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Science is not only a disciple of reason,
but also one of romance and passion.

Stephen Hawking
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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir, wie der Zerfall skalarer
Singuletts, die ihrerseits an den Higgs-Sektor koppeln, Dunkle Materie in der
Form steriler Neutrinos im keV-Massenbereich erzeugen kann. Wir nutzen alle
relevanten Observablen, um Beschränkungen an das Modell herzuleiten. Dabei
richten wir ein besonderes Augenmerk auf die kosmische Strukturbildung. Wir
betrachten das Modell auf der grundlegenden Ebene von Impulsverteilungs-
funktionen, da die genaue spektrale Form es erlaubt, alle relevanten Details
eines nicht-thermischen Produktionsmechanismus korrekt abzuleiten. Die Ver-
teilungen werden numerisch berechnet und durch analytische Betrachtungen
ergänzt. Letztere erleichtern das qualitative Verständnis der numerischen
Ergebnisse und liefern zugleich einen Bezugspunkt, um die Qualität der Nu-
merik zu beurteilen. Darüber hinaus überprüfen wir den Einfluss späterer
Korrekturen auf das Spektrum, wie sie etwa durch den Dodelson-Widrow-
Mechanismus hervorgerufen werden. Dazu entwickeln wir einen neuartigen
semi-analytischen Ansatz. Dieser erlaubt es, zuverlässig zu entscheiden, wann
die genannten Effekte tatsächlich zu vernachlässigen sind und wie man sie an-
dernfalls korrekt berücksichtigt. Zudem beziehen wir die zeitliche Entwicklung
des primordialen Hintergrund-Plasmas durch eine speziell entwickelte Vari-
ablentransformation in all unsere numerischen Berechnungen mit ein. Dieser
Ansatz lässt sich auf ähnliche Fragestellungen verallgemeinern. Des Weiteren
führen wir neue Methoden ein, um die Vereinbarkeit nicht thermischer Mo-
delle für Dunkle Materie mit den kosmischen Strukturen zu überprüfen. Dazu
analysieren wir das lineare Leistungsspektrum der Materie und vergleichen da-
raus abgeleitete Größen mit ihren experimentell beobachteten Gegenstücken.
Konkret benutzen wir die Häufigkeit von (Satelliten-)Galaxien sowie Lyman-
α-Daten. Auch diese Methoden sind gut auf ähnliche Konfigurationen über-
tragbar. Wir zeigen, dass die Produktion Dunkler Materie in der Form steriler
Neutrinos im keV-Massenbereich durch den Zerfall skalarer Singuletts, die an
den Higgs-Sektor koppeln, ein valides Modell darstellt. In großen Bereichen
des Parameterraumes sind die Vorhersagen des Modells im Einklang mit allen
relevanten Beobachtungen. Insbesondere erlaubt das Modell Parameterkonfig-
urationen in Bereichen relativ kleiner Massen des sterilen Neutrinos, welche in
anderen Produktionsmechanismen nur schwer für diese Art Dunkler Materie
realisierbar sind. Somit liefert das betrachtete Modell einen wichtigen Beitrag
zum hochaktuellen Forschungsgebiet der Dunklen Materie. Die Methoden,
die zu seiner Analyse entwickelt wurden, lassen sich gut auf weitere Modelle
übertragen.
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Abstract

In this thesis we investigate a mechanism in which keV-scale sterile neu-
trino dark matter is produced from the decays of scalar singlets coupled to
the Higgs sector in the early universe. We derive all relevant constraints on
this dark matter setup, putting our focus on the compatibility with cosmic
structure formation. We work on the fundamental level of momentum distri-
bution functions in order to capture all relevant details of this non-thermal
production mechanism. The distributions are computed in a fully numerical
way and supplemented with analytical methods easing the interpretation of the
numerical results and helping to assess their reliability. In addition, we revisit
the assumptions made about the additional effects of the Dodelson-Widrow
mechanism on the distributions: we provide a novel semi-analytical approach
to decide when the Dodelson-Widrow contribution is in fact negligible and how
to correctly take it into account otherwise. The background evolution of the
primordial plasma will be included in the numerical computations through a
variable transformation developed for this very purpose. This technique can
be applied to similar settings as well. Furthermore, we develop new meth-
ods for assessing structure formation for non-thermal dark matter candidates:
we analyse the linear matter power spectrum and compare derived quantities
to their observational counterparts inferred from Lyman-α data or from the
count of (satellite) galaxies. These methods also carry over to other setups
in a straightforward way. Taking into account all relevant observational con-
straints, we show that the decay of a scalar coupling to the Higgs sector is a
viable production mechanism for sterile neutrino dark matter. It features a
sizeable parameter space in agreement with all relevant observational limits.
It especially favours setups in regions of low sterile neutrino masses, which are
hard to accommodate in alternative production mechanisms for this kind of
dark matter candidate. Thus, the model investigated is of great interest for
the research field of dark matter, and it helps develop fairly universal methods
applicable to other dark matter setups.
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Chapter 1
Introduction

“No law or ordinance is mightier than understanding.”
Plato

The Standard Model of particle physics (SM) is an exceptional success
story. Its predictive capability appears almost too good to be true at times.
Take the anomalous magnetic moment of the electron, ae, for instance: the
deviation between the experimental value, aexp

e , and the SM prediction, aSM
e ,

can be quantified through [8]:

aexp
e − aSM

e

aexp
e

= −9.1× 10−10 .

In other words, the anomalous magnetic moment of the electron is predicted
to an accuracy of less than one part per billion. Also qualitatively, the SM is
successful in its predictions: it has forecast several elementary particles before
they were discovered. The ultimate missing piece of the SM was the Higgs
boson, which gives mass to all massive elementary particles of the SM. It was
predicted as early as 1964 [9], and finally discovered in 2012 [10].

Despite the great achievements of the SM, the scientific community has
accumulated evidence from a wide range of observations that there must be new
physics Beyond the Standard Model (BSM): while the SM predicts neutrinos
to be exactly massless, neutrino oscillation experiments have provided sound
proof that at least two mass eigenvalues in the neutrino-sector are non-zero
— despite being surprisingly small compared to the electroweak (EW) scale.
Another open problem is the energy budget of the universe: as of today, we
know that the particles of the SM present as ordinary matter in our cosmos
contribute only about 5% to the total amount of energy [11], whereas the
other 95% are accounted for by phenomena referred to as dark matter and
dark energy. Neither of them can be explained within the SM.

The problem of the cosmic dark matter contributed to the evolution of
the Standard Model of Cosmology (SMC) which, however, also has to make
ad-hoc assumptions about the origin and possible nature of dark matter and

1



2 1. Introduction

dark energy. More precisely, the SMC does not provide a natural dark matter
candidate but is rather to be seen as a framework which can accommodate
a plethora of potential BSM fields and which explains dark energy through a
cosmological constant Λ.

From cosmic structure formation we can conclude that dark matter cannot
have had too large velocities in the early universe. For this reason, the SMC is
also referred to as ΛCDM, combining the two dominating ingredients, namely
the cosmological constant Λ and Cold Dark Matter, CDM. We will discuss the
problematic notion of a temperature associated with dark matter in detail in
this thesis. Historically, this association was driven by the interplay between
the mechanism of thermal freeze-out and the proposed existence of Weakly
Interacting Massive Particles : combining the idea of dark matter as a thermal
relic with masses and interaction strengths roughly at the EW scale, the correct
abundance of dark matter is predicted, a fact which is known as the so-called
WIMP-miracle. The close connection to particles predicted in supersymmetry
(SUSY) made this convenient paradigm almost a dogma.

In the meantime, however, the ΛCDM model and its close connection to
SUSY have faced some drawbacks: there has been no sign of SUSY at the
LHC so far; also the non-convergent comparison of predictions and observa-
tions of structure formation at the scale of individual galaxies, referred to as
small scale problems, might hint towards a deviation from the pure ΛCDM
framework. Due to this development, the last years have seen a renaissance
of dark matter models with both non-thermal production mechanisms and
masses substantially below the EW scale.

This thesis discusses in detail a model where the decay of a generic BSM
scalar produces sterile neutrino dark matter with masses at the keV-scale.
Similar setups, where the scalar is the inflaton, i.e. a particle predicted to be
present all along in the early universe, have been discussed in Refs. [12–14].
First analyses of a setup, where the scalar is created through a Higgs portal,
either via freeze-out or via freeze-in, have been presented in Refs. [15–17] and
Refs. [1, 18], respectively. Different variations of decay production have been
presented in Refs. [19–27]. Some of them feature different parent particles
like vectors [28–30], Dirac fermions [31] or even pions [32, 33]. Effects that
can potentially modify some of these variants of decay production, such as
influences from inflation [34] or the degree to which thermal corrections are
relevant [35], have been discussed as well. For our particular setup, the latter
two do not play an important role [34, 35], though.

Scenarios creating dark matter at the keV-scale have historically often been
dubbed Warm Dark Matter or even Hot Dark Matter models. However, the
non-thermal nature of production mechanisms different from thermal freeze-
out makes such notions in fact very prohibitive. In order to assess the compati-
bility of a non-thermal dark matter candidate with cosmic structure formation,
the full spectral information is relevant since, unlike in the thermal case, the
momentum distribution function (MDF) is not a priori known.
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To address the compatibility of the setup with observations, we study the
model of sterile neutrinos from scalar decays (SD) not on the aggregate level of
particle number densities but on the level of MDFs. We discuss how this more
complicated task, involving coupled systems of integro-differential equations in
two variables, can be tackled both analytically and numerically. The resulting
MDFs — which of course depend on the particle physics parameters of the
model — are used to derive constraints from structure formation and other
observables. As the field of structure formation also historically focused mainly
on thermal dark matter candidates, we develop new approaches for arbitrary
spectra and compare them to existing estimates. We also show that the toolbox
developed in the context of thermal dark matter is not capable of capturing the
diversity of non-thermal models such as our SD setup. Hence, this dissertation
is a due contribution to the intersection between the research fields of cosmic
structure formation and the particle physics aspects of dark matter.

Altogether, we show that sterile neutrinos from SD with masses at the keV-
scale are a well-motivated dark matter candidate. The setup features a sizeable
parameter space that is in accordance with all cosmological bounds and yet
realistically testable in the future. Both the methods developed to compute
the MDFs of non-thermal production mechanisms as well as the approach to
assess their compatibility with cosmic structure formation are not restricted
to this specific scenario, though, and they hence do carry over to other setups.
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Outline of the thesis
Chapter 2 will give a short review on the status of dark matter research, putting
special emphasis on the relevant aspects of cosmic structure formation.

In chapter 3, we will then give motivations for the existence of sterile neu-
trinos beyond their potential role as the cosmic dark matter.

In chapter 4, we will discuss general templates of dark matter production
mechanisms in order to explore the variety beyond thermal freeze-out. This
chapter will set the stage for the formal treatment of Boltzmann equations on
the level of MDFs.

Chapter 5 will then be devoted to the computation of the MDFs in our
generic setup extending the SM by a real scalar singlet and one generation
of sterile neutrinos. After discussing the particle physics of the setup, we
will detail both analytical and numerical solutions for the related Boltzmann
equations in different regimes of the model.

In chapter 6 we will introduce a handy formalism to assess the effect that
the Dodelson-Widrow mechanism (DW), caused by active-sterile mixing, has
on MDFs of sterile neutrinos produced by an arbitrary preceding production
mechanism. This framework will cover the pure DW case (no initial abun-
dance) and allow us to clarify some of the statements present in the literature.
It will also be directly applicable to our decay production mechanism.

In chapter 7, we will in detail discuss how to assess the compatibility of our
SD mechanism with cosmic structure formation. After discussing the short-
comings of existing approaches for non-cold dark matter, we will introduce a
new, much more reliable method and apply it to all interesting regions of the
parameter space of the SD model.

Chapter 8 will give an outlook to even more sophisticated methods of as-
sessing structure formation for non-thermal dark matter models that were
applied to our model in collaboration with researchers with special expertise
in N -body simulations and analysing first-hand Lyman-α data.

Finally, chapter 9 will conclude this dissertation.



Chapter 2
Dark matter and the web of cosmic
structures

“Where the senses fail us, reason must step in.”
Galileo Galilei

This chapter is devoted to a general introduction to the field of dark matter.
We will recapitulate the most relevant pieces of evidence for its existence in
section 2.1. Then we will show how dark matter is searched for and what
kind of constraints these different search strategies can yield in section 2.2.
After this, section 2.3 will put emphasis on the intimate connection between
dark matter and the observed spatial structure of astrophysical objects, such
as galaxies or galaxy clusters. This connection will be a fundamental obser-
vational cornerstone when we compare sterile neutrino dark matter models to
the reality of the observed universe. Finally, we will discuss general templates
of dark matter production scenarios in section 2.4.

2.1 Evidence for dark matter

The true nature of dark matter has been elusive ever since pioneers like Kap-
teyn, Oort and Zwicky hypothesised its existence almost a century ago. Even
though dark matter has never been observed without serious doubts in any
earthbound laboratory, thousands of man-years and billions of dollars have
been expended in order to finally unveil the secret of dark matter. Of course
this would look like complete lunacy if there was not a long and convincing
list of evidence advocating the existence of dark matter. In the following,
we will give a short overview of the most striking pieces of evidence, ranging
from short length scales (in a cosmological sense!) of individual galaxies to the
largest conceivable length scale, i.e. the scale of the entire visible universe. We
will also introduce some basic notions of early universe cosmology, laying the
foundation for the main part of this work.

5



6 2. Dark matter and the web of cosmic structures

2.1.1 The scale of galaxies

Spiral galaxies like our Milky Way (MW) rotate around their centres with a
radial velocity v (r), which can be measured by the Doppler shift in the 21
cm hydrogen emission line of stars and intergalactic gas.1 This rotation can
be described through classical Newtonian dynamics, and hence the velocity
should be given by

v (r) =

√
GMr

r
, (2.1.1)

where G is Newton’s constant and Mr is the mass enclosed in a sphere of
radius r.2 This quantity can be modelled by measuring the luminosity as a
function of r and then inferring the related mass through a certain range in the
luminosity-to-mass ratio calibrated against known astrophysical objects. In a
pretty simplified picture, the innermost region of a galaxy, the so-called bulge,
is characterised by a constant density, such that Mr ∼ r3. In the outer regions
of the spiral arms, the density decreases quickly, such that Mr stays almost
constant. Hence, one would expect that v (r) ∼ 1/

√
r in these outer regions.

However, the observation of a large number of spiral galaxies reveals that the
rotation curve becomes flat, i.e. v (r) ∼ const at large r. This observation
can be explained through eq. (2.1.1) by postulating an additional dark matter
component the density of which scales as 1/r2 at large radii.

Fig. 2.1 shows a Hubble view [36] of spiral galaxy NGC 6503 and the
corresponding rotation curve [37] with a three-component fit including the
visible component (dashed), a gas component (dotted) as well as a dark matter
component (dash-dotted). It is clearly visible that the curve flattens at radii
larger than about 4 kpc and that the dark matter halo contribution is the most
relevant in these outer regions.

While fig. 2.1 is just an example, this behaviour is quite universal and
not at all unique to NGC 6503. For an extensive review of rotation curves,
including a dedicated discussion of the rotation curve of our own galaxy as well
as all the technical subtleties of such analyses, we refer the interested reader
to Ref. [38].

1Note that the notion of a rotation curve described by the function v (r) implies that the
velocity is indeed only a function of radial distance. In reality, there will be deviations from
this idealised situation, such that a rotation curve presented in the literature already relies
on some assumptions on how to treat such asymmetries.

2Even though spiral galaxies are rather flat, i.e. their volume can be approximated by
a cylinder with a radius much larger than the height, this description makes sense: in the
inner region, the extent perpendicular to the plane is not negligible and the distribution
can be approximated to be spherically symmetric. Hence, due to the shell theorem, the
observer outside a shell at radius r experiences the same gravitational potential as generated
by a point mass at the origin with all the mass enclosed in the shell. If the density is then
dominated by a spherically symmetric dark matter density in the model, the argument holds
even outside this inner region. For an individual galaxy, the model can be more complicated,
but the above argument can be transferred qualitatively.
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(a) Hubble view of NGC 6503 (b) Rotation curve of NGC 6503

Figure 2.1: Hubble view (left panel) and rotation curve (right panel) for spiral
galaxy NGC 6503. See main text for more information.

2.1.2 The scale of galaxy clusters

Galaxies are not evenly distributed in the universe. They form conglomer-
ates, so-called clusters (more on cosmic structures in section 2.3). Studying
the galaxy cluster Abell 1656, also known as the Coma Cluster, the Swiss
astronomer Fritz Zwicky deduced the existence of dark matter as early as
1933 [39].

He measured the velocity dispersion of galaxies in the cluster, again making
use of the Doppler effect. He then deduced the total mass of the cluster,
invoking the virial theorem (hence assuming the cluster to be virialised). With
these observations, he concluded that the mass-to-light ratio of the cluster
deviates from that of the Sun by a factor of about 500 [40]. While some of this
discrepancy could, of course, be attributed to a variation in the mass-to-light
ratio of different kinds of stars, the sheer size of the deviation made Zwicky
infer a dark matter component, which must constitute the largest mass fraction
of the cluster.

As of today, we know that Zwicky’s argument was to some extent flawed:
besides the stars, there is a large baryonic component of gas present in galaxy
clusters. It outweighs the stars by a factor of about 5 [41] and is visible in
X-ray satellite images of the cluster. Although this invalidated the quantita-
tive dimension of Zwicky’s statement, it has in fact enforced the concept of
dark matter: X-ray images allow to reconstruct the gas temperature, which
implies velocities that are typically far beyond the escape velocity related to
the gravitational potential of all the baryonic components in the cluster.

So even if a little less abundant than inferred by Zwicky, the statement
that Abell 1656 is clearly dominated by a non-luminous form of matter stands
the test of time. This more advanced analysis of galaxy clusters using X-
ray observations has by now been applied to a large number of clusters and
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hence the support for dark matter as their typically dominating component
has strengthened further still.

Another striking piece of evidence at the cluster scale comes from the ob-
servation of a spectacular event that happened about 3.4 billion years ago: two
galaxy clusters collided to build a structure that goes under the name of 1E
0657-558 today, more widely known as the Bullet Cluster.

Fig. 2.2 shows an X-ray image of the Bullet Cluster, with additional green
lines mapping the gravitational potential (the gravitational convergence, to be
precise) that has been inferred from weak gravitational lensing.3 One can see
by bare eye that there is a clear offset between the centres of gravity of the two
clusters (the “peaks” in the gravitational convergence map) and the centres of
the distribution of the hot, X-ray emitting gas.

This picture can be explained in the dark matter framework as follows.
During the collision, the dark matter components of both clusters just colli-
sionlessly passed through each other, which also shows that dark matter self-
interaction cannot be too strong. The same holds true for the galaxies, where
one would expect few collisions just because of their small spatial extent com-
pared to the total size of the cluster. The gas component, however, experiences
a ram pressure when passing through the other cluster’s gas component. This
mechanism will decelerate the gas component which will hence be left behind
with respect to the other components. The analogy to a bullet passing through
some material, creating a shock wave behind it, is obvious and gave the cluster
merger its popular name.

2.1.3 The scale of the visible universe

So far, we have seen evidence for dark matter on relatively small cosmolog-
ical scales, and in the collapsed structures that are characteristic for these
scales. Our quantitatively best measurement of the abundance of dark mat-
ter, however, comes from the observation of the cosmic microwave background
radiation (CMB) and thus from the scale of the entire observable universe.
Before going into the details of the CMB, we will introduce some very basic
information and formalism about early universe cosmology.

The Friedmann-Robertson-Walker Universe The overall evolution of the
early universe is usually treated in a framework known as the Standard Cosmo-
logical Model the basis of which is the Friedmann-Lemaître-Robertson-Walker

3Gravitational lensing is a distortion of an image caused by the deflection of light in strong
gravitational fields, as predicted by Einstein’s theory of General Relativity. A sound discus-
sion of the theoretical and technical basis of General Relativity and gravitational lensing is
beyond the scope of this introduction. The interested reader is referred to a comprehensive
review, like [42]. Note that, however, apart from the effect of weak gravitational lensing
discussed above, there also exists the phenomenon of strong gravitational lensing, leading to
the famous idea of Einstein rings which have been observed in the universe and serve as an
additional probe of the dark universe.
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Figure 2.2: X-ray image of the Bullet Cluster taken by the satellite mission
Chandra with colour-coding of the emission intensity and a map of gravita-
tional convergence inferred by weak gravitational lensing. Taken from [43].

(FLRW) metric. The metric describes the fundamental properties of space-
time in the language of General Relativity: it translates between the coor-
dinates chosen to describe a certain geometry of space-time and observer-
independent geometrical invariants. The FRW metric is built around the ob-
servation that the universe is isotropic and homogeneous on the largest scales.
It reads

ds2 = c2dt2 − a2 (t)

{
dr2

1− kr2 + r2dθ2 + r2 sin2 θ dφ2

}
, (2.1.2)

where (r, θ, φ) are common spherical coordinates in three dimensions, t denotes
cosmic time, and k parameterises the curvature of the 3-dimensional spatial
subspace. The scale factor a (t) absorbs all time dependence of the metric and
can be understood to encode the absolute scale4 of the universe.

The temporal evolution of a (t) is governed by the Friedmann equation,
which is derived from Einstein’s field equations in the special case of a FLRW
metric. Defining the Hubble function H (t), it reads

H2 (t) ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2 +
Λc2

3
, (2.1.3)

4Note that the choice of dimensions in eq. (2.1.2) is a matter of convention. We will put
the dimensions of length into the radial variable r, such that a becomes a dimensionless
scale factor, which can be gauged to have a value of one today.
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where ρ is the energy density5 and Λ is the cosmological constant. The dot
denotes a derivative with respect to cosmic time t.

These parameters determine both the spatial geometry of the universe and
its long-term fate, i.e., the question whether the universe will eventually re-
collapse or expand forever. It is conventional to define the density parameters
Ωi as ratios of the actual energy density of a given component and the critical
energy density, defined by

ρcrit ≡
3H2

0

8πG
, (2.1.4)

where H0 is today’s Hubble expansion rate. The sum of the energy densities
in matter (M), radiation (rad) curvature (curv) and the cosmological constant
(Λ) is then equal to one by definition:

ΩM + Ωrad + ΩΛ + Ωcurv = 1 . (2.1.5)

Note, that the parameters Ωi are not constant in time, as they scale differently
with the expansion of the universe. Today’s values are often denoted by an
additional 0 in sub- or superscript. Also, massive particles should be included
into the radiation component as long as they are ultrarelativistic and into the
matter component when they enter the non-relativistic regime.

CMB anisotropies The CMB is a snapshot of our visible universe taken
about 380.000 years after the Big Bang. Prior to that time, the plasma of
the universe contained atomic nuclei (mainly 1H and 4He), free electrons and
photons (as well as neutrinos, which will not be relevant for this discussion
as they had already decoupled from the plasma much earlier, namely within
the first minutes after the Big Bang). When the temperature dropped below
a certain threshold6, the equilibrium shifted to neutral atoms instead of nuclei
and free electrons such that the photons, no longer scattering on free electrons,
could start to stream freely. The CMB had already been predicted as a logical
consequence of the Big Bang by Gamow in the 1940s and then been discovered
(rather by accident) by Penzias and Wilson in 1965.

The CMB is a perfect black-body radiation that reaches us from every
direction in space. Measuring the respective temperature for different direc-
tions in the sky allows to make a temperature map, usually shown with the
temperature in some colour-coding. After subtracting a dipole arising due to

5In this case, the energy density includes both matter and radiation terms. In its most
compact form, the right hand side of eq. (2.1.3) contains just a single term proportional to
a total energy density ρtot which absorbs the curvature and cosmological constant terms.

6A simple guess for the energy scale of this transition is, of course, given by the ionisation
energies of hydrogen and helium, hence in the ballpark between 10 eV and 20 eV. A more
careful analysis using Saha equations shows that the real threshold is indeed lower, namely
at some hundreds of meV, which can be explained by the high-energy tail of the momentum
distribution of photons in thermal equilibrium.
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the peculiar motion of the Local Group (hosting the MW) with respect to the
Hubble flow as well as after subtracting the galactic foreground, one is left
with a map exhibiting a temperature of 2.73 K throughout the sky, distorted
only by small fluctuations of the order of O

(
10−5

)
. These fluctuations have

been measured with ever increasing angular precision by subsequent satellite
missions. The most detailed information, coming from the Planck satellite, is
shown in fig. 2.3 [44].

Figure 2.3: Anisotropy map of the CMB after subtracting the galactic fore-
ground and the dipole caused by the particular motion of our Local Group
through the Hubble flow. The colour-coding shows the anisotropies on a scale
of hundreds of µK.

The spatial pattern of these inhomogeneities allows to constrain (among
other relevant quantities) the density parameters Ωi. Together with other
observations like the redshift-distance relation of type Ia supernovae or Big
Bang Nucleosynthesis (BBN), a concordance model has emerged during the
last decades. Since a complete review of the physics behind these observations
is beyond the scope of this introductory chapter, we want to summarise the
key aspects of this so-called ΛCDM model instead:

• The universe is (almost) spatially flat, with a current best-fit value of
ΩK = 0.0008+0.0040

−0.0039 [11, Tab. 5].

• The largest contribution to the total energy density comes from a cos-
mological constant, ΩΛ = 0.6911± 0.062 [11].

• The second largest contribution comes from a cold dark matter compo-
nent, ΩDM = ΩCDM = 0.2647 ± 0.0033. [11] The notion of dark matter
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being cold intends to make a statment of the velocity distribution of dark
matter. We will go into more details about this notion later in section 2.3.
However, a brief word of warning should not be postponed: while we will
see that there is overwhelming evidence restricting the time in cosmic
history where dark matter could have been ultrarelativistic, there is no
need for dark matter to have a thermal spectrum at all. In this case,
terms like temperature or cold should be used with great care in order
not to make wrong, premature statements. A central part of this the-
sis will be centred around this subtle shortcoming in the naming of the
concordance model.

• A baryonic component of ΩB = 0.04910±0.00051 [11] accounts for all the
visible objects like stars, galaxies or gas in galaxies and galaxy clusters.

• The radiation density in photons is well known from the CMB measure-
ments. Its contribution to today’s energy budget of the universe is small,
Ωrad ≈ 5.5× 10−5 [11].

• The cosmic neutrino background (CνB) also makes up a small contribu-
tion to the total energy budget. Unlike the CMB, the CνB has not yet
been observed and is a product of theory only (a very firm one though).
There are efforts ongoing to provide sound experimental proof of the
CνB as well [45]. Some techniques, like laser interferometry on a pen-
dulum, are still quite futuristic from today’s technological standard but
still potentially interesting (see [46]). Its precise density parameter Ων is
not known in theory either since the absolute neutrino mass scale is yet
unknown. Nonetheless, there are upper bounds (from lab experiments
as well as from cosmology) and lower bounds (inferred from neutrino
oscillations) on the mass scale, such that we know that Ων is a few times
10−3. Also note that the possibility of the lightest neutrino being mass-
less implies that the CνB could partly contribute to ΩM and partly to
Ωrad today.7

A critical reader might stumble on the interesting thought that the mea-
surement of the total dark matter density comes from early times (i.e. the de-
coupling of the CMB), while all measurements of galaxies, clusters and other
collapsed structures can only contain information about the dark matter den-
sity in these rather compact objects that evolve much later in cosmic history.
Thus, a substantial fraction of dark matter could in principle have decayed in
between recombination and the on-set of structure formation (see section 2.3).
While this train of thought is certainly qualitatively correct, one can restrict
the fraction of dark matter that might have decayed already to a few per-
cent at most, by taking into account that the CMB itself gets lensed through
large-scale structures [47].

7More on neutrino masses in section 3.1.
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2.1.4 Can the SM of particle physics explain dark matter?

In section 2.1.3, we have already seen that the combination of the CMB and
other observables has the power to discriminate the non-luminous matter com-
ponent from the baryonic one, which is an important insight. After all, one
could ask whether the dark matter component consists of SM degrees of free-
dom which are just non-luminous due to several possible reasons.

Massive compact halo objects (MACHOs) like planetary objects, not lumi-
nous by themselves, have also been discussed in the literature but can nowadays
be restricted by limits on the weak gravitational lensing effects they would have
to trigger. Even though they have been proven to exist (which should not be
too big a surprise), they cannot make up a significant fraction of the dark
matter density. With neutrinos and electrically neutral baryonic objects out
of the way, the SM does not have any more candidates left such that dark
matter searches necessarily have to enter the realm of physics beyond the SM.

There might be one subtly hidden backdoor in this reasoning, though: if
the baryonic nature of an object is “hidden” early enough in cosmic history, it
would not affect observables like the CMB as the “normal” baryonic component
does. Such a scenario is possible when dark matter is made of black holes (BH)
created out of baryonic matter long before the decoupling of the CMB. This
special form of BH is usually referred to as primordial black holes (PBH).

Also these scenarios can be bounded by many effects and observables such
as (again) weak lensing, life-time constraints (light BHs evaporate rather fast)
or accretion effects that would after all leave some (unseen) traces in the CMB.
The overall picture of the field suggests that PBHs can only make up a small
fraction of dark matter [48–50]. Still, the first direct observation of a gravita-
tional wave (GW) in event GW150914 [51] in September 2015 and subsequent
events observed by the LIGO GW interferometer have triggered new interest
in this idea. With substantial theoretical uncertainties remaining present in
the calculation of the bounds on such models, it is probably worthwhile to also
set up dark matter searches in the new territory of GW astronomy.

Besides this intriguing possibility, theories beyond the SM feature an almost
endless list of possible dark matter candidates. The most famous and most
extensively discussed candidates include supersymmetric particles (see e.g. [52]
for a status of supersymmetry after LHC run I), axions (see e.g. [53] for a
review), extra dimensions (e.g. [54, 55] for extensive discussion), and sterile
neutrinos. This thesis will add a contribution to the literature on the latter
topic.

2.1.5 Alternative theories to dark matter

Before advancing to a brief overview of dark matter detection techniques, we
want to make a short comment on alternatives to particle dark matter. All
the pieces of evidence presented in section 2.1.1 to section 2.1.3 are based
on systems in which we observe a mismatch between the gravitational poten-
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tial inferred from the visible matter components and the actual gravitational
potential inferred by one or the other observed (kinematic) quantity. While
particle dark matter is an elegant way to solve all these problems, it could as
well be that our understanding of gravity on large scales, naturally not testable
in the laboratory, is flawed.

The history of the exploration of our own solar system provides an inter-
esting and suitable anecdote: in 1846, French mathematician and astronomer
Urbain Le Verrier predicted the position of the new, back then yet unobserved
planet Neptune, the gravitational impact of which is imprinted onto the tra-
jectory of the neighbouring planet Uranus. In a similar way, Le Verrier postu-
lated another planet called Vulcan orbiting the Sun even closer than Mercury
in order to explain the advance of Mercury’s perihelion. In this latter case,
Einstein’s theory of General Relativity (GR), which emerged at the beginning
of the 20th century and re-defined our understanding of gravity, could perfectly
explain this phenomenon without any new, free parameters. This great success
of GR became the sudden tombstone of the hypothesised Vulcan.

So, looking at history, both basic principles of resolving a mismatch in
observed and expected gravitational effects have worked out in real science
cases. Thus, a priori, it does not seem too far-fetched to question the theory of
GR on larger scales. These thoughts are condensed into the theories ofModified
Newtonian Dynamics (MoND), first proposed by Milgrom in the 1980s [56].
The theory was extended to more complicated frameworks which encompass
relativistic generalisations of Milgrom’s original idea [57].

However, unlike the paradigm of particle dark matter, alternative theories
of gravity have difficulties explaining all of the pieces of evidence discussed
earlier in a consistent way. Especially the Bullet Cluster merger is a severe
problem for the theory. For that reason, the overwhelming majority of scien-
tists in the field exclusively focuses on the dark matter paradigm and considers
MoND and its extensions to be ruled out. For observational evidence against
modified gravity beyond the Bullet Cluster, see e.g. [58]. For purely theoret-
ical shortcomings of MoND and its generalisations we refer to Ref. [59] for
instance. Nonetheless, we invite the critical reader to look into the subject to
get further insights into the open questions of dark matter research. Reviews
like Ref. [60] give comprehensive overviews.

2.2 How to corner dark matter

With all the sound evidence for particle dark matter coming from its gravi-
tational effects, the insights into the particle physics properties are still quite
thin. A wide range of experimental efforts intertwined with the corresponding
theoretical work is in place in order to corner the true nature of dark mat-
ter. Again, a full up-to-date review of the current detection techniques and
their results is beyond this work’s scope. We will restrict ourselves to a brief
overview over the possible detection channels and useful references for further
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reading.
All efforts to unveil the particle properties of dark matter are based on

the idea that the dark matter particle(s) share some interaction with particles
of the SM. This idea is schematically depicted in fig. 2.4, which is sometimes
colloquially referred to as the “make it, shake it, break it”-diagram. The dia-
gram can be read in different ways, each of them depicting one of the different
detection techniques that we will explain in some more detail in the following.
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Figure 2.4: Detection techniques for dark matter. Schematic plot of an interac-
tion between dark matter (DM) and some Standard Model degrees of freedom
(XSM).

Indirect detection (break it) The idea behind indirect search is the vast
amount of dark matter in the universe and potential signals coming from pair-
wise annihilation or decay8 of dark matter.

If annihilation or decay of dark matter creates SM particles, one expects a
signal of predictable shape and strength above the related background created
by astrophysical processes. Indirect searches can be based on Earth (e.g. using
neutrino telescopes such as IceCube or Cherenkov-telescopes such as MAGIC)

8The diagram shows pairwise annihilation for illustration purposes. The prediction of
decay or annihilation channels is where concrete particle physics models come into action.
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or they are performed in space with dedicated satellites (like the FERMI space-
craft) or equipment hosted by the International Space Station, like AMS-02.
This kind of experiments usually restricts the annihilation cross section or de-
cay width of the dark matter particle as a function of its mass. The general
difficulties of this approach lie in the need to understand the astrophysical
backgrounds precisely and in the rather large uncertainties in dark matter
densities along the line of sight, as well as in the propagation of charged fi-
nal state particles through the galaxy and its magnetic fields. A pedagogical
review based on a quite recent status of observations can be found in Ref. [61].

Direct detection (shake it) As detailed in section 2.1.1, we expect the MW
to be hosted by a halo of dark matter. Due to its motion around the Galactic
Centre, the solar system constantly sweeps through this dark matter halo,
creating a constant flux of dark matter through the Earth. These dark matter
particles can scatter off nuclei or electrons of ordinary matter and thereby
transfer energy and momentum to the collision target. Having large detectors
that are carefully shielded against cosmic radiation and radioactive decays,
one can try to find these collisions in order to infer dark matter properties.
One either looks for signals beyond the unavoidable background rate or for an
annual modulation of the signal rate in the detector.

The latter effect arises since, during the year, the velocity vector of the
Earth’s orbit around the Sun sweeps all angles from 0 to 2π with respect to
the Sun’s velocity vector around the galactic centre, which is quasi constant
(the Sun’s orbital period being some 200 million years). Therefore the flux, as
seen in the Earth’s frame of reference, changes over the year and one expects
different count rates per unit time throughout the year.9

Fig. 2.5 shows a compilation of bounds and projections (as of 2014) in the
plane spanned by the dark matter mass and its spin-independent scattering
cross section with nucleons.10

Let us dwell on fig. 2.5 for a short moment: some experiments (like DAMA
or CRESST) have claimed the observation of signals (closed contours) in pa-

9In the same spirit, there is a daily modulation in the flux due to the Earth’s rotation.
However, the maximal rotation velocity of a point on the Earth’s surface (i.e. of a point on
the equator) is about 0.5 km/s and therefore much smaller than the average velocity of the
Earth around the Sun, which is about 220 km/s. Hence, the daily fluctuation would be tiny.
Nonetheless, this approach could serve as a valuable cross check for experiments looking for
annual fluctuations.

10Note that these analyses usually assume the same scattering cross section on neutrons
and protons, i.e. the interaction is said to be isospin invariant. This is a simplifying as-
sumption to make constraints as model independent as possible. Since the total scattering
cross section of dark matter and an atomic nucleus is a coherent sum of the proton and the
neutron scattering cross sections multiplied by the respective multiplicities in the core, one
can find models where the direct detection bounds are weaker. Since all target materials
will consist of various isotopes, there will never be a complete cancellation of the proton and
the neutron terms such that this argument can weaken the bounds by some few orders of
magnitude at most.
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Figure 2.5: Compilation of constraints and signal claims of a wide range of
direct detection experiments. Figure taken from [62].

rameter space that is excluded by other experiments at the same time. In
some cases (CRESST), the claim disappeared with more data, while the claim
of DAMA/LIBRA is still existing and under heavy dispute. Note that, how-
ever, apart from the aforementioned assumption of isospin invariance of the
scattering cross section, there are further astrophysical assumptions going into
these analyses, like the velocity distribution of dark matter in the galactic
halo, for instance. Dedicated strategies have been developed to factor out
these uncertainties as much as possible [63–66]. In these more general set-
tings, the tension between signal claims and opposed limits can be reduced
quite significantly. Depending on how many of the underlying assumptions
are questioned, the tension can almost vanish. For different points of view, we
refer to Refs. [67–69] and references therein.

When trying to keep up-to-date with the observational input from all the
various experiments, Ref. [70] is a quite helpful resource. Two more remarks
about the figure are in order:

1. The axes of the plot explicitly refer to WIMP dark matter. Note that this
name only refers to scales of the mass and the interaction cross section
and should not automatically be associated with a thermal production
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mechanism (the WIMP miracle). Production scenario templates will be
covered in detail in section 2.4.

2. At low interaction cross sections, there will be an irreducible background
caused by coherent scattering of solar neutrinos (region up to about
10 GeV) or atmospheric neutrinos as well as neutrinos from the diffuse
supernovae background flux (dominating the region of about 10 GeV up-
wards). We refer to Ref. [71] for a detailed discussion of this background.

Collider searches (make it) The last detection technique that can be read
from fig. 2.4 is the potential production of dark matter in particle colliders
such as the LHC. If dark matter particles escape the detector without inter-
action, this would lead to an apparent imbalance of (transverse) momentum
and energy. Refined analyses searching for such events usually constrain the
parameter space of the mass of the dark matter particle and some (effective)
coupling to the particles accelerated in the collider or their constituents. So
far, there has been no real hint for a dark matter candidate at the LHC. Note
that even a positive finding of a new massive, longlived, and neutral particle
at colliders would require careful further analyses to deduce whether this par-
ticle also makes up the cosmological dark matter present in the universe. For
a recent review on dark matter searches at the LHC and their connection to
complementary searches, we refer to [72] and references therein.

2.3 Dark matters: the emergence of cosmic struc-
tures

In section 2.1, we have already seen how dark matter influences the dynamics
of objects such as galaxies or galaxy clusters. In this section, we will see how
dark matter is also responsible for the emergence of these very structures and
can therefore be seen as an absolutely fundamental factor in the evolution of
the universe. Fig. 2.3 has shown that the universe was almost homogeneous
380.000 years after the Big Bang, with relative inhomogeneities of the order
of 10−5. Today, the universe exhibits rich structures on various cosmological
length scales, as already discussed in sections 2.1.1 to 2.1.2.

Fig. 2.6 shows a map of the galaxies in the local universe up to distances
of about 850 Mpc.11 It is clearly visible that the distribution of individual
galaxies is far from homogeneous on these scales. Instead, one can identify
the aforementioned galaxy clusters and a filamentary structure laid out by
the baryonic matter density in today’s universe. The corresponding density
contrast is hence much higher than the small fluctuations observed in the CMB.

11The parsec, abbreviated pc, is a common unit of length used in astrophysics and cos-
mology. It equals to about 3.26 ly or, equivalently, to 3.086 × 1016 m and comes with the
usual prefixes for powers of ten.
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Note that the map is not a “snapshot” of the structure of the universe as it is
today. Looking at objects 850 Mpc away from us also means looking about
2.5× 109 years into the past, cf. also eq. (2.3.2).

These structures were indeed seeded early on, in the epoch of inflation,
and they could then grow under the influence of their own gravitation (more
about inflation in section 2.4). Of course, this effect of self-gravitation is ac-
companied by many other relevant physical processes throughout the evolution
history. Examples for such effects are Baryonic Acoustic Oscillations on co-
moving scales of about 150 Mpc (the sound horizon) or baryonic feedback,
affecting rather small scales of a few Mpc [73] or even less. A crucial effect
comes from the motion of dark matter itself. Depending on its velocity dis-
tribution, the dark matter particles can stream away from overdensities and
hence erase or at least weaken density contrasts on a certain scale. This will be
elaborated on in more detail in chapter 7. For now we want to stress that the
precise knowledge of the velocity or, likewise, the momentum distribution of
the dark matter particles will be key in assessing the predictions for structure
formation of a certain model.

A detailed review of the relevant aspects of structure formation cannot
be accommodated in this introductory chapter. We therefore want to point
the reader to a pedagogical [74] as well as a more technical [75] reference and
restrict ourselves to introducing the most relevant quantities and taking a quick
look into the observational side, as already touched in fig. 2.6.

Let us start with a brief discussion of the linear matter power spectrum
that we will encounter later in this thesis and which will be indispensable
when it comes to constraining dark matter models. The different components
like photons, baryonic or dark matter all have an associated energy density
ρi (~x, t), depending on position (through some choice of coordinates ~x) and on
cosmic time t. They can be seen as the local breakdown to the global density
parameters Ωi that integrate out all local density fluctuations.

A quantity that is easier to grasp is the relative deviation, denoted δi, from
the spatial average ρi (t):

δi (~x, t) ≡
ρi (~x, t)− ρi (t)

ρi (t)
. (2.3.1)

From the knowledge of δ (~x, t), one can derive the correlation function of its
Fourier transform δ̂i, which defines the power spectrum Pi (k), where k = |~k|
is the wave number in the Fourier space dual to the coordinate space charac-
terised by the coordinates ~x:〈

δ̂i

(
t,~k
)
, δ̂i

(
t, ~k′
)〉
≡ δ(3)

(
~k − ~k′

)
Pi (k, t) , (2.3.2)

where δ3 denotes the delta distribution in 3 dimensions.
The evolution of the different densities and their potential interaction is

the very question around which the whole discipline of cosmic structure for-
mation is centred. Speaking in very general terms, this evolution is usually
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Figure 2.6: Map of a slice of our local universe up to distances of about
850 MPc as observed by the Sloan Digital Sky Survey (SDSS) and presented
in [76]. A web like structure is evident to the bare eye.

split into an early stage of a linear growth of perturbations and a later stage
of non-linear growth. While the former case (i.e. the regime of δi � 1) can be
treated with analytical equations, the later stadium is only accessible through
semi-analytical methods or fully numerical N-body simulation. Note that this
transition time between linear and non-linear behaviour depends on the wave
number k of the respective mode.

In chapter 7 we will go into more detail on how to assess the predictions
of cosmic structure that arise from a given model for dark matter production
in the early universe. Let us nonetheless dwell on a crucial point for a brief
moment: since dark matter outweighs the baryonic matter component, it is
obvious that the structures visible in today’s universe are mainly determined by
invisible dark matter structures. Through their relatively large gravitational
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potential, they force the baryonic matter into a closely related structure. This
point is crucial because of the following:

1. The initial conditions of the dark matter population of the early universe
will be highly relevant for the details of today’s baryonic structures.
Hence the production of dark matter must be understood in detail in
order to test the related particle physics model against observational
data. This thesis is centred about this very question for a certain range
of dark matter models.

2. We can use the baryonic structures in order to infer the invisible struc-
tures of dark matter which can then, in turn, be tested against predictions
derived from a certain model. Nonetheless, the exact degree to which the
baryonic matter density traces the dark matter structures is still a source
of uncertainty, e.g. in Lyman-α analyses. The relation between both is
modelled through the so-called bias, which is subject of ongoing research.

Before concluding this section, let us present a compilation of measure-
ments of the linear matter power spectrum in fig. 2.7 [77]. At the largest
scales, the correlation is inferred from the CMB, while intermediate scales are
derived from redshift surveys such as the 2dFGRS (e.g. [78]) survey or the
aforementioned SDSS.

The band around wave numbers of about 0.5 h/Mpc is mainly mapped out
by weak gravitational lensing.12

The smallest scales are probed by the so-called Lyman-α forest, which will
play a fundamental role in chapter 7. The notion of the Lyman-α forest refers
to the spectrum of a distant source which gets partly absorbed by the hydrogen
present on the line-of-sight from the source to the observer. At each point
on this line-of-sight, the respective hydrogen density leads to a suppression
at the physical wavelength of the characteristic spectral lines, most notably
the Lyman-α transition. Since each distance corresponds to a certain redshift,
this leads to a spectrum with notable absorption lines at different emitted (and
hence also observed) wavelengths. Such an absorption spectrum is presented
in fig. 2.8 and can be used to reconstruct the hydrogen density along the line-
of-sight as a function of distance to the observer. Combining many different
directions, the Lyman-α forest allows to reconstruct the hydrogen density in
three spatial dimensions. This reconstructed hydrogen density will then again
serve as a tracer for the dark matter density.

Overall, the formalism introduced above yields predictions in close agree-
ment with observation when applied to the ΛCDM model. At the smallest
scales, however, there are some discrepancies. They could hint to some yet un-
known or poorly understood effects relevant for structure formation on small
scales or to alternatives to the ΛCDM model. Let us give a brief overview

12For original data leading to the conclusions of fig. 2.7, see Ref. [79]. For an introductory
review on weak lensing, see e.g. [80].
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Figure 2.7: Linear matter power spectrum as presented in [77]. The power
spectrum is a combination of CMB measurements, galaxy maps, weak lensing
observations and measurements of the Lyman-α forest. The red curve shows
a fit to the ΛCMD model, cf. section 2.1.3.
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Figure 2.8: Absorption spectrum of the quasar source Q1422+2309. From the
observed wavelength of the dominant peak at around 5620 and the knowledge
that the Lyman-α transition has a physical wavelength of about 1216 Å, one
can reconstruct the redshift of the source to be about z = 3.62. Note that this is
an extremely large redshift for Lyman-α observations and does not correspond
to the small scales mapped by the Lyman-α forest in fig. 2.7. Image taken
from [81], related analyses techniques published in [82].

over the situation of these issues, which are also referred to as small-scale-
problems. The individual points will by no means be complete and just hint
to the relevant problem:

1. The missing satellite problem: the dark matter haloes hosting large
galaxies (like the Milky Way) are surrounded by smaller haloes that
can host dwarf satellite galaxies. In the case of the Milky Way, N -
body simulations for the ΛCDM model predict more satellites than have
been observed. A possible explanation could be that dark matter is not
precisely cold, which would decrease the predicted number of dwarfs.
Another possibility are baryonic feedback processes that lead to a sup-
pression of the star formation rate in the dwarf galaxies, which would
render them dark, i.e. non-observable. These effects are not yet very well
understood and not included into N -body simulations. For the original
work on the problem, see Ref. [83], for a more detailed recent overview
and a compilation of references, see Ref. [4, Sec. 3.2].

2. The too-big-too-fail problem: this problem is again related to dwarf satel-
lites. Observations show that the velocities of stars inside the dwarf
galaxies are too small to match the prediction of dwarf galaxies being
hosted by the largest dark matter sub-haloes. This either means that the
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rather small sub-haloes allow for star formation, while the larger ones re-
main dark, for which there is no good explanation (hence these haloes
are too big to fail), or it means that the mass function of sub-haloes
is not the one predicted by ΛCDM-based simulations. Again, baryonic
physics could be part of the solution to this riddle. Consult Ref. [84] for
the fundamental paper and Ref. [4, Sec. 3.4] for a rather recent review
including more references.

3. The cusp-core problem: N -body simulations of the ΛCDM model sug-
gest that the radial dark matter density of a galaxy-hosting halo should
increase quite steeply towards the centre. This prediction of a cuspy
inner region of the halo is confronted by observations of baryonic trac-
ers in these inner regions. Usually, dwarf galaxies are studied since the
formation of structures like baryonic disks and bars makes the baryonic
feedback effects yet more uncertain [85, 86]. These measurements indi-
cate that the density flattens out to a rather smooth core. Just as in the
above cases, the discrepancy could be due to a velocity distribution of
dark matter different from CDM or baryonic effects. A good summary
of the current status of the problem can be found in Ref. [4, Sec. 3.3].

2.4 The origin of dark matter: general production
scenarios

Now that we have seen that the velocity distribution of dark matter at pro-
duction will be crucial for the formation of cosmic structures, the next step
is to discuss production templates for dark matter, i.e. types of mechanisms
that can generate dark matter in the early universe. The templates presented
here will be quite general and can then be filled with concrete particle physics
models.

The picture of standard cosmology is the following: the earliest stage after
the Big Bang, lasting from about 10−36 s to 10−33 or 10−32 s, was an epoch of
exponential expansion of the universe. This epoch of cosmic inflation serves to
solve issues like the flatness problem or the horizon problem, and to seed the
initial quantum fluctuations which are the very origin of the cosmic structures
observed today. For a more extensive description of the theory of inflation, we
refer the reader to Ref. [87] for an excellent review.

The period following this exponential expansion is called reheating : The
decay of the inflaton field into SM degrees of freedom (d.o.f.) fills the early
universe with ultrarelativistic particles of all kinds, basically irrespective of
their mass (which in all cases is negligible to the energies provided by inflaton
decay). If the dark matter particle couples directly and exclusively to this
inflaton field, it can be produced at this stage without any further interaction
with the SM at low energies. In this unlucky case, all observation attempts
centred around fig. 2.4 are in vain, and we will probably never observe any
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effects of dark matter beyond the gravitational ones that were discussed in
section 2.1. Putting this rather disconcerting possibility aside, we will always
assume that there are particles beyond the SM coupling to some d.o.f. of the
SM.

2.4.1 Production of dark matter through direct coupling to
SM degrees of freedom

In this section, we assume that there is one dark matter species called χ cou-
pling to one or more SM d.o.f.13 In such a scenario, it is evident that dark
matter can be produced from the reservoir of SM particles present in the
plasma produced through the process of reheating. We will treat this scenario
through the semi-classical approach of Boltzmann equations augmented by in-
teractions treated in a consistent quantum field theoretical way on the particle
level.14

The Boltzmann equation is a functional equation acting on the distribution
function fχ, which itself is a function of space, momentum and time:

fχ ≡ fχ (~x, ~p, t) . (2.4.1)

The distribution function fχ should be interpreted as an occupation number
of χ in phase space and time. Similarly, all SM d.o.f. also have their respective
distribution functions. While we have seen that the cosmic structure today
makes the spatial dependency obvious, the CMB also confirms that, at early
times, the distribution of dark matter should have been homogeneous and
isotropic. For this very reason we will henceforth restrict all the following dis-
cussions of dark matter production to distribution functions that depend only
on p = |~p| and on cosmic time t (or another suitable variable parameterising
time):

fχ = fχ (p, t) . (2.4.2)

The Boltzmann equation for such a distribution function in the early universe
reads

L̂fχ = C
[
fχ
]
, (2.4.3)

13Qualitatively the arguments are similar if the dark matter sector is composed of different
particles.

14Note that this is an approximation in itself already: on the global level of the evolution
of the total distribution function, we use the classical Boltzmann equation. To fully include
all quantum field theoretical effect, the formalism of Kadanoff-Baym equations must be used.
This formalism is much more cumbersome and the respective equations are difficult to solve,
even numerically. The error introduced by our Boltzmann formalism is, however, at most
of ∼ 10% [88] in the computed abundance.
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where the Liouville operator, L̂, is nothing else than a total time derivative
which, in the case of a FLRW metric, is given by

L̂ =
∂

∂t
−Hp ∂

∂p
. (2.4.4)

As we will see in a short while, Boltzmann equations are often used in the form
of rate equations for the particle number density n, i.e. after integrating out
the spectral form, which can be done if the spectral form is either known or
not relevant for the question at hand. The particle number density n is given
by

nχ (t) =
gχ

(2π)3

∫
d3p fχ (p, t) , (2.4.5)

where gχ counts the internal d.o.f. of χ (such as spin d.o.f. or colour). Inte-
grating the left-hand side of eq. (2.4.3) accordingly,15 we find

dnχ
dt

+ 3Hnχ =
gχ

(2π)3

∫
d3p C

[
fχ
]
. (2.4.6)

The right-hand side of eq. (2.4.3) is called the collision term, and it encodes
all scattering and (inverse) decay processes that can populate or deplete the
species χ. It is a (not necessarily linear) functional, which usually depends on
fχ as well as of the distribution functions of various SM d.o.f.

Consider a generic interaction of an arbitrary number of initial and final
states:

χ+ α + β + ...↔ a+ b+ ... . (2.4.7)

Note that the different particles (like α, β) are not necessarily different species,
they can even be of the species χ themselves, if more than one particle of species
χ is involved in the scattering process. The collision term than reads

C
[
fχ
]

=
1

2Epχ

∫ [
dPadPb...dPαdPβ...× (2π)4 δ(4)

(
pχ + p̃in − pout

)
× |M|2

×
[
fafb... (1±fα)

(
1±fβ

)
...
(
1±fχ

)
−fαfβ...fχ (1±fa) (1±fb) ...

]]
.

(2.4.8)

Let us discuss eq. (2.4.8) in detail:

• Epi =
√
m2
i + p2

i is the energy of particle i.

• dPi is the invariant phase space element

dPi = gi
d3pi

2Epi (2π)3 . (2.4.9)

15We use integration by part and the limits lim
p→0

p2fχ (p, t) = 0 and lim
p→∞

p2fχ (p, t) = 0.
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• gi are the internal (spin, colour, etc.) d.o.f. of the respective species.

• The plus signs in eq. (2.4.8) are valid for distribution functions of bosonic
species, while the minus signs corresponds to the case of fermionic dis-
tribution functions.

• The four dimensional delta distribution δ(4) (...) ensures momentum con-
servation between the sum of incoming momenta, pχ+p̃in, and the sum of
outgoing momenta, pout, for all momenta pχ. Here, we use p̃in to denote
the sum of the remaining incoming momenta pα, pβ, etc.

• The microscopic physics of the interaction is encoded in the squared
transition matrix element |M|2, which includes all symmetry factors and
conventionally averages over both initial and final states. [89, chapter
5]. Note that we assume the matrix element to be symmetric for both
directions in eq. (2.4.7) by virtue of CP conservation.

• The term in [...] in the second line of eq. (2.4.8) can be understood as a
sum of a gain term populating fχ (coming with positive sign) and a loss
term depleting fχ (coming with negative sign).

Two very important comments are at order: first, we will often work in the limit
where fi � 1, such that we approximate all terms (1± fi) by unity. Second, as
the reader will have realised from the discussion around eq. (2.4.3), one should
always talk about a system of Boltzmann equations. After all, the collision term
of the species χ will depend on the distribution functions of other species,
which are again determined by their own respective Boltzmann equations.
Such a system would be quite hard to tackle from a purely mathematical or
numerical point of view. In most cases though, luckily, we will be able to make
safe assumptions on almost all distribution functions of interest except for one
or two. This will simplify the problem considerably while still having sound
theoretical foundations.

Thermal freeze-out The paradigm of dark matter being produced in thermal
freeze-out is so widespread that one can easily forget it is only one potential
mechanism, which got popular through its close connection to WIMPs and
supersymmetry. In any case, the mechanism of thermal freeze-out is of central
importance for many dark matter models, including the one presented later
in this thesis. Therefore, we want to give a brief recapitulation, including
the most relevant results as well as the in parts rarely mentioned underlying
assumptions and simplifications leading to them.

Let us therefore assume a 2-to-2 scattering process of the form

χ+ χ̄↔ XSM + X̄SM . (2.4.10)

To simplify, we will assume that fχ = fχ̄ and fXSM
= fX̄SM

, either because
of a Majorana nature of the particle or because of a negligible asymmetry
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between particle and antiparticle in the early universe. We will furthermore
assume that the respective SM particle is in thermal equilibrium with the rest
of the plasma, such that we can readily insert its equilibrium function. We
also assume that the dark matter distribution is in equilibrium initially. Note
that, in the case of sufficiently strong coupling, this assumption is not critical,
since every non-equilibrium distribution will be dragged into equilibrium quite
fast, as we will see in chapter 5. Putting things together, the collision term
will have the following explicit form:

(2.4.11)
C
[
fχ
]

=
1

2Epχ

∫ [
dPSMdP ′SMdPχ′δ

(4)
(
pχ + pχ′ − pSM − p′SM

)
× |M|2 ×

[
f eq

SM (pSM) f eq
SM

(
p′SM

)
− fχ

(
p′χ
)
fχ
(
pχ
)]]

.

Usually, the next step in this textbook case is to insert eq. (2.4.11) into
eq. (2.4.6) in order to get a pure rate equation. For the standard result to
come out, one needs two further assumptions though, at least the second of
which is often not mentioned. Since this will play a crucial role for production
mechanisms beyond thermal freeze-out, we want to present them together with
the result (cf. e.g. [89]). The two relevant assumptions are:

1. The principle of detailed balance:

f eq
SM (pSM) f eq

SM

(
p′SM

)
= f eq

χ

(
p′χ
)
f eq
χ

(
pχ
)
, (2.4.12)

which comes from approximating the equilibrium function by a Maxwell-
Boltzmann distribution and evoking energy conservation (which is en-
forced anyway by means of the delta distribution).

2. The dark matter distribution keeps its initial thermal shape (maybe up
to small distortions) and only becomes suppressed at T ∼ m. To be
precise, we implicitly assume that:

fχ (p, t) =
nχ (t)

neq
χ (t)

f eq
χ (p, t) . (2.4.13)

These further simplifications then directly lead to the widespread rate equa-
tion

dnχ
dt

+ 3Hnχ = −〈σv〉
(
n2
χ −

(
neq
χ

)2
)
, (2.4.14)

where 〈σv〉 is the thermally averaged annihilation cross section, which is a
function of the plasma temperature of the universe and therefore a function of
time.
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Freeze-in Freeze-in [90, 91] of dark matter comes along a similar train of
thought, with the only difference that the interaction cross section to the SM
d.o.f. is so small that the dark matter is never dragged into equilibrium. Ac-
cordingly, one usually assumes the initial abundance to vanish. One can some-
times find eq. (2.4.14) used with zero initial density in freeze-in calculations.
While this will yield a result in the right ballpark, the underlying assumption
that the distribution is of suppressed thermal shape is not very good, such
that eq. (2.4.14) should not be used in the first place. In chapter 4, we will
present how one can calculate freeze-in as well as freeze-out on the much more
fundamental level of distribution functions quite efficiently.

A notable difference between freeze-in and freeze-out, beyond the exact
shape of the momentum distribution function, is the dependency of the relic
abundance on the interaction strength: in the freeze-in limit, the relic abun-
dance of dark matter will be directly proportional to the squared coupling of
the scattering process. If freeze-out takes place at temperatures well below the
particle mass, a larger interaction strength will keep the dark matter distri-
bution in equilibrium for a longer time, such that the relic abundance will be
further Boltzmann suppressed.

2.4.2 Production of dark matter through particle decay

Another way to produce dark matter will be through particle decays. This
particle can in principle be a SM particle or any new d.o.f. beyond the SM. In
this case, the number density of the daughter dark matter particles will depend
on the number density of the parent and on its lifetime. The distribution
function will mainly be shaped by the masses of the parent and the daughter
particles. Note that this is a highly non-thermal process, since the momentum
of the daughter will depend on both the momentum of the parent in the cosmic
rest frame (which itself may or may not be linked to the plasma temperature)
and the mass gap between the parent and its decay products, but not (or at
least not directly) on the plasma temperature.

2.5 Summary of the chapter

We have seen overwhelming evidence for an unknown form of matter beyond
the SM, making up roughly a fourth of the energy budget of the universe. All
evidence is based on a mismatch between the observed magnitude of gravity or
its influence on other observables and the strength of gravity inferred from the
matter component interacting with electromagnetic radiation. Furthermore,
the pieces of evidence span a wide range of scales, starting at the scale of
individual galaxies and going up all the way to the entire visible universe.

We have discussed the different strategies to learn more about the particle
physics of the dark matter particle(s) and their current, partly controversial
status. Finally, we have introduced some fundamental quantities of cosmic
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structure and its emergence in the early universe, a process heavily shaped
by the dark matter properties and thus a key observable. This discussion was
completed by an overview of templates of dark matter production mechanisms.
These templates will be substantiated with concrete sterile neutrino models
in chapter 4 to assess their compatibility with the observed structure of the
universe.



Chapter 3
Sterile Neutrinos

“I have done a terrible thing.
I have postulated a particle that cannot be detected.”

Wolfgang Pauli

In the 1930s, Wolfgang Pauli inferred the existence of a yet unknown electri-
cally uncharged particle from the kinematics of β-decay: the observed electron
spectrum was in contradiction to a simple two-body decay. After the neutron
had been discovered by Chadwick, this new third player in β-decay was soon
named neutrino (“little neutron”) by the Italian physicist Edoardo Amaldi. His
fellow countryman Enrico Fermi adopted the term in his talks and thus the
name stuck. The weak interaction rate of the neutrino made the community
believe that it would be very hard, probably even impossible, to detect such
a particle. Despite all the challenges, the experimental evidence for neutrinos
was then achieved in the 1950s, early enough for Pauli to live to see the suc-
cess of his terrible postulate: in a world-famous experiment lead by C. Cowan
and F. Reines, anti-neutrinos emitted by a nuclear reactor were re-captured
on protons, resulting in a neutron and an positron. The latter would give a
clear signal in γ-rays when pair-annihilating with an electron.

Even before this discovery, in the 1940s, scientists had already discovered
the muon, a “heavier sibling” to the electron, coming with the same charge but
also with a larger mass than the electron. Hence, the existence of a flavour
structure in the neutrino sector was soon hypothesised as well. Why should
there not be different kinds of neutrinos in analogy to the charged lepton
sector, i.e. an electron neutrino and a muon neutrino (and their respective
antiparticles)? Indeed, physicists could prove the existence of a second type
of neutrino, the muon neutrino in the 1960, a discovery for which they were
awarded the Nobel Prize of 1988 (interestingly seven years before Reines was
awarded the Nobel Prize for discovering the electron anti-neutrino).

When a third, yet heavier, lepton was discovered (and called the τ lepton)
in 1975 at SLAC, there was little doubt when postulating a τ neutrino as well.
It was then discovered in 2000 at Fermilab, this time not triggering another

31
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Nobel Prize. These three neutrinos mentioned are so-called flavour eigenstates,
i.e. eigenstates of the weak interaction. A Z-boson, for instance, can decay into
a pair of neutrino and anti-neutrino of the same, but not of mixed flavour in
the SM. Similarly, a W boson decays into a charged lepton and an associated
(anti-)neutrino.

Today, theoretical physicists have comparatively little qualms about pos-
tulating particles that will be very challenging to discover if they can help to
explain open questions in particle physics. This chapter will be devoted to
introducing one of them, the hypothesised sterile neutrinos. Apart from being
an excellent dark matter candidate, the theoretical motivation for postulat-
ing sterile neutrinos is manifold. To start with, section 3.1 will introduce the
observed concept of neutrino flavour oscillations. This observation will reveal
a severe shortcoming of the SM, which can be addressed by sterile neutrinos
and the so-called seesaw mechanism, which we will present in section 3.1.1.
The following subsections will present further pieces of motivation for sterile
neutrinos beyond their potential role as cosmological dark matter, all coming
along the phenomenon of neutrino oscillations (caused by the non-alignment
of flavour eigenbasis and the mass eigenbasis). After this selection of hints,
section 3.2 will then narrow down the theoretical parameter space to the phe-
nomenology of sterile neutrinos in the mass range of a few to hundreds of keV,
since this is the realm particularly interesting for the connection to the dark
matter quest.

Before actually getting started with the postulate of sterile neutrinos, let
us dwell a short moment on terminology and notation first: the terms right-
handed neutrino, sterile neutrino, and sterile neutrino of a mass of [...] are
often used interchangeably, which can cause confusion. Technically, a right-
handed neutrino (which we will denote with νR) is a gauge singlet under the
SM gauge group. Therefore, it does not take part in any interaction mediated
by the SM gauge group. If we postulate these yet unobserved states, we also
have to introduce new mass eigenstates, which we will denote with a capital
N augmented by capital Latin indices in case we have to enumerate them
in an abstract way. The mass eigenvalues will then be denoted mNI

. They
are sometimes referred to as sterile neutrino, even though their admixture
(governed by the mixing angle θIα) into the eigenstates of the weak interaction
will connect them to the SM. Whenever seeing an expression like “a sterile
neutrino with a mass of such and such”, one should realise that this is ill-defined
from a purist point of view. The sterile neutrino, as the active flavours, does
not have a well-defined mass, unless the new sterile state is perfectly aligned
with the new mass eigenstate (i.e. when the mass matrix is block-diagonal).
If the admixture is very small however, like in the quark case or even smaller,
it is okay to use such expressions. We will also use this sloppy language later
in the thesis when there is no risk of confusion. Some of the details of this
phenomenon of lepton mixing will be discussed in more detail in the next
section where we introduce neutrino oscillations.
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3.1 Motivation for the postulate
We have just argued that there are three distinct neutrino flavours (νe, νµ, ντ ),
in perfect analogy to the three types of charged leptons to which they are asso-
ciated. By now, there is a long series of experiments that reveal that a neutrino
that is emitted in a certain flavour eigenstate in some weak interaction pro-
cess can later on be detected as another flavour. This intriguing possibility was
worked out theoretically by Z. Maki, M. Nakagawa, and S. Sakata in 1962 [92]1

and was realised to be the solution to the solar neutrino problem occurring in
the 1960s, where the solar electron neutrino flux on Earth was measured to
be less than predicted by the standard solar model. The oscillations inside
the Sun (where additional non-trivial matter effects play a crucial role) would
result in some neutrinos changing their flavour by the time they exit the Sun.

The theoretical concept behind this phenomenon is the idea that, if neutri-
nos have mass, the mass eigenstates (which are the eigenstates of propagation)
need not coincide with the flavour eigenstates. If they are related by a non-
trivial basis transformation, oscillations can occur. This basis transformation
can be cast into a 3×3 matrix, called the Pontecorvo–Maki–Nakagawa–Sakata–
matrix (PNMS matrix) in honour of the fathers of the idea, which has four
parameters if neutrinos are Dirac particles: three mixing angles (θ12, θ13, θ23)

2

and one CP-violating phase, δCP. If neutrinos are of Majorana nature, there
are two additional phases.3 In addition, the three mass eigenvalues in the ac-
tive neutrino sector are needed to describe oscillation phenomena. In order to
keep the notation uncluttered, we denote them by m1,m2,m3.

Bear in mind that this numbering does not yet say anything about how
the mass eigenvalues compare. In fact, m1 is defined to be the mass eigenstate
that has the largest contribution of the electron neutrino eigenstate. Matter
effects of neutrino oscillations in the Sun have already lead to the conclusion
that m2 > m1 [94].4 Thus, there are two remaining scenarios:

1Often, the idea of flavour oscillations is attributed to B. Pontecorvo, who worked on
oscillations in a system of mesonium and anti-mesonium [93], or — in modern language —
a system of neutrino and anti-neutrino. Oscillations from neutrino states to anti-neutrino
states have not been observed but have probably influenced the work of Maki, Nakagawa
and Sakata.

2If the mass eigenvalues of the neutrinos are denoted m1,m2,m3, the notation of mixing
angles might be confusing at first, because the mixing does not connect different mass
eigenstates (as the notation might suggest) but mass eigenstates and flavor eigenstates,
which are usually referred to as e, µ, τ .

3The question of the number of physical phases depends on how many phases can be
absorbed into re-definitions of fields. For particle satisfying the Majorana condition, less
phases of the unitary transition can be absorbed such that they become physical.

4In simple terms, it is rather easy to understand why matter effects (as opposed to vacuum
oscillations) can result in such a statement: In the presence of a relevant electron density
like in the solar centre, electron neutrinos and electron anti-neutrinos behave differently,
breaking the symmetry of the vacuum.
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1. m1 < m2 < m3, called normal ordering (NO),

2. m3 < m1 < m2, called inverted ordering (IO).

In terms of numerical values of all three eigenvalues, this can make quite a
difference due to the fact that |∆m2

31|≡ |m2
3 −m2

1|� ∆m2
21.

The current best-fit values from the global analysis of many oscillation
experiments provided by the nu-fit collaboration (in version v3.0) read [95]:

∆m2
21 = 7.50+0.19

−0.17 × 10−5 eV2 ,

∆m2
3l =

{
∆m2

31 = 2.524+0.039
−0.040 × 10−3 eV2 , for NO,

∆m2
32 = −2.514+0.038

−0.041 × 10−3 eV2 , for IO.
(3.1.1)

From these values one can deduce that the sum of all three neutrino masses
must be larger than 59 meV in the case of NO and larger than 99 meV for
IO. While neutrino oscillations are not sensitive to this absolute scale, the
kinematics of β-decay can yield upper limits of about 2 eV for the lightest
mass eigenvalue (cf. Ref. [96]), which is still large compared to the values of
the mass splittings. The observation of cosmic structures can yield upper limits
as strong a few hundreds of meV [97], approaching the boundary between NO
and IO.5

This observation of non-vanishing masses in the neutrino sector is a severe
theoretical problem: not having observed any right-handed neutrino states so
far, the SM would not allow for a Dirac mass term for the active neutrinos.6

Furthermore, the masses in the active neutrino sector are quite distinct from
all other SM fermions. Fig. 3.1 summarises the situation of the fermion masses
(see caption for some further remarks).

Before moving on, let us mention that the mixing angles in the active sector
are quite large; the 3σ ranges of the mixing angles in any ordering are given
by [95]:

θ12 ∈ [31.38◦, 35.99◦] ,

θ23 ∈ [38.4◦, 53.0◦] ,

θ13 ∈ [7.99◦, 8.91◦] .

3.1.1 The seesaw mechanism

Let us now see how the twofold problem of active neutrino masses can be
addressed by introducing sterile neutrinos and the seesaw mechanism. Since

5Note, however, that these bounds are model-dependent and can weaken to a non-
negligible extent when certain assumptions are relaxed. Thus, the common efforts of cosmol-
ogy and laboratory-based experiments is key to answer the question of neutrino masses in
the future. For a global Bayesian synopsis of relevant aspects from cosmology, neutrinoless
double beta decay and neutrino oscillations, we refer to Ref. [7] and references therein.

6If neutrinos are Majorana fermions, a mass term for the left-handed states would be
allowed as well. The scale need not be related to the EW scale, unlike all other particle
masses of particles in the SM.
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Figure 3.1: Masses of the SM fermions. The charged leptons (l±) as well as
the up-type (qu) and down-type quarks (qd) are shown as coloured and labelled
circles. The neutrino mass eigenstates are depicted in their allowed ranges as
inferred from oscillation experiments and from cosmological observations. In
the case of neutrino masses, we have distinguished the aforementioned cases of
NO and IO. The quark sector also has a misalignment between mass and flavour
eigenstates, such that the notion of something like the mass of a down quark
should be handled with care, just as in the neutrino case. However, unlike
in the neutrino case, quark mixing is rather small, and hence this subtlety is
usually ignored. For this reason, we decided for the hybrid representation in
this plot.

a detailed discussion of the formalism of the seesaw mechanism with all its
possible sub-types is beyond the scope of this section, we will restrict ourselves
to the type I mechanism, which shows the key idea.

If we invoke N right-handed Majorana neutrinos, the Lagrangian allows
for Dirac masses coupling left- and right-handed states, as well as a Majorana
mass term in the right-handed sector. Let us call the 3 × N -matrix of Dirac
masses mD and the N ×N -matrix of Majorana masses MR. Diagonalising the
full neutrino mass matrix in order to find the physical mass eigenvalues yields
the following result for the masses in the active sector:

mν ' −mDM
−1
R mT

D , (3.1.2)

where mν is the mass matrix of the active neutrinos in the flavour eigenbasis.
Let us assume that the Dirac mass matrix is at its natural scale, i.e. the EW
scale. Then, still, the resulting mass eigenvalues in the active sector can be in
the (sub-)eV region if MR is chosen accordingly large.7

The Majorana mass matrix MR is not related to the EW scale and hence
there is no objection against scales much different from the natural scale of
mD. Eq. (3.1.2) justifies the name of the mechanism. Just like two people

7The exact size depends on the yet unknown smallest mass eigenvalue in the active
sector and the exact mixing pattern. The masses inside the right-handed sector can still
span a considerable range in certain models: in the νMSM, we have mN1

= O (keV) and
mN2

,mN3
= O (GeV) [98,99], even though the model gives no fundamental explanation for

this pattern. In other models like the split seesaw [100], the mass eigenvalues of mN2
and

mN3
can be as high as O

(
1011 GeV

)
.
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setting on the end of an actual seesaw, one player (here mν) becomes lighter
if the other player (MR) becomes heavier. For the original work on this idea,
we refer to Refs. [101,102]. For pedagogical reviews, we recommend Ref. [103]
and Ref. [104], which also discusses in detail the subtleties involved when using
terms like large or small in the context of matrices.

3.1.2 Leptogenesis

We now proceed to another open issue in the realms of particle physics and
cosmology, which can be addressed by sterile neutrinos. This problem is known
as the baryon asymmetry of the universe (BAU). Probes of planetary material,
lunar material as well as solar cosmic rays provide certainty that our solar
system is made out of matter, and not anti-matter. The small fraction of
anti-protons in cosmic rays is consistent with secondary production, and it
indicates that our Milky Way (and other nearby galaxies sourcing the cosmic
ray flux) are also composed of matter. The non-observation of strong γ-ray
emissions in galaxy clusters, which would naturally arise from the annihilation
of matter and anti-matter, confirms a baryon asymmetry on cluster scales.

On larger scales (so large as to enclose at least 1014M�, where M� =
1.99 × 1030 kg is the solar mass), the symmetry between matter and anti-
matter could be restored if some unknown mechanism separated matter from
anti-matter at an early epoch in the universe. The temperature related to
this epoch can be estimated by looking at today’s (local) asymmetry and by
comparing it to the baryon-density-to-entropy ratio, which is a function of the
temperature of the universe. This leads to temperatures around 38 MeV [89],
an epoch at which the particle horizon contained only about 10−7M� [89].
This means that regions containing more mass were not yet causally connected.
Putting these arguments together, it seems like the entire universe carries a
baryon asymmetry. This peculiarity of the universe craves an explanation.
The existence of CP violating effects in baryonic physics, caused by phases
in the Yukawa couplings between the quark and the Higgs sector, are well
known. However, the associated asymmetries are by far too small to explain
the observed asymmetry.

A possible solution to this issue is called baryogenesis via leptogenesis. The
idea behind this bulky expression is that a sufficiently large asymmetry was
created in the lepton sector, and then partially transferred to the baryon sector
through so-called sphalerons [105], non-perturbative SM processes happening
in the early universe. The lepton asymmetry required can be explained in
different models extending the SM by right-handed neutrinos. Again, the
key to generate an asymmetry lies within the phases of the complex Yukawa
couplings of this new sector. Ref. [106] offers a comprehensive review of the
relevant aspects of leptogenesis.
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3.1.3 Pulsar kicks
Beyond leptogenesis, pulsars provide yet another possible habitat for sterile
neutrinos. Pulsars are strongly magnetised rotating neutron stars that were
born in core collapse supernovae. They emit electromagnetic radiation along
the symmetry axis of their magnetic field, which does not necessarily coincide
with the pulsar’s rotational axis. This misalignment of the axes makes the cone
of electromagnetic radiation emitted by the pulsar sweep across the sky, very
much like the light-cone of a light-house does. If the Earth lies within the vol-
ume swept out by this the light-cone, we can observe a pulsed electromagnetic
signal from the neutron star.

The velocity distribution of pulsars shows a heavy tail, which extends to
velocities as high as 1600 km/s [107, 108]. These large velocities are hard
to explain: the vast majority of energy released in a core collapse supernova
(about 99%) is carried away by active neutrinos. A small asymmetry in the
emission of the neutrinos (1% [109]), would be enough to explain the high
velocity tail of pulsars. Due to the high densities inside the nascent neutron
star, the scattering rate of neutrinos is high enough to thermalise them. Hence,
they will diffuse out of the core in a spherically symmetric way [4, Sec. 7.4].

Sterile neutrinos, however, do not get thermalised and could sustain a small
initial asymmetry. Such an asymmetry can be produced by the magnetic field
in the proto-neutron star: sterile neutrinos can be resonantly produced. The
resonance condition for a certain momentum is met at a radius which depends
on whether the direction of the out-streaming neutrino is parallel or anti-
parallel to the direction of the magnetic field. This will lead to a transfer of
momentum to the nascent pulsar, resulting in the necessary kick. Detailed
calculations of the size of this effect and its possible implications on properties
of the sterile neutrinos can be found in Ref. [110,111].

3.1.4 Hints for eV sterile neutrinos

In order to have a comprehensive overview over the motivation for sterile neu-
trinos, let us also have look at potential new states at lower mass scales now.
In the beginning of this section, we have seen how a global fit of neutrino
oscillations in a three-active-neutrino-paradigm has led to quite stringent and
consistent limits on the mass square differences, cf. eq. (3.1.1). The global
fits also give good constraints on the mixing angles (with θ23 being least con-
strained). Nonetheless, there are some observations challenging this paradigm
and hinting towards additional degrees of freedom at the eV mass scale.

1. Reactor anomalies : by placing detectors at some tens of meters of dis-
tance from reactor cores, one can measure the flux of electron (anti-)
neutrinos and compare it to the theoretical expectations. A variety
of experiments at different locations has found a significant deficit in
the count of electron anti-neutrinos. At the baselines and energies un-
der consideration, this could hint towards oscillations caused by a third
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mass splitting at the eV scale [112]. All these experiments are, however,
plagued by the same uncertainties in the theoretical calculation of the
reactor anti-neutrino spectra. The decay tree of a common power reactor
contains thousands of branches which have to be taken into account when
predicting the count rate inside the detectors. A detailed discussion of
this uncertainty can be found in Ref. [113].

2. Accelerator anomalies : the LSND experiment has measured an excess
of νe in a beam of νµ created by µ+ decays at a baseline of about
30 m [114, 115]. Their findings are in close agreement with those from
the MiniBooNE experiment [116]. The rather similar KARMEN exper-
iment [117] did not find a corresponding excess. Since it was operat-
ing at a shorter baseline, it could not rule out all parameter space of
a 3 + 1 neutrino model which could explain the LSND or MiniBooNE
results. A more extensive overview on this issue can be found in the
reviews [118–120].

3. Gallium anomaly : the GALLEX [121] and SAGE [122] experiments were
designed to observe solar neutrinos by capturing them on 71Ga, which
produces a 71Ge nucleus and an electron. The detectors could also be
used to count neutrinos from artificial radioactive sources placed at a
short baseline (of a few meters) outside or even completely inside the
detector. These Gallium radioactive source experiments also indicated a
deficiency in the rate of the measured neutrino flux as compared to the
expectations inferred from the known activity of the artificial sources.

If eV steriles exist, we know they must be sterile from the fact that the decay
width of the Z boson only allows for three active neutrinos at masses below
mZ/2. Yet, in the case of eV steriles, the mixing needed to explain the ob-
served effects would be comparatively large such that the light sterile neutrinos
would be in equilibrium in the early universe, where all the active flavours are
thermally abundant. This insertion of highly relativistic particles, i.e. radia-
tion density, would leave its imprint on many cosmological observables (like
the CMB) and is therefore heavily constrained. Accordingly, a growing evi-
dence for new degrees of freedom at the eV scale would also have profound
implications for and raise new questions about our Standard Cosmological
Model.

3.2 Phenomenology of keV sterile neutrinos
We now shift the focus of our discussion to sterile neutrinos in the mass range
of a few to some hundreds of keV. The interest in this particular mass range
is sparked by a range of models for sterile neutrino dark matter that we will
present in chapter 4. These models will usually have different implications for
cosmic structure formation than the CDM paradigm and they might therefore
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be interesting to address the small scale problems discussed in section 2.3.
If dark matter has a non-thermal distribution, the mass of the dark matter
particle alone will not be a reliable indicator of the implications of structure
formation, as we will continuously see throughout this thesis. Nonetheless, all
known models for producing sterile neutrino dark matter which are in accor-
dance with cosmic structure formation lie somewhere in the ballpark of masses
just mentioned. The phenomenology of models with considerably larger masses
is usually indistinguishable from the predictions for CDM as far as structure
formation is concerned.

Starting from here, we want to discuss some phenomenological implications
of keV sterile neutrinos and explain how their properties could be accessible
by experiments or observations beyond those directly linked to structure for-
mation. This complementarity is key when trying to hunt for keV sterile
neutrinos.

3.2.1 Radiative decay of keV sterile neutrino dark matter

Let us now apply our discussion of indirect dark matter detection of section 2.2
to the case of keV steriles. If sterile neutrinos at the keV mass scale make up
all or a significant fraction of the cosmological dark matter and if they mix
with any of the active flavours, they can undergo the following radiative decay:

NI → να + γ , (3.2.1)

where να is an eigenstate of the weak interaction, i.e. να ∈ {νe, νµ, ντ}.8 The
Feynman diagrams for this decay are depicted in fig. 3.2. The decay rate of
the conversion is given by [123]:

ΓNI→ναγ =
9αemG

2
F

1024π4 sin2 (2θIα)m5
NI
, (3.2.2)

if the mass of the active neutrino in the final state is neglected – which is
an excellent approximation for the masses considered. In eq. (3.2.2), we have
introduced Fermi’s constant GF as well as the electromagnetic fine-structure
constant αem. Also note that we have assumed that NI is a Majorana particle,
an assumption to which we will stick throughout this work if not mentioned
differently.

Due to the fact that the final states can both be treated as massless, the
photon carries an energy of mNI

/2, which might only be affected by a Doppler
broadening if the sterile neutrino had some initial momentum in the lab frame.
Such a monochromatic signal is ideal to look for dark matter decays in indirect

8From a strict point of view, our preceding discussion of the misalignment of the neutrino
flavour basis and the mass basis in section 3.1 also shows that flavour eigenstates are no
viable final states. We will neglect this subtlety here since the neutrino in the decay is not
relevant for observations. Of course, everything we learned about neutrino oscillations would
apply in this case as well.
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NI να ναNI lαlα

W W

γ

γ

θIαθIα

Figure 3.2: Feynman diagrams for the radiative decay of a sterile neutrino
NI into an active neutrino να. Note that the right diagram gives the leading
contribution to the amplitude since the suppression by two lepton propagators
in the loop is much smaller than the suppression by twoW -boson propagators.

detection experiments. In turn, a non-observation of a signal in the X-ray sky
above the continuous background can put bounds into the plane ofmNI

vs. θIα.
This statement is quite generic since, if the mixing is non-vanishing, this would
guarantee that sterile neutrinos are produced as cosmological dark matter in
the early universe from the thermally abundant active neutrinos, as we will
see in the next chapter. Later in this work, we will make extensive use of such
limits obtained by X-ray satellite missions.

In 2014, two groups independently claimed an observation of an X-ray
line at Eγ = 3.55 keV [124, 125], which could be a hint to a sterile neutrino
mass eigenstate at 7.1 keV. It was heavily disputed whether this signal is an
artefact from stacking images, whether or not it is statistically significant or
whether it could be due to unknown atomic transitions. Consult Refs. [126–
132] to investigate the issue from all angles. Ref. [4] gives a very balanced and
detailed overview on the issues raised in these former and further publications
on the tentative signal. A new satellite mission called ASTRO-H/Hitomi (see
Ref. [133] for a description of the full science mission) was supposed to shed
light on this question, but unfortunately the satellite got damaged beyond
recovery shortly after launch due to problems with the attitude control system
of the spacecraft [134].

Because of this very unclear situation, we will always use bounds inferred
from the non-observation of a clear and undisputed X-ray signal and use models
with a sterile neutrino mass of mNI

= 2Eγ = 7.1 keV for illustrative purposes
only, alongside other (usually more generic) mass values.

The main topic of this work, a scalar decay model for producing sterile
neutrino dark matter, will not be too strongly affected by the question of
whether or not the signal is real, as we will see in the remaining chapters. In
any case, the X-ray limits for sterile neutrino masses above, say, 3 keV are much
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stronger than any existing or projected bounds from laboratory experiments,
which we will introduce in the following subsections. It should be noted that
the X-ray bounds rely on the cosmological model. Nevertheless, even though
the standard cosmological model still suffers from some shortcomings like the
small-scale problems of structure formation, it seems like a very good starting
point from which any allowed extensions probably cannot deviate too much. A
purist point of view might be that we do not have any observation of the early
universe before the onset of BBN, and that all epochs prior to this ultimately
rely on extrapolations. Let us now spend some time in order to understand
how more model-independent (future) laboratory searches can constrain active-
sterile mixing, even if not yet competitive to X-ray bounds.

3.2.2 Search for keV sterile neutrinos in β-decay experiments
As we have described in section 3.1, the electron spectrum of nuclear β decay
unveiled the existence of the neutrino about 80 years ago. Since then, it
provides a model-independent way to infer upper bounds in the parameter
space of neutrino masses. The differential count rate of nuclear β decay is
given by

dΓ

dEe
= C F (Ee, A, Z) pe (Ee +me) (E0 − Ee)

∑
i

|Uei|2
√

(E0 − Ee)2 −mνi
,

(3.2.3)

where pe and Ee are the electron’s momentum and energy, E0 is the maximal
energy available for both neutrino and electron, and i runs over all mass eigen-
states that are kinematically available, i.e., all mass eigenstates with masses
below E0. The quantity Uei describes the electron flavour elements of the
PNMS matrix (or its higher-dimensional generalisation in case there are ster-
ile neutrinos). The function F is a correction to the 3-body phase space factor
of the decay and mainly accounts for the Coulomb interaction between the
electron and the daughter nucleus of the decay. As such, it is a function of the
electron energy Ee as well as of the respective nucleus, which is described by
its mass number A and atomic number Z. Furthermore, C is a constant in-
cluding Fermi’s constant GF . The kinematically allowed mass eigenvalues will
be imprinted into the differential count rate, even though in practice the mass
eigenvalues m1,m2,m3 cannot be resolved even in the upcoming KATRIN ex-
periment which analyses the spectrum of β-decay of tritium (characterised by
E0 = 18.6 keV [135]).

If a sterile neutrino with mass m4 below E0 and non-vanishing mixing, en-
coded through Ue4, exists, this will imprint another feature onto the differential
count rate: a characteristic kink in the spectrum at an energy of Ee = E0−m4

and an “amplitude” proportional to the square of the sine on the new mixing
angle. The KATRIN collaboration plans to upgrade the experiment in the
future such that it can handle the high count rates far from the endpoint E0.
A detailed study of the projected sensitivity can be found in [136].
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3.2.3 Search for keV sterile neutrinos in electron-capture ex-
periments

A similar train of thought is pursued by the ECHo collaboration. The origi-
nal idea of the experiment is to observe the calorimetrically measured energy
spectrum of the daughter nucleus in the electron capture (EC) process of 163Ho,

163
67 Ho + e− →163

66 Dy∗ + νe , (3.2.4)

in order to get insight on the mass eigenvalues in the active neutrino sector.
Just as in the case of nuclear β-decay, all neutrino mass eigenstates that are
kinematically accessible and mix with the electron neutrino flavour eigenstate
will affect the exact shape of the spectrum. In this case, the Q-value of the
reaction is about 2.5 keV, such that a sterile neutrino with a mass below
this threshold can in principle be detected by a characteristic feature in the
spectrum [137].

3.2.4 Capturing sterile neutrinos on a dysprosium target

Another, rather young, idea of looking for sterile neutrinos in the keV mass
range in laboratory experiments is to turn the process of eq. (3.2.4) around.
The capture of neutrinos on a dysprosium target could either be analysed
by counting the number of thus created holmium atoms in the target or by
measuring the electron spectrum of the process in real time [138]. As the other
two laboratory searches described above, this analyses, which only relies on
the new states mixing with the e-sector, could yield null-results either backing
up the strong X-ray constraints or seriously alter our picture of Standard
Cosmology.

3.3 Summary of the chapter

In this chapter, we have seen that the well-established phenomenon of neu-
trino oscillations definitely demands new physics beyond the generally very
successful SM of particle physics. The fact that neutrinos have masses at all
and that they are so much smaller than all other particle masses motivates the
hypothesis of sterile neutrinos: the various versions of the seesaw mechanism
provide an elegant and economic theoretical solution to the problem. Being
massive and neutral, sterile neutrinos would be excellent dark matter candi-
dates in the meantime. Beyond the neutrino oscillations in the picture of three
light neutrinos, we have seen further puzzling observations and open questions
like pulsar kicks, leptogenesis and anomalies in reactor, accelerator and gal-
lium experiments. They could be addressed by sterile neutrinos in different
mass ranges, even though, in the case of the anomalies, the explanations are
potentially in conflict with Standard Cosmology. Finally, we have discussed
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the status of searching for cosmological dark matter in the form of sterile neu-
trinos with X-ray astronomy and with future experiments (relying on mixing
with the e-sector). They may contribute laboratory bounds constraining the
parameter space of sterile neutrinos.





Chapter 4
Production mechanisms for keV sterile
neutrino dark matter

“Physics is the only profession in which
prophecy is not only accurate but routine.”

Neil deGrasse Tyson

In this chapter, we will start to link the insights on dark matter production
templates presented in section 2.4 to the concept of sterile neutrinos, which
we motivated in the last chapter. We will discuss concrete realisations of the
production templates for these excellent dark matter candidates. The precise
understanding of the production mechanisms is crucial in order to assess the
compatibility with cosmic structure formation (section 2.3). Furthermore, X-
ray bounds (section 3.2.1) will play a decisive role for two of the mechanisms
presented.

The first two mechanisms discussed in sections 4.1 and 4.2 will rely on
active-sterile mixing to produce dark matter from the thermally abundant
active neutrinos in the early universe. These famous mechanisms are called
Dodelson-Widrow mechanism (DW) and Shi-Fuller mechanism (SF). We will
present the physical concepts behind the mechanisms and learn that DW is
ruled out as a sole production mechanism if sterile neutrinos are supposed
to make up all the cosmic dark matter, while SF has some viable parameter
space left that is in accordance with all constraints. The formal treatment of
DW with all necessary equations and numerical details will be postponed to
chapter 6. There, we will discuss the effect that the DW mechanism necessarily
has on all other mechanisms producing sterile neutrinos in even earlier epochs,
such as the decay production mechanism forming the main topic of this thesis.
The limiting case of no initial population will then formally describe the pure
DW case as well. In both the DW mechanism and the SF mechanism, X-ray
bounds are important, since it is the very same parameter, namely the mixing
angle θIα, which influences both the production in the early universe as well
as the expected X-ray signal strength today.

45
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We will also connect sterile neutrinos to the idea of thermal freeze-out in
section 4.3 and see why this combination of production template and candidate
is in some tension with today’s observational status. After this, section 4.4
will introduce some formalism for decay production without overloading it
with too many particle physics details. These details will be the purpose of
parts of chapter 5. Instead, we will present general techniques to tame the
mathematical problems behind decay production in a general way.

4.1 The Dodelson-Widrow mechanism
The DWmechanism is the conceptually easiest way to produce sterile neutrinos
in the early universe. It only relies on a non-vanishing mixing angle between
the new mass eigenstate(s) and the active flavours that are thermally abundant
until they decouple from the plasma at a photon temperature of about 2 MeV.1

The basics of the DW mechanism were seeded in Refs. [140,141] and then
connected to the subject of dark matter by Dodelson and Widrow in Ref. [142].
To understand the fundamental principles of DW, let us rephrase some of the
insights that we discussed while dealing with neutrino oscillations in the active
sector (section 3.1) in a slightly different language. To this end, recall that we
identified neutrino oscillations as a consequence of the misalignment of the
flavour and the mass bases.

A pictorial way to understand the DW mechanism is the following: a scat-
tering process of the weak interaction taking place in the early universe pro-
duces a flavour eigenstate, e.g. an electron neutrino. This is a superposition
of different mass eigenstates and potentially contains an admixture to the new
heavy mass eigenstates NI through a mixing angle θIα, beyond the admix-
ture to the light mass eigenstates m1,m2,m3.

2 This superposition of mass
eigenstates propagates coherently until, after travelling one mean free path
on average, it encounters a new scattering target. This can be interpreted as
a quantum mechanical measurement causing a collapse of the wave-function.

1The notion of a decoupling temperature offers some room for interpretation: dropping
out of equilibrium is not an instantaneous process, such that one can define the time (or
temperature) of decoupling as the time where the distribution deviates from the thermal one
by more than a meaningful but somewhat arbitrary threshold. Also note that electron neu-
trinos behave somewhat differently since, at these temperatures, electrons and positrons are
still thermally present while muons and taus have already decoupled and decayed, resulting
in the absence of charged current interactions for νµ and ντ . The fact that decoupling takes
a finite time also results in the effective number of neutrinos Neff to deviate slightly from 3
in the standard picture with just three active neutrinos. For a detailed discussion, we refer
the interested reader to Ref. [139, Sec. 4.1].

2In such discussions, one will often read expressions like admixture to the sterile neu-
trino. In chapter 3, we were very careful in making the difference between flavour and mass
eigenstates as explicit as possible. Since the mixing between active flavours and new heavy
mass eigenstates are forced to be very small (e.g. by X-ray bounds), the distinction is often
swept under the carpet and the associated language tends to become sloppy when talking
about sterile neutrinos.
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With a certain probability, this can project out a sterile neutrino. Of course, in
the same way, the sterile neutrino — being a superposition of mass eigenstates
and hence eigenstates of propagation — will build up phases in flavour space
and can potentially “oscillate back” to an active flavour in the next “scattering
event“, which is exactly the effect discussed in the search for X-ray signals.

The relevant quantity for predicting the production of sterile neutrino dark
matter through the DW mechanism is thus the effective mixing angle in the
plasma of the early universe. Just as a dense environment like the Sun causes
the mixing angles to deviate from their vacuum values, the treatment of mixing
in the early universe requires to take finite density and finite temperature
effects into account. In the Sun, the effective mixing angle can even become
maximal, a resonance phenomenon referred to as the MSW effect [143] For
a neutrino with definite momentum p, the mixing angle at finite density and
finite temperature, denoted as θmIα, can abstractly be expressed through the
following equation [4, Eq. (5.5)]:

sin2 (2θmIα) =
∆2
Iα (p) sin2 (2θIα)

∆2
Iα (p) sin2 (2θIα) + [∆Iα (p) cos (2θIα)− VD − VT ]2

, (4.1.1)

where ∆Iα (p) is defined by:

∆Iα (p) ≡ m2
NI
−m2

α

2p
. (4.1.2)

Here, mα is the effective mass of flavour α, which, in turn, is given by

m2
α ≡

3∑
j=1

∣∣Ujα∣∣2m2
j +

NR∑
J=1

|UJα|2m2
NJ
. (4.1.3)

In eq. (4.1.3), we have denoted the elements of the generalised version of the
PNMS matrix with Ujα or UJα respectively. In order to keep the expression
as general as possible, we have been agnostic about the number NR of new
right-handed states, which is equal to the number of (potentially degenerate)
new mass eigenstates. We have also carefully disentangled the sum into terms
from the mixing of an active flavour α with the light mass eigenstates (lower
case Latin index), which has mixing angles of order unity (cf. section 3.1)
and the admixture to the new heavy mass eigenstates (capital Latin index),
which needs to be small. Combining these insights on the magnitude of the
admixtures of light and heavy mass eigenstates into the active flavours with
eq. (4.1.3), it is clear that the scale of the effective mass of the active flavours
is somewhere in the (sub−)eV range unless the eigenstates mNJ

become very
heavy.

For heavy mass eigenvalues in the mass range of a few up to some tens
of keV, we can always just approximate ∆ (pIα) ≈ m2

NI
/(2p) to a sufficient

accuracy. Note that eq. (4.1.1) contains the terms for additional potentials
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caused by finite density (VD) and/or by finite temperature (VT ) still only in an
abstract form. We will in what follows discuss the physics behind these terms,
postponing the numerical discussion to the respective later parts of this thesis.

The finite-temperature potential arises due to scattering off thermally pro-
duced particle-antiparticle pairs and due to higher-order corrections in the
scattering processes. The exact behaviour of this term is thus located in the
realms of thermal field theory, and a completely exhaustive discussion starting
from first principles is beyond the scope of this work. Nonetheless, we will
present more formal aspects in chapter 6 and in related appendices. For tem-
peratures below the electroweak scale (i.e. T . MW ), the finite-temperature
potential is of the form

VT = −c1G
2
FpT

4 , (4.1.4)

where c1 is some numerical constant of order one [4]. It is conceptually impor-
tant to notice both the strong temperature dependence as well as the negative
sign of the potential term. Thus, the effects of finite temperature in the early
universe can contribute to a considerable suppression of the mixing angle. In
the absence of any contribution from VD (see section 4.2 for non-vanishing VD
and a discussion thereof), this term will make the interaction so weak that
sterile neutrinos can hardly thermalise in the early universe, unless some other
interactions BSM are at work (cf. section 4.3). As a rule of thumb, one can
say that a sterile neutrino with

sin2 (2θIα) . 10−6 × (10 keV/mNI
) (4.1.5)

cannot attain equilibrium in the early universe, and thus some type of freeze-
in will be the only option [4]. As we will see in a short while, current X-ray
constraints force the mixing angles to be much smaller for the interesting mass
region.

As a next step, it is important to understand that, for VD = 0, the dis-
tribution function of sterile neutrinos created by the DW mechanism can be
completely determined for a fixed value of θIα and mNI

by means of eq. (4.1.1).
In other words, we can for instance write the relic density of sterile neutrinos
created via freeze-in by the DW mechanism as a function of the vacuum mixing
angle θIα and of the mass mNI

:

ΩDW ≡ ΩDW

(
θIα,mNI

)
. (4.1.6)

We will provide an insightful plot once we have discussed the conceptually
close SF mechanism in the next section. For now, let us end the discussion of
the DW mechanism with the following statements:

1. For masses larger than about 2.5 keV, the current X-ray bounds are
so strong that the DW mechanism could only contribute a small frac-
tion to the cosmological dark matter density, even if the mixing angle



4.2 The Shi-Fuller mechanism 49

fully saturated the X-ray limit. The fraction that could potentially be
contributed quickly falls to practically zero for somewhat larger masses.
This is a consequence of the fifth power of the mass mNI

appearing in
the expected decay rate (i.e. the signal strength), cf. eq. (3.2.1).

2. For masses smaller than about 2.5 keV, the X-ray bounds weaken con-
siderably. In this case, saturating the X-ray limits would even lead to
overproduction of sterile neutrinos as dark matter. Lowering the mixing
angle to hit the correct relic abundance does, however, not fly either:
since the spectral form of the DW distribution can also be calculated
accurately (cf. chapter 6), one can make predictions for structure forma-
tion and infer that this possibility is ruled out by the observed large-scale
structure of the universe. A recent analysis using Lyman-α data sets a
quite restrictive limit of mN > 24.4 keV [144] for the DW mechanism, a
mass where the X-ray bound does not allow for any significant contribu-
tions.

To sum it up, the DW mechanism cannot produce a significant fraction of
the cosmic dark matter when cosmic structure formation and X-ray bounds
are combined accordingly.

4.2 The Shi-Fuller mechanism
Let us now advance to the somewhat more complex case of allowing for VD 6= 0.
This term will allow the effective mixing angle to become resonant, similar to
the MSW resonance taking place inside the Sun. This resonant active-sterile
conversion is referred to as the Shi-Fuller mechanism. It is based on early work
by Enqvist, Kainulainen and Maalampi [145], which was then applied to the
dark matter riddle by Shi and Fuller in the late 1990s [146]. Using eq. (4.1.4),
we argued that finite temperature effects actually suppress the production rate
of sterile neutrinos through their mixing with the active sector. If, however,
VD can attain the right sign and magnitude, the mixing term for sin2 (θmIα) in
eq. (4.1.1) could approach unity and hence mixing would be maximal. Such a
scenario can be caused by an asymmetry between particles and antiparticles,
introducing effective potential terms into the interaction Hamiltonian. Let
us therefore define the lepton asymmetry of flavour α as the difference in
particle and antiparticle number densities, normalised to the number density
of photons, nγ:

Lα ≡
nνα − nν̄α

nγ
. (4.2.1)

The presence of a term depending on the lepton asymmetries of the different
flavours renders the denominator of eq. (4.1.1) much more involved. For a more
technical discussion, we refer the reader to the original work [146], to Ref. [4,
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secs. 5.1.4 and 5.2] or to Ref. [147]. Here, we want to focus on discussing the
physical concepts behind the mechanism and discuss their interpretation and
implications:

1. The finite-density potential VD is again a function of temperature and
momentum. This also means that the resonance condition will be met
for different momenta at different points in time (and hence different
plasma temperatures). This can lead to a non-thermal and non-trivial
spectral shape for the sterile neutrino population. In fig. 4.1 we show (in
red) a sample spectrum for SF production. In this example, we chose
mNI

to be 10 keV and the mixing is given by sin2
(
2θIµ

)
= 5 × 10−10,

and the lepton asymmetry is tuned such that the correct relic abundance
of dark matter is achieved. For comparison, the plot shows an equally
normalised spectrum of thermal shape (i.e. a suppressed thermal Fermi-
Dirac distribution). One can clearly see that the SF distribution has
two peaks, both of which are at smaller momenta than the mode of the
suppressed thermal distribution in this particular case.
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Examplary spectrum for SF production.
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-10
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Figure 4.1: Example of a momentum distribution function of sterile neutrino
dark matter produced by the SF mechanism in red: a second peak is clearly
visible. The black dashed curve is a suppressed Fermi-Dirac distribution for
reference, normalised to the same particle number as the SF spectrum. Note
the logarithmic scale for the rescaled momentum x ≡ p/T .

2. Due to the non-trivial spectra possible within the SF mechanism, the pre-
cise understanding of the resonance condition and the underlying physics



4.2 The Shi-Fuller mechanism 51

is essential. As of today, there are still some discrepancies between the
different groups working on the subject [147–153]. Fig. 4.2 shows an
aggregate quantity of the particle spectra, namely the average ratio x
of particle momentum p and plasma temperature T . As we will see in
chapter 7, this can be used to construct a somewhat crude estimator
for structure formation. Nonetheless, this estimator is widely used in
the literature and this thesis is also devoted to introducing new, more
accurate methods to assess structure formation starting directly from
the particle spectrum. As a rule of thumb, we can for now state that a
high average ratio of p/T is more likely to be in disagreement with the
observed cosmic structure than a smaller value, if all other relevant pa-
rameters are kept constant. Thus, fig. 4.2 shows that the regions that are
in agreement with the X-ray bound are more critical when it comes to
structure formation while the regions that are more compatible with the
observed structure violate the X-ray bound. A similar plot with overlaid
constraints from Lyman-α data and MW satellite counts can be found
in [154].

3. A subtle detail of the SF mechanism lies in the fact that the lepton asym-
metry is not simply a constant number. Instead, resonant conversion of
e.g. να into sterile neutrinos reduces the potential lepton asymmetry and
hence also its effect on VD. This can be understood to be a negative feed-
back effect which is hard to be handled analytically. The whole business
of the SF mechanism is usually treated in a numerical manner, where
the interplay between the active-sterile conversion and the lepton asym-
metries can be handled. A quite recent and pedagogical discussion can
be found in Ref. [153], which also references to the publicly available
software package sterile-dm provided by the authors. This software
package allows to compute the particle spectra of the SF mechanism
(even though just for mixing to the muon sector).

4. In order to produce the right amount of sterile neutrino dark matter
through the SF mechanism, one needs a sizeable primordial lepton asym-
metry, Lα = O

(
10−4

)
[4]. This is well below the current experimen-

tal reach of other related observables, such as the abundance of light
elements created in the epoch of Big Bang Nucleosynthesis (BBN) at
temperatures of a few MeV. Nonetheless, the value is larger than the
measured baryon number ηB by orders of magnitude [155]:

ηB ≡
nB − nB

nγ
= (6.160± 0.148)× 10−10 . (4.2.2)

Recall that models of baryogenesis connect lepton and baryon asym-
metries through sphaleron processes, such that there can be model-
dependent bounds on the lepton asymmetry. Also consider that, once
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the mixing becomes resonant, the maximal abundance of sterile neutri-
nos will be produced. Thus, the SF mechanism cannot enhance the relic
density arbitrarily in comparison to the non-resonant DW case (cf. the
boundary to the lower gray shaded area in fig. 4.2). Apart from this
“numerical” limitation of a resonance induced by a lepton asymmetry, it
can also be seen as a flaw that the initial lepton asymmetry needs to be
introduced by hand. A more extensive model known as the νMSM [12]
can dynamically create a lepton asymmetry that is in the correct range
for SF to work. However, this comes at the expense of introducing three
new mass states with quite a peculiar mass pattern, which then has to
be introduced ad-hoc in turn.

Figure 4.2: Average momentum rescaled to the plasma temperature as a func-
tion of sin2 (2θ) and of the mass mNI

for SF production. For each point,
the lepton asymmetry is fixed to obtain the correct relic abundance, but it is
not shown in the plot. The upper bound is given by the limiting case of no
resonance, i.e. the DW case, while the lower bound arises when mixing be-
comes maximal. Restrictive (conservative) X-ray bounds are depicted by the
solid (dashed) black line. The case corresponding to the claimed X-ray signal
discussed in section 3.2.1 is shown in red. Adapted from [154].

To summarise, we can state that the SF mechanism can produce the right
relic abundance of sterile neutrino dark matter for some parts of its parameter
space. However, the resonance and the coupled evolution of lepton asymme-
tries are technically very involved and thus introduce some numerical uncer-
tainties to the predictions. Moreover, it does not give any a priori explanation
for the required lepton asymmetry, sparking the theorists’ endeavour to embed
it into a more complete theory.
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4.3 Thermal freeze-out with subsequent entropy
dilution

We have seen that the constraints from the non-observation of a clear X-ray sig-
nal can put stringent bounds on the active-sterile-mixing angle. These bounds
are strong enough that sterile neutrinos would never attain equilibrium in the
early universe and that only a freeze-in type mechanism could potentially pro-
duce the observed relic dark matter abundance in the form of sterile neutrinos.
Let us now have a look at the possibility that sterile neutrinos have interactions
beyond the mixing with the active sector, which may after all equilibrate them
in the early universe and thus allow for a freeze-out type production scenario.

There is a plethora of theories BSM that have new interactions at high en-
ergy scales and which also feature new right-handed fermion states. A complete
review would be far too long for this section, such that we restrict ourselves
to relating some points to two generic examples, namely left-right-symmetric
models [156–158] or the supersymmetric E 6SSM model (see Ref. [158] for a
dark matter interpretation).

In these two exemplary models, additional gauge interactions allow to equi-
librate the right-handed states at high temperatures corresponding to the scale
of the new interaction. In the case of the E6SSM, the new gauge bosons must
have a mass of at least about 2.5 TeV [158,159], while the left-right-symmetric
models can have lower limits as far up as 4.1 TeV [160].

In principle, the scale of the new interaction can also be located at any value
up to the GUT scale, i.e. O

(
1016 GeV

)
. At such scales, the new right-handed

fermions introduced in the respective theory would be equilibrated in the early
universe. If they undergo a classic freeze-out process (once the expansion rate
H exceeds the interaction rate Γint) at a temperature which is in the range
of TeV or even higher, a right-handed fermion with a mass somewhere in the
keV range would still be ultrarelativistic. Mathematically, this case is rather
easy to handle since the freeze-out yield, Y ≡ n/s (with s being the entropy
density), is independent of the precise freeze-out temperature unlike in the
case of cold freeze-out. More specifically, the yield for a fermion freezing out
relativistically is given by [89]:

Y ≡ n/s =
45ζ (3)

2π4

geff

gs
(
Tprod

) . (4.3.1)

In eq. (4.3.1), ζ (3) ≈ 1.202 is Apéry’s constant, geff describes the effective
number of internal d.o.f. (given by 3/4 times the number of internal d.o.f. g for
fermions), and gs parameterises the relativistic d.o.f. present in the primordial
plasma. The evolution of gs will play a decisive role later in our work. It is
discussed in greater detail in appendix A.

If we assume that gs ≥ 106.75 at high temperatures3 and a right-handed
fermion of 10 keV, we would obtain ΩDMh

2 ≥ 10, which not only exceeds the
3The known SM value at T →∞ is given by 106.75 (cf. appendix A).
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accurate Planck value by far but which would overclose the universe. Accord-
ingly, relativistic freeze-out of a keV-scale particle does not fly without further
ado.

Let us shortly mention three possible workarounds for this problem:

1. Predict a whole new plethora of new d.o.f. at high energy scales and
thereby increase gs (T →∞). For gs of a few × 103, the dark matter
abundance could be scaled down to the desired value. Such a value
seems, however, quite unnatural and would in any case have such a vast
number of free parameters as to hardly be predictive at all.

2. Considerate entropy dilution produced by the decay of other heavier
particles. This entropy dilution would affect the yield Y accordingly.
Let us assume another new heavy particle, χ2, of mass M2 and a decay
width Γ2. Then the entropy dilution factor S for a decay of χ2 into
the stable dark matter particle and a fermion-anti-fermion-pair scales as
follows [158]:

S ∼ M2√
Γ2MPl

. (4.3.2)

Here, we have introduced the Planck mass,MPl = 1.22×1019 GeV.4 This
scaling shows the core problem: while we would like Γ2 to be small in
order to generate a large entropy dilution, this also means that the decay
products of χ2 get injected at relatively late times, which can be in con-
flict with BBN, as this epoch is very sensitive to changes in the radiation
density: the expansion rate of the universe is critically dependent on the
amount of radiation by virtue of the Hubble function, which — at these
early times — is still radiation dominated. The expansion rate at tem-
peratures of a couple of MeV enters the equations determining the yield
of light elements produced via BBN. Since abundances predicted in the
Standard Cosmological Model fit observations so well, there is only little
room to accommodate the required small decay width. Even though not
being fully ruled out, this conflict puts the models under considerable
tension. For a more detailed discussion, we refer again to [156–158] and
references therein.

3. Another way of introducing additional entropy is to locate the relativisitc
freeze-out before the reheating epoch, e.g. by postulating new interac-
tions equilibrating the keV-scale dark matter particle at the GUT scale
and a reheating temperature below that scale. This way, the freeze-out
temperature Tfo, which enters the relativisitc equilibrium density to the
third power, might be realised at a much smaller scale factor a than in

4Note that many works make use of the reduced Planck mass, which is smaller by a
factor 1/

√
8π ≈ 0.20. For mere order-of-magnitude arguments, this factor is not of great

importance, though.
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the standard evolution after reheating. Such scenarios are highly spec-
ulative, though, as little is known about possible interactions at very
high scales. Even the precise scale of the reheating temperature is only
bounded from below. For an overview of effects caused be freeze-out
before reheating, we refer to Ref. [161].

These workarounds can have a sizeable number of free new parameters, as
the first possibility explicitly mentions. Thus, they will in general not be too
predicitve, especially if the new physics happens at very high energy scales
(like the GUT-scale), about which little is known.

4.4 Decay production

Let us now proceed to the basics of decay production. The remainder of this
chapter will be devoted to the introduction of the formalism and the back-
ground information needed to treat decay production of dark matter. In sec-
tion 4.4.1, we will discuss interesting effects that distinguish decay production
from all other production mechanisms introduced so far. In order to iden-
tify the relevant quantities, we will discuss the very generic toy example of one
parent species and one decay product species. The qualitative results can, how-
ever, be transferred to more elaborate setups. After that, in section 4.4.2, we
will discuss the formal aspects of the coupled system of Boltzmann equations
we will have to solve in such a scenario. This will already be the groundwork
for the discussion of our concrete particle physics model in the subsequent
chapters. Section 4.4.3 will then reveal some tricks to tame such a system of
equations on the level of distribution functions. Alongside with this discussion,
we will elaborate on some of the aspects of SM particles in the early universe,
since they will be crucial to model the dynamics of the background in which
the decay mechanism takes place.

4.4.1 Setting the stage

In order to understand the subtleties of decay production, let us set up a rather
easy toy example. Despite being generic, it will allow us to identify all aspects
that make decay production qualitatively very different from direct freeze-in or
freeze-out production. Assume that we augment the SM by two new particles,
a parent particle XP and an offspring decay product XD, which we assume to
be stable (on cosmological time scales) and which serves as the dark matter
candidate. For the time being, we take into account the possibilities of both
the parent particle and the decay product to have some interaction with the
SM d.o.f. present in the early universe. Denoting a SM d.o.f. quite generically5

5In order to avoid a cluttered notation, a double appearance of XSM can also denote two
different SM d.o.f., such that XSMXSM can also be interpreted as XSMX

′
SM.
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by XSM (as in section 2.4.1), we assume to have the following scattering and
(inverse) decay processes:

• XSMXSM ↔ XPXP , i.e. the possibility of 2-to-2 scatterings between the
parent particle and SM d.o.f.

• XSM ↔ XPXP , i.e the decay of a SM particle into two Xp or the reverse
process.

• XSMXSM ↔ XD, i.e. the decay of XD into two SM d.o.f. and its reverse
process. Recall that the decay of XD into SM particles must be so slow
as to guarantee that XD be stable on cosmological time scales if we want
it to be a suitable dark matter candidate.

• XP ↔ XDXD, i.e. (inverse) decays involving the parent and the offspring
particle.

In principle, the SM d.o.f. are also subject to similar dynamics among
themselves, which would yield a very extensive set of equations, the precise
solution of which might not even be relevant. The evolution of the SM d.o.f. is
however going into the Hubble function which, in turn, governs the expansion
of the universe. It is relatively well known and, for our means, it is also suffi-
cient to know when a certain SM species becomes non-relativistic or decouples
from the plasma (the former is usually happening earlier, except for neutrinos).
This knowledge will be condensed into the number of effective entropy d.o.f.,
denoted gs. With this knowledge at hand, it is only important to understand
the dynamics of those SM species that couple to XP and XD. Due to the
coupling to the other SM particles, these relevant SM d.o.f. will be thermally
distributed and we only have to know when they decouple from the rest of the
SM particle content remaining in the plasma.

Before going into the technical details in the next section, let us qualita-
tively discuss a few aspects of the interplay of the above equations:

1. If XD is solely (or at least mainly) produced via the decay of XP , its
spectrum is almost exclusively determined by the masses mP and mD

and by the decay width ΓP→D. Note that the scale set by these variables
can be completely distinct from the scale set by the plasma temperature
at this time. The smaller ΓP→D the later the parents decay on average.
Since the mass is not subject to any effects from redshift, the minimal
physical momentum transferred to the offspring particles does not depend
on time. This means, that the ratio p/T can in turn be very different
from a thermal spectrum or a (non-resonant) freeze-in one.



4.4 Decay production 57

2. If the decay of XP is the main production channel of XD, the spectrum
of the parent will influence the spectrum of the offspring species for
two reasons: if the parent has non-vanishing momentum in the cosmic
rest frame at decay, it will add additional momentum components to
the offspring particles, i.e. they can have more kinetic energy than the
amount “released” through the mass gap. Furthermore, parents with
high momenta in the cosmic rest frame also have a longer lifetime, due
to relativistic time dilation. This effectively corresponds to a smaller
decay width.

3. If XP decays only into XDXD (i.e. the channel XP → XDXD has a
branching fraction of 100%), one can often draw the conclusion that the
number density of offspring particles at very late times, nD (t→∞), is
just twice the particle number density of parents, nP , at a suitable earlier
time. This is the case if depletion of parents through scatterings is negli-
gible (as in the case of a freeze-in production) or if the number density is
fixed (e.g. through freeze-out) at a time which is short compared to the
decay time scale Γ−1

P→D. We will see many scenarios in the remainder of
this thesis where this will be confirmed explicitly or where it can help to
cross check numerical results.

4.4.2 The formal aspects: coupled Boltzmann equations

In the last section, we have qualitatively discussed the setup of a particle decay
mechanism for dark matter production. Let us now proceed with a formal
description of the problem, making use of the Boltzmann formalism introduced
in section 2.4. As discussed earlier, the particle distribution function is the
fundamental quantity, from which all interesting quantities can be derived.

Before density fluctuations become relevant, the distribution function is a
function of cosmic time (or another suitable time variable) and of the modulus
of the momentum. If we know the behaviour of the SM d.o.f., we have two
coupled Boltzmann equations in our toy example. Let us show and discuss the
most general form of the equations under the classical assumption of f � 1 (cf.
section 2.4.1). This will ease the discussion of the equations for the concrete
model of singlet scalar decay presented later. We have seen the general form
of a Boltzmann equation on the level of distribution functions in eq. (2.4.3).
The following specifies the different contributions to the collision terms for the
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relevant species, i.e. XP and XD in a generic way:

L̂fP (pP , t) = +PP (pP , t)︸ ︷︷ ︸
production from the SM plasma

−DP (pP , t) fP (pP , t)︸ ︷︷ ︸
depletion through decays

−
∫

d3p′PSP
(
pP , p

′
P , t
)
fP (pP , t)fP

(
p′P , t

)
︸ ︷︷ ︸

scatterings XPXP→XSMXSM

+

∫
d3pDd3p′DKXDXD→XP

(
pP , p

′
D, pD, t

)
fD (pD, t) fD

(
p′D, t

)
︸ ︷︷ ︸

production from inverse decays XDXD→XP
(4.4.1)

L̂fD (pD, t) = +PD (pD, t)︸ ︷︷ ︸
production from the SM plasma

−DD (pD, t) fD (pD, t)︸ ︷︷ ︸
depletion through decays

−
∫

d3p′PKD
(
pD, p

′
D, t
)
fD(pD, t)fD

(
p′D, t

)
︸ ︷︷ ︸

inverse decays XDXD→XSM or XDXD→XP

+D∗P (pD, pP , t) fP (pP , t)︸ ︷︷ ︸
production from decays XP→XDXD

. (4.4.2)

A couple of remarks about eqs. (4.4.1) and (4.4.2) are in order:

1. We have absorbed all distribution functions of the SM d.o.f. into the
production terms P . In some cases, we can rephrase them in terms of
the equilibrium distribution function of the species XP and XD through
the principle of detailed balance, cf. section 2.4.1, eq. (2.4.12).

2. All terms usually include the masses of the species involved and the
respective coupling strenghts. We suppressed them for the sake of clarity.

3. While the abstract form of all terms for production (P), decay (D), scat-
terings (S) and inverse decays (K) could absorb signs, we have assumed
them to be positive such that the signs in the above equations indicate
whether the respective term populates or depletes the species on which
the Liouville operator on the left-hand side operates.

The purpose of eqs. (4.4.1) and (4.4.2) was to show the form of the Boltz-
mann equations related to a two-step production process of dark matter via the
decay of some parent particle. Recalling the form of the Liouville operator from
eq. (2.4.4), one can realise that we are dealing with partial integro-differential
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equations for coupled functions in the two variables p and t. Such systems of
equations can only rarely be solved analytically. We will discuss some ana-
lytically accessible limiting cases of our model later in chapter 5. In all other
cases, combined analytical and numerical efforts are necessary to solve such a
set of equations.

One straight-forward approach from the numerical side is to discretise the
distribution functions fi into different momentum modes, i.e. to replace fi (p, t)
by a finite set of functions fi,j (t) ≡ fi

(
pj, t

)
that approximately represent the

actual functions under consideration. This allows to reduce both integration
and differentiation operations to algebraic operations. Of course this comes at
the cost of not coupling only two functions, but a total of NP +ND functions,
where NP and ND are the numbers of support points pj in momentum space
for parent and offspring respectively. Also note that differentiation, being a
local operation, couples neighbouring modes, e.g. pj−1 and pj.

6 Integration,
being a global operation, couples a large number of modes. Take the scattering
terms S in eq. (4.4.1) for instance: once the discretisation has been applied,
the integral for the function fP,j will be transformed to an expression of the
form

fP,j (t)

NP∑
j
′
=1

Sjj′ (t) fP,j′ (t) , (4.4.3)

coupling the mode j of the parent particle to all other modes j′ = 1, ..., NP

of the same species. While this is conceptually simple, it requires care when
implementing code aiming at numerically stable solutions.7

4.4.3 Taming the beast: useful coordinates

Before finishing this chapter, we want to introduce a useful set of coordi-
nates that simplifies the Boltzmann equations considerably by eliminating one
derivative from the Liouville operator [3, App. A2]. As argued above, differ-
entiation needs to evaluate differences of momentum modes in a discretised
version of the system of Boltzmann equations. Differences of very small or
very large numbers are a difficulty that one tries to avoid in numerical com-
putations. Therefore, a transformation getting rid of one derivative in the
Liouville operator is definitely worthwhile. Furthermore, we will realise some
further advantages of the transformation in a short while.

6Of course the number of coupled neighbouring modes depends on the accuracy to which
the differentiation is approximated.

7A useful trick for the numerical solution of Boltzmann equations on the level of distri-
bution functions is to make use of the knowledge that the distribution function is positive
semi-definite, i.e. it must be larger or equal to zero for all momenta. We enforced this
condition by altering some solving algorithms accordingly.
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To start with, consider a very general transformation of the variables t, p
to new variables r, ξ:

t
p

}
→
{
r = r(t, p),
ξ = ξ(t, p).

(4.4.4)

When inserting this transformation into the Liouville operator, we obtain

L̂ =
∂r

∂t

∂

∂r
+
∂ξ

∂t

∂

∂ξ
−Hp(r, ξ)

(
∂r

∂p

∂

∂r
+
∂ξ

∂p

∂

∂ξ

)
. (4.4.5)

Recall that our goal is to eliminate one derivative from the Liouville oper-
ator. To this end, we demand that r be a pure time variable, i.e. it may only
depend on t, but not on p. This will eliminate the first summand appearing
in parentheses:

L̂ =
∂r

∂t

∂

∂r
+

[
∂ξ

∂t
−Hp(r, ξ)∂ξ

∂p

]
∂

∂ξ
. (4.4.6)

Now we see that we can indeed eliminate the derivative with respect to ξ with
the following trick. Let us demand that

∂ξ

∂t
= Hp (r, ξ)

∂ξ

∂p
. (4.4.7)

This is a rather simple partial differential equation. Recalling that H ≡ ȧ/a
and fixing initial conditions of the form

ξ(p, t0) = ξ0(p), (4.4.8)

with ξ0 being some arbitrary C1-function, we can solve eq. (4.4.7) right away:

ξ(p, t) = ξ0

(
a(t)

a(t0)
p

)
. (4.4.9)

If the two requirements used in this derivation are fulfilled, the Liouville
operator gets transformed into

L̂ =
∂r

∂t

∂

∂r
. (4.4.10)

Let us give a concrete realisation of the abstract discussion and simultane-
ously complete it: after reheating, we expect a one-to-one correspondence of
time and temperature, where larger values for cosmic time t correspond to a
lower temperature T of the cooling plasma. Therefore we make the choice

r =
m0

T
and (4.4.11)

ξ =
1

T0

a(t)

a(t(T0))
p =

(
gs(T0)

gs(T )

)1/3
p

T
, (4.4.12)
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where m0 is an arbitrary reference mass and T0 an arbitrary reference temper-
ature.

For the last equality in eq. (4.4.12), we have used the fact that the comoving
entropy density s is constant,

s(T )a3(T ) =
2π2

45
gs(T ) T 3 a3(T ) = const. (4.4.13)

This allows us to relate the scale factor a(T ) to the effective number of rela-
tivistic entropy d.o.f. gs (T ) We can also use it to derive the aforementioned
time-temperature relation

dT

dt
= −HT

(
Tg′s(T )

3gs(T )
+ 1

)−1

, (4.4.14)

where the prime denotes a derivative with respect to temperature. Combining
eq. (4.4.14) with the transformed Liouville operator as given in eq. (4.4.10),
we can finally write

L̂ = rH

(
Tg′s
3gs

+ 1

)−1
∂

∂r
. (4.4.15)

With this transformation we have also made it evident why we need a
detailed understanding of the evolution of the different SM d.o.f. in the early
universe, since they shape the behaviour of gs. Of course we do not know
which d.o.f. could additionally be present at early times after reheating, as
these scales have not been tested in the lab so far. So the minimal approach
is to take into account only the possible contributions to gs from the explicitly
postulated new fields of any BSM theory and from the SM itself. Thus, a model
introducing only a few new d.o.f. will still be dominated by the dynamics of
the SM d.o.f. present in the early universe. We present the evolution of gs in
detail in appendix A.

4.5 Summary of the chapter
In this chapter, we have discussed how potential sterile neutrino dark matter
could have been produced in the early universe. We started the discussion
with mechanisms using active-sterile mixing to produce a relic abundance of
steriles from the active flavours that are thermally abundant in the primordial
plasma. We have argued that this most simple mechanism does not work due
to a combination of X-ray bounds and the observed large-scale structure of the
universe. The SF mechanism could partly circumvent the strong X-ray bounds
by invoking a resonant active-sterile conversion in the early universe, triggered
by a sizeable primordial lepton asymmetry. This mechanism is conceptually
and computationally involved and, the very nature of resonant phenomena



62 4. Production mechanisms for keV sterile neutrino dark matter

plagues the mechanism with some remaining uncertainties in the calculations.
Still, as of today, the SF mechanism is left with some valid parameter space
where it could explain a relic abundance of dark matter saturating the observed
amount and being in agreement (or at most in very mild, inconclusive tension)
with observations from structure formation. We also discussed the possibility
to create sterile neutrino dark matter on the keV scale via a freeze-out type
mechanism. We have seen that freeze-out type mechanisms for dark matter at
the keV scale are in general hard to reconcile with BBN.

After that we have laid out the basic concepts of decay production by
introducing a general but yet instructive toy model that allowed us to discuss
different features of this mechanism. We have then presented the abstract
form of the system of Boltzmann equations related to decay production and
discussed numerical as well as analytical transformations that will help us solve
such systems in the following chapters, where we will deal with a concrete
particle physics realisation of our toy setup.



Chapter 5
Scalar Singlet Decay: computation of
particle spectra

“If I were forced to sum up in one sentence
what the Copenhagen interpretation says to me,

it would be ’Shut up and calculate!’ ”
David Mermin

In this chapter, we will introduce a concrete particle physics model for
producing sterile neutrino dark matter from the decay of a real scalar singlet
BSM which, in turn, couples to the Higgs sector. We will start by discussing the
pure particle physics aspects of the setup and its different regimes in section 5.1.

After this, we will apply the methods discussed in section 4.4.2 to our
system of Boltzmann equations, which will be simplified by some of the as-
sumptions of our model. We will speak in detail about the collision terms for
our model and how to tackle them in section 5.2. This will set the stage to fi-
nally compute the momentum distribution function, from which all interesting
quantities can be derived.

In section 5.3, we will approach the limiting case of large scalar masses. In
this setup, several patches of the space spanned by the remaining parameters
can be described very adequately by analytically accessible limiting scenarios.
These scenarios will be very helpful to understand many of the interesting
aspects of sterile neutrino production from scalar decay in a qualitative way.
After that, in section 5.4, we will show how to calculate the sterile neutrino
spectra for arbitrary scalar masses (in a physically meaningful range, which
will be motivated).
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5.1 The particle physics of the model
Now that we have seen the basics of a two-step production of sterile neutrino
dark matter from the decay of a parent particle, let us work out a concrete
particle physics realisation of this idea. In the following, we will introduce a
specific, yet somewhat generic model and discuss its parameter space as well
as its connections to other fields of physics observables beyond the realm of
dark matter.

Our setting augments the SM by one real scalar singlet S of mass mS and
one right-handed neutrino N , such that we abstain from adding a redundant
index to the latter.1 Its mass will be denoted by mN .

The decay of scalars S into two right-handed neutrinos is mediated through
a Yukawa-type interaction term with strength y in the Lagrangian,

L ⊃ −y
2
SN cN + h.c. , (5.1.1)

while the scalar is connected to the Higgs doublet Φ via a so-called portal
coupling. We include all terms that respect a global Z4-symmetry2 that we
assume:

Vscalar =
1

2
m2
SS

2 +
λS
4
S4 + 2λ

(
Φ†Φ

)
S2 . (5.1.2)

So, after adding kinetic terms for the new particles S and N , the total
Lagrangian (including all the SM particle physics through LSM) of our model
reads:

L = LSM +

[
i

2
N /∂N +

1

2

(
∂µS

)
(∂µS)− y

2
SN cN + h.c.

]
− Vscalar + Lν ,

(5.1.3)

1 In principle, we could postulate any number of right-handed neutrinos in the model. If
there are more generations of right-handed neutrinos, the scalar can decay into all kinemat-
ically accessible right-handed states NI with branching fractions determined by the Yukawa
couplings yi and the masses mNI

as well as by the mass of the scalar. In the limiting case
where mNI

� mS , the branching ratio into species NI will be y2
I/
∑
K y

2
K . If the mixing

between the different right-handed states is sufficiently large, all right-handed neutrinos will
decay into the lightest state N1 quickly, and all results of this thesis can be directly applied
using the substitution y2 → ∑

K y
2
K . If, however, the mixing inside the sterile sector is

small, there will be additional complications due to late injection of highly energetic dark
matter particles by the decay of the heavier right-handed states into the lighter ones. Such
a scenario would require a much more detailed study in order to assess which part of its
parameter space (of much higher dimension) could potentially be in agreement with the
observed large-scale structure of the universe.

2 A suitable charge assignment guaranteeing that the Lagrangian be invariant under the
global transformation would be S → −S and N → ±iN . Note that the symmetry forbids
terms with odd powers of S, the presence of which results in a number of new scattering
reactions that would have to be taken into account. The breaking of the symmetry by a
non-zero vacuum expectation value (VEV), 〈S〉, is discussed in [18], while the (rather mild)
consequences of dropping the assumption of a Z4-symmetry are discussed in [16].
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where Lν is the part of the Lagrangian that can give mass to the active neutri-
nos, e.g. through the seesaw-mechanism and contains the active-sterile mixing
angles. Let us make two important comments here:

1. The mass of the right-handed neutrino mN could in principle be gen-
erated through a VEV 〈S〉. We do not generally assume a non-zero
vacuum expectation value, though, and leave the details of the sterile
neutrino mass generation open. Nonetheless, we will later on discuss
some collider bounds that would arise if S were to develop a non-zero
VEV. These bounds will be explained in more detail in section 7.1.2.

2. For the time being, we assume that the DW mechanism does not con-
tribute to the production of sterile neutrinos, i.e. we assume zero mixing
between the heavy mass eigenstate mN and the active flavours. In chap-
ter 6, we will loosen this constraint and analyse the effect of non-zero
active-sterile mixing on sterile neutrinos spectra from scalar decay in de-
tail. Anticipating the most relevant results of chapter 6, we can state
that the DW mechanism can only alter the spectra of sterile neutrinos in
the mass region mN < 4 − 5 keV. And even in this region, the changes
will be of a few per cent at most. Furthermore, this maximally possi-
ble effect is only relevant in a few, hand-selected cases in what concerns
structure formation. The reason for the smallness of the effect that DW
can have on sterile neutrinos produced by another, earlier mechanism is,
once more, the strength of current X-ray constraints, which forces the
mixing angle to be small anyway.

To sum up the preceding discussion of this section, we note that our current
setup allows for the following BSM reactions:

XSMXSM ↔ SS ,

XSM ↔ SS ,

S ↔ NN .

Note that the absence of processes like XSMXSM ↔ S is enforced by the Z4-
symmetry which forbids vertices with only on scalar S attached. Further-
more, we also neglect strong dark matter self interactions, which could mediate
number-changing reactions within the population of scalars, like SS ↔ SSSS.
This can always be achieved by choosing the scalar self-coupling λS small
enough. For detailed considerations about the bounds of the self-coupling in-
ferred e.g. from isocurvatue constraints (linking the setup to inflation again)
and other observables like the bounds on dark matter self-interaction derived
from the Bullet Cluster, see Refs. [162,163]. Thus our setup is already consider-
ably simpler than the somewhat more generic setup discussed in section 4.4.2.
We will simplify it even further by assuming that the inverse decay of sterile
neutrinos into a scalar, NN → S, can be neglected completely. This assump-
tion will be justified by the results to be shown later on, where we will see that
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the particle densities are small enough for such a simplification to hold. Also
note that the rate of inverse scatterings would be proportional to the square
of the sterile neutrino particle number density.

These additional assumptions have a profound mathematical implication
for our system of Boltzmann equations that will become very explicit in a short
while, but which can easily be anticipated — comparing again to the setup
described in eqs. (4.4.1) and (4.4.2), we realise that our Boltzmann system
partially decouples: while the equation for fN , i.e. for the distribution function
of the offspring N , still depends on the parent distribution (denoted by fS)
through the right-hand side of the Boltzmann equation, the equation for S
does not depend on fN anymore. This very fact will allow us to first solve the
equation for fS and then use it as an input to solve the equation for fN .

From the preceding paragraph, it has become evident that we have to
start with the calculation of fS. Let us therefore have a closer look at the
physical production processes populating the species S in the early universe.
Our choice of the Higgs portal in eq. (5.1.2) implies that S will be produced
by its coupling to the d.o.f. of the Higgs doublet Φ. The physical scattering
and decay processes arising due to this coupling can be categorised into three
different regimes of the model:

I – Production before the electroweak phase transition (EWPT) takes place:
all four degrees of freedom of the SU(2)L-doublet Higgs Φ contribute
equally to the production/depletion of scalars from/into the thermal
bath, as they cannot be distinguished. Just like the decoupling of species
from the thermal bath, the EWPT is not an instantaneous process but
can roughly be located around a temperature of about 180 GeV [164].3

II – Production after EWPT with mS > mh/2, where

mh = 125.02+0.26
−0.27 (stat.)+0.14

−0.15 (syst.) GeV

denotes the mass of the physical Higgs boson after the breaking of the
electroweak symmetry [165] In this regime, the scalar S couples to the
Higgs and to the massive gauge bosons that have absorbed three d.o.f.
of the original doublet Φ. Furthermore, scalars can also be created from
SM fermions by virtue of their coupling to the Higgs.

III – Production after EWPT with mS < mh/2. This is similar to case II,
the only difference being that the Higgs bosons present in the thermal
plasma are now kinematically allowed to decay into pairs of scalars.

The channels of the three regimes are shown in Tab. 5.1 where we list all
diagrams contributing at leading order. More precisely, this means that we

3We use the potential as given in Ref. [164] for our numerical computations detailed out
in section 5.4. From the potential, we can infer the mass mΦ (T ) of any of the four d.o.f. of
the Higgs-doublet before EWPT.
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Table 5.1: Relevant production channels in regimes I–III.

have dropped diagrams with a scalar propagating in the t- or u-channel, since
their contribution to the overall squared amplitude will scale as λ3, i.e. they
will be suppressed by one additional power of the coupling as compared to
the leading order terms. The processes with initial fermion states f open up
after EWPT, i.e. in regimes II and III. In practice, only the contribution from
top/anti-top pairs is relevant, though, since all other fermionic channels will
be suppressed by the square of their small Yukawa couplings. At a first glance,
lighter fermions in fact do seem relevant, as the Higgs propagating in the s-
channel could be on-shell in these cases. This would increase the respective
terms in the amplitude by orders of magnitude easily. These cases of processes
with on-shell Higgs bosons need to be subtracted in order to avoid double
counting of decaying thermal Higgses in the plasma [166]. This contribution
is included in the decay collision term CSh↔SS. At high precision, thermal
corrections can make this distinction even more subtle and slightly change the
numerical results [35].

In principle, production will always start in regime I as this corresponds
to the early times before EWPT. If production is not finished in regime I,
it will either proceed into regime II or III, depending on the value of mS.
In order to better understand the time span relevant for the production of
S from the plasma, let us recall our discussion of dark matter production
templates presented in section 2.4.1. For small values of the Higgs portal
coupling λ, the scalar itself will undergo freeze-in, which is most efficient at
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plasma temperatures around the mass of the particle to be produced, T ∼ mS

(unless there are resonance effects that could enhance the production at very
different temperatures). For larger portal couplings, the scalar will equilibrate
and then undergo thermal freeze-out. In this case, the freeze-out temperature
also depends on mS. This leads to the conclusion that there is a finite span in
cosmic time t, or plasma temperature T likewise, in which the major part of
the production of scalars takes place.

To anticipate some of the results obtained through the solution techniques
presented in section 5.4, we show these time spans for a selection of mS in
fig. 5.1. In the plot, red arrows correspond to small values of the Higgs portal
coupling, i.e. to a scalar freezing in. These cases are referred to as FIMP
for feebly interacting massive particle. The time span for this scenario has
been defined as follows: once 10% of the final yield Y of a would-be-stable
scalar S are produced, we start the clock and we stop it when 90% have been
produced. The blue arrows depict the case of larger Higgs portal coupling,
where the scalar freezes out. Despite the fact that S is not the dark matter
candidate, we refer to this case as the WIMP setup, as the scalar follows the
same dynamics as a classic WIMP except for its decay into sterile neutrinos
while in equilibrium and after decoupling. In this case, we cannot define a
meaningful initial time since only the freeze-out time is relevant.4 The end of
the time span in the freeze-out case is defined by Y/Yeq = 10, where Yeq is
the equilibrium yield. The factor of 10 is somewhat arbitrary but, since the
Boltzmann suppression proceeds exponentially, a somewhat smaller or larger
factor would not lead to considerable changes.

Before ending this section, let us shortly discuss the essential aspects of
fig. 5.1. For scalar masses below mh/2, the freeze-in of scalars lies well within
regime III, i.e. it starts only after the EWPT. This effect can be explained by
the definition of the temperature range (cf. above) using relative abundance
thresholds. If mS < mh/2, the decay of thermal Higgs bosons into two scalars
is the main contribution such that the scalars produced after EWPT simply
outnumber those produced earlier by far. The effect of Higgs decay boosting
scalar production will become apparent again in section 5.4. Another relevant
insight is that, for a scalar mass of mS = 500 GeV, freeze-in occurs well before
EWPT. The freeze-out case slightly runs into regime II, but not as significantly
as for lower masses. This does not only make the scattering processes much
simpler but also locates the process in a regime where the number of SM d.o.f.
changes only very mildly, cf. appendix A. We will make extensive use of this
limiting case to derive analytical results in section 5.3.

4We will see later that the initial abundance of the scalar is rather irrelevant since equili-
bration happens fast compared to the timescale of freeze-out. Hence, any initial distribution
of scalars will be dragged into its equilibrium distribution so fast that it is possible to neglect
corrections from the short period of a deviating distribution. This will be shown explicitly
in the right panels of figs. 5.3, 5.4 and 5.5, where, in two cases, equilibration happens fast
enough not to be visible in the plot at all.
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Figure 5.1: Ranges of the plasma temperature T ≡ Tγ where a would-be-stable
scalar singlet S is efficiently produced (cf. main text) in a freeze-in scenario
(red arrows) and a freeze-out scenario (light blue arrows). We show four ex-
emplary masses (mS = 30, 60, 65, 500 GeV) in order to indicate the variety
of possible production time spans. TEWPT indicates the EWPT, separating
regime I preceding it from regimes II and III following afterwards. TPT gives a
rough indication of the temperature below which the abundance of the Higgs
becomes very strongly Boltzmann suppressed, even though still in equilibrium
with the remaining SM d.o.f. The production time span of scalars with masses
of 30 GeV freezing in already cuts into this region which explains why signifi-
cantly lower masses mS are not anymore relevant for a freeze-in production.
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5.2 Collision terms for the new particles
The following section will give an example on how to analytically simplify
the collision terms appearing in our two-step dark matter production process.
This will not only be the first step to derive analytical results for the relevant
distribution functions for in the limiting case of large mS, but it will also be an
essential part of all numerical calculations. As eqs. (4.4.1) and (4.4.2) show, the
collision terms can be integrals in high-dimensional phase spaces. Analytically
reducing these integrals to lower dimensions by making use of symmetries and
suitable transformations will make numerical solutions more stable and easier
to implement.

To this end, we want to detail the derivation of the collision term governing
the equation for the sterile neutrino. This equation will remain valid through-
out the course of this thesis and therefore be of utmost importance. We will
hence from now on refer to it as the master equation. We will now consider the
decay S → NN and apply the generic form of a collision term as presented in
eq. (2.4.8) to write down a concrete formulation:

CN
S→NN =

1

2Ep

∫∫
2d3p′

(2π)3 2Ep′

d3pS

(2π)3 2EpS
(2π)4 δ

(
EpS − Ep − Ep′

)
× δ(3)

(
~pS − ~p− ~p ′

)
|M|2 fS (pS, t) . (5.2.1)

Before explaining in detail how to simplify this integral, some comments are
in order:

1. The spin d.o.f. for the neutrino and the scalar have been included right
away.

2. We will neglect the mass mN in the calculation. While relevant for
the calculation of the closure parameter ΩDM later on, this quantity is
irrelevant for the kinematics of the actual decay process. Even for the
lightest scalars we consider, i.e. mS = 30 GeV, a final state mass of, say,
100 keV can be neglected at the time of decay.

The averaged squared matrix element is given by

|M|2 =
1

2
y2p · p′ = 1

2
y2EpEp′

[
1− ~p · ~p ′

EpEp′

]
. (5.2.2)

Inserting eq. (5.2.2) into eq. (5.2.1) and collecting all prefactors, we obtain:

CN
S→NN =

y2

16π2

∫∫
d3p′d3pS
EpS

δ
(
EpS − Ep − Ep′

)
δ(3)

(
~pS − ~p− ~p ′

)
×
[

1− ~p · ~p ′
EpEp′

]
fS (pS, t) . (5.2.3)
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Let us keep the constant term aside for a moment and focus on the phase
space integral:∫∫

d3p′d3pS
EpS

δ
(
EpS − Ep − Ep′

)
δ(3)

(
~pS − ~p− ~p ′

) [
1− ~p · ~p ′

EpEp′

]
fS (pS, t)

a)
=

∫
d3pS√
m2
S + p2

S

δ

(√
m2
S + p2

S − p−
√
p2
S + p2 − 2p pS cos θ

)
×
(

1− p pS cos θ − p2

p
√
p2
S + p2 − 2p pS cos θ

)
fS (pS, t)

b)
=2π

∫ ∞
0

dpS p
2
S√

m2
S + p2

S

∫ 1

−1

d cos θ δ (cos θ − cos θ0)

(
p pS√

m2
S + p2

S − p

)−1

×

1− p pS cos θ0 − p2

p
(√

m2
S + p2

S − p
)
 fS (pS, t)

c)
=m2

Sπ

∫ ∞
pS,min

dpS pSfS (pS, t)√
m2
S + p2

S

. (5.2.4)

Before going to the final master equation, let us give some comments that
might ease the reproduction of eq. (5.2.4):

a) In this first step, we have eliminated ~p ′ through the three-momentum
delta distribution, δ(3) (...), and introduced the angle θ, which is spanned
by the vectors ~p and ~pS. We have also explicitly written out the argu-
ments of the energy part of the delta distribution after fixing ~p ′ = ~pS−~p
by means of the three-momentum part.

b) For the next step, we have transformed the remaining delta distribution
to the simple form δ (cos θ − cos θ0) by the usual rules for such calcu-
lations. This introduced the inverse of the derivative of the argument
function at its zero point, given by(

p pS√
m2
S + p2

S − p

)−1

.

The zero point is explicitly given by

cos θ0 =
2p
√
m2
S + p2

S −m2
S

2p pS
.

c) The last steps involve a little tedious but straightforward simplification
and collection of terms in the integral. Apart from these purely arith-
metic steps, we introduced a lower boundary for pS in the remaining
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integration. It is given by

pS,min =

∣∣∣∣p− m2
S

4p

∣∣∣∣ ,
and can be derived by demanding that the zero point for cos θ must be in
the original interval [−1, 1] in order for the delta distribution to yield a
non-zero integral value. Physically, the minimum states the fact that an
offspring particle with a certain momentum needs a parent particle with
a sufficiently large momentum to produce it. It should be clear that this
threshold included the offspring momentum and the masses of parent
and offspring, the latter being neglected in our special case at hand.

Adding again the constants we kept aside not to clutter the calculation, we
find

CN
S→NN =

mSΓS→NN

p2

∫ ∞
pS,min

dpS pSfS (pS, t)√
m2
S + p2

S

, (5.2.5)

where we have introduced the decay width

ΓS→NN =
mS y

2

16π
. (5.2.6)

The collision terms for the scalar are constructed in a similar way, using
the same tricks to get rid of some phase space integration. The complete list
of collision terms is given in appendix B.

5.3 The limit of large scalar masses: analytic ap-
proaches to the dark matter spectrum

In section 5.1, we have seen that the limit of large mS is rather easy to handle.
Let us recall the reasons for this:

1. The FIMP production process of scalars of largemS (say,mS & 500 GeV)
takes place before EWPT, and it thus falls into regime I as defined earlier.
The WIMP production for mS = 500 GeV cuts into regime II a little bit.
This will become even less relevant when advancing to higher masses of
a TeV or more. From this, we can directly infer that the only reaction
populating the distribution of S is a rather simple “contact interaction”,
cf. eq. (B-6).

2. At high temperatures, the number of entropy d.o.f. in our minimal as-
sumption stays constant. Looking at fig. A.1, we can specify that above
plasma temperatures of about 200 GeV, we can well approximate gs =
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106.75 as long as we neglect the small contribution of the two new par-
ticle species.5 Recalling our choice of variables, this renders the variable
ξ in eq. (4.4.12) quite trivial, i.e. ξ → p/T . As mentioned earlier, this
quantity is often considered as comoving momentum, which is a very
good approximation as long as the number of entropy d.o.f. is constant.
To have a distinction in notation, we will introduce x ≡ p/T for the
remainder of this section.

Before we discuss the different limiting setups, let us install one more simplifi-
cation for this scenario. In eq. (4.4.11) we introduced m0 as an arbitrary mass
scale. While the more general setting to be discussed later on will make the
choice m0 = mh attractive, the limiting case of large mS makes the assignment
m0 = mS a clever choice, as we will see in a short while. Let us note that the
limit of “large” mS is to be understood as mS � mΦ (T ), such that we neglect
the Higgs mass in this limiting case, which significantly simplifies the collision
term for the reaction φφ↔ SS as presented in eqs. (B-1) and (B-6).6

In general, we have all ingredients to write down the evolution equation for
the distribution of the scalar in the limiting case under consideration. Follow-
ing closely the notation and presentation in [1],7 the Boltzmann equation for
the scalar in the variables r and x as discussed above reads:

∂fS (x, r)

∂r
=

1√
x2 + r2

 1

4π
CHP exp

(
−
√
x2 + r2

)
F (x, r, η)− CΓr

2fS (x, r)

− 1

4π
CHPfS (x, r) 2π

∞∫
0

dx̂ x̂2

αmax∫
−1

d cos θfS (x̂, r)G (x̂, r, η, cos θ)


≡ Q (x, r)− P (x, r) fS −R (x, r) Ir [fS] fS .

(5.3.1)

5The precise contribution of the new particles would depend on their number density.
This would require to couple their dynamics back into the evolution of gs. Even if the scalar
and the sterile neutrino were to thermalise, this would maximally add a contribution of
1 + 2 × 7/8 = 11/4 = 2.75 to the total count of entropy d.o.f. At least the sterile neutrino
is always far from equilibrium in our setup, such that the real contribution would be even
smaller. Hence, neglecting their contribution compared to the plethora of SM d.o.f. present
at high temperatures is a very safe approximation.

6 Note that the notion of the thermal mass of the d.o.f. of the Higgs doublet before
EWPT actually introduces a complication here. While mS also receives thermal corrections
at very high plasma temperature, it is not trivial to assess the precise validity of such an
assumption. Thus we do not expect our rescalable results, where all quantities scale as
λ2/mS or y2/mS to hold for arbitrarily high masses. If one goes beyond a few TeV, thermal
effects on the mass terms should be carefully re-evaluated.

7In the published version of [1], there were mistakes in the eqs. (5.3.8), (5.3.9) and
(5.3.12), which are however irrelevant for the results presented there as the terms agree in
the considered limit η ≡ mΦ (T ) /mS → 0, cf. eq. (5.3.10).
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Before discussing the kinetic equation presented in eq. (5.3.1) in great de-
tail, let us clearly state the related definitions:

Q (x, r) ≡
CHP exp

(
−
√
x2 + r2

)
F (x, r)

4π
√
x2 + r2

, (5.3.2)

P (x, r) ≡ CΓr
2√

x2 + r2
, (5.3.3)

R (x, r) ≡ CHP

4π
√
x2 + r2

, (5.3.4)

Ir [fS] ≡ 2π

∞∫
0

dx̂ x̂2

αmax∫
−1

d cos θfS (x̂, r)G (x̂, r, η, cos θ) . (5.3.5)

The expressions Q, P , R make use of the newly introduced constants CHP and
CΓ, defined as{

the effective decay width: CΓ ≡ M0

mS

Γ
mS

,

the effective (squared) Higgs portal : CHP ≡ M0

mS

4λ
2

16π
3 ,

(5.3.6)

where M0 is, in turn, given by

M0 ≡
(

45M2
Pl

4πgs (T →∞)

)1/2

. (5.3.7)

The factor of 4 in the nominator of CHP accounts for the fact that the scalar
gets produced by four equal scalar d.o.f. in the Higgs-doublet before EWPT.
Note that this parametrisation confirms our earlier statement that, for large
masses, there are only two effective parameters in practice, since mS, λ, y only
appear in the combinations defined in eq. (5.3.6).

Furthermore, the kinetic functions F and G are defined by:

(5.3.8)

F (x, r, η) ≡ 2π

∞∫
0

dx̂ x̂2

αmax∫
−1

d cos θ
e−
√
x̂

2
+r

2√
x̂2 + r2

×

√√√√√x̂2 + r2 ·
√
x2 + r2 − xx̂ cos θ + r2

(
1− 2η2

)√
x̂2 + r2 ·

√
x2 + r2 − xx̂ cos θ + r2

,

and

(5.3.9)

G (x, r, η cos θ) ≡ 2π

∞∫
0

dx̂ x̂2

αmax∫
−1

d cos θ
1√

x̂2 + r2

×

√√√√√x̂2 + r2 ·
√
x2 + r2 − xx̂ cos θ + r2

(
1− 2η2

)√
x̂2 + r2 ·

√
x2 + r2 − xx̂ cos θ + r2

.
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In eqs. (5.3.8) and (5.3.9), we have for the sake of completeness defined

η ≡ mΦ (T )

mS

, (5.3.10)

which we will take to be zero in the approximation of this section. For some-
what smaller masses mS that still ensure production in regime I, the formulas
can still be used as an approximation. Note that the expressions for F and G
simplify significantly for η = 0 as the square root term appearing as the last
factor of the integrand of both eqs. (5.3.8) and (5.3.9) reduces to unity. In the
case of F , we can compute the integral directly:

F (x, r, η � 1)→ 4πK1 (r) , (5.3.11)

where K1 is the first modified Bessel-function of second kind.
Finally, we have introduced the explicit form

αmax = min

[
1,max

[
−1,

√
x2 + r2 ·

√
x̂2 + r2 + r2

(
1− 2η2

)
xx̂

]]
. (5.3.12)

In order to make our considerations about large mS self-contained, let us
give the kinetic equation for the sterile neutrino in the explicit form suitable
for this case:

∂fS→NNN (x, r)

∂r
= 2CΓ

r2

x2

∫ ∞
x̂min

dx̂
x̂√

x̂2 + r2
fS (x̂, r) . (5.3.13)

This results in the master equation for the sterile neutrino spectrum in the
limiting case of production at high T :

fN (x, r) =

∫ r

0

dr′ 2CΓ

r′
2

x2

∫ ∞
x̂min

dx̂
x̂√

x̂2 + r′
2
fS
(
x̂, r′

)
, (5.3.14)

with x̂min =
∣∣∣x− r′2/(4x)

∣∣∣. It can be constructed from combining the Liouville
operator for constant entropy density, cf. eq. (4.4.15), with the collision term
presented in eq. (5.2.5) and the definition of CΓ.

Let us now discuss some sub-scenarios of our limiting case mΦ (T ) � mS

in detail, starting with their qualitative description and then proceeding to
explicit (semi-)analytical results. The qualitative description will provide valu-
able insights that hold true for smaller masses mS, while the (semi-)analytical
results are only correct in the limit of η → 0. Some of these results can be
found in similar form in [16], others were first presented in [1]. We can dis-
tinguish two regimes, depending on whether the scalar freezes in (called the
FIMP-regime) or freezes out (the WIMP-regime). The latter regime will be
further subcategorised.
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1. The FIMP-regime: this regime is characterised by a small effective Higgs
portal coupling CHP, while the decay constant CΓ can take arbitrary values
within reasonable ranges.8 In such a setup, the scalar are produced via
a freeze-in mechanism mediated by the scattering φφ → SS. After (or
already during) freeze-in, the scalars decay into sterile neutrinos. Since
the freeze-in abundance is always far from the equilibrium abundance,
the final abundance of sterile neutrinos will not depend on the value of CΓ,
as all scalars will finally decay into two of these dark matter particles.9

We will see that CΓ has a decisive influence on the final shape of the
sterile neutrino spectrum itself, though.

2. The WIMP-regime: provided that CHP is sufficiently large, the scalar
will thermalise, i.e. it will enter thermal equilibrium. In this case, any
information about the initial abundance gets lost rather quickly. Just as
a generic WIMP discussed in section 2.4.1, the scalar stays in equilibrium
until the expansion rate of the universe exceeds the interaction rate of
the process φφ ↔ SS and decouples from the thermal bath after that.
Depending on the exact value of the decay width CΓ, the decay of the
scalar into sterile neutrinos can happen at various stages:

8The meaningful range of CΓ is given by 10−4 ≤ CΓ ≤ 103. At the upper end of this
interval, the decay can be seen as instantaneous and increasing the decay width further does
not change the spectrum of the sterile neutrino population anymore. At the lower end, a
too small decay width makes the scalars decay too late, such that bounds from structure
formation or from BBN cannot be avoided even for sterile neutrino masses of a few hundred
keV [1]. A meaningful range of CHP spans the interval [10−3, 104]. In this case, a smaller
CHP is very deep inside the FIMP regime and the sterile neutrino mass needed to recover
the correct relic abundance becomes so large that we leave the region of keV-steriles. This
would also result in unnaturally small values for the coupling λ. At the upper end, a value
of CΓ = 104 is enough to be deep inside the WIMP-regime. A very extensive discussion of
this parameter space can be found in Ref. [1].

9 Note that we always assume the initial abundances of both scalars and sterile neutrinos
to be zero at very high temperatures in this setup. In case a non-trivial initial abundance
should be taken into account, it needs to be added to the freeze-in abundance — as long
as a strong suppression compared to the equilibrium abundance and hence the validity of
the FIMP-regime are guaranteed. Given that there is no pressing reason for such an initial
abundance to be present and because we do not see much value in speculating how it could
possibly have been produced, we stick to the conservative viewpoint and only produce scalars
from the freeze-in mechanism itself.
However, one could argue that sterile neutrinos and/or singlet scalar fields could quite
generically couple to the inflaton field (see Refs. [12,13] for examples concerning the former
case). In such scenarios, assuming that inflation is the correct theory in the first place, our
setup might be modified considerably.
Note that, however, such couplings are only compulsory if the SM gauge group and all other
low-energy symmetries do not get completed by new ones up to very high scales. From
a model builder’s point of view, there is a plethora of setups that would strongly suppress
certain couplings, e.g. by locating fields on different branes. Our thoughts can in principle be
extended to include such possibilities but this would add new complications and unknowns
and is therefore beyond the scope of this work.
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(a) In-equilibrium decay : if both the decay width CΓ and the Higgs
portal CHP are large, the sterile neutrinos are produced early on from
the decay of equilibrated scalars. The scalars remaining present
after freeze-out do add a contribution to the final sterile neutrino
abundance. However, in this regime, that contribution is very small
and will be neglected. We can already infer that these assumptions
will hold only if CHP is deep inside the freeze-out regime (recall
that, in cold freeze-out, a larger coupling leads to a smaller relic
abundance) and CΓ is large enough to guarantee a fast decay of the
scalars during equilibrium.

(b) Out-of-equilibrium decay : this regime can in some respect be seen
as the counterpart to the in-equilibrium regime. The parameter
CHP is again large enough to ensure equilibration of the scalar and
subsequent freeze-out. The decay width CΓ is, however, so small
that we can now neglect the decay of equilibrated scalars and only
take into account the decay of the relic abundance of scalars after
their freeze-out. This regime can also be interpreted as the scalar
itself acting as an unstable dark-matter like species, which however
decays before it contributes significantly to the energy budget of the
universe.

(c) Intermediate regime: for intermediate values of the decay width
CΓ neither of the above limiting cases is a valid description of the
situation. While not accessible analytically, this case can be of
particular interest as it can produce a sterile neutrino spectrum
with two intrinsic momentum scales. Such a possibility can open up
intriguing options to to tackle the well-known small scale problems
of cosmological structure formation [83, 167–169]. These cases will
be treated in a purely numerical way.

The first three of the following four subsections will be devoted to the cases 1,
2(a) and 2(b), while the last one will shortly touch the intermediate regime.

5.3.1 The FIMP-regime

As discussed above, small Higgs portals CHP (i.e. λ� 10−6 [16,18]) prevent the
scalar from equilibrating. For our assumption of a vanishing initial abundance
of scalars, we can neglect the term R (r, x) Ir [fS] fS in eq. (5.3.1) as it is
quadratic in the small quantity fS. This reduces the kinetic equation to an
ordinary differential equation which allows for an analytical solution. The
resulting distribution function (with the initial condition fS (T →∞, p) =
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0 ∀p) is then given by:

fS (r, x) = CHP

∫ r

0

dρ ρK1 (ρ)× (5.3.15)
exp

(
−
√
ρ2 + x2

)
√
ρ2 + x2

eρ√ρ
2
+x

2

er
√
r
2
+x

2

(
ρ+

√
ρ2 + x2

r +
√
r2 + x2

)−x2CΓ/2
 ,

where K1 is the first modified Bessel function of second kind as introduced in
eq. (5.3.11). If we substituted eq. (5.3.15) into eq. (5.3.14), we would obtain a
(semi-)analytical result for the distribution function of the sterile neutrino. It
is not very instructive, though, since there is no simple form of that expression.
However, the abundance of the sterile neutrino can be computed analytically
for late times, r →∞. Setting CΓ to zero corresponds to a stable scalar. With
this choice, eq. (5.3.15) can be integrated rather easily and one obtains the
(hypothetical) relic abundance of a would-be-stable scalar. Since all frozen-
in scalars will ultimately decay into two sterile neutrinos for a non-vanishing
decay width CΓ, the abundance of sterile neutrinos will finally just be twice the
abundance of the would-be-stable scalar [18]. The result for the yield Y = n/s,
with n and s the particle number and entropy densities, respectively, is given
by

YN (r →∞) =
135

64π2

CHP

gs
(
Tprod

) . (5.3.16)

Here, Tprod denotes the temperature at the time of production.10

5.3.2 The in-equilibrium regime

If both the Higgs portal CHP and the decay width CΓ are large, sterile neu-
trinos are efficiently produced from the decays of scalars already while being
in equilibrium. Such a setup has been discussed in detail in [16]. Since our
result for the sterile neutrino abundance differs by a constant factor, we will
sketch the most important steps to deduce the analytical results. If the scalar
is in equilibrium, we know its distribution function exactly. Accordingly, the
authors of [16] use a Bose-Einstein (BE) distribution to capture the quantum
nature of the scalar. Due to the fact that our whole set of equations governing

10Of course, the time of production is subject to some ambiguities in its definition. Both
freeze-in/freeze-out of the scalar and its subsequent decay are continuous processes, the time
scales of which are determined by CHP and CΓ. It is hence convenient to define the production
time as the point when the abundance of sterile neutrinos has passed some threshold fraction
of the final abundance, which we take to be 90%. In our limiting case, the precise definition
will not be very decisive since we assumed the whole production to take place at high T
where gs = constant. However, the threshold of 90% can be used to calculate the actual
production time for a chosen large but finite mass mS . If the number of entropy d.o.f. at
this temperature deviates strongly from the value at T → ∞, the range of validity of this
regime has been left and results should be handled with great care.
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the dynamics of the involved species was derived using the Maxwellian ap-
proximation from the very beginning, one might consider it more consistent
to use a Maxwell-Boltzmann (MB) distribution for the scalar. To resolve this
ambiguity, we will consider both cases and demonstrate that the difference
between them is quite irrelevant.

Substituting the BE and MB distributions into eq. (5.3.13) yields:

fN (x, r) =


8CΓ

zr∫
1

dz x
√
z − 1 log

(
1

1−e−xz

)
(BE),

8CΓ

zr∫
1

dz x
√
z − 1e−xz =

e
−x√

π erf
(√

x(zr−1)
)

2
√
x

− e−xzr√zr − 1 (MB),

(5.3.17)
where the variable zr ≡ r2/

(
4x2
)

+ 1 has been introduced to condense the
notation.11 Integrating fN (x, r) over d3x and again taking the limit r → ∞
allows to calculate the yield for late times:

YN (r →∞) =


135

4π
3 ζ (5) CΓ

gs(Tprod)
(BE),

135

4π
3

CΓ
gs(Tprod)

(MB).
(5.3.18)

Both results only differ by a factor of ζ (5) ≈ 1.0369, which justifies the use of
either distribution. Our result in the BE case is, however, larger by a factor of
5/2 compared to the one reported in [16]. While one may easily forget powers
of two in these computations, we could not trace any step where a factor of 5
could possibly be introduced, making us confident that our results are correct.

5.3.3 The out-of-equilibrium regime

The final limiting case that allows for analytical results is the scenario where
the scalar is in equilibrium and ultimately freezes out but where the decay
width CΓ is so small that practically no sterile neutrinos are produced before
the scalar decouples from the plasma. Only after freeze-out the decay of scalars
starts to populate the sterile neutrino density. In analogy to [16], we approxi-
mate this scenario by assuming a thermal distribution until the scalar freezes
out instantaneously at r = rFO. The kinetic equation of this setup yields the
following solution:

fS (x, r > rFO) =feq (x, rFO)

(
r +

√
r2 + x2

rFO +
√
r2

FO + x2

)CΓx2
/2

× exp

[
−CΓ

(
r
√
x2 + r2 − rFO

√
x2 + r2

FO

)
/2

]
, (5.3.19)

11Note that we have neglected the mixing between the two physical scalars, which is a very
good approximation in our case. However, in order to simplify the comparison of our results
to the ones obtained in Ref. [16], it is of course necessary to apply the same approximation
to the results from that reference.
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where feq (x, rFO) is the equilibrium distribution of S at freeze-out. Again, one
can argue whether one should take it to be BE or, more consistently, MB. If
we assume BE, our results coincide with [16, Eq. (43)]. The final abundance of
sterile neutrinos can in this limiting case again be calculated from doubling the
abundance of scalars at freeze-out. Given as a function of rFO, the expression
for the yield is

YN (r →∞) =
45

4π4gs
(
Tprod

) ∞∫
rFO

dε ε

√
ε2 − r2

FO

eε − δ

(
=

45r2
FOK2(rFO)

4π4gs
(
Tprod

) for MB

)
,

(5.3.20)
with δ = 1 (δ = 0) for the BE (MB) case. Also here the numerical difference
between both versions is fairly small for realistic values of rFO. Note, that rFO

is a function of CHP but not of CΓ.

5.3.4 The intermediate regime

As we will change to a numerical treatment of the whole set of Boltzmann
equations anyway for smaller mS, let us only very shortly give an example
of what we discussed qualitatively above. Fig. 5.2 shows the evolution of the
distribution function of the sterile neutrino in the intermediate regime. The
values of CHP and CΓ are given in the figure. As clearly visible, the distribution
has two distinct peaks that correspond to a part getting produced early on,
while the scalar is still in equilibrium, and another part that comes from the
late decay of the frozen-out scalars. As sterile neutrinos produced earlier on
have more time to redshift, the late decay corresponds to the peak around
higher rescaled momenta x. To emphasise the evolution, we have drawn not
only the final distribution for large r but also some snapshots of the sterile
neutrino distribution at earlier times. At r ≈ 10, the in-equilibrium decay
ceases, leaving a clear peak behind, while the second peak only fully develops
around r ≈ 100.

The figures also illustrates that the mean comoving momentum 〈x〉 will
not be a very meaningful quantity. It is located at 〈x〉 ≈ 16.6. The standard

deviation of x is quite large,
√〈

x2
〉
− 〈x〉2 ≈ 26, proving that just the mean

contains little information in this particular setup.

5.4 (Almost) arbitrary scalar masses: numeric ap-
proaches to the dark matter spectrum

As a next step, we want to leave the limitation of large mS and allow for
arbitrary values in a meaningful range. This range can be constructed from
our insights so far: for mS & 500−1000 GeV, the above considerations provide
a very good approximation as freeze-in occurs well before the EWPT, and only
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Figure 5.2: Example of the evolution of a distribution function of sterile neu-
trinos. One can clearly distinguish two momentum scales (global maximum at
x1 ≈ 1.5 and local maximum at x2 ≈ 26).

the freeze-out case might slightly touch regime III. Thus, the assumptions made
in section 5.3 hold very well. For the lower end, we have argued that a scalar
of masses below, say, 30 GeV cannot be produced efficiently as the Higgs
(and the other particles that source the scalar) start to get heavily Boltzmann
suppressed at these temperatures. Thus, in the following discussion we will
always choose masses mS spanning the range [30 GeV, 1000 GeV].

In section 4.4.2 we have mentioned some of the difficulties that arise when
solving the type of coupled integro-differential equations that necessarily ap-
pear in our setup. We have discussed that especially the terms quadratic in
distribution functions and integrating out the momentum phase space of one
of them is quite non-trivial from a numerical point of view. To produce the
results presented in this section, we have always combined the integrals for a
given process and its inverse (e.g. the first and the last term of the right-hand
side of eq. (4.4.1) or the first and the third on the right-hand side of eq. (4.4.2)).
While, in our setup, the production term for a species is not a functional of
the species’ distribution function, it is a functional of the known equilibrium
distribution by means of the principle of detailed balance, cf. eq. (2.4.11).

This combination of terms gives us the option to integrate a difference of
numbers instead of subtracting integral values, which in the case of very small
or very large numbers is much more numerically stable. The thus rewritten
equations were solved using the ode15s [170, 171] solver that is particularly
suitable for stiff problems (and hence for the region of the scalar freezing out).
We used the implementation of this solver provided by the Matlab suite.
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As we will discuss the implications of these results in great detail when it
comes to structure formation, we just present some examples for a sample of
interesting choices of (mS, λ, y,mN) here. The value for the mass of the sterile
neutrino mN was in all examples fixed such that they make up the entire dark
matter abundance of the universe.12 The exemplary cases will be put into the
context of the entire parameter space later, when looking at the implications
for the large-scale structure of the universe. Let us again categorise the results
into different ranges of mS, starting with comparatively light scalars.

Very light scalars, mS < mh: in such a setup, all production channels of
regime III (cf. Tab. 5.1) are open. From the above discussion, we expect
that the production of scalars receives an extra boost after EWPT when the
decay of thermal Higgs bosons into two scalars sets in. In fig. 5.3, we show
the evolution of the yields for both S and N as well as the evolution of the
sterile neutrino distribution function. The top panels show the evolution of
the yields, including for reference the equilibrium yield of the scalar as well
as the yield for a would-be-stable scalar. Furthermore, the EWPT is marked
by an accordingly labelled light blue vertical stripe. The lower panels show
the evolution of fN for different values of the time variable r. Note that we
have returned to the comoving momentum ξ that takes the evolution of the
entropy d.o.f. into account. As predicted, the yield of the scalar jumps up quite
considerably after EWPT (note the logarithmic scale) in both the freeze-in and
the freeze-out case.

Moderately light scalars, mh/2 < mS < mh: in this case, the production
of scalars also starts early in scenario I and then enters scenario II. The pro-
duction of scalars from the 4 d.o.f. of the Higgs doublet before EWPT shifts
to production via the physical Higgs and the now massive gauge bosons. In
addition, the scattering of fermion-antifermion pairs with a Higgs in the s-
channel also contributes to the production after EWPT. However, now that
the decay of thermal Higgs bosons is forbidden due to kinematic reasons, the
change at the EWPT is much less pronounced as compared to the case of very
light scalars, such that the curves of the yield pass the region of EWPT rather
smoothly. Fig. 5.4 again shows two sample cases (freeze-in and freeze-out).

Heavy scalars: mh <mS : the last case is that of heavier scalars, i.e. masses
mS > mΦ (T ). This choice of masses will shift the production of scalars further
into the epoch before EWPT and in the case ofmS � mh, we would recover the
(semi-)analytical and numerical results that we discussed using the appropriate

12Note that the form of the spectrum is completely independent of the mass mN . The
mass given in the figures can be seen as an upper bound beyond which the abundance of
sterile neutrino would exceed the value inferred from the Planck measurements. A smaller
mass is in general possible in scenarios where the cosmic dark matter is made up by more
d.o.f.
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Figure 5.3: Example evolutions of the yield (top row) and sterile neutrino
distributions (bottom row) for a scalar with a mass of 60 GeV undergoing
freeze-in (left) or freeze-out (right) before decaying into sterile neutrinos, for
the two points marked fig. 7.5b and used in figs. 7.4a, 7.4b.

approximations for this case in section 5.3. In fig. 5.5, we again present two
sample cases, one located in the region of λ where the scalar freezes in and the
other in a region of parameter space where it freezes out. We chose a scalar
mass of mS = 500 GeV. The figures show that, as expected, the relevant
evolution of the scalar yield is located at times prior to EWPT in the FIMP-
case.
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Figure 5.4: Example evolutions of the yield (top row) and sterile neutrino
distributions (bottom row) for a scalar with a mass of 65 GeV undergoing
freeze-in (left) or freeze-out (right) before decaying into sterile neutrinos, for
the two points marked in fig. 7.5c and used in figs. 7.4c, 7.4d.

5.5 Summary of the chapter

This chapter has presented many of the results that form the cornerstone of the
research project behind this dissertation. In section 5.1, we have introduced
the particle physics model for our two step production mechanism where sterile
neutrino dark matter gets created from the decay of a new real scalar singlet
coupling to the Higgs sector of the SM. We have thoroughly discussed the
different regimes of such a setup, including insights on the relevant scattering
and decay processes in each regime and the temporal sequence of the regimes
in the evolution of the universe.

In section 5.2, we have discussed how to explicitly construct the collision
terms for all the relevant processes, explaining all technical steps on the par-
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Figure 5.5: Example evolutions of the yield (top row) and sterile neutrino
distributions (bottom row) for a scalar with a mass of 500 GeV undergoing
freeze-in (left) or freeze-out (right) before decaying into sterile neutrinos, for
the two points marked fig. 7.5e and used in figs. 7.4e, 7.4f.

ticular case of the production terms in the Boltzmann equation for the sterile
neutrino N .

In section 5.3, we have discussed the analytical solution of the set of Boltz-
mann equations for S and N in the case of very heavy scalars, where the
change of the SM entropy d.o.f. can be neglected. This simplified the equa-
tions considerably. We have seen that this case can be subcategorised into four
regimes: the FIMP-regime, the in-equilibrium-regime, the out-of-equilibrium-
regime and the intermediate regime. For the former three, we showed ana-
lytical results for the final yields and the distribution functions (either just
for fS, leaving the semi-analytical result for fN open to the reader by using
the appropriate equations in two cases, or for both fS and fN in the case
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of the in-equilibrium-regime). In the intermediate regime, we presented the
phenomenologically very interesting possibility of creating a sterile neutrino
spectrum with two intrinsic scales.

Finally, in section 5.4, we have generalised our setup to scalar masses going
down all the way to the physical meaningful minimum at around 30 GeV. For
each of the three options mS < mh/2, mh/2 < mS < mh and mh < mS we
showed exemplary evolutions of yields and sterile neutrino spectra for both
scenarios of the scalar freezing in and freezing out.



Chapter 6
The DW mechanism working on
arbitary initial conditions

“Art is all in the details.”
Christian Marclay

In the previous chapter, we have extensively discussed how the decay of a
newly postulated BSM scalar in the mass range from about 30 GeV up to some
TeV can produce sterile neutrino dark matter at relatively early times in the
evolution of the universe. Even in the setups taking the longest, i.e. in the case
of a light scalar freezing out and mainly decaying out-of-equilibrium, the sterile
neutrino production is finished at plasma temperatures of around 5− 10 GeV.
We have, however, completely neglected the effect of active-sterile mixing so
far, by setting the active-sterile mixing angle to zero. Even though we know
that X-ray bounds do constrain the mixing angle quite considerably, we should
nonetheless investigate the effect of active-sterile mixing on the sterile neutrino
spectrum from scalar decay in more detail. Luckily, we can separate the scalar
decay production and the DW mechanism in time, as the latter only becomes
efficient at temperatures between around 10 GeV and 10 MeV such that there
is at most an insignificantly small temporal overlap between the two processes.

In this chapter, we will therefore present a general semi-analytical approach
to quantify the effects that the DW effect has on a previously produced sterile
neutrino population. The actual mechanism producing this initial abundance
for the DW mechanism will be irrelevant for this treatment, and in the limiting
case of no initial abundance, our formalism can be used to compute quantita-
tive insights into the pure DW mechanism as well.

In section 6.1, we will introduce the formal basics for the combination of
DW and another production mechanism, which is at work at earlier cosmo-
logical times. Having gathered a lot of technicalities in the previous chapters
already, this will lead to the semi-analytical results rather quickly. After that,
section 6.2 will shortly discuss the case of no initial abundance, i.e. the pure
DW case, to clarify some statements about the DW mechanism present in the

87
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literature. In section 6.3, we will then produce quantitative numerical insights
from the semi-analytical results and work out for some concrete examples which
effect the DW mechanism has on sterile neutrino spectra produced by scalar
decay. Finally, we will summarise the chapter in section 6.4.

6.1 Formal solution to the Dodelson-Widrow
mechanism with arbitrary initial abundance

Similar to the scalar decay mechanism, we will use the Boltzmann formalism
to describe the quantitative aspects of the DW mechanism. We will present
the most general solution to the related Boltzmann equation. This solution
will be a formal one which contains integrals that require numerical methods
to be evaluated – which, in turn, depend on the exact values of the parameters
of the DW mechanism. Nonetheless, the formal solution already allows to get
an intuition about the mechanism. We will work in a scenario with only one
new mass eigenstate N , just as in the preceding chapter. All results can easily
be generalised to NR > 1. A more extensive discussion of this generalisation
can be found in Ref. [2, App. A.1].

We allow for the new mass eigenstate to couple to all active flavours. This
setup requires to introduce three Yukawa couplings yα, where α ∈ {e, µ, τ}.
Instead of using the Yukawa couplings directly, we use the more tangible active-
sterile mixing angles θα:

θα ≡ yαvEW

mN

, (6.1.1)

where vEW is the vacuum expectation value of the SM Higgs field. Note that
eq. (6.1.1) is strictly speaking only valid for small mixing, i.e. yαvEW/mN � 1.
In practice, the strong X-ray bounds will, however, always enforce this condi-
tion [172].

The three mixing angles (θe, θµ, θτ ), although small, are the driving forces
behind the production of N through the DW mechanism: their values ulti-
mately control the likeliness of a certain process involving SM particles to
produce a sterile neutrino instead of an active flavour.

Let us now proceed to the Boltzmann equation governing the dynamics of
the distribution function fN :(

dT

dt

∂

∂T
−Hp ∂

∂p

)
fN (T, p) =

∑
i

Ci
[
fβi
]
. (6.1.2)

As before, H = H (T ) is the Hubble function (cf. section 2.1.3) and the collision
terms Ci

[
fβi
]
encode all production and/or annihilation channels1 (indexed

1 In general, the sum of collision terms should also include scattering processes. Pure
scatterings do not change the number density of a species, but they can change the distri-
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by i) of the species of interest. Just as in the case of scalar decay, we take
advantage of the fact that we can assume all relevant SM d.o.f. to be described
adequately by an equilibrium distribution until they decouple from the plasma.

As a next step, we divide eq. (6.1.2) by the temperature-time derivative2

and insert the DW collision term in a somewhat more informative, yet abstract,
form. This substitution yields:(

∂

∂T
− κ (T ) p

∂

∂p

)
fN (T, p) =

∑
α

hα (T, p)
[
fαeq (T, p)− fN (T, p)

]
, (6.1.3)

where we have defined κ (T ) as the product of the Hubble function and the
time-temperature derivative:

κ (T ) = H (T )
dt

dT
. (6.1.4)

As in the earlier chapters, the abbreviation eq either in sub- or superscript
denotes the equilibrium distribution function of the respective species. The
quantity h introduced in eq. (6.1.3) is where all the physical aspects of DW
are included. It is extensively discussed in the literature (e.g. Refs. [148,153])
and will also be presented in greater detail in appendix C.1. Note that hα =
hα [T, p,mN , (θ

e, θµ, θτ )] depends not only on temperature and momentum, but
also on the mass mN and on all three mixing angles. Still, we suppress all
arguments except for p and T for the sake of a lean notation, whenever there
is no risk of confusion. We also drop the flavour index α in the superscript
whenever it is not strictly necessary.

Let us use the rather compact form of eq. (6.1.3) to absorb the essentials
of the Boltzmann equation for the right-handed state N :

1. As the active-sterile conversion can effectively be seen as a 1 ↔ 1 pro-
cess,3 it is obvious that the Boltzmann equation must depend linearly
on both the momentum distribution function (MDF) of the sterile and
the active neutrinos – the latter are present in eq. (6.1.3) through feq as
long as the active neutrinos are in thermal equilibrium.4

bution of the momentum modulus p. Whenever eq. (6.1.2) is finally integrated over in order
to obtain a Boltzmann equation on the level of particle number densities, scatterings are
usually neglected, even though in theory they can have some effect.

2Note that the time-temperature derivative is negative, as the universe cools with in-
creasing cosmic time t. Thus, the quantity hα in eq. (6.1.3) will be negative.

3From pure kinematics, it is clear that one initial state of mass m1 < m2 cannot just be
converted into a state of mass m2. Reading the Feynman diagrams for the X-ray signature
in fig. 3.2 from right to left also shows that the active sterile conversion should rather be
considered to be a 2→ 1 process or a 1→ 1 process in a dense background medium. These
subtleties are however fully condensed into h.

4Recall our discussion of the neutrino decoupling temperature around 2 MeV in sec-
tion 4.1.
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2. The right-hand side of eq. (6.1.3) can be disentangled into a

gain term: h (T, p) feq (T, p) , and a
loss term: − h (T, p) fN (T, p) . (6.1.5)

In the pure DW mechanism without any initial abundance, the loss term
is in general negligible.5 Dropping the term greatly simplifies the equa-
tion, both analytically and numerically. We will always keep the loss
term as this allows for an arbitrary initial distribution function that can,
in turn, arise from any early production mechanism. Recall that, in this
case, early means that the production mechanism needs to have ceased
at temperatures of O (100 MeV) [148].

Before we present the full formal solution to eq. (6.1.3), we want to inves-
tigate the characteristics of κ (T ) somewhat more closely. To this end, let us
cast the conservation of comoving entropy into the following form:

gs (T )T 3a3 (T ) = const. (6.1.6)

Next, we differentiate eq. (6.1.6) with respect to cosmic time t. After changing
variables to plasma temperature T by means of eq. (4.4.14), we find

κ (T ) = − 1

T

(
1 +

1

3

Tg′s
gs

)
. (6.1.7)

With this piece of information at hand, we can derive the following relation:

exp

 Tb∫
Ta

dT1κ (T1)

 =
Ta
Tb

(
gs (Ta)

gs (Tb)

)1/3

. (6.1.8)

This identity will come in useful very soon when presenting our final formal
solution. It also motivates our choice of calling κ (T ) the redshift integrand :
in the case of a completely collisionless Boltzmann equation, the solution to
eq. (6.1.2) only has to account for the redshift of the arbitrary initial dis-
tribution fini (p). Hence, the distribution in the collisionless case will evolve
as

fcollisionless (p, T ) = fini

(
a (T )

a (Tini)
p

)
= fini

(
Tini

T

(
gs (Tini)

gs (T )

)1/3

p

)
. (6.1.9)

Eq. (6.1.9) trivially fulfils the boundary condition fcollisionless (p, Tini) = fini (p).
Thus, the exponential of the integral of κ turns out to be exactly the correct
term to describe the redshift of a collisionless species. Let us stress again

5Note, however, that the loss term cannot be neglected in the case of resonant active-
sterile conversion, not even for vanishing initial abundance, see Ref. [148].
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that, in the case of constant entropy d.o.f., the approximate redshift relation
proportional to T−1 is recovered.

Now we are well prepared to appreciate the formal solution to eq. (6.1.3).
In its most condensed form, the MDF at some arbitrary final temperature Tf

is given by

fN (Tf , p) = S (Tf , Tini, Tf , p, )

[
fini

(
Tini

Tf

(
gs (Tini)

gs (Tf)

)1/3

p

)
+ fDW (Tf , Tini, p)

]
.

(6.1.10)
This very compact notation made use of the following abbreviations:

S (Ta, Tb, Tc, p) ≡ exp

 Tb∫
Ta

dT2 h

(
T2,

T2

Tc

(
gs (T2)

gs (Tc)

)1/3

p

), (6.1.11)

fDW (Ta, Tb, p) ≡ −
Tb∫

Ta

dT2S−1 (T2, Tb, Ta, p)
(
hfeq

)(
T2,

T2

Tf

(
T2

Tf

gs (T2)

gs (Tf)

)1/3

p

)
.

(6.1.12)

In eq. (6.1.12), we have introduced
(
hfeq

)
(T, p) ≡ h (T, p) feq (T, p) for conve-

nience. Again, the remaining arguments, mN and (θe, θµ, θτ ) are suppressed
to keep notation uncluttered. Also note that eq. (6.1.10) again trivially fulfils
fN (Tini, p) = fini (p), just as it is supposed to. The factor S in eq. (6.1.10)
can be interpreted to be a damping factor that partially converts the ini-
tial abundance of sterile neutrinos back into active ones through active-sterile
conversions, while simultaneously redshifting the distribution correctly. Fur-
thermore, eq. (6.1.10) also suggests that the product of SfDW can be conceived
as the pure DW contribution in the case of a vanishing initial abundance.

In order to complete the discussion about the purely formal aspects of the
solution, consider the following gedanken experiment, which provides an in-
sightful consistency check: the momentum distribution of the sterile neutrino
at some plasma temperature, say T1, has no memory of the preceding dynam-
ics that shaped it at earlier times, i.e. at T > T1. This thought, however,
immediately implies that the initial temperature Tini can be chosen at will as
long as the contribution from the DW effect produced at T > Tini in correctly
included into the initial distribution fini. To put this more quantitatively, we
demand that the relation

S (Tf , Tini, Tf , p) fDW (Tf , Tini, p)
!

= S (Tf , T3, Tf , p)×[
S
(
T3, Tini, T3,

T3

Tf

(
gs (T3)

gs (Tf)

)1/3

p

)
fDW

(
T3, Tini,

T3

Tf

(
gs (T3)

gs (Tf)

)1/3

p

)

+fDW (Tf , T3, p)

]
(6.1.13)
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must hold for arbitrary T3 ∈ [Tf , Tini]. This simple consistency argument can
be used to cross-check the solution provided by eqs. (6.1.10) through (6.1.12).
The physical aspect of the relation should be intuitively clear but nonetheless,
we have detailed a formal-analytic proof in appendix C.2.

6.2 The pure DW mechanism revisited

We have already stated that DW is ruled out as the sole production mecha-
nism for dark matter made of sterile neutrinos [173]. Nonetheless, it can yield
a subdominant contribution to the relic abundance, for instance in mixed dark
matter setups. Some aspects of the DW mechanism in the literature are, how-
ever, not correct. To give a concrete example, the close-to-thermal shape noted
in [142,174] has been used to exclude the DW mechanism for small masses mN

in the first place. This exclusion still holds when using the correct spectral
shape, and it can even be intensified. We thus want to use our semi-analytical
approach to discuss the pure DW case without any initial abundance. We dis-
cuss why a suppressed thermal shape of the DW spectrum, as often adopted
in the literature, is a priori not a very accurate estimate, especially if the high
momentum part of the distribution is important — like in analyses concerning
cosmological structure formation. In order to confirm this statement, we solve
eq. (6.1.3) neglecting the term −h (T, p) fN (T, p) on the right-hand side. With
this simplification, the solution at temperature Tf , as derived from eq. (6.1.10),
reads:6

fDW
N (T, p) =

Tf∫
Tini

dT2 feq

(
T2,

T2

Tf

(
gs (T2)

gs (Tf)

)1/3

p

)
h

(
T2,

T2

Tf

(
gs (T2)

gs (Tf)

)1/3

p

)
.

(6.2.1)

We can now make use of the fact that a thermal distribution of a species
of negligible mass in fact only depends on the ratio p/T of momentum and
temperature. This implies that feq in eq. (6.2.1) depends on T2 only via the
term gs (T2). Hence, one could replace gs (T2) by a suitable average value
〈gs〉, if gs varied sufficiently slowly with T2. In that case, we could shuffle the
thermal distribution feq in front of the integral, which would leave us with a
spectrum of thermal shape (i.e. a thermal spectrum multiplied by factor with
no or at least very mild dependence on momentum p). If one were to do that,

6The integration runs from Tini to the smalle rvalue of Tf , but keep in mind that h is
negative by means of the time-temperature derivative that it included. Hence, the total
expression of eq. (6.2.1) is positive at it should be.
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Figure 6.1: Left panel : The function h changes dramatically with p.8

Right panel : Deviation of the best ex-post chosen approximation from the
numerical result in the case of pure e-mixing. The vertical lines show the
average momentum of the numerical distribution to give an indication, where
the deviation is most relevant.

the solution to eq. (6.1.3) would be given by:

fDW
N (Tf , p) ≈

1

exp

(
p
Tf

(
〈gs〉
gs(Tf)

)1/3
)

+ 1

Tf∫
Tini

dT2 h

(
T2,

T2

Tf

(
gs (T2)

gs (Tf)

)1/3

p

)
.

(6.2.2)

This approximation is dangerous at least during the QCD transition where
gs changes rapidly and which generically happens simultaneously to the peak
of DW production [141, 142]. But, even if the approximation was better, we
would in addition need h to vary only very slowly with the momentum p
in order for the resulting distribution to be of thermal shape.7 As the left
panel of fig. 6.1 shows, the variance of h with momentum p is non-trivial. To
summarise, the statement about the distribution being of thermal shape (only
redshifted and with a suppression factor) is not correct, and the qualitative
degree of its incorrectness can be crucial for assessing structure formation in
the most precise way.

Let us illustrate the discrepancy between the approximation and precise
numerical results with three benchmark cases with different sterile neutrino
masses: mN = 3 keV, mN = 7 keV, and mN = 25 keV. For these three cases,

7This would help to fulfil the requirement that the integral left in eq. (6.2.2) should not
depend on p.

8Note that a similar figure in Ref. [2] shows the original quantity that has to be inserted
in eq. (6.1.2), i.e. before deviding by the time-temperature derivative. The conclusion is,
however, the same.
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we have computed the ratio between the approximate distribution function of
eq. (6.2.2) and the exact numerical one in eq. (6.2.1). We have assumed mixing
only to the e-sector (with mixing to µ and τ being very similar). The remaining
freedom of choosing 〈gs〉 was eliminated by fixing this parameter such that the
particle number density is equal to the numerical result, which — of course —
is unknown in case one uses the approximation only! In this sense, our ex-post
choice of 〈gs〉 yields the best approximation possible, and even that is not very
accurate for high momenta, as the right panel of fig. 6.1 indicates. It shows the
deviation between the approximation and the numerical result for the three
benchmark cases, as a function of rescaled momentum x = p/T . Note that
these benchmark cases are valid for any choice of the mixing angle, since, by
virtue of eqs. (6.2.1) and (6.2.2), both the approximation and the numerical
result with vanishing initial abundance are exactly proportional to sin2 (2θ).
Note that the plot suggests that the approximation is perfect for x→ 0, which
can be explained by the fact that a Fermi-Dirac distribution approaches 1/2 in
this limit, irrespective of the choice of 〈gs〉. When moving to higher momenta
— the more relevant part of the spectrum when it comes to considerations of
large-scale structure — the approximation systematically underestimates the
high momentum modes.

Let us again emphasise that the best choice of 〈gs〉 is a priori unclear. To
prove that this is in fact another critical point, we show in Fig. 6.2 numerical
and estimated isoabundance lines in the plane spanned by mN and sin2 (2θ) for
the cases of e-, µ-, and τ -mixing. The blue curve represents the contour where
a pure DW production yields the correct abundance if calculated numerically,
while the magenta lines use two different plausible a priori choices of 〈gs〉,
namely

〈gs〉Ar ≡
gs (Tini)− gs (Tf)

2
as arithmetic mean and (6.2.3)

〈gs〉Int ≡
1

Tini − Tf

Tini∫
Tf

dT gs (T ) as integral mean . (6.2.4)

The figure contains limits from X-ray observations (for a detailed explanation
of the most conservative bound dubbed hyp, see section 6.3) as well as the
Tremaine-Gunn bound (see chapter 7). In all three cases, using a meaningful
average 〈gs〉 can lead to an overestimate of the square of the mixing angle by
about half an order of magnitude when fixing the abundance to the current
best-fit value from Planck [11].

Let us finally complete this section by showing a numerical distribution
function as compared to its estimated counterparts in fig. 6.3. For this il-
lustration, we have chosen a mass of mN = 2 keV and pure e-mixing since,
according to fig. 6.2a, this is about the maximum mass that can reproduce the
observed relic abundance without violating the most conservative hyp X-ray
limit. We already anticipate that such a low sterile neutrino mass will not be
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Figure 6.2: Parameter space for
pure DW production before applying
limits from structure formation with
isoabundance lines for numerical lim-
its and approximative results. The
bounds from Lyman-α data (cf. sec-
tion 7.2.2 are not included.
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Figure 6.3: Numerical and approximative distributions for pure electron mix-
ing (with the angle fixed to obtain the relic abundance) and a sterile neutrino
mass of 2 keV.

in agreement with Lyman-α bounds when related to the spectral shape of the
DW mechanism. However, this conclusion partially relies on the insights of
the spectrum and thus fig. 6.3 does serve as a pedagogical example.

6.3 Quantitative analysis of the DW mechanism
on initial sterile neutrino spectra

This section will now fill the numerical gap that the formal analytical solu-
tion of section 6.1 has still left open. These quantitative insights will help
us to judge the quality of an assumption common in literature, namely that
one can just add the contribution from the DW effect by hand to any previ-
ously produced (correctly redshifted) population of sterile neutrinos (see e.g.
Refs. [20, 23, 31, 175]). Though quite common, the validity of this approxima-
tion has only been thoroughly analysed in [2]. In the following, we will present
the most relevant results to give an a-posteriori-justification of this widespread
approximation. Just arguing that h is a “small” quantity (suppressed by the
square of the mixing angle, cf. eq. (B-1)) is not sufficient, as h is a dimension-
ful quantity and the label “small” is meaningless without a scale to compare
it to. Glancing back at eq. (6.1.10), we immediately realise that the precise
numerical deviation of the damping factor S from unity is the key to answer
the problem.

In fig. 6.4, we show a heat map of the damping factor S (Tf , Tini, Tf , p) in the
plane spanned by xf = p/Tf and mN . The three panels correspond to pure e-,
µ- or τ -mixing, respectively, and in all cases we have assumed a (rather large)
mixing angle of θα = 5·10−5. We have chosen Tini = 10 GeV and Tf = 10 MeV,
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(a) Mixing with νe.
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(b) Mixing with νµ.
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(c) Mixing with ντ .

Figure 6.4: Suppression factor S (Tf , Tini, Tf , p,mN , (θ
e, θµ, θτ )) in the plane

spanned by xf and mN for Tini = 10 GeV and Tf = 10 MeV.

as this spans the entire temporal range relevant for the DW mechanism [148].
Extending this range further does not affect any of the results.

In the same way, fig. 6.5 shows the damping factor for the maximal mix-
ing angle θmax that is in agreement with X-ray bounds, of which we use two
different versions. The upper panels are based on an analysis of data from the
Suzaku spacecraft [176] (dubbed Suzaku) which updated the combined limits
obtained in Ref. [177]. The bottom panels use a hypothetical limit (dubbed
hyp) that relaxes the bound on θ2

max by a factor of 5 to generously account for
remaining systematic uncertainties in the conversion of the original observa-
tional data (i.e. signal strength) into the inferred quantity of a mixing angle. In
all panels, the dashed line indicates the threshold below which maximal mixing
would lead to a sterile neutrino abundance overclosing the universe from DW
alone. Above this threshold, all panels underline the statement that the damp-
ing factor deviates from unity by a few percent at the very most, irrespective
of the momentum. The DW effect can thus only be dramatic for previously
produced spectra of sterile neutrinos of masses below, say, 2 keV, which will
be hard to accommodate into correct predictions of structure formation. In
the regime around 3 keV, there will be a few hand-selected cases where the
DW mechanism has an effect of ∼ 5% on the initial distribution at most.

To summarise this discussion, we can state that the numerical proximity
of the damping factor S to a value of unity justifies the addition of a DW
component to any previously produced and redshifted spectrum to a very
assuring accuracy. Finally, note that the order of the contours in the heat map
get reversed (with respect to the mN -axis) from fig. 6.4 to fig. 6.5. This can
be understood quite easily: while S deviates more strongly from unity as the
mass increases for a fixed mixing angle, the decay width of sterile neutrinos into
active flavours and photons scales as m5

N , cf. eq. (3.2.2), which considerably
outweighs the effect for fixed θα.

Let us finally use all the above machinery to show a few exemplary cases



98 6. The DW mechanism working on arbitary initial conditions

(a) θe = θSuzaku
max (mN ) (b) θµ = θSuzaku

max (mN ) (c) θτ = θSuzaku
max (mN )

(d) θe = θhyp
max (mN ) (e) θµ = θhyp

max (mN ) (f) θτ = θhyp
max (mN )

Figure 6.5: Contours of S in the xf-mN -plane for θ = θmax in two cases (see
text for details). We assume pure e (µ) [τ ] mixing in the left (centre) [right]
columns. Dashed lines indicate the mass below which maximal mixing leads
to overclosure for pure DW production.

of the effect which the DW mechanism exerts on spectra from scalar decay
(SD). Recall that in the case of scalar decay the spectrum did not depend on
mN , but only on the couplings λ, y and on the mass mS. In the case of large
mS, to which we stick for the following illustration, the spectra were in fact
fully defined by the constants CHP and CΓ, cf. eq. (5.3.6). The DW effect on
the previously produced spectrum from scalar decay, however, does depend on
mN , as the preceding discussion showed. This implies that we have to choose
a mass mN to give insights on the combined mixed spectra. For a sample
of three scenarios, we define three subcases each, the characteristics of which
are summarised in Tab. 6.1. Let us explain the nomenclature and choice of
subcases:

(a) Fixes the Higgs portal CHP and the effective decay width CΓ, as well as
θ = 0. The mass mN is chosen such that the correct relic abundance as
measured by Planck [11] is obtained. Hence, this case corresponds to the
setup of section 5.3 with active-sterile mixing switched off.
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Subcase Value of CHP Value of CΓ θ Mass mN

a CHP CΓ θ = 0 matched to Planck data
b CHP CΓ θ 6= 0 matched to Planck data
c C ′HP CΓ θ = 0 same value as in b

Table 6.1: Characteristics of the different subcases.

(b) This subcase uses the same values for CHP and CΓ and a maximal mixing
angle θe = θmax. The mass mN is tuned such that the final abundance
of scalar decay + DW reproduces the correct Planck value. This value
will generally deviate from the one in subcase a. In case 3, we will need
to choose a value of θe < θmax, as the maximum mixing would result in
overclosing the universe. .

(c) The last subcase switches the mixing off again and tunes CHP such that
the value for mN chosen in subcase b reproduces the correct relic abun-
dance. The effective decay width CΓ is kept constant such that the pro-
duction time, which will be crucial for structure formation, remains con-
stant.

The spectra, given as a function of x = p/Tf , with Tf = 10 MeV, are
shown in fig. 6.6. Apart from the spectrum x2f (x), we indicate the average
rescaled momentum 〈x〉 in the legend of each plot. The concrete parameters
for all (sub-)cases are listed in Tab. 6.2 for completeness. The synopsis of the
concrete parameters and the figures shows that smaller masses mN get affected
the most by maximal mixing, just as we expected. We will see, however, that
none of the spectra for a sterile neutrino around mN ∼ 1 keV is in accordance
with the observed structure of the universe. Note that the change in the
average momentum is sizeable in all three cases when comparing subcases a
and c to subcase b. We will revisit these benchmark cases later on when going
into more detail of structure formation.

As a final note, we want to acknowledge the CUBA-package [178] used for
fast evaluation of the integrals related to the results shown in this chapter.
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Figure 6.6: Distribution functions
and average momenta 〈x〉 correspond-
ing to the benchmark-cases from
Tab. 6.2. From left to right : Increas-
ing values for CHP (corresponding to
different sterile neutrino masses).

6.4 Summary of the chapter

In this chapter, we have discussed the effect of the DW mechanism on ar-
bitrary initial spectra of sterile neutrinos, thereby trivially encompassing the
case of pure DW production. We have started by presenting and discussing a
formal-analytical solution that fully takes into account both an arbitrary initial
spectrum of sterile neutrinos as well as the evolution of the background plasma
of the early universe, which is necessary to correctly treat the redshift of the
entire distribution. The formal solution allowed to discuss interesting quali-
tative insights and consistency checks which can, in turn, serve to cross-check
numerical results.

After that, we have revisited the pure DW mechanism by setting the ini-
tial abundance to zero. Using our formal approach, we discussed that ap-
proximate results present in the literature systematically underestimate the



6.4 Summary of the chapter 101

Case Description CHP CΓ mN

1a SD only 2.88× 10−2 103 7.1 keV

1b SD + maximal mixing 2.88× 10−2 103 6.9 keV

1c SD only 2.96× 10−2 103 6.9 keV

2a SD only 4.47× 10−2 103 4.5 keV

2b SD + maximal mixing 4.47× 10−2 103 3.6 keV

2c SD only 5.59× 10−2 103 3.6 keV

3a SD only 1.58× 10−1 103 1.3 keV

3b SD + mixing 1.58× 10−1 103 1.0 keV

3c SD only 2.05× 10−1 103 1.0 keV

Table 6.2: Overview of the benchmark cases. All parameter sets are chosen
such that the relic abundance of sterile neutrinos is in accordance with the
best-fit value [11]. Note that we do not assume maximal mixing in agreement
with X-ray constraints in case 3b since this would violate the overabundance
bound. Still, the parameter C ′Γ in case 3c is chosen to reproduce the observed
relic abundance with the same mass mN as in case 3b.

high-momentum tail of the DW distribution. Correctly computing this high-
momentum tail allows to tighten the bounds on sterile neutrino setups arising
from the observed large-scale structure of the universe yet further.

Subsequently, we filled our formal and analytical approach to the DW effect
with numerical results to confirm that the smallness of the impact of DW
on previously produced sterile neutrino spectra, e.g. from scalar decay. This
smallness of the influence is rooted in the strength of the current X-ray bounds
which force the mixing angle to be small. In a few hand-selected case, we could
find that the DW mechanism can change scalar decay spectra by some per
cent, while it is numerically irrelevant in most cases. Our numerical analysis
also gave a sound proof of the common approximation to just add a DW
component to a (correctly redshifted) initial sterile neutrino spectrum. In
the remainder of this work, we will usually only consider pure scalar decay
spectra as the corrections even from maximally allowed mixing (which is by
no means enforced by anything) is only a minor effect. The few hand-selected
case where a difference might yield a non-negligible modification will be dealt
with explicitly.





Chapter 7
Constraining the scalar decay model by
structure formation

“An investment in knowledge pays the best interest.”
Benjamin Franklin

We have now almost reached the state where we can assess the scalar decay
model from a global point of view that encompasses all relevant observations
which can restrict its parameter space. This chapter will close the remaining
gap by thoroughly discussing the relevant observations that will bound the
model from different directions within the parameter space. These observa-
tions naturally include collider data, as our postulated scalar S is coupled to
the Higgs sector and might leave imprints that are accessible to collider exper-
iments such as the LHC. Furthermore, cosmological observables such as the
CMB, the abundance of light elements produced during Big Bang Nucleosyn-
thesis (BBN) or the power spectrum of the cosmic large-scale structure have
been mentioned already and will play an important role for our scalar decay
model.

In section 7.1, we will give a mostly self-contained discussion of the relevant
observations and how they can be used to constrain the scalar decay model.
As the evolution of cosmic structures will be the most relevant observable in
our case, section 7.2 will be completely devoted to discuss how we can assess
the model’s compatibility with structure formation in the linear regime. This
section will start by discussing the free-streaming horizon, a commonly used
back-of-the-envelope estimator for structure formation, and its shortcomings
— which are particularly pronounced when dealing with non-thermal dark
matter spectra, as in our case of scalar decay. We will then move on to a
new method of taking into account the full spectral information of the sterile
neutrino dark matter to get more robust and reliable results.

This new method will be then be applied to the scalar decay model in
section 7.3, where we show all relevant constraints on the parameter space of
our production mechanism for sterile neutrinos. This section can be seen as

103
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the quintessence of the scientific insights of this dissertation, as it summarises
the state-of-the art knowledge about the scalar decay model for sterile neutrino
dark matter production.

Section 7.4 will show a few hand-selected cases where the DW contribution
to the spectrum under the assumption of maximal mixing will make a sizeable
difference in terms of structure formation. To this end, we will revisit the
examples discussed in section 6.6. The precise tuning of parameters to obtain
any visible result will justify that we mainly neglect the DW effect in the other
sections of this chapter. As there is no guarantee that a potential mixing even
saturates the current X-ray bounds, the effect can even be much smaller than
in these few hand-selected cases.

We will summarise the key aspects of this chapter in section 7.5.

7.1 A synopsis of all relevant bounds
This section will collect all relevant bounds that should be taken into account
when assessing the scalar decay model. This collection will contain general
cosmological bounds as well as collider bounds. Some of them have already
been mentioned briefly and will only be brought to an applicable level here.
The bounds from structure formation, though, need to be presented in greater
detail, given that this thesis is partly dedicated to the introduction of new
methods and approaches. These will be discussed at length in the next sec-
tion.We will now discuss the bounds one by one.

7.1.1 The abundance bound

Let us start with the obvious restriction that our dark matter model should not
predict an abundance that over-saturates the best-fit values obtained through
Planck data [11], or even overclose the universe. We have also mentioned
several times that we fix the mass mN of the sterile neutrino such that the
correct relic abundance is obtained. Therefore we want to present the concrete
prescription how to calculate the abundance of sterile neutrino dark matter
for a given mass.

In our most general case of arbitrary mS, the distribution functions of both
the scalar and the sterile neutrino were described through the momentum
variable ξ and the time variable r. From the distribution function, we can
derive the particle number density of sterile neutrinos, denoted nN , as follows:

nN (r) =
gN

2π2

∞∫
0

dξ
dp

dξ
p2 (ξ) fN (ξ, r) =

gN

2π2

gS(T )

gS(T0)

(m0

r

)3
∞∫

0

dξ ξ2fN (ξ, r) .

(7.1.1)

In eq. (7.1.1), gN = 2 counts the spin degrees of freedom of the sterile
neutrino N . From the particle number density we can now infer the abundance
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of dark matter through

ΩDMh
2 =

s0

s
(
rprod

) · mNn
(
rprod

)
ρcrit/h

2 , (7.1.2)

where n
(
rprod

)
and s

(
rprod

)
are the number and entropy densities at r = rprod,

respectively, s0 = 2891.2 cm−3 [179] is today’s entropy density, and ρcrit/h
2 =

1.054 × 10−2 MeVcm−3 [179] is the critical density in units of the squared
reduced Hubble constant h. Clearly, eq. (7.1.2) scales linearly with the mass
of the sterile neutrino mN , as the particle number density is independent of
mN in the limit of mN � mS. Thus, the mass of the sterile neutrino solely
produced by decays can just be chosen such that the value obtained through
eq. (7.1.2) exactly saturates the bound. Of course, a smaller mass could be
chosen in a case where other d.o.f. make up the remainder of the dark matter
density.

7.1.2 Collider bounds

As already mentioned earlier, the introduction of a new scalar d.o.f. coupling
to the Higgs will leave an imprint on observables accessible in collider experi-
ments. Apart from direct collider bounds, many bounds derivable from LHC
data will depend on the details of the particle physics setup. We will therefore
restrict ourselves to bounds arising in the most minimal particle physics setup
of our scalar decay model.

So far, we have introduced the mass of the sterile neutrino by hand, usually
fixing its value such that we obtain the correct relic abundance, cf. section 7.1.1.
In the most minimal setting, we can also demand that the mass mN be gen-
erated by a VEV of the scalar singlet S. More explicitly, we can demand that
mN = y 〈S〉. When making this assumption, we can derive bounds from per-
turbative unitarity as well as from the contribution to the physical mass of
the W -boson from the mixing angle between the scalar states in the Higgs sec-
tor. In general, there are also direct collider bounds restricting the parameter
space spanned by mS and λ [180], but they are far too weak to cut into the
parameter space of interest to us.

For the limit from perturbative unitarity we can bound the VEV of S as
follows [180]:

〈S〉 ≥
√

3

16π
mS . (7.1.3)

Since we asked that the mass mN be generated through the VEV 〈S〉 and
the Yukawa coupling y, we can substitute 〈S〉 = mN/y:

y ≤ mN

mS

√
16π

3
. (7.1.4)
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For the bound arising from the contribution to the mass of the W -boson,
we can combine Eqs. (8), (9) and (11) of Ref. [180] to derive an upper limit on
the Higgs portal coupling:

λ ≤ λmax = y sinmax (2α)

∣∣m2
S −m2

h

∣∣
2vEWmN

, (7.1.5)

with vEW being the VEV of the SM-Higgs and α parameterising the mixing
of the scalars [180, Fig. 3].

The combination of eqs. (7.1.4) and (7.1.5) allows us to constrain the pa-
rameter space spanned by λ and y for given mS and mN fixed by the relic
abundance constraint. These bounds will be included in the results presented
in section 7.3. We want to remind the reader that they are less coercible than
the other bounds as they can be weakened considerably when giving up the
assumption that mN be generated (only) via the VEV of the scalar S.

7.1.3 Bounds from additional radiation in the early universe

Another class of bounds can be derived from all observables that depend crit-
ically on the amount of radiation present at different epochs of the evolution
of the universe. The additional amount of radiation is traditionally encoded
through the effective number of neutrinos, Neff , irrespective of the nature of
the radiation. The standard value arising from the active neutrinos in the
early universe is given by [181]:1

NΛCDM
eff = 3.046 . (7.1.6)

Two relevant epochs of the early universe being affected by additional ra-
diation are BBN and the decoupling of the CMB.

In the case of BBN, an altered amount of radiation would change the ex-
pansion rate during the time when light nuclei are produced. This would
lead to different predictions for the abundance of these nuclei. The close
agreement of measured abundances and predictions without additional radia-
tion gives rather stringent bounds: ∆NBBN

eff < 1@95% C.L. [182], ∆NBBN
eff <

0.93@95% C.L. [183] and ∆NBBN
eff < 0.85@95% C.L. [184].

In the case of the CMB, the bounds are much more stringent: a recent
analysis in Ref. [11] finds ∆NCMB

eff < 0.32@95% C.L. At first sight, this limit
seems to be more relevant than the one coming from BBN. But keep in mind
that we are interested in the amount of radiation which our dark matter can-
didate adds to the Standard Cosmological value. BBN takes place at around
TBBN ≈ 4 MeV, while the CMB decouples at TCMB = 0.26 eV [11, 89], i.e.
much later. This implies that the sterile neutrinos will have had more time
to redshift and their contribution to radiation, i.e. the “amount to which they

1Recall our discussion in section 4.1 for the slight deviation from the naively expected
value of 3.
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are ultrarelativistic” will have dropped significantly. So it is a priori unclear
whether or not the less stringent value from BBN is in fact less relevant.

In order to assess this question, we need to calculate the contribution to
the amount of radiation. This procedure was detailed in [1] and has been
generalised to account for the shift in the entropy d.o.f.:

∆Neff (T ) ≡ ρ− nmN

2ρferm
therm

(7.1.7)

=
60

7π4

(
T

Tν

)4
mN

T

gs (T )

gs (T0)
×

∞∫
0

dξ ξ2fN (ξ,m0/T )

√1 +

(
gs (T )

gs (T0)

)(
mN

T0

)2

ξ2 − 1

.
A few remarks about eq. (7.1.7) and its implications are in order:

1. The factor of 2 in the denominator of the defining expression for ∆Neff

needs to be included as our definition of the particle number density
nN already contained both internal d.o.f. of the sterile neutrino while
the standard definition of Neff counts neutrino and anti-neutrino as a
contribution of 1.2 Hence, the standard value is roughly three (except
for the small corrections mentioned) to account for νe/νe, νµ/νµ and
ντ/ντ .

2. The factor (T/Tν)
4 can be approximated by (11/4)4/3 ≈ 3.85 to account

for the slower cooling of the photons due to electron-positron annihila-
tion.

3. The dilution of entropy d.o.f. is taken into account through gs. The
reference scale T0 was discussed in section 4.4.3 and is set to be equal to
the mass of the physical Higgs mh.

It turns out that the contribution of the sterile neutrinos to the value ∆Neff

in our setup will be more relevant at the time of BBN. Still, these bounds are
irrelevant even when taking the most stringent threshold NBBN

eff < 0.85 as the
regions excluded from this bound will always be excluded by the structure
formation bound anyway. This should — at least qualitatively — not be
too surprising, given that both classes of bounds are intimately linked: both
structure formation and the contribution to extra radiation will exclude models
where the dark matter particles stay ultrarelativistic for too long during the
evolution of the universe.

2Note that only left-handed neutrinos/ right-handed anti-neutrinos are present in the
CνB.
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7.1.4 The Tremaine-Gunn bound
A rather universal bound for dark matter models dates back to work conducted
by Tremaine and Gunn [185]. As the name Tremaine-Gunn bound (TG) is
often used sloppily in the literature, let us disentangle its meaning. In their
original work, the authors used the Vlasov equation to compare the maximal
primordial phase space density to the phase space density of objects being
dominated by dark matter today. While this version of the TG bound holds
irrespective of the spin-statistics of the dark matter candidate, is does depend
on the initial momentum distribution function.3

Accordingly, the resulting value of such an analysis could not necessarily
be transferred to our setup of non-thermal distributions. A more robust but
somewhat less stringent bound, which is however only relevant for fermions,
can be obtained by comparing the phase space density of dark matter dom-
inated objects to the phase space density of a degenerate Fermi gas. This
version is also commonly referred to as TG bound, and it will be used in the
remainder of this work.

For spin-1/2 particles, the thus derived lower bound on the mass is given
by [186]:

m
s=1/2
DM ≥ 0.5 keV . (7.1.8)

The TG bound will exclude large parts of our parameter space and also
yield the clearly visible division between the region where the scalar freezes in
and the one where it freezes out. We anticipate that all parts of parameter
space excluded by the TG bound will also be excluded by structure forma-
tion: even for a spectrum peaked at very low comoving momentum ξ (cf.
eq. (4.4.12)), such a low mass is quite probably in conflict with structure for-
mation. Nonetheless, the TG bound is quite important as it is much easier
to assess than structure formation analyses and can pre-exclude large areas of
the parameter space.

7.2 Structure formation in the SD model
Let us now proceed to the most relevant bounds obtained through consider-
ations of cosmic structure formation. In section 5.3.4, we have already seen
that a non-thermal distribution might not be described very well by its average
momentum. As the free-streaming horizon is the most popular estimator for
structure formation used by particle physicists and can at least decide about
the clear cases, it is worthwhile to discuss its definition and shortcomings. This

3This is a crucial fact. Often, a limit of mDM ≥ 0.25 keV is quoted as universal, i.e.
also holding for bosons. But this value is derived from phase space consideration of thermal
spectra. Axions can have masses of the order of 10−9 eV or less and be in agreement with all
cosmological bounds. They are, however, produced in a highly non-thermal way and thus
the bosonic version of the TG bound does not apply.



7.2 Structure formation in the SD model 109

will also help to present explicit comparisons between the conclusions made by
this simple estimator and more refined analyses.

7.2.1 The free-streaming horizon

The free-streaming horizon λfs of a dark matter model is defined to be the
comoving distance travelled by a particle of average velocity from the time of
its birth, tprod, until today (ttoday) when neglecting the effects of dark matter
self-gravitation:

λfs =

ttoday∫
tprod

dt
〈v (t)〉
a (t)

. (7.2.1)

The value of λfs is often used as an estimator for the scale below which struc-
tures get “washed out” by the motion of the dark matter particles. We have
argued that a precise definition of the notion of production time is by itself
somewhat arbitrary. This subtlety is, however, irrelevant since reasonable
shifts in the definition (e.g. 50% of final yield or 90% of final yield) do not
change the integral value in eq. (7.2.1) significantly. Analytical estimates
(e.g. [18, Eq. (20)]) qualitatively confirm that the precise definition of tprod

can either be completely neglected (if the particle became non-relativistic be-
fore matter-radiation equality) or are rather mild (if the particles became non-
relativistic after matter-radiation equality).

To classify different dark matter models according to their free-streaming
horizon, the following scheme is commonly used [187]:

λfs < 0.01 Mpc→ Cold Dark Matter (CDM),
0.01 Mpc < λfs < 0.10 Mpc→ Warm Dark Matter (WDM),
0.10 Mpc < λfs< 0.10 Mpc → Hot Dark Matter (HDM).

The boundary of 0.1 Mpc separating WDM (considered allowed) from
HDM (considered ruled out) is motivated by the order of magnitude of the
size of a halo hosting dwarf galaxies. Too large a suppression on these scales
would cause problems e.g. when trying to model the number of MW satellites
(cf. chapter 8). It should be clear that this boundary is an order-of-magnitude
estimate and by no means a precise threshold. Hence it can at most yield an
indication, which has to be interpreted with care especially for values close to
the threshold values. If λfs is different from the boundary value by orders of
magnitude, λfs can be a rather safe estimator.

Note further that we have chosen the commonly used classifications of cold,
warm and hot dark matter. This generic wording actually does imply a thermal
spectrum. But, as eq. (7.2.1) makes no assumption on the spectrum at all, this
is technically not even necessary. Nonetheless, the notion of the free-streaming
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horizon is commonly used for thermal dark matter spectra and the boundary
values motivated above are usually derived from thermal spectra.

To finalise the treatment of the free-streaming horizon and to carry its
shortcomings over to the next section — which introduces a more sophisti-
cated analysis method — let us present two mock examples especially ded-
icated to make the problems caused by the average in eq. (7.2.1) evident.
Fig. 7.1 shows two hand-crafted distribution functions that have exactly the
same average rescaled momentum4 〈x〉 by construction. The dashed curve
represents a Gaussian distribution with a mean at 〈x〉 = 2.78, while the solid
curve represents a superposition of two Gaussians. In the latter case, the
Gaussians were rescaled such that the superposition yields the same integral
as the single-peaked distribution. When fixing the mass of the sterile neutrino
through the relic abundance constraint, this also ensures that both the values
of the average momentum and of the mass are equal, hence also resulting in
equal average velocities entering eq. (7.2.1). In appendix D we will show a slice
through the parameter space of {mS, λ, y} for fixed mS and how the allowed/-
forbidden regions of parameter space change when using the free-streaming
horizon instead of the more elaborate method that follows.

7.2.2 The half-mode analysis of the squared transfer func-
tion

Now that we have discussed the issues related to the over-simplistic method
of predicting structure formation by the free-streaming horizon, we want to
move on to a method that takes into account more of the spectral information
contained in the distribution function, not only one aggregate quantity. To
this end, we want to introduce the linear squared transfer function T 2 (k):

T 2 (k) ≡ P (k)

PCDM (k)
, (7.2.2)

where P (k) is the linear matter power spectrum of the model and PCDM (k)
the one for a pure CDM setup. For the introduction of the matter power
spectrum, recall section 2.3. The definition of T 2 immediately implies that a
pure CDM setup has T 2 ≡ 1 ∀k, while models with a momentum distribution
not sharply concentrated close to 0 will behave as T 2 (k → 0) → 1 (as the
difference will not be visible on the largest scales) while T 2 (k →∞) < 1 (as
power on small scales will be suppressed).

The thus obtained squared transfer functions can be compared to limiting
squared transfer functions T 2

lim (k) derived from Lyman-α data. The limiting
transfer functions available in the literature are usually derived assuming a

4Again, we have chosen a certain temperature scale to present the distribution: x = p/T ,
given at gs = 106.75. This is irrelevant to the current discussion, but it is needed to specify
the parameters for our half-mode analysis to be defined in section 7.2.2 where both models
will in fact yield different predictions.
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Figure 7.1: Two mock distributions as a function of the rescaled momentum x
at plasma temperatures corresponding to gs = 106.75. Both distributions have
the same average rescaled momentum 〈x〉 and normalisation by construction.
As evident from the plot, they are qualitatively rather different and will lead
to different predictions in terms of structure formation.

thermal distribution with non-vanishing free-streaming horizon, i.e. a WDM
model. Hence, it is not a priori clear how to compare the squared transfer
functions of a certain model to these limiting benchmark cases. The ideal
way would be to re-evaluate the Lyman-α data using the exact shape of the
spectrum and the mass of the sterile neutrino. Given the infinite space of
spectra and the work necessary to re-evaluate the Lyman-α data, this would
be an extensive research project of its own. We will present a first approach
addressing this problem in an economic way later in chapter 8.

For now, though, we will use a simpler, yet already quite reliable method:
if T 2 (k) < T 2

lim (k) ∀k, the dark matter model underlying the squared transfer
function will be discarded. If, conversely, T 2 (k) > T 2

lim (k) ∀k, the model
will safely be in agreement with structure formation. This leaves us with the
question how to deal with cases where T 2 (k) and T 2

lim (k) intersect. Note that
this possibility arises from the fact that T 2

lim (k) is derived assuming a thermal
spectrum. This fixes the slope of the transfer function around its cutoff. In
fact, a squared transfer function for thermal dark matter is well described by
one single parameter, cf. section 8.2. The squared transfer functions arising
from our non-thermal spectra can exhibit a different slope around the cutoff.
To resolve this problem, we have developed the following approach:
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1. The first step is to compute the half-mode, which we define to be the
wavenumber at which the squared transfer function has dropped to 1/2:

k1/2 :⇔ T 2
(
k1/2

) !
= 1/2 . (7.2.3)

2. In the next step, we check whether the condition T 2 (k) > T 2
lim (k) is

met for all k < k1/2. If this is the case, we consider the model to be
allowed by structure formation, as it does not produce less power on the
somewhat larger scales as compared to the CDM benchmark. Obviously
this discards the information of the transfer function for k > k1/2 and
can thus only be an approximate classification method. Also, the value
of 1/2 to divide the transfer function into two regimes seems somewhat
arbitrary. However, such a method is justified by the following thoughts:
first, the value of 1/2 seems to be a natural compromise to mediate
between the cases of full agreement and full disagreement as indicated
above. Second, we have checked that the change of this threshold is
not too critical as, after all, the slopes of our transfer functions are not
wildly different from the thermal benchmark. In appendix D we show
an explicit example of how the restriction onto the plane of λ and y (for
fixed mS) changes if the threshold is lowered to 0.05 instead of 1/2. Even
the Lyman-α analyses are not too sensitive to the smallest scales, such
that taking into account only k < k1/2 is justified, cf. section 8.2 and
Ref. [6].

Fig. 7.2 summarises the procedure in a pictorial way. The limiting squared
transfer functions correspond to thermal masses of mlim,1 = 2.0 keV in a con-
servative limit and mlim,2 = 3.3 keV for a more restrictive limit. These values
are motivated in Ref. [188], to which we also refer for the exact definition of
the notion of a thermal mass which is popular in the astrophysics commu-
nity to describe the cutoff scale of a thermal model. There is a one-to-one
correspondence between the thermal mass and the half-mode k1/2 for thermal
distributions (cf. section 8.2 and Ref. [188]).

To give a first impression of how transfer functions may look like, we want
to pick up the mock examples presented in fig. 7.1. Their linear matter power
spectra have been computed using the CLASS code [189,190], which we use for
all computations of transfer functions in the remainder of this thesis. The re-
sults are shown in fig. 7.3. The solid (dashed) gray line correspond to the mock
distributions of fig. 7.1 with the same colour-coding, i.e. displaying the double-
peak (single peak) distribution. The red line corresponds to the limiting trans-
fer function of the more restrictive bound (given through mlim,2 = 3.3 keV).
Furthermore, we indicate the values of the half-mode k1/2 for both mock dis-
tributions. As the respective labels reveal, they deviate from one another by
about 20%.
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Figure 7.2: Pictorial representation of our half-mode analysis. Models are
allowed if T 2 (k) > T 2

lim (k) ∀k < k1/2 and ruled out otherwise.
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Figure 7.3: Squared transfer function for mock spectra with indicated half-
mode, which does differ significantly. The squared transfer function of the
single-peaked (double-peaked) MDF is given as dashed (solid) gray line. The
red curve corresponds to T 2

lim,2 and represents the restrictive Lyman-α bounds.
It intersects T 2 of the single-peaked MDF at a wavenumber of kintersect =
42.6 h/Mpc, as indicated by the twin lines.



114 7. Constraining the scalar decay model by structure formation

The plot shows two important aspects of our half-mode analysis:

1. While the free-streaming horizon for both mock distributions is identical
by construction, the squared transfer function reveals that they behave
quite differently in terms of structure formation. When compared to the
restrictive bound derived from Lyman-α data (again, assuming a thermal
shape), the single-peaked distribution would be considered in agreement
with structure formation while the double-peak is considered ruled-out.

2. The squared transfer function of the single-peaked distribution inter-
sects with the limiting squared transfer function T 2

lim,2 at kintersect =
42.6 h/Mpc (indicated by the twin lines in red and dashed gray). As
discussed above, this is due to the fact that our single-peaked mock dis-
tribution is not thermal. Even though it is a rather simple distribution,
the difference between a thermal and a Gaussian distribution manifests
itself in the transfer functions already.

With this proof-of-concept of our half-mode analysis, we are ready to use
it to put constraints on the parameter space of our scalar decay model in the
next section.

7.3 Constraining the model parameter space

In order to use the half-mode analysis to constrain the parameter space of
our model, the following procedure was used: for a selection of masses mS we
computed the MDFs of the sterile neutrino on a dense grid in the λ-y-plane.
The mass of the sterile neutrino for such a triplet {mS, λ, y} was then fixed
by exactly saturating the best-fit value for the dark matter density, ΩDMh

2 =
0.1188 [11]. We have this freedom to chose the mass as we have again neglected
the active-sterile mixing in the bulk analysis, based on the conclusions made in
chapter 6. We will show a few hand-selected cases later in this chapter where
we included the modification through the DW effect.

The MDFs and the corresponding values formN were then used to compute
the linear power spectrum P (k) by means of the publicly available CLASS
code [189, 190]. Note that CLASS can take arbitrary distribution functions
that are given as a function of a rescaled momentum x = p/T as an input.
According to our discussion of section 4.4.3, this parametrisation also requires
the specification of a plasma temperature at which this spectrum is valid, as
the entropy d.o.f. gs have to be taken into account accordingly.

The CLASS package allows for this choice through the adjustment of a pa-
rameter called T_ncdm. Even though the notion of a temperature of a non-
thermal dark matter population may cause some confusion, this parameter is
to be understood as the relative factor between the photon temperature and
the temperature of a thermal relic dropping out of equilibrium at the plasma
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temperature Tprod to which the momentum x = p/T in the input is gauged.
In other words, one can compute T_ncdm through

T_ncdm =

(
gs
(
Ttoday

)
gs
(
Tprod

) )1/3

, (7.3.1)

where Ttoday = 2.75 K.5 As we choose our reference temperature T0 = mh by
convention (see section 4.4.3), we need to insert Tprod = mh, which results in
T_ncdm ≈ 0.33.

The power spectrum P (k) obtained this way is then normalised to the
one of a pure CDM benchmark, PCDM, also computed using the CLASS code.
This yields the squared transfer function T 2 (k), which is then automatically
compared to both the conservative limit, T 2

lim,1 (k), and to the restrictive one,
T 2

lim,1 (k). In the summary plots, which are to be fully described soon, we will
use the following colour scheme to classify regions in the λ-y-planes for fixed
mS:

• forbidden: if the half-mode analysis discards the model for both the
restrictive and the conservative limit, the point in parameter space is
marked in red and considered to be safely excluded.

• constrained: if the half-mode analysis using the restrictive limit discards
the model but it is still in agreement with structure formation when using
the conservative bound, the model is considered to be under tension and
the corresponding point in parameter space is displayed in purple.

• allowed: if the restrictive limit is met in the half-mode analysis (thus
automatically satisfying the conservative limit as well), we classify the
model as allowed and mark it in blue.

This colour coding is similar to the conventional colour coding of hot, warm
and cold dark matter, where red regions of parameter space are considered
to be excluded. We want to emphasise once more that, in our case, we are
assessing non-thermal spectra and the notion of a temperature of the species is
ill-defined and meaningless.

Fig. 7.4 shows the squared transfer functions for the exemplary spectra
depicted in figs. 5.3, 5.4 and 5.5, colour-coding the squared transfer functions of
the model according to the above classification. We would like to highlight the
comparison of fig. 7.4c and fig. 7.4d in particular: both models are characterised
by mS = 65 GeV and mN = 7.11 keV. While the case of the scalar freezing in
(fig. 7.4c) safely fulfills the restrictive limit, the case of the scalar freezing out
violates even the conservative bound by far. This difference is rooted in the

5Note that today’s CMB temperature is commonly denoted by T0. As we reserved T0

for our (arbitrary) reference temperature, cf. section 4.4.3, we introduce this somewhat
uncommon notation here.
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(c) mS = 65 GeV, freeze-in (cf. fig. 5.4,
left panel)
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(e) mS = 500 GeV, freeze-in (cf. fig. 5.5,
left panel)
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Figure 7.4: Squared transfer functions for examples shown in figs. 5.3, 5.4 and
5.5.
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spectrum and makes our statement that keV-scale dark matter cannot easily
be classified as WDM very clear.

Let us now proceed to the synopsis of all relevant bounds on our model. In
fig. 7.5, we show projections onto the plane spanned by λ and y for six fixed
values ofmS, namelymS = 30, 60, 65, 100, 500, 1000 GeV. For different masses,
mN = 2, 7.1, 20, 50, 100 keV, we show where the correct relic abundance is
met (where only a fraction is met) by the dark coloured solid bands (by the
lightly coloured bands).6 The limits from structure formation are coloured as
described above. Furthermore, the plots contain the TG bound, the model-
dependent collider bounds on the most minimal particle physics setup as well
as the overabundance bound. This extreme bound, which is always dominated
by stronger bounds, is supposed to indicate where the model would predict a
dark matter density overclosing the universe even for masses as low as 0.5 keV.
In the panels for mS = 60, 65, 500 GeV, we have marked the examples shown
in figs. 5.3, 5.4 and 5.5 as well as in fig. 7.4 with little black crosses.

Before discussing how the panels of fig. 7.5 differ for different choices of
mS, let us focus on the aspects they have in common first. All plots can be
separated into a part with vertical iso-mass-lines to the left (i.e. at small λ),
while the right lower corner (i.e. larger λ and not too large y) of each plot is
filled with iso-mass-lines that start out vertically (i.e. they remain constant in
λ) and then bend to continue horizontally (i.e. at fixed y). Just in the case
of mS = 30 GeV, the horizontal course of the iso-mass-line of mN = 2 keV is
visible only in a rudimentary way. We will understand this feature later when
discussing the quantitative differences for different masses mS. Before that, let
us recall the insights generated from the analytically accessible limiting cases
derived for large mS in section 5.3. Even though the numerical details of the
derived quantities change and some limiting cases might not even be reached
in the parameter space that we show (as in the case of mS = 30 GeV discussed
above), the basic ideas remain valid:

1. The vertical lines at small λ are the regime where the scalar freezes in,
cf. section 5.3.1. In this regime, we argued that the final abundance
of sterile neutrinos is just twice that of a would-be stable scalar as the
back-scattering of scalars into SM d.o.f. is absolutely negligible. Thus,
the final abundance of sterile neutrinos and thereby the mass fixed by
saturating ΩDMh

2 is independent of the choice of the Yukawa coupling y.
A smaller Yukawa coupling will, however, produce sterile neutrinos later
in the cosmic evolution, leaving them with less time to redshift. That is
why the models at very small y are excluded even for mN = 100 keV.

6Note that the colour categorising the assessment of structure formation in the lightly
coloured bands can only be indicative, as in this case the sterile neutrinos make up only a
fraction of the total dark matter density. The classification of the total dark matter popula-
tion in such a setup will depend on the MDF(s) and the mass(es) of the other components
as well. Thus, the classification indicated by the light colours are correct if the remainder
of the dark matter population behaves similarly.
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Note that, in this FIMP-regime, a stronger coupling λ leads to a larger
number density of sterile neutrinos and hence to lower masses mN .

2. In the right half of the plot, the scalar freezes out. For small y, we also
argued that only frozen-out scalars decay while decay in equilibrium is
negligible, cf. section 5.3.3. For this reason, the iso-mass-lines start out
vertically as well. Since, in this regime, the abundance of a would-be-
stable scalar follows the dynamics of freeze-out, a larger coupling implies
a lower abundance, resulting in larger masses mN . Hence the ordering
of the lines corresponding to different values of mN gets reversed as
compared to the FIMP-regime.

3. For the largest values of the Higgs portal coupling λ and larger values of
y, the iso-mass-lines run horizontally as all sterile neutrinos are produced
from scalars in equilibrium, cf. section 5.3.2. The contribution from the
decay of the frozen-out relic abundance of S is negligible for large λ.
In this regime, the energy density of the sterile neutrino dark matter is
directly proportional to y2, eq. (5.3.17), such that the mass mN fixed by
the relic abundance constraint scales as y−2 in this regime. For too large
y, the abundance produced from scalars in equilibrium would be so large
that either the universe overcloses or the TG bound is violated.

4. The sub-region of the WIMP-regime, where the iso-mass-lines take a
rather sharp bend is the intermediary regime. Both decay in equilibrium
and out of equilibrium contribute to similar amounts in this regime and
the MDF of the sterile neutrinos will have two relevant momentum scales.
Note that, depending on the mass mS, this region may or may not have
parts in agreement with structure formation.

We now proceed to the differences that the plots exhibit for different choices
of mS. As apparent from the panels in fig. 7.5, the characteristics do not
change monotonously with mass. From the impression visible to the bare eye,
the plane of λ and y for mS = 60 GeV is more similar to the case of 100 GeV
than to the naively “close” case of mS = 65 GeV. We will discuss the regimes
ofmS defined in section 5.4 separately to work out the different characteristics.
To ease this discussion, fig. 7.6 depicts the ratio of the total interaction rate
between the scalar and the SM d.o.f. as a function of temperature/time for
different masses mS and a selection of values of the Higgs portal coupling λ.
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(a) mS = 30 GeV (b) mS = 60 GeV

(c) mS = 65 GeV (d) mS = 100 GeV

(e) mS = 500 GeV (f) mS = 1000 GeV

Figure 7.5: Constraints on the parameter space of our scalar decay model from
structure formation displayed in projections onto planes spanned by λ and y
for different scalar massesmS. The black crosses correspond to the cases shown
in figs. 5.3, 5.4 and 5.5 and fig. 7.4.
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Figure 7.6: Ratio of the in-
teraction rate Γint between
the scalar S and all relevant
SM d.o.f. and the expan-
sion rate H of the universe
as a function of the time
variable r = mh/T . The
freeze-in cases are those
where the interaction rate
is always much smaller
than unity, while freeze-
out needs Γint/H > 1 at
some time. The upper
panel of λ = 10−9 only al-
lows for freeze-out while a
coupling strength of 10−6

(centre panel) allows for
both freeze-in and freeze-
out of the scalar, depend-
ing on mS. In the lower
panel we fixed λ = 10−5

and in this case, scalars of
all masses considered un-
dergo a cold freeze-out at
temperatures in the range
[mS/20,mS/4]. In this
case, considering the scalar
to be almost at rest at
the point of freeze-out [175]
(which simplifies the anal-
ysis of the subsequent de-
cay) is a good approxima-
tion, contrary to the state-
ment found in [191].
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With these insights ready, let us discuss the different regimes of mS in turn.

7.3.1 Very light scalars, mS < mh/2

The FIMP-production of these very light scalars happens mainly in regime III
(cf. Tab. 5.1) as for freeze-in, production is most efficient around T ∼ mS.
This is confirmed by the fact that the interaction rate for λ = 10−9 becomes
sizeable only after the EWPT. Contrary to the simple estimate of the peak
interaction rate at T ∼ mS, phase-space factors play a significant role especially
for the decay of thermal Higgs bosons into scalars, which is exactly the channel
driving the sudden jump of the interaction rate after EWPT for mS < mh/2.
As the panel shows, the peak production for scalars of mS = 30 GeV happens
somewhat earlier than for mS = 60 GeV. Apart from these minor numerical
changes, the FIMP-regions of both cases mS = 30 GeV and mS = 60 GeV look
quite similar. We argued that the decay width of the scalar is proportional
to mSy

2, such that a larger mass should result in a shorter life-time and thus
feature more redshift. But since peak production is somewhat later in the case
of 60 GeV due to phase-space effects and subtle dependencies of the scattering
cross sections on mS, this effect is counteracted to a first approximation.

In the case of the scalar freezing out, the lower panel of fig. 7.6 shows that
the a scalar of mS = 30 GeV freezes out earlier than one with mS = 60 GeV.
Earlier freeze-out implies a smaller Boltzmann suppression and thus a higher
number density of scalars remaining after freeze-out. For this reason, only a
very small mass of mN = 2 keV will fulfil the relic abundance constraint and
hence, the WIMP-regime of fig. 7.5a only exhibits one iso-mass-line.

7.3.2 Light scalars, mh/2 < mS < mh

Again, the FIMP-regime looks rather similar except for a small shift in λ,
which comes from the scaling of the interaction rate, — cf. eq. (5.3.6) for large
mS; the general trend of the parametrisation still holds. In the freeze-out case,
the lighter scalar of mS = 65 GeV again freezes out earlier than the somewhat
heavier one at mS = 100 GeV. This seems counter-intuitive when applying
the standard lore that freeze-out of a particle occurs roughly at T ∼ m/20 [89].
We can explain this observation as follows: while the thermal suppression in
both cases is at least similar, e−65/100 ∼ 0.5, the actual interaction rates are
the decisive quantities. The interaction rate, however, is quite sensitive to this
seemingly small mass difference. A scalar ofmS = 100 GeV can annihilate into
W+W− pairs and into ZZ even at rest, while a scalar of mass mS = 65 GeV
cannot, cutting off these “communication channels” to the SM d.o.f. early on.

Another notable fact is that, for mS = 65 GeV or mS = 100 GeV, there
is no significant boost of the interaction rate at EWPT. While in the cases of
scalars with mS < mh/2 there is a sizeable boost due to the opening of the
decay channel h → SS after EWPT, the case of mh/2 < mS < mh does not
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allow for this channel. It is true that, at EWPT, the channels SS ↔ W+W−

and SS ↔ ZZ open up, but they were partly present before EWPT as well in
the form of the d.o.f. of the would-be Goldstone bosons of the Higgs-doublet.
In fact, the inclusion of all 4 d.o.f. of the Higgs doublet before EWPT seems to
be missing in the analysis of Ref. [22], which is why our results do not coincide.
The factor of 4 is about the numerical difference observed between our results
and those of Ref. [22] (after taking into account a different normalisation of
the Higgs portal coupling in Ref. [22]). We would not expect an exact factor of
4, since for the light scalars under consideration, the FIMP production takes
place both in regime I and regime II, cf. fig. 5.1. While Ref. [22] is missing a
factor of 4 to account for all d.o.f. of the Higgs-doublet in the unbroken phase,
they correctly take into account the contribution from W± and Z. Thus, the
exact numerical difference between the two results is smaller than 4, the precise
value depending on the exact interplay between regimes I and II, which is again
dependent on the mass of the scalar mS.

7.3.3 Heavy scalars, mS > mh

This region approaches the limiting case of large scalar masses discussed in
section 5.3 and precisely characterised by mS > mΦ (T ). In the case of
mΦ (T ) /mS � 1, we were able to greatly simplify the equations and even ob-
tain analytical results for large regions of the parameter space (cf. section 5.3).
As the major part of the interaction time span for heavy scalars is before
EWPT, the interaction reduces to the simple four-point interaction of regime
I (cf. Tab. 5.1). Hence, our numerical treatment of large mS give a good
justification of all assumptions made in section 5.3.

As we approach this limit here, the comparison of two different masses
is now less complicated than before. In the FIMP case, a larger mass mS

corresponds to an earlier decay for fixed y, but at the same time, the initial
physical momentum of the sterile neutrino also increases. To a very good
approximation these two effects cancel out, which is another way of interpreting
the effective couplings CHP and CΓ defined in eq. (5.3.6). In the case of the scalar
undergoing freeze-out, a larger mass implies an earlier freeze-out and thus a
higher abundance. This translates directly to a higher abundance of sterile
neutrinos for the case where the scalar decays mainly after freeze-out (i.e. the
vertical part of the iso-mass-lines). In turn, this means that the vertical lines
should shift slightly to the right (i.e. to larger couplings) to compensate for
this, which they indeed to as one can check in the plots.
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7.4 Scalar decay plus DW: structure formation

In the previous section, we have completely ignored active-sterile mixing. This
in general good accuracy of this approximation for masses of mN ≥ 4− 5 keV
has been shown in chapter 6. Also note that the inclusion of active-sterile mix-
ing would complicate the parameter space considerably, as a simple rescaling
of the mass mN to saturate the relic abundance bound does not fly. Recall
that obtaining a spectrum and a corresponding mass in the case of SD+DW
requires to solve an inverse problem: for a SD spectrum (independent of mN),
the DW contribution (depending on mN) can be calculated and the the relic
abundance can be checked. Even though this problem can be solved by a range
of popular iterative methods or by approximately adding both contributions,
it is much more involved than the simple rescaling in the case of pure SD.

Due to the need of additional assumptions on the mixing, such a setup is
less predictive. Nonetheless, we want to use the three cases of section 6.3 (hav-
ing three subcases each) to show explicitly the effect on the squared transfer
functions to assess possible separability of the cases through cosmic structure
formation.

Fig. 7.7 shows the squared transfer functions of the (sub-)cases presented
in section 6.3 in the same colour-coding, also including the reference limiting
squared transfer functions T 2

lim,1 (k) and T 2
lim,2 (k). Note that this plot is similar

but not identical to [2, Fig. 9], as the plot presented here uses different limiting
benchmarks: while Ref. [2, Fig. 9] used MW galaxy counts and Lyman-α
bounds from Ref. [173], we consistently stick to our choice of a conservative
and a restrictive Lyman-α bound as in the previous sections of this chapter.

In case 1, all subcases are in agreement with the restrictive Lyman-α limit,
even though case 1b can clearly be distinguished from the subcases a and c.
Note that this is not only an effect of different masses as subcases b and c
have the same value of mN by construction. In fact, the shift of the squared
transfer function in subcase b is a result of the high-energy end of the spectrum
being populated more intensively. The same logic holds true for the cases 2
and 3. In case 2, the changes are quite interesting. While the subcases of pure
SD (i.e. a and c) get differentiated through the restrictive Lyman-α bound,
the case of a maximal DW component is excluded even by the conservative
Lyman-α limit. Note that this is a very peculiar case, though: the mass range
around 3 − 4 keV, which is the mass range defining the subcases of case 2,
is exactly the mass range where the maximally possible DW contribution can
be significant while — for most spectra not peaked at very extreme rescaled
momenta as in the case of out-of-equilibrium decay — this is also exactly the
mass range critical for structure formation. In this way, case 2 can be seen
as a “worst-case” of taking the DW effect into account. Also in case 3, the
difference between subcase b including a DW component and subcases a and c
not including it is quite remarkably. However, in case 3, all subcases are very
clearly excluded even by the conservative limit, which makes the distinction



124 7. Constraining the scalar decay model by structure formation

1 5 10 50 100
0.0

0.2

0.4

0.6

0.8

1.0

k [h/MPc]

P
(k
)/
P
C
D
M
(k
) c

o
n
s
L
y-

α

re
s
L
y-

α

1a

1b

1c

(a) Cases 1a, 1b and 1c.
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Figure 7.7: Squared transfer func-
tions for the distributions defined in
section 6.3 and shown in fig. 6.6
(corresponding colour coding). The
benchmark squared transfer functions
from the restrictive (conservative)
Lyman-α bounds are represented in
light (dark) gray.
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irrelevant.
This compilation of examples shows that, for most mass ranges of mN rele-

vant for the SD model and not already excluded by structure formation anyway,
even the maximally allowed DW contribution does not change the conclusion
about the model being allowed or not. In a few very hand-selected cases, the
effect might just move the transfer functions beyond our sharp thresholds. In
such cases, the DW contribution should be taken into account. Our detailed
treatment of the effect of DW on initial spectra from SD provides a handy
prescription how to handle further such cases. Note that, however, this always
needs extra assumptions on the mixing as it is only bounded from above. In
the vast bulk of the plots of fig. 7.5, including even the maximal DW compo-
nent will not change the classification drastically: only the borders between
allowed/constrained and constrained/forbidden will move very slightly within
the iso-mass-lines of the lowest masses (already for 7.11 keV, the effect would
be barely visible).

7.5 Summary of the chapter
In this chapter, we have presented the relevant compilation of bounds which
can exclude sizeable parts of the parameter space of our model of sterile neu-
trino dark matter produced from singlet scalar decay. First, section 7.1 has
discussed constraints from general cosmological observations, like the observed
dark matter abundance or the Tremaine-Gunn limit, and some (model depen-
dent) collider bounds. Next, section 7.2 dealt with the most relevant bounds
on our models, i.e. those coming from cosmic structure formation.

We started by explaining the shortcomings of the commonly used free-
streaming horizon as an estimator, especially when dealing with non-trivial
MDFs as in the case of sterile neutrinos from scalar decay. These shortcomings
were backed up by an artificial, yet very pedagogical, comparison of two mock
MDFs. We thus moved on to our newly developed method of comparing the
squared transfer function at k < k1/2 to limiting benchmark cases derived from
Lyman-α data. This constraint can rule out sizeable areas of parameter space
and is much stronger than bound from other cosmological observables such as
the CMB or BBN. Nonetheless, it also shows that scalar decay can produce
sterile neutrino dark matter in accordance with all bounds for masses as low
as a few keV.

Finally we showed how taking into account the maximally allowed DW
contribution (as discussed in chapter 6) can change the categorisation, i.e. al-
lowed/constrained/ruled out of a few hand-selected points in parameter space.
As this effect requires additional assumptions — therefore introducing addi-
tional parameters — it is less predictive. As the bulk of the constraints onto
the parameter space of {mS, λ, y} presented in fig. 7.5 is unaffected even for
maximal mixing, we restricted ourselves to showing how to use the machinery
developed earlier to three pedagogical examples in this case.





Chapter 8
Further analyses on structure formation

“The power to question is the basis of all human progress.”
Indira Gandhi

In section 7.2.2 we have developed a method to assess structure formation
which takes into account the spectral information encoded in the MDF, not
only the mere average momentum as in the case of the free-streaming horizon.
Nonetheless, the limiting benchmark transfer functions, to which we compared
our models, have themselves been derived assuming a thermal shape. Further-
more, we have dropped the spectral information for k > k1/2. Accordingly,
this method can only be seen as a first step towards a more consistent and
detailed approach of fully taking into account the non-thermal aspect of the
MDFs from the very beginning. This more comprehensive picture should also
encompass analyses of structure formation in the non-linear regime, i.e., in the
regime where collapsed structures like single galaxies or their dwarf satellites
start to emerge. A first glance into possible methods will be given in this
chapter, where we summarise the key findings of the results presented in [5,6].
These works use data from distant galaxies, MW subhaloes and the Lyman-α
forest to consistently constrain non-thermal dark matter models.

Section 8.1 will use the abundance of ultra-faint distant galaxies at high red-
shift to put constraints onto the parameter space of the scalar decay model [5].
They will be in excellent agreement with our previous method of the half-mode
analysis in almost all relevant parts of parameter space. This approach will
use semi-analytical methods to assess structure formation in the non-linear
regime, which are, however, well tested against N -body simulations, see e.g.
Refs. [192–195].

Section 8.2 will use both semi-analytical methods and the results of ded-
icated N -body simulations to constrain non-thermal dark matter models ir-
respective of the exact production mechanism. This aim will be achieved by
checking the predictions of generically parametrised transfer functions against
the number of MW satellites and against Lyman-α data [6]. The results will be
matched to a few cases of the scalar decay model for illustration. Even though
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this only spotlights very narrow parts of the parameter space, the insights ob-
tained will also support the results of our half-mode analysis in section 7.2.2
to a high degree. A full analysis of the entire parameter spaces of different
physical models will be the focus of future work.

As usual, the chapter will end with a very brief summary in section 8.3.

8.1 Constraining the SD model with the abun-
dance of high-redshift galaxies

In sections 2.3 and 7.2, we found that deviations from the ΛCDM paradigm
will leave their imprint on the smallest cosmological scales to the most relevant
extent. These scales are given by lengths of O (0.1 Mpc), and they enclose
masses in the range of 107 − 109M� [5].

Using observables on the scale of galaxies therefore seems vital to generate
knowledge about non-thermal dark matter models. Ref. [5] uses the abundance
of ultra-faint galaxies at high redshifts (z = 6) to achieve this goal. The train
of thought guiding the analysis in this work is the following:

1. The halo mass function φz (M) describes the density of (sub-)haloes as
a function on mass and time (or, equivalently, of mass and redshift).
We usually suppress the redshift z in subscript for the sake of a clear
notation. the halo mass function can be interpreted as a probability
measure for haloes of a certain mass to emerge during the process of
cosmic structure formation.

2. Starting from the linear power spectrum P (k), or the transfer function
T (k), the differential halo mass function,

dφ

dM
(8.1.1)

can be calculated, using a modified version of the semi-analytical ex-
tended Press–Schechter approach (see e.g. Refs. [193, 195, 196]). For our
results (Ref. [5]), a spherical collapse model is assumed.1

3. The cumulative halo mass function is then defined as follows:

φ (M) ≡
∞∫

M

dM ′ dφ

dM ′ , (8.1.2)

1 Note that an ellipsoidal collapse would yield tighter constraints, such that the spherical
collapse can be seen as the more conservative approach. For a discussion of the choice of
the collapse model, we refer to Ref. [5, Sec. 2.2].
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i.e. it is calculated from the differential halo mass function. Especially in
non-cold dark matter models (nCDM in the following), the suppression
of power on the smallest scales leads to a saturation of φ at small M :

φ ≡ φ (0) . (8.1.3)

as the power of haloes on the smallest scales (and hence of the lowest
mass) is strongly suppressed in these setups. The quantity φ is an esti-
mator for the total number density of dark matter haloes of all masses
under consideration.

4. This number is then compared to the observed number φobs of ultra-faint
galaxies at redshift z = 6. Note that the observed number density φobs is
not a direct observable but has been derived by estimating the luminosity
function of a collection of objects in the Abell 2744 and MACS 0416
cluster fields in Ref. [197]. These objects were observed by the Hubble
Space Telescope. The intrinsic magnitude of the ultra-faint galaxies in
these fields (also referred to as Hubble Frontier Fields) are too low for a
detection through the respective instruments on board of the spacecraft.
Due to weak lensing effects caused by the clusters, the magnitude of
individual galaxies can get magnified by a factor up to 50 [197]. This
lensing needs to be modelled precisely in order to estimate the fiducial
volume filled by the ultra-faint galaxies. The volume is essential to infer
the number density φobs from the number count of observed galaxies.
Accordingly, the quantity φobs is a derived one, suffering not only from
statistical but potentially also from systematic uncertainties. For details
on these uncertainties, see [5, Sec. 2.1].

5. A model can be discarded if it predicts a halo density lower than the
observed one. Irrespective of the subtleties of baryonic effects in galaxy
formation, the number of observed galaxies can never outnumber the
number of hosts (while the reverse can happen if haloes do not host
luminous objects). Thus, for each point in the scalar model parameter
space, one can derive φ and compare it to the derived observable φobs.

The results of this analyses for the scalar decay model, exemplified for the
case of mS = 100 GeV, are shown in fig. 8.1: they are identical to the plots
presented in section 7.3 with an additional dark green line enclosing the regions
in the λ-y-plane that are in accordance with the abundance of the high-redshift
galaxies. The figure clearly shows that the bounds inferred from the galaxy
count at z = 6 track the Lyman-α bounds (from our half-mode-analysis) quite
closely, the latter being a little more constraining.

The results from our half-mode analysis were derived on limiting thermal
benchmark transfer functions. Furthermore, the systematic uncertainties in
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Figure 8.1: Same as fig. 7.5d with green lines enclosing the regions in agreement
with the observed abundance of ultra-faint galaxies at redshift z = 6.

Lyman-α bounds due to baryonic effects are not yet fully understood.2 This
implies that the small patches left in the parameter space where both methods
disagree are the interesting cases right at the border of precision cosmology,
which cannot yet be judged with absolute certainty. Nonetheless, the very
close agreement between the two approaches – which rely on very different
observational data – adds to the reliability and robustness of both of them.

8.2 Constraints on arbitrary transfer functions
Another new and powerful approach to assess structure formation of nCDM
models in the linear and non-linear regime3 was presented quite recently in [6].
Let us give a short description of the steps of the method:

2Recall that the Lyman-α forest intrinsically measures the line-of-sight density of neutral
hydrogen (cf. section 2.3), from which the dark matter density has to be modelled. For a
discussion of the aforementioned bias factor, we refer to Ref. [6].

3Note that all relevant quantities will be derived exclusively from the linear matter power
spectrum. While the Press-Schechter-approach indeed yields a result for halo counts (i.e.
a quantity defined only in the non-linear regime of structure formation), its input is the
linear power spectrum. The truly non-linear N -body simulations were only used to check
the validity of using the linear power spectrum for semi-analytical methods also in our case
of non-thermal dark matter models.
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1. The foundation of the approach is a series of 55 generic non-thermal dark
matter models4 described by their transfer functions. The 55 different
transfer functions are constructed from the following three parameter
template:

T (k) =
[
1 + (αk)β

]γ
. (8.2.1)

More details on the parametrisation through the triple {α, β, γ} will be
given later on.

2. For each of these 55 transfer functions, one can derive predictions for the
count of MW satellites and for the Lyman-α flux power spectrum using
linear theory and semi-analytical approaches, similar to the approach of
section 8.1. For the MW galaxy counts, the predictor is the number of
satellites, dubbed Nsub. This number should be at least as big as the
number of observed MW satellites, Nsat = 63.5 To check the models
against Lyman-α data, a predictor called δA is derived from the 1D
linear matter power spectrum as follows

δA ≡ AΛCDM − A
AΛCDM

. (8.2.2)

The quantity A integrates the deviation r of the 1D matter power spec-
trum6 from the ΛCDM benchmark, in turn given by

r (k) ≡ P1D (k)

PΛCDM
1D (k)

, (8.2.3)

over the range relevant for the Lyman-α observations:

A ≡
kmax∫
kmin

dk r (k) . (8.2.4)

The typical range of modes probed by the Lyman-α observations can
be exemplified by the combined MIKE/HIRES+XQ-100 dataset [199],
where it is given by kmin = 0.5 h/Mpc and kmax = 20 h/Mpc. The upper
limit for δA used in the analysis of [6] is δAref,1 = 0.38 in the conservative
version and δAref,2 = 0.21 in the restrictive version.

4These models are labelled nCDMi with i ∈ {1, 2, 3..., 55}.
5Note that this is number is not strictly an observation, as the search for MW satellites

suffers from a limited coverage of the sky. It is instead derived by taking into account the
15 ultra-faint satellites observed by the SDSS project and multiplying this number by a
factor of 3.5 in order to account for the actual sky coverage of the survey. This approach
is motivated and explained in Refs. [154, 198]. The resulting value of 52.5 is added to the
11 classical MW satellites to yield a total of Nsat = 63. In order to account for sampling
variance, Ref. [6] also uses Nsat = 57 for a more conservative analysis.

6The 1D matter power spectrum P1D (k) can directly be obtained from integrating the
3D power spectrum, P1D (k) = (2π)

−1 ∫∞
k

dk′k′P
(
k′
)
.
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3. All 55 transfer functions were used as input for dedicated dark-matter-
only N -body simulations. This allows to check whether or not the ap-
proximate results obtained from linear theory and semi-analytical col-
lapse models are reliable. It turned out that all samples of our range
of non-thermal models are very adequately described by using the linear
power spectra and semi-analytical collapse calculations, even though the
non-linear regime might yield somewhat more aggressive results in the
case of the Lyman-α analysis [6]. For the count of the MW satellites,
the current resolution of the 55 N -body simulations in Ref. [6] is not
high enough to avoid artificial clumping of the halo mass function at
small masses. Hence, the non-linear results could only qualitatively back
up the results obtained through the Press-Schechter-approach, but they
could not yet contribute to potentially stronger limits.

This method can now be used to constrain the entire parameter spaces of
concrete dark matter models, such as our scalar decay setup, resonant produc-
tion of keV steriles or fuzzy dark matter (e.g. Refs. [200–202]). So far, such
exhaustive analyses have not yet been performed but will be part of future
projects. Nonetheless, Ref. [6] included a few hand-selected examples for each
of the aforementioned setups. We will show the results of the exemplary cases
for scalar decay production of sterile neutrino dark matter in fig. 8.2. Before
presenting these results, let us give a few more important remarks concerning
the approach summarised in this section:

1. In the case of a thermal spectrum (i.e. WDM), the transfer function is
well fitted by one free parameter [188]. This also allows a direct transla-
tion between the cutoff scale governed by this parameter and the some-
what artificial notion of a thermal mass that we used to describe our
limiting WDM transfer functions in section 7.2.2.

2. For most of the 55 models considered here, Lyman-α data has more
constraining power than the MW satellite counts. In other words, most
models ruled out by the predictor Nsat will also be ruled out by the
Lyman-α predictor δA. As both observations probe slightly different
length scales, the adverse can, however, also be true, as in the model
nCDM35 of Ref. [6].

3. A priori, it is not clear, how big the error of first fitting the transfer func-
tion to eq. (8.2.1) is compared to using it directly as an input to obtain
values for the predictors Nsub and δA. As the N -body simulations so far
only serve to check the validity of the estimators which are completely
based on the linear power spectrum, a particle physicist working on dark
matter models might still feel more comfortable with just fitting their
transfer function to the template and then interpolate the values of the
predictors. This way, they do not have to get all necessary insights on
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structure formation and the comparison to the threshold values of the
predictors can be seen as a handy recipe that is implemented rather eas-
ily. In order to get a first impression of the sensitivity of the method to
the precise form of T (k), Ref. [6] compared the predictors from the fitted
transfer functions to those obtained directly for a couple of examples for
all physical setups considered. In almost all cases, the values for Nsat

and δA derived from the fitted transfer function match the exact results
within a deviation of a few %. Hence the conclusion whether or not a
model is allowed can be inferred from the fitted transfer function with a
high degree of reliability.

4. There is a quasi-degeneracy between the parameters α and γ. Mathe-
matically speaking, two different sets of parameters, say {α, β, γ} and
{α′, β, γ′} result in two non-identical transfer functions. In the limit of
large k, however, we can expand eq. (8.2.1) to obtain:

T (k) |αk�1' αβγkβγ . (8.2.5)

Replacing α → α′ = xα, with some x ∈ R, then yields the same be-
haviour for large k as the substitution

γ → γ′ (k) = γ [1 + ln (x) /ln (k)] . (8.2.6)

As this substitution yields a new parameter γ′ that is a function of k,
both forms cannot be identical even in the limit of large k. Since the
dependence on k in γ̃ is only logarithmic (and thus very mild), though,
one can approximate

γ′ (k) ' const. (8.2.7)

to a reasonable accuracy, though, especially if |logkx| � 1.

5. Another very versatile approach to assess structure formation for arbi-
trary dark matter models is the ETHOS project [203, 204], an Effective
THeory Of Structure formation. ETHOS tackles the problem starting
directly from the level of the particle physics Lagrangian. While at first
glance this seems to be a great assistance for particle physicists, who can
save the work of computing power spectra or transfer functions them-
selves (e.g. using CLASS), the approach is confronted with an almost
infinite initial parameter space. Our setup, instead, works with a simple
3-dimensional parameter space that is capable of capturing a wide range
of real models and can easily be extend to encompass even the most
“exotic” cases by introducing a fourth and potentially a fifth parameter.7

7Additional parameters can allow for oscillations in the transfer function or for a plateau
at large k, i.e. a transfer function with T (k →∞) → const. > 0. For mixed models con-
taining both warm and cold thermal dark matter, such a plateau may in fact arise [186].
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The fact that three parameters capture a huge variety of particle physics
setups so well implies that the dimensionality of an adequate parameter
space for structure formation is much lower than the unbounded model
space present on the level of the particle physics Lagrangian. Thus we
consider our approach to be both handy and economic, while being ro-
bust and reliable at the same time.

With our knowledge about the approach presented in [6] and summarised
in this section, we are now ready to appreciate the assessment of structure
formation in four hand-selected cases of scalar decay that lie in the interesting
region of the parameter planes spanned by λ and y for two example values of
mS, namely mS = 30 GeV and mS = 60 GeV.

(a) mS = 30 GeV. (b) mS = 60 GeV.

Figure 8.2: Classification of parameter points according to the estimators Nsub

and δA. The parameter point marked in purple meets both the conservative
and the restrictive bound on Nsub but only the conservative one on δA. The
points marked in red violate both the bounds on Nsub and on δA even in their
conservative versions. Note that the crosses are slightly offset from the iso-mass
lines (compare masses given in Tab. 8.1), such that the comparison appears to
deviate more from the half-mode analysis as it actually does: the boundaries
forbidden/constrained and constrained/allowed bend rather sharply in this
region. Still, the limits do deviate to some extend and are somewhat stronger.
Taking into account that they do not use exactly the same spectral information
contained in the half-mode analysis, this is not too surprising.

Fig. 8.2 shows the parameter space as restricted by the half-mode analy-
sis, just like in figs. 7.5a, 7.5b, with the additional information of two model
points in each parameter plane that have been tested using the aforementioned
approach. A purple cross indicates that the model meets both the restrictive
and the conservative bounds on Nsat while the (usually more restrictive) bound



8.3 Summary of the chapter 135

from Lyman-α data assessed through δA is only met in the conservative case.
A red cross indicates that the model violates both observables even in the con-
servative version and can thus be excluded. Again, we see that this method
is in close agreement with the our half-mode analysis, backing it up further.
Simultaneously, a more extensive study of the scalar decay parameter space
using this approach might help to judge the yet unclear regions with more
confidence. We summarise the quantitative description of the four examples
in Tab. 8.1, indicating the colour of the model used in [6, Fig. 4] to ease
comparison.

Case 1 Case 2 Case 3 Case 4
mS [GeV] 60 60 30 30
mN [keV] 19.6 9.87 43.1 43.1

λ 1.26× 10−7 1.26× 10−9 3.16× 10−10 3.16× 10−10

y 2.00× 10−9 1.26× 10−9 2.00× 10−9 1.26× 10−9

α 0.019 0.011 0.011 0.016
β 2.5 2.7 2.7 2.6
γ −6.9 −9.8 −8.5 −8.1

k1/2 [h/Mpc] 26.3 16.5 28.6 19.0

Nfit
sub 27 79 91 38

N true
sub 28 87 97 42

δAfit 0.582 0.375 0.339 0.521
δAtrue 0.576 0.390 0.360 0.535

Table 8.1: Parameters and structure formation estimators of the examples of
the scalar decay model analysed in [6] with fitted and exact transfer functions.
We use the same colours for the different cases as used in [6, Fig. 4].

The last four lines in Tab. 8.1 confirm that the values of the predictors Nsub

and δA obtained from the fitted transfer functions (subscript fit) differ only
mildly from the exact ones (subscript true). Only in case 2, the fitted value
would be in agreement with δAref,1, while the exact value is slightly above.
However, such artefacts can never be excluded when comparing predictions to
sharp thresholds unless the level of precision is in fact infinite, which of course
is unrealistic.

8.3 Summary of the chapter

In this chapter, we summarised the key findings of new approaches in the field
of structure formation for non-thermal dark matter candidates [5, 6]. First,
we showed how the observation of ultra-faint galaxies at relatively high red-
shift, observable only through sizeable lensing amplification, can qualitatively
back up our assessment of structure formation using the behaviour of the
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squared transfer function at k < k1/2. The prediction of the abundance of
high-redshift galaxies is less dependent on baryonic effects, which are not yet
fully understood and hence not taken into account accurately in all analyses of
cosmic structure on the galaxy-scale. The abundance of high-z galaxies yields
slightly less restrictive, but overall very similar results to those obtained by the
half-mode analysis — a fact that strengthens the credibility of both methods
significantly.

After this, we discussed quite a generic approach for assessing structure
formation, which starts from a very versatile 3-parameter template for nCDM
transfer functions. This approach constrains the space of the three parame-
ters using semi-analytical results of the linear matter power spectra to infer
predictions of the MW satellite count and the Lyman-α flux power spectrum.
To this end, predictions for 55 samples in the parameter space were derived
and backed up by running dedicated N -body simulations to check the validity
of the results from linear theory. Subsequently, we discussed how any transfer
function in the parameter region spanned by the 55 benchmark cases can be
fitted to the three-parameter form without changing the predictors for the MW
satellite count and the Lyman-α flux power spectrum considerably. This will
allow to use the 55 examples as a benchmark against which other fitted trans-
fer functions can be compared. With this rather model-independent approach,
we paved the way for assessing a wide range of non-thermal models efficiently.



Chapter 9
Conclusions

“Arriving at one goal is the starting point to another.”
John Dewey

In this thesis, we have presented a fully comprehensive study of keV-scale
sterile neutrino dark matter produced from the decays of scalar singlets in the
early universe.

We started with two brief review chapters on dark matter and on sterile
neutrinos, respectively, introducing the basic notions and already focusing on
the areas where both fields of research overlap. We also gave an overview of
the popular production mechanisms of sterile neutrino dark matter discussed
in the literature. Subsequently, we have laid the formal foundation to treat
the required Boltzmann equations on the level of distribution functions. We
derived analytical results for some scenarios of the SD model in the limiting
case of large scalar masses. These results gave us valuable insights into different
regions in the parameter space: the FIMP-regime (the scalar freezes in) and the
WIMP-regime (the scalar undergoes thermal freeze-out). In the latter case, we
have found analytical solutions for the limiting subcases of decay either only
during equilibrium or only after freeze-out, i.e. out of equilibrium.

We then proceeded to a fully numerical evaluation of the momentum dis-
tribution functions of dark matter production in the reasonable range of scalar
masses, from about 30 GeV and up to a few TeV. Starting from about 1 TeV,
the analytical formulation found in the limit of large mS is a very reliable
description and reproduces the numerical results closely. Our numerical treat-
ment included a detailed discussion on how to tackle the system of integro-
differential equations through discretisation in the momentum variable and an
adequate choice of solving routines for the remaining system of a rather large
number of coupled ordinary differential equations for the different momentum
modes as a function of cosmic time t (or plasma temperature T ).

Our numerical solution of the Boltzmann equations showed that the spec-
tra of sterile neutrinos from scalar decays are non-thermal and can even exhibit
two momentum scales of similar relevance: when neglecting the DW contribu-
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tion, such a scenario arises in the WIMP-regime when decays in and out of
equilibrium contribute to the relic abundance to a comparable amount. Our
methods and techniques carry over to more general settings, e.g. featuring
non-scalar particles decaying or multiple generations of sterile neutrinos.

As a next step we presented a semi-analytical machinery to compute the
spectrum of sterile neutrinos created by the DW mechanism, and the influ-
ence of this effect on a population of sterile neutrinos created by an arbi-
trary preceding production mechanism. Our semi-analytical methods allowed
to re-evaluate some of the statements present in the literature: we could,
for instance, quantify the degree to which the assumption of DW yielding
a suppressed thermal spectrum is accurate. These insights can affect other
analyses, such as the constraints on light sterile neutrinos provided by the
Planck collaboration, which in fact uses an incorrect spectral shape for the
DW mechanism [11, Fig. 32, Eqs. (63), (64)]. We also showed that, for masses
mN ≥ 3− 4 keV, the strong X-ray bounds guarantee that the DW mechanism
can only have a minor effect on arbitrary initial distributions. For smaller
masses the resulting models are in tension with structure formation, irrespec-
tive of the spectrum of the initial population. This implied that there is at most
a very narrow region in mN where the DW alteration of previously produced
spectra should be taken into account. Recall that this requires additional as-
sumptions, e.g. that the mixing actually saturates the limit inferred from X-ray
bounds.

As the respective quantitative statements about the effects of the DW
mechanism were independent of the details of the preceding production mecha-
nism, they directly carried over to our scalar decay setup: for a sample of three
interesting cases we showed how to compute the maximally allowed alteration
of the spectrum caused by the DW effect by making use of our semi-analytical
approach. As argued above, a few hand-selected cases at masses of the sterile
neutrino around 3 − 4 keV can react critically when taking into account the
maximally allowed DW-modification, as this mechanism can also contribute
to the high-momentum tail of the sterile neutrino spectrum. This can put the
resulting combined spectrum in tension with structure formation.

The information contained in the momentum distribution functions of ster-
ile neutrinos from scalar decays allowed us to assess this model from all rele-
vant angles: these viewpoints included binary cosmological information (like
the observed dark matter abundance or the amount of radiation at different
cosmological epochs), model dependent collider bounds, and — most relevant
— constraints obtained from cosmic structure formation. The latter excluded
sizeable regions of parameter space of our scalar decay model.

The last two chapters of this thesis introduced and discussed newly de-
veloped methods of assessing structure formation. We pointed out the short-
comings of the oversimplified concept of the free-streaming horizon, especially
when the dark matter spectrum deviates strongly from a thermal one. We
introduced a rather simple, yet reliable, method for checking the predictions
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of structure formation against observations by comparing the behaviour of the
squared linear transfer function at scales larger than the respective half-mode
to benchmark cases obtained from Lyman-α data. We also gave an outlook on
how more advanced analyses on Lyman-α data, Milky Way satellite counts and
the abundance of ultra-faint dwarf galaxies can give more robust, but overall
very similar constraints. While these constraints were derived from the linear
power spectrum, the respective methods were tested against N -body simula-
tions. Ultimately, the analyses of the truly non-linear regime might help to
further tighten constraints in the future.

Except for the very generic overabundance constraint and the Tremaine-
Gunn limit, the bounds derived from cosmic structure formation always turned
out to be much more restrictive than those from the amount of radiation. As
expected, the FIMP-regime in combination with somewhat larger values for
the Yukawa coupling as well as the WIMP-region with in-equilibrium decay
still feature a sizeable volume in parameter space where our scalar decay model
for sterile neutrino dark matter is in agreement with all relevant bounds.

In summary, we showed that scalar decays provide a viable production
mechanism for sterile neutrino dark matter in the mass range of a few to some
hundred keV. In the entire range of relevant scalar masses mS, there are parts
of the parameter space spanned by the Higgs portal coupling λ and the Yukawa
coupling y that are in full agreement with all relevant cosmological bounds. In
the course of these analyses, we developed methods to compute the momentum
distribution functions of non-thermal dark matter as well as approaches to
assess their compatibility with cosmic structure formation. These techniques
can be adopted to study similar setups in an efficient and reliable manner in
the future.





Appendix A
Entropy evolution of the SM in the
early universe

This appendix presents the evolution of the SM d.o.f., which is an essential
ingredient for all distribution functions calculated in this thesis. The evolution
requires an understanding of the coupling of the SM particles among each other
and is non-trivial if a certain level of precision is aimed for. A detailed model of
the effective entropy d.o.f. has been put forward in [205, App. A]. The authors
use a superposition of fitted tanh functions to introduce the different phases
of d.o.f. vanishing from the radiation content of the early universe.

For a more detailed explanation and a listing of the fit coefficient needed to
reproduce the fit, we refer the reader to the original publication. In fig. A.1, we
present the evolution as a function of cosmic temperature T or the scale factor
a (normalised to unity today), respectively, and we mark the most important
events in the process. A few remarks are in order:

1. As mentioned in the main text, the SM predicts a value of gs = 106.75
at T → ∞. New physics BSM may add sizeable contributions to this
value, e.g. in supersymmetric scenarios.

2. The sharpest drop in gs occurs at a temperature around 150 MeV. At
this temperature scale, the QCD phase transition takes place, removing
the formerly free light quarks from the radiation content of the universe
and forcing them into colourless bound states like protons and neutrons.

3. The last change happens at a temperature of O (1 MeV): first, neutri-
nos decouple from the remaining plasma, then e+ and e− annihilate,
transferring entropy to the photon component, the only d.o.f. left in the
plasma to which e± couple. Note that the decoupling of neutrinos has
not yet been fully terminated when the annihilation of e+ and e− started
to become efficient. This is part of the reason for the standard value
of Neff = 3.046 slightly deviating from the naive expectation of exactly
three.
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Figure A.1: Evolution of the effective entropy d.o.f. as modelled in [205] as a
function of the photon temperature T or the scale factor a respectively. The
different steps of the function are annotated with the d.o.f. that no longer
contribute to the radiation component — and therefore to entropy.

4. One often reads that e+e− annihilation reheats the photonic component
with respect to the CνB. While irrelevant in most arguments, note that
this “reheating” is in fact just a slower cooling of the CMB [139,206].

5. Note that the plot shows a subtlety of the evolution of the scale factor
a and the temperature T : often, their mutual dependence is given as
a ∼ 1/T , which is quite a good approximation. It is even correct as
long as gs does not change, cf. eq. (4.4.13). Over the whole evolution
of the early universe, though, a comparison of the range spanned by a
(somewhat more than ten orders of magnitude shown in the plot) and
the range spanned by T (exactly ten orders of magnitude shown in the
plot) reveals the difference that builds up over time.
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Fields Category # Particles Spin Colour fB/F Contribu-
tion to gs

H Higgs 1 1 1 1 1
W±, Z gauge boson 3 3 1 1 9
γ gauge boson 1 2 1 1 2
g gauge boson 1 2 8 1 16
q/q quarks 12 2 3 7/8 63
l± charged leptons 6 2 1 7/8 10.5

να/να (anit-)neutrinos 6 1 1 7/8 5.25
106.75

Table A.1: Contributions to the effective entropy d.o.f. from the various par-
ticle of the SM. The factor fB/F takes into account the differences in the dis-
tribution functions of fermions (Fermi-Dirac) or bosons (Bose-Einstein). Its
derivation can be found in [89, Chapter 3]. The contribution of neutrinos is in-
dependent of the open question whether they are Dirac or Majorana particles.
As can be checked explicitly, the different SM contributions sum to a total
value of 106.75. Also note that the number of bosonic d.o.f. of the SM par-
ticles does not change during EWPT where three d.o.f. of the Higgs–doublet
get absorbed by the gauge bosons, making them massive.

To finalise this appendix, let us list the contribution to gs from the different
SM particles. This list, shown in Tab. A.1, will also allow to infer the size of
the steps in fig. A.1.





Appendix B
Collision terms for the scalar decay
model

This appendix lists the collision terms that are relevant for the production of
the scalar from its coupling to the respective SM d.o.f. The calculations behind
these results are not presented in too great detail as they follow the same logic
as the computation of the collision term for the population of sterile neutrinos
presented in section 5.2. We hence follow closely the presentation in [3, App.
A.1], adopting the handy notation in p and T (instead of p and t) right away.
For the time-temperature relation, cf. section 4.4.3.

Let us start with the 2 → 2-scattering processes. They can all be written
in the form

CSii↔SS [fS] (p, T ) = (B-1)

=
g2
i

16
√
m2
S + p2(2π)3

∞∫
0

p′
2
dp′√

m2
S + p′

2

∫ cosαmax

−1

d(cosα)

{√
1− 4m2

i

ŝ(p, p′, cosα,mS)
×
∣∣MSS→ii(p, p

′, cosα)
∣∣2 ×

(
f eq
S (p, T ) f eq

S

(
p′, T

)
− fS(p, T ) fS(p′, T )

)}
.

In eq. (B-1), ii is a placeholder for ii = hh, tt̄,W+W−, ZZ and φφ, where
φ denotes any of the four components of the SM Higgs doublet before EWPT.
The quantity f eq

S (p) is the (would-be) equilibrium distribution of the scalar S

f eq
S (p) = exp

(
−
√
p2 +m2

S/T

)
, (B-2)

which is of Boltzmann-shape by virtue of the principle of detailed balance.
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Furthermore, eq. (B-1) has introduced the square ŝ of the centre-of-mass
energy, explicitly given by:

ŝ(p, p′, cosα,mS) = 2

(
m2
S +

√
(m2

S + p2)(m2
S + p′

2
)− pp′ cosα

)
, (B-3)

where α is the angle between ~p and ~p ′. It has a maximum value arising from
the kinematics of the process and ensuring that the argument under the square
root remain positive semi-definite, i.e.

4m2
i = ŝ(p, p′, cosαim,mi,mS) . (B-4)

If the angle αim defined this way lies within the interval [−1, 1], the integration
interval gets reduced accordingly:

cosαmax = min [max [cosαim,−1] , 1] . (B-5)

As a next step, let us present the spin-averaged matrix elements for the
relevant physical processes.1 They include a factor of 2 in all cases to account
for the fact that two scalars are annihilated or produced, respectively. Note
also that we assume CP-invariance of all matrix elements.

∣∣MSS→φφ
∣∣2 =

∣∣Mφφ→SS
∣∣2 = 32λ2, (B-6)

|MSS→hh|2 = |Mhh→SS|2 = 32λ2

(
ŝ+ 2m2

h

ŝ−m2
h

)2

, (B-7)

|MSS→tt̄|2 = |Mtt̄→SS|2 = 8λ2m2
t

ŝ− 4m2
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(ŝ−m2
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2 +m2
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2
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, (B-8)
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|MSS→ZZ |2 = |MZZ→SS|2 =
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2
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. (B-10)

Let us now proceed to the collision term for Higgs decay into two scalars
and its inverse:

CSh↔SS [fS] (p, T ) =
|Mh→SS|2

16π p
√
m2
S + p2

×
p
′
max∫

p
′
min

p′dp′√
m2
S + p′

2

[
f eq
S (p, T ) f eq

S

(
p′, T

)
− fS (p, T ) fS

(
p′, T

)]
.(B-11)

1The hh↔ SS result is given only to leading order in λ (cf. discussion of Tab. 5.1.). All
others are full tree-level results. These values also include appropriate factors to account for
identical particles in the initial or final state.



147

In eq. (B-11), the upper and lower boundaries are given by:

p′min =

∣∣∣∣mhς − (m2
h − 2m2

S)p

2m2
S

∣∣∣∣ , (B-12)

p′max =
mhς + (m2

h − 2m2
S)p

2m2
S

, (B-13)

where

ς ≡
√

(m2
h − 4m2

S)(m2
S + p2) (B-14)

and

|Mh→SS|2 = |MSS→h|2 = 16λ2v2. (B-15)

Again, the matrix element includes the appropriate factor of 2 to account for
the annihilation/production of two scalars.

To finalise this appendix, we list the term that accounts for the decay of
scalars into sterile neutrinos in the Boltzmann equation of the scalar. Note
that CSS→NN is not simply CNS→SS multiplied by (−1), as they account for
the evolution of different species (encoded into the superscript of the collision
term). Instead, it is given by:

CSS→NN [fS](p, T ) = − mS√
m2
S + p2

ΓS→NNfS(p, T ). (B-16)

In order to transform the collision terms to the variables r and ξ (or r and
x as used in the main parts of this work), we refer back to section 4.4.3.





Appendix C
Technicalities concerning the DW
mechanism

C.1 Physical aspects of the DW mechanism
This first section is dedicated to review the basics of the Dodelson-Widrow
mechanism (Refs. [140–142]) in a nutshell. In the language of chapter 2, DW
can be seen as a freeze-in type of dark matter production [90, 91], where the
dark matter species never enters thermal equilibrium due to its very feeble
interaction. Instead, the relic abundance of dark matter gradually builds up
in the early universe as long as the states are kinematically accessible, i.e. as
long as the plasma temperature T is not substantially below the mass of the
dark matter particle.1 In the case of sterile neutrinos, their small admixtures
θα with the active-neutrino sector cause them to be produced in the small
fraction |θα|2 of reactions where a vertex of flavour α happens to produce the
keV-scale mass eigenstate N instead of one of the three light mass eigenstates
m1,2,3.

The Boltzmann equation that describes the active-sterile conversion has
been presented in eq. (6.1.3) in an abstract form, where all details were con-
densed into the quantity h (p, T ). This term is now explicitly given by:2

hα(p, T ) =
1
8
Γα(p, T )∆2

α(p) sin2(2θα) dt
dT

∆2
α(p) sin2(2θα) + [Γα(p, T )/2]2(p) + [∆α(p) cos(2θα)− Vα(p, T )]2

,

(B-1)
where Γα(p, T ) are the interaction rates of active (anti-) neutrinos of flavour
α, Vα(p, T ) is the background potential for active (anti-) neutrinos of flavour
α and ∆α (p) as defined in eq. (4.1.2). Recall that, however, the value of

1Note that this kinematic cut-off is a lower bound on the temperature where the freeze-in
production ceases. It can cease even earlier if it is not the kinematics but the smallness of
(effective) coupling strenghts involved in the process.

2In the case of a non-zero primordial lepton number asymmetry, further potential terms
need to be included, see e.g. [148].
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∆α (p) is quasi independent of the flavour index α for masses mN in the range
of a few to some tens of keV, cf. eq. (4.1.3) and the subsequent discussion.
As in eq. (6.1.1), θα is the active-sterile mixing angle between N and active
neutrinos of flavour α, i.e., a measure of the fraction of the sterile neutrino
mass eigenstate contained in the active flavour α. The remaining difficulty is
now to accurately compute the interaction rates Γα(p, T ), and to have fiducial
expressions for the potential terms Vα (p, T ).

The interaction rates Γα(p,T )

The basic form of the interaction rate Γα(p, T ) is adopted from Refs. [148,150,
207] and is given by:

Γα(p, T ) = Cα(T )G2
FpT

4. (B-2)

Here, GF = 1.166×10−5 GeV−2 is Fermi’s constant, p denotes the momentum
of the sterile neutrino and Cα (T ) are functions with a mild residual dependence
on temperature T . They depend on the details of the dynamics of the plasma of
the early universe. Early computations of these quantities have been presented
already in [208], while a much more detailed calculation on the 2-loop level
has only been put forward more recently in Ref. [99]. The results of this
publication have been made available in numerical data files.3 Fig. C.1 shows
the evolution of Cα (T ) for all three flavours e, µ, τ , including the contributions
from QCD, which have been neglected in some other publications, e.g. [207].
Also note that the results of [99] complement the work of [148], which presents
the interaction rates only within a relatively narrow temperature range.

The potentials Vα(p,T )

Let us finally display the potentials Vα (p, T ). We stick closely to the discussion
in Refs. [148,210]:

Vα(p, T ) = ±
√

2GF

2ζ(3)T 3

π2

ηB
4
− 8
√

2GF

3M2
Z

· 2nα〈Eα〉 −
8
√

2GF

3M2
W

· 2n
α
∓〈E

α
∓〉,

(B-3)
where the upper (lower) sign holds for neutrinos (anti-neutrinos), ζ(x) is the
Riemann ζ-function, and, as in eq. (4.2.2), ηB = 6.16 × 10−10 is the baryon
asymmetry.4 Here, the number densities and average energies for the neutrinos
or anti-neutrinos of flavour α are given by

nα =
2ζ(3)T 3

4π2 and 〈Eα〉 =
7π4T

180ζ(3)
. (B-4)

3See http://www.laine.itp.unibe.ch/neutrino-rate/, where the interaction rates
are given as twice the imaginary parts of the self-energies.

4Note the discrepancy of a factor of 2 between Refs. [148] and [210].

http://www.laine.itp.unibe.ch/neutrino-rate/
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Figure C.1: The evolution of the coefficients Cα(T ) with the temperature [99,
149,209].

In eq. (B-5), we have neglected the chemical potentials and we have set the
active-neutrino masses to zero. Their counterparts for the charged leptons are
given by

n
α
∓ =

T 3

2π2 · I2(m/T ) and 〈E
α
∓〉 = T

I3(m/T )

I2(m/T )
, (B-5)

where the integrals

In(x) ≡
∞∫

0

yn

e
√
x

2
+y

2

− 1
dy (B-6)

are evaluated numerically. Effectively, the contribution of the charged lepton
of flavour α is zero for T < mα.
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C.2 Proof of the consistency condition of the ana-
lytical solution

This subsection will give all relevant steps that are necessary to prove the
consistency condition stated in eq. (6.1.13):

LHS ≡ S (Tf , Tini, Tf , p) fDW (Tf , Tini, p)
!

= S (Tf , T3, Tf , p)×[
S
(
T3, Tini, T3,
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(
gS (T3)

gS (Tf)

)1/3

p

)
fDW

(
T3, Tini,

T3

Tf

(
gS (T3)

gS (Tf)

)1/3

p

)
+

fDW (Tf , T3, p)

]
≡ RHS. (B-1)

In order to do so, we introduce a few useful relations for the suppression
factor S. They follow directly from its definition, cf. eq. (6.1.11):

S (Ta, Tb, Tc, p) = S−1 (Tb, Ta, Tc, p) (inversion), (B-2)

S
(
Tb, Ta, T̂ ,

T̂

Ta

(
gS

(
T̂
)

gS (Tc)
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)
= S−1 (Tc, Tb, Tc, p)S (Tc, Ta, Tc, p) (B-3)

(general rescaling),

S
(
Tb, Ta, Tc,

Tc
Ta

(
gS (Tc)

gS (Ta)

)1/3

p

)
= S (Tb, Ta, Ta, p) (particular rescaling),

(B-4)
S (Ta, Tb, Td, p)S (Tb, Tc, Td, p) = S (Ta, Tc, Td, p) (transitivity). (B-5)
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Let us start by manipulating the RHS of the equation:

RHS =

(B-3)
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Let us now turn to the LHS of the equation, which just needs two simple
steps:
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Appendix D
Robustness and superiority of the
half-mode analysis

In chapter 7 we introduced the quantity k1/2 through T 2 (k) = 1/2, dividing
the transfer function into one half used for benchmarking and another one
which is practically discarded. We argued that the smallest scales are not very
well constrained even by the comparatively strong Lyman-α limits (cf. also
eq. (8.2.4) and subsequent discussion). While the half-mode has played a role
in other contexts (e.g. Refs. [192–195]), it might still seem arbitrary to some
extent. To check the influence of altering this choice, we have re-conducted
the analyses in the plane of λ and y for mS = 60 GeV, this time demanding
that T 2 (k) > T 2

lim (l) ∀k < k0.05, where T 2 (k0.05) := 0.05. This means that
we approach the strict limit of demanding that the entire squared transfer
function fulfils the requirement to be above the limiting benchmark one.

As a close inspection of fig. D.1 shows, there appear minor changes of the
categorisation in the iso-mass-lines. They are, however, rather small and do
not effect much of the parameter space considered.

Next, let us back up the point that assessing structure formation using
the half-mode analysis is an advancement as compared to using the free-
streaming horizon only. Fig. D.2 shows the comparison of the λ-y-plane for
mS = 100 GeV, using the free-streaming horizon as structure formation pre-
dictor in the upper panel and the half-mode analysis in the lower panel. The
difference is striking: while the free-streaming horizon allows only the largest
values of mN and y and entirely excludes or constrains the WIMP region, the
half-mode analysis leaves much more parameter space open.

This comparison and the results of chapter 8 — backing up the half-mode
analysis — shows that the free-streaming is overly restrictive and excludes
models that, to the best of our current knowledge, are perfectly viable. Of
course one might argue that general shift towards excluding more parame-
ter space through the half-mode analysis might be cured by re-adjusting the
boundaries (0.01 Mpc and 0.1 Mpc respectively). Such a readjustment is how-
ever only possible ex-post, fitting the boundaries to reproduce the results of
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FILL

Figure D.1: Robust-
ness of the transfer
function methods
when choosing dif-
ferent meaningful
thresholds. The lower
panel takes the whole
range of k < k0.05

into account for the
comparison. As can
be seen, the shift
from k1/2 to k0.05

yields a slightly larger
exclusion/tension
region.
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the half-mode analysis or another more advanced method to the best possible
way.

Apart from the fact that we proved the free-streaming horizon to be unreli-
able due to its mere averaging nature (cf. section 7.2), such an ad-hoc choice of
boundary values is much less scientific than bounds derived from real data, as
in the case of our Lyman-α benchmark functions or more advanced methods
presented in chapter 8.

Figure D.2: Con-
straints on parameter
space as derived using
the free-streaming
approach (top panel)
and the half-mode
analysis (lower
panel).

FILL
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