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ABSTRACT 

‘Visual attention’ is an emerging property of interconnected neural networks, in 

which the interconnections are biased to promote targets over distracting stimuli. It 

has been shown that efficiency of the attention system is lost after many kinds of 

brain damage, with each presumably effecting different aspects of basic visual 

attention functions. Yet, our understanding of these processes is limited by the 

methodological shortcomings of classical neuropsychological assessment. The 

overarching goal of the current thesis was to overcome these constrains and thereby 

extend the link between attention deficits and underlying brain changes. The here 

used approach incorporates parametric measurement of visual attention derived 

from the computational Theory of Visual Attention (TVA, Bundesen, 1990) and 

modern magnetic resonance imaging techniques.  

Project 1 of the current thesis applied a combined TVA–neuroimaging analysis in 

a neurodevelopmental model (preterm birth) to relate attention deficits with 

changes in functional connectivity networks. We found that pre- versus full-term 

born adults show a selective reduction of visual short-term memory capacity. The 

remarkable changes we observed in attention-related large-scale brain networks of 

the occipital and posterior parietal cortices were most pronounced in those preterm 

born individuals with the most preserved attention functions. This finding was 

interpreted as evidence for a compensatory reorganization of functional 

connectivity in order to ameliorate the advert consequences of preterm birth on 

visual short-term memory.  

Project 2 of this thesis applied a combined TVA-neuroimaging analysis in a 

neurodegenerative model (posterior cortical atrophy) to relate attention deficits with 

structural changes in grey and white matter morphometry. Compared to healthy 

control participants, patients with posterior cortical atrophy suffered from a 

selective disturbance of visual processing speed. The individual rate of processing 

speed slowing was a valid predictor for the severity of simultanagnosia, the core 

symptom in this clinical condition. We further found wide-spread atrophy in 

occipital as well as parietal and to a smaller degree in temporal brain areas. White 

matter degeneration in the superior parietal lobe, rather than atrophy of any grey 

matter cluster, was significantly associated with patients’ impaired processing 
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speed. Based on these results we propose that disruption of white matter pathways 

especially within the superior parietal lobe leads to reduced processing speed which 

then results in the overt clinical symptoms of simultanagnosia. 

Altogether, projects of the current thesis expanded the link between specific 

attention deficits and underlying brain damage by using neuro-cognitive modelling. 

We demonstrated that parametric measurements of attention facilitate, in the role 

of intermediate cognitive constructs, the mapping between etiological factors and 

behavioral outcomes. Identifying predictable behavior-brain relationships in 

attention disorders may offer new perspectives for diagnosis and treatment. The 

clinical application of an integrated TVA-neuroimaging analysis could additionally 

compliment insights from healthy participants toward understanding the principles 

of normal visual attention as well as identifying their neuronal basis.  
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1. 
General Introduction: Visual 

Attention, Deficits and the Brain 
In complex visual scenes, attention is required to select what is relevant and 

disregard irrelevant information. The need for selectivity arises from the human 

brain’s severe capacity limits: we can only process and use a small portion of stimuli 

available on our retina at any given moment (Lennie, 2003). Hence, all objects in 

the visual environment compete for limited resources, whereby attention biases this 

competition in favor of the most relevant object (core reviews are Beck & Kastner, 

2009; Desimone & Duncan, 1995; Reynolds & Chelazzi, 2004). Most modern 

research conforms to the view that visual attention is the working of a few specific 

mechanisms to resolve biased competition (Bundesen, 1990). Clearly, visual 

attention is critical for almost every daily life activity, and influences more general 

capabilities as well, for example maths skills, reading or academic achievements 

(McClelland et al., 2013). Visual attention is realized by organized activity across 

a wide-spread network of thalamo-cortical and cortico-cortical feedback loops 

which are mainly situated within the posterior brain (for a review see Hopf et al., 

2009). Given the dependence on tightly-coupled network communication, deficits 

of visual attention arise from various kinds of neuropathology throughout the life 

span. Although excellent models of visual attention have been developed over the 

last decades (for an extensive review see Carrasco, 2011), clinical studies often lack 

an explicit conceptualization when measuring attention deficits. A key limitation is 

that assessment tools are used which are based on clinical routine and hence do not 

allow to differentiate disturbances of distinct attentional functions. Such specificity 

is, however, crucial for the establishment of behavior-brain relationships, and 

ultimately necessary for developing targeted therapeutic interventions. In brief, the 

two projects of the current thesis aimed to overcome this shortcoming by applying 

the prominent and computationally explicit Theory of Visual Attention (TVA, 

Bundesen, 1990) in an early developmental example (preterm birth), and a late 

neurodegenerative example (posterior cortical atrophy) of, yet unspecified, 

impairments of visual attention. In contrast to conventional clinical tests, this 



General Introduction: Visual Attention, Deficits and the Brain 

2 

parametric, model-based assessment tool reveals independent and “process-pure” 

measures of basic attentional functions. The projects furthermore used modern 

structural and functional magnetic resonance imaging techniques to identify large-

scale brain changes that underlie the observed attention deficits. The General 

Introduction is divided into four parts. The first part describes normal visual 

attention on the basis of TVA’s core principles and their neuronal interpretation. 

The second part focuses on disturbances of visual attention, thereby focusing on the 

limitations of conventional neuropsychological tests and how they can be resolved 

by TVA-based measurement of visual attention. The third part introduces the two 

clinical example groups and reviews related work on visual attention deficits and 

potentially associated brain changes. Finally, the fourth part summaries the aim and 

specific research questions of this thesis. 

1.1. Theoretical Framework: Theory of Visual Attention 

The Theory of Visual Attention (TVA; Bundesen, 1990) reduces the vast number 

of attentional phenomena to a few principle computations that can be expressed in 

a small set of mathematical equations and importantly estimated from performance 

in two simple letter recognition experiments. In order to present the theoretical 

framework of this thesis, the current section describes: a) the biased competition 

hypothesis; b) the central assumptions; and c) the neuronal interpretation of TVA. 

1.1.1. Biased Competition 

TVA strongly builds on the mechanistic principles of biased competition, but as we 

will see later, rephrased them to fit an explicative computational model. Biased 

competition is one of the most prevalent theories of visual attention. Its assumptions 

are fundamentally based on electrophysiological studies and the critical observation 

that smaller receptive fields of sensory neurons at lower hierarchical levels compete 

to drive larger higher level receptive fields (Desimone & Duncan, 1995). Clearly, 

larger receptive fields cover a greater angle of a visual scene, but can only represent, 

i.e. respond to, one object at a time. When multiple objects fall within a cell’s 

receptive field, they are assumed to compete for the limited processing resources. 

Single-cell recordings in monkeys confirmed that objects compete in this mutually 

suppressive matter in higher visual cortices, such as in areas V2 and V4, but not in 
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primary visual cortex, where receptive fields are smaller and unlikely represent 

multiple competing objects (e.g. Luck et al., 1997; Reynolds, Chelazzi & 

Desimone, 1999). In the human brain, evidence for neuronal competition have been 

found using functional magnetic resonance imaging (fMRI) (e.g. Beck & Kastner, 

2005; Kastner et al., 1998; Kastner et al., 2001). The probability by which an object 

is represented depends on two distinct kinds of bias signals. Bottom-up biases result 

from the properties of an object, e.g. its perceptual saliency or novelty, while top-

down biases reflect requirements of the task, e.g. to attend to a certain spatial 

location. Taken together, biased completion theories hold the assumption that 

attention is an emerging property of competition between all objects in the visual 

field which is biased by characteristics of the objects and task requirements, or in 

other words by bottom-up and top-down influences. 

1.1.2. Core Principles and Equations of TVA 

The core idea of TVA holds that attentional selection means to make a perceptual 

categorization following the form ‘element x belongs to category i’. An object is 

said to be selected or categorized as soon as the categorization enters the visual 

short-term memory (STM) store. In this sense selection and categorization are no 

longer thought to occur after each other (cf Deutsch & Deutsch, 1963; Treisman & 

Gelade, 1980), but happen simultaneously. The visual STM store has limited 

capacity such that only a very few objects can be maintained at a time. The way in 

which multiple objects strive towards the visual STM store is described as a parallel 

race which is governed by the mechanisms of biased competition. According to 

TVA, each object in the visual field is assigned with an attentional weight reflecting 

the importance of that element according to either reflexive bottom-up bias signals 

that separate figure from background or goal-driven top down bias signals. The 

following weight equation determines the computation of the weight values: 

𝑤𝑥 =  ∑ 𝜂(𝑥, 𝑗)𝜋𝑗
𝑗∈𝑅

 

where the weight of an object is given by the sensory evidence η that element x 

belongs to category i of response set R, and the pertinence value π of category i. 

The rate equation below gives full account of the moment-to-moment probability 

that a categorization ‘x belongs to i’ will be encoded into the visual STM store 
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ν(x, i) = 𝜂(𝑥, 𝑖)𝛽𝑖  
𝑤𝑥

∑ 𝑤𝑧𝑧∈𝑆
 

where the rate of categorizing 𝜈(x,i) is a function of the sensory evidence η that 

element x belongs to category i, the perceptual decision bias β associated with this 

category i and the weight wx of one object relative to the summed weights wz of all 

the other objects in the stimulus set S. Provided with a sensory system that informs 

about the strength of sensory evidence and given completed computation of 

pertinence values and attentional weights, the attention system performs visual 

selection according to the rate equation. Visual attention is assumed to be 

determined by five latent parameters which reflect aspects of the system’s general 

capacity (visual threshold, visual STM storage capacity, processing speed) and 

specific (task-related and spatial) attentional weighting. The TVA framework 

provides simple assessment and model-fitting procedures on which basis these four 

parameters can be mathematically estimated (Duncan et al., 1999). This is an 

essential advantage to which will be returned in later sections. Importantly, TVA’s 

principles seem to not only work in theory, but represent a valid description of how 

humans select visual information. Bundesen (1990) used TVA’s quantitative 

precision to model a large proportion of empirical findings on human performance 

in classical visual recognition and attention tasks. 

1.1.3. Anatomy of the Visual Attention System 

A general neurobiological interpretation of the given equations was proposed at the 

level of single cells. The Neuronal Theory of Visual Attention (NTVA, Bundesen, 

Habekost & Kyllingsbæk, 2005) holds that visual attention is realized in a 

distributed network of cortical and subcortical areas, in which the posterior cortex 

is roughly regarded as the target site where attentional modulation takes effect. 

Visual information from the eyes is transmitted via the lateral geniculate nucleus 

(LGN) to striate and extrastriate cortical areas which compute the strength of 

perceptual evidence. These η values are multiplied by the pertinence values π that 

had been earlier generated in higher-level brain regions probably outside the visual 

system. Subcortical areas, in particular the pulvinar nucleus of the thalamus, hold 

the basic topographical map of attentional weights (i.e. the priority map). Resulting 

weighting signals (𝑤 values) are transmitted back to the visual cortex to initiate a 

second selective wave of processing. When the race starts, all categorizations of an 
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object strive towards the visual STM store, while their speed (ν value) depends on 

the product of η and β values. The visual STM map of spatial locations is probably 

situated in the thalamic reticular nucleus. From there, information about the winners 

of the race is back projected to the LGN and thereby sustains neuronal activity 

related to the winners by positive feedback.  

In summary, TVA provides a computational framework of normal visual attention, 

thereby integrating the problem of visual recognition and attentional selection into 

a unified theory. Its central assumptions are formulated in basic algebra given by 

the weight and rate equation. Recently, TVA’s principles had been interpreted at 

the level of thalamo-cortical and cortico-cortical circuits of the posterior brain. 

Given the dependence on intact functions of a large network, visual attention is 

frequently targeted by various clinical conditions.  

1.2. Methodological Basis: Assessment of Visual Attention Deficits 

Disturbances of visual attention are observed after many different kinds of brain 

damage and neuropathology, covering neurodevelopmental disorders, acquired 

brain injury or neurodegenerative diseases. As a consequence, research on visual 

attention deficits is a broad and inconsistent field. To overcome this heterogeneity 

and progress in the understanding, diagnosis and treatment of attention deficits, it 

is crucial to elucidate how certain types of brain damage affect visual attention 

functions. Yet, a major drawback towards this goal are the methodological issues 

of many clinical studies, particularly related to the week and unspecific 

conceptualization and measurement of attention deficits. This section outlines a) 

the limitations of conventional assessment tools; b) how they can be overcome by 

TVA-based measurement; and c) the here applied approach of combining TVA-

neuroimaging analysis. 

1.2.1. Conventional Measurements 

To be useful, a neuropsychological test score should reflect a relatively pure 

measure of a specific aspect of the patient’s cognitive abilities. The most critical 

constraint of conventional assessment of visual attention is that often several 

abilities are necessary in order to perform well, and a low score hence reflects a 

quite nonspecific finding. Many classical tests are confounded by motor functions. 
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For instance, reaction time tasks or other types of speeded responses are 

conventionally used to determine processing speed deficits. A prominent example 

is the digit symbol substitution test (Wechsler, 1997), where digits and symbols are 

paired and patients should write down as fast as possible under each newly given 

digit the corresponding symbol. The number of correct symbols within the allowed 

time is measured. Besides the pure processing of visual information, this tasks 

incorporate complex motor components (e.g. the patient has to manually write 

symbols) that very likely contribute to response latency scores. More 

fundamentally, test performance cannot be easily related to a basic component of 

visual attention. Instead, test scores are bound to the complex task used for the 

assessment. Visual STM deficits are traditionally measured by immediate memory 

span tasks. For example, in the Corsi block-tapping test (Corsi, 1973) patients are 

asked to observe a sequence of blocks being tapped by the examiner, and then repeat 

the sequence. The number of blocks increasingly grows, whereby the sequence 

length which can be correctly reproduced is assessed. A serious constrain of the 

Corsi and many other attention span tasks is that the serial and relatively long 

presentation of stimuli allows verbal recoding. The use of rehearsal strategies 

critically impedes the pure measurement of the visual (non-strategic) attention span. 

To state it more generally, conventional measurements of visual attention are 

influenced by quite complex motor and cognitive abilities preventing a clear 

interpretation of the test scores. These main limitations, poor specificity and 

validity, can be primarily traced back to conventional tests’ foundation in the 

clinical routine. The designs of such tests are often determined by practicability 

rather than conceptual considerations. Lacking a theoretical background is also one 

reason why classical tests fall short on other important quality characteristics such 

as sensitivity and reliability. 

1.2.2. Parametric Measurements 

A potential way to resolve these limitations is offered by parametric measurements 

of visual attention adopted form TVA. Within this framework, five central attention 

parameters can be estimated based on individual performance in two simple whole 

and partial report experiments. The basic test design is as follows. In the whole 

report, an array of briefly flashed objects (usually letters) is presented on the screen, 

while participants maintain central fixation and the task is to identify and verbally 
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report as many objects as possible. Presentation times are set in a way that they 

cover the whole range from an individual’s perception threshold up to near-ceiling 

performance. This design allows to quantify three general capacity factors of visual 

attention: 1) t0, visual threshold, 2) K, visual STM storage capacity and 3) C, visual 

processing speed. In the partial report, participants are required to identify and 

verbally report only a subset of stimuli specified by an a priori given criterion 

(usually color). This design reveals values for two selective factors of visual 

attention: 4) α, efficiency of top-down control and 5) wλ, spatial distribution of 

visual attention. A more detailed description of the test and model fitting procedures 

can be found elsewhere (Duncan et al., 1999). 

The main advantage of TVA-based measurement is the method’s high specificity. 

Due to the mathematically independent fitting procedures, attentional parameters 

can be quantified separately from each other and with high precision. They are 

furthermore not confounded by motor slowing, since non-speeded verbal responses 

are used. Unlike many other neuropsychological tests, the method rests upon a 

theoretical framework that explains a wide range of the empirical effects in the 

literature on normal visual attention (Bundesen, 1990). Consequently, the estimated 

attention parameters can be interpreted as basic elements of visual attention that 

have been identified in the general theory. Other main strengths of the TVA method 

are its high sensitivity to detect attention deficits which went unnoticed by using 

other neuropsychological tests (e.g. Habekost & Rostrup, 2006) and its reliability 

which has been approved in healthy participants and patients (Finke et al., 2005; 

Habekost, Petersen & Vangkilde, 2014; Habekost & Rostrup, 2006).  

From a practical viewpoint, it is convenient that all parameters are derived in one 

integrated test set-up including simple instructions and minor response 

requirements. Using the same set of stimuli and response formats results in highly 

consistent measures of lateralized and non-lateralized aspects of visual attention. 

The fact that the experiments can be tailored to different research interests and 

clinical groups (e.g. by changing layout and the stimuli of the display) as well as to 

the individual performance level (by adopting the exposure duration) ensures 

maximal flexibility for many types of studies. Another important quality is that 

TVA’s computational principles had been already specified at the single-cell level, 
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and recent neuroimaging studies expand our knowledge of their neuroanatomical 

correlates within the healthy brain (e.g. Gillebert et al., 2012).  

Owing to its many advantages compared to conventional neuropsychological tests, 

about 30 investigations have used TVA-based assessment today to study visual 

attention deficits in patients with neglect (Duncan et al., 1999; Duncan et al., 2003), 

parietal versus frontal stroke (Bublak et al., 2005; Peers et al., 2005), Alzheimer’s 

disease (Bublak et al., 2011; Redel et al., 2012), Huntington’s disease (Finke et al., 

2006; Finke et al., 2007), pure alexia (Starrfelt, Habekost & Leff, 2009; Habekost 

et al., 2014), and attention deficit/hyperactivity disorder (ADHD) (Finke et al., 

2011; McAvinue et al., 2012).  

1.2.3. Integrating Parametric Measurements with Neuroimaging 

The cognitive specificity and neuronal description of TVA offers a comprehensive 

basement to more precisely identify the effect of brain damage on specific attention 

functions. Yet large portions of the TVA literature does not incorporate brain 

imaging (e.g. Bogon et al., 2014; Bublak et al., 2011; Redel et al., 2012; Starrfelt, 

Habekost & Leff, 2009) or use a rather subjective and non-automated evaluation of 

lesion anatomy (e.g. Duncan et al., 1999; Habekost & Rostrup, 2007, 2006; Peers 

et al., 2005). In addition, a few earlier conclusions are based on case reports and 

should be interpreted with some caution (e.g. Duncan et al., 2003; Habekost & 

Bundesen, 2003). To explore its usability we applied an integrated TVA-

neuroimaging approach in two exemplary clinical groups with either a 

neurodevelopmental (preterm birth) or a neurodegenerative condition (posterior 

cortical atrophy). Both of them are known for experiencing visual attention deficits 

and showing brain changes in attention-related brain areas and networks. 

Additionally, those examples were chosen to be quite dissimilar in terms of age and 

neuropathology for illustrating that the drawn conclusions are not restricted to a 

certain context. Thus, studying those clinical groups allowed us to systematically 

investigate the relationship between TVA parameters, supposedly reflecting very 

basic aspects of the visual attention system, and pathological brain changes. If close 

behavior-brain relationships can be demonstrated, this may have broader 

implications for a) extending the combined TVA-neuroimaging approach to other 

patient groups, b) developing or improving diagnoses and therapeutic interventions, 
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together with appropriate evaluation criteria, and for c) the validation of the 

principles of TVA and their neuronal interpretation. We will return to these points 

in the General Discussion section. 

Taken together, disturbances of visual attention follow from various kinds of brain 

damage. Our understanding of these processes is, however, largely constrained by 

the nonspecific measurement of visual attention based on conventional 

neuropsychological assessment. In contrast, whole and partial report experiments 

combined with TVA model-fitting procedures allow to estimate basic attentional 

functions in “process-pure” and mathematically independent measures. Combined 

TVA-neuroimaging approaches may offer a promising tool to elucidate the 

neuronal correlates of attention deficits, an idea which we tested in two clinical 

examples. 

1.3. Clinical Examples of Visual Attention Deficits 

Two clinical groups were chosen in which attention deficits exist, but which had 

never been investigated with TVA-based assessment. Preterm birth as well as PCA 

represent clinical conditions with diffusely distributed pathology affecting large-

scale brain networks relevant for attention. The current section introduces the two 

study groups by reviewing the related literature on a) attention deficits as well as b) 

brain changes and c) proposes how they may be linked with each other. 

1.3.1. Example 1: Early Developmental Disturbances 

Current progress in neonatal intensive care results in sharply increased survival 

rates of very immature infants. In 2010, estimates of preterm birth rates showed that 

14.9 million infants had been born preterm which are 11.1 percent of all livebirths 

worldwide (Blencowe et al., 2012). Hence, long-term consequences of preterm 

birth become a major concern with clear socioeconomic relevance (Moster, Lie & 

Markestad, 2008). 

Attention Deficits 

Especially deficits of visual attention have been described as one of the most 

pronounced sequelae following prematurity which may be responsible for many 

other cognitive disadvantages (major reviews are Anderson, 2014; Jong, Verhoeven 

& van Baar, 2012; Mulder et al., 2009; van de Weijer-Bergsma, Wijnroks & 
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Jongmans, 2008). Numerous investigations on premature infants and pre-schoolers 

found less efficient performance across all attention domains compared to term 

controls: they are less efficient to orient their attention to objects or events in their 

environment, they shift their attention more slowly and have problems to maintain 

anticipatory attention (van de Weijer-Bergsma, Wijnroks & Jongmans, 2008). More 

recent large-scale studies replicated those findings in 8-year-old children (Anderson 

et al., 2011; Jaekel, Wolke & Bartmann, 2013) and adolescents (Wilson-Ching et 

al., 2013) born prematurely.  

During recent years, data on the neuro-cognitive outcome of preterm birth in young 

adulthood have become available due to several longitudinal cohort studies and 

from large-scale Scandinavian national databases (for an extensive review see 

Saigal, 2014). However, a key limitation for interpreting available findings is that 

the measures different studies used varies remarkably and are most of the time 

rather unspecific. Many studies compared global measures, from which can be 

assumed that they rely, at least partially, on efficient attentional processing. For 

instance, most reports indicate that preterm born young adults still have lower full-

scale IQ scores compared to those born at term. Moreover, rates of educational 

achievement, employment and independent living seem to be slightly diminished 

in preterm individuals (major reviews are Doyle & Anderson, 2010; Hack et al., 

2002; Hack, 2009; Jong, Verhoeven & van Baar, 2012; Saigal & Doyle, 2008; for 

a meta-analysis see Kormos et al., 2014). More direct indications for long-lasting 

attention deficits come from data showing that elevated problems of ADHD 

reported in childhood still exist in preterm born young adults (Lund et al., 2011; 

Sonja Strang-Karlsson et al., 2008; van Lieshout et al., 2015). In addition, some 

studies examined executive functions, comprising tests of visual selectivity and 

attention as well (e.g. measure by the Visual Search and Attention Test), and 

generally found that preterm born adults perform more poorly relative to their term 

born peers (Hille et al., 2007; Nosarti et al., 2007; Pyhälä et al., 2011; Skranes & 

Løhaugen, 2016; Strang-Karlsson et al., 2010). Due to the lack of more specific 

follow-up investigations, it is still unclear whether or not attention abilities of 

preterm adults catch up with those of full-terms at comparable age. Yet, it seems 

likely that some basic attentional functions are still less efficient, which may explain 

the global cognitive deficits observed more than two decades after preterm birth.  
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Brain Changes 

Preterm neonates are at high risk of brain injury. The major type of brain lesions 

are focal white matter (WM) injuries, i.e. periventricular leukomalacia. Modern 

MRI techniques show that even in the absence of focal lesions, preterm birth is 

often accompanied by diffuse neuronal, axonal and glial damage extending to deep 

grey matter (thalamus), cortical and cerebellar areas (major reviews are Deng, 2010; 

Volpe, 2009; Ment, Hirtz & Hüppi, 2009; Salmaso et al., 2014). The unique 

vulnerability of the premature brain has to be considered in front of the major 

changes it undergoes during the late second and third trimester of gestation 

including: differentiation of the foetal subplate zone, alignment and layering of 

cortical neurons, expansion of axons and dendrites, as well as selective pruning of 

synapses and glia cells (Miller & Ferriero, 2009). Major neurobiological models of 

early brain injury propose that initially destructive processes (e.g. loss of 

oligodendrocytes due to perinatal insults, such as ischemia or inflammation) are 

followed by secondary maturational disturbances (Deng, 2010; Volpe, 2009). 

Microstructural damage during the perinatal period, particularly disruptions in a) 

the formation of structural connectivity between thalamo-cortical and cortico-

cortical regions (Kostović & Judaš, 2010; McQuillen & Ferriero, 2005), and b) the 

emergence of synchronous brain signaling (Bartos, Vida & Jonas, 2007), has been 

associated with a large-scale reorganization of the preterm brain’s intrinsic network 

architecture (Doria et al., 2010). 

Intrinsic functional connectivity (iFC) is characterized by temporally and spatially 

coherent patterns of low-frequent (< 0.1 Hz) fluctuations of the blood oxygenation 

level-dependent (BOLD) signal measured by fMRI (Biswal et al., 1995). These 

patterns correspond to known neuroanatomical systems (Smith et al., 2009), and 

are consistent across individuals (Damoiseaux et al., 2006), different states of 

consciousness (Horovitz et al., 2008), and even species (Vincent et al., 2007). Thus, 

intrinsic brain networks (IBN) are thought to represent a principle, functionally 

relevant organization of the mammalian brain. The emergence of IBN has been 

placed mainly within the last trimester of gestation (Fransson et al., 2007; Smyser 

et al., 2010). In a longitudinal investigation, Smyser et al. tracked the development 

of IBN from fragmented but recognizable elements at 30 weeks of gestation to an 

adult-like repertoire at term (40 weeks). Moreover, the authors report that very 
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preterm infants (< 26 weeks) exhibit less mature and abnormally formed IBN at 

term age (see also Fuchino et al., 2013). Changes of iFC seem to be only partially 

caused by WM lesions (Smyser et al., 2013), but even exist without evident 

structural injury (Smyser et al., 2014). These findings suggest that the functional 

network architecture of preterm and full-term infants follow diverging 

developmental trajectories during the perinatal period, because of distinct 

experiences, physiological and structural development. Differences still persist into 

childhood (Damaraju et al., 2010), and as recent data from our group shows have 

not disappeared by adulthood. Instead, we observed wide-spread patterns of 

decreased and increased iFC in the pre- versus full-term adult brain (Bäuml et al., 

2014; see also White et al., 2014). Rather than a delay in maturation, these results 

indicate a systematic and long-lasting reorganization of the cerebral functional 

architecture in association with preterm birth.  

Linking Attention Deficits and Brain Changes 

Critically, thalamic, visual and dorsal attention IBN – brain systems which are 

essential for visual attention – are among those networks showing long-term effects 

of preterm birth. It is likely that observed re-modelling of iFC in attention-related 

IBN plays a role in the attention deficits experienced by preterm born individuals. 

There is strong support for the idea that attention operates on low-frequent (< 1 Hz) 

spontaneous oscillations to control neuronal excitability via cross-frequency 

coupling (evidences in rabbits Bishop, 1932, monkeys Lakatos et al., 2008 and 

humans Besle et al., 2011, for a review see Schroeder & Lakatos, 2009). Following 

this notion, the dynamic organization of the brain in large-scale, yet flexible, 

networks allows tuning the ongoing fluctuations of neuronal excitability (mediated 

by slow cortical potentials, He et al., 2008) to the temporal stream of task-relevant 

events (for reviews on the relevant cellular processes see Vaishnavi et al., 2010). 

The resting-state BOLD signal clearly represents a focused (frequency-limited) 

view on these events. Still, it provides a unique window for the non-invasive 

investigation of task-relevant neuronal processes which are intrinsically realized in 

the rhythmic, ongoing activity of the human brain (Raichle, 2010, 2011; Zhang & 

Raichle, 2010).  

Integrated investigations of resting-state and event-related fMRI showed that 

ongoing fluctuations in the BOLD signal significantly contributes to the trial-by-
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trial variability in task-evoked signals (Fox et al., 2006) and variability in the related 

behavior (Fox et al., 2007). Regarding visual attention, iFC have already been 

linked to individual differences of attentional performances in healthy participants 

(Sali, Courtney & Yantis, 2016), and to attention deficits in patients with ADHD 

(Hoekzema et al., 2014; Sripada, Kessler & Angstadt, 2014, for a review see Parks 

& Madden, 2013). To date no study has examined whether and how altered iFC in 

attention-related IBN are linked to the adverse development of visual attention in 

preterm born individuals. Two different hypotheses exist. First, changes in iFC may 

express an impaired functional organization of the preterm adult brain, whereby 

stronger iFC alterations lead to more severe attention deficits. Or alternatively, 

changed iFC may constitute a compensatory mechanism to mitigate harmful 

consequence of preterm birth, such that stronger iFC alterations lead to less severe 

attention deficits.  

1.3.2. Example 2: Late Neurodegenerative Disturbances 

We now move to the last decades of the life span, where the risk of developing 

dementia increasingly grows. The most common form of dementia arises from 

Alzheimer’s disease (AD) and is primarily associated with memory deficits. 

However, in very rare cases, neuropathology is largely restricted to primary visual 

and visual association cortices (Hof et al., 1997; Renner et al., 2004; Tang-Wai et 

al., 2004). This neurodegenerative syndrome is known as posterior cortical atrophy 

(PCA). 

Attention Deficit 

According to the atrophy pattern, patients with PCA show a fairly selective deficit 

of visual attention and other higher visual and visuospatial skills. Salient features 

of PCA include Balint’s syndrome (simultanagnosia, optic ataxia and ocular 

apraxia) and Gerstman’s syndrome (agraphia, acalculia and finger agnosia) 

(Benson, Davis & Snyder, 1988). Full presentations of Balint’s and/or Gerstman’s 

syndrome are rare. Instead, patients commonly show single components of either 

syndrome. The most widely observed symptom, affecting 82-92% of PCA patients, 

is simultanagnosia (Kas et al., 2011; Tang-Wai et al., 2004). It refers to the impaired 

awareness of more than one visual object at a time (Bálint, 1909). By definition, 

simultanagnosia is not caused by restricted vision, eye or head movements what is 
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evidenced by patients’ ability to name single items of a visual scene. Instead, they 

are no longer able to integrate individual elements to form a meaningful whole 

(Wolpert, 1924), a condition which is tremendously disturbing for daily life 

functioning. For example, a very typical disabling impairment are reading 

difficulties (Beh et al., 2014). Simultanagnosia has been grossly characterized as a 

deficit of visual attention (e.g. Rizzo & Robin, 1990), though the specific 

underlying impairment has not been fully elucidated.  

Two alternative accounts of simultanagnosia had been proposed. The first approach 

dates back to a single case report of a patient whose STM memory capacity seemed 

to be so much decreased that he could only perceive one object at a time. Speed of 

perceptual processing for a single item, on the other hand, occurred to be normal 

(Coslett & Saffran, 1991b; see also Pavese et al., 2002). In a large review article, 

Rizzo and Vecera (2002) proposed that the investigation of STM capacity deficits 

might be especially fruitful for our understanding of the specific defects causing 

simultanagnosia. More recent studies were able to more systematically investigate 

the independent contribution of impaired STM capacity and processing speed to 

symptom occurrence. By using TVA-based assessment, Duncan et al. (2003) 

demonstrated that two patients with simultanagnosia following stroke suffered from 

extremely reduced rates of visual processing speed. The authors argue that in 

complex scenes where multiple objects compete for processing resources, a severe 

slowing of processing speed might cause perceptual failure for all but the most 

salient object. Consistently, Finke and colleagues (2007) revealed a significant 

correlation between slowed visual processing speed and severity of 

simultanagnosia in patients with Huntington’s disease. The controversy of whether 

reduced STM storage capacity or visual processing speed leads to simultanagnosia 

has not been reconciled yet. This is mainly because the literature is, despite of some 

more recent group studies (Finke et al., 2007), still dominated by single case reports 

and non-uniform conceptualization and assessment of visual attention (Rizzo & 

Vecera, 2002).  

Brain Changes 

Although the most common underlying cause is AD, other kinds of neuropathology 

have been reported to result in PCA, including corticobasal degeneration, dementia 

with Lewy bodies, and prion disease (Renner et al., 2004; Tang-Wai et al., 2004). 
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Only cases with underlying AD will be considered here. Histopathological 

examinations evidence that PCA is characterized by a focal accumulation of senile 

plaques and neurofibrillary tangles in parietal, occipital and posterior temporal 

brain regions, particularly in Brodmann areas 17 and 18 (Hof et al., 1997; Tang-

Wai et al., 2004). Investigations of Lehmann and colleagues in relatively large 

patient groups extensively broadened our understanding of the neuroimaging 

profile of PCA. The authors used voxel-based morphometry (VBM) to quantify and 

localize patterns of atrophy based on anatomical MRI scans in an objective and 

fully-automated manner. Compared to healthy control participants, the researchers 

found enormous volume loss within the cerebral posterior hemisphere, whereby the 

occipital and parietal lobe showed the greatest reductions, with superior parietal 

cortex being on average 20% smaller in patients, followed by areas in the temporal 

lobe (Lehmann et al., 2011; Lehmann et al., 2012). This atrophy pattern is 

syndrome-specific as a direct comparison between PCA and patients with the 

amnestic AD or logopenic AD variant reveals (Lehmann et al., 2011; Lehmann et 

al., 2012; Lehmann et al., 2013b; Caso et al., 2015, for a review see Alves et al., 

2013). VBM analyses of white matter (WM) volume show extensive atrophy within 

posterior brain regions in PCA patients relative to healthy controls. Specific volume 

loss compared to other AD variants, was observed in bilateral dorsal occipito-

parietal and ventral occipito-temporal regions along the major visual pathways 

(Migliaccio et al., 2012a). Results from diffusion tensor imaging (DTI) confirm 

bilateral microstructural changes in the major association bundles, e.g. inferior 

fronto-occipital, superior and inferior longitudinal fasciculus, as well as in the 

splenium and thalamic radiations (Caso et al., 2015; Cerami et al., 2015). Beyond 

structural grey matter (GM) and WM changes, PCA had been reported to affect 

many different characteristics of the posterior brain, including large-scale 

functional connectivity (Lehmann et al., 2013b; Migliaccio et al., 2016), glucose 

metabolism (Lehmann et al., 2013a; Nestor et al., 2003), and brain perfusion (Kas 

et al., 2011).  

Linking Attention Deficits to Brain Changes 

Relatively little work has been done to systematically associate PCA patients’ brain 

lesions with their deficits of visual attention. No study has been carried out with 

regard to simultanagnosia. The most influential work on the neuroanatomical 
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underpinnings of simultanagnosia comes from the stroke literature. Chechlacz et al. 

(2012) compared lesion patters between stroke patients with symptoms of 

simultanagnosia versus unilateral visuospatial attention deficits (neglect, 

extinction). Lesion subtraction and VBM analyses revealed that damage to both 

GM and WM areas is linked to simultanagnosia. In more details, symptoms of 

simultanagnosia were related to GM lesions within large portions of the occipital 

(bilateral calcarine, cuneus and parieto-occipital fissure, left middle and superior 

occipital gyrus) and parietal cortex (right intraparietal sulcus, bilateral postcentral 

and superior parietal gyri). Regarding WM damage associated with 

simultanagnosia, the bilateral occipital and parieto-occipital lesions found here 

indicate a critical role for damage within long association pathways. A further 

characterization of WM lesions by DTI tractography confirms that especially 

bilateral microstructural impairments within the main projection fibers of the 

visuospatial attention system underlie deficits of simultaneous perception. 

Preliminary evidences from a DTI study of two PCA patients support the idea that 

disruptions of the superior and inferior longitudinal fasciculus as well as the inferior 

fronto-occipital fasciculus are necessary for the occurrence of simultanagnosia 

(Migliaccio et al., 2012b). Following the notion of Duncan et al. (2003), Chechlacz 

and colleagues proposed that the observed reduction of structural connectivity 

might have led to a slowing of processing speed and by that caused 

simultanagnosia. Yet, this speculative neuro-cognitive model of simultanagnosia 

has never been tested empirically.  

In summary, while previous work in both clinical groups points towards substantial 

disturbances of visual attention, no investigation to date has systemically assessed 

the effect of preterm birth or posterior cortical atrophy on basic visual attention 

functions by means of TVA-based assessment. From earlier studies we know that 

both groups show changes in attention-related brain areas or networks. Yet, the 

relationship between these neuronal changes and attention deficits is not 

sufficiently understood. 

1.4. Aims of This Thesis 

The overarching goal of the current thesis was to use neuro-cognitive modelling to 

systematically link deficits of visual attention and underlying brain changes. To this 
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end, the computational Theory of Visual Attention (TVA) combined with modern 

structural and functional MRI techniques were applied in a neurodevelopmental 

(preterm birth) and neurodegenerative (posterior cortical atrophy (PCA)) condition 

with attention deficits. We aimed to utilize the specificity of model-based 

assessments of latent, “process-pure” and independent parameters of visual 

attention in order to establish robust behavior-brain relationships. With regard to 

preterm birth, attention problems are the most prominent sequelae which may even 

persist into adulthood. Long-lasting alterations of intrinsic functional connectivity 

(iFC) in attention-related brain networks seem to be a potentially underlying 

mechanism. However, previous studies have not yet identified which specific 

attention process is impaired and how it is linked to changes of iFC in preterm bon 

adults. The first project of the current thesis assessed the specific long-term effect 

of preterm birth on basic attentional functions and the nature of the relationship to 

alterations of intrinsic brain networks. With regard to PCA, perception of 

simultaneously presented object is often severely impaired (simultanagnosia) due 

to degenerative processes within the visuospatial attention system. However, 

controversies exist about which attention deficit underlies simultanagnosia and how 

it is related to grey matter (GM) and white matter (WM) atrophy. The second 

project of the current thesis systematically investigated the cognitive and 

neuroanatomical features of simultanagnosia in a relatively large group of patients 

with PCA. 

To broaden our understanding of the relationship between attention deficits and 

changes of the large-scale structural and functional architecture of the human brain, 

the current thesis focuses on the following research questions: 

Project 1 

a) Besides the observed attention deficits in childhood, does preterm birth have 

specific long-lasting effects on the attention system’s general capacity 

(perceptual threshold, short-term memory (STM) capacity, visual 

processing speed) or selective (spatial, task-related) weighting? To answer 

this question, we compared TVA-based attention parameters between 

formally preterm and term born adults who took part in the prospective 

Bavarian Longitudinal Study. 
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b) Are impaired attention parameters linked to changes of iFC in the thalamic, 

visual and dorsal attention network, and does the nature of this relationship 

reflect a detrimental or compensatory mechanism? For each preterm adult, 

we correlated attentional performance scores with the strength of iFC within 

clusters showing a significantly altered functional organization between 

pre- versus full-term born participants.  

 

Project 2 

a) Do deficits of STM capacity or visual processing speed contribute to the 

occurrence of simultanagnosia? To answer this question, we compared 

independent estimates of STM capacity and visual processing speed 

between patients with PCA and healthy control participants and tested, in a 

regression analysis, which one of both attentional parameters significantly 

predicts patients’ simultanagnosia symptoms. 

b) Does GM or WM atrophy predict impairments of visual attention 

parameters? Volumetric changes of GM and WM were assessed by voxel-

based morphometry and compared between study groups. We subsequently 

related, in a voxel-wise regression analysis, patterns of GM and WM 

atrophy to patients’ deficits in visual attention functions.  
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2. 

Project 1: Visual Attention in Preterm 
Born Adults: Specifically Impaired 

Attentional Sub-mechanisms that Link 
with Altered Intrinsic Brain Networks 

in a Compensation-like Mode 
The current chapter includes a research article entitled “Visual attention in preterm 

born adults: Specifically impaired attentional sub-mechanisms that link with altered 

intrinsic brain networks in a compensation-like mode”. This article showed for the 

first time that short-term memory storage capacity is selectively impaired in preterm 

born adults, and cortical changes in intrinsic functional connectivity seem to 

compensate for these adverse consequences of prematurity on visual attention 

development. The manuscript was published in NeuroImage in 2015.  

Contributions:  

Authors: Kathrin Finke, Julia Neitzel, Josef G. Bäuml, Petra Redel, Hermann J. 

Müller, Chun Meng, Julia Jaekel, Marcel Daamen, Lukas Scheef, Barbara Busch, 

Nicole Baumann, Henning Boecker, Peter Bartmann, Thomas Habekost, Dieter 

Wolke, Afra Wohlschläger, Christian Sorg 

The author of this thesis is the shared first author of this manuscript together with 

K.F.   J.N., K.F. and C.S. conceived the experiment. B.B., N.B. and P.B. recruited 

participants. J.N. and P.R. conducted behavioral data acquisition and J.B., C.M., 

M.D. and L.S. conducted fMRI data acquisition. J.N. analyzed behavioral and 

imaging data, under the supervision of C.S.   J.N. and K.F. wrote the manuscript, 

which was commented on and reviewed by J.J., P.B., H.B., H.J.M, T.H., A.W., 

D.W. and C.S. 
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Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals
it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks.
We used the computationally specified ‘Theory of Visual Attention’ together with whole- and partial-report
paradigms to compare attentional sub-mechanisms of pre- (n = 33) and full-term (n = 32) born adults.
Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in
changed functional connectivity of intrinsic brain networks relevant for visual attention.
In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity
while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore,
changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic
networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal
cortices was systematically associated with vSTM in such a way that the more distinct the connectivity
differences, the better the preterm adults' storage capacity.
These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born
adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in
intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual
short-term storage capacity.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Preterm birth (b37weeks of gestation) is a substantial risk factor for
suboptimal neurocognitive development with disadvantages persisting
into adulthood (Baron and Rey-Casserly, 2010; D'Onofrio et al., 2013;

Wolke and Meyer, 1999). Due to improvements in medicine and
demographic changes preterm birth and survival rates are increasing
with a global prevalence of about 10% (Blencowe et al., 2012). In order
to identify specific neurocognitive targets for potential intervention, it
is important to scrutinize the long-term cognitive andneuronal changes
following preterm birth.

Specific functional weakness in preterm born individuals, which
persists into early adulthood and is not explained by global cognitive
deficit, has been observed for visual attention (Anderson and Doyle,
2003; Atkinson and Braddick, 2007, 2012; Mulder et al., 2009; Shum
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et al., 2008; Strang-Karlsson et al., 2010; van de Weijer-Bergsma et al.,
2008). Attention deficits and their long-term stability are documented,
for example, by changed eye movement at infancy (Atkinson and
Braddick, 2012; van de Weijer-Bergsma et al., 2008), by deficits in
neuropsychological tests at school age (Anderson and Doyle, 2003;
Atkinson and Braddick, 2007; Johnson, 2007; Luciana et al., 1999;
Shum et al., 2008; Taylor et al., 2004), and by slower reaction times in
perceptive–attentional tests in early adulthood (Strang-Karlsson et al.,
2010). However, the specific cognitive mechanisms underlying such
observable behavior are unknown.

The major forms of brain injury after preterm birth are subcortical
white and gray matter lesions together with impaired structural
connectivity (Ball et al., 2012; Eikenes et al., 2011; Ment et al., 2009;
Nosarti et al., 2008; Padilla et al., 2014; Pierson et al., 2007; Srinivasan
et al., 2007; Salmaso et al., 2014; Volpe, 1998, 2009). These initially rath-
er localized lesions are assumed to lead to widespread and functionally
relevant long-term consequences (Hack and Taylor, 2000; Volpe, 2009),
particularly in intrinsic brain networks (Bäuml et al., 2014; White et al.,
2014). Such networks organize brain activity (Fox and Raichle, 2007)
and are relevant for specific cognitive functions (Laird et al., 2011;
Smith et al., 2009).

In the current study, wewanted to specify sub-mechanisms of visual
attention affected in adults born preterm on the basis of the “Theory
of Visual Attention” (TVA) framework. Furthermore, we aimed to
integrate potential cognitive changes in visual attention with changes
in intrinsic functional connectivity (iFC) of intrinsic brain networks in
preterm born adults.

TVA, attentional sub-mechanisms, and its neural correlates

TVA is a mathematically formulated model of selective attention
(Bundesen, 1990; Bundesen et al., 2005). In TVA, visual processing is
conceived of as a parallel-competitive race. Visual objects in a given
display are supposed to compete for selection, i.e., conscious represen-
tation, into the capacity-limited visual short-term memory (vSTM)
store. Bottom-up and top-down generated bias signals determine
‘attentional weights’ for objects. Depending on their relative weights,
some objects are thus favored for selection. The probability of selection
is determined by an object's processing rate v, which depends on the
attentional weight (w) that it receives, on sensory effectiveness, and
the capacity of the vSTM store (if the store is filled, the selection process
terminates). In TVA, the processing speed, C, for a display is defined as
the sum of all v values in the display and, thus, characterizes the visual
information processing rate of a given participant. Methods that have
been previously used to disentangle impaired and preserved parame-
ters of visual attention and short-termmemory in neurodevelopmental
disorders such as dyslexia, ADHD and spina bifida myelomeningocele
(Bogon et al., 2014; Caspersen and Habekost, 2013; Finke et al., 2011;
McAvinue et al., 2012; Stenneken et al., 2011) are simple psychophysi-
cal tests of whole and partial report of briefly presented letter arrays.
Integrated within the TVA framework these tests permit different
parameters of visual attention in a given participant to be extracted
and quantified independently, and in measurements that are not con-
founded by, for example, cognitive or motor slowing. Such cognitive
specificity is the optimal basis for relating quantified basic parameters
of visual attention performance to underlying neural networks in
healthy and patient populations (Gillebert et al., 2012; Peers et al.,
2005; Sorg et al., 2012; Wiegand et al., 2013). We used the TVA based
approach in order to collect estimates of visual perceptual processing
speed (parameter C), vSTM storage capacity (parameter K), top-down
control (parameter α), and spatial laterality of attention (parameter
wλ).

With respect to normally developed brains, theneural interpretation
of TVA (NTVA) (Bundesen et al., 2005) specifies that posterior
visual perceptual areas are governed by bias signals generated in
frontoparietal areas and by a salience map putatively located in the

pulvinar (Corbetta and Shulman, 2002; Kanwisher and Wojciulik,
2000; Kastner and Ungerleider, 2000). Visual perception is assumed to
rely on a parallel race of visual objects that compete for access to the
limited vSTM store (Bundesen, 1990). Thalamo-cortical feedback loops
are suggested to (re)-activate the same visual neurons in posterior
parts of the cortex coding and maintaining the winner objects
(Gillebert et al., 2012; Magen et al., 2009; Todd and Marois, 2004; Xu
and Chun, 2006). Due to their reliance on widespread interconnected
brain areas the TVA parameters, and particularly vSTM storage capacity,
are vulnerable to interruptions or connectivity changes within large-
scale brain networks (Habekost and Rostrup, 2007). Based on these
areas relevant for TVA-related mechanisms, we focused our analysis
on intrinsic brain networks of the posterior brain that might be a
brain base for impaired attentional sub-mechanisms in preterm born
adults.

Intrinsic brain networks after preterm birth and its potential link with
altered attention

Large-scale intrinsic functional connectivity is organized in intrinsic
brain networks, which are defined by synchronous ongoing activity
(i.e. iFC) in the frequency range of 0.01–0.1 Hz (Fox and Raichle, 2007).
Intrinsic networks are consistent across individuals (Damoiseaux et al.,
2006), development (Fransson et al., 2007), different behavioral states
(Horovitz et al., 2008), and even species (Vincent et al., 2007), and
possibly represent a basic organization principle of the mammalian
brain. They are functional networks i.e. their areas commonly co-
activate during both non-task and task states, suggesting intrinsic
networks to implement specific aspects of cognition and behavior
(Laird et al., 2011; Smith et al., 2009). One possible explanation for
this functional specificity is that functional connectivity at rest reflects
the history of correlated activity changes during goal-directed behavior
(Berkes et al., 2011; Lewis et al., 2009; Riedl et al., 2011). By the use of
resting-state functional resonance imaging (rs-fMRI), precursors of
intrinsic brain networks are already detectable in newborns (Fransson
et al., 2009) and even preterm born infants (Doria et al., 2010),
with the latter showing subtle alterations in network connectivity
(Damaraju et al., 2010; Smyser et al., 2010). Recently, changed intrinsic
networks have been demonstrated for preterm born adults (Bäuml
et al., 2014; White et al., 2014; Wilke et al., 2013), indicating distinct
developmental trajectories for intrinsic networks after preterm
delivery.

Given the functional–cognitive relevance of intrinsic networks, it
seems reasonable to expect that impaired mechanisms of visual
attention might be related to changes of intrinsic networks, which
cover posterior areas of the brain relevant for visual attention, i.e. tha-
lamic, visual, and dorsal attention networks. In principle, two types of
relationship are possible: (i) the more attention is impaired the more
intrinsic connectivity is changed from that of healthy controls, reflecting
detrimental effects of preterm birth; (ii) the less attention is impaired
themore intrinsic connectivity is changed from that of healthy controls,
reflecting compensatory response on effects of preterm birth. Beyond
the pattern of altered attentional sub-mechanisms in preterm born
adults, the present study investigates the nature of the relationship
between altered visual attentional mechanisms and intrinsic networks
of the posterior brain.

Materials and methods

Participants

Participants were recruited as part of the prospective Bavarian
Longitudinal Study (BLS) (Riegel et al., 1995; Wolke and Meyer,
1999), a geographically defined whole-population sample of preterm
born children and full-term controls. Of the initial sample, 33 preterm
adults and 32 healthy term controls (all aged 25 to 27 years)
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participated in TVA-based attention assessment and magnetic reso-
nance imaging including rsfMRI. Relevant biographical and clinical
data are listed in Table 1. Groups were matched in terms of sex, age, vi-
sual acuity, socioeconomic background, maternal age, and depressive
symptom scores. Education level and IQ were significantly lower in
the preterm group. The local ethics committee of the Klinikum rechts
der Isar approved the study. All study participants gave written in-
formed consent and received travel expenses and payment for atten-
dance. Before participants were asked to attend examinations, each
subject was carefully screened for MR-related contraindications (e.g.
pregnancy, pacemaker implants). The additional exclusion criteria for
participating in the study were non-correctable reduction of sight in ei-
ther eye and the presence of psychiatric disorders that are known to af-
fect attention such as ADHD, autism, schizophrenia, or major
depression. All participants had normal or corrected-to normal vision
and were not color-blind. Participants were examined at the Depart-
ment of Neuroradiology, Klinikum rechts der Isar, Technische
Universität München, Germany.

Measures of prematurity, demography, and cognitive performance
Gestational age was estimated from maternal reports of the last

menstrual period and serial ultrasounds during pregnancy at birth.
When the two measures differed by more than two weeks, a clinical
assessment with the Dubowitz method was applied (Dubowitz et al.,
1970). Maternal age and birth weight were obtained from obstetric
records. Perinatal medical complications were assessed with a stan-
dardized optimality scoring system (OPTI) including 15 items (e.g. am-
nion infectious syndrome; pathologic CTG) (Prechtl, 1967). Items were
coded as 1 (non-optimal) or 0 (optimal) and summed into an index
score with the higher value indicating more complications. The family
socio-economic background was collected through structured parental
interviews within 10 days of the child's birth. It was computed as
a weighted composite score based on the profession of the self-
identified head of family together with the highest educational qualifi-
cation held by either parent (Bauer, 1988). Prior to attention and MRI
examination, subjectswere asked to take part in an assessment of global
cognitive functioning at the age of 26 years by trained psychologists.
This included a short version of the GermanWechsler Adult Intelligence
Scale-III (WAIS-III; Von Aster et al., 2006) allowing computation of Full
Scale IQ.

Behavioral assessment of TVA parameters of attention

Computational TVA framework
Briefly, in TVA-based measurement of individual attentional

functions of a given participant, two parameters determine general
capacity aspects: Visual perceptual processing speed C is the number
of visual elements that can be processed by a given participant per
second; vSTM storage capacity K quantifies the number of items that
can be categorized and selected in parallel and transferred into a
vSTM store (Cowan, 2001; Habekost and Starrfelt, 2009; Luck and
Vogel, 1997; Sperling, 1960). Two other parameters describe specific
attentional weighting processes. One is the efficiency of top-down con-
trol α and the other the laterality of the spatial distribution of attention
wλ. These weighting parameters determine how a person distributes
the amount of attentional resources available when presented with
multiple, alternative inputs, that is: when selective attention needs to
be allocated. All TVA parameters are derived from two experimental
tests, namely, whole and partial report tasks with high similarity in
terms of stimulus material and response requirements, and thus of
perceptual and motor skill requirements. For formal TVA descriptions
and equations, maximum likelihood model fitting and software, see
Kyllingsbæk (2006).

General assessment procedure
Participants underwent TVA-based assessment and fMRI scanning

on the same day. Stimuli were presented on a 17-inch monitor (1024
by 1280-pixel resolution, 60-Hz refresh rate), in a dimly lit room. A
chin rest was used to keep viewing distance at 50 cm. Each participant
completed the whole- and partial-report, each lasting ~0.5 h, within
one testing session. Task order was balanced across participants.
In both experiments, first, the participants were instructed to fixate on
a central white cross (0.3° visual angle) presented for 300 ms. Then,
after a gap of 100 ms, red and/or green letters (0.5° high × 0.4° wide)
were briefly presented on a black background. Individual exposure
durations were determined in a practice session to meet a criterion
value. The letters were randomly chosen from a pre-specified set
(“ABEFHJKLMNPRSTWXYZ”), with the same letter appearing only
once on a given trial. Each participant received the same displays in
the same sequence. Stimuli were either masked or unmasked. In
unmasked conditions, the effective exposure durations were prolonged

Table 1
Sample characteristics.

Preterm group
n = 33

Full-term group
n = 32

Statistical comparison

M SD Range M SD Range

Sex (f/m) 17/16 14/18 p = 0.45
Age (years) 26.5 ±0.53 25.7–27.6 26.6 ±0.54 25.7–27.9 p = 0.68
GA (weeks) 30.5 ±2.20 27–36 39.6 ±1.1 37–42 p b 0.01
BW (gram) 1268.8 ±274.3 800–1850 3368.4 ±469.3 2250–4200 p b 0.01
OPTI score 4.8 ±1.40 1–8 2.3 ±1.6 0–6 p b 0.01
Acuity r 96.88 ±8.96 60–120 95.33 ±9.37 60–100 p = 0.50
Acuity l 98.13 ±6.45 80–120 97.33 ±5.21 80–100 p = 0.58
SES 2.0 ±0.80 1–3 2.0 ±0.8 1–3 p = 0.99
Maternal age 30.3 ±3.70 22–38 29.3 ±6.3 18–42 p = 0.44
Education 5.53 ±2.46 1–9 7.0 ±2.21 2–9 p = 0.04
IQ 93.76 ±10.12 72–117 99.84 ±11.46 77–128 p = 0.03
BDI 3.06 ±4.25 0–8 3.50 ±5.47 0–10 p = 0.96
C 26.28 ±10.23 9.8–53.3 25.78 ±7.24 14.8–47.5 p = 0.32
K 2.77 ±0.37 1.98–3.83 3.03 ±0.47 2.47–3.89 p = 0.03
α 0.51 ±0.22 0.09–1.22 0.52 ±0.27 0.16–0.87 p = 0.95
wλ 0.50 ±0.06 0.35–0.60 0.49 ±0.06 0.38–0.62 p = 0.65

Abbreviations: m: male, f: female; GA: gestation age; BW: birth weight; OPTI: optimality score of perinatal conditions; Acuity l: visual acuity of left eye at 6 years of age, Acuity r: visual
acuity of right eye at 6 years of age; SES: socioeconomic status at birth;maternal age:maternal age at birth; education: school performance at 13 years of age; IQ:Wechsler Intelligence Test
for Adults at 26 years of age; BDI: Beck Depression Inventory at 26 years of age, C: processing speed, K: visual short-termmemory storage capacity, α: top-down control of attention,wλ:
spatial distribution of attention. Statistical comparisons: sex: chi-squared statistics; age, GA, BW, IQ: t-tests; OPTI, acuity r and r, SES, education, BDI: nonparametric Mann–Whitney-U-
tests, C, K, α, wλ: ANCOVAs with IQ as a covariate.
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by several hundred milliseconds due to ‘iconic’ memory buffering. The
verbal report of individual letters was performed in arbitrary order
and without stress on response speed. The experimenter entered the
responses on the keyboard. The total number of trials was 288 in the
partial- and 192 in the whole-report experiment, separated into blocks
of 48 trials each. Within each block, the different trial types were
presented equally often in randomized order.

Whole report
In the whole-report task participants were briefly presented with

multiple stimuli and had to identify as many of them as possible (see
Fig. 1A). On each trial, a column of five equidistant red or green letters
was presented 2.5° of visual angle to the left or the right of the fixation.
All letterswere either red or green. The participants' taskwas to identify
and report as many letters as possible.

In a pretest (24 trials), the individual exposure duration was
determined at which the participant could report, on average, one
letter correctly. In the whole report, this value was then used as the

‘intermediate’, together with a shorter (half as long) and a longer
(twice as long) exposure duration. The preterm group's average expo-
sure durations were 45.64 (SD = 7.83), 88.79 (SD = 19.57), and
174.48 (SD = 39.08) ms, and did not differ significantly from those of
the full-term group, that were 45.17 (SD = 7.0), 82.23 (SD = 17.26),
and 164.90 (SD=33.40). Letter displays were presented either masked
or unmasked. This resulted in six ‘effective’ exposure durations because,
in unmasked displays, storage of visual information in iconic memory
leads to prolonged information processing. Twelve different conditions
were obtained (2 hemifields, 3 exposure durations, 2 masking condi-
tions), each with 16 trials. Performance (i.e. the number of letters
reported correctly) was measured as a function of exposure duration.

Based on accuracy in the different effective exposure duration
conditions, parameters reflecting processing efficiency were modeled.
In TVA the processing race depends on the dynamics of the processing
system. This is expressed in an exponentially increasing probability
for an object to be selected with increasing exposure duration. By the
use of six effective exposure durations we aimed to measure a broad

Fig. 1. Schematic illustration of the TVA tasks. (A)Whole-report paradigm: different trial typeswith presentation offive equidistant letters (either red or green, respectively) in columns on
the left or the right of the fixation cross are shown. (B) Partial-report paradigm (left) with 16 trial types (right): 4 single target (depicted as ‘T’, always red), 8 target with distractor
(depicted as ‘D’, always green) and 4 dual target conditions. (For interpretation of the references to colors in this figure legend, the reader is referred to the web version of this article.)
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range of performance spectrum that reflects the early as well as the late
section of the participant's whole report functions, thereby allowing a
reliable model fit of the data. The probability of identification was
modeled by an exponential growth function in which the growth pa-
rameter reflects the rate at which objects can be processed (processing
speed C: number of element/s) and the asymptote indicates the maxi-
mum number of objects that can be represented within vSTM (vSTM
storage capacity K) (for illustration see Fig. 2A, left panel). Note that
two additional parameters, minimum effective exposure duration (t0)
and effective additional exposure duration in unmasked displays (mμ)
were also determined (and did not differ significantly between groups).
Here, they mainly served the valid estimation of parameters C and K.2

Partial report
In the partial-report task participants had to report pre-specified

(i.e., with respect to color) targets only, while ignoring distractors. In
each trial either a single target (letter) or a target plus distractor (letter)
or two targets appeared at the corners of an imaginary square with an
edge length of 5° centered on the midpoint of the screen (see Fig. 1B).
Two stimuli were presented either horizontally or vertically. Sixteen
conditions (4 single target, 8 target + distracter, 4 dual target condi-
tions) resulted. All stimuli were masked. Participants were asked to
identify and report all red targets and ignore the green distracters. In a
pretest (32 trials), the individual exposure duration was determined
at which the participant could report single targets with 80% accuracy.
In the partial report, 6 blocks, each with 48 trials, were presented.
The average exposure duration determined for the preterm group was
90.21 ms (SD = 24.69); that of the full-term group was 91.5 ms
(SD = 23.42).

From the probabilities of target identification, separate attentional
weights were derived for left and right hemifields (wL and wR, respec-
tively) and for targets (wT) and distractors (wD). The distribution of
attentional weights across hemifields and that across target and

Fig. 2. (A) Representativewhole report results for two subjects.Whole-report performance for a representative preterm groupparticipant and a representative full-termgroup participant.
Mean number of correctly reported letters as a function of effective exposure duration. Solid curves represent the best fits from the TVA to the observations. The estimate of visual short-
term storage capacityK and processing speedC ismarked bydashed lines. (B)Whole andpartial report results. Average estimates and standard errors for parameterK, C,α (i.e. efficiency of
top-down control), and wλ (i.e. spatial laterality of attention). Analyses of covariance were used for group comparisons (p b 0.05).

2 For whole report fitting, we set up a model for variable exposure durations and fixed
display size. We thresholded the maximum score to the individual highest score of the
participants and, when a small number of high scores occurred (in b5% of trials), the
thresholdwas set 1 item below themaximum. The K range was limited to values between
this maximum score and 1 item below. Its initial score was set at the average of these two
values. By setting limits to v-values (information uptake at each stimulus location), the
range of C-estimates was 0–100. The minimum of parameters t0 and mμ were set to 0
and the initial values at 10 ms and 100 ms, respectively.
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distractors was used for estimates of the attentional–selectivity param-
eters: spatial distribution of attention and top-down control. The
parameter spatial distribution of attention wλ is defined as the ratio
wL / (wL+wR). Hence, a value ofwλ=0.5 indicates balancedweighting,
and values ofwλ N 0.5 indicate a leftward and values ofwλ b 0.5 a right-
ward spatial bias. Parameter top-down control α indicates the relative
attentional weights of distracters compared to targets (wD/wT). Targets
receive moreweight than distracters if α b 1. Accordingly, the lower the
α-value, themore efficient the top-down control. Note that 4 additional
parameters, sensory effectiveness values A, for the four display locations
were fitted additionally. These again served the reliable estimation of
weighting parameters and did not differ between participant groups.3

Analysis of behavioral data
For each participant, TVA-based model fitting yielded individual

estimates for (1) C, processing speed in objects per second (2) K,
vSTM storage capacity in number of objects (3) α, efficiency of top-
control (4) wλ, spatial distribution of attention. TVA performance was
compared between groups by means of analysis of covariance
(ANCOVA). To be independent of effects of general intelligence on po-
tential group differences between pre- and full-term born participants,
we entered IQ as a covariate in the ANCOVA model.

Functional MRI

Image acquisition
Imaging was performed on a 3 T MR scanner (Achieva TX, Philips,

Netherlands) with an 8-channel phased-array head coil. Resting-state
data was collected for 10 min and 52 s from a gradient-echo echo-
planar sequence (TE = 35 ms, TR = 2608 ms, flip angle = 90°,
FOV = 230 mm2, matrix size = 64 × 63, 41 slices, thickness 3.58 mm
and 0 mm interslice gap, reconstructed voxel size = 3.59 ×
3.59 × 3.59 mm3) resulting in 250 volumes of BOLD fMRI data per sub-
ject. T1-weighted anatomical data were gained using magnetization-
prepared rapid acquisition gradient echo sequence (MPRAGE: TE =
3.93 ms, TR = 7.71 ms, flip angle = 15°, FOV = 256 mm2, matrix =
256 × 256, 180 slices, voxel size = 1 × 1 × 1 mm3). Immediately
before undergoing the resting-state sequence, subjects were instructed
to keep their eyes closed and to restrain from falling asleep. We verified
that subjects stayed awake by interrogating via intercom immediately
after the rsfMRI scan.

Data preprocessing
For each participant, the first five functional scans of each resting-

state fMRI-session were discarded due to magnetization effects. Data
were then preprocessed according to an automated in-house pipeline
(Meng et al., 2013) using SPM8 (Wellcome Trust Centre for Neuroimag-
ing, University College London, UK: http://www.fil.ion.ucl.ac.uk/spm
[date last accessed 24 October 2014]). Functional volumes were
realigned to correct for head motion and coregistered to the structural
T1-image. Subsequently the T1-weighted image was segmented into
its different departments using Unified Segmentation (Ashburner and
Friston, 2005). To transform the individual images into common MNI
(Montreal Neurological Institute) space, segmentation-based normali-
zation parameters were applied to the coregistered structural and func-
tional data. Normalized rsfMRI images were smoothed using a Gaussian
kernel with a full-width at half-maximum of 6 mm to increase signal-
to-noise ratio. In a final step, preprocessed functional time-series for
each voxel were de-spiked using AFNI. Excessive headmotion (cumula-
tive motion translation or rotation N5 mm or 3° and mean point-to-

point translation or rotation N0.15mmor 0.1°)was applied as an exclu-
sion criterion for movement artifacts. No subject had to be excluded. To
ensure data quality, particularly concerning motion-induced artifacts,
temporal signal-to-noise ratio (tSNR) and point-to-point head motion
were estimated for each subject (Murphy et al., 2007; Van Dijk et al.,
2012). Point-to-point motion was defined as the absolute displacement
of each brain volume compared to its previous volume. Two-sample
t-tests yielded no significant differences between groups regarding
mean point-to-point translation or rotation of any direction (p N 0.20)
as well as tSNR (p N 0.35).

Group independent component analysis
Preprocessed data from both groups was entered into a group ICA

framework as implemented in the GIFT toolbox (GIFT v1.3h; http://
icatb.sourceforge.net). Before performing ICA, a two-step data reduction
approach was conducted using principal component analysis (PCA).
First, PCA was done on the single subject level retaining 100 principal
components. Large numbers of subject-specific principal components
preserve most of the individual variance and have been shown to stabi-
lize subsequent back-reconstruction (Erhardt et al., 2011). We chose a
high model order ICA (number of independent components [ICs] =
75; Allen et al., 2011), since such models decompose rsfMRI data into
components that are in best agreement with known anatomical and
functional networks (Kiviniemi et al., 2009). In a second step, each of
the subject's reduced data was concatenated in time to perform a sec-
ond PCA on the group level followed by independent component
analysis with the Infomax algorithm. ICs were depicted as spatial
maps and corresponding IC time courses. To estimate the reliability of
the decomposition, ICA was repeated 20 times by using the Icasso-
toolbox (http://research.ics.aalto.fi/ica/icasso/). Reliability was quanti-
fied using the Icasso cluster quality index Iq, ranging from 0 to 1. The
group ICA framework in GIFT results in a set of average group compo-
nents, which are then back reconstructed into single subject space
using the GICA3 back-reconstruction method. Each back-reconstructed
component consists of a spatial z-map reflecting component's function-
al connectivity pattern across space and an associated time course
reflecting component's activity across time. Spatial z-maps were used
as surrogates of networks' intrinsic functional connectivity (iFC) and
analyzed further.

Selection of intrinsic brain networks
To automatically select independent components reflecting intrinsic

networks involved in visual attention, we conducted multiple spatial
regressions on 75 independent components' spatial maps using T-
maps of selected intrinsic connectivity networks as described in Allen
and colleagues (Allen et al., 2011). These T-maps (Fig. 4 in Allen et al.,
2011) were based on 603 healthy adolescents and adults and were
made available online by the Medical Image Analysis Lab (MIALAB,
http://mialab.mrn.org/data/). For each network, the independent
component with the largest correlation coefficient was chosen. Net-
works of interest were networks covering thalamus, unimodal visual
occipital cortex, and multimodal parietal cortex. These choices are
based on networks' theoretical and empirical relation with the TVA
framework locating networks that perform TVA-relevant operations
particularly in the posterior human brain (see the Introduction section)
(Bundesen et al., 2005; Finke et al., 2006; Gillebert et al., 2012; Peers
et al., 2005; Sorg et al., 2012). Visual networks were represented by
Allen's ICs 46, 64, and 67 (in Fig. 4 of Allen et al., 2011), multimodal
parietal networks included two dorsal attention networks with IC
numbers 52 and 72 in Allen et al. (2011)). Since Allen et al. did not
report an explicit thalamus network, a visual inspection by two
independent raters revealed such network (Kim et al., 2013). This
network fulfilled the criteria of stability (ICASSO N 0.95) andwas located
in the gray matter thus it was used for further analysis.

3 For partial report fitting, a model was set upwith fixed display durations and variable
display size. The fitting produced 4 values for target weights and 4 values for distractor
weights at different exposure durations with a range of 0–1, with initial values of 1 and
of 0.5, respectively. Initial values of all A parameters were 1, with a range of 1–20.
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Statistical analysis of intrinsic networks across subjects
To statistically evaluate spatial maps of selected independent com-

ponents, we calculated voxel-wise one-sample t-tests on participants'
reconstructed spatial z-maps for all subjects, using SPM 8 (p b 0.05
family wise error corrected for cluster level (FWE-cluster), height
threshold p b 0.005). Based on the resulting t-maps of one-sample
t-tests we generated masks including all voxels with a value of
p b 0.001 uncorrected. These masks were then used to restrict
the search space in the subsequent two-sample t-test. The two sample
t-tests for z-maps were controlled for the effects of gender and IQ as co-
variates of no interest (p b 0.05 FWE-cluster, height threshold p b 0.005,
Bonferroni-corrected for multiple testing of 12 tests i.e. testing for 6
networks and two contrasts, respectively).

Analysis of relationship between attentional parameter and intrinsic
connectivity changes

In order to link increased connectivity in intrinsic networks to
attentional parameter changes, we extracted mean iFC scores for each
preterm participant in those attention-related intrinsic networks,
which showed significantly increased connectivity in the preterm com-
pared to the full-term group. These mean iFC scores were correlated
with TVA parameters that differed significantly between groups. In
order to link decreased connectivity to attentional changes,we similarly
extracted iFC scores in networkswith decreased connectivity and corre-
lated them to the critical TVA parameters. In both cases, we used partial
correlation analyses controlling for variables of preterm birth (gesta-
tional age, birth weight and OPTI score) and general cognitive perfor-
mance measured by Full Scale IQ. Control for prematurity-related
variables in the group of preterm born adults ensures that a potential
relationship between altered intrinsic connectivity and vSTM capacity
is independent from specific aspects of pretermbirth. Control for gener-
al cognitive performance ensures that a potential link between intrinsic
connectivity and vSTM capacity is independent from severity of general
cognitive impairments. Partial correlation analyses for increased and
decreased iFC across networks, respectively, are thresholded at signifi-
cance level p b 0.05 and corrected for multiple testing via Bonferroni
correction.

Results

Behavioral results: reduced visual short-term memory capacity in preterm
born adults

Whole report results: short-term memory capacity and processing speed
In Fig. 2A themeannumber of correctly reported letters as a function

of the (effective) exposure duration is presented for a representative
participant from each group. The scores predicted by TVA-model fits
(represented by solid curves) and the observed scoreswere in close cor-
respondence. Goodness-of-fit measures averaged across all participants
showed that 85% (SD = 7.32) of variance in the observed scores of the
preterm group and 81% (SD = 10.14) in the full-term group was
accounted for by the maximum likelihood fits. Visual processing speed
C estimates were comparable between the two groups (see Fig. 2B;
F(1)= 1.05, p= .31). Accordingly, in Fig. 2A both representative partic-
ipants have similar initial slopes that approximately reflect the rate of
information uptake in objects per second (high processing speed is
indicated by a steep increase). vSTM storage capacity estimates were
significantly lower in the preterm compared to the full-term group
(see Fig. 2B; F(1) = 5.31, p = 0.03). Furthermore, we did not find
any interaction effect between vSTM storage capacity and IQ (F(1) =
0.00, p = 0.97). Fig. 2A shows that with prolonged exposure duration,
an asymptotic level of reported letters is reached (indicated by the
dashed horizontal line), which is an approximation of vSTM storage ca-
pacity. The full-term born participant reached a maximum of around
three objects; by contrast, the preterm-born participant's asymptote

is lower, indicative of a reduced number of letters that can be
represented.

Partial report results: top-down and spatial attentional weighting
Theoretically and empirically obtained mean scores showed a rea-

sonably close correspondence. That is, 62% (SD= 19.33) of the variance
of performance in the preterm group and 61% (SD = 18.90) in the full-
term group was explained by the maximum likelihood fit measures.
Top-down control α: Fig. 2B shows that average parameter estimates
and standard errors were comparable across groups (F(1) = 0.01, p =
0.94). Values of parameter α at around 0.5 indicated that both groups,
on average, were able to allocate twice as much relative attentional
weight to targets compared with distractors and were thus able to
prioritize relevant over irrelevant information. Spatial distribution of
attentional weighting wλ: Fig. 2B also shows that groups had comparable
spatial attentional weighting values (F(1) = 0.22, p= 0.64), which are
generally centered around the optimum value of 0.5 and, thus, do not
indicate any spatial bias.

fMRI results: changes in visual and attention-related intrinsic networks in
preterm born adults

ICA of rs-fMRI data revealed uni-modal visual, multi-modal
attention-related and thalamic intrinsic networks for full- and preterm
born adults that have been described previously (one-sample t-test,
p b 0.05 FWE-cluster; Fig. 3A; Table 2; e.g. Allen et al., 2011;
Damoiseaux et al., 2008; Kim et al., 2013). The three uni-modal visual
networks covered mainly lingual and calcarine gyri (Allen et al.,
2011). Themulti-modal attention-relatednetworks included twodorsal
attention networks, which cover frontal cortices like frontal eye fields
and parietal cortices such as superior parietal lobe (Allen et al., 2011;
Corbetta and Shulman, 2002). The identified thalamus network is cen-
tered on bilateral thalamus (Damoiseaux et al., 2008; Kim et al., 2013).

Preterm born adults demonstrated altered spatial patterns of
functional connectivity in unimodal visual and multimodal attention-
related networks (p b 0.05, FWE cluster-corrected and Bonferroni-
corrected; Fig. 3A, Table 3) including areas showing increased and
areas showing decreased connectivity compared to the full-term
group. Increased iFCwas found in the calcarine and lingual gyri of visual
networks as well as in the superior parietal lobe of dorsal attention net-
works. Decreased iFC was found in lingual gyri of two visual networks
and in the superior parietal lobe of dorsal attention networks. Taken to-
gether, these data demonstrate substantial re-organization of functional
connectivity in intrinsic networks that overlap with regions critical for
visual attention.

Compensation-like relationship between changes in intrinsic networks and
vSTM performance in preterm born adults

For each preterm born adult, we extracted averaged iFC scores of
clusters with increased connectivity and related themwith correspond-
ing vSTM capacity scores via partial correlation analyses controlled for
gestational age, birth weight, OPTI, and IQ (Fig. 3B). For these clusters
of increased iFC in the preterm group (indicated by the red color in
Fig. 3B), we found positive correlations between iFC and vSTM capacity
in two visual networks and one dorsal attention network, i.e. the higher
the intrinsic connectivity in selected clusters of these networks the
higher the vSTM capacity of preterm born adults (visual network I:
r=0.35, p=0.05; dorsal attention network II r=0.47, p=0.01). Nota-
bly, only the correlation with the dorsal attention network was signifi-
cant at a level that survived correction for multiple comparisons
(Bonferroni correction), critical alpha = 0.01: visual I (FT N PT) versus
visual II (FT N PT) versus dAtt I (FT N PT) versus dAtt II (FT N PT). We
also extracted average iFC scores of clusters of decreased connectivity
in the visual and dorsal attention networks (indicated by the blue
color in Fig. 3B). When correlating these with corresponding vSTM
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capacity scores, we found negative correlations between iFC and vSTM
i.e. the lower the intrinsic connectivity the higher the vSTM capacity
(visual network III: r = −0.47, p = 0.01; dorsal attention network II:

r = −0.39, p = 0.04). Only the correlation between vSTM capacity
and iFC of visual II network survived Bonferroni correction (critical
alpha = 0.01: visual I (PT N FT) versus visual III (PT N FT) versus dAtt I

Fig. 3. (A) Resting-state functional MRI data of subjects were decomposed by independent component analysis (ICA). Resulting subject-specific ICs include both spatial z-maps reflecting
component's functional connectivity pattern across space and time courses reflecting component's activity across time. Spatial maps were analyzed via one-sample t-tests across all
subjects (p b 0.05 FWE-cluster) and via two-sample t-tests across groups of pre- and full-term (PT, FT) born adults (p b 0.05 FWE cluster-corrected and corrected for multiple comparison
using Bonferroni procedure; blue: PT b FT; red: PT N FT). (B) Partial correlations between averaged between-group different aberrant functional connectivity FC and vSTM storage capacity
K in the preterm group including additional variables of gestational age, birth weight, perinatal medical complications (p b 0.05, Bonferroni corrected for multiple testing). Vis I–III: visual
networks I–III; Thal: Thalamus network; dAtt I, II: dorsal Attention networks I and II.
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(PT N FT) versus dAtt II (PT N FT)). Taken together these results indicate
a consistent pattern of inter-related vSTM performance and intrinsic
connectivity distribution: themore the intrinsic connectivity of preterm
adults differ from that of healthy term adults, the better the vSTM ca-
pacity. This pattern suggests a redistribution of intrinsic connectivity
as a beneficial compensatory mechanism following early brain damage.

Discussion

The objective of the present study was to assess the specific long-
term effect of preterm birth on sub-mechanisms of selective attention
and how potential changes link with alterations in intrinsic brain
networks. Using the computational Theory of Visual Attention and
whole and partial-report paradigms in preterm and full-term born
adults, we found reduced vSTM storage capacity in preterm born adults.
The remaining attentional sub-mechanisms, i.e. visual processing speed,
top-down control and spatial attention, were unaffected. Using resting-
state fMRI we found changes in visual and multimodal attention-
relevant intrinsic networks in preterm born adults. Among these
pretermborn adults, the individual pattern of changed intrinsic connec-
tivity in occipital and parietal cortices was systematically associated
with vSTM in a way that the more distinct the connectivity differences
the better the preterm adults' storage capacity. Our results go beyond
previous indications of lasting visual attention deficits in preterm born
individuals as they provide first evidence for specifically impaired
vSTM storage capacity in visual attention. Furthermore data suggest
that functional reorganization of intrinsic connectivity in visual and
dorsal attention networks may serve as compensatory mechanisms of
the early-lesioned brain, which may protect from vSTMmalfunction.

The nature of long-term impairments in visual attention following
preterm birth

Using the TVA-based procedure, we found vSTM storage capacity
specifically reduced in preterm born adults during visual attention
whole-report performance, indicating that the number of elements
that preterm born persons can maintain in a given moment is limited
compared to full-term born adults (Fig. 2). Other attentional sub-
mechanisms, i.e. visual processing speed, top-down control, and spatial
attention, were not changed (Fig. 2). vSTM storage capacity is known to
explain individual variance in a range of cognitive tasks (Cowan et al.,
2005; St Clair-Thompson and Gathercole, 2006). Thus, low vSTM stor-
age capacity may be a relevant underlying cause of various attention
and cognitive deficits reported after preterm birth (e.g. Aylward,
2002; Bhutta et al., 2002). Furthermore, lowvSTM storage capacity is as-
sociatedwith academic underachievement (Bull et al., 2008; Gathercole
and Pickering, 2000; Jarvis and Gathercole, 2003), and thus provides a
possible explanation for suboptimal career development documented
in preterm-born individuals (Hack et al., 2002; Olsen et al., 1994;
Saigal and Doyle, 2008).

Intrinsic connectivity changes in cortical large-scale brain networks
compensate for vSTM storage capacity deficits

The remarkable changes that we found in various intrinsic networks
relevant for visual attention functions in preterm adults (i.e. visual and
dorsal attention networks; Fig. 3) correspond to previous findings in
infants (Doria et al., 2010; Smyser et al., 2010), children (Damaraju
et al., 2010), and adults (Bäuml et al., 2014; Wilke et al., 2013). Since
we found both areas of increased and decreased intrinsic connectivity,
data suggest complex re-organization of intrinsic functional connectiv-
ity. Notably, all intrinsic connectivity changes affect areas that are spec-
ified as contributors to visual attention and particularly vSTM functions
in the NTVA model: both bilateral occipital visual perceptual areas and
frontoparietal areas of the dorsal visual stream are assumed to be rele-
vant for visual attentional selection and maintenance in vSTM storage
feedback loops (Bundesen et al., 2005; Crick, 1984; McAlonan et al.,
2008). In linewith this correspondence, individual vSTM storage capac-
ity in preterm born adults was associated with an individual degree of
connectivity changes (Fig. 3B): in those visual areas with (on average)
lower intrinsic connectivity in the preterm group compared to the
full-term group, lower connectivity was associated with relatively high
vSTM storage capacity in the preterm group. In areas of the dorsal

Table 2
Intrinsic networks related with visual attention in full- and preterm born adults.

Network Region kE tmax Peak coordinates

Full-term participants
Thalamus L thalamus 602 27.19 −6 −28 10
Visual I Bi lingual gyrus 1828 26.44 6 −73 −5

R precuneus 109 6.68 21 −82 34
Bi cingulate cortex 54 3.88 3 −40 28

Visual II Bi lingual gyrus 1161 31.78 0 −79 4
Visual III Bi calcarine gyrus 2428 33.17 −6 −64 10
dAtt I R superior parietal lobe 1835 20.05 21 −67 58

L inferior frontal gyrus 260 5.63 −45 41 4
L frontal superior lobe 258 9.07 −24 −7 61
R precuneus 240 6.60 3 −55 22
L anterior cingulate 179 4.66 −6 29 22

dAtt II R superior parietal lobe 3243 27.71 21 −46 64
L superior parietal lobe 1985 23.60 −30 −46 64
R middle frontal gyrus 266 6.34 45 20 34
L inferior frontal gyrus 150 7.98 −57 17 16
Bi anterior cingulate 148 7.47 0 41 10
R superior frontal gyrus 105 4.71 9 65 1
L superior frontal gyrus 89 6.36 −30 50 28
L precuneus 73 6.86 −12 −52 13

Pre-term participants
Thalamus L thalamus 576 29.45 −6 31 7
Visual I Bi lingual gyrus 1583 25.03 6 −76 −8
Visual II Bi lingual gyrus 1186 34.21 −3 −79 1
Visual III Bi lingual gyrus 2272 28.01 9 −64 7
dAtt I L superior parietal 1765 20.51 −24 −64 55

L middle frontal gyrus 232 6.64 −27 −10 58
R posterior cingulum 134 6.91 3 −40 25
R middle frontal gyrus 68 4.41 24 −7 46
R middle temporal gyrus 54 6.58 54 −52 −11

dAtt II R postcentral gyrus 984 19.39 27 −40 64
L postcentral gyrus 846 24.61 −18 −52 67
R inferior parietal lobe 138 8.42 54 −31 31
R superior frontal gyrus 95 6.70 18 −4 67
L inferior parietal lobe 69 5.34 −54 −31 22
L middle frontal gyrus 52 5.75 −15 −10 64

For each group of full- and preterm born adults: one-sample t-tests for spatial z-maps
derived from independent component analysis of resting-sate fMRI data: p b 0.05 family
wise error corrected at cluster level, height threshold p b 0.005. Abbreviations: kE: cluster
extent, L: left, R: right, dAtt: dorsal attention network, visual: visual network.

Table 3
Group differences between full- and preterm adults for intrinsic networks related with
visual attention.

Network Region kE tmax Peak coordinates pFWE-corr

Full-term N Preterm
Visual I L lingual gyrus 120 6.56 3 −64 4 b0.001
Visual III L lingual gyrus 267 6.02 −3 −76 16 b0.001
dAtt I L inferior parietal lobe 96 6.24 −42 −49 55 0.001
dAtt II R precuneus 87 4.74 −15 −55 58 0.001

Preterm N full-term
Visual I L lingual gyrus 103 8.17 −21 −76 −14 b0.001
Visual II L lingual gyrus 299 6.04 −6 −79 −8 b0.001
dAtt I R precuneus 71 5.51 21 −76 46 0.002
dAtt II L postcentral gyrus 72 4.85 −27 −48 70 0.003

Group comparison between full- and preterm born adults: two-sample t-tests for spatial
z-maps derived from independent component analysis of resting-state fMRI data: signifi-
cance level p b 0.05 family-wise error corrected at cluster level and corrected for multiple
comparisons using Bonferroni procedure. Abbreviations: kE: cluster extent, L: left, R: right,
dAtt: dorsal attention network, visual: visual network.
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attention network that showed higher average intrinsic connectivity in
the preterm compared to the full-term group, higher connectivity was
related to relatively high performance. These relationships remained
significant even after controlling for potentially confounding factors
such as birth weight, gestation age, perinatal complications, and IQ.
These data – particularly their consistent pattern across networks and
regions – indicate that more pronounced cortical connectivity changes
were present in those participants with higher behavioral performance.
Dynamic adaptive reorganization of cortical intrinsic connectivity
networks may represent a compensatory mechanism that ameliorates
the development of preterm birth induced vSTM deficits and the
individual degree of such reorganization might serve as a biomarker of
adaptive neural plasticity. Following the demonstration of compensato-
ry changes in functional connectivity, it would be interesting to explore
whether other brain changes, e.g. those in structural connectivity, might
be related to a vSTM performance drop.

Previous views on neuro-cognitive plasticity following pretermbirth
were mixed. While Pavlova and Krageloh-Mann (2013) suggested that
the typically symmetric bilateral damage in preterm born infants
reduces the degree of neural plasticity as it is found in other develop-
mental disorders, other authors interpreted the finding as preterm-
born individuals activating a broad bilateral neuronal network during
language processing as evidence for compensatory neural processing
(Gozzo et al., 2009; Mullen et al., 2011; Myers et al., 2010; Schafer
et al., 2009). Complementary to our findings, a recent resting-state
fMRI study demonstrates positive associations between altered iFC in
the cerebellum and language skills in a preterm born sample of young
adults suggesting involvement of alternative cerebellar pathways for
language in preterm born subjects (Constable et al., 2013). Critically,
to the best of our knowledge, such changes of iFC have never been
linked to mechanisms of visual attention. We provide direct evidence
for the existence and the functional relevance of residual compensatory
capabilities for vSTM storage capacity within the developing brain
affected by preterm birth. In preterm adults, functionally reorganized
brain networks relevant for attention may contribute to the ameliora-
tion of functional deficits in vSTM induced by early developmental
disturbances. Further research is needed to test whether such compen-
satory reorganization can be stimulated.

Methodological issues and limitations

Participants
The sample of the current study consisted of preterm born adults

with lower neonatal complications and higher IQ. Persons with more
complications or severe impairments in the initial BLS sample were
more likely to be excluded in the initial screening for MRI and visual
attention testing (e.g. visual acuity) or declined to participate in MRI
scanning. Thus observed results are conservative estimates of the true
differences in attentional sub-mechanisms and their intrinsic network
correlates in preterm born adults. Severely impaired preterm born indi-
viduals might not have the same compensatory mechanisms or such
mechanismsmight be disrupted. Further studies on subgroups are nec-
essary. Furthermore, it is relevant for the development of treatment
strategies to know the trajectory of specific attention sub-mechanisms
and their compensation after preterm birth. Here longitudinal studies
are necessary.

ICA
Despite many advantages, the use of ICA to identify intrinsic

networks has some limitations. First, our selection of a model order
was empirical. Although it has been demonstrated that a model order
of about 75 components (as used here) seems to be optimal
(Kiviniemi et al., 2009), no computational or objective criterion for
that number exists. Second, the selection of networks of interest from
ICA-derived components is intricate, particularly due to subjective
bias. To address this, we performed maximally controlled spatial

regression analysis of all identified ICs. These templates were based on
a previous study using the same analysis approach and based on a
large, 603 healthy subject sample (Allen et al., 2011).

Conclusion

Our study provides first evidence for selectively disrupted attention
sub-mechanisms in preterm born adults that are associatedwith poten-
tially compensatory changes of functional connectivity in intrinsic brain
networks. These findings may contribute to our search for specific
neuro-cognitive targets for the treatment of the long-term effects of
preterm birth on cognition.
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3. 

Project 2: Neuro-cognitive 
Mechanisms of Simultanagnosia in 

Patients with Posterior Cortical 
Atrophy 

The current chapter includes a research article entitled “Neuro-cognitive 

mechanisms of simultanagnosia in patients with posterior cortical atrophy”. This 

article showed for the first time in a relatively large group of PCA patients that 

white matter disconnections within the superior parietal lobe lead to slowing of 

visual processing speed, which underlies the overt clinical symptoms of 

simultanagnosia. The manuscript was published in BRAIN in 2016.  

Contributions:  

Authors: Julia Neitzel, Marion Ortner, Marleen Haupt, Petra Redel, Timo 

Grimmer, Igor Yakushev, Alexander Drzezga, Peter Bublak, Christoph Preul, 

Christian Sorg, Kathrin Finke 
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C.P. conducted clinical MRI data acquisition. J.N. analyzed behavioral and imaging 

data, with some help from M.H.   J.N. wrote the manuscript, supervised by K.F., 

and the manuscript was commented on and reviewed by P.B., T.G., M.O. and C.S. 
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Posterior cortical atrophy is dominated by progressive degradation of parieto-occipital grey and white matter, and represents in

most cases a variant of Alzheimer’s disease. Patients with posterior cortical atrophy are characterized by increasing higher visual

and visuo-spatial impairments. In particular, a key symptom of posterior cortical atrophy is simultanagnosia i.e. the inability to

perceive multiple visual objects at the same time. Two neuro-cognitive mechanisms have been suggested to underlie simultanag-

nosia, either reduced visual short-term memory capacity or decreased visual processing speed possibly resulting from white matter

impairments over and above damage to cortical brain areas. To test these distinct hypotheses, we investigated a group of 12

patients suffering from posterior cortical atrophy with homogenous lesion sides in parieto-occipital cortices and varying severity of

grey and white matter loss. More specifically, we (i) tested whether impaired short-term memory capacity or processing speed

underlie symptoms of simultanagnosia; (ii) assessed the link to grey and white matter damage; and (iii) integrated those findings

into a neuro-cognitive model of simultanagnosia in patients with posterior cortical atrophy. To this end, simultaneous perception

of multiple visual objects was tested in patients with posterior cortical atrophy mostly with positive Alzheimer’s disease biomarkers

and healthy age-matched controls. Critical outcome measures were identification of overlapping relative to non-overlapping figures

and visuo-spatial performance in tests sensitive to simultanagnosia. Using whole report of briefly presented letter arrays based on

the mathematically formulated ‘Theory of Visual Attention’, we furthermore quantified parameters of visual short-term memory

capacity and visual processing speed. Grey and white matter atrophy was assessed by voxel-based morphometry analyses of

structural magnetic resonance data. All patients showed severe deficits of simultaneous perception. Compared to controls, we

observed a specific slowing of visual processing speed, while visual short-term memory capacity was preserved. In a regression

analysis, processing speed was identified as the only significant predictor of simultaneous perception deficits that explained a high

degree of variance (70–82%) across simultanagnosia tasks. More severe slowing was also indicative for more severe impairments in

reading and scene comprehension. Voxel-based morphometry yielded extensive reductions of grey and white matter in parieto-

occipital and thalamic brain areas. Importantly, the degree of individual atrophy of white matter in left superior parietal lobe, but

not of any grey matter region, was associated with processing speed. Based on these findings, we propose that atrophy of white

matter commonly observed in posterior cortical atrophy leads to slowing of visual processing speed, which underlies the overt

clinical symptoms of simultanagnosia.
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Introduction
Posterior cortical atrophy (PCA) is a neurodegenerative syn-
drome dominated by extensive grey and white matter loss in
parietal, occipital and occipito-temporal brain regions. It
mostly arises from Alzheimer’s disease neuropathology
(Hof et al., 1997; Renner et al., 2004; Tang-Wai et al.,
2004). However, neurofibrillary tangles are most pro-
nounced in primary visual and visual association cortices
(especially in Brodmann areas 17 and 18) and significantly
less in the hippocampus. Accordingly, patients with PCA
show a fairly selective, progressive decline of higher visual
and visuospatial skills, while at least initially memory is
relatively spared. The cardinal visual symptom, affecting
82–92% of patients, is simultanagnosia (Tang-Wai et al.,
2004; Kas et al., 2011), the inability to recognize more
than one visual object at a time (Bálint, 1909). While pa-
tients can describe individual elements of a visual scene, they
cannot integrate them into a coherent meaningful whole
(Wolpert, 1924), leading to severely impaired daily life activ-
ities. Although simultanagnosia is generally characterized as
an attention deficit and linked to damage of the visuospatial
attention system, the precise neuro-cognitive mechanism re-
mains elusive. Here, we tested two alternative hypotheses
about the functional and neuroanatomical substrates of
simultanagnosia in a group of 12 patients with PCA.

There are two basic accounts for simultanagnosia. An
early single case report of a patient who showed a
normal processing rate for single objects, but was unable
to name any additional objects suggested a reduced visual
short term memory (STM) storage capacity (Coslett and
Saffran, 1991; see also Pavese et al., 2002). However, de-
scriptions of patients with significantly slowed single object
processing supported a processing speed account (Bálint,
1909; Luria, 1959). Recent studies based on the integrated
mathematical framework of the Theory of Visual Attention
(TVA; Bundesen, 1990) were able to formalize and test
these two alternatives. Duncan et al. (2003) showed that
two simultanagnostic stroke patients suffered from slowed

processing speed, rather than reduced visual STM capacity.
Congruently, Finke et al. (2007) found Huntington’s dis-
ease patients with more severe deficits in simultaneous per-
ception to suffer from more reduced processing speed.

Analyses of the neuronal substrates of simultanagnosia
have long been limited to case reports (Bálint, 1909;
Naccache et al., 2000; Rizzo and Vecera, 2002;
Himmelbach et al., 2009; Thomas et al., 2012). The first
systematic evaluation presented by Chechlacz et al. (2012)
compared the lesion patterns between seven patients with
simultanagnosia and patients with unilateral visuospatial
deficits. Voxel-based morphometry (VBM) analyses
showed that simultanagnosia was related to grey matter
lesions of bilateral parieto-occipital cortices and right intra-
parietal sulcus, together with extensive white matter lesions
of long association pathways. Diffusion-tensor imaging
(DTI) analyses confirmed that bilateral superior longitu-
dinal, inferior fronto-occipital, and inferior longitudinal fas-
ciculus disconnections are necessary for simultanagnosia
(Migliaccio et al., 2012b). Thus, both grey and white
matter damage within the visuospatial attention network
seem to contribute to simultanagnosia. Like Duncan et al.
(2003), the authors proposed extensive white matter dis-
connections to result in slowed visual processing speed
and impaired simultaneous object perception. Yet, this in-
terpretation remains speculative, as reduction of visual
STM capacity and visual processing speed have never
been systematically contrasted with respect to their linkage
to grey and/or white matter damage.

The present study aims to systematically investigate the
relationship between the functional and neuroanatomical
features of simultanagnosia by (i) determining whether
changes of visual STM capacity or processing speed under-
lie symptom occurrence; (ii) assessing the link between the
critical mechanism underlying simultanagnosia, and grey
and white matter abnormalities; and (iii) integrating these
findings into a neuro-cognitive model of simultanagnosia in
patients with PCA. We investigated 12 patients with PCA
who mostly had positive biomarkers for Alzheimer’s
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disease confirmed either by 11C-Pittsburgh compound-B-
PET (PiB-PET) imaging or CSF amyloid-b42. This patient
group enabled us to study the consequences of homologous
lesion sites in parieto-occipital brain regions and of varying
degree of grey and white matter atrophies in a relatively
large cohort.

Severity of simultanagnosia was assessed by ratios and
test scores known to be sensitive for the syndrome.
Object perception deficits were assessed with ratios com-
paring identification accuracy for multiple overlapping
and embedded against adjacent objects. Typical visuo-
spatial deficits were assessed by dot counting and position
discrimination. In six patients we assessed daily-life symp-
toms in reading and scene perception.

By using TVA-based (Bundesen, 1990) whole report of
brief letter arrays, we quantified mathematically independ-
ent parameter estimates of visual STM capacity (K) and
visual processing speed (C). In contrast to conventional
clinical tests, this parametric measurement is established
to reveal process-pure and independent measures (Finke
et al., 2005; Habekost, 2015). Thus, valid assessment of
visual STM capacity is possible even in patients with
reduced processing speed (and vice versa). To date, the
methodology was successful in 430 patient studies
(Habekost, 2015), including neurodegenerative diseases
(Bublak et al., 2006, 2011; Finke et al., 2006, 2007).
Furthermore, dissociations between processing speed and
visual STM were documented in different patient groups
(Finke et al., 2011; Stenneken et al., 2012), in distinct
EEG correlates (Wiegand et al., 2012, 2014) and in differ-
ent cueing and pharmacological effects (Matthias et al.,
2009; Finke et al., 2012; Vangkilde et al., 2013; Sørensen
et al., 2015). We used this cognitive specificity to test, in a
regression analysis, whether visual STM capacity or visual
processing speed significantly predicted the simultanagnosia
symptoms. Control analyses on figure naming and memory
tasks tested the possibility that stronger impairments in
TVA parameters simply reflect that a patient with PCA is
generally performing more poorly in visuo-cognitive or
even all cognitive tasks.

Such cognitive specificity is optimal to relate basic atten-
tional deficits to patterns of neuropathology in patient
populations (Sorg et al., 2012). The integrity of grey and
white matter was measured by whole-brain VBM analysis
of high-resolution structural MRI.

Materials and methods

Participants
Twelve patients with PCA [mean age ! standard deviation
(SD) 64.0 ! 7.18, five females] were included in the study
(for demographical and clinical data see Tables 1 and 2).
Patients were recruited from the Department of Psychiatry
(n = 10), Klinikum rechts der Isar, Technische Universität
München (TUM), Munich, Germany or the Hans-Berger
Department of Neurology (n = 2), University Hospital Jena,
Germany. Diagnosis of PCA was based on published criteria
(Mendez et al., 2002). Ten patients were positive for
Alzheimer’s disease biomarkers based on amyloid-PET and
CSF amyloid-b42 levels. PiB-PET images were visually assessed
by experienced raters and evaluated as positive if there was
cortical binding in one or more brain regions (Rabinovici
et al., 2010). For CSF amyloid-b42, we used a threshold of
5640 ng/l that corresponds highly with global PiB PET bind-
ing (Zwan et al., 2014). Clinical diagnoses were established
by a multidisciplinary team consensus. Exclusion criteria were
subcortical vascular pathology indicated by severe white
matter hyperintensities, other major neurological conditions,
such as other types of dementia, other neurodegenerative dis-
eases, stroke, brain tumours, severe systemic diseases, and
psychiatric disorders. For MRI data analysis, only the 12
Munich subjects were included to avoid scanner confounds.
Twelve participants with visual attention assessment (HC1)
and 12 subjects with MRI (HC2) formed two healthy control
groups matched for age, gender, and education. All control
participants lacked any history of neurological or psychiatric
disorders. All participants had normal or corrected-to-normal
visual acuity (for demographical data see Tables 1 and 2).
All participants provided written informed consent before par-
ticipating in the study, which was approved by the

Table 1 Sample characteristics

TVA Statistical
comparison (P)

MRI Statistical
comparison (P)

PCA HC1 PCA HC2

N 12 12 10 12

Gender, male/female 7/5 6/6 0.682 5/5 5/7 40.999

Age [years], mean (SD) 64.2 (7.5) 64.9 (2.5) 0.737 64.7 (7.5) 64.8 (5.7) 40.956

Education [years], mean (SD) 10.4 (1.4) 10.4 (1.7) 40.999 10.2 (1.3) 10.7 (1.8) 0.499

Handedness, right/left 12/0 12/0 40.999 10/0 10/2 0.481

MMSE, mean (SD) 19.3 (3.4) 28.8 (0.8) 50.001 19.4 (379) 28.9 (1.1) 50.001

HC = healthy control participants; MMSE = Mini-Mental State Examination.

Statistical comparisons: gender, handedness: chi-squared statistics; age, education and MMSE: non-parametric Mann-Whitney tests.
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Committees of Human Research at the LMU, TUM and Jena
University.

Behavioural assessment of Theory of
Visual Attention parameters of
attention at time-limited
presentation

Computational Theory of Visual Attention
framework

According to TVA, two distinct parameters determine the in-
dividual processing capacity of a given participant: Visual per-
ceptual processing speed C is the number of visual elements
that can be processed per second; visual STM storage capacity
K quantifies the number of items that can be categorized and
selected in parallel and transferred into a visual STM store
(Sperling, 1960; Luck and Vogel 1997; Cowan, 2001;
Habekost et al., 2009). These TVA parameters are derived
from a whole report of briefly presented letter arrays. For
formal TVA descriptions and equations, maximum likelihood
model fitting and software, see Kyllingsbæk (2006).

Theory of Visual Attention whole report procedure

Figure 1B illustrates the applied whole report procedure,
described previously (Bublak et al., 2006, 2011; Finke et al.,
2006, 2007; Redel et al., 2012). In short, participants are pre-
sented with a briefly displayed letter column, and asked to
report as many letters as possible. As it is now standard in
experimental research on visual STM and visual working
memory capacity (Luck and Vogel, 1997), visual stimuli are
presented simultaneously to ensure not only that the represen-
tation is acquired through the visual modality, but also that it
is visual in nature. This is important since a verbal or amodal
conceptual representation, which could arise via verbal recod-
ing during serial presentations of the sensory input, cannot be
considered as visual STM (Luck and Vogel, 2013).

Letters can be reported in any arbitrary order and without
time limits. Individual exposure durations are determined in a
preceding practice session. Three different exposure durations
(short, medium, and long) are used. In the present study, pa-
tients’ average exposure durations were 317.1 ms (SD = 163.9),
658.7 ms (SD = 323.3), and 1301.7 ms (SD = 679.8). Healthy
controls’ average exposure duration were 126.5 ms
(SD = 13.4), 254.7 ms (SD = 19.4), and 512.7 ms (SD = 45.7).
In half of the trials the letter stimuli were followed by a mask.
This resulted in six effective exposure durations, because, in
unmasked trials, storage of visual information in iconic
memory leads to prolonged information processing. Viewing
distance was 50 cm as stabilized by a chin rest. The examin-
ation lasted 45–60 min. Performance (i.e. the number of letters
reported correctly) was measured as a function of exposure
duration.

Based on accuracy in the different effective exposure dur-
ation conditions, parameters reflecting processing efficiency
were modelled. In TVA, the processing rate depends on the
dynamics of the processing system. This is expressed as an
exponentially rising probability for an object to be selected
with increasing exposure duration. By the use of six effective
exposure durations we aimed to measure a broad range of the
performance spectrum that reflects the early as well as the lateT
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section of a participant’s whole report function, thereby allow-
ing a reliable model fit of the individual data. Note that, due to
adjusted exposure, absolute report accuracy is not of signifi-
cance. The probability of identification was modelled by an
exponential growth function in which the growth parameter
reflects the rate at which objects can be processed (processing
speed C: number of letters/s) and the asymptote indicates the
maximum number of objects that can be represented within
visual STM (visual STM storage capacity K) (Fig. 2A).

Minimal effective exposure duration t0, i.e. sensory thresh-
old (minimum presentation time) beneath which nothing is
perceived and prolongation of effective exposure duration
(duration of iconic memory !, were additionally determined
from TVA-based model fitting). Parameter t0 and ! mainly
served the valid fitting of the main parameters of interest.

Assessment of simultanagnosia
symptoms at unlimited presentation

Overlapping figures task

In the overlapping figures task [Fig. 1A(i)] of the Birmingham
Object Recognition Battery (BORB; Riddoch and Humphreys,
1993) identification performance on overlapping objects was
assessed relative to non-overlapping objects. More specifically,

the participants’ task was to name line-drawings of common
objects that are shown in three different presentation condi-
tions. In each of the conditions, objects were presented under
time-unlimited viewing conditions. That is, participants viewed
and processed the objects as long as they wished and stopped
the report when they regarded it to be complete. There were
three conditions, each containing 40 objects. The first two
were control conditions where patients suffering from simulta-
nagnosia, but not from a general visual agnosia, should per-
form relatively well. (i) In the single-figure condition one object
was shown at a time and it was tested whether all patients
were generally able to name the objects presented in the test.
Note that all participants passed this control assessment with a
maximal amount of one error. (ii) In the non-overlapping-
figures (adjacent) condition two objects were shown simultan-
eously side by side without overlap. This condition was
introduced as a baseline condition. (iii) Finally, the overlap-
ping-figures condition was the critical condition where patients
with simultanagnosia should have difficulties as the objects
were presented in a superimposing manner (Riddoch and
Humphreys, 2004). The critical outcome measure that specif-
ically reflects the degree of simultaneous perception deficits
was the ratio of the mean accuracy in the overlapping condi-
tion to the mean accuracy in the adjacent condition. Values
approximating 1 indicate that accuracy in the overlapping con-
dition equals that in the non-overlapping condition, while
values approximating 0 indicate severe impairment of simul-
taneous perception. We expected lower ratio scores in the PCA
patient compared to the control group.

Simultaneous-perception task

The computerized simultaneous-perception task (SPT)
[Fig. 1A(ii)] used in a previous study in patients with
Huntington’s disease (Finke et al., 2007) was applied.
Participants had to name black outline shapes displayed on a
white background: triangle, square, pentagon, hexagon, heart,
crescent, cross, star, and circle. (i) In a single-stimulus condi-
tion all shapes were presented one at a time. No patient com-
mitted more than one error. (ii) In the adjacent-stimuli
condition, stimuli were shown side by side without overlap.
(iii) In the embedded-stimuli condition, smaller stimuli were
enclosed by the lines of the next larger one and so forth,
with the largest stimulus forming the outer boundary. (iv) In
the overlapping-stimuli condition, shapes were presented
superimposed. In the adjacent-, embedded- and overlapping-
stimuli condition, set sizes varied between two and five items.

Performance in a given trial was rated as correct if partici-
pants reported all figures correctly. Each presentation condi-
tion included 16 trials. In analogy to the BORB, we computed
two ratio scores, by dividing mean accuracy in the embedded-
stimuli condition and in the overlapping-stimuli condition, re-
spectively, by mean accuracy in the adjacent-stimuli condition.
Critically, simultanagnosia should be reflected by deficits of
naming multiple objects that are occupying overlapping loca-
tions. That is, we expected particular low ratio scores in pa-
tients with PCA for the overlapping-stimuli condition, while
the ratio score for the embedded-stimuli condition should
also be somewhat affected. In contrast, no considerable prob-
lems were expected to occur in the healthy control group re-
sulting in ratio scores approximating 1.

Figure 1 Schematic illustration of the simultanagnosia

tests and the TVA-based whole report paradigm. (A, i)

Stimuli of the overlapping-figures test of the BORB for each pres-

entation conditions (adjacent and overlapping); (ii) stimuli of the

simultaneous-perception task (Finke et al., 2007) for each presen-

tation condition (adjacent, embedded, overlapping); (iii) dot

counting task of the VOSP; (iv) position discrimination task of the

VOSP. (B) Whole report paradigm: different trial types with pres-

entation of five equidistant letters (either red or green, respectively)

in columns on the left or the right of the fixation cross are shown.
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Visuospatial abilities

Two subtests of the Visual Object and Space Perception
Battery (VOSP; Warrington and James, 1991) known to be
sensitive for simultanagnosia, were used. In the dot counting
task [Fig. 1A(iii)] 10 stimulus arrays of five up to nine black
dots on a white background are shown and participants have
to count the dots without using their fingers. In the position
discrimination task [Fig. 1A(iv)] 20 stimulus cards, each show-
ing two identical squares, are presented. Each square contains
a black dot and participants have to identify the square where
the dot is located exactly in the centre. Stimuli are shown with
unlimited presentation time.

Assessment of symptoms in daily-life
activities

Reading abilities

Patients’ reading performance was assessed by the standar-
dized German text B of the ‘Saarbrücker Lesetexte’ reading
test (Kerkhoff et al., 2012). The instruction was to read the
180-word-long text as accurately and fast as possible. It was
assessed whether a patient was at all able to read the text and,
if so, reading time was measured in seconds.

Comprehension of thematic complex scenes

To assess holistic scene interpretation, we asked the patients to
describe what is happening in the complex scene displayed on
the Boston cookie theft picture (Goodglass et al., 1983). We
assessed whether scene comprehension was at all possible. It
was classified as not possible when a patient took a piecemeal
approach characterized by reporting individual objects without
being able to comprehend the meaning of the picture within a
maximum time of 2 min. If the patient was able to figure out
the global meaning of the scene, the time needed for this in-
terpretation was measured.

Analysis of behavioural data
For each participant, TVA-based model fitting yielded individ-
ual estimates for (i) parameter visual processing speed C; and
(ii) visual STM storage capacity K. Attentional parameters
were compared between the two study groups by means of
Mann-Whitney tests. In addition, we compared the five distinct
measures of simultaneous perception to that of healthy con-
trols using separate Mann-Whitney tests.

Analysis of the relationship between
symptoms of simultanagnosia and
attentional parameters
To test which changes in attentional parameters are predictive
for the occurrence of simultanagnosia symptoms, regression
analyses were performed for each of the five measures of
simultanagnosia with TVA parameters C and K as predicting
variables.

MRI

Image acquisition

MRI assessment was performed on a 3 T integrated Siemens
Biograph MR-PET scanner using a 12-channel phase-array
head coil. Magnetization prepared rapid acquisition gradient
echo (MP-RAGE) T1-weighted anatomical images were
acquired using the following scanning parameters: echo
time = 2.98 ms, repetition time = 2.300 ms, inversion
time = 900 ms, flip angle = 9!, 160 slices (gap 0.5 mm), cover-
ing the whole brain: field of view = 256 mm, matrix
size = 256 " 256, voxel size = 1.0 " 1.0 " 1.0 mm3.

Voxel-based morphometry

VBM was performed using SPM12 (Statistical Parametric
Mapping, Version 12; http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm12), and executed in Matlab R2014a (Mathworks,
Sherborn, Massachusetts). First, scans were segmented into
grey matter, white matter and CSF using unified segmentation
(Ashburner et al., 2005). Default values were used for bias
regularization (0.0001) and full-width at half-maximum cut-
off (60 mm). Then, grey and white matter segments of all sub-
jects were imported to generate a custom template using
Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL, Ashburner, 2007).
This method iteratively registered the grey and white matter
segments to an emerging estimation of their group-wise aver-
age by refining the parameters that are required to warp each
subject’s images into a common space. During the template
creation, flow fields were calculated for each participant. In
the final step, grey and white matter images were normalized
using the DARTEL deformations, modulated to consider local
volume changes and smoothed with an 8 mm full-width at
half-maximum Gaussian kernel.

To evaluate the VBM results statistically, separate two-
sample t-tests were calculated for comparing grey and white
matter volumes between study groups using SPM12. Both ana-
lyses were controlled for the effect of age, gender and total
intracranial volume. Total intracranial volume was estimated
by first computing and then adding up the totals (in litres) of
the warped, modulated and smoothed grey matter, white
matter, and CSF segments with the in-built SPM Tissue
Volumes Utility (Malone et al., 2015). Explicit grey and
white matter masks were applied to only include voxels for
which the intensity was at least 0.1 in at least 70% of the
images (Ridgway et al., 2009). We only report results that
showed significant effects at P5 0.05 family-wise error
(FWE) corrected at cluster level with a height threshold of
P5 0.001 uncorrected. The brain coordinates are presented
in standard Montreal Neurological Institute (MNI) space.
The anatomical localization of volumetric group-differences
in grey matter was based on the Automated Anatomical
Labelling (AAL) toolbox (Tzourio-Mazoyer et al., 2002). The
JHU white matter tractography atlas was used for localizing
volumetric group-differences in white matter (Hua et al.,
2008). Resulting t-maps are displayed as overlays on a stand-
ard T1 template in MRIcron (Chris Rorden, Georgia Tech,
Atlanta, GA).
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Analysis of the relationship between
attentional parameters and atrophy
patterns
To test whether atrophy patterns can predict changes in visual
attention parameters, we performed a voxel-wise multiple re-
gression analysis within the patient group. The normalized and
smoothed grey and white matter images were used as inde-
pendent variables. The dependent critical TVA parameter
that differed significantly between the study groups was in-
serted as the dependent variable. We inserted age, gender,
and total intracranial volume as covariates of no interest.
Moreover, the regression analysis was restricted to voxels
that were significantly atrophied in patients versus healthy con-
trols by using an explicit mask based on the results of the
preceding two-sample t-tests (PCA5HC2). Results of the re-
gression analyses are reported at a significance level of
P50.05 FWE corrected at cluster level and P5 0.005
height threshold.

Results

Behavioural results: reduced visual
processing speed explains
simultanagnosia

In Fig. 2A the mean number of correctly reported letters in
the TVA-based whole report task is displayed as a function
of exposure duration for a representative PCA patient and
control participant, respectively. The scores predicted by
TVA model fit (reflected by the solid curves) and observed
scores were in close correspondence: mean goodness-of-fit
measures showed that 84.92% of variance in the PCA and
88.67% in the HC1 group was accounted for by the max-
imum likelihood fits. The initial slope of the curve, which
approximately reflects the information uptake in objects/s,
is less steep for the PCA patient than for the control par-
ticipant (Fig. 2A). A Mann-Whitney test accordingly re-
vealed that visual processing speed C in patients with
PCA (mean = 10 objects/s) was significantly reduced com-
pared to controls (mean = 17 objects/s) (U = 38, z = !1.966,
P50.05, Fig. 2B). Furthermore, with increasing exposure,
the PCA patient’s and the control participant’s curves reach
a comparable asymptote level that indicates the maximum
number of letters that can be maintained in visual STM
and, hence, reported. In line with this, estimates of K
were not significantly different between groups (U = 52,
z = !1.155, P = 0.248).

Comparisons on all simultanagnosia indices revealed sig-
nificantly lower performance in patients with PCA com-
pared to controls (Table 2), and were, thus, indicative of
a pronounced deficit of simultaneous perception. The ma-
jority of patients obtained ratio scores 51 in the two in-
dices reflecting a decline in identification accuracy for
multiple overlapping relative to non-overlapping figures
(BORBover:adjac and SPTover:adjac). A somewhat less dramatic

decline was also found for multiple embedded figures
(SPTembed:adjac). Moreover, patients’ accuracy in the pos-
ition discrimination task was 580% and even lower in
the dot counting task of the VOSP while the control
group made almost no errors. Only one patient (Patient
GK) performed within the range of the healthy participants
in the BORB and SPT, but showed noticeable difficulties in
dot counting.

We tested whether visual processing speed and/or visual
STM storage capacity reductions can predict patients with
PCA’ simultanagnosia, using five separate regression ana-
lyses (for each simultaneous perception measure). Each of
these yielded the same correlation pattern: the lower visual
processing speed the more severe the impairment in simul-
taneous perception. As can be seen in Table 3, only visual

Figure 2 Visual processing speed is slowed in PCA and

predicts simultanagnosia symptoms. (A) Whole-report per-

formance for a representative PCA patient and a representative

control participant: mean number of correctly reported letters as a

function of effective exposure duration. Solid curves represent the

best fits from the TVA to the observations. The estimate of visual

processing speed C and visual STM storage capacity K is marked by

dashed lines. (B) Whole report results: average estimates and

standard errors for parameters C and K. Non-parametric Mann-

Whitney tests were used for group comparisons (P5 0.05). (C)

Regression analyses: relationship between processing speed C and

five distinct measures of simultanagnosia in PCA patients (P5 0.05).
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processing speed C, but not visual STM capacity K, was a
valid predictor for simultanagnosia symptoms (Fig. 2C).

We qualitatively elucidated the impact of processing
speed reductions on the daily life activities reading and
scene comprehension in a subgroup of six patients. Those
patients with the slowest processing speed (Patients MTW
and HG) were no longer able to read, while the other par-
ticipants could read albeit with marked difficulties (mean
reading time, patients: 107.0 s; controls: 38.1 s) (Table 2).
Moreover, all patients were unable to comprehend the
global meaning of a complex visual scene, except of one
patient (Patient RD) whose processing speed was least im-
paired in this subgroup.

To test the validity of the current results several control
analyses were performed. Details about the results can be
found in the Supplementary material. First, we computed
the same regression tests without the patient who presented
with only slight deficits of simultaneous perception (Patient
GK). The relationship between reduced processing speed
and all measures of simultanagnosia still remained signifi-
cant demonstrating that it was not driven by a single, only
mildly impaired patient. Additionally, we computed identi-
cal regression analyses for the absolute number of errors in
the overlapping conditions of the BORB and SPT instead of
using ratio scores. The results revealed a comparable cor-
relation pattern: the lower visual processing speed the more
errors occurred. To ensure that the obtained group differ-
ences in processing speed C were not a side effect of fatigue
induced in the patient group by the relatively long whole
report procedure, we re-estimated parameter C based on
the report performance in the first experimental block (of
48 trials). For both groups the average processing speed
values were highly similar to those obtained from the full
task and those of patients with PCA were significantly
reduced compared to controls (patients: 7.42 letters/s; con-
trols: 18.87 letters/s; U = 19, z = !3.061, P5 0.01).
Significant and high correlations were found for patients’
estimates of C based on the first block with those based on
the full task (rS = 0.909, P5 0.001). Thus, reduced process-
ing speed in patients is a general phenomenon that is found
from the beginning of the whole report task and not only
found in conditions where patients suffer from enhanced

fatigue. Complementary to our main analyses, we also
investigated group-differences in minimal effective exposure
duration t0, i.e. sensory threshold (minimum presentation
time) beneath which nothing is perceived and prolongation
of effective exposure duration (duration of iconic memory
!). The results demonstrated significantly increased t0
values (U = 88.0, z = 3.45, P 5 0.001) and decreased
!-values (U = 29.0, z = 2.05, P 5 0.05) in the patient
compared to the control group. We subsequently tested
whether these changes were predictive of patients’ simulta-
nagnosia symptoms. To this end, regression analyses for
each measure of simultaneous perception were performed
with C, and additionally t0 or ! as predictors. None of
them yielded a consistent association between t0 or ! and
simultanagnosia.

To examine whether poorer processing speed might
simply reflect that a patient is performing less well in any
visuo-cognitive task, or even in any cognitive task sensitive
for more advanced dementia, we ran regression analyses on
significant control indicators. First, to test whether process-
ing speed has an impact also on control visuo-cognitive
tasks not assumed to rely on simultaneous object percep-
tion, we examined whether processing speed is a significant
predictor of performance in the adjacent condition of the
BORB and SPT and in the Boston naming subtest of the
CERAD (Consortium to Establish a Registry for
Alzheimer’s Disease). Second, we tested whether it might
predict performance in the memory subtests of the
CERAD. We did not find evidence for a significant contri-
bution of processing speed to the variance of performance
in these control tasks (see Supplementary material for more
details). Taken together, these results indicate that a slow-
ing of information uptake is a decisive mechanism under-
lying specifically the overt simultanagnosia symptoms in
patients with PCA.

Imaging results for global grey and
white matter atrophy in patients with
posterior cortical atrophy

VBM results were subjected to two separate two-sample
t-tests for comparing grey and white matter volume

Table 3 Results of separate regression analyses for each simultanagnosia score in patients with PCA with visual
processing speed C and visual STM K as predictors

Simultanagnosia test R2 Processing speed, C Visual STM capacity, K

b t P b t P

BORBover:adjac 0.704 0.87 3.72 50.01 0.41 1.76 0.128

SPTembed:adjac 0.711 0.85 3.69 50.01 0.02 0.09 0.928

SPTover:adjac 0.815 0.81 4.37 50.005 !0.23 !1.24 0.262

VOSPdot 0.765 0.91 4.28 50.005 0.17 0.79 0.459

VOSPpositon 0.759 0.87 3.88 50.05 0.36 1.57 0.176

BORBover:adjac = ratio of accuracy in overlapping-figure condition divided by accuracy in adjacent-figures condition; SPTembed:adjac = ratio of accuracy in embedded- divided by

overlapping-stimuli condition; SPTover:adjac = ratio of accuracy in overlapping- divided by adjacent-stimuli condition; VOSPdot = VOSP, dot counting test; VOSPposition = VOSP position

discrimination test; R2 = explained variance; b= standardized regression coefficient; t = t-value for eight degrees of freedom; P = significance level.
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between the study groups. Both comparisons were con-
trolled for age, gender and total intracranial volume. The
results of the statistical analyses together with the peak
coordinates can be found in Table 4. The analysis of grey
matter atrophy indicated global tissue loss in the PCA
versus the control group (Fig. 3A). The most significant
atrophy clusters were found within bilateral thalamus, oc-
cipital, parietal and inferior temporal lobes, spanning the
dorsal and ventral visual streams, with some additional
tissue loss in the frontal lobe.

The analysis of white matter volume changes revealed
wide-spread atrophy clusters in bilateral precuneus and su-
perior parietal lobes indicative of severe degeneration of the
superior longitudinal fasciculus (parietal section) (Fig. 3B).
Extensive white matter atrophy was also found in the pos-
terior cingulum, spanning into the parahippocampal area.
Restricted to the left hemisphere, we also found a large
white matter atrophy cluster adjacent to the temporal-
occipital fusiform cortex extending laterally to the middle
temporal gyrus suggesting tissue loss within the left inferior
longitudinal fasciculus and superior longitudinal fasciculus
(temporal section). No significant volume differences were
found in the reverse grey and white matter contrasts
(PCA4HC2).

Atrophy of white matter is linked to
low visual processing speed

Voxel-wise multiple regression analysis, controlled for age,
gender and total intracranial volume, was performed to
relate each patient’s grey and white matter volume
changes to the corresponding estimates of visual process-
ing speed. We found a significant association between the

individual degrees of white matter atrophy in the left su-
perior parietal lobe and the rate of information uptake
(Fig. 3C and Table 4). This suggests that atrophy within
the superior longitudinal fasciculus affects visual process-
ing speed in patients with PCA. We did not find a signifi-
cant correlation between grey matter atrophy and
processing speed.

Discussion
Using a TVA-based whole report paradigm, we revealed a
visual processing speed impairment in PCA, while visual
STM capacity was unaffected. Critically, impaired pro-
cessing speed was a valid predictor for individual severity
of simultaneous perception deficits. Volumetric analyses
yielded extensive grey matter and white matter loss in
bilateral occipito-parietal brain areas in patients com-
pared to controls. Voxel-wise regression analyses
showed the degree of atrophy of white matter in the su-
perior parietal lobe to predict processing speed slowing.
These findings converge to a coherent neuro-cognitive
model of simultanagnosia with progressive white matter
lesions in the posterior brain leading to impaired visual
processing speed and consequently to impaired simultan-
eous perception.

Simultanagnosia follows from
reduced processing speed

Previous attempts to answer the question whether simulta-
nagnosia results from reduced visual STM storage capacity
and/or processing speed led to conflicting results. While

Table 4 Group differences between patients and controls for grey matter and white matter and relationship to
processing speed C

Analysis Cluster region Cluster size Peak region Peak coordinates tmax PFWE-

cor

VBM: grey matter

Occipital, parietal, temporal lobe 63 499 R postcentral gyrus 45 !33 48 9.37 50.001

Thalamus 5684 L thalamus !20 !22 9 10.12 50.001

Insula 1687 R insula 40 12 6 4.17 50.001

Frontal lobe 1282 L inferior frontal gyrus !42 2 30 4.47 50.005

Temporal lobe 812 L hippocampus !28 !6 !24 4.02 50.05

VBM: white matter

Occipital, parietal lobe 5061 L precuneus !9 !48 48 7.98 50.001

Temporal lobe 1088 L medial temporal lobe !60 !33 !6 8.28 50.05

Occipital, parietal lobe 1009 R precuneus 18 !33 50 4.99 50.05

Temporal lobe 976 L hippocampus !27 !21 !15 5.44 50.05

Parietal lobe 462 L superior parietal !26 !56 57 8.06 50.05

Multiple regression: white matter atrophy !C

Parietal lobe 462 L superior parietal !26 !56 57 8.06 50.05

To identify atrophy patterns in patients with PCA, modulated and smoothed structural magnetic resonance data was subjected to separate two-sample t-tests comparing grey and

white matter volume at each voxel (VBM analysis) between the patient and control group: P5 0.05 family-wise error (FWE) corrected at cluster level, height threshold P5 0.001.

Then, multiple regression analysis was performed to link structural changes and TVA parameter processing speed C in the PCA group: P5 0.05 FWE corrected at cluster level, height

threshold P5 0.005. L = left; R = right.
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some evidence suggested that simultanagnosia patients
suffer from a reduction of visual STM capacity close to
one single item (Coslett and Saffran, 1991; Pavese et al.,
2002), other authors have argued against visual STM cap-
acity as the primary deficit (Huberle and Karnath, 2006).
By using a TVA-based approach, we directly contrasted
both accounts and were able to clearly decide between
these two alternatives: we found a substantial reduction
of visual processing speed in a group of patients with
PCA suffering from simultanagnosia, while visual STM
capacity was comparable to that of control participants
(Fig. 2A and B). Moreover, the individual severity of the
reduction in processing speed, but not in visual STM capa-
city, predicted the severity of simultanagnosia symptoms to
high degree, i.e. 70–82% of variance was explained for
several simultaneous perception tasks (Fig. 2C and Table
3). Therefore, while a visual STM reduction might be pre-
sent in some patients suffering from simultanagnosia, it is
clearly not necessary for the occurrence of these symptoms.
Furthermore, in control regression analyses, we did not find
evidence that processing speed was a significant predictor
of variance in visuo-cognitive tasks not assumed to rely on
simultaneous object perception or in memory measures.
Thus, we can conclude that slower processing speed does

not simply reflect that a patient is performing poorer on
any visuo-cognitive task or, even more generally, across all
tasks sensitive for more advanced dementia symptoms.
Rather, it seems to specifically underlie simultanagnosia
symptoms. Our findings are consistent with previous
TVA-based studies on patients suffering from simultaneous
perception deficits but with other syndromes than PCA.
Patients with Bálint’s syndrome following stroke showed
severely reduced processing speed C, but no comparable
reductions in visual STM storage capacity (Duncan et al.,
2003). Finke et al. (2007) observed more severe deficits of
simultaneous perception in Huntington’s disease patients
with more pronounced processing speed slowing, as as-
sessed by TVA. Based on these complementary and congru-
ent results, we conclude that a severe slowing of visual
information uptake is the most plausible and common
functional cause of impairments in the simultaneous per-
ception of objects across patients with diverse aetiologies.
The deficit in this elementary attentional parameter presum-
ably contributes to the characteristic impairments encoun-
tered in daily life activities, such as reading (Kas et al.,
2011; for the relevance of visual processing speed in read-
ing see Starrfelt et al., 2009; Dubois et al., 2010). We
found support for this assumption in a subgroup of six

Figure 3 Volume reduction in PCA patients as compared to controls. (A) grey matter and (B) white matter (P5 0.05 FWE-corrected

at cluster level, height threshold P5 0.001). Shown are sagittal slices from left to right. (C) Voxel-wise multiple regression analysis for between-

group different white matter volume and visual processing speed C in the PCA group. Scale bars represent t-values, with warmer colours

representing statistically greater correlations between white matter volume and processing speed. GM = grey matter; WM = white matter;

L = left; R = right; P = posterior; A = anterior.
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patients who additionally underwent a reading and a the-
matic scene comprehension task. Among these, the two pa-
tients with most pronounced processing speed slowing were
unable to read. While the others also showed significant
difficulties, they were in principle still able to read.
Furthermore, only the patient with the highest processing
speed value could extract the meaning of a complex visual
scene within a time frame of 2 min.

White matter atrophy leads to
reduced processing speed

Corresponding to previous VBM studies (Whitwell et al.,
2007; Lehmann et al., 2011; Migliaccio et al., 2012a, b;
Alves et al., 2013), we observed extensive decreases of oc-
cipital, parietal and posterior temporal grey and white
matter volumes in patients with PCA compared to healthy
controls (Fig. 3A and B). Furthermore, atrophy of white
matter as the independent variable in a regression analysis
significantly explained variance in PCA patients’ visual pro-
cessing speed parameter values while no significant rela-
tionship was found for atrophy of grey matter (Fig. 3C
and Table 4). Especially reduced structural integrity of
the left superior parietal lobe predicted lower processing
speed in patients with PCA. The critical white matter clus-
ter showing this relationship was located in the superior
longitudinal fasciculus connecting occipito-parietal cortices
with frontal brain regions (Umarova et al., 2009). In line
with the present results, previous studies have linked the
degree of structural integrity of white matter (Rabbitt et al.,
2007; Penke et al., 2010; Espeseth et al., 2014; Arvanitakis
et al., 2015; Johnson et al., 2015; Kuznetsova et al., 2015)
and in particular that of the superior longitudinal fasciculus
(Turken et al., 2008; Thiebaut de Schotten et al., 2011;
Kerchner et al., 2012) to individual differences in visual
information uptake of healthy young and elderly partici-
pants. Very recently, a TVA-based study demonstrated
that higher speed of visual information processing was
linked with higher microstructural integrity of the right su-
perior longitudinal fasciculus as well as of the inferior
fronto-occipital fasciculus (Chechlacz et al., 2015). Studies
of neurological patients have additionally highlighted the
close relationship between white matter deterioration and
deficits in tasks demanding fast processing of visual mater-
ial (Burton et al., 2004; Turken et al., 2008). For example,
Turken et al. (2008) found that processing speed of stroke
patients, measured by the Digit-Symbol subtest of the
Wechsler Adult Intelligence Scale, was associated with
white matter damage of the left posterior parietal lobe.
The large left-sided white matter atrophy cluster and the
correlation with processing speed would be in line with the
suggestion that patients with PCA show an unexpectedly
high frequency of right-sided visual hemi-neglect compared
to stroke patients (Andrade et al., 2010, 2012, 2013, but
see Silveri et al., 2011), as it was also found in patients
with early Alzheimer’s disease (Redel et al., 2012; Sorg

et al., 2012). These findings might indicate that some
damage to the right hemisphere is necessary for right neg-
lect signs to appear. Thus, future studies should test
whether patients with PCA show a lateralization in the
TVA-based partial report which provides a spatial laterality
index (Redel et al., 2012).

This study, for the first time, links the neuronal and cog-
nitive mechanisms underlying simultanagnosia in a group
of patients with PCA. Based on our results, we propose the
following neuro-cognitive model of simultanagnosia in pa-
tients with PCA (Fig. 4): extensive white matter damage
particularly within the superior parietal lobe leads to a
severe slowing of visual processing speed resulting in the
overt deficits of simultaneous perception. While Chechlacz
et al. (2012) had already proposed that white matter lesions
might be linked to simultanagnosia via a slowing of visual
information uptake, the present study provides direct
lesion-based causal evidence for this model.

Clinical implications

PCA is often recognized only at relatively late stages of the
disease as patients do not show the typical memory loss in
standard dementia screenings (Crutch et al., 2012, 2013).
As visual processing speed explains simultanagnosia symp-
toms this parameter might be of valuable help for earlier
diagnosis. This would lend a time resource to early-state
patients that could be used for developing coping strategies
for upcoming deficiencies. Importantly, only as long as
memory, insight and judgement are spared in patients
with PCA, they benefit from compensatory procedures
and functional adaptations to reduce errors in visual
tasks. For example, they can successfully learn to use
visual cues in their home environment or to reduce the
number of relevant objects in typical daily tasks. This can
improve confidence, self-esteem and coping abilities (Perez
et al., 1996; Roca et al., 2010).

Identifying processing speed as the deficient mechanism
in simultanagnosia also implies that targeted intervention
procedures, known to enhance processing speed, could
offer effective treatment options for patients with PCA.
Computerized speed of processing trainings were repeatedly
shown to improve age-related declines in healthy popula-
tions with transfer to everyday abilities, self-rated healthy
and quality of life (Ball et al., 2007; Wolinsky et al., 2010).
Importantly, healthy individuals with low baseline speed

Figure 4 Neuro-cognitive model of simultanagnosia in

patients with PCA. WM = white matter.
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seem to benefit most (Edwards et al., 2005; Ball et al.,
2007) and also patients with Parkinson’s disease
(Edwards et al., 2013) and with visual impairments
(Elliott et al., 2014) show similar benefits. Thus, such train-
ing might lend resilience against simultanagnosia induced
by increasing white matter degeneration.

Parameter processing speed C might serve as a specific
and sensitive indicator for the evaluation of both, the indi-
vidual progression of the disease and the effectiveness of
potential therapeutic treatments. Finally, given the clear-cut
relationship between superior parietal white matter degen-
eration and visual processing speed slowing, these could
serve as neural and cognitive biomarkers of decline in lon-
gitudinal studies. Their joint analysis might reveal decisive
information that helps to improve the understanding of the
progression of PCA.

Limitations

Processing speed could be slowed in other dementia types
and it remains to be tested whether changes of multiple
object perception are present in these populations.
Comparable correlations were already found in patients
with Huntington’s disease (Finke et al., 2006, 2007). In
amnestic forms of Alzheimer’s disease, more subtly reduced
attentional capacity (Bublak et al., 2011) might also lead to
some difficulties in simultaneous perception. Rather than
implying a specific processing speed – simultanagnosia re-
lationship only in patients with PCA we suggest that more
generally, patients suffering from severe processing speed
reductions will show symptoms of simultanagnosia.

Conclusion
Simultanagnosia reflects impairment of visual processing
speed rather than of visual STM capacity. While we
observed extensive grey and white matter volume reduc-
tions across the entire occipito-parietal lobes, only white
matter atrophy within the left association fibre pathway
of the visuospatial system was associated with reduced pro-
cessing speed. Thus, we propose that such white matter
disconnections impair the speed of visual information
uptake which results in the overt symptoms of simultanag-
nosia in patients with PCA.
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4. 

General Discussion: Linking Attention 
Deficits to Structural and Functional 

Brain Changes 
The current thesis aimed to systematically link disturbances of visual attention and 

underlying brain changes by using neuro-cognitive modelling in two clinical 

examples of attention deficits. The General Discussion provides an overview of 

these investigations, their findings and conclusions that can be drawn from them. 

The first part of this section summarizes and discusses the key findings, separately 

touching on both clinical examples. To offer a comprehensive account of the main 

results, the second part of the section provides a unified evaluation of the wider 

implications across both projects. The third part includes a critical analysis of 

methodological issues, while the fourth part offers suggestions for future research. 

The section finishes with a conclusion.  

4.1. Main Findings of Each Project 

To address the aims of the current thesis two projects were conducted, resulting in 

two original, peer-reviewed articles: 1) Visual attention in preterm born adults: 

Specifically impaired attentional sub-mechanisms that link with altered intrinsic 

brain networks in a compensation-like mode (Finke, Neitzel et al., 2015); and 2) 

Neuro-cognitive mechanisms of simultanagnosia in patients with posterior cortical 

atrophy (Neitzel et al., 2016). On the basis of parametric assessment of visual 

attention deficits derived from the Theory of Visual Attention (TVA, Bundesen, 

1990), project 1 extends the link to functional brain changes in a 

neurodevelopmental model, while project 2 expands the link to structural brain 

changes in a neurodegenerative model. This section includes a summary of the key 

findings and how they relate to the current state of research. 
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4.1.1. Linking Attention Deficits to Functional Network Connectivity 

Numerous investigations document profound, yet vaguely defined, deficits of 

visual attention in preterm born (< 37 weeks of gestation) infants and children, 

which may even remain into adulthood (Anderson, 2014; Jong, Verhoeven & van 

Baar, 2012; Mulder et al., 2009; van de Weijer-Bergsma, Wijnroks & Jongmans, 

2008). Long-lasting effects of preterm birth have been observed within the adult 

brain’s functional network architecture (e.g. Bäuml et al., 2014; Smyser et al., 

2010). Given their functional relevance, attention deficits may be related to altered 

intrinsic brain networks (IBN) covering posterior brain areas that are relevant for 

visual attention. With the aim of systematically linking attention deficits and 

functional brain changes, project 1 applied a combined analysis of parametric 

measurements of visual attention and functional network connectivity in a well-

defined cohort of preterm born adults taken from the Bavarian Longitudinal Study. 

Project 1 Finke, Neitzel et al. (2015) set out to quantify and compare attentional 

functions in formerly preterm (n = 33) and full-term (n = 32) born participants at 

26 years of age by means of the TVA-based methodology (Duncan et al., 1999). To 

this end, all participants completed whole and partial report experiments and 

observed performance was mathematically modelled in order to yield individual 

estimates for general and selective capacity factors of the visual attention system. 

In addition, all participants underwent resting-state functional magnetic resonance 

imaging (fMRI) in order to extract and compare intrinsic functional connectivity 

(iFC) within attention-related networks. These consisted of (1) uni-model visual 

networks centered on the lingual and calcarine gyrus (2) multi-modal dorsal 

attention networks covering superior parietal cortices and frontal eye fields and (3) 

a thalamic network which included the bilateral thalamus. 

Results showed that estimates of visual short-term memory (STM) capacity K were 

significantly lower in pre- versus full-term individuals, while all other attention 

parameters (visual threshold, processing speed, task-related and spatial weighting) 

were comparable between study groups. Group-differences did not change after 

correcting for general intelligence. Regarding the current literature, there is no 

earlier work in which long-term consequences of preterm birth have been examined 

in association with specific attentional functions. It seems reasonable to assume that 

a selective impairment of visual STM capacity could be an explanation for the more 
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global disadvantages experienced by preterm born adults which had been 

previously observed, such as poorer intelligence scores, academic 

underachievement or increased risk of attention-deficit/hyperactivity disorder 

(ADHD) (Hack, 2009; Saigal, 2014; van Lieshout et al., 2015). A very recent 

investigation form our colleagues in the full cohort of the Bavarian Longitudinal 

Study supports this notion (Breeman et al., 2016). By comparing parent ratings, 

expert behaviour observations, and clinical DSM-IV diagnose of ADHD, Breeman 

et al. found that preterm adults experience significantly more attention problems, 

show a shorter attention span and are more frequently diagnosed with ADHD than 

term born controls.  

Furthermore, we found remarkable changes in various IBN, including significantly 

increased and decreased iFC, consistent with earlier findings in children (Doria et 

al., 2010; Smyser et al., 2010) and adults (Bäuml et al., 2014; White et al., 2014). 

There was a consistent relationship between preterm adults’ alterations of iFC and 

individual estimates of visual STM capacity in a way that the more iFC in visual 

and dorsal attention networks diverged from that of the full-term born control 

group, the better visual STM capacity. Note that observed associations remained 

even after controlling for potential confounding factors such as gestational age, 

birth weight, perinatal complications and IQ. Thus, these findings point towards an 

adaptive reorganization of IBN to compensate for the adverse consequences of 

preterm birth on visual STM capacity. Complementary findings come from task-

based (Gozzo et al., 2009; Myers et al., 2010) and resting-state (Constable et al., 

2013; Schafer et al., 2009) fMRI studies in the domain of language processing, 

where it has been shown that preterm born individuals recruit alternative neuronal 

networks than term controls both at school age and in adulthood. This observation 

has been very recently extended to emotional processing (Papini et al., 2016). Our 

collaborators conducted a working memory fMRI investigation in almost the same 

group of preterm born adults and found, strongly supporting our results, load-

dependent compensatory activity in posterior brain regions (Daamen et al., 2015). 

Altogether, project 1 is the first study which identified a compensatory link between 

visual attention deficits and functional brain changes following preterm birth. 
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4.1.2. Linking Attention Deficits to Grey and White Matter Volume 

Posterior cortical atrophy (PCA) is a rare focal variant of Alzheimer’s disease (AD) 

which is characterized by higher visuospatial deficits. One of the core symptoms is 

simultanagnosia, i.e. the inability to perceive multiple objects at the same time (e.g. 

Tang-Wai et al., 2004). Two alternative attention deficits had been proposed to 

underlie simultanagnosia, which are reduced STM capacity (Coslett & Saffran, 

1991; Pavese et al., 2002) or slowed visual processing speed (Duncan et al., 2003; 

Finke et al., 2007) the latter potentially resulting from WM atrophy (Chechlacz et 

al., 2012). With the aim of systematically linking attention deficits and volumetric 

brain changes, project 2 applied a combined analysis of parametric measurements 

of visual attention and grey matter (GM) and white matter (WM) morphometry in 

a relatively large group of PCA patients. 

Project 2 Neitzel et al. (2016) assessed simultaneous perception based on four 

separate tests in twelve PCA patients mostly with positive biomarkers for AD and 

twelve demographically matched healthy control participants. By using the whole 

report paradigm together with TVA-based model fitting, visual STM storage 

capacity and visual processing speed were independently estimated. Additionally, 

voxel-based morphometry (VBM) was performed based on high-resolution 

anatomical MR images to quantify GM and WM volume in both study groups.  

Our findings demonstrated profound symptoms of simultanagnosia across all 

measures in the patient group, while healthy participants performed almost without 

any errors. Moreover, visual processing speed, but not STM capacity was 

significantly decreased in PCA patients. Separate regression analyses with 

parameter K and C as predictors and simultanagnosia test scores as dependent 

variables evidenced that only visual processing speed could validly predict 

symptom severity. Interestingly, slowed processing speed seemed to be also 

associated with patients’ daily life difficulties in reading and scene perception. We 

ensured that this slowing was not an unspecific reflection of dementia state by 

proving that no correlation existed to patients’ ability of identifying single objects 

or retrieving objects from memory. Consistent with other TVA-based approaches, 

we clearly demonstrated that reduced visual processing speed rather than visual 

STM capacity is the underlying attention deficit of simultanagnosia (Duncan et al., 

2003; Finke et al., 2007).  
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In addition, we found global tissue loss in PCA patients compared to healthy control 

participants. Particularly affected was patients’ GM volume in bilateral thalamus, 

occipital, parietal and inferior temporal lobes, spanning the dorsal and ventral visual 

streams. Regarding WM, larges volume reduction was observed in bilateral 

precuneus and superior parietal lobes, together with a large atrophy cluster in the 

intersection between the occipital and temporal lobe. Voxel-wise regression 

analysis among patients yielded a significant association between the individual 

degree of WM loss in the superior parietal lobe covering the superior longitudinal 

fasciculus and speed of information uptake. No such association was observed for 

any GM cluster. This result is in large agreement with multiple studies in healthy 

young and old populations which found that structural WM integrity explains inter-

individual differences in processing speed (e.g. Johnson, Diaz & Madden, 2015; 

Penke et al., 2010; Schotten et al., 2011, for TVA-based evidences see Chechlacz 

et al., 2015). An investigation in neurological patients furthermore found an 

association between lesions of posterior parietal WM and processing speed (Turken 

et al., 2008). 

In summary, project 2 revealed for the first time the following neuro-cognitive 

model of simultanagnosia: WM atrophy within the dorsal part of the visuospatial 

attention system leads to slowed visual processing what underlies the overt clinical 

symptoms of simultanagnosia.  

4.2. Key Implications Across Projects 

Since Duncan et al.’s (1999) seminal work, about 30 studies have used TVA-based 

assessment to examine attention deficits in various neurological and psychiatric 

conditions. Yet, only a very few investigations systematically linked impaired 

attention parameters to biological disease measures. To fill this gap, both projects 

of the current thesis applied an integrated TVA-neuroimaging approach in two 

clinical examples. Taken together the current findings could be informative for the 

wider field of visual attention research. This section discusses major implications 

across projects, focusing on 1) the selectivity of attention deficits after brain 

damage; 2) the specificity of the obtained behavior-brain relationships; 3) potential 

targets for diagnosis and treatment; and 4) the validation and potential extension of 

TVA’s principles and their neuronal interpretation. 
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4.2.1. Selective Attention Deficits 

Both studies demonstrate that brain damage leads to selective deficits of attentional 

functions. Project 1 showed that preterm born adults suffer from a specific reduction 

of visual STM storage capacity, while visual processing speed was spared. As 

project 2 evidenced, the reverse is true for PCA patients who displayed a profound 

slowing of visual processing speed, but no impairment of visual STM capacity. 

Though certain methodological limitations should be considered (see section 4.3.2), 

together these findings should lead us away from the simple idea that brain damage 

results in “impaired attention”. Instead, results of both projects emphasize the 

importance to differentiate disturbances of distinct attentional functions. Parametric 

measures adopted from the TVA framework are one promising way to distinguish 

a set of separate attention components in clinical populations. On this way, 

attentional difficulties can be characterized by well-defined parameter profiles 

going far beyond conventional assessment approaches. In addition, project 1 

approves the high sensitivity of TVA-based assessment by detecting a selective 

reduction of visual STM capacity many years after preterm birth. Using less 

sensitive markers might explain why earlier studies found no disturbances of visual 

attention in preterm born adolescents and adults tested with different versions of 

the digit span test (Pyhälä et al., 2011; Rushe et al., 2001; Tideman, 2000; but see 

Løhaugen et al., 2010). 

It is important to notice that earlier TVA-based patient studies (for a recent review 

see Habekost, 2015) show high degrees of overlap between the parameter profiles 

of many, quite distinct clinical conditions (e.g. reduced visual STM capacity and 

processing speed was observed in neglect (Duncan et al., 1999), pure alexia 

(Starrfelt, Habekost & Leff, 2009), and Huntington’s disease (Finke et al., 2006). 

Taking the broader literature into account, TVA parameters seem to be less 

stringently related to the symptom-based descriptions of clinical entities and thus 

the selective and differential findings across both projects should not be 

misinterpreted as being diagnostic. They rather point to disturbances of more basic 

cognitive functions which could be impaired in different clinical conditions. 

Following this idea, it might be more insightful to examine associations with 

underlying brain changes rather than diagnostic categories. 
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4.2.2. Specific Behavior-Brain Relationships 

Based on the application of a combined TVA-neuroimaging analysis both projects 

uncovered very specific behavior-brain relationships. To provide a better overview, 

the main results of project 1 and 2 are reconstructed on top of one standard brain, 

but the different methodological approaches should be kept in mind. Figure 1 

illustrates that among preterm born adults individual patterns of changed functional 

connectivity in occipital and posterior parietal cortices were related to visual STM 

capacity in a compensatory-like mode (depicted in blue). Although previous 

functional and diffusion tensor imaging work repeatedly empathized that preterm 

born individuals rely on additional brain systems for cognitive (working memory, 

language, emotion recognition) tasks, they failed to link these alterations with any 

behavioral advantages (Daamen et al., 2015; Gozzo et al., 2009; Mullen et al., 

2011; Myers et al., 2010; Papini et al., 2016; Schafer et al., 2009; but see Constable 

et al., 2013). In project 2, disturbances of more basic attentional functions served 

as intermediate cognitive constructs which could clarify that neurodegeneration of 

distinct WM pathways, rather than atrophy of any GM area, was associated with 

the behavioral manifestation of simultanagnosia (depicted in green). In contrast, 

Chechlacz et al. (2012) tried to directly link brain changes with overt clinical 

symptoms and by that were not able to clearly distinguish the role of GM and WM 

damage for simultanagnosia. Future studies are certainly required to examine the 

specificity of the here reported neuro-cognitive relationships by applying 

complementary methods or studying different patient groups (see 4.4.1 and 4.4.2, 

respectively). 

 

Figure 1 Overlap of the contrast pre-versus full-term born participants which was 
correlated with visual STM capacity in the preterm group (in blue) and the contrast 
PCA < controls which was correlated with visual processing speed in the patient 
group (in green). The original statistical thresholds were used.  
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In large agreement with our findings, previous TVA-based patient studies 

demonstrate that damage of the parietal cortex constitutes the most critical lesion 

(outside of the striatal visual system) for impairments of both visual STM capacity 

and processing speed (e.g. Peers et al., 2005). The vital role of WM damage for 

reduced attentional capacity has also been mentioned previously (Habekost & 

Rostrup, 2007). Apart from MR imaging, a few researchers started to utilize TVA’s 

cognitive specificity for linking attention deficits with other biological disease 

markers. These include glucose hypometabolism in amnestic AD (Sorg et al., 2012) 

and gene mutation in Huntington’s disease (Finke et al., 2006). In addition, 

electroencephalography components have been systematically associated with age-

dependent declines of attention functions in healthy elderly participants (Wiegand 

et al., 2014). Together with the current projects, these studies illustrate how 

intermediate constructs (e.g. attention parameters) help to link etiological factors 

(e.g. neuronal or genetic abnormalities) with the resulting usually complex 

behavioral consequences (e.g. simultanagnosia). Establishing specific behavior-

brain relationships not only enriches our knowledge about visual attention deficits, 

but may also help to improve diagnosis and treatment. 

4.2.3. Precise Targets for Diagnosis and Therapy 

By uncovering differential deficits of visual attention and their specific neurological 

correlates, both projects have clinical implications. Each finding points towards a 

very precise neuro-cognitive target ‒ visual STM capacity / iFC of visual and dorsal 

attention networks in preterm born individuals and visual processing speed / WM 

atrophy of superior parietal lobe in patients with PCA ‒ which could inform 

diagnostics and be tackled by tailored intervention programs. Generally speaking, 

both projects foreshadow the potential of TVA-neuroimaging results to guide the 

clinical practice away from the focus on specific symptoms (e.g. simultanagnosia) 

towards approaches that consider the underlying impaired mechanism (e.g. reduced 

processing speed, superior parietal WM degeneration). These cognitive and 

neuroimaging markers could moreover support the monitoring of disease 

progression and the evaluation of treatment outcome. They may further help to 

develop more precise model systems for animal research or computational 

modelling. The present results also have several distinct implications, especially 

with regard to therapeutic success.  
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By identifying the preterm brain’s potential to compensate for the adverse 

developmental consequences of prematurity, project 1 raises optimistic 

expectations about therapy outcome. Training programs for enhancing visual STM 

capacity could be one promising option. Based on the present data, one would 

hypothesize that cognitive training may stimulate functional connectivity changes 

in STM-related brain networks, thereby possibly triggering compensatory 

processes. This in turn may exert a beneficial (long-term) effect on the development 

of visual STM (see also 4.4.3). It might be even possible to facilitate behavioral and 

neuronal plasticity more directly by using pharmacological therapy or transcranial 

magnetic stimulation. The functional relevance of compensatory reorganization 

within specific IBN, as illustrated in project 1, might offer a hint towards which 

brain regions or mechanisms to tackle.  

In contrast, therapeutic interventions seem generally less promising in PCA in light 

of the detrimental effect of WM atrophy observed in project 2, and given the 

progressive nature of the disease. In order to be successful, interventions have to be 

applied as early as possible, when memory and insight are not affected yet. 

However, PCA is often recognized only at a late stage, because disturbances of 

visual attention tend to be confused with ophthalmic diseases. Importantly, as visual 

processing speed explains simultanagnosia this parameter may facilitate earlier 

diagnoses. This additional time could then be used to set-up training programs 

known to enhance processing speed, combined with psychoeducation and copying 

strategies for the upcoming deficiencies. The current findings may also inform 

caregivers how to arrange the environment of and interact with PCA patients, e.g. 

slow down the pace of daily life activities. 

4.2.4. Validating the Principles of TVA and Their Neuronal Interpretation 

Although parameter K and C are theoretically defined and mathematically 

estimated as independent measures in the TVA model, empirical findings in healthy 

young participants point to some degree of dependency (r = 0.40) (Finke et al., 

2005). Similarly positive correlations had been reported in a clinical study of 

neglect patients (Habekost & Rostrup, 2006). However, we found no relationship 

between K and C in pre- (r = 0.30) or full-term born adults (r = 0.19) or PCA patients 

(r = -0.04), solely the healthy elderly control group of project 2 showed a significant 
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correlation (r = 0.77). A more fundamental proof of concept is that we found 

dissociable effects of brain damage impairing one parameter but not the other and 

vice versa. Thus, the current data lends support for the conceptual idea of rather 

separate attentional components. Related to this point, Habekost and Starrfelt 

(2009) reported that preliminary data from their lab suggests a noteworthy 

correlation between K and C values and scores of general intelligence. Parameter K 

and intelligence were also weekly related in the study by Finke et al, while 

parameter C seemed to be IQ-independent. We reanalyzed the data of project 1 and 

found no correlation between either parameter K or C and intelligence in pre- (r = 

0.32 / 0.29) or full-term born adults (r = 0.19 / 0.16). No measure of general 

intelligence was available in the PCA study. When considering the Mini Mental 

Status Examination as a marker of dementia state, we found no significant 

association with K (r = 0.16) or C (r = 0.35). Thus, our findings validate TVA’s 

conceptualization of pure parameters of visual attention that are not markedly 

confounded by general cognitive abilities or their decline.  

In addition, both projects concern damage to particular either functional or 

structural properties of neuronal systems and therefore bear on the question of the 

anatomical basis of visual attention. Due to several methodological issues outlined 

below (see 4.3.3) the following interpretations should be treated with caution. The 

current findings document in line with the neuronal interpretation of TVA (NTVA) 

that the two capacity limits of visual attention depend on large-scale networks of 

the posterior brain. These fairly general assumptions of NTVA could be further 

extended. Whereas NTVA specifies how basic attentional principles (rate and 

weight equation) may be realized by single-cell properties studied in non-human 

primates, the current findings hint at particular networks of the human brain that 

seem to be essential for each attention parameter. These are intrinsic networks of 

the occipital and posterior parietal cortex for visual STM capacity and volume of 

superior parietal WM pathways for visual processing speed (see Figure 1). Support 

for these ideas come from multiple imaging studies in healthy participants 

documenting that visual STM capacity depends on regions of the parietal cortex, 

particularly the inferior parietal sulcus (Gillebert et al., 2012). Variability of global 

WM (Espeseth et al., 2014) and especially of the superior longitudinal fasciculus 

(Chechlacz et al., 2015) has been linked to individual differences in speed of 
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information uptake. Taken together, clinical TVA-neuroimaging approaches seem 

to compliment evidences from healthy participants and may inspire hypotheses that 

can inform further investigations on the neuronal basis of visual attention.  

4.3. Methodological Considerations  

Considering that both projects included in this thesis employed an integrated TVA-

neuroimaging analysis, some methodological issues should be noted. The current 

section outlines the most relevant considerations and provides suggestions for 

future improvements. It addresses a) practical aspects of TVA-based assessment; 

b) reasons why severity of attention deficits might have been underestimated; and 

c) the limitation that brain changes we examined here may be rather necessary than 

sufficient for the appearance of associated attention deficits. 

4.3.1. Practicability of TVA-based Assessment 

Several practical aspects should be taken into considerations when applying TVA-

based assessment in patient groups. It is clearly not a bedside test. In general, the 

examination has to be carried out under appropriate conditions. For example, it is 

essential to take care of suitable ambient light and a computer set-up that allows to 

control presentation times at the level of milliseconds. An obstacle particularly for 

testing patients could be the relative long time of testing. It usually takes at least 30 

minutes to obtain a reasonable number of trials which is needed to reliably estimate 

TVA parameters (~1h for whole and partial report, plus about ten minutes for the 

practice trials). Patients who are no longer able to focus for this amount of time (e.g. 

due to fatigue), cannot be examined or may need many breaks. Because the test 

duration was indeed quite long in the PCA patient group, we tested whether 

reported effects might have been stemmed from tiredness. This alternative 

explanation could be ruled out, since a substantial reduction of parameter C was 

evident from the very beginning of the experiment. The recently developed 

CombiTVA (Vangkilde, Bundesen & Coull, 2011) addresses this issue. It combines 

whole and partial report, thereby reducing the total time to 45 minutes. Whether the 

new paradigm meets the critical quality criteria awaits further research. TVA-based 

assessment additionally relies on verbal responses such that aphasic patients can 

usually not been tested. Patients with serious visual impairments may have to be 
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excluded as well. Especially when assessing patients it is crucial to ensure before 

testing that all test requirements are fulfilled what was the case in our two samples. 

4.3.2. Underestimated Severity of Attention Deficits 

It should be noted that attention difficulties caused by preterm birth or PCA might 

have been underestimated in the current projects. One underlying reason could have 

been that we examined a rather exclusive group of healthy preterm adults. A drop-

out analysis of childhood data confirming that our preterm sample showed less 

neonatal complications and higher IQ. Preterm born adults with more severe 

impairments were more likely excluded during the screening for fMRI or TVA-

based assessment. This positive selection bias seems to be not only an issue of our 

study, but has been observed in other study cohorts that followed premature 

populations into adulthood (e.g. Nosarti et al., 2007). Future studies could consider 

different subgroups of varying neonatal adversities and cognitive impairments. One 

critical question would be whether more affected preterm born individuals present 

with quantitatively or qualitatively different compensatory reorganization and 

hence broader attention deficits. Yet our results are consistent with former TVA-

based investigations in another neurodevelopmental conditions which likewise 

found selective attention deficits, for example in ADHD (Finke et al., 2011) or 

dyslexia patients (Stenneken et al., 2011). Of particular interest here is that adults 

with ADHD also suffer from a selective reduction of visual STM capacity (Finke 

et al., 2011). This fits nicely with the increased risk of developing ADHD observed 

in preterm born populations.  

The attention deficits of PCA patients might have been underestimated as well. Due 

to practical reasons it was not possible to apply the whole and partial report task in 

one test session. However, the latter would have been needed for estimating 

parameters of task-related and spatial weighting. That PCA may lead to a spatial 

bias of visual attention is indicated by the lateralization of GM and WM atrophy we 

found towards the left hemisphere. Previous observations of neglect symptoms in 

PCA (e.g. Andrade et al., 2013) and in amnestic AD patients (e.g. Redel et al., 

2012; Sorg et al., 2012) support this idea. Additionally, task-related weighting 

might have been also impaired in the PCA group. An argument in favor comes from 

an investigation in patients with mild cognitive impairment due to AD revealing 
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that parameter α is already affected at this early stage (Redel et al., 2012). The 

neuronal basis of task-related selectivity is thought to rely on frontoparietal 

networks (e.g. Corbetta & Shulman, 2002). Since at least the parietal part of this 

network is strikingly atrophied in PCA, it seems quite likely that efficiency of task-

related weighting is reduced in those patients. Further studies could address these 

hypotheses (see 4.4.1) 

4.3.3. Necessary but not Sufficient Brain Changes 

Though our findings provide new insights about which brain changes are necessary 

for certain attention deficits to occur, they might not be sufficient. It is likely that 

the neuroimaging data used here were not able to capture all brain changes that 

contributed to the study groups’ attentional disturbances. In project 1 we focused 

on the role of altered functional connectivity for the development of visual STM 

after preterm birth. Although functional connectivity frequently occurs between 

regions without direct anatomical linkage, its variability is nevertheless constrained 

by the brain’s structural architecture (Honey et al., 2009). Earlier investigations 

found that prematurity significantly affects the establishment of thalamo-cortical 

and cortico-cortical connectivity (Ball et al., 2012). Thus, it can be assumed that 

besides functional also structural reorganization influences STM functions in 

preterm born individuals. We confirmed this hypothesis in a follow-up diffusion 

tensor imaging (DTI) investigation revealing a compensatory involvement of the 

splenium of the corpus callosum (Menegaux et al., 2017; for more details see 4.4.1). 

A further follow-up study could disentangle the respective roles of functional and 

structural brain changes for the development of visual STM after preterm birth. 

Project 2 concentrated on the cognitive consequences of GM and WM loss in PCA. 

Occipito-parietal hypometabolism is another frequently observed phenomenon in 

those patients, even at early disease stages (Lehmann et al., 2013a; Nestor et al., 

2003). Hence metabolic defects may also play a role in the detrimental slowing of 

visual processing speed and thereby contribute to symptoms of simultanagnosia. A 

single photon emission computed tomography study by Kas and colleagues (2011) 

addresses this question. The authors found a robust correlation between impaired 

perfusion within higher associative areas of the visual occipital system and 

simultaneous perception scores. In contrast to our findings, this correlation pattern 
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suggests no significant involvement of parietal areas in simultanagnosia. Two 

methodological discrepancies should be noted however. First, Kas et al. did not 

consider the underlying attention deficits in the simultanagnosia-hypometabolism 

correlation analysis and second their results were not corrected for multiple testing. 

It would be interesting for future research to test whether metabolic disturbances 

besides WM atrophy exert a unique effect on processing speed slowing.  

4.4. Future Directions 

Both projects offer a foundation for numerous future studies that could lend 

additional support for the relationships we found between attention deficits and 

functional and structural brain changes and extend these links further. This section 

presents three future directions that build on the projects of this thesis by either a) 

employing different neuroimaging methods, b) distinct patient groups, or c) 

combining TVA-neuroimaging analyses with cognitive training programs. 

4.4.1. Other Neuroimaging Measures 

Since neuroimaging approaches are inherently correlative, the current implications 

should be further tested using different methods. DTI is a powerful tool to study 

WM structural connectivity in-vivo. Identifying a compensatory role of changed 

functional connectivity following preterm birth in project 1, raises the question 

whether and how underlying structural WM integrity is linked to visual STM 

capacity. A follow up investigation by Menegaux et al., (2017) used fractional 

anisotropy obtained by DTI tractography to explore cortico-thalamic and cortico-

cortical connections in the same groups of pre- and full-term born adults. The 

authors found for the first time that prematurity modulates the relationship between 

structural connectivity and visual STM. For cortico-thalamic fibers, full-term born 

adults with higher integrity of the posterior thalamic radiation showed higher visual 

STM capacity, whereas a significant negative correlation was found in the preterm 

born group. These findings evidence, consistent with the NTVA model, the 

involvement of recurrent cortical-thalamic loops for visual STM which appear to 

be compromised after preterm birth. For cortico-cortical fibers, higher integrity of 

the splenium of the corpus callosum was associated with higher visual STM 

capacity in preterm born adults. Together with the data of project 1, it seems that 
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particularly preterm born individuals with relatively preserved visual STM capacity 

employ a compensatory bilateral posterior network that may at least partially rely 

on structural connectivity via the splenium.  

Results of project 2 also raise several research questions that could be tackled in a 

DTI follow-up study. We showed that superior parietal WM atrophy is associated 

with visual processing speed in PCA patients. The critical WM cluster was located 

in the left superior longitudinal fasciculus, though voxel-based morphometry is not 

ideal to make claims on distinct WM pathways. The proposed study would 

incorporate TVA-based assessment of visual processing speed and DTI 

tractography in PCA patients and healthy control participants. The analysis of group 

differences in WM integrity would focus primarily on pathways crossing the 

superior parietal lobe (see project 2), but could additionally consider other critical 

pathways of the visual attention system (see Chechlacz et al., 2012). This proposed 

TVA-DTI investigation could provide complementary information about the 

anatomical underpinnings of the processing speed slowing caused by PCA. A 

second question derived from project 2 refers to the large left-sided WM atrophy 

we found that might indicate an atypically frequent occurrence of right-sided visual 

hemi-neglect in patients with PCA relative to stroke patients. This idea has been 

likewise suggested by other authors (for evidences in PCA see Andrade et al., 2013; 

for amnestic AD see Redel et al., 2012; Sorg et al., 2012). The before proposed DTI 

project could be extended to also employ TVA-based measures of spatial weighting 

(parameter wλ) derived from the partial report task. We would first test the 

hypothesis that PCA patients show a significant lateralization of attentional 

resources relative to control participants. With the help of DTI tractography, the 

project would additionally explore the link to lateralized degeneration of WM 

pathways. On this way obtained results could enrich our understanding of the 

neglect syndrome and may refine the widely-accepted idea that lesions to the right-

sided arousal system are critical for its chronic manifestation (e.g. Robertson, 

1993). 

4.4.2. Different Clinical Groups 

Future studies are necessary to test the specificity of the behavior-brain relationship 

which we have reported in each project of the current thesis. Specificity in this 
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context does not mean that only a specific patient group shows these relationships. 

Instead we suggest more generally that the same attention deficits in other patients 

will be related to similar patterns of brain changes. In order to test this idea the 

analysis pursued in project 1 could be in particular transferred to ADHD which has 

been also associated with reduced visual STM capacity in adulthood (Finke et al., 

2011). ADHD leads similarly to changes in functional connectivity of attention-

related networks, whereby both hypo- and hyper-connectivity have been 

documented (see Pereira, Castro-Manglano & Esperon, 2016 for a review). It is yet 

unclear whether and how these network changes relate to deficits of visual STM. 

The proposed project would carry out TVA-based assessment of visual attention 

and resting-state fMRI in individuals with ADHD and healthy control participants. 

By analyses of group differences we would firstly aim to reproduce earlier findings 

that ADHD lead to a selective impairment of visual STM capacity as well as 

significant connectivity changes within networks project 1 showed to be relevant 

for visual STM. Among ADHD patients, we would then test whether the individual 

degree of changes in intrinsic networks and visual STM capacity are reliably 

associated. The proposed project would further expand the link between visual 

STM deficits and underlying functional brain changes and may add to the 

endophenotypes research in ADHD (e.g. Castellanos & Tannock, 2002).  

Like PCA patients, adults with developmental dyslexia (or at least a subgroup of 

them) seem to exhibit a selective deficit in visual processing speed (Stenneken et 

al., 2011). Previous work on brain abnormalities have provided conflicting and 

spatially distributed results, likely because of the diffuse nature of the pathology 

(see Richlan, Kronbichler & Wimmer, 2013 for a meta-analysis). Interestingly, a 

previous VBM–DTI study found a significant correlation between WM integrity of 

the inferior and superior longitudinal fasciculus, but not of any GM cluster, and 

speed of pseudoword reading (Steinbrink et al., 2008). It could be insightful to use 

a similar analysis as carried out in project 2, in order to test whether slowing of 

visual processing speed is the underlying impairment that links reading difficulties 

and changed WM morphometry. The proposed project would involve written 

language assessments, TVA-based measurement of visual processing speed and 

structural MR imaging in dyslexic and non-dyslexic individuals. Two main 

hypotheses should be tested: (i) is impaired processing speed a valid predictor for 
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reading performance of dyslexic participants and (ii) is there a clear-cut relationship 

between individual WM volume of the parietal lobe and processing speed scores. 

Using a distinct patient group, the study would expand the link between processing 

speed deficits and structural brain changes and could potentially specify the 

underlying mechanisms of reading difficulties in developmental dyslexia. 

4.4.3. Cognitive Training Programs 

As we have argued above, the individual parameter profiles identified in each 

project hint at precise cognitive targets for treatment. One critical question concerns 

inasmuch basic attention functions can be enhanced by cognitive training. Because 

treatment success is more likely in preterm born individuals compared to PCA 

patients, we focused our research proposal on preterm birth. Based on the data of 

project 1, it would be interesting to examine whether preterm born children profit 

from training programs known to enhance visual STM. A combined training-fMRI 

approach could further clarify the role of altered functional connectivity for STM 

development. To this end, STM training together with a pre- and post-training 

assessment of visual STM capacity and resting state brain imaging should be 

applied at early stages of development (Wass, 2015). A promising training approach 

for children is to use eye tracking stimuli that change contingently with gaze 

direction, such that the program can be applied before the development of fine 

motor skills (see e.g. Wass, Porayska-Pomsta & Johnson, 2011). However, it has to 

be noted that TVA-based assessment has never been used in children before the age 

of 10 years (Bogon et al., 2014). Two main hypotheses should be tested. First, 

parameter K is expected to be higher after the training program. Second, the training 

should have stimulated significant differences in the functional connectivity of 

STM-related brain networks identified in project 1, following the idea that these 

alterations support STM performance. Non-trained STM tasks (e.g. the Visual 

Memory Span from the WMS-R) as well as far-transfer tasks (e.g. arithmetic) 

should be employed to test the generalizability of training effects. Follow-up 

investigations would be necessary to demonstrate that visual STM training has 

long-term effects and thereby outperforms earlier training programs (Melby-

Lervåg, Redick & Hulme, 2016; Orton et al., 2009; Spittle et al., 2007). The 

proposed project may present one way of how insights gained from TVA-

neuroimaging studies could be transferred into clinical application.  
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4.5. Conclusion 

The current thesis complements and enriches our understanding of visual attention 

deficits and their underlying brain changes by using neuro-cognitive modelling. It 

provides original findings showing a significant association between the individual 

degree of structural or functional disturbances within large-scale brain networks 

and basic attention functions. Altogether, the current thesis took a small but relevant 

step towards the discovery of predictable behavior-brain relationships in the context 

of visual attention deficits. These findings could serve as neuro-cognitive targets 

for diagnosis and treatment and may inform us about the principles and neuronal 

correlates of normal visual attention. By successfully applying a combined TVA-

neuroimaging analysis in two clinical examples, this thesis offers a promising 

approach for future studies exploring the neuro-cognitive mechanisms underlying 

attention deficits. 
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