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Preface

Zusammenfassung

Das Zytoskelett ist ein Netzwerk bestehend aus Protein Filamenten
im Inneren eukaryotischer Zellen. Dieses Netzwerk ist in vielerlei Hin-

sicht heterogen, sowohl bezüglich seiner physikalischen Eigenschaften als
auch in Bezug auf die Bausteine aus denen es besteht. Es gibt drei verschie-
den Klassen von Zytoskelett Filamenten: Mikrofilamente oder auch Ak-
tin Filamente genannt, Mikrotubuli, und Intermediärfilamente. Jede dieser
Klassen ist für eine Vielzahl bestimmter Aufgaben in der Zelle zuständig,
und an diese Aufgaben spezifisch angepasst. Intermediärfilamente stabi-
lisieren die Zelle mechanisch und bilden ihr Gerüst. Mikrotubuli dienen
als Autobahnen für molekularen Motoren um Material und Organellen zu
transportieren. Mikrotubuli fungieren auch als makromolekulare Maschi-
nen, weil sie durch Polymerisation und Depolymerisation Kräfte erzeugen.
Diese dienen zum Beispiel während der Zellteilung dazu die Chromosomen
zu trennen. Auch Aktin Filamente können Kräfte erzeugen, dabei spielt die
Polymerisation der Filamente eine entscheidende Rolle. Der Polymerisati-
onsprozess von Aktin wird von vielen Proteinen koordiniert. Diese Proteine
erwirken zum Beispiel dass Aktin Filamente verschlaufte Netzwerke bilden,
die großen Kräften widerstehen können. Im Kollektiv erzeugen Aktin Fila-
mente genügend Kraft um Zellen vorwärts zu bewegen und um die Form
einer Zelle zu bestimmen.

Die dynamischen Eigenschaften des Zytoskeletts werden durch verschie-
denste Enzyme beeinflusst und gesteuert. Dabei unterscheidet man zwischen
Signalproteinen die regulatorische Aufgaben übernehmen, und Enzymen die
direkt Bausteine des Cytoskeletts beeinflussen. Einige dieser Enzyme wer-
den im Lauf dieser Arbeit vorgestellt. Grob kann zwischen zwei Klassen
von Proteinen unterschieden werden: Manche Proteine sind für die Nuklea-
tion von Filamenten zuständig, währen andere deren Dynamik verändern
in Form von Polymerisations- oder Depolymerisationsraten. In dieser Ar-
beit werden spezifische Prozesse studiert, die zu den erwähnten Aufgaben
beitragen:

Das erste System welches untersucht wird sind molekulare Motoren die
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Mikrotubuli depolymerisieren. Diese Proteine gehören zur Familie der mo-
lekularen Motoren Kinesin-8.

Das zweite System das studiert wird ist die Nukleation von Filamenten.
Dabei wird kein spezielles Protein betrachtet sondern es wird versucht ein
möglichst allgemeingültiges, effektives Modell zu entwickeln.

Mikrotubuli sind Polymere die einer dynamischen Instabilität unterlie-
gen. Die Filamente schalten stochastisch zwischen einem wachsenden und
einem schrumpfenden Zustand hin und her. Dieses Phänomen ist durch
GTP Hydrolyse angetrieben. Eine Fülle von Proteinen in der Zelle binden
an Mikrotubuli und beeinflussen deren Dynamik. Eines dieser Proteine ist
der molekulare Motor Kinesin-8, welcher aus der Klasse der Motorproteine
heraussticht: Erstens, Kinesin-8 kann einen Mikrotubulus depolymerisieren.
Zweitens, wenn Kinesin-8 Proteine an das Mikrotubulus binden und begin-
ne zu laufen, dann können die Motoren unter entsprechenden Bedingungen
einen Stau ausbilden. Um diese Beobachtungen zu quantifizieren wurde in
dieser Arbeit ein Gittergas Modell entwickelt welches ausschlies̈slich auf den
mikroskopischen Eigenschaften der Motoren beruht.
Das Modell bestätigt experimentelle Ergebnisse und erlaubt Vorhersagen
über die bisher bekannten Phänomene hinaus. In der darauffolgenden Ar-
beit im Rahmen dieser Dissertation, wurde dieses minimale Modell erweiter
um mögliche Mechanismen aufzudecken, die zur Längenregulation von Mi-
krotubuli durch molekulare Motoren beitragen. In Abhängigkeit davon, ob
Kinesin-8 den Anbau von Tubulin Dimeren verhindert oder nicht, ergibt
sich unterschiedliches Verhalten bezüglich der Längenfluktuationen im Mo-
dell. Für den Fall das ein Mikrotubulus unabhängig von Motoren an der
Spitze wächst, stellt sich eine feste Länge ein. Für den Fall, das Kinesin-8
den Anbau von Tubulin verhindert, ergibt sich eine stochastische Dynamik
von zufälligem hin und her schalten zwischen Wachsen und Schrumpfen des
Mikrotubulus. Dabei wird das Phänomen der Phasenkoexistenz beobachtet
und zwar als eine stochastische Bistabilität.

Die Analyse mittels einer Molekularfeldnäherung zeigt den Ursprung des
spontanen Wechsels zwischen den unterschiedlichen Phasen. Zudem wird
aufgeklärt wie aus den mikroskopischen Details des Modells auf makrosko-
pische Eigenschaften des Systems geschlossen werden kann.

Der zweite Teil dieser Dissertation widmet sich dem Thema der Nukleati-
on von Filamenten im Allgemeinen und von Aktin Filamenten im Besonde-
ren. Die Nukleationsreaktion dieser Filamente stellt einen kinetischen Eng-
pass dar, der dazu führt das es sehr unwahrscheinlich ist das ein Filament
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entsteht: Aktin Dimere und Trimere sind sehr instabil und haben somit eine
sehr kurze Lebenszeit, etwa in der Größenordnung von 10−8 Sekunden. In
der Zelle wird dieser Engpass umgangen, indem spezielle Nukleationsprote-
ine die Dimere und Trimere stabilisieren. In der vorliegenden Arbeit wurde
ein Modell entworfen, welches beide Möglichkeiten – den Engpass und die
Nukleation mittels Helferproteinen – berücksichtigt.

Durch umfangreiche stochastische Simulationen mit einem finiten Vor-
rat an Aktin Monomeren konnte die Bedeutung des Engpasses für die Nu-
kleationsreaktion untersucht werden. Als Parameter wurden dabei die Zer-
fallsraten von Dimeren und Trimeren gewählt. Die Filamente wurden als
eindimensionale Brown’sche Bewegung modelliert um bei einer möglichst
einfachen Beschreibung zu bleiben.

Im stationären Zustand lassen sich drei Phasen unterscheiden, die je eine
unterschiedliche Phänomenologie aufweisen. Für den Fall stabiler Dimere
und Trimere sind alle Monomere gebunden, und es steht kein Material zur
Verfügung für Wachstum einzelner Filamente. Diese Phase läßt sich als
Kondensation in Dimere und Trimere verstehen.

Im Gegensatz dazu entsteht für den Fall instabiler Dimere und Trime-
re genau ein Filament, welches aus allen verfügbaren Monomeren besteht.
Zwischen diesen beiden Phasen, für mittlere Lebzeiten der Dimere und Tri-
mere, existiert ein stationärer Zustand mit einer konstanten Anzahl von
Filamenten. Eine heuristische Analyse fürt zu Skalengesetzen welche die
unterschiedlichen Phasen voneinander abgrenzt.

Diese Ergebnisse erklären qualitativ die exponentielle Längenverteilung
von Aktin Filamenten in vitro und warum in vivo die Filamente kurz und
dynamisch sind. Eine sorgfältige Analyse und Quantifizierung des Modells
steht jedoch noch aus, da im Moment die notwendigen Ratenkonstanten
noch nicht gemessen werden konnten.
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Synopsis

The Cytoskeleton is a network of protein filaments inside eukaryotic
cells. This network is heterogeneous with respect to several of its prop-

erties and constituents. There are three classes of cytoskeletal filaments:
microfilaments (actin filaments), microtubules, and intermediate filaments.
Each of these classes obeys many particular tasks in the cell, for which they
are ideally suited. Intermediate filaments provide mechanical scaffolding
and support. Microtubules serve as intracellular tracks enabling molecu-
lar motors to deliver cargoes to or from the peripheries. Microtubules also
function as macromolecular machines that tear sister chromosomes apart
during cell division via depolymerization. This is in contrast to actin fil-
aments which exert forces by polymerization. The polymerization process
of actin filaments is orchestrated by nucleation factors and a plethora of
enzymes. The resulting meshwork of filaments generates forces – strong
enough to drive cell motility and cell shape changes.

The assembly and disassembly of the cytoskeleton is performed by dif-
ferent proteins. One has to distinguish between signaling proteins that
regulate upstream of the physical changes of filaments, and the enzymes
that actually modify the filaments. Many of these enzymes are known for
actin filaments and microtubules, and some of them are subject of this work.
The proteins available in the cytoplasm to provide enzymatic regulation of
filaments can be roughly divided into two classes: There are proteins that
influence filament nucleation, and proteins that influence the dynamics of
filaments. There is a large variety in each of these types of protein factors,
where some of them are molecular machines that consume ATP and others
are enzymes that lower the activation energy for a process. In this work
two specific of the above mentioned processes are studied. The first system
investigated is the microtubule depolymerizing molecular motor kinesin-8.
The second system studied is the nucleation of filaments.

Microtubules are rigid, tube-like polymers that stochastically switch be-
tween growth and shrinking. This dynamics is called microtubule dynamic
instability. It is driven by GTP hydrolysis which enables microtubule poly-
mers to push and pull against loads. There is a plethora of proteins in the
cell that control the fate of microtubules. One of these enzymes is the molec-
ular motor kinesin-8. There are two reasons that render this motor protein
special and stand out from other kinesin motors. First, it depolymerizes
microtubules by tightly binding to tubulin heterodimers and breaking them
apart at the lattice end. Second, when bound to the microtubule lattice,
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kinesin-8 motors interact via hard core exclusion and form traffic jams. To
account for this behavior, a driven lattice gas model is developed. Build-
ing on data from in vitro depolymerization experiments with kinesin-8, the
relevant rate constants are quantified with respect to the motor properties
and microtubule depolymerization. The model confirms that kinesin-8 de-
polymerizes microtubules in a length-dependent manner due to the linear
increase in motor density along the microtubule lattice. We identify this
effect to lie in a density limited regime, and compare it to a rate limited
regime for slowly depolymerizing motors. The two regimes can be inter-
preted as different phases of traffic in the system. In subsequent work we
extend this minimal model for depolymerization towards a model for length-
regulation of microtubules with kinesin-8. Depending on whether kinesin-8
inhibits the addition of tubulin dimers or not, the system shows strikingly
different behavior: accurate length-regulation is achieved if growth of the
filament is independent of the presence of kinesin-8 at the tip. This is in
stark contrast to the situation when kinesin-8 inhibits microtubule growth
while bound to the tip. In the latter case the system displays intermittent
dynamics and coexistence of phases of different traffic. The analysis within
a mean-field approach reveals the particular phase structure of the process
and shows that switching between phases is driven by motor density fluctu-
ations at the microtubule tip. Within the theoretical description obtained
in this work, it is possible to distinguish different microscopic scenarios from
macroscopic observations as made in experiments.

The second part of this work is on the nucleation of filaments, in particular
actin filaments. These are known to have a nucleation

”
bottleneck“, which

means that the formation of a filament from dimeric and trimeric actin is
very unlikely. The mechanism behind this is that the latter oligomers are
very unstable molecules and their lifetime is extremely short, of the order
of 10−8 seconds. In the cell, however, this bottleneck is resolved with the
help of nucleation proteins that largely stabilize the precursors of actin fil-
aments. Most prominently the ARP2/3 complex has multiple binding sites
for actin monomers and is considered a key enzyme for activating actin nu-
cleation by stabilizing actin dimers and trimers. Within this work, a model
is defined that captures both of the above mentioned cases and lays out a
possible role for nucleation bottlenecks. Extensive stochastic simulations
were performed with a finite amount of monomers in a small volume to
mimic the situation of a cell or a cellular compartment. For simplicity, a
filament is assumed to perform a random walk. The system is investigated
systematically with respect to the decay rates, i.e. the lifetimes of dimers
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and trimers, and the amount of available monomers. As a result the dy-
namic behavior of filaments can be classified into three different phases. For
stable dimers and trimers all monomers are sequestered and no monomers
are available for the growth of filaments. For unstable dimers and trimers
one filament will emerge and contain all the available monomers. For inter-
mediate dimer and trimer lifetimes a dynamic steady state evolves. Therein
as many filaments nucleate de novo as filaments dissolve. A heuristic anal-
ysis reveals scaling laws for the different regimes. From a phenomenological
perspective, these results explain the existence of long and exponentially
distributed filaments in vitro and why in vivo filaments are short and dy-
namic. A thorough quantification of these results, however has yet to be
achieved because experimentally measured rate constants are not available
at the moment.



Men love to wonder, and that is
the seed of science.

Ralph Waldo Emerson
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xiv Prolog

At the beginning of this Thesis, I briefly summarize each of its chapters
and outline their contents. Further, I wish to make a statement on key
ideas that were contributed from others to this work. Also, I would like
to clarify my contributions to the work carried out by students I had the
opportunity to supervise.

Chapter 1. In this chapter I lay out my current personal view on the
cytoskeleton field from a perspective of theoretical modeling and physics
understanding. I try to describe different approaches to address biological
questions employing methods from mathematics and physics. Also I span
a model-space constituted from a set of components including actin, and
microtubules and their respective interactions with nucleation factors and
molecular motors. To this end the molecular players – the proteins involved
– are introduced.

Chapter 2. In the second chapter I present a theoretical approach to
driven lattice gases that allows to understand collective effects in molecular
motor traffic. This is a central theme throughout this work. Particles move
along a lattice with on-site exclusion and towards the lattice end. This
dynamics is called totally asymmetric simple exclusion process (TASEP).
Such systems have been studied extensively over the last two decades, and
only recently the system has been extended to incorporate lattice dynam-
ics. The methods that allow to obtain a solution for the particle density
profile and the phase diagram are explained, and quantities of interest are
discussed. The procedure presented in this chapter can be utilized in gen-
eral to analyze systems with both, lattice dynamics coupled to molecular
motors.

Chapter 3. The third chapter constitutes the core of this thesis. I intro-
duce a very general model for molecular motors and how they interact with
microtubule ends. Starting from this model which includes seven different
rate constants, I will explain the role each parameter plays in regulating
filament dynamics. Subsequently the model is cut into several, more man-
ageable, pieces that allow to understand the emerging phenomena bit by
bit in terms of stochastic simulations and analytic theory. As a result, this
approach leads to a comprehensive picture of different scenarios. Each of
these scenarios constitutes a separate motif – or functional unit. And each
of these units ensues a particular prediction for the behavior of motors and
microtubules. The perspective obtained in this chapter provides a thorough
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understanding of the relevant processes for microtubule length-regulation.
It opens up several questions regarding our current knowledge of micro-
tubule dynamics.

Chapter 4. In this chapter the second important class of cytoskeletal fil-
aments is introduced – actin filaments. An individual based particle ap-
proach was developed, and studied within stochastic simulations. It turns
out that the system displays rich phase behavior, where the number of avail-
able monomers and the lifetime of filament precursor oligomers are critical
control parameters. The circumstances under which filaments assemble are
analyzed, and the coupling between nucleation and filament dynamics is
investigated.
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Chapter 1.

Introduction
– Molecular Motors and Cytoskeletal Filaments

Molecular motors are a paradigm in modern cell biology [1]. They
convert chemical fuel into molecular motion and mechanical force. This

physical view of molecular motors has been confirmed for several
”
biologi-

cal motors“. Some of them are bound to the cell membrane. They perform
rotary motion to beat cilia and flagella that lead to cell motility, or act
as pumps that maintain and generate concentration gradients across mem-
branes. Other motors are responsible for translation and transcription of
genetic material (RNA and DNA) or protein synthesis. The action of these
machines is limited by available biochemical resources, nucleic acids and
amino acids, of which genetic material and proteins are made of, respec-
tively.

Cytoskeletal Filaments are polymers that consist of protein sub-
units and that constitute the cytoskeleton of cells. These polymers can

be roughly divided into three classes: microtubules, actin filaments and in-
termediate filaments [2]. Each type has its particular roles in the cell and
they appear in essentially all species across the tree of life, from bacteria
to humans. The individual protein subunits are highly conserved from an
evolutionary point of view. However their tasks are specialized and mul-
tifaceted at a time. To illustrate this functional diversification, consider
the process of chromosome segregation during cell division. In bacteria
the mechanism of chromosome segregation depends on the protein ParM,
which is a homologue of actin. The assembly of ParM filaments begin-
ning in the middle of the cell pushes the two sets of DNA to the ends of
the bacteria which then divides in the middle. This contrasts with the
mechanism employed by eukaryotic cells where tubulin is responsible for
chromosome segregation via depolymerization. It is remarkable that two
completely different proteins, can evolve to fulfill identical functions across
different organisms. This observation illustrates not only the versatility of
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these polymers, but also how they serve as macromolecular machines that
carry out specific tasks in the cell. The driving force of this polymer ma-
chinery is their assembly and disassembly dynamics powered by nucleotide
hydrolysis.

In this Thesis, the first focus is on molecular motors, that are associatedMolecular motors
organize, regulate,
and maintain the

cytoskeleton.

to the cytoskeleton of cells. Such motors are ATP-driven enzymes that move
along cytoskeletal filaments, microtubules and actin filaments, and are able
to generate force against loads. As biological machines they contribute to
the cellular organization in multiple ways: They seem to organize, regulate,
and maintain the cytoskeleton in an accurate and robust manner. This is
important throughout the development of organisms and the life cycle of
cells, from meiosis to mitosis.

The second focus of this Thesis are the dynamics of growth and shrink-Cytoskeletal
filaments drive

biological
processes by

assembly and
disassembly.

ing of filaments and their nucleation. Microtubule polymerization and de-
polymerization are fueled by GTP hydrolysis and are influenced by many
associated proteins and molecular motors [3]. These influencing factors
help to assemble and maintain cellular structures, for example the mitotic
spindle [2]. They are necessary in the major microtubule driven processes,
such as cytokinesis and the separation of chromosomes. Actin filaments
are very different from microtubules and perform cellular tasks orthogo-
nal to what microtubules do. Filaments are much smaller and less rigid
than microtubules, but similarly their assembly and disassembly dynamics
is driven by ATP hydrolysis. The structures actin filaments form range
from branched networks, effected by branching proteins like ARP2/3, to
bundles of filaments as organized by linker proteins like filamin, fascin, α-
actinin, or the family of myosin motor proteins. The structures of actin
networks are essential to cell motility and shape deformations, and also to
force generation in muscle fibers. Notably the nucleation of actin filaments
is a highly regulated process, which is controlled by a variety of nucleation
proteins and so called nucleation promoting factors. In contrast to the case
of microtubules, where nucleation happens at a microtubule organization
center and microtubules stay there fixed, the nucleation of actin happens
almost everywhere in the cell. This ensues that there is a very high turnover
of actin filaments – filaments are created and disassembled continuously.

Having gained a rough overview of molecular motors, cytoskeletal fila-
ments, and some cellular phenomena, one might wonder about how such
cellular phenomena are orchestrated. This constitutes an excellent starting
point to begin a scientific journey. The questions arises [1]:
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”
How does it work?“

The following paragraph maps out how and to what extent this question
could be answered, and which method is deployed here. Also a brief intro-
duction to the experimental and theoretical methodology in biophysics is
provided.

Three main routes lead the way to find answers to the question
”
How

does it work?“ in cell biology. Each of these routes contributes an-
swers to the above question and they complement each other in impor-
tant ways: a) perform experiments, b) derive phenomenological models, or
c) derive quantitative theoretical models. There are two basic experimental
approaches: In the first approach – in vivo – living cells are investigated.
Specific genetic methods allow us to compare wild type cells with geneti-
cally manipulated cells. A typical modifications is that the expression level
of a certain protein is changed. This happens through the deletion or inser-
tion of the desired sequence. As a consequence the cellular concentrations
of protein increases or decreases. Other modifications of a specific protein
include point mutations, that selectively perturb the system and thus en-
lighten the functionality of a protein of interest1. The in vivo approach
identifies the role of a molecule in the living organism. The challenge that
arises from the obtained data, is to link the phenomenologically observed
behavior (phenotype) to the underlying genetic code (genotype). To date,
this mapping constitutes the major problem in biology. The second ap-
proach are reconstitution experiments with purified proteins2, also called in
vitro experiments. In a suitable setup the interactions between proteins can
be directly observed under the microscope. This approach led to the dis-
covery of the molecular motor kinesin: In 1985, Vale et al. [4] showed that
kinesin moves on microtubules and carries cargoes. In recent years the com-
plexity of reconstituted systems has vastly increased, consider for example
actin based motility [5], microtubule tip tracking [6], or the immunological
synapse [7].

In addition to experimental efforts, mathematical modeling approaches
have turned an essential tool for the biological sciences [8]. There are two
basic strategies. The first strategy aims at deriving simplified phenomeno-
logical models that allow to reproduce the observed biological phenomenon

1Point mutations are of special interest, because a single mutation in a gene might
switch the functionality of a protein on or off.

2Protein purification can be a very difficult and costly process and has lead to the
scientific discipline of biochemistry.
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using mathematical or computational methods. The strength of this strat-
egy is, that it captures the essential dynamics of a system without explicit
knowledge of molecular details. This process is called coarse-graining and
in Turing’s pioneering work this idea has been conceived [9]. He was aware
that his simple mathematical treaties of morphogenesis does not describe
the biological process on a molecular level. But he anticipated that his
approach could be be extremely helpful to learn about the truly

”
real“

biological phenomenon, when comparing it to simplified models with math-
ematical assumptions [9]. This perception has proven true, regarding the
plethora of reaction-diffusion systems that are employed to model biological
processes [10]. Similarly, computational models of the cytoskeleton allow to
investigate motor induced interactions between filaments [11, 12] and orga-
nizational processes during cell division and in the mitotic spindle [13, 14].

The recently obtained high temporal and spatial resolution in microscopy
allows to rigorously quantify kinetic rates and the localization of proteins in
a cell. These developments enable a rigorous approach of microscopic quan-
titative mathematical modeling in biophysics [15]. Often such studies are
joint efforts between theory and experiment and constitute a difficult en-
deavor, that needs many back-and-forth iterations between team members
of both disciplines, physics and biology [16, 17]. Most importantly, accurate
rate constants are necessary to derive quantitative theoretical models [8]. In
the case that key experiments have been done, a theoretical model should
find the appropriate level of description, and comply with all the available
experimental data [18, 19]. However, explicit numbers for rate constants or
numbers of molecules are lacking in many cases, therefore experiments and
theoretical modeling have to be conducted side by side [20–26]. In some
cases this endeavor also leads to ingenious experimental methods [27, 28].

The approach of microscopic theoretical modeling is pursued in this the-
sis. The particular level of theoretical description can be characterized
as a

”
bottom-up“ approach, because molecular details as observed in ex-

periments are translated to appropriate mathematical descriptions. The
resulting theoretical models are analyzed employing stochastic simulations
and analytical methods from nonequilibrium statistical mechanics.
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1.1. The molecular parts

The molecules that are considered the basic units in this work are molec-
ular motors, and the building blocks of cytoskeletal filaments – actin and
tubulin. Each of these molecules has been investigated in great detail using
biochemical and biophysical tools [29, 30]. Because of these studies, our
understanding of proteins has reached a point where molecular details as
recorded from single molecule experiments and revealed by biochemical as-
says can be related to specific phenotypes. However the reasons for certain
phenotypes remain obscure. They are hidden in complex signaling path-
ways, enzymatic cascades, gene regulation, and the cell metabolism. None
of these complexities in cell biology can be understood without knowing the
molecules involved. They are genetic and enzymatic players, of which one
would also like to know their mutual interactions. All these complications
do not exclude though, that there are basic principles withstanding and
organizing those complexities. Such biological principles might constitute

”
fundamental laws“ for biology, similar to the principles which underlie the

”
fundamental laws“ of physics3.
The present work considers minimal models for the regulation of filaments

in space and time. Different regulatory units are investigated and it is
attempted to identify mechanisms which are relevant to these different units.
One could view these units as the cytoskeletal analog to

”
functional motifs“

as defined in terms of gene regulatory networks [32].
The three players that are subject of this thesis, molecular motor, micro- Energy sources are

ATP and GTPtubules, and actin, have one theme in common. Both filaments as well as
molecular motors use chemical energy to perform work: to grow, to shrink,
or to move. The chemical energy in cells is available in the forms of adeno-
sine triphosphate (ATP) and guanine triphosphate (GTP), and the energy
is set free via hydrolysis to ADP and GDP, respectively, and inorganic
phosphate. Hydrolysis is an exergonic reaction and reads:

XTP + H2O→ XDP • Pi → XDP + Pi ,

where X may stand for the respective nucleotide. In the case of ATP
this reaction releases a Gibbs free energy of ∆G◦ = −35 kJ/mole; under
cellular conditions this value is even higher ∆G = −50 kJ/moil. Often
the ionic conditions have a strong effect on ∆G compared to the standard

3One has to be careful about what
”
fundamental laws“ are, and what their precise

meaning is. The interested reader is referred to the philosophical literature, where
Ref. [31] could be a suitable starting point.
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conditions. A prominent example that illustrates the importance of ions is
the polymerization of actin, which does not occur in the absence of Mg2+.
Another subtle example of how important salt conditions are, is given in
Ref. [22]. Therein the authors achieved to tune the run length of molecular
motors on the microtubule by increasing and decreasing salt concentration.

1.1.1. Microtubules

Microtubules are tube-like protein filaments that are part of the cytoskele-
ton and form cilia and flagella in eukaryotes [2]. They are stiff polymers
which fulfill many different functions in various organisms. They also en-
hance the mechanical stability of a cell and contribute to cellular dynamics
in many ways. For example, beating flagella propel sperm cells, and sen-
sory cilia serve the nematode worm C. elegans to sense its environment. In
prokaryotes, tubulin-like proteins (FtsZ) are directly involved in cell divi-
sion, i.e. the scission of one cell into two daughter cells. Probably most
prominently, microtubules are indispensable during cell division in eukary-
otes because they constitute the machinery that separates the chromosomes
known as mitotic spindle apparatus4. Their dynamics and their structure
seems particularly adapted to perform this task as will be explained in the
following.

Microtubules are hollow tubes made of 13 linear protofilaments that areMicrotubules have
internal polarity assembled from protein subunits, tubulin heterodimers, in the presence of

GTP. One tubulin dimer consists of two different subunits, one α- and one
β-tubulin. Together they form a dimer, and associate head to tail to form a
protofilament with internal polarity. At the end where β-tubulin is exposed,
the microtubule end is called the plus (+) end or plus tip. On the other end
of the filament, where α-tubulin is exposed, the microtubule grows slowly
and thus this end is called minus (−) end. These particular structural
features are the reason for microtubule polarity, and gives rise to directed
motion of molecular motors [33].

The consequences of microtubule polarity are far reaching throughout
cell biology. On a single filament scale, polarity allows molecular motors
to move on the filament into one particular direction, and to function as
transporters: kinesin motors move towards the plus end, and dynein motors
move towards the minus end [34]. On a cellular scale microtubule polarity
has far reaching implications. It can serve as an organizational principle
to cells. Let us consider a particularly striking example which reflects this

4This important role in the mitotic process has made tubulin a primary target for
anti-mitotic drugs, which are important in cancer treatments today.
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larger scale organization: Nerve cells consist of a cell body (also called
soma), dendrites, and one axon [2]. In a simplified picture dendrites serve
as antennae with which neurons can receive signals, while axons allow to
send signals and to connect to other neurons by forming a synapse. The
microtubules play an important role for the feasibility of this generic archi-
tecture in the brain5. The filaments are organized differently in dendrites
and axons: While in the axon microtubule plus ends point towards the
synapse – away from the soma – in dendrites the plus ends point towards
the soma [2].

Having discussed how the principle of head-to-tail assembly, which deter-
mines microtubule polarity on a molecular scale, affects large scale archi-
tecture of cells, let us consider an intermediate scale next.

Zooming out from the level of individual proteins to a level where in-
teractions between protofilaments are important, let us think about why
protofilaments form a tube like structure. The most important reason for
this are lateral interactions between the tubulin heterodimers and thus the
individual protofilaments. There are different ways of how protofilaments
form a microtubule lattice. These diverse structures can be observed under
different polymerization conditions in the experiment. Microtubules can be
polymerized into tubules of 13, 14, or even 15 protofilaments. Also lattice
defects have been observed [35], similar to what is known as line defects in
solid state physics [36]. The 13-protofilament microtubule is considered the
regular case, while for example 14-protofilament-microtubules form in the
presence of GMPCPP. If this slowly hydrolyzable GTP analog is incorpo-
rated into the microtubule lattice it prevents dynamic instability [37, 38]. In
contrast to the in vitro situation, where microtubules form spontaneously at
high concentrations, in the cell the genesis of microtubules is initiated very
specifically. The organelle responsible for this task is the microtubule orga- Microtubule

architecturenization center or centrosome [39]. There are two centrosomes in a dividing
cell and each daughter cell inherits one centrosome6. From these organiz-
ing centers microtubules nucleate and elongate, and microtubule asters are
formed as precursor of the mitotic spindle, as observed for example in Xeno-
pus laevis egg extracts [41]. The molecular details of this nucleation mech-

5Microtubules are highly abundant in nerve cells which makes bovine and porcine brain
tissue a primary source of tubulin.

6Centrosomes are commonly linked to the origin of tumors. For example aberrations in
the centrosome replication cycle that lead to a wrong number of centrosomes in the
cell are a common cause for genome instability. This was actually realized as early
as 1914 and is known as the Hansemann-Boveri hypothesis, see Ref. [40] for more
details.
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anism are known in some detail: There is a third tubulin species, γ-tubulin,
involved which is responsible for microtubule nucleation [42]. Although not
so much is known about the constitution of centrosomes, it is widely ac-
cepted that the organelle consists of amorphous protein material of which
γ-tubulin is an integral part of. γ-tubulin assembles into a ring complex
(γ-TuRC), which then serves as a seed to template microtubule growth.
The γ-TuRC stays at the microtubule minus end as a cap.

Intriguingly there are also higher order microtubule structures in living
organisms. One example for the controlled assembly of multiple micro-
tubules are cilia and flagella [43]. The cytoskeleton inside these structures
consists of a specific number ofmicrotubule doublets (nine) that are ar-
ranged in a ring structure called the axoneme. They consist of one

”
nor-

mal“ microtubule and one laterally connected, second microtubule which
is however consisting of fewer protofilaments. At the root of the axoneme,
where the cilium is connected to the cell, there is a structure called basal
body, which for its part consists of nine microtubule triplets7.

The principles of cilliogenesis, i.e. how these structures are initiated
and assembled are a broad field of research [43] beyond the scope of the
overview this section shall provide. The described observations however
invite to wonder about the principles of cellular microtubule organization.

Let us turn to a remarkable biochemical aspect of microtubules. Mi-
crotubules are subject to post-translational modifications [45, 46]. ThesePost-translational

modification of
microtubules

are controlled enzymatic modifications of the surface of individual tubu-
lin molecules, that happen in the cytoplasm after the ribosomes have as-
sembled the protein. These biochemical modifications have far reaching
effects on how microtubules organize in the cell and which molecules as-
sociate with them. In the microtubule related biophysics field, this aspect
often remains disregarded. It would be easier if there were only one type
of microtubules. But since this is not the case, and because the effects
arising from post-translational modifications can be severe regarding the
dynamic and static properties of microtubules, it is worth to discuss this
topic briefly. Post-translational modifications of microtubules are particu-
larly relevant to in vitro experiments, because the enzymatic modifications
of isolated tubulin strongly depend on the species from which it was ob-

7At this point the reader could be tempted to ask:
”
Why nine again?“ To answer

this question it is instructive to consider other prominent answers to questions, for
example forty two. In that specific case the question was on

”
life, the universe and

everything“ [44]. Eventually the context of cell biology is narrow enough and the
question sufficiently clear that an explanation can be expected sooner or later.
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tained [47]8. These modifications are for example responsible for the degree
of activation or inhibition of molecular motor’s ATPase activity. Some mo-
tors move faster on porcine microtubules, while others are faster on yeast
microtubules [48]. A specific post-translational modification of tubulin,
which is of particular interest to the topic of this thesis, is the tyrosina-
tion and detyrosination of α-tubulin by an enzyme called tubulin-tyrosine
ligase. Microtubules with the latter modification are a better substrate
for microtubule-depolymerizing molecular motors. The depolymerization
activity of the motor proteins from the kinesin-13 family is stimulated by
tyrosination and it is inhibited by detyrosination [49]. Hence, in a simplified
picture, microtubule post-translational modifications are switches which in-
fluence the stability of microtubules, as well as their quality as a track for
molecular motor motion.

So far we have considered elementary characteristics of the microtubule
building blocks – tubulin, and we have also discussed how the filaments are
organized in higher order assemblies like cilia and flagella and in the cy-
tosol with the help of a microtubule organization centers. Knowing about
the cellular organization of microtubules it remains to be said that micro-
tubules are macroscopic molecular machines able to generate strong forces. Microtubules

generate forcesThese forces can be pushing or pulling forces depending on polymerization
or depolymerization of the microtubules [50, 51]. Or they can emerge from
interactions with molecular motors. To highlight the versatility of these
machines, an example is in order. Recently Laan et al. constructed micron
sized chambers with functionalized surfaces to investigate how cell nuclei
are centered. Dynein motor proteins are tethered to the wall of the chamber
and regulate the microtubules that radiate from the center of the chamber
in an aster like manner. Together molecular motors and filaments consti-
tute a centering mechanism to the nucleus, because the forces generated by
the motor molecules and the microtubules balance in the system.

Dynamic Instability is the phenomenon of switching between periods
of growth and periods of shrinking as observed for microtubules [52].

Recently, dynamic instability has also been discovered for actin like fila-
ments in bacteria, ParM [53]. Mitchison and Kirschner were able identify
the origin of stochastic switching. In their experiment they observed the
stable coexistence of growing and shrinking microtubules and concluded,

8Common sources of tubulin are bovine and porcine brain tissue. The resulting tubulin
naturally contains many post-translational modifications while yeast tubulin is much
less modified, however the latter is more difficult to obtain.
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Figure 1.1.: Microtubule structure of growing (top) and shrinking
(bottom) filaments as seen by Chrétien et al. using electron
microscopy [54].

that switching between the two processes is due to a particular feature at
the microtubule tip. They hypothesized that GTP hydrolysis is the driving
force for switching. Electron microscopy data largely supports this view.
Shrinking microtubules are splayed out and individual protofilaments are
curved as well as the individual tubulin heterodimers in the GDP state. In
the GTP state the tubulin heterodimers have a straight conformation and
add to a growing microtubule to form a non-splayed microtubule tip. Fig-
ure 1.1 shows electron micrographs of growing and shrinking microtubules.

Tubulin assembles into microtubules with GTP bound, and tubulin dis-
sociates from the microtubule in the GDP bound state [33]. This renders
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the hydrolysis rate an important parameter for microtubule dynamics [55].
This intrinsic parameter can be influenced in experiments in a subtle way.
Because there are different kinds of GTP homologs that have a different hy-
drolysis rates, it is possible to incorporate these into the microtubule instead
of GTP. For example GMPCPP is known to stabilize microtubules since the
nucleotide is practically non-hydrolyzable. Another nucleotide substitute,
GTPγS mimics the structural features of the microtubule tip [56]. Recent
cryo-electron microscopy experiments also revealed that the structure of the
growing microtubule tip depends on the nucleotide state and leads to strong
interactions with end binding proteins (EBs) [57]. At ambient conditions
the investigation of the nucleotide state has remained challenging [38]. The
difficulty is that indirect measures, like for example microtubule binding
proteins or antibodies, are necessary to resolve the nucleotide state of tubu-
lin dimers in the microtubule [58, 59] by optical microscopy. Precise data
with sub-nanometer resolution has yet to be obtained. Reverse engineer-
ing the question however, allows to study the influence of the nucleotide
state on microtubule dynamics nevertheless: Microtubules can be created
in vitro with differently patterned nucleotide states. This allows to learn
how the nucleotide states influence the dynamics depending on the prede-
fined composition of the microtubule [37]. Although microtubule dynamics
has largely remained elusive on a molecular scale, within a systems level
understanding the situation is clarified. Microtubule depolymerization is a
particular molecular machine which is strong enough to tear chromosomes
through the cytoplasm [50, 60, 61].

Microtubule dynamic instability has also attracted lots of theoretical at-
tention. First to mention is Hill, who pioneered the view that switch-
ing between distinct states of microtubule growth and shrinking induce
dynamic instability [62]. There are many more models available today
for microtubule dynamic instability. Generally these model qualitatively
distinguish between bounded and unbounded growth, see e.g. Refs. [63–
66], and compare to experimental data obtained in the form of dilution
experiments [55, 67, 68], or develop mechanical understanding of micro-
tubule structure and dynamics [69–71].

To conclude this section on microtubules, there are many factors that in-
fluence microtubules. Molecular mechanisms of microtubule assembly and
disassembly are known as basic principles that have been hypothesized [72].
Conclusive agreement, however, between experiment and theory has yet to
be obtained. This leaves a formidable question regarding microtubule dy-
namics unanswered: What is actually dynamic instability and how does it
work?
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1.1.2. Molecular motors

There is a plethora of molecular motors in the cell. The motors associated
with the cytoskeleton and microtubules in particular are dynein and kinesin.
These two classes of motors differ from each other in many aspects. In the
following a brief overview is provided into these differences. What they
have in common is that both appear in a large variety of different variants
that pursue different cellular functions. From a perspective of evolutionary
biology molecular motor have diversified and specified across many different
organisms [34].

On first sight the main difference between kinesin and dynein is that the
former walks to the microtubule plus end while the latter walks to the minus
end. On a molecular scale this difference is rooted in the mechanisms both
motors employ for movement. Dynein is a huge molecule consisting of many
different subunits. By contrast kinesin is a relatively small, often dimeric
molecule. Further the mechanism of dynein movement and force generation
is very different from that of kinesin. Dynein is suited to exert large forces,
for instance to hold the nucleus at the center of a cell [23], and kinesin might
be suited to transport material through the cytoplasm because of its high
processivity. A brief look

”
under the hood“ of the two motors supports this

view: Dynein employs at least 6 ATPases for force generation, while kinesin
has only two ATPases. This is like comparing an SUV with a motorcycle.
However, the tug-of-war between these two molecules [73] has inspired lots
of theoretical and experimental work.

If many molecular motor interact with many filaments, large scale or-
ganizational dynamics is observed that leads to a variety of patterns and
intermittent dynamics. Some examples include the formation of aster-like
structures in mixtures of microtubules and certain kinesin motors [74]. Once
the formation of these structures is complete, they settle to a steady state.
Quantitative insights into such processes can rarely be obtained due to
the complicated nature of the interactions between its components. One
interesting candidate for a system of motors and filaments where a quan-
tification is possible is the formation of microtubule bundles by molecular
motors [75, 76].

A quantification of protein-filament systems is more feasible if the in-
fluence of motor molecules on only one filament is considered. There are
several proteins that interact with filaments in interesting ways. In partic-
ular the enzymatic elongation or shortening has received much attention
recently [3]. In the following one kind of such an enzyme, which is also a
molecular motor is presented more thoroughly.
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Figure 1.2.: Depolymerizing proteins induce tubulin rings. Shown
are rings induced by the kinesin-13 protein pKinI [80] (left
a&b), scale bar 40 nm. And kinesin-8 induced rings [81]
(right b&d) and average structures (right c), where the
inner ring is kinesin-8s (white) and the outer ring is tubulin,
scale bar 50 nm.

Kinesin motors tend to depolymerize microtubules [77, 78]. The first
kinesin that was discovered to destabilize microtubules was KinI [79],

also known as mitotic centromer associated kinesin (MCAK). This protein
constitutes a main player of the kinesin-13 protein family, which is one of the
two families of microtubule depolymerizing proteins. The second protein
family is kinesin-8. Both kinds of proteins bend protofilaments into curved
conformations, similar to those observed during microtubule depolymeriza-
tion. Using electron microscopy it can be seen how motors bend the tubulin
protofilaments into rings, see Fig. 1.2.

In the following, both types of protein are briefly introduced and their
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differences are lined out. First consider kinesin-13. It is the most studied of
its kind and has a role during mitosis in spindle regulation. It binds to both
microtubule tips in the presence of ATP [82] and has been shown to diffuse
on the microtubule lattice and to depolymerize it by tearing apart tubulin
heterodimers from the microtubule tip [83]. The precise hydrolysis cycle of
the depolymerization step has been studied [84] and the residues relevant
for depolymerization were identified [85]. MCAK has also been shown to
stay bound to the depolymerizing microtubule tip [85]. This behavior is
called processive depolymerization and has been investigate in theoretical
work for diffusing [86] as well as walking molecular motors [87].

Such processive behavior is also called tip-tracking and it arises in other
situations as well. For example Bieling et al. have identified a minimal
system for tip tracking consisting of three components, a molecular motor,
an end-binding protein, and a linker molecule. There is a whole protein
network which interacts with microtubule tips [88], and it is known that
cellular functions are associated with it. These include the regulation of
microtubule dynamics [3] as well as for example the possibility that material
is transported to the cell membrane via microtubule tips [89].

Tip tracking can be regarded as a core mechanism for enzymes that regu-
late microtubule growth and shrink rates, because not only depolymerizing
proteins MCAK, but also polymerizing enzymes XMAP215 employ this
mechanism [90]. For a recent theoretical analysis of this mechanism see
Ref. [91] and Appendix B of this Thesis.

The second depolymerizing protein is kinesin-8, which differs in multiple
ways from the previously discussed kinesin-13. It is a plus-end directed
molecular motor which tightly binds to the microtubule lattice. The best
studied kinesin-8 motors are those from budding yeast (kip3p [92–94]) and
humans (Kif18a [95–97]), and also fission yeast (klp5/6 [48, 89, 98]). These
molecular motors walk on the microtubule towards the plus-end using ATP.
In doing so they bind strongly to the microtubule lattice, which renders
kinesin-8 an extremely slow motor. What might look like a drawback is
indeed an advantage for the function of the motor as depolymerase, be-
cause its motion on the microtubule is extremely persistent. It stays bound
for many minutes and walks dozens of micrometers to reach the micro-
tubule tip [22]. This strong and long binding has been shown to be due to
the tail domain of the motor [99–101].

Besides their activity as depolymerizing molecular motors kinesin-8 also
forms traffic jams on microtubules [22], as predicted in recent theoreti-
cal work for a driven lattice gas with attachment and detachment kinet-
ics [102]. Why have traffic jams not been observed before? The answer to
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this question is that, unlike all other kinesin motors, kinesin-8 exhibits a
extremely long run length. The resulting small detachment rate from the
microtubule leads to massive amounts of motors on the microtubule, so that
interactions between the motors become important. These interactions can
be regarded as hard-core repulsion as the agreement between theory and
experiment suggests [22, 102]. In the meanwhile also other motors were
shown to underlie this traffic behavior [103].

A detailed quantification of the experiments with kinesin-8 has been
achieved within this thesis and is presented in Section 3.1.

1.1.3. Actin filaments

When microtubules are filigree structures that contribute in subtle ways to
the life of a cell during

”
moments of truth“ like cell division for example,

then actin is a tireless power horse which is in action all the time and
everywhere. It forms the cortex of a cell, which is a two-dimensional filament
network that is tethered to the membrane and provides mechanical rigidity.
Actin is actively remodeled at the membrane and generates pushing forces
for cell motility. Similar to molecular motors actin filaments exerts forces
under consumption of ATP [104, 105]. Because one actin filament is simply
too small to generate strong cellular forces, it teams up with many others of
its kind [106–108]. Actin filaments form tight bundles or branched network
structures depending on the linker molecule that is present. For example
linker proteins fascin induces actin to form tight bundles, while α-actinin
or filamin proteins lead to the formation of network structures [109, 110].

One important aspect of actin is that it is maintained and regulated
via a plethora of associated proteins that incessantly regulate actin’s activ-
ity. Actin filaments have a time dependent particular temporal and spatial
structure. The spatial structure of growing actin filaments allows various
proteins to attach to different regions of the filament, that essentially differ
by the nucleotide state of the actin monomers in the filament. At the barbed
end actin monomers assemble with the ATP nucleotide bound. After the
nucleotide is hydrolyzed on a timescale of seconds, the phosphate atom
stays bound to the filament ATP • P , and only after some time again the
phosphate is released, and the filament has arrived in the ADP state, which
is the configuration at the pointed end of the filament. Actin is influenced
by many different enzymes, that for example influence filament polymer-
ization, like formins, or serve the stabilization of filaments like phalloidin.
One important class of actin related enzymes are nucleation proteins [111].
These are of particular interest here, because they help form a filament
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from precursor nuclei that are very short-lived in the absence of nucleation
proteins. The most important players are introduced in greater detail in
Section 4.

1.2. The experimental toolbox

In the last decades many biological problems were addressed using ap-
proaches that originally were brought up in physics. Since then both dis-
ciplines approached each other, in that biology has turned into a more
quantitative science, and that physics has evolved a new discipline – bio-
physics.

Many of the novel approaches in biology arose from experiments that were
developed in physics, and then have become versatile tools for research on
biological samples. There are numerous examples that can be found in the
literature. Two of these are chosen here due to their particular importance
in physics and biology:

i) Force spectroscopy

ii) Optical microscopy

Both constitute landmarks of new developments in biophysics. The first
technique has revealed the role of forces in cell biology, and the second
technique elucidates the spatial and the temporal dynamics of molecules
inside cells. Together these approaches are extremely useful in understand-
ing biological systems as briefly outlined in the following. Interestingly both
of these approaches were accompanied by theoretical and computational ad-
vances which provide foundations to interpret the experimental data. The
little detour that is undertaken here is beneficial for two particular rea-
sons: Any theoretical work needs explicit numbers to become meaningful.
And such numbers are obtained from experiments. So if theorists do ignore
where these numbers come from there is a chance that their theoretical
work will neither provide a reasonable explanation for experimental data
nor hold any predictive power. To know the experiments thoroughly is also
important to biologists in order to know what can be learned from the data
– and probably even more importantly – what can not be learned from the
data.

The field of force spectroscopy for example broadens our understanding
of the energy landscape of protein folding [112], how a bonds breaks [113],
and also how cellular signals are derived from force sensing molecules [114].
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Molecular forces also play a role in
”
pure“ cell biological fields like genet-

ics for example [115], where helicases have to unwind the twisted genetic
material DNA or RNA. For a recent overview on force spectroscopy meth-
ods, see for example Ref. [116]. Important theoretical contributions to the
field are the seminal work by Evans and Ritchie on the strength of molec-
ular bonds and by Hummer and Szabo, who showed how to convert data
obtained from (non-equilibrium) pulling experiments into equilibrium rate
constants. These theories significantly contributed to our current under-
standing of forces on the nanoscale.

Modern microscopy started with the development of differential interfer-
ence contrast (DIC) microscopy and a video camera mounted to a micro-
scope [119, 120]. Since then microscopy has become an art in many ways.
On the biochemical side, the work on Green Fluorescent Protein by Shimo-
mura, Chalfie and Tsien initiated a protein engineering race of fluorescent
probes for (almost) everything in the cell. There are even fluorescent pro-
teins that

”
sens“ forces inside cells [121]. In addition, over the past few

years super-resolution microscopy techniques have been developed, that fo-
cused on high spatial resolution. These techniques allow to localize cellular
structures at a nanometer resolution, however this gain in resolution came
at the price of very long acquisition times. Only recently several groups
have succeeded to also improve the time resolution of imaging, such that
the biologically relevant timescale of seconds is obtained [122, 123]. In ad-
dition, and particularly in embryology, it is desirable to image for extend
periods of time to monitor all stages of embryo development. These very
long timescales – say days – are challenging on their own right, because very
mild imaging techniques are essential, such as not to influence the biological
processes [124].

This brief overview on recent experimental advances shall help to assess
the possibilities that are emerging in the future. These possibilities will also
shape the demands on theoretical biophysics.

”
Which process is relevant at

a certain timescales and why?“ This and similar questions will certainly be
one of the most important ones that call for answers and quantification.

1.3. Finite sized systems

The experimental methods presented in the previous section are aiming at
observations of single molecules. This possibility is unprecedented and has
interesting consequences for the theoretical approaches that try to explain
the observed nanoscale phenomena. In particular the classical statistical
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mechanics approach, which connects microscopic details to macroscopic
quantities, is put to test. In statistical mechanics there are two impor-
tant properties that determine whether or not the approach is

”
working“.

The first one is that, in general, there are extensive and intensive param-
eters that describe the state of a system. Extensive parameters are those
dependent on the system size while intensive parameters are independent
of the system size, the number of particles N . Second and related, it has to
be possible to take the

”
thermodynamic limit“ of a system, that is to send

the number of particles N to infinity, and also the volume of the system
V , while the density (or number concentration) of particles ρ = N/V is
constant. The latter is corresponding to the concept of amount concentra-
tion in chemistry where the amount of a substance in mole is considered
per volume of a mixture with solvent V [125]. One mole corresponds to an
elementary number of entities, NA = 6.022 × 1023 called Avogadro’s num-
ber. The astronomical size of this number has ever since justified to take
the thermodynamic limit in chemistry and physics.

However, in the small world inside of cells, and inside of bacteria and
viruses the situation is quite different. Take for example the volume of the
bacterium Escherichia coli which can be roughly estimated to be 1µm3 [2].
In this tiny volume a

”
concentration“ of 1µM corresponds to only N =

600 particles. Which is very small when compared to 1023 particles of
Avogadro’s number. This rough estimate leads to the severe question, if
the current concept of concentrations is not misleading in a sense that it
would rather be appropriate to consider finite particle numbers instead of
concentrations when thinking about intracellular processes.

In chapter 4 of this thesis the particularities of actin nucleation from a
finite pool of monomers and in a small volume is investigated. This com-
partmentalized view on complex chemical reactions strongly supports that
chemical reactions occur differently on such small scales [126]. It provides
a basis for future experiments, where volume as well as particle number are
experimentally well controlled [18, 127–141].

The Size of organelles is a matter of intense research at the moment, and
recent work has revealed principles that determine organelle size [142,

143]. Novel microscopy techniques, allow to reconstruct three dimensional
images and thus volumetric measurements are possible at accuracies never
achieved before. As a specific and well-studied example related to the mi-
crotubule cytoskeleton, the mitotic spindle [144, 145] is discussed in terms
of a graphical illustration. It highlights how various processes contribute
to the physics of the mitotic spindle and tries to show a bigger picture.
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However, it remains a challenge for the future to put these factors together.
Meanwhile the following (incomplete) list could be a starting point to pur-
sue this endeavor:

1© Size limits due to microtubule length [146].
2© Centrosome size determines spindle size [147].
3© Depolymerizing motor kinesin-8 [148]
4© Depolymerizing motor MCAK [149]
5© Microtubule severing protein Katanin [150]
6© Nucleation of microtubules inside the spindle [27]
7© XMAP determines spindle mass [151].
8© Cytoplasmic volume [152]

Volume

Centrosomes

Nucleation

Microtubule Length

MCAK

Kinesin-8

MCAK

SeveringXMAP

Figure 1.3.: Mitotic Spindle Apparatus. Several recently established
determinants of spindle size are indicated. The numbers
1© − 8© roughly indicate where enzymes interact with spin-
dle constituents. Diagram by Lordjuppiter / CC BY 3.0

http://upload.wikimedia.org/wikipedia/commons/d/dc/Spindle_apparatus.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en




Chapter 2.

Growing & Shrinking Lattice Gases
– A Domain Wall Theory for Dynamic Lattices

Driven diffusive systems are a class of models employed in statistical physics
to study non-equilibrium phenomena. One of the first system belonging to
the class driven diffusive lattice gases was originally proposed as a mechan-
ical experiment with small particles that diffuse through a narrow chan-
nel (see Fig. 2.1), that connects two reservoirs of particles [153]. In the
channel the particles diffuse in a single file, with a net current if the two
reservoirs have different particle densities. Already this simplest possible
system displays particular properties, because particles can not pass each
other in the narrow channel. For example if one puts a tracer particle
amidst the other particles in the channel, the mean square displacement of
the tracer particle scales as ∼

√
t [154]. Comparing this result with one

dimensional diffusion of a single particle, one observes a qualitatively dif-
ferent behavior, because the mean square displacement of a single particle
scales linearly with time ∼ t. The presence of many particles and their
excluded volume interaction changes the physical characteristics of a sys-
tem. Note that this result is valid only for one dimensional systems and
does not exist in two or three dimensions, although interactions between
particles generally play a role in higher dimensions as well. One example
is the Van-der-Waals gas in which particles have a non-zero volume leading
to effective increase of pressure [155]. In the cell biological context, inter-
actions between the proteins inside a cell lead to sub-diffusive behavior due
to macromolecular crowding effects [156].

Although Hodgkin and Keynes intended to investigate ion conduction
across a nerve fiber with their experiment, their idea of a one dimensional
channel with diffusing, interacting particles, became very successful as a
model for a variety of situations. The model is known as simple exclusion
process (SEP) or single file diffusion. One important generalization of this
model is that particles move asymmetrically (ASEP). The probability to
move to the right differs from the probability to move to the left as in
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Figure 2.1.: Simple Exclusion Process in a simple mechanical model
as suggested by Hodgkin and Keynes to study the ionic con-
ductance of nerve fibers [153].

a random walk with drift. The ASEP constitutes a large class of models
comprising many special cases. In the following we consider a particular sit-
uation, where the movement of particles is totally asymmetric, the TASEP.
In this case particles move as Poisson steppers in one direction. This lattice
gas was first proposed by MacDonald et al. [157] as a model for multiple
ribosomes that move along a messenger RNA to synthesize proteins. Since
then many interesting phenomena were described in this system, including
phase transitions, of which one important class is discussed in more detail
in the following.

2.1. Boundary induced phase transitions

A first remarkable observation is that TASEP exhibits boundary induced
phase transitions [158]. Depending on the microscopic rules for particles at
the lattice boundaries to enter or leave the system as illustrated in Fig. 2.2,
boundary induced phase transition are observed. These can be derived
intuitively, because the density of particles on the lattice is affected on a
macroscopic scale. The system may contain a traffic jam (high density,

”
HD“), exhibit fluent movement of all particles (low density,

”
LD“), or
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Figure 2.2.: Totally Asymmetric Simple Exclusion Process is a
standard model for non-equilibrium physics. At the left par-
ticles are fed onto the lattice at rate α, and taken out of the
lattice at the right at rate β. Hopping occurs at rate unity.

the lattice could carry a maximal capacity of particles while optimizing the
current through the system (maximal current,

”
MC“). These different kinds

of phases are relevant to all projects described in chapter 3 of this thesis.
To obtain some more intuition for the phase transitions it is important

to consider the bulk current through the system

J = ρ(1− ρ), (2.1)

where ρ is the density of particles – the probability to find a particle on a
site. The second term is the probability for a site to be empty. The above
relation holds for particles that move at unit velocity, but is very general
and applies to many situations in exclusion processes [159]. Here we specify
to the case of open systems, where particles can be fed onto the lattice at
the left end (minus-end) of the system and are leaving the system at the
right (plus-end). Following the rules of particle exclusion, the currents at
the input (IN) site and at the exit (EX) site are

JIN = α(1− ρ) , (2.2)

JEX = βρ . (2.3)

The conservation of current in the steady state ∂tJ = 0 implies that the
rate constants α and β, at which particles are added to and removed from
the lattice respectively, take special roles. Consider for example the case of
β < α. Then less particles are taken out of the system than particles are fed
into the system. It is intuitively clear that particles pile up at the plus-end,
and the traffic in bulk is reduced to J = JEX. As a consequence also the
density in bulk is adjusts to this situation: ρEX = 1 − β, as can be easily
checked. The system is in the EX phase or also called the HD phase. Fig-
ure 2.3 shows the complete phase diagram of TASEP. All remaining phases
of the system can be determined along similar lines, which is postponed to
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Figure 2.3.: Phase Diagram of the TASEP in terms of the entrance and
exit rates. Note, the currents in high and low density phases
are independent of parameters α and β respectively.

a more interesting example later. The procedure as such is nicely and less
qualitatively explained in [160].

All the results obtained for the TASEP with methods similar to the ar-
gument for the EX phase above were also derived analytically [161, 162]. A
particularly beautiful and simple way to the solution is via transfer matri-
ces [163]. In this thesis a different route is pursued, the mean-field approach.
Let ni ∈ {0; 1} be the occupation number of the ith lattice site. Then the
mean current from site i to site i + 1 is Ji+1 = 〈ni(1 − ni+1)〉, where 〈·〉
denotes the average. The probability to find a particle on site i is thus
ρi = 〈ni〉. A priori it is however not clear how to treat the product nini+1

when the average is applied 〈nini+1〉. The mean field assumptions states
that 〈nini+1〉 = 〈ni〉〈ni+1〉. As a consequence simple solutions are possible
in TASEP.

Despite its surprising simplicity only few situations are known where
simple mean-field approaches fail to describe the qualitative behavior of a
system. In these cases, there are particular methods to refine the accuracy
of the approach [164], or combine it with analytic results obtained for a sub-
segment of the process [165, 166]. One example in which this factorization
scheme is not valid, is given in chapter B and Ref. [91]. Therein, a separation
of time scales between tip-related enzymatic processes and diffusion in bulk
forbids a simple procedure as outlined above.

Much more can be learned about the applications of driven diffusive sys-



2.2 Dynamic lattices 25

tems because they are broadly relevant in fields as different as car traffic
phenomena [? ] and biology [167]. There are several reviews available [168–
170]. Notably Ref. [171] provides a hands-on tutorial to matrix product
states, and Refs. [172, 173] review very recent developments, e.g. what
can be learned from large deviation functions, and what are applications
of the theory. There is also an excellent textbook [159], which provides a
course-level introduction to the field. The reader interested in exact solu-
tions is deferred to Ref. [174], in which the long standing problem of current
fluctuations in ASEP has been solved.

In the more recent literature TASEP was extended to many different
situations. These can be categorized as follows1. Internal degrees of freedom
of particles were varied in different ways to account for spin transport, the
stepping cycle of motor molecules and also multilane transport [175–188].
A second direction of systems studied recently were transport properties on
networks [73, 189–193], and under certain resource limitation [133–136, 139,
194, 195]. A different and interesting idea is to include population dynamics
in a driven diffusive system [196]. The last direction of research to be
mentioned here are modified hopping rules. These modifications – although
they seem not much different from the usual case – are very different from
the original driven diffusive system2. They include TASEP with global
hopping [197], which is surprisingly similar to the case with attachment
and detachment kinetics [198], systems where particles push each other
from behind

”
facilitated exclusion“ [199], or particles are accelerated by

other particles [200, 201].

2.2. Dynamic lattices

Recently, driven lattice gases were studied on dynamic lattices. In these
models, a lattice either grows or shrinks dynamically. In the following an
overview is provided on this particular topic. Sugden and Evans proposed
the dynamically extending exclusion process [202, 203], where each parti-
cle that arrives at the lattice boundary, extends the lattice by one site.
They determine the phase diagram and describe nontrivial density profiles
due to the coupling of lattice growth- and particle dynamics. In further

1This categorization can be considered as a loose classification, which is in parts moti-
vated by the actual details of the systems. For example internal degrees of freedom
and transport on multiple lanes with particle interactions across lanes can be identical
in limiting cases.

2In some cases these systems are not solvable with standard methods like the matrix
products or the Bethe Ansatz.
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work, this model was extended to also account for attachment and de-
tachment of motors along the lattice [204]. Similarly, phenomena to those
found by Muhuri [204] occur also on shrinking lattices [205], which suggests
that growing and shrinking lattices with TASEP and on/off kinetics are
connected by symmetry, similar to particle/hole symmetry for the case of a
static lattice [198]. The growing or shrinking dynamics of lattice gases are of
interest in several biological situations like bacterial flagellum growth [206]
where particles diffuse through the flagellum to reach the tip of the micro-
tubules. But also the growth of filopodia and stereocilia is an application
for growing and shrinking lattice gases [207].

Besides systems, in which a lattice is either growing or shrinking as
discussed above, there are also systems in which the lattice is allowed to
grow and shrink. Thereby one has to distinguish between different molec-
ular interactions at the dynamic lattice end: Nowak et al. [208] considered
a fluctuating lattice, while particles are supposed to have a

”
stabilizing“

effect on the lattice. This model opposes the possibility of particles desta-
bilizing a stable but dynamic lattice [209–212]. Alternatively, a finite run-
length of particles in a transport process also may define a dynamic lattice
length [213].

2.3. Domain wall theory

In this section a method is introduced that allows to determine the phase
behavior of particles on growing or shrinking lattices. It extends what is
known about driven system on static lattices [160], and allows to obtain the
phase behavior of all the processes related to the kinesin-8 molecular motor
subject to this thesis.

To this end consider the bulk current Jb to be a function of the parti-
cle current in one domain of the lattice, and a function of the probability
that the tip of the lattice is occupied, Jb(ρb, ρ+). The dependency on the
tip density arises for lattices that grow and shrink, because growing and
shrinking give rise to currents away and towards the lattice tip, respec-
tively. Growth and shrinking dynamics can thus be interpreted as parallel
update of all particles in the system. To understand the phase behavior of
such a system, a the domain wall theory and the extremal current princi-
ple [160, 214–216] have to be modified to account for the semi-infinite and
dynamic lattice.

The domain wall velocity vDW describes the movement of a domain wall
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Figure 2.4.: A Domain Wall in bulk of a dynamic lattice. The cartoon
shows also the relevant quantities and their dependencies on
bulk and tip densities.

in the bulk of the lattice. It reads

vDW =
J left−J right

ρleft − ρright
, (2.4)

where left and right denote the densities and currents on either side of a
domain wall on the dynamic lattice. The sign of vDW determines whether
a shock is traveling to the left (vDW < 0) or the right (vDW > 0). For an
illustration see Fig. 2.4.

Evaluating all domain wall velocities with the respective current of differ-
ent phases of the system, it is possible to determine if a certain tip density
is stable. Because if a shock is traveling to the left, the system is taken
over by J right and ρright. On the other hand if the shock is traveling to the
right, then the system assumes the density and currents from the left of the
system J left and ρleft. In general, Eq. (2.4) is an arbitrary function and it is
assumed that the system is semi-infinite here. However, there is evidence
that this equation also holds for finite and dynamics lattice sizes, where the
density at the minus end can also be included in the analysis3.

Let us turn to the second step that has to be performed to determine the
complete phase diagram of the system. The stability of a particular phase
depends on whether the bulk density is stable against perturbations or not.
The quantity which provides this stability criterion is the collective velocity

3This statement is based on findings by Matthias Rank, who investigated finite systems
of microtubules and molecular motors [217].
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Figure 2.5.: Illustration of a Density Perturbation in the bulk of a dy-
namic lattice. The collective velocity, vcoll, denotes the spread-
ing velocity of the perturbation in a background density ρb.

of the system. It reads
vcoll =∂ρbJb(ρb, ρ+) . (2.5)

The collective velocity probes the stability of a small density perturbation
in a background bulk density ρb, as illustrated in Fig. 2.5.

Generally the collective velocity indicates the phase behavior of the sys-
tem. The EX phase for example is characterized by vcoll < 0, because in a
high background density a small perturbation moves to the left [160]. A
positive collective velocity vcoll > 0 transports particle onto the lattice and
the IN phase prevails [160]. There are particular lines in the phase diagram
when perturbations do not travel in any direction but rather spread out
diffusively. If this is the case the system is in the maximal current phase,
MC.

To conclude and summarize this chapter, a basic toolbox was presented
that allows investigations of semi-infinite driven diffusive systems with non-
linear boundary coupling. In the following this method is employed to the
case of depolymerizing molecular motors.



Chapter 3.

Microtubules and Kinesin-8
– How Molecular Motors Influence Microtubule Dynamics

This chapter is devoted to microtubule depolymerizing molecular motor as
introduced above — kinesin-8. These motors follow the rules of TASEP
with attachment and detachment kinetics on the microtubule [22] and can
regulate filament length in vivo [218].

Employing methods from non-equilibrium statistical mechanics intro-
duced in the previous chapter 2 allows an investigation of the traffic dy-
namics of molecular motors on the microtubule and the specific interac-
tions of motor proteins with the microtubule tip. This system, although
relatively simple in its definitions, shows a rich phenomenology in terms
of phase behavior and stochastic properties. Further, some features of the
phase behavior can be attributed to different regimes that were observed in
recent experiments [94]. These, and the observation of traffic jams on the
microtubule [22] – as predicted in Refs. [140] and [102] – propose that the
theoretical results presented here could be observed in suitable experimental
setups.

Very generally it is suggested that the molecular arrangement of molec-
ular motor and enzymes close to and at the MT tip has important con-
sequences for their regulation, and probably also microtubule function in
vivo . Thinking of the mitotic spindle, where microtubules find the chro-
mosomes and attach to complex enzyme assemblies like kinetochores, it is
hard to imagine that the microtubule tips are not a crowded place and
come all alone. Rather it is likely that many players interact with each
other, probably in even more complicated ways than we can think of at the
moment [219].

However, in the following five sections the current model of depolymer-
izing molecular motor kinesin-8 will be stepwise passed on to higher com-
plexity. First, a simple depolymerization assay is analyzed. Secondly, a
principle for microtubule length-regulation is suggested. Third, it is un-
veiled that boundary conditions induce not only reliable length-regulation,
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(a) Microtubule model

(c) Depolymerase 
     inhibits MT growth

(d) Depolymerase without 
     inhibiting MT growth

(b) Simplified TASEP model

Antenna profile Langmuir density

MT tip

Figure 3.1.: Model for kinesin-8 in terms of a driven lattice gas with
and without particle attachment/detachment and for various
growth and depolymerization scenarios at the microtubule tip.
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but also persistent intermittent dynamics. Fourth, the different boundary
conditions are compared with respect to their ability of length-regulation.
And finally, the current understanding of mean-field theories is maxed out
to learn about fluctuations at the phase transitions. Taken together the
model comprises several parameters that are important to different aspects
of the dynamics as summarized in Fig. 3.1. Those parameters relevant at
the boundary of the system are microtubule growth rates for two different
modes, one where growth is independent of a motor at the tip γ, and an-
other mode where growth depends on the absence of a motor at the tip η.
Further there are the motor induced depolymerization rate of the micro-
tubule δ, and the detachment rate of motors from the microtubule tip β. In
the bulk of the system two parameters are sufficient to describe the motor
kinetics: the attachment of motors to the lattice ωon and their detachment
ωoff. In this work these are often written in a concentration dependent
manner cωon, and as the association constant K = cωon/ωoff.

In terms of the relevant phase transitions, the tip-related rate constants
imply boundary induced phase transitions [158], and the bulk related rate
constants determine the density profile on the microtubule and eventually
phase coexistence [102].
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3.1. Crowding of molecular motors determines microtubule
depolymerization

The experiments by Varga et al. were the first to contain all the necessary
experimental data to directly deduce a theoretical model. In particular they
measured the microscopic attachment rate of motors per binding site on
the microtubule, which has never been done before. Knowing this number
allowed to map the dynamics onto the TASEP with Langmuir kinetics and
a particular boundary condition for depolymerization.

There are essentially two regimes for depolymerization. Either the mi-
crotubule is depolymerized at the maximum depolymerization speed of the
depolymerizing motor, or the depolymerization speed is determined by the
time interval between two motors arriving at the microtubule tip. Further,
by measuring dwell times of motors at the tip it is possible to distinguish
between enzymatic depolymerization by one motor molecule or whether
two consecutive motors are necessary to depolymerize the microtubule, via
a

”
bump-off“ mechanism [94].

There is also an alternative mathematical model [87] that claims to ex-
plain kinesin-8 depolymerization data presented earlier [92]. Therein it is
assumed that kinesin-8 follows the microtubule tip via processive depoly-
merization. At the same time this was shown to be not the case for the
budding yeast kinesin-8 kip3p [94], however this case might still be relevant
for different molecular motors.

On the following pages the original version of the publications is provided.



Crowding of Molecular Motors Determines Microtubule
Depolymerization
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ABSTRACT The assembly and disassembly dynamics of microtubules (MTs) is tightly controlled by MT-associated proteins.
Here, we investigate how plus-end-directed depolymerases of the kinesin-8 family regulate MT depolymerization dynamics.
Using an individual-based model, we reproduce experimental findings. Moreover, crowding is identified as the key regulatory
mechanism of depolymerization dynamics. Our analysis reveals two qualitatively distinct regimes. For motor densities above
a particular threshold, a macroscopic traffic jam emerges at the plus-end and the MT dynamics become independent of the
motor concentration. Below this threshold, microscopic traffic jams at the tip arise that cancel out the effect of the depolymer-
ization kinetics such that the depolymerization speed is solely determined by the motor density. Because this density changes
over the MT length, length-dependent regulation is possible. Remarkably, motor cooperativity affects only the end-residence
time of depolymerases and not the depolymerization speed.

INTRODUCTION

Microtubules (MTs) are cytoskeletal filaments that serve
a central role in intracellular organization (1,2) and several
cellular processes, including mitosis (3,4), cytokinesis (5),
and intracellular transport (6). They can cope with these
diverse tasks because they are highly dynamic structures
that continually assemble and disassemble through the addi-
tion and removal of tubulin heterodimers at their ends.
GTP hydrolysis is the energy source that drives switching
between persistent states of growth and shrinkage, in a
stochastic process termed dynamic instability (7–10). Each
cellular process uses a specific set of MT-associated proteins
(MAPs) to tightly regulate the rates of growth and shrinkage
as well as the rate of transition between these states (11–13).

Depolymerases from the kinesin-8 and kinesin-13 protein
families (e.g., Kip3p and MCAK, respectively) are impor-
tant regulators of MT dynamics. They are thought to pro-
mote switching of MTs from growth to shrinkage
(catastrophes) (12). Whereas MCAK lacks directed motility
and diffuses along MTs (14), Kip3p is a highly processive
plus-end-directed motor (15,16). Proteins from the kine-
sin-8 family are important for regulating MT dynamics in
diverse organisms. Kif18A is a key component in chromo-
some positioning in mammalian cells (17–19), where it
regulates plus-end dynamics. Its orthologs, the plus-end-
directed motors Kip3p in budding yeast (16) and Klp5/6
in fission yeast (20–22), show depolymerizing activity. A
notable feature shared by these MT plus-end depolymerases
is that they depolymerize longer MTs more rapidly than
they do shorter ones (15,17,21,23). A similar length-depen-
dent regulation of MT assembly by kinesin-5 motors was
observed in in vivo studies of chromosome congression in

budding yeast (24). The key experimental observations
from in vitro studies of Kip3p (23) are that 1), the end-
residence time of Kip3p at the tip depends on the bulk
concentration of Kip3p and correlates inversely with the
macroscopic depolymerization speed; and 2), the macro-
scopic depolymerization rate is directly proportional to the
flux of Kip3p toward the MT plus-end.

It is thought that length-dependent depolymerization
kinetics serves several purposes (2). For example, posi-
tioning of the nucleus at the cell center during interphase
is achieved by growing MTs that push against the cell poles
while remaining attached to the nucleus. A higher rate of
catastrophes for longer MTs implies that shorter MTs
have an increased contact time with the cell poles. Computer
simulations show that this leads to a higher efficiency of
nuclear positioning during interphase (25).

There is convincing experimental evidence that molec-
ular traffic along MTs strongly affects the MT depolymer-
ization dynamics. However, in vitro experiments cannot
yet fully explore the underlying traffic dynamics. Theoret-
ical investigations using individual-based models can be
instrumental in furthering a mechanistic understanding of
this process. Fortunately, such models can be constructed
on the basis of substantial quantitative data available from
in vitro experiments (15,23) characterizing the binding
kinetics and the motor activity of plus-end-directed motors.
Therefore, we sought to identify the molecular mechanisms
underlying the observed correlation between depolymeriza-
tion dynamics and molecular traffic along MTs.

In this study, we constructed an individual-based model
for the coupled dynamics of MT depolymerization and
molecular traffic of plus-end-directed motors. This model
quantitatively reproduces previous experimental results
(15,23). Moreover, we make precise quantitative predictions
for the density profiles of molecular motors on the MT and

Submitted April 28, 2011, and accepted for publication September 2, 2011.

*Correspondence: frey@lmu.de

Editor: R. Dean Astumian.

� 2011 by the Biophysical Society

0006-3495/11/11/2190/11 $2.00 doi: 10.1016/j.bpj.2011.09.009

2190 Biophysical Journal Volume 101 November 2011 2190–2200



demonstrate that molecular crowding and ensuing traffic
jams regulate the depolymerization dynamics. We find
two qualitatively distinct regimes of depolymerization dyn-
amics: At low bulk concentrations of depolymerases, the
depolymerization speed of MTs is density-limited and is
a function of the bulk concentration and average motor
speed alone. There is a sharp threshold in bulk depolymer-
ase concentration above which macroscopic traffic jams
emerge and the depolymerization speed is simply given by
the microscopic depolymerization rate. Of note, none of
these features are affected by the degree of cooperativity
in the depolymerization kinetics. In contrast, the end-resi-
dence time of a depolymerase (i.e., the typical time it spends
at the plus-end) is strongly correlated with cooperativity. We
outline how these predictions from our theoretical analysis
can be tested experimentally.

RESULTS

Model definition

We use an individual-based model, as illustrated in Fig. 1, to
describe the dynamics of plus-end-directed depolymerases.
Motor proteins, present at a constant bulk concentration c,
are assumed to randomly bind to and unbind from the MT
lattice with rates ua and ud, respectively. Bound motors
are described as Poisson steppers (A more detailed bio-
chemical model for motors on MTs has to await further
experimental analysis. One of the different possible
schemes has recently been studied by Klumpp et al. (26).)
that processively walk along individual protofilaments
toward the plus-end at an average speed u (27). These
motors hinder each other sterically because individual
binding sites i ¼ 1;.; L on each protofilament can be either
empty ðni ¼ 0Þ or occupied by a single motor ðni ¼ 1Þ.
Because switching between protofilaments is rare (27),
transport along each of the protofilaments can be taken as
independent, and the model becomes effectively one-dimen-
sional (28) (Fig. 1 B). Models of this type were recently
discussed as minimal models for intracellular transport
(29–32). In its given formulation, where the cytosol is
considered as a homogeneous and constant reservoir of
motors, it is equivalent to the driven lattice gas model known
as the totally asymmetric simple exclusion process with
Langmuir kinetics (TASEP/LK) (29). A central finding
from this model is that the interplay between on-off (Lang-
muir) kinetics and directed transport along protofilaments
can result in ‘‘traffic jams’’ in which the density profile of
motors along a protofilament shows a sharp increase from
a low-density to a crowded high-density regime (29,31).
Crowding effects such as these (33,34) are important for
a molecular understanding of MT dynamics. Previous theo-
retical studies on this topic largely disregarded crowding
effects or considered parameter regimes in which they are
unimportant (35–37). Depolymerization, including crowd-

ing effects, has also been investigated for diffusive depoly-
merases such as MCAK (38).

At the plus-end of the systems, we consider depolymeriza-
tion dynamics that arise due to the interaction of molecular
motors with the MT tip. Motivated by recent experiments
(23), we assume nonprocessive depolymerization, i.e., a
molecular motor dissociates from the lattice after triggering
depolymerization. Because the molecular mechanisms are
not yet fully resolved, we study two scenarios of depolymer-
ization (see Fig. 1 B). In the noncooperative scenario, the
dissociation rate depends only on whether the last site is
empty or occupied by a motor. If the last site is occupied,
nL ¼ 1, the MT depolymerizes at rate d0. However, recent
single-molecule studies indicate that Kip3p may act cooper-
atively (23), which we consider as our second scenario. After
arriving at the plus-end, the motor is observed to pause and
depolymerize a tubulin dimer only after a second Kip3p
has arrived behind it. In this scenario, a tubulin dimer is
depolymerized with rate d1 if both the last and the second-
to-last sites are occupied, nL�1 ¼ nL ¼ 1. Therefore, the total
depolymerization rate can be written as:

D ¼ d0nL þ d1nL�1nL: (1)

For stabilized MTs, the spontaneous depolymerization
rate is small (23) and thus is not considered here. The relative

A

B non-
cooperative

cooperative

FIGURE 1 Illustration of MT and motor dynamics. Molecular motors

present at concentration c randomly attach to unoccupied tubulin dimers

along the MT lattice with rate ua. While bound, they processively move

toward the plus-end at rate n, and unbind with rate ud. Because motors

do not switch lanes (protofilaments), the MT lattice (A) becomes effectively

one-dimensional (B). Each lattice site ni (with i ¼ 1;.; L numbering the

sites) may be empty ðni ¼ 0Þ or occupied by a single motor ðni ¼ 1Þ. At
the plus-end, the motors act as depolymerases (indicated by scissors) either

alone with rate d0 or cooperatively with rate d1.
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magnitude of the noncooperative rate d0 and the cooperative
rate d1 determines the degree of cooperativity of the depoly-
merization kinetics. In an average over many realizations
of the stochastic process (ensemble average), the depolymer-
ization speed Vdepol depends on the occupation of the last two
binding sites by depolymerases (Fig. 1 B):

Vdepol ¼ ðd0rþ þ d1kþÞa; (2)

where a is the lattice spacing. Here rþ :¼ hnLi is the prob-
ability that the last site is occupied (i.e., the expected motor
density at the plus-end), and kþ :¼ hnL�1nLi denotes the
probability that both the last and second-to-last sites
are occupied. We analyzed this model via stochastic simula-
tions and analytic calculations (for further details, see the
Supporting Material).

Validation of the model and its parameters

The model parameters are, as far as they are available, fixed
by experimental data. The motor speed, u, the motor run
length, ‘, and motor association rate, ua, were measured
previously (23):

u ¼ 3:2 mm min�1;

ua ¼ 24 nM�1min�1mm�1;

‘z11 mm:

Using an MT lattice spacing of a ¼ 8:4 nm, we derive the
corresponding parameters in our model as follows: The
motor speed v corresponds to 6.35 lattice sites per second,
i.e., a hopping rate of n ¼ u=a ¼ 6:35 s�1. The inverse
hopping rate t :¼ n�1 ¼ 0:16 s and the size a of a tubulin
dimer serve as our basic timescale and length scale,
respectively. Then, the measured association rate corre-
sponds to a rateuaz5:3�10�4 nM�1site�1t�1. The dissoci-
ation rate, ud ¼ u=‘, is derived as the ratio of the mean
motor speed, v, and the mean motor run length, ‘. The latter
equals 1310 lattice sites. Thus, the dissociation rate is
expressed as udz7:6� 10�4site�1t�1. In contrast to the
transport behavior on the MT, the parameters concern-
ing the depolymerization rates, d0=1, cannot be directly ex-
tracted from experiments. However, there is evidence for
a depolymerization rate as high as the motor speed, u
(15,23). As a starting point for the following discussion, we
tentatively take d0 ¼ n.

Using the above set of parameters, we now phenomeno-
logically compare the results from numerical simulations
of our model with observations from experiments. Specifi-
cally, we consider kymographs of the MT, which show
how the MT length and the motor density on the MT evolve
over time. For the simulation data shown in Fig. 2, we
consider an MT consisting of 14 independent proto-
filaments and investigate the dynamics for the noncoopera-

tive scenario and a range of motor concentrations,
c ¼ 1:2; 1:8; 2:6 nM (Fig. 2, A–C). Surprisingly, as shown
later, neither the cooperativity of the motors nor a decrease
in the depolymerization rates led to different shapes of
kymographs (see also Fig. S1).

We find an initial time period in which, starting from an
empty MT lattice, the motors first fill up the lattice (39,40).
This is followed by a timewindow inwhich themotor density
exhibits a quasi-stationary profile, i.e., the density at a certain
distance from the minus-end does not change except for
boundary effects induced by the plus-end. The corresponding
density profiles are illustrated in Fig. 2 E and discussed in
more detail in the following section. In this quasi-stationary
regime, the depolymerization dynamics shows qualitatively
different behavior depending on the concentration of free
motor molecules: At a low concentration, c < 1:4 nM, and
thus a low density of motors on the MT, depolymerization
slows down gradually in the course of time (Fig. 2 A).
When the motor concentration increases to larger values,
c > 1:4 nM, an intermediate regime emerges in which the
depolymerization speed stays roughly constant (Fig. 2, B
and C). Remarkably, we find that during this regime, the
depolymerization speed is directly proportional to the motor
density, VdepolðLÞ ¼ r�ðLÞ u (Fig. 2D). At a third stage in the
depolymerization process, there is a rather abrupt change in
the depolymerization speed right where the density profile
also shows a steep drop (Fig. 2, C–E). After we have elabo-
rated more on the theoretical model, we will discuss why
there is such a tight correlation between the depolymeriza-
tion dynamics and the density profile.

All of these qualitative features of MT dynamics are iden-
tical to those found experimentally (15,23), and suggest that
the density profile and, in particular, traffic jams formed on
the MT lattice are the main determinants of the depolymer-
ization dynamics. Moreover, the timescales of the dynamics
agree quantitatively well with experimental results for the
same motor concentrations (15,23). This validates our theo-
retical model because up to the depolymerization rate d, all
of the model parameters were derived from experimental
data (23).

Density profiles at the minus-end (bulk density)

The above observations strongly point toward a tight corre-
lation between the depolymerization speed and the motor
density profile at the minus-end, r�ðxÞ, which we hence-
forth call the bulk (motor) density. The quasi-stationary
bulk density profiles shown in Fig. 2 E were obtained by
assuming very long lattices; effects caused by the plus-end
are not visible in the vicinity of the minus-end. A more
detailed discussion of these simulations can be found in
the Supporting Material. Because this bulk density will
play an important role in the following analysis, we summa-
rize its features here as obtained from analytical calculations
detailed in the Supporting Material.
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At the minus-end, the density profiles show an initial
linear increase. This is an ‘‘antenna effect’’ (15), as illus-
trated in Fig. 3 A. Motors that attach in proximity to the
MT minus-end immediately move toward the plus-end,
thereby generating an approximately linearly increasing
accumulation of motors. The slope is given by K=‘, where
K ¼ cua=ud denotes the binding constant. At sufficiently
large distances from the minus-end, the density profile
becomes flat and dominated by Langmuir kinetics with
the ensuing Langmuir density:

rLa ¼
K

1þ K
¼ cua

cua þ ud

: (3)

The full density profile is obtained by concatenating
the antenna profile and the flat Langmuir profile such that
the motor current is continuous along the MT. We find
two qualitatively distinct scenarios (Fig. 2 E). For low
concentrations of molecular motors, c, the antenna profile
matches the asymptotic Langmuir density continuously, re-
sulting in a wedge-like profile. In contrast, above a certain
threshold value for the concentration, determined by the

binding constant K�c ¼ 1, the two profiles can no longer
be matched continuously and the density profile displays
a sharp discontinuity, also termed a ‘‘domain wall’’ (DW)
(29). In other words, if the Langmuir density rises above
a critical value of rcLa ¼ 0:5, a crowding-induced traffic
jam will result (41) (Fig. 3 A). The density profiles obtained
from the analytic calculations and the stochastic simulations
agree nicely, as illustrated in Fig. 2 E. In particular, the
theoretical analysis gives an explicit expression for the
width of the antenna-like profile:

‘�z‘

8><
>:

1

1þ K
for K<1;

1

Kð1þ KÞ for K>1:
(4)

This result reduces to the average run length of molecular
motors, ‘ ¼ u=ud, in the limit of a very low binding
constant, K � 1, where crowding effects can be neglected
(37). However, with increasing K, the regime with an
antenna-like profile becomes significantly shorter than ‘
(Fig. 2 F).

A B

C D

E

F

Antenna Profile

Langmuir Density

Domain Wall

Continuous
Transition
(Wedge)

FIGURE 2 Validation of the theoretical model. (A–C) Time-space plots of stochastic simulations for a range of motor concentrations and depolymerization

rate d0 ¼ 6:35 sites s�1. The density of molecular motors is shown as the bright area (green), and the MT is shown as the dim area (red; for details, see

Supporting Material). For low concentrations, c < 1:4 nM, depolymerization slows down gradually (23). At higher concentrations, c > 1:4 nM, there is

a rather abrupt change in MT shortening. This change is correlated with a steep decrease in the motor density (DW), indicated as dotted lines. (D) The depo-

lymerization speed, Vdepol, as a function of the length of the shrinking MT LðtÞ, extracted from the simulation data shown in the kymograph (gray). The

position of the DW (dotted), and the predicted depolymerization speed, Vdepol ¼ urðLÞ (see also Eq. 10), using the linear approximation for the motor density

profile (black) and the density profile extracted from stochastic simulations (green), coincide very well with the observed depolymerization speed;

u ¼ 6:35 sites s�1 is the walking speed of the motors. (E) Density profiles at the minus-end from stochastic simulations (lines with symbols), exact solutions

(solid), and linearized theory (dotted) are shown. (F) As a function of the motor concentration, c, and the distance from the minus-end, there are distinct types

of density profiles. At motor concentration lower than c ¼ 1:4 nM (thin black), the density of motors along the MT is low and the profile is smooth. The

Langmuir density is reached continuously after a certain MT length (dashed, numerical). At high concentrations, c>1:4 nM, there are two regions along

the MT separated by an intervening DW (black, exact; see SupportingMaterial): an approximately linear antenna profile and a flat profile (Langmuir density).

Linear approximations for the continuous and discontinuous transitions (Eq. 4) are shown as well (gray). Thin lines refer to the density profiles shown in E.
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Depolymerization dynamics is independent
of cooperativity

We now address how the cooperativity of the depolymeriza-
tion kinetics affects the macroscopic depolymerization
speed. There are two limiting cases: noncooperative depoly-
merization (nc) with ðd0; d1Þ ¼ ðd; 0Þ, and fully cooperative
depolymerization (fc) with ðd0; d1Þ ¼ ð0; dÞ (for an illustra-
tion, see Fig. 3, B and C). Remarkably, we find from our
stochastic simulations, shown in Fig. 4, that there is no
difference in depolymerization speed for these two limiting
cases. Even when the depolymerization dynamics contains
cooperative as well as noncooperative terms, we do not
find any significant differences in the depolymerization
speed (Fig. 4 B).

This observation from our stochastic simulations can be
explained by the following molecular mechanism: Consider
a model with fully cooperative depolymerization kinetics.
Then, after the first motor has arrived at the plus-end, the
terminal site of the MT will remain occupied from that
time on. Depolymerization only occurs if another motor
arrives at the second-to-last site. In other words, while the
last site remains occupied, the second-to-last site triggers
the depolymerization. Hence, as far as the depolymerization
speed is concerned, the fully cooperative model is identical
to a noncooperative model with the same molecular rate d.
In the noncooperative model, the terminal tubulin dimer is
removed at rate d once a molecular motor has arrived at
the last site (Fig. 3 B). In the fully cooperative model, the
terminal tubulin dimer is removed once a molecular motor

has arrived at the second-to-last site next to a permanently
occupied last site (Fig. 3 C).

Depolymerization dynamics is strongly affected
by crowding

To gain further insights in the correlation between the depo-
lymerization speed and the density of motors on the MT, we
performed stochastic simulations focusing on the MT plus-
end by regarding the dynamics in a comoving frame. Instead
of simulating the full-length MTwith an antenna profile and
a subsequent flat Langmuir density, we considered a reduced
model in which the density at the left end is set equal to the
Langmuir density rLa. For long MTs, the Langmuir density
is always reached, so that the reduced system is fully equiv-
alent to the original model. Our simulations show two
clearly distinct regimes of depolymerization dynamics
(Fig. 4): For small, microscopic depolymerization rates,
dt < rLa, the polymerization speed is rate-limited:
Vdepol ¼ ad. In contrast, for rates dt > rLa, the depolymer-
ization speed is density-limited, and the Langmuir density
is the limiting factor: Vdepol ¼ rLau. The boundary between
the two regimes is remarkably sharp and given by

B C

CrowdingAntenna

Transport

Minus-End Plus-End

A

(Langmuir)

FIGURE 3 Illustration of the antenna and crowding regimes, and cooper-

ativity. (A) Starting from an empty MT, motors start to accumulate on the

MT lattice by attachment and subsequent transport to the plus-end. The

combined effect of Langmuir kinetics and steric exclusion between

the motors leads to two sharply separated regimes. Starting from the

minus-end, the motor density increases linearly (antenna profile). At

a certain critical length ‘�, a macroscopic traffic jam arises because parti-

cles hinder each other and crowding dominates the MT density. (B and C)

Illustration of noncooperative (B, nc) and fully cooperative (C, fc) depoly-

merization kinetics. With regard to the depolymerization speed, both

models are effectively equal (see main text).

A

B

u
u

FIGURE 4 Scaling plot for the depolymerization speed Vdepol. (A) Upon

rescaling, both the macroscopic depolymerization speed, Vdepol, and the

microscopic depolymerization rate, d, with the Langmuir density, rLa, all

data collapse onto one universal scaling function V (solid gray). A sharp

transition at dt ¼ r�La distinguishes the rate-limited regime from the

density-limited regime. (B) Comparison of cooperative and noncooperative

depolymerization, with the macroscopic depolymerization speed Vdepol as

a function of Langmuir density rLa. For d :¼ d0 þ d1 ¼ 0:7n different

degrees of cooperativity are displayed as indicated in the graph.
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r�La ¼ dt: (5)

This implies that the depolymerization speed can switch
between being density-limited and rate-limited by changing
the concentration c or the values of the biochemical rates
of depolymerases binding to and unbinding from the MT
lattice. Overall, the depolymerization speed obeys a scaling
law

Vdepol ¼ rLauV

�
dt

rLa

�
¼

�
ad for dt % rLa
rLau for dt > rLa

; (6)

where V ðxÞ is a universal scaling function with the simple
form V ðxÞ ¼ x for x < 1 and V ðxÞ ¼ 1 for x > 1. Exper-
imentally, this implies that one should find data collapse
when using such a scaling plot (Fig. 4 A).

To gain a molecular understanding of these remarkable
features of the depolymerization speed, one needs to have
a closer look at the density profile of the molecular motors
at the MT tip. If the depolymerization rate is small, d < n,
motors leave the tip more slowly than they arrive. Therefore,
the MT tip acts as a bottleneck for molecular transport that
disturbs the density profiles either locally or macroscopi-
cally. A weak bottleneck induces a local perturbation
(‘‘spike’’) (33). These spikes are sharp changes of the
density profile with a typical extension that scales with the
size of a heterodimer. However, if the strength of a bottle-
neck exceeds a threshold value, the spike extends to a macro-
scopic perturbation (‘‘traffic jam’’) (33). Fig. 5 A illustrates
how, for a given Langmuir density, rLa ¼ 2=3, the effect
on the density profile changes from a spike (blue) to an
extended traffic jam (red and green) when the depolymer-
ization rate is d.

Let us now analyze the conditions and consequences of
such bottlenecks in more detail. Suppose we are in a param-
eter regime where the plus-end disturbs the density profile
only locally, i.e., on the scale of a heterodimer. Then, we
may take the bulk density to be equal to the Langmuir
density, rLa, up to the last site (the plus-end) where it jumps
to some higher or lower value rþ. The particle loss current at
the plus-end due to MT depolymerization is then given by

Jdepol ¼ ð1� rLaÞrþd: (7)

The factor 1� rLa arises because the particle number
decreases only if a particle depolymerizes the MT and the
second-to-last site, L� 1, is unoccupied. Otherwise, the
depolymerization dynamics and the associated frame shift
of the MT lattice do not change the occupation of the last
site. This particle loss has to be balanced by the incoming
particle flux,

JLa ¼ rLað1� rLaÞn: (8)

Equating these particle fluxes (Eqs. 7 and 8) implies the
following condition for the motor density at the plus-end:

rþ ¼
(
rLa

dt
for rLa % dt

1 for rLa > dt
; (9)

where the fact that the motor density is bounded rþ % 1 is
already accounted for. The particle density on the last site, in
turn, determines the depolymerization speed. For rLa < dt,
one obtains according to Eqs. 2 and 9:

Vdepol ¼ rþda ¼ rLau: (10)

Remarkably, here the effect of the depolymerization
kinetics (d) cancels out such that the macroscopic depoly-
merization speed is independent of the molecular details
of depolymerization kinetics and is solely determined by
the Langmuir density, i.e., the motor density in the bulk,

C

A B

FIGURE 5 Density profiles at the plus-end, corresponding phase

diagram, and depolymerization scenarios. (A) Density profiles at the MT

plus-end in the comoving frame for c ¼ 2:9 nM, and d ¼ 0:1; 0:3 (left),

0:35; 0:5 (middle), and 0:8 n (right). The simulation results and analytical

solutions (black; see Supporting Material) agree nicely. (B) Depending on

the value of d and the density of motors, rLa, there are three different classes

of density profiles at the plus-end: wedge-like (diamonds), traffic jams with

a DW (square), and spikes (circles). The transition between profiles with an

extended traffic jam and a localized spike (solid line) also marks a qualita-

tive change in the depolymerization speed. Whereas the depolymerization

speed is density-limited in the spike regime, it is rate-limited in the DW

and wedge regime. Symbols correspond to parameters as displayed in panel

A. (C) Depending on the value of d and the density of motors, rLa, there are

three different regimes of depolymerization dynamics. In regime a, depoly-

merization is density-limited for arbitrary MT length. In contrast, depoly-

merization is rate-limited for long MTs and density-limited for short

MTs in regimes b and g. For details, see the main text.
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r�ðxÞ, and not at the tip of the MT. This result crucially
depends on the presence of a microscopic spike. It explains
the hitherto puzzling experimental result that the depoly-
merization speed is directly proportional to the bulk motor
current along the MT (23) (Fig. S2).

Because the density is bounded, rþ%1, density profiles
with a spike are only possible if the densities are not too
large, rLa < dt. This is the case for the blue curve in
Fig. 5 A. For densities exceeding the critical density,
r�La ¼ dt, the bottleneck-induced perturbation in the density
profile can no longer remain a local spike, but has to become
macroscopic in extent (33) (see green and red curves in
Fig. 5 A and the Supporting Material).

One finds that over an extended region, the binding sites
at the plus-end then remain permanently occupied such that
rþ ¼ 1. This immediately implies that the depolymerization
speed becomes density-independent and proportional to the
microscopic depolymerization rate:

Vdepol ¼ ad: (11)

There is a tight correlation between the shape of the
density profiles and the macroscopic depolymerization
speed. The analytic results explain the molecular mecha-
nism behind the numerically observed scaling law (Eq. 6),
with a sharp transition from density-regulated to rate-
limited depolymerization dynamics at a critical value of
r�La ¼ dt (cf. the classification of density profiles and depo-
lymerization regimes shown in Fig. 5 B).

Actually, the above calculations can be generalized to the
regime in which the motor density exhibits an antenna-like
linear profile, i.e., for MT length shorter than ‘�. As detailed
in the Supporting Material, we find that the depolymeriza-
tion speed is rate-limited, Vdepol ¼ ad, if MTs are shorter
than ‘� but still longer than a second threshold length:

‘d :¼ da

cua

¼ ‘ dt

K
: (12)

In contrast, for ‘d > ‘�, the depolymerization speed in the
antenna regime is always length-dependent and strictly
follows the shape of the antenna profile, r�ðxÞ:

Vdepol ¼ r�ðLÞu: (13)

Using Eq. 4, the condition ‘d > ‘� on the threshold
lengths is equivalent to dt > rLa for K < 1, and to
dt > 1� rLa for K > 1.

Combining all of the above results, we find three mecha-
nisms that govern the depolymerization dynamics, as illus-
trated in Fig. 5 C:

a. For dt > rLa, the depolymerization speed is always
density-regulated and given by VdepolðLÞ ¼ r�ðLÞu,
where L is the time-dependent length of the MT. In
this parameter regime, the depolymerization speed is
a direct map of the bulk motor density profile on the

MT, r�ðxÞ, a feature that can be exploited experimen-
tally to measure the profile.

b. For rLa > dt > 1� rLa, the depolymerization speed is
rate-limited for MTs longer than ‘�, and becomes
density-limited as soon as the MT length falls below
‘�, where the density profile is antenna-like. This
implies that there is a discontinuous jump in the depoly-
merization speed right at L ¼ ‘�.

g. Finally, for all other values of dt, the depolymerization
speed of the MT remains rate-limited for lengths larger
than a threshold length ‘d. At ‘d, which is smaller than
‘� in this parameter regime, there is again a discontinuous
jump to a density-limited depolymerization dynamics.

If the depolymerization rate is larger or equal to the
hopping rate of molecular motors, dt R 1, then dt > rLa
is always obeyed simply because rLa % 1. In this regime,
all of the molecular details of the depolymerization kinetics
are irrelevant. Neither the cooperativity nor the actual value
of the depolymerization rate matters in terms of the depoly-
merization speed; instead, only the bulk density regulates
the speed. Note that this was the case for the data shown
in Fig. 2, where we tentatively made the parameter choice
dt ¼ 1. If the motors are faster than the depolymerization
process, dt < 1, we have to distinguish between the param-
eter regimes (a, b, and g, Fig. 5 C). Here the value of the
depolymerization rate matters if the bulk density exceeds
a certain threshold concentration, rLa > dt, and the MTs
are long enough. Finally, the depolymerization speed
always becomes density-dependent and hence length-
dependent if the MT length is short enough; the correspond-
ing threshold length is ‘reg ¼ min½‘�; ‘d�.

The end-residence time strongly depends
on cooperativity

In contrast to the depolymerization speed, the mean end-
residence time tres is strongly affected by the degree of co-
operativity. Fig. 6 displays tres as obtained from our
stochastic simulations for noncooperative and fully cooper-
ative depolymerization kinetics. Our simulations show that
the end-residence time for the fully cooperative model is
identical to the average lifetime of a terminal tubulin dimer
tfcres ¼ td :¼ a=Vdepol (Fig. 6 A). Even for the noncoopera-
tive model, tncres equals td for large residence times and devi-
ates from it only at small values. The relatively sharp
transition to a constant lifetime of the terminal tubulin dimer
occurs right at tncres ¼ t=rLa, i.e., the end-residence time
equals the waiting time for a molecular motor to arrive at
the MT tip. For tncres < t=rLa, the lifetime of the terminal
tubulin dimer is identical to the arrival time (Fig. 6, A and
B). Once the arrival time becomes shorter than the inverse
depolymerization rate, the end-residence time levels off at
tncres ¼ 1=d. These results show that the dependence of the
end-residence time on density can be used to quantify the
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degree of cooperativity. This would require experiments
with motor densities on the MT larger than those studied
up to now (15,23).

The observation that the depolymerization speed is inde-
pendent of the degree of cooperativity seems to be at odds
with the experimental finding that the end-residence time,
tres, of Kip3p depends on the total Kip3p concentration
and is inversely proportional to the macroscopic depolymer-
ization speed (23). Actually, however, there is no contradic-
tion and the findings are readily explained within our
theoretical model: For a noncooperative model, tncres is
simply given by the depolymerization rate, because after
they arrive, the particles stay at the tip until they depoly-
merize the MT:

tncres ¼
1

d
: (14)

For a fully cooperative model, tfcres depends not only on
d but also on the rate at which the second-to-last site

becomes populated. Say the probability for the second-to-
last site to be occupied is rþ. Then, tfcres is given by a sum
of two contributions arising from the cases in which the
second-to-last site is empty or occupied, respectively:

tfcres ¼ ð1� rþÞ
�

t

rLa
þ 1

d

�
þ rþ

1

d
: (15)

If the second-to-last site is empty (which is the case with
probability 1� rþ) tres is the sum of arrival time t=rLa and
depolymerization time 1=d. Otherwise, the end-residence
time tres simply equals 1=d.

As shown in the previous section, two distinct scenarios
arise: For small bulk densities such that rLa < dt, the
density profile at the plus-end exhibits a microscopic spike
with rþ ¼ rLa=dt. For large densities, rLa > dt, a macro-
scopic traffic jam emerges such that rþ ¼ 1. This result ob-
tained for the motor density at the MT tip (Eq. 9) may now
be used to calculate tfcres using Eq. 15:

tfcres ¼

8>><
>>:

1

d
for rLa>dt;

t

rLa
else:

(16)

This agrees well with the results from stochastic simula-
tions displayed in Fig. 6. A comparison with Eq. 6 shows
that the end-residence time equals the typical depolymeriza-
tion time, i.e., the expected lifetime of a terminal tubulin
dimer, tfcres ¼ td. This is in agreement with experimental
findings regarding the unbinding rate of motors at the
plus-end (23) and strongly supports the conclusion that
depolymerization of MTs by Kip3p is fully cooperative.
Varga et al. (23) measured the end-residence time of motors
on double stabilized MTs, i.e., where depolymerization is
switched off. They observed that the end-residence time is
inversely correlated with the concentration of Kip3p, and
fit their data with an exponential using a cutoff. This is in
accordance with our results shown in Fig. 6 B. However,
because depolymerization has been switched off in the
experiment, the rate d, corresponding to the cutoff, now
has to be interpreted as an unbinding-rate of motors at the
plus-end. It would be highly interesting to design experi-
ments in which the depolymerization kinetics remains
switched on, because this would allow one to measure the
magnitude of the microscopic depolymerization rate d.

DISCUSSION

In this work, we analyzed the effect of crowding and coop-
erativity on the depolymerization dynamics of MTs. To that
end, we constructed an individual-based model for the
coupled dynamics of plus-end-directed motor traffic and
MT depolymerization kinetics. The model is based on
well-established molecular properties of motors from the

A

B

FIGURE 6 Motor end-residence times tres for cooperative and noncoop-

erative depolymerization. (A) Mean end-residence time tres plotted against

the mean depolymerization time td. Data were recorded for a range of

depolymerization rates d ¼ 0:02.2 n. Noncooperative (shaded) and

cooperative (black) dynamics are shown for different densities. (B) Mean

end-residence time tres as a function of the Langmuir density rLa for various

depolymerization rates (in units of n). For noncooperative depolymeriza-

tion, tres is given by 1=d (shaded lines). For the fully cooperative scenario

(symbols), tres depends on whether the system is in the density-limited

ðdt > rLaÞ or in the rate-limited ðdt < rLaÞ regime. While, for dt > rLa,

the end-residence time is given by tres ¼ t=rLa (solid gray line), for

dt < rLa, it is density-independent and determined by the microscopic

depolymerization rate tres ¼ 1=d (see also Eq. 16).

Biophysical Journal 101(9) 2190–2200

Molecular Crowding Guides MT Shortening 2197



kinesin-8 family, i.e., the motors move on single protofila-
ments with high processivity at an average speed u, and
exchange of motors between the bulk and the MT follows
Langmuir kinetics. All parameters of the model, including
the average walking speed, run length, and attachment
rate, were directly extracted from available in vitro data
(23). We validated our model by reproducing the onset of
length-dependent depolymerization as studied recently
(15,23). Without using any additional fitting parameter, we
found the same regimes of density profiles and ensuing
depolymerization dynamics as in the experiments, i.e., a
linear antenna-profile with a length-dependent depolymer-
ization speed and a flat profile with a constant depolymer-
ization speed. Moreover, we identified a threshold density
of motors above which a crowding-induced traffic jam
emerges at the minus-end. The predicted shape and extent
of these traffic jams should be amenable to experiments
that raise the depolymerase concentration c or change its
rates of binding to and unbinding from the MT.

The interplay between motor traffic and depolymerization
kinetics at the MT plus-end leads to strong correlations
between the depolymerization dynamics and density
profiles of depolymerases. The plus-end acts as a bottleneck,
and crowding effects cause traffic jams. We find two quali-
tatively distinct regimes: Motor densities below a critical
threshold value, r�La ¼ dt, always show a local spike-like
perturbation at the plus-end, the extent of which is the
size of a heterodimer. Above this threshold density, macro-
scopic traffic jams may emerge. These distinct density
profiles at the plus-end affect the depolymerization speed
and the end-residence time in qualitatively different ways.
A quantitative analysis of the model using stochastic simu-
lations as well as analytical calculations led to the following
main results:

The end-residence time of a depolymerase strongly
depends on the degree of cooperativity. Whereas for nonco-
operative depolymerization kinetics the end-residence time
is given by the microscopic depolymerization rate d, it is
density-dependent in the fully cooperative case: Increasing
the Langmuir density above the threshold value r�La ¼ dt,
the end-residence time changes from being inversely
proportional to the density rLa to a constant value d�1.
These results suggest an interesting way to determine the
cooperativity of depolymerization kinetics and measure
the value of the depolymerization rate d. Although when
the concentration c is increased, the end-residence time
should be independent of concentration for noncooperative
kinetics, it should strongly depend on concentration in the
cooperative case. Experimental evidence points toward the
latter (23).

In contrast, the depolymerization speed does not depend
on the degree of cooperativity of the depolymerization
kinetics. Noncooperative and fully cooperative versions of
the model give identical results. As a function of depolymer-
ase concentration and the MT length, the depolymerization

dynamics exhibits two qualitatively distinct regimes: The
depolymerization speed is either density-limited and deter-
mined by the bulk density of molecular motors, r�ðxÞ, or
rate-limited and dictated by the value of the microscopic
depolymerization rate, d. Both regimes emerge due to
crowding of molecular motors at the plus-end, which acts
as a bottleneck for molecular traffic.

Density-limited regimes are correlated with microscopic
traffic jams (‘‘spikes’’) at the plus-end: The density profile
self-organizes into a shape that cancels out all the effects
of the depolymerization kinetics such that the depolymer-
ization speed is solely determined by the bulk motor density,
r�ðxÞ, and the average motor speed, u. Note that only in this
regime length-dependent regulation is possible, because the
density changes over the MT length. As emphasized above,
if the depolymerization rate d is larger than the hopping rate
of the molecular motors, d>n, this remains the only regime
of depolymerization dynamics. Then, the depolymerization
speed is limited by the velocity of the plus-end directed
motors, which is in accordance with recent experimental
findings for Kip3p (23). In a parameter regime where motors
depolymerize more slowly than they walk, d<n, there is
a second rate-limited regime above the threshold density
r�La and for MTs longer than some threshold length ‘reg
where Vdepol ¼ ad. In this regime, the plus-end acts as
a strong bottleneck for molecular traffic. This causes
a macroscopic traffic jam such that the motor density steeply
rises to full occupation of all lattice sites at the plus-end of
the MT. The cellular system sacrifices its ability to regulate
the speed of depolymerization and only regains it once the
MT length falls below ‘reg, where the depolymerization
speed again becomes density-regulated. From an evolu-
tionary perspective, one might speculate that the system
has evolved toward d ¼ n, because this would allow regula-
tion of the depolymerization dynamics over the broadest
possible range.

Beyond these observations, other predictions of our
stochastic model can be put to the test in experiments. By
varying the motor concentration, two interesting observa-
tions could be made: First, the phase diagram for the density
profiles at the minus-end could be scrutinized experimen-
tally. Second, the predictions on the density-profiles at the
plus-end and their predicted strong correlations to the
macroscopic depolymerization dynamics might be acces-
sible to single-molecule studies. Manipulation of the molec-
ular properties of the motor (e.g., the run length, attachment
rate (42), average speed, and depolymerization rate) would
change the intrinsic biochemical rates of the system and
could potentially lead to new parameter regimes. In addi-
tion, our results regarding the length and concentration
dependence of the depolymerization process might be rele-
vant in vivo, e.g., for mitotic chromosome alignment (18). In
our theoretical studies, we explored the full parameter
range, and therefore clear predictions are available for
comparison.
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We believe that in a more general context, our theoretical
work provides new conceptual insights into the role of
collective and cooperative effects in MT assembly and
disassembly dynamics. Future research could focus on
the antagonism between polymerases and depolymerases
(12,43,44), spontaneous MT dynamics mediated by GTP
hydrolysis, the abundance of molecular motors in a cell,
or more-detailed modeling of molecular motors (26). This
may finally lead to a molecular understanding of the regula-
tory mechanisms of cellular processes in which MT
dynamics plays a central role.
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44 3. Microtubules and Kinesin-8

3.2. Microtubule length regulation by molecular motors

There is an intuitive argument that captures the essence of length-regulation:
The main mechanism identified for length regulation in this work is that the
particle density at the dynamic plus end, ρ+, couples to the density profile
in bulk of the lattice ρb. Due to attachment kinetics, this density profile
is linearly increasing along the filament. A linearly increasing bulk density
profile of depolymerizing motor molecules immediately ensues a balance of
filament shortening and growth, which leads to regulation of length.

This core mechanism – the linear density profile – is very general: It holds
for treadmilling filaments as shown by Johann et al., and in the case of non-
motile proteins [220]. On a more coarse grained picture length-regulation
has also been investigated including dynamic instability due to GTP hy-
drolysis [212], and a probabilistic description of molecular motors [221].

The question if length regulation is possible has an interesting analogy in
exclusive queuing processes [222]. In a recent study Arita and Schadschnei-
der investigated when a queue is in a divergent (continuously growing) or
in a convergent phase (constant length), similar to growing and shrinking
lattices.

On the following pages the original version of the publication is pro-
vided.
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Length regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors

like kinesin-8, which move along MTs and also act as depolymerases, are known as key players in MT

dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a

stochastic model accounting for the interplay between polymerization kinetics and motor-induced

depolymerization. We determine the dependence of MT length and variance on rate constants and motor

concentration. Moreover, our analyses reveal how collective phenomena lead to a well-defined MT length.

DOI: 10.1103/PhysRevLett.108.258104 PACS numbers: 87.16.Ka, 05.40.�a, 87.16.Nn, 87.16.Uv

During the lifespan of a eukaryotic cell microtubules
(MTs) perform highly dynamic tasks. For instance, during
mitosis, they form the mitotic spindle, which searches,
captures, and separates the double set of chromosomes
[1]. To achieve such complex dynamic behavior there
need to be molecular mechanisms which allow a dynamic
control of MT length. There is much evidence that these
mechanisms rely on an intricate interplay of GTP hydro-
lysis [2], mechanical forces [3], and regulatory proteins
[4]. In particular, the role of the molecular motor families
kinesin-5 and kinesin-8 has been investigated: Several
in vivo experiments showed that both, the presence and
the concentration of such proteins, strongly affect the
functionality of the mitotic spindle [5,6]. This is supported
by in vitro experiments which specifically studied the
molecular mechanisms of interactions between motor pro-
teins and microtubules [7–13]. In general, it is accepted
that kinesin-8 hampers MT growth. In particular, it was
found that the plus end directed motor kinesin-8 of budding
yeast, Kip3p, depolymerizes MTs at the tip. To gain a
deeper understanding for the molecular mechanisms
underlying these depolymerization dynamics Varga et al.
[7,8] studied the interaction of Kip3p with stabilized MTs
not exhibiting dynamic instability [2,14]. The key result of
these experiments is that depolymerization is length de-
pendent, i.e., longer MTs depolymerize faster than shorter
ones. One main determinant of the observed length depen-
dence are molecular traffic jams which can successfully be
described by driven diffusive processes [15]. These find-
ings suggest, that length-dependent depolymerization in
combination with polymerization allows a cell to regulate
the length of MTs [7,8]. There are by now several theo-
retical studies addressing length regulation ranging from
MTs [16,17], over actin filaments [18] to fungi [19] and
flagellae [20].

In this Letter, we study the combined influence of spon-
taneous MT polymerization and motor-induced depoly-
merization. In our model we neglect MT dynamics at the
minus end as there the dynamic rates are much smaller than

the ones at the plus end [1]. Furthermore, under physi-
ological conditions often the minus end dynamics are
completely suppressed due to capping proteins [21]. We
build on a recently validated quantitative model for MT
depolymerization [8,15], and extend it by introducing po-
lymerization dynamics at the fast-growing plus end [1].
This accounts for MT growth mediated by spontaneous [2]
or enzymatically catalyzed [22] attachment of tubulin het-
erodimers to the tip. This approach enables us to study the
basic principles underlying length regulation which is
achieved by the antagonism between length-dependent
depolymerization and spontaneous polymerization dynam-
ics. We predict quantitative criteria for the parameter re-
gime where regulation is feasible. In addition, we calculate
both the mean length and the corresponding standard de-
viation, and thereby determine the accuracy at which regu-
lation is achieved.
To describe the MT dynamics we employ a driven

diffusive lattice gas model [23,24] as illustrated in Fig. 1.
Since MT protofilaments serve as independent tracks for
the motors [25,26], a MT can effectively be described by a
one-dimensional lattice of dynamic size LðtÞ. The size of a
tubulin heterodimer sets the basic length scale of the
lattice. The state of each site, i, is described by its occu-

FIG. 1 (color online). Illustration of the model. Motors attach
to and detach from the MT lattice at rates !a ¼ c ~!a and !d,
respectively. On the lattice particles hop to the right at rate �
provided that the next site is empty. At the right boundary, the
MT plus end, particles remove the last lattice site at rate � and
the MT lattice grows at rate �. The resulting antennalike density
profile ��ðxÞ is sketched in light gray.

PRL 108, 258104 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

0031-9007=12=108(25)=258104(5) 258104-1 � 2012 American Physical Society



pation number, ni 2 f0; 1g, where ni ¼ 0 and ni ¼ 1 sig-
nify an empty and occupied site, respectively. On the MT
lattice the dynamics follow the totally asymmetric simple
exclusion process with Langmuir kinetics [24]: Motors can
attach to and detach from the MT at rates !a ¼ c ~!a and
!d, respectively, where c is the motor concentration in the
surrounding fluid; the binding constant is defined as K :¼
!a=!d. On the lattice, particles move to right at rate �
provided that the next site is empty; � ¼ 1 sets the basic
time scale. The combined effect of motor attachment in
proximity of the minus end and subsequent movement
towards the plus end leads to an accumulation of motors,
which finally results in an antennalike steady state profile
[8,15,27] as illustrated in Fig. 1. At a certain distance from
the minus end the density profiles saturate to the equilib-
rium Langmuir density �La ¼ K=ðK þ 1Þ [28]. The result-
ing accumulated density profiles in vicinity of the minus
end, ��ðxÞ, can be described by Lambert W functions
[15,24]. Moving further towards the right boundary (MT
minus end), the density profile is determined by the inter-
play of motor current and the boundary conditions at the
plus end. This entails a rich variety of collective phe-
nomena and leads to nontrivial density profiles [29,30].
In the present study, the right boundary is dynamic.
Motivated by the recent studies on kinesin-8 [6–12], we
consider the following scenario: When a motor arrives at
the MT tip, it detaches by removing the last MT site at rate
� [15]. In addition, subsuming the effects of spontaneous
and enzymatic polymerization, the MT is assumed to poly-
merize through the attachment of single tubulin hetero-
dimers at an effective rate �. These boundary conditions
lead to a dynamic MT length which is determined by the
combined effect of the particle current onto the last site,
polymerization, and depolymerization rates. A related
model has been suggested in Ref. [31].

The dynamic length of the MT, LðtÞ, is determined by
the particle density at the MT plus end �þðLÞ,

@tLðtÞ ¼ ���þðLÞ þ �: (1)

This equation defines a critical density �cþ ¼ �=�, at
which the MT length is in a steady state, @tL ¼ 0. For
tip densities smaller or larger than �cþ the MT grows or
shrinks, respectively. As the tip density is fed by the motor
current towards the tip, it depends on the accumulated
motor density in bulk ��ðxÞ. This suggests the following
mechanism for MT length regulation: On short MTs, the
accumulated motor density is low, and therefore also the tip
density �þðLÞ. As long as �þðLÞ<�cþ the MT grows. In
contrast, for longer MTs higher accumulated motor and tip
densities are reached which eventually result in MT
depolymerization once �þðLÞ> �cþ. However, this
mechanism is only expected to work if the tip is not
growing too fast: Above a critical polymerization rate the
particle current feeding the tip density can no longer follow
the advancing tip.

To quantify these heuristic arguments and determine the
precise conditions under which length regulation is fea-
sible and which length is adjusted, the tip density has to be
determined. This requires analyzing the intricate interplay
between molecular crowding due to high motor density
[23,24] and transport bottlenecks at the plus end [15,32].
In addition, this boundary is highly dynamic, and calcu-
lations of the tip density are more intricate than for stan-
dard driven diffusive models for which the size of the
lattice is constant [29,30,33].
To make further progress, we first consider a simplified

model where we disregard spatial variations of the density
profile. In detail, we assume a constant density �� that
serves as a particle reservoir at the left boundary, neglect
attachment and detachment kinetics, but leave the dynam-
ics at the plus end unchanged; see Fig. 2(a). This allows us
to focus on the dynamics at the plus end and to unravel how
they depend on the reservoir density ��. Since we find that
the density profiles adapt adiabatically to a dynamic lattice
size [34], the results for the full model can be inferred upon
replacing �� by ��ðxÞ. As the length of the lattice is
dynamic, we perform our calculations in a comoving frame
fixed to the right boundary. In this frame, a polymerization
event corresponds to the simultaneous movement of all
particles on the lattice to the minus end by one unit, while
depolymerization results in an instantaneous shift to the
right. Thus, in a mean-field approximation [hninji ¼
hniihnji ¼ �i�j] the particle current in bulk is given by

Jð�b; �þÞ ¼ �bð1� �bÞ � ��b þ ��þ�b; (2)

where �b is the motor density in bulk. The first term
describes the hopping processes, the second and third
term account for simultaneous movement of all particles

FIG. 2 (color online). (a) Illustration of the simplified model.
(b) Phase diagram as a function of the rates � and �. The gray
shaded area indicates regions in phase space in which regulation
is possible in the full model. The gray area indicates regions in
phase space where the MT shrinks in the simplified model. In the
full model, for �� ¼ �La length regulation is only possible in the
gray area as explained in detail in the main text. (c) Comparison
of simulation data with analytical results for the tip density �þ.
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due to polymerization and depolymerization, respectively.
Importantly, the bulk current explicitly depends on the tip
density and thereby on the right boundary.

To determine the phase behavior we employ the
Extremal Current Principle (ECP) [35–37] relying on two
velocities: The collective velocity vcollð�Þ ¼ @�J deter-

mines the direction in which a local density perturbation
spreads. Thereby, one is able to determine whether a
certain bulk density is stable against perturbations, i.e.,
for a density � stable at the left (right) boundary vcollð�Þ>
0 (vcollð�Þ< 0) holds. The boundary conditions result in
densities at the plus and the minus end, respectively, whose
stabilities can now be tested employing vcoll. If these
densities are stable against small perturbations, we call
them �left and �right as they are given by the system’s left
and right boundary, respectively. If either one or both of
these boundary densities are not stable, perturbations
change these densities and �left and �right are given
by the first stable density which is determined by vcollð�Þ¼
0. The shock velocity vshockð�left; �rightÞ ¼ ½Jð�leftÞ �
Jð�rightÞ�=ð�left � �rightÞ determines the direction in which
a virtual domain wall between the densities at the left and
the right, �left and �right, moves and thereby which of these
densities is realized in bulk. In more detail, for vshock > 0
the left density, �left, dictates the bulk density, while for
vshock < 0 the right density, �right, is realized. In our model
particles are transported to the right and therefore jams
spread from right to left. Hence, the virtual domain wall
arises at the right boundary and the tip densities �leftþ and

�
right
þ determine vshock; see the Supporting Material [38].
Because of particle conservation at the plus end of the

MT, @t�þ ¼ Jð�b; �þÞ � �þ�, the stationary value of the
bulk and tip density are related through

�þ� ¼ Jð�b; �þÞ: (3)

This implies that the values of these densities as well as the
nature of the ensuing nonequilibrium steady state are
strongly interlinked. In general, one expects three phases
[35,39]: the steady state may either be dominated by the
motor densities at the plus end (EX phase) and the minus
end (IN phase), respectively, or by the transport capacity
(maximal current) of the lattice itself (MC phase). We first
consider the IN phase where �IN

b ¼ �� holds, and Eq. (3)

leads to the tip density

�INþ ð��Þ ¼ ��ð1� �� � �Þ=½�ð1� ��Þ�: (4)

This solution is stable against perturbations only if
the collective velocity vcollð��Þ ¼ @�J½�; �INþ ð�Þ�j�¼�� is

positive, which holds for reservoir densities smaller than
the bulk density in the MC phase �MC

b ¼ 1� ffiffiffiffi
�

p
. If the

reservoir density exceeds this value, the ECP implies that
the tip density becomes constant and independent of the
reservoir density �MCþ ¼ ð1� ffiffiffiffi

�
p Þ2=�. For the EX phase,

the right boundary determines the bulk density �EX
b ¼ �EXþ ,

and Eq. (3) leads to �EXþ ¼ 1� �=ð1� �Þ. According to

the ECP, this solution is stable if the corresponding collec-
tive velocity vcollð�EXþ Þ ¼ @�Jð�; �EXþ Þj�¼�EX

þ
is negative.

Since in the relevant parameter regime vcoll < 0 is always

fulfilled, the density �EXþ is always stable and �right
þ ¼ �EXþ

holds.
In summary, we have found the following results for the

densities at the left and right boundary of the MT:

�leftþ ¼ Min½�INþ ; �MCþ �; �right
þ ¼ �EXþ : (5)

With these expressions at hand, we can now map out the
phase diagram upon evaluating the shock velocity

vshockð�leftþ ; �right
þ Þ; cf. Fig. 2. The IN-phase is determined

by � < ð1� ��Þ2 and � > ��. Importantly, it is the only
phase in which the tip density is a function of ��; see
Eq. (4). As �� corresponds to the spatially varying density
profile ��ðxÞ in the full model, length regulation is feasible
in this range of parameters. In contrast, in the EX phase
[� < ð1� �Þ2 and � < ��] and the MC phase [� > ð1�
�Þ2 and � > ð1� ��Þ2] neither the tip nor the bulk den-
sities depend on ��. To confirm these and the following
analytic results, we performed extensive stochastic simu-
lations employing the Gillespie algorithm [40]. For both
the simplified and the full model discussed in the follow-
ing, calculations are in excellent agreement with simula-
tions; cf. Figs. 2(c) and 3.
Moreover, upon combining the results for the tip den-

sities in the various phases with the critical density �cþ ¼
�=�, we are able to calculate the critical growth rate �c, at
which the MT length becomes stationary

�cð��Þ ¼

8
>><

>>:

�ð1� �Þ EX phase;

��ð1� ��Þ IN phase;

1=4 MC phase:

(6)

For �> �c the lattice grows to infinity, while it shrinks
indefinitely for �< �c.
Up to now, the discussion was restricted to a simplified

system, and we have learned how a constant reservoir
density translates into the tip density and in which parame-
ter regimes the MT grows and shrinks, respectively. In the
following we transfer the so-far obtained results to the full
spatial model, in which the reservoir density is replaced by
the density profile: �� ! ��ðxÞ. This implies that also the
tip density becomes length dependent, �þ ! �þðLÞ in the
IN phase, see Eq. (4). Let us first consider how these spatial
density profiles affect the critical growth rate, �c, in the full
model, and thereby derive a condition for the parameter
regime where length regulation is feasible: Growth is un-
bounded only if the highest accumulated density ��ðLÞ
does not result in strong enough depolymerization dynam-
ics to overcome MT growth due to polymerization. Recall
that the accumulated density profile increases from left to
right until it saturates to the Langmuir density, �La. Thus,
growth is unbounded if � > �cð�LaÞ. In contrast, in the
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depolymerizing regime, � < �cð�LaÞ, the MT shortens
until the tip enters the antenna profile. Within this regime,
the accumulated density and thereby the tip density de-
creases with every depolymerization event until the MT
length reaches a stable fixed point L�, at which growth and
shrinkage balance each other. As the corresponding restor-
ing force is conservative, the length regulation dynamics
can be described by a potentialU. It follows from�@LU ¼
���þðLÞ þ � and leads to an adjusted length fluctuating
around the mean, as observed in the MT dynamics; see
Fig. 3(a).

To calculate the adjusted MT length L�, the full spatial
density profile ��ðxÞ as obtained from mean-field theory
[24], and the stochastic growth and shrinkage have to be
considered. They can be combined in an effective master
equation, where the degrees of freedom from the occupa-
tion numbers, ni, are adiabatically eliminated:

@tP ðLÞ ¼ ½ðEþ � 1Þ��þðLÞ þ ðE� � 1Þ��P ðLÞ: (7)

Here, E� are step operators which increase or decrease the
lattice length; �þðLÞ is the density at the tip depending on
L. In the IN phase, in which regulation is feasible,
�þðLÞ ¼ ��ðLÞ½1� ��ðLÞ � ��=½�ð1� ��ðLÞÞ� holds,
where ��ðxÞ is the spatial density profile given by
Lambert W functions [15,24]. We solve the master equa-
tion approximately using the van Kampen system size
expansion [41]: The deterministic dynamics ‘ðtÞ is sepa-
rated from the fluctuations � employing the ansatz L ¼
�‘ðtÞ þ ffiffiffiffiffi

�
p

�. As expansion parameter we consider � ¼
1=!a because the typical length scale of the accumulated
density profile which triggers length regulation is given by
1=!a. Additionally, time has to be rescaled according to
� ¼ !at since the equilibration time also scales with this

length scale. An expansion of Eq. (7) in terms of 1=
ffiffiffiffiffi
�

p
yields the mean MT length

L� ¼ �La

!a

ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ K � 1

K þ 1

� lnj ðK þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ K � 1

2K
jÞ: (8)

As can be inferred from Fig. 3(b), this result is in excellent
agreement with numerical data. We observe that the sta-
tionary MT length is independent of �, and a monotoni-
cally decreasing function of the binding constant K. The
latter behavior reflects the increase of the slope of the
antenna profile with larger K implying that the density at
which regulation arises is reached for shorter MTs. The van
Kampen approximation also gives the variance,

�2 ¼ 2�2

!a

K

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ 2�ð1þ KÞ : (9)

For small values of �, the standard deviation � is below
10% of the filament length in a range of approximately
1–20 �m. The variance actually diverges with � !
�Lað1� �LaÞ for K � 1, while for K > 1 regulation re-
mains possible for � ¼ �Lað1� �LaÞ. In this regime, the
MT length distribution P ðLÞ develops an exponential tail.
This tail cannot be described by the van Kampen expan-
sion, which explains the deviations between the numerical
and the analytical results in Fig. 3(c).
In this Letter, we investigated how motor-induced depo-

lymerization in combination with spontaneous polymer-
ization can result in length regulation of biological
filaments. We found a broad parameter regime in which
length regulation is feasible, due to collective phenomena
of molecular motors which also act as depolymerases.
Even though the regime where length regulation is possible
depends on the depolymerization rate, the adjusted fila-
ment length is independent of the depolymerization rate �,
because of microscopic traffic jams forming at the tip. Our
model provides a proof of principle that spatial depen-
dences in the growth and shrinkage rates of filaments,
which arise from motor transport in this case, can result
in a well-defined filament length. It may serve as a basis for
mechanistically more detailed analyses which account for
multiple protein species [42], dynamic instability [43,44],
internal states of MTs or motors [45], assemblies of MTs
[46], or the abundance of molecules in the cell [47]. We
expect, however, that the main idea—feedback between
polymerization dynamics and collective motor dynam-
ics—remains the core mechanism.

FIG. 3 (color online). (a) Kymograph (upper left): Molecular motors (green shaded traces) accumulate along the lattice (gray)
resulting in a steady MT length (dashed). Corresponding potential UðLÞ (bottom left) and length distribution P ðLÞ (right) for K ¼ 1:5.
(b) Analytical [lines, Eq. (8)] and numerical results (symbols) for the typical MT length L� are compared. (c) Standard deviation of the
MT length � in units of its typical length L� for the same values for � as in (b). Inset: P ðLÞ for � ¼ 1=4 shows an exponential tail.
[Parameters: � ¼ 0:5 (a)–(c), !d ¼ 2� 10�4 (a), and !d ¼ 1� 10�3 (b),(c)].
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50 3. Microtubules and Kinesin-8

3.3. Molecular mechanisms for microtubule length regulation by
kinesin-8 and XMAP215 proteins

So far it has been shown that the different depolymerization and polymer-
ization conditions lead to distinct phenomenological behavior. The two dif-
ferent scenarios discussed so far

”
exclusive“ and

”
non-exclusive“ depolymer-

ization can both serve as mechanism for length regulation of microtubules.
In the following it is shown that microtubule polymerizing enzymes, like
XMAP215 [90], together with depolymerizing molecular motors constitute
a mechanism for length-regulation as a duo with particular properties. It
is also shown that the

”
exclusive“ scenario is well-suited to describe the

case where XMAP215 and kinesin-8 work in parallel. However, as already
became clear in the previous section, the phase behavior is particular in
the

”
exclusive“ scenario. The situation investigated in the following reveals

that in the absence of motor detachment from the microtubule tip, β = 0,
the process is sensitive to the initial conditions. The reason for this is that
the stability of the system critically depends on the tip densities. A phase
diagram is obtained and the efficiency in length-regulation is discussed in
view of the different mechanisms of growth and depolymerization.

On the following pages the original publications is provided.
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The cytoskeleton is regulated by a plethora of enzymes that influence the

stability and dynamics of cytoskeletal filaments. How microtubules (MTs)

are controlled is of particular importance for mitosis, during which dynamic

MTs are responsible for proper segregation of chromosomes. Molecular

motors of the kinesin-8 protein family have been shown to depolymerize

MTs in a length-dependent manner, and recent experimental and theoretical

evidence suggests a possible role for kinesin-8 in the dynamic regulation of

MTs. However, so far the detailed molecular mechanisms of how these mol-

ecular motors interact with the growing MT tip remain elusive. Here we

show that two distinct scenarios for the interactions of kinesin-8 with the

MT tip lead to qualitatively different MT dynamics, including accurate

length control as well as intermittent dynamics. We give a comprehensive

analysis of the regimes where length regulation is possible and characterize

how the stationary length depends on the biochemical rates and the bulk

concentrations of the various proteins. For a neutral scenario, where MTs

grow irrespective of whether the MT tip is occupied by a molecular

motor, length regulation is possible only for a narrow range of biochemical

rates, and, in particular, limited to small polymerization rates. By contrast,

for an inhibition scenario, where the presence of a motor at the MT tip inhi-

bits MT growth, the regime where length regulation is possible is extremely

broad and includes high growth rates. These results also apply to situations

where a polymerizing enzyme like XMAP215 and kinesin-8 mutually

exclude each other from the MT tip. Moreover, we characterize the differ-

ences in the stochastic length dynamics between the two scenarios. While

for the neutral scenario length is tightly controlled, length dynamics is inter-

mittent for the inhibition scenario and exhibits extended periods of MT

growth and shrinkage. On a broader perspective, the set of models established

in this work quite generally suggest that mutual exclusion of molecules at the

ends of cytoskeletal filaments is an important factor for filament dynamics

and regulation.

1. Introduction
Microtubules (MTs) are essential constituents of the cytoskeleton of eukaryotic

cells. They provide mechanical support and are involved in a wide range of cel-

lular functional modules. For instance, they serve cells to build cilia and

flagellae which are slender extensions of the cell used for migration and sensory

tasks. In addition, MTs are important during cell division, where they build

the mitotic spindle and separate chromosomes. To facilitate this variety of

tasks, there have to be mechanisms that control the dynamics of MTs [1].

Such capabilities are crucial for the MT cytoskeleton in order to accomplish

such diverse tasks as cell division [2] and migration [3], and further, to

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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determine cell size and shape [4], and to position the nucleus in

the centre of the cell [5,6]. Molecular motors and MT-associated

proteins seem to play a crucial role in this regulation process

[7,8]: motors move along the MT and interact specifically

with the filament at its end. Other associated proteins that

influence the dynamics of MTs also bind directly to the MT

tip [9]. Biochemical reconstitution experiments have led to con-

siderable insights into the interactions between MTs and

associated molecules [10]. In the following, we highlight two

specific proteins that are important for the length dynamics

of MTs.

Kip3p is an MT depolymerizing molecular motor [11,12]

of the kinesin-8 protein family [13]. It binds strongly to the

MT lattice and, therefore, exhibits a long run-length [14].

For kinesin-8 the molecular mechanisms that lead to depoly-

merization are elusive. However for kinesin-13, which is also

a depolymerizing molecular motor, it was shown that strong

motor binding to the terminal tubulin heterodimer induces

depolymerization [15]. Interestingly, Kip3p shows a length-

dependent depolymerization activity mediated by the

accumulations of motors along the MT, as shown in exper-

iments [11,16] and recent theoretical work [17]. In vitro
experiments have unveiled many molecular properties of

kinesin-8: the tail of the motor has been shown to be respon-

sible for long residence times on the MT lattice and it

influences MT dynamics [18–20] and spindle size [21]; for a

brief review of these findings, see [22]. In the mathematical

analysis, we will concentrate on the depolymerizing activity

of the motor and treat those molecular details effectively in

terms of rate constants for movement, depolymerization

activity, and attachment/detachment kinetics of the motors.

XMAP215 is an MT-associated protein [23] that has been

shown to significantly amplify the growth rate of MTs [24],

and to influence the dynamic properties of MTs in the cytosol

[25,26]. Recent in vitro experiments investigated the inter-

action of XMAP215 with single MTs [27] and the interplay

with other end-binding proteins, which act as cofactors

[28,29]. Specifically, it was found that XMAP215 is a polymer-

izing enzyme to the MT plus-end; a single XMAP215 is able

to polymerize several rounds of tubulin heterodimers to the

MT [27]. Similar properties have also been observed for

other end-binding proteins (e.g. [30]).

Combining the observations described above suggests that

kinesin-8s and XMAP215 may constitute a minimal functional

unit able to regulate MT dynamics [25,31] and antagonistically

influence MT length. This view is supported by recent exper-

iments on cilia [32] showing that the molecular motor Kif19a,

which belongs to the kinesin-8 protein family, regulates the

cilia length in a concentration-dependent manner: high motor

concentrations lead to short cilia, whereas low motor con-

centrations lead to long cilia. On a molecular scale, the ability

to regulate length is traced back to the observed length-

dependent depolymerization speed [7]. In more detail, lon-

ger MTs are observed to depolymerize faster than shorter

ones. This has been explained as follows [16,17]: molecular

motors in the cytosol attach to the MT and subsequently

move towards the MT tip. The unidirectional movement

of motors towards the MT tip leads to an accumulation of

motors and the motor density increases from the minus- to

the plus-end of the MT, which finally results in an antenna-
like steady-state profile of molecular motors. Therefore,

there are more motors present at the tip for longer MTs

than for shorter ones, which in turn leads to the observed

length dependence in the depolymerization speed. In combi-

nation with MT polymerization, which is either spontaneous

or catalysed by XMAP215, this is a promising starting point

to achieve MT regulation [7,33].

In this work, we elaborate on two possible molecular

mechanisms of how molecular motors could interact with

the MT tip. We specifically distinguish two scenarios, one

where molecular motors prevent the addition of tubulin het-

erodimers at the MT tip (inhibition scenario), and another

neutral scenario where MT growth is possible irrespective

of whether the MT tip is occupied by motors or not. These

differences in the interaction of motors with the MT tip

give rise to a rich dynamics of MT length ranging from accu-

rate length control to intermittent dynamics.

This article is organized as follows. In §2, we introduce a

model for the dynamics of molecular motors on an MT. Further,

we define different possible molecular scenarios for how

kinesin-8s may interact with the MT tip during the depoly-

merization process, including the case when XMAP215 acts

as a polymerase. In §3, we present our main results: we

begin with an outline of the theoretical framework, and then

employ it to study MT length dynamics. Our analytical calcu-

lations are complemented by stochastic simulations. Taken

together, this allows us to identify the parameter regimes

where length regulation is possible, and to provide a comprehen-

sive analysis on how the ensuing stationary length depends on

biochemical rates and protein concentrations. Moreover, we

investigate the role of stochastic effects in length regulation,

and discuss why there are dramatic differences between the con-

sidered scenarios. Finally, we conclude in §4 by discussing our

results in terms of their possible biological relevance and their

importance for driven diffusive lattice gases.

2. Model definition
To describe an MT, we consider a one-dimensional lattice gas

model of finite length L [34,35] as illustrated in figure 1. This

approximation is valid if the 13 protofilaments of an MT are

independent and non-interacting. Motor proteins (kinesin-8),

present at a constant bulk concentration c, are assumed to

randomly attach to and detach from the MT lattice with

rates von and voff, respectively, defining the binding constant

K ¼ cvon/voff. Once bound, these motors move towards the

plus-end at a constant hopping rate n; we fix the time scale

by setting n ¼ 1 (corresponding to approx. 6.35 steps s21 in

the case of Kip3p [16]). As these motors hinder each other

sterically, individual binding sites on MTs can at most be

occupied once. This lattice gas model is known as the totally

asymmetric simple exclusion process (TASEP) with Langmuir

kinetics (LK) [36–38].

The right boundary is considered to be dynamic: when a

Kip3p motor arrives at the MT plus-end, which is the bound-

ary in our model, it acts as a depolymerase, i.e. it removes the

last MT subunit at rate d [17]. As we consider stabilized MTs

following recent experiments [11,16], we do not include spon-

taneous depolymerization and MT dynamic instability. In

addition, the MT is assumed to polymerize through the

attachment of single tubulin heterodimers. Unfortunately,

there is insufficient experimental information on the detailed

molecular cycle for MT growth in the presence of kinesin-8

motors. We hypothesize the following different but equally

plausible mechanisms for MT growth:
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(i) The MT only grows at rate h if the last site at the plus-

end is not occupied by a kinesin-8 motor. Because

kinesin-8 inhibits MT growth we call this the inhibition
scenario (cf. figure 1).

(ii) The MT grows at rate g independently of whether the

tip is occupied or not. This neutral scenario has been

considered previously in [33] (cf. figure 1).

(iii) MT polymerization is facilitated by a second protein

species, like for instance XMAP215. This enzyme, in

the absence of kinesin-8, attaches to and detaches

from the MT tip with rates kon and koff, respectively.

Once bound, XMAP215 prevents kinesin-8 from reach-

ing the tip, and processively polymerizes the MT at rate

hx, i.e. the enzyme immediately binds to the newly

formed tip site after polymerization has occurred.

We use the remainder of this section to give a concise

summary of the results obtained recently for the neutral
scenario [33]: the combined effect of motor attachment in

proximity of the minus-end (left boundary) and subsequent

movement towards the plus-end (right boundary) leads to

an accumulation of motors, which results in an antenna-like

steady-state profile [16,17]. At a certain distance from the

minus-end, the density profiles saturate to the equilibrium

Langmuir density rLa ¼ K/(K þ 1) [14]. The resulting density

profiles in the vicinity of the minus-end are position-

dependent, r2(x), and can be described by Lambert-W
functions [38]. Moving further towards the MT plus-end,

the density profile is determined by the interplay of motor

current and the boundary conditions at the plus-end, which

gives rise to a particular tip density rþ(L). In a mean-field

description [35], this determines the length dynamics

@tL(t) ¼ �drþ(L)þ g: (2:1)

Steady state is reached at a critical density rc
þ ¼ g=d, where

@tL(t) ¼ 0. Depending on whether the tip density rþ(L) is

smaller or larger than rc
þ the MT grows or shrinks.

Because the motor current to the tip depends on the

accumulation of motors along the MT, r2(x), the tip density

depends on the actual length L(t) of the MT. As a conse-

quence a mechanism for MT regulation emerges: on a short

MT, when the accumulation of motor density is low, also

the tip density is low and the MT grows because the tip den-

sity lies below the critical threshold density, rþ(L) , rc
þ. This

is in contrast to the case of a long MT where a higher density

of motors accumulates along the MT and also the tip density

is higher. Once the tip density exceeds the critical threshold

value rþ(L) . rc
þ the MT depolymerizes.

Figure 2 illustrates this mechanism. Shaded areas indicate

density profiles for MTs of different length and also schematically

account for the fact that the tip density is length-dependent and

has a spike-like shape. The dashed line shows a threshold value

for the tip density, above and below which the MT shrinks and

grows, respectively.

3. Motor and microtubule dynamics
Though at first sight the neutral and the inhibition scenario as

introduced above appear very similar, there are actually

strong qualitative differences in the ensuing length dyna-

mics. Figure 3a,b shows kymographs for the neutral and the

inhibition scenario, respectively, as obtained from stochastic

simulations employing Gillespie’s algorithm [40]. While in

the neutral scenario the overall length of the MT stays approxi-

mately constant with only small fluctuations, the length

dynamics for the inhibition scenario is intermittent with

extended episodes of filament growth and shrinkage, reminis-

cent of the dynamic instability [41]. Note that for the inhibition

scenario there is significant accumulation of motors at the MT

tip during periods of depolymerization.

To understand how the system alternates between

periods of growth and shrinkage, let us turn to a mathemat-

ical description of the dynamics. As already noted in the

previous section, the length change of the MT is determined

antenna profile

neutral inhibition

Langmuir density

MT tip

d

g

h

d

won woff

Figure 1. Illustrations of motors on an MT and different regulation scenarios at the MT plus-end. Starting from an empty MT lattice motors start to accumulate on
the MT lattice by LK (with rates von and voff ) and subsequent transport with rate n to the plus-end. The combined effect of LK and steric exclusion between the
motors leads to an antenna-like profile which saturates at the Langmuir density rLa. At the MT tip, Kip3p depolymerizes the MT lattice and blocks MT growth in
the inhibition scenario while it does not affect MT growth in the neutral scenario. (Online version in colour.)
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by the tip density rþ, e.g. the probability that the MT tip is

occupied by a molecular motor,

@tL ¼ �drþ þ g (neutral scenario),
�drþ þ h(1� rþ) (inhibition scenario):

�
(3:1)

Here the first term on the right-hand side stands for depoly-

merization, and the second term describes polymerization

dynamics of the neutral and the inhibition scenario, respect-

ively. Equation (3.1) shows that depending on the magnitude

of the tip density, rþ, the MT either grows or shrinks: for

large tip densities, depolymerization is strong and the MT

shrinks, while the MT grows for small tip densities (figure 2).

The critical tip densities, rc
þ, where the filament length becomes

stationary read

rc
þ ¼

g

d
(neutral scenario),

h

dþ h
(inhibition scenario):

8><
>: (3:2)

To make further progress, one needs to determine the actual

tip densities employing a mean-field approach for the motor

dynamics along the MT [33].

3.1. Phase behaviour and tip densities
For biologically relevant parameter ranges, the time scales

of the tip dynamics and the motor dynamics are comparable

(cf. table 1). Therefore, the motor density profile quickly

adapts to changes in the tip density and one can readily

assume that the tip density and the bulk density are adiaba-

tically coupled [33]. Moreover, experimental data also show

that both the attachment and the detachment rates, von and

voff, are very small [16]. This suggests considering a simplified
model where one neglects the attachment and detachment

kinetics and assumes that a constant density r2 serves as a

particle reservoir at the left end of a lattice with fixed size L
(figure 4). This allows us to focus on the dynamics at

the plus-end and unravel how it depends on the reservoir

density r2. Owing to the adiabatic coupling between bound-

ary and bulk, the results for the full model can be inferred

from the simplified model upon replacing r2 by the actual

spatially varying profile r2(x).

Since there is particle conservation, the dynamics of the

tip density is given by

@trþ ¼ Jb(rb, rþ)� Jexit(rþ), (3:3)

where Jb and Jexit ¼ drþ denote the bulk current and the

loss rate of motors due to depolymerization, respectively.

Calculations are conveniently performed in a frame comov-

ing with the MT tip. Then the bulk currents for the neutral

(N) and the inhibition (I) scenario read in a mean-field

approximation [33]

JN
b ¼ rb(1� rb)� grb þ drþrb (3:4a)

and

JI
b ¼ rb(1� rb)� hrb(1� rþ)þ drþrb : (3:4b)

(MT length)

rc
+

r+(L) < rc
+

r+(L) > rc
+

u > 0 u < 0u = 0

r+(L) = rc
+

(d
en

si
ty

) 
r

L

Figure 2. Illustration of a linear motor density profile (shaded areas) and the
threshold density rc

þ (dashed line) for MT regulation. Low tip density rþ(L)
results in a growing MT, and a high tip density results in a shrinking MT. Note
that the density at the tip generally has a spike-like shape [39]. (Online
version in colour.)
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Figure 3. Kymographs of how molecular motors regulate an MT. In the neutral
case (a), the system displays a higher accuracy in length regulation
(d ¼ 0:2, g ¼ 0:1316). This is in contrast to the case of growth inhibition
(b) where the system displays intermittent dynamics (d ¼ 0:2, h ¼ 0:385).
Attachment and detachment rates are cvon ¼ 0.001 and voff¼ 0.003.

Table 1. Quantification of model parameters for kinesin-8 and XMAP215.

kinesin-8 model experiment [16]

speed n ¼ 1 6.35 steps s21

attachment von 24 (nM min mm)21

detachment voff 4.8 � 1023 s21

depolymerization d n/k [17]

tip detachmenta b 0.120.01 s21

MT growth model experimentb

neutral g n/k

inhibition h n/k

XMAP215 model experiment [27]

attachment kon 0.1 (nM s mm)21

detachment koff 3.8 s21

polymerization hx 6.6 dimers s21

aTip dwell times of different kinesin-8 constructs are: 10 – 55 s [18],
20 – 40 s [19], 80 s [16]. In [16], it is shown that dwell times at the tip
depend on motor concentration, suggesting cooperative effects of motors at
the tip. A theoretical analysis is given in [17].
bMT growth speeds in the presence of kinesin-8s in vivo are 1.3 mm min21

[12], 2 mm min21 [4,42]. Rate constants of individual growth events,
however, are not available to our knowledge and the complexity of
the process [43] renders it difficult to quantify the damping effects of
kinesin-8 [44].
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Here rb denotes the motor density in the bulk of the MT,

and the first term describes the current due to hopping pro-

cesses accounting for particle exclusion on neighbouring

sites. The remainder of the terms indicates polymerization

and depolymerization currents, which in a comoving frame

simply correspond to simultaneous movement of all particles

on the MT lattice to the left and right end, respectively.

The stationary state of the model is determined by a bal-

ance of currents, or, in other words, the fixed point of

equation (3.3): rþd ¼ Jb(rb, rþ). Solving for the tip density

one finds

rþ ¼ rþ(rb,d, h) ¼ rb(1� h� rb)

d(1� rb)� hrb

, (3:5)

for the inhibition scenario. The tip density is determined

by the bulk particle flux towards the tip and, at the same

time, the bulk density depends on the molecular processes

at the MT tip. To make progress with the analytical calcu-

lations, it is necessary to have some knowledge about the

nature of the density profiles and their stability with respect

to fluctuations. For exclusion processes, there are in general

three distinct phases, each of which corresponds to different

bulk densities rb and ensuing bulk currents [45,46]:

— IN phase. In this phase, the particle current that enters the

system at the minus-end determines the bulk density. For

TASEP, this phase is also called low-density phase.

— EX phase. The bulk density is determined by the current of

particles that leave the system at the right boundary

(TASEP: high-density phase).

— MC phase. In this phase, the maximal current (MC) through

the system determines the bulk density. It corresponds to

a local maximum in the current density relation Jb(rb). In

contrast to the two other phases, the bulk density in the

MC phase is independent of the boundary conditions.

Moreover, for exclusion processes, there are two possibilities

to account for the boundary conditions at the left and right

end. Either there is a domain wall (DW) delineating a low-

density region, r2, from a high-density region, rþ, or there

are boundary layers [47] at one of the MT ends.

3.1.1. Density perturbations and domain wall theory
To make progress on the phase diagram, we need to investi-

gate the stabilities of the aforementioned DW and bulk

density. To this end, we introduce two important criteria

that allow us to analyse the stability of perturbations in exclu-

sion processes known as DW theory and the extremal current

principle (ECP) [48–50]. First we consider the stability of

a bulk density rb against a density perturbation. Such a

perturbation travels at the collective velocity [48,49]

ucoll ¼ @rJb(r, rþ)jr¼rb
: (3:6)

Since for ucoll , 0 density perturbations move towards the

minus-end, they do not affect the tip density and thereby

the EX phase remains stable. By contrast, for ucoll . 0, pertur-

bations move towards the plus-end which renders the IN

phase stable against density fluctuations. Note that the collec-

tive velocity ucoll ¼ 0 in the MC phase (by definition). Second,

we consider the stability of DWs. A DW between a left rleft

and right density rright travels at a velocity

uDW ¼ Jb(rleft, rþ)� Jb(rright, rþ)

rleft � rright
: (3:7)

Depending on the sign of this velocity the phase correspond-

ing to rleft or rright is stable [49]. Taken together, ucoll and uDW

lead to analytic results for bulk and tip densities in the var-

ious phases (table 2).

3.1.2. Phase diagram for the inhibition scenario
With the methods introduced in the previous section, it is a

straightforward task to derive the densities and the ensuing
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Figure 4. (a) Illustration of the simplified model with a constant particle reservoir r2 at the minus-end, and where LK is not accounted for. (b) Mean-field phase
diagram for the simplified model (inhibition scenario) for two different values of the reservoir density: r2 ¼ 0.5 (solid black), and r2 ¼ 0.25 (dotted). Dashed
line indicates the phase boundary obtained from stochastic simulations of the simplified model including LK with on- and off-rates cvon ¼ voff ¼ 0.005. (c) Mean-
field solutions for tip densities at various growth rates h indicated in the graph compared to simulation data with and without LK. Different phases (IN/EX/MC) are
indicated by symbols and lines and refer to analytic results (cf. equations (3.8) and (3.11)). The dotted line indicates a discontinuous transition between the EX and
MC phase. The lattice was initiated with random configurations of motors with bulk density rb ¼ 0.5. (Online version in colour.)
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phase behaviour of the simplified model. Since the neutral

scenario has already been discussed [33], we here focus on

the inhibition scenario. In the IN phase, the bulk density is

(by definition) given by the reservoir density at the left

boundary: rIN
b ¼ r�. With the stationarity condition, equa-

tion (3.5), one finds that the tip density is a function of the

reservoir density

rIN
þ (r�, d, h) ¼ r�(1� h� r�)

d(1� r�)� hr�
: (3:8)

Note, however, that this is a stable solution of equation (3.3)

only outside of the shaded area indicated in the phase dia-

gram shown in figure 4b. In the EX phase, the bulk density

is given by the right boundary, rEX
b ¼ rþ, and equation (3.5)

leads to the striking result that the MT tip is always occupied

by a molecular motor,

rEX
þ ¼ 1 , (3:9)

in stark contrast to the corresponding result in the neutral

scenario (table 2). It implies that an MT always depoly-

merizes for those parameter regimes where the system is

in the EX phase. As in Reese et al. [17], we attribute this be-

haviour to the slow depolymerization rate in the EX phase,

d , r2. It implies that motors leave the tip more slowly

than they arrive. Then the MT tip acts as a bottleneck for mol-

ecular transport and induces a traffic jam with rEX
þ ¼ 1 at the

plus-end. For the MC phase, the bulk density is given by

the maximum of the bulk current JI
b

rMC
b ¼ d� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dh(dþ h� 1)
p

dþ h
: (3:10)

Using this bulk density in equation (3.5) gives a constant value

for the tip density in the MC phase which is independent of

the reservoir density

rMC
þ ¼ dþ h(hþ d� 1)� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hd(hþ d� 1)

p
(dþ h)2

: (3:11)

Knowing the tip densities, we can now use the DW theory

explained above (see §3.1.1) to determine the transition lines

between the various phases. The DW velocity gives the direc-

tion in which a DW between two densities, one from the left

and one from the right, travels. To employ these criteria, we

first have to identify the respective densities. Let us start with

rleft: the density at the minus-end is in general determined by

the entering current, corresponding to a tip density rþIN,

equation (3.8). This tip density, however, is only stable

against small perturbations if ucoll � 0. For parameters

where ucoll , 0 the density from the left is decreased to

rleft ¼ rþMC. This sign-change of the collective velocity defines

the phase boundary between the IN and MC phase:

h ¼ d(r� � 1)2=(d� r2
�). Taken together, the density on the

left of the DW is given by rleft ¼Min[rþIN, rþMC]. The density

at the right of the DW, rright, is determined analogously.

Since in that regime the collective velocity is strictly negative

we simply have rright ¼ rþEX ¼ 1. Using the above expressions

for rleft and rright in equation (3.7) gives the remaining phase

boundaries: with rleft ¼ r2, rright ¼ 1 and rþ ¼ 1 one obtains

uDW ¼ d 2 r2, implying that the phase boundary between

the IN and EX phase is given by d ¼ r2. The boundary line

d þ h ¼ 1 signifies that above this line the stationary solution

given by equation (3.8) becomes unstable. This instability

gives rise to interesting motor dynamics, in particular, a

subtle dependence of the ensuing stationary profile on the

initial condition. While these effects are certainly worthwhile

studying they are irrelevant for our main focus, namely MT

regulation, and, hence, we refrain from further analysing

this regime here.

Taken together, the above analysis gives the phase dia-

gram shown in figure 4b for two different values of the

reservoir density r2. The general trend is that with decreasing

reservoir density the parameter domain where the IN phase

is stable expands.

The analytical results obtained from mean-field theory

agree nicely with the stochastic simulations (figure 4c) in

the case where LK is neglected. For a depolymerization rate

h ¼ 0.3, concomitant with the phase transition from the IN

to the EX phase, the tip density increases upon lowering

the depolymerization rate d and then continuously saturates

at rþ ¼ 1 as the EX phase is reached. By contrast, for h �
0.5, there is a discontinuous jump in the tip density as one

passes from the MC into the EX phase; see discussion above.

The stochastic simulations with LK show a quite significant

increase in the magnitude of the tip density in the MC phase, in

particular in the shaded area of the phase diagram, figure 4b.

We attribute this to the fact that the Langmuir density in

bulk, rLa, acts as a source for kinesin-8 motors which tends to

increase the motor density on the MT and at the tip. Although

these effects are interesting and worthwhile studying, they are

not important for our main concern here, namely regulation of

MT length. As discussed previously [33], and elaborated on

later in §3.4, MT regulation is possible only if the density profile

is determined by the particle current at the minus-end, i.e. if the

system in its stationary state is in the IN phase. In that case,

Table 2. Analytic results for the tip densities rþ in the different phases IN/EX/MC and the critical growth rates hc and gc for the inhibition and neutral
scenario, respectively. Note that hEX

c is obtained from the phase boundary of the EX phase as derived in the main text.

tip density

inhibition rIN
þ ¼ r�(1�h�r�)

d�r�(hþd) rEX
þ ¼ 1 rMC

þ ¼
h(hþd�1)þd�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dh(hþd�1)
p

(hþd)2

neutral [33] rIN
þ ¼ r�(1�g�r�)

d(1�r�) rEX
þ ¼ 1� g

1�d rMC
þ ¼ 1� ffiffigp

d

critical growth

inhibition hIN
c ¼ dr�(1�r�)

d�r�(1�r�) hEX
c ¼ 1� d (see equation (3.12)) hMC

c ¼ d
4d�1

neutral [33] gIN
c ¼ r�(1� r�) gEX

c ¼ d(1� d) gMC
c ¼ 1

4
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even adding LK in the simulations has only a minor effect on

the magnitude of the tip density, and we can safely use the

analytical mean-field results to further analyse the stationary

MT length.

3.2. Dynamics of the microtubule length
Figure 5 shows the results of our stochastic simulations with LK

for the MT drift velocity, v ¼ @tL as a function of the depolymer-

ization and the polymerization rates for both the inhibition

and the neutral scenario. There are well-defined boundaries,

hc(d, r2) and gc(d, r2), separating regimes in which MTs

grow and shrink, respectively. Since the tip density, rþ, dictates

MT dynamics (see equation (3.1)), those boundaries can be

readily calculated upon comparing the tip densities listed in

table 2 with the critical tip density, equation (3.2). For the inhi-

bition scenario, we find that for d , r2 the critical tip density

coincides with the phase boundary of the EX phase

hc ¼ 1� d, (3:12)

while for d . r2 it lies either within the MC or the IN phase:

hc ¼
dr�(1� r�)

d� r�(1� r�)
for r� ,

1

2
,

d=4

d� 1=4
for r� .

1

2

8>><
>>:

(3:13)

(see table 2 for a summary together with the results for the neu-

tral scenario). These analytical results are in perfect accordance

with our stochastic simulations (figure 5) with one interesting

exception for the inhibition scenario, namely the boundary

line of the EX phase for d , r2. Since we recover agreement

between stochastic simulations and analytical calculations by

switching off LK in our stochastic simulations, we can fully

attribute this difference to the effect of attachment and detach-

ment of motors in bulk, as discussed in §3.1.2; cf. dotted

and dashed lines in figure 5a. Furthermore, the differences

between both scenarios are significant, cf. figure 5a,b, respect-

ively. In the inhibition scenario, the regime where MTs

shrink—and hence regulation becomes possible—is much

broader since kinesin-8 inhibits MT growth when bound to

the tip: for small depolymerization rate d, motors reside at the

MT end for a relatively long time, which dramatically broadens

the regime of MT shrinkage.

3.3. Interplay between kinesin-8 and polymerase
XMAP215

In this section, we compare the dynamics of the inhibition

scenario with a model which explicitly accounts for a

second protein, XMAP215, that enzymatically facilitates MT

growth (figure 6a and §2). In a case where XMAP215 and

kinesin-8 mutually exclude each other at the MT tip, one

expects strong similarities between those scenarios. In order

to compare with an analytically tractable lattice gas model,

we performed the stochastic simulations for the simplified

model without LK.1 Figure 6b shows the regimes of MT

growth and shrinkage as a function of kinesin-8 and

XMAP215 densities for a set of depolymerization rates d.

The general trend is that the regime where MTs shrink is

enlarged with smaller depolymerization rates.

At the mean-field level, the equilibrium density

of XMAP215 at the MT tip is given by the product

rx ¼ r
eq
x (1� rþ), where 12rþ is the probability that kinesin-8

is not bound and r
eq
x denotes the Langmuir isotherm for

XMAP215 binding

req
x ¼

cxkon

cxkon þ koff
: (3:14)

Here cx is the XMAP215 concentration in solution, and kon and

koff are the attachment and detachment rates of the enzyme to

and from the MT tip, respectively. This mean-field approxi-

mation neglects that the presence of XMAP215 at the MT tip

influences the current of kinesin-8 to the MT end, because it

could block the motor particles [51]. Fortunately, as the

polymerization rate of XMAP215, hx, and the walking speed,

n, of kinesin-8 are almost the same [16,27] the two molecules

rarely interact. This implies that a model explicitly accounting

for XMAP215 can be reduced to the inhibition scenario with

an effective polymerization rate given by

h ¼ hx r
eq
x : (3:15)

Indeed, as can be inferred from figure 6b, the predictions of the

effective inhibition scenario agree nicely with the numerical

simulations. Taken together, this implies that the inhibition

scenario may serve as a minimal model to include other MT-

associated proteins that antagonize the depolymerization

activity of kinesin-8. It remains an open question, however,
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Figure 5. Drift velocity of the MT tip, v ¼ @tL, as a function of the polymerization and depolymerization rates for the (a) inhibition and the (b) neutral scenario
obtained from stochastic simulations for the simplified model with LK; colour code indicates the magnitude of the drift. Solid lines indicate where the MT velocity is
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as to what extent our assumption of mutual exclusion between

proteins at the MT tip is justified. Because MTs consist of mul-

tiple protofilaments, one could think of a multi-lane scenario

where kinesin-8 and XMAP215 are simultaneously present at

the MT tip. To model this scenario, it would be necessary to

rethink the interactions between the different proteins and

also between the proteins and the MT.

3.4. Microtubule regulation
We now consider the full model for an MT of finite length L,

where LK leads to an accumulation of kinesin-8 motors along

the MT. As discussed in §2, the ensuing antenna-like profile

r2(x) can be calculated within the framework of the

TASEP/LK model [37,38]; these theoretically predicted pro-

files have recently been confirmed by in vitro experiments

[14]. Now length regulation becomes possible if this spatially

varying profile translates into a length-dependent velocity

v(L) of the MT tip [7,33]. This requires that the tip density

rþ(L) depends on r2(L) which is the case only for the IN

phase (see equation (3.8)). Then the tip density reads

rþ(L) ¼ rIN
þ (r�(L), d, h) : (3:16)

Upon inserting the ensuing length-dependent tip density into

equation (3.1), one obtains a length-dependent velocity v(L).

It is instructive to define an effective potential

Ueff(L) ¼ �
ðL

0

dx v(x), (3:17)

whose minimum defines the stationary MT length L*

rþ(L�) ¼ rIN
þ (r�(L�), d, h) ¼ rc

þ, (3:18)

as illustrated in figure 7a–c. Tight length regulation is restricted

to the regime where the critical density rc
� :¼ r�(L�) falls well

into the linearly increasing antenna profile. The closer rc
� is to

the Langmuir plateau rLa the less well defined is the stationary

length; note that the effective spring coefficient

k(L) :¼ U00eff (L) ¼ d r0þ(L) (neutral scenario)

(dþ h) r0þ(L) (inhibition scenario)

�

(3:19)

is proportional to the slope of the profile, where prime denotes

derivative (see also figure 7c).

As can be inferred from figure 8a,b, the stochastic simu-

lations agree nicely with the above analytical results for the

stationary MT length L* in both scenarios, neutral and inhi-

bition. Previous studies [33] have shown that the variance

of the length can be obtained well upon using a van

Kampen expansion for the stochastic dynamics of the MT

length L(t), which assumes that the tip density is adiabati-

cally coupled to the motor density along the MT. This

essentially amounts to saying that the MT length performs

a random walk in the effective potential Ueff(L). Such a pic-

ture is fully consistent with results obtained from our

stochastic simulations: the observed stochastic trajectories

resemble those of random walks in confinement (figure 3a).

More importantly, the numerically observed value for the

probability that the MT tip is occupied, pþ(L), agrees well

with the mean-field tip density rþ(x) (figure 7d ). This implies

that the stochastic trajectory samples the values of MT length

L(t) with a statistical weight determined by the effective

potential Ueff(L). Surprisingly, as can be inferred from

figure 7e, this is not the case for the inhibition model which

immediately invalidates a description of the stochastic

dynamics in terms of a continuous random walk in the poten-

tial landscape shown in figure 7b. The latter would actually

give rise to stochastic trajectories strongly confined to the

stationary value L*. By contrast, the actual stochastic trajec-

tories for the inhibition scenario shown in figure 3b rather

resemble an intermittent dynamics with abrupt transitions

between growing and shrinking states. Even though the mag-

nitude of the length fluctuations resembles MT dynamic

instability [41], the microscopic origin of fluctuations in our

model differs.

The key to understand this anomalous dynamics lies in

realizing that the stochastic length dynamics in the inhibition

scenario is a dichotomous process with only two states: while, if

the MT tip is empty, the MT grows with a rate h, it shrinks

with a rate d if the MT tip is occupied by a kinesin-8 protein.

In other words, depending on whether the MT tip is occupied

or not, it is either in a shrinking or a growing state,
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Figure 6. MT dynamics with kinesin-8 and XMAP215. (a) Simplified model with motor detachment from the tip (rate b) and tip-binding of XMAP215. (b) MT
growth velocity as a function of kinesin-8 and XMAP215 density. A XMAP215 density of req

x ¼ 0:5 corresponds to cx � 10 mM, and the concentration of kinesin-8
is approximately c � 1.5 nM for a half-filled lattice rb ¼ 0.5 (table 1). (Online version in colour.)
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respectively [52]. Consider a configuration where the tip is

empty, and, hence, the MT is in a growing state (with average

speed h). Then it will remain in this state for some time tgrow

until the motor closest to the tip actually reaches the tip.

Figure 8c shows the probability distribution of tgrow for the

same parameters as in figure 8b. The distribution is clearly

exponential with a typical time of the order of approximately

23/n. On the other hand, if the MT tip is occupied by a kine-

sin-8 protein, it will remain in this state and not depolymerize

the tip for a time of the order of d21. During this time, the fila-

ment neither grows nor shrinks, and the kinesin-8 protein at

the MT tip acts as a strict bottleneck. As a consequence, an

extended traffic jam may emerge at the MT tip by motors

queuing up behind this bottleneck. These traffic jams can

be clearly seen in figure 3b as black clusters. The formation

of such clusters is a nucleation process, and the duration of

the shrinking state is determined by a subtle interplay

between particles gained by stochastic arrival at the left end

and depolymerization dynamics. Interestingly, the prob-

ability distribution of tshrink shows two typical time scales,

and, in particular, a broad exponential tail with a typical

time of the order of approximately 112/n. We leave a more

detailed investigation of these interesting stochastic effects

for future work. The main results we emphasize here are

that we have identified two distinct time scales characteristic

for prolonged growing and shrinking states. These time

scales are macroscopic in the sense that they are much

larger than the hopping time of individual motors (which
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we have set to 1). This implies that also the typical lengths

covered during the growing and the shrinking state are

rather large; for the examples shown in figure 8c they are

on average approximately 8 and 22 lattice sites during

polymerization and depolymerization, respectively. These

large length scales explain why the probability to occupy

the MT tip as obtained from the stochastic simulations is

only weakly dependent on MT length.

Taken together, we find that in the neutral scenario

MT length is tightly controlled. The variance in MT length

is mainly determined by the width of the effective poten-

tial, or, equivalently by the effective spring coefficient

k(L) ¼ d r0þ(L). Hence, the slope of the antenna profile is the

key determinant of length fluctuations. By contrast, for the

inhibition scenario, extended periods of MT growth and

shrinkage lead to large length fluctuations as can be seen

from the kymographs in figure 3. These large fluctuations

result in characteristic exponential tails in the filament’s

length distributions; the characteristic width of this distri-

bution is shown as error bars in figure 8b. Note also the

different dependencies of the two models with respect to

the depolymerization rate. While in the neutral scenario the

length of the MT is independent of the depolymerization

rate d, it strongly affects MT length in the inhibition scenario.

4. Discussion
We have analysed distinct molecular mechanisms of MT

regulation by proteins which are able to catalyse growth

and shrinkage of MTs. Specifically, our interest was in the

interplay of Kip3p acting as depolymerase when bound to

the MT tip and MT growth processes which are either spon-

taneous or also catalysed by proteins like XMAP215. We

investigated two distinct scenarios: in a neutral scenario MTs

grow independently of whether a kinesin-8 motor is bound

to the tip or not. By contrast, in an inhibition scenario the

MT only grows if the MT tip is not occupied by a depolymer-

ase. Even though these scenarios were motivated by the MT

depolymerizing motor Kip3p, our results can be applied to

other molecular motors as well. For example, the human

kinesin-8, Kif18a, has been shown to dampen MT dynamics

[44] and even to block MT growth entirely [53]. Another

example is kinesin-4, which inhibits the growth of MTs in

anti-parallel MT overlaps [54].

Experiments with the MT polymerizing enzyme

XMAP215 [27] suggest a high binding rate for the MT tip

through facilitated diffusion. Then, to a first approximation,

one may model XMAP215 as a tip-binding protein which

excludes binding of kinesin-8. As we have shown, this tip

site exclusion leads to a dynamics which is equivalent to

the inhibition scenario.

The results obtained here show how interactions between

individual proteins and the MT tip play an important role for

MT regulation. There are three main findings: (i) MT regu-

lation is directly affected by motor traffic. It is influenced

by the MT growth rate, and attachment and detachment kin-

etics of motors to and from the MT. Both parameters can be

tuned in experiments through the tubulin concentration

and the motor and salt concentrations [14], respectively.

(ii) Regimes of MT growth and shrinkage critically depend

on the probability that a kinesin-8 motor is bound to the

MT tip. (iii) Protein–MT interactions at the MT tip are key

to distinguish different mechanisms of MT regulation, like

for example intermittent dynamics or tight length control.

The parameter regimes where motor traffic constrains

MT growth differ dramatically for the two scenarios (cf.

figure 5). For the neutral scenario, this parameter regime is

relatively small and, in particular, limited to slow growth

rates. It is characterized by relatively tight length control

[33]. By contrast, for the inhibition scenario, the regime

where length regulation is possible is extremely broad and

includes high growth rates, however, at the cost of accurate

length control: MT dynamics is intermittent with extended

periods of MT growth and shrinkage, reminiscent of MT

dynamic instability. Therefore, in the view of the regulation

of MT length, these findings suggest the inhibition scenario as

a mechanism for large length fluctuations, while the neutral

scenario provides a mechanism for precise length control. To

test these theoretical ideas, we suggest experiments which

vary the protein concentration of kinesin-8, tubulin and

XMAP215. The specific predictions of our theory will allow

one to discern between different molecular mechanisms at the

MT tip, simply by analysing how changes in the concentrations

affect macroscopic quantities like the MT length and the speed

of MT growth and shrinkage.

Besides its biological relevance for MT-related cellular

processes, our study also contributes to the field of driven dif-

fusive systems. We not only show how systems with a

dynamic length can be treated analytically, but the technique

we propose also gives conceptual insights into the determi-

nation of boundary-induced phases. This is achieved by

extending the ECP [48] to dynamic systems. For instance,

we found that a shock forming dynamically at the right

boundary (not in bulk) determines whether the system is in

the IN or EX phase. In addition, we could identify an

unstable region in the phase diagram (between EX and MC

phase for the inhibition scenario), where the system not

only depends on the boundaries, but also on the initial con-

ditions. This behaviour is to our knowledge not common

for driven diffusive systems, and an interesting topic for

future studies. Even though the main dynamic behaviour,

as MT length, is governed by currents which are determined

by the boundaries, also bulk phenomena are important as

observed in [14,36,37], especially for lattice length fluctu-

ations. We restricted our analysis to boundary-induced

transitions, leaving it as a challenge for the future to capture

also the bulk dynamics of motors on the MT.

From a broader perspective, the presented findings sup-

port the view that length-dependent disassembly and/or

assembly rates due to molecular motor transport are likely

to constitute a general mechanism to influence the length of

one-dimensional structures in biology regardless of mechan-

istic details [55]. Specifically, MT tips are crowded spots in

the cell, where space limitations for protein binding, inferring

mutual exclusion, are relevant factors. Future experimental

work needs to study dwell times of molecules at MT tips at

the highest possible accuracy, because dwell times encode

important information about the underlying molecular inter-

action networks [56]. Future theoretical studies may include

other microscopic scenarios at the tip, as for example an

interpolation between the neutral and the inhibition scenario,

and the coupling of multiple protofilaments. Similarly, it will

be important to learn more about interactions of molecular

motors with the MT [57–59] during dynamic instability

[60–62] and with networks of MTs [63,64].
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Endnote
1Note that in order to achieve a more realistic description of the tip-
related processes, we also include tip detachment of kinesin-8 at a
rate of b ¼ 0.02 as suggested by experiments (table 1).
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3.4. Effects of phase transitions on length fluctuations

Having analyzed the length of microtubules for different conditions at the
lattice tip, it is interesting to learn more about the physical mechanisms
that lead to these cases of accurate and fluctuating regulation. Within this
section it is briefly outline how our understanding of phase transitions as
obtained above, leads to deeper insights on the emergence of fluctuations
in the microtubule length.

As a first hypothesis it is considered that boundary induced phase transi-
tions influence the dynamics of the filament and the accumulation of motors
at the tip, see Fig. 3.2 for an illustration. Two scenarios can be distin-
guished: Either length regulation sets while the system is in the IN phase
(IN regulation), or length regulation starts at, or after the system underwent
the transition to the EX phase (IN/EX regulation).

IN regulation

IN/EX regulation

Figure 3.2.: Upper panel: IN regulation. The microtubule is regu-
lated in the IN phase where the density profile and the tip
density are both length dependent. Lower panel: IN/EX
regulation. The microtubule is regulated at the transition
between the IN and the EX phase. The density profile is
length-dependent until a threshold length Lc, and indepen-
dent of the lattice length for L > Lc.
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Figure 3.3.: Phase diagram for microtubule growth and shrinking and
the IN/EX boundary induced transition as seen for a micro-
tubule of size L→∞ and L = 100 (

”
exclusive“ case). Arrows

indicate how these lines change during growth and depolymer-
ization. The shaded area indicates a region where the system
grows in the IN phase and shrinks in the EX phase. Otherwise
the system grows and shrinks in the IN phase only.

For specificity the
”
exclusive“ case is considered in the following analy-

sis. The above hypothesis motivates to reanalyze the phase transitions as
obtained in the previous sections. This time, however, the transition lines
between EX and IN phase and the critical growth rate ηc are considered in
a length dependent manner. To illustrate how transition lines change with
lattice length, a further simplification is made by restricting the analysis to
a situation where no bulk induced phase transitions occurs, i.e. ρLa = 0.25
with ωon = 0.001. For short microtubules the density profile increases lin-
early, however, it saturates ρLa < 1/2. Length dependent phase transitions
can now be monitored in a simple way by comparing two situations, one for
long microtubules and another one for short microtubules. First consider
L → ∞, in this case we recover the situation as calculated in the previ-
ous section, with ρ− = ρLa. The transition lines between the IN and the
EX phase as well as growing and shrinking are given by the solid lines in
Fig. 3.3. For comparison, the dashed lines correspond to the same situation,
however, for a microtubule of length L = 100.
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IN
IN/EX

Figure 3.4.: Length distribution of the microtubule for the IN and
the IN/EX regulation in the

”
exclusive“ and

”
non-exclusive“

scenario. Parameters are for exclusive: IN δ = 0.3, η = 0.4,
IN/EX δ = 0.2, η = 0.4, and for non-exclusive: IN δ = 0.4,
γ = 0.125, IN/EX δ = 0.2, η = 0.125.

To see whether and how these two different regulatory mechanisms can be
distinguished, it is necessary to monitor the filament length distribution and
fluctuations at high accuracy. Figure 4.5 shows length distributions for both
cases, IN regulation and IN/EX regulation, for the two cases discussed in the
previous section

”
exclusive“ and

”
non-exclusive“. For the latter case there

is basically no difference between IN and the IN/EX regulation. However,
for the exclusive case the data shows that the length distribution is much
broader and skewed during IN regulation as compared to a narrow and
peaked length distribution for the IN/EX regulation.

So far it appears that, indeed, the scenario of a length-dependent – but
boundary induced – transition influences length-regulation in a rather sub-
tle way: In the presence of the transition, filaments stay short and fluctuate
only little. Further the different scenarios from the previous sections can
hardly be distinguished based on the data. There is however one situation
in which a marked difference is observed. For the exclusive scenario fluc-
tuations are only enhanced in the absence of the length dependent IN/EX
transitions.

The above results indicate that length dependent processes can readily
be investigated using the mean-field results obtained in this Thesis. This
broad applicability leaves hope that also more complicated situations can be
analyzed with the set of methods developed here. It might be worthwhile to
consider biochemical networks that regulate microtubule tips. This would
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enhance the simple two state model for that was developed here towards
multiple competing states. Another rather speculative approach could also
be to incorporate nucleotide dynamics and the protofilament structure of
microtubules atop to the different length dependent scenarios. Finally, the
above result also provides an unusual perspective on fluctuations in driven
diffusive systems. While typically at a phase transitions fluctuations are
enhanced and systems exhibit long-range correlations, here the opposite
situation occurs: A phase transition pins the length of the system such that
length fluctuations are reduced. The reason for this can be identified as the
discontinuous transition between IN and EX phase. It will be interesting to
investigate these fluctuations further with respect to the role of Langmuir
kinetics for example and the critical current at the transition line.
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3.5. Traffic dynamic instability

Microscopic details are extremely important in the system studied here.
A remarkable result that underpins this statement is that depolymerizing
motors can length-regulate or exhibit bistable behavior if only the addition
of tubulin is inhibited by the presence of a motor at the tip.

Bistable driven diffusive systems have been found before in terms of the
Nagel-Schreckenberg model [224] for example, or in systems of bidirectional
transport [225], where it is intuitive that bistable behavior can occur. When
different particles move into opposite directions and they have to share a
bottleneck for example, stochastic effects are important at the bottleneck
site [226] that will either block one species, or the other. A simple scenario,
where intermittent density fluctuations play a role, is a TASEP with a
dynamic bottleneck that switches on and off at certain rates [227].

In the model investigated here, stochastic effects at the microtubule tip
are identified to trigger bistable behavior. Where bistability means that
multiple phases can be stable and stochastically switch from one phase to
the other. Within a mean-field approach these stochastic effects that stem
from attachment and detachment events at the tip can be explained. It is
remarkable that these stochastic effects at one site, i.e. on a microscopic
scale, amplify to ensue macroscopic changes in the density of the system.

The dynamics of this model has a marked similarity to dynamic insta-
bility of microtubules. And actually, the boundary conditions correspond
to microtubule dynamic instability [52], only the origin of the phenomenon
studied here emerges from collective motor dynamics rather than nucleotide
states.

On the following pages a manuscript is provided [228].
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Here we study a driven lattice gas model for microtubule depolymerizing molecular motors, where
traffic jams of motors induce stochastic switching between microtubule growth and shrinkage. We
term this phenomenon “traffic dynamic instability” because it is reminiscent of microtubule dynamic
instability [T. Mitchison and M. Kirschner, Nature 312, 237 (1984)]. The intermittent dynamics of
growth and shrinking emerges from the interplay between the arrival of motors at the microtubule
tip, motor induced depolymerization, and motor detachment from the tip. The switching dynamics
correlates with low and high motor density on the lattice. This leads to an effectively bistable
particle density in the system. A refined domain wall theory predicts this transient appearance of
different phases in the system. The theoretical results are supported by stochastic simulations.

I. INTRODUCTION

Microtubule (MT) depolymerizing enzymes [1–3] are
considered important for MT length-regulation [4–6].
These enzymes function in parallel to MT dynamic insta-
bility [7], which is the hydrolysis-driven stochastic switch-
ing of MTs between a growing and a shrinking state [8, 9].
The class of MT depolymerizing enzymes [3] contains the
kinesin-8 protein family, which are molecular motors that
walk towards the MT plus-end [10–12]. These have been
studied in detail in the biological literature, see Ref. [13]
and references therein.

Suitable theoretical models to describe the collective
movement of molecular motors on filaments are driven
lattice gases [14–18]. Such models explain the formation
of traffic jams on MTs [19–21] as observed in experi-
ments [21, 22]. Recently also lattice gases of dynamic
system size were studied. For example when individual
particles trigger lattice growth by forming new lattice
sites at the lattice end [23–26], or remove lattice sites [27–
29].

The interplay between lattice growth and shrinking
was investigated in a variety of settings, e.g. when par-
ticles stabilize shrinking lattices [30], or depolymerize
growing lattices [5, 6, 31, 32]. An analogy to these molec-
ular motor systems can be found in queuing theory, where
the length of a queue is dynamic [33] and waiting times
are of central interest [34].

Here we study a simplified stochastic model for a dy-
namic MT tip and MT depolymerizing molecular mo-
tors. The model is based on the totally asymmetric
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simple exclusion process (TASEP) [35] and includes spe-
cific stochastic processes that account for the growth and
shrinking of the lattice. Particularly, we study a kinetic
model where the following MT tip related processes are
included: 1) motors depolymerize the MT at the tip, 2)
motors inhibit MT growth if bound to the tip, and 3)
motors have a finite dwell time at the tip. Remarkably,
the system investigated here displays stochastic switch-
ing between extended periods of MT growth and MT
shrinking. This intermittent dynamics is reminiscent of
MT dynamic instability [8], yet its origin is different and
relies on the dynamics of motors at the MT tip: We iden-
tify the spontaneous formation of motor traffic jams at
the MT tip as a “catastrophe” event, because it leads to
shrinking of the MT. On the other hand, we identify the
stochastic detachment of a motor from the tip as a “res-
cue” event, because it initiates MT growth in the model.
The predictions of the model can be tested in biochemical
reconstitution experiments [36] and could help to identify
detailed MT-motor interactions as they become increas-
ingly accessible to experiments, see e.g. Ref. [37].

This work is organized as follows. In section II the
details of the model are presented. In the results section
we present the phenomenon of “traffic dynamic instabil-
ity” (III A). Then, the mean field solution of the model
is introduced and discussed (III B). In sections III C and
III D we numerically study the formation of shocks and
develop a domain wall theory which quantifies our obser-
vations. In particular, this domain wall theory allows to
identify metastable regimes in the phase space of the sys-
tem as is shown in the following sections: In section III E
we identify a phase of stripe formation due to particu-
lar velocities of domain wall motion in the system. The
intermittent phases are analyzed in greater detail analyt-
ically as well as numerically in sections III F and III G.
Finally we discuss our results and conclude in section IV.
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FIG. 1. Molecular motors on the MT lattice. At the left
motors enter the lattice from a constant reservoir ρ−, which
mimics the motor density in bulk of the MT. The motor den-
sity at the tip (MT plus-end) is denoted ρ+. Motors detach
from the MT tip at rate β. The MT grows in absence of a
motor at rate η and is depolymerized by a motor at rate δ.

II. MODEL

We consider a lattice gas model for molecular motors
close to the MT plus-end as illustrated in Fig. 1. Mo-
tors move from the bulk of the MT (left) to the plus-end
(right) at rate ν = 1 if the next site is empty. This choice
of ν sets the timescale of all other rate constants. The
dynamics can be formulated in terms of occupation num-
bers ni, where ni = 1 and ni = 0 denote the presence and
absence of a particle, respectively. At the left, the sys-
tem is coupled to a constant particle reservoir ρ−, which
emulates the bulk of the MT. At the right, the model
corresponds to the MT plus-end, where particles detach
at rate β. The above model is known as the totally asym-
metric simple exclusion process (TASEP) and plays a
paradigmatic role in non-equilibrium statistical mechan-
ics [38–41]. Furthermore, we denote the probability that
a motor occupies the tip-site with ρ+ and the probability
to find a motor in bulk of the lattice ρb. We consider a
lattice of constant size N , which is co-moving with the
plus-end of the MT. At the left boundary, the system
looses a particle if the lattice grows and the leftmost site
is occupied. In case of a depolymerization event, the lat-
tice moves to the left, where one lattice site is added. The
newly added site is occupied with probability ρ−. At the
right boundary, two more processes can happen: (i) Par-
ticles remove the terminal site with rate δ [29]. (ii) If the
tip-site is empty the lattice grows at rate η [6]. These
dependencies of MT growth and shrinking on motor oc-
cupation at the tip can also be interpreted as the two
different nucleotide states of MT tips [8]: in the GTP
state the filament grows, corresponding to the absence
of a motor in our model; in the GDP state the filament
shrinks, corresponding to a motor bound to the tip in
our model. The dynamics of motors on the lattice, how-
ever, renders our model different from GTP hydrolysis
dependent switching, and, therefore, distinct from MT
dynamic instability. In the model presented here switch-
ing between growth and shrinking (catastrophe) is due
to the spontaneous formation of traffic jams on growing
MTs. Switching from shrinking to growth (rescue) is due
to detachment of a motor from the tip.

FIG. 2. Stochastic simulations show intermittent dynamics.
Switching between periods of growth and shrinking are rem-
iniscent of MT dynamic instability and indicate bistable be-
havior of the system: The three panels show the trajectory of
the lattice tip, the bulk motor density on the MT ρb, and the
motor occupation of the tip n+. Shaded areas indicate peri-
ods of growth that involve low bulk density ρb ≈ 0.2. System
size is N = 200.

III. RESULTS

A. Intermittent dynamics

In stochastic simulations of the model we observe in-
termittent dynamics. In Fig. 2 this is illustrated for
three key observables, which are the trajectory of the
MT tip, the average bulk density of motors on the lat-

tice ρb = 1
N

∑N
i ni, and the motor occupation at the

tip n+ ∈ {0; 1}, see Fig. 2. Periods of depolymeriza-
tion are distinguished from periods of growth by a high
bulk density ρb ≈ 1 and persistent occupation of the
tip n+ = 1, cf. the white and shaded areas in Fig. 2,
respectively. The underlying switching processes of the
system can be understood intuitively in terms of a sepa-
ration of timescales: If the tip site is occupied, n+ = 1, it
constitutes a bottleneck [42, 43] behind which particles
pile up due to motor traffic and slow depolymerization.
For rare tip detachment (β � 1) this bottleneck persists
and eventually induces a high density of motors in bulk,
ρb ≈ 1. The high bulk density manifests the shrinking
state of the filament. However, the system may stochasti-
cally switch to growth. This can happen on the occasion
that the bottleneck at the tip site is removed through tip
detachment (rate β). Then the tip site becomes empty,
n+ = 0, which entails that the lattice is in its growing
state. The timescale of this rescue event is β−1.
Similarly, it is possible to obtain a qualitative under-
standing of catastrophe events: At high growth rates η,
motors can not keep up with the growing tip. The system
assumes a steady state where the bulk density is signifi-
cantly smaller than in the depolymerizing state, ρb ≈ 0.2,
see Fig. 2. Stochastic switching into the shrinking state
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FIG. 3. (a) Comparison of stochastic simulations (symbols)
and analytic results (lines) obtained for the tip densities from
mean-field calculations; see Eqs. (4), (5), and (7). For η =
0.35, ρ− = 0.5, β = 0.05, and N = 400 we find very good
agreement between theory and simulations. The transition
between the IN and the MC phase can hardly be recognized;
we plotted both functions and elaborate on the exact criterion
later. (b) Data for bulk densities (symbols) also confirms the
validity of mean-field calculations [lines as in panel (a)]. The
transition between the EX and the IN phase is discontinuous
in the bulk densities in agreement with what is known from
TASEP: At the transition between the EX and the IN phase,
both phases coexist and are separated by a diffusing domain-
wall (DW). (c) The DW ensues density fluctuations, which we
measured in terms of the normalized standard deviation of the
bulk density. At the EX/IN-transition density fluctuations
show a pronounced peak (indicated by the vertical line).

may happen if a single motor reaches the tip site and
induces traffic jam formation, which reverses growth to
shrinking. Thus, the timescale of catastrophe is given by
the arrival rate of motors at the tip, j+. This arrival rate
is sensitive to current fluctuations and the system size
N [44].

B. Limitations of the mean-field approach

In a first step to understand the dynamics of the sys-
tem, we determine the tip-densities, ρ+, within a mean-
field approach [5]. There are three generic phases of
motor dynamics on the lattice: a low density phase
(IN phase), a high density phase (EX phase), and a
maximal current phase (MC phase). The dynamics of
such a system is likewise dependent on particle input
ρ−, the particle exit rate β, or the capacity of particle
flow on the lattice, respectively [38–41]. As shown re-
cently, this requires an analysis of bulk and boundary
currents in the system [5]. Employing a mean-field ap-
proximation for nearest neighbor occupation numbers,
〈nini+1〉 = 〈ni〉〈ni+1〉, the bulk current of the system
reads [6]

Jb(ρb, ρ+) = ρb(1− ρb) + δρbρ+ − ηρb(1− ρ+), (1)

where the terms on the right hand side stand for par-
ticle hopping with on-site exclusion, depolymerization,
and polymerization of the MT. Note that the latter de-
pend on the probability that a motor is bound to the
tip. In terms of particle movements, depolymerization
and polymerization correspond to parallel updates of all
motors on the lattice towards, or away from the lattice
tip, respectively.

The current of particles that leave the system at the
MT tip depends on depolymerization and detachment
events and the tip density,

Jexit(ρ+) = (δ + β)ρ+ . (2)

The tip densities in the IN and the EX phase are obtained
in a straightforward manner [5, 6]. In the IN phase ρb =
ρ−, and in the EX phase ρb = ρ+. Bulk and tip currents
balance in the steady state due to particle conservation,

Jb(ρb, ρ+) = Jexit(ρ+) , (3)

and can be solved for the tip density. As results one
obtains

ρIN+ =
ρ(ρ+ η − 1)

ρ(δ + η)− δ − β , (4)

and

ρEX
+ = 1− β

1− δ − η . (5)

In the MC phase the current through the system is de-
termined by the transport capacity of the lattice defined
from an extremal current principle [5, 6], ∂ρbJb = 0. This
condition ensues bulk and tip densities in the MC phase
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FIG. 4. Deviation from the mean-field approximation depending on detachment rates β, for growth rate η = 0.79, and
depolymerization rate δ = 0.2. Panel (a) shows how the data for tip densities deviates from the analytic results for a set of
system sizes. The deviation from mean-field occurs at the transition between the EX phase and the MC phase, Eqs. (5) and (7),
respectively. Note that the deviation from mean-field result depends on the system size N . (b) Bulk density fluctuations in

terms of the normalized standard deviation of ρb. An heuristic scaling analysis, where we rescaled the detachment rate as β
√
N ,

shows data collapse for the onset of characteristic density fluctuations. (c) The average current through the system J measured
from stochastic simulations was evaluated from 103 realization of the process, where J = 〈Q〉/∆t. The number of particles
that leave the system from the tip through depolymerization or detachment is denoted Q and was measured in time intervals
∆t = 106. Scaling is obtained by plotting the data versus β

√
N . Panel (d) shows the scaled current fluctuations ∆J/N of

the dataset presented in (c), with ∆J = (〈Q2〉 − 〈Q〉2)/∆t. The data also reveals scaling with β
√
N and supports the scaling

relation between tip detachment and system size.

ρMC
b =

β + δ −
√

(β + δ)(β + η(δ + η − 1))

δ + η
, (6)

ρMC
+ =

2β + δ(η + 1) + (η − 1)η − 2
√

(β + δ)[β + η(δ + η − 1)]

(δ + η)2
. (7)

To test the validity of the mean-field approach we com-
pare the analytic results for the tip density, ρ+, with
stochastic simulation data. For slow growth rates we
find excellent agreement between the calculations and the
data, cf. Fig. 3(a). The transition between EX and IN
phase is discontinuous as known for TASEP, see Fig. 3(b).
For a later comparison with the intermittent regime, we
also evaluated characteristic density fluctuations across
the EX/IN transition, see Fig. 3(c). These observations
are in agreement with the low-density high-density coex-
istence in the classical TASEP [39–41], which corresponds
to the case of δ = η = 0 and ρ− = β in our model. In

Fig. 3 density fluctuations show a pronounced peak at
a critical depolymerization rate δc = ρ− − β, which can
be attributed to the EX/IN transition. Our observation
of intermittent behavior, suggests that the mean-field ap-
proximation becomes invalid at particular parameter val-
ues. Thereby the detachment rate of motors from the tip,
β, plays a critical role. To understand the emergence of
intermittent behavior, and the eventual break-down of
the mean-field approximation, we studied the system as
a function of system size N and β in stochastic simula-
tions [45]. Figure 4(a) shows how the data for the tip den-
sities ρ+, deviate from the analytic results for a growth
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rate η = 0.79 and a depolymerization rate δ = 0.2. While
there is good agreement for relatively large motor detach-
ment rates β > 0.03, analytic results and the data deviate
significantly for smaller values of β. To exclude the pos-
sibility that these deviations from mean-field results are
due to finite size effects, we also recorded the bulk den-
sity and the particle current through the system as well
as the fluctuations of these two quantities. As already
shown above in Fig. 2, the bulk density switches between
states of high and low density in the intermittent regime.
Thus, we hypothesize that density and current fluctua-
tions are characteristic for the intermittent regime. To
test this hypothesis we evaluated the bulk density with
respect to fluctuations in terms of the normalized stan-
dard deviation

√
Var(ρb) =

√
〈ρ2b〉 − 〈ρb〉2/〈ρb〉. The re-

sults are shown in Fig. 4(b). We found that for all studied
system sizes, ranging from N = 200 to N = 3200, fluc-
tuations peak at a particular value of β. This excludes
the possibility that the observed phenomenon is a finite
size effect. Furthermore, by plotting the data versus the
rescaled detachment rate, β

√
N , we found data collapse

for the onset as well as for the peak of the fluctuations.
This heuristic analysis ensues the following system size
dependent law for the onset of intermittent dynamics

βc ∝ N−1/2 . (8)

The numerical measurement of the average current in the
system, J , and the current fluctuations ∆J , confirms the
above scaling behavior, see Fig. 4(c) and (d). Note, that
the onset of intermittency also depends on the actual
values of δ and η, as will be shown later.

C. Formation of shocks

The appearance and dissolution of motor traffic jams
at MT tips, provides a mechanism for stochastic switch-
ing between states of growth and shrinking. Recent stud-
ies have investigated TASEP systems with similarly com-
plex shock dynamics, see [43, 46–48]. In the following we
briefly discuss methods and results of some of those ref-
erences and briefly elaborate on the differences to our
work.

Turci et al. [43] investigated a system with a defect
which underlies on/off kinetics on an otherwise static
lattice with TASEP dynamics. Intermittent density fluc-
tuations are observed, including strong deviations from
the classic mean-field approach. To improve beyond a
mean-field approach, the authors employ an intermit-
tent mean-field approach which allows to calculate the
average current in the system during intermittency. Sa-
hoo et al. [47] investigated a defect which in addition to
attachment/detachment kinetics also diffuses. In their
model traffic jams form and dissolve stochastically in the
bulk of the lattice. The bulk defects considered in the
above references [43, 47] lead to phenomena which are
similar to our observations at the MT tip. The difference

to our work is that in [43] and [47] the defects are road-
blocks, whereas in our model the kinetic processes at the
MT tip can function as a defect.

Pinkoviezky and Gov [46] investigated a system with
defect particles on a constantly growing lattice, where the
defect property is passed from one particle to the next
against the direction of transport. This ensues defect
propagation and interesting DW dynamics in the bulk
of the lattice. A simple mean-field approach fails to de-
scribe the system, but a careful analysis of the different
spatial domains that evolve allows an analysis of the de-
fect dynamics. The main differences to our model are,
the feedback between lattice dynamics and tip occupa-
tion, and that the MT tip site is the only defect in the
system we study.

In the following we propose a domain wall theory to
explore phase diagrams of TASEP systems where tip dy-
namics and bulk dynamics are coupled through shorten-
ing or growth processes. The theory reveals dynamical
phase transitions in the model and thereby explains why
simulation data deviate from the mean-field calculations,
cf. Fig. 4(a). On the level of individual trajectories,
however, the mean-field results can be verified: The ve-
locities of domain walls can be read out directly from
kymographs. Our approach generalizes previous work on
domain wall theory [49, 50] towards an understanding of
driven diffusive systems of interacting particles on dy-
namically evolving lattices.

D. Domain wall theory

Because analytic expressions for the currents, the tip
densities, and the bulk densities are known for the dif-
ferent phases, we employ a domain wall (DW) theory
and extremal current principle [38, 49–51]. In short, DW
theory determines how shocks and density perturbations
evolve in the system: The direction in which a shock
moves and the direction in which a density perturbation
spreads determine the existence and stability of the dif-
ferent phases [49]. In other words, we are interested in
the sign of various DW velocities vDW, and the sign the
collective velocity vcoll which tells about the spreading of
density perturbations. In the model considered here the
bulk currents are not independent of the tip density, as in
the TASEP. Microscopically this means that the occupa-
tion number of the tip n+ ∈ {0, 1} influences DW motion
and thus the phase behavior of the system, see the kymo-
graph in Fig. 5 for example. The figure shows stochastic
switching in the tip occupation number. Switching be-
tween n+ = 0 and n+ = 1 is indicated by arrows and
dashed horizontal lines. The solid lines are guides to
the eye indicating the correlation between tip occupa-
tion and distinct DW velocities in the bulk of the lattice.
If switching events occur within a relatively short time
window, multiple DWs coexist in the bulk of the lattice
as indicated by the numbers 1© and 2© in Fig. 5. The
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FIG. 5. Kymograph of the model in a regime with strong
density fluctuations. The data shows how two traffic jams
nucleate at the MT tip and propagate into the bulk of the
system before they dissolve. Dashed lines and triangles in-
dicate switching of the tip occupation between n+ = 1 and
n+ = 0. Shock formation and propagation in the bulk of
the lattice is highlighted by white solid lines. Parameters are
β = 0.005, ρ− = 0.5, δ = 0.2, η = 0.79.

DW velocity can be analyzed analytically, it is given by

vDW =
J left − J right

ρleft − ρright , (9)

where left and right denote the densities and currents on
either side of a DW. The sign of vDW determines whether
a shock in the system travels to the left (vDW < 0) or the
right (vDW > 0). For our purposes the typical procedure
by Kolomeisky et al. [49] needs to be modified, because
the currents J on either side of the DW depend explicitly
on the tip density ρ+ as illustrated in Fig. 6. In the
following we investigate vDW between the MC phase and
the EX phase, since we have seen that this transition is
involved in the stochastic switching between a growing
and a shrinking state of the lattice, cf. Fig. 7. For the
moment, consider the MC phase at the left side of a DW
and the EX phase at its right. This implies that the tip
density is in the EX phase ρ+ = ρEX

+ . The DW velocity
vleft/right then reads

vMC/EX =
J(ρMC

b , ρEX
+ )− J(ρEX

b , ρEX
+ )

ρMC
b − ρEX

b

. (10)

Note that both currents, J left and J right, depend on the
same tip density, ρEX

+ , but differ with respect to the bulk

densities ρleft = ρMC
b and ρright = ρEX

b . Vice versa, if the
MC phase is on the right side of the DW the tip density
is ρ+ = ρMC

+ . With the EX phase at the left, the DW
velocity is

vEX/MC =
J(ρEX

b , ρMC
+ )− J(ρMC

b , ρMC
+ )

ρEX
b − ρMC

b

. (11)

Evaluating the DW velocities in the system by employing
the current given in Eq. (1) and the tip and bulk densities

FIG. 6. Illustration of possible domain walls (a) and a density
perturbation (b) in a background density ρb. The spike-like
behavior of the density profile at the lattice tip is also il-
lustrated. Note the particular role of the tip density ρ+: it
influences the currents in the system.

for the individual phases, we are able to construct the
phase diagram. In the following we provide an attempt
for a characterization of the arising phases.

E. Stripe phase

As suggested from the data shown in the kymograph of
Fig. 7, there is a regime in which the system completely
switches from the MC phase to the EX phase for small β.
Because the switching appears as a band of motor parti-
cles across the lattice, we refer to this regime as a stripe
phase, cf. Fig. 7(a). A reasonable and simple condition
for the stripe phase is that all three domain walls need
a negative DW velocity. This is evident from the ky-
mograph of Fig. 7. For β = 0 this condition cannot be
fulfilled:

vIN/EX = −ρ+ δ , (12)

vEX/MC = −η , (13)

vMC/EX = 0 , (14)

where right after the switching event to growth [Eq. (13)]

we assumed ρrightb = ρ+ = 0, and right after the switching

event to depolymerization [Eq. (14)] we assumed ρrightb =
ρ+ = 1, as suggested from the data. The first two of the
above equations indeed show a negative DW velocity as
expected. The MC/EX domain wall, however, does not
show a negative velocity as observed in the simulations.
Let us note that for β = 0 we find a critical growth
rate ηs = 1 − δ (dashed line in Fig. 8) or likewise, a
critical depolymerization rate δs = 1 − η [6]. To better
explore the possibility of vMC/EX < 0 we study the case
β > 0. We find that for finite values of β the critical
line broadens up into a regime in which vMC/EX < 0
is possible. In terms of the growth rate, the conditions
for this regime can be found from vMC/EX = 0 and that
vMC/EX has to be real in the relevant parameter regime.
It follows that the parameter region of vMC/EX ≤ 0 is
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FIG. 7. (a) Kymograph of stochastic switching from lattice growth to shrinking and back. Solid lines indicate the velocities
at which DWs propagate in the bulk of the lattice. For the time points indicated by thin dashed lines the density profiles
are illustrated in panels (b) and (c) as indicated. Panel (b) shows the DW dynamics before and after the catastrophe event.
In (c) the DW dynamics before and after the rescue event is illustrated. (d) Illustrates the consecutive phase changes in the
system which we call “traffic dynamic instability”, indicative of the fact that the system does not settle into its non-equilibrium
stationary states. Parameters in (a) are β = 0.001, ρ− = 0.5, δ = 0.2, η = 0.79.

FIG. 8. Phase diagram for the stripe phase. For β = 0 the
system shows a discontinuous transition between EX and MC
phase, where stripes emerge right at the critical line (dashed).
In the case β > 0 a distinct region in phase space exists in
which the system robustly forms stripe patterns due to the
creation of shocks at the MT plus end and a subsequent switch
to polymerization.

given by

η ≥ 1

2

(
1− δ +

√
−4β + (1− δ)2

)
, (15)

η ≤ 1− δ
(

1 +
β

β − δ2 + δ

)
. (16)

The above relations provide the condition for stripe for-
mation in the system based solely on domain wall the-

ory, see shaded are in Fig. 8. Although we find quali-
tative agreement with individual kymographs, compare
Fig. 7(a) and illustrations in Fig. 7(b), (c) and (d), the
stochastic nature of the phenomenon makes it hard to
quantitatively confirm this regime numerically. The ma-
jor difficulty thereby is that the regime of intermittent
dynamics is not only confined to the stripe phase but
extends to above and below in phase space. In these
regimes the system does not reach a non-equilibrium
steady state either, but is continuously driven between
different phases in course of time. This view is fortified
in the following section.

F. Intermittent phase

To characterize the non-equilibrium state in which the
system does not settle into a particular (non-equilibrium)
stationary state, we distinguish domain walls between
different phases considering the IN, EX, and MC phase.
An illustration of the possible domain walls in the system
is shown in Fig. 6(a). In particular, we are interested in
the direction of DW motion. This quantity determines if
a transient DW moves to the left or to the right in the
system.

Thus, we investigated the sign of vDW for the six pos-
sible combinations of DWs in the system. Our results
are summarized in Tab. I. In the following we discuss
the cases related to the EX phase, because they are par-
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ticularly relevant to understand the intermittent regime.
We begin with the DW between the EX and the MC
phase. Notably neither of the two phases, MC or EX at
the right hand side of the system, is stable against the
other phase on the left hand side of the system. This
means, that depending on the initial preparation of the
system, MC/EX or EX/MC, the final state of the system
is MC or EX, respectively, and thus ergodicity seems to
be broken. Similar observations were made recently for
an exclusive queuing model [52]. The parameter regime
where the phenomenon occurs can be determined from
the conditions vMC/EX > 0 and vEX/MC > 0. We find a
critical growth rate ηc, which reads

ηc = 1− δ − β

1− δ − β . (17)

Further, the criterion for the EX/MC phase transition,
in the absence of particle detachment from the tip, coin-
cides with the change of sign in vEX/MC from positive to
negative:

η∗ = 1− δ . (18)

Consequently for η > η∗ the MC phase is stable as noted
previously [6]. The system behavior for η < ηc remains
to be determined. As shown in Tab. I there is also the
possibility that an IN phase exists in the system below a
critical growth rate η < ηcIN. This finding is in agreement
with our earlier observation that density and current fluc-
tuations are large in this parameter regime, cf. Fig. 4.
Here we refrain from a more detailed investigation of the
IN phase and study the role of fluctuations for the EX
phase instead, because only if the EX phase is unstable
intermittency is possible. To this end we analyze the col-
lective velocity in the EX phase. The collective velocity
is defined as

vcoll = ∂ρbJb(ρb, ρ+) . (19)

It probes the stability of a small density perturbation in
a background bulk density, see Fig. 6(b) for an illustra-
tion. Quite generally, the EX phase is characterized by
negative collective velocity, vEX

coll < 0, because in a high
background density a small perturbation moves to the
left [49]. However, in contrast to typical TASEP sys-
tems, this is not the case in our model. In the regime
of ηc < η < η∗, the velocity of a perturbation is positive
vEX
coll > 0, indicating that density perturbations in the sys-

tem travel to the right. Interestingly the critical growth
rate which determines vEX

coll = 0 coincides with the critical
growth rate as obtained from the DW analysis above, ηc.

Until now we have relied on the principles of classical
DW analysis to determine the phase behavior of the sys-
tem. We have learned that between the EX and the MC
phase, for ηc < η < η∗, DW velocities and the collec-
tive velocity of the EX phase show interesting behavior.
For η > η∗ the system is robustly in the MC phase [6],
and for η < ηc the EX phase is stable in the system.
In the case ηc < η < η∗, however, the system does not

TABLE I. Summary of results for DW motion. ηc refers to the
value determined by the EX/MC case given by Eq. (17). The
boxed cases indicate mutually unstable cases of DW motion.

Domain wall η < ηc ηc < η < η∗ η > η∗

MC|EX n.a. L|H→ L|H→

EX|MC n.a. H|L→ H|L←

MC & EX MC

IN|EX L|H← L|H← L|H←

EX|IN H|L← H|L→ H|L←

EX & IN EX EX & INa

MC|IN n.a. L|H→ L|H→

IN|MC n.a. H|L← H|L←

MC MC

a Note this combination is not realistic, because neither the EX
nor the IN phase exist in this parameter regime [6].

settle into a stationary state, but is continuously driven
between different transient states. So far this behavior
can be summarized as follows

η > η∗ MC ,
ηc < η < η∗ MC & EX ,
η < ηc EX .

As discussed in the previous sections, it appears from
stochastic realizations of the system (Fig. 5), that per-
turbations at the MT tip render the bulk of the system
unstable and promote the observed intermittent behav-
ior of the system. This importance of the boundaries
in driven diffusive systems was recognized by Krug [38].
And the model we study here adds dynamic complexity
to boundary induced phase transitions [38]. Therefore
we try to include stochastic switching at the MT tip into
the analysis of the collective velocity as discussed above.
In the following we show how the collective velocity is af-
fected from switching events at the tip, by assuming that
the tip density ρ+ is characterized by only two states,
given by the tip occupation number, n+ = 1 and n+ = 0.
Thus we assume that the tip density takes only values
ρ+ = 1 and ρ+ = 0, which leads to the following equa-
tions for the collective velocity:

vcoll(ρ+ = 1) = 1− 2ρb + δ , (20)

vcoll(ρ+ = 0) = 1− 2ρb − η . (21)

The above equations illustrate that stochastic switching
between an empty and an occupied MT tip can promptly
affect the sign of the collective velocity. This can be seen
immediately, because depolymerization (rate δ) and poly-
merization (rate η) contribute with different signs to vcoll.



9

FIG. 9. (a) Phase diagram of the model in terms of depolymerization and growth rates for ρ− = 0.5 and β = 0.05. The shaded
areas show regimes of intermittent dynamics as calculated in the main text. The topology of the diagram with respect to high
density (EX), low density (IN) and maximal current density (MC) phases correspond to the case of β = 0 [6]. The inset shows
how bulk density fluctuations are increased in the intermittent regime. A comparison with Fig. 3(c) reveals that fluctuations
are enhanced by almost a factor of four as compared to the discontinuous EX/IN transition. Data was recorded for system
size N = 400 and η = 0.4 + δ along the thick dashed line. (b) Representative kymographs across the intermittent regime.
Parameter values correspond to those of the filled circles in the inset of panel (a).

This means that depending on the state of the MT tip
– occupied or empty – perturbations may either stabilize
or destabilize the bulk density. This can be illustrated
in a straight forward manner for the IN phase, when we
choose ρb = ρ− = 1/2 for example. In this case the sign
of vcoll depends only on the tip density: For ρ+ = 1 and
ρb = ρINb the lattice is in the shrinking state, while par-
ticles on the lattice still travel towards the tip at unit
velocity. Consequently perturbation travel to the right
with vcoll = δ. This follows directly from Eq. (20) and
is in line with the kymographic data presented above.
For ρ+ = 0 the lattice is in the growing state, and par-
ticles on the lattice travel towards the tip at a reduced
velocity 1 − η. As can be seen from Eq. (21), density
perturbation travel to the left with negative collective
velocity vcoll = −η, again in agreement with the kymo-
graphic data. Now let us apply this argument for the EX
phase, where the situation is more intricate. The sign-
change of the collective velocity, vcoll(ρ

EX
b , ρ+ = 0) < 0

and vcoll(ρ
EX
b , ρ+ = 1) > 0, is restricted to a particular

regime η† < η < ηc, with

η† = 1− δ − 2β

1− δ , (22)

while the remaining part of the parameter space is not af-
fected. As a consequence the EX phase is destabilized by
molecular switching events at the MT tip in this regime.
This means that for growth rates η† < η < ηc the molec-
ular noise due to motor occupation at the tip renders the
EX phase unstable. This mechanism is complementary

to the above argument for DW velocities. In Fig. 9(a) we
show the phase diagram with the EX, MC and IN phase
as well as the different intermittent regimes. In the inset
we quantified density fluctuations across the intermittent
region in phase space. The different regimes, η† < η < ηc

(light gray) and ηc < η < η∗ (darker gray), can be identi-
fied reasonably well, given the complexity of the dynam-
ics. As will be shown in the next section it is instrumental
to employ higher order moments and a direct evaluation
of bulk density distributions to distinguish between the
regimes. Figure 9(b) shows kymographic data of typi-
cal trajectories in the intermittent regime. This direct
visualization of the process is hard to analyze compu-
tationally, but in the eye of the beholder, domain walls
and qualitative differences in current fluctuations can be
readily recognized.

G. Bistability and collective motion

To complete the picture of the intermittent regime,
we performed extensive stochastic simulations to obtain
the bulk density distribution, see Fig. 10(a). We fur-
ther analyze the data using the bimodality parameter
b = (µ2

3 + 1)/µ4, where µ3,4 are the third and fourth
standardized central moments of the density distribu-
tion. Figure 10(b) displays the results. The intermittent
regime is indicate by light and dark gray regions in the
plot. At δ†, b increases with increasing δ and η, it peaks
at δc and drops to a constant value b = 1/3 for δ > δ∗.
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FIG. 10. (a) Distribution of the bulk density from trajec-
tories as long as 108 time steps for β = 0.05 (thick). (b)
The bimodality parameter b, supports the role of fluctuations
during traffic dynamic instability: b = 1/3 corresponds to a
Gaussian distribution and b = 5/9 to a uniform distribution.
A distribution with b > 5/9, as reached for δc, can be con-
sidered bimodal. Simulations were conducted at system size
N = 400 and η = 0.4 + δ.

The latter value corresponds to a Gaussian distribution.
The above analysis corroborates our findings for the in-
termittent regime: Stochastic switching between differ-
ent phases ensues large density fluctuations which can
be recognized in terms of a bistable bulk density distri-
bution.

Finally, we wish to address the scaling relation we have
found for density and current fluctuations in the begin-
ning of the paper [Fig. 4]. Although we have discussed
the origin of fluctuations and intermittent dynamics in
the system, an explanation for the characteristic scal-
ing βc ∝ N−1/2 for the onset of density fluctuations has
remained elusive. In order to gain at least some phe-
nomenological insight, kymographic data was recorded
for a set of system sizes and β = 1

4N
−1/2, what approx-

imately corresponds to the onset of the regime of strong
fluctuation. The results are shown in Fig. 11. In particu-
lar, we chose the fields of view in a mainly growing state,
where the system is most likely in the MC phase. A close
inspection reveals that density fluctuations on the lattice
do not vanish in a diffusive manner, but rather perform
erratic zig-zag motion on the lattice, as indicated by the
symbols. This is opposed to the situation β > βc, where
perturbations drift to the left of the system. Similarly
for β < βc the shrinking phase becomes more likely and
perturbations move towards the tip of the lattice. The
data shown in Fig. 11 suggests that individual density
fluctuations are maintained and held in the bulk of the
system through the combined dynamics of growth and
shrinking. A detailed analysis however lies beyond the
scope of this paper. We think that a theory in which
perturbations were considered as quasi-particles or col-
lective excitations of the system are likely to provide a
deeper understanding of the N−1/2 relation.

IV. DISCUSSION AND CONCLUSION

In this article we presented a driven lattice gas inspired
from microtubule depolymerizing motors (kinesin-8), and
based on the totally asymmetric simple exclusion pro-
cess. The system exhibits boundary-induced intermit-
tent dynamics, with stochastic switching between differ-
ent phases of motor traffic and between lattice growth
and shrinking. The standard mean-field approach ex-
plains density and current profiles of the system, but
misses a proper description of the intermittent regime.
We introduce an extended domain wall theory comple-
mented by an extremal current principle which predicts
the intermittent regime, in which multiple phases coexist.
This phase coexistence can not be resolved with time- or
ensemble-averages, because in such data, it appears the
system deviates from the usually well-behaved mean-field
case. However, an interpretation of individual realiza-
tions of the process (like in a single molecule experiment)
allows to apply the mean-field results to the data.

Intermittency in driven systems has been reported be-
fore. For example in bidirectional transport [53–55], and
in cellular automata for traffic flow [56, 57]. The reasons
for the interesting dynamics in these systems are particle
interactions in bulk of the systems – in contrast to the
situation considered here, where the system is triggered
at the boundary. Quite generally, the presence of bot-
tlenecks leads to interesting effects which affect the par-
ticle densities in driven systems [58–60]. This includes
dynamic bottlenecks in bulk [43, 55, 61, 62], at system
boundaries [63–65], as well as dynamically evolving bot-
tlenecks [46–48]. In our case we could attribute the inter-
mittent dynamics to bulk density fluctuations which arise
through molecular noise at the lattice tip, i.e. switch-
ing between tip occupations n+ = 1 and n+ = 0. The
sources of this noise is motor detachment and arrival at
the tip. In our model, the bulk density fluctuations can
be attributed to a region in phase space in which different
phases of motor traffic coexist, or in other words, multi-
ple phases can be transiently stable for a given set of pa-
rameters. To identify these dynamical phase transitions
and track them analytically we neglected attachment and
detachment kinetics of the motors, and thus assumed a
constant density profile.

In a biological situation where molecular motors inter-
act with MTs, this assumption is valid when the length
of the filament exceeds a critical length ∝ ωa

−1, where
ωa is the attachment rate of motors to the MT [29]. We
checked numerically that the intermittent regime also oc-
curs in the case of a constant density profile with explicit
motor attachment and detachment. This can be under-
stood from a lattice gas point of view, where motor de-
tachment from the tip is equivalent to the creation of a
“hole” at the tip: A hole can reach the tip by particle
detachment in bulk and subsequent transport of the hole
to the tip through depolymerization of the lattice.

The stochastic switching between growth and shrink-
ing in our model emerges from collective effects of molec-
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FIG. 11. At the system size dependent critical detachment rate βc(N), perturbations underlie erratic zig-zag motion in the bulk
of the system as highlighted by the triangles and vertical dashed lines. Shown are kymographic data for several system sizes
as indicated. Periods of depolymerization and polymerization alternate in a way that density perturbations are maintained
within the system. Perturbations seem to perform random walks that are created and annihilated stochastically. Simulation
parameters were δ = 0.2, η = 0.79, ρ− = 0.5, and, from left to right, βc(400) = 0.0125, βc(800) = 0.008838, βc(1600) = 0.00625.

ular motor traffic. For MT dynamic instability in con-
trast the mechanism of stochastic switching between
growing and shrinking can be attributed to the nucleotide
state of the MT lattice [66]. A comparison by numbers
could be thought of within the mathematical framework
provided by Dogterom and Leibler [67], where the param-
eters are growth and shrinking speeds v+, v−, and the fre-
quencies of catastrophe f+− and rescue f+−. Our model
relates microscopically to these macroscopic parameters.
The speed of the MT tip is a function of the motor density
at the MT tip and given by v(ρ+) = η(1− ρ+)− δρ+ [6].
Depending on whether the system is in a high density
phase or a low density phase v(ρ+) can be negative or
positive. For the switching frequencies the mapping is
only possible for the rescue frequency. It can be di-
rectly attributed to the parameter of particle detachment
from the tip f−+ ∝ β. Catastrophe in contrast is ini-
tiated by particle arrival at the tip and initiation of a
traffic jam. Thereby current fluctuations are important
and more elaborate techniques are necessary to calculate
these [44].

A future challenge is to understand the interplay be-
tween the MT lattice, MT tips, and MT associated
proteins. The characteristics of each of these parts

contribute significantly to MT dynamics, but the re-
lations between them are still obscure; necessary in-
formation is available: protein localization mechanisms
at MT tips [68], enzymatic functions of tip related en-
zymes [69, 70], and dynamic information about the MT
tip structure [71, 72].

The present model constitutes an example how en-
zymes may influence MT dynamics. The mechanism we
found is complementary to known mechanisms of MT
regulation, but may contribute to MT regulation in a
similar way as does MT dynamic instability [8].
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J. P. Straley, J. Phys. A: Math. Gen. 31, 6911 (1998).

[50] V. Popkov and G. M. Schütz, Europhys. Lett. 48, 257
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Chapter 4.

Nucleation of Filaments
– How Phase Transitions Regulate the Cytoskeleton

Nucleation phenomena have been studied in great detail in order to under-
stand the formation and growth of crystals. With the advent of computers it
became possible to perform molecular dynamics simulations and to test the
thermodynamic theories on nucleation. A variety of classic nucleation prob-
lems were addressed like this, for example protein crystals formation [229],
or the freezing of water [230]. More recent investigations focused on salt
crystallization in confinement [231]. The nucleation mechanisms of fila-
ments, however has remained at large since the seminal work by Oosawa
and Kasai [232].

Because studying nucleation in experiments is difficult, the kinetic details
of filament nucleation have remained elusive. Recently, however, kinetic
modeling has proven a versatile tool to investigate the polymerization dy-
namics of filaments in very small systems comprising ∼ 10 particles [131].
For such small systems, analytic results could be obtained for first-passage
times of the assembly dynamics. Here, a similar approach is pursued with
focus on the nucleation reaction and the number of monomers available in
the system.

We are interested in the nucleation of actin filaments. The nucleation of
actin filaments is known to play an important role in vivo, for example in
force generation [107] and cell motility [233]. Recent thermodynamic esti-
mates predicted that actin dimers and trimers are very unstable molecules
with a lifetime of 10−8 seconds [234]. This is in stark contrast to the sit-
uation in the cell, where nucleation factors are present, such as ARP2/3.
These proteins have been measured to stabilize the dimeric and trimeric
forms of actin and thus promote the nucleation of filaments [235].

For the study presented here, an individual-based particle approach is
employed, where the number of monomers is conserved in the system. Mo-
tivated by the aforementioned results on dimeric and trimeric actin and
nucleation proteins, it is systematically investigated how the stability of
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oligomeric species influences the filament polymerization kinetics. Once a
filaments has formed, it performs a random walk. There are three different
phases in the nucleation process that can be distinguished, and understood
intuitively:

i) If dimers and trimers are very stable, all monomers are sequestered.
There are no filaments in the system.

ii) If dimers and trimers are very unstable, then all monomers absorb
into one filament which is initiated stochastically.

iii) At intermediate lifetimes of dimers and trimers there is a constant
pool of filaments. The system balances at a point where the number
of filaments that go extinct equals the number of nucleating filaments.

These three cases of the kinetic model presented in the following effec-
tively account for all known features of the actin nucleation process. In
vitro, when nucleation is a rare event [234]. In vivo when nucleation is
regulated by protein nucleation factors [235], or when sequestering proteins
like thymosin β4 reduce the pool of monomers available for polymerization.

4.1. Model definition

Figure 4.1 depicts the kinetic model for filament nucleation. We consider a
closed system that explicitly contains M free monomers in a small volume
V to mimic the situation of living cells [143, 152] and artificial systems like
for example lipid vesicles and emulsion droplets [126, 152, 236, 237]. The
molecular species involved in the nucleation reaction are free monomers
(M), dimers (D), and trimers (T ). Oligomers containing more than three
monomers are considered as filaments (F ). In the following we set the
volume of the system to unity V = 1 and employ a particle based picture
of the nucleation reaction. As a consequence of this particle based picture
the typical unit for concentrations

”
mole“ is circumvented. Growth and

shrinking of filaments is implemented as random walk, i.e. growth and
shrink rates are set to unity, k+ = 1 sec−1 and k−f = 1 sec−1. The rates of
dimer and trimer formation are k+ = 1 sec−1, however, with a fixed number
of particles, dimer formation is implemented via a reaction probability rate
constant, k+

micro = 2k+, times a combinatorial factor of all possible reactions,
1
2
M(M − 1) [238]. For trimer formation, the number of possible reactions

is D ×M and the reaction rate and the reaction probability rate constant
are equal. The parameters that determine nucleation in the system are the
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Figure 4.1.: Kinetic model of filament nucleation. (A) Definition of the
reaction rates and the species involved in the nucleation pro-
cess. In particular the dissociation rates of dimers and trimers
k−1 and k−2 , respectively, determine the lifetimes (1/k−1,2) of the
dimeric and trimeric species. (B) Illustration of a system with
a finite monomer pool of M monomers at time t = 0 (left)
and at a later time point t > 0, where filament nucleation and
elongation has occurred (right).

dissociation rates of dimers and trimers, k−1 and k−2 , respectively, and we
introduce the notation k− for the case that k−1 = k−2 .

The above model definition and choice of parameters render the initial
monomer number M and the lifetimes of dimers and trimers (the inverse
dissociation rates) the free parameters in the model. Because of the many
species that emerge stochastically during the nucleation reaction, it is rather
difficult to investigate the system analytically. Therefore extensive stochas-
tic simulations [239] are employed to numerically study the system.

Our model coincides with the standard nucleation pathway for actin fil-
aments [234] as a series of sequential reactions where growth and shrinkage
occur by monomer association and dissociation, respectively. This model
has been studied before without the complex nucleation reactions consider
here [131, 240].



84 4. Nucleation of Filaments

4.2. Phase transitions

The lifetimes of dimer and trimer molecules are found to critically influence
the long time behavior of the system in terms of the number of filaments
F that form. Simulation data reveals that the number of filaments F de-
pends on the dimer/trimer dissociation rate k− (Fig. 4.2A) in an interesting
way. For k− small and large the number of filaments is small. For inter-
mediate values, however, the number of filaments reaches a maximal value
which depends on the initial number of monomers M . This observation is
also confirmed when k−1 and k−2 are varied independently (Fig. 4.2B). The
data suggests three qualitatively distinct regimes which we discuss in the
following:

First, for very stable dimers or trimers (i.e. k− � 1) the system does
not form filaments, because all monomers are sequestered into dimers and
trimers. Consequently monomers are not available for filament growth and
the system suffers from a lack of monomers which inhibits the formation
of critical nuclei for growth [241]. Note that the stochastic formation of
filaments is nevertheless possible.

Second, for very unstable dimers and trimers (i.e. k− � 1) only one
filament forms which contains almost all monomers. This behavior can be
understood intuitively. Because dimers and trimers are unstable, filaments
only form as long as a large pool of monomers is available that allows
the system to overcome the nucleation barrier. In the course of the dy-
namics, however, the system reaches a state where all monomers are built
into filaments and the nucleation barrier prohibits the de novo formation
of filaments. As a result, filaments may only grow at the cost of other
filaments. As filaments perform one-dimensional random walks they are re-
current [242], which means they will reach an unstable oligomeric state with
probability 1 and subsequently disappear at the benefit of a single largest
filament containing all monomers. Note that this coarsening dynamics may
cover very long timescales which depend non-trivially on both, the initial
amount of monomers and the dimer/trimer lifetimes.

In the third regime filaments coexist and continuously nucleate and dis-
integrate. The system reaches a dynamic state where the number of newly
formed filaments balances the number of filaments that decay. Consequently
the average number of filaments 〈F 〉 is roughly constant and greater than
one.
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Figure 4.2.: The Number of filaments F is determined by dimer and trimer
dissociation rates. (A) There is a pronounced peak in the num-
ber of filaments depending on dimer and trimer dissociation
rate, k−. The number of initial monomers is also indicated.
(B) If dimer and trimer lifetimes differ, k−1 6= k−2 , the maxi-
mum in the number of filaments persists, as well as the dif-
ferent regimes described in the main text (mesh and contour
map).

Scaling of the number of filaments

Which of the three regimes is assumed depends critically on the number of
monomers M and the dimer/trimer dissociation rate k−. To simplify the
analysis hereafter the case of equal dimer and trimer dissociation rates is
considered. Performing a heuristic scaling analysis we find a scaling function
for the mean number of filaments, which renders 〈F 〉/M a universal function
of the rescaled dimer/trimer dissociation rate k−

√
M , see Fig. 4.3A.
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Figure 4.3.: Scaling functions for the mean number of filaments: (A) for
the regime of filament coexistence, (B) at the phase transi-
tion between the monomer sequestering and the coexistence
regime, and (C) at the phase transition between the coexis-
tence and the coarsening regime. Symbols as in Fig. 4.2A;
solid lines are guides to the eye.

All data points collapse onto a single curve, while the peak of 〈F 〉 (cf.
Fig. 4.2) is preserved. It also appears that the scaling function has a max-
imum. It lies approximately at k−

√
M = 1, providing a criterion for a

critical nucleation rate, k−max, which maximises the number of filaments de-
pending on the monomers in the system:

k−max =
1√
M

. (4.1)

The heuristic scaling approach also reveals both phase transitions, the
one between the regime of monomer sequestration and filament coexistence,
and the one between filament coexistence and the coarsening regime. The
scaling as in Fig. 4.3B shows the nucleation transition, which occurs at a
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critical dimer/trimer dissociation rate given by

k−nuc =
1√
M3

. (4.2)

And Fig. 4.3C shows how the coarsening transition starts at a critical
dimer/trimer dissociation rate given by

k−cor =
√
M . (4.3)

The above set of equations determines the phase behavior of the sys-
tem with distinct phases of monomer sequestering, filament coexistence
and coarsening.

Scaling of species that participate in nucleation

Figure 4.4 shows the scaling behavior of monomers, dimers, and trimers. In
panel A of the figure the average number of available monomers is shown.
Remarkably for k− < k−max there is less than one monomer in the system,
〈M〉 < 1. Consequently the filaments are on average shrinking. This is
in contrast to the observation for the regime where k− > k−max: therein on
average more than one monomer is available in the system 〈M〉 > 1. And
thus the polymers in this regime tend to grow on average. Although the
absolute difference in the average amount of available monomers in the two
discussed regimes is small, it significantly determines the system’s dynamics
and steady states. A more detailed discussion is deferred to the following
section.

The scaling analyses for dimers and trimers show different behavior.
While the average number of dimers scales with 1/

√
M , the average number

of trimers shows scaling with the average number of filaments, 1/M . No-
tably the data collapse for trimers coincides with the scaling for the average
number of filaments, see Fig. 4.3A.
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Figure 4.4.: Panels (A), (B), and (C) show scaling functions of the number
of monomers and the rescaled number of dimers and trimers,
respectively. In the coexistence phase all three species follow
a characteristic scaling behavior depending on k−: For k− <
k−max the mean number of monomers, 〈M〉, is less than one,
while for larger k−, 〈M〉 > 1. The mean number of dimers
〈D〉 peaks at k−max. The mean number of trimers 〈T 〉 exhibits
a kink at k−max: for k− < k−max the trimer population is roughly
constant and for larger k− the population of trimers sharply
drops.

Coexistence phase

In Fig. 4.5A filament length distributions were measured in the coexistence
regime for M = 103 monomers. The data shows that length distributions
are exponential when k− > k−max. This is in contrast to the situation for
k− < k−max where oligomeric assemblies are favored over filaments. This
picture is confirmed by simulation data (Fig. 4.5B) where the standard de-
viation of sets of filament trajectories was analyzed. While for k− > k−max

fluctuations are enhanced, for k− < k−max fluctuations are damped. These
observations can be readily explained with the presence of monomers in the
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Figure 4.5.: Filament length distributions (A) and average fluctuations of
individual filament’s trajectories (B) depending on k−. An
ensemble average of the filament length shows that length dis-
tributions have exponential tails P(L) ∝ exp−L/α, where α is
a characteristic filament length which depends on k− (A). The
arrow indicates increasing k−. Note that the average num-
ber of monomers, dimers and trimers do not follow the dis-
tribution shown, but display distinct functional behavior; see
Figs. 4.4A, B and C, respectively. Filament fluctuations, as
shown in terms of the standard deviation of filament length
σ =

√
〈L2〉 − 〈L〉2, are shown in panel (B) and depend on

whether k− < k−max or k− > k−max. In the latter case fluctu-
ations are enhanced due to a constantly high availability of
monomers (see Fig. 4.4A). In the previous case there is on av-
erage 〈M〉 < 1 monomer available in the system and therefore
fluctuations are decreased. This data is consistent with an ex-
ponential length distribution for k− > k−max and a Poisson like
length distribution for k− < k−max

system. As can be deduced from the results presented in Fig. 4.4A, the in-
crease of filament fluctuations stems from a higher availability of monomers,
〈M〉 > 1, and the damping of fluctuations arises from a lower availability of
monomers, 〈M〉 < 1. Consequently the critical line of the maximal number
of filaments k−max separates two regimes in the coexistence phase that qual-
itatively differ in filament dynamics and filament length distributions: For
k− smaller than k−max filaments are very short and might rather be called
oligomers. In contrast if k− is larger than k−max, indeed filaments emerge
that follow an exponential length distribution.
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Filaments
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Figure 4.6.: Phase diagram of the system. The theoretical results are ap-
plied to a spherical volume with radius R containing a 10 nM
solution of monomers.

Phase diagram

In Fig. 4.6 all phases of the system are summarized. To this end a spherical
volume V with a 10 nM solution of molecules is considered explicitly. The
critical dimer/trimer dissociation rates are plotted as a function of droplet
radius R. The different phases of sequestering, filament coexistence, and
coarsening can be adopted by varying the volume. Below certain critical
volumes the filament coexistence phase disappears and the system either en-
ters the coarsening or the monomer-sequestered phase. Which of the phases
is adopted depends on the dissociation rate constant k−. Within the co-
existence phase, decreasing or increasing the volume constitutes a physical
switch that allows the system to change from the filamentous regime to the
oligomeric regime and back, respectively. The phase diagram is also use-
ful to gain some insight on the mechanisms of nucleating proteins [111] or
monomer sequestering proteins [243]. The addition of sequestering proteins
allows to vertically run through all possible phases at a fixed volume V .

4.3. Application to actin filaments

By choosing appropriate dimer and trimer dissociation rates, the model
effectively applies to actin filaments, which nucleate either spontaneously
or via nucleator-assisted pathways. For the case of spontaneous nucleation
the estimated dissociation rates are of the order of k−1 ≈ 108 sec−1, and
k−2 ≈ 103 sec−1 [234]. In a first approximation one may choose k− = k−1 =
k−2 of the order of ∼ 108 sec−1. Compared with the model results, this
large number is only consistent with Eq. (4.3). It implies that the system
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is in the coarsening regime, given the number of monomers is larger than
M = 1016. This monomer number corresponds to an actin monomer con-
centration of c = 100 nM in experiments, which roughly corresponds to the
critical concentration of actin nucleation 100 − 200 nM [244]. Our theory
suggests that this critical concentration lies in the coarsening phase of actin
filament assembly.

Dimer/Trimer dissociation rates are effectively changed in the presence
of nucleating proteins, because actin dimers and trimers are stabilized or
mimicked by the nucleating proteins. One important example is the actin
branching and nucleating protein complex ARP2/3, which effectively de-
creases the dimer and trimer decay rates by several orders of magnitude,
k−1 ≈ 2× 10−3 sec−1 and k−2 ≈ 10−5 sec−1 [235]. The role of this protein in
the nucleation kinetics is thus twofold: the formation of the critical nucleus
is facilitated on the one hand, and free actin monomers are sequestered
into dimers and trimers on the other hand. The model can be effectively
applied to the case of ARP2/3 by approximating dimer/trimer dissocia-
tion rates with k− ∼ 0.002 sec−1. The scaling laws derived above rule out
immediately that the system is in the coarsening regime. However, the
two other conditions Eqs. (4.1), and (4.2) can be met depending on the
amount of monomers. This renders the number of monomer a regulatory
factor for the dynamics. The maximal number of filaments is obtained with
Mmax = 2.5 × 105 monomers. Similarly, the sequestering regime, where
ARP2/3 takes out all the free monomers is found for M < Mseq = 63.

4.4. Discussion

The simple model studied here for nucleation and growth of protein fila-
ments shows a rich phase behavior when a finite amount of monomers is
considered. It is found that depletion of monomers is critical for under-
standing the system’s dynamics and steady states. Four different phases
are identified. The system either consists of subcritical nuclei alone, or may
undergo condensation into one large structure. In between these two ex-
treme cases there are two more regimes in which filaments coexist either as
many small filaments or as few large filaments.

The implications of these findings can be applied to diverse processes in
cell biology, where the role of abundance of cytoplasmic material was unclear
until recently [143]. For example recent experiments have shown that spin-
dle size depends on the cellular amount of tubulin, and that tubulin is indeed
a limiting factor [152]. In reconstitution experiments Good et al. [152] also
showed that at a critical volume the amount of free tubulin incorporated in
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the spindle suddenly increases, reminiscent of the coexistence to coarsening
transition observed in the present model. Different experiments in fission
yeast can be regarded as a system with constant volume. Burke et al. [241]
have shown that there is competition for actin monomers in fission yeast,
and that there are two possible phases depending on the amount of actin
which is expressed in a cell. In these experiments the actin level critically
influenced the morphology of the actin cytoskeleton. Filaments form at low
levels of actin, whereas patch like structures emerge at high actin levels. It
will be interesting to study such and other phase transitions in cells [245]
theoretically, in particular with respect to the level of actually available
protein. Further it is likely that not only particle number, but also different
mechanisms like multivalency of enzymes play an important role [246]. Our
study also contributes to the field of protein crystallography and thus to
structural and molecular biology. The quest to economize purified protein
lead to the development of microfluidic devices that allowed to grow pro-
tein crystals in nanoliter volumes [247, 248]. It was realized that crystals
are much more likely to grow in such small volumes. The present works
provides a possible explanation for this phenomenon. This is supported by
recent experimental work, in which the tendency of crystallization was ex-
plicitly tested in different volumes in the nanoliter range [249], paving the
way towards a more quantitative approach to crystallography.



Chapter 5.

Epilog

Within this final chapter I will try to draw conclusion from what has been
learned so far from this thesis. I will also try to provide a more speculative
outlook on what could be relevant extensions and consequences of the pre-
sented theoretical models. Further, I would like to point towards possible
future directions of research that might be worthwhile pursuing, as far as I
can see.

Microtubule tips are indeed the place to be on a microtubule. There
are so many proteins associated to them, either directly or indirectly,

that it has become more and more difficult to keep an overview [88]. The
analysis is not getting easier when the particular situations at different
stages of the cell cycle are considered, because then the role of micro-
tubule tips is redefined like for instance during mitosis, when they are
programmed to find and interact with kinetochores at the chromosomes.

During the time of this Thesis it became clear that exclusive interactions
of molecular motors ensue traffic jams of motors at microtubule tips and
in the bulk of the microtubule lattice [22, 103]. This experimental finding,
has been predicted in recent theoretical work [102, 140]. Together the the-
oretical and experimental observations of these traffic phenomena shed a
new light on driven diffusive lattice gases and exclusion processes. What
has previously been assumed toy models for molecular traffic has now been
shown to reflect essential parts of the processes that actually happen in
reconstitution experiments. This finding paves the way for a serious quan-
tification of many different cellular processes that occur in the cytoplasm
and on cytoskeletal filaments, triggered by molecular motors. The time
when theoretical biophysics research employs loose and qualitative models
is simple over. Because nothing can be learned from it anymore. The next
stage demands quantitative and detailed understanding of molecular pro-
cesses. While many recent efforts have well captured the actual biological
behavior, novel insight can be gained about sub-molecular processes that
happen at the nanoscale and are elusive in coarse grained models. The lack
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of temporal and spatial resolution in experiments did not allow to falsify
coarse grained models recently. Nowadays, the situation is different. High
resolution in the temporal and spatial domain, as well as in terms of forces,
is not a problem anymore. The question is rather: How shall the results be
interpreted? And how can novel hypothesis be generated? In the following
I present one possible hypothesis, that emerges from what has been learned
in this thesis:

The spatial arrangement of enzymes plays an essential role in
microtubule tip-related processes.

Adopting the above hypothesis, several questions can be formulated.
What are the assembly principles of such spatially coordinated macro-
molecular structures? Minimal systems that mimic specific behavior like
tip-tracking for example [6] have been investigated. These experiments
suggest that end binding proteins (EBs) interact with the microtubule tip,
and tethering proteins pass on their interaction with the EBs to molecular
motor. Complementary to such in vitro findings are high resolution struc-
tures of macromolecular complexes that form on microtubule tips [250].
However, it will take a multidisciplinary effort to resolve the dynamics of
these structures and their cellular implications.

One example for which a systems understanding has been achieved al-
ready are the kinetochores [219]. These supramolecular structures consist of
more than 80 different protein components that have been studied and are
rather well characterized with respect to their role in the complex. Some
of them exhibit a role as force sensors for example, while others are similar
to kinesin motors. It is a future challenge to understand the assembly and
disassembly of such structures and their dynamics. It seems likely that such
protein assemblies behave like amorphous materials and have a preferential
structure.

For microtubules recent structural work [57] and dynamic investigations
[251] reveal essential microscopic properties of the microtubule lattice. These
findings and information on microtubule-protein interactions and micro-
tubule dynamics could provide a basis for the development of a realistic
and complete picture of the macromolecule

”
microtubule“ and its associ-

ated proteins.
It will be important to build upon simple model systems with spatial

degrees of freedom, as previously achieved for a Michaelis-Menten reac-
tion [252–254].

And last not least, when speaking of microtubule as an enzymatic sub-
strate alone, one misses important aspects of the biological situation. The
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mechanical properties of microtubules have to be accounted for as well. On
different scales and in different situations, microtubule can be well described
as elastic beams [255], semi-flexible polymers [256] or as bundles of protofil-
aments [257, 258]. Their mechanical properties were studied in terms of
single molecule experiments [259, 260]. On the other hand however, biolog-
ical situations are very different from the reconstructed system, in which
purified components are used. To illustrate this, an example is in order.
Recently, experiments showed how microtubule associated proteins influ-
ence the mechanical properties of microtubules [261] in unexpected ways.
In the presence of MAP65, which is considered a cross-linker protein, the
bending stiffness of a microtubule reduce by 75%, from 1.6 mm to 0.4 mm.
These numbers illustrate the dramatic mechanical and structural changes
associated proteins may induce when binding to microtubules and forming
microtubule bundles. For the cellular functions of microtubules, and the
cytoskeleton, these results are broadly relevant. However it remains to be
shown to what extent and how crosslinker-induced flexibility contributes to
in vitro microtubule mechanics.

There are many open questions in the microtubule field. As outlined
above, the interactions between microtubules and related enzymes are plen-
tiful. These comprise interesting enzyme related questions, where reaction-
diffusion and driven lattice gas approaches could unveil cellular mecha-
nisms in the future. And there is also an intricate coupling between those
enzyme-related questions and the mechanical behavior of microtubules. So
far microtubules have been assessed in terms of polymer physics, but novel,
interesting insights might be gained when polymer physics meets enzymes.

Nucletation of macromolecules is a phenomenon that has been stud-
ied for many years. And ever since it has been a challenge, because the

nucleation reaction has to be seeded. For salt crystals seeding is simple, be-
cause it is possible to hang a piece of yarn into the saturated salt solution,
and there we go, the crystal will nucleate and grow overnight. For proteins
the situation is very much the same, just that these molecules are more
complicated and their interactions are of complex chemical and physical
nature. During the time of this thesis a novel approach to study nucleation
was developed together with Dr. Alvaro Crevenna. We conceived an exper-
imental setup that allows to study the initial steps of filament nucleation
and elongation in a controlled way. The key idea is to tether nucleator pro-
teins at the bottom of zero mode wave-guides and to monitor the system
nucleate and grow. Preliminary results show the stepwise addition of single
actin monomers to the seed of the nucleation. Temporal and spatial infor-



96 5. Epilog

mation about the nucleation and growth of a filament is thus available and
can be analyzed using theoretical descriptions from stochastic processes.
These data will allow to quantify the theoretical model presented in this
thesis.

Potential applications of this novel experimental technique – combined
with theoretical analysis – might prove useful to study assembly dynamics
beyond the cytoskeleton field. This becomes apparent when considering the
complexity of macromolecules in cell biology and how they are assembled
and disassembled at unprecedented accuracy.
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Appendix A.

Teams of Molecular Spiders
– Transport Properties and Cooperative Effects

Please find in the following, work together with Matthias Rank which
emerged from his master’s thesis [262] on the motion of molecular spider
teams [263].
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Molecular spiders are synthetic molecular motors based on DNA nanotechnology. While natural molecular
motors have evolved towards very high efficiency, it remains a major challenge to develop efficient designs
for man-made molecular motors. Inspired by biological motor proteins such as kinesin and myosin, molecular
spiders comprise a body and several legs. The legs walk on a lattice that is coated with substrate which can be
cleaved catalytically. We propose a molecular spider design in which n spiders form a team. Our theoretical
considerations show that coupling several spiders together alters the dynamics of the resulting team significantly.
Although spiders operate at a scale where diffusion is dominant, spider teams can be tuned to behave nearly
ballistic, which results in fast and predictable motion. Based on the separation of time scales of substrate and
product dwell times, we develop a theory which utilizes equivalence classes to coarse-grain the microstate space.
In addition, we calculate diffusion coefficients of the spider teams, employing a mapping of an n-spider team to
an n-dimensional random walker on a confined lattice. We validate these results with Monte Carlo simulations
and predict optimal parameters of the molecular spider team architecture which makes their motion most directed
and maximally predictable.

DOI: 10.1103/PhysRevE.87.032706 PACS number(s): 87.16.Nn, 82.39.Fk, 05.40.Fb, 02.50.Ey

I. INTRODUCTION

How the motion of molecules along predefined traffic
routes emerges and how these molecules self-organize has
become an experimentally tractable question due to advances
in nanotechnology. Molecular motors that have evolved
inside cells and perform well-defined tasks [1] inspired the
engineering of DNA devices performing motor business on
the nanoscale [2–4]: So-called DNA walkers have been built
that move or diffuse along a substrate [5–7]. Among the
first autonomous synthetic walkers was a motor design that
used a catalytic reaction to cleave a substrate in order to
move forward [8]. Since then, a plethora of different motor
molecules have been built from scratch in the laboratory.
They not only serve technological advances, but also shed
light on the basic principles of molecular movement, e.g.,
of biological molecular motors. One class of molecules that
attracted a great deal of attention is molecular spiders [9].
They combine the catalytic activity of nucleic acids with
a multivalent design: Attached to a body are several legs
of single-stranded DNA. These DNA legs can bind to and
catalytically cleave a substrate. This can be repeated over and
over again, which in turn generates processive motion: While
individual legs dissociate from the substrate on a time scale of
seconds, the multipedal architecture ensures tight binding of
the spider to the substrate for hours [9]. Recent experiments
used DNA origami to build quasi-one-dimensional tracks for
molecular spiders [10]. A predescribed substrate landscape
allows one to assign special tasks to a spider and, for instance,
control its movement. The simple yet well-defined design
makes it possible to study spiders in great detail and probe
theoretical predictions.

Molecular spiders have also been theoretically studied
extensively in recent years. Antal et al. [11] and Antal and

*frey@lmu.de

Krapivsky [12] were the first to propose an abstract model that
describes the dynamics of molecular spiders. They analyzed
the spiders’ kinetics for various architectures and found a
variety of interesting effects which arise due to the mutual
exclusion of spider legs on the lattice and the presence of
the substrate. Substrates are cleaved slowly in comparison to
hopping from already cleaved sites. This distinction leads to
subtle memory effects that affect the spiders’ dynamics and
result in a bias towards the substrate [12]. When the spider is in
an all-cleaved area, principles emerging from simple exclusion
processes [13,14] allow a derivation of the spiders’ diffusion
constants [11,15].

In the meantime, mechanistically more detailed systems
have been considered. These include the variation of the
rate constants involved in the chemical reactions [16,17] and
boundary conditions [17], as well as the number and length of
legs [18]. Samii et al. [17] investigated the spiders’ stepping
gait and considered inchworm as well as hand-over-hand
spiders. Semenov et al. [16] showed that spiders experience
a rather extended time period of superdiffusion given that
the cleavage rate r is small. More complex spiders in
quasi-one [19] and in two dimensions [20] have also been
studied. Moreover, there have been studies focusing on
mathematical aspects such as recurrence, transience, and
ergodicity [21,22], as well as random environments [23,24].
These investigations have examined molecular spiders
independently from their chemical motivation as a general
class of multivalent random walkers [19].

The rich variety and diversity of these recent studies show
that molecular spiders are a versatile system to study artificial
molecular motors both theoretically as well as experimentally.
However, many challenges still remain in improving their
efficiency and tailoring the spiders’ design for possible
biotechnological applications [7].

In this study, we examine dynamic and stochastic properties
of a molecular spider team design: n molecular spiders are
constrained due to their joint attachment to a single linking

032706-11539-3755/2013/87(3)/032706(14) ©2013 American Physical Society
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node which may be considered as a primitive model of a cargo.
The resulting spider-spider interactions lead to collective
effects which enhance the motor properties of the n-spider
team. We show that spider teams are faster and move more
persistently along their track than individual spiders. We also
predict that the spider teams move at reduced randomness and
thus are candidates for applications that require reliable, i.e.,
predictable motion [4].

This paper is organized as follows: In Sec. II we provide a
detailed picture of how molecular spiders function and give a
comprehensive introduction to the existing theoretical models
before we define an n-spider team. Subsequently, in Sec. III A
we present our main results: spider teams have enhanced
motor properties. To explain these numerical observations, we
present a comprehensive analysis of the stochastic dynamics
of a spider team. In particular, we perform a reduction of
the state space of the spider teams and thereby calculate the
mean number of consecutive directed steps a spider team
performs while attached to the substrate boundary (Sec. III B).
Moreover, we explore the validity of the resulting network
representation of the spider team dynamics and also show
how it breaks down (Sec. III C). In addition to this approach,
we provide an exact mapping of the n-spider team to an
n-dimensional confined random walk (Sec. III D). This enables
us to quantify the diffusion coefficient which describes the
motion of a spider team during diffusive periods (Sec. III E).
Finally, in Sec. IV we bridge theoretical and experimental
observables and predict the existence of optimal parameters
which maximize the spider teams’ predictability. Finally
(Sec. V), we conclude and identify connections to related
fields.

II. MODEL DEFINITION

Our model is based on the theoretical description of
molecular spiders introduced by Antal et al. [11] and Antal
and Krapivsky [12] that was motivated by experiments of Pei
et al. [9]. They propose a spider design that consists of a central
body and l legs that are attached to it. Each leg has a certain
length and thus the overall spider can span a maximal distance
s. In the experiment, a spider is exposed to a (one-dimensional)
lattice, to which a substrate is attached. Since binding of leg and
substrate happens through the Watson-Crick mechanism [25],
only one leg may bind to a lattice site at a time. In the model,
this corresponds to an exclusion process in that the movement
of one spider leg is constrained by the spider’s remaining legs.
The lattice prevails in two states: with and without substrate.
Legs which bind to lattice sites with substrate can remove it
(chemically: they cleave it, only a shorter part remains bound
to the lattice), which happens along with unbinding from that
site at rate r . By contrast, spiders unbind from sites without
substrate (i.e., from product sites) at rate 1. In the model, a
substrate is always cleaved when a leg steps away from it, and
rebinding of a leg to a new lattice site happens instantaneously.
Two different rules to rebind to a new lattice site have to be
distinguished: Spiders’ legs either have a certain ordering, i.e.,
they cannot “overtake” each other; these spiders are termed
inchworm spiders [11,12,16]. Alternatively, spider legs have
no ordering, i.e., they can step over each other; those spiders
have been called “quick spiders” [11] or “hand-over-hand”

spiders [17,18] in previous studies. Both types of spiders
show quite different behavior [18] and have to be well
distinguished. In this paper, we will concentrate on inchworm
spiders.

In our model a leg which has just unbound from the lattice
rebinds to the lattice instantaneously. Furthermore, we allow
a spider’s leg to rebind to any lattice site as long as the
new leg configuration does not violate any of the restrictions
imposed by the leg length or the ordering of the legs (in
particular, this implies that rebinding to the lattice site from
which the leg just unbound is possible [26]); this can be
motivated from experiments where the typical time scales for
binding to substrates exceed those for diffusion by orders of
magnitude [17]. In addition, our choice obviates unphysical
situations that might occur for spider teams due to the complete
blockage of a leg.

Hollow circles (◦) denote unoccupied lattice sites and
filled circles (•) indicate that a leg is attached to that site.
The presence of substrate is marked with a hat, i.e., •̂ or
◦̂. Throughout this paper, we consider bipedal spiders (i.e.,
l = 2) with a maximal leg span of s = 2. Spiders may thus
only arise in either the spanned ( • ◦ • ) or the relaxed ( • • )
configuration. For this case, the geometry of the cleaved sites,
which is usually called product sea, is an interval on the
one-dimensional lattice; it gives rise to memory effects which
stem from irreversible substrate cleavage [11].

Samii et al. [18] suggested that the lattice could be prepared
with substrates on the right, and products on the left-hand
side from the very beginning, and called this initial condition
P-S lattice. This asymmetry makes some calculations easier,
and it provides a symmetry breaking direction already at the
beginning of the dynamics. We are going to use this kind of
lattice throughout the paper.

Taken together, the spiders which we examine in this study
are bipedal (l = 2) inchworm spiders with a maximal span of
s = 2, which walk on a one-dimensional P-S lattice. Every
spider’s leg may rebind to any accessible lattice site as long as
the ordering is preserved, including the site from where it just
unbound.

Based on this model for molecular spiders, we propose
a minimal model for a team of molecular spiders. Several,
say n, molecular spiders are linked to a (virtual) cargo with
an inelastic leash (i.e., a string; sometimes this is also called
cable [27]) of a well-defined length. Each of these spiders
runs on its own one-dimensional track. This is similar to
biological molecular motors like kinesin-1 [28,29] that walk
along one-dimensional microtubule filaments [1]. We call
these ensembles of spiders that jointly pull a cargo a spider
team. For a cartoon of a team of two spiders, see Fig. 1(a).

Note that the role of the “cargo” is not primarily to put load
on the spiders; actually we set the mass of the cargo equal
to zero. In contrast, the cargo mediates the interaction among
the n spiders comprising the team: Since the strings used for
linking the spiders to the cargo are inelastic with some length
a, any two of the spiders’ bodies may mostly be 2a away
from each other. From the bodies, the furthermost reachable
lattice site is given by the spiders’ legs’ length, call it b, so that
the maximal distance between the leftmost and the rightmost
leg of all the spiders in the team is given by 2(a + b) =: d.
Mathematically, letting λi (ρi) denote the position of the ith
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(a) (b)

FIG. 1. (Color online) Cartoon of the spider team model and
definition of the leash length d . (a) Two spiders are attached to a joint
cargo with an inelastic string. Both spiders walk on their respective
one-dimensional track. Hats indicate the presence of substrate.
(b) The finite length of the linking string induces a maximal distance
between the spiders’ bodies which gives rise to a maximal span of
the spider team, characterized by the “leash length” d .

spider’s left (right) leg, this restriction reads

|ρi − λj | � d ∀i,j. (1)

Note that this is a global constraint which restricts the spider
team, in contrast to the local constraint limiting the span of an
individual spider,

|ρi − λi | � s ≡ 2 ∀i. (2)

The definition of d is visualized for a two-spider team in
Fig. 1(b). For simplicity of language, and to capture an intuitive
understanding especially for two-spider teams, we will call d

the leash length in the following.

III. RESULTS

A. Enhanced properties of n-spider teams

We performed extensive numerical simulations to charac-
terize the dynamic properties of n-spider teams. Our simula-
tion data show that the constraint arising through the leash
that holds the spider team together induces collective effects
among the n spiders. We find that the incorporation of a spider
into a team enhances many of the motor properties: The mean
traveled distance of a spider team exceeds that of single spiders
by far, up to orders of magnitude, for a rather small cleavage
rate r = 0.01 [see Figs. 2(a) and 2(b)]. In addition, a spider
team’s movement is a lot more “predictable.” This can be
inferred from the width of the probability distributions, see
Fig. 2(a), and the shaded areas depicted in Fig. 2(b), which
illustrate the standard deviation of the mean displacement.

Another important quantity is the mean square displace-
ment (MSD) of the spider teams [see Fig. 2(c)]. It shows a
steep increase at intermediate time scales, similar but stronger
and longer lasting compared to recent results by Semenov
et al. [16] for single spiders: In this regime spiders move
superdiffusively. To quantify the time-dependent effects of
superdiffusion, we evaluated the “slope” of the variance in
a double logarithmic scaling, i.e., the effective exponent

α(t) = d log〈[x(t) − 〈x(t)〉]2〉
d log t

, (3)

which provides a measure for diffusivity (see also
Refs. [16,19,30]). Figure 2(d) shows α(t) for a single
spider and several different spider teams. Remarkably, the
four-spider team travels almost ballistically (α ≈ 2) for rather

long times and the periods of “instantaneous superdiffusion”
of spider teams (i.e., times with α > 1.1 [16]) last much
longer compared to single spiders. The nontrivial shape of α(t)
indicates the multitude of dynamic processes that are involved
in the spider team’s dynamics: Initially, α ≈ 1 for t � 1 for
all configurations, reflecting the very first hop of the spiders’
left legs. In succession, until t � r−1 = 100, the spiders’ right
legs have typically not yet cleaved a substrate, whereas the left
legs jump back and forth, hence the variance is approximately
constant and thus α < 1 (for these two regimes, see also a
more explicit discussion in Ref. [16]). Had we chosen other
starting conditions for the spiders, the behavior at short time
would look different. Likewise, also the following regime
until t � 102 . . . 103 results from the fixed starting conditions:
While at early times the spider team does not feel the leash and
all spiders can move independently from each other, at some
point the leash is fully spanned and the spiders at the most
extreme position (i.e., those contributing most to the variance)
are retarded. This leads to a transient decrease of α. This
regime is unique to spider teams since it is an effect constituted
by the leash. Finally, for large times t � 102 . . . 103, the
memory of initial conditions is lost and α becomes maximal.
Clearly, the maximal value of α is greatest for n = 4 of the
displayed configuration. As time increases further, α decreases
slowly which is due to the fact that more and more spiders
move away from the product-substrate boundary (see also
Ref. [16]). Figure 2(e) shows the velocity of the spider team by
means of the derivative of the mean displacement with respect
to time. Clearly, the velocity of a four-spider team outperforms
that of a single spider by more than one order of magnitude.

These pronounced effects are in a way surprising: At first
sight, one might speculate that the coupling leash which
imposes an additional constraint on the spiders would handicap
the spider team’s motion and make it slower. This is clearly
not the case. To the contrary, the dynamic properties of the
spider teams are enhanced. In the remainder of this section we
will explain this behavior using analytical arguments.

B. Boundary periods

a. Single spiders. Key to the understanding of an individual
molecular spider’s motion is to unravel the mechanism for
biased motion. To this end we distinguish between two
qualitatively different dynamic states of the spiders: Looking
at single trajectories of molecular spiders we find that there
are periods of time in which the spider’s motion is strongly
directed, and other periods with undirected, diffusive motion
[see Fig. 2(f)]. In the following, we will call these dynamic
states boundary periods and diffusive periods, respectively. To
define the notion of these periods, it is convenient to distinguish
between the steps of the spider’s legs and the step of the
spider as a whole. We define a spider step as a transition
from a spread configuration ( ◦ • ◦ • ◦ ) to another spread
configuration shifted by one lattice unit forwards or backwards,
i.e., ◦ ◦ • ◦ • or • ◦ • ◦ ◦ , irrespective of the sites being
products or substrates. During a diffusive period all the spider’s
legs are attached to product sites and therefore the spider steps
with equal probability in both directions [11]. In contrast,
biased spider motion can emerge in the vicinity of the boundary
between product and substrate sites. We define a boundary
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FIG. 2. (Color online) Dynamic properties of spider teams. Positions are given in lattice units throughout this work; time is defined by setting
the hopping rate from products to 1. Thin shaded lines show data from finite difference approximations; thick lines show smoothing Bezier curves.
(a) Probability distributions (histograms) of spiders to be at position x at time t = 106; simulation data were binned with a box size 1. Depicted
are distributions for a single spider (n = 1) and spider teams comprised of n = 2,3,4 spiders and leash length d = 8, and cleavage rate r = 0.01.
While the single spider distribution follows nearly a Gaussian centered close to the origin, the distributions of spider teams are clearly skewed and
shifted towards larger x. The asymmetry stems from the P-S preparation of the lattice at t = 0 (products at the left, substrates at the right) [17].
(b) Mean displacement as a function of time (lines). The shaded areas represent the standard deviation around the mean displacement for a
single spider and the four-spider team, respectively, and provide a measure for the randomness of the spiders’ motion. Note that the visual
impression of the standard deviation is rather that of a relative deviation, since the plot is in double logarithmic scale. (c) MSD as a function
of time, 〈x2(t)〉. (d) The variance’s effective exponent α(t) [see Eq. (3)]. For diffusion, 〈[x(t) − 〈x(t)〉]2〉 ∝ t1, hence α = 1; superdiffusion
corresponds to α > 1.1 [16], and ballistic motion to α = 2. The superdiffusive regime of spider teams lasts longer than that of single spiders;
large spider teams reach nearly ballistic motion for significantly long times. For a more detailed discussion, see the main text. (e) Mean velocity
of the spiders as a function of time. The mean velocity is defined as the time derivative of the mean displacement, d〈x(t)〉/dt . Spider teams
outperform single spiders by an order of magnitude. (f) Sample trajectory of a single spider (top), and a four-spider team with d = 8 (bottom).
Periods in which the spider (team) is in the vicinity of the product-substrate boundary are shaded.

period as follows: It starts with a spread configuration where
the right spider leg is attached to a substrate (· · · ◦ • ◦ •̂ ◦̂ · · · ),
and ends when the spider has fully stepped away from the
substrate boundary (· · · • ◦ • ◦ ◦̂ · · · ) (the dots indicate that
the block of displayed lattice sites may have been shifted
during the boundary period), as illustrated in Fig. 3(a). As a
consequence, during a boundary period the substrate boundary
is shifted by an integer number of lattice units forward.

For single spiders the bias can be measured by calculating
the first passage probability, p+, for the spider to progress
one step forward during a boundary period, i.e., p+ =
Prob{ • ◦ • ◦ ◦̂ 	← ◦ • ◦ •̂ ◦̂ → ◦ ◦ • ◦ •̂ } [see also Fig. 3(a)
for an illustration of the corresponding dynamic processes].
By analyzing all possible sequences of transitions, Antal and
Krapivsky found an explicit expression for the bias, namely,
p+(r) = 5+r

8+4r
[12], valid for spiders with legs always jumping

to neighboring sites. Similar calculations can be performed
for spiders whose legs may also rebind to the same site again
(like those we consider throughout this paper), leading to
p̃+(r) = 5+3r

8+8r
. The mathematical expressions for p+ and p̃+

differ only slightly; in particular, they are equal in the limits
limr→0 p̃+(r) = limr→0 p+(r) = 5

8 and p̃+(r = 1) = p+(r =
1) = 1

2 [31].
There is a special feature of single spiders which makes

the definition of p+ straightforward in this case: The spread
configuration • ◦ • of the spider’s legs is unique, since a spider
step to the right corresponds to a translation of both legs to the
right, and hence the configuration before and after a step is the
same [cf. Fig. 3(a) states (i), (iii), and (vii)]. As we will show
below, this is a property which unfortunately does not extend
to spider teams.
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(b)(a)
(i) (ii)

◦ ◦ˆ ◦̂↔◦◦ ˆ ◦̂

◦ ◦̂↔ ◦◦̂↔◦ ◦̂↔◦ ◦̂→◦ ◦ˆ
(iii) (iv) (v) (vi) (vii)

p− = 1 − p+ p+

FIG. 3. (Color online) Definition of a boundary period. (a) Path of a single spider through a boundary period. The period always starts in
state (i). From there, the spider can change to (ii), and back. When the right leg cleaves the substrate, the spider arrives at (iv), (v), (vi), or
(vii). Arriving at (vii) corresponds to continuing the same boundary period from a new substrate [with “(vii) being the new (i)”], since (vii) and
(i) are equivalent up to translation. Hence, the number of steps is raised by one upon arriving at (vii). If, by contrast, the spider reaches (iii),
the boundary period ends and a diffusive period begins. The probability to make a successful step, i.e., to reach (vii) before (iii), is the bias p+
calculated by Antal and Krapivsky [12]. The number of steps during a boundary period is then the number of transitions (i) → (vii), without
reaching (iii) in between. This is equivalent to the number of cleavages during a boundary period, not counting the very last cleavage (which is
not counted since by definition the spider steps away from the boundary after the last cleavage, and we only count forward steps). (b) Example
of a boundary period of a two-spider team. (α) None of the spiders is in a boundary period, hence none of them experiences a bias. Thus, the
spider team is in a diffusive period. When the lower spider reaches a substrate (β) it enters a boundary period. Thus, also the spider team enters
a boundary period. In succession, the lower spider’s right leg happens to cleave the substrate (γ ). The lower spider can then find its way to a
new substrate (δ) what constitutes a 1

2 successful step for the spider team and preserves the boundary period. If the upper spider, in this case,
steps to a substrate (ε), this does not yet, however, constitute a step. This is because although the spider team is in a boundary period, the upper
spider has not been in a boundary period itself during this team’s boundary period. Since a step essentially reflects a cleavage, no step can be
integrated in this case. If the lower spider steps away from the new substrate (ζ ), the spider team enters a diffusive period. In analogy to single
spiders, the number of steps during a spider team’s boundary period is equivalent to the number of cleavages during that period, divided by the
number of spiders, and not counting each spider’s last cleavage event.

A quantity which does not require this uniqueness is the
mean number of consecutive directed steps that a spider
performs during one boundary period. This quantity will be
denoted 〈S〉 in the following. With

pj = (p+)j (1 − p+) (4)

being the probability that the spider walks precisely j steps
during a boundary period, before it leaves the boundary and
enters a diffusive period, 〈S〉 can be calculated as

〈S(p+)〉 =
∞∑

j=0

jpj = p+
1 − p+

(5)

for single spiders. Let us emphasize that 〈S〉 is different from
the mean “number of steps the spider makes in the B state”
[16], 〈SB〉, as defined by Semenov et al., which counts the
number of leg movements (“leg steps” in our terminology). By
contrast, 〈S〉 only counts a step if both legs have been shifted
to the right without having moved to the left (“spider steps”),
i.e., the number of times the spider consecutively reaches (vii)
before (iii), starting from (i) in Fig. 3(a).

The number of consecutive spider steps, 〈S〉, is equivalent
to the number of cleavage events during a boundary period.
Not counted is the last cleavage before the spider leaves the
boundary period, since this corresponds to a backward step of
the spider [cf. Eq. (4)].

b. Spider teams. Clearly, the motion of a single spider is
biased only during boundary periods, and undirected during
diffusive periods. However, it is manifest that a spider team’s
motion is not completely diffusive as long as any of the
spiders comprising the team is in a boundary period. Hence,
we consider the spider team being in a boundary period if at
least one of its spiders resides in a boundary period. In order
to compare the performance of individual spiders with that of

spider teams, it is now essential to find a way how to count
the number of a spider team’s steps during a boundary period.
Basically, a team moves forward by one step if the boundary
between substrate and product sites is shifted forward by one
lattice unit on average. To this end we count every cleavage
event but for each spider’s last cleavage before the team
leaves the boundary period. In analogy to a single spider,
the latter avoids counting those events where the spider team
moves away from the boundary and thereby steps backward
[cf. Fig. 3(b)]. The number of steps of a spider team is then
given by the number of such cleavage events divided by the
number of spiders in a team, in accord with fractional steps of
molecular motors like kinesin [32]. For example,

◦ • ◦ •̂ ◦̂
◦ • •̂ ◦̂ ◦̂ → ◦ ◦ • •̂ ◦̂

◦ ◦ • ◦ •̂ (6)

corresponds to two steps of the lower spider and thus one step
for the spider team.

As we consider two or more coupled spiders, the trans-
lational symmetry of the state before and after a complete
step ( • ◦ •̂ ◦̂ and ◦ • ◦ •̂ , respectively, for a single spider) is
broken, likewise the uniqueness of the state which is the first
during a boundary period ( • ◦ •̂ for a single spider), is lost.
For example,

• ◦ •̂ ◦̂ ◦̂
◦ • • ◦ ◦̂ ,

◦ • ◦ •̂ ◦̂
◦ • • ◦̂ ◦̂ ,

◦ • ◦ •̂ ◦̂
◦ • ◦ • ◦̂ (7)

all are possible states at the beginning of a boundary period.
It is therefore no longer possible to calculate the probability
to step to the right (denoted p+ for single spiders) without
further specification of these initial states. For spider teams
the probability for a forward step explicitly depends on the
particular state from which it starts.
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This complexity prohibits an analytic treatment of the
stochastic dynamics in general. However, if the relative rate
of substrate cleavage is small compared to the rate of hopping
from product sites, i.e., r 
 1, the dynamics become amenable
to a theoretical analysis. While in this limit the motion of
the boundary between substrate and product sites is slow, the
dynamics of spider legs bound to product sites are fast. This
suggests to group states into classes characterized by the slow
variable, i.e., the distance between the ends of the product
seas, denoted by 
. In addition, it turns out to be convenient
to introduce subclasses according to the number of spiders
attached to substrates, σ . In the following we will illustrate
this for teams comprised of n = 2 spiders and a leash length
d = 2. All states

◦ • ◦ •̂ ◦̂
◦ • ◦ •̂ ◦̂ ∼ ◦ ◦ • •̂ ◦̂

◦ • ◦ •̂ ◦̂ ∼ ◦ • ◦ •̂ ◦̂
◦ ◦ • •̂ ◦̂ ∼ ◦ ◦ • •̂ ◦̂

◦ ◦ • •̂ ◦̂ (8)

comprise the class[◦ • ◦ •̂ ◦̂
◦ • ◦ •̂ ◦̂

]
=: [02] = [
σ ]. (9)

Likewise, configurations with 
 = 0 and σ = 1, i.e., with only
one spider having a leg at the boundary, are possible:[◦ • ◦ •̂ ◦̂

◦ • • ◦̂ ◦̂
]

=: [01]. (10)

Here, we made use of the invariance under renumbering of
spiders, it is irrelevant if we label the “upper” spider as 1 and
the “lower” as 2, or the other way round. Hence, irrespective
of whether the lower or the upper spider’s leg is bound to a
substrate, both contribute to class [01]. That same renumbering
symmetry can also be applied when one considers states where
the lower and the upper product seas do not end at the same
position. This leads to the classes[◦ • ◦ •̂ ◦̂

◦ • •̂ ◦̂ ◦̂
]

=: [12] and

[◦ • • ◦̂ ◦̂
◦ • •̂ ◦̂ ◦̂

]
=: [11], (11)

as well as [◦ ◦ • • ◦̂
◦ • •̂ ◦̂ ◦̂

]
=: [21]. (12)

This completes the list of possible classes with σ 	= 0 since
the constraint d = 2 imposed by the leash forbids class [22],
as well as classes [
σ ] with 
 > 2. For general d, class [d2]
and classes with 
 > d are not allowed.

One can show that the classification of states by means of the
distance of the product seas’ ends and the number of spiders at
the boundary is reflexive, symmetric, and transitive, and hence
defines an equivalence relation. Therefore, we tentatively used
the symbols ∼ and [·] in the previous equations.

Instead of a large number of “micro” states, we are now left
with only five equivalence classes which include all the spider
states at the boundary. The reduction of complexity can be
pushed even further: classes [
1] with only one leg attached
to the substrate are only transient in the sense that they will
always decay into classes with two legs attached [
2] (as
long as 
 < d). Consider, for example, a spider team in class
[01] where one spider’s right leg is attached to a substrate
while the other spider’s legs are free to move on product sites.
Since the diffusion time of legs on products is small compared

to the expected residence time 1/r of the leg on the substrate,
the transition [01] → [02] is almost certain and happens on a
time scale ∼1 (fast compared to substrate cleavage).

All possible transitions between the classes can be visual-
ized as the following reaction scheme:

[(d − 1)0] ⇒ diffusive
period

⇓ ↖
[01] [11] [(d − 1)1] ← [d1]
⇓ ↖↗ ⇓ ↖↗ · · · ↖↗ ⇓ ↗

[02] � [12] � · · · � [(d − 1)2]

, (13)

where 
 is constant along a column and σ along a row,
respectively. As explained above, vertical transitions from
[
1] to [
2] are fast [emphasized with double arrows in
Eq. (13)]. In contrast, horizontal and diagonal transitions
involving substrate cleaving events and hence leading to

 → 
 ± 1 are slow. Since vertical transitions occur with
certainty and fast, we can eliminate the transient classes [
1]
and reduce to a reaction scheme for the most stable subclass
of each class, shown in boldface in Eq. (13) and signified [
]
in the following:

[0]
1−⇀↽−
1
2

[1]
1
2−⇀↽−
1
2

· · ·
1
2−⇀↽−
1
2

[d − 1]
1
2−⇀↽−
�

[d]
1−�−−→ diffusive

period . (14)

The numbers above and below the arrows are transition
probabilities into the respective classes, reflecting that each of
the two spiders may cleave a substrate with equal probability
for 
 < d. The class [d] has to be treated separately as it
constitutes a gate from the boundary into the diffusive period.

Our next set of tasks is now threefold: First, in order for
our classification scheme to be a consistent reduction of the
stochastic processes, all states comprising the gate class [d] =
[d1] should have the same survival probability �, i.e., the same
probability not to exit into a diffusive period. This is indeed the
case for sufficiently small cleavage rates r: In the limit r → 0,
substrate cleavage events are rare compared to hopping from
product sites. Therefore, the dynamics exhibit a time scale
separation where all the legs attached to products quickly visit
any accessible lattice site while the legs on substrate sites
remain stuck. In other words, the dynamics within class [d1] are
ergodic and equilibrate, and all micro states effectively reduce
to one coarse-grained “macro” state, namely, the class [d1].
Second, we have to calculate the survival probability � by an-
alyzing all the various routes between the micro states. Third,
in order to determine the mean number of consecutive steps
〈S〉, the reduced reaction scheme of Eq. (14) has to be solved.

We now address the calculation of the survival probability
�. In principle, this can be done for arbitrary complex spider
teams. For the purpose of illustration, we continue the example
from above with two spiders and a leash length d = 2. We
consider all states comprising class [21]. These are

©1 = ◦ ◦ • • ◦̂
◦ • •̂ ◦̂ ◦̂ , ©2 = ◦ • ◦ • ◦̂

◦ • •̂ ◦̂ ◦̂ , ©3 = ◦ • • ◦ ◦̂
◦ • •̂ ◦̂ ◦̂ ,

©4 = • ◦ • ◦ ◦̂
◦ • •̂ ◦̂ ◦̂ , ©5 = • • ◦ ◦ ◦̂

◦ • •̂ ◦̂ ◦̂ , ©6 = ◦ • • ◦ ◦̂
• ◦ •̂ ◦̂ ◦̂ , (15)

©7 = • ◦ • ◦ ◦̂
• ◦ •̂ ◦̂ ◦̂ , ©8 = • • ◦ ◦ ◦̂

• ◦ •̂ ◦̂ ◦̂ ,
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FIG. 4. (Color online) Justification for the equivalence classes in
the limit r → 0. Shown are the analytically calculated probabilities
that a spider team (n = d = 2) successfully completes one step during
a boundary period, starting from the specific states ©1 –©8 as given
in Eq. (15). Each line corresponds to a state of the equivalence class
[21] [cf. Eq. (12)]. In the limit r → 0, the probability to step forward
for all eight states collapses to a fixed value � ≈ 0.65.

and their respective “mirrored” states, i.e., the states with
spiders 1 and 2 interchanged. Let us illustrate the calculation
for the particular initial state ©1 . Legs unbind from products
at rate 1 and from substrates with rate r . Hence, from
this configuration, the probability that the upper right, or
the lower right leg is the first one to unbind is 1/(3 + r)
and r/(3 + r), respectively. The left legs unbind first with
probability 1/(3 + r) each. If now, for instance, the lower
right leg detaches, it may either reattach to the very same
lattice site again, or it may step one site to the right. In either
case it cleaves a substrate. Both processes happen with equal
probability. Hence, altogether, the transition probability for
the lower right leg to step to the right is given by r/2(3 + r).
The analysis can be continued from the resulting states until
either a step is completed or the team has left the boundary
period, finally leading to a high dimensional system of linear
equations. The results obtained by solving the ensuing sets of
equations are shown in Fig. 4 for all initial states comprising
class [d1].

Clearly, as r approaches 0, all survival probabilities, i.e., all
probabilities to make a step within the team’s boundary period,
approach a single value

� = 115
176 ≈ 0.65. (16)

This result is reassuring, as it confirms our heuristic arguments
on the equilibration of states within class [d1], and thereby
justifies combining several different states into one class in the
limit r → 0.

All the complexity of calculating the mean number of
steps 〈S〉 of a spider team during a boundary period has
now been reduced to analyzing the various routes between
the equivalence classes. Since each transition [33] in Eq. (14)
corresponds to a directed step done during a boundary period,
the number of these steps 〈S〉 is equivalent to the number of
(undirected) jumps performed by a simple random walker with
reflective and absorbing boundary conditions on the left, and
right ends of the reaction scheme, respectively. As detailed in
the Appendix, the general solution for the mean number of

TABLE I. Comparison of analytic and simulation results for the
mean number of steps during a boundary period, 〈S〉. Analytic values
were derived in the limit r → 0; simulation results were obtained for
very small r � 10−4. Simulations and analytical calculations show
excellent agreement.

〈S(r → 0)nd〉, analytic 〈S(r � 10−4)nd〉, simulation

n = 1 5
3 ≈ 1.6667 1.6672 ± 0.0015

n = 2, d = 2 291
61 ≈ 4.770 4.769 ± 0.003

n = 2, d = 3 3 170 931
443 341 ≈ 7.152 7.146 ± 0.005

n = 2, d = 4 4 055 316 673
414 459 263 ≈ 9.785 9.785 ± 0.008

n = 3, d = 2 340 881
48 391 ≈ 7.044 7.042 ± 0.006

n = 3, d = 3 16.3745...

1.34258...
≈ 12.196 12.204 ± 0.012

steps during a boundary period in the limit r → 0, and for
arbitrary d, reads

〈S(d,r → 0)〉 = �

1 − �
+ (d − 1)

1

1 − �
. (17)

For our example of a two-spider team with d = 2, we obtain,
using Eq. (16), 〈

S(r → 0)n=2
d=2

〉 = 291
61 ≈ 4.77. (18)

We also analyzed more complex spider teams with size n =
2,3 and up to a leash length of d = 4, and found even larger
mean step numbers, compared to 5

3 for a single spider. Obvi-
ously, during boundary periods even the simplest spider teams
behave significantly more directed and progress a lot further on
average, compared to individual spiders. This result is remark-
able since directed motion is desirable for applications and a
rare feature at the nanoscale. The analytical results are sum-
marized in Table I where they are also compared with Monte
Carlo simulations which match them at a very high accuracy.

C. Validity of the equivalence classes

With increasing d, the spiders forming a team become more
and more independent since it is increasingly unlikely that a
spider “feels” the constraint of its teammates. In particular,
the probability � that a spider in class [d1] reaches [(d − 1)2]
without exiting the boundary period [cf. Eq. (14)], converges
towards the probability p+ that a single spider makes a step
to the right which is 5

8 for r → 0. Hence, assuming � = 5
8

for large d, Eq. (17) would imply that the mean number of
steps increases linearly with d. Indeed, in the asymptotic limit
r → 0 this agrees well with the simulation data. However, with
increasing r deviations from this linear behavior become more
and more significant (cf. Fig. 5).

This can be explained as follows: For increasing leash
length d, the configuration space accessible to the spider
team becomes progressively larger, so that it takes longer
to completely exploit it, i.e., the equilibration time grows.
Conversely, the average time of substrate cleavage scales as
1/r . With increasing r and/or d these two time scales become
comparable. The assumption of time scale separation, on
which the reduction of the dynamics to equivalence classes was
based, then becomes invalid. In conclusion, the equivalence
class concept which we derived in the previous sections
provides a very good approximation for small but finite
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FIG. 5. (Color online) Validity of the equivalence class formal-
ism. Shown are the simulation results for the mean number of steps
〈S〉 for a two-spider team and different values of d and cleavage
rates r = 0.0001,0.001,0.01; broken lines are a guide to the eye.
The theoretical result derived within the equivalence class formalism
for r → 0 (black) is exact for d = 2,3,4 (Table I), and we assumed
� = 5

8 for d � 5 [Eq. (17)].

substrate cleavage rates r , as long as the leash length d is not
too large.

D. An exact mapping to a confined random walker

For a bipedal spider with a maximal span of s = 2, a single
coordinate, the “center of mass” coordinate, fully describes
the position of the spider’s legs. Hence, it is possible to map
the motion of the single spider’s legs on 1

2Z, the set of integers
and half-integers, with hopping of the legs corresponding to
changes of the center of mass [11,12]. This mapping can be

◦ ◦◦
◦◦
◦◦

◦ ◦
◦ ◦
◦ ◦
◦◦◦

◦
◦◦ ◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦◦

sp
id

er
 2

spider 1

0

1

−1

10−1

1/2

−1/2

1/2−1/2 c1

c2

FIG. 6. (Color online) A spider team can be mapped to a
random walk in a confined environment: Transitions of a spider’s
leg correspond to a change of its center-of-mass coordinate ci of
± 1

2 . Shown is the mapping of a two-spider team with a leash length
d = 2. The shape of the environment (solid) follows from the leash
constraint which confines the span of the spider team. From d = 2
follows that the leftmost left and the rightmost right legs of the two
spiders may be at most two lattice sites apart. With that restriction,
the allowed configurations of the team follow directly, as can be seen
with some explicit configurations in the left and the top part of the
figure.

extended for a spider team: The position of an n-spider team is
characterized by a position on an n-dimensional square lattice
where each of the n axes corresponds to the center of mass
of one of the spiders comprising the team. The dynamics of
a spider team then corresponds to a trajectory on that lattice.
However, due to the leash constraint, not all sites on this lattice
are accessible to the spider team. To illustrate this, let us for the
moment focus on a two-spider team with leash length d = 2.
Fixing the first spider’s center of mass c1, the other spider’s
center of mass c2 is restricted to be near c1 due to the leash
constraint. We have to distinguish between two cases. Spider 1
is either in a spread or a relaxed configuration, e.g., c1 = 0 or
c1 = 1

2 , respectively. If it is in the spread configuration c1 = 0,
then the other spider may be in one of three configurations:
c2 ∈ {− 1

2 ,0, 1
2 }. For the relaxed configuration c1 = 1

2 , there are
five configurations possible for the second spider: − 1

2 , 0, 1
2 , 1,

and 3
2 . Geometrically, this leads to a staircase shape for the

accessible set of states. For arbitrary d, the step width of this
staircase generalizes to 4d − 3 and 4d − 5 (cf. Fig. 6).

While in Sec. III E this mapping will be employed to
calculate diffusion constants during diffusive periods, we use
it here to illustrate the concept of equivalence classes again. To
this end, the mapping is generalized to incorporate substrates
as illustrated in shaded colors in Fig. 7: Each substrate can be
drawn as a box. This is seen as follows: Because each spider
being at a specific substrate site may either be in a spread or

sp
id

er
 2

spider 1

←
→

3 substrates on
spider 2’s lane

1 substrate on
spider 1’s lane

↔[21]

◦ˆ ◦̂ ◦̂
◦ ˆ ◦̂ ◦̂

◦◦̂ ◦◦̂
◦

◦◦̂
◦

◦̂
◦

◦̂

FIG. 7. (Color online) Substrate in the staircase random walker
picture (n = d = 2 as before). Like in Fig. 6, explicit configurations
are shown for some points. In addition, boxes are drawn which
correspond to the substrates on spider 1’s (vertical blue box), or
spider 2’s (horizontal red boxes) lane. This can be understood as
follows: When a spider is attached to a substrate with its right leg,
it can be either in the spread or the relaxed configuration. Hence a
substrate at position c has to be indicated at two points in the center of
mass space, namely, at c − 1

2 and c − 1; therefore the substrate boxes
have width 2. Encircled in the figure are the eight states which have
spider 2 at • ◦ •̂ ◦̂ ◦̂ or ◦ • •̂ ◦̂ ◦̂ , respectively, and spider 1 in one of
the five states • • ◦ ◦ ◦̂ , . . . , ◦ ◦ • • ◦̂ . The resulting states correspond
clearly to those of Eq. (15) and Fig. 4. In the figure, there are three
horizontal red boxes (substrates on spider 2’s lane), and only one
vertical blue box (substrate on lane 1). Hence, the difference of the
product sea’s ends is 
 = 2. Since the encircled states ©1 –©8 have, by
direct reading, only spider 2 at a substrate (i.e., they are only contained
in σ = 1 box), they form the equivalence class [
σ ] = [21].
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a relaxed configuration, a substrate has to be indicated at two
different locations in the center of mass space (thus the width
of every box equals 2). Furthermore, since spider 1 being or
not being at a substrate does not affect spider 2, every box
indicating a substrate at spider 1’s track has to be of a size
that it contains all allowed configurations of spider 2, and vice
versa.

We now return to an example discussed in Sec. III B:
Equation (15) shows all configurations in which spider 1
has cleaved two more substrates than spider 2 and only
spider 2 is attached to a substrate. We referred to this set
of configurations as the equivalence class [
σ ] = [21]. This
situation is illustrated in Fig. 7, where there are 
 = 2 more
boxes (i.e., substrates) for spider 2 than for spider 1. The eight
allowed configurations contained by the ellipse in this figure
are only contained in one box (σ = 1), such that these states
provide a geometrical interpretation of the equivalence class
[21]. Leaving the boundary period in this picture corresponds
to removing the encircled box (i.e., cleaving the substrate) and
stepping down (i.e., away from the substrate boundary).

E. Diffusive periods

We now employ the mapping of the spider team motion to
a confined random walk in order to analyze the spider team’s
dynamics during a diffusive period. Let us first examine the
transition rates between neighboring points in the confined
random walk picture. Consider, for example, the point

(c1,c2) = (0,0) = • ◦ •
• ◦ • (19)

in Fig. 6. From this configuration, every leg may unbind from
its product with rate 1, and then rebind to either the same
product site again, or move to the allowed neighboring site
at equal probability 1

2 . In the confined random walk picture,
this leads to transition rates of 1 × 1

2 along each connection
between adjacent sites from (0,0). The same argument applies
to any site within the allowed region, so that the transition rate
between any two lattice sites equals 1

2 [cf. Fig. 8(a)]. This leads
to the following master equation for the occupation probability
Pc1,c2 on the confined lattice:

d

dt
Pc1,c2 =

∑
〈c1,c2〉

1

2

(
P〈c1,c2〉 − Pc1,c2

)
, (20)

where the sum runs over all nearest neighbors 〈c1,c2〉 of
(c1,c2). In order to calculate the diffusion coefficient D =
1
2 limt→∞ d

dt
〈x2(t)〉 we determine the time derivative of the

mean square displacement of the spider team:

d

dt
〈x2(t)〉 =

∑
(c1,c2)∈C

x2
c1,c2

∑
〈c1,c2〉

1

2

(
P〈c1,c2〉 − Pc1,c2

)
, (21)

where xc1,c2 = 1
2 (c1 + c2) is the position of the spider team

on the molecular track for given values of c1 and c2, and the
summation extends over all (c1,c2) within the allowed region
C. This equation can be reorganized such that

d

dt
〈x2(t)〉 =

∑
C

Pc1,c2

∑
〈c1,c2〉

1

2

(
x2

〈c1,c2〉 − x2
c1,c2

)
. (22)

(a)

1

2
1

2

1

2

(b)

0

-1

1
j

FIG. 8. (Color online) Diffusion in the staircase environment.
(a) Transition rates between the sites of the staircase environment.
Along every arrow drawn, the rate is 1

2 leading to local detailed
balance. (b) The staircase can be split into elementary cells, numbered
with integers.

To evaluate this expression we split the lattice into elemen-
tary cells as shown in Fig. 8(b), and use that for asymptotically
large times t → ∞, the probability density P varies only
little between neighboring elementary cells. This follows from
translational symmetry; every cell obeys the same master
equation. The master equation, Eq. (20), then implies a nearly
uniform probability distribution within each elementary cell
j [34]. Upon assuming a constant value Pj within each unit
cell, carrying out the sum over an arbitrary elementary cell j

leads to a further simplification
∑
Cj

Pj

∑
〈c1,c2〉

1

2

(
x2

〈c1,c2〉 − x2
c1,c2

) = 1

2
Pj , (23)

independent of j . Altogether, we obtain

lim
t→∞

d

dt
〈x2(t)〉 ≈

∞∑
j=−∞

1

2
Pj

(∗)≈
∞∑

j=−∞

∑
Cj

1
2

8
Pc1,c2

= 1

16

∑
C

Pc1,c2

(†)= 1

16
= 2D, (24)

where in (∗) we used that each elementary cell comprises eight
points, and in (†) we employed the normalization condition
for P . This procedure can be generalized for arbitrary d. The
formula for the diffusion constants for n = 2 then reads

D(d) = 1

16
+ 1

32(1 − d)
. (25)

This theoretical result agrees well with simulation data for
the diffusion constant D, as a function of the leash length d

(see Fig. 9).

IV. OPTIMIZATION OF DIRECTED MOTION

In the previous sections we mainly focused on ensemble
properties of spider teams. However, in experiments or
applications one has to deal with single realizations of the
stochastic process, i.e., single trajectories [cf. Fig. 2(f)]. Since
it is desirable to achieve a molecular motor design that works
reliably, one would like to minimize the randomness of the
trajectory, i.e., the motion’s standard deviation

σ =
√

〈(x − 〈x〉)2〉. (26)

It is interesting to ask how the microscopic properties of
the spider team (n,d) influence σ : Can we optimize the
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FIG. 9. (Color online) Diffusion constants as a function of the
leash length d for n = 2 and 3 spiders. The dashed line shows the
theoretical result for n = 2 [Eq. (25)]; solid lines are asymptotics for
d → ∞. Our theoretical approximation is in good agreement with
simulation data (points).

performance of a spider team? Is there an optimal choice of
parameters n and d which reduces the randomness of a spider
teams’ motion to a minimum?

The randomness is determined by the interplay between the
dynamics of the spider team during its different episodes of
motion, i.e., the boundary periods and the diffusive periods.
For each episode we found a characteristic feature: During
boundary periods the spider team motion is essentially ballistic
which can be quantified in terms of the mean number of
consecutive steps 〈S〉 [cf. Eq. (17)]. In contrast, during a
diffusive period the spider team performs a random walk with
a diffusion constant D [cf. Eq. (25)].

We have already learned in Sec. III C and Fig. 5 that there is
an optimal choice of parameters for the number of consecutive
directed steps during a boundary period (see Fig. 5). One
could now naı̈vely conclude that the predictability of a spider
team’s motion can as well be optimized with the same set
of parameters. However, this argument would overlook the
impact of the diffusive periods. Indeed, there are several
effects which influence the randomness during these episodes:

(i) In Sec. III E we noted that the diffusion constant
D grows with the leash length d [Eq. (25) and Fig. 9].
Since D determines the mean square displacement during a
diffusive period, increasing d would then also imply a greater
randomness, σ .

(ii) Conversely, a higher diffusion coefficient during diffu-
sive periods speeds up all dynamic processes. Thus, in a given
time window, larger d make it more probable for a spider team
to return to the boundary and start moving ballistically [35].

The combined effect of these two processes can be
estimated by analyzing a random walker with an absorbing
boundary. In one dimension, one finds that 〈x2(t)〉 ∝ √

Dt

[36,37]. Hence, (i) and (ii) together would lead to an increase
of σ with d.

(iii) Consider the geometrical interpretation of the transition
from the boundary period to the diffusive period as given in
Fig. 7. In this picture, entering a diffusive period corresponds
to removing the lowermost red box, and stepping to one of the
three points below states ©6 –©8 . Right after this transition,
the average minimal distance 〈x0〉 of the spider team from the
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FIG. 10. (Color online) Randomness during a diffusive period.
Shown is the mean-squared minimal distance to the boundary of
a random walker in the staircase environment (n = 2), Fig. 6. The
walkers start randomly along every point which provides an entrance
to the diffusive period (for d = 2, these are the three points below
states 6©- 8© in Fig. 7); they are absorbed when they reach the
boundary (which is the second substrate box in Fig. 7; note that
the lowermost box has been removed when the walker entered the
diffusive period). Obviously, the mean-squared distance is greater the
smaller d is. Increasing d thus decreases the randomness.

boundary is therefore given by

〈x0〉 = 1

4

(
3 + 3

4d − 5

)
, (27)

as can be inferred from counting the different transition
pathways. Hence, with increasing d, the spider team entering
the diffusive period is closer to the boundary, and is thereby
more likely to reenter a boundary period quickly.

(iv) In Sec. III D we have shown that with increasing leash
length d the number of pathways in state space to reenter a
boundary period also increases. Pictorially, this can be inferred
from the mapping of the spider team’s motion to a random
walker in a staircase environment: The longer the leash length
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FIG. 11. (Color online) Standard deviation σ of the spider teams’
movement and the mean number of steps 〈S〉 as a function of the
leash length d . Both σ and 〈S〉 show extrema. To emphasize the
correspondence between the minimum of σ and the maximum of
〈S〉 (cf. Fig. 5), the 〈S〉 axis is drawn in reverse (see right scale). σ

is measured at the time t∗ when the mean displacement 〈x〉 equals
1000. This choice is arbitrary; for smaller values the minima of σ

persist, but are less pronounced [cf. Fig. 2(b)].
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TABLE II. Optimal values of d for n = 2 and 3, and several
values of r . Compared are the values of d which maximize the mean
number of steps during a boundary period, and that which minimize
the randomness (for a comparison see Fig. 11). Clearly, both values
of d are closely correlated, where d

opt
〈S〉 is only slightly smaller than

dopt
σ .

n = 2 n = 3

r d
opt
〈S〉 dopt

σ d
opt
〈S〉 dopt

σ

0.001 ∼10–11 ∼13
0.01 4 5 5 6
0.02 3 4 3–4 4–5
0.05 2 3
0.1 2 3 2 3
0.2 2 2 2 3

d the larger is the “angle” under which a random walker sees
the boundary of the staircase. Thus, when the random walker
takes an arbitrary direction the probability that it walks toward
the boundary is increasing with d.

Since there is no unique trend in the various effects
discussed above in (i)–(iv), it is difficult to conclude what
would be the dominant effect of the diffusive period on
the randomness. Therefore, we numerically determine the
randomness of the spider team during diffusive periods [38];
this quantity is depicted in Fig. 10. We observe that the mean
squared distance from the boundary is smaller for larger d

at all times. This implies that—considering only diffusive
periods—increasing d leads to a reduction of the randomness.
From this we can infer that the effects (iii) and (iv), which
decrease the randomness of the process with increasing d,
overcompensate the effects (i) and (ii).

Altogether we can now conclude the influence of the
diffusive periods as follows:

d ↗⇒ σ ↘ .

Analogously we can decipher the influence of boundary
periods. Going back to Fig. 5 we observe

d < d
opt
〈S〉 : d ↗⇒ 〈S〉 ↗⇒ σ ↘ ,

d > d
opt
〈S〉 : d ↗⇒ 〈S〉 ↘⇒ σ ↗ .

These considerations explain that if there is an optimal
value d

opt
σ at which the randomness becomes minimal, it must

be found beyond d
opt
〈S〉 . This is in agreement with our data:

Figure 11 shows the existence of a minimum of the random-
ness, and its positioning with respect to d

opt
〈S〉 . Remarkably, the

positions of both optima are strongly correlated (see Table II).
In conclusion, our analysis shows that the randomness of

the spider team is mainly determined by the mean number
of steps 〈S〉 during boundary periods. Diffusive periods have
only a small effect on the randomness and change the optimal
parameters only slightly.

V. CONCLUSIONS

Based on existing models for molecular spiders [11,12], we
proposed a model for a spider team that explores the collective
behavior of cooperating spiders: In our model, bipedal spiders
are jointly attached to a (zero-mass) linking cargo. Each spider

walks on its own one-dimensional track. This leads to a spacial
constraint which can be characterized by the maximal span d

of the resulting spider team.
Depending on the cleavage rate of the substrate r < 1, the

number of coupled spiders n, and the leash length d, we found
that the coupling leads to a significant enhancement of many of
the spider’s motor properties: Spider teams show a significant
increase of their mean displacement; their motion is a lot less
random; the ensemble’s velocity can be increased by more than
an order of magnitude; and the superdiffusive behavior lasts
longer for orders of magnitude in time. Unlike single spiders,
cooperating spiders could therefore—at least in theory—be
employed for executing well-defined tasks reliably.

Like their individual counterparts [16], spider teams’
motion can be characterized as being in either a boundary
or a diffusive period. We found that the characteristic quantity
is the mean number of consecutive directed steps 〈S〉 which a
spider team performs during a boundary period. In simplified
language, 〈S〉 integrates the number of steps which the spider
teams walk, as long as it stays in the vicinity of the comoving
boundary between substrate and product sites. 〈S〉 is closely
related to the bias p+ of single spiders [12]. For small
r , we succeeded in calculating 〈S〉 analytically through an
equivalence class formalism which made use of the time scale
separation of dwell times on products and substrates. This
formalism is exact for r → 0, regardless of the number of
coupled spiders and the tightness of the coupling. We explicitly
calculated values for various small spider teams, and find
excellent agreement with simulation data. For small but finite
cleavage rates r , the formalism still holds as an approximation
for relatively tight coupling. We found that in this case there is
an optimal value for the coupling tightness d which maximizes
the mean number of steps.

Next, we provided a mapping of the stochastic motion of
an n-spider team to a random walker in an n-dimensional
environment. The motion is confined between parallel
boundaries which have the shape of staircases. This mapping
is exact and allows a complementary interpretation for
the equivalence classes: Substrates can be drawn as boxes
which are easy to enter for random walkers but impossible
to leave without removing, which happens slowly on a
time scale r−1. It is then straightforward to see that an
equivalence class corresponds to an intersection of boxes (cf.
Fig. 7). The staircase picture also allows one to quantify the
dynamics during the diffusive periods of spider teams: In that
case, boxes can be ignored and spider teams correspond to
ordinary diffusive random walkers on the confined lattice. We
calculated the diffusion constants for two-spider teams and
find good agreement with simulation data.

The analysis of the mean number of consecutive steps
during a boundary period 〈S〉 (which shows a maximum
for some value of the leash length d), taken together with
the diffusion constants D (which grow with d) allow for a
comprehensive explanation of our observations. We show that
the optimal value of d that minimizes the randomness (which
involves boundary and diffusive periods) differs only slightly
from the leash length maximizing the mean number of steps
during a boundary period (see Fig. 11).

The staircase picture also illustrates that despite the dif-
ference in complexity, a single spider and a spider team can
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both be described by similar effective random walk models:
The motion of a bipedal spider which has a nontrivial stepping
gait can be fully described by its center of mass coordinate
which performs simple one-dimensional random walks [12].
Likewise, the motion of an n-spider team which involves
complicated interactions between the spiders can equivalently
be described by another single coordinate which performs
n-dimensional random walks that are, however, geometrically
confined due to the leash constraint.

Our results show that the primary factor for improving the
motor properties of molecular spiders is the accessibility of
substrate sites for the spider legs: While single spiders only
have access to one substrate at a time, an n-spider team can
reach n substrates. This would imply that there is a significant
difference between truly one-dimensional spiders [12] and
quasi-one-dimensional spiders [10]. This is enforced by a
very recent study of Olah et al. [19] who examined molecular
spiders on a narrow two-dimensional lattice. As well, it is
in full accordance with recent data by Samii et al. [18] who
concentrated on hand-over-hand spiders: They showed that
motor properties of this class of spiders which have access to
more than one substrate site at a time are superior to inchworm
spiders which can only reach one substrate at once [17,18].

The results presented here can be extended in multiple
ways. In analogy to individual spiders, further studies could
concentrate on varying design specifics like the number or
the length of legs [18]. Likewise, the underlying chemical
processes [9,10] could be modeled in greater molecular detail
also for spider teams. Similarly, the team’s spiders’ stepping
gait could be varied, potentially profiting from studies about
the motion of individual hand-over-hand spiders with more
than two legs [18] which seem to be difficult to realize in the
experiment.

Unlike other studies (e.g., [16]) which have extensively
investigated the role of the cleavage rate r , our focus was
different and the variation of r was only a side aspect of
this work. Nevertheless, our analysis hints towards a scaling
behavior which maps the quantity 〈S(r,d)〉 to a universal form
S̃(d̃) which is independent of r . In this spirit, it would also
be interesting to study the connection of the optimal leash
length and the cleavage rate r . It appears that this relation
might be rather simple for a wide parameter range, although
its mathematical formulation seems to be very complex. The
difficulty is that the simplified formulation of the problem
presented here, i.e., the equivalence classes, cannot be applied
directly. One possibility to address this problem might lie
in drawing analogies from related models such as the burnt-
bridge model [39]. For example, it has been studied for dimeric
motor molecules [40] and as an exclusion process [41].

Our results might also be relevant to study collective
properties of molecular motor assemblies theoretically (cf. e.g.
Ref. [42] or Ref. [43], and references therein). These models
are relevant to understand the interplay between biological
motor molecules such as kinesin, dynein, and myosin inside
cells [44,45]. In contrast to spiders, biological motors are
fueled by ATP hydrolysis; they can build up significant pulling
forces due to strong mechanochemical coupling [46]. In
particular, recent experiments addressed the complex interplay
of multiple coupled kinesin motor proteins where the motors
are coupled via a DNA leash of certain length. It is interesting

to note how in these experiments teams of two kinesin motors
outperform a single motor in terms of run length and pulling
forces [47–49]. Similarly, cooperative effects also improve
the properties of two coupled burnt-bridge motors modeling
collagenase transport [40].

In conclusion, we believe that our model of coupling molec-
ular spiders provides insight on how cooperative behavior
evolves on the molecular scale. We hope that our ideas about
molecular spiders help advance a young and fast growing field
in which much focus is put on the construction of novel, more
efficient molecular designs [4]. We believe that our findings
are not limited to the case of molecular spiders, but apply to
molecular machines working together in general.
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APPENDIX: DERIVATION OF EQ. (17)

We analyze the graph for a two-spider team with arbitrary
d as depicted in Eq. (14). According to this graph, transitions
[i] → [i ± 1] are equally likely as long as i < d, whereas
[d] → [d − 1] happens at probability �. During every transi-
tion, the spider team performs a fractional step 1

n
= 1

2 . Only
during the transition [d] → [d − 1], no step is integrated; in
return, [d − 1] → [d] leads to a whole step for the team. This
is due to the very definition of the number of steps during
a boundary period, which comprises all cleavages but for
each spider’s last cleavage before the team enters the diffusive
period.

With these preparations, we can now establish the proba-
bilities p(j |[i]) that a spider team, being in class [i], performs
exactly j steps before leaving into the diffusive period. These
read

p(j |[0]) = p(j − 1
2 |[1]),

p(j |[i]) = 1
2

(
p(j − 1

2 |[i − 1]) + p(j − 1
2 |[i + 1])

)
,

p(j |[d − 1]) = 1
2

(
p(j − 1

2 |[d − 2]) + p(j |[d])
)
,

p(j |[d]) = �p(j − 1|[d − 1]) (A1)

where 0 < i < d − 1. The mean number of steps 〈S(x)〉 which
a spider team walks from class [x] until going to the diffusive
period is then given by

〈S(x)〉 =
∞∑

j=0, 1
2 ,...

jp(j |[x]). (A2)

Inserting Eq. (A2) into Eq. (A1), and by renumbering indexes
we obtain

〈S(0)〉 = 1
2 + 〈S(1)〉,

〈S(i)〉 = 1
2 + 1

2 〈S(i − 1)〉 + 1
2 〈S(i + 1)〉,

(A3)
〈S(d − 1)〉 = 1

4 + 1
2 〈S(d − 2)〉 + 1

2 〈S(d)〉,
〈S(d)〉 = � + �〈S(d − 1)〉,
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where again 0 < i < d − 1. Solving this system of equations,
we obtain the recursion relation

〈S(k)〉 = 〈S(k + 1)〉 + k + 1
2 (A4)

for 0 � k < d − 2. Substituting this into the remaining equa-
tions leads to

〈S(d)〉 = �d

1 − �
, (A5)

and finally

〈S(d − 1)〉 = d

1 − �
− 1 = (d − 1)

1

1 − �
+ �

1 − �
.

(A6)

Since a spider always enters a boundary period in class [d − 1]
in the limit r → 0 [cf. Eq. (13)], the last equation is equivalent
to 〈S〉, Eq. (17).

[1] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
(Sinauer Associates, Sunderland, MA, 2001).

[2] J. Bath and A. J. Turberfield, Nat. Nanotech. 2, 275 (2007).
[3] R. D. Astumian, Biophys. J. 98, 2401 (2010).
[4] A. V. Pinheiro, D. Han, W. M. Shih, and H. Yan, Nat. Nanotech.

6, 763 (2011).
[5] W. B. Sherman and N. C. Seeman, Nano Lett. 4, 1203 (2004).
[6] J.-S. Shin and N. A. Pierce, J. Am. Chem. Soc. 126, 10834

(2004).
[7] M. von Delius and D. A. Leigh, Chem. Soc. Rev. 40, 3656

(2011).
[8] Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao, Angew. Chem., Int.

Ed. Engl. 44, 4355 (2005).
[9] R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E.

Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693
(2006).

[10] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-
Buck, J. Nangreave, S. Taylor, R. Pei, M. N. Stojanovic,
N. G. Walter, E. Winfree, and H. Yan, Nature (London) 465,
206 (2010).

[11] T. Antal, P. L. Krapivsky, and K. Mallick, J. Stat. Mech.: Theory
Exp. (2007) P08027.

[12] T. Antal and P. L. Krapivsky, Phys. Rev. E 76, 021121 (2007).
[13] T. Chou, K. Mallick, and R. K. P. Zia, Rep. Prog. Phys. 74,

116601 (2011).
[14] M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, and

E. Frey, Banach Cent. Publ. 80, 101 (2008).
[15] B. Derrida, M. Evans, and K. Mallick, J. Stat. Phys. 79, 833

(1995).
[16] O. Semenov, M. J. Olah, and D. Stefanovic, Phys. Rev. E 83,

021117 (2011).
[17] L. Samii, H. Linke, M. J. Zuckermann, and N. R. Forde, Phys.

Rev. E 81, 021106 (2010).
[18] L. Samii, G. A. Blab, E. H. C. Bromley, H. Linke, P. M. G.

Curmi, M. J. Zuckermann, and N. R. Forde, Phys. Rev. E 84,
031111 (2011).

[19] M. J. Olah and D. Stefanovic, arXiv:1211.3482.
[20] T. Antal and P. L. Krapivsky, Phys. Rev. E 85, 061927

(2012).
[21] C. Gallesco, S. Müller, and S. Popov, ESAIM: Probab. Stat. 15,

390 (2011).
[22] I. Ben-Ari, K. Boushaba, A. Matzavinos, and A. Roitershtein,

Bull. Math. Biol. 73, 1932 (2011).
[23] C. Gallesco, S. Müller, S. Popov, and M. Vachkovskaia, ALEA,

Lat. Am. J. Probab. Math. Stat. 8, 129 (2011).
[24] R. Juhász, J. Stat. Mech.: Theory Exp. (2007) P11015.
[25] J. D. Watson and F. H. C. Crick, Nature (London) 171, 737

(1953).

[26] This differs from the original model of Antal et al. [11] who
allowed rebinding only to different sites.

[27] C. B. Korn, S. Klumpp, R. Lipowsky, and U. S. Schwarz, J.
Chem. Phys. 131, 245107 (2009).

[28] M. Brunnbauer, R. Dombi, T.-H. Ho, M. Schliwa, M. Rief, and
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Appendix B.

Diffusion and Capture
– How Diffusive Enzymes Regulate Filaments

Please find in the following, work together with Emanuel Reithmann on
proteins that diffuse on filaments and are captured at the filament end [264].
This model can be applied to diffusing polymerases and depolymerases on
actin and microtubule filaments [265]. A more detailed description can be
found in Emanuel’s master’s thesis [91].
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ABSTRACT The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of micro-
tubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative
theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament’s
end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a
consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins
and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described
within a Michaelis-Menten framework. Together, one-dimensional diffusion and capture beats the (three-dimensional) Smolu-
chowski diffusion limit for the rate of protein association to filament ends.
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The catalytic activity of enzymes is often restricted to spe-
cific binding sites. The ends of microtubules (MTs) for
example are binding sites for a plethora of MT-associated
proteins (MAPs) (1). At MT ends, MAPs can catalyze
biochemical processes (2), or serve as substrates for other
enzymes. This makes an efficient association of MAPs to
MT tips important. Experiments suggest that one-dimen-
sional diffusion of MAPs on MTs facilitates tip-targeting
(3,4). This idea goes back to the concept of ‘‘reduction in
dimensionality’’ suggested by Adam and Delbrück (5) and
has been largely applied (6,7). However, a quantitative un-
derstanding of tip-binding mediated by diffusion on the fila-
ment and subsequent capture at the tip has remained elusive
(3,8–16).

Here we show that capturing at the tip is crucial for tip-
localization of proteins. We present a theory where diffusion
and capture is accurately quantified with an effective associ-
ation rate constant and provide a result that depends only on
experimentally accessible parameters. For proteins that are
enzymatically active at filament ends, our theory predicts
that diffusion and capture leads to an enhancement of the
enzymatic reaction velocity due to stronger tip-localization.
We observe that the reaction velocity in dependence of the
enzyme concentration closely follows a Michaelis-Menten
curve and quantify the contribution of one-dimensional
diffusion to tip-localization and enzymatic processes down-
stream thereof.

To model the diffusive motion of proteins on a filament,
we consider a one-dimensional lattice of length lwith lattice
spacing a ¼ 8.4 nm (Fig. 1 A). The lattice corresponds to a
single protofilament of a stabilized MT in the absence of dy-
namic instability. Proteins perform a random walk on the

lattice with a hopping rate e, the diffusion constant is D ¼
ea2. Each site can be occupied by only one protein, as the
system is an exclusion process (17). Proteins attach to and
detach from the lattice at rates uonc and uoff, respectively,
where c is the concentration of proteins in solution. The
tip of the MT is represented by the first lattice site in our
model. To account for its particular structure, different on-
and off-rates are assumed there, expressed as konc and koff.
Proteins that bind to the tip are captured, i.e., not allowed
to hop on the lattice, but still may detach into solution.
This important condition is a critical difference between
our model and previous approaches ((3,16); and see also
the Supporting Material).

The central goal of this letter is to quantify the relative
contributions of diffusion and capture (tip-attachment after
diffusion on the lattice) and end-targeting (attachment after
diffusion in solution) (Fig. 1 B) to tip-localization. To
this end we calculated the probability to find a protein at
the end of a protofilament (the tip density rþ). In the
absence of diffusion and capture, the Langmuir isotherm
is obtained,

rþðcÞ ¼
c

K þ c
; (1)

where K ¼ koff/kon is the dissociation constant of the protein
at the tip. However, as noted previously (3,4), such a model
is incomplete as it does not account for the additional
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protein flux along protofilaments mediated by diffusion and
capture. We have analyzed this flux by stochastic simula-
tions of the model (Fig. 1). Surprisingly, we find that over
a broad range of concentrations c, the additional protein cur-
rent to an unoccupied reaction site JD effectively obeys first-
order kinetics, i.e., JD ¼ kDonc (Fig. S2 in the Supporting
Material). This observation implies that despite the
complexity of the diffusion-reaction process one approxi-
mately retains the functional form of the Langmuir
isotherm. Accounting for the diffusion-capture contribution
to the rate of protein attachment leads to an effective disso-
ciation constant,

Keff ¼ koff
��

kon þ kDon
�
: (2)

We have calculated the diffusion-capture rate kDon analyti-
cally, by exploiting the observed approximate linear reac-
tion kinetics. We find

kDon ¼
uonD=a

2

uoff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uoffD

�
a2

q : (3)

Refer to the Supporting Material for a detailed derivation of
Eqs. 1–3. Together, Eqs. 1–3 comprise an effective theory
for the association of proteins to the tip, which accounts
for direct end-targeting as well as the diffusion-capture pro-
cess. With Eq. 3, we are able to quantitatively predict the
relative contribution of diffusion and capture to tip-binding
for different proteins that diffuse on filaments. The results
are shown in Fig. 2: 90–99% of molecules bind to the tip
through one-dimensional diffusion, given they follow diffu-
sion and capture.

Tip-localization due to diffusion and capture as predicted
by our theory has important implications for enzymatically
active proteins. We extended the model to investigate enzy-

matic reactions at the MT tip, where the protein-tip complex
catalyzes a product at rate kcat (Fig. 1 C). In detail, we as-
sume that the protein does not leave the tip after catalyzing
a reaction, but only through detachment into solution. These
model assumptions are consistent with filament polymer-
izing enzymes that act processively, such as XMAP215
for MTs (9,10), and VASP (15) and formins (18) for actin
filaments. The assumption of a constant length l in our
model is excellent if the rate of diffusion is fast compared
to the polymerization rate.

With the above model assumptions, the reaction velocity
v is determined by the tip density, v ¼ rþkcat. We can apply
our previous results, Eqs. 1–3, to obtain

vðcÞ ¼ kcat rþðcÞ ¼
kcatc

Keff þ c
: (4)

The above equation is reminiscent of a single-molecule
Michaelis-Menten equation (19,20) when Keff is reinter-
preted as the Michaelis constant and substrate and enzyme
concentrations are interchanged. In this way, our theory con-
stitutes an effective Michaelis-Menten theory, accounting
for end-targeting and diffusion and capture. Instead of solv-
ing a complex many-body problem, it suffices to apply a
mathematical framework that is analogous to (single-mole-
cule) Michaelis-Menten kinetics. The details of diffusion
and capture are accurately included in the effective on-rate

keffon ¼ kon þ kDon:

This result is in accordance with experimental results for
several enzymatically active proteins where Michaelis-
Menten curves were observed for the reaction speed de-
pending on the enzyme concentration (8,9). Inspired by
the processive (de)polymerase activity of (MCAK)
XMAP215, we assume that enzyme and substrate are not

A

B C

FIGURE 1 (A) Schematic of a microtubule

(MT) with diffusive tip-binding proteins. In

the bulk of the lattice, proteins attach to

empty sites and detach. Proteins hop to

neighboring sites but obey exclusion. At

the plus-end, particles are captured.

(B) Illustration of direct tip-attachment

from solution and via diffusion and cap-

ture. (C) Proteins bind reversibly at the

plus-end. While a protein is attached there,

a reaction is catalyzed at rate kcat. To see

this figure in color, go online.
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decomposed in the reaction step. However, it is straightfor-
ward to include a decomposition in the theory: the corre-
sponding effective dissociation constant would read

Keff ¼ �
koff þ kcat

��
keffon :

Our analytical results, Eqs. 2–4, agree well with simula-
tion results of the stochastic model, as shown in Fig. 3, A
and B. We find that the diffusion and capture mechanism
dramatically increases keffon and thereby reduces the effec-
tive dissociation constant typically by more than one
order of magnitude, e.g., for XMAP215 we find Keff z
10�2 K (see Table S1 in the Supporting Material for
parameter values). In the case of long dwell-times u�1off

and fast diffusion e, Keff reduces to a particularly simple
form

Keff ¼ �
koff

�
uon

�. ffiffiffiffiffiffiffiffiffiffiffiffi
e
�
uoff

q
; (5)

where the denominator is the square-root of the average
number of diffusive steps a protein performs on the filament.

Note that one-dimensional diffusion without capturing
(16) does not lead to a particle flux on the filament
(Fig. S4), and hence the reaction velocity is not increased
(Fig. 3 A). Further, the particle flux might be limited by
the length of the filament: below a threshold length lc (which
is smaller than typical in vivo lengths of MTs), we observe a
length-dependent behavior of the reaction velocity (Fig. S3),
where our theory is not valid.

Our analysis reveals diffusion and capture as an efficient
mechanism to circumvent the diffusion limit for the rate of
end-targeting: Smoluchowski’s theory of three-dimensional
diffusion physically limits the rate of direct tip-attachment
from solution (21). As shown here, one-dimensional diffu-
sion along a filament and subsequent capture at the filament
end overcomes this limitation. This has been shown experi-
mentally for MCAK (3). Our work provides an applicable

theory for reaction kinetics facilitated by diffusion and cap-
ture: specific parameter values for diffusion, tip-association,
and dwell times can be accounted for (see Eqs. 3 and 4).
Employing a broader perspective, our results may also be

A

B

FIGURE 3 (A) Comparison of the reaction velocity with (solid)

and without (dashed) lattice diffusion and with and without

capturing at the tip (circles, simulation data; lines, analytic re-

sults). (B) Reaction velocity v in dependence on the protein con-

centration c. Analytic results (lines) are confirmed by simulation

data (circles). Parameters are L ¼ 1000, uoff ¼ koff ¼ 1 s�1, kcat ¼
10 s�1uon¼ kon¼ 0.01 s�1 nm�1, and c¼ 1 nM. To see this figure

in color, go online.

FIGURE 2 The model predicts the relative

contribution to tip localization of proteins

due to diffusion and diffusion and capture

(color code and solid lines), kD
on/(k

D
on D

kon) with kon ¼ uon (dashed line for actin:

a ¼ 6 nm). Proteins that are captured at the

filament end (solid symbols) and proteins

where evidence for capturing is lacking

(open symbols) are shown. Proteins that

in addition have a direct enzymatic

activity at the filament end are XMAP215

(9,10), MCAK1 (3), and MCAK2 (8) on MTs,

and VASP on actin filaments (15; S.D. Han-

sen and R.D. Mullins, University of Califor-

nia San Francisco School of Medicine,

personal communication, 2014). There

exist also proteins that diffuse on MTs

without enzymatic activity at MT ends, but with roles downstream of tip-localization, e.g., in the protein network of MT tips (1):

Ndc80 (11), CLIP-170 (12), NuMA, PRC1, EB1 (13), and Aurora-B (14). To see this figure in color, go online.
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applicable to other systems where one-dimensional diffu-
sion is important (6), including transcription factor binding
on DNA (22).

SUPPORTING MATERIAL

Supporting Materials and Methods, four figures, and one table are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

00063-6.
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Spatial correlations in protein diffusion and capture on filaments
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One dimensional diffusive motion of enzymes on microtubules is a widespread motif of microtubule
regulating proteins. To quantify the impact of filament diffusion we investigate a stochastic lattice
gas model that accounts for enzymatic activities at microtubule ends such as polymerization and
depolymerization. We find that filament diffusion with subsequent capturing generates significant
spatial correlations and develop an analytic approximation to account for such influences. This
proves essential to obtain agreement between theory and experiment. We observe that diffusion and
capture operates most efficiently at cellular enzyme concentrations.
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The diffusive motion of proteins on filamentous struc-
tures in the cell is vital for several cellular functions
like gene regulation [1] and cytoskeletal dynamics [2, 3]:
Transcription factors are likely to employ one dimen-
sional diffusion on the DNA to find their target site in
a highly specific manner and to determine the kinetics
of gene regulation [4]. Similarly, actin and microtubule
binding proteins diffuse on the respective filaments and
fulfill regulatory functions at the filament ends. The ben-
efit of such a low dimensional diffusive motion to specific
binding was — on a theoretical level — first addressed
by Adam and Delbrück. They suggested that a reduc-
tion in dimensionality of the diffusive motion enhances
the effective association rate of particles to binding sites
on the membrane or on DNA and filaments (see Refs. [6]
for recent reviews on the topic). Since then many studies
addressed biological questions where bulk-filament [7–12]
or bulk-membrane association [13, 14] are important.

Concerning cytoskeletal architectures the efficient as-
sociation and localization of enzymes to specific sites is
relevant to a variety of cellular processes throughout the
cell cycle and for cell motility and dynamics [15]. Re-
cently, it was suggested that filament diffusion is uti-
lized by two key players [3, 16] involved in regulation
of microtubule dynamics, MCAK and XMAP: For both
proteins the association rate for the enzymatic reaction
sites is significantly faster than binding via three dimen-
sional diffusion [17, 18]. This is important as both pro-
teins accomplish vital tasks in acting as depolymerases
(MCAK) [19] and poylmerases (XMAP) [20], respec-
tively, whilst bound to the microtubule end. Note that
this mechanism is also assumed to be relevant for actin
associated proteins [21].

However, diffusive motion on filaments does not lead
to such a dramatic increase of association rates per se:
As shown previously [22], it is crucial that the proteins
are captured at the respective reaction site subsequent to
their one-dimensional diffusive motion. In this work, we
employ a one dimensional lattice gas [23, 24] to investi-

gate the influence of diffusion and capture in a dynamic
system where growth or shrinkage is triggered by inter-
actions of proteins with the lattice end [25–29]. This
study follows a twofold motivation: Firstly, we seek for a
mathematical understanding of the capture process and
its implications. Secondly, based on a fully quantita-
tive model without free parameters we try to illuminate
the specific biomolecular mechanism employed by XMAP
and MCAK.

Our results show that the capture process significantly
complicates the theoretical situation as it inherently leads
to large-scale spatial correlations in the system. Opposed
to previous work which did either not account for pro-
tein capturing [25, 26] or only accounted for it heuristi-
cally [22] we specifically develop a mathematical frame-
work that systematically includes the main determinants
of such systems. Together with the extension towards dy-
namic systems, this conceptual advancement allows us to
quantitatively explain in vitro experiments with XMAP
and MCAK [18, 30]. Our analysis suggests that diffusion
and capture was optimized evolutionary for MCAK and
XMAP, which might point to its importance in vivo.

Model definition. We consider a one dimensional lat-
tice gas, as depicted in Fig. 1. The lattice spacing is
denoted as a. In the case of microtubules a is the size of
a tubulin dimer, 8.4 nm. The configuration of enzymes
on the lattice is described by occupation numbers ni,
taking values ni = 0 for empty, and ni = 1 for occupied
sites. The particles symmetrically hop to neighboring
sites in the semi-infinite system at rate ω and interact
via hard-core repulsion. We implement Langmuir kinet-
ics to model a surrounding reservoir of particles with a
constant concentration c. In detail, particles attach to
and detach from the lattice at rates ωac and ωd, respec-
tively [8, 9]. Sites i ≥ 3 are considered as bulk and sites
i = 1, 2 are considered boundary sites. At these boundary
sites the dynamics is different from that in bulk because
hopping from site i = 1 to site i = 2 is not allowed, as
suggested recently for MT depolymerizing and polymer-
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izing enzymes [17, 18]. This is a critical feature of the
model, as the capturing process is essential to obtain a
localization of proteins at the tip [22]. Particles detach
from the first lattice site at a distinct off-rate, ωd 6= ωd.
In the following we wish to introduce the notion that site
i = 1 is a reaction site at which lattice may polymer-
ize or depolymerize. To simplify the further discussion
we specify our description to the polymerizing case as
induced by XMAP [18]. However, the main results and
computations are independent of whether polymerization
or depolymerization occurs — an equivalent formulation
can also be found for the depolymerase MCAK [31]. The
key feature of our model is that particle occupation at the
tip, n1, triggers lattice growth at rate δ. This implies that
the average speed of lattice growth is proportional to the
average particle occupation 〈n1〉 and polymerization rate
in the presence of XMAP, δ. As shown in recent exper-
iments, XMAP acts processively, i.e. one molecule adds
multiple rounds of tubulin dimers to the MT end [18].
Similar observations have been made for MCAK [17, 30].
To allow for such a behavior the particle at the tip is in-
stantaneously shifted to newly incorporated lattice sites
in our model. With these stochastic rules we can set up
the equations of motion for the average occupation num-
bers. All equations will be formulated in the frame of
reference comoving with the dynamic lattice end. In the
bulk of the lattice, i ≥ 3, we obtain

d
dt 〈ni〉 = ε(〈ni+1〉 − 2〈ni〉+ 〈ni−1〉) + δ(〈n1ni−1〉

−〈n1ni〉) + ωac(1− 〈ni〉)− ωd〈ni〉 . (1)

This equation comprises contributions from hopping with
exclusion (terms proportional to ε), a displacement cur-
rent due to polymerization (terms proportional to δ) as
well as particle attachment and detachment (terms pro-
portional to ωa and ωd, respectively). The dynamics for
tip occupations couples these bulk dynamics in the fol-

FIG. 1. Graphical representation of the XMAP model.
XMAP particles bind to empty lattice sites with rate ωac,
where c is the particle concentration in solution, and detach
with rate ωd. While attached to the lattice, the proteins per-
form an unbiased random walk with hopping rate ω, respect-
ing hard-core repulsion. We assume a distinct off rate at the
first site, denoted by ωd. Particles bound there are prohibited
to perform hopping. Polymerization at rate δ occurs only if
the first site is occupied. At the same time, the XMAP par-
ticle stimulating polymerization stays bound to the tip. A
similar model can be defined for MCAK, where lattice de-
polymerization occurs if the lattice end is occupied, see Sup-
porting Material for details.

lowing manner:

d
dt 〈n1〉 = ε(〈n2〉 − 〈n1n2〉) + ωac(1− 〈n1〉)

−ωd〈n1〉 , (2a)
d
dt 〈n2〉 = ε(〈n3〉 − 2〈n2〉+ 〈n2n1〉)− δ〈n1n2〉

+ωac(1− 〈n2〉)− ωd〈n2〉 (2b)
d
dt 〈n1n2〉 = ε(〈n1n3〉 − 〈n1n2〉) + δ〈n1n2〉

+ωac(〈n1〉+ 〈n2〉 − 2〈n1n2〉)
∗(ωd + ωd)〈n1n2〉. (2c)

Note that the contribution of hopping particles changes
at the tip due to the capturing mechanism. Moreover, the
processive polymerization scheme implies the creation of
an empty lattice site at i = 2 after the addition of a
new site. The occupation at the terminal site remains
unchanged upon polymerization. We quantify our model
with the experimental data available for XMAP [18, 32],
see Supporting Material for all parameter values.

In a first step we test the quality of standard ap-
proximation techniques for driven lattice gases against
stochastic simulation data obtained from Gillespie’s al-
gorithm [33]. The set of equations which determines the
lattice occupations, Eq. 1 and Eqs. 2(a-c), is not closed,
but the dynamics of the density ρi = 〈ni〉 is coupled to
the dynamics of the correlation function gi = 〈n1ni〉. In
fact, there is an infinite hierarchy of equations, which, in
general, precludes obtaining an exact solution [34], see
e.g. Ref. [35]. A common and often quite successful ap-
proximation scheme for exclusion processes is to assume
that there are no correlations and one may factorize all
correlation functions, 〈n1ni〉 ≈ 〈n1〉〈ni〉. In this mean-
field (MF) approximation one obtains a closed set of dif-
ferential equations for the particle density ρi which may
be solved subject to the boundary conditions; see Sup-
porting Material for details. Fig. 2 shows the average
occupation number of the first site 〈n1〉 as a function of
the bulk concentration c. A comparison with our stochas-
tic simulation data shows that the MF solution strongly
overestimates 〈n1〉 and thereby the average polymeriza-
tion speed v = δ a 〈n1〉.

One might suspect that the reason for the failure of the
MF calculation are correlations close to the catalytic site
where XMAP acts as a polymerase. Local correlations
can efficiently be accounted for by employing a finite seg-
ment mean-field (FSMF) theory [37, 38]. The idea is to
retain all correlations close to the catalytic site by solving
the full master equation for the first N sites and to use
the mean-field assumption only outside of this segment.
The density profile is then obtained by matching the full
solution and the MF solution [25, 29]; see Supporting
Material for details. While the results show the right
tendency towards the numerical data the improvement
as compared to the MF results is insignificant. Theses
observations strongly suggest that correlations extend far
beyond the immediate vicinity of the catalytic site.
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FIG. 2. Average occupation of the first lattice site 〈n1〉.
This quantity determines the polymerization velocity via
v = δ〈n1〉. Simple mean-field theory as well as FSMFT for
segment sizes of N = 2, 5 do not agree with the data from
stochastic simulations (dots), while the CMF approximation
provides accurate results. Parameter values are detailed in
the Supporting Material [36]

To account for these correlations we extend the MF
theory by keeping both the density and the correlation
function as dynamic variables. In order to close the set
of equations we employ the following heuristic factoriza-
tion scheme which we confirmed by stochastic simula-
tions: 〈n1n2ni〉 ≈ 〈n1n2〉〈ni〉 and 〈n2ni〉 ≈ 〈n2〉〈ni〉; see
Supporting Material. With the above closure relations
one obtains for the bulk dynamics to leading order in the
continuum limit

∂tρ(x, t) = D∂2xρ− v0∂xg + ωac(1− ρ)− ωdρ , (3a)

∂tg(x, t) = D∂2xg − v0∂xg + ερ
(
〈n2〉 − 〈n1n2〉

)

+ωac
(
ρ+ 〈n1〉 − 2g

)
−
(
ωd + ωd

)
g , (3b)

where ρ(x, t) = 〈ni+1〉 and g(x, t) = 〈n1ni+1〉 with
x = a(i−1) for i ≥ 3. Eqs. 3 can be derived from the dis-
crete equations for the density ρi, Eq. 3a, and the correla-
tor gi, see Suppporting Material for details. We have also
introduced the macroscopic diffusion constant D = ε a2

and the maximum polymerization speed v0 = δ a. Due
to the capturing mechanism a continuous approximation
of is not valid at sites i = 1, 2. Therefore we keep the lo-
cal dynamics, Eqs. 2(a-c), for the boundary sites. These
equations constrain the boundary conditions of ρ(x) and
g(x) at x = a. For the semi-infinite geometry we fur-
ther impose that the density equilibrates at the Lang-
muir isotherm, limx→∞ ρ(x) = ρLa = ωac/(ωac+ωd), and
that correlations vanish asymptotically, limx→∞ g(x) =
〈n1〉ρLa.

Solving the equations of this correlated MF (CMF)
theory for the steady state tip density we obtain the re-
sults shown in Fig. 2. They are in excellent agreement
with the data of the stochastic simulations. We con-
clude that there are long-ranged correlations along the

microtubule and that they are essential in explaining the
observed average tip density.

Fig. 3(a) shows the density profile along the lattice ob-
tained by stochastic simulations and the CMF approach.
The particle occupation is obtained with high precision
within the CMF framework along the whole lattice. Note
that there is a discontinuity at the boundary sites which
is due to particle capturing and which demonstrates the
strong tip-localization of the proteins. This also shows,
that a continuous description of the density is not valid
at sites i = 1, 2.

FIG. 3. Panel (a) shows the density profile of XMAP
along the growing MT lattice for a XMAP concentration of
10 and 100 nM (see Supporting Material [36] for parameter
values [18, 32]). XMAP strongly localizes at the MT tip and
the density profile has a discontinuity between the tip site
(i = 1) and the lattice site next to the tip (i = 2). In the
bulk of the lattice the density obeys a diffusive (exponential)
density profile [25]. Panel (b) shows the correlation coefficient
corr(n1ni) (see Eq. (4)) along the growing MT lattice, com-
plementing the density profiles in (a). The data as well as
the analytic results indicate that the system develops corre-
lations that extend over hundreds of lattice sites. In (a) and
(b) data points are obtained from stochastic simulations; lines
are analytic solutions to Eqs. (3a) and (3b), respectively.

We now discuss the behavior of correlations between
the occupations at the reaction site and in the bulk. The
Pearson product-momentum correlation coefficient quan-
tifies these correlations:

corr(n1, ni) =
cov(n1, ni)

σ(n1)σ(ni)
, (4)

where cov(·, ·) is the covariance, and σ(·) is the standard
deviation. corr(n1, ni) ranges from −1 to +1, with these
values implying perfect anti-correlation or correlation of
n1 and ni, respectively. Data and theory for the hy-
pothesized tip-bulk correlations are shown in Fig. 3(b).
Remarkably, the correlation coefficient shows intricate
behavior covering a broad region at the tip — includ-
ing anti-correlations. These effects can be qualitatively
understood in terms of competition between different in-
fluences on the tip occupation. In the model diffusing
particles are captured by the tip, i.e. they are prohib-
ited to leave the reaction site via lattice movement. This
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FIG. 4. In panel (a) we present concentration dependent
polymerization and depolymerization velocities obtained from
our theoretical analysis in comparison with existing exper-
imental data for XMAP [18, 32] and MCAK [30], respec-
tively. We find excellent agreement of the CMF theory with
experiments. Panel (b) shows the efficiency of the one di-
mensional reaction site targeting mechanism as the devia-
tion of ρ1 obtained from our theoretical analysis from the
density of proteins on the reaction site without diffusion
ρno diffusion

1 = ωac/(ωd + ωac). The maximum efficiency coin-
cides with the physiological concentration range of both pro-
teins: 100 − 1000 nM for XMAP [16] and 10 − 100 nM for
MCAK [39] (shaded areas). In (c) the concentration depen-
dency of the reaction site density with lattice diffusion (ρ1,
solid lines) and without lattice diffusion (ρno diffusion

1 , dashed
lines) is depicted. Kinetic parameters are given in the Sup-
porting Material [36].

ensues positive correlations with respect to the first lat-
tice site and sites in its vicinity. On the other hand this
effect is antagonized by negative correlations caused by
the creation of empty lattice sites due to polymeriza-
tion. With diffusion taking place on a faster time scale
as compared to polymerization the positive correlations
dominate for short distances. Further it becomes evident
why the MF approach and the FSMFT do not lead to
the correct tip density: Correlations extend into the sys-
tem on a length-scale which lies beyond the scope of those
approaches. As opposed to this, the CMF approach qual-
itatively captures significant correlations and thereby re-
produces simulation data.

Comparison with experimental data. With this the-
ory at hand, we now turn to a comparison of our theoret-
ical efforts with experimental data [18, 32]. To show the
generality of our method additionally apply it for a differ-
ent MT regulating protein, MCAK, that depolymerizes
MTs [17, 30]. To this end we adapt our model for the case
of depolymerizing diffusing proteins [31]. We find perfect
quantitative agreement of our theoretical approach with
the measured polymerization and depolymerization ve-
locities, see Fig. 4(a). The filament facilitates enzyme
association to the MT tip via a diffusion and capture
mechanism as can be concluded from of our investiga-
tions. Fig. 4(b) shows the effect of diffusion on the effi-

ciency of tip association: We plot the difference between
tip densities in the presence of diffusion (ρCMF

1 ) and in
the absence of diffusion (ρLa1 ) when only direct binding
to the tip is allowed. We find that the ensuing curve
has a pronounced maximum indicating an optimal con-
centration range where the enhancement of the tip den-
sity peaks due to diffusion on the MT. Strikingly, this
maximum coincides with the physiological concentration
range for both proteins, XMAP (100−1000 nM [16]) and
MCAK (10 − 100 nM [39]). We hypothesize, that there
is an evolutionary pressure that optimized diffusion and
capture for MCAK and XMAP which might indicate the
importance of the filament diffusion also in vivo.

Summary and Conclusion. In this work, we study the
regulatory influence of microtubule polymerases and de-
polymerases that are subject of a one-dimensional dif-
fusion and capture process on microtubules. To model
these biological situations we employ a lattice gas based
on a symmetric simple exclusion process [24]. We find
that the occupation of the microtubule tip with a pro-
tein spatially correlates with the occupation of the micro-
tubule lattice. This correlation decays slowly along the
lattice and has a large impact on the occupation of the
microtubule tip. This is of relevance as the latter quan-
tity determines the velocity of enzyme-dependent micro-
tubule growth or shrinking. We derive a generalized set
of hydrodynamic equations which couple the evolution of
the particle density with the evolution of relevant corre-
lations. In that way it is possible to globally account for
those correlations. Similar correlations have been identi-
fied in two-dimensional diffusive systems [40].

We find excellent agreement of our analytic approach
and stochastic simulations with in vitro experiments. In
these experiments growth and shrink velocities were mea-
sured for the polymerase XMAP as well as the depoly-
merase MCAK in a concentration dependent manner.
Remarkably, quantitative agreement is achieved without
any fit parameter: all parameters used here were directly
extracted from the experiments. As a result, we conclude
that the diffusive motion and subsequent capturing of
enzymes on the microtubule lattice constitutes a highly
efficient emchanism to target the microtubule tip. The
analytic approach and stochastic simulations allow for a
quantification of this effect: The increase of the tip oc-
cupation due to facilitated diffusion is most efficient at
physiological concentrations.

Our findings are not limited to microtubules and their
related enzymes, but might also be relevant for other
enzymatic processes with spatial degrees of freedom and
non-equilibrium physics.

This project was supported by the Deutsche
Forschungsgemeinschaft in the framework of the SFB
863.



5

∗ frey@lmu.de
[1] P. H. von Hippel and O. G. Berg, J. Biol. Chem. 264,

675 (1989).
[2] J. R. Cooper and L. Wordeman, Curr. Opin. Cell Biol.

21, 68 (2009).
[3] J. Howard and A. A. Hyman, Curr. Opin. Cell Biol. 19,

31 (2007).
[4] A. D. Riggs, H. Suzuki, and S. Bourgeois, J. Mol. Biol.

48, 67 (1970).
[5] G. Adam and M. Delbrück, in Structural chemistry and

molecular biology (Freeman, 1968) pp. 198–215.
[6] L. Mirny et al., J. Phys. A: Math. Theor. 42, 434013

(2009); A. B. Kolomeisky, Phys. Chem. Chem. Phys.
13, 2088 (2011); O. Bénichou et al., Rev. Mod. Phys.
83, 81 (2011); M. Sheinman et al., Rep. Prog. Phys. 75,
026601 (2012).

[7] P. H. Richter and M. Eigen, Biophys. Chem. 2, 255
(1974); O. G. Berg, R. B. Winter, and P. H. Von Hippel,
Biochemistry 20, 6929 (1981).

[8] R. Lipowsky, S. Klumpp, and T. Nieuwenhuizen, Phys.
Rev. Lett. 87, 108101 (2001).

[9] A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev.
Lett. 90, 86601 (2003); Phys. Rev. E 70, 46101 (2004).

[10] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland,
T. Hwa, J. Kondev, and R. Phillips, Curr. Opin. Genet.
Dev. 15, 116 (2005).

[11] I. Neri, N. Kern, and A. Parmeggiani, Phys. Rev. Lett.
110, 098102 (2013).

[12] P. Hammar, P. Leroy, A. Mahmutovic, E. G. Marklund,
O. G. Berg, and J. Elf, Science 336, 1595 (2012).

[13] S. Mayor, J. F. Presley, and F. R. Maxfield, J. Cell Biol.
121, 1257 (1993).

[14] J. Halatek and E. Frey, Cell Rep. 1, 741 (2012).
[15] C. G. Dos Remedios et al., Physiol. Rev. 83, 433 (2003);

A. Akhmanova and M. O. Steinmetz, Nat. Rev. Mol. Cell
Biol. 9, 309 (2008).

[16] K. Kinoshita, I. Arnal, A. Desai, D. N. Drechsel, and
A. A. Hyman, Science 294, 1340 (2001).

[17] J. Helenius, G. J. Brouhard, Y. Kalaidzidis, S. Diez, and
J. Howard, Nature 441, 115 (2006).

[18] G. J. Brouhard, J. H. Stear, T. L. Noetzel, J. Al-Bassam,
K. Kinoshita, S. C. Harrison, J. Howard, and A. A.
Hyman, Cell 132, 79 (2008).

[19] J. D. Wilbur and R. Heald, eLife 2, e00290 (2013).
[20] S. B. Reber et al., Nat. Cell Biol. 15, 1116 (2013).

[21] S. Romero et al., Cell 119, 419 (2004); D. Vavylonis
et al., Mol. Cell 21, 455 (2006); S. D. Hansen and R. D.
Mullins, J. Cell Biol. 191, 571 (2010); H. Mizuno et al.,
Science 331, 80 (2011).

[22] E. Reithmann, L. Reese, and E. Frey, Biophys. J. 108,
787 (2015).

[23] T. Chou, K. Mallick, and R. K. P. Zia, Rep. Prog. Phys.
74, 116601 (2011).

[24] B. Derrida, Phys. Rep. 301, 65 (1998).
[25] G. Klein, K. Kruse, G. Cuniberti, and F. Jülicher, Phys.
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López, R. D. Vale, F. Jülicher, S. L. Reck-Peterson, and M. Dogterom,

”
Cortical dynein controls microtubule dynamics to generate pulling forces

that position microtubule asters.“ Cell 148, 502–14 (2012).
[24] N. Pavin, L. Laan, R. Ma, M. Dogterom, and F. Jülicher,
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