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Summary 

Variations in light quality and quantity induce imbalances in the excitation of the two 

photosystems, PSI and PSII, due to their distinct absorption spectra, leading to an impairment of 

electron transport across the thylakoid membrane. To counteract such fluctuations, land plants 

and algae evolved a short-term acclimation mechanism called state transitions which involves the 

reversible phosphorylation of the light harvesting complex of PSII (LHCII) and is regulated by 

the redox state of the plastoquinone pool (PQ pool). The protein kinase STN7 and protein 

phosphatase TAP38 form an antagonistic pair in catalyzing the reversible (de)phosphorylation of 

LHCII. An in depth characterization of TAP38 revealed that TAP38 is an intrinsic thylakoid 

membrane protein with its N-terminus facing the stroma. TAP38 was enriched in the stroma 

lamellae, as shown by fractionation and immunogold labeling approaches. Furthermore, it could 

be shown that TAP38 protein levels remain on a constantly high level being permanently active 

irrespective of the redox status. This was supported by TAP38 being able to significantly 

overaccumulate in the presence of an overreduced PQ pool (i.e. in the psad1-1 and psae1-3 

background). Based on BN-PAGE and sucrose gradient centrifugation assays, no stable 

association of TAP38 with any of the photosynthetic complexes could be determined, whereas a 

localization of TAP38 in the close proximity of PSI was revealed by Co-IP using lines expressing 

GFP- and HA-tagged TAP38. Regarding the long term accliamatory response, tap38-1 and 

oeTAP38 lines behaved essentially like WT and microarray analyses revealed no significant 

differential regulation at the transcriptional level. Finally, additional substrates of TAP38 were 

detected, both in the thylakoid membrane and the stroma, suggesting a function of TAP38 

beyond state transitions. 
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Zusammenfassung 

Aufgrund der unterschiedlichen Lichtabsorptionsmaxima der zwei Photosysteme, PSI und 

PSII, können Veränderungen in der Lichtqualität und Quantität eine ungleiche Anregung der 

Photosysteme hervorrufen und somit die Effizienz des Elektrontransports über die 

Thylakoidmembran beeinträchtigen. Um solche Schwankungen auszugleichen, haben Algen und 

Landpflanzen einen reaktionsschnellen Anpassungsmechanismus entwickelt, den sogenannten 

„State Transitions-Mechanismus“, der auf einer reversiblen Phosphorylierung des 

Lichtsammelkomplexes des PSII (LHCII) beruht und über den Redoxzustand des Plastochinon-

Pools (PQ-pool) reguliert wird. Für die  reversible (De) Phosphorylierung von LHCII sind die 

Phosphatase TAP38 bzw. die Kinase STN7 verantwortlich. Eine weiterführende 

Charakterisierung von TAP38 habten gezeigt, dass es sich bei TAP38 um ein integrales 

Thylakoidmembranprotein handelt, dessen N-Terminus der Stromaseite zugewandt ist. Mittels 

Thylakoidfraktionierung und Immunogoldmarkierung konnte zudem nachgewiesen werden, dass 

TAP38 hauptsächlich in den Stromathylakoiden lokalisiert ist. Des Weiteren konnte gezeigt 

werden, dass sowohl die TAP38 Proteinmenge als auch die enzymatische Aktivität von TAP38 

ungeachtet des Redox-Status konstant bleibt. Diese Ergebnisse wurden durch die Beobachtung 

unterstützt, dass eine starke Überexpression von TAP38 in der Gegenwart eines stark reduzierten 

PQ Pools gestützt (z.B. im genetischen Hintergrund von psad1-1 und psae1-3) möglich ist. 

Basierend auf BN-PAGE-Analysen und Saccharose-Gradientenzentrifugation konnte keine 

stabile Assoziation von TAP38 mit Photosynthese-Komplexen nachgewiesen werden. Co-IP-

Experimente lieferten jedoch deutliche Hinweise für eine Interaktion von TAP38 mit PSI-

Antennenproteinen. Bezüglich der Langzeitanpassung (LTR) verhielten sich sowohl tap38-1 als 

auch oeTAP38 wie der Wildtyp. Auch Microarray-Analysen dieser Linien zeigten keine 

signifikante Veränderung auf Transkriptebene. Abschließend konnten weitere putative Substrate 

von TAP38 in Thylakoidmembran- und Stromaextrakten detektiert werden, was auf eine 

zusätzliche Funktion von TAP38 neben dem State-transitions Mechanismus schließen lässt. 
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1 Introduction   

1.1 Photosynthesis 

Photosynthesis refers to a process by which prokaryotes, algae and plants use light energy 

to synthesize organic compounds. In plants, this process occurs in a specialized organelle called 

chloroplast, which is surrounded by a double membrane system, the outer and inner envelope 

membrane. The chloroplast contains a complex internal membrane system named thylakoid 

membrane, which consists of stacked membrane domains (grana), unstacked membrane areas 

(stroma lamellae) and the connection parts (margin) (Figure 1). The internal space encircled by 

the thylakoid membrane is the lumen and the corresponding area outside the thylakoids is called 

stroma (Figure 1) (Buchanan et al., 2002). 

 

Figure 1 Schematic cartoon of a land plant chloroplast. 

Chloroplasts have two envelopes (inner envelope and outer envelope). The internal membrane (thylakoids) 

is constituted of stacked thylakoids (grana), unstacked thylakoids (stroma lamellae) and the connection 

parts (margin). The space outside of thylakoids is stroma (white area) and the space surrounded by the 

thylakoids is the lumen (green area). Modified from Buchanan et al., 2002  

 

The chloroplasts of algae and land plants are supposed to derive from cyanobacteria by 

endosymbiotic association with a eukaryotic cell (Buchanan et al., 2002). The endosymbiotic 

theory is supported by abundant evidence provided by electron microscopy and molecular 

biology (Margulis, 1992). During evolution, most genes of the cyanobacterial endosymbiont were 
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transferred to the nucleus of the eukaryotic host, whereas only a small part remained in the 

organelle. Due to this integration, 18% of the nuclear genome of the reference plant Arabidopsis 

thaliana (A. thaliana) shows signs of cyanobacterial origin (Martin et al., 2002). 

The oxygen-evolving photosynthesis in algae and plants is a reduction-oxidation process 

including two steps. The first step which occurs in the thylakoid membranes involves oxidation 

of H2O to O2 and production of ATP and NADPH using energy absorbed by photosynthetic 

pigments. In a second step, the carbon reduction cycle (also called Calvin-Benson cycle) converts 

CO2 into carbohydrate by consumption of ATP and NADPH generated during the first part of the 

reaction. In the whole process, H2O serves as the ultimate electron source and CO2 is used as the 

final electron acceptor (Buchanan et al., 2002). 

A plant photosystem consists of the following principal components: light harvesting 

pigments complexes (antenna), electron carriers and reaction center. The pigments are mainly 

chlorophyll a (Chl a) and chlorophyll b (Chl b) with light absorption spectra of wavelengths 

between 400-700 nm peaking at 430 nm (blue) and 680 nm (red). Carotenoids, a second group of 

pigments participating in light absorption, absorb light between 400 and 500 nm. Chlorophyll a is 

present both in the antenna and reaction center complexes, whereas chlorophyll b and carotenoids 

are only found in antenna complexes. Chlorophylls are associated with proteins and form the 

light-harvesting complexes (LHCs) of the photosystems. The reaction centre represents the place 

where the initial charge separation takes place. Plants contain two photosystems designated 

Photosystem I (PSI) and Photosystem II (PSII), which have different absorbance maxima 

regarding their special pigments: PSI at 700 nm; PSII at 680 nm (Buchanan et al., 2002).   

Besides the two photosystems, there are other photosynthetic complexes in the thylakoid 

membrane, such as the Cytochrome b6f complex and the ATP synthase. The complexes display a 

heterogenic distribution pattern within the thylakoid membrane: PSII is primarily localized in the 

grana; PSI and ATP synthase are mainly found in stroma lamellae; the Cytochrome b6f complex 

(Cyt b6f) is distributed quite evenly throughout the membrane. Although PSII and PSI cooperate 

in electron transport primarily in a linear way, the ratio of PSII to PSI is variable depending on 

species and environmental conditions (Figure 2). 
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Figure 2 Lateral heterogeneity of thylakoid membrane complexes.  

PSI and ATP synthase are almost exclusively distributed in unstacked thylakoid membrane (stroma 

lamellae), whereas PSII is localized primarily in the grana region, whereas Cytochrome b6f complex is 

more evenly distributed. Modified from Buchanan et al., 2002 

1.2 The linear electron flow (LEF) and cyclic electron flow (CEF) 

The four major photocomplexes together with serial electron carriers comprise the pathway 

for linear electron flow (LEF) which starts at PSII. Upon excitation of the PSII reaction center 

(P680) by light, electrons are released from P680 to pheophytin which transfers electrons to a 

tightly bound plastoquinone (PQ) QA, and further transferred to another loosely bound 

plsatoquinone molecule QB to produce fully reduced QB
2-

. The oxidized P680 will be re-reduced 

by electrons generated by the splitting of H2O. During this procedure, oxygen and protons are 

released into the lumen. QB
2- 

turns into plastoquinol (PQH2), QBH2, by taking up two protons 

from the stroma side of the thylakoid membrane. This mobile electron carrier then transfers the 

electrons to Cyt b6f and releases the protons into the lumen. Subsequently, the electrons are 

transfer to luminal plastocyanin (PC), which is a small soluble electron carrier, as the electron 

acceptor of PC, contains chlorophylls of its own and is capable to be excited by light similarly to 

PSII and transfer electron to ferredoxin (Fd) leaving an electrons gap that can be filled by 

electron transferred from PC. Finally, Fd transfer electrons through the ferredoxin-NADP
+ 

reductase (FNR) to NADP
+
, generating NADPH. Consequently, a proton gradient is generated 

which promotes the synthesis of ATP via the ATP synthase using ADP and Pi (Figure 3). 



Introduction 

4 

 

 

Figure 3 Scheme of linear electron flow (LEF).  

Photosystem I (PSI, P700); photosystem II (PSII, P680); oxidized/reduced plastoquinone (PQ/PQH2); 

plastocyanin (PC); ferredoxin (FD); ferredoxin-NADPH-oxidoreductase (FNR); Modified from Buchanan  

et al., 2002 

Alternatively, plants can perform cyclic electron flow (CEF), which is driven by PSI alone 

and produces exclusively ATP. CEF involves all the components in LEF and electron transfer 

from PSII (P700) to Fd. However, CEF reinjects electrons to PQ which can be mediated via two 

pathways: the NADH dehydrogenase-like complex (NDH)-dependent pathway (NDH-CEF) 

(Peng et al., 2011) and a second pathway which is sensitive to antimycin and depends on the Cyt 

b6f complex using a Q-cycle-derived mechanism (AA-sensitive CEF) (Joliot and Joliot, 2006). In 

the first pathway, Fd transfers electrons to PQ through NDH whereas the second route is carried 

out through a ferredoxin-plastoquinone reductase (FQR). Additionally, two components PGRL1 

and PGR5 were described to be involved in the AA-sensitive CEF and both of them are found in 

PSI preparations and interacting with each other (DalCorso et al., 2008; Munekage et al., 2002). 

Recent findings indicate that PGRL1 is actually the elusive FQR enzyme based on in vitro 

enzyme activity (donation and acceptance properties for electrons), interaction with Cyt b6f and 

other biochemical evidences (Hertle et al., 2013). Since the Calvin-Benson cycle requires an 

optimal ratio of ATP to NADPH ideally 3:2 and LEF solely cannot accomplish this, CEF is  
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regarded as an option to compensate the too low levels of ATP generated by LEF (Eberhard et al., 

2008) especially under high light or other stress conditions (Johnson, 2011). 

1.3 Adaptation to light changes 

Light environment can vary in intensity and quantity in time ranges of seconds, minutes up 

to hours, days and seasons and these variations affect the efficiency of photosynthesis. Many 

mechanisms are evolved by plants to counteract such changing conditions: nonphotochemical 

quenching (NPQ) dissipate excess light energy as heat under high light (Horton and Hague, 1988); 

D1 turnover serve as PSII self repair cycle (Vasilikiotis and Melis, 1994); state transitions 

readjust the size of two photosystems when they are differentially excited by changes of light 

qualities normally under weak light (Allen and Forsberg, 2001); long term response (LTR) 

readjust the stoichiometry of the photosystems under long time change of light quality (Bailey et 

al., 2004; Bailey et al., 2001; Fey et al., 2005b; Pfannschmidt et al., 2003).  

1.3.1 Nonphotochemical quenching (NPQ) 

Excess absorption of light energy leads to increased production of harmful reactive oxygen 

species as side products of photosynthesis which cause pigments bleaching or death in extreme 

cases. To minimize the damage, plants evolved a series mechanism to balance the absorption and 

utilization of light energy (Muller et al., 2001). When light energy exceeds the capacity of plant 

for carbon fixation, non-photochemical quenching (NPQ) processes will occur and dissipate 

excess energy as heat resulting in decreased chlorophyll fluorescence (fluorescence quenching) 

(Horton and Hague, 1988). This process is named corresponding to photochemical quenching (qP) 

which refers to fluorescence quenching due to the photochemical charge separation in the PSII 

reaction center (Horton and Ruban, 2005). NPQ can be subdivided into three different 

components according to different response to inhibitors and different relaxation kinetics (Horton 

and Hague, 1988). The primary quenching component is the de-excitation quenching or high-

state quenching (qE) which is regulated by pH gradient across the thylakoid membrane and it is 

reversible. Moreover, the qE component acts very fast to changes of light condition (seconds to 

minutes) and can quench up to 80% of the singlet Chl which has the possibility to form triplet 

Chl and produce damaging singlet oxygen and other highly reactive species (Bassi and Caffarri, 

2000; DemmigAdams et al., 1996). The Xanthophyll cycle which converts violaxanthin to 

zeaxanthin and the PSII antenna protein PsbS are both necessary for this quenching mechanism. 
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The second component, qT, is due to state transition, a second mechanism allows for the 

relocation of LHCII between the two photosystems PSII and PSI (Allen and Forsberg, 2001; 

Haldrup et al., 2001). Compared to qE, qT is slower and unlikely to significantly contribute to 

photoprotection during exposure to high light. However, this process represents an important 

acclimation response under weak light conditions (Mullineaux and Rausch, 2005) (see chapter 

1.3.3).The third NPQ component refers to photoinhibition and therefore is called qI. It is the 

slowest quenching process and occurs when qE quenching process becomes either irreversible or 

slowly reversible, e.g. under strong high light or prolonged stress conditions where the protective 

capacity of qE has been exceeded. Overall, qI is not well characterized so far (DemmigAdams et 

al., 1996; Horton and Hague, 1988; Muller et al., 2001). 

1.3.2 D1 turnover and PSII repair 

To compensate photoinhibition, which represents the damage of PSII during excess light 

exposure, plant also developed a sophisticated D1 repair cycle (Kruse, 2001). PSII is a 

specialized water-to-plastoquinone oxidoreductase, which can extract electrons and protons from 

water and transfer the electron to plastoquinone. The oxidation of water is a very strong reaction 

and causes irreversible photodamage to PSII especially the reaction center protein D1. In order to 

deal with this, photosynthesis has evolved a highly specialized repair mechanism to replace the 

damaged D1 (D1 turnover) and reassemble PSII (Vasilikiotis and Melis, 1994). Under high 

irradiance stress, the enhanced turnover of D1 is accompanied by lowered amount of PSI and 

increased accumulation of PSII with photoinactivated reaction center where damaged D1 is 

degraded and replaced (Aro et al., 2005; Fristedt et al., 2009; Vasilikiotis and Melis, 1994). 

Initially, D1 phosphorylation was suggested as a marker for PSII migration from grana to stroma 

lamellae where D1 was dephosphrylated and damaged PSII was reassembled with newly 

synthesized D1 (Aro et al., 1993). However, the stn8 mutant which was devoid of PSII core and 

D1 phosphorylation, employed normal D1 turnover (Bonardi et al., 2005). However, using 

feasible high light, Tikkanen et al. (2008) could show that degradation of D1 was retarded in stn8 

mutant and it was caused by impaired PSII disassembly of PSII. More recent results further 

confirmed that in stn8 mutant, D1 degradation was delayed but the reasons resided in changes of 

thylakoids ultrastructure and hindered relocation of the FtsH protease from grana to stroma 

lamellae (Fristedt et al., 2009). 
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1.3.3 State transitions  

1.3.3.1 Different light absorption of PSI and PSII 

Each photosystem (PSI and PSII) consists of an array of light-harvesting antennae and a 

photochemical reaction center. The antennas of PSI and PSII have a different protein and pigment 

composition and therefore the two photosystems display distinct light absorption properties. PSI 

and PSII act in series and while PSI can absorb wavelengths loner than 680 nm, PSII is poorly 

excited by far red light (Taiz and Zeiger, 2010). Due to the connection in liner electron transport, 

the two photosystems have to work at the same rate to reach efficient energy conversion. 

However, cyclic electron flow, which is driven by PSI alone, requires a proportional rate of 

primary photochemistry between these two photosystems (Allen, 1984a, b; Arnon et al., 1954; 

Finazzi et al., 2002). Moreover, the incident light quality and quantity keeps changing and certain 

habitats show altered spectral composition, like water allows the passing of short wavelength and 

shadowing by other plants enriches the light spectrum by far red light, thus causing preferentially 

excitation of one photosystem over the other. To achieve optimal photosynthetic efficiency, it is 

necessary for the plant to adjust the light-absorption ability of the two photosystems. Therefore, 

plants and algae evolved two mechanisms to cope with such alteration in light composition and 

rebalance energy distribution between PSI and PSII, state transitions and the adjustment of 

photosystem stoichiometry composition (long term response). 

1.3.3.2 Simplified model of state transitions  

State transitions, which were found 40 years ago, involves reversible association of LHCII 

with PSII and PSI and can occur in a time scale of minutes (Bonavent and Myers, 1969; Murata, 

1969). This process is suggested to be regulated by the redox state of the plastoquinone pool (PQ 

pool) (Allen et al., 1981; Vener et al., 1995; Vener et al., 1997) When the PQ pool becomes 

reduced under light conditions that favor PSII excitation, the PQH2 binds to the Qo site of the Cyt 

b6f complex leading to the activation of the LHCII kinase which subsequently phosphorylates 

LHCII (pLHCII) and facilitates its movement to PSI (Allen, 1983, 1992; Michel et al., 1991; 

Telfer et al., 1983). Thus, the capacity of PSI to absorb light energy is increased and this state is 

called state 2. Light conditions that favor state 2 include low light (LL) and light of wavelengths 

that preferentially excite PSII (e.g. red light). On the contrary, when plants or algae are exposed 

to light conditions that preferentially excite PSII, the PQ pool becomes oxidized, leading to the 
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deactivation of the kinase. In this case, the LHCII phosphatase dephosphorylates pLHCII and 

drives its dissociation from PSI and re-binding to PSII (Bennett, 1983). This state is called state 1 

and induced by several light conditions, e.g. darkness (D), high light (HL) and light with 

wavelengths that preferentially excite PSI (e.g. far red light, FR) (Figure 4). However, new 

results based on thylakoids fractionation show that two photosystems may share the same LHCII 

antenna through a subtle mechanism in grana margins to complete redistribution of excitation 

energy. This is challenging the traditional view, which suggests energy redistribution depends on 

LHCII migration upon phosphorylation or dephosphorylation during state transitions (Tikkanen 

et al., 2008b).  

In other words, light intensity also exerts effects on the redox state of the PQ pool leading 

to alteration in LHCII phosphorylation and state transition. Dark conditions result in oxidized PQ 

pool and state 1 whereas low light induce more phosphorylation of LHCII being considerate as 

state-2 condition (Bonardi et al., 2005). However, recent findings reveal that reversible 

phosphorylation caused by changes of light intensities does not result in different excitation of 

two photosystems, i.e. the two photosystems remains equally excited irrespective of the extent of 

LHCII phosphorylation (Tikkanen et al., 2010). In the case of high light, the PQ pool is rather 

reduced but the LHCII is actually dephosphorylated and not attached to PSI, displaying a state1-

like situation. Most likely, the signal from stromal ferredoxin-thioredoxin system deactivates the 

LHCII kinase (Grieco et al., 2012). 
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Figure 4 State transition models.  

In case the light favors the excitation of PSII, the PQ pool becomes reduced. This leads to the binding of 

PQH2 to the Qo site of the Cytochrome b6f complex. Thereby the STT7/STN7 kinase is activated which 

then phosphorylates the LHCII. The phosphorylated versions of the antenna subsequently disassociate 

from PSII and attach to PSI on the side of PsaH, PsaO and PsaF opposing the LHCI belt. This state is 

called state 2. If PSI is preferentially excited, the PQ pool will be oxidized leading to the opposite result: 

the kinase cannot be activated and the pLHCII will be dephosphorylated by the LHCII phophatase TAP38 

in higher plant, and then move back to PSII. This state is called state 1. Red circles with a “P” letter 

indicate phosphorylation effects. Modified from Lemeille and Rochaix (2010) 

1.3.3.3 Remodeling of the two photosystems during state transitions 

In plants, the PSII core complex is a dimer (C2) and each core complex is composed of the 

D1, D2, CP47 and CP43 proteins. The peripheral PSII antenna (light harvesting complex of PSII, 

LHCII) is comprised of six pigment binding proteins, Lhcb1-6. Out of these, Lhcb1-3 are the 

major (most abundant) proteins, that form homo- and hetero-trimers (Jansson, 1999). The minor 

LHCII proteins Lhcb4 (CP29), Lhcb5 (CP26), and Lhcb6 (CP24) are present as monomers. In 

Chlamydomonas reinhardtii (C. reinhardtii), there are four types of major LHCIs (type I-IV) and 
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two types of minor LHCII, CP29 and CP 26. C2 is associated strongly with two copies of CP29, 

CP26 and LHCII at each side of the dimer to form the C2S2 supercomplex in spinach (Boekema et 

al., 1995) and C. reinhardtii (Nield et al., 2000). In higher plants, further two copies each of 

CP24 and LHCII trimer attach to each border of C2S2 with medium strength (M-trimer), forming 

the C2S2M2 supercomplex. Additional LHCIIs are able to loosely associate with this large 

supercomplex, C2S2M2, hence they are called L-trimers (Dekker and Boekema, 2005). In state 2, 

the residues of Thr-27 of the major LHCIIs ( Lhcb1 and Lhcb2) and Thr-7 of the minor LHCII, 

CP29, are commonly phosphorylated (Hansson and Vener, 2003; Michel et al., 1991). 

Phosphorylated LHCIIs are predominantly found in stroma lamellae where PSI is located; on the 

contrary, nonphosphorylated LHCIIs preferentially located to grana (Andersson et al., 1982; 

Bassi et al., 1988). Takahashi et al. (2006) identified CP29, CP26 and major LHCII in isolated 

PSI-LHCI-LHCII supercomplexes in C. reindardtii. These indicate that migration of LHCII 

during state transitions is caused by reversible phosphorylation (Black et al., 1986; Larsson et al., 

1983). The M trimer is suggested to migrate between PSII and PSI in state transitions as shown 

by reduced amounts of C2S2M2 in plants adapted to state 2 (Kouril et al., 2005). Furthermore, 

when the attachment of the M trimer to PSII is decreased state transitions are concomitantly 

increased (Kovacs et al., 2006). 

Recently, remodeling of such PSII supercomplexes was indicated to be part of state 

transitions in C. reinhardtii (Iwai et al., 2008). The PSII supercomplex remodeling involves 

reversible phosphorylation of PSII core proteins precedes and facilitates state transitions. 

Furthermore, in the mutants lacking the Psb27 protein, a stabilizer of PSII, state transitions are 

accelerated (Dietzel et al., 2011). In plants, these supercomplexes are also found in various 

composition orders in the grana membranes (Dekker and Boekema, 2005). A. thaliana  mutants 

deficient in Lhcb proteins (Lhcb3 or Lhcb4) or the small PSII subunit protein PsbW exhibit 

accelerated kinetics of state transitions, which might be caused by changes of the LHCII structure 

and/or PSII supercomplex formation (Caffarri et al., 2009). The depletion of TSP9, a small 

intrinsically unstructured and thylakoid-soluble protein, changes the stability and organization of 

PSII and further reduces the ability of state transitions in A. thaliana. Therefore TSP9 

phosphorylation is suggested to facilitate the dissociation of LHCII from PSII (Fristedt et al., 

2009). 

The redistribution of LHCII between the two photosystems is suggested to be caused by an 

altered molecular affinity of phosphorylated or nonphosphorylated forms of LHCII trimers for 
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PSI or PSII or by generating of more grana margins through microstructure rearrangement of the 

thylakoid membrane (Allen and Forsberg, 2001; Barber, 1982; Bennett, 1983). 

PSI is present as a monomer located in the stroma lamellae, and its core consists of at least 

14 proteins named PsaA-B, PsaN, and PsaO (Scheller et al., 2001). Light harvesting complexes 

of PSI (LHCI) are associated with PsaJ/G/F proteins, leaving PsaH/L/O subunits on the opposite 

side uncovered (Ben-Shem et al., 2003). And these accessible subunits are supposed to be the 

docking site for mobile LHCII in state 2. In mutants lacking the PsaH or PsaL protein, state 

transitions are reduced to 20% or 30% of WT level, respectively, even though STT7/STN7 kinase 

activity and LHCII composition are not affected. LHCII becomes phosphorylated but similar 

fluorescence signatures during both state 1 and state 2 suggests that LHCII is still attached to 

PSII in state 2 in those mutants (Lunde et al., 2000). Moreover, a mutant lacking PsaO also shows 

50% reduction in state transitions when PsaH/L are not affected (Jensen et al., 2004). However, 

loss of PsaH or PsaL results in 80% - 90% reduction in PsaO suggesting that the involvement of 

PsaH or PsaL in state transitions could be indirect (Jensen et al., 2004). In absence of the docking 

site, a large number of phosphorylated LHCII (pLHCII) remained attached to PSII in state 2. In 

supportive of this, electron microscopic studies revealed that the potential docking site of LHCII 

on PSI are associated with LHCII trimer and possibly some minor LHCII in C. reinhardtii 

(Kouřil et al., 2005). Also, more major LHCII proteins were cross linked to PSI subunits PsaH/L 

under state 2 compared to state 1 in A. thaliana (Zhang and Scheller, 2004). 

A model was proposed by Minagawa et al., (2011) for the molecular remodeling of 

photosystems during state transitions in C. reinhardtii: C2S2 supercomplexes can form 

megacomplexes by the linkage of LHCII. When the major LHCII becomes phosphorylated, the 

megacomplex disassembles into supercomplexes, which subsequently separate from the major 

LHCII and minor LHCII upon phosphorylation of the minor LHCII and core proteins. Several 

phosphorylated major and minor LHCIIs then accumulate to aggregated structures which were 

shown to be more efficient in dissipating energy than the monomeric form (Iwai et al., 2008). 

Considering the long migration distance between PSII (localized in grana) and PSI (localized in 

the stroma lamellae), this aggregated form is advantageous to quench excess energy. And the 

aggregates were observed to be present substantially in the grana and stroma lamellae regions. 

Some of these aggregates were shown to migrate to PSI to increase its efficiency, thereby 

completing the state 1-to-2 transition (Minagawa, 2011) (Figure 5). 
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Figure 5 Scheme of PSI and PSII remodeling during state 1-to-2 transition. 

Upon phosphorylation of the major LHCII, the megacomplex of PSII disassembles into supercomplexes. 

(2) Phosphorylation of minor LHCIIs (CP26 and CP29) and PSII core proteins promote the dissociation of 

LHCII trimers and minor LHCIIs from the PSII core complex. The pLHCII complexes tend to aggregate 

together. (3) Binding of some LHCIIs (both major and minor) to PSI complete the transition from state 1 

to state 2. PSII is indicated by double-column of light-green color; PSI is indicated by a single column of 

purple color; LHCII trimer are depicted as yellow clouds; minor LHCIIs are depicted as blue clouds; 

LHCI is depicted as light-purple cloud; red circles with a “P” letter indicate  phosphorylation effects. 

Redrawn from Minagawa et al., (2011) 

1.3.3.4 LHCII kinase STT7/STN7 

The identification of kinases involved in state transitions was not successful until ten years 

ago. The first identified kinase involved in state transitions was the thylakoid associated kinase 1 

(TAK1), which interacts with the Cyt b6f complex and LHCII according to co-

immunoprecipitation (CoIP) experiments. It is well known that the Cyt b6f complex plays a 

crucial role in the state transition by activating the kinase (Wollman and Lemaire, 1988). The 

TAK1 antisense lines  with lower amounts of TAK1 protein relative to WT are impaired in state 

transitions and have concomitantly lower amounts of pLHCII in state 2 relative to wild type (WT) 

(Snyders and Kohorn, 2001). Indeed, TAK1s were shown to be phosphorylated and two 
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additional TAK proteins, TAK2 and TAK3 were identified and expected to phosphorylate TAK1, 

suggesting a kinase cascade that controls LHCII phosphorylation and regulates state transition 

(Snyders and Kohorn, 1999). However, the chloroplast locations of TAK2 and TAK3 could not 

be reproduced (Schliebner et al., 2008). 

 Later, a serine-threonine protein kinase, STT7, which mediates state transitions in C. 

reinhardtii was identified by screening for mutants defective in state transitions using 

fluorescence video imaging. The stt7 mutant showed an unchanged fluorescence signature and 

constant phosphorylation level of LHCII during state transitions (Depege et al., 2003). STT7 was 

shown to interact with the Cyt b6f complex (especially the Rieske protein), LHCII and PSI by 

CoIP and sucrose gradient ultracentrifugation both in state 1 and state 2. In addition the 

interaction with CP29 was exclusively detected under state 2 condition (Lemeille et al., 2009). 

Using tagged lines of STT7 the topology was studied which demonstrated that the transmembrane 

domain separates the N-terminus in the lumen from its C-terminus in the stroma (Depege et al., 

2003). Furthermore, there are two Cysteine residues Cys
68

 and Cys
73

 in the N-terminal region 

which are conserved between STT7 and STN7 (the land plant variant of STT7), and are essential 

for STT7/STN7 activity (Depege et al., 2003; Lemeille et al., 2009; Wunder et al., 2013). The 

amount of STT7/STN7 becomes decreased under prolonged state1 and HL conditions but the 

degradation could be prevented by Cysteine proteases inhibitors. Interestingly, STT7 itself seems 

to be phosphorylated as shown by intestinal phophatase (CIP) treatment, after which the 

migration pattern of this protein is changed (Depege et al., 2003). This observation was 

confirmed by Mass Spectrometry (MS) analysis which demonstrated that the Ser
533

 site is 

exclusively phosphorylated during state 1 to state 2 transition in dependence of STT7 itself 

(Lemeille et al., 2010). However, Ser
533

 is not conserved in STN7 and its phosphorylation is not 

crucial for state transition and degradation/accumulations for STT7 (Lemeille et al., 2010). STT7-

dependent phosphorylation of CP29 was also proved to be essential for state transitions (Tokutsu 

et al. 2009; Lemeille et al. 2010).   

The ortholog of STT7, STN7 was confirmed to have the same function as STT7 in A. 

thaliana (Bellafiore et al., 2005).  The state transitions were abolished in stn7 mutants as shown 

by fluorescence measurement. Moreover, the STN7 function in LHCII phosphorylation was 

confirmed indirectly in vitro. Also, STN7 is localized in the thylakoid membrane and is able to 

undergo autophosphorylation (Bellafiore et al., 2005). Besides the homology with STT7 in its 

kinase domain and the Cysteine-motif at the N-terminus, STN7 contains four unique 
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phosphorylation sites (Ser 
526

, Thr 
537

, Thr
539

and Thr 
541

) at the C-termus and two additional 

Cysteine residues in the catalytic domain on the stromal side (Puthiyaveetil, 2011; Reiland et al., 

2009). Like in the case of STT7, the phosphorylation sites of STN7 are demonstrated not to be 

crucial for state transitions but may play a role in its turnover (Willig et al., 2011). In WT and the 

STN-4A mutant, in which these four phosphorylation sites are substituted by Alanine to prevent 

phosphorylation, the amount of STN7 decreases when A. thaliana plants are shifted from state 2 

to state 1. Whereas, STN-4D mutants, in which these phosphorylation sites are changed to 

Aspartic acid to mimic permanent phosphorylation, show very stable STN7 levels irrespective of 

the light condition. STN8, CSK and TAP38 were tested to be irrelevant for the phosphorylation 

or dephosphorylation of STN7 (Willig et al., 2011). STN7-dependent phosphorylation of CP29 

was identified to be essential for PSII disassembly under high-light condition (Fristedt and Vener, 

2011; Lemeille et al., 2010; Tokutsu et al., 2009). Furthermore, TSP9 is also phosphorylated by 

STN7 as shown by in vitro phosphorylation experiment and phosphorylation of TSP9 was 

indicated to facilitate the dissociation of LHCII from PSII (Fristedt et al., 2009). 

Under low light, STT7/STN7 is activated by PQH2 via the Cyt b6f complex. Basically, 

binding of PQH2 to the Qo site of Cyt b6f changes the position of Rieske protein from distal 

position to a proximal position. This position conversion leads to a conformational change of the 

Cyt b6f complex which further mediates the activation of the kinase (Finazzi et al., 2001; Zito et 

al., 1999). On the contrary, under high light the PQ pool is reduced, but the kinase is deactivated 

via the thioredoxin system. The stromal thioredoxin signal is supposed to be transduced by 

proteins like CcdA and Hcf164 to the conserved two Cysteines on the lumenal side thereby 

deactivating STN7 (Depege et al., 2003). However, a new model was proposed for STN7 

regulation on the basis of the discovery that two additional conserved Cysteines in the catalytic 

domain on the stromal side might act as an additional redox sensor (Puthiyaveetil, 2011). Under 

low light conditions, PQH2 activates STN7 via reducing the disulfide bond formed between the 

two Cysteines on the luminal side. To this end, PQH2 has to bind to the Qo site of Cyt b6f and 

reduce the disulfide bond directly or indirectly through Rieske protein. Under high light, the 

reduction of the stromal exposed two conserved Cysteines by thioredoxin could be responsible 

for the deactivation of the kinase (Puthiyaveetil, 2011). Since STT7 does not contain the same 

stromal Cysteine motif, it might be either not inhibited by thioredoxin under highlight or 

inhibited through Cysteine residues located somewhere else in the protein, e.g. the two closely 

placed Cysteines in the middle of the kinase domain (Puthiyaveetil, 2011). 
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1.3.3.5 LHCII phosphatase TAP38/ PPH1 

Under light conditions that preferentially excite PSI (e.g. far red light), the PQ pool 

becomes oxidized leading to the inactivation of STN7. The pLHCII associated with PSI becomes 

then dephosphorylated by a LHCII phosphatase resulting in the dissociation of the mobile LHCII 

pool from PSI. Early findings suggested a PP2C type phosphatase that can not be inhibited by 

microcystin and okadaic acid but depends on the presence of divalent cations to be responsible 

for LHCII dephosphorylation (Cohen, 1989; Hammer et al., 1995; Sun et al., 1989). Only 

recently, this protein phosphatase was identified by two independent groups, and named 

TAP38/PPH1 (Pribil et al., 2010; Shapiguzov et al., 2010). The tap38 mutant and oeTAP38 

(overexpression line of TAP38) are both impaired in state transitions as monitored by PAM 

fluorometry and the recording of 77K fluorescence emission spectra. Furthermore, the level of 

pLHCII under all light conditions seems to be inversely proportional to the amount of the TAP38 

protein and the intensity of the PSI-LHCI-LHCII band in BN-PAGE (Pribil et al., 2010). 

Although recombinant TAP38 protein is able to dephosphorylate pLHCII (Pribil et al., 2010), 

additional support for direct dephosphorylation of pLHCII by TAP38 was not available. TAP38 

is predicted to contain a chloroplast transit peptide (cTP) at its N-terminus, a transmembrane 

domain near its C-terminal end and a PP2C (phophatase 2C) signature near the N-terminus. 

Fractionation experiment demonstrated that TAP38/PPH1 is localized in thylakoid membrane, 

especially the stroma lamellae region (Pribil et al., 2010; Shapiguzov et al., 2010). The constant 

expression levels of TAP38 under far-red light and low light is an indication for TAP38 not to be 

regulated at the protein levels, in contrast to STN7 (Bellafiore et al., 2005; Lemeille et al., 2009; 

Pribil et al., 2010; Shapiguzov et al., 2010; Wunder et al., 2013). Previous results derived from in 

vitro experiment further suggest that the LHCII phosphatase activity is redox independent 

(Silverstein et al., 1993).  

1.3.3.6 Various environmental factors that involved in state transition   

Besides light, various environmental factors can affect state transitions (e.g. high and low 

temperature and oxygen concentration). Moderate heat in the dark for a short term is suggested to 

induce transition from state 1 to state 2 accompanied by phosphorylation of LHCII and increase 

of PSI emission in 77 K measurements (Nellaepalli et al., 2011). These alterations of 

fluorescence emission and LHCII phosphorylation could not be observed in the stn7 mutant. 

Similarly, no state transitions were observed in cold-adapted plants (10°C) under low light as 
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monitored by 77 K measurement. Phosphorylation of LHCII is detectable both under dark and 

low light but to a less extent under normal growth temperature, suggesting a reduced electron 

transport rate in cold (Nellaepalli et al., 2011). Nellaepalli et al. (2011) also suggests that dark 

anaerobiosis condition induces nonphotochemical reduction of the PQ pool by generating more 

reducing equivalents (NADPH) which leads to transition from state 1 to state 2 mediated by NDH 

activity. This conclusion is based on the observation that LHCII phosphorylation and absorption 

cross-section of PSI are increased in WT but abolished in the crr2-2 mutant (NDH mutant) 

(Nellaepalli et al., 2012). 

LHCII plays an important role in stability of the thylakoid membrane, and its migration 

during state transitions is suggested to cause structural changes of the thylakoid membrane 

(Dekker and Boekema, 2005). This notion is supported by the finding that isolated thylakoids 

undergo large-scale structural change when they are subjected to salt solution (mimic the state 1 

to state 2 transition) (Arvidsson and Sundby, 1999; Ryrie, 1983). In line with this, thylakoid 

membrane was found to undergo demodulation during state transitions. Specifically, upon 

transition from state 1 to state 2, the lateral and/or vertical connections around the highly curved 

margins area of thylakoid membrane were broken and subsequently the demodulation spreads 

over the whole thylakoid membrane system. The rearrangement resulted in increased chloroplast 

diameter and unstacked grana leading to a disordered and undulating morphology of the 

membrane network (Chuartzman et al., 2008). 

Apparently electron flow switches from LEF to CEF in C. reinhardtii in state 2 given that 

80% of LHCII are mobile (Delosme et al., 1996). This hypothesis is supported by the finding that 

the PSII inhibitor DCMU which blocks the plastoquinone binding site of photosystem II, only 

disturbs the reduction of the Cyt b6f complex in state 1 but not in state 2 (Finazzi et al., 1999). 

This is consistent with the observation of that CEF acts independently from PSII activity. Since 

CEF can increase the ATP/NADPH ratio, depletion of ATP is suggested to induce state 2 (Bulte 

et al., 1990). However, this is not the case for A. thaliana, because only 20 - 25% LHCIIs migrate 

during state transition (Allen, 1996).  

1.3.4 Long term response (LTR) 

Longer lasting changes in light quality are counterbalanced by the long term response 

(LTR), a process which balances the energy absorption by changing the stoichiometry and/or  the 

antenna size of the photosystems (Bailey et al., 2004; Bailey et al., 2001; Fey et al., 2005a; 

http://en.wikipedia.org/wiki/Plastoquinone
http://en.wikipedia.org/wiki/Photosystem
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Pfannschmidt, 2003). This process involves degradation and assembly of the photosystems and 

regulatory modifications in photosystem gene expression (Meurer et al., 1998; Walters, 2005).  It 

was shown that de novo synthesis of chlorophyll a and its binding proteins, as well as of core 

proteins of photosystems encoded in chloroplast were controlled at the transcriptional level by the 

redox state of PQ pool ((Murakami et al., 1997; Pfannschmidt et al., 1999). This was supported 

by subsequent studies (Kovacs et al., 2000). Since many photosynthetic genes are encoded in the 

nucleus, the signal from the PQ pool has to be transmited within and outside of the chloroplast 

under a special regulation mechanism (Dietzel et al., 2008; Nott et al., 2006). However, recent 

discoveries suggest that A. thaliana adjusts its photosystem stoichiometry mainly by modifying 

the amount of PSI complexes (Fey et al., 2005; Pesaresi et al., 2009). The ratio of chlorophyll a to 

chlorophyll b (Chl a/b) and steady fluorescence to maximum fluorescence (Fs/Fm) are indicators 

for such changes in photosystem stoichiometry (Bailey et al., 2001; Dietzel et al., 2008). 

The Chloroplast sensor kinase (CSK) was suggested to adjust photosystem stoichiometry 

by sensing the oxidized form of PQ and to undergo autophosphorylation induced by an oxidized 

PQ pool (Puthiyaveetil et al., 2008). Loss of CSK was demonstrated to affect transcription of 

photosynthetic plastid-encoded genes and adjustment of the PSII/PSI ratio. In more detail, the 

transcription of plastid encoded PSI subunits cannot be decreased during state 1 condition. Plastid 

transcription kinase (PTK) and Chloroplast sigma factors were found to be interaction partners of 

CSK, involved in chloroplast gene regulation. Therefore, a phosphorylation cascade was 

postulated to regulate photosystem stoichiometry adjustment (Puthiyaveetil et al., 2012).  

Another kinase reported to be involved in LTR is STN7 which is described as the LHCII 

kinase involved in state transition (Bonardi et al., 2005). While WT showed changes in Chl a/b 

ratio and the Fs/Fm value when acclimated to either state 1 or state 2, the stn7 mutant displayed no 

alterations in these parameters indicating that the stn7 mutant is impaired in the LTR. However, 

other mutants defective in state transitions undergo normal LTR, suggesting that these two 

regulatory pathways are distinct and might diverged downstream of STN7 (Bonardi et al., 2005; 

Pesaresi et al., 2009). In consistency with that, state transitions are activated by a reduced PQ 

pool but LTR is induced by an oxidized PQ pool (Puthiyaveetil et al., 2012). 

1.4 Reversible phosphorylation in chloroplasts 

Reversible phosphorylation can affect the stability, activity or subcellular localization of 

target proteins, and around one-third of all eukaryotic proteins are supposed to undergo reversible 
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phosphorylation (Olsen et al., 2006). Besides redox regulation, reversible protein phosphorylation 

is definitely another key regulation factor for cellular functions and signal transduction in 

response to environmental changes (Cohen, 2000; Schliebner et al., 2008). A recent proteomic 

study identified 174 phosphoproteins in A. thaliana, and they are predicted to be localized in the 

chloroplast with high confidence (Reiland et al., 2009). Protein kinases (PKs) and protein 

phosphatases (PPs) are needed for reversible phosphorylation of proteins. It is estimated that 

about 3.8% of the nuclear encoded genes code for protein kinases (1050 genes). Since about 2100 

genes are supposed to be imported into chloroplast of A. thaliana, and 3.8% of them are protein 

kinases, there should be about 80 kinases present in the chloroplast (Bayer et al., 2012; Richly 

and Leister, 2004). A complete survey of the A. thaliana genome revealed about 220 PPs to exist 

(Schliebner et al., 2008). Out of these, only 27 PPs were clearly predicted to be localized in the 

chloroplast and only 9 of them were actually confirmed to do so (Schliebner et al., 2008). 

Apparently, the numbers of PPs in the chloroplast is much lower than the PKs.  

1.4.1 STN8  

STN8 is a homolog of STN7, as they share high sequence and structural similarities 

(Depege et al., 2003). Unlike STN7, STN8 is not required for LHCII phosphorylation and state 

transitions, but plays an essential role in the phosphorylation of PSII core proteins (Bellafiore et 

al., 2005; Bonardi et al., 2005). In the stn8 T-DNA insertion mutant, the phosphorylation levels 

of PSII subunits (D1, D2, CP43, PsbH) is dramatically reduced compared to WT and stn7 mutant 

(Bonardi et al., 2005; Tikkanen et al., 2008a). Notably, in the stn7 stn8 double mutant, overall 

thylakoid phosphorylation, including that of PSII and LHCII, is totally abolished, indicating that 

these two kinases share a certain overlap in their substrates. Although phosphorylation was 

suggested to influence D1 degradation, thus affecting the repair of PSII under high light, there is 

actually no difference between stn8 and WT regarding D1 synthesis and its degradation (Bonardi 

et al., 2005; Koivuniemi et al., 1995). Depletion of STN8 and consequently reduction in PSII 

phosphorylation leads to delayed D1 degradation and significant rearrangement of the thylakoid 

membrane network in the stn8 mutant (Tikkanen et al., 2008a).  

Moreover, the calcium-sensing receptor (CaS) was also identified as a substrate of STN8 

(Vainonen et al., 2008). CaS is a 40kD protein localized in the chloroplast and particularly 

enriched in stroma lamellae. Its phosphorylation level is markedly increased under high light in A. 

thaliana. In C. reindardtii, CaS is essential for the expression of LHCSR3 which plays an 
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important role in qE quenching under high light; therefore, the cas mutant is more sensitive to 

high light and impaired in PSII recovery (Petroutsos et al., 2011). Interestingly, the 

phosphorylation of CaS depends on calcium avelability and is medicated by STN8 whereas its 

dephosphorylation is supposed to be carried out by TAP38, the major counteractor of STN7 

(Pribil et al., 2010; Vainonen et al., 2005). 

Recently, MS analyses identified PGRL1, the newly confirmed FQR of cyclic electron flow, 

as a substrate of STN8, and the stn8 mutant displayed a faster transition from CEF to LEF during 

a shift from dark-to-light (Reiland et al., 2011). Reiland et al. (2011) also suggest that the large 

subunit of RuBisCo (RbcL), CP29 and two unknown proteins are phosphorylated by STN8. This 

finding was in line with previous results which showed that RbcL and CP29 were phosphorylated 

(Lemeille et al., 2010; Lohrig et al., 2009). However, CP29 was also indicated to be 

phosphorylated by STN7 under high light (Fristedt and Vener, 2011). This again supports that 

STN7 and STN8 have overlapping substrates.  

1.4.2 Further chloroplast kinases 

Chloroplast casein kinase 2 (cpCK2) originally identified in mustard is localized to the 

stroma. It has a homolog in A. thaliana (At2g23070) which is able to phosphorylate parts of the 

plastid transcription machinery and RNA binding proteins. The plastid sigma factor AtSIG6 was 

identified to be its substrate (Ogrzewalla et al., 2002; Salinas et al., 2006). The binding properties 

of AtSIG6 changed upon phosphorylation leading to differences in gene expression in 

chloroplasts and to an impaired plant growth (Schweer et al., 2010). Furthermore, CSK was 

identified as an interaction partner of cpCK2 which provides a link between plastid transcription 

control and redox sensing (Puthiyaveetil et al., 2010). It seems that cpCK2 is the main kinase for 

stromal components, as stroma phosphorylation depends equally on ATP and GTP, a co-substrate 

of CK2, and a large set of phosphoproteins contain a phosphorylation motif specific for cpCK2 

(Bayer et al., 2012; Reiland et al., 2009). 

1.4.3 PBCP and other phophatases 

Besides TAP38/PPH1 which counteracts predominantly STN7 in reversible protein 

phosphorylation (Pribil et al., 2010; Shapiguzov et al., 2010), another chloroplast protein 

phosphatase, PBCP, was identified recently in A. thaliana to be responsible for the 

dephosphorylation of PSII core proteins. In the pbcp mutants, the dephosphorylation of PSII core 
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proteins was deficient under far red light conditions, whereas this phenotype can be reversed by 

overexpressing PBCP (Samol et al., 2012). Via MS and Western blot analyses, it could be 

confirmed that the substrates of PBCP significantly overlapped with STN8. Interestingly, 

overexpression of PBCP resulted in less pLHCII in state 2 and influenced the kinetics of state 

transitions, suggesting a certain substrate overlap between PBCP and TAP38 (Samol et al., 2012), 

similar to STN7 and STN8 (Bonardi et al., 2005). Consistent with this, TAP38 also 

dephosphorylates D1/D2 to certain degree (Pribil et al., 2010). 

1.5 Aims of this work 

TAP38 and STN7 form an antagonistic pair regarding the reversible phosphorylation of the 

light harvesting complex of PSII (LHCII) and therefore state transitions (Bellafiore et al., 2005; 

Pribil et al., 2010; Shapiguzov et al., 2010). The activity and amount of STN7 are both regulated 

by the redox of state plastoquinone (PQ) pool, while previous findings from in vitro 

dephosphorylation experiments showed that the LHCII phosphatase is insensitive to redox 

regulation (Bellafiore et al., 2005; Lemeille et al., 2009; Willig et al., 2011; Wunder et al., 2013). 

However, since its identification no further investigations were done in this direction. 

Furthermore, it is unclear whether the LHCII phosphatase TAP38 is associated with other 

proteins or protein complexes and whether TAP38 directly or indirectly dephosphorylates LHCII. 

Also an involvement of TAP38 in the long term response (LTR) was discussed, as stn7 mutants 

are devoid of LTR (Bonardi et al., 2005). As thylakoids kinases and phosphatases show a 

complicated overlap in substrates and the number of phosphoproteins exceeds that of phosphatase 

sand kinases markedly (Bayer et al., 2012; Reiland et al., 2009; Richly and Leister, 2004; 

Schliebner et al., 2008), the possibility that TAP38 target other substrates than beyond LHCII is 

feasible.  

To address the TAP38 topology, trypsin digestion and salt extraction experiments were 

performed. Also, spatial and temporal localization of TAP38 was assayed by approaches of 

thylakoid fractionation and immunogold labeling. Its sensitivity to redox regulation was studied 

by different light treatments and via phosphorylation inhibition assays, as well as by TAP38 

overexpression in genetic mutant backgrounds with over-reduced PQ pool.  Furthermore, lines 

expressing HA- and GFP- tagged TAP38 were generated and applied in co-immunoprecipitation 

experiments to identify putative interacting components of TAP38. In order to identify additional 

putative substrates of TAP38 other than LHCII, double mutants stn7 oeTAP38 and tap38-1 
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oeSTN7 showing thylakoid hyper- and hypo-phosphorylation were generated and used in 2D-IEF 

SDS PAGE. As TAP38 is supposed to be the counteracting enzyme of STN7, effects of TAP38 

on the long term response were analyzed. 
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2 Materials and Methods  

2.1 Plant material 

The A. thaliana wild type Columbia-0 (Col-0) used in this study as the wild type (WT) was 

obtained from NASC (Nottingham Arabidopsis Stock Centre, accession number N1092). 

Previously described transgenic lines employed in this study were: hcf136 (Meurer et al., 1998), 

psad1-1 (Ihnatowicz et al., 2004), psad1d2 (Ihnatowicz et al., 2004), petc-1(Maiwald et al., 2003),  

psae1-3 (Ihnatowicz et al., 2007), asLHCB2.1 (Andersson et al., 2003); chaos (Klimyuk et al., 

1999); tap38-1 (Pribil et al., 2010), TAP38 overexpressor (oeTAP38) (Pribil et al., 2010) and stn7 

(Bonardi et al., 2005), STN7overexpressor (oeSTN7) (Wunder et al., 2013). Seeds of TAP38 

knock-out line tap38-3 (GABI_232H12) were obtained from GABI-Kat. This line carries a T-

DNA insertion in the Columbia (Col-0) back ground. Homozygous lines were selected via PCR, 

Western blotting and PAM measurements (Figure S1). The primers specific for detection of T-

DNA insertion were LBgk1 (5’CCCATTTGGACGTGAATGTAGACAC) and TAP38-3s 

(5’GCATTGCAAGCTGGATCGTTG), and primers for detection of TAP38 gene were TAP38-3s 

and TAP38-3as (5’TCATCAACACCCTTCTTTAAC). 

2.1.1 Generation of transgenic A. thaliana lines expressing GFP-tagged TAP38 

To generate a TAP-GFP-line, the native TAP38 sequence was cloned into the plant 

expression vector pB7YWG2 under Cauliflower Mosaic Virus (CMV) 35s promoter by Gateway 

Cloning strategy using primers PinFw (5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCA 

CTGAGTCAT GGCGCTTC) and PinRev (5’GGGGACAAGTTTGTACAAAAAAGCTGG GT 

AAGATAGATGTGAAGACATCCATATGCC). The vector containing green fluorescence 

protein (GFP) sequence was at the C-terminus of TAP38. GFP construct was introduced into 

tap38-3 using floral-dipping technique (Clough and Bent, 1998). Transgenic plants were selected 

by the Basta herbicide and several independent homozygous T-DNA insertion lines of the T3 

generation were obtained. Then the expression of TAP38 fused to GFP was analyzed by Western 

blotting with a TAP38 antibody and antibody specific for the GFP. The restoration of state 

transition process was used as an indicator for the expression of functional TAP38 (see PAM 

measurement). 

2.1.2 Generation of transgenic A. thaliana lines expressing HA-tagged TAP38 
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A mutant line expressing TAP38 with a HA-tag fused to its N-terminus was generated in 

following steps. First a cTP sequence of TAP38 and one copy of the HA sequence (PYDVPDYA) 

flanked by the restriction site of BamHI were cloned into pDONOR using the primers: HA1Fw 

(CACCACTGAGTCATGGCGCTTCTG) and HA2Rev (GTGGATCCAGCGTAATCTGGAAC 

ATCGTATGGGTAACGGTGACGACCATACGTG). In parallel, the BamHI restriction site was 

fused to the full CDs of TAP38 without its cTP and introduced into the same vector using the 

primers HA3Fw (5’GTGGATCCTACCCATACGATGTTCCAGATTACGCTTGCTCCGCG 

ATTGCGATCGAC) and HA4Rev (5’TTAAGATAGATGTGAAGACATCCATATG). After 

BamHI restriction at these constructs, the two fragments were ligated and inserted into the 

pB7FWG2 vector which was previously relieved GFP sequence from it. Finally, a construct was 

obtained containing a cTP, two HA sequence repeats and the mature TAP38 coding sequence 

fused together. Transformation of TAP38-HA construct into tap38-3, BASTA selection and 

segregation and insertion analysis were performed as described above (see chapter 2.1). 

2.2 Growth and light conditions 

Plants were grown on soil under controlled conditions in a growth chamber on a 12/12 h 

day-night regime with 100 μmol photons m
-2 

s
-1 

at light phase. PSI- and PSII-light were generated 

as described before with minor modifications (Fey et al., 2005b; Pfannschmidt et al., 2009; 

Pfannschmidt et al., 1999; Wagner et al., 2008). In detail, PSI light (20 μmol photons m
-2

s
-1

) was 

generated by white fluorescent lamps of Osram (39 W) filtered through two layers of red foil 

(Lee Filters, transmittance 50% at 650 nm, 027 Medium Red) and PSII light (30 μmol photons m
-

2
 s

-1
) was generated by the same lamp filtered through one layer of orange foil (Lee Filters, 

transmittance 50% at 560 nm, 405 Orange). Further light conditions were obtained as follows: 

low light (LL) was provided by cool-white fluorescence strip lamps at an intensity of 50 μmol 

photons m
-2 

s
-1

; high light (HL) of 800 μmol photons m
-2

 s
-1

 was generated by an Osram 

Powerstar HQIBT-D/400 W lamp; far red light (FR) was emitted by LEDs at an intensity of 3.0 

μmol photons m
-2

 s
-1

. WT, tap38-1, hcf136, petc-1, psad1d2, chaos, asLHCB2, psad1-1, psae1-3 

plants grown on 1×MS medium including vitamins (Duchefa
®
) at 50 μmol photons m

-2 
s

-1 

(Wunder et al., 2013).  For all experiments, 4-week-old soil grown plants were used if not 

indicated otherwise. 
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2.3 Total protein extraction 

Total protein extracts were prepared as described (Haldrup et al., 1999). About 0.1 g of 

frozen leaf material from 6-week-old A. thaliana plant grown on MS plates was homogenized in  

200 μl solubilization buffer (100 mM Tris pH 8.0, 50 mM EDTA pH 8.0, 0.25 M NaCl, 1 mM 

DTT, 0.7% SDS). The homogenate was then heated up to 65 °C for 10 min. Insoluble material 

was removed by centrifugation at 10000 g for 10 min and the protein concentration in the 

supernatant was determined by the amido black assay according to (Schaffne and Weissman, 

1973). 

2.4 Isolation of thylakoid membranes 

Thylakoids were isolated based on the protocol of Bassi et al. (1995) with modifications.  

In brief, leaf material of A. thaliana plants was homogenized in ice cold isolation buffer (0.5% 

milk powder, 0.4 M sorbitol, 0.1 M Tricine-KOH pH 7.8, 20 mM NaF and freshly prepared 

protease inhibitor [0.2 mM PMSF, 1 mM Benzamidine, 5mM Aminocaproic acid]) and filtered 

through 2 layers of Mirocloth (Calbiochem). After centrifugation at 1500 g for 10 min at 4 °C the 

membrane pellet was resuspended in ice cold resuspension buffer (20 mM HEPES-KOH pH 7.5, 

10 mM EDTA, 20 mM NaF) supplemented with protease inhibitors. After 10 min of incubation 

on ice, a centrifugation step was carried out at 10000 g for 10 min at 4 °C. At last, TMK buffer 

(10 mM Tris-HCl pH 6.8, 10 mM MgCl2, 20 mM KCl, 20 mM NaF) was used to resuspend the 

thylakoid pellet and the chlorophyll concentration was determined in aqueous 80% acetone 

(Lichtenthaler, 1987; Porra, 2002). 

2.5 Chloroplast isolation and separation of soluble membrane fraction 

Chloroplasts were isolated from plant leaves as described by Aronsson and Jarvis (2002) 

with modifications. In general, 20 g leaf material was homogenized in 200 ml HB buffer (0.45 M 

Sorbitol, 20 mM Tricine-KOH pH 8.4, 10 mM EDTA, 10 mM NaHCO3), filtered through 2 

layers Microcloth and centrifuged at 600 g for 6 min. The pellet was resuspended in 0.8 ml RB 

buffer (0.3 M Sorbitol, 20 mM Tricine-KOH pH 8.4, 2.5 mM EDTA, 5 mM MgCl). In parallel, a 

Percoll gradient which is comprised  of 7.5 ml light layer (40% Percoll, 1xRB) on the top and 3.5 

ml of heavy layer (80% Percoll, 1x RB) at the bottom was made. The resusupended pellet was 

then placed on the top of the Percoll gradient and centrifuged at 6500 g for 20 min with low 

acceleration and no break. The green band between the two layers was the intact chloroplast. To 
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obtain membrane and soluble fractions (e.g. thylakoid and stroma fractions), chloroplasts were 

resuspeded in 10 volumes of RB buffer and then mechanically sheared by pushing the samples 

20-40 times through a thin needle on ice. After centrifugation for 30 min at 42000 g, 4 °C, the 

collected supernatant and pellet represented soluble and membrane fractions, respectively. The 

concentration of the soluble protein was determined using the Bradford Protein Assay (Biorad, 

Munich, Germany). 

2.6 Purification of recombinant His-tagged TAP38 proteins 

   The coding sequences of STN7 and TAP38 without cTPs were cloned into pProExHTa  

(STN7) or pET151 vector (TAP38) (Invitrogen) providing an N-terminal-6x His-tag (Invitrogen) 

for each protein (Pribil et al., 2010; Wunder et al., 2013). Then the recombinant proteins were 

expressed in 500 ml cultures of the Escherichia coli (E. coli) strain BL21-CodonPlus
®
 (DE3)-

RIPL (Stratagene), as inclusion bodies.  The purification of inclusion bodies was performed as 

described (Wunder et al., 2013) and subsequently recombinant protein was purified under 

denaturing conditions according to Ni-NTA batch purification procedure (Qiagen).  

2.7 Chlorophyll fluorescence analysis 

2.7.1 Measurement of standard photosynthetic parameters 

After plants were adapted to the dark for 30 min, minimal fluorescence (F0) was determined. 

Then white light (5000 µmol photons m
-2

 s-
1
) were given in pulses (0.8 s) to measure the 

maximum fluorescence (Fm). In the meanwhile, maximum quantum yield of PSII was calculated 

according to the ratio (Fv/Fm= (Fm- F0)/Fm). A 10-min actinic light (40 µmol photons m
-2

 s
-1

) was 

applied before the steady-state fluorescence (Fs) was measured. Fm' was determined after 

exposure to further saturation pulses (0.8 s, 5000 µmol photons m
-2

 s
-1

) (Maxwell and Johnson, 

2000). At the end, minimal fluorescence of light adapted plants (F0') as determined after 

switching off the actinic red light. The light dependence of the photosynthetic parameters, the 

effective quantum yield of PSII (ΦII), qP or qL, representing the fraction of PSII receptors that 

remains open or oxidized were calculated according to the following equations: ФII=(Fm'-FS)/Fm' , 

1-qP=1-(Fm'–Fs)/(Fm'–F0), and 1-qL=1-(Fm'-Fs)F0/([Fm'-F0']Fs) (Maxwell and Johnson, 2000). 

Average values are based on measurements of 6 plants.  

2.7.2 State Transition measurements via PAM fluorometry 
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State transitions were measured by pulse-amplitude modulation fluorometry (PAM) as 

described (Pribil et al., 2010; Ruban and Johnson, 2009). The quenching of chlorophyll 

fluorescence due to state transitions (qT) was calculated according the equation qT= (Fm1 - 

Fm2)/Fm2 (Jensen et al., 2000). 

2.8 Photosynthetic Acclimation Analysis 

The development of the long term response (LTR) was monitored on the basis of 

measurements of steady state fluorescence (Fs) and chlorophyll a/b ratios as described before 

(Fey et al., 2005b; Pesaresi et al., 2009). PSI and PSII lights were set as described, and then 

plants were initially grown for 10 d under white light, followed an acclimation period. In detail, 

plants were grown under PSI or PSII light for 6 d (PSI or PSII plants) or they were first 

acclimated to PSI light for 2 d followed by 4 d under the PSII light source or vice versa (PSI-II or 

PSII-I plants). 

2.8.1 Chlorophyll fluorescence measurement during LTR 

Chlorophyll fluorescence parameters (Fs/Fm, ФII and 1-qP) were measured according to 

chapter 2.7.1. 

2.8.2 Chlorophyll a/b ratio measurement during LTR 

Plant material was harvested under the respective growth light and grinded in liquid 

nitrogen. The pigments were extracted with 80% buffered acetone. Chlorophyll concentrations 

and chlorophyll a/b ratios were determined and calculated according to Porra et al. (1989). 

2.9 SDS-PAGE and immunoblot analysis  

Standard SDS-PAGE (8-15% acrylamide) was performed according to Laemmli (1970) if 

not indicated otherwise. Immunoblot analyses with phosphothreonine-specific antibodies (p-Thr, 

Cell Signaling), polyclonal antibodies raised against the mature TAP38 protein (Pribil et al., 

2010), STN7 (Wunder et al., 2013), ACTIN (Dianova), PsaA/B, PsaD, PetC, LHCB2, LHCA1, 

PSII subunit D2, ATP synthase β-subunit or ATP synthase γ-subunit (all from Agrisera) were 

performed as described before (Ihnatowicz et al., 2008). 

2.10 BN- and 2D-PAGE 

Thylakiods were prepared from 4-week-old plants as described (chapter 2.4) and then 

crosslinked by DTSSP (chapter 2.14) or not. For BN-PAGE, thylakoids samples equivalent to 



Materials and Methods 

 

27 

 

100 μg of chlorophyll were solubilized in solubilization buffer (750 mM 6-aminocaproic acid, 5 

mM EDTA [pH 7], 50 mM NaCl) for 10 min with 1% (w/v) n-dodecyl-β-D-maltoside (β-DM) or 

for 1h with 1.5% digitonin or 2% Nonidet P-40 (NP40) on the ice. Followed by centrifugation at 

16000 g for 20 min (β-DM) or 1h (digitonin or NP40), the soluble material was fractionated 

using nondenaturing BN-PAGE at 4   as described (Heinemeyer et al., 2004). After 

electrophoretic separation, the first dimension gel was either subjected to immunoblot analysis or 

2D-PAGE after incubation in Laemmli buffer including 100 mM DTT. For 2D-PAGE, a single 

denatured lane of the BN gel was placed on top of a reducing 12% acrylamid SDS gel and 

subsequently fractionated by electrophoresis (Schagger and Vonjagow, 1991). The 2D gel was 

either stained with Coomassie brilliant blue (CBB) or subjected to immunoblot analysis with 

antibodies against LHCB2, LHCA1, PSII subunit D2, PetC, ATP synthase β-subunit, PsaB, and 

PsaD as described in chapter 2.9. 

2.11 Sucrose gradient fractionation of thylakoid complexes 

Sucrose gradients were prepared by freezing of 11 ml of 0.4 M sucrose, 20 mM Tricine-

NaOH pH 7.5, 0.06% NP40 and subsequent thawing at 4°C. Prior to thylakoid isolation (chapter 

2.4) WT plants were exposed to PSI or PSII light. Thylakoids were washed twice with 5 mM 

EDTA (pH 7.8) and diluted to a final chlorophyll concentration of 1 mg ml
-1

. NP40 was added at 

a final concentration of 1% and solubilization was carried out at 4 °C for 1 h. The non-solubilized 

fraction was pelleted at 16000 g for 1 h at 4°C and the supernatant as loaded on the afore 

prepared sucrose gradients. After centrifugation at 195000 g for 21 h at 4°C, the gradient was 

divided into 16 or 19 fractions (numbered from the top). All fractions were separated via a 12% 

SDS-PAGE and either stained with Coomassie brilliant blue or analyzed by Western blotting 

with antibodies against LHCB2, LHCA1, PSII subunit D2, PetC, ATPase β or γ, PsaB, and PsaD.  

2.12 2D protein separation by isoelectric focusing (IEF) and SDS-PAGE gel 

Electrophoresis 

Protein separation via IEF was performed as described before (Qi et al., 2012; Stael et al., 

2012). Thylakoids corresponding to 50 μg chlorophyll or 500 μg stromal proteins were 

precipitated in 80% acetone and resuspended in rehydration buffer (7 M urea, 2 M thiourea, 2% 

(w/v) CHAPS, 0.5% (v/v) Pharmalyte (GE Healthcare), 0.002% (w/v) bromophenol blue, 18.2 

mM DTT). Then protein buffer was applied to Immobiline ™ Drystrips (gradient pH 3–10 NL, 
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GE Healthcare). The strips were placed in a Multiphor II focusing unit (GE Healthcare) and run 

according to the manufacturer’s protocol. Afterwards, the strip was first equilibrated in SDS 

equilibration buffer (6 M urea, 75 mM Tris-HCl [pH 8.8], 29.3% [v/v] glycerol, 2% [w/v] SDS, 

0.002% [w/v] bromophenol blue) containing DTT (100mg per 10 ml buffer) for 20 min and 

subsequently in the SDS equilibration buffer supplemented with iodoacetamide (250 mg per 10 

ml buffer) for another 20 min period. After equilibration, proteins were separated by 12% at 

SDS–PAGE. 

2.13 Coomassie or Ponceau S staining of proteins on PVDF membrane 

For Coomassie brilliant staining (CBB), proteins on PVDF membrane were incubated in 

staining solution (0.1% Coomassie brilliant blue R-250 dissolved in 50% methanol) for 2 min 

with gentle agitation, followed by rinsing with 50% methanol to remove any background staining. 

Staining of protein bands can be completely removed by washing with 100% methanol. 

For Ponceau S staining (P.S.), proteins were stained with 0.1% (w/v) Ponceau S in 1% (v/v) 

acetic acid for 2 min prior to block the membrane. Washes with 100% methanol fully removed 

the protein staining and the membranes could afterwards be blocked as usual.  

2.14 Crosslinking 

Thylakoids were isolated as described in chapter 2.5 and resuspended in 20 mM 

HEPES/KOH (pH 7.5). Following chlorophyll measurement, thylakoids were diluted to a 

concentration of 0.5 mg ml-1 chlorophyll. Then, 100 μl thylakoids preparations were washed 5 

times with 500 μl HEPES/KOH (20 mM, pH 7.5) to remove any potential EDTA and 

subsequently supplied with 1 mM DTSSP (3, 3’-dithiobis [sulfosuccinimidylpropionate]) (Pierce, 

Thermo Science). After incubation in the dark for 1h at 0  , the reaction was quenched by 

addition of 30 mM Tris (pH 7.6). Samples were centrifuged at 5000 g for 2 min, and the pellet 

was resuspended in corresponding buffer for BN (see chapter 2.10). 

2.15 Co-Immunoprecipitation (Co-IP) 

GFP/HA-tagged proteins were pulled down using the GFP-Trap®-A (Chromotek) or Anti-

HA Affinity Matrix (Roche). To this end, thylakoids corresponding to 500 μg of Chl (crosslinked 

by DTSSP or not) were resuspended in dilution buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.5 

mM EDTA) to a Chl concentration of 1 mg ml-1, and solubilized in the presence of 1% (w/v) 

NP40 for 1h on the rotor at 4  . Solubilized thylakoids were separated from the unsolubilized 



Materials and Methods 

 

29 

 

material by centrifugation 1h at 13000 g, 4 , and were applied to 25 µl of equilibrated GFP-Trap 

beads or HA-Affinity Matrix beads. Following 2 h of incubation at 4   on a rotor and subsequent 

six washes with 500 µl dilution buffer (incl. 1% [w/v] NP40), proteins were eluted from the 

beads by incubation with 100 µl 4×SDS loading buffer (200 mM Tris-HCl pH 6.8, 8% SDS, 40% 

glycerol, 4% β-mercaptoethanol, 50 mM EDTA) at 95   for 10 min. Beads were pelleted by 

centrifugation at 5000 g 2 min. Subsequently, the solution was applied to 8% SDS–PAGE and 

electrophoresis was performed until all proteins had migrated into the separating gel (indicated by 

pre-stained marker proteins). The gel slice (containing the eluted proteins) was excised, washed 

twice in ddH2O for 10 min, and further analyzed by mass spectrometry (MS) (Armbruster et al., 

2010). 

2.16 Mass spectrometry analysis and database searches 

LC-MS analyses were performed by Mass-Spectrometry Group (LMU) on an LTQ-

Orbitrap XL system. To this end, trypsin-digested peptides were loaded on a fritless 100 μm 

capillary, packed in-house with ProntoSIL C18 ace-EPS (ProntoSIL C18 ace-EPS, Bischoff 

Analysentechnik und -geräte GmbH, Leonberg, Germany) by using a quaternary HPLC pump 

(Flux, Basel, Switzerland) including a CTC autosampler. A gradient of 5-80% (v/v) acetonitrile 

in 0.1% (v/v) formic acid was then passed through the column over a period of 80 min. The 

eluted peptides were introduced directly into the LTQ orbitrap XL MS at a flow rate of 250 nl 

min
-1

 and a spray voltage of 1.3 kV. The LTQ-Orbitrap was operated via Instrument Method files 

of Xcalibur to acquire a full high-resolution MS scan between 400 and 2000 m/z. The SEQUEST 

algorithm was used to interpret MS spectra. Results were interpreted on the basis of a 

conservative set of criteria: only results with dCn (delta normalized correlation) scores greater 

than 0.2 were accepted, all fragments had to be at least partially tryptic and the cross-correlation 

scores (Xcorr) of single-charged, double-charged or triple-charged ions had to be greater than 2, 

2.8, or 3.5, respectively. Spectra were manually evaluated to match the following criteria: distinct 

peaks with signals clearly above noise levels, differences in fragment ion masses in the mass 

range of amino acids, and fulfilment of consecutive b and y ion series. 

2.17 Immunogold labeling 

Intact chloroplasts were isolated from tap38-3 and WT as described (chapter 2.15) and then 

subjected to one freeze and thaw cycle to strip off the chloroplast envelopes. 40 μl of TAP38 

http://openwetware.org/wiki/SDS
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peptide specific antibody was incubated with 50 μg of chloroplast in 200 μl labeling-buffer (50 

mM HEPES pH 8.0, 330 mM Sorbitol, 150 mM NaCl, 0.5 mM BSA) on a rotor for 2 h at 4 °C. 

Afterwards the sample was washed twice with 400 μl labeling-buffer followed by centrifugation 

at 200 g for 2.5 min. Next, 20 μl of secondary antibody (Anti-Rabbit IgG-Gold antibody, SIGMA) 

was added, and the reaction was incubated on a wheel for 1h at 4 °C. Again the sample washed 

with 400 μl labeling-buffer for 5 times. The immune-labeled envelope-free chloroplasts were 

resuspended in 20 μl labeling-buffer and subjected for SEM analysis (AG Wanner, LMU).  

2.18 cDNA synthesis and real-time PCR 

Total leaf RNA extraction was performed according to the instructions of Maxwell 16 

Tissue LEU, Total RNA Purification Kit (Promega). cDNA was synthesized using 500 ng of total 

RNA according to the manufacturer’s instructions (iScrip cDNA Synthesis Kit, Bio-Rad) and 

then diluted 1:70. Real-time PCR reaction (20 μl) consisted of 2 μl cDNA dilution, 10 μl 

iQSYBR Green Supermix (Bio-Rad), 1 μl of each primer and 6 μl of water. The iQ5 Multi-Color 

Real-Time qPCR Detection System (Bio-Rad) was used to monitor the reaction. The PCR 

program comprised an initial denaturation step (95 °C for 3 min) and 40 thermal cycles (10 s 

denaturation at 95 °C, 30 s annealing at 55 °C and 10 s elongation at 72 °C). The primers used to 

amplify TAP38 were TPA1-2 sense (5’ACATGGGAATGTGCAGCTTG) and TPA1-2-3 

antisense (5’GTGAAGACATCCATATGCCA). UBIQUITIN and CYTOCHROME B5 were 

amplified as internal controls as described, using the primers Ubiquitin_forward (5’GGAAAAA 

GGTCTGACCGACA), Ubiquitin-reverse (5’CTGTTCACGGAACCCAATTC), Cytochrome_ 

B5_forward (5′CGACACTGCAAGGGACATGA) and Cytochrome_B5_reverse (5’ACGTATG 

TCCTAGTTGCTGGAACA) (Wunder et al., 2013). All reactions were performed in triplicate 

with at least two biological replicates. 

2.19 mRNA expression profiling 

Total RNA was isolated from 4-week-old plants (WT, tap38-1, oeTAP38) using the 

RNeasy Microarray Tissue Mini Kit (QIAGEN), a final amount of 1mg total RNA of each 

genotype was sent to NASC for microarray analysis.  

2.20 Salt extraction and trypsin treatment of thylakoid membranes  

Salt and trypsin treatments were prepared according to the protocol of Karnauchov et al. 

(1997) with minor modifications. In brief, fresh isolated thylakoids were resuspended to a final 
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concentration of  0.5 mg chlorophyll ml
-1

 in 2 M NaBr, 2 M NaSCN, 0.1 M Na2CO3 or 0.1 M 

NaOH dissolved in HM buffer (10 mM HEPES-KOH, pH 8.0, 5 mM MgCl2). After incubation 

on ice for 30 min, the samples were centrifuged at 7000 g for 10 min at 4 
o
C. Supernatants were 

transferred to new reaction tubes and pellets were gently pipetted by adding HM buffer. After 

washing with HM buffer, pellets were collected by spinning at 16000 g for 30 min. Supernatants 

and pellets were directly solubilized in SDS sample buffer, separated by SDS-PAGE and 

subsequently subjected to Western blot analysis. 

For trypsin treatment, intact thylakoids with a concentration of 0.5 mg ml
-1 

chlorophyll 

were resuspended with HS buffer (10 mM HEPES-KOH, pH 8.0, 0.1 M sucrose) and incubated 

with 1 µg ml
-1

 trypsin at 20 
o
C for 0, 1, 5, 15 or 30 min. Reactions were topped by adding 1 mg 

ml
-1 

soybean trypsin inhibitor. Then the entire assays were subjected to SDS-PAGE followed by 

Western blot analysis using PsbO as control. 

2.21 Fractionation of state 1 and 2 thylakoids 

WT plants grown in a climate chamber under controlled conditions (100 mmol m
-2

 s
-1

, 

12/12 h dark/light cycles) were shifted to PSI (state 1) or PSII (state 2) light as mentioned in 

chapter 2.2. Thylakoid fractionation was performed as previously described (Shapiguzov et al., 

2010). Briefly, thylakoids at a concentration of 0.6 mg of chlorophyll per ml were incubated with 

1% digitonin for 5 min and then stepwise centrifuged at 1000 g for 10 min, 10000 g for 30 min, 

40000 g for 60 min and 140000 g for 90 min. The respective supernatant was collected and used 

for the next centrifugation. Pellets collected centrifugation at 10000 g, 40000 g and 140000 g 

were defined as grana, margins and stroma lamellae, respectively. Thylakoids equivalent to 2.5 

μg Chl were loaded onto SDS-PAGE and analyzed by Western blotting. 

2.22 Phosphorylation Inhibitory assay 

Thylakoids were isolated from 18 h dark-adapted plants in the darkness (without the 

addition of NaF addition). Then aliquots of thylakoids equivalent to 6 μg chlorophyll were 

prepared in 20 μl phosphorylation buffer (20 mM Tris-HCl pH7.5, 5 mM MgCl2, 1 mM MnCl2, 

25 μM ATP) containing different NaF concentrations. Following illumination under 60 μmol 

photons m
-2

 s
-1

 for 15 min, reactions were stopped by adding the same volume of 4×SDS loading 

buffer (200 mM Tris-HCl pH 6.8, 8% SDS, 40% glycerol, 4% β-mercaptoethanol, 50 mM EDTA) 

and analyzed by Western blot. 

http://openwetware.org/wiki/SDS
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3 Results 

 

3.1 Topology studies on TAP38 protein 

3.1.1 TAP38 is accessible to trypsin digestion at the stroma side of thylakoids 

TAP38 is localized in the thylakoid membrane and contains a putative N-terminal 

chloroplast transit peptide (cTP) according to the computational prediction. Furthermore, TAP38 

possesses a phosphatase 2C signature and a transmembrane domain at its very C-terminus (Pribil 

et al. 2010) (Figure 6a). To clarify, whether the N-terminal part of TAP38 is actually facing 

towards the lumen or stroma, thylakoids were isolated and treated with 1μg ml
-1 

trypsin at 20°C. 

Samples were taken after different time points and the presence of TAP38 was determined 

by Western blot analysis using an antibody specifically raised against several amino acids at the 

very N-terminus. Since the TAP38 protein contains multiple trypsin cleavage sites at the N-

terminus, that also comprise the sequence of the antibody epitope, a digestion of the N-terminus 

would result in the loss of TAP38 detectability. PsbO, an extrinsic subunit of photosystem II, 

(PSII) located on the lumenal side of the thylakoid membrane was also analyzed as a control. 

TAP38 was gradually degraded over time and disappeared completely after 30 min of 

trypsin treatment (Figure 6b). On the contrary, PsbO remained unaffected by trypsin in the same 

experiment indicating that the isolated thylakoids were intact during the course of the experiment 

(Figure 6b). This result suggests that trypsin digestion only occurred at the stromal side and that 

the major part of TAP38 (at least its N-terminus) is exposed to this side of the thylakoid 

membrane. It can be concluded that TAP38 is embedded in the thylakoid membrane with a single 

transmembrane helix and with the N-terminus facing the chloroplast stroma. 
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Figure 6 Topology studies on TAP38. 

(a) Prediction of TAP38 topology. Asterisks indicate the TAP38 antibody binding sites and triangles 

represent trypsin cutting sites. (b) Time-course of a WT thylakoid digestion with 1μg ml
-1 

trypsin at 20°C. 

Thylakoids were resuspended in HS buffer (10 mM HEPES-KOH, pH 8.0, 0.1 M sucrose) to a final 

concentration of 0.5 mg ml
-1

 chlorophyll and samples were taken at 0, 1, 5, 15 and 30 minutes after trypsin 

treatment. The reactions were stopped by addition of 50 μg ml
-1 

protease inhibitor from soybean followed 

by a separation on 12% SDS-PAGE. TAP38, as well as PsbO, were immunodetected by specific 

antibodies after Western blotting. The same membrane was stained with Coomassie brilliant blue (CBB) 

and the LHCII region was shown as a loading control.  

3.1.2 TAP38 is anchored in the thylakoid membrane mainly by electrostatic interactions 

In order to experimentally elucidate how TAP38 is anchored in the membrane, i.e. by 

inserting into the membrane or extrinsically attaching to it, thylakoids were treated with solutions 

of chaotropic salts or alkaline pH as described by (Karnauchov et al., 1997) and the resulting 

fractions were assayed by Western blotting. Membrane integral protein PetC, transmembrane 

protein LHCBII and lumen associated protein PsbO were detected as controls. It turned out that 

TAP38 was still present in the membrane in the presence of 0.1M NaCO3 and 2 M NaBr, but 

could be released partially by NaSCN and NaOH (Figure 6c). In all cases, the behavior of TAP38 

resembled that of the PetC protein which has one transmembrane domain and integrated into the 
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thylakoid membrane mainly by electrostatic nature. Taken together, TAP38 is an integral 

transmembrane protein with its N-terminus facing the stroma. 

 
 

Figure 7 Differential localization of TAP38 within the thylakoid membrane. 

(a) TAP38 localization by differential fractionation analysis. After WT plants were adapted to either PSI 

or PSII light for 2 h, thylakoids were isolated and resuspended at 0.6 mg chlorophyll ml
-1

. After incubation 

with 1% digitonin for 5 min, thylakoids were centrifuged at 1000 g for 10min, 10000 g for 30 min, 40000 

g for 60 min and 140000 g for 90 min to collect grana, margins and stroma lamellae, respectively. 

Thylakoids and all collected fractions equivalent to 2.5 μg of chlorophyll were loaded onto a SDS-PAGE 

and analyzed by Western blot using TAP38, STN7, PsaF and D1 specific antibodies. (b) SEM images of 

Immunogold-labeled TAP38 on envelope-free chloroplasts. Intact chloroplasts were isolated from WT and 

tap38-3 under LL as described (chapter 2.5). Following the incubation with TAP38 first and gold-labeled 

secondary antibodies, the envelope-free chloroplasts were analyzed by scanning electron microscopy (AG 

Wanner, LMU) (2.17). Red circles indicate the grana stack areas; immunogold-labeled TAP38 is 

represented by white dots. 

http://en.wikipedia.org/wiki/Scanning_electron_microscopy
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3.2 Differential localization of TAP38 within the thylakoid membrane 

3.2.1 TAP38 localizes predominantly to stroma lamellae fractions 

To specifically localize TAP38 within the thylakoid membrane, thylakoids from PSI and 

PSII light-adapted WT plants were isolated, solubilized with digitonin and further divided into 

grana, margin and stroma lamellae fractions via differential centrifugation. These fractions were 

analyzed by immunoblotting using antibodies against TAP38. The quality and purity of the 

collected fractions was assessed with antibodies against the subunits of photosynthetic complexes, 

PsaF and PsbA (D1). Western blots showed results demonstrated that the marker proteins were 

significantly enriched in the expected fractions. In detail, PSI complexes were found mainly in 

the stroma lamellae, whereas the grana contained predominantly PSII (Allen and Forsberg, 2001). 

The TAP38 protein was significantly enriched in the stroma lamellae fraction and its distribution 

pattern closely resembled that of PSI marker PsaF. This suggests that the main fraction of TAP38 

resides spatially close to its potential substrate, pLHCII which is exclusively associated with PSI 

under state 2 conditions (Figure 7a). Moreover, the distribution patterns of TAP38 under state 1 

(PSI light) and state 2 (PSII light) were basically unchanged, suggesting a relatively rather stable 

localization around PSI and not PSII, which localized predominantly to the grana fraction (Figure 

7a). 

3.2.2 Immunogold labeling suggests a stroma lamellae localization of TAP38 

In the immunogold-labeling experiment, envelope-free chloroplasts were extracted from 

tap38-3 and oeTAP38 under LL (state 2) and FR (state 1) light respectively. Following incubation 

with TAP38-specific primary antibodies, and secondary antibodies which were conjugated to 

gold particles, the so labeled envelope-free chloroplasts were analyzed by scanning electron 

microscopy (SEM) (AG Wanner, LMU). The position of TAP38 was marked by the gold 

particles within the SEM images. Shown in the Figure 7b are grana represented by the flat area 

and stroma lamellae as well as margin regions illustrated by rough parts. There was hardly any 

accumulation of TAP38 visible on the chloroplast surface of the tap38-3 mutant suggesting very 

low unspecific binding of the TAP38 specific antibody (Figure 7b, upper panel). For the WT, 

gold particles mainly associated with the uneven regions representing the stroma lamellae and 

margin domains, which was in line with the results of the differential fractionation experiments 

(Figure 7b lower panels).  

http://en.wikipedia.org/wiki/Scanning_electron_microscopy
http://en.wikipedia.org/wiki/Scanning_electron_microscopy
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3.3 TAP38 is not regulated by the redox state of the Plastoquinone pool  

3.3.1 Constant expression of TAP38 under different light conditions 

Light qualities are known to affect the redox state of the plastoquinone (PQ) pool, and the 

accumulation of STN7 in WT plants was in turn shown to be regulated by redox state of the PQ 

pool (Wunder et al., 2013). In brief, STN7 protein levels are increased in plants adapted to PSII 

specific light compared to those adapted to PSI-favoring light (Wunder et al., 2013). Furthermore, 

it is well accepted that TAP38 counteracts STN7 regarding LHCII phosphorylation and state 

transition (Pribil et al., 2010; Shapiguzov et al., 2010). However, the LHCII phosphatase TAP38 

was previously suggested to be insensitive to redox regulation (Silverstein et al., 1993). To assess 

the expression of TAP38 under state 1 (dark or far-red light) or state 2 (low light or PSII light) or 

high light more comprehensively, WT plants were dark adapted overnight and then transferred to 

either PSII light for up to 540 min or low light for 120 min, followed by far-red light or high light 

for a total exposure time of 270 min. Thylakoids were extracted at different time points and 

TAP38 accumulation was detected by TAP38 specific antibodies. These analyses showed a high 

and constant expression of TAP38 independent of the applied light conditions (Figure 8a). Based 

on these findings, we concluded that TAP38 protein levels are not regulated by prolonged 

changes in light conditions and relative difference in the redox state (Figure 8a). This is in 

agreement with previous findings showing that there were no significant changes in TAP38 

amounts upon transfer of WT plants between different light conditions (Pribil et al., 2010).  
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Figure 8 TAP38 is neither regulated at the protein nor activity level by the redox state of the PQ 

pool. 

(a) TAP38 expression after different long term light treatment. WT plants were adapted to dark overnight, 

and then transferred to PSII light for up to 540 min or low light for 120 min, followed by far-red light or 

high light exposure for a total of 270 min. Thylakoids were isolated and subjected to Western blotting 

using TAP38 antibody. (b) Aliquots of thylakoids from dark-adapted plants (no NaF) equivalent to 6 μg 

chlorophyll were resolved in 20 μl phosphorylation buffer containing different NaF concentrations. 

Following illumination under 60 μm photons m
-2

 s
-1

 for 15 min, the reactions were stopped by adding the 

same volume of 4×SDS loading buffer and thylakoid phosphorylation was analyzed by Western blot using 

phosphothreonine specific antibodies.  

3.3.2 TAP38 still active in state 2 

Based on the above data, the question arose whether TAP38 remains active under light 

conditions that stimulate LHCII phosphorylation (low light, PSII light). To address this issue, 

thylakoids from dark-adapted WT and oeTAP38 were isolated in the absence of NaF, and further 

exposed to low light for 15 min in the presence of increasing NaF concentrations. Subsequently, 
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the reactions were stopped by addition of 4xSDS loading buffer and analyzed by immunoblot 

using phosphothreonine-specific antibodies. In WT, the levels of LHCII denovo phosphorylation 

accumulated progressively with increasing concentrations of NaF (Figure 8b). This phenomenon 

was even more enhanced in oeTAP38, which showed almost no de novo LHCII phosphorylation 

in the presence of 0 or 25 mM NaF. However, at NaF concentrations above 50 mM pLHCII 

began to accumulate and reached its maximum at about 200 mM NaF (Figure 8b). It seemed that 

the amount of pLHCII correlated directly with NaF quantity applied and inversely with TAP38 

abundance (Figure 8b). These observations suggest that TAP38 activity is not regulated by low 

light exposure, the light condition at which TAP38 inactivation or downregulation could make 

most sense from a physiological point of view. 

3.3.3 TAP38 accumulates and functions normally in mutant lines with over-reduced PQ 

pool   

As previously described, psad1-1 and psae1-3, two mutants affected in PSI accumulation, 

show a much lower effective yield of PSII (ΦII) and significantly reduced PQ pool (measured as 

1-qp or 1-qL) compared to WT. Therefore these lines also show a drastically increased level of 

pLHCII (Ihnatowicz et al., 2007b; Ihnatowicz et al., 2004; Pesaresi et al., 2009) in contrast to the 

oeTAP38 line. To clarify whether constitutive alterations in the redox state of PQ pool caused by 

defective photosynthetic complexes affect TAP38 accumulation, oeTAP38 was crossed with 

psad1-1 or psae1-3 and homozygous double mutants were obtained from the F2 generation. In 

the following, the double mutants (psad1-1 oeTAP38 and psae1-3 oeTAP38), as well as their 

parental lines were analyzed regarding TAP38 accumulation, growth phenotypes, in vivo 

chlorophyll a fluorescence and PSI-LHCI-LHCII formation.  

3.3.3.1 TAP38 could accumulate in mutants with highly-reduced PQ pool  

Isolated thylakoids of plants exposed to either LL for 2 h or LL and additional 2 h of FR 

were analyzed by Western blotting regarding TAP38 expression. TAP38 amounts within 

different lines did not change significantly between state 1 and state 2 light inducing conditions 

(Figure 9a). Since the signal of TAP38 was much stronger in oeTAP38 compared to WT, psad1-1 

and psae1-3, the latter did not show a TAP38 signal under the chosen exposure condition (Figure 

9a). However, when thylakoids of oeTAP38 lines were loaded less, clear TAP38 signals could be 

detected in those lines (Figure 9b). The expression levels of TAP38 in both double mutants 
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(psad1-1 oeTAP38 and psae1-3 oeTAP38) were slightly reduced compared to that of oeTAP38, 

but still about six times higher than those in the WT and 12-15 times higher than those in psad1-1 

or psae1-3 in which TAP38 protein amounts are reduced to half or one third of those in WT 

(Figure 9b). Therefore we conclude that TAP38 could accumulate to normal or even exaggerated 

levels in plants with reduced PSI amounts and permanently highly-reduced PQ pool. 

               

 

Figure 9 Ectopic expression of TAP38 in mutants with highly-reduced PQ pool (psae1-3 and psad1-

1). 

(a) TAP38 overexpression in the psae/d mutants background under LL and FR. Thylakoids from WT, 

oeTAP38, psad1-1, psae1-3, and double mutants were extracted out for LL- or FR-adapted leaves and 

immunodetected with TAP38 antibodies after Western transfer. (b) Thylakoid proteins isolated after LL 

treatment were loaded on a SDS gel correspondingly. Reduced thylakoid amounts oeTAP38 or double 

mutants, corresponding to 12.5% or 33% of the WT levels were loaded and marked as 0.125×oeTAP38 

and 0.33×psae/psad oeTAP38. Decreasing amounts of WT thylakoids were indicated as 0.5×WT and 

0.25×WT. Immunodetection was performed using TAP38-specific antibodies. psad1-1, psae1-3 were 

abbreviated as psad and psae respectively in the double mutants; CBB staining of LHCII was shown as a 

loading control. 
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3.3.3.2 TAP38 activity is not affected in the double mutants (psad1-1 oeTAP38 or psae1-3 

oeTAP38) 

Plants were grown in a climate chamber under a 16/8 day/night cycle and the phenotypes 

were assayed. The two double mutants (psad1-1 oeTAP38 and psae1-3 oeTAP38) exhibited a 

dramatically reduced growth rate (Figure 10a), as well as a markedly reduced ΦII, compared to 

their parental lines (Table 1). In detail, the ΦII reduced from 0.41 in psad1-1 to 0.31 in psad1-1 

oeTAP38 and from 0.50 in psae1-3 to 0.36 psae1-3 oeTAP38. This suggested that the plants were 

affected more severely than the respective single mutants. Notably, the growth phenotypes of the 

double mutants resembled those of the psad1-1 stn7 or psae1-3 stn7 double mutants (Pesaresi et 

al., 2009). As a control, the double mutants stn8 pasd1-1 and stn8 pase1-3, were grown and 

behaved like the single parental mutants (Figure 10a). Those changes in psad1-1 oeTAP38 and 

psae1-3 oeTAP38 could be attributed to an even more severely reduced PQ pool as displayed by 

a largely increased 1-qL (0.87 in psad1-1 oeTAP38 compared to 0.78 in psad1-1 and 0.85 in 

psae1-3 oeTAP38 compared to 0.68 in psae1-3) although the maximum quantum yield of PSII 

(Fv/Fm) remained unaltered (Table 1). This suggest that even in plants with a strongly reduced PQ 

pools like psad1-1 or psae1-3, overexpression of the LHCII phosphatase TAP38 still resulted in a 

shift of the PQ pool towards an even more reduced state. 

 

Table 1 Chlorophyll Fluorescence Parameters of 4-week-old double mutants of oeTAP38 and PSI 

defective mutants (psad1-1, psae1-3). 

 
Measured  

PAM 

parameter 

WT 

 

oeTAP38 

 

psad1-1 

 

psad1-1 

oeTAP38 

Psae1-3 

 

psae1-3 

oeTAP38 

Fv/Fm 0.83±0.02 0.83±0.01 0.79±0.01 0.79±0.00 0.78±0.02 0.80±0.00 

ΦII  0.74±0.01  0.67±0.02 0.41±0.02  0.31±0.01 0.50±0.01 0.36±0.01 

 1-qL 0.33±0.03 0.53±0.03 0.78±0.02 0.87±0.00 0.68±0.04 0.85±0.01 

After plants were adapted to darkness for 30 min, minimal fluorescence (F0) was determined. White light 

(5000 µmol photons m
-2

 s
-1

) was given as a pulse (0.8 s) to measure the maximum fluorescence (Fm). The 
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maximum quantum yield of PSII was calculated according to the equation (Fm-F0)/Fm=Fv/Fm. Actinic light 

(40 µmol photons m
-2

 s
-1

) was applied for 10 min before the steady-state fluorescence (Fs) was measured. 

Fm' was determined after exposure to further saturation pulses (0.8 s, 5000 µmol photons m
-2

 s
-1

). The 

photosynthetic parameters, ΦII and 1-qL, were calculated according to the following equations (Maxwell 

and Johnson, 2000): ΦII=(Fm'-FS)/Fm' and 1-qL=1-(Fm'-Fs)F0/([Fm'-F0'] Fs) Values were averages of 6 plants 

and the standard deviation was calculated accordingly. 

 
 

In addition, biochemical analyses indicated that LHCII phosphorylation was almost absent 

in the double mutants similar to the case of oeTAP38 (Figure 10b). On the contrary, in the single 

parental mutant lines psad1-1 and psae1-3, LHCII was phosphorylated strongly under low light 

and remained phosphorylated to a certain degree upon far-red light exposure (Figure 10b). In 

agreement with these findings, BN-PAGE analyses showed that the band representing the PSI-

LHCI-LHCII complex, which reflects the PSI associated with the mobile pool of pLHCII 

(Pesaresi et al., 2009) is present in significant amounts in pasd1-1 and psae1-3 but absent in the 

double mutants under all light conditions investigated similar to oeTAP38 (Figure 10c). 

Correspondingly, an enhancement of the PSI-LHCI band was observed in the double mutants 

(pasd1-1 oeTAP38 and psae1-3 oeTAP38) compared to the respective single mutants (pasd1-1 

and psae1-3) under all applied conditions (Figure 10c) suggesting the dissociation of LHCII from 

PSI. The PSI-LHCI band was also increased in the single mutants upon transfer from LL to FR 

(Figure 10c). In WT, the PSI-LHCI-LHCII complex was formed under low light but disintegrated 

under far-red light condition as expected (Figure 10c). Based on these findings, we draw the 

conclusion that TAP38 activity is not affected in mutants with over-reduced PQ pool. 
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Figure 10 TAP38 could accumulate and functions normally in the double mutants with further 

over-reduced PQ pool   

(a) Exacerbated phenotypes of double mutants of oeTAP38 or stn7 with mutants showing an over-reduced 

PQ pool (psad1-1 or psae1-3). Plants were four-week-old and grown in a climate chamber under 16/8 

day/night cycle. (b) Thylakoid protein phosphorylation detected by immunoblot analysis with 

phophothreonine-specific antibodies in WT, oeTAP38, psad1-1, psae1-3, and the respective double 

mutants. Four-week-old plants were adapted to dark for overnight, and then transferred to LL for 2h and 

subsequently to FR for 2h. Subsequently thylakoids were isolated and fractioned by SDS-PAGE. 

Phosphorylation of LHCII was detected by immunoblot analysis using phophothreonine-specific 



Results 

 

43 

 

antibodies. (b) Visualization of PSI-LHCI-LHCII and PSI-LHCI bands in BN-gels. Thylakoid membranes 

were isolated from same plants described in (b). Identical amounts of thylakoids were loaded for BN-

PAGE analysis (see chapter 2.10) and arrows indicate the PSI-LHCI-LHCII and PSI-LHCI complexes. 

3.4 TAP38 co-localizes with its putative substrate LHCII and depends on its expression 

3.4.1 TAP38 co-localizes with its putative substrate LHCII 

To investigate the interaction between TAP38 and its postulated substrates LHCII, sucrose 

gradient ultracentrifugation was performed with WT plants. Firstly, thylakoids of WT plants were 

solubilized with β-DM, and then fractionated by sucrose gradient centrifugation. Subsequently, 

different fractions were collected, separated via SDS-PAGE and analyzed by immunoblotting 

with TAP38-specific antiserum. A replicate gel was stained with Coomassie brilliant blue (G250) 

to assess the protein composition of different fractions (Figure 11a). LHCII was predominantly 

presented in fractions 4-7 of the Coomassie stained gel (Figure 11a). These fractions also contain 

most of the TAP38 signals detected by Western blot. Those lanes containing TAP38 ranged from 

the free protein containing fraction to the fractions of low-molecular-weight complexes. This 

suggests to some extent, association between TAP38 and its putative substrate LHCII. 

 
 

Figure 11 TAP38 co-localizes with its putative direct substrate LHCII and depends on its expression. 

(a) TAP38 and LHCII distribution patterns in sucrose gradient ultracentrifugation.  The sucrose gradient 

was prepared from 0.4 M sucrose (frozen and thaw overnight) and WT thylakoids at 1 mg ml
-1 

chlorophyll 
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was sobulbilized in the presence of 1% β-DM. After centrifugation at 16000 g for 5 min, the supernatant 

was fractioned by the sucrose gradient and divided into 16 fractions. All the fractions were separated via 

15% AA SDS-PAGE, transferred to PVDF membrane and immunodetected using a TAP38-specific 

antibody. A replicate gel was stained with Coomassie brilliant blue (CBB). (b) Immunoblot analysis of 

TAP38 in thylakoids from WT, tap38-3, chaos and LHCB2 antisense line (asLHCB2.1). Decreasing levels 

of WT thylakoids were loaded indicted as WT 0.5 (50%) and WT 0.25 (25%). (c) Quantification of 

TAP38 mRNAs by real-time PCR in WT, chaos and asLHCB2.1. RNA isolation, cDNA synthesis, PCR 

and data analysis referred to paragraph 2.18 and 2.19. 

3.4.2 TAP38 expression is decreased in mutants defective in LHCII accumulation  

To test whether TAP38 requires the association with LHCII to accumulate or whether there 

is a feedback regulatory mechanism on TAP38 accumulation when its putative substrate is 

lacking, the accumulation dependency of TAP38 on LHCII was assayed on the protein level 

using WT and mutant lines, impaired either in the accumulation of LHCII (asLHCB2.1) 

(Andersson et al., 2003) or targeting of LHCII (chaos) (Klimyuk et al., 1999). To this end, plants 

were grown in a climate chamber and thylakoid proteins were isolated, and analyzed by Western 

blotting using a TAP38-specific antibody (Figure 11b). The results of this assay implied that 

TAP38 amounts were reduced to less than 20% of WT level in both mutant lines (Figure 11b). To 

check whether these changes in TAP38 abundance were due to altered TAP38 transcription level, 

real-time PCR was carried out which showed that TAP38 transcripts of all mutants were reduced 

by about 20-30% compared to WT (Figure 11c). These results pointed towards a certain 

correlation between mRNAs level and TAP38 protein. From these observations, one can 

conclude that the TAP38 expression depends on the LHCII either due to the necessity for a 

physical binding or a feedback mechanism. 
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Figure 12 TAP38 is not directly associated with PSI or other major photosynthetic complexes. 

Detection of TAP38 in 2D BN/SDS-PAGE using β-DM or digitonin as a detergent. Thylakoids 

corresponding to 100 µg Chl from WT plants were solubilized with 1% β-DM or 1.5% digitonin and 

fractioned by BN-PAGE. The TAP38 signal was detected by Westernblot after 2-D PAGE. (b) Detection 

of TAP38 in 2D BN/SDS-PAGE using NP40 a detergent. Thylakoids (corresponding to 100 µg Chl) from 

WT plants were solubilized with 2% NP40 and fractioned as described (chapter 2.10). PsaB, PsaD, PetC, 

ATPase β, D2 and TAP38 were detected by Western blot using specific antibodies. (c) Detection of 

TAP38 in sucrose gradient fractions after solubilization of thylakoids using NP40 as a detergent. Sucrose 

gradient preparation, thylakoid solubilization, ultracentrifugation and gradient preparation, were 
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performed as described before (see 2.11). The same protein makers were detected by Western blotting as 

in (b). (d) Detection of TAP38 after sucrose gradient centrifugation using β-DM as a detergent. Plants 

were treated with PSI light.  PsaB, PsaD, PasC, PetC, ATPase γ, D2, LHCII (LHCB1), CP26, CP29 and 

TAP38 analyses were performed (e) Detection of TAP38 after sucrose gradient centrifugation using β-DM 

as a detergent. Plants were treated with PSII light. Same proteins as in (d) were detected. 

3.5 TAP38 is not directly associated with PSI or other major photosynthetic complexes 

3.5.1 TAP38 is not associated with major photosynthetic complexes in BN and sucrose 

gradient ultracentrifugation 

Different detergents were used to solubilize thylakoids of WT, and Western blot results 

were obtained from second dimension gels of BN-PAGE analyses using TAP38-specific 

antibodies. When 1% β-DM was employed, TAP38 accumulated in the region of free proteins 

(Figure 12a upper panel). However, when thylakoids were solubilized with 1.5% digitonin 

TAP38 associated mainly with supercomplexes of very-high-molecular weight (Figure 12a lower 

panel). When the detergent NP40 was applied in the same experimental setup, the signals of 

TAP38 ranged from the free protein to high-molecular-weight complex region (Figure 12b). 

Additionally, marker proteins for the major photosynthetic complexes were applied, but their 

distribution patterns did not show a clear co-localization with TAP38 (Figure 12b). Thylakoids 

were also crosslinked using DTSSP. This time, TAP38 migrated to high molecular regions in the 

BN-PAGE even β-DM was used for solubilization (Figure 13a). Many photosynthetic complexes 

were found in this high molecular region that no specific association of TAP38 with any of them 

could be observed (Figure 13b). The distribution patterns of TAP38 and major photosynthetic 

complexes in a sucrose gradient using β-DM and NP40 during the solubilization step were also 

detected by Western blot. Here, TAP38 localized only in the free protein and low molecular 

weight complexes fractions and its signal did not overlap perfectly with any of the photosynthetic 

complex signal (Figure 12c, 12d, 12e). Whereas, there was significant overlap between TAP38 

and the antenna components LHCII in line with previous observation (Figure 12d, 12e). It is 

worth noting that the TAP38 distribution patterns were the same after PSI- and PSII-light 

treatment (Figure 12d, 12e). Therefore, the conclusion could be drawn that no stable association 

of TAP38 with the major photosynthetic complexes persists in the thylakoid membrane including 

PSI.  
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Figure 13 TAP38 is crosslinked to high molecular weight complexes. 

(a) Detection of TAP38 in first dimension of BN gel. Thylakoids from WT were crosslinked by DTSSP, 

solubilized using β-DM, and subsequently subjected to BN separation (see chapter 2.10 and 2.14). TAP38 

was detected by Western blotting after first dimension of BN PAGE. (b) Detection of TAP38 in 2D 

BN/SDS-PAGE. Gel slices from (a) were further separated in SDS-PAGE and PsaB, PsaD, PetA/B, 

ATPase β, D2 and TAP38 were detected by Western blot using specific antibodies.  

3.5.2 The expression of TAP38 is affected in a mutant lacking PSI but not in mutants 

lacking any other of the major photosynthetic complexes 

The dependency of TAP38 expression was assayed by analysis of TAP38 levels in mutant 

lines lacking PSI (psad1d2), PSII (hcf136), Cyt b6f (petc) or ATPase (atpd). These mutants and 

WT as well as the tap38-3 mutant were grown for 6 weeks on MS plates, and total proteins were 

isolated to be analyzed by immunoblotting with TAP38-specific antibodies. TAP38 expression 

seemed not to be affected in petc and atpd mutants, but reduced in mutant defective in PSI 

(psad1d2) and PSII (hcf136) (Figure 14a). Indeed, in hcf136 mutant, PSI (PsaD) amount is also 

significantly downregulated as a secondary effect of lacking PSII. Although results from chapter 

3.5.1 showed that TAP38 is not associated with PSI, at least a certain correlation with the amount 

of PSI is present. Similarly a reduction of TAP38 amount also appeared in psad1-1 and psae1-3 
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mutants (Figure 9, 10). However, in the double mutants psad1-1 oeTAP38 and psae1-3 oeTAP38, 

TAP38 could substantially accumulate and dephosphorylate pLHCII (Figure 9, 10), although PSI 

amounts were dramatically reduced in these lines. Moreover, psad1-1 or psae1-3 showed a 

reduced levels of pLHCII when put under extreme artificial FR light supporting that that TAP38 

amounts present in those lines were sufficient to allow for dephosphorylation of LHCII and that 

the decrease of TAP38 amounts in psad1-1 or psae1-3 single mutants was not related to a 

reduction of TAP38 binding to PSI (Figure 10c). Therefore, it seemed that TAP38 protein 

reduction in psad1d2 and hcf136 was not caused by a lack of PSI as binding site. Thus, to address 

the question whether TAP38 was regulated at transcript level, RT-PCR was performed in those 

lines which showed decreased TAP38 level together with psad1-1 and psae1-3 mutants. The 

results revealed a significantly reduction of TAP38 mRNA (20% - 60%) in all mutants compared 

to WT (Figure 14b). Taking together, a reduction of TAP38 accumulation might be not caused 

directly by lack of PSI as a binding necessity but through a regulation of TAP38 at transcript 

levels. 

 

Figure 14 The expression of TAP38 is affected in mutants lacking PSI but not in mutants lacking 

any of the other photosynthetic complexes 
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(a) TAP38 expression in WT and tap38-3 compared to mutants of major photosynthetic complexes 

(psad1d2, hcf136, petc, atpd).Total proteins were isolated from 6-week old plants grown on the MS plates. 

Immunoblot analyses were carried out using TAP38, D2, ATPase β and PsaD specific antibodies. (b) Real 

time-PCR analysis on TAP38 accumulation in the mutants listed in (a) in addition with psa1-3 and psad1-

1.  

3.6 Pull down assay using functional N-terminal HA-Fusion line and C-terminal GFP-

Fusion Line of TAP38 

3.6.1 Expression of TAP38-HA and TAP38-GFP proteins in the tap38-3 mutant 

background 

TAP38 protein accumulation in oeTAP38 HA-tagged lines was strongly increased 

compared to WT (Figure 15a) leading to a reduction in LHCII phosphorylation (Figure 15b) 

under all analyzed light conditions.  State transitions values monitored by PAM-fluorometry in 

HA-tagged line resembled those of TAP38 overexpressor plants (oeTAP38) indicating that the 

HA-tagged TAP38 protein was functional (Figure 15e). Surprisingly, lines expressing GFP-

tagged TAP38 accumulated TAP38 proteins both in the size of mature TAP38 and of potential 

GFP-tagged (Figure 15 c), with a total expression level similar to TAP38 accumulation in WT. In 

line with that, state transitions and LHCII phosphorylation patterns were similar to WT with a 

tendency towards a slight oeTAP38 phenotype (Figure 14d, 14e). Although it was unclear 

whether the GFP-tagged variant was able to dephosphorylate pLHCII, its localization was 

unequivocally confirmed in the thylakoid membrane. 
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Figure 15 Generation of a functional N-terminal HA and C-terminal GFP Fusion lines of TAP38. 

(a) Immunodetection of TAP38 in thylakoids of WT, tap38-3 and individual TAP38-HA lines generated 

in the tap38-3 mutant background. (b) Thylakoids phosphorylation in WT and TAP38-HA plants detected 

by phospho-threonine specific antibodies. (c) Immunodetection of TAP38 in thylakoids of WT, tap38-3 

and several TAP38-GFP lines generated in the tap38-3 mutant background. (d) Thylakoids 

phosphorylation in WT and TAP38-GFP plants detected by phospho-threonine specific antibodies. (e) 

PAM measurement of state transitions in WT, TAP-HA-1 and TAP-GFP-4 line according to the method 

described in 2.7.2. 
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3.6.2 Pull down of putative interactors of TAP38 using HA- or GFP-tagged lines 

In order to identify interaction partners of TAP38, co-immunoprecipitation (Co-IP) 

experiments were performed with TAP-HA, TAP38-GFP and WT lines. After solubilization 

using NP40 and incubation with a HA- or GFP- affinity matrix, the elution fractions were 

analyzed by Western blot and Mass Spectrometry (MS). Western detection with TAP38 specific 

antibodies displayed a specific signal within elution fractions of the HA- or GFP- respective 

tagged line which were absent in WT (Figure 16). These results indicate that tagged TAP38 

proteins were specifically pulled down by the interaction between the respective tag and the 

affinity matrix. Subsequently the elution samples were analyzed by MS.  Each Co-IP experiment 

was performed in at least three biological replicates and the consistency between different 

experiments was very high. Potential interactor proteins represented the components of PSI 

including its antenna proteins (i.e. LHCA1, LHCA2, LHCA4) and core proteins (PsaA/B). Also 

the proteins of the mobile fraction of LHCII (i.e. LHCB2 and LHCB1.5) were identified in the 

elution fractions (Table 2). As previously described, TAP38 can directly dephosphorylate 

pLHCII in vitro (Pribil et al., 2010) which associates with PSI in state 2. Co-precipitation of 

TAP38 with LHCII proteins as shown by this MS analysis supported this idea. Co-precipitation 

of TAP38 with PSI was an indication that TAP38 was localized closely with PSI complex which 

was consistent with fractionation and immunogold-labeling results (Figure7). 

 

Figure 16 Immunodetection of TAP38 in the elutions of co-immonoprecipitation with HA-and GFP-

affinity matrixes.  

Thylakoids were isolated from WT and lines expressing HA- and GFP tagged TAP38. The Co-IP was 

performed according to chapter 2.15. The elutions were subjected to SDS-PAGE followed by western blot 

analyses using TAP38 specific antibody (α-TAP38).  
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Table 2 Results of the Mass Spectrometry analysis on the Co-IP elutions.  

Accession Protein 
TAP38-HA 
#Peptides 

WT 
#Peptides 

light-harvesting chlorophyll-protein complex I subunit A4  LHCA4 9 1 

photosystem I light harvesting complex gene 1  LHCA1 5 0 
photosystem I light harvesting complex gene 2  LHCA2 3 0 
photosystem II light harvesting complex gene 2.1  LHCB2 6 0 
photosystem II light harvesting complex gene B1B2  LHCB1.5 5 0 
photosystem I subunit D-2  PsaD2 6 1 

photosystem I subunit E-2  PsaE2 3 0 
Photosystem I, PsaA/PsaB protein  PsaA/PsaB 8 0 

Co-IP was performed with thylakoids from WT grown under low light, TAP38-HA andTAP38-GFP line 

using HA affinity matrix (WT and TAP38-HA line) or GFP trap beads (WT and TAP38-GFP line) (see 

chapter 2.15). The elutions from the Co-IP were subjected to mass spectrometry (MS) analyses and the 

MS analyses results from single representation run was shown and only proteins identified with at least 3 

unique peptides in all 3 experiments were listed. 

 

 

3.7 At low light TAP38 is present in lower amounts compared to STN7 

To quantify the amount of TAP38 and STN7 in WT thylakoids under low light (state 2), N-

terminal His-tag fusions of TAP38 and STN7 proteins were expressed in E. coli and purified. 

Dilution series of heterologously expressed proteins and thylakoids were separated on SDS-

PAGE and subjected to immunoblotting using specific antibodies against TAP38 and STN7, 

respectively (Figure 17). The signal intensities were analyzed with Fusion FX7 image acquisition 

system (VilberLourmat) and then the protein amount in thylakoids (per µg chlorophyll) were 

calculated. As listed in table 3, the concentration of STN7 was 0.092 pm per µg of chlorophyll 

(pm µg
-1

 Chl), which is 3 times more than the concentration of TAP38 (0.028 pm µg
-1 

Chl).  
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Figure 17 In low light acclimated plants TAP38 is accumulated in lower amounts compared to STN7. 

(a) Western detection of STN7 in WT thylakoids. Recombinant STN7 (STN7-His) was expressed in E. 

coli strain BL21 with N-terminal 6 x His-tag and purified via Ni-NTA column. The protein concentration 

of the purified protein was determined by Amido black staining. Thylakoids were isolated from WT plants 

grown under LL conditions. Decreasing levels of STN7-His and thylakoids were loaded according to the 

protein quantity or chlorophyll concentration and analyzed by Western blot using STN7 specific antibody.  

The image was obtained by Fusion FX7 image acquisition system. (b) Western detection of TAP38 in WT 

thylakoids. All procedures were performed according to the same procedure as described in (a).  

Table 3 Quantification of TAP38 and STN7 in low light adapted thylakoid membranes. 

Proteins Amount (ng/µg Chl) Molecular amount (pm/µg Chl) 

STN7 5.05±0.48 0.092±0.01 
TAP38 1.05±0.29 0.028±0.01 
The Westernblots signals from Figure 17 were quantified by Fusion FX7 image acquisition system 

(VilberLourmat) to obtain the STN7 and TAP38 amounts in thylakoids (ng µg
-1

 Chl), then the 

corresponding molecular amount of each protein was calculated (pm µg
-1

 Chl). Values ± standard 

deviations are shown. 

3.8 Is TAP38 the true counter player of STN7? 

Long term response (LTR) is a process that leads to the readjustment of the stoichiometry 

of the photosystems depending on the environmental light conditions. The ratio of chlorophyll a 

over chlorophyll b (Chl a/b) and steady fluorescence over maximum fluorescence (Fs/Fm) are 

indicator for changes in photosystem stoichiometry (Bailey et al., 2001; Dietzel and 
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Pfannschmidt, 2008; Pfannschmidt et al., 2001; Walters, 2005). Chl a/b ratio indicating PSI/PSII 

ratio is usually higher in PSII-light acclimated plants compared to that in PSI-light acclimated 

plants.  Whereas Fs/Fm value which can also reflects PSII/PSI ratio behaves in the opposite way 

being higher in PSI-light acclimated plants and lower in PSII-light acclimated plants (Dietzel and 

Pfannschmidt, 2008).  

During a shift between PSI and PSII light, the stn7 mutant is not able to readjust the 

stoichiometry between PSI and PSII which can be determined by lack in changes of the Fs/Fm 

value or the chlorophyll a/b ratio (Pesaresi et al., 2009). Considering that TAP38 counteract 

STN7 in state transitions and the stn7 mutant is devoid of LTR (Bonardi et al., 2005; Pesaresi et 

al., 2009), the function of TAP38 in LTR was studied using tap38 mutant and the oeTAP38 line. 

WT, stn7 and oeSTN7 were selected as controls and LTR was monitored by measuring the Fs/Fm 

value and the chlorophyll a/b ratio (Chl a/b ratio). At the same time, the chlorophyll fluorescence 

parameters ФII and1-qP were measured to assess PSII efficiency. ФII represents the effective 

quantum yield of PSII while the excitation pressure, 1-qP, provides a measure of the fraction of 

closed PSII centers. PSI and PSII lights were set as described (chapter 2.2). For long term 

acclimation, plants were initially grown for 10 d under white light, followed an acclimation 

period. In detail, plants were grown under PSI or PSII light for 6 d (PSI or PSII light) or they 

were first acclimated to PSI light for 2 d followed by 4 d under the PSII light source or vice versa 

(PSI-II or PSII-I light). All the parameters were measured as described in chapter 2.8. 

 

3.8.1 Response of tap38-3 and oeTAP38 to the long term acclimation as monitored by 

chlorophyll a/b ratios and Fs/Fm values 

For WT, the chlorophyll a/b ratios were higher under PSII and PSI-PSII light than under 

PSI and PSII-I light whereas the Fs/Fm ratio behaved in the opposite manner (Figure 18a, 18b). In 

the stn7 mutant, both values for Fs/Fm or Chl a/b ratio remained unaltered under these changing 

light conditions and were typical for plants acclimated to PSI (Figure 18a, 18b). The overall 

behaviors of tap38 mutants and oeTAP38 resembled that of WT (Figure 18). However, the Chl 

a/b ratios were in general a bit higher in tap38 and lower in oeTAP38 in comparison to WT under 

all conditions applied (Figure 18a). To address this difference, the Chl a/b ratio was further 

analyzed with WT, tap38-3, and oeTAP38 and the results confirm this observation (Figure S2). 
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Noticeably, there was a tendency for Fs/Fm values in oeTAP38 which were generally higher 

compared to WT. This tendency was similar to that of stn7 which is blocked in state 1. 

Under all light conditions applied, the ФII and 1-qP values of stn7 remained stable and 

either equally lower or higher than those of WT, indicating that the stn7 mutant was suffered 

during the light acclimation process due to its block in state 1 (Figure 18c, 18d). As expected, the 

WT showed relatively higher 1-qP and lower ФII values under PSI and PSII-I conditions 

compared to PII and PI-II light conditions. In accordance to the Chl a/b ratio and Fs/Fm values, 

the 1-qP and ФII values in oeTAP38 and tap38 mutants resembled WT again suggesting no 

impairment in LTR. Notably, even if oeTAP38 showed a certain degree of acclimation, its 1-qP 

value remained on higher level than that of WT and rather similar to stn7 (Figure 18c). This 

tendency could also be observed for the ФII value (Figure 18d). Taking together, oeTAP38, 

tap38-1 and tap38-3 behaved similar to WT regarding the assessed parameters indicating that 

they are able to perform LTR (Figure 18a, 18b). Neither the absence nor the overexpression of 

TAP38 resulted in major perturbation in LTR. However oeTAP38 lines, to certain extent, 

resemble stn7 mutants suggesting a moderate role of TAP38 on LTR. 

 

 

Figure 18 Measurement of LTR-acclimation of TAP38 mutant and overexpressor plants 
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(a) Chlorophyll a/b ratios of WT, tap38-1, tap38-3, stn7, oeTAP38 and oeSTN7 measured after exposure 

to different light conditions. PSI and PSII lights were set as described (chapter X), and then plants were 

initially grown for 10 d under white light, followed by an acclimation period. In detail, plants were either 

grown under PSI or PSII light for 6 d (PSI or PSII plants) or were first acclimated to PSI light for 2 d 

followed by 4 d exposure to PSII light source or vice versa (PSI-II or PSII-I plants). Plant material was 

harvested under the respective growth light, grinded in liquid nitrogen and pigments were extracted with 

80% buffered acetone. Chlorophyll concentrations and Chlorophyll a/b ratios were determined and 

calculated according to Porra et al. (1989).  (b) The Fs/Fm value of WT, tap38-1, tap38-3, stn7, oeTAP38 

and oeSTN7 measured after exposure to the same light conditions as in (a). The minimal fluorescence (F0) 

was determined after 15 min dark adaptation, then leaves were exposed to a 1600-ms flash of saturating 

white light (3000 µmol photons m
2
 s

-1 
) to determine maximal fluorescence (Fm), whereas the steady state 

fluorescence (Fs) was measured after illumination with 90 µmol of photons m
-2

 s
-1

 of actinic red light (620 

nm) for 10 min. At the end, minimal fluorescence of light adapted plants (F0') as determined after 

switching off the actinic red light. (c) The excitation pressure of PSII (1-qP) was measured as in (b), and 

1-qP=1-(Fm'–Fs)/(Fm'–F0). (d) Effective quantum yield of PSII (ФII) was measured as in (b), and ФII=(Fm'–

Fs)/Fm'). Average values (±SD) of individual plants were shown and the stars indicate that two data sets 

are significantly different from each other according to Student's t-test. 

3.8.2 Microarray analyses on tap38 and oeTAP38 show no significant changes on 

transcriptome level  

In the stn7 mutant, as well as in other mutants defective in LTR (e.g. psae1-3, psad1-1), a 

large number of genes are differently regulated relative to WT as described before (Pesaresi et al., 

2009). If TAP38 is required for LTR, the transcriptomic profiles of tap38 mutant and oeTAP38 

would be as well altered compared to WT. To address this question, transcript profiles of tap38-1, 

oeTAP38 and WT were generated by microarray analyses and additionally compared to already 

existing data sets of the stn7 mutant (Pesaresi et al., 2009). As depicted in Figure 19, in total only 

five genes in tap38-1 and two genes in oeTAP38 were identified to be differentially regulated 

compared to WT. The only one overlap gene between tap38-1 and oeTAP38 was TAP38 itself 

which was reduced to 5% in tap38-1 and increase six folds in oeTAP38. Another gene 

(At5g58310, Methyl Esterase 18) altered in oeTAP38 was also changed in stn7 in which 

transcripts of 1191 genes were changed in comparison to WT. Moreover, no overlap was found 

between tap38-1 and stn7. In case a specific signaling pathway is perturbed in stn7 regarding 
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LTR leading to significant changes in the transcript profile, a lack or overexpression of TAP38 

does not affect this long term acclimation signaling pathway. 

 

                        

Figure 19 Venn diagram depicting the overlap of genes whose expression was found in Microarray 

analysis to be differentially regulated.  

RNA was isolated from 4-week-old plants (WT, tap38-1 and oeTAP38) using the RNeasy Microarray 

Tissue Mini Kit (QIAGEN), and in total 1 mg RNA of each genotype was send to NASC for microarray 

analysis. The number of genes that were differentially regulated in each line was indicated. The transcript 

data for the stn7 mutant was described by Pesaresi et al. (2009). 

 

3.9 Generation of thylakoid hyper- and hypo-phosphorylation double mutants 

 Despite the fact that oeSTN7 displays a five-fold increase in STN7 protein levels compared 

to WT, state transitions are still regulated by PQ pool in this line which can be demonstrated by 

the phosphorylation of LHCII upon oxidation of PQ pool when oeSTN7 plants are exposing to FR 

light (Lemeille et al., 2009; Wagner et al., 2008; Willig et al., 2011; Wunder et al., 2013). The 

counteracting phosphatase, TAP38, is suggested to be redox-independent (Lemeille et al., 2009), 

which was confirmed in this work (Figure 8). It was tempting to speculate that the combination of 

the genetic backgrounds oeSTN7 and tap38 mutant could result in hyper-phosphorylation of 

thylakoid proteins and the combination of stn7 and oeTAP38 would lead to hypo-phosphorylation 

instead. To push thylakoid phosphorylation or dephosphorylation to its extremes, double mutants 

were generated by crossing tap38-1 with oeSTN7, or oeTAP38 with stn7, respectively. The 

LHCII phosphorylation in those double mutants was monitored by immunodetection with 

phosphothreonine specific antibodies under D, LL, and FR conditions. As expected, the WT 
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showed an increase in pLHCII during transition from state 1(D) to state 2 (LL) followed by a 

decrease upon PSI light exposure (state 1). The stn7 oeTAP38 did not show any LHCII 

phosphorylation under all light conditions applied similar to stn7 (Figure 20). The observed 

decrease of pLHCII in tap38-1 under PSI light might be due to residual amounts of TAP38 which 

were sufficient to dephosphorylate pLHCII after PSI light treatment. However, the amount of 

pLHCII was still much higher compared to WT. The decrease of pLHCII in oeSTN7 could be 

primarily attributed to STN7 inactivation (Bellafiore et al., 2005; Wunder et al., 2013). 

Surprisingly, tap38-1 oeSTN7 showed much higher level of pLHCII than the respective single 

mutants under PSI light, even if pLHCII levels were similar to oeSTN7 and tap38-1 under low 

light and PSII light (Figure 20). In theory, this double mutant might display increased 

phosphorylation levels for some phosphoprotein-substrates which are normally phosphorylated to 

a less extent in WT. Thus, these crossings represent genetic material that could be used to screen 

for substrates in the future. 

 

Figure 20 LHCII phosphorylation in hyper- and hypo-phosphorylation mutants. 

Various mutants (stn7 oeTAP38, stn7, oeTAP38, tap38-1, oeSTN7 and tap38-1 oeSTN7) and WT plants 

were kept in dark (D), subsequently expose to low light (LL) for 2h, and then to PSI light (PSI) for 2h 

Thylakoids were isolated and fractionated by SDS-PAGE and phosphorylation of LHCII was detected by 

immunoblot analysis using phosphothreonine specific antibodies. 
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3.10 Second dimension protein separation by isoelectric focusing and SDS-PAGE gel 

electrophoresis 

The chloroplast kinases STN7 and STN8 are suggested to share various substrates, as 

phosphorylated forms of LHCII and PSII core proteins are completely absent only in the stn7stn8 

double mutant but not in the respective single mutants (Bonardi et al., 2005; Fristedt and Vener, 

2011). Likewise the two thylakoids phosphatases, TAP38 and PBCP were shown to exhibit 

certain substrate overlap (Pribil et al., 2010; Samol et al., 2012). Therefore, TAP38 may have 

more substrates in the thylakoid membrane besides LHCII, D1, D2 and CaS proteins. Moreover, 

there is comprehensive evidence for an extensive phosphorylation of both stromal proteins and 

thylakoid membrane proteins in the chloroplast (Bayer et al., 2012; Laing and Christeller, 1984; 

Reiland et al., 2009; Sugiyama et al., 2008). As the phosphatase domain of TAP38 protein is 

exposed to the stroma side (see Figure 6), it is possible that TAP38 also plays a role in stromal 

protein dephosphorylation. To test these hypotheses, thylakoid and stromal proteins of tap38-1 

oeSTN7, stn7, oeTAP38 and mutants with hyper-/hypo- phosphorylation (see chapter 3.10) were 

subjected to second dimension (2D) protein separation by isoelectric focusing (IEF) and SDS-

PAGE as described (chapter 2.12). 

After precipitation by 80% acetone, 50 µg of thylakoid proteins from oeSTN7 tap38-1 and 

stn7 oeTAP38 were separated in Immobiline ™   Drystrips (gradient pH 3–10 NL, GE Healthcare) 

according to their isoelectric points. Subsequently second dimension separation by SDS-PAGE 

was carried out and Western blotting analysis was performed using phosphothreonine specific 

antibodies. As shown in Figure 21a (upper panel), the Coomassie brilliant blue staining (CBB) of 

the Western blot membrane before antibody application did not show any difference between 

tap38-1 oeSTN7 and stn7 oeTAP38. Immunodetection using phosphothreonine specific 

antibodies revealed that all detectable phosphoproteins were distributed in a narrow region on the 

2-D IEF-SDS PAGE between pH 4-7 (Figure 21) and several thylakoid proteins (D1, D2, CP43 

and CP47) which are known to be phosphorylated in WT could not be detected clearly. However, 

we observed obvious differences between oeSTN7 tap38-1 and tap38-1 oeSTN7. At least 4 

protein signals were exclusively phosphorylated in oeSTN7 tap38-1 compared to stn7 oeTAP38 

with a protein size of 26, 34, 55-60 and 170 kDa respectively (Figure 21 upper panel). LHCII is a 

substrate of TAP38 and STN7 (Bellafiore et al., 2005; Pribil et al., 2010); therefore the 26-kDa 

signal could be attributed to LHCII. The 34-kDa signal could be ascribed to D1/D2 which were 
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also shown to be partially phosphorylated by STN7 and dephosphorylated by TAP38 (Bonardi et 

al., 2005; Pribil et al., 2010). The 55-60 kDa spot could be the β-subunit of chloroplast ATPase 

or/and STN7. Both of them were identified to be phosphorylated via MS and/or biochemical 

approaches (del Riego et al., 2006; Lohrig et al., 2009; Reiland et al., 2009). However, there was 

no indication regarding the identity of the 170-kDa signal. Nonetheless, the result suggested that 

further thylakoid proteins especially the 55-kDa protein might be novel substrates of TAP38 

or/and STN7.  

Figure 21 Second dimension-IEF gel analyses of thylakoid and stromal proteins. 

(a) Thylakoid proteins (corresponding to 50 μg Chl) from tap38-1 oeSTN7 and stn7 oeTAP38 were 

subjected to IEF gels as described (see chapter 2.12), and second dimension analyses were carried out by 
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12% SDS-PAGE. Subsequently, Western blotting was performed on the second dimension using 

phosphothreonine specific antibodies (p-Thr). The membrane was stained with Coomassie briliant blue 

(CBB) prior to immunodetection. Differences between tap38-1 oeSTN7 and stn7 oeTAP38 are highlighted 

by rectangles and indicated by arrows. (b) Stromal proteins (500 μg) from tap38-1 and oeTAP38 were 

subjected to 2D IEF analyses as described. The membrane was stained with or Ponceau S (P.S.) prior to 

immunodetection. The rectangles highlight the differences between tap38-1 and oeTAP38. All the 

detected proteins were including proteins which were equally phosphorylated in these two lines (RbcL, 

RbcS and unknown proteins) are indicated by arrows. Pre-stained protein markers are shown in kDa and 

the pH reflects the direction of the fist dimension of IEF gel. 

 Stroma proteins from tap38-1 and oeTAP38 were also subjected to 2D IEF-SDS PAGE 

analyses. The Ponseau S staining for the membranes did not show any difference between these 

two lines (Figure 21b upper panel). The Western blotting results revealed that several proteins 

were equally phosphorylated in tap38-1 and oeTAP38, e.g. RbcS (Rubisco small subunit), an 

unknown 35-kDa protein and another 55-kDa protein. Surprisingly RbcL (Rubisco large subunit) 

and one protein signal around 60 kDa which were strongly phosphorylated in tap38-1 totally 

disappeared in oeTAP38 (Figure 21b) indicating it was exclusively dephosphorylated by TAP38. 

Therefore, it seems TAP38 is also responsible for the dephosphorylation of some stroma proteins.  

Many efforts were made to reveal the identities of those new potential substrates in the 

thylakoids and stroma, but it was not possible in the scope of this work to sequence them via MS 

(data not shown). However, those results were reproducible. Taken together, these findings 

allowed us to conclude that there seem to be further substrates of TAP38 in the thylakoid 

membrane and stroma beyond LHCII. 
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4 Discussion   

4.1 TAP38 is not regulated by the PQ pool redox in contrast to the counteracting kinase 

STN7 

The protein amounts of LHCII kinase (STN7 and STT7) proteins become significant 

decreased under prolonged state 1 light condition (FR) and HL (Bellafiore et al., 2005; Depege 

et al., 2003; Lemeille et al., 2009; Willig et al., 2011). To investigate this more 

comprehensively, STN7 amounts were analyzed under different redox state of the PQ pool 

including transient and constant changes. Since different light qualities induce changes in the 

PQ redox state (Wagner et al., 2008), transient changes of the PQ redox state were obtained by 

exposing plants to different light qualities (Wunder et al., 2013). Results showed that the 

STN7 protein levels in WT plants adapted to PSII light were significantly higher than those in 

plants adapted to PSI light (Wunder et al., 2013). This is in line with the PQ pool being more 

reduced under PSII light compared to PSI light (Wagner et al., 2008; Wunder et al., 2013). 

Wunder et al. (2013) also addressed the effects of a constitutive alteration in the PQ redox 

state on STN7 accumulation. In mutants with a permanently over-reduced PQ pool (e.g. 

psae1-3, psad1-1 and psal-1), STN7 levels were increased compared to WT, whereas in 

mutants with an over-oxidized PQ pool (e.g. tap38-1), the STN7 levels were reduced (Wunder 

et al., 2013). Therefore, STN7 amounts depended on the redox state of PQ pool (Wunder et al., 

2013). Furthermore, it was shown that STN7 abundance is also controlled at the transcript 

level with the protein amounts directly correlating with the respective mRNA levels under 

prolonged high light and in mutant plants with an over-oxidized PQ pool (Wunder et al., 2013).  

Besides STT7/STN7 mRNA and protein amounts also STN7 activity is redox-

dependently regulated via the redox state of the PQ pool and the stromal ferredoxin-

thioredoxin system. There are two conserved Cysteine residues (68 and 73) at the N-terminal 

region of STT7 /STN7, which were shown to be essential for STT7 activity and state 

transitions (Depege et al., 2003). Recently, a new model for STN7 regulation suggested that 

the activation of the kinase under low light conditions was controlled by the two Cysteines on 

the lumenal side, whereas under high light, the reduction of two conserved stromal exposed 

Cysteines by thioredoxin could be attributed to the inactivation of the kinase (Puthiyaveetil, 

2011). 
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Bennett (1980) suggested that a potential LHCII phosphatase would be indifferent to 

light (Bennett, 1980) and based on in vitro experiments this phophatase was not susceptible to 

redox regulation (Silverstein et al., 1993). To address this hypothesis, we assessed the 

expression of TAP38 under state 1 (dark or far-red light), state 2 (low light or PSII light) and 

high light conditions more comprehensively. To this end, TAP38 accumulation was detected 

in WT plants that were adapted to the dark, PSII light, far red light and high light over a longer 

period. The result was a high and constant expression of TAP38 independent of the applied 

light conditions (Figure 8a). Based on these findings, TAP38 protein levels seem not to be 

influenced by prolonged changes in light conditions, suggesting that regulation on the protein 

level via the PQ pool redox state as the case of STN7 (Figure 8a) does not take place. This is 

in agreement with previous findings which showed that there were no significant changes in 

TAP38 amounts upon short-term transfer of WT plants to different light conditions (Pribil et 

al., 2010; Shapiguzov et al., 2010).  

To gain informaiton on a potential regulation of TAP38 on the level of its enzymatic 

activity,  TAP38 activity was assayed in vitro by appling different concentrations of NaF, an 

phophatase inhibitor, on isolated thylakoids. In WT, the de novo amounts of phosphorylated 

LHCII accumulated progressively with increasing concentrations of NaF (Figure 8b). In the 

TAP38 overexpressor line (oeTAP38), significantly higher amounts of NaF had to be added to 

observe similar effects (Figure 8b). It seemed that the amount of pLHCII correlated positively 

with NaF amount and inversely with TAP38 abundance (Figure 8b). These observations 

suggest that TAP38 activity was not down-regulated by low light exposure, a light condition 

under which TAP38 inactivation would make most sense from a physiological point of view 

and that there was a clear correlation between TAP38 amounts and LHCII dephosphorylation 

capacity. Combining the data on the expression profiles under different light treatments and 

the activity assay under low light, one can conclude that TAP38 is not regulated in a redox-

dependent manner, at least not dependent on the redox states of PQ pool.  

To further investigate whether TAP38 was regulated by long-term changes of the PQ 

pool redox state, oeTAP38 was crossed with the mutant lines psad1-1 and psae1-3, which 

display a constitutive over reduced PQ pool compared to WT (Ihnatowicz et al., 2008; 

Ihnatowicz et al., 2004; Pesaresi et al., 2009). TAP38 was still able to accumulate at high 

levels (6-fold compared to WT) in these genetic backgrounds showing that TAP38 

accumulation is per se independent from that of PSI and occurs also in the presence of a 
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constantly over-reduced PQ pool (Figure 9b). Furthermore, the psad1-1 oeTAP38 and psae1-3 

oeTAP38 double mutants showed exacerbated phenotypes (Figure 10a) which could be 

attributed to an even more severely reduced PQ pool as displayed by a significantly increased 

1-qL (Table 1). These behaviors were similar to stn7 psad1-1 and psae1-3 stn7 (Pesaresi et al., 

2009). Biochemical analyses of these lines indicated that LHCII phosphorylation and the band 

representing the PSI-LHCI-LHCII complex in BN-PAGE analyses (Pesaresi et al., 2009) were 

almost absent in the double mutants similar to the situation in oeTAP38 (Figure 10b). 

Summarizing this, it seems quite clear that TAP38 is insensitive to the redox state of PQ pool 

regarding TAP38 accumulation and activity. This suggests that LHCII phosphorylation and 

therefore state transitions are predominantly controlled via the redox-sensitivity of the STN7 

kinase. 

4.2 TAP38 is present in lower amounts than STN7 

STN7-dependent LHCII phosphorylation and the transition from state 1 to state 2 is at 

least seven-fold faster than the dephosphorylation reaction of pLHCII by TAP38 and its 

migration back to PSII (Puthiyaveetil et al., 2012; Silverstein et al., 1993). Puthiyaveetil et al. 

(2012) proposed two possible explanations for that: (i) the phosphorylation is 

thermodynamically more favorable than the dephosphorylation reaction due to the free energy 

of phosphoryl transfer in the kinase reaction; (ii) TAP38/PPH1 is usually associated with PSI, 

and therefore it dephosphorylates its substrate only when the latter is part of the PSI antenna 

not part of the PSII antenna (Puthiyaveetil et al., 2012). Here, BN and sucrose gradient 

experiments were performed in order to confirm an interaction of TAP38 and PSI or any other 

photosynthetic complexes, but no stable association between TAP38 and PSI could be 

demonstrated (Figure 12a, 12b, 12c). However, results of Co-immunoprecipitation  

experiment, showed that PSI antenna proteins (LHCA1, LHCA2, LHCA4 ete.) and further 

some PSI core proteins (PsaA/B) can be pulled down  together with HA- or GFP-tagged 

TAP38, indicating  that TAP38 resides in close proximity to PSI (Table 2). Furthermore, the 

amounts of TAP38 and STN7 in WT thylakoids under low light conditions (state 2) were 

quantified by western blot (Figure 16).  With a 0.092 pm per µg of chlorophyll the STN7 

concentration was more than 3 times higher than the concentration of TAP38 (0.028 pm µg
-1 

Chl). The concentration of PsaD (PSI subunit) and Rieske (Cyt b6f subunit) was 2.16 mm mol
-

1
 Chl (2.4 pm per µg

-1
 Chl) and 1.35 mol

-1
 Chl (1.5 pm per µg

-1
 Chl) respectively in A. 
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thaliana (Ambruster et al., 2013). Based on these findings, the molar ratio between 

STN7/TAP38 and PSI should be around 1:26/1:86. Consequently, the STN7/TAP38 to LHCII 

ratio would be 1:260/1:860, suggesting STN7 and TAP38 are acting in catalytic amounts. 

Notably, STT7 was also demonstrated to be present in substoichiometric amounts with a molar 

ratio of 1:20 relative to the Cyt b6f complex and 1:200 relative to LHCII in C. reinhardtii 

(Lemeille et al., 2009). Therefore, we suggest in addition to the two explanations given above 

that a third reason for a lower efficiency of TAP38 relative to STN7 are the significant lower 

amounts of TAP38 compared to STN7 under state 2 conditions. These finding is also in good 

agreement with the accumulation of high levels of phosphorylated LHCII under light 

conditions when STN7 and the TAP38 are both activated.  

4.3 TAP38 accumulation is regulated at the transcript level and correlates with the 

presence of LHCII and PSI. 

The protein amounts of TAP38 were significantly reduced in psad1-1, psae1-3, hcf136, 

psad1d2, chaos and asLHCB2.1 mutant lines but nearly unchanged in the petc and atpd 

mutants (Figure 9b, Figure 11b, Figure 14a). Notably, in the psad1d2 double mutant, TAP38 

was reduced to a larger extent than in the other mutants. Real-time PCR revealed that the 

TAP38 mRNA levels in those mutants were reduced by 20% - 60% compared to WT (Figure 

6c, Figure 14b) suggesting a certain correlation between TAP38 transcript and protein amounts. 

However, the mRNA patterns did not perfectly match the protein patterns and the mRNA 

levels were generally less reduced than the protein amounts compared to WT, suggesting an 

involvement of post-translational regulation to a certain extent, such as protein degradation as 

in the case of STN7 (Bellafiore et al., 2005; Depege et al., 2003; Lemeille et al., 2009; Willig 

et al., 2011; Wunder et al., 2013). 

It is tempting to speculate that the redox state of PQ pool plays a role in the regulation of 

TAP38 amount although TAP38 was shown to be insensitive to redox changes of the PQ pool 

(chapter 4.1). Indeed, the PQ pool was highly educed in petc and PSI mutants (psad1-1, 

psae1-3 and psad1d2) (Ihnatowicz et al., 2004; Ihnatowicz et al., 2007), but rather oxidized in 

hcf136 considering its lack of PSII complex (Meurer et al., 1998). In case the PQ pool exerts 

an effect on TAP38 transcripts, one would expect an opposite regulatory effect on TAP38 in 

hcf136 and PSI mutants (psad1-1, psae1-3 and psad1d2). However, the TAP38 abundance 

decreased in hcf136 as well as in PSI mutants, but remained almost unaltered in petc. 
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Therefore, the alterations in TAP38 protein/mRNA amounts seem not to follow a clear redox-

dependent regulatory scheme.  

A second possibility was that a reduction in PSI or LHCII amount causes the decrease of 

TAP38. Regarding the PSI mutants (psad1-1, psae1-3, psad1d2), PSI abundance was reduced 

to about 70% of the WT level in psad1-1, psae1-3 (Ihnatowicz et al., 2007; Ihnatowicz et al., 

2004) and not even detectable in psad1d2 (Ihnatowicz et al., 2004). Also in hcf136 the amount 

of PsaD (PSI subunit) and TAP38 were markedly decreased (Figure 14a) (Meurer et al., 1998). 

On the contrary, in petc and atpd PSI levels and TAP38 amounts did not significantly alter 

from WT (Figure 14a). In case of mutant lines defective in LHCII, LHCII (LHCB1 and 

LHCB2) were strongly downregulated to an undetectable level in antiLHCB2 (Andersson et 

al., 2003) and the LHCIIb (LHCB2) proteins decreased by ~50% in chaos shown by 

densitometric analysis (Klimyuk et al., 1999). Concluding, it seems that the accumulation of 

LHCII and PSI affects the abundance of TAP38. 

With LHCII being the potential target of TAP38 (Pribil et al., 2010; Shapiguzov et al., 

2010) and PSI being a putative anchor for TAP38 localization, as pLCHII is supposed to be 

associated with PSI, a direct interaction with the components seems a reasonable prerequisite. 

This hypothesis was supported to a certain extent by the comigration of TAP38 and LHCII in 

the sucrose gradient (Figure 11a, 12d, 12e) and transient association of TAP38 with LHCII 

and PSI as shown by co-immunoprecipitation in which the former two were pulled down by 

tagged-TAP38. However, no stable association of TAP38 with PSI could be observed during 

our experimental approaches (Figure 12). Furthermore, based on quantitative data, the 

molecular ratio of TAP38 to LHCII/PSI was 860:1/86:1 (Table 3) (see chapter 4.2). Therefore, 

the residual amounts of LHCII in chaos and the remaining amount of PSI in psad1-1 and 

psae1-3 should be sufficient for TAP38 to bind. In line with this, overexpression of TAP38 in 

the psad1-1 and psae1-3 background was successful (Figure 9, 10b, 10c) and in psad1d2 

mutant in which PSI was totally absent, there was still certain accumulation of TAP38. Overall, 

it seems that PSI and LHCII per se were not essential for TAP38 to accumulate within the 

thylakoid membrane. 

Summarizing, one can conclude that TAP38 accumulation predominantly depends on 

the availability of its putative substrate (LHCII) and PSI and a potential regulation occurs at 

the transcript level and, if at all, to a minor extent on the post-transcription level.  
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4.4 TAP38 localized close to PSI  

TAP38 is a thylakoid membrane protein with its N-terminus facing the stroma side 

(Figure 6). Fractionation and immunogold-labeling experiments both indicate that TAP38was 

enriched in stroma lamellae where also its putative substrates (pLHCII) and PSI were 

localized (Figure 7). But, a lack of TAP38 does not affect the accumulation of any of the 

major photosynthetic complex (Pribil et al., 2010). Furthermore, no stable association could be 

observed between PSI and TAP38 in BN gels and sucrose gradient ultracentrifugation 

although various detergents have been tried (Figure 12). Nonetheless, the behaviors of TAP38 

in the BN gel were interesting and worth analyzing. It migrated to very high molecular weight 

region in the BN-PAGE gel when digitonin was used for thylakoids solubilization but was 

distributed in the free protein region if β-DM was used as a detergent. However, when 

thylakoids were crosslinked by DTSSP, TAP38 migrated to high molecular regions in the BN-

PAGE even β-DM was used for solubilization (Figure 13a). Many photosynthetic complexes 

were found in this high molecular region that no specific association of TAP38 with any of 

them could be observed (Figure 13b). Noticeably, migration patterns of the major 

photocomplexes were not changed after DTSSP crosslinking suggesting the crosslinker 

DTSSP was not used in excess amounts (Figure 13a).  

In the sucrose gradient ultracentrifugation fractions, TAP38 was present in the free 

protein region or low molecular weight complex region regardless whether digitonin or β-DM 

was used as a detergent (figure 12d and 12e) (data for digitonin were not shown). Only the use 

of NP40 as a detergent led to the accumulation of some intermediate size TAP38 complexes 

after BN-PAGE analysis and sucrose centrifugation. However, no perfect overlap between 

TAP38 and PSI or any other photosynthetic complexes could be observed (Figure 12b, 12c). 

Therefore, it seems that TAP38 localized spatially close to some major photosynthetic 

complexes, but the physical interaction between them is not strong enough to form a stable 

complex that can resist detergent treatment. Therefore, in further experiments, it would be 

worthwhile to perform BN-PAGE and sucrose centrifugation with crosslinked thylakoids. 

Despite no stable association was present between TAP38 and PSI, a number of PSI 

antenna proteins and core proteins were pulled down together with tagged-TAP38 proteins in 

Co-IP experiments. Based on these results, we conclude that TAP38 localizes in close 

proximity to PSI and more precisely the LHCA belt. Noticeably, in the same pull down assay, 

LHCII, the putative substrate of TAP38 was also co-precipitated with TAP38. In line with this, 
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Pribil et al. (2010) already showed that TAP38 is able to dephosphorylate LHCII. Also, the 

PSII phophatase PBCP was demonstrated to directly dephosphorylate PSII core proteins in 

vitro in support of a direct acting mode regarding the catalytic way of the phosphatases in the 

thylakoid membrane (Samol et al., 2012). These evidences indicate a very high possibility for 

a direct interaction between TAP38 and LHCII.  

To summarize the findings in this and previous chapters, TAP38 is always active 

regardless of the redox state of the PQ pool and permanently resides in close proximity to PSI 

where TAP38 dephosphorylates LHCII directly. We propose a working model for TAP38 in 

LHCII dephosphorylation during state transitions in Figure 22.   

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Simplified State transitions model indicating the working dynamic of TAP38.  

(a) Under state 1 light conditions, the PQ pool is rather oxidized, STN7 is present in an inactive state 

and LHCII remains associated with PSII. In this situation, TAP38 resides close to PSI in an active state, 

however, no substrate (pLHCII) is available. (b) Under state 2 light conditions, the PQ pool becomes 

reduced and PQH2 binds to the Qo site of the Cytochrome b6f complex. Thereby the STN7 kinase is 

activated leading to phosphorylation of LHCII. pLHCII subsequently disassociates from PSII and 

attaches to PSI. Active TAP38 now dephosphorylates pLHCII around PSI. However, the LHCII kinase 

is more efficient than TAP38, resulting in predominant association of pLHCII with PSI. Modified from 

Minagawa et al. (2011) 
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4.5 The function of TAP38 and STN7 in the long term response (LTR) 

The long term response (LTR), which involves changes in photosystem stoichiometry, is 

induced by change in light quality that persists for hours or days. Long time differential 

excitation of the photosystems is sensed by the redox state of the PQ pool which in turn leads 

to a signal from the chloroplast to the nucleus, where the respective photosynthetic genes are 

encoded (Dietzel and Pfannschmidt, 2008; Nott et al., 2006). STN7 was suggested to be the 

trigger of LTR since stn7 mutants display no change in the respective parameters (Bonardi et 

al., 2005; Pesaresi et al., 2009) and to participate in retrograde signaling affecting the 

expression of nuclear-encoded genes (Leister, 2012; Pesaresi et al., 2009; Wagner et al., 2008). 

Considering that TAP38 counteracts STN7 in state transitions and stn7 mutants lack 

LTR (Bonardi et al., 2005; Pesaresi et al., 2009), it is feasible to assume TAP38 might also 

function in LTR.  Pesaresi et al. (2009) suggested that the signal transduction pathways 

associated with state transitions and LTR diverge directly at or immediately downstream of 

STN7 (Pesaresi et al., 2009). However, the LTR activities in the tap38 mutant and oeTAP38 

resembled that of WT regarding the parameters Fs/Fm, Chl a/b ratio, ФII and 1-qP (Figure 11). 

Noticeably, the respective values of oeTAP38 were close to those of stn7 which is blocked in 

state 1 but they were still following the trend, typical for plants are able to perform LTR. In 

general, the Chl a/b ratios were a bit higher in tap38 and lower in oeTAP38 in comparison to 

WT under all conditions applied (Figure 11a). And the Fs/Fm values in oeTAP38 behaved in 

the opposite way being much higher than those of WT (Figure 11b). In accordance to these, 

the 1-qP and ФII values of oeTAP38 were higher than that of the WT and rather similar to the 

stn7 values (Figure 11c). The same tendency could also be observed for the ФII values (Figure 

11d). Taken together, oeTAP38, tap38-1 and tap38-3 mutant behaved similar to WT regarding 

the assessed parameters indicating that they are able to perform LTR (Figure 11a, 11b). 

It is commonly accepted that LTR involves the regulation of de novo synthesis of 

chlorophyll a and its binding proteins (Murakami et al., 1997). Moreover, photosystem core 

proteins are mainly regulated on transcriptional level by changes of PQ redox state pool 

(Pfannschmidt et al., 1999). Depletion of STN7 resulted in the differential expression of a total 

1991 genes when plants were grown under controlled growth conditions (Bonardi et al., 2005). 

Contrarily, in the expression profile of tap38 and oeTAP38 mutant lines no more than 5 genes 

were differentially regulated compared to WT (Figure 12). Out of those 5 genes of which one 

was TAP38 itself, only 1 gene was conversely regulated compared to stn7 (Pesaresi et al., 
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2009). In case a specific LTR signaling pathway is perturbed in stn7 which leads to significant 

changes in the nuclear transcript profile, a lack or overexpression of TAP38 does not affect 

this long term acclimation signaling pathway.  

The expression of many nuclear encoded photosynthetic genes were not affected in stn7 

(Bonardi et al., 2005) and changes in the expression of other genes might be caused by 

incapability to oxidize the PQ pool which results from imbalance in electron transport due to 

permanent detachment of LHCII from PSI (Tikkanen et al., 2012). Moreover, the stn7 mutant 

showed an increased PSI-PSII ratio under white light which leads to WT like growth size. This 

implies that stn7 persists the ability to transfer retrograde signals (Grieco et al., 2012; 

Tikkanen et al., 2006). In line with this, stn7 mutant also showed a higher Chl a/b ratio under 

low light compared to other light conditions for inducing LTR (Figure 17a). Tikkanen et al. 

(2012) suggested that by controlling LHCII-phosphorylation, STN7 might play an important 

role in retrograde signaling through ROS but STN7 itself was not the central factor of redox-

induced LTR (Tikkanen et al., 2012). The chloroplast sensor kinase (CSK), a further potential 

sensor of the PQ pool redox state, was described to govern the LTR with the chloroplast factor 

1 (SIG1) and plastid transcription kinase (PTK) being its functional partners (Puthiyaveetil, 

2011).  

It was also observed that under steady state light conditions, the lower Chl a/b ratio in 

the stn7 mutant did not result from changes in photosystem stoichiometry (almost no alteration 

in the accumulation of PSI and PSII subunits and their antenna proteins) suggesting an effect 

of STN7 on Chl a synthesis or Chl b degradation (Tikkanen et al., 2012; Tikkanen et al., 2006). 

In line with this, several genes involved in the isoprenoid biosynthesis or degradation were 

correlated with STN7 (Tikkanen et al., 2012). STN7/TAP38 were also suggested to display an 

activity in the degradation of controlled LHCII (Tikkanen et al., 2012). Since only a few genes 

were differentially regulated at the transcriptional level in tap38 or oeTAP38 mutant plants 

(Figure 18), the overall higher or lower Chl a/b ratio in tap38-3 and oeTAP38  respectively 

(Figure 17a, S3) could either be caused by an enhanced or diminished capability to degrade 

Chl b.  

The Stn7 mutants grown under white light showed distinct photosynthetic protein 

compositions compared to WT, but the transcript profile remained unchanged. Apparently, 

STN7 also participates in the post-transcriptional regulation of various gene involved 

(Tikkanen et al., 2006). Therefore, TAP38 might be involved in the post-transcriptional 
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regulation of certain photosynthetic proteins leading to a trend of Chl a/b ratio and Fs/Fm 

values in tap38-3 and oeTAP38 towards stn7.  

Taken all together, lacking or overexpression of TAP38 exerts no significant effects on 

LTR, but TAP38 may play a role in degradation of Chl b and/or post-transcriptional regulation 

for a number of photosynthetic genes.  

4.6 Potential new substrates of TAP38 

According to bioinformatic predictions there should be about 80 protein kinases (PKs) 

present in the chloroplast (Bayer et al., 2012) whereas only 27 protein phosphatases (PPs) 

were clearly predicted to be localized in the chloroplast and only 9 of them could actually be 

experimentally confirmed to be chloroplast located (Schliebner et al., 2008). Apparently, the 

numbers of PPs in the chloroplast is much lower than those of PKs. 

        STN8 was demonstrated to predominantly phosphorylate PSII proteins (D1, D2, 

CP43 and PsbH respectively) (Bonardi et al., 2005; Tikkanen et al., 2008a). However, it 

further catalyzes the phosphorylation of the calcium-sensing receptor (CaS), PGRL1, the large 

subunit of RuBisCo (RbcL), CP29 and of two unknown proteins (Lemeille and Rochaix, 2010; 

Lohrig et al., 2009; Reiland et al., 2011; Vainonen et al., 2008). On the other hand, STN7 

predominantly phosphorylates LHCII, with CP29 and TSP9 being further identified as 

substrates (Bellafiore et al., 2005; Fristedt et al., 2009; Fristedt and Vener, 2011). Only in the 

stn7stn8 double mutant, phosphorylated forms of LHCII and PSII core proteins are completely 

absent but not in the respective single mutant, suggesting STN7 and STN8 overlap to a certain 

degree in their substrate specificity (Bonardi et al., 2005; Fristedt and Vener, 2011). Likewise, 

the two thylakoids phosphatases, TAP38 (LHCII phophatase) and PBCP (PSII phosphatase) 

show a certain substrate overlap (i.e. D1, D2 and LHCII) (Pribil et al., 2010; Samol et al., 

2012). Interestingly, CaS, one of the substrates of STN8, was suggested to be 

dephosphorylated by TAP38 (Pribil et al., 2010). These findings indicate the network of 

reversible phosphorylation is indeed very complex within the chloroplast. We therefore 

postulate that TAP38 must have further substrates in the chloroplast membrane besides the 

proteins LHCII, D1, D2 and CaS. Indeed, there are various evidences for an extensive 

phosphorylation of stroma proteins and chloroplast proteins in general (Bayer et al., 2012; 

Laing and Christeller, 1984; Reiland et al., 2009; Sugiyama et al., 2008). Since the 

phosphatase domain of TAP38 is exposed to the stroma side (see Figure 6), it is feasible that 
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TAP38 also plays a role in stroma protein dephosphorylation. This hypothesis was confirmed 

by 2D isoelectric focusing (IEF) and SDS-PAGE.  

As depicted in Figure 21, in the 2D IEF-SDS PAGE carried out with thylakoids proteins 

from stn7 oeTAP38 and oeSTN7 tap38-1 at least 4 protein signals exclusively phosphorylated 

in tap38-1 oeSTN7 compared to stn7 oeTAP38 with a protein size of 26, 34, 55-60 and 170 

kDa respectively. LHCII is one substrate of TAP38 and STN7; therefore the 26-kDa band 

could be attributed to LHCII. The 34-kDa protein could be ascribed to D1/D2 which was also 

shown to be partially phosphorylated by STN7 and dephosphorylated by TAP38 (Bonardi et 

al., 2005; Pribil et al., 2010). In agreement with that, the amount of phosphorylated D1/D2 

was decreased in the stn7 oeTAP38 in comparison to oeSTN7 tap38-1. As for the 55-60 kDa 

double bands, they could represent the β-subunit of the chloroplast ATPase (ATPase β) or/and 

STN7, both of which were identified to be phosphorylated by mass spectrometry and/or 

biochemical approaches (del Riego et al., 2006; Lohrig et al., 2009; Reiland et al., 2009). 

STN7 was phosphorylated and the STN7 amount was significantly increased in the oeSTN7 

tap38-1 line which might explain STN7 detection in this approach (Figure S3). So far no 

kinase was found to be responsible for STN7 phosphorylation; therefore STN7 might show 

antophosphorylation (Willig et al., 2011). Moreover, the phosphorylation of STN7 which 

occurs at four conserved residues (Ser
526

, Thr
537

, Thr
539

 and Thr
541

) was demonstrated to play a 

role in its turnover (Willig et al., 2011). In line with that, thylakoids used in this approach 

were obtained from plants grown under low light which favors the accumulation of STN7. The 

α/β-subunit of ATPase were also identified to be phosphorylated at multiple residues (mainly 

serine and threonine) in Spinach, Barley and Arabidopsis (del Riego et al., 2006; Lohrig et al., 

2009; Reiland et al., 2009). Moreover, casin kinase II (CKII) was reported to be involved in 

the phosphorylation of the β-subunit of ATPase in Spinach chloroplast (Kanekatsu et al., 

1998). Regarding the 170 kDa signal, no known phosphoprotein is available. 

Furthermore, stroma proteins of tap38-1 and oeTAP38 were subjected to 2D IEF-SDS 

PAGE, and westernblot analyses showed the large subunit of Rubisco (RbcL) and one protein 

spot around 50 kDa were solely phosphorylated in tap38-1 (Figure 21b). RbcL and RbcS have 

been previously reported to be phosphorylated (Budde and Chollet, 1988; Guitton and Mache, 

1987) and MS analyses revealed that phosphorylation occurs at multiple serine and threonine 

sites (Lohrig et al., 2009; Reiland et al., 2009). In spinach, the phosphorylation of RbcL 

enhanced dramatically with addition of NaF an inhibitor of phosphotase, suggesting an 
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involvement of phophatase (Guitton and Mache, 1987). However, Reiland et al. (2011) 

suggested that RbcL might be phosphorylated by STN8. Regarding the protein spot at around 

50 kDa, there was no clear indication with respect to its identity. Based on all of these findings, 

it is most likely that TAP38 has further substrates besides LHCII, both within the thylakoid 

membrane and the stroma. Thus a function of TAP38 beyond state transitions seems very 

likely.  
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Appendix 1 

 

 

 

 

  
 

Figure S1 Identification of homozygous tap38-3 lines. 

(a) PCR amplifications on the T-DNA insertion and TAP38 gene. Left panel was amplified using primers 

specific for detection of T-DNA insertion and right panel showed a specific signal of TAP38 gene using 

primers designed from TAP38 gene. Gene specific Primers were used. (b) Westernblot analysis using 

TAP38 specific antibodies to confirm the knockout of TAP38 in the tap38-3 mutant line. Thylakoids 

corresponding to 10 μg of Chl were loaded for WT, tap38-1 and tap38-3. (c) PAM measurement for state 

transitions process in WT and tap38-3 as described in chapter 2.7.2.  
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Appendix 2 

 

 

Figure S2 Chl a/b ratios of TAP38 mutant and overexpressor plants during LTR acclimation. 

Chlorophyll a/b ratios of WT, tap38-1, tap38-3, stn7 and oeTAP38 measured after exposure to different 

light conditions. In detail, plants were grown under PSI or PSII light for 6 d (PSI or PSII plants) or they 

were first acclimated to PSI light for 2 d followed by 4 d under PSII light source or vice versa (PSI-I or 

PSII-I plants). Plant material was harvested under the respective growth light and grinded in liquid 

nitrogen and then pigments were extracted with 80% buffered acetone. Chlorophyll concentrations and 

Chlorophyll a/b ratios were determined and calculated according to (Porra et al., 1989).   
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Appendix 3 

 

 

 

Figure S3 Overexpression of STN7 in the double mutant tap38-1 oeSTN7. 

Thylakoids were isolated from WT, tap38-1, oeSTN7 and tap38-1 oeSTN7 and separated on 12% SDS-

PAGE followed by immunodetection using STN7 specific antibodies.  
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