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1 INTRODUCTION 

1.1 Diabetes mellitus (DM) 

1.1.1 Prevalence of the diabetes 

Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st 

century,1 2 whose prevalence is increasing at an alarming rate throughout the world. 

Globally, as of 2015, an estimated 422 million adults (or 8.5% of the population) were 

living with diabetes, compared to 108 million (4.7%) in 1980. It is estimated by the 

International Diabetes Federation that the number will rise to 642 million by the year 

2040.1 The World Health Organization estimates that hyperglycemia is the third highest 

global risk factor for premature mortality, after high blood pressure and tobacco use.3 

Indeed, DM caused 1.5 million deaths in 2012. Higher-than-optimal blood glucose 

caused an additional 2.2 million deaths by increasing the risks of cardiovascular and 

other diseases.1,2 

1.1.2 Type 1 and type 2 DM 

DM, commonly referred to as diabetes, is a group of metabolic disorders characterized 

by chronic hyperglycemia with impairment in the metabolism of carbohydrates, lipids 

and proteins resulting from defects in insulin secretion, insulin action, or both.4 DM is 

one of the oldest known diseases, which was first described in an Egyptian manuscript 

around 1500 B.C.5 In 1935, two types of DM (type 1 and type 2) were differentiated.5 

Type 1 DM (T1DM), which was previously referred to as insulin-dependent DM 

(IDDM) or juvenile diabetes, is characterized by destruction or damaging of the β-cells 

in the islets of Langerhans caused by an autoimmune process, leading to absolute 

insulin deficiency and hyperglycemia.4 The cause of T1DM is not known and it is not 

preventable with current knowledge.6,7 In contrast, type 2 DM (T2DM), that was 

formerly known as non-insulin dependent DM (NIDM) or adult-onset diabetes, is 

characterized by high levels of blood glucose due to insulin resistance and deficiency.8 

T2DM is the most prevalent form of DM and accounts for 90% all cases of DM.1,2 It is 



INTRODUCTION 

 

2 

a major cause of mortality and morbidity, mainly through the increased risk of 

atherosclerotic vascular diseases which is responsible for up to 80% of these deaths.1,9 

1.1.3 β-cell dysfunction during progression of T2DM 

T2DM is primarily caused by over-nutrition and physical inactivity in individuals that 

have underlying genetic and acquired predispositions to both insulin resistance and β-

cell dysfunction.10 The co-occurence of metabolic risk factors such as abdominal 

obesity or central obesity (defined by the absolute waist circumference >102 cm in men 

and >88 cm in women), insulin resistance, dyslipidemia, and hypertension which has 

been embraced as the metabolic syndrome (MetS), is highly prevalent worldwide and 

frequently develops T2DM and cardiovascular diseases.11-15 Nutrient and energy 

overload triggers a chronic inflammatory response in adipose tissue characterized by 

increased cytokine expression (e.g., tumor necrosis factor alpha, TNF-α) and increased 

infiltration of immune cells (e.g., macrophages) that decreases insulin sensitivity.16 In 

response to a chronic fuel surfeit and obesity-associated insulin resistance, pancreatic β-

cells increase circulating insulin levels through expansion of β-cell mass and 

enhancement of β-cell functions, and thereby maintaining normal glucose levels.10 

Impaired compensation of β-cell to insulin resistance results in progressive decline in β-

cell function and gradual loss of β-cell mass due to apoptosis and dedifferentiation.17-20 

As a consequence, subjects progress from normal glucose tolerance (NGT) to impaired 

glucose tolerance (IGT) and finally develop to T2DM10,21 (Figure 1). 
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bioactive GLP-1 and PC1/3 may also be co-expressed in rodent and human α-cells, 

which plays a protective role in hyperglycemia and β-cell dysfunction.34-40 

 

Figure 2 Posttranslational processing of proglucagon. Proglucagon is differentially processed based on 

the relative activities of the PC1/3 and PC2. In the intestinal L-cell and specific CNS neurons, PC1 

activity is greater than that of PC2 and results in the cleavage of proglucagon to GLP-1, GLP-2, 

oxyntomodulin, glicentin, and IP2. In pancreatic α-cells, PC2 processes proglucagon to glucagon, 

glicentin-related pancreatic polypeptide (GRPP), intervening peptide 1 (IP1), and a proglucagon 

fragment. Recent evidence indicates that biologically active GLP-1 may also be produced in α-cells by 

PC 1/3 following injury. Figure modified from Sandoval and D'Alessio.41 

The constant basal secretion of GLP-1 from endocrine cells usually ranges from 5 

to 10 pmol/l and is rapidly increased after oral nutrient ingestion.32,41-46 Notably, the 

cytokine interleukin-6 (IL-6) is an important stimulus of GLP-1 secretion. 

Administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate 

GLP-1 secretion from intestinal L-cells and pancreatic α-cells.47 Moreover, IL-6 

increased GLP-1 production in α-cells by upregulating proglucagon and PC1/3 

expression47,48 (Figure 3). 
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Figure 3. IL-6 serves as a trigger of GLP-1 production. Elevated IL-6 levels in response to exercise as 

well as acute and chronic IL-6 administration can stimulate GLP-1 production in pancreatic α-cells by 

upregulating proglucagon and PC1/3 expression, leading to improved glucose homeostasis. Figure 

modified from Donath and Burcelin.49 

Upon its release, GLP-1 affects multiple target organs throughout the body by 

binding to the G protein-coupled GLP-1 receptor (GLP-1R).50,51 In addition to 

triggering glucose-dependent insulin secretion, GLP-1 suppresses glucagon secretion, 

increases insulin synthesis, promotes β-cell growth and neogenesis, and inhibits β-cell 

apoptosis.41,45,50-53 Glp1r knockout in β-cell results in β-cell dysfunction, impaired 

intraperitoneal glucose tolerance in response to parenteral GLP-1 administration.54 

Selective restoration of the GLP-1R in the murine pancreas promoted β-cell mass 

expansion and improved glucose tolerance.55 Peripheral actions of GLP-1 include 

alteration of gastrointestinal motility and retardation of gastric emptying.41,50 In the 

CNS, GLP-1 induces satiety and body weight loss.56,57 CNS-specific inactivation of 

GLP-1R in nestin-Cre Glp1r−/− mice blunted the weight loss-inducing effects of GLP-

1.58 Although glucose tolerance and the glucose-lowering effects of GLP-1 are not 

affected in mice lacking neuronal GLP1R, GLP-1R agonists have no effect on food 

intake and body weight, or causing a conditioned taste aversion in those mice.59 

Moreover, beneficial effects of GLP-1 independent of glucose homeostasis have been 

described in heart60-63, adipose tissue64,65, skeleton66, subpopulations of immune 
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cells67,68, and other target organs,69,70 through direct actions on tissues expressing GLP-

1R and indirect effects mediated by neuronal and endocrine pathways.46 

1.2 Lipopolysaccharide (LPS) in glucose homeostasis 

and obesity 

The effect of a high fat diet (HFD) on obesity and diabetes is mediated by chronically 

elevated circulating LPS levels, which triggers low-grade inflammation and leads to 

adipose tissue inflammation, obesity, and insulin resistance.71-74 However, low dose 

LPS also promotes glucose-stimulated insulin secretion by up-regulating IL-6 mediated 

GLP-1 production and thus lower blood glucose levels (Figure 5),48,75 indicating a 

protective effect of LPS on glucose homeostasis. 

1.2.1 Structure and biological functions of LPS  

LPS, also termed endotoxin, is the major outer membrane component of gram-negative 

bacteria contributing greatly to the structural stability and integrity of the bacteria, and 

protecting the membrane from certain kinds of environmental stresses.76,77 LPS is a 

macromolecular glycolipid typically composed of a hydrophobic domain known as lipid 

A that is responsible for the major bioactivity of endotoxin, a non-repeating “core” 

oligosaccharide, and a distal hydrophilic polysaccharide composed of O-antigen.76,78 

The common structural pattern of LPS in diverse bacterial species is recognized by a 

cascade of accessory proteins and LPS receptors, such as the LPS binding protein 

(LBP)79,80, cluster of differentiation 14 (CD14)81 and the Toll-like receptor 4 (TLR4)–

MD-2 complex82,83. LPS is initially extracted and disaggregated by LPB from bacterial 

membranes. LBP functions as a catalytic transfer protein in plasma that delivers LPS to 

CD14, which can be found either in soluble form (sCD14) or linked to the surface of 

innate immune cells by a glycosyl-phosphatidylinositol (GPI) anchor (mCD14). CD14 

then transfers LPS to a heterodimeric complex of MD2 bound to TLR4, which leads to 

activation of multiple signaling pathways, such as nuclear factor-κB (NF-κB) and IRF3, 

and the subsequent production of pro-inflammatory cytokines. (Figure 4) 84-86 
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UTRs) of target messenger RNAs (mRNAs).100 In contrast to plants, where miRNAs are 

perfect complementary to their mRNA targets, partial sequence complementarity 

including Watson-Crick base pairings of the nt 2 – 7 of the miRNA with the target 

mRNA is characteristic in mammals.101 

1.3.1 Biogenesis of miR-155-5p 

Hyperlipidemia and LPS promote inflammatory gene expression in macrophages by up-

regulating miR-155-5p,102-105 whose mature sequence is highly conserved throughout 

evolution. miR-155-5p is encoded by the MIR155 host gene (MIR155HG, # 

NR_001458),106 which is located on chromosome 21 in humans within an exon of the 

conserved region of the non-coding B-cell integration cluster (BIC) RNA.107,108 The 

MIR155HG is initially transcribed by the RNA Polymerase (RNase) II into an 

approximately 1500-nt long primary miRNA transcript (known as pri-miR-155) with a 

poly(A)-tail and 5'-cap.109 Pri-miR-155 is cleaved in the nucleus by the nuclear 

microprocessor complex, consisting of the RNase III type endonuclease Drosha and its 

cofactor DiGeorge syndrome critical region 8 (DGCR8),110,111 to produce a 65-nt long 

precursor miRNA (pre-miR-155, Figure 6) hairpin with a 2-nt overhang at the 3'-

end110,112. The 2-nt overhang is recognized by the nuclear export factor exportin 5, 

which translocates the pre-miR-155 into the cytoplasm through a nuclear pore complex 

in a guanosine-5'-triphosphate-dependent manner.113 

In the cytoplasm, the pre-miR-155 hairpin is cleaved by the RNase III enzyme 

Dicer into a double-stranded miRNA duplex with a length of 22-nt.114,115 Following 

Dicer cleavage, the miRNA duplex is loaded into Argonaute (Ago) proteins in an ATP-

dependent manner, generating the precursor RNA-induced silencing complex (pre-

RISC).116 During duplex unwinding, the two strands of the miRNA duplex are separated 

and the "guide strand" or "mature miRNA" (miR-155-5p or miR-155) remains within 

the Ago protein, which leads to the formation of the mature RISC.114 The other strand of 

the previous miRNA duplex, termed "passenger miRNA" (miR-155-3p or miR-155*), is 

released and mostly degraded114 (Figure 6). Recent studies suggest that both strands of 

the pre-miR-155 hairpin can give rise to mature miRNAs117,118 and pre-miR-155 

products are denoted with the suffix -5p (miR-155-5p, from the 5′ strand) and -3p (miR-
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proliferation.103,104,122,126-129 In adipocytes, inflammatory cytokines, such as TNF-α 

promotes to adipocyte dysfunction by up-regulating miR-155-5p expression,130 which 

may contribute to HFD-induced obesity progression in female mice131 by limiting 

brown adipose tissue differentiation.132 By contrast, miR-155-5p levels in adipose tissue 

are downregulated in patients with T2DM and negatively correlated with adipocyte size 

and macrophage infiltration in human adipose tissue, indicating a beneficial role of 

miR-155-5p.133 

Hence, the role of miR-155-5p in obesity and obesity-related metabolic and 

cardiovascular diseases is incompletely understood. Whether miR-155-5p mediates the 

effect of endotoxemia on glucose homeostasis, pancreatic β-cell function and lipid 

metabolism is not clear. 

1.4 Aims of the study 

Obesity and adipocyte hypertrophy are accompanied by inflammatory macrophage 

recruitment, which contributes to insulin resistance through secretion of inflammatory 

cytokines and frequently results in metabolic dysfunction and T2DM.134 The effect of a 

HFD on obesity and insulin resistance is mediated by increased circulating LPS 

levels.72,73 miR-155-5p is preferentially expressed in macrophages upon activation with 

LPS and other TLR ligands, which promotes pro-inflammatory signaling and the 

polarization into a M1 phenotype.102,104,122 To investigate the role of miR-155-5p in 

HFD-induced metabolic and cardiovascular diseases, obesity associated-adipose tissue 

inflammation, hyperglycemia, dyslipidemia and atherosclerosis was studied in Mir155-/-

Ldlr–/– and Mir155+/+Ldlr–/– mice after a 24-wks cholesterol enriched-diabetogenic diet 

(DDC) feeding period. 

In the circulation, LPS binds to ApoB-containing lipoproteins, such as LDL and 

VLDL, and thereby prevent LPS from binding to cells and retard its clearance.96,135 

Notably, patients with mutations in the Ldlr gene (known as familial 

hypercholesterolemia) have a reduced risk for T2DM,97 probably due to increased LPS 

binding capacity of lipoproteins during hyperlipidemia.96 Moreover, LPS directly 

affects the glucose homeostasis by inducing GLP-1 mediated insulin secretion,48,75 
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however, the molecular mechanism is not clear. Therefore, we hypothesized that miR-

155-5p mediates the effect of hyperlipidemia-associated endotoxemia on glucose 

homeostasis. To test this hypothesis, the role of miR-155-5p in pancreatic islets function 

under hyperlipidemic condition was studied in Ldlr–/– mice with or without DDC 

feeding by intraperitoneal glucose tolerance test (IPGTT), immunostaining staining, 

Luminex assay and quantitative real-time polymerase chain reaction (qPCR). Next, I 

sought to determine the regulation of miR-155-5p expression in islets by hyperlipidemia 

and LPS. Moreover, to investigate the mechanism by which miR-155-5p affects glucose 

homeostasis, microarray analysis was performed is islets and potential targets were 

studied by luciferase assay, immunoprecipitation, and gain-and-loss-of-function 

experiments both in vivo and in vitro. Finally, to investigate the role of a specific miR-

155-5p-target interaction in hyperlipidemia-regulated β-cell function, target site 

blockers (TSB) were used to inhibit the interaction between miR-155-5p and v-maf 

musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB). 
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2 MATERIALS AND METHODS 

All solutions were prepared with ultrapure (UP, Type 1) water (Milli-Q Integral 

3/5/10/15 Systems, Merck Millipore, Darmstadt, Germany). The reagents were 

purchased from Thermo Fisher Scientific (Waltham, MA, USA), Sigma-Aldrich (St. 

Louis, Missouri, USA), Carl Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

and Fluka (Buchs, Switzerland) unless stated otherwise in the text. 

2.1  General equipment 

Balances Precisa 92SM-202A analytical balance, Sartorius CPA64 

analytical balance (both from Sartorius Mechatronics, 

Göttingen, Germany; weighing accuracy of 0.1 mg), and 

Precision balance EMB 6000-1, (KERN & SOHN GmbH, 

Balingen, Germany; weighing accuracy of 0.1 g) 

Centrifuges Heraeus Pico 17, Heraeus Megafuge 1.0R (both from Thermo 

Fisher Scientific, Waltham, MA, USA), Eppendorf 5430R, 

Eppendorf 5415C, Eppendorf 5415D (all from Eppendorf 

AG, Hamburg, Germany) 

Cryogenic freezer Panasonic MDF-C2156VAN-PE ultra-low temperature 

freezer (-150 °C; Panasonic, Osaka, Japan) and 

NewBrunswick Premium U570 comfort (-80 °C; Eppendorf 

AG) 

Microscopes Leica DM6000B, Leica LMD7000 (both from Leica 

Microsystem, Wetzlar, Germany), Olympus IX50 (Olympus 

optical Co., Tokyo, Japan) and Zeiss 47 30 11-9901 (Carl 

Zeiss, Oberkochen, Germany) 
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Imaging software Leica Application Suite (LAS) AF version 3.2.0.9652 and X 

LAS X version 1.9.0.13747 (Leica Microsystem) 

Tissue homogenizer TissueLyser LT (Qiagen, Hilden, Germany) 

Tissue processor Leica ASP200 S fully enclosed tissue processor (Leica 

Biosystems Nussloch GmbH, Nussloch, Germany) 

Embedding station Leica EG 1160 embedding center (Leica Biosystems) 

Microtome Leica RM 2235 (Leica Biosystems) 

Cryostat Leica CM 3050S (Leica Biosystems) 

Hematology analyzer ScilVet ABC (scil animal care company GmbH, Viernheim, 

Germany) 

PCR thermal cyclers Master Cycler Nexus (Eppendorf AG), Applied Biosystems 

2720 and 7900HT Fast Real-Time PCR System (Applied 

Biosystems, Darmstadt, Germany) 

Gel documentation Intas UV transillumination AF100 312nm/16x20cm (INTAS 

Science Imaging Instruments GmbH, Göttingen, Germany) 

Fragment analyser Fragment analyser (Agilent Technologies, Santa Clara, CA, 

USA) 

CO2 Incubator Galaxy S 170-200 (RS Biotech, Irvine, UK) 

Laminar flow hood Herasafe and Maxisafe 2020 Class II Biological Safety 

Cabinets (both from Thermo Fisher Scientific) 

Flow cytometers BD FACS Canto II (Becton, Dickinson and Company, NJ, 

USA) and Attune Acoustic Focusing Cytometer (Thermo 

Fisher Scientific) 
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Sephadex column Sephadex Column for Lipid Analytics Fraction collector 

(SHIMADZU, Tokyo, Japan) 

Plate reader Infinite F200 PRO (Tecan Trading AG, Männedorf, 

Switzerland) 

pH-meter WTW Labor-pH-Meters pH 526 (Xylem Analytics Germany 

Sales GmbH & Co. KG, Weilheim, Germany) 

Spectrophotometer Nanodrop 1000 (PeqLab, Erlangen, Germany) 

Syringes BD Discardit II (Becton, Dickinson and Company), Omnican 

F (B. Braun AG, Melsungen, Germany) 

Thermoblocks Thermostat Plus and Thermomixer comfort (both from 

Eppendorf AG) 

Vortex mixer Vortex-Genie 2 (Scientific Industries, Inc., Bohemia, NY, 

USA) 

Autoclave Systec VX-95 (Systec GmbH, Wettenberg, Germany) 

Oven Memmert U40 (Memmert GmbH + Co. KG, Schwabach, 

Germany) 

Water bath Memmert WB14 (Memmert GmbH + Co. KG)  

2.2  Chemicals 

β-Mercaptoethanol (Sigma-Aldrich, Steinheim, Germany) 

Dimethyl sulfoxide (DMSO, Carl Roth, Karlsruhe, Germany) 

Lipofectamin 2000 (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

Antifade Mounting Medium with 4’, 6-diamidino-2-phenylindole (DAPI) (Vector 

laboratories, INC., Burlingame, CA, USA) 
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Paraformaldehyde (PFA) (Carl Roth) 

Paxgene tissue container (Qiagen, Hilden, Germany)  

Eosin Y-solution 0.5% alcoholic (Merck Millipore, Darmstadt, Germany) 

Hematoxylin Solution, Mayer’s (Sigma-Aldrich) 

Avidin/Biotin blocking solution (Vector laboratories) 

Phosphate buffered saline (PBS) powder (Biochrom AG, Berlin, Germany) 

PBS solution (for cell culture, Potential of hydrogen (pH) 7.4, Thermo Fisher Scientific) 

Hank's balanced salt solution (HBSS, 10X, no calcium, no magnesium, no phenol red, 

Thermo Fisher Scientific) 

HBSS (10X, calcium, magnesium, no phenol red, Thermo Fisher Scientific) 

RNaseZap® decontamination solution (Thermo Fisher Scientific Inc) 

RNAlater® Ambion, (Thermo Fisher Scientific) 

Triton X-100 (Sigma-Aldrich) 

Tween® 20 (Merck Millipore) 

Vitro Clud® embedding medium (R. Langenbrinck, Emmendingen, Germany) 

2.3  Antibodies 

2.3.1 Primary antibodies 

Antigen Clone Host Catalog  Company 

MafB polyclonal  rabbit IHC-00351
Bethyl Laboratories, 

TX, USA 

Insulin polyclonal  guinea pig  ab7842 
Abcam, Cambridge, 

UK 
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Glucagon 
monoclonal 

(EP3070) 
rabbit ab92517 Abcam 

Ki67 polyclonal  rabbit ab15580 Abcam 

IL-6 polyclonal  rabbit ab6672 Abcam 

IL-6 
monoclonal 

(20F3) 
rat MM600C 

Thermo Fisher 

Scientific 

α- smooth muscle 

actin (SMA) 

monoclonal 

(1A4) 
mouse MO851 

Dako, Glostrup, 

Denmark 

Mac2 
monoclonal 

(M3/38) 
rat CL8942AP

Cedarlane, 

Burlington, Canada 

cluster of 

differentiation (CD)3 

monoclonal 

(CD3-12) 
rat MCA1477 

AbD Serotec, 

Kidlington, UK 

Caspase3 polyclonal  rabbit 9661S 

Cell Signaling 

Technology, MA, 

USA 

OxLDL 
monoclonal 

(E06) 
mouse 330002S 

Avanti Polar Lipids, 

AL, USA 

IgG N/A guinea pig sc-2711 

Santa Cruz 

Biotechnology, CA, 

USA 

IgG N/A rat sc-2026 Santa Cruz  

IgG N/A mouse sc-2025 Santa Cruz 

IgG polyclonal rabbit ab27472 Abcam 

2.3.2 Secondary antibodies 

Antigen Conjugation Host Catalog # Company 

guinea pig 

IgG  

fluorescein 

isothiocyanate 

(FITC) 

goat 106-095-003 
Jackson ImmunoResearch, 

Suffolk, UK 

rabbit IgG  FITC donkey 711-095-152 Jackson ImmunoResearch 

rabbit IgG  Cy3 goat 111-165-144 Jackson ImmunoResearch 

rat IgG  FITC donkey 712-095-153 Jackson ImmunoResearch 

rat IgG  Cyanine 3 (Cy3) donkey 712-165-153 Jackson ImmunoResearch 

mouse IgG  Cy3 donkey 715-165-151 Jackson ImmunoResearch 
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2.4 Buffers and solutions 

UP water (Type I) was generated by Milli-Q Integral 3/5/10/15 Systems and was used 

to prepare all the buffers and solutions. 

Cell lysis buffer (Total protein extraction): 1 tablet of cOmplete, 

ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor cocktail tablet (Roche 

Diagnostics GmbH) in 10 mL of radioimmunoprecipitation assay buffer (RIPA) buffer 

(Sigma-Aldrich). 

Citrate buffer: 630 mL UP water, 12.6 mL solution A (2.101 g citric acid in 100 mL UP 

water), 57.4 mL solution B (14.70 g sodium citrate in 500 mL UP water), 320 µL 

Tween 20, pH 6.0. 

Tris-EDTA antigen retrieval buffer: 1.21 g Tris (10mM, Carl Roth), 0.37 g EDTA 

(1mM, Sigma-Aldrich), 0.5 mL Tween 20 (0.05%) in 1000 mL UP water, pH 9.0. 

EVG staining solutions: 

Solution A: 10 g of hematoxylin was dissolved in 100 mL of 96% ethanol. 

Solution B: 29% Iron (III)-Chloride solution (145 g of Iron (III)-Chloride was dissolved 

in 500 mL of UP water), and 7.5 mL of 37% Hydrochloric acid (HCl) was added to 950 

mL of UP water. 

4% Paraformaldehyde (PFA): 

16 g of PFA was added to 184 mL of Millipore water and dissolved by adding 5 mL of 

10 M NaOH during heating at 100 °C. The pH was decreased to 7.4 – 8.0 by adding 

25% HCl. Subsequently, an equal volume of 2×PBS was added and the solution was 

filtered through a filter paper (thickness 0.20 mm, Ø 270mm, Macherey-Nagel GmbH 

& Co. KG, Düren, Germany), pH was adjusted to 7.4 – 8.0. 

Immunofluorescence staining: 
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1% Bovine serum albumin (BSA)-blocking solution: 5.4 mL PBS, 600 µL 10% BSA 

(SERVA Electrophoresis GmbH, Heidelberg, Germany), 3 drops 2.5% normal horse 

serum (Vector laboratories, INC., Burlingame, CA, USA). 

Antibody solution: 6 mL PBS, 90 µL 1% BSA-blocking solution. 

Anesthesia formulary: Take 40 µL of xylazine (5 mg/kg, Serumwerk, Bernburg, 

Germany) and 160 µL of ketamine hydrochloride (80 mg/kg, Pfizer, Berlin, Germany) 

with a 1 mL syringe. Fill the syringe with 800 µL of 0.9% weight per volume (w/v) 

NaCl up to 1mL and mix it properly.  

Sodium nitroprusside dehydrate solution: 156 mg of sodium nitroprusside dihydrate in 

50 mL PBS. 

20× Saline-sodium citrate (SSC) buffer: 3 M NaCl, 0.3 M Na citrate (pH 7.0). 

Tris-NaCl blocking (TNB) buffer: 7.88 g Tris-HCl was dissolved in 500 mL water and 

pH adjusted to 7.5 using NaOH. NaCl (4.383g) and 2.5g blocking reagent were added 

and the solution heated up to 55°C for about 30 min. 

Tris-NaCl Tween (TNT) buffer: 250 µL of Tween 20 to Tris-NaCl solution. 

2.5  Mouse husbandry 

Animals were housed in cages with microisolator filter tops and maintained on a 12-h 

light/dark cycle in a temperature-controlled room of the animal laboratory facility of the 

university, the Zentrale Versuchstierhaltung (ZVH), Klinikum Universität München 

(KUM). Mice had free access to water and mouse chow. All animal experimental 

procedures were reviewed and approved by the government of upper Bavaria 

(Regierung von Oberbayern) in accordance with German animal protection laws.  

2.6  Mouse strains 

MicroRNA-155 knock out (Mir155–/–) and low-density lipoprotein receptor knock out 

(Ldlr–/–) mice on a C57BL/6J background (both from Jackson Laboratory, Bar Harbor, 
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ME, USA) were crossed to obtain Mir155–/–Ldlr–/– mice. Mir155+/+Ldlr+/+ (Mir155+/+) 

and Mir155+/+ Ldlr–/– mice served as control of Mir155–/– Ldlr+/+ and Mir155–/–Ldlr–/– 

mice in this study, respectively.  

2.7  Animal models 

2.7.1 Diabetogenic diet-induced MetS model 

Male Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice (8 – 10 wk old) were fed a 

diabetogenic diet supplemented with cholesterol (DDC; 35.5% pork lard as fat, 20.1% 

crude protein, 36.3% carbohydrates with 0.15% weight per weight (w/w) total 

cholesterol; catalog # S0580-E005, ssniff Spezialdiäten GmbH, Soest, Germany) or a 

normal diet (ND; 3.3% fat, 19.0% crude protein, Catalog # V1534-3, ssniff 

Spezialdiäten GmbH)  for 24 wk. Body weight was measured every 2 wk using a 

calibrated digital scale (Kern & Sohn GmbH; weighing accuracy of 0.1 g). Fasting 

blood glucose (FBG) levels were measured every 4 wk in blood samples obtained from 

the tail vein after a 5 – 6 h fasting period using a glucometer (Roche Diagnostics 

GmbH, Basel, Switzerland, see also section 2.9.1). 

2.7.2 Tissue harvesting 

After a fasting period of 5 – 6 h, mice were anesthetized by intraperitoneal injection of 

ketamine hydrochloride (80 mg/kg) and xylazine (5 mg/kg). Blood was collected from 

the orbital vein to determine blood cell count and metabolic parameters. The abdominal 

and chest cavities were then surgically opened. A catheter was inserted into the left 

ventricle through an incision in the apex. Ice-cold PBS (10 – 15 mL, Thermo Fisher 

Scientific) was perfused using a sterile syringe (10 mL, Becton, Dickinson and 

Company) through the left ventricle and drained via an incision in the right atrium.  

After perfusion with PBS, aortic roots and pancreas were harvested and placed in 

PAXgene Tissue Fix solution (Qiagen, Hilden, Germany) for 2 – 4 h at room 

temperature (RT). Subsequently, tissues were removed from the PAXgene Tissue Fix 

solution and transferred to the PAXgene Tissue Stabilizer solution. In contrast to 

paraformaldehyde, PAXgene Tissue Fix is a fixation system that does not cause 
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destructive nucleic acid crosslinking and degradation, and preserves the morphology. It 

includes the two components: PAXgene Tissue Fix, which rapidly penetrates and fixes 

the tissue, and PAXgene Tissue Stabilizer in which nucleic acids and the morphology of 

the tissue are stable for up to 7 d at RT and for longer periods at 2 – 8 °C or -20 °C. 

Stabilized samples were embedded in paraffin (see also section 2.11.1) for histological 

studies. 

Before the PBS perfusion, epididymal white adipose tissue (eWAT) was excised 

from reproductive fat pads, and the weight of the fat pads was measured using an 

analytical balance (Sartorius mechatronics; weighing accuracy of 0.1 mg). The same 

region of the fat pad was excised in all animals to minimize cell size variation due to 

differences in anatomical location 136. The eWAT samples were either fixed using 

PAXgene Tissue Fix containers for histological studies or immediately stored in 

RNAlater stabilization solution (Ambion, Thermo Fisher Scientific Inc., Waltham, MA, 

USA) for RNA isolation (see also section 2.15). All instruments used during organ 

dissection were first treated with RNaseZap® (Ambion, Austin, TX, USA) to remove 

ribonuclease (RNase). 

Pancreas tissue from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice (10 – 12 wk old) 

was either fixed with PAXgene followed by paraffin embedding (see also section 

2.11.1) or embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek, Staufen, 

Germany), snap frozen on dry ice and stored at -80 °C (see also section 2.11.3).  

2.8  Blood profile 

2.8.1 Serum and plasma preparation 

After anesthetizing the animals, approximately 400 – 500 µL of whole blood was 

collected from the orbital veins in serum-separating tubes (brown tops, SST, Sarstedt, 

Nümbrecht, Germany) and allowed to clot at RT for 2 h. Subsequently, the tubes were 

centrifuged at 2000 relative centrifugal force (RCF) for 20 min in a refrigerated 

centrifuge (4 °C, Eppendorf 5430R, Eppendorf AG). The serum in the supernatant was 

collected. 
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For plasma preparation, 200 – 400 µL of whole blood was collected into 

commercially available anticoagulant-treated tubes (EDTA tubes, red tops, SST) and 

stored on ice. Cells were removed from plasma by centrifugation for 20 min at 6000 – 

8000 RCF using a refrigerated centrifuge. Following centrifugation, the supernatant 

(plasma) was immediately transferred into a polypropylene tube. The plasma samples 

were processed within 30 min after collection and maintained at 2 – 8 °C throughout the 

procedure. 

The serum and plasma samples were aliquoted (50 – 100 µL per tube) to avoid 

freeze-thaw cycles, and stored at -80 °C (NewBrunswick Premium U570 comfortm, 

Eppendorf AG). 

2.8.2 Complete blood cell count 

Approximately 20 – 30 µL of whole blood from the orbital veins was collected in 

EDTA tubes (SST). The complete blood cell count was performed within 1 h after the 

collection using an animal hematology analyzer (ScilVet ABC, scil animal care 

company GmbH) 

2.8.3 Measurement of cholesterol and triglyceride 

Cholesterol concentrations were measured by a fluorometric cholesterol assay kit 

(Cayman Chemical, Ann Arbor, MI, USA) in plasma and in very low-density 

lipoprotein (VLDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) 

fractions separated by high-performance liquid chromatography (HPLC) using 

Sephadex column (SHIMADZU, Tokyo, Japan). Fluorescence intensity was measured 

using excitation wavelengths at 550 nm and emission wavelengths at 590 nm by a 

microplate reader (Infinite F200 PRO, Tecan Trading AG, Männedorf, Switzerland). 

Plasma triglycerides concentrations were analyzed using the enzymatic 

colorimetric method (Triglycerides-GPO-PAP kit, Cobas, Roche Diagnostics 

GmbH)137. The plasma samples were diluted with 0.9% w/v NaCl in a proportion of 

1:20. The absorbance was measured at 510 nm by a microplate reader (Infinite F200 

PRO, Tecan Trading AG). 
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2.9 Glucose tests 

2.9.1 FBG level 

FBG levels were determined after a 5 – 6 h fasting period in blood samples obtained 

from the tail vein using the ACCU-CHEK Inform II test strip and a glucometer (sample 

size: 0.6 µL; test time: 5 seconds (s); range: 10 – 600 mg/dL). Glucose concentrations 

were measured at least in duplicate. The ACCU-CHEK Inform II control solutions were 

used for calibration (all from Roche Diagnostics GmbH).  

2.9.2 Intraperitoneal glucose tolerance test (IPGTT)   

Mice (10 – 12 wk old) were fasted overnight for approximately 16 h and subsequently 

injected intraperitoneally with glucose (2 mg/g body weight, cat. no. A2494001, 

Thermo Fisher Scientific). Venous blood was obtained from the tail vein before (0 min) 

and 15, 30, 60, 90 and 120 min after the glucose injection. Glucose levels were 

measured by a glucometer (ACCU-CHEK Inform II, Roche Diagnostics GmbH). For 

each time point, glucose concentrations of each mouse were measured at least in 

duplicate. 

2.10  Isolation of pancreatic islets 

Murine pancreatic islets were isolated by collagenase digestion and density gradient 

centrifugation using sodium diatrizoate (Histopaque 1119 and Histopaque 1077, Sigma-

Aldrich) as previously described138,139. In all experiments, islets from 2 – 3 mice were 

pooled for each biological replicate. The individual steps of the procedure are described 

in the following sections in detail. 

2.10.1 Preparation of solutions 

Collagenase P solution: Collagenase P (Roche Diagnostics GmbH) was diluted in 1× 

HBSS buffer (Thermo Fisher Scientific) at concentration of 1 mg/mL. The solution was 

used within 4 h. 
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2.10.3 Pancreas digestion and islets purification   

The pancreas was excised and digested in 5 mL of the collagenase P solution at 37 °C 

for 20 min. After incubation, tubes were shaken by hand to disrupt the pancreas until the 

suspension turns homogeneous. Once the tissue suspension is dissolved to very fine 

particles, the digestion was terminated by putting the tube on ice, adding 25 mL of stop 

solution, centrifuging at 300 RCF for 1 min and discarding the supernatant. After a brief 

washing step, islets were purified by gradient separation. The cell pellet was 

resuspended by adding 10 mL of Histopaque 1100, overlaid with 10 mL of 1× HBSS 

and centrifuged at 900 RCF for 20 min. The entire 20 mL of supernatant was then 

passed through an inverted 70 µm cell strainer (Thermo Fisher Scientific). The islets 

were collected into a 10 cm Petri culture dish (Corning Inc., NY, USA) by pipetting 10 

mL murine islet medium through the strainer.  

2.10.4 Islets isolation  

Islets were handpicked using a pipette (10 – 100 µL, Eppendorf AG) and counted under 

an inverted microscope (Olympus optical Co.). After isolation, the islets were either 

immediately processed for RNA isolation using NucleoSpin microRNA Kit (Macherey-

Nagel GmbH & Co. KG, Düren, Germany) (see also section 2.15) or lysed in 50 µL of 

cell lysis buffer (RIPA buffer, Sigma-Aldrich) containing protease inhibitors (cOmplete, 

EDTA-free protease inhibitor cocktail tablet, Roche Diagnostics GmbH) for protein 

extraction. 

2.11  Histology and Immunostaining 

2.11.1 Histology of aortic roots, eWAT and pancreata 

Aortic roots, eWAT and pancreata from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice fed 

a DDC for 24 wk, and pancreata from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice (10 – 

12 wk old) fed a ND were fixed with PAXgene, dehydrated using tissue processor 

(Leica ASP200 S) and embedded in paraffin (Table 1). 
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Table 1. Procedure of dehydration. 

Step Reagent Time (min) Temperature (ºC) 

1 70% Ethanol 60 20 

2 80% Ethanol 60 20 

3 96% Ethanol 30 20 

4 96% Ethanol 30 20 

5 100% Ethanol 30 20 

6 100% Ethanol 30 20 

7 Xylene 30 45 

8 Xylene 30 45 

9 Paraffin 30 62 

10 Paraffin 30 62 

11 Paraffin overnight 62  

The paraffin blocks hardened at 0 °C (Leica EG 1160 embedding center, Leica 

Biosystems) before sectioning using a microtome. Serial sections from aortic roots (5 

μm thickness), pancreas (7 µm thickness) and eWAT (7 µm thickness) were collected 

on glass slides (Superfrost plus glass slides, Thermo Fisher Scientific). The aortic root 

sections were collected when the first valve was visible. After sectioning, the slides 

were incubated in a 37 ºC incubator for 5 – 6 h or at RT overnight to reduce detachment 

of the tissue during staining. Deparaffinization and rehydration of the sections was 

performed before staining (Table 2).  

Table 2. Procedure of deparaffinization and rehydration. 

Step Reagent Time (min) 

1 Xylene 10 

2 Xylene 10 

3 100% Ethanol 5 

4 100% Ethanol 5 

5 96% Ethanol 5 

6 70% Ethanol 5 

7 PBS 5 – 10 

To measure lesion size, serial sections from aortic roots were selected once all 3 

aortic valves appear (every 10 sections, 4 – 5 sections in total per mouse) and stained 



MATERIALS AND METHODS 

 

27 

with Elastic van Gieson (EvG) stain using an Elastica nach van GIESON kit (12739, 

Baacklab, Armin Baack, Schwerin, Germany) (Table 3). Pancreas (every 10 sections, 4 

sections per mouse) and eWAT (every 10 sections, 2 – 3 sections per mouse) sections 

were stained with hematoxylin and eosin (H&E) (Table 4).  

Table 3. Procedure of EvG stain. 

Step Reagent Time Remark 

1 Resorcerin-Fuchsin 15 min staining of elastic fibers 

2 Running tap water  1 min Wash step 

3 Solution A+B 20 min staining of nuclei* 

4 Tap water 10 s Wash step 

5 1 % HCl-alcohol 5 – 10 s 1% HCl in 70% alcohol, 

6 UP water 5 s Wash step 

7 Van GIESON Pikrofuchsin solution 1 min staining of collagen 

8 UP water 5 s Wash step 

9 96% ethanol 2 min Dehydration step 

10 96% ethanol 2 min Dehydration step 

11 Isopropanol 2 min Dehydration step 

12 Xylene 5 min Dehydration step 

13 Xylene 5 min Dehydration step 

14 Vitro Clud® mounting solution N/A Mounting step 

 

Table 4. Procedure of H&E stain. 

Step Reagent Time Remark 

1 Hematoxylin 3 – 5 min Filter before each use 

2 Running tap water  10 min Wash step 

3 1 % HCl-alcohol 5 – 10 s 1% HCl in 70% alcohol 

4 Tap water 3 min Wash step 

5 Eosin   30 s Staining of collagen 

6 96% ethanol 2 min Discard after each use 

7 96% ethanol 2 min Dehydration step 

8 96% ethanol 2 min Dehydration step 

9 96% ethanol 2 min Dehydration step 

10 Xylene 5 min Dehydration step 
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11 Xylene 5 min Dehydration step 

12 Vitro Clud® mounting solution N/A Mounting step 

2.11.2 Double α-SMA and Mac2 immunostaining 

To study the lesion composition, immunostaining was performed in PAXgene-fixed and 

paraffin-embedded aortic roots sections (5 μm thickness) using antibodies against α-

SMA and macrophage-specific Mac2 (Table 5, see also section 2.3.1). Briefly, 2 – 3 

sections per mouse (50 – 100 μm distances between sections) were selected and 

deparaffinized (Table 2). Antigen retrieval was performed by cooking the sections in 

citrate buffer (see section 2.4) for 20 min. The tissues were then blocked with 1% BSA-

blocking solution for 30 min at RT and then incubated over night with the anti-Mac2 

antibody at 4°C. The sections were then washed 3 times with PBS and incubated with 

the specific secondary antibody for 30 min. The sections were then washed and 

incubated with anti-α-SMA antibody for 4 h at 37ºC, followed by incubation with the 

secondary antibody. Cell nuclei were counterstained with DAPI (Vectashield, Vector 

Laboratories, Peterborough, UK). Non-specific primary antibodies were used as 

negative controls (Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

To quantify macrophage infiltration in eWAT, Mac2 staining was performed on 

PAXgene-fixed and paraffin-embedded eWAT sections (7 μm thickness, 2 – 3 sections 

per mouse) from Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice fed a DDC for 24 wk, as 

described above. 

Table 5. Immunostaining protocols. 

Antigen 
Antigen 

retrieval 
Blocking 

1st primary 

Ab 

1st secondary 

Ab 

2nd primary 

Ab 

2nd 

secondary 

Ab 

Mac2/α

-SMA 

CB, 2×10 

min 

(100ºC) 

1% BSA-

blocking 

solution , 

30 min 

Mac2, 1:200, 

4 ºC, 

overnight 

anti-rat IgG 

FITC- 

conjugated, 

1:100, 30 min 

α-SMA, 

1:200, 37 

ºC, 4 h 

anti-mouse 

IgG cy3-

conjugated, 

1:300, 30 min 

 
 
CB = Citrate buffer; Ab = antibody details are provided in sections 2.3; 
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2.11.3 Immunofluorescence staining in pancreas 

Pancreas tissues from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice (10 – 12 wk old) were 

embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek) and stored at -80 °C. The 

frozen blocks were warmed up to -20 °C in a pre-cooled cryostat (Leica CM 3050S, 

Leica Biosystems) before sectioning. Serial pancreatic sections (10 µm thickness) were 

collected on glass slides (Superfrost plus glass slides, Thermo Fisher Scientific) and air-

dried at RT for 30 – 60 min before being stored at -80 °C. For fixation, the frozen 

sections were quickly thawed at 37 °C for 1 min using a dry block incubator 

(Thermostat Plus, Eppendorf AG) and air-dried for 30 – 40 min at RT. The sections 

were then fixed with either pre-cold acetone or PFA (2 – 4%) (Table 6) and 

permeabilized with Triton X-100 (0.1% in PBS for 5 – 8 min) or Tween 20 (0.2% in 

PBS for 10 – 20 min).  

Table 6. Fixation of pancreatic cryosections. 

Reagent and step Time (min) Temperature

Acetone fixation 

Pre-cold acetone 10 -20 °C 

Air-dry 20 – 30 RT 

PBS rehydration 10 4 °C or RT 

PFA fixation 

2 – 4 % pre-cold PFA  10 4 °C 

PBS rehydration 10 4 °C or RT 

Single immunostaining was performed on pancreatic cryosections by sequential 

incubation with primary antibodies against insulin, glucagon, IL-6, MafB, Ki67, cleaved 

caspase-3, Mac2 or CD3, and fluorescently conjugated secondary antibodies (Table 7).  

Table 7. Immunostaining protocols. 

Step Insulin Glucagon IL-6 MafB Ki67 Caspase 3 

1 Acetone Acetone  4% PFA Acetone Acetone Acetone 

2 N/A 
0.1% 
Triton X-
100, 5 min 

N/A 

0.1% 
Triton X-
100, 5 min 

0.1% 
Triton X-
100, 5 
min 

0.1% Triton 
X-100, 5 
min 

3 1% BSA, 30 1% BSA, 30 1% BSA, 30  1% BSA, 1% BSA, 30 
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min min min 30 min min 

3 

Anti-
insulin Ab, 
1:200, 4ºC, 
overnight 

Anti-
glucagon 
Ab, 
1:1500, 37 
ºC, 3 h  

1:400, 4 ºC, 
overnight 

Anti-MafB 
Ab, 1:200, 
4ºC, 
overnight 

Anti-Ki67 
Ab, 
1:1500, 
37ºC, 2 h 

1:200, 4 ºC, 
overnight 

4 

Anti-
guinea pig 
IgG FITC-
conjugated, 
1:100, 30 
min 

Anti-rabbit 
IgG Cy3-
conjugated, 
1:300, 30 
min  

anti-rabbit 
IgG, FITC-
conjugated, 
1:100, 30 
min 

Anti-rabbit 
IgG Cy3-
conjugated, 
1:300, 30 
min 

anti-rabbit 
IgG Cy3-
conjugated, 
1:300, 30 
min 

anti-rabbit 
IgG Cy3-
conjugated, 
1:300, 30 
min 

5   
Anti-CD3 
Ab, 1:100, 
37 ºC, 4 h 

   

6   

Anti-rat 
IgG Cy3-
conjugated, 
1:300, 30 
min

   

Ab details are given in sections 2.3.1 and 2.3.2 

Double immunostaining of insulin and glucagon, insulin and MafB, or Mac2 and 

CD3 was performed by sequential incubation of the sections with the primary and 

secondary antibodies for each antigen (Table 8). 

 

Table 8. Double immunostaining protocols. 

Step Insulin/glucagon Insulin/MafB Mac2/CD3 

1 Acetone Acetone  Acetone  

2 N/A 0.1% Triton X-100, 5 min N/A 

3 
Anti-insulin Ab, 1:200, 4 

ºC, overnight 

Anti-insulin Ab, 1:200, 4 

ºC, overnight 

Anti-Mac2 Ab, 1:200, 4 

ºC, overnight 

4 
Anti-guinea pig IgG FITC-

conjugated, 1:100, 30 min 

Anti-guinea pig IgG FITC-

conjugated, 1:100, 30 min 

Anti-rat IgG FITC- 

conjugated, 1:100, 30 min 

5 
Anti-glucagon Ab, 1:1500, 

37ºC, 3 h 

Anti-MafB Ab, 1:200, 4ºC, 

overnight 

Anti-CD3 Ab, 1:100, 37ºC, 

4 h 

6 
Anti-rabbit IgG Cy3-

conjugated, 1:300, 30 min 

Anti-rabbit IgG Cy3-

conjugated, 1:300, 30 min 

Anti-rat IgG Cy3-

conjugated, 1:300, 30 min 

Ab details are given in sections 2.3.1 and 2.3.2 
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In addition, a biotinylated murine monoclonal antibody (mouse monoclonal E06) 

followed by a Dylight 549-labeled streptavidin (Kirkegaard & Perry Laboratories, 

Gaithersburg, MD, USA) was used for oxLDL immunostaining. Cell nuclei were 

counterstained with DAPI. Non-specific primary antibodies were used as negative 

controls (Santa Cruz Biotechnology).  

2.11.4 Image acquisition and planimetry 

Digital images were acquired using Leica-DM6000 B microscope (Leica microsystems) 

connected to a charge-coupled device (CCD) camera (DFC295, Leica microsystems) 

and the LAS AF software (version 3.2.0.9652). The size of the positively stained area 

(Mac2+, SMA+) per aortic lesion area (2 – 3 sections per mouse) and the positive cell 

number (Mac2+) per total adipocytes in each section (4 – 5 sections per mouse) were 

determined using image analysis software (ImageJ 1.43n, NIH, USA). In pancreatic 

islets, the percentage of positive cells (Insulin+, Glucaon+, MafB+) was calculated by 

dividing the number of positive cells in one islet by the total number of cells in this islet 

and multiplying this ratio by 100. At least 10 islets were analyzed per each section, and 

2 – 3 sections were used for each individual. The background of the negative control 

staining defined the threshold for the positive staining. 

2.12 In situ reverse transcriptase PCR 

To determine the expression and localization of miR-155-5p in murine pancreatic islets, 

in situ reverse transcriptase PCRs were performed on pancreatic sections from 

Mir155+/+Ldlr–/– mice fed a ND. The method includes an overnight deoxyribonuclease 

(DNase) digestion, followed by in situ miRNA extension and amplification (reverse 

transcription and PCR with designed Taq-in situ-primers), short low stringency washes 

and probe visualization. Taq-in situ-reverse transcription primer containing the 

complementary sequence of the miRNA at its 3′ terminus was designed to increase the 

length of mature miRNAs. Then, the extended miRNA was amplified using pre-

designed miRNA specific taq-in situ-forward and -reverse primers. The digoxigenin-

dUTPs served as reporter nucleotides that were incorporated into the synthesized DNA 

and detected by anti-digoxigenin antibodies (Figure 8).126,140 
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Figure 8. Schematic showing in situ reverse transcriptase PCRs. (A) In step 1, taq-in situ-reverse 

transcription primers bind to the 3' portion of miRNA molecules, initiating reverse transcription of the 

miRNA. In step 2, the reverse transcription product is amplified using miRNA specific taq-in situ-

forward and -reverse primers. In both steps, the digoxigenin-dUTPs serve as reporter nucleotides that are 

incorporated into the synthesized DNA and detected using an anti-digoxigenin antibody. (B) Six 

nucleotides of 3′ end of the Taq-in situ-mmu-miR-155-5p-reverse transcription primer are complementary 

with the 3′ end of miR-155-5p (Step 1). Taq-in situ-mmu-miR-155-5p-forward and -reverse primers were 

designed for amplification (Step 2). The digoxigenin-dUTP is highlighted in red. 
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One-step reverse transcriptase in situ PCR was performed using gene-specific Taq-

in situ-mmu-miR-155-5p primers (Sigma-Aldrich) (Table 10 and Figure XX), the 

SuperScript One-Step RT-PCR System with Platinum Taq DNA Polymerase (Thermo 

Fisher Scientific), and digoxigenin-11-dUTPs (Roche Diagnotics GmbH) (Table 11). 

The worm-specific microRNA cel-miR-39 was used as negative control. 

Table 10. Primer sequences for in situ PCR. 

Gene Primer sequences 

Taq-in situ-mmu-miR-155–reverse 

transcription 

5'-GTCGTATCCAGTGCAGGGTCCGAGG 

TATTCGCACTGGATACGACTCACACACCCCT-3' 

Taq-in situ-mmu-miR-155–Forward 5'-TGCGGTTAATGCTAATTGTGATA-3' 

Taq-in situ-mmu-miR-155–Reverse 5'-GTGCAGGGTCCGAGGT-3' 

Taq-in situ-cel-miR-39–reverse 

transcription  

5'-GTCGTATCCAGTGCAGGGTCCGAGG 

TATTCGCACTGGATACGACCAAGC-3' 

Taq-in situ-cel-miR-39–Forward 5'-GCCCTCACCGGGTGTAAAT-3' 

Taq-in situ-cel-miR-39–Reverse 5'-GTGCAGGGTCCGAGGT-3' 

Two serial sections were placed on the same slide, one of which was used for 

negative control staining. SecureSeal™ hybridization chambers were attached to the 

slides and 50 µL reaction mix (Table 11) was added through access ports to the 

microwells formed by the hybridization chambers. The slides were then placed in a 

thermal cycler (Eppendorf Master Cycler Nexus) and reverse transcription and 

amplification was performed (Table 12). After completing the cycles, slides were rinsed 

first with xylene and then with ethanol (100%), before air-drying. 

Table 11. Preparation of in situ reverse transcriptase PCR reaction mix. 

Reagents Volume (µL) 

Platinum Taq DNA Polymerase (SuperScript 

One-Step RT-PCR System) 

1 

2xReaction mix buffer (SuperScript One-Step RT-

PCR System) 

25 

2% BSA 1.6 

Digoxigenin-11-dUTPs (1 mM) 0.6 

RNase inhibitor 1.4 

Taq-in situ- reverse transcription primer (100 µM) 1.2 
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Taq-in situ-Forward primer (100 µM) 0.9 

Taq-in situ-Reverse primer (100 µM) 0.9 

RNase-free water 17.4 

 

Table 12. Thermal cycling conditions. 

Steps Cycles Temperature Time 

1 1 55° C 30 min 

2 1 95° C 3 min 

3 25 95° C 15 s 

55° C 30 s 

72° C 20 s 

4 1 72° C 5 min 

5 1 10° C hold 

After stringent washing with SSC buffer (2x SSC with 2% BSA and 0.2x SSC with 

2% BSA; 15 min each), the sections were incubated in Tris-NaCl blocking (TNB) 

buffer (see section 2.4) for 30 min and avidin/biotin blocking solutions (avidin/biotin 

blocking kit, Vector Laboratories). The sections were then incubated with horseradish 

peroxidase-conjugated anti-digoxigenin sheep F’ab fragments (Fab fragments from 

sheep, 1:100; Roche Diagnostics GmbH) for 1 h at 37 °C. Probes were visualized using 

a tyramide-based amplification system (TSA Plus Biotin; PerkinElmer Inc., Waltham, 

MA, USA) and Dylight 549-labeled streptavidin (1:200; Kirkegaard & Perry 

Laboratories). Images were acquired using a Leica-DM6000 B microscope (Leica 

microsystems) connected to a CCD camera (DFC365FX, Leica microsystems) and the 

LAS AF software (version 3.2.0.9652). 

2.13 Laser microdissection (LMD) 

Laser microdissection (LMD) is a method for isolating specific populations of cells 

from microscopic regions of cells, tissues, and organs 141,142. Murine pancreata from 

Mir155+/+Ldlr–/– mice fed a DDC or a ND for 24 wk were fixed using PAXgene tissue 

containers (Qiagen) and embedded in paraffin. Sections (7 µm thick) were collected on 

polyester-membrane frames slides (0.9 µm thickness, Leica Microsystems). Before 
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LMD, sections were deparaffinized under RNase-free conditions (Xylene and 100% 

Ethanol; 3 min each) and air-dried.  

Laser microdissection was performed using a laser microdissection system (CTR 

6000, Leica Microsystems) attached to an inverted microscope (LMD 7000, Leica 

Microsystems). Islets from approximately 60 pancreatic sections were collected from 

each mouse into the lysis buffer (TM1) of the PAXgene Tissue miRNA isolation kit 

(PreAnalytix, Switzerland) (Figure 10). RNA was isolated according to the 

manufacturer’s instructions. All the steps were performed in the RNase-free condition 

to preserve RNA integrity. 

 

Figure 10. Laser microdissection system. Islets were dissected by laser from polyester-membrane 

frames slides and collected in the lid of a microfuge tube containing lysis buffer. 

2.14 In vitro experiments 

2.14.1 MIN6 cell culture 

Mouse pancreatic insulinoma cell line MIN6 (passage 18 – 24)143, which is a mixed cell 

line with other pancreatic endocrine hormones (e.g., glucagon and somatostatin)144 and 

exhibits characteristics similar to isolated pancreatic islets,145 are kindly provided by 

Prof. Ingo Rustenbeck (University of Braunschweig, Germany, originally from Prof. 

Jun-Ichi Miyazaki Osaka University, Japan). MIN6 cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 25 mM glucose (Thermo Fisher 

Scientific), supplemented with 10% volume per volume (v/v) heat-inactivated FBS 
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(Sigma-Aldrich), 50 µg/mL Glutamine (Thermo Fisher Scientific) and 5 µL/L β-

mercaptoethanol (Sigma-Aldrich). Cells were maintained in appropriate culture vessels 

(Table 13) at 37 °C under 5% (v/v) CO2 and passaged using Accutase solution (Thermo 

Fisher Scientific, Table 13) when they reached around 80% confluency. The culture 

medium was changed every 48 – 72 h. 

Table 13. Seeding and confluent density and volumes of dissociation solutions for 

various sizes of culture vessels. 

 Seeding density 

(cells per well) 

Confluent density 

(cells per well) 

Accutase (mL) Growth Media 

(mL) 

Culture plates 

6-well 3-5 x 105 1.2 x 106 0.8 2 

12-well 2 x 105 4 x 105 0.5 1 

24-well 0.5 x 105 2 x 105 0.3 0.5 

Flasks 

T-25 0.7 x 106 2.8 x 106 2 5 

T-75 2.1 x 106 8.4 x 106 4 8 – 15 

2.14.2 Transfection 

MIN6 cells were transfected with locked nucleic acid (LNA)-miR-155-5p inhibitors (50 

nM, miRCURY LNATM microRNA inhibitors; Exiqon, Vedbaek, Denmark), miR-155-

5p mimics (15 nM, mirVanaTM mimics; Thermo Fisher Scientific), 155/Mafb target 

site blockers (50 nM miRCURY LNATM microRNA target site blockers; Exiqon), or 

scrambled controls (mirVana™ miRNA Mimic, Negative Control, Thermo Fisher 

Scientific; miRCURY LNATM microRNA inhibitor control and miRCURY LNATM 

microRNA target site blockers control, Exiqon) using Lipofectamine2000 (Thermo 

Fisher Scientific).  

One day before transfection, MIM6 cells were seeded in 6-well plates at 2 – 3 x 105 

cells/mL or in 12-well plates at 2 x 105 cells/mL. The cells were transfected when the 

confluency reached 80-85% and the oligomer-Lipofectamine complexes were prepared. 

for each transfection sample (Table 14). 
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Table 14. Preparetion of oligomer-Lipofectamine complexes for transfection. 

Reagent A 

 6-well (µL) 12-well (µL)  

miR-155-5p inhibitors or control inhibitors (15 nM) 

or 

miR-155-5p mimics or control mimics (50 nM) 

or 

155/Mafb TSBs or control TSBs (50 nM) 

0.6 

 

2 

 

2 

0.3 

 

1 

 

1 

FBS and supplement free medium 250 125 

Reagent B 

 6-well (µL) 12-well (µL)  

Lipofectamin 2000 5 2.5 

FBS and supplement free medium 250 125 

Each reagent was gently mixed and incubated for 5 min at RT, before reagent A 

and B were combined, gently mixed and incubated for 20 min at RT. During the 

incubation, the medium was exchanged by fresh antibiotics-free growth medium. The 

miRNA inhibitor/mimic/TSB-Lipofectamine complexes were then added to each well 

and mixed gently by shaking the plate for 24 – 48 h before harvesting the cells. Total 

RNA was isolated by NucleoSpin microRNA Kit (Macherey-Nagel GmbH & Co. KG, 

Düren, Germany) and proteins were extracted using RIPA buffer (Sigma-Aldrich) 

containing protease inhibitors (cOmplete, EDTA-free protease inhibitor cocktail tablet, 

Roche Diagnostics GmbH). In all experiments, 5 – 6 biological replicates were studied. 

2.14.3 Preparation of mildly oxidized LDL (moxLDL) 

Human LDL (1 mg/mL, Calbiochem, Merck Millipor, Darmstadt, Germany) was 

incubated with 5 μM CuSO4 at 37°C for 4 h. LDL oxidation was stopped by adding 10 

μM EDTA and the LDL was passed through PD-10 desalting column (GE Healthcare, 

Uppsala, Sweden). Native LDL (nLDL) was treated in the same way as moxLDL except 

the addition of CuSO4. The protein concentration was measured using a DC protein 

assay kit (Bio-Rad Laboratories GmbH) with BSA as a standard. The level of oxidation 

was determined by spectrophotometric quantification of thiobarbituric acid-reactive 

species formation (TBARS assay kit, Cayman Chemical, Michigan, USA) at 532 nm. 
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moxLDL and nLDL were stored at 4 °C and used for experiments within 14 d after 

preparation. 

2.14.4 LPS or moxLDL stimulation 

MIM6 cells were seeded in 12-well plates at 2 x 105 cells/mL and maintained at 37 °C 

for 24 h before stimulation with LPS (5, 20, or 50 ng/mL, from Escherichia coli 055:B5, 

Sigma-Aldrich), nLDL (100 µg/mL), moxLDL (100 µg/mL), or PBS for 6 h. Total 

RNA was isolated by NucleoSpin microRNA Kit (Macherey-Nagel GmbH & Co. KG, 

Düren, Germany). In all experiments, 5 – 6 biological replicates were studied. 

2.14.5 IL-6 neutralization 

MIN6 cells were cultured in 12-well plates and treated with neutralizing IL-6 antibodies 

(200 μg/mL, rat monoclonal Ab, Thermo Fisher Scientific) or isotype control antibodies 

(normal rat IgG, Santa Cruz Biotechnology) for 24 h. Then, cells were harvested, and 

RNA and protein was isolated using NucleoSpin microRNA Kit (Macherey-Nagel 

GmbH & Co. KG) and RIPA buffer (Sigma-Aldrich) with cOmplete, EDTA-free 

protease inhibitor cocktail tablet (Roche Diagnostics GmbH), respectively. For protein 

isolation, 3 wells were pooled for one biological replicate. The cell culture medium was 

collected and concentrated using the Amicon Ultra-2 mL Centrifugal Filters (Merck 

Millipore).  

2.14.6 Cell cycle analysis 

Cell cycle analysis of MIN6 cells was performed by flow cytometry. Briefly, MIN6 

cells were cultured in 6-well plates and transfected with miR-155-5p mimics or miR-

155-5p inhibitors for 24 h (see also section 2.14.2). Non-targeting oligonucleotides 

were used as control. Proliferation of these cells was assessed using flow cytometry by 

analyzing the DNA content after fixation with ice-cold 70% ethanol and staining with a 

solution containing propidium iodide (20 μg/mL), ribonuclease A (10 μg/mL) and 0.1% 

Triton-X 100 (all from Sigma-Aldrich). Sample acquisition and analysis was performed 

on the Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific) according to the 

manufacturer’s instructions. 
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2.15 RNA isolation and qPCR 

Total RNA was isolated using mirVana miRNA kit (Thermo Fisher Scientific, 

Darmstadt, Germany), NucleoSpin microRNA kit (Macherey-Nagel) or PAXgene 

Tissue miRNA kit (Qiagen). The RNA concentration was determined by measuring the 

absorbance at 260 nm (A260) in a spectrophotometer (see also section 2.1). The 

absorbance at 280 nm (A280) was also measured to determine the RNA purity. The 

RNA quality was determined using a Fragment Analyzer™ (Advanced Analytical 

Technologies, Ankeny, lowa, USA). The RNA is separated according to fragment size, 

and results are returned as electropherograms and virtual gel images. An index for RNA 

quality, the RNA integrity number (RIN), is derived from the electrophoretic profile. 

RIN assigns an electropherogram a value of 1 to 10, with 10 being the least degraded, 

while a RIN value of 1 indicates massive degradation. For RIN calculation, the 

algorithm does not rely on the 28S/18S-rRNA ratio alone, but considers the entire 

electrophoretic profile (e.g., the fraction of short degraded RNA species). All samples 

were analyzed using High Sensitivity RNA Analysis kit (DNF-491-0500, Sizing range: 

50 bp – 20,000 bp, Input concentration range: 50 pg/µL – 5,000 pg/µL, Agilent 

Technologies). RNA with an A260/A280 ratio of 1.7 – 2.1 and RNA integrity number 

(RIN) > 7 was used for qPCR. 

miRNA was reverse-transcribed using TaqMan microRNA reverse transcription kit 

and quantitated by qPCR using the TaqMan Universal PCR Master Mix and TaqMan 

microRNA assays (both from Thermo Fisher Scientific). mRNA was reverse-

transcribed by using the high-capacity cDNA reverse transcription kit and the 

expression of mRNA was determined using TaqMan universal PCR master mix and 

TaqMan gene expression assays (all from Thermo Fisher Scientific) or the SYBR green 

technology (GoTaq qPCR Master Mix, Promega GmbH, Mannheim, Germany) and 

self-designed, gene-specific primers (Sigma-Aldrich) (Table 15).  

All qPCRs were run on a 7900HT real-time PCR system (Thermo Fisher 

Scientific). Relative expression levels were normalized to a single or multiple reference 

genes (small nucleolar RNA (sno)-135, sno-202, or U6 for miRNAs and glyceraldehyde 

3-phosphate dehydrogenase (Gapdh), beta-actin (Actb) or hypoxanthine guanine 
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phosphoribosyl transferase (Hprt1) for mRNAs), and scaled to the sample with of the 

lowest expression and logarithmically transformed (Log10) using QbasePLUS software 

(Biogazelle NV, Zwijnaarde, Belgium). 

  



MATERIALS AND METHODS 

 

42 

 

Table 15. Primer sequences used in real-time RT-PCR analysis. 

 

Gene Primer Primer sequences Location Product size (bp) GenBank Accession numbers 

Mafb Forward 5'-GTAGTGTGGAGGACCGCTTC-3' 1003-1022 160 NM_010658.3 

Reverse 5'-TTATACCTGCACGACTGGGC-3' 1162-1143 

Glucagon Forward 5'-CTGGTGAAAGGCCGAGGAAG-3' 467-486 89 NM_008100.4 

Reverse 5'-GAGAAGGAGCCATCAGCGTG-3' 555-536 

Insulin Forward 5'-TGGCTTCTTCTACACACCCA-3' 229-248 197 NM_008387.5 

Reverse 5'-TCTAGTTGCAGTAGTTCTCCA-3' 425-405 

Il6 Forward 5'-CCACTTCACAAGTCGGAGGC-3' 218-237 78 NM_031168.2 

Reverse 5'-TGCCATTGCACAACTCTTTTCT-3' 295-274 

Pcsk1 Forward 5'-GTGAATGTTGTGGAGAAGCGG-3' 1945-1965 147 NM_013628.2 

Reverse 5'-TTGTAGGAGTCGCAGCATGG-3' 2091-2072 

Pcsk2 Forward 5'-GGTACTGACCCTCAAAACAAATGCATGTG-3' 1810-1838 127 NM_008792.4 

Reverse 5'-GGAGGTCATGTTGATGTTCAGGTCTCC-3' 1936-1910 

Arx Forward 5'-GGCCGGAGTGCAAGAGTAAAT-3' 259-279 157 NM_007492.4 

Reverse 5'-TGCATGGCTTTTTCCTGGTCA-3' 415-395 

Med12l Forward 5'-CAGAATCAGGGGTTGGGGAC-3' 2411-2430 182 NM_177855.3 

Reverse 5'-GGATGTTCCAGACGCAAAGC-3' 2590-2573 

Somatostatin Forward 5'-ATGCTGTCCTGCCGTCTC-3' 101-118 194 NM_009215.1 

Reverse 5'-TTCTCTGTCTGGTTGGGCTC-3' 294-275 
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Sema5a Forward 5'-CAGGACCCTTACTGTGGCTG-3' 2156-2175 111 NM_009154.2 

Reverse 5'-ATTTCTGGTCGGACAGGTGG-3' 2266-2247 

Stmn2 Forward 5'-CTTGAAGCCACCATCTCCCAT-3' 256-276 127 NM_025285.2 

Reverse 5'-CTCTTGAGACTTTCTTCGCTCCT-3' 382-360 

Auh Forward 5'-CTCTGCAAAAATGGGCCTGG-3' 564-583 70 NM_016709.2 

Reverse 5'-TAATCTCTGTGTCCCTCCTCCG-3' 633-612 

Nos2 Forward 5'-TCATTGGGCCTGGTACGGGCA-3' 3173-3193 105 NM_010927.4 

Reverse 5'-ACACCAAGCTCATGCGGCCTC-3' 3277-3257 

Mrc1 Forward 5'-AATGCTGACCTCCTGAGTGT-3' 850-869 158 NM_008625.2 

Reverse 5'-CAGTTCAGATACCGGAATGG-3' 1007-988 

Arg1 Forward 5'-TGGGCAACCTGTGTCCTTTCTCCT-3' 525-548 136 NM_007482.3 

Reverse 5'-TTCCCCAGGGTCTACGTCTCGCA-3' 660-638 

Gapdh Forward 5'-CATGGCCTTCCGTGTTCCTA-3' 924-943 104 NM_008084.3 

Reverse 5'-CCTGCTTCACCACCTTCTTGAT-3' 1027-1006 

Actb Forward 5'-GGCTGTATTCCCCTCCATCG-3' 193-212 154 NM_007393.5 

Reverse 5'-CCAGTTGGTAACAATGCCATGT-3' 346-325 

Hprt Forward 5'-TCAGTCAACGGGGGACATAAA-3' 470-490 142 NM_013556.2 

Reverse 5'-GGGGCTGTACTGCTTAACCAG-3' 611-591 
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2.16 Protein quantitation 

2.16.1 Total protein quantification 

Murine pancreatic islets isolated from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice and 

MIN6 cells transfected with miR-155-5p inhibitors, miR-155-5p mimics, 155/Mafb 

target site, or scrambled controls were lysed in RIPA buffer containing protease 

inhibitors (see also section 2.14.2). Total protein concentration was determined using a 

modified Lowry assay kit (DC protein assay kit, Bio-Rad Laboratories), which is based 

on the reaction of protein with an alkaline copper tartrate solution and Folin’s reagent. 

The method combines the reactions of copper ions with the peptide bonds under 

alkaline conditions with the oxidation of aromatic protein residues146. Absorbance was 

measured at 750 nm by a microplate reader (Infinite F200 PRO). Different standard 

concentrations (Table 16) were prepared using UltraPure™ BSA solution (50 mg/mL, 

Thermo Fisher Scientific). 

Table 16. Preparation of different standard concentrations. 

Standard (mg/mL) BSA RIPA buffer (µL) 

2 2 µL of 50 mg/mL BSA 48 

1.6 1.6 µL of 50 mg/mL BSA 48.4 

1 15 µL of 2 mg/mL BSA 15 

0.8 25 µL of 1.6 mg/mL BSA 25 

0.4 25 µL of 0.8 mg/mL BSA 25 

0.2 25 µL of 0.4 mg/mL BSA 25 

0.1 25 µL of 0.2 mg/mL BSA 25 

0.05 25 µL of 0.1 mg/mL BSA 25 

0 0 µL 50 

2.16.2 Enzyme-linked immunosorbant assay (ELISA) 

The concentrations of insulin in plasma from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice 

fed a DDC for 24 wk, or Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice (10 – 12 wk old) 

fed a ND were determined after a 5 – 6 h fasting period using an ultra sensitive mouse 

insulin ELISA kit (dynamic range 0.1 – 64.0 ng/mL, Crystal Chem Inc. Downers 
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Grove, IL, USA) according to the manufacturer’s instructions. The absorbance was 

measured at 405 nm by a microplate reader (Infinite F200 PRO). 

For IL-6 protein measurement, MIN6 cells transfected with miR-155-5p inhibitors, 

miR-155-5p mimics, or scrambled controls were lysed in cell lysis buffer. Moreover, 

the cell culture medium was collected and concentrated using the Amicon Ultra-2 mL 

Centrifugal Filters (Merck Millipore). The concentrations of IL-6 in cell lysates and 

concentrated supernatants were quantified using a commercially available mouse IL-6 

ELISA kit (RayBiotech, Inc., Norcross GA, USA) according to the manufacturer’s 

instructions. The data were normalized to the total protein concentration determined 

using the DC Protein assay kit (cat. no. 5000116, Bio-Rad Laboratories, Inc.) (see 

section 2.16.1). The absorbance was measured at 405 nm by a microplate reader 

(Infinite F200 PRO).  

2.16.3 Luminex’s xMAP bead-based multiplex assays 

Luminex's xMAP technology is bead based multiplexing, where beads are internally 

dyed with fluorescent dyes to produce a specific spectral address. Biomolecules (such as 

an oligonucleotide or antibody) can be conjugated to the surface of beads to capture 

analytes of interest. This technology uses flow cytometric or imaging technologies for 

characterization of the beads. Because the beads can be distinguished by their speical 

addresses and each address can be linked with a specific target, the beads can be 

combined in a single reaction to measure multiple targets simultaneously.  

The Luminex's MAGPIX system (Table 17) was used to detect protein 

concentrations, which utilizes a flow cell and robust light-emitting diode (LED)/CCD-

based optics, supports multiplexing of up to 50 tests in a single reaction volume using 

MagPlex beads. The reacted magnetic beads are sent through a flow cell into an 

imaging chamber where a magnetic actuator pulls the beads out of suspension and holds 

them in place for optical analysis. Red LEDs (635 nm) excite the fluorescent dyes 

contained within the microspheres and green LEDs (525 nm) excite the reporter 

fluorochrome bound to the bead surface. A CCD camera identifies the bead region and 

quantifies the bound reporter (Figure 11). 
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normalized to the total protein concentration determined using a modified Lowry assay 

(see also section 2.16.1).  

 

Figure 12. Schematic representation of an immunoassay sandwich-based assay workflow. Figure 

modified from http://www.bio-rad.com/de-de/applications-technologies/bio-plex-multiplex-immunoassay 

2.17 Endotoxin activity 

Endotoxin activity in serum, nLDL and moxLDL was determined by the limulus 

amebocyte lysate (LAL) assay (Pierce™ LAL endotoxin quantitation kit, Thermo 

Fisher Scientific) according to the manufacturer’s instructions. Briefly, samples were 

heat-shocked at 70 °C for 15 min and incubated with LAL at 37 °C for 10 min, followed 

by incubation with the chromogenic substrate at 37 °C for 6 min. The absorbance was 

measured at 405 nm by a microplate reader (Infinite F200 PRO, Tecan Trading AG, 

Männedorf, Switzerland). 
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2.18 Global gene expression analysis 

Murine pancreatic islets were isolated from Mir155–/–Ldlr–/– and Mir155+/+Ldlr–/– mice 

(10 – 12 wk old) fed a ND after a 5 – 6 h fasting period (see also section 2.7.2). Total 

RNA was isolated using the NucleoSpin microRNA kit and the RNA quality was 

determined by capillary electrophoresis using an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA). The samples with a RIN ≥ 7.7 were used for the 

array (see also section 2.15). Agilent SurePrint G3 Mouse Gene Expression 

Microarrays (8x60K format, Agilent) were used in combination with a one-color based 

hybridization protocol (IMGM Laboratories GmbH, Martinsried, Germany). Raw 

signals on the microarrays were scanned using the Agilent DNA Microarray Scanner. 

Quantile normalization and analysis of the raw data were performed using GeneSpring 

GX 13.0 software (both from Agilent Technologies). 

2.19 Prediction of miR-155-5p target genes 

Among the genes significantly upregulated (൒1.5-fold and p<0.05) in pancreatic islets 

of Mir155–/–Ldlr–/– mice compared to Mir155+/+Ldlr–/– mice (as determined by global 

gene expression analysis), miR-155-5p targets and the conservation of the miR-155-5p 

binding sites across species were predicted by Targetscan software 

(http://www.targetscan.org/). The probability of conserved targeting is indicated by the 

PCT value. 

2.20 Ingenuity® pathway analysis 

Microarray gene expression data were analysed by Ingenuity® Pathway Analysis 

software (IPA, http://www.ingenuity.com/products/ipa, Qiagen) to predict gene 

connectivity and upstream regulators of differentially expressed genes147. Briefly, an 

input file containing gene identifiers, corresponding expression values, p-values and 

fold changes of all probe sets was uploaded into the IPA system. Each gene identifier 

was mapped to its corresponding gene object in the Ingenuity® Knowledge Base. These 

genes were loaded into a global molecular network developed from information 
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2.21 MicroRNA target identification and quantification 

system (MirTrap) 

MirTrap System was used to identify specific miR-155-5p targets in MIN6 cells. The 

system utilizes a dominant negative mutation of the miRNA-induced silencing complex 

(miRISC) protein subunit GW182, which is integrated into the endogenous Argonaute 

(Ago)/miRISC complex and locks a microRNA/target mRNA pair in the complex and 

limits further processing148. The DYKDDDDK (FLAG epitope) tag on the dominant 

negative GW182 protein allows capture and isolation of the entire Ago/RISC complex 

containing the trapped miRNA/target mRNA pair. This permits effective 

immunoprecipitation of the micRNA with its targets, which can then be identified or 

quantified by sequencing or qPCR (Figure 14). 

 

Figure 14. Experimental workflow for microRNA transfection and isolation of target mRNAs using 

the MirTrap System.148 The MirTrap System utilizes a mutant RISC complex that locks the 

miRNA/mRNA pair into the RISC and limits further processing. A DYKDDDDK tag on the MirTrap 

protein allows for immunoprecipitation of the complex, which can then be efficiently pulled down 

without losing the miRNA/target mRNA pairs along the way. Upon isolation of the complex, the 

microRNA target can be identified and quantified by next-gene sequencing or quantitative PCR methods.  

MIM6 cells were seeded in T-75 flasks (Corning Inc., NY, USA) at 3 x 106 

cells/mL 24 h before the transfection (at a cell density of 75 – 80%) with miR-155-5p 
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mimics (15 nM, Thermo Fisher Scientific) and the pMirTrap vector expressing the 

DYKDDDDK-tagged GW182 protein using the XfectTM microRNA transfection 

reagent in combination with Xfect Polymer (all from Clontech, aint-Germain-en-Laye, 

France) (Table 18) 

Table 18. Reagents for XfectTM microRNA transfection.  

Reagent A (miRNA and pMirTrap vector) 

 Volume 

miR-155-5p mimics or control mimics  5 µL (500 pM)  

pMirTrap Vector 60 µL (30 μg) 

Xfect Reaction Buffer 535 µL  

Total volume 600 µL 

Reagent B (Transfection Polymers) 

 Volume 

Xfect Polymer 10 µL  

Xfect Reaction Buffer 530 µL  

 :݀݀ܽ ݊݁�ݐ ݀݊ܽ,ݔ݁ݐݎ݋ݒ,ܾ݁݊݅݉݋ܥ

Xfect MicroRNA Transfection Polymer 60 µL  

Total volume 600 µL 

 

Transfection efficiency was determined by a control transfection using miR-132 

mimics, the pMirTrap positive control vector, which expresses an AcGFP1 fluorescein 

protein containing miR-132 recognition elements in its 3’-UTR or the empty pMirTrap 

vector (all from MirTrap System, Table 19). 

Table 19. Reagents for XfectTM microRNA transfection of positive control. 

Reagent A (miRNA and pMirTrap vector) 

 Volume 

miR-132 mimics 5 μL (500 pM)  

pMirTrap Vector 60 μL (30 μg) 

pMirTrap Control Vector 20 μL (10 μg)  

Xfect Reaction Buffer 515 μL  

Total volume 600 μL 
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Reagent B (Transfection Polymers) 

 Volume 

Xfect Polymer 12 μL 

Xfect Reaction Buffer 528 μL 

 :݀݀ܽ h݁݊ݐ ݀݊ܽ,ݔeݐݎ݋ݒ,ܾ݁݊݅݉݋ܥ

Xfect MicroRNA Transfection Polymer 60 μL  

Total volume 600 μL 

Reagent A and reagent B were combined and incubated for 20 min at RT to form 

the miRNA/pMirTrap vector complexes. The nanoparticle complexes were then added 

to flasks with 10 mL of fresh antibiotics-free growth media and mixed gently by 

shaking the flask.  

MIN6 cells were harvested after 24 h, washed in ice-cold PBS (Thermo Fisher 

Scientific), and incubated in lysis buffer (MirTrap System) supplemented with protease 

inhibitors (Roche). The cell lysates were centrifuged and input RNA was extracted from 

the supernatant using the NucleoSpin RNA XS kit (Macherey-Nagel). Anti-

DYKDDDDK-conjugated magnetic beads (Clontech) were washed twice with 1× 

lysis/wash buffer containing 1 mM DTT, 0.1 unit/µL RNase inhibitor and protease 

inhibitors (Roche), and blocked for 3 h at 4 °C with 1.25 mg/mL tRNA solution and 

1.25 mg/mL bovine serum albumin. Cell lysates were incubated with anti-

DYKDDDDK beads for 2 h at 4 °C. After incubation, the beads were washed twice 

with 1× lysis/wash buffer and the RNA was isolated using the NucleoSpin RNA XS kit 

(Macherey-Nagel). 

RNA from the input and immunoprecipitated samples was reverse transcribed 

using the high-capacity cDNA reverse transcription kit (Thermo Fisher Scientific), and 

amplified by qPCR with gene-specific primers (Table 15) and SYBR Green PCR 

Master Mix (Promega GmbH, Mannheim, Germany) using a 7900HT fast real-time 

PCR system (Thermo Fisher Scientific). Fold enrichment of the AcGFP1 control 

(transfected with miR-132 mimics and the pMirTrap positive control vector) or miR-

155-5p predicted target genes in the GW182-immunoprecipitates was normalized to that 

of Gapdh according to the manufacturer’s protocol.  
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2.22 Luciferase reporter assays 

2.22.1 Il6 promoter reporter clones 

To investigate the effect of miR-155-5p-mediated targeting of Mafb on IL-6 expression, 

luciferase reporter assays were performed in MIN6 cells. The Gaussia Luciferase 

(GLuc) -Secreted Alkaline Phosphatase (SEAP) dual-reporter vector pEZX-PG04 

containing the promoter region of mouse Il6 gene (Il6 promoter vector, MPRM26589-

PG04) and the empty vector (Non-promoter sequence negative control in dual-reporter 

vector, NEG-PG04) (Figure 15; Table 20) were purchased from GeneCopoeia 

(GeneCopoeia, Vienna, Austria).  

Table 20. Information of the Il6 promoter vector and the empty vector 

Information Promoter clone for gene Il6 Negative control 

Vector pEZXPG04 PG04CT  

Whole plasmid size 7940 bp 6730 bp 

Antibiotic Kanamycin Kanamycin 

Stable selection marker  Puromycin Puromycin 

Reporter gene GLuc GLuc 

Tracking gene SEAP SEAP 

Promoter length 1229 bp  N/A 

Gene accession  NM_031168 N/A 

The Il6 promoter vector contains a modified GLuc as the reporter gene, which can 

generate a highly stable signal. The secondary reporter SEAP, serves as an internal 

control and enables transfection normalization for accurate cross-sample comparison. 
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Figure 15. Principle of GLuc-ON promoter clones. (A) The promoter clone is placed upstream of the 

GLuc reporter gene. The putative cis-acting enhancer elements are expected to exist in the cloned 

promoter region, and the luciferase activity observed during the assay closely resembles the actual 

promoter regulation of these genes. (B) Structure of GLuc-SEAP dual-reporter vector pEZX-PG04 (Il6 

promoter vector). (C) Structure of the vector PG04CT (empty vector). 

2.22.2 Site-directed mutagenesis  

Putative binding sites for MafB were predicted at position 30012038 (Il6 promoter-

Mafb1) and at position 30012863 (Il6 promoter-Mafb2) of the Il6 promoter by 

TRANSFAC database (version 7.0, Qiagen, http://www.biobase.international.com, 

Table 21). 149,150 The Il6 promoter-Mafb1 and Il6 promoter-Mafb2 sequences were 

mutated using QuickChange site-directed mutagenesis kit (Agilent Technologies), 

specific primers (Sigma-Aldrich) (Table 22), Q5 high-fidelity DNA polymerase (New 

England Biolabs, Ipswich, MA, USA) and a PCR cycler (Mastercycler nexus, 

Eppendorf, Hamburg, Germany). The PCR product was treated with DpnI restriction 

enzyme (Thermo Fisher Scientific) to digest the parental DNA template151. The vector 

DNA containing the desired mutation was transformed into XL10-Gold Ultra 



MATERIALS AND METHODS 

 

55 

component cells (Agilent Technologies) and the plasmid was isolated using the 

EndoFree Plasmid Maxi Kit (Qiagen). 

Table 21. Putative MafB binding sites in the Il6 promoter region. 

Factor name Position Core score Matrix score Sequence 

MAF 30012863 (+) 1 1 gctgAGTCAc 

MAF 30012038 (-) 0.941 0.96 tTGACCcagc 

 

Table 22. Primer sequences used in luciferase reporter assays. 

Primer Primer sequences 

Il6 promoter-PG04–Forward 5'-AGTTACTTAAGCTCGGGCCC-3' 

Il6 promoter-PG04–Reverse 5'-TTGTTCTCGGTGGGCTTGGC-3' 

Il6 promoter-∆Mafb1–Forward 5'-AGAAGTCTGTTTAAGTTACTGGGTGCCTAGAAGACTTGA-3' 

Il6 promoter-∆Mafb1–Reverse 5'-ACCCAGTAACTTAAACAGACTTCTTCCCTTTGGTTAG-3' 

Il6 promoter-∆Mafb2–Forward 5'-TCAAGACATGCTCAAGTGGATCCAGACTTTTAAAGAAA-3' 

Il6 promoter-∆Mafb2–Reverse 5'-CTGGATCCACTTGAGCATGTCTTGATGGGAAAGAAAACT-3' 

2.22.3 Secrete-pair dual luminescence assay 

MIN6 cells were co-transfected with the GLuc-SEAP dual-reporter vector pEZX-PG04 

containing the promoter region of mouse Il6 gene (Il6 promoter vector, GeneCopoeia, 

Vienna, Austria) or luciferase reporter constructs harboring site-directed mutations in 

the predicted Mafb binding sites of the Il6 promoter region (Il6 promoter-∆Mafb1 and 

Il6 promoter-∆Mafb2) together with LNA-miR-155-5p inhibitors or non-targeting LNA 

oligonucleotides (control inhibitors) using Lipofectamine 2000 (Thermo Fisher 

Scientific). The empty vector (dual-reporter vector without the Il6 promoter sequence, 

GeneCopoeia) was used as control. The GLuc and SEAP activities were assayed by 

microplate reader (Infinite F200 PRO, Tecan) 48 h after the transfection using the 

Secrete-Pair Dual Luminescence Assay Kit (GeneCopoeia). The luminescence 

intensities of Gaussia luciferase were normalized to the activity of SEAP. 
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2.23 In vivo TSB treatment 

10-wk-old Ldlr–/– mice fed a ND were injected intravenously via the tail vein with 

155/Mafb TSBs (5'-TTAATGCAGATTTTCG-3') or control TSBs (5'-

GCTCCCTTCAATCCAA-3') (each 0.4 mg/20 g per injection; miRCURY LNATM 

Target Site Blocker, in vivo use; Exiqon). The fasting glucose levels (6 h fast) and body 

weights were measured every 3 d. Blood cell numbers, and plasma insulin, glucagon 

and GLP-1 levels were determined 21 d after the treatment after a 5 – 6 h fast. Tissues 

were harvested after 21 d and either embedded in Tissue-Tek O.C.T. Compound 

(Sakura Finetek) and immediately frozen on dry ice for cryostat sections or preserved in 

RNAlater (Thermo Fisher Scientific) for RNA purification. 

2.24  Statistical analysis 

Sample size (number of mice) was determined on the basis of previous studies.103,126,152 

Mice were not randomized to experimental groups. For most mouse experiments, the 

investigators were blinded when assessing the results without knowing the mouse 

genotypes. In some cases, selected samples were excluded from specific analyses 

because of technical issues during sample processing or data acquisition. The number of 

biological (non-technical) replicates for each experiment is indicated in the figure 

legends. Data represent the mean ± SEM. Statistical analysis of microarray data was 

performed by a modified t-test using GeneSpring software (GX13, Agilent 

Technologies). Student’s t-tests and one-way ANOVAs followed by the Newman-Keuls 

post-hoc test was used for statistical comparisons between groups using Prism 6 

software (GraphPad). The variance is similar between the groups that are being 

statistically compared. p < 0.05 was considered statistically significant. 
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3 RESULTS 

3.1 Effects of Mir155 deficiency on metabolic disease in 

Ldlr−/− mice 

3.1.1 Obesity 

To study the role of miR-155-5p in obesity-related metabolic disease, male 

Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice were fed a DDC (0.15% w/w cholesterol 

and 36.5% total fat) or a ND for 24 wk. The body weights were measured every 2 wk. 

eWAT was harvested after the 24-wk DDC feeding period. Compared to ND-fed Ldlr–/– 

mice, feeding the DDC increased the body weight of both Mir155+/+Ldlr−/− and 

Mir155−/−Ldlr−/− mice (Figure 16A). While Mir155–/–Ldlr–/– mice and Mir155+/+Ldlr–/– 

mice gained similar body weight in the first 20 wk of DDC feeding, the body weight of 

Mir155–/–Ldlr–/– mice increased more than that of Mir155+/+Ldlr–/– mice during the last 

4 wk of the DDC feeding period (Figure 16A). This increased body weight gain in 

Mir155–/–Ldlr–/– mice was associated with an increase in epididymal fat pads weight 

after the 24-wk DDC feeding period (Figure 16B). 

 

Figure 16. Effects of Mir155 knockout on body weight and epididymal white adipose tissue weight 

in Ldlr−/− mice. (A) Body weight gain of mice fed a DDC (n = 15 mice per group) or a ND (n = 10 mice 

per group) for 24 wk. (B) Quantitation of eWAT weight in mice fed the DDC for 24 wk (n = 10 mice per 
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group). Data are represented as mean ± SEM. *p<0.05, **p<0.01, and ***p<0.001 compared to 

Mir155+/+Ldlr−/− mice fed a DDC. #p<0.01 and §p<0.001 compared to mice fed the DDC. 

To determine the effect of Mir155 knockout on adipose tissue morphology, 

hematoxylin and eosin stain were performed in eWAT.136 The average adipocyte cross-

sectional area was increased in Mir155–/–Ldlr–/– mice compared with Mir155+/+Ldlr–/– 

mice after 24-wk DDC feeding (Figure 17A). Because macrophage accumulation in 

adipose tissue has been implicated in obesity-associated adipose tissue inflammation153, 

the presence of macrophages within eWAT was analyzed by Mac2 immunostaining, a 

marker for mature macrophages. The fraction of Mac2-expressing cells was higher in 

Mir155–/–Ldlr–/– mice than in Mir155+/+Ldlr–/– mice (Figure 17B), indicating that 

Mir155 knockout promotes adipose tissue inflammation by increasing adipocyte size 

and macrophage infiltration in eWAT from Ldlr–/– mice fed a DDC for 24 wk. 

 

Figure 17. Effects of Mir155 knockout on adipocyte size and macrophage infiltration in Ldlr−/− mice. 

(A) Quantitation of average adipocyte cross-sectional area in hematoxylin- and eosin-stained eWAT 

sections from mice fed the DDC for 24 wk determined by (n = 8 – 10 mice per group). Scale bars: 100 

µm. (B) Macrophage accumulation in eWAT from mice after the 24-wk DDC feeding period assessed by 

Mac2 immunostaining (n = 9 mice per group). The nuclei were counterstained with DAPI. Scale bars: 50 

µm. Data are represented as mean ± SEM. *p < 0.05. 

In addition, the effect of Mir155 knockout on adipose tissue gene expression was 

studied by qPCR. The expression of adiponectin (Adipoq) and leptin (Lep) was 

downregulated and up-regulated, respectively, in the eWAT of Mir155–/–Ldlr–/– mice 
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(Figure 18). The expression of the proinflammatory macrophage-related gene nitric 

oxide synthase 2 (Nos2) and the anti-inflammatory macrophage marker mannose 

receptor, C type 1 (Mrc1) was not different between the groups (Figure 18). Deletion of 

Mir155 did not alter interleukin 6 (Il6) mRNA expression, but increased tumor necrosis 

factor (Tnf) expression in eWAT (Figure 18). These data indicate that miR-155-5p 

limits adipose tissue dysfunction in obese Ldlr–/– mice. 

 

Figure 18. Effect of Mir155 knockout on gene expression in adipose tissue in Ldlr−/− mice. 

Quantitation of gene expression by qPCR in eWAT from Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice fed 

a DDC for 24 wk (n = 4 – 6 mice per group). Adipoq, Adiponectin; Lep, leptin; Tnf, tumor necrosis factor; 

Il6, interleukin 6; Nos2, nitric oxide synthase 2; Mrc1, mannose receptor, C type 1. Data are represented 

as mean ± SEM; *p < 0.05 and **p < 0.01. 

3.1.2 Lipid metabolism 

Next, lipid levels were studied in the blood of Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− 

mice fed a DDC for 24 wk. Total cholesterol and triglyceride plasma levels were higher 

in Mir155–/–Ldlr–/– mice than those in Mir155+/+Ldlr–/– mice after the 24-wk DDC 

feeding period (Figure 19A), measured by cholesterol and triglyceride fluorescent assay 

kits, respectively. In Mir155–/–Ldlr–/– mice, the cholesterol level was increased in the 

VLDL and LDL lipoprotein fraction and reduced in the HDL fraction, determined by 

high-performance liquid chromatography (Figure 19B). 
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Figure 19. Effects of Mir155 knockout on lipids and lipoproteins in Ldlr−/− mice. (A) Plasma 

cholesterol and triglyceride levels in Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice after a 24-wk DDC 

feeding period (n = 10 mice per group) measured by cholesterol and triglyceride fluorescent assay kits, 

respectively. (B) Cholesterol levels in VLDL, LDL and HDL fractions from mice after the 24-wk DDC 

feeding period analyzed by HPLC (n = 8 mice per group). Data are represented as mean ± SEM; *p < 

0.05 and **p < 0.01. 

3.1.3 Atherosclerosis 

To assess the role of Mir155 deficiency in atherosclerosis in the context of obesity and 

T2DM, the lesion size and necrotic core area in aortic roots from obese Mir155–/–Ldlr–/– 

and Mir155+/+Ldlr–/– mice were analyzed by EVG stain. The atherosclerotic lesion size 

and the lesional necrotic core area were increased in Mir155–/–Ldlr–/– mice compared 

with Mir155+/+Ldlr–/– mice after 24-wk DDC feeding (Figure 20A). To characterize the 

changes in atherosclerotic lesion formation, the accumulation of macrophages and 

smooth muscle cells in aortic root lesions was quantified by combined Mac2 and SMA 

immunostaining. Lesions in Mir155–/–Ldlr–/– mice contained less macrophages than in 

Mir155+/+Ldlr–/– mice, whereas the lesional smooth muscle cell content was similar in 

both groups (Figure 20B). 
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Figure 20. Effects of Mir155 deficiency on atherosclerosis in DDC-fed Ldlr−/− mice. (A) Lesion and 

necrotic core areas in aortic roots from Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice after the 24-wk DDC 

feeding period determined by EVG stain (n = 10 mice per group). Scale bars: 100 µm. (B) Accumulation 

of macrophages and smooth muscle cells in aortic root lesions from Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− 

mice fed a DDC for 24 wk determined by combined Mac2 and SMA immunostaining, respectively (n = 

10 mice per group). The nuclei were counterstained with DAPI. Scale bars: 100 µm. Data are represented 

as mean ± SEM; *p < 0.05 and **p < 0.01. 

3.1.4 Fasting blood glucose concentrations 

To investigate the role of Mir155 deficiency in glucose homeostasis, FBG 

concentrations in Mir155+/+Ldlr–/– and Mir155–/–Ldlr–/– mice were measured every 4 wk 

during the 24-wk DDC feeding period.  Notably, the FBG levels were already higher in 

lean Mir155–/–Ldlr–/– mice compared with Mir155+/+Ldlr–/– mice before DDC feeding (0 

wk) (Figure 21). During the DDC feeding period, FBG levels remained higher in 

Mir155–/–Ldlr–/– mice and increased steadily at a similar rate in both groups of mice. 

The differences in FBG levels between Mir155+/+Ldlr–/– and Mir155–/–Ldlr–/– mice 

occurred before those in body weight gain, lipid levels and atherosclerosis, which 
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indicates that miR-155-5p-mediated improvement of glucose homeostasis in Ldlr–/– 

mice limits obesity and atherosclerosis. 

 

Figure 21. Effects of Mir155 deficiency on fasting blood glucose concentrations in Ldlr−/− mice. FBG 

concentrations were measured after 6 h of fasting in mice during the 24-wk DDC feeding period (n = 10 

mice per group). Data are represented as mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001. 

3.2 Effects of miR-155-5p on islet function in 

hyperlipidemic mice 

3.2.1 Insulin and glucagon levels 

Insulin and glucagon are crucial regulators of glucose metabolism. To investigate the 

mechanism by which miR-155-5p affects glucose homeostasis, the effect of Mir155 

knockout on insulin and glucagon plasma levels were studied in Mir155–/–Ldlr–/– and 

Mir155+/+Ldlr–/– mice before and after a 24-wk DDC feeding program. The 

concentrations of insulin and glucagon in plasma were determined after 5 – 6 h of 

fasting using an ultra-sensitive mouse insulin ELISA kit or the Luminex's MAGPIX 

system. Notably, fasting plasma insulin levels were lower (Figure 22A), whereas 

glucagon levels were higher (Figure 22B) in Mir155–/–Ldlr–/– mice than in 

Mir155+/+Ldlr–/– mice fed the ND and after the 24-wk DDC feeding period, indicating 

that loss of miR-155-5p compromises islet cell function. 
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Figure 22 Effects of Mir155 deficiency on insulin and glucagon plasma levels in Ldlr−/− mice. Fasting 

insulin (A) and glucagon (B) plasma concentrations were measured after 6 h of fasting in mice before (0 

wk DDC) and after 24-wk feeding the DDC (n = 6 – 7 mice per group). Data are represented as mean ± 

SEM. *p < 0.05 and **p < 0.01. 

3.2.2 Islet morphology  

To gain insight into the function of miR-155-5p in pancreatic islets, the morphology of 

islets was investigated in ND-fed Mir155+/+Ldlr–/–and Mir155–/–Ldlr–/– mice. Deletion of 

Mir155 in Ldlr–/– mice did not affect the size and number of the pancreatic islets (data 

not shown). However, β-cell hypertrophy and a reduced islet cell density was observed 

in Mir155–/–Ldlr–/– mice, determined in pancreatic sections stained with H&E stain 

(Figure 23).  
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Figure 23. Effects of Mir155 deficiency on islet morphology in ND-fed Ldlr−/− mice. Morphological 

characteristics of pancreatic islets determined by H&E staining of pancreas sections (n = 15 – 20 mice per 

group). Data are represented as mean ± SEM. *p < 0.05. 

3.2.3 Islet insulin and glucagon content 

To study the effect of miR-155-5p on islet cell composition and insulin and glucagon 

production, the percentage of insulin or glucagon-producing cells and the concentrations 

of insulin and glucagon were determined by immunostaining and Luminex multiplex 

analysis, respectively. In islets from ND-fed Mir155–/–Ldlr–/– mice, the percentage of 

insulin-expressing cells and the insulin content were reduced compared with those in 

Mir155+/+Ldlr–/– mice (Figure 24A). Conversely, the percentage of glucagon-expressing 

cells and the glucagon protein content were higher in islets from Mir155–/–Ldlr–/– mice 

(Figure 24B), resulting in an elevated α-to-β-cell ratio. 

 

Figure 24. Effect of miR-155-5p on islet insulin and glucagon content in ND-fed Ldlr−/− mice. (A) 

Quantitation of the percentage of insulin-expressing β-cells per total islet cells (n = 15 – 18 mice per 

group) and islet insulin concentrations (n = 6 per group) by immunostaining and Luminex multiplex 

analysis, respectively, in 10 – 12 wk old mice fed a ND. The nuclei were counterstained with DAPI. Scale 

bars: 50 µm. (B) Quantitation of the percentage of glucagon-expressing α-cells per total islet cells (n = 15 
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– 18 mice per group) and islet glucagon concentrations (n = 6 per group) by immunostaining and 

Luminex multiplex analysis, respectively, in 10–12 wk old mice fed a ND. The nuclei were 

counterstained with DAPI. Scale bars: 50 µm. Data are represented as mean ± SEM. *p < 0.05, **p < 

0.01 and ***p < 0.001. 

3.2.4 Islet gene expression  

To investigate how miR-155-5p regulates insulin and glucagon production in islets, the 

mRNA expression of candidate genes was analyzed in islets isolated from 

Mir155+/+Ldlr–/– and Mir155–/–Ldlr–/– mice by qPCR. Insulin (Ins) and proprotein 

convertase subtilisin/kexin type (Pcsk) 1 mRNA expression was reduced in islets from 

Mir155–/–Ldlr–/– mice, whereas islet glucagon (Gcg) and Pcsk2 mRNA expression levels 

were elevated in these mice compared with Mir155+/+Ldlr–/– mice. By contrast, the 

expression of somatostatin (Sst), and of the β-cell transcription factors ISL LIM 

homeobox 1 (Isl1), aristaless related homeobox (Arx), pancreatic and duodenal 

homeobox 1 (Pdx1), paired box 6 (Pax6), neurogenic differentiation 1 (Neurod1), and 

forkhead box A1 (Foxa1) in islets was not different between the groups (Figure 25). 

 

Figure 25. Effect of Mir155 deficiency on islet gene expression in ND-fed Ldlr−/− mice. Quantitation 

of gene expression in murine islets isolated from 10 – 12 wk old mice fed a ND determined by qPCR. 

insulin (Ins), glucagon (Gcg), and proprotein convertase subtilisin/kexin type (Pcsk) 1, Sst, somatostatin; 

Isl1, ISL LIM homeobox 1; Arx, aristaless related homeobox; Pdx1, pancreatic and duodenal homeobox 

1; Pax6, paired box 6; Neurod1, neurogenic differentiation 1; Foxa1, forkhead box A1. (n = 6–8 mice per 

group). Data are represented as mean ± SEM. *p < 0.05 and ***p < 0.001. 
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3.2.5 GLP-1 levels 

Proglucagon is processed to glucagon and GLP-1 by PC 2 (encoded by the Pcsk2 gene) 

and PC1/3 (encoded by the Pcsk1 gene), respectively41,45,50. GLP-1 can be generated 

locally in pancreatic α-cells, and increases islet insulin and reduces glucagon 

secretion45. Therefore, the effect of Mir155 knockout on GLP-1 expression was studied. 

The islet GLP-1 protein content was reduced in ND-fed Mir155–/–Ldlr–/– mice (Figure 

26A). Plasma GLP-1 levels determined by Luminex analysis were lower in Mir155–/–

Ldlr–/– mice than in Mir155+/+Ldlr–/– mice fed a ND or the DDC for 24 wk (Figure 

26B). 

 

Figure 26. Effect of miR-155-5p on GLP-1 levels in Ldlr−/− mice. (A) Islet GLP-1 protein concentration 

in 10 – 12 wk old mice fed a ND determined by Luminex analysis (n = 6 per group). (B) Fasting GLP-1 

plasma concentrations in mice fed a ND (0 wk DDC) and after the 24-wk DDC feeding period (n = 6 – 7 

mice per group). Data are represented as mean ± SEM. *p < 0.05. 

3.2.6 Proliferation and apoptosis of islet cells  

Next, the role of miR-155-5p in proliferation and apoptosis of islet cells were studied in 

pancreatic sections from ND-fed Mir155+/+Ldlr–/– and Mir155–/–Ldlr–/– mice by 

immunostaining of Ki67 and activated Caspase3, respectively. Deletion of Mir155 in 

Ldlr–/– mice reduced the percentage of Ki67+ islet cell numbers (Figure 27A), indicating 
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that miR-155-5p promotes islet cell proliferation. By contrast, islet cell apoptosis was 

negligible in both groups of mice (Figure 27B). 

 

Figure 27. Effect of miR-155-5p on proliferation and apoptosis in pancreas. (A) Islet cell 

proliferation assessed by Ki67 immunostaining (n = 10 mice per group) in pancreatic sections from 10 – 

12 wk old Mir155+/+Ldlr–/– and Mir155–/–Ldlr–/– mice fed a ND. The nuclei were counterstained with 

DAPI. Scale bars: 100 µm. Data are represented as mean ± SEM. *p < 0.05. (B) Islet cell apoptosis 

determined by immunostaining of activated Caspase3, Representative images are shown. The nuclei were 

counterstained with DAPI. Scale bars: 50 µm. 

3.2.7 Inflammation in pancreatic islets 

Because miR155-5p has been implicated as a central regulator of the immune 

system,103,121,154,155 the effect of miR-155-5p on inflammation in pancreatic islets was 

studied. The accumulation of macrophages or T-cells in murine islets detected by 

combined Mac2 and CD3 immunostaining was negligible in both groups of mice 

(Figure 28A). Moreover, the expression of the proinflammatory genes Nos2 and Tnf 

genes, and the anti-inflammatory genes Mrc1 and Arginase 1 (Arg1) was not different 

between the groups (Figure 28B), indicating that the effects of miR-155-5p on islets are 

independent of inflammatory response. 



RESULTS 

 

68 

 

Figure 28. Effect of miR-155-5p on inflammation in pancreatic islets in Ldlr−/− mice. (A) 

Macrophages and T-cells in murine islets detected by combined Mac2 and CD3 immunostaining. 

Representative images are shown. The nuclei were counterstained with DAPI. Scale bars: 50 µm. (B) 

Quantitation of gene expression by qPCR in islets isolated from 10 – 12 wk old mice fed a ND (n = 4 – 6 

samples per group). Arg1, Arginase 1. Data are represented as mean ± SEM.  

3.2.8 Glucose tolerance  

To test the role of hyperlipidemia in the regulation of glucose homeostasis by miR-155-

5p, IPGTT was performed in Mir155–/– mice in the absence and presence of 

hyperlipidemia. Mir155 knockout increased blood glucose levels following 

intraperitoneal glucose challenge in male and female Ldlr–/– (Figures 29A and 29B) or 

Apoe–/– mice (Figures 29C and 29D) fed a ND. Notably, glucose tolerance was not 

affected by Mir155 knockout in male ND-fed Ldlr+/+ mice (Figure 29E). Thus, miR-

155-5p improved glucose homeostasis only under hyperlipidemic conditions.  
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Figure 29. Effect of miR-155-5p on glucose tolerance. (A – E) Comparison of glucose tolerance 

between male Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice (A, n = 8 – 10 mice per group), female 

Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice (B, n = 4 mice per group), male Mir155+/+Apoe−/− and 

Mir155−/−Apoe−/− mice (C, n = 4 – 5 mice per group), female Mir155+/+Apoe−/− and Mir155−/−Apoe−/− 

mice (D, n = 4 – 6 mice per group) and male Mir155+/+Ldlr+/+ and Mir155−/−Ldlr+/+ mice (E, n = 6 – 8 

mice per group), at 10 – 12 wk of age fed a ND.  Data are represented as mean ± SEM. *p < 0.05 and **p 

< 0.01. 

3.3 Effects of miR-155-5p on murine insulinoma cell 

line 

3.3.1 Insulin and glucagon expression in MIN6 cells  

To address the role of miR-155-5p in insulin and glucagon production, gain-and-loss-

of-function experiments were performed in murine pancreatic β-cells (MIN6).143 
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Treatment with miR-155-5p inhibitors (Figure 30A, left) up-regulated Gcg and Pcsk2 

expression and down-regulated Pcsk1 expression in MIN6 cells compared with non-

targeting oligonucleotides (Figure 30A, middle). At the protein level, miR-155-5p 

inhibitor treatment resulted in lower insulin and GLP-1 concentrations, and higher 

glucagon levels in MIN6 cell lysates than control treatment (Figure 30A right). 

Conversely, miR-155-5p mimic treatment (Figure 30B, left) down-regulated Gcg and 

Pcsk2 mRNA expression, and up-regulated Pcsk1 mRNA expression compared with 

non-specific oligonucleotides (Figure 30B, middle). In contrast to miR-155-5p 

inhibitor treatment, overexpressing miR-155-5p in MIN6 cells increased insulin and 

GLP-1 expression, but reduced glucagon expression at the protein level (Figure 30B, 

right). Hence, these results indicate that miR-155-5p regulates insulin and glucagon 

production in pancreatic islets and promotes islet GLP-1 production by up-regulating 

Pcsk1. 
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Figure 30 Effect of miR-155-5p on insulin and glucagon production in MIN6 cells. (A and B) Ins, 

Gcg, Pcsk1 and Pcsk2 mRNA expression levels (n = 4 – 6 per group) determined by qPCR, and insulin, 

glucagon and GLP-1 protein levels (n = 4 per group) measured by Luminex multiplex analysis in MIN6 

cells treated with miR-155-5p inhibitors (A) or miR-155-5p mimics (B) for 24 h. Non-targeting 

oligonucleotides were used as control (control inhibitors or control mimics). Data are represented as mean 

± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001.  

3.3.2 MIN6 cell proliferation 

Because islet cell proliferation was down-regulated in Mir155–/–Ldlr–/– mice compared 

to Mir155+/+Ldlr–/– mice, cell cycle analysis was performed in MIN6 cells by flow 

cytometry. miR-155-5p mimic treatment increased, whereas miR-155-5p inhibitor 
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treatment reduced MIN6 cell proliferation compared to control oligonucleotides 

(Figures 31A and 31B), indicating that miR-155-5p promotes pancreatic β-cells 

proliferation. 

 

Figure 31. Effect of miR-155-5p on MIN6 cellular proliferation. (A and B) Cell cycle analysis of 

miR-155-5p mimics- (A) or miR-155-5p inhibitors-(B) treated MIN6 cells stained with propidium iodide 

by flow cytometry (n = 4 – 5 per group). Non-targeting oligonucleotides were used as control. Data are 

represented as mean ± SEM. *p < 0.05. 

3.4 Role of hyperlipidemia-related endotoxemia in islet 

miR-155-5p expression 

3.4.1 Regulation of miR-155-5p expression in pancreatic islets  

Because Mir155 knockout affected glucose homeostasis only in hyperlipidemic mice, 

the regulation of islet miR-155-5p expression by hyperlipidemia and LPS was studied 

by qPCR and in situ PCR. Feeding Ldlr–/– mice the DDC for 24 wk increased plasma 

lipid levels (Figure 32A), circulating endotoxin activity and islet miR-155-5p 

expression (Figure 32B) compared to ND feeding (Figure 32B). In ND-fed Ldlr–/– 

mice, miR-155-5p was mainly detectable in glucagon– islet cells by combined glucagon 

immunostaining and miR-155-5p in situ PCR (Figure 32C). Similar to the effect of 

feeding the DDC, hyperlipidemia in 10 – 12 wk old, ND-fed Ldlr–/– mice (Figure 32D) 

is associated with increased plasma endotoxin activity (Figure 32E) and upregulation of 

islet miR-155-5p expression (Figure 32E) compared with normolipidemic Ldlr+/+ mice. 
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Notably, knockout of Ldlr in ND-fed mice also resulted in deposition of oxLDL in islets 

(Figure 32F).These results indicate that hyperlipidemia-associated endotoxemia 

induces islet miR-155-5p expression in Ldlr–/– mice. 

 

Figure 32. Regulation of miR-155-5p expression in pancreatic islets. (A) Plasma cholesterol and 

triglyceride levels in Ldlr−/− mice fed the ND or the DDC for 24 wk (n = 7 – 10 mice per group) measured 

by cholesterol and triglyceride fluorescent assay kits, respectively. (B) Serum endotoxin levels (left, n = 6 

per group) and miR-155-5p expression level in laser-microdissected islets (right, n = 4 – 5 per group) in 

mice fed the ND or the DDC for 24 wk. (C) Localization of miR-155-5p expression in islets from ND-fed 

mice (10 – 12 wk of age) determined by in situ PCR and glucagon immunostaining. The nuclei were 

counterstained with DAPI. Scale bars: 50 µm. (D) Plasma cholesterol and triglyceride levels in ND-fed 
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Ldlr+/+ or Ldlr−/− mice (10 – 12 wk of age, n = 7 – 10 mice per group). (E) Serum endotoxin levels in 10 – 

12 wk old mice fed a ND determined by LAL test (left, n = 6 mice per group). Quantitation of miR-155-

5p expression by qPCR in isolated murine islets from ND-fed mice (10 – 12 wk of age) (right, n = 6 mice 

per group). (F) oxLDL immunostaining in islets from ND-fed mice (10 – 12 wk of age). The nuclei were 

counterstained with DAPI. Scale bars: 50 µm. Data are represented as mean ± SEM. *p < 0.05, **p < 

0.01 and ***p < 0.001. 

3.4.2 Regulation of miR-155-5p expression in MIN6 cells  

Because LPS and moxLDL induce miR-155-5p selectively in macrophages103,104,152, the 

regulation miR-155-5p expression by LPS and moxLDL was studied in pancreatic β-

cells. MIN6 cells were treated with LPS (5, 20, or 50 ng/mL), nLDL (100 µg/mL), 

moxLDL (100 µg/mL), and phosphate-buffered saline (vehicle) for 6 h. LPS induced 

miR-155-5p expression in MIN6 cells in a dose-dependent manner (Figure 33A). In 

contrast to nLDL, moxLDL up-regulated miR-155-5p expression in MIN6 cells 

compared with vehicle treatment (Figure 33B). Notably, mild oxidative modification of 

LDL leads to increased endotoxin activity compared with nLDL (Figure 33C). These 

results demonstrated that LPS and moxLDL induce miR-155-5p expression in murine 

pancreatic β-cells.  

 

Figure 33. Regulation of miR-155-5p expression in MIN6 cells. (A) Quantitation of miR-155-5p 

expression in MIN6 cells treated with LPS or vehicle for 6 h (n = 5 – 6 per group) determined by qPCR. 

*p < 0.05 between each group. (B) Quantitation of miR-155-5p expression in MIN6 cells treated with 

nLDL, moxLDL or vehicle for 6 h (n = 5 – 6 per group) determined by qPCR. *p < 0.05. (C) Endotoxin 
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activity in nLDL or moxLDL determined by LAL test (n = 3 samples per group). ***p < 0.001. Data are 

represented as mean ± SEM. 

3.4.3 Role of miR-155-5p in the effects of LPS on glucose 

homeostasis 

Low-dose LPS infusion triggers GLP-1-mediated insulin secretion and lowers blood 

glucose levels in C57/BL6 mice.48,75 To investigate whether the effect of LPS on 

glucose homeostasis is mediated by miR-155-5p, IPGTT was performed 6 h after LPS 

injection (2 mg/kg) into ND-fed Ldlr–/– mice. Low-dose LPS up-regulated islet miR-

155-5p expression (Figure 34A), and increased insulin and GLP-1 plasma levels 

(Figure 34B). Moreover, the glucose-lowering effect of LPS following intraperitoneal 

glucose injection in Ldlr–/– mice (Figure 34C) was significantly reduced in Mir155–/–

Ldlr–/– mice (Figure 34C), indicating that miR-155-5p is involved in LPS-triggered 

insulin secretion. 

 

Figure 34. miR-155-5p mediates the effects of LPS on glucose homeostasis. (A) Quantitation of miR-

155-5p expression by qPCR in islets isolated from ND-fed Ldlr−/− mice 6 h after injection of LPS (2 

mg/kg) or vehicle (n = 6 mice per group). *p < 0.05. (B) Fasting insulin and GLP-1 plasma 

concentrations in ND-fed Ldlr−/− mice 6 h after injection of LPS (2 mg/kg) or vehicle determined by 

Luminex multiplex analysis (n = 6 – 7 mice per group). *p < 0.05, **p < 0.01 and ***p < 0.001. (C) 

IPGTT in Ldlr−/− mice 6 h after injection of LPS (2 mg/kg) or vehicle (n = 6 – 7 mice per group). *p < 

0.05 and **p < 0.01 between LPS Mir155−/−Ldlr−/− and LPS Mir155+/+Ldlr−/−; #p < 0.01 and ##p < 0.001 

between LPS Mir155+/+Ldlr−/− and vehicle Mir155+/+Ldlr−/−. Data are represented as mean ± SEM. 
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3.5 Effect of miR-155 on global gene expression in 

pancreatic islets 

To study the molecular mechanism by which miR-155-5p regulates islet function, 

genome-wide gene expression analysis was performed in islets from 10 – 12 wk old, 

ND-fed Mir155+/+Ldlr–/–  and Mir155–/–Ldlr–/– mice by microarray analysis. In Mir155–/–

Ldlr–/– mice, 239 genes were up-regulated and 420 genes were downregulated compared 

with Mir155+/+Ldlr–/– mice (p < 0.05, absolute fold change ≥ 1.5, n = 3 samples per 

group). 

To predict upstream regulators of miR-155-5p-dependent biological processes in 

islets, pathway analysis was performed using Ingenuity® Pathway Analysis (IPA) 

software.147 Differentially regulated genes were enriched in the carbohydrate and lipid 

metabolism pathways and in pathways related to endocrine system function, cellular 

growth, DNA replication, and cell survival as determined by Ingenuity® Pathway 

Analysis software (Figure 35). 

 

Figure 35. Pathway analysis. Gene expression profiling by microarrays in islets isolated from ND-fed 

Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice (10 – 12 wk of age) (n = 3 samples per group). Biological 

processes enriched with differentially regulated genes were predicted by Ingenuity® Pathway Analysis 

software (p < 0.05; fold change cutoff = 1.5). 
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Analysis of potential upstream regulators of differential gene expression in islets 

indicated cyclin-dependent kinase inhibitor (Cdkn)1 activation and cyclin-dependent 

kinases (Cdk)4 inhibition in Mir155–/–Ldlr–/– mice, which may reduce islet cell 

proliferation (Figure 36).156,157 Phosphatase and tensin homolog (PTEN) activation, 

which contributes to β-cell failure in mouse models of type 2 diabetes,158 was increased 

in Mir155–/–Ldlr–/– mice (Figure 36). Moreover, glucose transporter (Glut)2-dependent 

pathways and pathways related to cyclic adenosine monophosphate (AMP), GLP-1, and 

glucose-dependent insulinotropic polypeptide (GIP) signaling were inhibited, 

suggesting impaired glucose uptake and insulin secretion (Figure 36).159,160 

Among the inflammatory pathways, IL-6 receptor activation was reduced and 

signaling pathways downstream of the IL-6 receptor, such as the janus kinase/signal 

transducer and activator of transcription (JAK/STAT) and extracellular signal–regulated 

kinase (ERK)1/2 pathways161,162 were inhibited in Mir155–/–Ldlr–/– mice (Figure 36). 

These data demonstrate that Mir155 knockout results in transcriptional changes 

compatible with reduced β-cell function and proliferation. 

 

Figure 36. Analysis of potential upstream regulators. Gene expression profiling by microarrays in 

islets isolated from ND-fed Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice (10 – 12 wk of age) (n = 3 

samples per group). Upstream regulators of differential gene expression predicted by Ingenuity® Pathway 

Analysis software (p < 0.05; fold change cutoff = 1.5). 
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3.6 Effect of miR-155-5p on IL-6 expression in β-cells 

3.6.1 miR-155-5p positively regulates IL-6 expression in islets 

IL-6 is physiologically expressed in islets, promotes islet cell proliferation, and 

increases insulin secretion and glucose tolerance by Pcsk1-mediated GLP-1 

production.163-165 In islets from Mir155–/–Ldlr–/– mice, reduced IL-6 receptor signaling 

was predicted to play a causal role in the differential gene expression (Figure 37) and 

IL-6 showed the highest connectivity to other differentially regulated genes (Figure 

37). Moreover, the positive regulation of IL-6 by miR-155-5p in macrophages and 

dendritic cells was shown in previous study,152,154,166-168 therefore the effect of miR-155-

5p on IL-6 expression in pancreatic islets was studied. 

 

Figure 37. Connectivity of Il6 with other differentially regulated genes. Connectivity of Il6 with other 

differentially expressed mRNAs in islets from Mir155+/+Ldlr−/− and Mir155−/−Ldlr−/− mice fed a ND 
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analyzed by IPA and Ingenuity® iReport. Red lines indicate upstream regulators of Il6 and blue lines 

indicate downstream genes regulated by Il6 (n = 3 samples per group; P < 0.05; fold change cutoff = 1.5). 

The expression of IL-6 was confirmed in the pancreatic islets from Mir155+/+Ldlr–

/– and Mir155–/–Ldlr–/– mice. Accordingly, deficiency of miR-155-5p led to a marked 

reduction of the IL-6 mRNA and protein expression in islets determined by qPCR and 

ELISA, respectively (Figure 38A). Moreover, to investigate the cell-specific effect of 

miR-155-5p on IL-6 expression, combined IL-6 and insulin immunostaining was 

performed on pancreatic sections. The number of IL-6-producing β-cells were reduced 

in Mir155–/–Ldlr–/– mice compared with Mir155+/+Ldlr–/– mice (Figure 38B).  

 

Figure 38. Regulation of IL-6 expression by miR-155-5p in islets. (A) Quantitation of IL-6 expression 

at the mRNA and protein level in islets isolated from ND-fed mice (10 – 12 wk of age) by qPCR and 

ELISA, respectively (n = 6 per group). (B) Combined IL-6 and insulin immunostaining in pancreatic 

sections from ND-fed mice (10 – 12 wk of age). Arrows indicate insulin+ cells expressing IL-6. Nuclei 

were counterstained with DAPI. Scale bars: 50 µm. Data are represented as mean ± SEM. **p < 0.01 and 

***p < 0.001. 
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3.6.2 miR-155-5p up-regulates IL-6 expression in MIN6 cells  

Next, to investigate the effect of miR-155-5p on IL-6 expression in β-cells, gain-and-

loss-of-function experiments were performed in vitro. In MIN6 cells, miR-155-5p 

mimic treatment up-regulated Il6 mRNA expression (Figure 39A, left), and increased 

IL-6 protein synthesis (Figure 39A, middle) and secretion (Figure 39A, right). 

Conversely, inhibition of miR-155-5p in MIN6 cells down-regulated Il6 mRNA 

expression (Figure 39B, left), and reduced IL-6 protein synthesis (Figure 39B, middle) 

and secretion (Figure 39B, right). Thus, these results demonstrate that miR-155-5p 

positively regulates Il6 mRNA and protein expression in MIN6 cells. 

 

Figure 39. Regulation of IL-6 expression by miR-155-5p in MIN6 cells. (A and B) Quantitation of Il6 

mRNA expression (n = 6 per group, left), IL-6 cellular protein content (n = 4 per group, middle) and IL-6 
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protein secretion (n = 4 per group, right) by qPCR and ELISA after transfection of MIN6 cells with miR-

155-5p mimics (A) or miR-155-5p LNA inhibitors (B). Non-targeting oligonucleotides were used as 

control. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001. 

To determine whether miR-155-5p transcriptionally regulation IL6 expression, 

MIN6 cells were co-transfected with Luciferase reporter constructs harboring the Il6 

promoter region and miR-155-5p mimics or miR-155-5p LNA inhibitors. 

Overexpression of miR-155-5p markedly increased the luciferase activity in cells 

expressing luciferase under the control of the Il6 promoter, but not in cells treated with 

empty vector (Figure 40A), while inhibition of miR-155-5p had the opposite effect 

(Figure 40B). These data suggest that miR-155-5p promotes Il6 gene transcription in 

MIN6 cells  

 

Figure 40. miR-155-5p promotes IL-6 transcription in MIN6 cells. (A and B) Luciferase activity in 

MIN6 cells co-transfected with Luciferase reporter constructs harboring Il6 promoter region or the empty 

vector and miR-155-5p mimics (A) or miR-155-5p LNA inhibitors (B) Non-targeting oligonucleotides 

were used as control. (n = 4 per group). The empty vector was used as control. The luminescence 

intensities of Gaussian luciferase were normalized to the activity of secreted alkaline phosphatase. Data 

are represented as mean ± SEM. ***p < 0.001. 
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3.6.3 Effect of islet-derived IL-6 on islet gene expression 

To study the effect of islet-derived IL-6 on islet gene expression, the secretion of IL-6 

from MIN6 cells was blocked using a neutralizing IL-6 antibody. Treatment with the 

IL-6 antibody reduced Ins and Pcsk1 expression and increased Pcsk2 expression 

(Figure 41), determined by qPCR, as compared to an unspecific control antibody. 

Taken together, these results indicate that miR-155-5p increases IL-6 expression, which 

may enhance GLP-1 production through up-regulating Pcsk1 expression. 

 

Figure 41. Effects of bloking secreted IL-6 in MIN6 cells. Effect of anti-IL-6 antibody treatment on the 

expression levels of Ins, Gcg, Psck1 and Pcsk2 in MIN6 cells compared to treatment with isotype control 

antibodies (n = 4 per group). Data are represented as mean ± SEM. *p < 0.05.  

3.7 Targets of miR-155-5p in islets during 

hyperlipidemia 

3.7.1 Prediction of miR-155-5p target genes in pancreatic 

islets  

To determine the targets that mediate the effect of miR-155-5p on islet cell function, the 

3’-UTR of the genes up-regulated in islets from Mir155–/–Ldlr–/– mice was screened for 

miR-155-5p binding sites using the Targetscan (v7.0) prediction algorithm.169 

According to the prediction, 27 out of the 239 up-regulated genes, including Mafb, 
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semaphorin 5A (Sema5a) and mediator complex subunit 12-like (Med12l), contained 

miR-155-5p binding sites (Table 23). The miR-155-5p target sites in the Mafb and 

Sema5a 3’-UTRs were conserved among species, whereas the other 25 sites were 

poorly conserved. However, three of the poorly conserved sites were also found in 

humans, including the site in the AU RNA binding protein/enoyl-coenzyme A hydratase 

(Auh), stathmin-like 2 (Stmn2) and Med12l mRNAs (Table 23). Moreover, the binding 

probability (PCT	൒ 0.1)120 of the miR-155-5p site in the Mafb, Sema5a, Med12l, Stmn2 

and Auh mRNAs was higher than for the other 22 putative targets; therefore, the 

regulation of these five genes by miR-155-5p was studied. 

Gene PCT Conservation 

Mafb 0.39 conserved 

Sema5a 0.3 conserved 

Med12l 0.15 poorly conserveda 

Stmn2 0.13 poorly conserveda 

Auh 0.12 poorly conserveda 

F13a1 < 0.1 poorly conservedb 

Dhfr < 0.1 poorly conservedb 

Klhl42 < 0.1 poorly conservedb 

Ppp1r9a < 0.1 poorly conservedb 

Phf21a < 0.1 poorly conservedb 

Rab3c < 0.1 poorly conservedb 

Nedd4l < 0.1 poorly conservedb 

Homez < 0.1 rodent-specific 

Nrp1 < 0.1 rodent-specific 

Pde4d < 0.1 rodent-specific 

Zkscan3 < 0.1 rodent-specific 

Zfp14 < 0.1 rodent-specific 

Bik < 0.1 mouse-specific 

Camkk2 < 0.1 mouse-specific 

Clec1a < 0.1 mouse-specific 

Gpr179 < 0.1 mouse-specific 

Htra3 < 0.1 mouse-specific 
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Myct1 < 0.1 mouse-specific 

Scai < 0.1 mouse-specific 

Zfp111 < 0.1 mouse-specific 

Zfp937 < 0.1 mouse-specific 

Zscan20 < 0.1 mouse-specific 

 

Table 23. Putative miR-155-5p target genes in pancreatic islets. Among the genes significantly 

upregulated ( ൒ 1.5-fold and p<0.05) in pancreatic islets of Mir155–/–Ldlr–/– mice compared to 

Mir155+/+Ldlr–/– mice (as determined by global gene expression analysis), miR-155-5p targets and the 

conservation of the putative miR-155-5p binding sites across species were predicted by Targetscan 

software (http://www.targetscan.org/). The probability of conserved targeting is indicated by PCT. a: 

Conserved between human and rodent; b: Seed sequences are different in mouse and human. 

3.7.2 Verification of the predicted miR-155-5p targets  

To confirm the differential regulation of the predicted targets of miR-155-5p identified 

by global gene expression, the expression levels of Mafb, Sema5a, Med12l, Stmn2 and 

Auh were quantified by qPCR in pancreatic islets from ND-fed Mir155−/−Ldlr−/− and 

Mir155+/+Ldlr−/− mice at 10 – 12 wk of age. All of the potential miR-155-5p targets 

were up-regulated in islets from Mir155–/–Ldlr–/–mice (Figure 42). 

 

Figure 42. Confirmation of the up-regulation of potential miR-155-5p targets. Quantitation of 

predicted miR-155-5p target gene expression in islets isolated from ND-fed Mir155−/−Ldlr−/− mice and 
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Mir155+/+Ldlr−/− mice (10 – 12 wk of age) by qPCR (n = 6 – 8 per group). Data are represented as mean ± 

SEM. *p < 0.05and **p < 0.01. 

Moreover, the regulation of predicted targets by miR-155-5p was also confirmed in 

MIN6 cells using gain-and-loss-of-function experiments. Treatment of MIN6 cells with 

miR-155-5p mimics (Figure 43A) and inhibitors (Figure 43B) up-regulated and down-

regulated Auh, Mafb, Med12l, Sema5a, and Stmn2 expression, respectively. 

 

Figure 43. Regulation of predicted miR-155-5p targets in MIN6 cells. (A and B) Expression of 

predicted miR-155-5p targets in MIN6 cells after transfection with miR-155-5p mimics (A, n = 5 – 6 per 

group) or miR-155-5p LNA inhibitors (B, n = 5 – 6 per group). Non-targeting oligonucleotides were used 

as control (n = 5 – 6 per group). Data are represented as mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 

0.001. 

3.7.3 miR-155-5p targets Mafb in islets cells 

To further study the regulation of potential targets by miR-155-5p, immunoprecipitation 

of the miRISC was performed using extracts from MIN6 cells overexpressing FLAG-

tagged GW182148. In the positive control group, AcGFP1 (Aequrea coerulescences 

green fluorescent protein) containing a miR-132 target sequence was expressed in 

MIN6 cells. Treatment with miR-132 mimics resulted in a 27-fold enrichment of the 

AcGFP1 mRNA in the miRISC as compared to Gapdh. Following miR-155-5p mimics 
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treatment, the enrichment of Mafb (60-fold) in the miRISC was higher than that of 

Stmn2 (30-fold), Auh (9-fold), Med12l (8-fold) or Sema5a (15-fold) (Figure 44). 

 

Figure 44. Immunoprecipitation-based miR-155-5p target identification in MIN6 cells. Enrichment 

of potential miR-155-5p targets in the Argonaute/RISC complexes from MIN6 cells determined by 

GW182 immunoprecipitation (MirTrap-IP) and qPCR (n = 3 per group). The results are expressed as fold 

enrichment of the transcripts in miR-155-5p mimics treated MIN6 cells compared to those treated with 

non-targeting, control mimics. The fold enrichment of the AcGFP1 control in miR-132 mimics treated 

MIN6 cells was used as positive control. Data are represented as mean ± SEM. *p < 0.05. 

The transcription factor MafB, a key activator of glucagon transcription, is highly 

expressed in α-cells.170,171 Pdx1-mediated repression of MafB is required for 

maintenance of β-cell identity, and derepression of MafB in β-cell was responsible for 

glucagon induction and triggers a β-to-α-cell reprogramming.172 The miR-155-5p 

binding site in the 3′–UTR of the MAFB mRNA has been previously verified in B-cell 

lymphoma cells (Figure 45A),173 suggesting that MafB may mediate the effect of miR-

155 on islets. The expression of MafB in islets from ND-fed Mir155+/+Ldlr−/− and 

Mir155−/−Ldlr−/− mice was quantified by combined MafB and insulin immunostaining. 

Mir155 knockout increased the number of MafB-expressing cells, including β-cells 

(Figure 45B), indicating that miR-155-5p promotes a β-cell phenotype by repressing 

MafB. 
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Figure 45. miR-155-5p targets Mafb in islets cells. (A) Conserved miR-155-5p binding site in the 3′–

UTR of the Mafb mRNA in human (hsa) and mouse (mmu). The boxes indicate the interaction between 

miR-155-5p and Mafb. (B) Quantitation of MafB-producing islet cells from Mir155+/+Ldlr−/− or 

Mir155−/−Ldlr−/− mice at 10 – 12 wk of age fed a ND by combined MafB and insulin immunostaining (n = 

10 mice per group). The nuclei were counterstained with DAPI. Scale bars: 50 µm. Data are represented 

as mean ± SEM. ***p < 0.001. 

Next, to test the function of miR-155-5p binding site in the Mafb 3’-UTR, LNA-

modified oligonucleotides that selectively inhibit the interaction between miR-155-5p 

and Mafb were designed (155/Mafb target site blocker, TSB) (Figure 46A). The MIN6 

cells were transfected with 155/Mafb TSB or non-targeting TSBs (control TSB) for 48 h 

and the expression of the candidate genes was determined by qPCR. Treatment with 

155/Mafb TSBs increased Mafb, Gcg and Pcsk2 expression, and reduced Ins and Pcsk1 

expression compared with control TSBs (Figure 46B). These data indicate that the 

effects of miR-155-5p on islet cells are mainly mediated through targeting of Mafb. 
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Figure 46. Effects of 155/Mafb TSB in vitro. (A) Sequence of the Mafb-target site blocker 

oligonucleotide (155/Mafb TSB) complementary to the miR-155-5p binding site and its 5’ flanking 

region in the Mafb 3′-UTR. The box indicates the interaction between miR-155-5p and Mafb. (B) 

Quantitation of Mafb, Ins, Gcg, Pcsk1 and Pcsk2 mRNA expression in MIN6 cells treated with 

oligonucleotides that block the interaction between miR-155-5p and the 3’-UTR of Mafb (target site 

blocker, 155/Mafb TSB) or non-targeting TSBs (control TSB) by qPCR (n =5-6 per group). Data are 

represented as mean ± SEM. *p < 0.05 and **p < 0.01. 

3.8 MafB mediated the effect of miR-155-5p on Il6 

expression 

Next, to investigate whether miR-155-5p-induced IL-6 expression in islets is mediated 

by targeting MafB, IL-6 expression was measured in MIN6 cells treated with 155/Mafb 

TSB. Blocking the interaction between miR-155-5p and MafB in MIN6 cells down-

regulated Il6 mRNA expression (Figure 47, left) and reduced IL-6 protein secretion 

(Figure 47, right), suggesting that miR-155-5p upregulates Il-6 expression by targeting 

Mafb. 
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Figure 47. Effects of 155/Mafb TSB on IL-6 expression in vitro. Quantitation of IL-6 expression at the 

mRNA and protein level in MIN6 cells treated with 155/Mafb TSB or control TSB by qPCR and ELISA, 

respectively (n = 5 per group). Data are represented as mean ± SEM. *p < 0.05. 

Two MafB binding sites were predicted in the Il6 promoter region using 

TRANSFAC database (version 7.0, Qiagen, http://www.biobase.international.com) 

(Figure 48A, Il6 promoter-Mafb1 refers to binding sites at position 30012038 and Il6 

promoter-Mafb2 refers to binding sites at position 30012038)149,150. 

To study whether MafB negatively regulates Il6 expression via binding to putative 

binding sites in the Il6 promoter, MIN6 cells were transfected with a luciferase reporter 

vector containing the wildtype Il6 promoter or the Il6 promoter containing mutations in 

the predicted Mafb binding sites Mafb1 and Mafb2 (Figure 48A). Treatment with miR-

155-5p inhibitors reduced the luciferase activity in cells expressing the wildtype 

promoter, but not in cells expressing the promoter containing the mutated Mafb binding 

sites (Figure 48B). These findings suggest that reduced transcriptional repression of IL-

6 by MafB contributes to the effect of miR-155-5p on β-cell function. 
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Figure 48. Targeting of MafB by miR-155-5p promotes IL-6 expression. (A) Wildtype (Il6 promoter-

Mafb1 and Il6 promoter-Mafb2) and mutated (Il6 promoter-∆Mafb1 and Il6 promoter-∆Mafb2, 

underlined) sequences of putative Mafb binding sites in the Il6 promoter region. (B) Luciferase activity in 

MIN6 cells cotransfected with luciferase reporter constructs harboring site-directed mutations in the 

predicted Mafb binding sites of the Il6 promoter region (Il6 promoter-∆Mafb1 and Il6 promoter-∆Mafb2) 

and miR-155-5p LNA inhibitors or non-targeting LNA oligonucleotides (n = 4 per group). The empty 

vector was used as control. The luminescence intensities of Gaussia luciferase were normalized to the 

activity of secreted alkaline phosphatase. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01 and 

***p < 0.001.  

3.9 155/Mafb TSB effects in vivo 

To study whether the effect of hyperlipidemia-induced miR-155-5p in β-cells on 

glucose homeostasis is mediated by the suppression of Mafb, 10-wk-old Ldlr–/– mice fed 

a ND were treated with a single injection of 155/Mafb TSBs or control TSBs (each 0.4 

mg/20 g per injection, sequences were shown in Figure 46A). Body weights (Figure 

49A) and differential blood counts (Figure 49B) were not different between the groups 

at 21 d after the treatment. 
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Figure 49. Effects of 155/Mafb TSB on body weight and blood cell numbers in Ldlr−/− mice. (A) 

Body weight of Ldlr−/− mice before (Day 0) and 21 d (Day 21) after treatment with 155/Mafb TSBs or 

control TSBs (n = 7 mice per group). (B) White blood cell (WBC), lymphocyte (LYM), monocyte (MO) 

and granulocyte (GRA) count in the blood of Ldlr−/− mice 21 d after injection of 155/Mafb TSBs or 

control TSBs (n = 7 mice per group). Data are represented as mean ± SEM.  

To assess whether the effect of the interaction between miR-155 and Mafb is 

specific in islets, tissues were harvested 21 d after injection of the TSBs. Mafb mRNA 

expression levels were increased in islets and spleen, but not in heart, liver and eWAT 

in 155/Mafb TSB-treated mice (Figure 50A). 155/Mafb TSB treatment did not affect 

islet Auh, Med12l, Sema5a and Stmn2 expression levels (Figure 50B). Moreover, the 

protein level of MafB was determined in islets by combined MafB and insulin 

immunostaining. The percentage of MafB-expressing islet cells was higher in 155/Mafb 

TSB-treated mice than in mice treated with control TSBs (Figure 50C), indicating that 

155/Mafb TSB specifically derepressed MafB in islets. 
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Figure 50. Effects of 155/Mafb TSB on the expression of predicted targets of miR-155-5p in Ldlr−/− 

mice. (A) Quantitation of Mafb mRNA expression by qPCR in various tissues of ND-fed mice 21 d after 

the injection of 155/Mafb TSBs or control TSBs (n = 4 per group). (B) Quantitation of MafB-expressing 

cells in murine islets 21 d after the injection of 155/Mafb TSBs or control TSBs by combined MafB and 

insulin immunostaining (n = 6 or 7 mice per group). The nuclei were counterstained with DAPI. Scale 

bars: 50 µm. (C) Quantitation of putative miR-155-5p targets genes by qPCR in islets from Ldlr−/− mice 

21 d after treatment with 155/Mafb TSBs or control TSBs (n = 4 per group). Data are represented as mean 

± SEM. *p < 0.05 and **p < 0.01. 

To further study the effect of the miR-155-5p-Mafb interaction on islets of Ldlr–/– 

mice, the expression of the candidate genes was assessed by qPCR. Blocking the 

interaction between miR-155-5p and Mafb up-regulated Gcg mRNA expression and 

down-regulated Pcsk1 and Il6 expression in islets (Figure 51A). Consistently, treatment 

with 155/Mafb TSBs increased the percentage of α-cells, and reduced the percentage of 
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β-cells compared with control, determined by combined insulin and glucagon 

immunostaining (Figure 51B). This effect in 155/Mafb TSB-treated mice was 

associated with reduced insulin and GLP-1 plasma levels, and increased glucagon 

plasma levels (Figure 51C), measured by Luminex assays.  

Moreover, FBG levels and glucose tolerance were measured 21 d after injection of 

the TSBs. Blocking the interaction between miR-155 and Mafb elevated FBG levels 

(Figure D) and impaired glucose tolerance following intraperitoneal glucose injection 

(Figure F). This data indicates that hyperlipidemia-induced miR-155-5p expression 

improves β-cell adaptation and maintains glucose homeostasis by suppressing Mafb.  

 

Figure 51. Effect of the interaction between miR-155-5p and Mafb on glucose homeostasis in Ldlr–/– 

mice. (A) Quantitation of gene expression by qPCR in islets isolated from ND-fed mice 21 d after 

injection of 155/Mafb TSBs or control TSBs (n = 4 per group). (B) Quantitation of insulin- and glucagon-

producing cells in islets from ND-fed mice 21 d after injection of 155/Mafb TSBs or control TSBs by 

immunostaining (n = 6 or 7 mice per group). The nuclei were counterstained with DAPI. Scale bars: 50 

µm. (C) Fasting insulin, glucagon, GLP-1 plasma concentrations by Luminex multiplex analysis in ND-

fed mice 21 d after treatment with 155/Mafb TSBs or control TSBs (n = 7 mice per group). (D and E) 

FBG levels (D) and glucose tolerance (E) in ND-fed mice 21 d after injection of 155/Mafb TSBs or 

control TSBs (n = 7 mice per group). Data are represented as mean ± SEM. *p < 0.05 and **p < 0.01.  
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4 DISCUSSION 

4.1 Hyperlipidemia induces islet miR-155-5p 

expression 

miRNAs, such as miR-375 and miR-184, play crucial roles in β-cell function and the 

adaptation of β-cells to insulin resistance.174 Although miR-155-5p expression is low in 

normal islets compared to islet-enriched miRNAs,175 increasing blood lipid levels by 

knocking out Ldlr in ND-fed mice upregulated islet miR-155-5p expression. More 

severe hyperlipidemia in Ldlr–/– mice fed the DDC was positively correlated with miR-

155 expression levels in islets. In contrast to normolipidemic wildtype mice, knocking 

out Mir155 in hyperlipidemic Ldlr–/– and Apoe–/– mice improved glucose tolerance, 

indicating that hyperlipidemia-mediated miR-155 expression enhances islet cell 

function. In macrophages, hyperlipidemia also up-regulates miR-155-5p expression and 

enhances TLR4-dependent inflammatory activation.104,129,176 Notably, absence of miR-

155-5p expression in lean and obese Ldlr–/– mice deteriorated glucose homeostasis, and 

reduced insulin and enhanced glucagon production and secretion by islet cells. Insulin 

and glucagon are critical regulators for maintaining glucose homeostasis.177,178 In 

addition to impaired or insufficient insulin secretion,179 increased glucagon-to-insulin 

ratio are frequently observed in diabetic individuals and chronic hyperglucagonemia is 

correlated with hyperglycemia in T2DM.180-182 Hence, Mir155 knockout may lead to 

elevated plasma glucose levels in Ldlr–/– mice due to its effects on insulin and glucagon 

production in islets. Although chronic HFD feeding results in obesity and insulin-

resistance, the short-term effects of HFD feeding include enhanced β-cell proliferation 

and hyperinsulinemia.183,184 However, the role of hyperlipidemia independent of a HFD 

on glucose homeostasis is unclear. The results of the current study suggest that 

upregulation of islet miR-155 expression contributes to the effect of hyperlipidemia on 

insulin secretion. 
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4.2 miR-155-5p increases intra-islet GLP-1 

The main mechanisms of β-cell failure in DM development involve dedifferentiation 

and impaired regeneration of β-cells.10,18 Lineage-tracing studies in mice showed that 

metabolic stress-induced loss of β-cells is due to their dedifferentiation into 

stem/progenitor-like cells, which are devoid of the insulin-producing β-cell identity.18 

Of note, a subset of the dedifferentiated cells acquire features of α-cells that express the 

Gcg gene and increase the pancreatic α-cell mass, which results in elevated plasma 

glucagon levels and pancreatic glucagon content in mice.18 In accordance with these 

results, Mir155 knockout did not only increase plasma and glucagon levels but also 

reduced insulin expression, indicating that miR-155-5p in β-cells limits β- to α-cell 

conversion.  

In addition to its effect on insulin and glucagon production, plasma and islet GLP-

1 levels were reduced in Mir155–/–Ldlr–/– mice. GLP-1 triggers glucose-dependent 

insulin secretion, suppresses glucagon secretion, increases insulin synthesis, promotes 

β-cell growth and neogenesis, and inhibits β-cell apoptosis.41,45,50-53 β-cell-specific 

Glp1r knockout results in β-cell dysfunction and impaired intraperitoneal glucose 

tolerance in response to parenteral GLP-1 administration,54 and selective restoration of 

the GLP-1R expression in the pancreas of Glp1r–/– mice promotes β-cell mass 

expansion and improves glucose tolerance.55 In contrast to the important role of GLP-

1R in β-cells, GLP-1 is predominantly expressed in a-cells in response to lipotoxic 

stress and hyperglycemia via upregulation of Pcsk1 expression.35,38,165,185 Because miR-

155-5p upregulated Pcsk1 in islet cells, enhanced GLP-1 production in a-cells may 

contribute to the effect of miR-155-5p on glucose homeostasis by stimulating insulin 

and reducing glucagon secretion.45,50 Moreover, miR-155-5p reduced Pcsk2 expression 

and thus switched the processing of proglucagon in α-cells from glucagon to GLP-1 

production in response to hyperlipidemic stress. Although intestinal L-cells are the main 

source of circulating GLP-1 after oral glucose ingestion, the source of basal GLP-1 

levels in the circulation is unknown. However, increased insulin levels can induce GLP-

1 secretion from intestinal L-cells, suggesting that miR-155-5p may increase circulating 

GLP-1 levels by islet GLP-1-triggered insulin secretion.186 
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Although crucial roles of miR-155-5p in immune responses have been described 

previously,103,121,154,155 the accumulation of immune cells (macrophages or T-cells) was 

negligible in islets of ND-fed mice, suggesting the inflammatory response is not, or at 

least not the primary effect of miR-155-5p on islets function.  

4.3 Hyperlipidemia-related endotoxemia induces islet 

miR-155-5p expression 

In addition to hyperlipidemia, LPS-induced TLR4 activation selectively increases miR-

155-5p expression in macrophages. Low levels of LPS are physiologically present in the 

blood of humans and animals.91 HFD feeding modulates the gut microbiota and 

increases intestinal permeability, which elevates LPS plasma concentrations.71,72 In line 

with these results, LPS also increased miR-155-5p expression in murine pancreatic β-

cells in vitro and in vivo. LPS predominantly binds to LDL in the circulation, which 

reduces its biological activity and promotes endotoxin removal.135,187-191 The data of the 

current study show that mild oxidation increases the endotoxin activity of LDL, maybe 

by altering lipid-mediated interactions between LDL and LPS. Accordingly, treatment 

with moxLDL but not with nLDL upregulated miR-155-5p expression in β-cells. 

Moreover, hyperlipidemia in Ldlr–/– mice was accompanied by elevated serum 

endotoxin activity and by the deposition of oxLDL in islets. Taking together, these 

results indicate that hyperlipidemia results in the deposition of moxLDL in islets, which 

induces miR-155-5p expression in β-cells by its endotoxin activity.  

       Low-dose LPS injection reduces blood glucose levels by promoting GLP-1-

mediated insulin secretion in C57/BL6 mice.75 Similarly, the current study showed that 

treatment with low-dose LPS increased islet miR-155-5p expression and promoted 

GLP-1-induced insulin secretion in Ldlr–/– mice. Knockout of Mir155 blunted the effect 

of LPS on glucose metabolism in Ldlr–/– mice, indicating that β-cell miR-155-5p 

contributes to LPS-induced insulin secretion. 
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4.4 IL-6 mediates the effect of miR-155-5p on GLP-1 

Islet-derived GLP-1 is processed and secreted exclusively from rodent and human 

glucagon-containing α-cells;192,193 however, induction of islet miR-155-5p expression 

by hyperlipidemia was mainly detectable in glucagon negative cells, indicating that 

miR-155-5p induces GLP-1 production in a paracrine manner. Of note, IL-6 is a key 

stimulator of GLP-1 production in a-cells, which highly express the IL-6 receptor, by 

upregulating Pcsk1 expression,47,164 and thereby promotes insulin secretion and β-cell 

function.34,35,47 Accordingly, the microarray results indicate that islet miR-155-5p 

expression activates IL-6 receptor signaling pathways, such as the JAK/STAT and 

ERK1/2 pathways, in the islets of Ldlr–/– mice. IL-6 is physiologically expressed in 

rodent pancreatic β-cells163 and up-regulated upon stimulation of inflammatory 

cytokines,163,194 which may protect pancreatic islets from inflammation-induced cell 

death and functional impairment.195 The results of present study demonstrate that miR-

155-5p positively regulated IL-6 expression and secretion in β-cells, which is similar to 

the effect observed in immune cells, such as macrophages, T-cells and dendritic 

cells.102,129,152,166-168 Blocking IL-6 secreted from islet MIN6 cells increased Pcsk1 

expression and reduced Pcsk2 expression, suggesting that miR-155-5p-induced IL-6 

secretion from β-cells switches processing of proglucagon to GLP-1 in α-cells. Thus, 

hyperlipidemia-induced miR-155-5p may act as an upstream regulator of the IL-

6/Pcsk1/GLP-1 pathway in islets that mediates the mutual crosstalk between α-cells and 

β-cells and improves β-cell adaptation to stress. However, the mechanism by which 

miR-155-5p regulates IL-6 expression is not clear. 

4.5 MafB mediates the effects of miR-155-5p in islets 

To determine the mechanism by which miR-155-5p regulates IL-6 expression in β-cells, 

a genome-wide expression analysis in murine islets was performed. Notably, 27 

potential targets of miR-155-5p, including Mafb and Sema5a, were upregulated in islets 

from Mir155 knockout mice. In contrast to the other 25 putative miR-155-5p targets, 

Mafb and Sema5a contain highly conserved miR-155-5p target sites in their 3'-UTRs, 

indicating that both may be targeted by miR-155-5p in islets. Whereas the miR-155-5p 

canonical 7-merA1 binding site in the Mafb 3'-UTR has been validated experimentally, 
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the target site in the Sema5a 3'-UTR has not been studied yet.173 Accordingly, miR-155-

5p enriched Mafb and Sema5a in the RISC, demonstrating that both are targets of miR-

155-5p in islet cells. However, MafB may be the primary target of miR-155-5p, because 

the enrichment of Mafb was much higher than that of Sema5a. Hence, the effect of the 

interaction between miR-155-5p and Mafb was studied using 155/Mafb TSBs. 

Importantly, 155/Mafb TSBs strongly increased Mafb expression and led to similar 

alterations in islet gene expression as those of the miR-155-5p inhibitor treatment, 

indicating that targeting of Mafb plays a key role in the effects of miR-155-5p on islets 

function.  

      The members of the large Maf protein transcription factor family, MafA and MafB, 

play critical roles in the development and function of α- and β- cells. In adult rodent 

islets, MafA is only expressed in β-cells and promotes transcription of the insulin 

gene,170,196-199 whereas MafB is primarily expressed in α-cells and activates the 

transcription of the Gcg gene.197 200 In pregnant or obese mice, however, MafB 

expression is up-regulated in β-cell.201 Notably, previous studies show that repression of 

MafB is required for maintenance of β-cell identity, because de-repression of MafB in 

the absence of the β-cell-specific transcription factor Pdx1 triggers a β-to-α-cell 

reprogramming199 and thereby contributes to β-cell failure in T2DM.172,202,203 In line 

with these evidences, the current data of the Mir155–/– mice show that hyperlipidemia-

induced expression of miR-155-5p in β-cells limits Mafb expression, and maintains a β-

cell phenotype as indicated by reduced α-cell-specific gene transcription in islets, and 

decreased plasma and islet glucagon levels. Accordingly, blocking the interaction 

between miR-155-5p and Mafb in hyperlipidemic mice increased Gcg transcription and 

the α-to-β-cell ratio, suggesting that the effect of miR-155-5p in islet function is due to 

the targeting of Mafb. Although the knockout of Mir155 in Ldlr–/– mice is not islet cell 

specific and thus miR-155-5p may indirectly regulate islet Mafb expression, the finding 

that 155/Mafb TSB treatment increased Mafb expression in islets demonstrates that 

miR-155 targets Mafb in islets. Taken together, these data indicate that hyperlipidemia-

induced miR-155-5p expression maintains β-cell identity and improves β-cell adaptation 

by targeting Mafb.  
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In addition, blocking the interaction between miR-155-5p and Mafb in β-cells 

inhibited IL-6 expression, indicating that miR-155-5p upregulates IL-6 in β-cells by 

targeting MafB. As a member of the large Maf transcription family, MafB contains the 

basic leucine zipper (bZIP) DNA binding motifs and N-terminal activation domains.204 

In addition to serving as a key activator of the Gcg gene in α-cells,197 MafB can acts as a 

repressor that inhibits gene transcription in myeloid cells,205 206 osteoclasts207 and 

human β-cells.206 However, the role of MafB in the regulation of IL-6 expression was 

unclear, although two MafB binding sites were predicted in the Il6 promoter region. The 

current study shows that miR-155-5p upregulates IL-6 by targeting Mafb, which 

transcriptionally inhibits Il6 gene expression in β-cells. Consistent with the effect 

observed in Mir155 knockout mice, inhibiting the interaction between miR-155-5p and 

Mafb in hyperlipidemic mice down-regulated the IL-6/Pcsk1/GLP-1 pathway in islets. 

Thus, reduced transcriptional repression of IL-6 by MafB contributes to the effect of 

miR-155-5p on β-cell function.  

Taken together, the current data demostrate that hyperlipidemia-induced miR-155-

5p maintains a β-cell phenotype and inhibits Gcg expression primarily by targeting 

Mafb in β-cells. In addition, my findings strongly suggest that targeting of Mafb by 

miR-155-5p promotes PC1/3-mediated GLP-1 production in α-cells due to enhanced 

secretion of IL-6 from β-cells. Thus, hyperlipidemia-induced miR-155-5p/MafB/IL-6 

axis mediates a crosstalk between α-cells and β-cells, which may improve β-cell 

adaptation to obesity-related insulin resistance by up-regulating GLP-1 production 

(Figure 52). 
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results, Mir155 knockout promotes obesity and increases white adipocyte hypertrophy 

in Apoe–/– mice.210 Hence, although miR-155-5p is essential in the proinflammatory 

response in macrophages, which promotes obesity, the current findings do not indicate 

that macrophage miR-155-5p contributes to adipose tissue inflammation and obesity. 

This conclusion is supported by the finding that Mir155 knockout did not change the 

macrophage polarization in adipose tissue of Ldlr–/–. In contrast to the findings in Ldlr–/– 

and Apoe–/– mice, Mir155 knockout reduces adipose tissue inflammation and prevents 

HFD-induced obesity in female C57/Bl6 mice.131 This effect has mainly been attributed 

to enhanced adipose tissue browning by miR-155-5p expressed in adipocytes.132 

However, Mir155 deficiency aggravated eWAT dysfunction including adipocyte 

hypertrophy, increased leptin and reduced adiponectin secretion in obese Ldlr–/– mice. 

This effect of Mir155 knockout is probably not mediated by miR-155-5p in adipocytes, 

because miR-155-5p promotes adipocytes dysfunction and inhibits adipogenesis130. 

      The effect of Mir155 knockout on atherosclerosis has been studied in different 

mouse models. In ApoE–/– mice, miR-155-5p is selectively induced in proinflammatory 

macrophages, which increases advanced atherosclerosis by impairing efferocytosis and 

promoting inflammatory activation, but reduces early lesion formation through 

inhibition of macrophage proliferation.103,104,122,126-129 By contrast, the data of current 

study demonstrate that miR-155-5p limits advanced atherosclerosis and necrotic core 

formation in obese Ldlr–/– mice, although lesional macrophage accumulation was 

increased Mir155+/+Ldlr–/– mice. Hence, the phenotype observed in obese Ldlr–/– mice is 

unlikely due to the role of miR-155-5p in macrophages. Compared with Ldlr–/– mice, 

Apoe–/– mice develop significantly less obesity, adipose tissue inflammation and insulin 

resistance during HFD feeding. This difference in the metabolic response may affect the 

mechanisms of plaque formation. Whereas atherosclerosis in ApoE–/– mice may be 

primarily driven by lesional macrophages, lesion formation in Ldlr–/– mice may be 

enhanced by obesity and insulin resistance. Accordingly, in contrast to Mir155–/–Apoe–/– 

mice,103,126 Mir155–/–Ldlr–/– mice developed various metabolic imbalances, such as 

more severe adipose tissue inflammation, obesity and dyslipidemia, in the late stage of 

DDC feeding, which may in turn influence the atherosclerotic lesion formation. 

Together, the effects of miR-155-5p may differ in Apoe–/– mice and Ldlr–/– mice 
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probably owing to cell-type specific effects of this miRNA and the differences in 

metabolic status between the mouse models. 

4.6.2 GLP-1 

Whereas glucose homeostasis was impaired in lean and obese Mir155–/–Ldlr–/– mice, 

Mir155 knockout increased body weights only in obese mice, suggesting that the effects 

of miR-155-5p on islets implicate reduced weight gain. Notably, in addition to reduced 

intra-islet GLP-1 expression, Mir155 knockout decreased plasma GLP-1 levels in Ldlr–

/– mice. GLP-1 receptor agonists and overexpression of GLP-1 reduce obesity in 

humans and adipose tissue inflammation in mice, respectively.211,212 By contrast, GLP-1 

effect is impaired in obesity and postprandial GLP-1 secretion was found to be inversely 

proportional to body mass index.24,25,213-219 Moreover, treatment with GLP-1 receptor 

agonists improves obesity-related dyslipidemia, probably by inhibiting hepatic VLDL 

production.211,220 Therefore, reduced GLP-1 plasma levels may contribute to adipose 

tissue inflammation, obesity progression and dyslipidemia in Mir155–/–Ldlr–/– mice. 

Consequently, elevated LDL and VLDL levels can promote the progression of 

atherosclerosis in obese Mir155–/–Ldlr–/– mice. By contrast, Mir155 knockout in mice 

with normal lipoprotein levels did not affect glucose tolerance, presumably due to the 

low islet miR-155-5p expression level in these mice.131 Thus, the effect of miR-155-5p 

on obesity differs between mice with normal lipid levels and hyperlipidemia, likely 

because different cell types are affected.  

      In addition to adiposity and dyslipidemia, the anti-atherosclerotic effect of GLP-1 

may also exert directly through GLP-1R signaling in relevant cells, such as endothelial 

cells, vascular smooth muscle cells, macrophages and monocytes.221-224 A study 

described that GLP-1R agonists attenuate endoplasmic reticulum stress-induced cell 

death in aortic lesion macrophages;225 partially supporting the present data that miR-

155-5p has a protective effect against atherosclerosis in obese Ldlr–/– mice, which was 

associated with reduced necrotic core area.  

      Taken together, the present study indicates that in the Ldlr–/– mouse model, the 

effect of miR-155-5p in β-cells determines the outcome of HFD feeding. miR-155-5p 

limited the progression of obesity and adipose tissue inflammation, and reduced 
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hyperlipidemia and atherosclerosis in DDC-fed Ldlr–/– mice, probably due to elevated 

plasma GLP-1 levels. 

4.7 Conclusion and Perspective 

In conclusion, the results of current study showed that hyperlipidemia and LPS up-

regulate miR-155-5p expression in β-cells, which improved glucose homeostasis by 

targeting Mafb and limited a β-to-α-cell reprogramming. In the absence of miR-155-5p, 

up-regulation of MafB by hyperlipidemia repressed IL-6 expression and thereby 

inhibited IL-6-mediated GLP-1 production in α-cells. In obese mice, miR-155-5p-

induced GLP-1 production may limit atherosclerosis, dyslipidemia, and the progression 

of adiposity, and improve the adaptation of β-cells to insulin resistance. Hence, up-

regulation of miR-155-5p represents a protective mechanism in the stress response of β-

cells and improves the adaptation of β-cells to insulin resistance. 

      Similar to Ldlr–/– mice, hyperlipidemia in patients with familial 

hypercholesterolemia, which occurs due to mutations in the Ldlr gene,226 protects from 

T2DM and obesity,97 indicating that hyperlipidemia plays a so far undetermined 

metabolic role that might improve glucose metabolism. The data of current study 

strongly indicate that β-cell miR-155-5p may play a crucial role in mediating the effect 

of hyperlipidemia on obesity and glucose metabolism. Because heterozygote familial 

hypercholesterolemia is a rather common disease (the prevalence has been estimated at 

1 in 200 to 1 in 500),227 the findings regarding the role of hyperlipidemia in metabolic 

disease are highly relevant.  
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5 SUMMARY 

A HFD increases intestinal permeability and promotes leakage of LPS into the 

circulation, where it primarily binds to lipoproteins and may promote GLP-1-mediated 

insulin secretion. Notably, patients with familial hypercholesterolemia have a reduced 

risk for T2DM. However, chronically elevated circulating LPS levels during HFD 

feeding also induce adipose tissue inflammation and obesity-induced insulin resistance. 

In macrophages, LPS and hyperlipidemia selectively induce miR-155-5p expression and 

trigger inflammatory activation. However, the role of miR-155-5p in obesity-related 

metabolic and cardiovascular diseases is poorly understood. Therefore, the aim of the 

current study was to determine whether miR-155-5p mediates the effects of 

hyperlipidemia on obesity and glucose homeostasis.  

Hyperlipidemia-associated endotoxemia increased deposition of oxLDL and 

induced miR-155-5p expression in pancreatic islets of Ldlr–/– mice. Mild oxidative 

modification of LDL led to increased endotoxin activity and increased miR-155-5p 

expression in pancreatic β-cells. In Mir155–/–Ldlr–/–mice, glucose and plasma glucagon 

levels were increased, whereas plasma insulin and GLP-1 levels were reduced 

compared with Mir155+/+Ldlr–/– mice. The α-to-β-cell ratio and the glucagon protein 

level were higher, whereas the insulin and GLP-1 protein content was reduced in islets 

from Mir155–/–Ldlr–/–mice. Treatment with low-dose LPS up-regulated islet miR-155-

5p expression, increased insulin and GLP-1 plasma levels and lowered the glucose 

levels following intraperitoneal glucose injection in Ldlr–/– mice, and the effects of LPS 

on glucose metabolism were partially abolished by Mir155 knockout. Microarray 

analysis revealed inhibition of insulin, GLP-1, and IL-6 signaling pathways and 

upregulation of putative miR-155 targets, including Mafb, Sema5a, Med12l, Auh, and 

Stmn2 in islets from Mir155–/–Ldlr–/–mice. In murine β-cells, overexpression of miR-

155-5p enriched Mafb mRNA in the RISC. Moreover, luciferase reporter assays showed 

that MafB suppressed Il6 expression by binding to the Il6 promoter region. In Ldlr–/–

mice, blocking the interaction between miR-155-5p and MafB increased FBG levels 

and decreased the expression of Il6, the GLP-1 producing enzyme Pcsk1, and insulin 

production in islets. Probably due to elevated plasma GLP-1 levels, miR-155-5p limited 
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the progression of obesity and adipose tissue inflammation, and reduced hyperlipidemia 

and atherosclerosis in HFD-fed Ldlr–/– mice. 

Taken together, hyperlipidemia-associated endotoxemia can improve glucose 

homeostasis by upregulating miR-155-5p expression in pancreatic β-cells. Targeting of 

MafB by miR-155-5p may limit β-to-α-cell reprogramming and promotes β-cell 

function likely through IL-6-induced GLP-1 production in α-cells. Hence, 

hyperlipidemia-induced miR-155-5p improves the adaptation of β-cells to insulin 

resistance. Increasing miR-155-5p levels in β-cell may be a valuable therapeutic 

strategy against diabetes and the MetS. 
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6 ZUSAMMENFASSUNG 

Die Verfütterung eines „high fat“ Futters führt zu einer erhöhten Darmpermeabilität, die 

zu einer Steigerung der LPS Konzentration in der Zirkulation führt. Dort bindet LPS an 

Lipoproteine und stimuliert dadurch die GLP-1-vermittelte Sekretion von Insulin. 

Patienten mit familiären Hypercholesterinämie leiden seltener an T2DM. Die durch das 

„high fat“ Futter chronisch erhöhte LPS Konzentration in der Zirkulation induziert die 

Entzündung im adipösen Gewebe und die Adipositas-bedingte Insulinresistenz. LPS 

und Hyperlipidämie induzieren die Expression von miR-155-5p und rufen eine 

inflammatorische Aktivierung in Makrophagen hervor. Allerdings ist über die Rolle von 

miR-155-5p in mit Adipositas verbundenen metabolischen und kardiovaskulären 

Erkrankungen wenig bekannt. Das Ziel dieses Vorhabens ist die Effekte von miR-155-

5p in Hyperlipidämie-vermittelter Adipositas und Glukose-Homöostase zu untersuchen.  

      Die Hyperlipidämie-assoziierte Endotoxämie erhöhte die Akkumulation von oxLDL 

und die Expression von miR-155-5p in den Langerhans-Inseln von Ldlr–/– Mäusen. 

Während die Glukose- und Glukagon Plasmawerte verglichen mit den Werten in 

Mir155+/+Ldlr–/– Mäusen erhöht waren, wurde eine Reduktion der Insulin- und GLP-1 

Plasmawerte in Mir155–/–Ldlr–/– Mäusen detektiert. Das Verhältnis von α-zu-β Zellen 

und die Glukagon-Proteinwerte waren erhöht, wohingegen die Insulin- und GLP-1 

Proteinwerte in den Langerhans-Inseln der Mir155–/–Ldlr–/– Mäusen reduziert waren. 

Eine Behandlung mit niedrig dosiertem LPS erhöhte die Expression von miR-155-5p, 

steigerte die Insulin- und die GLP-1 Plasmawerte, reduzierte jedoch die Glukosewerte 

nach einer intraperitonealen Glukose-Injektion in Ldlr–/– Mäusen. Ferner ist die LPS-

assoziierte Wirkung teilweise durch den Mir155 Knockout aufgehoben. In den 

Langerhans-Inseln derMir155–/–Ldlr–/– Mäusen zeigte die Microarray-Analyse eine 

Inhibierung von Insulin, GLP-1 und dem IL-6 Signalweg sowie eine Erhöhung 

vermeintlicher miR-155 Targets, wie z.B. Mafb, Sema5a, Med12l, Auh und Stmn2. Die 

Überexpression von miR-155-5p führte zur Anreicherung der Mafb mRNA im RISC. 

Die Luciferase Reporter-Assay zeigte, dass MafB die Expression von Il6 durch die 

Bindung an den Il6 Promoter supprimiert. In Ldlr–/– Mäusen führte die Hemmung der 

Interaktion zwischen miR-155-5p und MafB zu erhöhten FBG Werten und zu 
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reduzierten Expressionen von Il6, GLP-1 produziertem Enzym Pcsk1 und zur 

verringerten Insulin Produktion in den Langerhans-Inseln. MiR-155-5p reduzierte die 

Adipositas und die Inflammation im adipösen Gewebe wahrscheinlich aufgrund der 

erhöhten GLP-1 Konzentration im Plasma. Nach Verfütterung des „high fat“ Futters 

inhibierte miR-155-5p die Hyperlipidämie und die Entwicklung der Atherosklerose in 

Ldlr–/– Mäusen.  

      Zusammenfassend verbessert die Hyperlipidämie-assoziierte Endotoxämie die 

Glukose-Homöostase durch die gesteigerte Expression von miR-155-5p in den β-Zellen. 

Die Hemmung von MafB durch miR-155-5p reduzierte die β-α Zell 

Umprogrammierung und verbesserte die β-Zell Funktion durch eine IL-6-induzierte 

GLP-1 Produktion in den α-Zellen. Die Hyperlipidämie-vermittelte Induktion von miR-

155-5p trägt zur Anpassung von β-Zellen an die Insulinresistenz bei. Die erhöhte 

Expression von miR-155-5p in den β-Zellen stellt einen vielversprechenden Ansatz in 

der Therapie des Diabetes und des MetS dar. 
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