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Zusammenfassung

In der vorliegenden Arbeit wurde ein Hydrodynamik Code entwickelt, der sich
speziell fiir die Simulation von Akkretionsscheiben und sonstigen Objekten mit frei-
en Rindern eignet. Als numerische Methode kam das Smoothed Particle Hydrody-
namics Verfahren (SPH) zum Einsatz, da dieses, im Gegensatz zu Gitterverfahren,
nicht auf eine vorher bestimmte Geometrie beschrinkt ist. Um die Leistungsfihig-
keit und Genauigkeit des Codes zu priifen, wurde dieser auf das Standardbeispiel
einer adiabatisch kollabierenden Gassphére angewendet um die Gleichgewichtskonfi-
guration sowie die Schwingungsdauer der Monopolschwingung zu ermitteln und mit
theoretischen Modellen zu vergleichen.

Bevor der Einflul der Eigengravitation auf die Entwicklung von Akkretionsschei-
ben um junge Sterne untersucht werden konnte, mufite in dreidimensionalen Simula-
tionsrechnungen gezeigt werden, dafl der hier verwendete SPH-Code die analytisch
bekannten Ergebnisse fiir geometrisch diinne und massearme Akkretionsscheiben
reproduzieren kann. Im Einzelnen wurden die Leuchtkraft, Skalenh6he, Akkretions-
raten und die Temperaturverteilung mit den Werten der zweidimensionalen ,,thin
disc approzimation” verglichen. Dabei ergab sich, unter Verwendung polytroper Zu-
standsgleichungen, sehr gute Ubereinstimmung mit den theoretischen Werten.

Bei der Entstehung und weiteren Entwicklung von Akkretionsscheiben spielt die
Eigengravitation und Viskositdt eine erhebliche Rolle. Hervorzuheben ist der insta-
bile Charakter von rotierenden und eigengravitiven Scheiben, der zur Entwicklung
von spiralférmigen Storungen und anschlielender Fragmentation der Scheibe fiithren
kann. In diesem Zusammenhang wurde anhand von Simulationen der Einfluf} der
Viskositdt auf die Entwicklung von Balken-Instabilititen bei differentiell rotieren-
den Gasscheiben untersucht. In Zusammenarbeit mit Prof. R.D. Durisen (Indiana
University, Bloomington, USA) und Dr. M. Bate (Cambridge University, GB) wur-
de dies, ausgehend von einer standardisierten Anfangsbedingung, mit verschiedenen
numerischen Verfahren durchgefiihrt. Diese Vorgehensweise ermoglichte es erstmals,
eindeutige Aussagen iiber die Anstiegsraten und Rotationsfrequenz der Balkeninsta-
bilitét bei viskosen Scheiben zu treffen.

Junge Sterne treten nicht isoliert auf, sondern bilden Gruppen, bei denen es zu
Wechselwirkungen der Sterne untereinander kommen kann. Bei sehr nahen Begeg-
nungen kdénnen einzelne Sterne aus dem Verband herausgeschleudert werden, wobei
vorhandene Akkretionsscheiben nachhaltig beeinflufit, oder sogar zerstért werden
kénnen. In der vorliegenden Arbeit wurden Simulationen durchgefiibrt, um die Sta-
bilitdt der Akkretionsscheiben bei diesen Kollisionen zu untersuchen. Es stellte sich
heraus, dafl dabei die Scheiben einen signifikanten Teil ihrer Masse verlieren und
eine stark gestorte, méglicherweise beobachtbare Restscheibe {ibrig bleibt. Dieser



Prozef} bietet eine Erklirungsmoglichkeit fiir das gehdufte Auftreten von T Tauri
Sternen ohne optisch dicke Scheiben auflerhalb von Sternentstehungsgebieten.

Akkretionsscheiben werden nicht nur durch Kollisionen in Sternentstehungsge-
bieten in ihrer Struktur mafigeblich beeinflult. Das Auftreten dieser Scheiben in
Doppelsternsystemen, wie etwa HK Tau oder GG Tau, stellt die Frage nach de-
ren Stabilitét, besonders dann, wenn sich das Periastron (kleinster Doppelsternab-
stand) innerhalb der Scheibe befindet, wie bei dem System HD98800. Durch die hier
durchgefiihrten Simulationen eines Doppelsternsystems dhnlicher Geometrie war es
moglich, Vorhersagen iiber die Entwicklung einer zirkumstellaren Akkretionsscheibe
in einem Doppelsternsystem zu treffen. Erstmals konnten dabei Aussagen iiber die
zeitliche Variation der Scheibenleuchtkraft getroffen werden. Desweiteren wurden
erstmals, durch die zusétzliche Berechnung der Eigengravitation des Scheibengases,
strukturbildende Prozesse in einer stark gestorten Akkretionsscheibe beobachtet.
Besonders hervorzuheben ist dabei die Méglichkeit, dal Teile der zerstorten Ak-
kretionsscheibe in ein substellares Objekt fragmentieren kénnen, welches aus dem
Doppelsternsystem herausgeschleudert wird. Der hier gefundene Prozef stellt somit
eine neuartige Erklarungsmoglichkeit fiir das Auftreten von Braunen Zwergen in
der ndheren Umgebung von Sternentstehungsgebieten dar. Der dadurch erwartete
Beitrag zur dunklen Materie ist im allgemeinen jedoch gering.
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Kapitel 1

Einfiihrung

Die Entstehung von Sternen und Planeten steht seit langer Zeit im Mittelpunkt na-
turwissenschaftlichen Denkens. Fundamentale Anfinge einer Theorie der Sternent-
stehung gehen auf Kant (1755) und Laplace (1796) zuriick, deren Prinzipien teilweise
noch in der modernen Theorie durchscheinen. Technische Errungenschaften und Er-
gebnisse der modernen Physik fiihrten zu einem wenig umstrittenen qualitativen
Bild des Entstehungsmechanismus eines sonnendhnlichen Sternes.

Sehr junge massearme Sterne lassen sich hauptséchlich in der Umgebung von in-
terstellaren Molekiilwolken beobachten. Durch Messungen ihrer Eigenbewegung und
Einschrinkungen beziiglich ihres Alters stellen Molekiilwolken auch den ,,Geburts-
ort” dieser Sterne dar. Es wird angenommen, dafl die aufgrund der galaktischen
Drehung, rotierenden Wolken durch gravitative Instabilitidten in ein oder mehre-
re Zentralobjekte (Protosterne) kollabieren, welche von einer optisch dicken Hiille
umgeben sind (Wolkenkern). Durch Drehimpulserhaltung sammelt sich das aus der
Hiille einfallende Gas in einer Ebene und bildet eine Akkretionsscheibe in der durch
viskose Prozesse Materie in Richtung des Protosternes transportiert wird, wo sie
schlieflich akkretiert wird. Die in dieser Phase hohen Akkretionsraten fiithren zu
einem weiteren Anstieg der Masse des Zentralkérpers, der dann eine weitere Kol-
lapsphase durchlduft. Durch die hohe Dichte im Inneren des Protosternes werden
nun Kernfusionsprozesse moglich. Bipolare Ausfliisse und gleichzeitige Massenak-
kretion diinnen dabei die Hiille aus, wodurch der Protostern optisch sichtbar wird.
Man spricht nun von einem 7' Taur: Stern.

1.1 T Tauri-Sterne und deren Verteilung

T Tauri Sterne sind im Allgemeinen sehr junge Sterne mit einem Alter zwischen 10°
und 107 Jahren und der Spektralklassifikation (F7-M). Sie fallen damit in die Ka-
tegorie der Vorhauptreihensterne mit Massen zwischen 0.078 — 3.0M. Diese Stern-
klasse wurde von Joy (1945) eingefiihrt und nach dem prominentesten Mitglied T
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4 Kapitel 1. Einfithrung

Tau benannt, der leichte unregelméflige Variationen der optischen Leuchtkraft zeigt.
Weitere Eigenschaften des Spektrums sind der Infrarotexzefl, der auf eine zirkum-
stellare Akkretionsscheibe schlielen 148t, starke H,, Ca, K Emissionslinien und L+
Absorptionslinien (eine detaillierte Klassifikation findet sich in Herbig (1962) und
Bastian et al. 1983).

Diese Kategorie zerfillt in 2 weitere Klassen, deren Mitglieder die gleichen Eigen-
schaften wie klassische T Tauri Sterne (CTTS) haben, jedoch durch eine kleinere
Aquivalentbreite der H, Linie < 1021) und fehlendem bzw. geringem Infrarotex-
zef} auffallen (Weak-line T Tauri Sterne, WTTS). Walter (1986) fiihrte den fehlen-
den Infrarotexzefl auf die Abwesenheit von dichtem zirkumstellaren Gas, wie etwa
Akkretionsscheiben zuriick, woraus sich der Name Naked T Tauri Sterne (NTTS)
entwickelte.

Auf Grundlage des ROSAT All-Sky Survey (RASS) wurde grofiriumig nach T
Tauri Sternen gesucht. Dabei stellte sich heraus, dal im Gegensatz zu CTTS, die
Verteilung der WTTS nicht auf einen begrenzten Bereich der Sternentstehungsge-
biete beschrinkt ist. Es konnten WTTS gefunden werden, die einen Abstand von
mehreren Parsec zu den Sternentstehungsgebieten haben, wogegen CTTS auf einen
engen Bereich innerhalb der Wolken konzentriert bleiben (Wichmann et al. 1996,
Alcala et al. 1995 und Neuh&user et al. 1997).

1.2 Runaway T Tauri Sterne

Junge Lithium reiche Sterne, die mehrere Grad auflerhalb der Sternentstehungs-
gebiete gefunden werden, sind im Allgemeinen zu jung um diese Positionen mit
Geschwindigkeiten zu erreichen, die der Geschwindigkeitsdispersion innerhalb des
Sternhaufens entspricht. Eine lokale Entstehung abseits der Sternentstehungsgebie-
te, wie es Feigelson (1996) vorschlug, konnte durch das Fehlen von Gasresten der
Sternentstehung nicht bestéitigt werden. Wurden diese Sterne innerhalb der Wol-
ken geboren, miissen ihre Radial- und Eigenbewegungen signifikant von der Ge-
schwindigkeitsdispersion innerhalb der Molekiilwolken abweichen, wie es von Herbig
(1977) fiir mehrere Sterne in der Taurus Region beobachtet wurde. Sterzik & Duri-
sen (1995) schlugen vor, daf§ diese Sterne durch Mehr-Korper Wechselwirkungen aus
dem Sternentstehungsgebiet herausgeschleudert wurden (Runaway T Tauri Sterne,
RATTS). Durch gravitative Wechselwirkungen konnen sich innerhalb der Sternent-
stehungsgebieten Sterne soweit anndhern, dafl sie mit Geschwindigkeiten von einigen
km/sec aus dem Haufen herausgestreut werden. Kroupa (1995) zeigte durch Simula-
tion des Trapezium Clusters, daf einige Prozent der Sterne dabei Geschwindigkeiten
> 5km/sec erreichen kénnen. Weitergehende Simulationen von Sterzik & Durisen
(1995, 1998) lassen des Schluf} zu, daf diese RATTS durchschnittlich massesirmer
sind als ein typisches T Tauri Sample innerhalb des Sternhaufens. Desweiteren han-
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delt es sich hierbei meist um Einzelsterne oder sehr enge Doppelsterne. Neuh&user
et al. (1995) beobachtete in der siidlichen Taurusregion mehrere junge Sterne, deren
Radialgeschwindigkeiten mit einem Ejektionsszenario konsistent sind.

Diese RATTS Hypothese erklirt auf einfachen Wege die Existenz sehr junger T
Tauri Sterne (T = 10°...107 Jahre) auBerhalb der Molekiilwolken und macht wei-
terhin Vorhersagen iiber deren Multiplizitdt. Brandner et al. (1996) untersuchte
diesbeziiglich die Verteilung von Vorhauptreihen-Doppelsternen innerhalb und au-
Berhalb der Wolken, wobei innerhalb der Sternentstehungsgebiete ein héherer Anteil
an Doppelsternen nachgewiesen werden konnte als aulerhalb, wie es auch von einem
Ejektionsmodell vorhergesagt wird.

Kollisionen zwischen T Tauri Sternen in Molekiilwolken wurden auch von Ar-
mitage & Clarke (1997) untersucht, speziell im Hinblick auf deren zirkumstellaren
Scheiben. Dabei stellte sich heraus, dafl einer Ejektion eines Sternes mit einer Ge-
schwindigkeit zwischen 3...10 km/sec eine Kollision mit einem Abstand zwischen
2...25 AU vorangegangen sein mufl. Bei dieser sollten die zirkumstellaren Scheiben
vollkommen zerstért werden. Dieser Mechanismus kann dazu beitragen, dafl CTTS
in TTS ohne beobachtbare Akkretionsscheiben transformiert werden. Diese so ent-
standenen W'TTS sollten keine signifikante H, und Nah-Infrarot Emissionen mehr
aufweisen. Im Gegensatz dazu zeigten Simulationen von Brandl & Sterzik (1997),
daf bei Kollisionen mit einem Abstand von < 20 AU in vielen Fillen Restscheiben
mit einem Radius von bis zu 100 AU bestehen bleiben, die aber in ihrer Geometrie
stark gestort sind.

Runaway T Tauri Sterne miissen aufgrund der Ejektion aus dem Sternhaufen eine
von diesem abweichende Radial- oder Eigenbewegung besitzen, deren Geschwindig-
keitsvektor notwendigerweise aus dem Haufen herauszeigen mufi. Desweiteren sollten
sie etwa vom gleichen Alter sein, wie die entsprechenden jungen Sterne innerhalb der
Wolken. Bei Anwendung weiterer Kriterien ergaben sich mehrere Dutzend potentiel-
le RATTS Kandidaten, von denen P172/ der Aussichtsreichste ist (Neuh&user et al.,
1998). Dieser WTTS Stern, mit einem Alter von etwa 2.0 - 10° Jahren, befindet sich
15 Bogenminuten nérdlich des Trapezium Clusters im Orion und entfernt sich von
diesem mit einer Geschwindigkeit von =~ 20 km/sec. Desweiteren zeigen Messun-
gen der spektralen Energieverteilung keinen signifikanten Infrarotexzefl, woraus sich
die Abwesenheit zirkumstellarer Materie, wie zum Beispiel einer Akkretionsscheibe,
folgern 148t.

Bei diesen Objekten sollte, durch eine vorangegangene Kollision innerhalb des
Sternclusters eine vorhandene Akkretionsscheibe nachhaltig beeinfluft worden sein.
Eventuell vorhandene Restscheiben, die, wie in dieser Arbeit gezeigt wird, noch bis
zu 50% ihrer urspriinglichen Masse besitzen kénnen, miiten signifikante Abweichun-
gen von der Scheibenstruktur aufweisen, was mit geeigneten Beobachtungsmethoden
moglicherweise nachgewiesen werden konnte.
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Kapitel 2

Smoothed Particle Hydrodynamics

2.1 Hydrodynamische Gleichungen

Zur Beschreibung und Simulation zahlreicher astrophysikalischer Objekte, zum Bei-
spiel Galaxien, Neutronensterne sowie Akkretionsscheiben, werden hydrodynamische
Gleichungen herangezogen, die den jeweiligen physikalischen Bedingungen angepaflt
werden. Es handelt sich hierbei um die Eulergleichung (bzw. um die Navier-Stokes-
Gleichung, wenn die innere Reibung der Fliissigkeit mit einbezogen werden soll), die
Kontinuititsgleichung, sowie eine geeignete Zustandsgleichung, weiterhin die Ener-
giegleichung ohne Wérmeleitungs- und Strahlungsterme, welche hier nicht behandelt
werden.

Do
=0 2.1
T + V(ov) (2.1)
Dv
- _ (extern)
05 VIIL + f (2.2)
F(p,T,0) = 0 (2.3)
du . Ov
e = Y= 2.4
7 + (u+p)Vo % By (2.4)

Wobei die Abkiirzungen p fiir Druck, T Temperatur, u innere Energiedichte und
o fiir die Massendichte stehen. II ist der viskose Spannungstensor und f k&nnen
externe Kriifte, wie Zentralmassen sein.

Soll jedoch zusétzlich die Wirkung der von der Massenverteilung hervorgerufenen
Gravitation beriicksichtigt werden (Eigen- oder Selbstgravitation), so reicht dieses
Gleichungssystem nicht mehr aus. In diesem Falle mufl zusétzlich zu den obigen
Gleichungen die Poissongleichung fiir das Gravitationspotential ¢ gelost werden.

A¢ = 41Go (2.5)

7



8 Kapitel 2. Smoothed Particle Hydrodynamics

Fiir dieses gekoppelte, hyperbolische, partielle Differentialgleichungssystem sind
nur sehr wenige analytische Losungen bekannt, so dafl zu deren Lésung auf numeri-
sche Verfahren zuriickgegriffen werden muf3s.

Hierfiir existieren mehrere, verschiedenartige Methoden, zum Beispiel finite Dif-
ferenzenverfahren, welche diese Gleichungen auf einem Gitter 16sen. Dabei begrenzt
allerdings der Gitterabstand die rdumliche Auflésung. Um eine hinreichend genaue
Lésung zu erhalten, muf} ein sehr engmaschiges Netz iiber Raumgebiete gelegt wer-
den, in denen starke Schwankungen der physikalischen Grélen auftreten. Die Anzahl
der dazu bendtigten Gitterzellen kann extrem hoch werden, was zu einem erhebli-
chen Anstieg der Rechenzeit fiihrt.

Ein weiteres Problem ist, dafl herkdmmliche Gittermethoden nur ein endliches
und fest vorgegebenes Raumgebiet abdecken. Dies ist ein Nachteil, weil die rdumliche
Ausdehnung astrophysikalischer Objekte sehr starken Schwankungen und Verénde-
rungen der Geometrie unterliegen kann, an die ein Gitter nur schwer angepafit wer-
den kann.

Als besondere Schwierigkeit sind die auf dem Gitterrand vorzugebenden Rand-
bedingungen zu betrachten. Bei Problemstellungen mit freien Rdndern, bzw. mit
Rindern im Unendlichen mufl man, um Gitterverfahren erst verwenden zu kénnen,
kiinstliche Réinder einfiihren, was eine wesentliche Verdnderung der physikalischen
Bedingungen bedeuten kann.

Eine Alternative dazu bieten die Lagrangeschen Teilchenmethoden, zu denen
auch das hier kurz vorgestellte Verfahren der Smoothed Particle Hydrodynamics
(SPH) z#hlt, welches erstmals von Lucy (1977) und Gingold & Monaghan (1977)
vorgestellt wurde.

Dieses Verfahren zur Simulation hydrodynamischer Prozesse wurde urspriing-
lich fiir nicht symmetrische astrophysikalische Systeme entwickelt. Es wurde in den
vergangenen Jahren soweit verfeinert, dafl es inzwischen ein weites Anwendungsfeld
findet (Akkretionsscheiben, Kosmologie, kollidierende und wechselwirkende Galaxi-
en bis hin zu Supernova Explosionen). Da dieses Verfahren auch in der vorliegenden
Arbeit verwendet wird, soll in diesem Kapitel ein kurzer Uberblick iiber SPH gege-
ben, sowie der verwendete Computercode vorgestellt werden.

Die zentrale Idee ist, die Fliissigkeit in Gebiete (sog. Partikel) zu unterteilen,
welche sich unter dem EinfluB von duBeren Kréften und gegenseitigen Wechselwir-
kungen der Gebiete untereinander bewegen. In diesem Zusammenhang spricht man
héufig von Teilchen, was allerdings etwas irrefiihrend ist, da sie Reprisentanten aus-
gedehnter Gebiete sind und ihnen von daher noch andere physikalischen Groéflen,
wie z.B. Druck und Temperatur, zugeordnet werden. Durch die Einfithrung dieser
,,Pseudoteilchen” ist die Verwendung eines Gitters, wie bei finiten Differenzenme-
thoden nicht mehr nétig.

Die Vorteile dieser Methode sind :

1. Die Kontinuititsgleichung ist bei Massenerhaltung erfiillt.
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2. Probleme mit der Berechnung von Randwerten wie bei Gitterverfahren tre-
ten nicht auf, da auch bei unendlich grolen Raumgebieten keine kiinstlichen
Rinder eingefiihrt werden miissen.

3. Es entstehen keine zusétzlichen Fehler und Anisotropien durch Bevorzugung
der Gitterrichtungen.

4. Durch die Verwendung von Teilchen ist auch in Gebieten hoher Dichten (viele
Teilchen) eine hohe Ortsauflésung der physikalischen Groflen moglich, woge-
gen, im Gegensatz zu Gitterverfahren, keine Auswertung von Vakuumgebieten
stattfindet (keine Teilchen). SPH ist in dieser Hinsicht adaptiv.

2.2 Das Verfahren

Der zentrale Mechanismus von SPH ist die Unterteilung der Fliissigkeit in Pseudo-
teilchen. Dies wird durch einen Mittelungsprozef} erreicht, welcher folgendermafien
durchgefiihrt wird:

Sei f(r) eine in jedem Raumpunkt definierte physikalische Grofe, so wird der
gemittelte Wert an einem Ort 7 durch Vorschrift (2.6) berechnet,

< f@) = [ FEW (v = | R)dPr’ (2.6)

mit einem geeigneten Integrationskern W, welcher hier zur Einfachheit nur von
| —7' | und einer Linge h abhéingen soll. Die GroBe A trigt auch den Namen Smoo-
thing length und ist ein Maf fiir die Ausdehnung der Partikel bzw. charakterisiert
den Radius des Mittelungsgebietes.

Fiir den Kern W miissen die folgenden Einschrinkungen gelten:

/wmr—rwmmww =1 (2.7)
lllin(l)W(|r—r'|,h) = §(r—1) (2.8)

Der Fehler, welcher entsteht, wenn man die Funktionswerte f durch diese Mittel-
werte (f) ersetzt, ist von O (h?), was aus einer Taylorentwicklung von f folgt (siehe
Riffert et al. 1995).

Der grofle Vorteil von dieser Mittelung ist, dafl man ohne die genaue Kenntnis
der Funktion f auch den Mittelwert der partiellen Ableitungen bilden kann, indem
die Differentation durch partielle Integration der Formel (2.6) auf den bekannten
Integrationskern iibertragen wird.

<ai (r>> = [+ 1),

wW(r—r"| h)dP (2.9)

/
o4
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Die dabei auftretende Integrationskonstante f ist noch aus Symmetrieiiberlegun-
gen zu bestimmen. Zur Auswertung des Integrals (2.6) wird abermals eine Néherung
durchgefiihrt. Dazu wihlt man die Teilchendichte n als :

= ; 5(r —r?) (2.10)

und legt damit die Anzahl und den Ort der Stiitzstellen bzw. der Partikel fest.
Somit erhélt man fiir die Dichte an den Orten r; folgenden Ausdruck:

_m<§:5(7‘ —7‘;)> =m/§:6(r —r)W(r—o |,h)d(D)r' (2.11)

wobei m die vorher festgelegte und in diesem Falle konstante Teilchenmasse
bedeutet.

Allgemein ergibt sich fiir die Mittelwerte einer beliebigen Funktion f an den
Raumpunkten r; die Niherungsformel, wenn man das Integral (2.6) in eine Rie-
mannsumme umschreibt;:

o= 0y =S LW (s (2.12)

Fiir die Mittelwerte der partiellen Ableitungen folgt dann:

= (1) = z HeD S0 0 vy iy i) (219

Ty

2.2.1 Die Wahl des Integrationskernes

Aufler mit den Eigenschaften (2.9) wurde die Funktion W nicht genauer definiert. Bei
der Wahl dieser Funktion ist man an sehr wenige, spezielle Eigenschaften gebunden.
Verschiedene Ansiitze wurden im Laufe der Zeit vorgeschlagen (siehe Monaghan
1985 sowie Benz 1989), jedoch erwies sich ein ,,Spline Kernel” als der geeigneteste,
welcher hier durchgehend verwendet wird (Monaghan & Latanzio 1985). Dieser setzt
sich fiir die Berechnung in drei Dimensionen aus zwei Polynomen dritter Ordung
folgendermafen zusammen:

20 (1—6¢>+6¢%) : 0<¢g<
W(lri—r ) =W(g)=1{ 7ml-a° LS
0 sg>1
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und dessen Ableitung :

arz(—20+3¢%) : 0<q<3
W(g) = —mz(1—9)° 3<q¢<1 (2.15)
0 g>1
mit der dimensionslosen Grofie : q:= w

Das Verschwinden des Kerns und dessen Ableitung fiir Entfernungen gréfer als
die Smoothing length hat weitreichende Konsequenzen. So reduzieren sich die Sum-
men aus Gleichung (2.12) und (2.13) von der Gesamtzahl der Teilchen N auf Nj,
welche die Zahl der Teilchen angibt, die von Teilchen i maximal den Abstand h be-
sitzen. Dies hat zur Folge, daB jedes Teilchen nicht mit jedem wechselwirkt, sondern
nur mit einem Bruchteil davon. Man spricht vom Wechselwirkungsradius um Teil-
chen i. Der Vorteil, den man durch diese Wahl des Kerns erzielt, ist eine Absenkung
der Rechenzeit. Dadurch entsteht aber auch die Schwierigkeit, weitreichende Kréfte
wie die Gravitationskraft korrekt in den Formalismus mit einzubinden. Siehe dazu
Kapitel [2.3.3].

2.2.2 Variable Smoothing Lengths

Bei der Ableitung der partiellen Ableitungen fiir die Mittelwerte physikalischer
GroBen wurde in Gleichung (2.9) stillschweigend die rdumliche und zeitliche Kon-
stanz der Smoothing length A angenommen. Das ist aber eine unétige Einschrinkung
der rdumlichen Auflésung des Verfahrens.

Bei hochdynamischen Prozessen, wie bei der Kollision zweier protoplanetarer
Akkretionsscheiben, kann es vorkommen, dafl der mittlere Teilchenabstand der SPH
Partikel gréfier wird als die Smoothing length h der Teilchen und somit die Anzahl
der Wechselwirkungen zu gering wird um einen physikalisch relevanten Wert fiir die
Dichte zu erhalten.

Diese Situation kann vermieden werden, wenn die Smoothing length eines jeden
Teilchens in jedem Zeitschritt immer eine konstante Anzahl von Nachbarn enthélt,
also rdumlich und zeitlich variabel und somit adaptiv ist. Die damit verbundene
Korrektur von Gleichung (2.9) zu

(ot} = [(ir) = s Wi e = s TP (210

ist nur in Ausnahmefillen n6tig und wird daher in dieser Arbeit nicht verwendet.
Einen erheblich stirkeren Einflul auf die Genauigkeit der Mittelwerte hat die Anzahl
der nichsten Nachbarn. Ist diese zu gering, so sind die Observablen mit einem starken
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Rauschen belastet. Ist die Anzahl zu grof}, so sinkt die rdumliche Auflésung und
die Rechenzeit steigt stark an. Ein sinnvoller Kompromif} fiir die Anzahl néchster
Nachbarn ist N; oc N1/3.

Da auch bei hydrodynamischen Kriften (Volumen und Oberflichenkriften) das
Actio und Reactio Prinzip gilt, also die Gleichungen (2.12) und (2.13) asymmetrisch
bei Vertauschung der Indizes sein miissen, sollte bei Verwendung einer variablen
Smoothing length der Kernel mittels

Wa) = 5 (W(g) +W(g) (217)

symmetrisiert werden.

2.3 Die Bewegungsgleichungen

Wendet man nun den oben geschilderten Formalismus auf die Navier-Stokes- Glei-
chung an, so erhélt man die Bewegungsgleichungen aller Teilchen im Lagrangeschen
Bezugssystem

d ¥ (pi+pj > OWi
T \Vo); = —M + Qz s +
dt (va) S\ Pk ) 0z,
LT featern
3 R (2.18)

<
Il
—

mit den Abkiirzungen : W;; = W ('r’—;rd), Z,, als Koordinaten x, ¥y, 2 und 7, j stehen
fiir Teilchenindizes. );; bedeutet hier die Viskositit, auf deren Form in Kapitel [2.3.2]
genauer eingegangen wird. Bei Gleichung (2.18) handelt es sich nun um ein gewhn-

liches Differentialgleichungssystem, welches mit géngigen Integratoren geldst werden
kann (Press et al. 1992).

2.3.1 Die Zustandsgleichungen

Neben der Dichte mufl auch der Zusammenhang zwischen Dichte und Druck bezie-
hungsweise Temperatur mit einer Zustandsgleichung festgesetzt werden. In dieser
Arbeit werden verschiedene Typen verwendet, welche jeweils anhand der physikali-
schen Randbedingungen ausgewihlt werden.

e Isotherme Prozesse: P = c2p, ¢; = % bezeichnet die isotherme Schallge-
schwindigkeit.
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e Ideales Gas: P = (v — 1)u, mit u als innere Energiedichte und dem Verhéltnis
der spezifischen Wirmekapazititen v = ¢,/c,. Hierfiir ist die gleichzeitige
Integration der Energiegleichung notig.

e Isentrope Prozesse: adiabatische Zustandsgleichung P = K" und K = const.

2.3.2 Viskositat

Viskositét spielt in vielen astrophysikalischen Anwendungen eine dominierende Rol-
le, wie zum Beispiel bei der Entstehung von Schockfronten in Jets. Ebenso bestimmt
sie den Massen- und Drehimpulsflufl und dadurch das Temperaturprofil in Akkre-
tionsscheiben, was hier im Mittelpunkt stehen soll. Eine moglichst allgemeine und
physikalisch interpretierbare Formulierung ist also unabdingbar.

In den meisten astrophysikalischen Prozessen ist die molekulare Viskositéit auf-
grund der Teilchendichten zu gering, um den Prozefl mafigeblich beeinflussen zu
konnen. Energiedissipation ist in diesen Prozessen eine Folge von Turbulenz. Dar-
unter kann man die Verwirbelung des Fluids auf allen Skalen verstehen, wobei die
Energie sich kaskadenformig auf allen Groflenskalen verteilt (Landau & Lifshitz 1986)
und in den kleinsten Wirbeln dissipiert wird. Diese sogenannten Eddies konnen in
dem hier vorgestellten Verfahren jedoch nicht aufgelést werden. Daher mufl Ener-
giedissipation mittels einer kiinstlichen, beziehungsweise turbulenten Viskositit mo-
delliert werden.

Kiinstliche Viskositit

Urspriinglich wurde eine kiinstliche Viskositit benétigt, um im oben beschriebenen
SPH Verfahren Schocks zu simulieren, was ohne dissipative Terme nicht méglich ist.
Ein Ansatz ist, zu dem Impulstensor dimpfende Terme zu addieren, die proportional
und quadratisch zur Divergenz des Geschwindigkeitsfeldes sind:

Pa = —aolc,V - v (2.19)

und

ps = Bal?(V - v)? (2.20)

Dabei sind a und ( freie Parameter, welche die Stérke der Viskositdt steuern,
[ ist eine charakteristische Linge iiber die der Schock aufgelost werden soll. Typi-
sche Werte fiir die freien Parameter sind @ = 1 und 3 = 2. Die j-Viskositit (von
Neumann-Richtmeyer Viskositéit) findet ihren Einsatz im wesentlichen nur im hohen
Uberschallbereich. Sie verhindert bei hohen Geschwindigkeiten das wechselwirkungs-
freie Durchdringen der SPH-Teilchen. Bei dem o-Term (2.19) handelt es sich um eine
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Volumenviskositit mit einem nicht separierbaren Anteil an Scherviskositét, welcher
starke Oszillationen im hinteren Bereich der Schockfront verhindert.

Eine noch immer héiufig verwendete SPH Formulierung wurde erstmals von Gin-
gold & Monaghan 1977 vorgeschlagen. Der Term @;; in Gleichung (2.18), welcher
bisher noch nicht genauer spezifiziert wurde, ergibt sich zu:

Qi = —19% Oty , (2.21)
0ij
mit g;; = (0; + 0;)/2 und der mittleren Schallgeschwindigkeit ¢;; = (¢; + ¢;)/2
sowie

hVi; Ty
D w1 <0
pi =4 Tutm v (2.22)
0 VT > 0

mit v;; = v; — v; und r;; = r; — r;. Die Fallunterscheidung fiir y;; ist nétig um
einen Energiegewinn bei AbstandsvergroBerung der Teilchen zu vermeiden. Sie ist
also Ausdruck fiir den irreversiblen Charakter dieser Viskositéit. Hierbei verhindert
n? = 0.01h% numerische Singularitiiten des Terms yu bei kleinen Teilchenabsténden.

Viskositit nach Navier-Stokes

Die oben vorgestellte kiinstliche Viskositét ist aus mehreren Griinden unbefriedi-
gend. Zum einen ist die Wahl der Parameter  und 3 in weiten Bereichen frei
wihlbar und unterliegt somit keinen physikalischen Einschrinkungen. Zum anderen
ist die Unmdglichkeit einer Trennung von Volumen- und Scheranteil unbefriedigend.
Dies wird im besonderen bei der Simulation von Akkretionsscheiben eklatant, da
der Scheranteil der Viskositéit die radialen Profile der Temperatur 7'(r), Skalenh6he
H(r) und Leuchtkraft L(r) bestimmt. Desweiteren treten bei Akkretionsscheiben
keine Uberschallschockwellen auf, was den §-Term (2.20) iiberfliissig macht.

Aus den genannten Griinden wurde ein neuer Ansatz gewidhlt, der direkt die
Navier-Stokes Viskositét in den SPH-Formalismus tibersetzt (Flebbe et al. 1994, Ott
1995, Watkins et al. 1996). Dies hat den Vorteil, dafi nun Scher- und Volumenanteil
mit den physikalischen Parametern v und ¢ getrennt vorliegen. Der dissipative Teil
des Impulstensor hat in tensorieller Schreibweise die Form (Landau & Lifshitz 1986)

ov Jvg 2. Ov ov
.- o _ 25,00 9y 2.2
of =1 (3:55 i Oz, 360"3 3:57) T G0as 0z, (2.23)

Dabei mufl beachtet werden, dal die viskosen Effekte in protoplanetaren Ak-
kretionsscheiben nicht molekularen Ursprungs sind, sondern durch grofiskalige, tur-
bulente Gasstromungen entstehen. Fiir die kinematische Viskositdt v in protopla-
netaren Akkretionsscheiben kann man folgende Abschéitzung vornehmen. Fiir ein
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thermalisiertes Gas gilt fiir die kinematische Viskositdt v = 2 (Sommerfeld 1989)
Vmol & lmfVtherm, Wobei I, ¢ die mittlere freie Weglinge der Teilchen ist und vperm
ihre thermische Geschwindigkeit. Analog kann man fiir die turbulente kinematische
Viskositét l,,s als maximale Turbulenzzellengréfe, also die Skalenhthe der Akkreti-
onsscheibe H, annehmen sowie die Geschwindigkeit v mit der Schallgeschwindigkeit
¢cs approximieren. Fiir typische Werte von H = 5 AU und ¢, = 150 m/sec ergibt
sich fiir ein Wert von vy,

Veurs = Heg 5.0 - 1017 m?/sec (2.24)

Diese Form der Viskositéit kann analog zu der kiinstlichen Viskositdt in den SPH-
Formalismus iibersetzt werden (Watkins et al. 1996). Man erhélt fiir den viskosen
Teil der Beschleunigung auf Teilchen

d m 0 ij

L) = 5™ (10s + Grg) Vi 2.25

7 (Via) ;QiQi (Giag + Tjap) oz (2.25)
Mit der Abkiirzung:
N 1 Wi Wy 2 1y
Uzaﬂ_zk: o ([Uak Vai) B +[Uﬂk Uﬂl] 1, 35aﬂ [ka Uw] 0,

(2.26)

2.3.3 Eigengravitation und TREE-Codes

Der zeitaufwenigste Teil einer Simulation, der die Eigengravitation mit einschlief}t,
ist die Berechnung der Gravitationskrifte auf jedes Teilchen. Verwendet man in
einer Simulation sehr viele Teilchen, wird die Berechnung der Gravitationskréifte
durch eine Summation iiber alle Teilchen zu einem immensen Zeitproblem. So steigt
die Rechenzeit quadratisch mit der Teilchenanzahl N an, da fiir jedes Teilchen N —1
Kraftbeitrige berechnet werden miissen.

d M(|ri—r; |)(ri—1;) :
= —1....
dt GZ |rz—r] |3 ! ’

N (2.27)

Dies scheint bei Verwendung von sehr vielen Teilchen, wie es im Rahmen ei-
ner physikalisch interpretierbaren Simulation erforderlich ist, nicht mehr sinnvoll zu
sein. Aus diesem Grund ist man auf effizientere Algorithmen angewiesen, welche
die Gravitationskréfte in einer akzeptablen Zeit berechnen. Da ein Geschwindig-
keitszuwachs nur iiber Nidherungen erreicht werden kann, sollten sich zusétzlich die
dabei entstehenden Fehler in Grenzen halten. Diese Bedingungen werden von den
sogenannten TREE-Codes erfiillt, die physikalisch ausgezeichnete Teilchen zu einem
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iibergeordneten Node (Superteilchen) zusammenfassen. Dabei entsteht eine hierar-
chische Baumstruktur. Der in dieser Arbeit verwendete TREE-Code wurde erstmals
von Barnes & Hut (1986) sowie Hernquist & Katz (1989) implementiert. Er baut
die Baumstruktur folgendermaflen auf:

Das von den Teilchen eingenommene Volumen wird in 8 Kuben unterteilt, wovon
jeder einzelne Kubus wieder in 8 Kuben geteilt wird. Diese rekursive Unterteilung
wird solange fortgesetzt, bis sich in dem letzten Wiirfeln entweder ein oder kein
Teilchen mehr befindet (siehe Abbildung 2.1). Gleichzeitig werden bei jedem Iterati-
onsschritt physikalische Eigenschaften der Nodes (Wiirfel) wie Schwerpunkt, Masse,
Quadrupolmoment sowie die Gréfle berechnet.

Abbildung 2.1: Links: hierarchisch geschachtelte Kuben, wie sie bei einer bimodalen
Teilchenverteilung entstehen kénnen. Rechts: Baumstruktur, geordnet nach Hierar-
chieebenen, zur Ubersichtlichkeit 2-dimensional. Ausgefiillte Kreise sind Teilchen,
Ebenen sind die Nodes.

Zur Berechnung der Gravitationskrifte auf ein Teilchen ¢ fithrt man einen Auf-

l6sungsparameter
Durchmesser eines Nodes

= 2.2
Entfernung Teilchen ¢ zu Node (2.28)

ein, dessen Wert entscheidet, ob der Node zur Kraftberechnung auf Teilchen 7 her-
angezogen wird, oder ob der Node in seine Subnodes aufgeldst werden soll. Dieser
rekursive Prozefl beginnt im obersten Node (Root-Node) und endet, wenn entweder
das Auflésungskriterium nicht mehr erfiillt ist, oder Teilchen erreicht sind. Fiir
ergeben sich zwei einschrinkende Werte.

1. Geht 8 — 0, so werden alle Nodes aufgelést und der Algorithmus verhélt sich
wie die direkte N?-Methode, lange Laufzeit, keine Niherungsfehler.

2. Ist 8 = 27, so wird kein Node aufgel6st, also wird pro Teilchen nur ein Kraft-
betrag vom Root-Node berechnet, schnell, aber grofie Fehler.
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Testrechnungen (Hernquist & Katz 1993, Benz 1990, Brandl 1996) ergaben fiir
0.+ einen sinnvollen Kompromif3 zwischen Laufzeit und Fehler, wenn 6,,.;; zwischen
0.5...0.7 gewdhlt wird. Fiir diese Werte von 6,,;; ist die Anzahl der Kraftberechnun-
gen pro Teilchen dann o logg N, wobei N die Gesamtzahl der Teilchen ist. Dies
bedeutet fiir die Berechnung der Eigengravitation einen erheblichen Geschwindig-
keitszuwachs bei akzeptablem Fehler (< 10%).

2.4 Die Energiegleichung

Bei Zustandsgleichungen, die nicht nur von einer Groe (z.B. der Dichte) abhéingen,
sondern von mehreren (z.B. Dichte und Temperatur), benotigt man zusétzlich zur
Navier-Stokes Gleichung noch die Energiegleichung, da sonst das Differentialglei-
chungssystem nicht geschlossen ist. Bei polytropen Zustandsgleichungen und in Ab-
wesenheit innerer Reibung reduziert sich die Energiegleichung fiir die spezifische
Energie zu

K
w= ﬁéﬂ—l (2.29)

und im Falle isothermer Prozefirealisierung zu

w=kgT (2.30)

Werden jedoch Simulationen mit Viskositét durchgefiihrt, so muf}, um Energie-
erhaltung zu gewihrleisten, die Energiegleichung mitintegriert werden. Nach Uber-
setzung der Gleichung (2.4) in den SPH-Formalismus erhiilt man nach Benz

dui R 1
% = Q_Z2 ;mj'vij . VZVVZ] -+ 5 ;m]”vijnij . VZVVZ] (2.31)

Hierbei ist der erste Term in Gleichung (2.31) der PdV/dt Term des ersten Haupt-
satzes der Thermodynamik. Der zweite Term driickt den Energieverlust des Gases
durch Viskositét aus.

Unter der Annahme eines Schwarzen Koérpers und einer instantanen Abstrah-
lung der viskos erzeugten Energie Evisc, 148t sich daraus die Leuchtkraft L und die
damit verbundene effektive Strahlungstemperatur Tz der Teilchen berechnen. Der
Zusammenhang ist

Evisc 4

(2.32)

wobei A = 4mh? die Oberfliche des jeweiligen SPH-Teilchens ist.
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2.5 Implementierung

Der im Rahmen dieser Arbeit entwickelte SPH-Code ist eine Erweiterung des von
L. Hernquist bereitgestellten ,,N-Body Codes”. Dieses Grundmodul beinhaltet die
Berechnung der Gravitationskrifte nach der TREE Methode, das Suchen der &
néchsten Nachbarn und die Integration des N-Korper Systems mittels eines Runge-
Kutta Integrators. Der Code ist in FORTRAN 77 geschrieben und beinhaltet Op-
tionen fiir Vektorrechner.

Bei der Erweiterung des ,,N-body Codes” zu einem Hydrodynamik Code wurde
im besonderen Mafle auf Modularitéit geachtet, um einen hohen Grad an Flexibilitit
zu erreichen. Die Module ,,Viskositéit”, ,,Zustandsgleichung” und ,,duflere Krifte”
sind vollkommen austauschbar, wodurch sich dieser Code auf die verschiedensten
astrophysikalischen Situationen anwenden l48t. Eine schematische Codestruktur ist
in Abbildung 2.2 dargestellt.



2.5. Implementierung

19

mooOomm3o —

Integra-
tion

(Stefan-Boltzmann)

(r,v), Nachbarn | Dichte Zus_,tands-
' gleichung
Druck
Schallgeschw. [
- Eigengrav. l
auBere Krafte Druck- Viskositat
gradient
< Beschleuni- :—
gung i
T Grergintegration | dissipierte Energie
Temperatur
-t

Leuchtkraft

Abbildung 2.2: Schematischer Aufbau des SPH-Codes.
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Kapitel 3

Polytrope (Gasscheiben ohne
Zentralmasse

3.1 Uberblick

Seit langer Zeit ist bekannt, dal schnell rotierende, selbstgravitierende Objekte in-
stabil gegeniiber nicht rotationssymmetrischen Stérungen werden kénnen. Chandra-
sekhar (1969) zeigte die Existenz solcher Instabilitéiten anhand starr rotierender
MacLaurin Sphéren mit konstanter Dichte. Die von ihm dafiir entwickelten Tensor-
Virial-Gleichungen (TVE) erméglichen die Untersuchung nicht rotationssymmetri-
scher Stérungen bei rotierenden Polytropen mit unterschiedlichen radialen Dichte-
profilen (Ostriker & Mark 1968 und Bodenheimer & Ostriker 1973). Entwickeln sich
solche Rotationsinstabilitdten (man spricht dann von dynamischen Instabilitdten, im
Gegensatz zu sikularen Instabilititen, welche auf dissipative Effekte wie Viskositit
beruhen) auf einer Zeitskala, welche mit der dynamischen Zeitskala der Rotation
iibereinstimmt, kann es zu einem Zerfall des Objektes in mehrere kleine Fragmente
fithren.

Die meisten Untersuchungen der Instabilitéiten differentiell rotierender, selbstgra-
vitierender Polytropen wurden bisher nur mit den linearisierten hydrodynamischen
Gleichungen durchgefiihrt, welche aber mit den analytischen Anséitzen der Tensor-
Virial-Gleichungen iibereinstimmen. Eine zufriedenstellende Behandlung des nichtli-
nearen Regimes der Instabilititen sowie die Untersuchung grofler Dichtevariationen
(6p/p =~ 1) lagen bisher jedoch noch nicht vor. Erst das Aufkommen leistungsstarker
Computer und Algorithmen erméglicht die numerische Simulation solcher Systeme
bis weit in den nichtlinearen Bereich hinein. Trotz der divergierenden Ergebnis-
se verschiedener Computercodes (Teilchenmethoden, finite Differenzen Methoden)
wurden vielversprechende Ansétze gemacht, siehe zum Beispiel Toman et al. (1998).

In diesem Kapitel wird der in Kapitel [2] vorgestellte Code auf Massenvertei-
lungen angewendet, die keine Zentralmasse besitzen. Als erstes Beispiel dient eine

21
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kugelférmige Massenverteilung, welche in den analytisch bekannten Gleichgewichts-
zustand relaxiert. Bevor dieser erreicht ist, schwingt die Sphiire mit analytisch gege-
bener Frequenz um ihre Gleichgewichtslage. Die dissipative Wirkung der Viskositét
ermoglicht das Erreichen des hydrostatischen Gleichgewichtes. Im zweiten Teil dieses
Kapitels folgt die Simulation einer scheibenartigen, anfinglich rotationssymmetri-
schen Massenverteilung mit vorgegebener Drehimpulsverteilung. Dabei soll eine glo-
bale Balkeninstabilitidt angeregt werden und die charakteristische Anstiegszeit sowie
die Rotationsfrequenz dieser Instablitit festgestellt werden. Die Werte wurden mit
numerischen Simulationen von Pickett, Durisen und Bate ebenfalls berechnet und
sollen mit den hier ermittelten verglichen werden.

Durch dieses Vorgehen wird nicht nur der gravitative Teil des Codes im stati-
schen und dynamischen Fall getestet, sondern es bildet auch das Fundament fiir
die Untersuchung nicht achsensymmetrischer Instabilitdten kompressibler viskoser
Fluide im nichtlinearen Bereich.

3.2 Sphirisch symmetrische Polytropen ohne Dreh-
impuls

Bevor die Simulation rotierender Polytropen diskutiert wird, soll anhand einer sphér-
isch symmetrischen Massenverteilung ohne spezifischen Drehimpuls der verwendete
Code getestet werden. Fiir den Fall von polytropen Zustandsgleichungen der Form
p = K" und K = const. existieren analytische Losungen der Dichteverteilung,
die unabhéngig von Lane und Emden gefunden wurden. Bei kleinen Stérungen der
Gleichgewichtsverteilung kann auch ein Zusammenhang zwischen mittlerer Dich-
te und Schwingungsdauer des Polytropen angegeben werden (Ein-Zonen-Modell).
Dieser Zusammenhang fiihrt auch auf eine Perioden-Massen-Beziehung, die auf ¢-
Cepheiden Veréinderliche angewendet werden kann. Damit kann der Code im stati-
schen sowie im dynamischen Fall durch ein einfaches Modell getestet werden und
dient somit als Grundlage fiir weitergehende Simulationen, die gravitative Instabi-
litdten und hochdynamische Prozesse reproduzieren sollen.

3.2.1 Der Gleichgewichtszustand: Lane-Emden Gleichung

Um den Gleichgewichtszustand der polytropen radialsymmetrischen Sphére mit vor-
gegebener Masse M und ZustandsgréBe K zu finden, geht man vom hydrostatischen
Gleichgewicht aus.

P

2T - 2 1
dr er (3.1)
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Zusétzlich ist die Poissongleichung in Radialkoordinaten fiir das Gravitationspo-
tential ® zu l6sen.

1 0]
4 (o

- 1 =4 2
T2 dr dr > mGe (3-2)

Mit P = K" koénnen diese beiden Gleichungen zu

d® do
— = —yKg"?—= 3.3
dr The dr (3-3)

zusammengefaBt und integriert werden. Dabei ergibt sich zwischen Gravitationspo-
tential ® und der Dichte ¢ der Zusammenhang

o= (frm) o

wobei der Polytropenindex n = L eingefiihrt wurde. Setzt man diese Beziehung
in die Poissongleichung ein, erhélt man folgende Gleichung:

d*® 1 do - "
T — Y R 3.5
dr2+r2 dr 7TG((TL-I—l)K) ’ (3-5)

welche mit

AnG n—1 0 ”
= 2 = n = —_—
z=Ar, A= D) on, w (Qc> (3.6)

dimensionslos gemacht wird. Dadurch ergibt sich die Lane-Emden Gleichung fiir
die Variable w:

Cw  2dw
dz2 * z dz T = (37)
Dabei gilt bei r = 0 (z = 0) die Randbedingung ¢ = g., beziehungsweise w = 1.
Eine weitere Randbedingung erhilt man durch die Bedingung, dal w bei 2 = 0
endlich bleiben soll, also w’ (0) = 0.
Zur Losung dieser Gleichung bietet sich ein Potenzreihenansatz der Form w =
> a;7* an (Chandrasekhar 1942). Fiir den Polytropenindex n = 3/2 (v = 5/3) erhilt
man fiir w

1 1

In Abbildung 3.3 ist die radiale, auf eins normierte, Dichteverteilung w" fiir
n = 3/2 dargestellt.
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Abbildung 3.1: Modell zur Ein-Zonen Niherung. Die gesamte Sternmasse ist im
Zentrum konzentriert und die schwingende Masse wird als konzentrische Kugelschale
angenommen. Dazwischen befindet sich masseloses Gas mit dem Druck P.

3.2.2 Radiale Schwingungen nichtrotierender Polytropen

Zur Beschreibung von Schwingungen dieser Polytropen mufl man die dynamischen
Gleichungen der Hydrodynamik heranziehen.
d? M, dP
r qMre _

Cauz T 72 dr
Diese Gleichung ist jedoch in vollem Umfang auch nur numerisch zu l6sen, so
daf} eine vereinfachende Annahme gemacht wird, das sogenannte Ein-Zonen Modell.
Hierbei geht man davon aus, dafl die gesammte Masse der Kugel in einem Punkt
konzentriert ist und von einer konzentrischen und diinnen Massenschale der Masse
m umgeben ist, welche die schwingende Masse représentieren soll (siche Abb. 3.1).
Der Inneraum zwischen Massenpunkt und -schale soll mit einem masselosen Gas mit
dem Druck P gefiillt sein, der die Massenschale vom gravitativen Kollaps abhalten
soll. Newtons zweites Gesetz liefert fiir diese Anordnung

(3.9)

md2—R = —GMm

dt? R?

Linearisierte Gleichungen erhélt man, wenn man nur kleine Abweichungen von
der Gleichgewichtslage von Druck und Radius zuléft.

— 4TR2P (3.10)

R=Ry,+6R P=DP,+6P (3.11)

Einsetzen in die Impulsgleichung mit der Ndherung
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1 1 OR
— =~ — |1 -2 3.12
(Ro+0R)” ~ R} ( Ro> (0:12)
fiihrt auf
d? (6R) 2Mm 9
M = -G IR R + 87 RyPyéR + An RS P (3.13)
0

Unter der obigen Annahme, daf} die Zustandsinderungen adiabatisch sein sollen,
reduziert sich diese Gleichung auf die eines harmonischen Oszillators.

d? (6R) GM
- _ —4 il 14
mit der Kreisfrequenz
GM
w? = (3y—4) — (3.15)
Rj

was einer Periodendauer von

2
1= “ (3.16)

\/%ﬂ'GQO (3y —4)

entspricht. Dabei bedeutet gy die mittlere Dichte der Sphére und -y ist der Poly-
tropenexponent.

Anhand dieser Gleichungen erkennt man, dafi nur Objekte mit v > 4/3 dyna-
misch stabil sind, andernfalls wird die Kreisfrequenz w imaginir und die Schwin-
gungsamplitude wichst damit exponentiell an und ist somit dynamisch instabil. Als
Beispiel kann hier der isotherme Kollaps am Anfang der Bildung von protostellaren
Kernen aus Molekiilwolken herangezogen werden (optisch diinne Phase).

Wendet man diese, auf einfache physikalische Zusammenhénge beruhende Glei-
chungen auf einen typischen §-Cepheiden Verénderlichen an, so ergibt sich fiir eine
Masse von M = 5M und einem Radius R = 50R, eine Periodendauer von II = 50
Tagen, was im Bereich der beobachteten Periodendauern liegt.

3.2.3 Simulation

Als Anfangsbedingung wird eine Sphire mit Radius R = 10 AU gewihlt, welche
eine konstante Dichte hat. Die Masse betrigt M = 5Mjypiter. Die Parameter der
Zustandsgleichung werden mit K = 0.5 und v = 5/3 festgelegt, entsprechen damit
einem monoatomaren idealem adiabatischen Gas. Als numerische Gréfie fliefit hier
nur die angenommene Zahl von N = 5000 SPH-Teilchen mit einer Anzahl von
60 wechselwirkenden Nachbarn ein. Die hier verwendeten Einheiten fiir Masse und
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Abbildung 3.2: Zeitlicher Verlauf der Dichte im Zentrum der Kugel. Die Maxima
der Dichte haben ein dquidistanten Abstand von 7' = 19 Zeiteinheiten (TU).

Linge, sowie die Annahme, da G = 1 ist, ergeben fiir die daraus resultierende
Zeiteinheit (TU) einen Wert von 21.7 Jahren.

Um dieser Konfiguration die Relaxation in den Gleichgewichtszustand zu erlau-
ben, wird aus numerischen Griinden mit einer kiinstlichen Viskositéit nach Monaghan
mit den Standardwerten @ = 1.0 und 3 = 2.0 gerechnet. Sie soll keiner physikali-
schen Bedeutung zukommen, sondern nur als Ddmpfung wirken.

In Abbildung 3.2 ist fiir den oben beschriebenen Satz von Parametern die Dichte
im Zentrum g, iiber die Zeit in Jahren aufgetragen. Deutlich erkennt man die erwar-
tete geddmpfte Schwingung mit einer Periodendauer von Il;,, = 19 Zeiteinheiten
(TU) (= 412 Jahre). Vergleicht man dies mit dem analytischen Wert von II = 21.2
TU (= 460 Jahre), stimmt dies bis auf etwa 5% iiberein. Die Abweichungen lassen
sich aufgrund der Annahme des Ein-Zonen Modells leicht erkldren, denn es han-
delt sich nicht um sehr kleine Auslenkungen aus der Gleichgewichtslage, wie bei der
Herleitung der Periodendauer vorausgesetzt wurde.

Nach einiger Zeit stellt sich der Gleichgewichtszustand zwischen Druck und Gra-
vitationskraft ein, was zu dem Dichteprofil in Abbildung 3.3 fiihrt. Dort wurde die
normierte SPH-Dichte i{iber den skalierten Radius aufgetragen. Zum Vergleich ist
die analytische Losung w®? eingezeichnet. Diese stimmen ohne grofe Abweichun-
gen iiberein.

Die Ubereinstimmung der Ergebnisse von Simulation und Berechnung in diesem
Fall ist die Voraussetzung der im néchsten Kapitel beschriebenen Simulation von
rotierenden polytropen Gasscheiben, bei welchen es keine einfachen analytischen
Anséitze mehr gibt.
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Abbildung 3.3: Radialer Verlauf der auf 1 normierten Dichte, wie er sich aus der Si-
mulation ergibt (rote Kurve). Die schwarzen Rauten geben den Dichteverlauf gemi8
der Lane-Emden Gleichung an.

3.3 Rotierende Polytropen

Die Stabilitit selbstgravitierender polytroper und dabei rotierender Sphéren ist in
vielen Bereichen der Sternentstehung und Sternentwicklung von zentralem Interesse.
So wurde zum Beispiel die Entstehung enger Doppelsternsysteme auf das Zerbrechen
eines einzelnen, schnell rotierenden Sternes zuriickgefiihrt. Dieser als Fission-Theorie
bekannte Entstehungsmechanismus 16ste zahlreiche Untersuchungen auf diesem Ge-
biet aus, mufite allerdings wieder verworfen werden (Durisen et al. 1986). Die dabei
auftretenden mathematischen Schwierigkeiten in der Behandlung solcher Fluide be-
schrinkten die ersten Ansétze auf nichtviskose inkompressible Fliissigkeiten, die in
Chandrasekhar (1969) ausfiihrlich behandelt werden.

Das Aufkommen leistungsstarker Computer ermdglichte eine Verallgemeinerung
und Erweiterung des Problemes auf eine Fiille astronomischer Objekte, wie schnell
rotierende und akkretierende Neutronensterne und Weifle Zwerge in Rontgendoppel-
sternen (Houser et al. 1994). Ein weiteres grofes Anwendungsgebiet findet sich in
der Galaxiendynamik. Die in vielen Galaxien auftretende Spiral- oder Balkenstruk-
tur wird auf eine globale, gravitative Instabilitit zuriickgefiihrt (Lin-Shu Hypothese,
Lin& Shu 1964). Mehrere Simulationen galaktischer Scheiben bestétigten diese Ver-
mutung, sieche dazu Hohl (1971) sowie Sellwood & Carlsberg (1984). Desweiteren
zieht man nichtachsensymmetrische Instabilitdten als Triggermechanissmus fiir die
Entstehung von Planetensystemen in Betracht.

Die hier behandelte globale nichtachsensymmetrische Instabilitét rotierender Po-
lytropen wurde im nichtlinearen Bereich fiir den nichtviskosen Fall mithilfe der Ten-
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sor Virial Gleichungen behandelt (siehe Tassoul 1978). Andere Autoren fiihrten Si-
mulationen bis in den nichtlinearen Bereich hinein durch (Houser et al. 1994). Als
kritische Parameter fiir die Entstehung nichtachsensymmetrischer Moden p/gy o
exp (imy) haben sich die Verhiltnisse « aus Rotationsenergie 7' und Gesamtenergie
W a=T/|W|sowie § = U/ |W| erwiesen (U ist die gravitative Energie). Pickett et
al. 1996 zeigten, daf fiir Systeme mit dem Polytropenindex v = 5/3 die Instabilitét
erst im Bereich von o = 0.2...03 einsetzt. Toman et al. 1998 schrinkten diese Berei-
che fiir die verschiedenen Moden m = 2, 3, 4 weiter ein. Trotz aller Bemiihungen fehlt
eine quantitavie Analyse der Instabilitit im nichtlinearen Bereich bis jetzt. Beson-
ders eklatant wird dies im Falle viskoser Fluide, wo verschiedene Codes abweichende
Ergebnisse produzieren (Durisen et al. 1996).

3.3.1 Die m =2 Mode

In diesem Teil soll ein kurzer Uberblick iiber den Entstehungsmechanismus von spi-
ralférmigen Strukturen in N-Ko6rpersystemen gegeben werden. Eine detaillierte Be-
schreibung ist im allgemeinen sehr kompliziert und kann in entsprechender Literatur
nachgeschlagen werden (z.B. Binney & Tremaine 1987).

Vorraussetzung fiir das Entstehen gravitativer Instabilitdten ist das Vorhanden-
sein kleiner Stérungen der anfinglich kreisférmigen Teilchenbewegung um den ge-
meinsamen Schwerpunkt des Systemes. Bei vielen Computersimulationen reicht in
den meisten Fillen die Integratorungenauigkeit aus, um Instabilitdten anzuregen.
Bei kleinen Stérungen der zirkularen Bewegung €2 des Teilchens schwingt dieses mit
der charakteristischen Epizyklenfrequenz x um die ungestorte Teilchenbahn. Eine
Taylorentwicklung des effektiven Gravitationspotentials um die ungestérte Bahn rg
ergibt:

2 _ Py
or?
Fiir die Epizyklenfrequenz  findet man ein Bezugssystem mit der Umlauffre-
quenz €', in welchem die Teilchenbahn geschlossen ist. Dabei gilt

(3.17)

mQ =nk (3.18)

wobei n, m ganze Zahlen sind. Dieses rotiert dann, von auflen betrachtet, mit der
Frequenz

n
Q- QI = Qpattern =0 - EK} . (319)

Fiir diese Frequenz hat sich der Begriff ,,Pattern Speed” eingebiirgert. In Abbil-
dung 3.4a ist die elliptische Bahn eines Teilchens fiir n = 1, m = 2 im mitrotierenden
Bezugssystem dargestellt.
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Abbildung 3.4: a.) Geschlossene Teilchenbahn (gestrichelt) im mitrotierenden Be-
zugssystem (Qpasern) fiir eine m = 2 Mode. Zusétzlich sind die ungestorten Teil-
chenbahnen eingezeichnet (durchgezogene Linien). b.) Spiralstruktur wie sie sich aus
der kohdrenten Schwingung vieler Teilchen im mitrotierenden Bezugsystem ergibt.

Betrachtet man eine aus vielen Teilchen aufgebaute rotierende Scheibe, deren
einzelne Teilchen mit der Epizyklenfrequenz schwingen, kommt es durch die gra-
vitative Kopplung der Massen untereinander zu einem kohérenten Schwingungs-
muster . Solch eine kohiirente Struktur fiir m = 2 ist in Form einer Spirale in
Abbildung 3.4b dargestellt. Durch die Massenumverteilung werden im effektiven
Potential des Gesamtsystemes Quadrupolmomente (und deren Harmonischen) in-
duziert, die verstirkend auf die anfangs kleinen Stérungen wirken. Das System wird
somit instabil. Eine Grenze des Anwachsens dieser Instabilitit ist dann erreicht,
wenn die Stérungen und somit die Geschwindigkeitsdispersion der Teilchen mafigeb-
lich die Teilchenbewegung bestimmen, was einem Autheizen der Scheibe entspricht
(Sellwood & Carlsberg 1984, Toomre 1964).

3.3.2 Anfangsbedingungen

Wie oben dargelegt, haben die Koeffizienten o und [ einen entscheidenden Einflufl
auf die Stabilitit der Scheibe. Eine schnell anwachsende m = 2 Mode, welche eben-
falls hohere Harmonische (m = 2,4, ..) anregt, erhélt man mit der folgenden Wahl
von o und 3 :

a=T/W|=03 und B=U/|W|=0.2 (3.20)

Mit diesen Werten wurde bei Vorgabe des Polytropenindex ~ eine Gleichge-
wichtskonfiguration mittels eine SCF-Codes (Self Consistent Field) berechnet (Bo-
denheimer & Ostriker 1973). Diese Gleichgewichtsscheibe dient als Anfangsbedin-

! Analytisch wird dies durch die Eigenschwingungen eines eigengravitierenden Ringes aus Punkt-
massen erfaf$t (siehe dazu Fahr & Willerding 1998).
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Tabelle 3.1: Zusammenfassung wichtiger Parameter der Anfangskonfiguration fiir
die polytrope Scheibe

a=T/|W| 0.3
B=U/W| 0.2
Polytropenindex () | 5/3
Masse (M) 1
Radius (R) 12 (pu)

gung fiir die hier durchgefiihrte Simulation. Wichtige Parameter dieser Konfigura-
tion sind in Tabelle 3.1 aufgelistet. Alle Werte sind in polytropen Einheiten (pu)
(G =M = K =1). Die Umrechnung in astrophysikalisch niitzliche Einheiten kann
mit den folgenden Formeln durchgefiihrt werden.

R(AU) 7.93(M/My)~Y3(K/10%¢gs) R(pu) (3.21)
t(sec) 3.55(M/Mg) " (K /10 ¢gs)>/*t(pu) (3.22)
Q(sec™) = 2.82(M/Mg)' (K/10%cgs)~3/*Q(pu) (3.23)
o(gem™) = 1.19(M/Mg)*(K/10"cgs) > o(pu) (3.24)

Besondere Schwierigkeiten bei der Initialisierung des SPH-Codes entstanden da-
durch, dal die Massen und Drehimpulsverteilung des SCF-Codes auf einem Gitter
definiert sind. Diese Verteilungen mufiten auf eine Teilchenverteilung umgerechnet
werden. Herkémmliche Monte-Carlo Methoden zur Teilchenverteilung konnten nicht
verwendet werden, da die so berechneten Verteilungen die Fourieramplituden aller
Moden stark verrauschten (siehe Kapitel [3.3.4]). Um dies zu vermeiden wurde hier
eine andere Methode verwendet. Dazu wird das Simulationsgebiet in konzentrische
Kreisringe (r;,2;) eingeteilt, deren Masse durch die Massenverteilung des SCF-Codes
bekannt ist. Innerhalb dieses Kreisringes wird nun eine ungerade Anzahl von Teilchen
mit einem konstanten Abstand A¢ verteilt, bis die erforderliche Masse erreicht ist
(die Wahl einer ungeraden Teilchenanzahl minimiert die geraden Multipolmomente
der Massenverteilung betréchtlich). Eine kiinstliche Phasenkohéirenz der Teilchen-
ringe wird durch die Addition einer zufilligen Phase ¢, fiir jeden Ring vermieden.
Diese Methode senkt die Fourieramplituden der gesamten Massenverteilung um bis
zu zwei GroBenordnungen.

Die so in eine Teilchenverteilung umgerechnete Anfangsbedingung ist in Abbil-
dung 3.5 dargestellt.
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Anfangsbedingung:

Teilchenanzahl: 49680

Viskositit: kiinstlich mit a=1.0, f=2.0
Polytropenindex: y=5/3

Polytrope Einheiten: M=G=K=1

Dichte in der Mittelebene in pu
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Abbildung 3.5: Zusammenfassung der Anfangsbedingungen der rotierenden poly-
tropen Scheibe. a.) Radialer Verlauf der Rotationsfrequenz Q(r). b.) Funktion der
Dichte in der Scheibenmittenebene. c.) Dichteverteilung in der r-z Ebene. Der Zu-
sammenhang zwischen Farbgebung und Dichte ergibt sich fiir » = 0 aus Bild b.
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Code Details

e In dieser Simulation wird eine Teilchenzahl von N = 49680 verwendet, was
eine geniigend hohe rdumliche Auflésung ermoglicht.

e Aus Konsistenzgriinden zu anderen Simulationen von Bate und Durisen wird
hier die kiinstliche Viskositéit nach Monaghan (siehe Gleichung (2.21)) mit den
gingigen Parametern fiir & und 3 verwendet. Zusétzlich wird die Energieglei-
chung mitintegriert, aus der dann die Druckberechnung nach p = (v — 1)u
erfolgt, wobei u die innere Energiedichte ist.

e Da die Entwicklung der Instabilitit auf einer dynamischen Zeitskala erfolgt,
werden nicht polytrope Einheiten (pu) fiir die Definition der Zeiteinheit ver-
wendet. Als passende Zeiteinheit hat sich die anfingliche Umdrehungszeit im
Scheibenzentrum erwiesen, abgekiirzt CIRP (Central Initial Rotation Period),
wobei gilt: 1 CIRP = 83.9 t(pu).

3.3.3 Simulation: Bildung der Balken Instabilitit

Um die oben beschriebene Balken-Instabilitéit anzuregen, mufl der Gleichgewichts-
zustand leicht gestért werden. In den Codes von Pickett und Durisen wird dazu
dem Dichtefeld ein kleines Storfeld iiberlagert. In dem hier verwendeten Code ist
das durch die inhéirenten Dichtefluktuationen des SPH Schemas nicht nétig. Diese
Dichtefluktuationen erzeugen iiber die polytrope Zustandsgleichung Druckgradien-
ten, die Epizyklenschwingungen der Teilchen hervorrufen.

Aus Abbildung 3.6, in der die Dichteverteilung in der Scheibenebene zu verschie-
denen Zeiten dargestellt ist, erkennt man, dafl schon nach kurzer Zeit eine eindeutige
Storung der Rotationssymmetrie auftritt. Nach 7' = 10 CIRP tritt klar die kohérente
Spiralstruktur hervor, deren Stéirke bei fortschreitender Zeit etwas nachléft.

3.3.4 Simulation: Fourieranalyse

Die in Abbildung 3.6 dargestellte Dichteverteilung legt eine Analyse mittels der
Fouriertransformation nahe. Dabei soll die Dichteverteilung zu jedem Zeitpunkt %;
folgendermafen transformiert werden:

1 .
/ o(r,t) e™edV (3.25)
ges

A (t) =
)=+

mit der zeitabhéingigen und komplexen Amplitude A, (¢;). m ist hier die azi-
mutale Modenzahl, welche in dieser Analyse Werte von m = 1,...8 annehmen soll.
Hohere Moden werden nicht untersucht, da sie fiir die Balkeninstabilitit m = 2
keine Rolle spielen.
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time = 9,47950 CIRP time = 9,95576 CIRP

time = 10,4320 CIRP time = 10,°

time = 11,3846 CIRP time = 11,

Abbildung 3.6: Dichteverteilung in der r-¢ Ebene zu verschiedenen Zeiten, wobei
die Farbkodierung der in Abbildung 3.5 entspricht. Die Rotationsrichtung erfolgt
entgegen dem Uhrzeigersinn.
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fourier coefficients of m=1,2,3,4,6
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Abbildung 3.7: Verlauf der Fourieramplituden fiir verschiedene Modenzahlen m,
aufgetragen iiber die Zeit in halblogarithmischer Darstellung.

Aus der komplexen Amplitude A,, (;) erhilt man folgende Informationen:

e Der Betrag |A,, (t;) | bezeichnet die Intensitét der Storung. Aus dieser wird
die charakteristische Anwachsrate o, bzw. die Anwachszeit 7, = 1/a,, der
Storungen mit Symmetrie m errechnet.

o Aus dem Phasenwinkel

6 (1) = arctan (%ﬂ) (3.26)

m

erhilt man fiir jede Mode m die Pattern Speed 2, iiber die Relation

P,
m = ] 2
mAt (3-27)

wobei At die Zeitdifferenz angibt.

Aus den Simulationsdaten, die sich iiber 300 dquidistante Zeitabschnitte er-
strecken, erhélt man nach der Fouriertransformation die in Abbildung 3.7 und 3.8
gezeigten Verldufe der Amplitude und des Phasenwinkels.
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Abbildung 3.8: Abhingigkeit des Phasenwinkels ¢ von der Zeit, fiir die Mode m = 2.
Die Absténde zweier Maxima definiert die Prézessionsfrequenz Qpgttern, der Balken-
instabilitét (siehe Text).

Ergebnisse der Fourieranalyse

Vergleicht man die zeitliche Entwicklung der Dichte (Abbildung 3.6) mit Simula-
tionen von Hohl (1971), Sellwood & Carlsberg (1984) und Monaghan & Lattanzio
(1985) stellt man eine qualitative Ubereinstimmung der Ergebnisse fest, die anhand
der Anwachsraten und der Priizessionsfrequenz genauer iiberpriift werden soll. Star-
ke Abweichungen im nichtlinearen Bereich gegeniiber Simulationen von Bate und
Durisen, wiren dann eindeutig auf den gravitativen Teil des SPH-Codes zuriick-
zufiihren.

Anwachsraten Die Bestimmung der Anwachsraten «, fiir jede Modenzahl m er-
folgt aus der zeitlichen Abhéngigkeit der Amplituden A,, in Abbildung 3.7. Nachdem
der Einschwingvorgang beendet ist und die Massenelemente beginnen, kohirent zu
schwingen, erkennt man ein steiles Anwachsen der geraden Moden m = 2,4 und 6.
Dieses ist im Bereich von ¢ = 2...10 CIRP exponentiell, was eine Definition der
Anwachsrate iiber A,, o exp (ay,t) ermoglicht. Die Methode der kleinsten Fehler-
quadrate liefert fiir die angepafiten Werte von «,, die in Tabelle 3.2 dargestellten
Anwachsraten und deren Fehler.

Fiir die ungeraden Moden m = 1,3 und 5 erkennt man keinen signifikanten An-
stieg, was durch die Abwesenheit duflerer Felder und induzierter Dipolverteilungen
erwartet wurde.
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Tabelle 3.2: Ermittelte Anwachsraten « fiir die Moden m =1, ...8

Modenzahl m | Anwachsrate « in 1/CIRP | Fehler
m=1 - k.A.
m =2 0.76 8%
m=3 - k.A.
m=4 1.15 12%
m=35 - k.A.
m=26 1.45 12%
m =38 1.5 14%

Prézessionsfrequenz Die Ermittlung der Préizessionsfrequenz {),,sern, und der
Prizessionsperiode P = 27 /Qpgttern Wird hier nur fiir die Mode m = 2 durchgefiihrt,
da die Frequenzen der héheren Moden fiir die Balkeninstabilitdt ohne Belang sind.
Aus der Abbildung 3.8 erscheint die Prézessionsperiode P der Balkeninstabilitéit
als Abstand zweier Maxima des Phasenwinkels, multipliziert mit der Symmetrie m
der Mode. Als mittlere Préizessionsfrequenz und -periode erhéilt man die Werte:

1
CIRP

P =3.05CIRP bzw. Quuern = 2.06

3.3.5 Vergleich mit anderen Simulationen

Die oben beschriebene Simulation wurde im Rahmen einer Zusammenarbeit mit
Durisen und Bate gewonnen. Das Ziel dieser Kollaboration ist die Simulation der
Balkeninstabilitdt mit verschiedenen numerischen Verfahren. Ausgehend von einer
einheitlichen, fest definierten Anfangsbedingung soll deren dynamische Entwicklung
verglichen werden. Die dabei verwendeten Codes kénnen in zwei Gruppen unterteilt
werden:

e Gitterverfahren (Durisen & Pickett), das auf einem zylindrischen Gitter (64°
Zellen) und endlichem Gebiet die hydrodynamischen Gleichungen mit einer
gitterspezifischen kiinstlichen Viskositit 16st. Die Beschrinkung auf ein end-
liches Simulationsgebiet zwingt zur Einfiihrung einer dufleren Randbedingung
und grenzt sich damit wesentlich von den Teilchenmethoden ab.

e Teilchenmethoden: Der SPH-Code von Bate unterscheidet sich zu dem hier ver-
wendeten Code im wesentlichen durch die Wahl der Viskositéit. Diese enthélt
einen gréferen Beitrag an Scherviskositdt im Vergleich mit der hier verwen-
deten Standartviskositdt nach Monaghan. Auf die weiteren Unterschiede in
der Wahl des Integrators und der Festsetzung des Wechselwirkungsradiuses
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eines SPH-Teilchens sowie die unterschiedlichen Eigenschaften der verwende-
ten TREE-Codes soll hier nicht weiter eingegangen werden (n#heres in Bate,
1993), stellen aber zwei hiufig benutzte und unterschiedliche Realisierungen
des SPH-Schemas dar.

Die oben beschriebenen Unterschiede der numerischen Verfahren sollten sich im
Idealfall nur wenig in den Resultaten fiir die Anwachsraten «,, und den Prézessi-
onsperioden P widerspiegeln. Stellt man die aus den verschiedenen Simulationen ge-
wonnenen Prézessionsperioden fiir m = 2 gegeniiber (siehe Tabelle 3.3) so bestétigt
sich die vermutete Ubereinstimmung bis auf kleine Abweichungen.

Tabelle 3.3: Gegeniiberstellung der Priizessionsperioden F,,—, in CIRP’s fiir ver-
schiedene numerische Methoden.

Gittermethode | SPH (Bate) | SPH
Prattern | P = 2.95 P=29 |P=305

Vergleicht man die Anwachsraten «, der Moden m = 2,4,6 und 8 (siehe dazu
Tabelle 3.4) fiir die verschiedenen Verfahren, so stellt man systematische Abwei-
chungen der Werte fest, vor allem betrifft dies die verschiedenen SPH-Codes.

Tabelle 3.4: Gegeniiberstellung der Anwachsraten ¢y, (m = 2,4,6,8) in 1/CIRP
fiir verschiedene numerische Methoden.

Gittermethode | SPH (Bate) | SPH
m=2 a=1.1 a=0.9 a=0.76
m=4 a=14 a=1.3 a=1.15
m=206 a=1.6 a=1.>5 a=1.45
m=28 - - a=1.>5

Der in dieser Arbeit verwendete Code liefert im Allgemeinen kleinere Anwachs-
raten fiir alle Moden. Dieser unerwartete Unterschied wird verstédndlich, betrachtet
man die Wirkung der Viskositdt auf die Dynamik des Systems. In diesen Simula-
tionen, bei denen keine nennenswerte Kompression des Materials auftritt, spielt der
B-Teil der Viskositéit (Volumenviskositéit) nur eine untergeordnete Rolle. Der Haupt-
teil der Energiedissipation tritt aufgrund der Verscherung des Gases durch die diffe-
rentielle Rotation auf. Eine stirkere Scherviskositét fithrt notwendigerweise zu einer
hoheren Energiedissipation und somit zu einer gréfleren Geschwindigkeitsdispersion
der Massenelemente. Betrachtet man die durch die Energiedissipation hervorgeru-
fene Geschwindigkeitsdispersion als zusétzliche Stérung der Gleichgewichtsbahnen
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Dichteverteilung Teilchenverteilung

Abbildung 3.9: Dichte und Teilchenverteilung am Ende der Simulation nach 7" = 23
CIRP’s. Im Innenbereich ist deutlich der Balken erkennbar, der im Auflenbereich in
eine korotierende Spirale iibergeht. Die Rotation erfolgt im mathematisch Positiven
Sinn.

der Teilchen, wird demnach der Energieinhalt und dadurch die Amplitude der Epi-
zyklenschwingungen steigen. Es tritt eine verstirkende Wirkung auf die Instabilitét
ein! Simulationen, bei denen der Druck nicht iiber die innere Energie (und damit iiber
die Temperatur) sondern als Potenzfunktion der Dichte berechnet wurde, bestétig-
ten diese Vermutung, indem der isentrope Fall (P = KoY und K = const) eine
geringere Anstiegszeit der Moden zeigte als der oben beschriebene.

Ein weiterer signifikanter Unterschied tritt bei der Langzeitentwicklung des ro-
tierenden Polytropen auf. Im Gegensatz zu der von Durisen verwendeten Gitter-
methode bleibt bei den Teilchenmethoden die Balkenstruktur nach Erreichen der
maximalen Amplitude (siehe Abbildung 3.7) fiir einen lingeren Zeitraum stabil, wo-
bei im Auflenbereich der Scheibe die Balkeninstabilitéit in eine korotierende Spirale
iibergeht, wie es in Abbildung 3.9 dargestellt ist.

Die Simulationen von Durisen, Gingold, Tohline and Boss (1986) zeigten eine
vollig andere Situation. Nach erreichen der maximalen m = 2-Amplitude formierte
sich das nach auflen transportierte Material als konzentrischer Ring um eine elon-
gierte Restscheibe. Die genauen Ursachen fiir dieses unterschiedliche Verhalten sind
noch unklar, wobei die Vermutungen auf die numerische Behandlung der Schei-
benrénder abzielen. Teilchenmethoden wie SPH neigen bei geringen Teilchendichten
wie sie am Auflenrand vorherrschen zu unphysikalischem Verhalten, denn die niedri-
ge Teilchendichte fiithrt zur Absenkung der rdumlichen Auflsung und kann somit die
physikalischen Gréflen durch starkes Rauschen unbrauchbar machen. Dieses stocha-
stische Rauschen bedingt eine kiinstliche Ausdiinnung des Gases. Anders im Fall der
Gittercodes, die auch im Auflenbereich eine dichteunabhéngige raumliche Auflésung
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besitzen, jedoch eine fest definierte duflere Randbedingung aufweisen, deren Wir-
kung auf die Dynamik des Gases am Auflenrand der Scheibe noch unklar ist.

3.4 Zusammenfassung

Im ersten Teil dieses Kapitels wurde der in dieser Arbeit durchgehend verwendete
SPH-Code anhand eines einfachen Beispieles getestet. Dabei wurde der Relaxations-
vorgang einer kugelsymmetrischen polytropen Sphire in den analytisch vorliegenden
Gleichgewichtszustand beobachtet. Nachdem die Einschwingvorgéinge abgeklungen
waren, war es moglich, die radiale Dichteverteilung der Sphéire mit der hierfiir maf3-
gebenden Losung der Lane-Emden Gleichung zu vergleichen. Diesbeziiglich konnte
eine sehr gute Ubereinstimmung festgestellt werden. Der Einschwingvorgang, der
durch das Wirken einer kiinstlichen Viskositit geddmpft wurde, lieferte dariiber
hinaus die fiir oszillierende polytrope Sphéren charakteristische Periodendauer der
Monopolschwingung. Im Rahmen des Ein-Zonen Modells kann fiir diese Konfigura-
tion eine eindeutige Beziehung zwischen der Periodendauer und der mittleren Dichte
der Sphire gewonnen werden. Wiederum ergab der Vergleich zwischen Theorie und
Numerik eine akzeptable Ubereinstimmung.

Diese, als Testrechnungen durchgefiihrten Simulationen verwendeten ein Mini-
mum an numerischem Aufwand. So betrug die Teilchenzahl nur ein Bruchteil der
sonst iiblichen Anzahl. Trotz diesen Einschrinkungen ergab sich durchwegs eine
Energieerhaltung von besser als 5% , ein fiir das SPH Verfahren typischer Wert (Benz
1989). Weiterfithrende Rechnungen bei denen versucht wurde, hthere Schwingungs-
moden anzuregen, schlugen durch die mangelnde Ortsauflésung fehl. Trotzdem kann
dieses einfache Modell als gesichertes Fundament fiir weitergehende Simulationen,
etwa im Bereich der Sternentwicklung angesehen werden.

Im Gegensatz zu den im ersten Teil durchgefiihrten Rechnungen ohne Drehim-
puls wurde im zweiten Teil eine zu einer Scheibe deformierte, differentiell rotierende
Konfiguration als Anfangsbedingung fiir die Simulationen gewihlt. Die hier durch-
gefithrten Rechnungen waren der Beginn einer Zusammenarbeit verschiedener Auto-
ren, deren Ziel es ist, die bei solchen Konfigurationen auftretende Balkeninstabilitit
unter verschiedenen physikalischen und numerischen Bedingungen zu untersuchen.
Besonders interessant erscheinen die Simulationen, wenn der Einflul der Viskositit
auf die Dynamik einer instabilen Scheibe Rechnung getragen werden soll. Die bis-
her durchgefiihrten Rechnungen, analytisch wie numerisch, lieferten vor allem im
nichtlinearen Bereich zu teilweise widerspriichlichen Resultaten.

Durch Festlegung einer einheitlichen Anfangsbedingung sollte ein code-iibergrei-
fender Vergleich der Rechenergebnissse moglich werden. Schon in diesem Punkt stell-
te sich heraus, daf} die Portabilitit von eindeutigen physikalischen Konfigurationen
zwischen zwei verschiedenen numerischen Verfahren nicht immer eindeutig ist und
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zu stark abweichenden Simulationsergebnissen fithren kann. Es mufite eine Metho-
de gefunden werden, die eine auf einem Gitter definierte Massenverteilung in eine
dquivalente SPH Teilchenverteilung transformiert.

Die daraufhin durchgefiihrten Simulationen, bei denen sich schnell die erwartete
Balkeninstabilitdt bildete, zeigten im codeiibergreifenden Vergleich alle eine quali-
tative Ubereinstimmung. Bei der Analyse der Prizessionsperiode des Balkens (bzw.
Spirale) wurde bis auf wenige Prozent keine signifikanten Abweichungen festgestellt.
Erst bei der Untersuchung der Anwachsraten der instabilen Moden m = 2,4,6, ...
traten systematische Unterschiede auf, die aber auf die unterschiedlichen Visko-
sitdtsansitze zuriickgefithrt werden konnten. Bedeutende Abweichungen zwischen
den Resultaten der Gitter- und Teilchenverfahren wurden erst bei der Langzeitent-
wicklung der Balkeninstabilitdt deutlich. Die moéglichen Ursachen fiir die Differenzen
in den Endzustédnden bleibt nach wie vor im Dunkeln, Vermutungen deuten aber auf
den fundamentalen Unterschied in der Behandlung der &uBeren Randbedingung der
beiden involvierten Verfahren hin.

Eine erschépfende Behandlung der Balkeninstabilitit bei differentiell rotieren-
den polytropen Gasscheiben ist besonders im Hinblick auf die frithe Phase des Son-
nennebels wiinschenswert. Deutet man die hier verwendete Anfangsbedingung als
Endzustand eines gravitativen Kollapses einer oder eines Teiles einer Molekiilwolke,
so stellt sich die Frage inwieweit eine eventuell auftretende globale Instabilitit wie
sie hier beschrieben wurde die Struktur des frithen Sonnennebels beeinflussen kann.



Kapitel 4

Protoplanetare
Akkretionsscheiben

Die ersten Theorien iiber die Entstehung von Sonnensystemen stammen von Kant
(1755) und Laplace (1796). Diese nahmen an, dafl das Sonnensystem aus einem
flachen, rotierenden Gasnebel kondensierte. Der gréBte Teil des Gases sollte sich
im Zentrum als Sonne sammeln und das Restgas kondensierte auf konzentrischen
Ringen zu Planeten.

Die qualitativen Merkmale dieser Theorie findet man in der Wirbeltheorie von
Weizséicker (1944) wieder, der Annahme, da8 in einer, durch hohe Reynoldszahlen
notwendigerweise turbulenten Gasscheibe, die Bildung von Gaswirbeln zu lokalen
Strukturierungen und somit zur Bildung von Planeten fithren miifite. Aus diesen
Anfingen einer hydrodynamischen Beschreibung rotierender Gasscheiben entwickel-
te Liist (1952) das Modell einer flachen Akkretionsscheibe. Im Mittelpunkt steht
hierbei die Annahme einer effektiven Viskositét, wie sie durch Verwirbelungen des
Gases auf der Skala der Scheibendicke entstehen mufl. Unter Vernachlissigung séku-
larer Prozesse (Ausbreitung von Schallwellen, Schocks usw.) gelang es erstmals unter
Verwendung der Navier-Stokes Gleichung die zeitliche Entwicklung einer diinnen, ra-
dialen Masseverteilung um eine Zentralmasse zu beschreiben und wichtige Aussagen
iiber deren Energiedissipation und andere thermodynamische Gréfien zu treffen.

Geht man davon aus, dafl die Entstehung von Sonnensystemen ein hiufig vor-
kommender Prozef ist, so miissen protoplanetare Akkretionsscheiben ebenso hiufig
um junge Sterne beobachtet werden kénnen. Dabei erleichtert die grofle Oberfléiche
der Scheibe eine Detektion der scheibentypischen Emissionen mittels Fern-Infrarot
und Sub-Millimeter Teleskopen. Typische Emissionsspektren eines Stern-Scheiben-
systems sind in Abbildung 4.1 dargestellt. Hier erkennt man, dafl dem Sternspektrum
ein zweites iiberlagert ist. Dieser Teil des Spektrums, auch Infrarotexzel genannt,
hat seinen Maximum im Bereich zwischen 10 und 100 um, was einer Temperatur
von 1000 Kelvin und darunter entspricht. Diese fiir T Tauri Sterne typische Spektren

41



42 Kapitel 4. Protoplanetare Akkretionsscheiben

102
[ ]
RYTaux 10

10 B ® 10 -
— ) [ J
i - 3
§ ! ® _ DLTaux 2 10° 1=
~ .
& 10-' |- °® o 102 |-
N ®
L7~<> L ) ®
& 10-2 e ® L
s 107° . 10 ——9700K
= %
) )
= [ ]
21073 * 1
= GMAur/20 ®
& o
@ : |

107 - o. 107 = °

B Pic x 0.1 e
j | 1 ! 10-2 ! i 1 |
0.1 1 10 100 1000 0.1 1 10 100 1000

Wellenldnge [um]

Abbildung 4.1: Typische Spektren von T Tauri Sternen (DL Tau,RY Tau und GM
Aur) im Vergleich mit Spektren von Vor-Hauptreihensternen. Deutlich ist bei T
Tauri Sternen der Strahlungsexze3 im Bereich von 10-1000 um zu erkennen. Der
geringe Infrarotexzefl bei Wega und (3-Pic ist hier nicht zu erkennen.

kénnen numerisch reproduziert werden, indem man dem Schwarzkorperspektrum des
Sternes das Spektrum einer Scheibe mit einem radialen Temperaturverlauf 7" oc ¢
tiberlagert (q ist hierbei der Temperaturindex). Aus der Vielzahl solcher TTauri
Spektren lassen sich folgende Eigenschaften von Akkretionsscheiben ableiten:

1. Bei spektroskopischen Untersuchungen von T Tauri Sternen wurden bei einer
Vielzahl (= 50%) deutliche Hinweise auf eine zirkumstellare Scheibe gefunden
(Strom et al. 1985, Beckwith et al. 1990)

2. Die Scheibenradien erstrecken sich bis auf wenige hundert AU

3. Die Scheibenmassen junger sonnendhnlicher Sterne liegen typischerweise zwi-
schen 11072 bis 0.1 M. (Beckwith et al. 1990)

4. Der Temperaturindex der indirekt beobachteten Scheiben liegt zwischen ¢ =
0.5...0.75, wobei die Oberflichentemperatur bei 1 AU zwischen 10K und 400K

liegt.
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5. Aus den Leuchtkriiften abgeleiteten Akkretionsraten liegen im Bereich 1078
und 107 Mg /yr.

6. Die Lebensdauer von Akkretionsscheiben betréigt einige Millionen Jahre (Beck-
with et al. 1990). Bei Protosternen die &lter als 107 Jahre sind beobachtet man
kein Infrarotexzefl mehr.

Seit dem Einsatz extraterrestrischer Teleskope (IRAS und Hubble Space Te-
lescope) ist es gelungen direkte Aufnahmen von Gasscheiben um junge Sterne zu
erhalten. Diese Aufnahmen, besonders Detailaufnahmen des Orion Nebel mittels
HST (McCaughrean & O’Dell 1995) untermauern die Akkretionsscheibenhypothese
in eindrucksvoller Weise.

Hier soll im wesentlichen auf das Standardmodell von Akkretionsscheiben ein-
gegangen werden. Dieses Modell bezieht sich auf Scheiben, die geometrisch diinn
sind und deren Masse sich auf Keplerbahnen um eine als Punktmasse angenomme-
ne Zentralmasse bewegt. Dabei bewirkt eine turbulente Viskositéit einen langsamen
Akkretionsstrom in Richtung der Zentralmasse. Aus dieser, als ,,thin disc approxi-
mation” bekannten Theorie werden funktionale Zusammenhénge fiir die Skalenhohe,
Temperaturverteilung, Leuchtkraft und den Akkretionsstrom hergeleitet. Diese, aus
einer zweidimensionalen Theorie gewonnenen Gleichungen werden dann in dreidi-
mensionalen Simulationen iiberpriift. Anders als in bisherigen numerischen Simula-
tionen wird hier nicht eine Anfangsbedingung im Gleichgewicht verwendet, sondern
es soll vielmehr die Relaxation in einen stationdren Zustand beobachtet werden.
Weiterhin sind diese Rechnungen nicht mit der sonst iiblichen «-Viskositdt durch-
gefithrt worden, sondern es wird die Navier-Stokes Viskositét benutzt. Dies hat den
Vorteil, da8 explizit ein Wert fiir die kinematische Viskositéit v angegeben werden
kann. Sie enthélt im Gegensatz zur a-Viskositéit keine freien Parameter. Eine wei-
tere entscheidende Verdnderung zu bisherigen Simulationen ist die Behandlung der
Zentralmasse. Sie wird nicht durch ein festes, praktisch von auflen wirkendes Po-
tential eingefiihrt, sondern wird durch ein schweres SPH-Teilchen représentiert, mit
welchem die Gasteilchen der Scheibe gravitativ in Wechselwirkung treten (SLING
Mechanismus, Shu et al. 1990)

Ein weiterer Teil dieses Kapitels wird dem EinfluB der Eigengravitation auf die
Dynamik von protoplanetaren Akkretionsscheiben gewidmet und mit Simulationen
bei denen die Eigengravitation nicht beriicksichtigt worden ist, verglichen werden.
Durch die strukturbildende Wirkung der Gravitation, wie etwa Akkretionsringe
(Willerding 1992) oder sikulare Instabilitéiten erwartet man durch die Anderung
der Oberflichendichte eine, gegeniiber leichten Scheiben verdnderte Akkretionsrate
und dadurch eine Anderung in der Leuchtkraft. Eine etwaige Anderung der Spek-
tralen Energieverteilung durch die Modulation der radialen Dichteverteilung soll
ebenfalls untersucht werden.
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4.1 Mathematisches Modell

In diesem Kapitel sollen einige fundamentale physikalische Eigenschaften und Zu-
sammenhénge von Akkretionsscheiben aus den hydrodynamischen Gleichungen her-
geleitet werden und auf die Spezialfille von polytropen Zustandsgleichungen ange-
wendet werden. In Zylinderkoordinaten (r, ¢, z) nehmen diese Gleichungen folgende
Form an ! (Tassoul 1978):

e Kontinuititsgleichung

90 , 10(cv) , 0(ev.)

=0 4.1
ot r 0¢ 0z (4.1)
e Bewegungsgleichung (radiale Komponente)
dv, _vg\ _ _ 0% op 19(rM)
dt T = % T Ty ar
10(Iy) OIl, Il
- - 4.2
r  0J¢ * 0z T (42)
e Bewegungsgleichung (axiale Komponente)
dvy  vrvp) _ _@0® 10p
e\ dt = "1 ros
- - - 4.3
r Or * r O¢ * 0z T (43)
e Bewegungsgleichung (vertikale Komponente)
dv, o® 0 10 (rll,, 10 (1ly,) oI,

a = % ;2 8: " 1 or r  0¢ 0z

Poissongleichung
Diese reduziert sich in Abwesenheit der Eigengravitation des zirkumstellaren
Materials zum Potential der als Punktmasse angenommenen Zentralsternes:

GM

!Die Elemente des viskosen Spannungstensors finden sich in Tassoul (1978)

®(r,z) =— (4.5)
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Dieses nichtlineare Gleichungssystem ist nicht in vollem Umfang analytisch 16sbar,
weswegen folgende, einschriinkende, N&herungen angewendet werden:

1. Annahme von axialer Symmetrie

2. Spiegelsymmetrie zur r-¢ Ebene

3. Vernachlissigung der Eigengravitation der Akkretionsscheibe
4. Annahme einer geometrisch diinnen Scheibe

5. Annahme einer unendlichen radialen Ausdehnung

Durch das Fehlen von Eigengravitation wird man in diesem Modell keine lokalen
Strukturierungsprozesse wie etwa die Bildung von Protoplaneten erfassen kdnnen.
Ebenfalls wird durch die gewdhlte Symmetrien die Behandlung von Wellenausbrei-
tungsvorgingen und Instabilitdten unterdriickt. Dennoch liefern die im folgenden
abgeleiteten GesetzméBigkeiten wichtige Zusammenhénge die sich auch in den Si-
mulationen widerspiegeln miissen.

4.1.1 Die Skalenhohe

Durch obige Nédherungen vereinfacht sich die z-Komponente der Bewegungsgleichung
betrichtlich, was im hydrostatischen Gleichgewicht zur Definition einer Skalenh6he
der Akkretionsscheibe fiihrt:

19p 0 l GM, ] (4.6)

00z 0z |2+ 22
Mit obiger Annahme einer diinnen Scheibe z < r kann man das Potential des
Zentralsternes folgendermaflen in eine Taylorreihe entwickeln:

GM _ GM GMZ
N 2

was dann mit dem Potentialanteil in 2-Richtung ®, = —{;22/2 zu einer baro-
metrischen Hoéhenformel fiihrt.

®(r,z) =— (4.7)

10p
9P 2 .
29z iz, (4.8)

wobei ) die keplersche Winkelgeschwindigkeit Q, = /S8, ist.

Fiir polytrope Zustandsgleichungen der Form p = K und 7 # 1 ergibt sich mit

% = Z—Z% der Druckverlauf in 2-Richtung an einem festen Radius:
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-1 2
1 Q
2) =T % 2 (4.9)
90 v 2Kg§

Hier 18t sich vK oJ~' mit der Schallgeschwindigkeit in der Mittelebene identifi-
zieren c2,, = Z—Z. Vorherige Gleichung enthélt den Skalenfaktor H als charakteristi-
sche Ausdehnung der Scheibe in z-Richtung an einem festen Radius r.

2 Cs;0
H=,——= 4.10

Fiir den Spezialfall v = 1 (Isothermes Gas) ergibt sich aus Gleichung (4.8) sofort:

4 0z : 2
— = - t H=+v2— 4.11
o exp ( 22 mi V2 0 ( )

Ist also die radiale Abhéngigkeit der Schallgeschwindigkeit ¢, in der Mittelebene
der Scheibe bekannt, so ist auch eine wichtige geometrische Gréfie der Akkretions-
scheibe gegeben.

4.1.2 Radiale Abhingigkeiten

Geometrisch diinne Akkretionsscheiben um T Tauri Sterne, protostellare Kerne oder
sogar in galaktischen Kernen werden durch einen theoretischen Ansatz beschrieben,
der auf von Weizsicker und Liist zuriickgeht. Das heutige Modell, formuliert von
Shakura & Sunyaev (1973), Lynden-Bell & Pringle (1974) und Pringle (1981) wird
hiufig als das Standardmodell bezeichnet. Auf dieses soll hier kurz eingegangen
werden um eine axialsymmetrische und stationéire Lésung der oben erwéhnten hy-
drodynamischen Gleichungen zu erhalten und diese als Grundlage fiir die in diesem
Kapitel beschriebenen Simulationen zu verwenden.

Aus der Annahme, daf fiir die Scheiben die Skalenhéhe H iiberall viel kleiner
als der Radius R ist und die Schallgeschwindigkeit ¢, mit der Gastemperatur 7}, in
der Mittelebene der Akkretionsscheibe durch ¢? = kpyT,, ausgedriickt werden kann
(Morfill 1988), folgt:

H ¢
r

{7 ist in erster Ndherung die axiale Geschwindigkeit vy, wie aus der radialen

Bewegungsgleichung (4.2) unter Vernachldssigung der viskosen Krifte folgt.

<1 (4.12)

v2 10
R O P 413
r kr+93r (4.13)

bzw.
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H
v =Wr 4+ 0 (?) (4.14)

Zusammenfassend gilt, daBl die Rotationsgeschwindigkeit der Scheibe als kep-
lersch angesehen werden kann und zudem viel gréfer als die lokale Schallgeschwin-
digkeit ist.

Da es sich um hier um geometrisch diinne Scheiben handelt ist es fiir die weite-
ren Betrachtungen sinnvoll vertikal gemittelte Groen, wie die Flichendichte o zu
verwenden:

o(r)=2 /OH o(r, z)dz (4.15)

Durch das Postulat der Axialsymmetrie sind keine Abhéngigkeiten vom Winkel
¢ vorhanden und Ableitungen nach dieser Gréfe sind identisch Null. Aus der axialen
Bewegungsgleichung (4.3) erhiilt man dadurch einen funktionalen Zusammenhang
fiir die radiale Driftgeschwindigkeit des Gases in der Akkretionsscheibe.

koT2 0 3ko

d’]“ = EVO-T W (416)

ouT
Aufgel6st nach v, erhélt man:

_ 33 1 Jdlnv n Jdlno
Ur = r|2 Jlnr Jdlnr
Unter der Annahme, dafi sich die kinematische Viskositéit v und die Oberflichen-
dichte o nicht sehr stark rdumlich wie zeitlich dndern ergibt sich der kompakte

Ausdruck fiir die radiale Driftgeschwindigkeit:

(4.17)

v
o
Dies bedeutet, dafl das Gas wihrend es sich auf Keplerbahnen um die akkre-
tierende Masse bewegt, aufgrund der Viskositét, langsam nach innen transportiert
wird.

Eine Entwicklungsgleichung fiir den radialen Verlauf der Oberflichendichte erhilt
man, wenn in der zeitabhéingigen Kontinuitétsgleichung (4.1) der oben entwickelte
Term fiir die radiale Geschwindigkeit fiir v, verwendet wird. Es ergibt sich eine
Gleichung dquivalent der Wirmeleitungsgleichung.

(4.18)

Up R

90 _ 30 1p0 (  1p
5 = rarr o (01/7" ) (4.19)

Diese Gleichung ist Ausgangspunkt und Referenz zahlreicher Rechnungen und
numerischer Simulationen (Lin 1989, Duschl & Tscharnutter 1990, Ott 1995), da sie
in eindeutiger Weise den zeitlichen Verlauf der Oberflichendichte in Abhéngigkeit
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von wenigen Parametern (Viskositéit und Anfangsverteilung der Flichendichte) be-
stimmt. Fiir den Fall, da8 die Viskositét nur durch ein Potenzgesetz mit dem Radius
variiert existieren nach Liist analytische Lésungen fiir o(r, t).

Durch den einwirts gerichteten Massentransport und die dissipative Wirkung
der Viskositdt muB es ebenfalls zu einer Umverteilung des spezifischen Drehimpul-
ses kommen. Aus den Komponenten des viskosen Spannungstensors IT erkennt man,
daf die dissipative Wirkung dort am gréfiten ist, wo die Geschwindigkeitsgradienten,
bzw. die Scherung ebenfalls hoch ist. Anschaulich bedeutet dies, dal die Viskositét
versucht eine starre Rotation w = 0 zu erzwingen. Bei keplersch rotierenden Vertei-
lungen bedingt dies einen Drehimpulstransport nach aufen.

Massenakkretion und radiale Temperaturverteilung

Wie im vorigen Kapitel dargelegt, bewirkt die Viskositdt einen Massentransport
nach innen auf das akkretierende Objekt. Die Schwierigkeiten bei der Behandlung
der Grenzschicht zwischen Stern und Akkretionsscheibe, also der eigentlichen Ak-
kretion, werden dadurch vermieden, dafl ein innerer Rand der Akkretionsscheibe
R; eingefiihrt wird, welcher mit dem Sternradius identifiziert werden kann. Die in
diesem Bereich auftretenden Magnetfelder sollen hier vollsténdig vernachléssigt wer-
den. Das bedeutet, dafl die Stromlinien des Massenflusses alle auf der Zentralmasse
enden und nicht durch magnetische Krifte umgelenkt werden. Das Auftreten ei-
nes hochkolliminierten Ausflufl senkrecht zur Akkretionsscheibe, sog. protostellare
Jets, werden auf das Wirken von Magnetfelder in dieser Grenzschicht zuriickgefiihrt,
kénnen aber im Rahmen der hier dargelegten Theorie nicht behandelt werden.
Unter dieser Annahme kann man den Massenstrom M auf die Zentralmasse mit

, "
M = —2/ 2mouprdz = —2woU,T (4.20)
0

angeben. Dieser soll zur Vereinfachung als konstant betrachtet werden. Nachfol-
gende GesetzmiBigkeiten gelten demnach nur fiir stationére Akkretionsscheiben.

Verkniipft man diese Gleichung mit der radialen Bewegungsgleichung (4.2) so
folgt nach Integration eine Bilanz fiir den Drehimpuls.

: ds2
—MQyr® = 27r01/7"3d—rk +c (4.21)

Wobei ¢ die noch zu bestimmende Integrationskonstante ist. Sie wird durch die
Randbedingung an R; bestimmt. In diesem Bereich mufl die keplersche Rotation
in die viel kleinere Rotationsgeschwindigkeit des Sternes iibergehen. Dieses soll in
einem unendlich diinnen Bereich an r = R; geschehen und aus dem Ansatz

dd,
— |p=p. =0 4.22
oo, (4.2
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bestimmte Pringle die Konstante C' zu

C = —MQ (R;) R? (4.23)

und aus der Drehimpulsgleichung (4.21) wird:

vo = % l1 _ (%)ml (4.24)

Kombiniert man dieses Ergebnis mit der Dissipationsrate von inkompressiblen
und keplersch rotierenden Akkretionsscheiben (Tassoul 1978, Sterzik 1993) und
nimmt man weiterhin an, dal die Energieabstrahlung eines jeden Oberflichenele-
mentes nach den Gesetzen eines Schwarzen Korpers erfolgt

E =20pT,; (4.25)
so erhélt man den radialen Verlauf der effektiven Temperatur:

4

3GM,M R\Y2]1Y
Tere = — 11— 4.26
fr [ 87riop [ ( T ) H ( )

Wobei op die Stefan-Boltzmann Konstante und M, die Masse des Zentralsternes
ist. Im keplerschen Teil der Scheibe, wo r > R; gilt wird meistens die gendherte
Form :

. 11/4
3GM.M
] 7"_3/4

4.27
8mop ( )

Tess = l

verwendet.
Ahnlich wie den radialen Temperaturverlauf kann man aus der Energiedissipa-
tionsrate die Leuchtkraft der Akkretionsscheibe berechnet werden. Integration der

pro Kreisring abgestrahlten Energie liefert bei unendlicher radialer Ausdehnung der
Scheibe die Leuchtkraft:

o0 1GM.M
Lvisc = / 2nrD(r)dr = — .
o 2T (r)dr > R,

(4.28)

Dieses Ergebnis ist auch von energetischer Seite verstéindlich. Wahrend der Ak-
kretion durchlaufen die Massenelemente eine Potentialdifferenz von G M,/ R;, wobei
die Hélfte des Betrages nach dem Virialtheorem in kinetische Energie {ibergeht. Der
verbleibende Teil der Potentialdifferenz wird instantan abgestrahlt.
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4.2 Simulationen

In diesem Abschnitt soll die oben dargelegte Theorie quasistationdrer und geome-
trisch diinner Akkretionsscheiben mittels einer dreidimensionalen Simulation verifi-
ziert werden. Bisherige Testrechnungen von Ott (1995), Watkins et al. (1996) u.a.,
konnten den Druckgradienten in den Navier-Stokes Gleichungen vernachlissigen, da
sie eine zweidimensionale Scheibengeometrie annahmen. In den hier durchgefiihrten
Simulationen ist dieser von zentraler Bedeutung, da der Druckgradient maflgeblich
an der Ausbildung der hier rdumlich aufgelésten Vertikalstruktur beitrigt. Somit
wird hier die Skalenhohe H direkt aus der Teilchenverteilung in z-Richtung zugéing-
lich gemacht und mufl nicht mehr nachtriglich aus dem Quotienten aus Schallge-
schwindigkeit und Winkelgeschwindigkeit berechnet werden. Im Falle einer diinnen
Scheibe miissen diese Werte fiir H jedoch identisch sein. Desweiteren werden die
radiale Temperaturverteilung und die Leuchtkraft der Scheibe sowie die Akkretions-
raten mit den theoretischen Zusammenhéngen verglichen.

Anders als in bisherigen Simulationen, wird nicht mit einer ,,Gleichgewichtskon-
figuration” gestartet, sondern es soll diese, aus einer Startbedingung weit ab des
hydrodynamischen Gleichgewichts, erzeugt werden. Als Indikator fiir das Ende der
erwarteten Relazationsprozesse dient der radiale MassenfluB. Zeigt M keine zeitli-
che Abhéngigkeit mehr, kann die Akkretionsscheibe als quasistationédr angenommen
werden.

Nachdem der stationére Zustand erreicht ist, schlielen sich zwei zusétzliche Simu-
lationen an, bei denen die weitere Entwicklung der Scheibe unter der Wirkung der Ei-
gengravitation verfolgt wird. Es werden dabei Scheibenmassen von Mg peiner = 0.05
M@ und MScheibe2 =0.1 M@ verwendet.

4.2.1 Code Details

Fiir die hydrodynamischen Simulationen protoplanetarer Akkretionsscheiben mufl
der Code in einigen Punkten modifiziert werden. Zunéchst wird ein SPH-Teilchen
als Zentralmasse definiert und aus den hydrodynamischen Teil des Programmes ent-
fernt. Es tritt also mit den Gasteilchen der Scheibe nicht mehr in Wechselwirkung.
Diese Zentralmasse wechselwirkt mit den SPH-Partikel nur iiber die Newtonsche
Gravitationskraft, die mittels eines Abschirmparameters r. vor numerische Diver-
genzen geschiitzt wird.

m; M
F,=-G——= 4.29
r? + 12 (4.29)

Zur Modellierung der Akkretion von Gasteilchen auf die Zentralmasse wird die-
ser Abschirmparameter r, als Akkretionsradius verwendet. Alle Gasteilchen, die auf-
grund der Viskositédt auf die Zentralmasse zudriften, werden nach Unterschreitung
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dieses Radius akkretiert. Dabei wird zur Masse des Sternes die Masse des Gasteilchen
addiert, welches dann aus der Simulation entfernt wird. Zur nachtréiglichen Ener-
gie und Drehimpulskorrektur wird jeder solcher Vorgéinge gespeichert. Eine dhnliche
Methode verwendet Bate bei der Simulation von Kollapsrechnungen.

Im Gegensatz zu Rechnungen von Watkins et al. (1996) u.a., die ein rdumlich und
zeitlich konstantes Zentralpotential verwenden, erlaubt die oben beschriebene Me-
thode eine etwas allgemeinere Behandlung, vor allem von gravitativen Stern-Scheibe
Kopplungen. Abweichungen von der axialen Symmetrie kénnen ein gravitatives Di-
polfeld erzeugen und mit angeregten m = 1 Storungen auf die Akkretionsscheibe
riickwirken. Der hier beschriebene Akkretionsmechanismus verhindert weiterhin die
bei Murray (1996) und Watkins et al. (1996) auftretenden numerischen Instabi-
litdten und nachfolgende, kiinstliche Fragmentation des Scheibeninnenrandes. Ein
weiterer Vorteil besteht durch die direkte Akkretion von Teilchen. Der Akkretions-
strom muf also nicht iiber Gleichung (4.20) nachtréiglich errechnet werden, sondern
wird selbstkonsistent aus der Simulation berechnet.

4.2.2 Anfangsbedingungen

Wie oben erwihnt, sollen alle Simulationen weitab von einem hydrodynamischen
Gleichgewichtszustand gestartet werden um die Entstehung eines stabilen Zustan-
des zu beobachten. Dazu werden N = 50000 SPH Teilchen zuféllig und homogen
in einem Zylindermantel um die Zentralmasse verteilt. Als Innenradius der Scheibe
(Akkretionsradius) wird 7. = 8 AU gewéhlt, um die einzelnen Integratorschrittwei-
ten nicht zu klein werden zu lassen und die Simulationen unnétig zu verldngern. Da
hier keine Strahlungstransportmechanismen behandelt werden sollen und die Stern-
strahlung von der Scheibe nicht reprozessiert werden soll, ist die Wahl des inneren
Scheibenrandes beliebig. Der duflere Scheibenrand wird gemi$ den oben erwdhnten
Beobachtungsergebnissen auf R, = 200 AU festgesetzt. Die vertikale Ausdehnung
der Anfangsverteilung betrigt H = 10 AU. Die Geometrie dieser Anordnung ist in
Fig. 4.2 dargestellt.

<l P
- -

R =200 au

Abbildung 4.2: Anfangsbedingung der SPH-Simulation

Die Massen von Stern und Scheibe werden ebenfalls an typische Beobachtungen
angelehnt. Der Zentralstern soll eine Masse von M,,; = 1 Mg haben und die Scheibe
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eine Masse von My, = 0.05 M, welche mit der Keplergeschwindigkeit um das
Zentralgestirn rotieren soll. Die Wahl der Viskositit zu v = 1.1 - 1017m?/sec folgt
der Abschitzung in Kapitel [2.3.2]. Durch das kleine Verhéltnis von Scheiben- zu
Zentralmasse,( Mysp /Meens < 1), spielt die Eigengravitation des Scheibengases in
diesem Fall keine Rolle.

4.2.3 Polytrope Zustandsgleichung

In diesem Abschnitt wird die Relaxation der oben beschriebenen Anfangsverteilung
in den Gleichgewichtszustand berechnet. Dabei wird als Zustandsgleichung eine Po-
lytrope der Form

P=Kyg (4.30)

verwendet. Die thermodynamischen Prozesse sind demnach adiabatisch und es
findet kein Warmeaustausch mit der Umgebung des Gases statt. Diese Annahme
ist berechtigt, wenn nur Energietransportmechanismen zugelassen werden, die auf
einer viel groferen Zeitskala ablaufen als die dynamischen Prozesse.

Der Konstante K soll hier der Wert K = 0.5 zugewiesen werden. Sie hat die
Bedeutung der spezifischen Entropie des Gases und wurde so gewiihlt, dafl die innere
Energie des Gases kleiner als die kinetische Energie des Gases ist. Der Wert fiir das
Verhiltnis der Wéarmekapazitéiten v = 5/3 steht fiir ein monoatomares Gas.

Die Relaxationsphase

Die Relaxationsphase beginnt am Innenrand der Scheibe, wo die auf die Scheibe-
nebene gerichtete Komponente der Gravitation gréfer ist als die entgegengesetzt
wirkende Druckkraft. Dieses Ungleichgewicht der Kréfte fiihrt zu einer periodischen
Dichteschwankung ¢, welche sich mit Schallgeschwindigkeit in r-Richtung ausbreitet.
In Abbildung 4.3 ist dieser Einschwingvorgang zu verschiedenen Zeiten dargestellt.

Aus Abbildung 4.3 kann man die Ausbreitungsgeschwindigkeit v, abschétzen.
Man erhilt eine Gruppengeschwindigkeit von v, ~ 0.25AU/yr = 1.2km/sec. Bei
einer mittleren Scheibentemperatur von T' = 50 K, was einer Schallgeschwindigkeit
von ¢ & 1.0 km/sec entspricht, liegt damit die Ausbreitungsgeschwindigkeit dieser
Wellen im Bereich der Schallgeschwindigkeit.

Die Viskositit des Mediums ist dabei fiir die Dispersion der Wellen verantwort-
lich. In Abbildung 4.3 erkennt man eine wesentliche Verbreiterung der Wellenpakete,
was auch aus dem Massenflul in Figur 4.4 ersichtlich wird. In dieser Abbildung ist
M zu verschiedenen Zeiten gegen den Radius aufgetragen. Hier wird auch deutlich,
dafl die Amplitude dieser Wellen mit zunehmender Zeit geringer wird, also Energie
dissipiert wird. Die Dispersionsrelation, die im Anhang unter vereinfachten Bedin-
gungen hergeleitet wird liefert die Zeitskala des Abklingvorganges, welche mit der
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Abbildung 4.3: Dichteverteilung in der r-z-Ebene wihrend der Relaxation. Bild a
bis f haben jeweils einen zeitlichen Abstand von T = 160 Jahren. Bild g: T = 4800
Jahre und Bild h: 7' = 8800 Jahre.
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viskosen Zeitskala 7,;,. identisch ist. Aus der radialen Abhéngigkeit der viskosen
Zeitskala 7,,. oc 72 wird deutlich, daB die inneren Bereiche der Akkretionsscheibe
frither als die dufleren im hydrostatischen Gleichgewicht sind. Eine ausfiihrlichere
Behandlung von Dichtewellen in protoplanetaren Akkretionsscheiben, besonders im
Hinblick auf Planetenentstehung findet sich in Fahr & Willerding (1998).

Massenfluf in Sonnenmassen/Jahr
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Abbildung 4.4: Radialer Massenflu} zu verschiedenen Zeiten. Schwarz: T' = 1600
Jahre nach Beginn, Blau: T = 3200 Jahre, Rot: T" = 4800 Jahre. Positive Werte
von M entsprechen einer Strémung nach auBen. Am deutlichsten ist das Abklingen
der Wellen und gleichzeitiger Verbreiterung bei einem Radius von R = 100 AU zu
erkennen.

Der Relaxationsvorgang und die durch die Wellendispersion hervorgerufene Dis-
sipation spiegelt sich auch in der Leuchtkraft der Akkretionsscheibe wider (siehe
Abbildung 4.9b). Die, im Vergleich zur theoretischen Leuchtkraft, stark iiberhohten
Werte am Anfang der Simulation weichen im Laufe weniger viskosen Zeiten immer
weniger von dem vorhergesagten Wert der Leuchtkraft ab (siehe Kapitel [4.2.3]).

Die Dichteverteilung und Skalenhéhe

Nachdem die Relaxation beendet ist und die radialen Dichtewellen abgeklungen sind
stellt sich die in Bild 4.5 dargestellte Teilchenverteilung ein. Klar erkennbar ist die
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mit dem Radius anwachsende Dicke der Scheibe. Wie in Kapitel [2] beschrieben, ist
jedem dieser Aufpunkte eindeutig eine Dichte zugewiesen. Durch axiale Mittelung
und Interpolation in r und z Richtung ergibt sich das in Abbildung 4.6 gezeigtes
Dichtefeld.

0 T T

—20b. e L

r [AU]

Abbildung 4.5: Verteilung der SPH Teilchen nahe des quasistationéren Gleichge-
wichts (r-z-Ebene).

Die Abhéngigkeit der Skalenhéhe H vom Radius r ergibt sich aus den in Kapi-
tel [4.1] dargelegten Zusammenhénge zwischen radialer Temperaturverteilung, bzw.
Schallgeschwindigkeit und Winkelgeschwindigkeit Q (H = ¢,/).

H (r) oc %8 (4.31)

Diese steigt also etwas steiler als linear mit dem Radius an. In Tabelle 4.1 sind die
zu erwartenden Skalenh6hen an bestimmten Radien mit Gleichung (4.31) berechnet
worden.

Tabelle 4.1: Theoretisch berechnete Skalenh6hen bei polytropen Akkretionsscheiben
an verschiedenen Radien

Radius (AU) 10 | 50 [ 100 | 150 | 200 | 250
Skalenhdhe (AU) [ 0.2 [ 1.0 | 2.0 | 3.0 | 5.0 | 8.0

Diese so berechneten Skalenhhen sollen nun von seiten der Simulation verifiziert
werden. Dazu wurde die Scheibe in 10 radiale Bins aufgeteilt. Fiir jedes Bin r; & dr
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Abbildung 4.6: Dichtefeld der Akkretionsscheibe im quasistationdren Gleichgewicht
in der r-z-Ebene. Heller werdende Graustufen bedeuten geringere Dichte, wobei sich
die Dichte bei jeder Graustufe um den Faktor 2 #ndert.

wurde die Dichteverteilung in z-Richtung aufgetragen (siehe Abbildung 4.7). Um
innerhalb jedes dieser Kreisringe die Skalenh6he H; zu erhalten, wird an jede nu-
merische Dichteverteilung die erwartete Funktion (4.9) mit H als freien Parameter
gefittet. Die Ergebnisse dieser Prozedur sind in Abbildung 4.8 als Rauten einge-
zeichnet. Zum Vergleich ist die theoretisch vorhergesagte Skalenhdhe als gestrichelte
Linie geplottet.

Aus dieser Gegeniiberstellung wird deutlich, daf fiir grofie Radien r > 100 AU
die Simulation mit den theoretische berechneten Werten in Gréfle und radialer
Abhéngigkeit iibereinstimmen. Fiir kleinere Radien R < 100 AU weichen die Si-
mulationen systematisch in Richtung gréBere Skalenhthen ab. Dieses Verhalten ist
durch die Ndherung in Gleichung (4.7) jedoch erklirbar. Die entwickelten Zusam-
menhénge zwischen Skalenh6he und Radius gelten nur fiir z < r, was in dem be-
trachteten Bereich fiir < 100 AU immer schlechter erfiillt wird. Man wird also dort
eine geometrisch dicke Scheibe erwarten, wie es auch in den Simulationsergebnissen
angedeutet wird. Eine quantitive Beschreibung ist durch das niedrige Verhéltnis zwi-
schen Teilchenzahl und Bingré8e in den inneren Bereichen der Scheibe nicht mehr
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Abbildung 4.7: Z-Verteilung der Teilchen an verschiedenen Radien.

moglich.

Berechnet man die Skalenhthe der Scheibe aus dem Quotient aus Schallge-
schwindigkeit in der Mittelebene und der Winkelgeschwindigkeit, die fiir jedes SPH-
Teilchen berechnet wird erhilt man die durchgezogene Linie in Bild 4.8. Diese hy-
drodynamische Skalenhthe stimmt sehr genau mit den theoretischen Werten iibe-
rein. Das ist insofern wichtig, da diese Kurve die hydrodynamischen Gréflen, wie
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Druck und Schallgeschwindigkeit in der Mittelebene repriisentiert. Fiir grofle Radi-
en (r > 100 AU) wo die Nidherung H = ¢,/ uneingeschrinkt giiltig ist, muf dieser
Quotient die Verteilung der SPH-Teilchen in z-Richtung bestimmen, wie es auch aus
der Abbildung 4.8 ersichtlich ist.

10.0

Skalenhohe in AU
T T T 1T ‘

I I I I I I I
10 100

Radius in AU

Abbildung 4.8: Gegeniiberstellung der theoretisch berechneten Skalenhdhe (gestri-
chelte Linie) und den aus den Teilchenverteilungen in z-Richtung erhaltenen Ska-
lenhshen (Rauten). Die durchgezogene Linie ist die aus hydrodynamischen Gré8en
berechnete Skalenhohe.

Akkretionsstrom und Leuchtkraft

Wie in Kapitel beschrieben, bedingt die Massenakkretion die Leuchtkraft der Schei-
be. Aus Gleichung ist ersichtlich, dafi die Gesamtleuchtkraft proportional zum Mas-
senflu M sein muB. In Abbildung 4.9a ist die Zunahme der Sternmasse gegen die
Zeit aufgetragen. Durch Ableitung nach der Zeit erhdlt man den in Abbildung 4.9b
gezeigten Verlauf (gestrichelte Kurve) der Leuchtkraft (Lgc).

Diese so bestimmte Leuchtkraft L,.. mufl sich auch aus der viskos erzeugten
Leuchtkraft L,;,. ergeben, die sich aus der Summe der Beitrige aller Pseudoteilchen
berechnet.
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Abbildung 4.9: a.) Massenakkretion auf die Zentralmasse. Deutlich ist die Abnah-
me von M zu erkennen, was auf das Abklingen des Einschwingvorganges zuriick-
zufithren ist. b.) Leuchtkraft der Akkretionsscheibe. Die dicke Kurve entspricht der
Leuchtkraft durch Massenakkretion. Die diinne Kurve ist die Leuchtkraft die aus der
Energiedissipation innerhalb der Scheibe resultiert. Beide streben dem theoretisch
berechneten Wert entgegen.

dsS;

In Abbildung 4.9b ist L als diilnne Kurve eingezeichnet. Bis auf geringfiigige
Abweichungen entspricht sie der aus der Teilchenakkretion errechneten Leuchtkraft
Ly... Beide streben dem theoretisch vorhergesagtem Wert fiir diese Konfiguration
von L., = 1.0 - 103'erg/sec entgegen. Die Abweichungen lassen sich wie folgt
erkliren:

e Die Massenakkretion am Innenrand der Scheibe ist durch den Teilchencharak-
ter des Codes diskontinuierlich. Differenziert man diese Gréfle so ergibt sich
ein Fehler der proportional zur Wurzel der akkretierten Teilchen ist, bekannt
als Poissonrauschen.

V Nacc

(e) = N,

~ 10% (4.33)

e Strenggenommen gilt Gleichung (4.24) nur fiir stationére Scheiben, bei denen
der Massenflu M iiber den gesamten Scheibenradius konstant ist. Dies ist
besonders wihrend des Relaxationsvorgang nicht erfiillt wo lokale Geschwin-
digkeitsgradienten zusétzlich zur Energiedissipation und somit zur Leuchtkraft
beitragen. Diese Abweichung wird kleiner, je ndher die Akkretionsscheibe dem
Gleichgewichtszustand kommt.
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Aus dem Massenstrom 148t sich auch die Lebensdauer von Akkretionsscheiben
abschiitzen. Sie ist im Hinblick auf Planetenentstehung von zentraler Bedeutung, da
sie den Zeitrahmen des Entstehungsprozesses festlegt.

Fiir obige Simulation ergibt sich aus der Akkretionsrate von M=~~1- 10~ "My /yr
und einer Gesamtmasse von M., = 0.1M eine ungefdhre Lebensdauer von

M €S
t = —%° ~10° Jahre (4.34)
M

Aus Beobachtungen 148t sich indirekt eine ,,Lebensdauer” von protoplanetaren
Akkretionsscheiben ableiten. Geht man davon aus, dafl ein Protostern gleichzeitig
mit einer Akkretionsscheibe gebildet wird, erhélt man aus der Tatsache, daf§ bei jun-
gen Sternen die #lter als 107 Jahre sind kein zirkumstellares Material mehr durch
einen InfrarotexzeB nachgewiesen werden kann, eine obere Grenze von 105 — 107
Jahren. War also eine Gasscheibe vorhanden muf§ diese innerhalb dieser Zeit im in-
fraroten Bereich deaktiviert werden. Dafiir kommen mehrere Mechanismen in Frage

e Vollstindige Gasakkretion durch den Zentralstern

e Bildung von Planetenkernen aus Planetesimalen und anschliefende Gasakkre-
tion auf die Protoplaneten (Run-Away Phase der Planetenentstehung)

e Der bei jungen Sternen starke Sternwind diinnt die Gasphase der Scheibe aus

e Zerstorung der Akkretionsscheibe durch einen Vorbeiflug eines zweiten Sterns
(Im folgenden Kapitel wird darauf niher eingegangen).

Die radiale Temperaturverteilung

Die radiale Temperaturverteilung ist eine weitere wesentliche Gré8ie protoplanetarer
Akkretionsscheiben, die nicht nur die spektralen und optischen Eigenschaften der
Scheibe bestimmt. Sie hat direkt Einflu8 auf chemische Prozesse, wie das Entstehen
und Wachsen von Planetesimalen (Lissauer 1993) und auf die Staubkoagulation in
der Akkretionsscheibe.

Die hier behandelten stationiren Scheiben erzeugen die Wirme ausschliefllich
iiber viskose Reibung. Reprozessierung von Sternlicht und magnetische Prozesse
werden ebenso ausgeschlossen wie Strahlungstransport durch Diffusion. Durch diese
physikalischen Einschrinkungen reduziert sich das radiale Temperaturprofil auf ein
einfaches Potenzgesetz T oc 7~3/* (siehe Gleichung (4.26)).

Zur Berechnung der effektiven Temperatur wird die Scheibe in konzentrische
Ringe unterteilt. Aus der in jedem Kreisring dissipierten Energie (Leuchtkraft) und
der Kreisringfliche erhilt man mit dem Stefan-Boltzmannschen Gesetz die effektive
Temperatur des Kreisringes.
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J E

Teff - O'BF

(4.35)

Diese so berechnete Temperaturen sind in Abbildung 4.10 als Rauten eingezeich-
net. Die untere Kurve ist wiederum die nach Gleichung (4.26) erwartete Tempera-
turverteilung. Die obere Kurve ist die nach Gleichung (4.27) geniherte Verteilung.

100

N Dissipierte Energie pro
Zeit und Oberflache

Temperatur in K
)

10 | | | T
Radius in AU

Abbildung 4.10: Radiale Temperaturverteilung der Akkretionsscheibe im quasista-
tiondren Gleichgewicht, wie sie aus der Energiedissipation folgt.

Extrapoliert auf einen Radius von 1 AU, bedeutet das eine Temperatur von
T =~ 120 K. Vergleicht man diesen Wert mit Beobachtungen von Beckwith et al.
(1990) u.a, so liegt diese Temperatur im angegeben Bereich zwischen 50 bis 300 K
(Grad Kelvin).

4.2.4 Einflul der Eigengravitation

Im folgenden soll nun auf die weitere Entwicklung der Akkretionsscheiben eingegan-
gen werden. Im Gegensatz zu vorigem ,,Entstehungsszenario” wird hier die Eigen-
gravitation der Scheibe nicht mehr vernachléssigt. Dazu werden zwei verschiedene
Scheibenmassen bei gleicher Zentralmasse gewéihlt. Im ersten Fall wird die Relaxa-
tionsrechnung mit Eigengravitation bei gleicher Scheibenmasse fortgefiihrt und im
zweiten Fall, wird die Scheibenmasse verdoppelt (die Anfangskonfiguration fiir Fall
1 ist in Abbildung 4.14 dargestellt). Alle anderen GréBen bleiben unveréindert.
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Bei der Behandlung eigengravitativer Akkretionsscheiben kénnen eine Fiille von
Instabilitdten auftreten, deren Untersuchung im Allgemeinen sehr kompliziert wer-
den kann. Spiralbildung (Lynden-Bell & Kalnajs 1972) und die Bildung von Frag-
mentationszonen kénnen die Scheibenstruktur mafBgeblich beeinflussen. Inwieweit
eigengravitative Effekte eine dominierende Rolle spielen kénnen, driickt sich im so-
genannte Toomre-Parameter () aus. Dieses, aus einer Dispersionsrelation (Lin &
Shu 1964) dhnlich der von Schallwellen, gewonnene Verhéltnis hat bei keplerschen
Rotation folgende Form:

Qc,
©= TGY’
wobei ¥ die zweidimensionale Sdulendichte und €2 die Winkelgeschwindigkeit ist
(G ist die Gravitationskonstante und ist hier = 1). Ist @ > 1, iiberwiegen sta-
bilisierende Druckkrifte und axialsymmetrische Instabilitéiten, hervorgerufen durch
Eigengravitation, werden unterdriickt. Fiir die in diesen Simulationen verwendeten
Scheiben ist die radiale Abhéngigkeit von ) in Abbildung 4.11 aufgetragen.

(4.36)

Toomre Parameter: Q

1000—T——T—— T T——T—T——T— [ """ T T T T T

100G
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Abbildung 4.11: Radiale Abhingigkeit des Toomre-Parameters ) fiir die simulierten
Scheiben.

() wurde im gesamten Simulationsgebiet gréfler als Eins gewéhlt, um eine promp-
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te Fragmentierung der Scheibe zu vermeiden.

Simulationsverlauf

Mscheie= 0.05M; Bei der in den Abbildungen 4.15, 4.15, 4.16, 4.18 gezeigten
Sequenz entwickelt sich innerhalb von T' = 15000 Jahren im Bereich zwischen 40
und 80 AU eine Balkeninstabilitit, wie sie in Kapitel [3] beschrieben worden ist.
GemiB der dort beschriebenen Methode sind die Koeffizienten der Fourieramplitu-
den m = 1, ...4 ausgewertet worden und in Abbildung 4.12 dargestellt. Deutlich tritt
hier die m = 2 Mode vor den anderen hervor. Die durch die Verinderung der Epizy-
klenfrequenz in diesem Bereich hervorgerufene Instabilitit transportiert nun Masse
im Bereich > 50 AU nach auflen und bei Radien < 50 AU nach innen, was am Mas-
senflu M erkennbar ist. Dadurch entsteht ein Gap in der radialen Dichteverteilung,
der sich am Ende der Simulation von R = 50 — 100 AU erstreckt. In diesem Bereich
steigt die Skalenhéhe um ein doppeltes an, was unerwartet ist, da ein Absinken der
Dichte eine Verkleinerung der Skalenhéhe nach sich ziehen sollte. Die in diesem Be-
reich starke Instabilitdt bedingt aber eine Absenkung der Winkelgeschwindigkeit,
was dann iiber H = ¢;/Q zu einer Vergrosserung der Skalenhohe fiihrt. Die radiale
Umstrukturierung der Scheibenmasse hat auf die Temperatur in diesem Bereich nur
einen kleinen EinfluBl. Sie weicht in negativer Richtung marginal vom anfinglichen
Profil ab. Demnach ist auch der Einfluf§ auf die spektrale Energieverteilung ? L, der
Scheibe sehr klein.

Mgeneive= 0.1M; Anders als bei der leichteren Scheibe treten hier sofort nach
Beginn der Simulation mehrarmige Spiralstrukturen auf, die bis zum Ende der Si-
mulation nur wenig an Stérke verlieren (dargestellt in den Abbildungen 4.19, 4.19,
4.20, 4.22). Hervorgerufen werden diese durch den in diesem Massenbereich wirk-
samen SWING-Mechanismus (Goldreich & Lynden-Bell 1965). Ebenfalls kann das
Auftreten einer Balkeninstabilitit beobachtet werden, deren Amplitude mit der im
Falle der leichteren Scheibe vergleichbar ist (Abbildung 4.12). Durch den SWING-
Mechanismus sind die Amplituden der Moden m = 1, 3,4 hier jedoch héher. Eine
zeitliche Verdnderung 148t sich nicht beobachten. Die durch die Balkeninstabilitét
hervorgerufene ,,Liicke” ist bei dieser Simulation schmaler und befindet sich ndher
an der Zentralmasse (R = 30 — 60 AU).

Akkretionsraten und Leuchtkraft

Die beschriebene Verdnderung der Scheibenstruktur 148t eine Beeinflussung der Ak-
kretionsraten und der Leuchtkréifte vermuten. Dies wird durch die Simulation in

2Die spektrale Energieverteilung wurde hier im Falle einer Inklination von § = 90 Grad berech-
net, wobei k¥  v? angenommen wurde, was in diesem Temperaturbereich gerechtfertigt ist
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Abbildung 4.12: Entwicklung der Amplituden der Fourierkoeffizienten |A,,| wihrend
der Simulation eigengravitativer Scheiben.

beiden Féllen nicht bestéitigt. Die Massenakkretion, abgebildet in 4.13 ist streng
linear und zeigt keine zeitliche Variation.

Desweiteren entsprechen Akkretionsrate und Leuchtkraft den theoretisch berech-
neten Werten (siehe Tabelle 4.2). Die geringe Beeinflussung der Akkretionsrate und
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Massenakkretion auf den Stern
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Abbildung 4.13: Darstellung der Massenakkretion im Fall eigengravitativer Akkre-
tionsscheiben.

Tabelle 4.2: Vergleich der Simulationsergebnisse fiir L und M (am Ende der Simu-
lation, Bilder: #4) mit theoretisch berechneten Werten.

MScheibe M in M@/yr Mtheo L in erg/sec Ltheo
M = 0.05Mg 79.1078 5.1-1078 1.1-10% 1.0 - 103t
M=01M, | 1.7-107 |1.2-1077| 2.03-10°T |1.9-10%

somit der Leuchtkraft durch die Eigengravitation und der dadurch eintretenden
Strukturbildung 148t sich verstehen, da der innere Bereich der Akkretionsscheibe
weitgehend ungestort bleibt. Die Bildung eines Gaps in der radialen Dichtevertei-
lung bei 50 AU senkt die Leuchtkraft durch den raschen radialen Abfall nur un-
merklich. Bleibt die beobachtete Ringstruktur jedoch fiir lingere Zeit stabil, muf}
bei vollstéindiger Akkretion des inneren Massenringes M schlagartig abfallen. Ubrig
bliebe ein Akkretionstorus, wie er bei der Simulation von aktiven Galaxienkernen
beobachtet wird (Masuda 1998).
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4.2.5 Zusammenfassung

Im ersten Teil des Kapitels wurde die Bildung einer Akkretionsscheibe aus einer An-
fangskonfiguration weit ab des hydrodynamischen Gleichgewichts beobachtet. Nach
Abklingen des Relaxationsvorganges, der sich durch radiale Wellenerscheinungen
ausdriickte, erreichte die dreidimensionale Struktur einen quasistationéren Zustand.
Die vorab dargelegte Theorie geometrisch diinner Akkretionsscheiben liefert hierfiir
eindeutige Vorhersagen iiber deren Aufbau. So war es moglich radiale Tempera-
turverteilungen, Skalenhéhen, Leuchtkrifte und Akkretionsraten in einer dreidi-
mensionalen, selbstkonsistenten Simulation zu iiberpriifen. Die Teilchenverteilung
in z-Richtung lieferte im mittleren und &ufleren Bereich der Scheibe die erwarteten
hydrostatischen Skalenhéhen. Abweichungen traten im Innenbereich auf, wo die nu-
merisch errechneten Werte grofer waren, als die theoretisch erwarteten. Allerdings
ist in diesem Bereich die Annahme einer diinnen Scheibe nicht mehr gerechtfertigt.
Desweiteren konnte das radiale Temperaturprofil T' oc =%/ mit grofer Genauigkeit
verifiziert werden. Nach Abklingen des Einschwingvorganges, der zu einer erhGhten
Leuchtkraft beitrug, erreichte auch dieser den theoretischen Wert. Vergleicht man
fiir diese Leuchtkraft bendtigte Akkretionsrate mit der Anzahl tatséichlich akkre-
tierter Teilchen am Innenrand der Scheibe ergab sich weitestgehend Ubereinstim-
mung. Durch diese dreidimensionale Simulationen konnte die in zwei Dimensionen
entwickelten theoretischen Zusammenhinge in eindrucksvoller Weise reproduziert
werden.

Im dritten Teil dieses Kapitels wurde die Weiterentwicklung dieser Scheiben
unter Beriicksichtigung der Eigengravitation des zirkumstellaren Gases untersucht.
Schnell bildete sich bei allen Simulationen eine Balkeninstabilitdt im mittleren Be-
reich der Akkretionsscheibe aus (gemif Kapitel [3]), welche durch Massentrans-
port eine Liicke in der radialen Dichteverteilung erzeugte. Dieses Verhalten ist keine
axialsymmetrische, gravitative Instabilitdt im eigentlichen Sinne, da der Toomre-
Parameter ) immer >> 1 ist, sondern vielmehr das Resultat der Balkeninstabilitét
und der dabei stattfindenden Massenfliisse. Das Gap-clearing im Mittelbereich der
Akkretionsscheibe hatte auf das radiale Temperaturprofil einen geringen Einfluf3
(es war ein leichter Temperaturabfall zu verzeichnen), wodurch auch die spektrale
Energieverteilung L, nur unmerklich verdndert wurde. Die zeitliche Konstanz der
Akkretionsraten, selbst bei voller Ausbildung des Gaps, war zunichst verwunder-
lich, da ein stark gestérter Massenflufl diese modulieren sollte. Es stellte sich heraus,
daB der Ubergangsbereich zwischen Stern und Scheibe bei diesen Rechnungen im
wesentlichen ungestort blieb, wodurch die Akkretionsraten nicht beeinflufit wurden.
Die radiale Strukturierung protoplanetarer Akkretionsscheiben unter der Wirkung
der Eigengravitation wurde von Willerding (1990, 1992) postuliert. Diese Akkreti-
onsringe sollten mit wachsenden Abstand gemi$ r, = ry + d¢™ auftreten. Inwieweit
die hier beobachtete radiale Strukturierung diesen Akkretionsringen entspricht, oder
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der Ubergang in eine Gleichgewichtskonfiguration (Akkretionstorus) markiert, bleibt
fraglich und mu$ in weiteren umfangreicheren Simulation, die einen erweiterten zeit-
lichen Bereich abdecken, geklirt werden.
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Abbildung 4.14: Anfangsbedingung fiir die Simulation eigengravitativer Akkretions-
scheiben und gleichzeitige Endkonfiguration des Relaxationsprozesses.
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Abbildung 4.15: Scheibe 1, #1



70 Kapitel 4. Protoplanetare Akkretionsscheiben

Zeit=479421 a
Leuchtkraft = 9.6840032e+30 erg/sec

Dichte in der Scheibenebene Scheibenmasse = 0.0436995 M (sol)
200
100 Spektr. Energieverteilung
1032 :
= 0
-100
-200 ‘o |
101 1012
-200 -100 0 100 200 Frequenz in [Hz]

AU Massenfluss

Dichte in der R-Z Ebene

M(sol)/a

81078 . . . .
50 100 150 200 250 0 50 100 150 200 250
AU Radius [AU]

Skalenhéhe [AU]

Dichte [g/cm”2] Temperatur [K]

10.0 100 8
10} 1 10} :
0.1 T 1 T 0 T

0 50 100 150 200 250 O 50 100 150 200 250 O 50 100 150 200 250

Radius [AU] Radius [AU] Radius [AU]

Abbildung 4.16: Scheibe 1, #2
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Abbildung 4.17: Scheibe 1, #3
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Abbildung 4.18: Scheibe 1, #4
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Abbildung 4.19: Scheibe 2, #1
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Abbildung 4.20: Scheibe 2, #2
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Abbildung 4.21: Scheibe 2, #3
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Abbildung 4.22: Scheibe 2, #4
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Parabolische Kollisionen

Als Ausgangssituation fiir das klassische Modell der Sternentstehung kénnen die in
Molekiilwolken vorhandenen Kerne angesehen werden. Diese kollabieren unabhéngig
voneinander unter Beibehaltung ihres Drehimpulses in protostellare Scheiben. Visko-
se Wechselwirkungen innerhalb der Scheibe bedingen eine Akkretion von Masse auf
ein vorhandenes Zentralobjekt, dem Protostern. Diese Akkretion (T Tauri-Phase)
dauert so lange an, bis ein Grofiteil der Masse sich auf dem Protostern gesammelt hat
und von einer diinnen Restscheibe umgeben wird. Als Auslésemechanismus fiir diese
Strukturierung der Molekiilwolke, kann der Prozefl der ambipolaren Diffusion her-
angezogen werden. Elmegreeen & Lada 1977 schlugen eine alternative Moglichkeit
vor, bei der die Sternentstehung durch lokale Kompression der Molekiilwolke getrig-
gert wird. Als Ursache fiir lokale Dichteschwankungen innerhalb der Molekiilwolken
kommen unter anderem Supernovaexplosionen in Frage. Whitworth et al. 1996 ge-
ben diesem Auslésemechanismus den Vorzug, um die Entstehung enger Sternhaufen
und junger Doppelsternsysteme zu erklidren. Simulationen von Turner et al. 1995
und Whitworth et al. 1995 scheinen dies zu bestétigen.

Beobachtungen von Lada et al. 1991 zeigen, dafl die meisten Sterne in Haufen
entstehen, wobei die Sterndistanzen etwa 5000 AU oder geringer sein kénnen (Strom
1985). Nimmt man an, dafi diese Protosterne teilweise von Gasscheiben umgeben
sind, so sind Kollisionen der einzelnen Komponenten innerhalb der 'Lebensdauer’
von typischen Akkretionsscheiben (= 107 Jahre) wahrscheinlich. Numerische Simu-
lationen von N-Ké6rpersystemen (Sterzik & Durisen 1995) zeigten dies.

Der Einflul dieser Kollisionen auf die Akkretionsscheiben wurde von Ostriker
1994 analytisch untersucht. Dabei wurde angenommen, dafl die kiirzeste Sterndi-
stanz (Periastron) viel groBer als der typische Durchmesser von Akkretionsscheiben
ist, was eine lineare Stérungsrechnung erméglichte. Kollisionen, bei denen die Ster-
ne die Akkretionsscheiben durchdringen oder in geringer Distanz passieren, knnen
nicht mehr analytisch behandelt werden, sondern miissen simuliert werden. Clarke
& Pringle 1993 verwendeten dafiir ein reduziertes Dreikérper-Schema in zwei Di-

77
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mensionen. Die Scheibe wurde aus nicht wechselwirkenden Punktmassen aufgebaut,
die sich nur im Potential der Sterne bewegten. Eigengravitation und Druckgradien-
ten wurden vernachléissigt. Dabei zeigte sich, dafl die Rotationsrichtung der Scheibe
in Bezug auf die Bewegungsrichtung der Sterne einen wesentlichen Einflufl auf die
Stabilitdt der Scheibe hat. Im prograden Fall, bei dem der Orbitaldrehimpuls der
Sterne parallel zum Drehimpuls der Scheibe ist, konnte eine totale Zerstérung der
Scheibe auflerhalb der halben Periastrondistanz festgestellt werden. Ein signifikanter
Massenanteil wurde durch den anfangs scheibenlosen Stern eingefangen und mitge-
rissen. Die retrograde Kollision (antiparallele Drehimpulse) erwies sich weit weniger
effektiv. Eine Zerstorung der Scheibe fand nur bis zur Periastrondistanz statt. Der
scheibenlose Stern fing diesmal nur wenig Masse ein. Heller 1993 simulierte Stern-
Scheiben Kollisionen in drei Dimensionen mit dem SPH-Verfahren, vernachléssigte
aber ebenfalls die Eigengravitation.

In diesem Kapitel sollen nun koplanare Stern-Scheiben Kollisionen durchgefiihrt
werden, wobei die Eigengravitation nicht mehr vernachléssigt werden soll. Deswei-
teren werden im zweiten Teil auch Kollisionen in betracht gezogen, bei denen beide
Sterne von einer Akkretionsscheibe umgeben sein sollen. In allen Fillen bewegen
sich die Sterne auf parabolischen Bahnen, deren Periastron in einem weiten Bereich
variiert wird.

5.1 Code Details

Wie beschrieben, soll es sich in diesem Kapitel um eine Parameterstudie handeln,
wobei der Einfluf} des Periastron auf die Umverteilung von Masse und Drehimpuls
bei parabolischen Stern Scheibe sowie Scheiben Scheiben Kollisionen untersucht wer-
den soll. Zusétzlich wird noch die Masse der zirkumstellaren Scheibe variiert. Bei
Einbeziehung der Eigengravitation entstanden dadurch sehr lange Rechenzeiten, die
sich nur unter Vernachlédssigung des hydrodynamischen Teils des Codes in einem
sinnvollen Bereich bewegten. Diese Nidherung ist fiir die Untersuchungen in diesem
Kapitel keine wesentliche Einschrinkung. Die bei einer Kollision wirkenden hydro-
dynamischen Krifte sind im Vergleich zu den Gezeitenkrifte viel kleiner und spielen
nur bei der Strukturierung des Restmaterials eine Rolle, die hier aber nicht interes-
sieren soll.

5.2 Stern-Scheibe Kollisionen

Beobachtungen zeigen, dafi nicht alle jungen Sterne in Sternentstehungsgebieten von
Akkretionsscheiben umgeben sind. Dies beinhaltet demnach die Méglichkeit einer
Kollision zwischen einem Stern und einem von einer Akkretionsscheibe umgebenen
Stern. An einem derartigen Ereignis lassen sich fundamentale Prozesse leichter er-



5.2. Stern-Scheibe Kollisionen 79

kennen als bei einer Kollision zweier Akkretionsscheiben. Im einzelnen ist hier der
Transfer von Masse in den EinfluBbereich des anfangs scheibenlosen Sekundérstern
Zu nennen.

Simulationsergebnisse von Clarke & Pringle 1993 sowie Heller 1993 zeigten, daf
bei einer Kollision der prograde Zusammenstofl am effektivsten ist, um die Scheibe zu
zerstoren. Ahnliches stellte Toomre 1990 bei der Simulation von Galaxienkollisionen
fest. Vergleicht man die bei einer Kollision auf ein Scheibenteilchen wirkende radiale
Kraft in Abhéingigkeit von der Zeit fiir retrograde und prograde Zusammenst6fe
wird der Unterschied noch deutlicher. Der in Abbildung 5.1a gezeigte Kraftverlauf
ist fiir den prograden Fall (blaue Kurve) breiter als im retrograden Zusammensto8.
Im ersteren wirkt die stérende Kraft linger und die iibertragene mechanische Ener-
gie ist groBer als im retrograden Fall (rote Kurve). Daraus 18t sich schlieBen, daf} die
Relativgeschwindigkeit zwischen dem stérenden Stern und den Scheibenteilchen fiir
dieses Verhalten verantwortlich ist. Durch die entgegengesetze Richtung zwischen
Sternbewegung und Scheibenteilchen im retrograden Fall erh6ht sich die Relativ-
geschwindigkeit und die Wechselwirkungszeit zwischen Scheibenteilchen und Stern
sinkt. Betrachtet man zusédtzlich die Flugzeit eines Sternes durch eine ungestorte
Scheibe in Abhéngigkeit der Periastrondistanz (Abbildung 5.1b) ist diese maximal,
wenn das Periastron halb so gro wie der Scheibenradius gewéhlt wird. Ein pro-
grader Zusammensto bei dem der Sekundérstern die Scheibe bei der Hélfte ihres
Radius durchquert, wird demnach den heftigsten Einflufl auf die Akkretionsscheibe
ausiiben.

mmmm  retrograd 40 E

30/\

20F

radiale Kraft

prograd

0 2 4 8 3 10
periastron

Abbildung 5.1: a.) Normierter zeitlicher Verlauf der auf ein Scheibenteilchen wirken-

de radiale Kraft (retrograd: rot, prograd: blau). b.) Flugzeit durch eine als ungestért

angenommenen Scheibe in Abhéngigkeit der Periastrondistanz. Der Scheibenradius
betrdgt R = 10 Léngeneinheiten.
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5.2.1 Simulationsverlauf

Bei den folgenden zweidimensionalen Simulationen sind nur gravitative Kréfte invol-
viert weswegen nur Groflenverhiltnisse relevant sind. Der Scheibenradius wird auf 10
Lingeneinheiten (LE) festgesetzt und die Periastrondistanz schrittweise im Bereich
zwischen 1 und 20 Lingeneinheiten variiert. Die Sterne besitzen je eine Masse von 1
Masseneinheit M, wogegen die Scheibenmasse auf 1/10 und 1/100 der Sternmasse
festgesetzt wird, aus 10000 Teilchen zusammengesetzt ist und durch eine konstante
Oberflichendichte gekennzeichnet ist. Der anfingliche Sternabstand betrigt etwa 4
Scheibenradien (siehe Abbildung 5.2).

( )
Scheibenradius : 10
—_—

Periastron : 1...., 20

—

Bewegungsrichtung
—_—

Scheibenmasse : 0.01

Sternmassen : 1

\. J

Abbildung 5.2: Darstellung der Anfangsbedingung fiir die Stern-Scheibe Kollisionen.

Zur Beschreibung der Zusammensttfie wird auf eine prograde Kollision zuriick-
gegriffen, bei dem die Scheibenmasse 1/10 der Sternmasse betréigt und der Stern die
Scheibe bei 7peri = 0.4 - Rgcpeive durchquert. Der zeitliche Ablauf ist in Abbildung
5.3 dargestellt. Dabei wurde die Verteilung der SPH-Teilchen in eine Dichte umge-
rechnet und farblich codiert (hellere Bereiche markieren Gebiete hoherer Dichte).

Die Anndherung des Sekundéirsternes beeinflufit die Form der Scheibe bis kurz
vor dem Eindringen nur marginal. Die Bildung der Spiralstruktur ist ein Effekt der
hohen Scheibenmasse (SWING-Mechanismus) und wird nicht vom Sekundérstern
ausgelost. Kurz nach Erreichen des Periastron bildet sich aufgrund der hohen Ge-
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zeitenkrifte eine einarmige Spirale, der sich im Laufe der Simulation von der Schei-
be entfernt und den gréBten Beitrag zum Massenverlust der Scheibe leistet. Diese
m = 1 Spirale ist eine Folge des nichtverschwindenen Dipolanteil des Gravitations-
potentials im Bereich der Scheibe. Als Folge der Scheibendurchquerung, nimmt der
Sekundarstern ein Teil des Materials mit, das wiederum eine Scheibe geringer Masse
bildet. Der sich entfernende Gezeitenarm wird gravitativ instabil und bildet eine
Reihe von kleinen Fragmenten, die als Vorstufe von substellaren Begleitern ange-
sehen werden konnen, deren weitere Entwicklung durch die Vernachlissigung der
hydrodynamischen Kréfte nicht verfolgt werden kann.

5.2.2 Massentransport

Wie aus der Abbildung 5.3 ersichtlich wird, kommt es bei den Kollisionen zu signi-
fikanten Massenumverteilungen. Dabei wird die Akkretionsscheibe teilweise zerstort
und der Sekundérstern fingt ein Teil der Materie ein und es bildet sich eine zweite,
stark gestorte Scheibe um den anfangs scheibenlosen Stern. Ein grofler Teil wird
jedoch so stark beschleunigt, dal er nicht mehr an einen der beiden Sterne gebun-
den ist. Um diese Moglichkeiten zu unterscheiden wird fiir jedes Massenelement die
Bindungsenergie E,,;, und E,.; beziiglich jeder der Sterne berechnet und folgen-
dermaflen kategorisiert:

e Ein Massenelement wird als ungebunden betrachtet, wenn beide Bindungs-
energien E,.;, und Eq, negativ sind.

e Ist die Bindungsenergie E,;,, grofer als Null und gleichzeitig F; kleiner als
Null, so ist das Teilchen an den Primérstern gebunden. Sind Epi, < 0 und
Ee. > 0 besteht Bindung zum Sekundérstern.

e Sind beide Bindungsenergien gréfler als Null, wird das Teilchen zu dem Stern
als gebunden betrachtet, zu dem es die gréite Bindungsenergie hat.

In den Abbildungen 5.4 (prograd) sowie 5.5 (retrograd) sind diese Massenver-
teilungen in Abhéngigkeit des Periastronabstandes aufgetragen. In beiden Fillen
konnte keine signifikante Abhéngigkeit von der Scheibenmasse festgestellt werden.

e Prograde Kollision: Wie erwartet wirkt sich die Kollision bei einem Peria-
stron von der Hilfte des Scheibenradius am destruktivsten auf die Akkretions-
scheibe aus. Die Scheibenmasse wird bis auf 30% ihrer urspriinglichen Masse
reduziert und der Anteil an ungebundener Masse steigt hier auf ein Maximum
von 50%. Der Anteil des vom Sekundérstern eingefangenen Materials nimmt
dann, mit 10% ein Minimum ein. Der Energieiibertrag ist bei dieser Peria-
strondistanz demnach am effektivsten. Bei Periastrondistanzen grofer als 13
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Lingeneinheiten reicht der Energieiibertrag nicht mehr aus, um einen signifi-
kanten Massenanteil (der hier < 10% ist) die nétige Entweichgeschwindigkeiten
zu erteilen. In diesem Bereich ist der Masseneinfang durch den Sekundérstern
der effektivere ProzeB, wo bis zu 25% der Scheibenmasse transferiert werden
und eine zweite Scheibe bilden.

e Retrograde Kollision: Betréichtliche Unterschiede zum obigen Fall liefern
die retrograden Kollisionen. Passiert der Sekundérstern die Scheibe aufierhalb,
wird dieser nur noch wenig Material entrissen (< 10%) und Masseneinfang
durch den Sekundirstern tritt nicht mehr auf. Im Gegensatz zu prograden
Kollisionen ist hier ein eindeutiger Zusammenhang zwischen Massenverteilung
und Periastrondistanz auszumachen. Je grofler der StoBparameter, desto we-
niger Material wird vom Sekundérstern eingefangen und desto mehr Material
verbleibt am Primérstern. Am effizientesten ist die retrograde Kollision bei
kleinsten StoBparametern. Hier werden 70% der Scheibe abgerissen, wovon
35% eingefangen werden und 30% das System verlassen. Die verbleibenden
5% koénnen durch indefinite Bindungsverhéltnisse keinem der beiden Sterne
zugeordnet werden.

5.3 Scheibe-Scheibe Kollisionen

Eine weitere Moglichkeit ist der Zusammenstofl zweier Sterne, wobei jeder von einer
Akkretionsscheibe umgeben ist. Um den, selbst bei zweidimensionalen Simulationen,
groflen Parameterbereich einzuengen, sollen die Sterne und Scheiben jeweils die glei-
chen Massen besitzen. Durch diese Symmetrie lassen sich die Kollisionen auf zwei
Fundamentalfille zuriickfithren. In einem Fall sind die Drehimpulse der Scheiben
parallel, im anderen antiparallele gerichtet.

5.3.1 Simulationsverlauf

Die Anfangsbedingung (in Abbildung 5.6 dargestellt) fiir die Scheiben-Scheiben Kol-
lisionen ist identisch zu der fiir die Stern-Scheibe Kollision verwendeten, mit dem
Unterschied, dal hier beide Sterne von einer Scheibe umgeben sind. Deren Rotati-
onsrichtungen werden, nach obiger Uberlegung, entweder parallel oder antiparallele
gewdhlt. Wie im vorigen Beispiel, werden ebenfalls die Scheibenmassen variiert (1/10
und 1/100 der Sternmasse).

Wie bei der Beschreibung von Stern-Scheibe Kollisionen wird hier ein einzelner
Fall herausgegriffen. Fiir den in Abbildung 5.7 gezeigten zeitlichen Verlauf wird eine
Kollision verwendet bei der die Scheibenspins antiparallele sind (entgegensinnige
Rotationsrichtung). Die Scheibenmassen betragen je 1/100 der Sternmasse und als
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Periastrondistanz wird wieder rper; = 0.4 - Rgepeipe ausgewshlt. Fiir die Farbgebung
gilt das in Abschnitt [5.2.1] erwihnte.

Ahnlich der Beschreibung von Stern-Scheibe Kollision werden die Scheiben erst
beim Eindringen der Sterne in die Scheiben mafigeblich deformiert. Bei passieren des
Periastrons bildet sich an der Scheibe, deren Spindrehimpuls die selbe Richtung wie
der Orbitaldrehimpuls hat, wieder ein Gezeitenarm, der sich von der urspriinglichen
Scheibe ablost. Eine Fragmentierung des Materials wird durch die kleinere Schei-
benmasse nicht beobachtet. Durch die Kollision werden die Scheiben wieder stark
verkleinert und dhneln dabei den Restscheiben der Stern-Scheiben Kollisionen. Ob
sich diese Ahnlichkeit auch in den Massenverteilungen ergibt, soll im Folgenden
untersucht werden.

5.3.2 Massentransport

Gemif dem in Kapitel [5.2.2] verwendeten Schema, werden auch hier die Massenver-
teilungen in Abhéngigkeit der Periastrondistanz untersucht (siehe Abbildung 5.8).
Vergleicht man die Verteilungen mit denen von Stern-Scheibe Kollisionen, fallen
betrichtliche Gemeinsamkeiten auf.

e Parallele Anordnung der Scheibenspins: Hier ist der Massenanteil der an
den Sternen verbleibt bei beiden Sternen identisch und &hnelt dem der progra-
den Stern-Scheibe Kollision bei Periastrondistanzen > 5 Lingeneinheiten. Bei
engen Passagen weichen die Massenverteilungen der Scheibe-Scheiben Kolli-
sionen von denen der Stern-Scheiben Zusammenstofe ab, da hier die Wechsel-
wirkung der Scheiben untereinander eine immer groflere Rolle spielt. Bei einer
Periastrondistanz von 10 Lingeneinheiten durchdringen sich die Scheiben nur
zu etwa 50%, bei einem Abstand von 1 LE fast vollstéindig.

e Antiparallele Anordnung der Scheibenspins: Bei dieser Anordnung der
Drehimpulse durchquert ein Stern eine Scheibe retrograd, der andere jedoch
prograd. Die Abhingigkeit der am Stern verbleibenden Masse von der Peria-
strondistanz ist beim Sekundérstern identisch dem Verlauf fiir eine retrograde
Stern-Scheibe Kollision. Eine Beeinflussung fiir Distanzen grofler als der Schei-
benradius tritt nicht mehr auf, wogegen die Scheibe des Primérsternes bei ei-
nem Periastron von 10 Lingeneinheiten (Scheibenradius) bis auf 40% zerstort
wird.

In beiden Féllen spielt die Scheibenmasse keine wesentliche Rolle. Geringfiigi-
ge Unterschiede treten nur bei Distanzen < 3 Lingeneinheiten auf, da hier die
Wechselwirkung zwischen den Scheiben am stéirksten ist. Tendenziell verbleibt bei
schwereren Scheiben ein etwas groflerer Anteil an den Sternen gebunden als bei
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einer leichten Scheibe. Die Beeinflussung der Massenverteilungen durch die Eigen-
gravitation des Scheibenmaterials ist bei Scheibenmassen < 0.1 - Mg;e, demnach
zu vernachléssigen, was eine prinzipielle Riickfiihrung dieser ZusammenstéBe auf
dquivalente Stern-Scheiben Kollisionen erlaubt.

5.4 Zusammenfassung

In diesem Kapitel wurden koplanare Stern-Scheibe und Scheiben-Scheiben Kolli-
sionen untersucht, wobei das Periastron (kleinster Sternabstand) in einem weiten
Bereich verdndert wurde. Im Gegensatz zu fritheren Simulationen anderer Auto-
ren sind die Einfliisse der Scheibenmasse, beziehungsweise deren Eigengravitation,
nicht vernachléssigt worden. Hydrodynamische Kréfte konnten aus Griinden langer
Rechendauer bei dieser Parameterstudie nicht behandelt werden.

Bei den Zusammensttflen wurde eine massive Stérung der zirkumstellaren Schei-
be erwartet, die zu einer signifikanten Umverteilung der Scheibenmasse fiithren sollte,
was sich auch bestétigt hat. Als besonders effektiv hat sich die prograde Kollision er-
wiesen, bei der das Periastron in der Mitte der Scheibe befand. In diesem Fall ist die
Wechselwirkungszeit und somit der Energieiibertrag auf die Scheibenteilchen maxi-
mal. Hier wird die Masse der Akkretionsscheibe bis auf 30% ihrer urspriinglichen
Masse reduziert. Der grofite Teil (50%) verldBt den EinfluBbereich der Sterne als
ungebundenes Gas. 10% der Scheibenmasse werden vom Sekundérstern eingefangen
und bilden ebenfalls eine zweite zirkumstellare Scheibe.

Weniger Effizient haben sich im Mittel die retrograden Kollisionen erwiesen.
Deren Einflufl nimmt mit steigender Periastrondistanz stark ab. Im Gegensatz zu den
prograden ZusammenstdBen beeinflussen diese die Akkretionsscheibe nur marginal,
wenn sich das Periastron auflerhalb der Scheibe befindet. Am wirksamsten sind hier
die engen Kollisionen , welche die Scheibemasse um 70% reduzieren, jedoch einen
kleineren Anteil (maximal 30%) in ungebundenes Gas iiberfiithren. Der Transfer von
Masse auf den Sekundérstern ist bei retrograden und engen Kollisionen (rper <
0.3 - Rgcheive) mit iiber 20% am grofiten.

Unerwartet war der geringe Einflufl der Scheibenmasse auf die Massenverteilun-
gen. Bei Stern-Scheibe Kollisionen wurde keine und bei Scheibe-Scheibe Kollisionen
nur bei sehr engen Zusammenstofen ein geringe Beeinflussung festgestellt. Demnach
weichen die hier erhaltenen Ergebnisse bei Stern-Scheibe Kollisionen nur unwesent-
lich von den Resultaten von Clarke & Pringle 1993 ab.

Der geringfiigige Einflufl der Scheibenmasse trug wesentlich dazu bei, daf§ Scheiben-
Scheiben Kollisionen auf entsprechende Stern-Scheibe Zusammenstofle zuriickgefiihrt
werden konnten. Bei antiparallelen Scheibenspins wird eine Scheibe retrograd, die
andere aber prograd durchquert. Parallele Scheibenspins fiihren je nach Orientierung
des Sterndrehimpulses entweder zu rein prograden oder rein retrograden Passagen.



5.4. Zusammenfassung 85

Die in diesem Kapitel behandelten Zusammenst6fe von Sternen mit zirkumstel-
laren Scheiben sind hauptséchlich im Kontext zu Arbeiten von Durisen und Sterzik
zu sehen. Diese Simulationen von Sterntrajektorien in dichten Clustern zeigen, dafl
es im Laufe weniger dynamischen Zeiteinheiten zu nahen Begegnungen der Sterne
kommen kann. Bei besonders engen Passagen kann dies zur Ejektion eines Sternes
aus dem Verband fiihren. Nach diesen Rechnungen sollte um ein Sternentstehungs-
gebiet eine Halo-Population von jungen Sternen existieren, deren Eigenbewegungen
mit dem Sternhaufen korreliert sein miissen (siehe bei Neuh#user et al. 1996). Durch
die, fiir eine Ejektion notwendigen, nahen Sternbegegnungen, werden nach den hier
durchgefiihrten Rechnungen, vorhandenen Akkretionsscheiben grofitenteils zerstort.
Sollte eine, ein Sternentstehungsgebiet umgebene Halopopulation junger Sterne, teil-
weise durch ein Ejektionsszenario entstanden sein, mufl dort der Anteil an Weak-line
T Tauri Sternen erh6ht sein.
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Abbildung 5.3: Dichtecodierte Darstellung einer prograden Kollision zwischen Stern
und Scheibe. Das Periastron betrigt 0.4 - Rgcneipe-
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Abbildung 5.4: Umverteilung der Scheibenmasse nach einer prograden Stern-Scheibe

Kollision.
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Abbildung 5.5: Umverteilung der Scheibenmasse nach einer retrograden Stern-

Scheibe Kollision.
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Abbildung 5.6: Darstellung der Anfangsbedingung fiir Scheiben-Scheiben Kollisio-
nen.
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time = 118.0 ss time = 143.0 ss
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Abbildung 5.7: Dichtecodierte Darstellung einer Kollision zwischen zwei Sternen mit
Akkretionsscheiben, wobei die Drehimpulse der Scheiben parallel sind. Das Peria-
stron betréigt 0.4- RScheibe-
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Abbildung 5.8: Umverteilung der Scheibenmasse nach einer Scheibe-Scheibe Kollisi-
on. Oben: Vom Sekundérstern eingefangener Anteil. Mitte: Am Primérstern verblei-
bender Massenanteil. Unten: Anteil der durch die Kollision ungebundene Materie.
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Hydrodynamische Simulationen

Beobachtungen von Sternentstehungsgebieten wie etwa Taurus oder Chamaeleon,
bestitigen die Annahme, daf§ junge Sterne niedriger Masse (speziell sind hier T
Tauri Sterne zu erwihnen) besonders hiufig in Gruppen oder Clustern vorkommen.
Signifikant ist dabei das Auftreten von Doppelsternsystemen. Vergleicht man die
Doppelsternhiufigkeit von Vor-Hauptreihen Sternen mit der von Hauptreihenster-
nen (Mathieu 1994) in Abhéngigkeit von den grofien Halbachsen der betrachteten
Doppelsterne (siehe Abbildung 6.1), stellt man bei den Vorhauptreihensternen eine
andere Verteilung als bei Hauptreihensternen fest. Erstere treten im Gegensatz zu
den Hauptreihensternen gehduft in einem Bereich zwischen 10 und 1000 AU auf,
wogegen die Verteilung ,,4lterer” Doppelsterne einen breiteren Bereich der Haupt-
achsen einnimmt. Dieser Unterschied in den Verteilungen kann auf die in den jungen
Sternhaufen ablaufenden dynamischen Prozesse zuriickgefiihrt werden. Besonders ef-
fektiv haben sich die in diesen engen Haufen ablaufende Streuprozesse der Sterne
erwiesen. Numerische Simulationen von gebundenen Mehrkorpersystemen (Sterzik
& Durisen, 1998) zeigten, daf solche Systeme instabil sind und in gebundene Unter-
gruppen zerfallen. Bei diesen StoBprozessen kénnen sich die Sterne bis auf wenige
AU n#hern und dabei aus der Sterngruppe herausgeschleudert werden.

Geht man davon aus, dafi ein Grofiteil dieser jungen Sterne von Akkretionsschei-
ben umgeben sind (Beckwith & Sargent 1996) und vermehrt in multiplen Systemen
vorkommen, mufl eine gegenseitige Beeinflussung angenommen werden. Schitzun-
gen der Scheibenhiufigkeit reichen von 70% in jungen Sternclustern (Carpenter &
Meyer 1997) bis zu 50% in der Taurus Dunkelwolke (Kenyon & Hartmann 1995).
Hier stellt sich die Frage nach der Stabilitit dieser Scheiben in Doppelsternsyste-
men. Dabei kénnen in engen Doppelsternsystemen oder Systemen mit hoher Bah-
nexzentrizitidt die Scheiben vollstindig zerstért werden. M6glich ist aber auch nur
die teilweise Zerstorung, welche eine Gasscheibe niedriger Masse hinterlidfit. Die-
se Vermutung gewinnt an Bedeutung, betrachtet man die Verteilung sogenannter
Weak-line T Tauri Sterne (wI'Ts) in Sternentstehungsgebieten (Alcala et al. 1996).
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Abbildung 6.1: Verteilung der groflen Hauptachsen bei Haupt- und Vorhauptreihen
Sternen, aus Mathieu 1994

Sie weisen einen erheblich geringeren Anteil an Infrarotemissionen auf als T Tau-
ri Sterne, was auf einen geringeren zirkumstellaren Massenanteil hindeutet. Dieses
Defizit an zirkumstellarer Materie kénnte auf die oben beschriebenen Einfliisse ei-
nes zweiten in geringer Distanz befindlichen Sternes zuriickgefiihrt werden. Fiir die
Reduzierung der um T Tauri Sternen auftretenden Akkretionsscheiben werden je-
doch auch magnetische Effekte zwischen Stern und Scheibeninnenrand herangezogen
(Armitage & Clarke, 1997).

Simulationen von Akkretionsscheiben in Doppelsternsystemen sind ein gingiges
Mittel, um Prozesse in kataklysmischen Verdnderlichen deutlich zu machen. Das
hier verwendete numerische Verfahren wurde erfolgreich eingesetzt, um Leuchtkur-
ven von Nova-Ausbriichen zu berechnen (Kunze 1997). Die Einfliisse eines weit ent-
fernten Begleitsternes auf eine Akkretionsscheibe wurden von Larwood et al. 1996
untersucht. Verdnderungen in der Struktur zirkumbinérer Akkretionsscheiben, bei
denen die Akkretionsscheibe auflerhalb des Doppelsternes lokalisiert ist, konnten
von Artymowitz & Lubow (1996) erfolgreich berechnet werden. Diese Rechnungen
unterscheiden sich von denen hier vorgestellten dadurch, dafl die Begleitsterne die
Akkretionsscheibe nicht durchdringen, diese also nicht vollsténdig zerstéren kénnen.
Kollisionsrechnungen zwischen Sternen und Gasscheiben, wie etwa von Watkins et
al. (1998) und Lin et al. (1998) beziehen sich auf einmalige Zusammenst6fe, bei
denen sich die Sterne auf parabolischen beziehungsweise hyperbolischen Bahnen be-
wegen.

In diesem Kapitel wird der entwickelte hydrodynamische Code auf ein konkretes
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Sternsystem angewendet. Dabei soll es sich um ein Doppelsternsystem handeln, wo-
bei ein Stern von einer Akkretionsscheibe umgeben sein soll. Das Periastron wird so
gewihlt, dafl es sich innerhalb der Gasscheibe befinden soll. Hierbei erwartet man
eine signifikante und moéglicherweise beobachtbare Umverteilung des zirkumstellaren
Materials, welche sich in der Leuchtkraft des entsprechenden Systems wiederspie-
geln muB. Zusétzlich werden noch die Akkretionsraten der jeweiligen Sterne betrach-
tet, die beim Durchgang durch die Gasscheibe ansteigen miissen. Desweiteren soll
die Simulationsdauer mehrere Orbitalperioden des Doppelsternes umfassen, um die
weitere Entwicklung und Restrukturierung des urspriinglichen Scheibenmaterials zu
verfolgen.

6.1 Motivation: Das Sternsystem HD98800

Von besonderem Interesse ist in diesem Zusammenhang das Sternsystem HD98800.
Es handelt sich um ein hierarchisches Vierfachsternsystem, wobei je zwei Sterne ein
spektroskopisches Doppelsternsystem bilden. Diese spektroskopischen Doppelsterne
(A+B) bilden wiederum ein Doppelsystem mit einer geschitzten Exzentrizitit von
etwa € ~ 0.993 und einer Umlaufdauer von mehr als 7 > 10° Jahren (Torres et
al. 1995 sowie Soderblom et al. 1996). Diese Werte lassen auf ein stark elliptisches
System schlieBen, welches sich bei einer projizierten Entfernung der visuellen Kom-
ponenten von etwa 20 AU (Zuckermann & Becklin 1993) kurz vor dem Periastron
befinden musB.

Das System gehort der Spektralklasse K an (Upgren et al. 1972; Fekel & Bopp
1993) und fillt mit einem Alter von etwa 10 Myr in die Kategorie der Post T
Tauri Sterne. Untypisch fiir diese Spektralklasse ist jedoch der unerwartet hohe
Anteil an Infrarotstrahlung in Wellenléngen von 10...100 gym. Zuckermann & Becklin
(1993) schitzen, da etwa 10% der Gesamtleuchtkraft in diesem Wellenléingenbereich
abgestrahlt wird, was einen hohen zirkumstellaren Massenanteil erfordert. Garcia-
Lario et al. (1990) errechneten fiir eine hypothetisch angenommene Staubscheibe
einen Auflenradius von etwa 300 AU und einen inneren Rand von 2 AU, die um
einen oder beide spektroskopische Doppelsterne lokalisiert sein muf. Die Annahme,
daf} die Staubscheibe das ganze Vierfachsystem umgibt, scheidet aus, da die Materie
dann zu kiihl wire, um den gemessenen Infrarotexzefl zu erkliren, der durch eine
Schwarzkorpertemperatur von T' = 160 K charakterisiert werden kann. Soderblom
et al. (1998) schliessen aus dem hheren Rotanteil im Spektrum der B-Komponente
des Systems dort die hypothetische Scheibe.

Die Orbitalelemente des Systems und die geforderte Lage der Staubscheibe zwingt
zu der Annahme, daf sich das Periastron der visuellen Doppelsternkomponenten in-
nerhalb der Scheibe befindet. Eine auf lingere Zeit stabile Staubscheibe erscheint
unter diesen Bedingungen ebenso fragwiirdig, wie eine geometrisch diinne Scheibe,
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Tabelle 6.1: Eigenschaften der Akkretionsscheibe

AuBenradius 200 AU
Innenradius 10 AU

Masse 0.05 Mg
Rotation Qo r3/2
Zustandsgleichung | Polytrop (v = 5/3)
Temperatur T(r=10AU)=30K

Tabelle 6.2: Bahnelemente des Doppelsternes

Grofle Halbachse | 520 AU
Exzentrizitit 0.835
Periode 8000 Jahre
Periastron 50 AU

wie sie vielen spektroskopischen Modellen zugrunde gelegt wird.

Um auf dieses Problem einzugehen, werden die in diesem Kapitel vorgestell-
ten Simulationen durchgefiihrt. Die Anfangsbedingungen werden jedoch nur an das
System HD98800 angelehnt, da eine Simulation mit identischen Werten fiir die Or-
bitalelemente eine enorm lange Simulationsdauer erfordert. Gleichfalls werden die
spektroskopischen Doppelsterne zu je einem Einzelstern zusammengefafit.

6.2 Anfangsbedingungen

Zur dreidimensionalen Simulation einer Akkretionsscheibe in einem Doppelsternsy-
stemes hoher Exzentrizitdt wird um einen Stern (Primérstern) eine der in Kapitel
[4] berechneten viskosen und eigengravitativen Scheiben initialisiert. Hierbei gelten
folgende Parameter:

Der zweite Stern (Sekundérstern) befindet sich am Anfang der Simulation in
einer Entfernung von 1000 AU im Apastron. Dabei wird diesem eine Geschwindigkeit
erteilt, die zu folgenden Parametern des Doppelsternes fiihrt:

Die Masse der Sterne betrigt je 1M,.

Fiier die Simulationen werden drei verschiedene Inklinationen zwischen Orbital-
ebene des Doppelsternes und der Scheibenebene gewihlt ¢ = 10,90 und 170 Grad.
Im ersten Fall, ist im Gegensatz zum dritten Fall die Drehrichtung der Akkretions-
scheibe gleichsinnig zur Orbitalbewegung des Doppelsternes (prograd). Der zweite
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Abbildung 6.2: Darstellung der verwendeten Anfangsbedingung fiir die Simulation
eines Doppelsternsystems mit einer Akkretionsscheibe um den Primérstern

Fall stellt einen senkrechten Zusammenstof§ dar. Abbildung 6.2 verdeutlicht die Geo-
metrie des Anfangszustandes.

Wie auch bei der Simulation isolierter Akkretionsscheiben in Kapitel [4] sollen die
Sterne zirkumstellares Material innerhalb einer Entfernung von < 8 AU akkretieren
und nur gravitativ mit dem umgebenem Gas wechselwirken. Fiir das Gas wird eine
polytrope Zustandsgleichung angenommen, wie sie auch bei den Akkretionsscheiben
verwendet wurde.

Bei diesen Simulationen spielen die thermodynamischen Verhiltnisse nur eine
untergeordnete Rolle, da die Dynamik des Gases wihrend der Kollision im wesent-
lichen durch die Gravitation der Sterne beeinflufit wird. Bei der erwartetenden Um-
verteilung des Materials spielt die Zustandsgleichung nur fiir Bereiche eine Rolle,
welche nicht mehr mafigeblich durch die Gravitation des Doppelsternes beeinflufit
werden (zum Beispiel Gas, das durch die Kollision das Sternsystem verlifit). Dabei
rechtfertigen, die in diesen Bereichen vergleichsweise langsam ablaufenden Prozesse
die Annahme adiabatischer Zustandsinderungen.

6.3 Beschreibung der Simulationen

In diesem Abschnitt wird die Entwicklung der Massenverteilung beschrieben, eine
genauere Analyse schliefit sich in den folgenden Kapiteln an. Die Darstellung unre-
gelméBiger dreidimensionaler Verteilungen kann sehr uniibersichtlich werden, wes-
wegen die SPH-Teilchen in die z-y und y-z Ebene projiziert werden. Alle dargestell-
ten Sequenzen zeigen nur den ersten Periastrondurchgang, da bei den weiteren die
Teilchenverteilung sehr stark ausgediinnt wird und eine rdumliche Darstellung nicht
mehr instruktiv ist. Die Sterne werden als Punkte dargestellt, wobei der Primérstern
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rot und der Sekundérstern blau eingeférbt ist. Die Ansichten sind so gewéhlt, dafl die
Rotationsrichtung der Akkretionsscheiben im mathematisch positiven Sinn erfolgt.

6.3.1 Der Fall: . = 10°

Abbildung 6.5 zeigt die Entwicklung der Massenverteilung fiir die erste Periastron-
passage. Durch das Potential des Sekundérsterns wird die Bildung von spiralférmi-
gen Instabilitdten induziert, was im nichtlinearen Bereich zur Entstehung und Ablos-
ung eines Gezeitenarmes fiihrt. Dieser wird teilweise vom Sekundérstern eingefangen,
um sich in einer scheibenférmigen Struktur um diesen anzuordnen. Der andere Teil
bewegt sich weitgehend ungestort weiter, um unter der Wirkung der Eigengravita-
tion in ein Objekt niedriger Masse zu fragmentieren. Am Primérstern verbleibt nur
ein kleiner Rest der urspriinglichen Akkretionsscheibe, welche in einen Bereich von
50 AU um den Stern konzentriert ist. Die vom Sekundérstern eingefangene Masse
verteilt sich innerhalb eines Radiuses von 100 AU, die in gleicher Richtung wie die
urspriingliche Akkretionsscheibe um den Stern rotiert.

6.3.2 Der Fall: . = 90°

Die Sequenz 6.6 und 6.7 verdeutlicht die senkrechte Kollision des Sekundérsternes
mit der Akkretionsscheibe. Im Gegensatz zur vorangegangenen Simulation bleibt
die Scheibe bis kurz vor dem Durchdringen weitgehend ungestért. Ein Auftreten
von spiralférmigen Instabilitdten durch den Sekundérstern ist hier nicht zu erken-
nen. Jedoch erscheint stattdessen, zwischen 7" = 1000 und T = 3000 Jahren eine
transiente ringférmige Struktur, deren genaue Ursache nicht bekannt ist. Vermutet
wird jedoch, daf8 aufgrund des Sekundérsternes das Druckgleichgewicht der Akkre-
tionsscheibe gestért wird und dadurch eine Dichtewelle angeregt wird. Diese ist
aufgrund der Sternanordnung (senkrechter Stoff) nahezu radialsymmetrisch. Fiir die
StoBe unter ¢+ = 10° und ¢ = 170° gehen die Dichtestérungen in m = 1,2,3 und 4
Spiralwellen iiber.

Wie auch in den anderen Féllen wird die Scheibe beim Durchgang des Se-
kundérsternes massiv gestort und ein wesentlicher Teil der Scheibe wird in Form
eines Gezeitenarmes abgestoBen. Auffillig dabei ist, dal im Gegensatz zu ¢« = 10°
der Anteil an Masse zwischen den Sternen héher und fast vollstindig unstruktu-
riert ist. Nach T' = 6830 Jahren befindet sich um die Sterne zirkumstellares Gas,
ist aber nicht mehr in einer Ebene konzentriert, sondern bildet flache Halos. Eine
Fragmentierung in individuelle Objekte findet hier nicht statt, was auf eine hohe
Geschwindigkeitsdispersion des Gases schlieflen 148t.
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Abbildung 6.3: Verteilung der SPH-Teilchen wihrend der ersten Orbitalperiode des
Doppelsternes fiir eine Inklination von ¢ = 10° (1. Teil).
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Abbildung 6.4: Verteilung der SPH-Teilchen wihrend der ersten Orbitalperiode des
Doppelsternes fiir eine Inklination von ¢ = 10° (2. Teil).
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Abbildung 6.7: Verteilung der SPH-Teilchen wihrend der ersten Orbitalperiode des
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6.3.3 Der Fall: . = 170°

In dieser Simulation findet der Zusammenstof} in retrograder Richtung statt (Abbil-
dung 6.8 und 6.9). Bei Annéherung des Sekundiirsternes tritt ebenfalls eine ringférmi-
ge Storung auf (7' = 2900 Jahre), die sich bei genauerer Betrachtung allerdings als
einarmige Spirale herausstellt. Bei der Kollision wird fast das gesamte Scheibenma-
terial in Form eines stark aufgefdcherten Gezeitenarmes vom Primérstern abgerissen.
Dabei ordnet sich ein Teil des Restmaterial zwischen den Sternen an (7" = 5033 Jah-
re), um suksessive scheibenartige Strukturen um beide Sterne zu bilden (7" = 5633
Jahre). Diese sind jedoch sehr diffus und auf kleine Radien beschréinkt. Das Material
um den Primérstern verteilt sich auf einen Durchmesser von < 20 AU. Unwesentlich
groBer, mit einem Radius von = 50 AU, ist die um den Sekundérstern entstandene
Scheibe.

Wie im Fall ¢+ = 90° wird durch eine hohe Geschwindigkeitsdispersion das Ent-
stehen von Fragmenten unterdriickt.

6.4 Akkretionsraten

Bei einer Kollision eines Sternes mit einem Stern-Scheibensystem mufl davon ausge-
gangen werden, dafl die Umverteilung der Scheibenmaterie auch zu einem Anstieg
der Akkretionsraten der einzelnen Sterne fiihrt. Zum einen wird die Akkretionsschei-
be durch die starken Gezeitenkrifte soweit deformiert, daf es zu einer Stérung des
Geschwindigkeitsfeldes des Gases am Innenrand der Akkretionsscheibe kommt, die
eine Erhohung der Gasakkretion bedingt (induzierte Akkretion). Zum Anderen er-
folgt Gasakkretion auf den Sekundérstern, wenn dieser die Scheibe des Primérsternes
durchquert (Bondy-Hoyle Akkretion). Dabei wird sich eine Abhéingigkeit der Mas-
senakkretion von der Inklination der Kollision ergeben miissen. Abbildung 6.10 zeigt
die Massenzunahme der einzelnen Sterne fiir die verschiedenen Inklinationen.

In allen drei Fillen ist die Akkretionsrate auf den Primérstern bis zur Kollisi-
on bei T = 4.5 - 10® Jahren konstant und entspricht der Rate der entsprechenden
Gleichgewichtsscheibe (M = 1.3-10~7 Mg /yr). Die Akkretion auf den Sekundirstern
beginnt schon bei T = 3.0 - 10® Jahren, da AuBenbereiche der Gasscheibe schon im
Einfluflbereich des Sekundérsternes sind, wihrend der Innenbereich noch weitgehend
ungestort ist.

Betrachtet man die Kollision fiir die Inklination von ¢ = 90 Grad, fallt der
verhdltnisméBig flache Anstieg der Sternmassen auf. Diese geringeren Akkretions-
raten sind eine Folge der geringeren Dichte in der Umgebung des Primérsternes.
Durch den senkrechten Stofl wird dem Scheibengas zuséitzlich Impuls in z-Richtung
sowie Drehimpuls in z und y-Richtung iibertragen, was zu einer Massenverteilung
in alle Raumrichtungen fiithrt. Im Gegensatz zu 'flachen’ Kollisionen, bei denen das
Gas hauptséchlich in der Scheibenebene konzentriert bleibt, ist die Gasdichte dem-
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nach geringer. Dieser Effekt macht sich auch in der gesamten akkretierten Masse
bemerkbar, die im Falle einer Inklination von ¢ = 90 Grad am geringsten ist (siehe
Tabelle 6.3).

Der Unterschied zwischen den Kollisionen mit : = 10 Grad und ¢ = 170 Grad ist
nicht sehr stark ausgepriigt. Deutlich wird er nur, wenn man die akkretierte Masse
auf den Sekundirstern nach der ersten Kollision betrachtet. Im Falle von ¢+ = 10
Grad ist diese etwa um 50% hoher als bei der Kollision mit ¢ = 170 Grad. Durch die
kleineren Relativgeschwindigkeiten zwischen Gas und Sekundérstern bei prograden
Systemen (siehe Kapitel [5]) ist der Bondy-Hoyle Akkretionsproze$ effektiver als bei
retrograden Anordnungen.

Durch die destruktive Wirkung der ersten Periastronpassage wird die Scheibe,
wie in den Abbildungen im vorigen Kapitel gezeigt, soweit ausgediinnt und defor-
miert, dal die nachfolgenden Passagen nur noch einen kleinen Einfluf auf die Ak-
kretionsraten haben. Dies wird sich durch den Zusammenhang zwischen Akkretion
und Leuchtkraft auch in dieser widerspiegeln miissen.

6.5 Leuchtkrifte

Hohe Akkretionsraten und kollidierende Gasstrémungen fithren notwendigerweise
zu einem Anstieg der Energiedissipation, das sich durch einen Anstieg der Leucht-
kraft bemerkbar macht. In Abbildung 6.11 sind die Leuchtkraftkurven aus den drei
verschiedenen Simulationen dargestellt. Deutlich ist bei allen Kurven der starke An-
stieg der Luminositit wihrend der ersten Periastronpassage zu erkennen, der im
Fall von ¢ = 10 Grad etwa drei Gréfenordnungen ausmacht, wihrend in den ande-
ren Rechnungen nur eine Zunahme um etwa zwei Zehnerpotenzen zu verzeichnen ist.
Deutlich sind in diesem Fall auch die weiteren Periastronpassagen bei T = 1.2 - 10%
und T = 2.05 - 10 Jahren mit einem signifikanten Leuchtkraftanstieg zu erkennen,
die aber nicht mehr so stark ausgeprigt sind und in der Stirke abnehmen. Bei den
Kollisionen mit ¢ = 90 und ¢+ = 170 Grad heben sich diese nur schwach vom Un-
tergrund ab, treten aber hiufiger auf, was auf eine Verinderung der Bahnperiode
schliefen 148t (siehe dazu Abschnitt [6.7]).

Die Leuchtkraftkurve fiir « = 10 Grad unterscheidet sich auch in der sehr schnel-
len Abnahme der Luminositit nach einer Passage von den anderen Simulationen,
deren Leuchtkrifte nach dem ersten Stofl exponentiell abnehmen. Die Zeitskala auf
der dieses Abklingen stattfindet, betrigt etwa 5000 Jahre und entspricht der viskosen
Zeitskala. Dieser Unterschied ist auf die Teilchenverteilung nach dem Stofl zuriick-
zufiihren. Wihrend die Kollisionen unter einem Winkel von ¢ = 90 und 170 Grad zu
starken Geschwindigkeitsinderungen aller SPH-Teilchen fiihren, bleiben im progra-
den Fall grofle Teile der Gasmassen in einer gerichteten Strémung erhalten. So bleibt
der sich entfernende Gezeitenarm aufgrund der korrelierten Teilchenbewegung fiir
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lingere Zeit stabil. Senkrechte und retrograde Sto8e fithren zu unkorrelierter Teil-
chenbewegung, die unter dem Einflufl der Viskositiit ihre kinetische Energie verliert.
Das exponentielle Abklingen der Leuchtkraft auf der viskosen Zeitskala ist hierfiir
ein eindeutiges Indiz.

Neben den Maxima der Leuchtkraft, die durch die Periastronpassage hervorge-
rufen werden, existieren im Fall von ¢ = 10 Grad noch zwei weitere bei T' = 8.0 - 103
und 7 = 1.0 - 10* Jahren. Diese entstehen durch Fragmente des Gezeitenarmes,
die auf die Restscheibe des Primiérsternes zuriickfallen und dort eine Erhhung der
Akkretion induzieren (vergleiche Abbildung 6.10).

6.6 Massenverteilungen

Wie erwartet wurde, tritt wihrend den Kollisionen eine deutliche Umverteilung der
Gasmassen ein. Durch den nahen Vorbeiflug des Sekundérsternes nimmt dieser einen
Teil der Akkretionsscheibe mit, der sich wiederum als zirkumstellares Material um
diesen anlagert. Ein weiterer Teil wird durch die wirkenden Gezeitenkréfte stark
beschleunigt und verlédfit das Doppelsternsystem mit hohen Relativgeschwindigkei-
ten. Am Primérstern verbleibt nur wenig Masse der vormals geometrisch diinnen
Akkretionsscheibe. Um diese Moglichkeiten zu unterscheiden, wird fiir jedes SPH-
Teilchen die Bindungsenergie Ep,i, und E, beziiglich jeder der Sterne berechnet
und folgendermaflen kategorisiert:

e Ein Massenelement wird als ungebunden betrachtet, wenn beide Bindungs-
energien F,.;, und E,. negativ sind.

e Ist die Bindungsenergie E,;,, grofer als Null und gleichzeitig F; kleiner als
Null, so ist das Teilchen an den Primérstern gebunden. Sind E.;, < 0 und
Ee. > 0 besteht Bindung zum Sekundérstern.

e Sind beide Bindungsenergien gréfler als Null, wird das Teilchen zu dem Stern
als gebunden betrachtet, zu dem es die gréite Bindungsenergie hat.

Diese Einteilung ergibt fiir alle drei Simulationen, den in Abbildung 6.12 darge-
stellten zeitlichen Verlauf.

Aus diesen Verteilungen wird deutlich, daf§ nach Ende der Simulation der gréfite
Teil der Masse als ungebundenes Gas das System umgibt. Nur ein kleiner Teil (5%)
ist jeweils an die einzelnen Sterne gebunden. Eine Ausnahme bildet die Kollision
unter © = 90 Grad, bei der an jedem der Sterne noch jeweils 10% des urspriinglichen
Gases vorhanden ist und wie in Kapitel [6.3] gesehen, eine haloférmige Struktur hat.
Der leicht erhohte Restanteil kann auf die, in diesem Fall geringere Akkretionsraten
zuriickgefiihrt werden.
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Abbildung 6.12: Zeitliche Abhéngigkeit der Massenverteilung bei verschiedenen Sto-
Binklinationen. Die hellgraue Kurve ist der Massenanteil der Scheibe, welcher das
System verldfit. Der am Primérstern gebundene Anteil ist als schwarze Kurve an-
gedeutet. Vom Sekundérstern eingefangene Masse ist als grau gestrichelte Kurve
dargestellt.
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Auffallend ist, daf§ fiir - = 10 Grad der Anteil an ungebundener Masse mit 10%
geringer ist als in den anderen Simulationen, die 30% der Akkretionsscheibe dissi-
pieren, was wiederum durch den hohen Anteil der akkretierten Masse in diesem Fall
erklirt wird. Desweiteren bleibt in allen Simulationen der Anteil an ungebundener
Masse nach der ersten Periastronpassage nahezu konstant. Ebenso wie der Einflufl
weiterer Passagen auf die gebundenen Massen ist er dort nur noch im Prozentbereich
bemerkbar.

Betrachtet man nur die erste Periastronpassage und nimmt an, daf} keine weite-
ren folgen, kann selbst bei einem kleinen Periastron ein signifikanter Rest als Debris-
Scheibe iibrigbleiben (etwa 20-30%). Im Falle *flacher’ Kollisionen wird sich die vom
Sekundérstern eingefangene Materie ebenfalls als scheibenartige Struktur anordnen.
Inwieweit Sterne mit solchen Debris-Scheiben als Weak-line T Tauri Sterne iden-
tifiziert werden konnen bleibt unklar kann aber als eine Moglichkeit in Betracht
gezogen werden.

6.7 Anderungen der Bahnparameter des Doppel-
sternes

Der Einflul der Kollisionen zwischen Stern und Akkretionsscheibe auf die Bahnpa-
rameter des Doppelsternes ist in Abbildung 6.13 dargestellt. Fiir die verschiedenen
Inklinationen des Stofles ist links die Anderung der groBen Halbachse und rechts die
Anderung der Exzentrizitit in Abhéingigkeit von der Zeit aufgetragen.

Deutlich ist die Tendenz zu erkennen, da} mit Zunahme des StoBwinkels ¢ die
Anderungen in Exzentrizitit und den groBen Halbachsen ebenfalls zunehmen (sie-
he die Ubersicht in Tabelle 6.3). Wihrend die Abnahme der grofen Halbachse bei
v = 10 Grad nur sehr klein ist, betriigt sie fiir den Fall » = 170 Grad etwa 40%. Die
senkrechte Kollision vermindert die Halbachse dagegen nur um 20%. Der gleiche Zu-
sammenhang ist auch fiir die Exzentrizitit des Doppelsternes vorhanden, prozentual
jedoch nicht so stark ausgeprégt.

Vermutet man einen Zusammenhang zwischen der Anderung der Halbachsen
mit den Akkretionsraten der einzelnen Sterne, so wird dieser nicht bestétigt (siehe
Abschnitt [6.4]). Ein eindeutiger Zusammenhang besteht aber mit dem Anteil an
ungebundenem Gas, also dem Anteil an Materie, der das Doppelsternsystem auf-
grund der Kollision verldfit (vergleiche Abschnitt [6.6]). Je hoher dieser Anteil, desto
stirker verringert sich die grofle Halbachse des Doppelsternes. Daraus kann man fol-
gern, dafl dieser Gasanteil Bindungsenergie des Sternsystems in Form von kinetischer
Energie abtransportiert. Betrachtet man zusétzlich die Geschwindigkeitsverteilung
des ungebundenen Materieanteiles im Schwerpunktsystem (dargestellt in Abbildung
6.14), ist fiir die Kollision mit ¢ = 170 Grad der abtransportierte Energieanteil (ki-
netische Energie) am gréBten. Danach folgen der Stérke nach die St68e mit den
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Abbildung 6.13: Anderung der groBen Halbachse und der Exzentrizitit des Doppel-
sternes aufgrund der Kollision des Sekundéarsternes mit der Akkretionsscheibe des
Primérsternes
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Abbildung 6.14: Geschwindigkeitsverteilung der Masse, die aufgrund der Kollision
das Doppelsternsystem verldft. Rot: ¢ = 170°, blau: + = 90° und schwarz: + = 10°

Inklinationen von ¢ = 90 und ¢ = 10 Grad.

Die rdumliche Umverteilung der Scheibenmaterie fiihrt ebenso zur Umverteilung
des Drehimpulses. Wéhrend die Kollision unter einem Winkel von ¢ = 10 Grad
(prograde Drehimpulsanordnung) hauptséichlich der Betrag des Gasdrehimpulses
verdndert wird, kommt es bei der Kollision fiir « = 90 Grad zu einem zusétzli-
chen Drehimpulsiibertrag in z und y Richtung. Extrem wird diese Umverteilung von
Drehimpuls bei der retrograden Kollision (¢ = 170 Grad). Unter dem Einfluf des
Sekundérsternes drehen sich die Rotationsrichtungen von einigen Massenelemnten
um, bevor sie das System verlassen. Diese Anderungen im Drehimpuls des Gases be-
dingen durch die Erhaltung des Gesamtdrehimpulses die Abnahme der Exzentrizitét
des Doppelsternes.

6.8 Entstehung eines Begleiters niedriger Masse

Bei den oben dargestellten Simulationen von Kollisionen zeichnet sich der Zusam-
menstof fiir eine Inklination von ¢ = 10 Grad besonders aus. Wie aus Abbildung
6.15 ersichtlich, bildet sich aus Teilen des Gezeitenarmes ein sphérisches Objekt mit
einer Masse von etwa 5 Jupitermassen. Diese Fragmentation wird moglich, da sich
der entfernende Gezeitenarm abkiihlt und dadurch gravitativ instabil wird. Dieses
Objekt relaxiert sehr schnell, im Vergleich mit der Orbitalperiode des Doppelsternes,
in ein hydrostatisches Gleichgewicht, wie es von der polytropen Zustandsgleichung
definiert wird (vergleiche dazu Kapitel [4]). Dabei wird ein Radius von etwa 20 AU
erwartet, der auch bei dieser Simulation erreicht wird (siehe Abbildung 6.15).

Die Annahme einer polytropen Zustandsgleichung und das Fehlen von Kiihlungs-
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Abbildung 6.15: Dichtecodierte Darstellung der Entstehung eines substellaren Ob-
jektes durch die Fragmentierung eines Gezeitenarmes. Rechts: Situation, die fiir die
Anfangsbedingung der 3-Koérperrechnungen verwendet wird.

mechanismen in dem verwendeten Code verhindert eine weitere Kontraktion des
Objektes, was aber unter realistischen Bedingungen erwartet werden miiite. Dem-
nach sollte eine Gassphére mit den errechneten Werten auf der Kelvin-Helmholtz
Zeitskala 7 o iGM 2 /rL, mit L als Luminositéit, bis zur Wasserstoff Dissoziati-
ons Temperatur von etwa 2000 K auf einen Radius von etwa 0.5 AU kontrahieren
und dann eine weitere Kollapsphase einleiten. Da diese Prozesse hier nicht simu-
liert werden konnten, wird dieses Objekt, aufgrund der starken Gezeitenkrifte bei
Annéherung an einen der Sterne wieder auseinandergerissen.

Nimmt man jedoch an, daBl der Bildung einer solchen Sphére unter realisti-
schen Bedingungen stattfindet, wird dieses durch den kleineren Radius auch in dem
betrachteten Doppelsternsystem stabil gegen die Wirkung der Gezeitenkréfte sein
(Hill-Kriterium). Ein derartiges Objekt kann als Protoplanet oder im schwereren
Fall als Vorstufe eines Braunen Zwerges angesehen werden. Da dieser Protoplanet
innerhalb eines Doppelsternsystems entstanden ist, wird dessen Bahn nicht stabil
bleiben. Die weitere Entwicklung der Trajektorie soll im folgenden Abschnitt genauer
untersucht werden.

6.8.1 Simulation der Trajektorie des Begleiters

Um die Bewegung des entstandenen Begleiters innerhalb des Doppelsternsystems zu
untersuchen, kann der bisher verwendete hydrodynamische Code aus Griinden der
langen Laufzeit nicht mehr verwendet werden. Hierfiir wurde ein speziell auf diese
Situation angepaflter Code entwickelt, der eine prizise Integration eines Dreikdrper-
systems gestattet. Im einzelnen wurde ein ,,Burlisch-Stoer” Integrator mit adaptiver
und energiesensitiver Schrittweitensteuerung verwendet (Press et al. 1992).
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Abbildung 6.16: Simulationsergebnis: Trajektorien (schwarz) des Fragmentes bis
zum Entweichen des Objektes mit einer Geschwindigkeit von v = 2.2 km/sec. Die
Bahnen sind in die z-y Ebene projiziert und sind in AU skaliert.

Als Anfangsbedingung fiir diese Simulationen dienten die Simulationsergebnisse
des SPH-Codes nach T = 3.0 - 10* Jahren. Nach dieser Zeit ist der Protoplanet
im hydrodynamischen Gleichgewicht und wird im weiteren durch eine Punktmasse
ersetzt. Desweiteren werden die Positionen und die Geschwindigkeiten der beiden
Sterne als Anfangsbedingungen des Dreikérpersystems verwendet.

Die Anfangsbedingungen des Protoplaneten wurde aus den mittleren Positionen
und Geschwindigkeiten der SPH-Teilchen, die den Protoplaneten bilden, errechnet.
Aufgrund des SPH-Verfahrens sind diese Werte mit gewissen Schwankungen be-
haftet, die eine Unschérfe in Position und Geschwindigkeit des Objektes nach sich
ziehen. Um diese intrinsischen Ungenauigkeiten nicht zu vernachléssigen, wurden
etwa 800 verschiedene Simulationen durchgefiihrt, wobei die Anfangsbedingungen
des Protoplaneten gemifl der mittleren quadratischen Abweichungen der Positionen
und Geschwindigkeiten verdndert wurden. Dadurch wird eine statistische Deutung
der Simulation ermdglicht.

6.8.2 Ergebnisse

Aus der klassischen Mechanik ist bekannt, da§ eine Anordnung aus drei Punktmas-
sen, die sich unter dem Einflu8} ihrer gravitativen Wechselwirkung bewegen, nur in
wenigen Spezialfillen stabile Bahnen entwickeln. In den meisten Féllen wird der
leichteste Korper mit hoher Geschwindigkeit das System verlassen, was auch fiir die
oben dargestellte Konfiguration erwartet und durch die Simulationen bestétigt wird.

Stellvertretend fiir alle Simulationen ist in Abbildung 6.16 die Trajektorie des
Protoplaneten innerhalb des Doppelsternsystems dargestellt. Nach Durchlaufen ei-
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Abbildung 6.17: Links: Verteilung der Escape-Geschwindigkeit des Protoplaneten,
die aus den Drei-Korpersimulationen folgt. Rechts ist die Winkelabhéingigkeit des
Escapers in Bezug auf die Orbitalebene des Doppelsternes abgebildet.

ner irreguldren Bahn wird dieser aus dem System herausgeschleudert. Die Auswer-
tung aller Simulationen liefert fiir die Entweich-Geschwindigkeit die in Abbildung
6.17a dargestellte Verteilung, die ein klares Maximum bei einer Geschwindigkeit von
Vese = 1.0 km/sec besitzt.

Betrachtet man die Verteilung der Azimutalwinkel der herausgeschleuderten Ob-
jekte relativ zur Orbitalebene des Doppelsternes, sind hier eindeutig Vorzugsrich-
tungen festzustellen (siehe Abbildung 6.17b). Ein klares Maximum wird bei einem
Winkel von 0° erreicht, was der Orbitalebene des Doppelsternes entspricht. Das
scheinbare Nebenmaximum bei 65° ist durch die schlechte Statistik in diesem Be-
reich nicht signifikant.

6.9 Zusammenfassung

In diesem Kapitel wurde das Verhalten einer Akkretionsscheibe in einem Doppel-
sternsystem untersucht. Es wurde angenommen, dafl sich das Periastron innerhalb
der Scheibe befindet, das Apastron jedoch weit aulerhalb. Bei diesem hochexzentri-
schen Orbit, der wihrend der Simulationsdauer mehrfach das Periastron passierte,
wurde die Umverteilung der zirkumstellaren Materie untersucht. Je nach Inklina-
tion der Kollision ergaben sich unterschiedliche Ergebnisse, welche in Tabelle 6.3
zusammengefafit sind.

Am heftigsten wirken in allen Simulationen die ersten ZusammenstoBe. Hier re-
duziert sich die Scheibenmasse auf 15 bis 20% des urspriinglichen Wertes. Der gleiche
Anteil bildet, mit Ausnahme der senkrechten Kollision, eine scheibenartige Struk-
tur um den Sekundérstern. Der gréfite Teil der Akkretionsscheibe wird jedoch stark
beschleunigt und entweicht dem System.
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Tabelle 6.3: Zusammenfassung einiger Ergebnisse der Kollisionsrechnung

| Inklination | 0=10° | ¢=90° | «=170°
Anderung der GroSlen Halbachse < 1% 23% 39%
Anderung der Exzentrizitét 2% 5% 8%
ungebundene Masse 12% 32% 31%
Masse der Restscheibe nach dem 1. Sto | 15% 30% 20%
Akkretierte Masse 0.04 Mg | 0.022 Mg | 0.031 Mg

Die Zerstorung der Scheibe durch die Kollisionen hatte auch einen signifikan-
ten Einflul auf die Bahnelemente des Doppelsternes. Aufgrund des Transfers von
Impuls und Drehimpuls des Doppelsternes auf die Akkretionsscheibe, verringerte
sich die grole Halbachse und die Exzentrizitit, je nach Kollisionswinkel merklich.
Diesbeziiglich wurde ein Zusammenhang zwischen der Anderung der Bahnparameter
und dem Anteil der durch die Kollision frei werdende Materie und deren Geschwin-
digkeitsverteilung festgestellt.

Durch die Kollisionen und einhergehende Anderungen des Strémungsfeldes der
zirkumstellaren Materie wurde auch ein starker Anstieg der Akkretionsraten der
einzelnen Sterne beobachtet, was sich ebenfalls in einem Anstieg der Leuchtkraft
des Systems bis zu drei Groflenordnungen niederschlug. Wahrend bei einem Kollisi-
onswinkel von ¢+ = 10 Grad die Leuchtkraft nach dem Periastrondurchgang schnell
abnahm, verringerte sich diese in den anderen Féllen exponentiell in einer Zeitspan-
ne, die mit der viskosen Zeitskala identifiziert werden konnte. Als Grund wurde
hierfiir die entstehenden, unkorrelierten Teilchenbewegungen bei nicht prograden
Kollisionen erkannt. Diesbeziiglich unterscheidet sich die prograde Kollision stark.
Hier geht ein Grofiteil der Akkretionsscheibe durch die Bildung eines Gezeitenar-
mes verloren. Dieser entfernt sich langsam und kiihlt dabei ab, wodurch Teile der
Materie in ein substellares Objekt fragmentiert. Dieses hat eine Masse von etwa 3
Jupitermassen und einen Radius von ungefihr 20 AU.

Unter der Annahme, daf8 dieses Objekt stabil ist, wurde in einer nachfolgen-
den Simulation die Trajektorie des Fragmentes verfolgt, wobei mehrere, leicht un-
terschiedliche Anfangsbedingungen verwendet wurden. Wie erwartet, wurde dieses
substellare Objekt innerhalb weniger Orbitalperioden des Doppelsternes aus dem
System mit einer Geschwindigkeit von v = 1 km/sec herausgeschleudert.

Ahnliche Simulationen wurden auch von anderen Autoren durchgefithrt (Lin et
al. 1998, Watkins et al. 1998 sowie Boffin et al. 1998), unterscheiden sich aber in
einigen Punkten von den hier vorgestellten. Zu erwdhnen ist die Verwendung einer
isothermen Zustandsgleichung, die bei Watkins und Boffin zu einer hohen Frag-
mentierungsrate des zirkumstellaren Materials fithrt, wihrend Fragmentation des
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Restmaterial in den hier durchgefithrten Rechnungen nur in einem einzigen Fall auf-
tritt, demnach weitaus seltener stattfindet. Ebenso ergaben sich quantitative Unter-
schiede in der Umverteilung des Scheibenmaterials, was aber auf die hier zusétzlich
beriicksichtigte Akkretion zuriickzufiithren ist, die wihrend der Periastronpassage
stark ansteigt (Ostriker 1994, Korycansky & Papaloizou 1995). Trotz der Verwen-
dung unterschiedlicher Sternbahnen, konnte der Einflul des Stowinkels auf die Bin-
dungsenergie der Sterne bestiitigt werden (Watkins et al. 1998 sowie Hall, Clarke
& Pringle 1996). Desweiteren konnten hier durch die Verwendung der in Kapitel
[2] beschriebenen Hydrodynamik erstmals quantitative Aussagen iiber die erwartete
Anderung der Leuchtkraft des Systems gemacht werden.

Das Entstehen eines substellaren Objektes wurde auch bei Simulationen von Lin
et al. (1998) beobachtet. Ausgehend von der Kollision zweier massiver, isothermer
Akkretionsscheiben fragmentierten Teile des Gezeitenarmes in das beschriebene Ob-
jekt, dessen Masse und Radius mit dem hier vorgestellten Fragment iibereinstimmt.
Dieser Prozef kénnte eine Erklarungsmoglichkeit fiir das Auftreten von substellaren
Begleitern sein, wie sie von Meyer et al. (1997) und Brandner & Zinnecker (1997)
beobachtet wurden. Eine mdgliche, direkte Anwendung dieser Rechnungen findet
sich in dem kiirzlich entdeckten Objekt TMR-1C (Terebey et al. 1998). Dieses, im
Taurus Sternentstehungsgebiet gelegene junge Doppelsternsystem zeigt im infraro-
ten Wellenléingenbereich ein vom Doppelstern ausgehendes Filament, das sich bis zu
einer Entfernung von 1400 AU in den Raum erstreckt. An dessen Ende findet sich
ein leuchtschwaches Fragment mit einer geschiitzten Masse von mehreren Jupiter-
massen. Die bisher unzureichenden Beobachtungsergebnisse deuten darauf hin, dafl
sich dieses Objekt mit einer Geschwindigkeit v &~ 10 km/sec von dem Doppelstern
entfernt. Ob sich dieses Fragment als Protoplanet oder Brauner Zwerg mit Entste-
hungsort in einem Doppelsternsystem herausstellt, miissen weitere Beobachtungen
zeigen.
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Anhang A

Dispersionsrelation fiir
Schallwellen

Die Ausbreitung von Schallwellen in viskosen Medien ist fiir den in Kapitel 4 be-
schriebenen Relaxationsvorgang von zentraler Bedeutung. Da Schallwellen in vis-
kosen Medien Dispersion zeigen, kann man aus der Dispersionsbeziehung, die hier
kurz abgeleitet werden soll, nicht nur eine Ddmpfungskonstante, sondern auch die
Ausbreitungsgeschwindigkeit dieser Wellen ermitteln.

Um die Rechnung einfach zu halten und nur die wesentliche Eigenschaften von
Schallwellen herauszuarbeiten, werden einige vereinfachende Annahmen gemacht.

1. Verwendung einer Isothermen Zustandsgleichung.

P kT
—= , d=— (A1)
0 umg
2. Als viskose Kraftdichte wird vAv verwendet. Weiterhin soll die kinematische
Viskositdt v konstant sein.

Ausgehend von dem Gleichungssystem der Kontinuitétsgleichung und Navier-
Stokes Gleichung:

%—i—vV@—i— oV-v = 0 (A.2)
88_': +v-V)-v = —EVP +vAv (A.3)
0

wird angenommen, dafl die Schallwellen nur kleine Stérungen der ansonsten kon-
stanten Hintergrundfelder sind. Der in der linearen Stérungstheorie iibliche Ansatz:
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0=0+0, P=P+P, v=0+uw;s (A4)
liefert
0os  _
a@t +oV-vs = 0 (A.5)
Ovg c?
— = —2Vy, A A.
T @VQ + vAwvg (A.6)

Zur Reduktion auf 1-dimensionale GroBen und weiterer Vereinfachung wird o = 0
gesetzt und nur Stoérungen in z-Richtung angenommen. Es wird fiir die gestorten
GroBen ein harmonischer Ansatz gemacht:

(Qs: Us) & ei(kT—HUt) (A7)

was zu einem linearen Gleichungssystem fiir g, und v, fiihrt.

w ké . QS - 0
ikc2/p tw — vk? v )

Dies hat nur dann nichttriviale Lésungen, wenn die Determinante identisch Null
ist. AufgelGst nach w ergibt sich die Dispersionsrelation:

Yy E\? 2¢
wip = SR by 1= (hm) , ke = (A.8)

A.1 Diskussion und Zahlenwerte

Wie man aus dieser Dispersionsrelation erkennt, gibt es eine kritische Wellenzahl k..;;
bei deren Uberschreitung w rein imaginir wird und daher keine Wellenausbreitung
moglich ist. Die untere Wellenlénge liegt bei iiblichen Temperaturen von 50...100 K
etwa bei 0.1...1 AU. Diese Wellenldngen kénnen mit dem benutzten SPH Verfahren
hier nicht aufgelést werden. Auftretende Wellenldngen werden also immer gréfer als
die kritische Wellenlénge sein, die Wurzel in Gleichung A.8 ist demnach ~ 1 und
kann vernachlissigt werden.

Fiir die Ddmpfung, beziehungsweise Dispersion, der sich mit Schallgeschwindig-
keit ausbreitenden Wellen ist der Term 7 = % mafgeblich. Kurzwellige Stérungen
werden demnach schneller geddmpft als langwellige Komponenten. Die Zeitskala fiir
die Ddmpfung 7 kann mit der viskosen Zeitskala identifiziert werden.
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