gyrus

-56, -12, 40 1,523 0.000 Left primary somatosensory cortex, inferior parietal lobule PFt and PFop 1, 2, 3b

-57, -27, 45 0.005 Left inferior parietal lobule PF, PFt and PFop, primary somatosensory cortex,

anterior intra-parietal sulcus hIP2

1, 2

-46, -37, 46 0.012 Left anterior intra-parietal sulcus hIP2 and hIP3, primary somatosensory cortex,

inferior parietal lobule PFt, PF and PFm

2

-63, -60, 19 1,441 0.001 Left inferior parietal lobule Pga, left superior temporal gyrus 22

-63, -42, 24 0.007 Left inferior parietal lobule PF and PFm 40

54, -15, 40 1,831 0.001 Right primary somatosensory cortex, inferior parietal lobule Pfop and PFt 1, 2, 3a, 3b

66, -13, 39 0.002 Right primary somatosensory cortex, right postcentral gyrus 3

66, -24, 21 0.005 Right secondary somatosensory cortex/parietal operculum OP1, inferior parietal

lobule PFt, PF and PFop right postcentral gyrus

40

34, 63, 13 152 0.003 Right middle frontal gyrus

9, 33, -15 767 0.005 Right anterior cingulate gyrus

-2, 38, -27 0.011 Left rectal gyrus 11

-60, 12, 1 143 0.005 Left inferior frontal gyrus 44, 45

2, -13, 43 237 0.009 Right and left cingulate gyrus 6

-36, -28, 67 191 0.014 Left primary somatosensory cortex, postcentral gyrus 1, 2, 3b 4a, 4p 6

-44, -25, 64 0.023 Left primary somatosensory cortex, left postcentral gyrus 1, 2, 3b, 4a, 6

68, -3, 3 116 0.015 Right superior temporal gyrus 22

28, -27, 63 183 0.015 Right primary somatosensory cortex, postcentral gyrus 1, 3b, 4a, 4p, 6

-15, -1, -20 48 0.021 Left superficial, amygdala 34

3, 12, 37 125 0.022 Right cingulate gyrus 24

46, 20, -2 38 0.024 Right inferior frontal gyrus 44, 45

-46, 26, 16 56 0.025 Left inferior frontal gyrus 44, 45

-40, 27, 9 0.036 Left inferior frontal gyrus 45

51, -16, -20 19 0.025 Right middle temporal gyrus

-46, -57, -24 30 0.026 Left fusiform gyrus

64, -22, -6 226 0.027 Right middle temporal gyrus

54, -18, -2 0.040 Right superior temporal gyrus

46, -2, -30 18 0.033 Right middle temporal gyrus 20

50, 26, 22 25 0.034 Right middle frontal gyrus 45

All results are FWE corrected for false positives. Clusters containing more than 15 voxels are displayed. Anatomical locations determined using

the Juelich Histological Atlas and the Tailarach Demon Atlas as in the FSL Atlas toolbox
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showed a block-like, sustained temporal response charac-

teristic associated with the constant stimulation of the skin

during each block. These components were comprised

predominantly of somatosensory areas. Thus, both net-

works overlapped but differed in their association with

distinct phases of the time course governing network

activation. The ICs constituting the multisensory vestibular

network were bilateral, age correlated and associated with

the rapid BOLD signal changes induced by switching of

the stimulation currents to the states ‘‘on’’ and ‘‘off’’. The

age correlation was negative for the first six ICs, i.e. their

relative weight decreased with age, indicating that the

modulation of the ‘‘vestibular networks’’ by GVS declined

with age. The ICs constituting the somatosensory network

showed a tonic time course and were divided into two

components by lateralisation to the contralateral hemi-

sphere; they were not age correlated. Since the ‘‘vestibu-

lar’’ and ‘‘somatosensory’’ networks partially overlapped in

space, we defined them as multisensory, although they can

be clearly separated by their distinct temporal character-

istics; i.e. their event-like and block-like time courses,

respectively.

Hence, age-related changes were found only in the

‘‘vestibular’’ network containing the superior, middle and

inferior frontal and temporal gyri, the lingual gyrus, the

insula, the superior and inferior parietal lobe, the parietal

operculum, the posterior cingulate gyrus, the cuneus, the

thalamus and the cerebellar tonsil. The ‘‘somatosensory

Fig. 5 In a, an overlay of functional brain mapping results on a

template brain is displayed. It presents the resulting brain scores of

the PLS temporal variability analysis method applied to the group-

mean normalized data for the galvanic vestibular stimulation periods

only, without threshold. In addition, an exemplary BOLD signal time

series (b) and the variability (c) for a voxel in the posterior insula at

MNI coordinate [42, -6, -12] are shown. This voxel contributes

significantly and positively to the relation between variability and

age. In b, the event-related average (ERA) group-mean time series

(dark gray, shaded area SEM) is depicted, which displays a clear

similarity to the ‘‘vestibular’’ ICs‘ transient, event-like time course

(for comparison see Fig. 2). The group-mean time series for young

participants (\50 years of age, red) and for old volunteers (C50 years

of age, light gray) present a similar event-related averaging increase

or decrease relative to the overall mean, as suggested by the

‘‘vestibular’’ ICs. In c, the event-related average residual time series

(after group-mean normalization) is shown separately for young and

elderly (shaded area SD). The complete residual time series in D

demonstrates that variability (shaded areas show SD over subjects) is

larger for young than for elderly volunteers. As presented, this

increase in variability occurs over the whole experiment, leading to an

increased variability value over time for this voxel in older as

compared to young volunteers. This effect, however, does not seem to

be specific to GVS periods
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network’’ encompassed the middle and inferior frontal and

temporal gyrus, the post- and precentral gyri, the lingual

and fusiform gyrus, the paracentral lobule, the superior and

inferior parietal lobe, the posterior insula, the cingulate

gyrus and the thalamus.

The age dependency of the ‘‘vestibular’’ ICs was inde-

pendent from anatomical changes: the decrease in frac-

tional anisotropy demonstrated by DTI was global and not

associated with any vestibular network in particular. No

significant changes of fractional anisotropy associated with

GVS current amplitude could be detected. This might be

due to current amplitudes insufficiently reflecting vestibu-

lar perception in the group analysis. In this case, a measure

of the intensity of perception might have revealed a pos-

sible correlation with anatomical measures. This has been

shown previously in healthy individuals for an extensive

white matter network that strongly correlated with a mea-

sure of vertigo perception (Nigmatullina et al. 2013) and an

analogous approach might reveal similar correlations in

future studies.

Changes in functional connectivity could also be due to

changes in local gray matter volume or general vascular

deterioration. In our study, voxel-based morphometry

revealed an age-related decrease in volume in multiple

anatomical areas bilaterally as has been previously

described (Gonoi et al. 2010). Overlaps could be observed

with all ICs of interest, whether age correlated or not. It is,

therefore, unlikely that the age dependency of the vestib-

ular networks could be solely attributed to the anatomical

change in volume. Likewise, the decrease in fractional

anisotropy with age was general and suggested that these

changes were not due to age-related anatomical modifica-

tions. A simple motor paradigm (finger tapping) induced no

age-related changes in functional connectivity, BOLD-

signal amplitude or temporal variability. Thus, the age-

dependent changes in functional connectivity appear to be

particular to vestibular processing.

In the GVS experiment, we observed additional age-

dependent modifications in temporal BOLD-signal vari-

ability, which have recently also been described in healthy

volunteers (Garrett et al. 2010, 2011, 2013; Samanez-

Larkin et al. 2010; Wutte et al. 2011). In our study, we

specifically chose a task-free paradigm focusing on ves-

tibular sensory perception and stimulated volunteers at

low-level amplitudes. At this level, the level of perception

could be assumed to be roughly matched among volun-

teers. Variability increased significantly with age in regions

associated with the ‘‘vestibular’’ network (thalamus and

posterior insula bilaterally), mostly during stimulation.

Therefore, the spatial pattern of the variability associated

with the vestibular network did coincide with the ‘‘mean

signal’’, i.e. the amplitudes of BOLD-signal responses. We

added a motor experiment to control generalized changes

in temporal variability, connectivity or BOLD amplitude,

allowing us to demonstrate age-related effects in our study

that are specific to the vestibular system, and to distinguish

them from generalized effects. Further studies should

investigate the impact of task performance on the vestib-

ular system, e.g. with a perceptual vestibular task. The

rationale for this is that our findings here are for a vestib-

ular sensory stimulation paradigm, which can be seen as

roughly analogous in design to the first study of Garrett and

co-authors (Garrett et al. 2010) which did not include task

performance, and it would, therefore, be interesting to see

if the inclusion of task performance in the study of aging

effects might reveal a similar trend for the vestibular sys-

tem as was found in the further studies of Garrett et al.

(2011, 2013) that included task performance.

While the actual current intensity employed for GVS

differed between individuals, the procedure to determine it

strove to achieve a comparable intensity of perception.

Notwithstanding, individually variable sensitivity to ves-

tibular stimuli and different levels of pain tolerance may

have affected standardization. However, behavioral data

reported a brief vestibular sensation as opposed to an

enduring somatosensory pain sensation, which corre-

sponded to the analysis of time courses associated with the

vestibular and somatosensory multimodal networks,

respectively, and permitted us to distinguish between the

two types of sensory input.

The observed age-dependent ‘‘vestibular’’ network

cannot be attributed to the vestibular stimulation induced

by the magnetic field of the MRI as recently described

(Roberts et al. 2011). The magnetic field of the MRI is

active also during rest periods. The main effect of mag-

netic vestibular stimulation (MVS) should thus be a

constant activation level that is subtracted by filtering the

removal of the mean signal over time and voxelwise

variability normalization. Despite these common pre-

processing steps, it is possible that the additivity princi-

ple of stimulus responses could be violated should the

MVS effect be strong enough to cause non-linear effects

like saturation to occur. However, inspecting the IC time

courses and the event-related averages (ERA) plot

amplitudes (see Figs. 2, 3), we conclude that this has not

been the case. Furthermore, during the motor paradigm

no vestibular activations could be observed with any of

the analysis methods, therefore MVS should be consid-

ered negligible in our case.

Do the age-related changes reflect the aging

of peripheral vestibular structures?

Peripheral vestibular structures such as hair cells, nerve

fibers and otoconia have been demonstrated to decrease

(Bergstrom 1973; Rosenhall 1973; Ross et al. 1976) and
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Table 3 Significant increases in BOLD signal induced by GVS and detected by independent component and partial least squares (PLS) analysis

Voxels Z MAX MNI coordinates

x, y, z (mm)

Anatomical location BA

Independent component 2: positive clusters

904 7.56 -58, -26, 8 Left primary auditory cortex TE1.0, secondary somatosensory cortex/parietal operculum

OP1; superior temporal gyrus

824 5.63 62, -26, 8 Right superior temporal gyrus

341 4.3 6, -18, 0 Right thalamus

277 4.04 -18, 54, 40 Left superior frontal gyrus 8

87 3.14 6, -82, 40 Right superior parietal lobule 7P, 7M, cuneus 19

35 2.65 2, -34, 20 Corpus callosum (posterior cingulum)

19 2.54 46, -62, -56 Right cerebellar tonsil

17 2.85 50, 10, 20 Right Broca’s area, right inferior frontal gyrus 44

Independent component 2: negative clusters

153 -4.29 10, 46, -20 Right medial frontal gyrus

Independent component 3: positive clusters

593 6.76 58, -22, 20 Right secondary somatosensory cortex/parietal operculum OP1, OP4, OP3; inferior

parietal lobule PFop R, PFcm, PFt

591 6.66 -54, -26, 16 Left secondary somatosensory cortex/parietal operculum OP1, OP4; inferior parietal

lobule PFop, PFcm; primary auditory cortex TE1.0 L

40

228 3.48 2, -94, 0 Right visual cortex V1, V2, lingual gyrus 17, 18

119 3.28 -18, 46, 48 Left superior frontal gyrus 8

67 3.23 -50, -62, 8 Left visual cortex V5, inferior parietal lobule PGp, middle temporal gyrus

54 3.03 18, 38, 56 Right superior frontal gyrus

32 2.75 -26, -42, 80 Left primary somatosensory cortex, superior parietal lobule 5L, 7PC, 7A, primary motor

cortex

1, 2, 3b,

4p, 4a

27 3.19 10, -14, -4 Right thalamic medial dorsal nucleus

23 2.99 -10, -14, 0 Left thalamus

Independent component 3: negative clusters

897 -4.43 30, 34, 32 Right middle frontal gyrus

598 -3.45 46, -78, -12 Right visual cortex V4, V3 V, fusiform gyrus 19

350 -2.99 -46, -86, -4 Left visual cortex V4, inferior occipital gyrus

287 -4.79 66, -14, -12 Right middle temporal gyrus 21

261 -2.81 -38, 38, -28 Left middle frontal gyrus

188 -3.53 -66, -18, -8 Left middle temporal gyrus 21

174 -3 -62, -6, 20 Left primary somatosensory cortex, secondary somatosensory cortex/parietal operculum

OP4, Premotor cortex, inferior parietal lobule Pfop

3b, 1, 6,

44, 43

84 -2.94 58, 34, -8 Right Broca’s area, inferior frontal gyrus 45

48 -2.57 -30, 34, 32 Left middle frontal gyrus

24 -2.39 10, -42, 40 Right superior parietal lobule 5 Ci, 5 M, cingulate gyrus 31

20 -2.38 -18, 6, 52 Left premotor cortex, medial frontal gyrus 6

Independent component 9: positive clusters

726 5.93 38, -18, 64 Right premotor cortex, primary motor cortex, primary somatosensory cortex 6, 4a, 3b

10 3.13 6, -22, 48 Right premotor cortex, primary motor cortex, superior parietal lobule 5 M, 5 Ci,

paracentral lobule

6, 4a, 31

Independent component 9: negative clusters

42 -4.42 -58, -22, 20 Left inferior parietal lobule PFop, PF; secondary somatosensory cortex/parietal

operculum OP1, OP4

Independent component 12: positive clusters

1,353 6.63 -46, -34, 56 Left primary somatosensory cortex, inferior parietal lobule PF, PFt; superior parietal

lobule 5L, 7PC;

2, 1, 3b,

40
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deteriorate with age as demonstrated by physiological

testing (head thrust dynamic visual acuity testing, ocular

and cervical vestibular evoked myogenic potentials) (Fur-

man and Redfern 2001; Welgampola and Colebatch 2001;

Agrawal et al. 2012). However, GVS is presumed to act

directly on the vestibular nerve within the spike trigger

zone (Goldberg et al. 1984; Fitzpatrick and Day 2004),

bypassing the hair cells. The age-related changes in ves-

tibular processing observed in our study are thus unlikely

to be related to a loss of hair cells or otoconia, but could be

associated with nerve fiber deterioration. Letting every

volunteer choose their own amplitude assured a sufficiently

perceptible stimulation in all subjects. If the number of

nerve fibers decreases, the variability of the peripheral

signal increases and could influence the BOLD-signal

variability, possibly explaining why we found a stimula-

tion-related increase in BOLD-signal variability in the

thalamus and the posterior insula bilaterally, but not in the

somatosensory areas. An increase in variability of the

vestibular sensory signal due to fiber loss should also affect

the perceptual threshold (Cousins et al. 2013) and require

an increase of GVS amplitude with age. Interestingly, this

is in contrast to our behavioral data: volunteers’ age did not

correlate with self-chosen GVS amplitude. This might be

due to amplitudes being individually very variable (range

1.25–2.75 mA), possibly masking age correlation. Alter-

natively, the elderly may rely more on multimodal mech-

anisms than the young (Mozolic et al. 2012), possibly

causing a preservation of the threshold level with age

despite a decline of unimodal pathways.

Differences between ‘‘vestibular’’

and ‘‘somatosensory’’ components

Previous studies suggest a common processing of

somatosensory and vestibular sensations in the posterior

insula (Penfield and Faulk 1955; Bottini et al. 1995, 2001;

McGeoch et al. 2009; Baier et al. 2013; Ferre et al. 2012),

Table 3 continued

Voxels Z MAX MNI coordinates

x, y, z (mm)

Anatomical location BA

Partial least-squared positive clusters

(stimulus-phases only)

42 0.0238 10, -14, 16 Right thalamic anterior nucleus

26 0.0238 -10, -26, 12 Left hippocampal dentate gyrus, hippocampal cornu ammonis/posterior thalamus

14 0.0246 -6, 10, 12 Left caput corpus caudatus

8 0.0227 22, -38, 68 Right primary somatosensory cortex 3b, 1, 2,

4a

8 0.0237 42, -46, 36 Right anterior intra-parietal sulcus hIP1, hIP2; inferior parietal lobule Pga, supramarginal

gyrus

8 0.0201 -42, -6, -12 Left insula Id1, left temporal lobe 21

8 0.0237 42, -6, -12 Right insula Id, right temporal lobe

7 0.0196 -38, 14, -24 Left inferior frontal gyrus

5 0.0221 46, 6, -32 Right temporal pole; Middle temporal gyrus, anterior division 38

4 0.0199 34, -54, 48 Right anterior intra-parietal sulcus hIP3; hIP1; Superior parietal lobule 7A; anterior intra-

parietal sulcus hIP2

4 0.0178 54, -30, 28 Right inferior parietal lobule PFcm; PFop; PF; secondary somatosensory cortex/Parietal

operculum OP1; Anterior intra-parietal sulcus hIP2

4 0.0193 42, -18, 8 Right primary auditory cortex TE1.0; Insula Ig2; primary auditory cortex TE1.1; insula

Ig1; Insula Id1

13

3 0.0193 18, --66, 60 Right superior parietal lobule 7P; 7A 7

Partial least-squared negative clusters

(stimulus-phases only)

44 -0.0258 2, 42, 52 Right superior frontal gyrus

37 -0.0268 26, 54, 32 Right superior frontal gyrus 9

4 -0.0272 6, -94, 32 Right cuneus

3 -0.0217 6, 58, 36 Right frontal pole; superior frontal gyrus

All results are FWE corrected for false positives. Clusters containing more than 10 voxels are displayed, except for the PLS analysis where

clusters of more than 3 voxels are displayed. Anatomical locations determined using the Juelich Histological Atlas, the Harvard-Oxford Cortical

Structural Atlas and the Tailarach Demon Atlas as in the FSL Atlas toolbox
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while others describe a functional vestibular network cen-

tered on the posterior insula and posterior parietal oper-

culum (Eickhoff et al. 2006; zu Eulenburg et al. 2012). To

our knowledge, age-related changes of functional connec-

tivity have neither been described in the vestibular nor the

somatosensory system. In the present study, the GVS-

induced brain activity displayed no age-dependent changes

in the somatosensory network, but revealed an age-

dependent decrease in functional connectivity for the

cerebral processing of vestibular information. The vestib-

ular and the somatosensory systems give rise to partly

overlapping cerebral networks. Compared to the processing

of the vestibular network, however, somatosensory pro-

cessing is mostly unimodal, while the vestibular network

constantly integrates information from multiple sensory

systems, i.e. visual, vestibular, and somatosensory input,

besides enabling transfer from sensory input to motor

reactions. Inhibitory reciprocal interaction between sensory

systems deteriorates in old age (Zwergal et al. 2012) and

with age, sensorimotor integration may affect the BOLD

signal (Stefanova et al. 2013). The impaired inter-system

inhibition may explain why functional connectivity in the

vestibular system decreases with age: due to decreasing

functional specificity, visual and other competing inputs

are less inhibited and interfere with the vestibular infor-

mation processing (Mozolic et al. 2012; Roski et al. 2014).

Thus, vestibular activations and equivalent information

from other sensory systems spread and may cause inter-

ference among the different sensory systems. The lack of

inhibition may thereby increase the complexity of inte-

gration and cause a decrease in functional connectivity

with age.

Likewise, the increased variability of the BOLD signal

in the thalamus and posterior insula might be due to

impaired inhibition. Changes in variability have previously

been observed during visual fixation tasks (Garrett et al.

2010). BOLD variability could be attributed to various

reasons ranging from sensory or internal neural noise

(Faisal et al. 2008), over intrinsic brain activity such as the

correlated fluctuations in resting state experiments (Birn

2012) to unaccounted for sensory input. We removed

stimulus-related responses common to all subjects by

group-mean regression, which accounts better for transient

BOLD signal changes than the block normalization used by

others (Garrett et al. 2010). In our study, modifications

appear to be stimulation-specific considering that age-

dependent variability increased significantly only during

the GVS paradigm, but not during finger tapping.

In conclusion, we demonstrated a decrease in functional

connectivity related to processing of GVS and restricted to

the vestibular cortical network. The decrease in functional

connectivity was not due to structural changes of the

associated brain areas but to a decrease in response

amplitude undetected by GLM analysis. In parallel, we

discovered an increase in the temporal variability of the

BOLD signal in central areas of this vestibular network,

which was predominantly linked to periods of stimulation,

but without strongly reflecting stimulus-related aspects of

the BOLD response. An increase in temporal BOLD-signal

variability due to propagation of stimulus-induced sensory

noise is possible, but does not fit in with the observed

preservation of GVS current amplitudes over age and

cannot explain changes in functional connectivity. Con-

sidering all these lines of evidence, another more likely

reason for our results would be the deterioration of reci-

procal cortico-cortical inhibition with age already observed

in other studies (Zwergal et al. 2012; Stefanova et al.

2013), which might cause both the decrease in functional

connectivity and the increase in variability observed in the

current study.
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Strongmagnetic fields (N1 Tesla) can cause dizziness and it was recently shown that healthy subjects (resting in

total darkness) developed a persistent nystagmus even when remaining completely motionless within a MR

tomograph. Consequently, it was speculated that this magnetic vestibular stimulation (MVS) might influence

fMRI results, as nystagmus is indicative of an imbalance in the vestibular system, potentially influencing other

systems via multisensory vestibular interactions. The objective of our study was to investigate whether MVS

does indeed modulate BOLD signal fluctuations. We recorded eye movements, as well as, resting-state fMRI of

30 volunteers in darkness at 1.5 T and 3.0 T to answer the question whether MVS modulated parts of the default

mode resting-state network (DMN) in accordance with the Lorentz-force model for MVS, while distinguishing

this from the known signal increase due to field strength related imaging effects. Our results showed that mod-

ulation of the default mode network occurred mainly in areas associated with vestibular and ocular motor func-

tion, andwas in accordancewith the Lorentz-forcemodel, i.e., double than the expected signal scaling due to field

strength alone. We discuss the implications of our findings for the interpretation of studies using resting-state

fMRI, especially those concerning vestibular research.We conclude thatMVS needs to be considered in vestibular

research to avoid biased results, but itmight also offer the possibility ofmanipulatingnetwork dynamics andmay

thus help in studying the brain as a dynamical system.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

Our sense of motion and orientation in space as well as stable visual

perception is achieved by the vestibular system engaged in integration

of information coming not only from the peripheral vestibular end-

organs, but also from visual, proprioceptive and other sensory systems

(Cullen and Sadeghi, 2008). Vertigo and dizziness may occur if these

multisensory interactions are disturbed (Brandt et al., 2004; Dieterich

and Brandt, 2008).

Dizziness in the presence of strongmagnetic fields has been noticed

ever since the first magnetic resonance experiments at high field

strengths (N1 Tesla) have been conducted (Schenck, 1992). Recently,

Roberts et al. (2011) showed that healthy subjects exposed to the static

magnetic field of aMRmachine in total darkness developed a persistent

nystagmus, while patients with bilateral peripheral vestibular failure

did not show any nystagmus. The authors argued that ionic currents

coming from hair cells in the inner ear are diverted by a Lorentz-force.

This creates pressure onto the cupula, “the rotatory motion sensor” of

the inner ear, leading to nystagmus akin to a constant (accelerating) ro-

tatory stimulation. This also explained why the nystagmus' slow phase

velocity (SPV) depends on the subject's head orientation in themagnet-

ic field. This model was further supported by various studies. A simula-

tion study regarding the magneto-hydrodynamic forces acting on the

cupula showed that the expected Lorentz-force is strong enough to

cause nystagmus (Antunes et al., 2012). A study of patients with unilat-

eral labyrinthine disorders showed that the nystagmus direction is de-

pendent on the interaction of signals from the semicircular canals

from both ears, further supporting the idea that the labyrinth is the

part of the inner ear that is mainly affected by the magnetic field

(Ward et al., 2014). Another study using healthy subjects showed that

the temporal dynamics of the nystagmus' SPV are similar to those

known from rotational stimulation or caloric irrigation studies (Glover

NeuroImage 127 (2016) 409–421

Abbreviations: MVS, magnetic vestibular stimulation; fMRI, functional magnetic

resonance imaging; DMN, default mode resting-state network; BOLD, blood oxygen

level-dependent; SPV, slow phase velocity; ICA, independent component analysis; IC, in-

dependent component; CSF, cerebrospinal fluid; AAL, automated anatomical labeling;

ROI, region of interest.

⁎ Corresponding author at: German Center for Vertigo and Balance Disorders (DSGZ-

IFBLMU), Ludwig-Maximilians-University Munich, Germany Klinikum Grosshadern der

Universitaet Muenchen, Feodor-Lynen-Strasse 19, 81377 Munich, Germany.

E-mail address: Rainer.Boegle@googlemail.com (R. Boegle).

http://dx.doi.org/10.1016/j.neuroimage.2015.11.065

1053-8119/© 2015 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.11.065&domain=pdf
mailto:Rainer.Boegle@googlemail.com
http://dx.doi.org/10.1016/j.neuroimage.2015.11.065
www.elsevier.com/locate/ynimg


et al., 2014). Analogous behavioral effects were reported for animals

(for review see: Saunders, 2005; Ward et al., 2015).

Consequently, it was speculated that this magnetic vestibular stimu-

lation (MVS) might influence fMRI results (Roberts et al., 2011), as

nystagmus is indicative of an imbalance in the vestibular system,

potentially influencing also other systems via multisensory vestibular

interactions.

The focus of the current study was to investigate whether MVS does

indeed modulate BOLD signal fluctuations. We recorded spontaneous

eye movements, as well as, resting-state fMRI of 30 healthy volunteers

in darkness at 1.5 T and 3.0 T, focusing here on the question whether

MVS disproportionately influences parts of the default mode resting-

state network (DMN) (Raichle et al., 2001; Raichle and Snyder, 2007;

Buckner et al., 2008). The DMN has been shown as a major network

that is influenced in patients suffering fromunilateral vestibular neuritis

(Klingner et al., 2014), a disease which is marked by vestibular imbal-

ance and a horizontal nystagmus that is similar to the horizontal nystag-

mus produced by MVS. Other recent studies comparing resting-state

activity in patients with vestibular deficits to that of healthy controls

showed widespread changes in various networks, also including the

DMN (Göttlich et al., 2014; Klingner et al., 2014; Helmchen et al.,

2014). Focusing on the DMN also serves as a demonstration of MVS

influencing a network associated with higher cognitive functions. The

role of the DMN for higher cognitive function and the interaction of

the vestibular system with higher cognitive function, especially the im-

pact of vestibular imbalance on cognitive disorders were discussed re-

cently (Hanes and McCollum, 2006; Schilbach et al., 2008; Smith and

Zheng, 2013; Mast et al., 2014).

Our hypothesis was that (i) the “unmodulated” parts of the DMN

should scale in accordance with the well-known sublinear increase of

fMRI signal between field strength (Triantafyllou et al., 2005; Duyn,

2012), when no additional neural effect related to field strength was

present, i.e., MVSwas not present. In contrast, (ii) theMVS “modulated”

parts should scale more strongly (twice as much as the “unmodulated”

parts), i.e., directly with the field strength in accordance with the pro-

posed Lorentz-forcemodel which is linear (Roberts et al., 2011). A com-

parison of the scaling of the resting-state fluctuations between field

strength consequently uncovers if fluctuations were indeed modified

as expected fromMVS. To verify that MVSwas present and scales linear

as predicted from the Lorentz-force model, analyses of eye movements

were done. This linear increase with field strength is essential as it

should translate into the scaling of the resting-state fluctuations.

Methods

Overview: assumptions and reasons for the choice of methods

Spontaneous eye movements as well as resting-state fMRI in dark-

ness were recorded in a group of healthy subjects (N= 30, 19 females)

at field strengths of 1.5 T and 3.0 T.

The different field strengthswere used to create conditions inwhich

a possible MVS modulation of a network could be determined between

the two field strengths. We verified that MVS was present by analyzing

eye movements, and by analyzing resting-state fluctuations we re-

vealed the modulatory influence of MVS on the DMN. The MVS effect

is always present as long as a subject is in the magnetic field of a MR

tomograph and cannot be switch “on” and “off” within an imaging

run. We used a form of group independent component analysis

(Beckmann and Smith, 2004) and dual regression (Beckmann et al.,

2009; Filippini et al., 2009) to separate the DMN from other networks

and other structured responses (artifacts) like cerebrospinal fluid

(CSF) or white matter fluctuations.

It should be noted that many possible differences might exist

between resting-state fluctuations recorded at two different field

strengths (between two MR tomograph sites). A simple analysis for

(any) statistically significant differences might therefore be misleading

or biased. The situation is further complicated because fMRI does not

provide an absolute measure of activity.

However, the scaling of MVS is predicted to be linear with field

strength, according to the Lorentz-model (Roberts et al., 2011) and

should carry over to the scaling of the resting-state fluctuations that

are related to MVS which is essential for our analysis. We therefore

sought for a comparison of the scaling of the resting-state amplitude

fluctuations between field strength for revealing modulations due to

MVS.More specifically, wemake a point-value prediction for the scaling

value (of resting-state fluctuations) for areas that are influenced by

MVS, based on the Lorentz-model for MVS (Roberts et al., 2011) and

the known scaling of BOLD-signals as described in the literature

(Triantafyllou et al., 2005; Duyn, 2012). We considered only those

areas influenced by MVS that do not violate this prediction.

Our hypothesis for MVS modulation can be seen as predicting the

overall scaling Λ of measured DMN amplitudes that occurs in the pres-

ence ofMVS due to the change in field strength. This is the combined ef-

fect of the MVS scaling of the neuronal activity λneural (translated into

blood flow effects, but independent of the imaging procedure) and the

scaling of the BOLD-signal λBOLD from one MR tomograph to the other.

We assume that the neuronal activity scaling can be determined from

the scaling of eye movements and should be linear in B0, given that

the Lorentz-force is linear in B0 (Roberts et al., 2011), where B0 denotes

the magnetic field strength of the MRI. Therefore, λneural = 3 T/

1.5 T=2whichwe verified by analyzing the eyemovements. The scal-

ing of the BOLD-signal is taken from the literature (Triantafyllou et al.,

2005; Duyn, 2012) and is sublinear in B0. More precisely, fMRI signal

fluctuations should increase with
ffiffiffiffiffi
B0

p
, if only imaging constants and

noise effects are affected by the magnetic field (Triantafyllou et al.,

2005; Duyn, 2012). Therefore, λBOLD ¼
ffiffiffi
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 T=1:5 T

p
. It is impor-

tant to note that the BOLD-signal is an epiphenomenon of the neuronal

effect and therefore the overall scalingΛ results from the composite of the

neural scaling and the BOLD-scaling, i.e., the productΛ ¼ λneuralλBOLD ¼ 2ffiffiffi
2

p
¼ 3 T=1:5 T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 T=1:5 T

p
.

Thus, we need to distinguish between two possible values for

the scaling factor Λ relating resting-state fluctuations between field

strengths. If no additionalMVSmodulationwas present (approximately

constant neuronal effect, λneural ≈ 1) then Λ should be equal to Λ ¼
λBOLD ¼

ffiffiffiffi
2

p
. In the case of an additional MVS modulation Λ should be

equal to Λ ¼ λneuralλBOLD ¼ 2
ffiffiffiffi
2

p
, if the Lorentz-force model is indeed

correct.Wewill only consider those areas asmodulated byMVS that fol-

low Λ≈2
ffiffiffiffi
2

p
and consider that other values might be due to variability

(session by session influences, CSF fluctuations or bias due to imaging

system) or due to deviations from the assumptions in the prediction

of the scaling values which should be investigated further in future

studies.

Subjects

Thirty healthy volunteers (19 females) were recruited by ads on in-

ternet forums and email alert of the Ludwig-Maximilians-University, as

well as word-of-mouth. The ethics committee of the medical faculty of

the Ludwig-Maximilians-University approved the investigation. All sub-

jects gave their written informed consent. Due to the reasons stated

below 27 of these 30 subjects (19 females) were included in the final

analysis.

None of the subjects had a knownhistory of vestibular, psychiatric or

neurological deficits. Furthermore, we recorded eyemovements in total

darkness also outside the MRI (see the section ‘Examination protocol’

below) as a control. For the 3.0 Tesla MRI, where the bed could be

uncoupled from theMRI andmoved outside the Faraday cage, no abnor-

mal eye movements were observed for any of the included volunteers,

suggesting that they had no vestibular imbalance or deficit. One volun-

teer did not partake (on own accord) in the second session, i.e., in the
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other MRI after feeling unwell during the first session (MRI) and the

complete data set was excluded from analysis. Two volunteers had to

be excluded due to strong motion artifacts in one of the two MRI ses-

sions, leaving 27 complete data sets from bothMRI sessions for analysis

of resting-state fluctuations and scaling relationships.

Behavioral experiments

Eye movement recording setup

The spontaneous eye movements of all subjects were recorded by

3D video-oculography (VOG), using an analog MR-compatible infrared

camera (MRC Systems GmbH, Heidelberg, Germany) that wasmounted

on goggles to make the camera setup head-fixed. We applied artificial

pigment markers on the sclera to be able to detect torsional eye move-

ments (Schneider et al., 2002; Dera et al., 2006). The markers consist of

an infrared-absorbing cosmetic pigment applied to the sclera by means

of a sterile surgical pen (Schneider et al., 2002). EyeSeeCam software

(www.eyeseecam.com) was used for real-time image processing and

recording of VOG data at a sampling frequency of 60Hz. For transforma-

tion of the eye movement data into degrees of horizontal and vertical

axes, a 5-point calibration was performed at the beginning of the re-

cording. The 5-point calibration pattern, a central point and 4 lateral

points in the horizontal and vertical axes with a distance between the

points of 8.5°, was put on the ceiling directly above the MRI table,

such that calibration could be done before entering the bore while

lying supine with the head flat on the MRI bed. During calibration,

subjects repeatedly fixated a sequence of given gaze directions. The

pigment markers on the sclera were selected after calibration in the

EyeSeeCam software manually once and are then tracked automatically

while the software determines the 3D orientation of the eye (Dera et al.,

2006). If the camera was moved, calibration and selection of the pig-

ment markers on the sclera were repeated.

Examination protocol

We measured spontaneous eye movements in four different head

positions. These ranged from (P1) subjects' having their head lifted up-

ward resting on a cushion, bringing their jaw close to their chest, i.e.,

“chin down” position, (P2) the head placed in the head coil (this posi-

tion was used for resting-state imaging), i.e., slightly lifted, (P3) the

head lying flat on the bed of the MRI (also used for calibration of the

EyeSeeCam software) and (P4) the head overstretched backwards sim-

ilar to “looking above oneself” or “chin up” with a supportive cushion-

roll under the neck. We recorded the head position by marking a line

with a makeup-marker pen from the canthus (corner of the eye) to

the tragus of the ear (fleshy prominent bulge at the front of the external

opening of the ear canal) andmeasuring the angle of this line relative to

a pendulum indicating gravity, i.e., the vertical line. Eye tracking mea-

surements were done inside the MRI and outside of the MRI to control

for spontaneous eyemovements thatmight occur without the presence

of a magnetic field.

The outsidemeasurements were done outside of the Faraday cage at

the 3.0 T MRI (here the bed was uncoupled from MRI) and at the 1.5 T

MRI the outside measurements were done outside of the MRI bore

with theMRI bed in themost outward and downward position, because

the bed could not be uncoupled from the 1.5 T MRI. In the case of the

3.0 T MRI where the table could be undocked from the MRI and

moved outside of the Faraday-cage, the field can be expected to be

near the strength of the earth's magnetic field (≤ 10−4 T) and the safety

regulations for the 1.5 T MRI state that the fringe field (with the bed

fully outside the MRI bore) should be ≤0.1 T.

Analysis of eye movement data

Analysis of eye movement data was done in MATLAB (MathWorks,

Inc., Natick, MA, USA) with EyeSeeCam® scripts and self-written func-

tions, in analogy to Roberts et al. (2011). Saccades (quick phases of nys-

tagmus) were detected in the eye-tracking data and a linear fit of the

tracking data in-between the two saccades was done to determine the

slow phase velocity as the trend between each two saccades. We calcu-

lated the median slow phase velocity for each subject in each head po-

sition from all linear fit slopes between each consecutive pair of

detected saccades.

We assessed the scaling of the spontaneous eye movements be-

tween field strength by fitting the median slow phase velocities over

all four head positions per subject with a linear model for the head an-

gles, resulting in a beta-value per subject and field strength, i.e., a trend

of the SPVs. This trend is therefore “independent” of a specific head po-

sition or themaximum angle that is covered between themost extreme

head positions and dependent on the field strength only. The fraction of

these beta-values per subject between field strengths of 3.0 T and 1.5 T

is defined as the scaling parameter λ = beta3T/beta1.5T, i.e., signifying,

per subject, how the effect scales between field strength. Determining

the median of the scaling value λ over the whole group of subjects is

an estimate of the scaling of MVS between field strengths of 1.5 T and

3 T and is ideally expected to have a value of 2 (see Methods section

‘Overview: assumptions and reasons for the choice of methods’ and Re-

sults section ‘Behavioral results’).

MRI setup and imaging protocols

Imaging was done on two MR tomographs with different field

strengths, one with 1.5 T (MAGNETOM Aera Siemens, Erlangen,

Germany) and the other with 3.0 T (Signa Excite Hdx; GE Medical Sys-

tems, Milwaukee, WI, USA) field strength. We verified that the nominal

field strengths were reasonably close to 1.5 T and 3.0 T, respectively by

inspecting the main resonance as indicated at the control console and

dividing the respective values by the gyromagnetic ratio for hydrogen.

We also verified the direction of the B0 field using a pocket-compass.

For both of the MRIs, used in this study, the south pole was at the

foot-end (i.e., the compass needle will line up with the north pointing

into theMRI) and by international convention the direction of themag-

netic field is therefore from the feet to the head of the subjects, when

entering head-first into the MRI. Note that this is the opposite direction

relative to the Philips AchievaMRI that was used in the study of Roberts

et al. (2011) and therefore the drifts are expected to be reversed.

For functional imaging we chose equal repetition times, equal voxel

sizes and coverage of thewhole brain including brain stem and cerebel-

lum at bothMR tomographs, but increased the effective echo timeof the

EPI sequence at 1.5 T to get a better BOLD contrast. Therefore we choose

TEeff = 44 ms for the 1.5 T MRI and TEeff = 30 ms for the 3 T MRI.

Although the fMRI signal scaling is also dependent on TEeff of the EPI

sequence (Triantafyllou et al., 2005; Duyn, 2012), we assume here

that the approximation Λ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0=B

1
0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 T=1:5 T

p
¼

ffiffiffi
2

p
for the fMRI

signal scaling holds, i.e., in our casewe assume that the expected scaling

solely depends on the field strengths of theMRIs. The resolution of both

EPI sequences was 3.5mm× 3.5mm× 4.5mmwith amatrix of 64 × 64

and 36 slices without any gap, i.e., a volume of 224 mm ×

224 mm × 162 mm. The repetition time was 3000 ms and the flip

angle was 90° for both MRIs. Two runs of resting-state fMRI were ac-

quired each with 130 volumes, i.e., 6 min and 30 s of resting-state

fMRI data for each run and additionally including four “dummy scans”,

i.e., volumes acquired but not reconstructed at the start of each run to

account for T1 saturation.

The anatomical imaging sequences differed but had similar resolu-

tion. On the 1.5 T MRI we used a MPRAGE (magnetization prepared

rapid gradient echo) sequence with TR = 1900 ms, TE = 2.67 ms,

TI = 1100 ms, 160 slices per slab, 1 × 1 × 1 mm voxel, flip angle =

15°, FOV = 256 × 256 mm covering the whole brain including brain

stem and cerebellum. On the 3 TMRIwe used a FSPGR (fast spoiled gra-

dient echo) sequencewith TE out of phase, preparation time500ms,flip

angle 15°, FOV 220mm, Locs per Slap 128,matrix 256 × 256,with a res-

olution of 0.8 mm × 0.8 mm × 0.7 mm.
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Preprocessing of MRI data

All preprocessing was done with SPM8 (www.fil.ion.ac.uk/spm/).

Datasets from each MRI per subject were preprocessed separately, but

in the sameway, as follows. The functional data were corrected for mo-

tion via realignment of thewhole time series to a reference volume that

was chosenmanually by looking for a relatively “motion free” part of the

image time series. The mean of all realigned images of both runs after

motion correction was used for coregistration of the functional data

with the anatomical image. The functional and anatomical images

were normalized to MNI space using the unified segmentation and

normalization scheme implemented in SPM8 (Ashburner and Friston,

2005). The anatomical image (T1-weighted)was used in the segmenta-

tion step as the basis for estimating gray matter, white matter and CSF/

other distributions using tissue probability maps provided with SPM8.

The parameters obtained from the segmentationwere then used to nor-

malize the images (functional and anatomical) to the MNI space. The

voxel size after normalization was 4 × 4 × 4 mm3 for the functional,

and 1 × 1 × 1 mm3 for the anatomical image. All fMRI volumes were

smoothed with an isotropic 3D gaussian kernel with a FWHM of 6 mm.

Analysis of resting-state data

Estimation and selection of resting-state networks with group ICA

We used FSL MELODIC (http://www.fmrib.ox.ac.uk/fsl/melodic/)

(Beckmann and Smith, 2004) to perform group independent compo-

nent analysis (ICA). This means applying spatial ICA to the temporal

concatenation of all data of all runs of all subjects from both MRIs.

Before ICA was conducted, a voxel-wise de-meaning and

normalization of the voxel-wise variance were performed and all

drifts longer then 100 s were filtered out. Pre-processed data were

whitened and projected into a subspace using probabilistic princi-

pal component analysis. The number of dimensions for the subspace

was estimated using the Laplace approximation to the Bayesian

evidence of the model order (Minka, 2000; Beckmann and Smith,

2004). Component maps were then estimated and afterwards

normalized using the residual noise standard deviation. These

normalized component maps were then thresholded by fitting a

mixture model to the histogram of intensity values (Beckmann

et al., 2003; Beckmann and Smith, 2004).

This results in a decomposition that is representative on the “global-

level”, i.e., thewhole-sample across bothMRIs and all subjects. This was

done to ensure that the network was present in both field strengths for

thewhole group. This has recently been shown to lead to a very accurate

and reproducible detection of the DMN over various imaging sites and

under varying imaging conditions (Jovicich et al., 2015). We then ap-

plied dual regression (Beckmann et al., 2009; Filippini et al., 2009) on

the fMRI data based on all the group ICA spatial independent compo-

nentmaps. This allows us to obtain time courses and spatial amplitudes

per individual subject, run and MRI for each independent component

(IC) that can then be used for revealing MVS modulations. This also

means that the detection of the DMN is not done for each run acquired

in aMRI, but on all data and then related back to all runs of all subjects in

both MR tomographs.

It should be noted that all independent components are used in the

dual regression approach and therefore components of no interest, e.g.,

describing artifacts likewhitematter or cerebrospinal fluid (CSF) fluctu-

ations are also accounted for in the data and should “absorb” at least

some of these influences on the amplitudes of the component of interest

(the DMN amplitudes), although any “nuisance removal”will probably

never be perfect.

Independent component of interest describing the default mode

network (DMN) was selected by visual inspection based on the pro-

posed distributions taken from Beckmann et al. (2005) and Buckner

et al. (2008).

Analysis of field strength influence on resting-state networks

Definition of scaling factor.Weused the spatial amplitudes from the dual

regression to calculate the scaling Λ as the magnitude of the fraction of

the amplitudes at 3.0 T divided by the amplitudes at 1.5 T, both averaged

over the runs, i.e., Λ ¼ j DMN‐ dAmplitude3T

DMN− dAmplitude1:5T

j, with Λ denoting the scaling

value per subject at every individual voxel, | ⋅ | denoting the absolute

value and b⋯·denoting the average over all runs per subject at every

voxel individually.

It should be noted that Λ is from a ratio distribution (given that it is

the ratio of amplitudes), and statistics are expected to suffer from long

tails. Therefore, we chose to use robust statistics using the median of

the scaling values as the measure of the average and the interquartile

range (and derived confidence intervals) as the measure of dispersion,

as this was proposed as a good approach when evaluating statistics on

fractions (Brody et al., 2002), given that no closed form for the distribu-

tion function is known in our case.

For the case at hand we are only interested in finding those areas

that do not violate the hypothesized Λ (i.e., areas with sufficiently

small dispersion to not reject the null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
)).

Hence, the median, the interquartile range and the Wilcoxon signed-

rank test will suffice as statistical measures in this case and knowledge

of the exact distribution function is not needed. Knowledge of the

exact distribution function would make inference simpler and possibly

reveal more about the nature of MVS or scaling values in general and

would therefore be an interesting topic for a further mathematical–sta-

tistical treatment of the assumptions underlying the calculation of

scaling-values.

ROI analysis step I: determination of candidate areas of “modulation”. For

defining regions of interest (ROIs) we first split the data spatially into

parts that had their DMN amplitudes modulated significantly (statisti-

cally significant) between field strength and parts that did notmodulate

significantly (statistically not significant). For this we selected the esti-

mated amplitudes from dual regression (stage 2) for all subjects includ-

ing both MRIs for the DMN component and entered them into a paired

t-test model using SPM8 to examine the subject-wise differences be-

tween “field strength” (MRIs) over the group and added behavioral co-

variates in the form of head angle of the subjects in the coil during

imaging and their median horizontal slow phase velocity of the nystag-

mus for the corresponding head position.

This revealedmodulations between field strengths using a threshold

of p ≤ 0.05 (FWE-corrected), which we call the candidate “modulated”

areas of the DMN. All other parts of theDMN component (i.e., the signif-

icant voxels of the “global” group IC that was identified as the DMN)

that were not covered by these voxels (of the modulated parts) are

the candidate “unmodulated” areas of the DMN. Here, “unmodulated”

means not statistically significant at p ≤ 0.05 FWE-corrected in the anal-

ysis of differences in amplitudes, but significant in the “global” group IC

that was identified as the DMN. This means that the “unmodulated”

voxels are not simply the rest of the brain, but the rest of the significant

voxels of the DMN group IC. We ensured that all voxels of the “unmod-

ulated” and the “modulated” areaswere present in the data of bothMRI

sessions.

Note that a “modulation” at this stage in the analysis does not neces-

sarily imply thatMVS is the underlying reason for themodulation.More

precisely, at this pointwe are using a kind of “standard analysis for find-

ing amplitude differences”, i.e., any kind of differences between the two

settings (the twoMR tomographs/the two field strengths). These differ-

ences can include biases from the two MRIs or insufficient modeling

(and removal) of other fluctuations, e.g., from CSF or deviations from

the assumptions for the prediction of the scaling of modulations.

Therefore, we need a further step to identify modulations that stem

from MVS, i.e., we have to analyze the scaling Λ for the hypothesized
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point-value prediction of Λ ¼ 2
ffiffiffi
2

p
, as noted earlier (in the section

‘Overview: assumptions and reasons for the choice of methods’).

We used the automated anatomical labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) to split these regions of the candidate “modulated”

and “unmodulated” voxels into smaller parts as labeled in the atlas (left

and right sides were combined). This means that the significant voxels

from the “modulated” areas are assigned AAL atlas labels and the voxels

of the “unmodulated” areas (the significant voxels of the DMN compo-

nent from the “global” group ICA without the voxel that are part of the

“modulated” areas) are assigned AAL atlas labels to form separate ROIs.

Any voxels that did not get a label initially were assigned to the nearest

region of the AAL atlas. We then plotted the distribution of scaling

values Λ in all these regions as boxplots.

ROI analysis step II: analysis and display of scaling values in ROIs.Wechose

to plot the distribution of the scaling data per region in three ways that

allow us to visualize variability, distribution shape (via quartiles) and

central tendency (viamedian) of the 4D scaling data (i.e., 3D spatial dis-

tribution of Λ over subjects).

We displayed (i) the spatial distribution of Λ within a given region

for the “average subject”, i.e., the voxel-wise distribution of Λ for the

“median subject”, as well as, (ii) all scaling data i.e., Λ of all voxels and

all subjects, in a given region (“aggregate data”), and (iii) the distribu-

tion of subjects for the region, i.e., distribution of Λ of the subjects for

the average voxel in the region, using the median over the voxels of

the region, i.e., region average per subject (median over ROI).

The boxplot of the “aggregate” data, revealed the full variability and

central tendency across all subjects and voxels in a given region (4D

data) taken together. The distribution of voxels from the “median sub-

ject” aids in the understanding of the scaling behavior by revealing the

contribution of the spatial-dispersion of Λ values to the variability and

the central tendency to the “aggregate” data, for the “average” subject

in each region. Finally, the distribution of subjects for the “median

voxel” (or “region average”), aids in the understanding of the overall

scaling behavior in the “aggregate data” by revealing the contribution

of the “between subject variability” in Λ and its central tendency, i.e.,

it is thedistribution of scaling valuesΛ between subject in a given region

for an “average voxel” in that region of interest (ROI).

Mapping of Λ-statistics: searchlight based “ROI analysis at every voxel”

We also seeked an approach for the analysis of the scaling behavior

of the DMN that is independent from the previous definition of ROIs

whichused the candidate “modulated” and “unmodulated” regions (de-

rived with the commonly used analysis for “statistically significant dif-

ferences”), as well as the AAL atlas. Therefore we chose to employ a

searchlight analysis. This means that a ROI was created for each of the

N voxels in thebrain. TheseNROIs, called searchlights, contain (usually)

27 voxels each, i.e., the nearest neighbors (3 × 3 × 3 voxels) around the

“center voxel”. If a “center voxel” falls on the edge of the brain mask

then the searchlight was cropped and these searchlights have less

than 27 voxels.

The preparation of the input data for each searchlightwas analogous

to the previous ROI analysis, i.e., in every searchlight we analyze

the scaling behavior using the “aggregate” scaling data, the voxel-

distribution of the “median subject” and the subject-distribution of the

“median voxel” as input data for calculating the statistical parameters

that are then assigned to the “center voxel”, such that they can be

“mapped out” over thewhole brain.Mapping of the “aggregate”, “medi-

an subject” as well as the “median voxel” scaling data enables the dis-

tinction of contributions to the variability in the scaling data analog to

the boxplots described above.

We analyze the data in each searchlight using non-parametric robust

statistics, like themedian and interquartile range aswell as theWilcoxon

signed-rank test. Robust statistics were used, because the scaling values

Λ can be expected to be very noisy and will contain outliers because

they are a fraction of resting-state fluctuation amplitudes derived from

fMRI, which is generally very noisy and taking the fraction will amplify

the dispersion further (see the section ‘Definition of scaling factor’).

Given that we have a specific point-value prediction (i.e., Λ ¼ 2
ffiffiffi
2

p
)

for our hypothesis that MVS has modulated parts of the DMN (on top

of the modulation due to fMRI signal increase; Triantafyllou et al., 2005;

Duyn, 2012), we can set the null hypothesis H0 for the Wilcoxon

signed-rank test to H0(Λ ¼ 2
ffiffiffi
2

p
) and use the collected scaling data to re-

ject this hypothesis (Meehl, 1967) and conversely look for areas where

the null hypothesis was not rejected (i.e., where H0 was retained). Note

that although this formulation of the statistical null hypothesis test to fal-

sify our theory is opposite to the familiar, but paradoxical way statistics is

done in psychology andneuro-imaging, it is a common statistical practice

in physics where point-value predictions are common and hypotheses

are falsified instead of confirmed (Meehl, 1967; Cohen, 1994).

We visualized regionswhere our H0(Λ ¼ 2
ffiffiffi
2

p
) was not rejected and

thosewhere it was rejected by plotting a “deviationmeasure”D as over-

lays on brain areas. D is defined as D = log2(CutOff/|z|) = log2(D*)

where |z| denotes the absolute value of the equivalent z-score obtained

from the Wilcoxon signed-rank test and the “CutOff” defines the mini-

mal (or larger) z-score value that amounts to a rejection, i.e., a falsifica-

tion of our “MVSmodulation” hypothesis. Note that a small value for the

CutOff, rather than a large value will result in a more conservative

estimate, given that larger z-scores indicate greater deviations from

our null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
) and rejecting our “MVS modulation”

hypothesis will thus be “easier” when choosing a small CutOff value.

We therefore chose a CutOff of z=1.96 indicating a 95% confidence in-

terval. Using the logarithm to base 2 on the deviations D* = CutOff/|z|

allows us to transform D* from the domain (0… 1 … ∞)to the domain

(−∞ … 0 … + ∞) for D that is symmetric and centered (on the value

“D = 0”) around the “CutOff”, i.e., D* = 1 for |z| = CutOff. In case that

the deviation is sufficiently large to reject our hypothesis, i.e., |z| N Cut-

Off, we get D* b 1 and therefore a negative D, which will be indicated

by cyan-blue coloring in the overlays. Conversely in case of a small de-

viation which does not reject our hypothesis, i.e., |z| b CutOff, we get

D* N 1 and therefore a positive D, which will be indicated by yellow–

red coloring in the overlays.

We also display the overlap of all regions where H0(Λ ¼ 2
ffiffiffi
2

p
) was

retained (positiveD) for all preparations of the scaling data, i.e., the “ag-

gregate” data, the voxel-distribution of the “median subject” and the

subject-distribution of the “median voxel”, to indicate the most conser-

vative inference on the regions for which we retain the null hypothesis

H0(Λ ¼ 2
ffiffiffi
2

p
), i.e., “MVSmodulation is present”. The overlap is indicated

by additive red–green–blue color mixing. We plot the distribution of

scaling values for select regions that show full overlap of all statistics

as boxplots.

In addition to the overlay plots of the statistical tests using the

Wilcoxon signed-rank test, we also “map out” the median-Λ values

and their deviation in form of the width of their confidence interval.

The calculation of the confidence interval width was based on the 95%

confidence interval determined from the interquartile range IQR by

CIwidth = 1:57� IQR=
ffiffiffiffi
N

p
, with N being the number of samples in

the distribution. We plot overlays for the “aggregate” scaling data, the

voxel-distribution of the scaling data of the “median subject” and the

subject-distribution of the scaling data for the “median voxel” in each

searchlight for indicating contributions to the variability in the scaling

data analog to the boxplots described above.

Results

Behavioral results

All of our subjects showed a predominantly horizontal nystagmus in

the MRI's magnetic field analog to the results shown by Roberts et al.

(2011). The nystagmus persisted as long as subjects remained in the

MRI and little or no horizontal nystagmus was observed when outside

the MRI bore where the magnetic field was weak (≤0.1 T at 1.5 T MR
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tomograph site or near the earth's magnetic field, i.e., ≤ 10−4 T, at 3.0 T

MR tomograph site, see Methods in the section ‘Examination protocol’).

Outside the Faraday-cage subjects did not show any horizontal nystag-

mus (or abnormal eye movements) after a brief period of reversed nys-

tagmus, in contrast to the situation inside the MRI analog to previously

published findings (Roberts et al., 2011). Some of the subjects reported

the feeling of beingmoved, rotated as in “driving around a curve” or diz-

ziness when entering or leaving the bore which subsided after a short

time, while the nystagmus did not subside when inside the MRI for all

subjects (except for some subjects when in the chin down position, P1

in Fig. 1A). Fig. 1A shows the distribution of the median horizontal

slow phase velocities (SPVs) of all subjects in both MRIs and all four

head positions. The nystagmus' SPV depended on the head orientation

of the subjects and was positive, i.e., right-ward drift, for most subjects

(more than 75%) for the head positioned in the coil e.g., during imaging,

and increased further as the head was stretched more and more to the

“chin up” position (i.e., P2, P3 & P4; Fig. 1A). The SPVs were reduced

or zero for the “chin down” position and in some cases reversed, i.e.,

the nystagmus then had a left-ward drift (P1; Fig. 1A). The general

trend of nystagmus SPV was the same for all subjects, i.e., increasing

from “chin down” position (P1) to “chin up” position (P4) and these

trends increased with field strength for almost all subjects (Fig. 1A).

The scaling of the trend between field strengths, i.e., the fraction λ of

the nystagmus SPV trend over head-angle between field strengths, was

found to be near the expected value of λ = 2 for group median, given

the confidence interval for the median (Fig. 1B), indicating that MVS

scales linearly with B0, as suggested by the Lorentz-model (Roberts

et al., 2011).

Resting-state functional MRI results

The dimension estimation for the group ICA resulted in 21 compo-

nents. We picked the default mode network via visual inspection as

one component which described 7.48% of the total variance.

ROI analysis results

The spatial distribution of voxels of the DMN component are given in

blue and green (Fig. 2A). Blue and green voxels are both significant parts

of theDMNcomponent and present in bothMRI data. The greenparts in-

dicate voxels thatwere not (statistically) significantlymodulated in their

DMN amplitudes (taken from dual regression stage 2), while the blue

parts indicate voxels with (statistically) significantly modulated

amplitudes of the DMN between field strength (p ≤ 0.05 FWE-

corrected; Fig. 2A).

Note that this does not necessarily reflect MVSmodulations, but any

kind of significant differences. Therefore we analyzed the scaling of am-

plitudes as noted in Methods section ‘ROI analysis step I: Determination

of candidate areas of “modulation”’. We hypothesized a specific scaling

value (Λ ¼ 2
ffiffiffi
2

p
) for which we will accept that MVS modulation has oc-

curred. Other values will not be considered as they might be due to de-

viations from our assumptions or other effects like bias between MRI

settings or other fluctuations (e.g., CSF) that might be insufficiently

modeled (see Methods sections ‘ROI analysis step I: Determination of

candidate areas of “modulation”’ and ‘Estimation and selection of

resting-state networks with group ICA’). The ROI analysis results of the

scaling Λ of the DMN amplitudes for the “unmodulated” parts are

given in green and the “modulated” parts in blue (Fig. 2B). The three dif-

ferent boxplots for each part showdifferent aspects of the scaling behav-

iorΛ of the fMRI data (voxel distribution of “average subject”, “aggregate

data” and subject distribution of “average voxel” in every given region)

as explained in the Methods section (the section 'ROI analysis step II:

analysis and display of scaling values in ROIs'). The scaling factor of Λ ¼ffiffiffi
2

p
, expected for the case of noMVS influence on themodulation of am-

plitudes and increase only due to fMRI signal scaling with field strength

(Triantafyllou et al., 2005; Duyn, 2012) is indicated by a blackdotted line

overlaying all boxplots. The scaling factor of Λ ¼ 2
ffiffiffi
2

p
, expected for the

case of MVS influence due to field strength, in accordance with the

Lorentz-force model describing the eye movements (Roberts et al.,

2011), together with fMRI signal increase due to field strength

(Triantafyllou et al., 2005; Duyn, 2012) is indicated by a red dotted

line overlaying all boxplots.

The boxplots for the “unmodulated” parts of the DMN (Fig. 2B indi-

cated in green) show a scaling behavior around the value
ffiffiffi
2

p
(consider-

ing the confidence interval for the median). This indicates that no MVS

effect was present, according to the prediction that for this value only

fMRI field strength effects are increasing the signal fluctuations.

For the “modulated” parts (Fig. 2B indicated in blue) we can show

that the ROIs “anterior cingulum” and “cerebellar vermis” show a scal-

ing behavior around the value 2
ffiffiffi
2

p
. This suggests that a MVS effect

was present, according to the prediction thatMVSwould contribute lin-

early to the scaling, given that the Lorentz-force is linear in B0, i.e.,

resulting in a factor of 2 for 3.0 T relative to 1.5 T, while the fMRI signal

scaling due to field strength contributes sub-linearly with an expected

factor of
ffiffiffi
2

p
. Furthermore, the areas “posterior cingulum” and the

“precuneus” show a scaling behavior near the value
ffiffiffi
2

p
suggesting

Fig. 1.A:Distribution of themedian horizontal slowphase velocities (SPVs) of all subjects in bothMR tomographs (1.5 T and 3.0 T) and all four head positions (P1 to P4). Head positions are

indicated by P1 to P4 as a schematic drawingof thehead and inner ear vestibular end-organ, including themarking of Reid's plane (red line) thatwas used for recording thehead angle and

the orientation of the magnetic field B0 (blue arrow). The positions ranged from (P1) subjects' bringing their jaw close their chest, i.e., “chin down” position, (P2) the head placed in the

head coil, i.e., only slightly lifted, (P3) the head lying flat on the bed of the MRI and (P4) the head overstretched backwards, i.e., “chin up”. B: The scaling λ of the trends of the median

horizontal SPVs between the two field strengths for all subjects (3.0 T relative to 1.5 T). The SPV trend was determined as the slope for the median SPVs over the head angle in all four

head positions per subject and MRI.
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Fig. 2. A: Spatial distribution of voxels belonging to the DMN component shown in blue and green. Blue and green voxels are both significant parts of the DMN component and present in

both MRI data. The green parts of Fig. 2A indicate voxels that were not statistically significantly modulated in their DMN amplitudes (taken from dual regression stage 2), while the blue

parts indicate voxels with (statistically) significantlymodulated amplitudes of the DMN between field strength (p b 0.05 FWE-corrected). Note that themodulated parts indicate any sta-

tistically significant difference, i.e., not necessarily that MVSmodulation was present. MVSmodulation (in accordancewith our hypothesis) has to have a scaling value nearΛ ¼ 2
ffiffiffi
2

p
(see

text and scaling analysis in B). B: ROI analysis results for the scaling Λ of the DMN amplitudes for the “unmodulated” parts (green) and the “modulated” parts (blue). The three different

boxplots (top to bottom for each part) show different aspects of the scaling behavior Λ of the fMRI data: (top) voxel distribution of “average subject”, (middle) “aggregate data” and (bot-

tom) subject distribution of “average voxel” in every given region. The black dotted line overlaying all boxplots indicates the predicted scaling factor ofΛ ¼
ffiffiffi
2

p
, expected for the case of no

MVS influence on themodulation of amplitudes and increase only due to fMRI signal scalingwith field strength. The red dotted line overlaying all boxplots indicates the predicted scaling

factor of Λ ¼ 2
ffiffiffi
2

p
, expected for the case of signal modulation due to MVS influence, in accordance with the Lorentz-force model, together with fMRI signal increase due to field strength.

The names of the ROI splits of the respective “modulated” or “unmodulated” parts of theDMNdenote their spatial location as taken from the labels of theAAL atlas. Thefirst column in each

rowof boxplots, separated from theROI splits by a solid black line and also underlinedwith green or blue color, indicates the behavior ofΛ for the complete region (all significant voxels) of

the “unmodulated” or “modulated” parts of the DMN, respectively.
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Fig. 3. Spatial distribution of the deviation measure D indicating regions where the null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
) for the scaling values was retained (D N 0) and those where H0 was

rejected (D b 0) as colored overlays on a standard brain. The statistics for the voxel distribution of the “median subject” at each searchlight is shown at the top, the aggregate scaling

data at each searchlight is shown in the middle and the subject distribution for the median voxel in each searchlight (“median searchlight”) is shown at the bottom.
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that noMVSwas present and signal increase was only due to fMRI field

strength effects, i.e., the areas got (statistically) significant in the paired

t-test between amplitudes, because the variability was relatively low.

This demonstrates that the analysis for statistically significant differ-

ences between field strengths (indicated in blue; Fig. 2A) can be mis-

leading when trying to analyze for MVS influences.

All other ROIs of the “modulated” areas (“inferior temporal gyrus”,

“lingual gyrus”, “cuneus”, “cerebelum”, “calcarine”, “hippocampus”,

“middle temporal gyrus”, “thalamus”, “caudate”, “middle occipital

gyrus” and “middle cingulum”) showed a scaling that was significantly

higher than
ffiffiffi
2

p
, i.e., higher than expected for fMRI signal increase due to

field strength without a MVS influence being present, but still lower

than2
ffiffiffi
2

p
whichwould ideally be expectedwhen aMVS effectwas pres-

ent (when considering the confidence interval of the median). There-

fore, these areas were not considered as MVS modulated.

Searchlight analysis results

The spatial distribution of the deviation measures D that indicates

where the null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
), “MVS modulation is present”,

was retained (D N 0) and where H0 was rejected (D b 0) is depicted in

Fig. 3. The results for the distribution of voxels for the average subject

(median subject), the aggregate data (all voxels in searchlight, all sub-

jects) and the distribution of subjects for the average voxel in the

searchlight (median searchlight; indicated as “median SLight”) are

depicted at the top, middle and bottom, respectively.

The overlap of all statistics where the null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
),

“MVS modulation is present”, was retained (D N 0) is shown in Fig. 4.

The overlap is depicted as an additive red–green–blue color-mixing

overlay on a standard anatomical brain, together with inlays showing

the distribution of scaling values Λ as boxplots for the regions with the

most consistent overlap, i.e., the most conservative estimate of H0(Λ ¼

Fig. 4. The conservative estimate of the presence of the MVS modulation, including inlays showing the distribution of scaling values Λ for specific locations. The overlap of all statistics

retaining (D N 0) the null hypothesis H0(Λ ¼ 2
ffiffiffi
2

p
) “MVS modulation is present” is shown as an additive color-mixing overlay, showing the results from the “median subject” in green,

the aggregate data in blue and the “median searchlight” in red and their overlaps in the respective additive color-mixing as indicated at the bottom. The overlap of all statistics is

shown inwhite indicating the most conservative estimate, i.e., where all three possible statistics do not reject H0 (i.e., D N 0). Inlays show boxplots of the scaling values Λ for four specific

ROIs (upper and lower part of “cerebellar vermis”, “anterior cingulum” and “calcarine sulcus”) that were themain regions of the conservative estimate for the presence of the MVS effect.
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2
ffiffiffi
2

p
). These regions are the “cerebellar vermis”, the “anterior cingulum”

and the “calcarine sulcus”.

The spatial distribution of median-Λ values and the associated confi-

dence interval width, i.e., the range of uncertainty above and below the

median-value, is depicted in Fig. 5 on the left and right, respectively, as

colored overlays on a standard brain. The color bar was designed to

make the distinction of median-Λ values straightforward. The predicted

value of Λ ¼
ffiffiffi
2

p
, i.e., no MVS effect and only field strength related fMRI

Fig. 5. Spatial distribution of scaling values Λ as colored overlays on a standard brain. Median-Λ is displayed on the left and the confidence interval width (95% CI), i.e., the range from the

uncertainty limit above to the uncertainty limit below the median-value is displayed on the right. The color bar was designed to indicate values for the median-Λ around the predicted

value of Λ ¼
ffiffiffi
2

p
in green, i.e., no MVS effect and only field strength related fMRI signal increases, and values of median-Λ around the predicted value of Λ ¼ 2

ffiffiffi
2

p
in red, i.e., a MVS effect

was present. The range of color display around the values Λ ¼ 2
ffiffiffi
2

p
(red) and Λ ¼

ffiffiffi
2

p
(green) is in both cases δ ¼ �1

�
4

ffiffiffi
2

p
. Deviations from these predictions are colored in blue, yellow,

orange or white respectively. The confidence interval width uses the same color bar, but the colors indicate the size of the width. The numbers at the top of the color bar for each color

indicate the lower limit that a median-Λ or CI-width value at a certain voxel can have and still be plotted as the respective color. This means that a voxel with a median-Λ value Λ≥

ffiffiffi
2

p

will be plotted as light green as long as it is not equal or larger than Λ ≥
5
�
4

ffiffiffi
2

p
which would result in being plotted in yellow, i.e., the upper end for each color is the lower end of the

next color. Values of Λ≥3
ffiffiffi
2

p
are shown in white and considered outliers.
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signal increases, is shown in green. A median-Λ around the predicted

value of Λ ¼ 2
ffiffiffi
2

p
, i.e., “MVS effect was present”, is shown in red.

Median-Λ scaling values that were significantly higher than
ffiffiffi
2

p
,

i.e., higher than expected for fMRI signal increase due to field strength

alone without a MVS influence being present, but still lower than 2
ffiffiffi
2

p
,

which would ideally be expected when a MVS effect was present,

are shown in yellow and orange. This means the range of the color dis-

play around the values Λ ¼ 2
ffiffiffi
2

p
(red) and Λ ¼

ffiffiffi
2

p
(green) is in both

cases δ ¼ �1
�
4

ffiffiffi
2

p
.

It is interesting to note that the average scaling value over thewhole

brain was near Λ ¼
ffiffiffi
2

p
(labeled in green tones in Fig. 5) which is in ac-

cordance with the result published by Triantafyllou et al. (2005)who

considered the average scaling of fMRI signals between field strengths.

Local deviations from the value Λ ¼
ffiffiffi
2

p
were mostly in accordance

with the prediction Λ ¼ 2
ffiffiffi
2

p
, derived from the Lorentz-force model

(Roberts et al., 2011) and imaging physics (Triantafyllou et al., 2005;

Duyn, 2012), e.g., “red regions” in slices at z = −36 mm to

z = −18 mm or z = +24 mm in Fig. 5. All other regions that do not

confirm to either of these two values for Λ were in parts of the brain

that experienced imaging artifacts like field inhomogeneity effects

which grow with field strength. These are therefore expected to have

scaling values lower than Λ ¼
ffiffiffi
2

p
, because signal reduction intensified

at 3.0 T relative to the case at 1.5 T (e.g., “blue regions” in slices at

z = −26 mm and z = −18 mm in Fig. 5). Statistical results of scaling

analysis for selected clusters are listed in Table 1.

Discussion

Our goal in this study was to investigate if magnetic vestibular stim-

ulation (MVS) does influence resting-state network fluctuations as

measured with fMRI. We focused on the modulation of the default

mode network (DMN) as an exemplary case and aimed on identifying

the modulatory influence of MVS on the DMN due to changes in mag-

netic field strength.

We validated that the MVS associated nystagmus was present and

that its slow phase velocity (SPV) scales with field strength and head

position as reported previously (Roberts et al., 2011). In the fMRI data,

we chose to identify MVSmodulations in the presence of other possible

differences between field strengths (different MR tomographs, session

effects, other fluctuations e.g., from CSF or white matter) by focusing

on the analysis of scaling Λ of DMN amplitudes in accordance with the

scaling of MVS under the assumption of the Lorentz-model (Roberts

et al., 2011) and the scaling of the BOLD-signal (Triantafyllou et al.,

2005; Duyn, 2012), which resulted in a specific point-value prediction,

i.e., Λ ¼ 2
ffiffiffi
2

p
. This choice of methods is mainly due to the fact that

fMRI only allows relative but no absolute measures of activity. Modula-

tions of fMRI signals due toMVS can thus only be estimated by the eval-

uation of the scaling relationship between amplitudes of a chosen

network, e.g., like the DMN, for different field strengths.

We found that those parts of the DMN which showed a scaling of

amplitudes in accordance with the prediction made on the basis of the

Lorentz model (Roberts et al., 2011) (Λ ¼ 2
ffiffiffi
2

p
) were associated with

vestibular and ocular motor function (Dieterich and Brandt, 2008).

These areas included the anterior cingulum, the cerebellar vermis and

the calcarine sulcus. It should be noted that we did not expect to find

all possible areas that have been described as vestibular in the literature

before, or all areas that get vestibular input and that should therefore be

influenced or “driven” by MVS, but only those “related to” the DMN. In

other words, only those (MVSmodulated) areas that have a “functional

connection” (i.e., not effective connection)with the DMN can be detect-

ed, i.e., the relationship is correlative in nature (ICA identifies structured

components in the data). Conversely, the direct effect of MVS on all

areas that it “drives” cannot be estimated with fMRI, as possible for

other stimulations, e.g., visual stimulation, which can be switched

Table 1

Coordinates in MNI-space of cluster peaks [x,y,z] as well as center of gravity (CoG) for cluster (x,y,z), both in mm, as well as cluster sizes, statistic values for amplitude scaling Λ and de-

scription of regions that are covered according to SUIT-, Harvard–Oxford and Juelich Atlas. Statistic values are the estimated median Λ and the confidence interval for the median at the

peak coordinate. Clusters 1 to 5 are part of the areas that are interpreted as MVS modulated, as all statistics (median subject, aggregate data and median searchlight) overlap with the

prediction for Λ ¼ 2
ffiffiffi
2

p
(see Fig. 4). Clusters 6 to 15 are areas where the prediction is matched in at least one statistic and are not interpreted as MVS modulated.

MNI-xyz in mm Cluster Λ = Med ± CI

[Peak] & (CoG) No size “median subject” “aggregate data” “median SearchLight” Regions (SUIT; Harvard–Oxford; Juelich Atlas)

[−2, −62, −36]

(−2, −62, −32)

1. 64 2.64 + −0.27 2.58 + −0.26 2.42 + −0.86 Vermis VIIIb, VIIIa

[−2, −58, −12]

(−2, −58, −12)

2. 190 2.63 + −0.39 2.75 + −0.34 3.02 + −0.69 Cerebellum Left V, Left I–IV

[2, 46, 24]

(−2, 42, 24)

3. 23 2.57 + −0.25 2.68 + −0.23 2.96 + −0.73 Paracingulate gyrus, cingulate gyrus,

anterior division

[−2, 18, 24]

(−2, 18, 20)

4. 80 2.80 + −0.34 2.66 + −0.32 2.99 + −1.56 Cingulate gyrus, anterior division

(partly into corpus callosum)

[−10, −74, 12]

(−10, −74, 16)

5. 74 2.81 + −0.20 2.69 + −0.21 2.76 + −0.47 Intracalcarine cortex L, visual cortex V1 BA17 L

[2, −10, 36]

(−2, −6, 36)

6. 27 2.29 + −0.17 2.54 + −0.25 2.72 + −0.98 Cingulate gyrus, anterior division, posterior division

[−2, −58, −48]

(−2, −58, −48)

7. 31 2.54 + −0.26 2.41 + −0.24 2.69 + −0.65 Cerebellum left IX, vermis IX, VIIIb

[−26, −46, −24]

(−22, −50, −32)

8. 24 2.16 + −0.17 2.19 + −0.28 2.67 + −0.97 Cerebellum left VI, V

[10, −54, −52]

(10, −54, −52)

9. 10 2.36 + −0.17 2.53 + −0.23 2.64 + −0.66 Cerebellum right IX, VIIIb

[18, −70, −36]

(18, −62, −36)

10. 11 2.09 + −0.25 1.95 + −0.25 2.72 + −0.84 Cerebellum right crus II, crus I

[10, −54, −24]

(10, −54, −28)

11. 28 2.42 + −0.22 2.31 + −0.26 2.89 + −0.70 Cerebellum right V, I–IV

[−18, −30,-36]

(−22, −34, −36)

12. 4 2.10 + −0.37 1.99 + −0.33 2.69 + −1.03 Cerebellum/brainstem

[−38, 6, −32]

(−42,10, −32)

13. 7 2.26 + −0.27 1.94 + −0.27 2.59 + −0.95 Temporal pole, inferior temporal gyrus,

anterior division

[58, −6, −36]

(54, −6, −32)

14. 32 2.75 + −0.24 2.64 + −0.32 2.88 + −0.53 Inferior temporal gyrus, anterior division

[54, −66, 8]

(50, −66, 8)

15. 26 2.28 + −0.23 2.14 + −0.22 2.80 + −0.77 Lateral occipital cortex, visual cortex V5 R

Middle temporal gyrus, temporooccipital part
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between “on” and “off” states during an imaging run, becauseMVS is al-

ways present throughout an imaging run. This suggests that the modu-

lated DMN areas either have direct connections with the vestibular

nuclei in the brain stem that process information coming from the ves-

tibular end-organ, or if they don't have direct connections, they might

get inputs from other vestibular areas that have connections to the

brain stem nuclei.

Other parts of the DMN were not modulated by MVS as hypothe-

sized (i.e., Λ ¼ 2
ffiffiffi
2

p
) with most of them modulated as expected for a

constant neuronal effect under BOLD-signal scaling as described in the

literature (Triantafyllou et al., 2005; Duyn, 2012), i.e., Λ ¼
ffiffiffi
2

p
.

For the areas that modulated significantly above the prediction of

fMRI signal increase, but less than expected from the Lorentz-force

model it is possible that they were affected indirectly via vestibular

areas, i.e., showed modulations because of vestibular interactions. On

the other hand, our hypothesis that modulations should scale between

field strengths as determined from the eye movements (Λ ¼ 2
ffiffiffi
2

p
)

might only be appropriate for areas that are associated with vestibular

subfunctions that are more closely related to ocular motor function. A

third explanation could be that those deviations rather signify other

kinds of modulations like CSF fluctuations or field inhomogeneity ef-

fects, leading to scaling values that are other than predicted for the con-

stant case (i.e., Λ ¼
ffiffiffi
2

p
; — no MVS modulation) or the MVS case (i.e.,

Λ ¼ 2
ffiffiffi
2

p
).

Our results raise questions about the influence of MVS on fMRI in

general and in particular about fMRI studies on the function of the ves-

tibular system and the influence of vestibular deficits. It is important to

keep in mind that the effect of MVS is not like the constant acoustic

noise stimulation during fMRI. MVS induces an imbalance state with a

directional preponderance, i.e., has a signed difference effect, unlike

acoustic noise that can be supposed to be equal and balanced for the au-

ditory network and its connections. Thus, healthy subjects measured

under MVS influence (i.e., in a MR tomograph) might be more like a

“special patient group with a vestibular imbalance” but without lesions

in the inner ear or central nervous system.

Recent studies comparing resting-state activity in patients with ves-

tibular deficits to that of healthy controls showed widespread changes

in various networks that also included the DMN (Göttlich et al., 2014;

Klingner et al., 2014; Helmchen et al., 2014). Our results suggest caution

when interpreting such studies, given that MVS can modulate brain

areas differentially. In the case of bilateral vestibular loss (Göttlich

et al., 2014), it should be noted that the patientswill not show aMVS in-

fluence (Roberts et al., 2011), but the healthy control group will be

under the influence ofMVS. Thismight then lead to changes in the com-

parison of differences between the two groups as examined with fMRI

that are not expected to appear in imaging methods without the use

of strong magnetic fields. In this case, the healthy controls might be

more akin to patients with acute unilateral vestibular neuritis, given

that such patients also show a directional imbalance with a horizontal

nystagmus, not unlike that evoked by MVS. For studies of vestibular

neuritis patients versus healthy controls (e.g., Klingner et al., 2014;

Helmchen et al., 2014),MVS effects should be expected for both, the pa-

tients and the healthy controls. However, MVS will affect patients with

unilateral vestibular deficits differently than healthy controls (Ward

et al., 2014), which will then further obscure the real differences be-

tween the two groups. This means that the reported differences at

every time interval during the compensation period relative to the

healthy control group will be obscured or biased by MVS. However,

the trajectory of recovery of the patients and therefore the trajectory

of associated relative differences to the healthy controlsmight not be af-

fected byMVS influence. Thus, the trend of the change of the differences

over the time intervals of compensation should be unaffected by MVS.

This requires, however, that the subjects are imaged in, at least, very

similar head positions and field strength at every time interval of com-

pensation to stay comparable over the time intervals. In the resting-

state study on vestibular neuritis patients (Klingner et al., 2014) it is

interesting to note that no significant correlationswere found for the ca-

loric testing covariate, although this is usually a good indicator of im-

pairment or restoration of vestibular function. One might speculate

that MVS had obscured this correlation, because MVS seems to share

important characteristics in terms of temporal dynamics with caloric

stimulation (Glover et al., 2014). Furthermore, MVS generally seems

to increase the variability between subjects (e.g., in median SPV per

head position) when field strength is increased from 1.5 T to 3 T, as

the Lorentz-force model suggests a multiplicative relationship with

field strength. Thus, studies at 3 T (and higher) will suffer from more

“vestibular variability” between the measured subjects, as studies at

1.5 T. We suggest therefore that fMRI studies should monitor MVS via

measurement of eye movements in darkness and adjust the head posi-

tions of all subjects and patients to keep the effects ofMVSminimal or at

least on the same level.

As a final note we want to stress that we do not see MVS as a nui-

sance for conducting research using fMRI, but as a tool for shifting bal-

ances in network dynamics. We urge the research community to see

MVS as an opportunity to study the influence of vestibular imbalance

in healthy subjects and in patients with the possibility to adjust the im-

balance specifically, using the resulting nystagmus as an indicator for

the imbalance level. Furthermore,MVS offers away of studyingnetwork

behavior and the behavior of the brain as a dynamic system in general

by using its influence to shift the operation point of networks and exam-

ining the changes of these “shifted” networks either under rest or task

conditions. This will also present an opportunity to study the influences

of vestibular imbalance on higher cognitive functions and multisensory

interaction that has been raised previously as an important research

topic by various authors (Hanes and McCollum, 2006; Smith and

Zheng, 2013; Mast et al., 2014).

Conclusion

The static magnetic field of the MRI influences default mode network

resting-state fluctuations through the stimulation of vestibular areas and

scales between field strengths of 1.5 T and 3.0 T in accordance with the

Lorentz-force model for the stimulation of inner ear vestibular end-

organs. We recommend that studies of the vestibular system using fMRI

need to consider the influence ofMVS and account for it if possible. A lim-

itation of the current study is that differences inMVS had to be created by

employing differentfield strengths using differentMR tomographswhich

might have led to biases and raised variability in the results.
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Introduction
The publisher for this copyrighted material is Springer. By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).
Limited License
With reference to your request to reuse material on which Springer controls the copyright,
permission is granted for the use indicated in your enquiry under the following conditions:
­ Licenses are for one­time use only with a maximum distribution equal to the number stated
in your request.
­ Springer material represents original material which does not carry references to other
sources. If the material in question appears with a credit to another source, this permission is
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not valid and authorization has to be obtained from the original copyright holder.
­ This permission
• is non­exclusive
• is only valid if no personal rights, trademarks, or competitive products are infringed.
• explicitly excludes the right for derivatives.
­ Springer does not supply original artwork or content.
­ According to the format which you have selected, the following conditions apply
accordingly:
• Print and Electronic: This License include use in electronic form provided it is password
protected, on intranet, or CD­Rom/DVD or E­book/E­journal. It may not be republished in
electronic open access.
• Print: This License excludes use in electronic form.
• Electronic: This License only pertains to use in electronic form provided it is password
protected, on intranet, or CD­Rom/DVD or E­book/E­journal. It may not be republished in
electronic open access.
For any electronic use not mentioned, please contact Springer at permissions.springer@spi­
global.com.
­ Although Springer controls the copyright to the material and is entitled to negotiate on
rights, this license is only valid subject to courtesy information to the author (address is
given in the article/chapter).
­ If you are an STM Signatory or your work will be published by an STM Signatory and you
are requesting to reuse figures/tables/illustrations or single text extracts, permission is
granted according to STM Permissions Guidelines: http://www.stm­assoc.org/permissions­
guidelines/
For any electronic use not mentioned in the Guidelines, please contact Springer at
permissions.springer@spi­global.com. If you request to reuse more content than stipulated
in the STM Permissions Guidelines, you will be charged a permission fee for the excess
content.
Permission is valid upon payment of the fee as indicated in the licensing process. If
permission is granted free of charge on this occasion, that does not prejudice any rights we
might have to charge for reproduction of our copyrighted material in the future.
­If your request is for reuse in a Thesis, permission is granted free of charge under the
following conditions:
This license is valid for one­time use only for the purpose of defending your thesis and with
a maximum of 100 extra copies in paper. If the thesis is going to be published, permission
needs to be reobtained.
­ includes use in an electronic form, provided it is an author­created version of the thesis on
his/her own website and his/her university’s repository, including UMI (according to the
definition on the Sherpa website: http://www.sherpa.ac.uk/romeo/);
­ is subject to courtesy information to the co­author or corresponding author.
Geographic Rights: Scope
Licenses may be exercised anywhere in the world.
Altering/Modifying Material: Not Permitted
Figures, tables, and illustrations may be altered minimally to serve your work. You may not
alter or modify text in any manner. Abbreviations, additions, deletions and/or any other
alterations shall be made only with prior written authorization of the author(s).
Reservation of Rights
Springer reserves all rights not specifically granted in the combination of (i) the license
details provided by you and accepted in the course of this licensing transaction and (ii) these
terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
License Contingent on Payment
While you may exercise the rights licensed immediately upon issuance of the license at the
end of the licensing process for the transaction, provided that you have disclosed complete
and accurate details of your proposed use, no license is finally effective unless and until full
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payment is received from you (either by Springer or by CCC) as provided in CCC's Billing
and Payment terms and conditions. If full payment is not received by the date due, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if
never granted. Further, in the event that you breach any of these terms and conditions or any
of CCC's Billing and Payment terms and conditions, the license is automatically revoked and
shall be void as if never granted. Use of materials as described in a revoked license, as well
as any use of the materials beyond the scope of an unrevoked license, may constitute
copyright infringement and Springer reserves the right to take any and all action to protect
its copyright in the materials.
Copyright Notice: Disclaimer
You must include the following copyright and permission notice in connection with any
reproduction of the licensed material:
"Springer book/journal title, chapter/article title, volume, year of publication, page, name(s)
of author(s), (original copyright notice as given in the publication in which the material was
originally published) "With permission of Springer"
In case of use of a graph or illustration, the caption of the graph or illustration must be
included, as it is indicated in the original publication.
Warranties: None
Springer makes no representations or warranties with respect to the licensed material and
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in
its Billing and Payment terms and conditions for this licensing transaction.
Indemnity
You hereby indemnify and agree to hold harmless Springer and CCC, and their respective
officers, directors, employees and agents, from and against any and all claims arising out of
your use of the licensed material other than as specifically authorized pursuant to this
license.
No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you
without Springer's written permission.
No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case
of Springer, by CCC on Springer's behalf).
Objection to Contrary Terms
Springer hereby objects to any terms contained in any purchase order, acknowledgment,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions, together with CCC's Billing and Payment terms and conditions (which are
incorporated herein), comprise the entire agreement between you and Springer (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and
Payment terms and conditions, these terms and conditions shall control.
Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof,
shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, in
accordance with German law.
Other conditions:
V 12AUG2015
Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.
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Terms and Conditions

INTRODUCTION
1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit ­ "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions.  If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted.  Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.
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12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non­exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper­text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper­text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password­protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:
A preprint is an author's own write­up of research results and analysis, it has not been peer­
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society­owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author­
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incorporated changes suggested during submission, peer review and editor­author
communications.
Authors can share their accepted author manuscript:

         immediately
via their non­commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional

uses or as part of an invitation­only research collaboration work­group
directly by providing copies to their students or to research collaborators for

their personal use
for private scholarly sharing as part of an invitation­only work group on

commercial sites with which Elsevier has an agreement
         after the embargo period

via non­commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

         link to the formal publication via its DOI
         bear a CC­BY­NC­ND license ­ this is easy to do
         if aggregated with other manuscripts, for example in a repository or other site, be

shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value­adding publishing activities including peer review co­ordination, copy­editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full­text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author­selected end­user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:  
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of

http://www.crossref.org/crossmark/index.html
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the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.
 
Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re­use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.
Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC­BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY­NC­SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by­nc­sa/4.0.
CC BY NC ND: The CC BY­NC­ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by­nc­nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

         Associating advertising with the full text of the Article
         Charging fees for document delivery or access
         Article aggregation
         Systematic distribution via e­mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
 
20. Other Conditions:
 
v1.8
Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.

http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:customercare@copyright.com
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SHUTTERSTOCK
Terms of Service

Shutterstock License Agreement(s)

Dear Shutterstock Customer:

The following is a legal agreement between you or the employer or other entity on whose behalf you are entering into this agreement
("you" or "Customer") and: i) if you are an existing customer or a new customer in the United States or Canada, Shutterstock, Inc., a
Delaware corporation with its office at Shutterstock, Inc., 350 Fifth Avenue, 21st Floor, New York, NY 10118, United States; or ii) if you are
a new customer not located in the United States or Canada, Shutterstock Netherlands, B.V., incorporated under the laws of the
Netherlands, having its principal place of business at Hoogte Kadijk 391018 BE Amsterdam, the Netherlands (in either instance, referred
to hereafter as "Shutterstock"). By entering into this agreement, you verify that your country of residence is the same as your billing
address.

"Image(s)" means photographs, vectors, drawings and the like available for license from the Shutterstock website.

"Footage" means any moving images, animations, films, videos or other audio/visual representations, excluding still images, recorded in
any format that are available for license from the Shutterstock website.

"Visual Content" shall refer collectively to Images and Footage.

The following Terms of Service ("TOS") constitutes an agreement between Customer and Shutterstock setting forth the rights and
obligations with respect to any Visual Content licensed by you. By agreeing to the TOS, you agree that these terms control your rights and
obligations with respect to all Visual Content licenses set forth herein, notwithstanding the subscription or license you may be purchasing
today. Please revisit these TOS when you purchase any Visual Content.

UNLESS YOU PURCHASE A "TEAM SUBSCRIPTION" OR "PREMIER LICENSE", THIS IS A SINGLE SEAT LICENSE AUTHORIZING
ONE NATURAL PERSON TO LICENSE, DOWNLOAD AND USE VISUAL CONTENT. IF YOU PURCHASE A TEAM SUBSCRIPTION THE
RIGHT TO LICENSE, DOWNLOAD AND USE VISUAL CONTENT IS LIMITED TO THE NUMBER OF USERS PERMITTED BY THAT TEAM
SUBSCRIPTION. THE PREMIER LICENSE AND PLATFORM PROVIDES THESE AND ADDITIONAL RIGHTS TO AN UNLIMITED
AMOUNT OF USERS. SOME LICENSES SET FORTH HEREIN MAY NOT BE AVAILABLE FOR TEAM SUBSCRIPTION PURCHASE. If
you require a multi­user account, please contact Customer Service (Phone: Inside US 1­866­663­3954, Outside US 1­646­419­4452

Email: Customer Support or our Premier Team).

Part I Visual Content Licenses

a. Image Licenses
b. Footage Licenses
c. Restrictions on Use of Visual Content

Part II Warranties and Representations

Part III Indemnification and Liability

Part IV Additional Terms

PART I VISUAL CONTENT LICENSES

Shutterstock hereby grants you a non­exclusive, non­transferable right to use, modify and reproduce Visual Content worldwide, in
perpetuity, as expressly permitted by the applicable license and subject to the limitations set forth herein:

a. IMAGE LICENSES
i. A STANDARD IMAGE LICENSE grants you the right to use Images:

1. As a digital reproduction, including on websites, in online advertising, in social media, in mobile advertising, mobile "apps",
software, e­cards, e­publications (e­books, e­magazines, blogs, etc.), and in online media (including on video­sharing
services such as YouTube, Dailymotion, Vimeo, etc., subject to the budget limitations set forth in sub­paragraph I.a.i.4
below);

2. Printed in physical form as part of product packaging and labeling, letterhead and business cards, point of sale advertising,

http://www.shutterstock.com/business-solutions
http://info.shutterstock.com/premier
http://www.shutterstock.com/contactus
http://info.shutterstock.com/premier
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billboards, CD and DVD cover art, or in the advertising and copy of tangible media, including magazines, newspapers, and
books provided no Image is reproduced more than 500,000 times in the aggregate;

3. As part of an "Out­of­Home" advertising campaign, provided the intended audience for such campaign is less than 500,000
gross impressions.

4. Incorporated into film, video, television series, advertisement, or other multimedia productions for distribution in any
medium now known or hereafter devised (each a "Production"), without regard to audience size, provided the budget for
any such Production does not exceed USD $10,000;

5. For your own personal, non­commercial use (not for resale, download, distribution, or any commercial use of any kind).
ii. AN ENHANCED IMAGE LICENSE grants you the right to use Images:

1. In any manner permitted under a Standard Image License, without any limitation on the number of reproductions,
impressions, or budget;

2. Incorporated into merchandise or promotional items for sale or distribution (collectively "Merchandise"), including, without
limitation, textiles, artwork, magnets, wall­art, calendars, toys, stationery, greeting cards, and any other physical
reproduction for resale or distribution, provided that such Merchandise incorporates material creative or functional elements
apart from the Image(s).

3. In wall art (and without requiring further creative or functional elements) for decorative purposes in a commercial space
owned by you or your client, and not for sale.

4. Incorporated as elements of digital templates for sale or distribution.
If the Standard or Enhanced Image licenses do not grant the rights you require please contact Customer Service. (Phone: Inside US

1­866­663­3954, Outside US 1­646­419­4452 Email: Customer Support)

b. FOOTAGE LICENSES
i. A FOOTAGE USE LICENSE grants you the right to use Footage:

1. in Productions (i.e., a film, video, television series, advertisement, or other multimedia production) displayed or distributed
to the public by any means now known or hereafter devised;

2. in connection with a live performance;
3. on websites.

If the Footage Use License does not grant the rights you require, please contact Customer Service. (Phone: Inside US 1­866­

663­3954, Outside US 1­646­419­4452 Email: Customer Support)

ii. A FOOTAGE COMP LICENSE grants you the right to use watermarked, low resolution Footage as a comp (the "Comp Footage")
solely in test, sample, comp, or rough cut evaluation materials. Footage Comp Licenses do not permit you to display or distribute
to the public or incorporated into any final materials any such Footage. Comp Footage can be edited, but you may not remove or
alter the Shutterstock watermark.

c. RESTRICTIONS ON USE OF VISUAL CONTENT
YOU MAY NOT:

i. Use Visual Content other than as expressly provided by the license you purchased with respect to such Visual Content.
ii. Portray any person depicted in Visual Content (a "Model") in a way that a reasonable person would find offensive, including but
not limited to depicting a Model: a) in connection with pornography, "adult videos", adult entertainment venues, escort services,
dating services, or the like; b) in connection with the advertisement or promotion of tobacco products; c) in a political context,
such as the promotion, advertisement or endorsement of any party, candidate, or elected official, or in connection with any
political policy or viewpoint; d) as suffering from, or medicating for, a physical or mental ailment; or e) engaging in immoral or
criminal activities.

iii. Use any Visual Content in a pornographic, defamatory, or deceptive context, or in a manner that could be considered libelous,
obscene, or illegal.

iv. Use Visual Content designated "Editorial Use Only" for commercial purposes.
v. Resell, redistribute, provide access to, share or transfer any Visual Content except as specifically provided herein.
vi. Use Visual Content in a manner that infringes upon any third party's trademark or other intellectual property, or would give rise to

a claim of deceptive advertising or unfair competition.
vii. Use any Visual Content (in whole or in part) as a trademark, service mark, logo, or other indication of origin, or as part thereof.
viii. Use "stills" derived from Footage except solely in connection with the in­context marketing, promotion, and advertising of your

derivative works incorporating Footage.
ix. Falsely represent, expressly or by way of reasonable implication, that any Visual Content was created by you or a person other

than the copyright holder(s) of that Visual Content.
If you require any of the foregoing rights, please contact Customer Service. (Phone: Inside US 1­866­663­3954, Outside US 1­646­

http://www.shutterstock.com/contactus
http://www.shutterstock.com/contactus
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419­4452 Email: Customer Support)

d. CREDIT AND COPYRIGHT NOTICES
i. The use of Visual Content in an "editorial" context, shall be accompanied by an adjacent credit to the Shutterstock contributor
and to Shutterstock in substantially the following form:

"Name of Artist/Shutterstock.com"
ii. If and where commercially reasonable, the use of Visual Content in Merchandise or a Production shall be accompanied by a
credit to Shutterstock in substantially the following form:

"Image(s) or Footage (as applicable), used under license from Shutterstock.com"
iii. Credit attributions are not required in connection with any other use of Images unless another stock content provided is afforded

credit in connection with the same use.
iv. In all cases the credit and attribution shall be of such size, color and prominence so as to be clearly and easily readable by the

unaided eye.

PART II WARRANTIES AND REPRESENTATIONS

a. Shutterstock warrants and represents that:
i. Shutterstock's contributors have granted Shutterstock all necessary rights in and to the Visual Content to grant the rights set forth
in Part I as applicable.

ii. Visual Content in its original unaltered form and used in full compliance with these TOS and applicable law, will not: i) infringe
any copyright, trademark or other intellectual property right; ii) violate any third parties' rights of privacy or publicity; iii) violate
any US law, statute, ordinance, or regulation; or iv) be defamatory, libelous, pornographic or obscene.

b. While Shutterstock makes commercially reasonable efforts to ensure the accuracy of keywords and descriptions, as well as the
integrity of Visual Content designated "Editorial Use Only", SHUTTERSTOCK MAKES NO WARRANTIES AND/OR
REPRESENTATIONS REGARDING ANY: I) KEYWORD, TITLES OR DESCRIPTIONS; II) AUDIO IN FOOTAGE; OR III) VISUAL
CONTENT DESIGNATED "EDITORIAL USE ONLY". For the sake of clarity, Shutterstock will not indemnify or have any liability in
respect of any claims arising from inaccurate keyword, titles or descriptions, any audio in Footage, or the use of Visual Content
designated Editorial Use Only.

c. SHUTTERSTOCK MAKES NO REPRESENTATIONS OR WARRANTIES WHATSOEVER OTHER THAN THOSE EXPRESSLY MADE
IN THIS "WARRANTIES AND REPRESENTATIONS" SECTION.

PART III Indemnification and Liability:

a. Subject to the terms hereof, and provided that you have not breached the terms of this or any other agreement with Shutterstock,
Shutterstock will defend, indemnify, and hold you harmless up to the applicable "Limit of Liability" set forth below. Such
indemnification is solely limited to Customer's direct damages arising from a third­party claim directly attributable to Shutterstock's
breach of the express warranties and representations made in Part II hereof, together with associated expenses (including
reasonable attorneys' fees). Indemnification is conditioned upon you notifying Shutterstock, in writing, of any such claim or
threatened claim, no later than five (5) business days from the date you know or reasonably should have known of the claim or
threatened claim. Such notification must include all details of the claim then known to you (e.g., the use of Visual Content at issue,
the name and contact information of the person and/or entity making the claim, copies of any correspondence received and/or sent in
connection with the claim). The notification must be emailed or faxed to Shutterstock at counsel@shutterstock.com or 1­646­786­
4782, with a hard copy to Shutterstock, 350 5th Avenue, 21st Floor, New York, New York, 10118, Attention: General Counsel, via
certified mail, return receipt requested; or ii) overnight courier, recipient's signature required. Shutterstock shall have the right to
assume the handling, settlement or defense of any claim or litigation to which this indemnification applies. You agree to cooperate
with Shutterstock in the defense of any such claim and shall have the right to participate in any litigation at your own expense. You
agree that Shutterstock is not liable for any legal fees and/or other costs incurred by you or on your behalf prior to Shutterstock
having a reasonable opportunity to analyze such claim's validity.

b. Shutterstock shall not be liable for any damages, costs or losses arising as a result of modifications made to the Visual Content or
due to the context in which the Visual Content is used by you.

c. Limits of Liability: Shutterstock's total maximum aggregate obligation and liability (the "Limit of Liability") arising out of each of
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