
Monitoring Data Streams –
Classification under Uncertainty

and Entropy-based
Dependency-Detection on

Streaming Data
Jonathan Boidol

München 2017

Monitoring Data Streams –
Classification under Uncertainty

and Entropy-based
Dependency-Detection on

Streaming Data
Jonathan Boidol

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Jonathan Boidol
aus Regensburg

München, den 04.05.2017

Erstgutachter: Prof. Dr. Volker Tresp
Zweitgutachter: Prof. Dr. Albert Bifet
Tag der mündlichen Prüfung: 01.08.2017

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Jonathan Boidol

vi Contents

Contents

Acknowledgements xv

Abstract xvii

1 Introduction 1
1.1 Learning from Streaming Data . 1
1.2 Stream Mining Tasks . 3
1.3 Contributions of this Work . 4

2 Streaming Data 7
2.1 Streaming Models . 7
2.2 Stream Learning and Batch Learning 9
2.3 Notation in this Thesis . 12
2.4 Streaming Engines . 13

2.4.1 Apache Storm . 14
2.4.2 Apache Spark . 14
2.4.3 Google Cloud Data�ow . 16

2.5 Stream Data Sources . 17

3 Entropy Analysis 19
3.1 Shannon-Entropy and Di�erential Entropy 20
3.2 Correlation and Dependency in Streams 25
3.3 Entropy Measures for Similarity . 25

4 Stream Classi�cation 29
4.1 Online Decision Trees . 30

viii CONTENTS

4.2 Probabilistic Stream Classi�cation . 32
4.2.1 Online Approximation of Density Functions 34

4.3 Experiments . 35
4.3.1 Implementation . 35
4.3.2 Data Sets . 36
4.3.3 Classi�cation on Static Data Streams 38
4.3.4 Classi�cation on Changing Data Streams 43

4.4 Related Work . 47
4.5 Summary . 47

5 Dependency Monitoring 49
5.1 Mutual Information as Dependency Measure in Data Streams 51

5.1.1 Dependency in Stream Windows 52
5.2 MID . 54

5.2.1 First Estimation of Mutual Information 54
5.3 DIMID . 58

5.3.1 Incremental Dependency Computation 59
5.3.2 Beirlant Estimates of Mutual Information 59
5.3.3 Updating Nearest Neighbours 61
5.3.4 Updating Entropy . 62

5.4 Experimental Evaluation . 65
5.4.1 Data Sets . 65
5.4.2 Experiment Settings . 66
5.4.3 Evaluation Criteria . 67
5.4.4 Experiments for MID and DIMID 68
5.4.5 Run-time Analysis . 72

5.5 Related Work . 74
5.6 Summary . 75

6 Delayed Dependency 77
6.1 Time-delayed Streams . 78
6.2 E�cient Lagdetection . 79

6.2.1 Kraskov Estimator . 80
6.2.2 Geometric Probing . 83
6.2.3 Smoothing . 85

6.3 Loglag . 89
6.3.1 Extensions . 92

6.4 Experimental Evaluation . 95

ix

6.4.1 Data Sets . 96
6.4.2 Experiment Settings . 96
6.4.3 Evaluation Results . 97
6.4.4 Run-time Analysis . 100

6.5 Related Work . 101
6.6 Summary . 101

7 Conclusion 103
7.1 Summary . 103
7.2 Outlook . 105

x List of Figures

List of Figures

2.1 Batch Learning Setting . 9
2.2 Online Learning Setting . 10
2.3 Apache Storm Topology . 15
2.4 Apache Spark Streaming Micro-Batches 15
2.5 Google Data�ow Model . 16

3.1 Joint Probability Distribution Example 22
3.2 Relation of Entropic Quantities . 23
3.3 Dependency Measures on Synthetic Data Sets 27

4.1 Comparison of Hoe�ding-Tree Classi�ers on UCI Data Sets 41
4.2 PHT Evaluation on RBF Streams . 42
4.3 E�ect of Concept Changes in an RBF Stream. 44
4.4 E�ect of Concept Changes Simulated in UCI Data Sets. 45

5.1 Sliding Window and Pairwise Calculation of MI 53
5.2 Sliding Window and Pairwise Incremental Calculation of MI 59
5.3 Run-time of Dependency Monitoring Algorithms 73

6.1 Marginal Points for the Kraskov Mutual Information Estimator 82
6.2 Naive Calculation and Interpolation of the Cross-Dependency Function 84
6.3 Reconstruction of the Cross-Dependency from Smoothed Layers . . . 86
6.4 Use of Layers for Multiple Lag Calculations in Loglag 93
6.5 Cross-Dependency of the Sine Data Set 98
6.6 Cross-Dependency of the Spike Data Det 99
6.7 Cross-Dependency of the Sunspots Data Set 99
6.8 Runtime Evaluation of Loglag and Variants 100

xii List of Tables

List of Tables

2.1 Properties of Batch Data and Streaming Data 8
2.2 Comparison of Database Systems to Stream Management Systems . . 14

3.1 Dependency Measures on Synthetic Data Sets 28

4.1 Data Sets for the Evaluation of PHT 37
4.2 Accuracy on UCI Data Sets . 39
4.3 Model Sizes on UCI Data Sets . 40
4.4 Accuracy and Model Size on Data Sets with Concept Changes 46

5.1 Data Sets for the Evaluation of MID and DIMID 66
5.2 Functions of the Time Series of the LNR Data Set 66
5.3 Mean Scores of Dependency on the LNR Data Set 70
5.4 AUC and F1-score Evaluation of Five Data Sets 71
5.5 Pairwise Comparison of Dependency Algorithms: AUC 72
5.6 Pairwise Comparison of Dependency Algorithms: F1-score 72

6.1 Smoothed Hierachic Layers for Loglag 87
6.2 Asymptotic Time and Memory Complexity of the Loglag Variants . . 95
6.3 Data Sets for the Evaluation of Loglag 97
6.4 Detected Lags and Errors of all Data Sets. 98

xiv Acknowledgements

Acknowledgements

For the last three years, many persons worked to ensure the success of this thesis,
lending their assistance and support, their advice and their experience, to all of whom
I feel deeply grateful. First, I would like to thank Prof. Dr. Volker Tresp for his super-
vision of this thesis. His greatest talent is his ability to put things into perspective and
always see the larger picture. I feel fortunate to have had him as my advisor.

At Siemens, my thanks go to Ariane Sutor, who made all of this possible through
her interest and trust. Dr. Andreas Hapfelmeier tirelessly helped me through all chal-
lenges, scienti�c and prosaic, and was always the �rst with whom I could discuss new
ideas. Listening to him earlier and more often would have saved me a headache or
ten. It was a pleasure to work and publish with him. All the people at IBI made the
days more interesting and more pleasant. Thank you for having me.

Felix and Viola, who have an open door for a tired person in need of a break,
deserve to be mentioned here as well. See you on Thursday.

Thank you so much to my family, which always listened patiently to bad expla-
nations. Especially to my grandfather, my example for character and determination,
Raphael, always the big brother, and, of course, to my parents for, well, everything.

I am eternally grateful to Lisa, who no only read these pages despite her own
demanding work in their �rst and most error-�lled form and reigned in my more
daring sentences, but also encouraged me whenever I needed it and supported me
throughout.

xvi Abstract

Abstract

Stream monitoring is concerned with analyzing data that is represented in the form
of in�nite streams. This �eld has gained prominence in recent years, as streaming
data is generated in increasing volume and dimension in a variety of areas. It �nds
application in connection with monitoring industrial sensors, "smart" technology like
smart houses and smart cars, wearable devices used for medical and physiological
monitoring, but also in environmental surveillance or �nance.

However, stream monitoring is a challenging task due to the diverse and changing
nature of the streaming data, its high volume and high dimensionality with thousands
of sensors producing streams with millions of measurements over short time spans.
Automated, scalable and e�cient analysis of these streams can help to keep track
of important events, highlight relevant aspects and provide better insights into the
monitored system. In this thesis, we propose techniques adapted to these tasks in
supervised and unsupervised settings, in particular Stream Classi�cation and Stream
Dependency Monitoring.

After a motivating introduction, we introduce concepts related to streaming data
and discuss technological frameworks that have emerged to deal with streaming data
in the second chapter of this thesis. We introduce the notion of information theoretical
entropy as a useful basis for data monitoring in the third chapter.

In the second part of the thesis, we present Probabilistic Hoeffding Trees, a
novel approach towards stream classi�cation. We will show how probabilistic learn-
ing greatly improves the �exibility of decision trees and their ability to adapt to chan-
ges in data streams. The general technique is applicable to a variety of classi�cation
models and fast to compute without signi�cantly greater memory cost compared to
regular Hoe�ding Trees. We show that our technique achieves better or on-par results
to current state-of-the-art tree classi�cation models on a variety of large, synthetic
and real life data sets.

xviii Abstract

In the third part of the thesis, we concentrate on unsupervised monitoring of data
streams. We will use mutual information as entropic measure to identify the most
important relationships in a monitored system. By using the powerful concept of
mutual information we can, �rst, capture relevant aspects in a great variety of data
sources with di�erent underlying concepts and possible relationships and, second,
analyze theoretical and computational complexity.

We present the MID and DIMID algorithms. They perform extremely e�cient on
high dimensional data streams and provide accurate results, outperforming state-of-
the-art algorithms for dependency monitoring.

In the fourth part of this thesis, we introduce delayed relationships as a further
feature in the dependency analysis. In reality, the phenomena monitored by e.g. some
type of sensor might depend on another, but measurable e�ects can be delayed. This
delay might be due to technical reasons, i.e. di�erent stream processing speeds, or
because the e�ects actually appear delayed over time. We present Loglag, the �rst al-
gorithm that monitors dependency with respect to an optimal delay. It utilizes several
approximation techniques to achieve competitive resource requirements. We demon-
strate its scalability and accuracy on real world data, and also give theoretical guar-
antees to its accuracy.

Zusammenfassung

Stream Monitoring bezeichnet die kontinuierliche Analyse von Daten die in unbe-
grenzter Menge in Form von Datenströmen auftreten. Diese Art von Analysen hat in
den letzten Jahren an Bedeutung gewonnen und große Entwicklungssprünge erfah-
ren. Sie wurden notwendig, da Datenströme in zunehmender Zahl und zunehmendem
Umfang von verschiedensten, komplexen Systemen erzeugt werden. Die Analyse von
Datenströmen ist nötig und �ndet praktische Anwendung im Betrieb von industri-
ellen, sensorüberwachten Anlagen, bei der Vielzahl von smarten Technologien wie
smarten, vernetzten Autos und intelligenten Häusern, tragbaren Geräten zur Über-
wachung der pesönlichen Gesundheit oder eigenen Fitness, aber auch in der Kon-
trolle von Ökosystemen zur Überwachung von Erosion oder Wasserreinheit oder den
unzähligen Kennzi�ern und Kursen aus der Finanzwirtschaft.

Stream Monitoring ist in der Regel eine technische und algorithmische Herausfor-
derung aufgrund der vielfältigen Art und wechselhaften Natur von Datenströmen und
wegen des großen Datenvolumens, der Vielzahl an parallelen Strömen und oft auch
hohen zeitlichen Frequenz von tausenden Sensoren die Datenströme mit Millionen
von Messungen aus einer Anlage erzeugen. Die automatische, skalierbare und e�-
ziente Analyse dieser Datenströme kann dabei unterstützen, wichtige Ereignisse zu
erkennen, relevante Entwicklungen hervorzuheben und ein besseres Verständnis für
das überwachte System zu gewinnen. Diese Arbeit beschäftigt sich mit dem Lernen
auf Datenströmen mit und ohne Klassenlabel. Es werden neue Methoden vorgestellt,
die sich zum Stream Monitoring besonders durch ihre breite Anwendbarkeit eignen.
Dies sind Methoden zur Klassi�kation von Datenströmen und zur Überwachung von
Abhängigkeiten in Datenströmen.

Diese Arbeit gliedert sich in vier Hauptteile. Nach einer allgemeinen Einführung
wird in den Kapiteln 2 und 3 das Konzept von Datenströmen vorgestellt und einige
Frameworks diskutiert, die speziell zum Arbeiten mit Datenströmen entwickelt wur-

xx Zusammenfassung

den. Zusätzlich werden wir die Informationsentropie und verwandte Ideen vorstellen,
die eine theoretische Grundlage für unser Datenmonitoring liefern.

Im zweiten Teil stellen wir Probabilistic Hoeffding Trees vor, einen neuartigen
Algorithmus zur Datenstromklassi�kation. Wir zeigen, wie probabilistisches Lernen
in Entscheidungsbäumen ihre Flexibilität und ihre Fähigkeit, sich auf Veränderun-
gen der Datenströme einzustellen, deutlich erhöht. Die vorgestellte Technik eignet
sich nicht nur für eine Vielzahl von Klassi�kationsmodellen, sondern ist zusätzlich
schnell und ohne signi�kant höheren Speicherverbrauch zu berechnen. Wir zeigen,
dass unsere Methode bessere Klassi�kationsergebnisse auf verschiedenen, großen,
synthetischen oder von Sensoren erzeugten Datensätzen erzielt als state-of-the-art
Klassi�katoren mit Baummodellen.

Der dritte Teil dieser Arbeit konzentriert sich auf das Monitoring von Datenströ-
men ohne Klassenlabel. Wir benutzen die Transinformation, ein entropisches Maß für
gegenseitige Abhängigkeit, um die wichtigsten Beziehungen in einem überwachten
System zu identi�zieren. Ein vielseitiges Maß wie die Transinformation ist notwendig,
um die jeweils relevanten Aspekte in verschiedensten Datenquellen mit unterschiedli-
chen Entstehungsmodellen und Beziehungen zueinander abzubilden. Dies bringt aber
auch theoretische Schwierigkeiten und zusätzliche Berechnungskomplexität mit sich.
Wir stellenMID undDIMID vor, Algorithmen, die diese Komplexitäten elegant bewäl-
tigen. Sie arbeiten sehr e�zient auf hochdimensionalen Datenströmen und erzielen
genaue Ergebnisse, welche die von state-of-the-art Algorithmen zur Überwachung
von Abhängigkeiten übertre�en.

Im vierten Teil dieser Arbeit nehmen wir Abhängigkeiten mit zeitlicher Verzö-
gerung in die Analyse von Abhängigkeiten mit auf. In praktischen Anwendungsfäl-
len können die gemessenen Größen zwar voneinander abhängen, aber die messba-
ren E�ekte erscheinen erst verzögert. Diese Verzögerung kann technische Gründe
haben, beispielsweise unterschiedliche Verarbeitungsgeschwindigkeiten in verschie-
denen Sensoren. Sie kann aber auch erscheinen, weil eine Ursache messbare E�ekte
erst mit Zeitverzögerung auslöst. Wir stellen Loglag vor, den ersten Algorithmus der
Abhängigkeiten unter Berücksichtigung einer optimalen Verzögerung überwacht. Er
zieht mehrere Approximationstechniken heran um den Verbrauch an Computerres-
sourcen zu minimieren. Wir demonstrieren die Skalierbarkeit und Zuverlässigkeit an
mehreren Datensätzen und geben theoretische Garantien für seine Genauigkeit.

Chapter 1
Introduction

Data Mining and Machine Learning are the predominant techniques we use today to
teach computers to learn from data, make data-based inferences or draw conclusions
from large amounts of data. Over the last decades however, there has been a fun-
damental shift going on in the way we collect and receive this data. It is no longer
just (manually or automatically) gathered in batches of limited size and fed into an
algorithm for processing, analysis or training. Instead, data is continuously created
by computers which are connected directly to other computers. In this new situation,
data becomes available piece by piece and over time. We may of course still store it in
a persistent way and process it as we are used to, once su�cient data has accumulated.
But in many applications it is more appropriate to think of the data as a data stream,
practically in�nite in size and duration and without persistence on a computer.[45]

1.1 Learning from Streaming Data

Most machine learning and data mining algorithms are designed with a scenario in
mind, where all data is available in full from the beginning of the learning process and
drawn independently from a stationary distribution. In this scenario, it is possible and
perfectly sensible to process the data several times, often independent of the order of
the processed data.

The world of data streams on the other hand is more complex. If data is streamed
over time, we need algorithms that deal with small but in�nitely growing data sets,
incorporate new data as it is received, and ensure optimal results at every step. The
streams or rather the stream sources frequently will be dynamic and not stationary,
meaning that important characteristics of the streams change over time. If algorithms

2 1. Introduction

are applied in such a dynamic environment, they must re�ect this dynamic as well,
be able to adapt their internal model over time and discard outdated information.

Stream monitoring is concerned with continuously analyzing data that is repre-
sented in the form of in�nite streams of data. This �eld has gained prominence in
recent years, as streaming data is generated in increasing volume and dimension in
a variety of areas. "Smart" technologies like smart houses and smart cars, wearable
devices used for medical and physiological monitoring become more common. But
also systems on a larger scale like the smart energy grid currently under develop-
ment, environmental surveillance systems for erosion or pollution, �nancial and in-
dustrial facilities are equipped with sensors that produce data streams in quantities
undreamed of before. Automated systems are needed that cope with this wealth of
data appropriately and in accordance with its streaming, dynamic nature.

However, stream monitoring is a challenging task due to the diverse and changing
nature of the streaming data, its high volume and high dimensionality with thousands
of sensors producing streams with millions of measurements. Automated, scalable
and e�cient analysis of these streams helps to keep track of important events, high-
light relevant aspects, and provides better insights into the monitored system. In this
thesis, we propose techniques adapted to streaming data, in particular Stream Clas-
si�cation and Stream Dependency Monitoring. These are examples for a supervised
and an unsupervised task respectively.

Such supervised and unsupervised settings are one way to divide the �elds of
machine learning and data mining. They are distinguished by the available target we
try to teach to an algorithm. In supervised settings we have some sort of label for every
instance of the data that indicates one of several distinct classes or functions. Most
often, the label is available during the algorithm training and the goal is to predict
the label from as-yet unlabelled new data. Exemplary tasks are classi�cation and
regression, the prediction of discrete and real valued labels. Unsupervised data does
not have such a well-de�ned label. The tasks are more general, to �nd structure or
patterns in the data, for example clustering or anomaly detection.

Both settings are highly relevant to the streaming scenario and both are topic of
this thesis. The central theme in the techniques in this thesis is an e�ort to quantify
the information content inherent in the kinds of measurements that constitute data
streams. We will show that taking the uncertainty of measurements into account
greatly improves classi�cation accuracy in dynamic streams. In unlabelled streams,
we will use entropy, a measure of the order contained in a system, as a powerful tool
to identify meaningful relationships.

1.2 Stream Mining Tasks 3

1.2 Stream Mining Tasks

Inspired by challenges in network monitoring, web mining, sensor networks and
many other areas that produce large amounts of streaming data, certain common
problems and research issues have emerged. The following overview is by no means
comprehensive but may serve as starting point for further enquiries.

Stream Prediction is likely the most well studied problem in recent stream min-
ing literature. Numerous approaches have been published that deal with the di�erent
aspects of stream classi�cation and regression. Some algorithms are direct adapta-
tions of batch predictors, others deal with the speci�c problems of stream mining like
the stationary distribution of data or load shedding, an issue of very high frequency
streams that threaten to overload algorithms. One of the best known classi�ers is the
VFDT or Hoe�ding Tree by Domingos et al. [38] and its many derived forms.

Stream Clustering is a particular di�cult problem on data streams. Not only is it
necessary to respect the development of clusters over time but the order of data in
a stream might heavily in�uence the results. This has signi�cant impact since we
cannot randomly access and reorder streaming data. Nevertheless, there exist single
pass or streaming clustering algorithms, the earliest being the hierarchical Leader
algorithm [91], and streaming adaptations of the well-known k-means algorithm for
example by Farnstrom et al. [41] and Domingos et al. [39].

Other algorithms concentrate on queries over the whole stream history, for exam-
ple to answer the question after the most frequently appearing events or to count how
many events of one type have occurred. These frequency counting or frequent pattern
algorithms often use sub samples of the data stream or otherwise reduce the data
volume. The �rst streaming algorithm to estimate item frequencies was the Count
Sketch[26]. It uses several independent hash-tables to answer such queries space-
e�ciently. The famous Count-Min Sketch [31] works on similar principles but pro-
vides stronger theoretical guarantees for its results.

Many algorithms deal with more specialized problems which appear due to the
particular nature of streaming data and often involve adapting a model to new de-
velopments. Among those are Change Detection itself and, closely related, Novelty
Detection and Anomaly Detection where short-term, exceptional events have to be dis-
tinguished from normal behaviour or gradual changes.

Literature that provides a more thorough introduction into stream learning and
discusses techniques and algorithms exhaustively and with respect to their technical
details can be found for example by Domingos et al. [40], Aggarwal et al. [1] and
Gama et al. [45, 46]. An excellent introduction on machine learning in general in-
cluding techniques for stream learning are the books by Mitchell [71] or Witten [98].

4 1. Introduction

This thesis deals with problems in stream classi�cation and dependency detection
in streams.

1.3 Contributions of this Work

In this thesis we study monitoring techniques of dynamic data streams and their ap-
plication to large sets of streaming sensor data. Its contributions can be summarized
as follows:

Uncertainty-aware Stream Classi�cation We will describe a novel class of online
decision trees, a classi�er for streaming data. Based on the well known Hoe�d-
ing Trees, we develop Probabilistic Hoeffding Trees. They are capable of
dealing with sudden concept changes in a data stream and provide fast, accu-
rate classi�cation results. The key idea is to incorporate the concept of uncer-
tain data into the decision model which improves and speeds up the learning
process on data streams with non-stationary distributions.

Entropy-based Dependency Monitoring of Data Streams The second contribu-
tion is a framework to monitor dependencies between data streams. The reason
we look for dependencies is the simple assumption that di�erent data streams
that behave similarly over time, i. e. show similar, mutually predictable be-
haviour, indicate interesting subgroups in the whole system. We show how
mutual information, an entropy-based measure for information shared between
streams, can be used as a measure for dependency that is not only optimized
for certain types of relationships. Calculating the mutual information in a care-
fully optimized way allows an incremental computation which allows excellent
e�ciency.

Entropy-based Lag Detection of Data Streams A further complication in moni-
toring dependencies are time delays in the data. Imagine, for example, rela-
tionships in weather data where temperature changes have delayed e�ects on
humidity or precipitation or multiple sensors picking up changes caused by the
same event, but from varying distances. We de�ne the problem of lagged de-
pendency as the analysis of two or more data streams for dependence and for
the lag at which the dependence is the strongest. We develop an algorithm to
e�ciently calculate the lagged dependency which uses geometric sampling and
adaptive compression of old data to provide very accurate results for smaller
delays and a good approximation for large delays.

1.3 Contributions of this Work 5

All signi�cant contributions have been published in the conferences proceedings
listed below as peer-reviewed articles. All of these were written largely by the author,
with the editorial oversight and assistance of Andreas Hapfelmeier and Volker Tresp.
Excerpts of the chapters that are taken verbatim from these publications are written
by myself.

[22] J. Boidol, A. Hapfelmeier, and V. Tresp. Probabilistic Hoe�ding trees. In In-
dustrial Conference on Data Mining, Best Paper Award, pages 94–108. Springer,
2015

[19] J. Boidol and A. Hapfelmeier. Detecting data stream dependencies on high di-
mensional data. In The 1st International Conference on Internet of Things and Big
Data, IoTBD 2016, pages 375–382. INSTICC, 2016

[20] J. Boidol and A. Hapfelmeier. Fast mutual information computation for depen-
dency-monitoring on data streams. In Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing. ACM, 2017

[21] J. Boidol and A. Hapfelmeier. Lagged dependencies in data streams. In Review
to: IEEE Transactions on Knowledge and Data Engineering, 2017

The rest of this thesis is structured as follows: The second chapter serves as an
introduction to data streams from a theoretical point of view. It also discusses some of
the recently emerging streaming engines, technological frameworks that aim to fol-
low the characteristics of streaming data and facilitate high-performance stream an-
alytics in practice. The quanti�cation of information is a central theme to this work.
We heavily use the concept of entropy as de�ned by information theory in this regard,
so Chapter 3 de�nes this and other related concepts to support the later chapters the-
oretically. Chapters 4 to 6 are centered around the aforementioned contributions and
describe them in detail. They also include descriptions of our implementations and the
design and results of experiments to evaluate each algorithm in practice. Chapter 7
summarizes this work and concludes with our thoughts on future research opportu-
nities.

6 1. Introduction

Chapter 2
Streaming Data

In this chapter, we will introduce the notion of streaming data and highlight di�er-
ences to batch data. We discuss technological frameworks that have emerged to deal
with streaming data.

We can imagine data streams as a series of events which occur continuously. Mes-
sages of these events are transmitted from their source to a processing computer.
When we compare them to batch data, data streams need di�erent management sys-
tems as well as a di�erent data model. We will discuss data stream models in Sec-
tion 2.1. Section 2.2 discusses the di�erences between learning from batch data and
learning from streaming data. Section 2.3 introduces a uniform notation and terminol-
ogy we use throughout this thesis. Not only algorithms but also the data management
systems themselves need to follow a di�erent logic to handle streaming data. We will
discuss Stream Management Systems in Section 2.4. Section 2.5 discusses the sources
for our streams.

2.1 Streaming Models

We can imagine data streams as a stochastic process that generates samples one after
another, independently from each other, and for an arbitrary long time. This model
explains the di�erences we see between batch data and stream data (cf. Table 2.1):
Data arrives one by one and we have no control over the order it arrives in. There
is also no known size of the total data, it is e�ectively in�nite. This also means, we
cannot store all data but have to discard (almost all of) it after processing.

We can distinguish several data stream models, here given by decreasing general-
ity. Those are the turnstile model, the additive model and the time-series model.[72]

8 2. Streaming Data

Table 2.1: Properties of Batch Data and Streaming Data.[45].

Batch Data Stream Data

Complete data set Arrival of data in increments
Random access to data No control over order of arriving data
Fixed size Unbound size
Permanent storage of data Data not (completely) stored after pro-

cessing

They each describe a series of items ai characterizing a function A.

• In the turnstile model, every element represents an update of a counter in A.
Each ai can be thought of as a tuple (j, ui) where the j-th counter is incremented
by an amount ui. Updates can be negative and for example cancel previous
increments. This is the most general model as the current state of a counter
gives no indication of the previous states. We can imagine this for example as
the number of users currently logged onto a number of server in a network.

• The additive model restricts the turnstile model. Updates can now only be pos-
itive integers. It is useful to describe for example network tra�c where we
monitor the number of times an IP address accesses a server

• In the Time-Series model, the items ai simply describe the current state of the
process A. We can formulate it in the Turnstile model as ai = (i, ai). In a sense
it is the most restrictive model since every counter is used only once. How-
ever, it is also very expressive and widely used since it is appropriate to de-
scribe data streams from continuous measurements, like sensor measurements
or stock prices.

Another way to look at streaming models is the type of information that is trans-
mitted. The updates could contain either values or events.

• In event streams each stream element represents an event that happened at the
speci�ed time. We generally have only a limited number of possible events, for
example alarms or discrete levels of a condition (low, medium, high for temper-
ature, etc.).

• In real valued streams, the elements are real numbers, giving a potentially more
�ne grained view and allowing more complex processing.

2.2 Stream Learning and Batch Learning 9

We can draw a comparison to discrete and numeric features in machine learning
to understand the di�erences between these types. Some classes of stream problems
apply only to event streams, for example the aforementioned frequency counting al-
gorithms. Of course the two types might be mixed together in a real system. Problems
like classi�cation and clustering frequently have to deal with both types of streams.

2.2 Stream Learning and Batch Learning
The traditional batch approach in machine learning assumes that all data, i. e. the
whole data set we operate on, is fully accessible during the learning process. This
requires that the whole data set �ts into main memory or is at least quickly accessi-
ble on a high performing �le system like HDFS, the distributed �le system used by
Hadoop. [5] It also assumes that the data collection is already completed and no other,
new relevant data has to be taken into account. This approach is shown in Figure 2.1.

Training Data

All Data
available

Test Data/
Production Data

Results

Final Model

Modelling
process

Figure 2.1: Batch learning setting.

The batch procedure obviously breaks down in the data stream scenario. We can-
not wait for all data to arrive since the stream has no end. We also cannot relearn a
full model whenever new data arrives since the computational cost will likely be too
high for non-trivial models.1 We could sample the incoming data down to a manage-
able load, for example if we keep randomly selected instances in a bu�er and discard
equally at random whenever our allotted storage capacity is reached. Sampling and
periodic re-learning on this sample can be a valid approach to adapt batch algorithms

1We can keep simple aggregate statistics like mean, minimum and maximum values, or event
counts. These will help us to build a model but are not su�cient themselves.

10 2. Streaming Data

to data streams. However, this seems also wasteful and runs into another problem:
Unlike a static data set, streams may undergo changes over time. In this case, older
data does not re�ect the current situation anymore and would not only slow down
the model building but actually harm the model quality.

Instead of relearning repeatedly, it seems more appropriate to create new algo-
rithms for streaming applications where the stream requirements have been taken
into account from the start. Such algorithms are called online learners or incremental
learners. The di�erent process is illustrated in Figure 2.2.

Tr
ai

ni
ng

St
re

am
(m

ul
tip

le
So

ur
ce

s)

Test Stream/
Production Stream
(multiple Sources)

Results

One Tuple
available

Model
Updates

Model
Application

Figure 2.2: Online and incremental learning setting.

Four main requirements have emerged for online learning [40]

1. Iterative/Only once processing of a tuple

2. Constant time to process every instance

3. Constant limited memory

4. Anytime Readiness

2.2 Stream Learning and Batch Learning 11

The main idea is a type of model, that can be quickly updated instead of having to
re-learn a model from scratch. Only one instance is processed at a time as it comes in.
The algorithm also has no control over the order of the stream and simply processes
one after the other. After the processing, the instance cannot be looked at again.
This is the �rst property from the list above. We can stretch it slightly by selecting
and storing some instances, for example those we consider typical or simply keep a
random sample we replace over time. Nevertheless, we cannot randomly access all
instances at will.

The processing and model update have to be done quickly enough to keep up
with the stream. This means, there is a �xed time limit for every instance, the second
property in our list. In particular there must be no connection between the number
of instances seen so far and the current processing time. The �rst update should not
take longer than the millionth update otherwise the processing time will grow without
bound. Ideally, a single update will not take longer than the time it takes for the next
instance to arrive. Otherwise, we have to skip over some instances – so called load
shedding – or use some sort of bu�er in the hope that we can catch up with the stream
in the future.

An important limitation is the restriction of memory usage, either because it is
actually infeasible to use that much memory or simply because it would be too ex-
pensive. Similar to the processing time in the second requirement, the processing of
a new instance and model update may only use a �xed amount of memory or storage.
The most relevant consequence of this is that we cannot store all or even a proportion
of the stream instances for future reference. We can only keep statistics or summaries
over the history of the stream. For classi�cation, this could mean the distribution of
an attribute per instance class. These statistics can be updated constantly and incre-
mentally without an increase in memory, as the data stream continually delivers new
data. A clever use of these statistics allows us to build more sophisticated models
without explicitly resorting to stored instances.

The last property follows from the nature of the data streams: Since they have
no end and we cannot wait for them to �nish, the model has to be ready at any time
during the lifetime of the stream to produce results, e. g. to classify an instance. There
is no clear separation between training and test/production phases since there is al-
ways new data we want to incorporate. We also want the best possible model we
can generate from the data seen so far. We should also expect an increase in model
performance over time, since the model gets better as more data is used in the model.

All four of these requirements depend at least to some degree on each other. For
example, if we expend some more memory for our algorithm we can store a certain
number of data instances and process those together. This technique is sometimes

12 2. Streaming Data

called mini-batching (cf. Section 2.4.2). On the one side, this can save processing time,
on the other side it means our model is not up-to-date for the time between the mini-
batch-updates. Those di�erent components have to be balanced against each other.

The same is true for hardware and software. Hardware, processing engine and
algorithm design have to �t together for the best results. For example, we can run an
algorithm that supports a high degree of parallelization on hardware that is optimized
for such use or run a very fast, streamlined algorithm on cheap hardware physically
integrated with or near the data source to get immediate results.

There exists a large selection of both supervised and unsupervised online algo-
rithms for di�erent purposes. Count-Min sketch [31] allows to maintain a frequency
table of events, CobWeb [42] is an online clustering technique. Stochastic gradient de-
scent [23] is an adaptation of the gradient descent optimization, FIMTDD [60] allows
online regression, to name only a few of the better established ones.

In this thesis, we will discuss two more classes of online algorithms: Hoe�ding
Trees for stream classi�cation in Chapter 4 and dependency monitors in Chapters 5
and 6.

2.3 Notation in this Thesis

For the purpose of this thesis, we call a data set a collection of data streams that orig-
inate from sources, usually some sort of sensor, in the same system. The individual
streams consist of a series of measurements as in the time-series model together with
a time stamp. The measurements may be values for the same characteristic, e.g. tem-
perature, recorded at di�erent physical source locations, or di�erent characteristics,
e.g. temperature and humidity, at the same physical location, or a combination of the
two. The measurements can be represented as rational numbers without unit. The
terms measurement and value are largely interchangeably, but we will use measure-
ment when we talk about the underlying physical phenomenon and value when we
talk about the more abstract processing, for example as input or instance in a classi-
�cation algorithm.

We use X = (x1
T ,x2

T , . . . ,xd
T) to identify a data set with d streams and Xt for

values at time t.2 This is somewhat similar to matrix notation for static batch data
sets but since a data stream has no de�ned start or end, the full matrix cannot ever
be realized, it actually doesn’t fully exist at any time. It cannot be realized because
it has theoretically in�nite size, and it is never complete because new data is created

2Please note that, following the usual convention, the capital T always indicates a transposed vector.
A lowercase t on the other hand always indicates an index of time.

2.4 Streaming Engines 13

and is continuously arriving. We cannot access this future data and we can store only
a limited amount of historic data. A row Xt of the data set contains the values from
all streams at one particular time stamp. Such a row is also called a tuple of the data
stream. In the context of a learning algorithm, we also speak of rows as the instances
of the data set.

We can select a window of all values of the data streams between time t1 and t2 as
Xt1,t2 = (Xt1 ,Xt1+1, . . . ,Xt2) (with each Xti a row of Xt1,t2) or for a single stream as
xt1,t2 = (xt1i , x

t1+1
i , . . . , xt2i)T . In reality the time stamps of measurements may not be

perfectly synchronized due to technical imprecision. In this case, the timestamps in a
row of X might not coincide absolutely but they are assigned the same index in the
sequence. For example, measurements at two locations every 5 seconds might result in
timestamps of (0.001, 4.992, 10.004, . . .) and (0.002, 5.002, 10.00, . . .). We can treat
them slightly idealized as parallel measurements at times (0, 5, 10, . . .) regardless of
the small imprecision. For the purpose of this thesis we will assume that data streams
are complete, i.e. have no missing values, and timestamps coincide. Timestamps then
function in the same way as sequence indices.

2.4 Streaming Engines
Since volume and speed of streaming data in real world applications brings traditional
computational paradigms to their limits, specialized stream processing frameworks
have emerged. They often aim speci�cally towards the real-time processing of high
volume data [93], usually based on an architecture that allows distributed and paral-
lel computation. They o�er di�erent levels of performance and features – in terms
of guarantees, fault tolerance, latency or throughput – and a way to implement ap-
plications more user-friendly and with more high-level code than in non-streaming
frameworks. We will present an overview of three of the more mature and popular
engines, Apache Storm, Apache Spark and Google Data�ow. The code written for
this thesis has been implemented mostly in Python and is compatible to PySpark, the
python interface of Apache Spark Streaming.

Table 2.2 summarizes some of the di�erences between traditional Data Base Man-
agement Systems and Data Stream Management Systems. They follow directly from
the properties of streaming data we laid out in this chapter. Queries are no longer
asked once but over the lifetime of a stream. The streamed data can only be accessed
as it comes in and not in a random order, since we do not (completely) store the data at
all. We also cannot rely on precomputed results since the characteristics of the stream
might change over time. Data Streams Management Systems and Stream engines are
designed with these characteristics in mind.

14 2. Streaming Data

Table 2.2: Comparison between Database Management Systems and Data Stream
Management Systems. Taken from [45].

Data Base Management Systems Data Streams Management Systems

One-time queries Continuous queries
Random access Sequential access
Persistent relations Transient streams (and persistent rela-

tions)
Access plan determined by query pro-
cessor and physical DB design

Unpredictable data characteristics and
arrival patterns

2.4.1 Apache Storm
Apache Storm [8] was �rst released in 2011 and attracted great interest. It was used
in the technology stack of Twitter and Spotify, popular social media applications with
huge data tra�c. Storm de�nes a topology of "Spouts" that connect to external data
sources and "Bolts" that act as computational nodes. Spouts and Bolts can be con-
nected in a directed acyclic graph to emit one or more result streams (see Figure 2.3).

Storms API has a native streaming model (as opposed to micro-batching) meaning
a stream tuple is processed without abstraction on top. This allows very low latency
but limits throughput and makes failure recovery more expensive. Storm guarantees
at-least-once processing where a tuple is sent again after a failed computation. That
way, nodes higher in the topology above a failure or earlier in the processing pipeline
might receive a tuple more than once.

Storm is one of the earliest streaming engines with signi�cant popularity and has
been considered as a de-facto standard. [84] For a higher abstraction, Storm o�ers an
alternative interface called Trident. It expands the capabilities of Storm for stateful
operations, similar but less developed to the feature set of Apache Spark, which we
will discuss in the next section.

2.4.2 Apache Spark
Apache Spark [7] is a framework for cluster computing designed for fault tolerance
and parallelization. The included streaming module, called Spark Streaming [100],
is built on top of the main Spark engine. Spark provides RDDs (resilient distributed
data sets) an abstraction on the input data which may be distributed over several
machines. They also provide fault tolerance since an RDD contains information about

2.4 Streaming Engines 15

input data stream
processed

data

Spout

Bolt A Bolt B

Bolt C

Figure 2.3: Apache Storm Topology with Spouts and Bolts as part of the stream pro-
cessing. The spouts are sources of data, the bolts form di�erent processing pipelines
and transform the stream data, e.g. �lter or aggregate it. Data is processed iteratively
in single tuples, which allows low latency but limits throughput.

Spark
Streaming

Spark Engine

input data
stream

batches of
input data

batches of
processed data

Figure 2.4: Micro-batched stream processing in the Apache Spark Streaming frame-
work. Small sets of data are passed on to the Spark engine and processed together,
which allows higher throughput at the cost of higher latency.

16 2. Streaming Data

its creation, so this and only this RDD can be re-created in case of failure.
Spark Streaming introduces "discretized streams", stream processing as a series

of batch computations on small time intervals. This is sometimes also called micro-
batching (cf. Figure 2.4). In each interval, the data is processed and the output stored
as RDD. Combining RDDs together with micro-batches makes failure recovery com-
paratively cheap. Spark therefore guarantees exactly-once processing where a tuple
is recovered by recomputing the RDD after a failed computation.

The micro-batches also allow a higher throughput compared to single tuple stream
like the Storm model [28] but cause much lower latency due to the coarse-grained
intervals.

Stream analysis with Spark is also made easier since code written for batch-style
analysis is more easily re-usable. The API even provides windowing operations as
further abstractions on the stream.

As a measure for popularity, it may be interesting to note that as of December
2016, the Apache Storm repository on Github lists almost 250 contributors, while the
Apache Spark project has over 1,000 contributors.

2.4.3 Google Cloud Data�ow

DataFlow
Engine

Stream

Batch

Grouped and Filtered

Windowed

Figure 2.5: Batch and stream processing in the Google Data�ow model. Data may
come as batch or from (potentially unaligned) data streams. It can be aggregated (for
example �ltered and grouped) or processed in windows over time.

A recent approach to stream analytics is the Cloud Data�ow Model by Google. [53]
It descends from Flume [25] and Millwheel [3], two lesser known frameworks for
distributed and streaming computation and aims towards data processing on massive
datasets. [4] We mention it here as an example for a more service-oriented framework.

2.5 Stream Data Sources 17

It concentrates on a windowing model supporting unaligned, i.e. phase-shifted,
windows and out-of-order processing. This allows low latency and completeness even
in the presence of late-arriving data.

As a framework, it also includes capabilities for data ETL (the process of extract-
ing data from heterogeneous sources, transforming it in a suitable data format and
loading it in a database), batch and real-time streaming analysis (cf. Figure 2.5). It has
therefore the potential and is designed to replace both Hadoop and MapReduce frame-
works for large scale analytic tasks. It is �exible enough to build a processing analysis
pipeline at high data volume suited for use cases that balance completeness and la-
tency. Unfortunately, so far it is not available as open source project but integrated in
Google’s Cloud Service platform.

2.5 Stream Data Sources
We use a variety of stream data sets for the experiments in this thesis. The data sets
themselves are freely and publicly available from online repositories or databases. We
use them to create our own reproducible data streams. A description of the data sets
and their origins can be found in the respective chapters where they are �rst used.

All the streaming engines mentioned above can connect to a selection of data
sources, like listening at a web socket, log �les on a �le system, or a dedicated stream-
ing platform like Apache Kafka [6] and other stream managers. That way, we can feed
our data into a stream process. However, they introduce a new class of sources for
potential errors and deviation. Ultimately, it is our goal to test our designs indepen-
dent from a particular streaming engine. Therefore, and to make experimental results
truly reproducible, we created our own small Python streaming suite, where data is
read from a hard drive and transformed into a constant stream. This was also the
best way to ensure �xed window sizes for windowed applications and to guarantee
independence from the processing environment.

18 2. Streaming Data

Chapter 3
Entropy Analysis

In many practical scenarios, we face an analysis task where labels are unavailable.
However, the research into unsupervised learning has developed techniques, such as
clustering and anomaly detection, that deal with problems without labels. An essen-
tial element of unsupervised techniques is an alternative criterion beyond the labels
which allows us to �nd structure and patterns in our data.

Entropy is a measure for the predictability and order within data and thereby a
very powerful and versatile tool to infer structure in the data. It provides a criterion to
separate random con�gurations and noise from structured behaviour. Even without
prior knowledge of what to expect from our data, it allows us to separate interesting
and useful parts from less meaningful ones. In this chapter, we will introduce entropy
based on Shannon-information theory and the closely related concept of mutual in-
formation.

Concepts and quantities from information theory appear as answers to funda-
mental problems in statistics, data compression and transmission, hypothesis testing,
probability theory and many more. To cite one example from machine learning: One
of the earliest decision trees ID3 and many related ones use the information gain, the
decrease in entropy, as the split criterion.[80, 79] Their properties also make them use-
ful tools in the task of data monitoring. "Elements of Information Theory" by Cover
and Thomas [33] can serve as a comprehensible and much more comprehensive in-
troduction for the topic. An interesting alternative introduction that focuses on visual
representations can be found by Olah [74].

20 3. Entropy Analysis

3.1 Shannon-Entropy and Di�erential Entropy
Entropy, broadly speaking, is a measure for the predictability or conversely the un-
certainty inherent in data, say a discrete random variableX with a known probability
mass function (pmf) p(x).

De�nition 3.1 The entropy H of X with probability mass function (pmf)
Pr(X = x) = p(x) is de�ned as

H(X) =
∑
x∈X

p(x) log

(
1

p(x)

)
. (3.1)

It is often described as a measure for order or disorder in closed systems, appears
as crucial quantity in our understanding of physics and chemistry, but is also useful
for comparing written text [87] or even study the expressiveness of gestures and body
movements [75].

The de�nition given above has originally been derived by Claude Shannon [86]
following some simple requirements for the entropy function. It also arises naturally,
for example as lower bound in data compression problems, and it is related to the
de�nition of entropy in thermodynamics. For a strict derivation see [33, Chapter 2].
The choice of base for the logarithm is somewhat arbitrary. We will use the natural
logarithm in the following. The unit for entropy in this case is called ’nat’, for the
binary logarithm it would be called ’bit’.

To give an example, let X be a discrete random variable over two types of person
we might meet, {’witch’, ’not a witch’}. Since witches are fairly rare, with p(’witch’) =
0.01; p(’not a witch’) = 0.99, we can be quite sure that any person we randomly meet
is not a witch. The entropy of X is H(X) ≈ 0.056 nats. In a world without witches,
there is no surprise in the question and the entropy is appropriately H(X) = 0 nats1.
The maximal surprise occurs in a world with equal numbers of witches and non-
witches with H(X) ≈ 0.69 nats.

The de�nition can be extended to more than one random variable, either jointly
as the joint entropy, or one random variable conditioned on the second as conditional
entropy. Keeping to the case of two variables, we get the following de�nitions:

De�nition 3.2 The joint entropy H(X, Y) of random variables X and Y with joint
distribution p(x, y) is de�ned as

H(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
1

p(x, y)

)
. (3.2)

1With the stipulation that log(0) · 0 = 0

3.1 Shannon-Entropy and Di�erential Entropy 21

De�nition 3.3 The conditional entropy H(Y |X) of random variables X and Y is de-
�ned with the probability distribution p(y|x) of Y conditioned on X as

H(Y |X) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
1

p(y|x)

)
. (3.3)

These de�nitions describe a relationship between two random variables. They are
obviously more interesting, if the variables are not independent. If this is the case, we
can learn something about the state of variableX from the state of variable Y (or vice
versa).

To continue our example, we have it on good authority, that witches burn bet-
ter than the average person, because they are made from wood. Let Y be a discrete
random variable over {’wood’, ’not wood’} If most normal persons are not made out
of wood, p(’wood’|’not a witch’) = 0.001, and most witches are, p(’wood’|’witch’) =
0.999, we get the situation we see in Figure 3.1.

The entropy, i.e. the surprise inherent in the question of whether or not someone
is made of wood, is ∼ 0.06 nats. (It is about as likely as meeting a witch, so we can
just assume everyone we meet is not made of wood.) However, the two quantities
are related and there is an easy test for woodenness2, so we can reduce the surprise
in meeting a witch further by administering this test. The conditional entropy for
H(X|Y) = 0.003 is much smaller than H(X) alone, since our test is quite precise.

From the example it should become clear that every additional test can only reduce
the uncertainty about the random variable. We could also work from the de�nitions
above and derive that conditioning on another variables never increases entropy:

H(X) ≥ H(X|Y).

There is a direct relation between the three entropies we de�ned so far. The joint
entropy of X and Y can be expressed as the sum of the entropy of X and the entropy
remaining in Y after X is taken into account, i.e. Y conditioned on X :

H(X, Y) = H(X) +H(Y |X).

The connections between the di�erent quantities is easier to understand if we
visualize the information content of the variables as in Figure 3.2. While the joint

2Wood �oats, as do ducks. A person lighter than a duck is made of wood and most likely a witch.
We thank Terry Jones for the example.

22 3. Entropy Analysis

1%

99%

0.999% 0.001%

98.9%0.099%

witch

normal

wood dirt

wood dirt

99.9% 0.1%

99.9%0.1%

Figure 3.1: The joint probability distribution of witches and woodenness.

entropy is the union of information in both variables and the conditional entropy can
be thought as the remaining information once the other variable is fully taken into
account, we can also ask for the overlapping or shared part of the information. This
mutual part is called the mutual information and can be de�ned analogous to the
previous de�nitions via the probability mass functions of X and Y .

De�nition 3.4 The mutual information I(X;X) of X and Y is de�ned as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (3.4)

Looking at Figure 3.2, we could also derive it from the previous quantities, either
by subtracting the joint entropy from both ’singular’ entropies, or we decrease one of
the singular entropies by the information content it does not share, the conditional
entropy:

I(X;Y) = H(Y)−H(Y |X) (3.5)
= H(X)−H(X|Y) (3.6)
= H(X)−H(X, Y) +H(Y). (3.7)

3.1 Shannon-Entropy and Di�erential Entropy 23

H(X)

H(X,Y)

H(X|Y) I(X;Y) H(Y|X)

H(Y)

Figure 3.2: The relation between entropy, joint entropy, conditional entropy and mu-
tual information of two discrete random variables X , Y .

The mutual information is, amongst other properties, a symmetric measure for the
shared information content. The larger the mutual information, the more knowledge
we can transfer from one variable to the other. It can therefore be thought as a measure
for mutual predictability, derived from the underlying probability distributions.

In our example, the mutual information between woodenness and witchiness is
about 0.052 nats, over 80% of the joint entropy. This not only shows us again that our
test for witches is a good one, but that it could also work in reverse: Knowing either
that a person we randomly meet is a witch or knowing that they are made of wood,
allows a prediction about the other with reasonable certainty.

We can turn this idea around and now claim the following: A high mutual infor-
mation is an indicator for a strong relationship between two random variables. It can
be used as a measure of dependence between them. We will make use of this property
later in Chapter 5 and Chapter 6.

Di�erential Entropy

We presented the case of entropy for discrete random variables so far. The continuous
case is largely analogous to the discrete case, with probability density functions (pdf)
for the random variables and integrals over the probability space taking the place of
the sums.

There are some important di�erences, most notably we have to take care that the
density functions and integrals exist. However, the same intuitions and relationships
between entropy, conditional and joint entropy, and mutual information apply to the
discrete case of entropy as well as to the continuous. For example, we can even prove
that the entropy of a quantization of a continuous variable X in n bins is very close
to the di�erential entropy plus a constant, h(X) + n. [33, Theorem 9.3.1]

24 3. Entropy Analysis

The continuous form for entropy is called either di�erential entropy or simply
continuous entropy.

De�nition 3.5 The di�erential entropy h of X with pdf f(x) is de�ned as

h(X) =

∫
S

f(x) log

(
1

f(x)

)
dx, (3.8)

where S is the sample space or support set of X

De�nition 3.6 The joint continuous entropy h(X, Y) of random variables X and Y
with joint pdf f(x, y) is de�ned as

h(X, Y) =

∫
S

f(x, y) log

(
1

f(x, y)

)
dx dy. (3.9)

De�nition 3.7 The conditional continuous entropy h(Y |X) of random variablesX and
Y with f(y|x) as probability distribution of Y conditioned on X is de�ned as

h(Y |X) =

∫
S

f(x, y) log

(
1

f(y|x)

)
dx dy. (3.10)

De�nition 3.8 The continuous mutual information of continuous random variablesX
and Y is de�ned as

I(X;Y) =

∫
S

f(x, y) log

(
f(x, y)

f(x)f(y)

)
dx dy. (3.11)

From the de�nitions we again get a partition of the mutual information into its
entropy components:

I(X;Y) = h(Y)− h(Y |X) (3.12)
= h(X)− h(X|Y) (3.13)
= h(X)− h(X, Y) + h(Y). (3.14)

3.2 Correlation and Dependency in Streams 25

3.2 Correlation and Dependency in Streams

In Chapter 2, we discussed data streams from a technical angle. In practice, they oc-
cur if events are observed over a long time and new observations are made available
continuously as they arise. This scenario is common in live monitoring through spe-
cialized sensors. Important areas are for example the large �eld of wearable devices
that measure physiological functions or track movement and activities for medical
and other health purposes. Ecological and geological monitoring of ecosystems, pre-
cipitation, erosion, animal behaviour, �ooding, etc. create large amounts of data con-
tinuously as well. A third area is the supervision of industrial facilities, monitoring
power plants, factories or complex machines in great detail with sensors for a variety
of parameters.

The connection to online learning and online algorithms appears obvious. We
wish to draw conclusions from the new data immediately without having all data
available at all times.

One way to monitor a large system is to look for close associations between pairs
of parameters. We could achieve this by calculating a measure of dependency for each
pair, identifying for example the relationships in the data and tracing changes as the
continue.

The best known indicator for pairwise correlation is probably Pearson’s correla-
tion coe�cient %, essentially the normalized covariance between two random vari-
ables. We can calculate % empirically from a sample of two variables as

% =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (3.15)

with sample means x̄ and ȳ. To do so for a pair of streams, we can simply de�ne a
window size suitable for our purpose and treat the excerpt of the stream as sample of
a random variable. The correlation as measured by Pearson’s % is, however, only one
kind of dependency that might occur.

3.3 Entropy Measures for Similarity

If we are searching for signi�cant patterns in our data, we naturally will �nd only
those patterns we are actively looking for. The pattern of interest here is dependency
or similarity between streams, and the measure we employ to de�ne dependency lim-
its our results from the start. Searching for very speci�c pattern, it may be the most

26 3. Entropy Analysis

sensible approach to employ a speci�c dependency measure to detect the most rele-
vant streams of interest.

However, to do so, we need to know the data set well enough to make several
assumptions with con�dence: We need a functional model of the processes we mon-
itor, knowledge of the type of relationships or have to know the distribution of the
data. In these cases, the task of detecting dependencies has already been done for
us, or is made much easier, since we already have a model available. This last case
is more relevant for anomaly detection in settings with stricter limitations. Here, we
are interested in a more general monitoring task.

If we knew the type of relationship or the expected distribution, we could choose a
specialized measure for the situation. Pearson’s or Spearman’s correlation coe�cients
have been designed for linear or monotone relationships, for example.

Many more interesting relationships though do not follow such simple functional
forms or can be described in a single functional form at all. Especially non-linearity in
time-series has been studied to some extent and may arise for a multitude of reasons.
It occurs for example due to shifts in the variance over time. [37] Most likely however,
non-linearity simply is found if the underlying processes that generate the data are
determined by non-linear functional relationships.

As an example, Figure 3.3 shows twelve two-dimensional data sets with a sim-
ple relationship between the x and y-attributes we can instantly recognize visually.
The strength of the relationship varies, but the data is clearly not random. A suit-
able measure for dependency should be able to di�erentiate these relationships from
background noise.

We calculate two measures of dependency for all of these data sets and compare
them in Table 3.1. Both measures are normalized between 0 and 1 if they are not
already in this range by de�nition. The mutual information is calculated with the
Kraskov-method we will discuss in later chapters. In the clear cases of correlation
(subsets a) and e)), MI is slightly lower than %, but still shows clearly a relationship. It
is much higher than % for the sets i) - l) with more unusual, non-linear relationships.

Our toy example makes clear, why a di�erent approach than simple correlation
analysis is useful to analyze our data. The type of signi�cant signals in the noise
cannot always be known in advance, so a measure for dependency should give weight
to all sorts of forms of "interesting" behaviour.

Of course, we must not on the other hand fall in the trap of under-�tting and falsely
recognize random behaviour as signi�cant. Entropy-based measures have shown to
do well as equipartitious general model to �nd all types of relations we are actually
interested in.[82]

3.3 Entropy Measures for Similarity 27

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a)

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

(c)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d)

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

(e)

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(f)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

(g)

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

(h)

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

(i)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

(j)

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

(k)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

(l)

Synthetic data sets

Figure 3.3: Synthetic data sets representing a variety of functional relationships. Mu-
tual information and Pearson’s % show di�erent behaviour due to their di�erent def-
inition of dependency.

28 3. Entropy Analysis

Table 3.1: Mutual information and Pearson’s % on synthetic data sets representing a
variety of functional relationships.

Data set MI % Data set MI %

(a) 0.99 1.00 (g) 0.05 0.38
(b) 0.13 0.80 (h) 0.03 0.00
(c) 0.06 0.39 (i) 0.33 0.02
(d) 0.06 0.06 (j) 0.13 0.02
(e) 0.98 1.00 (k) 0.15 0.06
(f) 0.14 0.81 (l) 0.23 0.03

The mutual information in particular is a symmetric measure of the mutual pre-
dictability of two (or more) random variables, and can be interpreted as a distance
measure where distance equates the strength of a relationship. It can be used for
variables on di�erent scales and in di�erent domains, and works with small or large
sample sizes suitable for practical purposes.

Therefore, we use a variant of the mutual information in streaming analysis, de-
tailed in Chapter 5 and Chapter 6.

Chapter 4
Stream Classi�cation

Stream classi�cation as a topic in machine learning is a sub-class of the common
classi�cation task: We want to assign to every instance of a data set one out of several
possible labels, based on the attributes of the instance. Stream classi�cation tackles
several additional complications compared to the pure classi�cation problem. We
operate on a stream of data instead of on a single batch of data and have to follow the
requirements of online learning as described previously in Chapter 2 in Section 2.2.

Stream classi�cation is a type of supervised learning where labels are available
from the training data. In general, this makes the evaluation and comparison of dif-
ferent algorithms easier, but poses the crucial challenge to generalize towards data
that has not seen before during the training. This is especially true with streaming
data where not even the training data is fully available at once.

In this chapter, we brie�y describe the idea of an online decision tree, a classi�er
for streaming data, and a novel class of such trees, the Probabilistic Hoe�ding Tree.
This class is capable of dealing with sudden concept changes in a data stream and
provide fast, accurate classi�cation results. Our own contributions in this chapter are
published in:

[22] J. Boidol, A. Hapfelmeier, and V. Tresp. Probabilistic Hoe�ding trees. In In-
dustrial Conference on Data Mining, Best Paper Award, pages 94–108. Springer,
2015

Sections 4.1, 4.2, 4.3 and 4.4 have been taken from the chapters "Online Decision
Trees", "Probabilistic Hoe�ding Trees", "Experiments" and "Related Work" in the au-
thors publication in [22] and edited to a minor extent. Newly added is Section 4.5.

30 4. Stream Classi�cation

4.1 Online Decision Trees

In this section, we quickly introduce an elementary notation and review the core
steps of constructing an Online Decision Trees. For an in-detail description, we refer
to the original publication of Domingos and Hulten [38] and the implementation of
VFDT in the MOA framework [16]. We then present our approach PHT (Probabilistic
Hoe�ding Tree) as extension of those trees and outline how these changes can be
implemented in a streaming fashion in the next section.

Frequently, data streams experience gradual or sudden changes in the distribution
of input attributes and target label, because external conditions undergo changes that
may be periodic and sudden like day and night cycles or incremental like wear and
tear. In these cases, algorithms have to adapt to the changing conditions. In reference
to the system or concept that generates the data, we call a gradual change concept drift
and an abrupt and sudden change concept change. In this chapter, we consider only
the case of concept change, which appears in several variants. Given measurements x
and events y we discern three main cases. (i) There can be a change in the distribution
of attributes P (x), a sampling shift or sometimes called virtual concept change. (ii)
There can be a change in the conditional probability of P (y|x) or (iii) there can be
changes in both the conditional probabilities and the distribution of attributes at the
same time. [59] The more challenging part we will refer to in the following is the case
of a changing conditional probability of attributes and class. This requires changes in
the model itself while a virtual shift might be addressed with an appropriate sampling
during training or classi�cation.

For streaming scenarios, online learners for classi�cation have been developed
that should meet the following criteria (cf. Section2.2): Learning should operate it-
eratively, i. e. build a classi�cation model incrementally without needing all the data
before training starts. It must use every record in a single pass, i. e. look at every
example only once. It needs to use only �nite resources, i. e. the algorithm’s training
time and space requirements should not grow with the data size. It should exhibit any-
time readiness, i. e. provide the best possible classi�cation model at any time during
execution.

Hoe�ding Tree-based classi�ers possess these desirable properties, and remain
fairly easy to implement and analyze. They have been shown to be robust, highly
scalable, fast and resource-e�cient. We will use these tree structures and improve
their classi�cation power on data streams that undergo concept changes. We will do
this be improving the way, Hoe�ding Trees learn from new data they have to adapt
to. We point out, that our algorithm design is based on the basic Hoe�ding Tree, but
is in principal also adaptable to any tree-like learner.

4.1 Online Decision Trees 31

The Hoe�ding Tree is a classi�er that deals with changing, streaming data[38],
also known as VFDT (Very Fast Decision Tree). Many state-of-the-art online classi�er
build on it, e. g. FIMTDD [59], CVFDT [58], VFDTc [47], iOVFDT [56], Hoe�ding
Option Trees [77]. Others use it as a component in ensemble algorithms[13].

VFDT and its derivatives incrementally build a decision tree and prune parts again
as necessary without looking at any record more than once. Splits in the tree are
introduced when su�cient examples have been seen to make a con�dent decision.
This decision is guided by statistical bounds, e. g. the eponymous Hoe�ding bound.
To do so, we need only su�cient statistics stored in the tree. The nature of these
statistics varies but typically allows to calculate the best split on promising attributes.
They have a constant space requirement so the size of the tree is limited by the number
of leafs, not by the total size of the data set used in training.

Let Ai = (ai,1, . . . , ai,k) be an instance of the data stream with k single-valued
attributes where the index i notes the position in the data stream. Like all decision
trees, Hoe�ding Trees consist of nodes and edges (V,E) where the nodes contain tests
to decide which edge to follow towards a leaf of the tree. To build a Hoe�ding tree,
during the training phase leaf nodes are recursively replaced with decision nodes.
The leaf nodes store statistics, decision nodes hold a split attribute and a split value.
Each instance is assigned to one leaf node v after a series of decisions that determine
the path from the root downwards. These decisions select the appropriate path based
on the relevant split attribute of the instance in each node along the path. Thereby
they determine the one branch of the tree the instance Ai falls into and the statistics
stored in leaf v are updated with the information from Ai. In some versions, statistics
in the nodes on the path to v are also updated. A decision to grow or prune the tree is
then based on these updated statistics with a statistical bound. The Hoe�ding bound
for example uses the number n of observations, their mean r̄, and the range of the
attribute R. With probability 1− δ the true mean is then at least r̄ − ε, with

ε =

√
R2 ln(1/δ)

2n
. (4.1)

The Hoe�ding bound in particular is useful because it makes no assumptions on
the distribution of the attributes. The unfortunate downside is that the bound is rather
conservative and needs to see more instances than other bounds to reach the same
guarantees. The bound is also crucial to detect changes in the data stream. If sig-
ni�cant changes are detected, the tree is adapted to the new data via pruning and
regrowing of leaves or subtrees. [15] We can formulate a simple pseudo code to build
an incremental tree as in Algorithm 1 below.

32 4. Stream Classi�cation

Algorithm 1 Basic Online Tree Induction
Input: data stream s yielding records Ai
Output: decision tree t

1: procedure TreeInduction
2: t← empty leaf
3: while Ai ← next_from(s) do
4: v ← get_leaf(Ai)
5: update(v, Ai)
6: test_for_split(v)
7: prune(t)
8: end while
9: end procedure

In the code and discussion we will only explicitly consider two-way splits for nu-
meric attributes. More branches are obviously possible, and necessary for categorical
attributes. However, the conditions for multi-way splits and discrete distributions,
i. e. counts for categorical attributes follow naturally in an analogous manner. The
tree has no de�ned stopping criterion or �nal state. Whenever more instances are
available from the stream, it continues to grow and adapt, and can at any time be
trained further. The same is true for prediction with the tree. There is no training
phase that has to be completed before predictions are possible. At any point in the
lifetime of the tree it can be used for training and prediction.

Ordinarily, the prediction for a record Ai is based on whatever model is stored in
the leaf to which Ai is assigned. In the simplest case this might be a single class-label
or numeric value, more sophisticated versions store speci�c classi�cation or regres-
sion models in the leaves.

4.2 Probabilistic Stream Classi�cation
The main idea in our approach is to treat records not as simple vectors of values. Since
the true, exact value for an attribute might be biased through imprecise measurements
or inexact transformation and transmissions, the value we receive has an inherent
uncertainty. We treat the attributes therefore as a probability density function (PDF)
centered around the recorded value instead to address this uncertainty. We call the
resulting class of Hoe�ding-tree algorithms PHT (Probabilistic Hoe�ding Trees).

We replace the single value of aij with a PDF p(aij) centered around aij . For
numeric attributes a uniform or Gaussian distribution are standard choices, for cate-

4.2 Probabilistic Stream Classi�cation 33

gorical attributes any discrete distribution speci�ed over the possible values of aij is
acceptable [27, 89]. The training process is then adapted in the following way: We
assume again an initial weight of 1 for every instanceAi. For every testAi encounters
in a node, e. g. aij < tm, the integrals wl =

∫ tm
−∞p(aij) daij and wr =

∫∞
tm
p(aij) daij

for the left and right branch are calculated. wl and wr simply determine, how much
of the probability mass of the attribute falls in the left and right branch respectively.
The values wl and wr are then interpreted as the weight of the branch. Ai follows
every branch where w is larger than 0 simultaneously and may reach more than one
leaf of the tree (cf. line 4 of Algorithm 2). The relative weight of a leaf v is then
wAi,v =

∏
m∈M wI,m, the product of all weights along the path to leaf v branching at

nodes m, where I ∈ {l, r} determines the branch taken at node m. The statistics in
these leaves are then updated with the information from Ai, as in the original case,
but down-weighted by wAi,m (cf. line 6 of Algorithm 2). The total weight of Ai still
sums to 1 but it promotes growth in more than a single leaf.

The modi�cations compared to the base algorithm are again given as pseudo code
in Algorithm 2.

Algorithm 2 Incremental Uncertain Tree Induction
Input: data stream s yielding records Ai
Output: decision tree t

1: procedure ProbabilisticTreeInduction
2: t← empty leaf
3: while Ai ← next_from(s) do
4: L← get_leaves(Ai)
5: for all v ∈ L do
6: update(v, Ai, rel_weight(Ai, v))
7: test_and_split(v)
8: end for
9: prune(t)

10: end while
11: end procedure

We treat instances for prediction the same way as in training, see the modi�cations
to the prediction process in algorithm 3. We do not need to change the prediction
model used in the tree, but we do not limit the prediction to one of those models.
Our algorithm �lters one record down to several leaves instead, and averages the
predictions from every leaf weighted by wAi,v.

34 4. Stream Classi�cation

The voting (cf. line 9 in Algorithm 3) has the additional advantage of giving a
con�dence for the prediction from which a con�dence value can be inferred, even if
the base algorithm does not provide one.

Algorithm 3 ProbabilisticTreePrediction
Input: tree t, instance Ai
Output: prediction x̃

1: procedure ProbabilisticTreePrediction
2: L← get_leaves(Ai)
3: V = ∅
4: for all v ∈ L do
5: vote← predict(Ai, v)
6: weight← rel_weight(Ai, v)
7: V = V ∪ (vote, weight)
8: end for
9: x̃← average(V)

10: return x̃
11: end procedure

Run over a long enough time, the trees generated from vectors of values and of
vectors of distributions – the instances during training – will naturally converge. This
follows from the fact that the distributions are symmetric and therefore unbiased com-
pared to the point-values. We also have to assume a stationary data stream, that is a
stream without concept drift or change.

The advantages can be found in two areas. One, in the greater �exibility this
allows during training and prediction. Training is less dependent on the order of
the instances, and – as experiments will show – in the speed of the convergence to-
wards the expected optimal tree. Two, if the stream is not stationary, the classi�er
becomes more reactive to changes in the data stream and faster convergence has an
even greater impact on the performance over the lifetime of the stream.

4.2.1 Online Approximation of Density Functions
The PDFs for the attribute values have always been chosen as uniform distribution
with mean equal to the original attribute point value and a standard deviation pro-
portional to (b− a)×w. Here a and b are the minimum and maximum values for the
attribute that actually appear in the data set and w controls the width of the distribu-
tion and the ’fuzziness’ of the attribute value. For the categorical attributes, the PDF

4.3 Experiments 35

has been constructed in such a way that 1− w of the probability mass is placed onto
the original value and the rest spread uniformly on the possible attribute values. For
the synthetic data set (with numerical attributes only), a and b have been chosen so
that P (xa ∈ [a, b]) ≥ 0.997 or approximately within three standard deviations of the
mean.

The notation as range of values is closely related to, but here more intuitive, than
the standard deviation. If the attribute range is unknown, it can be estimated from
the stream for example with a number of algorithms that incrementally calculate the
variance of the attribute, e. g. [65]. The ranges follow easily from the variance, for
example for uniform distributions σ2 = (b−a)2

12
.

Representing the PDF p(aij) is simple if the attribute j is categorical. Then we need
only the probability for every possible value of j which has a �nite and in practice
usually small domain. In principal, numeric attributes could be discretized in a num-
ber of bins and treated equivalently [70]. This, however, discards the ordinality of the
attribute values, forces multi-way splits and is necessarily low grained. In a simple,
non-analytic solution, which has been used for example in [95], the PDF can be rep-
resented numerically by storing a set of s sample points drawn from p(aij) which ap-
proximates any function with a discrete distribution. Conveniently, this works equally
well for numeric and categorical attributes and for all types of distributions. We chose
s = 100 which provided a balance between approximation quality and performance
in our tests.

4.3 Experiments
To test our algorithm we used 4 large data sets collected from sensor readings or
network streams and one synthetic data set. The real data sets are all available at the
UCI machine learning repository and range from 5k to 580k in size. While these are
suitable to gauge the algorithm behavior on real world data, we also use synthetic
data to test performance in longer runs. For those experiments we used instance
streams of 5 million instances. All test runs have been performed on a PC with an
Intel Xeon 1.80GHz CPU, running Linux with a 2.6.32 x86_64 kernel, and with memory
limitations set to 64 MB.

4.3.1 Implementation
We adapted three di�erent tree induction algorithm to PHT: Hoe�dingAdaptiveTree
[15], iOVFDT [56] and Hoe�dingOptionTrees [77] to Hoe�dingAdaptiveTreePHT,
iOVFDTPHT and Hoe�dingOptionTreePHT. We implemented all three in the MOA

36 4. Stream Classi�cation

framework [16], where reference implementations of the aforementioned algorithms
exist and the algorithms could easily be integrated.

For the evaluation of the experiments, we recorded accuracy, resulting tree size
and training time measured in an interleaved test-then-train setting where every in-
stance is �rst used for blind testing, and then to train the tree. [15] The standard
deviation for each measure is computed over 10 repeated experiments with shu�ed
data sets or di�erent initialization parameters for the synthetic data set. For the accu-
racy we use a fading average as described in [49] with a fading factor α of 0.99. The
fading average Mα(i) is de�ned as

Mα(i) = Sα(i)
Nα(i)

(4.2)
Sα(i) = Ii + α× Sα(i− 1); Sα(1) = I1 (4.3)
Nα(i) = 1 + α×Nα(i− 1); Nα(1) = 1, (4.4)

where Sα is the fading sum of observations, Nα the fading increment and I = 1 for a
correct prediction, 0 otherwise.

We report tree size in number of nodes rather than model size in bytes. The con-
sumed memory depends not only on the implementation but also on the number and
types of attributes in a data set. The number of nodes on the other hand allows an
easier comparison of di�erent tree models. We test our algorithms �rst on the static
data sets to establish their performance and advance to time changing data streams
in the following sections.

4.3.2 Data Sets
The data sets for our experiments are collections of sensor and other streams from
di�erent types of sources. Table 4.1 summarizes their characteristics.

Robot Movement Data (RM)

The RM data set is available since 2010. It contains 24 numeric attributes recorded
from the a robot’s sensors and four distinct classes, which determine the robot’s
course along a wall. The data set contains 5,456 instances [44].

Person Activity Analysis (PA)

The PA data set is available since 2010. It recorded the instances collected from four
sensors placed on both ankles, belt and chest of �ve people. Each instance has �ve

4.3 Experiments 37

numeric attributes, two categorical attributes and one of eleven classes. The classes
distinguish human activities, e. g. walking, standing, falling, etc. The data set contains
164,860 instances [62].

Network Attack Detection (NA)

The NA data set has been published for the KDD CUP 1999. It describes network
connections and is used to classify normal and abnormal connections, i. e. attacks.
It contains 34 numeric and seven categorical attributes like duration, error rate and
protocol type. The connection types are distinguished in 23 distinct classes. We use
10% of the full data with 494,021 instances [92].

Cover Type (CT)

The CT data set is available since 1999. It collects surveillance sensor data of forest-
land. Each instance provides 42 categorical attributes and eleven numeric attributes
like soil type, elevation, and hill shade. It distinguishes cover types in seven classes.
The data set contains 581,012 instances [17].

Synthetic RBF Stream (RBF)

This type of synthetic stream uses a radial basis function to generate arbitrarily large
data sets. Using di�erent initialization parameters we can create di�erent streams,
each of arbitrary length. The streams for the experiments were initiated with �xed
seeds to ensure reproducibility. We set the parameters to use 50 base functions that
generate 15 attributes and 4 classes and limited stream size to �ve million instances.

Table 4.1: Data sets for the classi�cation experiments with length n and dimension d
of the data sets.

Data set description d n

Robot Movement (motion tracking data) 25 5,456
Network Attack Detection (network tra�c data) 42 49,402
Personal activity (motion tracking data) 7 164,860
Cover Type (environmental data) 54 581,012
RBF Stream (synthetic data) 20 5,000,000

38 4. Stream Classi�cation

4.3.3 Classi�cation on Static Data Streams
We implemented as PHT variants the following classi�ers: Hoe�dingAdaptivePHT,
iOVFDTPHT and Hoe�dingOptionPHT. We tested these on the �ve large data sets
described in Section 4.3.2 and varied the values for the width w of the assumed dis-
tribution from 0 to 0.5. w = 0 means no uncertainty and is equivalent to the base
classi�ers our algorithms build upon. In general, we see an improvement forw ≤ 0.1,
with small to moderate (3.3%) improvement of accuracy. Accuracy drops for larger
values of w that would imply major uncertainty and are not listed here.

There is not one base classi�er that outperforms the others over all data sets. Tak-
ing the best performing setting for each classi�er and data set, we see an improvement
in 10 out if 15 cases (each signi�cant with p < 0.1, in a one sided t-test) in Table 4.3.
Figure 4.1 shows the �nal accuracy for the smallest (RM) and the largest (CT) UCI data
set. The fading accuracy used gives less weight to the earlier test examples, giving an
overall accuracy that favors the recent predictions.

Figure 4.2 shows the accuracy during the lifetime of the data stream of the RBF
data set. We used the RBF data set to analyze the behavior of the algorithms on much
longer lived data streams and see improvement over the base classi�ers, especially for
the Hoe�ding Adaptive Tree.

The tree size on average stays within two nodes of the base classi�er, with a few
exceptions on the larger data sets. There is no clear correlation between changes
in model size and improved performance, with �ve of the eight improved models
being smaller, three larger than the base classi�er. Tree size does, on the other hand,
decrease slightly with increasing values of w since a �atter distribution makes splits
in the tree less likely.

The most interesting observation here is, how even very small values for w can
improve the classi�cation without major cost to the model. Running time for the best
performing models with w 6= 0 stays within a factor of 2 to the runtime of the base
classi�er. Our algorithms (with w ≤ 10%) hold equal to or considerably outperform
the base algorithms.

4.3 Experiments 39

Table 4.2: Classi�cation accuracy on 4 UCI data sets with di�erent width-options for
the attribute PDFs. UA00 is equivalent to the base algorithm, UAmin to a PDF with
0.1% width of the attribute range, UA05 to a width of 5% of the attribute range, etc..

Accuracy in %
RM data set

HOTPHT HATPHT iOVFDTPHT
UA00 56.81 ± 4.83 50.49 ± 1.54 79.68 ± 2.61
UAmin 56.58 ± 4.81 54.54 ± 1.18 79.95 ± 2.67
UA05 54.84 ± 1.45 54.38 ± 1.11 76.21 ± 2.12
UA10 54.30 ± 1.30 53.67 ± 1.19 72.90 ± 1.73

PA data set
UA00 50.12 ± 0.29 46.84 ± 0.15 39.43 ± 0.22
UAmin 50.21 ± 0.28 48.10 ± 0.44 39.35 ± 0.34
UA05 49.80 ± 0.36 47.90 ± 0.53 39.22 ± 0.31
UA10 48.75 ± 0.21 47.19 ± 0.66 38.40 ± 0.43

NA data set
UA00 99.70 ± 0.04 98.34 ± 0.02 98.89 ± 0.17
UAmin 99.38 ± 0.17 99.08 ± 0.23 98.79 ± 0.15
UA05 99.35 ± 0.17 99.11 ± 0.20 98.84 ± 0.15
UA10 99.04 ± 0.15 98.75 ± 0.38 98.41 ± 0.22

CT data set
UA00 71.04 ± 0.30 69.65 ± 0.15 68.61 ± 0.49
UAmin 71.11 ± 0.32 70.11 ± 0.24 68.90 ± 0.47
UA05 70.04 ± 0.45 70.42 ± 0.18 68.91 ± 0.68
UA10 68.87 ± 0.30 70.35 ± 0.18 67.98 ± 0.58

RBF data set
UA00 91.73 ± 1.21 91.72 ± 0.04 88.68 ± 5.21
UAmin 92.14 ± 1.70 93.33 ± 0.02 83.75 ± 4.55
UA05 92.89 ± 1.49 92.52 ± 0.03 84.29 ± 0.42
UA10 92.45 ± 1.86 90.85 ± 0.07 79.62 ± 0.08

40 4. Stream Classi�cation

Table 4.3: Tree size of �nal tree on 4 UCI data sets with di�erent width-options for
the attribute PDFs. UA00 is equivalent to the base algorithm, UAmin to a PDF with
0.1% width of the attribute range, UA05 to a width of 5% of the attribute range, etc..

Tree size in #nodes
RM data set

HOTPHT HATPHT iOVFDTPHT
UA00 0.60 ± 1.26 0.00 ± 0.00 5.90 ± 0.57
UAmin 0.60 ± 1.26 0.00 ± 0.00 6.10 ± 0.74
UA05 0.20 ± 0.63 0.00 ± 0.00 6.90 ± 0.88
UA10 0.40 ± 0.84 0.00 ± 0.00 6.80 ± 0.63

PA data set
UA00 3.30 ± 0.48 4.00 ± 0.00 3.80 ± 0.42
UAmin 3.20 ± 0.42 3.20 ± 0.42 3.90 ± 0.32
UA05 3.10 ± 0.32 3.40 ± 0.52 3.90 ± 0.32
UA10 3.00 ± 0.00 3.10 ± 0.57 3.70 ± 0.48

NA data set
UA00 4.60 ± 1.26 2.10 ± 0.32 3.80 ± 0.92
UAmin 3.70 ± 0.48 4.30 ± 0.67
UA05 3.20 ± 0.42 4.20 ± 0.42 3.60 ± 0.70
UA10 6.50 ± 1.18 3.70 ± 0.67 5.20 ± 0.42

CT data set
UA00 10.20 ± 1.40 8.33 ± 1.12 6.30 ± 1.16
UAmin 10.00 ± 1.70 13.00 ± 1.94 7.30 ± 0.82
UA05 8.90 ± 0.74 9.56 ± 0.73 7.60 ± 1.07
UA10 7.80 ± 0.63 9.78 ± 1.39 7.60 ± 0.84

RBF data set
UA00 22.00 ± 7.07 27.00 ± 0.00 9.50 ± 0.71
UAmin 22.00 ± 2.83 26.00 ± 0.00 10.00 ± 0.00
UA05 23.50 ± 12.02 32.00 ± 0.00 9.50 ± 0.71
UA10 21.00 ± 7.07 26.00 ± 0.00 8.50 ± 0.71

4.3 Experiments 41

●

●

●

50
55

60
65

70
75

80

Evaluation on
RM data set

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
+

/−
 s

td
.d

ev
.

●

●

●

HAT

HOT

iO
VFDT

●

UA 0
UA 0.001

UA 0.05
UA 0.1

(a) RM data set with 5k instances.

●

●

●

67
68

69
70

71
72

Evaluation on
CT data set

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
+

/−
 s

td
.d

ev
.

●

●

●

HAT

HOT

iO
VFDT

●

UA 0
UA 0.001

UA 0.05
UA 0.1

(b) CT data set with 580k instances.

Figure 4.1: Comparison of di�erent �avors of Hoe�ding-Tree based classi�ers
(iOVFDTPHT (iOVFDTPHT), Hoe�dingOptionTreePHT (HOTPHT), Hoe�dingAdap-
tiveTree (HATPHT)) on large UCI data sets. Shown here are only the smallest and the
largest of the used data sets. UA gives the width-parameter of the PDF replacing the
attribute values. Accuracy is the accuracy with a fading factor of 99%. The standard
deviation is calculated from 10 shu�ed runs.

42 4. Stream Classi�cation

20 40 60 80 100

50
60

70
80

90
10

0

Evaluation on RBF data stream

x 50000 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

87
.5

89
.5

91
.5

93
.5

95
.5

97
.5

UA 0
UA 0.001

UA 0.05
UA 0.1

(a) Hoe�dingAdaptiveTreePHT on RBF data stream with
5M instances.

20 40 60 80 100

60
70

80
90

10
0

Evaluation on RBF data stream

x 50000 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

87
.5

89
.5

91
.5

93
.5

95
.5

97
.5

UA 0
UA 0.001

UA 0.05
UA 0.1

(b) Hoe�dingOptionTreePHT on RBF data stream with
5M instances.

Figure 4.2: Evaluation on RBF stream. The plots shows the accuracy over a the lifetime
of a stream with 5 million instances exemplary for the Hoe�ding Adaptive Trees and
Hoe�ding Option Trees. The vertical axis is enlarged from the 20%-mark on.

4.3 Experiments 43

4.3.4 Classi�cation on Changing Data Streams
While stationary streams are much easier to deal with, we expect both gradual and
sudden changes in real life streams. We therefore especially studied the e�ects of con-
cept change, i. e. changes in the conditional probability of the classes given attribute
vectors, and the improvements our algorithm achieves in such a setting. This occurs
if an observed stream/the underlying system undergoes di�erent phases in its lifetime
like seasonal changes, day-night cycles in ecological systems, or di�erent production
phases in industrial machinery. Normal behavior might look completely di�erent be-
fore and after these changes and the classi�cation algorithm has to adapt accordingly.
While Hoe�dingAdaptiveTrees and Hoe�dingOptionTrees have the capability to de-
tect changes and adapt, iOVFDT does not have a mechanism to adapt to dynamic
streams and is not included in this section.

To evaluate the e�ect of changes for the other classi�ers, we streamed each of
the original UCI data sets in the stream �ve times in a row, but at each repetition
switched the order of the numeric attributes as suggested by e.g.[97, 99, 57]. This
permutation of attributes induces the desired concept changes and at the same time
keeps the integrity of the data set compared to, say, introducing bias or noise into
the data. In the RBF data set we simulated such changes by changing the parameters
of the generating function. Figure 4.3 shows the classi�cation accuracy during the
lifetime of a RBF-stream with concept changes every 200.000 records.

To compare the accuracy over the total lifetime, we averaged the accuracy over 100
sample points during the stream life time and report the results in Table 4.4. After ev-
ery concept change, all classi�ers fall back in accuracy and recover gradually, but our
algorithms recovers at a much faster rate and in this setting of changing streams sig-
ni�cantly (p < 0.1 in a one-sided t-test for the best-performing setting) outperforms
the base classi�ers. Figure 4.3 and Figure 4.4 show how accuracy behaves before and
after the concept change. For the smaller data set shown in Figure 4.4a the break-
down between change is less pronounced since the classi�er has not reached a stable
plateau before the concept change as in the longer-lived streams. Our algorithm im-
proves the results of the base classi�ers by up to 16% with an average improvement
of 3.2%. We improve over Hoe�dingOptionTree in three out of �ve data sets and over
Hoe�dingAdaptiveTree in �ve out of �ve data sets with no signi�cant increase in
model size.

44 4. Stream Classi�cation

20 40 60 80 100

50
60

70
80

90
10

0

Concept change in RBF stream at 200k intervals

x 10000 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

UA 0
UA 0.001

UA 0.05
UA 0.1

(a) Hoe�dingAdaptiveTreePHT

20 40 60 80 100

60
70

80
90

10
0

Concept change in RBF stream at 200k intervals

x 10000 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

UA 0
UA 0.001

UA 0.05
UA 0.1

(b) Hoe�dingOptionTreePHT

Figure 4.3: E�ect of concept changes simulated with RBF stream. UA gives the width-
parameter of the PDF replacing the attribute values. Accuracy is the accuracy with a
fading factor of 99%.

4.3 Experiments 45

20 40 60 80 100

30
40

50
60

70
80

Concept change in RM data set

x 273 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

UA 0
UA 0.001

UA 0.05
UA 0.1

(a) Hoe�dingAdaptiveTreePHT

20 40 60 80 100

50
55

60
65

70
75

80

Concept change in CT data set

x 1000 training instances

fa
di

ng
 a

ve
ra

ge
 o

f a
cc

ur
ac

y
in

 %

UA 0
UA 0.001

UA 0.05
UA 0.1

(b) Hoe�dingAdaptiveTreePHT

Figure 4.4: E�ect of concept changes simulated with UCI data sets. UA gives the
width-parameter of the PDF replacing the attribute values. Accuracy is the accuracy
with a fading factor of 99%.

46 4. Stream Classi�cation

Table 4.4: Accuracy and model size on the data sets with 4 induced concept changes.
UA00 is equivalent to the base algorithm, UAmin to a PDF 0.1% width of the attribute
range, UA05 to a width of 5% of the attribute range, etc.. Accuracy is the average of
the accuracies at 100 sample points during the stream existence. Model size is the
number of nodes in the �nal tree structure.

RM data set ×5

Accuracy in % Tree size in #nodes
HOTPHT HATPHT HOTPHT HATPHT

UA00 65.43 ± 4.07 58.65 ± 0.97 8.30 ± 1.06 5.70 ± 0.67
UAmin 65.09 ± 4.23 67.16 ± 1.73 8.50 ± 0.97 5.40 ± 1.65
UA05 60.42 ± 0.91 62.23 ± 3.78 6.70 ± 0.82 8.70 ± 2.58
UA10 58.31 ± 0.61 63.62 ± 3.55 6.70 ± 0.67 6.50 ± 2.55

PA data set ×5

Accuracy in % Tree size in #nodes
UA00 44.66 ± 0.89 43.11 ± 0.48 1.00 ± 0.00 1.10 ± 0.32
UAmin 44.66 ± 0.91 45.22 ± 0.33 1.00 ± 0.00 1.40 ± 0.52
UA05 44.34 ± 0.94 45.05 ± 0.32 1.10 ± 0.32 1.20 ± 0.42
UA10 43.81 ± 0.94 44.60 ± 0.27 1.10 ± 0.32 1.20 ± 0.42

NA data set ×5

Accuracy in % Tree size in #nodes
UA00 97.65 ± 0.58 97.61 ± 0.21 3.90 ± 0.57 2.70 ± 0.48
UAmin 97.72 ± 0.56 98.31 ± 0.51 3.00 ± 0.00 1.00 ± 0.00
UA05 97.97 ± 0.46 98.63 ± 0.28 3.60 ± 0.52 1.00 ± 0.00
UA10 97.99 ± 0.45 98.77 ± 0.27 3.40 ± 0.52 1.00 ± 0.00

CT data set ×5

Accuracy in % Tree size in #nodes
UA00 63.81 ± 1.12 65.81 ± 0.50 8.90 ± 0.57 2.50 ± 0.53
UAmin 63.67 ± 1.10 67.45 ± 0.46 9.00 ± 0.67 3.20 ± 0.42
UA05 63.59 ± 0.95 67.23 ± 0.32 8.60 ± 1.17 3.00 ± 0.00
UA10 64.41 ± 1.04 67.05 ± 0.52 9.10 ± 1.20 2.90 ± 0.32

RBF data set ×5

Accuracy in % Tree size in #nodes
UA00 84.70 ± 1.16 73.52 ± 2.40 12.50 ± 0.58 9.40 ± 2.70
UAmin 85.62 ± 0.69 85.99 ± 0.37 13.25 ± 1.26 9.80 ± 0.84
UA05 87.15 ± 0.41 88.61 ± 0.70 13.50 ± 1.00 10.00 ± 0.00
UA10 87.18 ± 0.98 89.71 ± 0.70 13.00 ± 0.82 10.20 ± 0.45

4.4 Related Work 47

4.4 Related Work
In the last years, substantial research e�ort has been put into stream analysis and
stream processing. Besides the more technical approaches like the streaming engines
we discussed in Chapter 2, batch procedures have been adapted to the world of data
streams and novel algorithms have been designed to power stream analytics.

The earliest stream classi�cation with iterative tree models has been developed
by [38] and built upon by others, for example in [13], [47], [56], [58], [77]. [78] used
an uncertainty-aware approach to improve classi�cation models on static data, [70]
used a similar approach for online stream-classi�cation.

The area of uncertainty-aware designs overlaps with research into fuzzy algorithm
design and covers topics from clustering uncertain data [30, 69, 73] or outlier detec-
tion [2] to querying probabilistic databases [68]. Classi�cation with tree models for
uncertain data has been done by e. g. [95].

The common idea in these approaches is that the expected distance between two
or weights of objects are calculated from probability distributions. These distribu-
tions are inherent or derived from the data. Our work in this chapter takes concepts
from the research into uncertainty and applies them to classi�cation of streaming
data. Uncertainty is not necessarily a quality of the data and acceptable performance
in e. g. classi�cation tasks can be reached without addressing it. But even in these
cases, we can use it as a tool to extract more information from the data and enhance
prediction.

We continue their work and extend the analysis to cases with time-changing data
streams. To the best of our knowledge, we have presented the �rst Uncertainty-aware
classi�er for data streams with concept change.

4.5 Summary
In this chapter we have shown a generic approach that extends stream classi�cation
models to incorporate the concept of uncertain data. We tested this approach on
several classi�ers with tree models. On �ve sensor data sets, we achieved signi�cantly
improved accuracy with comparable model size and runtime across all the data sets
and classi�ers we examined.

In the case of data sets with concept change we improve accuracy by up to 16%
with 3.2% on average. Our approach reacts swiftly to changing data streams which
makes it especially suited to environments where the concept generating the streams
changes periodically, as is the case in many industrial or ecological applications. Non-
synthetic data where the data quality is quanti�ed, i. e. the actual uncertainty of

48 4. Stream Classi�cation

measured values is known appears not to be available at the moment. If such data
sets become accessible, we expect much more interesting results if we could substi-
tute empirical values for the idealized PDFs. Also, we believe that the approach of
uncertainty-aware data can be broadened to other types of algorithms, not limited to
classi�cation or tree-like prediction models.

Chapter 5
Dependency Monitoring

In the previous chapter, we discussed the application of machine learning to a labelled
data stream, an example of online classi�cation. In this chapter, we will extend stream
analysis to settings with a di�erently de�ned task. In contrast to the previous super-
vised learning task, we have no error or loss function to minimize. Instead we want
to infer hidden patterns from the data.

We will present several techniques to monitor dependencies between data streams.
The reason we look for dependencies is the simple assumption that di�erent data
streams that behave similarly over time, i. e. show similar, mutually predictable be-
haviour, indicate interesting subgroups in the whole system. To evaluate our �ndings,
we use synthetic and real data sets and compare our techniques to other algorithms.

Our contributions in this chapter are published in:

[19] J. Boidol and A. Hapfelmeier. Detecting data stream dependencies on high di-
mensional data. In The 1st International Conference on Internet of Things and Big
Data, IoTBD 2016, pages 375–382. INSTICC, 2016

[20] J. Boidol and A. Hapfelmeier. Fast mutual information computation for depen-
dency-monitoring on data streams. In Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing. ACM, 2017

Section 5.1 has been compiled from the Sections "Mutual Information" in [19] and
"Data Stream Dependency" in [20] with minor supplements. Section 5.2 has been
rewritten with material from "Estimation of PDFs" in [19], Section 5.3 is based on
Section "DIMID" in [20] with minor supplements. Section 5.4 combines the Sections
"Experimental Evaluation" and "Experiments" from [19] and [20]. Section 5.5 has been
extended from "Related Work" in [20]. Section 5.6 has been newly added.

50 5. Dependency Monitoring

Manufacturing of inexpensive sensors and the desire to monitor systems as di-
verse as vehicles, industrial plants, smart houses, medical instruments or whole eco-
systems produce an abundance of data. WSNs (wireless sensor networks) are used
in applications like pollution, tra�c or water quality monitoring. The data is created
by those sensors, transmitted to a central station, and the streams of data need to be
automatically evaluated and analyzed.

Imagine for example one large production plant with thousands of sensors em-
bedded in machinery and infrastructure, delivering information about the system.
There are far too many data sources, i.e. sensors, to examine them manually, but they
contain important, sometimes unknown and yet undiscovered information in their
relationships. Knowledge of the relationships allows previously hidden insights into
the underlying system, and changes in the relationships over time might uncover ex-
traordinary or anomalous events.

Faced with the task of monitoring such a large system, we could concentrate on
those variables that exhibit strong relationships between them. We could �nd those
if we calculate a measure of dependency for each pair of all variables, tracing for
example changes in the relationships.

A speci�c practical application of this could be for example the validation of sen-
sor readings in the context of multiple cheap sensors. In such environments, mea-
surements are possibly impaired by limited technical precision, processing errors or
natural �uctuations. Then, unusual readings might either indicate actual changes in
the monitored system or be due to these measuring uncertainties. Finding associated
sensors helps di�erentiate such cases.

For that task, we need a dependency measure that is widely applicable and not
limited to modelling assumptions or speci�c relationships such as a linear functional
relationship. While many relationships are well captured in some functional form,
others cannot be described by a simple model or a single functional form. Also, lim-
iting the scope of the algorithm to speci�c relationships automatically limits the pos-
sible �ndings.

An e�ective way to deal with complex relationships is the concept of mutual in-
formation, a measure that can be thought of as the predictability of one variable by
another. The data we want to monitor is created in real time in an unending stream
of data, e. g. from a system equipped with a large number of sensors to monitor its
status. The (in�nite) volume of this data and the high dimensionality (from the high
number of individual sensors) require techniques that are fast and do not explicitly
store past data.

The nature and volume of this type of data make traditional batch learning ex-
ceedingly di�cult, and �t naturally to algorithms that work in one pass over the data,

5.1 Mutual Information as Dependency Measure in Data Streams 51

i.e. in an online-fashion as discussed in Chapter 2. To achieve the transition from
batch to online algorithms, window-based and incremental algorithms are popular,
often favouring heuristics over exact results.

Instead of relying e. g. only on single stream statistics to detect anomalies or �nd
patterns in the data, we are concerned with a setting where we �nd many sensors
monitoring in close proximity or closely related phenomena, for example temperature
sensors in close spacial proximity or voltage and rotor speed sensors in large turbines.
It appears obvious that we should be able to utilize the – in some sense redundant,
or rather shared – information between sensor pairs to validate measurements. The
task at hand we want to solve �rst becomes then to reliably and e�ciently compute
and report dependencies between pairs or groups of data streams.

In the following chapter, we will show how to apply the analysis of information
content, measured by their mutual information, to data streams. The two main di�-
culties are �nding an estimator for the entropy of real valued streams (as opposed to
the discrete case with event streams) and to �nd an e�cient way to do the computa-
tions in an online fashion.

We will start with a simpler technique. First, we implement a straightforward
window approach to deal with the streaming data. Second, we develop a suitable
estimator for the entropy calculation. The algorithm was published as MID in [19].
This part will be covered in Section 5.2 and proves the validity of our approach.

In a second step we will re�ne the algorithm and �nd a truly incremental imple-
mentation for dependency monitoring. This will be covered in Section 5.3, the algo-
rithm was published as DIMID in [20]. The evaluation experiments for both follow in
Section 5.4

The three-fold advantages of both approaches are that (i) mutual information cap-
tures dependencies without limitation to a particular type or narrow model, (ii) is al-
gorithmically suitable to be calculated in an incremental fashion and (iii) can be com-
puted e�ciently to deal with high data volume without the need for approximation
short-cuts. This leads to a dependency measure that is signi�cantly faster to calculate
and more accurate at the same time.

5.1 Mutual Information as Dependency Measure in
Data Streams

Shannon entropy and related concepts have been previously discussed in Chapter 3.
They focus on the probability distributions underlying the transmitted data as a mea-
sure for their information content. For discrete data, the probability distribution is

52 5. Dependency Monitoring

a simple counting statistic. For continuous variables, knowing the PDF or getting it
from a sample is more complex. The source of the random variables we use in this
context are the values, i.e. measurements, say temperature measurements as real val-
ued numbers, originating from some system equipped with multiple sensors.

Di�erential Entropy is the extension of the Shannon Entropy from discrete to con-
tinuous random variables. Entropy can also be conditioned on a second random vari-
able Y and extended to pairs of variables X, Y . The continuous mutual information
I(X;Y) is a symmetric measure for the mutual dependence of X and Y . With the
probability density function f , I is de�ned either via the PDF

I(X;Y) =

∫
X

∫
Y

f(x, y) log
f(x, y)

f(x)f(y)
dx dy, (5.1)

or, equivalently, it can be expressed as the di�erence between the di�erential entropies
h(·) and the joint entropy h(X, Y):

I(X;Y) = h(X)− h(X, Y) + h(Y). (5.2)

I(X;Y) increases the better X allows us to predict Y and vice versa. It allows a
ranking of the dependencies between random variables in a way that is comparable
to other measures.

Both the continuous and the discrete mutual information I(X;Y) are bounded
by max(H(X), H(Y)). For the discrete case, the upper bound can be derived from a
uniform distribution as log(max(|X|, |Y |)) with | • | denoting the sample size. The
lower bound is equal to 0. With these bounds we can de�ne a normalized Î(X;Y)
which becomes 0 if X and Y are mutually independent and 1 if X can be predicted
from Y and vice versa.

Î(X;Y) = 1− I(X;Y)

log(max(|X|, |Y |)) . (5.3)

This makes it easily comparable to the correlation coe�cient and other measures
with �xed ranges. Furthermore, Î(X;Y) even forms a proper metric. This property
con�rms our understanding of Î(X;Y) as an intuitive distance-like measure. But
even without bounds, I serves as a score that allows a ranking of dependencies.

5.1.1 Dependency in StreamWindows
Next, we want to compute I for pairs of streams si ∈ S at times t. |S| is the di-
mension of the overall data stream S in the sense that every si represents a series of

5.1 Mutual Information as Dependency Measure in Data Streams 53

measurements of a di�erent type or a di�erent sensor or both. Each stream repre-
sents a measurement series si = (. . . ,mi

t,m
i
t+1,m

i
t+2, . . .) without beginning or end.

Figure 5.1 shows a stream with three dimensions.
Since we are only interested in the most recent developments, the most straight-

forward design is a window-approach. In this approach, we take the most recent
values within a �xed period and process those. There are two advantages. First, only
those most recent measurements are kept in memory. Second, we can abstract from
the stream and work with the current batch of data as we see �t.

Figure 5.1 shows a schematic of the window-wise computation over time for a
stream with three sources s1 to s3. I is computed for all pairs of those stream variables.

If we restrict ourselves to the most recent values m of the stream, we add indices
st,t+w−1i to denote measurements from stream si from time t to t+w−1, i.e. a window
of length w. We will drop indices to simplify the notation if they are not relevant or
necessary for clarity.

Our goal is then to e�ciently calculate the stream dependencies Dt for all time
points t in the observation period t ∈ [0; inf)

Dw
t = {I(st,wi , st,wj)|si, sj ∈ S}. (5.4)

Figure 5.1: Sliding window and pairwise calculation of I for a data stream with win-
dow size w = 5 and three variables.

In general, we want to compute I for some or all pairs of variables st,wi , st,wj ∈ S at
all time points t. E�ectively, I is calculated with the most recent w data points when
new data arrives.

54 5. Dependency Monitoring

5.2 MID

This section describes our �rst draft of a dependency monitoring algorithm MID, a
convenient, global measure to detect dependencies between data streams. We have
settled for a window approach to deal with the streaming data so we only need a
suitable way to calculate the mutual information in every window.

There are several ways the window can move forwards over time. We assume a
�xed window size, i. e. the number of data points in a window stays the same as new
data enters at one end at the same rate the oldest data is faded out. This is in contrast
to an expanding or shrinking window.

The window can either slide forward if only one data point enters in each step. Al-
ternatively, the window can jump forward, if more than one data point is absorbed at
once. The sliding window approach is the most common one as it reduces the chance
to miss (jump over) important steps. The sliding window shows also the smoothest
behaviour. The parameter that controls the number of steps the window advances is
called the step size s.

We adopt a sliding window with step size s = 1 for this discussion and for the
experiments in later sections.

The window limits the amount of data in memory and also contains only the most
recent data, so I is a measure for the current status of relationships in the data streams.
In the basic window design, every window is processed separately from previous ones.
This also implies that I is calculated for every window from scratch. In Section 5.3
we develop a more e�cient design that re-uses the intermediate results and reduces
the computation time signi�cantly.

5.2.1 First Estimation of Mutual Information

The key problem to estimating the mutual information is �nding a way to determine
the joint probability density functions, regardless of whether we want to calculate the
mutual information directly or its components separately (see the de�nitions above
in equations 5.1 and 5.2). Two aspects are important: First, data streams often contain
both nominal event data and real values. In consequence our model needs to deal with
both continuous and discrete data types. Second, the underlying distribution of both
single stream values and of the joint probabilities is – usually – unknown and must
be estimated from the data.

5.2 MID 55

Choice of Estimation Technique

Finding a mutual information estimate is generally considered a di�cult problem.
There is a range of entropy and mutual information estimates to �nd in the literature,
coming from di�erent theoretical directions. A good overview is given for example
by [10] or [96].

There are two basic approaches to formulate a probability distribution estimate:
Parametric methods or kernel-based methods, and binning.

In parametric methods, we would assume that the data is created by some stochas-
tic process and try to pin down the best parameters for this process. Kernel-based
methods work similarly but are potentially more �exible. For example in a Gaussian
mixture model, we would assume the data is made up of a number of components,
each of which can be modelled by a Gaussian distribution. We jointly optimize the
distribution parameters to build a model for the data and proceed from the data. How-
ever, this not only requires assumptions about the process, the number of components,
etc. It also leaves us with a large number of tunable parameters where sensible choices
are di�cult and maladjustment will lead to biased or erroneous results.[37]

Binning or histogram-based estimators are therefore the safer and more feasible
choice for continuous data which have been well studied. [76, 67] They are also obvi-
ously the natural way to work with nominal data. They have been used previously in
many di�erent applications in data mining and machine learning, e.g. [37, 36, 90, 55].

There are some potential drawbacks: The quantization itself, the �nite number
of observations or the �nite limits of histograms – depending on the speci�c appli-
cation – might lead to biased results. However, [37] show that both equidistant and
equiprobable binning lead to a consistent estimator of mutual information under mild
conditions.

Choice of Histogram Parameters

The choice of the number of bins b is a critical problem for a reliable method. [54]
point out that histogram estimators may be used to construct consistent entropy es-
timators for 1-dimensional samples and describe an empiric method or rule of thumb
for histogram construction. The techniques used to derive their rule are related to
the Akaike information criterion and the method must be interpreted as a heuristic.
Similar to the Akaike criterion, it introduces penalties for di�erent components of the
model, in this case for the bias and variance components of the estimation error and
balances their in�uence on the �nal result.

For our case, the rule can be written as
b = n(α−1)/(3α−1). (5.5)

56 5. Dependency Monitoring

The rule mainly depends on the number of data points n in the sample. α is a
regularization parameter with the constraint α > 3. With e. g. α = 4 this reduces to
b = n−0.27. With values of n in the order of 1.000, this would result in a choice of b in
the order of just 10 bins.

Algorithm 4 Window-wise Computation of Dependencies
1: procedureMID(data streams S)
2: for st−w+1,t ∈ S do
3: ŝ← Discretize(st−w+1,t)
4: P ← getPDF (ŝ) . generate PDFs
5: H ← entropy(P)
6: JH ← jointEntropy(P) . for all pairs
7: I ← mutualI(H, JH) of streams
8: output I
9: end for

10: end procedure

Algorithm 5 Incremental Computation of Dependencies
1: procedure IMID(data streams S)
2: ŝ← PiDiscretize(s1,w−1)
3: P ← getPDF (ŝ) . initialize from
4: H ← entropy(P) window of �rst
5: JH ← jointEntropy(P) w values
6: for st ∈ S, t > w do
7: ŝt ← PiDiscretize(st)
8: P ← delete(ŝt−w) . update PDF with new
9: P ← add(ŝt) frequency counts

10: H ← update(P) . update H and JH
11: JH ← update(P)
12: I ← mutualI(H, JH)
13: output I
14: end for
15: end procedure

5.2 MID 57

Choice of Histogram Type

Of the two fundamental ways of discretization - equal-width or equal-frequency -
equal-width binning is algorithmically slightly easier to execute, since it is only nec-
essary to keep track of the current minimum and maximum. Equal frequency bin-
ning requires more e�ort, but has been shown to be the better estimator for mutual
information.[12, 35] We con�rmed this in a separate set of experiments and conse-
quentially use equal frequency binning for our implementation.

For our algorithm, we discretize on a per-window-basis. A window-wise dis-
cretization gives us a local view on the data since it depends only on the properties of
the data in the window but is also limited to the data currently available in the win-
dow. With the discretization in place, the probability distribution of a single stream
and the joint distribution of a pair of streams is a simple counting exercise. We call
I(X;Y) with per-window discretization MID – mutual information dependency. For
future reference, we add pseudocode for MID as Algorithm 4. The keyword output
means a value is returned as output, for example to another program or a text console,
but the control �ow does not return, i. e. the loop continues to run.1

The runtime of MID is constant with respect to every update when new data ar-
rives in the stream. The new incoming values possibly change the histogram bound-
aries in the window and therefore the underlying empirical probability distribution
at each step. We need to discretize after every step, which gives a runtime ofO(w ·n)
after n steps.

Techniques exist for an incremental discretization, for example the PiD algorithm
by [48]. It guarantees a certain maximum error on the ideal, optimal histogram bor-
ders to the current ones. This would allow an incremental discretization step in the
algorithm and a much more e�cient calculation of the PDFs of each stream and pair
of streams. The PDFs change only by a +1 in one bin and a −1 in another. The
pseudocode for such an incremental version of MID could look like algorithm 5.

However, our experiments have shown that such an incremental discretization
does not have su�cient �delity. Results depend heavily on the range of the stream
values. If, say, stream values oscillate two stable states either around 20.0 or around
100.0 (for example machine temperatures in standby or production), a discretization
that tries to accommodate both states with a range of 80 degrees is far to low grained
for either state where di�erences of a few units have potentially great impact. Our
experiments have con�rmed this problem on real world data sets. This is not a fault of
the particular discretization algorithm (we used the aforementioned PiD) but a general
problem of discretization in data streams.

1This behaviour mimics the use of yield in the Python programming language.

58 5. Dependency Monitoring

Experiments to show the validity and performance of MID can be found Sec-
tion 5.4, together with the experiments for the next iteration of our Dependency Mon-
itoring algorithm. This next version will deal with the problems of entropy estimation
and incremental calculations.

5.3 DIMID
In this section, we present DIMID, the Distance-based Incremental advancement of
MID and a more e�cient algorithm to compute a measure for dependency between
pairs of real valued data streams. It calculates I , the mutual information of two
streams in a sliding window over the most recent data and reports a value for I for ev-
ery pair si, sj and every window over time. I is, as previously explained, an entropic
measure, so the key component in the empirical calculation of entropy or mutual
information is a method to estimate the probability distribution from the sample of
data in the current window. The main variants of estimates are kernel-, or histogram
based. Kernel methods have many useful properties but are not only computation-
ally expensive, they also require a choice of a kernel suitable for the application and
in most cases a number of parameters that are hard to optimize, like the number of
components used in a standard Gaussian kernel.

Discretizing the data and substituting the discrete case as estimate for the con-
tinuous case works well in many situations. Histogram-based estimators have been
studied extensively and have been successfully used in data mining applications. [12,
35, 48, 67, 76] We mentioned potential drawbacks previously in Section 5.2.1. In par-
ticular, three problems are commonly recognized:

1. If the sample size is not very large and consequently the discretization rather
coarse-grained, there is inevitably a loss of precision.

2. Although the determination of histogram borders can be guided by statistical
rules to minimize errors, they also introduce bias and loss of precision.

3. When new data is added and old data faded out, the optimal boundaries change
and we must either accept another source of imprecision or re-discretize the
current data points.

More recently, alternative ways to estimate entropy from sample data have emerged.
We will employ a distance-based alternative that computes di�erential entropy di-
rectly for continuous variables. This largely avoids the �rst two mentioned problems
immediately and allows us to deal with the third intelligently. We discuss the steps of
DIMID in the next sections and also give the pseudocode for the algorithm.

5.3 DIMID 59

5.3.1 Incremental Dependency Computation

DIMID consists of an initialization phase and an iterated update procedure. Figure 5.2
visualizes the two phases: At t = 0, the window is initialized fully, for all later steps
t > w, only the newest and the faded-out value are necessary for the re-computation
of I .

Figure 5.2: Sliding window and pairwise incremental calculation of I .

In the initialization phase, the initial estimates of I and data structures over the
initial window are prepared to keep track of the nearest neighbour of the data points.

In the iteration phase, we calculate the changes in the sample caused by moving
the window forward. The estimator we use relies on the distance to nearest neigh-
bours of the data points. Adding and removing sample points has an e�ect on only
a limited number of data points kept in the window. We can track the changes and
calculate the resulting e�ect. In the second part of the iterative update, the e�ect of
replacing a sample point is used to amend the previous estimate of I at minimal com-
putational expense. The new estimate is then the output of the current iteration. This
process is repeated in�nitely, until the data streams are exhausted, or until stopped.

5.3.2 Beirlant Estimates of Mutual Information

We previously stated, how reliably determining the PDFs is the central problem of
�nding the entropy or mutual information. If we interpret the sample as a number
of points in euclidean space, probability density is simply the probability of a sam-
ple point appearing in a given volume. High probability regions are determined by

60 5. Dependency Monitoring

regions with many, densely spaced sample points. Intuitively, in this case we can ex-
press the density of data points in a region just as well with the distances between
data points. Beirlant et al. [10] give an entropy estimator (5.6) that relies on such a
formulation of density:

h(X) = 1
n

∑n
i=1(log(%i) + log(n) + log(2) + CE) (5.6)

= 1
n

∑n
i=1 log(%i) + log(n) + log(2) + CE (5.7)

= 1
n

∑n
i=1 log(%i) + c(n), (5.8)

where CE is the Euler constant and %i is the euclidean distance to the nearest neigh-
bour (NN-distance) of the i-th sample. The NN-distance is calculated for each sample
and averaged over all n sample points.

Equation 5.8 shows how we can simply split the sum in two parts. The second part,
summed-up as c(n), depends only on a predetermined sample size n and is constant
with respect to n. The �rst part depends only on the distance %i of each sample point
and determines the local density of the data points. It is this term only that changes
in the underlying sample a�ect.

If we assume a sorted list of the sample points, �nding the nearest neighbour of
each becomes trivial. We simply compare the distances to the leftmost and rightmost
neighbour which can be done in a single pass. This is of course only possible for one
dimensional data points, since higher dimensional data cannot be sorted linearly. In
the case of d = 1 however, every sample point has only two candidates for a nearest
neighbour and in turn can be nearest neighbour to at most two other points.

We can split the mutual information I(X;Y) into the components h(X), h(Y)
and h(X, Y), using the equality (5.2). For the one-dimensional components h(X) and
h(Y), we can proceed as we just described: Sort the samples, determine the nearest
neighbour and calculate h(X), h(Y) via the Beirlant estimator (5.6).

Estimating h(X, Y) in the same way directly is not possible, since the sample
points (xi, yi) cannot be sorted linearly in a list. We could use a data structure to �nd
the neighbours e�ciently, but we want to avoid the necessary considerable overhead.
Also, we want to �nd a scheme that allows quick updates to the NN-distances when
we introduce new sample points and remove others. This will happen every time as
the window moves forward. Instead, we can reduce the two-dimensional case, if we
use the Johnson-Lindenstrauss-Lemma [61], that allows an approximately distance-
preserving mapping from higher-dimensional into low-dimensional spaces.

For the mapping, we project the data points si, sj via a mapping f into a random
subspace si◦j with dimension d = 1. For such a low dimensional space, there is a risk
of overestimating the in�uence of one dimension over the other and the procedure

5.3 DIMID 61

works best if the two dimensions have approximately equal ranges. We accept this
risk as a trade-o� for the speed-up we gain through the reduction.

The Johnson-Lindenstrauss mapping f for our case can be simpli�ed as

f(si, sj) : (sTi , s
T
j) · rT , (5.9)

where r ∈ R2 is a vector whose entries are independently drawn from a normal
distributionN(0, 1) and (sTi , s

T
j) is the 2×n dimensional matrix of the sample points.

The projection can be carried out independently per pair of sample points. This means
we can map each sample once, as it arrives, in O(1) per pair. This reduction lets us
reuse the same estimation procedure (5.8) we used for h(X) and h(Y).

Now we have an e�cient estimator to calculate the NN-distances from a sorted
list. All we have to add is a way to handle the changes in the sample, the e�ects
of these changes to our stored data, and the e�ect of the changing distances to the
computation of I(X;Y) incrementally. We want to be as e�cient as possible and
only calculate the changes, without redoing the unchanged parts in the estimation.
This requires careful tracking of the sample points over time.

5.3.3 Updating Nearest Neighbours

The combination of dimensionality reduction and the Beirlant estimator we intro-
duced, paves the way for an e�cient calculation of mutual information. All we need
is a way to track changes in the nearest neighbour distance of a changing sample. We
can do so with a list of sorted sample points to calculate the neighbour distances and
a second list sorted by age of the data points. The second list contains pointers to the
�rst list. The process is shown in some detail as pseudocode in algorithm 8.

Its purpose is to keep the distances between neighbours up-to-date. In the initial-
ization, we sort the initial window by value in a skip list and determine the distances
of adjoining points. We also build a list of pointers to the sorted values, sorted by
age (i.e. the pointer to the oldest sample point is always at the list head). The updates
proceed incremental from here. If the window moves, the update is triggered in the
main DIMID routine (line 11 of algorithm 6).

A new sample point arrives, and a new element is added to the list of pointers. We
search the the list of pre-sorted, older sample points for the correct insertion position,
and determine the nearest of the two neighbours. We also check, if the new data point
is nearer to one of its neighbours than this points current nearest neighbour.

To fade out the oldest sample point that is leaving the window, we remove the
element at the end of the list of pointers and follow its pointer to the list of sorted

62 5. Dependency Monitoring

values. we remove the element here and check, if it was a nearest neighbour to one
of its two neighbours.

Introducing a new sample point (�nding the correct position and adding to both
lists) takes only time O(log(w)) using binary search in w sorted data points. Finding
and deleting the oldest point takes likewise O(log(w)) in a skip list, even though we
can �nd its position in constant time with the list of pointers.

If we remove one point from the sample and add another, we have to check only
four points for consistency – two could gain a new nearest neighbour and two more
could have lost their nearest neighbour. The changes in the nearest neighbours are
then used to update the current entropy estimate.

For the pairs of sample points we proceed in the same manner. First though, we
have to perform the dimensionality reduction for every new pair. This is done in the
main algorithm 6 in lines 9–11.

5.3.4 Updating Entropy
With the updated NN-distances, the entropy estimates can be updated e�ciently as
well: If we move the data window one step forward, one value leaves and one value
enters the window.

Most data points and most NN-distances remain unaltered and only a few terms
in the sum for the entropy estimate (the sum over the log of NN-distances in equa-
tion(5.8) change. We can treat the changed terms separately since they are mutually
independent. De�ne ∆(h(X ti), h(X ti+1)) as the incremental update of the di�erential
entropy.

h
(
X ti+1

)
= h

(
X ti
)

+ ∆
(
h
(
X ti
)
, h
(
X ti+1

))
. (5.10)

∆ is simply the net di�erence of the sum over the log-distances, i.e. the contribu-
tion of the changes caused by incoming (xti+1) and outgoing (xti+1−w) data points. It
is a term we can compute given the updated distances around the faded-out and the
new data point.

∆
(
h
(
X ti
)
, h
(
X ti+1

))
= log(%xti+1)− log(%xti+1−w) (5.11)
− log(%xa)− log(%xb)− log(%xc)− log(%xd) (5.12)
+ log(%′xa) + log(%′

xb
) + log(%′xc) + log(%′

xd
), (5.13)

where xa, . . . are the neighbours of the newest and oldest data point, %xa , . . . are
the NN-distances of these four potentially a�ected neighbours before the update, and
%′xa , . . . their NN-distances after the update. The total update time is therefore O(1)
for this part.

5.3 DIMID 63

Algorithm 6 Main Algorithm DIMID
Input: Stream S, window size w
Output: Dependencies I(st,t+wi , st,t+wj)

1: procedure DIMID
2: sv, d, pv, pd← init() . cf. Alg. 7
3: for all i, j ∈ 〈S〉 do . for all pairs of stream indices
4: Ii◦j ← Entropy(di)+Entropy(dj)−Entropy(di◦j)
5: output Ii◦j
6: end for
7: for st ∈ S do . for every new set of values
8: for all sti, stj, i < j ∈ st do . for all pairs
9: sti◦j ← reduce(sti, s

t
j) . using equ. 5.9

10: update(sti◦j) . cf. Alg. 8
11: update(sti)
12: end for
13: for all sti, stj ∈ st do
14: Ii◦j = Ii◦j + ∆(pdi) + ∆(pdj)−∆(pdi◦j)
15: output Ii◦j
16: end for
17: end for
18: end procedure

64 5. Dependency Monitoring

Algorithm 7 Initial Phase of Algorithm DIMID
Input: Stream S, window size w
Output: Sorted windows sv, NN-distances d, age-pointer pv and pd

1: procedure init
2: sv, d, pv, pd; . prepare empty lists
3: v ← st0,w . get �rst w values
4: for all (st0,wi , st0,wj) do . for every pair of variables
5: st0,wi◦j ← reduce(st0,wi , st0,wj)

6: v.add(st0,wi◦j) . add the joint projection to v
7: end for
8: for all vi ∈ v do
9: svi, pvi← sort(vi)

10: di, pdi← distances(svi)
11: end for
12: return sv, d, pv, pd
13: end procedure

Algorithm 8 Update Procedure of DIMID
1: function update(sti)
2: delete_v← pvi.pop()
3: delete_d← pdi.pop()
4: insert_v, insert_d← insert_sorted(svi, sti)
5: pvi.add(insert_v)
6: pdi.add(insert_d)
7:
8: delete svi[delete_v]
9: delete di[delete_d]

10:
11: dist_l← svi[insert_v] - svi[insert_v-1]
12: dist_r← svi[insert_v+1] - svi[insert_v]
13: dist_del← svi[delete_v+1] - svi[delete_v]
14:
15: insert_at(di, insert_d, dist_l)
16: insert_at(di, insert_d + 1, dist_r)
17: di[delete_d+1]← dist_del
18: end function

5.4 Experimental Evaluation 65

5.4 Experimental Evaluation

We performed experiments with the two algorithms, MID and DIMID, described above
to evaluate their performance regarding e�ectiveness and e�ciency, i.e. correctness
of the results and the runtime to produce them. First, we compare MID to several
other algorithms for dependency monitoring to prove the validity of the entropy-
based approach. Then, we compare MID and DIMID with other algorithms to compare
their performance. We do so on di�erent publicly available synthetic and real world
data sets.

5.4.1 Data Sets

For experiments with real data streams we choose a large variety of data sets includ-
ing movement tracking, �nancial time series and environment sensors with di�erent
lengths and a total of 50 streams. Table 5.1 contains an overview of the data sets. They
range from 350 to 17 million measurements in length and have dimensions between
two and twelve streams or parallel series of measurements. In addition, we use one
synthetic data set with linear, non-linear and noisy relationships.

CHF is a series of ECG measurements of patients with congenital heart failure,
available from the BIDMC data base.[52] It is widely used in experiments time series
studies in the medical �eld (related to our work for example in [32]). We use 12 of
these for our experiments. In total this data sets contains 128 over 17.793.041 time
steps. [9]

OFFICE is a data set by the Berkley Research Lab, that collected data about tem-
perature, humidity, light and voltage from sensors placed in a lab o�ce. We use a
subset of 12 sensors since there are large gaps in the collection. The subset still con-
tains some gaps that have been �lled in with a missing-value indicator. In total this
data sets contains 128 measurements over 65.537 time steps. [18]

Sunspot is the famous data set of sunspot activity going back almost 200 years.
Sunspots have a periodic peak in activity about every 12 years. We use two subsets
of 70 years with daily measurements in our experiments. [88]

PersonalActivity (PA) is a data set of motion capture where several sensors have
been placed on �ve persons moving around. The sensors record their three-dimen-
sional position. This data set contains 75 data points each from 5.255 time steps. [62]

NASDAQ contains daily course information for 100 stock market indices from
2014 and 2015, with 600 indicators (including e.g. open and high course or trading
volume) over 320 days in total. We choose 12 of those indicators. [94]

LNR was additionally created as a synthetic data set with six time series of 6400

66 5. Dependency Monitoring

data points each. Each series is either a linear or non-linear function of the elapsed
time t, two more are uniform noise (uniform in [0, 1]) and Gaussian noise (with µ = 0
and σ = 1). In combination, the dependency of two functions fi, fj on each other
behave non-linear, if one of fi or fj itself is non-linear, as random, if one of the func-
tions consists of noise, and linear otherwise. The advantage of the synthetic data is a
clear knowledge of the dependency in the data which has to be inferred from other
data.

Table 5.1: Sets of data streams used in the experiments with length n and number d
of streams selected.

Data set description d n

CHF (longtime ECG measurements) 12 17,793,041
O�ce (o�ce environment data, incl. temperature and brightness) 12 65,537
Sunspot (sunspot activity since 1818) 2 25,900
Personal activity (motion tracking data) 12 5,255
NASDAQ (�nancial time series 2014-2015) 12 350

Table 5.2: Functions of the time series of the LNR data set.

f1(t) = t mod 400, f4(t) =
√

1− t2,
f2(t) = sin(t) + sin(t/3 + 20), f5(t) = 2 · t+ 20,
f3(t) = t+ t2, f6(t) = 100 · t+ 20.

5.4.2 Experiment Settings

We use similar settings for all algorithms as far as possible to guarantee a fair eval-
uation. All algorithms calculate a dependency measure in a window over the data
stream, so we naturally use the same window size. Other parameters have no direct
correspondence.

Window size w determines the scale of correlation we are interested in and ul-
timately has to be chosen by the user. For the purpose of this evaluation we set it
w = 80 for the synthetic data and equivalent to 1 second for the turbine data set, 30
seconds for the other sensor data sets, and to 4 weeks for the stock market data set.

5.4 Experimental Evaluation 67

The number of bins b for the discretization needs to be small enough to avoid single-
tons in the histogram but large enough to map the data distribution – we considered
criteria for a sensible choice in Section 5.2.1. As a compromise we chose b = 25 for the
experiments. Two of the three algorithms we compare ourselves against, StatStream
and PeakSim, have a similar calibration parameter, that balances runtime and validity.
We set their truncating or sampling factor c = 25 equal to b.

We calculate dependency of every dimension with every other, e.g. voltage with
temperature. So, for a data set n × d i.e. with n steps and d dimensions we calculate
(n−w) ·

(
d
2

)
dependency scores. Statistical signi�cance is determined with a standard

two-sided t-test.
All experiments have been performed on a single 1.80 GHz i-5 core and 8 GB of

RAM.

5.4.3 Evaluation Criteria
With all real data sets, we evaluate the algorithms ability to distinguish dependen-
cies from non-dependencies by classifying pairs of streams over time. For the data
sets, we report the area under ROC curve as classi�cation measure. AUC is indepen-
dent from the number of true positives in the data set and can be understood as a
measure determining how well the raw scores di�erentiate dependent from random
interactions:

AUC = P (X1 > X2), (5.14)

where X1 and X2 are the scores for a positive and negative instance respectively.
Also, we report the F1-measure, i.e. the harmonic mean of precision and recall:

F1 = 2 · precision·recall
precision+recall

, (5.15)

precision = TP
TP+FP

,

recall = TP
TP+FN

.

As classi�cation threshold, the score above which we report an instance as pos-
itive, we use the one that produces the highest F1-score for each algorithm., i.e. the
threshold that best separates positive from negative instances for each algorithm.

We also use synthetic data to check, how well the algorithms discriminates non-
linear as well as linear relationships. We report the mean scores for random, linear
and non-linear relationships (see 5.4.1 for an explanation of these terms).

68 5. Dependency Monitoring

5.4.4 Experiments for MID and DIMID
We evaluate DIMID and MID against three other algorithms for stream correlation
monitoring, PeakSim, StatStream and MISE, on one synthetic and �ve real world data
sets. We show the raw scores for di�erent interaction types to determine how well
each algorithm separates the interaction types. To evaluate the algorithm in a super-
vised fashion, we �rst calculated a naive score with the Beirlant estimator for mutual
information. We consider windows with a naive score above the median, i.e. the top
half, as dependent and therefore true positives. AUC and F1 scores are used to de-
termine the overall classi�cation performance. Finally, we perform an analysis of the
runtime for di�erent window sizes.

The score results for the synthetic data is shown in Table 5.3 and the evaluation re-
sults for the real data sets are shown in Table 5.4. Tables 5.5 and 5.6 show an overview
to compare methods with each other.

Comparison Algorithms

We will compare DIMID and MID to three other algorithms that have been developed
for dependency monitoring: StatStream, PeakSim and MISE. They are algorithms with
similar goals to ours but using di�erent techniques. MID, StatStream and PeakSim
have in common a transformation of the raw data before the main score-computation.
This transformation introduces a calibrating factor c, that determines for PeakSim the
number of Peaks of the Fourier transform, and for MID the number of discretization
bins. MISE introduces a sampling rate for its reservoir. These factors determine in
essence the compression rate of the data and in�uence therefore the speed and quality
of the results.

StatStream[101] and PeakSimilarity[85] are algorithms to monitor stream correla-
tion. Both employ variants of a discrete Fourier transformation (DFT) to detect simi-
larities based on the data compression qualities of DFT. More speci�cally, they exploit
that DFT compresses most of a time series’ information content in few coe�cients and
develop a similarity measure on these coe�cients.

The similarity measure for PeakSimilarity is de�ned as

peak similarity(X, Y) =
1

c
·

c∑
i=1

1− |X̂i − Ŷi|
2 ·max(|X̂i|, |Ŷi|)

, (5.16)

where X and Y are the time series we want to compare and X̂i, Ŷi the c coe�cients
with the highest magnitude of the respective Fourier transformations.

5.4 Experimental Evaluation 69

The similarity measure of StatStream is similarly de�ned as

stat stream(X, Y) =

√√√√ c∑
i=1

(X̄i − Ȳi)2, (5.17)

on the DFT coe�cients of the time series, but here X̄i, Ȳi are the largest coe�cients
of the respective Fourier transformations of the normalized X and Y .

StatStream also uses hashing to reduce execution time, but the choice of hash
functions is highly application speci�c. PeakSimilarity relies on a similarity measure
specially de�ned to deal with uncertainties in the measurement, but requires in-depth
prior knowledge of a cause-and-e�ect model to do so.

PeakSim and StatStream use the parameter c, which determines the number of
DFT-peaks taken into account and in�uences runtime and memory in a similar way
the number of bins b in�uences MID. Consequently we set c equal to b, which is in
line to the choices of c in [101] and [85].

MISE[63] uses a sampling strategy to query mutual information on arbitrary time
window queries applying the Kraskov estimator [67] for mutual information to a
reservoir of past data. We �xed the sampling rate such that the last c data points
are guaranteed to be in this reservoir. The Kraskov estimator relies on the distance to
the k-nearest neighbour, so we have an additional parameter k. We set it to k = 4 as
in [63].

Evaluation on Synthetic Data

On the synthetic data, we took the eight functions from the LNR set and tested all 28
pairwise interactions. We separate them into non-linear (N), linear (L) and random
(R) interactions considering that interactions of a linear and a non-linear function is
non-linear itself and that the interaction of noise with any function is noise itself. N
and L interactions share dependency via t.

For the evaluation, we report normalized average scores for the algorithms on the
di�erent interactions to see how well the score separates dependencies from noise.
Table 5.3 shows the mean score per algorithm. PeakSim and StatStream’s scores for
R and N overlap signi�cantly, while MID and MISE rate N interactions signi�cantly
higher, but not with the same con�dence as the scores for linear interactions indicate.
DIMID’s scores for N and L overlap within one standard deviation. DIMID discrimi-
nates non-linear and linear relationships almost equally well from noise.

70 5. Dependency Monitoring

Table 5.3: Mean raw scores (± standard deviation) by dependency type on LNR

Interaction StatStream PeakSim MISE MID DIMID
R 0.60± 0.10 0.43± 0.07 0.46± 0.11 0.05± 0.03 0.05± 0.04

N 0.64± 0.30 0.57± 0.27 0.58± 0.30 0.63± 0.27 0.62± 0.15

L 0.95± 0.15 0.98± 0.03 0.67± 0.15 1.00± 0.00 0.77± 0.04

Evaluation on Sensor Data Sets

For all data sets, we report the AUC and the F1 score in Table 5.4. To calculate those
criteria, we �rst implemented a naive version of the Beirlant mutual information es-
timator and run it on the data sets. This gives us a score for every pair of streams and
every window. We consider the top half of the scores in each data set as dependent,
i. e. a positive instance. We then use the scores calculated by the compared algorithms
as if they were classi�cation scores.

Averaged over all data sets, DIMID achieves an AUC of 0.80, a signi�cant im-
provement to the next best algorithm, MID reaching only 0.62. The other mutual
information based algorithm, MISE, reaches an AUC of 0.54 and performs about on
par with the other, DFT-based algorithms.

The same tendency is shown in the F1 score, where MISE reaches 0.70 while
DIMID achieves an 17% improvement to 0.82. PeakSim and StatStream perform
worse, especially notably in the NASDAQ and O�ce data set, despite the fact that
there are many simple to detect linear relationships in those data sets.

For both measures, DIMID signi�cantly (p < 0.01 in a two-sided t-test) outper-
forms the other algorithms in 6 out of 10 cases and ties in four more.

For a side-by-side comparison, we performed a t-test for each pair of algorithms
and present the results in Table 5.5 for the AUC and in Table 5.6 for the F1-score. Here,
we see more clearly how StatStream barely outperforms PeakSim and occasionally
achieves better results than one of the entropy based methods. MID and MISE perform
on the same level, with a slight edge to MID due to better AUC results.

In summary, to detect dependencies, DIMID works signi�cantly better than other
entropy based algorithms and much better than DFT-based methods judged by AUC
and F1-score in �ve data sets.

5.4 Experimental Evaluation 71

Table 5.4: AUC and F1 score of all data sets. † marks signi�cant improvements (p <
0.01 in a two-sided t-test) over the next best algorithm.

AUC
Data set StatStream PeakSim MISE MID DIMID
CHF 0.63 ± 0.09 0.60 ± 0.07 0.61 ± 0.10 0.55 ± 0.04 0.61 ± 0.13
O�ce 0.51 ± 0.10 0.52 ± 0.11 0.52 ± 0.13 0.65 ± 0.13 0.97 ± 0.03†

Sunspot 0.50 ± 0.00 0.50 ± 0.00 0.52 ± 0.00 0.68 ± 0.00 0.69 ± 0.00
PA 0.54 ± 0.03 0.51 ± 0.02 0.52 ± 0.09 0.50 ± 0.06 0.95 ± 0.02†

NASDAQ 0.54 ± 0.02 0.58 ± 0.02 0.54 ± 0.04 0.71 ± 0.03 0.80 ± 0.05†

F1 score
CHF 0.77 ± 0.08 0.76 ± 0.10 0.76 ± 0.07 0.74 ± 0.08 0.77 ± 0.11
O�ce 0.65 ± 0.06 0.68 ± 0.06 0.69 ± 0.06 0.69 ± 0.06 0.95 ± 0.04†

Sunspot 0.67 ± 0.00 0.63 ± 0.00 0.67 ± 0.00 0.67 ± 0.00 0.67 ± 0.00
PA 0.67 ± 0.00 0.67 ± 0.03 0.68 ± 0.02 0.67 ± 0.04 0.88 ± 0.03†

NASDAQ 0.67 ± 0.01 0.68 ± 0.02 0.71 ± 0.06 0.73 ± 0.06 0.84 ± 0.02†

72 5. Dependency Monitoring

Table 5.5: Pairwise comparison of all algorithms: We count signi�cant improvement
in AUC (p-value < 0.1 in a two-sided t-test) of algorithm in row vs. algorithm in
column in 5 data sets. DIMID scores better in a total of 16 of 20 comparisons.

AUC improvement vs.
DIMID MID MISE PSim SStr

DIMID - 4 4 4 4
MID 0 - 3 3 3
MISE 0 2 - 1 2
PeakSim 0 1 1 - 2
StatStream 1 2 2 2 -

Table 5.6: Pairwise comparison of all algorithms: We count signi�cant improvement
in F1 value (p-value < 0.1 in a two-sided t-test) of algorithm in row vs. algorithm in
column in 5 data sets. DIMID scores 14 wins.

F1 improvement vs.
DIMID MID MISE PSim SStr

DIMID - 4 3 4 3
MID 0 - 1 2 2
MISE 0 1 - 3 3
PeakSim 0 0 0 - 2
StatStream 0 1 1 2 -

5.4.5 Run-time Analysis

Considering that the number of pairwise dependencies grows quadratic in the number
of monitored dimensions, computation speed is an essential factor to deal with high
dimensional data. Besides the theoretical complexity, computation speed is in�uenced
by a number of variables in practice. We performed experiments on the LNR data set
to explore these variables.

All the algorithms in our evaluation are window-based and therefore the total run-
time is asymptoticallyO(n). n refers here to the size of the output to take the pairwise
comparisons into account. The other main parameter, the window sizew, is a constant
and irrelevant for the theoretical complexity. For high-throughput streams however,
where new measurements arrive in millisecond intervals, we need to accommodate

5.4 Experimental Evaluation 73

more measurements in a given time span and dependency on w matters.
StatStream, PeakSim, MISE and MID also depend on another ’truncating’ param-

eter, which in�uences the accuracy of their results and run-time. In general, higher
�delity means more computation time and vice versa. We kept the value of 25 for c and
b in StatStream, PeakSim, and MID identical to those in the performance evaluation.
We also kept the value of k equal to four in MISE. Experiments with more favorable
or less favorable values show minimal di�erence to the results presented here. The
in�uence of the window size w dominates the run-time over all other factors.

window size

tim
e/

s

0
50

10
0

15
0

20
0

25
0

DIMID
MID
StatStream
PeakSim
MISE

20 40 80 120 175 200 250 500 1000

Figure 5.3: Run-time of Dependency Monitoring Algorithms
Run-time of StatStream, PeakSim, MISE, MID and DIMID on the LNR data streams

Figure 5.3 shows the relation between window size and run-time for all �ve algo-
rithms. The size of the data set, i. e. the stream length was set to n = 10.000 and nine
increasing window sizes were used. We show the minimum of �ve repeated runs.
This minimizes random interference in the runtime from other processes. The fastest
of the �ve times is the closest to the ideal runtime that can be achieved. The measured
time also abstracts computation time as much as possible from the streaming process.
This simply means that we run the algorithms without delay by the stream itself and
new streaming data is queued as fast as it can be processed by each algorithm.

Approximation algorithms like PeakSim and MID scale well but still increase about
linearly with window size O(n · w) in practice. We can see this clearly from the
repeated doubling in computation time over the three largest window sizes.

MISE also has a theoretical runtime linear in the size of the window, but it uses a
specialized data structure to speed up �nding the nearest neighbour. This data struc-
ture improves the most expensive step. As a result the algorithm scales better than

74 5. Dependency Monitoring

PeakSim, StatStream and MID, but has a large constant overhead, making it the slow-
est algorithm overall.

DIMID scales asymptotically as O(n · log(w)) and easily processes our data set
with the largest window size in the test in just over ten seconds. This is 12 to 24
times faster compared to the other algorithms. The speed advantage results from the
incremental approach outlined in Section 5.3.

5.5 Related Work

We gave a more in-depth overview over entropy and streaming algorithms earlier.
Here, we shortly summarize recent articles that a�ect or motivate our own work.

There is recent work that explores the use of entropy as a way to detect depen-
dencies in static data sets. Reshef et al. [82] compare several methods to �nd novel
associations in data sets with a large number of variables, including mutual informa-
tion and develop their own, mutual information-based measure.

Benesty et al. [11] use entropy to detect delays within time series and achieve
better results than state-of-the-art cross-correlation. Dionisio et al. [37] analyzed
�nancial time series and concluded, that mutual information is a superior measure
of dependence between random variables. They argue that mutual information is a
practical measure of dependence between random variables directly comparable to the
linear correlation coe�cient, but with the additional advantage of capturing global
dependencies, aiming at linear and non-linear relationships without knowledge of
underlying theoretical probability distributions or mean-variance models.

There is a growing interest in frameworks and algorithms for stream monitoring.
Seliniotaki et al. (PeakSim, [85]), Zhu et al. (StatStream, [101]) and Keller et al. (MISE,
[63]) developed frameworks to monitor data streams for dependencies with a similar
goal to ours, but rely on transformations or sampling of the data to detect correlation.
MISE uses a sampling strategy to query mutual information on arbitrary time window
queries applying the Kraskov estimator [67] to a reservoir of past data. PeakSim and
StatStream employ a truncated Fourier transform and de�ne a dependency measure
on the peaks of the Fourier transform. We compared our own algorithm to those since
they have been designed with a similar application in mind.

Cli�ord et al. [29] presented a sketch-based algorithm to estimate entropy over
streaming data incrementally, but due to the nature of the sketch for all historic data
at once, i.e. without forgetting old data.

5.6 Summary 75

5.6 Summary

Analysis of data streams based on their information content and the mutual pre-
dictability of their behaviour allows potential insights in the monitored system. Mu-
tual information brings a di�erent perspective to stream analysis that is independent
from assumptions on the distribution of or relationship between the data streams.

We used mutual information, a concept from information theory, as a metric that
can help to evaluate and monitor sensor readings or other streaming data. We develop
two increasingly sophisticated ways to implement a monitor algorithm.

We have shown how such an analysis can be performed e�ectively with a simpler
discretization of data streams. A more sophisticated estimation technique allows an
e�cient implementation where computations from a previous step can be re-used and
the entropy calculations can be done incrementally over time.

We evaluated our algorithms on �ve real life sensor data sets with up to 17 million
records and against three other algorithms to detect dependencies in data streams.
They are more accurate for detecting dependencies in the data than those algorithms
and take less computation time on all data sets.

With the second resulting algorithm, DIMID, we achieve an increase of 37% in
AUC and 17% in F1 in classi�cation accuracy over the competing algorithms. The
improvement is due to the ability of an entropy-based distance measure to discrim-
inate not only simple, linear relationships but also more complex interactions from
background noise. The computation scales well with window sizes and is 12–24 times
faster than similar algorithms.

Considering the growth in available sensor data and the increasingly complex
systems they monitor, fast, e�cient and universally applicable monitoring algorithms
like DIMID remain a promising area of research.

There are a number of possible extensions. While we sidestepped the issues due
to discretization or transformation of the data, the window size remains as an impor-
tant parameter. It would be useful to either �nd a way to optimize the window size
automatically or eliminate a static window size altogether. An example technique
how to deal with such adaptive windowing is the ADWIN algorithm for data streams
with concept changes. [14] However, window size depends heavily on the required
resolution over time and might best be left as a choice for the user. The choice might
however in�uence the sensitivity of a detection algorithm.

Extending the search for dependencies from pairwise to groups of three or more
streams increases the computational complexity but brings the potential to broaden
the analysis to an entropy-based ad-hoc clustering. This would require a di�erent ap-
proach to estimate multivariate entropy than the projection method shown here. The

76 5. Dependency Monitoring

entropy estimation approach in the next chapter is computationally more expensive,
but can be extended to multivariate analysis.

We also did not take the problem of time-delayed relationships into account. De-
layed e�ects after an initial cause for example e�ectively hide relationships from an
observer. We will discuss one way to capture such hidden relationships in the next
chapter.

Chapter 6
Delayed Dependency

As we discussed in the previous chapter, the analysis of data streams has become
an interesting research area, that provides algorithmic and technological challenges.
Data streams appear in diverse environments. Examples can be found in the �elds of
medicine, industrial or environmental control, �nance or social media. Applications
of stream analysis include sensor surveillance, motion tracking or the analysis of net-
work tra�c. The wide di�erences in the purpose and nature of the systems where the
streams originate make it that much harder to create techniques that can be used for
and are actually useful in the analysis of di�erent kinds of streams. We closed in on
the complex and diverse nature of data streams with techniques to analyze the depen-
dence in streams originating from the same system. To do so, we use an entropy-based
measure that deals successfully with the inherent complexities.

These dependencies, however, can be further complicated if we think about the
possibilities of time delays in the data. Imagine, for example, relationships in weather
data where temperature changes have delayed e�ects on humidity or precipitation.
The relationships might also only appear for a short time period or be stable for
months and years. Another possibility for time delay e�ects appears if multiple sen-
sors pick up changes caused by the same event, but from varying distances because
they are placed in di�erent locations. For these and other reasons, relationships might
exhibit a lag that hides the relation from an observer.

The problem of lagged dependency is the analysis of two or more evolving se-
quences of data for dependence and for the time-delay or lag at which the dependence
is the strongest. Since the streams evolve, i.e. dependencies change over time, this also
becomes a continuing monitoring task. To solve this problem, an algorithm needs a
general measure for dependency in time series, has to work e�ciently in constant
time and in constant space and provide accurate results over a wide range of time
delays.

78 6. Delayed Dependency

The material in this chapter has not been published so far. Our contributions
discussed below are under review for publication in:

[21] J. Boidol and A. Hapfelmeier. Lagged dependencies in data streams. In Review
to: IEEE Transactions on Knowledge and Data Engineering, 2017

In this chapter, we introduce the idea of cross-dependency, an analogue to cross-
correlation from signal processing transferred to information theory. We discuss pos-
sible ways to compress time series while capturing their dynamics and we explore the
e�ect of reconstructing the cross-dependency from limited samples. From these, we
develop an algorithm to e�ciently calculate the cross-dependency on multiple data
streams. We evaluate the algorithm on �ve data sets, some of them synthetic. Since
miscellaneous use cases allow di�erent optimizations of the algorithm, we explore the
e�ects of those optimizations on runtime and accuracy of the algorithm.

We propose an online algorithm called Loglag to calculate the mutual informa-
tion for lagged data streams. Mutual information as dependency measure captures all
possible types of relationships without limiting them to linear or monotonous types.
A geometric sampling in conjunction with adaptive compression of old data provides
very accurate results for smaller delays and a good approximation for large delays.
This algorithm is the �rst algorithm to calculate lagged mutual information on data
streams.

6.1 Time-delayed Streams
Loglag is designed to �nd the maximum cross-dependency and the corresponding lag
on a pair or for all pairs of large numbers of data streams. In this section, we will
de�ne cross dependency and introduce the notation for lagged signals.

The notion of a lag between time series stems from signal processing, where it
de�nes the o�set between two signals. We can shift one time series relative to the
other to align values from di�erent time steps with each other. A common methods
involving lagged signals is the cross-correlation. There, one signal is shifted along
the other, and for every o�set or lag the correlation of the signals is determined. The
function with the lag and both signals as input and their correlation at the given lag
is called cross-correlation, or auto correlation if a signal is compared to itself.[81]

This method is useful in many ways. For example, we can �t a shorter signal
at the appropriate position on a longer signal. Say a short speech signal, a word in
a sentence, slides along a longer signal, in this case a whole sentence. The cross
correlation would peak around that lag which places the word at the correct position
in the sentence.

6.2 E�cient Lagdetection 79

In a similar manner, cross-correlation can be used to determine the delay between
acoustic signals. If two microphones record the same signal at di�erent distances,
the lag corresponds to a delay, caused by the transit time of the signal. The cross-
correlation aligns the signals for every possible delay and gives for each a measure
of similarity of the respective match. The maximum of the cross-correlation function
then determines the optimal lag between the signals.

Cross-correlation employs correlation as measure of similarity, a simple and often
e�ective measure. As in the previous chapters, we want to move to a di�erent measure
that is more suitable for stream analysis. As a measure of dependency between two
time series, we use as again their mutual information I .

As with cross-correlation, the lag l is the relative shift of two time series to each
other. The optimal lag now is the position at which the behaviour of one time series is
most predictable from the other and vice versa. Given a time series X = (x1, . . . , xt)
with the newest element xt at time t, and a second time series Y , we can calculate
a measure of dependency for all lags as a function of the shifted series D(X, Y, l) =
g((xl, . . . , xn); (y1, . . . , yn−l)). If g(•, •) is the normalized covariance, this is identical
to cross-correlation. If we take g as the mutual information I , we call it the cross-
dependency.

We de�ne the cross-dependency D(X, Y, l) between X and Y as

D(X, Y, l) = I((xl, . . . , xn); (y1, . . . , yn−l)). (6.1)

The task of cross-dependency monitoring is then to calculate D for all possible
lags l and report the optimum lag with the maximum dependency on a pair or group
of data streams. Since there can be periodic patterns in the data such as daily or
seasonal dependency, it is more adequate and practical to report the earliest local
maximum above a speci�ed threshold.

For data streams, there are additional di�culties in lag detection. One in particular
in this kind of lag detection is the need to keep large amounts of historic data which
can be shifted relative to each other. And as a collateral, the computational cost to
calculate the dependency for every shift grows with the length of the data stream.

6.2 E�cient Lagdetection

Two main ideas are behind the design of Loglag. We need to choose again an ap-
propriate estimator for mutual information and have to �nd ways to calculate the
cross-dependency e�ciently.

80 6. Delayed Dependency

6.2.1 Kraskov Estimator
Estimating mutual information from sample data is a di�cult problem, as we es-
tablished in the previous chapter in Section 5.2.1. However, it functions as model-
independent measure and is not limited to certain types of relationships in the data
or data drawn from a known distribution. Mutual information has been de�ned as

I(X;Y) =

∫
X

∫
Y

f(x, y) log
f(x, y)

f(x)f(y)
dx dy, (6.2)

or as sum of underlying component entropies

I(X;Y) = H(X)−H(X, Y) +H(Y), (6.3)

where f(x, y), f(x), f(y) are the joint and marginal probability density functions.
A number of estimators for I can be found in the literature, for example those by

[10], [67], [66], but the kNN-estimator by Kraskov et al. [67] has not only been shown
to be comparatively little biased and very stable on real world data. It is free from
assumptions on the data distribution and therefore insensitive to violations of such
a distribution. It is non-parametric and instead based on the density of data points
in the neighbourhood around each sample data point. It also has two convenient
properties: First, it does not resort to the calculation of the component entropies (see
(6.3)). This avoids the errors possibly made in the individual estimates which might
not cancel each other and lead to a biased estimation. Second, if we do not need the
component entropies and skip the space and time required to calculate those, we can
reduce the total space and time complexity. This will be helpful in the �nal design of
the algorithm in which we use the estimator.

Details, especially regarding the derivation can of course be found in the origi-
nal publication (Kraskov et al. [67]). Here, we brie�y explain the main idea and the
quantities in the �nal expression.

The Kraskov estimator uses the number of points within a margin of each data
point as approximation for the distribution of the sample. The margins for each point
are derived from the distance to the k-nearest neighbour. Earlier, we called the esti-
mator parameter-free. This is true despite the choice of a value for k in the estimator,
because this value does not have to be adjusted to the sample. Larger values simply
provide more accurate estimates but require higher computational cost. It has been
found that small values for k (i.e. k ≤ 4) are already su�cient for the estimate.[64],
[96], [63]

6.2 E�cient Lagdetection 81

Formally, we consider Z = ((x1, y1), . . . , (xn, yn)) the joint space of X and Y .
With the maximum norm as distance measure

dist(z, z̃) = max(|x− x̃|, |y − ỹ|),

we determine dk as the distance to the k-nearest neighbour z′ around a sample point
z = (x, y). More precisely,

dk = dist(z, z′),with z′such that
k + 1 = |{ẑ ∈ Z | dist(z, ẑ) ≤ dist(z, z′)}|.

The use of the maximum norm is di�erent from other kNN estimators.[50] It cre-
ates a square centered around zi (see Figure 6.1) and allows a succinct way to express
the expectation value of the probability mass pi within this square. In particular,

E[log(pi)] = ψ(k)− ψ(n).

The digamma function ψ arises since we have to account for the n − k ways of
drawing the surrounding points.

Interestingly, the two samples X and Y can be from completely di�erent spaces
and use di�erent distance norms. In most cases and in our examples however, the
euclidean distance is the appropriate distance metric.

In the next step, we count the points x′ ∈ X \ {x} within a distance of less than
dk of x as nx and the points y′ ∈ Y \ {y} respectively as ny to establish a density
estimate. These marginal counts can be plugged into the Kraskov estimator for mutual
information:

I(X;Y) =
1

n

∑
(x,y)∈Z

ψ(k)− ψ(nx + 1)− ψ(ny + 1) + ψ(n), (6.4)

where n is the size of the sample or the common length ofX and Y . The terms ψ(k)+
ψ(N) serve as normalization for sample size and the value for k. In practice, this
estimator boils down to some simple operations: Finding the k-nearest neighbour and
determining how many data points fall within a region determined by this neighbour.
With some care, we can optimize these operations for data streams. We will show
these steps in Section 6.3.

82 6. Delayed Dependency

zi

dk

2 · dk

2·
d
k

n
y
m
a
rg
in
a
l
p
o
in
ts

fro
m

Y

nx marginal points from X

Figure 6.1: Data points in the joint two-dimensional space Z of X and Y . The k-
nearest point determines the size 2 · dk of the margins around the selected point zi.
Points from X and Y within the marginal distance are called marginal points. In the
example k = 3.

6.2 E�cient Lagdetection 83

6.2.2 Geometric Probing

To �nd the full cross dependency of two streams X, Y up to a lag lm, we would have
to calculate the dependency at lm positions. We can save much of the work here, if
we recognize two things. First, it is unlikely for the dependency to change abruptly
from one lag to the next. Second, we can accept a grade of approximation for larger
lags. Together, this means we only have to sample the cross dependency function at
some lags and reconstruct the complete function from those sample points.

For Loglag, we reconstruct the cross-dependency function from a geometrically
spaced probing. Compare �gure 6.2 for an example of the idea. Instead of naively
calculating the dependency for every possible lag, we take only a subset of all lags,
every 2i-th lag up to a maximum lag lm. The distance between the actually calculated
points increases geometrically with the lag. While we chose to double the spacing,
other bases than 2 are of course possible. Other bases would allow to �ne-tune the
spacing to a greater degree, but they o�er no fundamental di�erence. Later, we will
follow two other ways to control the spacing instead.

With the geometric spacing, the error between the �lled in and the correct de-
pendency vales will be small at small lags where accuracy matters most. Even for a
large lag the relative error remains small. Assuming that the interpolation error is
proportional to the sampling rate, the relative error will even remain constant since
the number of sample points decreases in proportion to the size of the lag. We can
justify the sampling further with the following thought: If there are several peaks in
the cross-dependency, we want to �nd the earliest signi�cant one. The earliest peak
is also the one with the highest local sampling frequency in this scheme.

After the sampling, we can �ll in the lag values between the probed points with
any interpolation method. Our method of choice are cubic splines to get a smooth and
e�cient interpolation. The probing reduces computation time greatly to O(log(lm))
compared to O(lm) in the naive solution.

Error Estimation

In addition to the intuitive idea of the probing, we can make some assertions to the
accuracy of this scheme: The Nyquist–Shannon sampling theorem states that we can
perfectly reconstruct a signal from a uniform sampling, if the sampling is spaced at
most 2 · fs Hertz apart and the signal contains no frequency higher then fs. Even
for non-uniform sampling, we can reconstruct the full cross-dependency from the
sampling, if the average sampling rate is at least 2 · fs. [86] For our geometric sam-
pling, this means we can perfectly determine the cross-dependency D up to a lag l,
if l < 2

fD
and the highest frequency in the signal D is at most fD. This proves the

84 6. Delayed Dependency

lag

M
ut

ua
l I

nf
or

m
at

io
n

●

●

●

●

●

●

●

●

●

●

(a) Calculate dependency at every possible lag value.

lag

M
ut

ua
l I

nf
or

m
at

io
n

●

●

●

●

●

(b) Calculate dependency at geometrically spaced sam-
ple points.

Figure 6.2: Naive calculation and interpolation of the cross-dependency function.

initial assumption that sampling will not hurt the overall accuracy to much, provided
the cross-dependency function is reasonably smooth. Intuitively, we capture D accu-
rately, if the dependency does not change too fast from one instance to the other.

6.2 E�cient Lagdetection 85

6.2.3 Smoothing

The geometric probing drastically reduces the computation time necessary to calcu-
late the cross-dependency, but does not change the amount of data necessary to do
so. To get the dependency at all sampled points, we still would need to save historic
data up to the largest lag value we want to compute. We implement two techniques
to reduce the storage requirements.

First, we restrict the calculation of the mutual information to a window of the most
recent data. There are good reasons to adopt the window-approach beside the cost
e�ciency it provides. As in the previous chapter, we want to gives more weight to
recent data to detect a relationship even if it emerges for example only part of the time
or for a shorter time. Also, since we shift two data streams to each other to �nd their
dependency at di�erent lags, the overlapping part of the two streams gets shorter for
longer lags. With a �xed window size, the sample size we compute the lag on stays
constant and simpli�es the implementation.

As a second technique, we compress older data points. Older data is necessary only
to compute larger lags. For those, we are more interested in the large scale dynamics of
the data stream, since we increasingly approximate and smooth the cross-dependency
for larger lags anyway, as we described in the previous section. Figure 6.3 shows the
smoothing we want to achieve for a single stream.

To do so, we create layers of increasingly compressed and smoothed version of
the sequence. The �rst layer stores the most recent w+ 1 data points, where w is the
selected window size. The overhang is necessary to allow a shift with respect to a
second data stream and maintain an overlap of w. Every further layer stores the same
number of data points but represents a window with the endpoint increasingly further
backwards in time. That way the number of points stays constant in each layer but
the covered time horizon increases per layer. Compare Table 6.1 as an example with
w = 8.

We refer to increasingly compressed layers as Lh where L0 stores the last w+1 of
the original, uncompressed stream. Every higher layer averages c = 2h consecutive
data points, for example two values from layer Lh−1, xhth−1

, xhth−1−1 are averaged to
x̂h+1
th

. th denotes an index for each layer h where th = b t
2h
c. th e�ectively counts

the number of (averaged) data points that have ever been part of the layer h. An
increase by two of t0 (two data points have arrived in the original data stream and in
L0) translates to an increase of one in t1 (the two new data points are averaged to one
point in L1.

We can use these layers to enact the geometrically spaced sampling of the cross-
dependency. Every layer spans double the part of the data stream than the layer below.

86 6. Delayed Dependency

●

●

●

●

●

●

●
● ● ●

●
●

●
● ● ● ●

●
●

● ●

time

(a) Smoothed data. The solid data points are kept in
memory such that each layer has the same number of
points but stretches increasingly further back.

lag

M
ut

ua
l I

nf
or

m
at

io
n

●

●

(b) Reconstruction of the cross-dependency. Sample
points are calculated on the basis of di�erent compressed
layers.

Figure 6.3: A smoothed, compressed representation of the data streams is kept in
memory. From each layer, we calculate a sample point used in the reconstruction of
the cross-dependency.

6.2 E�cient Lagdetection 87

Table 6.1: Layers of compressed data. The most recent data point is x256, each layer
doubles the coverage of the data stream backwards in time. Layer h = 0 stores data
back to x248, layer h = 1 stores data back to x239, etc. The last layer stores data back
to t = 256− w · 2h.

w = 8
h = n xtn xtn−1 xtn−2 · · · xtn−w

... ...
h = 2 xt2 xt2−1 xt2−2 · · · xt2−w
h = 1 xt1 xt1−1 xt1−2 · · · xt1−w
h = 0 x256 x255 x254 · · · x248

In the same way, a shift by l in Layer Lh is equivalent to a shift 2l in the layerLh−1.
To calculate the geometrically spaced lags of 2h, we use the smoothed stream Lh

and calculate the lag lh = 1 corresponding to l = 2h. The maximum lag we can
calculate is determined by the number of layers or vice versa. More precisely, for a
maximum lag of lm we need a maximum of hm = dlog2(lm)e layers. The calculation of
larger lags in higher layers also has the desirable e�ect that larger lags are calculated
from larger slices of the data and less likely to be the e�ect of statistical �uctuations.
While the e�ect of a small lag might only be detectable in the most recent data, the
e�ect of a dependency with large delay should also be detectable over a larger time
frame.

Error estimation

The smoothing obviously introduces an error in the calculation of dependency. This
error depends on the degree to which the smoothing approximates the original data.
We can show that for streams with low frequencies the error of the approximation
is usually small. We can make this assertion towards its accuracy if we think of the
compressed data as discrete Haar wavelet transform (DWT). [83] The Haar DWT
repeatedly averages consecutive values and, similarly to a discrete Fourier transfor-
mation, the highest coe�cients of the transform contain most of the information of
the original data. Given the original data xt and the smoothed x̂th in the normalized
stream X , we get n Haar wavelet coe�cients wi of X . The quadratic error between
smoothed and original data depends on the highest frequencies:

88 6. Delayed Dependency

n∑
t=1

(xt − x̂th)2 =
∑
i>n/2h

w2
i . (6.5)

In most real data sets, most of those coe�cients are small and only a few contribute
signi�cantly to the dynamic of the data, so we can expect the error introduced by the
smoothing to be small.[51]

With ∆xt = xt − x̂th , equation (6.5) tells us that ∆xt � xt. The probability of
a compressed data point crossing the margin de�ned by the k-nearest neighbour in
the Kraskov estimator is ∆xt. The expected error of the marginal count, assuming
all points are located on one side of the margin, is then bound by the expected value
of a binomial distribution w ·∆x. The error is likely smaller, since data points might
cross in either direction and cancel each other. The expected number of false counts
is even zero, if we assume a symmetric distribution around the margin.

The e�ect on the MI estimate I is hard to quantify since the distribution of mar-
ginal counts may vary greatly. The mean error ε̄ for a given distribution of n is

ε̄ = 2 ·
∞∑
i=1

p(ni)[ψ(ni)− ψ(ni − w ·∆x)],

with PDF p(ni) of the marginal points. The steps of the digamma function ψ(n) are
largest for small values of n, so increasing the sample size would help to reduce the er-
ror. We also average thewMI estimates from each data point which helps to minimize
the error further.

Space and Time complexity

Clearly, every layer can be maintained with the data of the one directly below it as
new data arrives, pools in its layer, is compressed and cascades to the next layer.
Maintaining layer h requires a small, constant number of operations c every 2h steps.
For all layers, the update operations amount to

∑hm
h=0

c
2h
≤ 2c in total. We can update

them in amortized timeO(1) per data point over the lifetime of the stream. The space
requirement is simply O (hm · w) for the w + 1 values in the hm layers.

Calculating the mutual information for each of the log(lm) Layers takes time
O(w2)). We have to �nd the nearest neighbours and count the marginal points in
time O(w) and have to repeat this for each of the w data points in a layer.

6.3 Loglag 89

From these ideas, sampling and smoothing, we can already build an e�cient lag
detection algorithm as we will demonstrate in the next section. There are several pos-
sible advancements to these fundamental ideas which we will discuss in Section 6.3.1.

6.3 Loglag
As we described previously, Loglag relies on a hierarchy of smoothed layers L0 to
Lhm . We discuss the case of a pair of streams X, Y for simplicity, with obvious gen-
eralizations to pairs between three and more streams. The pair of layers of the same
compression level Lh from each stream is used to calculate one sample point of the
cross-dependency D(X, Y, 2h). Putting these steps together in an algorithm is fairly
straightforward, we state the pseudocode in Algorithm 9 below. The main routine
iterates over a maintenance part and an output part.

The maintenance function updates the progressive layers as new data arrives from
the stream. The pseudocode for this part, Algorithm 10, describes more in detail, how
every new value is added to the base layer and new values are pushed upwards to
higher levels when new values have accumulated. Old values that are not needed
anymore are discarded at the same rate. We need the w + 1 most recent values per
layer to calculate the lag at each level for a sample of w values: (xt−w+1, . . . , xt) and
the lagged version (xt−w, . . . , xt−1).

The output function can be called every time new data arrives, at regular intervals,
or at user de�ned time points. In this case, we defer the evaluation of D(X;Y) until
output is actually required. This is advantageous if we expect the streams to move
very fast or output is only necessary at larger intervals.

An adaptation for other settings is discussed in Section 6.3.1. We will see that the
lazy evaluation provides a formidable speed-up in the right conditions.

For the actual lag detection, we calculate the mutual information at every layer
h, with lag lh as estimate for the lag at l = 2h. This can be seen in Algorithm 11. To
interpolate the full function, we �t a cubic spline for each gap we need to �ll. To �nd
the maximum, we evaluate the function piecewise with one’s favorite method to �nd
local maxima, e.g. Brent’s method [24]. The calculation of the mutual information
uses the Kraskov-estimator we introduced in Section 6.2.1.

As mentioned in Section 6.1, we can either report the full cross-dependency or,
if we suspect periodic dependencies and are given a threshold for the score, we de-
termine the lag lp with maximum score s in an interval between each neighbouring
pair of sample points. If it is not an endpoint of the interval, we report lp if its score
s is above the given threshold. This �nds the earliest local maximum of a given lag
function.

90 6. Delayed Dependency

Algorithm 9 Main Algorithm Loglag
Input: Streams S, window size w, max lag lm

1: procedure LogLag
2: L,E, JE ← init()
3: for st ∈ S do . for every new set of values
4: for si ∈ st do . for every stream
5: //Maintain layers
6: SmoothLayers(si)
7: end for
8: //If output is desired at t
9: for i, j ∈ 〈S〉 do

10: //Calculate Best Lag
11: LagDetecting(i,j)
12: end for
13: end for
14: end procedure

Algorithm 10 Layer Maintenance
Input: si

1: procedure SmoothLayers
2: Li0(t) = si
3: del Li0(t− w − 1)
4: for h = 1 to dlog(m)e do
5: th = dt/2he
6: if t mod 2h = 0 then
7: Lih(th) =

Lih−1(2·th)+L
i
h−1(2·th−1)

2

8: del Lih(th − w − 1)
9: end if

10: end for
11: end procedure

6.3 Loglag 91

Algorithm 11 Lag Interpolation
Input: i, j

1: procedure LagDetecting
2: lag = {0, 1, 21, . . . , 2dlog(m)e}
3: GetMI(i,j)
4: scores = {MIl|l ∈ lag}
5: �t splines over (l, scores)
6: maximize splines
7: return best lag
8: end procedure

Algorithm 12 Mutual Information Calculation
Input: i, j

1: procedure GetMI
2: X, Y = Li0(t, t− w + 1), Lj0(t, t− w + 1)
3: nx, ny = marginal_counts(X, Y)
4: I i,j0 (0) = ψ(k) + ψ(w)− ψ(nx + 1)− ψ(ny + 1)
5: for h = 0 to dlog(m)e do
6: th = dt/2he
7: X = Lih(th, th − w + 1)
8: Y = Ljh(th − 1, th − w)
9: nx, ny = marginal_counts(X, Y)

10: I i,jh (1) = ψ(k) + ψ(w)− ψ(nx + 1)− ψ(ny + 1)
11: end for
12: end procedure

92 6. Delayed Dependency

6.3.1 Extensions
There are several ways to improve on the basic design of Loglag to optimize memory
usage, accuracy or speed.

LoglagA

An obvious extension to the algorithm is to use every layer for more than one sample
point for the cross-dependency. The basic space requirement per layer is w + 1, but
to get another sample point, we need to extend a layer only by a few data points. Let
us say we want to perform g sample point calculations or lags per layer. On the base
layer, we have to calculate 2g shifts since there is no layer below that one. On the
higher layers, the �rst g shifts are already covered by lower layers and we want to
calculate the shifts from g + 1 to 2g. Therefore every layer is extended by 2g time
steps to provide data for g non-overlapping shifts.

Figure 6.4 shows the layers of an example with g = 2. On the base layer, we
calculate 2 · g dependency scores up to l = 4. On every subsequent higher layer, we
calculate lags from (g + 1)2h to 2 · g2h, in the example the lags at 3 · 2h to 4 · 2h. We
need one more data point to skip over the lags covered by the levels below and one
more for the second lag we wanted to calculate.

In total, at the expense of 2g log(m) additional memory, we achieve a �ner sam-
pling and consequently more accurate results.

Another improvement is possible, if we realize that not all the layers are actually
necessary to calculate all lags. We need to store (h+1)(w+2g) data points to calculate
a lag of 2h · 2g on the h-th layer. To calculate the same lag on the �rst layer, the un-
smoothed sequence, we could extend this �rst layer to w + 2h · 2g. In consequence
we can get rid of all the h intermediate layers. Only at Lh+1 will the smoothing start
to save memory. We can solve numerically for the number of layers h to skip, with
W as the lower branch of the Lambert W function:

h =

−W
(
− log(2)
w/g+2

2
−2

w/g+2

)
log(2)

− 2

w/g + 2

 .
For example, a window of w = 100 and g = 4 means we have to realize every

eighth layer and can do the work of eight increasingly smoothed layers on the �rst
most �ne grained layer with no additional memory cost. Window size and other
parameters stay the same. We also implement the update process that propagates
new values to the layers and the geometrical sampling just as before. That way, the
complexity of the space and time requirements stays identical to the base version.

6.3 Loglag 93

h = 0

h = 1

h = 2

(a) One lag per layer.

h = 0

h = 1

h = 2

(b) Multiple lags per layer

Figure 6.4: Successive layers of Loglag h 0 to 2. In the normal case (a), every layer
contributes one lag. The base layer also contributes the lag l = 0. In the extended
case (b), the layers contribute several (here: two) lags each. Lags and corresponding
shifts are larger so as not to overlap with the lags contributed from the layers below.

We call the algorithm with these memory improvements LoglagA and use it as the
base version in our experiments. With the parameter that controls the number of lags
per level g set to 1, it has the exact behaviour described as in Algorithm 9.

LoglagD

Since Loglag is meant as a monitoring algorithm that produces results continuously,
we can re�ne the search for the optimal lag with previous results. If we have detected
a lag l, (g + 1)2h ≤ l ≤ 2g · 2h, we call h the responsible layer. In the next iteration,
we can assume that the optimal lag will still be in the area we determined before,
somewhere between 2h(g+1) and 2h+1g. We then can spend some additional memory
on the next lower level h − 1 and grow it by another 2g data points to w + 4g. This
allows us to make level h− 1 responsible for lags up to 4g · 2h−1 = 2g · 2h, the limit of
the layer h where we detected the lag. If the layer h− 1 has grown to its new size, we
substitute the results from the previously responsible layer with those from the �ner
resolved layer below. We can do so at double the sampling rate.

94 6. Delayed Dependency

Once we detect the optimal lag outside the interval [(g+1)2h, 2g ·2h], i.e. the layer
h would be no longer responsible for the lag, we let the increased layer h− 1 shrink
again to its normal size. The process to achieve this doubling of the resolution starts
again at the new responsible layer.

We call this extension of the algorithm LoglagD which has slightly increased mem-
ory and runtime cost compared to LoglagA.

LoglagI

LoglagA (and LoglagD) spends most e�ort in the main routine on maintaining the
smooth layers and defers the calculations related to the evaluation of the optimal lag
as long as possible. The maintenance or insert complexity as shown in Section 6.2.3
is O(1) per data point. The evaluation of the mutual information I(X;Y) on the
other hand has complexity O(w2). Depending on the insert-to-eval ratio this is not
desirable.

The evaluation of I(X;Y) requires for every point �rst the distance to the k-
nearest neighbour and second the number of marginal points within this distance,
provided this marginal point still falls within the current window. We can use a small
data structure to track the nearest neighbours over a time w (the window length):
Every point zi in the window keeps a set N+ of the k-nearest neighbours added after
the point itself and an array of sets N− for the possible nearest neighbour sets before
it. The di�erent handling of newer data points and older data points has the following
reason: If an evaluation is triggered at time t, the window stretches from the newest
data point zt to some point zt−w behind zi but the time di�erence between zi and zt−w
is not known at the time the data structure for zi is created.

The set of future neighbours is simply updated every time, we move the window
forwards since those future neighbours are guaranteed to fall within the window w.
The array of sets for previous neighbours is constructed whenever a new point is
added, say at time t′. We iterate over the data points in the window before it and
spawn a new set for the time t′ − s if the data point zt′−s is closer to zt′ than the
k-nearest point from zt′−1 to zt′−s+1.

The insert of a new point takes amortized time O(w). The time to construct the
array of possible setsN− isO(w) and the time to keep the setN+ up-to-date isO(w)
over the w time steps a point is kept in the current window.

To �nd the actual k-nearest neighbours of z during the evaluation, whatever the
position of z within the window, we form the union of N+ with the correct set N−
of the step that contains no points older than the current window. The list of the N−
sets is ordered by time by construction, so even in the worst case of w such sets we

6.4 Experimental Evaluation 95

can �nd the correct one in time O(log(w)). The union of the sets and determination
of the k-nearest neighbours takes time O(k), i.e. a very small constant. This brings
the total time to determine the nearest neighbours at evaluation to O(w · log(w)) for
the whole window.

This pre-computation comes with additional memory cost, since we not only aug-
ment every point with this data structure. We also need a hierarchy of compression
layers for every pair of streams instead of one per stream as in LoglagA. We can no
longer store the values from each dimension of a data stream in a separate hierarchy
each, since we need the two-dimensional points from the joint space Z in every layer.
We also need one hierarchy per lag that is computed per layer, the parameter g, since
the layers cannot be shifted as required.

Depending on the insert-to-eval ratio, however, it allows a considerable speed-up
by more than two magnitudes as shown in our experiments. We call this version with
incremental pre-computation of the nearest neighbour LoglagI.

Table 6.2 sums up the time and space complexities of the three variants we dis-
cussed here. An experimental evaluation of both time and accuracy follows in the
next section.

Table 6.2: Asymptotic Time and Memory Complexity of the Loglag variants. w is the
window size, d the dimension of the data stream, lm the maximum detectable lag, g is
the number of lags calculated per layer.

Time Memory

Insertion kNN Evaluation
LoglagA O(d) O(d2 · g · w2 · log(lm)) O(d · (w + g) · log(lm))

LoglagD O(d) O(d2 · g · w2 · log(lm)) O(d · (w + g) · log(lm))

LoglagI O(d · w) O(d2 · g · w · log(w) log(lm)) O(d2 · g · w2 · log(lm))

6.4 Experimental Evaluation

To evaluate the performance of Loglag, we run the algorithm with di�erent settings
on �ve data sets. LoglagI by design gives identical results to LoglagA, but LoglagD
should show improved accuracy as it increases the sampling rate at the region around

96 6. Delayed Dependency

a suspected lag. LoglagA, LoglagD and LoglagI each have di�erent actual time com-
plexities despite the identical asymptotic runtime of variants A and D (cf. Table 6.2).

Therefore we compare the accuracy of LoglagA and LoglagD to a naive calcu-
lation of the mutual information. Likewise, we compare the speed-up over a naive
implementation of LoglagA, LoglagD and LoglagI at di�erent insert-to-eval ratios.

6.4.1 Data Sets

We evaluate the ability of Loglag to accurately determine lags on a variety of di�erent
both synthetic and real world data sets. In each we expect lagged dependencies due to
the nature or construction of the data set which makes them adequate for the present
evaluation.

Temperature and Light are data sets collected by the Berkley Research Lab. They
contain measurements temperature and light intensity from 54 sensors distributed in
a large o�ce space. We only use a subset of 12 sensors each and about three weeks
uninterrupted measurements.[18]

The Sunspot data set contains the measured sunspot activity over almost 200
years. Sunspot activity has a known periodicity of ca. 10 years between maxima. We
use two subsequences of about 70 years each.[88]

The Spike data set is a synthetic data set with periodic bursts of activity and
intermittent noise, a pattern that occurs regularly in real world situations, e.g. daily
tra�c spikes or scheduled maintenance with associated abnormal activity. We use
two such streams with the same period but shifted spikes.

Sine is a second synthetic data set consisting of two streams, each a mixture of
sine functions. Such a mixture of functions with di�erent periods mimics the overlay
of e.g. hourly, daily, yearly, etc. periodic activity.

Table 6.3 contains an overview of the data sets with the length and number of
streams in each data set.

6.4.2 Experiment Settings

For all experiments, we assume a constant speed of the streams, i.e. no delays through
the streams themselves. We report the relative deviation between the optimal lag of
the full sequence detected by a naive computation and our algorithm variants. For
groups of streams, we report the average of all pairs. We chose a small value of k = 4
(cf. Section 6.1) and a value of g = 4 for all experiments. For LoglagD, we used the
results of the LoglagA run as hints for the optimal lag position and the responsible
layer to extend (cf. Section 6.3.1 for an explanation of responsible layers in LoglagD).

6.4 Experimental Evaluation 97

Table 6.3: Sets of data streams used in the experiments with length n and number d
of streams selected.

Data set description d n

Temperature (o�ce environment data) [18] 12 65,537
Light (o�ce environment data) [18] 12 65,537
Sunspot (sunspot activity since 1818) [88] 2 25,900
Sine (mixture of sine waves) 2 6,500
Spike (pulse train with �xed period) 2 6,500

All experiments have been performed on consumer grade hardware with an Intel
Xeon 1.80 GHz CPU. There was no hard limit set on the available memory, but physical
memory never exceeded 100MB.

6.4.3 Evaluation Results
Table 6.4 shows the lags detected as optimal by naive calculation and our approxima-
tion. Overall, the estimates keep within 5.5% of the correct lag, with as little as 0.76%
error by LoglagA and 0.38% by LoglagD. The increased sampling rate of LoglagD does
improve the detection accuracy slightly, but not signi�cantly (by 0.22% with p = 0.89),
in two cases it increases even. This happens as the approximation of Loglag �nds
general trends and peaks but is not �ne-grained enough to determine the mode of
a peak exactly. The deviations leave room for small errors in both directions. If the
lag is fairly small, as in sine, the di�erences between LoglagA and LoglagD are small
(cf. Fig. 6.5b). For larger lags, which are calculated with a coarser approximation,
LoglagD can help to provide not only more accurate results (cf. Fig. 6.7b), but also
more precise absolute values for the MI score, as can be seen in Fig. 6.6b.

98 6. Delayed Dependency

Table 6.4: Detected Lags and Errors of all Data Sets.

Lag position Error
Data set naive LoglagA(I) LoglagD error A(I) error D

spike 422 402 399 4.74% 5.45%
sine 262 264 261 0.76% 0.38%

sunspot 757 715 770 5.54% 1.72%
light (avg) - - - 2.23% 6.70%

temperature (avg) - - - 4.87% 2.78%

average 3.63% 3.41%

0 200 400 600 800 1000

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

lag

M
I

Naive
LoglagA
Sample Point A

(a) Lag function

100 150 200 250 300 350 400

6.
5

6.
6

6.
7

6.
8

6.
9

7.
0

lag

M
I

Naive
LoglagA
LoglagD
Sample Point A
Sample Point D

(b) Lag function, close-up of best lag.

Figure 6.5: Entropic lag function from the sine data set.

6.4 Experimental Evaluation 99

0 200 400 600 800 1000

4.
5

5.
0

5.
5

lag

M
I

Naive
LoglagA
Sample Point A

(a) Lag function

300 350 400 450 500 550 600

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

lag

M
I

Naive
LoglagA
LoglagD
Sample Point A
Sample Point D

(b) Lag function, close-up of best lag

Figure 6.6: Entropic lag function from the spike data set.

0 1000 2000 3000 4000 5000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

lag

M
I

Naive
LoglagA
Sample Point A

(a) Lag function

500 600 700 800 900 1000

2.
0

2.
5

3.
0

3.
5

lag

M
I

Naive
LoglagA
LoglagD
Sample Point A
Sample Point D

(b) Lag function, close-up of best lag

Figure 6.7: Entropic lag function from the sunspots data set.

100 6. Delayed Dependency

6.4.4 Run-time Analysis
The main di�erence between LoglagA and LoglagD to LoglagI is the lazy evaluation of
the dependency in the former two compared to the pre-computation in the latter. We
therefore compare the runtimes for each �avour at di�erent frequencies of evaluation,
speci�cally at ratios r of 1 evaluation after every 1, 10 and 100 new data point arrives.
We also compare di�erent values for the maximum lag we want to be able to detect
ranging from 100 to 10000. To evaluate the speed, we use one of our synthetic data
sets, spike, with n = 20000 and run every algorithm for every setting. For every
setting, we report the minimum of �ve runs, to achieve a result that is as free from
interference as possible.

The most unfavorable settings for LoglagA and LoglagD are the ones with frequent
evaluation, i.e. small r. Conversely, the most unfavorable settings for LoglagI have
high r values. For both, we expect a higher gain – compared to the naive solution –
with a larger maximum lags.

The evaluation results show, that even in the least favorable setting, signi�cant
speed-ups are realized. Figure 6.8 gives a complete overview.

evaluation ratio

tim
e/

s

1e
+

02
1e

+
03

1e
+

04
1e

+
05

1e
+

06 naive
LoglagA
LoglagD
LoglagI

1 10 100

Figure 6.8: Naive, LoglagA, LoglagD, LoglagI on synthetic data set spike with n =
20000. Runtime in seconds is given for eval-ratios of 1, 10, 100 and max. lags of 100,
500, 1000, 2500, 5000, 10000. The time axis is logarithmic.

We achieve a speed-up for LoglagA of at least 3.8×, and 232.8× at best, over the
naive implementation. On average, including all settings, we improve by a factor of
75.6×. For LoglagD, the results are very similar, as expected: In the worst case, we
are 3.8× faster, in the best and average case the speed-ups are 228.1× and 74.1×.

6.5 Related Work 101

LoglagI by design works best for frequent evaluations. For those settings, it is up
to 469.0× faster, with an average of 95.8×. For infrequent evaluations (r = 100),
lazy calculation not surprisingly performs better, but even there the LoglagI imple-
mentation is at worst on par with the naive implementation and on average still 26×
faster.

6.5 Related Work
Entropy-based measures are not limited to speci�c kinds of relationships and have
attracted research e�ort for some time. Fraser and Swinney [43] used MI to detect
concept changes in static data already in 1986. More recently Reshef et al. [82] and
da Costa et al. [34] evaluate several algorithms to �nd associations or detect concept
drift in data sets and report good results for MI approaches. There is even an stury by
Benesty et al. [11] that tests a minimum entropy approach for time delay estimation
in acoustic signals with superior results compared to standard techniques.

There is also a growing interest and corresponding work on the analysis of data
stream dependency. A recent example is Keller et al. [63] who developed a framework
to estimate mutual information on data streams to monitor dependencies, based on
the Kraskov estimator [67] for MI but for arbitrary window sizes and window o�sets.
However, they do not consider the e�ect of delays on dependency. Earlier work by
Sakurai et al. [83] on delayed correlation developed an approximation to the cross-
correlation function, based on Pearson’s correlation coe�cient. This allows lag detec-
tion on streaming data, provided the relationships are simple enough to be captured
by their linear model.

6.6 Summary
Finding dependencies in data streams promises insights into the hidden connections
and relationships in a monitored system. This task becomes vastly more complex
if time delays are taken into account. We developed an e�cient and extremely fast
algorithm, Loglag, to calculate dependencies with an optimal delay via the mutual in-
formation between data streams. The use of a nearest neighbour-based mutual infor-
mation estimator covers a wide, distribution-independent spectrum of dependencies.
An approximation via geometric probing allows e�cient calculations over a wide time
horizon. Loglag has been further optimized for high eval-to-insert ratios.

In experiments with �ve di�erent synthetic and real world data sets, we achieve
high accuracy and a much higher throughput compared to a standard mutual infor-

102 6. Delayed Dependency

mation calculation. The average error in lag detection is 3.63% ranging between 0.76%
and 5.54%. The speed-up averages 74 – 96× including unfavorable settings.

We employ a �xed window size and uniform compression to limit memory con-
sumption while still allowing the detection of large delays. In principle, sampling
strategies like they have been utilized in [63] could be adapted to allow arbitrary win-
dow sizes in the evaluation of dependency and allow more �exibility in the monitor-
ing. To reconcile this with the demands on low memory consumption and necessary
speed for a monitoring algorithm remains an objective for further work.

These types of online analysis increasingly gain interest as both the amount of
streaming data produced by smart and complex systems and the demands to extract
their value grows. Algorithms like Loglag help to deal with the challenges presented
in this environment.

Chapter 7
Conclusion

7.1 Summary
In this work, we dealt with two problems of stream mining, stream classi�cation and
stream dependency. Most practical applications that learn from, monitor or interpret
data streams pose challenging tasks since streaming data is in many ways di�erent
from static batches of data. The most signi�cant di�erences are the dynamic nature
of data streams. It requires the ability of algorithms to forget older data and relearn
when new concepts appear. They must also deal with the transience of the data, which
is never complete and in practice impossible to store exhaustively. We deal with both
supervised and unsupervised problems, which are both highly relevant scenarios in
sensor surveillance and in the monitoring on large scales.

In the �rst part of this thesis, we dealt with supervised learning. We presented Prob-
abilistic Hoeffding Trees, a novel approach towards stream classi�cation. The
probabilistic model treats examples to learn from not as absolute set of values, but as
samples of a probability distribution. We showed how probabilistic learning greatly
improves the �exibility of online decision trees and their ability to adapt to changes
in data streams. The general technique is not only applicable to a variety of classi�ca-
tion models, but fast to compute without signi�cantly greater memory cost than base
line models. We tested the Probabilistic Hoe�ding Tree on several classi�ers with
tree models. On �ve sensor data sets, we achieved signi�cantly improved accuracy
with comparable model size and runtime across all the data sets and classi�ers we
examined.

104 7. Conclusion

We improved the classi�cation accuracy by up to 16% with 3.2% on average in
dynamic streaming data sets over other Hoe�ding Tree models. Our approach reacts
swiftly to changing data streams which makes it especially suited to environments
where the concept behind the streams changes frequently, as is the case in many
industrial or ecological applications.

As a second problem, we turned towards unsupervised monitoring of data streams.
Knowledge of the relationships between streams allows hidden insights into a moni-
tored system. Changes in these relationships over time might uncover extraordinary
or anomalous events. To detect relationships in high dimensional data, we exploited
their mutual information, which serves as a measure of mutual predictability without
prejudice for particular forms of relationships. We presented MID and DIMID, algo-
rithms that deal with the technical and theoretical complexities of calculating mutual
information on data streams. MID performed a simpler discretization of data streams
with good results. Beyond simply discretizing data, we also tested a more sophisti-
cated distance-based estimation technique. This allowed an e�cient implementation
of DIMID where computations from a previous step can be re-used and the entropy
calculations can be done incrementally over time. The incremental procedure reduced
the theoretical complexity from O(w) to O(log(w)) where w is a window over the
data stream.

We evaluated these two algorithms on �ve real life sensor data sets with up to
17 million records and against three other algorithms to detect dependencies in data
streams. They outperformed those algorithms both in accuracy and computation time.
DIMID achieved an increase of 37% in AUC and 17% in F1 in accuracy over the next
best algorithms. The computation scales well with window sizes and is 12–24 times
faster than the competing algorithms.

In addition to the time-aligned analysis, we introduced delayed relationships as a fur-
ther complication in the dependency analysis. In reality, the phenomena monitored
by e.g. some type of sensor might depend on another, but measurable e�ects can be de-
layed due to technical reasons, i.e. di�erent stream processing speeds, or because the
e�ects actually appear delayed over time. We presented Loglag, the �rst algorithm
that monitors dependency with respect to an optimal delay. It utilizes two approxi-
mation techniques to achieve competitive resource requirements. We demonstrated
its scalability and accuracy on real world data, and also gave theoretical guarantees
to its accuracy. The �rst key idea was a geometric probing for lags to reduce the com-
putation time. This simple but e�ective measure lowered the complexity from O(l)
to O(log(l)) where l is the maximally detectable delay. The detection accuracy de-

7.2 Outlook 105

creases mostly for larger lags where the same absolute error is more acceptable and
can be re�ned in later steps anyway. Since the computation of dependency with large
lags is also costly in terms of memory storage, we coupled this with a progressive
compression which reduced the space complexity likewise from O(l) to O(log(l))
and larger lags are calculated with lower grained approximations. Again, the error
is in proportion to the size of the lag and larger lags can be calculated with su�-
cient precision to detect the stream dynamics and re�ne the detection over time. In
experiments with �ve di�erent synthetic and real world data sets, we achieved high
accuracy and a much higher throughput compared to a straightforward calculation.
The average error in lag detection is 3.63% ranging between 0.76% and 5.54%. The
resulting speed-up is excellent with 74 – 96× shorter computation time, even with
respect to unfavourable settings.

7.2 Outlook
Considering the growth in available sensor data and the increasingly complex systems
they monitor, fast, e�cient and universally applicable algorithms like those developed
over the last chapters remain a promising area of research. We will end this thesis with
our thoughts on areas that might merit further work in the future.

Using an entropy-based dependency measure and proper estimators for this over-
comes the issues due to discretization or transformation of the data. The choice of
window size is still left to the user depending on the desired application. Ideally, we
could �nd an optimal window size that balances performance, the dynamic of the
stream and frequency automatically. Better yet we could adapt it continuously to
the current stream dynamic. Combining the presented techniques with methods for
concept change has the potential to give less user dependent optimal results.

While we dealt with pairwise dependency, there is no theoretical obstacle to ex-
tend the monitoring from stream pairs to groups of streams. Multivariate mutual
information would allow a broader base for the dependency analysis and could be
extended to the construction of dependency groups or clusters. The lagged version of
the problem appears similar to the construction of multiple sequence alignments, an
interesting sub-problem in bioinformatics with a host of methods to solve this opti-
mization problem.

Besides these algorithmic extensions, there is a recent trend in the stream min-
ing community to incorporate geo-spatial information into an analysis. This could
also be used to construct and compare local groups, optimize placement of sensors
to minimize either failure or redundancy, or add spatial constraints to dependency
detection.

106 7. Conclusion

Considering the resource e�ciency of algorithms is often guided by the desire to
perform computations not in large data centers, but on small cheap chips integrated in
for example other machinery. Protocols for distributed computation in WSNs, wire-
less sensor networks, are another current research topic which can be combined with
the type of analysis we performed here. Moving computation closer to the source
allows for example lower latency and greater cost e�ciency in large scale systems.

These types of online analysis increasingly gain interest as both the amount of
streaming data produced by smart and complex systems and the need for smart ana-
lysis grows. Algorithms like those discussed here hopefully help to deal with the
challenges presented in this environment.

Bibliography

[1] C. C. Aggarwal. Data streams: models and algorithms, volume 31. Springer
Science & Business Media, 2007.

[2] C. C. Aggarwal and S. Y. Philip. Outlier detection with uncertain data. In SDM,
pages 483–493. SIAM, 2008.

[3] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant
stream processing at internet scale. In Very Large Data Bases, pages 734–746,
2013.

[4] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. The data�ow model: a
practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proceedings of the VLDB Endowment,
8(12):1792–1803, 2015.

[5] Apache Software Foundation. Apache Hadoop. http://hadoop.
apache.org/, 2017. note = Accessed: 2017-01-30.

[6] Apache Software Foundation. Apache Kafka. http://kafka.apache.
org/, 2017. note = Accessed: 2017-01-30.

[7] Apache Software Foundation. Apache Spark. http://spark.apache.
org/, 2017. note = Accessed: 2017-01-30.

[8] Apache Software Foundation. Apache Storm. http://storm.apache.
org/, 2017. note = Accessed: 2017-01-30.

http://hadoop.apache.org/
http://hadoop.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://spark.apache.org/
http://spark.apache.org/
http://storm.apache.org/
http://storm.apache.org/

108 BIBLIOGRAPHY

[9] D. S. Baim, W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue,
D. F. Gauthier, B. J. Ransil, W. Grossman, and E. Braunwald. Survival of patients
with severe congestive heart failure treated with oral milrinone. Journal of the
American College of Cardiology, 7(3):661–670, 1986.

[10] J. Beirlant, E. J. Dudewicz, L. Györ�, and E. C. Van der Meulen. Nonparametric
entropy estimation: An overview. International Journal of Mathematical and
Statistical Sciences, 6(1):17–39, 1997.

[11] J. Benesty, Y. Huang, and J. Chen. Time delay estimation via minimum entropy.
Signal Processing Letters, IEEE, 14(3):157–160, 2007.

[12] H.-P. Bernhard, G. Darbellay, et al. Performance analysis of the mutual infor-
mation function for nonlinear and linear signal processing. In Acoustics, Speech,
and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on,
volume 3, pages 1297–1300. IEEE, 1999.

[13] A. Bifet, E. Frank, G. Holmes, B. Pfahringer, M. Sugiyama, and Q. Yang. Ac-
curate ensembles for data streams: Combining restricted Hoe�ding trees using
stacking. In ACML, pages 225–240, 2010.

[14] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive win-
dowing. In Proceedings of the 2007 SIAM International Conference on Data Min-
ing, pages 443–448. SIAM, 2007.

[15] A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In
Advances in Intelligent Data Analysis VIII, pages 249–260. Springer, 2009.

[16] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis.
The Journal of Machine Learning Research, 11:1601–1604, 2010.

[17] J. A. Blackard and D. J. Dean. Comparative accuracies of arti�cial neural net-
works and discriminant analysis in predicting forest cover types from carto-
graphic variables. Computers and Electronics in agriculture, 24(3):131–151, 1999.

[18] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux. In-
tel lab data. http://db.csail.mit.edu/labdata/labdata.
html, 2004. note = Accessed: 2015-08-10.

[19] J. Boidol and A. Hapfelmeier. Detecting data stream dependencies on high di-
mensional data. In The 1st International Conference on Internet of Things and Big
Data, IoTBD 2016, pages 375–382. INSTICC, 2016.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

BIBLIOGRAPHY 109

[20] J. Boidol and A. Hapfelmeier. Fast mutual information computation for depen-
dency-monitoring on data streams. In Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing. ACM, 2017.

[21] J. Boidol and A. Hapfelmeier. Lagged dependencies in data streams. In Review
to: IEEE Transactions on Knowledge and Data Engineering, 2017.

[22] J. Boidol, A. Hapfelmeier, and V. Tresp. Probabilistic Hoe�ding trees. In In-
dustrial Conference on Data Mining, Best Paper Award, pages 94–108. Springer,
2015.

[23] L. Bottou. Large-scale machine learning with stochastic gradient descent. Pro-
ceedings of COMPSTAT’2010, pages 177–186, 2010.

[24] R. P. Brent. Algorithms for minimization without derivatives. Courier Corpora-
tion, 2013.

[25] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw, and
Nathan. FlumeJava: Easy, e�cient data-parallel pipelines. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
363–375, 2 Penn Plaza, Suite 701 New York, NY 10121-0701, 2010.

[26] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Program-
ming, pages 693–703. Springer, 2002.

[27] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries
over imprecise data. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pages 551–562. ACM, 2003.

[28] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,
K. Nusbaum, K. Patil, B. J. Peng, et al. Benchmarking streaming computation
engines: Storm, Flink and Spark Streaming. In Parallel and Distributed Pro-
cessing Symposium Workshops, 2016 IEEE International, pages 1789–1792. IEEE,
2016.

[29] P. Cli�ord and I. Cosma. A simple sketching algorithm for entropy estimation
over streaming data. In AISTATS, pages 196–206, 2013.

[30] G. Cormode and A. McGregor. Approximation algorithms for clustering uncer-
tain data. In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 191–200. ACM, 2008.

110 BIBLIOGRAPHY

[31] G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[32] M. Costa, A. L. Goldberger, and C.-K. Peng. Multiscale entropy analysis of
complex physiologic time series. Physical review letters, 89(6):068102, 2002.

[33] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley &
Sons, 2012.

[34] F. da Costa, R. Rios, and R. de Mello. Using dynamical systems tools to detect
concept drift in data streams. Expert Systems with Applications, 60:39–50, 2016.

[35] G. A. Darbellay. An estimator of the mutual information based on a criterion for
conditional independence. Computational Statistics & Data Analysis, 32(1):1–17,
1999.

[36] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska. Estimating mutual information
using B-spline functions–an improved similarity measure for analysing gene
expression data. BMC bioinformatics, 5(1):118, 2004.

[37] A. Dionisio, R. Menezes, and D. A. Mendes. Mutual information: a measure of
dependency for nonlinear time series. Physica A: Statistical Mechanics and its
Applications, 344(1):326–329, 2004.

[38] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 71–80. ACM, 2000.

[39] P. Domingos and G. Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In ICML, volume 1, pages 106–113,
2001.

[40] P. M. Domingos and G. Hulten. Catching up with the data: Research issues in
mining data streams. In DMKD, 2001.

[41] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revis-
ited. ACM SIGKDD Explorations Newsletter, 2(1):51–57, 2000.

[42] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine learning, 2(2):139–172, 1987.

[43] A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors
from mutual information. Physical review A, 33(2):1134, 1986.

BIBLIOGRAPHY 111

[44] A. L. Freire, G. A. Barreto, M. Veloso, and A. T. Varela. Short-term memory
mechanisms in neural network learning of robot navigation tasks: A case study.
In Robotics Symposium (LARS), 2009 6th Latin American, pages 1–6. IEEE, 2009.

[45] J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

[46] J. Gama and M. Gaber. Learning from Data Streams: Processing Techniques in
Sensor Networks. Springer, 2007.

[47] J. Gama, P. Medas, and P. Rodrigues. Learning decision trees from dynamic
data streams. In Proceedings of the 2005 ACM Symposium on Applied Computing,
pages 573–577. ACM, 2005.

[48] J. Gama and C. Pinto. Discretization from data streams: applications to his-
tograms and data mining. In Proceedings of the 2006 ACM symposium on Applied
computing, pages 662–667. ACM, 2006.

[49] J. Gama, R. Sebastião, and P. P. Rodrigues. On evaluating stream learning algo-
rithms. Machine Learning, 90(3):317–346, 2013.

[50] S. Gao, G. Ver Steeg, and A. Galstyan. E�cient estimation of mutual information
for strongly dependent variables. In AISTATS, 2015.

[51] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Sur�ng wavelets
on streams: One-pass summaries for approximate aggregate queries. In VLDB,
volume 1, pages 79–88, 2001.

[52] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdor�, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank,
physiotoolkit, and physionet components of a new research resource for com-
plex physiologic signals. Circulation, 101(23):e215–e220, 2000.

[53] Google Cloud Platform. Cloud data�ow. https://cloud.google.
com/dataflow/, 2017. note = Accessed: 2017-01-30.

[54] P. Hall and S. C. Morton. On the estimation of entropy. Annals of the Institute
of Statistical Mathematics, 45(1):69–88, 1993.

[55] M. Han, W. Ren, and X. Liu. Joint mutual information-based input variable
selection for multivariate time series modeling. Engineering Applications of Ar-
ti�cial Intelligence, 37:250–257, 2015.

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/

112 BIBLIOGRAPHY

[56] Y. Hang and S. Fong. Stream mining dynamic data by using iOVFDT. Journal
of Emerging Technologies in Web Intelligence, 5(1):78–86, 2013.

[57] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari. Adapted one-versus-
all decision trees for data stream classi�cation. Knowledge and Data Engineer-
ing, IEEE Transactions on, 21(5):624–637, 2009.

[58] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proceedings of the seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 97–106. ACM, 2001.

[59] E. Ikonomovska and J. Gama. Learning model trees from data streams. In
Discovery Science, pages 52–63. Springer, 2008.

[60] E. Ikonomovska, J. Gama, and S. Džeroski. Learning model trees from evolving
data streams. Data mining and knowledge discovery, 23(1):128–168, 2011.

[61] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[62] B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams. An agent-based
approach to care in independent living. In Ambient Intelligence, pages 177–186.
Springer, 2010.

[63] F. Keller, E. Müller, and K. Böhm. Estimating mutual information on data
streams. In Proceedings of the 27th International Conference on Scienti�c and
Statistical Database Management, page 3. ACM, 2015.

[64] S. Khan, S. Bandyopadhyay, A. R. Ganguly, S. Saigal, D. J. Erickson III, V. Pro-
topopescu, and G. Ostrouchov. Relative performance of mutual information es-
timation methods for quantifying the dependence among short and noisy data.
Physical Review E, 76(2):026209, 2007.

[65] D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms, 3rd edn., p. 232. Boston: Addison-Wesley., 1998.

[66] L. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

[67] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2008.

BIBLIOGRAPHY 113

[68] H.-P. Kriegel, T. Bernecker, M. Renz, and A. Zü�e. Probabilistic Join Queries in
Uncertain Databases (A Survey of Join Methods for uncertain data), volume 35.
Springer, 2010.

[69] H.-P. Kriegel and M. Pfei�e. Density-based clustering of uncertain data. In
Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pages 672–677. ACM, 2005.

[70] C. Liang, Y. Zhang, and Q. Song. Decision tree for dynamic and uncertain data
streams. In ACML, pages 209–224, 2010.

[71] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine learning: An arti�-
cial intelligence approach. Springer Science & Business Media, 2013.

[72] S. Muthukrishnan et al. Data streams: Algorithms and applications. Foundations
and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

[73] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip. E�cient
clustering of uncertain data. In Data Mining, 2006. ICDM’06. Sixth International
Conference on, pages 436–445. IEEE, 2006.

[74] C. Olah. Visual information theory. http://colah.github.io/
posts/2015-09-Visual-Information/, 2015. note = Accessed:
2017-01-30.

[75] A. Oulasvirta, T. Roos, A. Modig, and L. Leppänen. Information capacity of full-
body movements. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1289–1298. ACM, 2013.

[76] L. Paninski. Estimation of entropy and mutual information. Neural computation,
15(6):1191–1253, 2003.

[77] B. Pfahringer, G. Holmes, and R. Kirkby. New options for Hoe�ding trees. In
AI 2007: Advances in Arti�cial Intelligence, pages 90–99. Springer, 2007.

[78] B. Qin, Y. Xia, and F. Li. DTU: a decision tree for uncertain data. In Advances
in Knowledge Discovery and Data Mining, pages 4–15. Springer, 2009.

[79] J. Quinlan. C4.5: Programs for machine learning., 1993.

[80] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

http://colah.github.io/posts/2015-09-Visual-Information/
http://colah.github.io/posts/2015-09-Visual-Information/

114 BIBLIOGRAPHY

[81] L. R. Rabiner and B. Gold. Theory and application of digital signal processing.
Englewood Cli�s, NJ, Prentice-Hall, Inc., 1975. 777 p., 1, 1975.

[82] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J.
Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. Detecting novel
associations in large data sets. Science, 334(6062):1518–1524, 2011.

[83] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through
group lag correlations. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 599–610. ACM, 2005.

[84] M. Sax. Storm compatibility in Apache Flink: How to run existing Storm topolo-
gies on Flink. https://flink.apache.org/news/2015/12/11/
storm-compatibility.html, 2015. note = Accessed: 2017-01-30.

[85] A. Seliniotaki, G. Tzagkarakis, V. Christo�des, and P. Tsakalides. Stream cor-
relation monitoring for uncertainty-aware data processing systems. In Infor-
mation, Intelligence, Systems and Applications, IISA 2014, The 5th International
Conference on, pages 342–347. IEEE, 2014.

[86] C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, 1949.

[87] C. E. Shannon. Prediction and entropy of printed English. Bell Labs Technical
Journal, 30(1):50–64, 1951.

[88] SILSO World Data Center. The international sunspot number. International
Sunspot Number Monthly Bulletin and online catalogue, 2016.

[89] S. Singh, C. May�eld, S. Prabhakar, R. Shah, and S. Hambrusch. Indexing un-
certain categorical data. In Data Engineering, 2007. ICDE 2007. IEEE 23rd Inter-
national Conference on, pages 616–625. IEEE, 2007.

[90] A. Sorjamaa, J. Hao, and A. Lendasse. Mutual information and k-nearest neigh-
bors approximator for time series prediction. Arti�cial Neural Networks: Formal
Models and Their Applications–ICANN 2005, pages 752–752, 2005.

[91] H. Späth. Cluster analysis algorithms for data reduction and classi�cation of
objects. Horwood, 1980.

https://flink.apache.org/news/2015/12/11/storm-compatibility.html
https://flink.apache.org/news/2015/12/11/storm-compatibility.html

115

[92] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-based model-
ing for fraud and intrusion detection: Results from the JAM project. In DARPA
Information Survivability Conference and Exposition, 2000. DISCEX’00. Proceed-
ings, volume 2, pages 130–144. IEEE, 2000.

[93] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time
stream processing. ACM SIGMOD Record, 34(4):42–47, 2005.

[94] The NASDAQ Stock Market. NASDAQ daily quotes. http://www.
nasdaq.com/quotes/nasdaq, 2015. note = Accessed: 2015-03-01.

[95] S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision trees for uncertain
data. Knowledge and Data Engineering, IEEE Transactions on, 23(1):64–78, 2011.

[96] J. Walters-Williams and Y. Li. Estimation of mutual information: A survey. In
International Conference on Rough Sets and Knowledge Technology, pages 389–
396. Springer, 2009.

[97] P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi. On reducing classi�er gran-
ularity in mining concept-drifting data streams. In Data Mining, Fifth IEEE
International Conference on, pages 8–pp. IEEE, 2005.

[98] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[99] Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive predictions for
data streams. In Proceedings of the eleventh ACM SIGKDD International Confer-
ence on Knowledge Discovery in Data Mining, pages 710–715. ACM, 2005.

[100] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an
e�cient and fault-tolerant model for stream processing on large clusters. In
Presented as part of the 4th USENIX Workshop on Cloud Computing, 2012.

[101] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data
streams in real time. In Proceedings of the 28th international conference on Very
Large Data Bases, pages 358–369. VLDB Endowment, 2002.

http://www.nasdaq.com/quotes/nasdaq
http://www.nasdaq.com/quotes/nasdaq

	Acknowledgements
	Abstract
	Introduction
	Learning from Streaming Data
	Stream Mining Tasks
	Contributions of this Work

	Streaming Data
	Streaming Models
	Stream Learning and Batch Learning
	Notation in this Thesis
	Streaming Engines
	Apache Storm
	Apache Spark
	Google Cloud Dataflow

	Stream Data Sources

	Entropy Analysis
	Shannon-Entropy and Differential Entropy
	Correlation and Dependency in Streams
	Entropy Measures for Similarity

	Stream Classification
	Online Decision Trees
	Probabilistic Stream Classification
	Online Approximation of Density Functions

	Experiments
	Implementation
	Data Sets
	Classification on Static Data Streams
	Classification on Changing Data Streams

	Related Work
	Summary

	Dependency Monitoring
	Mutual Information as Dependency Measure in Data Streams
	Dependency in Stream Windows

	MID
	First Estimation of Mutual Information

	DIMID
	Incremental Dependency Computation
	Beirlant Estimates of Mutual Information
	Updating Nearest Neighbours
	Updating Entropy

	Experimental Evaluation
	Data Sets
	Experiment Settings
	Evaluation Criteria
	Experiments for MID and DIMID
	Run-time Analysis

	Related Work
	Summary

	Delayed Dependency
	Time-delayed Streams
	Efficient Lagdetection
	Kraskov Estimator
	Geometric Probing
	Smoothing

	Loglag
	Extensions

	Experimental Evaluation
	Data Sets
	Experiment Settings
	Evaluation Results
	Run-time Analysis

	Related Work
	Summary

	Conclusion
	Summary
	Outlook

