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Summary

mRNA translation and degradation are mutually interdependent processes in the cell.

The best characterized examples of the interplay between these two processes are the

mRNA quality control pathways taking care of aberrant mRNAs that cause translation

stalling in most cases. It was shown for these pathways that mRNA degradation is ini-

tiated in a ribosome-dependent manner directly on the stalled intermediate. Aberrant

transcripts are either degraded in 5’-to-3’ direction by Xrn1 or in 3’-to-5’ direction by

the cytosolic exosome together with the Ski proteins. However, no structural insights

exist on how translation and degradation are coupled for general mRNA turnover

and quality control.

Beside ribosome stalling on aberrant transcripts, poly-basic or poly-proline stretches

have been shown to cause translation arrests in the cell. Yet, these stretches are com-

monly found in proteins. To that end, eukaryotic initiation factor 5A (eIF-5A) was

identified to rescue ribosomes stalled on poly-proline, allowing translation to con-

tinue. Moreover, eIF-5A was shown to alleviate many poly-basic stalling events and

promoting translation elongation in general. It is, however, unknown how eIF-5A

functions on a molecular level.

The first part of this thesis focuses on the interactions of the Ski proteins with

ribosomes in the exosome-dependent 3’-to-5’ mRNA degradation pathway. We show

that in contrast to most proposed models, the Ski complex and not Ski7 associates

stably with ribosomes in vitro and in vivo. A high resolution cryo-EM structure of

a native ribosome-Ski complex reveals how the Ski complex interacts with the 40S

subunit of the ribosome, facilitating the threading of mRNA into the Ski2 helicase.

Furthermore, we show by ribosomal profiling analysis that this interaction is probably

not limited to mRNA quality control, but might rather represent a general mRNA

turnover intermediate. Collectively, these results are the first structural insights into

how translation and degradation of mRNAs are coupled on a molecular level.

The second part of this thesis focuses on the surprising discovery that eIF-5A

binds to Ski complex-associated ribosomes. We show that eIF-5A targets ribosomes
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with a vacant E-site, thus recognizing translation-arrested intermediates by scanning

for tRNA occupancy. A cryo-EM structure reveals that eIF-5A reaches deep into the

peptidyl transferase center and interacts with A76 of the P-site tRNA via its unique

hypusine residue. Our structural data supports a model where this interaction leads

to the stabilization and orientation of the P-tRNA CCA-end to assist in peptide-bond

formation, explaining eIF-5A’s function as a general rescuing factor.
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1 Introduction

According to the central dogma of molecular biology (Crick, 1970), the genetic infor-

mation stored in form of complementary deoxyribonucleic acid (DNA) strands inside

the cell is transformed into functional proteins in three distinct steps: First, this infor-

mation has to propagate from one generation to the next, thus DNA is replicated to

be passed on. Second, specific DNA sequences called genes are transcribed into RNA

molecules by RNA polymerases during transcription. These RNAs can fulfil different

functions in the cell, for example as transfer RNA (tRNA), ribosomal RNA (rRNA),

small non-coding RNA (snRNA) or act as templates for protein synthesis in form of

messenger RNA (mRNA). The third and final step is the translation of mRNAs into

proteins, a process catalysed by ribosomes. Proteins are large biomolecules that per-

form a wide range of tasks in our cells from catalysing metabolic reactions to giving

the cell its shape. Each protein has a specific three-dimensional architecture (called

native state) that often dictates its molecular function. To reach its native state, pro-

teins are often bound by molecular chaperones that help the protein accommodating

its final fold. Because of the importance of proteins to the viability of the cell, tran-

scription and translation are tightly regulated and monitored throughout each step.

1.1 Overview of the ribosome

The ribosome is a large macromolecular complex consisting of numerous ribosomal

proteins (r-proteins) and rRNAs. It is universally conserved and responsible for pro-

tein biosynthesis. Because of its central function in the cell, it has been studied

thoroughly by various structural biology techniques (i.e. reviewed in Schmeing and

Ramakrishnan, 2009; Steitz, 2008; Voorhees and Ramakrishnan, 2013) like X-ray

crystallography or cryo-electron microscopy (cryo-EM). It is composed of a large and

a small subunit (LSU and SSU, respectively), each harbouring different functional

sites. The SSU and LSU can move with respect to each other, referred to as subunit

rotation (Frank and Agrawal, 2000). In eukaryotes, the 40S subunit shows further
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flexibility through a rotation along its long axis referred to as subunit rolling (Bud-

kevich et al., 2014). In the SSU, the mRNA binding tunnel and the decoding center

(DC) are found. Here, mRNA codons consisting of triplets of nucleotides are decoded

by the accommodation of a complementary tRNA that carries a specific amino acid

(Berg and Offengand, 1958; Crick et al., 1961; Ogle et al., 2001). The LSU con-

tains the peptidyl transferase center (PTC) and the peptide exit tunnel. In the PTC,

peptide-bond formation occurs where amino acids are linked with each other to form

a nascent polypeptide chain (NC) that is built from N- to C-terminus (Dintzis, 1961;

Leung et al., 2011). The peptide exit tunnel is a large cavity spanning from the PTC

to the solvent-facing surface of the LSU accommodating the NC (Frank et al., 1995).

Through this tunnel, the NC is funnelled to the outside of the ribosome where it

can be immediately contacted by chaperones or other protein factors. Finally, the

intersubunit space between both subunits harbours three different binding sites for

tRNAs: the aminoacyl (A-), peptidyl (P-) and exit (E-) sites. The A-site usually con-

tains the aminoacyl-tRNA carrying the next amino acid that should be incorporated

into the peptide chain. In the P-site, a peptidyl-tRNA is bound that has the NC at-

tached after peptide bond formation. The E-site contains a deacylated tRNA that is

ready to dissociate from the ribosome. Thus, throughout the translation cycle, tRNAs

move from A- to P- to E-site.

Even though their function is conserved, ribosomes show large differences be-

tween the three different kingdoms of life with the most apparent difference in size

as elucidated by many structural studies (Fig. 1.1). Generally, prokaryotic and ar-

chaeal ribosomes are smaller than their eukaryotic counterparts, differing in about

1.2-2.0 MDa in mass (Anger et al., 2013; Melnikov et al., 2012). Consistently, the

ribosomes also show different sedimentation coefficients (given in Svedberg units)

with 70S for prokaryotic and archaeal ribosomes and 80S for those of eukaryotes.

The most conserved part in all ribosomes is the core containing the PTC, the DC and

the tRNA binding sites. Apart from that, eukaryotic ribosomes show a larger and

more complex variety of r-proteins and rRNA, giving rise to protein-RNA and RNA-

RNA layers around the ribosomal core that are not present in prokaryotic ribosomes

(Anger et al., 2013). For example, the E. coli SSU (30S) and LSU (50S) contain

much less proteins and rRNA than the SSU and LSU of S. cerevisiae (40S and 60S,

respectively). These additional layers are believed to reflect the higher complexity

of eukaryotic organisms compared to prokaryotic cells and this difference can even

be seen when comparing lower eukaryotic ribosomes with that of higher eukaryotes.
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FIGURE 1.1: Comparison of prokaryotic and eukaryotic ribosomes.
Ribosomes have a highly conserved inner core that contains the PTC, DC
and the tRNA binding sites (right panel; schematically shown in grey).
Eukaryotic ribosomes show larger amounts of r-proteins and rRNA giv-
ing rise to additional layers (blue, orange, red) that have developed
during evolution and are thought to reflect the higher complexity of eu-
karyotic cells. Comparing lower (S. cerevisiae) with higher (H. sapiens)
eukaryotes reveals that these differences even exist within one of the
kingdoms of life. Adapted from Anger et al., 2013 and Melnikov et al.,
2012.

Whereas r-proteins generally differ in number and sometimes in structure , most dif-

ferences in the rRNA are found in the so-called expansion segments (ES), which are

essentially not present in prokaryotic ribosomes (Melnikov et al., 2012; Wilson and

Cate, 2012). Even though these ES are long known to be specific and often essential

for eukaryotic ribosomes (Armache et al., 2010; Beckmann et al., 2001; Bradatsch et

al., 2012; Leidig et al., 2012; Leidig et al., 2014), their function still remains largely

unknown.

Since the beginning of structural biology, ribosomes posed a popular target for

various structural techniques. The first atomic models were obtained for archaeal and

bacterial subunits and ribosomes via X-ray crystallography (Ban et al., 2000; Rabl et

al., 2011; Schluenzen et al., 2000; Selmer et al., 2006; Wimberly et al., 2000). Most

importantly, these structures could show that the PTC contains no r-proteins and only

rRNA, making the ribosome a ribozyme relying on RNA for its enzymatic activity

(Cech, 2000; Nissen et al., 2000). Eukaryotic ribosomes turned out to be much more

complicated to crystallize and where almost exclusively studied by cryo-EM in the

beginning (Beckmann et al., 2001; Spahn et al., 2001). These first structural studies
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built the foundation for many research papers regarding the translation cycle. In

2010, the first crystal structure of an entire 80S ribosome was solved and allowed

to visualize atomic interactions in detail (Ben-Shem et al., 2010; Ben-Shem et al.,

2011). Since then, many aspects could be visualized and solved to gain a better

understanding of the translation cycle (Schmeing and Ramakrishnan, 2009; Steitz,

2008; Voorhees and Ramakrishnan, 2013). With the development of direct electron

detectors, near-atomic resolution can nowadays also be achieved by cryo-EM, which

lead to the so-called “resolution revolution” and a vast majority of papers have been

published allowing an even deeper understanding of canonical translation (reviewed

for example in Bai et al., 2015; Cheng, 2015; Kühlbrandt, 2014; Nogales, 2015),

but also of many processes that are happening co-translationally or are in any way

connected to ribosomes.

1.2 Translation cycle

The translation cycle displays the same underlying principles in all organisms and

can be divided into four different steps: initiation, elongation, termination and re-

cycling. Generally, mRNA nucleotide triplets are organized into codons where each

codon represents one of the 20 specific amino acids (Crick et al., 1961). Since there

are four different nucleotides (adenosine, cytosine, guanine and thymine), there are

43=64 different codons, leading to degeneration of the genetic code. Thus, most

amino acids are coded by several codons (Lagerkvist, 1978). Additionally, there are

three codons not coding for any amino acid called stop codons (UAA, UAG, UGA).

These codons signal to terminate translation and to release the polypeptide chain

from the ribosome. Similar to stop codons, AUG is signalling the start of transla-

tion, thus referred to as start codon. A significant difference, however, is that AUG

also codes for methionine, hence it acts as a start codon only under certain circum-

stances. After translation is initiated, each codon is read by a complementary tRNA

that delivers a specific amino acid which is attached to it. Through this decoding of

an mRNA by tRNAs, the mRNA is translated into a specific amino acid sequence that

is synthesized by the ribosome. Even though the principles are the same, each of the

four translation steps is differently regulated and carried out when comparing pro-

and eukaryotic translation, with elongation being the most conserved process.

Initiation. Initiation differs vastly in pro- and eukaryotes (Sonenberg and Hin-

nebusch, 2009). In prokaryotic cells, three different initiation factors (IF1, IF2 and
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IF3) mediate translation initiation together with the Shine-Dalgarno (SD) sequence

(Shine and Dalgarno, 1974). The SD sequence ensures the correct positioning of the

start codon in the ribosomal A-site by base-pairing with the 3’ end (anti-SD) of the

16S rRNA in the SSU (Kaminishi et al., 2007; Korostelev et al., 2007). Subsequently,

IF1, IF2 and IF3 act in concert to promote binding of the initiator fMet-tRNAi
fMet and

the mRNA and monitor subunit joining to form an initiation complex.

In comparison, eukaryotic initiation is much more complex. It involves at least

twelve initiation factors that work in concert to generate an elongation-competent ri-

bosome containing the AUG start codon in the P-site (Hinnebusch and Lorsch, 2012;

Jackson et al., 2010). First, a ternary complex (TC) is formed by GTP-bound eIF2

(consisting of three subunits α, β and γ) together with the initiator tRNAi
Met. eIF1,

1A, 3 and 5 promote 40S binding with the TC to form the 43S pre-initiation com-

plex. Additionally, the 5’ cap of the mRNA is bound by the eIF4F complex consisting

of eIF4A, B, G and E. eIF4E recognizes the cap and eIF4G binds to poly-A bind-

ing protein (Pab1) at the poly-A tail, leading to the circularization of the mRNA.

Subsequently, eIF4G can interact directly with the 43S pre-initiation complex which

consequently leads to the formation of the 48S complex. This complex moves over

the mRNA in 5’-to-3’ direction to recognize the first AUG start codon, a process re-

ferred to as scanning. After reaching the start codon, eIF5 and eIF5B promote GTP

hydrolysis of eIF2 which leads to subunit joining and transition into the elongation

phase (Jackson et al., 2010). At this point, the initiator tRNA is accommodated in

the P-site, leaving an empty A-site to bind the next aminoacyl-tRNA.

Elongation. After transition into the elongation phase, the mRNA is translated

continually from 5’-to-3’. Aminoacyl-tRNAs are delivered to the A-site in a GTP-

bound ternary complex by EF-Tu (prokaryotes) or eEF1α (eukaryotes) (Agirrezabala

and Frank, 2009; Dever and Green, 2012; Noble and Song, 2008). Only if a cog-

nate tRNA is bound to the codon in the A-site, GTP hydrolysis by EF-Tu or eEF1α

is triggered, leading to dissociation of the elongation factor, accommodation of the

A-site tRNA, and formation of the peptide bond. Subsequently, a deacylated tRNA is

bound to the P-site and both bound tRNAs and the mRNA must be translocated to

the next binding site on the ribosome. This translocation is a highly dynamic process

(Blanchard et al., 2004), where the tRNAs move with respect to the LSU resulting

in so-called A/P and P/E hybrid states (where the last letter indicates the respective

position of the tRNA on the LSU). In unison, the SSU rotates relative to the LSU,

leading to a rotated state ribosome (Frank and Agrawal, 2000). At this stage, the



6 1. Introduction

rotated and non-rotated form are in an equilibrium, where the ribosome switches

between these two states. Translocation is catalysed by the elongation factors EF-G

(prokaryotes) or eEF-2 (eukaryotes). EF-G and eEF-2 are translational GTPase with

high affinity to rotated-state ribosomes (Dever and Green, 2012) bearing hybrid-state

tRNAs. During translocation, EF-G and eEF-2 undergo a conformational change upon

GTP hydrolysis, which is thought to drive translocation (Dever and Green, 2012;

Noller et al., 2002). As a result, the deacylated tRNA will be repositioned into the

E-site and the peptidyl-tRNA into the P-site, leaving the A-site empty again to bind

a new aminoacyl-tRNA. This elongation cycle is repeated until translation is termi-

nated by a stop codon, releasing the deacylated tRNA from the E-site with each step.

Termination. Upon reaching a stop codon on the mRNA, no new elongation

cycle is started. Instead, the stop codon in the A-site is recognized by termination

factors to terminate translation and release the NC from the ribosome (Brown et al.,

2015; Dever and Green, 2012; Korostelev et al., 2008; Matheisl et al., 2015; Preis

et al., 2014; Weixlbaumer et al., 2008; Zhou et al., 2012). In prokaryotes, two dif-

ferent class-I termination factors are needed. RF1 recognizes UAA and UAG whereas

RF2 recognizes UAA and UGA. In eukaroytes, eRF1 is able to recognize all three

stop codons. Recent reports have shown that eRF1 actually recognizes a quadruplet

codon (Matheisl et al., 2015). Here, all four bases contribute to the formation of a

UNR-type U-turn that is recognized by the N-terminal domain of eRF1. Even though

RF1 and RF2 are not structurally related to eRF1 (Song et al., 2000), all factors

contain a universally conserved GGQ motif that positions a water molecule in the

PTC, leading to a subsequent nucleophilic attack on the peptidyl-tRNA ester bond

and allowing the release of the NC (Kisselev et al., 2003; Korostelev, 2011; Song

et al., 2000). Alongside class-I termination factors, the class-II termination factors

RF3 (prokaryotes) or eRF3 (eukaryotes) are needed for termination, though having

different functions during this process. RF3 releases RF1 or RF2 from the ribosome

(Zavialov et al., 2002), whereas eRF3 delivers eRF1 and stimulates its action (Preis

et al., 2014; Shao et al., 2016).

Recycling. Due to the different functions of RF3 and eRF3 during termination,

the post-termination complexes differ in pro- and eukaryotes. This difference is also

reflected in the different mechanisms of the recycling step, where the mRNA is re-

leased and the ribosome gets split into its subunits which allows it to enter a new
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translation cycle. In prokaryotes, the post-termination complex consists of a ribo-

some with deacylated P-site tRNA and an empty A- and E-site. Here, splitting is

performed by EF-G in concert with the dedicated splitting factor RRF (Zavialov et al.,

2005). After splitting, the tRNA and mRNA are released from the 30S subunit with

the help of IF3 which also inhibits reassociation of the subunits (Peske et al., 2005).

However, it is still not entirely clear how the process of mRNA and tRNA dissociation

occurs on a molecular level.

In eukaryotic cells, the post-termination complex still contains eRF1 and eRF3,

alongside a deacylated tRNA in the P/E-site. After eRF3 is released from the ribo-

some, the ribosome splitting ATPase ABCE1 can bind to the ribosome-eRF1 complex,

which stimulates peptide release and triggers ribosome recycling (Becker et al., 2012;

Franckenberg et al., 2012; Pisarev et al., 2007). Thus, in contrast to prokaryotes,

recycling and termination are coupled by a combined action of eRF1 and ABCE1.

Furthermore, several initiation factors like eIF3, eIF1, eIF2 eIF2D and eIF5 show in-

teractions with ABCE1 and bind to the SSU after recycling. These interactions also

link translation initiation to recycling, which is coordinated by ABCE1 (Heuer et al.,

2017; Pisarev et al., 2007). Moreover, binding of initiation factors and ABCE1 pre-

vent subunit joining.

1.3 A fresh start – mRNA and protein degradation in

the cell

Not only the production of proteins and RNAs but also their degradation is important

to maintain cellular homeostasis. Hence, their equilibrium is regulated in a concerted

fashion. Consistently, to keep steady-state levels in the cell, mRNAs and proteins are

constantly degraded and re-synthesized (Amm et al., 2014; Nedelsky et al., 2008;

Parker, 2012). Consequently, mRNAs and proteins are constantly monitored and

checked, also allowing a quick change of their basal levels, for example in response

to differences in the environment. Thus, it was not surprising that earlier studies al-

ready highlighted possible connections between translation (therefore synthesis) and

protein and RNA degradation (Coller and Parker, 2005; Franks and Lykke-Andersen,

2008; Jacobson and Peltz, 1996; LaGrandeur and Parker, 1999; Muhlrad et al., 1994;

Roy and Jacobson, 2013; Schwartz and Parker, 1999). Nevertheless, detailed infor-

mation about the interactions between these central pathways is scarce, particularly

on a structural level. Only in recent years, researchers could elucidate interactions
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between both pathways in more detail and could show that these processes are in-

deed tightly intertwined in the cell. The following introduction will focus on protein

and mRNA degradation in S. cerevisiae.

1.3.1 General pathways of protein degradation

Two main systems are responsible for basically all protein degradation in eukaryotic

cells (as reviewed in Amm et al., 2014; Nedelsky et al., 2008; Fig. 1.2). The first

system is the ubiquitin-proteasome system (UPS), relying on marking proteins with

ubiquitin for subsequent degradation by the proteasome. A second pathway includes

degradation of proteins in lysosomes, known as the autophagy-lysosomal system.

Both pathways work in parallel in eukaryotic cells. Proteins showing shorter lifetimes

are often targeted by the UPS whereas long-lived proteins are often degraded by

the autophagy-lysosomal system (Nedelsky et al., 2008). Despite being different

pathways, both share the same basic principles of marking proteins for degradation

before they are transported to the degradation sites.

FIGURE 1.2: General protein degradation in yeast. Two major sys-
tems for protein degradation exist in eukaryotes. Proteins are either de-
graded by the ubiquitin-proteasome system (UPS) or via the autophagy-
lysosomal system. For the autophagy-lysosomal system, three differ-
ent pathways are known: (1) Macroautophagy of large parts of the
cytoplasm; (2) Microautophagy of small volumes; and (3) Chaperone-
mediated autophagy. A common mechanism is to mark the target pro-
tein by ubiquitin (UPS) or ubiquitin-like proteins (autophagy-lysosomal)
and subsequent delivery to the degradation site. Adapted from Nedelsky
et al., 2008.
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For the autophagy-lysosomal system, three different events are generally distin-

guished: a) microautophagy, where only a very small part of the cytosol is engulfed,

often including only very few target proteins (Ahlberg et al., 1982); b) chaperone-

mediated autophagy, where chaperones deliver target protein to the lysosomes (Dice,

1990); and c) macroautophagy, where a very large part of the cytoplasm is en-

gulfed into a lysosomal vesicle, sometimes even including entire organelles (Arstila

and Trump, 1968). To target a protein by the autophagy-lysosomal system, Atg

(autophagy-regulating gene) proteins mark their targets with ubiquitin-like proteins

(UBL) very similar to the UPS (see below). After being marked, the target proteins

are subjected to either of the three different pathways of the autophagy-lysosomal

degradation system (Nedelsky et al., 2008).

The UPS works in a very similar manner. Target proteins are marked with ubiqui-

tin, a 76 amino acid protein, which destines them for degradation by the proteasome

(Amm et al., 2014). Ubiquitin is added during a three-step process (Amm et al.,

2014; Pickart, 2001). First, so called E1 ubiquitin-activating enzymes activate ubiq-

uitin by coupling ATP hydrolysis to binding ubiquitin via an energy-rich thioester

bond and deliver the ubiquitin to its target (Schulman and Wade Harper, 2009). Af-

terwards, an E2 ubiquitin-conjugating enzyme transfers the activated ubiquitin onto

itself by a transesterification (van Wijk and Timmers, 2010). Finally, ubiquitin is

linked to its target via an E3 ubiquitin ligase. Following ubiquitination, the target

protein is often actively channelled into the proteasome by ATPases (Nedelsky et al.,

2008). Moreover, the UPS system is not only active in the cytoplasm but is also found

in more specific protein degradation pathways like the unfolded protein response and

the ER-associated degradation (Nedelsky et al., 2008).

1.3.2 mRNA architecture and steps preceding degradation

As mentioned, also mRNAs are constantly degraded, a process known as mRNA

turnover (reviewed for example in Parker, 2012). The general design of an mRNA

includes several distinct regions that are important for its stability and that ensure

that it will be correctly and efficiently translated and localized. mRNAs contain two

chemically distinct ends called 5’ and 3’, which result from chemical directionality

and describe which end of the nucleotide is unlinked and free. Oftentimes, the 5’ end

contains a phosphate group attached to the 5’ carbon of the furanose ring whereas

the 3’ carbon is linked to a hydroxyl group. Commonly found regions of an mRNA

are the 5’ untranslated region (UTR), the open reading frame (ORF) containing the

sequence that is translated into a protein marked by a start codon at the beginning
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FIGURE 1.3: Schematic view of a polysome-associated circular eu-
karyotic mRNA. The 5’ cap is bound by the cap-binding complex eIF4F
consisting of eIF4A, E and G. eIF4G can interact with Pab1 at the 3’
poly-A tail, therefore circularizing the mRNA. The open reading frame
(orange) flanked by the start and stop codon is the actively translated
region and often translated by multiple ribosomes.

and a stop codon at the end, a 3’ UTR and, for eukaryotic mRNAs, a poly-adenosine

(poly-A) tail. In yeast, the length of this tail is generally around 70-80 nucleotides

(Brown and Sachs, 1998), whereas human poly-A tails are much longer with up to

200 nucleotides (Eckmann et al., 2011). Additionally, the 5’ end of the mRNA is pro-

tected by a unique 7-methylguanylate cap (m7G) ensuring the stability of the mRNA

(Shatkin, 1976). This architecture is common to basically all healthy eukaryotic mR-

NAs.

In most eukaryotes, mRNAs undergo a maturation process in the nucleus that

includes end modifications and splicing before they are transported to the cytoplasm.

During transcription in the nucleus, the 5’ cap and the poly-A tail are added to the

pre-mRNA transcript. Here, the poly-A tail is not encoded on the DNA template, but

rather added by specific enzymes like poly-A polymerases (PAPs). Additionally, pre-

mRNAs are subjected to splicing where introns are removed and exons are ligated to

form the mature mRNA.

In the cytoplasm, most translationally active mRNAs are ribonucleoproteins (RNPs)

which are circularized due to the interaction of the cap binding eIF4F complex that

can interact with poly-A binding protein Pab1 (Fig. 1.3). Hereby, Pab1 coats the poly-

A tail of the mRNA and interacts directly with the eIF4G subunit of the cap-binding

complex. These mRNAs are often associated with multiple translating ribosomes and

constantly translated.

Two major mRNA exonucleolytic degradation pathways are known, utilizing the
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FIGURE 1.4: General mRNA degradation in S. cerevisiae. mRNAs
can either be degraded by the 5’-to-3’ pathway via Xrn1 or the 3’-to-5’
pathway by the cytosolic exosome. For both pathways, deadenylation
prior to degradation is carried out by the main deadenylase complexes
Pan2/Pan3 (not shown) and Ccr4/Not. Afterwards, most mRNAs are
decapped by Dcp1/Dcp2, generating a 5’ monophosphate end for Xrn1-
dependent degradation. Exosomal degradation can be performed with-
out decapping. For exosomal degradation, the Ski proteins need to be
recruited to the mRNA (not shown). Adapted from Garneau et al., 2007.

two different ends of an mRNA (Parker, 2012; Fig. 1.4). Hereby, mRNAs are either

degraded in 5’-to-3’ direction by Xrn1 (Hsu and Stevens, 1993; Muhlrad et al., 1994)

or in 3’-to-5’ direction by the cytosolic exosome (Anderson and Parker, 1998). Xrn1-

dependent 5’-to-3’ degradation is the main mRNA turnover pathway in yeast and

most other eukaryotes (Parker, 2012). However, before an mRNA can be degraded,

several prior steps have to be carried out. The first step involves the deadenylation

of the 3’ poly-A tail followed by decapping of the 5’ cap structure.

Deadenylation and decapping. Deadenylation is tightly regulated as it vastly

effects the stability of the mRNA. Regulation usually occurs through factors directly

binding to the mRNA that recruit the deadenylase complexes or because of factors

promoting their activity per se. Additionally, environmental cues can influence de-

adenylation positively or negatively (Parker, 2012). Initially, the Pan2/Pan3 complex

deadenylates mRNAs until the poly-A tail is shortened to roughly 65 residues. This

process appears to be very fast as no mRNA fragments with poly-A tails longer than
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70 residues can be detected under native conditions (Brown and Sachs, 1998). After-

wards, the Ccr4/Pop2/Not complex shortens down the poly-A tail even further until

reaching approximately 10 residues (Tucker et al., 2001). Interestingly, it has been

shown that Pab1 bound to the poly-A tail of mRNAs strongly influences deadenylation

and therefore the stability of mRNAs in yeast. Pab1 strongly promotes Pan2/Pan3 de-

pendent deadenylation (Boeck et al., 1996), but inhibits Ccr4/Pop2/Not (Tucker et

al., 2002). This lead to a model where Pab1 bound to the poly-A tail of the mRNA

promotes initial shortening by Pan2/Pan3. After having less Pab1 bound because of

poly-A shortening, deadenylation can switch to Ccr4/Pop2/Not. Thus, by influencing

the binding of Pab1 to the poly-A tail, deadenylation can be regulated and controlled

(Parker, 2012). Notably, studies have shown that the length of the poly-A tail of

an mRNA can have strong effects on its stability and translational state (reviewed

in Jalkanen et al., 2014). This effect could be due to less bound Pab1, therefore

fast deadenylation by Ccr4/Pop2/Not. Since Pab1-mRNA interactions are also influ-

enced by translation and Pab1 has been shown to interact with translation initiation

and termination factors (Cosson et al., 2002; Funakoshi et al., 2007; Kobayashi et

al., 2004), translation can be coupled directly to the stability and degradation of an

mRNA.

After deadenylation, the mRNA can be directly degraded via the 3’-to-5’ degra-

dation pathway (Parker, 2012). More commonly however, the mRNA is subjected to

decapping first. Reaching a shortened poly-A tail length of approximately 10 residues

triggers binding of Pat1/Lsm1-7 to the short poly-A tail, replacing bound Pab1 and

leading to removing the 5’ cap by recruiting Dcp1/Dcp2 (Tharun and Parker, 2001).

Subsequently, the mRNA is degraded by the 5’-to-3’ degradation pathway via Xrn1.

1.3.3 5’-to-3’ mRNA degradation

As mentioned above, 5’-to-3’ degradation is the major pathway for mRNA turnover in

yeast (Parker, 2012). mRNAs are degraded by the exonuclease Xrn1 after deadeny-

lation and decapping (Hsu and Stevens, 1993; Muhlrad et al., 1994). In contrast to

deadenylation and 3’-to-5’ degradation which happens exclusively in the cytoplasm,

initial reports could show that Xrn1 dependent degradation and decapping of mR-

NAs occurs in localized foci inside of the cell called P-bodies (Sheth et al., 2003).

These P-bodies have been reported to be the major sites of mRNA decapping and

5’-to-3’ degradation, leading to a proposed model where mRNAs are classified into

one of two classes: a) mRNAs that are part of active translation and are associated

to polysomes that are not subjected to degradation; and b) mRNAs that are part of
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a nontranslating pool present in P-bodies being a target for decapping and decay

(Sheth et al., 2003). Thus, the fate of an mRNA would be decided by its translation

status. Early observations supported this model by showing that accumulating mR-

NAs on polysomes by addition of the translation inhibitor cycloheximide (CHX) leads

to a harsh decrease of decapping and P-bodies inside of cells (Sheth et al., 2003; Teix-

eira et al., 2005) and that translation initiation rates correlate inversely with decay

rates (Jacobson and Peltz, 1996). However, this view is challenged by newer studies

showing that decapping and 5’-to-3’ degradation can take place outside of P-bodies

on mRNAs that are still associated to polysomes and thus still translationally active

to some extent (Hu et al., 2009; Pelechano et al., 2015). Xrn1 was shown to degrade

mRNAs following the translating ribosome in 5’-to-3’ direction in these cases, argu-

ing that P-bodies are not essential for mRNA decay (Hu et al., 2009; Pelechano et al.,

2015).

1.3.4 3’-to-5’ mRNA degradation - the exosome

Instead of decapping and 5’-to-3’ degradation, the mRNA can be degraded directly

after deadenylation via the 3’-to-5’ pathway by the cytosolic exosome (Anderson and

Parker, 1998), as mentioned above. The exosome is a large ring-like structure com-

posed of 9 proteins forming the Exo-9 core (Liu et al., 2006; Makino et al., 2013;

Fig. 1.5). Binding of Rrp44/Dis3 to Exo-9 leads to the formation of the catalytically

active Exo-10 complex (Fig. 1.5A) displaying endo- and exonuclease activity. Here,

Rrp44/Dis3 seems to be the only catalytically active protein and responsible for the

entire nucleolytic activity of Exo-10 (Dziembowski et al., 2007; Liu et al., 2006). The

mRNA substrate is channelled through the ring-like Exo-9 complex into the active

site of Rrp44 reminiscent of the prokaryotic counterpart RNase PH that adopts an

overall similar structure (Makino et al., 2013). Furthermore, it could be shown that

an RNA duplex can be unwound by structural features of the cap proteins of Exo-9,

leading to a single stranded RNA that is traversing through the exosome (Fig. 1.5B).

This mode of action seems to be conserved between the cytosolic and nuclear exo-

some, with the only change being that Rrp44 is substituted by Rrp6 in the nucleus

(Makino et al., 2013). Despite Rrp44 showing endonuclease activity, mRNA turnover

solely relies on its exonucleolytic capabilities (Dziembowski et al., 2007).
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FIGURE 1.5: Overview of the exosome from S. cerevisiae and the
path of the RNA. (A) Overview of the Exo-10 structure containing the
Exo-9 ring-like core (upper part) with its RNase PH-like subunits, the
catalytic subunit Rrp44 (bottom) and the RNA (black). Important cap
proteins Csl4 and Rrp6 for RNA duplex unwinding are highlighted. (B)
A slice through the exosome structure reveals the RNA path. RNA is
unwound by the cap proteins of Exo-9 and funnelled into the catalytic
center of Rrp44 where it is exonucleolytically degraded. Adapted from
Makino et al., 2013.

1.3.5 3’-to-5’ mRNA degradation - the Ski proteins

Even though the exosome is the responsible nuclease to degrade mRNAs per se, addi-

tional accessory factors are needed for 3’-to-5’ degradation. Studies could show that

a set of proteins known as superkiller (or Ski) proteins are essential for exosome-

dependent degradation of mRNAs (Anderson and Parker, 1998; Araki et al., 2001;

van Hoof et al., 2000). Particularly, four proteins could be identified to be necessary

for this pathway: Ski2, Ski3, Ski7 and Ski8. All proteins were reported to interact

with the exosome directly or indirectly and deletions of any of these proteins lead to

complete shut-down of the 3’-to-5’ pathway.

Ski7. Ski7 is a translational GTPase of the eEF1α-family (Benard et al., 1999),

structurally similar to other translational GTPases like EF-Tu, eRF3, the eponymous

eEF1α and especially Hbs1, a protein involved in the recognition of stalled ribosomes

on aberrant mRNA. Originally detected in viral repressor assays (Toh-E et al., 1978),

it was soon clear that Ski7 is essential for 3’-to-5’ mRNA degradation (Araki et al.,
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2001; Benard et al., 1999; van Hoof et al., 2000). Ski7 consists of two short N-

terminal domains N1 and N2 and a larger C-terminal GTPase domain (Araki et al.,

2001). N1 was shown to interact with Ski3 and Ski8 whereas N2 interacts with the

exosome (Araki et al., 2001). Under native conditions, Ski7 appears to be stably

bound to the exosome in cells via the cap protein Csl4 (Dziembowski et al., 2007;

van Hoof et al., 2000; Kowalinski et al., 2016). Moreover, it was assumed that Ski7

could interact with ribosomes because of its relation to other translational GTPases,

possibly fulfilling a similar role and identifying specific targets for NSD similar to

Hbs1 (van Hoof et al., 2002). However, this interaction could never be proven by

biochemical or structural means. Interestingly, it was shown that the GTPase domain

of Ski7 is not necessary for general 3’-to-5’ degradation of mRNAs (Araki et al., 2001).

Only recently, first structural insights into the overall architecture of Ski7 were

gained. A crystal structure of the GTPase domain of Ski7 revealed an overall striking

similarity to the GTPase domain of Hbs1 with the typical monovalent cation bound

to the active site, as expected from sequence alignments (Kowalinski et al., 2015).

However, two distinct differences in the catalytic centre could be visualized argu-

ing that Ski7 cannot be catalytically active like its GTPase family members. First, a

different polar residue was found in the active site where an otherwise conserved

histidine is substituted by serine. Second, another polar residue was found to be

substituted near the γ-phosphate of the bound nucleotide (threonine instead of va-

line)(Kowalinski et al., 2015). These changes argue in favour of Ski7 being a GTP

binding protein and pseudo-GTPase, without GTPase hydrolysis activity (although its

activity in the presence of an unknown cofactor cannot be disregarded yet). Notably,

the mammalian homologue of Ski7 was only recently identified as a splicing variant

of the mammalian HBS1 gene (Kalisiak et al., 2016). Since Ski7 is the only protein

known to be able to interact with both the exosome and the other Ski proteins, it was

assumed that it would act as an adaptor in 3’-to-5’ degradation (Araki et al., 2001;

van Hoof et al., 2000; Wang et al., 2005).

The Ski2-Ski3-Ski8 helicase complex. In contrast to Ski7, the cytosolic proteins

Ski2, Ski3 and Ski8 form a stable tetrameric complex known as the Ski complex

consisting of one copy of Ski2 and Ski3 and two copies of Ski8 (Brown et al., 2000;

Synowsky et al., 2009; Wang et al., 2005). The Ski complex is evolutionary conserved

and is involved in essentially all cytosolic pathways including the exosome (Halbach

et al., 2013). Within the Ski complex, only Ski2 harbours enzymatic activity, being

an RNA helicase of the DExH family (Halbach et al., 2012, Halbach et al., 2013).
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FIGURE 1.6: Structure of the Ski complex and RNA channelling into
the exosome. (A) Structural overview of the Ski complex. Ski3 acts
as a scaffold protein and has a long N- and C-terminal arm consisting
of TPR repeats (blue). Two subunits of Ski8 (green; Ski8OUT and Ski8IN
according to their position in the complex) are contacting the C-terminal
arm of Ski3 and the helical domain of Ski2 (yellow). The DExH helicase
Ski2 is centrally positioned. (B) Proposed model for RNA channelling
by the Ski complex. RNA is funnelled through the Ski2 helicase into the
exosome. Ski7 is proposed to act as an adaptor, bringing both complexes
together. The N-terminal arm of Ski3 and the arch domain of Ski2 are
believed to allosterically regulate Ski2 by allowing or preventing access
to the helicase core. Adapted from Halbach et al., 2013.

Moreover, as for most complexes and proteins that are involved in RNA degradation,

a nuclear pendent of the Ski complex exists where Mtr4 acts as the catalytic subunit

in a multiprotein complex called the TRAMP complex (Houseley and Tollervey, 2006;

Vanacova and Stef, 2007; Wyers et al., 2005).

A crystal structure of the S. cerevisiae Ski complex could elucidate its overall ar-

chitecture and led to a possible model for its interaction with the cytosolic exosome

(Halbach et al., 2013; Fig. 1.6A). Ski3 has an overall L-shape with long N- and C-

terminal arms consisting of 33 tetratricopeptide repeats (TPRs). Its C-terminal arm

(TPR 11-33) binds to the globular helicase domain of Ski2 as well as to both Ski8

subunits (named Ski8IN and Ski8OUT for their inner and outer position within the

complex) that show the 7-bladed β-propeller structure characteristic for WD40 re-

peat proteins. Both Ski8 proteins recognize specific Q-R-x-x-φ sequences (x being

any amino acid and φ being aromatic residues) in TPR 31 and TPR 33. In addi-

tion, the N-terminal region of Ski2 wraps around this C-terminal arm of Ski3. The

N-terminal arm of Ski3 features an interruption of the regular TPR motif having a
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split B helix in TPR 4-5 and large interrepeat angles in TPR 6-7. This arrangement

leads to a higher flexibility of the N-terminal arm, allowing it to move into a more

extended position. Ski2 is positioned centrally in the complex, sandwiched between

Ski3 and both Ski8 subunits. Its globular helicase domain consisting of two RecA do-

mains and a helical domain characteristic of DExH helicases create an RNA channel

where the helical domain flanks both RecA domains. As for all DExH helicases, Ski2

contains a so-called β-hairpin loop at the helicase entrance. This characteristic loop

has been shown to be important for mRNA unwinding in the related DExH helicase

Hel308 (Büttner et al., 2007) and is believed to be essential for the processivity of the

helicase. Furthermore, Ski2 contains a large and highly flexible arch (or insertion)

domain extending from its globular core that was predicted to act as a lid to allow or

prevent access to the helicase core of Ski2 (Halbach et al., 2012, Halbach et al., 2013;

Fig. 1.6B). Because of its high flexibility, the arch domain could not be resolved in the

crystal structure of the Ski complex and was truncated for crystallization attempts.

However, it was still resolved in the crystal structure of Ski2 alone without any other

subunits of the Ski complex (Halbach et al., 2012).

All components of the Ski complex show effects on the Ski2 ATPase and helicase

activity (Halbach et al., 2013). Compared to single Ski2, the ATPase activity de-

creases 5-fold in presence of Ski3 and Ski8. Disrupting the interaction sites of Ski8IN

and Ski8OUT with Ski3 results in either an insoluble sample or a complex where RNA

binding is severely disrupted, respectively. These findings argue that Ski8IN is impor-

tant for the structural integrity of the Ski complex whereas Ski8OUT is needed for RNA

binding. RNase protection assays revealed that the Ski complex binds RNA fragments

of 9-10 nucleotides. Upon removing the Ski2 arch domain and the N-terminal arm of

Ski3, Ski2 shows a significant increase in ATPase and helicase activity. This lead to a

model whereby the arch domain together with the N-terminal arm of Ski3 allosteri-

cally regulate the activity of Ski2, possibly by forming a lid-like structure to regulate

access of RNA to the helicase core (Halbach et al., 2013). Finally, additional RNase

protection assays could show an extended protection length of 43-44 nucleotides for

RNA fragments by adding the exosome to the Ski complex. This extended length

exactly represents the combined protection lengths of the Ski complex and the exo-

some, arguing in favour of the Ski complex channelling RNA into the exosome, thus

resulting in a long extended RNA binding tunnel (Fig. 1.6B).
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1.4 When translation goes awry - eukaryotic quality

control pathways

Protein and mRNA degradation are not only key processes for turnover pathways.

As for all cellular processes, translation and transcription are not flawless and give

rise to errors. In fact, optimizing speed and reaction accuracy is one of the major

points in most cellular pathways and puts conflicting demands on enzymes. Both

RNA polymerase II (the main polymerase involved in mRNA transcription) and ribo-

somes show relatively high fidelity. RNA polymerase II incorporates mistakes with

an error rate of roughly 2x10-4 to 2x10-6 (Alic et al., 2007; Kireeva et al., 2008).

This error rate is magnitudes higher than that of DNA replication (Bird, 2007), but

seems to be acceptable since mistakes are not taken over to next generations. Yeast

ribosomes have an error rate estimated between 2x10-5 to 5x10-6, depending on the

analysed codon (Stansfield et al., 1998). These error rates are the product of intrinsi-

cally precise enzymes coupled to proofreading mechanisms, i.e. kinetic proofreading

for translation (Blanchard et al., 2004). Nevertheless, mistakes can happen during

both processes, making it necessary that cellular checkpoints and surveillance sys-

tems exist. These security systems are generally known as quality control pathways

and can either act on mRNAs (mRNA quality control) or proteins (protein quality

control). Quality control systems are found in all eukaryotes and often show high

conservation in their involved processes and factors (as reviewed for example in

Brandman and Hegde, 2016; Inada, 2013; Shoemaker and Green, 2012). Never-

theless, most pathways were only discovered during the last decade, leaving many

questions still unanswered .

1.4.1 Protein quality control response

Protein quality control of aberrant peptides generally involves degradation via the

UPS. Aberrant proteins can be potentially dangerous since they are non-functional

and often prone to aggregation which can be toxic to the cell. In cases where trans-

lation errors occurred but the mRNA template is still healthy, the aberrant protein

is recognized and targeted by the UPS and subjected to degradation. If the mRNA

is faulty, mRNA quality control is initiated first and the already translated aberrant

peptide is targeted by an alternative protein quality control pathway called RQC (see

below).
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1.4.2 mRNA quality control response

mRNA quality control is a highly regulated and complex process, since errors in

mRNAs can propagate through many translation cycles and are thus not tolerated

by the cell. The most common cases of aberrant mRNAs in eukaryotic cells are either

truncated or chemically damaged mRNAs, mRNAs without stop codons but still con-

taining a poly-A tail due to premature poly-adenylation or mRNAs with premature

stop codons (Shoemaker and Green, 2012). Each of these mRNAs is targeted by one

of the three major mRNA quality control pathways known in eukaryotes (Fig. 1.7):

1) Nonsense-mediated decay (NMD), targeting mRNAs with premature stop codons

2) No-go decay (NGD), targeting mRNAs that contain translational road-blocks

like stable secondary structure elements or damaged nucleobases

3) Nonstop decay (NSD), targeting mRNAs lacking a stop codon

A common feature of these mRNA quality control pathways is their co-translational

initiation including the ribosome (Shoemaker and Green, 2012). Since aberrant

mRNAs are often the cause for translational stalling, ribosomes tend to get stuck

on these mRNAs. Since this is unusual for translating ribosomes, these stalled in-

termediates are recognized by the different quality control factors involved in NMD,

NGD or NSD. Thus, translation is driving quality control with the starting point be-

ing the ribosome stalled on the aberrant mRNA. Quality control itself can be divided

into three different steps. First, after target recognition and initiation, the mRNA

has to be degraded to avoid further production of aberrant protein. In contrast to

general mRNA turnover, mRNA degradation in quality control is not dependent on

prior deadenylation (Doma and Parker, 2006; Frischmeyer et al., 2002; Muhlrad et

al., 1994). Second, the so-far translated aberrant peptide also needs to be degraded.

Third, the ribosome is rescued so that it can enter a new translation cycle. These

three steps are common to all mRNA quality control pathways and are regulated and

guided by different factors (Shoemaker and Green, 2012).

NMD. As all stop codons eventually must be recognized by the termination factor

complex eRF1-eRF3, the question arises how a premature stop codon can be distin-

guished from an authentic one. In higher eukaryotes, the presence of a large protein

complex, called exon-junction complex (EJC), seems to dictate whether NMD is initi-

ated or not (Le Hir et al., 2000). EJCs are deposited on exon-exon boundaries during

pre-mRNA splicing and are present until after the first round ("pioneer round") of
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FIGURE 1.7: Eukaryotic mRNA quality control pathways are initi-
ated co-translationally on the ribosome. For NMD (right panel), the
premature stop codon is recognized by eRF1-eRF3 and its close proxim-
ity to the exon-junction complex (EJC) sitting on exon-exon boundaries
(EJC model). The EJC and the ribosome are bridged by Upf1-Upf2-
Upf3. If no splicing and EJC exist, the premature stop codon leads to an
extended 3’ UTR which is presumably covered by Upf1 (3’ UTR model).
The interaction of eRF1-eRF3 with Upf1 and the larger distance to ter-
mination promoting factors like PABP/Pab1 are thought to initiate NMD.
In contrast, targets for NGD and NSD are not entirely clear and separa-
ble anymore (left panel). Both pathways can target ribosomes that are
stalled on truncated mRNAs, within the poly-A tail or where secondary
structure features of the mRNA forbid translation. These stalled inter-
mediates are believed to be recognized by Dom34-Hbs1 or Ski7 (and
possibly an unidentified A-site factors). How this exactly works and
which targets are recognized by which complex is, however, largely un-
known. A common feature is an upstream endonucleolytic cleavage,
leading to a primary and secondary target. After recognition, mRNA
and protein decay are initiated. Adapted from Shoemaker and Green,
2012.

translation (Maquat et al., 2010). Since the authentic stop codon is at the 3’ end of

an mRNA within the final exon, no EJC should be in proximity downstream of the

termination codon, signalling its authenticity. Furthermore, the upstream frameshift-

ing (Upf) proteins are the key factors to initiate the NMD pathway (Cui et al., 1995;

Leeds et al., 1991, Leeds et al., 1992; Peltz et al., 1993). Upf1, a helicase with ATPase

activity (Czaplinski et al., 1995; Weng et al., 1996), has been shown to interact with

eRF1-eRF3 and is believed to act in premature stop codon recognition (Czaplinski

et al., 1998). Together with the kinase Smg1, these proteins form the so-called SURF

complex (Kashima et al., 2006). Additionally, Upf2 and Upf3 directly interact with

Upf1 and with subunits of the EJC, therefore bridging the prematurely terminating
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ribosome with the EJC (He et al., 1997).

In S. cerevisiae, where essentially no mRNA splicing takes place and EJCs are not

present, NMD still exists. Here, it has been reported that a premature stop codon

is recognized by its extended 3’ UTR (also called faux 3’ UTR)(Amrani et al., 2004;

Hogg and Goff, 2010; Muhlrad and Parker, 1999). This leads to increased distance

to promoting termination factors like Pab1 whereas other proteins like Upf1 might

cover the extended 3’ UTR to promote NMD (Kervestin et al., 2012). Numerous

other factors have been identified in NMD, the exact mechanism however still needs

to be elucidated (Chang et al., 2007). mRNA degradation in NMD seems to differ

in yeast and higher eukaryotes. Whereby in yeast both 5’-to-3’ and 3’-to-5’ degra-

dation seem to be important, higher eukaryotes mostly rely on the 5’-to-3’ pathway

(Mitchell and Tollervey, 2003; Muhlrad et al., 1994). In yeast, Ski7 seems to inter-

act with Upf1 to initiate exosome-dependent degradation (Takahashi et al., 2003),

whereas in higher eukaryotes Smg5-Smg7 binding to phosphorylated Upf1 initiates

decapping and Xrn1-dependent degradation (Loh et al., 2013; Unterholzner and Iza-

urralde, 2004). If the ribosome in NMD is split by ABCE1 and how the nascent

peptide is degraded and if this is a target for the RQC pathway (see below) is unclear.

NGD and NSD. As the name implies, NSD targets mRNAs lacking a stop codon

(Frischmeyer et al., 2002; van Hoof et al., 2002). Originally, NSD was referred to as

‘end-of-message stalling’ since it was believed that ribosomes would translate to the

very 3’ end of an mRNA without a stop codon. The logical consequence would be that

there are two types of mRNA targets possible for NSD: a) mRNAs that are truncated

and end at some position within the ORF; and b) mRNAs that lack a stop codon

but still contain a poly-A tail as the result of premature poly-adenylation, an event

that is proposed to happen in up to 10% of cases in S. cerevisiae (Frischmeyer et al.,

2002; Klauer and van Hoof, 2012). In contrast, NGD was believed to target mRNAs

that generally cannot be translated anymore leading to ribosomal arrest due to any

kind of translational road-block (Doma and Parker, 2006; Gandhi et al., 2008). The

distinction from NSD targets would be the stalling mid-message instead of at the 3’

end of the aberrant mRNA. Nevertheless, it became more and more clear over the

last years that the boundaries between NSD and NGD are very fluid. For example, it

has been shown that translation of as few as six lysines (coded by AAA) can already

result in translation arrest (Inada and Aiba, 2005; Ito-Harashima et al., 2007; Kuroha

et al., 2010). Considering that poly-A tails in yeast and human are much longer than

20 nucleotides, translation until the end of the mRNA seems to be highly unlikely.
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In fact, it seems to become more apparent that NGD and NSD share some similar

principles and common factors (Shoemaker and Green, 2012) and that the actual

cause of stalling seems to be much more important for the downstream response than

the position of the translational arrest. Because of these fluid boundaries, reports in

the literature sometimes tend to be inconsistent with the definition of NSD and NGD

targets.

One common fact of both NGD and NSD is an observed endonucleolytic cleavage

of the aberrant mRNA upstream of the stalled ribosome leading to a so-called down-

stream primary and upstream secondary stalling target (Doma and Parker, 2006;

Eberle et al., 2009; Gatfield and Izaurralde, 2004). Even though first reports about

this cleavage were already published in 2004 and 2006, the identity of the endonu-

clease(s) involved is still unknown as of now. After endonucleolytic cleavage, the

mRNA of the 5’ secondary target in NGD has been shown to be degraded by the ex-

osome in 3’-to-5’ direction whereas the primary target is degraded by Xrn1 (Doma

and Parker, 2006). In NSD, all target mRNAs seem to be exclusively degraded by the

exosome (van Hoof et al., 2002; Maquat, 2002). Here, in contrast to mRNA turnover,

the GTPase domain of Ski7 is essential to initiate the degradation process, leading to

the beforementioned model where Ski7 recognizes the stalled ribosome on nonstop

mRNA to recruit the exosome and the Ski complex (Frischmeyer et al., 2002; van

Hoof et al., 2002).

Two factors originally identified as dedicated NGD factors are Pelota (Dom34 in

yeast) and Hbs1, both related to translation termination factors (Doma and Parker,

2006; Inagaki et al., 2000). Dom34 shares similar central and C-terminal domains

with eRF1, whereas the N-terminal domain differs (Lee et al., 2007). Where eRF1

is recognizing the stop codon in the A-site of the ribosome via a network of interac-

tions formed between the stop-codon quadruplet and the eRF1 N-terminal domain

(Brown et al., 2015; ; Matheisl et al., 2015), Dom34 was shown to recognize stalled

mRNA via an Sm fold in its N-terminal domain reaching deep into the A-site decod-

ing centre (Becker et al., 2011; Lee et al., 2007). High-resolution cryo-EM structures

could validate earlier claims that the β3’- β4’ loop of Dom34 takes the path of the

mRNA in the A-site DC (Hilal et al., 2016; Shao et al., 2016). As mentioned above,

Hbs1 is a translational GTPase of the eEF1α-family and shows similarities to eRF3

(Inagaki et al., 2000). As for most translational GTPases, the C-terminal part with its

G domain, domain II and domain III are highly conserved, whereas the N-terminal

part differs (similar to the aforementioned Ski7). Together with Dom34, Hbs1 forms

a heterodimer akin to eRF1-eRF3 and Dom34-Hbs1 have been proposed to work in a
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similar way than the termination factors (Graille et al., 2008). Cryo-EM structures of

Dom34-Hbs1 bound stalled ribosomes could show that they bind in a similar fashion

to the termination factors on the ribosome (Becker et al., 2011; Hilal et al., 2016;

Shao et al., 2016). Interestingly, it could be seen that the N-terminal domain of Hbs1,

however, is far away from the A-site and seems to bind near the mRNA entry channel,

connected by a highly flexible linker. Because of the similarities of Dom34-Hbs1 to

eRF1-eRF3, a competition model has been proposed where binding of Dom34-Hbs1

is kinetically preferred over eRF1-eRF3 in case of a stalled ribosome (Becker et al.,

2011; Passos et al., 2009).

Notably, Dom34 plays an important role in ribosome recycling of stalled qual-

ity control intermediates (Saito et al., 2013; Shoemaker et al., 2010; Tsuboi et al.,

2012). As for canonical recycling after translation termination, ABCE1 can split the

ribosome for recycling. In contrast to acting with eRF1 in canonical recycling (Pis-

areva et al., 2011; Shoemaker and Green, 2011), ABCE1 substitutes Hbs1 and acts

together with Dom34 for ribosome splitting (Becker et al., 2012; Doma and Parker,

2006; Franckenberg et al., 2012; Saito et al., 2013). As of now, this is the only

known system for ribosome splitting in eukaryotic cells. Additionally, Dom34 has

been shown to be involved in rescuing ribosomes that are found in the 3’ UTR of

mRNAs (Guydosh and Green, 2014). Thus, Dom34 is often not anymore considered

as a primarily dedicated NGD factor.

1.4.3 The fate of the aberrant peptide – ribosome quality control

After the initiation of mRNA quality control, the already translated aberrant peptide

has to be degraded as well. The so-called ribosome quality control (RQC) system

targets the aberrant NC to ubiquitinate it for proteasomal degradation via the UPS

(Brandman et al., 2012; Defenouillère et al., 2013; Fig. 1.8). The RQC complex

responsible for marking the NC consists of three different proteins: Rqc1, Tae2 and

Ltn1 (Listerin in mammals). Ltn1 is a RING domain E3 ligase and the key factor

for ubiquitination of the NC, consisting of a long elongated N-terminal HEAT repeat

domain and the characteristic C-terminal zinc finger RING domain (Lyumkis et al.,

2013). Recent reports could show that the RQC complex binds to the 60S subunit

still attached to peptidyl-tRNA and the NC after ribosome splitting (Shao and Hegde,

2014; Shao et al., 2015; Shen et al., 2015). Hereby, Tae2 and Ltn1 recognize the

peptidyl-tRNA-60S species and Ltn1 ubiquitinates the NC by reaching around the

60S, a fact that is made possible by its elongated and flexible form. Notably, it could

also be shown that Tae2 recruits alanyl- and threonyl-tRNAs to the 60S species (Shen
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et al., 2015). In a 40S-mRNA-independent translation event, alanine and threo-

nine are added to the NC forming C-terminal alanine-threonine (CAT) tails. These

CAT tails seem to promote degradation and even have an impact on the aggregation

properties of the protein, leading to different responses by the cell (Choe et al., 2016;

Defenouillère et al., 2016; Yonashiro et al., 2016). Eventually, the NC is extracted

from the ribosome by the ATPase Cdc48 and delivered to the proteasome for degra-

dation (Brandman et al., 2012; Defenouillère et al., 2013). Rqc1 is the most elusive

of the RQC complex proteins and was not visible in any structures as of now. Due to

this fact, its function remains to be established.

FIGURE 1.8: Protein quality control by the RQC pathway. Ribo-
some splitting of stalled intermediates is possibly mediated by Dom34-
Hbs1 and ABCE1. After splitting, the RQC complex consisting of Ltn1,
Rqc2/Tae2 and Rqc1 (in yeast) binds to the peptidyl-tRNA containing
60S species. Rqc2 recognizes the tRNA and the RING domain E3 lig-
ase Ltn1 ubiquitinates the nascent peptide for proteasomal degradation.
Afterwards, the ATPase Cdc48 extracts the peptide from the 60S sub-
unit and delivers it to the proteasome. Recent reports show evidence
that this system is conserved in mammalian cells, being able to identify
homologues for almost every protein factor involved in the yeast RQC
response. Adapted from Brandman and Hegde, 2016.

Very recent studies indicate that other factors are contributing to the RQC re-

sponse, before Rqc1-Tae2-Ltn1 bind to the LSU. RACK1 (Asc1 in yeast), a non-

essential protein of the 40S subunit, and the E3 ubiquitin ligase Hel2 have been

identified as factors important for the RQC response, having strong impacts on initial

ribosome stalling to trigger RQC (Brandman et al., 2012; Kuroha et al., 2010; Sitron

et al., 2017). In particular, the ubiquitination of ribosomal proteins by Hel2 seems

to regulate whether stalling occurs or not, a mechanism that seems conserved in hu-

man cells (Juszkiewicz and Hegde, 2017; Sundaramoorthy et al., 2017). Additional
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factors might be implicated in guiding Hel2 to its targets, further data is needed

however to completely understand the regulation of the RQC pathway by Hel2 and

RACK1.

1.5 Ribosome stalling events outside quality control

Translational stalling is a feature not only seen during translation of aberrant mRNAs

and quality control. Some specific sequences like the arginine attenuator peptide AAP

or the upstream ORF of gp48 in human cytomegalovirus (CMV) can stall ribosomes

very efficiently and these events are used for regulatory purposes (Bhushan et al.,

2010; Matheisl et al., 2015). For example, the CMV peptide forms a compact helix in

the ribosome tunnel interacting with its surface. This in turn leads to silencing of the

PTC. Sometimes, stalling sequences can even be used to transform the ribosome into

a nutrient sensor, making them a viable tool for different pathways (Bischoff et al.,

2014). However, these specific stalling sequences are rather rare. In cells, two other

reasons were identified to contribute to the majority of translation stalling events

which are poly-proline and poly-basic stretches, both of which are further discussed

below.

1.5.1 A struggle to translate – poly-proline and poly-basic stretches

in protein synthesis

Proline is a common cause for translation slow-down or stalling, as indicated by

several studies (Doerfel et al., 2013; Ude et al., 2013; Woolstenhulme et al., 2013,

Woolstenhulme et al., 2015). Stretches of prolines were observed to be problematic

for ribosomes to synthesize which was contributed to proline’s unusual geometry

being the only amino acid with a secondary amine, leading to its properties to disrupt

secondary structure features (Johansson et al., 2011; Muto and Ito, 2008; Pavlov et

al., 2009; Wohlgemuth et al., 2008).

Furthermore, one of the most common stalling events in eukaryotic cells are ri-

bosomes stalled on poly-basic stretches, in particular stretches of lysine or arginine

(Brandman et al., 2012; ; Ito-Harashima et al., 2007; Kuroha et al., 2010). Reports

of such stalling events were made relatively early, but are surprising since stretches

of arginine and lysine (and to some lesser extent proline) are commonly found in

proteins. Additionally, as already mentioned above, poly-lysine is also to be expected

if a ribosome translates into the poly-A tail of an mRNA, making it a stalling event

expected in NSD. An early model suggested that poly-basic sequences, giving rise to
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mostly positively charged peptides, leads to stalling by interacting with the negatively

charged surface of the peptide exit tunnel (Lu and Deutsch, 2008). This event would

resemble peptide-mediated stalling that had been investigated before. Nevertheless,

it became clear that this model is too simplistic and cannot explain all stalling events

observed. For example, experimental data could show that even two arginines coded

by a CGA-CGA di-codon are enough to stop translation in its tracks, long before they

can extend into the peptide exit tunnel (Gamble et al., 2016; Letzring et al., 2010).

Several other codon combinations were identified which resulted in strong stalling

properties, mostly combinations of arginine or lysine and proline (Gamble et al.,

2016). Thus, poly-basic stalling is no longer viewed as a peptide-mediated stalling

event, but rather a mixture of different stalling mechanisms.

A common feature appearing in most studies is that codon optimality has an ef-

fect on translation speed and hence ribosome stalling (Gamble et al., 2016; Pech-

mann and Frydman, 2013; Presnyak et al., 2015; Tuller et al., 2010). Given the

redundancy of the genetic code, amino acids are coded by multiple codons that are

not equal regarding translational efficiency. This lead to two classes of codons con-

sidered as optimal and non-optimal codons (Akashi, 1994; Pechmann and Frydman,

2013; dos Reis et al., 2004; Zhou et al., 2009). Non-optimal codons show much

lower translation speeds than optimal ones, leading to stalled ribosomes (and even

polysomes) at these positions with severely slowed down translation, also impacting

mRNA half-life (Presnyak et al., 2015). Two common explanations have been given

to explain this translation slow-down. First, the lower abundancy of cognate tRNAs

for these non-optimal codons would result directly in slower translation. Second,

non-optimal codons often contain Wobble- instead of Watson-Crick base pairs in the

third position of the codon, making the actual accommodation of the cognate tRNA

slower and less stable (Akashi, 1994; Gamble et al., 2016; Letzring et al., 2010;

Pechmann and Frydman, 2013; dos Reis et al., 2004; Tuller et al., 2010; Zhou et al.,

2009). Given the fact that codon composition has such an impact on translation, it

seems unwise to generally refer to poly-basic stalling and necessary to specify exactly

the cause of the translation arrest.

1.5.2 The rescuing factor eIF-5A

Finally, the question arises how proteins with poly-basic and -proline stretches can

actually be synthesized by the ribosome. In that regard, the eukaryotic initiation fac-

tor eIF-5A (the eukaryotic homologue to EF-P in prokaryotes) has been implicated as

a rescue factor. Having been proposed to act as an initiation factor that helps forming
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the first peptide bond early (Glick and Ganoza, 1975), it was soon shown that EF-P

(Ude et al., 2013) and eIF-5A (Gutierrez et al., 2013) help promoting translation of

poly-proline, rescuing ribosomes that are stuck on these stretches. Notably, eIF-5A

has a unique post-translationally modified amino acid called hypusine that is essen-

tial to its function (Dever et al., 2015; Park et al., 1981). Hypusine is generated in a

two-step process by first adding the 4-aminobutyl group of spermidine to the ε-amino

group of a conserved lysine (K51 in yeast) by deoxhypusine synthetase (DHS) and

subsequent conversion to hypusine via hydroxylation by deoxyhypusine hydroxylase

(DOHH) (Dever et al., 2015; Park et al., 2010; Wolff et al., 1990). Whereas the

dehydroxylated form of hypusine shows basically the same activity in yeast as the

hydroxylated form, only the latter is active in higher eukaryotes, making DOHH an

essential protein (Dever et al., 2015). Even though a crystal structure of unmodified

EF-P in complex with a bacterial ribosome has been reported (Blaha et al., 2009),

the molecular basis of eIF-5A’s recue activity and in particular the role of the unique

hypusine modification remain unknown.

1.6 Aims of this thesis

Throughout this thesis, it has been pointed out that the connection between mRNA

translation and degradation is known, however there is rather limited knowledge on

the details of this interplay. The aim of this thesis is to shed light onto this subject,

with a focus on the 3’-to-5’ mRNA degradation pathway.

Even though a working model for the action of Ski7 on the ribosome exists, it was

so far not proven by biochemical or structural studies. Additionally, it is unclear how

the Ski complex interacts with Ski7 or the ribosome in quality control (and possibly

general mRNA degradation) and how the exosome is recruited to its target mRNA.

Here, we investigate the function of the Ski proteins in mRNA decay in vitro and

in vivo, with particular focus on their interactions with the ribosome. Our goal is

to elucidate any interactions that occur in the cell between the Ski proteins and the

ribosome during mRNA quality control or general turnover. Any identified interme-

diates should then be analysed by cryo-EM to obtain high-resolution reconstructions

for structural studies. With these structures, we aim to investigate possible mech-

anisms and functions of Ski7 and the Ski complex to gain a better understanding

of how translation interacts with the mRNA degradation system. Concomitantly, we

want to elucidate how mRNAs are targeted for 3’-to-5’ mRNA degradation in quality

control.
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2 Materials and Methods

2.1 Generation and amplification of DP120-poly-A50

template DNA

For RNC preparations, we used the well-characterized DP120 mRNA with a 50 nu-

cleotide long poly-A tail (DP120-poly-A50) to stall ribosomes within the poly-A tail.

The DP120-poly-A50 reporter mRNA codes for a T7 RNA polymerase promotor, a

leader sequence to promoto translation initiation, a hexahistidine (His6) tag for

affinitiy purification, a Hemagglutinine (HA) tag for Western Blot detection and the

first 120 amino acids of dipeptidyl-aminopeptidase B followed by the poly-A50 tail.

The construct did not contain a stop codon.

The DP120-poly-A50 DNA template was amplified by PCR using a pEX-A plasmid

containing the DP120-poly-A50 fragment as template (plasmid was synthesized by

Eurofins). Used primers were a 5’ T7 forward primer (5’-TAATACGACTCACTATAGGG-

3’) and a 3’ reverse DP120-pA primer (5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

TTTTTTTTTTTTTTTTTTTTATCGTAGACAGATTTAACAACGTA-3’).

For PCR, the Thermo Scientific Phusion Flash High-Fidelity PCR Master Mix was

used and protocols were used as recommended by Thermo Scientific. 50 µl reactions

were generally prepared with 0.5 µM primers and 10 ng DNA template. The PCR

program was used as follows:

TABLE 2.1: PCR program

Temperature Time Cycles
Initial Denaturation 98 °C 30 s 1x

Denaturation 98 °C 10 s
Annealing 51 °C 15 s 30x
Elongation 72 °C 20 s

Final extension 72 °C 300 s 1x



30 2. Materials and Methods

The obtained PCR product was subsequently purified using the QIAGEN PCR Pu-

rification Kit. Concentrations were measured with a NanoDrop 1000 spectropho-

tometer device.

2.2 SDS-PAGE

SDS-PAGE for separating proteins according to their molecular weights was per-

formed using standard protocols (Laemmli, 1970). For RNC preparations and in

vitro reconstitutions, we used 15% discontinuous polyacrylamide gels in 1x SDS run-

ning buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS). For the polysomes

profile analysis and the native pullout preparation, we used 4-12% NuPAGE gra-

dient gels in 1x MOPS running buffer (50 mM MOPS, 50 mM Tris Base pH 7.7,

0.1% SDS, 1 mM EDTA). Denaturation of samples was performed at 65 °C for 10

min in case of RNC samples to preserve the peptidyl-tRNA bond. All other sam-

ples were denaturated at 95 °C for 10 min. Samples containing 1x SDS-SB (50 mM

tris(hydroxymethyl)aminomethane (Tris) / HCl pH 6.8, 2% (w/v) SDS, 10% (v/v)

glycerol, 0.1% (w/v) bromophenol blue, 100 mM 1,4-dithiothreitol) were loaded

and electrophoresis was performed at constant voltage, using 100–175 V for poly-

acrylamide gels or 200V for NuPAGE gels for 90 min.

2.3 Simply Blue and SYPRO Orange staining

For small amounts of proteins (i.e. in case of most in vitro reconstitution assays),

protein gels were stained with SYPRO Orange and subsequently visualized with a

Typhoon FLA 900 scanner. Gels were stained in a 1:5000 dilution of SYPRO Orange

(Invitrogen) in freshly prepared 10% acetic acid for 1h on a shaker and washed 3x

with water for 5 min afterwards. In all other cases, gels were stained with Simply

Blue Coomassie staining solution (Novex). Gels were 3x shortly cooked in water to

remove SDS. Subsequently, gels were cooked in Simply Blue staining solution and

shaken 5-10 min at RT.

2.4 Western Blotting

Semi-dry Western blotting was used after SDS-PAGE to transfer proteins onto a mem-

brane. Blotting was performed at 150 mA per gel for 90 min in methanol-based blot-

ting buffer (20% (v/v) methanol, 48 mM Tris/HCl, 39 mM glycine, 0.037% (w/v)
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SDS). The membrane was stained with Amido Black (0.1% (w/v) naphthol blue

black, 7.5% (v/v) acetic acid, 20% (v/v) ethanol) for 1 min under shaking condi-

tions and destained ((40% (v/v) ethanol, 10% (v/v) acetic acid) until clear bands

were visible on white background. For antibody detection with α-PAP (α-Protein A),

the membrane was blocked 3x in 2% milk/PBS (137 mM NaCl, 2.7 mM KCl, 10 mM

Na2HPO4, 1.8 mM KH2PO4) at RT for 10 min and subsequently washed with 1x PBS

for 1 min. Afterwards, the membrane was incubated for 1h at RT on a shaker with

1:5000 α-PAP (abcam) in 2% milk/PBS. Subsequently, the membrane was washed

3x with 1xPBS for 5 min.

For antibody detection with α-CAB (α-Calmodulin), the membrane was blocked

in 5% milk / TBS (20 mM Tris HCl pH 7.6, 150 mM NaCl) at RT for 30-45 min and

subsequently washed with 1x TBS for 1 min. Afterwards, the membrane was incu-

bated over night at 4 °C on a shaker with 1:1000 α-CAB antibody (Thermo Fisher).

For the secondary antibody, the membrane was washed 2x with TBS and 1x with

TBS-T (TBS with 0.1% (v/v) Tween) for 5 min, blocked in 5% milk / TBS for 10 min

and incubated with 1:5000 goat anti-mouse HRP-conjugate in the blocking solution.

In case of RNCs, the same procedure was used with the exception that the first anti-

body was HA-probe (Santa Cruz) instead of α-CAB. Protein signals were visualized

with ECl solution (AppliChem) on a Fujifilm LAS-3000 Imager.

2.5 In vitro transcription of DP120-poly-A50 mRNA

In vitro transcription reactions were carried out with the Ambion T7 mMESSAGE

mMACHINE Kit. The reaction was performed according to the manual.

The reaction mixes were incubated for 2 h at 37 °C and the RNA was precipitated

over night at -20 °C by adding 30 µl H20 and 30 µl LiCl solution (Ambion). The

precipitated RNA was separated by centrifugation (20 min, 4 °C, 14000 rpm) and

the pellet was washed with 1 ml EtOH. After a second centrifugation (10 min, 4 °C,

14000 rpm), the pellet was dried at room temperature for 5 min and resuspended

in 30 µl nuclease-free H2O. Concentrations were measured with a NanoDrop 1000

spectrophotometer.
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2.6 NS-RNC preparation

Ribosome nascent chain complexes (RNCs) were purified by programming ribosomes

in a yeast cell-free translation system with DP120-poly-A50 mRNA essentially as de-

scribed before (Beckmann et al., 2001; Halic et al., 2004). 1.2 ml in vitro translation

reaction mixes were used. Reactions were incubated for 75 min at 17 °C and stopped

by adding 200 µg/ml cycloheximide. Subsequently, 4x300 µl of the total reaction

mix were loaded onto 800 µl of 750 mM sucrose cushion in 250 buffer (50 mM

Tris/HCl pH 7.0, 250 mM KOAc, 25mM, 250 mM sucrose, 10 mM Mg(OAc)2, 5 mM

2-mercaptoethanol, 10 µg/ml cycloheximid, 0.1% Nikkol, 0.1% EDTA-free protease

inhibitor cocktail pill (pill)/ml, 0.2 U/ml RNAsin) and ribosomes were pelleted by

centrifugation in a TLA120.2 rotor (100000 rpm, 45 min, 4 °C). The ribosomal pellet

was resuspended in 250 buffer over 45 min.

The resuspended ribosomes were added to 2x1 ml of Talon metal affinity resin

slurry equilibrated with 250/tRNA buffer (250 buffer with 10 µg/ml tRNA) and in-

cubated for 15 min at RT. The flowthrough was collected and the resin was washed

with 8x 1.5 ml 250 buffer and 2x 2.25 ml 500 buffer (50 mM Tris/HCl pH 7.0, 500

mM KOAc, 25mM, 250 mM sucrose, 10 mM Mg(OAc)2, 5 mM 2-mercaptoethanol,

10 µg/ml cycloheximid, 0.1% Nikkol, 0.1% pill/ml, 0.2 U/ml RNAsin). Elution was

performed with 2x 1.5 ml 250/100 buffer (250 buffer with 100 mM imidazole) over

15 min at RT. Eluted RNCs were loaded onto 400 µl 750 mM sucrose cushion in

250 buffer and centrifuged in a TLA 110.4 rotor (100000 rpm, 45 min, 4 °C) to sep-

arate RNCs. RNCs were resuspended in 30 µl 250 buffer and concentrations were

measured with UV-Vis photometer (1:70 dilution; 1 A260 = 20 pmol 80S ribosomes).

2.7 In vitro reconstitutions of ribosomal Ski complexes

S. cerevisiae Ski complex and Ski7 constructs were purified by Felix Halbach or Eva

Kowalinski (Conti lab, Max Planck Institute of Biochemistry, Martinsried) as de-

scribed before (Halbach et al., 2012, Halbach et al., 2013, Kowalinski et al., 2015).

In vitro reconstitution assays were performed using 2 pmol RNCs and 5-fold mo-

lar excess of purified Ski complex or 10-fold molar excess of Ski7. Reactions were

incubated for 15 min at RT. To assess ligand binding to ribosomes, reactions were

spun through sucrose cushions (50 mM Tris/HCl pH 7.0, 250 mM KOAc, 25mM,

250 mM sucrose, 10 mM Mg(OAc)2, 750 mM sucrose, 5 mM 2-mercaptoethanol, 10
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µg/ml cycloheximid, 0.1% Nikkol, 0.1% pill/ml, 0.2 U/ml RNAsin) and analyzed by

SDS-PAGE. Protein gels were stained with SYPRO Orange as described.

2.8 Polysome profile and sucrose gradient analysis

Yeast cultures from C-terminally TAP (tandem affinity purification)-tagged Ski3 and

Ski7 strains (obtained from Euroscarf) were harvested in early log phase (0.9-1.0

OD600, resuspended in lysis buffer (20 mM HEPES pH 7.5, 100 mM KCl, 10 mM

MgCl2, 10 µg/ml cycloheximide, 0.5 mM PMSF) and lysed by glass bead disrup-

tion (10x 30 s vortexing with 30 s breaks on ice in between). Lysates were spun

through linear sucrose gradients in a SW-40 rotor (10-50%, 137000g, 150 min, 4

°C) and fractions were analyzed by SDS-PAGE followed by immuno-blotting using a

Peroxidase-Anti-Peroxdiase (PAP) Soluble Complex antibody against Protein A. For

RNase treatment, 0.3 mg/ml RNase A were incubated with lysate for 30 min on ice.

2.9 Native pullouts of Ski complex bound ribosomal

complexes using TAP-tagged Ski3

Native TAP-pullouts were performed using Dynabeads® M-270 Epoxy (Life Tech-

nologies) with yeast strains expressing C-terminally TAP-tagged Ski3. Purifications

were essentially performed as described before (Defenouillère et al., 2013, Oeffinger

et al., 2007). Cultures were harvested at 0.9-1.0 OD600, resuspended in lysis buffer

(20 mM HEPES pH 7.4, 100 mM KOAc, 10 mM MgCl2, 1 mM DTT, 0.5 mM PMSF,

10 µg/ml cycloheximide) and lysed by glass bead disruption (10x 30 s vortexing

with 30 s breaks on ice in between). Incubation with 300 µl IgG-coupled magnetic

Dyna/-beads® was performed for 12 h at 4 °C with slow tilt rotation. TAP-tagged

Ski3 and all associated ribonucleoprotein complexes were eluted with 200 units of

AcTEV Protease (Thermo Fisher) for 180 min at 17 °C.

2.10 In vitro reconstitution of Ski complex with CMV-

stalled overhang RNCs

Yeast ribosomes were stalled on a DP120 mRNA with a CMV-stalling sequence. RNCs

were prepared as described above for NS-RNCs. Constructs were designed to have

a 0, 10, 20 or 50 nt overhang at the 3’ end on the ribosome by adding additional
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nucleotides after the stalling sequence (10 nt to account for the distance between

A-site and the entry site of the ribosome and 0, 10, 20 or 50 nt for the respective 3’

overhang construct).

In vitro binding assays were performed using 2 pmol RNCs and 5-fold molar

excess of purified Ski complex as described above. Protein gels were stained with

SYPRO Orange and gel bands were quantified using Imagequant (GE Healthcare Life

Sciences) and the rollingball method for background subtraction. To account for

slight variations in the amount of used RNCs in each lane, the quantified values for

the Ski2 and Ski3 double band were normalized by dividing though the quantified

value for a ribosomal band (see fig. S7D; band is marked with an asterisk). The nor-

malized Ski binding ratio was plotted in a bar plot. This experiment was performed

as a duplicate (N = 2).

2.11 Targeted ribosomal profiling on the native ribo-

some-Ski complexes

Ribosomal profiling was performed essentially as described before (Ingolia et al.,

2009). RPF and RNA samples were prepared from the Ski3-TAP strain as shown in

Fig. 3.16. All data was processed by Vivekanandan Shanmuganathan and Markus

Pech (Beckmann lab, Gene Center LMU, Munich).

For RNA, cell lysate (for control) or purified ribosome-Ski complexes were used

for RNA extraction using a miRNeasy mini Kit (Qiagen). Total RNA was depleted

of ribosomal RNA by using the Ribo-Zero rRNA Removal Kit for Human/Mouse/Rat

(Epicentre). rRNA depleted total RNA was heat fragmented and sample preparation

was continued as given in the ARTseq™ Ribosome Profiling Kit.

For RPFs, the cell lysate (for control) or purified ribosome-Ski complexes were

treated with 40 units per A260 of RNase I (Ambion) at 25 °C for 45 min in a shaker

at 500 rpm followed by 5 min incubation on ice with SUPERase-In (Ambion). The

lysate (control) was applied to 10-30% sucrose gradients and centrifuged at 121000

g for 3.5 h to separate 80S monosomes from residual polysomes, which withstood

the nuclease treatment. The 80S peak was isolated and ribosomes pelleted by cen-

trifugation. For ribosome-Ski complexes, the sucrose gradients were omitted, since

already the purified complexes showed reproducible 80S monosomes only. Instead,

ribosomes were pelleted through a sucrose cushion.
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80S were split in ribosome-dissociation buffer (20 mM Tris, 400 mM KCl, 2 mM

MgCl2, 1 mM DTT and 1 mM puromycin) and subunits were pelleted again by cen-

trifugation. The supernatant from this centrifugation step was used as the source for

RPFs. RPFs were further purified and size selected in a 15% denaturing urea-PAGE

gel for fragments between 26-62 nucleotides using markers. Gel extracted fragments

were precipitated and processed as given in the protocol (ARTseq™ Ribosome Profil-

ing Kit, Epicentre, WI, USA) for library preparation and high-throughput sequencing.

Sequencing was performed on an Illumina HiSeq 1500.

2.12 Bioinformatical analysis of RPFseq and RNAseq

datasets

Reads mapping to ribosomal RNA, tRNA, small nuclear and nucleolar RNA were re-

moved. Remaining reads were mapped to the yeast genome using Tophat (v2.0.8b)

(Trapnell et al., 2009) and only uniquely mapped reads were used for length distri-

bution and further bioinformatic analysis.

For plotting the relative positions of reads in the ORFs, we used multiple map-

ping of two positions. Consequently, only reads with a maximum of two positions

within the genome were taken to avoid partial coverage due to overlapping genes or

duplicated sequences within the coding regions. The ’per nucleotide coverage’ in the

ORFs for all genes was calculated. Afterwards, each gene was split into ten equal

segments. The ’per nucleotide coverage’ mean values of each segment were then di-

vided by the entire gene mean. Subsequently, the mean values across the genome for

all segment ratios were calculated. These values were averaged, standard deviations

were calculated and plotted. The same was done for a single dataset of total RNA.

The codon correlation plot was done as described before (Presnyak et al., 2015),

only that the correlation was calculated with the footprint count ratio instead of

mRNA half-life. Briefly, the footprint count ratio between pulldown and control were

calculated. Then Spearman correlation values were calculated between the footprint

ratio and codon occurrence across the genome for all codons. Optimal and non-

optimal codons were adapted from Presnyak et al (Presnyak et al., 2015).

For the codon occupancy in A-, P- and E-site, only uniquely mapped reads were

used for further bioinformatic analysis. For identifying the P-site position within the

footprints, a meta-gene analysis using 5’ end of the footprints around the start codon

was performed. Based on this analysis, the first peak appeared 12 nucleotides up-

stream of the start codon. A-, P- and E-site codons for all footprints were assigned
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by shifting 16, 13 and 10 nucleotides, respectively. The number of footprints per

amino acid in each site was calculated by summing up the shifted footprints over the

corresponding codons. To normalize the occurrence, the codons in the second posi-

tion downstream of the A-site were summed up and the occurrence for each amino

acid was calculated. The values for the amino acids in A-, P- and E-site where then

divided by the occurrence for each corresponding amino acid in this second position

accordingly. For all the footprints mapping to ORFs, the normalized occurrence of

A-, P- and E-site amino acids were then plotted.

2.13 Cryo-EM, Single Particle Analysis and model build-

ing of the ribosome-Ski complex

Freshly prepared samples of the endogenous pullout from the genomically TAP-tagged

Ski3 yeast strain were adjusted to 4 A260/ml (80 nM 80S ribosomes) and applied to 2

nm pre-coated Quantifoil R3/3 holey carbon supported grids. Two datasets were col-

lected on a Titan Krios TEM (FEI Company) equipped with a Falcon II direct electron

detector at 300 keV under low dose conditions of about 28 e-/Å2 for 10 frames in

total using the EPU software (FEI Company) and a defocus range of -0.7 to -4.0 µm.

Magnification settings resulted in a pixel size of 1.084 Å/pixel. Contrast transfer

function (CTF) estimation was performed with CTFFIND4 (Mindell and Grigorieff,

2003; Rohou and Grigorieff, 2015) and only micrographs that showed clear signal

below 4.5 Å resolution were used. Automatic particle picking was performed with

Gautomatch (http://www.mrc-lmb.cam.ac.uk/kzhang/). Both datasets were individ-

ually 2D classified using Relion (Scheres, 2012). Non-ribosomal particles were dis-

carded resulting in 2 datasets with 175038 and 258426 particles, respectively. The

vast majority of the particles were programmed ribosomes with tRNAs (>95%). Af-

terwards, both datasets were combined and 3D refinement was performed for subse-

quent movie processing and generation of shiny particles in Relion (Bai et al., 2015;

Scheres, 2014). All shiny particles were then transferred to Frealign (Grigorieff,

2007)for 3D classification. First, the dataset was classified into 7 classes. Classes 1-3

contained poorly resolved 80S ribosomes with partial Ski complex density (total of

78878 particles, 18.2%). Class 4 contained 80S with eIF-5A in the E-site but no den-

sity for the Ski complex (182884 particles, 42.2%). Finally, classes 5-7 contained 80S

with strong Ski complex density but differing in the position of the L1 stalk (classes

5-6 with L1 in, 152959 particles, 35.5%; class 7 with L1 out, 18742, 4.3%). Classes 5

and 6 were joined for a second round of 3D classification and particles with very low
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scores were discarded. The second classification resulted in a low-resolved ribosome-

Ski complex class (26574 particles, 18.0%) which was discarded and 2 classes dis-

playing ribosome-Ski complexes with 2 different small subunit rolling states (59112

particles, 40.2% and 61516 particles, 41.8%). The higher populated of these classes

was further subclassified resulting in 2 final classes with different Ski2 arch domain

positions (31503 particles, 54.0% for the arch domain contacting the 40S subunit and

26814 particles, 46.0%, for the arch domain contacting Ski3). Final refinement was

performed in Frealign resulting in a map at 3.8 Å resolution according to the gold

standard criterium (FSC = 0.143). The map was sharpened with bfactor.exe from

the Frealign package and used for interpretation. To address resolution heterogene-

ity and changes in local resolution, different low-pass filtered maps were generated

for model building and refinement. Local resolution was calculated using ResMap.

For model building, the crystal structures and models for the S. cerevisiae ribo-

some (pdb code 4V88 for the 40S and 5GAK for the 60S; Ben-Shem et al., 2011;

Schmidt et al., 2015) and of the S. cerevisiae Ski complex (4BUJ; Halbach et al., 2013)

and the Ski2 insertion domain (4A4K; Halbach et al., 2012) were fitted as rigid bod-

ies into the isolated and appropriately filtered electron densities using UCSF Chimera

except for the flexible Ski3 N-terminal arm (residues 1-505) which was rigid body

fitted individually. A- and P-site tRNAs were fitted based on the structure of eIF-5A

bound to the ribosome that was modelled before (5GAK; Schmidt et al., 2015), the

mRNA was modelled by extending the 3’ end of the model mRNA in the mammalian

POST-translocational state (EMD-2620 and pdb 4UJE; Budkevich et al., 2014). After

rough fitting, flexible fitting and Jiggle Fitting in Coot (Emsley and Cowtan, 2004;

Brown et al., 2015) was applied where necessary.

All models were subsequently combined and subjected to real-space refinement

using PHENIX (Adams et al., 2010). After PHENIX refinement, the model was further

subjected to reciprocal space refinement in REFMAC v5.8 (Murshudov et al., 1997)

using restraints generated by ProSMART and LIBG as previously shown (Brown et

al., 2015). Because of the difference in local resolution and to avoid overfitting,

refinement weights and the resolution limit for REFMAC were estimated separately

for the 60S subunit and the 40S-Ski complex part as described in Fernández et al.,

2014. Additionally, the N-terminal arm of Ski3 (residues 1-170) was removed from

the refinement since resolution in this part was 10 Å or lower. For the final model,

only the rigid body fitted N-terminal arm of the crystal structure was used. FSCaverage

was monitored throughout the refinement and the final model was validated using

MolProbity. Cross-validation against overfitting was performed as described before
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for both model refinements separately and is described in more detail in the Results

section.

Figures were created with the PyMOL Molecular Graphics System (Version 1.7.4,

Schrödinger, LLC) and with UCSF Chimera (Pettersen et al., 2004).

2.14 Cryo-EM, Single Particle Analysis and model build-

ing of the eIF-5A-80S structure

For the eIF-5A-80S structure, only the class containing eIF-5A bound to the ribo-

some without Ski complex was used and an extra dataset was collected. Data collec-

tion was performed as described before with a dose of 2.4 e- /Å-2 per frame for 13

frames in total. Data were collected at a defocus range between -0.8 and -3.4 µm.

Only micrographs that showed clearly visible Thon rings below 5.5 Å on the level

of the rotationally averaged power spectra profiles were used for further analysis.

Automatic particle detection was performed by the program SIGNATURE (Chen and

Grigorieff, 2007). Initial in silico sorting of the dataset consisting of 246555 parti-

cles in total was performed using the SPIDER software package (Frank et al., 1996).

Classes were obtained by competitive projection matching in SPIDER (Leidig et al.,

2014). The vast majority (>95%) of the particles we found were programmed with

tRNAs. This dataset could be subdivided into two main classes, both containing A-

and P-tRNAs and either with or without the Ski complex (76816 and 88640 particles,

respectively). The large number of ribosomal particles without density for the Ski

complex suggests that the Ski complex was not stably bound to these particles. To

our surprise, both classes contained ribosome-bound eIF-5A. Nevertheless, only the

class without Ski complex displayed a highly resolved density for eIF-5A that allowed

model building. The density for eIF-5A in the Ski complex bound ribosome class

was partially disordered and the density for the factor was fragmented. For high-

resolution refinement, the dataset containing the eIF-5A particles was further cleaned

by removing particles with low cross-correlation. The cleaned dataset (62532 par-

ticles) was then processed further using Relion. To do this, the particle boxes were

extracted using the coordinates obtained by SIGNATURE and normalized in Relion.

The contrast transfer function (CTF) estimation was repeated using CTFFIND3 and

the dataset was subjected to auto-refinement in Relion using a ribosomal reference

low-pass filtered to 70 Å. After auto-refinement, the dataset was subjected to movie

processing and the particle-polishing feature in Relion. Here, only the first 8 frames
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were used for the calculations, resulting in an accumulated dose of 24 e-/Å-2. Subse-

quent auto-refinement of “shiny” particles resulted in a final reconstruction of 3.9 Å

resolution according to a gold standard FSC cutoff of 0.143. This map was sharpened

using automatic b-factor estimation in RELION and used for interpretation and model

building. Local resolution was calculated using ResMap and maps were visualized in

UCSF Chimera. RELION data were processed on the Leibnitz-Rechenzentrum (LRZ)

Munich.

For modeling the large ribosomal subunit (LSU), the crystal structure of the yeast

ribosome (PDB ID 4V88; Ben-Shem et al., 2011) was taken as a template. Peptidyl

A- and decacylated P-tRNA were modeled based on the crystal structure of the Ther-

mus thermophilus 70S ribosome in the post-catalysis state of peptide bond formation

(containing dipeptidyl-tRNA in the A site and deacylated tRNA in the P site, PDB

ID 1VY5; Polikanov et al., 2014) and for eIF-5A a homology model (based on Kim

et al., 1998) was generated using HHPred (Soding et al., 2005). All structures were

roughly fitted into the map using UCSF Chimera. Flexible fitting and, where neces-

sary, de novo model building was done in Coot followed by real space refinement in

PHENIX. For the rRNA and the tRNAs, geometry restrictions were calculated using

the “PDB to 3D restraints” database prior to PHENIX refinement.

The eIF-5A homology model was obtained after a multiple alignment using HH-

Pred. This model was subjected to geometry minimization using PHENIX and remod-

eled in Coot. The well-resolved hypusine-containing β3-β4 loop (residues 47-54)

was modeled de novo and for the N-terminal extension (NTE; res 1-16) a poly-Ala

model was generated. For uL16, the loop containing residues 103-111 (not present in

the yeast ribosome X-ray structure) was modeled de novo. The L1 stalk in the eIF-5A

position was remodeled and a poly-alanine model for uL1 was generated using uL1

from the human 80S ribosome as a template (PDB 5AJ0; Behrmann et al., 2015). In

a final step, all models were combined and subjected to real-space refinement using

the PHENIX software.
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3 Results

3.1 In vitro characterization of Ski7 and Ski complex

binding to the ribosome

An open question concerning general 3’-to-5’ degradation and mRNA quality control

is the exact function of the Ski proteins in these processes (Anderson and Parker,

1998; Araki et al., 2001; van Hoof et al., 2000). Both Ski7 and the Ski complex are

essential for exosomal function, except for the GTPase domain of Ski7 that is only

needed in NSD (Araki et al., 2001). The current working model suggests that Ski7

can act as an adaptor between the exosome and the Ski complex by interacting with

both factors via its N-terminal domains N1 and N2 (van Hoof et al., 2002). The Ski

complex is believed to funnel mRNA into the exosome for degradation (Halbach et

al., 2013). In NSD (and possibly NGD), Ski7 is believed to bind to the ribosome with

its GTPase domain akin to Hbs1 to help recognize nonstop (or no-go) decay targets.

Since Hbs1 works in concert with Dom34, a cofactor reaching into the A-site, it

was suggested that a similar A-site factor might exist for Ski7 as well (Shoemaker

and Green, 2012). With the purpose of understanding their role in NSD and 3’-

to-5’ mRNA decay, we set out to characterize the interactions of Ski7 and the Ski

complex with 80S ribosomes in vitro. We generated bona fide ribosomal nonstop

decay targets by generating ribosome nascent chain complexes (RNCs) stalled within

the poly-A50 tail of a DP120 reporter mRNA lacking a stop-codon (NS-RNCs; see

Methods for details). Binding to RNCs was tested via in vitro reconstitution assays

with endogenously purified wildtype or mutant Ski proteins.

3.1.1 Generation of bona fide NSD target RNCs

Bona fide NSD targets were purified by in vitro translation of a reporter DP120-poly-

A50 mRNA in a cell-free S. cerevisiae translation system. RNCs were purified via an
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FIGURE 3.1: Preparation of NS-RNCs. Left: Western Blot of the NS-
RNC purification. IVT = In vitro translation reaction; SN1 = super-
natant first centrifugation step; R = total ribosomes (pellet from first
centrifugation step); FT = flow-through of Talon beads purification;
W1/W2 = Wash fraction; SN2 = supernatant second centrifugation
step; RNC = purified RNCs (pellet from second centrifugation step).
Loaded amounts in percent of total fractions were 0.25% IVT, 0.25%
SN1, 1.0% R, 0.5% FT, 5.0% W1, 5.0% W2, 5.0% SN2 and 8.25%
RNCs. A clear signal for peptidyl-tRNA is visible in the IVT, the total
ribosomes R and RNC fraction. Right: PVDF membrane of SDS-PAGE of
RNC preparation visualized after Amido Black staining. The enrichment
of RNCs was estimated to be around 5x from comparing the strength
of the protein bands in the R and RNC fractions and the signal for the
peptidyl-tRNA on the Western Blot.

N-terminal His6-tag on the nascent chain and analysed with SDS-PAGE and Western

Blot (Fig. 3.1) as described before (Beckmann et al., 2001; Halic et al., 2004).

Eluted RNCs showed high purity and concentration in the final elution sample,

ranging generally between 30-50 A260/ml depending on the preparation (equal to

1.8-3.0 A260 per 400µl of translation extract). The enrichment factor of RNCs in

the elution fraction was estimated to be approximately 5 (the applied amounts of

ribosomes in the R and RNC fraction were almost identical while the signal on the

Western Blot was approximately 5 times stronger for the RNC fraction) for the pu-

rification. These RNCs were used for subsequent in vitro reconstitution assays with

purified Ski7 and Ski complex constructs.
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3.1.2 In vitro reconstitution of Ski7 and Ski complex bound NS-

RNCs

Endogenously purified Ski7 and Ski complex constructs were prepared by Felix Hal-

bach and Eva Kowalinski (Conti lab, Max Planck Institute of Biochemistry, Martins-

ried) as described (Halbach et al., 2012, Halbach et al., 2013; Kowalinski et al.,

2015). For in vitro reconstitutions, 5 or 10 times molar excess of protein ligand ver-

sus RNCs was used. Binding was analysed by pelleting through a sucrose cushion

and visualization by SDS-PAGE (Fig. 3.2).

FIGURE 3.2: In vitro reconstitution of ribosomal Ski complexes. SN
= supernatant; P = pellet. SDS gels were stained with SYPRO Orange
and visualized with a Typhoon FLA 900 Fluoresence Bioimager. 2 pmol
of RNCs were loaded. Left panel: Reconstitution with 10 times molar
excess of Ski7 constructs. Ski7 alone did not pellet, whereas a clear
band for Ski7 and Ski7∆253 is seen when reconstituting with NS-RNCs.
Right panel: Reconstitution with 5 times molar excess of Ski complex
constructs. Ski complex alone did not pellet in our assays (lane 11 and
12). In contrast, all Ski complex constructs bound to NS-RNCs as indi-
cated by the additional bands in the pellet fractions.

In vitro reconstitutions resulted in clear binding of full-length Ski7 to NS-RNCs

(Fig. 3.2, left panel). Also, the GTPase domain alone (Ski7∆253) could be bound to the

RNCs, whereas Ski7 alone did not pellet in our assay. Surprisingly, the Ski complex

also bound to the RNCs (Fig. 3.2, right panel). Binding was observed with full-length

Ski complex, Ski complex missing the arch/insertion domain of Ski2 (Ski2∆ins38), a

construct with a truncated N-terminal arm of Ski3 (Ski23∆4878) and when combining

both truncations (Ski2∆ins3∆4878). Ski complex alone did not pellet by itself. These



44 3. Results

data suggest that Ski7 with its GTPase domain and, surprisingly, the Ski complex can

bind to ribosomes stalled by DP120-poly-A50 mRNA in vitro. Notably, when using

empty gradient purified yeast 80S ribosomes instead of RNCs, the Ski complex did

not pellet anymore under medium salt concentrations (300 mM KOAc), whereas

it still bound to nonstop RNCs (Fig. 3.3). This indicates that nonstop ribosomal

complexes or at least ribosomes containing an mRNA are the preferred target.

FIGURE 3.3: In vitro reconstitution of Ski complex with empty 80S
ribosomes and NS-RNCs. SN = supernatant; P = pellet. 2 pmol of
RNCs and ribosomes were loaded. Figure shows the SDS gel after Sim-
ply Blue staining. In the presence of 300 mM KOAc, Ski complex (used
in 5 times molar excess) did not bind to empty 80S ribosomes, but only
to prepared RNCs as indicated by the extra bands in the pellet fraction.

3.2 In vivo characterization of Ski7 and Ski complex

binding to the ribosome

Our initial in vitro results suggest that both the Ski complex and Ski7 stably inter-

act with ribosomes. However, so far no further evidence under more native condi-

tions was given. To this end, polysome profile analysis was performed using S. cere-

visiae strains with either genomically tandem affinity purification (TAP)-tagged Ski7

or Ski3 to analyze their ribosome-binding behavior in the cell. All tagged proteins

were tested for activity in NSD using a non-stop reporter by Quentin Defenouillère

(Jacquier lab, Pasteur Institut, Paris; see Schmidt et al., 2016).
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3.2.1 Polysome profile analysis of Ski3- and Ski7-TAP strains

FIGURE 3.4: Polysome profile analysis. Polysome profiles from cells
expressing TAP-tagged Ski7 or Ski3 with and without RNase treatment.
Fractions were analysed by immunoblotting using an α-Protein A anti-
body against the TAP tag. Ski7 was only detectable in the low-molecular
fractions of the gradients. In contrast, Ski complex co-migrated with
ribosomes and was exclusively found in the 80S fraction after RNase
treatment.

For polysome profile analysis, strains were harvested in mid-log phase (0.9-1.0

OD600) under physiological conditions and lysates were applied on linear 10-50%

sucrose gradients to separate ribosomal fractions. All fractions were subsequently

analysed by Western Blot using an α-TAP antibody to investigate the presence of the

TAP-tagged protein (Fig. 3.4). To our surprise, Ski7 was almost exclusively found in

the upper (low molecular) fractions of the gradient. We basically could not detect any

signal for Ski7-TAP in the ribosomal fractions as would be expected from a ribosome

binding factor. In contrast, we detected a strong signal throughout the ribosomal

fractions for Ski3-TAP, showing a prominent peak in the 80S fractions, whereas very

little Ski3-TAP signal could be found in the upper fractions of the gradient. To check

that this co-migration is not the result of the Ski complex unspecifically binding to

mRNA, we treated our lysates with RNase A. This resulted in the collapse of all

polysomal fractions into a single 80S peak where Ski3-TAP selectively and exclusively

was detected. Thus, our polysome gradient analysis suggests that the Ski complex,

not Ski7, stably interacts with ribosomes.

Notably, a nonstop reporter assay was performed by Quentin Defenouillère (Jacquier

lab, Pasteur Institut, Paris) as part of this project to further verify this interaction. This

assay confirmed the association of Ski complex specifically to NSD ribosomes in vivo
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even in the absence of Ski7 and Dom34 or Hbs1. For experimental data, please refer

to Schmidt et al., 2016.

3.2.2 Purification of native ribosome-Ski complexes from a Ski3-

TAP strain

From our polysome profile analysis and the nonstop reporter assay, we concluded

that Ski complex rather than Ski7 is targeting ribosomes in the cell. To test if the Ski

complex is indeed forming a stable complex with ribosomes, we established a purifi-

cation protocol for native ribosome-Ski complexes with the further goal to perform

mass spectrometry analysis and cryo-EM.

We optimized the purification protocol using magnetic IgG-coupled Dynabeads®

based on established protocols (Defenouillère et al., 2013; Oeffinger et al., 2007).

The purification was analysed and monitored by SDS-PAGE and Western Blot (Fig. 3.5).

FIGURE 3.5: Purification of native ribosome-Ski complexes from
strains containing TAP-tagged Ski3. Simply Blue stained SDS gel and
Western Blot of the native pullouts using wild-type yeast cells with ge-
nomically TAP-tagged Ski3. Western Blots were performed with an α-
CAB antibody against the calmodulin part of the TAP tag. Purifications
were carried out with Dynabeads® from 20 L of yeast culture. L =
lysate; FT = flow-through; Res = resuspended beads after first harvest;
W1/W4/W6 = wash fractions; E = elution after TEV cleavage; Beads =
bead fraction after boiling in SDS sample buffer. Final elution fraction
contains Ski complex and co-purified ribosomes (RP). Successful TEV
cleavage was confirmed by Western Blot (cleaved Ski3 is indicated with
an asterisk).
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As expected from the previous experiments, Ski3-TAP can be co-purified with ribo-

somes (Fig. 3.5). The elution fraction contained pure native ribosome-Ski complexes

indicated by the two high-molecular weight bands for Ski2 and Ski3 at approximately

170 and 190 kDa and the characteristic ribosomal band pattern visible in the low-

molecular range (RPs). The estimated yields from 20 L of yeast culture ranged from

3.0-7.0 A260 depending on the preparation. Western blotting confirmed successful

cleavage of the Ski3-TAP protein by TEV protease as visualized by the shifting signal

(Ski3* corresponds to the cleaved protein) in the elution fraction. Mass-spectrometry

analyses confirmed the presence of all Ski complex subunits in our sample alongside

large amounts of ribosomal proteins (see Appendix Table A.1). These data further

confirm the interaction of the Ski complex with ribosomes under native conditions in

the cell and allowed us to perform further biochemical and structural analysis.

3.3 Medium-resolution structures of in vitro reconsti-

tuted NS-RNC-Ski complexes

The in vitro reconstitutions showed successful binding of both Ski7 and Ski complex

to the prepared RNCs. However, only Ski complex showed stable binding in the

performed polysome profile analysis and nonstop reporter experiments in vivo. We

therefore questioned whether Ski7 is only transiently, if at all, binding to ribosomes

for NSD. For screening the interactions of both Ski7 and the Ski complex with ribo-

somes, we set out to obtain a medium-resolution cryo-EM structure of the in vitro

reconstituted samples with full-length Ski7 and Ski complex to NS-RNCs. Samples

were prepared as for the reconstitution assays and collected with a Titan Krios TEM

equipped with a TemCam-F816 CMOS camera. The resulting datasets were processed

with SPIDER as described before (Becker et al., 2011; Frank et al., 1996; Leidig et al.,

2014).

Processed samples with Ski7 and NS-RNCs did not reveal any additional densities

beside the ribosome in our medium resolution reconstructions (data not shown). The

dataset resulted essentially in partially P-site tRNA containing ribosomes without any

indication of the factor bound to it. From these reconstructions, we could not verify

Ski7 binding to ribosomes or analyse any interactions. Further sample preparations

using different buffer conditions and also truncated Ski7∆253 failed in obtaining any

structural data about Ski7 on the ribosome, suggesting that under given conditions

Ski7 is not stably interacting with the ribosome, but might rather transiently bind to

it. This hypothesis is substantiated by the findings from the nonstop reporter assay
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and the polysome profile analysis. Additionally, it is possible that other factors like

the Ski complex or the exosome are needed to tightly bind Ski7 to our RNCs. Thus,

the binding observed in our reconstitution assays might be the result of the high

molecular excess in the sample, forcing Ski7 onto the ribosome.

FIGURE 3.6: Classification of the in vitro reconstituted NS-RNC-Ski
complex medium-resolution dataset. Classification was performed by
competitive projection matching in SPIDER. Two classes that did not
contain any density for the Ski complex (empty and programmed ri-
bosomes) were separated from three classes showing Ski complex oc-
cupancy. These three classes (containing 30.3% of all particles) showed
flexibility in the Ski complex and were almost evenly split between three
different binding states.

In contrast, we obtained a strong density for the Ski complex on the ribosome

(Fig. 3.6 and Fig. 3.7). Initial in silico 3D classification revealed that the dataset

contained approximately 43% ribosomes that were not programmed with tRNA and

27% of particles that were not occupied by the Ski complex (Fig. 3.6). Additionally,

we separated three different binding states of the Ski complex in the Ski complex

containing particles. Rigid body docking of the model from the crystal structure into

the best resolved class revealed that the Ski complex binds to the 40S subunit, closely

resembling its native state (Fig. 3.7A). Only the N-terminal arm of Ski3 was largely

displaced in our reconstructions. However, detailed interactions could not be seen

due to lower local and overall resolution and also due to flexibility of the Ski complex

on the ribosome (Fig. 3.7B). Nevertheless, these first reconstructions confirmed our

newly found ribosome-Ski complex interaction from the in vitro and in vivo assays,



Medium-resolution structures of in vitro reconstituted NS-RNC-Ski complexes 49

leading us to investigate the interactions of the Ski complex with the ribosome more

closely.

FIGURE 3.7: Medium-resolution reconstruction of the in vitro re-
constituted NS-RNC-Ski complex. (A) Left panel: The reconstructions
revealed a large extra density (shown in red) on the 40S subunit beside
the density for the ribosome. Right panel: Initial fitting of the model
from the crystal structure of the Ski complex into the best resolved NS-
RNC-Ski complex map. The model overall fits into the observed density,
only the N-terminal arm of Ski3 displays a larger conformational change
in our reconstruction. (B) All three separated states from the 3D clas-
sification coloured according to their local resolution. The Ski complex
shows high flexibility in all states with a local resolution ranging from
10-20 Å.
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3.4 High-resolution structure of a native ribosome-Ski

complex

The structural data from the in vitro reconstituted complexes revealed a Ski complex

occupancy on the ribosome of approximately 30%. Moreover, only around 60% of

ribosomes were programmed with tRNA, resulting most likely from the lower pro-

gramming rate expected from in vitro translation reactions. Since the in vitro recon-

stituted samples also displayed strong heterogeneity and flexibility of the Ski com-

plex, we aimed to gain cryo-EM data on the natively purified sample instead. These

complexes should have the advantage of showing higher Ski complex occupancy on

ribosomes compared to the reconstituted sample. Additionally, natively purified sam-

ples often result in more stable complexes, thus higher resolution for cryo-EM. Puri-

fied ribosome-Ski complexes were applied to Quantifoil carbon-supported holey grids

and data was collected on a FEI Titan TEM equipped with a Falcon II direct electron

detector. Grid and ice-quality was checked by manual inspection and micrographs

showing no high-frequency information beyond 4.5 Å (as estimated by CTFFIND4

(Rohou and Grigorieff, 2015)) were discarded. After manual inspection of the micro-

graphs, this resulted in two datasets containing 5259 and 3834 images. Both datasets

were joined for data processing in Relion (Scheres, 2012) and Frealign (Grigorieff,

2007).

3.4.1 Data processing

Initial 2D classification in Relion resulted in 433464 ribosomal particles that were

subjected to movie processing (Bai et al., 2013; Scheres, 2014). All following pro-

cessing steps were then performed in Frealign, using the shift- and radiation-corrected

"shiny particles" from the Relion movie processing feature.

An initial 3D classification revealed that basically all ribosomal particles contained

A- and P-site tRNAs in contrast to the relatively low programming rate of the in vitro

dataset (Fig. 3.8). This suggests that our purification yielded active complexes and

not stalled artifacts that did not partake in translation. Furthermore, a high hetero-

geneity in the obtained ribosomal particles could be seen, as expected for natively

purified complexes. We obtained three classes with 80S ribosomes and poorly re-

solved Ski complex, each containing around 5-7% of all particles of the dataset. Fur-

thermore, three classes with strong Ski complex density on the ribosome could be

separated. Two of these classes containing approximately 35% of all particles were
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FIGURE 3.8: Classification of the native ribosome-Ski complex pu-
rification dataset. Non-ribosomal particles were excluded after 2D clas-
sification in Relion and particles were subjected to movie processing.
Shift and radiation corrected ("shiny") particles were used for further
processing in Frealign. The first 3D classification step resulted in 7 ribo-
somal classes with only programmed ribosomes containing A- and P-site
tRNAs. 3 classes showed strong Ski complex density but differed in the
position of the L1 stalk. One class did not contain Ski complex but only
eIF-5A bound to the E-site of the ribosome. Classes with strong Ski com-
plex density and L1 stalk in the inside position were joined (35.5% of
total particles) and subjected to further 3D classification which resulted
in one class with poor Ski complex density and two classes that showed
different subunit rolling states. The larger of these (41.8%) was taken
for a final 3D classification that sorted out two different conformational
states of the Ski2 arch domain, either contacting the N-terminal arm of
Ski3 (46.0%) or the 40S subunit (54.0%). The latter was refined to high
resolution and used for model building and structural analysis.
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essentially identical and joined for further processing. The third class containing 4%

of particles showed a difference in the position of the L1 stalk compared to the other

Ski complex containing classes. Since this class only contained very few particles,

it was discarded for further processing. Surprisingly, we also obtained a large class

(42%) of ribosomes showing no density for the Ski complex but displaying a strong

density in the E-site corresponding to eIF-5A which will be discussed in chapter 3.7

further below. Notably, eIF-5A was present in all ribosomal classes except the Ski

complex containing class with the L1 stalk in the outward position.

A second round of 3D classification of the joined "good" Ski complex containing

classes resulted in two classes with strong Ski complex density differing in the 40S

subunit rolling state (Budkevich et al., 2014) and a smaller class containing particles

with poor Ski complex density that was discarded. The larger of the subunit rolling

classes was then used for a final 3D classification, resulting in two populations with

different conformations of the Ski2 arch domain, either contacting the N-terminal

arm of Ski3 (46%) or the 40S subunit (54%). The latter was used for the final 3D

refinement, resulting in a reconstruction at an overall resolution of 3.8 Å according

to the gold standard criterium (FSC=0.143 according to Scheres, 2012; Fig. 3.9A).

FIGURE 3.9: Resolution determination and local resolution for the
native ribosome-Ski complex reconstruction. (A) The final class was
refined to an overall resolution of 3.8 Å according to the gold standard
criterium. (B) Final map for the entire ribosome-Ski complex and Ski
complex alone coloured by local resolution as estimated by Resmap (Ku-
cukelbir et al., 2014). Resolution ranged from 3.5 Å in the inner core
of the ribosome and most of the Ski-ribosome interaction points to ap-
proximately 6-7 Å for the outer part of the Ski complex. The N-terminal
arm of Ski3 showed high flexibility due to lack of stabilizing contacts to
the ribosome and was thus resolved below 10 Å.

Local resolution varied between 3.5 Å for the ribosome and most of the ribosomal

contact sites of the Ski complex to over 10 Å for the more flexible parts such as the

stalk, some expansion segments and the N-terminal arm of Ski3 (Fig. 3.9B). This
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allowed us to build an atomic model for almost the complete Ski complex bound

to the ribosome based on previously published crystal structures (Ben-Shem et al.,

2011; Halbach et al., 2012, Halbach et al., 2013). The final model contains the entire

80S ribosome, the Ski complex, 34 nucleotides of mRNA, A- and P-site tRNAs and

eIF-5A (deposited under PDB-ID 5MC6). In particular, our reconstruction allowed

modelling of almost all ribosomal interaction sites and the entire arch domain of

Ski2 and its connection to the helical domain. Additionally, we could visualize the

so-called basic loop of Ski2, as well as several connecting loops in Ski8OUT which

contacted the ribosome, that were not present in the crystal structures.

3.4.2 Model building and validation

For the model building process, a refinement and structure validation pipeline was es-

tablished, based on previous publications (Amunts et al., 2014; Brown et al., 2015;

Fernández et al., 2014). This pipeline includes initial fitting in Coot (Emsley and

Cowtan, 2004) and subsequent refinement of the model against the map in real

space (using Phenix; Adams et al., 2010) and reciprocal space (using REFMAC; Mur-

shudov et al., 1997) without adjusting amplitudes or phases of the cryo-EM map.

To avoid distortions of secondary structure features and protein domains during the

refinement process, protein and RNA restraints were generated via Phenix or Pro-

SMART/LIBG and, if necessary, adjusted manually, and carefully monitored through-

out the refinement processes. For a complete overview of the model building process,

please refer to Appendix Table A.2.

To validate our atomic model and structural data, we first calculated the Fourier

Shell correlation (FSC) of our model against the final map (Fig. 3.10). This so-called

FSCaverage is a measure of how well the model fits into the observed density. Ideally,

FSC values should maintain higher values (around 0.3-0.5) up to the estimated res-

olution (= resolution used during the refinement) and the plotted FSC curve should

be void of any harsh drop-offs. To check for potential overfitting of the atomic model

during refinement, the atoms of the final model were randomly displaced by 0.5 Å

to remove any model bias and subsequently refined in REFMAC against the first half-

map from the gold-standard determination. After refinement, the FSC of this newly

refined model against the first half-map and against the second half-map was calcu-

lated, resulting in FSCwork and FSCtest respectively (Fig. 3.10). When comparing these

FSC curves, a large discrepancy indicates overfitting during the refinement process.

During the model building process, we observed that refinement of the entire

ribosome-Ski complex model always resulted in overfitting as indicated by FSCwork
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FIGURE 3.10: Model validation and overfitting analysis of the molec-
ular models containing the 60S (60S) and the 40S-bound Ski com-
plex (40S-Ski). Fourier shell correlations (FSCs) were calculated be-
tween the final refined model and the final map to gain the FSCaverage
(black). The absence of harsh drop-offs and values around 0.4 even
beyond the estimated resolution indicate good fits of the models to the
map. For overfitting analysis, the atoms of the refined model were dis-
placed and the model was refined against one of the two half maps from
the gold standard resolution determination. FSCs were then calculated
between the displaced refined model and the first half map (FSCwork;
orange) and the second half map (FSCtest; blue). A high similarity be-
tween both FSC plots suggests that no overfitting was performed during
model refinement.

and FSCtest which probably originated from differences in the local resolution of the

60S compared to the 40S subunit and particularly the outer regions of the Ski com-

plex. Thus, we split our model for refinement containing either the 60S subunit or

the 40S subunit with the Ski complex. Additionally, the most N-terminal part of Ski3

(residues 1-170) showing the highest flexibility and therefore the lowest resolution

was removed from refinement and only fit as a rigid body for the final model. Both

parts were refined individually at 3.8 Å (60S) and 4.2 Å (40S-Ski) to account for the

local resolution differences, resulting in atomic models free of any overfitting and

good fits according to the FSC plots and the FSCaverage values of 0.79 and 0.83 for

the 40S-Ski and 60S model, respectively (Fig. 3.10). Final model statistics were cal-

culated with Molprobity (Chen et al., 2010) and are summarized in Appendix Table

A.2.

3.4.3 Overall architecture of the ribosome-Ski complex

The atomic model reveals how the Ski complex interacts with the ribosome (Fig. 3.11

and Fig. 3.12). The overall architecture of the Ski complex itself is essentially as ob-

served before and the overall binding mode is consistent with the medium-resolution
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FIGURE 3.11: Cryo-EM structure of the yeast ribosome-Ski complex.
(A and B) Top and side view of the ribosome-Ski complex showing den-
sities low-pass filtered to local resolution for the Ski subunits, A-site and
P-site tRNA, eIF-5A, mRNA and the nascent polypeptide chain (NC). (C)
Overall structure of the Ski complex bound to the 80S. The mRNA is
shown in red. The zoom-in panel show two orthogonal views of the
interactions of the Ski complex with the head of the 40S. General struc-
tural features of the Ski complex and the 40S subunit are indicated (h
= head; b = body; bk = beak; pt = platform; sh = shoulder).

structure from in vitro reconstituted NS-RNC-Ski complexes (Fig. 3.11A and B). The

Ski complex binds to the 40S subunit of the ribosome and positions itself directly over

the entry of the mRNA channel (Fig. 3.11A-C). It contacts the ribosome via Ski2, the

N-terminal arm of Ski3 and Ski8OUT. The RecA2 domain of Ski2 binds to the 40S

head via uS3 and eS10 (Fig. 3.12A). Additionally, it contacts two flipped out bases

at the tip of rRNA helix 16 (h16; U494 and U495) out via several charged residues

(R622, N650-N654) to engage the ribosome (Fig. 3.12A and B). Ski3 is contacting

the 40S via the beak protein eS12 (Fig. 3.12C). Interestingly, the contact site is at
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FIGURE 3.12: Interactions of the Ski complex with the ribosome.
(A) The RecA2 domain of Ski2 binds to the tip of rRNA h16 and con-
tacts uS3 and uS10 on the 40S head. (B) Close-up view with electron
density of the h16 interactions with Ski2 RecA2. (C) Close-up view
with electron density of the interaction of the N-terminal arm of Ski3
with the 40S beak protein eS12. Ski3 binds via TPR5 where the regu-
lar TPR motif is disrupted. (D) Ski8OUT interacts with the 40S platform
via loops at the bottom surface. It is sandwiched between Ski2, Ski3
and r-proteins uS2, uS5 and eS21. (E) Close-up view on the interaction
of the C-terminal tail of uS5 and Ski8OUT. The otherwise disordered
N-terminal tail is completely stabilized and resolved in our structure.
(F) Interactions of the Ski2 arch domain with the 40S head. The arch
domain binds via r-proteins uS3, uS10 and rRNA h41. (G) Close-up
view with electron density of the arch domain interactions with the 40S
head. (H) Schematic overview of the Ski complex interactions with the
40S subunit.

TPR5, thus at the position where the regular TPR motif of the Ski3 N-terminal arm is

disrupted by a split B helix (Halbach et al., 2013). Ski8 is sandwiched between Ski3

and the 40S platform proteins uS2, uS5 and eS21 (Fig. 3.12D). The β propeller binds

to the ribosome via several linker loops (loop 1C-1D with eS21; loops 2A-2B, 5A-5B,

6A-6B and 6C-6D with uS5; loop 7A-7B with uS2) at the bottom surface, stabilizing

the C-terminal tail of uS5 that is usually disordered but could be fully modelled in

our structure (residues 249-254; Fig. 3.12E). Finally, the arch domain of Ski2 is ex-

tending from the helical domain and binds to the 40S head via rRNA helix 41 and

r-proteins uS3 and uS10 (Fig. 3.12F and G). All of these interactions firmly lock the

Ski complex on the small subunit and position the helicase core directly over the



High-resolution structure of a native ribosome-Ski complex 57

mRNA entry channel (Fig. 3.12H).

3.4.4 Binding of the Ski complex to the ribosome induces confor-

mational changes

We could observe that the Ski complex and the ribosome undergo conformational

changes upon binding (Fig. 3.13). rRNA h16 is in an unusual bent conformation,

moving by about 25 Å after being contacted by the Ski2 RecA2 domain (Fig. 3.13A).

The N-terminal arm of Ski3 displays its proposed flexibility after binding to the 40S

beak by also moving 30 Å into a more open and extended conformation when com-

pared to the crystal structure (Fig. 3.13B). Finally, the largest movement is seen for

the Ski2 arch domain (Fig. 3.13C). It is found in an open position when compared

to that observed in the crystal structure of Ski2 alone or the homologous DExH he-

licase Mtr4 (Weir et al., 2010). We found that it flexes outward by about 30° while

FIGURE 3.13: Conformational changes of the ribosome and Ski com-
plex upon binding. (A) Binding of Ski2 RecA2 induces a conforma-
tional change of h16 which is shifted by approximately 25 Å compared
to its canonical position (indicated in light gray). (B) Movement of the
N-terminal arm of Ski3. Binding to the ribosome shifts the arm by about
30 Å compared to the crystal structure. (C) Movement of the Ski2 arch
domain. The arch domain moves away from the RNA entry of the heli-
case during binding to h41, uS3 and uS10 (left panel) when compared
to the crystal structure (middle panel) or the homologous helicase Mtr4
(Weir et al., 2010) (right panel).
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moving away from the RNA helicase channel entry. Thus, ribosome binding changes

the conformation of the two structural elements previously shown to auto-inhibit the

RNA-dependent ATPase activity of the Ski complex (Halbach et al., 2013). This sug-

gests that ribosome binding of the Ski complex automatically results in an active and

open confirmation of Ski2 where RNA can access the helicase core.

3.4.5 The 3’ end of the mRNA is directly channelled into the Ski2

helicase

Strikingly, we could observe density for mRNA extending much further than the ap-

proximately 28 nucleotides that was observed for ribosomes (Fig. 3.14A) (Budkevich

et al., 2014; Jenner et al., 2005). Upon close inspection, we saw that the mRNA

extended from its canonical path in the 40S into the helicase core of the Ski2 subunit

(Fig. 3.14A and B). The 3’ end exits the 40S subunit through a constriction formed

by uS3, uS5 and eS30 and passes a small gap between the ribosome and the Ski com-

plex (Fig. 3.14B). It then threads into the Ski2 helicase through an opening formed

by the helical domain and RecA2, contacting the basic loop of Ski2 (residues 545 to

606) beforehand (Fig. 3.14C). At the entry site into Ski2, the unwinding β-hairpin

loop contacts the mRNA and bends the nucleotide as it enters the helicase channel

(Fig. 3.14C and D). This loop has been shown to be important for RNA unwinding

in other DExH helicases and is proposed to be important for the helicase processivity

(Büttner et al., 2007). When comparing the mRNA path with that observed for Mtr4

(Weir et al., 2010), four nucleotides follow essentially the same path (Fig. 3.14D).

Thus, binding of the Ski complex to the ribosome leads to an elongated mRNA bind-

ing tunnel where the mRNA 3’ end is threaded into the helicase core of Ski2. This

suggests that the helicase complex actively engages ribosomes to possibly extract and

funnel mRNA into the exosome for subsequent 3’-to-5’ degradation.

3.5 Biochemical characterization of the mRNA-Ski com-

plex interaction

The structural data suggest that the Ski complex interacts with the mRNA 3’ end ex-

tending from the ribosome. To characterize the influence of the length of the 3’ over-

hang, we designed recruitment assays with different mRNA overhang constructs and

checked the binding ratio of the Ski complex (Fig. 3.15). To that end, we used a CMV
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FIGURE 3.14: mRNA threading from the ribosome into the Ski2 he-
licase. (A) Model and electron density for the mRNA entry site occu-
pied by the Ski complex. Density for the mRNA extended far outside
of the canonical path in the 40S. The mRNA leaves through a constric-
tion formed by uS3 and eS30 and is passing through a gap while being
contacted by the Ski2 basic loop. It then enters the Ski2 helicase by an
opening formed by RecA2 and the helical domain of Ski2. (B) Close-
up view of the model of the mRNA path into the Ski2 helicase core.
(C) Close-up view of the opening formed between the Ski2 RecA2 do-
main (including the basic loop) and the helical domain (including the
β-hairpin loop). Both loops contact the mRNA while it enters the heli-
case core. (D) Comparison of the mRNA path for the ribosome-bound
Ski complex and Mtr4. The path inside Ski2 is essentially the same
while the β-hairpin loop bends the mRNA nucleotide when it enters the
helicase core in our structure.

reporter to stall the ribosome at a precise position on a DP120 reporter mRNA (Math-

eisl et al., 2015). Constructs were designed as such that different lengths of 3’ mRNA

overhangs extend from the entry site of the ribosomal mRNA tunnel. These over-

hang constructs were then used for in vitro reconstitution assays with 5 times molar

excess of purified Ski complex. After pelleting through a sucrose cushion, pellet and

supernatant samples were analysed by Western Blot and bands were quantified using

Imagequant. To account for slightly differing amounts of RNCs and Ski complex, the

Ski protein bands were normalized against ribosomal bands for quantification (for
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FIGURE 3.15: Biochemical analysis of the 3’ mRNA binding by the
Ski complex. Example SDS gel after SYPRO Orange staining of the in
vitro reconstitution using recombinantly purified Ski complex and dif-
ferent overhang RNC constructs (shown schematically on the bottom).
Each construct presents a different length of 3’ mRNA overhang. The
binding ratio was estimated by quantifying bands with Imagequant and
normalizing the Ski2/Ski3 double band versus a ribosomal band (indi-
cated with an asterisk). The experiment was performed as a duplicate
and binding ratios were calculated and plotted in a bar diagram (right
panel). As can be seen, the Ski complex has a higher affinity towards
ribosomes presenting a short 10-20 nucleotide 3’ mRNA overhang.

details see Methods) and the experiment was carried out as a duplicate.

A clear preference towards a certain 3’ mRNA overhang length is visible from

the recruitment assay. Whereas very little Ski complex was bound to RNCs that

presented no 3’ mRNA overhang, the binding ratio was significantly increased for

a short 10 nucleotide long fragment extending from the ribosome. For 20 and 50

nucleotides, the binding ratio decreased again, with 50 nucleotides being almost at

the level of 0 nucleotides. These data suggest that the Ski complex prefers short 3’

mRNA overhangs between 10-20 nucleotides for ribosome binding. Arguably, this

effect is explained by the necessity of threading the mRNA end into the Ski2 helicase

core which is more difficult with longer overhangs. Notably, the interactions between

Ski2 and the mRNA 3’ end seem to significantly contribute to the stable binding of

the Ski complex to ribosomes, since without any overhang, the binding ratio is at a

very low level which is in line with the in vitro reconstitution where no Ski complex

was bound to empty 80S ribosomes (see 3.1.2).
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3.6 Analysis of mRNAs associated with ribosome-Ski

complexes by targeted ribosome profiling

FIGURE 3.16: Overview of the sample preparation for the targeted
profiling. Control samples were generated from the total lysate, pullout
samples from purified ribosome-Ski complexes. For the pullout samples,
the additional isolation of 80S could be omitted since it exclusively con-
tained 80S monosomes.

To verify the mRNA binding in vivo, we performed targeted ribosome profiling on

our natively purified ribosome-Ski complexes (Fig. 3.16). In short, profiling allows

to gain information about the nature and translation status of mRNAs in a cell with

the help of deep sequencing tools. This allows to gain insights into the position of

ribosomes on individual mRNAs and to monitor different translation and degradation

events on a global scale in the cell. In targeted profiling, a specific purified population

of ribosomal complexes is used instead of the total lysate of a cell (Fig. 3.16). For a

detailed explanation about ribosome profiling, please refer to Ingolia et al., 2009. All

profiling data was processed by Vivekanandan Shanmuganathan and Markus Pech

(Beckmann lab, Gene Center Munich).

In our experiment, we used natively purified ribosome-Ski complexes to analyse

the composition of mRNAs and to gain insights into the targeting process of the Ski

complex to ribosome-associated mRNAs (Fig. 3.17). First, we analysed whether the

3’ mRNA overhang binding of the Ski complex is also visible under native conditions

by checking the RNase protection length from our purified complexes (Fig. 3.17A).

We found that beside the characteristic 28-30 nucleotide peak corresponding to the

protection length of the ribosome, a second peak is observable at 35-40 nucleotides.
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FIGURE 3.17: Biochemical features of the Ski-ribosome interactions
with the mRNA 3’ end. (A) Length distribution of ribosome-protected
footprints (RPFs) from native 80S ribosomes and the Ski3-TAP pullout
samples. In the pullout sample, an additional peak with an extended
protection length of 10 nucleotides could be detected. (B) Relative po-
sitional distribution of RNA reads from 5’ to 3’ over the ORFs in the re-
spective mRNA of the Ski pullout compared with that of control mRNA.
Whereas an even positional distribution of ribosomes was visible in the
control, the pullout contained more ribosomes at the 5’ part of mRNAs.
(C) Codon correlation plot ranked by Ski enrichment (stop codons were
removed). Spearman correlation values were calculated between the
footprint ratio (Ski3-TAP pullout against control) and codon occurrence
across the genome for all codons according to Presnyak et al., 2015. A
strong bias of non-optimal codons in the Ski-ribosomes associated mR-
NAs was detected.

This exactly corresponds to the protection length that would be expected from the ri-

bosome (28-30 nt) plus Ski complex (9-10 nt) and fits the observation from the struc-

tural data where 34 nucleotides are clearly visible. This confirms that Ski complexes

engage ribosomes in the cell and that the 3’ mRNA overhang is actively threaded into

the Ski2 helicase core. Additionally, when analysing the position of ribosomes on the

ribosome-Ski complex associated mRNAs, we found a strong bias of ribosomes sitting

on the more 5’ part of mRNAs and fewer ribosomes at the 3’ part (Fig. 3.17B). This
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argues in favour of ribosome-Ski complexes being engaged in ongoing 3’-to-5’ mRNA

degradation where shortening of mRNAs from the 3’ end is expected. Finally, when

analysing the codon composition of target mRNAs, we found a strong correlation be-

tween codon optimality and Ski complex presence (Fig. 3.17C). In mRNAs that were

associated with ribosome-Ski complexes, a strong bias towards non-optimal codons

could be detected. This further suggests an involvement of ribosome-Ski complexes

in 3’-to-5’ mRNA degradation since non-optimal codons have been reported to sig-

nificantly reduce the half-life of mRNAs (Presnyak et al., 2015). Thus, mRNAs with

high non-optimal codon content are prime targets for degradation.

Collectively, we could show that the Ski complex binds to ribosomes in vivo and

in vitro. Here, the Ski complex resembles an open conformation where the mRNA is

bound to the Ski2 helicase. Biochemical analysis of the 3’ mRNA overhang revealed

that a short 10-20 nucleotide fragment extending from the ribosome may act as a

recruitment signal for the Ski complex. Targeted profiling revealed that this Ski-

ribosome intermediate might not be limited to quality control, but represent a general

decay intermediate in mRNA turnover.

3.7 High-resolution structure of eIF-5A bound to the

ribosome

During data processing and 3D classification, we made the surprising discovery that

almost all ribosomes had eIF-5A bound and that a larger number of ribosomal parti-

cles did not contain Ski complex, but only eIF-5A bound to the E-site. Since Ski3-TAP

was used as bait protein, these ribosomes probably had the Ski complex bound to

them initially but lost it during the purification or grid making process. eIF-5A, which

contains a unique modification called hypusine (at K51 in yeast) that is essential for

its activity, is implicated in the rescue of ribosomes stalled on poly-proline stretches

(Dever et al., 2015; Gutierrez et al., 2013), therefore we did not expect it to find

at such large quantities in our dataset. It consists of two domains (domain I and

domain II) while missing domain III that is present only in the bacterial homologue

EF-P. Additionally, eukaryotic eIF-5A contains an N-terminal extension (NTE) that is

not present in its prokaryotic or archaeal counterparts. Our discovery raised some

questions on whether eIF-5A might have some additional functions in quality con-

trol pathways or recognition and rescue of stalled ribosomes in general. Moreover,

the exact mechanism of ribosome rescue by eIF-5A is not understood. Our structural

data allowed us to build a complete atomic model of eIF-5A on the ribosome to gain
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insights into its rescue function. Moreover, biochemical analysis revealed that eIF-5A

might have a broader use in eukaryotic translation as anticipated before.

3.7.1 Data processing and resolution determination

3D refinement of the eIF-5A containing 80S class resulted in a structure at an overall

resolution of 3.9 Å according to the gold standard criterium (Fig. 3.18A). Local reso-

lution ranged from 3.5 Å in the inner core to roughly 4.5 Å on the outer surface of the

ribosome. Most importantly, eIF-5A was mostly well resolved below 4 Å, including

domain I with the β3-β4 loop containing the hypusine moiety (Fig. 3.18B). Only the

NTE displayed some flexibility which is reflected in its lower resolution compared to

the rest of the protein. This allowed us to build a complete atomic model based on

a homology model from archaeal eIF-5A (Kim et al., 1998; PDB 2EIF) for structural

analysis. The model was assembled and adjusted manually in Coot and subjected to

Phenix real space refinement.

FIGURE 3.18: Resolution determination and local resolution for the
ribosome-bound eIF-5A reconstruction. (A) The final map was re-
fined to an overall resolution of 3.9 Å according to the gold standard
criterium. (B) Final map and eIF-5A alone coloured by local resolution
as estimated by Resmap. Resolution ranged mostly from 3.5 Å to 4.5 Å.
eIF-5A was well resolved below 4 Å with the exception of the NTE that
displayed higher flexibility.

3.7.2 Overall structure of eIF-5A bound to the ribosome

Overall, eIF-5A binds in a similar position on the ribosome to that observed for bac-

terial EF-P (Fig. 3.19A and B). The factor resembles its unbound form closely with

the exception of the β3-β4 loop which readjusts upon binding (Fig. 3.19C). Domain

I of eIF-5A (Fig. 3.19D) mostly interacts with the 25S rRNA of the LSU (Fig. 3.20A).

The main interactions are with nucleotides within rRNA helices 74 (h74) and 93

(h93), as well as helix 68 (h68) and helix 70 (h70). In contrast, domain II shows
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FIGURE 3.19: Cryo-EM structure of eIF-5A bound to the yeast ribo-
some. (A) Transverse section of the cryo-EM map of the eIF-5A-80S
complex, showing densities for the 40S and 60S subunit, A-site tRNA,
P-site tRNA and eIF-5A. The map reveals the binding site of eIF-5A to the
E-site of the ribosome. (B) Comparison of ribosome binding positions
of eIF-5A, EF-P and E-site tRNA, relative to A-tRNA and P-tRNA. The
domains of eIF-5A and EF-P are coloured according to (D). (C) Compar-
ison of bound and unbound eIF-5A structures from yeast. (D) Schematic
representation of the domain structures of eIF-5A, aIF-5A and EF-P.

no interactions with rRNA and contacts r-proteins uL1 and eL42 (Fig. 3.20A and B).

Here, domain II is inserted between domains 1 and 2 of uL1 (Fig. 3.20B). The NTE,

which was not visible in previous crystal structures due to flexibility, is sandwiched

between uL1 and eL42 and probably stabilized by these interactions (Fig. 3.20C).

uL1, the NTE and eL42 adopt the overall secondary structure of an extended β-sheet

formed by all three proteins. In general, the L1 stalk is largely shifted inwards due

to its interaction with domain II from eIF-5A and is further stabilized by the NTE

(Fig. 3.20D and E). This closed conformation of the L1 stalk was also observed for

EF-P bound to the bacterial ribosome (Blaha et al., 2009). The specific interactions

of the NTE (which is only present in eukaryotes; see Fig. 3.19D) with uL1 and eL42

might explain the observed shift in domain I of eIF-5A when compared to ribosome-

bound archaeal IF-5A or bacterial EF-P (Fig. 3.20F). Finally, the β3-β4 loop of domain

I inserts into a pocket formed by ribosomal rRNA, namely h74 and h93, and P-site

tRNA (Fig. 3.20G). Here, a network of hydrogen bonds is observed including nu-

cleotides 2806-2808 and 2963-2968 and the mostly positively charged residues of

the β3-β4 loop (S47, T49, H52, H54; Fig. 3.20H). In contrast, there are no other

interactions with the P-site tRNA with the exception of a weak hydrogen bond of R27
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FIGURE 3.20: Interactions of eIF-5A with the yeast ribosome. (A)
Molecular model for the interaction of domains I (DI) and II (DII) as
well as the NTE of eIF-5A with rRNA and ribosomal protein components
of the ribosome. (B) View of the domain II interaction with uL1. Do-
main II of eIF-5A inserts into the cleft between domains 1 and 2 of uL1.
(C) Surface representation of the NTE of eIF-5A sandwiched between
ribosomal proteins uL1 and eL42. (D) Comparison and schematic rep-
resentation of the L1 stalk position between eIF-5A bound ribosomes
(top), eEF2- bound ribosomes (second row), E-site tRNA bound ribo-
somes (third row) and empty E-site (bottom). (E) Surface representa-
tion of eIF-5A interacting with uL1. (F) Structure comparison between
80S-bound eIF-5A and 70S-bound EF-P. (G) Comparison of the ribosome
binding position of domain I, P-site tRNA and h74 relative to EF-P, P-
tRNA and h74 of the bacterial EF-P complex (shown in light gray). R27
of eIF-5A makes a potential hydrogen bond to the P-site tRNA whereas
no other interaction could be detected between eIF-5A and the P-site
tRNA. The β3-β4 loop is shifted away from the P-tRNA compared to
EF-P. (H) Possible hydrogen bond interactions (dashed lines) between
domain I of eIF-5A with 25S rRNA h74, h80 and h93.
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to G4-C5, whereas a multitude of contacts were observed for EF-P with P-site tRNA

(Blaha et al., 2009). This difference might explain why eIF-5A and EF-P have been

shown to differ in function.

3.7.3 The hypusine residue contacts the CCA-end of the P-site

tRNA

The cryo-EM reconstruction contained the complete electron density for the hypusine

residue at the tip of the β3-β4 loop (Fig. 3.21A). We observed that it inserts deeply

into a pocket formed by the CCA-end of the P-site tRNA and h74 while forming two

stabilizing hydrogen bonds with U2807 and A2808. With its extended side chain, the

hypusine then contacts the CCA-end of the P-site tRNA and forms a hydrogen bond

between its terminal 4-amino group and A76 (Fig. 3.21B). Even though we did not

detect any contacts in our structure, we note that the hydroxyl group of the hypusine

residue could potentially form contacts to rRNA in the vicinity (mostly h74) which

might explain its necessity in higher eukaryotes compared to yeast.

FIGURE 3.21: Interaction of the hypusine of eIF-5A in the PTC of the
ribosome. (A) Molecular model and electron density for the hypusine
(Hyp51) residue at the tip of the β3-β4 loop in domain I of eIF-5A.
(B) Potential hydrogen bonds between the hypusine, rRNA h74 and the
CCA-end of the P-site tRNA. The terminal amino group contacts A76 of
the P-tRNA.
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3.7.4 eIF-5A binding stabilizes a specific loop of uL16 for peptide-

bond formation

Since the sample contained a mixture of different polypeptide chains, the NC is only

resolved at backbone level. However, our reconstruction clearly indicates that the

NC is attached to the A-site tRNA, resulting in a pre-translocation post-peptide trans-

fer state (Fig. 3.22A and B). Interestingly, we saw that the eukaryotic-specific loop

of uL16 (residues 104-110) was completely stabilized and resolved in our structure

compared to other 80S structures (Behrmann et al., 2015; Ben-Shem et al., 2011)

where it was disordered (Fig. 3.22C). This stabilization is most likely the result of sev-

eral interactions between uL16 and the A- and P-site tRNAs. We detected hydrogen

bonds between D108 and A76, as well as R109 and G73 of the P-tRNA (Fig. 3.22C).

Additionally, C104 contacts C72 of the A-site tRNA, which seems to be essential for

loop stabilization since it is not resolved in presence of only P-site tRNA. This sta-

bilization might be necessary for peptide-bond formation since the prokaryotic r-

protein L27 substitutes for the loop of uL16 but adopts a similar position that is

important for the PTC activity (Polikanov et al., 2014).

FIGURE 3.22: The nascent chain and uL16 in the eIF-5A bound ri-
bosomal structure. (A) Electron density and molecular model for the
CCA-ends of the P-site and A-site tRNA with the NC as well as eIF-5A.
The NC is attached to the A-site tRNA. (B) Comparison of A-tRNA and
P-tRNA from the eIF-5A-80S complex with A- and P-site tRNAs from post-
attack complexes. (C) Potential hydrogen bond interactions between A-
and P-site tRNA and uL16 leading to the stabilization of a loop of uL16
(residues 104-110).
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3.7.5 eIF-5A binds to ribosomes with a vacant E-site

Finally, we wondered about the presence of eIF-5A in our Ski3-TAP pullout sample.

The binding of eIF-5A to quality control and mRNA degradation intermediates could

indicate a yet unidentified role of the factor in these pathways. To analyse this pos-

sibility, we performed deep-sequencing analysis of the associated mRNAs to investi-

gate their codon composition (Fig. 3.23A). All sequencing analysis was performed by

Vivekananadan Shanmuganathan (Beckmann lab, Gene Center LMU, Munich). We

found an overall even distribution of codons in the P- and E-site and only slight en-

richment of phenylalanine, histidine and proline codons in the A-site. This suggests

that we did not specifically enrich poly-proline stalled or initiation complexes with

eIF-5A. Upon close inspection, we found that the addition of cycloheximide could be

a possible explanation for eIF-5A’s presence. In our structure, we detected that cyclo-

heximide does not clash with eIF-5A bound to the E-site, as it does with E-site tRNA

(Fig. 3.23B). Thus, binding of cycloheximide to the E-site might generate ideal tar-

gets for eIF-5A, namely ribosomes stalled with P-site tRNA and an empty E-site. This

is further indicated by the presence of eIF-5A in the Ski complex containing structure

(see above) and the fact that mass spectrometry analysis of pullouts from Ski3-TAP

strains without the addition of cycloheximide did not reveal any eIF-5A (data not

shown). Thus, eIF-5A could bind to the E-site of the ribosome as soon as it is vacant.

FIGURE 3.23: Codon analysis and cycloheximide (CHX) presence
in the eIF-5A-80S complex. (A) Representation of codons positioned
in the A-site, P-site and E-site of eIF-5A-80S complexes. Only a slight
enrichment of phenylalanine, histidine and proline codons in the A-site
can be detected. (B) Atomic model and electron density for CHX bound
to the E-site. While eIF-5A can still bind (upper panel), CHX crashes
with the CCA-end of E-site tRNA (lower panel).
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Collectively, we present the structure of eIF-5A bound to the E-site of the 80S

ribosome. Our reconstruction reveals that the unique hypusine modification is es-

sential for eIF-5A’s function by reaching deep towards the PTC. The amino group at

the tip of the hypusine residue contacts the CCA-end of the P-site tRNA for stabi-

lization. Additional stabilization of a specific uL16 loop and the A-site tRNA allow

proper peptide bond formation, explaining eIF-5A’s role as a rescue and translation

elongation promoting factor. Furthermore, analysis of the codon composition in the

A-, P- and E-sites together with the structural data reveal that eIF-5A binds specifi-

cally to ribosomes with a vacant E-site, thus identifying its target by monitoring tRNA

occupancy.
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4 Discussion

4.1 Ski complex links the mRNA translation and degra-

dation machineries

Even though it is long known that mRNA translation and degradation are mutually

interdependent pathways, direct evidence for this interplay was rather rare. First

studies in 2003 from Sheth and colleagues suggested that only non-translating mR-

NAs are targeted for 5’-to-3’ degradation and that the translation status of an mRNA

would ultimately determine if it is targeted for degradation or not (Sheth et al.,

2003). Nevertheless, the actual process of mRNA degradation (and protein degra-

dation for that matter) was mostly viewed as isolated except for quality control of

aberrant mRNAs that had been shown to be initiated co-translationally on the ribo-

some. Only recently, reports from the Coller and Steinmetz labs showed that 5’-to-3’

mRNA degradation can indeed happen for translating mRNAs and that decapping

and Xrn1-dependent degradation are occurring on translating polysomes (Hu et al.,

2009, Hu et al., 2010; Pelechano et al., 2015). Around the same time, the RQC was

discovered and it was also shown that protein degradation of aberrant peptides is

often directly linked to translational events and ribosome stalling (Brandman et al.,

2012; Defenouillère et al., 2013). These findings ultimately changed the view of

the connection between translation and degradation in the field. Since then, most

studies were focusing on 5’-to-3’ mRNA degradation, considering that it is the major

mRNA turnover pathway in yeast, whereas very little is known in comparison about

the exosome-dependent 3’-to-5’ degradation pathway and its connection to transla-

tion. The findings presented in this dissertation show for the first time that the same

level of interconnection that has been shown for Xrn1-dependent degradation and

translation also exists for the 3’-to-5’ degradation pathway. Our data suggest that the

Ski complex acts as a physical link between the mRNA translation and degradation

machineries and that Ski complex binding to the ribosome is possibly the first step in

initiating 3’-to-5’ degradation. Moreover, we highlight the first structural evidence of
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the connection of mRNA degradation and translation, something that was missing so

far for both degradation pathways.

Our finding that the Ski complex and not Ski7 associates stably with 80S ribo-

somes was initially rather surprising since the Ski complex does not resemble any

known ribosome binding factor and was never predicted to bind to it in previous

screenings. Since both Ski7 and the Ski complex are needed for 3’-to-5’ mRNA degra-

dation (Araki et al., 2001; van Hoof et al., 2000), the current working model states

that mRNAs are channeled into the exosome by the Ski complex and that Ski7 acts as

an adaptor protein to mediate the interactions between both complexes (Araki et al.,

2001; Frischmeyer et al., 2002; van Hoof et al., 2002). In case of mRNA quality

control, Ski7’s resemblance to other translational GTPases like Hbs1 or eRF3 led to

the hypothesis that Ski7 would bind ribosomes to recognize targets for NSD via its

C-terminal GTPase domain. All our findings contradict the proposed function of Ski7

and suggest a different mechanism altogether. Our in vitro reconstitutions and the

nonstop reporter assay show that the Ski complex interacts with ribosomes even in

absence of Ski7 and other quality control factors like Dom34 and Hbs1 arguing that

Ski complex binding to ribosomes is occurring upstream and independent of these

factors. We therefore propose a two-component model where a ribosome-Ski com-

plex recruits a preassembled exosome-Ski7 complex to degrade the associated mRNA

(Fig. 4.1). This model would explain why Ski7 only would show transient binding

to ribosomes and could never really be visualized in our attempts where possible

stabilizing factors like the exosome and the Ski complex were not present.

4.2 Ribosome binding activates the helicase complex

for mRNA threading

What impact has ribosome binding on the Ski complex? Our structure reveals that

several interactions and conformational changes position the Ski complex on the

small subunit of the ribosome so that the helicase channel entry of Ski2 is perfectly

aligned with the mRNA entry channel of the ribosome. This alignment allows the

threading of the mRNA 3’ end into the helicase core directly on the ribosome which

was also proven biochemically. Threading is facilitated by rearrangements of the

arch domain of Ski2 and the N-terminal arm of Ski3. These two elements were

proposed to allosterically regulate helicase activity by forming a lid to prevent access

to the helicase core and were shown to be more flexible compared to the rest of the

complex (Halbach et al., 2013). Both elements display large conformational changes
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FIGURE 4.1: Model for ribosome-binding of the Ski complex in 3’-
to-5’ mRNA decay. The Ski complex binds to ribosomes to thread the
associated mRNA into its helicase core. Subsequently, this ribosome-
Ski complex can bind with a preassembled exosome-Ski7 complex to
degrade the mRNA.

when binding to the ribosome and move into an open position away from the helicase

channel entry. For the N-terminal arm of Ski3, TPR5 interacts with the 40S beak at

the position where the regular TPR motif is disrupted by a split B helix. Halbach et al

suggested that this would allow increased flexibility in the N-terminal arm (Halbach

et al., 2013), therefore it is tempting to speculate that this interruption is needed

for ribosome binding to allow the arm to move into its outward position. The arch

domain also moves outward into an open conformation since its previous position is

occupied by 40S head proteins uS3 and uS10 and rRNA h41 compared to the Ski2

crystal structure. This large outward movement is made possible by the long flexible

connection to the helical domain of Ski2 consisting of two parallel alpha-helices.

The increased flexibility is substantiated by our finding of a second population of

ribosome-Ski complexes with the arch domain binding to the N-terminal arm of Ski3

(see Fig. 3.8), showing that it can rotate by about 180° around the double helix

linker. Notably, in this second population the arch domain is also positioned far away

from the helicase entry. We thus suggest that the increased flexibility of both the arch

domain and the N-terminal arm of Ski3 is used to automatically generate an open

and active conformation of the Ski complex upon ribosome binding as compared to

a more closed conformation when being isolated from the ribosome. Therefore, Ski

complex binding to the ribosome leads to a conformation where a substrate mRNA

can be threaded into the Ski2 helicase, therefore "activating" the helicase complex

(Fig. 4.1).
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4.3 The 3’ mRNA end as an anchor for Ski complex

binding

Our presented structure gives insights into how the Ski complex can be guided to

appropriate ribosomal targets. This recruitment needs to be a highly precise pro-

cess since there are much less copies of the Ski complex in the cell than ribosomes

(Ghaemmaghami et al., 2003) and because it would be highly detrimental to re-

cruit an RNA helicase that locks onto the mRNA to an actively translating ribosome.

Our data suggest that a short 10-20 nucleotide long extended 3’ mRNA overhang on

the ribosome seems to act as a recruitment signal (Fig. 3.15). This preference for

short mRNA extensions might be due to the necessity of threading the mRNA into

the Ski2 helicase core. Since the Ski complex shows no lateral openings in its struc-

ture, threading of long RNA extensions while binding to the ribosome would pose

a significant challenge. Additionally, mRNA binding seems to significantly increase

stability since binding is substantially weaker to ribosomes lacking mRNA completely

(Fig. 3.3). An interesting fact is that short 3’ overhangs created by an endonucleolytic

cleavage are hallmarks of NSD and NGD where so-called primary and secondary tar-

gets are created (Shoemaker and Green, 2012). For NGD, it was already proven

that the 5’ substrate, which would include a short 3’ overhang, is targeted by 3’-to-5’

mRNA degradation (Doma and Parker, 2006). Since endonuclease events are occur-

ring in both quality control pathways, having the 3’ overhang as a recruitment signal

seems to be a likely model. Furthermore, this model is substantiated by the polysome

profile analysis of the Ski3-TAP strain presented in this thesis (Fig. 3.4). After RNase

A digestion, all the signal for Ski3-TAP collapsed into the 80S fraction. While this was

expected for the signal in the polysome fraction, it is initially surprising to see for the

lower molecular fractions. The disappearance of the signal from the free unbound

and ribosomal subunit fractions would be explained by RNase A generating short 3’

mRNA overhangs on the 80S ribosomes which in turn leads to sequestering of the

Ski complex in the lysate. For general turnover, 3’-to-5’ degradation is much less

frequent, but also only very few endonucleolytic events are detected (Harigaya and

Parker, 2012) . Furthermore, since mRNAs are translated from 5’ to 3’, yet exosome-

dependent degradation occurs from 3’ to 5’, the ribosome would act as a roadblock

at some point which would need to be removed. This fact could explain why 5’-to-3’

degradation evolved to be the major turnover pathway in yeast and other eukaryotic

organisms.

Another possibility for recruitment would be the recognition of targets by specific
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modifications. Recent studies have shown that ubiquitination of r-proteins seems to

act as a major initiation signal for protein quality control (Brandman et al., 2012;

Higgins et al., 2015; Sitron et al., 2017; Sundaramoorthy et al., 2017). Ubiquitina-

tions of uS3, eS10 and uS10 have been shown to be important for initial ribosome

stalling and binding of necessary factors for the RQC response. It is possible that

similar ubiquitination events are recognized by the Ski complex, however we didn’t

detect any ubiquitin densities in our structure. Nevertheless, we note that uS3 and

uS10 are both interacting with the Ski complex and could serve as recognition sites.

An interesting aspect is also the involvement of the Ski2 arch domain in recruitment

of the Ski complex to ribosomes. It has been shown that the arch domain of the

Ski2-related helicase Mtr4 binds to specific conserved LFXφD motifs (with X being

any and φ being a hydrophobic amino acid) on adapter proteins, thus recruiting the

helicase to its pre-ribosomal target (Thoms et al., 2015). This specific interaction is

conducted by the KOW domain found in the Mtr4 arch domain. The KOW domain

is absent in Ski2 and uS3 and uS10 that interact with the Ski2 arch domain do not

contain an LFXφD motif, however the involvement of the arch domain in recruiting

the Ski complex to the ribosome is still a possibility. Nevertheless, we note that re-

cruitment via a short 3’ mRNA overhang seems to be the most likely model which is

in line with our in vitro recruitment assays and previous findings investigating quality

control pathways.

4.4 Ski complex binding to ribosomes - the first step in

ribosome-associated 3’-to-5’ mRNA degradation

What is the function of the Ski complex bound to the ribosome? From previous

studies, it is known that the Ski complex forms an elongated mRNA binding tunnel

together with the exosome, leading to the proposal that it can actively channel RNA

into it for degradation (Halbach et al., 2013). The data presented here indicate that

this binding tunnel might be even further extended by the ribosome. It is tempting to

suggest that the formation of a "super complex" would be the next step as proposed

above, where the exosome with Ski7 binds to a ribosome-Ski complex, forming an

over 70 nucleotide long mRNA binding tunnel. The Ski complex could then actively

extract the mRNA from the ribosome in a processive reaction by using energy from

ATP hydrolysis and thread it into the exosome for degradation. This model seems

likely by looking at other steps in RNA and protein degradation processes where more

examples for active substrate threading are found. For example, beside that RNAs



76 4. Discussion

are threaded into the exosome by the Ski complex, proteins are threaded into the

proteasome through its 19S cap structure by different ATPases like Cdc48 (Tomko and

Hochstrasser, 2013). Likewise, the bacterial RNA and protein degradation complexes

PNPase or RNase PH and ClpP, respectively, show barrel-like architectures similar to

the exosome and the proteasome, where substrates are actively threaded to the active

site via a central channel (Alexopoulos et al., 2012; Garneau et al., 2007; Tomko and

Hochstrasser, 2013). Therefore, energy-consuming active substrate threading seems

to be a reoccurring principle used in degradation processes in the cell. Notably,

threading of the substrate through a narrow channel makes it necessary that proteins

or RNAs are unwound, thus threading might be necessary to make the target more

accessible. Therefore, it would make sense to have a helicase to channel RNA into

the exosome to start with.

Some questions are left open regarding the steps after Ski complex binding to

ribosomes and possible channeling of the mRNA into the exosome. First, the Ski

complex must be released from the ribosome. It is unclear at which point the dis-

assembly occurs. However, it would be likely that Ski7 binding to the ribosome-Ski

complex could signal for the Ski complex’s release after the RNA is fed into the exo-

some (see also further below). Second, the ribosome must be recycled. It is unclear

whether the ribosome splitting system Dom34/Hbs1 and ABCE1 can also rescue ri-

bosomes that were targeted by the Ski complex. We note that in our structure the

binding site for Hbs1 would be accessible even when Ski complex is bound, never-

theless the A-site is still occupied by peptidyl-tRNA. Thus, Dom34 cannot access its

binding site to recruit the splitting ATPase ABCE1. To remove the A-site, it would ei-

ther have to be actively extracted (since drop-off seems unlikely when the NC is still

attached) or another translocation step needs to occur to move it to the P-site, thus

freeing the A-site for Dom34. Further investigations have to elucidate the mechanism

of ribosome recycling in 3’-to-5’ mRNA decay. Third, the function of Ski7 needs to be

evaluated. Since the GTPase domain is only needed for quality control (Araki et al.,

2001), it seems likely that Ski7 primarily acts as an adaptor by binding to the Ski

complex and the exosome in 3’-to-5’ mRNA degradation. Due to our findings, it is

most likely that Ski7 is not part of recognizing the target for NSD by binding to a

stalled ribosome, but rather acts afterwards to possibly check Ski complex associa-

tion to the ribosome, to signal the start of active mRNA threading by the Ski complex

and/or to release it from the 80S. For this, the GTPase domain could transiently in-

teract with the ribosome to signal any of these processes. It is intriguing to think that

Ski7’s GTPase domain might always be needed when 3’-to-5’ degradation is started
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on the ribosome and that two pathways exist, one degrading "free" mRNAs and one

targeting mRNAs associated to ribosomes. Since NSD and secondary targets (5’ tar-

get after endonucleolytic cleavage) in NGD are always involving a stalled ribosome

and are exclusively relying on exosome-dependent degradation, it explains why for

these pathways Ski7’s GTPase domain was shown to be important. When looking at

general mRNA turnover, however, 3’-to-5’ degradation is only a minor pathway which

could explain why a ribosome-associated population that also requires the Ski7

GTPase domain was overlooked in previous studies. Since Ski7 was proposed to be a

pseudo GTPase that always resembles the GTP-bound active state (Kowalinski et al.,

2015), GTP hydrolysis would not be important for this signaling. It remains to be an-

swered what the exact role of Ski7 is in ribosome-associated co-translational mRNA

degradation. Finally, the exact order of events needs to be investigated, since many

of the proposed processes could work at several timepoints. So far, it seems only

clear that Ski complex binding to ribosomes is the first step in initiating the pathway.

4.5 The role of ribosome-Ski complexes in general mRNA

turnover

As already mentioned before, it is an interesting aspect whether the Ski complex only

initiates 3’-to-5’ mRNA degradation in quality control co-translationally or if this is

also the case for general mRNA turnover. It seems likely that the Ski complex binds

to the ribosome for mRNA quality control, targeting specifically ribosomes that are

stalled on aberrant mRNAs via their 3’ mRNA overhang. But is this also the case

for general 3’-to-5’ mRNA turnover? The fact that very little unbound Ski3 was de-

tected in our polysome profile analysis hints that co-translational initiation of 3’-to-5’

mRNA degradation might not only occur in quality control pathways, but also in

general mRNA turnover. In addition, our targeted profiling suggests the involvement

of ribosome-Ski complexes in on-going general 3’-to-5’ mRNA decay (Fig. 3.17). We

could not detect a specific enrichment of nonstop or no-go decay targets in our ex-

periment. The shift of ribosomes towards the more 5’ part of mRNAs indicates that

these mRNAs are already degraded from the 3’ end since our control showed an

even distribution of ribosomes over the respective mRNAs. Additionally, analyzed

mRNAs were enriched in non-optimal codons. Even though it is not entirely clear

how these mRNAs are degraded, only few codon combinations seem to give rise to

specific mRNA and protein quality control responses, whereas the majority seems to

be targeted by general turnover pathways (Gamble et al., 2016; Letzring et al., 2010;
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Presnyak et al., 2015). Thus, it is very likely that our ribosome-Ski complex struc-

ture is an intermediate step in general 3’-to-5’ degradation, stabilized possibly by the

lack of ATP in our buffers or because additional factors are not present. Notably,

as mentioned above, it is possible that two separate pathways for general turnover

exist where either non-translating or ribosome-associated mRNAs are targeted. This

idea is encouraged when looking also at Xrn1-dependent 5’-to-3’ degradation. It was

shown that 5’-to-3’ degradation can either happen in P-bodies or co-translationally

on polysomes (Hu et al., 2009; Pelechano et al., 2015; Sheth et al., 2003). Thus, it

would not be surprising to see a similar principle also for 3’-to-5’ mRNA degradation.

Taken together, we present evidence that the Ski complex can link mRNA trans-

lation and degradation by binding to ribosomes which leads to threading of mRNAs

into the helicase that are still associated. The length of the 3’ mRNA overhang seems

to dictate whether the Ski complex is recruited to the ribosome to initiate 3’-to-5’

mRNA degradation, possibly by actively removing mRNA from the ribosome to chan-

nel it into the exosome. Since earlier studies could show that the human ortholog

of Ski2 seems to colocalize with 40S subunits and 80S ribosomes in HeLa cells (Qu

et al., 1998), it is very likely that the direct link we identified here might operate

broadly in different mRNA decay pathways and different species.

4.6 eIF-5A – a so far unknown factor involved in qual-

ity control?

Originally, eIF-5A was identified as a factor helping to form the first peptide bond

during translation and thus was initially characterized as an initiation factor (Glick

and Ganoza, 1975). Following studies, however, made clear that eIF-5A’s role was

much more versatile than originally anticipated, making the term initiation factor

somewhat misleading. These studies could show that eIF-5A’s major function was

rather not found in initiation, but in rescuing ribosomes, particularly those that were

stalled on poly-proline stretches (Gutierrez et al., 2013). Further evidence was found

that eIF-5A also has some additional function in peptide bond formation in general,

giving rise to the thought that it has a primary role in promoting translation elon-

gation (Saini et al., 2009). The fact that eIF-5A was present in all our ribosomal

particles raised the question if it is also involved in quality control and initiation of

mRNA degradation. Did we identify a yet another unanticipated role of eIF-5A in

these processes?
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Our analysis of the codon composition in A-, P- and E-site highlights that our

purification does not specifically enrich initiation complexes with methionine in the

P-site or poly-proline stalled ribosomes which argues in favor of eIF-5A being in-

volved in other processes than rescuing poly-proline stalled ribosomes or initiation

(Fig. 3.23A). The fact that in absence of cycloheximide eIF-5A was not detected by

mass spectrometry in otherwise equally purified samples hints towards the notion,

that cycloheximide binding to the E-site influences binding of eIF-5A. Our structural

data reveals that while cycloheximide clashes with the CCA-end of an E-site tRNA,

eIF-5A can accommodate while the antibiotic is bound (Fig. 3.23B). This finding sug-

gests that eIF-5A can bind to ribosomes when the E-site is vacant, a state that is to be

expected when translation elongation is slowed down/paused or translocation did

not take place yet. In combination with newer findings that eIF-5A acts as a general

promotor of elongation and peptide-bond formation that can alleviate stalling on

many motifs and not only poly-proline tracts (Schuller et al., 2017), this argues in fa-

vor of a model where eIF-5A is recruited specifically to ribosomes that struggle during

elongation by binding to an empty E-site. The fact that eIF-5A is one of the highest

expressed proteins in yeast (approximately 274000 copies per cell; Ghaemmaghami

et al., 2003) is in line with this model. Due to the high copy number in the cell, eIF-5A

should always be available for binding and kinetics are in favor of accommodation

to the E-site. Therefore, eIF-5A could recognize its targets by screening the E-site for

tRNA presence to assist in peptide bond formation. The absence of eIF-5A from other

purifications using cycloheximide, i.e. RNC preparations, might be explained by the

very quick purification under mild conditions compared to these protocols. Since it is

known that E-site tRNAs are removed by higher salt conditions during washing steps,

it would not be surprising if also bound eIF-5A would be removed. The fact that more

recent natively purified complexes from our lab also resulted in eIF-5A binding to the

E-site substantiates this hypothesis.

4.7 The hypusine stabilizes tRNAs in P- and A-site to

assist in peptide bond formation

It’s been long known that translation elongation slow-down can occur when translat-

ing specific amino acids or on specific codons within an mRNA. Proline was identified

to be a bad donor and acceptor during peptide bond formation due to its unusual ge-

ometry and that poly-proline attached to the P-site tRNA leads to destabilization of

the tRNA and even peptidyl-tRNA drop-off (Doerfel et al., 2013; Johansson et al.,
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2011; Muto and Ito, 2008; Pavlov et al., 2009; Wohlgemuth et al., 2008). Moreover,

recent studies could identify several codon combinations that cause severe ribosome

stalling (Gamble et al., 2016; Letzring et al., 2010). These codons often have been

shown to contain a wobble base pair in the third position with the respective tRNA,

leading to the idea that tRNA accommodation is slowed down and that the geometry

in the PTC is not ideal for peptide bond formation because of this weaker interaction

compared to a normal Watson-Crick base pair. Many of these stallings can be rescued

by eIF-5A (Schuller et al., 2017), but how can this be achieved by a single factor? Sev-

eral models were proposed with eIF-5A either being directly or indirectly involved in

the peptide bond formation. Our structure argues in favor of eIF-5A being not directly

involved in the bond formation process. The results discussed in this work show that

the accommodation to the E-site allows the insertion of the β3-β4 loop containing

the critical hypusine residue into a pocket that reaches towards the PTC of the ribo-

some. Thereby, the loop is stabilized by multiple hydrogen bond interactions and the

hypusine at the tip contacts the CCA-end of the P-site tRNA (Fig. 3.21). Notably, this

interaction is only possible because of the extended nature of the hypusine residue,

explaining why this post-translational modification is critical to eIF-5A’s function in

elongation and rescue. Furthermore, a specific loop of uL16 might play an important

role in eIF-5A’s function (Fig. 3.22). In bacteria, the position of the uL16 loop is oc-

cupied by bL27 which in turn was shown to be involved in a proton wire that couples

A-site tRNA binding to peptide bond formation (Polikanov et al., 2014). We identi-

fied that the uL16 loop is stabilized in the eIF-5A bound structure. This stabilization

is achieved by a hydrogen bond network formed between the residues in the uL16

loop, the CCA-ends of both A-site and P-site tRNA and the hypusine residue of eIF-5A.

We propose that the interaction of the hypusine residue with the P-site CCA-end and

subsequent stabilization of the uL16 loop and the A-site tRNA allows proper peptide

bond formation by stabilizing the geometry in the PTC. eIF-5A could act as a "repair

factor" by idealizing the geometry and stabilizing the P-site tRNA in the PTC which

would allow translation to be continued. This stabilization model would also explain

why eIF-5A could stimulate translation elongation in general, since the CCA-end that

is contacted by the hypusine is interchangeable between all tRNAs.
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4.8 The structure of eIF-5A on the ribosome reveals

differences to EF-P

When comparing eIF-5A with its prokaryotic homologue EF-P, several differences can

be detected. While eIF-5A was identified to be important for multiple steps in trans-

lation as discussed above, EF-P has so far only been implicated in the rescue of poly-

proline stalled ribosomes. This more specific function might also be reflected in the

structural data. Where DI of EF-P shows multiple contacts with the P-site tRNA (Blaha

et al., 2009), basically recognizing whether a prolyl-tRNA is accommodated or not,

eIF-5A does not show any of these interactions and DI is rather moved away from

the P-tRNA (Fig. 3.20). This could explain why eIF-5A acts on a broad spectrum

of tRNAs and is not only functioning when prolyl-tRNA is bound to the P-site. The

eukaryote-specific NTE of eIF-5A might hereby be the reason why DI is shifted away

from the P-site when compared to archaeal IF-5A or EF-P. The interaction of the NTE

with uL1 and eL42 could induce a shift that is transferred to DI and the β3-β4 loop.

This shift would of course not be seen in EF-P where no NTE is present. In contrast,

the function of the prokaryote-specific DIII is not clear as of now and our structure

does not contain any insights into its role in prokaryotic ribosome rescue.

In summary, our structure of eIF-5A bound to the ribosome reveals how eIF-5A can

rescue stalled ribosomes and promote translation elongation. The critical hypusine

residue contacts the CCA-end of the P-site tRNA, thereby stabilizing it. This leads to

the stabilization of a loop in uL16 which in turn contacts the A-tRNA CCA-end. This

chain of events stabilizes the overall geometry in the PTC, allowing for successful

peptide bond formation. Furthermore, eIF-5A seems to bind to ribosomes with an

empty E-site, which is a hallmark of ribosomes that are slowed down or paused in

translocation and translation elongation. Thus, eIF-5A selects its target by scanning

the E-site for tRNA occupancy. This mechanism would also explain the recent fin-

dings that eIF-5A might act much more broadly in promoting translation elongation

(Schuller et al., 2017), specifically for "slow" codons.
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5 Outlook

The findings presented in this thesis are the first structural insight into how mRNA

translation and 3‘-to-5‘ degradation are directly coupled, laying the groundwork for

following research in this field. Yet, many open questions remain to be answered to

fully understand this pathway.

First, the exact role of the Ski complex bound to the ribosome remains to be

investigated, with particular focus on its processivity and possible function in ex-

tracting mRNAs from the ribosome. Concomitantly, Ski7’s role in quality control and

ribosome-associated mRNA decay needs to be revisited. In this regard, an interest-

ing target for structural studies would be the proposed "super complex" formed of a

ribosome-Ski complex with an exosome-Ski7 complex. First insights of the interac-

tions of Ski7 with the exosome could be gained recently (Kowalinski et al., 2015),

but it is not clear how this assembly contacts the ribosome-bound Ski complex as of

now.

Second, further research should be focusing on whether the Ski complex binds

ribosomes also for general mRNA turnover. Our profiling data suggests that the na-

tively purified complexes are indeed intermediates of common mRNA decay, thus

arguing that a ribosome-associated degradation pathway might exist. Insights into

Ski7’s exact function in either quality control or turnover and more in-depth profil-

ing analysis in different genetic strain backgrounds could shed some light onto the

subject.

Third, an exact order of events for ribosome-associated mRNA degradation must

be established. Here, it needs to be investigated what happens after Ski7 and the

exosome interact with the Ski complex and how ribosome recycling occurs in this

pathway. It is likely that Dom34 and ABCE1 are involved in this process, however it

is currently unknown what their exact target would be and at what point exosome-

Ski7 binding and ribosome splitting is happening.

Finally, the existence of ribosome-Ski complexes in other eukaryotic organisms

needs to be investigated. Both the exosome and the Ski complex are conserved from
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yeast to human (Makino et al., 2013; Halbach et al., 2013). Earlier findings already

showed that the human orthologue of Ski2 seems to associate with 40S subunits and

80S ribosomes (Qu et al., 1998). Since 3‘-to-5‘ degradation and quality control are

common to all eukaryotic cells, purifying similar complexes from higher eukaryotic

organisms would yield answers about the conservation of these pathways.

A recently published study on eIF-5A bound to a eukaryotic ribosome confirmed

our findings of the overall position of the factor and its contact to the CCA-end of

the P-site tRNA (Melnikov et al., 2016). With the newer reports in mind that eIF-5A

seems not to be limited to rescue poly-proline stalled ribosomes, but rather alleviates

many stalling events in the cell (Schuller et al., 2017), it would be interesting to

investigate eIF-5A’s target recognition further. Our data suggests that scanning of

an empty E-site might dictate whether eIF-5A is binding or not and could thus turn

the factor into a "timing sensor" for translation that detects slowed down ribosomes.

Another factor known to be targeting slow ribosomes is Dhh1, therefore insights into

possible interactions between these factors could elucidate the topic. Notably, both

proteins would be expected to compete for binding to the E-site (or the ribosome

per se) since eIF-5A acts as a rescue factor whereas Dhh1 was implicated with the

degradation of mRNAs (Radhakrishnan et al., 2016). Therefore, it is possible that

these factors could determine the fate of the ribosome-associated mRNA. Since most

observed stalling events were happening on specific codon combinations and poly-

basic stallers, further research should be conducted towards the exact mechanism

of stalling for these mRNAs. With high-resolution cryo-EM, it should be possible to

detect any changes in the PTC or tunnel interactions that cause stalling in these cases.
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Appendix

TABLE A.1: Mass spectrometry analysis of the native ribosome-Ski com-
plex pullout.

Accession Score Mass Matches sign. Signals sign. emPAI

1 1 SKI2_YEAST 4032 146651 137 137 48 48 3,47

2 1 SKI3_YEAST 4032 164707 131 131 47 47 2,31

3 1 GBLP_YEAST 1140 34898 37 37 15 15 4,13

4 1 HSP76_YEAST 1106 66668 31 31 17 17 1,49

4 2 HSP75_YEAST 1095 66732 30 30 17 17 1,49

5 1 SSZ1_YEAST 996 58316 25 25 13 13 1,28

6 1 SKI8_YEAST 920 44717 28 28 9 9 1,52

7 1 PYR1_YEAST 916 246198 29 29 17 17 0,25

8 1 RL8B_YEAST 861 28151 32 32 12 12 4,97

8 2 RL8A_YEAST 728 28164 25 25 10 10 2,82

9 1 RS3_YEAST 842 26543 25 25 12 12 4,25

10 1 RS6A_YEAST 828 27037 26 26 12 12 3,52

11 1 RS3A1_YEAS1 825 28783 29 29 12 12 4,18

11 2 RS3A2_YEAS1 776 28852 28 28 12 12 4,14

12 1 RL4A_YEAST 754 39125 30 30 13 13 2,39

13 1 IMDH3_YEAST 735 56948 17 17 6 6 0,57

14 1 RS5_YEAST 734 25080 19 19 9 9 2,49

15 1 RL19A_YEAST 732 21691 23 23 7 7 3,23

16 1 RL7A_YEAST 703 27621 25 25 11 11 2,92

17 1 EF1A_YEAST 652 50400 29 29 12 12 1,59

18 1 RS20_YEAST 638 13899 16 16 6 6 3,66

19 1 RS8A_YEAST 628 22590 16 16 6 6 1,63

20 1 RS14A_YEAST 619 14585 21 21 10 10 9,11

21 1 C1TC_YEAST 590 102540 19 19 12 12 0,46

22 1 RL23A_YEAST 581 14578 16 16 4 4 3,36



86

23 1 RS4A_YEAST 561 29449 24 24 14 14 4,56

24 1 XRN1_YEAST 558 175692 20 20 11 11 0,25

25 1 RL20A_YEAST 539 20424 16 16 6 6 1,91

26 1 RS17A_YEAST 538 15836 17 17 6 6 2,88

27 1 EF2_YEAST 534 93686 11 11 7 7 0,27

28 1 RL16A_YEAST 530 22187 14 14 5 5 1,33

28 2 RL16B_YEAST 370 22235 12 12 6 6 1,33

29 1 RLA0_YEAST 514 33696 17 17 8 8 1,33

30 1 RS9A_YEAST 504 22429 12 12 5 5 1,31

30 2 RS9B_YEAST 396 22285 12 12 5 5 1,32

31 1 SC160_YEAST 499 134955 18 18 11 11 0,3

32 1 ZUO1_YEAST 489 49047 13 13 9 9 0,8

33 1 CLU_YEAST 481 145304 15 15 8 8 0,22

34 1 K6PF1_YEAST 466 108587 10 10 6 6 0,2

35 1 RL3_YEAST 460 43844 12 12 5 5 0,66

36 1 RL35A_YEAST 459 13958 16 16 5 5 2,7

37 1 RLI1_YEAST 458 69095 10 10 5 5 0,26

38 1 RL30_YEAST 457 11408 13 13 6 6 5,32

39 1 RL1A_YEAST 449 24698 13 13 7 7 1,75

40 1 RS12_YEAST 447 15462 14 14 7 7 3,02

41 1 RL12A_YEAST 442 17869 15 15 5 5 1,82

42 1 GLYM_YEAST 440 53881 8 8 4 4 0,27

43 1 RL36A_YEAST 438 11117 13 13 5 5 4,07

44 1 RL25_YEAST 434 15748 11 11 4 4 1,18

45 1 RL13B_YEAST 433 22511 19 19 9 9 3

45 2 RL13A_YEAST 332 22540 13 13 9 9 2,48

46 1 RS7B_YEAST 431 21621 12 12 5 5 1,37

46 2 RS7A_YEAST 271 21609 12 12 5 5 1,74

47 1 RS2_YEAST 412 27490 14 14 6 6 1,23

48 1 RS15_YEAST 404 15992 14 14 4 4 4,65

49 1 RL10_YEAST 395 25573 21 21 7 7 1,67

50 1 RL14A_YEAST 394 15215 12 12 4 4 1,74

50 2 RL14B_YEAST 360 15201 11 11 4 4 1,74

51 1 RS13_YEAST 393 17018 10 10 4 4 1,07

52 1 RS19A_YEAST 392 15907 14 14 6 6 2,2

53 1 K6PF2_YEAST 375 105179 7 7 4 4 0,13
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54 1 RL5_YEAST 375 33751 13 13 5 5 0,76

55 1 RL15A_YEAST 352 24464 13 13 5 5 1,16

56 1 RRP44_YEAST 344 114491 10 10 6 6 0,18

57 1 RSSA1_YEAS1 343 28064 13 13 6 6 1,45

58 1 HSC82_YEAST 337 80850 6 6 4 4 0,17

59 1 RS22A_YEAST 336 14674 9 9 4 4 1,31

60 1 RS23A_YEAST 318 16142 5 5 3 3 0,77

61 1 HSP72_YEAST 316 69599 11 11 6 6 0,38

62 1 RL17B_YEAST 313 20539 7 7 3 3 0,58

62 2 RL17A_YEAST 304 20537 7 7 3 3 0,58

63 1 IF4F1_YEAST 309 107264 10 10 6 6 0,2

64 1 RL9A_YEAST 302 21613 9 9 4 4 1,06

64 2 RL9B_YEAST 295 21701 8 8 4 4 0,77

65 1 CSL4_YEAST 298 31849 6 6 3 3 0,35

66 1 RS24A_YEAST 297 15319 15 15 7 7 3,96

67 1 NAT1_YEAST 296 99299 9 9 6 6 0,21

68 1 MPG1_YEAST 288 39712 9 9 6 6 0,62

69 1 RS18A_YEAST 287 17084 13 13 5 5 1,95

70 1 RL2A_YEAST 286 27392 11 11 6 6 1,23

71 1 RS16A_YEAST 282 15838 8 8 4 4 1,17

72 1 RRP5_YEAST 279 193700 8 8 5 5 0,09

73 1 RL31A_YEAST 279 12945 13 13 6 6 5,49

74 1 RL33A_YEAST 277 12147 9 9 4 4 1,72

74 2 RL33B_YEAST 102 12161 5 5 3 3 1,1

75 1 RL26A_YEAST 274 14225 10 10 5 5 1,93

76 1 ERF1_YEAST 258 49203 8 8 4 4 0,3

77 1 RLA4_YEAST 255 11043 6 6 4 4 1,98

78 1 RL27A_YEAST 254 15522 9 9 4 4 1,2

79 1 RLA1_YEAST 253 10901 4 4 1 1 0,74

80 1 RL11A_YEAST 251 19764 7 7 3 3 0,6

81 1 PDC1_YEAST 251 61685 7 7 4 4 0,3

82 1 BFR1_YEAST 247 54606 9 9 6 6 0,42

83 1 RL24B_YEAST 245 17537 8 8 3 3 1,02

84 1 RL6A_YEAST 239 19949 6 6 4 4 0,86

84 2 RL6B_YEAST 233 19974 5 5 3 3 0,59

85 1 PABP_YEAST 233 64475 8 8 5 5 0,28
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86 1 IF2G_YEAST 223 58400 6 6 3 3 0,18

87 1 RL38_YEAST 222 8821 8 8 4 4 2,83

88 1 SKI7_YEAST 222 85183 7 7 3 3 0,16

89 1 RLA2_YEAST 219 10739 5 5 3 3 1,3

90 1 ARB1_YEAST 210 68506 6 6 3 3 0,15

91 1 RL22A_YEAST 209 13685 5 5 3 3 1,44

91 2 RL22B_YEAST 163 13818 4 4 3 3 0,94

92 1 RPA2_YEAST 202 136682 5 5 3 3 0,07

93 1 TY1AB_YEASX 199 199337 8 8 5 5 0,08

94 1 DED1_YEAS7 199 65741 5 5 4 4 0,22

95 1 RPA1_YEAST 197 187683 7 7 5 5 0,09

96 1 RRP4_YEAST 195 39574 6 6 3 3 0,27

97 1 EIF3C_YEAS7 195 93391 3 3 2 2 0,07

98 1 RL18A_YEAST 194 20608 6 6 3 3 0,57

99 1 NOP3_YEAST 190 45437 4 4 2 2 0,15

100 1 STM1_YEAST 187 29977 4 4 3 3 0,37

101 1 RS27B_YEAST 184 9145 7 7 3 3 2,66

102 1 G3P1_YEAST 183 35842 4 4 3 3 0,3

103 1 METK1_YEAST 177 42077 3 3 2 2 0,16

104 1 NOP58_YEAS7 173 56978 4 4 2 2 0,12

105 1 ENO2_YEAST 169 46942 4 4 2 2 0,15

106 1 URA7_YEAST 167 65125 4 4 3 3 0,16

107 1 EIF2A_YEAST 165 71774 3 3 3 3 0,14

108 1 RL21A_YEAST 164 18288 7 7 4 4 0,97

109 1 SRO9_YEAST 155 48031 4 4 3 3 0,22

110 1 NEW1_YEAST 155 134932 5 5 4 4 0,1

111 1 RRP46_YEAST 151 24848 5 5 3 3 0,46

112 1 RS25A_YEAST 145 12032 5 5 3 3 1,74

113 1 RL43A_YEAST 144 10369 4 4 2 2 0,78

114 1 RLA3_YEAST 138 10661 2 2 1 1 0,32

115 1 RL32_YEAST 134 14762 4 4 2 2 0,51

116 1 RS28A_YEAST 131 7587 3 3 2 2 1,16

117 1 RRP42_YEAST 129 29094 2 2 1 1 0,11

118 1 SUB2_YEAST 126 50620 2 2 1 1 0,07

119 1 RPAB4_YEAST 124 7939 2 2 1 1 0,44

120 1 TCPQ_YEAST 123 61965 4 4 2 2 0,11
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121 1 IF2B_YEAST 123 31840 2 2 1 1 0,1

122 1 RL28_YEAST 121 16711 2 2 1 1 0,2

123 1 ADH1_YEAST 119 37282 2 2 1 1 0,09

124 1 RBG1_YEAST 116 40904 2 2 1 1 0,08

125 1 RPAC1_YEAST 116 37948 3 3 2 2 0,18

126 1 RS21B_YEAST 113 9811 4 4 3 3 1,49

127 1 NUG1_YEAST 112 57787 3 3 2 2 0,12

128 1 FBRL_YEAST 109 34615 2 2 1 1 0,1

129 1 RRP45_YEAST 109 34510 5 5 3 3 0,32

130 1 NCBP1_YEAST 109 100183 2 2 1 1 0,03

131 1 RS29B_YEAST 108 6951 4 4 2 2 1,28

132 1 IF4A_YEAS7 107 44840 3 3 2 2 0,15

133 1 KPYK1_YEAST 102 54909 6 6 5 5 0,34

134 1 CBF5_YEAST 102 55184 3 3 2 2 0,12

135 1 SNU13_YEAST 99 13731 2 2 1 1 0,25

136 1 RS30A_YEAST 96 7114 4 4 2 2 1,25

137 1 RS11A_YEAST 94 17852 4 4 2 2 0,41

138 1 SEC16_YEAST 92 241719 2 2 1 1 0,01

139 1 RS26A_YEAST 92 13724 4 4 2 2 0,56

140 1 EIF3A_YEAST 92 110333 5 5 3 3 0,09

141 1 C1TM_YEAST 92 106607 5 5 4 4 0,13

142 1 ILVB_YEAST 91 75061 2 2 1 1 0,04

143 1 PPB_YEAST 91 63136 2 2 1 1 0,05

144 1 GPP1_YEAST 89 28100 2 2 1 1 0,12

145 1 PMG1_YEAST 86 27592 2 2 1 1 0,12

146 1 NSR1_YEAST 85 44566 3 3 2 2 0,15

147 1 IF4E_YEAST 84 24239 2 2 2 2 0,3

148 1 TBB_YEAST 84 51233 2 2 1 1 0,06

149 1 IF2P_YEAST 83 112599 2 2 1 1 0,03

150 1 NOP56_YEAST 78 57057 2 2 1 1 0,06

151 1 RS10A_YEAST 75 12732 4 4 2 2 1,04

152 1 VATB_YEAST 75 57770 2 2 1 1 0,06

153 1 RRP41_YEAST 73 27543 3 3 2 2 0,26

154 1 RRP40_YEAST 73 26939 2 2 1 1 0,12

155 1 EF3A_YEAST 68 116727 2 2 2 2 0,06

156 1 SEC13_YEAST 68 33194 2 2 1 1 0,1
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157 1 ERV46_YEAST 66 46776 2 2 1 1 0,07

158 1 KRE33_YEAST 64 119615 2 2 1 1 0,03

159 1 BRX1_YEAST 64 33625 1 1 1 1 0,1

160 1 VPH1_YEAST 64 95866 2 2 1 1 0,03

161 1 RL34A_YEAST 63 13859 2 2 1 1 0,25

162 1 OLA1_YEAST 63 44488 2 2 1 1 0,07

163 1 AHA1_YEAST 61 39582 1 1 1 1 0,08

164 1 TM108_YEAST 58 108339 1 1 1 1 0,03

165 1 LCF4_YEAST 56 77902 2 2 1 1 0,04

166 1 TMA46_YEAST 54 39831 2 2 1 1 0,08

167 1 EIF3B_YEAS7 51 88616 2 2 1 1 0,04

168 1 IF5A1_YEAST 50 17217 2 2 1 1 0,2

169 1 ILV6_YEAST 49 34308 2 2 1 1 0,1

170 1 ATN1_YEAST 49 121193 1 1 1 1 0,03

171 1 HAS1_YEAST 49 56967 2 2 1 1 0,06

172 1 YRA1_YEAST 47 24940 2 2 1 1 0,13

173 1 SC61G_YEAST 44 8995 2 2 1 1 0,39

174 1 RRP43_YEAST 44 44269 1 1 1 1 0,07

175 1 FAS1_YEAST 42 229403 1 1 1 1 0,01

176 1 VPS30_YEAST 41 63564 2 2 1 1 0,05

177 1 YKC3_YEAST 40 32388 1 1 1 1 0,1

178 1 AMPM1_YEAST 39 44144 1 1 1 1 0,07

179 1 SSD1_YEAST 36 140211 1 1 1 1 0,02

180 1 NACB1_YEAS7 35 17010 1 1 1 1 0,2

181 1 YHI0_YEAST 34 77851 1 1 1 1 0,04

182 1 RIR1_YEAST 33 100296 1 1 1 1 0,03

183 1 TBA3_YEAST 33 50290 1 1 1 1 0,07

184 1 EF1G2_YEAST 31 46605 1 1 1 1 0,07

185 1 MBF1_YEAST 31 16394 1 1 1 1 0,21
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TABLE A.2: Model and refinement statistics for ribosome-Ski complex
dataset.

DATA COLLECTION Dataset 1 Dataset 2
Particles 175.038 258.426
Pixel size [Å] 1.084 1.084
Defocus range [µm] 0.7-2.5 0.7-4.0
Voltage [keV] 300 300
Electron dose [e- Å-2] 28 28

MODEL REFINEMENT 40S-Ski 60S
Model composition
Non-hydrogen atoms 103.043 124.555
Protein residues 7.958 6.513
RNA bases 1.954 3.444
Refinement
Resolution for refinement [Å] 4.2 3.8
Map sharpening B-factor [Å2] -115.3 -115.3
Average B-factor [Å2] 079.6 137.5
FSCaverage 0.79 0.83
R.m.s. deviations
Bond lenght [Å] 0.0070 0.0078
Bond angles [°] 1.13 1.24

VALIDATION 40S-Ski 60S 80S
Molprobity score 2.21 2.23 2.30
Clashscore, all atoms 3.07 3.37 4.08
Good rotamers [%] 96.16 95.84 96.01
Ramachandran Plot
Favored [%] 84.29 86.65 85.35
Outliers [%] 3.15 2.69 2.94
Validation (RNA)
Good puckers [%] 94.4 94.5 94.4
Good backbone [%] 58.7 66.4 63.6
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List of Abbreviations

µg Microgram

µl Microliter

µM Micromolar

3D Three-dimensional

aa-tRNA Aminoacyl-tRNA

A-site Aminoacyl-site

ATP Adenosine triphosphate

CAT tail C-terminal Ala/Thr tail

CC Cross-correlation

CTF Contrast transfer function

cryo-EM Cryo-electron microscopy

DC Decoding center

DHS Deoxhypusine synthetase

DOHH Deoxyhypusine hydroxylase

D. melanogaster Drosophila melanogaster

DNA Deoxyribonucleic acid

DTT Dithiothreitol

E. coli Escherichia coli

EF Elongation factor

EJC Exon-junction complex

ES Expansion segment

E-site Exit-site

FSC Fourier shell correlation

GTP Guanosine triphosphate

H. sapiens Homo sapiens
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HEAT Huntingtin, elongation factor 3, protein phosphatase 2A, Tor1

IF Initiation factor

kDa Kilodalton

LSU Large ribosomal subunit

MDa Megadalton

mg Milligram

mM Millimolar

mRNA Messenger RNA

NC Nascent chain

NGD No-go decay

NMD Nonsense-mediated decay

NSD Nonstop decay

OD Optical density

ORF Open reading frame

PAGE Polyacrylamide gel electrophoresis

PAP Poly-A polymerase

PDB Protein data bank

pre-rRNA precursor rRNA

P-site Peptidyl-site

PTC Peptidyl transferase center

RF Release factor

rpm Revolutions per minute

RNP Ribonucleoprotein

r-proteins Ribosomal proteins

RQC Ribosome quality control

rRNA Ribosomal RNA

S (unit) Svedberg unit

S. cerevisiae Saccharomyces cerevisiae

SD Shine-Dalgarno

SDS Sodium dodecyl sulfate

snRNA small non-coding RNA

SSU Small ribosomal subunit

TAP Tandem affinity purification

TC Ternary complex

TE Tunnel exit

TPR Tetratricopeptide repeat
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tRNA Transfer RNA

Ub Ubiquitin

UBL Ubiquitin-Like

UPS Ubiquitin-proteasome system

UTR Untranslated region

WT Wild type

YPD Yeast extract peptone dextrose

YPG Yeast extract peptone glycerol
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