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Zusammenfassung

Univariate Risikomaße, welche in erster Linie eingeführt wurden, um die Risiken einzelner Fi-
nanzprodukte oder Unternehmen zu erfassen, bilden bereits einen sehr gut erforschten Teilbe-
reich der Finanzmathematik. Jedoch wurde im Zuge der globalen Finanzkrise ab 2007 sichtbar,
dass die Risikomessung nicht auf einzelne Einheiten des gesamten Systems beschränkt werden
darf. Stattdessen sollte ein ganzheitlicher Ansatz verfolgt werden. Aus diesem Grund befasst
sich diese Arbeit mit der Erforschung der multivariaten Risikomaße vor dem Hintergrund der
systemischen Risikomessung.
Zunächst beschreiben wir auf axiomatische Art und Weise die Unterklasse der bedingten mul-
tivariaten Risikomaße, welche zerlegt werden können in ein univariates bedingtes Risikomaß
und eine bedingte Aggregationsfunktion. Diese Klasse ist insbesondere eine Erweiterung der
unbedingten Risikomaße auf endlichen Wahrscheinlichkeitsräumen aus Chen et al. (2013). Im
Rahmen der systemischen Risikomessung kommt dem bedingten Ansatz besondere Bedeutung
zu. Durch das Bedingen auf bestimmte Zustände einzelner Untereinheiten wird es ermöglicht
deren Einfluss auf das Aufkommen systemischer Risiken präzise zu erfassen. Im Grunde ver-
langen wir für das Zerlegungsresultat zunächst nur zwei Arten von Monotonie des multivariaten
Risikomaßes. Hierauf aufbauend lassen sich die Auswirkungen zusätzlicher Eigenschaften der
axiomatischen Beschreibung des systemischen Risikomaßes auf die einzelnen Funktionen der
Zerlegung studieren, sowie umgekehrt.

Auf der anderen Seite wirft das bedingte Modellieren des systemischen Risikos die Frage auf,
wie mit Risikomessungen unter verschiedenen Informationen umzugehen ist. Im univariaten Fall
wurden hierzu verschiedene Konsistenzbedingungen vorgeschlagen. Hierbei werden wir uns auf
das Konzept der starken Konsistenz konzentrieren, welche wir im zweiten Teil dieser Disserta-
tion auf den multivariaten Fall übertragen. Die starke Konsistenz besagt, dass Präferenzen, die
durch ein bedingtes Risikomaß ausgedrückt werden, ebenfalls für alle Risikomessungen unter
weniger Informationen gelten müssen. Unser Hauptaugenmerk wird hierbei auf der Verbindung
zwischen der starken Konsistenz und der Zerlegbarkeit der Risikomaße liegen. Diese Frage-
stellung ist bisher nicht beachtet worden, da für eindimensionale Risiken eine vorgeschaltete
Aggregation unnötig ist. Hierzu betrachten wir unter anderem ein Risikomaß, welches stark kon-
sistent ist bezüglich eines Risikomaßes unter voller Information. Letzteres kann, bis auf einen
Vorzeichenwechsel, als eine bedingte Aggregationsfunktion aufgefasst werden. Wir zeigen, dass
die starke Konsistenz diese Aggregation auf das Risikomaß unter weniger Informationen über-
trägt. Umgekehrt zeigen wir, dass wenn ein bedingtes Risikomaß stark konsistent mit einem
unbedingten, verteilungsinvarianten Risikomaß ist, dann sind beide von der Form eines verall-
gemeinerten multivariaten Sicherheitsäquivalentes. Mit Hilfe dieser speziellen Darstellung lässt
sich ebenfalls die Zerlegbarkeit etablieren.

Bis zu diesem Punkt haben wir uns nur mit der Risikomessung des Gesamtsystems befasst.
Auf der anderen Seite ist es jedoch ebenfalls von Interesse zu bestimmen, welchen Anteil die
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einzelnen Untereinheiten dazu beitragen. Damit das Risiko nicht willkürlich aufgeteilt wird,
sollten gewisse, auf eine gerechte Verteilung bedachte, Kriterien postuliert werden. In dieser
Dissertation betrachten wir dazu Allokationen, die sich im Kern befinden, d.h. dass die aggre-
gierte Allokation für jede Untergruppe des Systems kleiner sein sollte als das entsprechende
Risiko des Untersystems. Diese Form der Allokation wird häufig für die Aufteilung des Risikos
eines Finanzportfolios herangezogen. Wir zeigen hingegen, dass, wenn Interaktionen zwischen
den einzelnen Untereinheiten möglich sind, wie etwa in einem Finanznetzwerk, dann können
Kernallokationen durchaus Ungerechtigkeiten hervorbringen. In dem von uns benutzten Finanz-
system zeigen wir zudem eine Allokationsmethode auf, die diese Ungerechtigkeit behebt.
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Abstract

Univariate risk measures which were primarily introduced for the risk assessment of single fi-
nancial products or companies, are already a well-studied research area in the field of financial
mathematics. The global financial crisis highlighted that the risk measurement should not be
restricted to single entities of the system, instead an integrated approach should be pursued. For
this reason, the objective of this thesis is to study multivariate risk measures in the context of
systemic risk assessment.

First of all, we give an axiomatic description of multivariate conditional risk measures which
allow for a decomposition into a conditional univariate risk measure and a conditional aggrega-
tion function. This class extends the unconditional risk measures on finite dimensional spaces
proposed in Chen et al. (2013). Within the scope of systemic risk assessment the conditional
framework is of considerable importance. Particularly, conditioning on certain states of indi-
vidual subunits enables us to comprehend the emergence of systemic risk. In order that the
decomposition result holds, we basically just have to require two types of monotonicity for the
multivariate risk measure. On account of this, we are able to identify the relationship between
additional properties of the axiomatic description of the systemic risk measure and of the corre-
sponding functions of the decomposition.

In addition, the conditional framework raises the question if there should be some persistent
structure to the conditional risk measurements under different information sets. To this end,
many consistency properties have been proposed in the univariate case. Among those, we fo-
cus on the strong consistency which we generalize to multivariate conditional risk measures.
Strong consistency means that all preferences generated by a conditional risk measure must
be preserved under a conditional risk assessment with less information. Our main focus lies
on the connection of the strong consistency and the decomposability of the risk measures in-
volved. Note that this question has not been raised so far, since aggregation is superfluous for
one-dimensional risks. We consider a risk measure which is strongly consistent with respect to
a conditional risk measure under full information. Up to a sign change, the latter allows for an
interpretation as a conditional aggregation function. We will show that the strong consistency
transmits this aggregation to the risk measure under less information. Conversely, we show that
if a conditional risk measure and an unconditional, law-invariant risk measure are strongly con-
sistent, then both are generalized multivariate certainty equivalents. As a result of this particular
form, we show that also these risk measures allow for a decomposition as above.

So far, we were just concentrating on the risk measurement of the entire system. In addition,
it is also of interest to assess how much the single entities contribute to the total risk. To rule
out arbitrariness in the attribution scheme, certain criteria which prevent imbalances need to
be postulated. For this purpose we consider core allocations in this thesis. We say that an
allocation is in the core, if the aggregated allocation of each subsystem never exceeds the risk
of the corresponding subsystem. These allocations are frequently suggested in the context of
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portfolio allocation. However, we show that in the presence of interactions between the single
entities, core allocations treat the entities in an unfair way. Particular examples of an interacting
system are financial networks. Moreover, we will find an alternative allocation method for our
proposed financial system which repairs the deficiencies.
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1 Introduction

For the financial industry, the assessment of risk is an essential task for the operation of its core
businesses. Apart from the identification of the return of an investment opportunity, knowing the
risk inherent to it is necessary for an investment decision. Since the decision makers, in this case
the owners of the financial institutions, are only liable for the firm’s losses up to their invested
capital, they have an incentive to invest in riskier projects. The resulting excess loss in case of
a default is then ultimately passed on to the creditors like other financial institutions, industrial
companies or the society. For this reason, there is a demand for the regulation of the financial
system. This task is undertaken by a regulatory authority.
Before 2007 it was generally accepted that for the regulation of the financial system it is suffi-
cient to monitor every financial institutions individually. However, in the course of the global
financial crisis as well as the subsequent European sovereign debt crisis, this perspective towards
risk was questioned. The reason was the observation of various negative feedback effects aris-
ing from the financial system itself which are far from negligible. This type of systemic risk is
typically propagated by financial contagion channels, i.e. a triggering event negatively impacts
some market participants which might cause further negative effects on the system and ulti-
mately provokes a downward spiral. Prominent examples for a financial contagion channel are
default cascades where losses spread through direct contractual obligations among the financial
firms. In this case the triggering event is the bankruptcy of one or more financial firms. Due
to the initial failures, the creditors must depreciate their assets with the defaulted counterparties
in full or at least partially. This in turn can exceed their own loss absorbing capacity leading to
further defaults. As a result, the initial defaults might affect a large portion of the financial sys-
tem. For the studies in the present thesis, this type of default cascades will be the predominant
financial contagion channel. Besides the prior direct interactions via credit relationships, also
indirect channels like common market exposures, fire sales and funding liquidity play a funda-
mental role for systemic risk. For instance, concerns about the well-functioning of the financial
system can prompt market participants to hoard liquidity. This hoarding of liquidity constraints
the granting of loans or even worse results in a dry out of the credit market. Thus, the financial
firms are not able to raise funds or at least only at an increased cost.

So far, these external risks have not been priced in the internal risk management process, but
were eventually borne by the real economy and the society. This created a rising interest in
integrated risk assessment approaches also known as systemic risk measures. The overall goal
of this thesis is to contribute to this theory by introducing a feasible framework for the systemic
risk measurement and to uncover its underlying structure.

For the rest of this introduction we will proceed as follows: To put our proposed framework
into context, we begin in Section 1.1 with a basic review of the most popular methods for the
study of systemic risk. Inspecting these examples, we observe that essentially three details play
an outstanding roll in the description and assessment of systemic risk: Contagion mechanisms
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as described earlier, prominent monetary risk measures like the Value at Risk or the expected
shortfall and the conditioning on events of the system or parts of it. One aim of the present thesis
is to bring together these three features in a unified framework.
In addition to the concrete methods presented in Section 1.1, we supplement our review of cur-
rently used approaches towards systemic risk in Section 1.3 by two comprehensive measurement
frameworks. Both frameworks are related to the well-studied univariate risk measures which we
briefly survey in Section 1.2. An important step in the field of univariate risk measures was
the introduction of a set of minimal requirements in order to have a reasonable risk assessment
and to define risk measures in terms of these properties. Therefore, we ask in this thesis if it
is likewise possible to identify a set of desirable properties for systemic risk measures and thus
to describe them axiomatically. For multivariate risks there is more than one possible extension
of this framework. We focus in this dissertation on the class of decomposable risk measures,
which has been introduced in Chen et al. (2013) and which is one of the frameworks considered
in Section 1.3. The underlying idea of this class is to separate systemic risk measurements into
a prefixed aggregation function and a univariate risk measure. This decomposition allows us to
incorporate two out of the three details we observed in Section 1.1. More precisely, contagion
mechanisms can be included in the aggregation function and we can reuse classical univariate
risk measures. To embed the third observation, we generalize in the first part of the thesis the
class of decomposable risk measures to the conditional framework. To familiarize with condi-
tional risk, we state in Section 1.4 the basic properties of conditional univariate risk measures
which have been mainly used for a dynamic risk assessment and briefly comment on the relevant
literature.

An important issue for conditional risk measures is their adaptability if new information enters
into the risk assessment. To avoid discrepancies in the risk measurement under different sets of
information, many notions of consistency have been proposed in the literature. The different
types are shortly discussed in the second part of Section 1.4. Among those, we concentrate on
the strong consistency which we extended to multivariate conditional risk measures. Our main
achievement in the second part of the thesis is the revelation of central connections between the
strong consistency and the decomposability of the risk measures. Note that this relation has not
been studied in the univariate setting, since aggregation is redundant in that case.

In general, there are two main questions in the area of systemic risk. Besides assessing the
overall risk of a system, one is also confronted with the question of how much each unit con-
tributes to the measured risk. Therefore, the last part of the thesis is devoted to the allocation
of systemic risk. At first, we review in Section 1.5 the allocation methods which are currently
used in the systemic risk literature. Most of these methods have already been used in the context
of portfolio allocation, or to put it in other words, for the allocation problem in systems with
non-interacting units. In this regard, Denault (2001) postulated a set of desirable properties for
an allocation leading to the concept of coherent allocations. Central to his studies is the no-
undercut property. This property is also observable in most of the suggested allocation methods
for systemic risk and can already be traced back to the game theoretic literature, where it ap-
peared under the name (fuzzy) core. In the last part of Section 1.5 we discuss the problems of
the (fuzzy) core for interacting systems. This discussion refers to the set of problems of the final
chapter of this thesis where we observe that the (fuzzy) core results in unfair allocations.
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1.1 Current approaches towards systemic risk

To contextualize and position our study of systemic risk, we survey the most prominent ap-
proaches used in the literature. Throughout we assume a financial system comprising d financial
institutions, which we sometimes also call banks for the sake of brevity. Moreover, we assume
that the d-dimensional risk factors are random variables on a probability space (Ω,F ,P).

1.1.1 Market based systemic risk measures

Market based systemic risk measures hypothesize that all systemically relevant information is
included in current market prices. The advantage of the market based approach is that each
financial firm can continuously monitor the systemic risk on its own, since market prices are
accessible to all market participants at any time. In contrast, this is not possible for the models
we will consider later as they depend on detailed balance sheet information of the financial firms
which are usually not publicly available. Moreover, if the market is efficient, that is all necessary
information is indeed contained in the quoted prices, then the market based approaches also
take all possible sources of systemic risk into account, whereas the other methods surveyed in
this introduction mostly concentrate on a single channel of contagion, like for instance default
cascades. However, this comes at the cost that we are also not able to identify the relevant
sources of the systemic risk.

The four most prominent examples for market based systemic risk measures with more than
a thousand citations are the conditional-Value at Risk (CoVaR) and the co-expected shortfall
(CoES) from Adrian and Brunnermeier (2016) and the marginal expected shortfall (MES) and
the systemic expected shortfall (SES) from Acharya et al. (2017). Another example is the sys-
temic risk measure SRISK from Acharya et al. (2012) or Brownlees and Engle (2016).

As already indicated by its name, the CoVaR is a conditional generalization of the popular
risk measure Value at Risk currently used for financial risk management. Recall that the Value
at Risk at level α of a univariate risk factor F , denoted by VaRα(F ), is up to a sign change
the α-(upper-)quantile of the distribution function of F , see further Föllmer and Schied (2011).
Akin to this construction, the CoVaR is derived from a conditional distribution function, where
the conditioning is on a certain crisis event A of a single financial firm. More precisely, the
CoVaRsys|Aα at level α ∈ (0, 1) is implicitly given by

P
(
Xsys ≤ CoVaRsys|Aα

∣∣∣A) = α, (1.1.1)

where the set A is of the form {Xi = VaRα(Xi)} for some financial firm i and Xsys and Xi are
the index return of the financial system, resp. the stock price return of i. That is the conditional-
Value at Risk is the threshold such that the probability that the market return Xsys drops below
CoVaRsys|Aα in the crisis event A is exactly α. The stress event of the current form has two
major drawbacks: firstly, for continuous distributions the probability that the event A occurs is
zero and secondly, it does not consider scenarios where the financial firm i is even worse off. As
a result extensions to A = {Xi ≤ VaRα(Xi)} were suggested in the literature, see for instance
Bernard et al. (2013) or Girardi and Ergün (2013). However, with this extension the quantile
regression procedure from Adrian and Brunnermeier (2016) for the estimation of the CoVaR
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cannot be applied anymore.
In the example section of Chapter 2, we will see that the CoVaR fits naturally into our proposed
framework of decomposable risk measures. Additionally, we will modify the underlying aggre-
gation of the system. That is, we replace the current aggregation Xsys =

∑
i=1wiXi in (1.1.1),

where wi is the index weight of bank i, by a more sophisticated aggregation which introduces
an explicit modeling of contagion. With the resulting modified conditional-Value at Risk we
perform a small numerical exercise at the end of Section 2.4.

Clearly, the CoVaR as defined in (1.1.1) is motivated by the question of how much the finan-
cial system is impacted by a distress of a single institution. In addition to the CoVaR, Adrian
and Brunnermeier (2016) also specified a so-called exposure-CoVaR which is given for each
financial firm i by

P
(
Xi ≤ CoVaRi|sysα

∣∣∣Xsys = VaRα(Xsys)
)

= α. (1.1.2)

In contrast to (1.1.1) the exposure-CoVaR targets the issue of how much the single institutions
participate in a systemic event. This is also the baseline question for the marginal expected
shortfall. For the construction of the MES Acharya et al. (2017) use the expected shortfall as
risk measure for the overall risk of the system. The expected shortfall ESα at level α of the
market index return is given by

ESα(Xsys) = EP [Xsys | Xsys ≤ VaRα(Xsys)] =
d∑
i=1

wiEP [Xi | Xsys ≤ VaRα(Xsys)] .

The marginal expected shortfall for institution i is now defined as the marginal contribution of
this bank to the overall risk, i.e.

MESiα =
∂ESα(Xsys)

∂wi
= EP [Xi | Xsys ≤ VaRα(Xsys)] . (1.1.3)

Hence the MES can be interpreted as the average loss of a single financial firm given that the
whole system is in distress. Note that in contrast to the exposure-CoVaRs in (1.1.2), the marginal
expected shortfalls of the single institutions sum up to the overall risk. Thus, the MES is also
an allocation procedure for the expected shortfall of the system. We will meet this allocation
procedure again in Section 1.5 under the name Euler allocation.
Without going too much into detail we comment that also the SES and the SRISK can be sub-
sumed to be of the type

EP [Xi | {systemic crisis}] ,

where Xi is a certain risk factor for the i-th financial firm.
As a final example for a market based systemic risk measurement, we present the more the-

oretical model of Brunnermeier and Cheridito (2014). This model takes the perspective of a
regulating agency which is concerned that a financial system might have negative effects on the
society. Here, the state of the society is represented by the real gross domestic product. Brun-
nermeier and Cheridito assume that the future net-worths Xi of the financial institutions are the
main drivers of risk in the system. Clearly, if a net-worth falls below zero the corresponding
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bank cannot continue its operations which in turn negatively affects the economy. Conversely,
if a financial firm performs extremely well this should also have a positive effect on the society.
Thus, it is assumed that each financial firm’s net-worth enforces an externality on the future
gross domestic product Y which is given by

Ei = −αiX−i + βi(Xi − θi)+,

where αi, βi, θi are positive constants and x− and x+ denote the negative, resp. positive part of
x ∈ R. Moreover, it is assumed that the preferences of the risk-averse regulator can be described
by a utility function U . Then the SystRisk proposed in Brunnermeier and Cheridito (2014) is
given by

inf

{
m ∈ R : U

(
Y +m+

d∑
i=1

Ei

)
≥ U(Ỹ )

}
, (1.1.4)

where Ỹ is some reference economy. Therefore, systemic risk is modeled as the minimal bailout
cost of the regulator such that she is indifferent between the resulting future economy and the
reference economy.

1.1.2 Mean-�eld dynamics

Another approach for the study of systemic risk in financial markets is to use a reduced form
model of the mean-field type. Although, this dynamic approach does not directly fall into the
scope of the approach to systemic risk taken in this thesis, we mention it here, since it is an
integral part of the current proceedings in the field of systemic risk and it stresses once again
the importance of the inclusion of direct interactions within the system. The general idea is to
model bank specific risk factors as continuous-time stochastic processes which are given by a
system of interlacing diffusions.
To illustrate this idea, we briefly review the simplified model from Fouque and Sun (2013). In
this work the authors consider the log-monetary reserves Xt = (X1

t , ..., X
d
t )> of a system of d

banks as risk factors. The log-reserves are assumed to be diffusion processes with corresponding
dynamics

dXi
t =

α

d

d∑
j=1

(
Xj
t −Xi

t

)
dt+ σdW i

t , i = 1, ..., d, (1.1.5)

where α, σ > 0, Wt = (W 1
t , ...,W

d
t )> is a d-dimensional standard Brownian motion and

X0 = x0 ∈ Rd. Note that (1.1.5) might attain negative values, but since we are considering
a logarithmic transformation, the actual monetary reserves are always positive. By (1.1.5) the
evolution of the log-reserves can be split into an exchange with the system and a risky bank
specific part. Here the interactions between the banks are captured by the drift term in (1.1.5).
That is, if the log-reserves Xj

t of bank j exceed the ones of bank i, then the log-reserves of i
increase proportional to the difference Xj

t − Xi
t and the factor α, whereas the log-reserves of

bank j decrease by the same amount. Hence, we have a simplified model for borrowing and
lending relationships within a financial system.
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The insights on systemic risk are the following: One observation in this stylized model is
that by increasing the parameter α corresponding to a higher borrowing and lending level, the
distribution of defaults is more concentrated near zero. Here default means that the log-reserves
fall below a fixed threshold θ ∈ R during a specific time period [0, T ]. Thus, we infer that
borrowing and lending commonly increases the stability of the financial system. The downside
is that it comes along with the expansion of systemic events. In Fouque and Sun (2013) an event
is systemic if the average log-reserve of the financial system falls below a threshold θsys ∈ R
before time T , i.e.

min
t∈[0,T ]

1

d

d∑
i=1

Xi
t ≤ θsys.

Note that by the borrowing and lending activities this event corresponds more likely to many
harmless defaults rather than to a huge reserve shortfall of a single institution. The phenomenon
of having a small probability of defaults, but at the same time severe losses in case of a sys-
temic event is also known as the robust-yet-fragile property of a financial system, cf. Gai and
Kapadia (2010). Consequently, we cannot say a priori if a more integrated system is beneficial
or disadvantageous. This will be a major concern in our study of appropriate allocations for
systemic risk in Chapter 4. Finally, another important result in this mean-field model is that as
the number of banks in the financial system increases, the dynamics of the log-reserves approach
independent Ornstein-Uhlenbeck processes. This decoupling is also known as the propagation
of chaos.

The mean-field model of Fouque and Sun (2013) has been extended in multiple ways. For
instance, Kley et al. (2014) deviated the environment to a more abstract risk factor which they
called financial robustness. Moreover, they extended (1.1.5) in the following two ways. Firstly,
the idiosyncratic shock is driven by the wider class of Lévy processes instead of Brownian mo-
tions and secondly, the interactions are assumed to be inhomogeneous in the sense that the mean
reversion level of the drift part is changed from the system average 1

d

∑d
j=1X

j
t to a weighted

average
∑d

j=1wijX
j
t for all i = 1, ..., d. Kley et al. used the inhomogeneity to incorporate a

core-periphery structure which is frequently observed in real-world financial systems. A core-
periphery structure of a financial system postulates the existence of a subsystem which is highly
interconnected and the remaining system is only interacting with this dense subsystem. In par-
ticular, in Kley et al. (2014) the weights wij are interpreted as the percentage of the total credits
which bank i has extended to bank j. Therefore, the inhomogeneity expresses the idea that a
bank’s robustness should be more affected by the robustness of its major debtors. A similar
approach can also be found in Battiston et al. (2012). For the modeling of monetary reserves an
inhomogeneous coupling was considered in Fouque and Ichiba (2013). In this paper the authors
also include a new static bank specific drift term, which is interpreted as lending to a central
bank. The ability to lend or borrow to a central bank is also the starting point to the subsequent
studies of Carmona et al. (2015, 2016). A central feature of their works is the introduction of
a stochastic control problem where each financial firm optimizes its lending and borrowing to
the central bank under a quadratic cost function. In Carmona et al. (2016) an additional delay in
the control is incorporated. In both works, they could find explicit Nash-equilibria for systems
with finitely many banks and in Carmona et al. (2015) they further derive the asymptotics for a
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growing number of banks in the financial system.
All the models above have a major drawback. Once a financial firm receives money from a

counterparty, it has no obligation to pay back the money in the future. This deficiency is repaired
by the contagion models which explicitly capture the asset and liability structure of the single
financial firms and thus improve the description of the lending and borrowing activities within
the financial system.

1.1.3 Contagion models

For the market based risk measures from Section 1.1.1 interconnections between financial firms
were solely based on a probabilistic dependence. For instance the CoVaR given in (1.1.1) mea-
sures the impact of a distress of a single institution on the financial system. However, it cannot
detect the source of the systemic risk, that is if the single institution is simply comonotonic to
the system or if it is also causal for the worse performance of the system. The contagion models
which we review in this section concentrate on the second issue.
Generally speaking, a contagion model is a procedure which determines the losses of each fi-
nancial institution given that the system or parts of it are negatively affected by some initial
(random) shock. In particular, this determination includes possible domino effects arising from
the interconnectedness of the system. However, the procedure has to be performed for every
possible shock scenario separately. Thus, we see that contagion models form a convenient class
of elaborated aggregations, but to assess the systemic risk a further risk evaluation is necessary
which corresponds exactly to our proposed framework of decomposable risk measures. More-
over, the inclusion of direct interactions in the system, described by a contagion model, is the
essential part which distinguishes the portfolio from the systemic risk allocation problem which
we study in Chapter 4.

We begin with a short review of default contagion models in a financial system with interbank
lending. Afterwards, we discuss suggested extensions to this model. Throughout it is assumed
that the financial system can be depicted as a network of d nodes representing the financial firms
which are connected via weighted and directed edges. More precisely, if bank j has extended
credits to bank i with a total amount Li,j , then this is represented in the network by an edge
with weight Li,j pointing from i to j. Knowing the matrix L = (Li,j)i,j=1,...,d results in a
full description of the interbank assets and liabilities of each institution. We stress that, unless
there are no further obligations to disclosure, this information is at most available to supervising
agencies which makes these models more difficult to specify than market based risk measures.
Moreover, we assume that each institution has sufficiently many external assets such that assets
exceed liabilities, i.e. each bank has a positive equity value. For simplicity, we postulate the
absence of external liabilities, otherwise we could introduce them as a separate new node in the
network. Because the external assets of each financial institution are exposed to the market, their
value might deteriorate at a future point in time such that the equity x drops below zero and thus
the bank is in default. The former regulatory approach ended at this point, i.e. the task was to
minimize the likelihood of a bank’s default given that it is decoupled from any systemic effects.
This standalone perspective seems to be reasonable under the assumption of an otherwise stable
system. However, in a distressed market situation the failure of an institution imposes losses
on its already weakened creditors and possibly causing their default. As long as no one steps
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into the breach the defaults can spread further to the creditors of the creditors and so on and on.
Therefore, especially in the context of systemic risk default contagion should be considered.
If the system is experiencing contagion, then two typical question are, how many institutions
are affected and by how much? These questions are answered by contagion models. Generally,
we differentiate between two approaches, namely cascade and equilibrium models. Whereas
cascade models assume that the creditors of a defaulting bank can recover a fixed percentage of
the defaulted loans, equilibrium models focus on the opposite side of the balance sheet, i.e. all
assets of the defaulting bank must be liquidated and the residual value is then distributed among
the creditors. In short, the recovery is fixed in cascade models, but depends on the severity of the
default in equilibrium models. Both procedures can be translated into the following iteration:
Let (a(x, n))n∈N be a sequence of real-valued vectors representing the shortfalls of capital of
the banks. Firstly, we suppose that no institution is in default, or in other words all firms can
settle their debt. Thus, the shortfalls of the financial institutions are exclusively given by their
initial loss in capital a(x, 0) = x−, where x− := −min{x, 0} denotes the negative part of the
equity x after the external assets of the financial firms were exposed to an adverse market event.
Those banks which have a strictly positive shortfall default and in the next iteration the default
propagates to the adjacent banks, that is to the banks to whom they are indebted to. How the
losses spread is captured by a function f : Rd → Rd. The shortfall after the first round and all
subsequent rounds of defaults is then given by

a(x, n) =
(
x− f

(
a(x, n− 1)

))−
, n ≥ 2. (1.1.6)

For the cascade approach, see e.g. Furfine (2003), Upper and Worms (2004), Battiston et al.
(2012), Cont et al. (2013), Amini et al. (2016) or Detering et al. (2016), a typical choice for the
function f = (f1, ..., fd) is given by

fi(a) =
∑
j:aj>0

Lj,i(1−Rj), for all i = 1, ..., d, (1.1.7)

where Rj is the fraction of the liabilities which can be recovered in the liquidation process of
bank j. Therefore, fi specifies the total loss of bank i due to the depreciation of credits extended
to defaulting banks. Cont et al. (2013) even argue in favor of the extreme case of zero recovery
Ri = 0, since liquidation of a financial institution usually extends over several years. Because
of the special structure of the function f in (1.1.7) the shortfall of capital in (1.1.6) only varies
from one step to the next if there is a new defaulting bank. However, this can only happen d
times and thus the iteration terminates in a finite number of steps. The fast convergence makes
cascade models particularly appealing for large networks.
Before we proceed with equilibrium models, we present the cascade model suggested in Cont
et al. (2013) to measure the riskiness of a single institution. In a first step, Cont et al. intro-
duce the Default Impact which utilizes the procedure (1.1.6) in conjunction with (1.1.7). To be
more precise, the Default Impact (DI) is defined as the aggregate loss of capital induced by the
contagion in the interbank market after bank j has defaulted, i.e.

DI(x, j) :=

d∑
i=1

min{x̃i, ai(x̃, d)},
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where x̃j := 0 and x̃i := xi for all i 6= j. Cont et al. (2013) further extended the Default Impact
to incorporate a second source of systemic risk, common asset holdings. For this purpose they
introduce a comonotonic shock ε to banks’ capital which is given by εi = xigi(Z) for all
i = 1, ..., d, where g : R → (−1, 0]d is an increasing function and Z is a real-valued random
variable representing the state of the economy. Similar to the MES in (1.1.3) they define the
Contagion Index (CI) for financial institution j at level α by

CI(j, x) := E [DI(x+ ε, j) | Z ≤ VaRα(Z)] .

So once more the assessment of systemic risk is based on an aggregation function, here the
Default Impact, a univariate risk measure and a conditioning on a systemic event.

Contrarily, a representative example for the function f in (1.1.6) in an equilibrium model is
given by

f(a) = Π>a, (1.1.8)

where Π = (Πi,j)i,j=1,...,d is the matrix of relative liabilities, that is Πi,j is the fraction of the
total liabilities of bank i which it owes to bank j. Recall, that the relative liability matrix already
appeared in the mean-field model proposed in Kley et al. (2014). The function f specified in
(1.1.8) is based on the idea that all creditors of a financial firm have equal seniority and thus any
losses resulting from a failure of the bank must be distributed uniformly, that is proportional to
the nominal value of credits. The propagation of this keynote in the systemic risk literature can
be traced back to the seminal paper of Eisenberg and Noe (2001) on the clearing of payment
systems. To obtain the original model of Eisenberg and Noe, we do not only have to lower
bound the capital shortfalls as it is already done in (1.1.6), but also have to ensure that they do
not exceed the corresponding total liabilities of the financial firms.
In the absence of cycles in the interbank network the equilibrium model (1.1.8) converges, like
the cascade models, in a finite number of iterations. Conversely, if a number of defaulting banks
form a cycle, then each of these financial firms is impacted by its own loss after the loss has cir-
cled once. Moreover, this procedure repeats an infinite number of times leading to two possible
outcomes: an unbounded increase in losses or a stable fixpoint in (1.1.6). Under rather weak
assumptions on the network Eisenberg and Noe (2001) showed that a unique fixpoint exists.
They also formulated a so-called fictitious default algorithm which converges in a finite number
of steps to the unique fixpoint.
The contagion model of Eisenberg and Noe (2001) has successively been extended to include
other channels of contagion or effects which result in an amplification of the losses. A promi-
nent example for the latter is the inclusion of fixed bankruptcy costs like in the cascade models
(1.1.7), cf. Rogers and Veraart (2013), Elliott et al. (2014) or Glasserman and Young (2015). Be-
sides the already existing shortfall of capital in case of a default, a further driver for bankruptcy
costs is that most of the remaining assets have to be sold in a distressed market environment in
the liquidation process. Particularly, this applies to less marketable assets. Furthermore, finan-
cial firms might already be obliged to sell illiquid assets before a default occurs. However, if a
financial institution is forced to sell a huge number of illiquid assets in a short period of time, it
has to accept almost every price. Such an event is called a fire sale. If the accounting standard
is based on a mark-to-market valuation, a fire sale not only imposes losses on the selling bank,
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but also affects financial firms holding a similar portfolio of illiquid assets due to the deteriora-
tion in prices. At the worst this forces a further bank to sell some of its illiquid assets leading
possibly to a downward spiral of prices. Because the financial firms do not need to have any
business relation with the other banks, this yields an indirect channel of contagion. Cifuentes
et al. (2005) showed how the price collapse of an illiquid asset can be incorporated into the
equilibrium model of Eisenberg and Noe (2001). Here the price of an illiquid asset is calculated
by an inverse demand function which depends on the total amount of illiquid assets sold in the
market. For other works which highlight illiquidity as a channel of contagion we also refer to
Gai and Kapadia (2010), Amini et al. (2015, 2016) or Feinstein and El-Masri (2015).
So far, the only direct contagion channel we considered was through debt obligations. Elliott
et al. (2014) or Elsinger (2011) further studied the effect of mutual equity holdings in the finan-
cial system. For a combined treatment of bankruptcy costs, fire sales and mutual equity holdings
we refer to Awiszus and Weber (2015).

All of the methods presented so far are more or less concrete models for the study of systemic
risk. By contrast, the aim of this thesis is to approach the measurement of systemic risk on a more
general level via a characterization in terms of a set of underlying properties. In preparation for
this aim, we proceed by first recalling the extensively studied axiomatic description of univariate
monetary risk measures in the ensuing section. Thereafter, we have a look at two promising
extensions of univariate risk measures to the multivariate setting. Moreover, since one of these
extensions is also the keynote to the approach pursued in this dissertation, we further elaborate
on the scopes and intersections of the two extensions.

1.2 Univariate risk measures

Denote by X a linear space of bounded functions F : Ω→ R on a given set of scenarios Ω such
that R ⊆ X . The functions F ∈ X model risk factors which have a monetary interpretation
and particularly m ∈ R is a cash amount. Most commonly, F (ω) models the discounted future
profit/loss of a financial position in the scenario ω ∈ Ω. We remark that in the literature on
risk measures there are two coexisting interpretations of F (ω), for some authors a positive value
means a loss and for others it denotes a profit. In this thesis, we follow the latter convention.
Next we introduce the basic notion of a monetary risk measure. The objective of this concept
is to assign to every random position F a cash amount η(F ) as a measure of its riskiness. In
addition, we require that the risk assessment fulfills a certain set of reasonable properties, which
we discuss below. This axiomatic description of risk has been triggered by the pioneering work
on coherent risk measures in Artzner et al. (1999). Moreover, the coherent risk measures were
further generalized to convex risk measures in Frittelli and Rosazza Gianin (2002) and Föllmer
and Schied (2002).

Definition 1.2.1. We say that the mapping η : X → R is a monetary risk measure, if the
following properties hold for all F,G ∈ X :

Antitonicity: F ≤ G implies that η(F ) ≥ η(G);

Cash-invariance: For all m ∈ R, we have that η(F +m) = η(F )−m.
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A monetary risk measure is called a convex risk measure if it is additionally

Convex: For all F,G ∈ X and λ ∈ [0, 1], we have that η(λF + (1 − λ)G) ≤ λη(F ) + (1 −
λ)η(G).

Furthermore, a coherent risk measure is a convex risk measure that additionally fulfills the
property of

Positive homogeneity: For all F ∈ X and λ ≥ 0, we have that η(λF ) = λη(F ).

The antitonicity property is the minimal requirement to ask for in order to have a meaningful
risk evaluation. That is a financial position generating a higher profit or a lower loss in each
scenario compared to another financial position, should always be considered less risky. The
cash-invariance is the main ingredient such that the risk measure allows for a monetary inter-
pretation, since adding a certain amount of cash to a financial position reduces the risk by the
same amount. Thus, we have that η(F ) is the exact cash amount which we must add to a finan-
cial position F such that this new position is riskless, i.e. has zero risk. The convexity property
is related to diversification effects in the risk measurement. By using the cash-invariance of a
monetary risk measure it can be easily shown that convexity is already implied by the weaker
property of

Quasi-convexity: For all F,G ∈ X and λ ∈ [0, 1] it holds that η(λF + (1 − λ)G) ≤
max{η(F ), η(G)}.

Thus, a convex risk measure is always in line with the diversification idea that combining two
financial positions should reduce the risk. For a better understanding of a coherent risk measure,
we need to introduce the notion of

Subadditivity: For all F,G ∈ X it holds that η(F +G) ≤ η(F ) + η(G).

The subadditivity property corresponds to the idea that the merger of financial positions is al-
ways preferable from a risk management point of view. It can then be easily shown that if the
monetary risk measure is normalized in the sense that η(0) = 0, then two of the properties
of convexity, positive homogeneity and subadditivity imply the remaining one. Thus, a coher-
ent risk measure can equivalently be described as a normalized convex risk measure which is
subadditive. That is coherent risk measures are monetary risk measures which incorporate di-
versification and synergy effects.

Apart from the axiomatic description of univariate monetary risk measures, they can alterna-
tively be characterized by their corresponding acceptance set. This characterization is also the
starting point for the second generalization to multivariate risk measures which we survey in
Section 1.3.

Definition 1.2.2. We call
Aη := {F ∈ X : η(F ) ≤ 0}

the acceptance set of the monetary risk measure η.
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As we have already seen above, the cash-invariance implies that the financial position η(F ) +
F ∈ Aη. Moreover, for each cash amount m < η(F ) we have that η(F +m) = η(F )−m > 0
and thus m + F 6∈ Aη. Hence, it should also be possible to characterize a monetary risk
measure as the smallest cash amount which has to be added in order to make a financial position
acceptable. This idea is formalized in the following Proposition which is proven in Föllmer
and Schied (2011). For this we will need the supremum norm which is given by ‖F‖∞ :=
supω∈Ω |F (ω)|.

Proposition 1.2.3 (See Proposition 4.6 in Föllmer and Schied (2011)). Let η be a monetary risk
measure and Aη the corresponding acceptance set. Then

(i) Aη 6= ∅, inf{m ∈ R : m ∈ Aη} > −∞, Aη is ‖ · ‖∞-closed in X and

F ∈ Aη, G ∈ X , G ≥ F implies that G ∈ Aη. (1.2.1)

(ii) η can be represented in terms of its acceptance set, that is for all F ∈ X

η(F ) = inf{m ∈ R : F +m ∈ Aη}. (1.2.2)

(iii) η is a convex risk measure if and only if Aη is a convex set, i.e. for all F,G ∈ Aη and
λ ∈ [0, 1] we have that λF + (1− λ)G ∈ Aη.

(iv) η is positively homogeneous if and only if Aη is a cone, i.e. for all F ∈ Aη and λ ≥ 0 it
holds that λF ∈ Aη. In particular, this implies that η is a coherent risk measure if and
only if Aη is a convex cone.

Alternatively, one could start specifying a set A of acceptable financial positions and define a
corresponding minimal capital injection ηA in a similar fashion as in (1.2.2), that is

ηA(F ) := inf{m ∈ R : F +m ∈ A} for all F ∈ X . (1.2.3)

Proposition 1.2.4 (See Proposition 4.7 in Föllmer and Schied (2011)). Let ∅ 6= A ⊆ X such
that inf{m ∈ R : m ∈ A} > −∞ and for all F ∈ A, G ∈ X with G ≥ F we have that G ∈ A.
Then

(i) ηA is a monetary risk measure.

(ii) If A is a convex set, then ηA is a convex risk measure.

(iii) If A is a cone, then ηA is positively homogeneous. Clearly, if A is a convex cone, then ηA
is a coherent risk measure.

(iv) It always holds that A ⊆ AηA . Moreover, A = Aη if and only if A is ‖ · ‖∞-closed in X .

The cash-invariance is the central property such that the monetary risk measure allows for a
monetary interpretation. Nevertheless, even if we drop the cash-invariance, i.e. the risk measure
is only antitone, we can still represent the risk measure in terms of acceptance sets.



1.3 Multivariate risk measures 13

Definition 1.2.5. We say that η : X → R ∪ {−∞,∞} is a risk measure if it is antitone.
Moreover, we denote by

Amη := {F ∈ X : η(F ) ≤ m}, m ∈ R,

the acceptance set at level m of the risk measure η.

Proposition 1.2.6 (See Theorem 1.7 Drapeau and Kupper (2013)). Let η : X → R∪{−∞,∞}
be a quasi-convex risk measure and (Amη )m∈R be the corresponding family of acceptance sets at
levelm. Then (Amη )m∈R is an increasing family, that isAmη ⊆ Anη for allm ≤ n. MoreoverAmη
is a convex set which fulfills the monotonicity property (1.2.1) and the right-continuity property
Amη =

⋂
n>mAnη for all m ∈ R.

Conversely, if (Am)m∈R is a family of sets which fulfills all four properties from above, then

ηA(F ) := inf{m ∈ R : F ∈ Am}, F ∈ X , (1.2.4)

is a quasi-convex risk measure.
Furthermore ηAη = η and AηA = A.

1.3 Multivariate risk measures

Now let X d be a vector space of bounded functions X : Ω → Rd, which represent possible
risk factors for a financial system. Moreover, assume that X d + Rd = X d, where + denotes
the Minkowski addition. The question arising is if the notion of a univariate (monetary) risk
measure can be extended in order to obtain a powerful tool for the systemic risk assessment.
The literature on extensions of univariate risk measures to systemic risk measures can generally
be subdivided into two branches.
In the first approach the systemic risk measure ρ : X d → R is a real-valued function which
allows for a decomposition

ρ(X) = η
(
Λ(X)

)
for all X ∈ X d, (1.3.1)

where Λ : X d → X is an aggregation function and η : X → R a univariate risk measure.
Hence, the approach is based on a two-step procedure: first aggregate the single risk factors
into a common risk factor for the whole system and secondly evaluate the risk thereof via some
well-studied univariate risk measure. Because of this intuitive structure, it is no surprise that this
type is the most commonly used in the literature and will be the fundamental concept towards
systemic risk in this thesis. Note that the axiomatic study of this approach was initiated by Chen
et al. (2013). However, their space of risk factors X d was restricted to random vectors on a finite
state space. In Kromer et al. (2016) the domain has been extended to more general measurable
spaces which comprise the Lp-spaces. We remark that our extension was elaborated indepen-
dently from Kromer et al. (2016). In comparison to Chen et al. (2013), we extend the study
of decomposable risk measures in the following directions: firstly, we allow for a conditional
risk assessment which will be discussed further in the next section. Besides conditional risk
measures, this also introduces conditional aggregation functions. Secondly, the risk factors are
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modeled on the more general space L∞d (F) of essentially bounded random vectors. And thirdly,
we reduced the required properties for the decomposition result which in turn forms the basis of
a more comprehensive axiomatic characterization.
In the prior section on univariate risk measures, the risk factors represented profits and losses
which suggested to measure the risk likewise in terms of a monetary unit. Contrarily, in the
multivariate framework the aggregated values Λ(X) do not necessarily need to have an interpre-
tation as monetary values, even if the single risk factors Xi have. To illustrate this, suppose you
want to express a preference in favor of many firms to have small losses instead of a single firm
with a severe damage. With this in mind, a suitable aggregation function is a sum of exponen-
tially transformed losses which obviously lacks any monetary interpretation. Consequently, we
do not require that η in the decomposition (1.3.1) is cash-invariant. Nonetheless, we ask for the
weaker property of constancy on constants which is given by

η(c) = −c for all c ∈ R. (1.3.2)

The constancy on constants is the key to the extraction of the aggregation function from the
systemic risk measure ρ. Furthermore, if we have additional properties which apply to the
restriction of the systemic risk measure ρ to constant risk factors, like for instance convexity on
constants, then these transfer to the aggregation function Λ and vice versa.
More demanding is the question of how we can recover the univariate risk measure η and how it
is interlinked with ρ. To this end, we identify the class of risk-consistent properties which brings
together the state-wise risk assessment and the overall risk. In the following we consider the risk-
antitonicity as exemplary representative of the risk-consistent properties. The risk-antitonicity
states that if the scenario-wise risk X(ω) is less risky than Y (ω), i.e. ρ(X(ω)) ≤ ρ(Y (ω)),
for almost all scenarios ω ∈ Ω, then this risk evaluation transfers to the random risks, that
is ρ(X) ≤ ρ(Y ). If we would already know that the decomposition (1.3.1) exists, then the
constancy on constants of η yields the following interpretation of the risk-antitonicity: If the
aggregated system Λ(X) is always better off than Λ(Y ), then system X must be less risky
compared to Y . In particular, for univariate risks there is no aggregation involved and thus risk-
antitonicity reduces to the usual antitonicity. Moreover, in the multivariate setting we show that if
the risk measure ρ fulfills a risk-consistent property as well as the related property on constants,
then the corresponding property also holds in the usual sense. Since risk-consistent properties
are an integral part for the decomposition, we call systemic risk measures of type (1.3.1) risk-
consistent risk measures. In contrast to Chen et al. (2013) we state the decomposition result for
a minimalistic set of axioms on the functions involved. This not only helps us to identify direct
relationships between the properties of ρG and properties of ηG and ΛG , but also to cover more
examples from the systemic risk literature. For example, the SystRisk given in (1.1.4) could not
be covered so far, since it is generally neither positively homogeneous nor convex.

However, before we continue with the risk-consistent systemic risk measures in the condi-
tional framework, we will outline the basic idea of a coexisting perspective towards systemic
risk and its connection to our decomposable risk measures.

In (1.2.2) we have seen that every univariate monetary risk measure can equivalently be de-
scribed by its corresponding acceptance set. By reviewing the risk measure in (1.2.3) we observe
that it can equally be split into two consecutive steps: first, identify all cash amounts which make
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the risk acceptable and second, find the smallest of these cash amounts. Therefore, a univariate
monetary risk measure can be represented as a selection of a set-valued function. This is the
starting point for the second approach towards systemic risk measurement. Here the systemic
risk measure is created from a set-valued function R : X d → P(Rd) which is given by

R(X) =
{
m ∈ Rd : X +m ∈ A

}
, for all X ∈ X d, (1.3.3)

where A ⊆ X d and P(Rd) denotes the powerset of Rd. The interpretation is analogous to the
univariate case, that is R(X) comprises all vectors of cash amounts m such that adding mi to
the i-th entity yields an acceptable systemX+m. In contrast to the one-dimensional framework
where it is always possible to identify the smallest acceptable cash amount, it is a more delicate
issue to find an optimal cash injection in the multivariate setting. Therefore, we must specify a
procedure which selects an acceptable vector of cash amounts. Finally, aggregating this selection
yields a systemic risk measure ρ : X d → R. We remark that Feinstein et al. (2015) already call
the set-valued function R a systemic risk measure. A commonly chosen selection criterion in
the literature is to minimize the overall injections which corresponds to systemic risk measures
of type

ρ(X) = inf

{
d∑
i=1

mi : m ∈ R(X)

}
, X ∈ X d, (1.3.4)

cf. Armenti et al. (2015) or Biagini et al. (2015). In analogy to the univariate case (1.2.4), we
can generalize the set-valued functions in (1.3.3) to

R(X) =
{
m ∈ Rd : X ∈ Am

}
, for all X ∈ X d, (1.3.5)

where (Am)m∈Rd is an appropriate family of acceptance sets. As before, in the process of
changing from (1.3.3) to (1.3.5) the monetary interpretation of its elements is lost.
Next, we illustrate the relationship between the systemic risk measures which are based on set-
valued risk measures and our class of risk-consistent systemic risk measures. For this purpose,
suppose that ρ̂ : X d → R is a systemic risk measure which can be decomposed as in (1.3.1) into
a univariate monetary risk measure η̂ and an aggregation function Λ̂. Moreover, let Aη̂ be the
acceptance set of η̂ and define

Am :=

{
X ∈ X d : Λ̂(X) +

d∑
i=1

mi ∈ Aη̂

}
, for all m ∈ Rd. (1.3.6)

Then constructing a systemic risk measure ρ as in (1.3.4)-(1.3.6) yields

ρ(X) = inf

{
d∑
i=1

mi : Λ̂(X) +

d∑
i=1

mi ∈ Aη̂

}
= inf

{
m ∈ R : Λ̂(X) +m ∈ Aη̂

}
= η̂

(
Λ̂(X)

)
= ρ̂(X), X ∈ X d.

This example illustrates that the decomposable systemic risk measures can be subsumed under
the generalized injection approach. Conversely, in order to use the construction of a systemic
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risk measure via acceptance sets as specified in (1.3.3), we need to fix a set A of all acceptable
systems. Opposed to (1.3.6), Feinstein et al. (2015) propose a method with an aggregation
mechanism which is sensitive to capital levels. To be more precise, they suggest a set-valued
risk measure

R(X) :=
{
m ∈ Rd : Λ(X +m) ∈ Aη

}
, X ∈ X d,

where Λ is an aggregation function and Aη is the acceptance set of a univariate monetary risk
measure η. This set-valued function is of type (1.3.3) and by the definition of an acceptance set,
we obtain that

R(X) :=
{
m ∈ Rd : η

(
Λ(X +m)

)
≤ 0
}
, X ∈ X d.

Hence, for the proposed method we still rely on a systemic risk measure which is decomposable,
since X ∈ A if and only if ρ(X) := η(Λ(X)) ≤ 0.

Thus, we conclude that the study of one of the two approaches towards systemic risk is not
excluding the other, even more they complement each other. If one is just interested in the as-
sessment of the risk of the overall system and less in the contributions of the single entities,
the decomposable risk measures are preferable due to their simpler structure. Contrarily, the
determination of systemic risk via set-valued functions has the advantage that as a byproduct it
provides information on how capital injections into the system should be organized.

For the rest of this thesis we exclusively concentrate on decomposable risk measures. Inspired
by the systemic risk approaches from Section 1.1 which condition on systemic events, we par-
ticularly aim at analyzing conditional systemic risk measures. This framework is introduced in
the following section.

1.4 Conditional risk measures

Besides extending the domain of risk measures to multivariate vector spaces, another plausi-
ble generalization is to consider conditional risk measures. In the literature on univariate risk
measures they form the basis for the assessment of risk over time as new information on the risk
factor is revealed. In addition to the temporal structure, we have seen that in the field of systemic
risk it is also of great importance to study the spatial intertwining of the system. That is, in order
to detect systemically relevant structures in this context, it is of interest to assess systemic risk
conditional on the state of certain subsystems.
In the following we assume that the risk factors are bounded random variables on a probabil-
ity space (Ω,F ,P) and that we have access to the information set G which is a sub-σ-algebra
of F . To include the additional information into the risk assessment, we extent univariate risk
measures to functionals of the form

ηG : L∞(F)→ L0(G). (1.4.1)

Conditional risk measures of type (1.4.1) have been introduced first in Detlefsen and Scandolo
(2005) and Bion-Nadal (2004). As in (1.4.1) most of the literature on conditional risk measures
is restricted to bounded risk factors. For the relatively few generalizations to more general Lp
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spaces or Lp-type modules, we refer to Filipović et al. (2012) or Acciaio and Goldammer (2013).
In analogy to the unconditional case, we define a conditional monetary risk measure as follows:

Definition 1.4.1. An antitone map ηG : L∞(F)→ L∞(G) is called a conditional monetary risk
measure, if it is

Conditional cash-invariant: For all F ∈ L∞(F) and α ∈ L∞(G), we have that ηG(F+α) =
ηG(F )− α.

It is further called a conditional convex risk measure if it is additionally

Conditional convex: For all F,G ∈ L∞(F) and λ ∈ L∞(G) with 0 ≤ λ ≤ 1, we have that
ηG(λF + (1− λ)G) ≤ ληG(F ) + (1− λ)ηG(G).

Moreover, a conditional convex risk measure is a coherent risk measure if it satisfies

Conditional positive homogeneity: For all F ∈ L∞(F) and λ ∈ L∞(G) such that λ ≥ 0,
we have ηG(λF ) = ληG(F ).

In Chapter 2 we extend the class of systemic risk measures of Chen et al. (2013) to allow for
a conditional framework, that is we study risk measures of type

ρG(X) = ηG
(
ΛG(X)

)
, X ∈ L∞d (F), (1.4.2)

where ηG : Im ΛG → L∞(G) is a univariate conditional risk measure and ΛG : L∞d (F) →
L∞(F) a conditional aggregation function. As in the unconditional case, the decomposition
relies on the constancy on constants which is given in this setting by

ηG(α) = −α for all α ∈ L∞(G). (1.4.3)

However, even if we assume that ΛG(L∞d (G)) ⊆ L∞(G), we can still extract the aggregation
function via ΛG(X) := −ρG(X) for all X ∈ L∞d (G), but it remains an open question how
to extend the aggregation function to the whole of L∞d (F). We will overcome the problem by
requiring the existence of a particularly nice realization ρ̃G : Rd × Ω → R of the restriction of
the multivariate conditional risk measure ρG to deterministic risk factors. Then we define the
conditional aggregation function for all X ∈ L∞d (F) by

ΛG(X)(ω) := −ρ̃G(X(ω), ω) a.s.

Finally, we show that the function ηG given by

ηG(F ) := ρG(X), where ΛG(X) = F,

is the desired univariate conditional risk measure. As before a conditional version of the risk-
antitonicity is the key property ensuring that ηG is well-defined.

Typically we do not have a single information set but a whole stream of information repre-
sented by a family of conditional risk measures. For instance, in the dynamic framework more
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and more details are revealed as time elapses. But also in the spatial setting this is of particular
interest. For example, one might think about a manager presiding a financial conglomerate and
another which only heads an entity thereof. Usually the manager of the conglomerate has more
information which also comprises all the data of the entity. So also the risk assessment should
respect this superiority of information, that is the corresponding risk measures are required to
be consistent in a certain way. The most commonly used approaches to such consistency in the
univariate literature can be pooled by the following general definition proposed in Tutsch (2007).

Definition 1.4.2. Let Y ⊆ L∞(F) with Y + L∞(G) = Y be a reference set. We say two
conditional risk measures ηG and ηH with G ⊆ H ⊆ F are consistent w.r.t. Y if{

ηH(F ) ≥ ηH(α) =⇒ ηG(F ) ≥ ηG(α),

ηH(F ) ≤ ηH(α) =⇒ ηG(F ) ≤ ηG(α),
(F ∈ L∞(F), α ∈ Y). (1.4.4)

If only the first implication of (1.4.4) is fulfilled, then we say that ηG and ηH are rejection
consistent w.r.t. Y . Contrarily, if only the second implication is valid, then we say that ηG and
ηH are acceptance consistent w.r.t. Y .

Clearly, the smallest benchmark set is Y = L∞(G) and in this case we also speak of weak
consistency. If the involved conditional risk measures are monetary and normalized in the sense
that ηH(0) = ηG(0), then weak acceptance consistency is equivalent to

ηH(F ) ≤ 0 =⇒ ηG(F ) ≤ 0. (1.4.5)

Thus, the interpretation is that if a risky position is always acceptable under the finer information
structure H, then it should also be acceptable under less information. Or to put it into the
dynamic context, rejecting a position right now is arbitrary, if we already know that at a future
point in time we are going to accept it in any case. An analogous argumentation also holds for
the weak rejection consistency. The weak consistency is of particular interest in the context of
updating a given conditional risk measure to a richer information structure in a consistent way,
cf. Tutsch (2008). Furthermore, weak consistency has been considered in Weber (2006), Acciaio
and Penner (2011), and Roorda and Schumacher (2013, 2016).
Conversely, the largest reference set Y such that (1.4.4) is still well defined is L∞(F). For
this choice of Y the difference between rejection and acceptance consistency collapses and we
simply have

ηH(F ) ≥ ηH(G) =⇒ ηG(F ) ≥ ηG(G), (F,G ∈ L∞(F)). (1.4.6)

If ηH and ηG fulfill (1.4.6) we call them strongly consistent. In the pertinent literature strong
consistency is the most frequently used requirement to connect conditional risk measures. In
contrast to (1.4.5) the strong consistency not only preserves the acceptance or rejection criterion
of the decision-maker, but also her complete preferences. Or to reuse the spatial example of the
risk managers from above, if the head of a financial conglomerate has a distinct preference, then
this should also hold for the entities’ manager. Here we also observe that the reverse relation is
not meaningful. Even if one risk factor is preferable to some other for a small entity, the group’s
manager might identify events on her larger information set where this preference fails.
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Note that there is a multitude of alternative descriptions of strong consistency. For instance,
for conditional convex risk measures strong consistency can be represented in terms of a super-
martingale property of the modified risk measures or via an additivity property of the acceptance
sets of the risk measures involved. For more details, we refer the interested reader to Acciaio and
Penner (2011) and the references therein. Moreover, it can be easily shown that for conditional
monetary risk measures strong consistency is further equivalent to the following tower property

ηG(F ) = ηG
(
− ηH(F )

)
for all F ∈ L∞(F). (1.4.7)

Chapter 3 emphasizes strong consistency in the context of multivariate conditional risk mea-
sures. For this purpose we generalize the definition of strong consistency given in (1.4.6). In the
first instance, we ask if it is also possible to represent the generalized strong consistency at hand
in terms of a tower property similar to (1.4.7). That there is no straightforward extension can be
easily seen, since the right hand side of (1.4.7) is not even well-defined in the multivariate set-
ting. In order to repair this deficiency, we need to transfer back the inner systemic risk ρH(X) to
a d-dimensional risk factor. A possible candidate for this operation is the inverse of the function
L∞(H) 3 α 7→ ρH(α(1, ...., 1)>) which we denote by f−1

ρH . In the course of Chapter 3 we show
that f−1

ρH is indeed well-defined and that the generalized tower property is given by

ρG(X) = ρG

(
f−1
ρH

(
ρH(X)

)
(1, ...., 1)>

)
, for all X ∈ L∞d (F). (1.4.8)

Note that for a univariate conditional risk measure, where ηH is constant on constants, i.e.
fηH(α) = −α, (1.4.8) reduces to (1.4.7). Making use of (1.4.8), we study the relationship be-
tween strong consistency and the risk-consistent conditional systemic risk measures from Chap-
ter 2 in two frameworks. Firstly, we assume consistency of ρG with a terminal risk measure
ρF : L∞d (F) → L∞(F). The latter risk measurement under ρF exhibits essentially no com-
pactification of information and thus can be interpreted as an aggregation of the risk factors. The
question is now if this aggregation under full information can be carried over to the risk mea-
surement under G via the strong consistency. Indeed, we will see in Chapter 3 that under some
minor technical assumptions ρG is decomposable as in (1.4.2) and the respective conditional ag-
gregation function is strongly consistent with the aggregation under full information. Due to our
findings in Chapter 2, the proof thereof basically reduces to showing that ρG is risk-antitone. In
the second framework, we additionally assume conditional law invariance of the risk measures
involved. Moreover, instead of strong consistency with respect to a terminal risk measure, we
consider the opposite, that is consistency w.r.t. an unconditional risk measure ρ : L∞d (F)→ R.
In the univariate setting this has been considered in Föllmer (2014), where he showed that these
conditional risk measures are in the class of the conditional certainty equivalents, i.e. they can
be represented as

ηG(F ) = −u−1 (EP [u(F ) | G]) , F ∈ L∞(F), (1.4.9)

for some utility function u : R → R. Chapter 3 generalizes this result to the multivariate case,
that is we show that the members of a family of strongly consistent conditionally law-invariant
risk measures are of the form

ρG(X) = fρG (f−1
u (EP [u(X) | G])), X ∈ L∞d (F), (1.4.10)
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where u : Rd → R is a multivariate utility function and fu : R→ R is the univariate utility given
by fu(c) := u(c(1, ..., 1)>). In particular we show that the special structure (1.4.10) implies
that the strongly consistent conditional systemic risk measures are again decomposable as in
(1.4.2). Moreover, the corresponding univariate conditional risk measure in the decomposition
is a univariate conditional certainty equivalent

ηG(F ) = −U−1
G (EP [UG(F ) | G]) , F ∈ L∞(F),

where UG is a conditional utility function. Note that the stochasticity of UG solely results from
the normalizing function f−1

ρG . Particularly, if ρG is normalized on constants, i.e. fρG ≡ − id,
then ηG is a conditional certainty equivalent as in (1.4.9).

1.5 Allocation of systemic risk

In the context of a multivariate risk measurement it is not only of interest to assess the total risk,
but also to determine each risk factor’s contribution to the overall risk.
In the framework of set-valued systemic risk measures, one possibility could be to interpret the
single components in (1.3.3) as an adequate response to the apportionment of the system’s risk,
since they represent the monetary amounts which must be added such that the resulting system
is deemed acceptable. However, then the contribution problem turns into the task of finding an
appropriate selection criterion for the numerous acceptable cash amounts. A possible choice for
this selection criterion is to reuse the criterion which was already applied for the assessment of
the overall risk, see for instance Armenti et al. (2015). If both problems are solved by the same
selection, then the contributions clearly add up to the overall risk. But, apart from this so-called
full allocation property, there is no indication why the allocation of the total risk can be consid-
ered as fair.
In this thesis we focus on the fairness issue of the allocation problem in the framework of decom-
posable systemic risk measures. Therefore, the allocation problem can be stated as follows: For
a given systemX ∈ X d, we need to find an allocation k ∈ Rd of the total risk ρ(X) = η(Λ(X))
such that the full allocation property

d∑
i=1

ki = ρ(X) (1.5.1)

holds, where ki is interpreted as the allocation of the total risk to institution i. Note that there
is already a wide-ranging literature in case of the aggregation function Λ being just a simple
sum. This situation is also known as portfolio allocation problem, which was studied in Denault
(2001), Tasche (2004, 2007), Kalkbrener (2005) or Buch and Dorfleitner (2008). Here the sys-
tem corresponds to a basket of financial assets and the risk factors are the profits and losses of the
assets. Because the investor of the portfolio is just worried about the netted profits and losses,
the sum is a suitable aggregation function. Most commonly the portfolio allocation problem is
solved via the Shapley-value, the Aumann-Shapley-value or marginal contributions which we
further discuss below. The first two originate from the field of game theory and can already be
traced back to the works of Shapley (1953) and Aumann and Shapley (1974).
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All of the mentioned approaches essentially rely on the formation and risk measurement of
subsystems. For a start, we consider subsystems where each entity either participates or is
absent from the system. The risk of the corresponding subsystems is given by the subsystem
risk measure ρ̃ : X d × P → R, where P is the set of all possible subsets J ⊆ {1, ..., d}. Here
ρ̃(X, J) is the risk of the system X , where only the entities contained in J participate.
Maybe the most intuitive method to determine each entities contribution is to consider its impact
on the entire system, i.e.

ki = ρ(X)− ρ̃(X, {1, ..., i− 1, i+ 1, ..., d}), i = 1, ..., d. (1.5.2)

Unfortunately, this procedure lacks the full allocation property (1.5.1) in general. In contrast to
this method, the Shapley-value takes all the incremental risks which are generated by a single
entity into account and composes a weighted average thereof. To be more precise, the Shapley-
value SV(X) ∈ Rd of the system X is formally given by

SV(X)i =
∑
J∈Pi

(|J | − 1)!(d− |J |)!
d!

(
ρ̃(X, J)− ρ̃(X, J\{i})

)
, i = 1, ..., d,

where Pi := {J ∈ P : i ∈ J} are all the subgroups containing entity i. Unlike (1.5.2) the
Shapley-value fulfills the full allocation property. We remark that the Shapley-value can also be
uniquely described by a set of properties, namely full allocation, symmetry, dummy player and
additivity over games, for further details we refer the interested reader to Denault (2001).

One might ask why we always have to remove an entity entirely and not only parts of it. For
this purpose, we first need to extent the domain of a subsystem risk measure. In the following
we denote by ρ : X d × Rd → R the subsystem risk measure with fractional participation, that
is ρ(X,λ) is the risk of the system X where λi is the level of participation of the i-th entity.
Here λi = 0 means absence and λi = 1 full participation. In (1.5.2) we were asking how much
risk is generated by the introduction of an entity. Inspired by this question, we are now asking
how much risk is introduced by increasing marginally the level of participation of an entity. This
leads to the marginal contributions MC(X) which are given by

MCi(X) :=
∂ρ(X,λ)

∂λi

∣∣∣∣
λ=(1,...,1)>

, i = 1, ..., d, (1.5.3)

if the partial derivatives exist. It is important to note that if λ 7→ ρ(X,λ) is continuously dif-
ferentiable then Euler’s homogeneous function theorem implies that the full allocation property
for the marginal contributions holds if and only if the subsystem risk measurement is positively
homogeneous in the participation level. This is also the reason why in this case the marginal
contributions are commonly referred to as Euler allocation, cf. Tasche (2007).
The marginal contributions have been used in Brunnermeier and Cheridito (2014) for the al-
location of systemic risk. However, their model is not positively homogeneous and thus the
full allocation property is not satisfied. Nonetheless, they could show that in their setting the
sum of the marginal contributions always dominates the systemic risk. Thus, they introduced
exogenously given correction terms which reduce the marginal contributions such that the full
allocation property holds. Since, they suggested that the correction terms depend on some size
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parameter of the financial institutions like corporate taxes, the resulting allocations are called
size-shifted marginal contributions.

If we do not want to rely on some artificial correction term, the Aumann-Shapley-value
ASV(X) is a further extension of the marginal contributions to allow for the full allocation
property. It is formally given by

ASV(X)i =

∫ 1

0

∂ρ(X,λ)

∂λi

∣∣∣∣
λ=(γ,....,γ)>

dγ, i = 1, ..., d.

The Aumann-Shapley-value is therefore the average marginal contribution as the system evolves
uniformly.

In the context of systemic risk, the Aumann-Shapley-value as well as the Shapley-value have
been considered extensively, see e.g. Staum (2012), Drehmann and Tarashev (2013), Tarashev
et al. (2016) and Staum et al. (2016). Staum et al. (2016) also considered an Eisenberg-Noe type
clearing model in a toy financial network and put a special emphasis on the construction of the
subsystems. The crucial observation is that, whereas it is clear what absence or full participation
means in the context of a portfolio of financial assets, there is a multitude of choices for a com-
plex financial system. That is, with the extraction of an institution it needs to be clarified what
should happen with the contractual obligations of this institution with the remaining financial
system. For instance, one way to construct the subsystems which we also consider in Chapter 4,
is the attribution to external assets scheme. Here an absent bank is still physically present in the
network, but it is not exposed to any adverse market events in the future. Moreover, to conclude
with the subsystem generation, we remark that Staum et al. (2016) also consider schemes where
the underlying network topology changes.

After this brief excursion to the allocation methods currently used in the portfolio as well as
the systemic risk literature, we will now focus on our findings of the final Chapter 4. There, we
aim at gaining insight into (fuzzy) core allocations for interacting systems. Formally, we say
that k ∈ Rd is in the fuzzy core FCρ(X) if k fulfills the full allocation property (1.5.1) and for
all levels of participation λ ∈ [0, 1]d

ρ(X,λ) ≥
d∑
i=1

λiki. (1.5.4)

Similarly, the core concept is the discretized version of (1.5.4), i.e.

ρ̃(X, J) ≥
∑
j∈J

kj , for all J ∈ P.

Thus the (fuzzy) core allocations ensure that no subsystem has a lower risk than the amount
which is allocated to it. A common justification is that otherwise the disadvantaged subgroup
would separate from the system to gain from the decrease in risk. Since no one has an incentive
to leave the system, core allocations treat all participants fairly. Both the study of the fuzzy core
as well as the core have a long history in the field of game theory. Furthermore, the (fuzzy) core
has been studied in Delbaen (2000) for the portfolio allocation problem. In this context, (1.5.4)
also appeared under the name of the no-undercut property in Denault (2001). Here the (fuzzy)
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core is a central property of an axiomatic description of desirable allocations, termed coherent
allocations. At the heart of Denault’s analysis is the identification of conditions such that the
Shapley-value or the Aumann-Shapley-value are coherent allocations and thus also in the core
or fuzzy core, resp. In particular, if the Aumann-Shapley-value collapses to the Euler allocation
it is contained in the fuzzy core.

In the context of systemic risk allocation, the fuzzy core concept has been considered in Chen
et al. (2013) and Kromer et al. (2016). Based on a dual representation of their decomposable
positive homogeneous systemic risk measures, Chen et al. and Kromer et al. identify allocations
which are closely related to the Euler allocation or the Aumann-Shapley-value. Moreover, they
show that the allocations are also in the fuzzy core of the subsystem risk measure

ρ(X,λ) := ρ
(
(λ1X1, ...., λdXd)

>), (1.5.5)

where ρ is the corresponding systemic risk measure.
In this thesis we study the appropriateness of the fuzzy core allocations for systemic risk. Note
that in the portfolio framework the merger of two portfolios always results in a decrease of
risk due to diversification effects. So the notion of the (fuzzy) core is based on solid grounds,
since there is always a benefit which can be distributed among the single financial assets. For
systemic risk measurement this fundamental premise is confronted with limits. For instance,
a bank might face no uncertainty in isolation, but by integrating it into a financial system it is
exposed to risks of its opponents. Conversely, in more integrated systems we have an increased
redistribution of losses which might dampen potential contagion effects and thus results in less
severe damages. To cut a long story short, for the systemic risk allocation we need to take
into account the competing effects of diversification and integration costs. To this end, we will
explicitly calculate a (fuzzy) core allocation for the subsystem risk measure in (1.5.5) which
is based on a contagion model á la Eisenberg-Noe. Unfortunately, we observe that the (fuzzy)
core might lead to obvious discriminations in this systemic risk measurement framework. More
precisely, financial institutions which exclusively default due to contagion and afterwards spread
further losses into the system are better off under a fuzzy core allocation than banks which do
not default at all. One of the reasons, is that (fuzzy) core allocations are by definition upper
bounded by the standalone risk, i.e. ki ≤ ρ̃(X, {i}) for all i = 1, ..., d, and hence no further
costs of system integration can be incorporated into the allocation. As a result, we introduce
the notion of the reverse (fuzzy) core, where the risk of the subsystem should always be a lower
bound of the allocated risk. Moreover, it can be easily seen that by using the same subsystem
risk measurement (1.5.5) the corresponding reverse (fuzzy) core is empty. Therefore, we also
change the underlying subsystem generation scheme. In the new scheme a zero-participation
level means that the bank is extremely well capitalized such that it cannot default at all. Using
this scheme, we show that the reverse (fuzzy) core is non-empty and that the corresponding
allocations repair the unfairness form before. This result already holds for a more conservative
subsystem risk measure which is akin to the attribution to external assets scheme proposed in
Staum et al. (2016). Finally, we show that the intersection of the core with the subsystem risk
measure (1.5.5) and the reverse core with the new subsystems are basically empty.





2 Risk-Consistent Conditional Systemic

Risk Measures

2.0 Contributions of the thesis' author

The current chapter is a joint work with Prof. Dr. Thilo Meyer-Brandis and Dr. Gregor Svindland.
It has been published in Stochastic Processes and their Applications, Volume 126 Issue 7, pp.
2014-2037. At the end of the current chapter there is a small study on central counterparties
which we excluded in the published version.

The general topic of this section is to extend the framework of Chen et al. (2013). Section
2.2 contains the generalized axiomatic description for conditional multivariate risk measures
which allow for a decomposition into a conditional univariate risk measure and a conditional
aggregation function. The final framework as well as the presentation of the results has been
discussed jointly. H. Hoffmann further introduced explanatory comments like Proposition 2.2.2,
Remark 2.2.5 or Remark 2.2.12. In the subsequent Section 2.3 the two preparatory results
Lemma 2.3.1 and Lemma 2.3.2 for the main decomposition result have been derived by H.
Hoffmann. The proofs of Theorem 2.2.9 as well as Theorem 2.2.11 were established in a close
cooperation of the three authors, but with major parts done by H. Hoffmann. Section 2.4 con-
tains extensions of examples appearing in Chen et al. (2013), but also new ones to demonstrate
the power of conditional aggregation functions. Here, in particular H. Hoffmann developed
the Example 2.4.2, Example 2.4.3 and Example 2.4.5. Moreover, H. Hoffmann performed the
concluding numerical study in Example 2.4.9.

2.1 Introduction

The recent financial crisis revealed weaknesses in the financial regulatory framework when it
comes to the protection against systemic events. Before, it was generally accepted to measure
the risk of financial institutions on a stand alone basis. In the aftermath of the financial crisis
risk assessment of financial systems as well as their impact on the real economy has become
increasingly important, as is documented by a rapidly growing literature; see e.g. Amini and
Minca (2013) or Bisias et al. (2012) for a survey and the references therein. Parts of this literature
are concerned with designing appropriate risk measures for financial systems, so-called systemic
risk measures. The aim of this paper is to axiomatically characterize the class of systemic risk
measures ρ which admit a decomposition of the following form:

ρ(X) = η (Λ(X)) , (2.1.1)
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where Λ is a state-wise aggregation function over the d-dimensional random risk factors X of
the financial system, e.g. profits and losses at a given future time horizon, and η is a univariate
risk measure. The aggregation function determines how much a single risk factor contributes to
the total risk Λ(X) of the financial system in every single state, whereas the so-called base risk
measure η quantifies the risk of Λ(X). Chen et al. (2013) first introduced axioms for systemic
risk measures, and showed that these admit a decomposition of type (2.1.1). Their studies re-
lied on a finite state space and were carried out in an unconditional framework. Kromer et al.
(2016) extend this to arbitrary probability spaces, but keep the unconditional setting. The main
contributions of this paper are:

1. We axiomatically characterize systemic risk measures of type (2.1.1) in a conditional
framework, in particular we consider conditional aggregation functions and conditional
base risk measures in (2.1.1).

2. We allow for a very general structure of the aggregation, which is flexible enough to
cover examples from the literature which could not be handled in axiomatic approaches
to systemic risk so far.

3. We work in a less restrictive axiomatic setting, which gives us the flexibility to study sys-
temic risk measures which for instance need not necessarily be convex or quasi-convex,
etc. This again provides enough flexibility to cover a vast amount of systemic risk mea-
sures applied in practice or proposed in the literature. It also allows us to identify the
relation between properties of ρ and properties of Λ and η, and in particular the mecha-
nisms behind the transfer of properties from ρ to Λ and η, and vice versa. This is related
to the following point 4.

4. We identify the underlying structure of the decomposition (2.1.1) by defining systemic
risk measures solely in terms of so called risk-consistent properties and properties on
constants.

In the following we will elaborate on the points 1.–4. above.

1. A conditional framework for assessing systemic risk

We consider systemic risk in a conditional framework. The standard motivation for considering
conditional univariate risk measures (see e.g. Detlefsen and Scandolo (2005) and Acciaio and
Penner (2011)) is the conditioning in time, and the argumentation in favor of this also carries
over to multivariate risk measures. However, apart from a dynamic assessment of the risk of
a financial system, it might be particularly interesting to consider conditioning in space. In
that respect Föllmer and Klüppelberg (2014) recently introduced and studied so-called spatial
risk measures for univariate risks. Typical examples of spatial conditioning are conditioning on
events representing the whole financial system or parts of that system, such as single financial
institutions, in distress. This is done to study the impact of such a distress on (parts of) the
financial system or the real economy, and thereby to identify systemically relevant structures.
For instance the Conditional Value at Risk (CoVaR) introduced in Adrian and Brunnermeier
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(2016) considers for q ∈ (0, 1) the q-quantile of the distribution of the netted profits/losses of a
financial system X = (X1, . . . , Xd) conditional on a crisis event C(Xi) of institution i:

P

(
d∑
i=1

Xi ≤ −CoVaRq(X)

∣∣∣∣∣C(Xi)

)
= q; (2.1.2)

see Example 2.4.6. More examples can be found in Cont et al. (2013), Engle et al. (2015),
Acharya et al. (2017). Such risk measures fit naturally in a conditional framework; cf. Exam-
ple 2.4.6 and Example 2.4.8.

2. Aggregation of multidimensional risk

A quite common aggregation rule for a multivariate risk X = (X1, . . . , Xd) is simply the sum

Λsum(X) =
d∑
i=1

Xi;

see the definition of CoVaR in (2.1.2). Λsum(X) represents the total profit/loss after the netting
of all single profits/losses. However, such an aggregation rule might not always be reasonable
when measuring systemic risk. The major drawbacks of this aggregation function in the context
of financial systems are that profits can be transferred from one institution to another and that
losses of a financial institution cannot trigger additional contagion effects. Those deficiencies
are overcome by aggregation functions which explicitly account for contagion effects within a
financial system. For instance, based on the approach in Eisenberg and Noe (2001), the authors
in Chen et al. (2013) introduce such an aggregation rule which however, due to the more re-
strictive axiomatic setting, exhibits the unrealistic feature that in case of a clearing of the system
institutions might decrease their liabilities by more than their total debt level. We will present
a more realistic extension of this contagion model together with a small simulation study in
Example 2.4.9.

Moreover, we present reasonable aggregation functions which are not comprised by the ax-
iomatic framework of Chen et al. (2013) or Kromer et al. (2016). In particular this includes
conditional aggregation functions which come naturally into play in our framework; see Exam-
ple 2.4.5.

3.�4. Axioms for systemic risk measures

Our aim is to identify the relation between properties of ρ and properties of Λ and η in (2.1.1)
respectively, and in particular the mechanisms behind the transfer of properties from ρ to Λ and
η, and vice versa. We will show that this leads to two different classes of axioms for condi-
tional systemic risk measures. One class concerns the behavior on deterministic risks, so-called
properties on constants. The other class of axioms ensures a consistency between state-wise
and global - in the sense of over all states - risk assessment. This latter class will be called
risk-consistent properties.

The risk-consistent properties ensure a consistency between local - that is ω-wise - risk as-
sessment and the measured global risk. For example, risk-antitonicity is expressed by: if for
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given risk vectors X and Y it holds that ρ(X(ω)) ≥ ρ(Y (ω)) in almost all states ω, then
ρ(X) ≥ ρ(Y ). The naming risk-antitonicity, and analogously the naming for the other risk-
consistent properties, is motivated by the fact that antitonicity is considered with respect to the
order relation ρ(X(ω)) ≥ ρ(Y (ω)) induced by the ω-wise risk comparison of two positions and
not with respect to the usual order relation on the space of random vectors.

Note that for a univariate risk measure ρ which is constant on constants, i.e. ρ(x) = −x for
all x ∈ R, risk-antitonicity is equivalent to the ’classical’ antitonicity with respect to the usual
order relation on the underlying space of random variables. In a general multivariate setting
this equivalence does not hold anymore. However, we will show that properties on constants in
conjunction with corresponding risk-consistent properties imply the classical properties on the
space of risks. This makes our risk model very flexible, since we may identify systemic risk
measures where for example the corresponding aggregation function Λ in (2.1.1) is concave, but
the base risk measure η is not convex. Moreover, it will turn out that the properties on constants
basically determine the underlying aggregation rule in the systemic risk assessment, whereas the
risk-consistent properties translate to properties of the base risk measure in the decomposition
(2.1.1).

Some of the risk-consistent properties, however partly under different names, also appear in
the frameworks of Chen et al. (2013) and Kromer et al. (2016). For instance what we will call
risk-antitonicity is called preference consistency in Chen et al. (2013). In our framework we
emphasize the link between the risk-consistent properties (and the properties on constants) and
the decomposition (2.1.1). This aspect has not been clearly worked out so far. It leads us to
introducing a number of new axioms and to classifying all axioms within the mentioned classes
of risk-consistent properties and properties on constants.

Structure of the paper

In Section 2.2 we introduce our notation and the main objects of this paper, that is the risk-
consistent conditional systemic risk measures, the conditional aggregation functions and the
conditional base risk measures as well as their various extensions. At the end of Section 2.2
we state our main decomposition result (Theorem 2.2.9) for risk-consistent conditional systemic
risk measures. Moreover, Theorem 2.2.11 reveals the connection between risk-consistent prop-
erties and properties on constants on the one hand and the classical properties of risk measures
on the other hand. Section 2.3 is devoted to the proofs of Theorem 2.2.9 and Theorem 2.2.11.
In Section 2.4 we collect our examples.

2.2 Decomposition of systemic risk measures

Throughout this paper let (Ω,F ,P) be a probability space and G be a sub-σ-algebra of F .
L∞(F) := L∞(Ω,F ,P) refers to the space of F-measurable, P-almost surely (a.s.) bounded
random variables and L∞

d (F) to the d-fold cartesian product of L∞(F). As usual, L∞(F) and
L∞d (F) denote the corresponding spaces of random variables/vectors modulo P-a.s. equality.
For G-measurable random variables/vectors analogue notations are used.
In general, upper case letters will represent random variables, where X,Y, Z are multidimen-
sional and F,G,H are one-dimensional, and lower case letters deterministic values.
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We will use the usual componentwise orderings on Rd and L∞d (F), i.e. x = (x1, . . . , xd) ≥
y = (y1, . . . , yd) for x, y ∈ Rd if and only if xi ≥ yi for all i = 1, . . . , d, and similarly X ≥ Y
if and only if Xi ≥ Yi a.s. for all i = 1, ..., d. Furthermore 1d and 0d denote the d-dimensional
vectors whose entries are all equal to 1 or all equal to 0, respectively.
When deriving our main results we will run into similar problems as one faces in the study of
stochastic processes: At some point it will not be sufficient to work on equivalence classes, but
we will need a specific nice realization or version of the process, for instance a version with
continuous paths, etc. In the following, by a realization of a function ρG : L∞d (F) → L∞(G)
we mean a selection of one representative in the equivalence class ρG(X) for eachX ∈ L∞d (F),
i.e. a function ρG(·, ·) : L∞d (F) × Ω → R where ρG(X, ·) ∈ L∞(G) with ρG(X, ·) ∈ ρG(X)
for allX ∈ L∞d (F). We emphasize that in the following we will always denote a realization of a
function ρG by its explicit dependence on the two arguments: ρG(·, ·). Indeed, our decomposition
result in Theorem 2.2.9 will be based on the idea to break down a random variable into every
single scenario and evaluating it separately. This implies working with appropriate realizations
which will satisfy properties which we will denote risk-consistent properties.

Also for risk factors we will work both with equivalence classes of random vectors in L∞d (F)
and their corresponding representatives in L∞

d (F). However, in contrast to the realizations
of ρG introduced above, here the considerations do not depend on the specific choice of the
representative. Hence for risk factors X ∈ L∞d (F) we will stick to usual abuse of notation of
also writingX for an arbitrary representative in L∞

d (F) of the corresponding equivalence class.
This will become clear from the context. In particular, X(ω) denotes an arbitrary representative
of the corresponding equivalence class evaluated in the state ω ∈ Ω.

Finally, we write x ∈ Rd both for real numbers and for (equivalence classes of) constant
random variables depending on the context.

The following definition introduces our main object of interest in this paper:

Definition 2.2.1 (Risk-consistent Conditional Systemic Risk Measure).
A function ρG : L∞d (F)→ L∞(G) is called a risk-consistent conditional systemic risk measure
(CSRM), if it is

Antitone on constants: For all x, y ∈ Rd with x ≥ y we have ρG(x) ≤ ρG(y) ,

and if there exists a realization ρG (·, ·) such that the restriction

ρ̃G : Rd × Ω→ R; x 7→ ρG (x, ω) (2.2.1)

has continuous paths, i.e. ρ̃G is continuous in its first argument a.s., and it satisfies

Risk-antitonicity: For all X,Y ∈ L∞d (F) with ρ̃G (X(ω), ω) ≥ ρ̃G (Y (ω), ω) a.s. we have
ρG(X) ≥ ρG(Y ).

Furthermore, we will consider the following properties of ρG on constants:

Convexity on constants: ρG (λx+ (1− λ)y) ≤ λρG(x) + (1 − λ)ρG(y) for all constants
x, y ∈ Rd and λ ∈ [0, 1];

Positive homogeneity on constants: ρG(λx) = λρG(x) for all x ∈ Rd and λ ≥ 0.
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We will also consider the following risk-consistent properties of ρG:

Risk-convexity: If for X,Y, Z ∈ L∞d (F) there exists an α ∈ L∞(G) with 0 ≤ α ≤ 1 such
that ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) +

(
1 − α(ω)

)
ρ̃G (Y (ω), ω) a.s., then ρG(Z) ≤

αρG(X) + (1− α)ρG(Y );

Risk-quasiconvexity: If for X,Y, Z ∈ L∞d (F) there exists an α ∈ L∞(G) with 0 ≤ α ≤
1 such that ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) +

(
1 − α(ω)

)
ρ̃G (Y (ω), ω) a.s., then

ρG(Z) ≤ ρG(X) ∨ ρG(Y );

Risk-positive homogeneity: If for X,Y ∈ L∞d (F) there exists an α ∈ L∞(G) with α ≥ 0
such that ρ̃G (Y (ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s., then ρG(Y ) = αρG(X);

Risk-regularity: ρG (X,ω) = ρ̃G (X(ω), ω) a.s. for all X ∈ L∞d (G).

We will see in Theorem 2.2.9 that risk-antitonicity is the crucial property which guarantees
that ρG allows a conditional decomposition analogously to (2.1.1). The idea behind all risk-
consistent properties is that they ensure a consistency between local - that is ω-wise - risk as-
sessment and the measured global risk. Consider for instance again the risk-antitonicity prop-
erty and suppose we are given an event A ∈ G and random risk factors Z ∈ L∞d (F) as well
as X,Y ∈ L∞d (F) such that on the level of our realization which satisfies the risk-antitonicity
we have ρ̃G (X(ω), ω) ≥ ρ̃G (Y (ω), ω) a.s. on A. In other words for almost all ω ∈ A, the
risk of the constant risk factors X(ω) evaluated in ω is higher than the corresponding risk
of Y (ω) evaluated in ω. Now consider the modified risk factors ZX := X1A + Z1AC and
ZY := Y 1A+Z1AC where we modify Z on A in such a way that ZY is preferred on almost ev-
ery state in A to ZX , and otherwise both risk factors are identical. Then risk-antitonicity implies
that ρG(ZY ) ≤ ρG(ZX).

Our definition of a CSRM is based on properties on constants together with risk-consistent
properties. It turns out (see Theorem 2.2.9) that the properties on constants translate into the
corresponding properties of the (conditional) aggregation function and the risk-consistent prop-
erties translate into the corresponding properties of the (conditional) base risk measure in the
decomposition of a CSRM. Moreover, a natural question is to which extend CSRM’s also fulfill
the established properties of risk measures in the literature. For instance, antitonicity on L∞d , i.e.
X ≥ Y implies ρG(X) ≤ ρG(Y ), is commonly accepted as a minimal requirement for risk mea-
sures. Further, quasiconvexity or the stronger condition of convexity on L∞d are properties often
asked for as they correspond to the requirement that diversification should not be penalized, cf.
Cerreia-Vioglio et al. (2011). Also, an important subclass are those CSRM which are positive
homogeneous, as for example the CoVaR or the CoES introduced in Adrian and Brunnermeier
(2016); see Example 2.4.6 and Example 2.4.7. In general, it will turn out (see Theorem 2.2.11)
that properties on constants combined with the corresponding risk-consistent properties will im-
ply properties such as antitonicity, (quasi-) convexity or positive homogeneity of ρG on L∞d . For
example, antitonicity on constants in conjunction with risk-antitonicity implies antitonicity on
L∞d .

One might ask in which setting it is possible to formulate the risk-consistent properties directly
in terms of the function ρG without requiring the existence of a particular realization of this
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function. As we will see in the next Proposition 2.2.2 this is possible if ρG(x) has a discrete
structure for all x ∈ Rd. For the sake of brevity we omit the proof.

Proposition 2.2.2. Let ρG : L∞d (F) → L∞(G) be a function which has a realization with
continuous paths. Further suppose that

ρG(x) =

s∑
i=1

ai(x)1Ai , x ∈ Rd, (2.2.2)

where ai(x) ∈ R andAi ∈ G are pairwise disjoint sets such that Ω =
⋃s
i=1Ai for s ∈ N∪{∞}.

Define k : Ω→ N; ω 7→ i such that ω ∈ Ai. Then ρG is risk-antitone if and only if

ρG(X(ω))1Ak(ω) ≥ ρG(Y (ω))1Ak(ω) a.s. implies ρG(X) ≥ ρG(Y ), (2.2.3)

where here the point evaluations X(ω), Y (ω) ∈ Rd have to be understood as equivalence
classes of constant random variables. Also the remaining risk-consistent properties can be ex-
pressed in a similar way without requiring a particular realization of ρG .

Remark 2.2.3. Notice that in the setting of Proposition 2.2.2, we had to require that there exists
a realization with continuous paths. Sufficient criteria for ρG which guarantee that such a con-
tinuous realizations exists are well known, e.g. Kolmogorov’s criterion (see e.g. Theorem 2.1
in Revuz and Yor (1999)). A sufficient specification of a CSRM solely in terms of ρG (without
employing any realization) is thus: if ρG is antitone on constants, has a discrete structure (2.2.2)
and fulfills (2.2.3) and Kolmogorov’s criterion, then ρG is a CSRM.

In order to state our decomposition result we need to clarify what we mean by a (conditional)
aggregation function and a conditional base risk measure. We start with the aggregation function.

Definition 2.2.4 (Aggregation Functions).
We call a function Λ̃ : Rd → R a deterministic aggregation function (DAF), if it has the following
two properties:

Isotonicity: If x, y ∈ Rd with x ≥ y, then Λ̃(x) ≥ Λ̃(y);

Continuity: Λ̃ is continuous.

A DAF is called concave or positive homogeneous, respectively, if it satisfies for all x, y ∈ Rd

Concavity: If λ ∈ [0, 1], then Λ̃
(
λx+ (1− λ)y

)
≥ λΛ̃(x) + (1− λ)Λ̃(y);

Positive homogeneity: Λ̃(λx) = λΛ̃(x) for all λ ≥ 0.

Furthermore, a function Λ̃G : Rd × Ω→ R is a conditional aggregation function (CAF), if

(i) Λ̃G (x, ·) ∈ L∞(G) for all x ∈ Rd,

(ii) Λ̃G (·, ω) is a DAF for all ω ∈ Ω.

A CAF is called concave (positive homogeneous) if Λ̃G (·, ω) is concave (positive homogeneous)
for all ω ∈ Ω.
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Remark 2.2.5. Note that, functions like CAFs which are continuous in one argument and mea-
surable in the other also appear under the name of Carathéodory functions in the literature
on differential equations. For Carathéodory functions it is well known (see e.g. Aubin and
Frankowska (2009) Lemma 8.2.6) that they are product measurable, i.e. every CAF Λ̃G is
B(R)× G-measurable.

Given a CAF Λ̃G , we extend the aggregation from deterministic to random vectors in the
following way (which is well-defined due to Remark 2.2.5 as well as isotonicity and property (i)
in the definition of a CAF):

ΛG : L∞d (F)→ L∞(F), X 7→ Λ̃G (X(ω), ω) . (2.2.4)

Remark 2.2.6. Notice that the aggregation (2.2.4) of random vectors X is ω-wise in the sense
that given a certain state ω ∈ Ω, in that state we aggregate the sure payoff X(ω). Consequently,
properties such as isotonicity, concavity or positive homogeneity of the CAF Λ̃G translate to the
extended CAF ΛG . Hence, ΛG always satisfies

ΛG (X) ≥ ΛG (Y ) for all X,Y ∈ L∞d (F) with X ≥ Y . (2.2.5)

If Λ̃G is concave, then for all X,Y ∈ L∞d (F) and α ∈ L∞(F) with 0 ≤ α ≤ 1 we have

ΛG (αX + (1− α)Y ) ≥ αΛG (X) + (1− α)ΛG (Y ) , (2.2.6)

and if Λ̃G is positively homogeneous, then for all X ∈ L∞d (F) and α ∈ L∞(F) with α ≥ 0:

ΛG (αX) = αΛG (X) . (2.2.7)

The last yet undefined ingredient in our decomposition (2.1.1) is the conditional base risk
measure ηG which we define next. Notice that the domain X of ηG depends on the underlying
aggregation given by ρG . For example the aggregation function Λ̃(x) =

∑d
i=1 min{xi, 0}, x ∈

Rd only considers the losses. Hence, the corresponding base risk measure η a priori only needs to
be defined on the negative cone of L∞(F), even though it in many cases allows for an extension
to L∞(F). We will see in Lemma 2.3.1 that if X is the image of an extended CAF ΛG then X is
G-conditionally convex, i.e.F,G ∈ X andα ∈ L∞(G) with 0 ≤ α ≤ 1 impliesαF+(1−α)G ∈
X .

Definition 2.2.7 (Conditional Base Risk Measure).
Let X ⊆ L∞(F) be a G-conditionally convex set. A function ηG : X → L∞(G) is a conditional
base risk measure (CBRM), if it is

Antitone: F ≥ G implies ηG(F ) ≤ ηG(G).

Moreover, we will also consider CBRM’s which fulfill additionally one or more of the following
properties:

Constant on constants: ηG(α) = −α for all α ∈ X ∩ L∞(G);

Quasiconvexity: ηG (αF + (1− α)G) ≤ ηG(F )∨ηG(G) for all α ∈ L∞(G) with 0 ≤ α ≤ 1;
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Convexity: ηG (αF + (1− α)G) ≤ αηG(F ) + (1 − α)ηG(G) for all α ∈ L∞(G) with 0 ≤
α ≤ 1;

Positive homogeneity: ηG(αF ) = αηG(F ) for all α ∈ L∞(G) with α ≥ 0 and αF ∈ X .

Constructing a CSRM by composing a CBRM and a CAF as in (2.1.1), we need a property
for ηG which allows to ’extract’ the CAF in order to obtain the properties on constants of ρG .
The constant on constants property serves this purpose, but we will see in Theorem 2.2.9 that
the following weaker property is also sufficient.

Definition 2.2.8. A CBRM ηG : X → L∞(G) is called constant on a CAF Λ̃G , if ΛG(x) ∈ X
for all x ∈ Rd and

ηG (ΛG (x)) = −ΛG (x) for all x ∈ Rd. (2.2.8)

Clearly, if ηG is constant on constants, then it is constant on any CAF with an appropriate
image as (2.2.8) is always satisfied.

Conditional risk measures have been widely studied in the literature, see Föllmer and Schied
(2011) for an overview. As already explained above the antitonicity is widely accepted as a
minimal requirement for risk measures. The constant on constants property is a standard techni-
cal assumption, whereas we will only need the weaker property of constancy on an aggregation
function for an CBRM. Typically conditional risk measures are also required to be monetary in
the sense that they satisfy some translation invariance property which we do not require in our
setting, see e.g. Detlefsen and Scandolo (2005). Much of the literature is concerned with the
study of quasiconvex or convex conditional risk measures which in our setting implies that the
corresponding risk-consistent conditional systemic risk measure will satisfy risk-quasiconvexity
resp. risk-convexity, see Theorem 2.2.9.

After introducing all objects and properties of interest we are now able to state our decompo-
sition theorem.

Theorem 2.2.9. A function ρG : L∞d (F) → L∞(G) is a CSRM if and only if there exists a
CAF Λ̃G : Rd × Ω → R and a CBRM ηG : Im ΛG → L∞(G) such that ηG is constant on Λ̃G
(Definition 2.2.8) and

ρG (X) = ηG (ΛG (X)) for all X ∈ L∞d (F), (2.2.9)

where the extended CAF ΛG (X) := Λ̃G (X(ω), ω) was introduced in (2.2.4). The decomposi-
tion into ηG and ΛG is unique.
Furthermore there is a one-to-one correspondence between additional properties of the CBRM
ηG and additional risk-consistent properties of the CSRM ρG:

• ρG is risk-convex iff ηG is convex;

• ρG is risk-quasiconvex iff ηG is quasiconvex;

• ρG is risk-positive homogeneous iff ηG is positive homogeneous;

• ρG is risk-regular iff ηG is constant on constants.



34 Chapter 2. Risk-Consistent Conditional Systemic Risk Measures

Moreover, properties on constants of the CSRM ρG are related to properties of the CAF Λ̃G:

• ρG is convex on constants iff Λ̃G is concave;

• ρG is positive homogeneous on constants iff Λ̃G is positive homogeneous.

The proof of Theorem 2.2.9 is quite lengthy and needs some additional preparation and is
thus postponed to Section 2.3. Note that it follows from the proof of Theorem 2.2.9 that the
aggregation rule in (2.2.9) is deterministic if and only if ρG(Rd) ⊆ R.

Remark 2.2.10. The decomposition (2.2.9) can also be established without requiring the CSRM
to be risk-antitone, but to fulfill the weaker property

ρ̃G (X(ω), ω) = ρ̃G (Y (ω), ω) a.s. =⇒ ρG(X) = ρG(Y ). (2.2.10)

Notice, however, if we only require (2.2.10), then the CBRM ηG in (2.2.9) (and also ρG itself,
see Theorem 2.2.11 below) might not be antitone anymore.

An important question is to which degree CSRM’s fulfill the usual (conditional) axioms of
risk measures on L∞d (F) (where these axioms on L∞d (F) are defined analogously to the ones
on L∞(F) in Definition 2.2.7). In the following Theorem 2.2.11 we will investigate the relation
between risk-consistent properties and properties on constants on the one side and properties of
ρG on L∞d (F) on the other.

Theorem 2.2.11. Let ρG be a CSRM. Then

• risk-antitonicity together with antitonicity on constants can equivalently be replaced by
antitonicity of ρG (X ≥ Y implies ρG(X) ≤ ρG(Y )) together with (2.2.10).

Moreover:

• ρG is risk-positive homogeneous and positive homogeneous on constants iff ρG is positive
homogeneous;

• If ρG is risk-convex and convex on constants, then ρG is convex;

• If ρG is risk-quasiconvex and convex on constants, then ρG is quasiconvex.

As for Theorem 2.2.9 we postpone the proof to Section 2.3.

Remark 2.2.12. We have seen in Theorem 2.2.11 that a property on L∞d (F) of a CSRM is im-
plied by the corresponding risk-consistent property and the property on constants. The reverse is
only true for the antitonicity and positive homogeneity. To see this we give a counterexample for
the convex case. Suppose that Λ̃G(x) := u−1

(∑d
i=1 xi

)
and ηG(F ) := −u−1 (EP [u(F ) | G]),

where u : R → R is a strictly increasing and convex function. Then it can be easily ver-
ified that u−1 is strictly increasing and concave. Hence Λ̃G is a concave CAF and ηG is a
CBRM. Nevertheless, there are functions u such that ηG is not a convex CBRM, e.g. u(c) =
c1{c≤0} + ac1{c>0}, a > 1. According to Theorem 2.2.9 we get a CSRM ρG by composing ΛG
and ηG , which is explicitly given by

ρG(X) = −u−1

(
EP

[
d∑
i=1

Xi

∣∣∣∣∣ G
])

.
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It is obvious that ρG is convex. But since ηG is not convex, ρG cannot be risk-convex by Theo-
rem 2.2.9.

2.3 Proof of Theorem 2.2.9 and 2.2.11

Before we state the proofs of Theorems 2.2.9 and 2.2.11, we provide some auxiliary results.

Lemma 2.3.1. Let Λ̃G : Rd × Ω → R be a CAF and let H be a sub-σ-algebra of F such that
G ⊆ H ⊆ F . Then

ΛG (L∞d (H)) ⊆ L∞(H), (2.3.1)

and for every X,Y ∈ L∞(H) and α ∈ L∞(G) with 0 ≤ α ≤ 1 there is an F ∈ L∞(H) such
that

αΛG(X) + (1− α)ΛG(Y ) = ΛG(F1d).

In particular this implies that the image of ΛG is G-conditionally convex.
Conversely, we have that

L∞(H) ∩ Im ΛG ⊆ ΛG (L∞d (H)) .

Proof. Let X ∈ L∞d (H) and set F (ω) := Λ̃G (X(ω), ω), ω ∈ Ω. Since Λ̃G is a Carathéodory
map it follows that F is H-measurable, cf. Lemma 8.2.3 in Aubin and Frankowska (2009). Let
A := {ω ∈ Ω : Λ̃G (X(ω), ω) ≤ 0}. Then

‖F‖∞ =
∥∥∥Λ̃G (X(·), ·)

∥∥∥
∞
≤
∥∥∥Λ̃G (essinf X, ·)1A

∥∥∥
∞

+
∥∥∥Λ̃G (esssupX, ·)1AC

∥∥∥
∞

≤
∥∥∥Λ̃G (essinf X, ·)

∥∥∥
∞

+
∥∥∥Λ̃G (esssupX, ·)

∥∥∥
∞
<∞, (2.3.2)

where we used the boundedness condition Definition 2.2.4 (i) in the last step and where essinf X :=
(essinf X1, . . . , essinf Xd), and similarly for esssup. Hence, we conclude that F ∈ L∞(H).
Let X,Y ∈ L∞d (H) and α ∈ L∞(G) with 0 ≤ α ≤ 1. The rest of the proof is based on a mea-
surable selection theorem for which we need that the probability space is complete. However,
L∞d (Ω,H,P) and L∞d (Ω, Ĥ, P̂) are isometric isomorph, where (Ω, Ĥ, P̂) denotes the comple-
tion of (Ω,H,P). Thus for X and Y there exist respective X̂, Ŷ ∈ L∞d (Ĥ) and it is easily
verified that any representatives of the equivalence classes X̂ (Ŷ ) and X (Y ) only differ on a
P̂-nullset. Define

x := essinf

(
min

i=1,...,d

(
min(X̂i, Ŷi)

))
and x := esssup

(
max
i=1,...,d

(
max(X̂i, Ŷi)

))
.

Since both X̂, Ŷ are essentially bounded we have that x, x ∈ R. Moreover the random variable
G which is given for each ω ∈ Ω by

G(ω) := α(ω)Λ̃G (X(ω), ω) +
(
1− α(ω)

)
Λ̃G (Y (ω), ω) ,

is contained in an equivalence class in L∞(H) by the first part of the proof and thus we can find
a corresponding equivalence class Ĝ ∈ L∞(Ĥ). By isotonicity we have

Λ̃G (x1d, ω) ≤ Ĝ(ω) ≤ Λ̃G (x1d, ω) P̂-a.s.
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The continuity of the function R 3 x 7→ Λ̃G (x1d, ω) for each ω ∈ Ω implies that

Ĝ(ω) ∈
{

Λ̃G (x1d, ω) : x ∈ [x, x]
}

P̂-a.s.

Finally, we can apply Filippov’s theorem (see e.g. Aubin and Frankowska (2009) Theorem
8.2.10), that is there exists a Ĥ-measurable selection F̂ (ω) ∈ [x, x] such that

Ĝ(ω) = Λ̃G

(
F̂ (ω)1d, ω

)
P̂-a.s.

For this measurable selection F̂ we can find an F ∈ L∞(H) such that P̂(F̂ 6= F ) = 0. Hence
there exists an F ∈ L∞(H) such that

αΛG(X) + (1− α)ΛG(Y ) = ΛG(F1d).

For the last part of the proof let G ∈ Im ΛG ∩ L∞(H), then by definition there exists an
X ∈ L∞d (F) such that ΛG(X) = G. Thus by setting x := essinf(mini=1,...,dXi) and x :=
esssup(maxi=1,...,dXi) we have that

Λ̃G (x1d, ω) ≤ G(ω) ≤ Λ̃G (x1d, ω) a.s.

Moreover, since G is H-measurable, we obtain by a similar argumentation as above that there
exists aH-measurable F with x ≤ F ≤ x and ΛG(F1d) = G.

Lemma 2.3.2. Let Λ̃G be a conditional aggregation function. Then there exists a P-nullset N
such that if x, y ∈ Rd satisfy Λ̃G (x, ω) = Λ̃G (y, ω) a.s. it holds that Λ̃G (x, ω) = Λ̃G (y, ω) for
all ω ∈ NC , where NC denotes the complement of N .

Proof. Consider the sets B := {(x, y) ∈ Q2d : Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s.} and N(x,y) :=

{ω ∈ Ω : Λ̃G (x, ω) < Λ̃G (y, ω)} for (x, y) ∈ B. By definition N(x,y) is a P-nullset for all
(x, y) ∈ B, but since B has only countable many elements, the same holds true for the union
N :=

⋃
(x,y)∈B N(x,y).

Now consider x, y ∈ Rd such that Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s. We can always find sequences
(xn)n∈N, (yn)n∈N ∈ QN such that xn ↓ x and yn ↑ y for n → ∞. The isotonicity of Λ̃G
yields Λ̃G (xn, ω) ≥ Λ̃G (x, ω) ≥ Λ̃G (y, ω) ≥ Λ̃G (yn, ω) a.s., thus (xn, yn) ∈ B for all n ∈ N.
Therefore we get for all ω ∈ NC that

Λ̃G (x, ω) = lim
n→∞

Λ̃G (xn, ω) ≥ lim
n→∞

Λ̃G (yn, ω) = Λ̃G (y, ω) ,

where we have used that Λ̃G (·, ω) is continuous for every ω ∈ Ω. As Λ̃G (x, ω) = Λ̃G (y, ω) a.s.
implies Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s. and Λ̃G (x, ω) ≤ Λ̃G (y, ω) a.s., the assertion follows.

Note that the P-nullset N in Lemma 2.3.2 is universal in the sense that it does not depend on
the pair (x, y) ∈ R2d.
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Proof of Theorem 2.2.9. For the rest of the proof let X,Y ∈ L∞d (F).
"⇐":
Suppose that Λ̃G : Rd×Ω→ R is a CAF with extended CAF ΛG : L∞d (F)→ L∞(F), and that
ηG : Im ΛG → L∞(G) is a CBRM which is constant on Λ̃G . Moreover, define the function

ρG : L∞d (F)→ L∞(G), X 7→ ηG (ΛG (X)) .

First we will show that ρG is antitone (and thus in particular antitone on constants): To this end,
let X ≥ Y . As Λ̃G (·, ω) is isotone for all ω ∈ Ω we know from (2.2.5) that also the extended
CAF is isotone, i.e. ΛG (X) ≥ ΛG (Y ). By the antitonicity of ηG we can conclude that

ρG (X) = ηG (ΛG (X)) ≤ ηG (ΛG (Y )) = ρG (Y ) .

Next we will show that there exists a realization of ρG with continuous paths and which fulfills
the risk-antitonicity. From (2.2.8) and Lemma 2.3.2 it can be readily seen that we can always
find a realization of ηG and a universal P-nullset N such that for all ω ∈ NC

ηG (ΛG (x) , ω) = −Λ̃G (x, ω) for all x ∈ Rd. (2.3.3)

Given this realization of ηG we consider in the following the realization ρG(·, ·) of ρG given by

ρG (X,ω) := ηG (ΛG (X) , ω) , X ∈ L∞d (F), ω ∈ Ω.

The function ρ̃G : Rd × Ω → R; x 7→ ρG(x, ω) has continuous paths (a.s.) because Λ̃G
has continuous paths. As for the risk-antitonicity, let ρ̃G (X(ω), ω) ≥ ρ̃G (Y (ω), ω) a.s. By
rewriting this in terms of the decomposition, i.e.
ηG
(
ΛG (X(ω)) , ω

)
≥ ηG

(
ΛG (Y (ω)) , ω

)
, we realize by (2.3.3) that

Λ̃G (X(ω), ω) ≤ Λ̃G (Y (ω), ω) a.s. (2.3.4)

Note that our application of (2.3.3) relies on the fact that the nullsetN in (2.3.3) does not depend
on x ∈ Rd. As (2.3.4) is equivalent to ΛG (X) ≤ ΛG (Y ), we conclude that

ρG(X) = ηG(ΛG (X)) ≥ ηG(ΛG (Y )) = ρG(Y ),

where we used the antitonicity of ηG . Hence, we have proved that ρG is a CSRM.
Next we treat the special cases when ηG and/or Λ̃G satisfy some extra properties.
Risk-regularity: Suppose ηG is constant on constants. Then we have

ρG(X) = −ΛG (X) for all X ∈ L∞d (G),

and thus we obtain for the realization ρG (·, ·) that for all X ∈ L∞d (G)

ρG (X,ω) = −Λ̃G (X(ω), ω) a.s.

As above (2.3.3) implies that for all ω ∈ NC

−Λ̃G (X(ω), ω) = ηG (ΛG (X(ω)) , ω) = ρ̃G (X(ω), ω) .
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Risk-quasiconvexity/convexity: Suppose that ηG is quasiconvex. We show that ρG is risk-quasi-
convex. To this end, suppose there exist X,Y, Z ∈ L∞d (F) and an α ∈ L∞(G) with 0 ≤ α ≤ 1
such that

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

Then, as above, by using (2.3.3), it follows that

ΛG (Z) = αΛG (X) + (1− α)ΛG (Y ) .

Hence the quasiconvexity of ηG yields

ρG(Z) = ηG (ΛG (Z)) = ηG (αΛG (X) + (1− α)ΛG (Y ))

≤ ηG (ΛG (X)) ∨ ηG (ΛG (Y ))

= ρG(X) ∨ ρG(Y ).

Similarly it follows that ρG is risk-convex whenever ηG is convex.
Risk-positive homogeneity: Finally, if ηG is positively homogeneous, then it is straightforward
to see that also ρG is risk-positively homogeneous.
Properties on constants: Suppose that Λ̃G is concave or positive homogeneous, then it is an
immediate consequence of (2.3.3) that ρG is convex on constants or positive homogeneous on
constants, resp.
"⇒":
Let ρG (·, ·) denote a realization of the CSRM ρG such that ρ̃G has continuous paths and the
risk-antitonicity holds. We define the function Λ̂G : Rd × Ω→ R by

Λ̂G (x, ω) := −ρ̃G (x, ω) . (2.3.5)

We show that Λ̂G(·, ω) is a DAF for almost all ω ∈ Ω, i.e. that it is isotone and continuous. The
continuity is obvious by (2.3.5). For the isotonicity consider the sets B :=

{
(x, y) ∈ Q2d : x ≥

y
}

and A(1)
(x,y) := {ω ∈ Ω : Λ̂G (x, ω) < Λ̂G (y, ω)} for (x, y) ∈ B. Since ρG is antitone on

constants we obtain that A(1) :=
⋃

(x,y)∈B A
(1)
(x,y) is a P-nullset. Moreover, let A(2) denote the

P-nullset on which Λ̂G has discontinuous sample paths. Consider x, y ∈ Rd such that x ≥ y,
and let (xn, yn) ∈ BN be a sequence which converges to (x, y) for n→∞. Then we get for all
ω ∈

(
A(1) ∪A(2)

)C
that

Λ̂G (x, ω) = lim
n→∞

Λ̂G (xn, ω) ≥ lim
n→∞

Λ̂G (yn, ω) = Λ̂G (y, ω) ,

and thus the paths Λ̂G (·, ω) are isotone a.s.
The fact that the paths Λ̂G (·, ω) are concave (positively homogeneous) a.s. whenever ρG is

convex on constants (positively homogeneous on constants) follows by a similar approximation
argument on the continuous paths which are concave (positively homogeneous) on Qd.

Given the above considerations, we choose a modification Λ̃G of Λ̂G such that Λ̃G(·, ω), is a
(concave/positively homogeneous) DAF for all ω ∈ Ω. Note that for Λ̃G relation (2.3.5) is only
valid a.s., that is there is a P-nullset N such that for all x ∈ Rd and ω ∈ NC

Λ̃G (x, ω) = −ρ̃G (x, ω) . (2.3.6)
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As −ρ̃G (x, ·) ∈ L∞(G) and thus also Λ̃G (x, ·) ∈ L∞(G) for all x ∈ Rd (note that N ∈ G),
we have shown that Λ̃G is indeed a CAF.

Next, we will construct a CBRM ηG : Im ΛG =: X → L∞(G) such that ρG = ηG ◦ ΛG where
ΛG is the extended CAF of Λ̃G . For F ∈ X we define

ηG(F ) := ρG(X), (2.3.7)

where X ∈ L∞d (F) is given by
ΛG (X) = F. (2.3.8)

Since F ∈ X the existence of such X is always ensured. By (2.3.8) and (2.3.7) we obtain the
desired decomposition

ηG (ΛG (X)) = ρG(X),

if ηG is well-defined. In order to show the latter, let X(1), X(2) ∈ L∞d (F) such that

ΛG

(
X(1)

)
= ΛG

(
X(2)

)
= F,

which by definition of ΛG in (2.2.4) can be rewritten as

Λ̃G

(
X(1)(ω), ω

)
= F (ω) = Λ̃G

(
X(2)(ω), ω

)
a.s.

By (2.3.6) this can be restated in terms of ρ̃G (·, ·) as

ρ̃G

(
X(1)(ω), ω

)
= ρ̃G

(
X(2)(ω), ω

)
a.s.

Now the risk-antitonicity of ρG yields ρG
(
X(1)

)
= ρG

(
X(2)

)
, so ηG in (2.3.7) is indeed well-

defined.
Next we will show that ηG is a CBRM. For this purpose, let in the following F,G ∈ X and

X,Y ∈ L∞d (F) be such that ΛG (X) = F , ΛG (Y ) = G.
Antitonicity: Assume F ≥ G. Then, by (2.3.6) for almost every ω ∈ Ω

−ρ̃G (X(ω), ω) = Λ̃G (X(ω), ω) = F (ω) ≥ G(ω) = Λ̃G (Y (ω), ω) = −ρ̃G (Y (ω), ω) .

Hence, risk-antitonicity ensures that ρG(X) ≤ ρG(Y ). But by (2.3.7) this is equivalent to
ηG(F ) ≤ ηG(G).
Constancy on Λ̃G : Constancy on Λ̃G is an immediate consequence of (2.3.6)-(2.3.8), since for
x ∈ Rd

ηG (ΛG (x)) = ρG(x) = −ΛG (x) .

Hence, the decomposition (2.2.9) is proved.

Uniqueness: Let η(1)
G , η

(2)
G be CBRM’s and Λ̃

(1)
G , Λ̃

(2)
G be CAF’s such that η(1)

G and η
(2)
G are

constant on Λ̃
(1)
G and Λ̃

(2)
G resp. and it holds that

η
(1)
G

(
Λ

(1)
G (X)

)
= ρG(X) = η

(2)
G

(
Λ

(2)
G (X)

)
for all X ∈ L∞d (F).
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Then it follows from the constancy on the respective CAF’s that for all x ∈ Rd Λ
(1)
G (x) =

Λ
(2)
G (x), i.e.

Λ̃
(1)
G (x, ω) = Λ̃

(2)
G (x, ω) a.s. (2.3.9)

Note that by a similar argumentation as in the proof of Lemma 2.3.2 (2.3.9) holds true on a
universal P-nullset N for all x ∈ Rd. In order to show that Λ

(1)
G and Λ

(2)
G are not only equal

on constants let X ∈ L∞d (F). Then X can be approximated by simple F-measurable random
vectors, i.e. there exists a sequence (Xn)n∈N with Xn → X P-a.s. and Xn =

∑kn
i=1 x

n
i 1A

n
i

for
all n ∈ N, where xni ∈ R and Ani ∈ F , i = 1, ..., kn are disjoint sets such that P(Ani ) > 0 and
P
(⋃kn

i=1A
n
i

)
= 1. Denote by M the P-nullset on which (Xn)n∈N does not converge. Then by

the continuity property of a CAF and (2.3.9) we have for all ω ∈ (N ∪M)C that

Λ̃
(1)
G (X(ω), ω) = Λ̃

(1)
G

(
lim
n→∞

Xn(ω), ω
)

= lim
n→∞

Λ̃
(1)
G (Xn(ω), ω)

= lim
n→∞

kn∑
i=1

Λ̃
(1)
G (xni , ω)1Ani (ω) = lim

n→∞

kn∑
i=1

Λ̃
(2)
G (xni , ω)1Ani (ω)

= Λ̃
(2)
G (X(ω), ω) ,

and thus Λ
(1)
G (X) = Λ

(2)
G (X) for all X ∈ L∞d (F). Finally for all F ∈ Im Λ

(1)
G = Im Λ

(2)
G there

is an X ∈ L∞d (F) such that Λ
(1)
G (X) = Λ

(2)
G (X) = F and hence

η
(1)
G (F ) = ρG(X) = η

(2)
G (F ).

Next we consider the cases when ρG fulfills some additional properties.
Constant on constants: Let ρG be risk-regular. Then (2.3.6) implies that for all X ∈ L∞d (G)

ρG (X,ω) = ρ̃G (X(ω), ω) = −Λ̃G (X(ω), ω) a.s.

and hence ρG(X) = −ΛG (X). Let now F ∈ X ∩ L∞(G). By the definition of X and
Lemma 2.3.1 we know that there exists a X ∈ L∞d (G) such that ΛG (X) = F . We thus ob-
tain by (2.3.7) that

ηG(F ) = ρG(X) = −ΛG (X) = −F.

Quasiconvexity/convexity: Let ρG be risk-quasiconvex. Let α ∈ L∞(G) with 0 ≤ α ≤ 1 and
set H := αF + (1 − α)G, where F,G ∈ X , and X,Y ∈ L∞d (F) are such that ΛG (X) = F ,
ΛG (Y ) = G. Note that since X is G-conditionally convex, H ∈ X and thus there exists a
Z ∈ L∞d (F) with ΛG (Z) = H . Then

Λ̃G (Z(ω), ω) = H(ω) = α(ω)F (ω) + (1− α(ω))G(ω)

= α(ω)Λ̃G (X(ω), ω) + (1− α(ω))Λ̃G (Y (ω), ω) a.s.

Thus it follows by (2.3.6)

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) + (1− α(ω))ρ̃G (Y (ω), ω) a.s.,
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which in conjunction with the risk-quasiconvexity of ρG results in

ηG(H) = ρG(Z) ≤ ρG(X) ∨ ρG(Y ) = ηG(F ) ∨ ηG(G).

Similarly one shows that ηG is convex if ρG is risk-convex.
Positive homogeneity: Let ρG be risk-positively homogeneous. Further let F ∈ X , X ∈ L∞d (F)
with ΛG (X) = F , and let α ∈ L∞(G) with α ≥ 0 and αF =: G ∈ X . Then there is also a
Y ∈ L∞d (F) with ΛG (Y ) = G. Moreover, Λ̃G (Y (ω), ω) = α(ω)Λ̃G (X(ω), ω) a.s. Hence,
by (2.3.6) in conjunction with the risk-positive homogeneity we obtain that ρG(Y ) = αρG(X).
Consequently,

ηG(αF ) = ρG(Y ) = αρG(X) = αηG(F ).

Proof of Theorem 2.2.11. As ρG is risk-antitone and antitone on constants, it is obvious that
ρG also fulfills (2.2.10). Furthermore, we already showed, based on the antitonicity on con-
stants and continuous paths requirements, in the proof of Theorem 2.2.9 that ω 7→ ρ̃G (x, ω) (=
−Λ̂G(x, ω)) has almost surely antitone paths. Hence, we have for all X,Y ∈ L∞d (F) with X ≥
Y , that ρ̃G (X(ω), ω) ≤ ρ̃G (Y (ω), ω) a.s. and thus the risk-antitonicity yields ρG(X) ≤ ρG(Y ).
Hence we conclude that ρG is antitone.
For the converse implication let ρG be antitone and let ρG (·, ·) be a realization with corre-
sponding restriction ρ̃G (·, ·) which fulfills (2.2.10). The antitonicity on constants is an im-
mediate consequence of the much stronger antitonicity on L∞ of ρG . By reconsidering the
proof of Theorem 2.2.9, we observe that we may replace the risk-antitonicity by (2.2.10) when
extracting the aggregation function. Hence, (2.2.10) is sufficient to construct a modification
of ρG (·, ·) and thus of ρ̃G (·, ·) such that ρ̃G (·, ·) has surely continuous and antitone paths.
Therefore, suppose that ρG (·, ·) is already this realization. Now let X,Y ∈ L∞d (F) with
ρ̃G (X(ω), ω) ≤ ρ̃G (Y (ω), ω) a.s. According to Lemma 2.3.1 with Λ̃G as in (2.3.6) there are
F,G ∈ L∞(F) such that

ρ̃G (F (ω)1d, ω) = ρ̃G (X(ω), ω) ≤ ρ̃G (Y (ω), ω) = ρ̃G (G(ω)1d, ω) a.s.

As the paths of ρ̃G (·, ·) are antitone, it can be readily seen that F ≥ G on A := {ω ∈ Ω :
ρ̃G (X(ω), ω) < ρ̃G (Y (ω), ω)}. Now set H := G1A + F1AC ∈ L∞(F). Then F ≥ H and
ρ̃G (Y (ω), ω) = ρ̃G (H(ω)1d, ω) a.s. Hence it follows from (2.2.10) and the antitonicity of ρG
that

ρG(X) = ρG(F1d) ≤ ρG(H1d) = ρG(Y ).

This completes the proof of the first equivalence in Theorem 2.2.11.
Let ρG be risk-positive homogeneous and positive homogeneous on constants. Since all re-

quirements of Theorem 2.2.9 are met, we also have that Rd 3 x 7→ ρ̃G (x, ω) is almost surely
positive homogeneous. Therefore we obtain for all X ∈ L∞d (F) and α ∈ L∞(G) with α ≥ 0
that

ρ̃G (α(ω)X(ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s.,

and hence the risk-positive homogeneity implies ρG(αX) = αρG(X) which is positive homo-
geneity of ρG .
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Conversely, if ρG is positive homogeneous, then it is also positive homogeneous on constants
as well as for almost all paths of the realization. Hence, if there exists X,Z ∈ L∞d (F) and
α ∈ L∞(G) with α ≥ 0 such that

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s.,

then the right-hand-side equals ρ̃G (α(ω)X(ω), ω) a.s. Using (2.2.10) and the positive homo-
geneity of ρG we conclude that

ρG(Z) = ρG(αX) = αρG(X).

Let ρG be risk-convex and convex on constants. First we will show that risk-convexity is
equivalent to the following property: If for X,Y, Z ∈ L∞d (F) there exists a α ∈ L∞(G) with
0 ≤ α ≤ 1 such that

ρ̃G (Z(ω), ω) ≤ α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s., (2.3.10)

then ρG(Z) ≤ αρG(X) +
(
1− α

)
ρG(Y ).

On the one hand, it is obvious that (2.3.10) implies risk-convexity. On the other hand, let Z(1) ∈
L∞d (F) such that

ρ̃G

(
Z(1)(ω), ω

)
≤ α(ω)ρ̃G (X(ω), ω) +

(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

We know by Lemma 2.3.1 that there is a Z(2) ∈ L∞d (F) such that

α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) = ρ̃G

(
Z(2)(ω), ω

)
a.s.

By the risk-convexity we obtain that

ρG(Z(2)) ≤ αρG(X) + (1− α)ρG(Y ).

As risk-antitonicity implies ρG(Z(1)) ≤ ρG(Z(2)), we conclude that risk-convexity and (2.3.10)
are equivalent. Next we show the convexity of ρG . To this end let X,Y ∈ L∞d (F) and α ∈
L∞(G) with 0 ≤ α ≤ 1. Once again we can reason as in the proof of Theorem 2.2.9 that
Rd 3 x 7→ ρ̃G (x, ω) is almost surely convex, because ρG has continuous paths and is convex on
constants. Thus we have that

ρ̃G ((αX + (1− α)Y )(ω), ω) ≤ α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

Now (2.3.10) implies that

ρG(αX + (1− α)Y ) ≤ αρG(X) + (1− α)ρG(Y ),

which is the desired convexity of ρG .
The other assertion concerning risk-quasiconvexity follows in a similar way.
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2.4 Examples

Example 2.4.1. As already mentioned in the introduction a typical aggregation function when
dealing with multidimensional risks is

Λ̃sum(x) =
d∑
i=1

xi, x ∈ Rd.

However, such an aggregation rule might not always be reasonable when measuring systemic
risk. The main reason for this is the limited transferability of profits and losses between insti-
tutions of a financial system. An alternative popular aggregation function which does not allow
for a subsidization of losses by other profitable institutions is given by

Λ̃loss(x) =
d∑
i=1

−x−i , x ∈ Rd,

where x−i = −min{xi, 0}; see Example 2.4.8. Obviously, both Λ̃sum and Λ̃loss are DAF’s which
are additionally concave and positive homogeneous.

Example 2.4.2 (Countercyclical regulation). Risk charges based on systemic risk measures typi-
cally will increase drastically in a distressed market situation which might even worsen the crisis
further. Therefore one might argue that, for instance in a recession where also the real economy
is affected, the financial regulation should be relaxed in order to stabilize the real economy, cf.
Brunnermeier and Cheridito (2014). In our setup we can incorporate such a dynamic counter-
cyclical regulation as follows:

Let (Ω,F , (Ft)t∈{0,...,T},P) be a filtered probability space, where FT = F . Let (x, y) ∈ R2d

be the profits/losses of the financial system, where the first d components x are the profits/losses
from contractual obligations with the real economy and y are the profits/losses from other obli-
gations. Moreover let Y (t), t = −1, 0, ..., T − 1 be the gross domestic product (GDP) process
with Y (t) ∈ L∞(Ft), t = 0, ..., T − 1, and Y (−1) ∈ R+\{0}. Suppose that the regulator
sees the economy in distress at time t, if the GDP process Y (t) is less than (1 + θ)Y (t− 1) for
some θ ∈ R. We assume that in those scenarios the regulator is interested to lower the regulation
in order to give incentives to the financial system for the supply of additional credit to the real
economy. This policy might lead to the following dynamic conditional aggregation function
from the perspective of the regulator

Λ̃
(
(x, y), t, ω) := −

d∑
i=1

(
α1A(t)(ω) + 1A(t)C (ω)

)
x−i + y−i , t = 0, ..., T − 1,

where α ∈ [0, 1) and A(t) = {Y (t) ≤ (1 + θ)Y (t− 1)} for t = 0, ..., T − 1. Obviously,
Λ̃
(
(x, y), t, ω) is a CAF with respect to Ft which is positive homogeneous and concave.

Example 2.4.3 (Too big to fail). In this example we will consider a dynamic conditional aggre-
gation function which depends on the relative size of the interbank liabilities. For instance, Cont
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et al. (2013) find that for the Brasilian banking network there is a strong connection between the
size of the interbank liabilities of a financial institution and its systemic importance. This fact is
often quoted as ’too big to fail’.

Let (Ω,F , (Ft)t∈{0,...,T},P) be a filtered probability space, where FT = F . Moreover, let
Li(t) ∈ L∞(Ft) denote the sum of all liabilities at time t of institution i ∈ {1, . . . , d} to any
other banks. Then

αi(t) :=
Li(t)∑d
j=1 Lj(t)

, t = 0, ..., T − 1,

is the relative size of its interbank liabilities. Now consider the following conditional extension
of an aggregation function which was proposed in Brunnermeier and Cheridito (2014):

Λ̃BC(x, t, ω) =
d∑
i=1

−αi(t, ω)x−i + βi(θi − xi)−, t = 0, ..., T − 1,

where β, θ ≥ 0. Firstly, this conditional aggregation function always takes losses into consider-
ation, whereas profits of a financial institution i are only accounted for if they are above a firm
specific threshold θi. Secondly, profits are weighted by the deterministic factor β and the losses
are weighted proportional to the liability size of the corresponding financial institution at time
t. Therefore losses from large institutions, which are more likely to be systemically relevant,
contribute more to the total risk.
Λ̃BC(·, t, ·) is a CAF which, however, in general is neither quasiconvex nor positively homoge-
neous as it may be partly flat depending on θ.

Example 2.4.4. Suppose that the regulator of the financial system has certain preferences on
the distribution of the total loss amongst the financial institutions. For instance he might prefer
a situation when a number of financial institutions face a relatively small loss each in front of a
situation in which one financial institution experiences a relatively large loss. Such a preference
can be incorporated by the following aggregation function

Λ̃exp(x) =

d∑
i=1

−x−i 1{xi>θi} +

(
1

γi

(
1− eγi(x

−
i +θi)

)
+ θi

)
1{xi≤θi},

where θi ≤ 0 and γi > 0 for i = 1, ..., d. That is, if the losses of firm i exceed a certain threshold
θi, e.g. a certain percentage of the equity value, then the losses are accounted for exponentially.

Example 2.4.5 (Stochastic discount). Suppose thatD ∈ L∞(F) is some G-measurable stochas-
tic discount factor. A typical approach to define monetary risk measurement of some future risk
is to consider the discounted risks. Consider any (conditional) aggregation function Λ̃, which
does not discount in aggregation, such as Λ̃sum, Λ̃loss, or Λ̃BC, etc. Then the discounted monetary
aggregated risk is DΛ̃(X). If Λ̃ is positively homogeneous, then DΛ̃(X) = Λ̃(DX) which is
the aggregated risk of the discounted system DX . However, if Λ̃ is not positively homogeneous
- such as Λ̃BC or Λ̃exp - then the discounted aggregated risk can only be formulated in terms of
the conditional aggregation function

Λ̃G (x, ω) := Λ̃(x)D(ω).
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Example 2.4.6 (CoVaR). In this example we will consider the CoVaR proposed in Adrian and
Brunnermeier (2016); see (2.1.2). To this end, we first recall the (conditional) Value at Risk: We
denote the Value at Risk at level q ∈ (0, 1) by

VaRq(F ) = − inf
x∈R
{P(F ≤ x) > q}.

Furthermore, the conditional VaR at level q ∈ (0, 1) is defined as

VaRq(F |G) := − essinf
α∈L∞(G)

{
P
(
F ≤ α

∣∣ G) > q
}
,

c.f. Föllmer and Schied (2011). The conditional VaR is positive homogeneous, antitone, and
constant on constants. Thus it is a CBRM which is constant on every possible CAF. Note that, as
is well-known for the unconditional case, the conditional VaR is not quasiconvex. By composing
VaRq(·|G) with a CAF Λ̃G we obtain a CSRM

ρG(X) = VaRq (ΛG(X)| G) , X ∈ L∞d (F), (2.4.1)

which is risk-positive homogeneous and risk-regular.
Now we consider the case whereX represents a financial system and the CAF in (2.4.1) is Λ̃sum.
Moreover consider the sub-σ-algebra G := σ(A) of F , where A := {Xj ≤ −VaRq(Xj)} for a
fixed j ∈ {1, ..., d}. Then the CSRM ρG(X) from (2.4.1) evaluated in the event A equals

VaRq

(
d∑
i=1

Xi

∣∣∣∣∣ {Xj ≤ −VaRq(Xj)}

)
(2.4.2)

which is the CoVaR proposed in Adrian and Brunnermeier (2016).
As we have already pointed out in the introduction, it is more reasonable to use an aggregation
function which incorporates an explicit contagion structure. We will modify the CoVaR in this
direction in Example 2.4.9.

Example 2.4.7 (CoES and SES). The conditional Average Value at Risk at level q ∈ (0, 1) is
given by

AVaRq(F |G) := esssup
Q∈Pq

EQ [−F | G] , F ∈ L∞(F),

where Pq is the set of probability measures Q on (Ω,F) which are absolutely continuous w.r.t.
P such that Q|G = P and dQ

dP ≤ 1/q a.s. AVaRq(·|G) is a convex and positive homogeneous
CBRM. Notice that the conditional Average Value at Risk can also be written as

AVaRq(F |G) =
1

q
EP
[
(F + VaRq(F |G))−

∣∣ G]+ VaRq(F |G), (2.4.3)

cf. Föllmer and Schied (2011), where VaRq(·|G) is discussed in Example 2.4.6.
As in Example 2.4.6 let G = σ (A) with A = {Xj ≤ −VaRq(Xj)} for a fixed j ∈ {1, ..., d}
and q ∈ (0, 1). Using (2.4.3), if

P(F ≤ −VaRq(F |G)| G) = q,
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then

AVaRq(F |G) = EP [−F | {F ≤ −VaRq(F |A)} ∩A]1A

+ EP
[
−F | {F ≤ −VaRq(F |AC)} ∩AC

]
1AC . (2.4.4)

Therefore, ρG(X) = AVaRq(Λ̃sum(X)|G) evaluated in the event A equals

EP

[
−

d∑
i=1

Xi

∣∣∣∣∣
{

d∑
i=1

Xi ≤ −VaRq

(
d∑
i=1

Xi

∣∣∣∣ A
)}
∩A

]
.

In other words, ρG(X)|A is the expected loss of the financial system X given that the loss Xj of
institution j is below VaRq(Xj) and simultaneously the loss of the system is below its CoVaR
VaRq(

∑d
i=1Xi|A). (2.4.4) corresponds to the conditional expected shortfall (CoES) proposed

in Adrian and Brunnermeier (2016).

Now we change the point of view and consider the losses of a financial institution Xj given that
the financial system is in distress, that is if

d∑
i=1

Xi ≤ −VaRq

(
d∑
i=1

Xi

)
.

Let G := σ
(
{
∑d

i=1Xi ≤ −VaRq(
∑d

i=1Xi)}
)
. By composing the DAF Λ̃(x) := xj and the

CBRM ηG(F ) = EP [−F | G] we obtain a convex and positive homogeneous CSRM

ρG(Y ) = EP [Yj | G] , Y ∈ L∞d (F).

ρG(X) evaluated on the event {
∑d

i=1Xi ≤ −VaRq(
∑d

i=1Xi)} which is the so-called systemic
expected shortfall (SESj) introduced in Acharya et al. (2017).

Example 2.4.8 (DIP). In this example we recall the distress insurance premium (DIP) proposed
by Huang et al. (2012). It is closely related to CoES and SES discussed in Example 2.4.7.
However, instead of Λ̃sum, the aggregation function is Λ̃loss, that is losses cannot be subsidized
by profits from the other institutions. The event representing the financial system in distress
is {Λloss(X) ≤ θ} for a fixed θ ∈ R, i.e. the financial system is in distress if the total losses
fall below a certain threshold θ. Let G := σ ({Λloss(X) ≤ θ}). As a CBRM choose ηG(F ) =
EQ [−F | G], where Q is a risk neutral measure which is equivalent to P. The resulting positive
homogeneous and convex CSRM evaluated in {Λloss(X) ≤ θ} is given by

EQ

[
d∑
i=1

Y −i

∣∣∣∣∣ Λloss(X) ≤ θ

]
, Y ∈ L∞d (F),

which corresponds to the DIP for Y = X . Since the expectation is under a risk neutral measure
it can be interpreted as the premium of an aggregate excess loss reinsurance contract.
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Example 2.4.9 (Contagion model). In this example we want to specify an aggregation function
that explicitly models the default mechanisms in a financial system and perform a small simula-
tion study. For this purpose we will assume the simplified balance sheet structure given in Table
2.4.1 for each of the d financial institutions. Let X ∈ L∞d (F) be the vector of equity values
of the financial institutions after some market shock on the external assets/liabilities. Moreover
let Π be the relative liability matrix of size d × d, i.e. the i, jth entry represents the proportion
of the total interbank liabilities of institution i which it owes to institution j. We denote the
d-dimensional vector of the total interbank liabilities by L.

Assets Liabilities

External Assets
Equity

External Liabilities
Interbank Assets

Interbank Liabilities

Table 2.4.1: Stylized balance sheet.

We now consider an extension of the aggregation function proposed by Chen et al. (2013)
which is based on the default model in Eisenberg and Noe (2001):
For a deterministic vector of equity values x ∈ Rd we define the DAF Λ̃CM1 by the optimization
problem:

Λ̃CM1(x) := max
y,b∈Rd+

d∑
i=1

−
(
xi + bi − (Π>y)i

)−
− γbi (2.4.5)

subject to y = max
(

min
(
Π>y − x− b, L

)
, 0
)
, (2.4.6)

where yi is the amount by which financial institution i decreases its total liabilities to the re-
maining institutions and b ∈ Rd represents the option of an external participant, e.g. a lender of
last resort, to inject a capital amount bi into institution i. The cost of the injected capital of the
lender of last resort is modeled by the parameter γ > 1.
There are two possible ways a financial institution can default: First it might default due to the
market shock right at the beginning (xi < 0). Secondly, if it still has sufficient capital endow-
ment after the market shock, the losses from other institutions might force it into default by
contagion effects (xi − (Π>y)i < 0). The constraint (2.4.6) expresses that if a financial institu-
tion defaults, it can either reduce its payments to other institutions or the lender of last resort has
to inject capital to cover the default losses. As opposed to the framework in Chen et al. (2013)
we are able to incorporate the limited liability assumption (y ≤ L) proposed in Eisenberg and
Noe (2001). Furthermore the lender of last resort will only inject capital into a financial institu-
tion as long as the benefit from preventing further contagion exceeds the costs of the injection
of the lender of last resort.
It can be readily seen that Λ̃CM1 is isotone and continuous. The aggregation function Λ̃CM1
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given in (2.4.5) is deterministic. One possible extension within our framework is now to con-
sider conditional modifications of Λ̃CM1. For example, if there exists only partial information or
uncertainty about the future of the interbank liability structure then the relative liability matrix
Π(ω) and/or the total interbank liabilities L(ω) might be modeled stochastically. In this case it
can be easily seen that the corresponding aggregation function is a CAF.

We will complete this example by employing the aggregation function Λ̃CM1 in a small sim-
ulation study. The simulation serves illustration purposes only and does not have the objective
to represent a real world financial system. We begin with the construction of network with 10
institutions as a realization of an Erdös-Rényi graph with success probability p = 0.35, that is
there exists a directed edge between institution i and j with a probability of 35% independent of
the other connections. Furthermore we assume that the exposures between financial institutions
follow a half-normal distribution. So far we have only knowledge about the size of the interbank
assets/liabilities. For the remaining parts of the balance sheet (see Table 2.4.1) we assume that
the value of equity is a fixed proportion of the total assets and that the external assets/liabilities
are chosen such that the balance sheet balances out. The resulting financial system can be found
in Figure 2.4.1.
In the following we want to investigate the impact on the financial system if the institutions are
exposed to a shock on their external, i.e. non-interbank, assets and liabilities. For this purpose
we add a shock to the initial equity which is normally distributed with mean zero and a standard
deviation which is proportional to the financial institutions external assets/liabilities. The single
shocks are positively correlated with ρ = 0.1.
In Table 2.4.2 we list some comparative statistics of the financial system for 30’000 shock sce-
narios and for different costs of the regulator. The first two rows consider the CSRM’s obtained
by composing the aggregation function Λ̃CM1 with the negative expectation and the VaR at level
5%, resp. Note that we also included the asymptotic case of γ → ∞, which corresponds to the
situation in which the regulator does not intervene.

γ 1.6 2.6 ’∞’

−E [ΛCM1(X)] 70.62 88.00 109.30

VaR0.05(ΛCM1(X)) 213.34 291.59 442.45∑
bi 23.01 10.67 0.00∑
x−i 52.33

Initially defaulted banks 2.57

Defaulted banks after contagion 2.87 3.25 3.58

Table 2.4.2: Statistics of the financial system for 30’000 shock scenarios.

We observe that with an increasing γ the regulator is less willing to inject capital and thus the
contagion effects increase which results in a higher risk in terms of the expectation and the Value
at Risk. Moreover without a regulator on average round about one financial institution defaults
due to contagion effects.
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Figure 2.4.1: Exemplary financial system.

In the next step we want to investigate the systemic importance of the single institutions. For
this purpose we modify the CoVaR in Example 2.4.6, that is, instead of the summing the losses
we use the more realistic CAF Λ̃CM1. Thus we define for a q ∈ (0, 1):

CoVaRjq := VaRq (ΛCM2(X)|Xj ≤ −VaRq(Xj)) , j = 1, ..., d,

where

Λ̃CM2(x) := max
y,b∈Rd+

d∑
i=1

−yi − γbi

subject to y = max
(

min
(
Π>y − x− b, L

)
, 0
)
.

The difference between Λ̃CM2 and Λ̃CM1 is that losses in case of a default are only taken into
consideration up to the total interbank liabilities of this institution, i.e. only the losses which
spread into the system are taken into account. For example consider an isolated institution in
the system which has a huge exposure to the outside of the system, then in order to identify
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systemically relevant institution it is not meaningful to aggregate the losses from those expo-
sures, nevertheless from the perspective of the total risk of the system those losses should also
contribute as it was done in our prior study. As for Λ̃CM1 it can be easily seen that Λ̃CM2 is a
CAF. The results for this risk-consistent systemic risk measures CoVaRjq, j = 1, ..., d can be
found in Table 2.4.3. We observe that the systemic importance is always a trade-off between the

γ
=

2.
6 FI j 2 3 6 4 7 1 10 9 5 8

CoVaRj0.1 266.94 297.28 298.49 308.61 320.58 322.56 332.94 355.23 362.27 367.68

γ
=
∞ FI j 2 4 3 7 9 6 1 10 8 5

CoVaRj0.1 397.73 419.11 423.18 459.33 471.81 473.61 481.40 548.21 563.60 601.09

FI j 2 6 10 3 1 7 5 9 8 4

-VaR0.1(Xj) 13.30 -7.67 -15.05 -17.01 -20.69 -22.98 -26.89 -30.48 -32.11 -33.41

FI j 4 3 7 9 1 6 2 10 8 5

Lj 34 63 66 69 147 171 227 255 256 320

Table 2.4.3: Systemic importance ranking based on CoVaRj0.1.

possibility of high downward shocks and the ability to transmit them. For instance institution 2
can transfer losses up to 227, but it is also the institution which is the least exposed to the market,
which makes it also the least systemic important institution. Contrarily institution 4 is the most
exposed institution, but does not have the ability to transmit those losses which also results in a
low position in the systemic importance ranking. Finally institution 5 or 8 are very vulnerable
to the market and have the largest total interbank liabilities and are thus identified as the most
systemic institutions.

After measuring the total risk of this financial system and identifying the most systemic insti-
tutions, we want to investigate if the introduction of a central counterparty (CCP) will lower the
overall risk and how the CCP should be capitalized. The CCP is a new institution in the system
which clears centrally all exposures in system, i.e. it is the only counterparty for the financial
institutions. Furthermore all interbank assets and liabilities with a CCP are netted. The resulting
financial system can be found in Figure 2.4.2.

By construction the CCP has no initial capital endowment and thus if a debtor bank of the
CCP defaults this loss is immediately transferred to the creditor banks of the CCP. Therefore
the creditor banks should make an upfront payment to the CCP in terms of a percentage αA of
their assets with the central counterparty. This payment can also be interpreted as the premium
for credit insurance up to the total deposits. Now the question arises, if there is an optimal
contribution αA in terms of the aggregation function Λ̃CM1. Since the creditor banks of the cen-
tral counterparty have no interbank liabilities, their losses would not be considered by the CAF
Λ̃CM2. This in turn implies that the optimal contribution scheme is to transfer all of the creditors’
equity to the central counterparty. To study the effect of the central counterparty, we assume that
the regulator is only rarely intervening. Note that the absence of the regulator in this model is
already achieved by choosing γ > 3. The results for VaR0.05(ΛCM1(X)) and −EP [ΛCM1(X)]
for 30’000 scenarios and for different values of αA can be found in Figure 2.4.3. We observe
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Figure 2.4.2: Financial system from Figure 2.4.1 with central counterparty
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Figure 2.4.3: Statistics of ΛCM1 for different creditor bank contribution percentages and γ = 2.9

that there is an optimal contribution to the CCP which reduces the average risk significantly,
whereas in extreme scenarios like the 5% quantile it is always optimal to transfer as much capi-
tal as possible to the CCP. The last observation is due to the fact that in those extreme scenarios
the CCP is hit by a huge shock from a debtor bank, thus by transferring money to the CCP this
loss will be reduced by the same amount whereas the losses on the creditor banks resulting from
the transfer are comparably small.





3 Strongly Consistent Multivariate

Conditional Risk Measures

3.0 Contributions of the thesis' author

This chapter is a joint work with Prof. Dr. Thilo Meyer-Brandis and Dr. Gregor Svindland. It has
been submitted to the journal Mathematics and Financial Economics. A preprint is also available
at http://www.fm.mathematik.uni-muenchen.de/download/publications/consist_syst_rm.pdf

This chapter studies strong consistency and its implication for multivariate conditional risk
measures. Section 3.2 contains the definitions of the objects of interest and preliminary results
on the function fρG which have solely been stated by H. Hoffmann. In Section 3.3 the author of
the thesis showed some minor results on strong consistency and translated the main decompo-
sition theorem of the preceding Chapter 2 in Proposition 3.3.11 to the new setup. In joint dis-
cussions Theorem 3.3.12 which connects decomposability and strongly consistency w.r.t. some
terminal risk measure, was established. For Section 3.4 H. Hoffmann, T. Meyer-Brandis and G.
Svindland discussed how the representation result in Föllmer (2014) can be extended to mul-
tivariate conditional risk measures, which yielded Theorem 3.4.5. Moreover, the three authors
talked a lot about the presentation of the implications of this result on the decomposition of the
risk measures involved. The corresponding results have mainly been proved by H. Hoffmann.
Finally, in Section 3.5 the theory of strong consistency of multivariate conditional risk measures
was extended to two-dimensional information structures. Here in particular H. Hoffmann proved
the Proposition 3.5.9 and the ensuing findings.

3.1 Introduction

Over the recent years the study of multivariate risk measures

ρ : L∞d (F)→ R, (3.1.1)

that associate a risk level ρ(X) to a d-dimensional vector X = (X1, ..., Xd) of random risk
factors at a given future time horizon T has increasingly gained importance. Here, L∞d (F)
denotes the space of d-dimensional bounded random vectors on a probability space (Ω,F ,P),
i.e. we restrict the analysis to bounded risk factors X for technical simplicity.

A natural extension of the static viewpoint of deterministic risk measurement in (3.1.1) is to
consider conditional risk measures which allow for risk measurement under varying information.
A conditional multivariate risk measure is a map

ρG : L∞d (F)→ L∞(G), (3.1.2)
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that associates to a d-dimensional risk factor a G-measurable bounded random variable, where
G ⊆ F is a sub-σ-algebra. We interpret ρG(X) as the risk of X given the information G. In
the present literature, conditional risk measures have mostly been studied within the framework
of univariate dynamic risk measures, where one adjusts the risk measurement in response to the
flow of information that is revealed when time elapses. For a good overview on univariate dy-
namic risk measures we refer the reader to Acciaio and Penner (2011) or Tutsch (2007). One
possible motivation to study conditional multivariate risk measures is thus the extension from
univariate to multivariate dynamic risk measures, and to study the question of what happens to
the risk of a system as new information arises in the course of time. In the context of multivari-
ate risk measures, however, also a second interesting and important dimension of conditioning
arises, besides dynamic conditioning: Risk measurement conditional on information in space in
order to identify systemic relevant structures. In that case G represents for example information
on the state of a subsystem, and one is interested in questions of the type: How is the overall
risk of the system affected, given that a subsystem is in distress? Or how is the risk of a single
institution affected, given the entire system is in distress? In Föllmer (2014) and Föllmer and
Klüppelberg (2014) the authors analyze such spatial conditioning in the context of univariate
conditional risk measures, so-called spatial risk measures. Another field of application where
these questions are important are the systemic risk measures, which measure the risk of a fi-
nancial network. In particular the systemic risk measures CoVaR of Adrian and Brunnermeier
(2016) or the systemic expected shortfall of Acharya et al. (2017) can be considered to be exam-
ples of conditional multivariate risk measures.

When dealing with families of conditional risk measures, a frequently imposed requirement
is that the conditional risk measurement behaves consistent in a certain way with respect to the
flow of information. In particular, in the literature on univariate dynamic risk measures most
often the so-called strong consistency is studied; c.f. Detlefsen and Scandolo (2005), Cheridito
et al. (2006), Cheridito and Kupper (2011), Kupper and Schachermayer (2009), Penner (2007).
Two univariate conditional risk measures ρG and ρH with corresponding σ-algebras G ⊆ H ⊆ F
are called strongly consistent if for all X,Y ∈ L∞(F)

ρH(X) ≤ ρH(Y ) =⇒ ρG(X) ≤ ρG(Y ), (3.1.3)

i.e. strong consistency states that if Y is riskier than X given the information H, then this risk
preference also holds under less information.

The purpose of this paper is to study the concept of strong consistency for multivariate condi-
tional risk measures. Note that the motivation and interpretation of strong consistency in (3.1.3)
remains perfectly meaningful when extending to the multivariate case. In analogy to the univari-
ate case we thus define strong consistency of two multivariate conditional risk measures ρG and
ρH with G ⊆ H ⊆ F as in (3.1.3) for any d-dimensional risk vectors X and Y in L∞d (F). As a
first main result we then prove that the members of any family of strongly consistent multivariate
conditional risk measures are necessarily of the following form:

ρG(X) = ηG (ΛG(X)) , (3.1.4)

where ηG : L∞(F) → L∞(G) is a univariate conditional risk measure, and ΛG : L∞d (F) →
L∞(F) is a (conditional) aggregation function. This subclass of multivariate conditional risk
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measures corresponds to the idea that we first aggregate the risk factors X and then evaluate
the risk of the aggregated values. In fact many prominent examples of multivariate conditional
risk measures are of type (3.1.4), for instance the Contagion Index of Cont et al. (2013) or the
SystRisk of Brunnermeier and Cheridito (2014) from the systemic risk literature. Chen et al.
(2013) were the first to axiomatically describe this intuitive type of multivariate risk measures
on a finite state space, and in Kromer et al. (2016) this has been extended to general Lp-spaces,
whereas the conditional framework was studied in Hoffmann et al. (2016). We also remark that
in Kromer et al. (2014) the authors study consistency of risk measures over time which can be
decomposed as in (3.1.4). However, their definition of consistency differs from ours in (3.1.3) as
they require consistency of the underlying univariate risk measure and the aggregation function
in (3.1.4) simultaneously.

A requirement on the strongly consistent family of multivariate conditional risk measures
we ask for here—which is automatically satisfied in the univariate case—is that it contains a
terminal risk measure ρF : L∞d (F) → L∞(F) under full information F . Such a terminal risk
measure is nothing but a statewise aggregation rule for the components of a risk X ∈ L∞d (F).
In the univariate case, if X ∈ L∞(F), there is of course no aggregation necessary. Indeed
letting the terminal risk measure correspond to the identity mapping, i.e. ρF = − id, we have
that any univariate risk measure ρG with G ⊆ F is strongly consistent with ρF by monotonicity,
so the existence of such a terminal risk measure which is strongly consistent with the other risk
measures of the family is no further restriction. In the truly multivariate case, however, it is very
natural that also under full information there is a rule for aggregating risk over the dimensions,
and the risk measures in the family should be consistent with this terminal aggregation rule. If
this is the case, we show, as already mentioned, that the members of the family are necessarily
of type (3.1.4). Indeed we show that by strong consistency the risk measures inherit a property
called risk-antitonicity in Hoffmann et al. (2016) from the terminal risk measure. This property
is the essential axiom behind allowing for a decomposition of type (3.1.4); see Theorem 3.3.12.

Along the path to this result we characterize strong consistency in terms of a tower property.
It is well-known, see e.g. Tutsch (2007), that for univariate conditional risk measures which
are normalized on constants (ηG(a) = −a for all a ∈ L∞(G)), strong consistency (3.1.3) is
equivalent to the following tower property:

ρG(X) = ρG
(
− ρH(X)

)
for all X ∈ L∞(F). (3.1.5)

The recursive formulation (3.1.5) is often more useful than (3.1.3) when analyzing strong consis-
tency. The formulation (3.1.5), however, cannot be extended in a straight forward manner to the
multivariate case. Firstly, note that (3.1.5) is not even well-defined in the multivariate case since
ρH(X) is not a d-dimensional random vector but a random number. Secondly, also in the uni-
variate case the equivalence (3.1.3) ⇔ (3.1.5) only holds for risk measures that are normalized
on constants, which in the monetary univariate case is implied up to a normalization by requiring
that this class of risk measures satisfy cash-additivity (ηG(X + a) = ηG(X)− a). For multivari-
ate risk measures there is neither a canonical extension of the concept of cash-additivity nor is it
clear that such a property is desirable at all. In a first step we therefore derive a generalization of
the recursive formulation (3.1.5) of strong consistency for not necessarily cash-additive multi-
variate risk measures. Indeed, under some typical regularity assumptions, one of our first results
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is that two multivariate conditional risk measures ρG and ρH with G ⊆ H ⊆ F are strongly
consistent if and only if for all X ∈ L∞d (F)

ρG(X) = ρG
(
f−1
ρH (ρH(X))1d

)
, (3.1.6)

where 1d is a d-dimensional vector with all entries equal to 1, and f−1
ρH is the (well-defined)

inverse of the function fρH associated to ρH given by

fρH : L∞(H)→ L∞(H);α 7→ ρH(α1d). (3.1.7)

The map fρH describes the risk of a system where each component is equipped with the same
amount of (H-constant) cash α. Note that if ρH is a univariate risk measure that is normalized
on constants then fρH = − id is minus the identity map and (3.1.6) reduces to (3.1.5). In this
sense, for a multivariate risk measure ρH the generalization of the normalization on constants
property that is suited for our purposes is the requirement fρH = − id. Further, we remark that
one can always "normalize" a given conditional risk measure ρH by putting

ρ̄H(X) := −f−1
ρH ◦ ρH(X). (3.1.8)

Then ρ̄H is a multivariate conditional risk measure with fρ̄H = − id.
After studying strong consistency for general families of multivariate conditional risk mea-

sures, we move on to give a characterization of strongly consistent multivariate conditional risk
measures which are also conditionally law-invariant. In contrast to before we do not require
consistency with respect to a risk measure under full information, but with respect to the initial
risk measure given the trivial information {∅,Ω}. These studies were triggered by the results
obtained in Föllmer (2014) for univariate risk measures, where it is shown that the only family
of univariate, strongly consistent, conditional, cash-additive, convex risk measures is the family
of conditional entropic risk measures, i.e. the conditional risk measures are conditional certainty
equivalents of the form

ρH(X) = −u−1 (EP [u(X) | H]) , X ∈ L∞(F),

with deterministic utility function u(x) = a + beβx or u(x) = a + bx, where a ∈ R and
b, β > 0 are constants. We also remark that Kupper and Schachermayer (2009) showed this
characterization for the case of dynamic risk measures by an alternative proof. In the multivariate
case we will see that every strongly consistent family of multivariate conditionally law-invariant
conditional risk measures consists of risk measures of type

ρH(X) = fρH
(
f−1
u

(
EP [u(X) | H]

))
, X ∈ L∞d (F), (3.1.9)

where u : Rd → R is a multivariate utility function and fu(x) := u(x1d), x ∈ R. In other words
they can be decomposed into the function fρH in (3.1.7) applied to a multivariate conditional
certainty equivalent

(
f−1
u

(
EP [u(X) | H]

))
. For the study of univariate conditional certainty

equivalents and their dynamic behavior we refer the interested reader to Frittelli and Maggis
(2011). Moreover, we will derive the decomposition (3.1.4) from (3.1.9), i.e. in terms of u and
fu.
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Structure of the paper

In Section 3.2 we introduce our notation and multivariate conditional risk measures. Moreover,
we give the definition and some auxiliary results for the function fρH mentioned in (3.1.7).
In Sections 3.3 and 3.4 we prove our main results outlined above for two strongly consistent
conditional risk measures, where the law-invariant case is studied in Section 3.4. Throughout
Section 3.5 we extend these results to families of multivariate conditional risk measures.

3.2 De�nitions and basic results

Throughout this paper (Ω,F ,P) is a probability space. For d ∈ N we denote by L∞d (F) :=
{X = (X1, ..., Xd) : Xi ∈ L∞(Ω,F ,P) ∀i} the space of equivalence classes of F-measurable,
P-almost surely (a.s.) bounded random vectors. It is a Banach space when equipped with the
norm ‖X‖d,∞ := maxi=1,...,d ‖Xi‖∞ where ‖F‖∞ := esssup |F | is the supremum norm for
F ∈ L∞(Ω,F ,P). We will use the usual componentwise orderings on Rd and L∞d (F), i.e.
x = (x1, . . . , xd) ≥ y = (y1, . . . , yd) for x, y ∈ Rd if and only if xi ≥ yi for all i = 1, . . . , d,
and similarly X ≥ Y if and only if Xi ≥ Yi P-a.s. for all i = 1, ..., d. Furthermore 1d and 0d
denote the d-dimensional vectors whose entries are all equal to 1 or all equal to 0, respectively.

Definition 3.2.1. Let G ⊆ F . A conditional risk measure (CRM) is a function

ρG : L∞d (F)→ L∞(G),

possessing the following properties:

i) There exists a position with zero risk, i.e. 0 ∈ Im ρG .

ii) Strict Antitonicity: X ≥ Y and P(X > Y ) > 0 implies ρG(X) ≤ ρG(Y ) and
P
(
ρG(X) < ρG(Y )

)
> 0.

iii) G-Locality: For all A ∈ G we have ρG(X1A + Y 1AC ) = ρG(X)1A + ρG(Y )1AC .

iv) Lebesgue property: If (Xn)n∈N ⊂ L∞d (F) is a ‖ · ‖d,∞-bounded sequence such that
Xn → X P-a.s., then

ρG(X) = lim
n→∞

ρG(Xn) P-a.s.

We remark that the properties in Definition 3.2.1 are standard in the literature on conditional
risk measures. Note that strict antitonicity is sometimes also referred to as strong sensitivity
in the literature. In order to stress the dimension we often use the term univariate conditional
risk measure for a conditional risk measure as defined in Definition 3.2.1 with d = 1 and we
typically denote it by ηG . For d > 1 the risk measure ρG of Definition 3.2.1 is called multivariate
conditional risk measure.

A standard assumption on univariate CRMs is cash-additivity, i.e. ηG(X + α) = ηG(X)− α
for all α ∈ L∞(G), which in particular implies that we postulate a certain behavior of the
risk measure ηG on (G)-constants α ∈ L∞(G) which turns out to be helpful in the study of
consistency. Since we do not require this property - given that a multivariate analogue is tricky
to define and probably not reasonable to ask for - we will have to extract the behavior of a CRM
on constants in the following way.
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Definition 3.2.2. For every CRM ρG we introduce the function

fρG : L∞(G)→ L∞(G);α 7→ ρG(α1d)

and the corresponding inverse function

f−1
ρG : Im fρG → L∞(G);β 7→ α such that fρG (α) = β.

Remark 3.2.3. Note that the strict antitonicity of ρG implies that the inverse function f−1
ρG

in Definition 3.2.2 is well-defined. Indeed let β ∈ Im fρG and α1, α2 ∈ L∞(G) such that
fρG (α1) = β = fρG (α2). Suppose that P(A) > 0 where A := {α1 > α2} ∈ G. Then by strict
antitonicity and G-locality we obtain that

β1A + ρG(0d)1AC = ρG(α11d)1A + ρG(0d)1AC = ρG(α11d1A)

≤ ρG(α21d1A) = ρG(α21d)1A + ρG(0d)1AC

= β1A + ρG(0d)1AC ,

and the inequality is strict with positive probability which is a contradiction. Thus we have that
P(α1 > α2) = 0. The same argument for {α1 < α2} yields α1 = α2 P-a.s.

Next we will show that properties of ρG transfer to fρG and f−1
ρG . Since the domain of f−1

ρG
might be only a subset of L∞(G), we need to adapt the definition of the Lebesgue property
for f−1

ρG in the following way: If (βn)n∈N ⊂ Im fρG is a sequence which is lower- and upper-
bounded by some β, β ∈ Im fρG , i.e. β ≤ βn ≤ β for all n ∈ N, and such that βn → β P-a.s.,
then f−1

ρG (βn) → f−1
ρG (β) P-a.s. Note that this alternative definition of the Lebesgue property

is equivalent to Definition 3.2.1 (iv) if the domain is L∞(G). The properties ’strict antitonicity’
and ’locality’ of fρG or f−1

ρG are defined analogous to Definition 3.2.1 (ii) and (iii).

Lemma 3.2.4. Let fρG and f−1
ρG be as in Definition 3.2.2. Then fρG and f−1

ρG are strictly antitone,
G-local and fulfill the Lebesgue property.

Proof. For fρG the statement follows immediately from the definition and the corresponding
properties of ρG . Concerning the properties of f−1

ρG , we start by proving strict antitonicity. Let
β1, β2 ∈ Im fρG such that β1 ≥ β2 and P(β1 > β2) > 0. Suppose that P(A) > 0 where

A :=
{
f−1
ρG (β1) > f−1

ρG (β2)
}
∈ G. Then

β11A + fρG (0)1AC = fρG

(
f−1
ρG (β1)

)
1A + fρG (0)1AC = fρG

(
f−1
ρG (β1)1A

)
≤ fρG

(
f−1
ρG (β2)1A

)
= β21A + fρG (0)1AC ,

and the inequality is strict on a set with positive probability since fρG is strictly antitone. This
of course contradicts β1 ≥ β2. Hence f−1

ρG (β1) ≤ f−1
ρG (β2). Moreover, as

P(β1 > β2) = P
(
fρG

(
f−1
ρG (β1)

)
> fρG

(
f−1
ρG (β2)

))
> 0
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we must have f−1
ρG (β1) 6= f−1

ρG (β2) with positive probability, i.e.

P
(
f−1
ρG (β1) < f−1

ρG (β2)
)
> 0.

Now we show that f−1
ρG is G-local. Let β1, β2 ∈ Im fρG as well as A ∈ G be arbitrary. Further

let αi = f−1
ρG (βi), i = 1, 2, i.e. fρG (αi) = βi. Then we have that

fρG (α11A + α21AC ) = fρG (α1)1A + fρG (α2)1AC = β11A + β21AC .

Thus f−1
ρG (β11A + β21AC ) = α11A + α21AC .

Finally for the Lebesgue property let β, β ∈ Im fρG and let (βn)n∈N ⊂ Im fρG be a sequence
with β ≤ βn ≤ β for all n ∈ N and βn → β P-a.s. Consider the bounded sequences
βun := supk≥n βk and βdn := infk≥n βk, n ∈ N which converge monotonically almost surely to
β, i.e. βun ↓ β P-a.s. and βdn ↑ β P-a.s. Since β ≤ βun ≤ β for all n ∈ N which by antitonicity

of f−1
ρG yields f−1

ρG (β) ≤ f−1
ρG (βun) ≤ f−1

ρG (β), we observe that the sequence
(
f−1
ρG (βun)

)
n∈N

is uniformly bounded in L∞(G). Note that by the same argumentation also the sequences(
f−1
ρG (βdn)

)
n∈N

and
(
f−1
ρG (βn)

)
n∈N

are uniformly bounded in L∞(G). Next we will show that

βun ∈ Im fρG for all n ∈ N. Fix n ∈ N and set recursively

Ann−1 := {βun = β} and Ank := {βun = βk}\
k−1⋃
i=n−1

Ani , k ≥ n,

then it follows from induction thatAnk ∈ G, k ≥ n− 1. Since sup {β, βk : k ≥ n} = max{β, βk :

k ≥ n}, we have that
(⋃

k≥n−1A
n
k

)C
is a P-nullset. It follows from G-locality and the

Lebesgue property of fρG that

fρG

f−1
ρG (β)1Ann−1

+
∑
k≥n

f−1
ρG (βk)1Ank


= β1Ann−1

+ fρG

(
lim
m→∞

m∑
k=n

f−1
ρG (βk)1Ank

)
1
⋃
k≥n A

n
k

= β1Ann−1
+ lim
m→∞

(
m∑
k=n

βk1Ank + fρG (0)1⋃
k≥m Ank

)
= β1Ann−1

+
∑
k≥n

βk1Ank = βun,

which implies βun ∈ Im fρG . By a similar argumentation we obtain βdn ∈ Im fρG . Recall that

βun ↓ β P-a.s. which by antitonicity of f−1
ρG implies that the sequence

(
f−1
ρG (βun)

)
n∈N

is isotone
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and thus α = limn→∞ f
−1
ρG (βun) exists in L∞(G). It follows from antitonicity and the Lebesgue

property of fρG that

β = lim
n→∞

βun = lim
n→∞

fρG

(
f−1
ρG (βun)

)
= fρG (α),

and hence that indeed α = f−1
ρG (β). Analogously, we obtain that fρG (α̂) = β for α̂ =

limn→∞ f
−1
ρG (βdn), and thus α̂ = α = f−1

ρG (β). Hence, by antitonicity of f−1
ρG

f−1
ρG (β) = lim

n→∞
f−1
ρG (βun) ≤ lim inf

n→∞
f−1
ρG (βn)

≤ lim sup
n→∞

f−1
ρG (βn) ≤ lim

n→∞
f−1
ρG (βdn) = f−1

ρG (β),

so limn→∞ f
−1
ρG (βn) = f−1

ρG (β), i.e. f−1
ρG has the Lebesgue property.

An important observation that will be needed later on is that the domain of f−1
ρG is equal to the

image of ρG , i.e. f−1
ρG (ρG(X)) is well-defined for all X ∈ L∞d (F).

Lemma 3.2.5. For a CRM ρG : L∞d (F)→ L∞(G) it holds that

ρG(L∞d (F)) = fρG (L∞(G)).

Proof. Clearly, ρG(L∞d (F)) ⊇ fρG (L∞(G)).
For the reverse inclusion let X ∈ L∞d (F). Our aim is to show that there exists an α∗ ∈ L∞(G)
such that

ρG(X) = fρG (α∗). (3.2.1)

Define
P :=

{
α ∈ L∞(G) : fρG (α) ≥ ρG(X)

}
.

As −‖X‖d,∞1d ≤ X ≤ ‖X‖d,∞1d we have that −‖X‖d,∞ ∈ P , so P 6= ∅. Moreover, P is
bounded from above by ‖X‖d,∞ since if A := {α > ‖X‖d,∞} for α ∈ L∞(G) has positive
probability, then by G-locality and strict antitonicity

fρG (α)1A = fρG (α1A)1A ≤ fρG (‖X‖d,∞1A)1A = fρG (‖X‖d,∞)1A ≤ ρG(X)1A

where the first inequality is strict with positive probability, so α 6∈ P . By G-locality it also
follows that P is upwards directed. Hence, for

α∗ := esssupP

there is a uniformly bounded sequence (αn)n∈N ⊂ P such that α∗ = limn→∞ αn P-a.s.; see
Föllmer and Schied (2011) Theorem A.33. Thus it follows that α∗ ∈ L∞(G) and

fρG (α∗) = lim
n→∞

fρG (αn) ≥ ρG(X),

i.e. α∗ ∈ P . Let
B := {fρG (α∗) > ρG(X)}
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and note that by the Lebesgue property

B =
⋃
n∈N
{fρG (α∗ + 1/n) > ρG(X)} P-a.s.

Hence, if P(B) > 0 it follows that P(Bn) > 0 for some Bn := {fρG (α∗ + 1/n) > ρG(X)}.
Note that Bn ∈ G and that

α∗1BCn + (α∗ + 1/n)1Bn ∈ P
by G-locality of fρG . But this contradicts the definition of α∗. Hence, P(B) = 0.

Sometimes it will be useful to normalize the CRM in the following sense:

Definition 3.2.6. We call a CRM ρG : L∞d (F)→ L∞(G) normalized on constants if

fρG (α) = −α for all α ∈ L∞(G).

Indeed let ρG : L∞d (F) → L∞(G) be a CRM and define ρ̄G := −f−1
ρG ◦ ρG . Then ρ̄G is a

CRM (Lemma 3.2.4 and Lemma 3.2.5) which is normalized in the sense of being normalized
on constants as defined above. We call ρ̄G the normalized CRM of ρG .

3.3 Strong consistency

In this section we study consistency of CRMs. We consider the most frequently used consistency
condition for univariate risk measures in the literature which is known as strong consistency and
extend it to the multivariate case. We refer to Detlefsen and Scandolo (2005), Cheridito et al.
(2006), Cheridito and Kupper (2011), Kupper and Schachermayer (2009), and Penner (2007)
for more information on strong consistency of univariate risk measures. Kromer et al. (2014)
also study a kind of consistency for multivariate risk measures, however, as we will point out
in Remark 3.4.11 below, their definition of consistency differs from our approach. For the
remainder of this section we let G and H be two sub-σ-algebras of F such that G ⊆ H, and let
ρG : L∞d (F)→ L∞(G) and ρH : L∞d (F)→ L∞(H) be the corresponding CRMs.

Definition 3.3.1 (Strong consistency). The pair {ρG , ρH} is called strongly consistent if

ρH(X) ≤ ρH(Y ) ⇒ ρG(X) ≤ ρG(Y ) (X,Y ∈ L∞d (F)). (3.3.1)

Strong consistency states that if one risk is preferred to another risk in almost surely all states
under more information, then this preference already holds under less information. Our first
result shows that strong consistency can be equivalently defined by a recursive relation.

Lemma 3.3.2. Equivalent are:

(i) {ρG , ρH} is strongly consistent;

(ii) For all X ∈ L∞d (F) it holds that

ρG(X) = ρG

(
f−1
ρH

(
ρH(X)

)
1d

)
,

where f−1
ρH was defined in Definition 3.2.2.
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Proof. (i)⇒(ii): As for all X ∈ L∞d (F)

ρH(X) = ρH
(
f−1
ρH (ρH(X)) 1d

)
,

it follows from strong consistency that

ρG(X) = ρG
(
f−1
ρH (ρH(X)) 1d

)
.

(ii)⇒(i): Let X,Y ∈ L∞d (F) be such that ρH(X) ≤ ρH(Y ). Then by antitonicity of f−1
ρH and

ρG it follows that

ρG(X) = ρG

(
f−1
ρH

(
ρH(X)

)
1d

)
≤ ρG

(
f−1
ρH

(
ρH(Y )

)
1d

)
= ρG(Y ).

Remark 3.3.3. Let ηG and ηH be two univariate CRMs, where ηH is normalized on constants, i.e.
ηH(α) = −α for all α ∈ L∞(H). Then fηH(α) = f−1

ηH (α) = −α and thus strong consistency
is equivalent to

ηG(F ) = ηG
(
− ηH(F )

)
, F ∈ L∞(F).

Remark 3.3.4. If {ρG , ρH} is strongly consistent so is the pair of normalized CRMs {ρ̄G , ρ̄H}
as defined in Definition 3.2.6 and vice versa. Since fρ̄G = fρ̄H = − id strong consistency of the
normalized CRMs is equivalent to

ρ̄G(F ) = ρ̄G
(
− ρ̄H(F )1d

)
, F ∈ L∞(F),

in analogy to Remark 3.3.3.
In the following lemma we will show that strong consistency of {ρG , ρH} uniquely determines

the normalized CRM ρ̄H.

Lemma 3.3.5. If {ρG , ρH} is strongly consistent, then ρG uniquely determines the normalized
CRM ρ̄H = −f−1

ρH ◦ ρH.

Proof. Suppose that there are two CRMs ρ1
H and ρ2

H which are strongly consistent with respect
to ρG , i.e.

ρG

(
f−1
ρ1H

(
ρ1
H(X)

)
1d

)
= ρG(X) = ρG

(
f−1
ρ2H

(
ρ2
H(X)

)
1d

)
, X ∈ L∞d (F).

We will show that f−1
ρ1H

(
ρ1
H(X)

)
= f−1

ρ2H

(
ρ2
H(X)

)
. Suppose that there exists an X ∈ L∞d (F)

such that A :=
{
f−1
ρ1H

(
ρ1
H(X)

)
> f−1

ρ2H

(
ρ2
H(X)

)}
∈ H has positive probability. Then, by the

H-locality of ρ1
H and ρ2

H, we obtain

ρG(X1A) = ρG

(
f−1
ρ1H

(
ρ1
H(X1A)

)
1d

)
= ρG

(
f−1
ρ1H

(
ρ1
H(X)

)
1A1d

)
≤ ρG

(
f−1
ρ2H

(
ρ2
H(X)

)
1A1d

)
= ρG

(
f−1
ρ2H

(
ρ2
H(X1A)

)
1d

)
= ρG(X1A). (3.3.2)

where the inequality (3.3.2) is strict with positive probability as ρG is strictly antitone, and hence
we have a contradiction. Reverting the role of ρ1

H and ρ2
H in the definition of A proves the

lemma.
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In Hoffmann et al. (2016) we studied under which conditions a (multivariate) conditional
risk measure can be decomposed as in (3.1.4), i.e. into a conditional aggregation function and a
univariate conditional risk measure. We will pursue showing that strong consistency of {ρG , ρF}
is already sufficient to guarantee a decomposition (3.1.4) for both ρG and ρF . To this end we
need to clarify what we mean by a conditional aggregation function:

Definition 3.3.6. We call a function Λ : L∞d (F) → L∞(F) a conditional aggregation function
if it fulfills the following properties:

Strict isotonicity: X ≥ Y and P(X > Y ) > 0 implies Λ(X) ≥ Λ(Y ) and P
(
Λ(X) >

Λ(Y )
)
> 0.

F-Locality: Λ(X1A + Y 1AC ) = Λ(X)1A + Λ(Y )1AC for all A ∈ F;

Lebesgue property: For any uniformly bounded sequence (Xn)n∈N inL∞d (F) such thatXn →
X P-a.s., we have that

Λ(X) = lim
n→∞

Λ(Xn) P-a.s.

Moreover forH ⊂ F , we call Λ aH-conditional aggregation function if in addition

Λ(L∞d (J )) ⊆ L∞(J ) for allH ⊆ J ⊆ F .

Remark 3.3.7. The name H-conditional aggregation function refers to the fact that Λ(x) ∈
L∞(H) for all x ∈ Rd. Thus every conditional aggregation function is at least a F-conditional
aggregation function.

As for conditional risk measures we define:

Definition 3.3.8. For a conditional aggregation function Λ : L∞d (F)→ L∞(F) let

fΛ : L∞(F)→ L∞(F);F 7→ Λ(F1d)

and
f−1

Λ : Im fΛ → L∞(F);G 7→ F such that fΛ(F ) = G.

Lemma 3.3.9. Let Λ : L∞d (F)→ L∞(F) be a conditional aggregation function. Then fΛ and
f−1

Λ are strictly isotone, F-local, and fulfill the Lebesgue property. Moreover, Λ(L∞d (F)) =
fΛ(L∞(F)) and Λ(X) = Λ

(
f−1

Λ (Λ(X))1d
)

for all X ∈ L∞d (F).

The well-definedness of f−1
Λ follows as in Remark 3.2.3. Further the proof of Lemma 3.3.9 is

analogous to the proofs of Lemma 3.2.4 and Lemma 3.2.5 and therefore omitted here.
In order to state the decomposition result for strongly consistent CRMs, we first recall the

main result from Hoffmann et al. (2016) adapted to the framework of this paper in Proposi-
tion 3.3.11 for which we need the following definition.

Definition 3.3.10. We say that a function ρG : L∞d (F) → L∞(G) has a continuous realization
ρG(·, ·), if for all X ∈ L∞d (F) there exists a representative ρG(X, ·) of the equivalence class
ρG(X) such that ρ̃G : Rd×Ω→ R; (x, ω) 7→ ρG(x, ω) is continuous in its first argument P-a.s.
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Proposition 3.3.11. Let ρG : L∞d (F) → L∞(G) be a CRM and suppose that there exists a
continuous realization ρG(·, ·) which satisfies risk-antitonicity:

ρ̃G(X(ω), ω) ≥ ρ̃G(Y (ω), ω) P-a.s., implies ρG(X) ≥ ρG(Y ).

Then there exists a G-conditional aggregation function ΛG : L∞d (F)→ L∞(F) and a univariate
CRM ηG : Im ΛG → L∞(G) such that

ρG (X) = ηG (ΛG(X)) for all X ∈ L∞d (F)

and
ηG (ΛG(X)) = −ΛG(X) for all X ∈ L∞d (G). (3.3.3)

This decomposition is unique.

Proof. Since ρG is antitone, Rd 3 x 7→ ρG(x) is antitone. It has been shown in Hoffmann
et al. (2016) Theorem 2.10 that this property in conjunction with the fact that ρG has a continu-
ous realization which fulfills risk-antitonicity is sufficient for the existence and uniqueness of a
function ΛG : L∞d (F) → L∞(F) which is isotone, F-local and fulfills the Lebesgue property
and a function ηG : Im ΛG → L∞(G) which is antitone such that

ρG = ηG ◦ ΛG and ηG
(
ΛG(x)

)
= −ΛG(x) for all x ∈ Rd. (3.3.4)

Note that in the proof of Theorem 2.10 in Hoffmann et al. (2016) ΛG is basically constructed by
setting ΛG(X)(ω) = −ρ̃G(X(ω), ω), which implies that ΛG is necessarily F-local even though
this is not directly mentioned in the paper. Indeed in Hoffmann et al. (2016) we do not require
or mention locality at all.

It remains to be shown that ΛG is a G-conditional aggregation function, ηG is a univariate
CRM on Im ΛG , and that (3.3.3) holds. First of all, we show that F-locality and (3.3.4) imply
(3.3.3). To this end denote by S the set of F-measurable simple random vectors, i.e. X ∈ S
if X is of the form X =

∑k
i=1 xi1Ai , where k ∈ N, xi ∈ Rd and Ai ∈ F , i = 1, ..., k, are

disjoint sets such that P(Ai) > 0 and P(
⋃k
i=1Ai) = 1. Now let X ∈ L∞d (G). Pick a uniformly

bounded sequence (Xn)n∈N =
(∑kn

i=1 x
n
i 1A

n
i

)
n∈N
⊂ S such thatAni ∈ G for all i = 1, . . . , kn,

n ∈ N, and Xn → X P-a.s. Then by (3.3.4), F-locality and the Lebesgue property of ΛG and
ρG we infer that

−ΛG(X) = − lim
n→∞

ΛG(Xn) = lim
n→∞

kn∑
i=1

−ΛG(xni )1Ani

= lim
n→∞

kn∑
i=1

ρG(xni )1Ani = lim
n→∞

ρG(Xn) = ρG(X),

which proves (3.3.3). Next we show that ΛG is a G-conditional aggregation function. The yet
missing properties which need to be verified are strict antitonicity and that ΛG is G-conditional.
The latter follows from Hoffmann et al. (2016) Lemma 3.1. As for strict antitonicity let X,Y ∈
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L∞d (F) with X ≥ Y such that P(X > Y ) > 0. Then by isotonicity of ΛG we have that
ΛG(X) ≥ ΛG(Y ). Suppose that ΛG(X) = ΛG(Y ) P-a.s., then

ρG(X) = ηG(ΛG(X)) = ηG(ΛG(Y )) = ρG(Y )

which contradicts strict antitonicity of ρG . Thus ΛG fulfills all properties of a G-conditional
aggregation function.
As for ηG , note that by Lemma 3.3.9 for all F ∈ Im ΛG we have that

ηG(F ) = ηG
(
ΛG
(
f−1

ΛG
(F )1d

))
= ρG

(
f−1

ΛG
(F )1d

)
, (3.3.5)

where f−1
ΛG

was defined in Definition 3.3.8. Since ρG and f−1
ΛG

are strictly monotone, G-local,
and fulfill the Lebesgue property, so does ηG , i.e. ηG is a univariate CRM on Im ΛG .

Theorem 3.3.12. Let ρG : L∞d (F)→ L∞(G) and ρF : L∞d (F)→ L∞(F) be CRMs such that
{ρG , ρF} is strongly consistent. Moreover, suppose that

f−1
ρF ◦ ρF (x) ∈ R for all x ∈ Rd. (3.3.6)

If ρG has a continuous realization ρG(·, ·), then there exists a G-conditional aggregation function
ΛG : L∞d (F)→ L∞(F) and a univariate CRM ηG : Im ΛG → L∞(G) such that

ρG(X) = ηG
(
ΛG(X)

)
for all X ∈ L∞d (F) (3.3.7)

and
ηG
(
ΛG(X)

)
= −ΛG(X) for all X ∈ L∞d (G).

Let ΛF := −ρF and ηF := − id so that ρF = ηF ◦ ΛF for the F-conditional aggregation
function ΛF and the univariate CRM ηF . Then

ΛF (X) ≤ ΛF (Y ) =⇒ ΛG(X) ≤ ΛG(Y ) (X,Y ∈ L∞d (F)), (3.3.8)

i.e. ΛG and ΛF are strongly consistent.
Conversely, suppose that the CRM ρG : L∞d (F) → L∞(G) satisfies (3.3.7), then {ρG , ρF} is

strongly consistent where ρF := −ΛG is a CRM.

We remark that in Theorem 3.3.12 we require consistency of the pair {ρG , ρF} where ρF is
a CRM given the full information F . Note that ρF is (apart from the sign) simply a conditional
aggregation function as defined in Definition 3.3.6, so ρG is required to be consistent with some
aggregation function under full information. This also explains ΛF . For d = 1 this consistency
is automatically satisfied by monotonicity (and the aggregation is simply the identity function),
and clearly the assertion is trivial anyway. For higher dimensions, Theorem 3.3.12 states that if
there exists an aggregation function which is consistent with ρG , then ρG is automatically of type
(3.3.7). Clearly, if we already know that (3.3.7) holds true, then ρG is consistent with ρF = −ΛG .
Consistency with an aggregation under full information is a very natural requirement, because
even under full information, so without risk, typically the losses still need to be aggregated in
some way, and therefore any CRM under less information G should respect this aggregation.
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Note also that the condition (3.3.6) is a slight strengthening of being normalized on constants,
the latter being automatically satisfied by the very definition of the normalization f−1

ρF ◦ ρF ; see
above.

The following proof of Theorem 3.3.12 is based on two observations: ρF is necessarily risk-
antitone as defined in Proposition 3.3.11. Strong consistency in turn implies that risk-antitonicity
of ρF is passed on (backwards) to ρG , and hence Proposition 3.3.11 applies.

Proof of Theorem 3.3.12: In case we already know that (3.3.7) holds, then by antitonicity of ηG
it follows that {ρG ,−ΛG} is strongly consistent, and clearly −ΛG : L∞d (F)→ L∞(F) is also a
CRM. Thus the last assertion of Theorem 3.3.12 is proved.

In order to show the first part of Theorem 3.3.12, we recall that the only property which
remains to be shown in order to apply Proposition 3.3.11 is risk-antitonicity of ρG : For this
purpose we first consider simple random vectors X,Y ∈ S where S was defined in the proof of
Proposition 3.3.11. Note that there is no loss of generality by assuming thatX =

∑n
i=1 xi1Ai ∈

S and Y =
∑n

i=1 yi1Ai ∈ S , i.e. the partition (Ai)i=1,...,n of Ω is the same for X and Y .
Suppose that ρ̃G(X(ω), ω) ≥ ρ̃G(Y (ω), ω) P-a.s. It follows that

ρ̃G(xi, ω) ≥ ρ̃G(yi, ω) for all ω ∈ Ai\N, i = 1, ..., n,

where N is a P-nullset. We claim that this implies

f−1
ρG

(
ρG(xi)

)
≤ f−1

ρG

(
ρG(yi)

)
for all i = 1, ..., n. (3.3.9)

In order to verify this, we first notice that as ρG and ρF are strongly consistent and by (3.3.6) we
have for all x ∈ Rd that

f−1
ρG

(
ρG(x)

)
= f−1

ρG

(
ρG
(
f−1
ρF

(
ρF (x)

)
1d
))

= f−1
ρF

(
ρF (x)

)
∈ R. (3.3.10)

Here we also used that the normalization −f−1
ρG ◦ ρG is normalized on constants. In other words

f−1
ρG

(
ρG(xi)

)
and f−1

ρG

(
ρG(yi)

)
are real numbers. Next we define Bi := {ω ∈ Ω | ρ̃G(xi, ω) ≥

ρ̃G(yi, ω)} ∈ G. Then (Ai \ N) ⊆ Bi and hence P(Bi) > 0 for all i = 1, ..., n. Using
antitonicity and G-locality of f−1

ρG we obtain

f−1
ρG

(
ρG(xi)

)
1Bi = f−1

ρG

(
ρG(xi)1Bi

)
1Bi ≤ f−1

ρG

(
ρG(yi)1Bi

)
1Bi = f−1

ρG

(
ρG(yi)

)
1Bi .

As f−1
ρG

(
ρG(yi)

)
are indeed real numbers, (3.3.9) follows.

Now by strong consistency of {ρG , ρF}, F-locality of ρF and f−1
ρF , and by (3.3.10) as well as

antitonicity of ρG we obtain

ρG(X) = ρG
(
f−1
ρF

(
ρF (X)

)
1d
)

= ρG

(
n∑
i=1

f−1
ρF

(
ρF (xi)

)
1Ai1d

)

= ρG

(
n∑
i=1

f−1
ρG

(
ρG(xi)

)
1Ai1d

)
≥ ρG

(
n∑
i=1

f−1
ρG

(
ρG(yi)

)
1Ai1d

)
= ρG(Y ),
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which proves risk-antitonicity for simple random vectors X,Y ∈ S. For general X,Y ∈
L∞d (F) with ρ̃G(X(ω), ω) ≥ ρ̃G(Y (ω), ω) for P-a.e. ω ∈ Ω we can find uniformly bounded
sequences (Xn)n∈N, (Yn)n∈N ⊂ S such that Xn ↗ X and Yn ↘ Y P-a.s. for n → ∞. Then
by antitonicity

ρ̃G(Xn(ω), ω) ≥ ρ̃G(X(ω), ω) ≥ ρ̃G(Y (ω), ω) ≥ ρ̃G(Yn(ω), ω) for P-a.s.

Therefore, ρG(Xn) ≥ ρG(Yn) and the Lebegue property of ρG yield

ρG(X) = lim
n→∞

ρG(Xn) ≥ lim
n→∞

ρG(Yn) = ρG(Y ).

Thus ρG is risk-antitone and we apply Proposition 3.3.11. Hence, there is a G-conditional ag-
gregation function ΛG : L∞d (F) → L∞(F) and a univariate CRM ηG : Im ΛG → L∞(G) such
that ρG = ηG ◦ ΛG and ηG

(
ΛG(X)

)
= −ΛG(X) for all X ∈ L∞d (G).

Let X,Y ∈ L∞d (F) such that

ΛF (X) = −ρF (X) ≤ −ρF (Y ) = ΛF (Y )

and let (Xn)n∈N ⊂ S and (Yn)n∈N ⊂ S be uniformly bounded sequences such that Xn ↗ X
and Yn ↘ Y P-a.s. for n→∞. Again there is no loss in assuming that bothXn and Yn for given
n ∈ N are defined over the same partition, i.e. Xn =

∑kn
i=1 x

n
i 1A

n
i

and Yn =
∑kn

i=1 y
n
i 1A

n
i

. By
the F-locality and antitonicity of ρF it follows that for all n ∈ N

kn∑
i=1

ρF (xni )1Ani ≥ ρF (X) ≥ ρF (Y ) ≥
kn∑
i=1

ρF (yni )1Ani .

As f−1
ρF ◦ ρF (xni ) and f−1

ρF ◦ ρF (yni ) are real numbers according to assumption (3.3.6) and as the
above computation shows that f−1

ρF ◦ ρF (xni ) ≤ f−1
ρF ◦ ρF (yni ) on Ani , we obtain, as above that

indeed f−1
ρF ◦ρF (xni ) ≤ f−1

ρF ◦ρF (yni ), i = 1, . . . , kn. Now strong consistency and (3.3.3) imply
that

−ΛG(xni ) = ρG(xni ) = ρG(f−1
ρF ◦ ρF (xni ))

≥ ρG(f−1
ρF ◦ ρF (yni )) = ρG(yni )

= −ΛG(yni )

and hence by G-locality of ΛG

ΛG(Xn) =

kn∑
i=1

ΛG(xni )1Ani ≤
kn∑
i=1

ΛG(yni )1Ani = ΛG(Yn).

Finally we conclude with the Lebesgue property that

ΛG(X) = lim
n→∞

ΛG(Xn) ≤ lim
n→∞

ΛG(Yn) = ΛG(Y ).
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Remark 3.3.13. We know from Lemma 3.3.9 that the inverse function f−1
ΛG

of fΛG is isotone
and that ΛG(X) = ΛG

(
f−1

ΛG
(ΛG(X))1d

)
for all X ∈ L∞d (F). Therefore it can be shown as in

Lemma 3.3.2, that (3.3.8) is equivalent to

f−1
ΛG

(
ΛG(X)

)
= f−1

ΛF

(
ΛF (X)

)
, for all X ∈ L∞d (F).

Note that we cannot write the recursive form of the strong consistency of two CRMs ρG and ρF
as above, since fρG is only defined on L∞(G) and not on L∞(F) in constrast to fΛG .

In the following Theorem we summarize our findings from Proposition 3.3.11 and Theo-
rem 3.3.12 on CRMs which extend the results in Hoffmann et al. (2016) for strong consistency:

Theorem 3.3.14. If ρG : L∞d (F)→ L∞(G) is a CRM with a continuous realization ρG(·, ·) and
satisfies f−1

ρG ◦ ρG(x) ∈ R for all x ∈ Rd, then the following three statements are equivalent

(i) ρG(·, ·) is risk-antitone;

(ii) ρG is decomposable as in (3.3.7);

(iii) ρG is strongly consistent with some aggregation function Λ : L∞d (F) → L∞(F), i.e.
{ρG ,−Λ} is strongly consistent.

Proof. The equivalence of (ii) and (iii) has been shown in Theorem 3.3.12 and that (i) implies (ii)
follows from Proposition 3.3.11. Finally, the proof of Theorem 3.3.12 shows that (iii) implies
(i).

3.4 Conditional law-invariance and strong consistency

As in the previous section, if not otherwise stated, throughout this section we let G and H be
two sub-σ-algebras of F such that G ⊆ H, and let ρG : L∞d (F)→ L∞(G) and ρH : L∞d (F)→
L∞(H) be the corresponding CRMs.

Definition 3.4.1. A CRM ρG is conditional law-invariant if ρG(X) = ρG(Y ) whenever the G-
conditional distributions µX(·|G) and µY (·|G) of X,Y ∈ L∞d (F) are equal, i.e. if P(X ∈
A | G) = P(Y ∈ A | G) for all Borel setsA ∈ B(Rd). In case G = {∅,Ω} is trivial, conditional
law-invariance of ρG is also referred to as law-invariance.

In the law-invariant case we will often have to require a little more regularity of the underlying
probability space (Ω,F ,P):

Definition 3.4.2. We say that (Ω,F ,P) is

atomless, if (Ω,F ,P) supports a random variable with continuous distribution;

conditionally atomless given H ⊂ F , if (Ω,F ,P) supports a random variable with contin-
uous distribution which is independent ofH.
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The next lemma shows that conditional law-invariance is passed from ρG (forward) to ρH by
strong consistency. The proof is based on Föllmer (2014).

Lemma 3.4.3. If {ρG , ρH} is strongly consistent and ρG is conditionally law-invariant, then ρH
is also conditionally law-invariant.

Proof. Let X,Y ∈ L∞(F) such that µX(·|H) = µY (·|H) and let A := {ρH(X) > ρH(Y )} ∈
H. Then the random variables X1A and Y 1A have the same conditional distribution given G.
As ρG is conditionally law-invariant and strongly consistent with ρH we obtain

ρG

(
f−1
ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d

)
= ρG(X1A) = ρG(Y 1A)

= ρG

(
f−1
ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d

)
.

On the other hand, by strict antitonicity of ρG and f−1
ρH

ρG

(
f−1
ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d

)
≥ ρG

(
f−1
ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d

)
,

and the inequality is strict with positive probability if P(A) > 0. Thus A must be a P-nullset
and interchanging X and Y in the definition of A shows that indeed ρH(X) = ρH(Y ).

While in Theorem 3.3.12 we had to require that the strongly consistent pair {ρG , ρH} satisfies
H = F , in this section we in some sense require the opposite extreme, namely that G = {∅,Ω}
is trivial whileH ⊆ F .

Assumption 1. For the rest of the section we assume that G = {∅,Ω}. For simplicity we will
write ρ := ρG = ρ{∅,Ω}.

Lemma 3.4.4. Let {ρ, ρH} be strongly consistent and suppose that ρ is law-invariant (and thus
ρH is conditionally law-invariant by Lemma 3.4.3). If (Ω,H,P) is an atomless probability space
and X ∈ L∞d (F) is independent ofH, then

f−1
ρH

(
ρH(X)

)
= f−1

ρ

(
ρ(X)

)
.

The proof of Lemma 3.4.4 is adapted from Kupper and Schachermayer (2009).

Proof. We distinguish three cases:

• Suppose that f−1
ρH

(
ρH(X)

)
≤ f−1

ρ

(
ρ(X)

)
and strictly smaller with positive probability.

Then by strong consistency

f−1
ρ

(
ρ(X)

)
= f−1

ρ

(
ρ
(
f−1
ρH

(
ρH(X)

)
1d
))

< f−1
ρ

(
ρ
(
f−1
ρ

(
ρ(X)

)
1d
))

= f−1
ρ

(
ρ(X)

)
,

by strict antitonicity of ρ which is a contradiction.

• Analogously it follows that it is not possible that f−1
ρH

(
ρH(X)

)
≥ f−1

ρ

(
ρ(X)

)
and

P(f−1
ρH

(
ρH(X)

)
> f−1

ρ

(
ρ(X)

)
) > 0.
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• There exist A,B ∈ H such that P(A) = P(B) > 0 and

f−1
ρH

(
ρH(X)

)
> f−1

ρ

(
ρ(X)

)
on A and f−1

ρH

(
ρH(X)

)
< f−1

ρ

(
ρ(X)

)
on B.

Then we have for an arbitrary m = a1d where a ∈ R that

ρ(X1A +m1AC ) = ρ
(
f−1
ρH

(
ρH(X1A +m1AC )

)
1d
)

= ρ
(
f−1
ρH

(
ρH(X)

)
1A1d +m1AC

)
< ρ

(
f−1
ρ

(
ρ(X)

)
1A1d +m1AC

)
(3.4.1)

and similarly

ρ(X1B +m1BC ) > ρ
(
f−1
ρ

(
ρ(X)

)
1B1d +m1BC

)
. (3.4.2)

However, as X is independent of H the random vector X1A + m1AC has the same
distribution under P as X1B + m1BC . Note that also f−1

ρ

(
ρ(X)

)
1A + a1AC and

f−1
ρ

(
ρ(X)

)
1B + a1BC share the same distribution under P. Hence, as ρ is law-invariant,

(3.4.1) and (3.4.2) yield a contradiction.

Now we are able to extend the representation result of Föllmer (2014) to multivariate CRMs.

Theorem 3.4.5. Let (Ω,H,P) be atomless and let (Ω,F ,P) be conditionally atomless given
H. Suppose that ρ is law-invariant. Then, {ρ, ρH} is strongly consistent if and only if ρ and ρH
are of the form

ρ(X) = g
(
f−1
u

(
EP [u(X)]

))
for all X ∈ L∞d (F) (3.4.3)

and
ρH(X) = gH

(
f−1
u

(
EP [u(X) | H]

))
for all X ∈ L∞d (F) (3.4.4)

where u : Rd → R is strictly increasing and continuous, f−1
u : Im fu → R is the inverse

function of
fu : R→ R; x 7→ u(x1d)

and g : R→ R and gH : L∞(H)→ L∞(H) are strictly antitone, fulfill the Lebesgue property,
0 ∈ Im g ∩ Im gH, and gH isH-local.

In particular, for any CRM of type (3.4.3) (or (3.4.4)) we have that g = fρ (gH = fρH), where
fρ and fρH are defined in Definition 3.2.2.

The common function u : Rd → R appearing in (3.4.3) and (3.4.4) can be seen as a multi-
variate utility where u being strictly increasing means that x, y ∈ Rd with x ≥ y and x 6= y
implies u(x) > u(y). So f−1

u

(
EP [u(·)]

)
and f−1

u

(
EP [u(·) | H]

)
are (conditional) certainty

equivalents – in the univariate case (d = 1) we clearly have f−1
u = u−1. Thus if ρ and/or ρH in

Theorem 3.4.5 are normalized on constants (and hence fρ ≡ − id or fρH ≡ − id), then ρ and/or
ρH equal (minus) certainty equivalents. But (3.4.3) and (3.4.4) also comprise other prominent
classes of risk measures. For instance if fρ = −fu or fρH = −fu, then ρH(X) = −EP [u(X)]
is an multivariate expected utility whereas ρH(X) = −EP [u(X) | H] is a multivariate condi-
tional expected utility.
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Proof. For the last assertion of the theorem note that since u is a deterministic function, we have
for α ∈ L∞(H) that

fρH(α) = ρH(α1d) = gH
(
f−1
u

(
EP [u(α1d) | H]

))
= gH

(
f−1
u

(
fu(α)

))
= gH(α)

and analogously we obtain fρ ≡ g.
Next we prove sufficiency in the first statement of the theorem: Let ρH and ρ be as in (3.4.4)

and (3.4.3). It is easily verified that ρH and ρ are (conditionally) law-invariant CRMs. Further-
more, since f−1

u is strictly increasing and gH is strictly antitone and H-local, we have for each
X,Y ∈ L∞d (F) with ρH(X) ≥ ρH(Y ) that

EP [u(X) | H] ≤ EP [u(Y ) | H] .

But this implies that also EP [u(X)] ≤ EP [u(Y )] and thus that ρ(X) ≥ ρ(Y ), i.e. {ρ, ρH} is
strongly consistent.

Now we prove necessity in the first statement of the theorem: We assume in the following that
ρ and ρH are normalized on constants and follow the approach of Föllmer (2014) Theorem 3.4.
The idea is to introduce a preference order ≺ on multivariate distributions µ, ν on (Rd,B(Rd))
with bounded support given by

µ ≺ ν ⇐⇒ ρ(X) > ρ(Y ), with X ∼ µ and Y ∼ ν.

Here B(Rd) denotes the Borel-σ-algebra on Rd and X ∼ µ means that the distribution of X ∈
L∞d (F) under P is µ. It is well-known that if this preference order fulfills a set of conditions,
then there exists a von Neumann-Morgenstern representation, that is

µ ≺ ν ⇐⇒
∫
u(x)µ(dx) <

∫
u(x) ν(dx), (3.4.5)

where u : Rd → R is a continuous function. Sufficient conditions to guarantee (3.4.5) are that≺
is continuous and fulfills the independence axiom; cf. Föllmer and Schied (2011) Corollary 2.28.
We refer to Föllmer and Schied (2011) for a definition and comprehensive discussion of prefer-
ence orders and the mentioned properties. Suppose for the moment that we have already proved
(3.4.5). Note that strict antitonicity of ρ implies that δx � δy whenever x, y ∈ Rd satisfy x ≥ y
and x 6= y. Hence u(x) =

∫
u(s) δx(ds) >

∫
u(s) δy(ds) = u(y), and we conclude that u is

necessarily strictly increasing as claimed.
Now we prove (3.4.5): The proof of continuity of ≺ is completely analogous to the corre-

sponding proof in Föllmer (2014) Theorem 3.4, so we omit it here. The crucial property is the
independence axiom, which states that for any three distributions µ, ν, ϑ such that µ � ν and for
all λ ∈ (0, 1], we have

λµ+ (1− λ)ϑ � λν + (1− λ)ϑ.

Since (Ω,F ,P) is conditionally atomless given H, we can find X,Y, Z ∈ L∞d (F) which are
independent of H such that X ∼ µ, Y ∼ ν and Z ∼ ϑ. Furthermore, since (Ω,H,P) is
atomless, we can find an A ∈ H with P(A) = λ. It can be easily seen that X1A + Z1AC ∼
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λµ+(1−λ)ϑ and Y 1A+Z1AC ∼ λν+(1−λ)ϑ. Moreover, since µ � ν, we have that ρ(X) ≥
ρ(Y ). As {ρ, ρH} is strongly consistent and as ρ is law-invariant, we know from Lemma 3.4.3
that ρH is conditionally law-invariant. This ensures that we can apply Lemma 3.4.4 to the
random vectors X and Y which are independent of H. Therefore, by H-locality of ρH and
recalling Remark 3.3.4

ρ (X1A + Z1AC ) = ρ (−ρH (X1A + Z1AC ) 1d)

= ρ (−ρH(X)1A1d − ρH(Z)1AC1d)

= ρ (−ρ(X)1A1d − ρH(Z)1AC1d)

≥ ρ (−ρ(Y )1A1d − ρH(Z)1AC1d) = ρ (Y 1A + Z1AC ) ,

which is equivalent to λµ + (1 − λ)ϑ � λν + (1 − λ)ϑ. Thus there exists a von Neumann-
Morgenstern representation (3.4.5) with a continuous and strictly increasing utility function u :
Rd → R.
In the next step we define fu : R → R;x 7→ u(x1d). Then fu is strictly increasing and
continuous and thus f−1

u exists. Let µ be an arbitrary distribution on (Rd,B(Rd)) with bounded
support and X ∼ µ. Then

ρ
(
‖X‖d,∞1d

)
≤ ρ(X) ≤ ρ

(
− ‖X‖d,∞1d

)
and hence

fu(−‖X‖d,∞) =

∫
u(x) δ−‖X‖d,∞1d(dx) ≤

∫
u(x) µ(dx)

≤
∫
u(x) δ‖X‖d,∞1d(dx) = fu(‖X‖d,∞).

The intermediate value theorem now implies the existence of a constant c(µ) ∈ R such that

fu
(
c(µ)

)
=

∫
u(x) µ(dx) ⇐⇒ c(µ) = f−1

u

(∫
u(x) µ(dx)

)
.

Finally, since δc(µ)1d ≈ µ, we have

ρ(X) = ρ
(
c(µ)1d

)
= −c(µ) = −f−1

u

(∫
u(x) µ(dx)

)
= −f−1

u

(
EP [u(X)]

)
.

Hence, we have proved (3.4.3) (with g ≡ − id). Define

ψH(X) := −f−1
u

(
EP [u(X) | H]

)
, X ∈ L∞d (F),

then we have seen in the first part of the proof that ψH is a CRM which is strongly consistent with
ρ. Moreover, ψH is normalized on constants. Thus it follows by Lemma 3.3.5 that ρH = ψH. If
ρ and/or ρH are not normalized on constants, then considering the normalized CRMs −f−1

ρ ◦ ρ
and−f−1

ρH ◦ρH as introduced after Definition 3.2.6, the result follows from ρ = fρ◦
(
−(−f−1

ρ ◦
ρ)
)

and ρH = fρH ◦
(
− (−f−1

ρH ◦ ρH)
)
, i.e. g = fρ and gH = fρH .
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Recall Theorem 3.3.12 where we proved that if a multivariate CRM ρH is strongly consis-
tent in a forward looking way with an aggregation ρF under full information F (and ρF fulfills
(3.3.6)), then the multivariate CRM can be decomposed as in (3.3.7). The following Theo-
rem 3.4.6 shows that we also obtain such a decomposition (3.3.7) under law-invariance by re-
quiring strong consistency of ρH in a backward looking way with ρ given trivial information
{∅,Ω}.

When stating Theorem 3.4.6 we will need an extension of fρH to L∞(F): Suppose that
the process R 3 a 7→ fρH(a) allows for a continuous realization. Due to the fact that ρH
is strictly antitone and H-local, we can find a possibly different realization fρH(·, ·) such that
f̃ρH : R × Ω → R : x 7→ fρH(x, ω) is continuous and strictly decreasing in the first argument
for all ω ∈ Ω. Note that there exists a well-defined inverse f̃−1

ρH (·, ω) of f̃ρH(·, ω) for all ω ∈ Ω.
Now define the functions

f̄ρH : L∞(F)→ L∞(F); F 7→ f̃ρH(F (ω), ω) (3.4.6)

and
f̄−1
ρH : Im f̄ρH → L∞(F); F 7→ f̃−1

ρH (F (ω), ω),

where we with the standard abuse of notation identify the random variable f̃ρH(F (ω), ω) or
f̃−1
ρH (F (ω), ω) with the equivalence classes they generate in L∞(F).

By construction of f̄ρH we have that

f̄ρH(L∞(J )) ⊆ L∞(J )

for all σ-algebras J such that σ (fρH(a, ·), a ∈ R) ⊆ J ⊆ F , c.f. Hoffmann et al. (2016)
Lemma 3.1. By definition f̄ρH is also F-local and has the Lebesgue property due to conti-
nuity of R 3 a 7→ f̃ρH(a, ω). Moreover, H-locality and continuity also imply that indeed
f̄ρH(X) = fρH(X) for all X ∈ H (approximation by simple random variables), so f̄ρH is
indeed an extension of fρH to L∞(F).

Theorem 3.4.6. Under the same conditions as in Theorem 3.4.5 let {ρ, ρH} be strongly consis-
tent. Then ρ can be decomposed as

ρ = η ◦ Λ,

where
Λ : L∞d (F)→ L∞(F); X 7→ −fρ

(
f−1
u (u(X))

)
is a {∅,Ω}-conditional aggregation function,

η : Im Λ→ R; F 7→ −U−1 (EP [U(F )])

is a law-invariant univariate certainty equivalent given by the (deterministic) utility

U : Im ρ→ R; a 7→ fu
(
f−1
ρ (−a)

)
which is strictly increasing and continuous. Here u : Rd → R is the multivariate utility function
from Theorem 3.4.5.
If the function R 3 a 7→ fρH(a) has a continuous realization, then ρH can be decomposed as

ρH = ηH ◦ ΛH,
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with
ηH (ΛH(X)) = −ΛH(X), for all X ∈ L∞d (H),

where

• ΛH : L∞d (F)→ L∞(F);X 7→ −f̄ρH
(
f−1
u (u(X))

)
is a σ (fρH(a, ·) : a ∈ R)-conditional

aggregation function (fρH(a, ·) denotes a continuous realization with strictly increasing
paths);

• ηH : Im ΛH → L∞(H); F 7→ −U−1
H (EP [UH(F ) | H]) is a univariate conditional

certainty equivalent;

• the stochastic utility UH : Im ΛH → L∞(F); F 7→ fu
(
f̄−1
ρH (−F )

)
is strictly isotone,

F-local, fulfills the Lebesgue property and U−1
H (ImUH ∩ L∞(H)) ⊆ L∞(H);

• f̄ρH is given in (3.4.6).

Moreover, it holds that
UH ◦ ΛH = u = U ◦ Λ (3.4.7)

are deterministic and independent of the chosen informationH or {Ω, ∅}.
Finally we also have that f−1

ΛH
◦ ΛH = f−1

u ◦ u = f−1
Λ ◦ Λ, i.e. {Λ,ΛH} is strongly consistent

as defined in (3.3.8).

Proof. By Theorem 3.4.5 we have that

ρH(X) = fρH
(
f−1
u (EP [u(X) | H])

)
= f̄ρH

(
f−1
u

(
EP
[
fu
(
f̄−1
ρH

(
f̄ρH

(
f−1
u (u(X))

))) ∣∣ H])) ,
where u and fu are given in Theorem 3.4.5. Hence, recalling the definitions of UH, ηH, and
ΛH, we have ρH = ηH ◦ ΛH. It can be readily seen that UH as well as U−1

H , and thus also
ΛH, are F-local, strictly isotone, and fulfill the Lebesgue property. As f̄ρH(L∞(J )) ⊆ L∞(J )
for all σ-algebras J such that σ (fρH(a, ·) : a ∈ R) ⊆ J ⊆ F , the same also applies to ΛH =
−f̄ρH ◦ f−1

u ◦ u and we conclude that ΛH is a σ (fρH(a, ·) : a ∈ R)-conditional aggregation
function. Moreover, for X ∈ L∞d (H)

ηH (ΛH(X)) = f̄ρH
(
f−1
u (u(X))

)
= −U−1

H
(
u(X)

)
= −ΛH(X).

The result for ρ follows similarly to the proof above without requiring a continuous realization
and by using the canonical extension of fρ from R to L∞d (F), i.e. f̄ρ(F )(ω) = fρ(F (ω)) for all
ω ∈ Ω and F ∈ L∞(F).

We remark that (3.4.7) is the crucial fact which ensures that ρ and ρH are strongly consistent
and (conditionally) law-invariant.

In Theorem 3.4.6 we have seen that basically every CRM which is strongly consistent with a
law-invariant CRM under trivial information can be decomposed into a conditional aggregation
function and a univariate conditional certainty equivalent. For the rest of this section we study
the effect of additional properties of the CRMs on this decomposition. For instance, we want
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to identify conditions under which the univariate conditional certainty equivalent is generated
by a deterministic (instead of a stochastic) utility function; see Corollary 3.4.7. Also we study
what happens if the univariate CRMs η and ηH from Theorem 3.4.6 are required to be strongly
consistent; see Corollary 3.4.9.

Corollary 3.4.7. In the situation of Theorem 3.4.6, if ρ is normalized on constants, then

Λ(X) = f−1
u (u(X)), X ∈ L∞d (F),

and
η(F ) = ρ(F1d) = −f−1

u (EP [fu(F )]), F ∈ L∞(F).

If ρH is normalized on constants, then similarly

ΛH(X) = f−1
u (u(X)), X ∈ L∞d (F),

and
ηH(F ) = ρH(F1d) = −f−1

u (EP [fu(F ) | H]), F ∈ L∞(F).

In particular the univariate conditional certainty equivalent ηH is now given by the deterministic
univariate utility function fu, and thus ηH is conditionally law-invariant.
If both ρ and ρH are normalized on constants, then Λ = ΛH.

Remark 3.4.8. Suppose that ρ and ρH from Theorem 3.4.6 are normalized on constants and that
for all F,G ∈ L∞(F), m,λ ∈ R with λ ∈ (0, 1)

ρ(F1d +m1d) = ρ(F1d)−m (3.4.8)

as well as
ρ
(
λF1d + (1− λ)G1d

)
≤ λρ(F1d) + (1− λ)ρ(G1d). (3.4.9)

Recalling Corollary 3.4.7 it follows that η(F ) = ρ(F1d) is cash-additive (3.4.8) and convex
(3.4.9). Since fu is a deterministic function it can be easily checked that η and ηH are strongly
consistent (conditionally) law-invariant univariate CRMs. Therefore we are in the framework of
Föllmer (2014). There it is shown that the univariate CRMs must be either linear or of entropic
type, i.e.

fu(x) = ax+ b or fu(x) = −ae−βx + b, x ∈ R,

for constants a, b, β ∈ R with a, β > 0, which implies that

ηH(F ) = EP [−F | H] or ηH(F ) =
1

β
log
(
EP

[
e−βF

∣∣∣ H])
and similarly for η. Clearly, this also has consequences for the aggregation function Λ = ΛH =
f−1
u ◦ u since x 7→ u(x1d) = fu(x) is either of linear or exponential form. For instance, a

possible aggregation would be given by u(x1, . . . , xd) = a
∑d

i=1wixi + b, where wi ∈ (0, 1)

for i = 1, ..., d such that
∑d

i=1wi = 1, because fu(x) = ax + b. In this case the aggregation
function is simply Λ(x) =

∑d
i=1wixi.
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Corollary 3.4.9. In the situation of Theorem 3.4.6, suppose that η and ηH are defined on all of
L∞(F). Then {η, ηH} are strongly consistent if and only if

η = −ũ−1 (EP [ũ(F )]) and ηH = −ũ−1 (EP [ ũ(F ) | H])

for a continuous and strictly increasing utility function ũ : R→ R. Moreover, the corresponding
(conditional) aggregation functions are given by

Λ = −fρ ◦ f−1
u ◦ u and ΛH = −fρ ◦ f−1

u ◦ aH ◦ u,

where aH(F ) = αF + β, F ∈ L∞(F), is a positive affine transformation given by α, β ∈
L∞(H) with P(α > 0) = 1.

Proof. As η is law-invariant, it follows from Lemma 3.4.3 that ηH is conditionally law-invariant.
Moreover, fη ≡ fηH ≡ − id, i.e. η and ηH are normalized on constants. Thus by Theorem 3.4.5
we obtain that

η = −ũ−1 (EP [ũ(F )]) and ηH = −ũ−1 (EP [ ũ(F ) | H])

for a continuous and strictly increasing function ũ : R → R. It follows from Lemma 3.4.10
below that U as well as UH are affine transformations of ũ. This in turn implies that UH =
ãH ◦ U , where ãH(F ) = α̃F + β̃ for α̃, β̃ ∈ L∞(H) with P(α̃ > 0) = 1. Finally we obtain
that the σ (fρH(a, ω), a ∈ R)-conditional aggregation function ΛH is given by

ΛH = U−1
H ◦ u = U−1 ◦ ã−1

H ◦ u = −fρ ◦ f−1
u ◦ ã−1

H ◦ u.

Since the inverse aH := ã−1
H of an affine function is affine the result follows.

Lemma 3.4.10. Let UH be the stochastic utility from Theorem 3.4.6 and let ŨH : Im ΛH →
L∞(F) be another function which is strictly isotone, F-local, fulfills the Lebesgue property and
ŨH(Im ΛH ∩ L∞(H)) ⊆ L∞(H), such that

Ũ−1
H

(
EP

[
ŨH(F )

∣∣∣ H]) = U−1
H (EP [UH(F ) | H]) , for all F ∈ Im ΛH. (3.4.10)

Then ŨH is anH-measurable positive affine transformation ofUH, i.e. there existα, β ∈ L∞(H)
with P(α > 0) = 1 such that ŨH(F ) = αUH(F ) + β for all F ∈ Im ΛH.

Proof. We have seen in Theorem 3.4.6 that UH ◦ ΛH = u, where u is strictly increasing and
continuous. Thus

X := ImUH = u(L∞d (F)) ⊆ L∞(F)

and it follows that for allF ∈ X there exists a sequence ofF-simple random variables (Fn)n∈N ⊆
X such that Fn → F P-a.s. Moreover, by the intermediate value theorem we can find for
each X,Y ∈ L∞d (F) and λ ∈ L∞(F) with 0 ≤ λ ≤ 1 a random variable Z such that
min{−‖X‖d,∞,−‖Y ‖d,∞} ≤ Z ≤ max{‖X‖d,∞, ‖Y ‖d,∞} and for all P-almost all ω ∈ Ω

λ(ω)u
(
X(ω)

)
+ (1− λ)u

(
Y (ω)

)
= u

(
Z(ω)1d

)
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where X(·), Y (·) and λ(·) are arbitrary representatives of X,Y and λ. Indeed, it can be shown
by a measurable selection argument that Z can be chosen to be F-measurable and hence X is
F-conditionally convex in the sense that λF + (1−λ)G ∈ X for all F,G ∈ X and λ ∈ L∞(F)
with 0 ≤ λ ≤ 1.

Next define the strictly isotone and F-local function

VH : X → L∞(F); X 7→ ŨH
(
U−1
H (F )

)
,

that is ŨH = VH ◦ UH. Moreover, it easily follows that VH fulfills the Lebesgue property and
VH(X ∩ L∞(H)) ⊆ L∞(H). We show that VH is an affine function, that is VH(F ) = αF + β
for all F ∈ X , where α, β ∈ L∞(F). Note that affinity can be equivalently expressed via
VH(λF + (1 − λ)G) = λVH(F ) + (1 − λ)VH(G) for all F,G ∈ X and λ ∈ L∞(F) with
0 ≤ λ ≤ 1.
We suppose that VH is not affine, i.e. there are F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1 such
that

P (VH(λF + (1− λ)G) 6= λVH(F ) + (1− λ)VH(G)) > 0. (3.4.11)

First note that it suffices to assume that (3.4.11) holds for deterministic F,G and λ. To see
this suppose that VH is affine on deterministic values, but not on the whole of X , i.e. (3.4.11)
holds for some F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1. We know that there exist
sequences of F-simple functions (Fn)n∈N, (Gn)n∈N ⊂ X ∩ S and (λn)n∈N ⊂ L∞(F) ∩ S
with 0 ≤ λn ≤ 1 for all n ∈ N such that Fn → F,Gn → G,λn → λ P-a.s., where S was
defined in the proof of Proposition 3.3.11. Without loss of generality we might assume that
Fn =

∑kn
i=1 F

n
i 1A

n
i
, Gn =

∑kn
i=1G

n
i 1A

n
i

and λn =
∑kn

i=1 λ
n
i 1A

n
i

have the same disjoint F-
partition (Ani )i=1,...,kn . By the F-locality and Lebesgue property and since Fni , G

n
i , λ

n
i ∈ R for

all i = 1, ..., kn and n ∈ N we have

VH(λF + (1− λ)G) = lim
n→∞

VH(λnFn + (1− λn)Gn)

= lim
n→∞

VH

(
kn∑
i=1

(λni F
n
i + (1− λni )Gni )1Ani

)

= lim
n→∞

kn∑
i=1

VH
(
λni F

n
i + (1− λni )Gni

)
1Ani

= lim
n→∞

kn∑
i=1

(
λni VH(Fni ) + (1− λni )VH(Gni )

)
1Ani

= lim
n→∞

λnVH(Fn) + (1− λn)VH(Gn)

= λVH(F ) + (1− λ)VH(G),

which contradicts (3.4.11). Moreover we assume that 0 < λ < 1 since otherwise this would
also contradict (3.4.11). Finally, we assume w.l.o.g. that

A := {VH(λF + (1− λ)G) < λVH(F ) + (1− λ)VH(G)} ∈ H
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has positive probability. Next define H1 := F1A + G1AC and H2 := G, then Hi ∈ X ∩
L∞(H), i = 1, 2 and by F-locality of VH

VH(λH1 + (1− λ)H2) ≤ λVH(H1) + (1− λ)VH(H2)

and the inequality is strict with positive probability.
Since (Ω,P,F) is conditionally atomless given H there exists a B ∈ F with P(B) = λ and

which is independent ofH. Since H1, H2 ∈ X and X is F-conditionally convex

H := H11B +H21BC ∈ X .

Now by F-locality of VH, VH(X ∩ L∞(H)) ⊆ L∞(H) and B ⊥⊥ H we get

EP [VH (H) | H] = EP [VH (H11B +H21BC ) | H]

= VH(H1)EP [1B | H] + VH(H2)EP [1BC | H]

= VH(H1)EP [1B] + VH(H2)EP [1BC ]

= λVH(H1) + (1− λ)VH(H2)

≥ VH(λH1 + (1− λ)H2)

= VH (EP [H11B +H21BC | H])

= VH (EP [H | H]) ,

and the inequality is strict with positive probability. MoreoverX = ImUH implies the existence
of a H̃ ∈ Im ΛH such that H = UH(H̃). Finally we get

Ũ−1
H

(
EP

[
ŨH(H̃)

∣∣∣ H]) = U−1
H

(
V −1
H

(
EP

[
VH

(
UH(H̃)

) ∣∣∣ H]))
= U−1

H
(
V −1
H (EP [VH (H) | H])

)
≥ U−1

H
(
V −1
H (VH (EP [H | H]))

)
= U−1

H (EP [H | H])

= U−1
H

(
EP

[
UH(H̃)

∣∣∣ H]) ,
and the inequality is strict with positive probability, since Ũ−1

H and U−1
H are strictly isotone (c.f.

Lemma 3.2.4). Thus we have the desired contradiction of (3.4.10) and hence VH is affine, i.e.
VH(F ) = αF + β for all F ∈ X , where α, β ∈ L∞(F). Moreover, since we know that
VH(x) ∈ L∞(H) for all x ∈ R∩X , we obtain that α, β are actuallyH-measurable. That α > 0
follows immediately from the fact that ŨH, U−1

H are strictly isotone.

Remark 3.4.11. Our notion of consistency is defined in terms of the multivariate CRMs. In
contrast in Kromer et al. (2014) it is a priori assumed that the multivariate CRMs are of the
decomposable form ρ = η ◦ Λ as in (3.3.7) and they define "consistency" of {ρG , ρH} by re-
quiring strong consistency of both pairs {ηG , ηH} and {ΛG ,ΛH}. Note that these definitions of
consistency are not equivalent, in particular strong consistency of both {ηG , ηH} and {ΛG ,ΛH}
does not imply strong consistency of {ρG , ρH}. Kromer et al. (2014) also study the interplay of
the strong consistency of {ρG , ρH} and of strong consistency of both {ηG , ηH} and {ΛG ,ΛH}.
As Corollary 3.4.9 shows in the law-invariant case this requirement is quite restrictive.
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3.5 Consistency of a family of conditional risk measures

So far we only considered consistency for two multivariate CRMs. In this section we extend our
results on strong consistency to families of multivariate CRMs. We begin with some motivating
examples.

Example 3.5.1 (Dynamic risk measures). If one is interested in a dynamic risk measurement
under growing information in time up to a terminal time T > 0, this can be modeled by a family
of CRMs (ρt)t∈[0,T ] and a filtration (Ft)t∈[0,T ] such that ρt : L∞d (FT )→ L∞(Ft).

In systemic risk measurement conditioning on varying information in space rather than in time
is of interest. In that situation, as opposed to Example 3.5.1, the family of multivariate CRMs is
not necessarily indexed by a filtration. To exemplify this we recall a multivariate version of the
spatial risk measures which have been introduced by Föllmer (2014) in a univariate framework.

Example 3.5.2 (Multivariate spatial risk measures). Let I = {1, ..., d} denote a set of financial
institutions and let (S,S) be a measurable space. Each financial institution i ∈ I can be in
some state s ∈ S, and Ω = SI = {ω = (ω)i∈I : ωi ∈ S} denotes all possible states of the
system. Then the σ-algebra FJ on Ω which is generated by the canonical projections on the
j-th coordinate for j ∈ J describes the observable information within the subsystem of financial
institutions J ⊆ I . Finally let P be a probability measure on (Ω,F), where F := FI . Then
the risk evolution under varying spatial information can be modeled by the family of CRMs
(ρJ)J⊆I , where each ρJ : L∞d (F) → L∞(FJ), i.e. ρJ is the risk of the system given the
information on the state of the financial institutions within the subsystem J .

From the viewpoint of a regulator, systemic risk measurement contingent on information in
space is helpful in identifying systemic relevant structures, i.e. in analyzing questions like: "How
much is the system affected given that a specific institution or subgroup of institutions is in
distress?", or "How resilient is a specific institution or subgroup of institutions given that the
system is in distress?". In Example 3.5.2 the spatial conditioning is based on a σ-algebra which
is generated by all possible states of the institutions within a given subsystem. To treat questions
of the type mentioned before one might alternatively consider conditioning with respect to more
granular information in space. For instance, in the spirit of the systemic risk measures CoVaR
in Adrian and Brunnermeier (2016) or Systemic Expected Shortfall in Acharya et al. (2017) one
could condition on a single crisis event with respect to a given subsystem, e.g. that all financial
institutions within the subsystem are below their individual value-at-risk levels.

In Example 3.5.1 as well as Example 3.5.2 the families of CRMs are indexed by one-dimen-
sional information structure. However, in Frittelli and Maggis (2011), they propose conditional
certainty equivalents based on a two-dimensional information structure caused by the fact that
utilities of agents may vary over time:

Example 3.5.3 (Conditional certainty equivalents). Let (Ω,F , (Ft)t∈R+ ,P) be an atomless fil-
tered probability space and let ut : R × Ω → R be a function which is strictly increasing and
continuous in the first argument and Ft-measurable in the second argument for all t ∈ R+. Sup-
pose that the range Rt := {ut(x, ω) : x ∈ R} is independent of ω ∈ Ω, that Rt ⊆ Rs for
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all s ≤ t, and denote the pathwise inverse function of u by u−1
t (y) ∈ L∞(Ft) for all y ∈ Rt,

where ut(x) and u−1
t (y) is the shorthand for ut(x, ·) and u−1

t (y, ·), resp. Then the backward
conditional certainty equivalent is given by

Cs,t : L∞(Ft)→ L∞(Fs);F 7→ Cs,t(F ) = −u−1
s

(
EP [ut(F ) | Fs]

)
.

It has been shown in Frittelli and Maggis (2011) Proposition 1.1 that for a fixed T ∈ R+, we
have that the family (Ct,T )t≤T is consistent, i.e. for all s ≤ t ≤ T

Ct,T (F ) ≥ Ct,T (G) =⇒ Cs,T (F ) ≥ Cs,T (G) (F,G ∈ L∞(FT )).

Also in the context of conditioning on spatial information a two-dimensional information
structure could be of interest, for example to represent risk measurement policies that differ
locally in the financial system.

Example 3.5.4 (Local regulatory policies). In the context of Example 3.5.2, let I = {1, ..., d}
be a network of financial institutions that is of interest for supervisory authorities associated
to different levels with possibly different regulatory policies. For example, think of I as the
European financial system. Then regulatory policies of authorities on the European level might
differ from policies on the national levels which again might differ from regional policies. To
include these different regulatory viewpoints into the framework of spatial risk measures one
could consider a family of CRMs (ρJ,K)J⊆K⊆I , where each ρJ,K : L∞d (FK) → L∞(FJ).
Here the first index J has the same meaning as in Example 3.5.2, i.e. the risk measurement
is performed conditioned on the state of the institutions in subsystem J . The second index
K identifies the type of regulatory policy on the risk management prevailing in subsystem K,
for example expected shortfall measures at different significance levels according to European
(K = I), national, or regional standards. Even though regulatory policies may differ depending
on the level of authority, it might still be desirable that these policies behave consistently in some
way, i.e. the family (ρJ,K)J⊆K⊆I should be consistent not only with respect to the contingent
information implied by the index J but also with respect to the different policies implied by the
index K. In the following, this question will be considered.

Motivated by the examples above, we will consider the following types of families of CRMs
in this section: Let I1 and I2 be sets of sub-σ-algebras of F such that I1 contains the triv-
ial σ-algebra and denote by E := {(H, T ) ∈ I1 × I2 : H ⊆ T }. In the following we
denote by ρH,T a multivariate CRM which maps L∞d (T ) to L∞(H) and we consider fami-
lies of CRMs of type (ρH,T )(H,T )∈E . In order to allow for a comparison of the risks of two
random risk factors under different information, we assume for the rest of this section that
ρH,T1(L∞d (T1)) = ρH,T2(L∞d (T2)) for all (H, T1), (H, T2) ∈ E . Sometimes it will also be
convenient to consider only a subfamily of E where the second σ-algebra is fixed. In that case
we denote the corresponding index set by E(T ) := {H ∈ I1 : H ⊆ T } for T ∈ I2. Note that
the structure of the families of CRMs discussed in Example 3.5.1 and Example 3.5.2 is covered
by this framework by letting I2 := {F}.

Definition 3.5.5. A family of CRMs (ρH,T )(H,T )∈E is strongly consistent if for all G ⊆ H ⊆
T1 ∩ T2

ρH,T1(X) ≥ ρH,T2(Y ) =⇒ ρG,T1(X) ≥ ρG,T2(Y ), (X ∈ L∞(T1), Y ∈ L∞d (T2)).
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It can be easily checked that the conditional certainty equivalents of Frittelli and Maggis
(2011) (see Example 3.5.3) are strongly consistent. Analogously to Lemma 3.3.2 strong consis-
tency is equivalent to the following recursive relation between the CRMs.

Lemma 3.5.6. Let (ρH,T )(H,T )∈E be family of CRMs, then the following statements are equiv-
alent:

(i) (ρH,T )(H,T )∈E is strongly consistent;

(ii) For all G ⊆ H ⊆ T1 ∩ T2 and X ∈ L∞d (T1)

ρG,T1(X) = ρG,T2

(
f−1
ρH,T2

(
ρH,T1(X)

)
1d

)
.

Clearly, our results from the previous sections carry over to families of CRM. We illustrate this
in the following by giving the straightforward extensions of Theorem 3.3.12 and Theorem 3.4.5
to a family of CRMs.

Theorem 3.5.7. Let (ρH,T )(H,T )∈E be a family of strongly consistent CRMs. Moreover, if there
exists a T ∈ I2 such that

f−1
ρT ,T ◦ ρT ,T (x) ∈ R, ∀x ∈ Rd, (3.5.1)

then each multivariate CRM ρH,T of the subfamily (ρH,T )H∈E(T ) which has a continuous
realization ρH,T (·, ·) can be decomposed into a H-conditional aggregation function ΛH,T :
L∞d (T )→ L∞(T ) and a univariate CRM ηH,T : Im ΛH,T → L∞(H) such that

ρH,T = ηH,T ◦ ΛH,T

and ρH,T (X) = ηH,T
(
ΛH,T (X)

)
= −ΛH,T (X) for all X ∈ L∞d (H). Moreover, for those

ρH,T ,H ∈ E(T ), for which a decomposition exists the corresponding conditional aggregation
functions are strongly consistent.

Theorem 3.5.8. Let (ρH,T )(H,T )∈E be a family of CRMs. Furthermore, suppose that there
exists an (G, T ) ∈ E such that (Ω, T ,P) is a conditionally atomless probability space given G,
(Ω,G,P) is atomless and ρT := ρ{∅,Ω},T is law-invariant. Then the subfamily (ρH,T )H∈E(T ) is
strongly consistent if and only if for eachH ∈ E(T ) the CRM ρH,T is of the form

ρH,T (X) = gH,T
(
f−1
uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ), (3.5.2)

where uT : Rd → R is strictly increasing and continuous, f−1
uT : Im fuT → R is the unique

inverse function of fuT : R → R;x 7→ uT (x1d) and gH,T : L∞(H) → L∞(H) is strictly
antitone,H-local, fulfills the Lebesgue property and 0 ∈ Im gH,T .
In particular, for any CRM of type (3.5.2) we have that gH,T = fρH,T , where fρH,T is defined in
Definition 3.2.2.

Note that the latter results, being extensions from the two-CRM-case of the previous sections,
only used the strong consistency as a pairwise strong consistency of the elements in subfamilies
(ρH,T )(H,T )∈E(T ) of (ρH,T )(H,T )∈E . But if I2 contains more than just one σ-algebra, then the
definition of strong consistency given in Definition 3.5.5 also has implications on the relations
between these subfamilies corresponding to different sets E(T ) for T ∈ I2.
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Assumption 2. In order to have sufficiently many subfamilies we suppose for the remainder of
this section that I1 = I2 =: I.

Proposition 3.5.9. Let (ρH,T )(H,T )∈E be a strongly consistent family such that (3.5.2) holds for
all (H, T ) ∈ E . Then for all T1, T2 ∈ I andH ∈ T1 ∩ T2,H ∈ I,

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
aT1,T2EP [uT1(X) | H] + bH,T1,T2

))
,

where aT1,T2 ∈ R+\{0}, bH,T1,T2 ∈ L∞(H) and EP [bH,T1,T2 | G] = bG,T1,T2 for all G ∈ I with
G ⊆ H.

In order to prove Proposition 3.5.9 we need some auxiliary lemmas and therefore the proof is
deferred to the end of this section. From Proposition 3.5.9 it follows that any strongly consis-
tent family (ρH,T )(H,T )∈E (under Assumption 2) is basically a family of conditional certainty
equivalents as in Frittelli and Maggis (2011):

Corollary 3.5.10. In the situation of Proposition 3.5.9, if aT1,T2 = 1, bH,T1,T2 = 0 for all
H ⊆ T1 ∩ T2 where H ∈ I and T1, T2 ∈ I, and if ρT ,T are normalized on constants for all
T ∈ I, then (ρH,T )(H,T )∈E satisfies

ρH,T (X) = −f−1
uH

(
EP [uT (X) | H]

)
, X ∈ L∞d (T ). (3.5.3)

Proof. If aT1,T2 = 1 and bH,T1,T2 = 0 for allH ⊆ T1 ∩ T2, then

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
EP [uT1(X) | H]

))
,

and thus by choosing T2 = H and since ρH,H is normalized on constants we get (3.5.3).

Next we prepare the proof of Proposition 3.5.9:

Lemma 3.5.11. Let u : Rd → R be a deterministic utility, i.e. u is strictly increasing and
continuous, and let G andH be sub-σ-algebras of F such that G ⊆ H. Then

EP [u(L∞d (H)) | G] = u(L∞d (G)).

Proof. "⊇": Obvious. "⊆": Define the CRM ρG : L∞d (H) → L∞(G);X 7→ −EP [u(X) | G].
By Lemma 3.2.5 it follows that

EP [u(L∞d (H)) | G] = −ρG(L∞d (H)) = −fρG (L∞(G)) = EP [u(L∞(G)1d) | G]

⊆ EP [u(L∞d (G)) | G] = u(L∞d (G)).

Lemma 3.5.12. For an arbitrary T ∈ I let uT : Rd → R be a deterministic utility and define
XH := uT (L∞d (H)) for all H ∈ E(T ). Moreover, let pH : XH → L∞(H) be functions such
that pH is H-local, strictly isotone and fulfills the Lebesgue-property. If for all G,H ∈ E(T )
with G ⊆ H andH atomless it holds that

pG (EP [F | G]) = EP [pH(F ) | G] for all F ∈ XH, (3.5.4)



3.5 Consistency of a family of conditional risk measures 83

then
pH(F ) = aF + βH,

where a ∈ R+\{0} and βH ∈ L∞(H) such that EP [βH | G] = βG .
Note that (3.5.4) is well-defined by Lemma 3.5.11.

Proof. Firstly, we consider the case where G is the trivial σ-algebra. We write p := p{Ω,∅}.
Note that, since p is a deterministic function, p (EP [F ]) is law-invariant and thus by (3.5.4) also
EP [pH(F )].
Now suppose that there exist x, y ∈ X := X{Ω,∅} with pH(x) − pH(y) 6∈ R, i.e. there exists a
c ∈ R such that P(pH(x) ≤ pH(y) + c) ∈ (0, 1). Since H is an atomless space we can choose
A1, A2, A3 ∈ H with

P(A1) = P(A2) := q > 0

such that

A1 ⊆ {pH(x) ≤ pH(y) + c}, A2 ⊆ {pH(x) > pH(y) + c}, A3 := (A1 ∪A2)C .

Moreover, we define

F1 := x1A1 + y1A2 + x1A3 and F2 := y1A1 + x1A2 + x1A3 .

Obviously F1, F2 ∼ qδy + (1− q)δx, that is F1
d
= F2. However, since pH isH-local, we have

EP [pH(F1)] + cq = EP [pH(x)1A1 ] + EP [(pH(y) + c)1A2 ] + EP [pH(x)1A3 ]

< EP [(pH(y) + c)1A1 ] + EP [pH(x)1A2 ] + EP [pH(x)1A3 ]

= EP [pH(F2)] + cq,

which contradicts the law-invariance of F 7→ EP [pH(F )].
Hence we have that pH(x)− pH(y) ∈ R for all x, y ∈ X . Choose an arbitrary x̃ ∈ X , and let

a(x) := pH(x)− pH(x̃), x ∈ X ,

so a : X → R. Define β̃H := pH(x̃) ∈ L∞(H), then pH(x) = a(x) + β̃H. The function a is
continuous, since otherwise there would exist a sequence (xn)n∈N ⊂ X with xn → x ∈ X , but
a(xn) 6→ a(x) and the Lebesgue-property would imply the contradiction

pH(x) = lim
n→∞

pH(xn) = lim
n→∞

a(xn) + β̃H 6= a(x) + β̃H = pH(x).

Let F ∈ XH. Since the H-measurable simple random vectors are dense in L∞d (H) and by the
definition of XH there exists a sequence of H-measurable simple random variables (Fn)n∈N ⊂
XH ∩ S with Fn =

∑kn
i=1 x

n
i 1Ani → F P-a.s. Thus

pH(F ) = lim
n→∞

pH(Fn) = lim
n→∞

kn∑
i=1

pH(xni )1Ani = lim
n→∞

kn∑
i=1

a(xni )1Ani + β̃H
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= lim
n→∞

a

(
kn∑
i=1

xni 1Ani

)
+ β̃H = lim

n→∞
a(Fn) + β̃H = a(F ) + β̃H.

The function XH 3 F 7→ EP [F ] induces a preference relation onM := {µ : ∃F ∈ XH such
that F ∼ µ} via

µ < ν ⇐⇒ EP [F ] ≥ EP [G] , F ∼ µ,G ∼ ν.

Moreover the function x 7→ p−1(x+ E[β̃H]) is strictly increasing and by (3.5.4)

EP [F ] = p−1 (EP [pH(F )]) = p−1
(
EP [a(F )] + E

[
β̃H
])
.

Thus EP [a(F )] is another affine numerical representation of <. It is well-known that the affine
numerical representation of < is unique up to a positive affine transformation (see e.g. Föllmer
and Schied (2011) Theorem 2.21), i.e. there exist ã, b ∈ R, ã > 0 such that EP [a(F )] =
ãEP [F ] + b for all F ∈ XH. In particular this implies that for all x ∈ X

a(x) = EP [a(x)] = aEP [x] + b = ãx+ b.

By setting b+ β̃H =: βH ∈ L∞(H) we get for all F ∈ XH that

pH(F ) = a(F ) + β̃H = ãF + b+ β̃H = ãF + βH.

Finally we obtain by (3.5.4) that for every G ⊆ H and for all F ∈ XG

pG(F ) = pG (EP [F | G]) = EP [pH(F ) | G] = aF + EP [βH | G] ,

which proves the martingale property of (βG)G⊆H.

Proof of Proposition 3.5.9: Let (ρH,T )(H,T )∈E be a strongly consistent family such that (3.5.2)
holds for all (H, T ) ∈ E , i.e.

ρH,T (X) = fρH,T
(
f−1
uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ),

We define the functions

hH,T : uT (L∞d (H))→ L∞(H);F 7→ fρH,T ◦ f
−1
uT (F )

and
pH,T1,T2 : uT1(L∞d (H))→ L∞(H);F 7→ h−1

H,T2 ◦ hH,T1(F ).

By strong consistency, we obtain for G ⊆ H ⊆ T1∩T2,X ∈ L∞d (T1) andF := EP [uT1(X) | H]
that

pG,T1,T2 (EP [F | G]) = h−1
G,T2

(
hG,T1

(
EP [EP [uT1(X) | H] | G]

))
= h−1

G,T2 (ρG,T1(X))

= h−1
G,T2

(
ρG,T2

(
f−1
ρH,T2

(
ρH,T1(X)

)
1d

))
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= EP

[
h−1
H,T2

(
hH,T1

(
EP [uT1(X) | H]

)) ∣∣∣ G]
= EP [pH,T1,T2(F ) | G] . (3.5.5)

By Lemma 3.5.12 (3.5.5) is fulfilled, if and only if

pH,T1,T2(F ) = aT1,T2F + bH,T1,T2 , for all F ∈ uT1(L∞d (H)),

where aT1,T2 ∈ R+\{0}, bH,T1,T2 ∈ L∞(H) and EP [bH,T1,T2 | G] = bG,T1,T2 for all G ∈ I with
G ⊆ H. Thus

hH,T1(F ) = hH,T2(aT1,T2F + bH,T1,T2), F ∈ uT1(L∞d (H)),

which implies that

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
aT1,T2EP [uT1(X) | H] + bH,T1,T2

))
.





4 Allocation of Systemic Risk

4.0 Contributions of the thesis' author

This chapter is a joint work between the author of the thesis H. Hoffmann, the supervisor T.
Meyer-Brandis and G. Svindland. A preprint is also available at http://www.fm.mathematik.uni-
muenchen.de/download/publications/systallo.pdf.

This final chapter investigates the appropriateness of the (fuzzy) core in the context of sys-
temic risk allocation. Section 4.2 just contains definitions and a small review of the classical
(fuzzy) core. The authors developed jointly the contagion model presented at the beginning of
Section 4.3 which is related to the framework of Eisenberg and Noe (2001). The remaining
calculation in this section have been performed by H. Hoffmann. He also suggested to consider
the reverse (fuzzy) core in conjunction with the new subsystem generation scheme in (4.3.4).
Moreover, the major part for the statement of the reverse fuzzy core in the contagion model in
Section 4.5 has been done by the thesis’ author. The final example and the subsequent appendix
has been elaborated by H. Hoffmann.

4.1 Introduction

In this work our aim is to study the appropriateness of the transfer of a classical game theoretic
allocation concept to the allocation problem for financial systems with interacting institutions.
This is due to the fact that in the recent financial crisis it became apparent that a risk evaluation
of a financial network on the basis of the single institutions is not sufficient in order to capture
the systemic risk inherent from the various feedback mechanisms between the institutions.

For this purpose we position ourself in a stylized market clearing framework for interbank
loans. This framework traces back to the seminal work of Eisenberg and Noe (2001). Briefly
speaking, we have a system of financial institutions which are connected via bilateral credit
agreements. If now a financial institution defaults due to some adverse market event, then it has
to be liquidated immediately and the remaining assets are distributed among the creditors of the
institution proportionately to their liabilities. Since the proceeds of liquidation are less than the
total liabilities owed to the other banks in the system, these banks face additional losses which
might result in a default of one or more creditor banks. These potential defaults can trigger
further failures of banks and thus the initial default spreads into the financial system.

In order to allow for a comprehensive risk assessment of financial systems like the above, sys-
temic risk measures have been introduced. As we have already described how losses propagate
into the financial system, we can easily calculate the total losses of the system by summing up
the losses of the single institutions after all possible contagion has taken place. Now the risk of
the system can be easily obtained by using a well-known univariate risk measure. An axiomatic
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description of this particular type of systemic risk measures which allow for a decomposition
into an aggregation function and a univariate risk measure has been studied in Chen et al. (2013),
Kromer et al. (2016) and Hoffmann et al. (2016).

Besides the assessment of the total risk of a financial system, it is also of interest to identify the
individual contributions of the single institutions to the total risk. In particular, the contributions
should add up to the system’s risk, that is we look for appropriate allocation schemes. Chen
et al. (2013) and Kromer et al. (2016) propose an allocation procedure which is based on a
dual representation of the systemic risk measures. These allocations are essentially equal to
the Aumann-Shapley value which is known from the game theoretic literature, cf. Aumann and
Shapley (1974). The Aumann-Shapley value is also an example for a coherent allocation as
defined in Denault (2001) which gained much attention for the portfolio allocation problem.
Among the properties of a coherent allocation the no-undercut property is the most crucial.
Moreover, it is also the main building block of the core from the game theory literature, cf.
Aubin (1979). The no-undercut property says that for all subgroups the amount of the total risk
which is allocated to it should be smaller than the measured risk of this subgroup. This property
is commonly justified by the following consideration, if a subgroup would get a share of the
total risk which is higher than its own risk, then this subsystem would split from the system and
consequently obtains a lower risk. Whereas for a portfolio of financial assets it can be easily
answered how a separation of a subportfolio should be implemented, this task is much more
complex for a financial network. In this work we concentrate on two possible ways to measure
the risk of subsystems after they separated from the financial system. In both approaches we
assume that the underlying financial network topology remains intact. For examples where
also the interbank liabilities in the financial network are modified, we refer to the works of
Drehmann and Tarashev (2013) or Staum et al. (2016). However, in their work they do not study
the implications on the core.

For obvious reasons, the core is only meaningful if the risk measurement of the subsystems is
subadditive, that is merging two disjoint subgroups should reduce the risk. This diversification
effect is usually assumed for the classical risk management of a firm or a portfolio of finan-
cial assets. Similarly, for decomposable systemic risk measures, one can argue in favor of a
diversification benefit for the risk measurement of the aggregated values of the financial system.
However, for the aggregation itself it depends on the applied model for the construction of the
subsystems if the merger of two subsystems decreases or increases the risk. This is because the
introduction of a new financial firm to the financial system might serve as both a transmitter
and a buffer of losses. Thus, the corresponding aggregation function can exhibit diversification
benefits as well as integration costs.

In Chen et al. (2013) and Kromer et al. (2016) the authors overcome this problem by consid-
ering an aggregation of the subsystems which corresponds to a worst-case view, when it comes
to the spreading of risk within the system. As a result they also have a diversification benefit on
this level. The considered subsystem generation is a generalization from the classical portfolio
approach, where the risk factors correspond to profits and losses of certain financial instruments.
Thus, considering the risk of the accumulated profits and losses of a subsystem suggests itself as
the subsystem risk. That is simply summing up all risk factors which are in the subsystem and
equate the remainders to zero.
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Unfortunately, we will see that in financial networks where contagion might take place this
allocation procedure creates wrong incentives to the financial institutions. The reason is that,
whereas it was sufficient in the classical approach to measure how much each subsystem spreads
into the system, we have now also a second origin of risk, namely the ability of a subsystem to
transfer the losses. For example consider two financial systems which are connected exclusively
via one intermediate institution having no other operations. Obviously, the intermediate insti-
tution can be considered systemic, since it is the only possible way that losses of one financial
system can be carried over to the other. However, the systemic relevance of the intermediary can-
not be expressed by a core allocation, since each core allocation must be bounded from above by
its standalone risk and the intermediary has no other sources of risk apart from the losses from
the financial systems.

In order to tackle this problem we invert the definition of the core, i.e. the allocated risk for
each subsystem should be at least as much as the risk of this subsystem. We call this allocation
principle the reverse core. Clearly, by reversing the core definition there is now also a need for
changing the underlying subsystem risk management in such a way that instead of a diversi-
fication benefit we have that there is a consolidation cost. In our analysis this is provided by
supposing that all institutions outside of a subsystem are equipped with such a high amount of
capital that a default is excluded. Contrarily to the classical subsystem generation discussed ear-
lier this supports a best-case view. For our interaction model we will see that this new definition
resolves the unfairnesses from before. Moreover, we identify under which assumptions there
exist allocations in the intersection of both approaches.

Structure of the paper

In Section 4.2 we state our notation and review the (fuzzy) core concept from the game the-
oretic literature adapted to more general aggregation functions. In Section 4.3 we apply the
core concept to a financial system with contagion. Based on the deficiencies of this allocation
we alter the underlying risk measurement for the subsystems from a worst-case to a best-case
perspective. Due to this change we introduce in Section 4.4 the notion of the reverse core and
study its relation to the core concept from before. Finally, in Section 4.5 we determine a reverse
core element for our financial system and show that in most cases it does not coincide with the
elements from Section 4.3. In the appendix 4.A we discuss how the non-emptiness of the cores
for random risk factors can be inferred from deterministic risk factors.

4.2 Standard game theoretic approach to systemic risk

Throughout this work we consider a financial system I := {1, ..., d} which consists of d ∈ N
different financial institutions. In the analysis of the financial system I subsystems will play a
decisive role. Here P := P(I) is the powerset of I and represents the set of all subsystems.
Since I is the largest system we consider, JC denotes the complementary set of J ∈ P with
respect to I, i.e. JC := I\J . We will denote the i-th unit vector of Rd by ei, i.e. all components
are equal to zero except the i-th component which is equal to one. Moreover, 0d and 1d is the
notation for the d-dimensional vectors where all components are equal to zero or one, resp. As
usual Rd+ is the space of d-dimensional non-negative real valued vectors. By Id we denote the
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d × d dimensional identity matrix and by A> the transpose of the matrix A. Apart from the
usual matrix multiplication, we will sometimes also need the Hadamard product (component-
wise multiplication) which we denote by ∗, i.e. x ∗ y = (x1y1, ..., xdyd)

> for x, y ∈ Rd.
Let X d be a space of Rd-valued functions on some measurable space (Ω,F) representing

d-dimensional risk factors of the financial system I. We evaluate the systemic risk of these risk
factors via a systemic risk measure.

Definition 4.2.1. A function ρ : X d → R is called systemic risk measure if it is antitone, that is
for X,Y ∈ X d with X ≤ Y we have that ρ(X) ≥ ρ(Y ).

In addition to the measurement of the risk of the whole financial system, we also suppose that
we have excess to information on the risk of each subgroup of financial institutions. For this
measurement we introduce the notion of a subsystem risk measure.

Definition 4.2.2. We say that ρ̃ : X d × P → R is subsystem risk measure for the systemic risk
measure ρ : X d → R if the function X d 3 X 7→ ρ̃(X, J) is a systemic risk measure for all
J ∈ P and ρ̃(X, I) = ρ(X).
Moreover, if we just consider deterministic risk factors we will call it a subsystem construction
scheme and denote it by Λ̃ : Rd × P → R.

A fairness criterion which is known as the core in the game theoretic literature are individually
and coalitionally stable allocations, i.e. allocations where no entity or group of entities has an
incentive to deviate from the allocation by splitting from the system, cf. Aubin (1979). More
precisely, the core is formally defined as follows:

Definition 4.2.3 (Allocation and core). For a givenX ∈ X d, we say that k ∈ Rd is an allocation
of the systemic risk ρ(X) if

d∑
i=1

ki = ρ(X).

Moreover, let ρ̃ : X d × P → R be a subsystem risk measure of ρ. We say that k is in the core
C−ρ̃ (X) if k is an allocation which additionally fulfills that for all subsystems J ∈ P

ρ̃(X, J) ≥
∑
j∈J

kj . (4.2.1)

The core has been prominently used for the allocation of the risk of a portfolio consisting of
financial assets. In the following example we will review this framework and the motivation for
the core.

Example 4.2.4. The core C− is a superset of the coherent allocations as postulated by De-
nault (2001). Here (4.2.1) also appeared under the name of the no undercut property. Denault
(2001) exclusively concentrates on the risk measurement of a portfolio of financial assets. This
corresponds in our framework to a financial system with no interactions between the single in-
stitutions, i.e. the well-being of a financial firm is unaffected by the state of the other banks.
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However, note that in the absence of feedback mechanisms, the single risk factors, here the prof-
its and losses, might still be dependent in a probabilistic sense. In the portfolio framework of
Denault (2001) the risk of a multivariate risk factor X ∈ X d is measured by

η

 d∑
j=1

Xj

 ,

where η : X → R is some coherent risk measure. Recall that a coherent risk measure is a
functional which is antitone, cash-additive, convex and positive homogeneous. For more details
on coherent risk measures we refer to Föllmer and Schied (2011). Since the removal or the
adding of a financial asset to a portfolio does not affect the performance of the remaining assets,
the sum is an appropriate aggregation function in this setup. By an analogous argumentation,
the risk of a subsystem J ∈ P should be measured via

ρ̃(X, J) := η

∑
j∈J

Xj

 . (4.2.2)

Recall that every coherent risk measure η is subadditive and thus we have that for all disjoint
J1, J2 ∈ P

ρ̃(X, J1 ∪ J2) ≤ ρ̃(X, J1) + ρ̃(X, J2),

which reflects a diversification effect. This implies that it is always profitable to merge subport-
folios. In order to have a fair allocation k ∈ Rd this diversification benefit should be shared
among the different financial assets, i.e. kj ≤ ρ̃(X, {j}) for j = 1, ..., d. Otherwise the investor
would demerge this asset from the portfolio and would hold it separately. Therefore the allo-
cated risk of every single financial asset should be less than its standalone risk. Similarly we can
argue for subportfolios, which then results in (4.2.1) that is the main property of the core C−.

The following lemma relates the cores of two subsystem risk measures where one is always
more conservative than the other. It is a direct consequence of the definition of the core.

Lemma 4.2.5. Let ρ̃1 be a subsystem risk measure. If k ∈ C−ρ̃1(X), then k ∈ C−ρ̃2(X) for all ρ̃2

with ρ̃1(X, J) ≤ ρ̃2(X, J) for all J ∈ P and ρ1(X) = ρ2(X).

For the construction of the core, we just considered subsystems of type P , i.e. a risk factor
of a financial institution can either be accounted for completely or not at all. But especially in
the context of Example 4.2.4 a subsystem can also be created by taking fractional parts of the
profits and losses. Thus we will now characterize a subsystem by a fractional participation level
λ ∈ [0, 1]d or λ ∈ Rd+. For this purpose we need to generalize the notion of a subsystem risk
measure to a function ρ : X d × Rd+ → R, where ρ(X,λ) is the risk of the system X ∈ X d
where bank j participates with λj and ρ(X,1d) = ρ(X). Here λj = 1 means full participation
and λj = 0 is the absence of bank j.

Definition 4.2.6 (Fuzzy core). We say k ∈ Rd is in the fuzzy core FC−ρ (X) if k is an allocation,
i.e. ρ(X,1d) = 1>d k and for all λ ∈ [0, 1]d it holds that

ρ(X,λ) ≥ λ>k.
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Since each subsystem risk measure with fractional participation ρ yields a subsystem risk
measure ρ̃ : X d × P → R via

ρ̃(X, J) := ρ

X,∑
j∈J

ej

 for all J ∈ P,

we have that FC−ρ (X) ⊆ C−ρ̃ (X).
In the following theorem we recall the well-known result that under differentiability, convexity

and positive homogeneity of a subsystem risk measure the fuzzy core is single-valued and equal
to its gradient. For a proof see for instance Aubin (1979). In this case the fuzzy core is also
called Euler allocation or Euler principle in the literature, c.f. Denault (2001), Tasche (2004).

Theorem 4.2.7. Let ρ : X d × Rd+ → R be a subsystem risk measure which is positive homo-
geneous on the diagonal of its second argument, i.e. ρ(·, α1d) = αρ(·,1d) for all α ≥ 0. Then,
the extended fuzzy core

FC
−
ρ (X) :=

{
k ∈ Rd : ρ(X,1d) = 1>d k and ρ(X,λ) ≥ λ>k,∀λ ∈ Rd+

}
is equal to the subdifferential

∂−ρ(X,1d) :=
{
k ∈ Rd : ρ(X,λ) ≥ ρ(X,1d) + k>(λ− 1d) ∀λ ∈ Rd+

}
.

Thus, if the function λ 7→ ρ(X,λ) is additionally convex and differentiable in 1d the extended
fuzzy core

FC
−
ρ (X) = ∇ρ(X,1d)

where∇ρ(X, ·) is the gradient of ρ in its second argument.

Example 4.2.8 (Portfolio approach cont.). A possible extension of (4.2.2) to allow for fractional
participation is given by

ρ(X,λ) := η

(
d∑
i=1

λiXi

)
= η

(
λ>X

)
, (4.2.3)

where η is the coherent univariate risk measure from (4.2.2). Clearly, λ 7→ ρ(X,λ) is positively
homogeneous and convex, thus the fuzzy core FC−ρ (X) is non-empty. If λ 7→ ρ(X,λ) is also
differentiable then the fuzzy core FC−ρ (X) is even single valued. Therefore the fuzzy core
FC−(X) or the larger core C−(X) seems to be a feasible allocation approach in the portfolio
context.

4.3 Financial model with contagion

In this section we will investigate if the (fuzzy) core still yields fair allocations given that our
financial network allows for feedback mechanisms among the financial institutions. For this
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purpose we need to alter the aggregation function in (4.2.2) and (4.2.3) respectively from a sim-
ple sum to a more complex aggregation function which allows for the inclusion of a channel of
contagion. The aggregation function we will use traces back to the seminal paper of Eisenberg
and Noe (2001) and has been extended in many directions, e.g. to include multiple sources of
contagion, c.f. Awiszus and Weber (2015) for a survey. In order to focus on the impact of the
feedback mechanism on the allocations, we will consider a deterministic risk x ∈ Rd. The treat-
ment of random risk factors is discussed in the appendix.
As before we assume that I := {1, ..., d} represents a financial system. However, we now
assume that only the first d − 1 components are financial institutions and the last component
represents the real economy. We suppose that the financial institutions have claims against each
other which appear as interbank assets/liabilities on their balance sheets. The interbank as-
sets/liabilities are summarized by the matrix L = (Li,j)i,j=1,...,d, where Li,j is the monetary
amount of bank i which it owes to bank j. Furthermore the total amount of the interbank liabil-
ities of bank i is denoted by Li :=

∑d
j=1 Li,j for all i = 1, ..., d. Three standing assumptions

on the liability matrix will be that each bank does not have claims against itself and against the
real economy, however the real economy has claims against each bank. In short, we assume that
Li,i = 0, Ld,i = 0 and Li,d > 0 for all i = 1, ..., d. The first and the last assumption are more
technical and not really restricting. The second assumption needs some further explanation. Of
course, banks have claims against the real economy like households or industrial companies.
However, we will not model these connections within the financial system, but the real economy
can contribute losses to the banks via an initial shock. Another model assumptions is that in case
of a default the debtors of the defaulting institution divide the remaining assets proportional to
their claims, i.e. it will suffice to consider the relative liability matrix Π = (Πi,j)i,j=1,...,d which
is given by

Πi,j :=

{
Li,j
Li

, if Li > 0

0 , if Li = 0
.

Moreover, the institutions are endowed with an initial capital/equity c ∈ Rd+. On the asset side
the institutions have interbank assets as described above and some external assets, which also
contains claims against the real economy. Therefore we have a full description of the balance
sheet of each bank. Next we suppose that at a future point in time the external assets of the banks
are hit by some adverse market event y ≤ 0d. Due to this market shock also the liability side of
the balance sheets have to decrease by the same amount. As debt is senior to equity, the banks
have to use their equity to buffer the shock. However, if there is not a sufficient amount of equity
to dampen the shock, a bank is in default and pays out the remaining assets proportionally to
its creditors. Since the creditors are not paid in full this creates a further loss on their balance
sheets which can result in a default of one or more of the creditors. Finally these defaults can
trigger other defaults, so that a large fraction of the system might be affected. This contagion is
modeled by the following aggregation function

Λ(x) := min
a∈Rd+

1>d a (4.3.1)

s.t. a =
(
Π>a− x

)+
,
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where x = c+ y is the equity value of the financial institutions directly after the adverse market
event y took place. Note that by monotonicity of the function Rd+ 3 a 7→

(
Π>a− x

)+, we
have that the optimal value for a in the optimization problem (4.3.1) of the aggregation function
Λ can be found by iterating a(n) =

(
Π>a(n− 1)− x

)+ with a(0) := 0d. The interpretation
of this iteration procedure is as follows:
First, we suppose that no bank defaults which corresponds to a(0) = 0d. In the first iteration
we thus have that a(1) = (−x)+ which is identical to the losses of the banks defaulting initially
due to the adverse market event. Next a(2) =

(
Π>a(1)− x

)+
=
(
Π>(−x)+ − x

)+, where
Π>(−x)+ are the losses which the banks receive from the initially defaulting banks. Hence
a(2) contains the losses of the initially defaulting banks and of those banks which fail due to the
losses transmitted by the defaulting banks. In each subsequent step these losses further spread
into the system and we approach an equilibrium a fulfilling the constraint in (4.3.1).

In contrast to Eisenberg and Noe (2001) we do not cap the transmission of losses to other
banks by the corresponding interbank liabilities. We did so in order to keep the model simple and
thus for a better understanding of the contagion effects later on and second the inclusion of the
real economy makes the events where the losses exceed the interbank liabilities rather unlikely.
As there is not an upper bound for the transmitted losses, it could be that for a finite shock
the contagion effects wind each other up more and more. However, we will see in Lemma 4.3.1
below that this is not possible in our framework, since a certain percentage of the losses is always
transfered to the real economy, where the channel of contagion ends.

Lemma 4.3.1. For each x ∈ Rd the aggregation function Λ(x) is finite.

Proof. Firstly, we observe that Λ is monotonically decreasing and that Λ(x) = 0 for all x ≥ 0d.
Thus it suffices to consider x ≤ 0d, i.e. all institutions default initially. Then the constraint in
(4.3.1) can be simplified to

a =
(
Π>a− x

)+
= Π>a− x

and thus if the matrix Id −Π> is invertible, then there exists a unique solution

a = −(Id −Π>)−1x,

where Id the d× d dimensional identity matrix.
We denote by (Aj,k)j,k=1,...,d = A := Id −Π>. Moreover by Π̃ and Ã we denote the (d −
1) × (d − 1) matrices which are obtained by erasing the last row and column from Π and A
resp. Note that, since we assumed that every institution has liabilities to the real economy, i.e.
Πj,d > 0 for all j = 1, ..., d − 1, the row sums of Π̃ are less then 1 and thus the operator norm
‖Π̃>‖1 = maxi=1,...,d−1

∑d−1
j=1 |Πij | < 1. Hence a classic result from functional analysis, see

e.g. Werner (2011) Satz II.1.11, yields that the Neumann series
∑n

i=0(Π̃>)i, n ∈ N, converges
and that the inverse of Ã = Id−1−Π̃> exists and is equal to the limit of the series. Furthermore,
a Laplace expansion along the last column of A yields that det(A) = det(Ã) 6= 0 and thus A
is invertible.
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In the next lemma we derive an element in the (fuzzy) core for the subsystem construction
scheme Λ0(x, λ) := Λ(λ ∗ x) by making use of Theorem 4.2.7. As already pointed out earlier
this subsystem construction scheme parallels the portfolio approach (4.2.3), where the sum as
aggregation function is replaced by Λ. For the result we need to identify the institutions which
default after all possible contagion has taken place. We denote the set of these institutions for a
given x ∈ Rd by

D(x) = {p1, ..., p|D|} := {i ∈ I : (Π>a− x)i ≥ 0},

where a is the limit of the sequence a(n) = (Π>a(n − 1) − x)+ with a(0) = 0d. If it is clear
from the context we will mostly drop the reference to the risk factor x.

Lemma 4.3.2. Let x ∈ Rd and define k ∈ Rd by

kpi := −
|D|∑
j=1

((
I|D| −Π>D,D

)−1
)
j,i

xpi , i = 1, ..., |D|,

and ki := 0 for i 6∈ D. Here ΠD,D = (Πi,j)i,j∈D. Then

k ∈ FC−
Λ0(x).

Proof. That the matrix I|D|−Π>D,D is invertible can be shown analogously to the considerations
made in the proof of Lemma 4.3.1.
Denote by a the limit of the sequence a(n) = (Π>a(n − 1) − x)+ with a(0) = 0d. Since
(Π>a − x)i < 0 for all non-defaulting institutions i 6∈ D we have that ai = 0. Therefore we
obtain for the vector of losses of the defaulting institutions aD := (aj)j∈D that

aD =
(
(Π>a− x)+

j

)
j∈D = Π>D,DaD − xD,

where and xD := (xj)j∈D. Finally, we obtain that

Λ(x) =
∑
i∈D

ai =

|D|∑
i=1

−1>|D|

(
I|D| −Π>D,D

)−1
ẽixpi =

|D|∑
i=1

kpi =
d∑
i=1

ki, (4.3.2)

where ẽi is the i-th unit vector in R|D|. Thus k is an allocation.
Moreover, suppose that a ∈ Rd+ is such that a = (Π>a− x)+ and Λ(x) = 1>d a. Then we have
for each λ > 0 that λa = (Π>(λa)− λx)+. Hence

Λ0(x, λ1d) = Λ(λx) ≤ 1>d (λa) = λΛ(x) = λΛ0(x,1d).

On the other hand we obtain by a similar argumentation for λx that

λΛ0(x,1d) = λΛ0

(
x,

1

λ
λ1d

)
= λΛ0

(
λx,

1

λ
1d

)
≤ Λ0(λx,1d) = Λ0(x, λ1d).
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Combining both results yields the positive homogeneity on the diagonal of the second argument
of Λ0.

Furthermore, it can be easily shown that Λ is a convex function, from which it immediately
follows that the function z 7→ Λ0(x, z) is also convex. Hence, we obtain from Theorem 4.2.7
that FC−

Λ0(x) is equal to the subdifferential of z 7→ Λ0(x, z) at 1d.
Firstly, we suppose that there exists a neighborhood N of x such that D(z) = D(x) for all

z ∈ N . Then Λ(x) is the linear function (4.3.2) on N and thus differentiable in x. Therefore k
is the gradient of Λ0(x, ·) at 1d and hence {k} = FC−

Λ0(x).
If no such neighborhood N exists the subdifferential might not be single valued. However, it
can still be shown that k is a member of the subdifferential.
Since the function z 7→ |D(z)| is left-continuous with values in {0, ..., d}, we can always find
x̃ ≤ x with ‖x − x̃‖∞ > ε for some ε > 0 such that D(x̃) = D(x) and λ 7→ Λ0(x̃, λ) is
differentiable in 1d. Note that x̃ can also be chosen such that x̃i 6= 0 for all i = 1, ..., d and thus
the componentwise quotient u ∈ Rd+ of x and x̃, i.e. ui = xi

x̃i
for all i = 1, ..., d, is well-defined.

Since Λ is linear between x̃ and x, we have that

Λ0(x̃,1d) +∇Λ0(x̃,1d)
>(u− 1d) = Λ0(x̃, u) = Λ0(x,1d), (4.3.3)

where ∇Λ0(x̃,1d) denotes the gradient of the function λ 7→ Λ0(x̃, λ) at 1d. From this we can
immediately infer that for all λ ∈ Rd+

Λ0(x, λ) = Λ0(x̃, λ ∗ u)

≥ Λ0(x̃,1d) +∇Λ0(x̃,1d)
>(λ ∗ u− 1d)

= Λ0(x,1d) +
(
∇Λ0(x̃,1d) ∗ u

)>
(λ− 1d),

where we used (4.3.3) in the last step. Hence∇Λ0(x̃,1d)∗u is a subdifferential of λ 7→ Λ0(x, λ)
at 1d. By using (4.3.2) a simple calculation shows that k = ∇Λ0(x̃,1d) ∗ u and the result
follows.

Lemma 4.3.3. Let x ∈ Rd and k ∈ FC−
Λ0(x) be the allocation from Lemma 4.3.2. Moreover,

denote by D0 := {i ∈ I : xi ≤ 0} the set of initially defaulting institutions. Then we have that
the allocations ki, i ∈ D\D0 of the institutions which default due to contagion are non-positive.

Proof. First, we prove that
(
I|D| −Π>D,D

)−1
=
∑∞

i=0

(
Π>D,D

)i
. We have already seen in

the proof of Lemma 4.3.1 that this holds true if ‖Π>D,D‖1 < 1. Therefore we assume that
‖Π>D,D‖1 = 1. In particular this implies that the real economy d ∈ D. We consider the matrix

Π̃ ∈ R(|D|−1)×(|D|−1) which we obtain from ΠD,D by erasing the last row and column and the
vector Πd = (Πpi,d)i=1,...,|D|−1 ∈ R(|D|−1) containing the relative liabilities of the defaulting
banks to the real economy. Then

ΠD,D =

(
Π̃ Πd

0>|D|−1 0

)
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and it can be easily shown that for all n ∈ N
n∑
i=0

(
Π>D,D

)i
=

( ∑n
i=0(Π̃>)i 0|D|−1

Π>d
∑n−1

i=0 (Π̃>)i 0

)
.

Since ‖Π̃‖1 < 1 the Neumann series
∑n

i=0(Π̃>)i converges and hence also
∑n

i=0(Π>D,D)i.

From Werner (2011) it thus follows that the limit
∑∞

i=0(Π>D,D)i =
(
I|D| −Π>D,D

)−1
. There-

fore all entries of the inverse of I|D| − Π>D,D must be positive. Finally this implies that for
all i ∈ D the allocation k from Lemma 4.3.2 can be rewritten as ki = −wixi for the positive

weighting factor wi := −
∑|D|

j=1

( (
I|D| −Π>D,D

)−1 )
j,i

. Therefore, we have for all i ∈ D\D0

that ki ≤ 0, since xi > 0.

In summary the allocation k from Lemma 4.3.2 seems to be reasonable for the initially de-
faulting banks, since it is a combination of the severity of the loss xi and of how much the loss
propagates further into the system which is specified by the weighting factor wi. Moreover,
those banks which do not default at all get an allocation of zero which could also be declared as
fair. However, those banks which have enough equity at the beginning xi > 0 but which default
due to contagion, get an allocation which is strictly negative. Compendiously, this allocation
creates an incentive to control the standalone risk factor xi, but to ignore (or even to increase)
the systemic risk which originates from the network effects wi.

The main problem of this allocation is that it is based on the subsystem construction scheme
Λ0. Whilst in the portfolio framework the entities outside of a subsystem had no influence on
the risk evaluation of the subsystem, the subsystem construction scheme Λ0 just sets the equity
of the neighboring entities to zero. However, this does not imply that they have no impact on the
subsystem anymore, since the network linkages have not changed at all. Even worse the banks
outside of the subsystem are assumed to be already in default which means that they transmit
all the losses. Thus this construction scheme corresponds in some sense to a worst-case view on
how much a subsystem is able to spread its losses within the whole system. This interpretation
is also in line with the definition of the core, i.e. that the construction scheme is always an upper
bound of the subsystems allocation.
Another problem with the core allocations in this interaction model is that each entity does not
only act as a spreader of risk as in the portfolio approach, but can also function as a transmitter
of the losses of some other entities. This perspective is exactly the crucial part for the fuzzy core
element from above. Namely the banks which are in D\D0, do not contribute losses to the sys-
tem and thus any core allocation must be bounded by zero. Nonetheless in the complete system
they face losses from other institutions and transmit them further into the system. However, they
can not be charged for this loss transmission as their share is already capped by zero.

Contrarily, we now want to find an appropriate subsystem construction scheme such that the
causality of the risk of a subsystem can solely be explained by the subsystem itself. Moreover,
we also want that the feedback effects within the subsystem remain intact. The most intuitive
choice for such a subsystem construction scheme is equipping all banks outside of the subsystem
with a very high amount of capital such that these banks can never face a default, i.e.

Λb(x, λ) = Λ(λ ∗ x+ (1d − λ) ∗ b), (4.3.4)
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with b ∈ Rd+ sufficiently large.
Note that, whilst in the financial network without feedback mechanisms we had that joining

two subgroups of banks always resulted in a risk reduction compared to the sum of the single
risks, it might now happen that two single subsystems are not able to trigger a default of a bank
but they can in a combined subsystem. That is the diversification benefit can turn into a cost.
Moreover, in contrast to the prior subsystem construction scheme Λ0, we now have a best-case
view as we suppose that the external system is capable of covering all losses.

4.4 The reverse core

Because of the change of the perspective towards a best-case view, we also need to change the
definition of a fair allocation in a way that the allocation of a subsystem should at least cover
the risk of the subsystem. Moreover, for this new subsystem construction, we have that the risk
of a single financial institution is just a measure of the adverse market event, since we assume
that no loss can spread to the other institutions. This is in line with the current market practice
of measuring the risk on a standalone basis. Therefore we should demand that the allocation of
the systemic risk to this bank does not fall below this threshold in order to cover it own losses.
For this reason we introduce the notion of the reverse (fuzzy) core.

Definition 4.4.1 (Reverse (fuzzy) core). Let X ∈ X d and ρ̃ : X d × P → R a subsystem risk
measure. We say that k ∈ Rd is in the reverse core C+

ρ̃ (X) if
∑d

i=1 kj = ρ(X, I) and for all
J ∈ P

ρ̃(X, J) ≤
∑
j∈J

kj .

Similarly, we say that k is in the reverse fuzzy core FC+
ρ (X) for a subsystem risk measure

ρ : X d × Rd+ → R if
∑d

i=1 ki = ρ(X,1d) and for all λ ∈ [0, 1]d we have that

ρ(X,λ) ≤ λ>k.

Next we investigate the relationship between the core and the reverse core which are generated
by the same subsystem risk measure. Note that a similar result also holds for the fuzzy cores.

Lemma 4.4.2. Let ρ̃ : X d×P → R be a subsystem risk measure. The core and the reverse core
are related in one of the following ways

• C−ρ̃ (X) = C+
ρ̃ (X) = ∅;

• C−ρ̃ (X) = C+
ρ̃ (X) = {k} with ρ̃(X, J) =

∑
j∈J kj for all J ∈ P;

• One core contains only allocations where the inequality is strict for at least one J ∈ P
and the other core is empty.

In particular, if C±ρ̃ (X) 6= ∅, then |C∓ρ̃ (X)| ≤ 1.
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Proof. Suppose C−ρ̃ (X) as well as C+
ρ̃ (X) are non-empty. Let k− ∈ C−ρ̃ (X) and k+ ∈ C+

ρ̃ (X)
from which it follows that

d∑
i=1

k−i =

d∑
i=1

k+
i and

∑
j∈J

k−j ≤
∑
j∈J

k+
j for all J ∈ P.

We define further K := {i ∈ I : k−i < k+
i } and G := {i ∈ I : k−i > k+

i }. We assume that
G ∪K 6= ∅. If K 6= ∅, then

∑d
i=1 k

−
i =

∑d
i=1 k

+
i implies that∑

i∈G
k+
i − k

−
i =

∑
i∈K

k−i − k
+
i < 0.

Thus also G 6= ∅, which contradicts
∑

j∈J k
−
j ≤

∑
j∈J k

+
j for all J ∈ P . Hence k− = k+ and

we can deduce that both cores are equal and single valued.
Finally, if one core is empty, we clearly have thatk ∈ Rd : ρ̃(X, J) =

∑
j∈J

kj , ∀J ∈ P

 = ∅

and thus the other core has to be empty as well or the inequality has to be strict for at least one
J ∈ P for each allocation.

In the prior lemma we studied the connection of the two core concepts for the same subsystem
risk measure. In contrast to this, we will see in the next lemma that we can also translate one
core concept to the other by changing the underlying subsystem risk measure.

Lemma 4.4.3. Let ρ̃ : X d × P → R be a subsystem risk measure with ρ̃(X, ∅) = 0 for all
X ∈ X d. Then

C+
ρ̃ (X) ⊆

k ∈ Rd :
∑
j∈J

kj ≤ ρ(X)− ρ̃
(
X, JC

)
∀J ∈ P

 ,

where JC := I\J is again the complement w.r.t. the complete system. The interpretation is that
each element of the reverse core must "undercut" the "with and without risk". In particular by
defining the subsystem risk measure ρ̄ via

ρ̄(X, J) := ρ(X)− ρ̃(X, JC)

we obtain from the result above and from ρ(X)− ρ̄(X, JC) = ρ̃(X, J) that

C+
ρ̃ (X) = C−ρ̄ (X).

Proof. Let k ∈ C+
ρ̃ (X). Then for each J ∈ P it holds that

ρ̃(X, JC)−
∑
j∈JC

kj ≤ 0 = ρ(X, I)−
d∑
i=1

ki,
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which is equivalent to ∑
j∈J

kj ≤ ρ(X)− ρ̃
(
X, JC

)
.

We remark that a similar result also holds for the fuzzy and reverse fuzzy cores.

4.5 The reverse core in the �nancial model with contagion

Equipped with this new core concept, we come back to our interaction model from Section 4.3.
Recall that we are interested in a risk factor x = c + y, where c ∈ Rd+ is the vector of some
initial capital endowments of the financial institutions and−y ∈ Rd+ is a negative shock. For the
subsystem construction scheme Λb defined in (4.3.4) we vaguely demanded that b ∈ Rd+ should
be sufficiently large. In Lemma 4.5.2 we will show that it is already sufficient to consider Λc in
order that the reverse fuzzy core FC+

Λc(x) is non-empty. Moreover, similar to Lemma 4.2.5 we
derive that FC+

Λc(x) ⊆ FC+
Λb

(x) for all b ≥ c.
Note that the subsystem construction scheme Λb is independent of the specific decomposition of
the risk factor x into a positive capital amount c and a shock y. Therefore, if we allow also for
positive shocks, i.e. x = c + y with y ∈ Rd, then we can choose the decomposition x = c̃ + ỹ
with c̃ = c+ max{y,0d} and ỹ = min{y,0d}. Since c̃ and −ỹ are again positive, we have that
FC+

Λc̃
(x) ⊆ FC+

Λb
(x). Thus, if we are interested in the non-emptiness of the reverse core of Λb,

assuming a negative shock is essentially not a restriction.
Before we identify an element of the reverse fuzzy core of Λc, we need the following preparatory
lemma:

Lemma 4.5.1. Let A = (Ai,j)i,j=1,...,d ∈ Rd×d+ and b ∈ Rd+. Then there exists a B =

(Bi,j)i,j=1,...,d ∈ Rd×d+ such that d∑
j=1

A·,j − b

+

=
d∑
j=1

(A·,j −B·,j)+ , (4.5.1)

where
∑d

j=1Bi,j = bi and Bi,i is either equal to Ai,i or bi for all i = 1, ..., d.

Proof. Let i ∈ I be fixed. We denote by π : I → I the permutation which exchanges the first
and the i-th entry, i.e. π(1) = i, π(i) = 1 and π(j) = j for all j 6∈ {1, i}. We distinguish the
following two cases:

• If
∑d

j=1Ai,j ≤ bi, then set Bi,π(j) := Ai,π(j) for all j = 1, ..., d − 1 and Bi,π(d) :=

bi −
∑d−1

j=1 Ai,π(j).

• If
∑d

j=1Ai,j > bi, then define for j = 1, ..., d

Bi,π(j) := Ai,π(j)1{
∑j
k=1 Ai,π(k)≤bi}
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+

(
bi −

j−1∑
k=1

Ai,π(k)

)
1{

∑j−1
k=1 Ai,π(k)≤bi,

∑j
k=1 Ai,π(k)>bi}

.

Obviously, (4.5.1) is fulfilled and we have for this choice ofBi,· that
∑d

j=1Bi,j = bi. Depending
on the size of Ai,i, we have either Bi,i = Ai,i or Bi,i = bi.

Lemma 4.5.2. Let x = y + c with y ≤ 0d and c ∈ Rd+. Then the reverse fuzzy core FC+
Λc(x)

with the subsystem construction scheme

Λc(x, λ) := Λ (λ ∗ x+ (1d − λ) ∗ c) = Λ(λ ∗ y + c),

is non-empty. Moreover, there exists an allocation k ∈ FC+
Λc(x) such that for all i = 1, ..., d

ki ≤ Λ(xiei),

that is k also fulfills the property of the core for the single financial institutions and the subsystem
construction scheme Λ0(x, λ) = Λ(λ ∗ x).

Proof. As in Lemma 4.3.2, we will use the fact that the optimal value for a in the optimization
problem (4.3.1) of the aggregation function Λ can be found by iterating a(n) =

(
Π>a(n− 1)− x

)+,
n ∈ N with a(0) := 0d.
First, we iteratively define a non-negative partition Ai(n) ∈ Rd+, i = 1, ..., d of a(n), that is∑d

i=1Ai(n) = a(n). Clearly, Ai(0) := 0d, i = 1, ..., d is a partition of a(0) = 0d. Note that, if
we have found a partition of a(n− 1) for some n ∈ N, then

a(n) =
(
Π>a(n− 1)− x

)+

=

(
d∑
i=1

Π>Ai(n− 1)− y − c

)+

=

(
d∑
i=1

(
Π>Ai(n− 1)− yiei

)
− c

)+

.

Since Π>Ai(n− 1)− yiei ≥ 0d for all i = 1, ..., d and c ≥ 0d, we can apply Lemma 4.5.1 in
order to obtain the existence of Ci(n) ∈ Rd+, i = 1, ..., d with

∑d
i=1Ci(n) = c and

a(n) =
d∑
i=1

(
Π>Ai(n− 1)− yiei − Ci(n)

)+
.

Hence, Ai(n) :=
(
Π>Ai(n− 1)− yiei − Ci(n)

)+ ∈ Rd+, i = 1, ..., d is a non-negative parti-
tion of a(n).

Since (a(n))n∈N is an increasing sequence, we have that Ai(n) is also bounded from above
by a = limn→∞ a(n) for all i = 1, ..., d. Recall that a is finite by Lemma 4.3.1. Thus
((Ai(n))i=1,...,d)n∈N is a bounded sequence and we obtain by applying the Bolzano-Weierstrass
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theorem, that there exists a converging subsequence
(
(Ai(nk))i=1,...,d

)
k∈N. We denote the limit

of this subsequence by (Ai)i=1,...,d. Thus, we have that

a = lim
k→∞

a(nk) = lim
k→∞

d∑
i=1

Ai(nk) =

d∑
i=1

Ai

and that Ai ≥ 0d for all i = 1, ..., d.
Next we define for a level of participation λ ∈ [0, 1]d the sequence

a(λ, n) :=
(
Π>a(λ, n− 1)− λ ∗ y − c

)+
for all n ∈ N

and a(λ, 0) = 0d which corresponds to the fixpoint iteration for Λc(x, λ). In the following we
prove that

d∑
i=1

λiAi(n) ≥ a(λ, n), for all n ∈ N. (4.5.2)

Obviously (4.5.2) holds true for n = 0. Suppose now that (4.5.2) is valid for n− 1, with n ∈ N.
Then, we have that

d∑
i=1

λiAi(n) =
d∑
i=1

λi

(
Π>Ai(n− 1)− yiei − Ci(n)

)+

≥

(
Π>

d∑
i=1

λiAi(n− 1)−
d∑
i=1

λiyiei −
d∑
i=1

λiCi(n)

)+

≥

(
Π>

d∑
i=1

λiAi(n− 1)− λ ∗ y − c

)+

≥
(
Π>a(λ, n− 1)− λ ∗ y − c

)+

= a(λ, n),

where we used the induction hypothesis in the penultimate step and that
∑d

i=1 λiCi(n) ≤ c in
the third. By taking the limit we obtain

d∑
i=1

λiAi = lim
k→∞

d∑
i=1

λiAi(nk) ≥ lim
k→∞

a(λ, nk) =: a(λ).

Finally, by defining k = (k1, ..., kd) with ki := 1>d Ai, i = 1, ..., d, we have for all λ ∈ [0, 1]d

that

λ>k = 1>d

d∑
i=1

λiAi ≥ 1>d a(λ) = Λc(x, λ)

and

1>d k = 1>d

d∑
i=1

Ai = 1>d a = Λc(x,1d) = Λ(x).
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Thus k = (k1, ..., kd) ∈ FC+
Λc(x).

In the end we still have to show that ki ≤ Λ0(x, ei) for all i = 1, ..., d. For this purpose
denote by

a(i, n) :=
(
Π>a(i, n− 1)− xiei

)+
, a(i, 0) = 0d,

the fixpoint iteration for Λ0(x, ei). Again we will use induction to show that

Ai(n) ≤ a(i, n), for all n ∈ N. (4.5.3)

Then, obviously Ai(0) ≤ a(i, 0). Thus suppose that (4.5.3) holds for n− 1. Before we proceed
with the induction step recall that by construction of

(
Ci(n)

)
i

= (Π>Ai(n − 1) − yiei)i or(
Ci(n)

)
i

= ci and in both cases we obtain((
Π>Ai(n− 1)

)
i
− yi −

(
Ci(n)

)
i

)+
≤
((

Π>Ai(n− 1)
)
i
− yi − ci

)+
.

Moreover, since Ci(n) ≥ 0d for all i = 1, ..., d we have that

Ai(n) =
(
Π>Ai(n− 1)− yiei − Ci(n)

)+

≤
(
Π>Ai(n− 1)− yiei − ciei

)+

≤
(
Π>a(i, n− 1)− yiei − ciei

)+
= a(i, n).

Hence (4.5.3) holds and we can conclude that

ki = 1>d Ai ≤ 1>d a(i) = Λ0(x, ei),

where a(i) := limk→∞ a(i, nk).

We have seen in Lemma 4.5.2 that the reverse fuzzy core for the subsystem construction
scheme Λc is non-empty and that there exists an element in the reverse fuzzy core which addi-
tionally fulfills the essential property (4.2.1) of the core of Λ0 at least for the single institutions.
As we have seen that the usual core might not be a useful allocation in a financial model with
contagion, we want to investigate if there is also an element in the intersection of the two cores
C+

Λc and C−
Λ0 . In Lemma 4.5.4 it will be shown that under a rather weak assumption on the risk

factor x the intersection of the cores is empty. In order to put this assumption into context, we
precede the following lemma.

Lemma 4.5.3. We have for all x ∈ Rd that

∑
i∈D0

Λ

 ∑
j∈DC0 ∪{i}

ejxj

 ≤ Λ(x), (4.5.4)

where D0 := {i ∈ I : xi ≤ 0} denotes the set of institutes which default initially.
Moreover, if (4.5.4) is strict, then there is at least one institution which defaults due to contagion,
i.e. D\D0 6= ∅.
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Proof. Similar to Lemma 4.5.2 we consider the sequences

a(n) :=
(
Π>a(n− 1)− x

)+
, a(0) = 0d,

and for all i ∈ D0

a(i, n) :=

Π>a(i, n− 1)−
∑

j∈DC0 ∪{i}

ejxj

+

, a(i, 0) = 0d.

By construction a(0) =
∑

i∈D0
a(i, 0). Thus suppose that

a(n− 1) ≥
∑
i∈D0

a(i, n− 1)

for some n ∈ N, then

a(n) =
(
Π>a(n− 1)− x

)+
≥

Π>
∑
i∈D0

a(i, n− 1)− x

+

. (4.5.5)

Now we look at the single entries of the vector on the right hand side of (4.5.5). For l ∈ D0 we
haveΠ>

∑
i∈D0

a(i, n− 1)− x

+

l

=

∑
i∈D0

(
Π>a(i, n− 1)

)
l
− xl

+

=
∑
i∈D0

(
Π>a(i, n− 1)

)
l
− xl

=
((

Π>a(l, n− 1)
)
l
− xl

)+
+

∑
i∈D0\{l}

((
Π>a(i, n− 1)

)
l

)+

=
∑
i∈D0

Π>a(i, n− 1)−
∑

j∈DC0 ∪{i}

ejxj

+

l

and for l ∈ DC0Π>
∑
i∈D0

a(i, n− 1)− x

+

l

=

∑
i∈D0

(
Π>a(i, n− 1)

)
l
− xl

+

=
∑
i∈D0

((
Π>a(i, n− 1)

)
l
−Xl,i

)+

≥
∑
i∈D0

((
Π>a(i, n− 1)

)
l
− xl

)+
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=
∑
i∈D0

(
Π>a(i, n− 1)− x

)+

l

=
∑
i∈D0

Π>a(i, n− 1)−
∑

j∈DC0 ∪{i}

ejxj −
∑

j∈D0\{i}

ejxj

+

l

≥
∑
i∈D0

Π>a(i, n− 1)−
∑

j∈DC0 ∪{i}

ejxj

+

l

where (Xl,i)l∈DC0 ,i∈D0
is specified by Lemma 4.5.1. Note that, sinceXl,i ≥ 0 and

∑
i∈D0

Xl,i =

xl we have that Xl,i ≤ xl for all l ∈ DC0 and i ∈ D0 which we used in the third step. Now we
can continue with (4.5.5)

a(n) ≥
∑
i∈D0

Π>a(i, n− 1)−
∑

j∈DC0 ∪{i}

ejxj

+

=
∑
i∈D0

a(i, n)

and thus we have shown that a(n) ≥
∑

i∈D0
a(i, n) for all n ∈ N. Finally by considering the

limit for n→∞ we obtain (4.5.4).
Next we show the second claim. For this we will prove that D\D0 = ∅ implies that (4.5.4)

holds with equality. Obviously this is true if D0 = ∅. Thus we suppose that D0 6= ∅, i.e. at least
one bank defaults initially. It can be readily seen that D0 ⊆ D and thus, since D\D0 = ∅, we
have that D0 = D. For each i ∈ D we will also need the sets of banks which default initially
and after all possible contagion took place for the subsystem with corresponding risk factor∑

j∈DC0 ∪{i}
ejxj . We denote these sets by D0(i) and D(i) respectively. Since for all i ∈ D we

have that
∑

j∈DC0 ∪{i}
ejxj ≥ x, it follows directly that

D(i) ⊆ D.

Contrarily, due to the fact that
(∑

j∈DC0 ∪{i}
ejxj

)
l
≤ 0 for all l ∈ D0, we also have that

D(i) ⊇ D0(i) = D0 = D

and thus D(i) = D for all i ∈ D.
As in Lemma 4.3.2 let D = {p1, ..., p|D|} and denote by ΠD,D := (Πi,j)i,j∈D ∈ R|D|×|D|

the matrix Π where the rows and columns which are not in D have been erased. Similar to
Lemma 4.3.2 we get that

Λ(x) = −1>|D|

(
I|D| −Π>D,D

)−1
|D|∑
i=1

ẽixpi

=

|D|∑
i=1

−1>|D|

(
I|D| −Π>D,D

)−1
ẽixpi
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=
∑
i∈D0

Λ

 ∑
j∈DC0 ∪{i}

ejxj

 ,

where ẽi ∈ R|D| is the i-th |D|-dimensional unit vector.

It is obvious that the reverse implication of Lemma 4.5.3 does not hold. As a counterexample
take for instance a financial network comprising two banks, where the first bank defaults initially
and the second fails as a consequence of this default. Then we have a contagious default, but
(4.5.4) holds with equality.
Therefore, (4.5.4) is strict if there is a contagious default and this default must be triggered by
more than one defaulted bank. Thus (4.5.4) being strict can be interpreted as a scenario of a high
level of interactions in the network.

Lemma 4.5.4. If (4.5.4) is strict for some x ∈ Rd, i.e.

∑
i∈D0

Λ

 ∑
j∈DC0 ∪{i}

ejxj

 < Λ(x),

then
C+

Λ̃c
(x) ∩ C−

Λ̃0
(x) = ∅,

where Λ̃b(x, J) := Λ
(∑

j∈J xjej +
∑

j∈JC bjej

)
for all J ∈ P and b ∈ Rd.

Proof. Assume there exists an k ∈ C+

Λ̃c
(x) ∩ C−

Λ̃0
(x). We have for all i ∈ DC0 that

0 ≤ Λ

eixi +
∑
j 6=i

ejcj

 ≤ Λ(eixi) = 0,

and thus the respective core properties imply that ki = 0. Hence

d∑
i=1

ki =
∑
i∈D0

ki =
∑
i∈D0

∑
j∈DC0 ∪{i}

ki ≤
∑
i∈D0

Λ

 ∑
j∈DC0 ∪{i}

ejxj

 < Λ(x) =
d∑
i=1

ki,

which is a contradiction.

We finish this section with a small but concrete calculation of the core and the reverse core
in order to exemplify their differences. We consider a financial network with the following
specifications:

Π =


0 1/2 0 0 1/2

0 0 1/2 0 1/2

0 1/4 0 1/2 1/4

0 1/3 0 0 2/3

0 0 0 0 0

 and x = c+ y =


0− 5

5− 3

10− 12

5− 3

0− 0

 =


−5

2

−2

2

0

 .
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The corresponding network is depicted in Figure 4.5.1 and the values of the subsystem construc-
tion schemes can be found in Table 4.5.1. Note that, since the inclusion of the real economy does
not change the risk of a subsystem, we omit the results in Table 4.5.1. Clearly, the initially de-
faulting banks areD0 = {1, 3}. Moreover, we observe that the initial default of bank 1 triggers a
contagious default of bank 2 and that even after all possible defaults took place, bank 4 remains
solvent. Applying Lemma 4.3.2 yields that

(13.57,−4.86, 3.71, 0, 0)> = FC−
Λ0(x)

and by using the partition from the proof of Lemma 4.5.2 we obtain that

(8.71, 0, 3.71, 0, 0)> ∈ FC+
Λc(x).

As bank 4 is not participating in the contagion process, it gets in both allocations a share of zero
which can be considered as fair. However, here we see clearly that bank 2 is a transmitter of
losses in the system and by the allocation of the fuzzy core it is rewarded for this position with
a negative share compared to the solvent bank 4. Contrarily, bank 2 also gets a share of zero
for the allocation which is in the reverse fuzzy core. Since, bank 2 does not default initially
this allocation can barely be considered as fair. However, since bank 2 is also in a channel of
contagion later on, it would also be fair that bank 2 gets a strictly positive share. Using the Table
4.5.1, it can be readily seen that this holds for all other allocations in the reverse core, which is
given by

C+

Λ̃c
(x) =

{
(k1, k2, k3, 0, 0) ∈ R5

+ :
3∑
i=1

ki = 12.43,

k1 ≥ 7.5, k3 ≥ 2.5, k1 + k2 ≥ 8.25
}
.

The largest share of the systemic risk for bank 2 in the reverse core is attained for the allocation

(7.5, 2.43, 2.5, 0, 0)>.

Furthermore, since D0 = {1, 3} and

Λ(x) = 12.43 > 11.21 = 8.71 + 2.5

= Λ̃0(x, {1, 2, 4, 5}) + Λ̃0(x, {2, 3, 4, 5})

= Λ

 ∑
j∈DC0 ∪{1}

xjej

+ Λ

 ∑
j∈DC0 ∪{3}

xjej

 ,

(4.5.4) is strict and thus the reverse core of Λ̃c and the core of Λ̃0 do not have a common element.
Finally, we also observe that not only the fuzzy core, but also all core elements do not respect

a fair ordering in the sense that ku ≥ kv ≥ kw for all u ∈ D0, v ∈ D\D0 and w ∈ DC . Recall
that bank 2 defaults due to contagion, but not initially, and thus a core allocation k must fulfill
that k2 ≤ 0. Since, this bank participates in the contagion process later on we want that its
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allocation should be non-negative. Now we assume that there exists an allocation k ∈ C−
Λ̃0

(x)

which respects our notion of a fair ordering, i.e. k = (k1, 0, k3, k4, 0) such that k1, k3 ≥ 0 and
k4 ≤ 0. Then,

k4 = (k1 + k4) + (k3 + k4)−
5∑
i=1

ki

≤ Λ̃0(x, {1, 2, 4, 5}) + Λ̃0(x, {2, 3, 4, 5})− Λ(x) = −1.22.

Moreover, we have that

12.43 = Λ(x) =
5∑
i=1

ki ≤ Λ̃0(x, {1, 2}) + Λ̃0(x, {2, 3}) + k4 = 13.28 + k4,

which immediately yields the contradiction that k4 ≥ −0.85. Hence there does not exist a core
element which respects the fair ordering from above.
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Figure 4.5.1: Exemplary system.

J Λ̃c(x, J) Λ̃0(x, J)

{1, 2, 3, 4} 12.43 12.43

{1, 2, 3} 12.43 15.95

{1, 2, 4} 8.25 8.71

{1, 3, 4} 10.00 17.29

{2, 3, 4} 2.50 2.50

{1, 2} 8.25 9.11

{1, 3} 10.00 22.37

{1, 4} 7.50 13.57

{2, 3} 2.50 4.17

{2, 4} 0 0

{3, 4} 2.50 3.71

{1} 7.50 15.53

{2} 0 0

{3} 2.50 6.84

{4} 0 0

Table 4.5.1: Risks of the subsystems.

4.A Random risks

This section is devoted to the discussion on how we can derive the non-emptiness of the core also
for random risks. For this purpose, we first recall the well-known Bondareva-Shapley theorem
which gives an alternative characterization of the non-emptiness of the core. For this we need
the notion of a balanced collection of weights.
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Definition 4.A.1. We say (αJ)J∈P is a balanced collection of weights if αJ ≥ 0 for all J ∈ P
and

∑
J∈Pi αJ = 1 for all i = 1, ..., d. Here Pi := {J ∈ P : i ∈ J} denotes the set of all

subgroups containing the i-th financial institution.

Theorem 4.A.2 (Bondareva-Shapley). The core C−ρ̃ (X) of the subsystem risk measure ρ̃ is not
empty if and only if for all balanced collections of weights (αJ)J∈P it holds that

ρ(X) ≤
∑
J∈P

αJ ρ̃(X, J).

For a proof see for instance Shapley (1967).
In the following we suppose that ρ̃ : X d × P → R is given by

ρ̃(X, J) := η(−Λ̃(X, J)),

where Λ̃ : Rd × P → R is a subsystem construction scheme and η is a univariate risk measure.

Lemma 4.A.3. If the subsystem risk measure ρ̃ is given by ρ̃(X, J) = η(−Λ̃(X, J)) for all
X ∈ X d and J ∈ P , where η is a positive homogeneous and subadditive univariate risk measure
and Λ̃ is a subsystem construction scheme which is additive with respect to the subsystems, i.e.
for all disjoint sets J1, J2 ∈ P and X ∈ X d

Λ̃(X, J1 ∪ J2) = Λ̃(X, J1) + Λ̃(X,J2), (4.A.1)

then there exists a core allocation k ∈ C−ρ̃ (X).

Proof. In order to prove the lemma we will utilize Theorem 4.A.2. Let (αJ)J∈P be a balanced
collection of weights, then we obtain by additivity of Λ̃ that

Λ̃(X) =

d∑
i=1

Λ̃
(
X, {i}

)
=

d∑
i=1

∑
J∈Pi

αJ Λ̃
(
X, {i}

)
=
∑
J∈P

αJ
∑
i∈J

Λ̃
(
X, {i}

)
=
∑
J∈P

αJ Λ̃
(
X, J

)
and thus by subadditivity and positive homogeneity that

η(−Λ̃(X)) = η

(
−
∑
J∈P

αJ Λ̃(X, J)

)
≤
∑
J∈P

αJη
(
− Λ̃(X,J)

)
.

Remark 4.A.4. Note that in order to prove Lemma 4.A.3 it would be sufficient to show that
Λ̃(X) ≤

∑
J∈P αJ Λ̃

(
X, J

)
for all balanced collection of weights (αJ)J∈P .

Example 4.A.5. The additivity over subsystems (4.A.1) is clearly satisfied by the subsystem
construction scheme Λ̃(x, J) = −

∑
j∈J xj which we already know as a suitable aggregation

for financial systems without contagion. Furthermore, the additivity still holds if we just consider
the losses of the financial institutions in this model, i.e. if Λ̃(x, J) =

∑
j∈J x

−
j .
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Note that the additivity property (4.A.1) in Lemma 4.A.3 directly implies that the core of the
subsystem construction scheme is always non-empty. In the following lemma we show that this
weaker property is already sufficient for the core of the subsystem risk measure to be non-empty.

Lemma 4.A.6. Let ρ̃(X, J) = η
(
− Λ̃(X, J)

)
be a subsystem risk measure where η is a positive

homogeneous and subadditive univariate risk measure and Λ̃ is a subsystem construction scheme
such that the functions x 7→ Λ̃(x, J) are continuous for all J ∈ P . Then we have that C−ρ̃ (X) 6=
∅ for all X ∈ X d with C−

Λ̃
(X(ω)) 6= ∅ for all ω ∈ Ω.

Proof. Let X ∈ X d such that C−
Λ̃

(X(ω)) 6= ∅ for all ω ∈ Ω. It is well-known that the set-
valued function C− mapping all possible ν : P → R to its core is upper hemicontinuous, see
for instance Delbaen (1974). Since x 7→ Λ̃(x, ·) are continuous, we get that the set-valued
composition C−

Λ̃
(x) = C− ◦ Λ̃(x, ·) is also upper-hemicontinuous, i.e. for all open A ⊂ Rd, we

have that {x ∈ Rd : C−
Λ̃

(x) ⊂ A} is open. Moreover this implies thatC−
Λ̃

is measurable and thus
according to Theorem 8.1.3 in Aubin and Frankowska (2009) there exists a Borel measurable
selection of C−

Λ̃
. Therefore there also exists a measurable selection K ∈ X d of C−

Λ̃
(X), i.e.

K(ω) ∈ C−
Λ̃

(X(ω)) for each ω ∈ Ω. Now, define the subsystem risk measure

ρ̄ : X d × P → R; (K,J) 7→ η

∑
j∈J

Kj

 .

By applying Lemma 4.A.3 we obtain that C−ρ̄ (K) 6= ∅. The monotonicity of η yields

ρ̃(X) = η
(
− Λ̃(X)

)
= η

 d∑
j=1

Kj

 = ρ̄(K)

as well as for all J ∈ P

ρ̃(X, J) = η
(
− Λ̃(X, J)

)
≥ η

∑
j∈J

Kj

 = ρ̄(K,J)

and it immediately follows from Lemma 4.2.5 that also C+
ρ̃ (X) 6= ∅

In particular Lemma 4.A.6 implies that for every coherent risk measure η : X → R the
core of the subsystem risk measure η ◦ Λ0 is always non-empty. Note that this is possible
since both the coherent risk measure η and the subsystem construction scheme Λ0 share the
same perspective towards diversification, that is joining to subgroups always results in a risk
reduction. Unfortunately, for subsystem construction schemes for which the reverse core is non-
empty like Λc this is no longer true. Thus it is more problematic to obtain a similar result as in
Lemma 4.A.6, i.e. that the reverse core of a random risk is non-empty if the reverse cores for the
corresponding scenario-wise deterministic risks are non-empty. For instance this would hold if
we ask that the univariate risk measure η is superadditive instead of subadditive, i.e.

η(F +G) ≥ η(F ) + η(G) for all F,G ∈ X .
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However, the requirement of superadditivity is less clear on the level of the univariate risk mea-
sure compared to the level of aggregation. Clearly, a compromise in this context would be a
linear risk measure.

Moreover, if we have a scenario-wise non-emptiness of the reverse core, but we insist upon a
subadditive univariate risk measure, then a possible workaround is to consider the transition to
the equivalent core. That is, if we suppose that there exists a k(ω) ∈ C+

Λ (X(ω)) for all ω ∈ Ω,
then it follows by Lemma 4.4.3 that k(ω) ∈ C−

Λ̄
(X(ω)) for all ω ∈ Ω, where

Λ̄(X(ω), J) := Λ(X(ω))− Λ
(
X(ω), JC

)
.

Now, define
ρ̄(X, J) := η

(
−Λ̄(X, J)

)
,

where η is positive homogeneous and subadditive univariate risk measure. By Lemma 4.A.6 we
obtain that C−ρ̄ (X) 6= ∅. However, we remark that this is in general not equivalent to the reverse
core of ρ(X, J) := η(−Λ(X, J)). To be more precise we only have that C+

ρ̂ (X) 6= ∅ with

ρ̂(X, J) := ρ̄(X, I)− ρ̄(X, JC) = ρ(X)− η
(
Λ(X, J)− Λ(X)

)
.

In the special case of a linear univariate risk measure η, we also obtain that ρ̂(X, J) = η(−Λ(X, J)) =
ρ(X, J).
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Filipović, D., M. Kupper, and N. Vogelpoth (2012). Approaches to conditional risk. SIAM
Journal on Financial Mathematics 3(1), 402–432.



BIBLIOGRAPHY 117

Föllmer, H. (2014). Spatial risk measures and their local specification: The locally law-invariant
case. Statistics & Risk Modeling 31(1), 79–103.

Föllmer, H. and C. Klüppelberg (2014). Spatial risk measures: Local specification and boundary
risk. In Crisan, D., Hambly, B. and Zariphopoulou, T.: Stochastic Analysis and Applications
2014 - In Honour of Terry Lyons. Springer.

Föllmer, H. and A. Schied (2002). Convex measures of risk and trading constraints. Finance
and stochastics 6(4), 429–447.

Föllmer, H. and A. Schied (2011). Stochastic Finance: An introduction in discrete time (3rd
ed.). De Gruyter.

Fouque, J.-P. and T. Ichiba (2013). Stability in a model of interbank lending. SIAM Journal on
Financial Mathematics 4(1), 784–803.

Fouque, J.-P. and L.-H. Sun (2013). Systemic risk illustrated. In J.-P. Fouque and J. A. Langsam
(Eds.), Handbook on Systemic Risk, Chapter 17, pp. 444–452. Cambridge University Press.

Frittelli, M. and M. Maggis (2011). Conditional certainty equivalent. International Journal of
Theoretical and Applied Finance 14(01), 41–59.

Frittelli, M. and E. Rosazza Gianin (2002). Putting order in risk measures. Journal of Banking
& Finance 26(7), 1473–1486.

Furfine, C. H. (2003). Interbank exposures: Quantifying the risk of contagion. Journal of Money,
Credit & Banking (Ohio State University Press) 35(1).

Gai, P. and S. Kapadia (2010). Contagion in financial networks. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Science 466(2120), 2401–2423.

Girardi, G. and A. T. Ergün (2013). Systemic risk measurement: Multivariate GARCH estima-
tion of CoVaR. Journal of Banking & Finance 37(8), 3169–3180.

Glasserman, P. and H. P. Young (2015). How likely is contagion in financial networks? Journal
of Banking & Finance 50, 383–399.

Hoffmann, H., T. Meyer-Brandis, and G. Svindland (2016). Risk-consistent conditional systemic
risk measures. Stochastic Processes and their Applications 126(7), 2014–2037.

Huang, X., H. Zhou, and H. Zhu (2012). Systemic risk contributions. Journal of financial
services research 42(1-2), 55–83.

Kalkbrener, M. (2005). An axiomatic approach to capital allocation. Mathematical Fi-
nance 15(3), 425–437.

Kley, O., C. Klüppelberg, and L. Reichel (2014). Systemic risk through contagion in a core-
periphery structured banking network. arXiv preprint arXiv:1406.6575.



118 BIBLIOGRAPHY

Kromer, E., L. Overbeck, and K. Zilch (2016). Systemic risk measures on general measurable
spaces. Mathematical Methods of Operations Research, 1–35.

Kromer, E., L. Overbeck, and K. A. Zilch (2014). Dynamic systemic risk measures for bounded
discrete-time processes. Available at SSRN 2469475.

Kupper, M. and W. Schachermayer (2009). Representation results for law invariant time consis-
tent functions. Mathematics and Financial Economics 2(3), 189–210.

Penner, I. (2007). Dynamic convex risk measures: time consistency, prudence, and sustain-
ability. Ph. D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II.

Revuz, D. and M. Yor (1999). Continuous martingales and Brownian motion, Volume 293.
Springer.

Rogers, L. and L. A. Veraart (2013). Failure and rescue in an interbank network. Management
Science 59(4), 882–898.

Roorda, B. and H. Schumacher (2013). Membership conditions for consistent families of mon-
etary valuations. Statistics & risk modeling 30(3), 255–280.

Roorda, B. and J. M. Schumacher (2016). Weakly time consistent concave valuations and their
dual representations. Finance and stochastics 20(1), 123–151.

Shapley, L. (1953). A value for n-person games. Contributions to the Theory of Games 2,
307–318.

Shapley, L. S. (1967). On balanced sets and cores. Naval research logistics quarterly 14(4),
453–460.

Staum, J. (2012). Systemic risk components and deposit insurance premia. Quantitative Fi-
nance 12(4), 651–662.

Staum, J., M. Feng, and M. Liu (2016). Systemic risk components in a network model of
contagion. IIE Transactions 48(6), 501–510.

Tarashev, N., K. Tsatsaronis, and C. Borio (2016). Risk attribution using the shapley value:
methodology and policy applications. Review of Finance 20(3), 1189–1213.

Tasche, D. (2004). Allocating portfolio economic capital to sub-portfolios. In Economic Capital:
A Practitioner Guide, Risk Books, pp. 275–302.

Tasche, D. (2007). Capital allocation to business units and sub-portfolios: The Euler principle.
arXiv preprint arXiv:0708.2542.

Tutsch, S. (2007). Konsistente und konsequente dynamische Risikomaße und das Prob-
lem der Aktualisierung. Ph. D. thesis, Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät II.



BIBLIOGRAPHY 119

Tutsch, S. (2008). Update rules for convex risk measures. Quantitative Finance 8(8), 833–843.

Upper, C. and A. Worms (2004). Estimating bilateral exposures in the German interbank market:
Is there a danger of contagion? European Economic Review 48(4), 827–849.

Weber, S. (2006). Distribution-invariant risk measures, information, and dynamic consistency.
Mathematical Finance 16(2), 419–441.

Werner, D. (2011). Funktionalanalysis. Springer.


	Introduction
	Current approaches towards systemic risk
	Univariate risk measures
	Multivariate risk measures
	Conditional risk measures
	Allocation of systemic risk

	Risk-Consistent Conditional Systemic Risk Measures
	Contributions of the thesis' author
	Introduction
	Decomposition of systemic risk measures
	Proof of Theorem 2.2.9 and 2.2.11
	Examples

	Strongly Consistent Multivariate Conditional Risk Measures
	Contributions of the thesis' author
	Introduction
	Definitions and basic results
	Strong consistency
	Conditional law-invariance and strong consistency
	Consistency of a family of conditional risk measures

	Allocation of Systemic Risk
	Contributions of the thesis' author
	Introduction
	Standard game theoretic approach to systemic risk
	Financial model with contagion
	The reverse core
	The reverse core in the financial model with contagion
	Random risks

	List of Symbols
	Bibliography

