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SUMMARY 

RNA-interference (RNAi) is a mechanism conserved from fission yeast to humans through which 

small RNAs direct gene silencing in a transcriptional and post-transcriptional manner. Several classes 

of regulatory small RNAs with similar and different functions have evolved along with diverse bio-

genesis pathways. Despite the differences in their origin and maturation process, small RNAs have a 

common mediator to accomplish their regulatory role: the Argonaute proteins. How the Argonaute-

associated small RNAs are targeted for degradation in order to promote their turnover or how the 

cell avoids wrong classes of small RNAs to be loaded into Argonaute are two open questions. In the 

last decade, several studies have shown that tailing of small RNAs can lead to their destabilization 

and degradation, where tailing represents the addition of untemplated nucleotides at the small 

RNAs 3'-end by nucleotidyltransferases. 

This work shows that in Schizosaccharomyces pombe, also known as fission yeast, the adenyltrans-

ferase Cid14, a member of the TRAMP complex, and the uridyltransferase Cid16 add untemplated 

nucleotides to 3'-end of the Argonaute-bound small RNAs. This tailing recruits the 3’-to-5’ exonucle-

ase Rrp6 which degrades the Argonaute-bound small RNAs. In absence of Cid14, the cells undergo 

an uncontrolled RNAi which silences ectopic targets, like euchromatin loci. This is caused by a defect 

in the Argonaute-bound small RNAs surveillance mechanism which results in the accumulation of 

“noise” small RNAs on Argonaute and in the targeting of diverse euchromatic genes by the RNA-

induced transcriptional silencing (RITS) complex. To protect themselves, Cid14 deletion cells exploit 

the uncontrolled RNAi to silence genes that are essential for the RNAi machinery itself, like the RNA-

dependent RNA polymerase Rdp1 which is responsible for the secondary small RNAs generation. 

Overall, the results discussed here describe a surveillance mechanism of the Argonaute-bound small 

RNAs based on the nucleotidyltransferases Cid14/Cid16 and the nuclear exosome. Moreover, the 

data show how fission yeast can rely on a rapid RNAi-based, heterochromatin-independent response 

to adaptat and survive to stress conditions.
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1.  INTRODUCTION 

 

1.2  RNA interference: how an unexpected result can turn into a great discovery 

In 1990, Jorgensen and colleagues introduced a pigment-producing gene under the control of a 

strong promoter with the aim of intensifying the purple pigmentation in petunias. Instead of an 

increased color intensity, they observed loss of pigmentation associated with suppression of both 

endogenous gene and transgene: hence the name of “co-suppression” for this phenomenon (Napoli 

et al., 1990). Called with the name of “quelling”, the same transgene-mediated silencing was 

reported in the fungus Neurospora crassa and was described as sequence-homology dependent and 

promoter independent (Romano and Macino, 1992; Cogoni et al., 1996). Studies in Caenorhabditis 

elegans finally described this phenomenon as a double stranded RNA (dsRNA) based mechanism 

and referred to it as RNA interference (RNAi) (Guo and Kemphues, 1995; Fire et al., 1998). Later on, 

RNAi was shown to be associated with the presence of 21-23 nucleotide (nt) long RNA molecules, 

hence called small interfering RNAs (siRNAs), generated by Dicer, an enzyme belonging to the RNase 

III family, and bound to Argonaute, a member of the piwi/sting/argonaute/zwille/eIF2C gene family, 

both effectors being conserved from fungi to vertebrates (Hamilton and Baulcombe, 1999; Tabara 

et al., 1999; Hammond et al., 2000; Zamore et al., 2000; Elbashir et al., 2001; Bernstein et al., 2001; 

Hammond et al., 2001; Martinez et al., 2002). At the present, several classes of regulatory small 

RNAs have been reported and their role in transcriptional gene silencing (TGS) and post-

transcriptional gene silencing (PTGS) has been described (Ghildiyal and Zamore, 2009; Carthew and 

Sontheimer, 2009). 

1.2.1  siRNAs 

Small interfering RNAs (siRNAs) are 21-23 nt long small RNAs deriving from cleavage of dsRNA, 

tipically but not exclusively exogenous, by Dicer proteins (Fig. 1). Dicer contains a double RNase III 

domain, a dsRNA binding domain, a Helicase-like domain and a PIWI-ARGONAUTE-ZWILLE (PAZ) 

domain (Bernstein et al., 2001) and it is associated with another dsRNA binding protein, called R2D2 

in fly (Liu et al., 2003). The siRNAs duplexes generated by Dicer are then loaded on Argonaute 

proteins to form the RNA-induced silencing complex (RISC) in which Argonaute performs transcript 

slicing through base pairing between the single stranded small RNA, called the “guide strand”, and 

the target RNA (Fig.1) (Tabara et al., 1999; Hammond et al., 2000; Hammond et al., 2001; Martinez 

et al., 2002). Although the number of Argonaute proteins varies among different species, in 
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eukaryotes they are characterized by an N-terminal domain, a PAZ domain, a MID (middle) domain 

and a PIWI domain (Tolia and Joshua-Tor, 2007). The PAZ domain contains the small RNA binding 

pocket which accommodates the 3'-end of the guide strand (Lingel et al., 2003; Song et al., 2003; 

Yan et al., 2003; Lingel et al., 2004; Ma et al., 2004). The MID domain recognizes the 5'-end through 

the interaction between the basic binding pocket present in the MID-PIWI interface and the 5'-end 

phosphate of the small RNA, influencing the 5'-end nucleotide preference that different Argonaute 

proteins have (Parker et al., 2005; Frank et al., 2010; Frank et al., 2012). The PIWI domain is an RNase 

H-like domain which is responsible for the slicer activity of those Argonaute proteins that are able 

to cleave the target RNAs, most likely through the catalytic site Asp-Asp-His/Asp (DDH/D) (Song et 

al., 2004; Liu et al., 2004; Rivas et al., 2005). Argonaute proteins with no slicer activity are unable to 

cleave the target RNA (Meister et al., 2004; Liu et al., 2004). 

The RISC assembly process comprehends the siRNA duplex loading, which leads to the formation of 

the pre-RISC, and the complex maturation, which consists in the removal of the strand 

complementary to the guide strand, called “passenger strand” (Kobayashi and Tomari, 2016). In fly 

(Iwasaki et al., 2010; Miyoshi et al., 2010c), mammals (Iwasaki et al., 2010; Pare et al., 2013) and 

plants (Iki et al., 2010), the loading step is ATP-hydrolysis dependent and mediated by the heat shock 

chaperone machinery. In Drosophila melanogaster, the loading step involves also the RISC-loading 

complex (RCL), which consists in Dcr-2 (Dicer protein) and R2D2 (Tomari et al., 2004; Pham and 

Sontheimer, 2005) which reflects the separation of siRNAs and miRNAs pathways in fly and the 

difference in the Dicer and Argonaute proteins involved (Förstemann et al., 2007; Tomari et al., 2007; 

Czech et al., 2009). The RLC also defines the polarity of the siRNA duplex in terms of thermodynamic 

stability of the siRNA ends, which is the guide strand selection criterion: the strand with the least 5'-

end base pairing stability is selected as guide strand (Schwarz et al., 2003; Khvorova et al., 2003; 

Tomari et al., 2004). Mammalian siRNA duplex loading into RISC does not require Dicer, and the four 

Argonaute proteins (Ago1-4) do not distinguish between siRNAs and miRNAs (Liu et al., 2004; 

Meister et al., 2004; Azuma-Mukai et al., 2008; Murchison et al., 2005; Yoda et al., 2010; Betancur 

and Tomari, 2012). 

The passenger strand release was suggested to start with a process of wedging, during which the N-

terminal domain of Argonaute opens up the duplex from the 3’-end of the guide strand (Kwak and 

Tomari, 2012), and to terminate with a slicer-dependent or independent ejection: in presence of a 

perfect complementary duplex and a slicer competent Argonaute, the passenger strand is cleaved 

and hence destabilized (Matranga et al., 2005; Rand et al., 2005; Miyoshi et al., 2005), otherwise the 
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PAZ domain, anchoring the 3’-end, might help the duplex unzipping process (Gu et al., 2012). 

 

1.2.3  miRNAs 

Micro-RNAs (miRNAs) are 21-22 nt long single stranded RNAs generated from hairpin-shaped 

primary-transcripts (pri-miRNAs) (Lee et al., 2002; Winter et al., 2009). The pri-miRNAs are 

transcribed mostly by RNA Pol II (Fig. 2) (Lee et al., 2004; Cai et al., 2004), although some miRNAs 

deriving from Alu repeats were reported to be transcribed by the RNA Pol III (Borchert et al., 2006). 

Therefore, the first difference with the siRNAs is that miRNAs arise from endogenously transcribed 

precursors and their biogenesis starts in the nucleus. In fact, pri-miRNAs are processed by the 

nuclear RNase III-type protein Drosha (Lee et al., 2003) that, together with the co-factor 

DGCR8/Pasha, forms the microprocessor complex which releases the precursor miRNA (pre-miRNA) 

(Fig. 2) (Han et al., 2004; Denli et al., 2004; Gregory et al., 2004; Landthaler et al., 2004; Zeng et al., 

2005; Zeng and Cullen, 2005; Han et al., 2006). This is then recognized by the Exportin-5 and 

traslocated to the cytoplasm (Yi et al., 2003; Bohnsack et al., 2004; Lund et al., 2004; Okada et al., 

2009) where it is processed by Dicer (Grishok et al., 2001; Hutvágner et al., 2001; Ketting et al., 2001; 

 

 Figure 1. From Carthew and Sontheimer, 2009: siRNAs biogenesis pathway. 
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Knight and Bass, 2001) into mature 22 nt miRNA duplex (Fig. 2). As mentioned before, in D. 

melanogaster the siRNAs and miRNAs pathways are clearly separated and involve different effectors, 

starting from Dicer and its association with dsRNA-binding proteins: Dcr-1, together with the dsRNA-

binding protein Loquacious, is required for miRNAs biogenesis while Dcr-2, associated with R2D2, 

processes siRNAs (Förstemann et al., 2005; Jiang et al., 2005; Saito et al., 2005). After Dicer cleavage 

step, according to the “sorting” model, miRNA duplexes with mismatches are loaded on Ago1 

whereas perfectly complementary siRNA duplexes are loaded on Ago2 (Förstemann et al., 2007; 

Tomari et al., 2007). Similarly, in C. elegans miRNAs are sorted into ALG-1 and siRNAs are bound by 

RDE-1 (Steiner et al., 2007). Although it was initially observed that one strand of the miRNA duplex 

is preferentially selected as the mature miRNA associated with RISC (Khvorova et al., 2003; Schwarz 

et al., 2003) recent evidences coming from next-generation sequencing data suggest that both 

strands of the miRNA duplex can be loaded on Argonaute, generating the 5p- and 3p- mature miRNA 

depending on whether it derives from the 5’-arm or the 3’-arm of the hairpin precursor, respectively 

(Yang et al., 2011; Li et al., 2012; Zhou et al., 2012; Kuo et al., 2015). 

The mechanism by which miRNAs control post-transcriptional gene expression depends on the 

degree of complementarity between the miRNA and the target sequences: nearly fully 

complementary miRNAs in animals trigger endonucleolytic cleavage of the target-RNA (Yekta et al., 

2004; Davis et al., 2005) whereas miRNAs with a complementarity limited to the first 8 nucleotide 

of the miRNA 5'-end, called “seed region” (Lewis et al., 2003; Brennecke et al., 2005; Lewis et al., 

2005), repress the translation of the mRNA, usually interacting with the 3'-untranslated region (UTR)  

(Valencia-Sanchez et al., 2006; Baek et al., 2008; Selbach et al., 2008). Some studies support the idea 

that the miRNA-mediated translation repression happens at the initiation step of the protein 

synthesis (Pillai et al., 2005; Humphreys et al., 2005; Mathonnet et al., 2007). However, other studies 

showed this repression to accour after the initiation step (Olsen and Ambros, 1999; Seggerson et al., 

2002; Petersen et al., 2006) or at even later stages (Kim et al., 2004; Nelson et al., 2004; Maroney et 

al., 2006; Nottrott et al., 2006), suggesting that there might be more than one mechanism dictating 

the miRNA-mediated translation repression (Kong et al., 2008). Besides translation repression, 

miRNAs were reported to promote RNA destabilization (Wu et al., 2006; Wakiyama et al., 2007) and 

to address the target-RNA to dedicated cytoplasmic foci, called P-bodies, which contain most 

enzymes required for mRNA degradation (Bashkirov et al., 1997; Sheth and Parker, 2003; Liu et al., 

2005; Bhattacharyya et al., 2006; Pauley et al., 2006; Eulalio et al., 2007). 
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1.2.4  piRNAs 

Piwi-interacting RNAs (piRNAs) are 24-30 nt long single stranded small RNAs that, as suggested by 

the name, interact with the germline-specific subclass of Argonaute proteins named Piwi and 

conserved from nematode to mammals (not present in plants), playing an important role in germ 

cell development (Cox et al., 1998; Luteijn and Ketting, 2013; Iwasaki et al., 2015). They were 

discovered first in D. melanogaster as rasiRNAs, small RNAs essential for transposons silencing 

(Aravin et al., 2001; Aravin et al., 2003; Saito et al., 2006; Vagin et al., 2006; Brennecke et al., 2007; 

Gunawardane et al., 2007; Brennecke et al., 2008) and subsequently in mouse (Aravin et al., 2006; 

Girard et al., 2006; Grivna et al., 2006; Carmell et al., 2007; Aravin et al., 2007; Aravin et al., 2008; 

Kuramochi-Miyagawa et al., 2008), rat (Lau et al., 2006) and Danio rerio (Zebrafish) (Houwing et al., 

2007). In contrast to miRNAs, piRNAs are generated from a single-stranded precursor RNA deriving 

 

 

Figure 2. From Winter et al., 2009: miRNAs biogenesis pathway. 
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from specific loci named piRNA clusters (Fig. 3). The precursor is then processed in the mature 

piRNAs in a Dicer-independent manner (for Dicer-independent small RNAs see paragraph 1.2.6) 

(Vagin et al., 2006; Houwing et al., 2007; Brennecke et al., 2007; Li et al., 2013b). However, piRNAs 

have been reported to be generated from non-transposon-related transcripts/mRNAs as well 

(Robine et al., 2009; Rouget et al., 2010). 

In C. elegans, piRNAs are known as 21U-RNAs, whose precursor is transcribed from separated genes 

harboring a Forkhead transcription factor consensus motif, and they are associated to the Piwi 

protein PRG-1 (Ruby et al., 2006; Das et al., 2008; Batista et al., 2008; Cecere et al., 2012; Billi et al., 

2013). 

According to the current model, fly piRNAs biogenesis begins with their 5'-end definition through an 

endonucleolytic cleavage mediated by Zucchini (Fig. 3), generating primary piRNAs (Nishimasu et al., 

2012; Ipsaro et al., 2012). It can also be directed by the Piwi proteins Aubergine (Aub) and Ago3 

(Brennecke et al., 2007; Gunawardane et al., 2007), liberating in this case secondary piRNAs (Fig. 3). 

The secondary pathway is also known as ping-pong loop (Fig. 3) since the Aub and Ago3 Piwi proteins 

are associated with antisense and sense piRNAs, respectively, and direct the cleavage of the sense 

and antisense transposons, respectively, genereting new piRNAs for each other (Brennecke et al., 

2007; Gunawardane et al., 2007; Houwing et al., 2007; Aravin et al., 2007). 

The 3'-end formation depends on either Zucchini or Aub/Ago3. Zucchini-mediated cleavage directly 

defines a mature piRNA 3′-ends (Han et al., 2015; Mohn et al., 2015) while Aub and Ago3 generate 

pre-piRNAs that require further processing by the 3′-to-5′ exoribonuclease Nibbler (Feltzin et al., 

2015; Wang et al., 2016a; Hayashi et al., 2016), known as PNLDC1 in Bombyx mori (silkworm) (Izumi 

et al., 2016) and as PARN-1 in C. elegans (Tang et al., 2016). 

Beside the slicing activity on the target RNA reported in D. melanogaster, (Brennecke et al., 2007; 

Gunawardane et al., 2007) evidences of translational and transcriptional silencing mediated by 

mammalian Piwi proteins have been shown as well (Grivna et al., 2006; Carmell et al., 2007; Aravin 

et al., 2007; Aravin et al., 2008). 
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1.2.5  Drosha-independent miRNAs 

Besides the canonical miRNA biogenesis pathway, several alternative mechanisms lead to mature 

miRNAs formation without the microprocessor cleavage step (Miyoshi et al., 2010a). The first class 

to be characterized was the one of the mirtrons in fly and worm firstly (Ruby et al., 2007a; Okamura 

et al., 2007; Chung et al., 2011) and in vertebrates secondly (Berezikov et al., 2007; Babiarz et al., 

2008; Glazov et al., 2008; Chiang et al., 2010; Sibley et al., 2012; Ladewig et al., 2012). miRNAs whose 

processing does not require Drosha cleavage but depends on Dicer were reported to derive also 

from small nucleolar RNAs (snoRNAs) (Ender et al., 2008; Saraiya and Wang, 2008), which are 70-

100 nt long small RNAs found in small nucleolar ribonucleoprotein complexes involved in ribosomal 

 

 Figure 3. From Luteijn and Ketting, 2013: piRNAs biogenesis pathway. 
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RNA (rRNA) editing (Matera et al., 2007). A study performed in mouse embryonic stem cells 

identified a class of miRNAs generated from precursor microRNA-like hairpins termed endogenous 

short-hairpin RNAs (endo-shRNAs) and from the isoleucine transfer RNA (tRNA-Ile) precursor 

(Babiarz et al., 2008). Moreover, several groups identified human tRNA-derived small RNAs (Kawaji 

et al., 2008; Lee et al., 2009b; Cole et al., 2009; Haussecker et al., 2010), of which the first type (type 

I tsRNA) was described as Dicer substrate, after processing by Rnase P and Rnase Z and nuclear 

export (Haussecker et al., 2010). 

More recently, a microprocessor-independent mechanism was shown for the pre-miR-320, an RNA 

pol II transcript that harbors a 7-methylguanosine (m7G)-cap at the 5′-end and is exported to the 

cytoplasm through the PHAX (phosphorylated adaptor for RNA export)-dependent Exportin-1 

pathway. Because of the 5'-(m7G)-cap, only the 3p-miRNA is efficiently loaded on Argonaute after 

Dicer cleavage (Xie et al., 2013). 

 

1.2.5.1  mirtrons 

As mentioned above, mirtrons form a microprocessor-independent class of pri-miRNAs that gives 

rise to mature and functional miRNAs through a biogenesis pathway involving splicing machinery, 

nuclear export and dicing step in the cytoplasm (Westholm and Lai, 2011). In this case, the mature 

miRNA resides inside a protein-coding gene intron which, once excised by the splicing machinery as 

a lariat, can be debranched by the lariat debranching enzyme (Ldbr) and transferred to the cytoplasm 

as a canonical pre-miRNA by Exportin-5 (Fig. 4). Once in the cytoplasm, it is cleaved by Dicer and 

loaded on Argonaute (Ruby et al., 2007a; Okamura et al., 2007; Ladewig et al., 2012). Although the 

conventional mirtron feature is that the ends of the hairpin precisely map to the 5′ and 3′ splice sites 

of the intron, mirtron-like loci characterized by a single strand extension at either 5'- or 3'-ends or at 

both ends of the hairpin have been found and, thus, named “tailed” mirtrons (Ruby et al., 2007a; 

Babiarz et al., 2008; Glazov et al., 2008; Valen et al., 2011; Ladewig et al., 2012; Wen et al., 2015) 

and “two-tailed” mirtrons, respectively. (Castellano and Stebbing, 2013). The biogenesis of this type 

of mirtrons requires a trimming step of the 5'/3' extension between the lariat resolution and the 

nuclear export steps. The 3'-tail of the hairpin was reported to be trimmed by the RNA exosome 

(Flynt et al., 2010) the major 3'-to-5' exoribonuclease in eukaryotes. Regarding the 5'-tailed mirtron, 

there is still no biochemical evidence of the potential 5'-to-3' exonuclease. 
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It is important to mention that also canonical human miRNA loci can be located within the introns 

of transcription units (Rodriguez, 2004) and cleaved by Drosha before the splicing event (Kim and 

Kim, 2007), providing an example of Drosha-dependent co-transcriptional processing of canonical 

pri-miRNAs (Morlando et al., 2008). 

 

 

1.2.5.2  endo-siRNAs or esiRNAs 

Endogenous short interfering RNAs (endo-siRNAs) represent a class of regulatory small RNAs 

generated from perfectly complementary genome encoded double stranded transcripts that are 

processed by Dicer proteins and loaded on Argonaute proteins (Piatek and Werner, 2014). 

C. elegans owns three types of endo-siRNAs: 21U-, 26G and 22G-RNAs (Ambros et al., 2003; Ruby et 

al., 2006). The 21U-RNAs present a 5’-uridine bias (Ruby et al., 2006) and, as mentioned before, 

 

 
Figure 4. From Westholm and Lai, 2011. Mirtrons biogenesis pathway. 
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were shown to be the worm piRNAs required for transposon suppression and for the maintenance 

of temperature-dependent fertility (Das et al., 2008; Batista et al., 2008). 

The 26G-RNAs starts with 5’-guanine and derives from RRF-3 (RNA-dependent RNA Polymerase, 

RdRP)-dependent transcripts which are processed by DCR-1 and ERI-1 (Dicer and exonuclease, 

respectively) (Vasale et al., 2010). A group of 26G-RNAs is expressed in oocytes, embryos and 

somatic tissues and is found in complex with Argonaute ERGO-1 (Vasale et al., 2010). Another group 

interacts with Argonaute ALG-3 and ALG-4 and regulates spermatogenic gene expression (Han et al., 

2009; Conine et al., 2010). 

The 22G-RNAs, also characterized by a 5'-guanine and synthesized by RdRPs (Gu et al., 2009; 

Claycomb et al., 2009; Lee et al., 2012), were shown to have different functions depending on the 

Argonaute proteins they are associated with: 1) when bound to CSR-1, they are required for targeting 

of germline-expressed genes and correct chromosome segregation (Claycomb et al., 2009; van 

Wolfswinkel et al., 2009; Conine et al., 2013; Seth et al., 2013; Wedeles et al., 2013). 

2) when associated with WAGOs (Worm-specific AGOs), they silence protein-coding genes, 

transposons, pseudogenes, and cryptic loci through both transcriptional and post-transcriptional 

mechanisms (Gu et al., 2009; Ashe et al., 2012; Luteijn et al., 2012; Buckley et al., 2012; Mao et al., 

2015). 

In D. melanogaster endo-siRNAs are generated upon a Dcr-2 and Loqs-PD (a specific isoform of 

Loquacious) mediated processing (Hartig et al., 2009; Zhou et al., 2009; Marques et al., 2010; 

Miyoshi et al., 2010b) of transposable elements (TEs), cis-natural antisense transcripts (cis-NATs), 

which comprise convergently transcribed 3' UTRs, and long hairpin RNAs containing a long duplex 

structure (Chung et al., 2008; Czech et al., 2008; Kawamura et al., 2008; Ghildiyal et al., 2008; 

Okamura et al., 2008a; Okamura et al., 2008b). First reported to be involved in transposons control 

and viral defence (Chung et al., 2008; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; 

Mirkovic-Hösle and Förstemann, 2014), several studies suggested a role of fly endo-siRNAs in protein 

coding gene regulation (Lucchetta et al., 2009; Lim et al., 2011; Lim et al., 2013). In addition to fly 

endo-siRNAs, which are found in both somatic and germline cells, endo-siRNAs arise from dsRNAs 

composed of gene:pseudogene transcripts in mouse oocytes (Tam et al., 2008; Watanabe et al., 

2008). Moreover, in mESCs, some miRNAs are actually endo-siRNAs deriving from one convergent 

Alu/B1 SINE element located on chromosome 7 and on chromosome 4 (Babiarz et al., 2008; 

Castellano and Stebbing, 2013). 
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1.2.6  Dicer-independent miRNAs and small RNAs 

Besides the Drosha-independent miRNAs, also Dicer-independent miRNAs have been discovered 

(Miyoshi et al., 2010a). The biogenesis of predicted mirtrons, miR-1225 and miR-1228, was shown 

to be dependent on Drosha but not on splicing, DGCR8, Dicer or Ago2 and, therefore, it was named 

simtron (splicing-independent mirtron-like miRNA) biogenesis pathway (Havens et al., 2012). In 

Zebrafish, mouse and human pre-mir-451 is directly cleaved and trimmed by Ago2, bypassing Dicer 

cleavage after Drosha processing (Cheloufi et al., 2010; Cifuentes et al., 2010; Yang et al., 2010). A 

novel class comprehends miRNAs deriving from processing at the 5'- or 3'-end of mature or 

precursor tRNAs (Lee et al., 2009b; Haussecker et al., 2010). 

In this frame, primal small RNAs (priRNAs) discovered in Schizosaccharomyces pombe fit as Dicer-

independent small RNAs (Halic and Moazed, 2010). They are generated from transcripts processed 

by a mechanism involving Argonaute (Ago1) and the PARN family nuclease Triman (Tri1) (Marasovic 

et al., 2013). Longer small RNA precursors are loaded on Ago1 and trimmed by Tri1 to the functional 

length of 22 nt. In this way, the priRNAs direct Ago1 to nascent hererochromatic RNAs where, in 

turn, it induces co-transcriptional and transcriptional gene silencing (CTGS and TGC). 

1.2.7  Small RNAs in plants 

In plants, small RNAs are generated from hairpin-shaped or perfect long double stranded RNAs that 

are processed by DICER-LIKE (DCL) proteins (Fang and Qi, 2016). The classes discovered so far are: 

miRNAs produced by DCL1 (Reinhart et al., 2002; Kurihara and Watanabe, 2004; Qi et al., 2005), 

trans-acting small interfering RNAs (ta-siRNAs) generated by DCL4 (Peragine et al., 2004; Vazquez et 

al., 2004; Gasciolli et al., 2005; Xie et al., 2005), heterochromatic siRNAs (hc-siRNAs) processed by 

DCL3 (Xie et al., 2004; Qi et al., 2005; Henderson et al., 2006), natural antisense siRNAs (NAT-siRNAs) 

(Borsani et al., 2005), long siRNAs (Pontes et al., 2006), long miRNAs (lmiRNAs) (Wu et al., 2010), 

double-strand-break (DSB)-induced sRNAs (diRNAs) (Wei et al., 2012), and DCL-independent siRNA 

(sidRNAs) (Ye et al., 2016). miRNAs, ta-siRNAs, and NAT-siRNAs direct PTGS, while hc-siRNAs, 

lmiRNAs, and sidRNAs guide TGS through DNA methylation (Fang and Qi, 2016). 

Differently with what mentioned before about fly small RNAs, in plants small RNAs sorting depends 

on the 5'-end nucleotide of the small RNA: AGO1, the main effector of miRNAs, binds to 5'-uridine, 

AGO4 is loaded mainly with small RNAs starting with adenine and AGO5 has a bias for 5'-cytosine 

(Mi et al., 2008; Montgomery et al., 2008; Takeda et al., 2008). Differently from animals, plant 

miRNAs are characterized by a high degree of sequence complementarity to their target RNAs and 

they were found to induce silencing by endonucleolytic cleavage activity of AGO1, the main miRNAs 
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and ta-siRNAs Argonaute protein (Baumberger and Baulcombe, 2005; Llave et al., 2002; Tang et al., 

2003). However, beside the slicing-mediated silencing, many miRNAs were shown to repress 

translation as well (Aukerman and Sakai, 2003; Chen, 2004; Gandikota et al., 2007; Brodersen et al., 

2008; Yang et al., 2012; Li et al., 2013a). 

1.3  RNAi in Schizosaccharomyces pombe 

Schizosaccharomyces pombe, also known as fission yeast, is an ascomycete yeast that, unlike the 

budding yeast Saccharomyces cerevisiae, has retained the genes encoding for the RNAi machinery 

effectors (Hoffman et al., 2015). RNAi in fission yeast is essential for the establishment and the 

maintenance of silenced chromatin, known as heterochromatin, at the pericentromeric regions 

(Volpe et al., 2002; Volpe et al., 2003) and for the heterochromatin establishment at the mating-type 

locus (mat2/3), where the maintenance is instead mediated by another pathway involving the DNA-

binding proteins Atf1 and Pcr1, the histone deacetylases (HDAC) Clr3, Clr6 and the HP1 

(Heterochromatin Protein 1) protein Swi6 (Hall et al., 2002; Jia et al., 2004; Yamada et al., 2005). 

RNAi can establish heterochromatin at subtelomeric regions as well, acting redundantly with the 

Shelterin complex, which binds to telomeres and recruits chromatin modifiers (Kanoh et al., 2005; 

Hansen, 2006; Sugiyama et al., 2007; Wang et al., 2016b). A recent work showed that at subtelomeric 

regions heterochromatic RNAs are retained on chromatin, forming DNA:RNA hybrids, with the need 

of being degraded by the Ccr4-Not complex, containing the deadenylase essential for downstream 

mRNA decapping and decay, or RNAi in order for heterochromatin to be maintained (Brönner et al., 

2017). 

The S. pombe centromeric regions consist in outer repeats (otr) subdivided into two elements called 

dg and dh, flanking a central domain. The central domain includes the innermost repeats (imr), and 

a central core. The I, II and III chromosomes harbor cen1, cen2, and cen3 which occupy 40, 60, and 

120 kilobases, respectively (Steiner et al., 1993; Pidoux and Allshire, 2004). The noncoding DNA 

organized in repetitive sequences at the pericentromeric region in fission yeast, similar to the more 

complex centromeres structure of metazoans, is transcribed at low levels by RNA polymerase II and 

subsequently targeted by the RNAi machinery which in turn directs CTGS and TGS (Fig. 5), inducing 

methylation of the Histone 3 Lysine 9 (H3K9me) (Volpe et al., 2002; Verdel et al., 2004; Noma et al., 

2004; Kato et al., 2005; Bühler et al., 2006; Djupedal et al., 2005; Shimada et al., 2016). 

The heterochromatin establishment at centromeres occurs when RNAs transcribed from the dg and 

dh DNA repeats are processed into Dicer (Dcr1)-independent 21-23 nt long primal RNAs (priRNAs) 

(Halic and Moazed, 2010) by Argonaute (Ago1) and Triman (Tri1), mediating then the initial silencing 
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at the pericentromeric region (Marasovic et al., 2013). 

Ago1 is part of two distinct complexes: the RNA-induced transcriptional silencing (RITS) complex 

(Verdel et al., 2004) and the Argonaute chaperone (ARC) complex (Buker et al., 2007) (Fig. 5). In the 

latter, Ago1 is coupled with Arb1 and Arb2 that act as chaperones in the loading process of Ago1 

with the siRNA duplex generated by Dcr1 from the dg/dh transcripts (Provost et al., 2002; Reinhart 

and Bartel, 2002; Colmenares et al., 2007; Buker et al., 2007; Holoch and Moazed, 2015a). The 

subsequent cleavage and release of the passenger strand leads to maturation of an active RITS 

complex (Buker et al., 2007; Jain et al., 2016). In this complex, Ago1 is associated with the GW 

(Glycine Tryptophan) domain protein Tas3 and the chromodomain protein Chp1 (Verdel et al., 2004). 

Besides the base pairing between Ago1-bound small RNAs and the pericentromeric transcripts, the 

RITS complex is bound to the chromatin through the interaction between the H3K9me and the 

chromodomain of Chp1 as well (Partridge et al., 2002; Petrie et al., 2005; Zocco et al., 2016). 

However, strong evidences indicate that siRNAs can be generated independently of H3K9me, 

meaning that heterochromatin is not a prerequisite for siRNAs generation (Gerace et al., 2010; Halic 

and Moazed, 2010). 

Targeting of the RITS complex to the pericentromeric region recruits other two complexes essential 

for the heterochromatin formation: the RNA-dependent RNA polymerase complex (RDRC) and the 

Clr4-Rik1-Cul4 (CLRC) complex (Fig. 5). The latter contains the histone methyl-transferase Clr4 which 

is responsible for di- and tri-methylation of H3K9 (Nakayama et al., 2001; Zhang et al., 2008; Al-Sady 

et al., 2013). The RDRC complex, consisting of the RNA-dependent RNA polymerase Rdp1, the RNA 

helicase Hrr1, and the non-canonical poly-(A) polymerase Cid12, synthesizes the RNA strand 

complementary to the nascent pericentromeric transcripts targeted by RITS (Motamedi et al., 2004; 

Sugiyama et al., 2005). This RNA polymerase activity leads to the formation of dsRNA which is then 

processed by Dcr1 into 21-25 nt siRNA duplexes (Reinhart and Bartel, 2002; Motamedi et al., 2004; 

Colmenares et al., 2007) and, by consequence, to the amplifycation of the RNAi by a positive 

feedback loop. Moreover, a newly characterized protein named Dsh1, was suggested to localize Dcr1 

and the RDRC to the nuclear periphery and form the “siRNA amplification compartment” (Kawakami 

et al., 2012). 

The recruitment of both the CLRC and the RDRC complex was recently shown to be independent on 

Ago1-slicer activity (Jain et al., 2016), in contrast with the previously reported idea that Ago1 slicer 

activity is required for siRNA amplification and silencing (Irvine et al., 2006), although the observed 

silencing was directed by a priRNA in an Ago1 over-expressing background (Jain et al., 2016). The 
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slicing activity of Ago1 is indeed critical for the generation of an active RITS complex, upon ejection 

of the passenger strand, and for the release of RITS from chromatin, which could be a key step for 

RITS recycling (Jain et al., 2016). 

 

Another protein complex that was reported to be involved in the RNAi machinery of fission yeast is 

the TRAMP-like complex, which consists of the non-canonical poly-(A) polymerase Cid14, associated 

with the zinc knuckle subunit Air1 and the ATP-dependent RNA helicase Mtr4 (Bühler et al., 2007), 

all homologous proteins of the subunits of the budding yeast Trf4p/Air2p/Mtr4p (TRAMP) complex 

(Wyers et al., 2005; Vanácová et al., 2005; LaCava et al., 2005). While a role of the budding yeast 

TRAMP complex in targeting aberrant RNAs for exosome-mediated degradation was described 

(LaCava et al., 2005), a similar role for the fission yeast TRAMP complex has not been shown directly, 

besides the observation that Cid14 polyadenylates ribosomal RNA (rRNA) (Win et al., 2006) and that 

cells lacking Cid14 accumulate antisense ribosomal siRNAs (Bühler et al., 2008). 

 

 Figure 5. From Martienssen and Moazed, 2015: RNAi-mediated co-transcriptional, 
transcriptional and post-transcriptional gene silencing. 
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A role of RNAi in directing epigenetic silencing was reported also in nematode, plants, fly and 

mammals (reviewed in Wassenegger, 2005; Castel and Martienssen, 2013; Chen and Aravin, 2015; 

Martienssen and Moazed, 2015). 

1.4  3'-end tailing of regulatory small RNAs from plants to humans 

In the last decade, numerous studies have shown that small RNAs are modified at their 3'-end with 

few nucleotides that do not match to the genome. For this reason, they are described as 

untemplated nucleotides and the phenomenon as “tailing”. The first evidence of 3'-end post-

transcriptional modification of small RNAs was observed in Arabidopsis thaliana (Li et al., 2005) 

followed by C. elegans (Ruby et al., 2006), D. melanogaster (Ruby et al., 2007b) and mammalian cells 

(Landgraf et al., 2007). In plants, upon deletion of the methyltransferase hen1, small RNAs were 

reduced and uridylated at the 3'-end (Yu, 2005; Li et al., 2005). It was then proposed that 2'-O-

methylation is required to protect small RNAs from uridylation and it might prevent then the small 

RNAs decay. The nucleotidyltransferases responsible for the uridylation of unmethylated small RNAs 

in plants are HESO1 and URT1 (Zhao et al., 2012; Ren et al., 2012; Tu et al., 2015; Wang et al., 2015b). 

They showed to have different substrates preference and different processivity, with URT1 mainly 

mono-uridylating the miRNAs, and same ability to uridylate AGO1-bound miRNAs. In addition to 

triggering their decay, uridylation of miRNAs was shown to impair the effectiveness of AGO1-bound 

miRNAs reducing the slicing activity (Tu et al., 2015). 

The nucleotidyltransferase MUT68 was discovered to uridylate the 3'-end of mature miRNAs and 

siRNAs in Chlamydomonas reinhardtii, promoting their degradation by RRP6 exosome subunit in 

vitro (Ibrahim et al., 2010). Deletion of MUT68, in fact, resulted in increased abundance of miRNAs 

and siRNAs, supporting the role of MUT68 and RRP6 in the mature small RNAs turnover. 

Consistently with the findings in plants, a study in Zebrafish showed that in testis lacking of hen1 the 

piRNAs are adenylated and uridylated, with the uridylation being more frequent on retro-

transposon-derived piRNAs (Kamminga et al., 2010). This was associated with a reduction of piRNA 

levels and a mild derepression of transposon transcripts. 

The same group observed that in C. elegans henn-1 mutants the majority of 26G RNAs shows 

reduced stability and increased 3'-end uridylation frequency (Kamminga et al., 2012). Moreover, 

another study showed that the CSR-1 (Argonaute protein)-bound siRNAs are uridylated by the 

nucleotidyltransferase CDE-1 (van Wolfswinkel et al., 2009). Loss of CDE-1 was associated with 

siRNAs accumulation and defects in meiotic and mitotic chromosome segregation. 

Another uridyltransferase in worm is PUP-2 which was shown to uridylates pre-let-7 miRNA and 
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regulates its processing (Lehrbach et al., 2009). 

In 2010, Ameres et al. showed how high level of complementarity between D. melanogaster Ago1-

bound miRNAs and target-RNAs induces tailing and trimming of the miRNAs, but not of the Ago2-

bound siRNAs, which are protected by the 2'-O-methylation (Ameres et al., 2010). The untemplated 

nucleotides added to the 3'-end of the targeted miRNAs were uridines and adenines mostly. 

In agreement with this, it was shown that miRNAs undergo 3'-end uridylation upon target-RNA 

regulation in mammals (Baccarini et al., 2011). In fact, in cells overexpressing the target-RNA the 

relative abundance of uridylated miR-223 was higher and the decay rate was faster. 

Analysis of high-throughput sequencing data revealed that the tailing frequency was higher for 3p 

species with the difference that in D. melanogaster both uridines and adenines showed a bias for 

the 3'-arm derived miRNAs (Berezikov et al., 2011) while in mammalian cells the tailing rate of 3p-

miRNAs was higher for the uridines only (Chiang et al., 2010; Burroughs et al., 2010) suggesting that 

uridylation might happen mainly on pre-miRNAs. However, a following work showed that there is 

no substantial difference in the modification rates of 5p and 3p canonical miRNA reads, indicating 

that there is no clear preference for uridylation of canonical pre-miRNAs (Westholm et al., 2012). 

The authors explained the discrepancy with the study from Berezikov et al. with the presence of 

mirtron-derived reads in the overall pool of miRNA species. In fact, they observed a high 3'-end 

uridylation frequency in fly, worm, mouse and human mirtron-3p miRNAs (Westholm et al., 2012; 

Wen et al., 2015). Three years later, two studies in D. melanogaster identified Tailor as the enzyme 

that preferentially uridylates mirtron hairpins, inhibiting their biogenesis (Bortolamiol-Becet et al., 

2015; Reimão-Pinto et al., 2015). 

In mammalian embryonic stem cells, as in C. elegans, pre-let7 miRNA is uridylated at the 3'-end by 

the uridyltransferase TUT4 (ZCCHC11), in a Lin28-dependent manner, and this uridylation impairs 

the correct processing by Dicer and targets pre-let7 miRNA for degradation mediated by the 3′-to-5′ 

exonuclease Dis3L2 (Viswanathan et al., 2008; Newman et al., 2008; Rybak et al., 2008; Heo et al., 

2008; Heo et al., 2009; Hagan et al., 2009; Chang et al., 2013; Ustianenko et al., 2013; Faehnle et al., 

2014). The related nucleotidyltransferase TUT7 (ZCCHC6, previously found to uridylate miRNAs in 

human cells (Wyman et al., 2011)) acts redundantly with TUT4 and knockdown of both 

nucleotidyltransferases leads to increased let-7 levels in embryonic stem cells (Thornton et al., 

2012). Moreover, an RNA-specific co-factor, the E3 ligase Trim25, was shown to activate TUT4 by 

binding the conserved terminal loop of pre-let-7 and make the Lin28-mediated uridylation more 

efficient (Choudhury et al., 2014). 
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On the other hand, in differentiated cells with no Lin28 expression a Lin28-independent pre-let-7 

monouridylation was observed as well (Newman et al., 2011). In human somatic cells the 

nucleotidyltransferases TUT7, TUT4, and TUT2 mono-uridylate pre-let-7, which is efficiently 

processed by Dicer since the 2 nt 3′-overhang is a better substrate than a 1 nt 3'-overhang (Heo et 

al., 2012). Another study in mammalian cells showed that TUT7 and TUT4 together with the exosome 

provide a quality control mechanism that prevents defective pre-miRNAs to be loaded onto 

Argonaute: TUT7/4 not only can mono-uridylate 3'-end of pre-miRNAs to restore the optimal 

overhang of 2 nt, but they can also oligo-uridylate pre-miRNAs and target them for decay mediated 

by DIS3 which, contrary to RRP6, prefers pre-miRNAs with a 3'-overhang longer than 2 nt (Liu et al., 

2014). TUT7/4 have also been shown to oligo-uridylate truncated pre-miRNAs with a 5'-overhang, 

with the hypothesis that this oligo-U tail might promote their degradation (Kim et al., 2015). 

If 3’-end uridylation has been associated to small RNA decay, the first findings about 3’-end 

adenylation supported a stabilization role upon addition of one or few adenosines (Lu et al., 2009; 

Katoh et al., 2009; Burns et al., 2011; D’Ambrogio et al., 2012). In Populus trichocarpa (black 

cottonwood) adenylated miRNAs were degraded at a slower rate, indicating that 3’-end adenylation 

plays a negative role in miRNA decay (Lu et al., 2009). In human hepatocytes and mouse liver, miR-

122 is adenylated by the non-canonical poly-(A) polymerase GLD-2 (PAPD4) after Dicer mediated 

processing (Katoh et al., 2009). In liver of GLD-2 knocked out mice, the miR-122 levels were reduced, 

suggesting a stabilization role for miRNAs by 3’-end adenylation. However, despite its liver-

specificity, miR-122 is also present in human fibroblasts where it was observed to be mono-

adenylated by GLD-2 and subsequently targeted for degradation, disproving a miRNA stabilization 

by 3’-end adenylation (Burns et al., 2011; D’Ambrogio et al., 2012). A study in human THP-1 cells 

showed that 3'-end adenylation of the oncomir miR-21 by the non-canonical poly-(A) polymerase 

PAPD5, rather than PAPD4 (GLD-2), leads to miR-21 destabilization (Boele et al., 2014). In fact, 

knocking down either PAPD5 or the exonuclease PARN resulted in increased miR-21 levels, 

suggesting that PAPD5-mediated adenylation of miR-21 triggers its 3′-to-5′ digestion by PARN 

exonuclease. Moreover, this degradation pathway of miR-21 was deregulated in several proliferative 

diseases, supporting the role of PAPD5 in preventing the miR-21 mediated repression of tumor 

suppressor targets (Boele et al., 2014). A previous study in the same cell line observed that PAPD4 

(and PAPD5 as well, although to a lesser extent) adenylates about the 20% of the miRNAs deriving 

from a given miRNA locus and showed that Ago2 and Ago3 proteins were associated with a reduced 

number of 3’-end adenylated miRNAs (Burroughs et al., 2010). This is consistent with (i) the reduced 



Introduction 
 

22 

 

expression of the target mRNAs upon reduction of adenylation in PAPD4 knocked down cells, 

without affecting the miRNAs levels, and (ii) the derepression of target mRNAs upon miRNAs 

adenylation. Overall, Burroughs et al. suggested that 3'-end adenylation is likely to happen between 

Dicer processing and Argonaute loading and it might modulate the uptake of miRNAs by Ago2 and 

Ago3 containing RISC complex. In agreement with this, a meta-analysis of small RNAs sequencing 

data in plants showed that the combination of 5'-end deletion and 3'-end uridine addition can 

determine the preference of the miRNA for a specific Argonaute protein (Ebhardt et al., 2009). 

Interestingly, several analyses of regulatory small RNAs isolated from virus-infected mammalian cells 

revealed that 3'-end tailing can be a consequence of the host-pathogen interaction, representing 

either a viral strategy to regulate the accumulation of specific viral miRNAs or a host defense 

response against pathogen invasion (Dolken et al., 2007). Small RNAs from poxvirus-treated 

mammalian and insect cells were discovered to be polyadenylated by the virally encoded poly-(A) 

polymerase and subsequently degraded (Backes et al., 2012). This activity was not observed on 

endogenous siRNAs (esiRNAs) containing 2'-O-methylation, suggesting that virus-mediated small 

RNA degradation might have contributed to 2'-O-methylation as a protection mechanism against 

viral infections. The lytic murine cytomegalovirus (MCMV) transcript m169 targets the miR-27a and 

the miR-27b via a single binding site at the 3' UTR, thereby triggering 3'-end tailing and trimming of 

miR-27 and promoting the host infection (Marcinowski et al., 2012). 

In 2014, the Kim group proposed that adenylation of mature miRNAs in fly contribute to the 

elimination of the maternally deposited miRNAs during the maternal to zygotic transition (Lee et al., 

2014) They, in fact, discovered that maternally inherited miRNAs in D. melanogaster are highly 

adenylated at their 3'-end (feature conserved in sea urchin, Strongylocentrotus purpuratus, and 

mouse) by the fly GLD-2 homologue named Wispy. While the knockout resulted in miRNAs 

accumulation in eggs, over-expression of Wispy was associated with reduced level of miRNAs and 

de-repression of the target mRNA-reporter. 

Supporting this role of Wispy, a previous study in D. melanogaster showed how 3'-end untemplated 

nucleotides addition is biologically regulated and associated with a specific stage of development: 

the authors observed that adenylation was predominant at early stages of development while 

uridylation was increased in adult tissues (Fernandez-Valverde et al., 2010). 

Later on, two studies observed that the frequency of 3’-end tailing on specific miRNAs changes with 

differentiation of human embryonic stem cells and that in human cell B adenylated miRNAs were 

enriched inside the cells whereas their uridylated isoforms were overrepresented in exosome 
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vesicles (Wyman et al., 2011; Koppers-Lalic et al., 2014). 

Altogether, these works have shown that (i) 3'-end adenylation and uridylation can dictate not only 

the temporal specificity of regulatory small RNAs, but they can also be tissue-specific and spatially 

separated among the cell compartments and that (ii) different nucleotidyltransferases can target 

specific pre-miRNAs/miRNAs and trigger their degradation, promote their biogenesis/stability 

and/or modulate their effectiveness in target RNA regulation.
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2.  AIM OF THE STUDY 

Previously published high-throughput sequencing data showed that in fission yeast about 20% of 

the Argonaute-bound small RNAs contain 1-2 untemplated nucleotide(s) at their 3'-end, majority of 

which being adenine and uridines (Halic and Moazed, 2010). The two non-canonical poly-(A) 

polymerase Cid12, subunit of the RDRC complex, and Cid14, part of the TRAMP complex, were 

suggested to be the nucleotidyltransferases responsible for the 3'-end modifications of the 

Argonaute-bound small RNAs in S. pombe. The questions arising from these data were: are the 

Argonaute-bound small RNAs stabilized or targeted for degradation upon adenylation and 

uridylation? Which one(s) of the six nucleotidyltransferase is indeed responsible for the Argonaute-

bound small RNAs tailing? Given the role of RNAi in heterochromatin formation in fission yeast, does 

the 3'-end addition of untemplated nucleotides affect the silencing at heterochromatic regions? 

How small RNAs are removed from Argonaute proteins in order for new small RNAs to be loaded is 

still not entirely clear. A defect in the Argonaute-bound small RNAs decay machinery might result in 

a decreased specificity of RNAi and might subsequently affect the expression of genome. The aim of 

this study was then to investigate the role of 3'-end tailing in the Argonaute-bound small RNAs 

turnover and, hence, in the gene regulation of fission yeast. 
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3.  RESULTS 

 

3.1  Argonaute-bound small RNAs are modified at their 3'-end 

To investigate whether in S. pombe the small RNAs are tailed at their 3'-end as well as in other 

organisms, total and Argonaute-bound (Ago1-bound) small RNAs were purified from wild type cells 

and sequenced on a HiSeq Illumina system (Halic and Moazed, 2010). When classified, the majority 

of reads corresponding to Ago1-bound small RNAs fraction mapped to centromeric repeats, with 

the 8% and 1.5% mapping to ribosomal RNA (rRNA) and to messenger/non-coding RNA 

(mRNA/ncRNA), respectively (Fig. 1a). In the total small RNA fraction, which comprehends both 

Ago1-bound and unbound small RNAs, reads mapping to centromeric repeats were about 27%, with 

many reads representing degradation products of rRNA, tRNAs and mRNA/ncRNA (Fig. 1a).  

 

 

 

 Figure 1. Ago1-bound small RNAs are enriched of centromeric siRNAs and show the common 5’-
uridine preference.  

a. Ago1-bound and total small RNAs (Halic and Moazed, 2010) analyzed by high-throughput 
sequencing from wild type cells and classified as indicated below the pie charts. Pie charts 
illustrate percentages for the individual small RNA classes relative to the total number of 
reads for each strain. 

b. 5'-nucleotide preference of Ago1-bound and size selected total small RNAs in wild type 
cells.  
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The total small RNA fraction did not show any preference for the 5'-end nucleotide, while in the 

Ago1-bound fraction small RNAs showed a strong bias for uridine, as already shown in fission yeast 

and other organisms (Bühler et al., 2008; Djupedal et al., 2009; Halic and Moazed, 2010; Brennecke 

et al., 2007; Mi et al., 2008; Wu et al., 2009; Reuter et al., 2011; Cora et al., 2014) (Fig. 1b). 

 

This feature indicates that these small RNAs are indeed bound to Ago1. 

Although small RNAs target transposons in many organisms (Obbard et al., 2009; Koonin, 2017), only 

few Dicer-independent priRNAs and no siRNAs mapped to the transposable element Tf2 and LTR 

elements (Fig. 2a). Moreover, neither Tf2 nor LTR were silenced by RNAi (Fig. 2b). 

The sequences of Ago1-bound and total small RNAs were analysed for the presence of mismatches 

at the 3'-end and more than 20% of the Ago1-bound small RNAs harbored 1-2 untemplated 

nucleotide(s), against the ca. 5% of the total fraction small RNAs (Fig. 3a). More than 70% of the 

untemplated nucleotides was represented by adenines, the 25% by uridines. When classified, about 

25% of Ago1-bound siRNAs and priRNAs generated from centromeric transcripts, mRNAs and 

ncRNAs was adenylated or uridylated at the 3'-end (Fig. 3b). In contrast, only around 5% of small 

RNAs generated from tRNAs and sense rRNA had untemplated nucleotides at the 3’-end (Fig. 3b). 

 

 
Figure 2. Transposons are not silenced by RNAi in S. pombe. Part of the data from Halic and 
Moazed, 2010 and Marasovic et al.,2013. 

a. Quantification of Ago1-bound small RNAs that map to TF2 or LTR elements in indicated 
strains. Error bars indicate s.e.m. of two independent small RNA sequencing experiments. 

b. Quantification of TF2 and LTR transcripts in indicated strains by RNA sequencing. Error bars 
indicate s.e.m. of two independent RNA sequencing experiments. 
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Figure 3. Ago1-bound small RNAs have untemplated nucleotides at the 3’-end. 

a. Quantification of all small RNAs (left panel) and centromeric small RNAs (right panel) that 
have untemplated nucleotides at the 3'-end in Ago1-bound and total small RNA sample. 
Error bars indicate s.e.m. of two independent small RNA sequencing experiments. One set 
is from Halic and Moazed, 2010. 

b. Quantification of small RNAs that have untemplated nucleotides at the 3'-end in different 
classes of Ago1-bound small RNAs. 

c. Quantification of small RNAs that have untemplated nucleotides at the 3'-end in different 
classes of size selected fraction. 

d. Ago1-bound and total small RNA reads from wild type cells were plotted over centromeric 
region. The location of genes is indicated below the small RNA peaks. Reads from + and - 
strands are depicted in green and blue, respectively. Scale bars on the right denote small 
RNA read numbers normalized per one million reads. 
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Interestinlgy, small RNAs generated from antisense rRNA were modified more frequently than the 

ones generated from sense rRNA (Fig. 3b). 

This suggests that Ago1-bound small RNAs deriving from centromeric region, mRNAs/ncRNAs and 

antisense rRNA might be processed in the same way, while priRNAs generated from sense rRNA and 

tRNAs form a distinct class of small RNAs. Alternatively, priRNAs deriving from tRNAs and sense rRNA 

might be loaded on Argonaute during cell disruption without being bona fide in vivo Argonaute-

bound small RNAs. 

Unlike the Ago1-bound small RNAs, the total small RNAs were adenylated or uridylated less 

frequently (Fig. 3a). Centromeric siRNAs were modified at the similar rate in both the total and the 

Ago1-bound small RNAs samples (Fig. 3a, b and c), suggesting that the majority of the siRNAs 

deriving from centromeric repeats are indeed loaded on Ago1 (Fig. 3d). On the other hand, small 

RNA degradation products originating from mRNAs, tRNAs and rRNA were rarely adenylated or 

uridylated in the total small RNAs fraction (Fig. 3c). Altogether, these results suggest that (i) only 

Ago1-bound small RNAs are adenylated or uridylated at their 3'-end and that (ii) the untemplated 

adenine(s) and uridine(s) might be added to the 3'-end of small RNAs after they are loaded on Ago1 

(Fig. 3b and c). 

The sequence reads corresponding to the small RNAs that are adenylated or uridylated at the 3'-end 

showed that the modified small RNAs are distributed over the entire genome with reduction for 

rRNA and tRNAs (Fig. 4a and b). Interestingly, the Ago1-bound priRNAs generated from noncoding 

antisense RNAs resulted to be more frequently adenylated, whereas Ago1-bound priRNAs deriving 

from sense mRNA transcripts were found to be more frequently uridylated (Fig. 4c). Despite of some 

variation in addition of untemplated nucleotides at the 3'-end of different classes of small RNAs, 

these data show that almost all classes of Ago1-bound small RNAs are adenylated and uridylated. 
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Figure 4. Untemplated adenines and uridines are enriched at small RNAs originating from 
noncoding RNAs and mRNAs, respectively. 

a. Ago1-bound small RNAs were analyzed by high-throughput sequencing from indicated cells 
and classified as indicated below the pie charts. Pie charts illustrate percentages for the 
individual small RNA classes relative to the total number of reads for each strain. 

b. Ago1-bound small RNA reads from wild type cells were plotted over euchromatic genes. 
Reads having untemplated adenine(s) or uridines(s) at the 3'-end are shown in separated 
tracks. The location of genes is indicated below the small RNA peaks. Reads from + and - 
strands are depicted in green and blue, respectively. Scale bars on the right denote small 
RNA reads numbers normalized per one million reads. 

c. Quantification of Ago1-bound small RNAs that have untemplated adenine(s) or uridine(s) at 
the 3'-end. 
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3.2  Cid14 adenylates and Cid16 uridylates Ago1-bound small RNAs 

Each of the six non-canonical poly-(A) polymerases of fission yeast (Stevenson and Norbury, 2006) 

was deleted in order to identify the nucleotidyltransferases responsible for the tailing of the Ago1-

bound small RNAs. When compared to the wild type, the percentage of adenylation and uridylation 

resulted to be decreased in cid14Δ and cid16Δ cells, respectively (Fig. 5a). To search for a possible 

redundancy, Ago1-bound small RNAs were isolated and sequenced from double deletion mutants 

as well. All the cid14Δ and all the cid16Δ double mutants showed the same reduction of adenylation 

and uridylation, respectively (Fig. 5b). In cid14Δcid16Δ cells the percentage of 3'-end untemplated 

nucleotides was greatly reduced due to the lack of both adenine(s) and uridine(s) (Fig. 5b).  

Also, the cid14Δcid12Δ mutant showed a decrease of untemplated uridine(s) besides adenine(s), but 

this might be due to the severe loss of siRNAs that characterizes cid12Δ and other RNAi mutants 

rather than a redundancy (data not shown; Halic and Moazed, 2010) (Fig. 5b). 

Once the nucleotidyltransferases were identified, a second round of sequencing of Ago1-bound 

small RNAs from cid14Δ, cid16Δ and cid14Δcid16Δ mutants was performed to confirm the results 

observed in the previous screening (Fig. 6a). The strong 5'-end preference for a uridine indicated 

that the purified small RNAs were indeed Ago1-bound small RNAs (Fig. 6b). 

The small RNAs deriving from centromeric repeats and mRNAs/ncRNAs showed a comparable loss 

of adenylation in cid14Δ cells and uridylation in cid16Δ cells (Fig. 6c). When the length of the 

sequences was calculated, the Ago1-bound small RNAs from cid14Δcid16Δ cells were observed to 

be shorter than the wild type, consistently with the deficiency of the 3'-end untemplated nucleotides 

(Fig. 6d). 

These data indicate that the Ago1-bound small RNAs are adenylated and uridylated by Cid14 and 

Cid16, respectively. 
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Figure 5. Cid14 adenylates and Cid16 uridylates the 3'-end of Ago1-bound small RNAs. 

a. Quantification of Ago1-bound small RNAs that have untemplated nucleotides at the 3'-
end in indicated single mutants. 

b. Quantification of Ago1-bound small RNAs that have untemplated nucleotides at the 3'-
end in indicated double mutants.  
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Figure 6. Cid14 adenylates and Cid16 uridylates all classes of Ago1-bound small RNAs. 

a. Quantification of Ago1-bound small RNAs that have untemplated nucleotides at the 3'-
end in indicated strains. Error bars indicate s.e.m. of two independent small RNA 
sequencing experiments. 

b. 5'-nucleotide preference of Ago1-bound small RNAs in indicated cells.  

c. Quantification of Ago1-bound small RNAs from centromeric region (left panel) and from 
mRNAs and ncRNAs (right panel) that have untemplated nucleotides at the 3'-end in 
indicated cells. Error bars indicate s.e.m. of two independent small RNA sequencing 
experiments. 

d. Calculated length of Ago1-bound small RNAs in indicated strain. 
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3.4  Adenylation and uridylation of Ago1-bound small RNAs is not essential for silencing at 
centromeric repeats 

Because centromeric siRNAs represent the most abundant class of Ago1-bound small RNAs, since 

RNAi is essential for heterochromatin formation at centromers, the first question was whether the 

tailing of the Ago1-bound small RNAs might have a role in silencing of centromeric transcripts. The 

percentage of all classes of Ago1-bound small RNAs was calculated for cid14Δ, cid16Δ and 

cid14Δcid16Δ cells and compared to the wild type. A small reduction of the centromeric siRNAs was 

observed, especially for the cid14Δcid16Δ mutant (28% less), although it was not comparable to the 

severe loss shown in dcr1Δ (Halic and Moazed, 2010; Marasovic et al., 2013) (Fig. 7a and b). 

Centromeric siRNAs were analyzed by northern blotting of the total small RNAs fraction isolated 

from the wild type, dcr1Δ, cid14Δ, cid16Δ and cid14Δcid16Δ. A mild decrease of the dg/dh was 

detected in the double mutant, if compared to the complete loss of dg/dh siRNAs in dcr1Δ (Fig. 7c), 

consistently with the sequencing results (Fig 7a). 

Centromeric dg transcripts were 2 and 3-fold up-regulated in cid14Δcid16Δ and cid14Δ, respectively, 

when analyzed by Reverse Transcription-quantitative PCR (RT-qPCR) (Fig. 8a) and di-methylation of 

Histone 3 Lysine 9 (H3K9me2) at centromeric loci was reduced 2 and 3-fold in cid14Δcid16Δ and 

cid14Δ, respectively (Fig. 8b). Nevertheless, these variations were not as pronounced as the up-

regulation of centromeric transcripts in dcr1Δ (45 fold) and the loss of H3K9me2 in clr4Δ (Fig. 8a and 

b). 

These results show that in cid14∆, cid16∆ and cid14∆cid16∆ cells heterochromatic silencing at 

centromeric loci is only moderately reduced when compared to RNAi mutants, indicating that tailing 

of Ago1-bound small RNAs by Cid14 and Cid16 is not essential for silencing of centromeric repeats. 
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Figure 7. Deletion of Cid14 and Cid16 is not associated with a complete loss of centromeric small 
RNAs. 

a. Ago1-bound small RNAs were analyzed by high-throughput sequencing from indicated cells 
and classified as indicated below the pie charts. Pie charts illustrate percentages for the 
individual small RNA classes relative to the total number of reads for each strain. Data set of 
dcr1Δ is from Marasovic et al.,2013. 

b. Ago1-bound small RNA reads from indicated cells were plotted over centromeric region. The 
location of genes is indicated below the small RNA peaks. Reads from + and - strands are 
depicted in green and blue, respectively. Scale bars on the right denote small RNA reads 
numbers normalized per one million reads 

c. Northern blotting showing dg and dh transcripts from total RNA isolated from the indicated 
strains. In cid14Δcid16Δ cells centromeric small RNAs are reduced. Two independent cid14Δ 
strains show near wild type levels of centromeric siRNAs. Strain cid14Δ_2 is from Bühler et 
al., 2007. 
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 Figure 8. Deletion of Cid14 and Cid16 is not associated with a complete loss of centromeric 
silencing. 

a. Quantification of centromeric dg transcripts in indicated strains by RT-qPCR. In cid14Δ and 
cid14Δcid16Δ cells dg RNA is accumulating. Error bars indicate s.e.m. of > six independent 
experiments. “/” indicates fold change. 

b. ChIP experiment showing H3K9me2 levels at centromeric dg repeats in cid16Δ, cid14Δ and 
cid14cid16Δ cells. Error bars indicate s.e.m. of three independent experiments. 
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3.5  Cid14 and Cid16 protect the genome from uncontrolled RNAi 

 

 

 

 

 

 Figure 9. cid14∆ and cid14∆cid16∆ cells show accumulation of small RNAs into Ago1. 

a. Autoradiograph of denaturing polyacrylamide gel showing Ago1-bound RNAs purified from 
wild type, cid16Δ, cid14Δ and cid14cid16Δ cells. Quantification is based on two 
independent biological replicates. Each band was normalized to higher unspecific bands of 
its lane and compared to wild type. Lower panels show western blotting detection of Flag-
Ago1 protein in immunoprecipitation assays 

b. Quantification of euchromatic Ago1-bound siRNAs and priRNAs mapping to mRNAs and 
ncRNAs in indicated strains. Error bars indicate s.e.m. of two independent small RNA 
sequencing experiments. 

c. Quantification of intronic Ago1-bound siRNAs and priRNAs in indicated strains. Error bars 
indicate s.e.m. of two independent small RNA sequencing experiments. 
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In cid14∆ and cid14∆cid16∆ cells Ago1 was associated with a higher amount of small RNAs than in 

wild type cells (Fig. 9a) and the sequencing data showed accumulation of some classes of Ago1-

bound small RNAs in cid14∆ and cid14∆cid16∆ cells (Fig. 9b and c). For example, Ago1-bound 

priRNAs originating from mRNAs and ncRNAs were 2 to 3-fold more abundant in cid14∆ and 

cid14∆cid16∆ cells, and to a lesser extent in cid16∆ cells (Fig. 9b). Another example was represented 

by Ago1-bound priRNAs generated from intronic regions, which increased of 2, 4.5 and 7.5-fold in 

cid16∆, cid14∆ and cid14∆cid16∆ cells, respectively (Fig. 9b). This suggested that Cid14 and Cid16 

are required for elimination of these classes of small RNAs. 

When the Ago1-bound small RNAs sequencing data were plotted against the S. pombe genome and 

visualized with Integrative Genomics Viewer (IGV), generation of siRNAs was observed for many 

euchromatic genes in cid14∆, cid14∆cid16∆ and, to at lower levels, in cid16∆ mutant, but not in the 

wild type cells (Fig. 10). 

 

 

 

 

 

 
Figure 10. In cid14Δ and cid14Δcid16Δ cells RNAi targets euchromatic genes. 

Ago1-bound small RNA reads from indicated strains were plotted over euchromatic genes. The 
location of genes is indicated below the small RNA peaks. Reads from + and - strands are depicted 
in green and blue, respectively. Scale bars on the right denote small RNA reads numbers 
normalized per one million reads. 
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Initiation of siRNA generation is consistent with the increase of Ago1-bound priRNAs in cid14∆ and 

cid14∆cid16∆ cells, since accumulation of priRNAs will trigger RNAi and generation of secondary 

siRNAs at euchromatic loci. Total RNA sequencing data showed that the transcript level of the genes 

characterized by siRNAs accumulation was reduced in cid14∆ and cid14∆cid16∆ cells, indicating that 

the ectopic siRNAs are functional and they lead to uncontrolled RNAi (Fig. 11). 

As already shown by Bühler et al. (Bühler et al., 2008), an increased number of small RNAs was 

detected at the ribosomal RNA (rRNA) locus in cid14∆ cells (Fig. 12a). Moreover, an increase in 

H3K9me2 levels at rDNA in cid14∆ cells and cid14∆cid16∆ was observed (Fig. 12b). 

However, no level of H3K9me2 could be detected at other euchromatic genes targeted by RNAi in 

cid14∆ and cid14∆cid16∆ cells, indicating that RNAi does not establish heterochromatin at these loci 

(Fig. 12c). The results described here suggest that adenylation of small RNAs by Cid14 protects the 

genome from uncontrolled RNAi implicating that adenylation of Ago1-bound small RNAs promotes 

their degradation. A defect in surveillance of Ago1-bound small RNAs results in accumulation of 

priRNAs on Ago1 that will lead to silencing of genomic loci that are not targets of RNAi in normal 

conditions. 
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Figure 11. Uncontrolled RNAi in cid14Δ and cid14Δcid16Δ cells silences ectopic targets. 

a. RNA sequencing reads in indicated cells are plotted over the several euchromatic genes. In 
cid14Δ cells genes that are targeted by RNAi are silenced. Scale bars on the right denote RNA 
reads numbers normalized per one million reads. 

b. Read counts of RNA sequencing from indicated strains for genes shown in Fig. 11a. 

c. Box plot of differential expression of RNA in cid14Δ cells compared to wild type cells for all 
genes and genes that generate siRNAs in cid14Δ cells. Genes that generate siRNAs show 
reduced level of mRNAs in cid14Δ cells indicating silencing by RNAi. Two sided t-test for two 
independent datasets with high variance was used to calculate the p-value. *** P < 1E-10. 
Analysis performed by Mario Halic. 
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 Figure 12. Uncontrolled RNAi silences euchromatic gene without establishing heterochromatin. 

a. Ago1-bound small RNA reads from indicated strains were plotted over rDNA. The location 
of the locus is indicated below the small RNA peaks. Reads from + and - strands are depicted 
in green and blue, respectively. Scale bars on the right denote small RNA reads numbers 
normalized per one million reads. 

b. ChIP experiment showing the H3K9me2 level in cid14Δ and cid14cid16Δ cells at rDNA. Error 
bars indicate s.e.m. of three independent experiments. 

c. ChIP experiment showing that in cid16Δ, cid14Δ and cid14cid16Δ cells H3K9me2 is not 
established at targeted genes. Error bars indicate s.e.m. of three independent experiments. 
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3.6  Rapid adaptation to uncontrolled RNAi 

Among the euchromatic genes showing accumulation of siRNAs there were ago1 and rdp1 (Fig. 13). 

The latter encodes for the RNA-dependent RNA polymerase part of the RDRC complex. The synthesis 

of dsRNA by Rdp1 is essential for the generation of centromeric siRNAs by Dicer and for enforcing 

the positive feedback loop for the heterochromatin formation at centromeric repeats (Motamedi et 

al., 2004; Sugiyama et al., 2005). 

 

The total RNA sequencing data showed that rdp1 transcript was reduced by the 25% in cid14∆ cells 

(Fig. 14a). The result was confirmed by RT-qPCR which showed a 2-fold decrease in cid14∆ cells and 

a 3-fold decrease in cid14∆cid16∆ cells (Fig. 14b). No level of H3K9me2 could be detected at this 

locus, indicating that the rdp1 silencing might occur post-transcriptionally and/or independently of 

heterochromatin (Fig. 14c). Taken together, these data suggest that in cid14∆ cells RNAi targets rdp1, 

which is essential for the RNAi machinery itself, to avoid propagation of uncontrolled RNAi and pro-

tect the genome. 

 

 Figure 13. Uncontrolled RNAi targets essential genes for the RNAi machinery itself. 

Argonaute-bound small RNA reads from indicated strains were plotted over rdp1 gene and ago1 
gene. The location of genes is indicated below the small RNA peaks. Reads from + and - strands are 
depicted in green and blue, respectively. Scale bars on the right denote small RNA reads numbers 
normalized per one million reads. 
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Figure 14. Uncontrolled RNAi silences rdp1 gene independently of heterochromatin. 

a. RNA sequencing reads in indicated cells are plotted over the several euchromatic genes. In 
cid14Δ cells genes that are targeted by RNAi are silenced. Scale bars on the right denote 
RNA reads numbers normalized per one million reads. 

b. Quantification of rdp1 transcripts in indicated strains by RT-qPCR. Error bars indicate s.e.m. 
of three independent experiments. 

c. ChIP experiment showing that in cid16Δ, cid14Δ and cid14cid16Δ cells H3K9me2 is not 
established at rdp1 locus. Error bars indicate s.e.m. of three independent experiments. 
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rdp1 was cloned under the strong nmt1 promoter and over-expressed in cid14∆ cells, whose viability 

was tested by growth assay. The over-expression of Rdp1 severely impaired the growth of cid14∆ 

cells, supporting the idea that reducing the level of uncontrolled RNAi, by silencing a gene encoding 

for an RNAi effector, is essential for the cells to survive under stress conditions (Fig. 15a and b). 

 

 
Figure 15. Over-expression of Rdp1 causes a severe growth defect of cid14∆ cells. 

a. Growth assay showing strong reduction in viability of cid14Δ cells that over-express rdp1 
gene. Cells were growing for two days before imaging. 

b. Same growth assay. Cells were growing for three days before imaging. 

 

 

 
Figure 16. Over-expression of Rdp1 induces propagation of uncontrolled RNAi in cid14∆ cells. 

Ago1-bound small RNA reads from indicated strains were plotted over rDNA and euchromatic 
loci. Reads from + and - strands are depicted in green and blue, respectively. Scale bars on the 
right denote small RNA read numbers normalized per one million reads. 
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Sequencing of Ago1-bound small RNAs isolated from cid14∆ cells over-expressing Rdp1 showed ap-

pearance of new siRNAs at some euchromatic loci and an even greater accumulation of siRNAs at 

the rRNA locus: while in cid14∆ cells siRNAs appeared at the 3'-end of the 25S and at the 3' External 

Transcribed Spacer (ETS), cid14∆ cells over-expressing Rdp1 showed accumulation of siRNAs along 

the entire rRNA locus (Fig. 16). 

Moreover, rRNA transcript levels were 2-fold reduced cid14∆ cells over-expressing Rdp1 (Fig. 17a). 

The H3K9me2 was enriched along the rRNA locus in cid14∆ cells, comparing with the wild type, and 

5-fold increased at the Non-Transcribed Spacer (NTS) in cid14∆ cells over-expressing Rdp1 (Fig. 17b). 

The results described here show that fission yeast cells exploit RNAi to down-regulate the RNAi 

machinery itself in response to an improper small RNAs decay mechanism. Interestinlgy, rdp1 mRNA 

is targeted by RNAi, in at least two independent strains, and silenced. This rapid adaptation to a 

misregulated RNAi enable S. pombe cells to reprogram their gene expression and survive to the 

stress condition. 

 

 

 

 
Figure 17. Over-expression of Rdp1 causes silencing of the rRNA locus in cid14Δ cells. 

a. Quantification of 25S rRNA transcript in indicated strains by RT-qPCR. Error bars indicate 
s.e.m. of three independent experiments. 

b. ChIP-seq reads from indicated strains were plotted over rDNA. Scale bars on the right 
denote small RNA read numbers normalized per one million reads. 
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3.7  Cid14 and Ago1 interact in vivo 

The small RNA sequencing data showed that Cid14 and Cid16 add untemplated nucleotides to Ago1-

bound small RNAs. Therefore, co-immunoprecipitation experiments were performed to investigate 

a potential interaction between the two nucleotidyltransferases and Ago1. Cid16, which was 

endogenously tagged as Cid14 and Ago1, happened to be very low expressed and not detectable 

neither in the input nor in the immunoprecipitated fraction by Western blotting analysis. On the 

other hand, Cid14 and Ago1 did interact in vivo (Fig. 18). 

 

3.8  Cid14 and Cid16 recruit the 3'-to-5' exonuclease Rrp6 to degrade Ago1-bound small RNAs in 
vitro 

The accumulation of Ago1-bound small RNAs at euchromatic loci and rRNA locus observed in cid14∆ 

and cid14∆cid16∆ cells suggested that (i) Cid14, and to a lesser extent Cid16, might be required for 

Ago1-bound small RNAs removal and that (ii) the loss of such a surveillance mechanism results in 

ectopic RNAi. For this reason, Cid14 and Cid16 were over-expressed and purified, along with their 

activity mutants, to study their activity and molecular function in vitro (Fig. 19). 

While the activity mutants failed in addition of untemplated adenines and uridines, Cid14 added 10-

20 adenines and Cid16 added 1-3 uridines to free 22 nt small RNA (Fig. 20a). Both Cid14 and Cid16 

were specific in the addition of adenines and uridines, respectively (Fig. 20b). 

 

 

 

 

 
Figure 18. Cid14 and Ago1 interact in vivo. 

Western blotting analysis of a co-immunoprecipitation assay. Experiment performed with Henry 
Fabian Thomas. 
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The nucleotiodyltransferase activity was tested on double strand RNA (dsRNA) as well: Cid14 was 

able to adenylate dsRNA too, while Cid16 showed a weak activity on dsRNA similarly to TUT4 in 

mammalian cells (Jones et al., 2009) (Fig. 21). 

Therefore, the same experiment was performed with 22 nt small RNAs previously loaded on Ago1 

(see 5.2 Methods section). Cid14 added either 1-2 or 15-20 untemplated adenines to the 3'-end of 

Ago1-bound small RNAs, indicating that the Cid14 activity is modulated by Ago1 (Fig. 22). In a previ-

ous work, it has been shown that 10-20% of 22 nt small RNAs dissociate from Ago1 in course of the 

assay, suggesting that 15-20 untemplated adenines might be added to free small RNAs. Moreover, 

one has to consider that the assay was performed with α-32P-ATP, meaning that the addition of 10-

20 adenines should result in a 10-fold higher signal which is not the case shown here. This is con-

sistent with the sequencing of Ago1-bound small RNAs showing 1-2 untemplated nucleotides at the 

3'-end of small RNAs. Similarly, to Cid14, Cid16 added 1-2 nucleotides to Ago1-bound small RNAs in 

the in vitro assay (Fig. 22). 

 

 

 
Figure 19. Expression and purification of wild type and catalitically inactive Cid14 and Cid16 and 
Rrp6 for in vitro assay. 

Coomassie stained SDS polyacrylamide gel showing purified Cid16, Cid16DADA, Cid14, Cid14DADA 
and Rrp6. Cid14, Cid14DADA and Rrp6 proteins were expressed and purified from E. coli. Cid16 and 
Cid16DADA were expressed and purified from S. pombe. 
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 Previous Ago1-bound small RNAs sequencing data from mutants of Tri1, Rrp6, Dis3 and Dis3l2 were 

analyzed for the presence of untemplated nucleotides at the 3'-end. Adenylated Ago1-bound small 

RNAs accumulated in tri1∆ cells, but not in rrp6∆, dis3l2∆ and dis3-54 cells (Fig. 23). 

 

 

 

 

 

 

Figure 20. Cid14 and Cid16 specifically adenylates and uridylates small RNAs in vitro, respectively. 

a. Left panel: autoradiograph of denaturing polyacrylamide gel showing Cid14 activity on free 
small RNA. 22 nucleotides long small RNA was incubated with wt and catalitically inactive 

Cid14 and [α-32P] ATP. Right panel: autoradiograph of denaturing polyacrylamide gel 
showing Cid16 activity on free small RNA. 22 nucleotides long small RNA was incubated 

with wt and catalitically inactive Cid16 and [α-32P] UTP.  

b. Autoradiograph of denaturing polyacrylamide gel showing Cid14 and Cid16 activity on free 
small RNA and specificity for ATP and UTP, respectively. 22 nucleotide long small RNA was 

incubated with Cid14/Cid16 and [α-32P] ATP/UTP. 
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Ago1 recruits Tri1 to process small RNAs to the final length of 22 nucleotides (Marasovic et al., 2013). 

Thus, it is very likely that Tri1 actively removes untemplated adenines from the 3'-end of small RNAs, 

consistently with Tri1 belonging to the PARN family of deadenylases. Cid14 and Tri1 might act 

together to control the length and stability of small RNAs. Small RNAs length is essential for Ago1 

slicing activity and addition/removal of untemplated nucleotides can change small RNA efficiency. 

On the contrary, uridylation did not accumulate on Argonaute-bound small RNAs in tri1∆ cells, 

indicating that uridines are not removed by Tri1 (Fig. 23) 

Uridylated Ago1-bound small RNAs resulted to be longer than average Ago1-bound small RNAs in 

wild type cells, suggesting that uridine(s) at the 3'-end actually protect(s) small RNAs from trimming 

(Fig. 24). 

 

 

 

 

 

 

 

 

Figure 21. Cid14 can adenylate ds small RNA while Cid16 preferentially uridylates ss small RNA in 
vitro. 

Autoradiograph of polyacrylamide gel showing Cid14 and Cid16 activity on free dsRNA and ssRNA. 
22 nucleotides single and double stranded small RNAs were incubated with Cid14 and Cid16. Small 
RNAs were analyzed on a polyacrylamide gel.  
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Figure 22. Cid16 uridylates and Cid14 adenylates Ago1-bound small RNAs in vitro. 

Autoradiograph of denaturing polyacrylamide gel showing Cid16 and Cid14 activity on Ago1-bound 
small RNAs. 22 nucleotides long small RNA was loaded on empty Ago1 purified from dcr1Δtri1Δ 
cells and incubated with Cid14/Cid16 and [α-32P] ATP/UTP. Small RNAs were analyzed on denaturing 
polyacrylamide gel. 

 

 

 Figure 23. 3’-end adenylated Ago1-bound small RNAs accumulate in tri1∆ cells. 

Quantification of Ago1-bound small RNAs that have untemplated nucleotides at the 3'-end in 
indicated strains. Data from Halic and Moazed, 2010 and Marasovic et al., 2013. 
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As already mentioned before, Cid14 is a member of the TRAMP complex which was suggested to 

recruit the nuclear exosome to targeted RNAs and promotes their degradation. Therefore, Ago1 was 

loaded with radioactively labeled 22 nt small RNAs and incubated with Cid14 or Cid16 together with 

Tri1 or Rrp6. Neither Tri1 nor Rrp6 were able to degrade the Ago1-bound small RNAs by themselves, 

although Rrp6 did degrade short contaminating unbound RNAs. In presence of Cid14 and Cid16, 

however, Rrp6 removed and degraded the Ago1-bound small RNAs completely (Fig. 25). 

 

When incubated with the activity mutants of Cid14 and Cid16, Rrp6 was not able to degrade the 

Ago1-bound small RNAs, indicating that adenylation and uridylation are required for Ago1-bound 

small RNAs removal and degradation by Rrp6 in vitro (Fig. 26). 

 

 

 

 Figure 24. Uridylated Ago1-bound small RNAs are longer than average Ago1-bound small RNAs. 

Length of uridylated Ago1-bound small RNAs in wild type cells calculated from Ago1-bound small 
RNA high-throughput sequencing data. 
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Figure 25. Cid14 and Cid16 recruit Rrp6 to degrade Ago1-bound small RNAs in vitro. 

Autoradiograph of denaturing polyacrylamide gel showing degradation of Ago1-bound small RNA 
by Cid14 (left panel), Cid16 (right panel) and Rrp6. 5’-32P labeled 22 nucleotides long small RNA 
was loaded on empty Ago1 purified from dcr1Δtri1Δ cells and incubated with Cid14, Cid16 and 
Tri1 or Rrp6. 

 

 

 
Figure 26. Rrp6-mediated Ago1-bound small RNAs degradation in vitro depends on Cid14 and 
Cid16 nucleotidyltransferase activity. 

Autoradiograph of denaturing polyacrylamide gels showing degradation of Ago1-bound small RNA 
by Cid14 and Rrp6. 5'-32P labeled 22 nucleotides long small RNA was loaded on empty Ago1 
purified from dcr1Δtri1Δ cells and incubated with Rrp6, Cid14 and Cid14DADA (left panel) or Rrp6, 
Cid16 and Cid16DADA (right panel). 30 nucleotides long DNA was used as a loading control. 
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Time course experiments showed the appearance of intermediate degradation products (Fig. 27). 

These results observed in vitro suggest that adenylation by Cid14 might recruit either Tri1 or Rrp6 in 

vivo as well. While Rrp6 degrades Ago1-bound small RNAs, Tri1 shortens them to 22 nucleotides to 

make them functional again. 

 

 

3.9  Ago1-bound small RNAs are more stable in cid14∆ cells 

If Cid14 recruits Rrp6 to remove and degrade the Ago1-bound small RNAs, the following question 

was whether the loss of Cid14 could result in a longer half-life of the Ago1-bound small RNAs. To 

answer this question, a construct expressing ura4 hairpin (Iida et al., 2008) under the control of the 

repressible nmt1 promoter was inserted into wild type and cid14∆ cells. In absence of thiamine, the 

ura4 hairpin is transcribed at high level and processed by Dicer into ura4 siRNAs (Fig. 28a). 

 

 

Figure 27. Time course experiments show intermediate degradation products. 

Autoradiograph of denaturing polyacrylamide gels showing time course of Ago1-bound small RNAs 
degradation by Cid14/Cid16 and Rrp6. 5'-32P labeled 22 nucleotides long small RNA was loaded on 
empty Ago1 purified from dcr1Δtri1Δ cells and incubated with Rrp6, Cid14 (h) or Cid16 (i). Time at 
which the reaction was stopped is indicated above the image. 
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Figure 28. The ura4 hairpin is equally repressed in wild type and in cid14∆ cells upon thiamine 
addition. 

a. Schematic diagram of the ura4 hairpin construct under the nmt1 promoter. 

b. Quantification of ura4 hairpin RNA in indicated strains by RT-qPCR. Error bars indicate 
standard error s.e.m. of three independent experiments. 

 

 

 
Figure 29. The total ura4 siRNAs are Dicer products. 

Northern blotting analysis showing ura4 small RNAs isolated from total small RNA fraction from 
the indicated strains. Lower panel shows the loading control snoR69. 
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In presence of thiamine, the nmt1 promoter is repressed and the ura4 hairpin levels rapidly decrease 

in both wild type and cid14∆ cells equally (Fig. 28b). 

Therefore, the degradation of Ago1-bound and total ura4 small RNAs in wild type and cid14∆ cells 

was followed over three time-points. Total ura4 small RNAs were not detectable in dcr1∆ or 

dcr1∆cid14∆ cells, proving that they are bona fide siRNAs (Fig. 29). 

Wild type cells showed a rapid degradation of ura4 siRNAs in total small RNA fraction with the ma-

jority of ura4 siRNAs being degraded in less than 5 hours (Fig. 30a and b). 

In cid14∆ cells, after initial rapid degradation, a reduction in the degradation rate of ura4 siRNAs was 

detected (Fig. 30a and b). 

 

 

 

 

 

 

 Figure 30. Total ura4 siRNAs show a slower degradation rate after 3 h of repression in cid14Δ cells. 

a. Northern blot showing ura4 small RNAs isolated from total small RNA fraction from the 
indicated strains. ura4 small RNAs were normalized to snoR69 shown in the lower panel. 
Quantification is relative to time point 0 when thiamine was added and is shown below the 
image 

b. Quantification of ura4 small RNAs from total small RNA fraction in wild type and cid14Δ 
cells. Quantification is relative to time point 0 when thiamine was added. ura4 small RNAs 
were normalized to snoR69. Error bars indicate s.e.m. of three independent experiments. 
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Since the total fraction comprehends both Ago1-bound and unbound small RNAs, the result sug-

gested a possible scenario where the unbound ura4 siRNAs are rapidly degraded, independently of 

Cid14, whereas Ago1-bound small RNAs, which are expected to be less prone to degradation than 

the unbound small RNAs, might be stabilized in cid14∆ cells as shown in the latest time-points (Fig. 

30a and b). To investigate this hypothesis, the degradation of the Ago1-bound small RNAs was fol-

lowed. 

 

In cid14∆ cells Ago1-bound ura4 siRNAs displayed indeed more stability than in wild type cells (Fig. 

31a and b). 

This experiment showed that Ago1-bound small RNAs are more stable in cid14∆ cells when com-

pared to the wild type cells. In wild type cells Ago1-bound small RNAs were degraded at a slower 

rate than total small RNAs, indicating that binding to Ago1 increases the stability of the small RNAs 

(Fig. 32a). Nevertheless, the stability of Ago1-bound ura4 siRNAs over the total ura4 siRNAs was 

more pronounced in cid14∆ than in wild type cells, taking into account an equal doubling time (Fig. 

32b).  

 

 
Figure 31. The stability of Ago1-bound ura4 siRNAs is increased in cid14∆ cells. 

a. Northern blotting analysis showing Ago1-bound ura4 small RNAs isolated from wild type 
and cid14Δ cells. The ura4 small RNAs were normalized to centromeric small RNAs shown 
in the lower panel. Quantification is relative to time point 0 when thiamine was added and 
is shown below the image 

b. Quantification of Ago1-bound ura4 small RNAs in wild type and cid14Δ cells. The ura4 small 
RNAs were normalized to centromeric siRNAs. Quantification is relative to time point 0 
when thiamine was added. Error bars indicate s.e.m. of three independent experiments. 
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Figure 32. Ago1-bound ura4 siRNAs are more stable than the total ura4 siRNA and in cid14∆ this 
stability is increased. 

a. Quantification of total and Ago1-bound ura4 small RNAs half-life in wt. Quantification is 
relative to time point 0 after addition of thiamine. Error bars indicate standard error s.e.m. 
of three independent experiments. 

b. Quantification of total and Ago1-bound ura4 small RNAs half-life in cid14Δ. Quantification 
is relative to time point 0 after addition of thiamine. Error bars indicate s.e.m. of three 
independent experiments. 
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4.  DISCUSSION 

Regulatory small RNAs have been shown to provide protection of the genome against external DNA 

and to control gene expression through transcriptional and post-transcriptional regulation pathways 

(Ghildiyal and Zamore, 2009; Kim et al., 2009; Moazed, 2009; Holoch and Moazed, 2015b). In 

particular, miRNAs in metazoans regulate crucial biological processes like cell differentiation, 

development, tumorigenesis and apoptosis (Bartel and Chen, 2004; Yekta et al., 2008; Stefani and 

Slack, 2008; Wang and Lee, 2008). Therefore, the regulation of the small RNAs themselves is of 

fundamental importance. Many miRNAs, in fact, are controlled by developmental and/or tissue-

specific signals (Landgraf et al., 2007) and a deregulation in their expression pathway is often 

associated with human diseases (Jiang et al., 2009). The first step of regulation is transcription (Xie 

et al., 2010) and several miRNAs were reported to be under the control of tumor-suppressors or 

oncogenic transcription factors (He et al., 2007). 

Post-transcriptional regulation mechanisms can involve (i) RNA-binding protein, like the case of Lin28 

suppressing pre-let7 biogenesis (see the 1.4 paragraph), (ii) exoribonucleases, described in plants 

(Ramachandran and Chen, 2008) and nematode (Kennedy et al., 2004), (iii) RNA editing machinery, 

based on adenine deaminases (ADARs) which change adenines to inosines possibly modulating the 

precursor biogenesis or the mature miRNA-transcript specificity (Yang et al., 2006; Kawahara et al., 

2007; Kawahara et al., 2008; Warnefors et al., 2014; Tomaselli et al., 2015; Nishikura, 2015), and (iv) 

RNA modification, such as the 2'-O-methylation involved in stability and the methylation of adenine 

and cytosine, playing a role in several physiological processes like stress response, metabolism and 

immunity (Zhang et al., 2016) 

An important class of small RNA modifications is represented by the 3’-end addition of untemplated 

nucleotides, subsequently described as “tailing” and reported in plants and animals. As discussed 

before, tailing can address the small RNAs to different destinies, like promoting their stability, 

inducing their exonuclease-mediated degradation or modulating their target recognition (Song et 

al., 2015). 

This study investigated the 3’-end untemplated nucleotides addition to Argonaute-bound small 

RNAs and its role inside the RNAi machinery of Schizosaccharomyces pombe. The results show that: 

• Ago1-bound small RNAs are adenylated by Cid14 and uridylated by Cid16 in vitro and in vivo. 

• Cid14 and Cid16 recruits the nuclear exosome subunit Rrp6 which, in turn, degrades the 

Ago1-bound small RNAs in vitro. Moreover, the Rrp6-mediated degradation depends on the 
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Cid14 and Cid16 activity. 

• The loss of Cid14 is associated with uncontrolled RNAi induced by the accumulation of siRNAs 

at euchromatic loci which, in wilde type condition, are not targets of the RNAi machinery. 

Therefore, taken together, the data presented in this work shed light on a surveillance mechanism 

for Argonaute-bound small RNAs that protects fission yeast genome from uncontrolled and, 

consequently, harmful RNAi (Pisacane and Halic, 2017). 

4.1  A surveillance mechanism mediated by Cid14 and Rrp6 

Like Wispy in D. melanogaster was shown to interact in vivo with Argonaute and to adenylate 

Argonaute-bound miRNAs (Lee et al., 2014), the data described in this study show that Cid14 

interacts with Ago1 in vivo and adenylates Ago1-bound small RNAs in vitro and in vivo. As the loss of 

Wispy was associated with accumulation of miRNAs (Lee et al., 2014), the deletion of Cid14 resulted 

in 1) generation of siRNAs at euchromatic loci that are not targeted by RNAi in normal conditions, 

and 2) stabilization of the ura4 siRNAs generated from the exogenously introduced hairpin (Fig. 31a 

and b). It would be interesting then to investigate the effect of the Cid14 over-expression on the 

Ago1-bound small RNAs turnover, since over-expression of Wispy caused a reduction of miRNAs 

level (Lee et al., 2014). 

It was previously shown that loss of Cid14 results in accumulation of antisense ribosomal siRNAs 

(Bühler et al., 2008), suggesting a role for the TRAMP complex in RNA quality control as it was 

reported in S. cerevisiae (LaCava et al., 2005). However, the low quality of the Ago1-bound small 

RNA sequencing data did not allow the authors to detect siRNAs generated and accumulated at 

euchromatic loci, as it is described in this work. Moreover, the MTREC complex, more than the 

TRAMP complex, was suggested to target aberrant RNAs for nuclear exosome-mediated degradation 

in fission yeast (Zhou et al., 2015). The cid14Δ high-throughput sequencing data indicates a Cid14 

dependent adenylation of Ago1-bound small RNAs in vivo and suggest a role of Cid14 in recruiting 

Rrp6 to degrade “noise” Ago1-bound small RNAs, since rrp6∆ cells undergo the same uncontrolled 

RNAi observed in cid14∆ (Marasovic et al., 2013; Yamanaka et al., 2013). However, a further proof 

would be to observe the ectopic siRNAs accumulation in cells with the endogenous catalitically 

inactive Cid14. Nevertheless, the results observed in vitro strongly support a role of Cid14 and Rrp6 

in maintaining the Ago1-bound small RNAs background level under the threshold required for the 

RNAi machinery to generate siRNAs and induce unspecific PTGS in vivo as well. 

This surveillance mechanism will control, however, the least abundant siRNAs in order to keep them 

below the threshold and prevent them from being loaded on Argonaute.  
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This might explain why the loss of Cid14 does not affect the very abundant and constantly generated 

centromeric siRNAs, as it was previously stated (Bühler et al., 2007), and, therefore, does not cause 

a severe loss of silencing at pericentromeric repeats, as it was reported for other RNAi mutants 

(Provost et al., 2002; Volpe et al., 2002; Volpe et al., 2003). An effector that fits in this frame is Eri1, 

a ribonuclease that was shown to negatively regulate heterochromatin formation in fission yeast, 

most likely degrading the siRNA duplexes processed by Dcr1 (Iida et al., 2006). Eri1 might have a role 

in controlling the amounts of cellular siRNA duplexes and, thereby, in suppressing a potential 

uncontrolled RNAi, similarly to the role of Cid14 and Rrp6 on Ago1-bound small RNAs. 

Moreover, a recent study from Motamedi group reported the accumulation of Ago1-associated small 

RNAs mapping to euchromatic genes during quiescence transition. They observed a G0-specific 

down-regulation of the TRAMP and the exosome components and an upregulation of the RNAi 

effectors, leading to euchromatic genes targeting and transcriptional silencing (Joh et al., 2016). Even 

though based on epigenetic regulation, these findings are in line with the data discussed here. 

4.2  An internal sabotage to rapidly adapt and survive 

Interestingly, one of the locus showing siRNAs accumulation in cid14∆ is rdp1 gene, encoding for the 

RNA-dependent RNA polymerase, part of the RDRC complex, that is responsible for the dsRNA 

formation and, hence, for the siRNAs amplification (Motamedi et al., 2004; Sugiyama et al., 2005). 

Moreover, rdp1 transcript levels were reduced in cid14∆ cells indicating an effective silencing 

mediated by the siRNAs observed (Fig. 14a and b). In other words, the uncontrolled RNAi, driven by 

a stress condition such as the lack of a surveillance mechanism for the Ago1-bound small RNAs, 

targeted a gene which is essential for the RNAi machinery itself, counteracting the already harmful 

dysfunction of this pathway in the cell. In line with this, overexpression of Rdp1 in cid14∆ cells 

severely impaired their growth (Fig. 15). 

The rdp1 silencing, however, along with the other loci reported in this work, was independent from 

H3K9 methylation (Fig. 14c and 12c), suggesting that it is a case of post-transcriptional gene silencing 

more than transcriptional gene silencing. A PTGS of euchromatic loci, besides heterochromatic 

transcript, has not been confirmed yet in fission yeast, although Ekwall group did show a possible 

PTGS mechanism for repression of gene expression (Smialowska et al., 2014). They observed, 

however, a reduction at the protein level instead of the mRNA level. Further investigation needs to 

be carried out to surely affirm a role of the RNAi in PTGS of euchromatic genes in S. pombe as it was 

described in other organisms. 
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The data remain anyway an indication that the RNAi in fission yeast can be uncoupled from 

heterochromatin and that H3K9 methylation is not a prerequisite for siRNAs generation and 

silencing. 

Why specifically rdp1? Is this a random or a specific choice? It is likely that rdp1 was targeted 

randomly by the uncontrolled RNAi and that the cells with silenced rdp1 were isolated because of 

natural selection. More isolates should be analyzed to search for other possible genes essential for 

the RNAi that might have been silenced by the same mechanism. 

A recent study in fission yeast cells deleted of the putative histone demethylase epe1 and the histone 

acetyltransferase mst2, described a heterochromatin-mediated adaptation mechanism: 

epe1∆mst2∆ cells accumulate H3K9 methylation at the locus encoding for the H3K9 

methyltransferase Clr4 to prevent uncontrolled spreading of heterochromatin (Wang et al., 2015a), 

as cid14∆ and cid14∆cid16∆ cells accumulate siRNAs at the rdp1 locus to counteract uncontrolled 

RNAi. Compared to genetic mutations, epigenetic and/or RNAi-based adaptations represent a faster 

response and a reversible solution. 

In conclusion, these data show that S. pombe cells can exploit RNAi to reprogram their genome 

expression and adapt to external or internal stress stimuli. 

4.3  Ribosomal small RNAs respond to external and internal stimuli 

Among the genomic loci displaying accumulation of siRNAs upon loss of Cid14 and, even more, with 

the Rdp1 over-expression, there is the ribosomal RNA (rRNA) locus. In this case, siRNA generation is 

associated not only with the rRNA transcript repression, but also with an increased of H3K9 

methylation at the rDNA repeats in cid14∆ cells over-expressing Rdp1 (Fig. 17a and b), indicating a 

TGS mechanism. In agreement with this, over-expression of Rdp1 in cid14∆ caused a severe growth 

defect of the cells (Fig.15). 

Similarly, stress stimuli and loss of susi-1, the C. elegans homolog of the human 3'-to-5' exonuclease 

DIS3L2, result in the accumulation of ERI(Dicer)-independent RdRP-synthesized antisense ribosomal 

siRNAs (risiRNAs) that enter the nuclear RNAi pathway and silence rRNA (Zhou et al., 2017). Other 

examples come from N. crassa where DNA damage induces qiRNAs (QDE-2 interacting small RNAs, 

where QDE-2 is an Argonaute protein) deriving from the rRNA locus (Lee et al., 2009a), and from A. 

thaliana where the antiviral response triggers the ribosomal siRNAs (risiRNAs) formation (Cao et al., 

2014). 
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4.4  Cid16: a nuclear or cytoplasmic quality controller? 

Although the results reported here clearly describe Cid16 as the nucleotidyltransferase responsible 

for the Ago1-bound small RNAs uridylation, the role of this uncharacterized protein in the 

surveillance mechanism remains to be elucidated. The single deletion of Cid16, in fact, does not 

cause the same accumulation of siRNAs observed in cid14∆ cells, not even at the rdp1 locus, with 

consequent lack of silencing. 

On the other hand, the in vitro assays support the idea that, like Cid14, Cid16 recruits Rrp6 to 

degrade the Ago1-bound small RNAs, suggesting that Cid16 is a functional homologue of the MUT68 

uridyltransferase in the unicellular green alga (Ibrahim et al., 2010) and of the TUT4/7 

uridyltransferases in mammalian cells (Liu et al., 2014). 

Another factor to consider is that unlike Cid14, that was found to be nuclear, Cid16 was detected as 

cytoplasmic protein in fission yeast (Matsuyama et al., 2006), consistent with the observation that 

small RNAs generated from mRNAs are more frequently uridylated and the small RNAs deriving from 

ncRNAs are highly adenylated (Fig. 4c). Therefore, how does Cid16 act on the Ago1-bound small 

RNAs and promote their degradation by Rrp6, which is part of the nuclear exosome? 

It is not exactly clear how Argonaute is loaded with small RNAs. Buker et al. have reported that Arb1 

and Arb2, part of the ARC complex, localize throughout the nucleoplasm as well as in cytoplasmic 

foci, expecially Arb2 (Buker et al., 2007). Holoch and Moazed, have shown that double strand small 

RNA loading on Argonaute is Arb1-dependent, with Arb2 being possibly important for localization of 

Arb1-Ago1 complex (Holoch and Moazed, 2015a). Argonaute might shuttle from the nucleus to the 

cytoplasm in a process of small RNA loading/maturation. 

Therefore, the possible scenarios are: 

1. uridylated small RNAs are imported into the nucleus and degraded by Rrp6. 

2. Cid16 is present inside the nucleus as well. 

3. mRNA degradation products are loaded on Argonaute during the import to the nucleus, after 

being synthesized, and are removed by the exosome in the nucleus, where Argonaute is 

predominantly localized. 

It is worthy to mention that Eri1, described as an RNAi negative regulator able to degrade double 

stranded siRNAs, was found to localize in the cytoplasm, despite of its role in limiting the siRNAs 

availability for the RITS complex (Iida et al., 2006). 

To the present, cytoplasmic RNAi has not been reported in fission yeast and the current data describe 

a sole nuclear RNAi pathway. Thus, a potential cytoplasmic RNAi pathway, cytoplasmic small RNA 
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loading and tailing as well as the previously mentioned potential RNAi-mediated post-transcriptional 

repression of euchromatic genes in S. pombe need to be profoundly investigated. 

4.5  Conclusions and future perspectives 

The aim of this study was to analyze the Ago1-bound small RNAs 3’-end tailing and investigate its 

role in the Ago1-bound small RNAs turnover inside the RNAi pathway of fission yeast. The discussed 

results indicate that: 

➢ Cid14 adenylates and Cid16 uridylates Ago1-bound small RNAs in fission yeast (Fig. 33a). 

➢ Both Cid14 and Cid16 recruit the 3'-to-5' exonuclease Rrp6 to actively remove small RNAs 

from Ago1 and degrade them in vitro (Fig. 33a). 

➢ Cid14 can recruit either Tri1 or Rrp6. Rrp6 will degrade Ago1-bound small RNAs whereas Tri1 

will trim them to the 22 nucleotides optimal length and make them functional again (Fig. 

33a). 

➢ Degradation of Ago1-bound small RNAs is necessary to reduce the accumulation of “noise” 

small RNAs into Ago1 and, therefore, to protect the genome from uncontrolled RNAi. 

➢ In cid14∆ and cid14∆cid16∆ cells uncontrolled RNAi targets and silences rdp1, a gene which 

is essential for the RNAi machinery itself, to avoid its propagation (Fig. 33b). 

➢ Over-expression of Rdp1 in cid14∆ cells silences rRNA and many euchromatic genes, strongly 

impairing the cellular growth. This indicates that the reprogramming of rdp1 expression is 

essential for the viability of cid14∆ cells (Fig. 33b). 
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Figure 33. Cid14/Cid16 and Rrp6 degrade Ago1-bound small RNAs to protect the genome from 
uncontrolled RNAi. 

a. Cid14 adenylates and Cid16 uridylates Ago1-bound small RNAs in fission yeast. Both Cid14 
and Cid16 recruit the Rrp6 nuclease to actively degrade small RNAs from Ago1 in vitro. 
Adenylation by Cid14 can recruit either Tri1 or Rrp6. Rrp6 will degrade Ago1-bound small 
RNAs, whereas Tri1 will trim Ago1-bound small RNAs to 22 nucleotides and make them 
functional again. 

b. Degradation of Ago1-bound small RNAs is necessary to reduce accumulation of “noise” 
small RNAs into Ago1 and to protect the genome from uncontrolled RNAi. In cid14∆ and 
cid14∆cid16∆ cells RNAi targets the rdp1 gene and suppresses itself. Over-expression of 
Rdp1 in cid14∆ cells silences rRNA and many euchromatic genes, impaiting the normal 
growth. This indicates that the reprogramming of rdp1 expression is essential for the 
viability of cid14∆ and cid14∆cid16∆ cells. 
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Further investigation needs to be carried out to definitely state a role of the 3'-end tailing in the 

exosome-mediated Ago1-bound small RNAs degradation in vivo. Another aspect to clarify is how 

exactly the uncontrolled RNAi post-transcriptionally silences the euchromatic loci at which siRNAs 

accumulate upon loss of Cid14. 

Moreover, since Cid16 remains a poorly characterized protein, proteomic analysis would help to 

assign other biological functions, besides the uridyltransferase activity reported in this work, and to 

better understand the role of Cid16 in recruiting Rrp6 to degrade uridylated Ago1-bound small RNAs, 

given its cytoplasmic localization (Matsuyama et al., 2006). 

Degradation of Argonaute-bound miRNAs may be necessary to exchange miRNAs from Argonaute 

during cellular differentiation and development in mammalian cells, and a defect in their turnover 

might lead to uncontrolled silencing and, potentially, to deregulation of cellular proliferation. 

Therefore, it would be of great interest to investigate tailing and degradation of Argonaute-bound 

small RNAs in various mammalian cell types and during several biological processes such as cellular 

differentiation, cellular development and tumorigenesis.
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5.  MATERIALS AND METHODS 

 

5. 1 MATERIALS 

Table 5.1.1: Strains used in this study 

Strain Genotype  

11 fWP5 h+ leu1-32 dis3-54::hphMX6 natMX6::3xFLAG-ago1 Mario Halic 

34 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

natMX6::3xFLAG-ago1 dcr1∆::hphMX6 

 

63 h+ otrR(SphI)::ura4 ura4 DS/E leu1-32 ade6-M210  

65 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 natMX6::3xFLAG-

ago1 

 

657 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1 

 

80 h+ leu1-32 ade6-210 ura4DS/E otrR(SPhI)::ura4+ clr4Δ::kanMX6  

237 SPG1011 h+ leu1-32 ura4-D18 imr1R(NCol)::ura4+ oriI ade6-216 

cid14∆::natMX6 

 

650 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 natMX6::3xFLAG-

ago1 dis3l2Δ:: kanMX6 

 

657 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1 

 

660 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid12∆::natMX6 

 

677 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid13∆::natMX6 

 

678 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid16∆::natMX6 

 

679 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-  
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ago1  cid1∆::natMX6 

698 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid12∆::natMX6 cid16∆::hphMX6 

 

703 h90 otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid13∆::natMX6 cid16∆::hphMX6 

 

704 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid1∆::natMX6 cid16∆::hphMX6 

 

708 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 

 

715 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid11∆::natMX6 

 

720 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid11∆::natMX6 cid16∆::hphMX6 

 

723 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 cid1∆::hphMX6 

 

724 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 cid16∆::hphMX6 

 

725 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 cid11∆::hphMX6 

 

744 h90 otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 cid13∆::hphMX6 

 

745 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 kanMX6::3xFLAG-

ago1  cid14∆::natMX6 cid12∆::hphMX6 

 

797 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 Moazed lab 

852 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 natMX6::3xFLAG-

ago1 kanMX6::3xHA-cid14 

 

941 h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

kanMX6::3xHA-cid14 
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Table 5.1.2: Strains + plasmid 

Strain Genotype Number 

137 + 

p829 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 + pREP1  

65 + 

p936 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 + pREP1-rdp1  

708 + 

p178 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

kanMX6::3xFLAG-ago1  cid14∆::natMX6 + pREP1 

19 

708 + 

p936_2 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

kanMX6::3xFLAG-ago1  cid14∆::natMX6 + pREP1-rdp1 

26 

 

708 + 

p936_3 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

kanMX6::3xFLAG-ago1  cid14∆::natMX6 + pREP1-rdp1 

24 

657 + 

p895 

h90 otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210 natMX6::3xFLAG-

ago1 + pREP1-ura4sh5 

55/56 

708 + 

p895 

h90 otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210 

kanMX6::3xFLAG-ago1  cid14∆::natMX6 + pREP1-ura4sh5 

57/58 

34 + 

p895 

h90 otr1R(SphI)::ura4 + ura4-DS/E leu1-32 ade6-M210 

natMX6::3xFLAG-ago1 dcr1∆::hphMX6 + pREP1-ura4sh5 

62/63 

785 + 

p895 

dcr1∆::hphMX6 cid14∆::natMX6 + pREP1-ura4sh5 65 

 

Table 5.1.3: Plasmids used in this study 

85 pFA6a + 3xHA-kan p434 

776 pRSF_Duet_GST_PB + Cid14-6His  

779 pREP1_nmt1_FLAG + Cid16-GlySerSer-6His  

218 pREP1_nmt1_FLAG + Rdp1 p936 

860 pET-28b + Rrp6-Flag pFB296 
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895 pREP1_nmt1 + ura4sh5  

813 pREP1_nmt1_FLAG + Cid16DADA-GlySerSer-6His  

814 pRSF_Duet_GST_PB + Cid14DADA-6His  

 

Table 5.1.4: Oligonucleotides used in this study 

Number Gene Sequence Experiment 

71 ds 22 nt RNA GCGAGCGAGGCAAAGAACAAGA assay 

72 ds 22 nt RNA UUGUUCUUUGCCUCGCUCGCUG assay 

110a F tdh1 CCAAGCCTACCAACTACGA  

110a R tdh1 AGAGACGAGCTTGACGAA RT 

110f F cen dg CTGCGGTTCACCCTTAACAT  

110f R cen dg CAACTGCGGATGGAAAAAGT RT 

255 ss 22 nt RNA UGAAAGCUUUAGUUGAUACGUC assay 

264 F rdp1 TCCTGCTATGTGCTCTGGTG  

264 R rdp1 CCAAATATCCCTTCCGGATT RT 

460 F cid16 GACTGGCGCGCCTATGCTATTTGCCAAATTATTG cloning 

461 F cid14 GACTGGATCCATGGGTAAAAAAAGCGTG cloning 

461 R cid14 GACTGATATCCTAAAAACGTTTGCGTATTTTTTTC cloning 

466 snoR69 CAATGTAAATACTCCGAGTGAGCTGGGTTTAAC NB 

467 a cen dg ATTTGACGAGGCACATTCCTTA NB 

467 b cen dg AATTTGACGAGGCACATTCCTTA NB 

467 c cen dh CAGGAGTTGCGCAAACGAAGTTA NB 

467 d cen dg ACCGAGTGCAAATGCTTTTGTA NB 

467 e cen dg CTGACTTGGCTTGTCTTCTGTA NB 

467 f cen dg GGCATAGCGATGATAGTTCTA NB 
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467 g cen dg AGGCATAGCGATGATAGTTCTA NB 

467 h cen dh GACGATAAGCAGGAGTTGCGCA NB 

468 a cen dh GAGCATTGTAAAATCATTGCTGA NB 

468 c cen dh TGCTGAGTTAATTTTTAGTGGA NB 

468 g cen dh CAAAGCTTTCAATTTTTTTAGTA NB 

469 a cen dh ACTCATTTATTGAATCTGGTGA NB 

469 b cen dh GCATCAAAGGAATGTTTCCTCA NB 

469 c cen dh CAATCTTTAAATTCCTTTCTGA NB 

523 AF cid14 CGGAAGACGAAGTACCTATTATTGAGGACACCACTGCTT

CAGATGAAGAATCTCGAGCGAAAAAAATACGCAAACGTT

TTCGGATCCCCGGGTTAATTAA 

ET 

523 R cid14 ACAATTATCAAACTATAATCATAATTGATAATAAAACCTTTT

ATCCCTCTATATAACCTGGTATTTTACATGTAAATTAAGAAT

TCGAGCTCGTTTAAC 

ET 

524 AF cid16 GCTATGAACTCGAAAGAGCGTGTAGAATTTTAAGCGATC

CAAAATGTAATCTAGATCATTTACTGGATCCCTTGATTCAA

CGGATCCCCGGGTTAATTAA 

ET 

524 R cid16 ACCGGCCAACGGTATTTTGAAAGTGAGTCAGAGAGGGA

AAAAACTGTTTTTTTCTGTTCTTATGTTCATATATAAAAGA

TGAATTCGAGCTCGTTTAAAC 

ET 

665 R cid16 GACTCCCGGGTTATTGAATCAAGGGATCCAG cloning 

712 F cid14 CACCATCATCACCAC-TAGGATATCGGCC iPCR 

712 R cid14 ATGGCTGCTGCC-AAAACGTTTGCGTATTT iPCR 

713 F cid16 CACCATCATCACCAC-TAACCCGGGGCG iPCR 

713 R cid16 ATGGCTGCTGCC-TTGAATCAAGGGATCC iPCR 

946 a ura4 siRNA AGTTGGTTTACCTTTGGGACGTGGTCTCTTGCTTTTGGCT NB 

1006 F ura4-hp5 CTTTAAGCAAGAGAATCATATGTGTCGA RT 
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1006 R ura4-hp5 CTTACCGTTTTGGAGATCCCG RT 

Primers used for ChIP and qRT-PCR if no specification, RT: reverse transcription, NB: Northern Blot, 

ET: endogenous tagging, iPCR: inverse PCR, underlined sequences: restriction sites. 

 

Table 5.1.5: Sequencing data 

The sequencing data that support the findings of this study have been deposited in the National 

Center for Biotechnology Information Gene Expression Omnibus (GEO) and are accessible through 

the GEO Series accession number GSE95821 

small RNA sequencing: small RNA sequencing: 

wild type (797-2) (GEO: GSE19734) cid14∆cid13∆ (744) 

wild type (797-20) (GEO: GSE19734) cid14∆cid12∆ (745) 

wild type (657) cid16∆cid12∆ (698) 

cid14∆ (708) cid16∆cid13∆ (703) 

cid16∆ (678) cid16∆cid1∆ (704) 

cid12∆ (660) cid16∆cid11∆ (720) 

cid13∆ (677) dcr1Δ (34) (GEO: GSE38636) 

cid1∆ (679) rrp6Δ (504) (GEO: GSE38636) 

cid11∆ (715) tri1Δ (136) (GEO: GSE38636) 

cid14∆cid1∆ (723) rrp6Δtri1Δ (549) (GEO: GSE38636) 

cid14∆cid16∆ (724) dis3l2Δ (650) 

cid14∆cid11∆ (725) cid14∆ + pREP1-Rdp1_2 (26) 

dis3-54 (11) (GEO: GSE19734) cid14∆ + pREP1-Rdp1_3 (24) 

RNA sequencing: ChIP sequencing : 

wild type (657) wild type + pREP1 (137+p829) 
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cid14∆ (708) cid14∆ + pREP1 (19) 

cid16∆ (678) cid14∆ + pREP1-Rdp1_2 (26) 

dcr1∆ (34)  

dcr1∆ (34) (GEO: GSE38636)  

 

Table 5.1.6: Media and solutions 

name composition 

YES medium (S. 

pombe) 

5g/l Yeast Extract, 30g/l glucose, 0.225 g/l amino acids (leucine, 

histidine, lysine), 0.225 g/l adenine (+ 20g/l agar for solid plates) 

EMMc-leu medium 

(S. pombe) 

12.4 g/l EMM without dextrose (Formedium), 0.225 g/l adenine, 0.225 g/l 

leucine, 0.056 g/l uracil (+ 20g/l agar for solid plates) 

LB medium (E. coli) 10g/l NaCl, 5g/l Yeast Extract, 10g/l Tryptone 

Ampicillin 100mg/ml 1000X stock 

Kanamycin 50 mg/ml 1000X stock 

IPTG for bacterial 

induction 

1M IPTG stock, used at 0.2 mM final concentration 

Lysis buffer Ago1-

bound small RNA 

purification 

50 mM HEPES pH 7.5, 1.5 M NaOAc, 5 mM MgCl2, 2 mM EDTA pH 8, 2 mM 

EGTA pH 8, 0.1% Nonidet P-40, 20% Glycerol, 1 mM PMSF, 0.8 mM DTT and 

Complete EDTA free Protease Inhibitor Cocktail (Roche) 

Lysis buffer ChIP 50 mM HEPES pH 7.5, 1.5 M NaOAc, 5 mM MgCl2, 2 mM EDTA pH 8, 2 mM 

EGTA pH 8, 0.1% Nonidet P-40, 20% Glycerol, 1 mM PMSF and Complete EDTA 

free Protease Inhibitor Cocktail (Roche) 

Elution buffer ChIP 50 mM Tris-Cl pH 8, 10 mM EDTA, 1% SDS 

Lysis buffer Ni-NTA 

purification 

50 mM NaH2PO4/Na2HPO4 pH 8, 1 M NaCl, 20 mM imidazole, 3 mM b-

mercaptoethanol and 0.5 mM PMSF 
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Wash buffer Ni-NTA 

purification 

50 mM NaH2PO4/Na2HPO4 pH 8, 1 M NaCl, 40 mM imidazole, 3 mM b-

mercaptoethanol and 0.5 mM PMSF 

Elution buffer Ni-

NTA purification 

50 mM NaH2PO4/Na2HPO4 pH 8, 500 mM NaCl, 300 mM imidazole, 3 mM b-

mercaptoethanol and 1 mM PMSF 

Dyalisis buffer Ni-

NTA purification 

50 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.1 mM DTT, 0.1 mM EDTA 

Elution buffer  

Glutathione 

purification 

50 mM Tris-Cl pH 8, 500 mM NaCl, 10 mM reduced glutathione 

Dyalisis buffer 

Glutathione 

purification 

50 mM Tris-Cl pH 7.5, 200 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 10% glycerol 

Elution buffer FLAG 

purification 

25 mM HEPES pH 7.5, 200 mM KCl, 2 mM MgCl2, 0.1% Nonidet P-40, 20% 

Glycerol with 0.2 mg/ml 3xFLAG peptide 

1X Tris-glycine 

running buffer 

25 mM Tris-Cl, 250 mM glycine, 0.1% SDS 

Blotting buffer 20% Ethanol, 39 mM Glycine, 48 mM Tris base, 0.037% SDS 

1X TBS-T 50 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.05% Tween-20 

Blocking solution 50 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.05% Tween-20 + 2.5% 

(m/v) Skimmed Milk powder 

1X TAE 40 mM Tris-Cl pH 7.6, 20 mM acetic acid, 1mM EDTA 

1X TBE 89 mM Tris-Cl pH 7.6, 89 mM boric acid, 2 mM EDTA 

Church buffer 500 mM NaH2PO4/Na2HPO4 pH 7.2, 1 mM EDTA, 7% SDS 

2X SSC buffer 300 mM NaCl, 30 mM sodium citrate, pH 7.0 
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Table 5.1.7: Antibodies 

Name Producer Source Final concentration 

Anti-H3K9me2 

(ab1220) 

Abcam  0.8 ug per 20 ug of 

Dynabeads Protein A coupled 

(Invitrogen) 

Anti-FLAG (#8592) Sigma-Aldrich Mouse 

monoclonal 

1:1000 in 1X TBS-T 

Anti-HA (sc-7392) Santa Cruz Biotechnology Mouse 

monoclonal 

1:200 in 1X TBS-T 

Anti-Mouse IgG 

(H+L)-HRP Conjugate 

(#1721011) 

Bio-Rad Goat 1:3000 in 1X TBS-T 
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5.2  METHODS 

 

5.2.1  Strain construction, plasmid generation and genomic integration 

All S. pombe strains used in this study are listed in Table 5.1.1 and Table 5.1.2. The strains were 

constructed by electroporation (Bio-Rad MicroPulser program ShS) with plasmid or a PCR-based 

gene targeting product leading to deletion or epitope-tagging of specific genes. Plasmids, listed in 

Table 5.1.3, were generated via cloning based on restriction enzymes or inverse Polymerase Chain 

Reaction (iPCR). PCR was permorfed using lab purified Phusion enzyme or commercial Phusion Flash 

High-fidelity PCR Master Mix (Thermo Fischer Scientific) and primers listed in Table 5.1.4. Digestion 

of plasmids and inserts was performed at 37°C for 1 hour using 1 U of restriction enzyme (New 

England Biolabs and Thermo Fischer Scientific) for 1 ug of DNA in 50 µl of reaction. The digested 

product were purified with the NucleoSpin Gel and PCR Clean-Up kit (Macherey-Nagel) according to 

the manufacturer's instructions and ligated with the T4 DNA ligase (Thermo Fischer Scientific) at 22° 

C for 30 min in 20 µl of reaction. XL1 Blue E. coli competent cells were heat-shock transformed and 

plated on LB plates containing the appropriate antibiotic. Positive colonies were confirmed by PCR 

and sequencing.  For transformation, S. pombe cells were grown in YES at OD600 0.3-0.4 at 32 °C, 

harvested and washed in 1.2 M Sorbitol (Roth) twice. Pellets were then re-suspended with 200 µl 

1.2 M Sorbitol and mixed with 200 - 500 ng of DNA. Positive colonies were selected on YES plates 

containing 100 – 200 mg/ml antibiotics and were confirmed by PCR and sequencing. Strains 

containing plasmids, listed in Table 5.1.2, were grown on Complete Edinburgh Minimal Medium -

Leu. For endogenous C-terminal tagging, plasmid p85 harboring 3xHA tag was used together with 

primers 523 and 524 for Cid14 and Cid16, respectively, to amplify the targeting cassette. cid14 was 

cloned into pRSF-Duet with a GST tag on the N-terminal using primers 461; consequently a six 

histidine tag on the C-terminal was inserted with primers 712 via inverse PCR. cid16 was cloned into 

pREP1 with a FLAG tag on the N-terminal using primers 460 F and 665 R; consequently a six histidine 

tag on the C-terminal was inserted with primers 713 via inverse PCR. The ura4 hairpin was excised 

from the original plasmid pnatMX ART sh ura4 – 5 and ligated into pREP1 after a double digestion 

with XmaI and NdeI. 

5.2.2  Ago1-bound siRNA sequencing 

Endogenous 3xFLAG-tagged Ago1 was purified from different mutants by protein affinity 

purification. The pellet of a 2.5 L log-phase culture was resuspended 1:1 in lysis buffer (50 mM HEPES 

pH 7.5, 1.5 M NaOAc, 5 mM MgCl2, 2 mM EDTA pH 8, 2 mM EGTA pH 8, 0.1% Nonidet P-40, 20% 
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Glycerol) containing 1 mM PMSF, 0.8 mM DTT and Complete EDTA free Protease Inhibitor Cocktail 

(Roche). Lysis was performed with glass beads (Roth) and the BioSpec FastPrep-24 bead beater (MP-

Biomedicals), 8 cycles at 6.5 m/s for 30s and 3 min on ice. Cell debris was removed by centrifugation 

at 13000 rpm for 15 min. The supernatant was incubated with 30 µl FLAG-M2 agarose beads (Sigma-

Aldrich, A2220) at 4°C for 1.5 hour. The resin was washed 5 times with lysis buffer. Ago1 was eluted 

with 1% SDS, 300 mM NaOAc. The protein-bound RNA was recovered by phenol-chloroform-

isoamylalcohol (25:24:1, Roth) extraction and ethanol precipitation. Small RNAs with the length 20-

30 nt were excised from an 18% polyacrylamide urea gel. 2 pmol of a preadenylated 3' adaptor 

oligonucleotide (miRNA Cloning Linker-1 from IDT, 5'-App CTG TAG GCA CCA TCA AT/ddC/-3') were 

ligated in a 10 µl reaction with 5 U T4 RNA ligase (TaKaRa), ligation buffer without ATP and 5 U RNasin 

(Promega) at 20°C for 2 hours. The 3' ligated products were purified on an 18% acrylamide urea gel 

with subsequent phenol-chloroform purification and ethanol purification. The 5' adaptor ligation 

was performed in a 10 µl reaction with 2 pmol 5' adaptor oligonucleotide (5'-GUU CAG AGU UCU 

ACA GUC CGA CGA UC-3'), 5 U RNasin (Promega), 0.06 µg BSA, 5 U T4 RNA ligase (Thermo Fischer 

Scientific) and 1x ligation buffer with ATP (Thermo Fischer Scientific) at 20°C for 2 hours. The ligated 

products were gel purified and reverse transcribed with 10 pmol primer (RT primer: 5'- GTG ACT 

GGA GTT CAG ACG TGT GCT CTT CCG ATC GAT TGA TGG TGC CTA CAG-3') and the SuperScript III First 

Strand Synthesis System (Thermo Fischer Scientific). The cDNA was PCR-amplified with Q5 High-

Fidelity 2x Master Mix (NEB) for 14-20 cycles using the Illumina P5 5' primer (5' -AAT GAT ACG GCG 

ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC G -3') and the Illumina P7 3' primer with inserted 

barcode (5'-CAA GCA GAA GAC GGC ATA CGA GAT XXXXXX GTG ACT GGA GTT CAG ACG TG -3'). Single 

end sequencing was performed on an Illumina GAIIX sequencer at the LAFUGA core facility of the 

Gene Center, Munich. The Galaxy platform was used to demultiplex the obtained reads. 

5.2.3  total RNA isolation and total small RNA enrichment 

Total RNA was isolated from mid-log phase yeast culture with the TRI Reagent Solution (Ambion) 

according to the manufacturer's instructions. DNAse I (Thermo Fischer Scientific) treatment was 

performed at 37°C for 1-2 hours. DNAse was removed by a second phenol-chloroform-

isoamylalcohol extraction or heat inactivated according to the manufacturer's instructions. Total 

RNA was then precipitated with 100% ethanol, washed with 75% ethanol and resuspended in 

nuclease-free water. To enrich for the small RNA fraction, the volume of the dissolved total RNA was 

brought to 50 ul, mixed with 175 ul of Lysis buffer of RNeasy Midi kit (Qiagen) and 125 ul of 100% 

ethanol and transferred on a miRNeasy column (Qiagen). After centrifuging for 15 seconds at 9500 
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rpm, the flow-through containing the <200 nucleotides total RNA fraction was collected, mixed with 

227.5 ul of 100% ethanol and transferred to a new miRNeasy column. After centrifuging at 9500 rpm 

for 15 seconds the flow-through was discarded and the column was washed once with 500 ul of RPE 

buffer supplemented with ethanol. After drying the column at 9500 rpm for 1 min, the <200 

nucleotides total RNA fraction was eluted from the column in 15-20 ul of nuclease-free water. 

5.2.4  Reverse Transcription (RT) 

250 ng of total RNA was reverse transcribed with SuperScript III First Strand Synthesis System 

(Thermo Fischer Scientific) and 0.2 pmol of specific reverse primers (Table 5.1.4). Reactions of 20 ul 

were incubated at 50°C for 1 hour, followed by 10 min at 70° C to inactivate the reverse transcriptase. 

5.2.5  Quantitative Real-Time PCR (qPCR) 

qPCR was performed on ChIP samples or after reverse transcription (RT) using the 2X DyNAmo Flash 

SyBR Green Master Mix qPCR kit (BioZym) and the Toptical thermocycler (Biometra). 10 μl PCR 

reactions were assembled in a 96-well plate (4titude) with 3.5 ng of cDNA and specific primers 0.4 

μM forward and reverse primers (listed in Table 4). For RT-qPCR, untranscribed RNA was used as 

template as negative control to detect possible contaminating DNA species. For ChIP assays, both 

INPUT and Immunoprecipitated DNA were analyzed by qPCR. Both RT and ChIP samples were 

normalized on the tdh house-keeping gene, which is not affected by H3K9 methylation or transcript 

levels variation in the mutants analyzed. 

The qPCR cycle consisted in an initial step of denaturation at 95°C for 3 minutes, followed by 46X 

cycles (95°C denaturation for 10 seconds, 59°C annealing for 20 seconds, 72°C elongation for 15 

seconds) and a final melting temperature calculation step ranging 

from 60°C to 95°C. Oligonucleotides used for qPCR in this study are listed in Table 5.1.4. 

5.2.6  total RNA sequencing 

rRNA of 1 µg total RNA was degraded with Terminator nuclease (Epicentre) in buffer A at 30°C for 2 

hours. The RNA library was obtained using the NEBNext Ultra Directional RNA Library Prep Kit for 

Illumina (NEB). Single end sequencing was performed on an Illumina GAIIX sequencer at the LAFUGA 

core facility of the Gene Center, Munich. The Galaxy platform was used to demultiplex the obtained 

reads. 

5.2.7  Growth assay 

Tenfold serial dilutions of cultures with OD600 between 0.4 and 0.7 were made so that the highest 

density spot contained 105 cells. Cells were spotted on non-selective YES medium plates. The plates 
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were incubated at 32ºC for 2-3 days and imaged. 

5.2.8  Chromatin immunoprecipitation (ChIP) 

50 ml mid-log phase yeast cultures were cross-linked with 1% formaldehyde (Roth) for 15 min at 

room temperature. The reaction was quenched with 125 mM glycine for 5 min. The frozen pellet 

was resuspended in 500 µl lysis buffer (250 mM KCl, 1x Triton-X, 0.1% SDS, 0.1% Na-Desoxycholate, 

50 mM HEPES pH 7.5, 2 mM EDTA, 2 mM EGTA, 5 mM MgCl2, 0.1% Nonidet P-40, 20% Glycerol) with 

1 mM PMSF and Complete EDTA free Protease Inhibitor Cocktail (Roche). Lysis was performed with 

glass beads (Roth) and the BioSpec FastPrep-24 bead beater (MP-Biomedicals), 8 cycles at 6.5 m/s 

for 30s and 3 min on ice. DNA was sheared by sonication (Bioruptor, Diagenode) 35 times for 30 s 

with a 30 s break. Cell debris were removed by centrifugation at 13000 x g for 15 min. The crude 

lysate was normalized based on the RNA and Protein concentration (Nanodrop, Thermo Fischer 

Scientific) and incubated with 1.2 µg immobilized (Dynabeads Protein A, Thermo Scientific) antibody 

against dimethylated H3K9 (H3K9me2, Abcam AB1220) for 2 hr or overnight at 4°C. The resin with 

immunoprecipitates was washed five times with each 1 ml of lysis buffer and eluted with 150 µl of 

elution buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA, 1% SDS) at 65°C for 15 min. RNase A (Thermo 

Fischer Scientific) treatment was performed for 20 min at 65°C and subsequent Proteinase K (Roche) 

treatment was performed for at least 5 hr or ON at 65°C. DNA was recovered by phenol-chloroform-

isoamylalcohol (25:24:1, Roth) extraction with subsequent ethanol precipitation. DNA levels were 

quantified by qRT-PCR and normalized to tdh1 background levels. Oligonucleotides used for 

quantification are listed in Supplementary Table 5.1.4. For sequencing, a ChIP-seq library was made 

using the NEBNext Ultra II DNA Library Prep Kit for Illumina kit (NEB). 

5.2.9  Analysis of sequencing data 

Demultiplexed illumina reads were mapped to the S. pombe genome, allowing 2 nucleotides 

mismatch to the genome using Novoalign (htttp://www.novocraft.com). Small RNA reads mapping 

to multiple locations were randomly assigned. The datasets were normalized to the number of reads 

per million sequences for small RNA-seq and ChIP-seq or reads mapping to coding sequences for 

total RNA-seq. Additionally, the datasets were normalized to total amounts of reads (for small RNAs) 

that were associated with Ago1 in different mutant strains as determinded by Ago1 pulldowns and 

quantification of bound small RNAs. The genome sequence and annotation that were available from 

the S. pombe Genome Project were used (Wood et al., 2002). The data are displayed using the 

Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013). Sequenced strains are listed in 

Supplementary Table 5.1.5. 
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5.2.10  siRNA Purification and Detection 

siRNAs associated with Argonaute were purified as described in Marasovic et al., 2013. FLAG-Ago1 

was immunoprecipitated with anti-FLAG resin as described above. siRNAs were recovered from 

FLAG-Ago1 by phenol-chloroform extraction and ethanol precipitation, dephosphorilated, [γ-32P]-

ATP labeled and run on 18% denaturing polyacrylamide gel. The gel was wrapped in cling film and 

exposed to a storage phosphor screen (BAS MS 2025 – Fujifilm Corporation) overnight at -80°C. The 

screen was scanned with a Typhoon FLA 9500 (GE Healthcare). 

5.2.11  Protein expression and purification 

GST-Cid14-6xHis were expressed in E. coli with 0.2 mM IPTG (Roth) at 18°C overnight. Pelleted cells 

were resuspended in lysis buffer (50 mM NaH2PO4/Na2HPO4 pH 8, 1 M NaCl, 20 mM imidazole, 3 

mM β-mercaptoethanol and 0.5 mM PMSF) and lysed with the French Press and the clear lysate was 

incubated with Ni Sepharose 6 Fast Flow (GE Healthcare, 17-5318-01) at 4°C for 30 min. The resin 

was washed three times with 50 ml of lysis buffer, once with 4 resin volume of 40 mM imidazole lysis 

buffer and the protein was eluted with 6 resin volume of elution buffer (50 mM NaH2PO4/Na2HPO4 

pH 8, 500 mM NaCl, 300 mM imidazole, 3 mM β-mercaptoethanol and 1 mM PMSF). The elution 

fraction was dialysed in 50 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.1 mM DTT, 0.1 mM EDTA and 

incubated with Glutathione Sepharose 4 Fast Flow (GE Healthcare, 17-5318-01) at 4°C for 30 min. 

The resin was washed twice with dialysis buffer and the protein was eluted with 6x column volum 

of elution buffer (50 mM Tris-Cl pH 8, 500 mM NaCl, 10 mM reduced glutathione). The elution 

fraction was dialysed in 50 mM Tris-Cl pH 7.5, 200 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 10% glycerol). 

FLAG-Cid16-6xHis was expressed in S. pombe. Pelleted cells were resuspended in lysis buffer (50 mM 

HEPES pH 7.5, 1.5 M NaOAc, 5 mM MgCl2, 2 mM EDTA pH 8, 2 mM EGTA pH 8, 0.1% Nonidet P-40, 

20% Glycerol) containing 1 mM PMSF, 0.8 mM DTT and Complete EDTA free Protease Inhibitor 

Cocktail (Roche). Frozen cells were lysed with freezer mill and the protein was purified with Ni-NTA 

resin as described above. The dialyzed elution fraction was incubated with FLAG-M2 agarose beads 

(Sigma-Aldrich, A2220) at 4°C for 2 hours. The beads were washed with 20 column volumes of 

dialysis buffer. Protein was eluted with 2x column volum of elution buffer (25 mM Hepes pH 7.5, 200 

mM KCl, 2 mM MgCl2, 0.1% Nonidet P-40, 20% Glycerol) with 0.2 mg/ml 3xFLAG peptide. FLAG-Rrp6 

(kindly provided by François Bachand) was purified with FLAG-M2 agarose beads (Sigma-Aldrich, 

A2220) as described above. 

5.2.12  Co-immunoprecipitation (Co-IP) 

FLAG immunoprecipitation was performed as described above but in low salt conditions (50 mM 
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HEPES pH 7.5, 100 mM NaOAc, 5 mM MgCl2, 2 mM EDTA pH 8, 2 mM EGTA pH 8, 0.1% Nonidet P-

40, 20% Glycerol) containing 1 mM PMSF, 0.8 mM DTT and Complete EDTA free Protease Inhibitor 

Cocktail (Roche). Lysis was performed with glass beads (Roth) and the BioSpec FastPrep-24 bead 

beater (MP-Biomedicals), 8 cycles at 6.5 m/s for 30s and 3 min on ice. Cell debris was removed by 

centrifugation at 7000 rpm for 20 min. The crude lysate was normalized based on the Protein 

concentration (Nanodrop, Thermo Fischer Scientific) and incubated with FLAG-M2 agarose beads 

(Sigma-Aldrich, A2220). Immunoprecipitated samples and corresponding inputs were analyzed by 

immunoblot. Protein were separated on an 8% polyacrylamide SDS-page and transferred on a PVDF 

membrane (Roth Immobilon-P) for 1 hour at 15 voltage using a Trans-Blot SD Semi-Dry Transfer Cell 

(Bio-Rad). The membrane was blocked with 5% milk (w/v) in 1x TBS-T buffer for 1 hour, incubated 

with the Anti-HA antibody (Santa Cruz Biotechnology, sc-7392, 1:200 in 1x TBS-T) for 1 hour and  

washed three times with 1x TBS-T for 10 min. The membrane was then incubated with the secondary 

anti-mouse antibody coupled to peroxidase (Bio-Rad, #1721011, 1:3000 in 1x TBS-T) for 1 hour at 

room temperature and washed three times with 1x TBS-T for 10 min. 

The membrane was developed using the Super Signal West Pico Chemiluminescence Substrate. 

Photos were taken with the Fujifilm LAS 3000 camera. The membrane was incubated with 20 ml of 

Restore Western Blot Stripping Buffer (Thermo Fisher Scientific) for 20 min, blocked with 5% milk 

(w/v) in 1x TBS-T for 1 hour and incubated with the peroxidase conjugated Anti-FLAG antibody 

(Sigma-Aldrich, #8592, 1:1000 in 1X TBS-T) for 1 hour. The membrane was developed and imaged as 

described above. 

5.2.13  Degradation of Argonaute-associated small RNAs in vitro 

Ago1 was purified from dcr1Δtri1Δ and loaded with 22 nucleotides long small RNA (Table 5.1.4) as 

described in Marasovic et al., 2013. Argonaute was purified from dcr1Δtri1Δ cells as described 

above, with the exception that Ago1 remained associated with the FLAG resin. Ago1 associated with 

the resin was incubated with 1-0.5 pmol of [γ-32P]-ATP radiolabeled small RNAs for 2 hr 32°C with 

gentle shacking. Resin was washed with buffer containing 25 mM HEPES pH 7.5, 2 mM MgCl2, 2 mM 

DTT, 0.02% NP-40, and 100 mM NaOAc to remove unbound small RNAs. Ago1-associated small RNAs 

were incubated with 80 ng of Cid14, Cid16, Tri1 and Rrp6 in buffer containing 1 mM Hepes pH 7.5, 

0.5 mM MgCl2, 0.5 mM MnCl2, 25 mM KCl, 0.2 mM DTT and 5 mM ATP/UTP (Roche) at 32°C for 1 

hour, mixing the reactions every 5-10 min. For the time course experiment, reactions were up – 

scaled and aliquots were taken after the indicated time points. RNA was extracted from Ago1 and 

detected as described above. 
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5.2.14  Northern Blotting analysis 

2-5 µg of total small RNAs were run on 18% denaturing polyacrylamide gel and transferred to a 

positively charged nylon membrane (GE Healthcare Amersham Hybond N+) on a Trans-Blot SD Semi-

Dry Transfer Cell (Bio-Rad). The RNA was UV-cross-linked to the membrane with Spectrolinker XL-

1500 (Spectroline, ”optimal crosslink”). Prehybridization was performed with Church Buffer (500 

mM NaH2PO4/Na2HPO4 pH 7.2, 1 mM EDTA, 7% SDS) at 37°C over night. 10 pmol of DNA probes 

(Table 5.1.4) were labeled with T4 PNK (NEB) and 10 pmol [γ-32P]-ATP (Hartmann Analytic) at 37°C 

for 1 hour. The labeled probes were purified with an Illustra MicroSpin G-25 column (GE Healthcare), 

mixed with 5 ml Church Buffer, and incubated with the membrane for 5 hours at 37°C. The 

membrane was rinsed once with 2x SSC buffer (300 mM NaCl, 30 mM sodium citrate, pH 7.0) and 

then washed three times with 2x SSC buffer for 15 min at 37°C. The membrane was wrapped in cling 

film and exposed to a storage phosphor screen (BAS MS 2025 - Fujifilm Corporation) overnight up to 

one week at -80°C. The screen was scanned with a Typhoon FLA 9500 (GE Healthcare). For a second 

hybridization, the membrane was stripped in boiling 0.1% SDS for 5 min and subsequently 

prehybridized. 

5.2.15  Small RNAs tailing assay 

500 fmol – 1 pmol of double-strand, single strand or Ago1-bound 22 nucleotides small RNAs (Table 

4) were incubated with 80 ng of Cid14 and Cid16 in buffer containing 1 mM Hepes pH 7.5, 0.5 mM 

MgCl2, 0.5 mM MnCl2, 25 mM KCl, 0.2 mM DTT, 40U Ribolock (Thermo Fischer Scientific) and 150 

nM [α-32P]-ATP/UTP (Hartmann Analytic) at 32°C for 1-2 hours. Double-strand RNA was obtained by 

incubating RNAs 71 and 72 (Table 5.1.4) at same molar concentration in annealing buffer (10 mM 

Tris-Cl pH 7.5, 50 mM KCl, 1 mM EDTA) at 95°C for 5 min followed by incubation at room temperature 

for 1 hour. RNA was extracted and detected as described above. The single strand 22 nucleotides 

small RNA was phosphorilated by PNK (Thermo Fischer Scientific) before being loaded into resin-

bound Ago1. 

5.2.16  Small RNAs half-lives detection 

Wild type and cid14Δ cells with the ura4 hairpin expressed under the nmt1 promoter were grown 

until log-phase. At time zero the medium was supplemented with 15 μM thiamine to repress the 

nmt1 promoter. Aliquots were taken after 1, 3 and 5 hours to monitor the half-life of ura4 small 

RNAs. Total small RNAs and Ago1-bound small RNAs were purified and detected via Northern 

blotting analysis as described above. The quantity of the Ago1-bound small RNAs to be loaded was 

determined by loading the same volume of purified Ago1-small RNAs on a 18% denaturing 
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polyacrylamide gel, staining it with sybr gold and scanning it in order to quantify the samples. For 

quantification, ura4 small RNAs from total fraction were normalized to snoR69 and Ago1-bound ura4 

small RNAs were normalized to centromeric small RNAs.
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