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Zusammenfassung 
 

Trotz großer Forschungsanstrengungen ist Lungenkrebs die derzeit tödlichste Krebsform mit 

einer 5-Jahres-Überlebensrate von nur 15%. Lungentumore werden meist in einem 

fortgeschrittenen Stadium diagnostiziert, wenn der Tumor chirurgisch nicht mehr zu 

entfernen ist. Die Patienten werden dann meist nur mit Chemo- und/oder Strahlentherapie 

behandelt. Eine frühere Diagnose und zielgerichtete Therapie würden eine bessere 

Überlebenschance für die Patienten bedeuten. Neueste Forschungsergebnisse belegen die 

Vorteile von Nanopartikel-basierten Ansätzen für die Diagnose und Therapie von Tumoren. 

Solche Nanopartikel-basierte Therapeutika ermöglichen einen gezielten Wirkstofftransport 

zur Tumorläsion, welcher die systemischen Nebenwirkungen im Vergleich zu einer 

Chemotherapie deutlich reduzieren würde. 

In der vorliegenden Dissertation wurde der Frage nachgegangen, ob mesoporöse 

Silikananopartikel (MSN) für die nanomedizinische Therapie von Lungentumoren verwendet 

werden können. Dieses Konzept wurde mittels funktionalisierter Nanopartikel in vitro, in 

Tiermodellen in vivo sowie in ex vivo Lungentumorgewebe von Lungenkrebspatienten 

untersucht. 

In einem ersten Ansatz wurden die Biodistribution sowie die Aufnahme von 

Avidin-funktionalisierten vs. nicht-funktionalisierten MSN nach intratrachealer Gabe der 

Nanopartikel in gesunden Wildtyp-Mäusen untersucht. Während die nicht-funktionalisierten 

MSN nach lokaler Gabe in die Lunge zeitnah von Alveolarmakrophagen phagozytiert 

wurden, wurden die Avidin-funktionalisierten MSN zunächst von alveolären Epithelzellen 

aufgenommen und reicherten sich erst nach circa drei Tagen in den Makrophagen der Lunge 

an. Diese Daten belegen somit das Potential, Avidin-funktionalisierte MSN für den 

zielgerichteten Transport von Wirkstoffen in das pulmonale Epithel einzusetzen. 

In einem weiteren Ansatz untersuchten wir das Konzept der Stimulus-abhängigen Freisetzung 

von Wirkstoffen aus funktionalisierten MSN. Dazu wurden MSN hergestellt, die sich mittels 

eines Matrixmetalloproteinase 9 (MMP9)-sensitiven Linkers öffnen lassen, um das in ihnen 

geladene Chemotherapeutikum freizusetzen. In Tumorzellen konnten wir in vitro zeigen, dass 

die Freisetzung des Medikaments und das Absterben der Tumorzellen nur in Abhängigkeit 

von MMP9 erfolgte. Interessanterweise führte die gleichzeitige Beladung der MSN von zwei 

Chemotherapeutika zu einem additiven zytotoxischen Effekt. Die MMP9-abhängige 
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Wirkstofffreisetzung von MSN wurde in einem weitergehenden Ansatz in ex vivo 

Lungentumorkulturen getestet. Hierfür wurde Tumormaterial von transgenen Mäusen, die 

eine mutierte Variante des Kras Onkogens exprimieren und somit spontan Lungenkrebs 

entwickeln, sowie Adenokarzinomgewebe von Lungenkrebspatienten verwendet. Unsere 

Daten belegen einen MMP9-abhängigen Zelltod in diesen Geweben, der hochspezifisch für 

das Tumorgewebe und nicht in gesundem Gewebe zu beobachten war. Diese Ergebnisse 

veranschaulichen das vielversprechende Potential einer Stimulus-abhängigen Freisetzung von 

Wirkstoffen aus Nanopartikeln, welche bei einer gleichzeitigen Verminderung unerwünschter 

toxischer Nebeneffekte auf gesundes Gewebe tumorspezifisch zytotoxisch wirken. 

Ein weiteres Projekt beschäftigte sich mit dem Tumor- und Immunzell-spezifischen 

Targeting mittels funktionalisierter MSN. MSN wurden dazu mit spezifischen Liganden für 

den Epidermalen Wachstumsfaktorrezeptor (EGFR) bzw. den C-C-Motiv-Chemokin-

Rezeptor 2 (CCR2) funktionalisiert, um zielgerichtet EGFR- bzw. CCR2-überexprimierende 

Tumorzellen und Tumor-assoziierte Makrophagen zu erreichen. In vitro zeigten die 

funktionalisierten MSN eine EGFR-abhängige Aufnahme in EGFR-überexprimierenden 

Tumorzelllinien, während EGFR-negative Zelllinien signifikant weniger MSN aufnahmen. 

Die CCR2-spezifischen Partikel wurden in Abhängigkeit von der CCR2-Expression verstärkt 

von Makrophagen aufgenommen. In einem in vivo Experiment wurden die mit EGFR-

Liganden funktionalisierten MSN sodann auf ihre Tumorzellspezifität hin untersucht. Dazu 

wurden in Mäusen zunächst durch Injektion von Tumorzellen subkutane Flankentumore 

induziert, die einerseits EGFR überexprimierten bzw. niedrige Expressionslevel von EGFR 

aufwiesen. Die nachfolgende systemische intravenöse Injektion funktionalisierter und 

Fluoreszenz-markierter MSN führte jedoch nicht zu einer spezifische Anreicherung von 

EGFR-gerichteten MSN in EGFR-positiven Tumorzellen, wie die mikroskopische 

Untersuchung des Tumorgewebes zeigte. Vielmehr akkumulierten die MSN unabhängig von 

ihrer Funktionalisierung in Zellen der Leber. In ähnlicher Weise wurden sowohl EGFR- wie 

auch CCR2-gerichtete MSN nach lokaler Gabe der Partikel in Kras-Mäusen mit 

Lungentumoren unspezifisch von Alveolarmakrophagen aufgenommen und zeigten keinerlei 

Spezifität für die EGFR- und CCR2-überexprimierenden Tumorläsionen. Diese Daten 

belegen einen Verlust der in vitro nachgewiesenen Spezifität bei in vivo Applikation 

funktionalisierter Nanopartikel sowohl bei systemischer wie auch lokaler Gabe und machen 

die Bedeutung einer stringenten in vivo Analyse Zelltyp-gerichteter Nanopartikel mit 

zellulärer Auflösung deutlich. 
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Zusammenfassend lässt sich sagen, dass die vorliegende Dissertation ein – wenn auch 

begrenztes – therapeutisches Potential funktionalisierter mesoporöser Silikananopartikel für 

die Therapie von Lungentumoren aufzeigt. Die funktionalisierten MSN werden nach lokaler 

Gabe vom pulmonalen Epithel aufgenommen. Eine Zelltyp-gerichtete Therapie mittels MSN 

erscheint eingeschränkt, da die phagozytierende Kapazität der Alveolarmakrophagen das 

Zelltyp-spezifische Targeting überwiegt. Hingegen bietet eine Stimulus-abhängige 

Wirkstofffreisetzung das Potential eines regional gut kontrollierbaren Wirkstofftransports. 

Diese vielversprechenden Ergebnisse tragen somit zu einer differenzierten Betrachtung des 

translationalen Potentials nanomedizinischer Ansätze bei und erfordern eine weitere 

Untersuchung in relevanten in vivo Lungentumormodellen. 
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Summary 

Despite recent advancements, lung cancer is the most lethal cancer with a 5-year survival rate 

of 15%. It is mostly diagnosed at an advanced stage when the malignancy is non-resectable 

and the patients undergo radiation and/or chemotherapy. Early detection and targeted therapy 

of lung cancer, however, may offer benefits for patients and their prospective survival. 

Recent evidence supports the advantages of employing nanoformulations for diagnosis and 

treatment of cancer. Such nanomedicines have the potential for targeted delivery of drugs to 

cancer lesions with minimization of systemic side effects. In this thesis, we investigated the 

potential of mesoporous silica nanoparticles (MSNs) to be applied as nanomedicines for the 

treatment of lung cancer using in vitro and in vivo models as well as ex vivo lung tumor 

samples from cancer patients. In particular, we evaluated local lung-specific application of 

functionalized nanoparticles for lung tumor targeting. 

Firstly, biodistribution and uptake of avidin-functionalized versus non-functionalized MSNs 

were analyzed upon intratracheal application into wild type mice lungs. 

Avidin-functionalized MSNs were rapidly taken up by alveolar epithelial cells, followed by 

macrophage clearance at later stages. In contrast, non-functionalized MSNs were rapidly 

cleared by alveolar macrophages in the lung. These data support the concept that 

avidin-functionalized MSNs can be used for fast delivery of drugs to the pulmonary 

epithelium. 

In the next step, we investigated the concept of stimuli-responsive drug release from MSNs 

for tumor treatment. For that, we generated matrix metalloproteinase-9 (MMP9) -sensitive 

drug-loaded MSNs. Our in vitro data confirmed MMP9-specific drug release in lung cancer 

cell lines with no side effects. Encouragingly, a combination load of cisplatin and bortezomib 

in the same MSN system resulted in significantly enhanced cell death. To certify our in vitro 

findings in a more relevant model, we exposed 3D-lung tissue cultures (3D-LTCs) from 

human and mouse to drug-loaded MSNs. Our results validated MMP9-responsive drug 

release by local cell death in tumorous human and mouse 3D-LTCs ex vivo. 

We further analyzed the potential of MSNs for cell-specific targeting using tumor cell- and 

immune cell-specific targeting ligands. We thus functionalized the particles with the artificial 

ligands GE11 and ECL1i to address epidermal growth factor receptor (EGFR) overexpressing 

lung tumors and C-C chemokine receptor type 2 (CCR2) overexpressing tumor-associated 
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macrophages, respectively. The functionalized nanoparticles both showed superior uptake in 

EGFR and CCR2 overexpressing cells in vitro, respectively. To prove our in vitro findings in 

in vivo setting, we exploited systemic and local delivery of the MSNs in mouse tumor models 

and monitored cell-specific targeting with cellular resolution. Intravenous application of the 

nanoparticles was studied in two distinct flank tumor models where subcutaneous tumors 

were formed within the same mouse at the right and left flanks with two corresponding cell 

clones that had high or low levels of EGFR, respectively. However, in both models 

significant deposition of the nanoparticles into the liver was observed irrespective of the 

functionalization on the particles. Similarly, nanoparticles that were intratracheally applied 

into the tumorous lungs of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (Kras) 

mutant mice were non-specifically taken up by hyperplastic tumor cells and alveolar 

macrophages regardless of their functionalization. These data show loss of cell-specific 

targeting efficiency of functionalized MSNs upon systemic and local delivery of the particles 

in vivo and thus stress the need for detailed analysis of targeting efficiency with cellular 

resolution. 

Taken together, this study evaluates the potential of targeted mesoporous silica nanoparticles 

with controlled release function for lung cancer treatment. It supports the concept that 

functionalization of nanoparticles plays a vital role in their biodistribution and toxicity in the 

lung. Nonetheless, this study also reveals in vivo loss of targeting ability of receptor-targeted 

MSNs due to the high phagocytic capacity of the mononuclear phagocyte system. On the 

other hand, it proves effective stimuli-responsive release of drugs from these nanoparticles 

resulting in a well-controlled region-restricted therapeutic effect. All in all, this study not 

only shows the potential of nanomedicines for lung cancer treatment, but also stresses the 

impact of underlying mechanisms affecting nanoparticle biodistribution and specificity in 

vivo while highlighting the need for stringent analysis to detect and circumvent these factors 

for better understanding and clinical translation of future nanomedicines. 
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1 Introduction 

1.1 Lung Cancer 

In spite of vast continuous research, cancer remains to be a major cause of morbidity and 

mortality all around the world. Lung cancer, in particular, is by far the most common cause of 

cancer-related deaths in the world (Figure 1.1) (Ferlay et al., 2013; Gridelli et al., 2015). The 

five-year survival rate for lung cancer patients is around 15%. Patients are usually diagnosed 

at an advanced stage with metastasis due to lack of biomarkers and early diagnostic tools, 

hence the treatment options for lung cancer are mostly palliative (Bölükbas and Meiners, 

2015; Herbst  et al., 2008). 

 

Figure 1.1 The most common cancer types in the USA by gender, 2016 (Siegel et al., 2016) 

Lung cancer is classified into several histological subtypes such as small cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC) types of lung adenocarcinoma, squamous 

cell carcinoma, and large cell carcinoma (Figure 1.2) (Gridelli et al., 2015). While SCLCs 

and squamous cell carcinomas form around the major bronchi, adenocarcinomas and large 

cell carcinomas mostly arise at the peripheral regions of the lung (Wistuba and Gazdar, 

2006).  

adenocarcinoma large cell carcinomasquamous cell carcinoma small cell carcinoma
 

Figure 1.2 Major histopathological types of lung cancer (edited from cancergrace.org) 
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Smoking is a risk factor for all types of lung cancer, most particularly for SCLC and 

squamous cell carcinoma, whereas adenocarcinoma is mostly seen in non-smokers (Huang et 

al., 2015). In fact, 25% of all lung cancer cases are observed in non-smokers globally, 

i.e., 15% of cases in men, 53% in women (Subramanian and Govindan, 2007). Strong 

molecular differences between these two groups have been identified, giving evidence that 

tobacco-induced and not-induced subtypes are indeed two different entities (Sun et al., 2007). 

Second-most common risk factor for lung cancer is second-hand smoke exposure depending 

on the duration time and intensity of the exposure (Collins et al., 2007). The leading 

occupational risk factor for lung cancer however is asbestos. Several other lung cancer 

inducing factors are radon, arsenic, chromium, nickel, vinyl chloride, and ionizing radiation 

(Field and Withers, 2012; Ruano-Ravina et al., 2014). Moreover, preexisting lung diseases 

such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), 

or tuberculosis are identified as risk factors for lung cancer too (Collins et al., 2007). 

 

1.1.1 Pathogenesis of lung cancer 

1.1.1.1 Molecular alterations 

Although the origins of the distinct lung cancer types are not fully understood, it is believed 

that lung cancer arises upon pathological changes known as preneoplastic or premalignant 

lesions (Westra, 2000; Wistuba et al., 2002). Despite the fact that many genetic and 

epigenetic changes have been detected in lung cancer biopsies (Minna et al., 2002; 

Zöchbauer-Müller and Minna, 2000), the underlying mechanisms which lead to these 

changes are poorly known. Majority of those studies have been performed for the most 

common types of lung cancer. Several growth factor receptors and regulatory peptides have 

been found to be overexpressed by cancer cells next to the healthy epithelium, and contribute 

to further proliferation of the cancer. Indeed, the approach of chemotherapy shifted from 

applying the same drug to one type of cancer to formulating new strategies to target the 

drivers of the disease in each tumor (Ene and Fine, 2011). However due to intratumor 

heterogeneity, multiple drivers may play a role in tumor formation, and might be addressed 

with several specific agents applied in parallel (Duffy, 2013). Common oncogenes triggering 

lung oncogenesis involve v-myc avian myelocytomatosis viral oncogene homolog (CMYC), 

mutant Kirsten rat sarcoma viral oncogene homolog (KRAS), translocations of the anaplastic 

lymphoma kinase (ALK) gene (Shaw and Engelman, 2013), overexpressed Cyclin D1, B-cell 

lymphoma 2 (BCL2), and mutant ERBB family genes such as epidermal growth factor 
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receptor (EGFR) (Paez et al., 2004; Shigematsu et al., 2005) and receptor tyrosine-protein 

kinase erbB-2 (HER2) (predominantly in the Asian population and in non-smokers) 

(Table 1.1) (Network, 2012, 2014; Project and NGM, 2013; Stephens et al., 2004). In 

addition, abnormalities in several tumor suppressor genes such as tumor protein 53 (TP53) or 

retinoblastoma protein (RB) are also evident in lung cancer (Cerami et al., 2012; Wistuba and 

Gazdar, 2006).  

 

Table 1.1 Major lung-specific genetic abnormalities in lung cancer (Herbst  et al., 2008) 

Abnormality NSCLC SCLC 

 
Adenocarcinoma 

Squamous cell 

carcinoma  

Precursor 
   

Lesion 
atypical adenomatous hyperplasia 

(probable) 
dysplasia 

neuroendocrine field 

(probable) 

Genetic change KRAS mutation, EGFR mutation p53 mutation c-MET overexpression 

    

Cancer 
   

KRAS mutation 10-30 % very rare very rare 

BRAF mutation 2% 3% very rare 

EGFR 
   

Kinase domain 

mutation 
10-40 % very rare very rare 

Amplification 15% 30% very rare 

Variant III 

mutation 
very rare 5% very rare 

HER2 
   

Kinase domain 

mutation 
4% very rare very rare 

Amplification 6% 2% not known 

ALK fusion 7% very rare not known 

 

c-MET: hepatocyte growth factor receptor, BRAF: v-Raf murine sarcoma viral oncogene homolog B, 

HER2: receptor tyrosine-protein kinase erbB-2 
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1.1.1.2 Tumor microenvironment and immunotherapy 

Lesions are not only composed of cancer cells. Genetic alterations alone were reported to be 

insufficient for complete tumor growth and metastasis without the contribution of local 

non-malignant parenchymal cells (Coussens and Werb, 2002; Hanahan and Weinberg, 2000). 

There are indeed numerous non-malignant cell types which are associated with the tumor 

microenvironment (TME) (Balkwill et al., 2012), forming a complex platform rich of vital 

chemokines, cytokines, growth factors for tumor survival and progression (Hanahan and 

Coussens, 2012). For instance, various reports support the idea that proteinases such as 

matrix metalloproteinases (MMPs) drive extracellular matrix (ECM) remodeling at tumor 

sites and set the ground for cancer cell migration. As MMPs control several physiological 

events and cellular signaling, they are crucial for the communication between tumor and 

stroma (Kessenbrock et al., 2010). In particular, matrix metalloproteinase-9 (MMP9), 

degrading a variety of ECM components such as collagens, elastin, and fibrin (Roeb et al., 

2002), has been shown to be commonly overexpressed in lung cancer patients (El-Badrawy et 

al., 2014) and correlates with poor prognosis of the disease (Cox et al., 2000; Shou et al., 

2001). 

One of the most encouraging recent strategies for lung cancer treatment is immunotherapy 

(Gridelli et al., 2015). Several studies have investigated therapeutic efficiency of targeting 

programmed cell death protein 1 (PD1) or cytotoxic T-lymphocyte-associated protein 4 

(CTLA4) checkpoint pathways of T cells (Brahmer et al., 2012; Topalian et al., 2012). 

Normally, when CTLA4 binds to its ligands, cluster of differentiation 80 (CD80) and cluster 

of differentiation 86 (CD86), on the antigen-presenting cells, proliferation of T cells is 

inhibited. Likewise, when PD1 binds to its ligands, (programmed death-ligand 1) PDL1 or 

(programmed death-ligand 2) PDL2, T cell proliferation is inhibited, but in addition it 

interferes with cytokine production and results in T cell exhaustion (Fife and Bluestone, 

2008). A human monoclonal CTLA4-specific antibody, Ipilimumab, which is already 

FDA-approved for melanoma treatment, has shown heartening results in patients with 

advanced-stage squamous NSCLC when combined with carboplatin and paclitaxel (Gridelli 

et al., 2015; Lynch et al., 2012). PD1-targeting monoclonal antibodies nivolumab and 

pembrolizumab have also shown promising results and are in clinical development. Further 

successful examples of immunotherapy in lung cancer involve monoclonal antibodies 

BMS-936559, MPDL3280A, and MEDI4736, targeting PDL1 (Casaluce et al., 2014; Herbst 

et al., 2014). 



Introduction 

10 

Among the most commonly reported immune cell types in lung cancer TME are 

tumor-associated macrophages (TAMs). There is indeed a valid correlation between poor 

prognosis and macrophage density in various cancer types including lung cancer (Qian and 

Pollard, 2010). Based on their phenotype, macrophages at tumor lesions can have tumor 

preventive or tumor promoting effects (Mosser and Edwards, 2008). Nonetheless, as tumors 

grow larger, TME strongly influences TAMs. Numerous growth factors and chemokines play 

a role in macrophage differentiation and chemotaxis (Pollard, 2009). TAMs possess common 

features with the regulatory type of macrophages (Murray and Wynn, 2011; Pollard, 2008). 

For instance, recent studies showed that cancer cells can secrete C-C chemokine ligand 2 

(CCL2) and attract macrophages to the tumor site (Qian et al., 2011; Zhang et al., 2010). 

CCL2 overexpression was confirmed in a variety of cancer types (Mantovani and Sica, 2010) 

and this corresponds to poor prognosis of the disease (Qian and Pollard, 2010), whereas its 

absence was demonstrated to have tumor preventive effects in patients with cervical cancer 

(Zijlmans et al., 2006). Indeed in lung cancer, a recent study revealed the presence of a 

cross-talk between TAMs and tumor cells via CC chemokine receptor type 2 (CCR2), and its 

inhibition resulted in less tumor formation in lung cancer mouse models in vivo (Schmall et 

al., 2015). 

 

1.1.2 Diagnosis and treatment of lung cancer 

90% of all lung cancer patients present symptomatic at the stage of diagnosis (Collins et al., 

2007). Only 10% are diagnosed asymptomatic with chest radiographs. Most of the patients 

present with systemic symptoms of fatigue, anorexia, and weight loss. Chest discomfort, 

cough, dyspnea, and hemoptysis are the most common signs of primary tumors. 

Treatment of lung cancer depends heavily on the type of lung cancer, the stage of the disease 

at diagnosis (Table 1.2), and functional analysis of the patients. Surgery is the optimal 

treatment option for early stage lung cancer, which is mostly followed by chemotherapy 

(Collins et al., 2007). However majority of the NSCLC tumors are unresectable and require 

treatments with chemotherapy and radiation therapy. Likewise, SCLCs are mostly treated 

with chemotherapy. 
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Table 1.2 Staging of lung cancer (Spira and Ettinger, 2004) 

Stage Description Survival rate 

NSCLC  
1 yr 5 yr 

   
Local 

   

IA 
tumor ≤ 3 cm, surrounded by lung or pleura, 

no invasion of main bronchus 
94 67 

IB tumor > 3 cm, invasion of pleura, main bronchus 87 57 

IIA 
tumor ≤ 3 cm, invasion of ipsilateral peribronchial or 

hilar nodes and intrapulmonary nodes 
89 55 

Locally advanced    

IIB tumor > 3 cm, invasion of chest wall, diaphragm, pericardium 73 39 

IIIA invasion of ipsilateral mediastinal or subcarinal nodes 64 23 

IIIB invasion of contralateral lung nodes or any supraclavicular node 32 3 

Advanced    

IIIB 

invasion of mediastinum, heart, great vessels, trachea, esophagus, 

vertebral body, carina, separate tumor nodules, malignant pleural 

effusion 

37 7 

IV distant metastasis 20 1 

SCLC    
   

Limited disease confined to the ipsilateral hemithorax 
  

Extensive disease metastasis beyond the ipsilateral hemithorax 
  

 

Being the ideal treatment for early stage NSCLC (Chuang et al., 2017), lung cancer surgery 

may include pneumonectomy, lobectomy, or lymph node dissection if the tumor has spread to 

mediastinal nodes (Cariboni and Stella, 2015; Collins et al., 2007). Adjuvant therapy is the 

term used for radiation or chemotherapy once the tumor has already been resected surgically. 

Adjuvant radiotherapy is used for elimination of small lesions left after surgery at the region 

of resection. Even at early stage lung cancers, there might still be remaining cancer cells left 

after surgical resection at the microscopic level. Thus, adjuvant chemotherapy must be 

applied in order to eliminate micrometastases. Platinum-based agents are the most commonly 

used chemotherapeutics, as these are the most effective ones against NSCLC (Spira and 

Ettinger, 2004). Neoadjuvant therapy stands for the use of radiation or chemotherapy for 

cancer treatment as the primary option, where surgery is not preferred (Chuang et al., 2017). 

Neoadjuvant radiotherapy aims for shrinkage in tumor size, making a surgical resection 

possible afterwards. Neoadjuvant chemotherapy instead, can result in tumor shrinkage in 

addition to elimination of micrometastases (Spira and Ettinger, 2004). 
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Stage III lung tumors as well as tumors which are localized at vital regions are categorized as 

nonresectable. At this stage, concurrent radiation and cisplatin-based chemotherapy have 

been the gold standard. At advanced stages like IIIB or IV, the treatment heavily depends on 

chemotherapy, however with poor prognosis (Spira and Ettinger, 2004). 

 

1.1.2.1 Targeted therapies for lung cancer 

Discoveries of somatic driver mutations in lung tumors have paved the way for development 

of novel agents which are directed against these mutations. Treating lung cancer with 

conventional platinum-based chemotherapy has started to be shifted to a more personalized 

manner since 2005 by such targeted therapies (Jett and Carr, 2013). The first agents were 

designed to target the first discovered driver mutation in lung cancer, i.e. EGFR mutation at 

its tyrosine kinase (TK) domain (Paez et al., 2004). Driver mutations result in disrupted 

signaling for proteins vital for controlled cellular proliferation and tumorigenesis. In NSCLC 

patients with EGFR mutations, i.e. exon 19 deletion or exon 21 mutation (L858R), EGFR-TK 

inhibitor (EGFR-TKI) gefitinib had resulted in dramatic responses (Vecchione et al., 2011). 

This was followed by identification of another mutation which was confirmed for the 

transforming echinoderm microtubule-associated protein like 4 (EML4) -(ALK) gene fusion 

(Soda et al., 2007) in NSCLC tumors. By continuous research many more mutations have 

been identified such as BRAF, KIT proto-oncogene receptor tyrosine kinase (KIT), and 

HER2 (Haber et al., 2011). Similar to gefitinib, novel small-molecule inhibitors directed 

against these mutations resulted in significant initial regression in tumors, however most of 

which were followed by acquired-resistance of the tumors (Chong and Jänne, 2013). Such 

resistance forms as a result of a secondary mutation against the activity of the inhibitors in 

resistance-acquired variants. Consequently, targeted therapies may result in an encouraging 

regression of the tumors initially, however most of the times this effect is not steady due to 

acquired-resistance and aggressive re-growth of the tumors. Alternative approaches to 

enhance therapeutic efficiency of targeted therapies involve simultaneous use of conventional 

chemotherapy or immunotherapy for a more persistent outcome (Sawyers, 2004; Vanneman 

and Dranoff, 2012). 
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1.2 Nanoparticle-based drug delivery 

Over the last decades, there have been various studies supporting the use of nanotechnology 

in diagnosis and treatment of human diseases, most particularly in cancer research. Materials 

at the nanoscale engineered for biomedical purposes, termed as nanomedicines, can vary in 

sizes, compositions, shapes in accordance with the disease to be applied (Figure 1.4). In 

addition to their use as early diagnostic agents, nanomedicines offer various therapeutic 

advantages such as prolonged circulation of the active drug, enhanced local concentrations at 

the disease site, reduced systemic toxicity, and cell-specific targeting (Doane and Burda, 

2012; Duncan and Gaspar, 2011; Peer et al., 2007; Schütz et al., 2013; Wagner et al., 2006; 

Wang et al., 2012). 

So far, there have been various kinds of nanoparticles generated such as dendrimers, micelles, 

liposomes, polymeric nanoparticles, carbon nanotubes, mesoporous silica nanoparticles, 

metallic nanoparticles, protein nanoassemblies, and much more (Figure 1.4). The features the 

nanoparticles possess depend heavily on the type of the particle and its surface 

characterizations (Torchilin, 2014; van Rijt et al., 2014). 

 

 

Figure 1.4 Several types of nanoparticles used for biomedical applications (Ageitos et al., 2016) 
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1.2.1 Passive versus active targeting of nanoparticles 

Deposition of nanomedicines in diseased regions depends on two distinct targeting 

approaches: passive versus active targeting. Passive targeting is based on so-called enhanced 

permeability and retention (EPR) effect (Figure 1.5) (Matsumura and Maeda, 1986). This 

principle works as nanomedicines travel through the bloodstream, they cannot escape through 

the blood vessels of healthy regions, whereas in tumorous regions they penetrate through the 

leaky pathological blood vessels and accumulate at the tumor site also due to the impaired 

lymphatic drainage present at the tumor site (Figure 1.5). 

Active targeting of nanomedicines, on the other hand, is achieved by surface 

functionalizations of nanoparticles with monoclonal antibodies or ligands that specifically 

target tumor-related antigens or receptors (Peer et al., 2007) (Figure 1.5, top right frame). For 

this, nanoparticles are constructed to specifically bind to targets that are overexpressed only 

on cancer cells (Gu et al., 2007). Thus, active targeting may be more effective than passive 

targeting strategies as it gives the possibility of targeting and killing of not only primary 

tumors but also circulating metastatic cancer cells. 

 

Figure 1.5 Nanoparticle accumulation at tumor site via passive versus active targeting (Peer et al., 

2007) 
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1.2.2 Theranostic nanoparticles 

Another emerging concept of nanomedicines is nanotheranostics. The term defines 

nano-platforms that are designed both for imaging and therapy simultaneously. Thus, these 

particles allow for disease monitoring and treatment in parallel (Janib et al., 2010; Lim et al., 

2015). Ideal features for theranostic nanoparticles are, specific and rapid localization at the 

region of interest, stating molecular and morphological information about the tissue, 

successfully unloading the drug with no adverse effects in off-target or healthy tissue, leaving 

the body in short time or biodegrading into safe products (Chow and Ho, 2013; Jokerst and 

Gambhir, 2011). Just as any nanomedicine, theranostic particles may contain targeting 

moieties and additional functionalization such as shielding molecules to induce 

biocompatibility. But in addition, theranostic particles contain therapeutics and contrast 

agents within their formulation (Figure 1.6). These contrast agents allow for non-invasive 

detection of the nanoparticles in a variety of modalities such as  optical imaging, magnetic 

resonance imaging (MRI), computer tomography (CT), or positron emission tomography 

(PET) (Lim et al., 2015). 

 

Figure 1.6 Schematic representation of theranostic nanoparticles (Lim et al., 2015) 

Up to date, there have been several examples for efficient theranostic applications of 

nanomedicines for passive targeting but not so much for active targeting (Chen et al., 2014). 

Some examples to these nanocarriers involve several MRI contrast agents by 

superparamagnetic nanoparticles (Lee et al., 2011; Mertens et al., 2014), carbon 

nanotube-based optoacoustic imaging agents (De La Zerda et al., 2008), and photothermal 

polymeric nanoparticles (Yang et al., 2011). 
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1.2.3 Cell-specific delivery of nanoparticles 

Potency of cell-specific targeting with nanoparticles opens many doors for targeting not only 

the tumor cells but also non-malignant cells (Irvine et al., 2015). For instance, nanoparticles 

targeted to immune cells for drug delivery offer several advantages for a more specific 

immunotherapy with less off-target effects (Moyer et al., 2016). Additionally, solid tumors 

may potentiate structural hurdles in delivery of nanoparticles due to rigid tumor stroma (Jain 

and Stylianopoulos, 2010), however immune cells which are also present in the circulation 

and in immune organs can be targeted more efficiently (Glass et al., 2016). 

Among the immune cells, in particular macrophages offer several benefits, e.g., high 

endocytosis activity, and represent as potential targets for drug delivery via nanoparticles 

(Jain et al., 2013; Weissleder et al., 2014). Indeed, several studies have shown successful 

delivery of nanoparticles to macrophages for treatment of several diseases (Chono et al., 

2007, 2008; Muraoka et al., 2014; Pei and Yeo, 2016; Schmitt et al., 2010; Wijagkanalan et 

al., 2011). 

 

1.2.4 Pulmonary application of nanoparticles 

The lung is indeed a well-fit organ for local or systemic administration of nanoparticles by 

inhalation, as it offers a large surface area with thin epithelial barrier, rapid absorption, high 

bioavailability, limited proteolytic activity, and the lack of first-pass metabolism (Sung et al., 

2007). Additionally, the charge and size of the nanoparticles play a role for their deposition 

inside the lung: particles smaller than 200 nm are mostly delivered to the respiratory airways 

(Figure 1.6) (Choi et al., 2010; van Rijt et al., 2014), whereas larger particles are removed via 

mucociliary clearance. On top of that, pulmonary application of nanomedicines is further 

attractive since it is noninvasive and patients have the possibility for self-administration. 
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exhaled

> 5 µm

largely phagocytosed

> 1-5 µm

deposition and

uptake in alveoli

< 1 µm

 

Figure 1.6 Size-dependent deposition of particles in the lung (van Rijt et al., 2014) 

In fact, there have been numerous preclinical studies showing improved therapeutic efficacy 

of nanomedicines for lung diseases (Howell et al., 2013; Lu et al., 2014; Ozeki and Tagami, 

2014; Ruge et al., 2013; Thorley and Tetley, 2013; van Rijt et al., 2014), most particularly for 

lung cancer (Babu et al., 2013; Badrzadeh et al., 2014; Bandyopadhyay et al., 2015; Bölükbas 

and Meiners, 2015; Fujita et al., 2015; Key et al., 2014; Kim et al., 2015; Sukumar et al., 

2013). 

 

1.2.4.1 Preclinical studies of nanomedicines for lung cancer treatment 

Numerous nanomedicines with several functions have been developed and tested 

experimentally in preclinical models as potential treatment strategies for lung cancer. 

Literature research shows that the span of particle design, targeting strategy, administration 

route, and experimental models used is vast. Table 1.4 summarizes recent studies with 

nanomedicines which have been designed for active targeting of lung cancer in experimental 

models. In some studies, tumor-specific activators such as overexpressed tumor-associated 

proteases were used to activate the particles for contrast enhancing in imaging or for 

controlled drug release at the tumor site (Crisp et al., 2014; van Rijt et al., 2015). In the study 

by Crisp et al. for instance, MMP2-stimulated activation of alpha-v beta-3 (αvβ3)-targeted 

particles was used for detection of lung metastases that are smaller than 0.5 mm by use of 

fluorescence imaging as a result of the high local MMP2 concentrations (Crisp et al., 2014).  
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Table 1.4 Recent preclinical studies on active targeting of lung cancer (Bölükbas and Meiners, 2015) 

Target Trigger Model Type Reference 

EGFR 
- 

s.c. human lung cancer cells 

conjugated (Peng et al., 2011) 

liposomal (Cheng et al., 2014) 

mesoporous     

silica-based 
(Sundarraj et al., 2014) 

i.v. human lung cancer cells polymeric (Karra et al., 2013) 

magnetic 

field 
i.v. human lung cancer cells SPIONs 

(Sadhukha et al., 

2013) 

αvβ3 

MMP2 i.v. murine mammary tumor cells peptide-based (Crisp et al., 2014) 

- 

i.v. murine melanoma cells liposomal 
(Yonenaga et al., 

2012) 

s.c. human lung cancer cells peptide-based (Liu et al., 2014) 

i.t. murine lung cancer cells Au-based (Conde et al., 2013) 

sigma receptor pH 

s.c. human lung cancer cells 
lipid/calcium 

/phosphate 

(Li et al., 2010; Li et 

al., 2012; Yang et al., 

2012a; Zhang et al., 

2013a) 

i.v. murine melanoma cells 
lipid/calcium 

/phosphate 
(Yang et al., 2012b) 

s.c., sur. human lung cancer cells 
lipid/calcium 

/phosphate 
(Zhang et al., 2013b) 

CD44 - 

s.c. human lung cancer cells conjugated (Ganesh et al., 2013b) 

s.c. human lung cancer cells, 

i.v. murine melanoma cells 
conjugated (Ganesh et al., 2013a) 

DR 4/5 - 

s.c. human lung cancer cells conjugated (Guo et al., 2012) 

i.v. human lung cancer cells 
polymeric (Kim et al., 2013) 

protein-based (Choi et al., 2015) 

LHRHR - 

i.t. human lung cancer cells 

lipid-based (Taratula et al., 2013) 

mesoporous     

silica-based 
(Taratula et al., 2011b) 

s.c. human lung cancer cells 
SPIONs/ 

dendrimeric 
(Taratula et al., 2011a) 

αvβ6 - s.c. human lung cancer cells liposomal (Gray et al., 2013) 

αvβ3, neuropilin-1 - s.c. human lung cancer cells peptide-based (Shen et al., 2013) 

DR 4/5, ES ligand - i.v. human colon cancer cells liposomal (Mitchell et al., 2014) 

transferrin receptor - s.c. human lung cancer cells lipid-based 
(Guo et al., 2015; Han 

et al., 2014) 

EphA2 - i.v., sur. human lung cancer cells lipid-based (Patel et al., 2014a) 
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LDLR irradiation 
i.v. murine breast cancer cells, 

transgenic (EML4-ALK) 
B/Gd-based (Alberti et al., 2015) 

folate receptor - s.c. human lung cancer cells liposomal (Morton et al., 2014) 

laminin receptor - s.r. murine melanoma cells polymeric (Sarfati et al., 2011) 

phosphatidylserine pH 
s.c. human lung cancer cells, 

i.v. murine lung cancer cells 

protein 

/lipid-based 
(Zhao et al., 2015) 

PSMA - s.c. human lung cancer cells polymeric (Hrkach et al., 2012) 

HER2 irradiation s.c. human lung cancer cells Au/Ag-based (Shi et al., 2014) 

IGF-1R 
magnetic 

field 
s.c. human lung cancer cells 

magnetic 

lipoplexes 
(Wang et al., 2011) 

GC4 - i.v. murine melanoma cells 
liposomal/     

protein-based 
(Chen et al., 2010) 

CD47 - i.v. murine melanoma cells 
liposomal/     

protein-based 
(Wang et al., 2013) 

NSCLC - s.c. human lung cancer cells 
peptide-based/ 

dendrimeric 
(Liu et al., 2011) 

clotted plasma 

proteins 
- i.v., i.t. human lung cancer cells lipid-based (Patel et al., 2014b) 

neoplasms irradiation i.v. murine colon carcinoma cells protein-based (Yang et al., 2010) 

CD44: cluster of differentiation 44, DR 4/5: death receptor 4/5, LHRHR: luteinizing hormone releasing 

hormone receptor, αvβ6: alpha-v beta-6 integrin, ES: E-selectin, EphA2: ephrin type-A receptor 2, LDLR: low 

density lipoprotein receptor, PSMA: prostate-specific membrane antigen, IGF-1R: Insulin-like growth factor 1 

receptor, CD47: cluster of differentiation 47, s.c.: subcutaneous, i.v.: intravenous, i.t.: intratracheal, 

s.r.: subretinal, sur.: surgical, SPIONs: superparamagnetic iron oxide nanoparticles 

 

1.2.4.2 Clinical studies of nanomedicines for lung cancer treatment 

Nanomedicines ultimately aim for targeted delivery of the agents and eliminate adverse side 

effects by avoiding off-route targets. The very first FDA-approved nanoparticle-based drug is 

called Doxil and it has been in use to treat several malignancies such as refractory metastatic 

ovarian cancer and AIDS-related Kaposi's Sarcoma for over 20 years (Barenholz, 2012). 

Doxil is a PEGylated liposomal formulation of doxorubicin and its therapeutic efficacy is 

based on the EPR effect. Patients treated with Doxil present with less side-effects and 

prolonged survival rates. Doxil was also evaluated for treatment of lung tumors of NSCLC, 

SCLC, or mesothelioma either as a monotherapeutic agent or in combination with other 

agents in phase I to III clinical trials and resulted in promising efficacies (clinicaltrials.gov) 

(Koukourakis et al., 2002; Numico et al., 2002; Patlakas et al., 2005; Samantas et al., 2000; 

Skubitz, 2002; Tsoutsou et al., 2008). Yet, the first FDA-approved nano-based drug for lung 

cancer treatment is a nanoformulation of albumin-bound paclitaxel called nab-Paclitaxel, 
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Abraxane (Bölükbas and Meiners, 2015). Abraxane is applied as a combination therapy in 

patients with advanced or metastatic NSCLC. Approval of the first nano-based lung cancer 

drug has led to several studies investigating its application further on NSCLC and SCLC 

(Grilley-Olson et al., 2015; Lammers et al., 2015; Langer et al., 2014). Likewise, a liposomal 

formulation of cisplatin, called Lipoplatin, was also developed and evaluated for NSCLC and 

mesothelioma treatment in several studies (Fantini et al., 2010; Stathopoulos et al., 2011). 

These studies resulted in at least a comparable therapeutic efficacy but with significantly less 

toxicity in comparison to cisplatin (Stathopoulos and Boulikas, 2011). 

More examples of nanomedicines in the clinics are given in Table 1.5. Genexol-PM which is 

a polymeric micellar formulation of paclitaxel, has been the second agent to be clinically 

approved for lung cancer therapy (in East Asia). Genexol-PM has shown significant 

therapeutic efficacy in advanced NSCLC patients when combined with cisplatin in Phase II 

trials (Kim et al., 2007), yet there have been some studies reporting some adverse effects of 

Genexol-PM treatment as well (Ahn et al., 2014; Kim et al., 2011). 

 

Table 1.5 Clinical nanomedicines for lung cancer treatment (Bölükbas and Meiners, 2015) 

Product Formulation Company Indication Phase 

Abraxane albumin-bound paclitaxel Celgene Co. NSCLC FDA-approved 

Genexol-PM paclitaxel-loaded micelle Samyang Co. NSCLC approved 

Paclitaxel 

poliglumex 
polyglutamate paclitaxel CTI BioPharma NSCLC III 

MPDL3280A anti-PDL1 antibody Genentech NSCLC III 

Tecemotide liposomal vaccine Oncothyreon NSCLC III 

Doxil liposomal doxorubicin Johnson & Johnson SCLC II 

BIND-014 targeted docetaxel Bind Therapeutics NSCLC II 

CRLX101 
polycyclodextrin 

camptothecin 
Cerulean Pharma SCLC II 

NKTR 102 PEGylated irinotecan Nektar Therapeutics lung metastases II 

Kadcyla Ab-emtansine conjugate Genentech NSCLC II 

IMMU-132 Ab-SN-38 conjugate Immunomedics inc NSCLC I/II 

IMGN901 Ab-mertansine conjugate ImmunoGen SCLC I/II 
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NC-6004 micellar cisplatin NanoCarrier Co. NSCLC I/II 

MM-398 liposomal irinotecan 
Merrimack 

Pharmaceuticals 
NSCLC I 

DNIB0600A Ab-MMAE conjugate Genentech NSCLC I 

AuroShell Gold-silica nanoshells 
Nanospectra 

Biosciences 
lung cancer I 

 

 

1.2.5 Challenges of nanomedicines 

In spite of the tremendous amount of publications within the last decades on lung cancer 

nanomedicines, pulmonary application of these agents is undoubtedly restricted by their 

potential toxic and inflammatory side-effects (Ferreira et al., 2013). Yet, there are additional 

challenges to achieve the complete translation of nanomedicines for lung disease therapy 

(Bölükbas and Meiners, 2015). Generation of novel clinical nanotherapies heavily depends 

on new technologies in nanoparticle formulations, discoveries of novel cell-specific 

receptors, findings about tumor-heterogeneity and microenvironment, and use of realistic 

animal models. Moreover, biomarkers of different types of lung tumors must be identified in 

detail for a more personalized application (Network, 2012; Rizvi et al., 2015; Schulze et al., 

2015; Suzuki et al., 2015). At this step, having limited information on different cell-specific 

receptors of lung tumors is the first drawback active targeted nanotherapies face. 

Furthermore, in a large number of studies, validation analyses involving nanoparticle 

penetration in targeted tissue/organ and accumulation of particles in targeted cells in 

appropriate animal models in cellular resolution are often ignored. 

Another inevitable challenge the nanomedicine society faces is the mass production and 

characterization of the nanoparticles as well as to meet the demands of FDA or EMA for 

clinical approval. Moreover, sophisticated nanoformulations suffer from reproducibility and 

stability. Collectively, numerous factors burden the clinical translation of nanomedicines with 

high costs and risks. An alternative approach to tackle these problems could start with a close 

interaction between all partners including academia, pharmaceutical industry, and physicians. 
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2 Aims of the study 

 
Despite recent advancements, lung cancer remains to be the most common cause of deaths 

among all malignancies. The majority of the patients are treated with conventional 

chemotherapy which is however limited due to its serious side effects and acquired 

resistance. Recent studies encourage the use of stimuli-responsive nanocarriers for a more 

targeted treatment of diseases with lower systemic toxicity. Nanomedicines also have the 

potential for combinatorial targeting of lesions as well as delivery of a combination of drugs 

within the same system. In this regard, novel mesoporous silica nanoparticles (MSNs) offer 

numerous advantages for controlled drug delivery; nevertheless, their stringent in vitro and in 

vivo characterization requires further investigation before reaching the bedside. 

 

Therefore, the overall goal of this study was to explore whether MSNs are suitable 

nanocarriers for lung cancer therapy. Our analyses were designed to supply information on 

how different functionalizations on the nanoparticles would affect their biodistribution and 

biocompatibility in different biological models and routes of delivery. 

 

To achieve these goals, local biodistribution, preferential uptake as well as the effects of 

protein-functionalization on the nanoparticles in the lung were initially compared. Then, 

biocompatibility and tumor site-associated enzyme-responsive controlled release of 

chemotherapeutic agents encapsulated in the particles were validated in various in vitro and 

ex vivo models. Next, lung cancer cell- and tumor-associated macrophage-specific targeting 

of these nanoparticles for combination therapy was demonstrated in vitro. Finally, the MSNs 

were examined for receptor-specific targeting in mouse cancer models for both intravenous 

and intratracheal administration. 

 

Taken together, this study should provide detailed information on the advantages and the 

feasibility of distinctly functionalized stimuli-responsive targeted mesoporous silica 

nanoparticles for use in lung cancer therapy. 
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3 Materials and methods 
 

3.1 Materials 
 

3.1.1 Reagents and chemicals 
 

The following reagents and chemicals were used during the study: 

 
Table 3.1 Reagents and chemicals 

Reagent Solvent 
Stock 

concentration 
Manufacturer 

2,5-diphenyltetrazolium bromide (MTT) - - Sigma-Aldrich (St. Louis, MO) 

2-mercaptoethanol - - 
AppliChem 

(Darmstadt, Germany) 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) 
- - AppliChem 

4′,6-diamidin-2-phenylindol (DAPI) PBS 300 nM Sigma-Aldrich 

Acetic acid - absolute AppliChem 

Acrylamide/bisacrylamide solution H2O 30% Carl Roth (Karlsruhe, Germany) 

Agarose (low gelling temperature) - - Sigma-Aldrich 

Amphotericin B H2O 250 µg/mL Sigma-Aldrich 

Annexin V-FITC - - BD Biosciences (San Jose, CA) 

ATTO-488 mal - - ATTO-TEC (Siegen, Germany) 

ATTO-633 mal - - ATTO-TEC 

Avidin from egg white - - Merck Millipore (Billerica, MA) 

Bortezomib - - Millennium (Cambridge, MA) 

Bromophenol blue - - AppliChem 

Calcein acetoxymethyl ester (calcein-AM) - - Sigma-Aldrich 

cis-Diamineplatinum(II) dichloride (cisplatin) - - Sigma-Aldrich 

Citric acid monohydrate - - AppliChem 

cOmplete® protease inhibitor - - Roche (Basel, Switzerland) 

DAKO fluorescent mounting medium - - Dako (Hamburg, Germany) 

Dimethyl sulfoxide (DMSO) - - Carl Roth 

ECL Plus detection reagent - - 
GE Healthcare 

(Chalfont St Giles, UK) 

ECL1i peptide: CKLFTGL (ECL1i) - - GenScript (Nanjing, China) 

Entellan - - Merck Millipore 
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Eosin - - Carl Roth 

Ethanol - absolute AppliChem 

Ethylenediaminetetraacetate (EDTA) - - AppliChem 

Fetal bovine serum (FBS) - - 
PAA Laboratories 

(Pasching, Austria) 

GE11 peptide: YHWYGYTPQNVI (GE11) - - GenScript 

Gelatin (from porcine skin) - - Sigma-Aldrich 

Glycerol H2O 87% AppliChem 

Hank’s Balanced Salt Solution (HBSS) - - Life Technologies (Carlsbad, CA) 

Hematoxylin - - Carl Roth 

Hoechst 33342 - - 
Enzo Life Sciences 

(Farmingdale, NY) 

Hydrochloric acid H2O 37% AppliChem 

Hydrogen peroxide H2O 30% Sigma-Aldrich 

IGEPAL CA-630 - - Sigma-Aldrich 

Isopropanol - absolute Fisher Scientific (Hampton, NH) 

Ketamin - - Bela Pharm (Vechta, Germany) 

MACH 2 rabbit AP-polymer - - Biocare (Concord, CA) 

Magnesium chloride - - AppliChem 

Mannitol - - Sigma-Aldrich 

Methanol 
 

absolute AppliChem 

MMP9-cleavable heptapeptide: PLGMWSR - - GenScript 

MMP9-noncleavable heptapeptide: PLLMWSR - - GenScript 

Paraformaldehyde (PFA) PBS 4% AppliChem 

Penicillin/streptomycin - - Life Technologies 

Phalloidin - - Life Technologies 

Pierce BCA protein assay kit - - 
Thermo Fisher Scientific 

(Waltham, MA) 

Pierce silver stain kit - - Thermo Fisher Scientific 

Potassium chloride - - AppliChem 

Propidium iodide staining solution - - BD Biosciences 

Protein marker VI (10 - 245) prestained - - AppliChem 

Proteinase K - - AppliChem 



Materials and methods 

25 

Puromycin dihydrochloride (puromycin) HEPES 10 mg/mL Life Technologies 

Recombinant EGF protein - - PeproTech (Rocky Hill, NJ) 

Recombinant MMP9 protein - - Enzo Life Sciences 

Rodent block M - - Biocare 

Roti®-Block H2O 10x Carl Roth 

Roti®-Immunoblock H2O 10x Carl Roth 

SatisFection transfection reagent - - 
Agilent Technologies 

(Santa Clara, CA) 

Sodium chloride - - AppliChem 

Sodium deoxycholate - - Carl Roth 

Sodium pyruvate - - AppliChem 

Sodiumdodecylsulfate (SDS) - - AppliChem 

Tetramethylethylenediamine (TEMED) - - AppliChem 

Tissue-Tek® O.C.T. compound - - Sakura (Leiden, the Netherlands) 

Tris(hydroxymethyl)-aminomethane (Tris) - - AppliChem 

Triton™ X-100 - - Life Technologies 

Tween-20 - - AppliChem 

Vulcan Fast Red - - Biocare 

WST-1 assay - - Roche 

Xylazine hydrochloride - - Bela Pharm 

Xylene - absolute AppliChem 

 

3.1.2 Buffer formulations 
 

The following buffers were used in the study. All buffers were prepared with Milli-Q™ water 

if not stated otherwise. 

 
Table 3.2 Buffer formulations 

Buffer Compounds Concentration 

Annexin V binding buffer pH 7.4 

HEPES 10 mM 

NaCl 140 mM 

CaCl2 2.5 mM 
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Citrate buffer pH 6 
Citric acid monohydrate 1.8 mM 

Sodium citrate tribasic 8.2 mM 

FACS buffer (in PBS) 
FBS 2% 

EDTA 20 µM 

Phosphate buffered saline (PBS) pH 7.4 

NaCl 137 mM 

KCl 2.7 mM 

Na2HPO4 10 mM 

KH2PO4 2 mM 

RIPA buffer pH 7.5 

Tris 50 mM 

NaCl 150 mM 

IGEPAL CA-630 1% 

Sodium deoxycholate 0.50% 

SDS 0.10% 

SDS PAGE running buffer 

Tris 25 mM 

Glycin 192 mM 

SDS 0.10% 

Tris buffered saline and Tween (TBST) pH 7.6 

Tris 20 mM 

NaCl 135 mM 

Tween-20 0.02% 

Western blot transfer buffer 

Tris 25 mM 

Glycine 192 mM 

Methanol 10% 

6x Laemmli buffer 

Tris 300 mM 

Glycerol 50% 

SDS 6% 

Bromophenol blue 0.01% 

DTT 600 mM 
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3.1.3 Antibodies and applications 
 

Antibodies used for production of the presented data were: 
 

Table 3.3 Primary antibodies used for analyses 

Antibody Host Manufacturer Product No Dilution 

Anti-T1α Gt R&D Systems (Minneapolis, MN) AF3244 IHF 1:100 

Anti-pro-SPC Rb Merck Millipore (Billerica, MA) AB3786 IHF 1:1000 

Anti-Kras Ms Santa Cruz (Dallas, TX) SC30 IHF 1:100 

Anti-MMP9 Rb Merck Millipore AB19016  
IHC 1:100 

IHF 1:100 

Anti-E-cadherin Ms BD Biosciences (San Jose, CA) 610181 IHF 1:200 

Anti-cleaved caspase-3 Rb Cell Signaling (Cambridge, UK) 9661 
WB 1:1000 

ICF 1:100 

Anti-EGFR  Rb Abcam (Cambridge, UK) Ab52894 

WB 1:100000* 

ICF 1:200 

IHC 1:100 

IHF 1:100 

Anti-CCR2 Rb Novus Biologicals (Littleton, CO) NB110-55674 

WB 1:1000 

ICF 1:500 

IHC 1:1000 

IHF 1:100 

Anti-CD68 Ms Novus Biologicals NBP1-55674 IHF 1:50 

Anti-α-tubulin Ms GeneTex (Irvine, CA) GTX628802 WB 1:1000 

Anti-β-Actin 

(HRP conjugated) 
Ms Sigma-Aldrich (St. Louis, MO) A5228 WB 1:40000 

Gt: goat, Rb: rabbit, Ms: mouse, * for WB analysis of murine B16F10 clones, the dilution factor for 

the EGFR antibody was 1:10000. 
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Table 3.4 Secondary antibodies used for analyses 

Antibody Host Manufacturer Product No Dilution 

Anti-rabbit IgG 

(Alexa Fluor 488 conjugated) 
Gt  Invitrogen (Carlsbad, CA) A11008 IHF/ICF 1:750 

Anti-mouse IgG 

(Alexa Fluor 488 conjugated) 
Gt  Invitrogen A11001  IHF/ICF 1:750 

Anti-rabbit IgG 

(Alexa Fluor 568 conjugated) 
Gt  Invitrogen A11011 IHF/ICF 1:750 

Anti-mouse IgG 

(Alexa Fluor 568 conjugated) 
Gt  Invitrogen A11004 IHF/ICF 1:750 

Anti-mouse IgG 

(HRP conjugated) 
Gt Cell Signaling 7076 WB 1:40000 

Anti-rabbit IgG 

(HRP conjugated) 
Gt Cell Signaling 7074 WB 1:40000 

Gt: goat 

 

 

3.1.4 Laboratory equipment and software 
 

The following laboratory equipment and software were used in the study. 

 
Table 3.5 Laboratory equipment used for the study 

Product Manufacturer 

-20°C freezer MediLine LGex 410 Liebherr, Biberach, Germany 

-80°C freezer U570 HEF New Brunswick, Hamburg, Germany 

Analytical scale XS20S dual range Mettler-Toledo, Gießen, Germany 

Autoclave DX-45 Systec, Wettenberg, Germany 

Autoclave VX-120 Systec, Wettenberg, Germany 

Axiovert 40 C light microscope Zeiss, Jena, Germany 

BD LSR II flow cytometer BD Biosciences, Franklin Lakes, NJ 

Cell culture bench Herasafe KS180 Thermo Fisher Scientific, Waltham, MA 

Centrifuge MiniSpun plus Eppendorf, Hamburg, Germany 

Centrifuge Rotina 420R Hettich, Tuttlingen, Germany 

Centrifuge with cooling, Micro200R Hettich, Tuttlingen, Germany 

CO2 cell incubator BBD6620 Thermo Fisher Scientific, Waltham, MA 

Confocal microscope LSM 710 Zeiss, Jena, Germany 

Decloaking chamber Biocare Medical, Concord, CA 

Dismembrator S Sartorius, Göttingen, Germany 
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Dry ice container Forma 8600 Series Thermo Fisher Scientific, Waltham, MA 

Electronic pipette filler Eppendorf, Hamburg, Germany 

Electrophoretic transfer cell Bio-Rad, Hercules, CA 

Film developer Curix 60 Agfa, Morsel, Belgium 

Fume cupboard Vinitex, Sint-Oedenrode, the Netherlands 

Gasprofi 1 SCS micro gas burner WLC-TEC, Göttingen, Germany 

Gel Doc EZ imager Bio-Rad, Hercules, CA 

Gel imaging system ChemiDOC XRS+ Bio-Rad, Hercules, CA 

Hyrax C 50 cryotome Zeiss, Jena, Germany 

Hyrax M 55 microtome Zeiss, Jena, Germany 

Hyrax V 50 vibratome Zeiss, Jena, Germany 

Ice machine ZBE 110-35 Ziegra, Hannover, Germany 

Intelli-mixer RM-2 Omnilab, Munich, Germany 

Liquid nitrogen cell tank BioSafe 420SC Cryotherm, Kirchen/Sieg, Germany 

Liquid nitrogen tank Apollo 200 Cryotherm, Kirchen/Sieg, Germany 

Magnetic stirrer KMO 2 basic IKA, Staufen, Germany 

Mastercycler gradient Eppendorf, Hamburg, Germany 

Mastercycler Nexus Eppendorf, Hamburg, Germany 

Microm HMS 740 robot stainer Thermo Fisher Scientific, Waltham, MA 

Microm STP 420D tissue processor Thermo Fisher Scientific, Waltham, MA 

Milli-Q™ advantage A10 

ultrapure water purification system 
Merck Millipore, Darmstadt, Germany 

Minicentrifuge MCF-2360 Omnilab, Munich, Germany 

Mirax scanner Zeiss, Jena, Germany 

Multipipette stream Eppendorf, Hamburg, Germany 

Nalgene freezing container Omnilab, Munich, Germany 

pH meter InoLab pH 720 WTW, Weilheim, Germany 

Pipettes research plus Eppendorf, Hamburg, Germany 

Plate centrifuge 5430 Eppendorf, Hamburg, Germany 

Plate reader Sunrise Tecan, Crailsheim, Germany 

Plate reader TriStar LB941 Berthold Tech., Bad Wildbach, Germany 

PowerPac HC power supply Bio-Rad, Hercules, CA 
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Roll mixer VWR International, Darmstadt, Germany 

Scale XS400 2S Mettler-Toledo, Gießen, Germany 

Shaker Duomax 1030 Heidolph, Schwabach, Germany 

Thermomixer compact Eppendorf, Hamburg, Germany 

Vacuum pump N 022 AN.18 KNF, Freiburg, Germany 

Vortex mixer IKA, Staufen, Germany 

Water bath, Aqua Line AL 12 Lauda, Lauda-Königshofen, Germany 

 

 
Table 3.6 Software used for the study 

Product Manufacturer 

FlowJo 7.6.5 FlowJo LLC, Ashland, OR 

GraphPad Prism 5 GraphPad Software, La Jolla, CA 

Image Lab version 4.0 Bio-Rad, Hercules, CA 

ImageJ 1.46r NIH, Bethesda, MD 

Imaris 7.6.4 Bitplane, Zurich, Switzerland 

Magellan software Tecan, Crailsheim, Germany 

Microsoft Office professional plus 2010 Microsoft, Redmond, USA 

Pannoramic Viewer 1.15.1 3DHISTECH, Budapest, Hungary 

Tristar MicroWin 2000 Berthold Technologies, Bad Wildbach, Germany 

 

3.1.5 Consumables 
 

The consumables used for this study are as follows. 

 

Table 3.7 Consumables used for the study 

Product Manufacturer 

6-24-96 well plates TPP, Trasadingen, Switzerland 

Cell culture dishes Nunc, Wiesbaden, Germany 

Cell culture flasks Nunc 

Cryovials Greiner Bio-One, Frickenhausen, Germany 

Falcon tubes BD Biosciences, Franklin Lakes, NJ 

Film X-Omat LS (Kodak) Carestream Health, Rochester, NY 
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Filtered pipette tips Biozym Scientific, Hessisch Oldendorf, Germany 

Glass pasteur pipettes VWR International, Darmstadt, Germany 

Nalgene cryogenic tubes Thermo Fisher Scientific, Waltham, MA 

Pipette tips Eppendorf, Hamburg, Germany 

Polyvinylidene fluoride (PVDF) membrane Bio-Rad, Hercules, CA 

QuadriPERM dishes Nunc 

Reaction tubes Eppendorf 

Sterican cannulas BD Biosciences 

Superfrost™ ultra plus adhesion slides Thermo Fisher Scientific 

Syringes Neolab, Heidelberg, Germany 

Whatman blotting paper (3 mm) GE Healthcare, Freiburg, Germany 

 

3.1.6 Human tissue 
 

All experiments with human material were approved by the Ethics Committee of the Ludwig-

Maximilians-University Munich, Germany (LMU, project no. 455-12). The tissues were 

provided by the Asklepios Biobank for Lung Diseases, Gauting, Germany (project no. 

333-10). Written informed consent was received from all subjects. Tumorous or tumor-free 

tissues from patients who were surgically treated for lung cancer were used. 

 

 

3.2 Synthesis of mesoporous silica nanoparticles (MSNs) 
 

The core-shell functionalized MSNs have been synthesized by a delayed co-condensation 

approach resulting in functionalization of the internal pore system with thiol groups and the 

external particle surface with amino groups as described before (Cauda et al., 2009) in 

collaboration with the research group of Thomas Bein at the Physical Chemistry Department 

of the Ludwig-Maximilians-University Munich. The additional core functionalization offers a 

site for covalent attachment of fluorescent dyes for particle tracking in in vitro and in vivo 

studies. The external amino functionalization was used to attach a linker system with avidin 

as the bulky gatekeeper. Subsequently, different targeting ligands were covalently attached 

on the outer periphery of the particles and the synthesized particle system was used for in 

vitro and in vivo uptake studies. 
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3.3 Cell culture 
 

3.3.1 Cell growth and maintenance 
 

Cells were grown at 37°C in a humidified atmosphere containing 5% CO2. Growth medium 

of the cells (Table 3.8) was changed every two to three days. All cell lines were grown until 

100% confluency before passaging into a new cell culture flask. The following growth media 

were used. All growth media were obtained from Life Technologies. 

 

Table 3.8 Cell culture media 

Cell line ATCC no Medium Product no Supplementation 

human NSCLC cell line 

A549 
CCL-185™ DMEM 21885-025 

10% FBS 

1% Penicillin/streptomycin 

human NSCLC cell line 

H1299 
CRL-5803™ DMEM 21885-025 

10% FBS 

1% Penicillin/streptomycin 

human NSCLC cell line 

H520 
HTB-182™ 

RPMI 

1640 
21875-034 

10% FBS 

1% Penicillin/streptomycin 

mouse melanoma clones 

B16F10 
CRL -6475™ DMEM 21885-025 

10% FBS 

1% Penicillin/streptomycin 

2 ng/µL Puromycin 

mouse lung epithelial cell line 

MLE-12 
CRL-2110™ 

RPMI 

1640 
21875-034 

10% FBS 

1% Penicillin/streptomycin 

mouse alveolar macrophage cell line 

MH-S 
CRL-2019™ 

RPMI 

1640 
21875-034 

10% FBS 

1% Penicillin/streptomycin 

10 mM HEPES 

1 mM Sodium pyruvate 

0.05 mM 2-mercaptoethanol 
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3.3.2 Metabolic activity assessment 
 

3.3.2.1 MTT reduction 
 

The MTT assay was performed to assess cell viability after exposure to the MSNs in vitro. 

MLE-12, MH-S, A549, and H1299 cells were seeded in 96-well plates. In the case of 

transiently transfected A549 and H1299 cells, 24 h after seeding, the cells were transfected 

with 0.15 μg MMP9 cDNA (DNASU) or empty vector cDNA per well using SatisFection 

transfection reagent (Agilent Technologies), according to manufacturer's instructions. 24 h 

after seeding (for MLE-12 and MH-S cells) and 24 h after transfecting (for A549 and H1299 

cells), the cells were exposed to the corresponding concentrations of nanoparticle suspensions 

for the presented time-points. After the exposure, 10 μL of fresh 5 mg/mL thiazolyl blue 

tetrazolium bromide (MTT, Sigma-Aldrich) was added to each well and the cells were 

incubated at 37°C for 1 h. Later, the supernatant was removed and the violet crystals were 

dissolved in isopropanol with 0.1% Triton X-100 solution. Absorbance was measured at 

570 nm with a Tristar LB 941 plate-reader (Berthold Technologies). 

 

3.3.2.2 WST-1 assay 
 

Metabolic activity of MLE-12 and MH-S cells upon empty MMP9-cleavable MSNs (cMSNs) 

exposure was assessed by the WST-1 assay (Roche). MLE-12 and MH-S cells were seeded in 

96-well plates. 24 h after seeding, the cells were exposed to either cMSNs or 

MMP9-noncleavable MSNs (ncMSNs) for 4 or 24 h. After treatment, 10 μL of WST-1 

reagent was added to each well, and the cells were incubated at 37°C for 30 min. Absorbance 

was measured at 450 nm with a Tristar LB 941 plate-reader (Berthold Technologies). 

 

3.3.3 Live/dead assay with Annexin V/PI 
 

Induction of apoptosis or necrosis was investigated in A549 and H1299 cells using 

Annexin V-FITC and propidium iodide (PI) double staining (BD Biosciences). Cells were 

seeded in 6-well plates and incubated for 24 h. Then the cells were treated with either 

MSNAVI or MSNNH2 for 4 or 24 h. The medium containing particles was then aspirated and 

the cells were washed, trypsinized, and stained with Annexin V-FITC and propidium iodide 

in binding buffer for 15 min at 37°C. Samples were then measured by flow cytometry using 

Becton Dickinson LSRII and analyzed with FlowJo software (version 7.6.5). 

 



Materials and methods 

34 

3.3.4 Calcein-AM release experiments 
 

The release of calcein acetoxymethyl ester (calcein-AM, Sigma-Aldrich) from the particles, 

hence the staining of the cells was assessed by confocal microscopy analysis. Freshly 

prepared calcein-AM containing cMSN or ncMSN particles were incubated with 0, 1, or 

2 μg/mL recombinant MMP9 for 2 h at 37°C in a thermoblock shaking at 700 rpm. After the 

incubation time, the particles were removed by centrifugation, and the cells were incubated 

with the supernatants for 30 min, so that the released calcein-AM could be taken up by the 

living cells. Afterwards, the nuclei of the cells were counterstained with Hoechst 33342. Live 

cell imaging was performed using the confocal microscope LSM 710 (Zeiss). 

 

3.3.5 Flow cytometry 
 

A549, H520, and MH-S cells were plated on 6-well plates and incubated overnight. The next 

day, the cells were treated with ATTO 488 or ATTO 633-labeled nanoparticles for 1 h. 

Afterwards, the cells were washed three times with PBS, once with NaCl (0.15 M, pH 3.0), 

and then three times with PBS again to create a final cell suspension. Samples were then 

analyzed by flow cytometry (BD LSRII). MSN uptake in different cell types was quantified 

by the median fluorescence signal collected in the Alexa Fluor 488 or 647 channels with 

FlowJo software (version 7.6.5). 

 

3.3.6 Genetic engineering for flank tumor models 
 

C57BL/6 mouse Lewis lung carcinoma (LLC) and B16F10 skin melanoma cells were 

obtained from the NCI Tumor Repository. For RNA interference, the following proprietary 

lentiviral shRNA pools were obtained from Santa Cruz Biotechnology: random control 

shRNA (shC, sc-108080), GFP control (sc-108084), anti-EGFR-shRNA (sc-29302-V). Stable 

transfections of the LLC and B16F10 cells were generated by the Stathopoulos Laboratory 

for Molecular Respiratory Carcinogenesis at the University of Patras in Greece. 
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3.4 Human and mouse 3D lung tissue cultures (3D-LTCs) 
 

The whole 3D-lung tissue culturing procedure was conducted under sterile conditions and 

performed as described before (Uhl et al., 2015). WT FVB as well as Kras mutant mice with 

lung tumor burden were anaesthetized with a mixture of ketamine and xylazin hydrochloride. 

Kras mice of approximately three months of age that had several tumor lesions in each lung 

tissue slice were used. After intubation and diaphragm dissection, lungs were perfused via the 

right ventricle with sodium chloride solution. Using a syringe pump, airways were filled with 

warm 2% (w/v) low gelling temperature agarose solution prepared in DMEM/F12 (Life 

Technologies) supplemented with 1x penicillin/streptomycin and amphotericin B. Later, 

tracheae were knotted with a thread to keep the liquid agarose inside the airways. Afterwards, 

the lungs were excised and transferred into tubes loaded with cultivation medium, left to cool 

on ice to allow for the solidification of the agarose. Finally, lobes were separated and cut with 

the Hyrax V55 vibratome to a thickness of 200 μm. The 3D-LTCs were cultivated for up to 

3 days in 24-well plates. The amount of sections per mouse varied between 30 and 50 slices. 

Directly after cutting, mouse 3D-LTCs were exposed to 0.2 or 1 mM cisplatin, combination 

therapy (0.2 mM cisplatin and 0.2 µM bortezomib, CB), or 50 μg/mL ATTO 633-labeled 

MSN particles containing cisplatin or CB, administered directly into the medium. For human 

3D-LTCs, tumorous and tumor-free regions excised from lung cancer surgeries were used. 

Airways at tumor-free segments were filled with 3% (w/v) agarose dissolved in DMEM/F12 

as described above, via the respective bronchi. Both the tumorous and tumor-free segments 

were then cut to a thickness of 300 μm with the vibratome. Directly after cutting, mouse and 

human 3D-LTCs were exposed to 50 μg/mL of MSN particles containing cisplatin and/or 

bortezomib, administered directly into the medium for 24-72 h. 

 

3.5 Animal experiments 
 

Animal experiments were conducted in collaboration with the research groups of Tobias 

Stöger at the Comprehensive Pneumology Center Munich and Georgios Stathopoulos at the 

University of Patras. MSN instillations to WT BALB/c mice for the pulmonary uptake and 

biodistribution study were conducted by David Kutschke at the research group of Tobias 

Stöger. Subcutaneous (s.c.) flank tumor formation, intravenous delivery of targeted-MSNs, 

and dissections of the treated mice were conducted at the University of Patras by Malamati 

Vreka from the research group of Georgios Stathopoulos. In all other cases, maintenance, 
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characterization, nanoparticle application, tissue extraction, and subsequent analysis were 

performed by Deniz A. Bölükbas in collaboration with Charlotte Meyer-Schwickerath. 

 

3.5.1 Animals and maintenance 
 

Animal experiments were carried out according to the German law of protection of animal 

life and were approved by an external review committee for laboratory animal care. 

 

3.5.1.1 BALB/c WT mice for IT application of MSNs 
 

8–12 week-old female BALB/cAnNCrl mice (Charles River Laboratories) were 

intratracheally instilled, as previously described (Stoeger et al., 2006). 1, 3, or 7 d 

post-instillation, mice were sacrificed with an overdose of ketamine (188.3 mg per kg body 

weight) and xylazine hydrochloride solution (4.1 mg per kg body weight) (bela-pharm, 

Germany). 

 

3.5.1.2 C57BL/6 double flank tumor mice for IV application of MSNs 

 

C57BL/6 mice were obtained from Jackson Laboratories (Bar Harbor) and were bred at the 

Center for Animal Models of Disease of the University of Patras. Experiments were approved 

a priori by the Veterinary Administration of the Prefecture of Western Greece, and were 

conducted according to Directive 2010/63/EU. Experimental mice were sex-, weight-, and 

age-matched. For induction of solid tumors, mice were anesthetized using isoflurane 

inhalation and received s.c. injections of 100 µL PBS containing 0.5 x 10
6
 LLC or B16F10 

clones. Two weeks after s.c. inoculation of EGFR-abundant and EGFR-scarce LLC and 

B16F10 tumor clones, 1 mg ATTO 633-labeled MSNAVI or MSNGE11 particles suspended in 

200 µL Hank’s Balanced Salt Solution (HBSS) was applied to each mouse retro-orbitally. 

The mice were sacrificed with an overdose of isoflurane three days after the administration.  

 

3.5.1.3 Kras mutant mice with lung tumors for IT application of MSNs 
 

129S/Sv-Kras
tm3Tyj

/J (Kras
LA2

) mutant mice were obtained from the Jackson Laboratory, 

USA, and cross-bred with FVB-NCrl WT females obtained from Charles River Laboratories, 

Germany, for over seven generations. Animals were kept in rooms maintained at constant 

temperature and humidity with a 12/12 h light/dark cycle and were allowed food and water 

ad libitum. Animal experiments were carried out according to the German Law of Protection 

of Animal Life and were approved by an external review committee for laboratory animal 
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care. 12 week-old Kras
LA2

 mutant mice were intratracheally instilled with ATTO 633-labeled 

targeted or non-targeted MSNs, as described previously (Stoeger et al., 2006). Three days 

post-instillation, the mice were sacrificed with an overdose of ketamine (188.3 mg/kg) and 

xylazine hydrochloride (4.1 mg/kg) (bela-pharm). Lung lobes from each group (n = 5 mice 

per group) were excised and prepared for cryoslicing. 

 

3.6 Protein analysis 
 

3.6.1 Immunofluorescence analysis in cryo-sections (IHF) 
 

For local IT delivery studies, animals were sacrificed and the lungs were perfused via the 

right ventricle with sodium chloride solution. Airways were then filled with approximately 

1 mL Tissue-Tek (Sakura). Later, the lung lobes were separated, transferred into cryomolds, 

and covered with Tissue-Tek. For the systemic IV delivery experiment, internal organs as 

well as flank tumors were dissected and placed initially in 4% PFA overnight after which the 

suspension medium was exchanged to PBS. Representative parts of the organs were frozen in 

Tissue-Tek and kept at -80°C. Samples were left to freeze on dry ice and then stored at 

-80°C. For both experiments, 5 μm thick cryo-sections were sliced with the cryostat (Zeiss 

Hyrax C 50) and placed on Superfrost™ plus adhesion slides (Thermo Fisher Scientific). 

 

Immediately before staining, all cryo-sections were fixed with 4% (w/v) PFA for 10 min, 

then washed with PBS, and permeabilized with 0.5% Triton-X. The sections were incubated 

with Roti®-Immunoblock (Carl Roth) for 1 h at room temperature (RT), and then incubated with 

the corresponding primary antibodies at 4°C overnight. Afterwards, the sections were washed 

with PBS and incubated with Alexa Fluor 488 secondary antibody for 1 h at RT. After 

another PBS wash, the sections were finally stained with DAPI. In case phalloidin staining 

was used, the sections were first incubated with phalloidin (Life Technologies) for 45 min 

and then with DAPI for 10 min at RT directly after the fixation and washing step. The 

sections were mounted using fluorescence mounting medium (DAKO) and analyzed using 

confocal microscopy (LSM710, Carl Zeiss). Quantification of the cellular uptake of the 

MSNs in the tissues was conducted using the IMARISx64 software (version 7.6.4, Bitplane). 
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3.6.2 Immunohistochemistry (IHC) analysis in paraffin sections 
 

For paraffin embedding, fresh human and mouse tissues were fixed in 4% PFA solution 

overnight at 4°C. Of note, the mouse lungs were treated by intratracheal instillation of 

4% PFA in PBS before extraction. Specimens were then processed for paraffin embedding. 

3 μm thick paraffin sections were sliced with the microtome (Zeiss Hyrax M 55) and placed 

on superfrost plus adhesion slides. Deparaffinized sections were subjected to quenching of 

endogenous peroxidase activity using a mixture of methanol/H2O2 (3 mL 30% H2O2, 

7 mL distilled water, 40 mL methanol) for 20 min, followed by antigen retrieval in a 

decloaking chamber (30 sec at 125°C followed by 10 sec at 90°C). From this step on, the 

slides were washed with TBST (20 mM Tris, 135 mM NaCl, 0.02% Tween-20) after each 

incubation with the reagents throughout the procedure. The sections were incubated first with 

Rodent Block M for 30 min and then with the corresponding primary antibodies or IgG 

control for 1 h. The cuts were then incubated with Rabbit-on-Rodent AP-Polymer for 30 min, 

which was followed by Vulcan Fast Red AP substrate solution incubation for 10-15 min. 

Sections were counterstained with hematoxylin and dehydrated, respectively in consecutively 

grading ethanol and xylene (both AppliChem) incubations. Dried slides were mounted in 

Entellan (Merck Millipore). 

 

3.6.3 Immunocytofluorescence (ICF) 
 

A549, H520, and MH-S cells which were grown on coverslips were treated with ATTO 

633-labeled nanoparticles for 1 h. Afterwards, the cells were washed three times with PBS, 

then once with NaCl (0.15 M, pH 3.0), and then three times with PBS. Cells were fixed with 

70% ethanol and permeabilized with 0.1% Triton-X for 5 min. After another PBS wash, cells 

were incubated with Roti®-Immunoblock (Carl Roth) for 1 h at RT. Afterwards, A549 and 

H520 cells were stained with EGFR antibody (Abcam), whereas MH-S cells were stained 

with CCR2 antibody (Novus Biologicals) overnight at 4°C. The following day, the cells were 

incubated with the Alexa Fluor secondary antibodies for 1 h at RT, washed with PBS, 

incubated with DAPI for 10 min for nuclear staining, and then mounted with fluorescent 

mounting medium (Dako). 
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3.6.4 Zymography 
 

To assess catalytically active MMP-9 expression and transfection efficiency in A549 and 

H1299 cells, gelatin zymography was performed. In short, collected cell culture supernatants 

were centrifuged to discard cellular debris and then electrophoresed on 10% SDS-gels 

containing 1% gelatin substrate in non-reducing conditions (i.e., no 2-mercaptoethanol) at 

90-110 V at RT, so that the proteins could renaturate afterwards. After electrophoresis, the 

enzymes were renaturated by incubation with 2.5% Triton-X-100 in developing buffer 

(50 mM Tris, 200 mM NaCl, 5 mM CaCl2, pH 7.5) for 1 h at RT, to ensure that the proteins 

were catalytically active. Afterwards, the gels were incubated in developing buffer at 37°C 

for 24 h, to allow the enzyme reaction take place. Thereafter, the gels were stained using 

PAGE-Blue™ (Fermentas) protein staining, according to the manufacturer’s instructions. 

Gels were analyzed using the ChemiDoc
TM

 XRS+ software (Bio-Rad). 

 

3.6.5 Preparation of cellular protein lysates 
 

Prior to protein extraction, cells were trypsinized, washed with PBS and cell pellets were 

stored at -20°C until further processing. For preparation of denatured protein lysates, cell 

pellets were lysed by incubation in RIPA buffer supplemented with cOmplete® protease 

inhibitor cocktail (Roche) for 20-30 minutes at 4°C. Cell debris was removed from the 

protein lysate by centrifugation at 14,000 rpm at 4°C for 20 min. The supernatant containing 

the protein lysate was stored at -20°C until use. Protein content was assessed using the Pierce 

BCA protein assay kit (Thermo Fisher Scientific). 

 

3.6.6 Western blot analysis 
 

For Western blot analysis, 10-20 μg of protein lysates were mixed with 6x Laemmli buffer 

and incubated at 95°C for 5 min. After the incubation, samples were subjected to 

electrophoresis on 10% SDS-PAGE gels and blotted onto polyvinylidenedifluoride (PVDF, 

Bio-Rad) membranes. Electrophoretic separation in SDS gels was performed at 90-110 V at 

RT and transfer to PVDF membranes (Bio-Rad) was performed at 250 mA for 90 min at 4°C. 

Membranes were blocked using Roti®-Block (Carl Roth) and treated with antibodies using 

standard Western blot techniques. The ECL Plus Detection Reagent (GE Healthcare) and 

Super Signal West Femto (Thermo Fisher Scientific) were used for chemiluminescent 

detection and membranes were analyzed using X-Omat LS films (Carestream) in a Curix 60 

developer (Agfa).  
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3.6.7 Protein corona analysis 
 

100 µg MSNAVI and MSNGE11 were shaken overnight (16 h) either in cell culture medium in 

the presence of 10% FCS, human serum, or murine lung lining fluid (diluted in 1 mL PBS 

containing cOmplete® protease inhibitor cocktail, Roche) at RT. The suspension was 

centrifuged and the nanoparticles were resuspended in PBS three times (15,000 rpm, for 

30 min, at 4°C). The proteins adsorbed on the pelleted nanoparticles were eluted by 

incubating them at 95°C for 5 min in Laemmli buffer. The suspension was centrifuged again 

and the supernatant was subjected to electrophoresis on 10% SDS-PAGE gels. Silver staining 

was conducted as described in the instructions manual of the Pierce Silver Stain Kit (Thermo 

Fisher Scientific). The gels were scanned with the ChemiDoc XRS+ (Bio-Rad). 

 

3.7 Statistical analysis 
 

All MTT experiments were done in triplicates and the data are shown as means with standard 

deviation. For comparison of two groups, one-way ANOVA was performed. Therapeutic 

efficiency of the drug loaded particles on 3D-LTCs was assessed by immunofluorescent 

stainings with the apoptosis marker (cleaved caspase-3) for 15 different Kras mutant animals 

that were prepared and exposed to the MSNs or free drugs in three independent experiments. 

Similarly sized tumors were chosen for imaging from a minimum of three different mice per 

individual staining. Furthermore, each staining was performed a minimum of three times per 

mouse. For the experiments where cellular uptake of the targeted versus non-targeted 

nanoparticles were compared, Two-Way ANOVA analysis with Bonferroni post-tests was 

performed. In the flank tumor models, three representative images of five different mice were 

chosen for quantification which was blinded by using the IMARISx64 software (version 

7.6.4, Bitplane, Switzerland). For controls, four WT mice were treated with HBSS, stained 

and quantified with the same principle. For the IT delivery experiment, six adult Kras mutant 

mice with lung tumors were used. As controls, six mice were treated with non-targeted 

nanoparticles. All statistical analysis was performed using GraphPad Prism software (version 

5.00). Significance was illustrated in the figures as *: p < 0.05, **: p < 0.01 or ***: p < 0.001. 
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4 Avidin-coated mesoporous silica nanoparticles as drug 

carriers in the lung 

 

Parts of this chapter have previously been published as: 

 

van Rijt S.H., Bölükbas D.A., Argyo C., Wipplinger K., Naureen M., Datz S., Eickelberg O., 

Meiners S., Bein T., Schmid O., and Stoeger T. (2016). Applicability of avidin protein coated 

mesoporous silica nanoparticles as drug carriers in the lungs. Nanoscale, 8, 8058-8069. 

 

4.1 Introduction 

 

Over the last decades, the use of nanoparticles for drug delivery has gained notable attention. 

Various formulations of nanomedicines have been clinically approved by the U.S. Food and 

Drug Administration (FDA) or European Medicines Agency (EMA) (Dawidczyk et al., 

2014). These nanomedicines allow for enhanced bio-availability of the loaded agent, 

cell-specific delivery, and reduction in adverse side-effects of the agents (Schütz et al., 2013; 

van Rijt et al., 2014). Mesoporous silica nanoparticles (MSNs), in particular, are versatile 

nanocarriers with features like high volume and surface area, inertness for many agents, and 

tunable size (Argyo et al., 2013). Moreover, MSNs have a wide range of specific 

functionalization possibilities, allowing for e.g. covalent binding of fluorescent molecules for 

tracking of the nanoparticles (Cauda et al., 2009). Additionally, the surface of the MSNs can 

be selectively functionalized for controlled release of the agents (Argyo et al., 2013). There 

have been indeed several studies showing in vivo efficacy of mesoporous silica nanoparticles 

functionalized with e.g. PEG linkers (Na et al., 2012), folic acid (Lu et al., 2012), or 

transferrin (Liu et al., 2012). 

Although MSNs are promising candidates for future nanomedicines (Chen et al., 2013), their 

in vivo validation in terms of biocompatibility has not been fully exploited. Several studies 

revealed that their biocompatibility heavily depends on their size (He et al., 2011), shape 

(Huang et al., 2011), porosity (Lin and Haynes, 2010), and surface functionalization (He et 

al., 2011; Zhao et al., 2011). Furthermore, the route of application was shown to play a 

striking role in their biodistribution and biocompatibility (Taratula et al., 2011). It is indeed 

heartening that numerous studies have proven MSNs to be nontoxic as nanomedicines 
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(Hudson et al., 2008; Kupferschmidt et al., 2013; Lu et al., 2010; Vallhov et al., 2012; Yu et 

al., 2012); however there have not been many studies investigating their application directly 

into the lung. Pulmonary application of the mesoporous silica nanoparticles directly into the 

lung could offer several advantages for lung diseases such as chronic obstructive pulmonary 

disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, or lung cancer. With this 

manner, the drugs could target the lungs at first place, which would result in increased local 

concentration of the drugs in the lung, and lower systemic concentrations limiting the adverse 

effects. Additionally, when compared to oral application, drugs applied via the pulmonary 

route would stay more stable as they would not encounter the digestive system, and act much 

faster because of the large blood supply in the lung. Beyond these, inhalation of drugs is 

non-invasive and has the possibility of self-administration (Labiris and Dolovich, 2003; Rau, 

2005). Despite the fact of being considered as safe for systemic application, polymeric 

nanomedicines have shown adverse effects when applied directly into the lung (Beyerle et al., 

2011). Particularly, inflammatory potential of nanomedicines must be critically investigated 

before their direct application into the lung, as it could worsen the inflammation which is 

already present in lung diseases such as COPD and asthma. 

In this study, we examined the biodistribution and bioresponse of intratracheally applied 

functionalized mesoporous silica nanoparticles within one week time. For this, we applied 20 

or 100 µg/mouse of avidin-functionalized (MSNAVI) versus non-functionalized (MSNNH2) 

mesoporous silica nanoparticles intratracheally into adult BALB/c mice. Later, we 

investigated the biodistribution of the nanoparticles and the bioresponse after 1, 3, and 

7 days. The particles were covalently labeled with the fluorescent ATTO 633 dye in the core 

to allow for tracking in lung cryo-sections. With several additional complementary 

validations, avidin-functionalized MSNs (MSNAVI) were found to be significantly more 

biocompatible in comparison to their non-functionalized controls (MSNNH2). These data 

reveal that the intratracheally instilled avidin-functionalized mesoporous silica nanoparticles 

reach the alveolar space in mouse lungs evenly and are taken up by alveolar epithelial cells 

initially. Later, the nanoparticles are rather collected by alveolar macrophages within 

3-7 days. Additionally, avidin-functionalized nanoparticles were found to be superior to 

non-functionalized particles with no significant toxic effects, suggesting their use as potential 

nanomedicines for direct pulmonary application into the lung. 
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4.2 Results 

To investigate the biodistribution and cellular uptake of the avidin-functionalized MNSAVI 

versus non-functionalized MSNNH2, the nanoparticles were given intratracheally to adult 

BALB/c mice for 1, 3, or 7 days. The distribution of the MSNs in the lungs was assessed by 

preparing cryo-sections of (non-lavaged) lungs, which were analyzed by immunofluorescence 

imaging. ATTO 633-labeled MSNs could easily be detected by confocal microscopy on 

14 μm thick lung cryo-sections (Figures 4.1-2 and Figures 4.4-5). 

 

4.2.1 Deposition of the non-functionalized MSNNH2 in mouse lungs 

Intratracheally instilled non-functionalized MSNNH2 nanoparticles successfully reached the 

alveolar space, and were taken up by the cells of the lung after 1 day (Figure 4.1). 

control 1 day

DAPI Phalloidin MSNNH2
 

Figure 4.1 Nanoparticle distribution in lung cryo-slices of BALB/c mice exposed to PBS control or 

100 μg MSNNH2 after 1 day. Cell nuclei are shown in blue (DAPI), ATTO 633 labeled MSNNH2 are 

shown in red, cell actin staining (phalloidin) is shown in green. Images are representative for n = 4 

animals. Scale bar is 20 μm. 
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4.2.2 Homogeneous uptake of the functionalized MSNAVI in mouse lungs 

The instilled functionalized MSNAVI particles were distributed evenly over the alveolar 

regions of the lungs. Furthermore, the nanoparticles showed widespread and significant 

accumulation in the lungs for at least 7 days (Figure 4.2). Intriguingly, MSNAVI particles 

showed an even distribution in the lung parenchyma 1 day after the application (Figure 4.2, 

left panel). However after 3 to 7 days, fewer but bigger MSNAVI agglomerates were observed 

in the alveolar space, which is a sign for macrophage clearance of the particles (Figure 4.2). 

 

DAPI

Phalloidin

MSNAVI

1 day 3 days 7 days

MSNAVI

 

Figure 4.2 Biodistribution of MSNAVI in mouse lungs 1-7 days post-instillation. Lung cryo-slices of 

BALB/c mice exposed to 100 μg MSNAVI for 1, 3, or 7 days with phalloidin co-staining shown in 

green. Cell nuclei are shown in blue (DAPI), ATTO 633 labeled MSNAVI are shown in red and at 

lower panel, MSNAVI alone shown in white for ease of view. Images are representative images for 

n = 4 animals. Scale bar is 20 μm. 

 

4.2.3 MSN instillation into the lungs does not affect lung histology 

To investigate the morphological changes in the alveolar space upon MSN administration, we 

stained the lungs of the MSNAVI and MSNNH2 treated mice with hematoxylin & eosin 

staining. Our stainings revealed that there have been no changes in the alveolar structure 

upon MSN administration in 1-7 days (Figure 4.3). 
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MSNNH2 (1 day) MSNAVI (1 day) MSNAVI (7 days)control (PBS)

 

Figure 4.3 Lungs of BALB/c mice treated with 100 μg MSNAVI or MSNNH2 for 1 or 7 days stained 

with hematoxylin & eosin. Cell nuclei are shown in blue (hematoxylin), and the rest cellular 

fragments in violet (eosin). Scale bar is 50 μm. 

 

4.2.4 Comparing the uptake of MSNAVI versus MSNNH2 

Having validated alveolar deposition of the nanoparticles, we compared the uptake of the 

functionalized (MSNAVI) versus non-functionalized (MSNNH2) particles with cellular 

resolution. After examining the cryo-sections at higher zoom, we observed, after 1 day, the 

majority of the MSNNH2 particle uptake was done by macrophages, whereas only a small 

fraction of the particles were taken up by epithelial cells (Figure 4.4A). Besides, z-stack 

analyses revealed that the non-taken up MSNNH2 particles seem to associate with the 

extracellular matrix rather than being internalized into the cells (Figure 4.4A, right panel). 

Contrary to that, high resolution images of the MSNAVI particle-treated lungs revealed a high 

uptake of the particles after 1 day by alveolar epithelial cells (Figure 4.4B, left panel), and 

that a small fraction of these particles remained in the epithelium for 7 days (Figure 4.4B, 

right panel). 

 

1 day 1 day (z-stack) 1 day 7 days

DAPI Phalloidin MSNs

MSNNH2 MSNAVI

A. B.

 

Figure 4.4 Lung cryo-slices of BALB/c mice exposed to (A) 100 μg MSNNH2 for 1 day and (B) 100 

μg MSNAVI for 1 day (left) and 7 days (right) (arrowheads point locations of MSNAVI). Cell nuclei are 



Avidin-coated MSNs as drug carriers in the lung 

46 

shown in blue (DAPI), cell actin in green (phalloidin), and ATTO 633 labeled MSNs are shown in 

red. Images are representative images for n = 4 animals. Scale bar is 20 μm. 

 

4.2.5 Epithelial uptake of MSNAVI in mouse lungs 

Next, we were interested in preferential cell-specific uptake of the instilled MSNs. 

Counterstaining the sections with epithelial type I and II cell markers, podoplanin (T1α) and 

pro-surfactant associated protein C (Pro-SPC), respectively, revealed that MSNAVI particles 

were internalized by epithelial lung cells (Figures 4.5A-C) as confirmed by confocal z-stack 

imaging (Figure 4.5C). 

 

A. B.

C.

1 day 7 days 1 day 7 days

ATI cells (T1α) ATII cells (pro-SPC)

DAPI MSNAVI

DAPI T1α MSNAVI DAPI pro-SPC MSNAVI

 

Figure 4.5 Immunofluorescence staining of mouse lungs that were exposed to 100 μg MSNAVI with 

(A) epithelial cell type 1 co-staining (T1α, green), and (B) epithelial cell type 2 co-staining (pro-SPC, 

green) for 1 day (left) and 7 days (right). (C) Z-stack images (63x objective) from sections of BALB/c 

mice exposed to MSNAVI for 1 day after instillation, co-stained with alveolar epithelial cell type 1 

(ATI) marker (T1α, left image) and alveolar epithelial cell type 2 (ATII) marker (pro-SPC, right 

image) in green. Cell nuclei are shown in blue (DAPI), ATTO 633 labeled MSNs are shown in red. 

Images are representative images for n = 4 animals. Scale bar is 20 μm. 
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4.2.6 MSNAVI exert less cytotoxic effects than MSNNH2 in vitro 

To validate whether the avidin-functionalization on the particles would have effects on 

cytotoxic behavior of the MSNs, we analyzed the metabolic activity of MH-S and MLE-12 

cells that were exposed to increasing concentrations (0 - 500 µg/mL) of MSNNH2 and MSNAVI 

by MTT cytotoxicity assay. Interestingly, our data revealed that the non-functionalized 

MSNNH2 particles had significantly more cytotoxic effects on MH-S alveolar macrophage 

cells in high doses particularly ( > 250 µg/mL) (Figure 4.6A), but not in MLE-12 epithelial 

cells of the lung (Figure 4.6B). 

A. B.

 

Figure 4.6 Percent cellular survival of the MH-S and MLE-12 murine cell lines of the lung exposed 

to increasing concentrations (0 - 500 µg/mL) of MSNNH2 and MSNAVI for 16 h assessed by MTT 

assay. 

 

4.3 Discussion 

We hereby tested the applicability of avidin-functionalized MSNs (MSNAVI) as novel 

nanocarriers for lung diseases therapy by investigating their biodistribution, clearance, 

cell-specific uptake after direct (intratracheal) instillation in the lungs of mice. Due to the fact 

that MSNs allow for various functionalizations, which were shown to be paramount for their 

biocompatibility, we also tested only amino-functionalized; MSNNH2 (so called 

‘non-functionalized’ in this study) particles in this study. Our data revealed that 

avidin-functionalization on the surface of the MSNs had an impact not only on cytotoxicity, 

but also on the preferential cell-specific uptake and biodistribution in the lungs (van Rijt et 

al., 2016). Especially, non-functionalized particles (MSNNH2) were seldom taken up by 

epithelial cells. On the other hand, MSNAVI particles were internalized by alveolar epithelial 

type I and type II cells in the lung. Our data encourages the use of avidin-functionalized 
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MSNs for epithelial cell-associated chronic lung diseases such as COPD, IPF, or lung cancer 

by the limited and cell-specific cytotoxicity, initial even biodistribution in the lung 

parenchyma followed by macrophage clearance of the particles in the lung. Hence, 

avidin-functionalized MSNAVI particles are promising candidates to be used for inhalative 

therapies in chronic lung diseases. Additionally, our data strongly show the importance of 

surface modifications for cytotoxic effects and biodistribution of the nanoparticles and 

suggest stringent validation of these functionalizations for future nanoparticles for therapeutic 

use. 

As a conclusion, immunofluorescence analyses for different cell types showed that 

non-functionalized MSNNH2 particles were specially taken up by macrophages in vivo and 

that this had a cytotoxic effect on the macrophages (van Rijt et al., 2016). Contrary to that, 

avidin-functionalized MSNAVI particles were first efficiently internalized by the epithelial 

type I and type II cells of the lung, and later cleared by the alveolar macrophages. Thus, 

potential drug-loaded MSNAVI particles would have enough time to deliver the incorporated 

agents into the epithelial cells of the lung before their clearance. There have been studies 

showing that the cellular uptake of MSNs heavily depends on the surface charge and surface 

modifications of the nanoparticles, and is cell type-specific (Chung et al., 2007; Tao et al., 

2009). Moreover, numerous in vitro studies revealed that the cellular uptake of MSNs is cell-, 

dose-, and time-dependent (Tang et al., 2012; Vivero‐Escoto et al., 2010). Remarkably, there 

were studies showing that the amination of MSN particles thwarts particle uptake in 

T-lymphocyte cells (Jurkat) and in a human neuroblast cell line (Kreyling et al., 2013; Tao et 

al., 2009). These findings emphasize the significance of outer surface functionalizations and 

their impact on nanoparticle interactions with different cell types; and 

avidin-functionalization stands as a good strategy to minimize issues associated with 

macrophage uptake and particle toxicity. 

 

 

 

 

 

 

 

Experiments for the presented data were conducted in collaboration with Sabine van Rijt. 
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5 MMP9-responsive MSNAVI particles for lung cancer 

therapy 

 

Parts of this chapter have previously been published as: 

 

van Rijt S.H., Bölükbas D.A., Argyo C., Datz S., Lindner M., Eickelberg O., Königshoff M., 

Bein T., and Meiners S. (2015). Protease-mediated release of chemotherapeutics from 

mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano, 

9(3):2377-2389. 

 

5.1 Introduction 

Release principles of many nanoparticle-mediated drug delivery agents are based on free 

degradation of the nanoparticle in biological environments (e.g., hydrolysis) but do not 

involve controlled release of the drug. Controlled release can be accomplished for instance by 

taking advantage of the pathological features of malignant microenvironments such as 

reducing conditions, alterations in pH (e.g., acidic conditions in endosomes), or elevated 

levels of disease-associated enzymes (Torchilin, 2014). To give an example, several enzymes 

such as matrix metalloproteinases 2 and 9 (MMP2 and MMP9) are overexpressed in lung 

cancer, however negligibly expressed in healthy tissue (Egeblad and Werb, 2002). 

Furthermore, increased levels of MMP2/9 in the tumor microenvironment promote the 

metastasis potential of cancer cells and contribute to tumor growth, angiogenesis, or 

metastasis (Gialeli et al., 2011). Especially, elevated levels of MMP9 have been associated 

with poor prognosis of lung cancer (Iniesta et al., 2007; Martins et al., 2009). Specific peptide 

linkers can be used as enzyme-responsive linkers (Turk et al., 2001) to allow for controlled 

release of drugs from nanocarriers, as previously presented by other groups where they made 

use of MMP2/9-sensitive linkers for controlled drug release (Chien et al., 2013a; Chien et al., 

2013b; Chiou et al., 2012; Gu et al., 2013; Hatakeyama et al., 2011; Li et al., 2013; Yamada 

et al., 2010; Zhu et al., 2013). Therefore, developing nanoparticles with MMP2/9-responsive 

drug release represents a promising approach for treatment of lung cancer. 

Multifunctional mesoporous silica nanoparticles (MSNs) are versatile agents for drug 

delivery (Argyo et al., 2013). MSNs have exclusive features such as tunable pore sizes and 
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volumes for high drug payload and effective encapsulation for a rich diversity of cargos (Li et 

al., 2012). Moreover, these nanocarriers can be efficiently functionalized at different sites 

within the nanoparticle (Cauda et al., 2009). For instance, an outer-shell modification allows 

for attachment of external molecules selectively on the outer surface of the particle, having 

no impact on the porous part. This feature can be used to generate stimuli-responsive pore 

sealing for controlled drug release (Aznar et al., 2011; Giri et al., 2005; Popat et al., 2012; 

Sauer et al., 2010; Zhao et al., 2010). As an example, the sealing of the pores could be 

attained by exploiting strong biotin-avidin interactions, that would clot the openings of the 

pores in a responsive manner (Schlossbauer et al., 2009). 

In this study, we demonstrate avidin-functionalized MSNs modified with 

MMP2/9-responsive peptide linkers, resulting in controlled release of FDA-approved drugs 

in MMP9-rich lung tumor regions. We show efficient enzyme-specific release of the 

encapsulated chemotherapeutic cisplatin (CP), as well as the proteasome inhibitor bortezomib 

in two lung cancer cell lines. To validate the efficiency of the particles in malignant tissue, 

we developed a novel experimental setup exploiting 3D lung tissue cultures (3D-LTCs). This 

method grants spatio-temporal information and validation of nanoparticle-mediated drug 

delivery in the original 3D environment of malignant mouse and human tissue. We here 

present MMP9-mediated lung tumor site-selective drug release and tumor cell death in mouse 

and human lung tumors illuminating the feasibility of MMP9-controlled drug delivery with 

MSNs for treatment of lung cancer. 

 

5.2 Results 

5.2.1 Successful synthesis of MMP9-responsive MSNs 

MSNs were successfully synthesized by a sol-gel procedure, as in previous studies (Cauda et 

al., 2009; Mackowiak et al., 2013). To generate MMP9-responsive MSNs, MMP9-specific 

cleavable heptapeptide linker (RSWMGLP, cleavage site in bold) was attached to the 

core-shell functionalized MSNNH2 particles (Figure 5.1i). As a control system, the cleavage 

site was disturbed by a change in the specific heptapeptide sequence (RSWMLLP, change in 

bold) (Figure 5.1i). Later, the particles were labeled with ATTO 633 dye and/or loaded with 

drugs, and finally capped with the avidin-biotin complex for further experiments 

(Figure 5.1ii). 
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Figure 5.1 Synthesis of MMP9-cleavable cMSNAVI versus MMP9-non-cleavable ncMSNAVI particles 

 

5.2.2 Cytotoxicity of MSNs in lung cancer cell lines 

Before we validated MMP9-responsive cell death induced by our nanoparticles, we 

investigated whether the avidin-functionalized versus non-functionalized MSNAVI particles 

exert cytotoxic effects on lung cancer cells. Thus, we exposed A549 and H1299 cell lines to 

MSNNH2 and MSNAVI particles in doses between 0 - 500 µg/mL for 4 and 24 h at normal cell 

growth conditions, and afterwards we measured the metabolic activity by WST-1 assay as a 

read-out for cellular survival. No toxic effects were observed after 4 h (Figures 5.2A&C). 

However, after 24 h (Figures 5.2B&D), MSNNH2 particles induced cytotoxic effects at high 

doses (> 250 µg/mL). 
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A.

C.

B.

D.

 

Figure 5.2 Percent survival of human lung cancer cell lines (A&B) A549 and (C&D) H1299 exposed 

to increasing concentrations (0 – 500 µg/mL) of MSNNH2 and MSNAVI for (A&C) 4 and (B&D) 24 h 

as a read-out from metabolic activity assessed by WST-1 cytotoxicity assay. 

 

5.2.3 Induction of apoptosis by MSNs in lung cancer cell lines  

Next, we dissected the apoptotic and necrotic effects of the avidin-functionalized versus 

non-functionalized MSNAVI particles on lung cancer cell lines by Annexin V/propidium 

iodide staining followed by flow cytometry analysis. Hence, we exposed A549 and H1299 

cell lines to 250 µg/mL MSNNH2 and MSNAVI particles for 24 h at normal cell growth 

conditions, then stained the treated cells for Annexin V and propidium iodide staining, and 

afterwards measured the apoptosis and necrosis induced by the nanoparticles. As a positive 

control, H2O2 was used as a cytotoxic agent at the experiment. Our data revealed that, both in 

(Figure 5.3A) A549 and (Figure 5.3B) H1299 cells, MSNNH2 particles (left panels) caused 

more apoptosis in comparison to MSNAVI particles (middle panels), when assessed by flow 

cytometry analysis of Annexin V-FITC/propidium iodide (PI) staining (Figure 5.3). 
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Figure 5.3 Apoptotic versus necrotic effects of the non-functionalized MSNNH2 versus 

avidin-functionalized MSNAVI nanoparticles on (A) A549 and (B) H1299 cell lines compared to 

H2O2-treated cells after 24 h, measured by Annexin V/propidium iodide staining analysis by flow 

cytometry. 

 

5.2.4 MMP9-dependent calcein-AM release in vitro 

We next validated MMP9-responsive cargo release from the cleavable versus non-cleavable 

nanoparticles by confocal microscopy. Calcein-AM is a non-fluorescent cell membrane 

permeable compound, that is hydrolyzed by intracellular esterases into the cell impermeable 

green fluorescent calcein. More specifically, calcein-AM is taken up by the cells via 

endocytosis, and can be detected in the cytoplasm even at low doses (Figures 5.4A&C). Here, 

we used calcein-AM as a model drug which is, after being released from the nanoparticles 

into the extracellular matrix, subsequently taken up actively by the cancer cells. In the cells, it 

is metabolized, and becomes active, as evidenced by fluorescence emission. Thus, MSNAVI 

particles containing either MMP9-cleavable or non-cleavable linkers (cMSNAVI and 

ncMSNAVI), encapsulating solutions of calcein-AM with different concentrations, were 

incubated with increasing amounts of recombinant MMP9. After 2 h of incubation with 

recombinant MMP9, effective calcein release and delivery to the cytosol was observed in 
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both cell lines (Figures 5.4B&D, right panels). Notably, in both cell lines, the amount of 

calcein staining was dependent on not only the MMP9 concentration, but also the amount of 

calcein-AM encapsulated in the particles. The MSNs containing non-cleavable linkers 

(ncMSNAVI) displayed only limited release of calcein-AM (Figures 5.4B&D, left panels). 

Calcein staining was more effective on H1299 cells, compared to the A549 cells, where 

significant fluorescence was observed when 20 μM solution of calcein-AM encapsulated 

MSNs were exposed to 1 μg/mL MMP9. This coincides with the observation that H1299 

cells were more sensitive towards calcein staining, as seen in the calcein-AM titration curves 

(Figure 5.4C) which may relate to an increased endosomal uptake capacity of these cells. 

Interestingly, we did not observe any dose-dependent staining for non-cleavable 

linker-bearing ncMSNAVI particles in both cell lines (Figures 5.4B&D right panels), showing 

that the calcein-release form our functionalized MSNs was MMP9-specific and the avidin 

capping was tight enough to prevent leakage from the pores of the MSNs. Conclusively, 

cMSNAVI particles that were pre-activated with MMP9 showed efficient and 

stimuli-responsive release of the calcein-AM. 

 



MMP9-responsive MSNAVI particles for lung cancer therapy 

55 

recombinant MMP9 (µg/mL)

ncMSNAVI cMSNAVI

C.

D.

A.

B. recombinant MMP9 (µg/mL)

ncMSNAVI cMSNAVI

 

Figure 5.4 Confocal microscopy images of calcein-AM titration on (A) A549 and (C) H1299 cells, 

and calcein staining as a result of MMP9-responsive release from20 µM and 50 µM calcein-AM 

(Cl-AM, green) loaded MSNs bearing MMP9 cleavable or non-cleavable linkers (cMSNAVI and 
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ncMSNAVI), after 2 h of incubation with either 0, 1, or 2 μg/mL recombinant MMP9 administration in 

(B) A549 and (D) H1299 human lung cancer cells. Hoechst (blue) was used for nuclei staining. 

Pictures show representative micrographs from three independent experiments. Image sizes are 

450 x 450 μm. 

 
 

5.2.5 MMP9-dependent cell death in lung cancer cell lines 

Cisplatin is a commonly used chemotherapeutic agent for treatment of several solid cancers, 

including lung cancer (Adelstein and Rodriguez, 2008). Drawbacks of cisplatin therapy 

include nephrotoxicity, nausea, hair loss, and acquired resistance of tumors towards the 

treatment. A more targeted and local delivery of cisplatin may result in lower administrated 

therapeutic doses, and consequently reduced systemic toxicity. For these reasons, we decided 

to use cisplatin as one of the chemotherapeutic loads in our MSNs. Accordingly, cisplatin 

release from the particles was measured as a function of cell viability. In both cell lines, cells 

exposed to particles (cMSNAVI) loaded with cisplatin in the absence of MMP9 showed only 

minor loss of cell viability, compared to untreated control cells (white bars in 

Figures 5.6A&B). These results clearly demonstrate the tight sealing of the cisplatin loaded 

MSNs by the avidin capping. Strikingly, in both cell lines the cytotoxic effects of cisplatin 

were dependent on both the release from the particles by MMP9 and the cisplatin 

encapsulated dose (Figures 5.6A&B). Significant cell death was already observed for cells 

exposed to particles loaded with a 10 μM solution of cisplatin when 1 μg/mL MMP9 was 

administered into the medium, and to a similar extent in cells exposed to particles loaded with 

a 20 μM solution of cisplatin in the presence of 0.5 μg/ml MMP9. H1299 cells were more 

sensitive towards the cisplatin loaded MSNs, in analogy to the calcein-AM release 

experiments. As a control, we exposed A549 and H1299 cells to the non-cleavable linker 

bearing ncMSNAVI particles loaded with cisplatin. Our data showed that even in the presence 

of 1 µg/mL recombinant MMP9, no significant cell death was observed in A549 and H1299 

cell lines, proving that the cleavable linker was indeed MMP9-specific, and this specificity 

was lost in the non-cleavable linker bearing ncMSNAVI system (Figure 5.6C). 

 

It is important to remark that the MSNs were pre-loaded by diffusing a defined dilution of 

cisplatin into the particles, which were afterwards sealed and washed to remove 

non-incorporated cisplatin. In our figures, these loading concentrations are referred to as 

loaded cisplatin concentrations. Nonetheless, the total cisplatin released from the MSNs, 



MMP9-responsive MSNAVI particles for lung cancer therapy 

57 

i.e., the bioactive cisplatin dose the cells or tissues were exposed to, was much less, since the 

encapsulated amount is lower than the actual amount in the stock solution. However, 

ICP-OES measurements showed an efficient cisplatin loading of 440±0.02 μg/mg MSN when 

10 mM cisplatin stock solution was diffused into the particles at the synthesis (Table 5.1). 

Yet when we treated the nanoparticles in the presence of MMP9, we observed 7±0.8 µg 

cisplatin release per mg MSN. In contrast, the cisplatin release was below detection limit in 

the absence of MMP9 (Table 5.1). We also analyzed a dose-response viability curve using 

direct cisplatin application in A549 and H1299 cells and thereby calculated the amount of 

bioactive cisplatin released from the MSNs as around 10-fold less than the loading stock 

solution (Figure 5.5). This 10-fold dilution of cargo in MSNs accords very well with our 

results obtained with calcein-AM experiments when comparing the calcein titration curve to 

the release of calcein-AM loaded particles (Figure 5.4). 

 

Table 5.1 Quantification of the uptake and release of cisplatin in cMSNAVI particles measured by 

ICP-OES. Release was achieved by MMP9 administration. Values given are average of three 

independent experiments ±SD. 

cisplatin amount (at stock solution) 10 mM 

uptake of cisplatin 440 ± 0.02 µg/mg cMSNAVI 

release of cisplatin (+ MMP9) 7 ± 0.8 µg/mg cMSNAVI 

release of cisplatin (- MMP9) below detection limit 

 

 

Figure 5.5 Dose-response survival curve of free cisplatin in A549 and H1299 cells after 24 h 

exposure 
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Figure 5.6 Controlled release of cisplatin from cMSNAVI particles as measured by percent cell 

survival after 24 h exposure, incubated with 0 (white bars), 0.5 (light gray bars), or 1 μg/mL (dark 

gray bars) MMP9 in (A) A549 and (B) H1299 cells. (C) Percent cellular survival of H1299 (light gray 

bars) and A549 (dark gray bars) cells exposed to ncMSNAVI particles loaded with cisplatin, in the 

presence of 1 μg/mL recombinant MMP9, for 24 h. Untreated cells were set to 100% survival; 

* means a significant decrease in percent cell survival compared to control (p < 0.05). Values given 

are an average of three independent experiments ±SD. 

 
5.2.6 Cell-secreted MMP9-induced death of lung cancer cell lines 

Next, we investigated whether MMP9 that is secreted from tumor cells induces cleavage of 

the linkers and results in controlled release of the drugs from the MSNs. For that, we cloned 

MMP9 cDNA into an eukaryotic expression vector and transiently transfected the A549 and 

H1299 cells overnight. We first validated the MMP9 overexpression of transiently transfected 

cells in comparison to recombinant MMP9 concentrations by gelatin zymography 

(Figure 5.7A). Then we exposed these transfected cells to MSNs for 24 h. Remarkably, our 

survival data showed that cell-secreted MMP9 was sufficient to cleave the MMP9-specific 

linker and result in dose-dependent cell death (Figure 5.7B, gray bars). In contrast, no signs 

of toxic effects were observed in empty vector transfected cells (Figure 5.7B, white bars). 
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Figure 5.7 (A) Gelatin zymography comparing MMP9 secretion of transiently MMP9 cDNA or 

empty vector transfected A549 and H1299 cells with recombinant MMP9 concentrations of 0.25, 0.5, 

and 1 µg/mL. (B) Controlled release of cisplatin from cMSNAVI as measured by percent survival after 

24 h exposure, incubated with MMP9 cDNA (gray bars) or empty vector transfected (white bars) 

H1299 cells. Untreated cells were set to 100% survival. * means a significant decrease in percent cell 

survival compared to control (p < 0.05). Values given are an average of three independent 

experiments ±SD. 

 

5.2.7 Synergistic effect of combination therapy 

Cisplatin is often given in combination treatments with other chemotherapeutics, in order to 

overcome the problem of acquired resistance (Dubey and Powell, 2008). Proteasome 

inhibitors are promising combinatorial drugs as suggested by multiple clinical trials, since 

they effectively inhibit proliferation of tumor cells, sensitize them to apoptosis, and overcome 

drug resistance (Davies et al., 2007b). The proteasome inhibitor bortezomib is FDA-approved 

for treatment of multiple myeloma, and currently tested in phase II clinical trials for lung 

cancer (clinicaltrials.gov). Accordingly, local and targeted drug delivery of proteasome 

inhibitors in combination with cisplatin into the lung may sensitize the cancer cells to 

treatment, reduce systemic side effects as well as overcome acquired resistance towards 

cisplatin, thus representing a novel therapeutic approach for combating lung cancer. Because 

MSNs can encapsulate multiple drugs in their mesoporous system efficiently (Chen and Liu, 

2016), these carrier systems offer an excellent opportunity for controlled local delivery of two 

drugs at the same time. This is anticipated to result in lower administered doses of 

chemotherapeutics necessary to achieve a similar therapeutic effect. To investigate whether 

we could reduce the amount of cisplatin to obtain a similar therapeutic effect in the presence 

of bortezomib, we exposed A549 cells to MSNs loaded with a solution containing 2, 10, or 
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20 μM cisplatin together with 1 μM of bortezomib. When using toxic doses of cisplatin, the 

concomitant release of bortezomib had no additional effect on cell death. However, non-toxic 

doses of cisplatin (i.e., particles loaded with 2 and 10 μM solutions), induced significant cell 

death for particles that contained both drugs (Figure 5.8). Notably, this difference was largest 

for the lowest cisplatin dose (2 μM), with an increased cell death of over 35 % in the presence 

of bortezomib. This is a remarkable 5 to 10 folds increase in cytotoxic potency, when 

bortezomib is added as a combinatorial drug. For10 μM cisplatin loaded particles, this 

difference was 17 %. cMSNAVI particles loaded with only1 μM bortezomib (and no cisplatin) 

were included as controls, and did not show any effect on cell viability after 24 h of exposure 

(Figure 5.8, striped bar). Cells exposed to MSNs loaded with 2, 10, or 20 μM cisplatin and 

1 μM bortezomib in the absence of MMP9 also showed no significant loss in cell viability 

(Figure 5.8, white bars).  

free bortezomib

empty vector, cMSN-CB

MMP9 cDNA, cMSN-C

MMP9 cDNA, cMSN-CB

 

Figure 5.8 Percent cellular survival of A549 cells exposed to cMSNAVI particles loaded with cisplatin 

alone (cMSNAVI-C, light gray bars) and in combination with 1 μM bortezomib (cMSNAVI-CB, dark 

gray bars) in MMP9 cDNA transfected A549 cells, in comparison to empty vector transfected A549 

cells (white bars) and free 1 μM bortezomib treated cells (striped bar) after 24 h. Untreated cells were 

set to 100% survival; * means a significant decrease in percent cell survival compared to control 

(p < 0.05). Values given are an average of three independent experiments ±SD. 

 

5.2.8 Murine 3D-lung tissue cultures for MSNAVI exposure 

Having proven successful controlled release from our nanoparticles in vitro, we decided to 

exploit the 3D-lung tissue cultures (3D-LTCs) system as a versatile platform to assess ex vivo 

MMP9-mediated controlled release of chemotherapeutics from MSNAVI particles in tumorous 

mouse tissue. In sequential 200 µm thick cut 3D lung slices from Kras mutant mice with lung 
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cancer, tumorous regions could be observed readily by bright-field microscopy as dense dark 

regions (Figure 5.9A right panel) in comparison to tumor-free healthy alveolar structures 

(Figure 5.9A). The same was validated for fluorescently stained slices measured by confocal 

microscopy (Figure 5.9B). Additionally, immunofluorescence staining for Kras and MMP9 

was positive in tumorous Kras mutant lung slices as observed by confocal microscopy 

(Figures 5.9C&D) and was also validated by immunohistochemistry for the latter 

(Figure 5.9E). 

A.

B.

WT Kras mutant

WT Kras mutant

DAPI, Phalloidin DAPI, Kras

C.
WT Kras mutant

DAPI, MMP9

D.
WT Kras mutant

E.
WT Kras mutant

Nuclei, MMP9
 

Figure 5.9 3D-lung tissue cultures (3D-LTCs) from tumorous mouse tissue. (A) 5x magnified 

bright-field microscopy images of tumorous versus tumor-free 3D-LTCs from WT and Kras mutant 

mice with lung tumors. Confocal microscopy images of WT and Kras mutant mouse 3D-LTCs with 

(B) phalloidin, (C) Kras, and (D) MMP9 staining. (E) Immunohistochemistry staining for MMP9 in 

WT and Kras mutant mouse lungs. The scale bar is 50 μm. 
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5.2.9  MSNAVI-based MMP9-responsive drug release to murine 3D-LTCs 

Once we had established the 3D-LTCs of Kras mutant mouse lung tumor tissue as a tool for 

MMP9-mediated drug delivery via nanoparticles, we evaluated controlled drug release from 

our functionalized nanoparticles (cMSNAVI). For that, lung tissue slices of Kras mutant mice 

were exposed to particles containing various concentrations of cisplatin (cMSN-Clow and 

cMSN-CBhigh) or a combination of low doses of cisplatin with bortezomib (cMSN-CB) for 24 

or 48 h.  

 

Table 5.2 MSNAVI loading concentrations for 3D-LTC exposure experiments 

label loaded drug concentration 

cMSNAVI-Clow 2 mM cisplatin 

cMSNAVI-Chigh 10 mM cisplatin 

cMSNAVI-CB 2 mM cisplatin + 1 µM bortezomib 

ncMSNAVI-Clow 2 mM cisplatin 

ncMSNAVI-Chigh 10 mM cisplatin 

ncMSNAVI-CB 2 mM cisplatin + 1 µM bortezomib 

Clow 0.2 mM cisplatin 

Chigh 1 mM cisplatin 

CB 0.2 mM cisplatin + 0.2 µM bortezomib 

 

First, we proved that the non-loaded MSNs did not induce any cytotoxic effects on WT 

mouse 3D-LTCs in 72 h. For that, we stained the treated 3D-LTCs with cleaved caspase-3 

and analyzed for apoptosis by confocal microscopy (Figure 5.10A). Then, we established the 

cytotoxic dose for cisplatin by exposing the lung tissue slices to various concentrations of the 

drug. At the reported cisplatin concentrations of 0.2 and 1 mM (Table 5.2), we observed a 

significant amount of apoptosis of approximately 12% of the cells after 24 h and 20% after 

48 h (Figures 5.10E&G), as indicated by a significant amount of cleaved caspase-3 positive 

staining (Figure 5.10B, right panel). Due to our in vitro findings of about 10-fold less 

encapsulation efficiency of cisplatin into the MSNs, we loaded 10-fold higher doses of 

cisplatin inside the pores of the MSNs to possibly achieve a comparable cytotoxic effect and 

applied these particles to the lung slices. Notably, a similar amount of tumor cell death was 

observed for both the encapsulated drugs and the free drugs for all tested doses and time 
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points, indicating that the doses were effective and equipotent (Figures 5.10D&G). 

Remarkably, all the MSNs containing chemotherapeutics resulted in cell death only in 

tumorous parts of the Kras mutant mice lungs, while not affecting tumor-free regions in the 

same Kras mutant lung tissues (Figure 5.10B). Additionally, a dose-dependent therapeutic 

effect on apoptotic cell death was observed, having the strongest effect with the combination 

therapy (cMSNAVI-CB) (Figure 5.10B). However, Kras mutant mouse 3D-LTCs exposed to 

comparable doses of free drug/s (C or CB) had apoptotic effects which were not 

discriminating between tumorous and tumor-free tissue (Figure 5.10B). Interestingly, MSNs 

with non-cleavable linkers loaded with both drugs (ncMSNAVI-CB) resulted in no significant 

apoptotic cell death in Kras mice tumors or in healthy tissues of Kras mutant lungs 

(Figure 5.10C, upper panel). Added to that, healthy lungs of WT mice 3D-LTCs exposed to 

drug-encapsulated cleavable nanoparticles (cMSNAVI-CB) did not show obvious signs of 

apoptosis, while treatment with the comparable doses of free drugs resulted in apoptotic cell 

death which distributed homogeneously in the healthy tissue (Figure 5.10C), further 

validating the specific cytotoxic effect of our MSNs. The dose- and time- dependent 

therapeutic efficacy of the MSNs was quantified by analyzing the number of apoptotic cells 

versus the total number of cells in lung tissue slices containing tumors of similar size by 

Imaris software. Importantly, cell death in tumorous regions was 10- to 25-fold stronger 

when compared to the tumor-free area upon nanoparticle-mediated drug delivery. This effect 

was even more distinct after 48 h (Figure 5.10F) and was most prominent using the 

combination therapy with a 25-fold increase in apoptotic tumor cell death. On the other hand, 

Kras mutant mice lungs treated with similar doses of free cisplatin and/or bortezomib for 24 

and 48 h showed a similar degree of apoptotic cell death in the tumor and tumor-free areas 

(Figures 5.10E&G), except for the highest doses (Chigh and CB) where a small but significant 

increase in tumor cell death was detected. This can be attributed to the increased vulnerability 

of fast-dividing tumor cells against cisplatin (Dasari and Tchounwou, 2014). 
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Figure 5.10 Therapeutic efficacy of MMP9-responsive MSNs in Kras mutant mouse lungs. (A) No 

cytotoxic effects of non-loaded MSNAVI particles after 72 h exposure on WT healthy mouse 3D-LTCs 

stained for cleaved caspase-3 (green) measured by confocal microscopy. (B) Kras mutant mouse 

3D-LTCs exposed to MSNAVI particles loaded with a low dose of cisplatin (cMSNAVI-Clow), high dose 

of cisplatin (cMSNAVI-Chigh), low dose of cisplatin in combination with bortezomib (cMSNAVI-CB), or 

comparable doses of the free drugs cisplatin (Clow, Chigh) or combination therapy(CB) for 48 h. 

(C) Kras mouse 3D-LTCs exposed to MSNAVI particles with non-cleavable linkers loaded with the 

combination treatment (ncMSNAVI-CB) for 48 h (upper panel) and WT mouse3D-LTCs exposed to 

MSNAVI particles with MMP9-cleavable linkers loaded with the combination treatment 

(cMSNAVI-CB) or free drugs (CB) for 48 h (lower panel). The scale bar is 50 μm. Comparable sized 

tumors were chosen for microscopy (indicated by dotted line); tumor-free refers to images that were 

made in a non-tumor area of a Kras mutant 3D-LTC. Nuclear staining (DAPI) is shown in blue, 



MMP9-responsive MSNAVI particles for lung cancer therapy 

65 

apoptotic marker (cleaved caspase-3 positive) in green, and ATTO 633-labeled MSNs in red. Images 

shown are representative for three independent experiments. Quantification of apoptotic cells (cleaved 

caspase-3) per number of counted nuclei (DAPI) in tumor and tumor-free areas in Kras mutant 

3D-LTCs after (D, E) 24 h of exposure and (F, G) 48 h of exposure to MSNs loaded with drugs 

(cMSN-C/CB) or free drugs (C/CB), respectively by Imaris software. Untreated control slices (white 

bars) and control MSNs (i.e., ncMSNAVI-CB) (light gray bar, 48 h exposure) were also included in the 

study. * means a significant increase in apoptosis compared to a tumor-free control area (p < 0.05). 

Values given are average of three independent experiments ±SD. 

 

5.2.10 Co-localization of MMP9 and cleaved caspase-3 in murine 3D-LTCs 

Having observed tumor-site localized drug release from the cMSNAVI particles, we focused 

whether the nanoparticle-based cell death was MMP9-associated using the 3D-LTC model. 

Detailed confocal microscopy analysis revealed a strong co-localization of cleaved caspase-3 

staining with MMP9 staining at the 3D-LTCs, indicating prominent cell death by controlled 

release of the drugs at tumorous sites with high local MMP9 concentrations (Figure 5.11A). 

In fact, nanoparticle-based cell death took place throughout the tissue while the MSNs 

remained mainly on top of the slices where they first associated with the 3D-LTCs (Figure 

5.11B). This observation suggests that the particles were initially immobilized on the tissue 

surface and later cleaved by overexpressed MMP9 nearby, yet the released drugs efficiently 

diffused into the depths of the tissue. A comparable apoptosis distribution in the tumor tissue 

was detected for 3D-LTCs exposed to the free drugs (Figure 5.11B). This reveals that deep 

penetration of the MSNs into the 3D-LTCs is not required, since the released drugs 

effectively diffuse through the tissue. Additionally, we showed that the apoptosis was mainly 

limited to epithelial cells in the tumor by co-staining the slices with cleaved caspase-3 and the 

epithelial cell type marker E-cadherin (Figure 5.11C). Hence, our data clearly demonstrate 

tumor-site specific controlled drug release by our nanoparticles. 
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Figure 5.11 (A) Kras mutant mice 3D-LTCs exposed to cMSN-CB for 48 h with MMP9 antibody 

co-staining (magenta, maximum intensity projections of the different channels, white dots in merged 

image show direct overlay) in tumor (top) and tumor-free (bottom) areas. (B) Nanoparticle-exposed 

Kras mutant 3D-LTCs showing only the calculated number of particles, nuclei, and apoptotic cells per 

3D-LTC tissue slice from the side where tumor tissue is located. Red spots represent the calculated 

particles, blue spots represent the nuclei, and green spots represent the apoptotic cells in 

cMSNAVI-CB-exposed 3D-LTCs (top panel) and CB-exposed 3D-LTCs (bottom panel). Original 

stainings were omitted for ease of view. (C) Kras mutant 3D-LTCs exposed to cMSNAVI-CB for 48 h 

with E-cadherin antibody co-staining (magenta, orthographic representation using a 63x objective). 

The nuclear staining (DAPI) is shown in blue, apoptotic marker (cleaved caspase-3) in green. The 

fluorescence signal originating from ATTO 633-labeled MSN particles was omitted from the images 

for ease of view (for A and C). Scale bar is 50 μm. 

 

5.2.11 Human 3D-LTCs for MSNAVI exposure 

The model system of 3D-LTC offers the unique possibility to use human tissue and to test 

novel therapeutic approach in human diseased tissue (Uhl et al., 2015). We thus optimized 

our 3D-LTCs system to assess MMP9-responsive drug delivery from functionalized MSNs in 

human lung tumors. For that purpose, we used 300 µm thick 3D-LTCs from freshly excised 

human lung cancer tissue obtained from different donors. Distorted alveolar structure of the 

tumorous human lungs (Figure 5.12A, right panel) in comparison to healthy lungs was 

readily observed in fluorescently stained slices by confocal microscopy (Figure 5.12A). We 
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also validated the tumorous versus healthy human tissue used for 3D-LTCs for MMP9 

overexpression by immunohistochemistry staining (Figure 5.12B). 

tumor-free tumorous
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Figure 5.12 3D-lung tissue cultures (3D-LTCs) from human lung cancer tissue. (A) Confocal 

microscopy images of tumor-free and tumorous human 3D-LTCs stained with phalloidin (green) and 

DAPI (blue). (B) Immunohistochemistry staining for MMP9 in tumor-free and tumorous human 

lungs. The scale bar is 50 μm. 

 

5.2.12 MMP9-responsive tumor cell death in human 3D-LTCs 

As the final step, we exposed human 3D-LTCs to cisplatin-loaded nanoparticles 

(cMSNAVI-Clow). Our data demonstrated that the cisplatin-loaded MSNAVI nanoparticles 

effectively induced apoptotic cell death in human tumor tissue after 72 h of exposure. This 

accorded well with the particle density on the tissue (Figure 5.13A). Moreover, therapeutic 

efficacy of the cMSNAVI-Clow was not tumor type-dependent, as apoptotic cell death was 

observed in both metastatic and primary lung tumors (Figure 5.13A). Untreated control tissue 

resulted in only a limited amount of apoptosis, which could be associated with the tissue 

processing procedure (Figure 5.13A). Strikingly, human 3D-LTCs exposed to non-cleavable 

cisplatin-loaded MSNs (ncMSNAVI-Clow) did not result in obvious cell death when compared 

to control tissues (Figure 5.13A, middle panel), proving MMP9 sequence-specific controlled 



MMP9-responsive MSNAVI particles for lung cancer therapy 

68 

drug release. Remarkably, cMSNAVI-Clow particle exposure did not result in any apoptosis in 

healthy human tissue (Figure 5.13B). Additionally, therapeutic efficiency of the MSNs on 

3D-LTCs was also confirmed by quantification of cleaved caspase-3 levels by Western blot 

analysis (Figure 5.13C). 

A.

control ncMSNAVI-Clow cMSNAVI-Clow

lung

metastasis

lung

adenocarcinoma

healthy

lung

B.
cMSNAVI-Clow

C.
lung metastasis lung adenocarcinoma

 

Figure 5.13 Therapeutic efficacy of MMP9-responsive MSNAVI particles in human 3D-LTCs. 

(A) Human lung adenocarcinoma and (B) human healthy lung 3D-LTCs exposed to cMSNAVI-Clow or 

ncMSNAVI-Clow for 72 h. Untreated slices were included in the experiment as controls. Nuclei staining 

is shown in blue (DAPI), cleaved caspase-3 in green, and MSNs in red. The scale bar is 50 μm. 

Images shown are representative for three different sections within the tumor. (C) Western blot 

analysis of human 3D-LTCs exposed to cMSNAVI-Clow and ncMSNAVI-Clow for 72 h. 
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5.3 Discussion 

Nanomedicines as smart drug carriers have gained a lot of attention in the last years, and 

various formulations have been approved by the FDA and EMA for treatment of cancer (Rink 

et al., 2013). These formulations allow for enhanced pharmacodynamics when compared to 

free drugs by expanding their bioavailability and tumor delivery efficacy. Moreover, 

nanoparticles such as mesoporous silica nanoparticles have the possibility to be designed for 

inhalation therapy (Taratula et al., 2011), which would be beneficial for the treatment of lung 

cancer particularly, since the agents are directly applied to the target organ, eliminating the 

digestive system and the liver, and problems of stability in the bloodstream. Indeed, our 

results have shown that the avidin functionalized MSNs are evenly distributed in the lungs 

and result in only limited lung toxicity (discussed in Chapter 4 of the thesis). To further 

increase tumor specificity and thus therapeutic efficacy, the nanoparticles can be 

functionalized with the ability to release high concentrations of drugs only in the extracellular 

matrix in close proximity to the tumor site, unlike uncontrolled release from nanoparticles 

such as liposomes and micelles. Tumor-associated enzymes that are overexpressed at tumor 

site can be exploited to achieve this goal. For instance, MMP9 overexpressed in lung cancer 

increases the metastatic potential of malignant cells and therefore associates with poor 

prognosis of the disease (Egeblad and Werb, 2002; Gialeli et al., 2011; Iniesta et al., 2007; 

Martins et al., 2009). In fact, MMP2/9-responsive drug delivery has been shown before in in 

vivo mouse xenograft models of the pancreas (Kulkarni et al., 2014), fibrosarcoma (Chien et 

al., 2013b), glioblastoma (Gu et al., 2013), and hepatoma (Liu et al., 2012), revealing the 

potency of this approach for treatment of cancers. However, there has not been such a study 

on lung cancer treatment so far. 

Hereby with this study, we demonstrate synthesis of novel mesoporous silica nanoparticles 

bearing an MMP9-responsive avidin capping system. MMP-responsive MSNs were studied 

only in three reports before (Singh et al., 2011; Xu et al., 2013; Zhang et al., 2013). 

Nevertheless, in these studies an MMP9 sequence-specific gating mechanism for controlled 

release was not employed. In the study by Zhang et al., the particles were functionalized with 

a polyanion coating to avoid particle uptake by healthy cells, which could be disturbed by 

MMP cleavage in MMP2-expressing colon and squamous cancer cell lines. In their study, 

doxorubicin release was achieved by a redox-driven mechanism upon tumor cell uptake of 

the particles. In the study by Singh et al., the MSNs were coated with a polymer shell 
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generated with MMP substrate polypeptides with a degradable sequence. And, in the study by 

Xu et al., gelatin was used as a gatekeeper and as a degradable substrate for MMPs in 

gelatin-functionalized MSNs. These particles were validated in an MMP2-overexpressing 

colon cancer cell line and a xenograft mouse model. However, the pore sealing effectiveness 

was poor in this system. Contrary to that, we here show effective MMP2/9 sequence-specific 

release of cargo from the avidin-capped MSN system in two NSCLC cell lines and in mouse 

and human lungs. For these, we optimized a novel ex vivo tissue culturing system (3D-LTC) 

to validate our particles, as an extension of the previous study by Uhl et al. (Uhl et al., 2015). 

The 3D-LTC technique offers high resolution and spatio-temporal imaging of our 

nanoparticles and their therapeutic efficacy in specific regions (e.g., diseased versus healthy 

areas) within the complex 3D structure of tumorous lung tissue. Although there have been 

studies where 3D-LTCs were used to assess short-term toxicological profiling of 

nanoparticles (Nassimi et al., 2009; Neuhaus et al., 2013; Paranjpe et al., 2013), here we 

studied the therapeutic efficiency of nanoparticles in relevant disease models. For murine 

lung tumors, we exploited the Kras mutant transgenic mice which develop primary lung 

adenocarcinoma soon after birth (Johnson et al., 2001). This mouse model closely resembles 

human lung cancer pathophysiology and is thus more relevant than the commonly used 

xenograft models of mice. Moreover, targeting Kras mutant tumors is of additional 

importance, as Kras mutation has no approved therapy and is associated with poor prognosis 

of the disease and reduced responsiveness to common agents (Cappuzzo et al., 2008; 

Eberhard et al., 2005; Überall et al., 2008). Furthermore, with the 3D-LTCs, we were able to 

prove our findings also in healthy versus tumorous human tissue, which represents an 

achievement in closing the gap between drug development and clinical application. By this 

method, we could clarify that local MMP9 concentrations are high enough to cleave our 

nanoparticles in Kras mutant mice tumors as well as in human lung tumors compared to their 

healthy counterparts. As MMP9 overexpression correlates with metastatic potency of the 

cancer cells (Itoh et al., 1999; Roy et al., 2009), it is highly probable that the targeted cells are 

pro-metastatic cell types. Indeed, the cells which were affected by our MSNs in Kras mutant 

mice slices were MMP9-overexpressing cells, as observed by spatio-temporal analysis, and 

the absence of cell death taking place in WT and tumor-free regions of the Kras mutant 

lungs. Contrary to that, slices that were exposed to free drugs had evenly distributed cell 

death patterns. Indeed, quantification analysis of the observed cell death between the 

tumorous versus tumor-free regions at the 3D-LTCs revealed that the effectiveness of the 

drugs had only around 2-fold increase when the drugs were given freely, whereas tumor 
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cell-specific targeting rose up to 10-25 fold when the drugs were released by our 

functionalized MSNs. Additionally, we also confirmed our 5-10 fold increase in cell death in 

the combinatorial therapy by 3D-LTCs as observed in vitro. Combining common therapeutics 

with proteasome inhibitors has been an interesting approach for several malignancies as well 

as lung cancers. Several clinical and preclinical trials have shown that, the FDA-approved 

proteasome inhibitor bortezomib can be synergistically combined with numerous 

chemotherapeutic agents as well as with radiotherapy, showing good tolerability and no 

significant enhanced toxicity (Cao et al., 2013; Davies et al., 2007a). Particularly, a phase II 

clinical trial study with bortezomib in combination with carboplatin has shown encouraging 

results with progression-free and improved overall survival rates in non-small cell lung 

cancer patients (Davies et al., 2004). To our knowledge, our report is the first where 

nanoparticle-based controlled release of a proteasome inhibitor in combination with cisplatin 

shows significantly superior antitumor activity. Last but not least, we have shown the 

feasibility of our nanoparticles in diseased versus healthy human lung tissue. We 

demonstrated that the cisplatin loaded MMP9-responsive MSNs resulted in notable cell death 

in human 3D-LTCs with lung adenocarcinoma and lung metastasis whereas no significant 

signs of apoptosis were observed in the healthy 3D-LTCs from the same patients. Moreover, 

this controlled release effect was MMP9 sequence-specific as we did not seen MSN-induced 

apoptosis in non-cleavable linker bearing cisplatin-loaded nanoparticles. To our knowledge, 

this is the first study validating the effectiveness of MMP9-responsive controlled drug release 

to human tissue with cancer. 

 

 

 

 

 

 

 

 

 

 

 

Synthesis and characterization of the particles was conducted by Christian Argyo. 

Experiments for all other sections were conducted in collaboration with Sabine van Rijt. 
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6 Combination therapy of lung cancer by EGFR- and 

CCR2-targeted MSNs 

 

Parts of this chapter have previously been submitted for publication as: 

 

Bölükbas D.A., Datz S., Meyer-Schwickerath C., Vreka M., Yang L., Gößl D., Agalioti T., 

Argyo C., van Rijt S.H., Lindner M., Eickelberg O., Stöger T., Schmid O., Stathopoulos G.T., 

Bein T., and Meiners S. (2016). Cellular resolution is essential for validation of active 

targeting of nanoparticles in vivo.  

 

6.1 Introduction 

The use of nanoparticles as therapeutic agents for cancer therapy has attracted great attention 

in the past decades (Torchilin, 2014). In particular, nanoparticle-based active targeting of 

tumor cells has emerged as a potential therapeutic approach to increase drug doses within the 

tumor while reducing systemic toxicity (Min et al., 2015; Peer et al., 2007). Cell-specific 

targeting can be achieved by functionalization of nanoparticles with targeting ligands on their 

surface that bind to receptors that are specifically overexpressed on cancer cells. In this 

context, nanoparticles targeting the epidermal growth factor receptor (EGFR) have attracted 

notable attention (Master and Sen Gupta, 2012). This receptor is overexpressed in several 

types of cancers including breast carcinoma, colon carcinoma, and lung cancer (Ciriello et al., 

2013; Normanno et al., 2006). Nanoparticles are often functionalized with EGFR targeting 

ligands and designed to deliver either silencing agents against defined oncogenes or 

chemotherapeutic drugs (Master and Sen Gupta, 2012). These nanoparticles are then 

preferentially recognized and bound by the tumor cells overexpressing EGFR; then they are 

rapidly taken up into the cells by receptor-mediated endocytosis where the drug is released 

into the cytoplasm to specifically kill the tumor cells (Mickler et al., 2012). 

Receptor-mediated targeting via nanoparticles also offers the promise of targeting different 

types of cells at the same time. In particular, inflammatory immune cells such as 

tumor-associated macrophages have been identified as a major culprit supporting malignant 

and metastatic tumor growth (McAllister and Weinberg, 2014; Quail and Joyce, 2013). 

Accordingly, complementary targeting of tumor and tumor-associated immune cells has 
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emerged as a novel approach for cancer therapy (Sharma and Allison, 2015; Wolchok and 

Chan, 2014), yet has hardly been exploited for nanoparticle-mediated cell targeting (Conde et 

al., 2015; Shao et al., 2014). Such complementary targeting strategies require comprehensive 

validation of cell-specific targeting in vivo with cellular resolution. While many in vivo 

studies demonstrate effective targeting of tumor tissue and therapeutic efficiency of 

receptor-targeting nanoparticles in mouse tumor models (Brinkman et al., 2016; Lu et al., 

2016; Patil et al., 2015), most of these studies, however, lack proof of cell-specific targeting 

and nanoparticle-induced killing of tumor cells but rather show accumulation of nanoparticles 

in the target tissue (Bölükbas and Meiners, 2015; Nascimento et al., 2016; Sadhukha et al., 

2013; Taratula et al., 2013). We here analyzed complementary targeting of tumor and 

tumor-associated immune cells by application of fluorescently labeled mesoporous silica 

nanoparticles (MSN) that had been coupled to EGFR- and C-C chemokine receptor type 2 

(CCR2)-specific targeting ligands (Auvynet et al., 2016; Li et al., 2005) in vitro and in vivo. 

Cell-specific targeting efficiency of EGFR- and CCR2-ligand bound nanoparticles was 

validated using two distinct delivery strategies, i.e. systemic delivery via intravenous 

injection and local intratracheal delivery to the lung. This also allowed us to test targeting 

specificity of nanoparticles in two different biological environments which are known to form 

distinct protein coronas on nanoparticles that may influence receptor-mediated targeting 

(Hadjidemetriou et al., 2015; Mirshafiee et al., 2013; Pisani et al., 2017; Raesch et al., 2015; 

Salvati et al., 2013; Tenzer et al., 2013). Intriguingly, proven in vitro cellular targeting 

specificity of ligand-functionalized nanoparticles was severely hampered in vivo in two 

distinct tumor mouse models irrespective of particle delivery via the blood or the lung due to 

highly effective foreign body clearance mechanisms.  

 

6.2 Results 

6.2.1 Complementary expression of EGFR and CCR2 in lung cancer 

The EGF receptor is commonly overexpressed in NSCLC and is correlated with poor 

prognosis of patients (de Mello et al., 2011; Sharma et al., 2007). CCR2 is a chemokine 

receptor that is specifically overexpressed in tumor-associated macrophages and promotes 

metastatic spread of tumor cells in preclinical cancer models including lung cancer (Fritz et 

al., 2015; Hiratsuka et al., 2013; Qian et al., 2011; Quatromoni and Eruslanov, 2012; Schmall 

et al., 2015). For our complementary targeting approach, we first validated cell-type specific 
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overexpression of EGFR and CCR2 in tumors of lung cancer patients. Pronounced 

overexpression of EGFR was observed in infiltrating nests of lung tumor cells (Figure 6.1A), 

while CCR2 was strongly overexpressed in the surrounding stroma as depicted by 

immunohistopathological staining of the same patient material (Figure 6.1B). These data 

validate the combined use of EGFR- and CCR2-specific targeting nanoparticles as a valid 

approach to obtain specific targeting of lung tumors and tumor-associated immune cells at the 

same time. 
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Figure 6.1 EGFR and CCR2 expression in non-small cell lung cancer (NCSLC). 

Immunohistochemical staining of (A) EGFR (pink) is observed in infiltrating tumor nests whereas 

(B) CCR2 (pink) mainly localizes to desmoplastic stroma of NSCLC tumors of the patient. 

 

6.2.2 Synthesis and characterization of the receptor-targeted MSNs 

Functionalized MSNs were synthesized according to previous reports, resulting in 

functionalization of the internal pore system with thiol groups and of the external particle 

surface with amino groups (Figure 6.2B) (Cauda et al., 2009). The additional core 

functionalization was used for covalent attachment of fluorescent dyes for particle tracking in 

our in vitro and in vivo studies. The external surface of the MSNs was functionalized with a 

pH-cleavable linker system containing a biotin functionality on the outer periphery 

(Figure 6.2A(i)). The glycoprotein avidin was attached to the outer surface of the particles via 
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noncovalent association with the biotin groups, thus acting as a bulky gatekeeper of the 

internal pore system (Figure 6.2(ii)). In our study, these MSNAVI nanoparticles served as the 

non-targeting particle control. Different targeting ligands were attached to the outer surface 

of the avidin gatekeepers such as the natural ligand of the EGFR, i.e. EGF, an artificial ligand 

GE11, and the artificial CCR2 antagonist ECL1i referred to as particles MSNEGF, MSNGE11, 

and MSNECL1i, respectively (Figure 6.2A(iii)) (Auvynet et al., 2016; Cauda et al., 2009; Li et 

al., 2005). All MSN types showed colloidal stability in aqueous and mucosal solutions 

(Figures 6.2C&D) and pH-responsive release behavior for independently manufactured 

batches as analyzed by release of propidium iodide as a model cargo (Figure 6.2E). 

Additional comprehensive characterization of the MSN particle systems with 

thermogravimetric analysis, nitrogen sorption, zeta potential measurements, and IR 

spectroscopy confirmed successful synthesis of a pH-cleavable MSN system with different 

targeting ligands that was subsequently used for specific in vitro and in vivo cellular targeting 

experiments (data not shown; experiments were conducted by our collaboration partners at 

the Physical Chemistry Department in the Ludwig-Maximilians-University of Munich). 
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Figure 6.2 Synthesis scheme and characterization of pH-responsive mesoporous silica nanoparticles 

(MSNs) with different targeting ligands. (A) Delayed co-condensation process leads to different core 
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(green, thiol groups) and shell (red, amino groups) functionalization of MSN-SHin-NH2,out. (i) In a 

three step modulation approach, first the amino groups were transformed into carboxy groups. EDC 

amidation with the pH-cleavable linker and subsequent addition of biotin leads to covalent attachment 

and results in MSNBiotin. (ii) After cargo loading and covalent attachment of the dyes at the thiol 

groups in the inner pore system, avidin efficiently seals the mesopores and results in MSNAVI. (iii) On 

the outer surface different targeting ligands were added (MSNGE11, MSNEGF, MSNECL1i). 

Characterization of MSNs. (B) Transmission electron micrograph (TEM) of MSN-SHin-NH2,out. 

Scale bar = 50 nm. (C) Dynamic light scattering (DLS) of MSNAVI (red), MSNGE11 (light green), 

MSNEGF (orange) and MSNECL1i (grey) in water. (D) Variance in size distribution in healthy (2%) 

versus cancerous (8%) mucus conditions. (E) Time-dependent pH-responsive percent release statistics 

at pH 7 and pH 5. * means a significant increase in the release of the cargo at pH 5 compared to pH 7 

(** p < 0.01). Values given are an average of three independent experiments ±SEM. 

 

6.2.3 Receptor-mediated targeting of MSNs in vitro 

We analyzed in vitro receptor-specific targeting of EGFR–abundant cells with fluorescently 

labeled functionalized MSNs in two human NSCLC cell lines that differ in their basal EGFR 

expression. EGFR is strongly overexpressed in A549 cells compared to H520 cells as 

determined by Western blot analysis (Figure 6.3A & 6.4A). Of note, we always applied the 

nanoparticles in the presence of 10% FCS to allow for in vitro protein corona formation 

(Mirshafiee et al., 2013; Salvati et al., 2013). Confocal microscopy revealed pronounced 

uptake of the targeted MSNs in EGFR-abundant A549 cells. EGF receptor staining confirmed 

co-localization of the fluorescently labeled MSNs with EGFR, thus validating that the uptake 

was EGFR-mediated (Figure 6.3B). Importantly, the uptake was confirmed for different MSN 

particles presenting both the natural EGFR ligand, EGF, and the artificial ligand, GE11, using 

several independent batches of nanoparticle preparations. In contrast, EGFR-scarce H520 

cells showed only a minor uptake of GE11-functionalized MSNs (Figure 6.3B right panel and 

Figure 6.4B). In flow cytometry analysis, we observed significant increase in the uptake 

when the particles were EGFR-targeted with EGF or GE11 compared to non-targeted 

MSNAVI particles in A549 cells (Figure 6.3C). Specificity of our CCR2-targeted MSNs was 

tested in the presence of serum in the mouse alveolar macrophage cell line MH-S, which 

expresses increased levels of CCR2, as determined by Western blot analysis (Figure 6.5A). 

Treatment of MH-S cells with CCR2-ligand functionalized and fluorescently labeled MSNs 

showed strong uptake of particles that co-localized with CCR2 staining indicating receptor-

mediated uptake of these MSNs. In contrast, non-targeted MSNAVI particles were only 
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minimally taken up by MH-S cells (Figure 6.5A). In addition, the CCR2-scarce lung 

adenocarcinoma cell line A549 cells (Figure 6.6A) showed a much less pronounced uptake 

when compared to the MH-S cells, thus demonstrating CCR2-specific delivery of our CCR2-

targeted MSNs (Figure 6.6B). Flow cytometry analysis confirmed the significant increase in 

uptake in MH-S cells upon CCR2-targeting with independent batches of particle preparations 

(Figure 6.5B). 
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Figure 6.3 EGFR-specific uptake of MSNs in vitro. (A) Basal EGFR overexpression in A549 but not 

in H520 cells at the protein level, assessed by Western blot analysis. (B) EGFR-targeted versus 

non-targeted uptake of ATTO 633-labeled MSNAVI, MSNEGF, and MSNGE11 within 1 h by A549 cells 

compared to MSNGE11 uptake in H520 cells co-stained for EGFR by immunofluorescence, measured 

by confocal microscopy. Nuclear staining (DAPI) is shown in blue, EGFR staining in green and 

ATTO 633-labeled MSNs in red in the merged images, and in gray in the single channel for better 
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resolution. (C) Quantification of the ATTO 488-labeled MSNAVI, MSNEGF, and MSNGE11 uptake 

within 1 h by A549 cells by flow cytometry analysis. After gating for the viable cells, medians of the 

histogram curves were obtained. Autofluorescence signals of the untreated cells were blanked from 

the treated cells. * indicates a significant increase in the uptake of MSNEGF and MSNGE11 compared to 

MSNAVI (p < 0.05). Values given are an average of six independent experiments using different 

particle preparations ±SEM. 
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Figure 6.4 EGFR-targeted MSN uptake in H520 cells in vitro. (A) Basal EGFR overexpression in 

A549 cells in comparison to only limited EGFR expression in H520 cells at the protein level, assessed 

by Western blot analysis. (B) EGFR-targeted versus non-targeted uptake of ATTO 633-labeled 

MSNAVI, MSNEGF, and MSNGE11 in 1 h in EGFR-scarce H520 cells co-stained for EGFR by 

immunofluorescence, measured by confocal microscopy. Nuclear staining (DAPI) is shown in blue, 

EGFR staining in green, and ATTO 633-labeled MSNs in red in the merged image, and in gray in the 

single channel for improved resolution. Scale bar = 100 µm. (C) Quantification of the 
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ATTO 633-labeled MSNAVI, MSNEGF, and MSNGE11 uptake in 1 h in H520 cells by flow cytometry 

analysis. After gating for the viable cells, median fluorescence intensities from the histogram curves 

were obtained. Autofluorescence signals of the untreated cells were blanked from the treated cells. 

Values given are an average of six independent experiments ±SEM. 
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Figure 6.5 CCR2-specific uptake of MSNs in vitro. (A) CCR2-targeted versus non-targeted uptake of 

ATTO 633-labeled MSNAVI and MSNECL1i in one hour in MH-S cells immunofluorescently co-stained 

for CCR2, measured by confocal microscopy (B) Quantification of ATTO 488-labeled MSNAVI and 

MSNECL1i uptake within 1 h in MH-S cells by flow cytometry analysis. After gating for the viable 

cells, medians of the histogram curves were obtained. Autofluorescence signals of the untreated cells 

were blanked from the treated cells. * means a significant increase in the uptake of MSNECL1i 

compared to MSNAVI (p < 0.05). Values given are an average of four independent experiments using 

different particle preparations ±SEM. 



Combination therapy of lung cancer by EGFR- and CCR2-targeted MSNs 

80 

A.

B.

35 kDa

42 kDa

CCR2

β-actin

48 kDa

autofluorescence

MSNAVI

MSNECL1i

 

Figure 6.6 CCR2-targeted MSNs uptake in A549 cells in vitro. (A) Basal CCR2 overexpression in 

MH-S cells versus A549 cells at the protein level, assessed by Western blot analysis. 

(B) Quantification of the ATTO 488- labeled MSNAVI and MSNECL1i uptake in 1 h in CCR2-scarce 

A549 cells by flow cytometry analysis. After gating for the viable cells, median fluorescence 

intensities from the histogram curves were obtained. Autofluorescence signals of the untreated cells 

were blanked from the treated cells. Values given are of a single experiment. 

 

6.2.4 Systemic delivery of MSNGE11 versus MSNAVI in mouse flank 

tumor models 

In vivo, we first analyzed receptor-mediated targeting of the EGFR-functionalized 

nanoparticles in flank tumor bearing mouse models by systemic delivery via the bloodstream. 

In the blood, nanoparticles are reported to be immediately coated with a distinct protein 

corona (Hadjidemetriou et al., 2015). EGFR-targeting specificity was assessed by using 

genetically engineered murine melanoma cells (B16F10), that express only low levels of 

EGFR (B16F10
EGFR-

) and a derivative of these cells stably transfected to overexpress EGFR 

(B16F10
EGFR+

) (Figure 6.7A). These cell lines were injected subcutaneously into the left and 

right flanks of a syngeneic and immunologically fully competent mouse strain (C57BL/6) for 

flank tumor formation. In a complementary approach, genetically engineered murine Lewis 

lung carcinoma cells (LLC), which endogenously overexpresses EGFR (LLC
EGFR+

) and a 

derivative of these cells in which EGFR had been knocked down via stable 
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short-hairpin-mediated RNA silencing (LLC
EGFR-

) were used (Figure 6.8A). With this 

approach, we are able to control for EGFR-specific targeting of our functionalized 

nanoparticles to tumor cells within the same mouse, as receptor-negative tumor cells serve as 

an internal control for receptor-specific targeting. This animal model thus allows for an 

unprecedented control of receptor-mediated targeting specificity. In both settings, cells grew 

to form tumors of similar size of 1-2 cm
3
 within two weeks with similar histology. 

ATTO 633-labeled EGFR-targeted nanoparticles were then systemically applied via 

retro-orbital intravenous injection and biodistribution of the particles was compared to 

labeled but non-targeted MSNAVI particles by in vivo fluorescence imaging. Fluorescence 

signals were low and close to the detection limit of our near-infrared bioimaging system but 

indicated accumulation of nanoparticles in the liver (data not shown). We investigated the 

biodistribution of the systemically applied MSNs on the cellular level by comparative 

immunofluorescence analysis of the right and left flank tumors and of several internal organs. 

Both the targeted and non-targeted fluorescently-labeled MSNs were mainly localized in the 

liver and spleen with only little uptake into the flank tumors, lungs, and kidneys 

(Figure 6.7B). Quantification of the immunofluorescence signal per cell nucleus confirmed 

that the delivery of the MSNs to the liver was much more effective than to other organs or 

tumors (Figure 6.7C). Importantly, we did not observe any difference in the uptake between 

EGFR overexpressing and EGFR-scarce B16F10 tumor cells. Very similar data were 

obtained with the second set of EGFR-abundant and -scarce LLC tumor cells (Figure 6.8&9). 

Likewise, quantification of nanoparticle-derived fluorescence in tissue homogenates of flank 

tumors and the liver revealed pronounced accumulation of fluorescence signals in liver 

homogenates regardless of MSN functionalization in the LLC flank tumor model 

(Figure 6.8D). 
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Figure 6.6 Biodistribution of EGFR- targeted versus non-targeted nanoparticles in mice with 

B16F10
EGFR-

 and B16F10
EGFR+

 syngeneic tumors. (A) Overexpression of EGFR protein in cDNA 

transfected B16F10 cells in comparison to control vector transfected cells in vitro by Western blot 

analysis. (B) Histological analysis of the intravenously administered MSNAVI and MSNGE11 

biodistribution in the EGFR-abundant B16F10
EGFR+

 tumors, EGFR-scarce B16F10
EGFR-

 tumors, livers, 
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spleens, lungs, and kidneys of the mice three days after treatment by means of confocal microscopy. 

Nuclear staining (DAPI) is shown in blue, actin staining (phalloidin) in green and ATTO 633-labeled 

MSNs in red in the merged image, and in gray in the single channel for improved resolution. To 

obtain reliable qualitative data on the distribution of the particles in these tissues, we analyzed 5 mice 

per group with 5 random sections and 3 images per section taken in a blinded manner. 

(C) Quantification of the MSNAVI and MSNGE11 uptake per nuclei observed in histological analyses in 

B16F10
EGFR-

 and B16F10
EGFR+

 tumors, kidneys, lungs, spleens, and livers, respectively. In the HBSS 

control, animals only received HBSS buffer and no particles. *** indicates a significant increase in 

MSN uptake in the livers compared to the tumors (p < 0.001). Values given are averages ±SEM of 

three different images/tissue sections per mouse in each group (n = 5 per MSN type). 
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Figure 6.7 Biodistribution of the EGFR-targeted versus non-targeted MSNs in mice bearing 

LLC
EGFR+

 versus LLC
EGFR-

 syngeneic flank tumors. (A) EGFR expression of genetically modified 

LLC clones at protein level shown by Western blot analysis, and schematic representation of the 

syngeneic double flank tumor-bearing mouse model that was generated by subcutaneous injection of 

the individual cell clones, respectively. (B) Histological analysis of the biodistribution of 

intravenously administered MSNAVI and MSNGE11 in EGFR-abundant LLC
EGFR+

 and EGFR-scarce 

LLC
EGFR-

 tumors, livers, spleens, lungs, and kidneys of the mice by means of confocal microscopy. 

Nuclear staining (DAPI) is shown in blue, actin staining (phalloidin) in green and ATTO 633-labeled 

MSNs in red in the merged image, and in gray in the single channel for better resolution. Images 
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shown are representative for three different regions from each mice (n = 5 mice treated). Scale 

bar = 100 µm. (C) Quantification of the MSNAVI and MSNGE11 uptake per nuclei observed in 

histological analyses in LLC
EGFR+

 and LLC
EGFR-

 tumors, kidneys, lungs, spleens, and livers, 

respectively. (D) Quantitative dosimetric analyses of the MSNAVI and MSNGE11 fluorescence achieved 

from the homogenates of LLC
EGFR+

 and LLC
EGFR-

 tumors versus livers of the treated mice. In the 

HBSS control, animals only received HBSS buffer and no particles. *** means a significant increase 

in MSN uptake in the livers compared to the tumors (p < 0.001). Values given are average of three 

different images per each treated mice ± SEM (n = 5 per MSN type). 
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Figure 6.8 Organ-specific biodistribution of EGFR- targeted versus non-targeted MSNs in mice 

bearing LLC
EGFR+

 versus LLC
EGFR-

 syngeneic flank tumors. Histological analysis of the 

biodistribution of retro-orbitally administered MSNAVI and MSNGE11 in the EGFR-abundant LLC
EGFR+

 

tumors, EGFR-scarce LLC
EGFR-

 tumors, livers, spleens, lungs, and kidneys of each of the treated mice 

by confocal microscopy. Nuclear staining (DAPI) is shown in blue, actin staining (phalloidin) in 

green, and ATTO 633-labeled MSNs in red. Images shown are representative for three different 

regions from each mice (n = 5 mice per MSN type). Scale bar = 100 µm. 
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6.2.5 Local intratracheal delivery of MSNGE11 and MSNECL1i in 

Kras mutant transgenic mouse model 

In order to assess the targeting specificity of our functionalized nanoparticles by a different 

delivery route and in the presence of a different biological environment, i.e. the lung lining 

fluid, we evaluated local delivery of targeted MSNs into the lungs via instillation using the 

Kras
LA2

 mouse model for lung cancer. In this mouse model, transgenic mice spontaneously 

develop lung tumors upon random activation of oncogenic Kras signaling, resulting in a more 

realistic tumor model than the inducible cancer models (Johnson et al., 2001; Zitvogel et al., 

2016). As such, this mouse model closely resembles the onset of NSCLC in patients where 

activation of Kras has been shown to be the most prominent oncogenic driver mutation 

(Ciriello et al., 2013; Martin et al., 2013). Immunohistochemical staining for EGFR and 

CCR2 confirmed that the receptors are overexpressed in these lung tumors, thus validating 

the Kras
LA2

 lung tumor model as a suitable model for investigating EGFR- and 

CCR2-specific targeting via functionalized nanoparticles (Figure 6.9). For in vivo evaluation 

of receptor-specific uptake of EGFR- and CCR2-targeted MSNs by tumor and 

tumor-associated immune cells, fluorescently labeled targeted (MSNGE11, MSNECL1i) and 

non-targeted MSNs (MSNAVI) were intratracheally instilled directly into the lungs of 

tumor-bearing Kras
LA2

 mice. The biodistribution of the fluorescently-labeled MSNs was 

evaluated three days after administration on the cellular level using confocal microscopy of 

the lung, liver, and spleen sections as described before. Translocation of MSNs to secondary 

organs was not detected (Srinivasarao et al., 2015) (Figure 6.10), instead MSNs were retained 

in the lungs of the Kras
LA2

 mice (Figure 6.11). In the tumorous lungs, particle uptake was 

detected in smaller hyperplastic lesions of the lung but not in large and solid tumors, except 

for the edges of these tumors (Figure 6.11). Nanoparticles also localized to tumor-free lung 

tissue regardless of their functionalization (Figure 6.11). Importantly, we did not observe any 

difference in cellular uptake of EGFR-, CCR2-targeted nanoparticles, and non-targeted 

MSNAVI particles on the cellular resolution level. Remarkably, the nanoparticles did 

accumulate in specific cells both in the tumor-free and in tumorous regions. 

Immunofluorescence staining with the macrophage marker CD68 identified these cells as 

alveolar macrophages (Figure 6.12). These cells are specialized tissue-resident macrophages 

of the lung that colonize the alveolar surface and play an essential role in the pulmonary 

defense against particles and pathogens (Lambrecht, 2006). Of note, these cells stained also 

strongly positive for both EGFR and CCR2, in both the tumor-free and the tumorous lesions 
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of Kras
LA2

 tumor mice (Figure 6.13). Uptake of nanoparticles, however, was independent of 

the receptor expression as also the non-targeted MSNAVI nanoparticles were efficiently taken 

up by EGFR- and CCR2-positive alveolar macrophages (Figure 6.13). Moreover, lung 

carcinoma cells that overexpressed both EGFR and CCR2 did not preferentially take up 

EGFR- and CCR2-targeted MSNs, respectively (Figures 6.9 and 6.13C&D). These data 

reveal disturbance of targeting specificity of functionalized nanoparticles in the lung. 
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Figure 6.9 EGFR and CCR2 expression in the lungs of Kras
LA2

 transgenic mice with lung cancer. 

Immunohistochemical staining of (A) EGFR (pink) is overexpressed heterogeneously in tumor cells 

and immune cells whereas (B) CCR2 (pink) is overexpressed rather homogeneously in tumor cells 

and immune cells of the Kras
LA2

 mutant mouse with lung cancer, respectively. 
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Figure 6.10 Biodistribution of MSNs after local delivery to the lungs in major organs of Kras
LA2

 

mutant mice. Histological analysis of the biodistribution of ATTO 633-labeled MSNAVI, MSNGE11, 

and MSNECL1i in livers, spleens, and kidneys of the Kras
LA2

 mutant mice three days after instillation. 

Nuclear staining (DAPI) is shown in blue, actin staining (phalloidin) in green, and ATTO 633-labeled 

MSNs in red. Images shown are representative for three different regions from each mice (n = 5 per 

MSN type). Scale bar = 100 µm. 
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Figure 6.11 Cellular distribution of instilled nanoparticles in the lungs of Kras
LA2

 mutant mice. 

Histological analysis of ATTO 633-labeled MSNAVI, MSNGE11, and MSNECL1i uptake in solid tumor 

cores versus their edges, and in hyperplastic or in tumor-free regions of the tumorous lungs. Nuclear 

staining (DAPI) is shown in blue, actin staining (phalloidin) in green, and ATTO 633-labeled MSNs 

in red in the merged images, and in gray in the single channels for more clear observation. To obtain 
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reliable qualitative data on the distribution of the particles in these tissues, we analyzed five mice per 

group with five random sections and three images per section taken in a blinded manner. Images 

shown are representative for three different regions from each group of mice (n = 5 per MSN type). 
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Figure 6.12 CCR2-targeted and non-targeted MSNs accumulate in CD68 positive macrophages in 

Kras
LA2

 mutant lungs. Immunofluorescence co-staining for the macrophage marker CD68 in 

tumor-free regions of the lungs of Kras
LA2

 mice with ATTO 633-labeled MSNs. Nuclear staining 

(DAPI) is shown in blue, actin staining (phalloidin) in red, CD68 staining in green, and 

ATTO 633-labeled MSNs in gray. Images shown are representative for three different regions from 

each mice (n = 5 per MSN type). Scale bar = 100 µm. 
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Figure 6.13 Nanoparticles localize to alveolar macrophages in Kras
LA2

 mutant lungs. 

Immunofluorescence co-staining for (A) EGFR and (B) CCR2 in tumor-free regions compared to 

(C) EGFR and (D) CCR2 co-staining in tumor regions of the mutant lungs with lung cancer that had 

been treated with ATTO 633-labeled MSNAVI versus MSNGE11 or MSNECL1i. Nuclear staining (DAPI) 

is shown in blue, actin staining (phalloidin) in red, receptor staining (EGFR for A & C, CCR2 for 

B & D) in green, and ATTO 633-labeled MSNs in gray. Images shown are representative for three 

different regions from each group of mice (n = 5 per MSN type). 
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6.2.6 Protein corona formation on MSNs in distinct biological 

environments 

We next evaluated protein corona formation on non-targeted MSNAVI versus targeted 

MSNGE11 in three different biological environments, i.e. cell culture medium in the presence 

of cell culture media containing 10% FCS, human serum, and murine lung lining fluid. Silver 

staining of the proteins adsorbed on the nanoparticles revealed a noteworthy presence of 

protein corona in all three conditions for both targeted and non-targeted MSNs (Figure 6.14). 

These data suggest that protein corona formation on functionalized MSNs per se does not 

affect active targeting of receptors but might facilitate out-competition of particle uptake by 

phagocytosing mononuclear cells. 
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Figure 6.14 Protein corona formation on the surface of the nanoparticles in distinct biological 

environments. Silver staining of the protein corona formed on the surface of MSNAVI and 

MSNGE11 in cell culture medium with 10% FCS, human blood serum, and murine lung lining 

fluid, overnight. 
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6.3 Discussion 

In conclusion, in vitro validated nanoparticle-mediated targeting of receptors on tumor and 

tumor-associated immune cells is strongly deprived in vivo. This failure in cellular targeting 

specificity is particularly obvious for the lung-delivered nanoparticles as the alveolar 

macrophages of the Kras-mutant mice strongly overexpressed both EGFR and CCR2, but 

efficiently entrapped targeted as well as non-targeted nanoparticles to a similar extent. 

Enhanced cell-specific uptake by macrophages of the lung compared to tumor cells would 

have escaped analysis if only particle uptake within the tissue would have been monitored as 

done previously (Bölükbas and Meiners, 2015; Nascimento et al., 2016; Sadhukha et al., 

2013; Taratula et al., 2013). Similarly, analysis of cell-specific particle uptake in the flank 

tumor models also unambiguously revealed loss of cellular targeting specificity. Our data 

thus emphasize the need for analyzing cellular targeting specificities with cellular resolution 

also in the major target organs. This is particularly relevant when aiming for combination 

targeting of different cell populations with distinct ligand-functionalized nanoparticles. 

These findings do not rule out that targeted nanoparticles have therapeutic effects in mouse 

tumor models as indicated by numerous studies using MSNs and other nanomaterials (Davis 

et al., 2010; Liu et al., 2016; Meng et al., 2011; Wagner, 2007). Our findings, however, 

indicate that these therapeutic effects may not always be due to a direct nanoparticle-

mediated tumor killing but may also involve bystander effects such as cytotoxicity of tissue-

resident phagocytic cells, immune-modulatory effects, and unspecific drug release from 

nanoparticles in the liver into the circulation. Some of these effects may have even been 

mitigated in previous studies due to the use of immunocompromised mice. As recently 

outlined by Wilhelm and Torrice (Torrice, 2016; Wilhelm et al., 2016), numbers of 

contradictory reports on in vivo tumor targeting efficiency of nanomedicines are on the rise 

and may explain the ineffective translation of nanomedicines into clinical practice. Our data 

also suggest that targeting specificity in vivo is probably not solely related to the shielding of 

ligand-receptor interactions on target cells by formation of a protein corona on the 

nanoparticles (Salvati et al., 2013; Tenzer et al., 2013) as cell-specific targeting was 

hampered in two distinct biological environments, i.e. the blood and the lung. Our own and 

other published data indicate that blood-derived serum and the lung lining fluid form distinct 

protein coronas on nanoparticles in vitro (Figure 6.14) (Tenzer et al., 2013). Moreover, 

protein corona also forms rapidly in cell culture medium containing serum where receptor-

mediated targeting was effective (Figure 6.14). Taken together, our study argues in favor of a 
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stringent validation of cell-specific targeting with cellular-resolution when using 

nanoparticle-based targeting strategies. Moreover, closing the translational gap in 

nanomedicine calls first for physiologically relevant animal models, such as the Kras
LA2

 mice 

as used here which develop spontaneous lung tumors closely resembling the human situation, 

and second for rigorous biological testing of nanoparticles using state of the art molecular 

manipulation of cells and animals critically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synthesis and characterization of the particles was conducted by Stefan Datz. 

Experiments for CCR2-targeted MSNECL1i particles were conducted in collaboration with Charlotte 

Meyer-Schwickerath. 
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7 Concluding remarks 

The aim of this study was to investigate whether novel mesoporous silica nanoparticles 

(MSNs) are appropriate nanoformulations to use for a more targeted lung cancer therapy. For 

this, we tried to provide insights on the effects of different functionalizations on the particles 

in vitro and in vivo. Additionally, we examined protease-stimulated release of drugs from 

these nanoparticles in several in vitro and ex vivo models. Moreover, we inspected 

cell-specific targeting ability of such particles in in vitro and in vivo settings. 

In the first part of this study, we compared the biodistribution and preferential uptake of 

avidin protein functionalized versus non-functionalized MSNs in healthy mice lungs. To 

achieve that, wild-type adult BALB/c mice were exposed to fluorescently-labeled MSNs for 

1, 3, or 7 days by intratracheal delivery. Both MSN types were detected in the alveolar 

architecture of the lungs, yet the non-functionalized nanoparticles were mostly associated 

with alveolar macrophages at all time points. In contrast, avidin-functionalized MSNs were 

first distributed homogeneously in the alveolar epithelial cells of the lungs, which was then 

followed by alveolar macrophage clearance of the particles between 3-7 days. The biokinetics 

of avidin-functionalized MSNs are encouraging, since drug-encapsulated MSNs would have 

sufficient time to release the drugs into the epithelial cells of the lung which would then be 

followed by the clearance of the already emptied MSNs by the alveolar macrophages. 

Moreover, non-functionalized nanoparticles showed more toxic effects on the alveolar 

macrophages in comparison to avidin-functionalized ones in vitro. Thus, this study clearly 

confirms that the use of avidin-functionalization on the mesoporous silica nanoparticles is of 

advantage for enhanced biodistribution and biocompatibility of the instilled nanoparticles. 

Having validated the feasibility of the avidin-functionalization for local application of the 

MSNs into the lungs, in the second part, we set out our goal to investigate stimuli-responsive 

release of chemotherapeutic agents from these nanoparticles in lung cancer environment. For 

this, we utilized MMP9-specific peptide linkers to attach the avidin capping on the openings 

of the MSN pores. Our in vitro data revealed enhanced therapeutic efficacy of the particles 

which was confirmed by significant cell death as a result of MMP9 sequence-specific release 

of the drugs in human lung cancer cell lines. To extend our in vitro findings, we exploited the 

novel 3D-lung tissue cultures (3D-LTC) system and exposed tumorous versus tumor-free 

lung slices from the mice and human to drug loaded nanoparticles. In accordance with our in 

vitro results, our detailed confocal microscopy analyses proved MMP9-specific drug release 
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in both human and mouse slices that had high levels of the MMP9 enzyme. Most 

interestingly, the highest efficacy was achieved in nanoparticles encapsulated with both 

cisplatin and bortezomib at their single non-toxic doses, demonstrating synergistic 

therapeutic effect on 3D-LTCs. Consequently, via in vitro and ex vivo models, this study 

validates enhanced therapeutic efficacy of avidin-functionalized MMP9-cleavable linker 

bearing mesoporous silica nanoparticles for use in lung cancer treatment. 

At this point, it is important to note that nanoparticle exposure on 3D-LTCs faces limitations 

regarding nanoparticle penetration through the tissue slices. While drugs that were released 

from functionalized MSNs upon MMP9-induced cleavage of the linkers were able to 

penetrate through the tissue and cause tumor cell-specific death, we were unable to observe 

efficient penetration of ligand-functionalized MSNs and effective tumor cell-specific 

targeting. Our unpublished data are in accordance with data published by Hirn et al. (Hirn et 

al., 2014), where nanoparticles applied on 3D-LTCs are observed to mainly remain at the 

surficial regions of the tissue with no diffusion into the underlying parts. 

To translate our in vitro and ex vivo findings in tumorous lungs in vivo, we explored 

cell-targeting ability of lung cancer cell and tumor-associated macrophage targeted 

mesoporous silica nanoparticles for combination therapy in mouse models, respectively. We 

confirmed complementary overexpression of EGFR in lung cancer tumors and CCR2 in 

tumor-associated macrophages from human and mice by immunohistochemistry, and 

therefore decided to target these receptors with the particles. Before animal experiments, we 

confirmed superior uptake of EGFR- and CCR2-targeted nanoparticles in cell culture 

experiments. To compare our in vitro findings in in vivo setting, we exploited two different 

strategies, i.e. intravenous (IV) and intratracheal (IT) application of the targeted MSNs. 

IV administration of the particles was conducted in two different syngeneic flank tumor 

models of C57BL/6 mice with double tumors with alternating EGFR expressions, 

i.e., LLC
EGFR+

 / LLC
EGFR-

 and B16F10
EGFR+

 / B16F10
EGFR-

. 3 days after IV application, the 

nanoparticles were found to be significantly more accumulated in the livers of the mice as 

observed by confocal microscopy. Furthermore, this liver accumulation effect was 

independent of the functionalization of the particles and EGFR expression levels in the flank 

tumors in both flank tumor models. For local IT instillation of the MSNs, we treated adult 

Kras mutant mice with lung tumors. 3 days after IT instillation, fluorescently-labeled 

particles were detected in the alveolar space, mostly taken up by hyperplastic cells at 
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preneoplastic sites and solid tumor edges, and alveolar macrophages again independent of 

their functionalization. In order to relate this loss of cell-targeting specificity in vivo, we 

evaluated protein corona formation on the surface of our nanoparticles in different biological 

environments. Our preliminary data confirmed comparable protein corona formation on both 

targeted and non-targeted MSNs by silver staining which could be attributed as one of the 

players in vivo contributing to this unspecific uptake of the targeted MSNs. 

Taken together, IT applied avidin functionalized-mesoporous silica nanoparticles can reach 

the alveolar space and be taken up by epithelial cells with no cytotoxic behavior at early time 

points. The controlled release function from these nanoparticles enables achieving enhanced 

local therapeutic efficiency with significantly less adverse effects. However, in vitro 

feasibility of cell-specific delivery of these particles with receptor-specific ligands showed 

significant loss of targeting specificity in lung cancer cells and tumor-associated 

macrophages after IV and IT applications in mouse models. After all, this study demonstrates 

the necessity to analyze biodistribution and targeting specificity of functionalized 

nanoparticles with cellular resolution in vivo and hence stresses the urgent need for stringent 

analysis for detection and elimination of these factors before reaching clinical translation. 
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Abbreviations 

αvβ3 Alpha-v beta-3 integrin 

αvβ6 Alpha-v beta-6 integrin 

Ab Antibody 

ALK Anaplastic lymphoma kinase  

BCA Bicinchoninic acid assay 

BCL2 B-cell lymphoma 2 

BRAF V-Raf murine sarcoma viral oncogene homolog B 

Calcein-AM Calcein acetoxymethyl ester 

CB Cisplatin + bortezomib treatment 

CCL2 C-C motif chemokine ligand 2 

CCR2 C-C chemokine receptor type 2 

CD44 Cluster of differentiation 44 

CD47 Cluster of differentiation 47 

CD80 Cluster of differentiation 

CGARN Cancer Genome Atlas Research Network 

Cisplatin cis-Diamineplatinum(II) dichloride 

CLCGP Clinical Lung Cancer Genome Project 

Cl-AM Calcein-AM 

c-MET Hepatocyte growth factor receptor 

cMSN MMP9-cleavable mesoporous silica nanoparticle 

CMYC V-myc avian myelocytomatosis viral oncogene homolog  

CO2 Carbon dioxide 

COPD Chronic obstructive lung disease 

CT Computer tomography 

CTLA4 Cytotoxic T-lymphocyte-associated protein 4 

Da Dalton 

DAPI 4′,6-Diamidin-2-phenylindol  

DMEM Dulbecco's modified eagle medium 

DMSO Dimethyl sulfoxide  
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DR 4/5 Death receptor 4/5 

DTT Dithiothreitol 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetate 

EGFR Epidermal growth factor receptor 

EGFR-TKI EGFR-TK inhibitor 

EMA European Medicines Agency 

EML4 Echinoderm microtubule-associated protein like 4 

EphA2 Ephrin type-A receptor 2 

EPR Enhanced permeability and retention 

ES E-selectin 

EV Empty vector 

F12 Nutrient mixture F-12 

FBS Fetal bovine serum 

FDA U.S. Food and Drug Administration 

FITC Fluorescein isothiocyanate 

FVB Friend virus B 

Gt Goat 

HBSS Hank’s balanced salt solution 

HER2 Receptor tyrosine-protein kinase erbB-2  

HRP Horseradish peroxidase 

ICF Immunocytofluorescence 

IGF-1R Insulin-like growth factor 1 receptor 

IgG Immunoglobulin G 

IHC Immunohistochemistry 

IHF Immunofluorescence in cryo-sections 

IPF Idiopathic pulmonary fibrosis 

IT Intratracheal 

IV Intravenous 

kDa Kilodaltons 

KIT KIT proto-oncogene receptor tyrosine kinase 
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KRAS Kirsten rat sarcoma viral oncogene homolog 

LA2 Latent allele type 2 

LDLR Low density lipoprotein receptor 

LHRHR Luteinizing hormone releasing hormone receptor 

LLC Lewis lung carcinoma cells 

LTC Lung tissue cultures 

MMP Matrix metalloproteinase 

MMP2 Matrix metalloproteinase-2 

MMP9 Matrix metalloproteinase-9 

MRI Magnetic resonance imaging 

Ms Mouse 

MSN Mesoporous silica nanoparticle 

MSNAVI Avidin-functionalized MSNs 

MSNECL1i ECL1i-functionalized MSNs 

MSNEGF EGF-functionalized MSNs 

MSNGE11 GE11-functionalized MSNs 

MSNNH2 Non-functionalized MSNs 

MTT 2,5-diphenyltetrazolium bromide  

NaCl Sodium chloride 

ncMSN MMP9 non-cleavable mesoporous silica nanoparticle 

NGM Network Genomic Medicine 

NSCLC Non-small cell lung cancer 

p53 Tumor suppressor p53 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PD1 Programmed cell death protein 1  

PDL1 Programmed death-ligand 1 

PDL2 Programmed death-ligand 2 

PEG Polyethylene glycol  

PET Positron emission tomography 

PFA Paraformaldehyde 
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PI Propidium iodide 

PSMA Prostate-specific membrane antigen 

PVDF Polyvinylidenedifluoride 

Rb Rabbit 

RB Retinoblastoma protein 

RIPA Radioimmunoprecipitation assay 

RPM Revolutions per minute 

RPMI Roswell Park Memorial Institute medium 

RT Room temperature 

SC Subcutaneous 

SCLC Small cell lung cancer 

SDS Sodiumdodecylsulfate 

shRNA Small hairpin RNA 

SPIONs Superparamagnetic iron oxide nanoparticles 

TAM Tumor-associated macrophage 

TK Tyrosine kinase 

TME Tumor microenvironment 

TP53 Tumor protein 53 

Tris Tris(hydroxymethyl)-aminomethane  

WB Western blot 

WST-1 Water soluble tetrazolium-1 

WT Wild type 

Yr Year/s 
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