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Zusammenfassung

Die großskalige Massenverteilung im beobachtbaren Universum lenkt, ganz ähnlich einer
Linse, das Licht weit entfernter Objekte ab. Dieser Gravitationslinseneffekt ist zwar
schwach, kann aber, dank äußerst präziser Messtechniken, nicht nur nachgewiesen, son-
dern sogar zur Bestimmung kosmologischer Parameter oder zur Überprüfung physikalis-
cher Modelle verwendet werden. Dazu ist, neben sehr genauen Messinstrumenten, auch
eine möglichst exakte theoretische Modellierung des Effekts notwendig. In dieser Dok-
torarbeit stellen wir drei Arbeiten zu alternativen oder verbesserten Analysemethoden des
schwachen Gravitationslinseneffekts vor.

Messungen der gelinsten Anisotropien im kosmischen Mikrowellenhintergund ermöglich-
en eine Rekonstruktion des Linsenpotentials. Dieses misst die integrierte Massenverteilung
vom Beobachter bis zu einer Distanz, die einer Zeit 380 000 Jahre nach dem Urknall
entspricht. In der ersten Arbeit stellen wir einen Maximum A Posteriori (MAP) Schätzer
für dieses Linsenpotential vor. Diese Rekonstruktionsmethode stellt eine Verbesserung
gegenüber dem Standardschätzers dar, welcher lediglich auf einer Näherung des MAP
Schätzers beruht und zusätzliche Korrekturen benötigt.

In der zweiten Arbeit wenden wir uns dem Standardschätzer für die spektrale Leistungs-
dichte desselben Linsenpotentials zu, für den wir einen neuen Korrekturterm identifizieren
und abschätzen. Diese neue Korrektur wird erforderlich, da der Standardschätzer auf der
Annahme eines normal verteilten Linsenpotentials beruht, dieses jedoch, aufgrund nicht-
linearer Strukturbildung nicht exakt Gauß-verteilt ist. Unseren Abschätzungen zufolge
sollte diese neue, nicht-lineare Korrektur bereits in aktuellen Experimenten berücksichtigt
werden.

Mit den Auswirkungen nicht-linearer Strukturbildung auf Linsenrekonstruktionen be-
schäftigen wir uns auch in der letzten Arbeit, allerdings im Kontext des Gravitationslinsen-
effekts auf die gemessene Form von Galaxien. Nicht-lineare Korrekturen sind dort beson-
ders relevant, da nicht-lineare Skalen in der Massenverteilung signifikant zu dem gemesse-
nen Linseneffekt beitragen. Aus dieser Motivation heraus, haben wir einen neuen MAP
Schätzer zur dreidimensionalen Massenrekonstruktion aus der Messung gelinster Galaxien
entwickelt. Dieser unterscheidet sich von vorhandenen Rekonstruktionsmethoden vor allem
dadurch, dass er statt einer Gaußschen Massenverteilung, a priori eine lognormale Massen-
verteilung annimmt. Letztere beinhaltet Informationen über die Schiefe der Verteilung
und erzwingt postive Dichten in der Rekonstruktion. Wir belegen die Überlegenheit der
lognormalen über die normale a priori Verteilung durch Tests an simulierten Daten.
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Abstract

The large-scale mass distribution in the observable universe deflects the light of distant
objects, similarly to a lens. This gravitational lensing effect is weak but can nevertheless be
detected and – thanks to technologically advanced measurement techniques – even be used
for determining cosmological parameters or testing physical models. Apart from extremely
precise measuring instruments, this requires an accurate theoretical modeling of the effect.
In this thesis, we present three works on alternative or improved analysis techniques for
weak gravitational lensing measurements.

After a general introduction to cosmology and weak gravitational lensing, we dedicate
the first two chapters to the study of weak lensing of the cosmic microwave background
(CMB). Measurements of this background radiation allow to extract an estimate of the
CMB lensing potential, a measure of the integrated mass distribution from today’s ob-
server to a distance corresponding to only 380 000 years after the Big Bang. We present a
maximum a posteriori (MAP) estimator for this lensing potential which is an improvement
over the quadratic estimator that has been used for all lensing measurements to date. The
quadratic estimator is only an approximation to the MAP estimator and requires additional
corrections and post-processing.

In the next chapter we turn to the standard estimator for the CMB lensing potential
power spectrum for which we identify and compute a new significant bias term. This
correction becomes necessary since the standard estimator is based on the assumption of
a normally distributed lensing potential which ceases to be valid in the presence of non-
linear structure formation. According to our estimates, this new non-linear bias should be
relevant already for current experiments.

The influence of non-linear structure formation on lensing reconstructions is also ad-
dressed in the last chapter where we turn to the analysis of weak lensing of galaxy images.
Corrections to the Gaussian model are particularly relevant in this case since non-linear
scales in the matter distribution contribute significantly to the observed image distortions.
Motivated by this observation, we have developed and tested a new MAP estimator that
reconstructs the 3D density distribution from measured galaxy shapes. This method is dif-
ferent to existing methods in particular since it employs a lognormal prior on the density
distribution instead of a Gaussian one. The latter contains information about the strict
positiveness of the field as well as its asymmetric distribution. We prove the superiority of
the lognormal prior over the Gaussian one in a series of tests on simulated data.
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Notations and Conventions

Throughout this thesis, we use non-unitary Fourier conventions

F [f(x)] = f̃(k) =

∫
dx f(x)e−ikx , F−1[f̃(k)] = f(x) =

∫
dk

(2π)n
f̃(k)eikx (1)

and express correlations in harmonic space in terms of power spectra, bispectra and trispec-
tra defined by

〈A(k)B(k′)〉 = (2π)nδD(k + k′)PAB(|k|)
〈A(k)B(k′)C(k′′)〉 = (2π)nδD(k + k′ + k′′)BABC(k,k′,k′′)

〈A(k)B(k′)C(k′′)D(k′′′)〉c = (2π)nδD(k + k′ + k′′ + k′′′)TABCD(k,k′,k′′,k′′′), (2)

where n denotes the spatial dimension. Vectors are indicated by bold print, their absolute
values in italics, e.g. |k| = k. In 2D the Fourier conjugate to the configuration space
position is often denoted l instead of k. This is because describing quantities on the sphere
that have small angular extent allows to replace the spherical harmonic transform to good
approximation by a Fourier transform. In this limit (referred to as flat-sky approximation)
the scales of the Fourier modes correspond to the `-index of the spherical harmonics Y`m(θ)
(see e.g. [95]).

Since the topics covered in this thesis require to work in many different coordinate
systems, we can not avoid using similar notations for different coordinate variables in
different chapters. Within individual chapters and within a certain context the meaning
of the coordinate variables stays fixed. In Table 1 we summarize the notations used for
different coordinates in the context of CMB lensing (Chapter 2 and 3), weak galaxy lensing
(Chapter 4) and in the introduction (Chapter 1). Table 2 summarizes the symbols used to
denote the most important physical fields in this thesis.

The probability distribution of a quantity x is denoted P (x), other fixed variables on
which it might depend are separated from the argument by a vertical line, e.g. P (x|y).
Following this convention we write a (multivariate) Gaussian distribution with mean m
and covariance C as G(x|m,C) or G(x|C) for zero mean.

We further use a generalized sum convention where repeated indices and coordinates,
if they do not appear on both sides of the equation, are either integrated over (if they are
continuous) or summed over (if they are discrete), e.g.,

s(x) = sx = Rxysy ≡
∫

dyR(x,y)s(y). (3)
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context variable meaning
CMB lensing x,y, z, also primed 2D angular direction on the sky
galaxy lensing θ 2D angular direction on the sky
introduction θ 2D angular direction on the sky
galaxy lensing x,y, z 3D comoving coordinates
galaxy lensing x′,y′, z′ [short for (x′, τ) etc.] 3D comoving coordinates on light-cone
galaxy lensing τ conformal time

Table 1: Summary of different coordinates used in this thesis together with their respective
vector notation.

field/ field statistic symbol
lensing potential (2D field) φ(θ), φ(x)
gravitational potential (3D field) ψ(x, τ), ψ(θ, χ)
CMB temperature fluctuations (2D field) T (θ), T (x)

Table 2: Notations of most common physical fields. Note that the lensing potential φ can
refer to the CMB lensing potential (in Chapter 2 and 3) as well as the the lensing potential
of weak galaxy lensing (Chapter 4).

To keep the notation short, we will sometimes drop the coordinates and write Rs ≡ Rxysy.
For compactness we also denote∫

l

≡
∫

dl

(2π)2
and

∫
k

≡
∫

dk

(2π)3
. (4)



Chapter 1

Introduction

In this chapter we provide a brief overview over the mathematical and physical concepts
that form the basis of the research results presented in the subsequent chapters. We
start by reviewing Bayesian statistics (Section 1.1) and information field theory (Section
1.2) before we turn to cosmology in Section 1.3. After a short recap of the standard
ΛCDM model (Sections 1.3.1-1.3.3), we present the standard formalism to describe weak
lensing by large-scale structure in Section 1.4, which we then specify to weak lensing of the
cosmic microwave background (Section 1.5) and weak lensing of galaxies (Section 1.6). In
Section 1.7 we outline the great potential of weak lensing measurements for constraining
cosmological models.

1.1 Bayesian Statistics

The essence of Bayesian statistics lies in the interpretation of probabilities P as degrees of
belief. This belief can change when additional information becomes available. The central
theorem in Bayesian statistics is Bayes’ theorem that describes how one’s knowledge of the
status of a variable s changes when additional information on it becomes available through
the data d

P (s|d) =
P (d|s)P (s)

P (d)
. (1.1)

P (s|d) is called the posterior distribution or simply posterior. It expresses one’s knowledge
of s after the former knowledge has been updated by the data (hence the name). The
knowledge one had before the update on the status of s is given by the prior distribution
P (s). The additional information that has become available through the data d is given by
the likelihood P (d|s) that expresses the probability of obtaining the observed realization of
the data d given a fixed field configuration or status of s. Finally, P (d) is called evidence
and is defined by

P (d) =

∫
Ds P (d|s)P (s), (1.2)
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where the integration is over all possible states or configurations of s1. It is a normalization
that can often be neglected if one is only interested in estimating the moments of the
posterior. It has, however, applications in model comparison: If two models α and β yield
different prior probabilities P (s|α) and P (s|β), their evidences P (d|α) and P (d|β) will
differ by a factor. This so called Bayes factor B can be used for model selection, i.e. one
can discard one model in favor of another, if B is much larger or much smaller than 1.
In that sense, the Bayes factor can be regarded as the Bayesian decision tool for models.
Which values of B should result in abandoning one model in favor of another is a question
of decision theory, i.e. it should depend on the cost of potentially making a wrong decision.

1.2 Information Field Theory (IFT)

In physical inference problems one is often interested in inferring the statistics and real-
izations of continuous physical fields, such as, e.g., the gravitational potential of objects or
the temperature fluctuations in the cosmic microwave background. The discretization of
these fields is often artificial and imposed by measurement devices and/or numerical anal-
ysis techniques. It is therefore natural to formulate inference problems in an abstract way
that is as independent as possible of the pixelization scheme or basis functions and treats
continuous fields mathematically as such. This allows to make use of the vast amount of
mathematical techniques that have been developed for classical and quantum field theories
and is the basic idea of information field theory (IFT)[55]. As a statistical field theory,
IFT provides a framework for the application of Bayesian statistical inference on fields.
Many inference methods have been derived in this framework, notably for problems with
unknown signal correlation structure [54, 175, 56] and it has been successfully applied to
inference problems in astrophysics and cosmology (see e.g. [50, 202, 174, 111, 64, 185]).

In the next sections, we will briefly introduce the formalism and standard notations of
IFT (notably used in Chapters 2 and 4) by the example of a simple maximum a posteriori
(MAP) problem that results in a Wiener Filter.

1.2.1 Wiener Filter Theory

To infer the most probable realization of some physical field s, one carries out a mea-
surement that yields a discrete data vector d. This data is typically affected by some
(measurement) noise n. Also, one rarely measures s directly. There is at least some op-
eration in the measurement apparatus that converts the signal from the continuous field
into the discretized data vector. In most cases there is an even more complicated relation
between the underlying field of interest and the measurement data. In weak lensing of
galaxies, for example, we can measure lensing only via its effect on galaxy shapes. In
measurements of the CMB, we measure a convolution of the temperature field with the
beam of the telescope.

1We use the most general notation here, for discretized quantities the integration transforms into a
sum.
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For linear measurement devices, the relation between unnoisy data and signal can be
expressed in terms of a linear operator R. This response operator encodes all operations
that translate the underlying field into unnoisy measurement data. R can take very com-
plicated forms and is usually composed of some physical operation, e.g. lensing, plus some
characteristics of the measurement process, e.g. a beam convolution. The application of
R in continuous space reads

[Rs](x) =

∫
dx′R(x,x′)s(x′), (1.3)

and its discretization is straightforward

[Rs]i =
∑
j

Rijsj. (1.4)

Note that the last equation is still abstract and independent of the discretization or basis
functions in which the problem is expressed.

The total data is the signal response Rs plus a typically independent noise contribution

d = Rs+ n, (1.5)

with n denoting the realization of the noise. Given measurement data d, one finds the most
probable realization of s by maximizing the posterior P (s|d). Following Bayes’ theorem
Eq. (1.1), this posterior can be expressed in terms of a prior distribution and a likelihood.

In nature, many processes lead to Gaussian-distributed quantities due to the central
limit theorem. For example, the initial conditions for the mass distribution in the Universe
are believed to result from the superposition of many random quantum fluctuations of
the inflaton field. In the case of lensing, the total lensing deflection is a sum over many
lensing events, which Gaussianize the statistics of the total deflection field. Even if the
true distribution of a quantity is non-Gaussian, given only limited knowledge of it, such
as its mean and the covariance, the principle of maximum entropy implies that the most
ignorant estimate of the distribution i.e., the fit that adds the least additional information,
is a normal distribution with this mean and covariance.

Because of this, we will often encounter inference problems where both noise statistics
and the prior distribution are normally distributed. A Gaussian noise distribution implies
a Gaussian likelihood with covariance equal to the noise covariance N ,

P (d|s) =

∫
DnG (n|N)P (d|n, s) =

∫
DnG (n|N) δD [d− (Rs+ n)]

= G (d−Rs|N) , (1.6)

where
∫
Dn denotes integration over all possible realizations of n.

Together with a Gaussian prior G(s|S) with covariance S, this yields a Gaussian pos-
terior of the form

P (s|d) =
1√
|2πD|

exp

[
−1

2
(s−m)†D−1 (s−m)

]
, (1.7)
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where we have defined m = Dj, with j = R†N−1d, called the information source due to its

dependence on the data, and D =
[
S−1 +R†N−1R

]−1
, the information propagator which

propagates the information from the information source to our estimate of the underlying
field m = ŝ. Finding the maximum of P (s|d) is therefore a filter operation of the form

m = Dj =
[
S−1 +R†N−1R

]−1
R†N−1d, (1.8)

the so-called Wiener filter [235]. It involves an operator inversion that can only rarely be
solved analytically (e.g. if there exists a basis in which all operators are diagonal). In most
cases, one has to resort to numerical techniques, such as the conjugate gradient or steepest
descent method to solve Eq. (1.8).

Note that the formulation in Eq. (1.8) is in signal space. This means that d gets trans-
lated into the space of the signal by application of R† before the information propagator
D, in which both terms, S−1 and R†N−1R, are in signal space, is applied to it. The same
filter operation can be equivalently formulated in data space [227],

m′ = m = SR†
[
RSR† +N

]−1
d. (1.9)

Both formulations can be found in the literature.

1.2.2 Numerical IFT

For practical purposes, inference problems formulated in IFT have to be discretized for
numerical implementation. To make this as simple and intuitive as possible and to keep the
independence of the basis in which the inference problems are expressed, Selig et al. [201]
have developed a numerical python package, named NIFTy2. NIFTy allows to implement
problems formulated in the language of IFT in a coordinate and resolution independent
way. It then adapts the computation internally to the chosen configuration. In particular,
it consistently takes into account volume factors that appear, e.g., in matrix applications.
Implementations in Chapters 2 and 4 make use of the NIFTy package.

1.3 Cosmology

1.3.1 Cosmological Model

Einstein’s field equations, the central equations in general relativity, connect the curvature
of space-time to the energy-momentum content of the Universe

Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν , (1.10)

where Rµν is the Ricci tensor, which (in a coordinate basis) can be fully described by second
derivatives of the metric tensor gµν . Its contraction, R ≡ Rµ

µ is the Ricci scalar and Tµν the

2http://wwwmpa.mpa-garching.mpg.de/ift/nifty

http://wwwmpa.mpa-garching.mpg.de/ift/nifty
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energy-momentum tensor. The constant Λ is called cosmological constant. Its value needs
to be determined from observations (it can be zero). The cosmological constant is a priori
only a mathematical freedom in the definition of the Einstein equation and its physical
interpretation is not fully understood.

We make the standard assumption that the metric tensor of the observable Universe
can be split into a background metric, whose evolution is guided by the cosmic mean energy
density, plus small perturbations, hµν , sourced by density fluctuations

gµν = gbgµν + hµν ,with |hµν | � 1. (1.11)

Under the assumptions of statistical isotropy and homogeneity, space-time can be foli-
ated into space-like hypersurfaces of constant coordinate time. This allows to write the
background metric in the well known Robertson-Walker form, with line-element

ds2 = a2(t)
[
−c2dτ 2 + dχ2 + f 2

K(χ)dω2
]
. (1.12)

To write Eq. (1.12), we have introduced a spherical symmetric coordinate system in which
χ is the radial coordinate and dω the solid angle element. χ is also known as comoving
distance, since it stays constant as the Universe expands. The function fK(χ) depends on
the curvature K of the space-like hypersurfaces and is given by

fK(χ) =


K−1/2 sin

(
K1/2χ

)
, if K > 0

χ, if K = 0

|K|−1/2 sinh
(
|K|1/2χ

)
, if K < 0.

(1.13)

fK(χ) is called comoving angular diameter distance, for it is the comoving distance one
infers by dividing the physical size of an object by its angular extent on the sky. The scale
factor a(t) is a function of the coordinate time that determines the homogeneous evolution
of the energy densities in the Universe. The conformal time is defined by dτ = dt/a(t).

The time-evolution of the scale factor is found by solving the Friedmann equations,
which are the Einstein equations Eq. (1.10) specialized to a Robertson-Walker metric and
the energy-momentum tensor of the cosmic fluid,(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(1.14)(

ä

a

)
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (1.15)

The initial value of a is fixed by demanding a = 1 today; the relative change of the
scale factor, ȧ

a
, is also known as Hubble parameter H(a). The Hubble parameter today is

often expressed in terms of the dimensionless constant h, H(a=1)=H0=h 100 km/(s Mpc).
Measurements of H0 determine the current value of ȧ. The expansion or contraction of
space leads to a red- or blueshift of photons. The redshift z, defined by the relative
difference between observed and emitted wavelength, is directly related to the scale factor

z ≡ λobs − λem

λem

=
aobs

aem

− 1. (1.16)
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The cosmic fluid consists of a radiation component with density ρrad(τ) ∝ a−4, a matter
component with density ρm(τ) ∝ a−3 and an energy density associated with the cosmolog-
ical constant ρΛ(τ) = const. These densities are typically expressed in terms of dimension-
less density parameters Ωi0 = ρi(a=1)/ρc(a=1), where the critical density ρc is the density
required for a spatially flat Universe ρc = 3H2

0/(8πG). By analogy, one also defines a
curvature density parameter ΩK=−Kc2/H2

0 , which scales like a−2. Current estimates for
the density parameters from recent experiments and the Hubble parameter H0 are listed
in Table 1.1. A remarkable result of the recent cosmological observations is that the scale
factor a increases faster with time than expected given the measured curvature, matter
and radiation density. In the framework of general relativity, the observed accelerated ex-
pansion could be sourced by a cosmological constant, as well as by another, yet unknown
energy component, or a mixture of both. It is also possible that this observation points
towards a different theory of gravitation. Finding a profound physical explanation for the
expansion is one of the greatest challenges for cosmology today.

H0 Ωm0 Ωrad0 ΩΛ ΩK

67.74± 0.49 0.3089± 0.0062 (5.39± 0.07)× 10−5 0.6911± 0.0062 0.0008+0.0040
−0.0039

Table 1.1: Current constraints on cosmological density parameters and the Hubble pa-
rameter derived from a combination of Planck data and external data sets. All values,
except Ωr0, were taken from the last column of Table 4 in Planck 2015 Results (XIII):
Cosmological Parameters [182]. The radiation density was computed from the CMB mean
temperature T0 = 2.7255K, assuming that photons are the only relativistic species in the
Universe today Ωγ0 = Ωrad0.

Considering only scalar perturbations to the background metric3 one arrives at a partic-
ularly simple form of the perturbed Robertson-Walker metric. In this so-called conformal
Newtonian gauge [168, 153], the line-element reads

ds2 = a2(t)
[
−
(
1 + 2Ψ/c2

)
c2dτ 2 + (1− 2Φ/c2)

(
dχ2 + f 2

K(χ)dω2
)]
, (1.17)

where Φ and Ψ are two scalar degrees of freedom. For an isotropic stress-energy tensor, the
Einstein equation enforces Φ = Ψ and Ψ can be identified with the Newtonian gravitational
potential.

1.3.2 Structure Formation

Many observations on different scales imply that four fifth of the Universe’s matter content
consists of a non-electromagnetically interacting component, which only couples to grav-
ity. This component is dubbed dark matter. The total matter density is the sum of the
baryonic and dark matter densities Ωm = Ωdm + Ωb. Many direct searches for dark matter

3By doing so, we neglect free gravitational waves, and assume that the energy-momentum tensor of the
cosmic fluid contains no significant vector or tensor parts.
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particles are ongoing, but have not resulted in a firm detection yet (see e.g. [130, 160] for
current reviews of the status of direct detections). Observations suggest that for structure
formation, dark matter can be well modeled by a non-relativistic pressure-less fluid.

The standard cosmological model therefore assumes a cold (where cold refers to v̄dm � c)
dark matter component (CDM) and a non-zero cosmological constant (Λ) and is referred
to as ΛCDM cosmology.

In the Newtonian limit, the evolution of matter fluctuations in the cosmic mean density
is guided by three non-linear coupled differential equations (on a homogeneously expanding
background), well known from fluid dynamics

1. the continuity equation, which describes conservation of mass,

2. the Euler equation, describing conservation of momentum,

3. and the Poisson equation, which relates the mass density to the gravitational poten-
tial.

For components with non-negligible pressure, an equation of state must be added to close
this set of equations.

Perturbations to the cosmic mean density are commonly expressed in terms of the
density contrast δ(x, a)

δ(x, a) =
ρ(x, a)− ρ̄(a)

ρ̄(a)
, (1.18)

where x is a 3D position vector in comoving coordinates and we use a bar to indicate mean
quantities. The initial density perturbations in the dark matter and baryons are small,
δdm ≈ 10−3 and δb ≈ 10−5 at z ≈ 1100, and normally distributed.

In the limit of δ � 1 and negligible pressure, the set of differential equations listed
above can be linearized and written as equations for the linear growth function D+(a),
such that4

δ(x, a) =
D+(a)

D+(a0)
δ(x, a0) (1.19)

For a matter-only Universe, which is a good approximation before dark energy starts to
dominate the cosmic energy density, one can solve for D+(a) exactly and finds D+(a)=a.
In the presence of dark energy on finds D(a) < a, and the exact solution for D must be
evaluated numerically [78, 148].

A Gaussian field with isotropic and homogeneous statistics is fully characterized by its
mean and power spectrum. The mean overdensity, 〈δ(x, a)〉 = 0, vanishes by construction.
The matter power spectrum Pδ(k, a) is assumed to start out nearly scale invariant Pinitial ∝
kns , where ns ≈ 1 [77, 241]. The subsequent evolution of this primordial spectrum can
be expressed in term of a transfer function T (k, a), P (k, a) = T 2(k, a)P (k, ainitial) [51,
52], which rescales the primordial power spectrum scale by scale to the late-time power
spectrum. To accurately model this function one needs to take into account many physical

4D+ denotes the relevant growing solution to the equations. The decaying solution is denoted D−.
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effects, such as, e.g., the scale dependent growth during an early radiation dominated phase,
the coupling of baryons to radiation and dark matter, radiation and baryon pressure and
the influence of massive neutrinos.

With the onset of matter domination, the simple rescaling,

Pδ(k, a) = D2
+(a)/D2

+(a0)Pδ(k, a0), (1.20)

becomes a good approximation.
The normalization of the power spectrum is another parameter that needs to be mea-

sured from observations. It is commonly expressed in terms of the variance on scales of
8Mpc/h,

σ2
8 = 4π

∫
k2dk

(2π)3
W̃ 2(k,R=8)Pδ(k), (1.21)

where W̃ (k,R=8) is the Fourier transform of a top hat with radius R = 8 Mpc/h. σ8 is
called the amplitude of matter fluctuations.

As structure grows, non-linear terms in the evolution equations become relevant. The
non-linear evolution can to some extent be modeled in perturbation theory, i.e. by consid-
ering the next to leading order terms in δ (see [17] for an excellent review on the topic).
However, this approximation breaks down on scales where the condition δ � 1 is no longer
satisfied. One consequence of non-linear terms is mode-coupling, e.g., the evolution of
small scale modes depend on the large scale mode they reside on. Non-linear terms also
give rise to higher-order cumulants in the distribution of the density contrast, e.g., at sec-
ond order to a bispectrum Bδ(k1,k2,k3). Note that the density distribution must become
non-Gaussian for the simple reason that the density contrast can become arbitrarily large
but is physically limited from below, δ > −1.

Non-linear corrections to the power spectrum can to some extent be modeled in the
framework of the halo-model [217, 224]. In this thesis, we will refer to the linear power
spectrum as Pδ or P lin

δ and the corrected version as P nl
δ .

1.3.3 Cosmic Microwave Background

The Universe is filled with a thermal photon background, whose phase-space distribution
corresponds to a blackbody temperature of 2.73K and peaks at a wavelength in the mi-
crowave regime, hence the name cosmic microwave background (CMB). The CMB is a
relic from ≈ 380 kyrs after the Big Bang, when photons and baryonic matter decoupled
and the mean free path of photons became larger than the horizon. The CMB photons
we receive today depict a redshifted snapshot (the redshift of the CMB is zCMB ≈ 1100)
of the spherical shell at the distance that light has traveled since the CMB was released.
This shell is referred to as last scattering surface.

The CMB is almost spatially isotropic; deviations from the uniform temperature distri-
bution are sourced by the small perturbations in the cosmic fluid at the time of decoupling
and only occur at order 10−5. These anisotropies are defined by

T (θ) ≡ T (θ)− T̄
T̄

. (1.22)
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Denoting the fluctuations by T might seem confusing, but is generally not problematic
since they are the primary focus of most CMB studies including the works in this thesis.5

The fluctuations in the cosmic microwave background are statistically isotropic and
follow a Gaussian distribution. The CMB power spectrum can be modeled theoretically in
perturbation theory and has been measured to high precision by a number of experiments
from the largest scales down to arcmin scales. Comparing the measured spectrum to
theoretical models provides the tightest constraints on most cosmological parameters today.
In Fig. 1.1, we show the temperature power spectrum as measured by the Planck satellite
together with the best ΛCDM fit to the data.
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Figure 1.1: CMB temperature power spectrum DTT
l = l(l+ 1)CTT

l /(2π) from the Planck
2015 data release [184]. The measurement is shown in blue dots and the ΛCDM fit, obtained
from the full temperature plus low l polarization data, is plotted in red. The lower panel
depicts the residuals.

Due to the distribution of hot and cold spots, the free electrons in the last scattering
surface are exposed to quadrupole moments in the intensity of incoming radiation. Incom-
ing photons interact with the electrons through Thomson scattering. This process polarizes
the light depending on the angle between incoming and outgoing radiation. The net effect
is a partial polarization of the CMB photons sourced by the presence of quadrupole mo-
ments in the temperature distribution around scattering electrons [187, 113, 26, 134](see
also [102] and references therein).

5Sometimes Θ(θ) is used instead of T (θ) to avoid confusion.
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The polarization of a monochromatic photon is characterized by the Stokes parameters

I = A2
x + A2

y Q = A2
x − A2

y (1.23)

U = 2AxAy cos (ξx − ξy) V = 2AxAy sin (ξx − ξy), (1.24)

where Ax and Ay are the components of the amplitude of the electric field (the z-axis
is chosen along the direction of propagation), and ξx, ξy their respective phase shift. I
is the total intensity of the incoming light, the parameters Q and U capture the linear
polarization, while V is needed to describe circular polarization. Since Thomson scatter-
ing produces only linearly polarized light, we can focus on Q and U to characterize the
polarization state of CMB photons.

Q and U get mapped onto themselves after a rotation by π and constitute the compo-
nents of a trace-less 2-tensor

Pab(θ) =
1

2

(
Q(θ) U(θ)
U(θ) −Q(θ)

)
, (1.25)

which can also be written as a complex number P = |P |e2iϕ = Q+ iU .
The polarization tensor can be decomposed into coordinate independent gradient and

curl components

Gradient: ∇2E = ∂a∂bPab Curl: ∇2B = εac∂b∂cPab, (1.26)

where εab is the totally anti-symmetric tensor in 2D [239, 205, 119]. Referring to the
gradient component as E-modes and to the curl componnents as B-modes is motivated by
the analogy to electrostatics.

In a Fourier basis, E- and B-modes are related to the Stokes parameters by

E(l) =
1

2

(
l2x − l2y

)
Q(l) + 2lxlyU(l)

l2x + l2y
(1.27)

B(l) =
1

2

2lxlyQ(l)−
(
l2x − l2y

)
U(l)

l2x + l2y
(1.28)

where Q(l) and U(l) are the Fourier coefficients of the Stokes parameter, and l = (lx, ly)
the two-dimensional wave vector conjugate to θ. Expanding in a Fourier basis instead of
a spherical harmonic basis is viable if one considers perturbations, whose angular extent
on the sky is small compared to the 2-sphere and is known as flat sky approximation.

Curl and gradient components differ in their transformation under parity inversions.
While the gradient component is invariant under parity inversions, the curl component
changes sign. One can show that scalar perturbations in the density only produce gradient-
like polarization patterns, while curl-like polarization requires tensor-like perturbations.
Tensor-like perturbations in the metric describe gravitational waves (see e.g. [43, 205]).
Inflation predicts a background of primordial gravitational waves, which - if present - is
below the detection limit of current experiments. We will therefore assume B(l) ≈ 0 [43]
in the remainder of this thesis.
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Many modern CMB experiments measure the incident radiation by means of transition-
edge bolometers, which are sensitive to the total incoming power only. For polarization
measurements, polarization filter are placed in front of the detectors. This effectively
halves the intensity of the incoming radiation. For the same integration time, a pure tem-
perature measurement will receive twice as many photons as a polarization measurement.
Consequently, the noise of the two measurements is related by [204]

(σNPol)
2 = 2(σNT )2. (1.29)

1.4 Weak gravitational Lensing by Large-Scale Struc-

ture

The deflection of light rays by metric perturbations is called gravitational lensing, for it
distorts the observed images of objects similarly to a lens. The formalism to describe
this effect is well established and has been covered in a number of review articles and
books [195, 12, 142, 188, 233].

The propagation of light rays is described by null geodesics. To quantify the effect of
metric perturbations on the photon’s path one can either solve for the spatial part of the
perturbed geodesic equation or consider the equation of geodesic deviation, that describes
how a light bundle evolves along the perturbed light path [191, 65, 200, 116].

In the Newtonian gauge, i.e. in the limit of small scalar perturbations to the background
metric [cp. Eq. (1.17)], the comoving separation x(θ, χ) of a light ray from a fiducial ray
is given by

x(θ, χ) = fK(χ)θ − 2

c2

∫ χ

0

dχ′fK(χ− χ′)
[
∇⊥ψ[x(θ, χ′), χ′]−∇⊥ψ(0)(χ′)

]
, (1.30)

where ψ(0)(χ′) denotes the Newtonian potential encountered by the fiducial ray, and fK(χ)θ
the separation of the light rays in the absence of any metric perturbations. Note that we
integrate from the observer to the source and that θ is the observed angular separation
at χ = 0. In the absence of lensing, the light would have traveled directly towards the
observer and the two emission points of the rays would have been observed under an
unlensed relative angle β. To clarify the meaning of these angles, a sketch can be useful
(Fig. 1.2)6: Consider an object at distance χ that emits two light rays from two different
positions separated by the comoving distance βfK(χ). One of these light rays is emitted
in the direction of the observer, the other in a slightly different direction. This second
ray gets deflected towards the observer because it encounters a lens, i.e. a potential ψ
at distance χlens. The lens changes its propagation direction by an angle α̂. After the
deflection, both light rays arrive at the observer at relative angle θ. The (naive) observer
assigns the comoving separation fK(χ)θ to the source positions of the rays.

6Where for simplicity we set ψ(0)(χ′) = 0 and consider only a single lens plane.



12 1. Introduction

Source Plane

Lens Plane

Observer

Figure 1.2: A sketch of the relevant angles in a lensing event: Two light rays (green and
black solid lines) are emitted at the source plane at distance χ and arrive at the observer
separated by an angle θ. At distance χlens the left ray has been deflected by the deflection
angle α̂. In the absence of lensing, the observer would receive the light from the two source
position under the angle β.

From the sketch in Fig. 1.2, we can easily deduce

fK(χ)θ − fK(χ)β = fK(χ− χlens)α̂

⇒ β = θ − fK(χ− χlens)

fK(χ)
α̂

β ≡ θ + α, (1.31)

where we have defined the reduced deflection angle α in the last equation.7 Comparing
Eq. (1.31) with Eq. (1.30), we find

α = − 2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)

[
∇⊥ψ[x(θ, χ′), χ′]−∇⊥ψ(0)(χ′)

]
. (1.32)

The integral in Eq. (1.32) sums up all the deflections due to perturbations along the
perturbed light-path and can, in the limit of small deflections, be solved iteratively. For
most applications, however, the zeroth order result, in which the deflections are integrated
along the unperturbed light path turns out to be an excellent approximation [211, 135, 66].
This so-called Born approximation is especially justified if one is only interested in the

7There exist different sign conventions for the reduced deflection angle in the literature. Since most of
this thesis is dedicated to the study of CMB lensing, we use the convention that is prevalent in this field.
In the other convention, which is more common in weak galaxy lensing, the last line in Eq. (1.31) would
read β ≡ θ −α.
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statistics of the deflection field, since homogeneity and isotropy requires the statistics to
be the same along any path.

With this approximation we derive at the final equation for the deflection angle

α(θ) = − 2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

∇θψ [fK(χ′)θ, χ′] , (1.33)

where we have rewritten the spatial derivative in terms of the angular derivative on the
sphere ∇⊥ = 1/fK(χ′)∇θ. Since all observations point towards a negligible curvature
K ≈ 0, we will specify all lens equations to a flat Universe in the remainder of this thesis.
Defining the lensing efficiency

W (χ′, χ) =
χ− χ′
χχ′

, (1.34)

Eq. (1.33) simplifies to

α(θ) = − 2

c2

∫ χ

0

dχ′W (χ′, χ)∇θψ (fK(χ′)θ, χ′) (1.35)

and we can identify the lensing potential

φ(θ) = − 2

c2

∫ χ

0

dχ′W (χ′, χ)ψ (fK(χ′)θ, χ′) . (1.36)

The lensing potential is therefore a weighted projection of all metric perturbations along
the line of sight and the deflection angle can be written as the angular derivative of this
2-dimensional scalar field

α(θ) = ∇θφ(θ). (1.37)

Lensing conserves the surface brightness of an object, such that we can map the surface
brightness distribution, Is, at the source plane to the surface brightness distribution, I, at
the observer

I(θ) = Is [β(θ)] . (1.38)

If the deflection changes only weakly over the extent of the source, this mapping can be
linearized

I(θ) = Is [θ +A(θ0)(θ − θ0)] , (1.39)

where the matrix A is given by

Aij =
∂βj
∂θi

= δij + ∂iαj = δij + ∂i∂jφ(θ), (1.40)

and we see that at first order the image distortions depends on the shear tensor of the
lensing potential.
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The trace of Eq. (1.40) is invariant under rotations, it describes isotropic stretching of
the source image and defines the convergence κ

tr(A) = 2− (∂2
1 + ∂2

2)φ ≡ 2 (1− κ) . (1.41)

In the trace free part of A, we can identify the shear components γ1 = 1
2
(∂2

1 − ∂2
2)φ and

γ2 = ∂1∂2φ

Aij −
1

2
δijtr(A) =

(
γ1 γ2

γ2 −γ1,

)
(1.42)

that can be combined to a complex field γ = γ1 + iγ2 = |γ|e2πϕ, which is mapped onto
itself by a rotation about π (a spin-2 field).

We will consider two different applications of weak lensing in a cosmological context in
this thesis: weak lensing of galaxies also known as cosmic shear and weak lensing of the
cosmic microwave background. The lensing formalism that was derived in the previous
section applies to both, but the characteristics of the sources and the lensing observables
differ.

1.5 Weak gravitational Lensing of the CMB

Similarly to photons emitted by galaxies, photons of the cosmic microwave get deflected by
large-scale structure [21, 40, 147, 35](see [142] for a review). In the presence of a deflection
field α(θ), the temperature fluctuation observed in direction θ, has originally been emitted
at position θ + α(θ)

T̃ (θ) = T [θ + α(θ)] , (1.43)

where we use a tilde to indicate lensed quantities.
To good approximation α(θ) = ∇φ(θ) with the CMB lensing potential

φ(θ) = − 2

c2

∫ χ∗

0

dχW (χ, χ∗)ψ(θχ, χ), (1.44)

where we have specialized Eq. (1.36) to χ = χ∗, the comoving angular diameter distance
to the last scattering surface.

The average lensing deflection is of the order of 2 arcmin, but its coherence scale, i.e. the
typical correlation length of the deflection field, is of the order of degrees. This scale can be
inferred from the CMB lensing power spectrum Cφφ, which in Limber approximation [146,
152] can be written as a weighted integral over the matter power spectrum Pδ(k = l/χ′, z).
The lensing power spectrum is depicted in Fig. 1.3. It peaks at scales L ≈ 50, whereas the
first peak in the CMB power spectrum is found at l ≈ 100.

In Fig. 1.4 we illustrate the lensing effect by showing realizations of an unlensed CMB
map, a lensing potential and the difference between the corresponding lensed and the un-
lensed CMB map. We do not show the lensed map since it would be hardly distinguishable
from the unlensed one.
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Figure 1.3: Power spectrum of the lensing deflection field in a standard ΛCDM Universe
computed from a linear (black) and a non-linear matter power spectrum model (red). The
curves were calculated with the publicly available CLASS code [23].
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Figure 1.4: Realizations of an unlensed CMB map (left panel) and a lensing potential
(middle panel) on a sky cut of size (8.5× 8.5)deg2. Lensing the CMB map with the
deflection field obtained from the lensing potential yields a lensed CMB field which is not
shown since it would be very difficult to distinguish unlensed and lensed realization by eye.
It is more instructive to show the difference between the lensed and unlensed field (right
panel). The maps were created with the quicklens package.9
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For small deflections, Eq. (1.43) can be expanded in the deflection angle

T̃ (θ) = T (θ) +∇iT (θ)αi(θ) +
1

2
∇i∇jT (θ)αi(θ)αj(θ) +O(α3)

= T (θ) +∇iT (θ)∇iφ(θ) +
1

2
∇i∇jT (θ)∇iφ(θ)∇jφ(θ) +O(φ3). (1.45)

In a Fourier basis this becomes

T̃ (l) = T (l) + δT (l) + δ2T (l) +O(φ3) (1.46)

with, for example, the first order term

δT (l) = −
∫
l′

[l′ · (l− l′)]T (l′)φ(l− l′). (1.47)

Similarly to the temperature, lensing changes the CMB polarization pattern [240]. The
deflected Stokes parameters are

Q̃(x) = Q [x + α(x)] , Ũ(x) = U [x + α(x)] . (1.48)

Writing Eq. (1.48) in a series expansion in harmonic space and in terms of the gradient
and curl components E and B, one finds that lensing transforms E-mode polarization into
B-mode polarization [240].

The perturbed lensed temperature covariance is at first order

〈T̃ (l)T̃ (l′)〉P (T ) = δD (l− l′)CTT
l − 2 [l′ · (l− l′)]φ(l− l′)CTT

l′ +O(φ2), (1.49)

which is non-diagonal. For a fixed realization of the lensing potential, the lensing deflections
correlate the temperature fluctuations at different scales. The fluctuations remain normally
distributed but become statistically anisotropic.

Averaging over realizations of the CMB lensing potential under the assumptions that
it follows an isotropic Gaussian distribution φ←↩ G(φ|Cφφ) and that unlensed temperature
and lensing potential are statistically independent, yields a statistically isotropic CMB
with power spectrum [203, 37]

C T̃ T̃
l = CTT

l + CδTδT
l + CTδ2T

l +O(φ4), (1.50)

where the two second order terms are given by

CδTδT =

∫
l′

[l′ · (l− l′)]
2
Cφφ
|l−l′|C

TT
l′ (1.51)

and

CTδ2T
l = −CTT

l

∫
l′
[l · l′]2Cφφ

l′ . (1.52)

9https://github.com/dhanson/quicklens

https://github.com/dhanson/quicklens
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These two terms almost cancel each other and what remains is only a change at the
percent level for l < 2000 [203]: Lensing conserves the absolute power in the CMB, but
slightly redistributed the power among different scales. A peak at a certain scale in the
power spectrum implies the abundance of many hot and cold spots with a size correspond-
ing to this scale. Lensing deflections can enhance or diminish the size of a spot. On
average, this effect shuffles power from the peaks to the surrounding scales. On very small
scales, where the CMB is well modeled as a smooth gradient, a lens can introduce extra
power, e.g., by lensing photons from the colder end of the gradient to the hotter end and
vice versa. This effect enhances the power in the tail of the power spectrum, which is
almost featureless due to the imperfect coupling of photons to baryons. These two effects
can be seen in the left panel of Fig. 1.5, where we overplot the unlensed temperature power
spectrum by the lensed power spectrum for a standard cosmology. The polarization power
spectra before and after lensing (assuming B(l) = 0) are shown in the right panel.
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Figure 1.5: CMB power spectrum in a standard ΛCDM Universe before and after lensing
by large-scale structure (computed with the publicly available CLASS code [23]). In the left
plot, we plot the unlensed temperature power spectrum in black and the lensed spectrum
in red. In the right panel, the unlensed E-mode power spectrum is plotted in black.
Lensing partially transforms polarization E-modes into B-modes. The lensed E- and B-
mode spectra are shown in green and blue.

Averaging over realizations of the lensing potential, also introduces higher order con-
nected correlation functions in harmonic space [238, 95, 120]. Up to second order, the
lensed temperature four-point function gets contributions from the following terms〈

T̃ T̃ T̃ T̃
〉
P (φ),P (T )

= 〈TTTT 〉+ 〈δTδTTT 〉+
〈
δ2TTTT

〉
+ ...+O(φ4). (1.53)

By evaluation of these terms10, one finds that the first and third term are completely
disconnected, i.e. they can be written as products of two-point correlation functions,

10This involves applying Wick’s theorem to the expectation values over the unlensed temperature.
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while the second term contains connected terms that form a non-vanishing trispectrum.
The effect of lensing on the average CMB fluctuations is therefore that it renders their
distribution non-Gaussian by introducing higher-order cumulants.

1.5.1 CMB Lensing Reconstruction

One can get an estimate of the lensing potential from the temperature mode-coupling [207,
96, 97]. Specializing Eq. (1.49) to l′ = l− L, one finds

〈T̃ (l)T̃ (l− L)〉P (T ) = δD (L)CTT
l − 2 [(l− L) · L] φ(L)CTT

|l−L| +O(φ2)

∝ φ(L) for L > 0 and at order O(φ). (1.54)

Based on this observation, one can formulate a quadratic estimator for φ

φ̂(L) = AL

∫
l

g(l,L)T̃expt(l)T̃
∗
expt(l− L), (1.55)

where the weight g(l,L) ≡ gl,L is determined by requiring the variance of the estimator to
be minimal

g(l,L) =
(L− l) · LCTT

|L−l| + l · LCTT
l

2C T̃ T̃
l,exptC

T̃ T̃
|L−l|,expt

(1.56)

and the normalization AL ensures that 〈φ̂(L)〉P (Texpt) = φ(L),

A−1
L = 2

∫
l

g(l,L)l · LC T̃ T̃
l , (1.57)

where T̃expt denotes the measured, noisy beam-deconvolved temperature fluctuations.
The two-point correlator of Eq. (1.55) can be used as an estimator of the lensing po-

tential power spectrum

(2π)2δD (L + L′)C φ̂φ̂
L = 〈φ̂(L)φ̂(L′)〉P (φ,T )

= A2
L

∫
l,l′
gl,L gl′,L′〈T̃expt(l)T̃expt(L−l)T̃expt(l

′)T̃expt(L
′−l′)〉P (φ,T ).

(1.58)

The estimator in Eq. (1.58) is sensitive to the lensed temperature four-point function. This
is non-zero, even in the absence of lensing. From Eq. (1.53) we see that this estimator gets
contributions from all even orders in φ. At second order, a total of six terms contribute to
the lensed temperature four-point function11, but not all of them, when inserted into the
estimator Eq. (1.58) give rise to the desired power spectrum Cφφ

L . As a consequence, the
estimator is biased. Its expectation value is not equal to the lensing power spectrum. These

11Applying Wick’s theorem to the expectation value over the unlensed temperature splits each term into
a sum of three terms.
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additional contributions, called reconstruction biases, can be evaluated in perturbation
theory and subtracted. They are commonly denoted N

(n)
L , where n indicates their order in

Cφφ
L

〈C φ̂φ̂
L 〉 = N

(0)
L + Cφφ

L +N
(1)
L +N

(2)
L +O(φ6). (1.59)

The N
(0)
L bias is present even in the absence of lensing. It measures the amount of chance

correlations in a Gaussian field that mimick the lensing effect. It is found to be equal to
the normalization AL. If we replace the unlensed power spectra in the weights gl,L by the
lensed one, AL contains the contributions to the four-point function from all disconnected
terms at arbitrary order12 and the N

(0)
L bias becomes an estimator for all disconnected bias

terms. The N
(0)
L bias dominates the signal over most scales. The N

(1)
L bias is sourced by a

contraction in the second term of Eq. (1.53) [121]. The N
(2)
L bias can be nicely alleviated

by replacing the unlensed power spectra by the lensed ones in Eq. (1.56) [143]. Fig. 1.6
depicts all lensing biases that have been taken into account in the CMB lensing analysis
of the Planck experiment.
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Figure 1.6: Noise Bias spectra for the combined temperature and polarization minimum
variance estimator (figure taken from the Planck 2015 results (XV) gravitational lensing
paper [183]). The fiducial ΛCDM power spectrum that has been used in the analysis is
plotted in black.

In a real survey, masking and complicated noise and beam properties introduce mode-
coupling, such that the expectation value of the quadratic estimator becomes non-zero
〈φ̂L〉P (Texpt) 6= 0 [75, 74]. In this case, one resorts to Monte Carlo simulations to estimate
the spurious mean-field. Also an adapted bias-hardened estimator [171] that results in a
smaller mean field has been proposed. For the power spectrum estimation Eq. (1.58), a

12depending on to what order the lensed temperature power spectrum is modeled
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data dependent estimator for the disconnected noise bias N̂
(0)
L [189, 171] captures the effect

of a statistically non-diagonal temperature covariance and reduces non-diagonal terms in
the lensing power spectrum covariance [193]. Further biases are sourced by unresolved

point sources (N
(PS)
L ) and residual effects such as binning or errors in the calculation of

N
(1)
L (N

(MC)
L ). N

(MC)
L is determined from the comparison of reconstructed power spectra

(corrected for all known biases) to the input power spectra in Monte Carlo simulations.
In Fig. 1.7 we show a plot form the current Planck lensing paper depicting the current
experimental status of lensing power spectrum measurements.
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Figure 1.7: Reconstructed lensing potential power spectrum from the latest Planck data
release (Figure taken from the Planck 2015 results (XV) gravitational lensing paper [183]).
Grey boxes indicate the power spectrum as estimated from a combined minimum variance
estimator for temperature and polarization data [183], the temperature-only estimation
that was published in an earlier release [178] is shown in orange. Results from other
ground-based experiments (South Pole Telescope (SPT) and Atacama Cosmology Tele-
scope (ACT)) are plotted in green and blue [231, 45]. The fiducial ΛCDM power spectrum
that has been used in the analysis is shown in black.

The estimator in Eq. (1.58) can be evaluated in complete analogy for all non-vanishing
four-point correlators that combine E-, B- and temperature fluctuations, e.g. (EE,EE)
or (TE,TE), with their own respective reconstruction biases [101, 173]. The resulting
estimators can be added under the constraint of minimum variance to form a combined
estimator.
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1.5.2 Observational status and Relevance for this Thesis13

The CMB lensing signal was first detected by cross-correlating WMAP data with other
tracers of large-scale structure [216, 89]. Measurements of the lensing power spectrum
from CMB temperature data were then reported successively by the Atacama Cosmology
Telescope (ACT) collaboration [46], the South Pole Telescope (SPT) collaboration [231],
and the Planck Collaboration [178].

The first polarization-based measurements of the CMB lensing power spectrum have
recently been carried out with POLARBEAR [228], SPTPol [220], Planck [183] and ACT-
Pol [213]. The ACTPol, SPT, and POLARBEAR collaborations have also reported detec-
tions from cross-correlating the reconstructed polarization lensing with a measurement of
the cosmic infrared background [73, 3, 232]. With improving detectors and larger detector
arrays, measurements of the CMB lensing effect have tremendously increased in precision;
This rapid progress is expected to continue with future experiments (e.g. CMB-S4 or the
Keck array [1, 221]). Exploiting this future data demands for an increasing accuracy of
reconstruction techniques and theoretical modeling of the measurements. Improving the
the theoretical modeling of CMB lensing analyses is the objective of Chapters 2 and 3.

1.6 Effect of weak Lensing by Large-Scale Structure

on Galaxy Shapes

Lensing distorts the images of observed galaxies. Since the underlying galaxy shape is
unknown, the effect can only be measured statistically: if a large enough number of galaxies
get lensed by the same structure, their shapes will be correlated. This correlation can be
measured and thus information about the lens properties inferred [22, 114](see e.g. [122,
188, 93] for recent reviews).

The observed shape of galaxies is typically modeled as an ellipse, that is defined by its
major and minor axis, a and b, and its orientation with respect to a chosen coordinate axis
given by an angle ϕ. The source ellipticity can be expressed in terms of these quantities
as

εsource =

(
a− b
a+ b

)
e2πϕ. (1.60)

Lensing changes the source ellipticity [131, 200, 115, 199]

εobs =
εsource + g

1 + g∗εsource

, (1.61)

where g is called the reduced shear and the asterisk denotes complex conjugation. g is
defined by

g =
γ

1− κ. (1.62)

13adapted from [25]
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For weak distortions |γ| � 1, κ � 1, the reduced shear is approximately the shear
g ≈ γ [135] and Eq. (1.61) becomes

εobs ≈ εsource + g. (1.63)

We will use this approximation in Chapter 4. If the intrinsic galaxy shapes are uncorrelated
〈εsource〉 = 0, averaging over a large enough number of galaxies allows to measure the shear
on the scale that corresponds to the area over which the average was performed. With
an average intrinsic ellipticity of σε ≈ 0.3 and shears of the order of a few percent, weak
galaxy lensing surveys require large number counts to yield signal-to-noise ratios > 1.

The lensing potential and its moments for weak galaxy lensing are obtained by replacing
the lensing kernel [Eq. (1.34)] by an effective kernel

W (χ̄, χ′) =

∫ inf

χ′
dχ′′ n(χ′′)

χ′′ − χ′
χ′

, (1.64)

where n(χ′′) = n(z) dz
dχ′′

is the redshift distribution function of the source galaxies. It can be
obtained from photometric measurements of the galaxies’ redshifts. Similarly to the CMB
lensing power spectrum, the cosmic shear power spectra (Cγγ

l = Cκκ
l = [l(l + 1)]2Cφφ

l ) can
be modeled as a weighted integration over the matter power spectrum (only the weight
changes due to the different integration kernel [Eq. (1.64)]) [114].

Galaxy lensing probes the integrated matter distribution over a wide range of scales and
redshifts (z . 2). An accurate theoretical modeling of the galaxy lensing effect requires
to take into account non-linear effects [106]. The importance of non-linear corrections
to the lensing power spectrum can be estimated by replacing the linear matter power
spectrum by the non-linear one in its calculation. This comparison is shown in Fig. 1.8.
It implies that non-linear effects start to become important at relatively large scales (e.g.
l & 50). In addition, non-linear structure formation renders the statistics of the deflection
field significantly non-Gaussian. Measuring the convergence bispectrum in addition to the
power spectrum, for example, can help breaking parameters degeneracies [223].

Redshift- and thus time-resolution in weak galaxies measurements can be obtained by
dividing the galaxy sample into redshift bins and computing the auto- and cross-spectra
within and between these bins [208, 94] (Fig. 1.8 shows power and cross spectra for two
different bins). Alternatively, one can measure the complete 3D power spectrum [79, 34,
128]. These methods can yield additional constraints on certain parameters but reach lower
signal-to-noise levels due to the lower galaxy counts per spectrum and mode. They also
rely on sufficiently accurate redshift measurements [155].

1.6.1 Observational Status and Relevance for this Thesis14

First firm statistical detections of cosmic shear were reported in 2000 by four different
groups [11, 234, 118, 236]. Since then, the field has seen a tremendous increase in the

14adapted from the introduction in [24]
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Figure 1.8: The convergence auto- and cross-spectra for two redshift bins (z=[0.5,0.7],
z=[0.9,1.1]) in a ΛCDM cosmology. Dashed lines were computed with a linear matter
power spectrum, solid lines with a non-linear power spectrum model [224]. At most scales
non-linear corrections must be taken into account for a correct interpretation of a measured
lensing signal. The figure was taken from the cosmic shear review of Martin Kilbinger [122]

amount and quality of lensing data [198, 83, 47, 229, 107] as well as a notable improvement
in analysis techniques [167, 129, 166, 243, 59, 194, 139, 15, 82, 124]. Cosmological param-
eters have been inferred from these data sets by comparing the power spectrum of the fully
projected 2D shear field (or related quantities) to theoretical predictions [161, 110, 16, 123]
as well as by assessing the shear auto- and cross-correlations in a number of redshift
bins [196, 15, 87, 109, 81, 2]. Several authors have also investigated the additional con-
straining power that can be achieved by incorporating third-order statistics and/or shear
peak counts and correlations [18, 223, 209, 48, 157, 158, 159, 85, 150, 112], which helps to
break parameter degeneracies.

The full information content, however, lies in the three-dimensional non-linear shear
field. 3D weak shear analysis methods have been proposed by a number of authors [79, 34,
128] and were recently applied to data from the Canada France Hawaii Telescope Lensing
Survey (CFHTLenS) [127]. Furthermore, the measured shear field can be used for 3D
reconstructions of the underlying density field. This can then be directly compared to
models of structure formation and simplifies the cross correlation with other tracers of
matter. Algorithms that invert the lens equation to obtain the density have been worked
out by a number of authors [117, 100, 226]. Since this inversion is under-constrained,
it requires some regularization method or choice of prior on the density field. Most of
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the algorithms employ a Wiener filter (c.p. Section 1.2.1), which corresponds to a normal
(Gaussian) prior, that can be complemented with information about galaxy clustering [214,
222].

In Chapter 4 we extend the work on tomographic reconstruction of the 3D matter distri-
bution from weak galaxy lensing measurements and present a fully Bayesian reconstruction
algorithm that uses a lognormal prior on the density field.

1.7 Why study weak Lensing by Large-Scale Structure

The study of weak lensing by large-scale structure is one of the most promising tools for
obtaining a better understanding of the late-time Universe. Here, we briefly summarize
the manifold potentials of weak lensing measurement in terms of constraining cosmological
parameters in the ΛCDM model as well as possible extensions to it.

Measurements of weak lensing contain valuable information about the nature of dark
energy, since lensing probes the amount of clustering at relatively low redshifts when dark
energy starts to dominate. The primary effect of dark energy is to supress structure
formation and thus the lensing signal. For example, CMB lensing can tighten constraints
on the dark energy equation of state parameter w [215], but has limited potential for
distinguishing between different dark energy models [30, 29]. This is because the CMB
lensing kernel peaks at relatively high redshifts z ≈ 2 and measures the integrated effect
of a dark energy component. This is not the case for cosmic shear. Tomographic shear
measurements allow to measure the clustering of matter at different redshifts and they can
yield competative bounds on a possible time-variation of dark energy [98, 218, 104].

As a probe of structure formation, the lensing power spectrum is very sensitive to to a
combination of the matter density Ωm0 and its clustering amplitude σ8 [106, 18, 215].

Since measurements of galaxy lensing probe a wide range of scales, well down into
the non-linear regime, they can also be used to constrain models of non-linear structure
formation. Comparing the density distributions of the total matter inferred from lensing
to the distribution of visible (i.e. with light interacting) matter provides exciting insights
into the interplay of baryonic and dark matter components [76, 58]. It might thus shed
light on the missing baryon problem (the fact that the directly observed density of baryonic
matter is below the mean density inferred from indirect measures)(see e.g. [154]).

Lensing is also sensitive to a wide class of modified gravity models. Many of them can
be parametrized such that the potentials Φ and Ψ in Eq. (1.17) differ. Light deflection
is then governed by a combination of both potentials, while geodesics of non-relativistic
matter are only sensitive to Ψ. This difference can be used to search for deviations from
general relativity by testing the consistency of lensing measurements with other probes of
clustering such as, e.g. redshift space distortions [242, 105, 6].

Mostly through the lensing efficiency W [Eq. (1.34)], the lensing signal is also sen-
sitive to the spatial geometry [215]. In fact, adding gravitational lensing to the CMB
likelihood significantly tightens the constraints on curvature from ΩK = 0.052+0.03

−0.02 to
ΩK = −0.005+0.009

−0.007 [183].
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Another yet poorly constrained constituent of the total energy budget are neutrinos.
There exists experimental evidence of oscillations between neutrinos flavors, which implies
that neutrinos are massive (see e.g. [156]). However, measurements of the oscillations only
provide constraints on the difference between squared masses but not on an absolute scale.
This can be inferred from cosmological observations: In the early Universe massive neu-
trinos start out as relativistic particles. As such, they contribute to the total radiation
density. As the Universe expands, they get redshifted, become non-relativistic and start to
behave like ordinary matter. The point of this transition depends on their mass. Relativis-
tic particles have a different influence on structure formation than non-relativistic ones.
Different neutrino masses thus lead to different structure formation histories which can
be probed via weak lensing signals. Indeed, weak lensing turns out to be a very powerful
probe for neutrino mass estimation [140, 67, 68]. To date, the tightest bound on the sum
of neutrino masses has been reported by the Planck collaboration [183].
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Chapter 2

A Maximum a Posteriori estimator
for CMB Lensing

In this chapter we present a fully Bayesian approach to CMB lensing reconstruction, a
maximum a posteriori (MAP) estimator for the lensing potential.

2.1 Introduction

The quadratic estimator (c.p. Section 1.5.1 and references therein) for lensing reconstruc-
tion from cosmic microwave background data is a well established tool that is also relatively
easy to implement and has been used for many CMB lensing measurements. However, also
the limitations of this estimator are well known: In the presence of masks and complicated
beam and noise properties, it yields a spurious mean field, which has to be estimated from
Monte Carlo simulations. The corresponding four-point estimator for the lensing power
spectrum must further be corrected for a number of bias terms and the evaluation of these
terms can be costly and inexact.

A maximum a posteriori estimator provides an elegant framework to consistently in-
clude masks, as well as noise and beam properties. This increases the computational cost of
a MAP estimator compared to the standard quadratic estimator itself, but already includes
some of the costly corrections to the latter. Since it is a fully probabilistic estimator, it
also allows to consistently take into account uncertainties in the data model. A MAP esti-
mator is also well suited for combining different data sets of tracers of large-scale structure.
Finally, an alternative approach to the quadratic estimator is desirable, since it provides
an important cross-check.

An optimally reconstructed map of the lensing potential is interesting, in particular,
for delensing the measured CMB maps. From the unlensed maps one can infer tighter
constraints on primordial physics, especially on the amplitude of primordial gravitational
waves [62]. The gravitational wave signal is believed to have left imprints on the CMB
polarization by the production of B-modes [205]. These primordial B-modes get partly
obscured by the lensing induced B-modes [99]. The delensed CMB maps are obtained as
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a biproduct of the MAP estimator for the lensing potential. Maps of the lensing potential
can also be useful for cross-correlation measurements with other tracers of the dark or
baryonic matter distribution [88, 149, 20, 125].

The maximum a posteriori estimator was first suggested by Hirata & Seljak in 2003
[91], but a numerical implementation for the application to real data sets with anisotropic
noise, an anisotropic beam function and sky cuts, had not been published when the work
on this thesis started. While taking first steps towards an implementation on the full sky,
we were informed about direct competition by two groups and a first implementation of
a temperature-based reconstruction in the flat sky approximation appeared soon after [8].
Only recently, the second group has published results of their implementation on the flat
sky [33]. Due to this direct competition, it was decided to subordinate the work on this
lensing reconstruction technique in favor of the other research projects that are part of this
thesis.

We present here a rigorous derivation of the MAP estimator in the language of Infor-
mation Field Theory (IFT) along with a description of its numerical implementation and
the associated challenges. The abstract notation of IFT that we use is independent of
the coordinate basis in which the problem is implemented. Depending on the experiment,
CMB data can either require an implementation in flat or spherical coordinates. Since the
method was initially aimed for the application to Planck data, we will primarily comment
on the more complicated implementation on the sphere.

We start by introducing the operator notation used in this chapter in Section 2.2, before
we turn to the derivation of the MAP estimator in two equivalent formulations in Section
2.3. In Section 2.4, we outline the necessary steps for an implementation on the sphere,
starting with the lensing response operator in Section 2.4.1, followed by comments on the
numerical caveats with spherical harmonic transforms in Section 2.4.2 and a description of
the minimization algorithm that is needed to evaluate the estimator in Section 2.4.3. We
conclude in Section 2.5.

2.2 Lensing of the CMB in Operator Notation

As outlined in Section 1.5, lensing corresponds to a remapping of the CMB temperature
field. A measurement of the lensed CMB yields a data vector d that is a discrete set of
temperature values di. Each of these data points contains the lensed, beam-convolved and
pixelized temperature plus a statistically independent noise contribution ni

di = T̃ conv
i + ni. (2.1)

Following the notation introduced in Section 1.2, we express the lensing operation in
terms of a linear response operator, which we denote Lφ. It encapsulates the response of
the continuous lensed temperature field T̃ to an unlensed field T for a fixed realization
of the lensing potential φ, T̃ = LφT . Similarly, one can write the beam convolution as
an operator B, that becomes diagonal in a harmonic basis if the beam is isotropic, and
the pixel window function as an operator P, which in components reads Pix : d(x) → di.
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Realistic survey data will further have masked areas. The mask can be expressed as an
operator M in configuration space, defined by

Mi =

{
0, if i in masked region

1, otherwise.
(2.2)

With these definitions, the full data model for CMB lensing reads

d = MPBLφT + n. (2.3)

For a continuous temperature field, the lensing operation can be written as an integration

T̃ (x′) =

∫
Ω

dyLφ (x′,y)T (y) , (2.4)

with

Lφ(x′,y) = δD [x′ +∇φ(x′)− y] . (2.5)

and the adjoint response is defined by

[
Lφ
]†

(y,x′)f(x′) =

∫
dx′ δD [y − x′ −∇φ(x′)] f(x′)

=

∫
dx′ δD [y − y′(x′)] f(x′)

=

∫
dy′

∣∣∣∣∂y′(x′)

∂x′

∣∣∣∣ δD (y − y′) f
[
y′
−1

(x′)
]

(2.6)

where we have defined the unlensed coordinate y′ = x′ +∇φ(x′) and its inverse

y′
−1

[y′(x′)] = x′. (2.7)

Integration over y′ instead of x′ introduces the Jacobi determinant∣∣∣∣∂y′(x′)

∂x′

∣∣∣∣ =

∣∣∣∣1 +
∂∇φ(x′)

∂x′

∣∣∣∣ = |δij +∇i∇jφ(x′)| = |A(x′)| , (2.8)

where we have identified the lensing distortion matrix A [c.p. Eq. (1.40)].

In the following, we will use R without the label φ to denote the complete lensing
response, i.e. the lensing operation followed by the beam convolutions and the window
function.1

R ≡ PBLφ (2.9)

1We ignore the mask for notational simplicity, noting that including it does not change the general
structure of the terms.
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2.3 CMB Lensing Posterior

Different to the Wiener filter problem [c.p. Section 1.2.1], we are not only interested in
inferring the underlying unlensed temperature field T , but primarily the lensing potential
φ, which enters the lensing response. The CMB lensing posterior is therefore the joint
probability of unlensed temperature and lensing potential given a CMB observation d. By
application of Bayes theorem [Eq. (1.1)], this posterior can be expressed by the lensing
likelihood times prior distributions of temperature and lensing potential.2

P (φ, T |d) ∝ P (d, φ, T ) = P (d|φ, T )P (φ, T ) = P (d|φ, T )P (φ)P (T ). (2.10)

The posterior distribution of the lensing potential alone is then found by marginalizing
Eq. (2.10) over all realizations of the unlensed CMB

P (φ|d) ∝
∫
DT P (d|φ, T )P (T )P (φ). (2.11)

Evaluating this integral and maximizing the resulting posterior distribution requires the
choice of suitable priors for the lensing potential and the unlensed temperature.

2.3.1 Prior Distributions and Noise Model

For both fields, unlensed temperature and lensing potential, Gaussian priors are well jus-
tified:

1. The lensing potential encapsulates the integrated effect of many metric perturba-
tions along the line of sight. These metric perturbations seem to be well modeled by
an initially Gaussian field, that also stays Gaussian over many scales and for most
times. On small scales (k & 0.16 Mpc−1 at z = 0), the metric perturbations acquire
a non-Gaussian structure due to gravitational interactions. These Non-Gaussianities
should be effectively Gaussianized by the integration. Deviations from a normally
distributed lensing potential are expected to become detectable in future CMB exper-
iments (see Chapter 3 and [169]). For future high-precision data and for estimates of
the lensing potential power spectrum, it might therefore become necessary to model
the effect of non-linear structure formation on P (φ). It is, however, unlikely that the

2To obtain the last expression in Eq. (2.10), we have assumed that lensing potential and temperature
fluctuations are statistically sufficiently independent from each other, P (φ, T ) = P (φ)P (T ). This assump-
tion is justified over a wide range of scales. Correlations are introduced on the largest scales (l < 100) by
the integrated Sachs-Wolf effect (iSW) [206] and on very small scales (l > 2000) due to the thermal SZ
effect of galaxy cluster [41, 132]. In a Planck-like experiment most of the observed lensing effect comes
from structures larger than typical cluster sizes. In lensing experiments that obtain significant lensing
information from scales below l ≈ 2000, the SZ contribution to the CMB map can be isolated by a suitable
multi-frequency measurement. The iSW-induced correlations on the largest scales drop off very quickly
and are strongly affected by cosmic variance, which allows to safely ignore them. In the future, both effects
could be made part of a general response that incorporates all modifications to the CMB field that are
caused by the structures along the line of sight.
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maximum of the posterior, which we aim to reconstruct, will be significantly affected
by these corrections. We also note that if the data is constraining enough, it will
inform the resulting posterior P (φ|d) about non-Gaussianities.

2. Non-Gaussianities in the temperature fields can arrive from primordial and late-time
physics. At late times these are sourced by second order effects such as the SZ- or
iSW-effect. They also arises due to non-linearities in the Boltzmann equations that
govern the evolution of the more or less tightly coupled fluids in the Universe [13].
Being second order, these effect are expected to be small on the scales of interest.
In addition, they can be modeled and corrected for. Primordial non-Gaussianities
could be imprinted by inflation (the exact shape depends on the inflationary model)
but have so far not been detected [181, 179].

Given these arguments, we will model the lensing potential as an isotropic and homogeneous
Gaussian field, with covariance Cφφ

LL′ ≡ 〈φ(L)φ∗(L′)〉 = (2π)2δD(L − L′)Cφφ
L in harmonic

space, where Cφφ
L denotes the CMB lensing power spectrum introduced in Section 1.5.

Note that we use the same symbols for the full covariance and the power spectrum to keep
the notation simple. The Gaussian prior for the lensing potential φ reads accordingly

P (φ) = G(φ|Cφφ) =
1√
|2πCφφ|

exp

[
−1

2
φ†
(
Cφφ

)−1
φ

]
. (2.12)

Similarly, we take a Gaussian prior for the unlensed temperature, with covariance
CTT

ll′ ≡ 〈T (l)T ∗(l′)〉 = (2π)2δD(l− l′)CTT
l .

P (T ) = G(T |CTT ) =
1√
|2πCTT |

exp

[
−1

2
T †
(
CTT

)−1
T

]
. (2.13)

Finally, we also assume the noise to be Gaussian (which is a fair approximation after
non-Gaussian foregrounds have been subtracted or masked)

P (n) = G(n|N) =
1√
|2πN |

exp

[
−1

2
n†N−1n

]
, (2.14)

where the noise covariance N is typically anisotropic and diagonal in data space.

2.3.2 Signal Space Posterior

When both fields of interest are kept fixed, the likelihood is entirely determined by the
statistics of the noise

P (d|φ, T ) = P (n = d−RT |φ, T ) = G(d−RT |N). (2.15)

Inserting this and our priors on the temperature and deflection potential [Eqs. (2.13) and
(2.12)] into the expression for the posterior, Eq. (2.11), we arrive at

P (φ|d) ∝
∫
DT G(T |CTT ) G(φ|Cφφ) G(d−RT |N). (2.16)
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By quadratic completion, the expression in the integral can be reformulated to 3

P (d, φ) =

∫
DT P (d|φ, T )P (T |φ)P (φ) (2.17)

∝ exp

{
−1

2

[
(T −Dj)†D−1(T −Dj)− j†Dj + φ†

(
Cφφ

)−1
φ
]}

, (2.18)

where we have defined the information propagator D =
[(
CTT

)−1
+R†N−1R

]−1

and the

information source j = R†N−1d in analogy to Section 1.2.1. In this way, we see that the
maximum of the probability P (d, T |φ) ∝ P (T |d, φ), i.e. the most probable realization of
the unlensed temperature given φ, is the Wiener filter solution for the unlensed temperature

max [P (d, T |φ)] = max [P (T |d, φ)] = m = Dj. (2.19)

The marginalization over T in Eq. (2.17) can be easily performed after a change of variable
(T −Dj)→ T and results in

P (d, φ) ∝
√
|D| exp

{
−1

2

[
φ†
(
Cφφ

)−1
φ− j†Dj

]}
. (2.20)

From this we can read the expression for the negative log posterior

− lnP (d|φ)=̂− 1

2
Tr(lnD)− 1

2
j†Dj +

1

2
φ†
[
Cφφ

]−1
φ. (2.21)

To find the most likely realization of the lensing potential, we solve for the fixed point of
Eq. (2.21) by variation with respect to φ

− δ

δφ
lnP (d|φ) =

1

2

(
Cφφ

)−1
φ− 1

2
j†D,φ j − 2j†Dj,φ−

1

2
Tr(D,φD

−1)
!

= 0. (2.22)

This expression involves functional derivatives of the information propagator and of the
information source with respect to φ, indicated by a comma. Both of these derivatives can
be expressed in terms of the functional derivative of the response operator. To see this, we
first write

D,φ = −DD,−1
φ D (2.23)

to shift the derivative on the inverse propagator, for which we have an analytic expression,
and find

D−1,φ = (R†N−1R),φ = R†,φN
−1R +R†N−1R,φ . (2.24)

Likewise the derivative of the information source is

j,φ = (R†N−1d),φ = R†,φN
−1d. (2.25)

3In the following, we will only keep φ dependent terms. Terms independent of the lensing potential
only change the normalization of the joint probability P (d, φ).
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To evaluate Eq. (2.24) and Eq. (2.25) we require an analytic expression for the functional
derivative of the response operator. The detailed derivation can be found in Appendix A,
here we just quote the result

δ

δφ(a)
[Rs]j = Pjy′By′x′

[
∇x′δD(x′ − a) ·

[
Lφ∇s

]
(x′)

]
, (2.26)

where s is a field in signal space and x′ the coordinate of the lensed field s̃(x′) = s[x′ +∇φ(x′)].
The dot indicates a point-wise product between two fields meaning that there is no con-
traction over x′ in the expression in square brackets.

With this derivative at hand, we can expand the terms in Eq. (2.22) that belong to the
likelihood

− δ

δφ
lnP (φ|d) =−∇

[
B†P †

(
N−1

)†
RDj · Lφ∇ (Dj)

]
+ 2∇

[
Lφ
†∇ (Dj) ·B†P †

(
N−1

)†
d
]

−
〈
∇
[
B†P †

(
N−1

)†
RDr · Lφ∇ (Dr)

]〉
G(r|D)

=∇
[
B†P †

(
N−1

)†
RDj · Lφ∇ (Dj)

]
−
〈
∇
[
B†P †

(
N−1

)†
RDr · Lφ∇ (Dr)

]〉
G(r|D)

. (2.27)

The form of the last term, the derivative of the trace, requires some explication. To obtain
it, we first rewrite

Tr(D−1D,φ) = −Tr(D−1DD−1
,φ D)

= −Tr(D−1
,φ D), (2.28)

and then use the identity
Tr(A) = 〈xAX−1 x〉G(x|X), (2.29)

for a Gaussian variable x with covariance X. In this specific case, we choose the Gaussian
variable r = (T −Dj) which has the Wiener filter covariance D and get

Tr(D−1
,φ D) = 〈r†D−1

,φ DD
−1r〉G(r|D) = 〈r†D−1

,φ r〉G(r|D). (2.30)

This form is convenient, since it can be evaluated numerically by sampling from G(r|D).

2.3.3 Data Space Posterior

Similarly to the Wiener filter, the posterior can be formulated in data space (c.p. Section
1.2.1). To arrive at the expressions corresponding to Eqs. (2.17) and (2.22) one starts out
by writing the Gaussian likelihood G(d|Cdd) in data space, with data covariance

Cdd = RCTTR† +N. (2.31)
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Using the same Gaussian prior for the lensing potential as before, this results in a joint
negative log posterior of the form

− lnP (φ, d) =
1

2
d†
(
Cdd
)−1

d+
1

2
ln |Cdd|+ 1

2
ln |Cφφ|+ 1

2
φ†
(
Cφφ

)−1
φ. (2.32)

The functional derivative of (2.32) with respect to φ can be evaluated in an analogous
manner to the signal space expression

−δ lnP (d, φ)

δφ
=∇

[
Lφ∇CTTR†(Cdd)−1d ·B†P †(Cdd)−1d

]
− 1

2

(
Cφφ

)−1
φ

−
〈
∇
[
Lφ∇CTTR†

(
Cdd
)−1

d ·B†P †
(
Cdd
)−1

d
]〉
G(d′|Cdd)

(2.33)

where we have applied the identity in Eq. (2.29) with x = d′ and X = Cdd to express the
derivative of the trace as an expectation value. The last term corresponds to the mean
field contribution known from the quadratic estimator (c.p. Section 1.5.1).

Note that both formulations of the posterior contain a Wiener filter estimate of the
unlensed CMB [c.p. Eq. (1.8) and Eq. (1.9)], which must be evaluated for the current
estimate of the lensing potential. By this, one obtains the unlensed CMB maps as a
byproduct of the minimization with respect to the lensing potential.4

2.3.4 Generalization to Polarization

So far, we have only referred to lensing of temperature fluctuations in this chapter, but
additional lensing information is also available through polarization measurements and a
generalization of the MAP estimator to include polarization data is possible [92]. This
expands the data vector to d → dT , dU , dQ, where dT is the temperature fluctuation data
and dQ and dU are the vectors containing the measured Stokes parameters of the incoming
photons (c.p. Section 1.3.3). In harmonic space, the polarization can be conveniently de-
composed into a gradient component E that is invariant under a parity transformation and
a curl component B that changes sign under reflection about one coordinate axis. Because
of their different transformation properties, E and B polarization fields are uncorrelated
by construction (if there are no significant parity violating interactions) and so are the
temperature and the B field. This simplifies the covariance matrix of their joint Gaussian
prior distribution to

Cl =

CTT CTE 0
CET CEE 0

0 0 CBB

 , (2.34)

4Note that this Wiener Filter estimate of the unlensed CMB should be used with caution, since it is
not informed about the uncertainty of the current estimate of the lensing potential.
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which is block diagonal with CXY denoting the diagonal covariance of the fields X and Y .
Perfectly isotropic noise would in addition result in a simple joint noise distribution

Nl =

NTT 0 0
0 NEE 0
0 0 NBB

 , (2.35)

where NXX are the diagonal covariances of the Gaussian random detector noise. This
very simplistic noise model is often found in the literature but should only be used for
crude signal to noise estimates. In a real experiment the noise structure is typically more
complicated and the instrumental effects like imperfect polarization calibration as well as
the incomplete sky coverage can cause leakage between T , E and B modes.

2.4 Implementation on the Sphere

A numerical implementation requires a discretization of the fields. Since the average deflec-
tion angle is of the order of ∼ 2 arcmin, an accurate lensing scheme requires highly resolved
CMB maps with an average pixel size of at most 1 arcmin2. For a full sky experiment this
resolution implies a map with at least ∼ 108 pixels occupying ∼ 1 Gb in memory.

For our implementation on the full sky we make use of the HEALPix pixelization scheme
and software package [61]. This package was specially developed for the needs of CMB
analyses and includes many tools for map manipulation and spherical harmonic transforms.
A HEALPix map divides the sphere into pixels of equal area with pixel centers arranged
on rings of constant latitude. An increase in resolution is achieved by dividing each pixel
into four sub-pixels. The resolution of an healpix grid is characterized by the number
nside=2n, where n is a natural number. Table 2.1 summarizes the number of pixels, the
resolution and maximum spherical wavenumber l for HEALPix nsides that yield maps with
approximately arcmin resolution.

nside number of pixels resolution [arcmin] maximal l memory [Mb]
1024 1.3e7 3.44 3071 140
2048 5e7 1.71 6143 550
4096 2e8 0.86 12287 2200

Table 2.1: Properties of HEALPix maps with different nsides.

2.4.1 Implementation of the Lensing Response

A discretization of the lensing response Lφ poses the problem that a temperature at pixel
i will generally not be shifted to the center of another pixel, i.e., the grid of new positions
will be irregular. Mapping the lensed temperature again onto the pixel grid requires an
interpolation scheme. This scheme should not introduce artificial features to the lensed
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field and its statistics on the scales of interest. Also it should be sufficiently fast to apply
and memory efficient.

We have further shown in Section 1.5 that the lensed temperature power spectrum is a
convolution of the unlensed temperature with the lensing potential power spectrum - this
is because lensing redistributes the power of the CMB field between different scales. To get
accurate lensed power spectra to a scale L, we require a CMB map with lmax = L + ∆L,
where ∆L is determined by the width of the convolution kernel (at first order this the
lensing power spectrum itself Cφφ

|l−L|) and the desired accuracy at L. Typical values for ∆L
are 200− 250.

From these two arguments it is easily deduced that an accurate lensing schemes requires
maps of higher resolution than the scales of interest together with an efficient interpolation
scheme. A naive pixel-wise remapping scheme requires ∼ 16 times more pixels than the
base map corresponding to 4 times the base nside. In Fig. 2.1 we show results of a naive
pixel-wise remapping for different nsides and list typical application times. For a CMB
lensing reconstruction the lensing operator and its transpose have to be evaluated of the
order of a few hundred times and constitute the computational bottleneck. To run a
reconstruction within acceptable time scales on a cluster, parallelization of this operation
is unavoidable.

Many lensing algorithms that meet the above criteria have been proposed in the litera-
ture for both flat and curved coordinates [44, 14, 151, 141, 70, 136] and are to some extend
publicly available.5

Lensing Deflection on the Sphere

Taking the gradient of the lensing potential φ on the sphere yields the deflection vector α,

∇xφ(x) = α(x) = α cos δ eθ + α sin δ eϕ, (2.36)

that we have decomposed into the local spherical coordinate basis in the last expression.
The temperature at unlensed position x = (θ, ϕ) is shifted along a geodesic on the sphere
defined by the direction of the tangent vector α and with arc length α = |α|. The endpoint
x′ = (θ′, ϕ+ ∆ϕ) of this shift can be found by applying spherical trigonometry. From the
spherical cosine rule, we get [44, 36]

cos(θ′) = cos(θ) cos(α) + sin(θ) sin(α) cos(δ) (2.37)

and from the spherical sine rule

sin(∆ϕ) = sin(α)
sin(δ)

sin(θ′)
. (2.38)

5e.g. http://cosmologist.info/lenspix,
https://github.com/dhanson/quicklens,
http://www2.iap.fr/users/lavaux/software/flints.html

http://cosmologist.info/lenspix
https://github.com/dhanson/quicklens
http://www2.iap.fr/users/lavaux/software/flints.html
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Figure 2.1: Relative differences between lensed and unlensed temperature power spectra.
The lensing operation was performed by a naive pixel to pixel remapping, i.e. nearest grid
point interpolation. We show results for different map resolutions (characterized by the
nside parameter) and list the application times of the lensing operator for each case. The
black line indicates the analytic result computed with CAMB7 [144].

For polarization, the remapping operation becomes somewhat more complicated, since
the polarization tensor P (c.p. Eq. (1.25) in Section 1.3.3) has to be parallel trans-
ported along the aforementioned geodesic. A naive remapping of the Stokes parameters
[Q(x), U(x)]→ [Q(x′), U(x′)] is not correct and would introduce spurious correlations [36].
Instead one needs to account for the change of the tangent basis

P̃(x′) = e[2i(δ−γ)]P(x), (2.39)

where δ is as before the angle between the basis vector eθ and α at position x and γ the
corresponding angle between eθ′ and α at position x′. The rotation angle δ′ = δ − γ is
related to the deflection vector and the unlensed position by (see e.g. [141])

tan(δ′) =
α sin(δ)

d sin(α) cot(θ) + α cos(δ)
. (2.40)

2.4.2 Accuracy of Spherical Harmonic Transforms

While the prior distribution of the CMB and lensing potential can be analytically derived
in harmonic space, but data, noise and in most cases the lensing operation are measured
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and expressed in configuration space, we can not avoid to use harmonic transforms in a
numerical implementation. The spherical harmonic transform used on the full sky is com-
putationally more expensive than a Fourier transform, but can be efficiently implemented
for the HEALPix grid [190]. The back transform (harmonic to configuration space) is a
sum over a given set of spherical harmonic coefficients and spherical harmonics at fixed
positions. This can be evaluated exactly. The forward transform (configuration to har-
monic space), however, requires the integration over a sparsely sampled smooth function.
This operation is in most cases ill-defined. It can only be evaluated exactly, if the function
is strictly band limited, which is not the case for most physical fields. An increase in the
accuracy of this operation can be reached at the cost of computation time by increasing
the iteration of a weighting scheme that is used to approximate the integral [190]. In the
HEALPix implementation used here, this iteration number is controlled by the parame-
ter niter. In Fig. 2.2 we show the difference between an input CMB map at resolution
nside=1024 and the same map after 5 back and 5 forward transformation. The difference
map is divided by the standard deviation of the input map and the result plotted in units
of percent. The error introduced by the transforms is significant and reaches values of up
to ∼ 300% for no iteration in the forward transform. Iterating once, yields smaller errors
of up to ∼ 10%. Increasing niter to 3 yields no significant improvements in accuracy but
roughly doubles the application time of the forward transform.

This problem can be elegantly alleviated by reconstructing the signal fields in spheri-
cal harmonic space. By doing so the backward harmonic transform becomes part of the
response

di = Rnew
il sl = RixTxlsl, (2.41)

where Txl denotes the backward harmonic transform and sl is the signal field in harmonic
space. If we, thus, acknowledge the transformation as part of the data model, we avoid
its inverse T −1, since not the inverse but the adjoint T † will appear in the reconstruction.
The adjoint operation is just as exact as the backward transform itself.

2.4.3 Minimizer

With analytic expressions for the negative log posterior and its derivative with respect
to the field of interest at hand [Eq. (2.21) and (2.27) or Eq. (2.32) and (2.33)], we can
initialize a minimizing algorithm, such as a steepest descent or conjugate descent. These
algorithms typically need to evaluate the posterior and the gradient at the order of a few
hundred times to converge to the minimum.

In each of these minimization steps, one needs to evaluate a Wiener Filter, either Dj

[in the signal space formulation; c.p. Eq. (2.20)] or CTTR†
(
Cdd
)−1

d [in the data space
formulation; c.p. Eq. (2.32)]. These terms are non-trivial to compute since they involve
the inversion of either the inverse lensing propagator D−1 = R†N−1R + (CTT )−1 or the
data covariance Cdd = RCTTR† +N . Both contain a noise covariance that is diagonal in
configuration space and a signal covariance that is diagonal in harmonic space. The lensing
operator introduces non-diagonal components in both configuration and harmonic space.
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Mode-coupling is also soured by a mask or an isotropic beam function, such that there is
no generic and easily computable basis in which all operators become diagonal.

This complicated structure inhibits or massively slows down the convergence of any
inversion algorithm. A common technique to speed up the convergence of, e.g. a conjugate
gradient, is to use a suitable preconditioner. This is an approximate inverse that is com-
putationally efficient to compute and its application decreases the condition number of the
matrix that one aims to invert. A smaller condition number leads to a faster convergence
of the inversion algorithm. Since the noise contribution dominates on small scales and the
signal dominated on large scales, a trivial global preconditioner such as S−1/S or N/N−1

is not sufficient. One solution to this is to use a block preconditioner [57, 90], but better
convergence rates can be obtained with a multigrid preconditioner [216]. In the block ap-
proach, the preconditioning matrix is split into a large scale part, where one inserts the full
non-diagonal inverse for these scales and a small scale part, where an approximate inverse
is inserted

Preconblock =

[
X−1 0

0 X−1
approx

]
. (2.42)

In the multigrid approach the problem is solved on increasingly finer grids using the solution
of the coarser grid as a preconditioner in the next iteration. A completely alternative
inversion method has been proposed by Elsner & Wandelt by introduction of a so called
messenger field [53].

All of these methods have in common that they have free parameters which need to be
chosen in order to optimally speed the convergence of the minimization. It is not to be
expected that there exists a universal configuration that is optimal for every data set. In
reality, the best minimization settings will depend on the specifics of the problem, i.e. the
resolution, the shape of the masks and the noise.

2.5 Summary and Conclusions

In the above chapter, we have presented a full derivation of the joint probability distri-
bution, P (φ, d), of the lensing potential φ and CMB data d, which is proportional to the
lensing posterior P (φ|d) [Eq. (2.20)]. The expression has been derived under the assump-
tion of a Gaussian unlensed temperature distribution and by imposing a Gaussian prior
on the lensing potential, which are both well justified. Using this formula, together with
the derived expression of its derivative with respect to φ [Eq. (2.27)], one can solve for
the maximum of the distribution, which corresponds to the MAP estimate of the lensing
potential.

This MAP estimate serves as an alternative to the commonly used quadratic estimator.8

We have further shown that the expressions for the negative log distribution and its
derivative can be formulated in two equivalent ways, which we refer to as data and signal
space formulation. This can be useful in the actual implementation were the minimization

8The quadratic estimator can be obtained from an approximation of the MAP estimator at linear order
in φ [91].



40 2. A Maximum a Posteriori estimator for CMB Lensing

in one formulation might be numerically more stable or faster in convergence than the
other.

We have listed all the tools that are needed for an implementation of this estimator
on the sphere and pointed out all the caveats that are known to us. The three major
challenges in this type of lensing reconstruction are

1. memory usage and computational speed,

2. convergence of the minimization scheme and the operator inversions,

3. the convergence speed of the expectation value in the posterior derivative.

The first point is owed to the very small shifts that lensing introduces in the CMB field
and the non-locality of the lensing operation in both harmonic and configuration space.
Because of this, we need to resolve scales in the CMB field that are smaller than the
smallest scales in the CMB data. In addition, the pixelization demands another non-local
interpolation scheme in order to map the lensed field back onto the pixel grid.

The second point is due to the anisotropy that is introduced by lensing. The lensing
operator will render diagonal operators like CTT in harmonic space or N in data space non-
diagonal by introducing correlations between modes or pixels. This is in fact the desired
lensing signal that is exploited in the quadratic estimator. It will, however, slow down the
convergence of the minimization. In real data, additional anisotropy can be introduced
by an anisotropic beam and even more by a mask. Because of this, the minimizer (and
preconditioner) settings must be carefully tuned to yield an acceptable convergence rate.

The minimization includes the evaluation of a peculiar term in the derivative of the
posterior, that stems from the derivative of an operator determinant and can be rewritten
as the negative expectation value of the first term that appears in the derivative. Carron &
Lewis [33] have shown that the accuracy of the evaluation of this mean field constitutes the
accuracy limit of the entire reconstruction. Sampling this expectation value is computa-
tionally expensive, since it involves solving the Wiener Filter for the unlensed temperature
in every step, but can easily be parallelized.

Recent studies suggest that for current data sets the MAP estimator is compatible with
the quadratic estimator. For future data, it can even be superior, e.g., by yielding better
delensing efficiencies [33].

In the future, a Bayesian inference not only of the lensing potential itself, but of its
power spectrum, would be interesting, since the standard power spectrum estimator is
affected by many (known) biases, that have to be estimated independently before being
subtracted. A Bayesian estimator would constitute a valuable crosscheck of these correc-
tions.
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Figure 2.2: Difference between a CMB map after 5 forward and 5 backward spherical
harmonic transforms and the original map before the transformations. We used a resolution
of nside=1024 for this test and plot the difference in units of percent of the standard
deviation of the original map. In the upper panel we have set the accuracy parameter niter
to zero, yielding maximal errors of order ∼ 300% around the poles. In the lower panel,
we show the same difference for niter=1, which roughly doubles the computation time.
Increasing niter to 3 yields no further improvements in accuracy.
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Chapter 3

A new Bias to CMB Lensing
Measurements

In this chapter we take a closer look at the standard CMB lensing reconstruction technique
and ask if non-linear structure formation can have a significant impact on the measured
CMB lensing power spectrum. The content of this chapter has been mostly taken from
the corresponding publication [25]. Adaptations have been made in order to ease the
understanding for non-CMB lensing experts.

3.1 Introduction

CMB lensing analyses commonly rely on the assumption of Gaussianity of both the un-
lensed CMB temperature field as well as the lensing potential. The lensing potential is
a projection of the gravitational potential, which is known to become non-Gaussian at
late times due to non-linear structure formation. However, the weighted projection, which
sums up the effect of all fluctuations encountered on the photon geodesic, should suppress
this non-Gaussianity by the central limit theorem (given a distance to the CMB of 14000
Mpc a CMB photon typically passes through O(50) structures of size 300 comoving Mpc,
the scale at which the matter power spectrum peaks). The goal of our work is to test
this intuitive argument quantitatively by abandoning the assumption of Gaussianity of the
lensing potential and investigating the consequences of a nonzero bispectrum of the lens-
ing potential on measurements of the lensing power spectrum. The main result is a new,
typically negative, reconstruction bias (N (3/2)) that contributes to the measured lensing
power spectrum and must be corrected for. Following further tests of the importance of
some of the neglected terms with analytics and simulations, this bias should be subtracted
from future lensing 4-point measurements. It adds to known reconstruction power spec-
trum biases that arise for a Gaussian lensing potential and have been worked out in detail
in [121, 72, 7].

While the effect of large-scale structure non-Gaussianity on lensing statistics has been
computed in the context of galaxy weak lensing [49, 210, 135], it has not been analyti-
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cally studied for CMB lensing reconstruction before. A number of works have tested CMB
lensing reconstruction on CMB maps lensed by non-Gaussian deflection fields computed
from N-body simulations [5, 231, 171, 10]. Some focused on estimating the impact of non-
linear structure formation on the lensing measurement, while many also included other
sources of biases, such as baryonic effects, survey boundaries and masking. In addition,
the primordial unlensed CMB may also be intrinsically non-Gaussian. A CMB bispectrum
induced by primordial non-Gaussianities of the local type has been studied as a signal on
its own (e.g. [133, 237, 145, 180]) and as a possible contaminant to CMB lensing measure-
ments [165]. Higher order corrections to the lensed temperature power spectrum have been
investigated analytically [164, 66] and in simulations [32, 31]. Related but different 4-point
CMB lensing biases were studied in [230, 176], caused by unresolved radio/infrared point
sources and galaxy clusters that add to CMB fluctuations.

This chapter is organized as follows. In Section 3.2 we briefly review the formalism
of CMB lensing and lensing measurements, introduce notation and conventions used in
this chapter and provide an analytic expression for the lensing bispectrum. The rigorous
derivation of the new reconstruction power bias is presented in Section 3.3 and results of
its numerical evaluation are given in Section 3.4. In Section 3.5 we provide an overview
of potential caveats in the numerical evaluation of the bias and present cross-checks that
were carried out to validate the results. An extension of the bias to CMB lensing cross-
correlation measurements is derived in Section 3.6. We conclude in Section 3.7. In a series
of appendices we provide details on the effect of the CMB lensing bispectrum on lensing
reconstruction in Fourier space, large-scale and squeezed limits and the generalization of
one of the contributing bias terms to polarization.

3.2 CMB Lensing and Reconstruction

3.2.1 CMB Lensing Model

As outlined in the introduction (Section 1.5), the lensed temperature T̃ can be approxi-
mated by perturbing in the lensing potential. We restrict ourselves to this series expansion
here, but note that this approximation is only accurate to about 5− 10% [142] and could
be improved by using the correlation function approach of [203] which is nonperturbative
in the deflection angle. Working under the flat-sky approximation valid on small scales
and truncating at second order in ∇φ, the perturbative series can be written as

T̃ (x) = T (x) +∇T (x) · ∇φ(x) +
1

2
∇i∇jT (x) ∇iφ(x) ∇jφ(x) +O(φ3), (3.1)

where we use the convention that the differential operator ∇ is only applied to the object
directly following it. In harmonic space, products turn into convolutions and gradients
correspond to multiplication with −il, so that

T̃ (l) = T (l) + δT (l) + δ2T (l) +O(φ3) (3.2)
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with O(φ) correction

δT (l) = −
∫
l′

l′ · (l− l′)T (l′)φ(l− l′) (3.3)

and O(φ2) correction

δ2T (l) =
1

2

∫
l′

∫
l′′

[l′ · l′′] [l′ · (l− l′ − l′′)]T (l′)φ(l′′)φ(l− l′ − l′′). (3.4)

All perturbations are linear in the unlensed temperature T .

3.2.2 CMB Lensing Statistics

Commonly the lensing potential is modeled as a statistically homogeneous and isotropic
Gaussian random field, which is solely characterized by its power spectrum. This power
spectrum is well described by a Limber projection of the power spectrum of matter fluc-
tuations, Pδ(k, η),

Cφφ
L =

∫ χ∗

0

dχ
4W (χ)2

χ2

γ (χ)2

(L/χ)4
Pδ(L/χ;χ), (3.5)

where

γ(χ) ≡ 3

2

H2
0 Ωm0

c2a(χ)
. (3.6)

In this work we drop the assumption of Gaussianity and allow for a nonzero bispectrum of
the lensing potential.

Similarly to the lensing power spectrum, the lensing bispectrum is a projection of the
bispectrum of density perturbations Bδ(k1,k2,−k1−k2;χ):

Bφ(l1, l2, l3) = −
∫ χ∗

0

dχχ2 8W (χ)3 γ (χ)3

(l1l2l3)2
Bδ(l1/χ, l2/χ, l3/χ;χ). (3.7)

This follows by applying the Fourier space analogue of Limber’s equation for bispectra (see
e.g., [27, 223]). On very large scales, we expect the flat-sky and Limber approximations
that we assume to break down. The lensing power spectrum is overestimated on large
scales in the Limber approximation and the bispectrum could be affected similarly. We
will therefore only consider multipoles L > 100.

The bispectrum of matter perturbations can be modeled by standard Eulerian pertur-
bation theory, which gives at leading order in the linear matter overdensity (see e.g. [17]
for a review),

Bδ(k1,k2,k3; η) = 2F2(k1,k2)Pδ(k1, η)Pδ(k2, η) + (1↔ 3) + (2↔ 3). (3.8)

This is quadratic in the linear matter power spectrum Pδ and involves the symmetrized
kernel

F2(ki,kj) =
5

7
+

1

2

(
ki
kj

+
kj
ki

)
k̂i · k̂j +

2

7
(k̂i · k̂j)2, (3.9)
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where k̂i = ki/|ki|. The simple bispectrum model (3.8) is only accurate on relatively large
scales that are under perturbative control (roughly k . 0.07h/Mpc at z = 0, see e.g., [138]
for a recent study). It can be extended to smaller, non-linear scales by including higher-
order (loop) corrections. A simpler phenomenological modification that extends the range
of validity to slightly smaller scales can be obtained by replacing Pδ(k) with a matter power
spectrum with non-linear corrections, P nl

δ (k), in Eq. (3.8) [197]. On smaller scales, that
cannot be modeled analytically, one needs to resort to fitting formulae calibrated against
simulations [197, 60].

3.2.3 Lensing Reconstruction

Lensing introduces a mode-coupling in the CMB fluctuations, which can be used to con-
struct a quadratic lensing reconstruction estimator [207, 97], which can be written on the
flat sky as (c.p. Section 1.5.1)

φ̂(L) = AL

∫
l

g(l,L)T̃expt(l)T̃expt(L− l), (3.10)

where T̃expt are beam-deconvolved noisy temperature fluctuations. The observed temper-
ature fluctuations are assumed to contain white noise and a Gaussian beam, so that the
final power spectrum is

C T̃ T̃
l,expt = C T̃ T̃

l + σ2
N exp

[
l(l + 1)θ2

FWHM/(8 ln 2)
]
, (3.11)

where the instrumental noise level is specified by σ2
N and the beam size is given in terms

of the full width at half-maximum (FWHM) θFWHM. The weight g(l,L) (or short gl,L) in
Eq. (3.10) is chosen such that the variance of the estimator is minimized [173, 143, 72];

g(l,L) =
(L− l) · LC T̃ T̃

|L−l| + l · LC T̃ T̃
l

2C T̃ T̃
l,exptC

T̃ T̃
|L−l|,expt

. (3.12)

Note that g(L− l,L) = g(l,L) = g(−l,−L). The normalization is given by

A−1
L = 2

∫
l

g(l,L)l · LC T̃ T̃
l . (3.13)

The power spectrum of the lensing reconstruction (3.10) involves the lensed temperature
4-point function,

〈φ̂(L)φ̂(−L)〉 = A2
L

∫
l1

∫
l2

gl1,L gl2,L 〈 T̃expt(l1) T̃expt(L− l1) T̃expt(−l2) T̃expt(l2 − L) 〉.
(3.14)

This 4-point function can be split into a disconnected part, obtained by contracting two
pairs of lensed temperature fields with each other, and a connected part, given by the
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full 4-point function minus the disconnected part. The disconnected part leads to the N (0)

power spectrum bias, which would be present even for Gaussian temperature fluctuations in
absence of lensing. It is called N (0) because it is of zeroth order in Cφφ.1 Note N

(0)
L = AL (a

consequence of optimal weighting). The connected part of the 4-point function in Eq. (3.14)
leads to the desired signal contribution Cφφ

L . Additionally, it gives rise to the N (1) bias
which is also of order Cφφ [121, 72, 7]. The expectation value of the measured lensing
power spectrum is therefore2

〈C φ̂φ̂
L 〉 = N

(0)
L + Cφφ

L +N
(1)
L +O[(Cφφ)3] (Gaussian φ) (3.15)

if the lensing potential φ is assumed to be Gaussian. To obtain an unbiased estimator
for the signal Cφφ, the N (0) and N (1) biases are calculated (typically using simulations or
simulation-data combinations) and subtracted from the measured lensing power.

3.3 The Effect of a non-vanishing Matter Bispectrum

on standard Lensing Reconstruction

We now drop the assumption that the lensing potential φ is Gaussian. In this case, n-
point functions with an odd number of lensing potentials no longer need to vanish, and
n-point functions no longer need be determined by the Gaussian 2-point power spectrum
Cφφ alone. We consider only a nonzero 3-point function or bispectrum, and ignore cor-
rections from all higher-order n-point functions. This approximation is motivated by the
specific non-Gaussianity generated by large-scale structure modes in the mildly non-linear
regime relevant for CMB lensing. For simplicity we ignore the ISW effect and its induced
correlations like 〈Tφ〉 and 〈TTφ〉, but note that accounting for it may lead to additional
biases that should be investigated in the future. We also assume that the unlensed CMB
is a Gaussian field.

Allowing a nonzero lensing potential bispectrum Bφ, the lensed temperature 4-point
function entering the expectation value for the measured lensing power spectrum (3.14)
picks up additional contractions that would vanish for a Gaussian lensing potential. A new
allowed contraction is, for example, of the form

〈T̃ T̃ T̃ T̃ 〉(φ,T ) = 〈δTδTδTT 〉+ · · · = 〈T,iφ,iT,jφ,jT,kφ,kT 〉+ · · · , (3.16)

where subscripts denote gradients T,i = ∇iT and φ,i = ∇iφ.
In total, we can write down four qualitatively different contractions at order φ3

Type A: 〈δTδT δT ′T ′〉 Type B: 〈δ2TδT T ′T ′〉
Type C: 〈δ2TT δT ′T ′〉 Type D: 〈δ3TT T ′T ′〉. (3.17)

1We follow the common power-counting practice where only explicit appearances of Cφφ are counted

that are not contained in lensing contributions to C T̃ T̃ .
2An additional N (2) bias of order (Cφφ)2 also arises, but we avoid it by using lensed CMB power spectra

in the normalization AL Eq. (3.13) and in the numerator of the weight g in Eq. (3.12) [72, 143].
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The last two temperature fields are labeled with primes to indicate that they correspond to
the second reconstruction field φ̂(−L) in Eq. (3.14); quantities without primes correspond
to the first reconstruction field φ̂(L).

Each type of terms allows several Wick’s theorem contractions. For example, for type A
there are three contractions that we label A1, A2, and A3:

〈T,iφ,iT,jφ,j T ′,kφ′,kT ′〉A1 + 〈T,iφ,iT,jφ,j T ′,kφ′,kT ′〉A2 + 〈T,iφ,iT,jφ,j T ′,kφ′,kT ′〉A3. (3.18)

Similarly, the type B term has three contractions B1, B2, and B3,

〈T,ijφ,iφ,jT,kφ,k T ′T ′〉B1 + 〈T,ijφ,iφ,jT,kφ,k T ′T ′〉B2 + 〈T,ijφ,iφ,jT,kφ,k T ′T ′〉B3, (3.19)

and the type C term has contributions C1, C2, and C3:

〈T,ijφ,iφ,jT T ′,kφ′,kT ′〉C1 + 〈T,ijφ,iφ,jT T ′,kφ′,kT ′〉C2 + 〈T,ijφ,iφ,jT T ′,kφ′,kT ′〉C3. (3.20)

Different to the contractions of type A-C, type D terms depend on δ3T

〈T,ijkφ,iφ,jφ,kT T ′T ′〉D1 + 〈T,ijkφ,iφ,jφ,kT T ′T ′〉D2 + 〈T,ijkφ,iφ,jφ,kT T ′T ′〉D3. (3.21)

All of these 12 terms contribute to the lensed temperature 4-point function and thus
to the standard 4-point estimator for the CMB lensing power spectrum. They lead to a
new bias N

(3/2)
L,tot of the measured 4-point lensing power spectrum,

〈C φ̂φ̂
L 〉 = N

(0)
L + Cφφ

L +N
(1)
L +N

(3/2)
L,tot +O[(Cφφ)5/2] (non-Gaussian φ). (3.22)

We call the new non-Gaussian reconstruction bias N (3/2) because it scales like φ3 ∝
(Cφφ)3/2, and previously considered biases like N (0) and N (1) were labeled by the power of
Cφφ they involve.

Not all of the 12 terms listed above contribute equally to N (3/2) and a close inspection
allows us to identify the dominating ones. The generic recipe for inspecting the bias terms
is:

• Insert the harmonic space expressions for δnT into one of the contraction in (3.17).

• Evaluate the expectation values over lensing potential and unlensed temperature,
and apply Wick’s theorem to split the unlensed temperature four-point functions
into sums of products of 2-point functions [c.p. Eqs. (3.18-3.21)].

• Insert each of the resulting summands into Eq. (3.14).

• Multiply the result by its correct symmetry factor (E.g. the contraction 〈δTδ2TT ′T ′〉
results in the same bias contribution as 〈TTδT ′δ2T ′〉, etc.).
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• Simplify as far as possible.

We refer the reader to Appendix B for the details of these calculations. In general, this
procedure results in more or less coupled 6D integrals over unlensed temperature power
spectra and the lensing bispectrum. Some of these integrals can be split into a product of
three 2D integrals, some factorized into a 2D integral times a 4D integral and some can be
shown to vanish identically (due to symmetry arguments).

After this inspection, we find that the N (3/2) bias gets contributions from the following
non-vanishing terms

N
(3/2)
tot =

(
N

(3/2)
A1 +N

(3/2)
C1

)
+N

(3/2)
A2 +N

(3/2)
A3 +N

(3/2)
B2 +N

(3/2)
B3 +N

(3/2)
C2 +N

(3/2)
C3 . (3.23)

In this work, we evaluate the A1 and C1 terms numerically and focus on them in
the main text. We focus on these terms both because they are expected to be among
the largest and because they allow for numerical evaluation on reasonable timescales. In
contrast, as discussed in Appendix B, the B1 term is zero, and the A2 and A3 terms
are tightly coupled, which makes numerical evaluation difficult and time-consuming (the
integrals are six-dimensional), but also suggests that these terms are small. Furthermore,
the C2 term should be naturally accounted for in the (realization-dependent) calculations
of the N (0) bias, which is included in modern lensing pipelines. We defer a full evaluation
of the remaining B2, B3, and C3 terms to future work; we note that if they have a similar
order of magnitude to A1 +C1, our approximate calculation might underestimate the true
bias.

The A1 and C1 bias terms in Eqs. (3.18) and (3.20) have a simple intuitive interpreta-
tion: They arise because the quadratic response of the lensing reconstruction φ̂(L) to the
true lensing potential φ is correlated with the linear response of the lensing reconstruction
φ̂(−L) to the true lensing potential φ′. This correlation involves the 3-point correlation
function 〈φφφ′〉 of the true lensing potential, which is nonzero in presence of non-linear
gravitational clustering.

We proceed by discussing these A1 and C1 terms, which contribute substantially to the
total bias (3.23), in detail. Analytical expressions for the remaining bias contributions are
given in Appendix B.

3.3.1 A1 Contribution to the N (3/2) Bias

We begin by computing the lensing bias from the contraction A1 in Eq. (3.18). This
contraction is given by

〈δTl1δTl2δTl3Tl4〉A1 =− (2π)2δD(l1 + l2 + l3 + l4)CTT
l4

[(l3 + l4) · l4]

×
∫
l

[l · (l1 − l)] [l · (l2 + l)]CTT
l Bφ(l1 − l, l2 + l,−l1 − l2), (3.24)

where we used the Fourier space expression Eq. (3.3) for the first order temperature change
δT due to lensing, and contracted temperature and lensing fields as indicated for the A1
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term in Eq. (3.18).3 Inserting this into Eq. (3.14) yields the following A1 bias of the
measured lensing power spectrum:

N
(3/2)
A1 (L) = −4A2

LSL

∫
l1,l

gl1,L [l · (l1−l)] [l · (L− (l1 − l))]CTT
l Bφ(l1−l,L− (l1 − l),−L)

= −4A2
LSL

∫
l1,l

gl1,L[(l1 − l) · l][(l1 − l) · (L− l)]CTT
|l1−l|Bφ(l,L− l,−L). (3.25)

The prefactor SL is an integral over the filtered unlensed CMB power spectrum,

SL =

∫
l2

gl2,L(l2 · L)CTT
l2
, (3.26)

satisfying SL ≈ 1/(2AL) at leading order in Cφφ. The prefactor of 4 in Eq. (3.25) stems
from the four possibilities to arrange three temperatures perturbed to first order and one
unperturbed temperature in a 4-point correlator. The second line in Eq. (3.25) follows by
changing integration variables l→ l1 − l.

3.3.2 C1 Contribution to the N (3/2) Bias

The C1 contraction defined in Eq. (3.20) is

〈δ2Tl1Tl2δTl3Tl4〉C1 =
(2π)2

2
δD(l1 + l2 + l3 + l4)CTT

l2
CTT
l4

[(l3 + l4) · l4]

×
∫
l

(l2 · l) [l2 · (l1 + l2 − l)]Bφ(l, l1 + l2 − l,−l1 − l2). (3.27)

Inserting this in Eq. (3.14) gives the following C1 bias of the measured lensing power
spectrum:

N
(3/2)
C1 (L) = 4A2

LSL

∫
l1,l

gl1,L(l1 · l) [l1 · (L− l)]CTT
l1
Bφ(l,L− l,−L), (3.28)

We changed integration variables l1 → L − l1, and we accounted for a symmetry factor 8
that arises because the resulting lensing bias does not change if we exchange l1 ↔ l2, or
l3 ↔ l4, or both in Eq. (3.27).

3.3.3 Integral Expressions for fast numerical Evaluation

The A1 and C1 biases in Eqs. (3.25) and (3.28) involve four-dimensional integrals for
every multipole L, which are computationally expensive to evaluate. Fortunately, however,

3For Gaussian instrument noise that is uncorrelated with the signal, all contributions to the four
point correlator 〈T̃ expt

l1
T̃ expt
l2

T̃ expt
l3

T̃ expt
l4
〉 that involve instrument noise either vanish or contribute to the

Gaussian noise bias. This justifies ignoring instrument noise in the calculation of the connected four point
contributions to N (3/2).
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the integrands of these 4D integrals can be rewritten in a product-separable form, which
allows much faster numerical evaluation by multiplying 2D integrals. In Appendix C we
demonstrate this and derive the following simply-evaluated expression for the C1 bias:

N
(3/2)
C1 (L) = −4A2

LSL
[
R‖(L)β‖(L) +R⊥(L)β⊥(L)

]
, (3.29)

where we defined the temperature integral R‖ and integrated lensing bispectrum β‖ as

R‖(L) =

∫
l1

g(l1,L)l21 cos2(µl1)C
TT
l1
, (3.30)

β‖(L) =

∫
l

l cosµl [l cosµl − L] Bφ(l,L− l,−L), (3.31)

and similarly for the perpendicular component,

R⊥(L) =

∫
l1

g(l1,L)l21 sin2(µl1)C
TT
l1
, (3.32)

β⊥(L) =

∫
l

l2 sin2(µl)Bφ(l,L− l,−L), (3.33)

where cosµl1 = l1 ·L/(l1L) and cosµl = l ·L/(lL). In Appendix C, we also derive a similar
fast integral expression for the A1 bias.

3.3.4 Comparison of A1 and C1 Contributions to the N (3/2) Bias

The A1 bias of Eq. (3.25) and the C1 bias of Eq. (3.28) have a very similar structure.
This makes sense because these biases arise from similar contractions in Eqs. (3.18) and
(3.20). In the limit of Eq. (3.25) where the lensing multipole l is much lower than the
temperature multipole l1 (i.e., l � l1 and l1 − l ≈ l1), the A1 and C1 biases cancel each
other. The potential cancellation in this limit demands careful numerical evaluation of the
A1 and C1 contributions to the N (3/2) bias. Numerically, we will find later that the range
of reconstruction multipoles L where this cancellation is actually relevant depends strongly
on experimental specifications. At very low reconstruction multipoles L, the cancellation
helps to regularize the N (3/2) bias by canceling individually large A1 and C1 contributions
with opposite sign.

3.4 Numerical Evaluation

3.4.1 Implementation

We continue by evaluating the expressions in (3.25) and (3.29) that follow from the type
A1 and type C1 contractions. The integrals over the lensing bispectrum can be evalu-
ated for any model of the lensing bispectrum. We evaluate them using the leading-order
standard perturbation theory expression Eq. (3.7) with P lin

δ (k) replaced by the non-linear
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matter power spectrum P nl
δ (k), which fits simulations slightly better than the leading-order

bispectrum involving P lin
δ (k) (also see Section 3.5.3 for a discussion of the validity of this

bispectrum model).
Small-scale temperature contributions to the integrals are suppressed by setting the

experimental noise to an unphysically high value (irrespective of the experiment) for tem-
perature multipoles l ≥ 3000. This small-scale cutoff is often applied to real data to
ensure the results are insensitive to astrophysical emission from dusty galaxies and the
Sunyaev-Zeldovich effect which become relevant at these scales.

Representative experiment
Stage-IV Stage-III

Planck
(CMB-S4) (AdvancedACT-like)

θFWHM[arcmin] 1.0 1.4 7.0
σTTN [µKarcmin] 1.0 6.0 30.0
fsky 0.5 0.4 0.63

Table 3.1: Typical beam and noise specifications of current and future experiments. All
resolution and noise dependent results shown are based on one of these configurations. The
noise level stated in this table is for temperature measurements. For polarization we use
σBBN = σEEN =

√
2σTTN (see also Eq. (1.29) in Section 1.3.3).

To evaluate the contributions to the N (3/2) bias we consider different experimental
setups roughly corresponding to CMB Stage-III, Stage-IV, and Planck experiments. Beam
width, noise levels and sky coverage for these representative classes of experiments are
summarized in Table 3.1.

For the calculation of the fiducial power spectra of matter, CMB and lensing potential
we use the publicly available class code4 [23]. The computation of non-linear corrections
to the power spectrum of density fluctuations is based on the HALOFIT method [217,
224]. The underlying cosmology is a standard ΛCDM cosmology with Planck 2013 best
fit parameters: ωm = 0.311, Ωb = 0.049, h = 0.671, As = 2.215 × 10−9, ns = 0.968, and
TCMB = 2.7255 K [177].

We next discuss results for lensing measurements from the CMB temperature fluctu-
ations and include the contribution to N (3/2) from the sum of the two couplings A1 and
C1. We then proceed with polarization measurements for which we only evaluate the C1
coupling because it is simpler to evaluate.

3.4.2 Results for A1 and C1 Contributions to the N (3/2) Bias for
(TT, TT ) Reconstruction

Fig. 3.1 shows the A1 and C1 contributions to the non-Gaussian reconstruction bias N (3/2)

for the different classes of experiments summarized in Table 3.1. To assess the importance
of the non-Gaussian biases, we also show in Fig. 3.2 the ratio of their sum to the lensing
power spectrum signal.

4http://www.class-code.net/

http://www.class-code.net/
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Figure 3.1: N (3/2) CMB lensing bias that arises in a temperature based lensing measure-
ment. The signal lensing power spectrum Cφφ is shown for comparison (black). Different
panels correspond to different experiment specifications summarized in Table 3.1. When
negative, the absolute value of the functions are reported as dashed lines. The bias ap-
pears significant for Stage-III and Stage-IV experiments. We point out, that the bias
plotted here is the sum of two out of many contributing terms to the total bias. These two
terms, denoted type A1 and C1, are likely two of the largest terms.
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Figure 3.2: Ratio of non-Gaussian N (3/2) bias over the signal lensing power spectrum Cφφ

for a temperature based reconstruction. The bias reaches percent level over a wide range
of multipoles for Stage-III and Stage-IV experiments.

For the high resolution Stage-III and Stage-IV experiments the bias is of order 0.5-2.5%
of the signal, slowly decreasing towards smaller scales. The sign of the bias is negative over
all relevant scales, i.e., it reduces the measured lensing power. For Planck, the bias appears
nearly an order of magnitude smaller than in the high resolution case, typically entering at
negligible levels well below one percent of the signal. This is the case because for Planck
the A1 and C1 contributions to the bias partially cancel each other (see also the discussion
at the end of Section 3.3). For Planck, the sign of the effect varies with angular scale.

The significance of the bias in each experiment depends on the statistical uncertainty
of the measured lensing power spectrum. The Gaussian variance is given by

σ2(L) =
1

fsky

2

(2L+ 1)

(
N

(0)
L + Cφφ

L +N
(1)
L

)2

. (3.34)

Fig. 3.3 shows the bias-to-noise ratio N
(3/2)
A1+C1(L)/σ(L) if the measured lensing power spec-

trum is binned with bin width ∆L = 100. The bias is significant in low-noise, high-
resolution experiments such as CMB Stage-III or Stage-IV: If the bias is ignored, the mea-
sured lensing power spectrum will be biased low by ∼ 0.5σ−1.5σ per bin for L ∼ 200−800,
for each bin of width ∆L = 100. The total significance of this bias is ∼ 2.5σ for Stage-III
and ∼ 3σ for Stage-IV.

The total bias is thus significant and should therefore be accounted for when performing
(TT, TT ) lensing reconstruction with CMB Stage-III or Stage-IV experiments. While
Stage-IV will likely get most lensing information from polarization-based measurements
so that the bias of temperature-based lensing measurements is less worrisome, a large
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Figure 3.3: Ratio of N (3/2) bias over lensing power spectrum error σ(L) on bandpowers
of width ∆L = 100. It can be seen that, while the bias appears negligible for Planck, it is
a significant percent-level effect for Stage-III and Stage-IV experiments.

fraction of the lensing information from Stage-III experiments will come from (TT, TT )
lensing measurements, so that accounting for the N (3/2) bias will be particularly important
in this case. For Planck, however, the bias appears negligible (the significance of the total
bias is only 0.06σ).

We emphasize that the above numbers just provide a rough estimate of the actual
size of the N (3/2) bias because of the simplifying assumptions we made for the numerical
evaluation. In particular, additional bias contributions from other contractions than A1
and C1 may be important for all experiments, and a more accurate model of the lensing
bispectrum on small scales could change results for Stage-III and Stage-IV by an order one
factor. We will discuss these caveats in more detail in Sections 3.5 and 3.7 below.

3.4.3 Results for C1 Contribution to the N (3/2) Bias for Polariza-
tion

We can generalize the N (3/2) bias to polarization-based measurements of the lensing power
spectrum. In this work, we derive and evaluate the corresponding expressions for con-
tributions from the coupling type C1 only (see Appendix D). The contribution from the
coupling type A1 is numerically more expensive to evaluate and we defer its generalization
to polarization to future work.

The left panel of Fig. 3.4 shows the C1 contribution to the bias from (EB,EB),
(EE,EE), and (TT, TT ) reconstruction for a Stage-IV experiment. On most relevant
scales, the (TT, TT ) and (EE,EE) biases are similar to each other, but the (EB,EB)
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bias is much smaller. However, (EB,EB) reconstruction is also the combination which is
expected to achieve the lowest error on the lensing measurement for future polarization-
sensitive experiments like CMB Stage-IV. To assess the significance of the C1 bias contri-
bution in this case, the right panel of Fig. 3.4 shows the bias divided by the reconstruction
uncertainty for CMB Stage-IV and Planck (assuming Eq. (3.34) for the noise, and bin
width ∆L = 100). Despite the higher precision of (EB,EB) reconstruction, the bias still
appears rather small, 0.1− 0.3σ per L-bin of width ∆L = 100.

We emphasize again that the bias is expected to change if contributions from the A1
and other contractions for polarization are included (like in the temperature-only case
where the A1 contribution is rather important), and additional changes may arise from
more accurate models for the matter bispectrum on small scales. Note also that the use of
an iterative EB estimator could enhance the relative importance of the bias with respect
to the lensing measurement error by roughly a factor of 3 for CMB Stage-IV, although the
form of the bias may also be different for such a lensing estimator.

3.5 Discussion and Validation of the Calculations

In the following sections we discuss potential caveats in the evaluation of N (3/2) like its
strong dependence on σ8, cross-checks of our numerical implementation and assumptions
made in the derivation and evaluation of N (3/2). Further, we explain how we have tested
the influence of non-linear modes on the results and we comment on the sensitivity of the
bias on the large-scale structure bispectrum model that is used. Some of our results have
been derived for the C1 term only, but we expect them to apply similarly to the other
relevant terms. We begin by discussing the scaling with σ8.

3.5.1 Dependence of N (3/2) Bias on σ8

Since the bispectrum of the lensing potential Bφ is quadratic in the power spectrum of the
matter density, we expect the N (3/2) bias to scale with the fourth power of the normalization
of matter fluctuations, σ8. Thus relatively small changes of σ8 lead to large changes of the
N (3/2) bias. Computing the N (3/2) bias for a fiducial cosmology with slightly wrong σ8

may therefore leave a significant residual bias. This may raise concerns because σ8 is
not very well known in practice. However, we found that the effect of σ8 on the N

(3/2)
C1

bias is relatively well approximated by rescaling N
(3/2)
C1 with a scale-independent factor

(σ8/σ
fiducial
8 )4. Therefore, the σ8 dependence of the bias could easily be included when

fitting cosmological parameters to data. This can in principle increase the precision of σ8,
because it includes information from the non-Gaussianity of the lensing potential φ (though
more optimal methods for extracting this non-Gaussian information could be used instead).
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Figure 3.4: Generalization of one of the bias contributions, from coupling type C1, to
polarization-based measurements of the CMB lensing power spectrum (see Appendix D
for details). All curves ignore the similar type A1 bias contribution. This provides some
qualitative idea of how the bias changes for polarization, but should not be confused with
the full expected lensing bias. A thorough quantification, which involves the evaluation
of the remaining non-negligible term(s), is deferred to future work. In the upper panel,
we show the C1 bias contribution for a Stage-IV experiment divided by the signal power
spectrum for different estimators. In the lower panel, we divide the C1 bias contribution
by the error on the lensing power spectrum measurement. In both panels the type C1 bias
contribution for a temperature-based measurement is plotted for comparison. It can be
seen that the C1 bias is less important for polarization lensing measurements using the
EB estimator than it is for lensing measurements from temperature.
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3.5.2 Cross-check with large-Lens and squeezed Bispectrum Lim-
its

The numerical evaluation of the contributions to the N (3/2) bias involves several steps and
relies on numerical approximations such as discretization schemes. Therefore, any of the
computed results should be validated. Apart from code internal tests we have derived ana-
lytic large-lens and squeezed bispectrum limits for the various numerical integrals involved
in evaluating N (3/2), evaluated them independently and compared them to full code results.
These limits do not only provide a cross-check of the implementation, but are also useful
to qualitatively understand the behavior and dependencies of the contributing terms. We
have found excellent agreement between the analytic limits and our numerical calculations
of the C1 contribution to the bias; for a detailed description of these tests we refer the
reader to Appendix E.

3.5.3 Higher-order Corrections to the Matter Bispectrum

As discussed in Section 3.2.2, the simple model of Eq. (3.8) for the dark matter bispectrum
from Eulerian standard perturbation theory at leading order is only valid for large-scale
modes. It breaks down for small-scale modes that can have large overdensities δ � 1
due to gravitational collapse. We use the simple leading-order model of Eq. (3.8) to get an
approximate, conservative estimate of the expected size of theN (3/2) bias. In reality, higher-
order (and ultimately non-perturbative) gravitational collapse on small scales generates a
larger bispectrum that may lead to a larger N (3/2) lensing bias, especially for small-scale
lenses (high L). For actual data analyses of experiments where the N (3/2) bias is relevant,
fitting formulae for the matter bispectrum calibrated against N -body simulations should
be used for more accurate predictions of the N (3/2) bias from small-scale modes. Our
expressions for the lensing bias take an arbitrary matter bispectrum model as input so
that it is straightforward to include more realistic bispectrum models. To get a rough
estimate for the importance of small-scale modes on the N (3/2) bias, we compute the bias
with the bispectrum set to zero if any of the contributing LSS modes is larger than a
non-linear cutoff scale kNL(z) defined by

k3
NL(z)P (kNL, z)

2π2
= 1, (3.35)

and compare it to the full result. This test reveals that the contribution from these scales
to the type C1 bias makes up ∼ 30% of the signal at L = 3000 for CMB-S4 (and less for
Stage-III and Planck experiments). Up to L ∼ 1000 it lies below 10% for all experiments.
At least up to this multipole range, the leading-order bispectrum (3.8) seems an acceptable
approximation for the coupling of type C1. For the second coupling that we consider, type
A1, we find somewhat different results. For a Planck-like experiment the contribution of
small-scale modes at L ∼ 1000 is of O(10%) and thus similar to the type C1 term. For
a Stage-IV experiment, however, these small modes contribute significantly even at lower
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Figure 3.5: The fractional contribution of the non-linear bias from coupling type C1 (lines)
and type A1 (symbols) (similar to the left panel in Fig. 3.2) computed from the standard
Eulerian perturbation theory bispectrum at leading order and from a modified form where
the linear matter power spectrum was replaced by a non-linear one (dashed lines). For the
C1 contribution to the N (3/2) bias the standard leading-order bispectrum and the modified
bispectrum (with enhanced non-linearity) give similar results at multipoles L < 2000. For
the A1 contribution, which is computationally much more expensive to evaluate, the results
are similar for Planck-like experiments, but for CMB Stage-IV higher-order corrections to
the bispectrum seem to be important even at intermediate L.

multipoles. In particular, we find that the type A1 bias at L = 1000 has a different sign if
modes smaller than the cutoff scale are excluded.

Another simple test of the impact of small-scale modes is obtained by comparing the
N (3/2) bias evaluated with the standard perturbative bispectrum formula (3.8) and the
bias computed from a modified bispectrum model where the linear matter power spectrum
is replaced by the non-linear one, Plin → Pnl. This comparison is shown in Fig. 3.5.
Lines indicate results for the type C1 contribution to the bias, symbols indicate the A1
contribution. The C1 bias contribution changes by O(10%) or less for lensing multipoles
L < 2000 if the non-linear instead of linear matter power spectrum is used. At higher
multipoles L > 2000 the change can be larger.

For the similar A1 contribution to the bias we restrict this test to a few points (indicated
by markers), because evaluation is much more computationally expensive. In this case, we
find that the importance of non-linear corrections strongly depends on the experimental
specifications. For a Planck-like experiment, the corrections seem similarly small as for the
type C1 term. For a CMB Stage-IV experiment, however, the modification of the matter
power spectrum leads to a significant change of the bias even at intermediate L.

We conclude that for high resolution experiments the leading-order perturbation theory



60 3. A new Bias to CMB Lensing Measurements

bispectrum model may not be sufficient for obtaining an exact estimate of the size of the
N (3/2) bias, but instead can only provide an approximate estimate. For Planck, however,
the leading-order model appears to be accurate. A thorough quantification of the bias
for Stage-III and Stage-IV experiments requires a more accurate modeling of the LSS
bispectrum for small LSS modes. This could be achieved by using fitting formulae for the
matter bispectrum calibrated by numerical N-body simulations (e.g., [197, 60, 138, 137]).

3.5.4 Prospects for Comparison with Results from numerical
Simulations

The derived form of the non-linear bias relies on the validity of certain assumptions, in-
cluding e.g., the validity of the bispectrum approximation, the domination of the two
contributions of type A1 and C1 to the bias over all other contributions, and the negligi-
bility of non-linear corrections that are higher than third order in the lensing potential.
An independent test of their correctness could be obtained by a comparison with N-body
simulations that provide a full non-linear lensing potential and do not rely on a pertur-
bative approach. We defer an analysis of the non-linear bias in CMB lensing simulations
based on N-body simulations to future work.

3.6 Cross-correlation of CMB Lensing with an exter-

nal LSS Tracer

While our paper focuses on the auto-power spectrum of the quadratic lensing reconstruc-
tion, 〈φ̂φ̂〉, it is also worthwhile to cross-correlate the lensing reconstruction φ̂ with other
external LSS tracers φext like the cosmic infrared background, galaxy weak lensing, galaxy
or quasar catalogs, or Lyman-alpha observations; see e.g., [216, 89, 212, 71, 149, 73, 3, 232].
The cross-correlation 〈φ̂φext〉 between the quadratic CMB lensing reconstruction φ̂ and the
external LSS tracer φext then picks up a similar bias arising from the large-scale structure
bispectrum generated by non-linear structure formation. In this section we compute this
cross-spectrum bias similarly to the calculations above, under the assumption that the
observed external LSS tracer is uncorrelated with the unlensed CMB.

The bias of the cross-spectrum induced by a nonzero LSS bispectrum is caused by the
correlation of the external LSS tracer with the second order response of the reconstructed
lensing potential to the true lensing potential. Similarly to the A1 and C1 contributions
to the auto-spectrum bias in Eqs. (3.18) and (3.20), this bias to the cross-spectrum follows
schematically from two contractions ‘A1cross’ and ‘C1cross’:

〈T̃ T̃ φext〉O[(Cφφ)3/2] = 〈δTδTφext〉+ 2〈δ2TTφext〉 (3.36)

= 〈T,iφ,iT,jφ,j φext〉A1cross + 2〈T,ijφ,iφ,jT φext〉C1cross. (3.37)

These are all contractions allowed for the cross-spectrum, so that the full expectation value
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of the cross-spectrum up to fifth order in LSS perturbations is

〈C φ̂φext
L 〉 = Cφφext

L +N
(3/2)
A1cross(L) +N

(3/2)
C1cross(L) +O(φ5), (3.38)

where the new bispectrum-induced biases are

N
(3/2)
A1cross(L) = −AL

∫
l,l1

g(l1,L)[(l1− l) · l][(l1− l) · (L− l)]CTT
|l1−l|Bφφφext(l,L− l,−L) (3.39)

and

N
(3/2)
C1cross(L) = AL

∫
l,l1

g(l1,L)(l1 · l)[l1 · (L− l)]CTT
l1
Bφφφext(l,L− l,−L). (3.40)

Here, Bφφφext is the mixed bispectrum between two CMB lensing modes and one external
LSS tracer.

The cross-spectrum biases (3.39) and (3.40) are similar to the A1 and C1 auto-spectrum
biases in Eqs. (3.25) and (3.28). Indeed, if the external tracer were equal to the true lensing
potential modulo uncorrelated noise, φext = φ+n, the cross biases would be half the auto-
spectrum biases at leading order in the lensing potential power:

N
(3/2)
A1cross(L) ≈ 1

2
N

(3/2)
A1

(L) and N
(3/2)
C1cross(L) ≈ 1

2
N

(3/2)
C1

(L). (3.41)

In practice, the external LSS tracer is typically different from the lensing potential, e.g., be-
cause of different redshift kernels, so that the cross-bias should be evaluated with the full
Eqs. (3.39) and (3.40). Fast-to-evaluate expressions for these biases take the same form as
those for the A1 and C1 auto-spectrum biases if the lensing bispectrum is replaced by the
mixed lensing-lensing-tracer bispectrum Bφφφext . We note that for lower-redshift tracers,
the non-linearity is enhanced, so that cross-correlation biases may be larger than the biases
for CMB lensing alone.

3.7 Summary and Conclusions

In this chapter, we have investigated the effect of large-scale structure non-Gaussianity on
CMB lensing reconstruction. The bispectrum of the CMB lensing potential generated by
non-linear structure formation leads to a bias of the measured CMB lensing power spectrum
that has been neglected so far. We call the bias N (3/2) because it involves φ3 ∼ (Cφφ)3/2.
For an unbiased measurement, this bias must be calculated and subtracted from measured
lensing power spectra. We derive an analytical expression for this lensing bias, which splits
into several contributions that involve the CMB power spectrum and the dark matter
bispectrum.

The magnitude of the N (3/2) bias depends on experiment specifications and field combi-
nations used for the lensing reconstruction. For CMB Stage-III and Stage-IV experiments,
we find that the lensing power spectrum measurements are biased low by 0.5-2.5% (for
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Planck, the bias is at a negligible sub-percent level) if temperature data is used. For future
experiments, this negative bias will shift measurements of the lensing power spectrum by
multiple standard deviations and must thus be accounted for. For Stage-III a large fraction
of the lensing signal-to-noise is expected from the temperature-based reconstruction, so ac-
counting for the bias is particularly important in this case. We focus on temperature-only
lensing reconstructions, but we demonstrate for one of the bias contributions how it can
be straightforwardly generalized to polarization-based reconstructions.

Our first results on this non-Gaussian bias, including the expected size of the bias, rely
on a number of simplifying assumptions that should be tested in future work:

1. Some contributions to the non-Gaussian lensing bias involve high-dimensional inte-
grals that are computationally challenging to evaluate. Therefore, for numerical eval-
uations, we consider only two bias contributions that can be evaluated in reasonable
timescales. They arise from particular contractions denoted type A1 (Eq. (3.25))
which contributes to 〈δTδTδTT 〉, and type C1 (Eq. (3.28)) which contributes to
〈δ2TTδTT 〉. Intuitively, we suspect that these two contributions to N (3/2) are among
the largest contributions, because they have relatively simple, separable forms in
Fourier space. For all other bias contributions we present analytical expressions but
do not evaluate them numerically in the present work. Future work should check
if these additional bias contributions are relevant, e.g., by performing the required
numerical integrations or by comparing against estimates of the same non-Gaussian
lensing bias from ray-traced N-body simulations.

2. While our analytical expressions can take arbitrary matter bispectrum models as
their input, our numerical evaluations assume a simple matter bispectrum model
that follows from leading-order Eulerian standard perturbation theory. While this is
valid in the regime where only large-scale lensing modes contribute, more accurate
results for the non-Gaussian lensing bias can be obtained by using more accurate
matter bispectrum models on small scales. Our tests indicate that such corrections
are likely small for Planck but significant for future CMB Stage-III or Stage-IV
experiments.

3. Our analytical expressions follow by perturbing lensed CMB fluctuations in the lens-
ing deflection angle. This perturbative expansion does not converge well on all scales,
although corrections from nonperturbative approaches are typically less than 10%.
Again, the accuracy of this approximation should be checked in the future.

4. Our calculation for the lensing potential bispectrum Bφ induced by non-linear struc-
ture formation assumes the flat sky approximation and Limber’s projection. This is
valid on intermediate and small scales, but breaks down on very large scales. We
therefore restrict the discussion of the bias to multipoles L ≥ 100. Although it would
be interesting to extend our result to the full sky, we note that CMB experiments
have most lensing information at multipoles L ≥ 100.
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Apart from testing each of the above assumptions in more detail, there are various
other directions to extend and generalize our work in the future. For example, while we
regard the non-Gaussianity of the lensing potential and the induced lensing power bias
as a nuisance, it could equally well be regarded as a new signal. Pushing this further,
one could envision other estimators to extract information from the non-Gaussianity of
the lensing potential, e.g., by measuring the skewness or bispectrum of the reconstructed
lensing potential, as investigated very recently by Namikawa [170]. We leave such exciting
extensions to future studies. We also note that we have assumed the standard quadratic
lensing estimator when deriving the N (3/2) bias. However, future polarization-sensitive
experiments like CMB Stage-IV will benefit significantly from likelihood-based lensing
estimators [91, 33] (c.p. Chapter 2); the impact of large-scale structure non-Gaussianity
on these estimators should be considered.

More generally, accounting for the bispectrum and non-linearity of large-scale structure
is just one of many possible extensions to refine theoretical modeling of CMB lensing.
While leading-order modeling of CMB lensing is often rather accurate, the highly increased
sensitivity of upcoming CMB Stage-III and Stage-IV experiments may require additional
modeling corrections that should be investigated in the future.

While finalizing this work, Namikawa [170] pointed out that the CMB lensing bispec-
trum can also be regarded as a potential future signal from the CMB 6-point function
rather than a bias of lensing 4-point measurements. While our papers are complementary
in most parts, they both demonstrate the future importance of the non-Gaussianity of the
CMB lensing potential. We checked that our theoretical CMB lensing bispectrum from
leading-order standard perturbation theory agrees with [170].
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Chapter 4

Bayesian 3D Density Reconstruction
from Cosmic Shear

In this chapter, we turn to the analysis of a weak galaxy lensing, for which we propose
and test a new Bayesian reconstruction algorithm. Given weak cosmic shear data, i.e.
measured galaxy shapes, this algorithm returns an estimate of the 3-dimensional matter
distribution between the galaxy sample and the observer. This chapter contains an updated
and slightly adapted version of the corresponding publication [24].

4.1 Introduction

The inversion of the lens-equation, i.e. the inference of the matter distribution that causes
the observed lensed galaxy shapes, is an ill-constrained problem and requires regularization.
In Bayesian statistics this regularization is elegantly provided by the prior distribution, i.e.
our best knowledge of the matter distribution prior to the lensing measurement. Previous
studies have used a Gaussian prior for obtaining an estimate of the 3D matter density
field [214, 222]. We aim to extend the work on tomographic lensing reconstructions by
designing a fully Bayesian reconstruction algorithm that uses a lognormal prior on the
density distribution.

The algorithm is designed to reconstruct the 3D cosmic density fluctuation field δ(x, τ)
from weak galaxy lensing data, i.e. a measurement of galaxy ellipticities at different (pho-
tometrically measured) redshifts. Its derivation is based on the language of information
field theory [55] (c.p. Section 1.2), which has already been used to address similar tomog-
raphy problems [64]. We do not make use of the flat-sky approximation i.e. lines of sight
are allowed to be non-perpendicular to a fixed 3D coordinate grid. Further, we do not
bin the data into pixels but take each galaxy into account as an individual contribution to
the likelihood. This allows us to incorporate distance uncertainties of individual galaxies
instead of sample redshift distributions.

In contrast to a normal prior for the density field, as it has often been assumed before,
a lognormal prior automatically enforces the strict positivity of the field and allows to
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capture some of the non-Gaussian features that are imprinted on the density distribution
by non-linear structure formation. Hubble was the first to notice that galaxy number
counts could be well approximated by a lognormal distribution [103]. Characterizing the
matter overdensities in the Universe as a lognormal field was first assessed by Coles &
Jones in 1991 [42]. Subsequent studies showed that a logarithmic mapping of the non-
linear matter distribution can partly re-Gaussianize the field, and that non-linear features
in the matter power spectrum can be reproduced by a lognormal transformation of the
linear matter power spectrum [172, 63]. A lognormal prior has already been used and
shown to be superior to a Gaussian one in Bayesian algorithms that reconstruct the large-
scale matter distribution from the observed galaxy distribution [55, 126, 108]. Lognormal
distributions have also already been considered in the context of weak lensing: Analyses
of ray-tracing simulations and the Dark Energy Survey (DES) Science Verification data
showed that the 1-point distribution function of the lensing convergence is better described
by a lognormal than a Gaussian model [225, 39]. Also the cosmic shear covariance can be
modeled to better accuracy under the assumption that the underlying convergence field
follows a lognormal distribution instead of a Gaussian one [84].

Bayesian inference methods are widely used in weak shear analyses, most prominently
in the context of shear measurements from galaxy images [167, 19, 194]. Recently, notable
effort has been put into developing a fully Bayesian analysis pipeline that propagates all
uncertainties consistently from the raw image to the inferred cosmological parameters [4,
80].

This chapter is organized as follows: This introduction is followed by a short section,
Sec. 4.2, in which we briefly introduce the notations and coordinate systems that will be
used in the derivation of the formalism. Our lognormal prior model for the density is
described in detail in Sec. 4.3. In Sec. 4.4, we present the data model, i.e. the lensing
formalism that connects the data from a cosmic shear measurement to the underlying
density field and give a brief overview over its implementation in Sec. 4.5. The maximum
a posteriori estimator that is used to infer the matter distribution is introduced in Sec. 4.6
and extended to include redshift uncertainties of individual sources in Sec. 4.7. In Sec. 4.8,
we show results of the density reconstruction on increasingly realistic mock data. We
conclude this work with a summary and discussion in Sec. 3.7.

4.2 Coordinate Systems and notational Conventions

We work with three different types of coordinate systems. First, we use three-dimensional
purely spatial comoving coordinates x = (x0, x1, x2) at fixed comoving lookback time τ ,
that, combined with the time coordinate, form the four-dimensional coordinate system
(x, τ).

Second, we use a 3D comoving coordinate system on the light cone of an observer at
the origin. Vectors on the light cone are marked by a prime, e.g. x′. Since x′-coordinates
implicitly define a comoving lookback time τ(x′) = |x′|/c (where c denotes the speed of
light), we omit spelling out the time explicitly and write A(x′) = A(x′, τ) for any quantity
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A that is defined on the light cone. The operation that links quantities on the light cone
to their corresponding quantities in 4D space-time can be encoded in a projection operator
with kernel

Cx′(x,τ) = δD (x′ − x) δD (τ − |x|/c) . (4.1)

Third, we employ a set of coordinate systems on the light cone, in which each system is
orientated such that one axis points into the direction of a source galaxy. These line of sight
coordinate systems are centered on the observer and spanned by the vectors (r̂i0, r̂

i
1, r̂

i
2),

where r̂i0(x′) points into the direction of the ith source galaxy and the normal vectors
(r̂i1, r̂

i
2) span the two-dimensional plane perpendicular to r̂i0. The radial comoving distance

of each galaxy from the observer is denoted ri = |ri| ≡ |ri0|. The transformation from the
light cone system into the line of sight (LOS) system of a source galaxy i is achieved by
a rotation of the x′0-axis into the ith line of sight, while x′1 and x′2 get aligned with the
image coordinates of the galaxy observation. We denote the corresponding transformation
operators Ri

rx′ .

4.3 Prior Model

The comoving density ρ(x, τ) can be split into its time-independent spatial mean ρ̄, and a
perturbation δρ(x, τ) = ρ̄ δ(x, τ). The fractional overdensity δ(x, τ) is commonly modeled
as a homogeneous, isotropic Gaussian field with zero mean and power spectrum Pδ(k, τ).
This is an excellent description at early times where fluctuations are very small, as, e.g.,
shown by observations of the cosmic microwave background radiation (CMB). At linear
level, valid for δ � 1, the time evolution of the density field can be described by

ρ(x, τ) = ρ̄ [1 + δ(x, τ)]

= ρ̄

[
1 +

∫
y

D(|x− y|, τ, τ0)ϕ(y, τ0)

]
= ρ̄ [1 +Dxy(τ, τ0)ϕy(τ0)] . (4.2)

In the last expression we have introduced the short-hand notation for integrals that we
already used in the previous chapters: repeated indices are integrated over if they do not
appear on both sides of the equation. In Eq. (4.2), D(|x−y|, τ, τ0) is the integration kernel
of a linear homogeneous and isotropic, but possibly scale-dependent, growth operator.
The field ϕ is an isotropic and homogeneous random field whose values are drawn from a
multivariate normal distribution with mean ϕ̄ and covariance Φ,

ϕ←↩ G(ϕ| ϕ̄,Φ). (4.3)

Here, it describes the three dimensional density fluctuations at time τ0 and is translated
to other times τ by the growth operation Dxy(τ, τ0). This implies ϕ̄ = 0 for this linear
Gaussian model.

The description Eq. (4.2) breaks down when δ 6� 1 such that non-linearities become
important. A possible way to account for non-linearities is to include higher-order terms
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from a perturbation series expansion of the full non-linear evolution equations. However,
a further shortcoming of the model (4.2) is that it allows arbitrarily negative density
contrasts, which physically can not be smaller than -1. To obtain a strictly positive density
field, we instead modify Eq. (4.2) by an exponential:

ρ(x, τ) = ρ̄ [1 + δ(x, τ)] = ρ̄ exp [Dxy(τ, τ0)ϕy(τ0)] . (4.4)

Since the expectation value of the density ρ(x, τ) must equal ρ̄, the mean of ϕ must be set
to

ϕ̄x(τ) = −1

2
D−1

xy(τ, τ0) [D(τ, τ0)Φ(τ0)D(τ, τ0)]yy , (4.5)

for every time τ . Note that we integrate over the index y in this expression, i.e. the
diagonal of the composite operator in square brackets is treated as a field.

For a local growth operator, Dxy(τ, τ0) = D(τ, τ0)δD(x − y), this mean correction
simplifies to

ϕ̄x(τ) = −1

2
D(τ, τ0)Φ̂x(τ0), (4.6)

where we defined Φ̂x(τ0) ≡ Φxx(τ0).
The Gaussian field ϕ and the growth operator D can be related to known quantities.

To see this, consider the expansion of the Fourier modes of δ in Eulerian perturbation
theory (see e.g. [17]),

δ(k, τ) =
∑
n=1

D(n)(τ)δ(n)(k), (4.7)

where δ(n) are convolutions of n initial fields δ(k, τ0) with an integration kernel that changes
from order to order. The first term in this series is D(1)(τ)/D(1)(τ0)δ0(k, τ0), where D(1)(τ)
is the growing solution to the linearized growth equation [148] (c.p. Section 1.3.2).

We use this analogy to motivate the simplest possible form of the growth operation in
the lognormal model and write

Dxy(τ) = δD(x− y)D(1)(τ) (4.8)

where we have set D(1)(τ0) = 1. This approximation erases any a-priori assumption of
scale-dependent growth and mode-coupling of the log field ϕ. Such a simplification is viable
since the model in Eq. (4.8) describes only our prior assumptions about the density field ρ.
The algorithm will find the most probable realization of ϕ for a fixed growth operator D
given the data. If a scale-dependence is favored by the data, it will be recovered, at least
partially, in the estimate of ϕ.

Our algorithm also allows to incorporate a more general growth operation at the expense
of computation time and memory usage. The application of the most general Dxy(τ)
generates a four-dimensional field: three-dimensional spatial comoving volumes for every
time-slice τ . This very large volume is then restricted to a three-dimensional cut by
application of the light cone operator defined in Eq. (4.1). The prior model for the matter
overdensity on the light cone then becomes

δx′ = Cx′(x,τ)exp [Dxy(τ)ϕy(τ)]− 1. (4.9)
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Applying a complicated, non-diagonal growth operation on all time slices separately
before constructing the light cone is numerically not feasable in the current implementation
if one wants to resolve a sufficiently large observational volume down to the mildly non-
linear scales.

The simplest form of D, Eq. (4.8), that depends only on time can be applied to the
light cone directly

δx′ = exp [Dx′y′ϕy′ ]− 1. (4.10)

For this work, we use the growth operator in Eq. (4.8) with the usual linear growth factor
and leave extension of this model to future work.

4.4 Data Model

In this section we establish the analytic relation between the signal field ϕ, the field of
overdensities δ that we aim to reconstruct, and the data that is obtained from a weak
lensing measurement.

Weak galaxy lensing surveys produce galaxy image ellipticities that can be quantified,
e.g., by a complex number ε = ε1 + iε2. For an ellipse with major axis a, minor axis b, and
position angle η (relative to the x-axis of the chosen coordinate grid), ε is defined as

ε = (a− b)/(a+ b) exp(2iη). (4.11)

We use the common approximation that the components of the intrinsic source galaxy
ellipticity εs = (εs1, ε

s
2), which define the shape that would be observed in the absence of

lensing1, follow a global bivariate Gaussian distribution with zero mean and variance σ2
ε

per component:
εs ←↩ G(εs| 0, N s), N s

ij = δijσ
2
ε . (4.12)

This approximation has shortcomings (see e.g. [166]), but serves for the proof of our con-
cept, since we create the mock data on which we test the algorithm with exactly this
shape noise model. In the future, more elaborated (Bayesian hierarchical) shear estima-
tors, that, e.g., take into account galaxy properties, can be incorporated into the algo-
rithm [167, 194, 19].

Lensing distorts the galaxy images in shape and size. If the distortion is small, i.e.
in the limit of weak lensing, the relation between intrinsic source ellipticity and observed
ellipticity can be linearized and simplifies to [200]

ε = g + εs, (4.13)

where g is the reduced shear. The reduced shear combines the effect of anisotropic lensing
distortions, encoded in the shear γ = γ1 + iγ2, and the isotropic distortion, encoded in the
convergence κ

g =
γ

1− κ ≈ γ. (4.14)

1We use vector notation, e.g. ε, to denote the tuple of real and imaginary part (ε1, ε2) of a complex
number ε=ε1 + iε2.
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If κ� 1, which is often the case for galaxy lensing, the reduced shear can be approximated
by the shear itself g ≈ γ.

The shear and convergence at angular position θ are related to the lensing potential φ
by

γ1(θ) =
1

2

(
∂2

1 − ∂2
2

)
φ(θ); γ2(θ) = ∂1∂2φ(θ); κ(θ) =

1

2
(∂2

1 + ∂2
2)φ(θ). (4.15)

Using the Born approximation, that is assuming that the lensing deflections can be
summed along the unperturbed photon geodesic, the lensing potential can be written as a
weighted projection of the peculiar Newtonian gravitational potential ψ along the line of
sight. For a source at LOS distance ri, this integration reads

φ(θ) =
2

c2

ri∫
0

dr
ri − r
rri

ψ(r, rθ1, rθ2), (4.16)

where we have assumed a spatially flat Universe. Applying the angular derivatives in Eq.
(4.15) to the expression for the lensing potential in Eq. (4.16), we get

∂k∂lφ(θ) =
2

c2

ri∫
0

drW (r; ri)∂rk∂rlψ
(
r, rθ1, rθ2

)
, (4.17)

where k, l ∈ (1, 2), and the lensing efficiency

W (r; ri) =
r(ri − r)

ri
. (4.18)

In practice the distance to the source ri cannot be determined directly but follows from the
photometrically measured redshift zi. Photometrically measured redshifts are associated
with a relatively high error, σz/(1 + z) ≈ 0.03 − 0.06 [86]. In its most simple form the
algorithm ignores this uncertainty. We will use this simplified model to validate the func-
tionality of the algorithm in terms of reconstructing non-linear structures in the lognormal
approximation. Redshift uncertainties will be included later in Section 4.7.

The lensing shear is completely determined by the second derivatives of the lensing
potential perpendicular to the LOS. The tidal tensor ∂rk∂rlφ(r) along the LOS of the ith
source galaxy is obtained by rotating the tidal tensor on the global coordinate grid x′

Tij(x
′) = ∂x′i∂x′jψ(x′), i, j ∈ (0, 1, 2), (4.19)

into the specific coordinate system (with coordinates ri) that points into the direction of
this ith galaxy and projecting it onto the (ri1 − ri2)-plane perpendicular to the LOS.

The last relation required to connect the data to the density fluctuations is Poisson’s
equation. It relates the potential φ(x′) to the density fluctuations δ(x′),

∇2ψ(x′) =
3

2
ΩmH

2
0

δ(x′)

a(|x′|/c)
, (4.20)
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where H0 denotes the Hubble constant (parametrized by h = H0/(100 km s−1Mpc−1) in our
test simulations), and a(|x′|/c) = a(τ) denotes the scale factor at the time τ corresponding
to LOS distance ri(x′).

4.5 Implementation

The implementation, not only of the data model, but of the entire algorithm, is based on
NIFTy [201], a versatile software package for the development of inference algorithms. We
further compute cosmology-dependent quantities, like power spectra and distance-redshift
relations, with the publicly available CLASS code2 [23]. To summarize the data model we
introduce short-hand notations for each operation in terms of operators.

In its most general form, the prior and data model, that connect the Gaussian field ϕ
with a data vector of Ns measured source ellipticities, are as follows: The growth operator
Dxy(τ) imprints a growth structure on the Gaussian field. The resulting four-dimensional
field is plugged into the exponential of E(·) = exp(·) − 1 [see Eq. (4.4)] to obtain the
fractional overdensity δx(τ). The overdensity induces the potential ψy(τ) by the Poisson
equation, that we encode in the operator Pyx(τ) ≡ ∆−13/2ΩmH

2
0/a(|x|/c) [Eq. (4.20)] and

which can be solved efficiently in Fourier space. The resulting gravitational potential is
restricted to the light cone of the observer by the light cone operator Cy′(y,τ) [Eq. (4.1)].
We compute the tidal tensor on the light cone [(Eq. (4.19)] by application of a global
differentiation operator, which we denote Tz′y′ . The tidal tensor is then rotated into each
galaxy’s LOS coordinate system by a rotation operator, Ri

rz′ . An integration operator
Ijr, which applies the integration in Eq. (4.17), integrates the components of each of the
resulting Ns tidal tensors along the unperturbed photon geodesic. For this operator, we use
an adapted version of the implementation that was already successfully applied in a similar
reconstruction method [64]. The application of Ijr yields derivatives of the lensing potential
for each galaxy location. From this we can compute the shear components by a linear
operator Lij that comprises the equations in Eq. (4.15). Rotation and integration map the
three dimensional continuous signal space into the discrete space (two shear components
for every galaxy) of the data. The shear components are thus automatically computed at
the locations of the galaxies.

In the simplified implementation that we use for this work, we avoid the 4D coor-
dinate grid (x, τ) and work on the three-dimensional light cone from the beginning. In
the prior, we model the Gaussian log-density ϕ with the power spectrum of matter fluc-
tuations today Plin(k, a=1), where a denotes the scale factor. The growth operator is
diagonal in configuration space and only a function of comoving distance to the observer
Dx′y′ = D(1)(τ)δD(x′ − y′), where D(1)(τ) is the growing solution of the linearized growth
equation. The Poisson operator is split into two parts. First, a multiplication with
3/2 ΩmH

2
0/a(|x′|/c), i.e. an operation that is diagonal in configuration space. Second,

the inverse Laplace operation ∆−1, which is diagonal in Fourier space. The inverse Lapla-
cian in the Poisson equation is a non-local operation that should strictly be applied to 3D

2http://class-code.net/

http://class-code.net/
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spatial volumes at fixed time. Here, we apply it on the light cone noting that the induced
error in radial direction should be small (roughly of order a2) if we apply the first part of
the Poisson operator first and if D(1)(τ) is approximately proportional to the scale factor.
In this case, the first order term of the exponential expression

exp (Dx′y′ϕy′)− 1 = Dx′y′ϕy′ +O(ϕ2) ≈ a(|x′|)δD(x′ − y′)ϕy′ +O(ϕ2), (4.21)

and therefore the first order time dependence of the overdensity field will partly be canceled
by the 1/a in the Poisson equation before the inverse Laplacian rescales the field. This
cancellation corresponds to the commonly known fact that the comoving gravitational
potential is constant in a matter dominated Universe.

After computing the six independent entries of the tidal shear tensor, we integrate each
of its components along the LOS. Only after the integration we rotate the resulting tensors
into their LOS coordinate systems and project out all entries which are not in the plane
perpendicular to r. This change of order allows to efficiently combine three operations,
which are 1) the rotation into the LOS, 2) projecting out non-perpendicular components of
the tidal tensor, and 3) the computation of shear components and convergence, in a single
linear operation. We denote the corresponding operator G (Gamma-Projection-Rotation).

For one data point the implemented data model in operator notation reads

di = εi = [R(ϕ)]i + εs
i + ni = GijIjr′Tr′z′Pz′y′ [exp (Dy′x′ϕx′)− 1y′ ] + εs

i + ni. (4.22)

The total data vector d has dimensions 2×Ns, i.e. two ellipticity components for each of
the Ns source galaxies. We use the letter R to encode the total response of the data to a
signal ϕ, i.e. the composite action of all operators. We have also added an experimental
noise n here for completeness. In general this will be subdominant to the shape noise εs and
we ignore it in the following. Note, however, that the formalism allows for an incorporation
of several independent noise sources.

4.6 MAP Estimator

Our aim is to obtain a maximum a posteriori (MAP) estimate of the signal field ϕ. The pos-
terior distribution is related to the likelihood and the prior by Bayes’ theorem (c.p. Section
1.1)

P (ϕ|d) =
P (d|ϕ)P (ϕ)

P (d)
. (4.23)

The prior probability P (ϕ) is modeled as a Gaussian distribution with covariance Φ. In a
first simple approximation Φ can be taken to be diagonal in Fourier space with the usual
power spectrum of matter overdensities P lin

δ (k, a).
To obtain the likelihood, we marginalize over all realizations of the shape noise

P (d|ϕ) =

∫
Dεs P (d|ϕ, εs)P (εs) = G [d|R(ϕ), N ] , (4.24)
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where the covariance N of the shape noise was defined in Eq. (4.12) and we neglect any
other sources of measurement noise. With this, the negative log-posterior becomes

− lnP (ϕ|d) =̂
1

2
[d−R(ϕ)]†N−1 [d−R(ϕ)] +

1

2
(ϕ− ϕ̄)†Φ−1 (ϕ− ϕ̄) , (4.25)

where we have dropped most terms that are independent of the field of interest, ϕ.

The maximum of the posterior distribution is found by minimizing the expression in
Eq. (4.25). Note that the posterior distribution is not Gaussian. Due to the exponential
in the response R it is not quadratic in ϕ. To find the minimum of the negative log-
posterior we apply a Newton-like minimization scheme [28]. This requires the derivative
of the negative log-posterior with respect to ϕ

−δ lnP (ϕ|d)

δϕu

= [d−R(ϕ)]iN
−1
ij GjkIkr′Tr′z′Pz′y′ [exp(Dy′x′ϕx′) ·Dy′u]

+ Φ−1
uq (ϕ− ϕ̄)q , (4.26)

where the dot denotes a point-wise product in position space, i.e. (α · β)x = αxβx.

4.7 Redshift-marginalized Likelihood and Posterior

We can take into account the source redshift uncertainty by generalizing the marginalized
likelihood in Eq. (4.24) to include the probability of the source redshifts zs given their
measured photometric redshifts zphoto. This probability is given by the posterior redshift
distribution function P (zs|zphoto), where zs and zphoto are vectors of the redshifts of all
sources. Including this redshift posterior in the likelidood yields,

P (d|ϕ) =

∫
Dεs

∫
Dzs P (d|ϕ, εs, zs)P (εs)P (zs|zphoto)

=

∫
Dzs G[d|Rzs(ϕ), N ]P (zs|zphoto). (4.27)

In most cases, this integration cannot be done analytically and the resulting distribution
will in general not be Gaussian. Here, we restrict the analysis to a Gaussian approximation
of the marginalized likelihood, that we characterize by the first and second central moment
of the full distribution.

To obtain them, we need to calculate 〈d〉P (d|ϕ) and 〈dd†〉P (d|ϕ). For the expectation
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value of the data, we obtain

〈d〉P (d|ϕ) =

∫
Dzs

∫
Dd dG[d|Rzs(ϕ), N ]P (zs|zphoto)

=

∫
DzsRzs(ϕ)P (zs|zphoto)

〈di〉P (d|ϕ) = Gij
[∫

dzs P (zs|zphoto) Izsjr
]
R̄(ϕ)r (4.28)

= Gij

 ∞∫
0

dr

∞∫
r

drjW (r, rj)P (zsj |zphotoj)
dzsj
drj

 R̄(ϕ)r

≡
[
GĪR̄

]
(ϕ)i ≡ R̃(ϕ)i, (4.29)

where Ī denotes the redshift averaged integration operator defined in the square brackets in
the first line of Eq. (4.29) and we have introduced R̄(·) ≡ T P (exp [D(·)]− 1) to summarize
the action of all source-redshift independent operators.

The second moment is

〈dd†〉P (d|ϕ) = N + 〈(R(ϕ))(R(ϕ))†〉P (z|zph). (4.30)

Non-diagonal elements of the second term in Eq. (4.30) read

〈((R(ϕ))i(R(ϕ))j)〉P (z|zph) = 〈(R(ϕ))i〉P (z|zph)〈(R(ϕ))j〉P (z|zph) = (R̃ϕ)i(R̃ϕ)j (4.31)

and diagonal elements are

〈(R(ϕ))i(R(ϕ))i〉P (z|zph) =

GijGij

 ∞∫
0

dr

∞∫
0

dr′
∞∫

max(r,r′)

drjW (r, rj)W (r′, rj)P (zsj |zphotoj)
dzj

drj

 R̄(ϕ)r R̄(ϕ)r′

≡ GijGijĨjr,r′R̄(ϕ)r R̄(ϕ)r′ , (4.32)

where the new operator Ĩ denotes the squared average of the integration operator, i.e. the
square brackets in the first line of Eq. (4.32).

The Gaussian approximation to the likelihood is then G[d|R̃(ϕ), Ñ ], where Ñ = N +Q
and Q is

Q = 〈(R(ϕ))i(R(ϕ))j〉P (z|zph) − 〈(R̃ϕ)i〉P (z|zph)〈(R̃ϕ)j〉P (z|zph)

= 〈(R(ϕ))i(R(ϕ))i〉P (z|zph) − (R̃ϕ)i(R̃ϕ)i. (4.33)

This expression is still signal-dependent and we approximate it further by replacing ϕ by
its posterior mean 〈ϕ〉P (ϕ|d). Since this mean depends on Ñ , the resulting set of equations
must be solved iteratively.
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4.8 Validation and Tests

To validate the implementation and assess the goodness of the tomographic reconstruction,
we perform a number of increasingly realistic tests, which we denote tests A, B and C. In
tests of type A we employ a homogeneous source distribution over the entire box. These
tests are the least realistic ones and serve to validate the correctness of the implementation.
Test B uses a realistic source distribution and test C adds realistic shape noise.

In all of these tests, we place the observer in the center of the bottom of the compu-
tational box3 and resolve the underlying and reconstructed overdensity fields with 1283

pixels. Depending on the test, we allow the physical sizes of the box to differ. The current
pixel resolution is limited due to computation time and memory usage. A higher resolu-
tion will be accessible after parallelization and adaption of the code for the usage on a
high-performance cluster.

The minimization is achieved through 300 steps of an LBFGS algorithm [28] followed by
a steepest descent algorithm. The latter is set to have reached convergence if the maximal
pixelwise relative difference between two subsequent field estimates is smaller than 10−4

for three iteration in a row. If the steepest descent does not converge within 200 iterations,
the same combination of LBFGS and steepest descent minimizers is started once more.
We find that, at latest in this second run, all of our example reconstructions meet the
convergence criterium. In the current serial implementation, the entire minimization takes
between 1 day (for idealized tests at fixed redshifts) and 6 days (for a realistic source
distribution and shape noise) on a single processor with 2.6 Ghz.4

Most of the tests are based on mock data that we create by applying the data model
described in Sec. 4.4 to non-linear density fields obtained from N-body simulations. For
tests at fixed redshifts we use snapshots of the Millennium-XXL simulation [9] from which
we take the entire volume of size [3h−1 Gpc]3 and smooth the density fields to fit the
desired resolution of 1283 pixels. For more realistic test cases we construct a light cone of
size [500h−1 Mpc, 500h−1 Mpc, 4000h−1 Mpc] by joining snapshots of the Millennium Run
[219]. The Millennium box measures 500h−1 Mpc along each side and we shift it every
time 500h−1 Mpc in the z-direction have been constructed. This procedure ensures that a
LOS is unlikely to hit the same structure repeatedly. In the resulting light cone we achieve
a resolution of 3.9h−1 Mpc in the x- and y-directions corresponding to mildly non-linear
scales and reach a redshift of z = 2.2 in the z-direction. Since we use 1283 pixel to resolve
the light cone box, the physical size of the pixels is longer along the z-axis, meaning that
we obtain a poorer resolution in this direction.

Both the Millennium-XXL and the Millennium simulation use a flat ΛCDM cosmology

3This position is not fixed by the algorithm. For a reconstruction from a survey that covers a significant
fraction of the sky, the observer can be placed in the center of the box, for example.

4Due to small but necessary corrections to the code, we had to rerun the last test less than 6 days
before the hand-in date. Because of this time-constraint the minimization in the test of type C, which is
shown here, was truncated after only 100 LBFGS and 20 stepest descent iterations. By the time of hand-
in, another 100+20 steps had been completed but the result seemed to be affected by strong numerical
instabilities. The reason for these instabilities has to be investigated in the future.
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with Ωm = 0.25 and h = 0.73.

4.8.1 Tests A: Simple Geometry

In this series of tests we distribute 500 000 sources evenly in the box and slightly beyond
(±100h−1 Mpc). We place sources outside of the reconstructed volume in order to increase
the area in which we can recover the underlying density field with high resolution. The
quality of the reconstruction decreases with increasing distance to the observer because
of increasing distances between lines of sight and a decreasing number of background
sources that help to break the LOS degeneracy of the lensing kernel. We further only add
unphysically low, negligible shape noise in this first test set.

We perform three different tests of type A for which we create data from increasingly
realistic input fields:

1) A self-consistency test, where we create an overdensity field from a random realization
of the Gaussian field ϕ [Eq. (4.3)] in a cubic box of side length 1000h−1 Mpc. We then
apply the implemented data model and use the algorithm to recover this input field. We
do not show any results from this test, since they would not provide any additional insights
compared to tests A2 and A3, but simply state that we can recover the input field with
high fidelity which means that the implementation is in itself consistent.

2) A test in which we create shears from overdensity fields taken from an N-body
simulation at fixed redshifts. We use three different snapshots at individual redshifts z = 1,
z = 0.25 and z = 0. This allows to assess the algorithm’s ability to recover increasingly
non-linear fields. In each case, we compare the lognormal reconstruction to a Wiener
filter (WF) reconstruction, which uses the same data model and source distribution but a
Gaussian prior on the overdensity field δ. Comparisons between input and reconstructed
fields in each case are shown in Fig. 4.1. The resolution of the reconstruction decreases
with distance to the observer. This is because 1) the density of lines of sight decreases 2)
there are less sources behind the point we want to reconstruct 3) the information from these
sources is suppressed by the shape of the integration kernel. In all cases, the lognormal
reconstruction is superior in capturing the highest values of the density field and avoids
unphysically low density contrasts below -1. Table 4.1 summarizes pixelwise quadratic
differences and the pixel-wise Pearson correlation between underlying and reconstructed
fields. In Table 4.2 we compare the minimal and maximal values in the reconstructions to
the extremal values in the true density field. For all redshifts tested the lognormal prior
yields higher correlations with the original field than the Gaussian prior. It also better
reconstructs the maximal values. The difference between lognormal and WF reconstruction
increases as the input field becomes more non-linear. This is also reflected in the 1-point
probability distribution functions (PDFs), which we show in Fig. 4.2. While the Wiener
Filter PDF is closer to symmetric in all cases, we can capture more of the skewness of
the input field by applying the lognormal prior. An notable feature of the 1-point PDFs
is that the maximum value is slightly biased in both reconstructions. The distributions
of the reconstructions peak at zero, i.e. at their mean, while the underlying field peaks
below. This is a feature of both priors since they prefer the mean density (or a zero density
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contrast) if the data does not contain enough information on the density.

redshifts 〈(δ̂ − δ)2〉/σ2
δ

√
〈δ̂δ〉/(σδσδ̂)

lognormal WF lognormal WF
1. 0.66 0.69 0.58 0.56
0.25 0.73 0.77 0.52 0.49
0.0 0.73 0.77 0.53 0.48
light cone 0.65 0.73 0.61 0.51

Table 4.1: Quantitative comparison of reconstruction methods for tests A2 and A3.
We compare the lognormal to the Gaussian prior in terms of the mean square pixel-wise
difference (first column) and the Pearson-correlation coefficient (second column) between
the reconstruction and the underlying field (which we denote δ̂ and δ, respectively).

redshifts max(δ̂), max(δ) min(δ̂), min(δ)
lognormal WF N-body lognormal WF N-body

1. 4.22 2.95 4.92 -0.63 -0.91 -0.79
0.25 7.38 5.00 8.49 -0.77 -1.28 -0.87
0.0 8.32 5.55 10.26 -0.99 -1.57 -0.89
light cone 32.90 20.81 70.20 -0.98 -4.28 -0.92

Table 4.2: Quantitative comparison of reconstruction methods for tests A2 and A3. We
compare the minimal and maximal values of the underlying and reconstructed fields (δ and
δ̂, respectively).

3) A test similar to A2 but with a redshift dependent density field constructed from
different snapshots. The physical size of the box spans [500h−1 Mpc]2 in the (x− y)-plane
and 4000h−1 Mpc into the z-direction corresponding to a maximum redshift of z = 2.2.5

Results of test A3 are shown in Fig. 4.3 and Fig. 4.4. The quantitative comparison between
the lognormal and the corresponding WF run is listed in the last rows of Tables 4.1 and 4.2,
labeled “light cone”. We find a similar match between the underlying and reconstructed
fields as in tests A2 and again a superiority of the lognormal prior over the Wiener Fil-
ter reconstruction in terms of correlation coefficients, pixel-wise differences and extremal
values. The distributions of the pixel-wise matching between input and reconstructions in
the upper panel of Fig. 4.4 imply that the lognormal prior is more likely to reconstruct

5The light cone is constructed by merging planes from different snapshots along the z-direction of
the box, but the algorithm assumes that the distance and redshift increase in radial direction from the
observer. This leads to a mismatch between the distance to a (source) position assumed by the algorithm
and the distance or rather redshift that this position corresponds to in the simulation. The distance in the
simulation is cos θ times the distance assumed by the algorithm, where θ is the angle between the LOS
and the z-axis. This mismatch should only become relevant for relatively large angles θ > π/2. Lines of
sight with such angles only cover a minor fraction of the box and we therefore expect the test to not be
severely affected by this approximation.
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Figure 4.1: Qualitative comparison of reconstruction methods in the test series A2, for
which we create mock data from individual simulation snapshots, apply a homogeneous
source distribution and add negligible shape noise. We show central slices through the
3-dimensional fields. The observer is located in the center of the (x−y)-plane at the origin
of the z-axis. The redshift of the snapshot decreases from top to bottom, z = [1, 0.25 , 0.].
In the two upper rows we show the (x − y) plane at z = max(z)/2, in the last row the
(x − z)-plane at y = max(y)/2. The fields are from left to right: the overdensity field
from the simulation, its reconstruction with a lognormal prior and its reconstruction with
a Gaussian prior (Wiener filter). We plot ln[1 + δ] and mark unphysical negative densities
in the Wiener Filter reconstruction in red.
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Figure 4.2: 1-point PDFs of the simulated density contrasts (in cyan) and their Wiener
filter and lognormal reconstructions (red and dark blue) in tests on mock data created
from different snapshots of an N-body simulation with a homogeneous source distribution
and negligible shape noise (A2). The PDF of the lognormal reconstruction is slightly more
skewed than the Wiener filter PDF, which is closer to symmetric in all cases. Both the
Wiener filter and the lognormal reconstruction are slightly biased in the position of the
peak, however, the mean values of both reconstructions agree well with the mean value of
the underlying density. The mean values of the density contrast are indicated by vertical
lines in the same color as their corresponding distribution. We also find that the Wiener
filter produces unphysical density contrasts below -1 in the snapshots at redshift z = 0.25
and z = 0.
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overdensities correctly, while the Wiener Filter is better in tracing the underdensities. The
full distributions in the lower panel of the same Figure suggest that the reconstruction of
low densities with the Wiener Filter is a consequence of allowing negative densities in this
model: The Gaussian prior does not only permit negative densities in the reconstructed
density field but even encourages them due to its symmetry. Because of this, it supports
the assignment of low densities to to poorly constrained regions. At these places the re-
constructed values sometimes coincide by chance with the real values (low density regions
tend to have lower signal-to-noise). The lognornal prior refrains from reconstructing very
low densities in regions with low signal-to-noise, since they are not significantly requested
by the data.

4.8.2 Test B: Realistic Survey Geometry

In the test of type B, we employ a realistic survey geometry and source distribution. We use
input overdensities from the same light cone as in test A3 to generate mock data and place
sources in a cone that spans 7.15o. The sources are distributed according to a distribution
function of form

n(z) = zαexp[−(z/z0)β], (4.34)

where we fit α, β, and z0 to the publicly available source distribution of the CFHTLenS
survey6. The resulting source distribution function is shown in the left panel of Fig. 4.5.
The fit does not exactly match the survey distribution, but the similarity is sufficient for
this test. We then draw Ω[armcin2]ρs[gal/arcmin2] source positions from this distribution,
where Ω is the angular opening area of the cone in arcmin2 and ρs the source density of
the survey, which we choose to be ρs = 11 gal/arcmin2 corresponding to the source density
in CFHTLenS. A scatter plot of the resulting spatial source distribution is shown in the
right panel of Fig. 4.5. The reconstructions are depicted in Fig. 4.6.

We find that the superiority of the lognormal model remains with a realistic background
galaxy distribution. If we restrict our analysis to the region that is covered by the obser-
vational cone, we find that the distribution of the reconstructed field values closely follows
the underlying density distribution if we apply the lognormal prior. The Gaussian prior
produces negative densities (Fig. 4.7), but seems better in reconstructing low densities.
However, this apparent superiority seems spurious since it also affect regions, where the
algorithm gets little information from the data, e.g. at large distances from the observer
(c.p Fig. 4.6).

4.8.3 Test C: Realistic Shape Noise

In the last test of our test series, we add realistic shape noise with variance σ2
ε = 0.25 to the

mock data on the light cone. This value is close to the value in CFHTLenS, σ2
ε = 0.279 [81].

Compared to test B, we use the same opening angle of 7.15o but use a slightly higher galaxy
density of 15 gal/arcmin2. We show results of this final test in Figures 4.8 and 4.9. The

6http://www.cfhtlens.org/astronomers/cosmological-data-products
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Figure 4.3: Qualitative comparison of reconstruction methods in test A 3. For this test,
we create mock data from a simulated density field on a light cone, use a homogeneous
source distribution and add only negligible shape noise. The fields are from left to right:
the underlying overdensity field from the simulation, the reconstructed overdensity field
using a lognormal prior and the reconstructed overdensity using a Gaussian prior (Wiener
filter). We show the 32nd (out of 128) (x − y)-plane of the reconstruction box in each
panel. The observer is located in the center of the (x− y)-plane at the origin of the z-axis.
Note that we plot ln[1 + δ] and mark negative densities in red. In the second row, we show
a smoothed version of the fields. The smoothing was performed on the density constrast
with a Gaussian kernel of width σ = 8h−1 Mpc, δ → δR=8, and we plot ln[δR=8 + 1].
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Figure 4.4: Comparison of reconstruction methods in test A3: In the upper panel, we
have binned the underlying density into 40 bins of equal width (0.17) in ln-space and
count the points in the reconstructions whose density lies in the same bin at the same
location. The total number of points in a density bin in the original density field is shown
for comparison in the background (cyan). This plot suggests that the lognormal model is
better in capturing overdensities, while the WF reconstruction is more likely to coincide
with the real underdensities. In the lower panel, we plot the full distributions of the
reconstructions against the underlying density. A perfect reconstruction would follow the
diagonal. At points that are poorly constrained, both reconstructions should prefer values
around the horizontal, which corresponds to the mean density. The Gaussian prior is more
likely to yield lower densities, since it favors a symmetric density distribution.
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Figure 4.5: The source redhsift distribution used for test B: In the left panel, we show the
histogramm of source redshifts from CFHTLenS and our fit to this distribution of the form
given in Eq. (4.34). The right panel depicts the projected 3D scatter plot of the galaxy
sample that is drawn from the fit and used in test B (we only show every 200th source).
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Figure 4.6: Results of test B, reconstructions of a redshift-dependent density field on the
observer’s light cone from mock data with a realistic source distribution but negligible shape
noise. We show central slices through the y-axis of the underlying field, ln[δN−Body + 1],

in the left, the lognormal reconstruction, ln[δ̂ln + 1], in the middle and the Wiener Filter
reconstruction, ln[δ̂WF + 1] in the right panel. Negative densities are marked in red. The
apparent anisotropy of the fields stems from the fact that we have squeezed them in the
z-direction. We use square pixels in the plot, while their physical size is eight times larger
in the z-direction than in the x-direction.
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Figure 4.7: Results of test B, reconstructions from mock data with a CFHTLenS-like
source distribution. We have restricted the analysis to the field values that lie within the
observed cone. In the upper panel we show the 1-point PDFs of the fields with mean values
indicated by vertical lines in the same color as their corresponding distribution. The lower
plot shows the density distributions of the reconstructions against the underlying density.
The lognormal model is better in tracing the highest values of the true density distribution,
while the Wiener Filter often prefers lower densities than the lognormal prior, especially
at positions where the data is little constraining.
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Figure 4.8: Results of test C, reconstructions from CFHTLenS-like mock data with real-
istic shape noise. In the left panel we show the underlying density field on the central slice
through the y-axis. The central and middle panel depict the corresponding slices through
the lognormal and WF reconstructions, respectively. The test reveals that current data is
only poorly constraining on the smaller scales. The Wiener Filter finds very little contrast,
while the lognormal reconstruction slightly overestimates the presence of overdensities.
Both are significantly affected by the line of sight degeneracy.

test reveals that the lognormal model is still better in reconstructing overdensities in this
realistic, CFHTLenS-like configuration, while the Wiener Filter better traces the under-
dense regions. Both reconstructions exhibit a strong line of sight degeneracy, which is why
a slice-wise comparison of the input and reconstructed maps does not reveal many common
features. Due to time-constraints, we stopped the minimzation in this test after only 100
iterations of the LBFGS and 20 steps of the steepest descent algorithm. Both minimizers
failed to significantly reduce the negative log posterior during these steps. An inspection
of the posterior gradient in each LBFGS step reveals that its absolute value is close to
monotonically decreasing in the Wiener Filter reconstruction, while it is rather irregularly
evolving in the lognormal case. When trying to converge further in the lognormal recon-
struction, we also encounter significant numerical instabilites. These could be due to the
code finding a local minimum, different from the global one, or shortcomings in our data
model. To test the first assumption in the future, we will examine the stability of the
current estimate by including a Monte-Carlo step that adds randomly drawn and down-
weighted realizations from the prior distribution to the current estimate. Alternatively,
we could choose different starting points. Currently, we initialize the minimizer with zero
density contrast.
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Figure 4.9: Results of test C, reconstructions from mock data with a CFHTLenS-like
source distribution and realistic shape noise. We have restricted the analysis to the field
values that lie within the observed cone. In the upper panel we show the 1-point PDFs
of the fields with mean values indicated by vertical lines in the same color as their corre-
sponding distribution, in the lower panel, we count the pixels in which the reconstructed
densities coincide with the original density field (i.e. lie within the same density bin).
Similarly to the test with low shape noise, we find that the Wiener Filter traces the under-
densities slightly better, while the lognormal prior is more likely to reconstruct overdensities
correctly.
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4.9 Conclusions

In this chapter, we have presented a novel, fully Bayesian, lensing tomography algorithm
that reconstructs the three-dimensional matter distribution from measurements of individ-
ual galaxy shapes. The main difference to existing lensing reconstruction methods lies in
the use of a lognormal prior on the density field instead of a Gaussian one. The lognormal
model is an improvement over the Gaussian approximation in two ways: First, it enforces
the strict positivity of the density while a Gaussian prior allows unphysical, negative den-
sities. Second, it incorporates an a priori knowledge of the presence of odd moments in the
matter distribution, which arise as a consequence of non-linear structure formation. These
corrections are relevant since the cosmic shear signal probes structures down to scales that
lie well in the non-linear regime. We note that the lognormal distribution does not describe
the exact distribution of non-linearly evolved overdensities. However, since it is only used
as a prior, it will be updated by the information contained in the data. In regions with
high signal-to-noise, this prior model only supports the high-fidelity reconstruction. In less
well constrained regions it prevents unphysical features in the reconstructed field.

To assess the differences between a reconstruction with a lognormal and a Gaussian prior
(the latter corresponds to a Wiener filter), we have applied the algorithm with both priors
to increasingly realistic mock data sets. Those data sets were produced by applying the
algorithm’s inherent data model to non-linearly evolved densities from N-body simulations.
In tests with negligible shape noise, but a realistic CFHTLenS-like source distribution, we
find that our reconstruction method is superior to the Wiener filter: It avoids negative
densities that are present in the Wiener filter reconstructions. It is better in reconstructing
the highest local peaks in the density field, and it leads to a higher point-wise correlation
between the true underlying density and its reconstruction. When we reconstruct from
CFHTLenS-like mock data with realistic shape noise, we find that both reconstructions
show a strong line of sight degeneracy and that the Wiener Filter estimate exhibits very
little contrast, while the lognormal model slightly overestimates the presence of high density
values. This overestimation seems to be due to numerical unstabilities. The exact reason
for these instabilities has to be investigated in the future.

The Bayesian formulation also allows for an easy and consistent integration of other
sources of information or uncertainties. In this work we show how photometric redshift
uncertainties can be included, but leave the implementation for future work. The algo-
rithm can further be complemented with models of intrinsic alignments or extended to use
the clustering of galaxies as an additional source of information on the underlying matter
distribution. Finally, it can be combined with existing Bayesian methods for shear esti-
mation from galaxy surveys, yielding a complete Bayesian analysis pipeline. The outcome
of an improved 3D reconstruction can then, for example, be used for measurements of the
cross-correlation with other tracers of matter or for studying higher order field statistics.

In this chapter, we have proven that the algorithm yields better density reconstructions
than existing methods in idealized test cases. In the future, a parallelized implementation
of the algorithm, that can handle larger data sets, should be tested on realistic mock data
of current and future surveys. These tests will reveal for which survey characteristics this
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new algorithm can achieve a significant improvement over existing methods.



Chapter 5

Conclusion & Outlook

Weak lensing of the cosmic microwave background and of galaxies are both exceptionally
promising cosmological probes since they are sensitive to the yet poorly constrained late-
time evolution of our Universe, comparably little affected by model assumptions (since
lensing measures the matter distribution directly) and can be measured over a wide range
of scales and redshifts. Moreover, current and upcoming surveys will yield a vast amount
of unprecedentedly precise data in these fields.

High precision data demands for very accurate analysis techniques and many of the
assumptions that standard analyses are based on cease to be valid for current or future
experiments. The increasing number of data sets also creates the need for methods that
consistently combine the data obtained from different experiments and probes. Such a
combination should allow to make use of the full information content while propagating
uncertainties consistently. In this thesis we have addressed these demands by deriving new
analysis methods for weak lensing measurements in a Bayesian framework, as well as by
computing corrections to standard analysis techniques.

In Chapter 2 we have derived and outlined the implementation of a maximum a poste-
riori estimator for the CMB lensing potential from CMB data. This work has remained at
a preliminary stage and unpublished because of direct competition by two groups and their
corresponding publications [8, 33]. Especially the latest publication provides a functioning
estimator for realistic data sets in the flat-sky approximation. Because of this we have put
a particular emphasis on describing the caveats and specialities of an implementation on
the full, curved sky. The next generation CMB data sets will be provided by ground-based
experiments, for which the flat-sky approximation should be sufficient. A full sky imple-
mentation should be aimed at once the next generation CMB satellite probes are in reach
(e.g. LiteBird with anticipated launch in 2025-2027 [162]).

An exciting extension of this method would be a joint estimator for the realization of
the lensing potential and its power spectrum. The power spectrum estimate could then
be used for cosmological parameter estimates by comparison to theory power spectra.
In another extension the cosmological parameter inference could be made part of the
reconstruction algorithm. The standard estimator for the CMB lensing power spectrum is
a biased estimator and the bias terms need to be evaluated independently and subtracted.
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They depend on the fiducial cosmology and some must be estimated with Monte Carlo
simulations. An alternative estimator for the power spectrum would constitute a valuable
cross check for this standard technique. Note, however, that it will likely be numerically
as costly to evaluate as the four-point estimator with its corrections since the corrections
must be in some way inherent to any estimator.

An estimator for the power spectrum could also be extended to cross-spectra with other
tracers of large-scale structure. Instead of cross-correlating two maps, such an estimator
would combine two data sets in a joint estimator that finds the most probable realizations
of the lensing potential and, e.g. a Compton y-map, plus their auto- and cross-spectra.
In such a framework uncertainties of the two field reconstructions could be propagated
consistently to the estimates of the spectra.

In Chapter 3 we have described a new bias to the standard four-point estimator for
the CMB lensing power spectrum. This bias is sourced by the matter bispectrum, which
arises as a consequence of nonlinear structure formation. According to our estimate of
the magnitude of the bias, it should be significant for current Stage-III experiments. In
its evaluation we had to make a number of assumptions, and we stated in the conclusion
to this chapter that these have to be validated in the future. Since the publication of
this work, we have evaluated the bias for an improved fitting formula for the bispectrum
(calibrated on N-body simulations) and found that this greatly enhances its significance,
in particular on small scales. However, this enhancement seems to be almost canceled
by the post-Born corrections to the bispectrum, which have recently been evaluated [186]
and turn out to have opposite sign to the bispectrum induced by structure formation. An
updated estimate of the bias will be published along with an independent measurement
from ray-tracing simulations, which currently seems to confirm our analytical results but
still needs to be tested thoroughly. The same kind of bias should also be evaluated for
cross-correlation measurements where it could be even more significant.

We note that the significance of this bias suggests that deviations from Gaussianity
should in the future also be accounted for in the MAP estimator of Chapter 2: The
estimate of the lensing potential inferred from this estimator can be non-Gaussian if one
employs a Gaussian prior, but it will be suboptimal, if we do not make use of our complete
prior knowledge.

Finally, in Chapter 4 we have presented a MAP estimator that infers the 3D large-scale
mass distribution inferred from lensed galaxy shape measurements. This MAP estimator
is different to existing ones, in particular since it takes into account non-linear corrections
to the density distribution by employing a lognormal prior on the density field. In a series
of tests we have compared the result of this lognormal reconstruction to a Wiener Filter,
which uses a Gaussian prior on the density field. We found that in the low noise regime
the lognormal MAP estimator yields reconstructions that are closer to the true underlying
field in terms of, e.g. pixel-wise difference or extremal values. Moreover it enforces positive
densities, while the Wiener filter allows unphysical negative densities. For current data
sets with realistic noise levels, however, both methods seem competitive. In the future,
this estimator should be extended to include other tracers of the large-scale structure, such
as the clustering of galaxies. It can also be used for cross-correlation studies, in the same
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way as it was outlined above for the estimator for CMB lensing.
We conclude that Bayesian inference algorithms offer an exciting framework for con-

sistently bundling information into joint inference algorithms. We have taken first steps
towards such analysis pipelines, outlined a road map for future extensions and pointed out
possible caveats.
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Appendix A

Functional Derivative of the Lensing
Response Operator

In this appendix we give a detailed derivation of the analytical form of the functional
derivative of the response operator that appears in Chapter 2. To do this, we first write
the response operator in a Fourier basis

s̃(x′) = Lφx′ysy =

∫
dy δD [x′ + φ(x′)− y] s(y)

=

∫
dk e−ik[x′+∇φ(x′)]

∫
dy eikys(y). (A.1)

Taking the functional derivative of the last expression with respect to the lensing potential
at position a, gives (assuming periodic boundary conditions)

δ

δφa

[
Lφx′ysy

]
=

∫
dk

δ

δφ(a)
eik[x′+∇φ(x′)]

∫
dy e−ikys(y)

=

∫
dk∇x′ [δD (x′ − a)] · (ik)eik[x′+∇φ(x′)]

∫
dy e−ikys(y)

=

∫
dk

∫
dy [∇x′δD (x′ − a)] eik[x′+∇φ(x′)] ·

[
−∇ye−iky

]
s(y)

= [∇x′δD (x′ − a)] ·
[∫

dk eik[x′+∇φ(x′)]

∫
dy e−iky∇ys(y)

]
= [∇x′δD (x′ − a)] ·

[
Lφx′y∇ys(y)

]
. (A.2)

In the last expression, we have again identified the configuration space formulation of the
lensing response operator. The resulting expression is not only correct in flat space, but
also on the sphere.1

1One could have equivalently derived the derivative by expressing the delta function in a spherical
harmonic basis or by taking the derivative of the delta function in configuration space.
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The derivative of the delta function that relates the position of the lensing potential a
with the observing direction x′ can be evaluated in the the context of a complete expression,
e.g. j†D,φj, which appears in the signal space posterior [Eq. (2.21)]. Keeping track of the
correct coordinates in the derivative of such an expression, requires to take into account
the beam function B and the pixel window function P . The total response (without mask)
is

Rjy = Pjy′By′x′L
φ
x′y, (A.3)

and its derivative

(Lφx′y),φ → (Rjy),φ = Pjy′By′x′

[
∇x′δD (x′ − a) ·

(
Lφx′y∇y

)]
. (A.4)

Inserting this into the terms that appear in the posterior, one finds, e.g.

j†D,φj =− j†DD−1
,φ Dj

=− 2j†D[R†N−1R,φ]Dj

=− 2jxDxy′
[
Ry′iN

−1
ij (Riy),φ

]
Dyz′jz′

=− 2jxDxy′Ry′iN
−1
ij PjzBzx′

[
∇x′δD (x′ − a) · Lφx′y∇y

]
Dyz′jz′

=− 2jxDxy′Ry′iN
−1
ij PjzBzx′[

∇x′

(
δD (x′ − a) · Lφx′y∇y

)
− δD (x′ − a) · ∇x′L

φ
x′y∇y

]
Dyz′jz′

= 2jxDxy′Ry′iN
−1
ij Pjz{

∇x′Bzx′

[
δD (x′ − a) · Lφx′y∇y

]
+Bzx′

[
δD (x′ − a) · ∇x′L

φ
x′y∇y

]}
Dyz′jz′

= 2jxDxy′Ry′iN
−1
ij Pjz

[
∇aBza · Lφay∇y +Bza · ∇aL

φ
ay∇y

]
Dyz′jz′

= 2∇
[
B†P †N−1RDj · Lφ∇ (Dj)

]
, (A.5)

where we have expressed the beam function in configuration space for notational conve-
nience By′x′ ≡ F †y′kBkk′Fk′x′ .



Appendix B

Detailed Evaluation of the individual
Contributions to the Lensing
Bispectrum Bias

B.1 Bias from Terms of Type A

We begin by computing the lensing bias from the contraction type A. For the type A1
contraction, we obtain

〈δTl1δTl2δTl3Tl4〉A1 =− (2π)2δD(l1 + l2 + l3 + l4)CTT
l4

[(l3 + l4) · l4]

×
∫
l

[l · (l1 − l)] [l · (l2 + l)]CTT
l Bφ(l1 − l, l2 + l,−l1 − l2). (B.1)

Inserting this 4-point function into Eq. (3.14) yields the A1 bias to the measured lensing
power spectrum,

N
(3/2)
A1 (L) = −4A2

LSL

∫
l1,l

gl1,L[(l1 − l) · l][(l1 − l) · (L− l)]CTT
|l1−l|Bφ(l,L− l,−L). (B.2)

The prefactor of 4 is a symmetry factor that arises from the four identical possibilities to
place three first order perturbed temperature contributions, δT , and one unlensed contri-
bution, T , in the temperature 4-point correlator. SL denotes an integral over the filtered
unlensed CMB power spectrum,

SL =

∫
l2

gl2,L(l2 · L)CTT
l2
, (B.3)

which corresponds to half the inverse normalization SL ≈ 1/(2AL) at leading order in Cφφ.
Spelling out the A2 contraction, we find

〈δTl1δTl2δTl3Tl4〉A2 =− (2π)2δD(l1 + l2 + l3 + l4)CTT
l4

[l4 · (l2 + l4)]

×
∫
l

CTT
l [l · (l1 − l)] [l · (l + l3)]Bφ(l1 − l, l + l3, l2 + l4), (B.4)



96
B. Detailed Evaluation of the individual Contributions to the Lensing

Bispectrum Bias

resulting in the bias

N
(3/2)
A2 (L) = −4A2

L

∫
l1l2

gl1,Lgl2,L[(l2 − l1) · (l2 − L)]CTT
|L−l2|

×
∫
l

[(l1 − l) · l][(l1 − l) · (l1 − l2 − l)]CTT
|l1−l|Bφ(l, (l1 − l2)− l,−(l1 − l2)), (B.5)

where we have again included a symmetry factor of 4. The integrand involves functions
that depend on different combinations of l1, l2, and l, leading to a tightly coupled 6D
integral for every L. The N (3/2) bias from the A3 contraction is found to be equal the A2
contraction by noting that the bias is invariant under exchanging l1 ↔ L− l1 in Eq. (3.14).

B.2 Bias Contributions from Terms of Type B

Terms of type B are of the form 〈δ2TδTT ′T ′〉 with both perturbed temperatures coupling to
the same quadratic estimator φ̂ in the four point estimator 〈φ̂φ̂′〉. There are 4 possibilities
to form such a term, resulting in a symmetry factor of 4. The CMB lensing bias sourced
by the B1 contraction vanishes for L > 0,

N
(3/2)
B1 (L) = 0. (B.6)

The B2 contraction is

〈δ2Tl1δTl2Tl3Tl4〉B2 = −(2π)2

2
δD(l1 + l2 + l3 + l4)CTT

l3
CTT
l4

×
∫
l

[l3 · (l−l1−l3)] [l3 · l] [(l1 + l2 + l3) · (l3 + l1)]Bφ(l, l1 + l3−l,−l1−l3). (B.7)

Together with the similar B3 contraction, this results in the lensing bias

N
(3/2)
B2 (L) +N

(3/2)
B3 (L) = −2A2

L

∫
l1,l2

gl1,Lgl2,L[(L− l2) · (l1 − l2)]CTT
l2
CTT
|L−l2|

×
∫
l

[l2 · (l− (l1−l2))] (l2 · l)Bφ(l, (l1−l2)− l,−(l1−l2)) + (l2 ↔ L−l2). (B.8)

B.3 Biases from Terms of type C

The C1 contraction defined in Eq. (3.20) reads

〈δ2Tl1Tl2δTl3Tl4〉C1 =
(2π)2

2
δD(l1 + l2 + l3 + l4)CTT

l2
CTT
l4

[(l3 + l4) · l4]

×
∫
l

(l2 · l) [l2 · (l1 + l2 − l)]Bφ(l, l1 + l2 − l,−l1 − l2). (B.9)
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Inserting this into Eq. (3.14) gives the following C1 bias of the measured lensing power
spectrum:

N
(3/2)
C1 (L) = 4A2

LSL

∫
l1,l

gl1,L(l1 · l) [l1 · (L− l)]CTT
l1
Bφ(l,L− l,−L), (B.10)

where the integral SL was defined in Eq. (B.3). Eq. (B.10) takes into account a symmetry
factor of 8 that arises because the resulting lensing bias does not change if we exchange
l1 ↔ l2, or l3 ↔ l4, or both in Eq. (3.27).

The C2 contraction in Eq. (3.20) is given by

〈δ2Tl1Tl2δTl3Tl4〉C2 = 〈δ2Tl1δTl3〉〈Tl2Tl4〉. (B.11)

This involves the correction 〈δ2TδT 〉 of the lensed temperature power spectrum generated
by a nonzero lensing bispectrum (another correction would be 〈δ3TT 〉). Based on analytical
[164] and numerical investigations this correction is expected to be small. Further, it
should be automatically accounted for when using realization-dependent subtraction of the
Gaussian N (0) bias which is common in modern lensing pipelines. We do not investigate
this term here further. The C3 contraction is given by

〈δ2Tl1Tl2δTl3Tl4〉C3 = −(2π)2

2
δD(l1 + l2 + l3 + l4)

×
∫
l′2

[l4 · (l1 + l4 − l′2)] [l4 · l′2] [l2 · (l1 + l4)]CTT
l2
CTT
l4
Bφ(l′2, l1 + l4 − l′2,−(l1 + l4))

(B.12)

The induced bias of the measured lensing power spectrum is

N
(3/2)
C3 (L) = −8

2
A2
L

∫
l1,l2

gl1,Lgl2,L [(l1 − L) · (l1 + l2 − L)]CTT
|L−l1|C

TT
|l2−L|

×
∫
l

[(l2 − L) · (l− l1 − l2 + L)] [(l2 − L) · l]Bφ(l,−l2 + L− l1, l1 + l2 − L− l),

(B.13)

where we have accounted for all possibilities to place the (perturbed) temperatures in the
four-point correlator by including a symmetry factor of 8. Changing integration variables
l1 → L− l1 and l2 → L− l2, we obtain

N
(3/2)
C3 (L) = 4A2

L

∫
l1,l2

gl1,Lgl2,L [l1 · (L− l1 − l2)]CTT
l1
CTT
l2

×
∫
l

[l2 · (l− (L− l1 − l2))] (l2 · l)Bφ(l, (L− l1 − l2)− l,−(L− l1 − l2)), (B.14)

where we used gl,L = gL−l,L.
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B.4 Bias from Terms of Type D

The last type of coupling, type D, involves the lensed temperature perturbed to third order
in φ. It picks up the three-point function of the components of the lensing deflection at
the same location 〈αi(x)αj(x)αk(x)〉. This correlation must vanish by statistical isotropy
[164]. To verify this analytically, we note that each contractions of type D can be written
as

〈δ3Tl1Tl2Tl3Tl4〉 = −1

6
ζ(l1)〈Tl1Tl2Tl3Tl4〉(T ), (B.15)

where we defined

ζ(l1) ≡
∫
L

(l1 · L)

∫
l

(l1 · l)[l1 · (l− L)]Bφ(l,L− l,−L). (B.16)

The integral over l is the same as that already encountered in Eq. (B.10). Using the same
trick of Eq. (C.2) to make the integral separable leads to

ζ(l1) = l31

∫
L

[
cos3(µL)β‖(L) + cosµL sin2(µL)β⊥(L)

]
= 0, (B.17)

where cosµL = cosµl1 = l̂1 · L̂. This vanishes after performing the angular integration over
µL.



Appendix C

Bias Integral Expressions for faster
numerical Evaluation

The A1 and C1 biases in Eqs. (B.2) and (B.10) involve four-dimensional integrals for every
multipole L, which are computationally expensive to evaluate. Fortunately, however, the
integrands of these 4D integrals can be rewritten in a product-separable form, which allows
much faster numerical evaluation by multiplying 2D integrals. The next two subsections
will show this explicitly for the C1 and A1 contributions to the bias, with the final results
given by Eqs. (3.29) and (C.15), which have a simple form.

C.1 Fast Expression for C1 Bias by Separation of In-

tegrals

We start with the C1 contribution to the N (3/2) bias because it is somewhat simpler to
speed up than the A1 contribution. The C1 contribution given by Eq. (B.10) involves a 4D
integral over l1 and l for every value of L, which is computationally expensive. To separate
the integrand, we rewrite scalar products between wavevectors using the angle addition
theorem for the cosine: If we define cosµl1 = l1 · L/(l1L) and cosµl = l · L/(lL), then the
angle between l1 and l is µl1−µl, so that

l1 · l = l1l cos(µl1 − µl) = l1l [cos(µl1) cos(µl) + sin(µl1) sin(µl)] . (C.1)

Then, using basic trigonometric identities we obtain for the expression in the integrand of
Eq. (B.10)

[l1 · (l− L)] [l1 · l] = l21l
{

cos2(µl1) cosµl [l cosµl − L]

+ cosµl1 sinµl1 sinµl [2l cosµl − L]

+ sin2(µl1) l sin
2(µl)

}
, (C.2)



100 C. Bias Integral Expressions for faster numerical Evaluation

which is a sum of terms that are separable in µl1 and µl as desired. The first term on
the right hand side of Eq. (C.2) involves l21,‖ = (l1 · L̂)2 = l21 cos2(µl1) which measures the
component of the temperature multipole l1 along the reconstruction multipole L. The
third term involves l21,⊥ = l21 sin2(µl1) which measures the component of the temperature
multipole l1 perpendicular to the reconstruction multipole L. The second term in Eq. (C.2)
is a cross term involving a product of these two components, l21,+ = l1,‖l1,⊥. Using Eq. (C.2),

the C1 contribution (B.10) to the N (3/2) bias therefore turns into the following simple form
of Eq. (3.29):

N
(3/2)
C1 (L) = −4A2

LSL
[
R‖(L)β‖(L) +R⊥(L)β⊥(L)

]
, (C.3)

where we defined the temperature integral R‖ and integrated lensing bispectrum β‖ as

R‖(L) =

∫
l1

gl1,Ll
2
1 cos2(µl1)C

TT
l1
, (C.4)

β‖(L) =

∫
l

l cosµl [l cosµl − L] Bφ(l,L− l,−L), (C.5)

and similarly for the perpendicular component,

R⊥(L) =

∫
l1

gl1,Ll
2
1 sin2(µl1)C

TT
l1
, (C.6)

β⊥(L) =

∫
l

l2 sin2(µl)Bφ(l,L− l,−L). (C.7)

The cross term from the second line of Eq. (C.2) yields R+β+ = 0; see Appendix C.1.1.
We will use Eq. (3.29) for numerically evaluating the C1 contribution to the N (3/2) bias,
because it only involves 2D integrals that are much faster to evaluate than the 4D integral
in Eq. (B.10).

A slightly simpler approximate expression follows by noting that SL ≈ 1/(2AL) at
leading order in Cφφ:

N
(3/2)
C1 (L) ≈ −2AL

[
R‖(L)β‖(L) +R⊥(L)β⊥(L)

]
. (C.8)

C.1.1 Vanishing Cross-Integrals

The fast expression (3.29) for the type C1 bias has an additional contribution β+R+, where

R+(L) =

∫
l1

gl1,Ll
2
1 cosµl1 sinµl1C

TT
l1

= 0 (C.9)

β+(L) =

∫
l

l sinµl [2l cosµl − L] Bφ(l,L− l,−L) = 0. (C.10)
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Here we show that both integrals R+ and β+ vanish. We start by writing out the weight
in Eq. (C.9),

R+(L) =

∫
l

l · LC T̃ T̃
l + (L− l) · LC T̃ T̃

|L−l|

2C T̃ T̃
l,exptC

T̃ T̃
|L−l|,expt

l2 cosµl sinµlC
TT
l . (C.11)

Choosing a coordinate system where the x-axis is aligned with L gives l ·L = lxL, l cosµl =
lx and l sinµl = ly, so that

R+(L) =
1

(2π)2

∫ ∞
−∞

dlx lx

∫ ∞
−∞

dly lyC
TT
(l2x+l2y)1/2

×
lxLC

T̃ T̃
(l2x+l2y)1/2

+ (L2 − lxL)C T̃ T̃
(L2+l2x+l2y−2Llx)1/2

2C T̃ T̃
(l2x+l2y)1/2,expt

C T̃ T̃
(L2+l2x+l2y−2Llx)1/2,expt

=0. (C.12)

The integrand changes sign under ly → −ly so that the integral over ly vanishes and thus
R+ = 0. Although we chose a particular coordinate system aligned with L to show this,
the fact that R+ = 0 is coordinate-independent (in coordinate-independent terms, the
2D integral can be split into two 1D integrals parallel and perpendicular to L; the latter
integral vanishes). Note that R‖ and R⊥ do not vanish because they involve even powers
of lx and ly in the integrand. Following the same line of argument the very similar integral
of type RBE

+ can be shown to be zero.
To show β+ = 0 we proceed similarly. Choosing a coordinate system with x-axis aligned

with L and writing Eq. (C.10) in components,

β+(L) =
1

(2π)2

∫ ∞
−∞

dlx

∫ ∞
−∞

dly ly (2lx − L)Bφ

(
(l2x + l2y)

1/2, (L2 + l2x + l2y − 2Llx)
1/2, L

)
= 0. (C.13)

The integral over ly vanishes again because the integrand changes sign under ly → −ly.
We also confirmed numerically that R+ and β+ vanish by evaluating the integrals in

Eqs. (C.9) and (C.10) directly.

C.2 Fast Expression for A1 Bias by evaluating Fourier-

space Convolution as position-space Product

Numerical evaluation of the 4D integral appearing in the A1 contribution of Eq. (B.2) to
the N (3/2) bias can also be accelerated by suitably rewriting the integral. The idea is that,
for fixed l, the integral over l1 in Eq. (B.2) is a convolution in Fourier space, which can be
evaluated efficiently as a product in position space (similarly to References [192] and [163]
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which used the same idea to accelerate large-scale structure perturbation theory integrals).
This gives the following fast expression for the A1 bias of Eq. (B.2):1

N
(3/2)
A1 (L) = 4A2

LSL

∫
d2r ξg(r,L)

[
β̄‖(r,L)ξ̄TT‖ (r) + β̄⊥(r,L)ξ̄TT⊥ (r)

]
. (C.15)

The structure of this is very similar to the fast expression for the C1 term given by
Eq. (3.29), but it involves a 2D r-integral over the following 2D Fourier transforms:

ξg(r,L) =

∫
l1

eil1·r gl1,L, (C.16)

and

β̄‖(r,L) =

∫
l

e−il·r l cosµl(l cosµl − L)Bφ(l,L− l,−L) (C.17)

β̄⊥(r,L) =

∫
l

e−il·r (l)2 sin2(µl)Bφ(l,L− l,−L), (C.18)

which satisfies β̄n(0,L) = βn(L). We also defined temperature correlation functions

ξ̄TT‖ (r) =

∫
l

e−il·r l2 cos2(µl)C
TT
l (C.19)

=
1

2π

[
1

r

∫ ∞
0

dl l2J1(lr)CTT
l − cos2(νL)

∫ ∞
0

dl l3J2(lr)CTT
l

]
, (C.20)

ξ̄TT⊥ (r) =

∫
l

e−il·r l2 sin2(µl)C
TT
l =

1

2π

∫ ∞
0

dl l3J0(lr)CTT
l − ξ̄TT‖ (r,L). (C.21)

On the right hand sides, 2D Fourier transforms reduce to 1D Hankel transforms by using
the cosine angle addition theorem to express cosµl = l̂ · L̂ in terms of cos νL = L̂ · r̂ and
cos νl = l̂ · r̂ (similarly to Eq. (C.1)). The angular integrals then lead to Bessel functions
of the first kind, Jn. The 1D Hankel transforms can be evaluated efficiently with 1D FFTs
using e.g., FFTLog [69]. A somewhat slower but still feasible approach is to evaluate the
2D Fourier transforms on a grid using 2D FFTs.

1This follows by introducing l = l1 − l′ in Eq. (B.2) with a Dirac delta,∫
l1,l′

gl1,LC
TT
|l1−l′|[(l1 − l′) · l′][(l1 − l′) · (L− l′)]Bφ(l′,L− l′,−L)

=

∫
l1,l,l′

(2π)2δD(l− l1 + l′)gl1,LC
TT
l (l · l′)[l · (L− l′)]Bφ(l′,L− l′,−L), (C.14)

expanding the Dirac delta in plane waves, and separating the scalar products using Eq. (C.2).



Appendix D

N (3/2) Type C1 Bias for
polarization-based
Lensing Reconstructions

The N (3/2) bias also exists for polarization-based lensing reconstructions. In this paper,
we show how to generalize the non-Gaussian bias from the coupling type C1 (Eq. (3.20)
to reconstructions from arbitrary field combinations but leave a generalization of other
contributing terms to future work. The results for the single coupling do not provide a
proper quantitative estimate of the general bias, but give some idea of the qualitative
changes and other terms can be derived in a similar fashion.

D.1 General polarization-based Lensing Reconstruc-

tion

We first consider the most general case where the lensing potential is reconstructed from
two placeholder fields W and X that can each be T , E or B, and from two potentially
different fields Y and Z that can again each be T , E, or B, and then the cross-spectrum
of these reconstructions is used to estimate the lensing power, i.e., we consider 〈φ̂WX φ̂YZ 〉
where W,X, Y, Z ∈ {T,E,B} throughout this section.

Lensing changes the CMB fields according to

X̃(l) = X(l) + δX(l) + δ2X(l), (D.1)

where in absence of primordial gravitational waves [95, 101]

δX(l) = −
∫
l1

X̄(l1)φ(l− l1)hX(l1, l)(l− l1) · l1 (D.2)

δ2X(l) = −1

2

∫
l1,l2

X̄(l1)φ(l2)φ(l− l1 − l2)hX(l1, l)(l1 · l2) [(l1 + l2 − l) · l1] . (D.3)
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To simplify the notation we also defined

T̄ ≡ T, Ē ≡ E, B̄ ≡ E, (D.4)

and

hX(l1, l) ≡


1 if X = T,

cos(2(ϕl1 − ϕl)) if X = E,

sin(2(ϕl1 − ϕl)) if X = B,

(D.5)

which satisfies hX(l1, l) = hX(−l1,−l) and hX(l1, l) = hX(l1,−l) = hX(−l1, l).
The general lensing reconstruction estimator is [101]

φ̂WX (L) = AWX
L

∫
l

gWX (l,L)W̃expt(l)X̃
∗
expt(l− L), (D.6)

with normalization

AWX
L =

[∫
l

fWX (l,L− l)gWX (l,L)

]−1

(D.7)

and weight

gWX (l,L) =
CX̃X̃
l,exptC

W̃W̃
|L−l|,exptfWX (l,L− l)− CW̃X̃

l,exptC
W̃X̃
|L−l|,exptfWX (L− l, l)

CW̃W̃
l,exptC

X̃X̃
|L−l|,exptC

X̃X̃
l,exptC

W̃W̃
|L−l|,expt − (CW̃X̃

l,exptC
W̃X̃
|L−l|,expt)

2
, (D.8)

where fWX is defined by 〈W̃ (l)X̃(L − l)〉CMB = fWX (l,L − l)φ(L) and can be found in
[101]. We assume a slightly modified form where unlensed spectra are replaced by lensed
ones [72] to avoid the N (2) bias. Note that fWX (l,L− l) = fXW (L− l, l) and thus

gWX (l,L) = gXW (L− l,L). (D.9)

D.1.1 C1 Bias Contribution for general polarization-based Re-
construction

The type C contribution to the N (3/2) bias of the general reconstruction power 〈φ̂WX φ̂YZ 〉
is

N
(3/2),typeC
WX ,YZ (L) = AWX

L AYZ
L

∫
l1,l2

gWX (l1,L)gYZ (l2,L)T typeC
WX ,YZ (l1,L−l1,−l2, l2−L), (D.10)

where the trispectrum is given by all contributions to 〈W̃ X̃Ỹ Z̃〉c that are of type C form
〈δ2WXδY Z〉c ∼ ‘2010’. There are 8 such terms: 2010, 2001, 0210, 0201, 1020, 0120, 1002
and 0102, where ‘0’ denotes the position of unperturbed fields and ‘1’ and ‘2’ that of first
and second order perturbed fields. Let us denote the integral over the 2010 term by

UWX ,YZ (L) ≡
∫
l1,l2

gWX (l1,L)gYZ (l2,L)T typeC1
WX ,YZ (l1,L− l1,−l2, l2 − L) (D.11)

=

∫
l′1,l
′
2

gWX (L− l′1,L)gYZ (L− l′2,L)T typeC1
WX ,YZ (L− l′1, l

′
1, l
′
2 − L,−l′2), (D.12)
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where we changed integration variables in the second line. Using Eq. (D.9),
T (−l1,−l2,−l3,−l4) = T (l1, l2, l3, l4) and substitution of integration variables, the 8 type
C terms contributing to Eq. (D.10) can be written simply by permuting field labels of U :

N
(3/2),typeC
WX ,YZ (L) =AWX

L AYZ
L

[
UWX ,YZ (L) + UWX ,ZY (L) + UXW ,YZ (L) + UXW ,ZY (L)

+ UYZ ,WX (L) + UYZ ,XW (L) + UZY ,WX (L) + UZY ,XW (L)
]
. (D.13)

It remains to calculate UWX,Y Z . Extending Eq. (3.27) to the general polarization case,
the connected 4-point function of coupling type C due to the 2010 contraction is

〈δ2Wl1Xl2δYl3Zl4〉c =
(2π)2

2
δD(l1 + l2 + l3 + l4)CW̄X

l2
C Ȳ Z
l4
hW (−l2, l1)hY (−l4, l3)

× [(l3 + l4) · l4]

∫
l′
(l′ · l2) [(l1 + l2 − l′) · l2]Bφ(l′, l1 + l2 − l′, l3 + l4)

+ (l2 ↔ l4, X ↔ Z) , (D.14)

where the permutation in the last line is obtained by simultaneously replacing every l2 by
l4, every l4 by l2, every X by Z and every Z by X in the first two lines (in particular, this
permutation involves CW̄Z

l4
C Ȳ X
l2

). We ignore this permutation in the last line of Eq. (D.14)
from now on because it is expected to lead to more tightly coupled terms that should be
subdominant; we call the dominant first two lines ’typeC1’. For the multipole arguments
required for Eq. (D.12) we get

〈δ2WL−l1Xl1δYl2−LZ−l2〉typeC1
c =

(2π)2

2
δD(0)CW̄X

l1
C Ȳ Z
l2
hW (−l1,L− l1)hY (l2, l2 − L)(L · l2)

×
∫
l′
(l′ · l1) [(L− l′) · l1]Bφ(l′,L− l′,−L). (D.15)

Thus,

UWX ,YZ (L) =
1

2

∫
l1,l2

gWX (L− l1,L)gYZ (L− l2,L)CW̄X
l1

C Ȳ Z
l2
hW (−l1,L− l1)hY (l2, l2 − L)

× (L · l2)

∫
l

[l1 · (L− l)] [l1 · l]Bφ(l,L− l,−L). (D.16)

The weights in the last integral can be expressed in the separable form of Eq. (3.29). Then,

UWX ,YZ (L) = −1

2

[∫
l2

gZY (l2,L)hY (l2, l2 − L)(L · l2)C Ȳ Z
l2

] ∑
n∈{‖,+,⊥}

RWX
n (L)βn(L) (D.17)

where βn integrals are the same as in Eqs. (3.31), (3.33), and we defined

RWX
‖ (L) =

∫
l1

gXW (l1,L)l21 cos2(µl1)hW (−l1,L− l1)CW̄X
l1

(D.18)

RWX
+ (L) =

∫
l1

gXW (l1,L)l21 sin(µl1) cos(µl1)hW (−l1,L− l1)CW̄X
l1

(D.19)

RWX
⊥ (L) =

∫
l1

gXW (l1,L)l21 sin2(µl1)hW (−l1,L− l1)CW̄X
l1

. (D.20)
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When evaluating hW numerically, the angle 2(ϕl1−ϕL−l1) can be obtained brute-force from
the components of 2D vectors l1 and L. 1 In the special case of a temperature-only based
measurement we recover the previously derived results with RTT

n = Rn. The final N
(3/2)
C1

bias for polarization is obtained by plugging Eq. (D.17) into Eq. (D.13)

N
(3/2),typeC1
WX ,YZ (L) = −1

2
AWX
L AYZ

L SYZ
L

∑
n∈{‖,+,⊥}

RWX
n (L)βn(L) + 7 perms in W,X;Y, Z

(D.21)

where the permutations denote those written out in Eq. (D.13). We also defined

SYZ
L ≡

[∫
l2

gZY (l2,L)hY (l2, l2 − L)(L · l2)C Ȳ Z
l2

]
. (D.22)

One can show that SYZ
L + SZY

L = A−1
L to first order in Cφφ. This identity also holds for

field combinations where one of the SYZ
L terms is zero (e.g., SEB

L ).
Eq. (D.21) involves the same integrals βn over the lensing bispectrum Bφ as the temper-

ature reconstruction bias. The 2D integrals over CMB power spectra RWX
n have a similar

form as for the temperature-only case, with slightly different weights in the integrands. For
(WX,Y Z) = (TT, TT ) the general bias formula N

(3/2),typeC1
WX ,YZ (L) simplifies to the expression

derived for the temperature Eq. (3.29).

D.1.2 C1 Bias Contribution for (EB,EB) Reconstruction

The special case of (EB,EB)-reconstruction is expected to have relatively high signal-to-
noise in comparison with the other polarization-based lensing estimators. In this case, we
have W = Y = E and X = Z = B so that the N (3/2) bias becomes

N
(3/2),typeC1
EB ,EB (L) =

− (AEB
L )2

∑
n∈{‖,+,⊥}

βn(L)
[
SEB
L REB

n (L) + SEB
L RBE

n (L) + SBE
L REB

n (L) + SBE
L RBE

n (L)
]
.

(D.23)

We can further simplify Eq. (D.23) by noting that REB
n = 0 and SEB

L = 0 (which follows
from CEB

l = 0) and obtain

N
(3/2),typeC1
EB ,EB (L) = −(AEB

L )2SBE
L

∑
n∈{‖,+,⊥}

βn(L)RBE
n (L), (D.24)

where RBE
n are integrals over the E-mode power spectrum given by Eqs. (D.18)-(D.20),

and βn are integrated lensing bispectra computed earlier in Eqs. (3.31), (3.33).

1Explicitly, defining angles with respect to the x-axis, we have ϕl1 = arccos
[
l1,x/

√
l21,x + l21,y

]
and

ϕL−l1 = arccos
[
(Lx − l1,x)/

√
(Lx − l1,x)2 + (Ly − l1,y)2

]
.



Appendix E

Low-L, large-scale Lens and squeezed
Limits

In this section we consider certain limits where the N (3/2) bias simplifies, e.g., the limit of
reconstructing large-scale lenses from small-scale temperature fluctuations, or the squeezed
limit of the lensing bispectrum. This is useful to understand the qualitative behavior of
the bias and check the robustness of numerical evaluations. We first discuss the C1 term
in Eq. (3.20), and then the A1 term in Eq. (3.18).

E.1 Limit of C1 Contribution to N (3/2) Bias

We first consider the limit of reconstructing large-scale lensing modes φ(L) from tempera-
ture fluctuations T (l) on much smaller scales, i.e., L� l. Taylor expanding |l−L| around
l yields for the lensing reconstruction weight

lim
L�l

gl,L =
L2

2

C T̃ T̃
l

(C T̃ T̃
l,expt)

2

{[
1 +

d lnC T̃ T̃
l

d ln l
cos2 µl

]

+
L

l

[
d lnC T̃ T̃

l

d ln l

d lnC T̃ T̃
l,expt

d ln l
cos3 µl −

d ln
( CT̃ T̃l
CT̃ T̃l,expt

)
d ln l

cosµl

]}
, (E.1)

where cosµl = l · L/(lL). The terms in the first square brackets of Eq. (E.1) are of order
(L/l)0 and involve only even powers of cosµl, while the second square bracket is of order
(L/l)� 1 and involves only odd powers of cosµl.

Using this, we can compute the large-lens limit of R‖ defined in Eq. (3.30). The terms
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in the second square brackets vanish upon angular integration so that

lim
L→0

R‖(L) =
L2

8π

∫
dl1l

3
1

CTT
l1
C T̃ T̃
l1

(C T̃ T̃
l1,expt)

2

[
1 +

3

4

d lnC T̃ T̃
l1

d ln l1

]
+O

(
(L/l1)2

)
≈ 3L2

32π

∫
dl1l

3
1

(
C T̃ T̃
l1

C T̃ T̃
l1,expt

)2 [
d ln l

4/3
1 C T̃ T̃

l1

d ln l1

]
+O

(
(L/l1)2

)
. (E.2)

The power spectrum ratio in the integrand is unity on scales where the temperature power
spectrum is signal-dominated and gets exponentially suppressed when it becomes noise-
dominated. The l31 weight upweights high l1 in the signal-dominated regime but cannot
compete against the exponential fall-off in the noise-dominated regime. These two factors
are thus maximal at the highest l1 that are still signal-dominated. In this regime, typically
l1 ∼ few thousand, the derivative is mostly negative, so that the overall large-lens limit
of R‖ is negative. Its amplitude is determined by the multipole at which the temperature
power becomes noise dominated, i.e., it is very sensitive to the noise and beam specifications
of the experiment under consideration.

The large-lens limit of R⊥ reads

lim
L→0

R⊥(L) =
L2

8π

∫
dl1 l

3
1

CTT
l1
C T̃ T̃
l1(

C T̃ T̃
l1,expt

)2

[
1 +

1

4

d lnC T̃ T̃
l1

d ln l1

]
+O

(
(L/l1)2

)
.

≈ L2

32π

∫
dl1 l

3
1

(
C T̃ T̃
l1

C T̃ T̃
l1,expt

)2
d ln(l41C

T̃ T̃
l1

)

d ln l1
+O

(
(L/l1)2

)
. (E.3)

which has the same structure as the expression that was derived for R‖, the only difference
being a suppression of the derivative term by a factor of 3. It is thus similarly sensitive to
beam and noise specifications as R‖, but smaller, since the dominant contribution stems
from the derivative.

Additionally to the Rn integrals the N
(3/2)
C1 bias involves βn integrals over the lensing

bispectrum defined in Eqs. (3.31) and (3.33). One limit where these simplify is the squeezed
limit of the lensing bispectrum, where the reconstructed lensing mode is on much larger
scales than the other two internal lensing modes, i.e., L� l ≈ |l− L| and

lim
L�l

Bφ(L, l,− cosµl) =

∫ χ∗

0

dχ
W (χ)3

χ4

γ3(χ)

(L/χ)2(l/χ)4

(
1 + 2

L

l
cosµl

)
× lim

L�l
Bδ(L/χ, l/χ,− cosµl;χ), (E.4)

where we insert the squeezed limit of the matter bispectrum (e.g., [38])

limk1�k2 Bδ(k1, k2, cosµl) = Pk1(χ)Pk2(χ)
[

13
7

+ cos2 µl

(
8
7
− ∂ lnPk2 (χ)

∂ ln k2

)
+k1
k2

(
8
7
− 8

7
cos2 µl +

(
3
7

∂ lnPk2 (χ)

∂ ln k2
− 1
)

cosµl +
(

4
7

∂ lnPk2 (χ)

∂ ln k2
+ 1
)

cos3 µl

)]
, (E.5)
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assuming that limits in l translate to limits in k in the Limber approximation. In this
approximation the angle µl between L and l is the same as between the 3D modes ~k1 and
~k2

1.
Using Eq. (E.4) in the expression for β‖ we find for the contribution from squeezed

bispectrum configurations

lim
L�l

β‖(L) =

∫
l

l
(
l cos2(µl)− L cos(µl)

)
lim
L�l

Bφ(L, l,− cosµl)

=

∫
l

l2
(

cos2(µl)−
L

l
cos(µl)

)∫ χ∗

0

dχW (χ)3χ2γ
3(χ)

L2l4

(
1 + 2

L

l
cosµl

)
× lim

L�l
Bδ(L/χ, l/χ,− cosµl;χ), (E.6)

Upon angular integration the squared cosine picks up all terms that are even in the cosine.
This includes all contributions of order O((L

l
)0),

lim
L�l

β‖(L) =
1

L2

∫ χ∗

0

dχW (χ)3χ2γ3(χ) (E.7)

×
∫

d ln l

4π

[
13

7
+

3

4

(
8

7
− n(l, χ)

)
+

2

7

L

l

]
PL/χ(χ)Pl/χ(χ), (E.8)

where we defined the spectral index of the matter power spectrum

n(l, χ) =
∂ lnPl/χ(χ)

∂ ln(l/χ)
. (E.9)

The squeezed limit of β⊥ is

lim
L�l

β⊥(L) =

∫
l

l2 sin2(µl) lim
L�l

Bφ(L, l,− cosµl)

=
1

L2

∫ χ∗

0

dχW (χ)3χ2γ3(χ) (E.10)

×
∫

d ln l

4π

[
13

7
+

1

4

(
8

7
− n(l, χ)

)
+

6

7

L

l

]
PL/χ(χ)Pl/χ(χ), (E.11)

which is similar to the limit of β‖ but smaller since the zeroth order term in round brackets
gets suppressed by a factor of 3 (the first order term is enhanced by the same factor). The
limits of both integrals, β⊥ and β‖, are positive for any realistic value of the spectral index
n. This agrees with the results obtained by numerical integration over the full bispectrum.

In Fig. E.1 we plot β‖ and β⊥ and their squeezed limits. Since the squeezed configuration
excludes triangle configurations with small and comparable side lengths, the squeezed limits
do not coincide with the full integrals at low L. For a valid comparison, the numerical
result has to be restricted to squeezed configurations. After this modification they agree
with the analytically derived limits.
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Figure E.1: Integrals of type β‖ and β⊥ calculated numerically with a restriction to
squeezed triangle configurations (l/L>100) and their analytic squeezed limits [Eq. (E.7),
(E.10)].
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Figure E.2: The large-lens and squeezed limit of limL→0−2ALβ‖(L)R‖(L) [Eq. (E.14)], the

dominant contribution to N
(3/2)
C1 for small L. Since we take the limit where only squeezed

triangle configurations contribute to the lensing or matter bispectrum, we also have to
restrict the numerical evaluation to squeezed triangle configurations to find agreement.
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To obtain the large-lens and squeezed limit of the N (3/2) bias we also need the large-scale
limit of AL which is [72]

lim
L→0

AL =
8π

L4

∑
l

(2l + 1)

(
C T̃ T̃
l

C T̃ T̃
l,expt

)2

Dl

−1

, (E.12)

where

Dl = 1 +
d lnCTT

l

d ln l
+

3

8

(
d lnCTT

l

d ln l

)2

. (E.13)

Putting all these results together we obtain for the large-lens and squeezed limit of N (3/2)

(which is dominated by the β‖R‖ term)

lim
L→0
−2ALR‖(L)[β‖(L)]squeezed = −2

∑
l

(2l + 1)

(
C T̃ T̃
l

C T̃ T̃
l,expt

)2

Dl

−1

×

∑
l1

(l1)3

(L+ 1)2

(
C T̃ T̃
l1

C T̃ T̃
l1,expt

)2
d ln(l2C T̃ T̃

l1
)

d ln l1

 lim
L→0

[β‖(L)]squeezed. (E.14)

The comparison with the full result is shown in Fig. E.2. For limL→0[β‖(L)]squeezed we use
the squeezed limit of β‖ which we obtain in two ways: (1) by evaluating the analytic limit
given in Eq. (E.7), and (2) by restricting the full numerical result to squeezed triangle
configurations of the bispectrum.

1Note that the integrals over the lensing bispectrum (Eqs.3.33 and 3.31) integrate over Bφ(~l, ~L−~l,−~L).

The minus sign in front of the bispectrum’s third argument, ~L, induces a minus sign in front of cosµ~l when
inserting the squeezed limit of the matter bispectrum into these integrals.
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[156] M. Maltoni, T. Schwetz, M. Tórtola, and J. W. F. Valle. Status of global fits to neu-
trino oscillations. New Journal of Physics, 6:122, September 2004, hep-ph/0405172.

[157] L. Marian, S. Hilbert, R. E. Smith, P. Schneider, and V. Desjacques. Measuring
Primordial Non-gaussianity Through Weak-lensing Peak Counts. The Astrophysical
Journall, 728:L13, February 2011, 1010.5242.

[158] L. Marian, R. E. Smith, S. Hilbert, and P. Schneider. Optimized detection of shear
peaks in weak lensing maps. Monthly Notices of the Royal Astronomical Society,
423:1711–1725, June 2012, 1110.4635.

[159] L. Marian, R. E. Smith, S. Hilbert, and P. Schneider. The cosmological information
of shear peaks: beyond the abundance. Monthly Notices of the Royal Astronomical
Society, 432:1338–1350, June 2013, 1301.5001.

[160] T. Marrodán Undagoitia and L. Rauch. Dark matter direct-detection experiments.
Journal of Physics G Nuclear Physics, 43(1):013001, January 2016, 1509.08767.

[161] R. Massey, J. Rhodes, A. Leauthaud, P. Capak, R. Ellis, A. Koekemoer, A. Réfrégier,
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