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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir selbst-induzierte Neutrino-
oszillationen in Umgebungen hoher Neutrinodichte. In diesem Zusammenhang
sind Kern-Kollaps-Supernovae das geeignetste Beispiel. Wir untersuchen die
Entwicklung der Molekularstärke (mean field) des Neutrino-Flavors. Dazu ver-
wenden wir den Dichtematrizen-Formalismus. Unter der Verwendung der li-
nearisierten Bewegungsgleichungen führen wir eine multidimensionale Fourier-
transformation durch, um eine Dispersionrelation für die Wellenzahl (K) und
Frequenz (Ω) der dynamischen kollektiven Flavormoden zu erhalten. Wir wen-
den diesen neuen Ansatz an, um die zeitliche und räumliche Flavor-Entwicklung
der Neutrino-Feldstärke in Supernova-ähnlichen Szenarien zu untersuchen. Wir
folgern, dass exponentiell wachsende Lösungen (Instabilitäten) “verbotenen”
Regionen bzw. Lücken in der (K, Ω)-Ebene der Dispersionsrelation entspre-
chen. Falls die Anfangsbedingungen des Systems eine Frequenz im Bereich
einer solchen Lücke vorgeben, wird das System einem exponentiellen räumli-
chen Wachstum unterliegen. Analoges gilt für das zeitliche Wachstum, falls die
Anfangsbedingungen einen Wellenvektor im Bereich einer Lücke vorgeben. Für
den speziellen Fall der räumlichen Entwicklung eines stationären Systems fol-
gern wir, dass Inhomogenitäten senkrecht zur Richtung des Wellenvektors keine
Auswirkungen haben. Darüberhinaus kann die Flavor-Konversionsrate abhän-
gig von der lokalen Winkelverteilung der von Neutrinos getragenen Elektronen-
leptonzahl proportional zur Neutrino-Neutrino-Wechselwirkungsenergie, gege-
ben durch µ =

√
2GFnν , sein. Letztere ist in Umgebungen hoher Neutrino-

dichte deutlich höher als die Vakuumoszillationsenergie, $ = ∆m2/2E, d.h.
µ � $. Wir bezeichnen dieses Phänomen als schnelle Flavor-Konversion, die
selbst bei verschwindendem $ auftritt. Abschließend halten wir fest, dass die
Lösungen realer Szenarien von den Randbedingungen und/oder den Anfangs-
bedingungen abhängen; eine Fragestellung, die weiterführende Untersuchungen
erfordert.
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Resumen

En la presente tesis estudiamos las oscilaciones colectivas auto-inducidas en
ambientes con una alta densidade de neutrinos. En este contexto, las super-
novas son el ejemplo más ilustrativo. Bajo el marco proporcionado por el for-
malismo de la matriz de densidad, estudiamos la evolución del campo medio
del flavor de los neutrinos. Usando las ecuaciones linearizadas de movimiento,
llevamos a cabo una transformada de Fourier multidimensional que nos lleva a
una relación de dispersión para el número de onda (K) y la frecuencia (Ω) de
los modos dinámicos de flavor colectivo. Utilizamos este nuevo enfoque para
estudiar la evolución espacial y temporal del flavor del campo de neutrinos en
escenarios que simulan las condiciones presenstes en supernovas. Concluimos
que las soluciones run-away (inestables) corresponden a regiones “prohibidas”
o huecos en la relación de dispersión en el plano (K, Ω). Si las condiciones
iniciales del sistema imponen una frecuencia dentro de la zona prohibida, el
sistema experimentará un crecimiento exponencial en su evolución espacial.
Por otro lado, si las condiciones iniciales del sistema imponen un vector de
onda dentro de la región prohibida, el sistema sufriráun crecimiento exponen-
cial en su evolución temporal. Para el caso particular de la evolución espacial
de un sistema estacionario, concluimos que las inhomogeneidades en las direc-
ciones perpendiculares a la dirección de propagación son inofensivas. Además,
dependiendo de las distribuciones angulares locales del número de electrones
transportado por los neutrinos, la tasa de conversión del flavor puede ser pro-
porcional al energía de interacción entre los neutrinos, µ =

√
2GFnν , que es

mucho mayor que la energía de oscilación de vacío ($ = ∆m2/2E) en estos
ambientes densos (µ� $). Nos referimos a este fenómeno como la conversión
rápida de flavor, y se produce incluso para el límite $ tendiendo a cero. Fi-
nalmente, señalamos que las soluciones que tienen lugar en un escenario real
dependen de las condiciones de contorno y/o condiciones iniciales, un tema
que requiere más estudio.
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Abstract

In this thesis, we study self-induced neutrino flavor conversion in environments
where neutrinos are dense. In this context, core-collapse supernovae are the
most illustrative examples. Under the framework provided by the density ma-
trix formalism, we study the evolution of the mean field of the neutrino flavor.
Using the linearized equations of motion, we carry out a multidimensional
Fourier transform which leads us to a dispersion relation for the wave num-
ber (K) and frequency (Ω) of the dynamical collective flavor modes. We use
this novel approach to study the spatial and temporal flavor evolution of the
neutrino field in supernova motivated scenarios. We conclude that run-away
solutions (instabilities) correspond to “forbidden” regions or gaps in the dis-
persion relation in the (K,Ω) plane. If the initial conditions of the system
impose a frequency within the gap, the system will undergo spatial exponen-
tial growth. On the other hand, if the initial conditions of the system impose
a wave vector within the gap, the system will undergo a temporal run away.
For the particular case of the spatial evolution of a stationary system, we
conclude that inhomogeneities in the perpendicular directions are innocuous.
Moreover, depending on the local angular distributions of the electron num-
ber carried by neutrinos, the flavor conversion rate can be proportional to
the neutrino-neutrino interaction energy µ =

√
2GFnν , which is much higher

than the vacuum oscillation energy $ = ∆m2/2E in these dense environments
µ � $. We refer to this phenomenon as fast flavor conversion which occurs
even for vanishing $. Finally, we point out that the actual solutions which
take place in a real scenario depend on the boundary conditions and/or initial
conditions, a topic which requires further study.
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Acronyms

• SM: Standard model

• CC: charged current

• NC: neutral current

• SN: supernova

• LESA: lepton-emission self sustained asymmetry

• SASI: Standing Accretion Shock Instability

• ELN: electron lepton number

• MA: multi-angle

• MAA: multi-azimuthal-angle

• MZA: multi-zenith-angle
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Chapter 1
Introduction

I have done a terrible thing, I have
postulated a particle that cannot be
detected.

Wolfgang Pauli

1.1 The “invisible” particle
The current knowledge on particle physics has been encapsulated in a very ele-
gant theory called Standard Model (SM). This theory describes with exquisite
simplicity phenomena that range from electroweak to strong gauge interac-
tions. Moreover, the SM has been tested to a high accuracy with the currently
available accelerators, and so far has shown a resounding success describing the
microscopic interactions of elementary particles. Despite these great achieve-
ments, there are still some loopholes, some gaps that the SM has not been
able to fill which have stimulated physicist’s creativity to find physics beyond
the SM. One of these limitations has to do with an elementary particle called
neutrino.

In the early 1930’s, the Austrian physicist Wolfgang Pauli was studying a
nuclear reaction called β-decay. In this process, there was an apparent non-
conservation of angular momentum and energy. To avoid this interpretation, he
predicted an “invisible” particle, which could escape undetected and therefore
conserve both angular momentum and energy. He referred initially to this
particle as neutron, because it had no electric charge. After the discovery of the
“real” neutrons in 1932, this particle was renamed as neutrino. Neutrinos have
many particularities which make them unique: they do not have an electric
charge, only interact weakly, and are extremely light. Detecting these elusive
particles was not an easy task. Indeed, it took decades to get any experimental
evidence of neutrinos. Since neutrinos have been established experimentally,
they have raised some questions to the very foundations of the SM. Indeed, the

1



2 1. Introduction

non-zero neutrino masses are currently one of the most conspicuous evidence
that there must be physics beyond the SM. Neutrino masses are so small that
for a long time they were thought to be zero. However, it was later established
that neutrinos have tiny non-zero masses.

The laboratory used for this discovery was the heavens: cosmic rays, i.e.,
accelerated particles (mostly electrons, protons, and α particles) mainly orig-
inating outside the Solar System, impact with the Earth’s atmosphere and
produce neutrinos. When the neutrino flux was initially detected at the Super-
Kamiokande detector, a difference was observed between the flux from the neu-
trinos coming directly from the sky (above the detector) and those which had
traveled through the Earth (neutrinos coming from below the detector). This
was very intriguing, because cosmic rays arrive isotropically at the Earth’s
atmosphere. This results led to the conclusion that neutrinos do not conserve
flavor during their propagation. This was successfully explained by assigning
neutrinos a mass, which induces flavor oscillation on neutrino propagation.

The concept of using the heavens as a laboratory to test fundamental
physics is not a novel idea: the dynamics of celestial objects were used used
to test Newtown’s classical mechanics. Indeed, astrophysics is nowadays fre-
quently used to test the properties of elementary particles and their interac-
tions. Neutrinos are the perfect example: scientist have turned at the celestial
objects to study these elusive particles. In this context, stars are extremely in-
teresting neutrino laboratories because conditions inside this objects will never
be reproduced in a terrestrial laboratory. Historically, the attention turned
first to the closest star to Earth: the Sun. The Sun’s interior consists of a hot
plasma where nuclear reactions are constantly taking place. These reactions
generate an enormous neutrino flux which can be measured on Earth. This
flux, which had been theoretically predicted by John N. Bahcall, was first
measured in the late 1960’s. However, the electron neutrino flux measured
was approximately a third of the expected one. This discrepancy received the
name of solar neutrino problem. This mystery was solved with the inclusion
of flavor oscillations on the flux, so that the missing electron neutrino flux had
oscillated to the µ and τ flavors.

Nonetheless, even after the resolution the solar neutrino problem, the Sun
continued to serve as a useful laboratory for neutrino physics. The physicists
Mikheyev, Smirnov and Wolfenstein discovered that the dense matter present
in the Sun’s core produces an important effect on the neutrino dispersion rela-
tion, leading to visible effects in flavor oscillations. This phenomenon received
the name of the MSW effect, and it is dominant for energies over 5 MeV.

In the light of the MSW effect, it is reasonable to think that, if the density
is high enough, the neutrino background could also affect neutrino propaga-
tion. However, because neutrinos interact only through weak interactions, the
conditions for this effect to take place must be extreme. Typical stars like
e.g. the Sun are not suitable for it. Indeed, there are only two environments
where these extreme densities are reached: a supernova (SN) core and the
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Early Universe. Neutrinos thus play a dominant role in the SN and cosmic
evolution. This thesis is focused on SNe, so we will turn our attention to these
astrophysical objects.

1.2 Supernovae as neutrino laboratories

Core-collapse SNe represent one of the most energetic events in the cosmos.
They consist of explosions which mark the violent death of massive stars
(M > 8M�) as they become unstable during the late phases of their evo-
lution. Moreover, most of the SN’s energy is released in the form of neutrinos,
which make them very powerful neutrino sources. The interior of these ob-
jects is highly dense. Indeed, the neutrino density is high enough for neutrinos
to start feeling each other’s presence. The resulting equations are non-linear
and produce umpteen interesting effects which have just recently begun to be
explored. On top of that, neutrinos play a role in the dynamics of the SNe
explosion, and indeed they are thought to be fundamental for the explosion
to take place. Therefore, understanding the neutrino flavor evolution has not
only implication for the emitted neutrino flux but also for the dynamics of the
explosion itself. This elegant interplay makes SNe unique laboratories to study
neutrinos.

Neutrino self-interactions

Neutrino-neutrino interactions or neutrino self-interactions cause the “back-
ground medium” to evolve along with the system under study. In other words,
neutrino evolution feeds back unto itself. This makes the evolution to be
of non-linear nature. This non-linearity introduces an enormous amount of
complexity. Self-induced neutrino oscillations in a SN requires dealing with a
seven-dimensional partial differential equation (one dimension for time, three
dimensions for the position in space, three for the momentum). Moreover, the
system is highly coupled, which requires keeping track of the countless local
non-linear interactions between beams traveling in different directions while
simultaneously paying attention to the evolution of the supernova. This prob-
lem is very hard to solve not only analytically but also numerically because its
complexity is above current computational power.

The physicist’s approach in such a situation is to decrease the complex-
ity of the system by introducing assumptions or simplifications to reduce the
problem to a level where it can be dealt with. The downside of this approach
is that, if we simplify the system too much, the defining features of the prob-
lem might get lost. In the context of collective effects in SNe, many different
simplifications were implemented. These simplifications ranged from geome-
try assumptions to stationarity. Thanks to these simplified toy models, several
studies were conducted. However, it became apparent that some of these as-
sumptions where too restrictive. Moreover, by means of the phenomenon of
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spontaneous breaking of symmetry, it was understood that the solutions of the
system do not necessarily inherit the symmetries of the original problem.

In the light of these results, it became clear that a new general approach
was needed where the results are not adulterated by the assumptions made.
This has been precisely the main task of the work presented in this dissertation.
We have dropped many assumptions traditionally adopted when dealing with
neutrino self-induced flavor conversion in SN, and we have developed a general
approach to study these systems.

1.3 Outline of the thesis
This thesis is structured in the following manner: after the introductory chap-
ter, we will give brief review on neutrino physics in Chapter 2. In Chapter 3
we give a glimpse of the physics of core-collapse supernovae, where we focus
on these aspects were neutrinos play an important role. Chapter 4 introduces
the theoretical framework to describe the neutrino field at the refraction level
in highly dense environments. We will discuss the neutrino density matrix
formalism and its advantages. We also introduce some interesting simplifica-
tions. We will particularize to the two flavor framework. We will also linearize
the equation of motion (EOM), and we will explain the linearized stability
analysis.

In Chapter 5, the plane wave solution will be developed, and then the
general dispersion relation (DR) is introduced. We apply our formalism to
the two neutrino beam toy model. The results will be used to explain the
fundamental features of the dispersion relation (DR). More precisely, we will
discuss the concept of “forbidden” regions and the implications for the stability
analysis. The rest of this thesis is devoted to apply the developed mathematical
framework in different SN inspired scenarios1.

In Chapter 6 we will analyze the bulb geometry applied to a stationary
scenario where there is an inhomogeneity in the perpendicular direction. The
whole study is performed under the assumptions that the angular distribution
for both neutrinos and antineutrinos are equal.

In Chapter 7, we will continue using the bulb geometry, but we will adopt
the massless neutrino limit. Furthermore, we will no longer assume the same
angular distribution for neutrino and antineutrinos. Furthermore, the whole
analysis is performed in the limit where the neutrino masses are zero, i.e.,
the vacuum oscillation frequency $ = ∆m2/2E is zero. The first part of this
chapter is dedicated to analyze the so-called two neutrino bulb model, but still
under the assumption of stationarity. Once this case has been discussed, we
will drop the stationarity and study the spatial and temporal evolution of the
neutrino field. For this study we will use the angular distribution obtained

1 The reader familiar with the field might note that the structure of this thesis is essen-
tially anti-chronological with respect to historical development of it. However, we believe
that this structure follows a more logical development.



1.3 Outline of the thesis 5

from a 1D neutrino driven core-collapse SN explosion simulation. In the last
sections of this chapter we briefly discuss compact binary-merger remnants.
More precisely, we will discuss the particularities of their emission spectra and
their impact in the DR.

Finally, we discuss in Chapter 8 the recent progress made in this field and
future challenges.
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Chapter 2
Neutrino Physics

This whole thesis is dedicated to neutrinos and their behavior in dense environ-
ments. Therefore, it is imperative to start with a summary of neutrino physics.
The present chapter is devoted to this end. As mentioned in the introduction,
neutrinos are very special particles. Their weakly-interacting nature, their
tiny masses, and their charge neutrality make them one of the most interest-
ing particles of the Standard Model (SM). We will start the chapter studying
the neutrino Lagrangian’s structure and we will analyze the main characteris-
tics of neutrino interactions. Then we will discuss the origin of neutrino masses
and the nature of the mass term. The next section will be dedicated to ex-
plain neutrino flavor conversion, discussing its origin and its physical effects.
We start discussing neutrino vacuum oscillations, and right after we will study
neutrino oscillations in the presence of matter. In the last section, we will
discuss the open questions in the neutrino field, explaining briefly the different
experimental attempts to give answers to these open issues. We conclude with
a summary.

2.1 Neutrinos in the Standard Model

As mentioned in the introduction, neutrinos were introduced as a “desperate"1
solution for angular momentum and energy conservation in beta decay. These
newly postulated particles were by definition fermions, and were very weakly
coupled, which in modern language can be more precisely formulated by saying
that they only undergo weak interactions. This last statement means that
they are a singlet to the SU(3) color group or, in other words, they do not
participate in the strong interactions. Furthermore, neutrinos have no electric
charge.

There are three families or flavors of neutrinos: νe, νµ, and ντ , with the cor-
responding antiparticles: ν̄e, ν̄µ, and ν̄τ . All three flavors interact in reactions

1 Pauli’s words were “verzweifelter Ausweg", which translate to “desperate way out".

7
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mediated by W± bosons. These are referred to as charged current (CC) inter-
actions. On the other hand, neutrinos can also interact in processes mediated
by the Z0 boson. These are named neutral current (NC) interactions. From
this last kind of interactions, the decay Z0 → νaνa is particularly interesting.
The importance of this process relies on the fact that it can be used to infer
the number of active, light neutrino species. This number is determined from
the number of kinematically allowed channels, which, from the measurement
of the Z0 boson decay width, is determined to be (2.992 ± 0.007) [8], which
agrees with the three active neutrino model.

As we have already stated, neutrinos undergo weak interactions. These
types of interactions are described by the symmetry group SU(2)L × U(1)Y .
The term of the Lagrangian density responsible for the weak interactions is

L = − g

2
√

2
JµCCWµ −

g

2 cos(θW)
JµNCZµ + h.c., (2.1.1)

where θW is the Weinberg angle, g in the coupling constant for the SU(2)L
group, and JµNC, J

µ
CC are the neutral and charged weak currents, respectively.

They can be explicitly written as

JµCC = 2(νeLγ
µeL + νµLγ

µµL + ντLγ
µτL) + quark terms (2.1.2)

JµNC = 2(gνLναLγ
µναL + glLlαLγ

µlαL + glLlαRγ
µlαR) + quark terms, (2.1.3)

where glR = sin2(θW ), glL = −1/2 + sin2(θW ) and gνl = 1/2. The lower index
L refers to the left-handed projections, which are given by the left-handed
chirality operator PL = (1 − γ5)/2. Conversely, PR = (1 + γ5)/2 is the right-
handed chirality operator, which is responsible for the terms with lower index
R. By carefully inspecting these two currents, we realize the very distinctive
feature of weak interactions: they only affect left-handed chiral neutrinos.

For energies below the mass of the gauge bosons MZ and MW (∼80 and
∼91 GeV, respectively), the NC and CC interactions can be described by an
effective Lagrangian. Under this description, the interactions are depicted by
four-point interactions given by the effective operator

Leff = −GF√
2
Jµ†CCJµCC − 2

GF√
2
Jµ†NCJµNC, (2.1.4)

where GF is the Fermi constant, defined as GF =
√

2g2/(8M2
W ). From this

operator we can infer the key feature of the weak interactions: the inter-
action strength is proportional to the Fermi constant, which in turn is in-
versely proportional to the squared mass of the W boson mW . Because
this mass is heavy, the Fermi constant is extremely small, with a value of
GF = 1.166× 10−5 GeV−2, and thus makes the weak interactions indeed weak.

2.2 Neutrino masses
Neutrinos were postulated as massless particles. However we know that at
least two neutrinos have a mass different from zero, as a we will discuss in the
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Figure 2.1: Schematic representation of the masses of the elementary particles
of the SM, where the charged leptons are plotted in blue, up-type quarks are
plotted in red, and down-type quarks are plotted in green. Neutrino mass
eigenstates are plotted in gray. For simplicity, we have chosen the normal
ordering, a scheme that is explained in the next section. There is a gap of six
orders of magnitude between me and the domain where the neutrino masses
are located.

next section. Moreover, these masses are confined to the sub-eV range. This
is a fundamental characteristic of neutrinos, because their light masses make
them unique and different from all other elementary fermions.

All particles of the SM acquire their mass term from the Higgs mecha-
nism [9]. This seems unlikely to be the origin of the neutrino masses, because
their small values would require extremely small Yukawa couplings O(10−12),
which seems to go against the naturalness principle. Furthermore, there is
another hint for this hypothesis. It can be inferred from Figure 2.1. In this
figure, we have displayed the masses of the particles of the SM. The gap be-
tween the masses of all other particles with respect to neutrinos, of six orders
of magnitude in a logarithmic plot, is also pointing to a different origin for
the neutrino masses. There are a hand full of mechanisms proposed for the
origin of the neutrino mass term. One of the most common ones is the See-
saw Mechanism (see Reference [10] for a review) or very recently it has been
proposed that neutrino masses emerge from a topological formulation of the
gravitational anomaly [11].

Regardless of the exact origin of the mass term, there is a fundamental
question to be addressed. The question refers to the nature of the neutrino
mass term. As we have already mentioned, neutrinos have no charge. There-
fore, they are suitable to be their own antiparticles, or in other words, they can
have a Majorana mass term. We will explain now this point in more detail.

The easiest mechanism to provide a mass for neutrinos is extending the SM
by introducing the right handed counterparts for neutrinos νR. These particles,
usually referred as sterile neutrinos are a singlet to all interactions in the SM,
including weak interactions. We will discuss these particles in more detail in
Section 2.4. The inclusion of sterile neutrinos is referred to as the minimally
extended SM, and in this model we can write a Dirac mass term for neutrinos
such as

LD = −m(νRνL + νLνR). (2.2.1)
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On the other hand, for neutrinos, due to their lack of electric charge, it is
also possible to construct a mass term containing only left-handed fields. This
mass term is

LM = −1

2
M(νCL νL + νLν

C
L ), (2.2.2)

and is the so-called Majorana mass term. The νCL is the charge conjugated
neutrino field, and the factor 1/2 is introduced to account for the double
counting of degrees of freedom. This mass term violates lepton number by two
units. Of course, the question of neutrinos being Majorana or Dirac particles
only makes sense under the condition that the neutrino masses are non-zero,
because for the massles limit there is no distinction between chirality and
helicity.

Because neutrino masses are not zero, it becomes very relevant to determine
the exact nature of the mass term, since it is crucial in situations where lepton
number violation plays a role. One of these situations is the neutrinoless double
beta decay. Another example is a theory called Leptogenesis, which has been
proposed to explain the baryon asymmetry of the universe. Nonetheless, it is
also fair noticing that for neutrino oscillations, which will be the topic of our
next section, the nature of the mass term does not play a role whatsoever.

2.3 Neutrino oscillations

2.3.1 Neutrino masses and mixing angles

Up to this point, we have highlighted two very important aspects of neutrino
physics. Firstly, we have discussed the neutrino interactions and how they are
solely sensitive to the weak interaction. Secondly, we have established that
neutrinos have mass and will therefore propagate in their mass eigenstates.
The crucial point is however that these mass eigenstates are not the same as
the interactions eigenstates. This is the origin of a very interesting phenom-
ena known as neutrino oscillations. This very same phenomenon happens for
quarks. However, it is quite different in the neutrino case. Unlike in the quark
sector, the misalignment between the mass and the weak eigenvalues is very
significant, leading to large mixing angles. The relation between the mass and
the interaction bases can be expressed as

|να〉 =
3∑

k=1

U∗αk|νk〉, (2.3.1)

where the matrix U , which parametrizes the misalignment, is the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [12]. It can be explicitly written as
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U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c23

 c12 s12 0
−s12 c12 0

0 0 1

 ,

(2.3.2)
where cij = cos(θij) and sij = sin(θij) are the sines and cosines of the mixing
angles and δCP is the CP phase. We have deliberately left out the Majorana
phase matrix because it does not play any role in the physical processes we
are about to describe. We will discuss in more detail the Majorana phase in
Section 2.4.

As we will discuss in the next section, from the current results of neutrino
oscillation experiments, it is inferred that there are three neutrino species.
Furthermore, at least two of them have a non-zero mass. In other words, there
are a total of two mass differences. The mass eigenstates are distributed in
the following way: two states are very close and form a doublet, whereas a
third state is separated from the other two. Since all oscillation experiments
are only sensitive to the squared mass difference, their ordering is uncertain.
The lightest mass of the doublet is by convention named ν1, while the other
one is ν2. Their mass difference is referred to as ∆m2

sol = m2
2 − m2

1, which
was first detected in solar neutrino data. The sign of this mass difference it
has been inferred due to the MSW effect, as we will explain in Section 2.3.3.
The third neutrino mass state is referred to as m3. The second mass squared
difference is commonly known as the atmospheric mass difference since it was
first measured in atmospheric neutrinos. It is defined as

∆m2
atm =

∣∣∣∣m2
3 −

m2
1 −m2

2

2

∣∣∣∣ . (2.3.3)

The sign of this mass difference is currently unknown. This allows for two
different setups. The two possibilities are named normal ordering (NO) and
inverted ordering (IO). They are pictorially displayed in Figure 2.2.

Combining the latest results of solar, reactor, and long-baseline experiments
the following parameters at 95% CL [14–16] are obtained:

∆m2
atm = (2.43+0.12

−0.13)× 10−3 eV2,

∆m2
sol = (7.54+0.46

−0.39)× 10−5 eV2,

sin2 θ12 = (3.48+0.17
−0.34)× 10−1,

sin2 θ23 = (4.37+1.15
−0.44)× 10−1,

sin2 θ13 = (2.34+0.40
−0.39)× 10−2. (2.3.4)

Besides the information about the neutrino mass differences obtained from
the neutrino oscillation experiments, results from cosmology and from beta
decay experiments can be used to obtain an upper bound for the absolute
value of the neutrino masses. The most constraining limit is given by the
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Figure 2.2: Schematic representation of the neutrino mass eigenstates [13].
The color represents the flavor content, red for the e flavor, blue for µ and
green τ . The right column corresponds to the IO, and the left column to the
NO.

Planck collaboration [17] and sets an upper bound on the sum of the neutrino
masses of ∑

mν < 0.23 eV. (2.3.5)

2.3.2 Vacuum oscillations

Neutrino oscillations are a quantum mechanical phenomenon which results
from the mass and interaction bases misalignment. It was first proposed in the
1950’s by the Italian physicist Bruno Pontecorvo, inspired by the CKM matrix
of the quark sector. It took several years to obtain experimental evidence of
this phenomena, whose first experimental success was the solution to the solar
neutrino problem.

We will now discuss the physics of neutrino oscillations. As a starting
point, we will remind the reader that neutrino mass states are eigenstates of
the Hamiltonian

H|νk〉 = Ek|νk〉, (2.3.6)

where the energy eigenvalues are given by the dispersion relation

Ek =
√
p2 +m2

k. (2.3.7)

On the other hand, the massive neutrino states evolve in time as plane waves,
obeying a Schrödinger-like equation

i∂t|νk〉 = H|νk〉, (2.3.8)
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where the eigenfunctions will be plane-waves of the form

|νk(t)〉 = e−iEkt|νk〉. (2.3.9)

Moreover, neutrinos produced in CC interactions are produced in flavor eigen-
states. The time evolution of a flavor eigenstate is given by

|να(t)〉 =
∑

k=1,2,3

U∗αke
−iEkt|νk〉, (2.3.10)

where U∗αi are the matrix elements of the PMNS matrix. Using the unitarity
of this matrix, we can rewrite Equation 2.3.10 as

|να(t)〉 =
∑

β=e,µ,τ

∑
k

U∗αke
−iEktUβk|νk〉. (2.3.11)

We will now analyze the physics behind these equations. At an initial time
t = 0, a neutrino is produced in a pure flavor eigenstate. This flavor eigenstate
is a superposition of the propagation eigenstates, all of them propagating at
different velocities. Therefore, after some time, there is a non-zero probabil-
ity that when the neutrino interacts with a detector, the measured flavor has
changed or oscillated. The transition probability is then defined as the prob-
ability of a neutrino of any flavor to have converted to another flavor, and is
expressed as

Pνα→νβ = |〈να|νβ〉|2. (2.3.12)

For the sake of simplicity, we will consider the two flavor toy model to discuss
neutrino oscillations. In this scenario, there are two mass eigenstates ν1,2 and
the 2× 2 mixing matrix can be written as

U =

(
cos θ sin θ
− sin θ cos θ

)
, (2.3.13)

with the mixing angle θ and only one mass splitting ∆m2 = m2
2 − m2

1. The
equations simplify very conveniently if we are dealing with ultrarelativistic
neutrinos. In that case, we can use the approximation Ek =

√
p2 +m2

k ' p+
m2
k/2p. Furthermore, we can use E = |~p|, and therefore Ek −Ej ' ∆m2

kj/2E.
With this taken into consideration, the transition probability can be written
as

Pνα→νβ = |〈να|νβ〉|2 = 1
2

sin2(2θ)

[
1− cos

(
∆m2L

2E

)]
. (2.3.14)

Furthermore, for β = α, we obtain the survival probability, which is obtained
from Equation 2.3.10 using the unitarity of the transition probability, so that

Pνα→να = |〈να|να〉|2 = 1− sin2(2θ) sin2

(
∆m2

4E
L

)
. (2.3.15)

We will now analyze these expression in some detail. First of all, we see that
the oscillation amplitude is proportional to sin2(2θ), which in turn depends on
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Figure 2.3: The two types of interactions neutrinos can have with matter. At
low energies, the gauge bosons are too heavy to be produced as real particles
and they can be integrated out. The cross-section of these processes varies
roughly with the square of the energy at the center of mass, as inferred from
Equation 2.1.4. The NC interaction (left diagram) interacts with all neutrino
flavors, whereas the CC interaction (right diagram) requires the scattering on
a charged lepton of the same flavor. This is actually what defines the flavor of
a neutrino, since NCs do not distinguish between flavors.

the mixing angle θ. Nonetheless, for the amplitude we will have the “octant
degeneracy", because the angles θ and π/2 − θ are indistinguishable. This
feature does not hold for neutrino matter oscillations that we will discuss in
the next Section. Moreover, the probability depends on three parameters: the
energy, the mass difference and the baseline. We now define the oscillation
length as

λosc =
4πE

∆m2
= 2.47 m

(
E

MeV

)(
eV2

∆m2

)
. (2.3.16)

The oscillation length depends on two parameters: the neutrino mass difference
and the neutrino energy. Therefore, the interplay of these two parameters will
determine the scale where neutrino oscillations produce measurable effects.

2.3.3 Neutrino oscillations in matter

It is a common phenomenon that particles, while traveling in a medium, change
their characteristics. One example are photons traveling in plasma, where
they acquire an effective mass and longitudinal polarization modes. Neutrino
oscillations are also affected when traveling through dense matter, and due to
these effects they can undergo resonant flavor conversion. This phenomena is
known as the Mikheyev, Smirnov, and Wolfenstein (MSW) effect [18,19].

The origin of the matter effects in neutrino oscillations is the potential
induced by the matter field. In Figure 2.3 we show the neutrino interactions
in matter. From this figure we can infer that NC interactions are universal,
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in the sense that all neutrino flavors will undergo it in the same way. On the
other hand, in SN type scenarios, the CC interactions only affect νe because
for the temperatures and the chemical potentials in these environments there
are no µ or τ . Therefore, when neutrinos travel through dense stellar matter,
they acquire an effective matter potential given by

V CC
m =

√
2GFNe, (2.3.17)

where Ne is the electron number density of the medium. The NC interactions
will of course produce a matter potential. However, this potential is equal for
all neutrino flavors, meaning that the neutrino oscillations remain unaffected.

The Schrödinger equation for plane waves will now be of the form,

i∂t|να〉 = (H0 +HI)|να〉, (2.3.18)

where the HI is caused by the matter potential mentioned above. For the
sake of simplicity, we will consider a two flavor example, where we only have
electron neutrinos νe and νx, where x = µ or τ . With the shift introduced by
the matter field, the time evolution equation can be written as

i∂t

(
νe
νx

)
=

(
−∆m2

4E
cos(2θ) + ACCm

∆m2

4E
sin(2θ)

∆m2

4E
sin(2θ) −∆m2

4E
cos(2θ)− ACCm

)(
νe
νx

)
,

(2.3.19)
where ACC

m = V CC
m /4E. Equation 2.3.19 is not diagonal. However, we can

diagonalize the Hamiltonian using the following transformation(
νmA
νmB

)
=

(
cos(θm) − sin(θm)
sin(θm) cos(θm)

)(
νe
νx

)
, (2.3.20)

where the νmA,B are the so-called propagation eigenstates. On the other hand,
the matter mixing angle θm is

sin2(2θm) =

(
∆m2

2E

)2

sin2(2θ)[
∆m2

2E
cos(2θ)−

√
2GFNe

]2
+
(

∆m2

2E

)2
sin2(2θ)

. (2.3.21)

This angle will be maximal if the terms between the square brackets in the
denominator of this equation cancel. This condition can be written as

nrese =
∆m2 cos(2θ)

2
√

2EGF

, (2.3.22)

and its referred to as the MSW resonance condition. For nrese given by Equa-
tion 2.3.22, the matter mixing angle will acquire a value of θm = π/4, leading
to a maximum flavor conversion.

In many astrophysical environments the matter density will vary spatially.
For instance, the density inside stars decreases as a function of the radius. In
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Figure 2.4: The evolution of the mass eigenstates as a function of the matter
density and the energy. In regions where the density is very high neutrino
propagation and flavor eingestates are the same. As neutrinos move outwards
from the Sun, they will go to regions of lower matter density. The MSW
condition Ne = N res

e is reached at the point where the energy gap for νA-νB is
minimal.

order to explain how this affects the flavor conversion in a more intuitive way,
we will use Solar Neutrinos as an illustrative example. The Solar Neutrino
evolution as they travel through the Sun is represented in Figure 2.4, which
are produced in the Sun’s core due to nuclear reactions. In these deep Solar
layers, the matter density is extremely high, such that Ne � N res

e . Under this
condition, the mixing angle is almost zero, and all the produced νe are almost
eigenstates of νB, i.e., the propagation base. In other words, the electronic
matter drags neutrinos onto the propagation basis.

The produced neutrinos will then propagate adiabatically through the Sun.
In this context, adiabatic propagation means that the Solar density is slowly
changing, or, in other words, the variation scale is of roughly the wave length
in matter. Under these circumstances, the propagation eigenstates become
eigenstates of the Hamiltonian. As neutrinos travel out of the Sun, the matter
density will decrease, eventually reaching the condition Ne = N res

e . At this
point the energy gap between νA and νB is minimal.

Neutrinos will continue their adiabatic propagation, and by the time neu-
trinos have escaped the Sun, the propagation base will coincide with the mass
base. Furthermore, no oscillations occur between the Sun and the Earth since
neutrinos are already in the state of propagation in the vacuum.

This is the most outstanding feature of the MSW effect: despite of a very
small mixing angle, the achieved flavor conversion is very significant. Thanks
to the MSW effect, the Solar Neutrino data has been used to determine the
sign of ∆m2

sol. Therefore, when we talk about the neutrino mass ordering
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problem, we refer always to the sign of ∆m2
atm.

2.4 Open questions

Neutrino phenomenology is at the present time a very exciting field due to
the numerous open questions that remain to be settled. Although we have
mentioned some of them during the present chapter, we will now explain them
in some detail, and we will mention some experiments designed to settle these
issues.

CP phases

The CP-phase of the PMNS matrix allows for the possibility of CP viola-
tion, which is an intrinsic effect of the three-flavor scheme. Measuring the CP
phase is extremely challenging since it requires a new generation of accelerator
experiments with very long baselines [20], which are currently in the design
phase.

Absolute masses

The order of magnitude of the mass differences inferred form the neutrino os-
cillation experiments gives us very little information about the absolute values
of the masses. Fortunately, cosmology provides us with a bound on absolute
neutrino masses. More specifically, the constraint refers to the sum of the three
masses. This limit is inferred from structure formation, where neutrinos with
a large mass would produce an excessive clustering. We refer to Reference [21]
and references therein for a review.

On the other hand, the end point of beta decay can also be used to deter-
mine the absolute masses of neutrinos. The problem of this approach is that
the sensitivity needed to observe the signal is beyond current detectors. In
the near future, the KATRIN experiment is expected to improve the current
bounds [22].

Majorana or Dirac

As we have already pointed out, another open question is the nature of the mass
term. Because of the neutrinos’s lack of charge, they are the only fundamental
fermions of the SM that could have non-zero Majorana mass terms. This
can be proved experimentally by measuring a neutrinoless double beta decay
(ββ)0ν . This process, which can be written as (A,Z)→ (A,Z − 2 + e− + e−),
if detected, would be a hint to probe that they behave like Majorana particles.
Additionally, if neutrino are Majorana particles, that would imply the inclusion
of two additional CP phases in the PMNS matrix, such that we add a term of
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the form

UM
CP =

 eiα1 0 0
0 eiα2 0
0 0 1

 (2.4.1)

to Equation 2.3.2. As we have already mentioned, these phases play no role on
neutrino oscillations, but have an impact in lepton-number violating processes
such as neutrinoless double beta decay.

Reactor anomalies

The three-flavor neutrino scheme has been very successful in the last decades
explaining with great accuracy the observations of the oscillation measure-
ments of solar, atmospheric and reactor neutrino experiments. However, there
are some reactor experiments that cannot be explained with a three neutrino
model. They are called reactor anomalies (see Reference [23] for a review).
Until now it is unclear what is the exact origin of these anomalies [24].

The inclusion of a fourth species with a mass in the eV range seems to
explain some of these anomalies, which some authors have interpreted as a
hint towards the existence of a light sterile neutrino in the eV range.

Sterile neutrinos

By carefully examining the structure of the weak interactions, it becomes evi-
dent that a chiral right-handed neutrino would be a singlet for all fundamental
interactions, thereby it is commonly referred to as sterile neutrino. A sterile
neutrino would be extremely interesting for many different reasons. It could
be responsible for the dark matter content of the universe, responsible for the
smallness of the masses of the active neutrino species or the key ingredient to
explain the current matter-antimatter asymmetry through the so-called Lepto-
genesis. Furthermore, if the sterile neutrino has a mixing with the active ones,
it could be resonantly produced in the interior of heavily dense astrophysical
objects such as core-collapse SNe. In such a situation, the produced sterile
neutrino could escape the SN without interacting, thereby generating a new
cooling channel. This could have a deep impact on the stellar evolution and
on the physics of the core-collapse SNe.

2.5 Summary

Neutrinos are unique particles of the SM. They only interact weakly and gravi-
tationally, and their lack of other interactions make them extremely difficult to
be observed. There are also strong evidences of at least two neutrinos having
non-zero masses. This is currently the strongest evidence of physics beyond
the SM, since neutrino masses require new physics and brings up very inter-
esting questions. Moreover, there are some indications for the neutrino mass
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term having a completely different origin than the mass terms of all other SM
particles. On top of that, neutrinos are the only fundamental neutral fermions,
which makes them suitable for being Majorana particles, or in other words,
being their own antiparticles.

The mass and interaction bases misalignment is also a very interesting fea-
ture of neutrinos. Although this is not exclusive for neutrinos, it is unique the
large mixing angles between them. This translates in very rich phenomenol-
ogy, where neutrino oscillations play a fundamental role. At the present time,
there are many unresolved questions about neutrino physics. However, we are
currently in a very exciting time for neutrino phenomenology. Because of the
theoretical open questions we have addressed, there are plenty of experiments
in the coming years designed to give answers to these questions.

Thanks to this great effort, in the near future we will (hopefully) be able
to reveal the nature of these evasive, yet fascinating particles.
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Chapter 3
Core-collapse supernovae

In this chapter, we will give a brief summary of the underlying physics of core-
collapse SNe. As we will explain through the next pages, these astrophysical
objects are unique “laboratories" to study neutrino properties. Furthermore,
neutrinos play a fundamental role in the SN explosion dynamics. This inter-
play can be used to gain a deeper understanding of neutrino self-interactions.
For these reasons, it is crucial to understand the basics of the core-collapse
SN explosions. Although this subject alone would be enough to fill a com-
plete dissertation, in this chapter we will simply sketch the fundamentals of
it, explaining the different stages of the SN explosion and paying special at-
tention to those aspects where neutrinos play an important role. We will also
study the characteristics of the emitted neutrino flux, discussing its origin,
the different phases, and spectral features. Since there is few experimental
information available, we will also discuss the status of core-collapse SN simu-
lations, with some interesting features that have shown up in state-of-the-art,
three-dimensional runs. The experimental data of SN 1987A will also be dis-
cussed, and we will provide a brief prospect of future detection. We conclude
with a summary.

3.1 Stellar evolution

One can think of stars as gravitationally regulated thermonuclear reactors.
Among the many parameters that can be naively thought as crucial for the
star’s evolution, such as the luminosity, composition or the temperature, the
mass is the characteristic which plays the most fundamental role. More pre-
cisely, it is the star’s initial mass which will determine its evolution. Stars
spend most of their life on the so called “main sequence", where the gravi-
tational contraction is counteracted by the nuclear fusion of hydrogen atoms
into helium. When hydrogen is exhausted at the star’s core, the star contracts,
increasing the core’s temperature and therefore allowing for the next heaviest
element, i.e., helium, to fuse. Meanwhile hydrogen continues to be converted

21
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into helium in the outer layers of the star. If the star is massive enough, when
the core runs out of helium, the core will contract once again and it will start
“burning" carbon. Once carbon is fully consumed, for stars heavier than ten
Solar Masses this process will happen again for silicon, producing iron.

Figure 3.1: Schematic representation of stellar evolution [25]. The left panel
shows the star in the main sequence, where the gravitational contractions is
counteracted with hydrogen fusion. In the center panel, the star has exhausted
the hydrogen in the core and helium is fused, although hydrogen still burns at
the outer layers of the star. The right panel shows the “onion structure” that
the star reaches in the last stage of evolution, with an inert iron core.

Iron is the end of the chain; more stable than all the neighboring elements
of higher mass number, no nuclear energy can be released by iron fusion. The
iron core is surrounded with an onion-like structure of heavier elements ordered
according to their density, as pictured in Figure 3.1.

3.2 Core collapse

3.2.1 Collapse of the progenitor

After the silicon supply has been exhausted, the star will start the last stages
of its life. The rest of the present chapter is devoted to explain the chain
of events the star goes through upon this point. Figure 3.2 will serve as a
storyline, since it shows the different stages, chronologically ordered, we are
about to describe1. Once all the core’s silicon is consumed, there is no further
nuclear reaction taking place in the star’s core. Therefore, the iron core will
contract to counterbalance the gravitational force thanks to the pressure of the
degenerate electron gas. Once the iron core has reached the Chandrasekhar
limit, the pressure of the degenerate gas can no longer support the mass of the
star. Once this point is reached, the internal balance is lost and inevitably the
inner part of the star will start to collapse. This corresponds to the top-left
panel of Figure 3.2.

Matter starts to free-fall at extremely high velocities (up to 1/3 of the speed
of light) in the outer core, whereas the inner core will collapse at subsonic veloc-
ities. The increase in temperature and density will trigger photodisintegration

1For a recent review of this subject, we refer the reader to Reference [26].



3.2 Core collapse 23

through the process

γ +56 Fe→ 13α + 4n− 124 MeV. (3.2.1)

Because this reaction is endothermic, it reduces electron pressure, converting
thermal energy to rest-mass energy. The increase in pressure with rising den-
sity translates to a rise of the Fermi energy for the degenerate electrons, so
electron capture via

e− +N (Z,A)→ N (Z − 1, A) + νe, (3.2.2)

becomes energetically favorable. The process described by 3.2.2 is called neu-
tronization. At this stage these neutrinos escape the star without interacting.

3.2.2 Neutrino trapping
The star’s density will increase along with the star’s contraction. At a cer-
tain point, the environment is so dense that neutrinos, due to the large cross
section of NC interactions with heavy nuclei, remain trapped, i.e., their diffu-
sion time exceeds the time scale of the star’s collapse. For 10 MeV neutrinos,
this happens at densities of the order of 1012 g cm−3. Therefore, after this
density is reached, matter will become opaque to neutrinos. This stage corre-
sponds to the second panel of Figure 3.2. The neutrinos trapped in the star’s
core become in thermal and chemical equilibrium with the surrounding matter
through the reaction p + e+ ↔ n + νe. This results in the appearance of the
so-called neutrino sphere, which will be described in the next section.

3.2.3 Core bounce and shock front formation

The collapse of the star will continue until the core reaches nuclear density
(3×1014 g cm−3), which is reached within milliseconds after neutrino trapping.
At this stage, the nuclear pressure caused by nuclear repulsion forces induces a
drastic change in the compressibility factor of the star’s matter. This resistance
against further compression will suddenly stop the in-fall of matter, changing
abruptly from an implosion to an explosion, thus producing a shock wave. On
the other hand, the neutrons and nuclei present in the core, i.e., behind the
shock front begin to form the proto-neutron star through the neutronization
process described by Equation 3.2.2, which causes the lepton number stored
in the form of electrons to be converted into neutrinos. This core-bounce
corresponds to the third panel of Figure 3.2. The produced shock wave will
start traveling outside the iron core. Just behind the propagating shock-wave
front there will be an extremely high production of electron neutrinos due to
electron capture given by Equation 3.2.2. These produced neutrinos cannot
escape from the interior of the collapsing star since the environment is neutrino-
opaque. Nevertheless, the shock-wave continues to travel outwards from the
star, and eventually reaches the point where matter is neutrino transparent.
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Figure 3.2: Schematic description of a core-collapse SN at different times after
the initial phase of collapse [27]. The different phases of the collapse are la-
beled, showing for each of them the time after collapse and the density at the
star’s center. The vertical axis contains information about the radii, whereas
the horizontal axis shows information about the masses. The first quadrant
panels contain the dynamical information, with arrows representing the ve-
locity vectors. The second quadrant provides information about the nuclear
composition and the weak processes. RFe is the radius of the iron core, RS is
the radius of the shock front, Rν is the radius of the neutrino sphere, Rg is the
gain radius (the boundary between neutrino cooling and heating layers), and
Rns is proto-neutron star radius. The Chandrasekhar mass is MCh.
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When this point is reached, which corresponds to the forth panel of Figure 3.2,
a very intense electron neutrino flux is emitted, which is referred to as neutrino
burst.

Neutrino sphere

Meanwhile, deep inside the star’s core, the trapped neutrinos remain in ther-
mal and chemical equilibrium with the environment, at a temperature of order
of tens of MeV. The region upon where neutrinos start to free-stream is known
as neutrino sphere, which can be thought of as the neutrino equivalent of the
photosphere for ordinary stars. Is it important to emphasize that in the highly
dense environment of a SN’s core the different neutrino species will have differ-
ent interaction strengths, as we have discussed in Chapter 2. These differences
of the interaction strengths mean that each neutrino species has a different
neutrino sphere. More specifically, muon and tau neutrinos and their antipar-
ticles decouple first and they will start to free stream at smaller distances from
the star’s center. Electron neutrinos and electron antineutrinos will decouple
at different regions. More precisely, electron neutrinos will decouple at a higher
radius because of the CC interactions. This will probe to be crucial when we
discuss self-induced neutrino oscillations. In Figure 3.3 we have plotted the
radius of the neutrino sphere for the electron flavor as a function of time.

3.2.4 Shock front stall and neutrino-induced revival

As the shock front propagates outwards, the high temperatures in the pre-
shock environment causes the shock wave to practically disintegrate all heavy
nuclei into free nucleons. This process consumes a lot of energy.

Due to these energy dissipating effects, the shock wave will lose momentum,
leading to a stagnation at a distance of approximately 150 km from the star’s
center. However, this does not necessarily mean that the explosion does not
succeed; numerical simulations show a revival of the shock-wave. The most
plausible mechanism to revive the shock-wave and consequently to revive the
explosion is energy transfer from the enormous neutrino flux coming form
the emergent neutron star. For the neutrino-driven reignition mechanism,
neutrinos will transfer energy to the shock-wave mainly through the reactions

νe + n→ p+ e−, (3.2.3)
ν̄e + p→ n+ e+. (3.2.4)

According to state-of-the-art simulations these interactions provide enough
energy to restart the explosion. While the shock-wave is reheated, part of the
mass of the shock wave will form and accretion flow that will feed the nascent
proto-neutron star an generates a hot-mass mantle around the star’s core. This
situation is shown in the lower left panel of Figure 3.2. Once the SN shock front
is re-accelerated the explosion can finally take place. The core’s surrounding
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Figure 3.3: Schematic representation of the relevant radii of core collapse SN
as a function of time [25]. The radii showed are: RFe is the iron core, Ric is
the inner core, and Rν is the neutrino sphere for electron neutrinos, i.e., the
radius from which electron neutrinos stream freely. The different phases of the
neutrino emission are also shown. The neutrino sphere reaches its maximum
radius during the very beginning of the accretion phase, where the high tem-
peratures favor neutrino trapping. The cooling phase will decrease the core
temperature and therefore neutrinos from deeper regions will be able to escape.

material is blasted away into the environment, leaving only a neutron star
remnant.

3.2.5 Cooling phase and neutrino wind

The accretion phase of the nascent neutron star will continue for some time
(from hundreds of milliseconds up to one second, depending on the progenitor
mass) after the explosion has taken place. As soon as the accretion comes to
an end, the newly formed neutron star will start the Kelvin-Helmholtz cooling
phase. This phase corresponds to the lower-right panel of Figure 3.2. The
proto-neutron star’s hot interior will continue to radiate, i.e., it will continue
to cool down through neutrino pair production with some diffusive losses. The
temperature of the neutron star can go up to 50 MeV and the energy of the
produced neutrinos reach up to 100 MeV. Nonetheless, these neutrinos will
lose energy through a repeated absorption-emission cycle, so that the energy
of the emitted ones will be 10–20 MeV.
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Neutrino wind

The emitted neutrinos during the cooling phase will affect the cooler outer
layers of the star. These neutrinos will transfer energy to the surrounding
layers through the same mechanism described by Equation 3.2.3. This also
generates a very slow outflow of mass from the newly born neutron star. This
effect is known as neutrino wind. It is very important to understand the
characteristics of the neutrino wind since it can alter the proton-to-neutron
ratio in the star’s surroundings. This affects the synthesis of heavy nuclei, a
process known as nucleosynthesis.

3.3 Phases of neutrino emission

Up to the point where the star’s core has contracted enough to ignite car-
bon combustion, the density is so high it is completely opaque to photons.
Therefore, the only window to what happens to the star’s guts are neutrinos.
Moreover, they are the only efficient mechanism to cool the star; 99% of the
SN’s energy (∼ 3 × 1053 erg) is released as neutrinos. After the silicon has
been completely consumed, there are no further nuclear reactions taking place
in the star’s core. Yet this does not mean that the neutrino emission stops.
It is actually at this point that the emitted neutrino flux reaches its peak. In
this section, we describe in detail the neutrino emission of core-collapse SNe,
which is represented in Figure 3.4. The neutrino emission will be divided in
three phases which are directly related to the physical processes described in
the previous section.

3.3.1 Neutrino Prompt Burst

This phase corresponds to the left column of Figure 3.4. In this case, the
emitted neutrinos come from the electron capture that we have discussed in
Section 3.2.3. This is the shortest stage of neutrino emission, lasting around 10
ms, albeit it exhibits the highest luminosity, with a peak value of∼ 1054 erg s−1.
The total energy released during this stages is ∼ 1051 erg and the average
energy of the emitted neutrinos is ∼ 10 MeV. The neutrino luminosity shows
a sharpened peak, with a half width of around 10 ms. During this stage,
there is a strong hierarchical neutrino spectrum, consisting almost entirely of
electron neutrinos, with the other species only contributing negligibly. The
neutrinos produced during this phase can undergo the MSW effect [29].

3.3.2 Accretion phase

Right after the neutrino burst comes the accretion phase. It corresponds to
the center column of Figure 3.4. This is a comparatively longer stage, with
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Figure 3.4: Schematic neutrino emission spectra from a SN with a progeni-
tor mass of 27 M� as a function of time [28]. The first line is the neutrino
luminosity, whereas the second line is the averaged neutrino energy. The lu-
minosity is given in units of B/s = 1051 erg s−1. The emission is divided in
three phases as described in the text. Note that the scale of the vertical axis
for the luminosity is different for the different phases due to the big differences
between each phase. Electron neutrinos are plotted by solid lines, electron an-
tineutrinos with dashed lines, and the rest of the neutrinos species with dotted
lines. The black lines correspond to a 1D model without convection, whereas
the the red lines correspond to a 1D model where convection effects are taken
into account. In both cases the progenitor star has a mass of 27 M�.

a duration of order of hundreds of milliseconds. The luminosity will be sig-
nificantly lower than the neutrino burst, being typically ∼ 1049 erg s−1. The
outgoing flux is predominantly composed by νe and ν̄e fluxes, with a small
excess of νe due to deleptonization. The spectra during this stage is specially
sensitive to the progenitor’s mass. It is during this stage where the neutrino
self-induced flavor conversion is expected to occur.

3.3.3 Cooling phase

Lastly, the Kelvin-Helmholtz cooling phase takes place. It is shown in the
right column of Figure 3.4. It is also the longest one, since it lasts about 10
seconds.The luminosity deceases rapidly, and the luminosity of all neutrino
species are very similar (with differences of less than 10%). Therefore, it
is important to consider the complete three flavor scheme when analyzing
neutrino physics at this stage.
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Figure 3.5: The upper row shows three post-bounce snapshots (125, 165,
210ms p.b.) of a 3D simulation of an 11.2M� star, whose postshock ac-
cretion flow is characterized by convection [30]. The lower row shows three
snapshots (240, 249, 278ms p.b.) from a 27M� 3D simulation, where SASI al-
ternates with convection-dominated periods [31]. Surfaces of constant entropy
are displayed in yellow and red; the SN shock shown as a blue envelope. SASI
sloshing or spiral motions show up by large-amplitude unipolar or dipolar de-
formations, whose orientation flips between the hemispheres on time scales of
milliseconds. Figure adapted from Reference [28].

3.4 Core-collapse SNe numerical simulations

Unfortunately for this field, there is very limited experimental data for SN
neutrinos, as we will discuss in the next section. Therefore, we must rely on
the data provided by the numerical simulations to perform our calculations.
The first simulations assumed a spherically symmetric geometry for the model,
and therefore are referred as one dimensional (1D) models. Nonetheless, the
current simulations are implemented on fully three dimensional (3D) mod-
els. Until now, collective oscillations have not been implemented in numerical
simulations. There are some very interesting effects that have been identified
in state-of-the-art simulations, which potentially could have an effect for the
emitted neutrino signal and also for self-induced neutrino oscillations. For this
reasons, we will proceed now to discuss them briefly.
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Figure 3.6: Schematic representation of the νe-ν̄e flux normalized by the av-
erage flux in all directions for different post-bounce times [30]. These results
come from a 3D simulation of 11.2M� progenitor. These figures show a dipole
pattern, having an excess of νe in the northern hemisphere and an excess of
ν̄e in the southern hemisphere. The black point shows the maximum of the
dipole, and the cross the direction. The gray lines show the the path described
by the dipole’s maximum direction drift.

SASI

The results of 2D and 3D simulations have shown a new effect during the
accretion phase of the shock wave. This effect is known as the Standing Accre-
tion Shock Instability (SASI). It happens for stars with masses over ∼ 10 M�,
and consists on non-radial perturbations, mostly non-radial hydrodynamical
instabilities. These perturbations do not allow the shock-wave front to retain
an spherical shape and makes it vibrate in a dipolar motion. We show some
snapshots of this effect in Figure 3.5. This effect was first noticed in a numer-
ical simulation [32], and it was afterward analytically ratified [33]. This could
potentially have an impact on the emitted neutrino spectrum by adding rapid
oscillations to the fluxes [34, 35].

LESA

After performing state-of-the-art 3D simulations, including three-flavor neu-
trino transport, a new phenomena has appeared in the neutrino signal. This
effect, known as lepton-emission self sustained asymmetry (LESA) [30], is a
difference on the lepton number luminosity, i.e., the νe – ν̄e luminosity, where
there is a strong dipole asymmetry in the flux. This effect is shown in Fig-
ure 3.6.

The difference of the flux between the two hemispheres can be observed
almost exclusively for the electron flavor, showing a difference up to 20% in
the νe and ν̄e fluxes. The LESA effect takes place approximately 200 ms after
the core’s bounce, and shows a duration of about 100–150 ms during which
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it remains remarkably stable. These effects seem to be a generic feature of
the 3D models. Although the exact conditions for this instability to grow are
still not understood, it arises from the combined effect of neutrino transport
and multidimensional hydrodynamics. Even though it is still uncertain if the
LESA phenomenon is a numerical artifact, if confirmed, would be extremely
interesting. This would open the window for differences on the lepton number
for different sectors (or different outgoing neutrino trajectories) of the SN,
which can have very interesting applications.

3.5 SN 1987A
As we have discussed above, SNe emit a enormous flux of neutrinos during its
collapse (∼ 3× 1053 erg), this flux being as a first approximation isotropically
distributed. Therefore, by simple geometric reasoning we can conclude that
the flux will decrease with distance as 1/d2. Once again, the weakness of
the neutrino coupling results in the fact that, with the current experimental
sensitivities, we can only observe the neutrino footprint of SNe that are at
distances less than few ∼ 100 kpc.

Since the existence of the neutrino detectors, only one SN event has hap-
pened close enough to Earth to obtain a clear detection. This happened on the
23rd of February of 1987, named SN 1987A. The progenitor star was located
in the Large Magellanic Cloud, at a distance of approximately 50 kpc. The
energies of the detected events lie in the range of tens of MeV.

At the time of SN 1987A, there were only three experiments with sufficient
sensitivity to detect the emitted neutrino flux. These were Kamikande-II [36]
and Irvine-Michigan-Brookhaven (IMB) [37], both of them water Cherenkov
detectors, as well as the Baksan underground scintillation telescope [38]. In
Figure 3.7 we show these experimental results.

Despite the reduced number of events, there are some interesting insights
that can be extracted from this data. Besides information of the neutrino
energies and the fluxes, the lack of a simultaneous γ-ray burst sets a constraint
on the radiative decays of neutrinos [25]. Moreover, the time scale of the events
(a few seconds) or, equivalently, the time scale of the cooling of the newly born
neutron star can be used to constraint non-standard cooling channels created
by theoretically proposed particles, such as sterile neutrinos or axions.

3.5.1 Future SN Neutrino detection

This leads one to wonder, how are the prospects of new data? There are
different ways to predict the galactic SN rate, but the typical result is about
three events per century [39]. In other words, every year there is a probability
slightly above three percent of an event and after three years this probability
rises to almost ten percent. Unfortunately, there has not been any events
during the course of this work.
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Figure 3.7: Measured neutrino signals from SN 1987A [25]. The upper, mid-
dle, and bottom panel shows the events measured by Kamiokande, IMB, and
Baksan, respectively. The open dots of the Kamiokande detector are usually
interpreted as background. The energies shown correspond to the secondary
positrons, not the primary electron antineutrinos, produced through the pro-
cess ν̄e + p→ n+ e+. The clocks of the detectors are not synchronized. In the
figure, the first detection in each experiment has been shifted to t = 0.

Nowadays, the detection possibilities for core-collapse SN neutrinos have
been significantly improved, and in the event of a galactic SN, we would in-
crease our statistics substantially when compared to the data collected from
SN 1987A. For instance, the Super-Kamiokande detector is expected to de-
tect a large number of events (∼ 103) for a core-collapse SN event at dis-
tances of around 10 kpc from Earth [40]. Moreover, other experiments such as
SNO, KamLAND, LVD, MiniBooNE and Borexino could also detect signals,
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although the number of events is expected to be significantly lower [41]. More-
over, the IceCube detector, an experiment located at the South Pole designed
for detecting cosmic neutrinos, would detect a enormous increase in its back-
ground. This effect could be used to infer the SN luminosity curve. On the
other hand, future proposed neutrino detectors like Hyper-Kamiokande and
JUNO will extend our coverage and thereby increase the range of detection
capabilities.

Another interesting feature of core-collapse SN neutrinos is that they de-
couple from the collapsing star long before photons do. Indeed, the neutrino
flux of these events arrives at Earth several hours before the photon flux is ob-
servable. Therefore, if we are able to determine the direction of the incoming
neutrino flux, we could direct in advance photon telescopes in order to have
the best possible detection [41].

3.6 Summary
The conditions of a collapsing star, with extremely high densities, are the
perfect environment for testing physics of weakly interacting particles such
as neutrinos. At the same time, neutrinos play a fundamental role in SN
physics. As discussed above, the neutrino reheating mechanism is believed to
be responsible for a successful explosion to take place.

Neutrinos are in thermal and chemical equilibrium at the very core of the
star. At some tens of kilometers from the star’s center, neutrinos decouple from
the plasma and begin to free-stream. This decoupling defines the neutrino
sphere radius. The other crucial piece of information that we must keep in
mind is that the densities are so high that the neutrinos can interact with
themselves, so that these environments are suitable for self-induced neutrino
oscillations.

However, there are still many questions to be answered in this field. One
of the most urgent ones is that of neutrino flavor oscillations. Until now, sim-
ulations do not include neutrino flavor conversion. If flavor conversion indeed
occurs, it might have an impact on the explosion mechanism. The reason for
that is the non-linear nature of this phenomenon; its implementations would
be highly costly in terms of computation power.

With respect to the emitted neutrino flux, we must again emphasize that
it is divided into three phases: the prompt burst, the accretion phase flux, and
the cooling-phase flux. The first phase emits exclusively electron neutrinos,
and the second phase has a lower luminosity but emits many species obeying
Fνe > Fν̄e > Fνx(Fν̄x). The last phase is the least luminous one, and all flavors
are emitted equally. The energies of emitted neutrinos in all three phases are
in the hundreds of MeV range

On the other hand, the neutrino signal coming from core-collapse SN can be
very useful to study other theoretically proposed, weakly interacting particles,
such as axions or sterile neutrinos. The idea is that such particles, if produced
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in the core of the star, can provide an extra cooling channel. Unfortunately,
some very interesting aspects of SN physics have not been covered in this
chapter, such as nucleosynthesis, since it does not affect the neutrino signal.
However, neutrinos can modify the amount of synthesized heavy nuclei.

The only experimental data, corresponding to SN 1987 A, sustains our basic
theoretical understanding of core-collapse SNe explosions, but the statistics
are too poor to extract precise information of the explosion mechanism. We
are in desperate need for more events to investigate further all the proposed
theoretical models.



Chapter 4
Kinematic equations for the neutrino
field in dense media

In this chapter, we will develop the formalism to describe the kinematics of
the neutrino field in a very dense medium. We will start by introducing the
density matrix formalism, justifying its convenience and discussing its advan-
tages. Then we will present the Boltzmann-like equation for the evolution of
the neutrino ensemble and we will examine the different terms from the per-
turbative expansion. We will briefly study the two most common examples of
dense environments: the Early Universe and the interior of a core-collapse SNe.
Furthermore, we will discuss the consequences these environments impose on
the equation of motion (EOM).

We will particularize the EOM for the SN case, and we will discuss the
convenience of adopting a two flavor scheme. Under this assumption we will
discuss how to change between the two neutrino mass orderings. The next
section will be devoted to linearize the EOM and to introduce the concept of
flavor instability. In this context, we will discuss the limit where neutrinos are
massless. We conclude with a summary.

4.1 Density matrix formalism

We have devoted most of Chapter 2 to the study of neutrino oscillations in
vacuum and in matter. Hitherto, the starting point has always been the
Schrödinger equation. In other words, we have used the wave-function descrip-
tion for neutrinos. This approach is completely appropriate for the systems
analyzed. Moreover, it features the advantage of being mathematically simple.
However, this description ceases to be adequate when we confront the evolu-
tion of a neutrino field which is undergoing flavor mixing and simultaneously
scattering with its environment. This is the typical situation in dense media,
such as the interior of a collapsing star or at early stages of the universe’s
evolution.

35
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In the context of dense environments, there is also another ingredient
adding to the complexity of the problem. When the neutrino density is very
high, neutrinos interact with the neutrino background, or, in other words, neu-
trinos undergo self-interactions. Under these circumstances the single-particle
wave formalism is no longer an appropriate description. Instead, we have to
find a framework that can account for all the effects mentioned above.

This is achieved using a mathematical framework known as density matrix
formalism. We will now develop how to obtain the EOM under this framework,
where we will essentially follow the discussion performed in Reference [42]. As
a starting point, we will write down the momentum expansion of a left-handed
neutrino field

ψL(x) =

∫
dp(apup − b†−pv−p)eip·x, (4.1.1)

where dp = dp3/(2π)3. Furthermore, ap is the annihilation operator for
negative-helicity neutrinos of momentum p and b†p is the creation operator for
positive-helicity antineutrinos. For a system of n flavors, ap and b†p are column
vectors of components ai(p) and b†i (p), respectively. These operators satisfy
the commutator relations {ai(p), a†j(p

′)} = {bi(p), b†j(p
′)} = δij(2π)3δ3(p−p′).

In the following, we will assume the massless limit, so that only left-handed
interactions are present and right-handed fields can be neglected. However, in
order to account for flavor mixing we need to include the neutrino mass matrix,
which is non-diagonal in the interaction basis and allows for spin-flip reactions.
Because these transition probabilities are proportional to the neutrino mass
squared, they are small and can be neglected. These kind of effects in the SN
context have been studied in References [43,44]1.

We will now analyze the different combinations of the operators a and
b. Combinations of the type a†b† and ba violate lepton number by two units
and correspond to creation and annihilation of neutrino pairs. These types
of bilinears require an anisotropic environment and have been investigated in
references [45–48]. Hence, the only bilinears necessary to describe the system
are a†a and b†b. Given an homogeneous neutrino ensemble, the system can be
described by the n× n matrices

〈a†j(p)ai(p
′)〉 = (2π)3δ3(p− p′)ρij,

〈b†j(p)bi(p
′)〉 = (2π)3δ3(p− p′)ρij, (4.1.2)

where ρ(t, r,E,v) essentially provide the classical phase-space densities. Note
the inverted indexes in the r.h.s. of this equation. This is introduced to guar-
antee that both matrices transform equally under a unitary transformation of
the from ψ′ = U †ψU . We can write explicitly these matrices as

ρ =

 ρee ρeµ ρeτ
ρµe ρµµ ρµτ
ρτe ρτµ ρττ

 , ρ =

 ρee ρeµ ρeτ
ρµe ρµµ ρµτ
ρτe ρτµ ρττ

 . (4.1.3)

1The authors of Reference [44] have claimed that, under some circumstances, these he-
licity flips can be resonantly enhanced.
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The diagonal terms of this matrix are the occupation numbers of the flavor
eigenstates, whereas the off diagonal ones represent the correlations between
different flavors and therefore contain information about phases. In case we
want to study the non-degenerate limit with pure states, this formalism is
completely analogous to the single-particle wave function description used for
the neutrino oscillations’s discussion. However, when the coherence between
flavors starts to play a role, the density matrix prescription will be the appro-
priate tool to study the flavor evolution of the neutrino field.

4.2 Generalized equations of motion

4.2.1 Liouville equation
We will now examine the EOM for the density matrix. The evolution of ρ
and ρ̄ is obtained as a perturbative expansion in the Heisenberg formalism,
assuming the appropriate Hamiltonian of weak interactions. Considering up
to the second order in the perturbation expansion, the EOM for the density
matrix is

iv∂ρ = [Hvac, ρ] + [Href, ρ] + C(ρ), (4.2.1)
where we have used the covariant notation such that v∂ = vµ∂µ = ∂t + v · ∇r.
Moreover, the four velocity vector is v = (1,v). We will now explain the
different terms of the r.h.s. of this equation.

Vacuum term

The first term on the r.h.s. is the term responsible for the vacuum oscillations.
It is very familiar to us since it was the subject of study when we studied
neutrino oscillations in Chapter 2. For the rest of the dissertation we will
work in the weak-interaction basis, and in this basis this term is non-diagonal.

Refractive term

The second term in the r.h.s of Equation 4.2.1 is the refractive potential term.
Because the refractive term comes from the first order of the perturbative
expansion, it is proportional to GF. This element receives contributions from
two different terms, namely

Href = Hm + Hνν . (4.2.2)

Hm is the potential that describes the interaction of neutrinos with the sur-
rounding matter. This is the term responsible of the already discussed MSW
effect. There is a second contribution given by Hνν . This term arises from
the neutrino’s interactions with the surrounding neutrinos, or, in other words,
neutrinos interacting with each other. Therefore it is referred to as the self-
interaction term. Furthermore, this term contains ρ and therefore makes the
equations non-linear.
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Collision term

The last term on the r.h.s. of Equation 4.2.1 is called the collision term. This
term arises from the second order of the perturbative expansion, and therefore
is proportional to G2

F. This terms accounts for processes such as annihilations
and momentum exchanging processes of neutrinos with either the leptonic and
the neutrino background. In particular it contains the scattering processes with
the medium of the form νpX → νp′X ′ (whereX is a particle of the surrounding
medium), production and absorption by CC processes of the type: X → X ′νp,
Xνp → X ′, and analogous processes for antineutrinos. Moreover, the NC pair
processes νpν̄ ′p → XX ′ and XX ′ → νpν̄p′ are also included in this term.

4.3 Two highly dense environments:
The Early Universe and core-collapse SNe

The density matrix formalism will be very useful for two extreme environ-
ments: the Early Universe and the interior of core-collapse SNe. In both cases,
these environments are the perfect laboratory to study flavor conversion un-
der high-density conditions, involving refractive effects from charged leptons
and collisional damping. Furthermore, the neutrino background is so dense
that self-interactions occur and can play a crucial role in the evolution of the
system. Moreover, the non-linear nature of this interaction translates on col-
lective effects having unexpected and sometimes contraintuitive behaviors. We
will now briefly describe the main characteristics of these two environments.

4.3.1 The Early Universe

The Early Universe is a textbook example of dense environment. This envi-
ronment is, in a good approximation, spatially homogeneous. Moreover, in the
Early Universe there were almost equal numbers of baryons and antibaryons
with an asymmetry fixed by observations to be ∼ 10−10 as well as charge neu-
trality, so the matter refraction term can be neglected. Nonetheless, the self-
interaction term will be very important because of the high densities. Unlike
other environments, there is no predominant streaming direction, so neutrinos
travel in all directions. Another crucial feature in this scenario is that, due to
the temperatures and energies, in combination with the multi-directional flux,
the collision term needs to be considered. This main effect of the collision term
is to damp the off diagonal terms of the density matrix ρp, which pushes the
diagonal terms towards their equilibrium distributions.

4.3.2 Interior of core-collapse SNe

In the case of SNe, we will study the evolution of the neutrinos that have been
emitted from the neutrino sphere and are streaming outwards from the star.
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From Chapter 3 we know that the range of energies for these neutrinos is of the
order of tens of MeV. In other words, the neutrinos under study will be affected
only by forward scattering and the collision term can be safely neglected. It is
of course true that inside the neutrino sphere collisions will play an important
role, but for the purposes aimed in this dissertation, we will not have to worry
about what happens inside the neutrino sphere. To sum up, among all terms
on the r.h.s. of Equation 4.2.1, we are just left with Hvac and Href.

Due to the current-current interactions that neutrinos experience, the di-
rection of motion is a fundamental quantity, which is represented by the vector
v = p/|E|. Since we are working with ultrarelativistic neutrinos, the velocity
vector will lie within the unit sphere, which implies |v| = 1. In the following,
we will use the so-called “flavor isospin convention", meaning that we will refer
to antineutrinos as the negative E modes of the diagonal entries of the ma-
trix of densities. In the free streaming regime, the system can be successfully
described by means of a Liouville equation of the form [42]

iv∂ρ = [Hvac + Href, ρ], (4.3.1)

where the Hamiltonian matrix is

Hvac + Href =
M2

2E
+
√

2GF

(
vN +

∫
dΓ′vv′ρ′

)
, (4.3.2)

where the phase space integration explicitly is
∫
dΓ′ =

∫∞
∞ dE ′E ′2

∫
dv′/(2π)3.

The primed quantity inside the integrals refers to the energy-angle dependen-
cies, so that ρ′ = ρ′(t, r, E ′,v′). The first term in Equation 4.3.1 is the vacuum
oscillation frequency, whereas the second term is the matter term. Moreover,
N is the lepton current produced by the matter background, and it is explicitly
written as N0 = diag(ne − nē, nµ − nµ̄, nτ − nτ̄ ).

We have to pay special attention to the term inside the integral or the
self-interacting term. First of all, the factor vv′ = (1 − vv′) in the integra-
tion evidences the current-current nature of the weak interactions. On the
other hand, in order to calculate this term, we have to integrate over all
neutrino modes of the ensemble. This becomes evident after we substitute
Equation 4.3.2 in Equation 4.3.1, which exposes the non-linearity induced by
neutrino self-interactions.

4.4 Two flavor scheme
We will restrict the rest of the analysis to a two flavor scheme, where only
the flavors νe and νx are considered, and νx is a linear combination of the µ
and τ flavors. There are two main arguments supporting this choice. First
of all, for the neutrino energies present in SN-type environments, the only
mass difference capable of producing appreciable effects is the ∆m2

atm, since
for this mass difference we will have a λosc ∼ 30 km. Second, the neutrino
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species contained in the linear combination x undergo the same interactions in
matter as we have discussed in Chapter 2. This implies that these species have
the same neutrino sphere and consequently the same angular distributions for
neutrinos and antineutrinos. This point, as we will discuss in Chapter 5, plays
a crucial role.

The physically motivated two-flavor scheme features the additional advan-
tage that it reduces considerably the mathematical complexity of the equations.
Under this paradigm we can use unitary two-dimensional flavor vectors to de-
scribe our system. The vector ~B points in the direction of the mass, and the
vector ~L points in the direction of the weak interaction in flavor space. The
relative angle between these two vectors is twice the vacuum mixing angle,
i.e., 2Θ, which is a small quantity. The vacuum oscillation frequency will be
denoted as $, and is explicitly

$ =
∆m2

atm

2E
= 0.63 km−1

(
10 MeV
E

)
. (4.4.1)

Therefore, in the following, we will label the neutrino modes using $ instead
of the energy E. Using these vectors, the Hamiltonian of Equation 4.3.2 can
be expressed as

H =
1

2

(
$~B + vΛ~L

)
· ~σ +

√
2GF

∫
dΓ′vv′ρ′, (4.4.2)

where ~σ are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (4.4.3)

and we have used the Einstein summation convention for the product vΛ =
vµΛµ, where Λµ =

√
2GFN

µ
e . Because the object of study is the SN interior,

the four vector Nµ
e is the electron minus positron flux densities, since in these

environments there are negligible amounts of any other charged lepton. This
product expresses in a very intuitive way the effect of the matter background:
it is a rotation of the flavor basis.

4.4.1 Mass Ordering
Although we have adopted the two-flavor scheme, there is still one neutrino
mass difference in our equations. Moreover, as we have discussed in Chapter 2,
the sign of this mass difference has not been measured so far. This implies
that our equations are sensitive to the mass ordering. The EOM we have
derived corresponds to the IO. Nevertheless, NO is also a physically motivated
possibility, so the NO should also be studied. Therefore, our equations must
be capable of being modified to include the NO case. We will now explain
how to do so. Following the convention introduced in Chapter 2, the NO
corresponds to a negative ∆m2, but we can also keep this parameter positive
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if we introduce a minus sign in the r.h.s. of Equation 4.4.2. The change of IO
to NO is achieved by changing ~B → − ~B, and therefore our EOM are perfectly
valid to study the NO case as well. Finally, we must point out that the ordering
question is no longer relevant if we work under the assumption of $ equal to
zero, i.e., the massless limit.

4.5 Linearization
As we have already pointed out, the main difficulty when dealing with neu-
trinos self-interactions is caused by the fact that neutrinos couple to all other
neutrino modes. This effect makes the problem not only very challenging in
computational terms, but also very difficult to grasp an intuition of the physics
of the system. However, there is another approach to deal with these equations
known as linearized stability analysis [49].

Before starting this discussion, it is very convenient to manipulate our
equations to obtain more manageable expressions. First of all, we express the
mean-field matrices in a normalized form

ρ =
fνe + fνx

2
1 +

fνe − fνx
2

S, (4.5.1)

with the matrix S defined as

S =

(
s S
S∗ −s

)
, (4.5.2)

where s is real and S is complex, and they fulfill the relation s2 + |S|2 = 1.
Since we are in the two flavor scheme, this matrix structure can be expressed
in a very intuitive manner by means of three dimensional flavor vectors, known
as polarization vectors, which are explained in more detail in Appendix A. By
analyzing Equation 4.5.1, it is easy to see that the first term is diagonal in
flavor space. This means that this term is not affected by flavor oscillations.
Therefore, when studying the flavor evolution of the system, we can simply
ignore this term. For the term sensitive to flavor oscillations, we introduce the
notation for the difference between the νe and νx distributions in the form

G =
√

2GF ×
{

fνe(E,v)− fνx(E,v), E > 0

−fν̄e(E,v) + fν̄x(E,v), E < 0.
(4.5.3)

Now, using this definition, the EOM for the two-flavor scheme reduces to the
form

iv∂ (GS) = G[H, S], (4.5.4)

and the Hamiltonian is explicitly

H = 1
2
($~B + vΛ~L) · ~σ +

√
2GF

∫
dΓ′vv′G′S′. (4.5.5)



42 4. Kinematic equations for the neutrino field in dense media

Homogeneous and stationary neutrino distribution

In a completely general approach, the neutrino distribution functionG depends
on the space-time coordinates. However, locally the changes in the neutrino
field occur very fast compared to the local environment time scales. Therefore
we can drop the space-time dependence of the function G, leaving only the
energy and direction dependence, such that G = Gω,v. The neutrino phase-
space distributions fνe(ω,v) represent now the initially prepared system. The
space-time evolution of the system is encoded in S given by Equation 4.5.2.
Under these assumptions, Equation 4.5.4 is now

iv∂S = [H, S], (4.5.6)

where the Hamiltionan matrix is the same of Equation 4.5.5.

4.5.1 Linearized stability analysis

Now that we have arrived at Equation 4.5.6 we can explain the linearized
stability analysis approach. The idea is the following: we consider that the
system is initially diagonal in flavor space, i.e., the non-diagonal terms S are
zero. Now, since the length scale where oscillations occur is so fast compared
to the MSW effect, we can safely neglect it. The idea is that the dense envi-
ronment provides a large matter effect (vΛ � ω). Under this condition, we
can move to a co-rotating frame where ~B and ~L are collinear and take the
mixing angle in matter to be infinitely small, so that flavor mixing plays no
longer a role. This approximation becomes exact in the limit $ → 0.

With these assumptions, and since we have considered initial, vanishing
S elements, the only way to trigger flavor conversion is through the action
of neutrino-neutrino interaction. The next step is indeed to study if self-
interactions can develop a small initial perturbations to grow exponentially,
i.e., to study if the system is unstable. This approach is referred to as linearized
stability analysis. To this end, we adopt the limit

s =
√

1− |S|2 = 1, (4.5.7)

so that the EOM becomes

iv∂S = ($ + vΛ + vΦ)S − v
∫
dΓ′v′G′(S − S ′). (4.5.8)

Let’s now carefully examine the linearized EOM.We have gained the advantage
that, when studying the evolution of a given neutrino mode, it does no longer
couple to all other modes. Furthermore, we can pull out from the integral the
term proportional to vS, and defining the quantity

Φ =

∫
dΓGv, (4.5.9)
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which is a four vector that contains the information of the neutrino-neutrino
refraction. This neutrino-induced term is analogous to the matter-induced re-
fraction term Λ. Moreover, Φ contains a scalar component, expressed explicitly
as

Φ0 =
√

2GF [(nνe − nν̄e)− (nνx − nν̄x)]. (4.5.10)

By adopting this notation, the EOM will then look like

iv∂S =
[
$ + v(Λ + Φ)

]
S − v

∫
dΓ′v′G′S ′. (4.5.11)

where the factor v(Λ + Φ) = Λ0 + Φ0 − v(Λ + Φ) stands for the energy
shift introduced by the matter and neutrinos. In fact, all the works in the
linearized stability analysis literature are particular cases of Equation 4.5.11.
The different studies consist basically of different assumptions for the neutrino
energy and velocity distributions, the boundary and/or initial conditions, and
asymmetries of the solutions.

Even though the linear approach is a very useful tool to analyze SN dy-
namics, one has to be aware of its limitations. When solving the system using
the fully coupled EOM, the solutions can undergo instability enhancements
due to non-linearities, as some authors have pointed out [50,51].

4.5.2 Linearized equations in the massless limit

During the development of this thesis, we will find situations were the system
exhibits very interesting solutions in the limit where neutrino masses are zero.
In the language of linearized stability analysis, the massless limit corresponds
to the vacuum oscillation frequency being zero, which makes the mass differ-
ence also zero. Therefore, it is very convenient to adapt the linearized EOM
given by 4.5.11 to the limit $ → 0, such that

iv∂S = (Λ + Φ)S − v
∫
dΓ′v′G′S ′. (4.5.12)

From this equation, we can infer another consequence of adopting the mass-
less limit: there is no longer an energy E dependence in the EOM, but rather
the neutrino modes are entirely described by the velocity v or, more pre-
cisely, its associated angle. Furthermore, the same applies to neutrinos and
antineutrinos, so the only relevant quantity we need to care about is the angle
distribution of the electron lepton number (ELN) carried out by neutrinos,
which we parametrize as

Gv =
√

2GF

∫ ∞
0

dEE2

2π2
[fνe(E,v)− fν̄e(E,v)]. (4.5.13)
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4.6 Summary
We have introduced the density matrix formalism to study the flavor conversion
of the neutrino field in dense media. We have also extended the perturbative
equation for the interaction of the neutrino field. We have then studied the
most illustrating examples of dense environments. The first one, the Early
Universe, has the particularity that besides the neutrino self-interaction effects,
neutrino collision terms have to be taken into account and produces flavor
decoherence. We have also discussed the core-collapse SN case, where the
refraction term will be dominating, and therefore we can neglect the collision
terms.

We have then particularized our analysis to the Liouville equation, since it
provides a description of the neutrino field at the refraction level. Moreover,
we have assumed a two flavor scenario, since it simplifies the equations but
still captures the important physics of our system.

Because of the non-linear nature of the equations makes them very difficult
to solve, we have proceeded to linealize the EOM, and we have explained
the linearized stability analysis approach. In the last section of the present
chapter we have developed the linearized EOM for the massless limit and we
have introduced the definition of electron number density carried by neutrinos.



Chapter 5
Dispersion Relation

At the end of Chapter 4 we arrived at a linearized equation of motion (EOM)
for the neutrino field in the forward-scattering regime. Unfortunately, it is
almost impossible to solve this seven-dimensional problem without making
further simplifications. To this end, as a next step, we apply a Fourier trans-
form to the EOM, which will lead us directly to the dispersion relation. In the
rest of this chapter we will study in more detail the implications of the disper-
sion relation, using the two neutrino beam example as a benchmark. We will
start with a very simple setup, and we will be gradually adding more elements
until we arrive at the asymmetric colliding neutrino beam example. During the
study of this example we will encounter for the first time fast flavor conversion
phenomenon, where the growth rate of the flavor conversion is proportional to
the neutrino-neutrino interaction. Moreover, we will use the colliding beams
setup to understand the insights of the dispersion relation, and to that end
we will discuss the different forbidden bands or regions of the parameter space
where we have only imaginary solutions or no solution at all. As we will see,
the shape of these regions can be very different, and for different scenarios
we will require different conditions to solve our system. We also discuss the
necessity of dealing with the boundary conditions. We conclude the chapter
with a summary.

5.1 Fourier Transform

At the end of last chapter we arrived at a linearized EOM for the flavor evolu-
tion in dense media. Although we have done several simplifications, the EOM
is still not directly solvable. The problem with Equation 4.5.11 lies in the fact
that we have to deal with a seven-dimensional phase-space (three spatial coor-
dinates, three velocity components and time), which is not directly tractable.
Therefore, we need to find a manner of reducing the dimensionality of the
problem. Traditionally, this was achieved by assuming different symmetries
in the system. These assumptions included stationarity, the use of spheri-

45
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cal symmetry, or homogeneity in the perpendicular direction. However, this
approach has the downside that these assumptions might induce unphysical
results. There is another approach to achieve this goal. In order to solve the
equation 4.5.11, we can use a plane wave ansatz of the form

SE,v = Qv,Ee
−i(Ωt−K·r), (5.1.1)

which can be expressed in a more compact way by introducing K = (Ω,K),
and therefore Kr = Ωt−K · r. This corresponds to a Fourier transform (FT),
which makes this system mathematically easier to work with. We are in the
linearized regime, which also implies that the different Fourier modes are de-
coupled from each another. So, introducing the ansatz given by Equation 5.1.1
in Equation 4.5.11 and rearranging the terms, we obtain

(Ω− v ·K)Q = ($ + v(Λ + Φ))Q− v
∫
dΓ′v′G′Q′. (5.1.2)

From this point on, we will no longer write explicitly the dependencies on E and
v. We have assumed that the matter potential Λ is not affected by the FT. In
other words, we have assumed that the matter background is not space-time
dependent on the scales considered, which is a very reasonable assumption.
Additionally, Equation 5.1.2 can be expressed in a more compact form as

(vk −$)Q = v

∫
dΓ′v′G′Q′, (5.1.3)

where we have introduced the four-vector k = (ω,k), whose components are

ω = Ω− Λ0 − Φ0, (5.1.4)
k = K−Ω−Λ, (5.1.5)

respectively. Note that ω is not the vacuum oscillation frequency, which is
denoted by the parameter $. It is important to highlight that the FT has
simplified our EOM to the point where we are essentially left with an eigenvalue
equation for the flavor modes. Instead of solving this equation directly, in the
next sections we will manipulate it to get a deeper understanding of the physics
governing the system.

5.2 Dispersion Relation
By carefully analyzing Equation 5.1.3, we observe that the r.h.s. corresponds to
a four-vector, whose dependence is restricted to the mode p, but is independent
of the neutrino phase-space variables. We will refer to this four-vector as a. In
order to find the eigenvalues of the flavor field Q, we define the eigenfunction

Q =
va

ω −$ − v · k , (5.2.1)
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which we introduce in both sides of equation Equation 5.1.3, leading us to

va = v

∫
dΓ′ G′

v′(v′a)

ω′ −$′ − v′ · k . (5.2.2)

This equation can be rewritten in the form

vα
(
ηαβ −

∫
dΓ′ G′

v′αv
′
β

ω′ −$′ − v′ · k

)
aβ = 0, (5.2.3)

where we have used ηαβ = diag( 1,−1,−1,−1), the usual metric tensor. On
the other hand, the quantity inside the brackets can be used to define the
“polarization tensor" as

Πµν = ηµν −
∫
dΓ G

vµvν

ω −$ − v · k . (5.2.4)

Equation 5.2.3 must be fulfilled for every mode of the neutrino field, i.e., for
every v = (1,v). However, as we have mentioned above, a does not depend on
v, so we have found four linearly independent equations for the four unknown
parameters aµ = (a0, a).

Nontrivial solutions exist only if the determinant of the 4×4 matrix van-
ishes. After dropping the primes from the integration variables, the determi-
nant is ∥∥∥∥ η − ∫ dΓG

v ⊗ v
ω −$ − v · k

∥∥∥∥ = 0 . (5.2.5)

Here, v ⊗ v is a 4×4 matrix with the components vαvβ, explicitly given by

v ⊗ v =


1 −vx −vy −vz
−vx vxvx vxvy vxvz
−vy vyvx vyvy vyvz
−vz vzvx vzvy vzvz

 . (5.2.6)

For convenience, we will formulate this product using spherical coordinates,
obtaining

v ⊗ v =


1 −sθcϕ −sθsϕ −cθ

−sθcϕ s2
θc

2
ϕ s2

θsϕcϕ sθcθcϕ

−sθsϕ s2
θsϕcϕ s2

θs
2
ϕ sθcθsϕ

−cθ sθcθcϕ sθcθsϕ c2
θ

 , (5.2.7)

where θ is the zenith angle, ϕ is the azimuth angle, and we use the notation
sθ = sin θ, sϕ = sinϕ and so on.

Notice that we have considered the contra-variant four-vector aµ = (a0,+a)
as our set of unknown amplitudes to avoid any minus signs. Consequently,
v ⊗ v is constructed from the covariant components, i.e., from vµ = (1,−v),
explaining the minus signs in the mixed space-time components of v ⊗ v.
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On the other hand, Equation 5.2.5 can be expressed in a more elegant way
using the polarization vector introduced in equation 5.2.4, which lead us to

Πµνaν = 0, (5.2.8)

which has non-trivial solutions whenever we fulfill the condition det[Πµν ] = 0.
Lets now carefully analyze the implications of Equation 5.2.8. This equation
will give the values of the four-vector k which are compatible with plane-wave
solution for the flavor modes of the neutrino field. In other words, it prescribes
a relation for the wave number of the flavor modes with its frequency. It is
therefore a dispersion relation (DR). Note that this relation refer to the wave
number vector k and not uniquely to its module, so its direction dependent.

5.3 Axial symmetry

In order to apply our EOM to specific examples, we are compelled to intro-
duce some simplifications by means of symmetry assumptions. The first step
consist of considering that the neutrino velocity distribution is axially sym-
metric with respect to some direction. This assumption does not exclude that
there are individual neutrinos going in other directions, but the ensemble as
a whole moves in this direction. In the context of SNe environments, we can
associate this direction with the radial one. From now on, we will refer to
the direction of the neutrino flux as the z-direction. Therefore, the neutrino
distribution function GE,v depends exclusively on the parameter vz = cos(θ)
and no longer on ϕ. Moreover, we assume that the matter distribution is also
axially symmetric, although there might still be a non-vanishing current in the
radial direction. We must however highlight that this assumption does not
imply that the solution for S obeys the same symmetries: spontaneous break-
ing of these symmetries is indeed one of the defining features of this type of
systems. In this situation there is no prior special direction in the x-y-plane,
which is the transverse plane relative to the radial direction. However, axial
symmetry is broken by those solutions which include a wave vector k⊥ in the
transverse plane. Without loss of generality we take k⊥ to define what we call
the x-direction. After this assumptions have been taken, the DR Equation is

∥∥∥∥∥∥∥∥∥∥
η −

∫
dΓ

GE,θ

ω −$ + cθkz + sθcϕkx


1 −sθcϕ 0 −cθ

−sθcϕ s2
θc

2
ϕ 0 sθcθcϕ

0 0 s2
θs

2
ϕ 0

−cθ sθcθcϕ 0 c2
θ


∥∥∥∥∥∥∥∥∥∥

= 0 .

(5.3.1)



5.4 Homogeneous transverse direction 49

Moreover, this equation can be separated in two sets of independent equations,
consisting of a 3× 3 matrix∥∥∥∥∥∥∥
 1 0 0

0 −1 0
0 0 −1

− ∫ dΓ
GE,θ

ω −$ + cθkz + sθcϕkx

 1 −sθcϕ −cθ

−sθcϕ s2
θc

2
ϕ sθcθcϕ

−cθ sθcθcϕ c2
θ


∥∥∥∥∥∥∥ = 0 ,

(5.3.2)
whereas the second one is a linear equation∥∥∥∥ 1 +

∫
dΓ

GE,θ s2
θs

2
ϕ

ω −$ + cθkz + sθcϕkx

∥∥∥∥ = 0 . (5.3.3)

5.4 Homogeneous transverse direction
We now particularize Equation 5.3.1 for the case where the transverse direction
is homogeneous, which mathematically can be also interpreted as taking kx to
be zero. In order words, we seek solutions that only vary in the z (radial)
direction. In that sense, we are in a subset of solutions of the most general
equation, but nonetheless very interesting from the physical point of view.
Furthermore, the simplification of the denominator in the eigenvalue equations
makes the problem more tractable mathematically speaking. Indeed, we can
now perform all the

∫ π
−π dϕ/2π integrations, such that

1

2π

∫ +π

−π
c2
ϕdϕ =

1

2π

∫ +π

−π
s2
ϕdϕ = 1/2, (5.4.1)

and
∫ +π

−π cϕdϕ = 0. It is important to highlight that the phase integrals are
now redefined, being explicitly∫

dΓ =

∫ +∞

−∞
E2dE

∫ +1

−1

dcθ
(2π)2

. (5.4.2)

5.4.1 Axial-symmetric and axial-breaking equations

By performing the ϕ integrations, our problem reduces its complexity. Equa-
tion 5.3.2 reduces to a 2× 2 matrix, and corresponds to the 00, 0z, z0 and zz
positions, being∥∥∥∥( 1 0

0 −1

)
+

∫
dΓ

GE,θ

ω −$ + cθkz

(
1 −cθ
−cθ c2

θ

)∥∥∥∥ = 0 , (5.4.3)

which only involve the coefficients a0 and az. In other words, this is the
equation corresponding the axially symmetric solutions. On the other hand,
the second, scalar Equation 5.3.3 reduces to

1 +
1

2

∫
GE,θ s2

θ

ω −$ + cθkz
= 0, (5.4.4)
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where the solutions are proportional to the coefficients ax and ay, or, equiva-
lently, to cϕ and sϕ. Therefore, this solution corresponds to the axially breaking
one.

At this point, it is very convenient to introduce dimensionless quantities
which have been used in the literature of this field because they simplify our
equations in a very convenient manner. First of all, the neutrino-neutrino
interaction strength is given by

µ =
√

2GF (nνe + nν̄e). (5.4.5)

On the other hand, the neutrino asymmetry is defined as

ε =

∫
dΓ G, (5.4.6)

and the neutrino flux is
φ =

∫
dΓ G v, (5.4.7)

In terms of this newly introduced variables, the axially symmetric, perpendic-
ularly homogeneous scenario implies that the neutrino-neutrino current can be
expressed as

Φ = (Φ0, 0, 0,Φz) = µ(ε, 0, 0, φ), (5.4.8)

where φ measures the lepton flux in the radial direction.

5.5 Eigenvalue equations
Using these definitions, we can now rewrite the eigenvalue equations for Equa-
tion 5.4.3 and Equation 5.4.4, arriving at

I2
1 = (I0 − 1)(I2 + 1), (5.5.1)

I2 − I0 = 2, (5.5.2)

where the first equation is obtained by solving the 2× 2 determinant of Equa-
tion 5.4.3. The integral terms In are defined as

In =

∫
dΓ GE,v

vn

w + q −$/µ, (5.5.3)

where we have introduced the variables w and q, which correspond to a di-
mensionless frequency and a dimensionless wave number, respectively. They
are defined as

w =
ω − Λ0 − Φ0

µ
, (5.5.4)

q =
K − Φ− Λ

µ
. (5.5.5)

We also introduce the parameter λ̄ = λ+ µε, which will be specially useful in
for the stationary case i.e. for the case Ω = 0.
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5.5.1 Massless limit
As we will later discuss, the situation where the neutrinos are massless ($ =
∆m2/2E = 0) has very interesting features. Therefore, we will introduce some
definitions for this special case. For instance, the neutrino distribution function
depends only on the angle and we use the dimensionless form

Gv =
1

nνe + nν̄e

∫ ∞
0

dE E2

(2π)3

∫ +π

−π
dϕ [fνe(E, v)− fν̄e(E, v)] . (5.5.6)

The eigenvalue equations are the same ones as in the previous section. Nonethe-
less, the integral terms are now

In =

∫ +∞

−∞
dvGv

vn

w + q
, (5.5.7)

where w no longer depends on $. On the other hand, the neutrino asymmetry
and flux in this limit are

ε =

∫ +1

−1

dv Gv =
nνe − nν̄e
nνe − nν̄e

and φ =

∫ +1

−1

dv v Gv =
〈vνe〉nνe − 〈vν̄e〉nν̄e

nνe − nν̄e
.

(5.5.8)
Let’s now analyze the structure of these equations. First of all, the distribution
function gv in the integral expressions 5.5.7 will be provided by the physical
setup that we want to explore. Once we have the gv function, the idea is to
seek for the pairs of (w, q) points for which the Equations 5.5.1 are satisfied. If
there is a pair of real values of (w, q) that solves the eigenvalue equation, we can
assert that the system is stable, and that any perturbation can trigger flavor
instability. However, nothing prevents that for some region of the parameter
space, the solutions imposed by the eigenvalue equations require a w or a q
with an imaginary part. In these cases, the system will be unstable, and small
perturbations can trigger flavor conversion.

In order to discuss the physics contained in these equations in a more
intuitive way, we proceed to apply them to a toy model which will help us to
explore all the useful information contained in such simple equations.

5.6 The two neutrino beam model
As mentioned above, in order to extract the maximal amount of information
from the DR, we will discuss a very interesting toy model, which consists of
two infinitely long colliding beams. Both beams contain left and right moving
neutrinos and antineutrinos. We can see in Figure 5.1 a pictorial representation
of the system. The main advantage of this toy model is that is analytically
solvable [2], which has motivated a wide variety of studies [52–55].

The road map to understand the physical implications of the DR is the fol-
lowing: we will start with the most easy example, consisting of two frontally
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Figure 5.1: Pictorical representation of colliding beams of neutrinos and an-
tineutrinos [2]. The system is initially homogeneous, and is infinite in all
directions. The normalized neutrino flux is 1 + a, and the antineutrino one is
given by 1− a, with −1 ≤ a ≤ 1. The upper beam has a normalized strength
of 1+b, whereas the lower beam has 1−b, where the parameter b parametrizes
the left-right asymmetry.

colliding beams. We will consider inhomogeneities in the perpendicular direc-
tion, but assuming that the system is spatially stable. This translates into the
fact that we can label the inhomogeneities using their wave vectors. Moreover,
we will strict our study to the time evolution of the system. As a first step,
we consider the maximally asymmetric case, which consist of only two modes,
and then we will allow for asymmetries, which translates in adding two extra
modes for a total of four.

The next step will be to consider a laterally homogeneous case, but with
the two beams colliding with an angle. As a last step, we will consider the
same setup, but for the first time we will also consider the spatial evolution in
our equations. This will lead us, for the first time, to a full DR relation, and
allow us to plot the instabilities regions in the ω–kz plane.

5.6.1 Two colliding beams

As stated above, we will start with the simplest example consisting of a one-
dimensional system of two colliding beams. This is pictorially represented in
Figure 5.1. For this first configuration we will strictly study the temporal
evolution of the system. By doing so, we implicitly assume that the system
is spatially stable, and therefore the spatial modes can be described by the
wave vectors k, which are, according to our assumptions, real numbers. On
the other hand, in order to make this example more intuitive, we will be use
three-vector notation. The EOM for this is

ΩQi =

[
$i + vi · k + µ

N∑
j=1

(1− vi · vj) gj
]
Qi − µ

N∑
j=1

(1− vi · vj) gjQj .

(5.6.1)
Because we are dealing with a discrete system, we have replaced our in-

tegrals with summations. This is the nicest features of the neutrino beam
example; the discreteness of the velocity distributions translates to analyti-
cally solvable equations and thus makes this system very useful to understand
the underlying physics. Another highly useful feature of this system is that,
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due to the discrete nature of the system, we can write the EOM in a matrix
form, so that

Ω


R
L̄
L
R̄

 =




$ + k 0 0 0
0 −$ − k 0 0
0 0 $ − k 0
0 0 0 −$ + k



+ λ + 2µ


l + l̄ −l̄ −l 0
−r r + r̄ 0 −r̄
−r 0 r + r̄ −r̄
0 −l̄ −l l + l̄





R
L̄
L
R̄

 , (5.6.2)

where the factor factor of two arises from the current-current term (1−vi vj),
which is 2 for opposite velocities, and zero for parallel ones.

Two modes

We will start discussing the case where we only have right-moving neutrinos
and left-moving antineutrinos, i.e., r̄ = l = 0. This setup corresponds to the
maximal left-right asymmetry. We also introduce the parameter a, defined
in the range −1 6 a 6 1, which will determine the neutrino-antineutrino
asymmetry of the example, such that r = (1 + a) and l̄ = −(1 − a). In the
language of the previously introduced matrix, will mean that the EOM reduce
to a 2× 2 matrix of the form

Ω

(
R
L̄

)
=

[(
$ + k 0

0 −$ − k

)
+

(
−1 + a 1− a
−1− a 1 + a

)](
R
L̄

)
. (5.6.3)

Let’s now examine this equation carefully. The wave number k, which is by
definition a real quantity, appears in the diagonal entries of the matrix, always
with the same sign as the vacuum oscillation frequency $. The reason for it
can be inferred from Equation 5.6.2. The wave number appears in the equa-
tions under the term v · k. This term is positive, i.e. +k, for right moving
neutrinos (vacuum frequency +$), and negative (−k) for left-moving antineu-
trinos (vacuum frequency −$). Therefore, for the left moving antineutrinos,
this product will have a negative sign, and, according to our introduced con-
vention, antineutrinos have negative $. So, in essence, k is playing the same
role $ is. This motivates us to introduce the parameter $̃ defined as

$̃ = $ + k. (5.6.4)

Using this parameter, when solving Equation 5.6.3, we arrive at the following
eigenvalue equation

Ω = 2aµ±
√

(2aµ)2 + $̃($̃ − 4µ). (5.6.5)

If we set $̃ to zero, the solutions obtained are purely real. For a non-zero $̃,
the eigenfrequencies have a imaginary part for

1−
√

1− a2 <
$̃

2µ
< 1 +

√
1− a2, (5.6.6)
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where the k modes can be positive and negative. However, we have defined
µ to be positive, which means that $̃ > 0 or, equivalently, k > −$. The
imaginary part is maximal for µ = $̃/(2a2), and is

Im(Ωmax) = $̃

√
1

a2
− 1. (5.6.7)

This equation shows very interesting features. First of all, if we return to the
homogeneous case (k = 0), the growth rate is proportional to $, which is the
usual behavior in the context of linearized stability analysis. On the other
hand, if we remain the inhomogeneous case (k 6= 0), but we set the vacuum
oscillation frequency to zero ($ = 0), the imaginary part is not zero, as one
would expect. On the contrary, the instability growth rate has a maximum
value, which occurs for ω̃ = 2µ, given by

Im(Ωmax) = 2µ
√

1− a2. (5.6.8)

In other words, the maximum growth rate is proportional to µ, i.e., to
√

2GFnν .
This unprecedented behavior receives the name fast flavor conversion, since the
neutrino-neutrino interaction strength can be much higher than $. Finally, we
must remark that this phenomenon vanishes in case we go to the symmetrical
configuration, i.e., with the parameter a being +1 or −1.

Four modes

As a next step, we will extend the previous example by adding two degrees of
freedom. In other words, we won’t be considering the most asymmetric sce-
nario but we study the case where there are both neutrinos and antineutrinos
moving right and left. Analogously to the previous section, we will use the
parameter a to measure the neutrino-antineutrinos asymmetry. Moreover, we
introduce the parameter b, defined on the range −1 ≤ b ≤ 1 to denote the
left-right symmetry. Using these parameters, the occupations can be written
as

r = +1
2
(1 + a)(1 + b), (5.6.9a)

l̄ = −1
2
(1− a)(1 + b), (5.6.9b)

l = +1
2
(1 + a)(1− b), (5.6.9c)

r̄ = −1
2
(1− a)(1− b). (5.6.9d)

We can now rewrite the neutrino-neutrino refraction matrix from Equa-
tion 5.6.2 as

µ


2(a− b) (1− a)(1 + b) −(1 + a)(1− b) 0

−(1 + a)(1 + b) 2(a+ b) 0 (1− a)(1− b)
−(1 + a)(1 + b) 0 2(a+ b) (1− a)(1− b)

0 (1− a)(1 + b) −(1 + a)(1− b) 2(a− b)

 .

(5.6.10)
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From this equation, we can see that the case analyzed in the previous section
corresponds to b = 1. However, for this more general case, we deal with 4× 4
matrices. Therefore, the eigenvalue equation will be of quartic order, meaning
that we can gain very few insights from the general solution. However, there
are particular cases which can be very helpful to provide some understanding
of the underlying physics. We start with the homogeneous case (k = 0).
Moreover, we consider the left-right symmetric configuration, which means
b = 0. In this limit, we obtain two eigenvalue equations given by

Ω = aµ±
√

(aµ)2 +$($ − 2µ), (5.6.11a)

Ω = 3aµ±
√

(aµ)2 +$($ + 2µ). (5.6.11b)

This symmetrical setup has been traditionally the object of study in the lit-
erature. The first solution corresponds to the usual flavor pendulum for IO,
whereas the second corresponds to the symmetry breaking solution for NO.
Both solutions have been studied in Reference [52]. Solutions with k 6= 0 have
been discussed in References [1,54], and will be the object of study in the next
chapter. We now focus on the asymmetric (b 6= 0) scenario. Very interestingly,
we find non-trivial solutions for the eigenvalue equations even in the massless
limit, i.e., $ = 0, which are

Ω = 2aµ± (k − 2bµ), (5.6.12a)

Ω = 2aµ±
√

(2aµ)2 + k(k − 4bµ). (5.6.12b)

These equations provide only real solutions in the case both b and k are zero.
However, in the general case, the second equation can provide imaginary so-
lutions under the condition (2a)2 < k(4bµ − k). This condition can also be
expressed as

b−
√
b2 − a2 <

k

2µ
< b+

√
b2 − a2. (5.6.13)

Therefore, there are only unstable solutions if a2 < b2. In other words, the
necessary condition for instability in the $ = 0 case is that the left-right
asymmetry must exceed the neutrino-antineutrino asymmetry. For a given
value of µ, the maximum growth rate is reached for k = 2bµ, and is

Im(Ωmax) = 2µ
√
b2 − a2. (5.6.14)

As happened in the previous case, the maximum growth rate is proportional
to the neutrino-neutrino interaction strength µ, and it appears only for k 6= 0.

5.7 Intersecting beams
Hitherto, we have seen that an asymmetry is the triggering factor for fast flavor
conversion, i.e., flavor conversion for $ = 0. However, for the one dimensional
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Figure 5.2: Two intersecting beams with of four modes [2]. The system is
assumed to be homogeneous and the beams have a relative angle θ.

case, inhomogeneities are necessary in order to observe this phenomenon. The
natural question to ask is whether it is possible to observe fast flavor conversion
in a scenario where k = 0. In order to answer this question, we will proceed
to analyze a two dimensional model. The idea is to extend the simple model
we have already studied by considering that the two beams intersect with an
angle θ. This model is pictorially displayed in Figure 5.2. This setup corre-
sponds to the four modes case, with directions that intersect with an angle θ.
In this situation we can have a velocity component in the perpendicular direc-
tion1. As stated above, this example is constructed assuming a homogeneous
transverse direction or k = 0. By a careful examination of the symmetries of
the system, we realize that we can obtain a more elegant analytical solution if
we decompose the system in a symmetric and an asymmetric mode, which are
defined as

A± = 1
2
(L±R), (5.7.1a)

Ā± = 1
2
(L̄± R̄), (5.7.1b)

respectively. Thanks to these two newly introduced modes, we can massage
Equation 5.6.2 and obtain two decoupled equations. The first one, correspond-
ing to the symmetric mode, is

Ω

(
R
L̄

)
=

[(
$ + k 0

0 −$ − k

)
+

(
−1 + a 1− a
−1− a 1 + a

)](
R
L̄

)
, (5.7.2)

and analogously for the asymmetric mode

Ω

(
R
L̄

)
=

[(
$ + k 0

0 −$ − k

)
+

(
−1 + a 1− a
−1− a 1 + a

)](
R
L̄

)
. (5.7.3)

The asymmetric eigenvalue Equation 5.7.2 only provides real eingevalues when
setting $ to zero. On the other hand, the asymmetric eigenvalue equation
given by Equation 5.7.3 provides non-trivial imaginary solutions even in the
$ = 0, such that

Ω =
aµ(5 + cθ)

2
± µ

2

√
(1 + cθ)2a2 − 8cθ(1− cθ), (5.7.4)

1This system, as we will discuss in Chapter 7, can be related to a more SN-type scenario
where neutrinos are emitted from a spherical surface.
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Figure 5.3: Contour plot of the growth rate given by Equation 5.7.4 as a func-
tion of the left-right asymmetry parameter a (−1 < a < 1) and cos(θ) [2]. For
this figure the mode occupations have been chosen to be left-right symmetric.
The growth rate is shown in units of µ. Instabilities occur only for cos(θ) > 0,
but are symmetric with respect the sign of a.

where cθ = cos(θ). In Figure 5.3 we show a contour plot for the imaginary
part of Ω as function of the asymmetry parameter a and the cosine of the
intersecting angle cos(θ). From the figure we can infer that the system is
symmetric with respect to the parameter a, whereas there are only unstable
solutions for positives vales of cos(θ). The maximum growth rate is

Im(Ωmax) = µ/
√

2, (5.7.5)

reached for a = 0 and cos(θ) = 1/2. Once again, this quantity is proportional
to µ.

Figure 5.3 shows us under which circumstances the system will be unsta-
ble, but it does not provide information of how the system exactly behaves in
the unstable regime. In order to gain a physical understanding of the system’s
behavior, we have numerically solved the system using the full non-linear equa-
tions. The result of this study is that the system shows the typical behavior
of a flavor pendulum [52]: for a small perturbation, there is an exponential
growth of the traversal component, followed by a flavor conversion given by
νeνe → νxνx and then the opposite one νxνx → νeνe.
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Figure 5.4: Two neutrino beam emission spectra from a SN disk.

5.8 Temporal and spatial evolution
Up to this point, we have constrained ourselves to the temporal evolution of
the flavor field. At this level, we have already highlighted the crucial role that
the angular distribution plays. However, we have neither considered spatial
evolution nor have we considered the system’s stability from the spatial stand-
point. As we have already mentioned, the analyses described up to this point
relies on the assumption that the system is spatially stable. This assumption is
not physically justified, so our task is now to explore how the system behaves
when we abandon it.

To this end, we have constructed the following example, where we have
used the same geometry of the previous section. The novelty relies on the
fact that we will study the evolution of the system in time and space. For
the first time in this thesis, we will study the solutions of a full DR equation.
The toy model used is a particular case of the intersecting beams scenario
discussed in the last section. We will continue to assume the $ = 0 limit.
This model is motivated by the SN-type scenarios that we will discuss in the
next chapters. The model is pictorially displayed in Figure 5.4. The idea is
that two neutrino beams are emitted from a disc, and interact at some distance
from the disc. The velocities are defined with respect to angle with respect
to the radial direction of the disk, c1 and c2. This translates to an angular
distribution given by

Gv = G1δ(cθ − c1) +G2δ(cθ − c2). (5.8.1)

Fortunately for us, we have worked out the EOM for this specific situation,
which led us to the eigenvalue equations given by Equation 5.5.1. For conve-
nience, we will write them again here

I2
1 = (I0 − 1)(I2 + 1), (5.8.2)

I2 − I0 = 2. (5.8.3)

Although the toy problem is rather simple, the DR obtained is complicated
from the algebraic point of view. Indeed, there is little information we can
extract from the analytical solution. Nevertheless, we can solve the DR for
different examples and try to understand the physics of the system. The next
section is devoted to this task.



5.8 Temporal and spatial evolution 59

Forbidden bands

To gain some understanding of the information contained in the DR, we have
plotted the results provided by Equation 5.8.2 in Figure 5.5. More precisely, we
have displayed the axially symmetric solutions. We have chosen this solution
for simplicity since the axially breaking solution produces very similar results.
Figure 5.5 shows the DRs hyperbolas in the ω–kz plane. This figure will
allow us to identify regions in the parameter space where there are no allowed
frequencies, regions where there are not allowed wave number solutions, or
both. Let’s analyze carefully the four possible cases2.

The panels on the left column correspond to 0 ≤ cos θ1,2 ≤ 1 or, in other
words, to forward-only emission. This is the assumption classically made for
the bulb model, as we will explain in the next chapter. The panels on the right
column correspond to forward and backward emission, which follows from the
condition cos θ2 < 0. Moreover, the panels in the upper row correspond to the
case where both beams have an νe excess (G1,2 > 0), whereas the lower column
shows the case where one mode has an ν̄e excess (G2 < 0).

We will start analyzing left upper panel, i.e., the case where both beams are
νe dominated (G1,2 > 0) and there is forward-emission only (cos θ1,2 < 0). In
such case, we see that for the whole parameter space, there is always a real pair
of (ω − kz) values that fulfills the DR equation. In other words, no fast flavor
conversion will ever occur. We shift now to the top-right panel, where both
beams are νe dominated (G1,2 > 0) but we have backwards modes (cos θ2 < 0).
For this particular setup, the DR prescribes two parabolas of real ω and kz, but
there is frequency gap. This means that all spatial disturbances will propagate.
However, if we impose as initial condition a value for the frequency from the
forbidden gap, the system will undergo a spatially exponential growth. The red
blob represents the modulus of the imaginary part of kz for such a situation.
The lower-right panel shows the situation where the forward mode (cos θ1 > 0)
has an ν̄e excess (G1 < 0), whereas the backward mode (cos θ1 > 0) an νe
excess (G2 > 0). In this case, there is a wave number gap. In other words, all
temporal disturbances will propagate, but if we impose as initial condition a
value for kz from the gap, the system will undergo a temporal run away. The
red blob shows the modulus of Im(ω). Finally, for the lower-left panel, we have
the situations where there are only forward modes (cos θ1,2 < 0), but one of the
beams shows an ν̄e excess (G1 < 0). In this situations, we can have a complex
ω for a real kz or a complex kz for a real ω. Therefore, disturbances with kz in
the wave number gap will grow exponentially in time, whereas a real value for ω
imposed at the boundary causes exponential spatial growth. These conclusions
carry over to even more general G(θ), where the necessary condition for the
gaps is wave number gap is that the ELN has to show a crossing from positive
to negative intensities. This crossing generates a gap which, in turn, leads to

2A very similar four panel figure can be found in Reference [56], in the context of plasma
physics.
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Figure 5.5: DRs for two colliding beams, non-stationary case [4]. The black
lines are the hyperbolas obtained from Equation 5.8.2. The thick red lines
are the real part of the frequency ω for real wave vector kz or the real part
of kz for an imaginary ω. The red bubbles are the imaginary part of ω or
kz. The panels in the left column shows the configurations with only forward
modes, and the panels in the right column shows the scenario with forward
and backward modes. Moreover, the top row panels correspond to a νe excess
scenario whereas the two bottom panels to a ν̄e excess in the forward mode
scenario.
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fast flavor conversion. We can trace an analogy between this effect and the
spectral crossings in the traditional unstable modes [57,58].

Let’s now summarize the information contained in Figure 5.5. If the DR
has no gaps, we can conclude that the system is stable. However, this not
seem to be the generic case. Depending on the characteristics of the angular
emission of the system, there can be regions where there are no allowed real
frequencies, regions where there are not allowed real wave numbers, or both.
Altogether, the DR will determine which solutions are compatible with the
EOM, but not if these solution will indeed occur.

5.9 Boundary conditions

As we have discussed, having backward modes produces very interesting effects
in our DR. The idea of having such modes in a SN-type scenario is not new:
some authors have already proposed models with a backward flux [59,60]. The
existence of such a flux immediately implies the necessity of having different
boundary conditions in different spatial regions of the SN. Moreover, in a
SN, the inward moving neutrinos come form NC scattering from the outward
moving ones. This implies a flavor correlation between the inward and outward
flow of neutrinos which goes beyond the prescription of the EOM.

Furthermore, we have studied that under certain circumstances, the DR
shows ω gaps. In such a case, the spatial boundary conditions and their time
variation are needed to understand the generic behavior of the flavor field. It
is also possible that the collision term has to be included in the EOM to see
which modes of the flavor field are actually excited, which would go beyond
the forward-scattering description used in our analysis.

On the other hand, we have discussed that “crossings" in the ELN will
result in a DR with a gap for the wave vector, and temporal instabilities,
which depend in the initial conditions of the flavor disturbances. Furthermore,
there could be the situation where there is both a gap for the wave vector
and the frequency. In such a case we have the advantage that if the system
is unstable on its space or on its time evolution would be sufficient for flavor
decoherence.

5.10 Summary

The introduction of a multidimensional FT to solve the EOM has led us to
an equation for the flavor modes where for every wave number there is an
associated frequency. In other words, we have ended up with a dispersion
relation for the flavor waves. We have developed the equations for a generic
case where there is some axial asymmetry that we have arbitrarily named the
z direction. Moreover, we have derived the equations for the axially symmetric
and axially breaking cases. We have then particularized the equations for a
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laterally homogeneous case and for the massless limit, and we have introduced
some definitions that are frequently used in linearized flavor stability analysis.

The colliding neutrino beam model has been used as a toy model to under-
stand the potential of the DR. To begin our analysis, we have assumed that the
system is spatially stable, and we have focused on the study of the temporal
evolution. For the first example, we have studied the two neutrino beam.

During the study of these models, we have encountered for the first time the
fast oscillations i.e. flavor conversion modes whose growth rate is proportional
to the neutrino interaction strength µ.

Fast oscillations

For the vast majority of the cases studied previously in the literature, the
growth rate for the flavor instabilities is proportional to $. However, by break-
ing the symmetry of the system, we see that the growth rate of the instability
is proportional to µ. Moreover, dense environments are defined by the condi-
tion µ � $. For this reason, this type of instabilities are referred to as fast
flavor conversion. To put numbers to these assertions , we will remind the
reader that, for the case of neutrinos with an energy of E = 12.5 MeV, the
vacuum oscillation frequency is $ = 0.5 km−1, whereas the growth rate of “fast
multiangle instabilities" is given by

Φ0 =
√

2GF(nνe − nν̄e) = 6.42 m−1 nνe − nν̄e
1031 cm−1

, (5.10.1)

where we have used natural units with ~ = c = 1. In any case, in the real
scenario there are indeed flavor oscillations due to neutrino masses and their
mixing angles, so even if their are not the dominant source of self-induced
flavor conversion there will nevertheless act as seed to self-induced neutrino
oscillations even on the mean-field regime.

For the next step, we have dropped the assumption that the system is
spatially stable and we have studied the spatial and temporal evolution of the
two beam scenario. In other words, we have studied for the first time the full
DR of the system. We have shown the four types of forbidden regions. For any
physical scenario where self-induced neutrino flavor oscillations may occur, the
resulting DR needs to be a linear combination of this four cases.

Finally, we have pointed out that the main limitation of the DR is that it
does not determine which of the solutions will develop in a real scenario. In
order to understand how the system behaves, it is unavoidable to deal with
the boundary conditions.



Chapter 6
Particular case: non-homogeneity in the
bulb model

In the present chapter, we discuss a particular case of the general equations
discussed in Chapter 5. More precisely, we will apply the EOM to a toy model
that mimics the environment present inside a core-collapse SN. The first step
will consist of introducing the bulb geometry and adapt the EOM to this
particular setup. We will assume that the system is stationary and we will
restrict our study to the spatial evolution of the system. Furthermore, we will
start by assuming the same angular emission distribution for all the neutrino
species. The particularity of this study relies on the fact that we will consider
inhomogeneities in the perpendicular direction, and we will study the effects
these small scale perturbations can have in the flavor evolution of the neutrino
flavor field in a SN-type scenario.

The main difficulty arises from the fact that the equations for this sce-
nario are not analytically solvable. Therefore, we will start studying simplified
models and we will gradually add complexity to the system until we reach a
realistic setup. Using this approach will help us understand the role of the
inhomogeneous modes in the perpendicular direction.

The first case analyzed is a one dimensional (1D) model, which will provide
us a first glimpse of the effect of the small scale instabilities in the system. We
then go a step forward in complexity and we study a two dimensional (2D)
model. In the conclusions, we discuss our results and we study the impact of
perpendicular homogeneities in a realistic SN scenario by plotting a footprint
diagram, where we use the matter profile provided by a numerical core-collapse
SN simulation. Finally, we discuss the validity of these results and the impact
of the assumptions made.

63
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6.1 Stationarity, same νe and ν̄e angular distribu-
tion

For a long period of time, the studies in neutrino self-induced flavor conversion
have been performed under the assumption of stationarity. The justification for
this assumption was the following: because ultrarelativistic neutrinos move at
speeds very close to the speed of light, the traveling time of a neutrino emitted
from the neutrino sphere to the outer space is of the order of 10−4 s. In this
time scale, it is reasonable to expect that the SN environment has not changed,
and therefore the stationarity is justified. However, this is not necessarily the
case if the neutrino ensemble is unstable in its time evolution, i.e., if the system
is in one of the forbidden bands described in Chapter 5.

Given that we are not in one of these regions, we can safely drop the time
dependence of the equations and investigate the stability of the system on its
spatial evolution. Furthermore, we will assume the same angular emission for
all neutrino species. Although, as discussed in Chapter 3, this is not physically
sustained, it has been assumed for a long time in the context of self-induced
flavor conversion1. The present chapter is based on the results of Reference [1].

6.2 The bulb model

The first step for this discussion is to introduce the bulb model [61–63], which
is a geometry that has been widely used in the context of core-collapse SN neu-
trino emission. As we will discuss, this geometry is physically well motivated.
The basic geometry of the bulb model can be seen in Figure 6.1.

The main characteristic of the “Neutrino bulb model” is that neutrinos are
isotropically emitted from a spherical surface of a given radius R. The zenith
angle (θr) is described with the usual label u = sin2 θr, thus the isotropic
“blackbody like” emission implies a uniform distribution over the interval, 0 ≤
u ≤ 1. Similar to Reference [64], we stress that R is not the physical neutrino
decoupling radius or neutrino sphere, but rather the radius of a hypothetical
blackbody surface. The zenith angle distribution at the neutrino sphere is
found to be forward peaked. In order to avoid the complication from the
angular distribution of the spectrum, we define R such that the u distribution
is uniform.

The direction perpendicular to the radial direction is labeled as x, and
the radial (vz) and perpendicular (β) velocities are related by vz =

√
1− β2.

Therefore, v ·∇ → vz∂z + β ·∇x and neglecting terms higher than O(β2)
gives (v − v′)2 ≈ (β − β′)2.

We re-scale our variables by going to a “co-moving” coordinate frame such
that the angular scale remains fixed, i.e., β = R

r
βa and a = R

r
x. v is defined

1 In the next chapter we will investigate the case where the different neutrino species
have different angular distributions.
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Figure 6.1: Geometric layout of the neutrino bulb model emission [28]. Neu-
trinos are emitted half-isotropically from the surface of the neutrino sphere.
The θr is defined between the neutrino’s trajectory and the radial directions
at the radius r.

as a 2D vector with 0 ≤ |v| ≤ 1. This variable v is related to the usual u as
v2 = u. In the new variables, therefore β ·∇x becomes βa ·∇a. Moreover,
some of the factors R/r can be reabsorbed in the definitions of µ and λ such
that

λ =
√

2GF(ne + nē)
R2

r2
and µ =

√
2GF(nνe + nν̄e)

R2

r2
. (6.2.1)

Another advantage of using this geometry becomes noticeable as soon as we
move to reference frames at large distances with respect to the neutrino sphere,
i.e., in situations where R � r. In this limit, we can use the so-called long
distance approximation, which consists of

vz = (1− (R/r)2β2
a)
−1/2 ≈ 1 +

1

2
(R/r)βa. (6.2.2)

6.3 EOM adapted to the stationary bulb model

The linearized EOM for the setup described above is [1]

i(∂zvz + β ·∇a)St,x,$,v =
(
$ + λ̄− µ ε1 · v

)
St,x,$,v

−µ
∫
dΓ′ 1

2
(v − v′)2 g$′,v′St,x,$′,v′ , (6.3.1)

where the effective matter term is defined as λ̄ = λ− µε, with

ε =

∫
dΓ g$,v and ε1 =

∫
dΓ g$,v v . (6.3.2)
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Here, ε represents the “asymmetry” between neutrinos and antineutrinos. The
second term, ε1, represents a neutrino current which exists if their distribu-
tion is not isotropic and not symmetric between neutrinos and antineutrinos.
Moreover,

∫
dΓ′ =

∫ +∞
0

d$′
∫
dv and the velocity integration dv′ is over the

unit sphere. Because the neutrino speed obeys |v| = 1, we have written,
for later convenience, the current-current velocity factor in the unusual form
(1− v · v′) = 1

2
(v − v′)2.

We now multiply both sides of Equation 6.3.1 by 1/vz and apply the long
distance approximation explained in last section, expanding the equation up
to order O(β2). We then re-label our variables2 and denote the radial direction
z as t, and we arrive at the following linearized EOM

i(∂t + v ·∇x)St,x,$,v =
(
$ + 1

2
λ̄v2 − µ ε1 · v

)
St,x,$,v

−µ
∫
dΓ′ 1

2
(v − v′)2 g$′,v′St,x,$′,v′ . (6.3.3)

This equation corresponds to Equation 6 of Reference [65], but with the ad-
ditional term describing the self-induced inhomogeneities. Moreover, we have
also found the additional term µε1 · v which is unavoidable in a non-isotropic
system, irrespective of the question of homogeneity. This neutrino flux term
is missing in Reference [65]. The presence of this term modifies the eigenvalue
equation for a non-isotropic system. Moreover, since we are not in the limit
$ → 0, our equations are sensitive to the neutrino mass ordering. During our
stability analysis we will be solving the equations for −∞ < λ < +∞ and
−∞ < µ < +∞. Physically, positive λ and µ correspond to NO and negative
λ and µ to IO.

6.3.1 Oscillation eigenmodes

As we have stated, we restrict this study to the spatial (that we have renamed
the temporal coordinate for convenience) evolution of the system. Therefore,
in order to find unstable modes, we seek solutions of our linearized EOM of
the form St,k,$,v = QΩ,k,$,ve

−iΩt, leading to an EOM in frequency space of the
form

(
1
2
λ̄v2 + k̄ · v +$ − Ω

)
QΩ,k,$,v = µ

∫
d$′

∫
dv′ 1

2
(v − v′)2 g$′,v′ QΩ,k,$′,v′ .

(6.3.4)
Eigenvalues Ω = γ + iκ with a positive imaginary part represent unstable
modes with the growth rate κ.

2The reason for this change is to use the same notation adopted in other works on this
topic.



6.4 One Dimensional scenario 67

6.3.2 Monochromatic and isotropic neutrino distribution
For the examples studied, we will consider monochromatic neutrinos with fixed
energy. Assuming that the energy and velocity distribution factorize, we may
write the spectrum in the form

g$,v = h$ fv . (6.3.5)

The monochromatic energy spectrum is

h$ = −α δ($ +$0) + δ($ −$0) , (6.3.6)

meaning that we have α antineutrinos (frequency $ = −$0) for every neutrino
($ = $0). The spectral asymmetry is ε = 1− α.

We will consider isotropic velocity distributions which, in addition, are
uniform, corresponding to blackbody-like angular emission in the SN context.
In this case, fv = 1/Γv, where Γv is the volume of the velocity phase space.
The eigenvalue equation (6.3.4) finally simplifies to the form in which we will
use it,(

1
2
λ̄v2 + k · v +$ − Ω

)
QΩ,k,$,v = µ

∫
d$′ h$′

1

2Γv

∫
dv′ (v−v′)2QΩ,k,$′,v′ .

(6.3.7)
We now consider systematically different cases of velocity distributions.

6.4 One Dimensional scenario
This scenario corresponds to the same colliding beams toy model discussed
in Section 5.6. We will use this example once again because of its simplicity.
This model will allow us to obtain a first glimpse of the effects that small scale
instabilities introduce in the system.

6.4.1 Single angle (|v| = ±1)
The first system we analyze is the single angle case, a nomenclature which
refers to the zenith-angle distribution of neutrinos. Single angle means that
the neutrino velocity distribution adopts the value |v| = 1. In our first 1D
case this means we consider two colliding beams with v = 1. Matter effects
can be rotated away. The eigenfunction QΩ,k,$,v now consists of four discrete
components. We denote these four amplitudes with the complex numbers R
for right-moving (v = +1) neutrinos ($ = +$0), R̄ for right-moving antineu-
trinos, and analogous L and L̄ for left movers. Our master equation (6.3.7)
then reads


$0 + k 0 −µ µα

0 −$0 + k −µ µα
−µ µα $0 − k 0
−µ µα 0 −$0 − k

− Ω



R
R̄
L
L̄

 = 0 . (6.4.1)
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The eigenvalues Ω are found from equating the determinant of the matrix in
square brackets with zero. This condition can be written in the form(

1

−k +$0 − Ω
− α

−k −$0 − Ω

)(
1

k +$0 − Ω
− α

k −$0 − Ω

)
µ2 = 1 .

(6.4.2)
This expression depends only on µ2 and therefore yields identical eigenvalues
for positive and negative µ, i.e., for both neutrino mass hierarchies. It is also
even under k → −k as it must because the system was set up isotropically.
The maximum growth rate that the eigenvalues of this equation provide is

κmax =
2
√
α

1− α $0 , (6.4.3)

either for the homogeneous (k = 0) and inhomogeneous (k 6= 0) case. There-
fore, it is proportional to the vacuum oscillation frequency and not to k. The
reason for that is that we are considering the symmetric configuration, as we
have discussed in the previous chapter.

6.4.2 Multi-angle (0 ≤ v ≤ 1)

For the next step, we want to study what is the impact of the matter or, more
precisely, what is the impact of the multi-angle matter effect. Therefore, we
drop the condition |v| = 1 and instead we will integrate over the whole velocity
interval−1 ≤ v ≤ 1. The equations are now continuous in the velocity variable,
leading us to

(
1
2
λ̄ v2 + k v +$ − Ω

)
QΩ,k,$,v = µ

∫ +∞

−∞
d$′ h$′

1

4

∫ +1

−1

dv′ (v − v′)2QΩ,k,$′,v′ .

(6.4.4)
Now, by carefully examining the r.h.s. of this equation it becomes clear that the
v dependence of the equations terms is a linear combination of A0+A1v+A2v

2.
With this in mind, the appropriate ansatz to solve Equation 6.4.4 is

QΩ,k,$,v =
A0 + A1v + A2v

2

1
2
λ̄ v2 + k v +$ − Ω

, (6.4.5)

Now, inserting this ansatz in both sides of Equation 6.4.4 we arrive at

A0 + A1v + A2v
2 =

µ

4

∫ +∞

−∞
d$′ h$′ ×∫ +1

−1

dv′ (v′2 − 2vv′ + v2)
A0 + A1v

′ + A2v
′2

1
2
λ̄ v′2 + k v′ +$′ − Ω

. (6.4.6)

This equation consists essentially of three linearly independent equations, where
each of them corresponds to the different powers of v. These equations will
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be linear as a function of the parameters A0, A1 and A2. We can write this
equation in a compact form using matrices, obtaining1−

 I2 0 I4

0 −I2 0
I0 0 I2

 A0

A1

A2

 = 0, (6.4.7)

where the In integrals are

In =
µ

4

∫ +∞

−∞
d$ h$

∫ +1

−1

dv
vn

1
2
λ̄ v2 + k v +$ − Ω

, (6.4.8)

The main difficulty added in the multi-angle case is that we move from a
discrete to a continuous system. Moreover, the transient equations like the
ones given by Equation 6.4.8 are, in most cases, only analytically solvable
when assuming limiting cases for some of the parameters. Therefore, we have
to rely on numerical tools to study the system’s evolution.

No matter effects (λ̄ = 0)

More useful information can be extracted by assuming there is no matter in
the system, i.e., by setting λ̄ = 0, and study the equations to get a deeper
understanding of the effects of the k modes alone before we include matter
effects.

Homogeneous case (k = 0)

As a first example, we calculate the solution for the homogeneous case. In other
words, we get rid of the inhomogeneities by setting k = 0. The peculiarity of
the k modes is that they directly affect the denominator of Equations 6.4.8,
and by setting them to zero, the integrals become analytically solvable. This
gives us the opportunity to study how the matter potential affects the behavior
of the solutions. This is a mathematically motivated study, with little interest
from the point of view of a realistic physical setup. The integrals with an odd
power of v will cancel. For even powers of v, we can analytically solve the
integrals and obtain

In =
µ

2n+ 1

(1 + α)$1 − (1− α)Ω

$2
1 − Ω2

, (6.4.9)

and the eigenvalue equation corresponds to

det

$2
0 − Ω2 − µ

2

1
3

0 1
5

0 −2
3

0
1 0 1

3

 [(1 + α)$0 + (1− α) Ω]

 = 0 . (6.4.10)

This determinant provides two sets of decoupled equations: one given by the
middle entry −2/3 and another one given by the remaining 2×2 block. These
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solutions are plotted in Figure 6.2. The positive values for µ correspond to
NO, whereas the µ < 0 results correspond to IO. These results are very similar
to the three types of instabilities in the study of axial symmetry breaking
solutions in SN [65]. The solution that only appears in the IO region is the
Bimodal instability and corresponds to the flavor pendulum. It is given by the
decoupled eigenvalue equation provided by Equation 6.4.10. The first of the
instabilities in the NO region is the “multi-azimuthal angle” (MAA) instability.
The third solution, which appears only in NO and for large µ is the “multi
zenith angle” (MZA) instability.

Additionally, we have studied the same system using a set of discrete ve-
locities, where the v = ±1 case is the simplest example with nv = 1 bins. We
count the number of bins in the range 0 < v ≤ 1. In other words, there is
an equal number of bins for negative velocities and the total number doubles
for our two frequencies ($ = ±$0). Adding the values v = ±1/2 takes us to
nv = 2, shown in the second panel of figure 6.2. It reveals that the hierarchies
are not symmetric (µ → −µ symmetry) if the velocity range is non-trivial
and that there are indeed two normal-hierarchy solutions. Increasing the bin
number nv eventually emulates the results from the uniform v distribution. A
fairly small number of velocity bins is enough to achieve good agreement.

Inhomogeneous case (k 6= 0)

We will now “switch on” the instabilities, i.e., were are going to study the case
where k 6= 0. The integrals for this setup are analytically solvable and are given
in Appendix B. In Figure 6.3 we have plotted the results of our analysis. The
left column we only show the result for the MZA. For small k, the instabilities
shift to the left and their shape is slightly altered. For large k, the shifting
scales almost linearly with k. In other words, the instability curves are very
similar as a function of µ/k. The right panels show the results for the MAA
and the bimodal instabilities in the (µ < 0) and (µ > 0) regions, respectively.
The behavior of these solutions with the variation of k is very similar to the
one observed for the MZA instabilities.

Including matter effects (λ̄ 6= 0)

Including matter in our “multi-zenith-angle” case has the effect of introducing
both λ̄ and k in the denominator of the integrals of Equation 6.4.8. The equa-
tions for the homogeneous (k = 0) are still analytically solvable and can be
found in Appendix B. Once the inhomogeneities are “switched on”, the system
can no longer be solved analytically and the solutions have to be found numer-
ically. As we will see, the effect of λ̄ is very similar to the effect introduced by
k: the unstable regions will get “stretched” to a broader range of µ values.
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Figure 6.2: Growth rate κ for the unstable modes in the 1D multiangle case.
k is set to zero, and α = 1/2 obtained from Equation 6.4.10. The black
lines represent the instability curves obtained using discrete beams, where the
parameter nv is the number of beams. With increasing number of beams, the
discrete bins example recover a uniform distribution.

Homogeneous case (k = 0)

Let’s begin with the homogeneous case (k = 0). The integrals I1 = I3 = 0, so
the eigenvalue equation simplifies down to1−

 I2 0 I4

0 −I2 0
I0 0 I2

 A0

A1

A2

 = 0, (6.4.11)

which lead to the following eigenvalue equations

(I2 − 1)2 = I0I4, (6.4.12)
I2 = −1/2. (6.4.13)

The results obtained from this equations are displayed in the contour plot of
Figure 6.4. The results are plotted as a function of the effective matter density
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Figure 6.3: Growth rates κ for different k modes for the case without matter
effects (λ̄ = 0). The curves are labeled with their wave number. The parameter
α has been set to α = 1/2. The left panels show only the MZA mode, in the
right panels we show the MAA mode (µ < 0) and the bimodal mode (µ > 0).
We can now see he effect of non-zero k: it shifts the curves to higher values of
µ. For large k, the instability curves are similar as a function of µ/k.

λ̄ = λ + εµ. Once again we assume α = 1/2 and therefore ε = 1 − α = 1/2.
The matter-free case (λ = 0) corresponds to the line λ̄ = µ/2. The solutions
shown in the upper panel are given by Equation 6.4.12 and correspond to the
MZA (µ < 0) and the bimodal (µ > 0) instabilities. The solution in the lower
panel is given by Equation 6.4.13, and correspond to the MAA instability. The
effect of increasing |λ̄| is to shift the unstable solutions to regions of higher |µ|.
This creates a butterfly-shape in Figure 6.4.

Inhomogeneous case (k 6= 0)

Including matter in our multi-zenith-angle case has the effect of introducing
both λ̄ and k in the denominator of the integrals of Equation 6.4.8. As we
have already discussed, there is a parallelisms in the way the system is affected
when we add to the system inhomogeneities (k 6= 0) to the action of multi-
matter effects (λ̄ 6= 0). The results are plotted in the butterfly diagram of
Figure 6.5. This figure shows the k = 0 or homogenous case, which is the same
information displayed in Figure 6.4 but in a logarithmic scale. Additionally,
we have plotted the Fourier modes for k = 0, k = 102, k = 103 and k = 104, all
of them labeled accordingly. Using the butterfly diagram given by Figure 6.5,
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Figure 6.4: Growth rate κ of the 1D instabilities as a function of µ and λ̄,
assuming α = 1/2. Upper panel: Equation (6.4.12) yields the bimodal insta-
bility for µ > 0 and the multi-zenith-angle (MZA) instability for µ < 0. Lower
panel: Equation (6.4.13) provides the multi-azimuth-angle (MAA) instability
for µ < 0. Notice that µ > 0 represents IO, whereas µ < 0 represents NO.

we are now ready to asset the impact of the k modes in the system. Let’s start
by studying the two panels in the right column of the figure, which correspond
to the second and third quadrants, i.e., the quadrants with µ > 0. In essence,
the small scale instabilities fill the space between the k = 0 or homogeneous
solution footprints and the horizontal axis. The region above the homogeneous
solution in the second quadrant and under the homogeneous solution remain
stable. However, there is one caveat to this argumentation, which manifests
itself in the upper panel. In this case, for large k modes, in the region where
we have k ∼ λ, there are “noses” which go beyond the homogeneous solution.
The envelope of the noses exceeds slightly the k = 0 solution and expand to a
region which was previously stable. The left column of the plot (µ < 0) is a
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Figure 6.5: Butterfly diagram in the µ− λ̄ plane. The instabilities (κ > 10−2)
are plotted assuming α = 1/2. The asymptotic behavior for large λ̄ is explicitly
derived in Appendix C.

bit more complicated because of the presence of two instabilities. In large k,
the instabilities converge to the homogeneous solution in a crossed-over way.
This effect is very clearly illustrated in the k = 104. In other words, the MZA
and MAA are strongly mixed for large k.

Now that we have understood the physics of the one dimensional example,
we will move on to a more realistic, two dimensional scenario. The way to
proceed will be analogous to the one followed for the 1D example.

6.5 Two dimensional scenario

The two dimensional (2D) scenario can be understood as adding an additional
degree of freedom to the two beam example. More precisely, we include the
azimuth angle dependence in our EOM. By doing so, we restore the the tra-
ditional treatment of neutrinos streaming outside of the SN case. The radial
evolution is parametrized by our time evolution, and the transverse directions
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are enclosed in our spatial modes.

6.5.1 Single angle (|v| = 1)
As in the 1D case, we start with the “single zenith angle case,” meaning that
the re-scaled neutrino speed within the transverse sheet is |v| = 1. Moreover,
the matter effect can be rotated away. Our velocity phase space is the unit
circle, described by an angle variable ϕ which we can measure relative to k.
Because the system is initially prepared axially symmetric, the eigenvalues
depend only on k = |k|. The eigenvalue equation is now

(k cϕ +$ − Ω)QΩ,k,$,ϕ = µ

∫ +∞

−∞
d$′ h$′

1

2π

∫ +π

−π
dϕ′ (1−cϕcϕ′−sϕsϕ′)QΩ,k,$′,ϕ′ ,

(6.5.1)
where cϕ = cosϕ and sϕ = sinϕ. Exactly as we have done in previous cases, we
notice that the r.h.s. of Equation (6.5.1) has the form A1 +Ac cosϕ+As sinϕ,
i.e., a superposition of three linearly independent functions on the interval
−π ≤ ϕ ≤ +π. Therefore, the appropriate ansatz to solve this equation is

QΩ,k,$,ϕ =
A1 + Accϕ + Assϕ
k cϕ +$ − Ω

. (6.5.2)

By inserting this form on both sides we arrive at three linearly independent
equations, corresponding to the coefficients of the three functions 1, cosϕ and
sinϕ, which we express in a compact form as1−

 I1 Ic 0
−Ic −Icc 0
0 0 −Iss

A0

Ac

As

 = 0 , (6.5.3)

where the Ia are now defined as

Ia = µ

∫ +∞

−∞
d$ h$

1

2π

∫ +π

−π
dϕ

fa(ϕ)

k cϕ +$ − Ω
. (6.5.4)

Here, f1(ϕ) = 1, fc(ϕ) = cosϕ, fcc(ϕ) = cos2 ϕ, and fss(ϕ) = sin2 ϕ. The zero
entries are due to the fact that the integrals with a single power of sinϕ vanish
when we integrate in the interval (−π, π). We also note that Iss = I1 − Icc, so
we need only three different integrals.

Homogeneous (k = 0)

We will start with the homogeneous case (k = 0). This implies that the term
proportional to cϕ is zero, and therefore we can perform all the ϕ integrals
explicitly. Using the monochromatic spectrum given by Equation 6.3.6, the
eigenvalues are

det

$2
0 − Ω2 − µ

1 0 0
0 −1

2
0

0 0 −1
2

 [(1 + α)$0 + (1− α) Ω]

 = 0 . (6.5.5)
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There are three independent equations in this case. The first one corre-
sponds to the usual bimodal solutions, whereas the are the degenerate multi-
azimuthal-angle (MAA) solutions which are unstable for negative µ (NO).
these modes, the instability range is a factor of 2 larger.

Inhomogeneous (k 6= 0)

For the inhomoegeous case (k 6= 0), the integrals of Equation 6.5.4 are no
longer so simple to solve. Instead, we obtain

Ia =
µ

k

∫ +∞

−∞
d$ h$Fa

(
$ − Ω

k

)
where Fa(w) =

1

2π

∫ +π

−π
dϕ

fa(ϕ)

cosϕ+ w
.

(6.5.6)
With our monochromatic spectrum equation (6.3.6) we arrive at

Ia =
µ

k

[
Fa

(
$0 − Ω

k

)
− αFa

(−$0 − Ω

k

)]
. (6.5.7)

We define the auxiliary function of a complex argument w

s(w) =
√
w − 1

√
w + 1 , (6.5.8)

which, for complex numbers, is in general not equal to
√
w2 − 1. We then find

F1 =
1

s(w)
, Fc = 1− w

s(w)
, Fcc = −w+

w2

s(w)
, Fss = F1−Fcc = w−s(w) .

(6.5.9)
These expressions allow us to write the eigenvalue equations explicitly, involv-
ing only polynomials and square-root expressions. We now have three non-
degenerate solutions, in contrast to the original 1D. One solution for µ > 0
(IO) and two for µ < 0 (NO). The solution given by the 2×2 ss-block equation
leads to a much more complicated equation. This solution is explicitly

(1 + α)$0 − (1− α)Ω + α
√
−k −$0 − Ω

√
k −$0 − Ω

−
√
−k +$0 − Ω

√
k +$0 − Ω = −k

2

µ
. (6.5.10)

This solution is a genuine result of the spatial 2D geometry with non-vanishing
wave-vector k. The eigenfunctions in this case are proportional to sinϕ where
ϕ is the angle between k and the velocity v of a given mode. We show contour
plots of the growth rate κ as a function of µ and k for our usual example
α = 1/2 in Figure 6.6.

6.5.2 Multi-angle (0 ≤ v ≤ 1)

The last step in our road to understand the SN-type scenario is by pro-
moting our 2D scenario into a “multi-zenith” angle case, i.e., by consider-
ing the velocities to vary in the disk given by |v| < 1. The angle ϕ is
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Figure 6.6: Growth rate for the 2D inhomoegeous (k 6= 0) case without matter
effects (λ̄ = 0), using α = 1/2. The two central solutions already appeared in
the 1D case, where the unstable µ region scales as k3/4. For the third solution,
the unstable region for µ scales linearly with k. This third solution for µ < 0
is a distinctive feature of the 2D configuration.

the angle between the velocity vector and the wave vector k. Noting that
(1/Γv)

∫
dv = (1/π)

∫ +π

−π dϕ
∫ 1

0
dv v, and the eigenvalue equation is now(

1
2
λ̄v2 + k v cϕ +$ − Ω

)
QΩ,k,$,v,ϕ =

µ

∫ +∞

−∞
d$′ h$′

∫ +π

−π

dϕ′

π

∫ 1

0

dv′ v′ [Dv,v′ − vv′ Lϕ,ϕ′ ] QΩ,k,$′,v′,ϕ′ , (6.5.11)

where Lϕ,ϕ′ = cϕcϕ′ + sϕsϕ′ and Dv,v′ = 1/2(v′2 + v2). The r.h.s. of this
equation is now proportional to four linearly independent terms, namely A0,
A2v

2, Accϕv and Assϕv. The appropriate ansatz for this equation is

QΩ,k,$,v,ϕ =
A0 + A2v

2 + Accϕv + Assϕv
1
2
λ̄+ kvcϕ +$ − Ω

. (6.5.12)

As in the previous cases, we introduce this ansatz in both sides of Equa-
tion 6.5.11, and arranging the terms proportional to the coefficients, we obtain1−


I1

3 I1
5 Ic4 0

I1
1 I1

3 Ic2 0
−2Ic2 −2Ic4 −2Icc3 0

0 0 0 −2Iss3





A0

A2

Ac
As

 = 0, (6.5.13)

where we have used that all terms proportional to
∫

s′ϕdϕ
′ are zero. The

integrals Ian are now defined as

Ian = µ

∫ +∞

−∞
d$ h$

∫ +π

−π

dϕ

2π

∫ 1

0

dv
vn fa(ϕ)

1
2
λ̄v2 + k v cϕ +$ − Ω

. (6.5.14)
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Figure 6.7: Growth rate for the 2D inhomoegeous case without matter effects
(λ̄ = 0). The parameter α is set to α = 1/2. This plot is the multiangle
(0 < |v| < 1) version of Figure 6.6. As we can see, there are three solutions
now for the NO case (µ < 0) plus the bimodal solution for the IO (µ > 0) case.
Unlike in the single angle case, the range of unstable µ for all four solutions
grows linearly with k.

Here, f1(ϕ) = 1, fc(ϕ) = cosϕ, fcc(ϕ) = cos2 ϕ, and fss(ϕ) = sin2 ϕ. We also
note that Iss

3 = I1
3 − Icc

3 .

Including matter effects (λ̄ 6= 0), homogeneous (k = 0)

Lets start with the homogeneous case (k = 0). For this situation, thee integrals
I1 = I3 = 0, so that the Equation 6.5.13 reduces to1−


I3 I5 0 0
I3 I5 0 0
0 0 −I3 0
0 0 0 −I3





A0

A2

Ac
As

 = 0, (6.5.15)

which lead to the following eigenvalue equations: the 2× 2 block leads us two
the eigenvalue equation

(I2 − 1)2 = I1I5, (6.5.16)

which gives us the MZA and the instabilities. Besides this equation, we have
to degenerate equations of the form

I3 = −1, (6.5.17)

which will give us the MAA instability. The results obtained from these equa-
tions are displayed in the contour plot of Figure 6.8, where the growth rate κ
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Figure 6.8: Growth rate κ of the 2D instabilities as a function of µ and λ̄,
assuming α = 1/2. Upper panel: The Equation 6.4.12 yields the bimodal
instability for µ > 0 (IO) and the multi-zenith-angle (MZA) instability for
µ < 0 (NO). Lower panel: Equation 6.4.13 provides the multi-azimuth-angle
(MAA) instability for µ < 0. This figure is analogous to the corresponding 1D
case shown in Figure 6.4.

is plotted as a function of the effective matter potential λ̄ and the interaction
strength µ. The results are very similar to the analogous 1D case (Figure 6.4).
Again, for µ > 0, we obtain the bimodal instability, and for µ < 0, the MZA
and MAA instabilities.
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Inhomogeneous (k 6= 0) without matter (λ̄ = 0) case

Next we consider the case of k 6= 0 without matter. We may write the integrals
of Equation 6.5.11 in the form

Ian =
µ

k

∫ +∞

−∞
d$ h$K

a
n , where Ka

n =

∫ +π

−π

dϕ

2π

∫ 1

0

dv
vn fa(ϕ)

v cϕ + w
, (6.5.18)

and we have introduced w = ($ − Ω)/k. We find explicitly

K1
1 = w +

√
1− w

√
−w(1 + w)√
w

, (6.5.19a)

K1
3 =

2w3

3
+

√−w
√

1− w2 (1 + 2w2)

3
√
w

, (6.5.19b)

K1
5 =

8w5

15
+

√−w
√

1− w2 (3 + 4w2 + 8w4)

15
√
w

, (6.5.19c)

Kc
2 =

1

2
− w2 −

√
−w2
√

1− w2 , (6.5.19d)

Kc
4 =

1

4
− 2w4 +

√
−w2
√

1− w2 (1 + 2w2)

3
, (6.5.19e)

Kcc
3 = −w

(
1

2
− w2 −

√
−w2
√

1− w2

)
, (6.5.19f)

Kss
3 =

w(3− 2w2)

6
+

√−w(1− w2)3/2

3
√
w

. (6.5.19g)

Notice that Kss
3 +Kcc

3 = K1
3 .

With the help of these analytic integrals we can solve the eigenvalue equa-
tion numerically. The results are plotted in Figure 6.9. This figure shows a
contour plot of the growth rate κ in the µ-k-plane. The 3×3 block in Equa-
tion 6.5.13 provides three different solutions, i.e., one for µ > 0 (the usual
bimodal solution in IO) and two solutions for µ < 0 (NO). Furthermore, the
1×1 block provides an extra solution for µ < 0. Figure 6.9 corresponds to
Figure 6.6 in the single-angle case. We observe that in this case we have one
more instability, which makes a total number of four instabilities for the 2D
scenario. Moreover, the new solution appears only for µ < 0 (NO).

Matter effects (λ̄ 6= 0) and inhomogeneities (k 6= 0)

Now, after having worked out all the intermediate steps, we are able to plot a
butterfly diagram for the 2D model with matter (λ̄ > 0) and inhomogeneities
(k > 0). We need to find the zeros of the determinant in Equation 6.5.11 and
write the integrals in the form

Ian =
µ

λ̄

∫ +∞

−∞
d$ h$K

a
n , where Ka

n =

∫ +π

−π

dϕ

2π

∫ 1

0

dv
vn fa(ϕ)

v2/2 + q v cϕ + w
,

(6.5.20)
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Figure 6.9: Growth rate for the 2D inhomoegeous case without matter effects
(λ̄ = 0). The parameter α is set to α = 1/2. This plot is the multiangle
(0 < |v| < 1) version of Figure 6.6. As we can see, there are three solutions
now for the NO case µ < 0) plus the bimodal solution for the IO (µ > 0) case.
Unlike in the single angle case, the range of unstable µ for all four solutions
grows linearly with k.

with q = k/λ̄ and w = ($ −Ω)/λ̄. These integrals can be solved analytically;
we provide our results in Appendix B.

The results are shown in Figure 6.10. The results are very similar to the
1D case. However, there is a difference for the region µ < 0. In this case, we
have an extra solution. This extra solution merges with one of the others for
λ̄ � k. Moreover, for large k, one of the solutions cease to produce unstable
eigenvalues and we return to the three-solution framework. We also notice
that the unphysical third quadrant shows more pronounced noses compared
to the 1D solution.

Besides these technical details, the main message remains unaffected with
respect to the 1D case. Again, the role of the small scale modes is to “fill” the
space between the homogeneous solution and the horizontal axis, whereas the
space between the k = 0 solution and the vertical axis remains to be free of
instabilities.

6.6 Summary of the 2D analysis

We now try summarize the information about the effects of the k modes in the
2D scenario and try to assess the impact of the small scale inhomogeneities in a
realistic SN scenario. To this end, we have plotted the footprint diagram 3 given
in Figure 6.11. This figure essentially contains the information displayed in the

3There is detailed discussion about footprint diagrams in Appendix D
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Figure 6.10: Footprint of the 2D instability region (κ > 10−2) in the parameter
space of µ−λ. For this plot, we have assumed α = 1/2. The different k modes
are plotted in different colors. The asymptotic behaviors are explained in
Appendix C.

third quadrant of Figure 6.10. Once again, the instability regions correspond
to values of the growth rates κ > 10−2$. We have plotted as a solid red
line, a possible SN matter density profile given by the simulation of a 15 M�
progenitor, corresponding to electron density as function of radius. In this
particular example, the density profile does not intersect with the instability
footprint for radii below the shock wave. On the other hand, for larger radii,
the density profiled crosses indeed the instability region for the k = 0 mode. We
have also plotted the footprint for inhomogeneities with assumed wave-number
k = 102 and k = 103, measured in units of the vacuum oscillation frequency $.
Note we are plotting the MAA instability, which is relevant for NO, non-zero
k values lead to two unstable solutions, whereas for the bimodal instability
there is only one. The full range of all k-values basically fills the entire region
below the homogeneous k = 0 mode (blue shading) in this plot, i.e., the entire
gray-shaded region is unstable. Meanwhile, the region above the blue-shaded
part remains intact. The main conclusion that can be extracted from this
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Figure 6.11: Footprint of the MAA instability region in the parameter space of
effective neutrino density µ =

√
2GFnνe(R/r)

2, where R is the neutrino-sphere
radius, and matter density λ =

√
2GFne(R/r)

2 for the schematic SN model
described in the text [1]. The neutrino density decreases ∝ r−4, so we can plot
the distance to the center of the SN in the x axis. The SN matter profile is
taken from the simulation of 15 M� progenitor at t = 200 ms after the core
bounce [66]. The sharp density drop is the shock-wave front. The k = 0, i.e.,
homogeneous instability regions is plotted as the blue shadowed region. We
also show the instability footprint explicitly for wave numbers k = 102 and
k = 103, all in units of the vacuum oscillation frequency. The k > 0 modes,
i.e., the small scale instabilities fill the space between the vertical axes and the
homogeneous regions (gray shadowed region), but never exceeding it.

study is that multi-matter effects “shift” the instability regions far from the
SN density profile. Indeed, the higher the order of k, the deeper the instabilities
are shifted. It is not that the matter effects erases the unstable regions; they
are simply shifted to harmless regions of the parameter space. Therefore, the
largest-scale mode k = 0, which corresponds to the homogeneous scenario, is
the most interesting one from the point of view of stability analysis: if this
mode is stable, the higher-k modes are stable as well.
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6.7 Summary
Using the EOM developed in Chapter 4 and in Chapter 5, we have adopted it
to the bulb geometry. We have assumed a stationary system and restricted our
analysis to the spatial evolution. Moreover, we have assumed that the system
is inhomogeneous in the perpendicular direction.

Because of the mathematical complexity of the eigenvalue equation, we
could not solve the whole problem at once. Instead, we have started from a
very simple setup which consists on a 1D model. We have started studying
the system without matter or k modes, and we have included these effects
progressively in the course of the chapter. After we have added both matter
and the inhomogeneities, we have arrived to the butterfly diagram displayed
in Figure 6.5. The conclusion of the study was the effect of the k modes is
shift of the unstable modes analogous to the shift produced by multi-matter
effects.

Once we have understood the role of the k modes in the 1D scenario, we
have performed the same steps for a 2D setup and we have arrived at a butterfly
diagram for the 2D scenario. In this case, the results where analogous to the
1D scenario, where again the k modes shift the instability curves is an similar
way the matter does.

The last step of our study consisted on plotting the 2D results in a footprint
diagram, where we have included as well a SN profile of a 1D simulation of a 15
M� progenitor 200 ms after core-bounce. The conclusion of the analysis is that
the multi-angle matter effects present in the SN-type environments shifts un-
stable modes created by the small scales inhomogeneities (k modes) to regions
of the parameter space that are not met by the SN’s matter profile. Therefore,
the most “dangerous” or prone-to-instabilities case is the homogeneous one.
Therefore, assuming homogeneity in the perpendicular direction not only will
simplify the equations but also corresponds to the most interesting case from
the perspective of linearized stability analysis.

Nonetheless, we have to be very careful when we interpret these results.
There have been many assumptions made for this analysis. We have assumed
that the system is stationary and restricted the study to the spatial evolution.
Furthermore, the angular distributions for both neutrino species are taken to
be the same, which is not the case in a realistic SN. Because of the numerous
assumptions and simplifications applied, this mathematical model might not
capture important aspects of a realistic SN environment. This will be precisely
the task of our next chapter, where some of these assumptions will be dropped
and we will investigate the consequences.



Chapter 7
Dispersion relation formalism applied
to SN scenarios

In this chapter, we will continue to study SN-type scenarios, but we will drop
some of the previous assumptions. The starting point is the equation of mo-
tion (EOM) adapted to the bulb geometry. We will restrict our study to the
homogeneous scenario for the reasons argued in the last chapter. Moreover,
the whole analysis will be done considering the massless neutrino case. This
chapter is based in the results contained in References [2, 4].

As a first step, we will continue to assume stationarity. However, we will
drop the assumption that the angular distributions for neutrinos and antineu-
trinos are the same. In other words, neutrinos are carrying non-zero electron
lepton number (ELN) out from the SN. This will prove to have huge impact in
the solutions and we will find a completely new phenomenology in core-collapse
SN-type scenarios. More precisely, the solutions will include fast oscillating
modes, where the instability growth rate is proportional to the neutrino num-
ber density nν instead of proportional to the vacuum oscillation frequency $.
Because these kind of solutions appear under the assumption of massless neu-
trinos, we will have flavor conversion without flavor mixing. This is the first
time that such a phenomenon appears when considering realistic SN scenarios.

The next step will be to dismiss the stationarity. By doing so, we can apply
the full dispersion relation (DR) machinery to an ELN angular distribution
obtained from a 1D core-collapse SN simulation. We then study the types of
“forbidden” regions that arise from the DR equation. The next step will be to
study a collection of angular distributions obtained from 1D SN models using
different masses for the stellar progenitors. From these angular distributions we
can study the implications for the DR diagram. Finally, we will briefly study
a particular type of astrophysical objects which is particularly interesting.
These objects are compact binary-merger remnants. We will discuss their
characteristic angular neutrino emission, and study their temporal and spatial
evolution.

85
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7.1 The two-bulb neutrino scenario

7.1.1 Description of the system

The previous chapter was devoted to the study of the EOM derived in Chap-
ter 5 adapted to the bulb geometry in a stationary scenario where the perpen-
dicular direction was inhomogeneous. Moreover, the angular distribution for
both neutrinos and antineutrinos were assumed to be equal. For the present
chapter, we will continue to use the bulb geometry, but we will assume homo-
geneity in the perpendicular direction (kx = 0), which corresponds to the most
“dangerous” case, as we have already discussed. Moreover, we will maintain
the stationarity assumption.

Under these assumptions, neutrinos emerge from a spherical surface and
the neutrino field at some observation point over the neutrino sphere is fully
described by the azimuth angle ϕ and the variable u = sin2(θ), where θ is the
zenith angle. The range of occupied zenith angles for the νe and ν̄e distributions
are normalized to some reference radius, so that the range of occupied u is
independent of the test radius used for the stability analysis.

The key feature is that we will now assume different angular distributions
for νe and ν̄e, or, in other words, we will consider that neutrinos are carrying
an effective ELN out from the SN. This assumption, when working in the SN-
type scenario, corresponds to assuming a different neutrino sphere for each
neutrino species. Because we are considering only νe and ν̄e, we will work with
two neutrino spheres, i.e., “two-bulbs”.

This model was first introduced in Reference [67]. The angular distribu-
tions are pictorially displayed in Figure 7.1. As mentioned in Chapter 2 and
Chapter 3, this assumption is physically motivated due to the weaker interac-
tion strength with matter of ν̄e with respect to νe. This translates into a smaller
neutrino sphere for ν̄e, which induces a broader angular velocity distribution
for the emitted spectra of νe.

The eigenfunctions for the homogeneous case were already derived in Chap-
ter 5, but we will write them down here again for clarity. These are

I2
1 − (I0 − 1)(I2 + 1) = 0, (7.1.1)

I2 − I0 = 2, (7.1.2)

where the In are

In = µ

∫
d$ du

unG($, u)

$ + uλ̄− Ω
, (7.1.3)

where the matter potential is λ̄ = λ+µε, ε is the neutrino-antineutrino asym-
metry, λ =

√
2GFne is the matter effect, µ =

√
2GFnν is the typical neutrino-

neutrino interaction energy, and Ω is the eigenvalue of the flavor modes.
For convenience can introduce the $-integrated zenith-angle distributions
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Figure 7.1: Zenith-angle distribution for neutrinos (blue) and antineutrinos
(orange) in the two-bulb neutrino model [2]. Note the wider range of emission
for the neutrino distribution.

for νe and ν̄e

hνe(u) = +

∫ ∞
0

d$G($, u), (7.1.4)

hν̄e(u) = −
∫ 0

−∞
d$G($, u). (7.1.5)

We adopt now the limit of massless neutrinos, i.e., $ = ∆2/(2E) = 0. Under
this assumption, the contributions to G($, u) from νx and ν̄x drop if their
angular distributions are the same. For this reason we can simply consider
that the emission of νx and ν̄x are zero. Note however that they play a role in
the system because they are present in the definitions of µ and ε. Moreover,
we can particularize ε to this specific setup, obtaining

ε =

∫
du (hνe − hν̄e) . (7.1.6)

Using these definitions and after performing the $ integration, we can express
the integrals terms give by Equation 7.1.3 as

In =

∫
du

un

u(ε+m)− w [hνe(u)− hν̄e(u)] , (7.1.7)

where the parameter m is defined m = λ/µ and w = Ω/µ is the normalized
eigenvalue.
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We can now particularize these equations to the two-bulb model. This
model implies the top-hat angular distributions given in Figure 7.1. The u-
ranges occupied by the neutrino and antineutrino distributions are uνe = 1 + b
and uν̄e = 1 − b, respectively. In this language, the “traditional” one bulb
model corresponds to b = 0. However, for the SN motivated scenario, where
neutrinos decouple at larger distances, we find b > 0. On the other hand, the
number densities for the neutrino and antineutrino distributions are defined
as nνe = 1 + a and nν̄e = 1 − a, respectively. The quantity a parameterizes
the neutrino-antineutrino asymmetry of the system and is constrained in the
range −1 < a < +1. Inside SNe, due to deleptonization, there is an excess
of νe over ν̄e. In other words, in such environments we find a > 0. To sum
up, the conditions inside a SN impose that a and b must be greater than zero.
The angular distributions as a function of the parameters a and b are

h(u) =
1± a
1± b ×

{
1, for 0 ≤ u ≤ 1± b,
0, otherwise,

(7.1.8)

where the positive sign corresponds to νe and the negative one to ν̄. After
inserting these angular distributions in Equation 7.1.7, we arrive at

In =
1 + a

1 + b

∫ 1+b

0

du
un

u(2a+m)− w −
1− a
1− b

∫ 1−b

0

du
un

u(2a+m)− w, (7.1.9)

where we we have used ε = 2a. The simplicity of these integrals makes them
analytically solvable.

The case where b = 0 is especially interesting. In this case, both distri-
butions have the same width, although their number densities are different
(a 6= 0). For this situation, the integrals reduce to

In = 2a

∫ 1

0

du
un

u(2a+m)− w. (7.1.10)

The interesting feature of this particular case is that, when solving the equa-
tions, the eingenvalues obtained do not have an imaginary part. In other
words, the system is stable. This interesting behavior illustrates how imposing
an unphysical condition, i.e., the angular distributions for νe and ν̄e having the
same width, can lead to unphysical results.

7.1.2 Solutions without matter effect
In order to get a first glimpse of the consequences of the non-zero ELN carried
by neutrinos, we can set the matter effects to zero by setting the parameter
m = 0 in the denominator of the integral terms of Equation 7.1.9. As in
other previously discussed cases, the eigenvalue equations are too complicated
from the algebraic point of view to extract information from the analytical
result. Therefore, it is more illustrative to solve the equations numerically and
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Figure 7.2: Growth rate for the axially breaking solutions in units of µ for the
matter-free toy model [2]. The contour plot is displayed with respect to the
normalized νe and ν̄e densities. The angular distributions used are the ones
displayed in Figure 7.1. The figure shows no instability for the SN region, i.e.,
for a > 0 and b > 0.

extract the physical consequences from the results. The results are displayed
in Figure 7.2.

First of all, we must highlight that in our numerical study, the axially
symmetric equation shows no instabilities in the region −1 < a < 1 and −1 <
b < 1, so we have not plotted it. The plot shown in Figure 7.1 corresponds to
the axially breaking solution. The growth rates of the figure are proportional
to µ, and therefore correspond to fast modes. There are only instabilities in
the second and fourth quadrants, whereas the first and third quadrant are
stable. In other words, whenever a and b have the same sign, the system is
stable. Nonetheless, as we have already discussed, only the first quadrant of
the parameter space corresponds to the SN-type scenario.

We can conclude that, for the toy model we have used, the triggering of fast
flavor conversion requires that the species with the broader angular distribution
(regardless of which one it is) must be the one with the smaller flux1. Although
this is out of the range of the traditional SN parameter space, the LESA effect
that we have discussed in Chapter 3 could lead to situations where a or b are
negative. Moreover, in the accretion disk arising from compact binary merger

1This conclusion seems to be in contradiction with the results of Reference [67]. Up to
date, there is no clear explanation behind this contradiction.
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remnants it is possible to have a higher νe than ν̄e flux, i.e., a < 0. Indeed, fast
oscillations in the spatial evolution of this type of scenarios have been reported
in Reference [68]. We will discuss more about these objects in Section 7.2.3.

Fast Oscillations

Assuming different angular distributions for the different neutrino species has
a huge impact on the results of the linearized stability analysis. As we have
already mentioned, the growth rate of the flavor instabilities is not propor-
tional to the vacuum oscillation frequency $ but instead is proportional to the
neutrino number density µ. In other words, the system undergoes fast flavor
conversion. Under these circumstances, $ loses its central role. Although we
already founded this phenomenon when we studied the neutrino colliding beam
model, this is the first time where flavor conversion without flavor oscillation
appears in a SN-type scenario.

7.1.3 Solutions including the matter effect

We have already seen in the previous chapter how matter effects can change
the results drastically. Therefore, as a next step we will include matter effects
in our toy model. However, as we are about to discuss, the way the matter
effect inhibit the instabilities is qualitative different in this case.

The key element is that, for this specific system, the matter effect is not
only proportional to the matter density λ but instead it is proportional to
the ratio of λ to the neutrino density µ, which is encoded in the parameter
m = λ/µ. We have adopted m = 1 for the results plotted in Figure 7.3. The
top panel corresponds to the axially symmetric solution, whereas the bottom
corresponds to the axially breaking solution. The bottom panel corresponds
to the axially breaking solution. We observe that the instability regions are
very similar to the previous matter-free case. Again, the range of values for
a physical SN scenario shows no instabilities. However, the axially breaking
solution will now provide imaginary solutions for Ω. Moreover, this solution
shows a completely different shape. In this case, there is fast flavor conversion
in the case where νe have a broader distribution (b > 0) and there are highest
flux of νe with respect to ν̄e (a > 0). This quadrant, where the parameters a
and b are greater than zero, corresponds to the SN motivated region. In case
the matter density is very large (λ � µ or m � 1) or very small m � 1,
the axially symmetric solution disappears, leaving us with the bottom panel
of Figure 7.3 alone.

The matter suppression is very different from the one traditionally observed
for the bulb model, i.e., the case studied in Chapter 6. In that scenario where
the matter potential “shifted” the instabilities to a region of the parameter
space far away from the SN matter profile. However, in this case, the fast
flavor conversion in the SN motivated region is induced by the matter poten-
tial whenever we reach the region m ∼ 1, and is zero everywhere else. We
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Figure 7.3: Growth rate of the instability in units of µ [2]. These figures cor-
respond to the case m = 1. The upper panel is the axially conserving solution,
whereas the bottom panel shows the axially breaking one. The parameters a
and b are the same ones used in Figure 7.2. Note that the axially conserv-
ing solution shows instabilities in the first quadrant, which corresponds to SN
motivated region of the parameter space.
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can now connect these result with the SN scenario. The large matter poten-
tial would inhibit fast oscillations during the accretion phase, in a similar way
slow instabilities are suppressed. In any case, we need to be careful with the
interpretation of these results. This discussion has been done under the sta-
tionarity assumption. In the next section we will indeed drop this assumption
and study the consequences.

Previous studies

Besides the works of R. Sawyer [67,69], fast instabilities were never found in the
context of SN-type scenarios. This is puzzling because several studies had been
conducted for systems where different neutrino species had different angular
distributions. Therefore, it is worth going through these previous works in
order to understand why this phenomenon remained unnoticed.

First of all, the work performed by Mirizzi and Serpico [58,70] used different
forward-peaked distributions for different neutrino species. The key element
of this work is that they focused their study on the difference between the
angular distributions of νe and νx, but they assumed equal distributions for
(νe,ν̄e) and for (νx,ν̄x), respectively. In other words, the difference in the fluxes
was between the e and x flavors, but νe and ν̄e had the exact same distributions.
This assumption implies, as we have already discussed, that the instabilities
are zero as soon we set $ to zero. Therefore in these cases fast oscillations
could not appear.

On the other hand, Saviano et al. [71,72] conducted stability analyses using
realistic energy and zenith angle distributions from numerical SN simulations.
In both cases, the growth rates were always of the order of magnitude of $.
In these studies, the matter effect λ was almost an order of magnitude than
µ, and therefore the fast oscillations cannot appear. Moreover, for the specific
models used, the angular distributions were too similar to trigger fast flavor
conversion.

To sum up, although many studies were performed using different angular
distributions for different species, the particular assumptions were chosen in
such a way that the fast flavor conversion never showed up. Therefore, this
interesting phenomenon remained inadverted. As we have already mentioned,
R. Sawyer was the first one to become aware of fast flavor conversion, but his
findings remained overlooked for almost a decade.

7.2 Temporal and spatial SN evolution

Hitherto, the results discussed in the present chapter have been obtained under
the stationarity assumption. Nonetheless, our ultimate goal is to discuss the
most general scenario, with the minimal amount of assumptions. Therefore,
the next step consists of considering a more generic case, where we drop out
the stationarity assumption. The generality of the DR formalism developed in
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Figure 7.4: ELN angle distribution from a 1D, 15 M� progenitor SN simula-
tion. The figure shows the ELN values at a distance of 37 km from the star’s
center at 280 ms after the shock bounce [4]

Chapter 5 shows now its full capability. Using the machinery already derived,
including the time variation turns out to be a straightforward task. The eigen-
value equations are the same ones given by Equation 7.1.1 and Equation 7.1.2,
i.e., the same ones we have used for the two-bulb model. However, the integral
equations are the ones we have derived in Equation 5.5.7 of Chapter 5. We
adapt them to this particular setup, arriving at

In =

∫ +∞

−∞
dvgv

vn

w + q
, (7.2.1)

where w = (kz − φ)/µ and q = (ω − λ − ε)/µ. Now that we have the most
generic equations, we will proceed to apply them to a concrete example, and
explore the consequences in terms of the flavor stability analysis. The way
to proceed is already familiar to us, since we have performed this in a large
number of cases already.

7.2.1 Realistic 1D core-collapse SN angular distribution

In order to study the neutrino time and spatial evolution in a SN-type scenario,
we will use the angular emission information of a SN simulation to solve the
EOM. Unfortunately, up to date, there are no flavor-dependent neutrino angle
distributions from SN simulations available. Nevertheless, in order to gain
intuition, we have extracted the ELN distributions from a 1D simulation of
the Garching group of a 15 M� progenitor [66,73,74]. The results are plotted
in Figure 7.4.
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Figure 7.5: Dispersion relation for an ELN given in Figure 7.4 in the massless
limit [4]. The gray regions are the zone of avoidance for real (ω, kz). The blue
thick lines correspond to the axially symmetric polarization, whereas the yellow
thick lines are the two degenerate solutions of the axially breaking polarization.
The yellow points are the end points of the branch. The edge yellow and blue
shadowed regions represents the modulus of Im(kz) for the axially symmetric
and axially breaking solutions, respectively. Furthermore, the semi-thick lines
represent the Re(kz) in each case.

This figure shows a typical case not far from the decoupling region, at a
distance of 37 km the the star’s center. For larger distances, the ELN profile
is horizontally compressed near the forward direction (cos θ = 1), although
backward modes (cos θ < 1) are never empty. One key feature is the forward
dip due to the ν̄e distribution being more forward peaked than νe. We have
also analyzed the same figure for different times. More precisely for 150, 280,
and 500 ms after core-bounce. However, we have not found any place or time
in this model where this dip would go negative

We now plug in the angular distribution provided by Figure 7.4 in the inte-
grals given by Equation 7.2.1 and we study the DP properties of this particular
setup. What comes out is displayed in Figure 7.5. There is a lot of informa-
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tion in this figure, so we will now analyze it carefully. We start with the gray,
shadowed region. This corresponds to the region of the parameter space where
there are no propagating solutions for the flavor waves. In other words, in
this region the DP is only fulfilled if kz and ω are simultaneously imaginary.
The blue thick lines are the axially symmetric solutions, i.e., the solutions
obtained when solving the eigenvalue equation given by Equation 7.1.1. The
thick, orange line corresponds to the two degenerate axially breaking solutions
obtained from Equation 7.1.2. It must be highlighted that the solutions are
not continuous parabolas as in the case of the axially breaking solution but
instead the branches have end points, which are displayed by the thick orange
points. In the zone of avoidance, that is, in the region or frequency gap be-
tween the solutions, the wave vector kz that satisfies the DP is complex. We
display the imaginary part of kz for the axially symmetric and axially breaking
solutions with the shadowed blue and orange regions, respectively. Further-
more, the semi-thick lines represent the real part of kz. This DR corresponds
to the top-right panel of the Figure 5.5 studied in Chapter 5.

Therefore, for Gv provided by the numerical 1D SN numerical simulation,
the DR obtained presents a frequency gap. In other words, for an initial value
of the frequency chosen in this gap, the system will undergo a spatial run away.
On the other hand, the system is always stable on its temporal evolution. The
DR obtained is similar to the DR of an electromagnetic wave in a plasma: for
every kz there is a real value for the frequency ω that satisfies the DR. However,
there is a region or gap for ω for which the DR requires kz to be complex. The
DR shown in Figure 7.5 is analogous to the DR of an electromagnetic (EM)
wave in a plasma: for every kz there is real ω, but there is a region or gap for
ω for where the DR demands a complex k. However, we must be careful when
we use this analogy. When an EM wave enters a forbidden region, the plasma
frequency inhibits propagation and therefore the wave gets reflected. For flavor
waves, entering a forbidden region produces exponential spatial growth the and
therefore leads to flavor decoherence. If we analyze the EOM of EM waves, it
corresponds to second-order differential equation, whereas flavor waves obey a
first-order one. This could be the reason behind this different behavior.

7.2.2 Neutrino angular distributions for different progeni-
tor masses

The DR obtained in the previous section has only a gap for the frequency, but
no gap for the wave number. Nonetheless, this study of the DR for the 1D
numerical simulation is based on the data of only one SN numerical simulation.
Therefore, it could be argued that the absence of a crossing in the ELN spec-
trum is a characteristic of this particular set of data, but for other simulations
this condition no longer holds. In order to investigate this possibility, a re-
cent study, contained in Reference [75], has analyzed a set of angular emission
distributions from 1D SN simulations using different progenitor masses. More
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Figure 7.6: Neutrino number intensity as a function of cos θ at a distance of
37 km from the star’s center [75]. The blue line stands for νe, the red line
for ν̄e, and the green line for νx. The magenta line shows the ELN carried by
electron neutrinos, i.e., νe − ν̄e. On each panel’s top is displayed the time of
the snapshot and the mass of the progenitor.

precisely, this work focuses on progenitor masses of 11.2, 15 and 25 M�.
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In the models analyzed, the ELN has several different spectral features.
However, in any of the analyzed cases there is a crossing in the neutrino ELN
spectrum. In the light of this study, it seems that for the 1D models, there are
no possible instabilities in the temporal evolution of the neutrino field.

However, we have to be very cautious with these conclusions. All these
models are obtained assuming spherical symmetry. It is still uncertain what
happens in the 3D SN numerical models. Up to date, there are no ray-by-ray
analyses for these simulations. Due to the LESA effect, it seems plausible that
for certain directions the Gv goes to negative values. In such cases, the system
would exhibit wave number gaps, i.e., the system would be unstable in the
temporal evolution. Moreover, it is also uncertain what happens in case the
instability occurs only locally, and how this will affect the evolution of the
neutrino field as a whole.

7.2.3 Compact binary merger remnants

The DR formalism can be applied to other astrophysical objects with high neu-
trino density. There is a particular astrophysical environment that can be very
interesting from the point of view of neutrino self-induced flavor conversion.
This corresponds to the binary system formed by one neutron star (NS) with
another NS or a black hole (BH). Analogously to the interior of core-collapse
SNe, the accretion disk of these objects are density rich environments, which
has motivated a large number of neutrino self-induced flavor conversion stud-
ies [76–80]. On the other hand, neutrino flavor evolution plays an important
role in the evolution of these objects. For instance, neutrinos can have an
impact in the nucleosynthesis which occurs in the accretion disk [81,82].

Similarly to the case of core-collapse SN, the decoupling region of ν̄e re-
sides inside of the one corresponding to νe. The difference is that, due to
the protonization taking place in the system, the ν̄e flux is higher than the νe
flux [81,83].

Reference [68] contains recent a study has derived the ELN of an example
for these environments and applied the DR formalism to it. In this case, the
ELN distribution has a “crossing”, meaning that it starts from a negative value
and evolves to a positive one as a function of the radius. This implies that
the system is generically unstable when studying its temporal evolution [68].
Moreover, the authors of Reference [68] have reported instabilities under cer-
tain conditions in the spatial evolution, which is in consonance with the results
discussed in Section 7.1. Nonetheless, the spatial instabilities does not seem
to be as generic as the temporal ones.

7.3 Summary
In the course of this chapter, we have used the EOM developed in Chapter 5
adapted to the bulb geometry. The first example analyzed corresponded to
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a stationary system with a homogeneous perpendicular direction (kx = 0).
The system was studied under the assumption in the massless neutrinos, i.e.,
$ = ∆m2/(2E) = 0. Moreover, we have used the “two bulb” emission model,
where νe and ν̄e have different angular emission distribution. In other words,
we assume that neutrinos are carrying non-zero ELN out of the star.

We have started the analysis without considering matter effects. In this
case, only the axially breaking solution provides instabilities. These instabili-
ties are proportional to the neutrino-neutrino interaction strength µ, i.e., they
correspond to fast flavor conversion. Without the multi-angle matter effect,
the instabilities appear in regions of the parameter space that are not compat-
ible with the traditionally SN motivated parameters. In the next step of our
analysis, we have multi-angle matter effects in our system. The particularity of
this system is that the matter effects enter the equations as m = λ/µ. In other
words, it is the ratio between the matter potential and the neutrino-neutrino
interaction energy that drives matter effects. For values of m ∼ 1, the axially
symmetric solution gives solutions with imaginary eigenvalues for ω. In other
words, it also provides unstable solutions. Furthermore, this solution for range
compatible with a SN scenario. However, in case the matter potential is very
large (m� 1) or very small m� 1 compared to µ, this solutions disappears.
The bottom line of this analysis is that assuming different neutrino spheres for
the different neutrino species can trigger fast flavor oscillations.

We have also commented briefly on all the previous works that have used
different angular emission functions for different neutrino species. Our con-
clusion is that, with the exception of the works performed by R. Sawyer, all
studies were performed under assumptions that inhibited the appearance of
fast flavor conversion.

For the next example, we have again analyzed the EOM using the bulb
geometry, but for this time we have dropped the stationarity, and we have
studied the full DR. In order to explore the evolution of the spatial and tem-
poral evolution of the neutrino field in a realistic SN scenario, we have used
the angle distribution of the ELN angle distribution extracted from a 1D SN
numerical simulation. This angle distribution has no crossings, which means
that the DR obtained shows a gap in the frequency, but not in the wave vector.
Therefore, the system is stable on its time evolution.

In order to investigate if these conclusions were an exclusive feature of
the dataset used or a generic feature of the 1D SN numerical models, we
have briefly discussed the results of a recent work which explores several 1D
simulations with different progenitor masses. The results of this study show
that the non-crossing feature seems to be a constant in this type of simulations.

We have also discussed the limitations of our results. First of all, it is still
uncertain what happens in the 3D simulations. Furthermore, the LESA effect
seems to point in the directions that at least in some directions this crossing
can indeed take place. These conclusions are however merely speculative until
a deeper analysis is performed. Finally, we must remark that for the study of
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the DR of SN-type scenarios, we face the same problem as we did with the
two neutrino beam toy model: the DR does not provide the answer on how
the system behaves and once again we have to face the boundary conditions
of the system.

Finally, we have briefly studied the neutrino emission characteristics of a
very interesting subset of astrophysical objects, which are compact binary-
merger remnants. These objects show a crossing in the ELN spectrum. This
crucial feature translates to a generic instability in the spatial evolution pre-
scribed by the DR. However, the actual condition for the development of such
instabilities goes beyond the DR description.
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Chapter 8
Conclusions

The study of the dynamics of neutrinos in the presence of self-interactions
continues to reveal new effects. Moreover, some of the progress in this field
consist of revisiting some aspects that were thought to be understood, but
were only the result of the symmetries assumed.

In Chapter 4 we have discussed the mathematical framework to study neu-
trino interactions in dense media. Moreover, we have arrived at the multi-
dimensional partial differential equations which describe collective oscillations.
However, as we have pointed out, current computers are unable to directly solve
these multi-dimensional partial differential equations. Therefore, we will have
to rely on our physical intuition to find the right simplifications to deepen our
understanding of these self-refraction dominated systems. At the same time
we have to make sure that the assumptions are physically motivated.

As in all other natural sciences, experimental data is the ultimate judge to
determine the validity for the theoretical models. At the present time, there is
a large number of detectors that are capable of detecting the neutrino signature
of a SN. In the future, the deployment of large water, scintillator and argon
detectors might allow us to collect individual neutrino events from the Local
Group of galaxies. Nonetheless, with current detectors, there is a probability
slightly above 3 % of an SN event per year. Moreover, the only signal that
has been recorded up to this day corresponds to SN 1987A. Unfortunately, the
statistics are rather poor so we can only infer information from the range of
energies of the measured neutrinos and of the duration of the signal.

Despite the lack of experimental data, much theoretical work has been done
to try to understand and predict the neutrino signal that these experiments
some day will detect. The basic theoretical framework was developed more
than two decades ago. However, the impossibility of solving the equations
neither analytically nor numerically has encouraged the adoption of simplifi-
cations to solve the equations. Simplifications can be very useful to understand
the dynamics of the neutrino field, but they must be taken with caution: too
simplistic system can produce artificial results and lead to incorrect conclu-
sions. The field of self-induced neutrino oscillations has overcome on the course
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of its relatively short life a handful of radical turns, changing our understand-
ing of the field in a dramatic way. One illustrating example is the spontaneous
symmetry breaking, where the solutions of the equations need not inherit the
symmetries of initial conditions.

The main goal persuaded in this thesis was precisely to develop a general
framework, where many of the previously assumed simplification are dropped.
To this end, we have used the linearized EOM and assumed a general plane
wave ansatz with both temporal and spatial dependencies. This has led us to
a relation of the frequency with the wave number of the flavor modes, or, in
other words, a dispersion relation (DR).

We have applied this formalism to the two colliding beam example. As a
first step, we have focused on the temporal evolution of the system, assuming
that the system is stable in its spatial evolution. One of the most striking
results is the appearance of fast flavor conversion. For this type of instabil-
ities, the growth rates are proportional to the neutrino-neutrino interaction
energy µ instead of the vacuum oscillation frequency $. Because in dense
environments µ � $, these conversions are referred to as “fast”. Fast flavor
conversion occur even in the limit of massless neutrinos $ = ∆m2/2E = 0,
which means that they do not depend on the energy, but only on the angular
distributions. Because they do not require neutrino masses or mixing, they
correspond to flavor conversion without flavor mixing, where the only role of
M2 is for providing seed disturbances.

We have then dropped spatial stability and assumed a more general DR.
In other words, we have studied the temporal and spatial evolution of the two
neutrino colliding beam model. After solving the system, we have realized
that there can be gaps or “forbidden” regions for the frequency or the wave
number. This implies that, if the initial conditions impose a frequency in
the gap, the system will undergo spatial exponential growth. Analogously,
if the initial conditions impose a wave number in the gap, the system will
undergo a temporal run away. If there is a gap for the frequency and the wave
number, and the initial conditions impose both an imaginary frequency and
wave number, there are no propagating solutions. Finally, the absence of gaps
in the DR means that the system is stable.

Once we have understood the behavior of the DR in the colliding neutrino
beam model, we have turned our attention to the SN motivated environments.
Under the bulb geometry, we have studied the spatial evolution of the system,
but considering inhomogeneities in the perpendicular direction. The first thing
to highlight is that the growth rate is proportional to $, i.e., it corresponds
to “slow” flavor conversion. The result of this study is that small scales shift
the instabilities to regions of the parameter space which are far away from
the the typical SN matter profile. In other words, the most interesting is the
homogeneous scenario, so that inhomogeneous can be safely neglected.

We have further investigated the stationary SN-type scenario. We have as-
sumed that each neutrino species has a different neutrino sphere, i.e., different
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angular distribution. This has led to the appearance of fast flavor conversions
in a SN scenario for the first time. Moreover, we have concluded that fast
flavor conversion in the spatial evolution is only triggered by an asymmetry
in the angular distributions, i.e., by considering different angular distributions
for the different neutrino species.

We have then applied the DR formalism to study the temporal and spa-
tial evolution of a SN scenario. For this purpose, we have used the angular
distribution of a 1D SN numerical simulation to the EOM, and we have per-
formed a general stability analysis. From the results follows that a gap in the
frequency but not in the wave number seems to be a generic feature for SN
environments. The reason behind is the absence of “crossings” in the angular
distribution. Moreover, we have also discussed the angular emission of different
numerical simulations, where the absence of crossings seems to be a constant
for 1D numerical models.

We have stressed that the DR only can tell us the solutions that are com-
patible with the EOM, but not which one indeed occurs. This later requires
dealing with the boundary conditions. Furthermore, we have studied that un-
der certain circumstances, the DR shows ω gaps. In such a case, the spatial
boundary conditions and their time variation are needed to understand the
generic behavior of the flavor field. It is also possible that the collision term
has to be included in the EOM to see which modes of the flavor field are ac-
tually excited, which would go beyond the forward-scattering description used
in this work.

Moreover, during the study of the DR, we concluded that the existence
of backward modes produces very interesting effects in the DR. The idea of
having such modes in a SN-type scenario introduces further difficulties. The
existence of a backward flux implies the necessity of defining different boundary
conditions in different spatial regions of the SN. Moreover, the inward moving
neutrino flux comes from NC scattering from the outward moving ones. This
implies a flavor correlation between the inward and outward flow of neutrinos
in a SN, which goes beyond the prescription of the present EOM.

8.1 Outlook

Despite all the interesting results and insights for the field contained in this
thesis, the critical spirit present in every scientist obliges us to point out the
limitations of this work and discuss the future prospects.

This whole work is based in the linearized stability analysis approach. In
other words, we make the assumptions that locally, the neutrinos modes do
not couple to the other modes. However, there is the possibility that, when
studying the full EOM, effects enhanced by the non-linearities appear. More-
over, there is work required from the SN numerical simulation point of view.
First of all, it is still uncertain what happens in 3D simulations. In 3D models,
the LESA effect suggests that at least in some directions, crossings in angular
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distributions can take place.
As has been already mentioned, the DR approach has brought up the ne-

cessity of dealing with the boundary conditions. This is an unavoidable re-
quirement if we want to understand neutrino flavor conversion inside a SN.
For the time being, we must leave this question unanswered, hoping that in
the near future this issues will be further investigated.

After all, we have been awaiting the next galactic SN for the last thirty
years, and it would be very useful to have a consolidated theoretical framework
of neutrino self-induced collective oscillations before this happens.



Appendix A
Polarization Vectors

As we discussed in Chapter 4, the two flavor scheme is quite appropriate to
describe self-induced neutrino oscillations because simplifies the equations sig-
nificantly but still retains the essential physics of the problem. One collateral
benefit of the two flavor scheme is that we can directly translate the 2 × 2
Hermitian matrices ρ and ρ̄ into Euclidean, three dimensional vectors, which
are much more intuitive. Although this principle also works for the three flavor
scheme, the resulting vectors have eight components and therefore the pictorial
properties are lost.

As explained in chapter 4, we can decompose the density matrix as

ρ =
fνe + fνx

2
1 +

fνe − fνx
2

(
s S
S∗ −s

)
. (A.0.1)

Now, for the reasons discussed above, we express the density matrix as

ρ = (1 + P · σ), (A.0.2)

where P is a three-dimensional unit vector called polarization vector, and σ
are the Pauli matrices. We use boldface letters such as P for vectors in flavor
space. The Pauli matrices are traceless, and therefore the trace of the density
matrix is not contained in the polarization vector. The P pointing in the z
direction denotes that the neutrino beam has a maximal electron flavor. If
P points down, we have maximal µ flavor, and intermediate positions denote
mixed states. To illustrate the advantage of the polarization vector description,
we write down the EOM for the density matrix in vacuum

∂P

∂x
= $B×P, (A.0.3)

where the components of the mass basis B are defined as

B = (sin 2θ12, 0, cos 2θ12) (A.0.4)

and $ is the usual vacuum oscillation frequency. The misalignment of the
mass basis with respect to the flavor space is contained in the vacuum mixing
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Figure A.1: Graphic representation of neutrino vacuum oscillations for the two
flavor ensemble using polarization vectors [84].

angle θ12. With this newly introduced language, it seems now clear that Equa-
tion A.0.3 describes the precession of the polarization vector around the vector
B at a frequency given by the vacuum oscillation frequency. This behaviour
is shown in Figure A.1.

The MSW effect can also be understood like a spin precession in the pres-
ence of an external magnetic field. In both cases, the polarization vectors
provide a very intuitive visualization of these processes and reduce the dy-
namics of the system to the mechanics of classical spins. For these reasons,
polarization vectors have been used in a large number of works for discussing
neutrino self-induced flavor conversions.



Appendix B
Analytical functions

In the course of Chapter 6 we will encounter, when solving eigenvalue equa-
tions, various integrals that can be solved easily with Wolfram’s Mathemat-
ica. There can be issues about the validity of the analytic expressions in the
complex plane, so we here give the integrals explicitly. These results can also
be found in Reference [1].

B.1 Analytical expression for the 1D scenario

In the 1D case, for k 6= 0 and in the absence of matter effects (λ̄ = 0), we face
integrals of the form

fn(w) =

∫ +1

−1

dv
vn

v + w
, (B.1.1)

where w is a complex number. Before moving on, we define two auxiliary
functions as

L(w) = log

(
w + 1

w − 1

)
, (B.1.2a)

A(w) = 2 + w
[
i π sign Im(w)− 2 arctanh(w)

]
. (B.1.2b)

Using these functions, the solutions for the the ingegrals given by B.1.1 are
given by

f0(w) = L(w) , (B.1.3a)
f1(w) = A(w) , (B.1.3b)
f2(w) = −2w + w2L(w) , (B.1.3c)
f3(w) = 2

3
+ w2A(w) , (B.1.3d)

f4(w) = −2
3

(
w + 3w3

)
+ w4L(w) . (B.1.3e)

The actual argument will be of the form w = ($ − Ω)/k.
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For non-vanishing matter effects (λ̄ 6= 0) and a non-homogeneous perpen-
dicular direction k 6= 0 we encounter integrals of the form

gn(p, w) =

∫ +1

−1

dv
vn

v2 + p v + w
, (B.1.4)

where w is a complex number and p is real. As in the previous case, we define
two auxiliary functions

Kq,w =
1

2
log

(
w + 1 + p

w + 1− p

)
, (B.1.5a)

Bq,w =
1√

4w − p2

[
arctan

(
A−
)

+ arctan
(
A+
)]
, (B.1.5b)

Cq,w = p4 − 4p2w + 2w2 , (B.1.5c)

where A± 2±p√
4w−p2

. The solutions to Equation B.1.4 are found to be

g0(p, w) = 2Bq,w , (B.1.6a)
g1(p, w) = −pBq,w +Kq,w , (B.1.6b)
g2(p, w) = 2 +

(
p2 − 2w

)
Bq,w − pKq,w , (B.1.6c)

g3(p, w) = −2p− p
(
p2 − 3w

)
Bq,w +

(
p2 − w

)
Kq,w , (B.1.6d)

g4(p, w) = 2
3

(1 + 3p2 − 3w) + Cq,wBq,w − (p3 − 2pw)Kq,w . (B.1.6e)

The actual arguments are going to be p = 2k/λ̄ and w = 2($ − Ω)/λ̄.

B.2 Analytical expression for the 2D scenario

In the 2D case to solve Equation 6.5.14 we need the solve integrals of the form

Ka
n =

∫ +π

−π

dϕ

2π

∫ 1

0

dv
vn fa(ϕ)

v2/2 + q v cϕ + w
, (B.2.1)

where f1(ϕ) = 1, fc(ϕ) = cosϕ, fcc(ϕ) = cos2 ϕ, and fss(ϕ) = sin2 ϕ. These
integrals can be found analytically with the help of Mathematica. We first
define the following auxiliary functions

Aq,w = arctan

(
q2 − w√
−w2

)
+ arctan

(
1− 2q2 + 2w√
4q2 − (1 + 2w)2

)
, (B.2.2a)

Bq,w = 2
√
−w2 −

√
4q2 − (1 + 2w)2 , (B.2.2b)

Cq,w = 6q2 + 2w + 1 , (B.2.2c)
Dq,w = 4q2

(
3q2 − 2w

)
(B.2.2d)

Eq,w = 4
(
3q4 − 6q2w + 2w2

)
. (B.2.2e)
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Our desired integrals are then found to be

K1
1 = Aq,w Sw , (B.2.3a)

K1
3 =

[
Bq,w + 2

(
q2 − w

)
Aq,w

]
Sw , (B.2.3b)

K1
5 =

[
−2
√
−w2 + Cq,wBq,w + Eq,wAq,w

] Sw
2
, (B.2.3c)

Kc
2 =

1− (Bq,w + 2q2Aq,w)Sw
2q

, (B.2.3d)

Kc
4 =

1 +
[
2
√
−w2 − Cq,wBq,w −Dq,wAq,w

]
Sw

4q
, (B.2.3e)

Kcc
3 =

−1− 4w −
[
2
√
−w2 − Cq,wBq,w −Dq,wAq,w

]
Sw

8q2
, (B.2.3f)

where Sw = −i sign(Imw).
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Appendix C
Asymptotic solutions

In this appendix we provide analytic asymptotic solutions used in Chapter 6.
These results can also be found in Reference [1].

C.1 Asymptotic behavior for the 1D case
We can derive asymptotic solutions for the 1D case with matter, i.e., the large-
λ̄ continuation of the contour plot of Figure 6.4. We begin with the bimodal
and MZA instability for λ̄ > 0 and consider the eigenvalue Equation 6.4.13. It
is of the form 1 + C1µ + C2µ

2 = 0, where the coefficients C1 and C2 depend
on α, $0, Ω and λ̄. We have evaluated the integrals according to the explicit
transcendental functions given in Equation B.1.6. We assume that both the
real and imaginary parts of the solutions Ω remain of order $0 and do not
become large as λ̄ → ∞, an assumption that later bears out to be consistent
with the solutions. Therefore, we may expand C1 and C2 in powers of λ̄−1 and
find that the dominant terms are C1 ∝ λ̄−1 and C2 ∝ λ̄−3/2. For convenience,
we introduce dimensionless interaction strength µ̂ of order unity, so that we
can write

µ =
µ̂

1− α (6/π)1/2 (2$0)1/4 λ̄3/4 , (C.1.1)

where the exact coefficient was chosen for later convenience. The lowest-order
term in C2µ

2 no longer depends on λ̄, whereas the lowest-order term in C1µ ∝
λ̄−1/4 and slowly becomes small as λ̄ → ∞. To lowest order in λ̄−1, the
eigenvalue equation is found to be√

$0

$0 − Ω
− α

√
$0

−$0 − Ω
=

1− α
µ̂2

. (C.1.2)

The asymptotic solution derives from the term quadratic in µ and thus is
invariant under µ→ −µ, i.e., it applies to both mass orderings. We show the
asymptotic solution as a blue curve in Figure C.1 on a linear and logarithmic
scale. We also show the growth rates for λ̄ = 102, 104 and 106 where the
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Figure C.1: Growth rate κ of the bimodal and MAA instabilities for α = 1/2.
The blue curves show the asymptotic behavior for λ̄→∞, whereas the other
curves are for the indicated λ̄ values.

solution is not symmetric under µ → −µ because the linear term in µ kicks
in. We have already noted that one needs very large λ̄ values to obtain the
asymptotic solution because the second-largest term only scales with λ̄−1/4

relative to the dominant term. The asymptotic behavior is achieved for much
smaller λ̄ values if µ > 0. The growth rate vanishes completely above a
certain |µ| value, but obtains nonzero values otherwise, i.e., there is no lower
µ̂ threshold. However, for µ̂ . 0.5, the growth rate is a steep power-law of µ̂
and can be taken to be effectively zero.

For our usual example α = 1/2 we find that the maximum growth rate
occurs for µ̂ = 1.494. Therefore, we find that

µ = ±4.911$
1/4
0 λ̄3/4 (C.1.3)

gives us the locus of the maximum growth rate in the µ-λ̄ plane for the bimodal
and MAA solutions. The maximum value of µ̂ before the growth rate becomes
zero is 1.7724. On the small-µ̂ side, the growth rate drops below κ < 1/100,
our usual criterion, at µ̂ = 0.3478. Therefore, the footprint of the instability is
the region between the lines µ = 1.143λ3/4 and 5.826λ3/4, where both µ and
λ are given in units of the vacuum oscillation frequency $0. This footprint is
shown in the first quadrant (upper right) of Figure C.3. The corresponding
footprint in the second quadrant (upper left) is also shown.

We next turn to the MZA solution which exists only in inverted ordering
(µ < 0) and we consider Equation 6.4.13. If we use µ = −λ̄/[2(1 − α)] the
leading terms cancel, leaving us with a leading term of order λ̄−1/2. To obtain
the lowest-order equation, we introduce another dimensionless parameter µ̂
and write

µ =
−λ̄

2 (1− α)
− µ̂ π

√
1− α2

2 (1− α)2

√
$0λ̄ , (C.1.4)

where, of course, the detailed coefficients in the second term are chosen for
later convenience. One then finds a quadratic equation with solutions

Ω

$0

=
1 + α2 − 2µ̂2 (1 + α2)

1− α2
± i 4α

1− α2

√
µ̂2(1− µ̂2) . (C.1.5)
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Notice that these solutions require 0 ≤ µ̂ ≤ 1 and we have always assumed
0 ≤ α ≤ 1. The imaginary part, as a function of µ̂2, has the familiar semi-
circular shape. In Figure C.2 we show it as a function of µ̂ (blue curve) and
we also show the full solution for λ̄ = 103 and 102. The asymptotic solution is
quite good for relatively small λ̄ values. In contrast to the other solutions, on
a logarithmic scale the unstable range becomes very narrow as λ̄→∞.
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Figure C.2: Asymptotic growth rate κ for the MZA instability for α = 1/2.
The interaction strength is scaled according to Equation C.1.4. The blue
curve shows the asymptotic behavior for λ̄→∞ according to Equation C.1.5,
whereas the other curves correspond to the labeled λ̄ values.

The maximum growth rate obtains for µ̂ = 1/
√

2. Therefore, for our usual
example α = 1/2 we find that for the MZA solution,

µ = −λ̄− π
√

3$0λ̄/2 (C.1.6)

gives us the locus of the maximum growth rate in the µ-λ̄ plane. The growth
rate becomes exactly zero for µ̂ ≤ 0 and µ̂ ≥ 1, so the footprint (see upper-
left quadrant in Figure C.2) is delimited by the curves µ = −λ̄ and µ =

−λ̄−π
√

3λ̄$0. The width of the footprint scales with
√
λ̄, i.e., on a logarithmic

scale it becomes very narrow for large λ̄.
For λ̄ < 0, the above approach does not lead to unstable solutions. Numer-

ically we observe that for λ̄ → −∞, the real part of the solutions approaches
Re(Ω) → λ̄/2, i.e., a large negative number. Therefore, to be able to expand
the equation, we express Ω = λ̄/2+w$0 and seek self-consistent solutions with
the dimensionless eigenvalue w of order unity. After expansion for λ̄ → −∞,
the asymptotic eigenvalue equations are

log(1− w)− α log(−1− w)

1− α = a (C.1.7)

where

a = log

(
− 2λ̄

e2$0

)
− 1

µ̂
or a = log

(
− 2λ̄

e2$0

)
+

3 + µ̂2

(3− µ̂)µ̂
, (C.1.8)
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where e is Euler’s number and as always the logarithm is with base e.
For our usual example α = 1/2, we can solve this equation analytically

with the explicit result

wα=1/2 =
2− ea ± i

√
ea(8− ea)

2
. (C.1.9)

It has a nonzero imaginary part for −∞ < a < log(8) = 2.0794, although it
becomes exponentially small for a � −1. The maximum imaginary part ob-
tains for a = log(4) = 1.3863 and the maximum is 2. Therefore, the maximum
growth rate obtains for

A =
1

µ̂
or A = − 3 + µ̂2

(3− µ̂)µ̂
, (C.1.10)
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Figure C.3: Footprint of the 1D instabilities in the µ-λ̄ plane for k = 0 (ho-
mogeneous mode) and α = 1/2. The colored regions derive from a numerical
solution, where the blue footprints correspond to Equation 6.4.13, the red so-
lutions to the 1×1 block given by Equation 6.4.12. The grey regions show the
asymptotic solutions in the large-λ̄ limit derived in this appendix.



C.2 Asymptotic behavior for the 2D case 115

where

A = − log(4)− 2 + log

(
− 2λ̄

$0

)
= log

( −λ̄
2e2$0

)
. (C.1.11)

Therefore, we have altogether three solutions, corresponding to the three in-
stabilities, with maximum growth rates on the locus in the µ-λ̄ plane given by

µ = −2λ̄
6

3A+
√

3(A+ 2)(3A− 2)
→ −2λ̄

1

A
, (C.1.12a)

µ = +2λ̄
1

A
, (C.1.12b)

µ = +2λ̄
3A+

√
3(A+ 2)(3A− 2)

2 (A− 1)
→ 6λ̄ , (C.1.12c)

where the limiting behavior is understood for A→∞. Because λ̄→ −∞, the
first solution corresponds to positive µ and thus to the bimodal solution, the
second and third solutions are the MAA and MZA instabilities, respectively.

To draw the footprints in the lower quadrants of Figure C.3, we notice
that κ = 0 for a > log(8) and on the other side κ < 1/100 for a < log(4 −√

39999/50) = −9.90348. Therefore, the asymptotic footprints are limited by

a1 = log(8) and a2 = log(4−
√

39999/50) (C.1.13)

from which the limiting curves are extracted by solving Equation C.1.8 for µ̂.
Once more we note that two of the footprints are “wide” and nearly symmetric
between µ→ −µ, whereas the third instability has a very narrow footprint.

C.2 Asymptotic behavior for the 2D case

C.2.1 Asymptotic solutions for 2D with λ̄ = 0 and k→∞
We are looking for the large-k solutions of the 2D case without matter (λ̄ = 0).
We need to find the zeroes of the determinant of the matrix in Equation 6.5.13.
We first look at the 3 × 3 block and calculate it according to the explicit
integrals that we have found. Next we substitute the variables as $ = 1,
α = 1/2, Ω = −k + x, and

µ = a (k +m
√
k) , (C.2.1)

where a is a coefficient to be determined and overall the substitution for µ is an
educated guess. Except for the choice α = 1/2, everything is still completely
general. The unknown frequency to be found is x. Its imaginary part is
the growth rate which we are looking for. The parameter m is an effective
interaction strength because it gives us µ in this parameterised form.
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Next we expand the determinant as a power series for large k and find to
lowest nontrivial order

det(3×3 block) =
2880− 480 a− 424 a2 − 11 a3

2880

− 3 i

320

[√
2a2(32 + a)

(
2
√
x− 1−

√
x+ 1

)] 1√
k

+O(1/k) . (C.2.2)

For the term proportional to 1/
√
k to dominate we demand the first term to

vanish, giving us three possible values for a from the requirement 2880−480 a−
424 a2 − 11 a3 = 0. The explicit results are quite complicated expressions.
Numerically one finds

a1 = −37.1825 , (C.2.3)
a2 = −3.42115 , (C.2.4)
a3 = +2.05821 . (C.2.5)

In other words, we have three asymptotic solutions, where one is for positive
µ and two for negative µ as expected.

If we now imagine that a is one of these solutions, the first term in the
determinant vanishes and in the second term we can substitute a3 = (2880−
480 a − 424 a2)/11 to remove the a3 term. In anticipation of the result we
further introduce the quantity

mmax =
162
√

3 [120− a (20 + 3a)]

11 [1080− a (120 + 53a)]
, (C.2.6)

which for our three possible a values are numerically

mmax,1 = 1.23675 , (C.2.7)
mmax,2 = 4.49396 , (C.2.8)
mmax,3 = 2.77208 . (C.2.9)

Then we are left with the equivalent of the determinant equation
√

6m = immax

(
2
√
x− 1−

√
x+ 1

)
. (C.2.10)

It has the explicit solutions

x =
5

3
− 10m2

3m2
max

± 8
√
m2(m2 −m2

max)

3m2
max

. (C.2.11)

The solution has an imaginary part for 0 < m < mmax. Therefore, the large-k
footprint of the three instabilities is limited by the lines

µ = ai k and µ = ai

(
k +mmax,i

√
k
)
. (C.2.12)
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For µ-values between these lines, the system is unstable.
Finally we turn to the 1×1 block in Equation 6.5.13. We proceed with the

same substitutions except for

µ = a (k + b) , (C.2.13)

where for the moment we leave open what b is supposed to mean. Expanding
the 1×1 block determinant in powers of large k, we here find

det(1×1 block) =
6 + a

6
+
a

6
(−9 + b+ 3x)

1

k

+i
2
√

2 a

3

[
2(x− 1)3/2 − (x+ 1)3/2

] 1

k3/2
+O(1/k2) . (C.2.14)

Again we can get rid of the first term, this time by setting a = −6, i.e., the
footprint of this instability is for negative µ. The remaining equation is

det(1×1 block) = (9− b− 3x)
1

k

−i 4
√

2
[
2(x− 1)3/2 − (x+ 1)3/2

] 1

k3/2
+O(1/k2) . (C.2.15)

The leading term does not provide an imaginary solution. In other words, for
very large k we do not have an instability. If we keep both the leading and
next to leading term, we finally need to solve the equation

(9− b− 3x)
√
k = i 4

√
2
[
2(x− 1)3/2 − (x+ 1)3/2

]
. (C.2.16)

Solving this equation actually leads to an asymptotic solution where the growth
rate exists for a range of b-values. However, the maximum growth rate de-
creases with 1/

√
k. Therefore, we have overall four instabilities, but for k →∞

the one from the single block disappears.

C.2.2 Asymptotic solutions for 2D with k = 0 and λ̄→∞
We can derive asymptotic solutions for the 2D case with matter, i.e., the large-
λ̄ solutions of the eigenvalue Equation 6.5.15, corresponding to Equation 6.5.16
and Equation 6.5.17. We begin with the 2×2 block and λ̄→ +∞. As in the 1D
case, we assume that Ω remains of order $0, an assumption which is confirmed
by the results. We express the interaction strength in terms of a dimensionless
parameter µ̂ in the form

µ =
µ̂

1− α λ̄ . (C.2.17)

To lowest order in λ̄−1 the eigenvalue equation is, using w = Ω/$0,

log(1− w)− α log(−1− w)

1− α = a , where a = log

(
λ̄

2$0

)
− 2(µ̂− 1)2

µ̂2
.

(C.2.18)
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This result is identical with Equation C.1.7, but with a different expression for
a. To draw the asymptotic footprints we simply need to solve for µ̂ using the
limiting a-values given in Equation C.1.13. The result is shown in Figure C.4 as
grey shaded regions in the upper panels, to be compared with the blue regions
which derive from a numerical solution of the full eigenvalue equations.

For the 1×1 block in the limit λ̄→ +∞, we express the interaction strength
in the form

µ = − λ̄+ µ̂$0 log(λ̄/2$0)

1− α . (C.2.19)

With µ̂ = 0 the eigenvalue equation is identically fulfilled to lowest order in
λ̄−1, i.e., to lowest order unstable solutions require µ = −λ/(1 − α). This
simple behavior indeed corresponds to the very “thin” footprint shown in red
in the upper left panel of Figure C.4. Including µ̂ 6= 0 leads to an approximate
eigenvalue equation which is not very simple and does not lead to simple
asymptotic solutions.

For the next cases we turn to the limit λ̄→ −∞. In this limit, we write Ω =
λ̄/2 +w$0 in analogy to the 1D case. In the λ̄→ −∞ limit, the eigenvalue is
characterized by w values of order unity. We also write the interaction strength
again in the form of Equation C.2.17. The limiting eigenvalue equation is the
same as in Equation C.2.18, but now with

a = log

(
− λ̄

2$0

)
− 2(µ̂− 1)2

(µ̂− 4) µ̂
or a = log

(
− λ̄

2$0

)
− µ̂+ 1

µ̂
, (C.2.20)

where the first expression applies to the 2×2 block, the second to the 1×1 block
of the eigenvalue matrix. As before, to draw the asymptotic footprints we solve
for µ̂ using the limiting a-values given in Equation C.1.13. The result is shown
in Figure C.4 as grey shaded regions in the lower panels, to be compared with
the blue and red regions which derive from a numerical solution of the full
equations.
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Figure C.4: Footprint of the 2D instabilities in the µ-λ̄ plane for k = 0 (ho-
mogeneous mode) and α = 1/2. The colored regions derive from the nu-
merical solution, where the blue footprints correspond to the 2×2 block in
Equation 6.5.16, the red solutions to Equation 6.5.17. The grey regions show
the asymptotic solutions in the large-λ̄ limit derived in this appendix.
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Appendix D
Supernovae footprint diagram

SN environments are the best suited laboratories for the study of neutrino self-
induced oscillations. In this thesis, we have introduced the concept of flavor
instability, and discussed that, under certain circumstances, the collective fla-
vor modes undergo exponential flavor conversion, i.e., unstable behavior which
can lead to flavor decoherence. In order to study if these circumstances are
reached in a stationary SN environment we use the so-called footprint dia-
grams.

Footprint diagrams show a snapshot of a SN matter profile for a given time
as function of the radius. In order to explain how to interpret the results
provided by these diagrams, we have included Figure D.1, obtained from Ref-
erence [65]. For this particular example, the SN matter profile corresponds to a
SN numerical simulation of a 15 M� progenitor at 150 ms after shock bounce.
The sudden drop in the SN profile corresponds to the shock front. Of course,
the exact shape of the spectrum depends on the mass of the progenitor and is
also time dependent, with the shock wave being further away from the core at
later times. The x axis shows the neutrino-neutrino interaction strength de-
fined in Chapter 6, µ =

√
2GFnν(R/r)

2, where R is the radius of the neutrino
sphere. The y axis displays the matter density defined as λ =

√
2GFne(R/r)

2.
After performing the stability analysis, there are certain regions of the λ-µ

parameter space where the equations are unstable. For this example shown in
Figure D.1, the blue region corresponds to the bimodal instability for inverted
ordering (IO), and the red region corresponds to the Bimodal instability for
the normal ordering (NO). The crucial point is that, if the region of instability
does not intersect the SN matter profile, we can conclude that the system is
stable. On the other hand, if the matter profile crosses an instability region,
the system is prone to undergo exponential flavor conversion. In the example
of Figure D.1, the blue curve does not intersect the SN matter profile. We can
therefore assess that this instability is harmless for the SN under study. On the
other hand, the blue region, corresponding to the normal ordering, intersects
the matter profile of the SN short after the shock front. Therefore, with this
specific SN matter profile, this instability can be triggered .
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122 D. Supernovae footprint diagram

Figure D.1: Regions of exponentially growing solutions corresponding to the
IO (blue) and NO (red) scenarios, depending on radius r and the multi-angle
matter potential [65]. Thick black line: SN density profile.
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