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ZUSAMMENFASSUNG 

Mit jeder Zellteilung muss das Genom exakt dupliziert werden. Zehntausende 

Replikationsinitiationsstellen sind bei der Replikation des gesamten humanen Genoms 

beteiligt. Die Aktivierung der Initiationsstellen ist präzise reguliert und umfassende 

Genom-weite Studien haben verschiedene genomische Faktoren identifiziert, die die 

Aktivierung der Replikationsinitiationsstellen beeinflussen. Der Prä-

Replikationskomplex (pre-RC) bildet die Grundlage der Replikationsinitiation und 

besteht aus zwei Hauptuntereinheiten: der „origin recognition complex“ (ORC) 

bindet DNS und wird zum Laden der zweiten Untereinheit, den Mcm2-7 Helikasen 

benötigt, die die eigentliche Replikationsinitiation veranlassen. Während die 

Regulation des pre-RC Aufbaus vielfach untersucht wurde und mittlerweile gut 

verstanden wird, sind die Chromatinkomponenten, welche die Positionierung der pre-

RCs regulieren, weitgehend unbekannt. Die wenigen Genom-weiten pre-RC 

Chromatin Immunopräzipitations- und Sequenzierungsstudien (ChIP-seq), 

behandeln bis heute nur ORC. Da sich Mcm2-7 allerdings von seiner initialen 

Ladeposition fortbewegen kann, werden vor allem die Genom-weiten Positionen von 

Mcm2-7 benötigt, um die Regulation der DNS Replikation vollständig zu verstehen.         

Diese Arbeit umfasst die erste Genom-weite pre-RC ChIP-seq Analyse der zwei 

pre-RC Hauptkomponenten ORC und Mcm2-7 in der Epstein-Barr Virus (EBV) 

infizierten Burkitt-Lymphom Zelllinie Raji. Als Qualitätskontrolle für erfolgreiche 

ChIPs wurden die aus den vorliegenden Experimenten bestimmten pre-RC 

Positionen auf dem EBV-Genom mit bereits bekannten pre-RC Positionen 

verglichen. Auf dem humanen Genom korrelierten die pre-RC ChIP Ergebnisse mit 
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aktiven Replikationszonen, während Replikationsterminationszonen eine spezifische 

Abnahme der pre-RC Komponenten, besonders von Mcm2-7, aufzeigten. Es ist 

bereits bekannt, dass aktive Replikation mit aktiver Transkription korreliert. Starke 

pre-RC Bindung war in der Tat hauptsächlich an Regulationsstellen der aktiven 

Transkription zu finden, was vermutlich durch die Zugänglichkeit des Chromatins 

determiniert wird. Starke Mcm2-7 Bindung variierte dabei in Abhängigkeit des 

Zellzyklus, was für Mcm2-7 Translokationen während der G1 Phase spricht, die 

vermutlich von der aktiven Transkriptionsmaschinerie beeinflusst werden. Diese 

Ergebnisse deuten darauf hin, dass ORC und Mcm2-7 Positionen in der aktiven 

Chromatinumgebung hauptsächlich von der Zugänglichkeit des Chromatins 

abhängen und Mcm2-7 die Hauptkomponente der Bestimmung der 

Replikationsinitiationsstellen darstellt.        

In Heterochromatin assoziierte vorwiegend ORC mit der heterochromatischen 

Histonmodifikation H4K20me3, während Mcm2-7 weniger Anreicherung zeigte. 

Unter Verwendung eines Plasmid-basierten Replikationssystems wurde bestätigt, dass 

diese ORC-Chromatin Assoziation einen essentiellen Einfluss auf die Regulation der 

pre-RC Positionierung und Aktivierung ausübt. Dieses Ergebnis zeigt, dass ORC-

Chromatin Interaktionen einen entscheidenden Faktor für die Regulation der 

Replikation in Heterochromatin darstellen. Zusammenfassed schlägt diese Studie zwei 

verschiedene Modi der pre-RC Positionierung vor, welche jeweils vom 

Chromatinkontext abhängen.    
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RÉSUMÉ 

Chaque division cellulaire requiert une duplication précise du génome. Des dizaines 

de milliers de sites d’initiation de la réplication d’ADN (origines de réplication) sont 

impliqués dans la réplication complète du génome humain. L’activation des origines 

de réplication est régulée précisément et des études génomiques extensives ont 

démontré la présence de caractéristiques génomiques associées à l’activation des 

origines de réplication. Le complexe de pré-réplication (pre-RC) est la base de 

l’initiation de la réplication et consiste en deux sous-complexes majeurs : l’ « origin 

recognition complex » (ORC) qui interagit directement avec l'ADN et est nécessaire 

pour recruter le second sous-complexe, les hélicases Mcm2-7, qui sont responsables 

de l'initiation de la réplication. La régulation de l’assemblage du pre-RC est bien 

étudiée, mais les caractéristiques de la chromatine qui déterminent le positionnement 

du pre-RC sur le génome restent peu connues. Les études génomiques par immuno-

précipitation de la chromatine et séquençage à haut débit (ChIP-seq) des pre-RCs sont 

rares et jusqu’à aujourd’hui seulement disponibles pour ORC. Du fait que Mcm2-7 

migre de son site de chargement initial, il est crucial d'obtenir des informations sur le 

positionnement des Mcm2-7 pour la compréhension complète de la régulation de la 

réplication.        

Ce travail présente la première analyse génomique par méthode ChIP-seq des deux 

sous-unités majeures du pre-RC, ORC et Mcm2-7, dans la lignée cellulaire de 

lymphome de Burkitt Raji infectée par le virus d’Epstein-Barr (EBV). La présence du 

génome d’EBV permet d'avoir un contrôle interne de la qualité de nos expériences, 

en comparant les positions de pre-RC déterminées avec des positions du pre-RC 
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précédemment publiées. Sur le génome humain, les résultats de séquençage du pre-

RC corrèlent bien avec des zones de réplication active. De façon intéressante, les zones 

de terminaison de la réplication étaient spécifiquement bas en pre-RC, spécialement 

en Mcm2-7. La localisation des sites d'initiation de la réplication identifiés est 

généralement bien corrélée avec les sites de transcription active. En effet, des sites 

d’assemblage du pre-RC de haute affinité sont localisés préférentiellement en 

voisinage de sites de transcription active, ce qui est possiblement dû à l’accessibilité de 

la chromatine dans ces régions. La fixation de Mcm2-7 fluctuait de façon dépendante 

du cycle cellulaire, ce qui suggère des translocations de Mcm2-7 en G1, probablement 

dépendantes de la machinerie active de la transcription. Ces résultats indiquent que les 

positions de ORC et Mcm2-7 sont principalement dépendantes de l’accessibilité de la 

chromatine avec un accès privilégié dans la chromatine active et Mcm2-7 étant le 

déterminant majeur de l’initiation de la réplication.         

Au sein de l'hétérochromatine, ORC était enrichi dans des zones associées avec 

l'histone modifié H4K20me3. Cependant, cet enrichissement était moins important 

pour les Mcm2-7. En utilisant un système de réplication basé sur des plasmides, nous 

avons démontré que l’association d'ORC et H4K20me3 favorise l’assemblage du pre-

RC et l’initiation de la réplication. Cette observation suggère que l’interaction ORC-

chromatine est le déterminant majeur de la régulation de la réplication d’ADN au sein 

de l’hétérochromatine. En conclusion, cette étude propose deux mécanismes 

différents de la régulation de l'assemblage du pre-RC dépendants de l’environnement 

de la chromatine. 
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ABSTRACT 

With every cell division, the genome needs to be faithfully duplicated. Tens of 

thousands of DNA replication initiation sites (origins of replication) are invoved in 

replicating the human genome. Origin activation is precisely regulated and extensive 

genome-wide studies found association of origin activation to several different 

genomic features. The pre-replication complex (pre-RC) is the basis for replication 

initiation and consists of two major subcomponents: the origin recognition complex 

(ORC) binds DNA and is required for loading of the second component, Mcm2-7 

helicases, which initiate DNA replication. Regulation of pre-RC assembly is well 

studied, however, chromatin features driving pre-RC positioning on the human 

genome remain largely unknown. Genome-wide pre-RC chromatin 

immunoprecipitation experiments followed by sequencing (ChIP-seq) studies are rare 

and so far only performed for ORC. As Mcm2-7 can translocate from their initial 

loading site, information about Mcm2-7 positioning are required for full 

understanding of DNA replication regulation. 

This work presents the first genome-wide ChIP-seq analysis of the two major pre-RC 

subcomponents ORC and Mcm2-7 in the Epstein-Barr virus (EBV) infected Burkitt’s 

lymphoma cell line Raji. Successful ChIPs were validated on the EBV genome by 

comparing obtained pre-RC positions with already existing pre-RC ChIP-on chip data. 

On the human genome, pre-RC sequencing results nicely correlated with zones of 

active replication. Interestingly, zones of replication termination were specifically 

depleted from pre-RC components, especially from Mcm2-7. Active DNA replication 

is known to correlate with active transcription. Indeed, strong pre-RC assembly 
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preferentially occurred at sites of active transcriptional regulation, presumably 

determined by chromatin accessibility. Strong Mcm2-7 binding thereby fluctuated cell 

cycle-dependently, arguing for Mcm2-7 translocations during G1, possibly depending 

on the active transcriptional machinery. These results indicate ORC and Mcm2-7 

positions being mainly dependent on chromatin accessibility in active chromatin, with 

Mcm2-7 being the major determinant of replication initiation.     

In heterochromatin, ORC was enriched at H4K20me3 sites, while Mcm2-7 

enrichment was less prominent. Employing a plasmid-based replication system, ORC 

association to H4K20me3 was proven to promote successful pre-RC assembly and 

replication initiation, situating direct ORC-chromatin interactions being the major 

determinant for DNA replication regulation in heterochromatin. Taken together, this 

study proposes two different modes of pre-RC assembly regulation depending on 

chromatin environment.  
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1. INTRODUCTION 

DNA replication is the process of precisely copying the complete genetic information, 

which assures faithful inheritance of the genome during each cell division. Thereby, 

DNA replication initiates only once per cell cycle. Misregulation during this process 

leads to genetic instability, which might have fatal consequences on organs and tissues 

and can cause cancer or other genetic disorders in humans (Abbas, Keaton, and Dutta 

2013). Sites of DNA replication initiation are called origins of replication. While 

bacteria initiate genome replication at one specific origin (Mott and Berger 2007), 

replication regulation in Saccharomyces cerevisiae is already more complex. In S. cerevisiae, 

DNA replication origins were initially identified as autonomous replication sequences 

(ARS), which contain a 11-17 bp AT-rich consensus sequence. However, only a small 

part of all ARS consensus sequences are used as replication origins, suggesting that 

other features also contribute to origin recognition and activation (Fragkos et al. 2015). 

In higher eukaryotes, origins do not exhibit sequence specificities and DNA 

replication can initiate at any DNA sequence (Vashee et al. 2003). In humans, 30000-

50000 origins are activated in each cell at each cell cycle. Numerous studies during the 

recent years revealed that origins exhibit a preference for specific features, although 

none of these features alone are predictive for replication origins (Méchali 2010).  In 

the following, I will detail the regulation of DNA replication in higher eukaryotes and 

the impact of chromatin, histone modifications, and structural arrangements within 

the nucleus. 
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 DNA REPLICATION IS TIGHTLY REGULATED – AND 

STOCHASTIC 

DNA replication is spatio-temporally separated to ensure correct duplication of the 

genome. During each S-phase of the cell cycle, 30000-50000 origins are activated per 

cell. These origins are chosen from an exceeding pool of possible origins. For an origin 

to be activated, proper loading of the pre-replication complex (pre-RC) during 

preceding G1 is required.  

1.1.1 ASSEMBLY OF THE PRE-REPLICATION COMPLEX IN LATE MITOSIS/ EARLY G1 

The process of pre-RC assembly is called origin licensing and is restricted from late 

mitosis to the restriction point in G1-phase of the cell cycle. All possible origins need 

to be properly licensed, while only a subset is activated during S-phase. Origin 

licensing consists of the sequential loading of pre-RC proteins and starts with the 

binding of the origin recognition complex (ORC, Figure 1.1).  

 

FIGURE 1.1: SCHEMATIC REPRESENTATION OF SEQUENTIAL PRE-RC ASSEMBLY. Licensing consists 

of the sequential loading of pre-RC components and is restricted to G1-phase. First ORC binds 

DNA as hexameric complex. Cdc6 recruitment traps DNA in the center of the circle and initiates 

Cdt1-dependent Mcm2-7 helicase loading. Cdt1 dissociates from Mcm2-7 after loading. Another 

Mcm2-7 hexamer is subsequently loaded in head-to-head conformation (Model template from 

Bleichert, Botchan, and Berger 2015).  
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ORC is a hexameric complex with ATPase activity and ATP-dependent DNA contact 

(Bleichert, Botchan, and Berger 2015). After ORC binding, the ATPase Cdc6 is 

recruited and DNA-bound ORC-Cdc6 initiates Cdt1 association. Cdt1 chaperones 

Mcm2-7 (for Minichromosome Maintenance) loading, the ring-structured core of the 

replicative helicase (Remus et al. 2009; Bell and Kaguni 2013). Cdc6 hydrolyses ATP 

only when bound to ORC and is required for proper Mcm2-7 loading. Mcm2-7 

helicases are sequentially loaded as head-to-head double-hexamer (Remus et al. 2009). 

Interestingly, once Mcm2-7 double-hexamers are loaded, ORC, Cdc6, and Cdt1 are 

no longer required for replication initiation (Hua and Newport 1998; Yeeles et al. 

2015). Pre-RC assembly is restricted to G1-phase when cyclin-dependent kinase 

(CDK) activity is low. Licensed origins are then competent for replication activation.  

1.1.2 REPLICATION ACTIVATION IN S-PHASE: FROM PRE-REPLICATION COMPLEX TO 

PRE-INITIATION COMPLEX 

With the onset of DBF4-dependent kinase (DDK) and CDK activity during the 

G1/S-phase transition (for kinase activities, see also Figure 1.2, chapter 1.1.4, p. 5), 

pre-RCs are converted into the pre-initiation complexes (pre-ICs). Pre-IC formation 

involves the binding of further proteins, such as Mcm10, Cdc45, Dbp11 and the 

GINS (Sld5, Psf1, Psf2, Psf3) complex (Gambus et al. 2006). During origin activation, 

several pre-IC proteins, including Mcm2-7, are phosphorylated by CDK and DDK to 

initiate replication (Francis et al. 2009). Cdc45-Mcm2-7-GINS (CMG) represent the 

active replicative helicase, which unwinds the DNA and DNA polymerase loads on 

single-stranded DNA (Ilves et al. 2010). Replication activation involves the 

dissociation of the Mcm2-7 double-hexamer into two active hexamers that originate 

the two replisomes consisting of about 150 proteins replicating DNA bidirectionally 

(Herrera et al. 2015).  

Bidirectional DNA replication involves one strand to be replicated continuously 

(leading strand), while the other strand is synthesized in discontinuous fragments 

(Okazaki fragments), which are subsequently ligated (lagging strand). RNA primase de 

novo generates RNA primers, which are extended by DNA polymerases in 5’ to 3’ 

direction and removed during a maturation process (see also Figure 1.6, p. 14). DNA 

polymerases duplicate several hundreds of kb before replication forks collapse 
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(Fragkos et al. 2015; Petryk et al. 2016). Replication termination happens e.g. when two 

replisomes converge.      

1.1.3 TERMINATING DNA REPLICATION  

Although initiation of DNA replication is well characterized, replication termination 

remains poorly understood. Replication termination mainly occurs when two opposite 

replication forks (from two adjacent origins of replication) collide. Also, termination 

needs to be tightly regulated to prevent premature termination without completing 

replication. The process involves the disassembly of converging replisomes and 

resolution of replication-induced DNA catenated intertwines by topoisomerases 

(Fachinetti et al. 2010). Recent work has shown that the polyubiquitination of the 

Mcm2-7 subunit Mcm7 at the end of S-phase leads to CMG disassembly (Moreno et 

al. 2014; Maric et al. 2014). However, this ubiquitination is necessary but not sufficient, 

suggesting additional factors being involved in replication termination (Lengronne and 

Pasero 2014).  

1.1.4 CELL CYCLE REGULATION OF DNA REPLICATION: PREVENTING RE-REPLICATION 

AND INCOMPLETE REPLICATION 

It is crucial for genetic stability, that the genome is completely replicated only once per 

cell cycle. The proteins that regulate cell cycle progression (amongst others cyclins, 

CDKs, and ubiquitin ligases) are also tightly linked with the control of DNA 

replication (DePamphilis et al. 2006). Origin licensing only happens in absence of 

DDK and CDKs (Figure 1.2). Existing pre-RCs are inactivated during S, G2 and M, 

preventing repeated licensing and activation (Blow and Dutta 2005; DePamphilis 

2005). As already mentioned in chapter 1.1.2, DDK and CDK phosphorylate several 

members of pre-RC and pre-IC, which leads to replication activation, but also inhibits 

re-licensing of replication origins.   

In metazoans, Cyclin A-Cdk2 phosphorylates Cdt1 and Orc1 (Depamphilis et al. 

2012). Phosphorylation of the Mcm2-7 chaperone Cdt1 in S-phase, leads to its 

ubiquitination, export to the cytoplasm, and subsequent degradation. This process 

ensures Cdt1 protein levels only being present in the nucleus in late mitosis/early G1. 

Additionally, Cdt1 activity is also repressed by Geminin, a specific Cdt1 inhibitor, 
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FIGURE 1.2: CELL CYCLE KINASE ACTIVITIES DETERMINE PRE-RC FORMATION AND ACTIVATION. Pre-

RC assembly happens in absence of kinase activities. With onset of CDKs (red, blue) and DDK. 

(green), replication is activated and re-licensing prevented. (Adapted from PINES 1999). The 

dashed grey line represents expression H4K20 monomethyltransferase PR-Set7 (introduced in 

chapter 1.2.2, p. 10.)  

exclusively existing in metazoans. Geminin is active from S-phase on and degraded 

with the onset of mitosis. Interestingly, Cdt1 recruits Geminin to DNA and their 

binding stabilizes Cdt1, probably securing the availability of Cdt1 for the next G1-

phase (Ballabeni et al. 2004).  

In metazoan cells, ORC subunits are phosphorylated to prevent re-licensing during 

and after S phase (DePamphilis 2005; DePamphilis et al. 2006). Orc1 phosphorylation 

reduces binding affinities to chromatin is followed by ubiquitination and degradation 

(Méndez et al. 2002). Orc2 phosphorylation also dissociates ORC subunits 2-5 from 

DNA (Lee et al. 2012). Orc1 re-associates to chromatin during mitosis to G1 

transition, followed by origin licensing (DePamphilis 2005).   

Replication forks encountering obstacles (such as DNA secondary structures or 

lesions), or reduced deoxyribonucleotide triphosphate (dNTP) pools within the cell 

can lead to replication stress and induce replication fork stalling (Yekezare, Gómez-

González, and Diffley 2013).  For the cell to complete DNA replication, it is crucial 

to activate another licensed origin, that has not been activated so far (dormant origin). 
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Consequently, activation of additional origins decreases inter-origin distances and S-

phase length remains constant (Blow, Ge, and Jackson 2011). Existence of dormant 

origins requires an excess of origin licensing during G1. Only a small proportion of 

licensed origins is actually activated during S-phase, while the vast majority remains 

dormant (Musiałek and Rybaczek 2015) and are evicted during passive replication 

(Kuipers et al. 2011). The choice of which origin to activate is thereby mainly 

stochastic.  

 

FIGURE 1.3: ORIGIN USAGE FREQUENCY DEFINES ORIGIN EFFICIENCY. Pre-RCs are assembled in G1. 

Only a subset is stochastically activated during S-phase, with each cell using a different cohort. 

The frequency of origin usage defines origin efficiency. Origin efficiency is represented 

schematically as result of SNS-seq (explained in chapter 1.4.2).  

1.1.5 METAZOAN ORIGIN LICENSING AND ACTIVATION IS MAINLY STOCHASTIC 

Only a subset of licensed origins is activated with the onset of S-phase and each cell 

uses a different cohort of replication origins. This observation led to the definition of 

origin efficiency as the frequency of a specific origin to be activated in a given cell 

during a given cell cycle (Méchali 2010) (Figure 1.3).   

There are many features identified so far that influence origin licensing and efficiency 

(Figure 1.4). While AT-richness defines ARS elements in yeasts, there is a clear 
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preference for CG-rich regions in mammals (Cayrou et al. 2015). Interestingly, not 

only CG-content, but also potentially resulting three-dimensional G-quadruplex 

structures (G4) impact on origin efficiency (Besnard et al. 2012; Valton et al. 2014; 

Langley et al. 2016). Thereby it remains controversial whether G4s actually positively 

or negatively influence DNA replication (Valton and Prioleau 2016). DNA 

accessibility, as well as specific histone modifications have been linked to active 

replication (introduced in detail in chapter 1.2, p. 8), as well as transcriptional activity 

and enhancer functions. Origins are often more concentrated and active in promoter 

regions, most probably due to open chromatin configurations, as direct interactions 

of transcription factors and replication factors have not been found so far (Fragkos et 

al. 2015). However, while all these different features contribute to origin licensing and 

activation on different levels, none of them is sufficient on its own and it is most likely 

a random combination of these different features that defines an origin (Méchali 

2010).  

 

FIGURE 1.4: DIFFERENT FEATURES INFLUENCE REPLICATION ORIGINS. From DNA sequence to 

structure over chromatin to functional organization, all features have been linked to regulation of 

replication, while none of these features alone define an origin. DNA: AT-rich sequences might 

facilitate replication activation due to lower melting temperatures. Replication and GC-richness 

seems to be mainly linked on the structural level, as G4-structures are enriched at active initiation 

sites. Whether G4-structures facilitate pre-RC binding or replication initiation remains unclear so 

far. Structure: Bent DNA or loop formation might also facilitate pre-RC loading; MAR: matrix 

attachment regions. Local chromatin: nucleosome positioning/ nucleosome-free regions promote 

pre-RC binding, specific histone modification might directly interact with pre-RC components, 

targeting factors (EBNA1, HMGA1a) interact with ORC and direct replication. Functional 

organization: Active transcription/transcriptional regulation through enhancers/promoters have 

been described to influence DNA replication. Direct interactions between replication origin 

factors and transcription factors have not been reported.  (Modified from Méchali 2010). 
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Recent work on the sequencing of Okazaki fragments led to the identification of broad 

(10-100 kb) initiation zones (Petryk et al. 2016, introduced in detail in chapter 1.4, p13). 

The authors claim that broad initiation zones represent replication units, within which 

replication preferentially initiates from multiple inefficient origins but only one single 

origin stochastically fires per cell. This observation also implies the necessity of 

broadly distributed licensed replication origins within such replication units.  

It has been demonstrated, that the number of chromatin-bound Mcm2-7 helicases 

exceeds the number of active origins of ORC by a factor of 10 to 50 (Donovan et al. 

1997; Powell et al .2015; Hyrien 2016). This can be achieved by either i) ORC loading 

several Mcm2-7 double-hexamers which spread from their binding site (Powell et al. 

2015, Drosophila) or ii) ORC loading only one Mcm2-7 double-hexamer at a time, 

associating and dissociating quickly from DNA (Sonneville et al. 2012, C. elegans). 

There is evidence for either mechanism and further investigations will be required to 

conclusively resolve this question.  

Finally, these recent findings evoked the model of the Mcm2-7 

double-hexamer excess influencing organization of replication timing (Das and Rhind 

2016; Hyrien 2016). Replication timing describes the time-point of origin activation 

during S-phase (early, middle, or late). Given that Mcm2-7 helicase activation can 

occur without the presence of ORC, higher densities of Mcm2-7 proteins could define 

early replicating regions, as the probability of early origin firing is simply higher than 

in late replicating domains containing less Mcm2-7 double-hexamers loaded on DNA. 

The organization of replication timing domains is described in chapter 1.3.  

 DNA REPLICATION REGULATION THROUGH CHROMATIN 

Chromatin is a combination of DNA and proteins and ensures DNA compaction in 

the cell. The core unit of chromatin is the nucleosome – 147 bp DNA wrapped 1.7 

times around a histone octamer consisting of two copies of H2A, H2B, H3 and H4.  

The most accessible chromatin level is the 10 nm fiber, often also referred to as “beads 

on a string” while higher order compacted structures constitute condensed chromatin 

(Soshnev, Josefowicz, and Allis 2016). Two main chromatin states exist: i) the compact 

and transcriptionally inactive state of chromatin is called heterochromatin, while ii) 

euchromatin represents accessible, transcriptionally active chromatin. Specific 
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modifications of histone tails regulate chromatin states. Activating histone marks 

often involve acetylation, methylation (e.g. H3K4me1/2/3), and ubiquitination 

(Kouzarides 2007). Main repressing histone modifications associated to gene silencing 

are H3K9me3 and H3K27me3. Histone modifications are recognized by specific 

chromatin readers which recruit other chromatin modifiers or remodelers, establishing 

chromatin as a very dynamic structure, being able to rapidly respond to environmental 

cues and requirements. However, not only histone modifications regulate chromatin 

structure, also nucleosome positioning impacts on chromatin and gene expression. 

Promoters and enhancers frequently exhibit accessible chromatin conformations, to 

allow binding of transcriptional regulators (Kouzarides 2007). Chromatin accessibility 

is not only a feature of transcriptional regulations, also pre-RC proteins preferentially 

bind accessible DNA regions (Méchali 2010; Miotto, Ji, and Struhl 2016), rendering 

chromatin conformation also important for regulation of DNA replication.  

1.2.1 HISTONE MODIFICATIONS REGULATING DNA REPLICATION 

Nucleosome depleted regions (NDRs) mark origins of replication in yeast (Field et al. 

2008), Drosophila (Ding and MacAlpine 2011), Epstein-Barr-Virus (Papior et al. 2012) 

and humans (Miotto, Ji, and Struhl 2016). Nucleosome depletion might also be the 

link between DNA replication and G4 structures, as G4s exclude nucleosomes, 

thereby eventually favoring pre-RC formation (Fenouil et al. 2012; Valton and Prioleau 

2016).   

Transcriptionally active chromatin is marked by active histone modifications, 

typically acetylations of lysine residues of histone H3 and H4 (H3ac, H4ac), and 

H3K4me1/2/3.  Genome-wide studies often correlate active chromatin modifications 

with DNA replication (Cadoret et al. 2008; Sequeira-Mendes et al. 2009; Valenzuela et 

al. 2011; Martin et al. 2011; Picard et al. 2014; Smith et al. 2016; Miotto, Ji, and Struhl 

2016). However, most of these correlations result from the general association of 

replication with accessible chromatin. The only evidence of direct interactions 

between pre-RC components and chromatin regulators is the histone acetyltransferase 

HBO1 (histone acetyltransferase binding to Orc1, (Iizuka et al. 2009; Miotto and Struhl 

2010). HBO1 interacts with Orc1 and Cdt1, and acetylates H4K5 and H4K12 in G1, 

which leads to chromatin decondensation and is necessary for Mcm2-7 loading.  
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In silent chromatin, origin licensing seems to be differently organized. 

Compacted chromatin has no accessible regions for pre-RCs to bind. Peptide-binding 

assays reported H3K9me3 and H3K27me3 peptides to interact with ORC 

components (Vermeulen et al. 2010). It has been shown very recently that pre-RC 

proteins directly interact with H3K9me3 demethylase Kdm4d, which presumably 

removes H3K9me3 to prepare favorable chromatin environment for origin firing (R. 

Wu et al. 2016). However, the question remains of how pre-RC assembly occurs in 

heterochromatin in the first place. One candidate is H4K20me3, which also localizes 

in silent chromatin and has been shown to directly interact with ORC (Vermeulen et 

al. 2010; Kuo et al. 2012; Beck et al. 2012). 

1.2.2 HISTONE 4 LYSINE 20 METHYLATION AFFECTS DNA REPLICATION  

Histone 4 lysine 20 methylation (H4K20me) is for several reasons the most promising 

histone methylation to be directly involved in regulation of DNA replication. First, 

the H4K20 monomethyltransferase PR-Set7 (also known as Set8, SetD8 or KMT5A) 

is cell cycle-dependently regulated, with low protein levels in G1 and complete absence 

in S-phase, while expression increases in G2 and peaks in mitosis (Figure 1.2, grey 

dashed line; S. Wu et al. 2010; S. Wu and Rice 2011). Second, both stabilization of PR-

Set7 expression and depletion of PR-Set7 have severe effects on DNA replication and 

S-phase progression.  Cell cycle regulation of PR-Set7 occurs mainly through the 

CRL4Cdt2 E3 ubiquitin ligase complex that uses PR-Set7 as direct substrate and targets 

it for proteasomal degradation during S-phase (Abbas et al. 2010; Centore et al. 2010; 

Oda et al. 2010). Expression of a non-degradable mutant (PR-Set7PIPmut) leads to DNA 

re-replication, suggesting repeated origin licensing and activation (Tardat et al. 2010; 

Beck et al. 2012). Additional mutation of the SET-domain of PR-Set7, responsible for 

methylation activity, rescues this re-replication phenotype. Complete absence of 

PR-Set7 impairs cell cycle progression and is embryonic lethal at early stages of mouse 

development (Oda et al. 2010; S. Wu and Rice 2011; Beck et al. 2012). PR-Set7 is the 

only enzyme known to catalyze H4K20me1, whereas Suv4-20h1 and –h2 further 

convert H4K20me1 to H4K20me2 and –me3 (Schotta et al. 2004; Schotta et al. 2008; 

Brustel et al. 2011). Interestingly, loss of Suv4-20h1/h2 and H4K20me2/3 results in a 

less severe phenotype than PR-Set7 knock-out (Schotta et al. 2008), strengthening the 

importance for H4K20 methylation states during cell cycle regulation.   
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Artificial targeting of PR-Set7 to an integrated targeting site in the genome 

leads to induction of H4K20me1, conversion to H4K20me2/3 by endogenous Suv4-

20h1/2 enzymes and to pre-RC assembly at the targeting site (Tardat et al. 2010). 

However, while Beck et al. claim necessity of conversion to H4K20me2/3 for efficient 

origin licensing (Beck et al. 2012), half of all detected active origins are found associated 

to H4K20me1 (Picard et al. 2014). Consequently, the exact role of PR-Set7/H4K20 

methylation in origin licensing and/or activation remains to be uncovered. 

 DNA REPLICATION DEPENDS ON NUCLEAR CHROMATIN 

ORGANIZATION  

DNA replication is organized on three different spatial levels. The first organizational 

level was described in detail in the chapter 1.1, consisting in pre-RC formation and 

single origin activation. The second level is composed in replication units (50-120 kb 

in size), which contain several origins from which only one is flexibly activated per 

cell. The third level consists of synchronously firing clusters of active replication units, 

the replication domains (400 kb – 1 Mb), which depend on nuclear 

compartmentalization (Fragkos et al. 2015).  

Replication domains are mainly characterized by their replication timing program. 

Replication timing is established at one precise point during G1 (timing decision 

point), which coincides with chromatin anchorage after mitosis (Pope and Gilbert 

2013). Concordantly, replication domains accord with topologically associating 

domains (TADs) (Pope et al. 2014). TADs were described by recent Hi-C (evolution 

of 3C: chromosome confirmation capture technique) experiments and are units of 

chromatin in spatial proximity, which are separated by distinct conserved boundaries. 

These boundaries are defined at the molecular level by CCCTC-binding factor (CTCF) 

and cohesins (Ciabrelli and Cavalli 2015). Interestingly, TADs are inherited to 

daughter cells after cell division. Furthermore, they are often conserved across cell 

types and species (Gonzalez-Sandoval and Gasser 2016) and are only reorganized 

during lineage specification in embryonic stem cells (Wilson et al. 2016). TADs 

contacting the nuclear lamina are also called LADs (lamin associated domains). LADs 

represent repressive chromatin with low transcriptional activities (Guelen et al. 2008). 

In general, LADs and also TADs with low gene densities and heterochromatin marks 
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are replicated late in S-phase, while early replicating TADs are gene-rich, 

transcriptionally active with active histone modifications (Fragkos et al. 2015) (Figure 

1.5). With the compartmentalization of the genome into replication domains, which 

are further subdivided into replication units, cells reduce the complexity of replication 

origin distribution. Also, replication fork stalling can be resolved at a local level and 

avoids involving the whole cellular organization (Rivera-Mulia and Gilbert 2016b). 

 

FIGURE 1.5: REPLICATION DOMAIN MODEL. Upper panel: Active chromatin TADs replicate early 

in S-phase and locate towards nuclear interior, while heterochromatin TADs replicate late during 

S-phase and locate towards the nuclear periphery (these lamin-associated TADs are also called 

LADs). Lower panel: Replication domains correspond to TADs. TADs are generally identified 

using Hi-C techniques and interactions between regions are plotted as Hi-C interaction heatmaps 

with dark-red regions strongly interacting and light-red regions only showing weak interaction 

(from Rivera-Mulia and Gilbert 2016a). 

In conclusion, replication timing is largely imposed by the nuclear 

compartmentalization of chromatin in TADs and their transcriptional activity. Thus, 

chromatin state within these TADs also defines origin activities. Boundaries of these 

domains are precisely defined by insulators (CTCF, cohesins) and are also 

hypersensitive to DNaseI, indicating a nucleosome- and protein-free chromatin 

environment.  
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 MAPPING OF DNA REPLICATION INITIATION EVENTS 

Several different approaches have been developed to detect active replication initiation 

events in metazoans. Strategies vary from detection of single, defined replication 

origins to revelation of whole replication units.  

1.4.1 SINGLE MOLECULE DNA COMBING 

Single molecule DNA combing consists in pulse-labeling replicating DNA with the 

thymidine analogues CldU and IdU and detecting progress of replication forks by 

fluorescent microscopy. This technique requires uniform spreading of DNA 

molecules on a cover-slip and allows obtaining precise information about replication 

fork speed, fork asymmetry and inter-origin distances within the same DNA molecule 

during the same S-phase. Combining this technique with fluorescence in situ 

hybridization (FISH) allows to map precise loci of interest (Urban et al. 2015). 

However, technical limitations permit only detecting a defined set of single origins and 

efforts are currently made to establish high-throughput origin detection by molecular 

combing (De Carli et al. 2016).    

1.4.2 BUBBLE-SEQUENCING AND SHORT NASCENT STRAND SEQUENCING 

Alternative methods taking advantage of high-throughput sequencing are bubble trap 

or the purification of short nascent strands (SNS) followed by sequencing. Bubble 

trap uses the circular nature of replication bubbles to trap restriction fragments 

containing replication forks in gelling agarose. Purification and subsequent sequencing 

revealed 35000 to 40000 bubble-containing fragments per experiment (Mesner et al. 

2013). However, although bubble trap was shown to contain few false positives 

(Mesner, Crawford, and Hamlin 2006), use of single restriction fragments does not 

allow to recover all possible genomic origins and resolution is limited (Urban et al. 

2015).  

For SNS-seq, short DNA fragments originating from leading strands of active 

replication forks are isolated and sequenced. Application of elevated sequencing depth 

revealed more than 200000 activated origins from bulk cells, representing different 

cohorts of potential origins being used per cell (Besnard et al. 2012). In short, this 

method relies on isolation of 500 - 2500 bp fragments by size fractionation on a 
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sucrose gradient. Exploiting the RNA-primer used to initiate DNA replication, λ-

exonuclease selectively digests all contaminating DNA fragments which are not 

protected by an RNA-primer from the 5’ end. The resulting DNA population 

represents nascent leading strands adjacent to replication origins (Figure 1.6). As λ-

exonuclease digest remains debated in the field for possible biases (favoring detection 

of GC-rich/G4 DNA), nascent DNA can be alternatively labeled with the thymidine 

analogue BrdU and precipitated by immunoprecipitation (Fu et al. 2014). However, 

both methods have been shown to be highly concordant (Smith et al. 2016) and the 

detection of G4-structures at origins has been recently confirmed by an independent 

approach (Langley et al. 2016). Isolation of SNS followed by sequencing has been 

performed on several different organisms, including mouse (Cayrou et al. 2015) and 

human (Besnard et al. 2012; Picard et al. 2014; Cayrou et al. 2015; Smith et al. 2016). 

Thereby, origin efficiency can be deduced from the accumulation of sequencing reads 

per origin (schematically represented in Figure 1.3).  

 

FIGURE 1.6: BIDERECTIONAL DNA REPLICATION REQUIRES LEADING AND LAGGING STRAND 

SYNTHESIS.  RNA primer allow DNA polymerase to start synthesis.  DNA polymerase only 

synthesizes in 5‘  3‘ direction, which leads to the continuously synthesized leading strand and 

the discontinuous Okazaki fragments. 

1.4.3 OKAZAKI-FRAGMENT SEQUENCING 

Isolation and sequencing of Okazaki fragments (OK-seq) not only represents an 

alternative method to detect replication origins, it also allows determining replication 

fork directionality (Petryk et al. 2016). Principal of OK-seq is pulse-labeling of 

Okazaki-fragments with the Thymidine analogue EdU and subsequent size 

fractionation of these fragments (< 200 bp). After biotinylation, adapter ligation, and 

precipitation, Okazaki fragments are sequenced and specific adapters allow to 
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distinguish between Watson (leftward moving fork) and Crick (rightward moving 

fork) Okazaki fragments. Calculation of replication fork directionality (RFD = 

(𝐶𝑟𝑖𝑐𝑘−𝑊𝑎𝑡𝑠𝑜𝑛)

(𝐶𝑟𝑖𝑐𝑘+𝑊𝑎𝑡𝑠𝑜𝑛)
 ) results in ascending (AS), descending (DS), and flat segments of 

different sizes and slopes (see also Figure 4.17 A). AS represent zones of preferential 

replication initiation, while DS are zones of preferential replication termination. The 

amplitude thereby reflects initiation efficiency. A broad initiation zone represents a 

zone of preferential replication initiation with multiple inefficient initiation sites but 

only one single origin firing per cell, corresponding to replication units (chapter 

1.1.5, p. 6). 

Interestingly, these different methods of replication origin detection show little 

concordance. SNS-seq studies already show poor overlap between each other, which 

might result from insufficient sequencing saturation (Urban et al. 2015). Also 

comparison of bubble-seq and SNS-seq only results in little agreement on the local 

level of single origins (Mesner et al. 2013). By contrast, initiation zones detected by 

OK-seq better align to bubbles than to SNS (Petryk et al. 2016). These little 

concordances between different approaches might originate from divergent 

replication events considered. SNS-seq focuses on narrow sites of defined active 

replication events, while bubble-seq and OK-seq both detect broader regions which 

might contain several origins, but only one origin firing per cell. Especially OK-seq 

reveals zones of preferential origin activation within initiation zones and preferential 

replication termination in termination zones. However, this does not limit origins to 

initiation zones, as inefficient origins might also be present (and detected by SNS-seq) 

in termination zones.  

Information about pre-RC sites would help in this context, to bridge the discrepancies 

of the different detection methods. To date, two attempts have been made to perform 

ChIP against ORC components in human cells and will be introduced in the following.      

1.4.4 CHIP-SEQUENCING OF PRE-RC COMPONENTS 

Little is known about genome-wide pre-RC positioning in humans. Major difficulty is 

thereby the low enrichment over background that hampers precise pre-RC detection 

(Schepers and Papior 2010). Due to the low sequence specificity and potentially high 
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on-and-off rates, chromatin association of metazoan ORC is dispersed, especially in 

comparison to other nuclear factors (such as transcription factors). To date, only two 

genome-wide studies are available that target either Orc1 (Dellino et al. 2013) or Orc2 

(Miotto, Ji, and Struhl 2016) in human cells. Dellino et al. overcame the high 

background problem by performing Orc1 ChIP from low-density chromatin. 

Thereby, they detected a prominent association of ORC to transcriptional start sites 

(TSS). However, chromatin selection prior to ChIP also introduced a bias towards 

Orc1 sites belonging to early replication origins (Dellino et al. 2013). Furthermore, 

44% of all Orc1 sites overlap with replication origins identified by SNS-seq (Picard et 

al. 2014) and Orc1 was rather found at borders of replication initiation zones 

determined by OK-seq (Petryk et al. 2016). Miotto et al. performed Orc2 ChIP-seq 

experiments in unfractionated chromatin. Orc2 peaks showed moderate concordance 

with replication origins detected from SNS-seq (13% of all SNS sites located within 

1 kb distance of Orc2 binding sites, 41% within 10 kb distance, Miotto, Ji, and Struhl 

2016). Comparing Orc2 positions with several chromatin features, the authors 

concluded that ORC positioning majorly depends on chromatin accessibility.   

Taken together, these results reveal that while ORC ChIP-seq already shows a certain 

level of concordance with active replication data, the overall picture remains 

incomplete. As ORC does not bind any consensus sequence in humans, but seems to 

solely depend on chromatin accessibility, ORC positions likely vary from cell to cell, 

resulting in a scattered ChIP-seq profile. This phenomenon might be even more 

pronounced for Mcm2-7, as there is evidence for multiple Mcm2-7 helicases at 

individual origins, which might even translocate from their original loading site (Das 

and Rhind 2016; Hyrien 2016). Consequently, Mcm2-7 ChIP-seq would result in a 

broad Mcm2-7 distribution, mostly lacking clear peaks. This is presumably the reason 

why human Mcm2-7 positions have not been assessed so far. However, as Mcm2-7 

helicases can activate replication without spatial proximity to ORC, Mcm2-7 positions 

might be the missing link to conclusively connect replication initiation SNS-seq and 

ORC ChIP-seq results.  

ORC and Mcm2-7 ChIP has been successfully performed in my laboratory focusing 

on latent EBV genome replication.  
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1.4.5 EPSTEIN-BARR VIRUS GENOME AS MODEL OF HUMAN DNA REPLICATION 

Until now, genome-wide pre-RC ChIP experiments in humans have been 

unsuccessful. My laboratory used Epstein-Barr virus (EBV) as model system to study 

the relation between pre-RC formation and origin activation. EBV infects human B-

cells and establishes a persistent latent infection. During latency, the EBV genome is 

maintained autonomously in proliferating cells and is thereby replicated in synchrony 

with the host cell genome by the cellular replication machinery (J. L. Yates and Guan 

1991). For autonomous maintenance of the EBV episome, the cis-acting element oriP 

is required. OriP consists of two distinct elements: the family of repeats (FR-element) 

and the dyad symmetry (DS) element. Both elements contain binding arrays for the 

viral transactivator EBNA1 (Epstein-Barr virus nuclear antigen 1). By binding of 

EBNA1 to the FR-element, the EBV genome is tethered to the host chromatin during 

chromosome segregation (Marechal et al. 1999; Sears et al. 2003; Sears et al. 2004). 

EBNA1 binding to DS targets ORC to oriP, designating oriP as exceptional origin, 

since origin licensing depends on direct interaction between DNA, a targeting factor 

and ORC (Schepers et al. 2001; Ritzi et al. 2003). Thus, oriP represents a very strong 

origin licensing site, however, this is not necessarily accompanied by efficient origin 

activation (Papior et al. 2012). My laboratory took advantage of full chromatinization 

of the EBV genome (166 kbp in size), and high EBV copy-numbers in the Burkitt’s 

lymphoma cell line Raji. Performing ChIP against the pre-RC components Orc2 and 

Mcm3, SNS isolation and micrococcal nuclease (MNase) digest in Raji cells, followed 

by hybridization against a designated microarray, allowed extensive analysis of the 

relation between origin licensing, activation and nucleosome positioning in a cell cycle 

resolved manner. They found 64 pre-RC sites, which also highly correlated with origin 

activation and S-phase-specific MNase sensitivities. Origin activation efficiencies were 

moderately influenced by AT-richness, however pre-RC sites themselves were 

independent of any specific primary motifs (Papior et al. 2012).  

EBV employs cellular replication machinery to duplicate its genome and correlation 

of pre-RC and replication initiation sites provided insights in our understanding of 

replication origin organization in mammalian cells. It also showed that ChIP of human 

pre-RC components is technically feasible and sensibilized for need of careful 



1. INTRODUCTION 

18 | 
 

controls. The next step will be to perform similar analysis on the human genome to 

answer the question of similar pre-RC organization genome-wide.        
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2. AIM OF THE THESIS 

While the regulation of replication initiation in humans is already extensively studied 

and led to the identification of several contributing features, full understanding of the 

regulation of DNA replication can only be provided by combining replication 

initiation with the regulation of pre-RC positioning. Especially Mcm2-7 positioning – 

which has not been assessed so far – is expected to bridge the discrepancies between 

current ORC ChIP-seq and replication initiation data. In my laboratory, human 

pre-RC ChIP has been technically established using the EBV genome as model 

system. Intent of my thesis was to adopt this pre-RC ChIP technique for genome-

wide ChIP-seq in Raji cells, by targeting the two major pre-RC subunits ORC and 

Mcm2-7. Containing the EBV genome as internal reference, Raji cells present the 

perfect control for ChIP-seq result quality. Once established, ChIP-seq will be also 

performed on embryonic stem (hES) cells, in collaboration with my co-supervisor Dr. 

Jean-Marc Lemaitre (Genome and Stem Cell Plasticity in Development and Ageing, 

IRMB, Montpellier, France). When compared to replication initiation, information 

about pre-RC positions and features that drive this positioning will contribute to the 

fundamental understanding of the relation between origin licensing and activation. 

Furthermore, pre-RC positions will be attributed to chromatin features, such as 

histone modifications. There is functional evidence for H4K20 methylation to be 

involved in DNA replication, however, we lack molecular understanding. Thus, ChIP-

seq will also be performed for H4K20me1 and –me3, in order to directly conclude for 

possible implications between either H4K20 methylation and origin licensing. Possible 

candidates will be validated using an EBV-based plasmid system established in our 
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laboratory, to functionally confirm the relation between H4K20 methylation and 

replication.  

Consequently, I aim to combine genome-wide pre-RC positioning with the regulation 

of replication initiation. Simultaneously, I will evaluate the implication of H4K20 

methylation as a promising histone modification candidate for regulation of DNA 

replication licensing and activation both by genome-wide correlation studies and by 

functional approaches.      
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3. MATERIAL AND METHODS 

 MEDIA, MATERIAL, DEVICES, CHEMICALS AND AGENTS 

In the following, cell culture media and supplements (Table 3.1), chemicals and agents 

(Table 3.2), Enzymes (Table 3.3), Kits (Table 3.4), Material (Table 3.5), and devices 

(Table 3.6) used in this work are listed.   

Table 3.1 lists all media, supplements, antibiotics, and other substances that were used 

for cell culture.  

TABLE 3.1: CELL CULTURE MEDIA, SUPPLEMENTS, ANTIBIOTICS AND AGENTS. 

Cell culture media and supplements Distributor 

BD Matrigel BD Biosciences 

CryoStor CS10  STEMCELL, Canada 

Dimethylsulfoxide (DMSO) Carl Roth GmbH, Germany 

DMEM, high glucose, L-Glutamine Gibco, Thermo Fisher, USA 

Essential 8 Basal Medium + supplement Gibco, Thermo Fisher, USA 

Fetal calf serum (FCS) Lot BS225160.5, Bio&SELL, Germany 

G418 Carl Roth GmbH, Germany 

L-Glutamin Gibco, Thermo Fisher, USA 

Lipofectamine 2000 Invitrogen, Germany 

MEM non-essential amino acids Gibco, Thermo Fisher, USA 

PBS Dulbecco, pH 7.2 Biochrom AG, Berlin 

Penicillin Streptomycin Gibco, Thermo Fisher, USA 

RPMI 1640 Gibco, Thermo Fisher, USA 

Sodium pyruvate Gibco, Thermo Fisher, USA 

TripLE Select  Life technologies, USA 

Trypsin-EDTA Gibco, Thermo Fisher, USA 

Versene solution Gibco, Thermo Fisher, USA 

Zeocine Invitrogen, Germany 
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In the following Table 3.2, all chemicals and agents used during this work are specified.  

TABLE 3.2: CHEMICALS AND AGENTS. 

Chemicals and agents Distributor 

Ampicillin sodium salt Carl Roth GmbH, Germany 

ATX Ponceau S red staining solution Fluka Analytical, Germany 

Bovine serum albumin Sigma-Aldrich, Germany 

Bradford reagent, Bio-Rad protein assay Bio-Rad, Germany 

Chloroform Merck-Eurolab GmbH, Germany 

Deoxycholic acid (DOC) Sigma-Aldrich, Germany 

Dithiothreitol (DTT) Sigma-Aldrich, Germany 

EGTA, Titriplex® Merck Millipore, Germany 

Ethanol Merck-Eurolab GmbH, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth GmbH, Germany 

Formaldehyde, MeOH-free Thermo Scientific, USA 

Glycerol AppliChem GmbH, Germany 

Glycine Carl Roth GmbH, Germany 

HEPES Sigma-Aldrich, Germany 

Isoamyl alcohol Merck-Eurolab GmbH, Germany 

Methanol Merck-Eurolab GmbH, Germany 

NP-40 (Igepal CA-630) Sigma-Aldrich, Germany 

Phenol Carl Roth GmbH, Germany 

Polyacrylamide Carl Roth GmbH, Germany 

Propidium iodide Sigma-Aldrich, Germany 

Salmon sperm  Invitrogen, Germany 

Sodium chloride Merck-Eurolab GmbH, Germany 

Sodium dodecylsulfate (SDS) Serva Electrophoresis GmbH, Germany 

Sodium lauroyl sarcosinate (Sarkosyl) Sigma-Aldrich, Germany 

Tris AppliChem GmbH, Germany 

Triton-X-100 Sigma-Aldrich, Germany 

Tween-20 AppliChem GmbH, Germany 

 

Table 3.3 shows all enzymes employed during the study. 

TABLE 3.3: ENZYMES.  

Enzymes Distributor 

Benzonase Sigma-Aldrich, Germany 

DNase Roche, Germany 

DpnI New England Biolabs, USA  

Protease inhibitor complete Roche, Germany 

Proteinase K Roche, Germany 

RNase, DNase-free Roche, Germany 
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Kits used during this work are listed in Table 3.4.  

TABLE 3.4: KITS. 

Kits Distributor 

BD StemflowTM Human and Mouse 
Pluripotent Stem Cell Analysis Kit 

BD Biosciences, Germany 

NTB buffer Macherey-Nagel, Germany 

NucleoSpin Extract II Kit Macherey-Nagel, Germany 

Qubit HS dsDNA Invitrogen, Germany 

SYBR Green I Master Roche, Germany 

 

In Table 3.5, all material needed for the experiments are specified.  

TABLE 3.5: MATERIAL. 

Material Distributor 

AFA Fiber & Cap tubes (12x12 mm) Covaris Inc., UK 

Amersham Hybond ECL GE Healthcare, Germany 

CEA Blue Sensitive X-ray films Agfa Healthcare, Germany 

Cell culture dishes and 6-well plates Nunc GmbH, Germany 

Cell strainer, 40 µm, 100 µm Corning Inc., USA 

CoolCell LX Freezing Container Sigma-Aldrich, Germany 

Cryotubes Nunc GmbH, Germany 

Nalgen Nunc Cryo 1°C freezing container Nunc GmbH, Germany 

 

Table 3.6 names the devices used during this work.  

TABLE 3.6: DEVICES. 

Devices Distributor 

Beckman JE-5.0 rotor with a large separation 
chamber 

Beckman-Coulter, Germany 

Cole-Parmer Masterflex pump Cole-Parmer, USA 

FACSCaliburTM BD Biosciences, Germany 

semiDry blotting system Hoefer Scientific Instruments, USA 

Covaris S220 Covaris Inc., Germany 

NanoDrop ND-1000 Spectrometer ThermoScientific, USA 

Qubit fluorometer Invitrogen, Germany 

Roche LightCycler 480 System Roche, Germany 

Optimax X-ray film processor Rotec GmbH, Germany 

Electroporation system Gene-Pulser II Bio-Rad Laboratories, USA 
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 BIOLOGICAL METHODS 

3.2.1 CELL CULTURE 

Cells with corresponding AGV-internal identification number, a short description and 

the respective media are listed in Table 3.7. More detailed cultivation information is 

given in the following. 

RAJI CELLS 

Raji cells (ATCC) were cultivated at 37°C and 5% CO2 in RPMI 1640 (Gibco, Thermo 

Fisher, USA) supplemented with 8% FCS (Lot BS225160.5, Bio&SELL, Germany), 

100 Units/ml Penicillin/ 100 µg/ml Streptomycin (Gibco, Thermo Fisher, USA), 1x 

MEM non-essential amino acids (Gibco, Thermo Fisher, USA), 2 mM L-Glutamin 

(Gibco, Thermo Fisher, USA), and 1 mM Sodium pyruvate (Gibco, Thermo Fisher, 

USA). Cells were routinely diluted to 2x105 cells/ml and maximally grown to a density 

of 5x105.  

ADHERENT HEK293 CELLS 

HEK293 EBNA1+ cells were cultivated at 37°C and 5% CO2 in DMEM (Gibco, 

Thermo Fisher, USA) supplemented with 8% FCS (Lot BS225160.5, Bio&SELL, 

Germany), 100 Units/ml Penicillin/ 100 µg/ml Streptomycin (Gibco, Thermo Fisher, 

USA), and 220 µg/ml G418 (Carl Roth GmbH, Germany). Cells were grown to 80% 

confluence and routinely split 1:4. Therefore, cells were washed with PBS, treated with 

0.25% Trypsin-EDTA (Thermo Fisher, USA) for 2 min at 37°C, carefully resuspended 

in new medium and seeded on a new culture dish.   

GENERATING STABLE HEK293 CELL LINES 

Cells were seeded in a 6-well (Nunc GmbH, Germany) to a density of 2x105 and 

transfected with 3 µg linearized expression plasmid (see also Table 3.7) using 

Lipofectamine2000 according manufacturer’s instructions (Invitrogen, Germany). 

Transfected cells from one 6-well were plated in medium with 20 µg/ml Zeocine 

(Invitrogen, Germany) on three 150 mm culture dishes (Nunc GmbH, Germany) the 

next day. After two to three weeks, single colonies were selected and expanded in 

6-well plates. Expression of the protein of interest was verified by immunoblot. 

Positive clones were expanded and frozen.       
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HES CELLS H9 

HES cells were cultivated in standard conditions (Ludwig et al. 2006) at 37°C, 5% CO2. 

The hES cell line H9 was cultivated on BD Matrigel (Basement membrane matrix, BD 

Biosciences) covered dishes. From BD Matrigel stocks, 72 µl aliquots were routinely 

prepared in chilled 2 ml Eppendorf tubes and stored at -20°C. For BD Matrigel 

preparation, one aliquot was thawed, resuspended in 1.5 ml Essential 8 Basal Medium 

(Gibco, Thermo Fisher, USA) and mixed with 4.5 ml medium (6 ml total). Of this 

mixture, 1 ml was distributed per 35 mm dish and incubated for at least 30 min at 

37°C. For larger plates, surfaces and volumes were upscaled accordingly.   

For passaging, cells were washed twice with PBS, 1 ml of Versene solution (Gibco, 

Thermo Fisher, USA) was added per 35 mm dish. Before cells detached, Versene 

solution was removed, new medium added and cells were gently detached from the 

dish. Cells were routinely diluted 1:6 once per week. Medium was changed every day.         

CRYOPRESERVATION 

HEK293 and Raji cells were concentrated by centrifugation (200g, 7 min, room 

temperature) and the cell pellet was resuspended in FCS 10% DMSO to a 

concentration of ~ 5x107 cells/ml (HEK293) and 5x106 cells/ml (Raji cells). 1 ml cell 

suspension was aliquoted in 2 ml cryotubes (Nunc GmbH, Germany) and slowly 

cooled at a rate of -1°C/ min in a Nalgen Nunc Cryo 1°C freezing container (Nunc 

GmbH, Germany) at -80°C. After few days, cells were transferred in liquid nitrogen 

for long term storage. For thawing, cells were incubated at 37°C in water bath, washed 

with 30 ml fresh pre-warmed medium and plated accordingly. 

HES cells were detached as previously described and concentrated by centrifugation 

(300g, 5 min, room temperature). 106 cells were resuspended in 1 ml CryoStor CS10 

(STEMCELL, Canada), transferred to 2 ml cryotubes, placed in CoolCell LX Freezing 

Container (Sigma, Germany) at -80°C. After few days, cells were transferred in liquid 

nitrogen. 
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TABLE 3.7: ESSENTIAL CELL LINE INFORMATION. 

Cell lines (AGV 
identification) 

Description Medium 

Raji (#1577) EBV-containing Burkitt’s 
lymphoma cell line 

RPMI 1640, 8% FCS, 1% 
Penicillin/ Streptomycin, 
2 mM Glutamin, 1% 
MEM Non-essential 
amino acids, 1 mM 
Sodium Pyruvate   

HEK293 
EBNA1+(#1803) 

Human embryonic kidney 
cells, stably expressing 
EBNA1 

DMEM, 8% FCS, 1% 
Penicillin/ Streptomycin, 
220 µg/ml G418 

HEK293 EBNA1+ Gal4 
(#2116) 

Generated from cell line 
#1803 by integrating 
expression plasmid p5237 

DMEM, 8% FCS, 1% 
Penicillin/ Streptomycin, 
220 µg/ml G418, 20 
µg/ml Zeocine 

HEK293 EBNA1+ Gal4-
Suv4-20h1 (#2680) 

Generated from cell line 
#1803 by integrating 
expression plasmid p5572 

DMEM, 8% FCS, 1% 
Penicillin/ Streptomycin, 
220 µg/ml G418, 20 
µg/ml Zeocine 

HEK293 EBNA1+ Gal4-
PR-Set7 (#2113) 

Generated from cell line 
#1803 by integrating 
expression plasmid p5235 

DMEM, 8% FCS, 1% 
Penicillin/ Streptomycin, 
220 µg/ml G418, 20 
µg/ml Zeocine 

HEK293 EBNA1+ Gal4-
PR-Set7SETmut (#2188) 

Generated from cell line 
#1803 by integrating 
expression plasmid p5236 

DMEM, 8% FCS, 1% 
Penicillin/ Streptomycin, 
220 µg/ml G418, 20 
µg/ml Zeocine 

hES cells H9 (cultivated at 
the IRMB, Montpellier) 

Human embryonic stem 
cell line, cultivated from 
passage 15 to 24 

Essential 8 Basal Medium 
+ Essential 8 Supplement 

3.2.2 CELL CYCLE FRACTIONATION BY CENTRIFUGAL ELUTRIATION 

For centrifugal elutriation, 5x109 exponentially growing Raji cells were harvested, 

washed with PBS and resuspended in 50 ml RPMI 1640/ 8% FCS/ 1mM EDTA/ 

0.25 U/ml DNaseI (Roche, Germany). Concentrated cell suspension was passed 

through 40 µm cell strainer and injected in a Beckman JE-5.0 rotor with a large 

separation chamber turning at 1500 rpm and a flow rate of 30 ml/min controlled by 

a Cole-Parmer Masterflex pump. While rotor speed was kept constant, 400 ml 

fractions were collected at increasing flow rates (40, 45, 50, 60, 80, 100ml/min). 

Individual fractions were quantified, 5x106 cells taken for propidium iodide stain and 
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subsequent FACS analysis, while the remaining cells were subjected to cross-link 

(chapter 3.2.6, p. 30).   

3.2.3 FLUORESCENCE ACTIVATED CELL SORTING (FACS) 

CELL CYCLE DETERMINATION BY FACS 

Cells from elutriation fractions (5x106 cells) were washed with PBS, resuspended in 3 

ml PBS (4°C) and fixed by addition of 7 ml ice-cold 100% EtOH for at least 30 min 

at -20°C. After centrifugation at 400g for 5 min at 4°C, the pellet was washed with 

PBS 4°C and resuspended in 500 µl PBS 4°C. After 5 min of RNase (200 µg/ml final) 

treatment, propidium iodide (0.5 mg/ml in PBS) was added to a final concentration 

of 50 µg/ml and cells were subjected to FACSCaliburTM (BD Biosciences, Germany) 

detection by the FL2 channel. 

DETECTION OF PLURIPOTENCY MARKERS BY FACS 

hES cells were stained and assessed for pluripotency markers with the BD StemflowTM 

Human and Mouse Pluripotent Stem Cell Analysis Kit (BD Biosciences) according to 

manufacturers’ instructions. 

3.2.4 IMMUNOBLOT 

VERIFICATION OF STABLE CELL LINES  

Cell extracts were prepared using NP-40 lysation. Cells were washed with ice-cold PBS 

and 400µl NP-40 extract buffer (4°C) were added to 15 cm culture dish. Cells were 

scraped off the plate and transferred to 1.5 ml Eppendorf tube. After 30 s vortex and 

15 min on ice, cell lysate was centrifuged (16.100 g, 10 min, 4°C) and supernatant was 

kept for experiments or long term storage at -20°C. 

Protein concentration was determined using Bradford reagent (BioRad, USA) and 

50 µg protein extract with 1X Laemmli was loaded on the gel.   

Proteins were separated on a 10% SDS-polyacrylamide gel and blotted on Amersham 

Hybond ECL (GE Healthcare, Germany) membrane using semiDry blotting system 

(Hoefer Scientific Innstruments, USA). Successful protein separation was verified by 

ponceau stain (ATX Ponceau S red staining solution; Fluka Analytical, Germany) and 

the membrane was blocked for at least 30 min in PBS, 1% Tween-20 (AppliChem 

GmbH, Germany), 5% milk. Incubation with primary anti-Gal4 (DBD) (sc-577, Santa 
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Cruz Biotechnology) antibody (1:400 in PBS 1% Tween-20) was performed for 16h 

at 4°C, membrane was washed 3x 10 min with PBS 1% Tween-20 and incubated with 

anti-rabbit-HRP (Jackson ImmunoResearch Inc., USA) 1:10000 secondary antibody 

in PBS 1% Tween-20, 2.5% milk for 1 h at room temperature. After repeated washing 

steps, revelation was done using ECL on CEA Blue Sensitive X-ray films (Agfa 

Healthcare, Germany).  

NP-40 extract buffer: 150 mM NaCl, 50 mM HEPES, 5 mM EDTA, 0.1% (v/v)  

  NP-40, freshly add 1x protease inhibitor complete (EDTA-free, Roche, 

Germany) 

5X Laemmli buffer: 250 mM Tris pH 6.8 (2M), 10% SDS, 500 mM DTT, 25% 

Glycerol, 0.5% Bromphenolblue 

10% polyacrylamide running gel: 10% polyacrylamide (Carl Roth GmbH, 

Germany), 3.4 mM SDS, 375 mM Tris pH 8.8 

Stacking gel: 4% polyacrylamide (Carl Roth GmbH, Germany), 3.4 mM SDS, 125 

mM Tris pH 6.8  

1X running buffer: 192 mM Glycine, 24 mM Tris pH 7.4, 3.4 mM SDS 

Blotting buffer: 1X running buffer, 20% MeOH 

ECL solution: 1 ml solution A, 3 µl solution B 

 Solution A: 100mM Tris pH 8.8, 200 mM p-cumaric acid, 1.25 mM Luminol 

 Solution B: 3% (v/v) H2O2 

HISTONE IMMUNOBLOT 

RIPA protein extraction was performed by trypsinizing HEK293 cells, washing with 

ice-cold PBS, adding two pellet volumes RIPA extract buffer (+ 1X complete protease 

inhibitor, Roche) and incubation for 20 minutes on ice. After 30 seconds vortex, 50 

U Benzonase (Sigma, Germany) were added for 15 minutes at room temperature. 

Extract was centrifuged (16100 g, 15 min, 4°C), supernatant transferred to a new tube 

and subjected to immunoblot or stored at 20°C for long term storage.  

Extract (50 µg) was loaded on a 15% layered with 12.5% polyacrylamide gel and 

treated as described above. Antibody dilutions were applied as listed in Table 3.8. 

RIPA extract buffer: 50 mM Tris-HCl pH 7.9, 150 mM NaCl, 1% NP-40, 0.5% 

DOC, 0.1% SDS 
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15% polyacrylamide gel: 15% polyacrylamide (Carl Roth GmbH, Germany), 3.4 

mM SDS, 375 mM Tris pH 8.8 

12.5% polyacrylamide gel: 12.5% polyacrylamide (Carl Roth GmbH, Germany), 

3.4 mM SDS, 375 mM Tris pH 8.8 

TABLE 3.8: HISTONE ANTIBODIES AND RESPECTIVE DILUTIONS FOR IMMUNOBLOT. 

Target protein Antibody Dilution in PBS 1% 
Tween 

H4K20me1 Cell Signaling 9724S 1:1000 

H4K20me2 Cell Signaling 9759S 1:1000 

H4K20me3 Cell signaling 5737S 1:1000 

H3K4me3 Abcam 8580 1:1000 

H3K9me3 Active Motif 39161 1:1000 

H3K27me2/3 Active Motif 39536 (use 
anti-mouse-HRP 
secondary antibody) 

1:1000 

H4 Abcam 31830 (use anti-
mouse-HRP secondary 
antibody) 

1:1000 

3.2.5 PLASMID ABUNDANCE ASSAY 

GFP-positive reporter plasmids (1µg, Table 3.9) were transfected into HEK293 

EBNA1+ cell line stably expressing the respective GAL4-fusion protein using 

Lipofectamine2000 (Invitrogen, Germany) according to manufacturer’s instructions. 

Transfections with comparable efficiencies were verified by visualizing GFP-positive 

cells. Six days post-transfection, cells were harvested according to the HIRT protocol 

(Hirt 1966). After washing with PBS, cells were equilibrated in 5ml TEN buffer. TEN 

was removed and cells were collected in 1,5 ml TEN buffer and an equal volume of 

2X HIRT buffer. The lysate was then incubated at 4°C for 16h, in the presence of 

1.25 M NaCl. After centrifugation at maximal speed, 4°C for 1h, DNA was purified 

by phenol-chloroform extraction (with Phenol/ Phenol-Chloroform/ Chloroform-

Isoamyl alcohol steps). After precipitation, DNA was digested with 40 U DpnI (NEB, 

USA) in presence of 200µg/ml RNase (Roche, Germany). Digested DNA (300 ng) 

was electroporated into Electromax DH10B competent cells (Invitrogen, Germany) 

and ampicillin-resistant colonies, representing the number of recovered plasmids, 

were counted. The FR-DS plasmid was always transfected in parallel and the number 

of resulting colonies was used for normalization. 
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The Suv4-20h1/2 inhibitor A-196 (kind gift of Structural Genomics Consortium 

(SGC)) was added to a final concentration of 5 µM immediately after transfection to 

the cell culture medium and the cells were kept under 5% O2 during A-196 treatment. 

Medium was exchanged every second day. 

TEN buffer: 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl 

2x HIRT buffer: 1.2% SDS, 20 mM Tris-HCl pH 7.5, 20 mM EDTA 

TABLE 3.9: REPORTER PLASMIDS USED FOR PLASMID ABUNDANCE ASSAYS AND PLASMID CHIPS. 

Plasmid (AGV identification) Plasmid name 

p3230 FR-DS 

p5233 FR-UAS-DS 

p5234 FR-UAS 

p3244.2 FR-oriRDH 

p5588 FR-UAS-oriRDH 

3.2.6 CROSS-LINK  

RAJI CELLS (STANDARD PROTOCOL)  

Cells were washed twice with PBS, resuspend in PBS to a concentration of 2x107 

cells/ml and passed through 100 µm cell strainer (Corning Inc., USA). An equal 

volume of PBS 2% methanol-free formaldehyde (Thermo Scientific, USA) was added 

and cells were fixed for 5 minutes on a roller at room temperature. The cross-linking 

reaction was then quenched with glycine (125 mM final concentration) and incubated 

for another minute on the roller. After washing once with PBS and once with PBS 

0.5% NP-40, cells were resuspended in PBS containing 10% glycerol, pelleted and 

snap frozen in liquid nitrogen. 

HES CELLS 

HES cells are more fragile and need to be resuspended with care. Cells were covered 

with 10 ml TripLE Select (Life technologies, USA) on a 15 cm dish and incubated 

until cells detach. Cells were dissociated by carefully resuspending once, transferred to 

centrifugation tube and washed once with PBS. Cell concentration was adjusted to 

2x107 cells/ml in PBS, passed through 100 µm cell strainer and cross-link was 

performed according to the standard protocol.   
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HEK293 

Transfected HEK293 EBNA1+ cell lines were trypsinized, washed twice in PBS and 

standard cross-link protocol was performed.   

3.2.7 CHROMATIN IMMUNOPRECIPITATION (CHIP) 

SONICATION 

Cross-linked cell pellets were thawed on ice for 15 min and resuspended for lysis in 

LB3+ buffer to a final concentration of 2x107 cells/ml. Sonication was performed in 

AFA Fiber & Cap tubes (12x12 mm, Covaris, Great Britain) at an average temperature 

of 5°C according the settings established for each cell line (Table 3.10) using the 

Covaris S220 (Covaris Inc., Great Britain) .  

TABLE 3.10: SONICATION SETTINGS ESTABLISHED FOR EACH CELL LINE. 

Cell line Sonication settings 

Raji 100W, 150 cycles/burst, 10% duty cycle, 
20 min (S-phase: 17 min) 

hES 100W, 150 cycles/burst, 10% duty cycle, 
14 min 

HEK293 EBNA1+ Gal4-fusion 150W, 200 cycles/burst, 20% duty cycle, 
20 min 

 

IMMUNOPRECIPITATION 

After sonication, sheared chromatin was pre-cleared with 50 µl protein A beads 

(protein A Sepharose 4 Fast Flow, GE Healthcare, Germany; washed 3x in PBS, 50% 

bead slurry prepared) per 500 µg chromatin for 2h. Chromatin concentration was 

measured by NanoDrop ND-1000 Spectrometer (ThermoScientific, USA). An 

appropriate amount of chromatin was incubated with the respective antibody (for 

plasmid ChIPs see Table 3.11, for ChIP-seq see Table 3.12) for 16h at 4°C. BSA-

blocked protein A beads (incubated for 2h on roller in blocking solution at 4°C; 

protein G beads (protein G Sepharose 4 Fast Flow, GE Healthcare, Germany) were 

used for antibodies raised in mouse) were then added (50 µl/ 500 µg chromatin) and 

incubated for at least 4h on orbital shaker at 4°C. Sequential washing steps with RIPA-

150 mM NaCl, RIPA-300 mM NaCl, LiCl buffer and finally twice in TE (pH 8.0) 

buffer were performed. Immunoprecipitated chromatin fragments were eluted from 

the beads by shaking twice at 1200 rpm for 10 min at 65°C with 100µl of TE and 1% 

SDS. The elution was treated with 80 µg RNAse A (Roche, Germany) for 2h at 37°C 
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and with 8 µg proteinase K (Roche, Germany) at 65°C for 16h. DNA was purified 

using the NucleoSpin Extract II Kit (and NTB binding buffer for SDS containing 

samples) according to manufacturer’s instructions. Quantitative PCR analysis was 

performed as described in 3.2.8, p. 33 and quantitative PCR values were represented 

as fold enrichment relative to isotype IgG control. Chromatin sizes were verified by 

loading 1-2 µg chromatin on an 1.5% agarose gel. Samples intended for ChIP-seq were 

quantified using Qubit HS dsDNA (Invitrogen, Germany).  

LB3+ buffer: 25 mM HEPES (pH 7.5), 140 mM NaCl, 1 mM EDTA, 0.5 mM  

  EGTA, 0.5% Sarcosyl, 0.1% DOC, 0.5% Triton-X-100, 1X protease inhibitor  

  complete (Roche, Germany) 

Blocking solution: 0.5 mg/ml BSA, 30 µg/ml salmon sperm (Invitrogen, 

Germany), 1X protease inhibitor complete, 0.1% Triton-X-100 in LB3(-) buffer 

(without detergents) 

RIPA-150 mM NaCl: 150 mM NaCl, 0.1% SDS, 0.5% DOC, 1% NP-40, 50 mM  

  Tris (pH 8.0), 1 mM EDTA 

RIPA-300 mM NaCl: 300 mM NaCl, 0.1% SDS, 0.5% DOC, 1% NP-40, 50 mM  

  Tris (pH 8.0), 1 mM EDTA 

LiCl: 250 mM LiCl, 0.1% SDS, 0.5% DOC, 1% NP-40, 50 mM Tris (pH 8.0), 1 mM  

  EDTA 

1X TE: Tris-EDTA pH 8.0 (Carl Roth GmbH, Germany) 
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TABLE 3.11: ANTIBODIES FOR PLASMID CHIPS IN HEK293 EBNA1+ GAL4-FUSION CELL LINES.  

ChIP target Antibody Amount Chromatin 

Gal4 anti-Gal4 (Santa 
Cruz 
Biotechnologies, 
sc-577) 

2.5 µg 

250 µg 

H4K20me1 anti-H4K20me1 
(Diagenode, MAb-
147-100) 

2.5 µg 

H4K20me3 anti-H4K20me3 
(Diagenode, pAB-
057-050) 

2.5 µg 

Mcm3 anti-Mcm3 
SA8413 

15 µl 

IgG Rabbit IgG 
(Sigma, R2004) 

2.5 µg 

 

TABLE 3.12: ANTIBODIES FOR CHIP-SEQUENCING. 

ChIP target Antibody Amount Chromatin 

Orc2 anti-Orc2 SA93 15 µl 500 µg 

Orc3 anti-Orc3 SA7976 15 µl 500 µg 

Mcm3 anti-Mcm3 
SA8413 

15 µl 500 µg 

Mcm7 anti-Mcm7 
SA8496 

15 µl 500 µg 

H4K20me1 anti-H4K20me1 
(Diagenode, MAb-
147-100) 

2.5 µg 250 µg 

H4K20me3 anti-H4K20me3 
(Diagenode, pAB-
057-050) 

2.5 µg 250 µg 

H4 anti-H4 (Millipore, 
05-838, clone 62-
141-13 

5 µl 250 µg 

IgG Rabbit IgG 
(Sigma, R2004) 

10 µg/ 2.5 µg 500 µg/ 250 µg 

3.2.8 QUANTITATIVE PCR (QPCR) 

Quantitative PCR was performed Roche LightCycler 480 System and the SYBR Green 

I Master (Roche). 2 µl of ChIP elution were mixed with [5 µl 2xSYBR, 2.5 µl H2O, 

0.5 µl 5 µM primer mix]. Amplification was performed using the Roche SYBR 

standard program Table 3.13. QPCR primers are listed in Table 3.14. 
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TABLE 3.13: ROCHE SYBR QPCR STANDARD PROGRAM.  

 Temperature 
[°C] 

Duration [s] Cycles Detection 

Pre-
incubation 

95 300 1  

Amplification 

95 1 

45 

 
60 10  

72 10  
75 3 single 

Melting 
curve 

97 1 
1 

 
67 10, then 

heat to 97°C 
 

97 continuous 
Cooling 37 15   

 

TABLE 3.14: QPCR PRIMERS. 

Primer (Schepers group internal 
numeration) 

Sequence [5’  3’]  

DS_for (575) AGTTCACTGCCCGCTCCT 

DS_rev (576) CAGGATTCCACGAGGGTAGT 

FR_for (276) CGTGCTCTCAGCGACCTCG 

FR_rev (277) TCAAACCACTTGCCCACAAAAC 

UAS_for (270) TTACAGTCCAAAACCGCAGGG 

UAS_rev (271) TTGTCGCTCCGTAGACGAAGC 

oriRDH_for (414) CTGTCTTGGTCCCTGCC 

oriRDH_rev (415) TGCCTTCTCCTTCTCATCC 

Mcm4+_for (776) CTGAAAGAAGCGGCACTGTC 

Mcm4+_rev (777) CTCACCAATCACAGCGGC 

Mcm4-_for (778) CCACCCAGGCATTGCTAAAG 

Mcm4-_rev (779) CCCCTCTATTTGCCGTTCCT 

BANF1+_for (772) CCTCCCTTGTCCGTCTTCTA 

BANF1+_rev (773) GACCCGGAACTCAAGGACTTA 

H4K20me1+_GAPDH_for (629) ATGCCTTCTTGCCTCTTGTC 

H4K20me1+_GAPDH_rev (630) AGTTAAAAGCAGCCCTGGTG 

H4K20me3+_ZNF180_for (621) TCTGAGCAGGGTTGCAAGTAC 

H4K20me3+_ZNF180_rev (622) AAGGAAATGATGCCCAGCTG 

3.2.9 SEQUENCING 

The Genomics unit of LAFUGA (headed by Helmut Blum, LMU Munich) performed 

ChIP sample library preparations from > 4 ng of ChIP-DNA using Accel-NGS® 1S 

Plus DNA Library Kit for Illumina (Swift Biosciences). 50 bp single-end sequencing 

was done with the Illumina HiSEQ 1500 sequencer to a sequencing depth of ~ 70 

million reads (for pre-RC) and 35 million reads (for histone modifications).  
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 BIOINFORMATICS 

Programs used for bioinformatics analyses are listed in Table 3.15. 

TABLE 3.15: PROGRAMS USED DURING BIOINFORMATIC ANALYSIS. Program sources are indicated. 

[Typo] marks terminal commands.  

Program Source 

Bowtie1 (1.1.1) https://sourceforge.net/projects/bowtie-
bio/files/bowtie/1.1.1/ 

R (3.2.3) https://cran.rstudio.com/ 

R package GenomicRanges 
(1.22.4) 

In R: install.packages(“package”) 
library(package) 

R package IRanges (2.4.8) 

R package S4Vectors (0.8.11) 

R package BiocGenerics 
(0.16.1) 

R package RColorBrewer 
(1.1-2) 

R package gplots (3.0.1) 

MACS2 (8.1.2) pip install macs2 

HOMER (v4.8) http://homer.salk.edu/homer/ 

T-PIC Download scripts from 
http://www.math.miami.edu/~vhower/tpic.html 

Bedtools (2.25.0) https://github.com/arq5x/bedtools2/releases 

CEAS (1.0.2) http://liulab.dfci.harvard.edu/CEAS/download.html 

Venn Diagram Plotter https://omics.pnl.gov/software/venn-diagram-
plotter 

3.3.1 BOWTIE MAPPING OF SEQUENCING READS AGAINST THE GENOME 

Fastq-files from sequencing were mapped against the human genome (hg19, GRCh37, 

version 2009), extended for the EBV genome (NC007605) using the bowtie 

command:  

bowtie -m 1 index file.fastq 

3.3.2 GENERATION OF PILEUP PROFILES 

Pileup profiles were generated in R by extending 50 bp reads by 150 bp and calculating 

the number of reads per base. The coverage was either saved as .wig files for 

visualization in IGB or as .rda for coverage analyses.  
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3.3.3 MACS2, HOMER, AND T-PIC PEAK-CALLING 

PEAK-CALLING ON THE EBV GENOME 

Peak-calling on the EBV genome was performed using the following commands. 

Commands in italics are variable and adapted for each file. 

 MACS2:  

macs2 callpeak -t ChIP.bam -c input.bam -f BAM -g 1.75e5 

-n output_name -B -q 0.01 –nomodel 

 HOMER:  

1. create tag directory: 

makeTagDirectory tags_name1 input.bam –single 

makeTagDirectory tags_name2 ChIP.bam –single 

2. perform peak calling: 

findPeaks tags_name2 -i tags_name1 -style factor -size 

200 -fragLength 200 -inputFragLength 200 -C 0 > 

output_name.txt 

3. convert .txt to .bed 

pos2bed.pl output_name.txt > output_name.bed 

 T-PIC:  

T-PIC uses scripts running in perl and R (download scripts from 

http://www.math.miami.edu/~vhower/tpic.html). The scripts need to be placed the 

same folder as ChIP and input .bed files. Scripts have to be adapted for each filename 

and each genome (create_coverage.pl: my $bed_filename = "ChIP.bed"; 

zeta.pl: my $bed_filename = "ChIP.bed", my $input_filename = 

"input.bed"). For T-PIC peak-calling on the EBV genome, both scripts also need 

to be adapted for detecting the EBV “chromosome” (my @index_set = 

("EBV")).  

PEAK-CALLING ON THE HUMAN GENOME 

The HOMER peak-calling command for the human genome does not differ from 

EBV. For histone ChIPs, the – style parameter was changed to “histone”.  
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For T-PIC peak calling, the scripts run with the human and filenames have to be 

modified as described previously. 

MACS2 peak-calling for hES cells samples was performed with the following 

command:  

macs2 callpeak -t ChIP.bed -c input.bed -g hs --broad -B 

-f BEDPE -n output_name 

3.3.4 DEFINITION OF ORC, MCM2-7, AND PRE-RC 

Complexes were calculated by first merging overlapping peaks, counting the number 

of overlapping events and retaining only the positions display sufficient overlaps:   

3.3.5 PEAK COMPARISONS: JACCARD INDEX AND OVERLAPS 

JACCARD INDEX 

Jaccard index was calculated using the “bedtools jaccard” function applied for 

every possible ChIP combination. Heatmap representation was calculated in R.   

OVERLAPS 

Overlaps of peak/ complex positions were calculated using the “bedtools 

intersect” function. Thereby, overlaps of the query files were calculated in both 

directions, merged, and the unique positions of every file were also retained. The 

results were used for Venn Diagram generation using VennDiagramPlotter.  

3.3.6 CALCULATING GENOMIC DISTRIBUTIONS WITH CEAS 

The genomic distribution of peaks or complexes were calculated using the command  

ceas --name=output_name -g hg19.refGene -b 

ChIP/COMPLEX.bed 

Thereby, hg19.refGene was downloaded from http://liulab.dfci.harvard.edu/CEAS/ 

download.html. The results of interest were extracted and used for differential 

representation in R.  
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4. RESULTS AND DISCUSSION 

To date, little is known about the mechanisms that define pre-RC formation and 

activation in mammals. Because PR-Set7 and consequently H4K20 methylation clearly 

impact on DNA replication, I decided to receive a first impression of the relationship 

between replication licensing and H4K20 methylation by ChIP-seq in human cells. I 

targeted both H4K20me1 and H4K20me3, as well as four different members of the 

pre-RC complex, targeting the two major subunits ORC and Mcm2-7: Orc2, Orc3, 

Mcm3, and Mcm7. In the following chapters, I will refer to the setup of ChIP 

experiments in both human lymphoblastoid Raji cells and hES cells H9. Further, I will 

detail the analysis of sequencing results and resulting conclusions in Raji cells, and a 

functional approach to functionally validate the relation between H4K20 methylation 

and DNA replication.  

 SETTING UP CHIP-SEQ EXPERIMENTS IN HUMAN CELLS 

ChIP is a sensitive technique to study protein-DNA interactions. To fix the current 

chromatin state of the cells, DNA and proteins within a distance of ~2-3 Å are 

covalently linked by formaldehyde. After chromatin fragmentation, specific antibodies 

are used to precipitate the target proteins together with the associated DNA 

fragments. These DNA fragments are then isolated and quantified either by qPCR at 

defined loci or by sequencing to detect all possible protein binding sites. 
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4.1.1 CONSIDERATIONS TO OPTIMIZE PRE-RC CHIP-SEQ EXPERIMENTS 

To date, there are only two ChIP-seq studies of pre-RC proteins in mammalian cells, 

both targeting the pre-RC subcomponent ORC (Dellino et al. 2013; Miotto, Ji, and 

Struhl 2016). Despite much effort, members of the Mcm2-7 complex have not been 

successfully targeted so far. One of the major difficulties is the low enrichment over 

background, challenging identification of clear pre-RC binding sites. In contrast to 

transcription factor and histone ChIPs, which are rather easy to perform and very 

robust to methodological differences, I considered several optimization steps for 

pre-RC ChIPs (Figure 4.1): 

a) Performing ChIPs on a G1 cell population 

b) Optimizing cross-linking time and mild sonication to preserve complexes 

c) Usage of several antibody targets within the same complex 

d) Increasing antibody specificity (buffer and washing conditions) 

 

FIGURE 4.1: SCHEMATIC REPRESENTATION OF CRUCIAL CHIP STEPS. A) CELL CYCLE FRACTIONATION 

BY CENTRIFUGAL ELUTRIATION. B) CROSS-LINK AND SONICATION. C) ANTIBODY INCUBATIONS. 

D) IMMUNOPRECIPITATION AND WASHING CONDITIONS. After ChIP, DNA fragments were 

eluted from the beads, the DNA was isolated and quality control was performed by qPCR prior 

to sequencing. 
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Performing ChIP exclusively in G1 cell cycle stage - the moment where pre-RC is 

present on chromatin - is one possibility to increase sensitivity. Centrifugal elutriation 

is a convenient method to do so, as an asynchronous cell population is fractionized 

into the different cell cycle stages by simple size selection. This is easily feasible in Raji 

cells, however impossible in hES cells. I decided against chemical synchronization of 

hES cells and performed ChIPs on asynchronous cell populations instead.  

ChIP procedure was optimized experimentally for increased stringency and sensitivity. 

First, cross-linking needs to be strong enough to efficiently conserve protein-DNA 

interactions, but should not impair proper sonication or mask any epitopes for 

antibody recognition. For this reason, I chose a very mild cross-link of 5 min with 1% 

FA at room temperature. Second, sonication itself needs to be as mild as possible, to 

not destroy any protein-DNA interactions, but should result in chromatin fragments 

small enough for high-throughput sequencing (200-400bp). The focused-

ultrasonicator S220 from Covaris was used, as energy focusing directly on the sample 

allows to considerably reduce the applied power. This ensures maximum conservation 

of protein-DNA interactions. Indeed, usage of Covaris S220 in comparison to 

standard sonication methods (Bioruptor or tip sonifier) clearly increased protein 

enrichments compared to mock ChIPs at known positive loci (data not shown).  Prior 

to the actual immunoprecipitation, chromatin was treated first with mock IgG 

antibody, then with protein A sepharose beads. This step removes background 

binding of chromatin fragments that stick to IgG and/or protein A sepharose beads.  

To ensure unbiased detection of pre-RC sites, I simultaneously targeted four different 

pre-RC components: Orc2, Orc3 as members of ORC and Mcm3, Mcm7 as members 

of the Mcm2-7 complex. Targeting two different subunits decreases possible antibody 

biases and increases the significance of the results. The ChIP-grade of rabbit pre-

immune serum antibodies targeting Orc2, Orc3, Mcm3, and Mcm7 have been already 

validated in repeatedly (Papior et al. 2012; Ghosh et al. 2006; Ritzi et al. 2003; Schepers 

et al. 2001). Furthermore, ChIPs were performed in three independent experiments to 

account for experimental and biological variation. During data analysis, usage of 

rigorous parameters for pre-RC definition from all these replicates increased 

confidence in the results. 
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Sonication and immunoprecipitation were performed in detergent containing buffer. 

I decided for a combination of Deoxycholate, Sarkosyl, Triton-X-100, and NP-40. 

After the precipitation, I performed sequential stringent washing steps with RIPA 

buffer containing SDS, NP-40, DOC, while increasing salt concentrations decrease 

low affinity interactions. 

After protein-DNA complex elution from beads, samples were treated with RNase, 

covalent cross-link was reversed by heating to 65°C and proteins were digested using 

Proteinase K. The resulting DNA fragments were purified and inserted in control 

qPCR reactions.   

4.1.2 PERFORMING CHIP-SEQ EXPERIMENTS IN RAJI CELLS 

After careful setup of the ChIP conditions, I performed the ChIPs intended for 

sequencing. To start with, I fractionized asynchronous cell populations to obtain G1- 

and S/G2-phase enriched cells. The S/G2 population thereby served as control for 

pre-RC ChIP-seq, as activated and passively replicated pre-RCs disassemble after 

replication.  

EXPERIMENTAL SETUP: CELL CYCLE FRACTIONATION 

Counterflow centrifugal elutriation is a convenient method for separation of mixed 

cell populations according to size and mass and regularly used in my laboratory (Ritzi 

et al. 2003). Elutriation has the advantage to not disturb the cellular metabolism. The 

principle is based on centrifugation of a logarithmically growing asynchronous cell 

population, with largest cells (late cell cycle stages) being sedimented, while a 

counterflow of medium extracts smaller cells (early cell cycle stages) from this 

population. Regulation of the speed of this counterflow thus determines sizes of 

isolated cells. I routinely used counterflow rates 40, 45, 50, 60, 80, 100ml/min to 

isolate all different cell stages. The respective cell cycle stages were validated by 

propidium iodide (PI) staining of the DNA content and subsequent FACS analysis 

(Figure 4.2). I performed three independent elutriation experiments as basis for three 

ChIP replicates. I chose fractions G1 (counterflow rate 40 ml/min) - pre-RC 

formation is supposedly completed - and S/G2 cells (80 ml/min), directly after 

replication. The sonication time had to be slightly reduced for S/G2-phase cells, as 
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the chromatin of S/G2 cells is fragmented more easily. An example for efficient 

sonication is depicted in Figure 4.3 A. 

 

FIGURE 4.2: EXAMPLE FACS PROFILE OF RAJI CELLS FRACTIONNATED BY CENTRIFUGIAL ELUTRIATION 

REVEALED DISTINCT CELL CYCLE STAGES. Propidium iodide (PI) is an intercalating agent and was 

used to determine DNA content in the cells. The first peak represents the G1 cell population with 

2n content, the second peak represents G2 population with 4n. The different counterflow rates 

led to a separation into cell populations of different cell cycle stages (indicated on top of each 

profile). The cell populations marked in green were taken for ChIP-seq experiments.  

EXPERIMENTAL SETUP: CHIP VALIDATION 

Like almost all EBV-infected cell lines, the Raji cell line maintains the EBV genome 

as an independent genetic entity, which is autonomously replicated during latency by 

the host cellular replication machinery (John L. Yates 1996). The latent Epstein-Barr 

virus origin oriP can serve as a positive control for pre-RC ChIP efficiencies. The viral 

latent protein EBNA1 specifically targets ORC to the dyad symmetry (DS) element of 

oriP, independent of the cell cycle stage. Consequently, ChIPs showed an enrichment 

of Orc2 and Orc3 at DS in both G1 and S/G2, while Mcm3 and Mcm7 binding is cell 

cycle dependent (Ritzi et al. 2003) and was decreased in S/G2 (Figure 4.3 B).     

H4K20 methylation ChIPs were validated at previously identified genomic positive 

loci for either H4K20me1 or –me3 (primer sequences obtained from Stanimir Dulev, 

OICR, Canada). ChIP against canonical histone H4 was also included. There were no 

considerable cell cycle dependent differences observed (Figure 4.4). After qPCR 

validation, the samples were sequenced. As a measure for sonication and sequencing 

biases, “input DNA” (cross-linked DNA fragmented under same conditions as the 

ChIPs) was used as appropriate control. 
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FIGURE 4.3: PRE-RC CHIP VALIDATION IN RAJI CELLS. A) REPRESENTATIVE EXAMPLE OF SONICATED 

CHROMATIN IN G1 AND S/G2. 1.5% agarose gel, stained with EtBr. B) PRE-RC CHIP VALIDATION 

BY QPCR AT THE DS LOCUS OF ORIP. Cell cycle stages as indicated. Rabbit IgG mock IP served as 

negative control. Mean ± SEM (n=3).  

 

 

 

FIGURE 4.4: H4K20 METHYLATION CHIP VALIDATION BY QPCR AT GAPDH H4K20ME1 POSITIVE AND 

ZNF180 H4K20ME3 POSITIVE LOCI. Cell cycle stages as indicated. Rabbit IgG mock IP served as 

negative control. Mean ± SEM (n=3).  

TREATING SEQUENCING DATA 

A) B) 
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The Genomics unit of LAFUGA (headed by Helmut Blum, LMU Munich) performed 

ChIP sample library preparations, as well as final 50bp single-end sequencing with the 

Illumina HiSEQ 1500 sequencer. Due to the expected variability of pre-RC ChIPs, I 

chose an elevated sequencing depth of around 70 million reads for pre-RC ChIPs and 

35 million reads for histone modifications.  

Quality of the ChIP-seq reads (or tags) was controlled using FastQC, and mapped 

against the human genome hg19 (GRCh37, version 2009), extended for the EBV 

genome (NC007605) using bowtie1. Choice of mapping parameters has an effect on 

sensitivity and specificity. Usage of only uniquely mapping reads excludes some true 

binding sites, simply because they locate in duplicated or repeated regions. However, 

allowing multiple read alignments leads to the detection of false positives. For the 

following analyses, false positives and possible amplification artefacts were excluded 

by blocking the repeated alignment of the identical sequence read.   

An example of either input (input (G1) repl1) or Orc2-ChIP (Orc2 (G1) repl1) read 

sequences aligned on hg19 at the published origin Mcm4/PRKDC (Schaarschmidt et 

al. 2002) is shown in Appendix Figure 1 A. Visualization was performed with the 

Integrated Genome Browser (IGB). In principle, protein binding at a specific position 

leads to an accumulation of reads aligning at this locus. A direct comparison of 

sequencing alignments showing single reads and pileup profiles is depicted in 

Appendix Figure 1 B.  

In general, raw ChIP-seq pileup profiles (without input normalization or any filters) 

turned out to be rather broad with much background, but I also observed regions with 

clear peaks (examples are visualized in Figure 4.14 (Mcm4/PRKDC locus, broad 

profile) and Figure 4.15 (chr6: 26516717-26543982, sharp peaks). Browser 

visualization is very useful to get an impression of the data, but is not quantitative for 

further analyses. For quantitative analysis, significant peaks need to be determined. 

Peak-calling programs compare read distribution of input to the specific ChIP and 

detect significant enrichments by applying dedicated algorithms.  

My Laboratory previously determined positions of active replication and pre-RC on 

the EBV genome by SNS- or ChIP-on-chip experiments (Papior et al. 2012). Thereby, 

independent ChIP and SNS data sets displayed high concordance. To decide for the 
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most appropriate peak-calling program, I applied different peak-calling algorithms on 

EBV ChIP-seq data and selected the program whose results matched best to the 

previously identified pre-RC and SNS positions on the EBV genome.    

VALIDATION OF PEAK-CALLING ON THE EBV GENOME 

Any peak-calling program’s key task is to reproducibly identify correct protein binding 

positions while avoiding false positives. There are over fifty different peak calling 

programs available and I chose to compare three of them: i) the most popular one: 

MACS2 (Model-based analysis of ChIP-seq; Zhang et al. 2008); ii) a similar stringent 

peak calling program with many downstream applications: HOMER (Hypergeometric 

optimization of motif enrichment; Heinz et al. 2010); and iii) a program that has been 

shown to detect an increased number of biological relevant peaks: T-PIC (Tree-shape 

peak identification for ChIP-seq; Hower, Evans, and Pachter 2011).   

A ChIP-seq profile representation of single replicates and the respective peak calling 

result from EBV is depicted in Figure 4.5 for Orc2 and Orc3 and in Figure 4.6 for 

Mcm3 and Mcm7. While both MACS2 and HOMER peak calling programs did not 

detect any major peaks except for oriP, the T-PIC peak calling program also identified 

significant protein binding outside of oriP (Figure 4.5, Figure 4.6). This is consistent 

with published results, as Papior et al. found considerable pre-RC binding as well as 

active replication initiation events all over the EBV genome (dark brown (pre-RC) and 

light brown (SNS) bars in Figure 4.5, Figure 4.6; Papior et al. 2012).   

These very divergent results of different peak-calling programs originate from the 

different underlying algorithms. Despite a lot of work invested, it remains difficult to 

accurately define a peak within the data. MACS2 is designated for transcription factor 

binding detection and histone modifications (Feng, Liu, and Zhang 2011). The 

principle of MACS2 peak-calling relies on a peak showing a bimodal enrichment 

pattern, as the sequencing reads represent each the end of a ChIP fragment (Figure 

4.7). Based on the read distribution, MACS2 shifts the reads towards the 3’ends to 

optimize protein binding site location. Thereby, the shift size (d) is often unknown. 

MACS2 either relies on the sonication size (bandwidth parameter determined by the 

user) or calculates shift sizes based on high-quality peaks. 
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FIGURE 4.7: STRAND-DEPENDENT BIMODALITY IN SEQUENCING READS DISTRIBUTION. The protein 

of interest (blue oval) binds DNA. Wavy lines represent sense (blue) and antisense (red) DNA 

fragments from ChIP enrichments. Sequenced reads are indicated as thicker portion. Alignment 

to the reference genome produces bimodal distribution of a peak that is corrected by peak-calling 

programs. Distance between sense and antisense reads (d) represents optimal shift size. From 

Wilbanks and Facciotti 2010.   

Careful determination of the shift size is thus crucial for proper peak detection. 

MACS2 performs peak detection by using a dynamic parameter defined for each read 

enriched region (λlocal) and compares this enrichment to the peak region and 

neighboring regions (1 kb, 5 kb, 10 kb from the peak) in ChIP and control input 

sample. Thereby, variations in sequencing depth between ChIP and input samples are 

adjusted by diminishing the elevated depth. A p-value is calculated for each enriched 

region and those regions with a p-value smaller that the threshold (default p=10-5) are 

considered significant (Zhang et al. 2008). MACS2 provides two general peak-calling 

functions: “standard” for punctuate enrichments as e.g. transcription factors and 

“broad” to detect enrichments from e.g. histone modification patterns that cover 

broader regions.   

Also the HOMER “findPeaks” function allows choosing two different approaches. 

Either the setting “factor” for defined peaks, and “histone” for broader enriched 

regions can be chosen. To start with, HOMER requires to build a “tag directory” from 

the reads and performs a first quality control on data while estimating required 

parameters for downstream analysis (e.g. fragment length). Similar to MACS2, the 
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program also shifts the enriched reads in the 3’ direction to center the actual peak 

depending on the fragment size. It scans the genome for clusters of high-density tags 

and excludes the regions directly adjacent to these clusters. Assuming that the local 

tag densities follow a Poisson distribution, the program estimates the expected peak 

numbers and simultaneously calculates the expected number of false positive peaks 

for each tag threshold. It then uses the threshold that meets the specified false 

discovery rate (default: fdr=0.001). Peaks are filtered against the input control 

experiment using the sequencing-depth independent fold-change parameter. This 

means that a potential peak in the target experiment needs 4-fold (default) more 

normalized tags than the control. Similar to MACS2, HOMER also filters peaks based 

on the local tag count. Peak tag densities have to be 4-fold above the surrounding 10 

kb region (homer.salk.edu/homer/ngs/peaks.html). 

In contrast to MACS2 or HOMER, T-PIC identifies significant peaks from read 

coverage and applies tree-based statistics on the data. The program starts by 

calculating the coverage from the reads of input and target sample extended by defined 

fragment length (set to 200 bp final). Already during this calculation, “anomalous” 

coverage is flagged for being subsequently analyzed as putative peaks. In order to 

detect statistically significant peaks, the program first calculates a “null hypothesis” to 

model regions without peak for a given coverage. The actual peak detection is then 

based on the shape of the peak (instead of it’s simple height, also the information from 

the neighborhood is taken into account and used to differentiate from random 

fragment distributions). Potential peaks identified during coverage calculation are then 

reprocessed and the coverage change within the shape is represented as a “tree” 

(Figure 4.8). Sharp peaks consequently correspond to large trees without many 

branches, while broad peaks lead to low, rather bushy trees. A value is attributed to 

the tree which reflecting its shape. The “null hypothesis model” is equally scanned for 

peaks and corresponding trees are calculated to be able to correct for randomly 

occurring read accumulations. By comparing the detected peaks to the random peaks 

from the “null hypothesis model”, significant peaks are identified and displayed 

(Hower, Evans, and Pachter 2011).     
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FIGURE 4.8: SCHEMATIC REPRESENTATION OF TRANSFORMATION OF A PEAK SHAPE INTO A TREE. 

The peak starts at a coverage height h and its end is considered at the same height. Every time the 

coverage changes by adding a read, the tree gains in vertices (blue stars, connected by red dotted 

line). The branches originate from “deviations” of the main shape (smaller dotted red lines). 

Adapted from Hower, Evans, and Pachter 2011.  

This diverging mathematical models for peak-calling explain the differences of T-PIC 

to the other two peak-calling algorithms MACS2 and HOMER. Furthermore, the 

authors of the T-PIC algorithm validated their approach by re-analyzing already 

published data of factors with specific binding motifs. Indeed, T-PIC identified peaks 

that specifically contain the corresponding motifs, while other peak-calling programs 

(like MACS) missed some of these peaks (Hower, Evans, and Pachter 2011). In 

conclusion, T-PIC is a more sensitive program to detect peaks of biological relevance. 

Based on the comparative analysis of the different peak-calling algorithms on the EBV 

pre-RC ChIP-seq results and the published EBV replication profile, T-PIC seems to 

be the most appropriate peak-calling program. I investigated the similarities of 

identified peaks between replicates and the different pre-RC proteins by calculating 

the Jaccard index. This index was calculated as explained in Figure 4.9 A. Jaccard index 

is a direct measure of replicate similarities with 1 being exactly redundant and 0 being 

completely different. Jaccard indices can be represented by a heatmap, which allows 

direct visual estimation of ChIP reproducibility. As observed in Figure 4.9 B, ChIP 

peaks clustered principally by experiment. Replicate 1, 2, and 3 cluster among 

themselves, but there was also a clustering visible depending on the ORC or Mcm2-7 

complex. ChIPs from the third experiment (repl3) were least similar. 
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FIGURE 4.9: CHIP SIMILARITIES REPRESENTED BY JACCARD INDICES. A) SCHEMATIC EXPLANATION 

OF CALCULATING THE JACCARD INDEX. The peak properties of two ChIPs are directly compared 

by calculating the overlap of both peaks and dividing by the sum of the totality and the overlap. 

The resulting index is a direct measure of similarity and ranges between 0 (no similarity) and 1 

(identical). B) HEATMAP REPRESENTATION OF JACCARD INDICES OF THE INDIVIDUAL CHIP T-PIC 

PEAKS ON THE EBV GENOME. Dark red represents great similarities while lighter red indicates less 

redundancies.  

 

A) 

B) 
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These observed differences resulted principally from the biological and experimental 

difference of the samples. Working with three independent elutriation fractions, that 

were cross-linked at different time-points might account for experimental differences. 

Also, Mcm2-7 complexes are not necessarily positioned at defined sites but slide away 

from their ORC-dependent loading sites (discussed in more detail in chapter 4.3). This 

might explain the increased variance in Mcm2-7 protein ChIPs.   

DEFINING THE PRE-REPLICATION COMPLEX 

The high experimental and biological variances strengthen even more the necessity 

for stringent pre-RC definition. The availability of several replicates (two for each Orc-

ChIP and three for each Mcm2-7 ChIP) and two target proteins within each pre-RC 

sub-complex, makes robust complex definitions possible. Because ORC can also exist 

without Mcm2-7 helicases and the Mcm2-7 helicases might define initiation sites on 

their own, I defined and examined three different complexes: ORC, Mcm2-7, and pre-

RC. A complex is per definition composed of at least 50% overlapping peaks within 

respective target ChIPs and replicates (Figure 4.10 A). Consequently, ORC consisted 

of at least two peaks overlapping from Orc2_repl1, Orc2_repl3, Orc3_repl1, 

Orc3_repl3, Mcm2-7 demanded at least three overlapping peaks in Mcm3_repl1, 

Mcm3_repl2, Mcm3_repl3, Mcm7_repl1, Mcm7_repl2, and Mcm7_repl3. Pre-RC 

was built of at least five overlaps of all ChIPs. 

A visualization of the determined T-PIC-defined complex distributions together with 

pre-RC and SNS determined by Papior et al. 2012 is shown in Figure 4.10 C. W-repeats 

and terminal-repeats were excluded from the analysis. When calculating overlaps of 

T-PIC-defined pre-RCs with pre-RC determined by Papior et al., 66% of all T-PIC-

pre-RCs overlapped. The same was true regarding the overlap of T-PIC-pre-RCs with 

SNS (Figure 4.10 B). Interestingly, one particular region from 102000 to 137600 was 

heavily enriched for pre-RCs detected by Papior et al., while T-PIC did not detect any 

enrichments of ORC, Mcm2-7 or pre-RC. Either this region is constantly covered by 

pre-RC components, which impairs T-PIC from detecting significant enrichments, or 

this observation results from differences in technique and bioinformatics analysis. 
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Jaccard indices of all determined complexes were also calculated and are represented 

in Appendix Figure 2. T-PIC-defined complexes clustered together with high 

similarities and were slightly more similar to SNS positions determined by Papior et al. 

(Jaccard index = 0.32) than to their pre-RC positions (Jaccard index = 0.18).   

In conclusion, the T-PIC peak-calling algorithm is most suitable to detect relevant 

peaks from pre-RC ChIPs. The observed differences of T-PIC-defined peaks to pre-

RC and SNS positions defined by Papior et al. might account for completely different 

technical and bioinformatical approaches. Even more, the fact that I also observed 

considerable similarities (66% overlaps) argues for my chosen analysis procedure.   

4.1.3 PERFORMING CHIP-SEQ EXPERIMENTS IN HUMAN EMBRYONIC STEM (HES) 

CELLS  

Setting up pre-RC ChIP-seq experiments in Raji cells had the advantage that an 

internal ChIP quality control was available with oriP on the EBV genome. The 

resulting sequencing data now allowed determination of genomic pre-RC positive loci 

to enable qPCR validation of pre-RC ChIPs in other human cells. Together with my 

partner laboratory of Dr. Jean-Marc Lemaitre at the IRMB in Montpellier, we decided 

to apply pre-RC ChIP-seq on the human embryonic stem cell line H9 (hES cells). In 

these cells, SNS-sequencing data is also available, which allows direct comparison of 

pre-RC positions with specific sites of active replication (Besnard et al. 2012). 

However, easy G1 synchronization of hES cells is impossible and I decided against 

chemical synchronization to avoid treatment biases, performing the ChIPs on 

asynchronous cell populations.  

 

FIGURE 4.10: ORC, MCM2-7, AND PRE-RC DIFINITION ON EBV GENOME. A) PRINCIPLE OF COMPLEX 

DEFINITION. At least 50% overlapping peaks are needed to determine a complex. During merging, 

leftmost start position and rightmost end position are conserved. B) DIRECT COMPARISON OF 

T-PIC DEFINED PRE-RC POSITIONS WITH PRE-RC AND SNS POSITIONS FROM PAPIOR ET AL. Pre-RC 

(Papior et al. 2012) are represented in brown, SNS (Papior et al. 2012) in light brown and T-PIC-

defined pre-RCs in green. C) IGB VISUALIZATION OF T-PIC-DEFINED ORC, MCM2-7 AND PRE-RC, 

TOGETHER WITH PRE-RC AND SNS DETERMINED BY PAPIOR ET AL. 2012 ON THE EBV GENOME. 

T-PIC ORC:  orange, T-PIC Mcm2-7: blue, T-PIC pre-RC: green, pre-RC (Papior et al. 2012): 

brown, SNS (Papior et al. 2012): lightbrown; [chrEBV: 0-171823]. 
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EXPERIMENTAL SETUP: CHIP VALIDATION 

ES cells were cultivated to high quantities (up to 2x108 cells). This made careful 

pluripotency controls necessary, as hES cells easily differentiate. Besides 

morphological criteria (Appendix Figure 3 A), I also performed FACS staining of 

known pluripotency markers SSEA4 and Oct4 (Appendix Figure 3 B). FACS stain 

revealed a pluripotent population of about 98% of all cells. During cross-link using 

my established protocol, I omitted the second washing step prior to cross-linking 

because cells were more fragile and lysed more easily. Sonication time was also reduced 

and ChIPs were performed as described in chapter 3.2.7, p. 31. 

From Raji sequencing data, I chose two positive loci for ChIP validation in hES cells 

by qPCR. The Mcm4/PRKDC locus represents a known origin of replication 

(Schaarschmidt et al. 2002) and primer positions together with example ChIP-seq 

profiles in Raji cells are shown in Appendix Figure 4. When screening Raji ChIP-seq 

data for strong enrichment peaks, I defined the BANF1 locus as additional positive 

control (sequencing profile and primer positions are shown in Appendix Figure 5). 

After validation of positive and negative control primers in Raji cells (not shown), I 

performed pre-RC ChIPs according to the established protocol and validated ChIP 

quality by qPCR (Figure 4.11).  

FIGURE 4.11: PRE-RC CHIP QPCR VALIDATION AT SELECTED BANF1 (BANF1+) AND MCM4/PRKDC 

POSITIVE (MCM4+) AND MCM4/PRKDC NEGATIVE (MCM4-) LOCI. IgG was used as negative control. 

Mean ± SEM (n=3). 
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Pre-RC ChIP validation on the human genome resulted in low % input values, which 

possibly emerge from the variable binding of pre-RC proteins. However, ChIPs 

remained enriched at positive loci in comparison to the Mcm4/PRKDC negative 

locus and were sequenced at the platform MGX-Montpellier GenomiX. 

Two complete replicates of Orc2, Orc3, Mcm3, and Mcm7 were sequenced by paired-

end sequencing of 100 nucleotides from both ends of the ChIP fragments. This 

method improves data set quality because alignment to the reference genome is 

facilitated and also repetitive sequence elements can be covered.  

TREATING SEQUENCING DATA 

Anissa Zouaoui, bioinformatician in the laboratory of Dr. Jean-Marc Lemaitre, 

mapped the sequencing data against the human genome hg19 (GRCh37, version 2009) 

and performed standard MACS2 broad peak calling, as pre-RC binding turned out to 

be more spread over the genome, rather than representing distinct peaks. Currently, 

we are also adapting the T-PIC peak calling algorithm for paired-end sequencing data, 

as T-PIC is originally designed for single-end sequencing results. Nevertheless, to get 

a first impression of the data, I defined ORC, Mcm2-7 and pre-RC as previously 

described and compared their positions to sites of active replication (SNS, Besnard et 

al. 2012). 

First of all, I looked at the total number of defined complexes from replicates (Figure 

4.12 A). It is evident that many more Mcm2-7 complexes (43846) were detected than 

ORC (12848) or pre-RCs (8651). By extensive deep sequencing, Besnard et al. 2012 

detected more than 200000 sites of active replication. Although this elevated number 

of origins has been recently questioned by Cayrou et al. 2015 and highly depends on 

definition and detection algorithm, it remained very robust when changing algorithm 

parameters (data not shown). Evidently, the number of defined ORC, Mcm2-7 and 

pre-RCs was smaller and cannot be directly compared to the number of active origins. 

Nevertheless, I analyzed the overlaps of the defined complexes with SNS (Figure 4.12 

B). While ORC and pre-RC overlapped to nearly 80% with SNS sites, only 30% of all 

Mcm2-7 complexes were found at SNS sites.  

Given that mainly ORC and pre-RC complexes overlapped with SNS, I wondered for 

the distance of all the complexes towards SNS center. I calculated and plotted the 
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distance of the defined complexes towards the next SNS center in log10 scale in a bar 

chart (Figure 4.12 C). Distribution of close and more farther located complex 

populations gives visual impression of the behavior towards SNS. 

It becomes evident that majority of ORC (80.5%) and pre-RC (80.3%) located within 

~1600 bp (log10 = 3.2, marked by red dashed line in Figure 4.12 C) of SNS center, 

while only 40.4% of Mcm2-7 located that close. This also corresponded to the directly 

calculated overlaps and shows again, that while ORC was located in closer proximity 

to SNS (mean=4561 bp), Mcm2-7 complexes were detected further away (22052 bp, 

p < 2.2x10-16).   

The observed 3.4-fold excess of the total Mcm2-7 numbers of compared to ORC is 

consistent with already reported Mcm2-7 helicase surplus in Drosophila, although not 

to the same extend (Powell et al. 2015 reported 10 to 50-fold Mcm2-7 helicase excess). 

The number of detected ORC (12848) corresponds to the number of Orc1 sites 

detected by Dellino et al. 2013 (~13000) in HeLa cells, but not to ~52000 Orc2 peaks 

in K562 cells (Miotto, Ji, and Struhl 2016) neither to the expected number of total 

origins (30000-50000). Although the numbers and positions of ORC and Mcm2-7 

differ considerably, 67% of all defined ORC coincide with Mcm2-7, which resulted in 

8651 detected pre-RC positions. Apart from apparent technical fluctuations in 

antibody specificities, this might reflect ORC-dependent Mcm2-7 loading 

(overlapping ORC/Mcm2-7) and subsequent Mcm2-7 sliding from the loading site 

(Mcm2-7 without corresponding ORC), as suggested previously (Das and Rhind 2016; 

Hyrien 2016).  

The strong overlap of ORC, but not Mcm2-7 with SNS contradicts the idea that 

Mcm2-7 complexes are solely responsible for replication initiation. In that case, mostly 

Mcm2-7 should overlap with replication initiation sites. These results rather indicate, 

that ORC is indeed important defining active origins, and it would be interesting to 

test, which cohort of origins overlaps with ORC (in terms of origin efficiency, links to 

transcription or histone modifications, etc.). However, it would also be interesting to 

further define the Mcm2-7 population not correlating with SNS, to find possible 

explanations.  
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C) 

FIGURE 4.12: SNS CORRELATE MORE WITH ORC THAN WITH MCM2-7. A) TOTAL NUMBERS OF 

DEFINED COMPLEXES. B) OVERLAP OF DEFINED COMPLEXES WITH SNS. Percentages in brackets 

represent the % overlap of the complex with SNS. C) SNS SIZE DISTRIBUTION AND DISTANCE TO 

SNS CENTER ANALYSIS OF EACH DEFINED COMPLEX. The frequency of the distance of each 

complex was calculated in respect to the center of the next SNS position and plotted as log10. 

The red dashed line marks log10(3.2) = 1585bp from center. ORC: orange, Mcm2-7: blue, pre-RC: 

green, SNS: lightbrown. 
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In conclusion, although the data seems promising, it still needs extensive further 

analysis in collaboration with Anissa Zouaoui. First effort will be to apply the earlier 

validated T-PIC peak calling algorithm on the data to gain confidence in the peak 

number and positions detected. This will also improve the comparative analysis with 

SNS positions. Further steps will include the correlation of SNS and pre-RC positions 

with other chromatin features, like histone modifications, MNase sensitivity, CG-

content, etc. This will allow to define features predicting pre-RC correlation with SNS.  

 PRE-RC COMPONENTS ARE ENRICHED WITHIN REPLICATION 

UNITS 

Pre-RC ChIP-seq analysis in hES cells still needs further effort concerning data 

treatment and evaluation. Besides comparison to active replication, there is a lot of 

histone modification ChIP-seq data available in hES cells and comparative 

correlations promise insights into regulation of origin licensing and activation.  

For Raji pre-RC ChIP-seq comparisons however, there is less data published, and I 

initiated collaborations with Dr. Olivier Hyrien (IBENS, Paris) for active replication 

data, Prof. Dr. Wolfgang Hammerschmidt (HelmholtzZentrum München) for RNA-

seq data, and Dr. Jean-Christophe Andrau (IGMM, Montpellier) for histone 

modification data.  

To start data analysis on the human genome, I performed T-PIC and HOMER peak-

calling on pre-RC ChIP-seq data sets. T-PIC is the peak calling algorithm of choice, 

as validated on the EBV genome. However, I decided to also separately focus 

exclusively on the strongest pre-RC peaks and to in parallel use the HOMER 

algorithm.  

4.2.1 COMPARING T-PIC VS. HOMER PEAK-CALLING ALGORITHMS AND DEFINING 

ORC, MCM2-7, AND PRE-RC ON THE HUMAN GENOME 

As already observed on the EBV genome, T-PIC peak-calling is much more sensitive 

than the HOMER algorithm. This was also true for peak-calling on the human 

genome. As a consequence, peak-calling with T-PIC detected around 20-times more 

peaks than HOMER (Table 4.1). Most HOMER peaks resided within the top 10% of 
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T-PIC peaks (representative example for one replicate of Orc2 and Mcm3 depicted in 

Figure 4.13, see Appendix Figure 6 for Orc3 and Mcm7), confirming that HOMER 

mostly calls the strongest peaks. 

TABLE 4.1: COMPARISON OF ABSOLUTE NUMBER OF PEAKS WITHIN REPLICATES AND RESULTING 

COMPLEXES. n.a = not assessed 

  PEAK NUMBERS COMPLEX NUMBERS 

  Orc2 Orc3 Mcm3 Mcm7 ORC Mcm2-7 Pre-

RC 

HOMER 

repl1 2309 4503 2203 2584 1936 322 329 

repl2 n.a. n.a. 658 767 

repl3 1391 1997 424 405 

T-PIC 

repl1 52366 63976 76032 50795 57597 25529 23896 

repl2 n.a. n.a. 44400 25060 

repl3 84343 72717 53792 57388 

 

 

 

 

 

 

B) A) 

FIGURE 4.13: MOST HOMER PEAKS LOCATE WITHIN THE TOP 10% OF T-PIC PEAKS. REPRESENTATIVE 

EXAMPLE ANALYSIS FOR A) ORC2 AND B) MCM3 IN ONE REPLICATE. Venn diagram of overlap 

between all HOMER-detected peaks with the top 10% of T-PIC-detected peaks. Overall counts 

are indicated. The percentage of overlapping HOMER-detected peaks are specified in brackets. 
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Due to its high sensitivity, T-PIC detected peaks at many known origins of replication 

while HOMER did not (for Mcm4/PRKDC locus, see Figure 4.14, for LaminB2 

(Abdurashidova et al. 2000) and JunB (Fu et al. 2014) origins, Appendix Figure 7 and 

Appendix Figure 8). These observations again confirm the T-PIC program detecting 

peaks of biological relevance. By contrast, HOMER mostly detected strong, highly 

enriched binding sites (example in Figure 4.15). 

The number of detected peaks varied considerably between the different replicates 

(Table 4.1), emphasizing even more the necessity for stringent complex definition. On 

the basis of T-PIC and HOMER peaks, I computed ORC, Mcm2-7 and pre-RC 

according to the settings previously defined on EBV. The final complex numbers are 

listed in Table 4.1. For both approaches, the total number of ORC was 2 to 6-fold 

higher than both Mcm2-7 and pre-RC. This stands in clear contrast to the 3.4-fold 

excess of Mcm2-7 detected in hES cells and likely depends on the “broad” peak-calling 

performed with MACS2 in hES cells. HOMER-defined complex numbers were 

generally 30 to 80-times lower than T-PIC defined complexes.  

Comparison of complex sizes revealed that HOMER complexes were considerably 

narrower than T-PIC ones (for pre-RC, see Figure 4.16 A, ORC an Mcm2-7 in 

Appendix Figure 9). This is mostly due to the HOMER peak-calling algorithm settings 

that produced peaks of around 200 bp. T-PIC peak sizes were more variable, also due 

to the merging process during complex computation.  

When looking at the distribution of ORC, Mcm2-7 and pre-RC complexes, it became 

evident that HOMER-defined complexes represent a subpopulation of T-PIC-defined 

complexes (Figure 4.16 B (pre-RC), Appendix Figure 10 (ORC and Mcm2-7)). This is 

a logic consequence of HOMER peaks being part of the strongest T-PIC peak 

population but also reflects the fact that HOMER-defined complexes (and 

consequently the ones with very strong binding) only built a small sup-population 

within T-PIC-defined complexes. 

After defining ORC, Mcm2-7 complex and pre-RC, the complexes can now be 

correlated with active replication, transcription and histone modifications. 
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FIGURE 4.16: DIRECT COMPARISON OF HOMER- AND T-PIC-DEFINED PRE-RC. A) PRE-RC SIZES IN 

[KB]. Represented in boxplot: thick line shows the median, the box is the distribution from the 

first to the third quartile, the whiskers indicate the smallest and largest value without being an 

outlier. B) OVERLAPPING PRE-RCS. Venn diagram of overlap between HOMER- and T-PIC-

defined pre-RCs. Overall counts are indicated. The percentage of HOMER-defined pre-RCs 

common with T-PIC-defined pre-RCs is specified in brackets.    

4.2.2 PRE-RCS CORRELATE WITH ACTIVE REPLICATION UNITS 

As pre-RCs represent sites of licensed origins of replication, I first assessed the 

association of origin licensing and active replication. The group of Dr. Olivier Hyrien 

adopted very recently a method for Okazaki-fragment sequencing (OK-seq) on 

human cells to detect replication initiation (Petryk et al. 2016). They also applied this 

method on Raji cells and kindly provided preliminary data on replication initiation and 

replication termination zones. 

Principal of OK-seq is pulse-labeling of Okazaki-fragments with the Thymidine 

analogue EdU and subsequent purification of these fragments (< 200 bp). Fragment 

sequencing allows to distinguish between Watson (leftward moving fork) and Crick 

(rightward moving fork) Okazaki fragments. From this differentiation, replication fork 

directionality (RFD = 
(𝐶𝑟𝑖𝑐𝑘−𝑊𝑎𝑡𝑠𝑜𝑛)

(𝐶𝑟𝑖𝑐𝑘+𝑊𝑎𝑡𝑠𝑜𝑛)
 ) is calculated resulting in a profile of series of 

ascending (AS), descending (DS), and flat segments of different sizes and slopes 

(Figure 4.17 A). AS represent zones of preferential replication initiation, while DS are 

zones of preferential replication termination. The amplitude thereby reflects initiation 

efficiency. A broad initiation zone (AS) represents a zone of preferential replication 

initiation with multiple inefficient initiation sites but only one single origin firing per 
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cell, presumably corresponding to replication units described in the introduction 

(chapter 1.1.5, p. 6f). Computational wavelet detection of AS and DS in Raji cells 

(performed by Benjamin Audit, ENS Lyon) revealed 4639 AS and 2207 DS, covering 

6.6% and 8.6% of the genome, respectively. Thereby, AS were smaller (mean = 37.8 

kb, range from 3.9 to 198.0 kb) than DS (mean = 122,2 kb, range from 4.7 kb to 339.8 

kb) (Figure 4.17 C). 

VISUAL EXAMINATION OF AS, DS AND T-PIC-DEFINED PRE-RC POSITIONS 

REVEALS A PRE-RC ENRICHMENT IN AS 

First visual examination of the co-occurrence of AS, DS and T-PIC-defined pre-RC 

positions revealed a preferential localization of T-PIC pre-RCs within AS, while there 

were less pre-RCs found in DS (IGB visualized example in Figure 4.17 B). To quantify 

this visual observation, I calculated the density of T-PIC pre-RC positions per Mb 

(Figure 4.17 D). While 8.5 events/Mb were observed in AS, only 3.4 events/Mb were 

detected in DS. Additionally, I also considered all genomic regions being neither AS 

nor DS, termed “remaining genome”. With 8 events/Mb, pre-RC density was similar 

to AS.  Interestingly, these results do not indicate preferential pre-RC positioning 

within AS zones of active replication initiation, but rather argue for a specific depletion 

of pre-RCs in DS zones of replication termination.  

On average, 8.5 pre-RCs per Mb were detected within an AS, which results in one 

pre-RC every 100 kb. Concordantly, on average, one origin is activated every 100 kb 

(mean size of a replication unit, Fragkos et al. 2015). However, one would expect to 

also detect the excess of licensed origins, thus anticipating a higher pre-RC density. 

This might possibly be a problem of peak detection, as every peak-calling algorithm 

expects protein binding at a defined region. This prerequisite is given for ORC but for 

Mcm2-7 complexes site specific binding is controversially discussed. Assuming 

Mcm2-7 spreading, Mcm2-7 binding sites might remain undetected. Consequently, I 

chose another approach to unbiasedly detect pre-RC component binding by 

calculating the mean read coverage of every pre-RC component at AS or DS.      
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A) 

B) 

C) D) 

FIGURE 4.17: CORRELATION OF PRE-RC PEAKS WITH ZONES OF REPLICATION INITIATION (AS) AND 

REPLICATION TERMINATION (DS). A) PRINCIPLE OF AS/DS DETECTION BY OKAZAKI-FRAGMENT 

SEQUENCING. Left: Replication fork directionality (RFD) is calculated by the number of Watson 

and Crick strands. Right: Theoretical RFD profiles for an initiation/ termination site (for one 

fixed origin) or zone (multiple inefficient origins). B) VISUAL COMPARISON OF AS AND DS WITH 

PRE-RC (T-PIC) POSITIONS [chr8: 9033838-9569826]. C) COMPARISON OF AS/DS REGION SIZES. 

Represented in boxplot: thick line shows the median, the box is the distribution from the first to 

the third quartile, the whiskers indicate the smallest and largest value without being an outlier. 

D) PRE-RC (T-PIC) DENSITY WITHIN AS/ DS REGIONS AND THE REMAINING GENOME. Density is 

represented as events/Mb. AS (initiation zones) are colored in red, DS (termination zones) 

colored in blue, the remaining genome is represented in grey. 
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COVERAGE OF PRE-RC COMPONENTS IS ENHANCED AT AS AND DECREASED AT 

DS 

Examining pre-RC positions already procured an impression of pre-RC distribution 

in relation to AS and DS. Another way of analyzing the data is to calculate the 

sequencing read coverage at the superimposition of either AS or DS. This has the 

advantage of being independent of any peak-calling algorithms and obtaining a global 

impression of the average situation at all sites simultaneously.   

Coverage was computed as reads per base within a window of 200 kb around AS or 

DS centers for each replicate. From this, I calculated the mean coverage of all three 

replicates for each pre-RC protein. In Figure 4.18, the result of the mean coverage 

analysis at AS or DS is depicted for A) Orc2, B) Orc3, C) Mcm3, and D) Mcm7. All 

four pre-RC proteins showed an enhanced coverage at AS, while coverage was 

depleted from DS. The input is also plotted as a control for intrinsic chromatin 

composition. As sonication does not fragment chromatin uniformly, regions with 

higher accessibility might be underrepresented because of increased destruction 

during sonication, while less accessible regions are slightly overestimated. This is 

possibly the reason for decreasing input coverage at AS and increasing input coverage 

at DS. AS have been shown to reside in rather euchromatic environment (Petryk et al. 

2016), whereas input coverage implies DS being more heterochromatic.  

The coverage increase of target pre-RC proteins of 0.5 to 0.8 reads/base seems slight, 

but accounts for 10% of the mean coverage (assuming a mean coverage of 4.5 

reads/base). One possible reason is the large AS/DS size. Looking at an average of 

all AS ranging from 3.9 kb to 198 kb, also averaged out specific protein binding events. 

Furthermore, increased coverage at AS had an average region width of ~60 kb and 

decreased coverage at DS ~120 kb, which corresponds to the mean AS (37.8 kb) and 

DS sizes (122.2 kb). This observation and the reproducibility of all pre-RC 

components increasingly covering AS together with a specific coverage depletion at 

DS convincingly argues for specificity of these results.  

In conclusion, both T-PIC-defined pre-RC complex distribution and pre-RC 

component coverage analysis revealed an elevated pre-RC binding in replication 

initiation zones (AS), with specific pre-RC depletion in termination zones (DS).  
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When looking at the T-PIC-defined pre-RC complex distribution, pre-RC density was 

2.5-fold higher in initiation zones than in termination zones. Analysis of HOMER-

defined pre-RC positions by trend also resulted in increased density within AS, but 

the total number of 329 HOMER-defined pre-RCs was not elevated enough to make 

a meaningful statement (data not shown).  

AS are broad zones in which replication preferentially initiates from multiple 

inefficient origins (Petryk et al. 2016). Thus, multiple pre-RC sites are expected within 

these zones. However, presence of pre-RCs outside of these zones (DS, remaining 

genome) is not astonishing. These pre-RCs might be part of dormant origins, i.e. 

origins, that are licensed but not activated, unless replicative stress (replication fork 

stalling) makes their activation necessary to complete genome replication (Blow, Ge, 

and Jackson 2011). These observations indicate, that while AS is indeed a zone of 

pre-RC occurrences and DS clearly is depleted from pre-RCs, origin licensing also 

efficiently takes place outside of AS. 

AS and DS together make up only 15.2% of the human genome, mostly due to low 

OK-sequencing coverage, which partly impedes confident zone detection. But also in 

HeLa cells, only 61% of the genome contribute to zones of replication initiation and 

termination. Petryk et al. propose AS as “master initiation zones”, while the rest of the 

genome displays disperse, stochastically firing origins that cannot be detected by their 

method. Indeed, this is in agreement with AS representing replication units. Other 

methods (bubble trap or SNS-seq) detect many active replication events inside and 

outside AS.  

INTENDED IMPROVEMENTS AND FURTHER ANALYSES 

This analysis of correlating pre-RC components and replication initiation/termination 

represents a first impression of relations between origin licensing and activation. 

Further analyses are anticipated to strengthen these results. First of all, the mean 

pre-RC density was calculated for all AS/DS. However, this calculation ignores 

fluctuations. Pre-RC density per single AS/DS needs to be calculated and plotted in a 

FIGURE 4.18: PRE-RC COMPONENT COVERAGE ANALYSIS REVEALED ACCUMULATION AT AS (LEFT) AND 

DEPLETION AROUND DS (RIGHT). A) MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN 

MCM3 COVERAGE. D) MEAN MCM7 COVERAGE.  Coverage was calculated as number of reads/base 

within a 200 kb window around either AS or DS center.  
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boxplot to be able to draw any final conclusions. If the mean density is influenced by 

outliers, it will be uncovered. Still, Petryk et al. compared HeLa AS to ~13000 Orc1 

sites detected in the same cell line by Dellino et al. 2013. They found Orc1 peak density 

being 2.4-times higher in AS than DS, consistent with my complex densities (pre-RC: 

2.5-fold higher in AS than DS (Figure 4.17); ORC: 2.4-fold (Appendix Figure 18 B, 

G1), Mcm2-7: 3.3-fold (Appendix Figure 18 C, G1)). 

Furthermore, pre-RC components are not necessarily expected in the middle of AS, 

as calculated. On the contrary, HeLa Orc1 sites were mostly enriched at AS borders 

(Petryk et al. 2016). Indeed, the M-shaped pre-RC component coverage profiles could 

result from elevated border distributions (Figure 4.18 A and B). Simple coverage 

calculations at AS/DS aligned at one border will answer this question. Thereby, one 

important feature has to be taken into account: Petryk et al. found AS often to be 

flanked by actively transcribed genes. This and the fact the Orc1 sites were often found 

at AS borders led to the hypothesis, that ORC loads Mcm2-7 helicases at the borders. 

Delimitation by active transcription possibly directs Mcm2-7 spreading towards AS. 

When calculating coverage at AS borders, flanking genes need to be taken into account 

(possibly sorting AS into different classes according to their association with 

transcription). Two results can be expected: i) indeed, ORC is enriched at AS borders, 

ii) Mcm3 and Mcm7 are also enriched at the borders but migrate smoothly in the AS 

direction. Performing the analysis will reveal whether this hypothesis holds true.   

CONCLUSION 

Biologically, pre-RCs are a prerequisite for active replication. Notably, these results 

validate my pre-RC ChIP-seq approach and undoubtedly prove that I successfully 

chipped pre-RC components. While they were nicely associated with AS, the evident 

depletion at DS was unexpected. Petryk et al. did not observe or discuss any similar 

observations. DS are generally larger than AS (Figure 4.17 C) arguing for replication 

initiation being more precise than replication termination, which appears to be more 

random. This observation also indicates that replication fork speeds fluctuate, 

generating more disperse replication termination sites when forks collide. Pre-RC 

depletion in DS indicate little origin licensing within sites of replication termination. 

Termination zones often consist in actively transcribed gene bodies, but have not been 

further characterized so far. Consequently, several questions arise: Which features 
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define replication termination zones? Is there also a link to heterochromatin? Why are 

pre-RCs specifically absent from these zones? Is it actually simply the absence of pre-

RCs that defines a termination zone as termination zone? And how is active 

transcription linked to replication termination zones? The last question will be also 

discussed in the next chapter. 

Detection of active replication by any method (OK-seq or SNS-seq) often links DNA 

replication to active transcription. Conserved AS that are shared between different cell 

types, are often flanked by actively transcribed genes (Petryk et al. 2016). Also SNS are 

often enriched in genes or promoters (Cayrou et al. 2011; Besnard et al. 2012; Picard et 

al. 2014; Cayrou et al. 2015).  Consequently, after correlating pre-RC positions with 

sites of active replication, I was wondering, whether pre-RC ChIP-seq data also 

associate with active transcription.  

 STABLE ORIGIN LICENSING IS ASSOCIATED TO REGULATION 

OF ACTIVE TRANSCRIPTION 

To be able to correlate pre-RC positions with active transcription, I first needed 

information about gene expression in Raji cells. Alexander Buschle and Prof. Dr. 

Wolfgang Hammerschmidt (Research Group EBV Genetics and Vectors, Research 

Unit Gene Vectors, HelmholtzZentrum München) kindly shared their RNA-seq data 

obtained from identical Raji cells.  

4.3.1 PRE-RC COVERAGE WAS INCREASED AT ACTIVE TRANSCRIPTION START SITES 

RNA-seq data reflects gene expression within a cell population. The obtained reads 

from sequencing are mapped against genes and quantified. The experiments were 

performed in triplicates and the mean quantification was considered to estimate gene 

expression. With the support of Tobias Straub (head of the Bioinformatics Core Unit, 

Ludwig-Maximilians-Universität München), actively transcribed genes were arbitrarily 

defined as more than e2 = 7.39; (ln(mean) > 2), meaning that more than 7.39 

sequencing reads per gene define a gene as actively transcribed. This resulted in 10642 

active and 12731 inactive genes. The transcription start sites of these genes were 

extracted and the coverage of the different pre-RC target proteins was computed  
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within a 4000 bp window around active or inactive TSSs.  

As observed in Figure 4.19 (left panel), all targeted members of the pre-RC 

were clearly enriched at active TSSs. Coverage of Mcm3 (Figure 4.19 C, left panel) was 

less prominent than for the other target proteins (Figure 4.20: Orc2: A, Orc3: B, and 

Mcm7: D, left panel), which might originate from the antibody. Pre-RC association 

was clearly dependent on transcriptional activity, as inactive TSSs were not enriched 

in any pre-RC component (Figure 4.19, right panel).       

4.3.2 STRONG HOMER-DEFINED ORC, MCM2-7 AND PRE-RC ASSOCIATED WITH 

ACTIVE TRANSCRIPTION START SITES 

To examine the relation of HOMER- or T-PIC-defined ORC, Mcm2-7 and pre-RC 

to active and inactive TSSs, I calculated the distance of each complex position to the 

next TSS. This resulted in an estimation of the frequency, in which complexes are 

found in vicinity or in distance of TSSs. The distances to active TSSs (colored) and 

inactive TSSs (grey) are represented in the graphs (Figure 4.20: HOMER-defined 

complexes (left panel); T-PIC-defined complexes (right panel)). As for inactive TSSs, 

all HOMER- and T-PIC-defined complexes peaked at 100 kb distance. Considering 

roughly 13000 inactive TSS and a human genome size of 3.1 Mb (hg19), a random 

distribution would result in an average distance of 238 kb. However, as the genomic 

organization is not random, but grouped in gene dense euchromatic and gene devoid 

heterochromatic regions, I propose that ORC, Mcm2-7 and pre-RC distributions 

around 100 kb from the next inactive TSS originate from TSS-independent 

distributions. When looking at the T-PIC-defined complexes, their distribution in 

relation to active TSSs approximate the one of inactive TSSs (Figure 4.20 (right 

panel)), suggesting that T-PIC-defined pre-RC depend only little on transcriptional 

activity. Moreover, Mcm2-7 are even more depleted from active TSS, compared to 

inactive TSS (mean distance from active TSS: 430 kb, mean distance from inactive 

TSS: 186 kb, p-value = 2.2x10-16). 

FIGURE 4.19: PRE-RC COMPONENT COVERAGE ANALYSIS REVEALED INCREASED COVERAGE AT ACTIVE 

TSS (LEFT PANEL) AND UNCHANGED COVERAGE AT INACTIVE TSS (RIGHT PANEL). A) MEAN ORC2 

COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE.  

Coverage was calculated as number of reads/base within a 4000 bp window around TSS. Input was 

plotted as control (grey). 
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FIGURE 4.20: A SUBPOPULATION OF HOMER-DEFINED ORC, MCM2-7, AND PRE-RC WERE CLOSELY 

RELATED TO ACTIVE TSS. Left: HOMER-defined complexes, right: T-PIC-defined complexes. The 

distance of each position was calculated towards the next TSS and is plotted in log10 on the x-axis.  

Y-axis represents the frequency of complexes within a specific distance. 
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By contrast, HOMER-defined complex distribution in respect to active TSSs is 

bipartite (Figure 4.20 (left panel)). A subpopulation of strong HOMER-defined 

complexes, is located in close proximity (100 – 1000 bp) to active TSSs. This is true 

for ORC, Mcm2-7 and pre-RC, but also for the single replicates of each ChIP (data 

not shown). HOMER-defined complexes represent a population of very strong 

binding sites (Chapter 4.2.1, p. 60). Consequently, the proximity to active TSSs defines 

at least in part strong pre-RC binding.   

Dedicated programs take peak position information and calculate the peak 

proportions in specific genome features, as e.g. promoters, exons, and introns. 

Analysis of the genomic distribution of HOMER- and T-PIC-defined pre-RC with 

the CEAS program (cis-regulatory element annotation system (Shin et al. 2009)) 

confirmed the close association of pre-RCs to proximal promoter regions (see 

Appendix Figure 11). Thereby, HOMER-defined pre-RCs again showed an increased 

association to close promoter regions and was also more depleted from intronic and 

distal intergenic regions compared to T-PIC-defined pre-RCs. Nevertheless, T-PIC-

defined pre-RCs were also slightly enriched in proximal promoter regions, indicating 

that active transcription indeed favors pre-RC positions, independent of the peak-

calling algorithm.  

Promoter activity is amongst others regulated by specific histone modifications. In 

particular, H3K4me3 is known to recruit chromatin remodeling factors that create 

open chromatin which leads to transcription factor binding (Kimura 2013). 

Consequently, most active TSSs are marked by H3K4me3.  

4.3.3 PRE-RC COVERAGE WAS ENHANCED AT H3K4ME3 PEAKS 

With active TSS being marked by H3K4me3, pre-RC components are also expected 

to be enriched at H3K4me3 sites. The group of Dr. Jean-Christophe Andrau 

(Transcription and Epigenomics in Developing T-Cells, IGMM, Montpellier) kindly 

shared their data of H3K4me3 and H3K36me3 peak positions obtained from ChIP-

seq in Raji cells. Indeed, direct comparison of active TSS and H3K4me3 positions 

revealed that 81% of active TSS coincide with H3K4me3 (Figure 4.21). Still, 52.8% of 

all H3K4me3 peaks do not directly overlap with TSS. However, further analysis of the  
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FIGURE 4.21: MOST ACTIVE TSS DIRECTLY OVERLAPPED WITH H3K4ME3. Venn diagram of overlap 

between TSS and H3K4me3. Overall counts are indicated. The percentage of overlapping 

proportions are specified below in brackets.     

genomic distribution of H3K4me3 peaks revealed a close association to all regulatory 

regions upstream of the TSS (promoter, 5’UTR), as well as presumably first introns 

and exons (Appendix Figure 12).  Computational analysis of the mean coverage of the 

single pre-RC proteins (Figure 4.22) indicated an enrichment at H3K4me3 peak 

centers (except for Mcm3 (Figure 4.22 C)). The calculated coverage is more irregular 

than at TSSs because H3K4me3 peaks of different sizes were centered and read 

coverage was calculated in a large 20 kb window (mean size = 2.2 kb, range from 250 

bp to 98.1 kb, see also Appendix Figure 13).  

In contrast to pre-RC enrichments at H3K4me3 peaks, no enhanced coverage was 

observed at H3K36me3 regions (Appendix Figure 15). H3K36me3 is also a histone 

modification associated to active transcription, but is rather found in actively 

transcribed gene bodies (Kimura 2013), more precisely in intronic regions (Appendix 

Figure 14).  This finding specifically links replication licensing to the regulation of 

active transcription, but not to transcriptional activity itself. 

4.3.4 STRONG HOMER-DEFINED MCM2-7 AND PRE-RC ENTIRELY ASSOCIATE WITH 

H3K4ME3 

Already coverage analyses implied a strong association of pre-RC with H3K4me3. 

However, it remained to be tested whether this association is confirmed by a co-

localization of H3K4me3 and HOMER- and T-PIC-defined ORC, Mcm2-7 and 
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FIGURE 4.22: INCREASED COVERAGE OF TARGET PRE-RC PROTEINS AT H3K4ME3 PEAKS. A) MEAN 

ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 

COVERAGE.  Coverage was calculated as number of reads/base within a 20 kb window around 

H3K4me3 peak center. Input was plotted as control (grey).  

pre-RC positions. Indeed, HOMER-defined Mcm2-7 complexes and pre-RCs nearly 

completely overlapped with H3K4me3 positions (88%) and ORC at least to 56,3% 

(Figure 4.23, left panel). In contrast, for T-PIC-defined peaks, ORC positions 

correlated to a higher degree with H3K4me3 peaks (14.4% of all ORC overlaps with 

nearly 50% of all H3K4me3 peaks, Figure 4.23, right panel). Mcm2-7 complexes and 

pre-RCs remained less associated. This result was also confirmed by analyzing the 

distance to H3K4me3 peak center (Appendix Figure 16, left panel). HOMER-defined 

Mcm2-7 and pre-RC completely resided in close proximity to the peak centers (100-

1000 bp), while a subpopulation of ORC remained distant. The distance of all 

A) B) 

D) C) 
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HOMER- or T-PIC-defined complexes to H3K36me3 remained randomly 

distributed. 

 

 

 

FIGURE 4.23: HOMER-DEFINED COMPLEXES NEARLY COMPLETELY OVERLAP WITH H3K4ME3 PEAKS. 

Left panel: HOMER-defined complexes, right panel: T-PIC-defined complexes. Venn diagram of 

the overlap between ORC, Mcm2-7, and pre-RC with H3K4me3 peaks. Overall counts are 

indicated. The percentages of overlapping proportions are specified below in brackets. 
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CONCORDANCE WITH PREVIOUS STUDIES AND FURTHER ANALYSES 

The regulation of transcriptional activity clearly impacts on origin licensing 

efficiencies. The comparison of HOMER- and T-PIC-defined complexes argues for 

the variability of favorable origin licensing features. Strong licensing depends entirely 

on active transcriptional regulation (association to TSS and H3K4me3) and thus 

affects the entire HOMER-defined pre-RC population. Regarding T-PIC-defined 

ORC, Mcm2-7 and pre-RC, licensing positions regulated by active transcription only 

built a sub-population of all T-PIC peaks and further features account for the other 

T-PIC-defined complexes. However, these features confer less localized binding of 

pre-RC components. 

Interestingly, ORC is the only HOMER-defined complex that did not entirely overlap 

with H3K4me3 peaks. This hypothesis is consistent with the fact that ORC also has 

other functions than regulating pre-RC formation, for instance in heterochromatin 

regulation (Giri et al. 2015; Giri and Prasanth 2015). This can be tested by extracting 

the ORC subpopulation not associating with H3K4me3 and comparing these ORC 

positions with known heterochromatin regions.   

The association of active DNA replication and transcription is already widely proven 

(Martin et al. 2011; Besnard et al. 2012; Cayrou et al. 2015; Smith et al. 2016; Kylie et al. 

2016). Furthermore, also both ChIP-seq studies targeting a component of ORC 

(Orc1: Dellino et al. 2013, Orc2: Miotto, Ji, and Struhl 2016), stated a close connection 

to transcriptional activity. Dellino et al. found 71% of all detected Orc1 sites at active 

TSS. Additionally, the authors linked Orc1 sites with high transcription levels to early 

replication, while Orc1 sites with low or undetectable expression levels replicated late 

in S-phase. Thus, their study connects Orc1 sites and transcription with replication 

timing.   

Miotto et al. claim only a moderate association of Orc2 sites and active 

transcription (Pearson correlation 0.33, Miotto, Ji, and Struhl 2016). Considering 

~52000 detected Orc2 sites and roughly 20000 human genes, of which maybe half are 

transcriptionally active, only 1
5
 of all Orc2 peaks could actually correlate with active 

transcription and a correlation coefficient of 0.33 should be judged as good. Re-

analyzing their data and sorting Orc2 peaks for strong and weak enrichments might 

also connect strong Orc2 binding to active TSS. I intend to directly correlate their 
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Orc2 peak positions with my HOMER- and T-PIC defined ORC, Mcm2-7, and pre-

RC, to get an idea of concordance of the experiments. The authors claim that DNA 

accessibility is the main determinant of Orc2 positions. Consequently, they found 

Orc2 in promoters and regions enriched for active chromatin marks (H3K27ac, 

H3K4me1/2/3), consistent with my own results.  

Very recently, Smith et al. compared active replication in different human cell types 

and differentiation states and found mostly conserved replication origins associated 

with H3K4me3 (Smith et al. 2016). Also Cayrou et al. linked active replication to 

histone modifications favoring open chromatin (H3K4me, H3K9Ac, Cayrou et al. 

2015). These findings suggest H3K4me3 being a histone modification that contributes 

to an accessible chromatin environment for strong pre-RC binding and thus efficient 

replication initiation.   

The general question remains whether transcriptional activity positively or negatively 

influences origin licensing and activation. While it is evident that active transcription 

creates a chromatin environment also accessible for replication factors, multiple 

studies mutually exclude high transcription rates and efficient replication 

(Nieduszynski, Blow, and Donaldson 2005; Mori and Shirahige 2007; Lõoke et al. 

2010; Martin et al. 2011). My results imply, that actively transcribed genes are indeed 

devoid of pre-RC components (absent pre-RC coverage at H3K36me3 peaks, 

Appendix Figure 15), while pre-RCs are mostly found at active TSS (Figure 4.19) and 

promoter regions harboring active histone modification marks (H3K4me3, Figure 

4.22). It has been reported that replication initiation events themselves are absent from 

TSS, but enriched in adjacent sequences (Martin et al. 2011). Petryk et al. found early 

replicating initiation zones predominantly flanked by actively transcribed genes, while 

many termination zones overlap active genes. Assuming that ORC is mostly found at 

initiation zone borders (as shown for Orc1, Dellino et al. 2013; Petryk et al. 2016), and 

Mcm2-7 helicases move from their initial loading site, one could hypothesize that 

transcription and RNA polymerase II action promote Mcm2-7 removal from actively 

transcribed genes.    

RNA polymerase dependent Mcm2-7 double-hexamer sliding has indeed been shown 

by Gros et al. 2015 in budding yeast. The authors found that RNA polymerase II can 
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push Mcm2-7 double-hexamers along the DNA, without them losing initiation 

potential. Also in Leishmania major, it has recently been demonstrated that most 

replication initiation sites are found at sites of RNA polymerase II stalling or 

transcriptional termination, arguing for co-migration of Mcm2-7 helicases and the 

transcriptional machinery (Lombraña et al. 2016). Furthermore, Powell et al. 

demonstrated by ChIP-seq studies in Drosophila melanogaster, that Mcm2-7 helicases are 

evenly distributed throughout the genome in G1/S transition, but absent in actively 

transcribed genes (Powell et al. 2015). Thereby, an active transcription process is 

required for Mcm2-7 displacement from gene bodies. The authors propose Mcm2-7 

residing in transcribed genes being displaced by the passage of RNA polymerase II.  

Absence of Mcm2-7 helicases at actively transcribed genes would explain 

active genes being favored zones of replication termination (Petryk et al. 2016). This 

model would situate ORC localizing at accessible regions, like TSS, and thus initiation 

zone boundaries. ORC loads Mcm2-7 helicases, which are subsequently translocated 

by active transcription into gene-adjacent regions, defining replication initiation zones 

detected by Okazaki-fragment sequencing. This RNA polymerase II-dependent 

translocation mechanism would also avoid head-to-head collisions of replication fork 

and the transcriptional machinery, preventing sources of replication fork stalling or 

DNA damage. Moreover, G4 structures might block Mcm2-7 helicase sliding, possibly 

explaining why G4 structures are found enriched at active replication origins (Besnard 

et al. 2012). The mechanism of Mcm2-7 dislocation would include displacement or 

reassembly of nucleosomes and other DNA-binding proteins, which seems laborious 

for the cell and needs further investigation.  

CONCLUSION 

Pre-RC or replication origin association to the regulation of active transcription is 

generally accompanied by early replication timing. My results showing strong pre-RC 

binding at active TSS provoke the speculation whether active TSS are early replicated 

because of strong pre-RC binding. Miotto et al. used mathematical modeling to correctly 

predict replication timing dependent on ORC densities (Miotto, Ji, and Struhl 2016). 

As higher ORC densities presumably also result in more Mcm2-7 helicases, the 

probability of origin firing events increases, resulting in early replication. Replication 
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timing domains are concordant with topologically associating domains (TADs), whose 

borders also might limit the Mcm2-7 helicase sliding to restricted domains.  

Consequently, active chromatin environment positively influences ORC 

binding probabilities, which leads to more Mcm2-7 helicase loading. These helicases 

are translocated from their original binding sites by transcription machineries, which 

is the reason for replication initiation not taking place within genes, but adjacent to 

them. The more accessible chromatin is, the higher ORC/Mcm2-7 densities may 

become, the higher the probability for licensed origins to fire, the earlier replication 

origins are activated.  

 MCM2-7 HELICASES APPROXIMATE ORC IN S/G2 

Origin licensing can only happen in late mitosis/ early G1, when CDK and DDK 

activities are low. After ORC binding to DNA, Cdc6 and Cdt1 are required for further 

Mcm2-7 double-hexamer loading. Once a replication origin is activated, the helicases 

move as part of the replication forks, until replication termination and helicase 

dissociation. 

I chose the S/G2 time-point during the cell cycle as a control for my ChIP 

experiments, assuming that replication complexes either dissociate because of their 

replication activity, or passively, when replication forks move through inactive 

licensing complexes, thereby removing them from DNA (Kuipers et al. 2011). As a 

consequence, and as observed at oriP, I expected less Mcm2-7 binding to chromatin 

sites, resulting in less peak-algorithm defined complexes.  

4.4.1 COMPLEX NUMBER AND SIZES DO NOT CHANGE IN S/G2 

S/G2 pre-RC-ChIPs were performed in parallel to the G1 ChIPs and sequenced 

comparably. I analyzed the data as described previously and performed HOMER and 

T-PIC peak-calling, starting with comparing the number and positions of detected 

HOMER- or T-PIC-defined complexes in G1 and S/G2.  
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FIGURE 4.24: DEFINED COMPLEXES DO NOT DIFFER IN NUMBER OR SIZE WHEN COMPARING G1 VS. 

S/G2. A) HOMER-DEFINED COMPLEXES. B) T-PIC-DEFINED COMPLEXES. Left: Number of defined 

ORC, Mcm2-7 and pre-RC was plotted as indicated in a bar chart in G1 vs. S/G2. Right: Complex 

sizes were potted as boxplot in G1 vs. S/G2. Thick line shows the median, the box is the 

distribution from the first to the third quartile, the whiskers indicate the smallest and largest value 

without being an outlier. Outliers represented by dots.    

For both HOMER-defined complexes, as well as T-PIC-defined complexes, neither 

the peak number nor the peak sizes changed considerably (Figure 4.24, for EBV 

genome, see Appendix Figure 17 A and B). Opposing to what was expected, there 

were even more HOMER-defined strong Mcm2-7 complexes detected in S/G2, 

which consequently resulted in slightly more defined pre-RCs (Figure 4.24 A). As for 

T-PIC-defined complexes, there was a minor reduction in the number of defined 

complexes observed (Figure 4.24 B). Comparing the positions of the defined-

complexes between G1 and S/G2 on the EBV genome revealed a strong conservation 

(Appendix Figure 17 C). Also for the human genome, the majority of the HOMER-

defined complexes in G1 are conserved in S/G2 (> 60%, Figure 4.25, left panel). 

Because more HOMER-defined Mcm2-7 positions were detected in S/G2, many new 

pre-RC sites were also determined.  

A) 

B) 
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Concerning T-PIC-defined complexes, the situation was less pronounced. While there 

was a considerable conservation of ORC and pre-RC positions observed (>55% of 

S/G2 complexes overlap with G1 positions, Figure 4.25, right panel), this was not the 

case for Mcm2-7 (< 30% overlap of S/G2 positions with G1). The reduction of the 

number T-PIC-defined complexes in S/G2 can be explained by a decrease in global 

FIGURE 4.25: COMPARISON OF HOMER- AND T-PIC-DEFINED COMPLEX POSITIONS IN G1 VS. S/G2. 

Left: HOMER-defined complexes, right: T-PIC-defined complexes. Venn diagram of overlap 

between G1-defined ORC, Mcm2-7, and pre-RC with the same complexes defined in S/G2. 

Overall counts are indicated. The percentage of overlapping proportions are specified below in 

brackets. 
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protein binding. This reduced binding resulted in a more dispersed signal that did not 

meet the criteria for significant peak detection. However, observed reduction of 

defined T-PIC complexes was relatively unimportant, as a significant number of ORC, 

Mcm2-7, and pre-RCs were still detected in S/G2, indicating that a considerable 

amount of pre-RC proteins were still bound to DNA at this cell cycle stage. Moreover, 

I detected an increased amount of HOMER-defined Mcm2-7 complexes and pre-RCs, 

arguing for an increased strong binding of Mcm2-7 proteins at defined positions in 

S/G2. 

I further analyzed the association of S/G2 ORC, Mcm2-7 and pre-RC with 

replication, transcription and active histone marks. In G1, pre-RC coverage was 

detected at replication initiation zones and specifically depleted from replication 

termination zones. In S/G2, after passage of the replication forks, I would expect a 

flat signal for both replication zones.  

4.4.2 MCM2-7 COVERAGE AT AS AND DEPLETION FROM DS ARE LESS 

PRONOUNCED 

Coverage analysis is a measure of global changes in binding of the single pre-RC 

components to certain features. A direct comparison of the maximum read coverage 

at AS is shown in Table 4.2, p. 90. While pre-RC coverage at AS decreased in S/G2, 

especially for Mcm2-7 components (for Mcm3: from 0.8 reads/base in G1 to 0.3 

reads/base in S/G2, for Mcm7: from 0.5 reads/base in G1 to 0.3 reads/base in S/G2), 

coverage at DS seems less depleted (Figure 4.26). Also the quantification of T-PIC-

defined ORC, Mcm2-7 and pre-RC densities revealed no major change of ORC 

densities at AS or DS, but a decrease in the remaining genomic regions (Appendix 

Figure 18 B). Mcm2-7 densities however showed an increase at DS, while AS and the 

remaining genome remain unchanged (Appendix Figure 18 C). These density shifts of 

ORC and Mcm2-7 resulted in pre-RC density reductions mostly at the remaining 

genome (Appendix Figure 18 A). These observations indicate T-PIC-defined ORC 

positions to only marginally change within AS or DS, but that the reduction of ORC 

numbers in S/G2 essentially concerned the remaining genome. T-PIC-defined Mcm2-

7 complex densities and Mcm2-7 coverage rather indicate that Mcm2-7 proteins were 

less present at AS and less absent from DS in S/G2. 
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It has already been shown in chromatin binding experiments based on cell cycle 

fractionation by centrifugal elutriation, that ORC still binds chromatin in S/G2, while 

Mcm3 and Mcm7 binding generally decreases (Ritzi et al. 2003). Indeed, while Orc2 

and Orc3 coverage profiles are very similar in G1 and S/G2 (compare Figure 4.18 and 

Figure 4.26), Mcm3 and Mcm7 profiles assimilate Orc2/3 profiles, which involves 

decreased coverage at AS and less depletion from DS.  

Pre-RC ChIP-seq experiments in Drosophila cells showed that minimal Mcm2-7 

double-hexamer loading can occur in absence of cyclin E (main regulator of S-phase 

entry), while maximal loading coincides with G1/S transition. Minimal loading strictly 

depends on ORC, while maximal Mcm2-7 helicase loading during G1/S coincides less 

with ORC positions (Powell et al. 2015). It is possible that my pre-RC coverage profiles 

in S/G2 reflect minimal Mcm2-7 loading, strictly dependent on ORC, which might be 

the reason for both ORC and Mcm2-7 profiles becoming similar. 

ORC generally binds in accessible regions, the reason for ORC being mostly detected 

at TSS or H3K4me3 enriched regions (chapter 4.3, p. 72ff). If minimal Mcm2-7 

double-hexamer loading in S/G2 strictly depends on ORC, I expect an increased 

Mcm2-7 coverage at these accessible regions. 

4.4.3 PRE-RC COVERAGE AT TSS AND H3K4ME3 WAS INCREASED IN S/G2 

When calculating the coverage of pre-RC subcomponents at active TSS, their 

association was generally increased (Table 4.2, Orc2 coverage from 2.9 reads/base in 

G1 to 3.5 reads/base in S/G2, Orc3 coverage from 4.2 reads/base in G1 to 5.1 

reads/base in S/G2, Mcm3 coverage from 1.5 reads/base in G1 to 2.8 reads/base in 

G2, Mcm7 from 3.3 reads/base in G1 to 4.4 reads/base in G2; compare Figure 4.19 

(G1) with Figure 4.27 (S/G2)). This enhancement was more prominent for Mcm3 and 

Mcm7 (> 1 read/base). Enhanced Mcm2-7 binding was also detected by HOMER 

peak-calling. Strong HOMER peaks were shown to preferentially locate close to active  

 

FIGURE 4.26: PRE-RC COMPONENT COVERAGE (S/G2) AT AS (LEFT PANEL) AND DS (RIGHT PANEL). 

A) MEAN ORC2 S/G2 COVERAGE. B) MEAN ORC3 S/G2 COVERAGE. C) MEAN MCM3 S/G2 COVERAGE. 

D) MEAN MCM7 S/G2 COVERAGE.  Coverage was calculated as number of reads/base within a 200 

kb window around AS/ DS region center. Input was plotted as control (grey). 
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transcription sites (Figure 4.20, left panel; Figure 4.23, left panel; Appendix Figure 

11 A; Appendix Figure 16, left panel) consistent with these results.  

H3K4me3 peaks were also more covered by pre-RC components in S/G2 (Table 4.2, 

Orc2 coverage from 2.8 reads/base in G1 to 3.8 reads/base in S/G2, Orc3 coverage 

from 3.3 reads/base in G1 to 4.3 reads/base in S/G2, Mcm3 coverage from 1.5 

reads/base in G1 to 2.5 reads/base in S/G2, Mcm7 from 2.5 reads/base in G1 to 3.2 

reads/base in S/G2; compare Figure 4.22 (G1) with Appendix Figure 19 (S/G2)).  

TABLE 4.2: DIRECT COMPARISON OF MAXIMUM MEAN READ COVERAGE AT REGIONS OF INTEREST 

IN G1 VS. S/G2. Mean read coverage is specified in reads/base.   

 G1 S/G2 Difference 

Initiation 
zones (AS) 

Orc2 0.5 0.4 - 0.1 

Orc3 0.5 0.5 0 

Mcm3 0.8 0.3 - 0.5 

Mcm7 0.5 0.3 - 0.2 

TSS 

Orc2 2.9 3.5 + 0.6 

Orc3 4.2 5.6 + 1.4 

Mcm3 1.5 2.8 + 1.3 

Mcm7 3.3 4.4 + 1.1 

H3K4me3 

Orc2 2.8 3.8 + 1.0 

Orc3 3.3 4.3 + 1.0 

Mcm3 1.5 2.5 + 1.0 

Mcm7 2.5 3.2 + 0.7 

 

When directly comparing HOMER- and T-PIC-defined pre-RC positions overlapping 

with H3K4me3 peaks, it became evident that the S/G2 HOMER-defined pre-RCs 

still mainly overlap with H3K4me3 (Appendix Figure 20, left panel; for ORC and 

Mcm2-7, see Appendix Figure 21). Thereby, also a higher proportion of T-PIC-

defined pre-RCs associated with H3K4me3 in S/G2 (Appendix Figure 20, right 

panel). 

These observations lead to the conclusion that, while HOMER-defined complexes are 

still related to active transcription in S/G2, T-PIC-defined complexes seem also to 

FIGURE 4.27: PRE-RC PROTEIN COVERAGE INCREASED AT ACTIVE TSS IN S/G2. A) MEAN ORC2 S/G2 

COVERAGE. B) MEAN ORC3 S/G2 COVERAGE. C) MEAN MCM3 S/G2 COVERAGE. D) MEAN MCM7 S/G2 

COVERAGE. Coverage was calculated as number of reads/base within a 4000 bp window around 

TSS. Input was plotted as control (grey). Active TSS (left) inactive TSS (right). 
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locate more towards actively transcribed regions in S/G2. This hypothesis was also 

confirmed by analyzing the genomic distribution of HOMER- and T-PIC defined pre-

RCs (Appendix Figure 22).   

These results indicate that the distribution of Mcm2-7 complexes changed in S/G2. 

The enrichment in active replication sites decreased as well as the specific depletion 

from replication termination sites was less detectable. Moreover, the association of 

Mcm2-7 to active transcription notably increased. One possible explanation for these 

observations is Mcm2-7 being loaded on DNA without sliding away from their 

loading site. This possibly reflects an early time point of Mcm2-7 loading and would 

result a higher similarity between ORC and Mcm2-7 helicases in S/G2. 

4.4.4 MCM2-7 HELICASES APPROXIMATE ORC POSITIONS IN S/G2 

To evaluate the relation between ORC and Mcm2-7 peak positions, I calculated the 

Jaccard index as explained in Figure 4.9 A and represented similarities in a heatmap 

(Figure 4.28). For both HOMER- and T-PIC-defined complexes, highest similarities 

were obtained when comparing each complex between G1 and S/G2 (highlighted as 

red boxes in Figure 4.28), consistent with complex positions being conserved for up 

to 80% (as shown in Figure 4.25). Only T-PIC defined Mcm2-7 showed little similarity 

between G1 and S/G2, as expected from previous results. However, similarities 

between ORC (S/G2) and Mcm2-7 (S/G2) increased (green boxes in Figure 4.28) 

compared to ORC (G1) and Mcm2-7 (G1). These results confirm Mcm2-7 positions 

approximating ORC positions in S/G2.      

POSSIBLE REASONS FOR PREMATURE MCM2-7 BINDING AND ANTICIPATED 

VALIDATION 

During my analyses it became evident, that Mcm2-7 peak-calling does not necessarily 

lead to meaningful biologically relevant results. Due to the discussed Mcm2-7 sliding 

process, Mcm2-7 complexes may become undetectable by peak-calling algorithms. 

HOMER detects only accumulations of Mcm2-7, probably reflecting their initial 

loading sites. Apparently, Mcm2-7 helicases are more dynamic in G1 (very low 

number (322) of strong HOMER-defined Mcm2-7), while they seem to be more 

localized in S/G2 (3x more HOMER-defined Mcm2-7 (1002), Figure 4.24 A).  
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FIGURE 4.28: MCM2-7 APPROXIMATED ORC IN S/G2. T-PIC- and HOMER-defined ORC and 

Mcm2-7 complex similarities represented as heatmap of Jaccard indices (G1 vs. S/G2). Dark red 

indicates high similarities while lighter red marks differences. Each complex generally tends to 

cluster together when comparing G1 vs. S/G2 (marked by red boxes). Mcm2-7 similarity to ORC 

increases in S/G2 (green boxes).  

Thereby, most HOMER-defined Mcm2-7 from G1 are conserved in S/G2 (88.5%, 

Figure 4.25, left panel). In contrast, T-PIC is more sensible for detecting protein 

enrichments. It obviously detects HOMER-defined peaks (Figure 4.13, Appendix 

Figure 6), but also identifies regions of lower intensities, presumably sites of Mcm2-7 

helicase spreading. However, this sensible detection can explain low reproducibility of 

detected peak positions, as stochastic Mcm2-7 helicase sliding is not necessarily always 

detected at similar sites.  

Originally, I planned to use ChIP-seq data from the S/G2 cell cycle phase as negative 

control for my experiments. Interestingly, my analyses in S/G2 provided insights in 

previously unknown Mcm2-7 DNA binding processes happening after origin firing, 

and it seems that pre-RC proteins are not completely dissociated from DNA in post-

replicative cell cycle stages. While association of Mcm2-7 to replication units were 
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reduced, ORC and Mcm2-7 were preferentially found at regions of active 

transcription. Thereby, Mcm2-7 showed a higher similarity to ORC positions in S/G2, 

than in G1. Consequently, these results suggest an early origin licensing state, with 

licensing first taking place at accessible regions and Mcm2-7 helicases still localizing 

at their loading sites. 

Origin licensing is generally prevented in G2. Major licensing block is the inhibition 

of the Mcm2-7 chaperone Cdt1 (Ballabeni et al. 2004). Cdk2 (highest expression in 

G2) phosphorylates Cdt1, thereby targeting it for degradation (Blow and Dutta 2005). 

Furthermore, Geminin inactivates Cdt1 during G2 and mitosis. Consequently, 

Mcm2-7 loading can only take place in late mitosis/early G1.  

The observation of Mcm2-7 loading in S/G2 might be explained by an 

elevated contaminating mitotic cell population. Thus, I need to more precisely define 

the exact cell cycle stage of my S/G2 population. Although centrifugal elutriation is 

routinely used in my laboratory and has been extensively characterized (Ritzi et al. 

2003; Papior 2010), FACS analysis (Figure 4.2) is not sufficient to confirm the precise 

cell cycle stage. Expression of Cdt1 itself, as well as cell cycle markers cyclin E (S-

phase), cyclin B (mitosis) and Histone 3 Serine 10 phosphorylation (additional mitotic 

marker) has to be determined by immunoblot, to deduce the portion of mitotic cells. 

Depending on the result, two scenarios are conceivable: i) in my S/G2 population, a 

considerable number of cells already progressed to mitosis, thus allowing origin 

licensing, and ii) my S/G2 population reflects indeed a time-point after DNA 

replication, indicating that residual origin licensing could occur earlier than expected.    

In Drosophila melanogaster, minimal Mcm2-7 loading can occur in absence of cyclin 

E/Cdk2 activity, while the full complement of Mcm2-7 requires cyclin E/Cdk2 kinase 

activity during G1/S transition (Powell et al. 2015). The authors propose loading of 

the full Mcm2-7 complement being dependent on a second wave of Cdc6 expression 

during G1/S transition (Clijsters and Wolthuis 2014), which is stabilized by cyclin 

E/Cdk2 kinase activity. Alternatively, minimal loading of Mcm2-7 helicases 

themselves might promote full Mcm2-7 loading, by a direct Mcm2-7-cyclin E-Cdt1 

interaction (Geng et al. 2007; Powell et al. 2015). These experiments were performed 

in Drosophila Kc and S2 cell lines, treated with several RNAi and chemicals to induce 

cell cycle arrests at precise stages (early G1, G1 phase, and at G1/S transition). These 
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treatments resulted in an unambiguous phenotype, with minimal Mcm2-7 loading in 

mitosis/early G1 and full Mcm2-7 complement in G1/S. Subsequent ORC and 

Mcm2-7 ChIP-seq also clearly revealed ORC and Mcm2-7 co-localization in late 

mitosis/early G1, whereas little overlap was detected in G1/S. Cell cycle fractionation 

has the advantage of performing similar experiments without any chemical 

manipulation that might induce various biases. However, the cell cycle fractions I 

worked with were not as well defined as specifically arrested cells. Still, I observe 

similar phenomena: although I did not detect less loaded Mcm2-7 in S/G2 compared 

to G1, Mcm2-7 positions were more precisely associated to transcriptional regulation 

and approximated ORC. The fact that the amount of detected Mcm2-7 was not 

reduced in my experiments in S/G2 can be explained by diluted cell populations, with 

contaminating G1 and mitotic cell stages. However, closer association of Mcm2-7 to 

transcriptional regulation and ORC argues for an early stage of Mcm2-7 loading, 

before spreading occurs. 

Taken together, pre-RC ChIP-seq results in S/G2 populations suggest that full pre-RC 

formation is necessary for Mcm2-7 helicase loading, preferentially occurring at sites 

of transcriptional regulation. The exact cell cycle stage needs to be further 

characterized by assessing cyclin expression, but a combination of cyclins already 

allowing origin licensing is expected. Mcm2-7 positions differ between G1 and S/G2, 

arguing for Mcm2-7 spreading with onset of G1 phase.    

CONCLUSION 

Pre-RC ChIP-seq experiments in G1 and S/G2 cell cycle stages and their analyses at 

replication initiation/termination zones and regions of active transcription regulation 

allowed to obtain a genome-wide representation of origin licensing dynamics. 

Interestingly, Mcm2-7 helicases emerge to be the sole determinant of replication 

origins (as proposed first in Xenopus (Lucas et al. 2000; Hyrien, Marheineke, and Goldar 

2003; Woodward et al. 2006) and recently also claimed in yeast (Das et al. 2015) and 

Drosophila (Powell et al. 2015)). While pre-RC formation is mandatory for Mcm2-7 

double-hexamer loading, further Mcm2-7 spreading prior to S phase argues for 

replication initiation being independent of complete pre-RC. This scenario would 

explain low redundancies between ORC positions and active replication data (Miotto, 

Ji, and Struhl 2016; Petryk et al. 2016).  
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This study describes the first genome-wide ChIP-seq analysis of ORC and Mcm2-7 

components in humans. Thereby, these components correlated with zones of active 

replication initiation, while being specifically depleted from replication termination 

zones. Actively transcribed genes often constitute termination zones, leading to the 

hypothesis that active transcription relegates Mcm2-7 helicases to gene-adjacent 

regions. In S/G2, the specific depletion from termination zones was less pronounced, 

while association to ORC and active transcription increased. Assuming that S/G2 

populations represent a cell stage allowing early replication licensing, these results 

possibly reflect the initial loading of Mcm2-7 helicases, before spreading occurs. 

Mcm2-7 spreading might only occur with sufficient Mcm2-7 helicases loaded, and 

possibly in presence of cyclin E/Cdk2 activity. Also, chromatin anchorage after 

mitosis might account for Mcm2-7 positions. In eukaryotes, replication timing is 

established prior to origin selection (Rivera-Mulia and Gilbert 2016b). The timing 

decision point coincides with re-organization of chromatin into TADs/replication 

domains after mitosis. If Mcm2-7 helicases were loaded at ORC sites prior to timing 

decision point and spreading took place after chromatin anchorage, Mcm2-7 density 

would be higher in gene dense TADs, while it would be lower in gene poor TADs. 

Assuming that Mcm2-7 dense regions stochastically replicate earlier that Mcm2-7 poor 

regions, this model would link replication timing to regulation of transcriptions and 

chromatin environment. 

Compartmentalization also localizes heterochromatin TADs towards the nuclear 

lamina. Heterochromatin is generally replicated late in S phase, indicating that despite 

a gene-poor environment, efficient origin licensing occurs. In these compartments, 

chromatin accessibility is most likely not the main determinant of ORC binding and 

origin licensing, implicating other mechanisms.  

One possible candidate is H4K20 methylation, as two methylation stages, H4K20me1 

and H4K20me3, have already been shown be relevant for replication regulation. 

However, the exact mechanism of H4K20 methylation action is elusive.   
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 ORC ASSOCIATES WITH H4K20ME3 IN HETEROCHROMATIN 

Cell cycle-dependent regulation of histone 4 lysine 20 monomethyltransferase PR-Set7 

renders H4K20 methylation a promising histone modification to affect DNA 

replication. Furthermore, stabilization of PR-Set7 (by expressing non-degradable PR-

Set7PIPmutant in cells) leads to DNA re-replication, suggesting that origins are re-licensed 

and re-activated within one cell cycle, if correct regulation of PR-Set7 activity is 

hampered (Tardat et al. 2010; Beck et al. 2012). Consequently, H4K20 methylation 

seems to directly link chromatin regulation and replication licensing and/or activation. 

For this reason, I performed H4K20me1 and H4K20me3 ChIPs in parallel to pre-RC 

component ChIPs, to anticipate the role of H4K20 methylation in origin licensing. 

4.5.1 H4K20ME1 IS PRESENT IN ACTIVE CHROMATIN WHILE H4K20ME3 LOCALIZES 

TO HETEROCHROMATIN REGIONS 

In collaboration with Eric Julien (Chromatin and Cancer, IRCM, Montpellier) and 

Jean-Charles Cadoret (Pathology of DNA Replication, Institut Jaques Monod, Paris), 

H4K20me1 and –me3 were recently assessed genome-wide in U2OS cells. This study 

revealed H4K20me1 being a histone modification present in active chromatin regions, 

while H4K20me3 was rather associated with heterochromatin domains (Figure 4.29). 

These analyses were performed by calculating H3K36me3 (active chromatin) or 

H3K9me3 (heterochromatin) ChIP-seq read coverage at H4K20me1 or –me3 peaks. 

Thereby, H4K20me1 sites were increasingly covered by H3K36me3 while H3K9me3 

was enriched at H4K20me3 sites (analysis performed by Jean-Charles Cadoret).   

H4K20me1 and –me3 ChIPs were performed in parallel to pre-RC component ChIPs 

in both G1 and S/G2 Raji cells in triplicates (qPCR validation Figure 4.4). Subsequent 

peak-calling was performed using the HOMER algorithm and the specific “histone” 

setting. This setting takes the possibility into account that histone modification ChIPs 

can result in broader peaks. Only peak positions present in all three triplicates were 

retained. The resulting peaks were around 2000 bp wide for both histone 

modifications, with both H4K20me1 and –me3 ranging from 200 bp to 88000 bp 

(Appendix Figure 23 A).  
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FIGURE 4.29: H4K20ME1 IS PRESENT IN ACTIVE CHROMATIN, WHILE H4K20ME3 CORRESPONDS TO 

HETEROCHROMATIN. Coverage of either H3K36me3 (active chromatin) or H3K9me3 (silent 

chromatin) ChIP-seq reads was calculated at H4K20me1/ -me3 peak sites and plotted as boxplot.  

* indicates statistical significance with p-value < 0.05 (Brustel et al., in preparation).  

H4K20me1 and –me3 positions in either euchromatic or heterochromatic regions 

already suggest mutual exclusivity of both histone modifications. When calculating the 

overlap of H4K20me1 and –me3 peaks, this assumption was confirmed by only ~ 1% 

of overlapping peaks (Appendix Figure 23 B). This result clearly situated both 

H4K20me1 and –me3 individually in their respective chromatin environment, without 

any redundancies. 

4.5.2 ORC PREFERENTIALLY ASSOCIATES WITH H4K20ME3 

Coverage of pre-RC components was calculated at either H4K20me1 or –me3 sites, 

to get a first impression of a direct association of either histone modification with pre-

RC. All pre-RC components Orc2, Orc3, Mcm3, and Mcm7 were not particularly 

enriched at H4K20me1 sites (Figure 4.30). Accordingly, also HOMER- and T-PIC-

defined ORC, Mcm2-7 and pre-RCs hardly overlapped with H4K20me1 (Appendix 

Figure 24).     

H4K20me3 sites however, were significantly enriched in pre-RC coverage, especially 

by Orc2 and Orc3, and to a substantial lesser extend by Mcm3 and Mcm7 (Figure 

4.31). Also when analyzing the overlaps of ORC, Mcm2-7 and pre-RC with 

H4K20me3, especially ORC partially overlapped with H4K20me3, while Mcm2-7 and 

pre-RC showed little association (Figure 4.32). An IGB profile of such an ORC co-

localization with H4K20me3 is shown in Appendix Figure 25. 
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FIGURE 4.30: COVERAGE OF PRE-RC COMPONENTS (G1) AT H4K20ME1 PEAKS. A) MEAN ORC2 

COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE. 

Coverage was calculated as number of reads/base within a 6 kb window around H4K20me1 peak 

center. Input was plotted as control (grey). 

  

A) B) 

D) C) 



  RESULTS AND DISCUSSION  

99 | 
 

 

FIGURE 4.31: ORC SHOWED INCREASED COVERAGE AT H4K20ME3 PEAKS. A) MEAN ORC2 COVERAGE. 

B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 COVERAGE. Coverage was 

calculated as number of reads/base within a 6 kb window around H4K20me3 peak center. Input 

was plotted as control (grey). 

 

A) B) 

D) C) 
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FIGURE 4.32: MOSTLY HOMER- (LEFT) AND T-PIC- (RIGHT) DEFINED ORC OVERLAPPED WITH 

H4K20ME3. Left: HOMER-defined complexes, right: T-PIC-defined complexes. Venn diagram of 

overlap between HOMER- and T-PIC-defined ORC, Mcm2-7 and pre-RCs with H4K20me3 

peaks. Overall counts are indicated. The percentage of overlapping proportions are specified 

below in brackets. 
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4.5.3 NO DISTRIBUTIONAL CHANGE WAS OBSERVED IN S/G2  

H4K20 methylation ChIPs analyzed so far were performed in G1 cell cycle stage. As 

PR-Set7 is cell cycle dependently regulated, with degradation during S phase and a 

subsequent decrease of H4K20me1, I was wondering how H4K20 methylation peaks 

and the observed associations were modulated in S/G2.   

In general, detected number of H4K20me1 and –me3 peaks decreased in S/G2 

compared to G1. This observation was more prominent for H4K20me1 (from 7820 

peaks in G1 to 1700 peaks in S/G2), than for H4K20me3 (from 11709 peaks in G1 

to 5560 peaks in S/G2). Thereby, most of the peaks detected in S/G2 overlapped 

with G1 peaks (> 84%, Appendix Figure 26), arguing for a dilution of H4K20 

methylation during replication, which led to weaker ChIP signals, presumably below 

the threshold for peak-calling. This was also reflected by a decrease of H4K20 

methylation coverage at their own respective G1 peaks (Appendix Figure 27). Again, 

H4K20me1 seemed to be more affected than H4K20me3, where no obvious coverage 

change was detected.     

Neither coverage of any pre-RC component, nor peak positions relative to either 

H4K20 methylation changed considerably in S/G2 (data not shown), indicating that 

no major licensing mechanism relies on the cell-cycle distribution of 

H4K20me1/ -me3. 

POSSIBLE MECHANISMS UNDERLYING ORIGIN LICENSING IN 

HETEROCHROMATIN 

Previous reports suggest that PR-Set7 and subsequent induction of H4K20me1 

undoubtedly affects origin licensing and activation. An extensive genome-wide SNS-

seq study correlating active replication with histone modifications claimed H4K20me1 

associating with 50% of initiation sites, being one of the potential key regulators of 

replication (Picard et al. 2014). However, pre-RC coverage at H4K20me1 sites was not 

majorly enriched. This is in line with other genome-wide studies that did not find any 

associations between H4K20me1 and replication (Fu et al. 2013; Cayrou et al. 2015; 

Smith et al. 2016; Miotto, Ji, and Struhl 2016). By contrast, ORC coverage was clearly 

enriched at H4K20me3 sites, Mcm3 and Mcm7 coverage to a lesser extent. This is in 

accordance with ORC directly interacting with H4K20me2/3, most probably through 
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the BAH domain of Orc1 (Kuo et al. 2012; Beck et al. 2012). ORC interaction with 

heterochromatin has already been reported repeatedly in yeast and Drosophila (Micklem 

et al. 1993; Pak et al. 1997; Shareef, Badugu, and Kellum 2003; Leatherwood and Vas 

2003; Shen et al. 2010). Thereby, ORC was attributed a chromatin silencing function 

independent of origin licensing (Dillin and Rine 1997; Leatherwood and Vas 2003). 

Regarding the low Mcm2-7 coverage enrichment, this might be an explanation for 

ORC – but not Mcm2-7 – associating with H4K20me3. However, dynamics of 

Mcm2-7 loading might also be different in heterochromatin and little Mcm2-7 is still 

sufficient for efficient replication initiation. Consequently, I examined whether ORC 

association to heterochromatin H4K20me3 was indeed linked to origin replication 

licensing and activation. 

 H4K20ME3 IS NECESSARY FOR ORIGIN LICENSING AND 

ACTIVATION IN HETEROCHROMATIN 

The association of ORC with H4K20me3 is not necessarily linked to replication 

licensing function of ORC. Mcm2-7 helicases seemed to be less present at H4K20me3 

sites, than ORC (Figure 4.31), eventually arguing for a heterochromatin organization 

function of ORC.  I used the replication of the well-characterized autosomal plasmid 

system of the Epstein-Barr virus latent origin oriP (herein after called FR-DS, 

Hammerschmidt and Sugden 2013) to functionally validate the role of ORC and 

H4K20me3 association. Contrarily to genome-wide analysis or genomic integration 

sites, this model system with defined genetic background allows the analysis of single 

aspects in the replication initiation process. The strategy was to specifically induce 

H4K20me3 at a distinct targeting site on the plasmid and to assess the effect on 

licensing and replication activity by ChIP-qPCR and plasmid abundance. For 

autonomous replication and segregation of FR-DS plasmids, the EBV viral protein 

EBNA1 needs to be expressed by the cells (Figure 4.33 A). By binding of EBNA1 to 

the FR element, plasmids are tethered to the host chromatin conferring mitotic 

stability. EBNA1 binding to the DS element recruits ORC, which leads to the 

formation of an efficient internal origin of replication. Different reporter plasmids 

were generated: Introducing an upstream activation sequence (UAS) of the Gal4-UAS 
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targeting system downstream of FR allows the specific targeting of Gal4(-fusion) 

proteins. DS can be removed or replaced by a 300 bp fragment of the human 

endogenous origin oriRDH, proven to also support autonomous plasmid replication, 

however less efficiently than DS (Gerhardt et al. 2006, described as ori6).  

 

A) 

B) 

FIGURE 4.33: SCHEMATIC REPRESENTATION OF EXPERIMENTAL SETUP. A) EBV-DERIVED 

AUTOSOMAL REPORTER PLASMID SYSTEM. Five EBV-derived reporter plasmids are segregated 

throughout cell division by EBNA1-mediated tethering to host chromatin. Introduction of UAS 

sequence allows specific targeting of Gal4(-fusion) proteins. The internal replicator DS was 

removed or replaced by the human endogenous origin oriRDH. DNA fragments amplified by qPCR 

are indicated in red. B) PLASMID ABUNDANCE EXPERIMENTS. Experiments were conducted in 

HEK293 cells stably expressing EBNA1 and the indicated Gal4(-fusion) proteins. 1µg of reporter 
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plasmids were transfected in the cells, kept replicating for 6 days and isolated from the cells by 

the HIRT protocol, specifically enriching for low molecular weight DNA. DpnI digest removes 

bacterial-derived input plasmids and DpnI-resistant plasmids were electroporated in E.coli 

DH10B. Bacterial colony quantification is a direct measure of plasmid numbers. 

 

 

FIGURE 4.34: GENERATION OF HEK293 EBNA1+ GAL4 (-FUSION) CELL LINES. pcDNA3_Zeo 

expression plasmids carrying the Gal4(-fusion) protein cassettes (obtained from E. Julien, IRMB, 

Montpellier) were linearized and transfected into HEK293 EBNA1+ cells. After selection and 

clonal expansion, depicted clones were chosen for further experiments. Ponceau stain is shown 

as loading control, immunoblot was performed using an anti-Gal4 antibody.    

4.6.1 SUV4-20H1 TARGETING UNSPECIFICALLY INDUCES H4K20ME3 

The first and very easy reasoning to define H4K20me3 action in replication processes 

was to simply target the H4K20me2/3 generating histone methyltransferase Suv4-

20h1 to the FR-UAS-oriRDH reporter plasmid. Consequently, either Gal4 or Gal4-

Suv4-20h1 expression cassettes were integrated into HEK293 EBNA1+ cells and their 

expression was tested by immunoblot (Figure 4.34, first two lanes). Interestingly, 

integration of Gal4-Suv4-20h1 resulted in a doublet signal around 120 kDa, suggesting 

a post-translational modification of this fusion protein (expected size ~ 100 kDa). 
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Induction of Suv4-20h1-mediated H4K20me3 was verified by H4K20me3 ChIP 

experiments for the FR-oriRDH and FR-UAS-oriRDH plasmids, followed by qPCR. 

While Gal4 and Gal4-Suv4-20h1 were specifically targeted to UAS (Gal4, Figure 4.35, 

left panel), Gal4-Suv4-20h1 induced H4K20me3 spread over the plasmid, even when 

no targeting site is present (Figure 4.35, right panel, FR-oriRDH vs. FR-UAS-oriRDH). 

Consequently, plasmid abundance experiments did not result in any effect of Gal4-

Suv4-20h1 targeting (Appendix Figure 28), possibly due to heterochromatinization of 

both reporter plasmids.   

Reason for the observed unspecific induction of H4K20me3 can be the heavy 

overexpression of Gal4-Suv4-20h1. Assuming that also the modified, higher migrating  

 

 

FIGURE 4.35: SUV4-20H1 TARGETING TO FR-ORIRDH AND FR-UAS ORIRDH UNSPECIFICALLY INDUCES 

H4K20ME3 ALL OVER THE PLASMIDS. ChIP-qPCR analyses at FR, UAS and oriRDH sequences of 

FR-oriRDH or FR-UAS-oriRDH plasmids transfected in the indicated cell lines. Fold enrichments 

relative to IgG. Data are means ± SEM (n=3).  

form of Suv4-20h1 is functional, expression is doubled compared to Gal4 or 

Gal4-PR-Set7 proteins (Figure 4.34). Although the cell line itself did not exhibit any 

abnormalities concerning cell growth or morphology, it seems that Gal4-Suv4-20h1 is 

inducing H4K20me3 completely independent from targeting to UAS. This renders 

the approach of Gal4-Suv4-20h1 targeting not suitable for our purposes.  

I refrained from producing a lower expressing cell line and decided to instead target 

H4K20 monomethyltransferase PR-Set7 to the plasmids. Induction of H4K20me1 

will be converted in H4K20me2/3 by endogenous Suv4-20h1/2. 
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4.6.2 PR-SET7 TARGETING LEADS TO INDUCTION OF H4K20ME1, CONVERSION 

INTO H4K20ME3 AND PRE-RC FORMATION 

Either FR-oriRDH/ FR-UAS-oriRDH or FR-DS/ FR-UAS-DS reporter plasmids were 

transfected in cell lines expressing Gal4, Gal4-PR-Set7 or a methylation-deficient 

N469A/H470A SET mutant of PR-Set7, Gal4-PR-Set7SETmut (for integrated protein 

expression, see Figure 4.34, lanes 2-4).  

Efficient induction of H4K20me1 by PR-Set7 and conversion to H4K20me3 was 

assessed by ChIP-qPCR. Furthermore, pre-RC formation was followed by the same 

technique, analyzing the specific pre-RC sub-component Mcm3. Indeed, Gal4-PR-

Set7 targeting to FR-UAS-oriRDH plasmid induced H4K20me1, which was 

subsequently converted in H4K20me3 (Figure 4.36).  

 

FIGURE 4.36: PR-SET7 TARGETING TO FR-UAS-ORIRDH LED TO H4K20ME1 INDUCTION, CONVERSION 

INTO H4K20ME3 AND PRE-RC FORMATION. ChIP-qPCR analyses at FR, UAS and oriRDH sequences 

of FR-oriRDH or FR-UAS-oriRDH plasmids transfected in the indicated cell lines. Fold enrichments 

relative to IgG and FR locus. Data are means ± SEM (n=4).  

 



  RESULTS AND DISCUSSION  

107 | 
 

This was not observed when Gal4 or the methylation-deficient PR-Set7SETmut were 

targeted to the reporter plasmids. Interestingly, both H4K20me1 and –me3 were also 

detected at oriRDH when PR-Set7 was targeted, presumably due to the close proximity 

of UAS and oriRDH primer positions (154 bp ~ 1 nucleosome). More importantly, 

endogenous Mcm3 as member of the pre-RC was detected at UAS in the Gal4-PR-

Set7 cell line only, demonstrating pre-RC formation after H4K20me1/3 induction 

(Figure 4.36). Similar results were obtained when the respective Gal4, Gal4-PR-Set7 

and Gal4-PR-Set7SETmut cell lines were transfected with oriP reporter plasmids FR-DS 

and FR-UAS-DS (Figure 4.37).  

 

FIGURE 4.37: PR-SET7 TARGETING TO FR-UAS-DS LED TO H4K20ME1 INDUCTION, CONVERSION 

INTO H4K20ME3 AND PRE-RC FORMATION. ChIP-qPCR analyses at FR, UAS and DS sequences 

of FR-DS or FR-UAS-DS reporter plasmids transfected in the indicated cell lines. Fold 

enrichments relative to IgG and FR locus. Data are means ± SEM (n=4).  

It has already been shown that PR-Set7 targeting to a UAS integrated in the human 

genome leads to pre-RC formation (Tardat et al. 2010). I validated the autonomous 

plasmid system by reproducing these results. However, recruitment of pre-RC 

components is not necessarily sufficient for initiation of DNA replication (Blow, Ge, 

and Jackson 2011). Consequently, I assessed origin activity of the plasmids by 

measuring plasmid abundance.  
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4.6.3 PR-SET7 TARGETING ENHANCES PLASMID REPLICATION EFFICIENCIES 

Principal of the plasmid abundance assay is the measurement of reporter plasmid 

replication efficiencies within a fixed time frame (procedure described in Figure 

4.33 B). Shortly, I transfected reporter plasmids (either FR-oriRDH/ FR-UAS-oriRDH 

or FR-DS/ FR-UAS-DS) in Gal4, Gal4-PR-Set7 or Gal4-PR-Set7SETmut cell lines. Cells 

with transfection efficiencies greater 70% were grown for 6d before low molecular 

weight DNA was harvested, DpnI digested and transformed into E.coli. DpnI digest 

removes bacterial-derived input plasmids. The appearance of bacterial colonies from 

DpnI-resistant plasmids is a direct measure of plasmid replication in mammalian cells. 

Because reporter plasmid replication efficiencies varied between cell lines, replication 

efficiencies of the control reporter plasmid without UAS targeting site were arbitrarily 

defined as 1. Replication efficiencies of the UAS-containing plasmids were calculated 

compared to control in each cell line and the result is depicted in Figure 4.38.      

For the FR-oriRDH/ FR-UAS-oriRDH plasmid pair, FR-UAS-oriRDH replicated about 

3.5-times more than control when Gal4-PR-Set7 was targeted to the plasmid (Figure 

4.38 A). This effect was solely attributable to PR-Set7 methylation activity, as no 

effects were observed when either Gal4 or Gal4-PR-Set7SETmut were targeted. Plasmid 

abundance experiments with the FR-DS/ FR-UAS-DS plasmid pair resulted in 2-fold 

enhanced replication efficiencies when Gal4-PR-Set7 was targeted (Figure 4.38 B). 

Replication increase of only 2-fold (compared to 3.5-fold in oriRDH context) might be 

due to the high intrinsic replication competence of DS.  

These results suggest that induction of H4K20me1 by PR-Set7 targeting, subsequent 

conversion into H4K20me3 and pre-RC formation led to replication initiation, in 

addition to intrinsic plasmid replication competences. Indeed, origin competence 

likely involves combination of different features ranging from sequence composition 

to higher-order chromatin structure (Méchali 2010). Thus, these results do not allow 

to distinguish between H4K20me1/3 increased origin activation as an enhancement 

of intrinsic origin activity or of additional origin formation. To pursue this question, 

the same experiments were performed with a reporter plasmid devoid of any 

replication competence. 
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FIGURE 4.38: PR-SET7 TARGETING ENHANCED INTRINSIC PLASMID REPLICATION ACTIVITY. A) 

QUANTIFICATION OF FR-ORIRDH AND FR-UAS-ORIRDH PLASMIDS. B) QUANTIFICATION OF FR-DS AND 

FR-UAS-DS PLASMIDS. Plasmid abundance assays in HEK293 EBNA1+ Gal4/ Gal4-PR-Set7/ 

Gal4-PR-Set7SETmut cell lines as indicated: Control plasmid (without UAS) replication efficiencies 

were arbitrarily defined as 1. Data are means ± SEM (n=4).  

4.6.4 PR-SET7 TARGETING INDUCES PLASMID REPLICATION 

To test whether PR-Set7 targeting can also lead to the induction of DNA replication, 

I removed the DS element from FR-UAS-DS plasmid and assessed the resulting 

replication efficiency compared to the strong replicating FR-DS reporter (Figure 4.39). 

While FR-UAS reporters were hardly detectable in Gal4 and Gal4-PR-Set7SETmut cell 

lines, FR-UAS plasmids clearly replicated in Gal4-PR-Set7 cell lines. The induced 

replication efficiency was about 1/3 as strong as the intrinsic DS activity and 4-fold 

increased to FR-UAS plasmid replication in Gal4 or Gal4-PR-Set7SETmut cell lines. A 

direct comparison of all reporter plasmid replication efficiencies is depicted in 

Appendix Figure 29. 

ChIP experiments equally revealed H4K20me1/me3 being present at UAS, but due 

to the low plasmid abundance, it was challenging to conclusively perform Mcm3 

ChIPs (Appendix Figure 30). Still, pre-RC formation is a prerequisite for replication 

activity.   

A) B) 
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FIGURE 4.39: PR-SET7 TARGETING INDUCED PLASMID REPLICATION. QUANTIFICATION OF FR-DS 

AND FR-UAS PLASMIDS. Plasmid abundance assays in HEK293 EBNA1+ Gal4/ Gal4-PR-Set7/ 

Gal4-PR-Set7SETmut cell lines as indicated: FR-DS replication efficiency was arbitrarily defined as 1. 

Data are means ± SEM (n=3). 

In conclusion, induction of H4K20me1/3 leads to origin licensing and activation. 

However, no conclusion can be drawn whether conversion into H4K20me3 is needed 

for these processes.  

4.6.5 REPLICATION LICENSING AND ACTIVATION DEPEND ON H4K20ME3  

There is a lot of evidence that conversion from H4K20me1 to H4K20me3 is indeed 

needed for origin licensing and activation (Beck et al. 2012). Also my pre-RC ChIP-

seq experiments imply the necessity for H4K20me3, as H4K20me1 is only marginally 

covered by pre-RC sub-components (Figure 4.30), while especially ORC seems to 

have a preference for H4K20me3 (Figure 4.31).  

Eric Julien (Chromatin and Cancer, IRCM, Montpellier), a close collaboration partner, 

also investigated the interplay of H4K20me3 and replication origins and showed that 

H4K20me3 is necessary for proper origin licensing. They performed replication 

timing experiments in MEF cells derived from Suv4-20h2 -/-, Suv4-20h1 -/flox, Cre-ER 

embryos. The remaining Suv4-20h1 floxed allele can be deleted by adding 

4-Hydroxytamoxifen (4-OHT), leading to absence of H4K20me2/3 and an increase 

in H4K20me1 (immunoblot 4d after 4-OHT treatment, Figure 4.40, (Schotta et al. 

2008)). Comparing replication timing in wild type MEF and Suv4-20h knock-out MEF 

revealed a delay of 29% of late replication timing regions while some early replicating 
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FIGURE 4.40: ABSENCE OF H4K20ME2/3 IMPAIRS ORIGIN LICENSING AND ACTIVATION IN DEFINED 

DOMAINS IN MEF CELLS. A) REPLICATION TIMING PROFILES ON CHROMOSOME 11 IN SUV4-20H1 

FLOX/-, SUV4-20H1 -/- MEFS, TREATED OR NOT WITH 4-OHT. Lower left panel: immunoblot 

confirmation of H4K20me2/3 absence. Lower right panel: replication timing in region 

[87560863-96672625]. Red arrows indicate delayed late replicating domains, blue arrows point to 

advanced early replicating domains. B) RELATIVE SNS ENRICHMENT of four H4K20me3 late-firing 

origins compared to control early-firing origin. H4K20me3-associated origins from chromosome 

11 were quantified in relation to an early-firing origin in untreated and 4-OHT treated MEF cells. 

Data are means ± SEM (n=3). C) CHIP-QPCR ANALYSIS at the control early-firing origin and at 

four H4K20me3-associated origins from chromosome 11 in untreated and 4-OHT treated MEFs 

A) 

B) 

C) 
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expressing FLAG-tagged Mcm2. Y-axis represents the ration of immunoprecipitate to input. 

(Figure adapted from Brustel et al. in preparation) 

regions were even slightly advanced (red vs. blue arrows, Figure 4.40 A). H4K20me3 

is mostly present in heterochromatin, which is known to be late replicating. Specific 

measurement of origin activity in some of these late replicating domains delayed by 

Suv4-20h1/2 knock-out (H4K20me3-associated origins) revealed severe reduction of 

origin efficiency upon Suv4-20h1/2 knock-out (Figure 4.40 B). Following ChIP-qPCR 

analysis at the same H4K20me3-associated origins showed a prominent decrease in 

pre-RC formation (assessed by Mcm2-FLAG ChIP), when H4K20me2/3 was absent 

(Figure 4.40 C). Consequently, delay of replication timing upon Suv4-20h1/2 knock-

out results from the inability to properly license origins in regions that depend on 

H4K20me3. These regions might instead be replicated passively. These results already 

indicate the necessity of H4K20me3 for origin licensing and activity. To confirm these 

observation using the plasmid system with defined genetic background, I need the 

possibility to precisely block conversion of H4K20me1 to –me3 by inhibiting 

Suv4-20h1/2.  

The inhibitor compound A-196 specifically inhibits Suv4-20h1/2 methylation activity 

and results in a complete loss of H4K20me2/3, with a concomitant increase of 

H4K20me1, while other trimethylated histone states remained unaffected (examined 

by immunoblot, Figure 4.41). To directly evaluate A-196 effect on H4K20me1/3 

induced plasmid replication, I transfected HEK293 EBNA1+ Gal4-PR-Set7 cells with 

FR-oriRDH/ FR-UAS-oriRDH reporter plasmids and directly compared A-196 treated 

with untreated cells. ChIP-qPCR analysis revealed induction of H4K20me1 and 

conversion to H4K20me3 in the untreated cell population, as expected, while A-196 

treated cells were reduced in H4K20me3 (Figure 4.42). Analyzing the presence of 

endogenous Mcm3 revealed failure of pre-RC formation at the UAS in A-196 treated 

cells (Figure 4.42). The incapacity to properly form pre-RCs at the UAS also led to 

reduction of plasmid replication efficiency to the level of the intrinsic origin oriRDH  
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FIGURE 4.41: IMMUNOBLOT CONFIRMATION OF A-196 COMPOUND INHIBITING H4K20ME2/3. 

HEK293 EBNA1+ Gal4-PR-Set7 cells were treated or not with 5µM A-196 for 6d. Indicated 

antibodies were used for detection of the respective histone modification. Ponceau stain of 

histones served as loading control. 

 

 

FIGURE 4.42: PR-SET7 TARGETING IN PRESENCE OF A-196 LED TO REDUCED H4K20ME3 LEVELS AND 

PRE-RC FORMATION COMPARED TO UNTREATED CELLS. ChIP-qPCR analysis at FR, UAS and 

oriRDH sequences of FR-oriRDH or FR-UAS-oriRDH reporter plasmids transfected in HEK293 

EBNA1+ Gal4-PR-Set7 cells treated or not with 5µM A-196. Fold enrichment relative to IgG and 

FR locus. Data are means ± SEM (n=3). 
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(Figure 4.43). In conclusion, experiments using the autonomous plasmid system 

showed that H4K20me3 is definitely needed for proper origin licensing and 

consequently also for replication activity. Furthermore, genome-wide replication 

timing experiments revealed specific heterochromatic regions that depend on 

H4K20me3, while replication in other regions is presumably regulated through 

different mechanisms.   

 

FIGURE 4.43: ENHANCED REPLICATION DURING PR-SET7 DEPENDS ON H4K20ME3. 

QUANTIFICATION OF FR-ORIRDH AND FR-UAS-ORIRDH PLASMIDS. Plasmid abundance assays in 

HEK293 EBNA1+ Gal4-PR-Set7 cells treated or not with 5µM A-196 as indicated: FR-oriRDH 

replication efficiency was arbitrarily defined as 1. Data are means ± SEM (n=3).  

H4K20ME1 IS LIKELY NOT DIRECTLY LINKED TO REPLICATION ORIGIN 

LICENSING 

Cell cycle regulation of the H4K20 monomethyltransferase PR-Set7 and resulting 

catalyzation of H4K20me1 during late G2/M led to the hypothesis of this histone 

modification being involved in DNA replication regulation. My ChIP-seq experiments 

of H4K20me1 and –me3 revealed both methylation marks being mutually exclusive. 

H4K20me2 was not assessed, as the abundance of this mark argues against a possible 

role in DNA replication regulation (Pesavento et al. 2008). Together with Eric Julien 

(Chromatin and Cancer, IRCM, Montpellier), we identified the conversion from 

H4K20me1 to H4K20me3 to influence origin licensing, origin activation efficiency 

and replication timing, thus representing the first histone modification identified so 

far, that impacts on all levels of DNA replication regulation. Thereby, H4K20me3 
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affects origin licensing, consequently impairing origin formation at the very first step. 

This holds true for artificial induction of H4K20 methylation states on plasmids with 

defined genetic background, as well as for specific genomic loci with less defined 

chromatin context. Nevertheless, in both cases, origin licensing and activation entirely 

depend on the presence of H4K20me3.    

While knock-out of PR-Set7 is lethal in mammalians, absence of both Suv4-20h1 

and -h2 displays only minor cell cycle defects (Oda et al. 2010; S. Wu and Rice 2011; 

Beck et al. 2012; Schotta et al. 2008). Indeed, genome-wide timing experiments only 

revealed a delay of some late replicating domains when Suv4-20h1/2 were missing. 

This indicates that while replication origin licensing and activation is perturbed in 

absence of H4K20me2/3, the concerned regions are still replicated, most likely 

passively. These results imply that the severe phenotype of PR-Set7 knock-out 

presumably depend on other functions than replication regulation. It has recently been 

reported, that unmethylated H4K20 (H4K20me0) marks post-replicative chromatin 

in G2 and is read by the H3-H4 histone chaperone TONSL-MMS22L, which is 

implicated in DNA repair (Saredi et al. 2016). Taken together, this would situate 

H4K20me0/1 and PR-Set7 as cell cycle sensor mechanism, with H4K20me0 marking 

post-replicative chromatin and H4K20me1 identifying G1 chromatin, primed for 

replication. This scenario would explain both the re-replication phenotype when 

PR-Set7 is stabilized – aberrant H4K20me1 in G2 mimics G1 cell cycle stage prone 

for replication – and cell cycle arrest in absence of PR-Set7 – as the cell cannot 

distinguish between pre- and post-replicative chromatin. Consequently, H4K20me1 

might serve as cell cycle stage marker, but is not necessarily directly linked to origin 

licensing and replication initiation. 

HETEROCHROMATIN REPLICATION IS IN PART REGULATED THROUGH 

H4K20ME3 

In contrast, ORC binding to H4K20me3 convincingly connects heterochromatin with 

replication licensing and activation. In genome-wide ChIP experiments, especially 

ORC was detected at H4K20me3 sites, while Mcm2-7 was present to a lesser extent 

(Figure 4.31). Still, functional plasmid abundance experiments proved H4K20me3 

being necessary for successful Mcm2-7 loading and origin activity. This result also 

implies the amount of Mcm2-7 detected by coverage analysis being sufficient for 
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origin licensing. It is possible that an excess of ORC is needed to provide sufficient 

Mcm2-7 loading at inaccessible chromatin sites. Alternatively, the direct binding 

capacity of ORC (through the Orc1 BAH domain, Kuo et al. 2012; Beck et al. 2012) 

might reduce ORC on-and-off rates and stabilize ORC enough for Mcm2-7 

recruitment. Furthermore, ORC might still execute heterochromatin organization 

functions besides origin licensing. Indeed, ORC has been shown bind 

heterochromatic structures in yeast, Xenopus, Drosophila, and mammals. ORC is directly 

interacting with heterochromatic protein 1 (HP1) and depletion of either protein 

reduces chromatin binding capacity of the other. In mammals, ORC also interacts 

with ORC-associated ORCA/LRWD1, which likely facilitates HP1 recruitment to 

heterochromatin (Chakraborty, Shen, and Prasanth 2011). Furthermore, experiments 

combining ChIP-seq and mass spectrometry have shown ORCA/ORC complex to 

directly bind the most prominent repressive histone modifications H3K9me3, 

H3K27me3 and H4K20me3 (Vermeulen et al. 2010). Thereby, it has been proposed 

that ORC/ORCA specifically recruits lysine methyltransferases and are thus necessary 

for heterochromatin establishment and maintenance (Giri et al. 2015). Furthermore, 

ORC/ORCA/HP1 was suggested to facilitate origin licensing in heterochromatin 

(Leatherwood and Vas 2003; Shen et al. 2012), however ORC-heterochromatin 

interaction has already been shown to be separated from licensing functions of ORC 

(Dillin and Rine 1997; Leatherwood and Vas 2003). My results clearly attribute an 

origin licensing function to ORC binding to heterochromatic H4K20me3. Genome-

wide replication timing experiments thereby revealed that defined late-replicating 

domains – characterized by the presence of H4K20me3 in unperturbed cells – depend 

on H4K20me3, while other late-replicating regions did not. These regions might 

represent heterochromatin where replication is regulated through different 

mechanisms. In conclusion, H4K20me3-mediated origin licensing and subsequent 

activation is one mechanism of replication regulation in heterochromatin. 
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5. CONCLUSION 

With this study, I intended to close the gap between extensive analyses of active 

replication initiation and pre-RC positions. Furthermore, I aimed to elaborate the 

relation between H4K20 methylation and regulation of DNA replication.  

 CHROMATIN ACCESSIBILITY IS THE MAIN DETERMINANT OF 

PRE-RC POSITIONING IN ACTIVE CHROMATIN 

I performed ChIP-seq of the two major pre-RC subcomponents ORC and Mcm2-7, 

targeting two subunits of each complex (Orc2, Orc3, Mcm3, and Mcm7) to increase 

validity of the results. Pre-RC ChIP-seq analysis on the EBV genome allowed the 

determination of the most appropriate peak-calling algorithm, by comparing already 

published pre-RC positions on the EBV genome with detected pre-RC positions from 

ChIP-seq. Despite differences in techniques and bioinformatical analyses, the majority 

of T-PIC-defined pre-RCs detected by ChIP-seq coincided with previously 

determined pre-RC positions (Papior et al. 2012). Comparing replicates of the same 

ChIP between each other and the different target pre-RC proteins, relatively little 

variances were observed. ORC, Mcm2-7 and pre-RC positions were concordant and 

even changed only marginally when ChIP-seq was performed in S/G2 cell cycle stage. 

This suggests little dynamics of the chromatinized EBV genome, resulting in delimited 

ORC, Mcm2-7, and pre-RC positions.  

Applying the peak-calling settings determined on the EBV genome on the human 

genome, variances between replicates and between the two pre-RC subcomponents 
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ORC and Mcm2-7 increased. This presumably relies on the definition of a peak as a 

specific accumulation of reads at a defined position, while neighboring regions 

decrease in read numbers. However, ORC and Mcm2-7 ChIPs do not meet these 

requirements. ORC binding has been shown to depend mostly on chromatin 

accessibility, which renders ORC positions extremely flexible and variable from cell 

to cell. Consequently, although the region of ORC binding might accord, the precise 

ORC position fluctuates, which appears as a broad profile from bulk cell ChIP-seq. 

This impedes the definite detection by a peak calling program, resulting in either non-

concordant peaks, or in undetected enrichments due to high read densities, also in 

neighboring regions. For Mcm2-7, this observation is even more prominent, as 

Mcm2-7 translocate after loading, rendering peak-detection impossible. To avoid this 

bias introduced by peak-calling, I additionally relied on the mean sequencing read 

coverage of each pre-RC component within a specific region of interest. Analyzing 

the mean read coverage is independent of any peak-calling algorithm and allows a 

global impression of the average situation at all regions of interest, simultaneously.  

Evaluating pre-RC component coverage at active initiation zones revealed pre-RC 

enrichment within initiation zones, additionally confirming successful pre-RC 

ChIP-seq. For further analyses, it will be interesting to distinguish between initiation 

zones flanked or not by actively transcribed genes. As especially Mcm2-7 positioning 

might depend on transcriptional activity, fundamental differences are expected. 

Interestingly, pre-RC components, notably Mcm2-7, were specifically depleted from 

replication termination zones in G1 phase. This observation was cell cycle dependent, 

as depletion was less prominent in S/G2. Replication termination zones are to a large 

extent comprised of active genes, consistent with the idea of Mcm2-7 helicase 

translocation by active transcription machineries.   

Generally, pre-RC component coverages were enriched at sites of active 

transcriptional regulation, like TSS or H3K4me3 sites, in accordance with previous 

studies. This enrichment was enhanced at an early stage of pre-RC loading 

(corresponding to S/G2 phase in this study, probably representing a later stage of the 

cell cycle; needs to be confirmed), implying that within active chromatin, ORC/ 

pre-RC is first bound to accessible chromatin sites, while Mcm2-7 helicases relocate 

from their initial loading site prior to S phase (G1 cell cycle stage). Consequently, this 
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study also touches genome-wide pre-RC cell cycle dynamics. The excess of Mcm2-7 

compared to ORC situates Mcm2-7 as major determinant of replication initiation.    

Employing both HOMER and T-PIC peak-calling, observations from coverage 

analysis were actually confirmed. Very strong coverage enrichments, as observed at 

active TSSs or H3K4me3, coincide with strong, HOMER-defined peaks. Active 

initiation zones were moderately enriched in coverage, however, also sensitive T-PIC-

defined peaks were preferably detected in replication initiation zones, when compared 

to replication termination zones.  Consequently, although peak-calling might be 

misleading for ORC and Mcm2-7 ChIPs, final conclusions are not significantly altered. 

My original intention was to unite discrepancies in genome-wide studies of active 

replication initiation by providing a comprehensive picture of the regulation of pre-RC 

positioning. In Raji cells, there are no SNS-seq data available, rendering a direct 

comparison of pre-RC ChIP-seq, SNS-seq and OK-seq impossible. Furthermore, the 

pre-RC ChIP-seq analysis in hES cells is too preliminary to draw any final conclusions 

from direct comparisons with SNS-seq. Still, several conclusions emerge from this 

study:  

The major difference between SNS-seq and OK-seq is SNS-seq detecting single 

replication initiation events, while OK-seq detects zones of preferential initiation, 

encompassing multiple inefficient initiation sites. This technique disregards single 

replication origins and correlates with pre-RC coverage analyses, which also do not 

consider single pre-RC positions. Enrichment of ORC and Mcm2-7 within initiation 

zones and depletion of these proteins from replication termination zones provide an 

explanation for the occurrence of preferential replication initiation or termination, 

depending solely on the density of pre-RC proteins, especially Mcm2-7, on DNA. 

Only 20% of SNS overlap with initiation zones and vice versa (Petryk et al. 2016). 

However, replication initiation events also occur outside of initiation zones and 

amount in total to 30000-50000 initiation events per cell. Mapping of more than 

200000 replication initiation sites by SNS-seq (Besnard et al. 2012) presumably 

originates from the large distribution of Mcm2-7, resulting in many different initiation 

sites in a bulk cell population. It might be possible, that the 200000 detected origins 

are the detection limit of the SNS-seq technique, by employing a limited number of 
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cells and a certain size selection of nascent DNA. It might be discussable whether 

many more replication initiation sites could possibly be detected encompassing all sites 

of all cells. 

Single-cell replication initiation experiments might provide answers for that question. 

Combination of various single-cell experiments would reveal whether the final 

number of detected initiation events evens out around 200000 events or continues to 

grow exponentially. Also single-cell pre-RC ChIPs would help to better understand 

the context. However, although single-cell experiments are advancing, both single-cell 

SNS-seq or pre-RC ChIP-seq are not feasible to date. Currently broad pre-RC profiles 

originating from bulk ChIP-seq experiments complicate conclusions about precise 

ORC or Mcm2-7 positions. Knowing the positions in a single cell and extrapolating 

the results would indeed complete the idea of variable ORC and Mcm2-7 positioning.     

In conclusion, this study provided new insights in the regulation of pre-RC positioning 

and implies Mcm2-7 being the main determinant of DNA replication in accessible 

chromatin regions characterized by transcriptional activity.  

 DIRECT ORC-CHROMATIN INTERACTIONS REGULATE PRE-RC 

POSITIONING IN HETEROCHROMATIN 

H4K20 methylation was also assessed in this study, to decipher the role of this histone 

modification in replication regulation. Altering the expression of the Histone 4 Lysine 

20 monomethyltransferase PR-Set7 has severe DNA replication phenotypes. 

Consequently, H4K20me1 was expected to be involved in the regulation of replication 

licensing and/or activation. However, pre-RC displayed no striking association to 

H4K20me1 in euchromatin in ChIP-seq experiments. This result situates PR-Set7 

being a major regulator of the cell cycle rather than DNA replication mechanisms 

themselves. Interestingly, especially ORC associated with H4K20me3 in 

heterochromatin, while binding of Mcm2-7 was less prominent. Because of reported 

roles of ORC in heterochromatin organization, I functionally tested implication of 

H4K20me3 in origin licensing and confirmed that H4K20me3 is necessary for 

Mcm2-7 recruitment and subsequent replication activation, in specific 

heterochromatin domains.   
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Consequently, euchromatin and heterochromatin differ in ORC loading mechanisms. 

While in euchromatin, ORC randomly binds accessible chromatin sites and loads 

multiple Mcm2-7 complexes, in heterochromatin ORC-binding is stabilized by 

specific histone modifications. In my study, H4K20me3 regulates replication in 

specific heterochromatin regions. H4K20me3 is necessary for pre-RC formation 

within these regions and also controls pre-RC activation. Combining my observations 

and current literature led to the proposition of the following model (Figure 5.1): 

A. Euchromatin locates interior of the nucleus, is marked by active chromatin marks 

(like H3K4me3) and is actively transcribed. ORC favors accessible chromatin 

regions (like TSS) and binds these regions. High on- and off-rates of ORC or 

chromatin conformation lead to multiple Mcm2-7 hexamer loading, which are 

translocated by the transcriptional machinery to gene-adjacent regions. Elevated 

Mcm2-7 densities increase activation probability in S phase and lead to early origin 

firing.  

B. Heterochromatin locates closer to the nuclear lamina. ORC binding is impaired 

through less accessible chromatin structure. Consequently, direct interactions of 

histone modifications (like H4K20me3) and ORC mediate ORC association to 

DNA. Stabilization of ORC leads to lower on- and off-rates and less Mcm2-7 

recruitment. However, one Mcm2-7 double-hexamer is theoretically enough for 

replication initiation although reduced firing probabilities situate heterochromatin 

replication in late S phase.   
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Taken together, this work constitutes the first genome-wide ChIP-seq analysis of a 

full set of pre-RC components, as especially Mcm2-7 has not been analyzed so far. It 

situates Mcm2-7 as major determinant of replication initiation in euchromatin, while 

ORC displays the major regulator in heterochromatin. Furthermore, it provided direct 

evidence of replication origin licensing in heterochromatin depending on H4K20me3. 

These results added a piece to the puzzle of human replication regulation. Some 

already existing pieces might require re-evaluation, while future investigations will 

certainly provide other missing elements to complete the picture.   

 

 

 

 

 

 

FIGURE 5.1: MODEL FOR REPLICATION LICENSING MECHANISMS IN EUCHROMATIN AND 

HETEROCHROMATIN. A) OPEN CHROMATIN STRUCTURES AND ACTIVE TRANSCRIPTION MEDIATE 

MCM2-7 LOADING AND TRANSLOCATION. High ORC on- and off-rates lead to excessive Mcm2-7 

loading. Active transcription machineries translocate Mcm2-7 helicases to gene-adjacent regions. 

B) IN HETEROCHROMATIN, H4K20ME3 STABILIZES ORC BINDING. Lower on- and off-rates lead to 

less Mcm2-7 recruitment. 
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APPENDIX FIGURE 1: DIFFERENT REPRESENTATIONS OF INPUT (GREY) AND ORC2 (RED) CHIP-SEQ 

SAMPLES IN IGB AT THE MCM4/PRKDC LOCUS. A) SEQUENCING ALIGNMENT AFTER MAPPING 

AGAINST THE HUMAN GENOME. UTRs of divergent Mcm4 and PRKDC genes are visible as black 

bars, the first PRKDC exon as thicker black bar. [chr8: 48.872.624-48.872.814]. B) DIRECT 

COMPARISON OF SEQUENCING ALIGNMENT AND PROFILE REPRESENTATION. Upper two panels: 

Zoom-out of sequencing alignment from A); Lower two panels: profile representation of the same 

samples. introns = thin lines, arrowheads point to direction of transcription. Thicker black bars 

= exons, thin black bars = UTR. [chr8: 48.862.188-48.883.250]. 

A) 

B) 
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APPENDIX FIGURE 2: HEATMAP REPRESENTATION OF THE JACCARD SIMILARITY INDEX OF T-PIC-

DEFINED COMPLEXES AND PRE-RC (PAPIOR ET AL. 2012) AND SNS (PAPIOR ET AL. 2012). From little 

similarity (light red) to high similarity (dark red).  
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APPENDIX FIGURE 3: VALIDATION OF ES CELL PLURIPOTENCY. A) CELL MORPHOLOGY. Red bar 

represents 100µm. B) FACS STAIN OF PLURIPOTENCY MARKERS OCT4 AND SSEA4. Staining was 

performed according to BD Stemflow Human and Mouse Pluripotent Stem Cell Analysis Kit.  

FACS was calibrated using the corresponding isotype negative control.  

A) 

B) 
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A) B) 

APPENDIX FIGURE 6: MOST HOMER PEAKS RESIDE WITHIN THE TOP 10% OF T-PIC PEAKS. 

REPRESENTATIVE EXAMPLE ANALYSIS FOR A) ORC3 AND B) MCM7 IN ONE REPLICATE. Venn diagram 

of overlap between all HOMER-detected peaks with the top 10% of T-PIC-detected peaks. 

Overall counts are indicated. The percentage of overlapping HOMER-detected peaks are 

specified in brackets. 
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APPENDIX FIGURE 9: ORC AND MCM2-7 COMPLEX SIZES (HOMER VS. T-PIC). A) ORC. B) MCM2-7. 

Represented in boxplot: thick line shows the median, the box is the distribution from the first to 

the third quartile, the whiskers indicate the smallest and largest value without being an outlier. 

Outliers represented by dots.  
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A) B) 

APPENDIX FIGURE 10: OVERLAPS OF HOMER- AND T-PIC DEFINED COMPLEXES. A) ORC B) MCM2-7. 

Venn diagram of overlap between HOMER- and T-PIC-defined complexes. Overall counts are 

indicated. The percentage of HOMER-defined complexes common with T-PIC-defined pre-RCs 

is specified in brackets.   
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A) 

B) 

APPENDIX FIGURE 11: GENOMIC DISTRIBUTION OF A) HOMER-DEFINED PRE-RC AND B) T-PIC 

DEFINED PRE-RC REVEALED ASSOCIATION TO PROXIMAL PROMOTER REGIONS. The genomic 

distribution was calculated using the CEAS program and normalized against the “default” 

genomic distribution of the single criteria (position 0 on the y-axis). Distribution was then 

represented with upwards orienting bars showing % enrichments and downwards oriented bars 

showing % depletion compared to “default” genomic distribution.  
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APPENDIX FIGURE 12: GENOMIC DISTRIBUTION OF H3K4ME3 PEAKS SHOWED CLOSE ASSOCIATION 

TO REGULATORY 5‘ GENIC REGIONS. The genomic distribution was calculated using the CEAS 

program and normalized against the “default” genomic distribution of the single criteria (position 

0 on the y-axis). Distribution was then represented with upwards orienting bars showing % 

enrichments and downwards oriented bars showing % depletion compared to “default” genomic 

distribution.   

Genomic distribution of H3K4me3 peaks 
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APPENDIX FIGURE 13: H3K4ME3 POSITIONS WERE MORE LOCALIZED THAN H3K36ME3. Peak sizes 

in [kb] are represented in boxplots: thick line shows the median, the box is the distribution from 

the first to the third quartile, the whiskers indicate the smallest and largest value without being an 

outlier. Outliers represented by dots.  

  



APPENDIX 

146 | 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX FIGURE 14: GENOMIC DISTRIBUTION OF H3K36ME3 PEAKS SHOWED ENRICHMENT IN 

INTRONS. The genomic distribution was calculated using the CEAS program and normalized 

against the “default” genomic distribution of the single criteria (position 0 on the y-axis). 

Distribution was then represented with upwards orienting bars showing % enrichments and 

downwards oriented bars showing % depletion compared to “default” genomic distribution.   

Genomic distribution of H3K36me3 peaks 
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APPENDIX FIGURE 15: NO ENRICHED COVERAGE OF PRE-RC PROTEINS AT H3K36ME3 PEAKS. A) 

MEAN ORC2 COVERAGE. B) MEAN ORC3 COVERAGE. C) MEAN MCM3 COVERAGE. D) MEAN MCM7 

COVERAGE.  Coverage was calculated as number of reads/base within a 20 kb window around 

H3K36me3 peak center. Input was plotted as control (grey). 

A) B) 

D) C) 



APPENDIX 

148 | 
 

 

 

APPENDIX FIGURE 16: HOMER-DEFINED ORC, MCM2-7, AND PRE-RC WERE CLOSELY ASSOCIATED TO 

H3K4ME3 AND NOT H3K36ME3. Left: HOMER-defined complexes, right: T-PIC-defined complexes. 

The distance of each position was calculated towards the next H3K4me3 or H3K36me3 peak center 

and is plotted in log10 on the x-axis. The frequency of complexes within a specific distance is plotted 

on the y-axis. 
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A) 

B) 

C) 

APPENDIX FIGURE 17: T-PIC-DEFINED ORC, MCM2-7, AND PRE-RC ARE VERY SIMILAR IN G1 AND 

S/G2 ON EBV. A) COMPLEX NUMBERS. Number of T-PIC-defined ORC, Mcm2-7 and pre-RC was 

plotted as indicated in a bar chart in G1 vs. S/G2. B) COMPLEX SIZES. Complex sizes were potted 

as boxplot in G1 vs. S/G2. Thick line shows the median, the box is the distribution from the first 

to the third quartile, the whiskers indicate the smallest and largest value without being an outlier. 

Outliers represented by dots. C) COMPLEX POSITION OVERLAPS. Venn diagram of overlap between 

G1-defined ORC, Mcm2-7, or pre-RC and the same complexes defined in S/G2. Overall counts 

are indicated. 
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APPENDIX FIGURE 18: COMPARISON OF T-PIC-DEFINED PRE-RC, ORC AND MCM2-7 DENSITIES AT 

AS, DS, AND THE REMAINING GENOME IN G1 AND S/G2. A) T-PIC-DEFINED PRE-RC DENSITIES. 

B) T-PIC-DEFINED ORC DENSITIES. C) T-PIC-DEFINED MCM2-7 DENSITIES. The cell cycle stage is 

represented above/beneath each line, S/G2 densities are represented in darker colors. 

A) 

B) C) 
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APPENDIX FIGURE 19: PRE-RC PROTEIN COVERAGE IN S/G2 AT H3K4ME3 PEAKS IS MORE 

PROMINENT THAN IN G1. A) MEAN ORC2 S/G2 COVERAGE. B) MEAN ORC3 S/G2 COVERAGE. 

C) MEAN MCM3 S/G2 COVERAGE. D) MEAN MCM7 S/G2 COVERAGE. Coverage was calculated as 

number of reads/base within a 20 kb window around H3K4me3 peak center. Input was plotted 

as control (grey). 

A) B) 

D) C) 
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APPENDIX FIGURE 20: OVERLAPS OF HOMER- (LEFT PANEL) OR T-PIC- (RIGHT PANEL) DEFINED PRE-

RC WITH H3K4ME3 PEAKS IN G1 VS. S/G2.  Left: HOMER-defined complexes, right: T-PIC-defined 

complexes. Venn diagram of overlap between G1- and S/G2-defined pre-RCs with H3K4me3 

peaks. Overall counts are indicated. The percentage of defined pre-RC overlapping with 

H3K4me3 are specified in brackets.  
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APPENDIX FIGURE 21: OVERLAPS OF HOMER- (LEFT PANEL) OR T-PIC- (RIGHT PANEL) DEFINED ORC 

AND MCM2-7 WITH H3K4ME3 PEAKS IN G1 VS. S/G2. Left: HOMER-defined complexes, right: 

T-PIC-defined complexes. Venn diagram of overlap between G1- and S/G2-defined complexes 

with H3K4me3 peaks. Overall counts are indicated. The percentage of defined complexes 

overlapping with H3K4me3 is specified in brackets. 
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APPENDIX FIGURE 22: GENOMIC PRE-RC DISTRIBUTION IN G1 VS. S/G2. A) HOMER-DEFINED PRE-

RCS. B) T-PIC-DEFINED PRE-RCS. The distribution in G1 is plotted in rainbow color. The S/G2 

distribution is overlaid by gray bars.   

 

 

 

 

A) 

B) 
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APPENDIX FIGURE 23: H4K20ME1 AND –ME3 POSITIONS ARE MUTUALLY EXCLUSIVE. A) H4K20ME1 

AND –ME3 PEAK SIZES REPRESENTED IN A BOXLOT. Thick line shows the median, the box is the 

distribution from the first to the third quartile, the whiskers indicate the smallest and largest value 

without being an outlier. Outliers represented by dots. B) OVERLAP OF H4K20ME1 AND –ME3 PEAK 

POSITIONS. Venn diagram of overlapping H4K20me1 and H4K20me3 peaks. Overall counts are 

indicated. The percentage of overlapping proportions are specified below in brackets. 

 

A) 

B) 
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APPENDIX FIGURE 24: HOMER- (LEFT PANEL) AND T-PIC- (RIGHT PANEL) DEFINED COMPLEXES 

HARDLY OVERLAP WITH H4K20ME1. Left: HOMER-defined complexes, right: T-PIC-defined 

complexes. Venn diagram of overlap between HOMER- and T-PIC-defined ORC, Mcm2-7 and 

pre-RC with H4K20me1 peaks. Overall counts are indicated. The percentages of overlapping 

proportions are specified below in brackets. 
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APPENDIX FIGURE 26: COMPARISON OF H4K20ME1 AND –ME3 POSITIONS IN G1 AND S/G2. 

A) H4K20ME1. B) H4K20ME3. Venn diagram of overlap between G1 and S/G2 determined 

H4K20me peaks. Overall counts are indicated. The percentage of overlapping proportions are 

specified below in brackets. 

A) B) 
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APPENDIX FIGURE 27: H4K20ME1 AND –ME3 COVERAGE AT H4K20ME1 AND –ME 3 PEAKS (G1 VS. 

S/G2). Coverage was calculated as number of reads/base within a 6 kb window around 

H4K20me1/-me3 peak center. H4K20me1 coverage in green, H4K20me3 coverage in violet, 

S/G2 coverages colored lighter.  
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APPENDIX FIGURE 28: SUV4-20H1 TARGETING HAS NO EFFECT ON PLASMID REPLICATION. 

QUANTIFICATION OF FR-ORIRDH AND FR-UAS-ORIRDH PLASMIDS. Plasmid abundance assays in 

HEK293 EBNA1+ Gal4/ Gal4-Suv4-20h1 cell lines as indicated: FR-oriRDH replication efficiency 

was arbitrarily defined as 1. Data are means ± SEM (n=3). 
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APPENDIX FIGURE 29: DIRECT COMPARISON OF ALL REPORTER PLASMID REPLICATION EFFICIENCIES 

RELATIVE TO FR-DS. Plasmid abundance assays in HEK293 EBNA1+ Gal4/ Gal4-PR-Set7/ 

Gal4-PR-Set7SETmut cell lines as indicated: FR-DS replication efficiency was arbitrarily defined as 1. 

Data are means ± SEM (n=4). 
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APPENDIX FIGURE 30: PR-SET7 TARGETING TO FR-UAS LED TO H4K20ME1 INDUCTION AND 

CONVERSION INTO H4K20ME3. ChIP-qPCR analysis at FR and UAS sequences of FR-UAS 

reporter plasmids transfected in the indicated cell lines. Fold enrichment relative to IgG. Data are 

means ± SEM (n=3). 
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