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Abstract 

 

Overconsumption of palatable foods causes obesity, which affects an increasing number of 

adolescents. Previous studies have suggested that early-life obesity may permanently alter 

hedonic and homeostatic mechanisms regulating feeding behaviors, and may therefore 

increase the risk of medical conditions in later life. While depressive disorders and sleep 

disturbances often occur in association with obesity, treatment efficacy of these disorders 

appears to be worsened by the obese state. Hence, a better understanding of the 

mechanism linking these three conditions might provide contact points for innovative 

pharmacotherapy and obesity prevention strategies. In this thesis, we aimed to investigate 

how early-life obesity impacts on sleep-wake regulation and mood-related behaviors during 

aging. We further aimed to explore possible mechanisms linking obesity, sleep disturbances 

and depressive disorders. This relationship was here examined in the context of obesity 

during peripubertal development.  

Our mouse model of peripubertal diet-induced obesity (ppDIO) was generated by feeding 

male C57BL/6N mice a high-fat diet (HFD) between postnatal days 28 and 70. Termination 

of HFD was followed by standard normal chow (NC). To monitor sleep-wake behaviors, 

EEG/EMG recordings were performed at different ages (10, 12, 24 and 52 weeks). Further, 

neurotransmitter and neuropeptide levels in particular brain areas related to reward, feeding 

and sleep-wake regulation were evaluated. Depression-like behaviors and the activity of the 

hypothalamic-pituitary-adrenal axis were examined as well. Mice that were maintained on NC 

served as controls. 

A history of ppDIO increased nocturnal sleep time and decreased sleep quality in mice that 

were still exposed to HFD (10 weeks) and in mice aged 52 weeks. These changes were 

accompanied by decreased serotonin levels in the lateral hypothalamus, a brain region that 

is an important integrator of feeding, motivation and sleep-wake behaviors. Interestingly, both 

food deprivation (at 52 weeks) and an intraperitoneal injection of PYY3-36 (at 10 and 52 

weeks), the latter being a peripheral satiety hormone, corrected nocturnal sleep time in 

ppDIO mice. Further, ppDIO mice displayed elevated basal corticosterone levels and 

increased depression-like behaviors during aging.  

Cessation of HFD and re-exposure to NC resulted in hypophagia, body weight loss and a 

dramatic reduction in sleep time during the active phase, compared to those in control mice. 

Concomitant with HFD withdrawal, dopamine levels in the nucleus accumbens (a reward-

related brain region) were reduced, while serotonin levels in the lateral hypothalamus were 
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increased in ppDIO mice. However, the expression of hunger signals in the lateral 

hypothalamus and arcuate nucleus was increased in ppDIO mice similarly to conditions of 

fasting in control animals.  

In conclusion, ppDIO exerted significant effects on the long-term regulation of sleep-wake 

and depression-like behaviors. Our results suggest that reduced serotonergic tone underlies 

sleep disturbances and depressive disorders associated with obesity. During weight loss 

following HFD withdrawal, serotonergic tone increases, which might have contributed to 

increased vigilance. Further, we indicated the lateral hypothalamus and the nucleus 

accumbens as possible brain regions linking obesity with sleep disturbances. A dysfunction 

in the nucleus accumbens response to healthy diets may impede with strategies aimed at 

body weight loss in the obese. Lastly, PYY3-36 has the potential to ameliorate sleep 

disturbances triggered by ppDIO.  
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Introduction 

 

1 The regulation of food intake 

 

Food intake is regulated by homeostatic needs and hedonic drives (Fig. 1). Both 

components are crucial for survival from an evolutionary perspective; homeostatic 

signals sustain energy balance, while hedonic drives are important for motivated 

behaviors. In addition, ingestive behaviors are under circadian control and can be 

influenced by other factors, such as emotions and stress. Interactions of these 

components are complex and will be explained in more detail in the following 

sections.  

 

 
Figure 1: Signals that regulate food intake.  

Homeostatic signals convey information about the energy status of the body to the brain and represent 
the main regulators of food intake. Also hedonic (e.g. food palatability and reward characteristics of 
food) and affective (e.g. stress) aspects can drive food intake. Environmental cues that may facilitate 
food intake include circadian and contextual (e.g. food advertisements) signals. Adapted from Johnson, 
2013. 

 

1.1 Homeostatic influence on food intake 

 

Homeostatic regulation of food intake involves a wide network of brain regions 

including hypothalamic and brainstem nuclei, such as the lateral hypothalamus (LH), 

the arcuate nucleus (ARC), the ventromedial hypothalamus (VMH), dorsomedial 
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hypothalamus (DMH), paraventricular hypothalamic nucleus (PVN), nucleus tractus 

solitarius (NTS) and the area postrema (AP). In these brain regions, so called first-

order and second-order neurons are located. To regulate ingestive behaviors, first-

order neurons sense energy availability, energy stores and the digestive status of the 

body through humoral and neural signals. They convey this information to second-

order neurons, which induce food intake and suppress behaviors other than feeding 

by directly modulating the activity of other brain regions.  

 

1.1.1 First-order neurons in the regulation of food intake 

 

The hypothalamic ARC contains first-order neurons expressing appetite-promoting 

(orexigenic) neuropeptides neuropeptide Y (NPY) and agouti-related protein (AGRP), 

but also appetite-suppressing (anorexigenic) neurons that express pro-

opiomelanocortin (POMC) and cocaine- and amphetamine-related transcript (CART) 

(Schwartz et al., 2000). These first-order neurons receive peripheral signals and act 

reciprocally to elicit or suppress food intake (Fig. 2; Schwartz et al., 1996; Cheung et 

al., 1997).  

Because of its adjacent location to the median eminence, which possesses 

fenestrated capillaries, the ARC is not entirely protected by the blood-brain barrier 

(Peruzzo et al., 2000). Therefore, feeding and satiety signals that are circulating in 

the blood can directly influence the neuronal activity of the ARC. Among the 

peripheral satiety signals, long-term signals such as leptin and insulin can be 

differentiated from short-term signals including peptide tyrosine-tyrosine (PYY), 

glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). While leptin and insulin 

need to be produced in the adipose tissue (Y. Zhang et al., 1994) and in hepatic β-

cells (reviewed in Zou et al., 2014), respectively, short-term satiety signals are 

released immediately from the gastrointestinal tract upon ingestion of a meal (Sam et 

al., 2012).  

The only orexigenic peripheral hormone described to date is ghrelin. It is produced in 

the stomach and gastrointestinal tract (Kojima et al., 1999; Korbonits et al., 2004) and 

opposes the actions of satiety hormones on ARC first-order neurons.  
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Figure 2: Scheme of peripheral satiety and feeding cues signaling to first-order neurons in the arcuate 
nucleus.  

Anorexigenic POMC/CART and orexigenic NPY/AGRP neurons receive inputs from peripheral satiety 
signals such as PYY, CCK, GLP-1, leptin and insulin and the feeding signal ghrelin. POMC/CART and 
NPY/AGRP neurons inhibit or facilitate food intake, respectively.  

 

An alternative route of these feeding and satiety signals to the brain involves the NTS 

and AP. These areas receive neural inputs from the gastrointestinal tract and 

digestive viscera (e.g. liver) both directly via the vagus nerve, where receptors for 

PYY and ghrelin are expressed, and via circulating hormones due to their fenestrated 

capillaries (Young, 2012). NTS and AP form a simple reflex arc with the dorsal motor 

nucleus of the vagus to control gut motility and secretion, as well as meal size 

(Young, 2012). The NTS and AP further project to CNS regions including the ARC to 

modulate ingestive behaviors. 

 

1.1.2 Second-order neurons in the lateral hypothalamus 

 

ARC first-order neurons send projections to various brain regions; one of the most 

important projections in terms of food intake regulation is the LH. Early studies 

showed that lesions of the LH resulted in death by starvation and dehydration (Anand 
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& Brobeck, 1951a, 1951b; S. D. Morrison et al., 1958). By contrast, electrical 

stimulation of the LH stimulated food intake and increased physical activity (Delgado 

& Anand, 1953; Mogenson & Morgan, 1967). Hence, the LH has been designated as 

“feeding center”.  

The LH constitutes orexin- and melanin concentrating hormone (MCH)–containing 

neurons (de Lecea et al., 1998; Sakurai et al., 1998; Vaughan et al., 1989). Both 

orexin and MCH neurons stimulate food intake, which was shown by icv infusions of 

these peptides (Lubkin & Stricker-Krongrad, 1998; Griffond & Risold, 2009, 2009; Qu 

et al., 1996; Rossi et al., 1997). However, ablation of MCH or orexin neurons results 

in different phenotypes; orexin knockout mice are obese, whereas MCH knockout 

mice are lean and develop rather late-onset obesity (Shimada et al., 1998;Willie et 

al., 2008). These differences stem from divergent roles of orexin and MCH in energy 

expenditure; icv injections of orexin increased oxygen consumption (Funato et al., 

2009), while icv-injected MCH decreased it, suggesting that MCH is important for 

energy conservation (Asakawa et al., 2002).  

 

Figure 3: Schematic projections to and from neurons in the lateral hypothalamus related to the reward 
system, food intake and sleep-wake behaviors. 

MCH and orexin neurons receive projections from ARC first-order neurons. The LH integrates 
information about energetic needs, arousal and reward via projections to and from the VTA (ventral 
tegmental area), NAc (nucleus accumbens), TMN (tuberomammillary nucleus), LC (locus coeruleus) 
and DR (dorsal raphé nucleus). Adapted from Sakurai, 2005.   

 



Introduction  7 

Furthermore, orexin and MCH neurons play divergent roles in sleep-wake and 

reward-associated behaviors. Both innervate and receive projections from brain 

regions involved in arousal, reward-associated brain regions (Fig. 3) and also in 

memory and learning, such as the hippocampus and amygdala (Peyron et al., 1998; 

Horvath et al., 1999). A more detailed description of how orexin and MCH interact 

with the reward system and sleep-wake centers will follow in the sections 1.2 and 2.3, 

respectively. Moreover, orexinergic fibers project to the ARC and inhibit POMC/CART 

neurons, while stimulating NPY/AGRP neurons to facilitate food intake.  

It is worth mentioning that, besides the LH, NPY/AGRP and POMC/CART neurons 

innervate other second-order neurons located in the PVN, VMH, DMH and other 

brain areas to regulate food intake (Elmquist et al., 1999).  

 

1.1.3 Hypothalamic dopamine and serotonin actions 

 

Studies in the 70s and 80s have shed light on the potent food intake suppressing 

effects of dopamine and serotonin when injected into the LH (Leibowitz & Rossakis, 

1979; Parada et al., 1988; Hoebel et al., 1989). Increased serotonin and dopamine 

concentrations in the LH have also been reported to be proportional to meal size 

(Schwartz et al., 1989; Fetissov et al., 2000). Further evidence was provided by drug 

treatments that affected serotonergic signaling, e.g. fluoxetine, a selective serotonin 

reuptake inhibitor, and d-fenfluramine, a serotonin receptor agonist. Both drugs 

increased serotonergic transmission and resulted in suppression of food intake (Le 

Feuvre et al., 1991).  

Accordingly, the LH was determined as a terminal field for both dopaminergic 

(Jacobowitz & Palkovits, 1974; Leibowitz & Brown, 1980; Parada et al., 1988) and 

serotonergic (Vertes, 1991; Jalewa et al., 2014) projections.  

Serotonergic projections to the LH originate mainly from the DR (Vertes, 1991; 

Jalewa et al., 2014). However, the exact source of dopamine release into the LH is 

not clear. It is still controversial whether the LH receives dopaminergic projections 

from the VTA (Kizer et al., 1976; Leibowitz & Brown, 1980; Swanson, 1982) and 

PVN, whereas projections from dopamine-producing neurons in the zona incerta 
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(A13 group, Björklund & Lindvall, 1984; Wagner et al., 1995) and the ARC (Ershov et 

al., 2005) are strongly supported.  

 

 

1.2 Hedonic control of food intake 

 

1.2.1 Food consumption and the brain reward system 

 

Food is a natural reward. Thus, food consumption is reinforcing and leads to a 

repetition of its ingestion. Both consumption of palatable foods and drugs of abuse 

engage the brain reward system to enable their reinforcing properties (Lutter & 

Nestler, 2009; Berridge, 2009). The reward system is embedded in the limbic system 

and its most extensively studied neural correlate is the mesolimbic pathway, which 

consists of dopaminergic projections ascending from the VTA to the NAc through the 

medial forebrain bundle (Dahlstrom & Fuxe, 1964;Bjorklund & Dunnett, 2007).  

Several studies have shown that food intake leads to an increase in dopamine levels 

and turnover in the VTA and NAc (Hernandez & Hoebel, 1988; Yoshida et al., 1992; 

Bassareo & Di Chiara, 1999; Roitman et al., 2008). This rise in NAc dopamine 

concentrations is comparable to other rewards (Schultz et al., 1993; Carelli, 2002), 

indicating that food can be equally reinforcing as drug abuse (Corsica & Pelchat, 

2010; Koob et al., 1992). Conversely, the dopamine response in the NAc decreases 

when aversive liquids such as quinine are consumed (Roitman et al., 2008). The 

activation of the mesolimbic pathway is thought to be involved in generating the 

motivation to obtain food rewards (Schultz, 1997). Therefore, dopamine in the 

mesolimbic pathway plays a role in motivated behaviors that promote food seeking 

(‘wanting’ of a reward, Berridge, 2009).  

The palatability of food can lead to its consumption regardless of the energetic status 

of the body (Johnson, 2013). This effect of palatable food can be driven by the 

sensory perception of food, such as sight and smell (Sorensen et al., 2003), or by 

factors such as previous experience (developing food preferences and aversions) 

and conditioning to specific food cues (e.g. by advertisements) (Berridge, 2009; 

Johnson, 2013). This “hijacking” of homeostatic regulation by hedonic drive may lead 
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to overconsumption of palatable foods and may be the main cause for the 

development of obesity. The contribution of the hedonic systems to the development 

of obesity will be discussed further in the section 3.  

 

1.2.2 Cross-talk between homeostatic and hedonic regulation of feeding 

 

Based on the observation that food deprivation enhances the rewarding property of 

food (Berridge & Valenstein, 1991; Cameron et al., 2014), a close connection 

between homeostatic and hedonic regulation of food intake can be inferred. One 

major link is provided by extensive reciprocal projections between the NAc and the 

LH (Phillipson & Griffiths, 1985; Usuda et al., 1998; Urstadt & Stanley, 2015).  

Increased inhibition of NAc disinhibits LH neurons, resulting in increased food 

consumption (Kelley et al., 2005). Administration of orexin into the NAc led to 

increased feeding together with an increase in locomotor activity (Thorpe & Kotz, 

2005). Valdivia et al. showed that acute high-fat diet (HFD) exposure induced c-Fos 

expression in the LH and VTA, and the majority of HFD-responsive LH neurons 

projected to the VTA. Furthermore, c-Fos induction in the VTA was attenuated 

following a pre-treatment with an orexin receptor-1 antagonist (Valdivia et al., 2014). 

Thereby, orexin neurons facilitate dopamine release into the NAc (Fig. 4, Patyal et 

al., 2012; Vittoz & Berridge, 2006; Espana et al., 2011).  

Further, MCH injection into the NAc promotes feeding, whereas antagonism of its 

receptor (MCHR1) suppresses feeding (Georgescu et al., 2005). MCH appears to 

promote dopamine release into the NAc and thus contributes to the consumption of 

palatable liquids (Domingos et al., 2013).  

In summary, the actions of orexigenic peptides, such as MCH, NPY and ghrelin, may 

be mediating the hedonic drive, either via the VTA or the NAc. Hence, a hedonic 

drive facilitates feeding on palatable foods and should be integrated with homeostatic 

signals (Fig. 4). However, the question still remains why the termination of palatable 

food consumption fails to be executed far beyond energetic demands (see the 

section 3). 
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Figure 4: Scheme of interactions between homeostatic and hedonic modulators of food intake. 

Peripheral cues such as leptin, ghrelin and PYY, signal to the VTA and NAc to modulate hedonic 
aspects of feeding. While leptin inhibits firing of VTA dopamine neurons and decreases food intake, 
ghrelin activates their firing, thereby increasing food consumption (Hommel et al., 2006; Fulton et al., 
2006; Abizaid et al., 2006; Naleid et al., 2005). Paradoxically, application of satiety factor PYY3-36 onto 
striatal slices increases the synthesis and release of dopamine (Adewale et al., 2005, 2007), and its 
peripheral injection potentiated amphetamine-induced locomotor activity (Stadlbauer et al., 2014) 
suggesting an induction of a hyperdopaminergic state by PYY (Stadlbauer et al., 2015). ARC NPY 
neurons project to the NAc, where they reduce neuronal firing via NPY1R activation, resulting in 
increased feeding on fat-rich foods (van den Heuvel et al., 2015).  

 

1.3 Stress and food intake 

 

The stress response, or the so called fight-or-flight-response, is elicited by 

circumstances that are harmful or even life-threatening to an individual. Energetic 

resources need to be diverted to muscles, heart and brain, while other behaviors 

such as sexual activity or libido, digestion, food intake or appetite are suppressed 

(Chrousos & Gold, 1992).  

The key effectors of the stress response are the hypothalamus-pituitary-adrenal 

(HPA) axis and the sympathetic-adrenomedullary system. The latter mediates the 

fast stress response and originates from the locus coeruleus in the brainstem. Its 
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activation leads to the release of norepinephrine and epinephrine from the adrenal 

medulla. The principal regulator of the HPA axis is corticotropin-releasing hormone 

(CRH), which is produced in the PVN and stimulates the release of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary. ACTH further 

stimulates the release of glucocorticoids, e.g. cortisol (humans) or corticosterone 

(rodents, amphibians, birds etc.) from the zona fasciculata of the adrenal cortex. 

Several feedback loops prevent prolonged, deleterious activation of the HPA axis 

(Chrousos & Gold, 1992).  

Furthermore, CRH neurons in the PVN are second-order neurons in the regulation of 

food intake and exhibit reciprocal connections with ARC first-order neurons (X. Y. Lu 

et al., 2003; Schwartz et al., 2000; Heinrichs & Richard, 1999). CRH released from 

the PVN has anorexigenic actions, possibly to divert resources from other functions 

such as feeding and digestion towards stress coping (Heinrichs et al., 1993). 

However, one hour following peripheral CRH injection, an increase in food intake is 

observed in humans and the amount of ingested food is proportional to the 

magnitude of cortisol release (George et al., 2010). This suggests a role for cortisol in 

appetite stimulation after acute stress. Indeed, glucocorticoids appear to stimulate 

appetite (Santana et al., 1995). Centrally, chronic glucocorticoid administration 

increased NPY, but decreased CRH expression, which together facilitate feeding 

(Zakrzewska et al., 1999). Interestingly, during chronic stress, the ingestion of 

palatable, calorie-dense foods is preferred over healthy foods. This may serve as a 

coping mechanism, because consumption of highly palatable food leads to reward-

mediated negative feedback onto the HPA axis (Pecoraro et al., 2004; Foster et al., 

2009; Finger et al., 2011).  

In summary, food intake can be also modulated by stress hormones, i.e. CRH and 

cortisol. During chronic stress, prolonged HPA axis activation results in the 

overconsumption of palatable “comfort” foods, which may contribute to the etiology of 

obesity (see the section 3).  
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2 Sleep and wakefulness 

 

2.1 Fundamentals of Sleep 

 

Sleep is a rapidly reversible state of reduced responsiveness to external stimuli, 

decreased motor activity and reduced metabolism (Siegel, 2009). Even though sleep 

occurs similarly across different species including homoeothermic animals, the exact 

mechanisms regulating our sleep-wake behaviors are still poorly understood. Also 

the function of sleep is still mysterious; but the fact that individuals engage in 

sleeping despite the reduced protection against predators or the inability to mate or 

to eat during sleep, emphasizes the fundamental importance of sleep (Allada & 

Siegel, 2008).  

Several studies have proposed some of the functions of sleep. For example, sleep 

was shown to be important for energy conservation (Walker & Berger, 1980), 

memory consolidation (Stickgold, 2005; Diekelmann & Born, 2010), neuronal 

plasticity (Tononi & Cirelli, 2006) and metabolic clearance (Xie et al., 2013). Further, 

total sleep deprivation for several days has been shown to lead to death, pinpointing 

the vital importance of sleep (Everson et al., 1989).  

Since the first successful recording of the electroencephalogram (EEG, Berger, 

1929), we know that sleep is a heterogeneous state. Based on EEG and 

electromyogram (EMG) recordings, five different vigilance states can be 

distinguished in humans (modified guidelines: Iber et al., 2007; original guidelines: 

Rechtschaffen & Kales, 1968); wakefulness, non-rapid eye movement sleep 

(NREMS), which itself consists of three stages, S1, S2 and slow-wave sleep (SWS), 

and rapid-eye movement sleep (REMS). In rodents, S1, S2 and SWS cannot be 

clearly distinguished from one another. Therefore, in rodents three distinct vigilance 

states can be recognized; wakefulness, NREMS and REMS (Fig. 5).  
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Figure 5: Exemplary EEG traces during different vigilance states in a rat. 

(A) Wake EEG is characterized by low-voltage, high-frequency oscillations. (B) NREMS EEG is 
predominated by low-frequency, high-voltage delta waves. (C) REMS EEG traces typically consist of 
theta frequencies, and closely resemble wake EEG. Adapted from Brown et al., 2012. 

 

During wakefulness, cortical activity is high and produces a desynchronized EEG 

pattern with high-frequency and low-amplitude oscillations. Wake EEG spans mixed 

frequencies of 15-30 Hz (beta range) and above 30 Hz (gamma range). EEG 

patterns during wakefulness depend on the degree of attention; tasks that require 

higher levels of attention are represented by higher EEG frequencies, while during 

quiet waking the EEG oscillation shifts to lower frequencies (Steriade, 2006).  

When vigilance level shifts from wakefulness to NREMS, EEG waves become even 

slower and their amplitude increases, representing an increasing cortical 

synchronization. EEG patterns during NREMS are predominated by high-voltage, 

low-frequency waves (< 4 Hz, delta range). NREMS is followed by REMS, a sleep 

stage that is accompanied by cortical activity similarly seen during wakefulness 

including low-voltage, but slower waves (6-9Hz; theta range). Differences in EMG 

activity provide a distinction of REMS from wakefulness; while EMG activity is high 

during wakefulness, it is virtually none during REMS, reflecting the mucle atonia that 

accompanies the REMS state.  

Throughout the resting phase, several sleep cycles occur that contain a specific 

sequence of sleep states. A human sleep cycle lasts for 90 to 110 minutes, starting 

with shallow sleep (NREMS S1) and continuing to deeper vigilance states, passing 
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though NREMS S2 to SWS. SWS is also known as deep sleep and is characterized 

by specific EEG and EMG properties, as described above, but also by the high 

threshold that is necessary to awaken an individual from this sleep state. After SWS, 

REMS is entered, completing one sleep cycle. Afterwards, the cycle starts again from 

shallow sleep and passes through all the vigilance states.  

In contrast, sleep cycles in rodents have a duration from a few minutes up to 12 

minutes per cycle. Most rodents are nocturnal animals including mice and rats; most 

of their sleep occurs during the light period, whereas they are mostly active during 

the dark period. A rodent sleep cycle also starts with NREMS and ends with REMS 

(Tobler, 1995).  

Humans sleep cycles are repeated four to five times per night, whereas in mice, 

sleep cycles are frequently intruded by bouts of wakefulness. Hence, mice exhibit an 

episodic (polyphasic) sleep pattern, while human sleep is monophasic (Tobler, 1995).  

 

2.2 The regulation of sleep and wakefulness 

 

2.2.1 Circadian and homeostatic regulation of sleep-wake behaviors 

 

Sleep occurs in a timely organized manner; humans sleep during the night and are 

awake during the day, while nocturnal rodents sleep mostly during the light period 

(80 %), and to some extent also during the dark period (20 %, Tobler, 1995). This 

rhythmicity of sleep-wake behaviors is regulated by the circadian system, in which 

the suprachiasmatic nucleus (SCN) serves as the key pacemaker (Achermann & 

Borbely, 2003; Borbely, 1982).  

SCN pacemaker activity is generated by sequential expression of clock genes that 

are regulated by networks of transcriptional-translational feedback loops within the 

clock machinery (Jin et al., 1999; Reppert & Weaver, 2002). In addition, SCN activity 

synchronizes with external cues called Zeitgeber, such as light. This process is called 

entrainment and allows for re-adjustment to environmental changes and for an 

adherence to an ultradian 24-hour rhythm (Bellet & Sassone-Corsi, 2010).  

The SCN controls sleep-wake behaviors through the subparaventricular zone (J. Lu 

et al., 2001), which projects to the DMH (Chou et al., 2003; Deurveilher & Semba, 
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2005). In turn, the latter projects to wake-promoting and sleep-promoting regions and 

conveys rhythmic information from the SCN (Chou et al., 2003).  

In addition to the rhythmicity of sleep-wake behaviors given by the circadian 

oscillation, homeostatic processes regulate sleep (Achermann & Borbely, 2003; 

Borbely, 1982). Prolonged wakefulness accumulates the pressure to sleep. Once 

asleep, more intense slow waves in the EEG are found during NREMS, which 

decrease over the course of a sleeping period (Achermann & Borbely, 2003). 

Adenosine was suggested to be one of the mediators reflecting sleep pressure, as it 

accumulates in the extracellular space during prolonged wakefulness and decreases 

during sleep (Porkka-Heiskanen et al., 1997).  

In fact, homeostatic and circadian processes interact, and they are both required for 

operating normal sleep-wake cycles. The interaction of these processes is explained 

by the two-process model advocated by Borbely (Fig. 6; Borbely, 1982). Only when 

sleep pressure is high enough and the circadian timing is appropriate, sleep can take 

place. Both act on specific sleep-wake regulatory systems, as will be described in the 

following sections.  

 

Figure 6: The two process model of sleep regulation. 

Sleep is regulated by two processes: 1) Process S (upper curve), which represents the homeostatic 
sleep drive, increases exponentially during wakefulness and signals an urge to sleep once a specific 
threshold is crossed. 2) Process C (lower curve) represents the circadian rhythm, which inhibits sleep 
during the day. When the circadian inhibition of sleep decreases during the night (nadir of process C) 
and the sleep pressure is high enough (peak of process S), sleep can occur. Adapted from Borbély 
and Achermann, 2000.  
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2.2.2 Neural mechanisms of wake-to-sleep transitions 

 

A large number of brain regions have been accounted for the regulation of 

wakefulness, NREMS or REMS. Wake- and NREMS-promoting regions appear to 

mutually inhibit one another, thus explained by a flip-flop switch model responsible 

for the transition from wakefulness to NREMS and vice versa. A further mutual 

inhibition between REMS-on and REMS-off nuclei was suggested, which interprets 

how the transition from NREMS to REMS is mediated (Saper et al., 2010).  

 

Wake-promoting systems 

 

Wakefulness is maintained by the activities of a network of nuclei in the brainstem, 

hypothalamus and thalamus (Fig. 7). Early studies showed that lesions within the 

brainstem ascending reticular activating system (ARAS) results in marked 

somnolence (Lindsley et al., 1949), while its electrical activation produces EEG 

desynchronization similar to arousal (Moruzzi & Magoun, 1949). These brainstem 

arousal nuclei comprise the noradrenergic LC, dopaminergic VTA, serotonergic DR 

and median raphe nuclei (MR) and cholinergic pedunculopontine and laterodorsal 

tegmental nuclei (PPT, LDT), which project to LH, basal forebrain, thalamic relay 

nuclei etc. and ultimately induce EEG activation (Saper et al., 2010).  

While brainstem arousal nuclei fire most actively during wakefulness and decrease 

their firing during NREMS, they display different firing patterns with respect to REMS; 

cholinergic PPT and LDT neurons fire essentially as rapidly during REMS as during 

wakefulness, whereas monoaminergic nuclei (LC, DR, MR) cease firing during REMS 

(el Mansari et al., 1989; Aston-Jones & Bloom, 1981; Kocsis et al., 2006; Takahashi 

et al., 2010). However, lesions to single arousal nuclei do not cause a complete 

destruction of arousal, suggesting a complexity within the wake-promoting system 

(Saper et al., 2010).  
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Figure 7: Schematic representation of the wake-promoting network. 

Brainstem monoaminergic (DR, MR, LC, VTA, vlPAG, LPT) and cholinergic arousal nuclei (LDT, PPT) 
project to the LH, basal forebrain and thalamus to induce wakefulness. In addition, hypothalamic 
nuclei (LH, TMN) innervate brainstem and forebrain regions and evoke arousal. To maintain 
wakefulness, sleep-active neurons (VLPO, MnPO) are inhibited by the wake-promoting network. 
Wake-promoting nuclei and their projections are depicted in red. Dashed lines represent inhibitory 
inputs. Sleep-active VLPO and MnPO are given in gray. Adapted from Saper et al., 2010; 

 

Similarly to monoaminergic nuclei, orexinergic neurons in the LH fire predominantly 

during active wakefulness, especially when the animal is exploring the environment 

or during motivated behaviors as described in section 1 (Lee et al., 2005; 

Mileykovskiy et al., 2005). They virtually halt firing during NREMS and REMS (Lee et 

al., 2005). Optogenetic stimulation of orexin neurons or icv application of orexins 

induces arousal from sleep (A. R. Adamantidis et al., 2007; Piper et al., 2000). Loss 

of orexin neurons destabilizes wakefulness and causes recurrent intrusions of 

NREMS and REMS during activity phases (Hara et al., 2001).  

In addition to their direct projections to the cerebral cortex, wake-promoting cell 

groups also project to the thalamus, where they modulate the activity of thalamic 

relay neurons, intralaminar and related nuclei that form thalamocortical projections. 

The rhythmic bursting activity of thalamic relay neurons contributes to cortical 

synchronization. However, the firing pattern of thalamocortical neurons is further 

modulated by reciprocal interactions with GABAergic reticular thalamic neurons. 

Firing of the latter hyperpolarizes thalamocortical neurons, thereby decreasing their 

excitability by wake-promoting cell groups and other sensory inputs. This results in 
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synchronous burst firing of thalamic relay neurons that in turn produce waves of 

excitation in cortical neurons, as reflected by slow waves in the EEG (Steriade, 2003; 

Steriade et al., 1993). In contrast, when inputs from reticular thalamic neurons are 

low, thalamocortical neurons are in their transmission mode and relay sensory 

information to the cortex contributing to high-frequency EEG oscillations typical of 

wakefulness (Steriade, 2003; Steriade et al., 1993).  

 

NREMS-promoting systems 

 

When falling asleep, activities of the wake-promoting system are suppressed by 

sleep-promoting nuclei that include the ventrolateral pre-optic nucleus (VLPO) and 

median pre-optic nucleus (MnPO, Fig. 8). During an epidemic of encephalitis 

lethargica around the time of World War I, Von Economo observed that pathological 

lesions in the preoptic region produced insomnia (Economo, 1926). Later, the lesion 

was found to correspond to sleep-active VLPO and MnPO neurons; they fire faster 

during sleep and their discharge rate may reflect sleep depth (Szymusiak et al., 1998; 

Suntsova et al., 2002). MnPO neurons, but not VLPO neurons, increase their firing 

rate prior to sleep onset and may play a role in the initiation of sleep, while both are 

essential for sleep maintenance (Suntsova et al., 2002; Saper et al., 2010). Further, 

MnPO and VLPO activity is homeostatically regulated, because Fos expression in 

these areas increases in response to sleep deprivation (Gvilia et al., 2006).  

Both VLPO and MnPO contain GABA as neurotransmitter and project to the 

brainstem and hypothalamic arousal nuclei to exert their inhibitory influence on wake-

promoting networks (Sherin et al., 1998; Gong et al., 2004; Uschakov et al., 2007). In 

addition to GABA, VLPO neurons also contain galanin, which is an inhibitory 

neuropeptide (Sherin et al., 1998; Sherin et al., 1996). VLPO and MnPO receive 

inhibitory projections from wake-promoting regions, thus, providing a mechanism for 

fast sleep-wake and wake-sleep transitions (Gallopin et al., 2000; Saper et al., 2010).  

Furthermore, MCH neurons, which are located in the LH and zona incerta adjacent to 

wake-promoting orexin neurons, increase their firing during NREMS and are most 

active during REMS (Hassani et al., 2009; Verret et al., 2003). Icv injections of MCH 
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increase REMS dose-dependently; at some doses also NREMS enhancement was 

observed (Verret et al., 2003). MCH injection into NREMS-promoting regions such as 

VLPO increased NREMS (Benedetto et al., 2013), while VLPO microinjection of its 

counterpart orexin induced wakefulness (Mavanji et al., 2015). Optogenetic activation 

of MCH during the dark period produced NREMS (Konadhode et al., 2013; 

Tsunematsu et al., 2014). However, when MCH neurons were optogenetically 

activated during NREMS, a transition into REMS was induced, and their activation 

during REMS prolonged REMS episodes (Jego et al., 2013; Tsunematsu et al., 2014). 

However, the exact role of MCH in NREMS and REMS promotion is still controversial.  

 

 

Figure 8: Schematic representation of the NREMS-promoting network. 

Sleep-inducing molecules such as adenosine increase during prolonged wakefulness and provide a 
signal for the initiation of sleep. Sleep-active nuclei (blue) such as the VLPO, MnPO, and MCH-
expressing neurons in the LH and zona incerta are excited by adenosine and suppress wake-active 
nuclei (grey). This mechanism drives the switch from wakefulness to NREMS and maintains NREMS. 
Adapted from Saper et al., 2010.  

 

Interestingly, lesions of the ventral striatum (NAc) increased time spent awake (Qiu et 

al., 2010). Previous reports have suggested that the NAc may be a key region for the 

arousing effects of caffeine (J. P. Zhang et al., 2013). Projections from NAc to 

arousal nuclei such as the LH are mainly GABAergic (Baldo et al., 2004). Thus, the 

NAc may represent a further NREMS-promoting region, but its exact role in sleep-

wake behaviors is still poorly understood. 
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REMS-promoting systems 

 

REMS was discovered in the 1950s and its regulatory mechanism was extensively 

studied ever since (Aserinsky & Kleitman, 1953). Based on increased neuronal 

activities associated with REMS, initial studies implicated PPT and LDT with the 

generation of REMS (Aston-Jones & Bloom, 1981; Takahashi et al., 2010; Hobson et 

al., 1975; Trulson et al., 1981). However, lesions within these cell groups produced 

only limited reductions in REMS. During REMS rebound in response to sleep 

deprivation, only few Fos-positive cells were found in these regions (Lu et al., 2006; 

Blanco-Centurion et al., 2007; Boissard et al., 2002), whereas a stronger neuronal 

activation was observed in sub-laterodorsal nucleus (SLD), precoeruleus region (PC) 

and medial parabrachial nucleus (MPB) (Boissard et al., 2002). Pharmacological 

activation of the SLD produced REMS-like behavior (Boissard et al., 2002), while its 

lesion suppressed REMS. Neurons in these nuclei were thus termed REM-on 

neurons (Lu et al., 2006).  

Furthermore, these REM-on neurons exhibit reciprocal connections with neurons in 

the ventrolateral periaqueductal gray (vlPAG) and lateral pontine tegmentum (LPT), 

(Lu et al., 2006). The latter appear to be REM-off neurons, because both their 

pharmacological inhibition and their lesion increase REMS (Lu et al., 2006). They 

send GABAergic projections to SLD, PC and MPB, providing a mutual inhibition 

between REM-on and REM-off neurons. This mutual inhibition may serve as neural 

basis of the NREMS-to-REMS transition (Lu et al., 2006; Saper et al., 2010). 

Furthermore, these neurons receive inputs from LH and VLPO (Lu et al., 2006), 

which may contribute in general to the termination or maintenance of sleep, 

respectively. 

 

2.3 Sleep and metabolism  

 

Sleep-wake behaviors are closely associated with other behaviors such as food 

intake. For example, when food availability is scarce, periods of prolonged 

wakefulness are necessary, to possibly maximize food-seeking behavior. Hence, a 
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period of fasting substantially increased arousal in rats. During the refeeding period, 

sleep rebounds occurr in a comparable manner as during recovery sleep following 

sleep deprivation (Borbely, 1977; Danguir & Nicolaidis, 1979). Refeeding also 

increases slow-wave activity, which demonstrates that energetic needs are able to 

override homeostatic sleep pressure (Shimizu et al., 2011). However, ablation of 

orexin neurons in the LH abolished fasting-induced arousal (Yamanaka et al., 2003), 

suggesting a role of orexin in the coupling of feeding and arousal. Indeed, orexin 

injections increase both food intake and arousal as already mentioned in previous 

sections (Piper et al., 2000; Lubkin & Stricker-Krongrad, 1998).  

 

Figure 9: Sleep debt and its effects on food intake. 

Sleep debt in humans and rodents decreases levels of satiety signals, but increases concentrations of 
feeding signals. These processes result in a net feeding signal. Thus, chronic sleep restriction is 
thought to confer a higher risk of weight gain. Adapted from Laposky et al., 2008 and Kim et al., 2015.  

 

Conversely, sleep restriction impacts dramatically on energy balance leading up to a 

condition where weight gain is favored (Fig. 9, Taheri et al., 2004; Laposky et al., 

2008; Kim et al., 2015). Glucose homeostasis was also affected by sleep restriction; 

glucose tolerance and insulin sensitivity were decreased in sleep-restricted subjects 

resulting in an increased risk of developing type II diabetes. Sleep restriction further 

activated the HPA axis and increased cortisol levels (Spiegel et al., 1999).  

Furthermore, peripheral satiety cues such as leptin and PYY may influence sleep-

wake behaviors. Leptin administration increased SWS and decreased REMS in rats 

(Sinton et al., 1999), while food intake was suppressed. PYY administration yielded 

similar results in rats (Akanmu et al., 2006). These findings are in line with the idea 

that feeding and sleeping behaviors are under mutual control (A. Adamantidis & de 

Lecea, 2008; Morselli et al., 2012).  
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However, the effects of orexigenic factors on sleep yielded contradictory results. 

While ghrelin consistently promoted feeding, its effects on sleep showed high 

variability between different studies and between rodents and humans (Weikel et al., 

2003; Obal et al., 2003; Szentirmai et al., 2007; Kluge et al., 2010). Similarly, the 

orexigenic peptide NPY showed conflicting results on sleep (Szentirmai & Krueger, 

2006; Zini et al., 1984; Antonijevic et al., 2000).  

Thus, the study here attempted to clarify the mechanistic relationship underlying the 

mutual inhibition between feeding and sleeping.  
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3 Obesity 

 

3.1 Epidemiology and health consequences of obesity 

 

The body mass index (BMI) is an estimate of body fat percentage of an individual 

with a BMI of 18.5 – 25 kg/m² considered healthy (Keys et al., 1972). BMI below or 

above the “healthy” range indicates underweight and overweight, respectively. In this 

respect, obesity is often defined as a BMI > 30 kg/m². A BMI outside the healthy 

range increases the risk of various medical conditions and early mortality.  

Despite this fact, during the past 30 years the incidence of overweight and obesity 

has been rising at an alarming rate. Obesity is not exclusive to adults any longer, and 

is now more frequently observed in young children and adolescents. Over 35 % of 

the U.S. population between five and 17 years are overweight or obese. In Germany, 

22.6 % of boys and 17.6 % of girls are overweight or obese, according to the latest 

available estimates (The Organisation for Economic Co-operation and Development, 

2012).  

Nowadays, in addition to genetic predispositions and a lack of physical exercise, 

weight gain is promoted by the obesogenic environment. Easy and quick ways to 

access food high in carbohydrates and fats demand higher resistance by individuals. 

However, the consequences are dramatic; considerable evidence indicates a causal 

relationship between obesity and diabetes mellitus type 2, cardiovascular diseases, 

hypertension, insulin resistance and metabolic syndrome in adults (Westphal, 2008), 

and thus, early mortality (Pischon et al., 2008). Furthermore, there is evidence that 

obesity is even associated with depressive disorders (Akbaraly et al., 2009; Rosmond 

et al., 1996). Kloiber et al. showed that antidepressant drug treatment efficacy 

negatively correlates with patient BMI; depressed patients with a BMI > 25 exhibited 

slower treatment response than those with lower BMI (Kloiber et al., 2007). 

Therefore, it is important to understand the biology underlying obesity and to find 

treatment options for obese people.  
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3.2 Mouse models of obesity 

 

Obesity in humans results from a combination of environmental, genetic and 

behavioral factors. To understand the etiology of obesity, and to improve treatment 

options and weight loss strategies, scientists have studied rodent models mimicking 

human obesity (Mavanji et al., 2012; Yazdi et al., 2015).  

Many obesity rodent models are based on single-gene mutations. The probably most 

extensively studied mutant models concern defective leptin signaling such as ob/ob 

mice (Ingalls et al., 1950; Y. Zhang et al., 1994), db/db mice (Chen et al., 1996; et 

al.,Chua et al., 1996) and obese Zucker rats (Zucker, 1961). Leptin-deficiency and 

leptin-resistance cause hyperphagia and obesity and may even lead to the 

development of core features of the human metabolic syndrome, which is 

characterized by abdominal obesity, impaired glucose tolerance and insulin 

sensitivity, high blood pressure and elevated blood triglyceride levels (de Artinano & 

Castro, 2009).  

However, one has to keep in mind that only a few cases of human obesity exhibit a 

monogenic cause. To address polygenic predispositions to obesity, Levin and 

colleagues selected rats from an outbred population of Sprague-Dawley rats, based 

on their propensity to gain excess weight when exposed to a high energy and high fat 

diet. About half of these rats tended to remain lean and were thus termed obesity-

resistant, while the other half developed overweight (obesity-prone rats) (Levin et al., 

1997). This model resembles human obesity in many ways, including the display of 

insulin resistance (Levin et al., 1997).  

On the other hand, different dietary schemes also have to be considered when 

mimicking human obesity in animal models. Obesity in humans usually is the 

consequence of overconsumption of palatable foods, while healthy foods are 

neglected (Kenny, 2011). Therefore, a comparison between rodents fed a palatable 

diet and those fed a healthy diet might be more suitable. To this end, rodents can be 

fed a standardized palatable diet, which is high in fat and carbohydrates (HFD, Black 

et al., 1998). Within six weeks, HFD-feeding leads to severe diet-induced obesity 

(DIO) along with hyperglycemia and hyperinsulimia as compared to control mice that 

are maintained on standard chow (Black et al., 1998). The use of C57BL/6 mouse 
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strain is advantageous in this respect, as these mice are prone to develop obesity 

when fed a HFD. 

Alternatively, rodents can be fed a diet composed of daily varying palatable snacks, 

e.g. chocolate, shortbread cookies etc. (“cafeteria diet”, Danguir, 1987). This 

approach also leads to hyperphagia and accelerates weight gain. However, as 

compared to the standardized HFD, monitoring the daily caloric intake of the cafeteria 

diet proved to be problematic and thus, results are difficult to reproduce. 

Nevertheless, both models exhibit several parallels to human obesity, including a 

comorbidity with type II diabetes (C. D. Morrison et al., 2009), cardiovascular disease 

(Ayer et al., 2015), depression-like behaviors (Sharma & Fulton, 2013) and sleep-

wake disturbances (Jenkins et al., 2006). The relationship between obesity and sleep 

disturbances will be discussed in the following section.  

 

3.3 Sleep-wake behavior in obesity  

 

As compared to diabetes and cardiovascular disease, sleep disturbances are often 

overseen medical disorders in obese subjects. Many obese individuals complain 

about sleep disturbances including frequent awakenings during the night and 

numerous shifts from one sleep stage to another, a phenomenon termed sleep 

fragmentation (Fig. 10; Vgontzas & Kales, 1999; Vgontzas et al., 2008; Vgontzas et 

al., 1998). This results in non-refreshing sleep and produces excessive daytime 

sleepiness (EDS), which decreases life quality and impairs daily performance.  

Studies in rodent obesity models shed light on the possible role of orexin in sleep 

disturbances in the obese. In Levin’s obesity-prone rats, orexin function was reduced 

and active phase NREMS time was increased (Teske et al., 2006; Mavanji et al., 

2010). Also obese Zucker rats showed orexin deficiency and an abnormal distribution 

of NREMS and REMS between the active and resting phase, e.g. with more NREMS 

during the dark phase. Furthermore, these obese animal models both showed sleep 

fragmentation (Mavanji et al., 2012). Similarly, leptin-deficient, leptin-resistant, 

cafeteria-diet fed and DIO animals showed a sleep phenotype with a loss of proper 

circadian distribution of sleep with more nocturnal NREMS and REMS time (Laposky 

et al., 2006; Danguir, 1987; Jenkins et al., 2006).  
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Figure 10: A scheme of associations between sleep disturbances and obesity. 

Obese individuals display sleep disturbances such as sleep fragmentation, frequent awakenings 
during the night and excessive daytime sleepiness. In turn, sleep disturbances promote weight gain as 
described in the previous section. Deficiencies in orexin signaling may link obesity with sleep 
disturbances.  

 

Except for the cafeteria-fed rats, all the other mouse models for obesity mentioned in 

the section 3.2 reproduced sleep fragmentation, which is typical of human obese 

subjects. In conclusion, to investigate the relationship between sleep disturbances 

and obesity, the DIO mouse model might be the more appropriate choice, because 

this mouse model translates all the sleep disturbances observed in obese humans 

and is based on overconsumption of palatable foods. Orexin deficiency is prevalent 

in the obese and was suggested to associate obesity with sleep disturbances. This 

hypothesis was tested in the present study.  

 

3.4 Food intake regulation affected by obesity 

 

Evidence accumulates that both homeostatic and hedonic regulators of food intake 

undergo adaptive changes during prolonged intake of palatable foods that ultimately 

result in obesity (Alsio et al., 2012).  

In human and rodent obesity, leptin levels are elevated, which is consistent with the 

finding that peripheral leptin concentrations are proportional to fat stores (Fig. 11; 

Considine et al., 1996; Kohsaka et al., 2007). However, a central and peripheral 
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leptin resistance emerges during obesity, which appears to diminish the efficacy of 

leptin signaling (T. L. Martin et al., 2006). In addition, a central and peripheral insulin 

resistance is evident in obese subjects, contributing to increased risk of type II 

diabetes (Arase et al., 1988; Scarlett & Schwartz, 2015). Moreover, basal and post-

prandial PYY concentrations are decreased in obesity (Batterham et al., 2003; Karra 

et al., 2009). In contrast to the aforementioned satiety signals, PYY signaling appears 

to be intact in obesity and can still elicit a suppression of food intake (R. D. 

Reidelberger et al., 2008).  

Further, ghrelin concentrations are decreased in obese humans (Tschop et al., 2001). 

Similarly to leptin and insulin, peripheral ghrelin fails to influence food intake in DIO 

mice, suggesting a ghrelin resistance in obesity (Perreault et al., 2004; Briggs et al., 

2010).  

 

Figure 11: Scheme of periphery-to-brain signaling in obesity. 

In obesity, levels of anorexigenic factors are increased, while concentrations of orexigenic factors are 
reduced. However, anorexigenic signaling is not efficient due to decreased central and peripheral 
sensitivity. Even though levels of peripheral PYY are low, its signaling pathway appears to be intact in 
the obese. 

 

Also central alterations were observed in obesity. NPY and AGRP mRNA expression 

in the ARC was reduced in the DIO mouse model, whereas POMC and CART mRNA 

expression was increased (Kohsaka et al., 2007). These findings suggest an 
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aberrant CNS response to peripheral satiety and feeding cues in obesity resulting in 

a loss of control over energetic needs.  

With respect to LH second-order neurons, the number of orexin-positive cells is 

decreased in DIO mice and the circadian expression of prepro-orexin mRNA 

expression is blunted (Fig. 12, Kohsaka et al., 2007; Nobunaga et al., 2014). 

Interestingly, prepro-orexin mRNA expression is inversely correlated with daily 

NREMS amounts in DIO mice, further supporting the LH as a center modulating both 

food intake and sleep-wake behaviors (Tanno et al., 2013). In contrast, the number of 

MCH-positive cells in the LH was not affected in DIO mice (Nobunaga et al., 2014).  

 

Figure 12: Scheme of central homeostatic and hedonic signal interaction on food intake regulation in 
obesity. 

A hypodopaminergic tone was suggested to drive overconsumption on palatable foods in obesity and 
may be responsible for overwriting homeostatic satiety signals. However, the interaction of the 
depicted factors driving overconsumption in obesity is still poorly understood.  

 

Altogether, the changes in food intake regulatory centers signal a satiated state in 

obesity. Nevertheless, obese rodents still ingest the same total amount of food in 

grams as control mice after overcoming an initial hyperphagic response to the 



Introduction  29 

obesogenic diet (Kohsaka et al., 2007). One possible explanation for this behavior is 

a hedonic hyperdrive on food intake, which may be mediated by opioid and 

endocannabinoid signaling (Berridge et al., 2010). In addition, obesity is 

accompanied by a hypo-dopaminergic state in the NAc and VTA, areas regulating 

hedonic aspects of feeding; extracellular dopamine levels were decreased in the NAc 

and VTA in obese rodents (Geiger et al., 2008; Li et al., 2009; Vucetic et al., 2012; 

Sharma & Fulton, 2013). In slice preparations from obesity-prone rats, electrically 

induced dopamine release from NAc, dorsal striatum and prefrontal cortex was 

attenuated (Geiger et al., 2009). Obese rats further displayed reduced expression of 

tyrosine hydroxalase, vesicular monoamine transporter-2 and dopamine transporter 

in the NAc and VTA (Geiger et al., 2008; Li et al., 2009; Vucetic et al., 2012; Sharma 

& Fulton, 2013). 

Based on these findings, it was suggested that prolonged exposure to palatable 

foods may increase the hedonic set point (hence, a stronger hedonic stimulus is 

needed to activate the reward system) and may drive the overconsumption of 

palatable foods to compensate for the perceived reward deficit (Egecioglu et al., 

2011). However, this hypothesis has received strong criticism in recent studies, 

because reduced dopaminergic signaling in obesity was associated with a decrease 

in motivated behaviors rather than alterations in hedonic perception of foods 

(Berridge et al., 2010; Harb & Almeida, 2014). To shed light on this controversy, the 

present study examined whether chronic exposure to palatable foods may alter 

setpoints in homeostatic and hedonic components of food intake regulation.  

 

3.5 Weight loss strategies and therapies 

 

Concerning the increased risk of medical severity and early mortality in obese 

subjects, appropriate weight loss strategies are of major importance. Weight loss 

strategies mostly involve lifestyle modifications, including an increase in physical 

activity, dietary restriction, healthy food choices and behavioral treatment (Blomain et 

al., 2013). The latter comprises behavior change techniques to promote physical 

activity and sustained compliance with healthy eating regimens.  
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However, physiological adaptations during weight loss rather promote weight regain 

than weight loss (Fig. 13). As mentioned previously, a decrease in striatal D2 

receptors was observed in obese individuals suggesting that increased intake of 

palatable foods is required to compensate for the perceived reward deficit (Egecioglu 

et al., 2011). Abstinence from palatable diet and/or decreased meal size and 

frequency may result in a reward deficit that may also counteract weight loss 

attempts in obese individuals.  

 

Figure 13: Scheme of possible interactions between central homeostatic and hedonic signals 
regulating food intake during weight loss in obese subjects. 

During the challenge of weight loss, physiological adaptations that cause hunger occur. For example, 
peripheral satiety signals such as leptin, PYY, CCK and GLP-1 decrease, while the feeding signal 
ghrelin increases. These changes can persist for nearly one year in humans and may oppose weight 
loss attempts. Dashed lines indicate ineffective signaling. Figure based on Cummings et al., 2002; 
Essah et al., 2010; de Luis et al., 2007; Sumithran et al., 2011 

 

Due to these contradicting factors, the above mentioned weight loss strategies have 

brought only limited success in the past. Therefore, the use of anti-obesity drugs was 

suggested (Heal et al., 2013; Greenway, 2015). Several CNS-acting drugs were 

developed to treat obesity, including some altering serotonergic function. For 

example, fenfluramine and lorcaserin reduce food intake and result in weight loss 

through activation of 5-HT2C receptors (Vickers et al., 2001;Smith et al., 2006; C. K. 
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Martin et al., 2011). However, both drugs provoke adverse side effects, such as 

hallucinations at high doses, as well as increased cellular proliferation in the heart 

valve and subsequent inelasticity and loss of function (Heal et al., 2013). Therefore, 

these drugs are no longer approved for anti-obesity treatment in Europe.  

Alternatively, drugs that stimulate the peripheral satiety machinery could be used (Fig. 

13). For example, chronic intermittent PYY3-36 administration in DIO rats with ad 

libitum access to high-fat diet and liquids produced a significant body weight loss (R. 

D. Reidelberger et al., 2008). In contrast, leptin treatment had no effect on body 

weight or food intake in DIO rats. The use of other satiety factors including GLP-1 

was also shown to be effective (R. Reidelberger et al., 2012). Hence, the application 

of satiety peptides such as PYY3-36 and GPL-1 or their analogues may be new 

promising treatment options for obesity. Whether they may ameliorate health 

consequences associated with obesity is again still poorly understood and was thus 

subject to this study.  
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4 The peripubertal period 

 

4.1 Definition of puberty and its distinction from adolescence 

 

Puberty and adolescence mark periods of transition between childhood and 

adulthood. Despite their frequent synonymous use, there are clear differences 

between the terms adolescence and puberty; while adolescence refers to the time of 

behavioral maturation including the acquisition of adult social, emotional and 

cognitive behaviors (Sisk & Zehr, 2005), puberty implies an endocrinological event 

that commences with the activation of hypothalamic-pituitary-gonadal axis concluding 

with reproductive maturation (Sisk & Foster, 2004).  

Girls usually enter puberty at 10 or 11 years of age, and puberty onset occurs about 

one year later in boys. The onset of adolescence is more difficult to designate and is 

usually defined by puberty onset. However, the adolescent period continues beyond 

puberty, i.e. until the early twenties in humans. In rodents, puberty is initiated at 

around 4 weeks of age, and sexual maturity is reached at approximately postnatal 

day (P) 35, when vaginal opening occurs in females, and when penile and testicular 

development is completed in males (Ojeda & Urbanski, 1994); reproductive 

behaviors typically emerge 1-2 weeks thereafter (Sisk & Zehr, 2005). The term 

“adolescence” is anthropomorphic and should not be applied to rodents. In light of 

the experimental designs used in this thesis, we will simply refer to the “peripubertal 

period” (P28-70), since dietary treatments were initiated a few days before and 

continued after the usual age of puberty.  

In addition to gonadal hormone changes, peripuberty is a particular period when 

dramatic remodeling occurs in the nervous system (Spear, 2000). The dynamic 

changes in brain anatomy and neurotransmission and their interaction with 

environmental influences are thought to sculpt adult behaviors. Accordingly, sleep-

wake behaviors also change dramatically during adolescence and might be subject 

to programming by external or internal stimuli. This section will briefly review the 

interaction between brain reorganization and behavioral maturation during 

peripuberty.  
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4.2 Brain reorganization and sleep changes during peripuberty  

 

During the peripubertal period, the brain undergoes structural and functional 

changes. During this period, a surge of synapse and receptor production occurs in 

rats (Andersen, 2003). This initial overproduction is followed by “synaptic pruning”, a 

process that eliminates idle synapses while preserving frequently used ones 

according to the “use it or lose it“-principle (Feinberg et al., 1990; Feinberg & 

Campbell, 2010). Similar age-related changes in synaptic density during adolescence 

were found in the postmortem frontal cortex of humans (Huttenlocher, 1979). These 

synaptic pruning events are generally thought to translate into changes in the gray 

matter volume, which increases at puberty onset and decreases after the completion 

of reproductive maturation. In parallel, axon myelination increases during puberty, 

which leads to an expansion of the white matter volume (Giedd et al., 1999; Paus et 

al., 2001). These changes are suggested to increase speed and efficiency of 

neuronal networks resulting in improved cognitive capabilities in adolescence (Giedd 

et al., 2012).  

Interestingly, cortical reorganization is reflected in changes in sleep EEG during 

development (Fig. 14, Feinberg & Campbell, 2010). Along with decreasing synaptic 

density during adolescence, sleep depth, as reflected in NREMS SWA, declines. This 

relationship is partly explained by the principle that the amplitude of EEG power 

depends on the degree of connectivity of cortical neurons and thus synchronicity of 

neuronal firing; the stronger the connection between these neurons was made, e.g. 

high-degree neuronal connectivity during childhood, the higher the synchronization of 

neuronal firing occurs, i.e. the larger EEG power during NREMS (Feinberg & 

Campbell, 2010). Due to synaptic pruning during adolescence, neuronal connectivity 

decreases to the adult level, resulting in smaller EEG power in adolescence than 

during childhood (Feinberg & Campbell, 2010; Huttenlocher, 1979).  
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Figure 14: Developmental timeline of relative delta power as compared to frontal grey matter volume 
and chronotype in humans and rats. 

(A) In humans, the developmental changes in frontal grey matter are accompanied by declines in 
relative delta power during NREMS. (B) In rats, rises and declines in frontal grey matter and NREMS 
delta power follow similar patterns. Schematic adapted from Hagenauer & Lee, 2013.  

 

Furthermore, homeostatic sleep pressure decreases during adolescence; 36 hours of 

total sleep deprivation leads to a slower buildup of homeostatic sleep pressure during 

wakefulness in more mature adolescent subjects as compared to younger subjects 

(Jenni et al., 2005). Accordingly, sleep behaviors change during adolescence; time 

spent asleep becomes shorter and circadian distribution of sleep is shifted during 

adolescence. While children sleep as much as 13-16 hours per day during the first 

years of their lives, the amount of sleep decreases during puberty, reaching sleep 

durations of 9 hours per night. Moreover, a delay in bedtime occurs in adolescents, 
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which is probably due to a lower physiological drive to sleep around the hours of 

typical bedtimes (Taylor et al., 2005). However, during the day, daytime sleepiness 

emerges, even under controlled laboratory conditions and when sleep time is not 

restricted (Carskadon et al., 1980).  

Similarly to humans, peripubertal rodents show decreased amounts of NREMS and 

REMS and a resistance to sleep deprivation with lower SWA buildup (Sieck et al., 

1976; Hagenauer & Lee, 2013; Alfoldi et al., 1990). Data on changes in SWA during 

development are somewhat inconclusive in rodents (Hagenauer & Lee, 2013). In 

addition, in developing rats a reorganization of diurnal sleep patterns occurs between 

P21 and P30; at P21, sleep amounts are evenly distributed between the light and 

dark period, whereas at P30, the largest amounts of sleep occur during the light 

period (Gvilia et al., 2011).  

In conclusion, adolescence/peripuberty marks a period in life that is characterized by 

dramatic changes in brain structure and function, which directly influence sleep EEG 

and behaviors.  

 

4.3 Remodeling of neurotransmitter systems during peripuberty  

 

In addition to structural brain changes, several neurotransmitter systems are 

reorganized during the peripubertal period, such as the dopamine and serotonin 

system. In the rat, the establishment of dopaminergic markers such as tyrosine 

hydroxylase (TH) activity, dopamine transporters and dopamine content, is 

completed between postnatal days 28 and 35 (Broaddus & Bennett, 1990). Similarly, 

dopamine D1 and D2 receptor density and binding increase linearly until P40 in the 

NAc, striatum and other dopamine projection sites, and undergo a developmental 

decline towards adulthood (Rao et al., 1991; Pardo et al., 1977; Gelbard et al., 1989; 

Tarazi et al., 1998). These changes in dopamine signaling in NAc and striatum 

suggest a developmental fine tuning of motor and reward-associated behaviors 

(Teicher et al., 1995; Tarazi & Baldessarini, 2000). Alterations in the development of 

the dopaminergic system are thought to contribute to the increasing prevalence of 

schizophrenia and other psychiatric disorders and to the development of substance 

abuse during post-puberty (Trotman et al., 2013).  
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It was further shown that serotonin brain concentrations decrease progressively 

during brain maturation (Lauder & Bloom, 1974; Lauder, 1990). In addition, serotonin 

transporters increase until adulthood in the NAc and striatum (Tarazi et al., 1998). 

These findings suggest that the establishment of some behaviors that require proper 

serotonin function, such as sleep-wake behaviors and mental health may depend on 

appropriate development of serotonergic circuits during peripuberty. The following 

section will propose possible factors that may alter serotonergic or dopaminergic 

signaling during peripuberty that elicits behavioral changes.  

 

4.4 Peripuberty; a window of sensitivity for the development of adult behaviors 

 

More than 40 years ago, Scott et al. hypothesized that there are multiple steps in the 

organization of the nervous system, and that these periods of rapid neural 

development may represent sensitive windows for behavioral development (Scott et 

al., 1974). Given the profound remodeling of the nervous system (see the previous 

section), the peripubertal period may exemplify such a sensitive one in life (Patchev 

et al., 2014).  

In this respect, environmental influences during puberty may remain as long-term 

traits in behaviors that depend on dopaminergic or serotonergic signaling. For 

example, ad libitum access to sucrose solution during P30-46 selectively decreased 

motivation in the adult rat (Vendruscolo et al., 2010). This effect was absent when the 

treatment period was shifted to adulthood. Furthermore, brief exposure to a HFD 

during the third postnatal week (reflecting the juvenile period) programmed dietary 

preferences later in life. This short exposure to a palatable diet altered dopamine 

signaling in the NAc and led the researchers to postulate that exposure to palatable 

foods or liquids during early life may have long-lasting effects on reward function 

even when body weights are not influenced (Teegarden et al., 2009). Moreover, 

although the development of the NPY system is largely completed by the time of 

puberty onset (Grove & Smith, 2003), peripubertal HFD-feeding was shown to 

permanently decrease ARC NPY expression (Ferretti et al., 2011).  

Conversely, a critical amount of body fat is required for puberty to be initiated 

(Kennedy & Mitra, 1963; Frisch, 1972; Fernandez-Fernandez et al., 2006; Martos-

Moreno et al., 2010). Hence, puberty is accompanied by a developmental 
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hyperphagia and increased consummatory behavior (Spear, 2000; Soliman et al., 

2014).  

Consummatory behaviors and the increasing prevalence of peripubertal overweight 

appear to affect puberty onset. In fact, the onset of puberty has slightly advanced in 

the last few decades, an effect that is especially seen in girls (Wang, 2002). This 

effect was reproduced in studies where rodents were fed a high-fat diet (Kirtley & 

Maher, 1979; Ramaley, 1981; Castro-Gonzalez et al., 2015). Importantly, precocious 

puberty has been associated with the development of psychopathology (Adriani & 

Laviola, 2004). For example, early maturing females and boys are more susceptible 

to develop eating disorders (Kaltiala-Heino et al., 2001), depression (Kaltiala-Heino et 

al., 2003) or substance abuse disorders (Adriani & Laviola, 2004), further highlighting 

the peripubertal period as a phase of life during which the mental health trajectory 

can be influenced by environmental stimuli such as diet.  
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Questions and Approaches 

 

Earlier studies have shown that obesity is associated with sleep disturbances and 

depressive disorders. Because brain and body undergo dynamic remodeling during 

the peripubertal period, obesity during this developmental time window may increase 

the risk of sleep disturbances and depressive disorders later in life. Furthermore, 

brain mechanisms linking obesity and sleep disturbances are not fully elucidated and 

it is not clear whether increased body weight per se or whether the ingestion of 

palatable diets causes disturbed sleep. Therefore, this thesis aimed to investigate 

how peripubertal diet-induced obesity impacts on sleep-wake, emotional and feeding 

behaviors later in life. We further elaborated on mechanisms of sleep-wake actions in 

response to the removal of a palatable obesogenic diet.  

 

We specifically asked the following questions:  

1. Does peripubertal diet-induced obesity (ppDIO) influence sleep-wake 

behaviors later in life? Which brain mechanisms are involved in and how can 

we ameliorate possible sleep disturbances? (Study 1) 

2. How does a history of ppDIO alter the arousal response to fasting? (Study 2) 

3. Can depression-like behaviors and elevated HPA axis activity be developed 

along with sleep disturbances by a history of ppDIO? (Study 3) 

4. Can we alleviate sleep disturbances in ppDIO mice by withdrawing the high-fat 

diet and replacing it by healthy food? How do food intake regulatory regions 

(hedonic and homeostatic systems) respond to acute high-fat diet withdrawal? 

(Study 4) 
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Materials and Methods 

 

1. Animals 
 

In the present study, male C57BL/6N mice were used. The animals were obtained 

from the animal facility of the Max Planck Institute of Biochemistry, Martinsried, 

Germany, at 21 days of age (postnatal day 21, P21). Mice were housed in groups of 

four in transparent type-2 polycarbonate cages (macrolone, 25.5 cm x 19.5 cm x 13.8 

cm) in the animal facility of the Max Planck Institute of Psychiatry (MPI-Psy), Munich, 

Germany. 

Throughout the study, mice were kept under constant environmental conditions with 

a 12h light-dark cycle (lights on at 08:00 a.m., lights off at 08:00 p.m., approximately 

100 lux during the light period). Animals were maintained at a temperature and 

humidity of 22°C ± 1°C and 50 ± 10 %, respectively. All animal experiments 

conducted in this thesis were approved by the local commission for the Care and Use 

of Laboratory Animals of the State Government of Upper Bavaria. 

 

2. Experimental Design 
 

To achieve peripubertal diet-induced obesity (ppDIO, Fig. 15), one group of animals 

was fed a high-fat / high-carbohydrate diet (HFD, D12451, 4.73 kcal / g, 

ResearchDiets Inc., New Brunswick, NJ, USA) between P28 and P70. From P71, all 

animals were maintained on standard laboratory food (normal chow, NC, 1320, 2.844 

kcal / g, Altromin Spezialfutter GmbH & Co. KG, Lage, Germany).  

 

 

Figure 15: Experimental design showing a time line of diet regimens in ppDIO mice. 

ppDIO mice were fed a HFD between P28 and P70 and were then switched to standard chow. Control 
mice were maintained on standard chow. Experiments were performed in ppDIO and control mice 
when animals reached different ages (10, 12, 24 and 52 weeks).  
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Control animals were maintained on NC throughout the experimental period. Body 

weights and food intake of all animals were measured weekly. All animals had ad 

libitum access to water and the food (unless stated otherwise), which was provided 

freshly every week.  

 

2.1 Study 1 and 2 

 

These studies were conducted to examine the effects of a ppDIO history on sleep-

wake and depression-like behaviors during aging.  

 

Study 1: To investigate whether a history of ppDIO impacts on sleep-wake behaviors 

during aging, sleep-wake behaviors were recorded in 38 ppDIO mice and 30 control 

at 10 w, 24 w and 52 w of age. During these recordings, animals were left 

undisturbed (baseline recording). In addition, in ppDIO and control mice aged 10 and 

52 w, sleep-wake and feeding behaviors were recorded following PYY3-36 and vehicle 

injections and neurotransmitter and neuropeptide levels were examined at the end of 

the study. Furthermore, we applied a 24 hour fasting and re-feeding challenge on 52 

w old ppDIO and control mice to investigate whether sleep disorders can be 

ameliorated by fasting. For recordings of sleep-wake behaviors during fasting and re-

feeding, six control and seven ppDIO mice were used.  

 

Study 2: To evaluate depression-like behaviors and HPA axis activity in ppDIO mice, 

a forced swim test was conducted and corticosterone concentrations were compared 

in 40 ppDIO and 39 control mice at 12 w, 24 w and 52 w of age. These tests were 

performed in the EMOLAB of the MPI-Psy. Mice were transferred to the EMOLAB 

one week prior to testing to allow them to acclimatize to the new environment.  

 

After experimental testing, animals were left undisturbed for three days and were 

then sacrificed at ZT8.  
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Table 1: Overview of experimentation performed in ppDIO and control mice in studies 1 and 2 at 
different ages. 

Evaluated parameters 10 w 12 w 24 w 52 w 

Baseline sleep-wake behaviors x x x x 

PYY3-36 effects on sleep x   x 

Neurotransmitter + neuropeptide 

analysis 
x   x 

Fasting effects on sleep-wake 

behaviors + monoamine levels 

x 

(study 3) 
  x 

FST + HPA axis activity  x x x 

 

2.2 Study 3 

 

In this study, we examined the effects of withdrawal from HFD on sleep-wake 

behaviors and body weights. We further analyzed underlying changes in hedonic and 

homeostatic components of food intake regulation. To this end, ppDIO mice were 

tested under the following conditions:  

 

• chronic peripubertal HFD exposure (ad lib HFD) 

• ad lib HFD followed by HFD withdrawal and switch to NC (Fig 16A) 

• HFD re-feeding following the HFD-NC switching (Fig 16A) 

 

Separate groups of mice were used for sleep recordings and for the analysis of 

changes in neurotransmission per each experimental condition.  

In addition, fasting and ad lib NC feeding conditions were compared in control mice 

(Fig. 16B).  

 

 

Figure 16: Experimental design of Study 3. 

A) ppDIO mice were fed a HFD for six weeks and then HFD was withdrawn acutely and replaced by 
NC. For sleep-wake analysis, NC feeding lasted for two weeks. After these two weeks, ppDIO mice 
were re-exposed to HFD during the dark period and sleep-wake behaviors were analyzed. For 
neurotransmitter and neuropeptide analysis, the HFD-NC switch was limited to 24 hours. A short        
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(1 hour) HFD re-feeding was subjected to one group before sacrifice. B) Control mice were food 
deprived (fasted) from NC for 24 hours. Under these conditions, one batch of animals was tested with 
respect to sleep-wake behaviors during fasting, while the other batch was used for neurotransmitter 
and neuropeptide analysis. Modified from Gazea et al., submitted to Front Neurosci.  

 

3. Surgery for EEG/EMG electrode implantation 
 

One week prior to surgeries, animals were moved to sound-attenuated recording 

chambers, where they were single-housed in custom-made transparent Lucite® 

cages (length x width x height: 25 x 25 x 25 cm).  

Surgeries were performed as described in previously (Kumar et al., 2015). Animals 

were anesthetized using an inhalation vapor system (Drägerwerk AG, Lübeck, 

Germany) with an isoflurane/oxygen mixture (DeltaSelect GmbH, Dreieich, Germany) 

and were fixed to a stereotactic apparatus (Stoelting Co., Wood Dale, USA) with a 

heating pad below their body to maintain body temperature during surgery. At the 

beginning of the surgery, animals received meloxicam (0.5 mg/kg, Metacam, Braun 

Melsungen AG, Melsungen, Germany) subcutaneously (s.c.) to reduce postoperative 

pain. In addition, to stabilize blood flow and breathing, the animals received atropine 

sulfate s.c. (0.5 mg/kg, Atropinsulfat, Braun, Melsungen AG).  

Once fixed in the stereotactic frame, the mouse head was shaved and disinfected 

using 70 % ethanol. Then, a 1-cm long incision was made on the scalp and the 

connecting tissues on top of the skull were removed carefully. For the implantation of 

EEG recording electrodes, small holes were drilled through the cranial bone using a 

dental drill (KaVo-5 Type EWL4970; Kaltenbach und Voigt Elektronisches Werk 

GmbH, Leutkirch, Germany). The EEG electrodes were made of 7 mm long gold 

wires with ball-shaped ends, which served to avoid irritation of the brain tissue and to 

increase the surface for EEG acquisitions. Four EEG electrodes were placed 

epidurally (location of electrodes is depicted in Fig. 17). Two EMG electrodes (12 mm 

long gold wires with ball-shaped ends) were inserted into the neck muscles. The 

electrodes were soldered to an 8-pin minisocket connector (BCP socket connector, 

Compona, Switzerland). The connector and the electrodes were fixed to the skull with 

dental acrylic resin (Paladur, Heraeus Kulzer, Hanau, Germany).  

At the end of the surgery, the incision sites were sutured and the animals were 

placed back into the home cage. An 8-pole recording cable was plugged into the 
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socket connector and was fixed with the dental acrylic resin. The recording cable was 

attached to an electric swivel system (Type SW-921.18; Precisor Messtechnik, 

Munich, Germany). The weights of the swivel and the recording cable were 

counterbalanced using a mechanical device. This system allowed mice to move 

freely around the cage without restriction. Mice were allowed to recover from surgery 

for two weeks.  

 

 

Figure 17: Dorsal scheme of the mouse skull with the location of EEG and EMG electrodes. 

The location of holes for the implantation of frontal and parietal EEG electrodes is indicated as orange 
circles on the skull. EMG electrodes were inserted into the neck muscles. Skull adapted from 
www.informatics.jax.org.  
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4. EEG/EMG recordings and sleep data analysis 
 

4.1 Recordings of EEG/EMG signals 

 

After recovery from surgery, baseline EEG/EMG recordings were performed in all 

mouse groups for 48 hours. EEG and EMG signals were amplified (10,000 fold) and 

filtered (EEG: 0.25-64 Hz; EMG: 175-1,000 Hz). EMG signals were rectified using the 

root mean square. Both EEG and EMG signals were digitized by an analog-to-digital 

converter (NI-USB-6343-X-series, National Instruments, Austin, TX, USA) and were 

fed into a LabVIEW-based software (National Instruments) that was designed for 

mouse sleep EEG/EMG data acquisition (EGEraVigilanz, SEA, Cologne, Germany). 

Recordings were obtained at a sampling rate of 128 Hz and were stored on a 

computer for subsequent offline processing. The last 24 hours of the baseline 

recordings were used for analysis, while the first 24 hours served as a backup 

recording.  

 

4.2 Sleep-wake data analysis 

 

EEG signals were first automatically analyzed with the aid of a Fast Fourier 

transformation (FFT), which performs a power density analysis across pre-defined 

EEG frequency bands (delta: 0.5-5 Hz, theta: 6-9 Hz, sigma: 10-15 Hz, beta: 16-29 

Hz and gamma: >30 Hz). Thereby, the FFT helps a semiautomatic classification of 

sleep-wake vigilance states (NREMS, REMS or WAKE) that should be determined 

every four seconds. This semi-automatic classification algorithm was applied based 

on a report by Louis et al., 2004 and assigns each epoch one of the vigilance states 

based on the combination of an EMG threshold and the NREMS and REMS formulas 

that are provided by the FFT analysis. This semi-automatically scored data was 

inspected visually and was corrected whenever necessary. Vigilance states are given 

as percentage per hour or per six hours ± SEM.  

Slow-wave activity (SWA) was obtained from epochs that were scored as NREMS 

and was calculated by normalizing the absolute power of the frequency range 

between 0.5-4 Hz during NREMS by the average total EEG power from all the 
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vigilance states. Further, the transition frequencies from one vigilance state to 

another were analyzed and are given as total number of transitions per six hour bins.  

 

4.3. Experimental procedures under EEG/EMG recordings 

 

4.3.1 Food challenges 

 

In Study 1 and 3, 10 and 52 w old ppDIO and control mice were food deprived for 24 

hours starting at light onset. Corresponding baseline EEG/EMG signals were 

obtained the day before food deprivation was executed. To avoid feeding on food 

crumbs that may be distributed inside the cage, fresh cages were provided 24 hours 

prior to the baseline acquisition. Following 24 hours of fasting, NC or HFD was 

returned to the animals at light onset and food intake was monitored during different 

time points (1, 3, 12 and 24 hours).  

An additional group of 10 w old ppDIO mice was switched from HFD to NC starting at 

dark onset (Fig. 16A). During the HFD-NC switch, EEG/EMG signals were recorded 

during the first 48 hours, while food intake and body weights were monitored daily. A 

subset of mice received a follow-up recording two weeks after the HFD was replaced 

by NC. Further, this group of ppDIO mice received a HFD re-feeding for 12 hours 

during the dark period. Sleep was monitored continuously.  

Separate groups of mice were used for neurotransmitter and neuropeptide analysis. 

In these groups, all the above described food challenges were started at ZT8 and 

lasted for 24 hours. Notably, for neurotransmitter analysis, HFD re-feeding was 

performed for only one hour after HFD was switched to NC for 23 hours. Tissues 

were collected as described in section 6.  

 

4.3.2 PYY3-36 injections 

 

Mouse PYY3-36 was purchased from Bachem (H6042, Bachem AG, Bubendorf, 

Switzerland). To habituate mice to the injection procedure, mice were given 

intraperitoneally (i.p.) 150 µl of sterile 0.9 % NaCl (Braun Melsungen AG, Melsungen, 
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Germany) three to four times prior to real treatment. All injections were performed 15 

minutes prior to dark onset. PYY3-36 was dissolved in 0.9% NaCl and was injected at 

a dose of 60 µg/kg body weight at a volume of 150 µl. After habituation was 

completed, each mouse received two injections on two consecutive days; one 

injection of saline (vehicle, injection control) and one injection of PYY3-36. The order of 

the injections was performed in a randomized fashion. EEG/EMG signals were 

recorded 23 hours post-injections, and food intake was monitored 1, 3, 12 and 24 

hours after the injections.  

 

5. Behavioral tests 
 

5.1 Forced Swim test 

 

Porsolt's Forced Swim test (FST, Porsolt et al., 1977) was used to examine 

depression-like behaviors in ppDIO and control mice. For the FST, four glass 

cylinders were filled with 1.75 liter of 23-25° C warm water. Each mouse was placed 

into the water for six minutes and was recorded using a web cam. Mice were always 

tested in groups of four. After each run, mice were dried gently using a towel and 

placed back into their home cages. Cylinders were filled with fresh water after each 

run.  

Swimming behaviors were scored visually (offline) after FSTs were completed. An 

animal was considered inactive when it was floating passively in the water with as 

little movements as possible only to maintain its balance and to keep its head above 

the water surface. Usually, animals were swimming vigorously during the first two 

minutes of the test. Therefore, the first two minutes were discarded from the analysis 

and only the last four minutes of the FST were counted into behavior analysis. The 

time floating is given as % time ± SEM. Furthermore, the latency to the first floating 

episode was determined (sec ± SEM).  
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5.2 Open Field test 

 

The Open Field test was used to assess exploratory activity and general locomotion 

in ppDIO and control mice (previously described in Dedic et al., 2012). The round 

open field arena had a diameter of 58 cm with 40 cm high walls, and its center was 

illuminated with 50 lux. Mice were placed in the corner of the arena, and their activity 

inside the arena was recorded for 5 min using the ANY-maze Video Tracking System 

V4.99m (Stoelting Co., Wood Dale, IL, USA). The distance traveled in meters was 

automatically scored by the ANY-maze software and is given as meters ± SEM.  

 

6. Tissue and sample collection 

 

6.1 Tail blood sampling 

 

Mice were fixed gently underneath a towel, leaving only the tail accessible. The 

lateral tail vein was cut using a scalpel, and several drops of blood were collected in 

a 300 µl Eppendorf tube. Mice were returned to their home cages after this procedure.  

Blood samples were left to coagulate at room temperature (RT) for two hours. 

Afterwards, blood samples were centrifuged at 4° C for 15 min at 8000 rpm. Serum 

(supernatant) was pipetted into a fresh vial and was stored in a deep freezer (-80° C) 

until further processing. 

 

 

6.2 Brain collection 

 

All mice in this study were sacrificed at ZT8. Mice were anesthetized using isoflurane 

and killed by decapitation. Brains were removed quickly and snap frozen in 

isopentane (DeltaSelect GmbH, Dreieich, Germany), which was stored on dry ice to 

reach temperatures below -60° C. Afterwards, brains were kept in dry ice for one 

more hour until completely frozen. Finally, the brain samples were stored in a deep 

freezer (-80° C).  
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6.3 Brain tissue processing 

 

For RNA in situ hybridization, coronal sections were made from brains of ppDIO and 

control mice using a cryostat (Leica, Germany). The sections at the level of the LH 

and ARC were prepared with a thickness of 10 µm (Paxinos & Franklin, 2001; Allen-

Brain-Atlas, 2015). All sections were stored at -20° C for later use in radioactive RNA 

in situ hybridization.  

For neurotransmitter and neuropeptide measurements, Palkovit's Punch technique 

was used to obtain cylindrical tissue samples of the NAc, LH, VTA and DR of the 

same brains (Fig. 18, Palkovits, 1983). A sample corer of 0.5 mm diameter was used 

(Fine Science Tools GmbH, Heidelberg, Germany). Tissue samples were made by 

pushing the sample corer approximately 500 µm deep into the brain tissue, which 

was fixed by cryostat holder, followed by a lever movement. The bilateral tissue 

samples were collected in 1.5 ml Eppendorf tubes. The samples were stored at -80° 

C until they were further processed for HPLC measurements.  

 

Figure 18: Location of NAc, LH, VTA and DR tissue punches. 
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The approximate location of the tissue punches is illustrated as black circles on respective sections 
containing NAc, LH, VTA or DR. Nissl stained coronal sections were adapted from the Allen-Brain-
Atlas, 2015. 

 

7. Radioimmunoassay (RIA) 
 

7.1 Principle 

 

Radioimmunoassay (RIA) is a method to determine concentrations of ligands such as 

hormones or allergens in blood samples or tissue lysates in vitro using an antigen-

antibody reaction. This technique was demonstrated first by Yalow & Berson, 1960. 

To measure the concentration of a ligand, a specific volume of the ligand in solution 

is mixed with a defined concentration of radioactively labeled antigen. These 

antigens are usually labeled with radioactive isotopes of iodine such as 125I, which 

can be introduced into tyrosine residues of proteins. Subsequently, an antibody 

against the specific antigen is added, leading the unlabeled antigen and the 

radioactive antigen to compete for the binding sites of the antibody. Increasing 

amounts of unlabeled antigen in the mixture displace the radioactive antigen from the 

antibody binding sites resulting in lower amounts of radioactive antigen binding to the 

antibody. A second antibody directed against the first is added and precipitates the 

antigen-antibody complex. After centrifugation and removal of the supernatant, only 

the antigen-antibody complexes remain, of which the radioactivity can be measured 

by a Gamma counter. To transform this measure into a unit that calculates the actual 

concentration of the desired ligand, samples of known antigen concentrations are 

assayed as well, providing reference values to generate a standard curve. The 

standard curve then allows us to calculate the concentration from each unknown 

sample. 

 

7.2 Corticosterone RIA 

 

For the detection and quantification of corticosterone concentrations in serum 

samples, the Corticosterone Double Antibody RIA kit was used (MP Biomedicals 
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Germany GmbH, Eschwege, Germany). Samples were diluted 1:50 (morning 

samples) or 1:200 (evening and stress samples) using a steroid diluent provided by 

the RIA kit. 50 µl of the diluted samples, controls and standards were pipetted in 

duplicates into RIA test tubes. Subsequently, 100 µl radioactively labeled 

corticosterone (Corticosterone-125I) was added to each tube. After adding 100 µl anti-

corticosterone antibody, samples were mixed vigorously and were left to incubate for 

two hours at RT. Afterwards, 250 µl secondary antibody solution was added to each 

tube. Again, samples were mixed carefully. This step was followed by a centrifugation 

of the tubes for 15 min at 2500 rpm. The supernatant was removed and the 

radioactivity contained by the pellet was measured in the Gamma counter (2470 

WIZARD2 Automatic Gamma Counter, PerkinElmer Inc., Rodgau, Germany). 

Corticosterone concentrations were analyzed by the aid of StatLIA Quantum 

Premium software for RIA assays (Brendan Technologies Inc., Carlsbad, CA, USA). 

Repeated assays were conducted when the error coefficient obtained from the 

duplicates reached more than 15 %. The detection limit was between 12.5 and 1000 

ng/ml.  

 

7.3 Orexin RIA 

 

The concentration of orexin A extracted from tissue samples of bilateral LH was 

measured by the orexin A RIA kit (Phoenix Pharmaceuticals Inc, USA). LH tissue 

samples were processed as described in the section 8.2. After extraction from tissue 

homogenates, the supernatant was lyophilized by a centrifugal concentrator at 4°C. 

The lyophilized samples were re-suspended in a 50 µl RIA buffer, which was 

provided by the RIA kit. Subsequently, 50 µl of the primary antibody (from rabbit) 

against orexin A was added. Samples were mixed and incubated over night at 4°C. 

Afterwards, 50 µl radioactively labeled orexin A (125I-orexin) was added to each tube 

containing our unknown samples or known standard samples. Samples were mixed 

again and incubated over night at 4°C. Then, 50 µl of normal rabbit serum and 50 µl 

of the secondary antibody (goat anti-rabbit) were further addded into each tube. 

Samples were mixed well and left at RT for 90 min. Finally, adding 250 µl of the RIA 

buffer stopped the reaction. After centrifugation at 4°C for 20 min (3,000 rpm), the 

supernatant was aspirated carefully. The radioactivity of the pellet was measured 
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using a Gamma counter, and the concentration of orexin A was calculated using 

StatLIA Quantum Premium Software, as described above. The detection limit of this 

RIA assay ranged from 10 to 1280 pg/ml.  

 

8. High-performance liquid chromatography for the determination of 
neurotransmitters 
 

8.1 Principle 

 

High-performace liquid chromatography is a sensitive technique to separate, detect 

and quantify chemical components of low concentration in biological samples. The 

separation of the chemical components is achieved by injecting the liquid sample into 

a column filled with a stationary phase, which retains the components in the sample 

and a mobile phase made up of an eluent which detaches the components from the 

stationary phase depending on their physical and chemical properties. Identification 

of molecules is achieved by electrochemical detection following separation of the 

components in the column and depends on the elution time a molecule is released 

from the stationary phase (retention time). The following sections provide a detailed 

description of HPLC measurements. 

 

8.2 Sample preparation 

 

25 µl of 0.1 M perchloric acid was added to NAc, DR and VTA tissue samples, while 

50 µl of 0.1 M perchloric acid were applied onto LH samples. Subsequently, tissue 

samples were sonicated, and centrifuged for 15 min at 4° C and 14000 rpm. The 

supernatant was transferred into fresh tubes. For the LH, two aliquots of supernatant 

were prepared. Supernatants were stored in a deep freezer (-80° C) for HPLC 

measurements.  

The pellet was used to measure protein concentrations of the tissue samples. Pellets 

were re-suspended in 25 µl 3N NaOH and stored in a freezer (-20° C).  
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8.3 Quantification of monoamine contents 

 

Concentrations of dopamine, serotonin, and their metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-

hydroxyindoleacetic acid (5-HIAA) were determined by reverse-phase HPLC with 

electrochemical detection (UltiMate3000 / CoulochemIII, ThermoFischer, USA) in the 

microdialysis core facility of the MPI-Psy (Anderzhanova et al., 2013). A citrate - 

phosphate mobile phase containing 8.5 % of acetonitrile with the pH set at 3.00 was 

used. The mobile phase was prepared using reagents of analytical grade (Carl Roth 

GmbH or MERCK KGaA, Germany). Components (monoamines) of the tissue 

extracts were separated on an analytical column (C18, 150 mm×3 mm, 3 µm, YMC 

Triart, YMC Europe GmbH, Germany) at a flow rate of 0.5 ml/min. The potentials of 

the working electrodes were set at -75 mV, +220 mV and the guard cell potential was 

set at +350 mV. HPLC measurements provided separate peak areas for each 

monoamine detected in the samples by the guard cell. The peak area was used to 

calculate the monoamine concentrations with the aid of an external standard curve. 

The detection limits for all compounds ranged from 0.032 to 0.050 nM. Monoamine 

concentrations were adjusted by the sample protein content, as described in the 

following section. 

 

8.4 Normalization to protein content (Lowry Assay) 

 

The protein content in NAc, DR, VTA and LH samples was determined by the Lowry 

method (Lowry et al., 1951). To this end, samples were diluted 1:50 in double-

distilled water to yield a final volume of 150 µl. Each sample dilution was prepared in 

duplicates. A standard measurement using five freshly prepared dilutions of 1 mg/ml 

BSA protein was always included in each assay. Furthermore, two more vials 

containing 150 µl water served as blank.  

After the preparation of all the dilutions, 750 µl Lowry reagent was added to each 

tube. Tubes were mixed well and incubated for 15 min at RT. Subsequently, 75 µl 

Follin reagent was added. Samples were again mixed and incubated in the dark at 
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RT for one hour. Finally, 300 µl sample was pipetted in a 96-well plate, and the 

absorbance was measured at 750 nm using a spectrophotometer. With the aid of the 

known standard samples, we computed the concentration of each unknown sample 

using (Gen5 DataAnalysis Software, BioTek Instruments Inc., USA).  

The concentration values given by the Lowry Assay were used to adjust the 

neurotransmitter data from the HPLC. Therefore, neurotransmitter concentrations are 

given as µmol/mg protein ± SEM.  

 

9. RNA in situ hybridization 
 

9.1 Principle 

 

To achieve radioactive RNA in situ hybridization, oligonucleotides or riboprobes can 

be used that are complementary to the intrinsic RNA. Hence, oligo- and riboprobes 

can hybridize proportionally to the intrinsic RNA, for example in fixed tissue sections. 

To visualize the amount of hybridized RNA a radioactive label can be used; 35S-dATP 

for oligonucleotides and 35S-UTP for riboprobes. Here, we made use of radioactively 

labeled oligonucleotides to detect the expression intrinsic RNA by hybridization. 

Radioactively labeled probes have the advantage of providing qualitative and also 

quantitative results. In the following sections, the RNA in situ hybridization procedure 

is explained in detail. 

 

9.2 Oligonucleotide Design 

 

Orexin and MCH oligonucleotides were designed by selecting sequences comprising 

maximally 50 nucleotides within the coding sequence of the respective gene 

(GenBank, http://www.ncbi.nlm.nih.gov/genbank/). The selected sequences had to 

fulfill the following criteria (according to Erdtmann-Vourliotis et al., 1999):  

• GC content: 48 – 62 %  
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• Length: 42 – 54 nucleotides 

• no hairpin formation 

• no self-annealing properties 

The accuracy of the sequence was validated using the nucleotide analyzer by 

www.geneinfinity.org. Furthermore, the specificity of the oligonucleotide to the gene 

of interest was verified using the nucleotide BLAST by NIH 

(http://blast.ncbi.nlm.nih.gov/).  

Afterwards, the oligonucleotides (custom-made, Sigma-Aldrich Chemie GmbH, 

Steinheim, Germany) were tested by means of RNA in situ hybridization on brain 

sections that included the structure where the RNA of interest is supposed to be 

expressed (for orexin and MCH: lateral hypothalamus). Negative control sections that 

should not express the respective RNA were run in parallel. Oligonucleotides that 

yielded strong signals with a minimum amount of background binding were used for 

further RNA in situ hybridizations on experimental sections (Table 2). NPY 

oligonucleotide sequence was kindly provided by Dr. V. Patchev.  

Table 2: Oligonucleotide sequences for radioactive RNA in situ hybridization. 

Complementary sequences and GenBank reference number are given for prepro-orexin, pro-melanin-
concentrating hormone and neuropeptide Y oligonucleotides.  

Name Complimentary sequence 
GenBank 

reference 

Prepro-orexin 
5’AGCAGCGTCACGGCGGCCCAGGGAACCTTT

GTAG 
AF041242.1 

pro-melanin-

concentrating 

hormone 

5’CAACATGGTCGGTAGACTCTTCCCAGCATAC

ACCTGAGCATGTCAA 
NM_029971.2 

Neuropeptide 

Y 

5’GTCCTCTGCTGGCGCGTCCTCGCCCGGATT

GTCCGGCTTGGAGGGGTA 

Provided by 

Dr. V. Patchev 

 

9.3 Oligonucleotide labeling 

 

Oligonucleotides were labeled using 35S-dATP (NEG734H250UC, PerkinElmer Inc., 

Rodgau, Germany) by polyadenylation of the DNA 3' ends. The labeling was 

prepared in autoclaved 1.5 ml Eppendorf tubes on ice, which were pre-filled with 32 
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µl sterile water. Polyadenylation was achieved by adding 10 µl of 5 x tailing buffer 

(Invitrogen, Karlsruhe, Germany) and 5 µl of 35S-dATP to 1 µl of 5 µM oligonucleotide. 

After mixing, 100 units of terminal deoxynucleotidyl transferase (TdT) (Invitrogen, 

Karlsruhe, Germany) were added to catalyze polyadenylation, and the mixture was 

incubated at 37° C for 15 to 30 minutes. Subsequently, the reaction was terminated 

by 20 µl TE buffer and 2 µl tRNA (25mg/ml, Yeast tRNA, Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany) on ice. The tRNA served to occupy the binding sites of 

the TdT enzyme. The labeled oligonucleotide was purified using the QIAquick 

Nucleotide Removal kit (QIAgen GmbH, Hilden, Germany).  

The labeling efficacy was evaluated before testing by counting a small aliquot of the 

labeled probe using a beta counter. A good incorporation yielded between 500.000 

and 1.500.000 cpm/µl. Probes that fulfilled this criterion were used for in situ 

hybridization. 

 

9.4 Hybridization procedure 

 

Sections mounted on glass slides were taken out of the -20° C freezer and were kept 

at RT until the condensate was dried out entirely. All the following steps were 

carefully operated using sterilized materials (including utensils and solutions). 

Ingredients of the solutions are depicted in the appendix.  

Sections were fixed in 4 % formaledhyde (prepared in 1 x PBS) for 5 min at RT. After 

a short wash in 1 x PBS, sections were incubated in freshly prepared 0.25 % acetic 

anhydride in 0.1 M TEA/HCl for 10 min. Then, the sections were dehydrated using an 

ascending ethanol series as follows: 1 min 70 % ethanol, 1 min 80 %, 2 min 96 % 

and 1 min in 100 % ethanol. To reduce the possible background hybridization to 

lipids, the dehydrated slides were then placed into chloroform for 5 min. After a short 

washing step in 100 % and 96 % ethanol for 1 min, sections were left at RT to dry.  

In the meantime, the hybridization mixture (hybridization buffer and 20.000 cpm / µl 

oligonucleotide) was prepared. 2 µl of 5 M 1,4-Dithiothreitol (DTT; Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) were added per 100 µl hybridization mix. After 

placing the sections in moisturized hybridization trays, 25 µl of the hybridization mix 
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were applied onto each section. Glass slides were covered with cover slips. 

Hybridization trays were sealed and incubated at 37° C overnight for a maximum of 

18 hours.  

The next day, slides were removed from the hybridization trays and placed into 1 x 

SSC. After removing cover slips in 1 x SSC, a high-stringency wash was performed 

to remove background hybridization and free oligonucleotides from the slides. This 

was achieved by washing the slides in a 1:1 pre-warmed mixture of formamide and 4 

x SSC at 40° C in a water bath for 15 min. This washing step was repeated three 

more times. Subsequently, slides were washed twice in 1 x SSC at RT for 30 min 

each. A wash in distilled water for 10 min followed to remove residual SSC. Slides 

were then dehydrated in 70% ethanol and 100 % ethanol (1 min each) and dried at 

RT.  

To visualize the labeling, slides were placed horizontally in film cassettes. A carbon-

14 radioactivity standard with a range of 0-35 nCi/mg (glass slide, American 

Radiolabeled Chemicals Inc., St. Louis, MO, USA) was added to each cassette. A 35 

x 43 cm large film (Carestream Biomax, MR Film, High Resolution, Radioisotope & 

Chemiluminescent, Kodak) was applied onto the slides and the cassettes were 

closed. The films were handled in the dark room under red light to avoid white light 

exposure of the films. The cassettes were kept sealed for 20 to 24 hours (orexin and 

MCH RNA in situ hybridization) or for 3 days (NPY) at 4° C. Afterwards, the cassettes 

were opened in the dark room and the films were developed in developing solution 

(Kodak Developer and Replenisher) for 1 min. After washing the film in water for 1 

min, the film was fixed for 1 min (Kodak Fixer and Replenisher), and then dried at RT. 

 

9.5 Quantification 

 

To quantify orexin, MCH and NPY mRNA expression digitally, signals on the films 

were scanned using the CanoScan 9950F (Canon Deutschland GmbH, Krefeld, 

Germany). Optic density of the signals was measured using Image J (1.48v, NIH, 

USA) by carefully circling the area containing the signals (Fig. 19). Optic density of 

each reference spot (carbon-14 radioactivity standard) was also measured and was 

equated with its respective radioactivity level. The obtained fit function was used to 
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calculate the amount of radioactive signal per mg tissue [nCi / mg]. Values of orexin, 

MCH and NPY mRNA expression are given as nCi / mg ± SEM.  

 

Figure 19: Examples of radioactive RNA in situ hybridization signals of NPY, orexin and MCH 
expression. 

From left to right: NPY expression in the Arc, orexin expression in the LH and MCH expression in the 
LH. Dashed white lines outline section silhouettes.  

 

10. Statistical analysis 
 

To compare diet, age or treatment effects on sleep-wake behaviors, RNA expression 

etc., statistical analysis was performed using GraphPad Prism (Version 6.01, 

GraphPad, San Diego, CA) or SPSS (SPSS 18, Chicago, IL). Firstly, Grubb’s test 

based on the extreme studentized deviate method was used to detect significant 

outliers in our data sets (http://www.graphpad.com/quickcalcs/Grubbs1.cfm). 

Significant outliers were substituted by the mean of a data set. Subsequently, a 

Kolmogorov-Smirnov normality test was performed. When a data set passed the 

normality test (when p>0.05), an analysis of variance (ANOVA), a multivariate 

ANOVA (MANOVA) or a student’s t-test was used for statistical analysis, as 

appropriate. One-way and two-way ANOVAs were followed by Sidak’s multiple 

comparison’s test, while Bonferroni post-hoc comparisons were used after 

MANOVAs. Further, when data sets did not pass normality tests, non-parametric 

statistical tests were used for the analysis, i.e. the Kruskal-Wallis test followed by 

Dunn’s multiple comparisons test or a Mann-Whitney U-test. Furthermore, in Study 3, 

an analysis of covariance (ANCOVA) was performed to test whether group 

differences in swimming behaviors during the FST persist when body weights are 

partialled out. P<0.05 was considered as significant. All values are given as mean ± 

SEM.  
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Furthermore, adjusted energy intake was calculated based on the study by Austad & 

Kristen using the following formula, which adjusts body mass to a species-specific 

coefficient for body size: adjusted energy intake = food intake [kcal]/body weight 

[g]0.568 (Austad & Kristan, 2003).  

PYY3-36 and fasting/re-feeding effects on vigilance states and food intake were 

compared to the vehicle condition (0.9% NaCl) and the ad libitum feeding condition, 

respectively. Relative changes were computed using the following formula (kindly 

provided by the head of the research group statistics, A. Yassouridis, MPI-Psy): 

relative change = ((y2 + 0.000005)/(y2 + x2 + 0.00001))*200, with y being the variable 

obtained after PYY3-36 or fasting/re-feeding and x the variable following vehicle or ad 

libitum feeding. Values are given as percentage change. 
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Results 

 

1. Programming of sleep-wake and ingestive behaviors by ppDIO 

 

Recent reports have shown that alterations in sleep-wake behaviors seen in obese 

humans are also displayed by DIO mice. However, these reports have focused on 

adult DIO and acute effects of HFD withdrawal on sleep following DIO. The long-term 

effects of DIO induced specifically during puberty are unknown. Because body and 

brain undergo dynamic remodeling during puberty, it is very likely that environmental 

challenges leave a permanent mark. To elucidate whether ppDIO leads to life-long 

changes in sleep-wake profiles, EEG/EMG recordings were performed in ppDIO and 

control mice at different ages (10 w, 24 w and 52 w). While 10 w old ppDIO mice 

were still exposed to HFD, the other age groups had been switched to normal 

laboratory food following six weeks of peripubertal HFD exposure. Furthermore, 

mechanisms linking obesity with sleep disturbances are not well understood. 

Therefore, I analyzed changes in neurotransmitter and neuropeptide levels in areas 

related to food intake and sleep-wake regulation in our ppDIO mouse model. I further 

explored a role of PYY as a treatment option for sleep disturbances in obesity at the 

end of this section.  

 

1.1 Sleep in mice following peripubertal diet-induced obesity during aging 

 

1.1.1 Effects of ppDIO and aging on NREMS and REMS time under baseline 
conditions 

 

All mice recorded in our study exhibited a circadian distribution of NREMS, REMS 

and wakefulness across the 24-hour recording period. Highest amounts of NREMS 

and REMS occurred during the 12-hour light (resting) period and lower amounts 

during the 12-hour dark (active) period (Fig. 20).  
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Figure 20: Circadian distribution of 24-hour NREMS and REMS in ppDIO and control mice during 
aging. 

For figure legend please refer to the next page.  
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Figure 20: Circadian distribution of 24-hour NREMS and REMS in ppDIO and control mice during 
aging. 

Data points represent time spent in NREMS (left panel) or REMS (right panel) during one hour in 
percentage ± SEM. Zeitgeber time (ZT) 0 to 12 refers to the light (resting) period (white bars above the 
x-axis), while ZT 13 to 24 refers to the dark (active) period (black bars). Data from control mice are 
drawn in black (10 w: n=11; 24 w: n=8; 52 w: n=11). ppDIO mice still receiving HFD (10 w: n=18) are 
depicted in green, while ppDIO mice that were switched to NC (24 w: n=10; 52 w: n=10) are shown in 
blue. Two-way ANOVA showed that ppDIO significantly increased NREMS in the 10 w (F (1, 27) = 
9.776, p = 0.0042) and 52 w old group (F (1, 19) = 6.753, p = 0.0176). NREMS increases in 10w 
ppDIO mice were significantly dependent on time of day (F (23, 621) = 1.574, p = 0.0434). Sidak’s 
post-hoc test was performed to detect group differences per hour. *P<0.05. Modified from Gazea et al., 
submitted to PNAS. 

 

In 10 w old mice, NREMS time was significantly elevated in ppDIO mice throughout 

the recording (Fig. 20A, p < 0.05). In addition, post-hoc analysis showed that 10w old 

ppDIO mice displayed significantly higher amounts of NREMS time at ZT 17 as 

compared to 10 w old control mice (p < 0.05). Also in 52 w old mice, a history of 

ppDIO increased NREMS time significantly (Fig. 20E, p < 0.05), whereas this effect 

was not seen in 24 w old ppDIO mice (Fig. 20C). REMS time was not affected by 

ppDIO in any age group (Fig. 20, right panel).  

To determine which time windows were affected by ppDIO, we divided the 24-hour 

recording period into 6-hour bins as a next step (Fig. 21). This analysis showed that 

ppDIO affected NREMS mainly during the dark period; 10 w old ppDIO mice spent 

significantly more time in NREMS during ZT 13-18 and ZT 19-24 (depicted as ZT 18 

and 24 in Fig. 21, respectively) as compared to controls of the same age (p < 0.05). 

Similarly, 52 w old ppDIO mice exhibited elevated NREMS time during ZT 13-18 (p < 

0.05), but not during ZT 19-24. REMS time was not influenced by ppDIO.  
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Figure 21: Six-hour averaged percentage spent in NREMS and REMS in ppDIO and control mice 
during baseline. 

Time spent in NREMS (left panel) and REMS (right panel) during six hour intervals are given as mean 
percentage ± SEM. Two-way ANOVA showed that peripubertal diet affected NREMS in 10 w old mice 
(F (1, 27) = 9.776, p = 0.0042) and that this effect interacted significantly with time (F (3, 81) = 4.570, p 
= 0.0052). Peripubertal diet also increased NREMS in 52 w old mice significantly (F (1, 19) = 6.753, p 
= 0.0176). Sidak’s multiple comparison’s test was used to identify group differences within each time 
interval. *P<0.05. Modified from Gazea et al., submitted to PNAS. 
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Because significant effects were mostly found during the six-hour interval spanning 

ZT 13-18 (first half of the dark period), we chose this time window to address the 

interaction between age and peripubertal diet (Fig. 22). We found a significant 

increase in NREMS time in ppDIO mice as compared to controls, especially in 10 w 

and 52 w old ppDIO mice (Fig. 22A, p < 0.05). Furthermore, amounts of NREMS 

were increasing with age (p < 0.05). Peripubertal HFD also increased REMS time 

during ZT13-18 (Fig, 22B, p < 0.05). However, REMS amounts did not change during 

aging.  

 

Figure 22: Comparison of sleep during ZT13-18 in different age groups. 

Each bar represents time spent in NREMS (A) or REMS (B) during six hours between ZT13 and 18 in 
percentage ± SEM. Animal numbers per age and diet are given at the bottom of each bar. Two-way 
ANOVA showed significant effects of peripubertal diet (p < 0.0001) and age (p = 0.003) on NREMS. 
REMS was also influenced by ppDIO (p = 0.0107). Group differences were calculated using Sidak's 
multiple comparisons test. *P < 0.05. Modified from Gazea et al., submitted to PNAS. 

 

1.1.2 Effects of ppDIO and aging on sleep architecture under baseline 
conditions 

 

Obese individuals suffer from frequent awakenings during the night as described in 

the introduction. Therefore, we addressed the question whether our mouse model 

reproduces such a sleep phenotype and whether a history of ppDIO may program 

changes in sleep architecture during aging. To this end, we analyzed transitions 

between the three different vigilance states per 6-hour intervals during baseline 
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recordings in 10 w and 52 w ppDIO and control mice (Fig. 23). The group of 24 w old 

mice was not included in this analysis due to their insignificant sleep phenotype.  

With respect to transitions from NREM to WAKE and vice versa, peripubertal HFD 

increased the number of transitions in a time-dependent manner (Fig. 23A and B); 10 

w old ppDIO mice exhibited significantly more transitions from NREM to WAKE and 

WAKE to NREM at ZT7-1; (p < 0.05), ZT13-18 (p < 0.05) and ZT19-24 (p < 0.05) as 

compared to control mice of the same age. This difference was not evident in 52 w 

old mice. In ppDIO mice the NREM-WAKE transitions decreased significantly from 10 

w to 52 w of age at ZT1-6 (p < 0.05) and ZT7-12 (p < 0.05). By contrast, in control 

mice the number of transitions was increasing with age, especially at ZT13-18 (p < 

0.05) and ZT19-24 (p < 0.05).  

Transitions from NREM to REM and from REM to WAKE were not significantly 

different between the diet groups (Fig. 23C and D). However, in ppDIO mice the 

number of these transitions during the light period decreased with age (ZT1-6, ZT7-

12, p < 0.05). An age-related influence on REM-transitions was not observed in 

control mice.  
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Figure 23: Vigilance transitions in 10 w and 52 w old ppDIO and control mice. 
For figure legend please refer to the next page. 
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Fig.23 Vigilance transitions in 10 w and 52 w old ppDIO and control mice.  

Each bar represents the total number of transitions during a six-hour period for NREM to WAKE (A), 
WAKE to NREM (B), NREM to REM (C) and REM to WAKE (D). 10w old ppDIO mice (n=18) are 
shown in green, 52w ppDIO mice in blue (n=10), 10w controls (n=11) in black and 52w controls (n=11) 
in grey. Repeated-measures MANOVA with peripubertal diet, age and ZT as factors, revealed a 
significant interaction between these factors for NREM-WAKE (F (1, 46) = 9.266, p = 0.004) and 
WAKE-NREM transitions (F (1, 46) = 9.599, p = 0.003). The transitions from NREM-REM (F (1, 46) = 
3.146, p = 0.083) and REM-WAKE transitions (F (1, 46) = 3.48, p = 0.069) interacted marginally with 
peripubertal diet and age. Post-hoc tests were Bonferroni adjusted. *P < 0.05. Modified from Gazea et 
al., submitted to PNAS. 

 

1.1.3 Slow-wave activity in ppDIO mice 

 

We further compared differences in sleep quality, if any, between control and ppDIO 

mice at 10 and 52 w of age. Slow-wave activity (SWA) during NREMS serves as an 

index of homeostatic control, because SWA is supposed to accumulate during a 

waking period and it declines during sleep. Therefore, SWA is normally highest at the 

beginning of the light period and can be used as a measure of sleep quality as well. 

In both 10 w and 52 w old ppDIO mice, SWA during the resting period was 

significantly decreased as compared to control mice of the same age (Fig. 24, p < 

0.05). The effect on SWA activity at 52 w was depending on time. This finding 

suggests that sleep quality was decreased in mice with a history of ppDIO.  

 

Figure 24: Slow-wave activity during NREMS in 10 w and 52 w old ppDIO and control mice. 

For figure legend please refer to the next page. 



Results  67 

 

Fig.24 Slow-wave activity during NREMS in 10 w and 52 w old ppDIO and control mice.  

Data points represent hourly changes in SWA during NREMS in percentage ± SEM. Zeitgeber time 
(ZT) 0 to 12 refers to the light (resting) period. Data from ppDIO mice still receiving HFD (10 w: n=17) 
are depicted in green, while ppDIO mice that were switched to NC (52 w: n=7) are shown in blue. 
Control mice are drawn in black (10 w: n=9; 52 w: n=7). Two-way ANOVA showed that SWA was 
significantly decreased in ppDIO mice at 10 w (diet effect: F (1, 24) = 4.869, p = 0.0372) and at 52 w 
as compared to controls (diet*time interaction: F (11, 132) = 1.904, p = 0.0441).Sidak’s post-hoc test 
was performed to detect group differences per hour. *P<0.05. Modified from Gazea et al., submitted to 
PNAS. 

 

1.3 Impact of ppDIO on life-time body weights and energy intake 

 

Following the observation that ppDIO leads to life-long alterations in sleep-wake 

behaviors, we hypothesized that body weights and food intake regulation may also 

be affected by a history of ppDIO. Therefore, we determined weekly body weight and 

energy intake profiles in ppDIO and control mice during aging (Fig. 25). The groups 

depicted in Fig. 25 were used as 52 w old group in this section. 

Body weights increased significantly during aging in both ppDIO and control mice 

(Fig. 25A, p < 0.05). In addition, a history of ppDIO amplified body weight gain during 

aging (p < 0.05). More specifically, body weights were significantly higher in ppDIO 

mice at nine and ten weeks of age (p < 0.05), reflecting the time points of five and six 

weeks of HFD exposure, respectively.  

Based on the assumption that the maintenance and the attainment of a specific body 

weight require a distinct amount of energy intake, we normalized weekly caloric 

intake to body weights in ppDIO and control mice. Using this normalization, we aimed 

to estimate whether food intake behaviors were matching body weight requirements 

in ppDIO mice as compared to control animals. We found a significant elevation in 

energy intake during the first five weeks of HFD exposure in ppDIO mice as 

compared to NC-fed mice (Fig. 25B, p < 0.05). However, during the sixth week of 

HFD exposure adjusted energy intake did not differ significantly between ppDIO and 

control mice.  
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Figure 25: Body weights and adjusted energy intake in ppDIO and control mice during aging. 

Body weights (A) are given as mean gram per week ± SEM. Adjusted energy intake (B) is also 
depicted per week and given as mean kcal/g0.568 body weight ± SEM. Control mice are depicted in 
black (n=15) and ppDIO mice in blue (n=16). Two-way ANOVA showed that body weights were 
affected significantly by diet (F (1, 1392) = 241.7, p < 0.0001) and age (F (47, 1392) = 149.1, p < 
0.0001), but not by their interaction. Adjusted energy intake was dependent on the interaction of age 
with peripubertal diet (F (47, 288) = 12.09, p < 0.0001), as well as by each factor separately (diet: F(1, 
288) = 27.66, p < 0.0001; age: F (47, 288) = 119.2, p < 0.0001). Sidak’s multiple comparisons test was 
used for post-hoc analysis. *P < 0.05. Modified from Gazea et al., submitted to PNAS. 

 

Interestingly, after switching HFD with NC, ppDIO mice exhibited a significant 

hypophagia as shown by decreased adjusted energy intake during weeks 11 to 13 of 

life (p < 0.05). Afterwards, adjusted energy intake was not significantly different 

between the two diet groups, except for weeks 38 and 47 (p < 0.05, mice were 

transferred to other rooms in the animal facility).  
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Figure 26: Food intake during the light/dark period in ppDIO and control mice at 10 w and 52 w of age. 

Food intake during the light (A) and dark (B) period and the ratio of food eaten during the light versus 
dark (C) are given as percentage of daily total ± SEM. Two-way ANOVA showed that food intake was 
affected significantly by peripubertal diet regimen during the resting (F (1, 24) = 18.9, p = 0.0002) and 
the active phase (F (1, 24) = 19.59, p = 0.0002). The ratio of light/dark food intake was also influenced 
by peripubertal diet regimens (F (1, 24) = 20.18, p = 0.0002). Sidak’s multiple comparisons test was 
used for post-hoc analysis. *P < 0.05. Modified from Gazea et al., submitted to PNAS. 

Previous reports suggested that circadian rhythms are disrupted in obese humans 

and rodents and may promote food intake during the wrong time of day. To address 

this relationship, we compared the amount of food consumption during the light and 

the dark period in 10 w and 52 w ppDIO with that in control mice.  

ppDIO mice displayed higher relative food intake during the light period (Fig. 26A, p < 

0.05) and lower relative food intake during the dark period (Fig. 26B, p < 0.05). 10 w 

old ppDIO mice exhibited an imbalance in the food intake ratio as compared to 

controls (p < 0.05), because their food consumption was significantly shifted from the 

active to the resting phase (p < 0.05). In 52 w ppDIO a trend for an imbalance was 

observed, but statistical analysis did not reveal significant group differences.  
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1.4 Central adaptations underlying ppDIO-induced changes in sleep-wake 
behaviors 

 

1.4.1 Adaptations in ARC first-order and LH second-order neurons 

 

To understand which central mechanisms may have contributed to programming of 

sleep-wake behaviors by ppDIO, we examined the mRNA expression of peptides that 

are involved in food intake regulation. We focused our analysis on 10 w and 52 w old 

ppDIO and control mice, because these two age groups exhibited significant sleep 

changes. We hypothesized that signaling in centers involved in sleep-wake and food 

intake regulation was altered by DIO during peripuberty and that these changes may 

re-appear later in life.  

First, we determined whether first-order neurons in the ARC were affected by ppDIO. 

For this purpose, we performed radioactive RNA in situ hybridization of NPY in the 

ARC (Fig. 27A). Quantification of the NPY signal showed that 10 w old ppDIO mice 

displayed a significantly lower NPY mRNA expression than control mice of the same 

age. This effect was not apparent in the 52 w old group.  

Next, to investigate whether changes in the lateral hypothalamus may have 

contributed to ppDIO-induced changes in sleep-wake behaviors, we quantified mRNA 

expression of MCH and orexin in the lateral hypothalamus by radioactive RNA in situ 

hybridization (Fig. 27B and C). We observed a significant decrease in LH MCH 

expression in 52 w old ppDIO mice as compared to controls (Fig. 27C, p < 0.05).  

Orexin expression was not significantly affected by diet or age (Fig. 27A).  
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Figure 27: Changes in neuropeptide expression related to food intake regulation in 10 w and 52 w old 
ppDIO and control mice. 

ARC NPY (A), LH orexin (B) and MCH (C) mRNA expression were determined by radioactive RNA in 
situ hybridization. Two-way ANOVAs showed that impacted significantly on NPY mRNA expression (F 
(1, 38) = 8.067, p = 0.0072) and that diet interacted significantly with the age effect (F (1, 38) = 6.274, 
p = 0.0167). Two-way ANOVA did not show any changes in orexin and MCH mRNA expression by 
diet or age, but Sidak’s post-hoc test showed significant group differences MCH expression in 52 w old 
mice. *P < 0.05. Values are given as mean ± SEM. Modified from Gazea et al., submitted to PNAS. 

 

1.4.2 Adaptations in neurotransmitter systems 

 

Catecholamines have been implicated in the regulation of both feeding and sleep-

wake behaviors. In addition, especially the dopamine system undergoes remodeling 

during peripuberty. To examine whether signaling of dopaminergic and serotonergic 

systems were changed by ppDIO, we measured concentrations of neurotransmitters 

and their metabolites by HPLC.  

We first determined dopamine and serotonin levels in the LH (Fig. 28 and 29). Our 

measurements showed that serotonin was significantly reduced in the LH of 52 w old 

ppDIO mice as compared to 52 w old controls (Fig. 28A, p < 0.05). The concentration 

of serotonin and its metabolite 5-HIAA increased significantly with age (p < 0.05), but 

peripubertal diet regimens did not affect 5-HIAA concentrations in the LH (Fig. 28B). 

Further, serotonin turnover decreased significantly during aging (Fig. 28C, p < 0.05).  
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Figure 28: Changes in the LH serotonin system of 10 w and 52 w old ppDIO and control mice. 

Concentrations of (A) serotonin (5-HT) and (B) its metabolite 5-HIAA in the LH were determined by 
HPLC from the tissue homogenates. Serotonin (C) turnover was calculated as described above. 
Values are given as mean ± SEM. Two-way ANOVAs showed that age (F (1, 34) = 132.3, p < 0.0001) 
and diet (F (1, 34) = 17.49, p = 0.0002) altered 5-HT levels in the LH significantly. Age affected 5-HIAA 
concentrations (F (1, 34) = 10.33, p = 0.0029) and 5-HT turnover (F (1, 34) = 14.75, p = 0.0005) 
significantly. Sidak’s multiple comparisons test was used for post-hoc analysis. *P < 0.05. Modified 
from Gazea et al., submitted to PNAS. 

In addition, concentrations of LH dopamine and its metabolites DOPAC and HVA 

increased significantly during aging (Fig. 29A, C and D, p < 0.05). Dopamine turnover 

was not influenced by age or diet (Fig. 29B). Peripubertal diet regimens did not 

impact significantly on the LH dopamine system. 
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Figure 29: Changes in the LH dopamine system of 10 w and 52 w old ppDIO and control mice. 

Concentrations of (A) dopamine (DA) and its metabolites DOPAC (C) and HVA (D) in the LH were 
determined by HPLC from the tissue homogenates. Dopamine (B) turnover was calculated as 
described above. Values are given as mean ± SEM. Two-way ANOVAs showed that age impacted 
significantly on levels of DA (F (1, 34) = 11.16, p = 0.002), DOPAC (F (1, 34) = 5.644, p = 0.0233) and 
HVA (F (1, 34) = 9.906, p = 0.0034) in the LH. Sidak’s multiple comparisons test was used for post-
hoc analysis. *P < 0.05. Modified from Gazea et al., submitted to PNAS. 

Based on the changes that we observed in LH serotonin transmission, we continued 

our analysis in the dorsal raphe nucleus (DR). The DR is the major production site of 

brain serotonin and sends projections to the LH.  

Similarly to the LH, serotonin concentrations increased significantly in the DR during 

aging (Fig. 30A, p < 0.05). However, the age-related increase in serotonin was 

absent in 52 w old ppDIO mice as compared to 10 w old ppDIO group, contributing to 

the significantly lower serotonin levels than controls of the same age (p < 0.05). 

However, this difference was not reflected by Tph2 mRNA expression, the rate-

limiting enzyme in serotonin synthesis (Fig. 30B). Tph2 expression was significantly 
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reduced in 10 w ppDIO mice as compared to age-matched controls (p < 0.05), 

whereas there were no significant differences in the 52 w old group, resulting in a 

significant increase in Tph2 mRNA expression in ppDIO mice during aging (p < 0.05).  

 

Figure 30: Changes in the serotonin system in dorsal raphe nucleus of 10 w and 52 w old ppDIO and 
control mice. 

Concentrations of (A) serotonin (5-HT) and (C) its metabolite 5-HIAA in the DR were determined by 
HPLC from the tissue homogenates. Serotonin (D) turnover was calculated as described in the graph. 
Tph2 mRNA expression (B) was examined by radioactive RNA in situ hybridization on DR sections. 
Values are given as mean ± SEM. Two-way ANOVAs showed that age significantly impacted on 5-HT 
levels (F (1, 20) = 12.03, p = 0.0024), Tph2 mRNA expression (F (1,35) = 6.846, p = 0.013) and 5-HT 
turnover (F (1, 20) = 12.85, p = 0.0019) in the DR. Tph2 mRNA expression was also affected 
significantly by peripubertal diet (F (1, 35) = 13.09, p = 0.0009) and the interaction between diet and 
age (F (1,35) = 5.067, p = 0.0308). Sidak’s multiple comparisons test was used for post-hoc analysis. 
*P < 0.05. Modified from Gazea et al., submitted to PNAS. 
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5-HIAA concentrations in DR were not influenced significantly by ppDIO or age (Fig. 

30C). However, serotonin turnover decreased significantly with age in DR (Fig. 30D, 

p < 0.05).  

Due to their major implication in the hedonic aspects of food intake regulation, we 

further determined dopamine levels in the VTA and NAc (Fig. 31 & 32).  

 

Figure 31: Changes in the VTA dopamine system of 10 w and 52 w old ppDIO and control mice. 

Concentrations of (A) dopamine (DA) and its metabolites DOPAC (C) and HVA (D) in the VTA were 
determined by HPLC from the tissue homogenates. Dopamine (B) turnover was calculated as 
described in the graph. Values are given as mean ± SEM. Two-way ANOVAs revealed that VTA DA 
turnover was altered significantly age (F (1,28) = 6.709, p = 0.0151), diet (F (1,28) = 5.863, p = 0.0222) 
and the age*diet interaction (F (1,28) = 6.348, p = 0.0177). Sidak’s multiple comparisons test was 
used for post-hoc analysis. *P < 0.05. Modified from Gazea et al., submitted to PNAS. 

10 w old ppDIO mice had significantly lower dopamine levels in the VTA as 

compared to control mice of the same age (Fig. 31A, p < 0.05). DOPAC and HVA 

concentrations were not significantly altered by peripubertal diet regimens or age (Fig. 
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31C and D). Opposite to dopamine levels, dopamine turnover was significantly 

increased in ppDIO mice aged 10 w as compared to age-matched controls (Fig. 31B, 

p < 0.05). This difference did not re-appear in the 52 w group.  

Furthermore, we observed an age-dependent decrease in NAc dopamine 

concentrations (Fig. 32A, p < 0.05) and levels of its metabolites DOPAC (Fig. 32C, p 

< 0.05) and HVA (Fig. 32D, p < 0.05). However, the peripubertal diet regimen itself 

did not have a significant effect on the dopamine system in the NAc. Dopamine 

turnover was not influenced by diet or age (Fig. 32B).  

 

Figure 32: Changes in the NAc dopamine system of 10 w and 52 w old ppDIO and control mice. 

Concentrations of (A) dopamine (DA) and its metabolites DOPAC (C) and HVA (D) in the LH were 
determined by HPLC from the tissue homogenates. Dopamine (B) turnover was calculated as 
described above. Values are given as mean ± SEM. Two-way ANOVAs revealed that age significantly 
influenced concentrations of NAc DA (F (1, 35) = 11.97, p = 0.0014), DOPAC (F (1, 35) = 24.87) = p < 
0.0001) and HVA (F (1, 35) = 16.60, p = 0.003). Peripubertal diet did not impact on the NAc dopamine 
system. Sidak’s multiple comparisons test was used for post-hoc analysis. *P < 0.05. Modified from 
Gazea et al., submitted to PNAS. 
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1.5 Interventions to ameliorate sleep disturbances in ppDIO mice 

 

1.5.1 Fasting and re-feeding effects on sleep in ppDIO and control mice at 52 w 
of age 

 

Fasting elicits food-seeking behaviors and thereby, increases wakefulness. Therefore, 

we investigated, whether fasting is able to reduce sleep time in 52 w old ppDIO as 

efficiently as in control mice. We performed EEG/EMG recordings during the period 

of 24 hours of fasting and subsequent re-feeding and compared changes to the 

respective baselines.  

After the food was removed from the food tray at light onset, all mice displayed 

normal sleep patterns during the light period (Fig. 33A, B, C and D). In contrast, 

during the dark period, fasting induced a dramatic reduction in NREMS time in both 

control (p < 0.05) and ppDIO mice (p < 0.05, Fig. 33A, B). After calculating the 

differences relative to baseline levels during 6-hour bins, a more pronounced 

reduction in NREMS time appeared in control as compared to ppDIO mice during the 

dark period (Fig. 33C, p < 0.05 at ZT19-24). REMS time was significantly reduced in 

control (p < 0.05), but not in ppDIO mice during fasting in the dark period. The 

relative REMS reduction during fasting was not significantly different between the diet 

groups when baseline differences were taken into account (Fig. 33D).  

Re-feeding decreased NREMS time during the light period in both control (p < 0.05) 

and ppDIO mice (p < 0.05) as compared to baseline and fasting conditions (Fig. 33A). 

REMS time was suppressed in both diet groups during the light period as compared 

to the baseline condition (Fig. 33B, p < 0.05). However, the relative differences of 

NREMS and REMS during re-feeding between the diet groups were not significantly 

different (Fig. 33E, F). Regarding REMS, upon re-feeding a further reduction in 

REMS time was evident in control mice during the resting phase (p < 0.05), but not in 

ppDIO mice (Fig. 33B). A rebound of REMS during the dark period appeared similarly 

in both diet groups (p < 0.05).  
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Figure 33: NREMS and REMS time during fasting and re-feeding in 52 w old ppDIO and control mice. 

NREMS (A) and REMS (B) time is given in percentage per hour ± SEM during 24 hours of fasting and 
subsequent 24 hours of re-feeding in 52 w old ppDIO (n=7) and control mice (n=6). Respective 
baseline profiles are plotted by dotted lines. (C-F) Relative differences from baseline, calculated as 
six-hour means ± SEM of NREMS during fasting (C), re-feeding (E) and REMS during fasting (D), re-
feeding (F). Two-way ANOVA showed that fasting and re-feeding induced different NREMS time 
responses in ppDIO and control mice during a 48-hour recording (A, diet x time interaction: F (47,517) 
= 17.25, p < 0.0001; diet effect: F (1, 11) = 5.086, p = 0.0455), while REMS was not significantly 
affected in this comparison. Furthermore, fasting reduced NREMS time more dramatically in controls 
than in ppDIO mice (C, two-way ANOVA; diet x time interaction: F (3, 33) = 4.19, p = 0.0128). Sidak’s 
multiple comparisons test was used for post-hoc analysis. *P<0.05. Modified from Gazea et al., 
submitted to PNAS. 

Following 24 hours of fasting, both control and ppDIO mice aged 52 w lost weight 

(control mice -2.9 ± 0.43 g vs. ppDIO mice: -2.8 ± 0.27 g). The weight loss per se 

was not significantly different between the diet groups (data not shown).  

 

1.5.2 PYY3-36 rescues sleep disturbances in ppDIO mice  

 

PYY3-36 was previously suggested as pharmacotherapy accompanying weight loss 

strategies in humans. Its potent anorexigenic effects in the obese were reported 

previously and promised its potential as anti-obesity drug. To determine whether 

PYY3-36 could also restore sleep-wake behaviors in ppDIO mice, we injected PYY3-36 

or vehicle i.p. prior to dark onset and performed EEG/EMG recordings and monitoring 

food intake after the injections. The main effects of PYY3-36 were observed during the 

first hour following the injection. Therefore, only the first post-injection hour is 

depicted in Fig. 34.  

In 10 w old mice, initial differences in NREMS time under vehicle conditions were 

abolished following injections of PYY3-36 (Fig. 34A, p < 0.05). Such equalization 

occurred, because PYY3-36 decreased NREMS time significantly in ppDIO mice (p < 

0.05). However, PYY3-36 promoted NREMS time in 10 and 52 w old control animals.  

Along with 10 w old ppDIO mice, significant differences in NREMS amount between 

52 w ppDIO and control mice under vehicle conditions (p < 0.05) were diminished 

following PYY3-36 treatment (Fig. 34B). This effect was mainly due to increased 

NREMS time in controls and decreased NREMS time in ppDIO mice aged 52 w, as 

seen in the 10 w old group.  
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Figure 34: PYY3-36 effects on NREMS time during the first hour of the active phase in 10 w and 52 w 
old ppDIO and control mice. 

NREMS amounts are given as mean percentage per hour ± SEM in 10 w (A) and 52 w old (B) ppDIO 
and control mice. The change intensity of NREMS following PYY3-36 as compared to vehicle injections 
is given as mean percentage ± SEM (C). Two-way ANOVA revealed a significant diet and treatment 
interaction in 10 w (F (1, 14) = 14.72, p = 0.0018) and 52 w (F (1, 18) = 8.3, p = 0.0099) mice. Change 
intensity of NREMS time was dependent on peripubertal diet (F (1, 32) = 19.19, p = 0.0001). Sidak’s 
multiple comparisons test was used for post-hoc analysis. *P < 0.05. Modified from Gazea et al., 
submitted to PNAS. 

To further illustrate the efficacy of PYY3-36 treatment, we calculated the change 

intensity of NREMS time following PYY3-36 relative to vehicle injections (Fig. 34C). 

This type of analysis showed that PYY3-36 affected NREMS time depending on the 

dietary background; both 10 w and 52 w old ppDIO mice displayed a significant 

suppression of NREMS time in response to PYY3-36, whereas controls showed an 

increase in NREMS time reaching levels above 100 % of the vehicle condition (p < 

0.05). Food intake behaviors were equally suppressed by PYY3-36 treatment 

irrespective of peripubertal diet regimen or age (data not shown), exemplifying that 

specifically NREMS time is differentially influenced by PYY3-36 treatment in ppDIO 

and control mice.   
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2 Neuroendocrine and behavioral responses to stress in mice with a 
history of ppDIO 

 

Obesity is associated with alterations in HPA axis activity and is often accompanied 

by depressive symptoms. Since puberty is a time when stress systems are still 

developing, DIO during peripuberty may impact on the establishment of the HPA axis. 

To investigate whether ppDIO may program HPA axis activity and stress-related 

behaviors, we compared basal and stress-induced serum levels of corticosterone in 

ppDIO versus control mice during aging. In addition, we examined stress-coping 

behaviors in our ppDIO model. 

 

2.1 Changes in HPA axis activity in ppDIO mice during aging 

 

To investigate whether a history of ppDIO affects HPA axis activity, we compared 

corticosterone (CORT) serum concentrations of mice aged 12 w, 24 w and 52 w. The 

basal levels were examined from tail blood samples at around ZT0 and ZT12.  

CORT concentrations at ZT0 and ZT12 were higher when mice were aged (Fig. 35A, 

B, p < 0.05). 52 w old ppDIO mice showed elevated CORT levels at ZT12 as 

compared to 52 w old controls in the post-hoc test (p < 0.05). Further effects of 

peripubertal diet on basal corticosterone levels were not found.  

In response to a six-minute forced swim test (FST, performed between ZT2 and 4), 

dramatic increases in CORT levels were evident as compared to baseline conditions 

(Fig. 35C, compare to Fig. 35A). Again, CORT stress responses became significantly 

higher when animals got older (p < 0.05). Depending on age, peripubertal diet 

regimens impacted on stress-related CORT concentrations (p < 0.05); 12 w old 

ppDIO mice displayed lower CORT levels than controls after stress, while 24 w old 

ppDIO mice exhibited a higher CORT response than controls, both of which may 

contribute to the overall statistical interaction between diet and age.  
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Two hours after termination of the FST, CORT concentrations were still significantly 

upregulated according to age (Fig. 35D, p < 0.05). However, there were no significant 

differences between the two dietary groups.  

 

Figure 35: Corticosterone levels under baseline conditions and following forced swim test during 
aging. 

CORT serum concentrations are given as ng/ml ± SEM at ZT0 (A), ZT12 (B), 30 minutes (C) and 2 
hours (D) following a forced swim test. Age affected CORT concentrations significantly during all four 
conditions (two-way ANOVA, ZT0: F (2, 73) = 4.133, p = 0.0199; ZT12: F (2, 73) = 6.811, p = 0.0019; 
FST-30’: F (2, 73) = 23.61, p < 0.0001; FST-2h: F (2, 73) = 54.20, p < 0.0001). Peripubertal diet 
interacted significantly with age to influence CORT concentrations 30 minutes after the FST (C, ppDIO 
x age interaction: F (2, 73) = 3.546, p = 0.0339). Sidak’s multiple comparisons test was used to 
determine group differences. *P<0.05. Modified from Gazea et al., submitted to PNAS.  
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2.2 Stress coping behavior in the forced swim test in ppDIO mice during aging 

 

To investigate whether altered HPA axis activity in ppDIO mice is reflected in stress 

coping behaviors during the FST, we analyzed swimming behaviors of ppDIO mice in 

comparison to controls (Fig. 36). In the FST, inactive time, representing the time 

spent floating, increased significantly during aging (Fig. 36A, p < 0.05). 24 w old 

ppDIO mice spent more time inactive in the FST than age-matched controls (p < 

0.05). Overall, ppDIO mice were more inactive during the FST (p < 0.05).  

 

Figure 36: Stress coping behavior in the forced swim test in ppDIO and control mice during aging. 

Time spent inactive (A) in percentage ± SEM and latency to being inactive / floating (B) in sec ± SEM 
in 12 w, 24 w and 52 w old ppDIO and control mice during an FST. Two-way ANOVA showed that 
inactive time and latency to floating increased significantly during aging (inactive time: F (2, 73) = 
73.37, p < 0.0001; latency: F (2, 73) = 12.67, p < 0.0001). In addition, both parameters were increased 
further by a history of ppDIO (inactive time: F (1, 73) = 6,649, p = 0.0119; latency: F (1, 73) = 6,143, p 
= 0.0155). Latency to floating was further dependent on the interaction between diet and age (F (2, 73) 
= 4,800, p = 0.011). Sidak’s multiple comparisons test served as post hoc test. *P<0.05. Modified from 
Gazea et al., submitted to PNAS. 

 

Also the latency to the first floating episode was elevated in ppDIO mice (Fig. 36B, p 

< 0.05), especially in 24 w old ppDIO mice (p < 0.05). The latency increased with age 

in both diet groups (p < 0.05).  
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Interestingly, inactive time correlated with body weights in 52 w old ppDIO mice (Fig. 

37A, p < 0.05), while it did not correlate with body weights of 12 w and 24 w old 

ppDIO mice or control groups of any age (Fig. 37B, 52 w old controls).  

 

Figure 37: Time spent inactive in the forced swim test against body weights in 52 w old ppDIO and 
control mice. 

Correlation of time spent inactive in the FST (y axis, given in percentage as in Fig. 28) with body 
weights (x axis, given in grams) in 52 w old control (A) and ppDIO mice (B). FST inactive time 
correlated with body weights in 52 w old ppDIO mice (p = 0.0183, r² = 0.3375). Modified from Gazea et 
al., submitted to PNAS. 

 

To overcome a potential confounding of our FST data, we used an ANCOVA to re-

evaluate the data when body weights were partialled out. Also without the 

contribution of body weights age and peripubertal diet experience increased the time 

spent inactive and the latency to the first immobility in the FST (p < 0.05).  

 

2.3 Exploratory activity in ppDIO and control mice during aging 

 

To examine whether exploratory (locomotor) activity was generally altered in mice 

with a history of ppDIO, we performed an open field test. Distance traveled 

decreased significantly with age independent of the diet group (Fig. 38, p < 0.05). 

Peripubertal diet regimens did not alter distance traveled in the open field test. Other 

parameters that can be extracted from the open field test, such as time spent in the 
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center of the arena, were not significantly influenced by ppDIO either (data not 

shown). In contrast to the FST, body weights did not correlate with the distance 

traveled in the open field test (data not shown).  

 

Figure 38: Distance traveled in the open field test in ppDIO and control mice during aging. 

Distance traveled is given in meters ± SEM. In the open field test, the traveled distance decreased 
significantly during aging in both diet groups (two-way ANOVA, F (2, 73) = 17.59, p < 0.0001). Sidak’s 
multiple comparisons test served as post hoc test. Modified from Gazea et al., submitted to PNAS. 
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3. High-fat diet withdrawal: the impact on sleep and feeding regulatory 
mechanisms  

 

Previously, it was reported that a dietary switch from high-calorie palatable foods to 

healthier balanced foods triggers adaptive changes in food intake regulators in the 

brain of obese rodents and humans. These changes would counteract weight loss. 

However, the exact central mechanism driving obese animals or humans to resume 

the overconsumption of palatable foods during the period of abstinence is still poorly 

understood. Furthermore, from the viewpoint of the results of Study 1 showing that 

chronic HFD exposure led to increased nocturnal sleep time in ppDIO mice, we 

aimed to examine whether HFD withdrawal rescues sleep disturbances occurring in 

ppDIO mice and further to determine brain regions that may provide those causal 

changes. Specifically we questioned:  

1. How does HFD withdrawal affect ingestive and sleep-wake behaviors? 

2. What are the adaptive changes in neurotransmitter and neuropeptide systems 
in feeding and sleep-wake regulatory centers? 

3. Does HFD withdrawal trigger adaptations that are similarly elicited by fasting? 

4. Does HFD re-exposure reset neurotransmitter/neuropeptide systems and 
sleep-wake behaviors of ppDIO mice to a condition before they experienced 
HFD withdrawal? 

To seek answers to these questions, we compared behavioral responses (sleep, 

feeding) and neuropeptide/neurotransmitter levels in ppDIO mice at the end of a 6-

week HFD exposure with those in another group of ppDIO mice that were withdrawn 

from HFD followed by exposure to NC. Mice that were maintained on NC during 

peripuberty served as controls. Controls were also ad libitum fed with NC or were 

fasted.  

 

3.1 Changes in body weights and food intake after HFD withdrawal in ppDIO 
mice 

 

First, we determined changes in body weights and food intake in ppDIO mice when 

HFD was replaced by NC. The dietary switch from HFD to NC significantly reduced 
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body weights in ppDIO mice within 24 hours of withdrawal, but not after 48 hours (Fig. 

39A, p < 0.05). In controls, fasting produced a ten-fold greater body weight loss than 

HFD withdrawal in ppDIO mice (Fig. 39B, p < 0.05).  

 

Figure 39: Body weight changes following HFD withdrawal in ppDIO mice and fasting in controls. 

Daily body weight changes in gram in (A) ppDIO mice following ad libitum HFD exposure (mean value 
of three days, n = 6), one (1d, n = 16) or two days (2d, N = 8) of HFD withdrawal in ppDIO mice and (B) 
in control mice following ad libitum NC exposure (n = 21) and fasting (n = 8). Body weights were 
significantly reduced by the HFD-NC switch (one-way ANOVA, F (2, 27) = 4.01, p = 0.0299) and by 
fasting (unpaired t-test, t=17.57 df=27, p < 0.0001). Values are given as mean gram ± SEM. Dunnett’s 
multiple comparisons test was used for post-hoc analysis in ppDIO mice. *P < 0.05. Modified from 
Gazea et al., submitted to Front Neurosci. 

 

Figure 40: Food intake following HFD withdrawal in ppDIO mice. 

Food intake is given in gram (A) or in kcal (B) during 24 hours of different dietary treatments in ppDIO. 
Food intake in control mice is depicted as a reference value in the graph. While food intake expressed 
in gram was not significantly affected by the diet switch, caloric intake was reduced significantly 
(Kruskal-Wallis test, K = 14.02, p = 0.0009). Values are given as mean gram/kcal ± SEM. Dunn’s 
multiple comparisons test was used for post-hoc analysis in ppDIO mice. *P < 0.05. Modified from 
Gazea et al., submitted to Front Neurosci. 
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The amount of food intake was not significantly affected by the dietary switch (Fig. 

40A, Kruskal-Wallis test, n.s.), but in terms of calories, energy intake was significantly 

reduced by the HFD-NC switch in ppDIO mice (Fig. 40B, p < 0.05). The latter 

difference was still evident after 48 hours following the dietary switch (p < 0.05).  

 

3.2 Nocturnal time spent awake increases during HFD withdrawal in ppDIO 
mice and during fasting in controls 

 

When ppDIO mice were switched from HFD to NC at ZT8, we observed a decrease 

in NREMS time during the subsequent dark period. The reduction in NREMS time 

reached significance during the second half of the dark period following withdrawal 

from HFD (Fig. 41A, p < 0.05).  

To compare whether fasting in control mice would induce similar sleep changes to 

those after the HFD-NC switch in ppDIO mice, we monitored nocturnal sleep-wake 

behaviors in control mice during 24 hours of fasting. Fasting significantly decreased 

sleep time in controls during the dark period as compared to ad libitum NC feeding 

(Fig. 41B, p < 0.05).  

 

Figure 41: Changes in nocturnal NREMS time following the HFD to NC switch in ppDIO mice and 
fasting in control mice. 

(A) Mean NREMS time during ZT13-18 (± SEM) in ppDIO mice at the end of a six-week HFD 
exposure (HFD), during the first dark period after the switch from HFD to NC (1d) and during the 
second dark period following the switch (2d). (B) Mean NREMS time during ZT13-18 (± SEM) in 
control mice during ad libitum access to NC (ad lib NC) and during fasting. As described in previous 
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sections, ppDIO mice displayed elevated NREMS time when maintained on HFD for six weeks as 
compared to controls (unpaired t-test, t=2.376, df=15, p = 0.0313). The switch from HFD to NC 
reduced NREMS time significantly in ppDIO mice (RM one-way ANOVA, F (1.299, 7.795) = 8.620, p = 
0.0156). Fasting reduced NREMS time significantly in control mice (paired t-test: t=4.884, df=7, p = 
0.0018). *P < 0.05. Dunnett’s multiple comparisons test was used for post-hoc analysis in ppDIO mice. 
Modified from Gazea et al., submitted to Front Neurosci. 

 

We further addressed the question whether decreased nocturnal sleep time persisted 

for a longer time period after HFD withdrawal. After two weeks of NC-feeding, active-

phase NREMS and REMS time were still significantly decreased in ppDIO mice as 

compared to 12 w old controls (Fig. 42, p < 0.05) and 10 w old ppDIO mice (p < 0.05). 

Hence, nocturnal sleep time was continuously decreased in ppDIO mice after HFD 

withdrawal for at least two weeks.  

Interestingly, control mice showed a significant developmental increase in sleep time 

from 10 w to 12 w of age, whereas the withdrawal from HFD elicited an opposite 

direction in regard to age-related sleep enhancement (p < 0.05). REMS time also 

showed albeit a non-significant increase during aging in control mice.  

We next examined whether acute HFD re-feeding may reverse these changes in 

ppDIO mice. To address this question, sleep recordings were performed when ppDIO 

mice were exposed to NC for two weeks and then re-exposed to HFD for 12 hours, 

with the HFD exposure starting at dark onset. As we expected, HFD re-feeding 

increased NREMS time significantly in ppDIO mice when compared to NC-2w 

exposure (Fig. 43, p < 0.05). REMS time was not significantly affected (data not 

shown).  
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Figure 42: HFD withdrawal for 2 weeks resulted in NREMS and REMS reduction in ppDIO mice. 

NREMS (A) and REMS (B) amounts are given as mean percentage during ZT13-18 ± SEM in ppDIO 
and control mice at 10 w and 12 w of age. At 10 w, ppDIO mice were still exposed to HFD, while at 12 
w, they were withdrawn from HFD and fed NC for two weeks. Peripubertal diet regimen interacted 
significantly with age in terms of NREMS time (two-way ANOVA, F (1, 55) = 33.25, p < 0.0001) and 
REMS time (two-way ANOVA, F (1, 55) = 11.39, p = 0.0014). Sidak’s multiple comparisons test was 
used for post-hoc analysis. *P < 0.05. Modified from Gazea et al., submitted to Front Neurosci. 

 

Figure 43: Changes in NREMS time during HFD re-feeding following the HFD-NC switch in ppDIO 
mice. 

Mean NREMS time during ZT13-18 (± SEM) in ppDIO mice fed NC for two weeks and re-exposed to 
HFD during the dark period. HFD re-feeding significantly increased NREMS time in ppDIO mice 
(paired t-test, t = t=3.712 df=7, p = 0.0075). *P < 0.05. Modified from Gazea et al., submitted to Front 
Neurosci. 
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3.3 Neural adaptations after HFD withdrawal or fasting in brain regions 
conducting homeostatic and reward-associated regulation 

 

We hypothesized that HFD withdrawal may alter neurochemical signaling in brain 

regions that are involved in the homeostatic and hedonic control of food intake. 

Therefore, we compared neurotransmitter and neuropeptide levels among three 

groups of ppDIO mice: 1) HFD ad libitum fed (ad lib HFD), 2) HFD-withdrawal 

followed by NC-exposure for 24 hours (HFD-NC switch) and 3) one hour of HFD re-

feeding after 23 hours of HFD-NC switch (HFD Re-feeding). As a control for 

homeostatic activation of food intake behaviors, two control groups were included as 

well: 1) NC ad libitum fed (Ctrl ad lib NC) and 2) fasting for 24 hours (Ctrl NC-fasting).  

 

3.3.1 Expression of neuropeptides that promote food intake  

 

Firstly, we analyzed neuropeptide expression in areas related to food intake 

regulation, such as the ARC and LH. Switching from HFD to NC significantly 

upregulated NPY expression in the ARC of ppDIO as compared to ad libitum HFD-

fed animals (Fig. 44A, p < 0.05). Similarly, fasting elevated NPY expression 

significantly in control mice (Fig. 44D, p < 0.05). In addition, orexin expression 

increased after fasting in controls (Fig. 44F, p < 0.05). Interestingly, the diet 

challenges did not induce significant changes in orexin and MCH expression in the 

LH in ppDIO mice (Fig. 44B and C).  
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Figure 44: Changes in neuropeptide levels in the hypothalamus of ppDIO and control mice following 
HFD withdrawal and fasting, respectively.  

mRNA expression of NPY in the ARC (A, D), MCH in the LH (B, E) and orexin in the LH (C, F) were 
determined by radioactive RNA in situ hybridization. Values are given as mean ± SEM. In ppDIO mice, 
withdrawal from HFD increased NPY mRNA expression (A, unpaired t-test, t=3.056, df=12, p = 0.01), 
whereas orexin and MCH expression were not significantly affected by the diet change. In control mice, 
fasting increased NPY (D, unpaired t-test, t=2.625, df=16, p = 0.0184) and orexin expression (F, 
unpaired t-test, t=2.420 df=17, p = 0.027). *P < 0.05. Modified from Gazea et al., submitted to Front 
Neurosci. 

However, orexin peptide levels extracted from the LH tissue showed a different 

pattern than orexin mRNA expression; HFD withdrawal increased orexin 

concentrations in the LH of ppDIO mice (Fig. 45A, p < 0.05), similarly to the increase 

seen in controls after fasting (Fig. 45B, p < 0.05). Interestingly, HFD re-feeding led to 

the return of orexin concentrations to ad libitum HFD levels in ppDIO mice (Fig. 45A).  
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Figure 45: Changes in LH orexin concentrations of following HFD withdrawal in ppDIO mice and 
fasting in controls. 

Orexin peptide concentrations in the LH of ppDIO mice after HFD withdrawal and re-feeding (A) and 
after fasting in control mice (B) were determined by RIA from the tissue homogenates. Values are 
given as pg/mg protein ± SEM. In ppDIO mice, withdrawal from HFD increased orexin concentrations 
in the LH as compared to ad libitum HFD exposure or HFD re-feeding (Kruskal-Wallis test, K = 7.892, 
p = 0.0134). Similarly, in control mice, fasting increased orexin concentrations (Kolmogorov-Smirnov 
test, D = 0.75, p = 0.0112). Dunn’s multiple comparisons test was used for post-hoc analysis. *P < 
0.05. Modified from Gazea et al., submitted to Front Neurosci. 

 

3.3.2 Serotonin and dopamine neurotransmission in brain regions regulating 
homeostatic and hedonic impacts of food intake 

 

To further understand how HFD withdrawal impacts on sleep and feeding behaviors, 

we continued our analysis in the LH, VTA, DR and NAc.  

In the LH, the switch from HFD to NC significantly increased serotonin concentrations 

(Fig. 46A, p < 0.05) as compared to chronic HFD exposure. LH dopamine levels did 

not differ significantly between ppDIO mice that were maintained on HFD vs. NC (Fig. 

46B), but its turnover was significantly increased in ppDIO mice exposed to one day 

of NC as compared to HFD-fed ppDIO mice (Fig. 46D, p < 0.05). Serotonin turnover 

was significantly increased when HFD was returned for one hour as compared to 24 

hours of NC feeding (Fig. 46C, p < 0.05). Further, HFD re-feeding reduced dopamine 

turnover in ppDIO mice to ad libitum HFD feeding levels (Fig. 46D, p < 0.05). In 

controls, none of these parameters in the LH were altered in response to fasting 

(data not shown).  
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Figure 46: Changes in the LH dopamine and serotonin system of ppDIO mice following HFD 
withdrawal and re-feeding. 

Concentrations of (A) serotonin (5-HT) and (B) dopamine (DA) in the LH were determined by the 
HPLC system from the tissue homogenates. Serotonin (C) and dopamine turnover (D) ratios were 
calculated as described in the graph. Values are given as mean ± SEM. Serotonin concentrations 
were significantly up-regulated by HFD withdrawal and re-feeding (one-way ANOVA, F (2, 17) = 5.390, 
p = 0.0154), whereas serotonin turnover was only up-regulated when HFD was returned for one hour 
(Kruskal-Wallis test, K = 9.583, p = 0.0041). Dopamine concentrations were not affected by the dietary 
challenges. Dopamine turnover was increased after HFD withdrawal and returned to ad lib HFD levels 
after HFD re-feeding (one-way ANOVA, F (2, 18) = 3.689, p = 0.0454). Dunnett’s (parametric) or 
Dunn’s (parametric) multiple comparisons test was used for post-hoc analysis. *P < 0.05. Modified 
from Gazea et al., submitted to Front Neurosci. 

 

In the NAc, HFD withdrawal reduced dopamine concentrations significantly in ppDIO 

mice (Fig. 47A, p < 0.05). One hour of HFD re-feeding was sufficient to restore the 

drop in dopamine concentrations after HFD withdrawal (Fig. 47A, p < 0.05). 

Dopamine turnover was not significantly affected by the dietary challenges (Fig. 47B). 

Control mice did not exhibit changes in dopamine concentrations or turnover after 

fasting (Fig. 47C, D).  
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Figure 47: Changes in the NAc dopamine levels following HFD withdrawal and re-feeding in ppDIO 
mice and fasting in control mice. 

Dopamine concentrations (A, C) and turnover (B, D) in the NAc of ppDIO (C, D) and control mice (A, 
B) were determined by the HPLC system from the tissue homogenates. Values are given as mean ± 
SEM. HFD withdrawal decreased and 1h of HFD re-feeding significantly increased dopamine 
concentrations (one-way ANOVA, F (2, 18) = 10.03, p = 0.0012), while dopamine turnover was not 
significantly affected. Sidak’s multiple comparisons test was used for post-hoc analysis. *P < 0.05. 
Modified from Gazea et al., submitted to Front Neurosci. 

 

Based on the changes in NAc dopamine contents, we also analyzed dopamine 

concentrations in the VTA, the main source of NAc dopamine. Both, the HFD-NC 

switch and one hour of HFD re-feeding significantly increased dopamine 

concentrations in the VTA as compared to chronic HFD-feeding (Fig. 48A, p < 0.05). 

On the other hand, dopamine turnover was deceased significantly as compared to 

mice that had uninterrupted access to HFD (Fig. 48B, p < 0.05).  
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Figure 48: Changes in the VTA dopamine levels in ppDIO mice following HFD withdrawal and re-
feeding. 

Dopamine concentrations (A) and turnover (B) in the VTA were determined by the HPLC system from 
tissue homogenates. Values are given as mean ± SEM. HFD re-feeding for 1h significantly increased 
dopamine concentrations (Kruskal-Wallis test, K = 12.20, p = 0.0004), while dopamine turnover ratio 
was significantly decreased (Kruskal-Wallis test, K = 10.69, p = 0.0017). *P < 0.05. Modified from 
Gazea et al., submitted to Front Neurosci. 

 

Figure 49: Changes in the DR serotonin level in ppDIO mice following HFD withdrawal and re-feeding. 

Serotonin concentrations (A) and turnover (B) in the DR were determined by the HPLC system from 
the tissue homogenates. Values are given as mean ± SEM. HFD re-feeding for 1h significantly 
decreased serotonin concentrations (Kruskal-Wallis test, K = 10.38, p = 0.0021), whereas it increased 
serotonin turnover significantly (Kruskal-Wallis test, K = 10.05, p = 0.0028). *P < 0.05. Modified from 
Gazea et al., submitted to Front Neurosci. 

 

Because we found differences in serotonin concentrations in the LH, we further 

analyzed serotonin concentrations and turnover in the DR (Fig. 49). The switch from 

HFD to NC increased serotonin concentrations in the DR (Fig. 49A, p < 0.05). 
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Conversely, serotonin turnover was significantly decreased after the HFD-NC switch 

(Fig. 49B, p < 0.05). One hour of HFD re-feeding significantly reduced serotonin 

concentrations in the DR (Fig. 49A, p < 0.05) and elevated serotonin turnover as 

compared to the HFD-NC switch (Fig. 49B, p < 0.05). Thus, HFD-refeeding restored 

up-regulated serotonin concentrations in the DR following HFD withdrawal. In control 

animals, fasting did not impact on serotonergic signaling in the DR (data not shown).  
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Discussion 

 

1 The impact of ppDIO on sleep-wake and depression-like behaviors 
during aging 

 

1.1 ppDIO elevates nocturnal sleep time  

 

Previous studies have shown that rodents become significantly overweight when fed 

a high-fat/high-carbohydrate diet (HFD) for at least six weeks (Black et al., 1998). 

These diet-induced obese (DIO) animals display sleep fragmentation and prolonged 

sleep time during their active phase (Jenkins et al., 2006; Tanno et al., 2013). The 

current study reproduced these findings in peripubertal diet-induced obese (ppDIO) 

mice. Further, elevated nocturnal NREMS time re-appeared at 52 w of age in mice 

with a history of ppDIO, even though HFD feeding was terminated at 10 w and was 

replaced by a healthier, normal-calorie food variant during aging (standard laboratory 

food, NC).  

 

Increases in nocturnal sleep time as seen in DIO mice may correspond to excessive 

daytime sleepiness (EDS) in obese humans. Previous findings support this idea 

(Jenkins et al., 2006; Vgontzas et al., 1998). EDS usually emerges due to insufficient 

or non-refreshing nocturnal sleep in humans. In our study, 10 and 52 w old ppDIO 

mice presented an EDS-like phenotype, which was accompanied by lower slow-wave 

activity (SWA) during the resting phase in 52 w old ppDIO mice and sleep 

fragmentation in 10 w old ppDIO mice. SWA is often used to estimate sleep depth, 

with higher SWA values reflecting a stronger cortical synchronization and greater 

sleep depth. Conversely, low SWA reflects poor sleep quality (Achermann & Borbely, 

2003). In ppDIO mice, the EDS-like phenotype might have occurred because sleep 

during the light period was relatively shallow, thus an extended nocturnal sleep time 

may serve as a compensatory mechanism. However, according to the two-process 

model by Borbely (Borbely, 1982), an accumulation of SWA builds up during periods 

of prolonged wakefulness, which in rodents occurs during the dark period. Hence, 
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increased sleep time during the active phase may eliminate the build-up of 

homeostatic sleep pressure in ppDIO mice (Achermann & Borbely, 2003). This 

creates a vicious circle, in which lower sleep quality during the resting phase results 

in increased nocturnal sleep time and vice versa.  

 

These findings raise a question of which mechanism may underlie the changes in 

SWA and nocturnal sleep time as observed in ppDIO mice. The reduced ability of 

ppDIO mice to stay awake during the dark period may be caused by different 

mechanisms; an over-activity of sleep-promoting areas, such as the VLPO, or a 

decreased activity of wake-promoting areas, such as the LH and DR. Alterations in 

the activity of either of these areas will impact on the activity of the other brain areas 

due to their extensive reciprocal projections. Based on previous studies on DIO 

rodent models, orexin neurons in the LH were suggested as a link between obesity 

and sleep time (Rolls et al., 2010). LH orexin neurons are involved in the 

maintenance of wakefulness (A. R. Adamantidis et al., 2007; Hara et al., 2001) and 

promote food intake by integrating information about metabolic needs (Sakurai, 

2005). Acute and chronic HFD consumption impacts on orexinergic function (Tanno 

et al., 2013; Valdivia et al., 2014). While acute HFD exposure activates orexin 

neurons (Valdivia et al., 2014), chronic HFD feeding in DIO animals results in 

decreased orexin mRNA expression (Kohsaka et al., 2007; Nobunaga et al., 2014). 

In this regard, Tanno and colleagues showed that increased NREMS levels in DIO 

mice were inversely correlated with LH expression of orexin mRNA (Tanno et al., 

2013). In our ppDIO mouse model, orexin mRNA expression was unaltered, whereas 

serotonin concentrations in the LH were decreased, suggesting a decreased 

modulation of orexin neurons by serotonin. The present study demonstrates that 

serotonergic dysfunction may link obesity with sleep disturbances. The following 

section will outline how alterations in serotonergic neurotransmission may underlie 

elevated nocturnal sleep time in ppDIO mice.  

 

1.2 A role of serotonin in elevated nocturnal sleep time 

 

To explore possible mechanisms that contributed to the observed sleep phenotype in 

ppDIO mice, we analyzed neurotransmitter levels in brain regions related to sleep-
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wake and food intake regulation. As mentioned above, serotonin levels in the LH 

were significantly decreased in ppDIO mice aged 10 w and 52 w as compared to 

controls of the same age. We postulated that changes in neurotransmitter signaling 

that appear in ppDIO mice at both 10 and 52 w of age may underlie elevated 

nocturnal sleep time and decreased SWA as seen in both groups. Therefore, the 

reduction in LH serotonin observed in both 10 w and 52 w old ppDIO mice may be 

one of the factors responsible for decreased wakefulness during the active phase 

and/or for decreased sleep quality during the resting phase.  

 

Serotonergic projections to the LH originate mainly from the dorsal raphe nucleus 

(DR; Sakurai, 2005). DR serotonergic cells fire most actively during wakefulness, 

decrease firing during NREMS and cease firing during REMS (Trulson et al., 1981; 

Monti, 2010). In fact, serotonin is mostly released from the DR into different brain 

regions during wakefulness and at its lowest level during REMS (Monti, 2010). Based 

on these earlier findings, serotonin is considered to promote wakefulness and inhibit 

REMS. Hence, the observed reduction of serotonin signaling in wake-promoting 

areas such as the LH may facilitate the occurrence of NREMS and REMS in ppDIO 

mice. A possible dysregulated firing of these serotonergic neuronal populations 

during NREMS might influence the proper generation of slow oscillations by 

disrupting cortical synchronization, and may hence decrease SWA as seen in our 

ppDIO mouse model.  

 

However, the role of serotonin in the regulation of sleep-wake behaviors is far more 

complex. Seven different serotonin receptor classes have been described (5-HT1-

7;Monti, 2010). All 5-HT receptors are G-protein coupled receptors, except for the 5-

HT3 receptor, which is a 5-HT-gated cation channel. Activation of 5-HT1B, 5-HT2A, 5-

HT2B and 5-HT2C receptors promotes wakefulness and suppresses REMS, probably 

via activation of wake-promoting neuronal populations (Monti & Jantos, 2008, 2015; 

Monti, 2010). By contrast, activation of the 5-HT1A receptor facilitates the occurrence 

of NREMS, possibly by inhibiting orexin neurons and by decreasing serotonin release 

(Tabuchi et al., 2013; Muraki et al., 2004). Thus, the influence of serotonin on sleep-

wake behaviors depends on the availability of serotonin receptors in wake-promoting 

areas. Previous studies reported that DIO rats showed increased binding to 5-HT1A in 

DR (Park et al., 1999). Higher availability of the 5-HT1A receptor in the DR may lead 
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to increased auto-inhibition onto serotonin neurons, which may result in lower DR 

serotonin levels and Tph2 mRNA expression as observed in our ppDIO mice.  

 

In the LH, the expression of 5-HT1A, 5-HT1B, 5-HT2A and 5-HT2C receptors was 

identified (Collin et al., 2002; Park et al., 1999; Tabuchi et al., 2013). In our study, 

nocturnal NREMS time was increased by a history of ppDIO, while REMS time 

increased in proportion to NREMS. The expression of 5-HT1A receptors might be 

upregulated in the LH and its activation may promote NREMS via hyperpolarization 

of orexin neurons (Muraki et al., 2004) in ppDIO mice. However, given the low 

concentrations of serotonin in the LH, it is rather unlikely that an overstimulation of 

the 5-HT1A receptor occurred in ppDIO mice. Intriguingly, many studies have posited 

a role of 5-HT2C receptors in the promotion of wakefulness by serotonin. 

Pharmacological activation of this receptor promotes wakefulness and suppresses 

NREMS (Nonogaki, 2012). Because our ppDIO mice show lower levels of serotonin 

in the LH along with increased NREMS time, we propose that serotonin fails to 

sufficiently activate 5-HT2C receptors on orexinergic neurons in this model to promote 

wakefulness. Treatment of ppDIO mice with substances that increase serotonergic 

tone such as selective serotonin re-uptake inhibitors (SSRIs) may be capable of 

ameliorating sleep disturbances. In line with this hypothesis, SSRIs are potent anti-

obesity drugs through their effect on the mediation of satiety (Heal et al., 2013). 

Simultaneously, SSRIs are frequently used to treat depressive disorders. The 

following section will further elaborate on this interaction.  

 

1.3 Obesity and mood disorders – serotonin dysregulation as a common 
determinant 

 

Mental disorders often first occur during peripuberty (Merikangas et al., 2010). Indeed, 

several risk factors for the development of depression were discovered in peripuberty, 

for example stressful events during early life (Patchev et al., 2014). Here we propose 

that peripubertal diet-induced obesity is an additional risk factor for future depression-

like behaviors. This idea is supported by our results showing decreased central 

serotonin levels in ppDIO mice.  
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Decreased serotonin levels are dominantly associated with depressive disorders in 

humans (Coppen, 1969; Coppen et al., 1967; Owens & Nemeroff, 1994), even 

though this dogma has received strong criticism in recent literature (Andrews et al., 

2015). We found lower serotonin levels in ppDIO mice as compared to controls, 

which were reflected in a passive stress-coping style, as measured by increased 

inactive (floating) versus decreased active (swimming, struggling) behaviors in a 

forced swim test (FST).  

 

The FST is a frequently used behavioral test that examines depression-like or stress-

coping behaviors in rodents (Porsolt et al., 1977). This test was originally invented to 

detect the efficacy of antidepressant drugs, because potential drugs decrease 

immobility time in the FST (Porsolt et al., 1977). This test is further used to evaluate 

the effects of behavioral or neurobiological challenges in basic research, thereby 

classifying immobility as behavioral despair and thus depression-like (Mineur et al., 

2006). We also made use of this test to examine possible depression-like behaviors 

in the ppDIO model. In addition to a depression-like phenotype in ppDIO mice, we 

also observed a positive correlation between body weight and inactive time in the 

FST, specifically in 52 w old ppDIO mice. Others have shown that both age and body 

weight increase inactive behaviors in the FST (Bogdanova et al., 2013). Therefore, 

FST results obtained from the DIO model have to be handled with cautious. However, 

when body weight was partialled out, the increased inactive time in ppDIO mice still 

persisted, suggesting that body weight cannot be the only factor producing the 

differences in time spent immobile.  

 

Several studies reported an association between obesity and depression (de Wit et 

al., 2010; Luppino et al., 2010). Mechanisms that underlie the comorbidity of obesity 

with depression may involve decreased serotonergic tone (Owens & Nemeroff, 1994), 

elevated basal cortisol levels (in a sub-type of depression, Holsboer, 2000) and 

dysregulation of leptin signaling (Yamada et al., 2011; Kloiber et al., 2013). Research 

on mechanisms linking obesity with depression is urgently needed, because 

antidepressant treatment efficacy is impaired in obese patients with depression 

(Kloiber et al., 2013). A depression-like and anxiety-related phenotype was also 

observed in DIO mice and rats (Gehlert et al., 2009; Sharma & Fulton, 2013). 

Therefore, DIO rodent models may serve as a translational model to screen the 
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efficacy of antidepressant treatments in the obese. In this respect, it was shown that 

odansetron, a 5-HT3 receptor antagonist, improved performance of DIO mice in an 

anxiety-related and depression-like behavioral test battery (Kurhe & Mahesh, 2015). 

Furthermore, a MCHR1 antagonist and a CB1 receptor antagonist (rimonabant) 

improved depression-like and/or anxiety-related behaviors in DIO rodents (Gehlert et 

al., 2009; Verty et al., 2013). The efficacy of these antidepressant drugs still awaits 

testing in depressed obese patients.  

 

In conclusion, a decrease in serotonergic tone may link obesity with sleep 

disturbances and mood disorders. Targeting these systems pharmacologically may 

improve behavioral aspects of depression in the obese. Thereby, the use of SSRIs 

could be more advantageous rather than the other antidepressants with a different 

mode of action.  

 

1.4 Involvement of HPA axis activity in behavioral changes in ppDIO mice 

 

In addition to serotonergic mechanisms that associate obesity with mood and sleep 

disorders, enhanced cortisol levels may provide an additional link between these 

disorders. In our study, basal serum corticosterone levels were elevated in 52 w old 

mice with a history of ppDIO. This elevation in basal corticosterone levels was 

paralleled by those in 10 w old ppDIO mice (at ZT8).  

 

Previous studies reported alterations in HPA axis activity in obesity (Tannenbaum et 

al., 1997; McNeilly et al., 2015; Swierczynska et al., 2015). In obese people, 

glucocorticoid production is increased, thus creating a vicious cycle, because cortisol 

promotes visceral fat accumulation (Pasquali & Vicennati, 2000), which further 

elevates cortisol levels due to its abundant expression of 11βHSD1, an enzyme that 

converts cortisone to the active steroid cortisol (Bujalska et al., 1997). Similarly to 

obese humans, rodent obesity models display increased basal corticosterone levels 

(Tannenbaum et al., 1997; McNeilly et al., 2015; Swierczynska et al., 2015), even 

though some contradicting results were demonstrated by other studies (Boukouvalas 

et al., 2008; Boukouvalas et al., 2010; Patchev et al., 2014; Kohsaka et al., 2007). 

Even an acute HFD feeding for seven days was enough to cause an exaggerated 
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corticosterone response after an acute stress in rats, suggesting that the diet itself 

(without the development of obesity) alters HPA axis function (Soulis et al., 2007). In 

our study, ppDIO mice showed elevated basal corticosterone levels at 10 w of age, 

when mice were still exposed to HFD, and at 52 w of age, when HFD had been 

removed for more than nine months.  

 

During the peripubertal period, the HPA axis is still developing and a shift in 

hormonal stress reactivity occurs (McCormick et al., 2010; Romeo, 2010). For 

instance, in pre-pubertal rats the recovery of the HPA axis from an acute stress takes 

longer as compared to adult rats (McCormick et al., 2010; Romeo, 2010). Therefore, 

the peripubertal period might be a sensitive time window for aversive events that 

would modify HPA axis function.  

 

Several studies have examined whether HPA axis activity undergoes developmental 

programming during the peripubertal period by various stimuli such as stress. Indeed, 

when applying a stressor during the peripubertal period, depending on the type and 

duration of a stressor, an exaggerated corticosterone response to stress was 

observed during adulthood (McCormick et al., 2010). In some studies, peripubertal 

stress paradigms yielded elevated concentrations even of basal corticosterone in 

adulthood (Lepsch et al., 2005; Schmidt et al., 2007; McCormick et al., 2010). 

However, literature on the relationship between peripubertal HFD feeding and HPA 

axis function is scarce. A recent study showed that maternal high-fat diet feeding 

impacts on the offspring HPA axis activity, an effect that manifests itself during 

adulthood (Sasaki et al., 2013). In addition, post-weaning HFD exposure increased 

basal corticosterone levels in females, but not in males, at puberty onset 

(Boukouvalas et al., 2008; Boukouvalas et al., 2010). In this thesis, we show for the 

first time that a history of ppDIO potentiates the long-term programming of basal 

corticosterone levels. Alarmingly, chronic elevations of glucocorticoids have been 

associated with the development of a variety of disorders such as diabetes, 

hypertension, impaired learning, depression etc. (Yau & Seckl, 2012). Further, 

glucocorticoids facilitate the differentiation of pre-adipocytes to adipocytes and thus 

promote the accumulation of visceral fat, as described above (Chapman et al., 1985). 

Hence, chronically elevated glucocorticoid levels promote the development of 

visceral obesity.  
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Enhanced HPA axis activity impairs sleep quality, as observed by lower SWA and 

frequent awakenings after administration of CRH, ACTH or methylprednisolone, a 

synthetic glucocorticoid receptor agonist (Holsboer et al., 1988; Antonijevic & Steiger, 

2003; Steiger & Kimura, 2010). These sleep changes also characteristically appear in 

patients with major depression (reviewed in Steiger & Kimura, 2010). In addition, a 

disinhibition of REMS is typically seen in depressed patients and in mouse models of 

depression. An overexpression of CRH appears to underlie increased REMS in the 

latter (Steiger & Kimura, 2010). However, a disinhibition of REMS was not observed 

in our ppDIO mouse model, suggesting a different contribution of enhanced HPA 

activity to sleep-wake alterations in our study. Nevertheless, an enhanced 

corticosterone secretion prior to dark onset may be partly responsible for decreased 

SWA in ppDIO mice, because the wake-promoting actions of the HPA axis may 

interfere with the maintenance of deep sleep. Hence, enhanced corticosterone may 

provide a second link between obesity, mood disorders and sleep disturbances. 

However, elevated corticosterone at dark onset would promote wakefulness rather 

than sleep. In contrast, ppDIO mice display elevated nocturnal sleep time, creating a 

mismatch to elevated corticosterone levels. Therefore, enhanced corticosterone 

levels cannot be a reason for the sleep-wake alterations in the case of ppDIO mice 

(Romanowski et al., 2010), even though they may contribute to increased body 

weights and depression-like behaviors in our mouse model. On the other hand, 

based on our data, we emphasize that a decreased serotonergic tone provides a 

more likely link between obesity, mood disorders in sleep disturbances.  
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2 Strategies aimed at reducing elevated nocturnal sleep time in ppDIO 
mice 

 

Based on our finding that a history of ppDIO increased nocturnal sleep time at 10 and 

52 w of age, we aimed to examine whether pharmacotherapy or other weight loss 

strategies may reverse these sleep changes. To this end, we tested the 

administration of PYY3-36, a peripheral satiety hormone, and a 24-hour fasting 

challenge and analyzed sleep-wake and food intake behaviors thereafter.  

 

2.1 Injections of PYY3-36 decrease elevated NREMS time in ppDIO mice 

 

Akanmu and colleagues have reported that PYY3-36 injections after dark onset 

increase in NREMS time in healthy male rats (Akanmu et al., 2006). In this thesis, we 

reproduced this finding in normal C57BL/6N male mice. However, PYY3-36 elicits 

opposite effects on NREMS in ppDIO mice; instead of promoting NREMS, PYY3-36 

reduced NREMS time in 10 and 52 w old mice with a history of ppDIO. Thereby, 

PYY3-36 abolished the initial differences in nocturnal NREMS time between ppDIO 

and control mice.  

 

PYY3-36 was recently suggested as a pharmacotherapy option for weight loss 

strategies in obesity. PYY3-36 potently inhibits food intake through central 

mechanisms (Batterham et al., 2002). PYY3-36 crosses the blood-brain barrier 

(Nonaka et al., 2003) and binds to the NPY Y2 receptor with high affinity (Walther et 

al., 2011), inhibiting the action of NPY neurons, thus indirectly stimulating POMC 

neurons (Batterham et al., 2002; Challis et al., 2003). PYY originally consists of 36 

amino acids (PYY1-36), binds to all known NPY receptor subtypes and rather 

promotes food intake (Keire et al., 2002). But the major proportion of circulating PYY 

is represented by the cleaved form PYY3-36 (Grandt et al., 1994). In obesity, PYY 

levels are generally decreased (Batterham et al., 2003; Karra et al., 2009), whereas 

its signaling efficacy is as high as in lean subjects (R. D. Reidelberger et al., 2008). 

Therefore, supplementation of PYY3-36 in obese subjects may improve brain-

periphery communication in obesity and lead to weight loss. Indeed, an intermittent 
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treatment with PYY3-36 achieved significant weight loss in DIO rats, even during ad 

libitum HFD exposure (R. D. Reidelberger et al., 2008).  

 

In our study, a bolus injection of PYY3-36 improved sleep-wake behaviors in ppDIO 

mice. However, the effect was only observed for the first post-injection hour. Previous 

reports have shown that the PYY3-36 effect on sleep persists for four hours in control 

animals (Akanmu et al., 2006). Our animals were left undisturbed for one hour after 

the injections and were then briefly disturbed for the monitoring of food intake. This 

brief disturbance might have interfered with further effects of PYY3-36 on sleep. 

Moreover, the development of PYY3-36 analogues with longer-lasting actions could be 

beneficial for the treatment of obesity and obesity-associated disorders.  

 

Intriguingly, the administration of PYY3-36 induced opposite effects in ppDIO to those 

observed in control mice with respect to sleep-wake behaviors, even though feeding 

was similarly suppressed. This suggests that a) different pathways were recruited by 

PYY3-36 in ppDIO and control mice, or b) initial differences in neuronal signaling 

between ppDIO and control mice were assimilated by PYY3-36. In line with our results 

showing a down-regulation of the serotonergic tone in both 10 w and 52 w old ppDIO 

mice as compared to controls, we would expect that the alteration in serotonin 

signaling contributes to the modifications of sleep-wake behaviors by PYY3-36. The 

most prominent target of PYY3-36 is ARC NPY neurons (Batterham et al., 2002; 

Challis et al., 2003). NPY and serotonin have opposing actions in the regulation of 

food intake, thus the decrease of either one may lead to an increase of the other. 

Therefore, a further reduction of NPY expression in ppDIO mice by PYY3-36 may have 

beneficial effects on serotonergic neurotransmission. Thus, PYY3-36 would have 

possibly restored serotonergic signaling, which may help improving sleep-wake 

behaviors in ppDIO mice. However, direct evidence on the effects of PYY3-36 on 

serotonin is still missing in literature.  

 

Alternatively, PYY3-36 activates mesolimbic and nigrostriatal dopaminergic pathways 

(Batterham et al., 2007). In rat striatal slices, PYY3-36 increased the synthesis and the 

release of dopamine (Adewale et al., 2005, 2007). When PYY3-36 was given 

peripherally in mice, the locomotor response to subsequent amphetamine 
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administration was potentiated (Stadlbauer et al., 2014). Hence, PYY3-36 may have 

increased the dopaminergic tone in ppDIO mice, which would have taken part in 

promoting wakefulness (Saper et al., 2010).  

 

2.2 Differences in fasting-induced wakefulness between ppDIO and control 
mice at 52 w of age 

 

Fasting has beneficial effects on many medical conditions such as diabetes, 

hypertension and arthritis due to its positive effects on insulin sensitivity (increasing), 

inflammation (decreasing), oxidative stress (reducing) etc. (Longo & Mattson, 2014). 

Fasting is also beneficial to lose weight, but is not known whether comorbid 

symptoms of obesity are cured by fasting as well. On the other hand, it is well known 

that reduced food availability increases wakefulness to facilitate food seeking 

behaviors (Borbely, 1977; Danguir & Nicolaidis, 1979). To test the possibility of 

reducing NREMS, we applied a 24-hour period of fasting in 52 w old ppDIO and 

control mice. Both diet groups showed a suppression of nocturnal NREMS time, but 

the suppression was significantly less pronounced in ppDIO mice. However, re-

feeding induced similar alterations in sleep-wake behaviors in ppDIO and control 

animals. Food intake during re-feeding and body weight loss during fasting was also 

not different between the diet groups.  

 

During the period of fasting, the peripheral and central satiety signaling machinery is 

attenuated, whereas the hunger machinery is activated. For example, peripheral 

satiety signals such as leptin decrease during fasting, whereas peripheral ghrelin 

concentrations rise, resulting in a central activation of NPY and orexin neurons, which 

stimulate feeding (Schwartz et al., 2000). However, so far, little is known about the 

mechanism how fasting increases wakefulness per se. It was shown that 

hypothalamic orexin neurons are involved in the mediation of fasting-induced 

wakefulness (Yamanaka et al., 2003). Therefore, we assumed that in our study, 

fasting might activate orexin neurons to promote wakefulness during food seeking 

behaviors. However, 52 w old ppDIO mice orexin activation would have occurred less 

than in control mice. The reduced orexin activation might have led to a lower 

suppression of nocturnal NREMS time as compared to controls. This idea is in line 
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with a previous study, in which fasting-induced hypothalamic activation and the 

hyperphagic response after fasting was attenuated in DIO mice (Briggs et al., 2011). 

In addition, fasting usually elicits neuronal activation (as validated by c-Fos 

expression) in the PVN and the ARC in control mice, but failed to do so in mice that 

develop late-onset obesity (Briggs et al., 2011; Becskei et al., 2009).  

 

Further, fasting leads to a lower reduction of leptin concentrations in late-onset obese 

mice than in lean controls (Becskei et al., 2009). The increased adipose tissue in 

late-onset obese mice leads to elevated basal leptin concentrations (Considine et al., 

1996). Therefore, fasting elicited a lower leptin suppression in late-onset obese mice 

as compared to lean controls. Nevertheless, ghrelin release is similarly promoted in 

DIO and control mice after fasting (Briggs et al., 2011). This suggests that leptin and 

ghrelin compete centrally to induce satiety and hunger during fasting, respectively. In 

our study, ppDIO mice had greater body weights than control mice, which may be 

caused by increased fat depots, which in turn elevated peripheral leptin 

concentrations. During fasting, leptin levels may have been higher in 52 w old ppDIO 

mice as compared to controls, which would interfere with ghrelin-mediated activation 

of central appetite-promoting pathways. This may have led to a blunted induction of 

orexin signaling and thereby to a reduced promotion of wakefulness. Indeed, 

administration of satiety factors, such as leptin or PYY3-36, lead to an increase in 

NREMS (Sinton et al., 1999; Akanmu et al., 2006). Therefore, similarly to late-onset 

obesity mice, fasting may have elicited a decreased activation of hunger centers in 

our 52 w old ppDIO mice as compared to control mice, which resulted in a decreased 

promotion of wakefulness. Nevertheless, the suppression of nocturnal NREMS time 

was substantial in ppDIO mice, suggesting that fasting might be a beneficial 

treatment option in obesity by resetting homeostatic food regulatory centers.  
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3. High-fat diet withdrawal elicits increased wakefulness and alterations 
in brain reward centers 

 

3.1 High-fat diet availability modulates nocturnal sleep-wake activity 

 

As mentioned in previous sections, ppDIO mice exhibited increased nocturnal 

NREMS time during chronic HFD exposure at 10 w and again at 52 w of age under 

NC-feeding. However, when HFD was acutely replaced by NC, nocturnal NREMS 

time was dramatically reduced in 10 w old ppDIO mice, reaching levels even below 

control animals.  

 

A recent study demonstrated that replacement of HFD by NC in adult DIO mice 

reduced elevated sleep time, in which sleep time in DIO mice was not distinguishable 

from control mice after four weeks on NC (Guan et al., 2008). In contrast to our study, 

the animals in Guan’s study were adult at the onset of HFD feeding. Therefore, in our 

study the dramatic reduction in NREMS time during HFD withdrawal could be an 

effect specific to DIO during the peripubertal period as compared to DIO during 

adulthood. Further, in Guan's study sleep-wake behaviors in DIO mice were recorded 

four weeks after the HFD was withdrawn. However, we took a closer look at NREMS 

reduction during the acute HFD withdrawal phase (within the first two weeks). 

Therefore, our earlier timing of sleep-wake observations directly after HFD withdrawal 

revealed the effect that could not be found by previous studies. Later on, in 24 w old 

ppDIO mice, this difference was not evident, further underlining that the dramatic 

increase in wakefulness is specific to HFD withdrawal in ppDIO mice. Hence, based 

on previous and our own observations, we assume that also adult DIO mice may 

show elevated awake time in the acute phase of HFD withdrawal.  

 

Further, our results raise the question whether HFD withdrawal or body weight loss 

causes the dramatic reduction in NREMS time in ppDIO mice. It was previously 

suggested that weight loss also helps reducing upregulated nocturnal sleep in DIO 

mice. However, in our study, changes in NREMS time preceded the occurrence of 

significant weight loss; NREMS time is reduced already in the first six hours after 
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HFD is withdrawn. Furthermore, nocturnal NREMS time returned to initial levels in 

ppDIO mice when HFD was returned suggesting that nocturnal NREMS time 

depends on HFD availability in 10 w old ppDIO mice. Another study also showed that 

increased wakefulness is the result of the absence of HFD rather than weight loss 

per se (Perron et al., 2015). The absence of HFD may trigger homeostatic responses 

in the brain and in the periphery that may elicit increased wakefulness to facilitate 

food seeking behaviors. Indeed, when HFD was replaced by NC, ppDIO mice 

underwent a voluntary hypophagia, which might have led to a negative energy 

balance and could activate homeostatic food intake regulators. Similarly, fasting in 

control mice produces a negative energy balance and reduces nocturnal NREMS 

time, as already reported previously (Borbely, 1977; Danguir & Nicolaidis, 1979). 

Therefore, we postulated that both HFD withdrawal in ppDIO mice and fasting in 

controls may recruit common mechanisms to promote wakefulness. One of these 

mechanisms may involve homeostatic regulators of feeding behaviors, as further 

elaborated on in the following section.  

 

3.2 Homeostatic food intake regulation is activated by the HFD-NC switch 

 

To investigate whether HFD withdrawal activates homeostatic brain mechanisms in 

the control of food intake, we compared NPY, MCH and orexin expression in ppDIO 

animals after ad libitum HFD exposure and after a 24 hour HFD-NC switch. Ad 

libitum fed controls and fasted controls were examined in parallel. Interestingly, NPY 

expression was up-regulated in the ARC of ppDIO mice following the HFD-NC switch 

as compared to uninterrupted HFD feeding. In addition, orexin concentrations in the 

LH were increased when HFD was withdrawn, although orexin mRNA expression 

showed no changes. On the other hand, fasted controls displayed both elevated NPY 

and orexin expression.  

 

Orexin neurons are densely innervated by ARC NPY neurons (Broberger et al., 1998; 

Elias et al., 1998). NPY injections into the LH promote food intake (Campbell et al., 

2003). Based on the postulate that ARC NPY and POMC neurons serve as first-order 

neurons in the regulation of food intake, we expected that NPY expression would be 

primarily altered by fasting, followed by orexin expression that lies downstream from 



Discussion  112 

NPY and POMC (Elias et al., 1998). Indeed, as mentioned above, both NPY 

expression and orexin peptide levels were increased during states of negative energy 

balance. This finding suggests that HFD withdrawal elicits a homeostatic response in 

food intake regulatory regions comparable to the fasting response in control animals.  

 

Further, we postulate that the increase in orexin levels may be partly responsible for 

the suppression of NREMS time during HFD withdrawal. This is supported by a 

previous study showing that orexin signaling is responsible for fasting-induced 

elevation of wakefulness (Yamanaka et al., 2003). Thus, an increase in orexinergic 

tone is a likely common determinant in elevating wakefulness during fasting in 

controls and during the HFD-NC switch in ppDIO mice.  

In conclusion, HFD withdrawal activated hunger centers that probably produced an 

increased homeostatic drive to consume food in ppDIO mice. However, feeding was 

dramatically reduced during the HFD-NC switch, even though the animals had ad 

libitum access to NC. This suggests that a different mechanism acted to suppress 

intake of NC, even when the energy balance was negative. Therefore, we continued 

our analysis in regions that are responsible for hedonic signals during feeding 

behaviors.  

 

3.3 Contribution of reduced activities in the reward and motivational system to 
hypophagia during the HFD-NC switch 

 

Ingestion of palatable foods is known to elicit dopamine efflux in reward- and 

motivation-related brain areas such as the NAc and VTA (Bassareo & Di Chiara, 

1997; Hernandez & Hoebel, 1988; Roitman et al., 2008). In our study, we found that 

dopamine concentrations in the NAc were dramatically reduced during the HFD-NC 

switch in ppDIO mice as compared to ad libitum HFD feeding. This effect was not 

observed in fasted controls, suggesting a specific NAc dopamine response to HFD 

withdrawal. Interestingly, previous studies have shown that the ingestion of aversive 

substances such as quinine decreases NAc dopamine (Roitman et al., 2008). 

Consequently, low levels of NAc dopamine might be a direct reflection of the aversive 

perception of NC in ppDIO mice. This may explain the hypophagia occurring during 
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the HFD-NC switch, despite the negative energy balance as seen by increased NPY 

and orexin signals and by the observed body weight loss.  

 

Recently the role of dopamine in encoding rewarding stimuli has been revisited 

(Berridge et al., 2010); many studies support the idea that dopamine mediates food 

“wanting”, i.e. the motivation or the drive to eat, instead of food “liking”, i.e. the 

rewarding properties of food or the pleasure that food creates. In terms of obesity, 

one study showed that obesity decreases motivation rather than creating a reward 

deficiency syndrome; obese mice are less motivated to work for a palatable milk 

reward than control animals in an operant conditioning task. Moreover, their 

preference for sweet solution is lower than in control mice, especially when their 

maintenance diet was available ad libitum (Harb & Almeida, 2014). Further, reduced 

dopaminergic transmission in the NAc is well known to reduce the motivation to work 

for food and drugs (Barbano & Cador, 2007; Berridge, 2009; Salamone & Correa, 

2009). Therefore, reduced dopamine levels in the NAc of ppDIO mice after HFD 

withdrawal most likely reflect a lower motivation to consume NC rather than the 

reduced pleasure elicited by NC consumption. On the other hand, HFD re-feeding 

caused an up-regulation of NAc dopamine concentrations, which probably translates 

into increased motivation to re-feed on HFD.  

 

Which other factors may then cause the possibly aversive response to NC? The taste 

and smell information about NC is most likely encoded by opioid and 

endocannabinoid signaling in reward hotspots, such as the NAc, ventral pallidum, 

parabrachial nucleus etc. (Berridge et al., 2010). In our study, the replacement of 

HFD by the less palatable NC may have triggered a disliking response in ppDIO mice, 

which may have been induced by alterations in opioid and endocannabinoid signaling 

to reward hotspots. This may have led to reduced motivation to continue NC 

consumption, as displayed by lower dopamine levels in the NAc.  

 

In conclusion, these results support the idea that the hedonic drives towards food can 

override homeostatic control. In our study, orexigenic signals such as NPY and 

orexin were up-regulated during HFD withdrawal and provided a signal about the 

negative energy balance similarly to fasting in controls. However, the ingestion of NC 



Discussion  114 

instead of HFD may have caused an aversive reaction that reduced the motivation to 

continue ingesting NC. This line of events may have caused hypophagia and resulted 

in body weight loss in ppDIO mice. However, the hunger signals during the 

hypophagia probably prompted ppDIO mice to increase their nocturnal awake time 

during the HFD-NC switch.  

 

Recently, the role of NAc in sleep-wake regulation has received attention. NAc 

lesions elevated wakefulness throughout 24 hours, while REMS was not affected, 

and increased the number of NREMS-WAKE transitions (Qiu et al., 2010). 

Furthermore, the arousing effect of caffeine is mediated via the adenosine A2A 

receptor in the NAc shell region (Lazarus et al., 2011). It seems that the NAc 

generally inhibits arousal centers such as the LH, TMN, DR and LC through its 

GABAergic projections (Kelley et al., 2005; Lazarus et al., 2011). High concentrations 

of dopamine in the NAc would thus lead to an inhibition of medium spiny neurons 

(MSN) through post-synaptic D2-like receptors. This would result in a blockade of 

inhibitory projections from the NAc to arousal centers, thereby wakefulness is 

promoted. Conversely, when dopamine concentrations are low in the NAc, D1-like 

receptors are activated and lead to a depolarization of MSNs, thus, arousal areas are 

inhibited and sleep can occur. In our study, the decreased concentrations of 

dopamine in the NAc would lead to a disinhibition of MSNs. Thus, MSNs would 

increase their inhibitory tone onto the LH, thereby providing a signal to sleep. 

However, as seen in our study, orexin peptide concentrations were elevated and 

sleep was suppressed during HFD withdrawal. This suggests that another 

mechanism may interfere with the inhibition of orexin neurons by NAc projections. To 

evaluate this hypothesis, we took a closer look at dopamine and serotonin 

neurotransmission in arousal-associated areas including the LH, DR and VTA.  

 

3.4 Involvement of dopaminergic and serotonergic signaling in the LH in the 
control of HFD withdrawal-induced NREMS suppression and hypophagia 

 

HFD withdrawal increased serotonin concentrations in the LH, while serotonin 

turnover was decreased in ppDIO mice. In addition, LH dopamine turnover was up-

regulated after HFD withdrawal. In control mice, LH dopamine and serotonin 
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transmission were not altered by fasting. These results suggest that fasting in 

controls and HFD withdrawal in ppDIO mice elicit different responses in dopaminergic 

and serotonergic signaling in the LH, which may exert different effects on the 

promotion of wakefulness and food intake. As described above, serotonin may elicit 

differential post-synaptic responses depending on receptor availability. Intriguingly, 

pharmacological studies have shown that 5-HT2C activation increases wakefulness 

and reduces food intake in the rat (Nonogaki, 2012). The abundant expression of 5-

HT2C receptors in the LH may mediate these effects (Collin et al., 2002; Park et al., 

1999; Tabuchi et al., 2013).  

 

However, it is still not fully delineated how serotonin may mediate the dissociation 

between sleep-feeding. Previous studies suggested a functional dichotomy of orexin 

neurons; orexin neurons located in the lateral parts of the LH may serve reward-

associated functions including feeding, whereas more medial parts of the LH may be 

involved in the maintenance of wakefulness (Fig. 50, Aston-Jones et al., 2010). 

Projections from medial and lateral LH parts also differ in their target areas; arousal-

associated orexin projections innervate mostly regions that promote wakefulness 

including the LC, DR, TMN and VTA, while reward-associated orexin projections 

primarily innervate the mPFC, VTA and NAc (Aston-Jones et al., 2010). In addition, 

reward-associated orexin signaling appears to inhibit dopaminergic VTA neurons, 

while arousal-mediating orexin neurons excite DR serotonin neurons and VTA 

dopamine neurons.  
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Figure 50: Schematic overview of interactions between arousal- and feeding-related nuclei during 
HFD withdrawal. 

Wake-promoting areas such as the medial LH, VTA and DR are activated during HFD withdrawal and 
induce cortical activation. Homeostatic signals that facilitate food intake behaviors (Arc NPY neurons) 
are activated as well, but their function is overridden by hedonic inputs into the NAc. Thereby, the NAc 
inhibits lateral LH neurons resulting in hypophagia. In addition, serotonergic signaling is increased in 
the LH. We propose that serotonin acts on the medial LH via activation of 5-HT2C receptors to promote 
wakefulness and also on lateral LH, where it inhibits orexin neurons via 5-HT1A receptors to inhibit 
feeding.  

 

Therefore, we propose that increased orexin-mediated excitation of arousal nuclei 

may have led to increased VTA dopamine and DR serotonin concentrations in ppDIO 

mice withdrawn from HFD, and thus this may have promoted the time spent awake. 

In turn, increased serotonin actions in the LH may have contributed to the 

hypophagia during HFD withdrawal by acting on lateral aspects of the LH. Serotonin 

may still activate orexin neurons through the 5-HT2C receptors, but due to different 

projection targets of orexin neurons arising from this area, may inhibit feeding on NC. 
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Alternatively, activation of 5-HT1C receptors may play a role in the mediation of the 

satiety effects of serotonin. These receptors are expressed in the LH as well and their 

activation potently inhibits orexin neurons (Muraki et al., 2004). Different anatomical 

locations of serotonin receptor subtypes may further contribute to the dissociation of 

sleep and feeding behaviors in ppDIO mice (Fig. 50).  
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General conclusions and outlook 

The present study demonstrates that a history of early-life obesity, here shown in the 

context of peripubertal development, programmed life-time sleep disturbances such 

as decreased sleep quality and elevated nocturnal sleep time. These sleep 

disturbances appeared during chronic HFD exposure and nine months after HFD was 

replaced by NC, suggesting that the peripubertal HFD experience permanently 

altered sleep-wake regulation. In addition, ppDIO mice exhibited elevated 

depression-like behaviors during aging. Hence, we explored the involvement of 

particular brain regions in the programming of sleep disturbances and of emotional 

behaviors in ppDIO mice. Our analysis disclosed a reduced serotonergic tone in the 

LH, suggesting its central role in the association between obesity, sleep disturbances 

and mood disorders. Further investigations should address the causality between 

lower serotonin, sleep disturbances and mood disorders. Thereby, a targeted 

pharmacological approach aimed at modulating serotonin signaling in the LH may 

reveal if lower LH serotonin levels produce increased nocturnal sleep time in ppDIO 

mice. Further, in vivo microdialysis may provide additional information about the 

chronological dynamics of serotonergic neurotransmission in the LH in obesity.  

 

Furthermore, this study highlights new treatment options for ameliorating sleep 

disturbances in obesity. We have shown that both the administration of PYY3-36 and a 

24-hour period of fasting potently reduced sleep time in ppDIO mice. Based on the 

results obtained in this and previous studies, dopaminergic and serotonergic actions 

in the brain are likely mediators of the PYY3-36 effect on sleep. The diverging effects 

of PYY3-36 on sleep time in control and ppDIO mice provide interesting contact points 

for further studies aimed at characterizing the underlying brain mechanism. Moreover, 

it would be worth investigating whether fasting and PYY3-36 exert positive effects on 

depression-like behaviors in ppDIO mice.  

 

Interestingly, similarly to fasting in controls, the replacement of HFD by NC 

suppressed nocturnal sleep and increased LH orexin concentrations in ppDIO mice. 

When HFD was withdrawn in ppDIO mice, sleep time was even lower than in controls. 

Indeed, serotonin levels in the LH increased during HFD withdrawal, further 

emphasizing that serotonin and sleep time are causally related in ppDIO mice. 
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However, despite the increased feeding signals with HFD withdrawal, ppDIO mice 

underwent a voluntary hypophagia and did not consume the available NC. This 

behavioral response resulted in weight loss after acute HFD withdrawal. Due to the 

differences in palatability between the two diets, NC may have been less attractive to 

ppDIO mice, which in turn led to a decreased motivation to consume NC, as reflected 

by decreased dopamine levels in the NAc. Hence, during HFD withdrawal, hedonic 

properties of foods overwhelmed the homeostatic control that promotes feeding. This 

hypothesis should be further tested, for example by increasing dopaminergic 

neurotransmission in the NAc to induce motivated behaviors for feeding or by 

interfering with serotonergic inputs into the LH to reduce the arousal response to 

HFD withdrawal. Besides, an additional question we should address in the future is 

whether low dopamine levels in the NAc can be interpreted as reduced motivation for 

NC after HFD withdrawal. Furthermore, an anatomical dissection of the LH regarding 

the expression orexin and serotonin receptor subtypes may provide further insights 

into how serotonin regulates satiety and wakefulness. Finally, an exploration of a 

direct function of the NAc in the regulation of sleep-wake behaviors may add to better 

understanding of the association between obesity and sleep disturbances.  
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List of Abbreviations 

 

5-HT  Serotonin 
ACTH adrenocorticotropic hormone 
ad lib ad libitum 
AGRP Agouti-related protein 
AP Area postrema 
ARAS ascending reticular activating system 
ARC Arcuate nucleus 
BMI Body mass index 
CART Cocaine- and amphetamine-related transcript 
CCK cholecystokinin 
CNS Central nervous system 
CRH Corticotropin-releasing hormone 
Ctrl Control 
D1R Dopamine receptor 1 
D2R Dopamine receptor 2 
DA Dopamine 
DIO Diet-induced obesity 
DMH Dorsomedial hypothalamus 
DR Dorsal raphe nucleus 
EDS Excessive daytime sleepiness 
EEG Electroencephalography 
EMG Electromyography 
FFT Fast Fourier transformation 
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1 ml 1M Tris-HCl (pH 8.0) 

0.2 ml 0.5M EDTA 

100 ml Water, fill up to 100 ml 
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90 g NaCl 

1.22 g KH2PO4 

8.15 g Na2PO4 
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1 ml DEPC (Sigma Aldrich) 
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5 l Distilled water 

DEPC-treated water was mixed on a magnetic stirrer and autoclaved subsequently.  
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20x SSC was mixed on a magnetic stirrer and autoclaved subsequently.  
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20 ml Formamide (Emplura, Merck KGaA) 

8 ml 20x SSC 

2 ml Salmon sperm DNA (Sigma Aldrich) 

0.4 ml Yest tRNA (25mg/ml, Sigma-Aldrich) 

0.8 ml 50x Denhardt’s solution (Sigma Aldrich) 
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Hybridization buffer was mixed, aliquoted (2 ml aliquots) and stored in a deep freezer (-80°C).  

 

0.1M TEA/HCl 

13.3 ml Tri-ethanolamide (TEA, Sigma Aldrich) 

6 ml 6N HCl 
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TEA/HCl was mixed and adjusted to a pH of 8.0 with NaOH. 

Acetic anhydride (Sigma Aldrich) was added ex tempore (for example, 1 ml acetic anhydride 
was added to 400 ml TEA/HCl).  

 

4% Formaldehyde in 1x PBS 

50 ml 37.6% Formaldehyde (Sigma Aldrich) 

50 ml 10x PBS 

500 ml DEPC-treated water 
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0.1M perchloric acid (kindly provided by E. Anderzhanova) 

430 µl 70 % HClO4 

50 ml HPLC grade water 
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Lowry Reagent 

50 ml Solution A (2% sodium carbonate in 0.1M NaOH) 

500 µl Solution B (2% sodium potassium tartrate) 

500 µl Solution C (1% cupric sulfate) 

Distilled water was used to prepare solutions A-C.  

 

Folin reagant 

25 ml Folin-Ciocalteus phenol reagent 

25 ml Distilled water 
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