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Abstract 

 

Genetically encoded calcium indicators (GECIs) play a pivotal role as tools for in vivo calcium imaging 

of complex tissue processes and neuronal circuits. Our lab developed and optimized several 

generations of Förster resonance energy transfer (FRET)-based GECIs comprising troponin C as a 

calcium binding domain. However, structure-function relationships of these fusion proteins remained 

largely uncharacterized due to their complex artificial and multimodular composition. The increasing 

range of applications for calcium imaging confronts existing GECIs with the demand to fine-tune their 

key properties to specific imaging scenarios, and to expand these properties to certain calcium 

concentrations or signal and kinetic qualities. 

This work presents a combination of biophysical, spectroscopic, and kinetic analyses of the FRET-

based GECI TN-XXL and variants thereof to gain a better understanding of the functional interplay of 

its modular domains. Tyrosine fluorescence spectroscopy is used to disentangle the individual 

contributions of the four calcium binding sites and reveals that two EF-hands dominate the FRET 

signal output. Using NMR spectroscopy and steady-state fluorescence spectroscopy these findings 

are coupled with the structural change of the binding domain and the kinetics of the FRET change. 

For the first time, small-angle X-ray spectroscopy (SAXS) and analytical ultracentrifugation 

experiments shed light on the hydrodynamics of the overall conformational change switching from a 

flexible elongated to a rigid globular shape upon calcium binding. Furthermore, time-resolved 

fluorescence spectroscopy was applied to quantify the average fluorescence lifetime of TN-XXL and 

investigate potential non-FRET effects that may affect the fluorophores. These findings highlight the 

advantage of FRET-based GECIs such as TN-XXL or the new Twitch series over single fluorophore 

GECIs with respect to their optimization potential in FLIM applications. In a third experimental 

section a transposon-based approach for the generation of mutant libraries of fluorescent proteins 

was conceptualized and established which can be combined readily with follow-up bacterial plate 

screening of new GECI variants.  

Thus, a comprehensive and thorough characterization scheme for the biophysics of TN-XXL is 

presented which contributes to the development and improvement of new GECI variants and may 

form the basis for fine-tuning and rationally engineering novel FRET-based indicators. 
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1 Introduction 

1.1 Fluorescence 

1.1.1 Fluorescence Emission 

Fluorescence describes the emission of light by a molecule upon excitation with electromagnetic 

radiation. The photoactive structure of the molecule, the fluorophore, usually consists of a 

delocalized π-electron system of an aromatic ring structure. The basic cycle of fluorescence 

activation and deactivation is displayed in the Jablonski diagram (Figure 1). Through interaction with 

a photon of suitable energy the fluorophore is able to transit from a low-energy ground state (S0) to a 

higher-energy electronic state (S1, S2, …). In each excited electronic state the fluorophore can be 

excited to various vibrational levels (0, 1, 2) which results in the shape of the excitation spectra with 

its vibrational fine structure. The activation process usually occurs within a timeframe of 10-15 s, 

which is too short for electrostatic displacement of the nuclei, and thus can be regarded as an 

instantaneous absorption process (Franck-Condon principle). Through internal conversion excited 

fluorophores generally return to the lowest vibrational level of the first excited ground state S1 within 

a timeframe of 10-12 s. The excited singlet state (S1) rapidly returns to the electronic ground state S0 

via spin-allowed deactivation by emission of a photon (fluorescence) after a lifetime of about 10-8 s. 

Typically, deactivation also occurs to excited vibrational levels of the ground state S0, again resulting 

in the vibrational fine structure of the emission spectrum. 

 

 

Figure 1: Jablonski diagram 
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Two further general characteristics of fluorescence are crucial for the shape and the energy levels of 

the excitation and emission spectra: the Stokes shift and the mirror image rule (Figure 2). The Stokes 

shift (Figure 2A) describes the lower energy of the emission compared to the initial excitation mostly 

due to energy loss through vibrational relaxation and internal conversion, solvent effects, and energy 

transfer. The mirror image rule compares the shape and vibrational fine structure of the excitation 

and emission spectrum, which are typically mirror images of each other due to the similar spacing of 

the vibrational energy levels of the ground and excited state (Figure 2B). Exceptions to the mirror 

image rule are usually based either on excitations to higher electronic states (S2, S3) or on pH-

sensitive fluorophores resulting in a change of the protonation state and hence a change of the 

excited state energy levels upon excitation (especially biochemical fluorophores including phenol and 

tyrosine residues). 

A B 

 

 

Figure 2: General characteristics of fluorescence 

(A) Stokes shift. (B) Mirror image rule; Wavenumbers in reciprocal centimeters [cm-1] and kiloKaiser 

[kK] with 1kK = 1000 cm-1 (Reproduced from Fig. 1.3 and Fig 1.8 of Lakowicz, 2006, respectively, with 

permission from Springer). 

 

Fluorescence emission is therefore only one of the possible excited state relaxation processes of a 

fluorophore competing with other, non-radiative decay processes in terms of transition probabilities 

and timescales (Table 1). 
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Table 1: Timescale range for fluorescence processes 

 

Process Timescale [s] 

Excitation  

Absorption Instantaneous; 10-15 

Fluorescence Cycle  

Internal Conversion 10-14 to 10-10 

Vibrational Relaxation 10-12 to 10-10 

Fluorescence 10-9 to 10-7 

Competing Effects  

Intersystem Crossing 10-10 to 10-8 

Non-Radiative Relaxation Quenching 10-7 to 10-5 

 

1.1.2 Fluorescence Lifetime and Quantum Yield 

Two important, inherent characteristics of fluorophores, apart from the location of their excitation 

and emission spectra in the spectral range, are the quantum yield and the fluorescence lifetime. The 

quantum yield is defined as the number of photons which are emitted from a fluorophore relative to 

the number of photons absorbed. The quantum yield is responsible for the brightness of a 

fluorophore and therefore an important quality for experimental applications. 

QY =
𝑘𝐹

k𝐹 + knr
 

Equation 1 

 

QY Quantum yield 

kF Rate of fluorophore emission 

knr Rate of non-radiative decay to S0 

 

The fluorescence lifetime is defined as the average time which a fluorophore remains in the excited 

state before returning to the ground state. The fluorescence lifetime is very important because it 

defines the timespan in which the activated fluorophore is available for interactions with its 

environment and can hence be used as a transmitter of molecular information. 

τ =
1

k𝐹 + knr
 

Equation 2 

 τ Fluorescence lifetime 
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This leads to the basic conclusion, that the quantum yield is proportional to the lifetime of a 

fluorophore: 

QY = k𝐹 ∙ τ 
Equation 3 

 

Under complex biochemical experimental conditions, the emissive rates of the quantum yield and 

lifetime are subject to many competing processes: internal conversion, solvent relaxation, quenching 

(especially of adjacent tryptophan residues in proteins), intersystem crossing to the triplet state T1 

leading to phosphorescence and temperature effects. An intrinsic (or natural) lifetime of the 

fluorophore in absence of non-radiative processes can be calculated, but serves in most biochemical 

settings only as a theoretical boundary value. In summary, the quality of a fluorophore is dependent 

on three factors: the spectral characteristics defined by the setting of electronic states, the key 

characteristics quantum yield and fluorescence lifetime, and the susceptibility for environmental 

interactions modifying the non-radiative decay rate. 

1.1.3 Steady-state and Time-resolved Fluorescence 

Two types of fluorescent measurements can be applied to investigate different properties of 

fluorophores: steady-state and time-resolved measurements (Figure 3). Steady-state measurements 

are performed with constant excitation and an averaged recording of the emission intensity. Due to 

the simplicity of its experimental setup, constant excitation is the most common type of 

measurement and yields information related to the static properties of the sample. In time-resolved 

measurements the sample is excited with a pulse of light with a pulse width shorter that the decay 

time of the fluorophore. The intensity decay is recorded with a high-speed detection system allowing 

for a resolution on the nanosecond (ns) timescale. 

 

Figure 3: Comparison of steady-state and time-resolved fluorescence spectroscopy 

I: intensity; nm: nanometer; ns: nanosecond (Reproduced from Fig. 1.17 of Lakowicz, 2006 with 

permission from Springer). 
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The steady-state signal can therefore be regarded as an averaged signal of the time-resolved 

fluorescence decay, where continuous illumination leads to an invariant output of emission intensity. 

The time-resolved intensity decay is given by: 

𝐼(𝑡) = 𝐼𝑜 ∙ 𝑒
−𝑡

𝜏⁄  
Equation 4 

 

I0  Emission intensity at t=0, immediately following the excitation pulse 

τ Fluorescence lifetime 

 

The emission intensity of steady-state measurements (ISS) is given by: 

𝐼𝑆𝑆 = ∫ 𝐼𝑜 ∙ 𝑒
−𝑡

𝜏⁄

∞

0

𝑑𝑡 = 𝐼0 ∙ 𝜏 
Equation 5  

 

The emission intensity at t=0 can be regarded as a parameter only dependent on the fluorophore 

concentration and instrumental parameters and hence the emission intensity of steady-state 

measurements shows, like the quantum yield in Equation 3, to be proportional to the fluorescence 

lifetime (Lakowicz, 2006). 

Time-resolved measurements are used to collect additional information about molecular processes 

on a nanosecond scale which is lost during the averaging process in steady-state measurements. 

Aside from many applications in anisotropy spectroscopy, the intensity decay contains information 

about multiple conformational states of the fluorophore and the fluorophore-environment 

interactions like diffusion, quenching and complex formation. 

1.1.4 Förster Resonance Energy Transfer 

Another deactivation pathway for excited-state fluorophores (other than fluorescence and the non-

radiative decays listed in Table 1) is Förster resonance energy transfer (FRET). This process allows 

one fluorophore in the excited-state (donor) to transfer energy to a second fluorophore in the 

ground state (acceptor) through dipole-dipole interaction. The possibility of this transfer interaction 

is given whenever the emission spectrum of the donor overlaps with the excitation spectrum of the 

acceptor. The FRET efficiency is dependent on the distance and orientation of the two fluorophores 

(variable parameters) as well as the quantum yield and the decay rate of the donor (invariant 

photophysical properties).  
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𝑘𝐹𝑅𝐸𝑇 =
1

𝜏𝐷
∙

𝑅0
6

𝑟6
= 𝑘𝐷 ∙

𝑅0
6

𝑟6
 

Equation 6 

𝐸𝐹𝑅𝐸𝑇 =
𝑘𝐹𝑅𝐸𝑇

𝑘𝐹𝑅𝐸𝑇 + 𝑘𝐷 + ∑ 𝑘𝑖
 

Equation 7 

𝐸𝐹𝑅𝐸𝑇 =
𝑅0

6

𝑅0
6 + 𝑟6

 
Equation 8 

𝑅0
6 = 9.78 ∙ 103(𝜅2𝑛4𝜙𝐷𝐽) 

Equation 9 

𝐽 = ∫ 𝐹𝐷(𝜆)𝜀𝐴(𝜆)𝜆4𝑑𝜆 
Equation 10 

 

kFRET
 Rate of energy transfer 

kD Rate of donor emission 

ki Rates of non-radiative decay 

R0 Förster radius 

r Inter-fluorophore distance 

EFRET
 Efficiency of energy transfer 

κ2 Orientation factor 

n Refractive index of the medium 

ϕD Quantum yield of the donor 

J Spectral overlap integral 

FD Fluorescence intensity of the donor 

εA Molar absorbance of the acceptor 

 

The Förster radius (R0) is a fixed parameter for each pair of fluorophores and describes the inter-

fluorophore distance at which 50% of the excited-state energy is transferred from the donor to the 

acceptor. A change in the distance between the fluorophores around the Förster radius (usually 

between 1 and 10 nm) leads to the most pronounced change in energy transfer (Figure 4). Hence, 

FRET is an important phenomenon for reporting distance and orientational changes on a nanometer 

scale and is widely used in applications as a “spectroscopic ruler” (Stryer and Haugland, 1967) and for 

molecular interaction studies (Medintz and Hildebrandt, 2013). The choice of a bright donor with a 

high quantum yield as well as a corresponding acceptor is crucial for signal quality in such 

experiments. 
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Figure 4: Dependence of the dynamic range of FRET on the Förster radius R0 

The numbers present at the left of each curve correspond to the R0 of each curve in Å. The dotted 

lines delineate the regime of maximum sensitivity for each pair with different R0 (Reproduced from 

Kapanidis and Weiss, 2002 with the permission of AIP Publishing). 

 

1.1.5 Biofluorescence and the Green Fluorescent Protein 

Fluorophores can be divided into two main groups: intrinsic and extrinsic. Intrinsic fluorophores are 

inherently fluorescent whereas extrinsic fluorophores are artifically attached to non-fluorescent 

samples in order to equip them with the desired fluorescent properties. Biofluorescence is the 

phenomenon of fluorescence occurring in biological organisms and systems through naturally 

occurring intrinsic fluorophores. The most dominant intrinsic fluorophore in proteins is the amino 

acid tryptophan, followed by tyrosine and phenylalanine. For decades these residues have been the 

only access to intrinsic protein fluorescence in order to study folding, binding and interaction. The 

discovery (Shimomura et al., 1962), cloning (Chalfie et al., 1994; Prasher et al., 1992) and 

development (Tsien, 1998) of the green fluorescent protein (GFP) from the bioluminescent jellyfish 

Aequorea victoria by Shimomura, Prasher, Chalfie, and Tsien gave rise to a new class of intrinsic 

biofluorophores. Without the requirement of enzymatic synthesis, the GFP-fluorophore is formed 

spontaneously in a multistep process during the folding and maturation of the polypeptide chain 

(Figure 5) (Niwa et al., 1996). Important for the formation of the fluorophore is the protection 

provided by a highly constrained β-barrel that surrounds the fluorophore.  
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Figure 5: Spontaneous formation of the GFP fluorophore by the residues Ser-Tyr-Gly 

(Reproduced from Day and Davidson, 2009 with permission of The Royal Society of Chemistry). 

 

The Green Fluorescent Protein consists of 238 amino acids with a molecular weight of approximately 

27 kD in a cylindrical shape with a length of 4.2 nm and a diameter of 2.4 nm (Hink et al., 2000). Its 

structure was first solved in 1996 (Ormö et al., 1996; Yang et al., 1996), revealing the characteristic 

11-sheet β-barrel enclosing a central α-helical structure comprising the fluorophore forming residues 

Ser65, Tyr66 and Gly67. The 4-(p-hydroxybenzylidene)-5-imidazolidinone moiety (Shimomura, 

1979) is formed through a three-step process independent of cofactors other than atmospheric 

oxygen (Reid and Flynn, 1997). The cyclization reaction followed by dehydration and oxidation is 

facilitated by the sterical restraints and the chaperone-like shielding of the β-barrel as well as the 

highly conserved residues Arg 96 and Glu222 (Branchini et al., 1997). 

Despite its reliable and irreversible mechanism of formation, the fluorophore of GFP shows a 

marionette-like dependency on interactions with and mutations of the surrounding residues. 

Improvement in folding efficiency at 37 °C was conducted over the course of a decade, first by 

introducing the F64L mutation (Cormack et al., 1996), followed by the cycle-3 mutations F99S, 

M153T, and V163A (Crameri et al., 1996) and finally with the introduction of six additional mutations 

to form “superfolder-GFP” in 2006 (Pédelacq et al., 2006). In wild type GFP, two protonation states of 

the fluorophore residues are in equilibrium: the deprotonated, anionic phenolate form and the 

neutral, phenol resulting in different absorbance characteristics. Both states can be stabilized by 

single mutations with S65T in eGFP for the anionic and the “Sapphire” mutation T203I for the neutral 

phenol (Tsien, 1998; Zapata-Hommer and Griesbeck, 2003). Introducing a Tyrosine at the same 

position (Thr203) gave rise to a π-stacking interaction within the fluorophore that lowered the 
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energy levels of the excited state and thus leading to spectral red-shifting which resulted in 

Yellow Fluorescent Protein (YFP) (Ormö et al., 1996; Wachter et al., 1998) with excitation and 

emission maxima at 514 nm and 527 nm, respectively. To reduce the chloride and pH sensitivity of 

YFP, more stable variants Citrine (V68L, Q69M, S72A) (Griesbeck et al., 2001) and Venus (F64L, 

M153T, V163A, S175G) (Nagai et al., 2002) were successively engineered. Mutating residue 

Tyr66 to Tryptophan (Y66W) gave rise to Cyan Fluorescent Protein (CFP) (Heim et al., 1994) with 

an imidazole form of the fluorophore which was further enhanced to ECFP (N146I, M153T, 

V163A) (Heim and Tsien, 1996; Tsien, 1998) with excitation and emission maxima at 432 nm and 

475 nm, respectively.  

Circular permutations (cpVariants) of fluorescent protein further demonstrate the high tolerance 

towards structural modifications and open up new ways as indicator building blocks. By fusing the 

original N- and C-terminus of EYFP with a hexapeptide linker GGTGGS and setting the new N-

terminus at a mutated Y145M residue, cpEYFP evolved with remaining fluorescence and unchanged 

3D structure (Baird et al., 1999). Especially for yellow fluorescent proteins a variety of cpVenus and 

cpCitrine variants with new termini at various sites was engineered to optimize its use in indicator 

design (Mank et al., 2006; Nagai et al., 2004). Especially the altered orientation of the chromophore 

towards fusion partners and new interaction sites at the N- and C-termini offer potential for 

improved indicator variants, both in single-FP and FRET indicators (Chapter 1.3.2). 

The toolbox of fluorescent proteins has further expanded by the discovery of other biofluorescent 

proteins in Anthozoa corals like Discosoma (DsRed, Matz et al., 1999), Zoanthus (zFP538, Matz et al., 

1999), Heteractis crispa (hcRed, Gurskaya et al., 2001), and Entacmaea quadricolor (eqFP611, 

Wiedenmann et al., 2002). Fluorescent proteins as fusible, intrinsic fluorophores are now spanning 

the entire colour spectrum from ultramarine UMFPs with 425 nm emission maxima (Tomosugi et al., 

2009) to near infrared IRFPs and IFP1.4 with emission maxima beyond 700 nm (Shcherbakova and 

Verkhusha, 2013) and can be readily combined in Förster resonance energy transfer experiments 

(Hamers et al., 2014; Lindenburg and Merkx, 2014). 
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1.2 Calcium Signalling 

Calcium is one of the most important and abundant second messengers for the lifecycle and 

functionality of cells. Changes in the intracellular calcium concentration are involved as signals in 

numerous fundamental processes and span a wide temporal range. The calcium concentration of 

cells at rest is about 100 nM and increases up to 1000 nM during activation. The specificity of 

individual signalling events and their interplay is ensured by very specific temporal and spatial 

dynamics of the individual processes. Deciphering and understanding the complex calcium signalling 

network of requires the experimental ability to measure calcium concentrations and their changes 

under in-vivo conditions with high spatio-temporal resolution and low interference to the system. 

Genetically-encoded calcium indicators have become the preferred tools for this purpose and have 

expanded their usability to a broad variety of calcium signalling scenarios. 

1.2.1 Calcium Signalling in Cell Physiology 

Cellular calcium signalling events are created by increase of the intracellular calcium concentration 

either via the uptake from external calcium across the plasma membrane or the release from internal 

stores of the endoplasmic reticulum (ER) or the sarcoplasmic reticulum (SR) of muscle cells (“on” 

reactions). The influx of external calcium through plasma membrane calcium channels can be 

stimulated via voltage changes (voltage-operated channels, VOCs), the interaction of external 

transmitters like ATP and acetylcholine with receptors (receptor-operated channels, ROCs) or the 

interaction of further downstream signals with receptors like second-messenger-operated channels 

(SMOCs) or store-operated channels (SOCs). The release of calcium from internal stores is mediated 

by various channels like the inositol-1,4,5-triphosphate receptor (InsP3R) or ryanodine receptor (RYR) 

families (Berridge, 1993; Clapham, 1995). Upon stimulation calcium mobilizing second messengers 

either diffuse into the cell like Ins(1,4,5)P3 or are generated internally like cyclic ADP ribose (cADPR) 

and trigger the calcium release from the ER/SR (Clapper et al., 1987). An important activator of these 

channels is calcium itself leading to cascading effects through a feedback mechanism referred to as 

calcium-induced calcium release (Berridge et al., 2000). A major part on the inflowing calcium is 

immediately absorbed by cytosolic calcium buffers such as calbindin-D28, calretinin, and parvalbumin 

which in this way shape the duration and amplitude of calcium signals. Additionally, these buffer 

proteins confine the spatial spreading of calcium signals, dependent on their respective  

concentration which varies largely between cell types (Fierro and Llano, 1996). As elevated calcium 

concentrations over a longer period of time are cytotoxic and lead to apoptotic mechanisms calcium 

removing mechanisms are rapidly triggered by a set of pumps and exchangers (“off” reactions) 

(Blaustein and Lederer, 1999; Pozzan et al., 1994). Calcium efflux is mediated by plasma membrane 

Ca2+ ATPases (PMCAs) and Na+/Ca2+ exchangers whereas re-uptake to the internal stores is carried  



Introduction  
 

| 25 

out by sarco-endoplasmic reticulum ATPases (SERCAs) (Berridge et al., 2003). Through fast 

sequestration and slow release of calcium during the signalling phase mitochondria also contribute 

to shaping the amplitude and spatio-temporal pattern of calcium signals (Budd and Nicholls, 1996; 

Duchen, 1999). Temporal overlap of “on” and “off” mechanisms leads to specific calcium signals that 

exhibit unique fingerprint patterns according to their respective roles in the signalling network. 

The coupling of calcium signals and calcium-sensitive processes is mediated through the calcium-

sensitive proteins calmodulin and troponin C (see Chapter 1.3.3), which undergo a pronounced 

conformational change upon calcium binding and serve as molecular switches for further 

downstream effectors. Troponin C has a very specific function in mediating the interaction of actin 

and myosin in cardiac and skeletal muscle contraction whereas calmodulin is integrated in various 

processes ranging from gene regulation to cell proliferation, crosstalk between different signalling 

pathways as well as in metabolism (Berridge et al., 2000). An overview of the described calcium 

dynamics is shown in Figure 6. However, the scope of calcium signalling exceeds the level of 

individual events and coupled processes. Intercellular calcium waves can spread through gap 

junctions or through the activation purinergic receptors (Osipchuk and Cahalan, 1992) and trigger or 

coordinate further processes such as cilia movement in lung tissue (Lansley and Sanderson, 1999) 

and the metabolic function of the liver (Gaspers and Thomas, 2005). Furthermore, frequency-

modulated signalling systems occur where periods of signalling with spikes of different frequencies 

are necessary. Sophisticated encoding and decoding machineries underpin these processes such as in 

liver metabolism, the initiation of mitosis during the cell cycle or differential gene transcription 

(Smedler and Uhlén, 2014). Calcium ultimately also plays a crucial role in steering the long-term 

processes and differentiations from the beginning of the life cycle such as in fertilization (Whitaker, 

2006) and embryonic pattern formation (Webb and Miller, 2003), stem cell differentiation (Tonelli et 

al., 2012) and cell proliferation until apoptosis (Mattson and Chan, 2003).  
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Figure 6: Calcium-signalling dynamics and homeostasis 

During the “on” reactions, stimuli induce both the entry of external calcium and the formation of 

second messengers that release internal calcium that is stored within the endoplasmic/ sarcoplasmic 

reticulum (ER/SR). Most of this calcium (shown as red circles) is bound to buffers, whereas a small 

proportion binds to the effectors that activate various cellular processes that operate over a wide 

temporal spectrum. During the “off” reactions, calcium leaves the effectors and buffers and is 

removed from the cell by various exchangers and pumps. The Na+/Ca2+ exchanger (NCX) and the 

plasma membrane Ca2+ ATPase (PMCA) extrude calcium to the outside, whereas the 

sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pumps calcium back into the ER. Mitochondria 

also have an active function during the recovery process in that they sequester Calcium rapidly 

through a uniporter, and this is then released more slowly back into the cytosol to be dealt with by 

the SERCA and the PMCA. Cell survival is dependent on calcium homeostasis, whereby the calcium 

fluxes during the “off” reactions exactly match those during the “on” reactions. [Ca2+]: Calcium 

concentration; Ins(1,4,5)P3R: Inositol-1,4,5-trisphosphate receptor; RYR: Ryanodine receptor 

(Adapted by permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Biol., Berridge et al., 

2003). 

 

1.2.2 Neuronal Calcium Signalling 

Shedding light on the signalling mechanisms of the central nervous system has been a major driver of 

calcium research. Neuronal activity is associated with a large influx of external calcium triggered by 

the propagation of electric currents across the plasma membrane. The depolarization phase of an 

action potential is initiated by an eruptive inward current of Na+ followed by a slower outward 

current of K+ during the repolarization phase. Secondary calcium influx is mediated through voltage-

gated channels and contributes to shaping the action potentials as well as manipulating their firing 

pattern (Bean, 2007). Neuronal calcium signalling is steering the regulation of neurotransmitter 
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release from vesicles at the presynapse and is involved in learning and memory formation and 

consolidation in spines (Limbäck-Stokin et al., 2004), the long-term potentiation (LTP) or depression 

(LTD) of synaptic transmission and the regulation of specific gene pools in the cell nucleus (Brini et 

al., 2014). 

As a consequence of the pivotal role of calcium in essential cellular and neuronal processes minor 

dysfunctions of the regulatory network can lead to severe pathological consequences and thus 

central nervous system diseases. Tremendous efforts are especially being made to better understand 

those characterized by neurodegenerative processes like amyotrophic lateral sclerosis, Alzheimer’s, 

Parkinson’s and Huntington’s disease (Brini et al., 2014) all of them being related to impaired and 

altered calcium signalling activity. 

Functional calcium imaging has emerged as a powerful technique to understand the spatial and 

temporal dynamics of intracellular calcium concentration as well as signalling networks coupled 

processes and malfunctions. The development of synthetic and genetically encoded fluorescence 

indicators provides tools for in vivo monitoring of transient and permanent changes in intracellular 

calcium concentrations and thus offers access to novel insights into the underlying biochemical and 

physiological processes. 

1.3 Genetically Encoded Calcium Indicators 

The IUPAC-derived definition classifies biosensors as a subgroup of chemical sensors (Hulanicki et al., 

1991; Thévenot et al., 2001). Chemical sensors provide real-time information about the 

concentration of specific analytes by converting interaction events on the molecular scale into a 

measureable signal readout on the macroscopic scale. The general setup of a biosensor consists of a 

biological or biochemical molecular recognition element (MRE), a transducer and an electronic 

detection component. The MRE, also called a binding or interaction domain, is chosen or designed to 

interact specifically with the analyte of interest and to produce a change of a chemical property on a 

molecular scale. This effect is subsequently converted by a physicochemical transducer into a 

measureable signal of macroscopic, physical properties (e.g. optical, electronic or piezoelectric 

signal). The electronic detection component finally is comprised of an amplifier, a processor and a 

read-out interface (Bănică, 2012). 

The terminus molecular sensor is often used for molecules which interact with an analyte to produce 

a change in a (passive) physicochemical property. In contrast to a transducer element of a regular 

biosensor no (active) measurable quantity (e.g. photon emission, electric current) and therefore no 

signal is produced (Fabbrizzi and Poggi, 1995; Valeur and Leray, 2000). Due to the lack of a transducer 
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unit, such molecular sensors are not sensors in the above definition but can rather be considered 

advanced analytical agents or molecular probes (Bănică, 2012; Borisov and Wolfbeis, 2008). 

For a concept of fusion proteins, which bind analytes and accordingly change their (passive) 

fluorescent properties like molecular sensors, but feature a distinct modular build-up, the term 

“genetically encoded indicator” has been coined (Miyawaki et al., 1997; Romoser et al., 1997). 

Simultaneously, the term biosensor is widely used for this class of proteins (e.g. Hamers et al., 2014; 

Ibraheem and Campbell, 2010; Lindenburg and Merkx, 2014; Palmer et al., 2011; Shcherbakova and 

Verkhusha, 2013), leading to a heterogeneous nomenclature in the field of genetically encoded 

indicators on the one hand and to an unclear reference to the vast field of biosensors on the other. 

Using spectroscopy, that is the interaction between matter and electromagnetic radiation, the 

(passive) physicochemical property changes of genetically encoded indicators can be read out and 

converted into an (active) optical signal output. 

1.3.1 Fluorescence Signal Types 

A fluorescence signal can be described as a function of the variation of emitted photons in time 

conveying information about the status of a system. Time-resolved fluorescence spectroscopy yields 

signals I(t), that convey information in the nanosecond time frame of the fluorescence lifetime τ 

about the molecular and quantum mechanical status of the fluorophore itself. Steady-state 

fluorescence spectroscopy yields static intensity values that convey changes in intensity (∆I) due to a 

change of the system’s properties. The rate at which subsequent intensity values are measured 

defines the time scale of the processes under investigation, ranging from millisecond rates for 

molecular binding events to seconds and minutes in cellular dynamics. An additional information 

quality can be gathered from the spectral distribution of the emitted fluorescence intensity I(λem) 

after excitation at a certain wavelength λex. This information is mostly used to distinguish between 

different quantum mechanical states of single fluorophores (e.g. to differentiate different electronic 

states in GFP fluorophores (Tsien, 1998) or in the development and optimization of the red shifted 

fluorescent proteins hcRed (Gurskaya et al., 2001) and mKO2 (Kikuchi et al., 2008), or to monitor the 

interaction of two fluorophore types in FRET experiments. Finally, a fourth quality of information can 

be obtained by measuring the polarization of fluorescence emission based on photoselective 

excitation of fluorophores by polarized light. These fluorescence anisotropy experiments are mostly 

used to measure protein dynamics, binding and reaction of molecules as well as protein-protein 

associations (Piston, 2010). 
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1.3.2 GFP-based Indicator Platforms 

Genetically encoded indicators in the above definition are composed solely of amino acids, to be 

expressed by cells in situ and feature a distinct modular build-up. All indicator platforms are based on 

fluorescent proteins which are functionalized by fusion with interaction domains via linker residues. 

Since the development of the first genetically encoded indicator for the detection of calcium 

(Romoser et al., 1997), a vast variety of indicators has been developed and further improved, which 

can be grouped according to four possible indicator principles, defined by the number of fluorescent 

proteins and the signal readout (Table 2).  

Table 2: GECI classes defined by the number of fluorescent proteins and the signal readout 

 

Number of FPs Readout Indicator principle FP requirements 

1 FP 

Intensity Single wavelength indicators Reversibly destabilizable 

chromophore 

Ratiometric Dual excitation wavelength indicators Reversibly protonatable  

chromophore 

2 FP 

Intensity Double wavelength indicators 

(not used) 

-- 

Ratiometric Dual emission wavelength indicators 

(FRET indicators) 

Stable and undisturbable 

fluorescence, suitable 

FRET pairs 

 

The key to most indicators is the transmission of the structural rearrangement of an interaction 

domain upon analyte binding to a change in the fluorescent properties. Hence, the different indicator 

classes with different interaction mechanisms require different, specialized fluorescent proteins with 

suitable photophysical and biophysical properties. The fusion of the interaction domains to 

fluorescent proteins can be N- or C-terminal, as insertion at specific positions within the β-barrel or 

at the newly generated termini of circular permutated variants (see Chapter 1.3.4). Three out of the 

four indicator principles have been successfully applied in different detection scenarios leading to a 

fast growing number of indicator platforms; only the hypothetical principle of double wavelength 

indicators has not been realized. The six different detection scenarios are: 

(1) Intrinsic sensitivity of certain fluorescent protein variants to environmental conditions, 

especially ion concentrations. In these scenarios the analyte (mostly halides) or the 

physicochemical conditions (pH, redox potential) directly interact with the fluorescent 

protein or the chromophore itself. Targeted engineering of these indicators is fairly limited 

by the constraints of the secondary and tertiary protein structure requirements of correctly 

folded fluorescent proteins and a maturated chromophore. 
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(2) Extrinsic sensitivity of fluorescent proteins or FRET pairs to ion or molecule concentrations 

induced by the fusion of a binding domain. These indicator platforms employ a distinct 

modular build-up and are therefore prime examples for the advances in engineering of 

genetically encoded indicators for a multitude of analytes (especially calcium, but also other 

metal ions, sugars, glutamate, cAMP, cGMP, NO) (Carter et al., 2014; Palmer et al., 2011). 

(3) Membrane potential, measured by the fusion of a voltage sensitive domain to a fluorescent 

protein or FRET pair. Upon hyper- or depolarization of neurons, a structural rearrangement 

of the interacting domain within the membrane triggers the change in the indicator’s 

fluorescence properties or FRET efficiency (St-Pierre et al., 2014). 

(4) Protein translocation, mostly used in indicators to track the PH domain of PLC-δ1. The 

interaction domain is fused to a fluorescent protein, switching between indicator localization 

at the membrane or in the cytosol according to the PtdIns(4,5)P2 concentration within the 

membrane (Hammond and Balla, 2015). 

(5) Enzyme activity, measured by fusing the enzyme’s substrate and a recognition domain as 

interaction domains between two fluorescent proteins. Upon the enzymatic reaction the 

substrate binds to the recognition domain resulting in a structural change triggering the FRET 

signal (Donnelly et al., 2014). As a special case the enzymatic reaction of proteases can be 

monitored by cleaving a recognition domain fused between two fluorescent proteins and 

such irreversibly decreasing FRET. 

(6) Protein-protein interaction, detected by fusing each interaction partner either to a 

fluorescent protein or a split-FP, leading to FRET signals or emerging fluorescence upon 

interaction, respectively (Miller et al., 2015). 

Some of the most common examples of genetically encoded indicator platforms are listed in Table 3. 
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Table 3: GECI platforms (selected) defined by indicator class and detection scenario 

 

Detection scenarios  Indicator platform 

 
Single wavelength  

indicators 

Dual excitation 

wavelength  

indicators 

Dual emission  

wavelength  

indicators (FRET) 

FP-intrinsic 

sensitivity for ion 

concentrations and 

environmental 

conditions 

Halide 

YFP-H148Q (Jayaraman et 

al., 2000) 

 

pH 

Ecliptic pHluorin 

(Miesenböck et al., 1998) 

Superecliptic pHluorin 

(Sankaranarayanan et al., 

2000) 

Redox 

roGFP (Hanson 

et al., 2004) 

 

pH 

pHluorin 

(Mahon, 2011; 

Miesenböck et 

al., 1998)  

 

Halide 

Clomeleon (Kuner and 

Augustine, 2000) 

 

Ion and molecule 

concentration 

Calcium 

GCaMP (Akerboom et al., 

2013; Chen et al., 2013; 

Nakai et al., 2001; Tian et al., 

2009; Zhao et al., 2011) 

Pericam (Nagai et al., 2001) 

Camgaroo (Baird et al., 1999) 

Calcium 

Ratiometric 

Pericam  

(Nagai et al., 

2001) 

Calcium 

Yellow Cameleons (Horikawa et 

al., 2010; Miyawaki et al., 1997) 

Troponin C-based (Heim and 

Griesbeck, 2004; Mank et al., 

2006, 2008; Thestrup et al., 

2014) 

DXcpv  

(Palmer et al., 2004, 2006) 

Membrane 

potential 

Voltage 

VSFP (Lundby et al., 2008; 

Sakai et al., 2001) 

hVOS (Sjulson and 

Miesenböck, 2008) 

ASAP (St-Pierre et al., 2014) 

--- Voltage 

VSFP2 (Dimitrov et al., 2007) 

Protein 

translocation 

Membrane localization 

PtdIns(4,5)P2 (Quinn et al., 

2008; Stauffer et al., 1998) 

--- Membrane localization 

PLC activation  

(van der Wal et al., 2001) 

Enzyme activity --- --- Kinase activity  

Phocus (Sato et al., 2002) 

 

GTPase activity 

Raichu (Itoh et al., 2002) 

 

Irreversible protease cleavage 

Caspase-3 (Xu et al., 1998) 
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Calpain 1  

(Vanderklish et al., 2000) 

MT1-MMP  

(Ouyang et al., 2008) 

Protein-protein 

interaction 

Bimolecular fluorescence 

complementation 

BiFC (Hu et al., 2002) 

--- G-Protein subunit assembly 

GIRK channel activation  

(Riven et al., 2003) 

Gq activity  

(Adjobo-Hermans et al., 2011) 

 

PKA subunit assembly 

cAMP (Zaccolo et al., 2000) 

1.3.3 Calcium Binding Motifs, Domains and Proteins 

All interaction domains used in genetically encoded calcium indicators are based on the EF-hand 

motif, one of the major intracellular calcium binding motifs able to chelate calcium in the 

physiologically relevant range. Another prominent motif, the C2 domain (Rizo and Südhof, 1998), as 

well as further unconventional calcium binding sites such as in calpain (Moldoveanu et al., 2004) 

have not been successfully employed in indicator platforms (Mank and Griesbeck, 2008). So far two 

different source proteins for EF-hand-based interaction domains have been applied in indicator 

design: troponin C (TnC) and calmodulin (CaM) together with its synthetic binding peptide M13. 

Calcium binding domains from both proteins have been further truncated, fused and modified by 

mutagenesis to fit their specific role as molecular building blocks in various GECI platforms. 

The EF-hand binding motif 

The EF-hand binding motif is a characteristic, calcium-chelating helix-loop-helix structure of 

approximately 30 amino acids which was first described in parvalbumin (Kretsinger and Nockolds, 

1973). The central loop forming the ion coordination space is flanked by two α-helices, the N-

terminal “incoming” and the C-terminal “exiting” helix (Figure 7A). In the most common (canonical) 

EF-hand the loop region is formed by 12 amino acid residues, six of them acting as ion coordinating 

residues. The calcium binding sphere is pentagonal-bipyramidal leading to seven ligand positions 

(Figure 7B). The coordinating residues are referred to as: 1(+X), 3(+Y), 5(+Z), 7(-Y), 9(-X) and 12(-Z) 

with the numbers identifying the residue position within the 12 amino acid binding loop and the 

letters indicating the 3D position within the coordination sphere. In position 12(-Z) the γ-carbonyl 

group of a highly conserved Glu residue acts as a bidentate ligand. All ligand positions are filled by 

the amino acid residues but position 7(-Y) which coordinates through the carbonyl group of the 

peptide backbone and 9(-X) which in some cases also coordinates via a bridging water molecule. A 

subgroup of EF-hands is able to bind not only calcium but also magnesium, referred to as the 
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Ca2+/Mg2+ EF-hands. These EF-hands either incorporate a Z-acid pair with an Asp residue in position 

5(Z+) (Tikunova et al., 2001) or include a non-canonical, more compact binding loop with the highly 

conserved Glu in position 12(-Z) being replaced by Asp (Gifford et al., 2007). Mg2+ binding requires a 

strictly octahedral coordination and a more compact coordination sphere owing to the smaller ionic 

radius compared to calcium. Thus, by steering ligand flexibility calcium specificity over magnesium 

can be significantly reduced in Ca2+/Mg2+ EF-hands through the established double-mutation of 

D5(+Z)N in combination with N3(+Y)D (Mank et al., 2006; Marsden et al., 1990; Tikunova et al., 2001). 

 

A B 

  

C D 

  

Figure 7: Structure and calcium coordination in the canonical EF-hand 

(A) Characteristic helix-loop-helix motif (grey) with bound Ca2+ ion (red) (PDB: 1TOP). (B) Calcium 

coordination sphere with ligand positions indicated (Reprinted with permission from Mank and 

Griesbeck, 2008. Copyright 2008 American Chemical Society). (C, D) EF-hand pair in the calcium-

unbound (closed) and bound (open) conformation, respectively, with the short β-sheet structure 

connecting the two coordinating loops (Reproduced from Gifford et al., 2007 with permission from 

Portland Press; PDB 1EXR). 
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The EF-hand pair as functional domain 

EF-hand binding motifs generally occur in pairs. The non-coordinating, hydrophobic residue 8 plays 

an important role in the calcium-binding functionality and also in stabilizing EF-hand pairs by forming 

a short β-sheet connection between two coordinating loops (Figure 7C, D) (Strynadka and James, 

1989). Further structural integrity arises from multiple hydrophobic interactions between all four 

helices as well as the additional ion-ligand interactions in the calcium-bound state (Nelson and 

Chazin, 1998). The self-assembly of the two helices shows an approximate 2-fold symmetry axis, with 

both positions within a pair being strictly defined (“odd” and “even” position, Kawasaki et al., 1998) 

which could even be demonstrated in experiments with synthetic peptide analogues (Shaw et al., 

1990, 1994). The pairing of EF-hands has key implications not only on the calcium-binding 

mechanism and the induced conformational change but also on the calcium-binding affinity (Linse 

and Forsén, 1995) and the actual formation of the smallest building block, the interaction domain, 

both important for the use of EF-hands in GECIs platforms. 

EF-hand pairs possess the ability to transmit binding of two Ca2+ ions into a substantial 

conformational change, altering the distance and angle between the incoming helix of the first EF-

hand and the exiting helix of the second EF-hand. The calcium-free state, in which all four helices are 

tightly packed, is described as “closed” conformation in which both incoming and exiting helices 

adopt an approximately antiparallel position with an interhelical angle of ~135°. Upon calcium 

binding the helices reposition to a perpendicular position (~90°), the distance between both exiting 

helices increases substantially and a large, solvent-exposed hydrophobic pocket is exposed (“open” 

conformation, Grabarek, 2006; Herzberg and James, 1985; Nelson and Chazin, 1998; Sundaralingam 

et al., 1985). The model proposed by Herzberg, Molt, and James (HMJ model) first linked the opening 

of the hydrophobic pocket with target interaction sites in troponin C as well as calmodulin and other 

EF-hand protein domains (Gifford et al., 2007; Grabarek, 2006; Herzberg et al., 1986). The 

energetically unfavorable solvent-exposure of such a large, hydrophobic patch in the “open” 

conformation is explained by Nelson & Chazin with the energy balance mechanism: in sensor EF-

hand pairs (i.e. EF-hands that undergo the conformational switch) enough “geometric strain” is 

induced by binding two Ca2+ ions to induce a switch from the “closed” to the “open” conformation 

(Nelson and Chazin, 1998). In non-sensor EF-hand pairs in which one of the binding sites is impaired 

either naturally (e.g. EF-hand 1 in human cardiac TnC (Sia et al., 1997)) or by mutation (e.g. EF-hand 1 

in E41A mutant from chicken skeletal TnC, McKay et al., 2000), calcium binding to the second site 

alone does not create enough strain and does not trigger the conformational switch. Only in the 

presence of both Ca2+ ions the energy “costs” are reduced enough for the EF-hand pair to adopt the 

“open” conformation. 
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Cooperative calcium binding in EF-hand pairs 

As a result of the close stacking of two paired EF-hands per domain, cooperative binding in EF-hand 

pairs is commonly observed. The influence of calcium binding to the first site on the affinity of the 

second site leads to an altered calcium affinity of the whole EF-hand pair compared to an 

independent EF-hand alone. In most EF-hand pairs, positive cooperativity occurs, providing 

information that favorable structural effects must outweigh the unfavorable electrostatic 

interactions of the two calcium binding sites in close proximity (Gifford et al., 2007). The binding of 

the first Ca2+ ion already leads to structural reorganization of the protein core and the preformation 

of the second binding loop as well as a decrease in backbone dynamics and a reduction of the 

partner EF-loop flexibility (Gagné et al., 1997; Skelton et al., 1992). These conformational effects of 

the first binding event favor the binding of the second ion energetically and therefore lead to a 

higher affinity of the respective site. Major molecular mechanisms contributing to the observed 

positive cooperativity are the short but rigid β-sheet structure linking position 7 an 8 of both binding 

loops (Marchand and Roux, 1998) and the bidentate linker residue Glu12(-Z) which is incorporated in 

the exiting α-helix structure (Martin et al., 1992). A subset of EF-hands (including the N-terminal 

domain of skeletal troponin C) appears to bind calcium without cooperativity. In these “sequential 

cooperative sites” only a minor structural change is induced by the first binding event to EF-hand 2, 

whereas calcium binding to the binding site in EF-hand 1, which shows a 10-fold weaker affinity, 

triggers the major conformational rearrangement (Gagné et al., 1997; Gifford et al., 2007). 

Calcium binding proteins troponin C and calmodulin 

Among all calcium binding proteins calmodulin and troponin C have served as prime models for 

structure-function studies, laying the foundation for the current understanding of EF-hand domains. 

Additionally, they show the largest domain opening among the EF-hand proteins which makes them 

attractive candidates as interaction domains for the use in genetically indicator platforms (Grabarek, 

2006). Both proteins show a characteristic dumbbell shaped structure and consist of four EF-hand 

binding motifs, grouped in two double-EF-hand domains (N- and C-terminal) which are connected by 

a long linker helix (Figure 8). CaM is a versatile calcium-binding messenger protein expressed in all 

eukaryotic cells. Upon activation by the second messenger calcium it interacts with various 

intercellular target proteins and peptides as part of the calcium signal transduction pathway. In most 

GECIs using CaM, it co-expressed and fused to the M13 peptide (CaM binding domain of skeletal 

muscle myosin light chain kinase), forming the indicator interaction domain. M13 binds to the 

hydrophobic pocket of CaM in the open conformation and elicits the structural rearrangement 

leading to change in the fluorescence properties. However, overexpression of CaM in GECIs is likely 

to interfere with the cellular calcium signalling machinery leading to a perturbation of the GECI 

performance as well as a disruption of the cellular homeostasis (Mank, 2008). By contrast, troponin C 
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has a very specific function and occurs only in muscle tissue as part of the troponin complex in the 

regulatory complex of muscle contraction (Gordon et al., 2000). Its only binding target is the 

actomyosin ATPase-inhibiting protein troponin I (TnI), making troponin C considerably less likely to 

disturb intracellular calcium signalling through overexpression and therefore a suitable interaction 

domain for the use in GECIs (Heim and Griesbeck, 2004; Hendel et al., 2008; Mank et al., 2006). The 

N-terminal domain of troponin C (EF-hand 1 and 2) shows a low calcium affinity (Kd of 3 µM) and  

is not sensitive to magnesium, whereas the C-terminal domain (EF-hand 3 and 4) shows a high 

calcium sensitivity (Kd of 50 nM) and binds magnesium and calcium competitively (Mank, 2008; 

Tikunova et al., 2001). 

 

A B 

  

Figure 8: Protein structure of troponin C and calmodulin 

α-helical linker connecting the N- and C-terminal domain. (A) Troponin C, two calcium-binding sites 

of the C-terminal domain occupied (PDB: 1TOP). (B) Calmodulin, all four calcium binding sites are 

occupied (PDB: 3CLN). 

 

1.3.4 Genetically Encoded Calcium Indicators 

Genetically encoded calcium indictors (GECIs) have been developed for almost two decades and have 

shaped the field of genetically encoded indicator design. In two indicator classes, single-wavelength 

indicators and FRET-based dual emission wavelength indicators, a multitude of GECI platforms has 
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evolved. The single wavelength indicators are based on the Camgaroo platform, the Pericam 

platform and the GCaMP platform whereas FRET indicators comprise the Cameleon platform, the D-

series and the TnC-based indicators. Compared to synthetic calcium indicators like Oregon Green 

Bapta-1 (OGB-1, Tsien, 1980) or the Fura dyes (Grynkiewicz et al., 1985), recent GECI development 

has increased signal properties, accessible affinity ranges and off-rates substantially putting both tool 

sets on par. However, the advantages of GECIs – targeting to specific cell types and subcellular 

localization as well as the possibility for chronic imaging – remain valid and make GECIs an 

indispensable approach not only for modern optical recording of neuronal activity patterns but 

increasingly for other processes such as e.g. in T-cell activation (Mues et al., 2013). An overview over 

all major GECI platforms is shown in Figure 9, a detailed list of the key properties of the latest GECI 

variants is given by Nagai et al. (Nagai et al., 2004). 

 

Figure 9: Genetically encoded calcium indicator platforms 

Fluorescent proteins are shown as barrels, coloured according to their fluorescence hue; calcium 

binding domains are shown as grey shapes. 

 

Among the single wavelength GECIs Camgaroo-1 was the first successful indicator developed by in 

Baird et al. in 1997 (Baird et al., 1999). Camgaroo indicators use YFP (Camgaroo-1) or Citrine 

(Camgaroo-2, Griesbeck et al., 2001) as fluorescent proteins with a Xenopus CaM interaction domain 

inserted at position Tyr145. Their Kd values of 7.0 and 5.3 µM (respectively) categorize them among 

the low affinity GECIs. 
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The Pericam platform uses a circularly permutated variant of YFP (cp145) fused between CaM (C-

terminal) and the M13 peptide (N-terminal) (Nagai et al., 2001). Three different variants emerged 

from the first mutational approaches: “flash-pericam” where fluorescence increases with rising 

calcium concentration, “inverse-pericam” with the opposite signal output and “ratiometric-pericam” 

with an emission wavelength changing in a calcium-dependent manner. Kd values of 0.2-1.7 µM 

made them suitable candidates e.g. for mitochondrial calcium imaging (Fonteriz et al., 2010). 

Following the same CaM-M13 fusion scheme but based on cpGFP, Nakai et al. at the same time laid 

the foundations for the GCaMP platform (Nakai et al., 2001). The latest indicators of the GCaMP 

platform include GCaMP6s, GCaMP6m and GCaMP6f (for slow, medium and fast, Chen et al., 2013), 

the mRuby-based red-fluorescent variant RCaMP (Akerboom et al., 2013) as well as a palette of 

colour hue variants B-GECO (blue), G-GECO (green) and R-GECO (red) which were created using an 

improved high-throughput screening method (Zhao et al., 2011). The available GCaMP indicators 

cover a broad range of affinities, kinetics and colours, making them the state-of-the-art single-

wavelength GECIs based on the CaM interaction domain.  

The first FRET-based GECI, created by Romoser et al., was a fusion protein of a calmodulin-binding 

sequence from smooth muscle myosin light chain kinase as interaction domain between a BFP/GFP 

pair exhibiting FRET disruption through calcium-based calmodulin binding. However, the first FRET-

based GECI platform with broader experimental use was published shortly afterwards by Miyawaki et 

al. using both CaM and its artificial binding peptide as interaction domain and BFP/CFP (in Cameleon) 

or GFP/YFP (in Yellow Cameleon, YC) (Miyawaki et al., 1997). Considerable improvement of this GECI 

platform has led to improvement in all signal qualities as well as increased pH stability and folding 

efficiency. The most recent GECIs based on the Cameleon platform are YC3.6 and the YC-Nanos 

(Horikawa et al., 2010; Nagai et al., 2004). To avoid unwanted interaction of CaM-based GECIs with 

endogenous binding partners, Palmer et al. engineered a series of design variants (D-series) by 

complementary mutation of the CaM domain and the M13 peptide (Palmer et al., 2004, 2006). In 

vitro experiments showed that the latest representative of the D-series, D3cpv retained almost full 

signal strength even in the presence of high levels (800 µM) of free wild type CaM. 

Despite recent improvements, the interaction of CaM-based GECIs with the cellular biochemical 

machinery, namely endogenous CaM and the calcium signal transduction pathway, remains a 

handicap especially for long-term in vivo experiments (Tallini et al., 2006). To overcome this 

limitation a GECI platform based using troponin C as interaction domain was developed and 

optimized in our lab. TN-L15, the first FRET-based indicator using the troponin C interaction domain, 

consisted of a CFP/Citrine-FRET pair and a truncated version of chicken skeletal TnC (beginning with 

residue Leu14) (Heim and Griesbeck, 2004). Improved dynamic range as well as decreased Mg2+ 
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sensitivity were achieved in the next indicator generation, TN-XL, by exchanging the FRET pair to 

ECFP and a cpVariant of Citrine (cp174) as well as a set of two double mutations disrupting the Z-acid 

pairs in EF-hand 3 and 4 (N108D/D110N and N144D/D146N) (Mank et al., 2006). In TN-XXL, Mank et 

al. optimized the signal strength of TnC-based GECIs in the low calcium regime by varying the design 

principle of the interaction domain by replacing the EF-hand 1 and 2 with a doubling of EF-hand 3 

and 4 (Ser94 to Glu162) (Mank et al., 2008). Additionally, the N144D/D146N double mutation of EF-

hand 4 in TN-XL was removed and the helix-stabilizing I130T mutation, suggested by Trigonzales et al. 

(Trigo-Gonzalez et al., 1993), included. Thorough in vivo characterization and comparison of the early 

variants TN-L15 and TN-XL was carried out by Hendel et al. (Hendel et al., 2008). Transgenic mouse 

lines were developed and tested for TN-L15 and TN-XXL, underlining the biochemical compatibility of 

TnC-based GECIs (Direnberger et al., 2012; Heim et al., 2007). Thestrup et al. developed the most 

recent set of TnC-based GECIs, the Twitch series, by fine-tuning individual indicator properties to 

different application scenarios. Complementing the role of the GCaMP indicator platform for single-

wavelength GECIs based on the CaM interaction domain, TnC-based GECIs represent the state-of-

the-art ratiometric GECIs (Kovalchuk et al., 2015; Nagai et al., 2014). 

1.3.5 Signal Qualities 

Signal features: affinity, kinetics, signal strength, brightness 

Signals of single wavelength indicators are measured as a change of the fluorescence intensity at the 

emission wavelength upon calcium binding normalized to the fluorescence intensity in the unbound 

state ∆F/F. Signals of dual emission wavelength indicators are quantified by the ratio (R) between 

donor and acceptor fluorescence intensity. Due to the underlying FRET mechanism (see Chapter 

1.1.4), both fluorescence intensities show opposing effects upon calcium binding, leading to a ratio 

change which is again normalized to the ratio in the unbound state ∆R/R. With the comparison of the 

individual ∆F (acceptor) and ∆F (donor) fluorescence signals to each other, FRET-based indicators 

additionally offer both a verification of the signal information as well as an internal correlation to a 

reference fluorescence channel of different colour. Hence, FRET-based GECIs are able to produce 

signals of exceptional robustness in high motility experimental settings, which becomes increasingly 

important e.g. to avoid motion artefacts in advanced in vivo studies as well as in localization and 

tracking studies on cellular level (Kovalchuk et al., 2015; Mues et al., 2013). 

Apart from the aforementioned interaction with endogenous proteins and motion artefacts, 

genetically encoded indicators are challenged by a multitude of possible performance-disrupting 

factors. pH and redox environment disrupt the key affinity and kinetic parameters of the interaction 

domain, folding and fusion artefacts occurred especially in the early variants of new indicator 
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platforms. The performance of fluorescent proteins in terms of brightness and signal strength can be 

further influenced by aggregation and hindrances during chromophore formation. Finally, absorption 

and autofluorescence of tissue in the spectral region between 400 and 600 nm represent a severe 

limitation to imaging quality and experimental scenarios in ex vivo and in vivo experiments. A 

possible solution to this is tuning the excitation wavelength of future GECI generations to the so-

called optical window in the red and near-infrared spectrum (above 600 nm) where endogenous 

absorbance of haemoglobin and melanin are at their lowest (Lakowicz, 2006). 

The four key parameters of GECI signals of both single wavelength and FRET-based indicators are 

affinity, kinetics, dynamic range and brightness. The dissociation constant Kd determines the calcium 

concentration range in which the indicator will yield measurable signal changes. Current GECI 

affinities span the entire physiologically relevant range from nM to mM calcium concentrations. The 

calcium binding kinetic performance of GECIs is characterized by the on- and off-rate Kon and Koff, 

resulting in the characteristic decay time constants τdecay of the fluorescence signal. For many GECI 

variants a slow τdecay is the resolution-limiting factor in experiments tracking high frequency events 

such as neuronal firing patterns. Most GECI decay times range from 0.1 to 3.0 s. The dynamic range is 

defined as the maximal signal increase upon calcium binding in percent. However, single wavelength 

indicators can be tuned towards high dynamic range values by further lowering the fluorescence in 

the unbound state (e.g. YC-Nanos, Horikawa et al., 2010) without an adequate increase of the actual 

signal strength (number of photons emitted) in imaging experiments. Last, an indicator’s brightness is 

defined by product of the extinction coefficient and the quantum yield of fluorescent proteins and is 

used as a measure to quantify the fluorescence strength in comparison to e.g. the background or 

autofluorescence in imaging experiments. Under imaging conditions the signal strength is quantified 

by the signal-to-noise ratio (SNR) which is defined as the ratio between the transient fluorescence 

response over baseline ∆F and the shot noise of the baseline fluorescence F0N-1/2 with N being the 

number of photons detected (Yasuda et al., 2004). To maximize SNR a higher brightness of the 

fluorophores and thus higher number of collected photons is one approach especially successful for 

FRET indicators (Rose et al., 2014; Wilt et al., 2013). Another approach is to achieve “balanced 

loading” conditions, i.e. to optimize the reciprocal influence of increasing the indicator concentration 

leading both to a higher number of photon emitting molecules and an increased buffering effect 

resulting in a reduced fluorescence change per molecule (Borst and Helmchen, 1998; Göbel and 

Helmchen, 2007; Rose et al., 2014). 
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1.4 Biophysical Analysis towards Structure-Function Relation of GECIs 

Understanding the structure-function relation of artificial proteins and the successful application of 

this knowledge in the development of new design strategies is key to the improvement of the current 

set of GECIs. Indicator development in general follows a three stage process of (1) combination of 

existing building blocks, (2) optimization of the desired properties and (3) the fine-tuning of certain 

properties to fulfil quality standards for specific experiments. Figure 10 shows the development 

scheme for the troponin-based GECI family: 

 

Figure 10: Three-stage process of GECI development for the troponin C-based GECI family 

 

Second stage optimization is ultimately limited by the detailed knowledge about the interaction of 

the building blocks chosen and combined in stage 1. As these interactions are created de novo and 

are not based on naturally occurring interfaces or tertiary and quaternary structures, analogies to 

existing structure-function studies of the individual building blocks in their native context are of 

limited validity. Therefore, the transition from the optimization to the fine-tuning stage is 

accompanied if not triggered by a detailed biophysical examination of the building blocks, their 

interaction, the resulting molecular structure and the effect on the GECI function i.e. the key 

parameters. For single fluorophore indicators, namely GCaMP2, these studies have been performed 

in great detail in the works of Rodriguez et al. (Rodríguez Guilbe et al., 2008), Akerboom et al. 

(Akerboom et al., 2009) and Wang et al. (Wang et al., 2008). In silico interaction studies (Ala scan) of 

the FRET-based GECI Yellow Chameleon leading to the indicator’s design variant D3cpV have been 

performed by Palmer et al. (Palmer et al., 2006).  
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1.4.1 Oligomerization State and Hydrodynamic Properties 

The clustering of several GECI molecules in oligomers allows for the interaction within the quaternary 

structure and may substantially influence the indicator’s key parameters. Since the development of 

the first GCaMP generation (Nakai et al., 2001) the oligomerization state was tested along with the 

development of every new, functional indicator generation. However, several factors like protein 

concentration, buffer composition and the preparation method additionally influence the tendency 

of GECI to oligomerize in vitro. Only a more detailed analysis - like Akerboom et al. (Akerboom et al., 

2009) and Wang et al. (Wang et al., 2008) for GCaMP2 - revealed the equilibrium between monomer 

and dimer of the GCaMP indicators in absence and presence of calcium in the buffer. In both sets of 

experiments, size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC) were used 

to identify the different species in a sample (Figure 11). In contrast to the first SEC experiments by 

Nakai et al. (Nakai et al., 2001), GCaMP indicators show to exist as dimers as soon as traces of 

calcium are present during preparation. The degree to which the preparation of the sample can 

influence the tendency to oligomerize is demonstrated by Wang et al.: GCaMP2 dimers were not only 

dissolved to monomers by treatment with EGTA, but remained monomeric even after addition of 

calcium. Interestingly, the dimeric form of GCaMP2 appears to be the low-fluorescence calcium-

bound form. Thus, testing the oligomerization state of GECIs is not only relevant for the optimization 

of intramolecular interactions but also for the quality and strength of the indicator signal. 

Further insight into the hydrodynamic properties can be obtained via small-angle X-ray scattering 

(SAXS). Through the analysis of the molecular geometry parameters radius of gyration (Rg) and 

maximum diameter of a molecule (Dmax) as well as the distance distribution function P(r). Wang et al. 

confirmed the similar shape of the calcium-free and calcium-bound state of GCaMP2 as well as a  

minor compaction upon calcium binding. Ab-initio shape reconstruction on the basis of the SAXS data 

gives further insight into the density distribution yielding envelopes that represent the overall shape 

of a molecule at a maximum resolution of 30 Å. In the case of GCaMP2 the compaction upon calcium 

binding could be related to the closing of the inner hole of the donut-shaped calcium-free form  

(Figure 12). 

1.4.2 Structure, Molecular Mechanism, and Interfaces 

Studies on the basis of X-ray scattering data of crystallized protein allow access to the most detailed 

information about secondary and tertiary structure. However, the access to this kind of information 

is limited by several factors: on the one hand, the desired proteins (or mutants thereof) have to form 

crystals under conditions which match the native conditions and fulfil the quality criteria of scattering 

and resolution. On the other hand, the protein-protein interactions in a tightly packed crystal should 

not distort the native protein structure to such a degree as to prevent packing artefacts in the 
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resulting crystal structure. Therefore, the acquisition of X-ray data of protein crystals is mostly 

applied in rigid or compact proteins and for the analysis and fitting of subdomains in more complex 

proteins.  

For GCaMP2 the crystal structures of the calcium-bound and -free form were solved via X-ray 

crystallography (Akerboom et al., 2009; Rodríguez Guilbe et al., 2008; Wang et al., 2008) leading to a 

detailed understanding of the underlying molecular mechanisms and domain-interactions. 

Dimerization occurred during initial crystallization trials suggesting domain-swapped GCaMP2 pairs 

and had to be prevented by mutations or deletions. The molecular structures confirmed the spectral 

data of a protonated fluorophore in the circular permutation cpEGFP of the calcium-free GCaMP2. It 

could be shown that upon calcium binding the fluorophore changes to an ionic, bright form, which is 

stabilized by the residue Thr-116, and hydrogen bonds are lost due to structural arrangements. The 

necessary rapid transfer of a proton to a water molecules within the otherwise closely shielded β-

barrel is facilitated through the opening of a 50 Å2 solvent channel in the calcium-free form. In the 

calcium-bound form the solvent channel is sealed by the ring shaped CaM domain which is held in 

place in a tight complex by the M13 peptide and a multitude of favorable electrostatic contacts 

within the buried surface area of the cpEGFP/CaM interface. Central coordinating amino acids as well 

as crucial interface residues and areas could be identified and structure-based mutagenic analysis of 

the indicator function subsequently performed. In conclusion, the X-ray crystallography studies of 

Akerboom et al. and Wang et al. of 2008 laid the ground for further development of the GCaMP 

indicator family (Akerboom et al., 2013; Chen et al., 2013; Zhao et al., 2011) by shedding light on the 

molecular interactions and identifying key ensembles of amino acids. Random and targeted 

mutagenesis approaches alone (generally applied in the optimization phase) are rarely able to result 

in the coordinated modulation of several amino acids. 
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Figure 11: Hydrodynamic properties and oligomerization states of GCaMP2 

(A, B) Analysis via size-exclusion chromatography, (C, D) analytical ultracentrifugation and (E, F) 

fluorescence spectroscopy. (Figures A, C, E reprinted from Figure 2 in Akerboom et al., 2009 © the 

American Society for Biochemistry and Molecular Biology, Figures B, D, F reprinted from Figure 6 in 

Wang et al., 2008 with permission from Elsevier). 
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Figure 12: Ab-initio shape reconstruction of GCaMP2 based on SAXS data 

The crystal structure of monomeric GCaMP2 was docked into the envelope manually. Two 

orthogonal views are shown (Reprinted from Wang et al., 2008 with permission from Elsevier) 
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1.5 Research Objective 

Genetically encoded calcium indicators (GECIs) have come of age. Since twenty years GECIs are 

advancing the development of an entire genre of indicator concepts and platforms. A multitude of 

design approaches has been tried and tested, making remarkable contributions to the field of 

indicator design and protein engineering. With their lead in successfully tackling challenges in 

engineering and optimization GECIs are regarded as role models for new and upcoming indicator 

platforms. Among the FRET-based GECIs with dual emission wavelength, the troponin C-based 

indicators with their history of TN-L15, TN-XL, TN-XXL and recently the Twitch indicators represent 

the state-of-the-art. 

The first objective of this work was to gain a better understanding of the functional interplay of the 

modular domains of FRET-based GECIs. The engineering success of already optimized artificial fusion 

proteins is particularly dependent on in-depth knowledge about the biophysical characteristics of the 

analyte binding site, individual domains and their interplay on the tertiary and quaternary protein 

structure level. The results of this set of experiments will be both a foundation for the further 

engineering of troponin C-based GECIs as well as a general guideline for the analysis of other 

indicator platforms moving on from the optimization to the fine-tunings stage of development. 

In tandem, the research was targeted at the key properties of the GECI signals: affinity, kinetics, 

signal strength and brightness. These have been the main target of countless previous optimization 

rounds and it is not intended to further improve these parameters in this work. The aim was rather 

to probe the dependency of these properties on the status of the modular domains: under free and 

native conditions or in fusion constructs as well as under the influence of the buffering conditions. 

Again, with these experiments the understanding of the behaviour of the modular building blocks in 

FRET-based GECIs fusion constructs is advanced. This knowledge can be used to further improve 

protein domains currently used in GECIs but also to estimate the susceptibility of new building blocks 

to interfering and perturbing external influences. 

The third focus was to increase the tool box of fluorescent proteins available for FRET-pair 

development by establishing a new entry route for library generation in screening assays. 

Complementing the currently employed approaches via error-prone PCR and somatic hypermutation 

the usage of transposons is adopted to create random insertions of a restriction site as well as an 

amino acid linker – irrespective of the nucleotide sequence and hence the triplet code. In the 

following, these insertions serve as starting point for the batch-processing of the entire library 

towards new circular permutated variants of red-shifted fluorescent proteins. 
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2 Materials and Methods 

2.1 Molecular Biology 

2.1.1 Polymerase Chain Reaction (PCR) 

Polymerase chain reaction (PCR) is the most commonly used technique in molecular biology to 

amplify a distinct strand of DNA. Developed by Kary Mullis in 1983, this technique applies thermal 

cycling, consisting of several heating and cooling steps, to a DNA sample causing DNA melting and 

enzymatic reactions to take place. PCR makes use of small, complementary DNA fragments (primers) 

to bracket the desired DNA sequence and direct the activity of a heat-stable DNA polymerases like 

Taq (Thermus aquaticus) or Pfu (Pyrococcus furiosus). Recently developed polymerases offer 

improved features as increased thermostability and speed as well as decreased error rates during 

DNA replication. HerculaseII (HercII, Agilent) is a Pfu-based polymerase fused to a high affinity DNA 

binding domain introducing an enhanced proofreading capacity to the enzyme properties. In this 

work, standard Pfu was used for qualitative PCR whereas HercII was used for reactions demanding 

high performance in yield, accuracy and short cycling time (Table 4). 

Table 4: Standard PCR reaction 

 

Component Volume [µL] 

Forward Primer (100 µM) 0.5 

Reverse Primer (100 µM) 0.5 

Template DNA (200 ng/µL) 0.5 

HercII Buffer (5x) 10 

dNTP mix (12.5 mM each dNTP) 1.0 

ddH2O 37 

HercII polymerase 0.5 

 

All components were added on ice and the reaction was initiated at 95 °C (hot start) to decrease 

primer dimerization and increase specificity. 

2.1.2 Site-directed Mutagenesis 

For the introduction of site-directed base substitutions (mutations) into a DNA template, a 

mutagenesis method was applied initially developed by Fisher and Pei in 1997 (Fisher and Pei, 1997). 

Mutations are introduced as mispairing nucleotide bases in the primer sequence. To enable this, 

primers were designed according to Zheng et al. (Zheng et al., 2004) with the mutation been located 

8-10 bases from the 5’-terminus and 15-20 bases from the 3’-terminus in both primers (Figure 13).  
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This primer design variant reduces the formation of primer dimers and improves the primer-template 

interaction. 

 

 
 

Figure 13: Primer design for site directed mutagenesis 

Partial overlapping primers with nucleotide length and targeted mutation (triangles) indicated. 

 

The PCR reaction (Table 5) generated the mutated plasmid containing staggered nicks. Excessive 

template DNA was removed by digestion (1h, 37 °C) with DpnI endonuclease (2.5 µL, 50 units, NEB), 

targeting only methylated and hemimethylated DNA (target sequence: Gm6ATC) such as template 

DNA isolated from most E. coli strains. Subsequently, XL-1 Blue competent E. coli were transformed 

with 5 µL of the DpnI digested PCR reaction. 

Table 5: Site-directed mutagenesis PCR reaction 

 

Component Volume [µL] 

Forward Primer (10 µM) 1.0 

Reverse Primer (10 µM) 1.0 

Template DNA (200 ng/µL) 0.5 

HercII Buffer (5x) 10.0 

dNTP mix (12.5 mM each dNTP) 1.0 

ddH2O 36 

HercII polymerase 0.5 

 

2.1.3 Bacterial Colony PCR 

Screening of larger amounts of plasmid DNA for successful integration of inserts, bacterial colony PCR 

was applied. This method allows direct positive control of the insertion event from E. coli colonies 

without prior DNA preparation. Each colony is first transferred to a reference agarose plate and then 

dissolved in 10 µL H2O. 10 µL of Mastermix (Table 6) were added before starting the PCR reaction 

(Table 7). Primers were chosen to flank the insert of interest, allowing the control of insertion by 

analytical agarose gel electrophoresis of the PCR products. Positive colonies can directly be 

transferred from the reference plate to LB medium for further growth and DNA purification. 
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Table 6: Mastermix for 48x bacterial colony PCR reactions 

 

Component Volume [µL] 

Forward Primer (100 µM) 2.0 

Reverse Primer (100 µM) 2.0 

Standard Taq Buffer (10x) 110 

dNTP mix (12.5 mM each dNTP) 8.0 

ddH2O 440 

Taq DNA polymerase (NEB) 5.0 (25 units) 

 

Table 7: Bacterial colony PCR programs 

 

Step Amplification Mutagenesis Colony PCR 

 [°C] Duration [s] [°C] Duration [s] [°C] Duration [s] 

  < 1 kb < 4 kb  < 5 kb < 10 kb   

1) Initial denaturing 95 120 120 95 30 30 95 90 

2) Denaturing 95 20 20 95 30 30 90 30 

3) Annealing 55 20 20 55 60 60 60 60 

4) Elongation 72 30 120 72 240 360 72 60 

repeat step 2-4  29x 29x     36x 

 

2.1.4 DNA Purification 

Standard purification of plasmids was carried out using the QIAprep Spin Miniprep Kit (Qiagen). DNA 

fragments > 100 nt were purified using the QIAquick PCR Purification Kit (Qiagen) followed by 

separation on agarose gel (1% in TAE buffer) and gel extraction using the QIAquick Gel Extraction Kit 

(Qiagen). All kits were used according to the manufacturer’s protocols. 

2.1.5 Restriction Digest of DNA 

Specific DNA recombination was carried out using restriction endonucleases (type II) and their 

specific, palindromic nucleotide recognition sequences. These endonucleases cut the sequence 

producing a staggered double-strand break (sticky ends), which then were used to ligate fragments 

of DNA with complementary overhangs. Both the plasmid and the insert were cut via “preparative 

digests”  

(Table 8) using two different restriction enzymes (New England BioLabs). The digested fragments 

were subsequently used as substrates for ligation reactions, producing directionally cloned products. 

Restriction digest were also used to check for successful insertion of a DNA fragment inserted into 

the plasmid backbone (Table 8), referred to as “analytical digest”. 
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Table 8: Restriction digest reaction 

 

Component Volume [µL] 

 Preparative digest Analytical digest 

DNA (100-1 µg) 10 2 

NEB (10x) Restriction Buffer 5 2 

BSA (100x) 0.5 0.2 

Restriction Enzyme #1 (NEB) 1.0 (20 units) 0.2 (4 units) 

Restriction Enzyme #2 (NEB) 1.0 (20 units) 0.2 (4 units) 

ddH2O 32.5 15.4 

Incubation at 37 °C 16 hours 1 hour 

 

2.1.6 Dephosphorylation of Vector DNA 

To prevent self-ligation of the digested plasmid and consequently reduce the number of false-

positive clones, the digested vector DNA was dephosphorylated using Antarctic Phosphatase (New 

England BioLabs) (Table 9). Phosphatases catalyse the removal of the 5’-phosphate group which is 

required for the ligation reaction. Inserts were not dephosphorylated allowing for the ligation 

reaction to take place. Antarctic After dephosphorylation, Antarctic Phosphatase could be heat-

inactivated and used for ligation without a further purification step. 

Table 9: Dephosphorylation of plasmid DNA 

 

Component Volume [µL] 

Plasmid DNA (1-10 µg) 30 

Antarctic Phosphatase Buffer (10x) 4.0 

ddH2O 5.0 

Antarctic Phosphatase (NEB) 1.0 (5 units) 

Incubation at 37 °C 1 hour 

Deactivation at 65 °C 15 min 

 

2.1.7 Ligation of DNA Fragments 

The fusion of a DNA fragment into a plasmid vector was carried out using DNA ligases. DNA ligation 

either requires “blunt-ends” (no overhang at cut sites) or “sticky-ends” (staggered overhangs at cut 

sites). During the ligation reactions DNA ligases catalyse the formation of phosphodiester bonds 

between 5’ phosphate and 3’ hydroxyl termini in duplex DNA. T4 DNA ligase (NEB), derived from 

bacteriophage T4 and with optimal activity at 25 °C, was used for all ligation reactions during this  
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work (Table 10). The molar ratio between insert and plasmid DNA ranged between 3:1 and 5:1 and 

was determined by UV-absorption spectroscopy (Nanodrop). 

Table 10: DNA ligation 

 

Component Volume [µL] 

Plasmid DNA (dephos.) 1.0 (150 fmol) 

Insert DNA 3.0 (250 fmol) 

Ligase Buffer (10x) 2.0 

ddH2O 13 

T4 Ligase (NEB) 0.5 (200 units) 

Incubation at 25 °C 3 hours 

 

2.1.8 Preparation and Transformation of Chemically-competent E. coli 

4 mL LB medium were inoculated with a single E. coli colony and grown overnight without 

supplemented antibiotics. The precultures were added to 300 mL LB medium in a 1 L Erlenmeyer 

flask and grown to an OD600 of 0.5 and then incubated on ice for 20 min. Next the cells were 

harvested by centrifugation (2500 g, 15 min, 4 °C), the supernatant discarded and the cells 

resuspended in 60 mL precooled Inoue buffer. Cells were again harvested by centrifugation (2500 g, 

15 min, 4 °C), resuspended with 20 mL precooled Inoue buffer buffer and the suspension incubated 

on ice for 20 min before aliquoting. The aliquots (50 µL) of chemically-competent E. coli were snap-

frozen in liquid nitrogen and stored at -80 °C. 

Chemically-competent cells were transformed for DNA replication (XL-1 Blue) and protein expression 

(BL21). Cells were then thawed on ice for 10 min mixed with plasmid DNA (1 µL) or ligation mix (5 µL) 

and incubated on ice for 20 min. Next, the cells were heat-shocked at 42 °C for 1 min and directly 

afterwards incubated on ice for 2 min. Transformations using ampicillin as a resistance marker were 

directly plated on LB-agar plates (+AMP). Other resistance markers require a preincubation in 200 µL 

antibiotic-free LB medium at 37 °C for 1 hour before plating on LB-agar plates containing the 

respective antibiotic. 

2.1.9 Preparation and Transformation of Electro-competent E. coli  

4 mL LB medium were inoculated with a single colony TransforMax EC100 E. coli (Epicentre) and  

grown overnight without supplemented antibiotics. The precultures were added to 300 mL LB 

medium in a 1 L Erlenmeyer flask and grown to an OD600 of 0.4 and then incubated on ice for 10 min.  

Next the cells were harvested by centrifugation (2500 g, 10 min, 4 °C). The supernatant was  

discarded, the cells resuspended in 300 mL precooled Glycerol (10%) and harvested by centrifugation 
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(2500 g, 10 min, 4 °C) again. This step was repeated one more time. In the last centrifugation step, 

the supernatant was discarded, the cells this time resuspended in 40 mL precooled Glycerol (10%) 

and harvested by centrifugation (2500 g, 10 min, 4 °C) again. After discarding the supernatant, the 

cells are resuspended in Glycerol (10%) to an OD600 of 1.00 (1:100 dilution). The resulting cell density 

is approximately 2.5 x 108 cells/mL. Aliquots (50 µL) of electro-competent E. coli were snap-frozen in 

liquid nitrogen and stored at -80 °C. 

Electro-competent cells were transformed with plasmid libraries to ensure high transformation 

efficiency. 50 µL cells were thawed on ice, mixed with 1-5 µL of plasmid DNA and added to a 

precooled 2 mL electroporation cuvette (Peqlab). After a 2400 V electrical pulse was applied, 1 ml of 

prewarmed SOC medium (37 °C) was added immediately. Transformed cells were incubated at 37 °C 

for 1 h before subsequent plating on LB-agar agar plates supplemented with the appropriated. 

2.2 Transposon-based Bacterial Screening 

2.2.1 Transposon Insertion Reaction  

Transposable elements or transposons are mobile DNA fragments, able to change its relative position 

within host DNA. These so-called “jumping genes”, first discovered by McClintock in 1951 

(McClintock, 1951), can be found both in prokaryotic and also eukaryotic cells in which they make up 

a large fraction of the C-value. The potential of transposons in molecular biology has yielded 

extensive application in random insertions of tags or primer binding sites as well as random gene 

“knockouts” within a genome. The class-II transposable element Tn5 from gram-negative bacteria 

working on a “cut-and-paste” mechanism has been made accessible for cell-free in-vitro experiments 

by Goryshin and Reznikoff in 1998 (Goryshin and Reznikoff, 1998). This and further improvements 

yielded the transposon system Tn5: highly active and specific enzyme activity, no host cell factors 

needed, highly random distribution of insertion sites within target DNA. These factors make the Tn5 

system a promising candidate system for the construction of random insertion libraries. In this work, 

the EZ-Tn5TM In-frame Linker Insertion Kit (Epicentre) was used, offering a 57 bp (19 codons) linker 

insertion in all three reading frames into a target gene (Figure 14). 
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Figure 14: In-frame linker insertion via EZ-Tn5TM transposon and Not I digestion 

(Adapted from Epicenter, 2012). 

 

For library generation, electro-competent E. coli XL-1 Blue were transformed with 1 µL of the 

completed transposon reaction (Table 11) and plated on LB-agar plated with Kanamycin and 

Ampicillin antibiotics. 

Table 11: Transposon reaction 

 

Component Volume [µL] 

Target DNA 2.0 (1 pmol) 

EZ-Tn5 <NotI/KAN-3> transposon 0.8 (1 pmol) 

EX-Tn5 Reaction Buffer (10x) 1.0 

ddH2O 5.2 

EZ-Transposase (EpiCentre) 1.0 

Incubate at 37 °C 2 hours 

EZ-Tn5 Stop Solution (10x) 1.0 

Incubate at 70 °C 10 min 

 

2.2.2 Bacterial Screening I: Transposon-based Linker Insertion 

The first of two transposon-based screening steps aimed at the identification of possible linker 

insertion sites in a fluorescent protein ( 

Figure 15). The transposase-mediated insertion reaction of the transposon EZ-Tn5 <NotI/KAN-3> into 
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the gene of a fluorescent protein could be detected via bacterial colony screening of transformed 

electro-competent E. coli. Stop-codons in all three reading frames of the transposon led to non-

fluorescent colonies which were selected pooled, and the plasmid DNA was prepared. After the 

removal of the transposon by preparative digest with the restriction enzyme NotI and agarose gel 

electrophoresis, the plasmid was re-ligated leaving an  

11-amino acid linker at the initial insertion site. XL-1 Blue cells were transformed with the ligation 

mix and bacterial colonies screened in a second step for recurring fluorescence. All plasmids from 

fluorescent colonies were sequenced to identify the reading frame for further circular permutation 

and functionalization steps. A detailed protocol can be found in Appendix 7.1. 

 

 

 

Figure 15: Transposon screening overview 
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2.2.3 Bacterial Screening II: Domain Insertion 

Constructs which retained fluorescence in bacterial screening I were functionalized by insertion of 

calcium binding domains with linkers in the appropriate reading frame ( 

Figure 15, left branch). Functionalized constructs which maintained fluorescence were expressed in 

BL21 cells for spectral and functional analysis. 

2.2.4 Bacterial Screening III: Circular Permutation 

Constructs which retained fluorescence in screening step I were circular permutated in a self-ligation 

procedure ( 

Figure 15, right branch). The nucleotide sequence of the fluorescence protein was first brought into a 

circular form by digest with restriction enzyme KpnI and subsequent self-ligation (Figure 16). The 

circular DNA stretch was the digested with the restriction enzyme NotI and inserted into the custom-

designed vector pRSETcp (ORF1-3) with the respective reading frame. A detailed protocol can be 

found in Appendix 7.1. 

 

 

 

Figure 16: Circular permutation 

 

2.3 Protein Biochemistry 

2.3.1 Protein Expression 

For the expression of recombinant proteins, the cDNA of interested was cloned into the multiple 

cloning site (MCS) of the bacterial expression plasmid pRSET-B. High protein expression levels are 

enabled by a T7 RNA polymerase promoter and the N-terminal fusion of a 6x histidine affinity tag 

(6xHis-tag) allows for purification via immobilized metal-affinity chromatography (IMAC). The 

additional C-terminal fusion of a Strep-II tag (Schmidt et al., 1996) in pRSET-B C-Strep provides the 

possibility for an additional Strep-Tactin affinity purification step, removing all fragments of the 

recombinant protein. For large scale protein purification (starting volume of LB medium >800 mL) 

followed by TEV-cleavage and SEC purification (see 2.2.4 and 2.2.5) a modified pET16b plasmid 

(pET16b-M) was used. pET16b-M contains an N-terminal 6xHis-tag fused to the fluorescent marker 

protein mKO2 (Sakaue-Sawano et al., 2008), followed by the 7-amino acid TEV protease target 
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sequence (ENLYFQG). This combination allows for IMAC purification with subsequent removal of the 

affinity tag and detection of uncleaved protein via absorption/fluorescence. 

As pre-culture, LB medium (4 ml) containing ampicillin (100 µg/mL) was inoculated with transformed 

BL21 cells (50 µL) and grown over night (37 °C, 250 rpm). The next day, LB medium (200 mL) 

containing ampicillin (50 µg/mL) was inoculated with the pre-culture and grown in an Erlenmeyer 

flask to an OD600 of 0.5 (37 °C, 250 rpm). Protein expression was induced with Isopropyl-β-D-1-

thiogalactopyranoside (IPTG, 1.0 mM) for 5 h (37 °C, 250 rpm). Bacterial cells were harvested by 

centrifugation (6,000 g, 10 min, 4 °C), resuspended in protein resuspension buffer (10 mL) and stored 

at -80 °C. 

2.3.2 Purification of Recombinant Protein using IMAC Chromatography 

After defrosting from -80 °C protease inhibitors (1 mM PMSF, 5 µg/mL Pepstatin A, 1 µg/mL 

Leupeptin) were added to the cell suspension to prevent protein degradation. All following protein 

purification steps were carried out on ice. Polysaccharide components of the bacterial cell wall were 

digested by incubation with lysozyme (1 mg) for 30 min. Cell membranes were solubilized and nucleic 

acids removed by addition of the detergent Triton-X-100 (0.1%) and DNase/RNase (5 µg/mL each), 

respectively, and subsequent ultrasonification for 20 min. Cell debris was separated from soluble 

proteins via centrifugation (13,000 rpm, 20 min, 4 °C). 

For immobilized metal ion affinity chromatography (IMAC), the His-tag containing recombinant 

proteins were allowed to bind to HisTrap column (1 mL, GE Healthcare), equilibrated with protein 

resuspension buffer. After further washing with protein resuspension buffer (20 mL), the 

recombinant protein was eluted with protein elution buffer (1 mL), snap-frozen in liquid nitrogen and 

stored at -80 °C. 

2.3.3 Purification of Recombinant Proteins using Strep-tag Affinity Chromatography 

For additional affinity purification of recombinant proteins C-terminally fused to a Strep-II tag, the 

protein solution was bound to Strep-Tactin (400 µL, IBA) in a polypropylene column (1 mL, Qiagen). 

After further washing with protein suspension buffer (20 mL), the recombinant protein was eluted 

with strep elution buffer (500 µL), snap-frozen in liquid nitrogen and stored at -80 °C. 

2.3.4 Removal of Affinity Tags of Recombinant Proteins using TEV Protease 

For protein cleavage, modified tobacco etch virus (TEV) protease was expressed and purified from 

pRSET-B TEV-T. TEV-T protease comprises an N-terminal 6xHis-tag and a C-terminal fusion mCherry 

protein, allowing removal of the protease from the cleavage assay via reverse-IMAC and detection of 

protease contamination via absorption/fluorescence, respectively. 



Materials and Methods  
 

| 57 

Prior to the cleavage of the His-tag, the buffer of the protein suspension was changed back to protein 

resuspension buffer by repeated concentration/dilution steps using an Amicon Ultra centrifugal filter 

(Millipore) of the appropriate molecular weight cut-off (MWCO). The concentrated protein solution 

(1 mL) was supplemented with reducing agent dithiothreitol (DTT, 5 mM) before adding TEV-T 

protease (200 µg) to a final concentration of 3.5 µM. The cleavage assay was first incubated for 1 h at 

room temperature and then transferred to 4 °C overnight, while gentle shaking of the reaction tube 

was maintained. TEV-T protease and undigested recombinant protein were subsequently removed 

via binding to a HisTrap column (1 mL, GE Healthcare), equilibrated with protein resuspension buffer 

(reverse IMAC). The flow-through (1 mL) was directly used for further purification via size-exclusion 

chromatography. 

2.3.5 Purification of Recombinant Proteins using Size-Exclusion Chromatography 

Size-exclusion chromatography (SEC) was used as final step for high yield protein purification. SEC 

was performed using a Superdex 200 column (HiLoad 16/60, prep grade, GE Healthcare) with an 

ÄKTA-FPLC pump (Explorer 100, GE Healthcare). The column was equilibrated with MOPS buffer 

containing SEC buffer before loading 1 mL sample volume. Protein separation was performed at a 

flow rate of 0.3-0.5 mL/min and an elution fraction size of 1 mL. 

2.4 Protein Analytics 

2.4.1 Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electrophoresis (PAGE) separates charged macromolecules by migration in an 

electric field, dependent on particle charge and size. Discontinuous PAGE (DISC PAGE) uses gels with 

different buffer pH values directly poured on top of each other to enhance the sharpness of the 

bands. By addition of the negatively charged detergent sodium dodecyl sulfate (SDS), proteins are 

completely denatured and adjusted to a constant mass-to-charge ratio. SDS-PAGE was used to 

determine the molecular weights and the purification grade of protein samples. Native PAGE, where 

SDS is omitted in order to maintain protein-protein interactions, was used to study the 

multimerization state of proteins. 

For protein separation in the range of 10-45 kD and 15-100 kD 15% and 10% separation gels were 

used, respectively. All PAGE gels were cast as DISC gels with a 5% stacking gel top layer. Loading and 

running buffer were used with or without SDS as required. For visualization of protein bands 

Coommassie staining and destaining solution were used. 
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2.4.2 Analytical Size-Exclusion Chromatography  

Size-exclusion chromatography (SEC), as a fast protein liquid chromatography (FPLC) method, 

separates proteins by their hydrodynamic volume due to the available path length through the gel 

bed. The stationary phase consists of polymer beads with cavities of different sizes on their surface. 

Small analyte particles can enter and experience a longer path length than larger particles. This leads 

to the earlier elution of bigger particles with a limit at the exclusion volume defined by the gel matrix 

chosen. 

Analytical SEC was performed using a Superose 12 column (10/300 GL, GE Healthcare) with an ÄKTA-

FPLC pump (Explorer 100, GE Healthcare). The column was equilibrated with the MOPS buffer with 

EGTA (2 mM) or CaCl2 (10 mM) added, before loading 100 µL sample volume. Protein separation was 

performed at a flow rate of 0.4 mL/min. 

2.4.3 Analytical Ultracentrifugation  

In analytical ultracentrifugation the UV absorption of a solution is detected while the sample is being 

spun, allowing monitoring in real time of the change of sample concentration within the cuvette. 

Sedimentation velocity experiments measure the protein concentration as a function of time of the 

sedimentation. The sedimentation rate of a particle mainly depends on its mass and hydrodynamic 

volume, as well as the medium it is suspended in. The sedimentation coefficient s expressed in the 

unit Svedberg S can be further used in sedimentation coefficient distributions c(s). The conversion of 

c(s) to c(M) distributions allows the estimate of the molecular weights of the species present in the 

sample. As a measure for the asymmetry of a particle, the translational friction coefficient f can be 

related to the one of a sphere of the same mass in the frictional ratio f/f0. These values commonly 

range from 1.2 for globular proteins to 1.5-1.8 for highly asymmetric proteins (Lebowitz et al., 2002). 

An Optima XL-I analytical ultracentrifuge (Beckman Coulter) was used together with an An-60 Ti rotor 

and double-sector centrepieces at 20 °C. The concentration of the sample proteins was adjusted to 

18–23 mM in MOPS buffer with EGTA (2 mM) or CaCl2 (10 mM) added. Buffer density and viscosity 

were followed with a DMA 5000 densitometer and an AMVn viscosimeter, respectively (both Anton 

Paar). Concentration profiles were monitored at 280 nm with a speed of 50,000 rpm. Evaluation was 

carried out using SEDFIT software (version 11.71 (Schuck, 2000) to obtain diffusion-corrected c(s)-

distributions. 

2.4.4 UV/vis Absorption Spectroscopy 

Ultraviolet-visible (UV/vis) absorption spectroscopy was used to measure the extinction coefficients 

of chromophores of fluorescent proteins and to determine sample concentration and purity. Spectra 

were recorded in ddH2O using a Cary 100 Scan UV-Visible spectrophotometer (Varian). 
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2.4.5 Steady-state Fluorescence Spectroscopy 

Steady-state fluorescence spectra were recorded using a Cary Eclipse fluorescence spectrometer 

(Varian) with temperature-controlled cuvette holder. A stopped-flow RX2000 rapid kinetics accessory 

unit (Applied Photophysics) was used to measure dissociation kinetics with a dead time of ~8 ms. 

Free calcium concentrations were determined by Maxchelator software (maxchelator.stanford.edu). 

Calcium affinity of TN-XXL and variants monitoring the ratiometric fluorescence change were 

measured with excitation of the donor ECFP at 432 nm and detection of donor ECFP emission at 475 

nm and acceptor cpCitrine emission at 527 nm. Calcium titrations were carried out by using the 

buffer system RT (buffer RT high Ca2+ and Ca2+-free) at a protein concentration of 0.5 µM according 

to the method of Tsien and Pozzan (Appendix 7.3) (Tsien and Pozzan, 1989). Stopped-flow 

measurements were conducted by rapid mixing of 0.5 µM protein at 2 mM CaCl2 in buffer SF with an 

equal volume of protein at 10 mM EGTA in buffer SF. Values of the ratiometric signal ΔR/R elicited by 

calcium binding were calculated using:  

 

∆𝑅

𝑅
[%] =

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑖𝑛
× 100 Equation 11 

 

𝑅𝑎𝑡𝑖𝑜(𝑅) = 𝑃𝑒𝑎𝑘
𝐹𝐶𝑖𝑡𝑟𝑖𝑛𝑒[𝑎. 𝑢. ]

𝐹𝐶𝐹𝑃[𝑎. 𝑢. ]
=

527 𝑛𝑚

475 𝑛𝑚
 Equation 12 

 

Rmax Ratio at calcium-bound state 

Rmin Ratio at calcium-free state 

 

Calcium titration experiments monitoring tyrosine fluorescence of single binding domains constructs 

were carried out in a 2 mL volume of 1 µM protein in buffer YT. CaCl2 solution (250 mM) was added 

in microliter steps with tyrosine excitation at 275 nm and fluorescence being monitored at 303 nm 

(Swindle and Tikunova, 2010). The titration table for the TN-XXL and Twitch-2 experiments can be 

found in Appendix 7.4. The ΔR/R-based controls for tyrosine fluorescence experiments were also 

conducted using the buffer YT system. Stopped-flow experiments following the rate of 

conformational change of the binding domain alone were carried out via tyrosine fluorescence at a 

protein concentration of 5 µM in buffer SF, as described above. Values of the signal ΔF/F elicited by 

calcium binding were calculated using: 

 

∆𝐹

𝐹
[%] =

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

𝐹𝑚𝑖𝑛
× 100 Equation 13 

 

Fmax Fluorescence at calcium-bound state 

Fmin Fluorescence at calcium-free state 
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2.4.6 Time-resolved Fluorescence Spectroscopy 

The time-resolved detection of the fluorescence decay of TN-XXL was performed with a Fluotime100 

fluorescence spectrophotometer (Picoquant) based on a picoHarp300 unit and using a pulsed diode 

laser (LDH-440 and LDH-P-C-470; centre wavelength, 440 nm and 470 nm; pulse width, 54 ps and 88 

ps; repetition frequency, variable, here 10 MHz) as an excitation source. Calcium titrations were 

carried out as described for steady-state fluorescence spectroscopy (see Chapter 2.4.5) by using the 

buffer system RT (buffer RT high Ca2+ and Ca2+-free) at a protein concentration of 0.5 µM. 

Fluorescence decay curves were recorded by time-correlated single-photon counting (TCSPC) with a 

resolution of ≥300 ps (Gensch et al., 2007; Kaneko et al., 2002). Decay curves were analysed by 

iterative reconvolution of the instrument response function, IRF(t), with an exponential model 

function, M(t), using the FluoFit software (version 4.4; Picoquant) using: 

 

𝐼(𝑡) = 𝐼𝑅𝐹(𝑡) × 𝑀(𝑡) Equation 14 

 

𝑀(𝑡) = ∑ [𝛼𝑖 × 𝑒𝑥𝑝 (−
𝑡

𝜏
)]

𝑖=1−3

 Equation 15 

 

where τi are the characteristic lifetimes and αi are the respective intensities. The average lifetime τave 

was calculated as: 

 

𝜏𝑎𝑣𝑒 =
∑ [𝛼𝑖 × 𝜏𝑖]𝑖=1−3

∑ [𝛼𝑖]𝑖=1−3
 Equation 16 

 

2.4.7 Nuclear Magnetic Resonance Spectroscopy 

NMR experiments were carried out at 303 K on Bruker DRX spectrometers equipped with z-gradient 

cryoprobes operating at different fields (600–800 MHz). NMR samples were prepared at a final 

protein concentration of 1 mM in 20 mM Bis-Tris (pH 7.0), 100 mM KCl, 10 mM DTT, and 10% 2H2O. 

The metal-free and calcium-loaded samples contained 20 mM EDTA/20 mM EGTA and 10 mM CaCl2, 

respectively. To obtain sequence-specific backbone resonance assignments, a standard set of triple-

resonance NMR experiments was performed. The spectra were processed using NMRpipe (Delaglio 

et al., 1995) and analysed using SPARKY (Goddard and Kneller, D.G., 1999) and CARA (Keller, 2004). 

2.4.8 Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectroscopy was used to detect the conformational rearrangement of 

calcium-binding domains in vitro. The CD effect occurs when left- and right-circularly polarized light is 

absorbed to a different extent by chiral molecules like almost all amino acids. As the spectra are 
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additionally influenced by secondary and tertiary protein structure, spectral changes in the far UV 

range (190-260 nm) are widely used to measure conformational changes. Well known are the 

signatures for α-helical and β-barrel structural elements are shown in Figure 17. 

 

 

Figure 17: CD spectra of polypeptides with representative secondary structures 

Poly-L-Lysine at different pH values adapting the conformations: α-helical (solid line), β-sheets 

(Adapted by permission from Macmillan Publishers Ltd: Nat. Protoc. from Greenfield, 2006). 

 

CD absorption spectra were recorded in the range of 200-260 nm using a J-800 circular dichroism 

spectrometer (Jasco) with the protein concentration adjusted to a minimum ellipticity θ of -35 mdeg 

cm2 dmol-1 (~1mg/mL). Calcium titrations were carried out as described for steady-state fluorescence 

spectroscopy (see Chapter 2.4.5) by using the buffer system RT (buffer RT high Ca2+ and Ca2+-free). 

Values of the signal Δθ/θ elicited by calcium binding were calculated using: 

 

∆𝜃

𝜃
[%] =

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

𝜃𝑚𝑖𝑛
× 100 Equation 17 

 

θmax Ellipticity at calcium-bound state 

θmin Ellipticity at calcium-free state 

 

2.4.9 Small-Angle X-ray Spectroscopy 

Small-angle X-ray scattering (SAXS) is an X-ray scattering technique, able to provide information 

about shape and size of proteins in the nm range which was successfully applied to biological 

samples since the early 70s (Harrison, 1969; Stuhrman, 1970). Unlike in crystallography, a SAXS 
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sample can be measured in free solution, yielding information free of crystal packing artefacts at the 

expenses of detailed structural insight. Possible information to be determined by SAXS are the radius 

of gyration Rg, the maximum diameter Dmax and structural shape reconstructions based on ab initio 

fitting algorithms (Koch et al., 2003). 

SAXS data collection was performed at ID14-3 European Molecular Biology Laboratory 

(EMBL)/European Synchrotron Radiation Facility (Grenoble, France) and X33 EMBL/ Deutsches 

Elektronen-Synchrotron (Hamburg, Germany) beamlines. Protein samples were purified by size-

exclusion chromatography in buffer SAXS (30 mM MOPS, 100 mM KCl, 100 mM EDTA, and 100 mM 

EGTA, pH 7.5) containing EGTA (2 mM) or 10 mM CaCl2 (10 mM). Protein samples and buffer controls 

were centrifuged for 10 min at 13,200 g before data acquisition. Samples were measured in 

concentrations of 1, 2, 5, and 10 mg/mL. The running buffer of the size-exclusion chromatography 

(buffer A) was used for buffer correction. No particle interaction or aggregation was observed in the 

tested concentration range. All samples were checked for radiation damage by comparison of the 

successive 10 s-frames of sample exposure. Raw data were analysed and processed by Dr. G Witte at 

the Department for Chemistry and Biochemistry at the LMU (Munich, Germany) using the ATSAS 

package (version 2.4) (Konarev et al., 2006) according to the literature (Putnam et al., 2007). Sets of 

independent ab initio models were calculated using GASBOR (Svergun et al., 2001). DAMAVER 

(Volkov and Svergun, 2003) was used for alignment and averaging. Figures and modelling were 

carried out using SITUS (Wriggers and Chacon, 2001) and UCSF Chimera (Pettersen et al., 2004). 

2.5 Materials 

2.5.1 Instruments 

 

Name Supplier 

Benchtop Centrifuge Sigma 3K30 Sigma Laborzentrifugen (Germany) 

Cary 100 Scan UV-Visible Spectrophotometer  Varian (Australia)  

Cary Eclipse Fluorescence Spectrophotometer  Varian (Australia)  

Cary H2O Circulated Cell Holder (Cary Eclipse)  Varian (Australia)  

CCD-Camera Cool Snap ES2  Roper Scientific (USA)  

Digital Camera DFC 320 (R2) Leica Mikrosysteme GmbH (Germany) 

DYAD DNA Engine  MJ Research Inc. (USA)  

Electroporator Equibio Easyject Prima Flowgen (UK) 

Fluorescence Stereo Microscope M205 FA Leica Mikrosysteme GmbH (Germany) 

GelDoc 2000 Videosystem  BioRad (USA)  

ImageJ Image Processing Program  National Institutes of Health (USA)  

Lambda LS Light Source  Sutter Instruments (USA)  
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M205 FA Fluorescence Microscope  Leica (Germany)  

MB-5 Heating Circulator  Julabo (Germany)  

Nanodrop 1000 Spectrophotometer  Peqlab (Germany)  

Optima LE-80K Ultracentrifuge  Beckman Coulter (USA)  

Peristaltic Pump Reglo Analog Ismatec (Switzerland) 

RC-5B Refrigerated Super Speed Centrifuge  Sorvall (USA)  

Shutter Lambda 10-2  Sutter Instruments (USA)  

Sonorex Digital Ultrasonic Bath  Bandelin (Germany)  

Stopped Flow RX2000 Rapid Kinetics 

Accessory Unit 

Applied Photophysics, Leatherhead (UK) 

2.5.2 Software Packages 

 

Name Supplier 

Maxchelator http://maxchelator.stanford.edu 

MetaMorph 7.7 Molecular Devices (USA) 

Origin 8.1 OriginLab Corporation (USA)  

Sedfit http://www.analyticalultracentrifugation.com  

2.5.3 Consumables 

 

Name Supplier 

2mm Electroporation Cuvettes  Peqlab (Germany)  

Amicon Ultra Centrifugal Filter Units Millipore (Germnay) 

Polypropylene Columns  Qiagen (Germany)  

QIAquick Gel Extraction Kit  Qiagen (Germany)  

QIAquick Miniprep Kit  Qiagen (Germany)  

QIAquick PCR Purification Kit  Qiagen (Germany)  

2.5.4 Buffers, Solutions, and Media 

 

Name Recipe 

Buffer SF (stopped-flow) 10 mM MOPS (pH = 7.5) 

50 mM KCL 

1 mM MgCl2 

1 mM DTT 

Buffer System RT (ratiometric titration) (preparation mananual, Appendix 7.2)  

high Ca2+ 

30 mM MOPS (pH = 7.2) 

100 mM KCl 
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10 mM K2CaEGTA 

1 mM MgCl2 

Ca2+-free 

30 mM MOPS (pH = 7.2) 

100 mM KCl 

10 mM K2EGTA 

1.555 mM MgCl2 

Buffer YT (tyrosine titration) 200 mM MOPS (pH = 7.2) 

100 mM KCl 

2 mM EGTA 

1 mM MgCl2 

1 mM DTT 

Coomassie Staining (for PAGE) 25% Ethanol (v/v) 

10% Glacial acetic acid (v/v) 

0.1% Coomassie Brilliant Blue (w/v) 

in ddH2O 

Destaining Solution (for PAGE) 30% Ethanol (v/v) 

10% Glacial acetic acid (v/v) 

in ddH2O 

DNA Gel Soading Buffer 100 mM Tris (pH = 7.5) 

10 mM EDTA 

50 % Glycerol (v/v) 

1 % Orange G 

Inoue Transformation Buffer 10 mM PIPES (pH = 6.7) 

250 mM KCl 

15 mM CaCl2 

55 mM MnCl2 

LB (Luria-Bertani) Agar 15 g/L agar 

in LB medium  

LB Medium 20 g/L LB broth base 

in ddH20 

MOPS Buffer 30 mM MOPS (pH = 7.5) 

100 mM KCl 

100 µL EDTA 

100 µL EGTA 

PAGE Loading Buffer (5x) 2.13 mL Tris (0.5 M, pH = 6.8) 

2.56 mL β-Mercaptoethanol 

5 mL Glycerol 

(1 g SDS – for SDS PAGE only) 

traces Bromophenol blue 

PAGE Running Buffer (10x) 250 mM Tris 

1.92 M Glycine 

(1% SDS – for SDS PAGE only) 
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H2O to 1 liter 

PAGE Seperation Gel (10%), per gel 1.25 mL Tris buffer (1.5 M, pH = 8.0) 

2.4 mL ddH2O 

1.25 mL Acrylamide Mix (40%) 

(50 µL SDS (10%) – for SDS PAGE only) 

50 µL APS (10%) 

2 µL TEMED 

PAGE Seperation Gel (15%), per gel 1.25 mL Tris buffer (1.5 M, pH = 8.0) 

1.55 mL ddH2O 

1.88 mL Acrylamide Mix (40%) 

(50 µL SDS (10%) – for SDS PAGE only) 

50 µL APS (10%) 

2 µL TEMED 

PAGE Stacking Gel (5%), per gel 250 µL Tris buffer (1.0 M, pH = 6.8) 

1.44 mL ddH2O 

250 µL Acrylamide Mix (40%) 

(20 µL SDS (10%) – for SDS PAGE only) 

20 µL APS (10%) 

2 µL TEMED 

Protein Elution Buffer 20 mM NaPO4 (pH = 7.8) 

300 mM NaCl 

250 mM Imidazole 

Protein Resuspension Buffer 20 mM NaPO4 (pH = 7.8) 

300 mM NaCl 

20 mM Imidazole 

10% Glycerol (v/v) 

SEC Buffer 30 mM MOPS (pH = 7.5) 

100 mM KCl 

100 µL EDTA 

100 µL EGTA 

10% Glycerol (v/v) 

SOC Medium purchased from Invitrogen (USA) 

2% Tryptone (w/v) 

0.5% Yeast extract (w/v) 

20 mM MgSO4 

20 mM Glucose 

8.6 mM NaCl 

2.5 mM KCl 

Strep Elution Buffer 20 mM NaPO4 (pH = 7.8) 

300 mM NaCl 

2.5 mM Desthiobiotin 

10% Glycerol (v/v) 

TAE Buffer (10x) 8.4 g Tris 

11.4 mL Glacial acetic acid 

20 mL of EDTA (pH = 8.0) 

ddH2O to 1 liter 
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2.5.5 Enzymes 

 

Name Supplier 

T4-Ligase  New England Biolabs (USA)  

Restriction Enzymes  New England Biolabs (USA)  

Herculase II Fusion DNA Polymerase  Stratagene (USA)  

Taq DNA Polymerase (NEB) New England Biolabs (USA) 

Antarctic Phosphatase (NEB) New England Biolabs (USA) 

EZ-Tn5™ In-Frame Linker Insertion Kit Epicentre (USA) 

2.5.6 Chemicals 

 

Name Supplier 

Acrylamide Mix (40%)  

Agar  Sigma (USA)  

Ampicillin, sodium salt  Roth (Germany)  

APS (Ammonium persulfate)  

BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic 

acid), tetrapotassium salt  

Molecular Probes 

(USA)  

Bromophenol blue  

Calcium carbonate (>99.0%) Sigma (USA)  

Calcium chloride, dihydrate (>99.0%) Sigma (USA)  

Coomassie Brilliant Blue  

Deoxyribonuclease  Sigma (USA)  

Desthiobiotin Sigma (USA) 

DTT (Dithiothreitol ) Sigma (USA)  

EDTA (Ethylenediaminetetraacetic acid)  

EGTA (Ethylene glycol tetraacetic acid, >99.0%) Sigma (USA)  

Ethanol  

Glucose (D-(+)-Glucose anhydrous, ≥99%)  Sigma (USA)  

Glycerol  

Glycine  Merck (Germany)  

Imidazole  Merck (Germany)  

Ionomycin, calcium salt  Sigma (USA)  

IPTG (Isopropyl β-D-1-thiogalactopyranoside)  

Kanamycin, sulphate  Roth (Germany)  

LB broth base  

Leupeptin hydrochloride  Sigma (USA)  

L-Glutamic acid  Roth (Germany)  

Lysozyme  Sigma (USA)  

Magnesium chloride hexahydrate (>99.0%) Merck (Germany)  

Manganese(II) chloride  
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MOPS (3-(N-morpholino)propanesulfonic, >99%) Merck (Germany)  

Ni-NTA Agarose  Qiagen (Germany)  

Orange G  

Pepstatin A  Sigma (USA)  

PIPES (Piperazine-N,N′-bis(2-ethanesulfonic acid, Pufferan ≥99%) Roth (Germany) 

PMSF (Phenylmethylsulfonylfluoride) Sigma (USA)  

Potassium carbonate  

Potassium chloride (>99.5%) Merck (Germany)  

Potassium EGTA  

Potassium hydroxide (>85.0%) Merck (Germany)  

Ribonuclease Sigma (USA) 

SDS (Sodium dodecyl sulfate)  

Sodium bicarbonate  Sigma (USA)  

Sodium chloride  Sigma (USA)  

Sodium phosphate monobasic, anhydrous  Sigma (USA)  

TEMED (Tetramethylethylenediamine)  

Tris (Trizma Base) Sigma (USA)  

Triton-X-100  Sigma (USA)  

Trypsin  Sigma (USA)  

Yeast extract  Sigma (USA)  

β-Mercaptoethanol  

2.5.7 Plasmids and Bacterial Strains 

 

Plasmid Name Supplier 

pRSET-B Invitrogen (USA) (see Appendix 7.5.1) 

pRSET-B C-Strep derived from pRSET-B (see Appendix 7.5.2) 

pRSET precursor derived from pRSET-B (see Appendix 7.5.3) 

pRSETcp derived from pRSET-B (see Appendix 7.5.4-6 ) 

pET-16b Novagen (USA) (see Appendix 7.5.7 ) 

pET-16b-M derived from pET-16b (see Appendix 7.5.8) 

 

Bacterial Strain Name Supplier 

XL-1 Blue Invitrogen (USA) 

BL21 (DE3) Invitrogen (USA) 

TransforMax EC100 Epicentre (USA) 
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3 Results 

 

The experiments carried out in this work can be categorized in three classes. First, the indicator  

TN-XXL and later GECI variants were characterized biophysically to understand the functional 

interplay of its modular domains (Figure 18) as well as to identify enhancement strategies for the key 

properties of new indicator classes (see Chapter 3.1–3.3). Second, stepping back from the explicit 

development of FRET-based GECIs to the more general development of indicator components, 

Chapter 3.4 summarizes the efforts undertaken to identify engineering potential of red-shifted 

fluorescent proteins. 

 
 

Figure 18: Biophysical characterization of the interplay between modular GECI domains 

Analysis of TnC-based GECI variants with regard to the binding loop (see Chapter 3.1), the entire TnC-

based binding domain as well as the overall indicator structure (see Chapter 3.2) and the qualities of 

the signal output (see Chapter 3.3). 
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3.1 The Binding Event: Correlating Calcium Binding and Structural 

Rearrangements 

3.1.1 Effects on Individual Calcium Binding Sites 

Effects on the individual calcium binding sites of TN-XXL 

To investigate calcium binding events to individual EF-hands of the TN-XXL binding domain, single 

Tyrosine (Tyr) residues were introduced as markers via site-directed mutagenesis and their 

fluorescence signal was recorded. The modulation of endogenous Tyr fluorescence by interaction 

with calcium cations has been reported in many previous works (Dotson and Putkey, 1993; Vaneyk et 

al., 1991). Swindle et al. showed for wild type human cardiac TnC (hcTnC) how calcium binding to 

single EF-hands can be followed using Tyr residues directly located within or adjacent to the binding 

loop (Swindle and Tikunova, 2010). In the TN-XXL binding domain the same positions are occupied by 

Phenylalanine (Phe) residues, which are structurally very similar (lacking only one hydroxyl group 

pointing away from the protein surface), sterically not interacting with other residues, and non-

fluorescent upon excitation at 280 nm (Figure 19A and B). Furthermore, the amino acid sequence of 

the TN-XXL binding domain does not contain any other Tryptophan (Trp) or Tyr residues and thus 

does not exhibit endogenous fluorescence.  

 

 
Figure 19: The “Phe/Tyr switch” in troponin C variants 

(A) Sequence alignment of the EF-hand 3 and 4 binding domains from human cardiac (hc) and 

chicken skeletal TnC (csTnC). (B) Cartoon representation of the C-terminal domain of csTnC (PDB ID: 

1TOP) with highlighted calcium binding loops of EF-hand 3 (green), EF-hand 4 (blue) and bound Ca2+ 

ions (red). 
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Taking advantage of the mutational flexibility of these positions, a “Phe/Tyr switch” was developed 

to specifically switch on or off the visibility i.e. the fluorescence signal of individual calcium binding 

loops. The purpose of this system was to reveal the affinities of individual binding sites regardless of 

a resulting overall structural change, while leaving their molecular environment unaltered.  

To map the four binding sites of TN-XXL binding domain, a series of four constructs was generated 

(Figure 20A), in which always one of the four Phe residues was selectively mutated to Tyr (EF3-1, 

EF4-1, EF3-2, EF4-2). To allow the signal detection of single Tyr residues, the indicator domains had to 

be subcloned and expressed without both flanking fluorescent proteins, which contain one strongly 

fluorescent Trp and 8-10 other Tyr residues. 

To show that the Phe/Tyr mutations are without any functional effect on the indicator behaviour, the 

calcium affinities of the TN-XXL indicator and a TN-XXL indicator variant that contained Tyr residues 

in all four binding sites (TN-XXL 4xTyr) were compared (Figure 20B). TN-XXL 4xTyr showed a binding 

curve and calcium affinity that was identical from that of TN-XXL when monitored via the FRET signal 

∆R/R. Subsequently, all four single-Tyr mutants were expressed and purified (n=3), and their calcium 

affinities were determined via steady-state tyrosine fluorescence (Figure 20C and E). The magnitudes 

of the calcium-induced tyrosine fluorescence increases were different in both EF-hand types and 

varied between ~75% (EF3-1 and EF3-2) and ~6% (EF4-1 and EF4-2) (Figure 20D and F, respectively). 

For EF3-1 and EF3-2, Kd values of 690 nM and 820 nM were determined, respectively. The Tyr 

fluorescence signals of EF3-1 and EF3-2 could now be compared with the analogous increase in YFP 

fluorescence of the TN-XXL indicator, matching the measured Kd of 830 nM. In contrast, EF4-1 and 

EF4-2 showed Kd values of 180 nM and 2.05 mM, respectively. Thus, EF3-1 and EF3-2 show a calcium 

affinity that is in good agreement with the value of TN-XXL and therefore were identified as the 

major determinants of the indicator’s FRET signal. Notably, EF3-1 shows a broader binding curve in 

comparison to EF3-2, which suggests structural instability of the first EF-hand due to the lack of an N-

terminal fusion partner. The assumption of a less ordered structure is further supported by the NMR 

results (see Chapter 3.1.2). 
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Figure 20: Calcium titrations of Tyr mutants of the Tn-XXL binding domain 

(A) Schematic representation of the TN-XXL binding domain including the Phe/Tyr switch. 

Endogenous phenylalanine residues were mutated to tyrosine to report local calcium binding at 

individual EF-hands. (B) Calcium titration of the indicators TN-XXL (green) and TN-XXL 4xTyr (black) 

detected via FRET (excitation at 432 nm, emission at 475 and 525 nm). (C, E) Tyr fluorescence 

emission spectra (excitation at 275 nm) of the calcium titration of the EF3-2 and EF4-2 constructs, 

respectively. (D, F) Calcium titration of the EF-3 and EF-4 constructs, respectively, followed via Tyr 

fluorescence (excitation at 275 nm, emission at 303 nm). Calcium titration of the indicator TN-XXL 

detected via FRET (excitation at 432 nm, emission at 475 and 525 nm) as control (green). All data are 

averages of three independent experiments. Standard error of the mean depicted as error bars and 

fluorescence normalized. (Reprinted from Geiger et al., 2012, with permission from Elsevier). 
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The calcium dissociation kinetics for EF3-1 and EF3-2 (Figure 21) were determined via stopped-flow 

tyrosine spectroscopy. TN-XXL and TN-XXL 4xTyr were again used to show that the Phe/Tyr 

mutations had no influence on the calcium dissociation kinetics. Due to their low signal strength EF4-

1 and EF4-2 could not be included in this experiment. The resulting calcium dissociation time 

constants tdecay were calculated using monoexponential fits and compared with the FRET signal decay 

of TN-XXL. For the FRET signal, a tdecay of 311 ms was measured, whereas EF3-1 and EF3-2 show tdecay 

values of 317 ms and 277 ms, respectively. Thus, unbinding of bound calcium locally detected at EF-

hands 3-1 and 3-2 displayed off-kinetics very similar to the global changes reported by FRET. 

  
 

Figure 21: Calcium-dissociation kinetics of Tyr mutants EF3-1 and EF3-2 

(A) Time-resolved fluorescence spectroscopy of the control FRET indicators TN-XXL (green) and TN-

XXL 4xTyr (black) (excitation at 432 nm, acceptor emission at 525 nm). (B) Time-resolved 

fluorescence spectroscopy of the Tyr mutants EF3-1 (black) and EF3-2 (blue) (excitation at 275 nm, 

emission at 303 nm) compared with the control FRET indicator TN-XXL (green) response from (A). All 

data are averages of three independent experiments and fluorescence normalized. (Reprinted from 

Geiger et al., 2012, with permission from Elsevier). 

 

Effects on individual calcium binding sites of Twitch-2 

To further reduce the number of calcium binding domains, Thestrup et al. developed the next 

generation of TnC-based GECIs, termed “Twitch indicators” (Thestrup et al., 2014). Like TN-XXL, these 

indicator variants are based on a cyan-yellow FRET pair but employ only a single C-terminal lobe of 

troponin C as calcium binding domain, containing two functional EF-hands (“single domain indicator” 

principle). The calcium titration curve of the Twitch-2 indicator is monophasic and reveals a Kd of  

156 nM ( 

Figure 22B), indicating that either one or two calcium binding events with identical Kd values trigger 

the structural switch.  
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Figure 22: Calcium titration of the Twitch-2 single and minimal binding domain indicators 

(A) Sequence alignment of the EF-hand 3 and 4 binding domains of the GECIs Twitch-2 and Twitch-2 

54+D derived from toadfish swim bladder TnC (tsTnC). Amino acid insertion in Twitch-2 54+D 

depicted in red. Calcium titration of the indicators Twitch-2 (B) and Twitch-2 54+D (C) detected via 

FRET (excitation at 432 nm, emission at 475 and 525 nm). 

 

To determine the individual EF-hand binding affinities, the “Phe/Tyr switch” approach was applied 

also for Twitch-2. Tyrosine mutants were generated, again without the flanking fluorescent proteins 

to prevent signal corruption by endogenous Trp and Tyr residues. In contrast to TN-XXL (Figure 20) 

the calcium titration of the Tyrosine fluorescence showed that the omission of the β-barrels seems to 

reduce the binding affinity from 156 nM to 261 nM and 229 nM for EF-hand 3 and 4, respectively 

(Figure 23A and C). However, the affinities of both EF-hands correspond closely to each other and 

reveal that in this single domain indicator the binding loops detect calcium binding at the same 

concentration in a redundant manner. Hence, Thestrup et al. hypothesized the feasibility of the 

“minimal domain indicator” principle for genetically encoded calcium indicators by further reduction 

of the number of intact binding loops. 
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Figure 23: Calcium titrations of Tyr mutants of the Twitch binding domain 

(A, B) Tyr fluorescence emission spectra (excitation at 275 nm) of the calcium titration of the Twitch-

2 and Twitch-2 54+D binding domain, respectively. The number of the EF-hands indicated, refers 

Phe/Tyr mutation present in the construct. (C, D) Calcium titration of the respective constructs 

followed via Tyr fluorescence (excitation at 275 nm, emission at 303 nm). 

 

Effects on individual calcium binding sites of Twitch-2 54+D 

The minimal number of analyte binding positions in a GECI was targeted by corrupting the affinity of 

the second EF-hand of Twitch-2. As previously known, inactive EF-hands of wild type TnC may 

contain 13 instead of only 12 amino acids in their binding loops. By inserting an additional amino acid 

Aspartate into the binding loop of the EF-hand 2 after the position 54, Thestrup et al. created the 

variant Twitch-2 54+D, analogue to the inactive EF-hand 1 of wild type human cardiac TnC (Putkey et 

al., 1989). This mutant was supposed to show no calcium binding to the EF-hand 2 at all or at least a 

considerably lower binding affinity. Again, the “Phe/Tyr switch” approach was applied to create Tyr 

mutants of the binding domain without the flanking fluorophores. The calcium titration of the Tyr 

fluorescence revealed a biphasic titration curve with two distinct binding affinities: Kd (1) of 1.8 µM 

and a more than 100-fold higher Kd (2) of 400 µM (Figure 23B and D). Under physiological conditions 

intracellular calcium concentrations of several 100 µM are never reached and therefore only one of 

the two sites will act as physiological calcium indicator. Unlike in previous experiments with TN-XXL, 
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each single Tyr mutant of Twitch-2 and Twitch-2 54+D detects both calcium binding events at once. 

Therefore, a direct correlation of Tyrosine fluorescence changes at certain concentrations with the 

occupation of single calcium binding sites is not possible. However, the introduction of the 54+D 

mutation into EF-hand 2 allows the assumption, that the consequence can be seen as “knock-out” 

effect, reducing the affinity by more than two orders of magnitude. Tests of the Twitch-2 54+D 

binding domain in a FRET construct with ECFP and cpCitrine yield also a GECI with biphasic titration 

curve with a Kd (1) of 627 nM and a Kd (2) of 819 µM. In conclusion, under physiological conditions 

this GECI detects calcium binding with one single binding site and can be classified as “minimal 

domain indicator”. 

3.1.2 Effects on the Calcium Binding Domain of TN-XXL 

Complementing the “Phe/Tyr switch” approach, which determines the affinity of single EF-hand 

binding sites, a set of biophysical characterization methods were applied to analyse the 

conformational change of troponin C binding domains upon calcium binding. These changes were 

further applied to relate the properties of the binding domains to the integrated properties of the 

FRET indicators (see Chapter 3.2 and 3.3) as estimations and general guidelines for further FRET 

indicator design. 

Effects on the binding domain monitored via CD spectroscopy 

The key interest of the circular dichroism (CD) spectroscopy-based studies was to compare apparent 

indicator affinity to the affinity of the calcium binding domain alone. The working hypothesis was 

that the fusion of two rigid and bulky β-barrels as fluorophores could potentially interfere with a 

binding domain with desirable properties and therefore decrease the quality of indicators 

constructed thereof. To directly compare the titration curves of a FRET indicator with the titration 

curve of its binding domain, a combination of fluorescent spectroscopy and CD spectroscopy was 

chosen. Troponin C has been the subject of many CD based studies (Francois et al., 1997; Moncrieffe 

et al., 1999; Pearlstone et al., 1992) based on an increase of α-helical content upon calcium binding, 

which can be followed by a decrease in ellipticity θ at the peak minimum at 222 nm. However, only 

wild type proteins and mutants thereof have been investigated with respect to understanding their 

calcium binding properties and characterizing their interplay with cellular interaction partners 

(mostly troponin I and troponin T). In this set of experiments the starting point of investigation is the 

prototype version of a high-affinity FRET indicator based on troponin C from the swimbladder of the 

toadfish (tsTnC), the fastest-twitching vertebrate muscle (Rome, 2006). To increase the fluorescence-

based FRET signal ∆R/R, the first 12 amino acids were removed during the process of indicator 

development by Thestrup et al. (Thestrup et al., 2014), yielding the binding domain tsTnC L13 fused 

between the same ECFP-cpCitrine FRET pair used in TN-XXL (Figure 24A). Although the tsTnC L13 



Results  
 

| 76 

indicator does not exhibit a particularly strong signal strength (∆R/Rmax = 68%) is shows a 

remarkably high affinity of 24 nM (Figure 24B and D). In a parallel set of experiments the binding 

domain tsTnC L13 alone was expressed, purified and analysed using CD spectroscopy. A decrease of 

the ellipticity at the peak minimum at 222 nm of dθ/θmax = 42% could be observed (Figure 24C), 

which allowed for a more fine-tuned calcium titration revealing a Kd of 28 nM. A control titration of 

the tsTnC L13 indicator using CD spectroscopy was not successful, as the overall signal change - due 

to major invariant β-sheet content of both Fusion-GFPs - did not exceed 16% and was therefore too 

small for detailed analysis (data not shown). 

  

  
 

Figure 24: CD spectroscopy for detecting the structural change of tsTnC L13 binding domains 

(A) Schematic comparison of the indicators TN-XXL, tsTnC L13 and the binding domain of tsTnC L13 

used for CD spectroscopy. (B) Fluorescence spectra of tsTnC L13 indicator (excitation at 432 nm) and 

(C) CD spectra of the tsTnC L13 binding domain under Ca2+-free and high-Ca2+ (39.8 µM) conditions. 

(D) Normalized calcium titration curves of the indicator tsTnC L13 (green) and its binding domain 

(black). Fluorescence was detected via FRET (excitation at 432 nm, emission at 475 and 525 nm). 

Ellipticity was detected at the maximum for β-sheets (222 nm). All data are averages of three 

independent experiments. 

 

This approach clearly demonstrates the usefulness of the comparison of the properties of a FRET 

indicator with its binding domain. In this specific example, the binding domain shows a broadening of 

the binding curve while maintaining the affinity constant (Figure 24D). This leads to the conclusion 
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that the fusion of two GFP-barrels only slightly stabilizes the binding domain of tsTnC L13 structure 

without sterically interfering with the conformational change upon calcium binding. 

Effects on the binding domain monitored via NMR spectroscopy 

To further investigate the different rigidities under calcium-free and calcium-bound conditions, 

solution NMR characterization of a single C-terminal lobe of troponin C from TN-XXL (EF-hands 3 and 

4) was carried out. The experiments were designed and carried out in collaboration with Dr. Luigi 

Russo, Dr. Stephan Becker and Prof. Dr. Christian Griesinger of the Department of NMR-based 

Structural Biology at the Max Planck Institute for Biophysical Chemistry (Göttingen, Germany). 

 

The analysed binding domain contained only one EF-hand pair of the TN-XXL binding domain with a 

total binding capacity of two calcium ions per protein unit. By 1H-15N heteronuclear single-quantum 

coherence (HSQC) spectrum of the calcium- loaded form (Figure 25A) shows that the EF-hand 34 

domain – considering the good dispersion of signals in both proton and nitrogen dimensions – adopts 

a folded conformation. Moreover, the complete assignment of HN and Cα chemical shifts was 

obtained thereafter. On the basis of chemical shift index values (Wishart and Case, 2001), a 

secondary structure prediction was derived (Figure 25C), which was essentially identical to that 

obtained for the wild type C-terminal domain of chicken skeletal TnC and consistent with its high-

resolution structure PDB 1TNW (Slupsky and Sykes, 1995). To address the change in rigidity during 

the domain reorganization, the apo form of EF-hand 34 was investigated. As displayed in Figure 25B, 

there is considerably less signal dispersion in the 1H-15N HSQC spectrum of the apo form than in the 

calcium-loaded form. Secondary calcium chemical shifts are also less pronounced in the metal-free 

form (Figure 25C), even though they still deviate significantly from zero. Taken together, these data 

indicate that in the absence of calcium, the tertiary structure of protein is partially lost and the 

secondary structural elements are less stable than in the metal-loaded protein. Notably, the 

secondary structure, in particular the first α-helix, of the EF-hand motif (EF-hand 3) appears to be 

more affected than EF-hand 4. However, this might be due to the lack of a stabilizing N-terminal 

fusion partner. 

 



Results  
 

| 78 

 

 
 

Figure 25: NMR characterization of the calcium-binding domain of TN-XXL 
1H-15N HSQC spectra of 15N13C-labeled single-lobe TN-XXL binding domain (residues 94–162). Data 

acquisition was performed at 303 K on an 800 MHz spectrometer with the (A) Calcium-bound and (B) 

Calcium-free form. (C) Upper panel: Secondary structure elements (α-helices and β-strands) in 

dependence of the sequence in single-lobe TN-XXL binding domain in the calcium-loaded form as 

derived by the chemical shift index based on Cα resonance assignments. Lower panel: Secondary 

chemical shift analysis for single-lobe TN-XXL binding domain in the calcium-bound (black) and 

calcium-free forms (red). (Reprinted from Geiger et al., 2012, with permission from Elsevier). 
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3.2 Hydrodynamics: Analysis of TN-XXL under Native Conditions 

Hydrodynamic analysis of TN-XXL was performed using a multimethod approach to investigate the 

conformational switch upon calcium binding underlying the FRET changes. FRET-based GECIs are 

artificially created fusion proteins composed of several different modules which themselves have 

been subject to many rounds of genetic engineering. Even if there is detailed knowledge available 

about the single native units, their combination and the further indicator optimization yields proteins 

with new properties which can be estimated from the starting material only to a very limited degree. 

The experiments in this section were designed to quantify the parameters of the FRET-based GECI 

TN-XXL in free solution and under native conditions: the oligomerization state, the tendency to form 

aggregates and its shape in the bound and unbound state. 

3.2.1 SDS-/Native-Page 

To confirm the monomeric state and to identify potential aggregates a purification protocol was 

established (see Chapter 2.3) ensuring a purity grade of >95 %. Samples of TN-XXL were analysed 

during the purification process using SDS PAGE monitoring the increasing purity of the protein 

(Figure 26A). Native PAGE demonstrated that under physiological buffering conditions no 

aggregation or oligomerization occurs (Figure 26B). These experiments were conducted prior to 

analytical ultracentrifugation and used as quality check for the samples used in Chapter 3.2.2. 

 

  
 

Figure 26: Coomassie staining of Polyacrylamide gels of TN-XXL preparations 

(A) Purification steps of recombinantly expressed TN-XXL. Lane 1: Content of the bacterial lysate (see 

Chapter 2.3.1). Lane 2: Flow-through of affinity chromatography (see 2.3.2). Lane 3: Eluate of affinity 

chromatography. Lane 4: Peak fraction of size-exclusion chromatography (see Chapter 2.3.5). (B) SDS 

and native PAGE of TN-XXL sample corresponding to lane 4 of (A). (Figure B reprinted from Geiger et 

al., 2012, with permission from Elsevier). 

 



Results  
 

| 80 

3.2.2 Analytical Ultracentrifugation 

Analytical size-exclusion chromatography (SEC) provided further evidence that purified TN-XXL 

remained monomeric under calcium-free (2 mM EGTA) and calcium-bound (10 mM CaCl2) conditions 

(Figure 27A). A considerable change of the hydrodynamic volume, Ve, was indicated by a significant 

shift of the SEC retention volume between the two forms. Next, this change was confirmed in a more 

quantitative manner using analytical ultracentrifugation. The analytical ultracentrifugation 

experiments were performed in collaboration with Dr. Stephan Uebel at the Core Facility of the Max 

Planck Institute of Biochemistry (Martinsried, Germany). Changes of the sedimentation-coefficient 

distributions c(S) matched the observed change of Ve (Figure 27B). In sedimentation velocity 

experiments the change of Ve could be further quantified by the sedimentation constant S20,W shifting 

from 4.32 at Ca2+-free conditions to 5.05 in the calcium-bound state. The frictional ratio f/f0 as a 

measure for shape asymmetry was determined to be 1.5 in the calcium-free state suggesting an 

outstretched, almost linear shape. In the calcium-bound form it decreased drastically to 1.2 

indicating a compact structure, correlating with globular proteins (Lebowitz et al., 2002). In 

sedimentation-velocity experiments the broadening of the sedimenting boundary could be used to 

estimate the molecular masses of TN-XXL to be 74.1 kDa under Ca2+-free and 67.8 kDa under high 

Ca2+ conditions. Both values correspond closely to the theoretical molecular mass of a TN-XXL 

monomer (74.1 kDa). 
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Figure 27: Hydrodynamics of TN-XXL 

(A) Size-exclusion chromatography of TN-XXL in Ca2+-free and high-Ca2+ conditions on a Superose 12 

column (10/300). Inlay shows calibration line for column. (B) c(S) distribution calculated using SEDFIT 

(Schuck, 2000) from sedimentation-velocity experiments in the analytical ultracentrifuge with TN-XXL 

concentrations of 18 and 23 mM in Ca2+-free and high-Ca2+ conditions. Either 2 mM EGTA or 10 mM 

CaCl2 were added for Ca2+-free or high-Ca2+ conditions, respectively. (C) Upper panel: Fringes 

collected by absorbance measurements at 280 nm, Lower panel: Residuals from Lamm equation 

solutions (Schuck, 2000). (Figure A and B reprinted from Geiger et al., 2012, with permission from 

Elsevier). 

 

3.2.3 Small-Angle X-ray Scattering (SAXS) 

Finally, SAXS was used to associate the previous results about shape and monomericity with 

molecular geometry parameters, such as the radius of gyration, Rg, and the maximum diameter, Dmax, 

and with approximations of the folding status and conformation. The experiments were designed 

and carried out in collaboration with Dr. Gregor Witte and Prof. Dr. Karl-Peter Hopfner from the 

Gene Center and Department of Biochemistry at the LMU Munich (Germany). 

The obvious differences in TN-XXL shapes in the presence and absence of calcium observed already 

earlier by analytical ultracentrifugation could be confirmed by the scattering curves (Figure 28A), and 

were even more pronounced in the interatomic distance distribution function, P(r) (Figure 28B). 
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From the lowest resolution portion of the SAXS scattering curve, the radius of gyration can be 

obtained, being a measure for the average distance of the atoms from the particle centre. A decrease 

of the Rg value upon a conformational change without further modification of the protein can be 

used as evidence for structural compaction (Putnam et al., 2007). For TN-XXL, an Rg value of 3.85 nm 

suggests a more elongated calcium-free conformation, in comparison to an Rg value of 3.32 nm for 

the calcium-bound state, confirming its more compact structure. Both, calcium-bound and calcium-

free state are clearly folded, as can be judged from the bell-shaped curves (Mertens et al., 2012) in 

the Kratky plots (Figure 28C). The parameter maximum particle size, Dmax, can be obtained from the 

maximum data range of the radius of the P(r) distribution (Figure 28B). TN-XXL shows a Dmax of 14 nm 

(calcium-free) versus 11 nm (calcium-bound) which fits well to possible arrangements of the 

ECFP/cpCitrine pair, allowing the assumption of a strong distance contribution to the FRET change of 

TN-XXL. To visualize the results, low-resolution shapes were calculated ab initio from the scattering 

data (Figure 28D), where the location of the two β-barrel domains is evident in the outstretched 

calcium-free form. To better illustrate the possible positioning of the two fluorescent proteins, the 

available structures for ECFP and Citrine (PDB 1CV7 and 1HUY) were manually docked in the shape 

envelope of the calcium-free form (Figure 28E). Docking attempts of the calcium-bound form were 

dismissed due to the ambiguous positioning of the two β-barrel domains. However, several 

superposition approaches yielded a reasonable overlap, confirming also the calcium-bound form as a 

reasonable shape envelope. 
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Figure 28: Small-angle X-ray scattering analysis of TN-XXL 

(A) Solution scattering data for TN-XXL in Ca2+-free and high-Ca2+ (10 mM) conditions. (B, C) Distance 

distribution functions P(r) and Kratky plot, respectively, of TN-XXL in Ca2+-free and high-Ca2+ (10 mM) 

conditions. (D) Final averaged DAMAVER (Volkov and Svergun, 2003) ab initio shapes from 

independent GASBOR (Svergun et al., 2001) runs of TN-XXL in Ca2+-free (upper) and high-Ca2+ (lower) 

states. (E) Shape of TN-XXL in calcium-free state manually docked with cartoon representations of 

crystal structures of ECFP and Citrine (PDB 1CV7 and 1HUY). All experiments were carried out in 

buffer A. Either 2 mM EGTA or 10 mM CaCl2 were added for Ca2+-free or high-Ca2+ conditions, 

respectively. (Reprinted from Geiger et al., 2012, with permission from Elsevier). 
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3.3 FRET-dependent Fluorescence Signals: Intensity vs. Lifetime 

The signal transmission of fluorescence-based indicators depends on two main factors: firstly the 

reaction of the indicator to a certain change in the analyte concentration, specified as its affinity, and 

secondly a detectable change of at least one of the fluorescence parameters. FRET-based indicators 

offer the advantage to cancel out synchronous changes in fluorescence intensities due to imaging 

side effects such as motion artefacts or shifts of the region of interest during recording. At the same 

time they are still prone to corrupt the signal by an asynchronous change of intensity in only one of 

the two fluorescence channels. Therefore, a set of parameters of FRET-based GECIs was identified 

which could potentially corrupt the signal output either by inducing signals without analyte binding, 

by masking actual indicator output or by altering the indicator affinity and kinetics. On the one hand, 

the conformational switch could potentially induce changes in the structural rigidity and integrity of 

the fluorophore environment as well as the solvent accessibility of the fluorophore might change and 

alter the fluorescence intensity. On the other hand, changes in temperature and pH affect both, the 

fluorescence intensity of each fluorophore and the properties of the binding domain. In this chapter 

the characterization of the GECI TN-XXL is reported with regard to all these parameters to provide 

information about the robustness of the FRET signal. 

3.3.1 Truncations and “Amber” Substitutions in TN-XXL 

One hypothesis was that the fluorescence properties of the fluorescent proteins might be affected by 

direct conformational coupling of the fusion protein domains onto the β-barrels. In the two 

conformational states of TN-XXL this might lead to modulations of the fluorescence output overlying 

and distorting the FRET-based signal output. To address this issue, a series of fusion constructs was 

generated in which the sterical effects could be maintained while following the fluorescence 

properties for each fluorescence protein separately. Four fusion constructs based on TN-XXL were 

generated containing, all of them containing only one functional fluorescent protein (Figure 29A). 

Two constructs contained the calcium-binding domain fused to one of the fluorescent proteins 

lacking the second (TN-XXL ΔcpCit and TN-XXL ΔECFP). For the two reporter constructs, dummy 

domains were used instead of the second fluorescent protein in which an “Amber”-like 67Cys 

mutation (Koushik et al., 2006) prevented fluorophore formation while maintaining the fully intact β -

barrel structure (TN-XXL cpCit° and TN-XXL ECFP°). Calcium sensitivity based on non-FRET 

mechanisms was tested for all constructs with steady-state (Figure 29B-G) and time-resolved 

fluorescence spectroscopy (Table 12). Only fluorescence emission of ECFP was minimally reduced by 

≈2% upon the addition of calcium in both fusion constructs (Figure 29B-D). The same decrease could 

be confirmed also for non-fusion ECFP alone. cpCitrine fluorescence remained stable at all calcium 

concentrations (Figure 29E-G)  
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Figure 29: Truncation and Amber substitutions in TN-XXL 

(A) TN-XXL truncation and Amber substitution constructs used to test the structure effects on the 

fluorescence signal of each FP variant. (B) Effect of calcium concentration on ECFP emission (exc. at 

432 nm) tested on the spectrum of ECFP alone. (C) TN-XXL ΔcpCit and (D) TN-XXL cpCit° including the 

Amber mutation Y67C in cpCitrine. (E) Effect of calcium concentration on cpCitrine emission (exc. at 

500 nm) was tested on cpCitrine alone, (F) TN-XXL ΔECFP and (G) TN-XXL ECFP° including the Amber 

mutation W67C in ECFP. Either 2 mM EGTA or 40 µM CaCl2 were added for Ca2+-free or high Ca2+ 

conditions, respectively. (Reprinted from Geiger et al., 2012, with permission from Elsevier). 
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Table 12: Fluorescence decay parameters for truncation and “Amber”-like constructs 

 

 Ca2+ conc. 

[nM] 

α1 

[%] 

τ1 

[ns] 

α2 

[%] 

τ2 

[ns] 

α3 

[%] 

τ3 

[ns] 

τave 

[ns] 

ECFP Ca2+-free 38 0.720 20 2.00 42 3.87 2.31 

high Ca2+ 37 0.735 20 1.98 44 3.87 2.35 

TN-XXL ΔcpCit Ca2+-free 34 0.718 25 2.15 41 3.97 2.40 

high Ca2+ 33 0.704 22 2.10 45 3.95 2.48 

TN-XXL cpCit° Ca2+-free 32 0.722 26 2.00 41 3.92 2.38 

high Ca2+ 33 0.719 25 1.97 42 3.85 2.36 

cpCitrine Ca2+-free 100 3.56 -- -- -- -- 3.56 

high Ca2+ 100 3.57 -- -- -- -- 3.57 

TN-XXL ΔECFP Ca2+-free 100 3.45 -- -- -- -- 3.45 

high Ca2+ 100 3.37 -- -- -- -- 3.37 

TN-XXL ECFP° Ca2+-free 100 3.50 -- -- -- -- 3.50 

high Ca2+ 100 3.27 -- -- -- -- 3.27 

 

3.3.2 Fluorescence-Lifetime Calcium Titrations of TN-XXL 

Until now, the FRET signal effect of dual wavelength GECIs was mainly observed via the fluorescence 

intensities in both channels. This is due to faster recording times of steady-state fluorescence in 

comparison to time-resolved fluorescence spectroscopy but also due to a wider distribution of 

steady-state fluorescence-based imaging setups. However, lately the interest in fluorescence lifetime 

imaging (FLIM) of calcium events has increased (Yellen and Mongeon, 2015) and GECIs will most 

likely be employed more often in such experiments. This set of experiments was designed to 

compare the robustness and affinity of the indicator TN-XXL under both experimental conditions in 

order to initiate evaluation standards of GECIs. The time-resolved fluorescence spectroscopy 

experiments were performed in collaboration with Dr. Thomas Gensch from the Forschungszentrum 

Jülich (Germany). 

Calcium titration rows of TN-XXL were generated and the signal properties measured in parallel with 

steady-state fluorescence (FRET-based signal ∆R/R) and time-resolved fluorescence (donor 

fluorescence decay). As a result of initial FRET, the average donor fluorescence decay of TN-XXL 

under Ca2+-free conditions was already faster compared to the control construct TN-XXL cpCit° 

lacking the FRET acceptor cpCitrine (Figure 30A, curves 1 and 2). A further decreased fluorescence 

lifetime was observed under high-Ca2+ conditions (curve 3). In literature both biexponential fits (Borst 

et al., 2008; Millington et al., 2007; Tramier et al., 2002) and triexponential fits (Habuchi et al., 2002; 

Villoing et al., 2008) have been applied to analyse ECFP fluorescence decay in vitro and in living cells. 

Here, the quality of the triexponential fits of ECFP fluorescence decay was considerably higher than 
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the biexponential fit and thus applied throughout this entire set of experiments (Figure 30A and χ2 

values in Table 13). The factorial analysis of lifetimes and amplitudes yielded a remarkable 

distribution (Figure 30B and Table 13): Only the shortest lifetime τ1 showed a significant calcium-

dependency, dropping by >25% from 0.696 to 0.503 ns upon calcium saturation. Both of the longer 

lifetimes, τ2 and τ3 were non-responsive. Accordingly, the relative amplitude α1 of the fast lifetime 

increased by 28% to 64%, whereas the amplitudes of the longer, invariant lifetimes dropped by 6% 

for τ2 and 22% for τ3. It is likely that the decay components represented by the lifetimes τ2 and τ3 

include contributions of the shorter lifetimes of non-FRET donor molecules as well as the less 

efficient FRET processes compared to those described by τ1. However, the 12% of the TN-XXL 

population exhibiting the longest lifetime τ3 at high calcium are doubtless associated with donor 

molecules that do not undergo FRET and moreover are in good agreement with the 12% fraction of 

protonated cpCitrine chromophore at pH 7.2 (Figure 31). Thus, in contrast to earlier studies of other 

FRET-based GECIs, no fraction of inert indicator has to be postulated (Laptenok et al., 2010; Visser et 

al., 2010; Wlodarczyk et al., 2008). On the contrary, at high calcium, all ECFP donors undergo FRET 

with the exception of those 12% bound to a cpCitrine acceptor with protonated chromophore.  

TN-XXL signals were obtained at calcium concentrations ranging from 0 and 40 mM and yielded 

average fluorescence lifetimes τave between 2.11 and 1.26 ns. Therefore, the change of the average 

fluorescence lifetime Δτave amounts to 0.85 ns without prior subtraction of potential subpopulations. 

Stepwise calcium titration following Δτave showed sigmoidal curves for both spectroscopy approaches 

(Figure 30C). Fluorescence lifetime analysis, however, yielded an apparent affinity of TN-XXL of 453 

nM, in contrast to the Kd of 830 nM determined by steady-state fluorescence measurements. 
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Figure 30: Fluorescence lifetime spectroscopy of TN-XXL 

(A) Upper panel: Experimental and fitted fluorescence donor decay curves of TN-XXL cpCit° control 

(curve 1, purple), TN-XXL under Ca2+-free conditions (curve 2, green), TN-XXL in the high-Ca2+ 

conditions (curve 3, blue), and the instrument response function (curve 4, black). Excitation of ECFP 

at 440 nm and donor emission recorded at 475 nm. Experimental data are fitted with 

multiexponential functions with amplitude ai and lifetimes τi. Lower panel: Weighted residuals of bi-

and triexponential fits. All resulting parameters are listed in Table 13. (B) Upper panel: Calcium-

dependence of relative amplitudes from the triexponential fit. Lower panel: Normalized fluorescence 

lifetimes. (C) Calcium-dependence of the normalized average fluorescence lifetime τave (black). 

Ratiometric steady-state titration of TN-XXL with ECFP and cpCitrine fluorescence measured with 

excitation at 432 nm and emission recorded at 475 and 527 nm (green). The dotted line represents 

the half-maximal signal change. (Reprinted from Geiger et al., 2012, with permission from Elsevier). 
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Table 13: Fluorescence decay parameters in TN-XXL 

These parameters represent the averages of the values obtained from three independent 

experiments. The τ2 value fixed in the triexponential fits was obtained from averaging the τ2 values 

from three calcium titrations of TN-XXL. Subsequently this value was kept fixed throughout further 

tri-exponential fits. Donor excitation wavelength: 440 nm, Donor emission wavelength: 470 nm. 

 

 fit α1 

[%] 

τ1 

[ns] 

α2 

[%] 

τ2 [ns] α3 

[%] 

τ3 

[ns] 

χ2 τave 

[ns] 

TN-XXL cpCit° 

Ca2+-free 

bi-exp 47 1.16 --- --- 53 3.76 1.202 2.53 

tri-exp 30 0.762 25 1.97 (fix) 45 3.96 1.197 2.49 

TN-XXL cpCit° 

high Ca2+ 

bi-exp 47 1.14 --- --- 53 3.70 1.193 2.50 

tri-exp 32 0.738 24 1.97 (fix) 44 3.88 1.123 2.414 

TN-XXL  

Ca2+-free 

bi-exp 52 1.11 --- --- 48 3.51 1.202 2.26 

tri-exp 36 0.705 30 1.97 (fix) 34 3.73 1.121 2.11 

TN-XXL  

high Ca2+ 

bi-exp 71 0.758 --- --- 29 3.24 1.476 1.47 

tri-exp 64 0.511 24 1.97 (fix) 12 3.79 1.206 1.26 

 

 

 

Figure 31: pH effect on cpCitrine chromophore 

UV Absorption spectra of cpCitrine recorded at different pH values of 4.0 (cyan), 5.0, 6.0, 7.0 and 8.0 

(black). The inset shows the normalized absorption readout at 515 nm indicating ~88% absorption at 

pH 7.2 (i.e., 88% of the cpCitrine chromophores deprotonated). (Reprinted from Geiger et al., 2012, 

with permission from Elsevier) 

3.3.3 Effects of pH and Temperature on TN-XXL 

To complement the experiments on conformational coupling (see Chapter 3.3.1) further experiments 

were conducted in order to explore the influence of the external conditions pH and temperature on 

the signal output of TN-XXL. To estimate the influence of different environmental conditions on the 

indicator performance, pH and temperature effects on affinity and kinetics of TN-XXL were tested 
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(Figure 32 and summarized in Table 14). Affinity and off-kinetics were obtained for three different 

temperatures (23, 30 and 37°C) at a constant pH of 7.2. With a constant pH, affinity was observed to 

only slightly decrease (Kd rising from 830 to 1210 nM) when the temperature was increased from 23 

to 37 °C (Figure 32A). By contrast, a pronounced change in the off-kinetics was observed for the 

same temperature shift. The monoexponentially fitted calcium dissociation time constant tdecay 

decreased from 620 ms at 23 °C to only 129 ms at 37 °C (Figure 32C). An analysis of different pH 

values were performed at a constant temperature of 23 °C. Overall, affinity increased with pH, 

dropping from 1030 nM at pH 6.5 to 451 nM at pH 8.0 (Figure 32B), whereas the calcium dissociation 

time constant, tdecay, decreased from 620 ms to 425 ms within the same pH range (Figure 32D). These 

findings were comparable to the behaviour of other calcium chelating agents such as EDTA (Carr and 

Swartzfager, 1975) and can be related to a decreasing protonation status of the chelating functional 

groups with increasing pH. It can be concluded that the same FRET indicator can have considerably 

different properties under different environmental conditions.  

  

  
 

Figure 32: Temperature and pH dependency of the TN-XXL signal 

Calcium titration curves of TN-XXL at different temperatures (A) and pH values (B). Calcium-

dissociation kinetics of TN-XXL at different temperatures (C) and pH values (D). Excitation at 432 nm 

and emission recorded at 475/527 nm. All data are normalized averages of three independent 

experiments. (Reprinted from Geiger et al., 2012, with permission from Elsevier).  
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Table 14: Temperature and pH dependency of the TN-XXL signal 

 

Condition Affinity  

Kd [nM] 

Off-Kinetics  

tdecay [ms] 

23°C pH = 6.5 

pH = 7.2 

pH = 7.5 

pH = 8.0 

1030 

830 

-- 

451 

620 

-- 

522 

425 

30°C pH = 7.2 

pH = 7.5 

946 

-- 

-- 

264 

37°C pH = 7.2 

pH = 7.5 

1210 

-- 

-- 

129 

 

3.4 Modification Tolerance of GFP-like β-Sheet Barrels 

A second focus of this work – aside from the analysis of modular GECI components – was on 

enhancing the fluorescent proteins toolkit for further indicator development. A transposon-based 

assay was developed and applied to screen for circularly permutated variants (cpVariants) of known 

fluorescent proteins as well as new single-FP indicators. Both, the development of cpVariants and the 

development of single-FP indicators, start off with probing for sites within the fluorescent protein 

which tolerate structural modification. The hits from the primary screening step were subsequently 

used for both paths of further development. For the detailed introduction to the transposon reaction 

and the screening assay see Chapter 2.2. 

3.4.1 Transposon-based Assay 

A transposon-mediated insertion mechanism was used to probe the functionality of fluorescent 

proteins after random insertion of a 19 amino acid linker (see Chapter 2.2.2). The first criterion for 

the choice of template fluorescent proteins was the host organism. Only from Aequorea victorea-

derived GFP variants (such as GFP, YFP and CFP) exist well-established cpVariants and single-FP 

indicators (Baird et al., 1999; Griesbeck et al., 2001). Lately, also the red-emitting Entacmaea 

quadricolor-derived mRuby (Akerboom et al., 2013), Discosoma sp.-derived mApple (Zhao et al., 

2011) and mCherry (Carlson and Campbell, 2013) have been subject to cpVariant screening efforts, 

however without yielding a standard screening protocol for FRET indicators building blocks yet. The 

experimental design of this work presents a general approach to screening for structural flexibility in 

fluorescent proteins and testing for intact fluorescence at the same time. As first template the 

monomeric red-fluorescent protein tagRFP from Entacmaea quadricolor was chosen. Its high 

brightness (ε = 100,000 M-1 cm-1, QY = 0.48) and fast maturation make it a desirable FRET acceptor as 
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well as a reliable potential indicator scaffold (Merzlyak et al., 2007). The second template was the 

monomeric orange fluorescent protein mKO2. Its brightness (ε = 63,800 M-1 cm-1, QY = 0.62) and 

resistance to bleaching make it a very attractive candidate for indicator development. Furthermore, 

mKO2 emits light in the orange part of the spectrum 550-580 nm with only few alternative 

fluorescent proteins e.g. mOrange (Shaner et al., 2004, 2008) available. 

The theoretical library size of insertion sites in all three ORFs for the tagRFP and mKO2 genes (231 

and 237 amino acids, respectively) is ~700. Here, a total of ~10,000 constructs was screened for each 

template. All hits which regained fluorescence after the Transposon removal and contained the 19 

amino acid linker where sequenced and classified according to the insertion position, ORF and 

brightness. Many possible insertion positions were confirmed by tolerance towards the linker in all 

three reading frames, thus containing different linkers at the same position. The screening was 

terminated when less than 10% of the hits yielded an unknown position-ORF combination.  

For tagRFP 20 insertion positions were found, which yielded bright insertion positions (Table 15, 

column 1-3, Figure 33A, B), mKO2 screening yielded 23 of these positions (Table 16, column 1-3, 

Figure 33C, D). Interestingly, the insertion positions seem to cluster in certain spots of the tertiary 

structure rather than being equally distributed throughout the primary structure. Additionally, the 

first and last amino acids of each β-sheet (rim) seem to be especially suitable for insertions, a finding 

which has also being described previously by Li et al. (Li et al., 2008), however with a limited number 

of screening hits only. Without further in-depth characterization, the mutants were submitted to 

development of calcium indicators and cpVariants thereof. 
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Figure 33: Possible insertion positions within the β-barrels of tagRFP and mKO2 

Schematic representation of the insertion positions within tagRFP (red spots and balls) (A, B) and 

mKO2 (orange spots and balls) (B, D). Amino acid position numbering was adopted from 4KGF and 

2ZMU, respectively. 
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Table 15: tagRFP insertion positions 

 

Position ORF Sec structure EF-hand insertion cpVariant 

11 3 sheet --- --- 
13 2 sheet --- --- 

18 1 rim --- dim 

27 3 sheet --- dim 

33 1 rim --- --- 

37 1 loop --- --- 

52 2 central loop --- --- 

53 1 central loop --- --- 

76 2 central loop dim dim 

108 1 sheet --- dim 

110 3 rim --- dim 

124 3 rim --- dim 

150 3 rim --- --- 

156 2 sheet dim dim 

164 1 rim --- dim 

195 3 sheet --- dim 

196 3 sheet --- --- 

215 1 sheet --- --- 

218 3 sheet --- --- 

222 1 loop --- --- 
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Table 16: mKO2 insertion positions 

 

Position ORF Secondary structure EF-hand insertion cpVariant 

3 1 loop   --- 
8 3 loop --- --- 

19 3 rim dim dim 

20 2 loop dim dim 

51 3 loop --- dim 

51 1 loop dim bright 

53 3 central loop --- dim 

54 2 central loop --- bright 

70 2 central loop --- --- 

77 2 central loop dim --- 

88 3 loop --- dim 

90 1 rim dim bright 

90 3 rim --- dim 

94 3 sheet --- --- 

114 2 loop dim dim 

158 1 sheet dim --- 

163 1 sheet --- --- 

169 1 loop --- dim 

169 3 loop dim bright 

182 2 rim dim dim 

186 1 loop --- --- 

188 2 loop dim dim 

210 2 sheet dim dim 

 

3.4.2 Targeted Insertion of Functional Domains 

To test the before identified positions in tagRFP and mKO2 for functionalization of the proteins, two 

different calcium binding domains were cloned into each construct (Chapter 2.2.3). The csTnC EF-

hand 3,4 doubling from TN-XXL was used along with the single csTnC EF-hand 3,4, having significantly 

different sizes and supposedly also N-/C-terminus orientations. It showed that only two out of 20 

mutants of tagRFP and 11 out of 23 for mKO2 maintained weak fluorescence after insertion of at 

least one of the two domains (Table 15, column 4 and Table 16, column 4, respectively). However, 

none of the remaining fluorescent constructs showed any calcium-dependent fluorescence change. 

The only observable effect showed to be the chloride sensitivity of the mKO2 insertion variant 

1xEF34 at position 90, which cannot be classified as an effect of protein functionalization but rather 

as quenching due to increased solvent accessibility of the chromophore (Figure 34). 
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Figure 34: GECI functionality test following targeted EF-hand insertion 

Insertion of 1x EF-hand 3,4 from TN-XXL into mKO2 at position 90. (A, B) Increasing CaCl2 and KCl 

concentrations lead to reduced fluorescence due to halide quenching, respectively. Excitation at 551 

nm. 

 

3.4.3 Targeted Circular Permutation 

To convert the screening hits of the transposon-based assay directly into cpVariants, a pair of 

flanking restriction sites was included in the original screening vector (see Chapter 2.2.4), which 

allows for a paralleled subcloning approach without further individual primer design. This design 

offered a convenient solution to the problem of cloning efforts for libraries of new cpVariants.  

cpVariants of tagRFP 

All 20 successful screening variants were subcloned and transformed into their respective cpVariants. 

However, only nine of the created tagRFP cpVariants exhibited dim or no fluorescence (Table 15, 

column 5). It was decided to focus on the larger number of mKO2 cpVariants as proof-of-principle 

constructs for the development of cpVariants and no further optimization was pursued for tagRFP 

cpVariants. 

cpVariants of mKO2 

All 23 successful screening variants were subcloned and transformed into their respective cpVariants. 

As none of them showed any fluorescence – in contrast to some variants with faint fluorescence for 

tagRFP cpVariants – an inherent problem of mKO2 for circular permutation was assumed. According 

to the 3D structure of mKO (PDB: 2ZMU) the C-terminal amino acid serine is directly adjacent to the 

last β-sheet on the opposite side of the N-terminus. Both successfully circular permutated FP families 

- Aequorea victorea (GFP, CFP, YFP) and Discosoma sp. (mCherry) – contain longer C-termini which 

can be used as flexible linker region for cpVariants. Thus, in a second approach the last two amino 

acids of all 23 mKO2 screening variants were first replaced with a 12-amino acid C-terminus of 

mCherry (C-mod variants, Figure 35A) and subsequently transformed into their respective 
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cpVariants. This modification did not interfere with the spectral properties of the fluorescent protein 

(Figure 35B) but led to an array of 15 different cpVariants of mKO2 with different brightness 

properties (Figure 35C and Table 16, column 5). 

 

  
 

Figure 35: C-terminal modification of mKO2 cpVariants 

(A) Sequence alignment of C-terminal amino acids. (B) Fluorescence spectra of mKO2 WT, mKO2 with 

C-terminal modification (C-mod) and mKO2 cpV51 with C-terminal modification. (C) Fluorescence 

intensity overview of mKO2 WT, C-mod and cpV C-mod variants. 

 

To test the intermediate cpVariants in FRET indicator use, a TN-XXL like fusion construct was 

generated featuring T-Sapphire (Zapata-Hommer and Griesbeck, 2003) as N-terminal donor and 

mKO2 cpV54 C-mod as C-terminal acceptor ( 

Figure 36A). In comparison to the WT-fusion construct “T-Sapp – mKO2” ( 

Figure 36B), the cpV-fusion construct “T-Sapp – mKO2 cpV54” showed a considerably smaller ∆R/R 

value ( 

Figure 36C). Despite their improved fluorescence brightness, the cpVariant needed 2 days at 4°C to 

fully maturate ( 

Figure 36D), however, without reaching the signal strength of the WT-fusion construct. 
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Figure 36: mKO2 cpV54 C-mod tested as acceptor in FRET indicator with T-Sapphire donor 

Dual wavelength GECI with TN-XXL binding domain, T-Sapphire as N-terminal donor and mKO2 cpV54 

C-mod as C-terminal acceptor. (A) Excitation and Emission spectra of both fluorescent proteins. (B) T-

Sapphire-mKO2 WT fusion construct as control. (C, D) GECI with transposon-generated mKO2 cpV54 

C-mod as C-terminal acceptor after 1 and 2 days of maturation time at 4 °C, respectively. Excitation 

at 399 nm.   
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4 Discussion 

 

4.1 Modular Design and Biophysical Analysis of Genetically Encoded 

FRET Indicators 

4.1.1 Overview of Modular Design as Protein Engineering Strategy 

State of the art strategies in protein engineering span a wide field ranging from diversity-oriented 

approaches to evolution-based modifications of pre-existing proteins and complete de novo 

approaches by computational design (Park and Cochran, 2009). A special focus of this work is on 

modular design, with the aim to bring balance between knowledge-based design and directed 

evolution approaches. This strategy is very prominently applied in the field of Synthetic Biology 

(Purnick and Weiss, 2009). An upcoming initiative in the field of modular design on a molecular level 

is, for example, the BioBricks system first established by Tom Knight in 2003 (Knight, 2003) and 

further developed by Endy, Voigt, Rettberg and many others (Shetty et al., 2011).  

For the design of genetically encoded indicators, modular design has been applied since their 

conception and has gained expertise and momentum ever since. In this combinatorial approach 

several building blocks of protein domains are recombinantly fused to one single amino acid chain, 

which is then further developed towards the desired functionality. The advantages of this method 

are multiple: the desired properties are already located in one building block; blocks are mostly 

confined protein domains, all blocks possess a well-documented set of properties. The combination 

of these building blocks is easily achieved by standard cloning techniques and will even be carried out 

directly via gene synthesis in the future. In the ideal case, the function of the fusion protein would 

result from a simple addition of the properties of the individual building blocks. However, several 

challenges usually occur during the course of such protein design. Not always the appropriate 

building blocks are readily available in nature or have not yet been subject to thorough 

characterization. Another shortcoming of many protein domains is their strong dependence of 

biological function on interactions with adjacent domains or interfaces, thus that they cannot be 

easily isolated from their structural context. Even if the functionality is located in only one protein 

domain, it is still often influenced by the surrounding parts of the protein. Last, if domains with the 

basic functionalities are accessible, they rarely meet the full requirements of the envisioned target 

protein which makes further modification and optimization steps necessary.  

The ideal preconditions of such building blocks are a small size, a certain degree of rigidity, which 

makes them insusceptible to interactions with flanking protein domains, and a predictable “one 
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module – one function” relationship. Furthermore, the independence of rare cofactors allows the 

application in a broad range of environments and a tested tuneable functionality facilitates the 

adjustment of the properties. One of the best examples of a successful modular building block is the 

green fluorescent protein (GFP) and its derivatives. With its rigid β-barrel enclosing a versatile inner 

chromophore it meets all of the described requirements almost to perfection. Nevertheless it has to 

be noted, that the development of such a building block required extensive engineering efforts over 

many years to achieve its robust and powerful functionality. 

4.1.2 The Three Phases of Protein Engineering Based on Modular Design 

By comparing the history of different lines of genetically encoded calcium indicators (GCaMPs, Yellow 

Chameleons, TnC-based indicators), a general development pattern emerges (Figure 9): 

Combination 

The first successful candidate of every indicator line resulted from a very simple fusion approach. 

Pre-existing building blocks, like binding domains and fluorescent proteins, were combined with only 

a few variations being tested. In some cases new building blocks were taken from other biological 

contexts (e.g. troponin C) and integrated for the first time into an artificial fusion protein. In cases of 

new indicator classes a simple in vitro test had to be established, able to distinguish functional from 

non-functional indicator prototypes. The experimental results were merely proof-of-principles rather 

than a detailed functional analysis.  

Optimization 

The following indicator generations were developed by random and rational mutagenesis, along with 

the creation of big libraries of variants and extensive high-throughput screening in vitro and in cell 

culture. Every indicator line was exposed to more detailed test-assays. Benchmarking of indicator 

properties with respect to indicators for the same analyte became more and more important. The 

most prominent example was the synthetic calcium indicator OGB, often referred to as “gold 

standard” in calcium imaging. The experimental results were usually described as absolute values of 

the in vitro performance or as an x-fold increase in performance compared to the previous 

generation.  

Fine tuning 

As indicators became more and more applied in biological experiments as functional tools, a certain 

set of requirements evolved for each indicator class. For GECIs, which currently exhibit the highest 

level of evolution among the genetically encoded indicators, this goal was proclaimed to be single-

action potential resolution during experimental conditions in vivo (Hendel et al., 2008). A further 

request was signal strength high enough to detect calcium dynamics in small cellular compartments 
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like synaptic boutons (Wilms and Hausser, 2009) or during sparse neuronal spiking events (Nature 

Methods Editorial, 2009).  

In order to fine-tune already optimized indicators, a comprehensive definition of the target 

properties including implications and cross-correlations with other properties had to be made. This 

required prior in-depth characterization of the individual protein modules and their interaction 

through biophysical analysis. New and integrated test procedures had to be established allowing 

predictable estimations of the in vivo functionality. The theoretical boundaries of the system had to 

be investigated, ensuring that target goals were theoretically achievable. In this third phase, instead 

of vast mutant libraries a combination of targeted and saturated mutagenesis was employed to 

generate again smaller libraries. These regions were usually based on target regions within the fusion 

protein identified by the preceding biophysical analysis. The experimental results at this stage are 

mostly evaluated by comparison with the projected target values (Chen et al., 2013; Thestrup et al., 

2014). 

4.1.3 Biophysical Analysis as a Prerequisite for Indicator Fine-Tuning 

After multiple cycles of indicator optimization, the incremental improvement of each property in a 

new indicator version diminishes or leads to an impairment of another property. Experimenters 

often get the feeling that at this quality level invisible links are active between the properties of the 

individual fusion modules. In fact, these links are rooted in interactions on the molecular level, most 

likely on interacting surfaces between the protein domains as well as the flexible and rigid linker 

regions. Due to their synthetic nature the tertiary structure of engineered fusion proteins can be 

estimated only to a limited extent and especially the crucial interacting regions remain incalculable.  

To enable the fine-tuning of indictors two major tasks have to be solved by thorough biophysical 

analysis before subsequent engineering steps are taken: First, the locations where the key properties 

are encoded have to be identified along with the factors on which they depend. In most cases, 

literature already provides a broad overview for native conditions. However, these experiments have 

to be refined and adjusted for the artificial fusion conditions. Secondly, the interactions of the 

domains have to be determined in both states (bound and unbound) with respect to all key 

properties.  

As introduced in Chapter 1.3.5 the key properties of genetically encoded FRET indicators can be 

defined as affinity (defined by the dissociation constant, Kd), kinetics (defined by the dissociation 

time constant, τ1/2) and signal strength (determined by the dynamic range and the brightness of the 

fluorescent proteins). For TnC-based GECIs this analysis is grouped in three sections “binding event”, 



Discussion  
 

| 102 

“structural change” and “resulting fluorescence signal” and is discussed in the following three 

chapters. 

4.2 The Calcium Binding Event: Correlation of Ligand Binding and 

Structural Rearrangement 

4.2.1 Calcium Binding to Individual EF-Hand Motives 

In order to fine-tune the key affinity and kinetic properties of GECIs, the initial calcium binding event 

to the chelating 12 amino acids of an EF-hand motive needs to be correlated with the resulting 

structural change on a tertiary structural level. It appeared that affinity and kinetics of troponin C 

domains reported in literature did not match their properties when integrated into an artificial FRET 

fusion construct. As a first step in this work, a method was established to monitor calcium binding to 

individual EF-hands directly. Inspired by previous experiments with wild type variants of troponin C 

monitoring changes of endogenous Tyrosine fluorescence upon calcium binding (Francois et al., 

1997; Swindle and Tikunova, 2010), an approach was developed by which the affinity and kinetics for 

binding events in each EF-hand could be determined separately (see Chapter 3.1.1). These values 

were subsequently compared to the respective properties of the FRET-fusion indicator. The 

difference between both values serves as a measure for the influence of the fusion effects on the 

calcium binding properties. 

 The four EF-hands of the binding domain of TN-XXL (see Figure 20) could be divided into two distinct 

groups. EF-hand 3-1 and 3-2 dominated the FRET output and their Kd and tdecay were hardly modified 

by the fusion of the fluorescent proteins. In contrast, the affinity of EF-hand 4-1 and 4-2 were not 

related to the indicator properties at all and apparently do not trigger the structural change but 

rather serve as stabilizing partners of the EF-hands 3. For TN-XXL no cross-talk of the Tyrosines and 

calcium binding events was detected which allowed a clear assignment of properties to the 

respective EF-hands. 

The analysis of the Twitch-2 binding domain did not yield the same level of detailed information 

about the individual calcium binding events as for TN-XXL due to cross-talk occurring. Calcium 

binding to EF-hand 3 could also be detected by following the fluorescence of the single Tyrosine 

residue in EF-hand 4 and vice versa. Therefore the results do not reflect the properties of single EF-

hands but rather an overlay of both binding events. The isolated EF-hand pair was further shown to 

have a lower affinity (261 nM/229 nM) than the domain fused to the fluorescent proteins (156 nM). 

From the comparison of the TN-XXL and Twitch-2 results it can be deduced that the fusion of two 
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fluorescent proteins to troponin C-derived EF-hands can but does not necessarily have to alter the 

key properties. 

The third analysis of the variant Twitch-2 54+D was again hampered by cross-talk between the EF-

hands, however, it lead to unambiguous results. First, the insertion of one amino acid (54+D) to one 

of the EF-hand binding lobes lead to a dramatic change of binding affinities of both EF-hands. This 

clearly illustrated that the “functional unit” was always formed by two EF-hands as described by 

Grabarek in 2006 (Grabarek, 2006). Second, the EF-hand bearing the insertion was affected more 

severely than the adjacent EF-hand (Kd of 1.8 µM vs. 400 µM). Taken together, these results show 

that even though EF-hand pairs have to be regarded as “functional units” their properties can be 

tuned separately from each other. This effect was again reflected in the properties of the FRET-fusion 

indicator Twitch-2 54+D where the two affinities diverged by the factor of 1000 (Kd of 627 nM vs. 819 

µM).  

Thus, the biophysical analysis of the binding events in troponin C-derived binding domains 

demonstrates, that the properties of one single EF-hand (most likely EF-hand 3) are sufficient to 

shape the properties of the respective FRET-fusion GECI. The functionality of EF-hand 4 can either be 

non-effective for the structural change (TN-XXL), coherent with the structural change of EF-hand 3 

(Twitch-2) or evoking a second structural change (Twitch-2 54+D). From these conclusions a set of 

indications can be derived for further indicator fine-tuning: as successfully realized by Thestrup et al. 

(Thestrup et al., 2014), the number of EF-hands can easily be reduced from four in TN-XXL to two 

(Twitch series) without a loss in function or potential of the indicators. As a benefit the theoretical 

calcium buffer capacity of intracellularly expressed indicator would decrease by 50%. If only a single 

binding event is to be used to trigger the structural change, the affinity of the EF-hand 4 has to be 

shifted out of the physiological range. It remains to be shown by targeted screening attempts, if 

desirable affinity and kinetics for the EF-hand 3 can be realized under these circumstances. 

4.2.2 Directly Comparing the Affinity of Binding Domain and Indicator 

A straight-forward test to test of the influence of fusing fluorescent proteins to a binding domain can 

be obtained via the isolated binding domain with no further modifications such as Phe/Tyr 

mutations. Although the single-EF-hand resolution cannot be obtained, it provides easy accessible 

information about side effects of the fusion design. Literature offers several approaches to 

determine the binding properties of troponin C domains such as circular dichroism (CD) (Francois et 

al., 1997; Moncrieffe et al., 1999; Pearlstone et al., 1992), probes for hydrophobic protein surfaces 

(Follenius and Gerard, 1984; Grabarek, 2011) and thermodynamic analysis (Gilli et al., 1998; 

Grabarek, 2011). As a universally applicable, fast method, CD spectroscopy was chosen for this set of 
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experiments. The comparison of a native four-EF-hand domain tsL13 (Figure 24) with its respective 

FRET-indicator proved its calcium binding to be invariant of N- and C-terminal fusion partners (24 nM 

vs. 28 nM). The 4x EF-hand domain of TN-XXL shows the same behaviour, whereas affinities of both 

2x EF-hand domains of Twitch-2 and Twitch-2 54+D are altered by the fusion effect (see Chapter 

3.1.2). Further indicator development described in Thestrup et al. (Thestrup et al., 2014) revealed 

indeed a strong influence of different fluorescent proteins on the same Twitch-2 binding domain. 

Although indicator development of promising high-performance binding sites will not be hindered by 

such a forecast, this easy accessible information already points towards problematic aspects of 

certain binding domains. 

4.3 The Change in Tertiary Structure: Influence of Distance and 

Orientation 

The signal strength of FRET-based GECIs is shaped by two factors: the relative change of both 

fluorescence intensities upon calcium binding which will be discussed in this chapter and the 

inherent properties of both fluorescence proteins discussed in Chapter 4.4. The FRET-dependent 

change in fluorescence results from changes in distance and orientation of the fluorophores (see 

Chapter 1.1.4) and is based on a change in the tertiary structure of the fusion protein. The trigger of 

this structural arrangement is the calcium binding event to the EF-hand motives described in Chapter 

4.2 which subsequently leverages a conformational switch of the entire binding domain. Therefore, 

the biophysical foundation of this switch and the transmission of the rearrangement to the position 

of the two fluorophores are crucial for the signal output of an indicator. In the following, a two-step 

analysis is described which provides insight into the engineering potential of future indicator 

generations based on troponin C binding domains and can be used as a blueprint also for the analysis 

of other indicators classes. 

4.3.1 Calcium-dependent Rigidity of the TN-XXL Binding Domain 

The orientation of the fluorophores in FRET indicators is influenced to a certain degree by the 

structural flexibility of the connecting domain (linker). A rigid protein structure reduces the number 

of possible conformations and the attached fluorescent proteins are forced into a more defined 

position. A confined arrangement can therefore serve as a basis for adjustment of the angle between 

the two fluorophores towards an optimized orientation factor κ2 of the Förster equation (Equation 

9). NMR spectroscopy experiments were designed and conducted with a single EF-hand 34 pair of 

TN-XXL to quantify the rigidity of the binding domain under calcium-bound and calcium-free 

conditions (see Chapter 3.1.2). The results reveal that the TN-XXL binding domain adopts a compact, 

folded structure in the calcium-bound condition which is partially lost in the absence of calcium. This 
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finding is in good agreement with previous NMR characterizations from wild type TnC domains in 

literature (Slupsky and Sykes, 1995). Under these circumstances the rotational freedom of the fused 

fluorescent proteins is minimized by sterical hindrance and electrostatical interaction with the 

adjacent protein surface. This leads to a model for the bound state, in which the distance of the 

fluorophores is determined by a compact assembly and is comparatively invariant to mutations. The 

angle between the fluorophores, however, is determined by the conformation of the amino acid 

chain of the linker and interacting residues of the neighbouring domain. Enhancing the FRET 

efficiency of an already compact calcium-bound state requires steering the alignment of the two 

fluorescent protein β-barrels towards a high κ2 value instead of further reducing their distance. The 

suggested improvement strategy of the indicator by enhancing the FRET effect in the bound state is 

therefore the refinement of the connecting linker residues as well as the corresponding protein 

surfaces. These approaches have previously been applied to screening assays to improve general 

indicator performance and resulted in complex results (Palmer et al., 2006). Here, the screening 

targets “linker composition” and “interaction surface” are suggested to be mainly relevant for the 

high FRET state. Due to the enormous combination of necessary modification possibilities in the 

amino acid sequence high-throughput screening will remain key to maximizing signal optimization. 

However, the suggested optimization targets not only help to focus on “hot spots” for mutational 

approaches, and choose the suitable screening parameter Rmax, but also to reduce the complexity of 

the screening assay by narrowing down the experimental conditions – to single “high calcium” 

screens in the case of TN-XXL-like indicators. 

4.3.2 Linker-dependent Spacing of the Fluorophores in the Unbound State 

The distance between fluorophores in FRET indicators is determined by the latitude of the spacer 

unit in between the two fluorescent proteins. As the FRET effect underlying the fluorescence signal is 

strongly distance-dependent, defined by the Förster equation (Equation 8), a substantial change in 

the shape of the binding domain is the most powerful approach to maximize the signal change. To 

evaluate the change of TN-XXL in shape and dimensions under the influence of calcium binding, a 

further set of biophysical analysis was applied. The standard approach via X-ray crystallography was 

not pursued in this study, as packaging side effects might have negatively impacted the validity of the 

data obtained from flexible conformations. Instead, a combination of analytical ultracentrifugation 

(AUC) and small-angle X-ray scattering (SAXS) was used, which allowed native buffer conditions to be 

maintained during the experiments. In both cases a switch from an outstretched, almost linear 

conformation to a compact, more globular conformation was observed upon calcium binding. The 

frictional ratio f/f0 as a measure for the deviation from a spherical particle (a value of 1.0 equals a 

perfect sphere, Lebowitz et al., 2002) changed drastically during AUC experiments from 1.5 (calcium-
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free) to 1.2 (calcium-bound). The SAXS results reflected this change in the value radius of gyration Rg 

with a decrease from 3.85 to 3.32 nm upon calcium binding. They further yielded a decrease in 

maximum particle size Dmax from 14 to 11 nm, respectively, which was visualized in low-resolution 

shapes, calculated ab initio from the scattering data. Together with the findings from the NMR 

experiments (see Chapter 3.1.2 and 4.3.1), these data combine into a model for the unbound 

indicator state which is of almost outstretched shape and contains a flexible connecting binding 

domain substructure.  

4.3.3 Excursus: The Influence of the Orientation Factor κ2 on FRET Indicators 

The linker as a module to influence the FRET efficiency of fluorophore pairs has been investigated in 

great detail for FRET pairs in general (Iqbal et al., 2008; van der Meer, 2002; van der Meer et al., 

2013) and in specific FRET indicators (Borst et al., 2008). As Xu et al. showed (Xu et al., 1998), the 

linker length cannot be regarded alone without paying attention to the influence of the orientation 

factor κ2 at the same time. For freely rotating fluorophores (or at least one of both) a value of κ2 = 

2/3 is often used in calculations (Demchenko, 2015). This assumption can be drawn for two cases: 1) 

Free rotation occurs on a time scale of the rotation which is faster than the processes involved in 

fluorescence. This case is especially relevant for single-molecule FRET experiments with organic dye 

fluorophores. For fluorescence proteins, especially attached to a flexible linker, this assumption 

cannot be made (Demchenko, 2015). 2) Free rotation occurs on a slower time scale than the 

fluorescence processes. If the measurement is then performed on a large batch of molecules, the 

average value of κ2 appears to be 2/3 as well. However, also this assumption cannot be made in the 

case of FRET-based indicators. Flexible but covalently linked fluorescent proteins with the sterical 

demand of an 11-sheet β-barrel will prevent free rotation of linker chains (Demchenko, 2015). In 

conclusion, FRET-based indicators show two different κ2 values in the bound and unbound state – 

both of them in many cases differing from the widely-accepted value of 2/3. The following paragraph 

will briefly outline the possible implications of this conclusion. 

In this excursus the properties of the FRET pair ECFP/EYFP will be analysed regarding the influence of 

the orientation factor κ2. Analogous calculations can be done for any FRET pair with known Förster 

radius R0. Patterson et al. reported a Förster radius of 4.92 nm for the FRET-pair ECFP/EYFP 

(Patterson et al., 2000). Using this value in the standard equations for the Förster radius R0 (Equation 

9) yields a correlation between the Förster radius R0 and the orientation factor κ2: 

𝑅0 = (𝐶 × 𝜅2)
1
6 Equation 18 

  

C = 21275 nm6 for ECFP/EYFP (see Appendix 7.7) 
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Reinserting Equation 18 into the standard FRET equation (Equation 8) yields the correlation between 

the FRET efficiency EFRET and the two variables radius of the fluorophores RDA and the orientation 

factor κ2: 

𝐸𝐹𝑅𝐸𝑇 =
1

1 +
𝑅𝐷𝐴

𝐶 × 𝜅2

 Equation 19 

 

A graphical plot of Equation 19 for the range of possible κ2 values of the ECFP/EYFP pair clearly 

demonstrates how the orientation factor influences the value of the Förster radius (Figure 37). 

Depending on the flexibility and orientation of the fluorophores, the Förster radius of an indicator 

might change considerably between both states. A high κ2 value leads to a larger R0 value; lower κ2 

values shorten the distance. 

 

 

Figure 37: Possible κ2 values for the ECFP/EYFP pair calculated with Equation 18 

 

A summary of possible EFRET values for RDA and κ2 values derived from Equation 18 illustrates further 

how the accessible range of transfer efficiencies EFRET changes within reasonable inter-fluorophore 

distances for every κ2 value (Table 17). High κ2 values yields high transfer efficiencies for almost every 

accessible inter-fluorophore distance of ECFP/EYFP, whereas a low κ2 value requires already a very 

close proximity of both fluorophores to yield only moderate transfer efficiency. 

The bottom line of this excursus for the development of FRET-based GECIs is that extreme κ2 values, 

high and low, occur most likely in the rigid, bound state of the indicator. Furthermore, the κ2 factor 

can only be controlled and tuned in fixed and rigid conformations like the bound indicator state. 

Therefore, the potential influence of the orientation factor should be included in planning and 
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evaluation of screening approaches towards bound states with optimized transfer efficiency. This 

theoretical approach underlines the experimental finding discussed above (Chapter 4.3.2). As 

conclusion for the optimization of the unbound indicator state the κ2 factor should be regarded as a 

little controllable variable. Most likely its (intermediate but unknown) value will not differ too much 

between different constructs. This effect also shows in the values of the unbound states for several 

FRET-based calcium indicators which show similar hydrodynamic properties (Thestrup et al., 2014). 

The main focus in lowering the FRET efficiency of the unbound state therefore has to be the 

optimized length and composition of the linker. Negative side effects of non-optimal κ2 factors are a 

necessary compromise in order to achieve a reasonable experimental screening design. 
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Table 17: Theoretical values of EFRET within the possible RDA- and κ2-space of Equation 19 
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4.4 The FRET-induced Fluorescence Signal: Intensity vs. Lifetime 

The FRET-based GECI TN-XXL was developed and analysed with a strong focus on the ratiometric 

readout of its steady-state fluorescence intensity (Direnberger et al., 2012; Hendel et al., 2008; Mank 

et al., 2008). For several reasons this approach appeared to be more feasible and fruitful than the 

readout of the fluorescence lifetime; especially in terms of signal strength, dynamic range and also 

setup instrumentation the steady-state fluorescence intensity was pursued instead of the time-

resolved fluorescence decay. However, since the recent development of fluorescent proteins with 

superior photophysical properties like mCerulean3 (Markwardt et al., 2011) or mTurquoise2 

(Goedhart et al., 2012), the application of future indicator generations in fluorescence lifetime 

imaging microscopy (FLIM) will become more and more relevant. In this set of experiments the 

analysis of TN-XXL with time-resolved spectroscopy was carried out from two different perspectives: 

first, to complement the available steady-state data with further insight about functional details of 

the indicator and second, to survey the advantages and disadvantages of each analytical approach 

under in vitro and in vivo conditions. 

4.4.1 Complementing the Picture with Time-resolved Fluorescence Spectroscopy 

From the first set of experiments with truncated and “amber” variants of TN-XXL (see Chapter 3.3.1) 

it could be deduced that donor and acceptor fluorescence are insusceptible towards calcium changes 

in the range between 0 and 40 mM. This robustness of the ECFP/cpCitrine and accordingly the 

ECFP/EYFP pair is the result of a multitude of improvement steps (Griesbeck et al., 2001; Nagai et al., 

2002; Ormö et al., 1996), which sets the standards for FRET pairs in other spectral regions. The 

second set of experiments allowed a quantification of the boundary states of the indicator by time-

resolved fluorescence spectroscopy which was not accessible in parallel steady-state measurements 

(see Chapter 3.3.2). The donor fluorophore ECFP was measured with three different average 

fluorescence lifetime τave depending on the indicator state: the longest lifetime (2.49 ns) was 

measured in the absence of a functional acceptor cpCitrine in the construct TN-XXL cpCit°, which 

serves as the “no FRET” reference state. In the functional indicator under Ca2+-free conditions, τave 

decreased to 2.11 ns in the “low FRET” state. Here, a substantial FRET contribution can be attributed 

to the shortening of τave by 0.39 ns. At a calcium concentration of 40 mM the τave settles in the “high 

FRET” state at 1.26 ns, 0.85 ns shorter than the “low FRET” state. However, taking into account the 

remaining contributions of τ2 (1.97 ns, α2 = 24%) and τ3 (3.79 ns, α3 = 12%), the “high FRET” state of 

TN-XXL cannot be regarded as a “100% FRET” state. According to the pH tests of this work  

(Figure 31), 12% of the cpCitrine fluorophores are protonated at pH 7.2 and therefore unable to act 

as FRET acceptors. Other possible explanations are the incomplete maturation of cpCitrine or a 

fraction of misfolded and hence inactive indicator molecules (Padilla-Parra et al., 2009). A further 
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possible explanation for a non-interacting fraction of FRET-based indicators could be the 

photoconversion of the acceptor upon long and intense illumination (Kirber et al., 2007; Valentin et 

al., 2005). Under our experimental conditions, we found no indication for a substantial contribution 

of this, but in particular under FLIM conditions with higher and more continuous illumination, this 

effect might further dampen the Δτave signal. 

Despite its potential for improvement, TN-XXL already exhibits a maximum change of the average 

fluorescence lifetime Δτave of 0.85 ns. This value can be seen as the equivalent of the signal strength 

of steady-state fluorescence measurements and proves to be twice as strong as the Δτave for YC3.6 

(Borst et al., 2008). 

Putting aside the favorable Δτave of TN-XXL, the complicated fluorescence decay pattern of ECFP is 

still a substantial drawback of the FRET pair ECFP-cpCitrine. Already for the isolated fluorescent 

protein a tri-exponential fit has to be applied (see Chapter 3.3.2). Theoretically, the interaction with 

an acceptor fluorophore in the “low FRET” state should give rise to a fourth (shorter) lifetime τ4. The 

existence of a second “high-FRET” state should finally become noticeable in a fifth – even shorter – 

lifetime τ5. A very detailed attempt to resolve this penta-exponential decay has been carried out by 

Visser et al. (Visser et al., 2010). However, even the authors come to the conclusion that it would be 

“highly desirable to have a FRET donor molecule with mono-exponential fluorescence decay 

properties for easier interpretation of the FRET data”, especially for the application under in vivo 

imaging conditions. The application of recently developed enhanced ECFP variants with mono-

exponential decays such as mCerulean3 (Markwardt et al., 2011) or mTurquoise2 (Goedhart et al., 

2012) will solve this problem. Starting from a mono-exponential decay in the isolated state, a tri-

exponential fit would resolve the lifetimes of all three FRET states (no, low and high) and allow the 

quantification of their respective intensities. In conclusion, in FLIM application of these indicators the 

main criterion for the success will still be a high Δτave value. The multi-exponential analysis will serve 

its purpose to analyse the quality and potential of indicator constructs. Under complex imaging 

conditions, however, a directly accessible and robust signal is needed. 

The combination of the suggested development strategy for FRET-based GECIs (see Chapter 4.3) with 

this outlook for their application in time-resolved fluorescence spectroscopy can be combined in a 

generalized roadmap for the development of genetically-encoded FRET-FLIM calcium indicators 

(Figure 38).  
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Figure 38: Roadmap for the development of genetically-encoded FRET-FLIM calcium indicators 

 

The first step to further engineer an existing indicator or to engineer an indicator de novo would be 

the choice of the brightest donor fluorescent protein with a mono-exponential decay. This would 

shift the value of the “no FRET” τave as far as possible. The choice of an optimal FRET acceptor would 

be the second step to set the lower τave level. The accessible indicator range will then be determined 

by the success of design, development screening of the indicator domain and linkers. Laine et al. 

(Laine et al., 2012) pursued this strategy to a certain degree by further developing TN-L15 towards a 

FLIM indicator. By exchanging ECFP with mTFP1, τave of the “no FRET” state was increased to 2.76 ns. 

The acceptor mCitrine remained unchanged and also no further engineering efforts were made. The 

resulting indicator mTFP1-TnC-Cit showed a reduced Δτave of 0.33 ns (TN-L15: 0.46 ns) with τave at 

“low-FRET” of 2.51 ns (TN-L15: 2.36 ns) and at “high FRET” of 2.18 ns (TN-L15: 1.90 ns]. According to 

the suggested scheme, the use of some of the best CFP variants like mCerulean3 (τave = 4.10 ns) or 

mTurquoise2 (τave = 4.04 ns) (Goedhart et al., 2012; Markwardt et al., 2011) and the testing of a 

broader range of available indicator domains (Mank et al., 2008; Thestrup et al., 2014) would very 

likely yield a indicator with a much higher signal strength. 

With regard to future indicator development, FRET-FLIM indicators will have the advantage over 

indicators based on single fluorescent proteins, to benefit from the modular build-up. Without loss in 

brightness of lifetime, the best donors can be directly used in screening approaches with the most 

recent indicator domains to optimize ratiometric steady-state GECIs towards their use in FLIM 

applications. 
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4.4.2 Fluorescence Lifetime as an Alternative Readout 

Steady-state fluorescence spectroscopy approaches are by far the most established group of imaging 

methods for GECIs. Especially for experiments demanding a high spacial or temporal resolution, 

intensity-based spectroscopy is the method of choice. However, all available indicator classes exhibit 

drawbacks under specific experimental aspects. Single-wavelength indicators cannot distinguish 

between a variation in fluorophore concentration and a calcium-dependent signal change (Yasuda, 

2007). Only the shape and time course of the signal change can indirectly offer information about the 

nature of the signal itself. FRET indicators with ratiometric readout provide a solution to this 

problem, but require a more complex dual-wavelength acquisition and suffer from wavelength-

dependent light scattering (Yasuda, 2007). The fusion of a second fluorescent protein to single-

wavelength indicator is another way to circumvent this problem, but brings along the issues of dual-

wavelength acquisition as well. Measuring the fluorescence lifetime of the fluorophores offers a 

complementary approach to concentration-independent indicator measurements, maintaining the 

benefits of single-wavelength detection for FRET indicators. Fluorescence lifetime imaging 

microscopy offers concentration-independent detection of signals and has been used frequently in 

protein localization studies (Lakowicz et al., 1994; van Munster and Gadella, 2005). The combination 

of the FRET effect in FLIM settings was mostly applied in intermolecular protein-protein interaction 

studies with single fusion proteins (Buecherl et al., 2014; Oliveira and Yasuda, 2013; Sun et al., 2011; 

Yasuda, 2007), where the ability of FLIM to resolve different donor populations (free donor vs. donor 

associated to acceptor molecules) is of great interest. The development of intramolecular FRET-FLIM 

indicators has only recently begun and still has to meet the instrumental requirements of FLIM 

techniques. 

The bottleneck of the acquisition of robust FLIM data is the number of collected photons to ensure a 

sufficient signal-to-noise ratio. Compromises between the photon count per pixel and spatial 

resolution have to be made with regard to binning and hence the pixel size. To increase the photon 

count per pixel, the number of time bins can be adjusted at the expense of the temporal resolution. 

In live cell imaging the photon count can be further affected by photobleaching and phototoxic 

effects upon strong irradiation as well as low expression levels of fluorescent reporters and 

autofluorescence. In summary, FLIM is most promising a technique for imaging small cellular and 

subcellular compartments, in which a high local concentration of fluorophores can be achieved. The 

combination of time-correlated single photon counting (TCSPC) with two-photon laser scanning 

microscopy (TPLSM) can provide high sensitivity with the potential to resolve multiple populations 

with different fluorescent lifetimes. Rinnenthal et al. recently showed how careful optimization of 

the experimental setup and parameters can compensate the shortcomings of current FRET-FLIM 

indicators (Rinnenthal et al., 2013). 
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A further improvement in methodology is adding to the applicability of the FLIM analysis in live cell 

experiments. The global analysis approach (Barber et al., 2009; Grecco et al., 2009) offers access to 

the estimation of correct parameters under low photon-count circumstances. Global fitting 

parameters for all pixels of a FLIM image are applied, i.e. two exponential decay time constants τ1 

and τ2 with only their amplitudes varying from pixel to pixel. To distinguish two fluorescence time 

constants, at least 1000 photons per pixel are needed which can be achieved only with a sufficiently 

high expression level (Buecherl et al., 2014; Gratton et al., 2003). Furthermore, to maintain the level 

of spatial resolution without increasing the excitation intensity (and hence bleaching of fluorophores 

and photo-toxicity), the so-called phasor approach has been introduced especially for low-photon 

count FLIM applications (Clayton et al., 2004; Digman et al., 2008; Redford and Clegg, 2005). Without 

using any fitting algorithms, the phasor approach uses Fourier transformation and a special two-

dimensional polar histogram to distinguish and quantify the parameters of multi-exponential decays. 

The adaptation of established GECIs in time-resolved fluorescence spectroscopy experiments 

requires a careful reassessment of the key parameters. The most striking observation is the 

difference between the Kd values for TN-XXL obtained via donor fluorescence lifetime (453 nM) 

compared to the one determined by the steady-state fluorescence intensity ratio ∆R/R of acceptor 

and donor (830 nM, see Chapter 3.3.2). The existence of FRET processes, faster than the instrument 

response function of the setup (see Chapter 2.4.6), with rates of 1/300 ps or below can explained the 

occurrence of this crucial difference. As they cannot be resolved and detected, these processes 

would be missed in the donor fluorescence lifetime measurements and thus shift the apparent 

fluorescence lifetime change and can account for the divergence of the Kd values. Interestingly, this 

difference points towards an experimental challenge for microscopic FLIM-FRET studies in cells and 

tissue. Due to lower count numbers or larger scattering amplitudes the practically accessible time 

resolution is even lower (>500 ps) than under in vitro measurements characterization studies of 

purified GECIs in aqueous solution. As a consequence, calibrations of FRET-based indicators for 

should always be carried out in the same experimental setup and using the identical conditions 

under which the measurements in cells will be performed.  

Although much progress has been made in GECI development and their exciting in vivo use in 

modern fluorescence microscopy (Gensch and Kaschuba, 2011), high impact FLIM applications and 

studies have not yet emerged. Supposedly, this can be attributed to relatively low dynamic range of 

the lifetime change ∆τave (here 40%, often not more than 10–20%) and a daunting complexity of the 

multi-exponential donor fluorescence decay and non-interacting fraction in FRET constructs. 

However, future-generation GECIs will incorporate improved donor fluorescence proteins such as the 

latest mCerulean3 (Markwardt et al., 2011) or mTurqouise variants (Goedhart et al., 2012) with 
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higher fluorescence quantum yields and mono-exponential fluorescence decays. A first attempt and 

analysis to improve the FLIM performance of TnC-based GECIs was made by Laine et al. (Laine et al., 

2012) by exchanging the ECFP donor of the TNL15 indicator (Heim and Griesbeck, 2004) with the 

mono-exponential decay donor mTFP1 (Ai et al., 2006). Only recently Thestrup et al. (Thestrup et al., 

2014) published the new TnC-based Twitch indicator generation, incorporating mCerulean3 as the 

donor. The combination of this bright state-of-the-art donor and highly optimized calcium binding 

properties makes it the most promising candidate to further establish the use of GECIs in FRET-FLIM 

experiments. Further promising ways of applying the FRET effect in FLIM applications such as the 

combination of BiFC and FRET analysis (Kwaaitaal et al., 2010) or the analysis of acceptor 

fluorescence formation (Laptenok et al., 2010) are summarized by Blücherl et al. (Buecherl et al., 

2014). 

4.5 Modification Tolerance of GFP-like β-Sheet Barrels 

Current screening methods for the optimization of fluorescent protein variants and their 

modification tolerance follow two main routes. The well-established approach to generate a large 

number of variants via error-prone PCR followed by bacterial plate screening was established by 

Heim and Tsien (Heim and Tsien, 1996; Heim et al., 1994) and is still successfully applied, e.g. in the 

engineering of mTurquoise, a variant with longer fluorescent lifetimes (Goedhart et al., 2012). The 

second, more recent route is the combination of somatic hypermutation to generate even bigger 

libraries of variants and the subsequent screening in mammalian cells using fluorescence-activated 

cell sorting (FACS) as applied by Nguyen and Daugherty to optimize the FRET properties of the CyPet-

YPet pair (Nguyen and Daugherty, 2005). In the course of this work a new transposon-based access 

to variant libraries was conceptualized and established which can be combined readily with a follow-

up screening step on bacterial plates. The advantage of this approach to generate libraries is that it 

allows to test the tolerance of random insertions irrespective of the nucleotide sequence and hence 

the triplet code. Transposon insertions were distributed over the entire DNA sequence, however, 

insertion-tolerating “hot-spots” especially in the loop regions could be identified (Figure 33). For two 

fluorescent proteins, tagRFP and mKO2, libraries of 10,000 variants were generated and tested for 

the toleration of the random insertion of 19 amino acids. Subsequent screening yielded several 

circular permuted variants (cpVariants) and potential candidates for single-FP indicators. For tagRFP 

only dim fluorescent variants could be identified, whereas screening of mKO2 yielded four bright 

cpVariants (although having a slow maturation rate of 2 days). Therefore, this transposon-based 

library generation allows a comprehensive test of the modification tolerance of GFP-like proteins but 

serves only as an entry into a multi-step screening process to further optimize the newly generated 

variants. For the cpVariants of mKO2 this was demonstrated by Julia Litzlbauer et al. (Litzlbauer, 
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2014), who used the cpVariants 51 and 55 to develop an improved variant cp mKO3 (n.b.: numbering 

in J.L. constructs was shifted by four amino acids, therefore the variants are referred to as cpV 47 and 

51). As an entry route for single-FP indicator screening the transposon assay proved less suitable. 

None of the identified fluorescent variants bearing a calcium binding domain showed any response 

to changes in calcium concentration. This is most likely due to the introduction of the random 

insertion with a 19-amino acid-linker, which is not targeted to achieve a close transmission between 

insert and the backbone of the fluorescent protein. In conclusion, this transposon-based assay offers 

a new entry route for the generation of cpVariants of fluorescent proteins, which still need further – 

however conventional and straight-forward – engineering steps to generate new building blocks for 

FRET indicators. 
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5 Conclusion 

 

The studies presented in this work have expanded the knowledge about the functional interplay of 

the modular domains of genetically encoded FRET-based calcium indicators through comprehensive 

biophysical analysis. To enable fine-tuning of the key indicator properties a roadmap for in-depth 

characterization and optimization of the individual GECI modules and their interaction was 

established.  

It was demonstrated that the properties of one single EF-hand (EF-hand 3) are sufficient to shape the 

properties of the entire respective FRET-fusion GECI. The binding event of EF-hand 4 can either be 

non-effective for the structural change (TN-XXL), coherent with the structural change of EF-hand 3  

(Twitch-2) or evoking a second structural change (Twitch 54+D). Based on these assumptions  

Thestrup et al. (Thestrup et al., 2014), showed that the number of EF-hands could be reduced from 

four in TN-XXL to two in the Twitch series without a loss in function or potential of the indicators. As 

a benefit the theoretical calcium buffer capacity of intracellularly expressed indicator is decreased by 

50%. If only a single binding event is to be used to trigger the structural change, the affinity of the  

EF-hand 4 has to be shifted out of the physiological range. It remains to be shown by targeted 

screening attempts, if desirable properties for the EF-hand 3 can be realized under these 

circumstances.  

The unbound state of TN-XXL is of almost outstretched shape and contains a flexible connecting 

binding domain-linker substructure. The binding domain rigidifies upon calcium binding into a 

compact, folded conformation that forces the whole GECI into a globular conformation. The 

rotational freedom of the fused fluorescent proteins is minimized by sterical hindrance and 

electrostatical interaction with the adjacent protein surface. The angle between the fluorophores is 

determined by the conformation of the amino acid chain of the linker and the interacting residues of 

the neighbouring domain, thus allowing for tuning of the κ2 factor.  

Future indicator development and improvement will be increasingly screening-driven (Litzlbauer, 

2014). These results offer not only help to focus on “hot spots” for mutational approaches and to 

reduce the complexity of screening assays but also offer a new access route to mutant libraries via 

transposons. The importance of FLIM in calcium imaging is increasing especially for complex 

experimental scenarios. The development of combined FRET-FLIM indicators will hereby benefit from 

their modular build-up and thus prove advantageous over the use of single fluorescent proteins 

(Buecherl et al., 2014). Ultimately, these findings are applicable to the vast array of present and 

future classes of genetically encoded FRET-based indicators serving as a blueprint for biophysical 

analysis approaches and as a prerequisite for the fine-tuning of their respective key properties. 
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7 Appendix 

 

7.1 Appendix: Transposon Protocol 

7.1.1. Preparations 

 1) Transposon      
 2) Competent cells     
 3) Ausgangsplasmid (Kpn-Linker)   pRSET_FP_BKKE 
 4) Tn-XL/XXL inserts (ORF1-3)   NotI_Insert XL ORF1-3 
        NotI_Insert EF3+4 ORF1-3 
 5) pRSETcp (ORF1-3)     NotI_pRSETcp ORF1-3 

 

7.1.2. 7.1.2 Transposon Reaction 

 1) Transposon reaction (TR)    TR_FP1-10 
 2) Electroporation (EP)    TR_FP1_1-20 plates 
 3) Screening phase 1 (SP1)    SP1_FP1 
 4) NotI digest (NotI)     NotI_FP# 
 5) Gel purification     GP_NotI_FP# 
 6) Religation     Lig_NotI_FP# 
 7) Screening phase 2 (SP2)    tmFP1-∞ 
 6) Screening phase 3 (SP3)   
 7) Insertion site and ORF analysis   tm(aa residue)FP_ORF1-3 

 

7.1.3. 7.1.3 Functionalizing of tmFP 

 1) NotI digest     
 2) TnC insertion     tm(aa residue)FP_XL/XXL_ORF1-3 

 

7.1.4. 7.1.4 cp-Variants of tmFPs 

 1) Separate Miniprep    tm(aa residue)_FP_ORF1-3 
 2) KpnI digest     tm(aa residue)_FP_ORF1-3_Kpn 
 3) Gelpurification     tm(aa residue)_FP_ORF1-3_Kpn_GP 
 4) Self-ligation     tm(aa residue)_FP_ORF1-3_Lig 
 5) Gelpurification     tm(aa residue)_FP_ORF1-3_Lig_GP 
 6) NotI digest     cp(aa residue)_FP_ORF1-3_Not 
 7) Ligation in pRSETcp (ORF1-3)   cp(aa residue)_FP_ORF1-3_Lig 
 8) Analysis of rearrangement   cp(aa residue)_FP_ORF1-3 
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7.1.5. Preparations 

 1) Transposon (cf. EpiCentre manual)      

 → PCR:  - Program: Herc15_55 
   - Template: old transposon 
   - Primer:C2 phosphorylated  
 
  2x 50 µL assay 
 
 → Cast an agarose gel (15 cm gel, NO ethidiumbromide). 

→ Load the DNA Size Marker into each of the outside lanes of the gel. Also load 2µL of the PCR 
as a reference on one lane of the outer part. 

 → Load the 100 µL of PCR on the inner lane. 
 → Run with 25 V overnight. 
 → Cut off the outer lanes of the gel containing the DNA Size Marker and the reference lane. 
 → Stain the cut-off sides of the gel with ethidium bromide and visualize with UV light. Mark the 
  position of the desired size DNA in the gel using a Pasteur pipet.  
  Do not expose the sample DNA to UV irradiation! UV exposure decreases cloning efficiency! 

→ Reassemble the gel and excise a 2-4 mm wide gel slice containing sample DNA that migrated 
with and just slightly above (higher MW) the appropriate position of the DNA markers. 

 
 

 

 

  

Primer:  C2 Transposon_FW+RV 5'PHO-CTGTCTCTTGTACACATCTTGCGG-3' 
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 2) Competent cells  

 → Day 1: Singularize TransforMax (EpiCentre) on LB-agar plates (no antibiotics). 
  → Day 2: 5 mL preculture (LB, no antibiotics) from single colony overnight @ 37 °C. 
  → Day 3: Autoclave 700 mL glycerol (10%) 
  → 300 mL culture (LB, no antibiotics) in 1 L Erlenmeyer flask (with caviats) .  
   Incubation @ 37 °C. Stop at OD600 = 0.4-0.5. Incubate for 10 min on ice.  
    
   From now on constant ice cooling or 4 °C! 
  
  Meanwhile preparation of: - 2 x 200 mL centrifuge beakers on ice 
       - 6 x 50 mL Falcons on ice 
       - 700 mL glycerol (10 %) on ice 
       - Precool centrifuges and rotors (4 °C) 
 
  → Split bacteria in two precooled 200 mL centrifuge beakers.  
   Spin 1: 10 min (6,000 rpm) 
  → Discard supernatant and resuspend pellets in 150 mL glycerol each. Split in three Falcons.  
   Spin 2: 10 min (4,500 rpm) 
  → Discard supernatant and resuspend pellets in 50 mL glycerol each. 
   Spin 3: 10 min (4,500 rpm). 
 → Discard supernatant and pool 3 pellets in 20 mL glycerol. 
  Spin 4: 10 min (4,500 rpm). 
  → Discard supernatant fast. Pool both pellets in 1 mL glycerol.     

 → Measure OD600 in 1:100 dilution. Adjust dilution OD600 to 0.5 (1.0 OD600 = 2.5 x 108 Zellen/mL). 
  → Freeze 50 µL aliquots in sterile, precooled Eppis in fluid N2.  
   Keep cells @ -80 °C. 
    

 

 3) Ausgangsplasmid (Kpn-Linker)   pRSET_FP_BKKE 

 → PCR:  - Program: Herc1_55 
   - Template: pRSETB FP 
   - Primers: B6 + B7  pRSET_GFP_BKKE 
     B8 + B9  pRSET_mKO2_BKKE 
     B10 + C1 pRSET_tagRFP_BKKE 
   
 → PCR purification 
 → BamHI + EcoRI digest 
 → Ligation with pRSETB (BamHI + EcoRI cut, dephos.) 
 → Transformation of XL1 blue with 10 µL 
 → Miniprep of colonies 
 → Analytical KpnI digest 
 → Sequencing 
 
 

  

Primers:  B6 5'B_K-GGS_GFP CGGGATCCgGGTACCGGCGGCAGCATGGTGAGCAAGGGCGAGG 
  B7 3'GFP_G-K_ST_E CGGAATTCTTAGGTACCGCCCTTGTACAGCTCGTCCATGCC 
  B8 5'B_K-GGS_mKO2 CGGGATCCgGGTACCGGCGGCAGCATGGTGAGTGTGATTAAACC 
  B9 3'mKO2_G-K_ST_E CGGAATTCTTAGGTACCGCCGCTATGAGCTACTGCATCTTCG 
  B10 5'B_K-GGS_tgRFP CGGGATCCgGGTACCGGCGGCAGCATGAGCGAGCTGATTAAGGAG 
  C1 3'tgRFP_G-K_ST_E CGGAATTCTTAGGTACCGCCCTTGTGCCCCAGTTTGCTAGG 
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 4) TN-XL/XXL inserts (ORF1-3)   NotI_Insert XL ORF1-3 
        NotI_Insert EF3+4 ORF1-3 

 → PCR:  - Program: Herc1_55 
   - Template: old inserts 
   - Primers: A1 + A2  NotI_Insert XL ORF1 
     A3 + A4  NotI_Insert XL ORF2 
     A5 + A6  NotI_Insert XL ORF3 
     A7 + A2  NotI_Insert EF34 ORF1 
     A8 + A4  NotI_Insert EF34 ORF2 
     A9 + A6  NotI_Insert EF34 ORF3 
 
 → PCR purification 
 → Preparative NotI digest 
 → Gelpurification 
 
 

 
 

 5) pRSETcp (ORF1-3)     NotI_pRSETcp ORF1-3 

  → PCR:  - Program: Herc4_55 
    - Template: pRSETB (empty) 
    - Primers: A10 +B1  pRSETcp (ORF1) 
      B2 + B3  pRSETcp (ORF2) 
      B4 + B5  pRSETcp (ORF3) 
 
  → Gelcheck 
  → DpnI digest: - 20 µL control  + 1.0 µL DpnI 
     - 30 µL control  without DpnI 
     - 50 µL sample  + 2.5 µL DpnI 

   
  → Transformation of XL1 blue with 10 µL  
  → Miniprep of colonies 
  → NotI digest 
  → Dephosphorylation 
  → Gelprep 
  → Concentration 
 
 

 

Primers:  A1 5'Not_TNXL-TnC ORF1 TAAGCGGCCGCAAATGCTGAGCGAGGAGATGATC 
  A2 3'TNXL-TnC_Not ORF1 ATTGCGGCCGCTGCACGCCCTCCATCATCTTC 
  A3 5'Not_TNXL-TnC ORF2 TAAGCGGCCGCAATGCTGAGCGAGGAGATGATC 
  A4 3'TNXL-TnC_Not ORF2 ATTGCGGCCGCCTGCACGCCCTCCATCATCTTC 
  A5 5'Not_TNXL-TnC ORF3 TAAGCGGCCGCATGCTGAGCGAGGAGATGATC 
  A6 3'TNXL-TnC_Not ORF3 ATTGCGGCCGCCCTGCACGCCCTCCATCATCTTC 
  A7 5'Not_XXL-EF34 ORF1 TAAGCGGCCGCAAAGCGAGGAAGAGCTGGCCAAC 
  A8 5'Not_XXL-EF34 ORF2 TAAGCGGCCGCAAGCGAGGAAGAGCTGGCCAAC 
  A9 5'Not_XXL-EF34 ORF3 TAAGCGGCCGCAGCGAGGAAGAGCTGGCCAAC 

Primers:  A10 5'N_StE_pR_ORF1 ATTTGCGGCCGCtgTAAGAATTCGAAGCTTAGTCCGGC 
  B1 3'N_B_pR_ORF1 TAAAGCGGCCGCGGATCCTTATCGTCATCGTCGTAC 
  B2 5'N_StE_pR_ORF2 ATTTGCGGCCGCgTAAGAATTCGAAGCTTAGTCCGGC 
  B3 3'N_B_pR_ORF2 TAAAGCGGCCGCCGGATCCTTATCGTCATCGTCGTAC 
  B4 5'N_StE_pR_ORF3 ATTTGCGGCCGCTAAGAATTCGAAGCTTAGTCCGGC 
  B5 3'N_B_pR_ORF3 TAAAGCGGCCGCCCGGATCCTTATCGTCATCGTCGTAC 
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7.1.6. Transposon Reaction 

  

 1) Transposon reaction (TR)     TR_FP 

  1.0 µL  EZ-Tn5 10X Reaction Buffer 
  2.0 µL  target DNA (=0.2 µg, c=100 ng/µL, ~3.6 kb)  = 1 pmol 
  0.8 µL  EZ-Tn5 <Not I/KAN-3> Transposon (c=80 ng/µL)  = 1 pmol 
  5.2 µL  sterile water to a reaction volume of 9 µL 
  1 µL EZ-Tn5 Transposase 
   
 → Incubation for 2h @ 37 °C 
 
 → 1 µl EZ-Tn5 10x Stop Solution 
 
 → Mix and heat for 10 minutes at 70 °C 
 
 2) Electroporation (EP)     TR_FP#_1-20 plates 

  50 µL  Electrocompetent cells 
  1.0 µL TR_FP 
 
 → Electroporation 
 → immediately add 1 mL SOC medium 
 → 1 h @ 37 °C, 200 rpm 
 → 20 plates (AMP, KAN) with 50 µL each 
 
 3) Screening phase 1 (SP1)     SP1_FP# 

 → photo of plates (660x660 pixel), as JPG on digiframe 
 → selection of non-fluorescent colonies, 1-2 minis 
 → Incubation 2h @ 37 °C, 250 rpm 
 → Miniprep 
 
 4) NotI digest (NotI)     NotI_FP# 

 → NotI digest overnight of SP1_FP# (2 µL enzyme) 

 5) Gelpurification      GP_NotI_FP# 

 → Gel purification: cut out 3.6 kb band; check for 1.2 kb band; elution in 30 µL 

 6) Religation      Lig_NotI_FP# 

  2.0 µL GP_NotI_FP# 
  2.0 µL Ligase buffer (10x) 
  15.3 µL water 
  0.7 µL Ligase 
 
 → Transformation of XL1 blue with 1 µL ligation assay 
 → dilute 50 µL of transformations assay with 950 µL LB 
 → 10 plates (AMP) with 50 µL each (plate label: SP2_FP#_1-10) 
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 7) Screening phase 2 (SP2)     tmFP1-∞ 

 → photo of plates (660x660 pixel), as JPG on digiframe 
 → transfer of fluorescent colonies on overview plate 
 

 
 
 
 8) Screening phase 3 (SP3)     tmFP1-∞ 

 → colony PCR to screen for fluorescent protein genes with insert  
    
  Mastermix (1 plate, 10 µL each): 100 µL  Taq buffer (10x) 
      2.0 µL  each primer 
      3.0 µL dNTPs 
      3.0 µL Taq polymerase 
      400 µL H2O 
 
  Colony:  10 µL H2O 
    pick colony from SP3 plate and dissolve 
 
  PCR program: MAUS_2   
 
 → Analytical agarose gel; check for difference in band size of the fluorescent proteins band  
  (FP+57 bp contains 19aa insertion) 
 → pick minis with insert from SP3_FP# plate 
 → Incubation overnight @ 37 °C 
 → Sequencing of all tmFP1-∞ containing the insertion 
 
 9) Insertion site and ORF analysis    tm(aa residue)FP_ORF1-3 

 ORF 1:  "G CGG CCG C" (= ORF 2 manual) 
 ORF 2:  "GCG GCC GC" (= ORF 3 manual) 
 ORF 3:  "GC GGC CGC" (= ORF 1 manual) 
 
 DNA: 5'-CTGTCTCTTGTACACATCTTGCGGCCGCAAGATGTGTACAAGAGACAG-3' 
 
 ORF 1:         L S L V H I L R P Q D V Y K R Q   + 3 
 ORF 2: 1 +  V S C T H L A A A R C V Q E T     + 2 
 ORF 3:         C L L Y T S C G R K M C T R D S  + 3 

  

SP3_FP# 
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7.1.7. Functionalizing of tmFPs 

  

 1) NotI digest       tm(aa residue)FP_ORF1-3_NotI 

  10.0 µL  tm(aa residue)FP_ORF1-3 (= 1 µg DNA) 
    5.0 µL  Buffer 3   
    0.5 µL  BSA 
  33.5 µL  sterile water  
  1 µL EZ-Tn5 Transposase 
   
 → Incubation for 2h @ 37 °C 
 → 1 µl Antarctic Phosphatase to digestion mix, 30 min @ 37°C 
 → 1 µl Antarctic Phosphatase to digestion mix, 30 min @ 37°C 
 → Heat inactivation, 15 min @ 65°C 
 → PCR-prep, conc 
 
 2) TnC insertion            tm(aa residue)FP_XL/XXL_ORF1-3 

    50 fmol   tm(aa residue)FP_ORF1-3_NotI 
  200 fmol NotI_Insert_XL_ORF1-3     or  
    NotI_Insert_EF3+4_ORF1-3  
     2.0 µL  Ligation buffer 
     0.5 µL  T4 ligase 
  fill up to 20 µL sterile water  
  
   
 → Incubation for 1h @ RT 
 → Transformation of XL1 blue with 10 µL 
 → Leave transformation plates in fridge for 2 days 
 → Miniprep of fluorescent colonies (fl:non-fl – ratio: 50:50)  
 → Analytical NotI digest 
 → Sequencing 
 → Transformation of BL21 for spectral analysis 
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7.1.8. cp-Variants of tmFPs 

  

 1) Separate Miniprep    tm(aa residue)_FP_ORF1-3 

 → 4 ml Miniprep from tm(aa residue)_FP_ORF1-3 
  Transformation of 50 µL XL1 blue1 with 1µL template;  
  Inoculate 4 mL Mini (+ 8µL AMP) with 1µL 
 → measure concentration with Nanodrop (>300 ng/µL) 
  
 
 2) KpnI digest     tm(aa residue)_FP_ORF1-3_Kpn 

 → KpnI digest over night; use the whole mini DNA (tm(aa residue)_FP_ORF1-3)  
  with 0.7 µL good enzyme.   
   
  50.0 µL DNA (if necessary adjust to 50 µL) 
   5.7 µL Buffer 1 
   0.6 µL BSA 
   0.7 µL KpnI  (10,000 U/mL)  
 
 → Incubate over night @ 37 °C 
 
 3) Gelpurification     tm(aa residue)_FP_ORF1-3_Kpn_GP 

 → Gel purification with Promega kit!! 
  Cut out 800 bp band; check for 2.9 kb band; elution in 40 µL (5 min @ 60°C) 
 → measure concentration with Nanodrop 
 
 4) Self-ligation     tm(aa residue)_FP_ORF1-3_Lig 

 → 30.0 µL  DNA (= 900 ng of 30 ng/µL) 
    5.5 µL  water 
    4.0 µL  T4 ligase buffer (10x) 
    0.5 µL  T4 ligase 
 
  → Incubate 2-3 h @ RT 
  
 5) Gel purification     tm(aa residue)_FP_ORF1-3_Lig_GP 

 → Gel purification: cut out circular bands (see fig.); elution in 30 µL 
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 6) NotI digest     cp(aa residue)_FP_ORF1-3_Not 

 → NotI digest of complete cp(aa residue)_FP_ORF1-3_Lig_GP 
 
  30.0 µL DNA (= ca. 150 ng of 5 ng/µL) 
   3.4 µL Buffer 3 
   0.3 BSA 
   0.6 µL NotI  (10,000 U/mL)  
 
 → Incubation for 3 h @ 37 °C 
 
 7) Ligation in pRSETcp (ORF1-3)   cp(aa residue)_FP_ORF1-3_Lig 

 → Ligation of half of DNA to have a backup  
 
  15.0 µL DNA (= ca. 50 ng) 
    4.0 µL Vector Not_pRSETcp_ORF1-3 according ORF (= 60 ng of 15 ng/µL)  
    2.0 µL T4 ligase buffer (10x) 
    0.6 µL T4 ligase 
 
  → Incubate 2-3 h at RT 
  → plate on AMP-plate; overnight @ 37 °C (no vector control necessary)  
  → pick Minis 
  → Miniprep  
 
 8) Analysis of rearrangement   cp(aa residue)_FP_ORF1-3 

  → 2 control digests each (KpnI and NotI) separately 
  KpnI should result in one band with 3.7 kb 
  NotI should result in two bands with 800 bp and 2.7 kb 
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7.2 Appendix: Calcium Calibration Buffer Kit 

 

 

Calcium Calibration 

Buffer Kit 

 

 

 

 

 

 

 

 

based on: 

Methods Enzymol 172, 230 (1989) 
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Components for Ca-Titration kit 

 

Substance 

 

Producer 

 

Purity 

[%] 

MW 

[g/mol] 

Order No. 

 

Quantity 

 

EGTA 
Sigma 

(Fluka) 
> 99.0 380.35 03779-10G 10 g 

MOPS 
Merck 

Roth 
> 99 

209.26 

209.27 

1.06129.0250 

6979.2 
250 g 

CaCO3 Sigma > 99.0 100.39 C4830-100G 100 g 

KOH Merck > 85.0 56.11 1.05033.0500 500 g 

MgCl2•6H2O Merck >99.0 203.30 1.05833.0250 250 g 

CaCl2•2H2O Sigma > 99.0 147.0 C5080-500G 500 g 

KCl Merck > 99.5 74.55 1.04936.0500 500 g 
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Test of pH meter 

 

Technical data:  Rel. accuracy pH: +/- 0.01 
     mV +/- 1 
     °C +/- 0.5  

 

Calibration buffer: B2 (2-point calibration) 

Temp/°C Buffer 1 Buffer 2 

15 7.04 9.32 

20 7.02 9.26 

25 7.00 9.21 

30 6.99 9.16 

 

 

Electrode condition: InLab 410 (Electrolyt 9823) 

Condition Good Needs cleaning Our electrode 

(24.09.09) 

Slope 95-105 % 90-94 % 95 % 

Offset +/- (0-15) mV +/- (15-35) mV 2 mV 

 

   → still good condition 

 
 
Test measurement: 1) Calibration 
   2) Read 3 different buffers (pH 7-8) 
   3) Reread Buffer 1 
 

   → pH changed by - 0.01 

 

Intense Calibration before and after buffer adjustment required!! 
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Buffer preparation 

 

High Calcium (10 mM CaEGTA) buffer 

 

Component Total conc Free conc Volume 

MOPS Buffer (pH 7.2)   to 50 mL 

K2CaEGTA (1.0 M stock) 10 mM Ca: 

EGTA:         

39.2 µM  

35.9 µM 

500 µL 

MgCl2 (100 mM stock) 1 mM 1 mM 500 µL 

 

Mix in volumentric flask 

 

 

 

No Calcium (10 mM K2EGTA) buffer 

 

Component Total conc Free conc Volume 

Buffer (pH 7.2)   to 50 mL 

K2EGTA (1.0 M stock) 10 mM EGTA:  945 µM 500 µL 

MgCl2 (100 µM stock) 1.5549 mM 1 mM 777.4 µL 

 

Mix in volumentric flask 
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Buffer preparation 

 

500 mL MOPS buffer (30 mM MOPS, 100 KCl, pH 7.2) 

 MOPS   3.1389 g 
 KCl   3.7275 g 
 ddH2O  to 500 mL 

 adjust pH carefully to 7.2 with KOH 

 

40 mL KOH (48%) 

 KOH   29 g 
 ddH2O  to 50 mL 
 
  mix carefully while cooling in an water bath 

 keep in glass bottle 

 

15 mL stock solution of 100 mM MgCl2 in buffer 

 MgCl2   0.3050 g 
 ddH2O  to 15 mL 
  

 

15 mL stock solution of 1 M CaCl2 in buffer 

 CaCl2   2.205 g 
 ddH2O  to 15 mL 
  

 

10 mL stock solution of 1.0 mM K2EGTA 

 EGTA   3.8415 g 
 KOH   1.20-1.25 g  
 buffer  6 mL 

 conc KOH added until pH = 7.20 

 wash electrode with buffer into solution and adjust to 10 mL 
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Buffer preparation 

 

10 mL stock solution of 1.0 M K2CaEGTA 

 EGTA   3.8415 g 
 CaCO3   0.95 g 
 KOH   1.20-1.25 g  
 buffer  6 mL 

 heated in oil bath to 90 °C until CO2 emission stops, then RT 

 conc KOHaq added in 10 µL portions until pH 7-8 

 in the follwing steps note carefully pH changes and Ca addition 

 addition of CaCl2 in 10-50 µL of 1 M solution 

 pH restoration as soon as it drops to <6.5 (2 mmol KOH per mmol Ca) 

 pH decrement should decrease fairly abruptly 

 stop adding Ca when ΔpH/ΔCa falls below one-half of the original value 
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Calcium adjustment 

Step Volume added resulting pH ΔpH/10 µL CaCl2 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

11    

12    

13    

14    

15    

16    

17    

18    

19    

20    

21    

22    

23    

24    

25    
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7.3 Appendix: Standard Ratiometric Calcium Titration Protocol 

 

Step [Ca2+]free 

Volume to replace 

using a 1 mL sample 

@ pH = 7.2 

Volume to replace 

@ pH = 6.5 

Volume to replace 

@ pH = 8.0 

# 1 0 µM --- --- --- 

# 2 0.006 µM 40 µL --- --- 

# 3 0.013 µM 40 µL --- --- 

# 4 0.020 µM 40 µL --- --- 

# 5 0.027 µM 40 µL --- --- 

# 6 0.035 µM 40 µL --- 700 (7.000)=17 nM 

# 7 0.065 µM 112 µL (250 µL) 18 (0.175) 900 (9.000) 

# 8 0.100 µM 143 µL 9 (0.268) 320 (9.320) 

# 9 0.225 µM 333 µL 32 (0.582) 537 (9.685) 

# 10 0.351 µM 250 µL 32 (0.879) 349 (9.795) 

# 11 0.602 µM 333 µL 59 (1.418) 415 (9.880) 

# 12 0.853 µM 250 µL 56 (1.898) 292 (9.915) 

# 13 1.35 µM 333 µL 100 (2.710) 318 (9.942) 

# 14 1.73 µM 200 µL 78 (3.280) 155 (9.951) 

# 15 2.85 µM 375 µL 173 (4.440) 306 (9.966) 

# 16 4.87 µM 400 µL 236 (5.750) 382 (9.979) 

# 17 7.37 µM 333 µL 227 (6.715) 429 (9.988) 

# 18 14.9 µM 500 µL 406 (8.050) 1000 (10.000) 

# 19 29.9 µM 500 µL 458 (8.943) --- 

# 20 39.8 µM 1000 µL 244 (9.201) --- 

 

Calculations based on:  WEBMAXC calculator (values: T=23 °C, ionic =0.1) 
    http://www.stanford.edu/~cpatton/webmaxc/webmaxcE.htm 

           Calcium Calibration Buffer Kits (Molecular Probes, Invitrogen) 
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7.4 Appendix: Tyrosine Fluorescence Calcium Titration Protocol 

 

Step 
[Ca]total  
in µM 

[Ca]free 
WEBmax calc. 

log 
[Ca]free 

Ca2+ solution 
(100 mM) 

Ca2+ solution 
(250 mM) 

Check 

0 0 0 --- --- ---   
1 50 5 -8.340 1 µL  ---  
2 100 9 -8.028 1 µL  ---  
3 150 14 -7.840 1 µL  ---  
4 200 20 -7.703 1 µL  ---  
5 250 25 -7.594 1 µL  ---  
6 300 31 -7.502 1 µL  ---  
7 350 38 -7.422 1 µL  ---  
8 400 45 -7.351 1 µL  ---  
9 450 52 -7.286 1 µL  ---  

10 500 59 -7.226 1 µL 4 µL  
11 625 81 -7.091  --- 1 µL  
12 750 107 -6.971  --- 1 µL  
13 875 139 -6.856  --- 1 µL  
14 1000 179 -6.747  --- 1 µL  
15 1125 230 -6.638  --- 1 µL  
16 1200 298 -6.525  --- 1 µL  
17 1375 394 -6.405  --- 1 µL  
18 1500 537 -6.270  --- 1 µL  
19 1625 774 -6.111  --- 1 µL  
20 1750 1200 -5.921  --- 1 µL  
21 1875 2600 -5.585  --- 1 µL  
22 1960 7400 -5.131 1.7 µL  ---  
23 2000 18900 -4.724 0.8 µL 1 µL  
24 2040 47600 -4.322 0.8 µL  ---  
25 2125 127900 -3.893 1.7 µL 1 µL  
26 2250 251600 -3.599  --- 1 µL  
27 2375 376100 -3.425  --- 1 µL  
28 2500 500900 -3.300  --- 1 µL  
29 2813 813600 -3.090  --- 2.5 µL  
30 3125 1125400 -2.949  --- 2.5 µL  
31 3750 1750300 -2.757  --- 5 µL  
32 5000 2999900 -2.523  --- 10 µL  
33 6250 4249900 -2.372  --- 10 µL  

 

Buffer composition 
200 mM MOPS, 150 mM KCl, 2 mM EGTA, 1 mM Mg, 1 mM DTT, pH=7.2  

Parameters for the Webmaxc 
Temperature: 30 °C, pH: 7.2, Ionic strength: 242 mM 
EGTA: 2E-3 
Mg2: 1E-3 
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7.5 Appendix: Plasmids 

7.5.1. Appendix: Plasmid pRSET-B 

ATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGATAATTTTGTTTAA

CTTTAAGAAGGAGATATACATATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGTGG

ACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCCGAGCTCGAGATCTGCAGCTGGTACCAT

GGAATTCGAAGCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGC

AATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATC

CGGATCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAAT

GGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG

CCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGC

TCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCTTTACGGCACCTCGACCGCAAAAAACTTGATTTGG

GTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTT

AATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCGCGGTCTATTCTTTTGATTTATAAGGGATT

TTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAATATTTAACGCGAATTTTAACAAAATATTA

ACGTTTACAATTTCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACAGGTGGC

ACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATG

AGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGC

CCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGC

TGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTT

CGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGATACACTATTATCCCGTATTGAC

GCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAG

AAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGC

GGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCAT

GTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGAGTGACACCACGATG

CCTGTAGCAATGCCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATT

AATAGACTGAATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATT

GCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCGC

TCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGA

TAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC

TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGT

TTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAA

TCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTT

TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCA

CCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG

GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAA

CGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGC

TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACA

GGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCT

GACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCT

TTTTACGGTTCCTGGGCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA

CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGC

GAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG 
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7.5.2. Appendix: Plasmid pRSET-B C-Strep 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT

TTAACTTTAAGAAGGAGATATACATATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAAGGCGCCAAGGATCCG

AGCTCGAGATCTGCAGCTGGTACCATGGAATTCGAAGCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCT

GAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTT

TTTTGCTGAAAGGAGGAACTATATCCGGATCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAA

CAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTT

ACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCC

ACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCA

CCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCC

CTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGG

TCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAAT

TTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC

CTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA

ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCT

TCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT

TACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAG

CACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCA

TACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTA

AGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAG

GACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGA

GCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAA

ACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTT

GCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTG

GGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGG

GAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA

ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGT

GAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGT

AGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCAC

CGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGA

GCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCC

TACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG

ACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCT

TGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAG

GGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG

GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCT

CGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCC

TTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGAT

ACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACG

CAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG 
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7.5.3. Appendix: Plasmid pRSET precursor 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT

TTAACTTTAAGAAGGAGATATACATATGCTCGAGGATCCATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTT

TGCTGAAAGGAGGAACTATATCCGGATCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAG

TTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACG

CGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACG

TTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTC

GACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTT

GACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTA

TTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAA

CGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTAT

TTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATAT

TGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCT

GTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACA

TCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACT

TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATAC

ACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAG

AGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGA

CCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGC

TGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACT

ATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCA

GGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT

CTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAG

TCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG

TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAG

ATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAA

AAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTA

CCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGC

AGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA

TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTC

AAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGG

AGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA

GAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG

AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTC

AGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTT

GCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACC

GCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAA

ACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG 
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7.5.4. Appendix: Plasmid pRSETcp ORF1 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT

TTAACTTTAAGAAGGAGATATACATATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTG

GTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCCGCGGCCGCTGTAAGAATTCGAAG

CTTAGTCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCAT

AACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATCTGGCGT

AATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCC

TGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTA

GCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG

GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCA

CGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACT

CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCG

GCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATT

TAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATC

CGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC

CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA

AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTT

GAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC

CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA

CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG

ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT

GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA

CACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTG

GCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA

TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAG

ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATT

GATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCT

TAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTT

CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC

TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCG

TAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT

GCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG

TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA

CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG

GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT

TCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGC

AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT

CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA

GTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTA

ATGCAG 
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7.5.5. Appendix: Plasmid pRSETcp ORF2 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT

TTAACTTTAAGAAGGAGATATACATATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTG

GTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCCGGCGGCCGCGTAAGAATTCGAA

GCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCA

TAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATCTGGCG

TAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCC

CTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCT

AGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG

GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTC

ACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGAC

TCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTC

GGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAA

TTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA

TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATT

TCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGT

AAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTT

GAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC

CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA

CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG

ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT

GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA

CACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTG

GCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA

TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAG

ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATT

GATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCT

TAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTT

CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC

TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCG

TAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT

GCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG

TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA

CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG

GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT

TCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGC

AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT

CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA

GTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTA

ATGCAG 
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7.5.6. Appendix: Plasmid pRSETcp ORF3 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT

TTAACTTTAAGAAGGAGATATACATATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTG

GTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCCGGGCGGCCGCTAAGAATTCGAA

GCTTGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCA

TAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATCTGGCG

TAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCC

CTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCT

AGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG

GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTC

ACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGAC

TCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTC

GGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAA

TTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA

TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATT

TCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGT

AAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTT

GAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC

CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA

CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG

ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT

GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA

CACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTG

GCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA

TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAG

ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATT

GATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCT

TAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTT

CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC

TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCG

TAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT

GCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG

TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA

CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG

GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT

TCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGC

AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT

CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA

GTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTA

ATGCAG 
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7.5.7. Appendix: Plasmid pET-16b 

BTTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAG

ACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATG

TATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACA

TTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA

GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATC

CTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATT

ATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTAC

TCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGA

GTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAA

CATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCG

TGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTT

CCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGC

TGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCA

GATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGAC

AGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAG

ATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC

CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTT

TTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG

AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAG

CCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTG

GCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAG

CGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAC

CTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGG

CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGG

GTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCC

AGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTG

ATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAG

CGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCA

CACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATC

GCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTG

CTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATC

ACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTG

TTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAA

GGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCG

ATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAG

GGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTT

AATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAG

GGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGC

AGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAAC

CCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGC

CCGAGATGCGCCGCGTGCGGCTGCTGGAGATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCG

CATTCACAGTTCTCCGCAAGAATTGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCG

GCTTCCATTCAGGTCGAGGTGGCCCGGCTCCATGCACCGCGACGCAACGCGGGGAGGCAGACAAGGTATAGG

GCGGCGCCTACAATCCATGCCAACCCGTTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCG

GTCCAGTGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCGATCCTTGAAGCTGTCCCTGATGGTCGTCATCTAC
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CTGCCTGGACAGCATGGCCTGCAACGCGGGCATCCCGATGCCGCCGGAAGCGAGAAGAATCATAATGGGGAA

GGCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCCCAGCGCGTCGGCCGCCATGCCGGCGATAAT

GGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCC

GAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAG

CGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCC

CGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGA

GTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA

TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAG

TGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTT

TGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGT

CGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGC

CATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAAC

CGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAG

CCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAAT

GCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGT

CAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAG

CGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACG

CCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAAT

TTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTG

TTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAAC

GTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAAC

GTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTG

CGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTA

GGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGG

CCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCC

ATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCC

GGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAAC

AATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCCATCACCATCACCATCACCA

TGCTAGTGAGAATCTTTATTTTCAGGGCAAGGATCCGGTCTCGAGGGTGAATTCGGCTGCTAACAAAGCCCGA

AAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCT

TGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATATCCCGCAAGAGGCCCGGCAGTACCGGCATAAC

CAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGATGACGATGAGCGCATTGTTAGATTTCATACAC

GGTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGCATTAAAGCTTATCGATGATAAGCTGTCAAAC

ATGAGAA 

  



Appendix  
 

| 160 

7.5.8. Appendix: Plasmid pET-16b-M 

TTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGT

CAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATC

CGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC

CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA

AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTT

GAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC

CCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA

CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG

ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT

GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA

CACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTG

GCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA

TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAG

ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATT

GATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCT

TAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTT

CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC

TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCG

TAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT

GCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG

TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA

CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG

GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT

TCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGC

AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT

CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA

GTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACAC

CGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCT

ACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTC

CCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACC

GAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTC

ATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGG

CGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATG

AAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGT

AAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAAT

ACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGC

GCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGA

CGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCC

GCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCG

AGATGCGCCGCGTGCGGCTGCTGGAGATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCAT

TCACAGTTCTCCGCAAGAATTGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTT

CCATTCAGGTCGAGGTGGCCCGGCTCCATGCACCGCGACGCAACGCGGGGAGGCAGACAAGGTATAGGGCG

GCGCCTACAATCCATGCCAACCCGTTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCGGTC

CAGTGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCGATCCTTGAAGCTGTCCCTGATGGTCGTCATCTACCTG
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CCTGGACAGCATGGCCTGCAACGCGGGCATCCCGATGCCGCCGGAAGCGAGAAGAATCATAATGGGGAAGG

CCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCCCAGCGCGTCGGCCGCCATGCCGGCGATAATGG

CCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGA

ATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCG

CTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCG

CGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGT

GAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATT

AATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTG

AGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTG

CCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCG

TATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCA

TCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCG

GACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCC

AGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGC

GACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCA

GAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCG

GATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCC

GCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTT

GCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTT

GTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACG

TGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACG

TTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGC

GCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAG

GTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGC

CACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCA

TCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCG

GCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACA

ATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCCATCACCATCACCATCACCAT

GCTAGCGGCATGGTGAGTGTGATTAAACCAGAGATGAAGATGAGGTACTACATGGACGGCTCCGTCAATGGG

CATGAGTTCACAATTGAAGGTGAAGGCACAGGCAGACCTTACGAGGGACATCAAGAGATGACACTACGCGTC

ACAATGGCCGAGGGCGGGCCAATGCCTTTCGCGTTTGACTTAGTGTCACACGTGTTCTGTTACGGCCACAGAG

TGTTTACTAAATATCCAGAAGAGATACCAGACTATTTCAAACAAGCATTTCCTGAAGGCCTGTCATGGGAAAGG

TCGTTGGAGTTCGAAGATGGTGGGTCCGCTTCAGTCAGTGCGCATATAAGCCTTAGAGGAAACACCTTCTACC

ACAAATCCAAATTTACTGGGGTTAACTTTCCTGCCGATGGTCCTATCATGCAAAACCAAAGTGTTGATTGGGAG

CCATCAACCGAGAAAATTACTGCCAGCGACGGAGTTCTGAAGGGTGATGTTACGATGTACCTAAAACTTGAAG

GAGGAGGCAATCACAAATGCCAATTCAAGACTACTTACAAGGCGGCAAAAGAGATTCTTGAAATGCCAGGAG

ACCATTACATCGGCCATCGCCTCGTCAGGAAAACCGAAGGCAACATTACTGAGCAGGTCGAAGATGCAGTAGC

TCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGGGCGCTAGCGAGAATCTTTATTTTCAGGGCCATATG

CTCGAGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTA

GCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATATC

CCGCAAGAGGCCCGGCAGTACCGGCATAACCAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGAT

GACGATGAGCGCATTGTTAGATTTCATACACGGTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGC

ATTAAAGCTTATCGATGATAAGCTGTCAAACATGAGAABTTC 
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7.6 Appendix: Amino Acid Sequences of the Binding Domains 

 

(All linker residues are highlighted in grey) 

 

TN-XXL binding domain 

Numbering as in WT chicken skeletal TnC (Mank et al., 2008) 

   94         104        114        124        134        144 

   SEEELANCFR IFDKDANGFI DIEELGEILR ATGEHVTEED IEDLMKDSDK NNDGRIDFDE 

   154         94(2)      104(2)     114(2)     124(2)     134(2)     

   FLKMMEGVQG TSEEELANCF RIFDKDANGF IDIEELGEIL RATGEHVTEE DIEDLMKDSD 

   144(2)     154(2) 

   KNNDGRIDFD EFLKMMEGVQ 

 

Twitch-2 binding domain 

Numbering according to Twitch-2 indicator (Thestrup et al., 2014) 

   1          11         21         31         41         51 

DA SEEELSECFR IFDFDGNGFI DREEFGDIIR LTGEQLTDED VDEIFGDSDT DKNGRIDFDE 

   61 

   FLKMVENVQ PIY 

 

Twitch-2 54+D binding domain 

Numbering according to Twitch-2 indicator (Thestrup et al., 2014) 

   1          11         21         31         41         51 

DA SEEELSECFR IFDFDGNGFI DREEFGDIIR LTGEQLTDED VDEIFGDSDT DKNDGRIDFD 

   61 

   EFLKMVENVQ PIY 
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7.7 Appendix: κ2 Calculation 

 

𝑅0
6 = 9.78 × 103(𝜅2𝑛−4𝛷𝐷𝐽) = 9.78 × 103 × 𝑛−4 × 𝛷𝐷 × 𝐽 × 𝜅2 Starting from Equation 9 

𝐶 = 9.78 × 103 × 𝑛−4 × 𝛷𝐷 × 𝐽 Definition of invariant value C 

𝑅0
6 = 𝐶 × 𝜅2       𝐶 =

𝑅0
6

𝜅2  leads to Equation 18 

for   ECFP/EYFP: R0 = 4.92 nm with κ2 = 2/3    𝐶 =
𝑅0

6

𝜅2 = 21276 𝑛𝑚6 (Patterson et al., 2000) 

𝑅0 = (𝐶 × 𝜅2)
1
6 𝑛𝑚  

𝐸𝐹𝑅𝐸𝑇 =
𝑅0

6

𝑅0
6 + 𝑅𝐷𝐴

6 in Equation 8 

𝐸𝐹𝑅𝐸𝑇 =
(𝐶 × 𝜅2)

(𝐶 × 𝜅2) + 𝑅𝐷𝐴
6 =

1

1 +
𝑅𝐷𝐴

6

(𝐶 × 𝜅2)

 
results in Equation 19 

 

 

n  Refractive index of the medium between donor and acceptor 

 D  Quantum yield of the donor in the absence of acceptor 

 J  Spectral overlap integral 

  



Acknowledgements  
 

| 164 

Acknowledgements 

 

First and foremost I want to thank my “Doktorvater”, Oliver Griesbeck, for offering me the possibility 

to learn and conduct research in his lab. His advice and guideance as well as many long discussions 

and lab meetings gave me a safe start and a wonderful and intensive time in the lab. With 

encouraging openness he let me develop and follow ideas and concepts (and subsequently dismiss 

most of them), challenged them with critical questions, and supported me throughout.  

I am also very grateful to the members of my thesis advisory committee, Axel Borst and Karl-Peter 

Hopfner, for their continuous support and recommendations especially regarding new methods and 

interdisciplinary connections as well as for keeping an eye on the project track. 

I would further like to thank my cooperation partners for introducing me to new methods and 

supporting my experiments with expertise and enthusiasm: Thomas Gensch and Dagmar Kaschuba 

(FZ Jülich), Karl-Peter Hopfner and Gregor Witte (LMU), Christian Griesinger, Luigi Russo, and Stefan 

Becker (MPI for Biophysical Chemistry, Göttingen), and Stephan Uebel as well as Christian Benda 

(MPI for Biochemistry).  

A big thank you to the whole Griesbeck Lab for a buzzing, creative and playful atmosphere and being 

such wonderful bench buddies and good friends in good and hard times: Marco, Steph (The Chef), 

Martina (Soprano), Jonny (Scottish), Thomas (Danish), Gayane, Julia, Arne, Anja, Birgit, David, and 

Michael. A further thank you also for the help and input of the student interns Chris, Anna, and 

Johannes who are all studying towards a PhD/MD right now.  

Scientific first aid, generous access to equipment, stimulating discussions, and great party and kicker 

events were also provided by the outstanding colleagues from the neighboring Borst Lab, Klein Lab, 

Bayer Lab, and Weckerle Lab. Apart from our research endevours we kicked-off the legendary energy 

drink brand, nearly founded a start-up  for an electronic lab book, actually founded an orchestra, and 

fought our football team from tragic FC Leberkas via the even more tragic constant runner-up 

Neurokusen to finally winning the institute cup! This mixture of spinning ideas, dreaming, playing, 

and working was unique and will remain inspirational for all of us. Thank you Jones, Thomas, 

Friedrich, Aljoscha, Isabella, Marsilius, Fiona, Alison, Etienne, Matthias, and many more … 

Thank you so much also to the IMPRS-LS team of Hans-Jörg, Maxi, and Ingrid for creating and fueling 

such an enriching environment in and between two universities and three MPIs – and for being so 

incredibly patient with me. Thanks to IMPRS I was able to meet all those wonderful friends and 



Acknowledgements  
 

| 165 

collegues including the citizens of the Kingdom of Bambamdonia, the Roche Continents crew, and 

especially also my mentor and minder, Ruth Willmott. 

All this work was based on the solid foundation of support from friends and loved ones. Thank you 

especially to Justina as good friend, flat mate and MiO mama. Thank you to my parents who not only 

supported me but also confirmed me to follow the academic path after my diploma. Thank you to my 

sisters for always brightening my days and for being awesome (instead). Finally, I am incredibly 

grateful to my dear Änne for being with me and chaperoning me while finishing this work. 

  



Versicherung  
 

| 166 

Versicherung 

 

 

Eidesstattliche Erklärung 

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbständig und ohne 

unerlaubte Hilfe angefertigt ist. 

 

Berlin, den 17.01.2017 

 

............................................................. 

Anselm Geiger 

 

 

 

Erklärung 

Hiermit erkläre ich, dass die Dissertation nicht ganz oder in wesentlichen Teilen einer anderen 

Prüfungskommission vorgelegt worden ist und dass ich mich anderweitig einer Doktorprüfung ohne 

Erfolg nicht unterzogen habe. 

 

Berlin, den 17.01.2017 

 

............................................................. 

Anselm Geiger 


