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1 ZUSAMMENFASSUNG  

Das Nierenzellkarzinom (RCC, engl.: renal cell carcinoma) zeichnet sich durch ein 

reichhaltiges Immunzellinfiltrat aus, das neben T- und NK-Zellen auch dendritische Zellen 

(DC, engl.: dendritic cells) und Makrophagen (MΦ) enthält. Dennoch bleibt die 

Tumorkontrolle aus. Offensichtlich werden die antitumoralen Funktionen der Immunzellen 

durch den Tumor supprimiert. DC und MΦ sind zentrale Regulatoren der Immunantwort und 

können je nach Differenzierungsstatus und funktioneller Polarisierung sowohl Immunität als 

auch Toleranz induzieren. Sie sind ein optimales Ziel, um die antitumorale Immunantwort zu 

modulieren. Wir fanden einen myeloischen Zelltyp im RCC-Gewebe, der entgegen 

klassischer Vorstellung DC (CD209/DC-SIGN)- und MΦ-Marker (CD14, CD163) 

koexprimiert. Aufgrund der Anreicherung im RCC-Tumor gegenüber dem tumorfreien 

Nierenparenchym nannten wir ihn „enriched-in-renal-carcinoma DC“ (ercDC). Dieser Zelltyp 

konnte in vitro, durch Behandlung von Monozyten mit einer Kombination RCC-sezernierter 

Faktoren (IL-6, CXCL8/IL-8, VEGF), hergestellt werden. Er wurde als „DC“ bezeichnet, weil 

sowohl die in vitro generierten als auch die aus dem RCC stammenden ercDC T-Zell-

aktivierende Kostimulations- und MHC-Moleküle (engl.: major histocompatibility complex) 

exprimierten. 

In dieser Arbeit wurde gezeigt, dass in vitro generierte ercDC trotz der Expression T-Zell-

aktivierender Marker naive T-Zellen kaum zur Proliferation stimulierten und bei Stimulation 

mit CD40-Ligand kein IL-12 sezernierten. Auch das für die Ausbildung der immunologischen 

Synapse wichtige Fascin wurde im Vergleich zu klassischen DC (cDC) sehr viel geringer 

exprimiert. Aufgrund dieser Unterschiede und bestärkt durch die aktuelle Diskussion über ein 

mögliches Kontinuum der Zellen des mononukleären Phagozytensystems (MPS), wurde eine 

globale Genexpressionsanalyse durchgeführt. Durch den Vergleich des ercDC-

Transkriptoms mit dem verschiedener myeloischer Zellen aus dem Blut und nicht-

lymphatischen Geweben konnte ein charakteristisches Marker- und Signaturgenprofil erstellt 

werden, welches die ercDC einerseits von den vergleichend analysierten Zelltypen deutlich 

abgrenzte, aber andererseits auch die Ähnlichkeit zu einem inflammatorischen MΦ-Subtyp 

aus dem Ascites von Ovarialkarzinompatienten aufzeigte. Das Transkriptom der ercDC und 

inflammatorischen Ascites-MΦ zeigte eine Prägung durch dieselben Aktivierungsstimuli 

(Glucocorticoide, PGE2, TNF, Palmitinsäure (PA, engl.: palmitic acid), TLR2-Liganden), so 

dass anzunehmen ist, dass sie einem ähnlichen Gewebemilieu ausgesetzt waren.  

Die Genexpressionsanalyse, insbesondere die Analyse von DC- und MΦ-Kerngenen sowie 

DC/MΦ-spezifischer Transkriptionsfaktoren und Wachstumsfaktorrezeptoren, ergab, dass 

sich die ercDC, entgegen der ursprünglichen Annahme, im Kontinuum des MPS eher auf der 

Seite der MΦ positionieren. Innerhalb der MΦ-Gruppe zeichneten sie sich sowohl durch M1- 
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als auch durch M2-Eigenschaften aus und exprimierten Gene, die für gewebemodulierende 

MΦ typisch sind. Die ercDC sind somit ein Mischtyp, der Eigenschaften mehrerer MΦ-

Subtypen vereint. Auch aus dem Markergenprofil konnten sowohl proinflammatorische, 

immunstimulierende als auch antiinflammatorische, immuninhibitorische Funktionen 

abgeleitet werden. Darüber hinaus kennzeichnete die ercDC ein proangiogenes und 

invasives Genexpressionsprofil, welches für protumorale tumorassoziierte MΦ (TAM) typisch 

ist. Zu diesem Profil gehörte auch VSIG4, das für einen koinhibitorischen, T-Zell-Toleranz-

induzierenden Rezeptor kodiert. VSIG4 könnte ursächlich für die geringe T-Zell-

Stimulationsfähigkeit der ercDC sein und ist ein vielversprechender Kandidat für 

therapeutische Ansätze mit dem Ziel der ercDC-Repolarisierung zu einem 

immunkompetenten Zelltyp.  

Weiterhin konnte gezeigt werden, dass die in vitro generierten ercDC den aus dem RCC 

stammenden ercDC sowohl auf Transkript- als auch auf Proteinebene ähnlich sind. Die gute 

Vergleichbarkeit der in vitro generierten Zellen mit den Ex-vivo-ercDC erlaubt nun 

weiterführende, umfassendere Funktionsanalysen, die aufgrund der begrenzten Anzahl der 

ercDC aus dem RCC nur mit einem In-vitro-Surrogat möglich sind. 
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2 SUMMARY  

Renal cell carcinoma (RCC) has a prominent immune cell infiltrate consisting of T cells, 

natural killer (NK) cells, dendritic cells (DCs) and macrophages (MΦ). Nevertheless, tumor 

control is not achieved which indicates immunosuppression within the tumor milieu. DCs and 

MΦ are central regulators of immune responses with the capacity to induce immunity or 

tolerance depending on their differentiation state and functional polarization. Thus, targeting 

this cell population constitutes an effective mean for tumors to shift the immune response 

toward immunosuppression. We identified a myeloid cell type in RCC tissue that co-

expresses, contrary to general assumption, DC (CD209/DC-SIGN) and MΦ markers (CD14, 

CD163). Based on the predominance of this cell type in RCC tissue compared to tumor-free 

areas of the tumor-bearing kidney they were referred to as “enriched-in-renal-carcinoma 

DCs” (ercDCs). The phenotype of these ercDCs could be reiterated in vitro when treating 

monocytes with a combination of RCC-derived factors (IL-6, CXCL8/IL-8, VEGF). They were 

designated as DC because both, the in vitro generated and the ercDCs isolated from RCC 

tissue, expressed costimulatory and MHC molecules (major histocompatibility complex).  

In the present work it was demonstrated, that in vitro generated ercDCs induced proliferation 

of naive T cells poorly and did not secrete IL-12 after stimulation with CD40 ligand. In 

addition, they expressed fascin weakly in comparison to classical DCs (cDCs), which is 

essential for the formation of the immunological synapse. Based on these differences and 

encouraged by current discussions stating that the mononuclear phagocyte system is rather 

a continuum of cells than consists of distinct cell types, a global gene expression analysis 

was conducted. The comparison of the ercDC transcriptome with those of different myeloid 

cells of the blood and non-lymphoid tissues identified a characteristic marker gene and 

signature gene profile, which, on the one hand, clearly distinguished ercDC from the other 

cell types analyzed, but, on the other hand, revealed a strong resemblance to an 

inflammatory MΦ subtype from the ascites of ovarian cancer patients. The transcriptome of 

both cell types was affected by the same activating stimuli (glucocorticoids, PGE2, TNF, 

palmitic acid (PA), TLR2-ligands), suggesting that they may have been exposed to a similar 

tissue milieu.  

The gene expression analysis, in particular the analysis of DC and MΦ core genes as well as 

transcription factors and growth factor receptors specific for DCs and MΦ, respectively, 

revealed that ercDCs, contrary to the original assumption, should rather be designated as 

MΦ than DC within the continuum of the mononuclear phagocyte system (MPS). Among MΦ, 

they displayed characteristics of M1-MΦ as well as M2-MΦ and, in addition, expressed 

genes associated with MΦ involved in tissue modulation. Thus, ercDCs seem to be a mixed 

cell type displaying characteristics of several MΦ subtypes. Accordingly, the marker gene 

profile of ercDCs included genes associated with proinflammatory, immunostimulatory but 
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also genes with anti-inflammatory, immunoinhibitory functions. Furthermore, ercDCs 

exhibited a proangiogenic and invasive gene expression profile characteristic for tumor 

associated macrophages (TAMs). Among this profile was the gene VSIG4, which encodes a 

co-inhibitory receptor involved in T cell tolerance. VSIG4 could be responsible for the weak T 

cell stimulatory capacity of ercDCs and is, therefore, a promising therapeutic target for the 

repolarization of ercDCs into an immunocompetent cell type.  

Furthermore, the results demonstrated similarity between the in vitro generated ercDCs and 

the ercDCs from RCC tissue at transcript and protein level. Based on this resemblance, in 

vitro generated ercDCs may now be utilized in more extensive functional studies, which can 

only be conducted meaningfully with an in vitro surrogate due to the limited availability of 

ercDC from RCC tissue.  
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3 EINLEITUNG  

Das Immunsystem ist ein komplexes System aus Organen, Zellen und löslichen Faktoren, 

dessen wichtigste Aufgabe die Unterscheidung zwischen körpereigenen und körperfremden 

Bestandteilen ist. Es schützt den Körper somit vor eindringenden Krankheitserregern und 

sorgt gleichzeitig dafür, dass keine Immunreaktion gegen natürliche körpereigene 

Komponenten stattfindet. Neben Pathogenen stellen auch krankhaft veränderte körpereigene 

Zellen eine Gefahr dar, so wie dies bei der Tumorentstehung der Fall ist.  

Das zelluläre Immunsystem unterteilt sich in eine angeborene und erworbene (adaptive) 

Immunabwehr. Zu den Zellen des angeborenen Immunsystems zählen dendritische Zellen 

(DC), Makrophagen (MΦ), Monozyten, Granulozyten, Mastzellen und natürliche Killerzellen 

(NK-Zellen). Diese Zelltypen erkennen eindringende Pathogene über spezielle Rezeptoren, 

sogenannte PRR (engl.: pattern recognition receptor), die bestimmte Strukturen, die PAMP 

(engl.: pathogen associated molecular pattern), auf den Pathogenen wahrnehmen1. Als 

Folge davon kommt es zur Aktivierung der Zellen, die daraufhin u.a. Zytokine und 

Chemokine sezernieren und andere Zellen des Immunsystems anlocken, um die 

inflammatorische Immunantwort voranzutreiben. Die Hauptfunktion der zu den Lymphozyten 

gehörenden NK-Zellen ist das Abtöten von infizierten und entarteten Zellen.  

Zeitlich verzögert zum angeborenen Immunsystem kommt das adaptive Immunsystem zum 

Zuge, welches erregerspezifisch ist und ein langlebiges, antigenspezifisches Gedächtnis 

ausbildet. Die wichtigsten Immunzellen des adaptiven Immunsytems sind B- und T-

Lymphozyten. Die Zellen des adaptiven Immunsystems sind per se „naiv“ und benötigen 

einen Antigenerstkontakt um Effektorfunktion zu erlangen. T-Zellen besitzen zur 

Antigenerkennung einen sogenannten T-Zell-Rezeptor (TCR, engl.: T cell receptor), der auf 

MHC-Molekülen präsentierte Antigene mit Hilfe der Korezeptoren CD4 bzw. CD8 erkennt. 

Dementsprechend unterscheidet man CD4+ T-Helferzellen und CD8+ zytotoxische T-Zellen 

(CTL, engl.: cytotoxic T lymphocytes). CD4+ T-Helferzellen erkennen Peptide über MHC-II-

Moleküle, die von antigenpräsentierenden Zellen (APC, engl.: antigen presenting cell) 

exprimiert werden. Es gibt verschiedene Subpopulationen der T-Helferzellen. Abhängig von 

der MHC/Peptid-TCR-Bindungsstärke und dem Zytokinmilieu entstehen TH1-, TH2-, TH3-, 

TH9-, TH17- und TFH-Zellen (follikuläre T-Helferzellen). Aus der CD4+ T-Zell-Linie können 

auch regulatorische T-Zellen (Treg) hervorgehen, deren Hauptaufgabe es ist, unerwünschte 

Immunantworten zu verhinden, überschießende inflammatorische Immunantworten 

abzuschwächen und darüber die Balance zwischen Immunität und Toleranz zu wahren. Die 

CD8+ CTL sind an der Zerstörung von virusinfizierten Zellen und Tumorzellen beteiligt. Sie 

erkennen auf MHC-I-Molekülen präsentierte Antigene, die von allen kernhaltigen Zellen des 

Körpers exprimiert werden.  
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3.1 Das humane mononukleäre Phagozytensystem 

Das mononukleäre Phagozytensystem (MPS) umfasst eine Gruppe von Zellen des 

angeborenen Immunsystems, die von einer myeloischen hämatopoetischen Stammzelle des 

Knochenmarks abstammt. Hierzu gehören im Blut zirkulierende Monozyten, die im Gewebe 

zu MΦ differenzieren, sowie die DC2,3. Die Gruppe zeichnet sich durch ein hohes Maß an 

Heterogenität in Bezug auf Phänotyp, Funktion und Homöostase aus.  

Die Erstbeschreibung der DC geht auf Ralph Steinman zurück, der eine DC als eine Zelle mit 

typischen bäumchenartigen Ausläufern beschrieb, die die Fähigkeit besitzt nach dem 

Kontakt mit inflammatorischen Stimuli zu reifen, in die T-Zell-Zone der Lymphknoten zu 

migrieren und dort mittels Antigenpräsentation eine antigenspezifische T-Zell-Antwort zu 

induzieren4,5. Im murinen System, aber auch im humanen System, wurden DC lange Zeit 

durch die Expression des Markers CD11c identifiziert und von den MΦ unterschieden6,7. Im 

humanen System wurde außerdem oft CD209/DC-SIGN zur Identifizierung von interstitiellen 

gewebeständigen DC und CD14 zur Identifizierung von MΦ verwendet8,9,10. Funktionell 

wurden MΦ ursprünglich als stark phagozytierende Zellen definiert, die bei Stimulierung ROS 

(engl.: reactive oxygen species) und NO (engl.: nitric oxide) bilden11. Diese „einfachen“ 

Kriterien zur Unterscheidung müssen jedoch überdacht werden, da die Grenzen zwischen 

den einzelnen myeloischen Zelltypen zunehmend verschwimmen2,6,12. Mittlerweile ist 

bekannt, dass auch humane und murine MΦ CD11c+ sein können und es gibt 

inflammatorische DC, die CD14 exprimieren6,13. Eine entscheidende Rolle für die 

Differenzierung und Funktion der myeloischen Zellen scheinen das umgebende 

Gewebemilieu und die darin enthaltenen löslichen Faktoren zu spielen10,12,14. In den letzten 

Jahren rückten daher umfassende Transkriptom- und Proteom-basierte Analysen in den 

Fokus, welche die Klassifizierung der myeloischen Zellen basierend auf dem durch das 

Milieu geprägten Genexpressionsprofil verbessern sollen. 

 

3.1.1 Ontogenie 

Myeloische Zellen stammen von CD34+ hämatopoetischen Stammzellen, den M-CFU (engl.: 

myeloid colony-forming units), des Knochenmarks ab. M-CFU differenzieren zu einem 

gemeinsamen myeloischen Vorläufer, dem CMP (engl.: common myeloid progenitor), 

welcher sich dann zu einer Monozyten/MΦ- und DC-Vorläuferzelle (MDP, engl.: 

macrophage-DC progenitor) entwickelt (Abbildung 3-1). Die Lin-c-KithiCD115+CX3CR1+Flt3+ 

MDP reifen dann entweder zu einer pro-Monozyten-Vorläuferzelle oder DC-Vorläuferzelle 

(CDP, engl.: common DC progenitor, Lin-c-KitloCD115+CX3CR1+Flt3+) aus. Die konstitutive 

Expression des Transkriptionsfaktors PU.1 ist für die Differenzierung der M-CFU zur MDP 

essentiell und setzt sich dann in der gesamten DC-Linie fort. Die Transkriptionsfaktoren IRF8 

und Ikaros sowie der Wachstumsfaktorrezeptor FLT3 (engl.: Fms-like tyrosine kinase 3) 
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steuern die Differenzierung der MDP zur CDP15. Die CDP entwickelt sich, abhängig von den 

Transkriptionsfaktoren, zu einer prä-cDC (engl.: classical DC) oder prä-pDC (plasmazytoide 

DC). Für die Entwicklung der prä-cDC sind die Transkriptionsfaktoren ZBTB46 und BCL6 

essentiell15,16, für die CD123+BDCA2+BDCA4+ pDC ist der Transkriptionsfaktor TCF4/E2-2 

der Masterregulator17. Aus den prä-cDC entwickeln sich zwei Subtypen klassischer DC, die 

CD1c+ DC und die CD141+ DC. Die Differenzierung von CD1c+ DC wird insbesondere durch 

den Transkriptionsfaktor IRF4 gesteuert, die Entwicklung der prä-cDC zu CD141+ DC, die 

u.a. durch die Expression von XCR1 und CLEC9A gekennzeichnet sind, durch BATF315,18. 

Aus der pro-Monozyten-Vorläuferzelle entwickeln sich drei verschiedene Subtypen im Blut 

zirkulierender Monozyten, die sich in der Expression von CD14 und CD16 unterscheiden 

(siehe auch Abschnitt 3.1.2.1, Seite 8). Diese wandern bei Entzündungsvorgängen in die 

Gewebe und reifen zu inflammatorischen MΦ oder migratorischen DC (MoDC, engl.: 

monocyte-derived DC) aus19. Die Monozyten-MΦ-Zelllinie zeichnet sich durch die Expression 

des Transkriptionsfaktors MAFB und des Wachstumsfaktorrezeptors CSF1R aus11. 

Langerhanszellen und Microglia können sich vermutlich sowohl aus im Blut vorkommenden 

Monozyten als auch aus einer Monozyten-Vorläuferzelle im Knochenmark entwickeln20,21.  

 

Abbildung 3-1: Entwicklung humaner DC und Makrophagen. Erklärung siehe Text in Abschnitt 
3.1.1. Modifiziert nach Tsunetsugu-Yukota et al.19. Durchgezogener Pfeil: direkte Verbindung; 
gestrichelter Pfeil: indirekte Verbindung; Mono: Monozyt 
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3.1.2 Zelltypen 

3.1.2.1 Monozyten 

Es gibt drei, im Blut zirkulierende, humane Monozyten-Subtypen. Klassische CD14++CD16-, 

intermediäre CD14++CD16+ und nicht-klassische CD14dimCD16++ Monozyten22. Die 

klassischen Monozyten machen 80-90% der im Blut vorkommenden Monozyten aus. Sie 

exprimieren CCR2, CD64/FcγRI und wenig CX3CR1. Sie zeichnen sich durch eine hohe 

phagozytotische Aktivität und bakterizide Eigenschaften, z.B. die Sezernierung von ROS, 

aus. Bei Stimulierung mit LPS sezernieren sie IL-10, aber auch proinflammatorische Zytokine 

wie IL-6 und TNF-α22. Bei Entzündungsvorgängen können die klassischen Monozyten im 

Gewebe entweder zu CD14+ inflammtorischen DC oder zu inflammatorischen MΦ 

differenzieren19. Entscheidend für die Differenzierung ist das Gewebemilieu, insbesondere 

die darin enthaltenen Zytokine23,24. Die beiden CD16-positiven Monozyten-Subtypen 

exprimieren viel CX3CR1, aber nur wenig CCR2. Intermediäre CD14++CD16+ Monozyten 

exprimieren die Fc-Rezeptoren CD64/FcγRI und CD32/FcγRII, besitzen phagozytotische 

Aktivität und sezernieren proinflammatorische Zytokine wie TNF-α, IL-6 und IL-1α22. Es wird 

vermutet, dass die intermediären Monozyten eine Übergangspopulation darstellen, die 

Eigenschaften klassischer und nicht-klassischer Populationen vereint. Die nicht-klassischen 

CD14dimCD16++ Monozyten exprimieren die beiden zuvor genannten Fc-Rezeptoren nicht, 

sind wenig phagozytotisch und produzieren kein ROS. Sie können sowohl 

antiinflammatorische (z.B. IL-1Ra (IL-1-Rezeptor-Antagonist)) als auch proinflammatorische 

Zytokine (z.B. IL-6, TNF-α) sezernieren22.  

 

3.1.2.2 Makrophagen 

MΦ sind eine sehr heterogene Zellgruppe, die in fast allen Geweben des Körpers 

vorkommt10. Sie entwickeln sich aus Monozyten, die aus dem Blut einwandern, können sich 

aber auch aus im Gewebe vorkommenden Vorläuferzellen generieren. Das Gewebe, sowie 

die darin enthaltenen Zellen und löslichen Faktoren (u.a. M-CSF (engl.: macrophage colony-

stimulating factor) und GM-CSF (engl.: granulocyte-macrophage colony-stimulating factor)), 

entscheiden über die Funktion und den Phänotyp der MΦ14. Hauptaufgaben der MΦ sind die 

Beseitigung von Pathogenen und toten Zellen mittels Phagozytose sowie die 

Aufrechterhaltung der Gewebehomöostase. Nach Pathogenkontakt sezernieren MΦ diverse 

Zytokine und Chemokine, wobei die Art und Menge der freigesetzten Mediatoren den 

weiteren Verlauf der Immunantwort entscheidend beeinflusst. Proinflammatorische Zytokine, 

wie IL-1β und TNF-α, erhöhen die Durchlässigkeit des lokalen Endothels für zelluläre und 

lösliche Faktoren. Chemokine, wie RANTES/CCL5, tragen zusätzlich zur Rekrutierung von 

Immunzellen an den Ort der Entzündung bei. Angelehnt an die bei T-Zellen vorkommende 

TH1/TH2-Nomenklatur, wurden MΦ bisher in zwei verschiedene Subklassen eingeteilt, die 
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klassischen M1-MΦ und die alternativ aktivierten M2-MΦ25. Diese strikte Einteilung ist jedoch 

v.a. für geweberesidente MΦ nicht mehr haltbar, da deren Diversität und Funktion stark von 

dem jeweiligen Gewebe und den dort vorzufindenden mikroanatomischen Nischen 

abhängt14,25. Vielmehr scheint ein Kontinuum der MΦ zu existieren, in dem die M1- bzw. M2-

MΦ die beiden Extrema darstellen26. Zu den geweberesidenten MΦ zählen zum Beispiel die 

Langerhanszellen (Haut), alveolare MΦ (Lunge), intestinale MΦ (Darm), uterine MΦ (Uterus) 

und renale MΦ (Niere). Bisher wurden sie v.a. aufgrund ihrer wichtigen Rolle in der 

Gewebehomöostase und Wundheilung als M2-ähnlich klassifiziert14. Allerdings spielen sie 

auch eine wichtige Rolle bei der Initiation der inflammatorischen Immunantwort, u.a. durch 

die Expression von PRR und die Sezernierung proinflammatorischer Chemo- und Zytokine14. 

Wahrscheinlich stellen die meisten geweberesidenten MΦ einen individuellen Zelltyp dar, der 

Eigenschaften von M1- und M2-MΦ vereint. Die Eigenschaften beider MΦ-Subpopulationen 

sind somit immer noch präsent und werden in den nachfolgenden beiden Kapiteln erläutert.  

 

3.1.2.2.1 M1-Makrophagen 

LPS und IFN-γ polarisieren, vermittelt durch die Transkriptionsfaktoren STAT1 und IRF5, die 

Differenzierung der MΦ zum klassisch aktivierten M1-Phänotyp27. M1-MΦ produzieren große 

Mengen antimikrobieller Effektormoleküle, wie reaktive Sauerstoffspezies (ROS) und 

Stickstoffzwischenprodukte (z.B. NO), die der direkten Abtötung von Pathogenen dienen. 

Außerdem zeichnen sie sich durch die Expression von CCR7, CD86 und MHC-II-Molekülen 

aus. Sie können Pathogenantigene auf MHC-II-Molekülen präsentieren und gleichzeitig 

proinflammatorische Mediatoren (IL-1β, IL-12, TNF-α, IL-23, IP-10/CXCL10 und MCP-1 

(monocyte chemoattractant protein-1)/CCL2) sezernieren. Dadurch wird die Induktion einer 

inflammatorischen TH1- oder TH17-Immunantwort begünstigt28.  

 

3.1.2.2.2 M2-Makrophagen 

Die alternativ aktivierten M2-MΦ sind eine sehr heterogene Zellpopulation, deren 

Differenzierung überwiegend durch den Transkriptionsfaktor STAT6 bestimmt wird27. Es gibt 

mindestens 3 Subpopulationen, M2a-, M2b- und M2c-MΦ26 (Abbildung 3-2). Erst kürzlich 

wurden die im Tumor vorkommenden MΦ, die TAM (tumorassoziierte Makrophagen), als 

M2d-Subtyp in die Reihe mit aufgenommen29. M2a-MΦ, die u.a. durch die Expression von 

CD206/MRC1 (Mannose-Rezeptor, C-Typ 1) und CD209/DC-SIGN gekennzeichnet sind, 

werden durch Exposition mit IL-4 oder IL-13 induziert, M2b durch Immunkomplexe (IC, engl.: 

immune complexes) in Kombination mit IL-1Ra oder einer Kombination von LPS und IL-1β. 

M2b-MΦ sezernieren viel antiinflammatorisches IL-10, aber auch proinflammatorisches TNF-

α. CD163+ M2c-MΦ entwickeln sich nach Kontakt mit IL-10, TGF-β und Glucocorticoiden 
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(GC). Sie exprimieren viele Scavenger- und Mannose-Rezeptoren sowie TLR (engl.: Toll like 

receptor), welche die Phagozytose fördern. M2d-MΦ werden u.a. durch IL-6 und PGE2 

(Prostaglandin E2) induziert. Sie sezernieren viel IL-10, wenig IL-12 und 

gewebemodulierende MMP. Alle Subtypen unterstützen durch die Sezernierung einer 

Vielzahl an Zytokinen und Chemokinen die Effektorfunktion von TH2 T-Zellen und die 

Rekrutierung von Immunzellen. Darüber hinaus spielen M2-MΦ eine große Rolle bei der 

Abschwächung von Entzündungsreaktionen, u.a. durch Sezernierung von IL-10, und bei der 

Aufrechterhaltung der Gewebehomöostase26.  

 

Abbildung 3-2: Polarisierungssignale und Charakteristika humaner M1- und M2-Makrophagen. 
Unpolarisierte MΦ differenzieren abhängig von den äußeren Stimuli in verschiedene Subtypen, die 
durch ein charakteristisches Oberflächenmarker- und Chemokin/Zytokin-Profil gekennzeichnet sind. 
Der klassische M1-Phänotyp wird durch IFN-γ und LPS induziert und fördert u.a. durch Sezernierung 
von IL-12 und IL-23 die TH1-Antwort. M2-MΦ unterstützen antiinflammatorische Prozesse und sind für 
die Aufrechterhaltung der Gewebehomöostase wichtig. Sie werden basierend auf aktivierenden 
Stimuli, Oberflächenmolekülen und dem Chemokin/Zytokinprofil in 4 verschiedene Subtypen (M2a bis 
M2d) unterteilt, die überwiegend antiinflammtorische Zytokine wie IL-10, aber auch 
proinflammatorische Zytokine wie IL-6 (M2b) sezernieren. Auch die tumorassoziierten Makrophagen 
(TAM) werden zu den M2-MΦ (M2d) gezählt. Angelehnt an die MΦ-Polarisierung von biolegend.com 
(„macrophage polarization: M1 vs M2“). MCF: Makrophagen-chemotaktischer Faktor 
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3.1.2.3 Dendritische Zellen  

DC gehören zusammen mit den MΦ und B-Zellen zu den sogenannten „professionellen“ 

APC des Immunsystems. Sie zeichnen sich durch einzigartige Eigenschaften aus, die es 

ihnen ermöglichen, eine effektive und spezifische Immunantwort gegen Pathogene und 

pathogenveränderte körpereigene Strukturen einzuleiten. Sie kommen in fast allen 

peripheren Geweben des Körpers vor, wo sie fortlaufend ihre Umgebung analysieren, indem 

sie extrazelluläre Bestandteile durch Phagozytose aufnehmen, prozessieren und als Peptide 

auf ihrer Oberfläche im MHC-Kontext präsentieren. Da über diese die zum adaptiven 

Immunsystem gehörenden T-Zellen aktiviert werden können, werden DC auch als 

Verbindungsglied zwischen dem adaptiven und dem angeborenen Immunsystem 

angesehen. Des Weiteren können DC Toleranz gegenüber körpereigenen Antigenen 

induzieren und spielen eine entscheidende Rolle für die Gewebehomöostase. Phänotypisch 

sind DC durch die Expression des MHC-II-Moleküls HLA-DR (humanes Leukozyten-Antigen, 

Klasse II) und das Fehlen der „lineage“-Marker CD3, CD19/20 und CD14 gekennzeichnet30. 

Sie sind keine homogene Population, sondern lassen sich entsprechend ihres Ursprungs, 

des Differenzierungstadiums, der Funktionen und der migratorischen Eigenschaften in 

Subgruppen unterteilen. Im humanen System sind die im Blut vorkommenden DC recht gut 

beschrieben31. Sie sind die Vorläufer von den in Geweben und lymphatischen Organen 

vorkommenden DC. Im Blut enthalten sind zwei verschiedene unreife DC-Subtypen, die 

CD11c+ cDC und die CD11c- pDC. Die pDC können von cDC durch die Expression der 

Oberflächenmarker BDCA2/CD303 (engl.: blood dendritic cell antigen 2), BDCA4/CD304 und 

IL-3R/CD123 unterschieden werden32. Mit Hilfe der Rezeptoren TLR7 und TLR9 können 

pDC virale und mikrobielle Strukturen erkennen und Typ-I-Interferone sezernieren, welche 

die virale Proteinsynthese hemmen und andere Immunzellen, u.a. T-Zellen, aktivieren.  

 

3.1.2.3.1 Klassische DC (cDC) 

Es gibt zwei verschiedene Subtypen von cDC, die CD1c+CD209+/- DC und die CD141+ DC. 

CD1c+ DC sind die heterogenste Population humaner myeloischer DC im Blut, 

lymphatischen und nicht-lymphatischen Geweben. Für die Differenzierung der CD1c+ DC ist 

der Transkriptionsfaktor IRF4 essentiell33. Im Gewebe vorkommende CD1c+ DC besitzen 

einen aktivierteren Phänotyp als ihre CD1c+ Gegenstücke im Blut. Sie exprimieren 

Kostimulationsmoleküle, regulieren die „Homing“-Rezeptoren CD162 und CD62L herunter 

und gleichzeitig CCR7 hoch. Im Lymphknoten befinden sich migratorische CD1c+CCR7+ DC 

in engem Kontakt mit T-Zellen. Sie exprimieren viele Lektine, TLR und andere PRR, die die 

Antigenaufnahme, den Transport und die Präsentation fördern. CD1c+ DC können naive 

CD4+ T-Zellen effektiv stimulieren, besitzen jedoch ein geringeres Potential zur 

Antigenkreuzpräsentation (Stimulation CD8+ T-Zellen) im Vergleich zu CD141+ DC34. Sie 
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sezernieren TNF-α, CXCL8/IL-8 und IL-10 und bei TLR-Stimulation viel IL-12p7035. Die 

CD11b+ DC der Maus sind ebenfalls sehr heterogen und können eine aktivierende T-Zell-

Antwort induzieren. Sie könnten den humanen CD1c+ DC homolog sein36.  

CD141+ DC machen 10% der humanen cDC im Blut aus. Ihre Entwicklung wird durch die 

Transkriptionsfaktoren BATF3 und IRF8 gesteuert37,38. Sie exprimieren CD11c weniger stark 

als CD1c+ DC und sind durch die Koexpression von CADM1, CLEC9A, TLR3 und XCR1 

gekennzeichnet39. CD141+ DC sind Bestandteil der residenten DC der Lymphknoten, 

Tonsille, Milz sowie des Knochenmarks und kommen auch in nicht-lymphatischen Geweben 

wie der Haut, Lunge und Leber vor. Sie können nach Antigenaufnahme im peripheren 

Gewebe in den Lymphknoten wandern und sehr effektiv durch Kreuzpräsentation CD8+ T-

Zellen aktivieren34. Außerdem nehmen sie nekrotische und tote Zellen durch den Rezeptor 

CLEC9A auf und können virale RNA durch TLR3 wahrnehmen40,41. Sie sezernieren TNF-α, 

IP-10/CXCL10, IFN-λ, IFN-β und IL-12p70. CD141+ DC sind sehr wahrscheinlich homolog zu 

den murinen migratorischen CD8+CLEC9A+CD103+ DC, die ebenfalls sehr gute Fähigkeiten 

zur Kreuzpräsentation besitzen34.  

 

3.1.2.3.2 CD14+ inflammatorische DC 

Bei Entzündungsreaktionen und anderen pathologischen Reaktionen verändert sich die 

Zusammensetzung des Immunzellinfiltrats der Gewebe drastisch. Die im Blut zirkulierenden 

CD14+CD16- klassischen Monozyten sind möglicherweise die Vorläufer der 

inflammatorischen CD14+ DC (MoDC) im entzündlichen Gewebe19. CD14+ DC sind positiv für 

CD11c und CD11b und exprimieren sowohl DC (CD1a, CD1c, Sirpα)- als auch MΦ-Marker 

(CD206/MRC1, MS4A2/FcεRI), aber kein CD16/FcγRIII und CD209/DC-SIGN42,43. Wie cDC 

exprimieren auch sie CCR7 und können in den Lymphknoten migrieren. Beschrieben wurden 

inflammatorische DC erstmals im Kontext der TH2- vermittelten atopischen Dermatitis als 

inflammatorische dendritische epidermale Zellen (IDEC, engl.: inflammatory dendritic 

epidermal cells)44 und im Rahmen der Psoriasis als TNF-α und iNOS (engl.: inducible nitric 

oxide synthase) produzierende DC (TipDC)45.  

 

3.1.2.3.3 6-Sulfo LacNAc DC (slanDC) 

Die 6-Sulfo LacNAc (slan/M-DC8) DC sind die größte DC-Population im Blut (0,6% - 2% 

innerhalb der PBMC), kommen aber auch in peripheren Geweben vor46. Sie zeichnen sich 

durch die Expression von 6-Sulfo LacNAc (slan), eine O-verknüpfte 

Kohlenhydratmodifizierung des Glykoproteins PSGL-1 (engl.: P-selectin glycoprotein ligand-

1), aus und wurden daran angelehnt als slanDC bezeichnet. Außerdem sind sie durch das 

phänotypische Profil CD1c-CD11c+CD16+CD14dim/-C5aR+CD45RA+ gekennzeichnet. Bei 
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Aktivierung sezernieren sie viel IL-12p70, TNF-α und IL-1β und induzieren eine effektive 

primäre T-Zell-Antwort46. Sie vermitteln auch ADCC (engl.: antibody-dependent cellular 

cytotoxicity) und können die Zytokinsekretion der NK-Zellen stimulieren47. Da slanDC viele 

phänotypische Gemeinsamkeiten mit den nicht-klassischen CD14dimCD16++ Monozyten 

haben, wird auch eine Einordnung als Monozyten-Subtyp diskutiert48,49.  

 

3.2 T-Zell-Aktivierung und Toleranzinduktion  

Unreife DC wandern unter homöostatischen Bedingungen durch periphere Gewebe und 

nehmen dabei kontinuierlich Partikel aus der Umgebung auf. Einerseits dient dies der 

schnellen Erkennung pathogener Strukturen, andererseits erkennen und prozessieren sie 

körpereigene Antigene, z.B. apoptotische Zellen, und erhalten damit die Selbsttoleranz.  

Während einer Entzündungsreaktion kommen unreife DC in Kontakt mit verschiedenen 

antigenen Strukturen, wie z.B. LPS, Mannoseresten oder viralen Strukturen und durchlaufen 

dabei einen Reifungsprozess. Kostimulatorische Marker (CD80, CD86, CD40) werden 

verstärkt exprimiert und auch MHC-I- und MHC-II-Moleküle hochreguliert. Gleichzeitig wird 

die phagozytotische Aktivität verringert und die Antigenprozessierung gesteigert. Um mit 

naiven T-Zellen in Kontakt zu treten, muss die DC von den peripheren Geweben in die T-

Zell-Zone der Lymphknoten wandern. Im Rahmen des Reifungsprozesses wird die 

Expression von Chemokinrezeptoren, Adhesionsmolekülen und zytoskelettalen Proteinen 

modifiziert, die eine Migration ermöglichen. Auch die Sezernierung von Chemokinen 

verändert sich. Es werden verstärkt Chemokine produziert, welche die T-Zell-Anlockung und 

-Polarisierung unterstützen. Haben DC die T-Zell-Areale der Lymphknoten erreicht, kommt 

es bei Interaktion der T-Zellen mit antigenbeladenen DC zur Ausbildung der sogenannten 

immunologischen Synapse. Der Kontakt der beiden Zelltypen wird durch Adhäsionsmoleküle 

vermittelt, die durch konzertierte Bewegungen des Aktin-Zytoskeletts in das Zentrum der 

DC:T-Zell-Kontaktzone transportiert werden. Ist der Kontakt vermittelt, kommt es zur Bindung 

des peptidbeladenen MHC-I- bzw. MHC-II- Moleküls an den TCR der CD8+ bzw. CD4+ T-

Zellen (Signal 1). Dieses Signal alleine reicht allerdings nicht aus, um eine T-Zelle vollständig 

zu aktivieren und deren Proliferation zu induzieren. Die Expression der kostimulatorischen 

Moleküle CD80, CD86 und CD40 (Signal 2) und die Sezernierung aktivierender Zytokine 

(Signal 3) durch die DC sind ebenfalls erforderlich (Abbildung 3-3A). IL-12 ist das wichtigste 

aktivierende Zytokin, es induziert die Differenzierung und Proliferation von TH1-Zellen50 und 

aktiviert CD8+ CTL, die, u.a. durch Sekretion von IFN-γ und TNF-α, eine starke 

Immunantwort bewirken können51,52. Antiinflammatorisches IL-10, der natürliche 

Gegenspieler von IL-12, inhibiert dagegen die Aktivierung der T-Zellen und verhindert 

überschießende proinflammatorische Immunantworten53,54. Der Kontakt mit der DC resultiert 

aber nicht immer in einer Aktivierung der T-Zelle. Werden körpereigene Antigene präsentiert, 
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so kommt es normalerweise nicht zur Aktivierung der T-Zelle, sondern zur Induktion von 

Toleranz. Dies trägt zur Gewebehomöostase und der Stilllegung autoreaktiver T-Zellen bei. 

Das Fehlen kostimulatorischer Moleküle und die Expression inhibitorischer Moleküle (z.B. 

PD-L1, PD-L2) auf DC induziert anergische T-Zellen, die in einem funktionell inaktiven 

Zustand verweilen55,56 (Abbildung 3-3B). DC können auch, z.B. durch Bindung von FasL an 

Fas, die Apoptose autoreaktiver, aktivierter T-Zellen induzieren57 und darüber die periphere 

Toleranz aufrechterhalten. 

 

Abbildung 3-3: T-Zell-Aktivierung und Toleranzinduktion. A) Für die Aktivierung naiver T-Zellen 
durch DC sind drei Signale notwendig: die Bindung von peptidbeladenen MHC-Molekülen (hier: MHC-
II-Molekül) an den TCR (Signal 1), Kostimulation durch CD80, CD86 und CD40 (Signal 2) und die 
Sekretion aktivierender Zytokine, v.a. IL-12 (Signal 3). B) Zur Bewahrung der Gewebehomöostase 
und der Eliminierung autoreaktiver T-Zellen ist die Aufrechterhaltung der peripheren Toleranz wichtig. 
Das Fehlen kostimulatorischer Moleküle und die Expression inhibitorischer Moleküle (z.B. PD-L1 und 
PD-L2) können T-Zell-Anergie auslösen. Dabei entstehen funktionell inaktive T-Zellen. Auch die 
Induktion von Apoptose in T-Zellen durch Interaktion von Fas und FasL ist ein effektiver Mechanismus 
zur Aufrechterhaltung der peripheren Toleranz.  
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3.3 Myeloische Zellen im Tumormilieu  

Tumoren erfahren einen kontinuierlichen Influx von myeloischen Zellen, die, u.a. durch 

Förderung der Angiogenese und des Stromaumbaus, die Tumorprogression positiv 

beeinflussen können. Der Tumor sezerniert außerdem Chemokine (z.B. CCL2), Zytokine 

(z.B. IL-10, VEGF (engl: vascular endothelial growth factor)) und andere Mediatoren (z.B. 

PGE2), welche die Myelopoese, Akkumulation und die Differenzierung protumoraler 

myeloischer Zellen begünstigen58,59,60.  

Die am besten beschriebenen myeloischen Zellen im Tumor sind die TAM und die 

myeloischen Suppressorzellen (MDSC, engl.: myeloid-derived suppressor cells)61,62,63. Über 

DC ist dagegen weniger bekannt. Die MDSC sind eine heterogene Zellpopulation, bestehend 

aus myeloischen Vorläuferzellen und ausdifferenzierten unreifen myeloischen Zellen 

(Granulozyten, DC, MΦ). Im murinen System sind MDSC durch die Expression von Gr-1 und 

CD11b gekennzeichnet64, im humanen System gibt es bisher keine eindeutigen Marker. 

Meistens sind die MDSC in humanen Tumoren als unreife lin-/lowCD33+CD34+CD15+/-CD14-

HLA-DR- Zellen mit einer starken Expression von ARG1 (Arginase-1) beschrieben62,65. Es 

gibt Hinweise, dass sich im Laufe der Tumorprogression der Differenzierungszustand der 

myeloischen Zellen ändert, von einem zunächst immunaktivierenden hin zu einem 

immunsupprimierenden Phänotyp28,66,67. Die TAM üben dann M2-ähnliche Funktionen aus, 

sie sezernieren verstärkt proangiogene Faktoren (z.B. VEGF und IL-8/CXCL8), 

Matrixmetalloproteinasen (MMP), Kollagene und antiinflammtorisches IL-1068,69. MDSC 

können Teile des Tumorstromas bzw. des Endothels bilden und tragen durch Sekretion von 

VEGF und MMP-9 zum Tumorwachstum und der Vaskularisierung bei62. Die inhibitorischen 

Effekte der MDSC werden u.a. durch iNOS und ARG1 vermittelt. MDSC supprimieren die 

Aktivierung und Proliferation von autologen T-Zellen sowie die zytotoxische Funktion und 

IFN-γ-Sekretion von NK-Zellen62,70. Gleichzeitig fördern sie die Differenzierung von IL-10-

sezernierenden Treg.  

Im Zusammenhang mit DC sind v.a. tolerogene DC beschrieben, die IL-10 sezernieren und 

die Expression von CD25/IL-2Rα und IDO1 (Indolamin-2,3-Dioxygenase 1) hochregulieren71. 

Tolerogene DC sind auch durch die Herabregulierung von Kostimulationsmolekülen, die 

reduzierte Sekretion proinflammatorischer Zytokine und einer schwachen Fähigkeit zur T-

Zell-Stimulation gekennzeichnet71,72. Verursacht wird dies durch antiinflammatorische 

Faktoren wie GC, IL-10 und PGE2, die durch Tumorzellen sezerniert werden73,74,75. Auch 

migrationsdefiziente DC sind in Tumorgeweben beschrieben76. Die verstärkte Aufnahme von 

Lipiden im Tumormilieu und deren intrazelluläre Akkumulation blockiert die Expression von 

CCR7, so dass die DC nicht mehr aus dem Tumorgewebe migrieren können. Dies hat zur 

Folge, dass DC keine tumorantigenspezifischen T-Zellen im Lymphknoten aktivieren können 

und der Tumor nicht effektiv bekämpft werden kann.  
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3.4 Myeloische Zellen der Niere 

3.4.1 Homöostatische und inflammatorische Bedingungen 

Die Niere ist fortlaufend mit pathogenen und toxischen Fremdstoffen, aber auch 

ungefährlichen Nahrungs- und Selbstantigenen konfrontiert, weshalb die Aufrechterhaltung 

einer Balance zwischen Immunität und Toleranz essentiell ist. Die myeloischen Zellen der 

Niere spielen dabei eine wichtige Rolle. Im homöostatischen Zustand kommen in der Niere 

viele verschiedene DC- und MΦ-Subtypen vor. Sie werden unter dem Begriff renale 

mononukleäre Phagozyten (rMoPh) zusammengefasst und koexprimieren sowohl im 

murinen als auch im humanen System DC- und MΦ-Marker77. Für murine DC ist 

beschrieben, dass sie ein dichtes Netzwerk im renalen Interstitium bilden und durch die 

Interaktion des Rezeptors CX3CR1 mit dem Liganden CX3CL1 in das Gewebe rekrutiert 

werden78. MΦ kommen v.a. in der Nähe oder innerhalb der Glomeruli vor8.  

Mittlerweile sind im murinen System 5 verschiedene rMoPh-Populationen beschrieben, die 

sich nicht nur in der Expression von Oberflächenmarkern unterscheiden, sondern auch 

unterschiedliche Funktionen ausüben79. Der häufigste humane rMoPh-Phänotyp unter 

homöostatischen Bedingungen ist durch das Markerprofil 

CD11b+CD11c+CD1c+CD68+CD14+CD209+MHC-II+CD207- gekennzeichnet77. Die rMoPh 

überwachen unter homöostatischen Bedingungen kontinuierlich das Gewebe und sind 

maßgeblich an der Aufrechterhaltung der peripheren Toleranz gegenüber Selbstantigenen 

beteiligt. Pathogene, apoptotische Zellen, Immunglobuline und Komplementkomponenten 

werden effektiv erkannt und beseitigt. Dies trägt zur Zytoprotektion des Gewebes bei. Ein 

weiterer wichtiger Mechanismus für den Schutz des renalen Gewebes ist die IL-10-Sekretion 

der rMoPh77. Das renale Tubulusepithel gilt aufgrund der gewebeprotektierenden, 

toleranzinduzierenden Bedingungen als immunpriviligiert.  

Bei Entzündungsreaktionen der Niere nimmt die Anzahl und die Plastizität der rMoPh stark 

zu, MHC-Moleküle und kostimulierende Moleküle werden hochreguliert sowie 

proinflammatorische Zytokine und Chemokine sezerniert77,80,81. Es werden verstärkt 

proinflammatorische Monozyten rekrutiert, die dann zu klassischen M1-MΦ oder 

inflammatorischen DC differenzieren. Für die rMoPh sind aber nicht nur proinflammatorische 

sondern auch antiinflammatorische Funktionen im Rahmen von entzündlichen Erkrankungen 

der Niere beschrieben82. Scholz et al.83 zeigten in einem Mausmodell der akuten 

nephrotoxischen Nephritis, dass CD11c+ DC bei der Interaktion mit infiltrierenden CD4+ T-

Zellen die Sezernierung des renoprotektiven, antiinflammatorischen IL-10 bewirken und 

damit überschießende Immunreaktionen unterdrücken. Dagegen üben DC bei chronischen 

Entzündungen der Niere oft proinflammtorische Funktionen aus, die den Krankheitsverlauf 

verschlimmern. Für das Mausmodell des Lupus-Nephritis ist beschrieben, dass DC durch die 

Sekretion von IL-12 ein proinflammatorisches Milieu schaffen und durch die verstärkte 
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Sekretion von Chemokinen gewebeschädigende aktivierte T-Zellen anlocken84. Aktivierte 

renale MΦ können das Nierenparenchym auch direkt schädigen, z.B. durch die Produktion 

von ROS, IL-1β, NO oder TNF-α, wie dies beispielsweise bei der Glomerulonephritis der Fall 

ist85. In einem Mausmodell zur renalen Ischämie konnte dagegen gezeigt werden, dass beim 

Abklingen der Entzündung meistens die antiinflammatorischen, M2-ähnlichen MΦ 

überwiegen, die zur Geweberegeneration, z.B. des Tubulusepithels, beitragen86.  

 

3.4.2 Klarzelliges Nierenzellkarzinom 

Das klarzellige Nierenzellkarzinom (RCC) ist der am häufigsten auftretende Nierentumor und 

wird, wie das maligne Melanom, als immunogener Tumor eingestuft. Diese Einschätzung 

basiert auf der klinischen Beobachtung von spontanen Remissionen sowie der starken 

Tumorinfiltration durch Leukozyten87. Das relativ gute Ansprechen auf Immuntherapien lässt 

auf eine reaktivierbare, antitumorale Immunantwort schließen88. Galon et al.89 analysierten 

das Infiltrat des kolorektalen Karzinoms und stellten fest, dass das Ausmaß des T-Zell-

Infiltrats ein prognostisch guter Marker für das Überleben ist. Dies bestätigte sich mittlerweile 

für verschiedene Tumorhistologien. Überraschend verhält sich das RCC anders. Hier 

korrelierte ein ausgeprägtes Leukozyteninfiltrat mit einer negativen Prognose90,91. 

Offensichtlich spielen neben der Anzahl der infiltrierenden Immunzellen auch Parameter wie 

deren Funktionalität und die Kommunikation verschiedener Immunzellpopulationen eine 

entscheidende Rolle.  

Das Immunzellinfiltrat des RCC besteht aus T-Zellen, NK-Zellen, myeloischen Zellen (MΦ, 

DC, Granulozyten) und wenigen B-Zellen90,91,92. Die infiltrierenden T-Zellen sind bisher am 

besten charakterisiert89,92. Zahlenmäßig überwiegen die zytotoxischen CD8+ T-Zellen 

gegenüber den CD4+ T-Helferzellen. Mit Hilfe funktioneller Analysen konnte gezeigt werden, 

dass einige infiltrierende CD8+ T-Zellen tumorspezifische Antigene erkennen und 

antigenexprimierende Tumorzellen in vitro lysieren können93,94. Es ist daher anzunehmen, 

dass das lokale Tumormikromilieu die Immunzellen daran hindert, die tumorabstoßenden 

Funktionen auszuführen.  

Die Rolle der myeloischen Zellen im RCC ist noch nicht so gut erforscht, tendentiell scheinen 

DC und MΦ eher immunsuppressiv und mit einer schlechten Prognose assoziiert zu 

sein91,95,96,97. Daurkin et al.95 zeigten, dass MΦ, die humanes RCC-Gewebe infiltrieren, 

immunsuppressives IL-10 sezernieren und durch CCL2 weitere potentiell protumorale MΦ 

anlocken. In In-vitro-Versuchen induzierten diese MΦ die Expression von FOXP3 (engl.: 

forkhead box P3) und CTLA4 in T-Zellen. Renale TAM können das Tumorwachstum auch 

auf direktem Weg, durch die Produktion des proliferationsfördernden TNF-α, begünstigen97. 

Des Weiteren ist beschrieben, dass CD11c+HLA-DR+ DC, die das RCC infiltrieren, CD80 und 

CD86 nicht hochregulieren, Antigen nicht effektiv prozessieren und als Folge davon T-Zellen 
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eher tolerogenisieren als aktivieren96. Frisch aus dem Tumor isolierte DC waren dagegen in 

der Lage allogene T-Zellen zu stimulieren. Dementsprechend scheint das Tumormilieu die 

stimulatorische Kapazität der DC zu unterdrücken. Vermutlich wird deren Funktion u.a. durch 

IL-6, VEGF, TNF-α und PGE2 beeinträchtigt, für die beschrieben ist, dass sie im RCC 

angereichert sind98,99,100.  
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4 ZIELSETZUNG DER ARBEIT  

Wir haben in humanen Geweben des klarzelligen RCC einen myeloischen Zelltyp 

beschrieben, der die MΦ-Marker CD14 und CD163 sowie den DC-Marker CD209/DC-SIGN 

koexprimiert101. Außerdem zeigten wir, dass dieser Zelltyp Kostimulations- und MHC-II-

Moleküle exprimiert. Der Zelltyp war im tumorbefallenen Bereich der Niere im Vergleich zum 

tumorfreien Bereich (NKC, engl.: nontumor kidney cortices) stark angereichert, weshalb wir 

ihn als „enriched-in-renal-carcinoma DC“ (ercDC) bezeichneten101. Wir wählten den Begriff 

„DC“ u.a. aufgrund der Expression von Kostimulations- und MHC-Molekülen und der 

Fähigkeit der in vitro generierten ercDC mittels Kreuzpräsentation CTL zu aktivieren. Auch 

Literaturdaten, die zeigten, dass renale DC, die DC- und MΦ-Marker koexprimieren, ein 

dichtes Netzwerk im Tubulointerstitium ausbilden78, und die Tatsache, dass sich das RCC 

aus dem proximalen Tubulusepithel entwickelt102, trugen zu der Entscheidung bei, die 

CD209+CD14+ myeloischen Zellen als DC zu klassifizieren. Wir beobachteten, dass Tumoren 

des fortgeschrittenen Stadiums eine größere Anzahl von ercDC im Vergleich zu Tumoren im 

Anfangsstadium besaßen101. Des Weiteren korrelierte ein hoher Anteil an ercDC mit einer 

verringerten Menge an CD8+ T-Zellen und NK-Zellen.  

Mit zunehmenden Hinweisen, dass das MPS ein Kontinuum verschiedener DC- und MΦ-

Subtypen darstellt6,12 und somit die Unterscheidung von DC und MΦ aufgrund spezifischer 

Oberflächenmarker überholt scheint, stellten wir uns die Frage, ob die Einordnung der ercDC 

als „DC“ noch angebracht ist. Ein Ziel dieser Arbeit war es, den tumorbedingten 

Differenzierungszustand der ercDC aus dem RCC zu charakterisieren und mögliche 

milieubedingte Ursachen für die funktionelle Polarisierung zu finden. Darüber hinaus sollten 

die ercDC innerhalb des MPS positioniert werden und die Verwandtschaft mit anderen 

myeloischen Zelltypen bestimmt werden. Ein weiteres Ziel war es, Alleinstellungsmerkmale 

der ercDC, beispielsweise durch die Erstellung eines individuellen Genexpressionsprofils, zu 

definieren und das Funktionsprofil zu konkretisieren. Weiterhin wurde die Vergleichbarkeit 

eines in vitro generierten ercDC-Zelltyps mit den Ex-vivo-ercDC evaluiert. Dies ist wichtig, da 

v.a. umfassendere Funktionsanalysen aufgrund der geringen Zellzahl nicht mit Ex-vivo-

ercDC durchgeführt werden können und deshalb ein Surrogat-Zelltyp, wie z.B. die in vitro 

generierten ercDC, notwendig ist. 
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5 MATERIAL 

5.1 Geräte 

Tabelle 5-1: Verwendete Geräte  

Bezeichnung Hersteller 
Agilent Bioanalyzer 2100 Agilent Technologies, Santa Clara (USA) 

BD FACSAriaTM IIIu Becton Dickinson (BD), Franklin Lakes (USA) 

Bestrahlungsanlage HWM-D-200, 
(Strahlungsquelle: 137 Caesium) GammaCell 40, Ottawa (Kanada) 

Brutschrank Hera Cell 240 Heraeus Instruments, Hanau 

Durchflusszytometer LSR II BD, Franklin Lakes (USA) 

ELISA-Waschgerät Nunc, Wiesbaden 

Eppendorf „Centrifuge“ 5417 R  Eppendorf, Hamburg 

GeneChip® Fluidics Station 450 Affymetrix, Santa Clara (USA) 

Heizblock BT 130-2 HLC Biotech, Bovenden 

Hybridisierungsofen 640 Affymetrix, Santa Clara (USA) 

Lichtmikroskop (Leica DMLS) Leica Microsystems, Wetzlar 

MACS Multistand (quadro MACS) Miltenyi Biotec, Bergisch Gladbach 

Magnetseparator, SPRIPlate Super Magnet 
Plate Beckman Coulter, Brea (USA) 

Mehrkanalpipette Thermo Scientific, Waltham (USA) 

Milli-Q®-Reinwasserherstellungssystem Merck Millipore, Billerica (USA) 

NanoDrop-ND-1000-Spektrophotometer Peqlap Biotechnologie GmbH, Erlangen 

Neubauer-Zählkammer GLW, Würzburg 

Pipettus Akku Hirschmann Laborgeräte, Eberstadt 

Schüttelgerät horizontal Ingenieurbüro CAT, Staufen 

Rotator VWR international, Westchester (USA) 

SpeedVac Univapo 150 ECH Montreal Biotech, Montreal (Kanada) 

Spektrophotometer sunrise Tecan Group AG, Männedorf (Schweiz) 

Sterilbank BDK, Sonnenbrühl-Genkingen 

Stickstofftank Messer Griesheim, Krefeld 

Thermocycler PTC-200 MJ Research, St. Bruno (Kanada) 

Vortexer Heidolph Instruments, Schwabach 

Wasserbad Köttermann Labortechnik, Uetze 

Mikrozentrifuge Biofuge Pico Heraeus Instruments GmbH, Hanau 

Zentrifuge Megafuge 2.0/2.0 R Heraeus Instruments GmbH, Hanau 
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5.2 Verbrauchsmaterial 

Tabelle 5-2: Verwendete Verbrauchsmaterialien 

Bezeichnung Hersteller 
Butterfly (Ecoflo) Dispomed Witt oHG, Gelnhausen 

Deckgläschen IDL, Nidderau 

Einmalpipetten 2 ml, 5 ml, 10 ml und 25 ml Greiner bio-one, Kremsmünster (Österreich) 

ELISA-Platten Greiner bio-one, Kremsmünster (Österreich) 

FACS-Röhrchen  
(groß, 5 ml mit Deckel, Polypropylen) BD, Franklin Lakes, USA 

FACS-Röhrchen (klein,1,5 ml, Polypropylen) Greiner bio-one, Kremsmünster (Österreich) 

Kryoröhrchen (1 ml, 1,5 ml (RNAse frei)) Nunc, Wiesbaden 

MACS Separation Columns, 25 LS Miltenyi, Biotec, Bergisch Gladbach 

Mehrlochplatten, Flach- und Rundboden 
(6-, 24-, 96-Loch) Nunc, Wiesbaden 

Pasteurpipetten, Glas Peske OHG, Aindling 

Pipettenspitzen Eppendorf/Gilson, Zentrallager Helmholtz-
Zentrum, Neuherberg 

QIAshredder  QIAGEN, Venlo (Niederlande) 

Reagenzröhrchen (15/50 ml) BD, Franklin Lakes (USA) 

Reaktionsgefäße (0,5/1,5/2 ml) Eppendorf, Hamburg 

„Safe-Lock tubes“ (1,5 ml, RNAse frei) Eppendorf, Hamburg 

Skalpelle  Aesculap AG, Tuttlingen 

Spritzen 5 ml, 50 ml  BD, Franklin Lakes (USA) 

Zellschaber S (24 cm)  TPP, Trasadingen (Schweiz) 

Zellschaber mini LEAP Biosciences Corp., Palo Alto (USA) 

Zellsieb Cellstrainer, 70/100 µm BD, Franklin Lakes (USA) 

Zellkulturflaschen (75/175 cm2) Greiner bio-one, Kremsmünster (Österreich) 
 

 

5.3 Reagenzien und fertige Lösungen 

Tabelle 5-3: Verwendete Reagenzien und fertige Lösungen  

Bezeichnung Hersteller 
7-Amino-Actinomycin D (7-AAD) Sigma-Aldrich, St.Louis (USA) 

β-Mercaptoethanol Life Technologies, Carlsbad (USA) 

Bovines Serumalbumin (BSA) Sigma Aldrich, St.Louis (USA) 

CD14/CD19/CD56 Microbeads Miltenyi Biotec, Bergisch-Gladbach 

CompBeads (anti-Maus/anti-Ratte Ig, κ; FCS) BD, Franklin Lakes (USA) 

Essigsäure Merck KGaA, Darmstadt 
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Ethanol  Merck KGaA, Darmstadt 

Methanol Merck KGaA, Darmstadt 

Natriumazid Sigma Aldrich, St.Louis (USA) 

Natriumcarbonat, -hydrogencarbonat Merck KGaA, Darmstadt 

Orthophosphorsäure Merck KGaA, Darmstadt 

Paraformaldehyd (PFA) Merck KGaA, Darmstadt 

Polysorbat-20 (Tween 20) Sigma Aldrich, St.Louis (USA) 

Propidiumjodid (PI) Sigma Aldrich, St.Louis (USA) 

Saponin Sigma Aldrich, St.Louis (USA) 
 

 

5.4 Puffer- und Lösungen 

Tabelle 5-4: Verwendete Puffer und Lösungen  

Bezeichnung Bestandteile 

ELISA-Blockierungspuffer 
PBS  

10% FCS 

ELISA-Coatingpuffer  

0,1 M Carbonatpuffer pH 9,5:  

8,4 g NaHCO3 

3,56 g Na2CO3 

ad 1 L Milipore-Wasser 

ELISA- Waschpuffer  
PBS 

+ 0,05% Tween 20 

FACS-Azid-Puffer 

PBS 

+ 2 mM EDTA 

+ 0,1% Natriumazid 

+ 2% FCS 

MACS-Puffer 
PBS 

+ 2 mM EDTA 

+ 0,5% FCS 

Paraformaldehydlösung 
PBS  

+ 1% PFA 

PBS-EDTA-Puffer für RCC-Gewebe-
Zellsuspensionen 

PBS 

+ 2 mM EDTA 

Saponinlösung 

PBS  

+ 0,1% bzw. + 0,35% Saponin 

+ 2% HS  

Trypsin-EDTA-Lösung (2x) 
PBS  

+ 20% 10x Trypsin-EDTA 
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5.5 Verbrauchsmedien und Zusätze 

Tabelle 5-5: Verwendete Verbrauchsmedien und Zusätze 

Bezeichnung Hersteller 
AIM-V Life Technologies, Carlsbad (USA)  

Dimethylsulfoxid (DMSO) Merck KGaA, Darmstadt 

DNase I Roche, Basel (Schweiz) 

DNase I, Typ IV  Sigma Aldrich, St.Louis (USA) 

Ethylendiamintetraacetat (EDTA) Sigma Aldrich, St.Louis (USA) 

Ficoll® (Biocoll, Dichte 1,077 g/ml) Biochrom AG, Berlin 

Fötales Kälberserum (FCS) Life Technologies, Carlsbad (USA) 

HBSS (10x) ohne CaCl2/MgCl2 Life Technologies, Carlsbad (USA) 

HBSS (1x) mit 1,26 mM CaCl2/0,5 mM MgCl2 Life Technologies, Carlsbad (USA) 

Heparin 2500 IE Essex Pharma GmbH, München 

Hepes Life Technologies, Carlsbad (USA) 

Humanserum  
(verschiedener gesunder Spender) IMI, Helmholtz Zentrum München 

Ibidi Einfriermedium classic, serumfrei Ibidi, Planegg/Martinsried 

Kollagenase, Typ IA Sigma Aldrich, St.Louis (USA) 

L-Glutamin  Life Technologies, Carlsbad (USA) 

Lipopolysaccharid (LPS) E.coli  Sigma Aldrich, St.Louis (USA) 

MoDC-Differenzierungsmedium 
(enthält IL-4, GM-CSF)  Miltenyi Biotec, Bergisch-Gladbach 

Natriumpyruvat Life Technologies, Carlsbad (USA) 

Nicht-essentielle Aminosäuren (100x) Life Technologies, Carlsbad (USA) 

Penicillin/Streptomycin (100x) Life Technologies, Carlsbad (USA) 

Phosphatgepufferte Salzlösung (PBS) Life Technologies, Carlsbad (USA) 

rhu GM-CSF PromoKine, Heidelberg 

rhu IFN-γ (Imukin®) Boehringer Ingelheim, Ingelheim 

rhu IL-4 PromoKine, Heidelberg 

rhu M-CSF R&D Systems, Minneapolis (USA) 

Trypanblau ICN Biomedicals GmbH, Eschwege 

Trypsin-EDTA (10x) Life Technologies, Carlsbad (USA) 

VLE RPMI 1640 Medium  Biochrom AG, Berlin 
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5.6 Medien 

Tabelle 5-6: Verwendete Medien  

Bezeichnung Bestandteile 

RPMI-Basismedium 

RPMI 1640 

+ 2 mM L-Glutamin 

+ 1 mM Natriumpyruvat 

+ 1 mM nicht-essentielle Aminosäuren  

LCL-Medium  
(Kultur von L929-CD40L-Zellen) 

RPMI-Basismedium 

+ 10% FCS 

RCC-Medium  
(Kultur von RCC-26-Zellen) 

RPMI-Basismedium 

+ 12% FCS 

AIM-V-Medium  
(Kultur von myeloischen Zellen) 

AIM-V (serumfrei) 

+ 2 mM L-Glutamin  

Verdaumedium zur Gewinnung  
der RCC-Gewebe-Zellsuspension 

RPMI 1640 

+ 0,1% BSA 

+ 1 x Penicillin/Streptomycin 

+ 10 mM Hepes 

+ Kollagenase, Typ IA, 218 U/ml 

+ DNase I, Typ IV, 435 U/ml 

Einfriermedium für eukaryotische Zellen 
RPMI-Basismedium 

20% DMSO 
 

 

5.7  Zellen und Zelllinien  

Tabelle 5-7: Verwendete Zellen und Zelllinien. Weiterführende Informationen zu den in vitro 
generierten myeloischen Zellen sind in Tabelle 6-1 (Seite 33) der Methoden zu finden.  

Bezeichnung Charakteristika Kulturmedium Herkunft 

ercDC 

durch Behandlung von 
Monozyten gesunder 
Spender mit RCC-26-CM 
(siehe Abschnitt 6.1.6) 
differenziert 

AIM-V-Medium  
(3% HS) bzw. VLE-
Medium (6% HS)  
mit jeweils 25 % 
RCC-26-CM 

im Labor generiert 

GM-CSF-
Makrophagen 

aus Monozyten von 
gesunden Spendern 
differenziert 

AIM-V-Medium  
(1% HS) + GM-
CSF 

im Labor generiert 

Klassische DC 
(cDC) 

aus Monozyten von 
gesunden Spendern 
differenziert 

MoDC-Diff.-
Medium bzw. AIM-
V-Medium (1% HS) 
+ IL-4 + GM-CSF 

im Labor generiert 

L929-CD40L 
Maus-Fibroblastenzelllinie, 
stabil transfiziert mit 
humanem CD40L, adhärent 

LCL-Medium P. Garrone (1995) 
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M1-Makrophagen 
aus Monozyten von 
gesunden Spendern 
differenziert 

AIM-V-Medium  
(1% HS) + M-CSF  
+ 24 h LPS u. IFN-
γ 

im Labor generiert 

M2-Makrophagen 
aus Monozyten von 
gesunden Spendern 
differenziert 

AIM-V-Medium  
(1% HS)+ M-CSF  
+ 24 h IL-4 

im Labor generiert 

Myeloische Zellen 
aus RCC-Gewebe-
Zellsuspension 

Gewebe-Zellsuspension 
bestehend aus 
Tumorzellen, TIL 
(tumorinfiltrierende 
Lymphozyten), DC, MΦ, 
Granulozyten und 
Zelltrümmern (entstanden 
durch die mechanische 
Zerkleinerung und den 
enzymatischen Verdau) 

nicht kultiviert 
(siehe 6.1.7.4) 

Patienten der 
Urologischen Klinik 
Dr. Castringius, 
Planegg; 
Urologische Klinik 
und Poliklinik des 
Klinikums 
Großhadern;  
Klinik und Poliklinik 
für Urologie, TU 
Dresden 
 

PBL  
(engl.: peripheral 
blood lymphocytes) 

CD14-depletierte PBMC 
(mittels CD14-MACS 
Beads, siehe 6.1.7.2) 

Kokulturen mit APC 
(siehe 6.2.2)  gesunde Spender 

PBMC  
(engl.: peripheral 
blood mononuclear 
cells) 

isoliert aus Vollblutproben 
(siehe 6.1.7.1)  nicht kultiviert gesunde Spender 

RCC-26 
humane 
Nierenzellkarzinomzelllinie, 
HLA-A2-positiv, adhärent 

RCC-Medium IMI, Helmholtz 
Zentrum München 

 

 

5.8 Blutproben 

Die in dieser Arbeit verwendeten Vollblutproben wurden von gesunden Spendern zur 

Verfügung gestellt. Die Abnahme erfolgte von einer zur Blutabnahme berechtigten Person. 

Die Zustimmung der Spender und der lokalen Ethikkommission lag vor.  

 

5.9 Tumorgewebe 

Die analysierten Tumorgewebe wurden von der Urologischen Klinik Dr. Castringius in 

Planegg und der Urologischen Klinik und Poliklinik des Klinikums Großhadern zur Verfügung 

gestellt. Zwei der Tumoren (DD1 und DD2) wurden von der Arbeitsgruppe Schmitz aus 

Dresden erhalten, die ihre Tumorproben von der Klinik und Poliklinik für Urologie der 

Technischen Universität Dresden beziehen. Die Tumoren waren Nierenzellkarzinome des 

klarzelligen Typs.  
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Tabelle 5-8: Verwendete RCC-Gewebe für die Herstellung der RCC-Gewebe-Zellsuspensionen. 
Aufgeführt sind die Patient-ID des Tumorgewebes, die TNM-Klassifikation sowie der Durchmesser des 
Tumors.  

Patient-ID  
Tumorgewebe TNM-Klassifikation1 Tumordurchmesser 

DD1* ---- ---- 

DD2* ---- ---- 

RCC34 pT3b pN0 G3 6 cm 

RCC35 pT3b pN2 G3-4 9 cm 

RCC42 pT3b pN0 G3 7 cm 

RCC43 pT3b pNX G2 13 cm 

RCC50 pT3b pN1 G2 7 cm  

RCC52 pT1b pNX G3 6,2 cm 

RCC57 pT1b pNX G2  4,5 cm  

RCC59 pT1b pNX G2 5,9 cm 

RCC61 pT1b pNX G2 5,5 cm 

RCC63 pT3a pNX G3 9,7 cm 

RCC66* pT3a pN0 M1 G3 7 cm 

RCC69 pT3a pN0 G2 6,5 cm 

RCC71 pT3a pN0 G2  4,5 cm  

RCC73 pT3a pN0 G2 ---- 

RCC74* pT1a pN0 G1 4,0 cm 

RCC78 pT2a pN0 G2  7,3 cm  

RCC84 pT1a pNX G2  3 cm 

RCC86 pT1a pNX G2  3,5 cm 

RCC88 pT1b pN0 G2 6,8 cm 

RCC89* pT3a pNX G2 5,6 cm 

RCC91* rpT3a pNX G3 6,5 cm 

RCC94* pT1b pN0 G2 6,2 cm 

RCC96 pT3a pNX G2 6,1 cm  

RCC97* pT2b pN0 G2 10,5 cm 
1 Klassifikation und Stadiengruppierung der Tumoren nach den Richtlinien der Union International 
Contre le Cancer (UICC); T: Größe des Primärtumors; N: Status des Lymphknotenbefalls, 
Lymphknotenmetastasen; M: Fernmetastasen (nur angegeben wenn eine Fernmetastase zur 
Untersuchung vorlag); G: Differenzierungsgrad des Tumorgewebes (G1 = gut differenziert bis G4 = 
wenig differenziert); p: pathologische Klassifikation, postoperative histologische Klassifikation; r = 
Rezidiv; X = keine Aussage möglich; * für die Genexpressionsanalyse sortierte RCC 
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5.10 Primäre und sekundäre Antikörper für die Durchflusszytometrie  

Tabelle 5-9: Für die Durchflusszytometrie verwendete Primär- und Sekundärantikörper. In lila ist 
der eingesetzte Sekundärantikörper markiert.  

Spezifität Markierung Spezies/ 
Isotyp Klon Hersteller 

Zytometer 
LSR II/ 
FACSAria 
IIIu+ 

Färb- 
ung 

Annexin V FITC Maus IgG1, κ VAA-33 Biosource 1:20 OF 

CD11c APC Maus IgG1, κ B-ly6 BD 1:25/1:5+ OF 

CD11c FITC Maus IgG1, κ 3.9 eBioscience 1:20 OF 

CD11c PE Maus IgG1, κ B-ly6 BD  1:25/1:7+ OF 

CD14 PB Maus IgG2a, κ M5E2 BD  1:25 OF 

CD14 PerCP- 
Cy5.5 Maus IgG1, κ 61D3 eBioscience 1:10/1:5+ OF 

CD19 A700 Maus IgG1, κ HIB 19 Biolegend 1:25 OF 

CD19 PB Maus IgG1, κ HD37 Dako 1:17+ OF 

CD1c FITC Maus IgG2a, κ AD5-8E7 Miltenyi 
Biotec 1:10 OF 

CD1c PE-Cy7 Maus IgG1, κ L161 Biolegend 1:10+ OF 

CD209 APC Maus IgG2a, κ DCN46 BD 1:10 OF 

CD209 PE Maus IgG2b, κ DCN46 BD  1:10/1:4+ OF 

CD24 PE Maus IgG1, κ SN3 A5-
2H10 eBiosciences 1:10 OF 

PD-L1 FITC Maus IgG1, κ M1H1 BD 1:5 OF 

CD3 PB Maus IgG1, κ UCHT1 BD  1:20/1:5+ OF 

CD4 APC-A780 Maus IgG1, κ RPA-T4 eBioscience 1:20 OF 

CD40 FITC Maus IgG1, κ 5C3 BD  1:10 OF 

CD45 PE-Cy7 Maus IgG1, κ HI30 BD  1:50/1:20+ OF 

CD48 FITC Maus IgG1, κ J4.57 Beckman 
Coulter 1:25 OF 

ICAM-1 PE Maus IgG1, κ HA58 BD  1:10 OF 

CD56 APC Maus IgG1, κ N901 Beckman 
Coulter 1:20/1:17+ OF 

CD64 FITC Maus IgG1, κ  22 Beckman 
Coulter 1: 10  OF 

CD8 PB Maus IgG1, κ RPA-T8 BD  1:25 OF 

Fascin Unmarkiert Maus IgG1, κ 55K-2 Santa Cruz  
Biotechnology 1:500 IZ 

HLA-DR/ 
MHC-II FITC Maus IgG2a, κ L243 BD  1:25 OF 
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ILT4 PE Ratte IgG2a, κ  42D1 Beckman 
Coulter 1:17 OF 

Isotyp Unmarkiert Maus IgG1, κ MOPC21 BD  1:500 IZ 

Isotyp A700 Maus IgG1, κ MOPC21 BD * OF 

Isotyp  APC Maus IgG1, κ 11711 R&D Systems * OF 

Isotyp  APC Maus IgG2a, κ HOPC 
1F/12 Jackson * OF 

Isotyp  FITC Maus IgG1, κ MOPC21 BD  * OF 

Isotyp FITC Maus IgG2a, κ G155-
178 BD * OF 

Isotyp FITC Maus IgM IS5-20C4 Miltenyi 
Biotec * OF 

Isotyp  PE Maus IgG1  MOPC21 BD  * OF 

Isotyp PE Maus IgG2b, κ MPC-11 Biolegend * OF 

Isotyp PE Ratte IgG2a, κ R35-95 BD  * OF 

Isotyp PE-Cy7 Maus IgG1, κ MOPC21 BD  * OF 

LFA-1 FITC Maus IgG1, κ MEM-25 Immunotools 1:17 OF 

Maus 
IgG1 A488 Ziege  poly-

klonal 
Life 
Technologies 1:500 IZ 

MerTK APC Maus IgG1, κ 125518 R&D Sytems 1:5 OF 

slan FITC Maus IgM DD-1 Miltenyi 
Biotec 1:5/1:3+ OF 

+ Die Konzentrationen der Antikörper für die Färbung der zu sortierenden RCC-Gewebe-
Zellsuspensionen wurden an die Gesamtzellzahl und die Anzahl lebender/toter Zellen angepasst 
(siehe Abschnitt 6.4.3.2, Seite 39); * Die Konzentrationen der Isotypkontrollen wurde an den jeweils 
eingesetzten spezifischen Antikörper angepasst; OF: Oberflächenfärbung; IZ: intrazelluläre Färbung  
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5.11 Testkits 

Tabelle 5-10: Verwendete Testkits 

Bezeichnung Hersteller 
Agilent RNA 6000 Pico Kit  Agilent Technologies, Santa Clara (USA) 

Annexin V Apoptosis Detection Kit eBioscience, San Diego (USA) 

Encore® Biotin Module Kit  NuGen Technologies, San Carlos (USA) 

GeneChip® Hybridisation, Wash, and Stain Kit Affymetrix, Santa Clara (USA) 

Human IL-10 BD OptEIATM ELISA Set BD, Franklin Lakes (USA) 

Human IL-12 (p70) BD OptEIATM ELISA Set BD, Franklin Lakes (USA) 

LIVE/DEAD® Fixable Near-IR Dead Cell Stain Kit Life Technologies, Carlsbad (USA) 

MinElute Reaction Cleanup Kit QIAGEN, Venlo (Niederlande) 

Ovation® PicoSL WTA System V2 Kit NuGen Technologies, San Carlos (USA) 

RNeasy Micro Kit  QIAGEN, Venlo (Niederlande) 

Vybrant® CFDA-SE Cell Tracer Kit  Life Technologies, Carlsbad (USA) 
 

 

5.12 Software 

Tabelle 5-11: Verwendete Software  

Bezeichnung Hersteller 
Adobe Illustrator Adobe, San Jose (USA) 

Adobe Photoshop Adobe, San Jose (USA) 

BD FACSDivaTM BD, Franklin Lakes (USA) 

Endnote X7.0.2 Thomson Reuters, New York (USA) 

FlowJo  TreeStar Inc., Ashland (USA)  

GeneChip® Command Console®  Affymetrix, Santa Clara (USA) 

GeneMANIA  Universität Toronto, Toronto (Kanada) 

Graph Pad Prism 6 Graphpad Software, La Jolla (USA) 

GSEA  Broad Institute, Cambridge (USA) 

InnateDB Software EMBL, Adelaide (Australien) 

Microsoft Office 2010 Microsoft, Redmond (USA) 

Microsoft Power Point 2010 Microsoft, Redmond (USA) 

R/Bioconductor  Fred Hutch Research Center, Seattle (USA) 
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6 METHODEN 

6.1 Zellkultur 

6.1.1 Allgemeine Bemerkungen 

Alle Arbeiten wurden mit sterilem Material, Lösungen und Medien bei sterilen Bedingungen 

unter einer Sterilbank durchgeführt. Die Kultivierung der Zellen erfolgte im Brutschrank bei 

37°C, 6,5% CO2 und einer Luftfeuchte von 95%. Wenn nicht anders angegeben wurden die 

Zentrifugationen bei 1500 rpm für 5 min mit der Megafuge 2.0 R von Heraeus durchgeführt. 

 

6.1.2 Auftauen der Zellen 

Das Einfrierröhrchen mit der gefrorenen Zellsuspension wurde rasch bei 37°C unter 

Schütteln erwärmt, bis ca. 2/3 der Zellsuspension aufgetaut war. Daraufhin wurden zügig 2 

ml FCS hinzugegeben und die gesamte Lösung in ein 15-ml-Röhrchen überführt. Die Zellen 

wurden anschließend zentrifugiert und das Zellpellet im gewünschten Medium 

aufgenommen. 

 

6.1.3 Bestimmung der Zellzahl 

Die Zellzahl wurde mit Hilfe einer Neubauer-Zählkammer bestimmt. Dazu wurde der 

Zellsuspension ein Aliquot entnommen und mit Trypanblau im gewünschten Verhältnis 

gemischt. Bei der Blutaufreinigung sowie der Gewinnung der RCC-Gewebe-

Zellsuspensionen wurde für das Zählen der Zellen zusätzlich 3% Essigsäure zugesetzt, da 

diese die Erythrozyten platzen lässt und das Zählen erleichtert. Die Farbstoff-Zellsuspension 

wurde in den Zwischenraum der Neubauer-Zählkammer aufgetragen. Trypanblau dringt nur 

in tote, nicht aber in lebende Zellen ein. Tote Zellen zeichnen sich daher durch einen 

bläulichen Schimmer aus. Unter dem Lichtmikroskop wurde nachfolgend die Anzahl der 

ungefärbten Zellen in vier Großquadraten, die aus jeweils 16 Kleinquadraten bestehen, 

bestimmt. Nach Ermittlung der Zellzahl erfolgte die Berechnung der Gesamtzellzahl anhand 

folgender Formel: 

Zellzahl/ml = mittlere Zellzahl der 4 Großquadrate x Verdünnungsfaktor x 104 

Dies entspricht beispielsweise bei einem Verdünnungsfaktor von 1:10 und dem 

Kammerfaktor von 104 einer Multiplikation der gezählten Zellen mit dem Faktor 105. Die 

Gesamtzellzahl berechnet sich aus dem Wert pro ml multipliziert mit dem Gesamtvolumen 

der Zellsuspension. 
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6.1.4 Einfrieren von Zellen 

Für das Einfrieren der Zellen wurde die Gefrierschutzsubstanz Dimethylsulfoxid (DMSO) 

verwendet. Diese diffundiert durch die Zellmembran und erniedrigt den Wassergehalt in der 

Zelle, der sonst durch die Ausdehnung beim Einfrieren die Zelle schädigen würde. Da DMSO 

für stoffwechselintakte Zellen toxisch ist, wurden alle Arbeitsschritte zügig auf Eis 

durchgeführt. Die Zellen wurden durch Zentrifugation sedimentiert und der Kulturüberstand 

abgesaugt. Im Anschluss wurde das Zellsediment in 500 μl kühlem FCS gelöst und in ein 

Kryoröhrchen überführt. Das gleiche Volumen von kühlem 20%igem DMSO wurde dann 

langsam zur Zellsuspension gegeben. Zum Pellet der RCC-Gewebe-Zellsuspensionen 

wurde 1 ml des Ibidi-Einfriermediums, das ebenfalls DMSO enthält, zugegeben. 

Anschließend wurden die Röhrchen in Zellstoff verpackt und bei -80°C eingefroren. Nach 

wenigen Tagen wurden die Zellen zur Kryokonservierung auf Trockeneis in Tanks mit 

flüssigem Stickstoff (-196°C) überführt. 

 

6.1.5 Kultivierung von adhärenten Zelllinien 

Adhärent wachsende Zellen wurden in liegenden Zellkulturflaschen mit Filterdeckel kultiviert. 

Je nach Größe der Zellkulturflasche (T75 mit 75 cm2 oder T175 mit 175 cm2 Adhärenzfläche) 

erfolgte die Kultivierung in 10 ml bzw. 25 ml des für die Zellen jeweils optimalen 

Kulturmediums. Das Kulturmedium musste alle drei bis vier Tage aufgrund des 

Nährstoffmangels durch frisches Medium ersetzt werden. Bei 80 - 100%iger Konfluenz 

wurden die Zellen reduziert, um ein Überwachsen zu verhindern. Dazu wurde das Medium 

vorsichtig abgesaugt und die Zellen mit 5 – 10 ml PBS gewaschen, um verbliebene 

Medienreste sowie tote, nicht adhärente Zellen zu entfernen. Nachfolgend wurden 1 ml (T75) 

bzw. 2 ml (T175) Trypsin-EDTA-Lösung zu den Zellen gegeben und für ca. 2 - 5 min 

inkubiert. Die Zellkulturflasche wurde dabei immer wieder leicht geschwenkt, um die Trypsin-

EDTA-Lösung gleichmäßig zu verteilen. Durch das Trypsin werden die Bindeproteine 

zwischen Zelle und Substrat proteolytisch gespalten und durch EDTA die für die Salzbrücken 

zwischen Zelle und Substrat notwendigen zweiwertigen Kationen, vor allem Kalziumionen, 

komplexiert. Sobald mikroskopisch zu erkennen war, dass sich alle Zellen vollständig 

abgelöst hatten, wurde frisches Zellkulturmedium hinzugegeben. Das im Kulturmedium 

enthaltene FCS bewirkt eine Inaktivierung des Trypsins und stoppt die Reaktion. 

Anschließend wurde das gewünschte Volumen der Zellsuspension aus der Kulturflasche 

entnommen und die Zellen in Experimenten eingesetzt oder verworfen. Den verbliebenen 

Zellen in der Kulturflasche wurde frisches Medium zugegeben und die Kultivierung 

fortgesetzt.  
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6.1.6 Gewinnung von RCC-26-konditioniertem Medium (RCC-26-CM) für die 
Differenzierung von ercDC aus Monozyten 

Für die In-vitro-Differenzierung von ercDC aus CD14+ Monozyten (siehe Abschnitt 6.1.7.3) 

wurde Kulturüberstand der Tumorzelllinie RCC-26 eingesetzt (RCC-26-CM, engl.: renal cell 

carcinoma-26 conditioned medium). Zur Gewinnung wurden 2 x 106 RCC-26-Zellen in 10 ml 

AIM-V-Medium in einer T75-Zellkulturflasche über 10 Tage kultiviert und im Anschluss der 

Überstand geerntet. Dieser wurde 10 min bei 2000 rpm zentrifugiert, steril filtriert (0,2 µm) 

und bei -20°C eingefroren.  

 

6.1.7 Arbeiten mit Vollblut und Geweben 

Alle Arbeitsschritte wurden zügig durchgeführt. Zur Aufarbeitung wurden Einmalpipetten aus 

Plastik verwendet, um eine Voraktivierung der Zellen zu vermeiden.  

 

6.1.7.1 Isolierung mononukleärer Zellen aus Vollblut 

Die mononukleären Zellen (PBMC) wurden aus venösem Blut gesunder Spender isoliert. Für 

die Blutabnahme wurden 50-ml-Spritzen mit 1000 U Heparin (100 µl pro Spritze) versehen, 

um eine Gerinnung des Blutes zu verhindern. Das Blut wurde nach Abnahme mit demselben 

Volumen von RPMI-Basismedium gemischt und 35 ml davon auf 15 ml Ficoll® in einem 50- 

ml-Röhrchen überschichtet. Durch eine Dichtegradientenzentrifugation (2000 rpm, 20 min, 

ohne Bremse) wurden die Bestandteile des Blutes voneinander getrennt. Erythrozyten und 

Granulozyten sinken dabei in die Ficollschicht ab, während sich in der Interphase die PBMC 

sammeln. Die Thrombozyten befinden sich in dem darüberliegenden Plasma-

Mediumgemisch. Die Interphase wurde vorsichtig abgenommen, in ein 50-ml-Röhrchen 

überführt, 1:1 mit RPMI-Basismedium gemischt und bei 1900 rpm für 12 min zentrifugiert 

(Waschschritt zur Entfernung des Ficolls). Der Überstand wurde verworfen, das Zellpellet in 

eiskaltem MACS-Puffer aufgenommen, die Zellsuspension durch ein Zellsieb (Porengröße: 

100 µm) filtriert und die Zellzahl bestimmt. Die Ausbeute lag, spenderabhängig, zwischen 15 

x 107 und 30 x 107 Zellen pro 100 ml Vollblut. 

 

6.1.7.2 Positive Isolierung von Monozyten aus PBMC  

Die Isolierung der Monozyten aus PBMC erfolgte mittels der MACS-Technologie (engl.: 

magnetic cell sorting). Alle Arbeitsschritte wurden bei 4°C durchgeführt. Die Monozyten 

wurden durch CD14 Microbeads, entsprechend dem von Miltenyi Biotec angegebenen 

Protokoll, positiv selektioniert. Entgegen den dortigen Angaben wurde das Zellpellet in 10 µl 

statt 20 µl CD14 Microbeads/107 Zellen aufgenommen. Die CD14+ Monozyten wurden nach 
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der Elution zu verschiedenen myeloischen Zelltypen differenziert (Abschnitt 6.1.7.3) bzw. für 

die Genexpressionsanalyse eingefroren. Das gesondert aufgefangene Eluat der CD14-

negativen PBMC-Fraktion (=PBL) wurde portionsweise eingefroren. Die Ausbeute von 

Monozyten betrug, spenderabhängig, zwischen 5-20% der PBMC, bei einer Zellzahl von 15 x 

106 bis 30 x 106 Monozyten pro 100 ml Vollblut.  

 

6.1.7.3 In-vitro-Generierung von myeloischen Zelltypen aus Monozyten  

Die Kultivierung der Zellen erfolgte in 6-Loch-Flachbodenplatten. Zur Generierung der ercDC 

wurden 7 x 106 CD14+ Monozyten in 3 ml AIM-V-Medium (3% HS) bzw. 3 ml VLE-Medium 

(6% HS) mit 1 ml RCC-26-CM (siehe Abschnitt 6.1.6) pro Vertiefung kultiviert (Tabelle 6-1). 

Die cDC wurden entweder durch Aussaat von 5 x 106 CD14+ Monozyten in 5 ml MoDC-

Differenzierungmedium pro Vertiefung generiert oder klassisch durch Kultivierung in 4 ml 

AIM-V-Medium (1% HS) supplementiert mit 80 ng/ml GM-CSF und 80 ng/ml rhu IL-4. Für die 

Differenzierung der CD14+ Monozyten zu unpolarisierten M-CSF-MΦ wurden pro Vertiefung 

5 x 106 CD14+ Zellen in 4 ml AIM-V-Medium (1% HS) ausgesät und 50 ng/ml rhu M-CSF 

zugesetzt. Am Tag 7 wurden die M-CSF-MΦ, entsprechend Martinez et al.103, für 18 h mit 20 

ng/ml rhu IFN-γ und 100 ng/ml LPS zu M1-MΦ bzw. mit 20 ng/ml rhu IL-4 zu M2-MΦ 

polarisiert. GM-CSF-MΦ wurden durch Zugabe von 80 ng/ml rhu GM-CSF differenziert. Die 

Zellzahl und das Volumen wurden entsprechend der M1- und M2-MΦ-Generierung gewählt. 

Das RCC-26-CM und die Zytokine M-CSF, GM-CSF und IL-4 wurden am Tag der Aussaat 

und erneut am Tag 2 und Tag 5 der Kultivierung zugegeben. Das MoDC-

Differenzierungsmedium wurde nur am Tag 3 ein zweites Mal zugesetzt. Die ercDC und cDC 

wurden am Tag 7 geerntet, GM-CSF-MΦ, M1- und M2-MΦ am Tag 8.  

Tabelle 6-1: In-vitro-Generierung verschiedener Subtypen myeloischer Zellen aus CD14+ 
Monozyten. Alle Zelltypen wurden auch für die Genexpressionsanalyse (siehe Tabelle 7-5, Seite 91) 
verwendet.  

Zelltyp Kultivierungs-
zeit (Tage) Tag 2 Tag 3 Tag 5 Tag 7 Tag 8 

cDC       

Klassisch 7 IL-4, GM-CSF ---- IL-4, GM-CSF Ernten ---- 

MoDC-Diff.medium 7 ---- Med.  ---- Ernten ---- 

ercDC 7 RCC-26-CM ---- RCC-26-CM Ernten ---- 

GM-CSF-MΦ 8 GM-CSF ---- GM-CSF ---- Ernten 

M1-MΦ  8 M-CSF ---- M-CSF IFN-γ, LPS* Ernten 

M2-MΦ 8 M-CSF ---- M-CSF IL-4* Ernten 

* Polarisierung entsprechend Martinez et al.103 
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6.1.7.4 Herstellung von Gewebe-Zellsuspensionen aus RCC-Gewebe 

Das Probenmaterial für die Untersuchung der myeloischen Zellen wurde aus Tumorgeweben 

von Patienten mit klarzelligem RCC gewonnen. Diese erhielten in der Klinik eine (Teil-) 

Nephrektomie. Ein Teil des Tumorgewebes wurde für die Forschung zur Verfügung gestellt. 

Die Gewebestücke wurden im Labor sofort verarbeitet und besaßen im Durchschnitt eine 

Größe von 4 cm x 2 cm x 1,5 cm. Da die Gewebe auch histologisch untersucht werden 

sollten, wurde von jedem ein kleiner Teil in Alufolie verpackt, in flüssigem Stickstoff 

schockgefroren und dann bei -80°C eingelagert. Das restliche Gewebe wurde 

weiterverarbeitet. Hierfür wurde das Gewebe zuerst in eine Petrischale gegeben und mit 

Skalpell und Schere in sehr kleine Stücke geschnitten. Das Gewebe wies am Ende der 

Bearbeitung meist eine breiige Konsistenz auf. Durch die Zugabe von HBSS (engl.: Hank’s 

Balanced Salt Solution, Ca2+/Mg2+-haltig) wurde das Austrocknen des Gewebes verhindert. 

Anschließend wurde der Gewebebrei mit einem sterilen Löffel in ein 50-ml-Reagenzröhrchen 

überführt, wobei pro Röhrchen ein maximales Volumen von 5 ml Gewebebrei eingesetzt 

wurde. Im Durchschnitt lag das Volumen bei 2 – 5 ml. Da in den Experimenten nur 

Leukozyten untersucht werden sollten, die ins Gewebe ausgewandert waren, wurden die 

Leukozyten, die sich in den Blutgefäßen des Gewebes befanden, über mehrere 

Waschschritte ausgewaschen. Hierzu wurden 20 – 30 ml HBSS (Ca2+/Mg2+-haltig) zum 

Gewebebrei zugegeben und anschließend 2 min bei 1500 rpm zentrifugiert. Der Überstand 

mit den darin enthaltenen Zellen wurde in ein neues Röhrchen gegeben und separat auf Eis 

aufbewahrt. Dieser Waschschritt wurde so oft wiederholt bis der Überstand klar war, d.h. 

keine oder nur sehr wenige Erythrozyten enthielt. Der durch diese Waschschritte erhaltene 

Überstand enthielt Zellen, die nicht ins Tumorgewebe eingewandert waren. Diese Zellen 

werden als tumorzirkulierende Leukozyten bezeichnet. Die tumorinfiltrierenden Leukozyten 

wurden anschließend durch Verdau mit 0,19 mg/ml DNase I, Typ IV (435 U/ml) und 0,5 

mg/ml Kollagenase, Typ IA (218 U/ml), aus dem Gewebesediment herausgelöst. Dazu 

wurde 6 ml Verdaumedium pro 1 ml Sediment zugesetzt, gut gemischt und anschließend 30 

min bei Raumtemperatur auf einem Rotator inkubiert. Es schloss sich eine Zentrifugation an. 

Der erhaltene Überstand wurde in ein neues Röhrchen überführt und dem Sediment 20 – 30 

ml HBSS ohne Ca2+ und Mg2+ zugegeben. Nach einer weiteren Zentrifugation wurde der 

Überstand in ein neues Röhrchen überführt und pro 1 ml Sedimentvolumen 6 ml HBSS 

(ohne Ca2+ und Mg2+) mit 5 mM EDTA zugegeben. Nach einer 30-minütigen Inkubation bei 

Raumtemperatur auf einem Rotator und anschließender Zentrifugation wurde der Überstand 

in ein neues Röhrchen transferiert und dem Sediment 20 – 30 ml HBSS (Ca2+/Mg2+-haltig) 

zugegeben. Es wurde wieder zentrifugiert, der Überstand abgenommen und der zweite 

Verdauschritt, analog dem ersten Verdauschritt, durchgeführt. Nach einer weiteren 

Zentrifugation und der Separierung des Überstandes wurde das Gewebehomogenat in eine 

Petrischale gegeben und mit einer kleineren Petrischale ausgedrückt. Die 
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Petrischalenoberfläche wurde mit HBSS (Ca2+/Mg2+-haltig) abgespült und die Gewebe-

Zellsuspension in ein neues Röhrchen überführt. Es folgte eine Filtration durch ein Zellsieb 

(Porengröße: 70 µm). Anschließend wurden alle im Laufe des Gewebeverdaus entstandenen 

Überstände vereinigt und bei 1500 rpm für 10 min zentrifugiert. Danach wurden die Zellen 

gezählt. Hierbei wurde darauf geachtet, dass nur die kleineren Zellen (Leukozyten) gezählt 

werden, die großen Zellen (Tumorzellen) wurden weitgehend ausgeschlossen. Die Ausbeute 

betrug 2 - 100 x 106 Leukozyten. 

 

6.2 Funktionelle Versuche 

6.2.1 Signal-3-Nachweisverfahren 

Dieser von Zobywalsky et al.104 beschriebene Funktionstest dient der Ermittlung der 

Zytokinsekretion einer DC bei T-Zell-Kontakt (Signal-3). Als T-Zell-Surrogat fungierte die 

Maus-Fibroblastenzelllinie L929-CD40L, die mit humanem CD40L (CD40-Ligand/CD154) 

transfiziert wurde. CD40L interagiert mit dem CD40-Rezeptor auf myeloischen Zellen und 

induziert u.a. die Sekretion von IL-12p70. Um die Proliferation der L929-CD40L-Zellen zu 

verhindern, wurden diese durch Cäsium-Bestrahlung (100 Gy) inaktiviert und anschließend 

48 h in einer 96-Loch-Rundbodenplatte (5 x 104 Zellen in 100 μl LCL-Medium) kultiviert. Das 

Medium wurde nach diesem Zeitraum abgenommen und je Vertiefung 2 x 104 myeloische 

Zellen in 200 µl AIM-V-Medium (1 - 3% HS) bzw. VLE-Medium (3 - 6% HS) zugegeben. Als 

Kontrollen dienten allein kultivierte myeloische Zellen bzw. L929-CD40L-Zellen. Nach 24-

stündiger Inkubation wurden die Zellen abzentrifugiert (2000 rpm, 10 min), der Überstand für 

die Zytokinbestimmung abgenommen und bei -20°C eingefroren. 

 

6.2.2 Kokultur myeloischer Zellen mit allogenen naiven T-Zellen 

6.2.2.1 T-Zell-Proliferation und Apoptoseinduktion 

Die Fähigkeit der myeloischen Zellen zur Stimulation der Proliferation und Apoptose von T-

Zellen wurde in einer allogenen Kokultur gemessen. Dafür wurden 3 x 105 PBL eines HLA-

A2-negativen Spenders im Verhältnis 10:1 mit myeloischen Zellen eines HLA-A2-positiven 

Spenders gemischt und in 200 µl AIM-V-Medium (7,5% HS) in einer 96-Loch-

Rundbodenplatte für 5 Tage kokultiviert. Pro Kokultur wurden 4 Replikate angesetzt und 

allein kultivierte, gefärbte und ungefärbte PBL als Kontrolle verwendet. Die Proliferation 

wurde durch Anfärbung der PBL mit dem Fluoreszenzfarbstoff CFDA-SE (engl.: 

Carboxyfluorescein diacetate succimidyl ester) gemessen (siehe Abschnitt 6.4.4, Seite 40). 

Zur durchflusszytometrischen Detektion apoptotischer Zellen wurde das „Annexin V 

Apoptosis Detection Kit“ verwendet (siehe Abschnitt 6.4.5, Seite 40).  
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6.3 Enzymgekoppelter Immunadsorptionstest (ELISA) 

Der ELISA (engl.: enzyme-linked immunosorbent assay) bezeichnet ein immunologisches 

Nachweisverfahren mit dem verschiedene Substanzen, wie z.B. Proteine (Zytokine, 

Chemokine), Viren oder Hormone, in Suspensionen nachgeweisen werden können. Das 

Prinzip besteht darin, dass die zu untersuchende Substanz (hier: Zytokin) über einen am 

Plattenboden haftenden spezifischen „Capture“-Antikörper gebunden und angereichert wird. 

Durch die Zugabe eines zweiten, gegen das Zytokin gerichteten, biotinylierten Detektions-

Antikörpers sowie des Enzyms Streptavidin-HRP (engl.: horse radish peroxidase) bildet sich 

das sogenannte Antikörper-Antigen-Antikörper-Sandwich. Da die Antikörper an das gleiche 

Antigen (hier: Zytokin) binden, ist es wichtig, dass beide Antikörper unterschiedliche Epitope 

erkennen, da sie sich sonst gegenseitig behindern würden. Im Anschluss wird ein adäquates 

Substrat zugegeben, das von HRP in ein farbiges Reaktionsprodukt umgesetzt wird. Als 

Substrat diente eine Kombination von Wasserstoffperoxid und 3,3‘,5,5‘-Tetramethylbenzidin 

(TMB). Lösliches TMB wird in Gegenwart von Peroxidase und Wasserstoffperoxid zu einem 

blauen Chromogen umgesetzt. Nach der Zugabe von Phosphorsäure zum Abstoppen der 

Reaktion schlägt die Farbe der Lösung durch eine chemische Reaktion in einen gelben 

Farbton um, dessen Intensität als optische Dichte am ELISA-Messgerät (Spektrophotometer 

sunrise) bei 450 nm photometrisch quantifiziert werden kann. Die Signalstärke verhält sich 

dabei in einem gewissen Bereich proportional zur Konzentration der nachzuweisenden 

Substanz. Die Substanzkonzentration wird anhand einer Standardkurve mit definierten 

Konzentrationen ermittelt. Der Nachweis der Zytokine IL-12p70 und IL-10 wurde 

entsprechend dem von BD vorgegebenen Protokoll durchgeführt.  

 

6.4 Durchflusszytometrie 

6.4.1 Messprinzip 

Mit Hilfe der Durchflusszytometrie ist es möglich, Zellen anhand ihrer Oberflächenmarker 

bzw. intrazellulären Komponenten zu identifizieren. Die Zellen werden dafür mit 

monoklonalen fluorochromgekoppelten Antikörpern markiert. Bei der Analyse im 

Durchflusszytometer wird die Zellsuspension durch eine Kapillare gezogen, so dass ein 

Strom einzelner Zellen entsteht, der von einem Laserstrahl erfasst wird. Über die 

Vorwärtsstreuung (FSC, engl.: forward scatter) kann die Größe und über die 

Seitwärtsstreuung (SSC, engl.: side scatter) die Granularität der Zelle bestimmt werden. 

Gleichzeitig regt der Laser die Fluorochrome der Antikörper an, deren emittiertes Licht dann 

durch einen Photonendetektor (PMT, engl.: photomultiplier tube) registriert wird. Jeder 

Fluoreszenzfarbstoff absorbiert Licht eines bestimmten Wellenlängenbereiches 

(Absorptionsspektrum). Die Anzahl der emittierten Photonen ist proportional zur Menge der 

Fluorochome, dementsprechend auch zur Menge der mit den Antikörpern markierten 
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Moleküle. Jedes Photon, das durch den PMT registriert wird, erzeugt einen definierten 

elektrischen Strom, der gemessen und als Datei gespeichert wird. Vor dem PMT 

angebrachte Filter schränken das Spektrum der Wellenlängen, das den Detektor erreicht, ein 

und schirmen somit den jeweils für den Farbstoff spezifischen Kanal vor dem Emissionslicht 

anderer Fluorochrome ab. 

In dieser Arbeit wurde für alle Messungen, die nicht mit einer Sortierung der Zellen 

verbunden waren, das Durchflusszytometer LSR II verwendet. Es besitzt vier verschiedene 

Laser, so dass bis zu 18 verschiedene Fluoreszenzen gleichzeitig gemessen werden können 

(siehe Tabelle 6-4, Seite 44): einen UV-Laser (Wellenlänge 355 nm), einen violetten Laser 

(Wellenlänge 405 nm), einen blauen Laser (Wellenlänge 488 nm) und einen roten Laser 

(Wellenlänge 633 nm). Auf die Laser abgestimmt sind Filter, die ein gleichzeitiges Messen 

der Emissionen verschiedener Fluorochrome erlauben. Dennoch muss bei der 

Zusammenstellung der Fluorochromkombinationen darauf geachtet werden, dass sich die 

Emissionen so gering wie möglich überlagern. Zur Kompensation verschiedener Emissionen 

sind sogenannte Kompensationsbeads („CompBeads“) nötig, mit denen die Überlappung 

einzelner Emissionen festgelegt und korrigiert werden kann. Mit Hilfe der separat gefärbten 

Kompensationsbeads wird im Vorfeld definiert, welche Fluoreszenzintensitäten als positiv 

oder negativ gelten. Eine solche Kompensationsfärbung muss für jeden Fluoreszenzkanal 

durchgeführt werden.  

 

6.4.2 Markierung toter Zellen  

Tote Zellen haben eine gewisse Eigenstrahlung und können Antikörper unspezifisch binden. 

Da dies zu falsch-positiven Ergebnissen führen kann, ist die Unterscheidung toter und 

lebender Zellen essentiell. Wurde eine Oberflächenfärbung durchgeführt, so wurden 

zusätzlich zu den Antikörpern entweder 1-3 µl „near-IR fluorescence reactive dye“-

Lebend/Tot-Farbstoff zur Zellsuspension gegeben oder kurz vor der Messung 10 µg/ml 

Propidiumjodid (PI) zupippetiert. Der fixierbare Lebend/Tot-Farbstoff „near-IR fluorescence 

reactive dye“ dringt in tote Zellen ein, verbindet sich dort mit freien Aminen und bewirkt eine 

Anfärbung der Zellen, so dass diese durch die starke Fluoreszenz von den lebenden Zellen 

unterschieden werden können. Der Farbstoff kann aufgrund seiner Fixierbarkeit und der 

Stabilität bei Permeabilisierung auch für intrazelluläre Färbungen eingesetzt werden. PI 

dagegen ist nicht fixierbar und für intrazelluläre Färbungen ungeeignet. Es ist nicht 

membranpermeabel und färbt deshalb intakte Zellen nicht an. Es interkaliert jedoch in die 

DNA von toten Zellen, da diese Membrandefekte aufweisen. Für die Markierung toter Zellen 

bei der intrazellulären Färbung von Fascin (siehe Abschnitt 6.4.6, Seite 41) wurde der 

fixierbare Lebend/Tot-Farbstoff 7-Amino-Actinomycin-D (7-AAD) eingesetzt. Dafür wurden 

die Zellen bei der Oberflächenfärbung zusätzlich mit 10 μg/ml 7-AAD behandelt. 7-AAD 
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dringt tote Zellen ein und interkaliert irreversibel in die DNA, so dass es bei der 

Permeabilisierung, die zum Nachweis des intrazellulären Fascins notwendig war, nicht 

ausgewaschen wurde.  

 

6.4.3 Oberflächenfärbung 

Wenn nicht anders angegeben, wurde in den nachfolgenden Unterkapiteln und in den 

Abschnitten 6.4.4 bis 6.4.6 bei allen Waschschritten für 10 min bei 1200 rpm zentrifugiert 

(Megafuge 2.0, Heraeus).  

 

6.4.3.1 Zellsuspensionen 

Für die Oberflächenfärbung wurden 5 x 104 - 2 x 105 Zellen verwendet. Die Zellsuspension 

wurde in ein 1,5-ml-FACS-Röhrchen gegeben und mit 500 µl eiskaltem FACS-Azid-Puffer 

gewaschen. Hierfür wurde der Puffer zu den Zellen gegeben und diese anschließend 

zentrifugiert. Danach wurde der Überstand auf 50 µl abgesaugt und die Färbung mit den 

Antikörpern durchgeführt. Jeder Antikörper wurde in einer zuvor ausgetesteten Menge 

dazugegeben (siehe Tabelle 5-9, Seite 27). Die Proben wurden mit dem Vortexer gemischt 

und für 25 min abgedunkelt bei 4 °C inkubiert (eingesetzte Antikörperkombinationen siehe 

Tabelle 6-2). Es schloss sich ein Waschschritt mit 500 µl FACS-Azid-Puffer an. Der 

Überstand wurde für die Messung auf 100 µl abgesaugt. Kurz vor der Messung wurde PI (10 

µg/ml) zugegeben. Für die Auswertung der Daten war es nötig, einzeln gefärbte Proben 

mitzuführen, um später eine Kompensationsmatrix erstellen zu können, anhand der die 

Spektralüberlappungen der einzelnen Fluorochrome herausgerechnet werden können. Dazu 

wurden Kompensationsbeads mit jeweils einem der verwendeten Antikörper gefärbt. 70 µl 

FACS-Azid-Puffer wurden in 1,5-ml-FACS-Röhrchen vorgelegt und jeweils 15 µl der gut 

aufgeschüttelten positiven und negativen Beads dazu pipettiert. Die positiven Beads sind mit 

einem Antikörper versehen, welcher die Kappa-Leichtkette der fluorochrommarkierten 

Antikörper erkennt und bindet. Die negativen Beads sind ausschließlich mit FCS (engl.: fetal 

calf serum) beschichtet und können folglich die Antikörper der Suspension nicht binden. Zu 

den Beads wurde jeweils 1 µl des Antikörpers pipettiert, für 25 min bei 4°C im Dunkeln 

inkubiert, einmal mit FACS-Azid-Puffer gewaschen und der Überstand auf 100 µl abgesaugt. 

Die Mischung von positiven und negativen Beads erzeugt am Gerät zwei 

Fluoreszenzausschläge, wobei die Intensität der negativen Beads dem Fehlen einer 

spezifischen Fluoreszenz entspricht und die positiven Beads der Intensität einer positiven 

Fluoreszenz entsprechen. So kann bei den gefärbten Proteinen zwischen negativen und 

positiven Zellen unterschieden werden sowie die spektrale Überlappung verschiedener 

Fluorochrome elektronisch verrechnet, d.h. kompensiert, werden. 
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6.4.3.2 RCC-Gewebe-Zellsuspensionen  

Für die Oberflächenfärbung der RCC-Gewebe-Zellsuspensionen wurden 2 x 105 – 8 x 105 

Zellen verwendet. Diese wurden zuvor unter dem Mikroskop als potentielle Leukozyten 

innerhalb der Gewebe-Zellsuspension bestimmt. Die Gewebe-Zellsuspension wurde in ein 5- 

ml-FACS-Röhrchen überführt, mit 500 µl PBS-EDTA-Puffer versetzt und zentrifugiert. 

Danach wurde der Überstand vollständig entfernt und das Zellpellet in 30 µl PBS-EDTA-

Puffer aufgenommen. Die zugegebene Antikörpermenge wurde individuell angepasst. 

Hierbei wurden sowohl die Anzahl lebender Leukozyten, die Gesamtanzahl lebender Zellen 

sowie die Gesamtanzahl toter Zellen berücksichtigt. Die eingesetzen Antikörpermengen 

können Abschnitt 5.10 (Seite 27) entnommen werden, die Antikörperkombinationen Tabelle 

6-2. Zusammen mit dem entsprechenden Volumen der Antikörper wurde, je nach Zellzahl, 1 

- 3 µl des Lebend/tot-Farbstoffs „near-IR fluorescence reactive dye“ zugegeben. Es folgte 

eine 25-minütige Inkubation bei 4°C im Dunkeln, danach wurde mit 500 µl PBS-EDTA-Puffer 

gewaschen. Der Überstand wurde entfernt und das Zellpellet je nach Größe und Zellzahl in 

0,4 – 1 ml PBS-EDTA-Puffer aufgenommen. Um störende größere Gewebepartikel zu 

entfernen, wurde die Gewebe-Zellsuspension durch ein Zellsieb (Porengröße: 70 µm) filtriert. 

Danach schloss sich eine 5-minütige Inkubation bei Raumtemperatur mit 200 U/ml DNase I 

an, um eine Verstopfung des Durchflusszytometers durch DNA-Fäden und darin verklumpte 

Zellen zu verhindern. Die Proben wurden entweder am LSR II-Durchflusszytometer 

analysiert oder am FACSAria IIIu sortiert (siehe Abschnitt 6.4.8.2, Seite 45).  

Tabelle 6-2: Übersicht über die verwendeten Antikörper zur Analyse myeloischer Zellen 
innerhalb von Zellsuspensionen und RCC-Gewebe-Zellsuspensionen. Die Antikörper für die 
Auswahl der myeloischen Zellen bzw. die Abgrenzung nicht-myeloischer Zellen (CD3) wurden durch 
Antikörper für analytische Marker (rechte Spalte, Oberflächenmarker) ergänzt. Die Kombinationen der 
Antikörper wurden so ausgewählt, dass keine Fluoreszenzüberschneidungen auftraten. 

Analyse Auswahl myeloischer Zellen Oberflächenmarker 

analytische Durchflusszytometrie 
der myeloischen Zellen in  
RCC-Gewebe-Zellsuspensionen 

CD45 PeCy7 
CD11c PE oder FITC oder APC 
CD14 PB oder PerCP-Cy5.5 
CD209 APC oder PE 
CD3 PB oder PE-Cy7 
 

CD40 FITC 
CD80 FITC 
CD86 PE 
HLA-DR FITC 
MerTK APC 
PD-L1 FITC 

analytische Durchflusszytometrie 
der in vitro generierten cDC und 
ercDC (Zellsuspensionen) 

CD14 PB oder PerCP-Cy5.5 
CD209 APC oder PE 
 

CD24 PE 
CD40 FITC 
CD48 FITC 
CD64 FITC 
CD80 FITC 
CD86 PE 
ICAM-1 PE 
ILT4 PE 
HLA-DR FITC 
LFA-1 FITC 
MerTK APC 
PD-L1 FITC 
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6.4.4 CFSE-Markierung zur Messung der T-Zell-Proliferation 

CFSE (engl.: Carboxyfluorescein succinimidyl ester) liegt außerhalb der Zelle als CFDA-SE 

vor. Dieses ist farblos und diffundiert passiv in das Zytoplasma der Zellen, wo die 

Acetatgruppen durch intrazelluläre Esterasen gespalten werden. Dadurch entsteht ein 

fluoreszierender, aminreaktiver Ester, das CFSE. Die Estergruppen des CFSE reagieren mit 

den Amingruppen intrazellulärer Proteine, in dessen Folge sich stabile, fluoreszierende 

Konjugate bilden, die das CFSE in der Zelle festhalten. Die CFSE-Protein-Konjugate werden 

bei der Zellteilung gleichmäßig an die Tochterzellen weitergegeben. Mit jeder Zellteilung 

halbiert sich die Fluoreszenzintensität der Tochterzellen. Das Maß der Fluoreszenzabnahme 

erlaubt einen Rückschluss auf die Anzahl der Teilungen, die eine Zelle durchlaufen hat und 

ist damit ein Maß für die induzierte Proliferation der Zellpopulation. Für die Färbung der im 

Versuch eingesetzten PBL wurde das „Vybrant® CFDA-SE Cell Tracer Kit“ von Life 

Technologies benutzt. Es wurden 1 x 106 Zellen/ml mit 1 µM CFDA-SE (in PBS) versetzt, 8 

min bei 37°C inkubiert und anschließend die Reaktion mit einem der Färbelösung 

entsprechenden Volumen von FCS abgestoppt. Nach 2-minütigem Schwenken des 

Reagenzröhrchens wurde zweimal mit AIM-V-Medium (7,5% HS) gewaschen, die Zellen 

anschließend zwei Stunden in einer 24-Loch-Flachbodenplatte in AIM-V-Medium mit 7,5% 

HS (1 x 106 Zellen/ml) ruhen gelassen und dann für die Kokultur mit cDC bzw. ercDC 

verwendet. Die CFSE-Fluoreszenz der CD4+ und CD8+ T-Zellen wurde nach 5-tägiger 

Kokultur (siehe Abschnitt 6.2.2.1, Seite 35) am LSR II-Durchflusszytometer analysiert. Dafür 

wurde eine Oberflächenfärbung mit den in Tabelle 6-3 angegebenen Antikörpern 

durchgeführt.  

 

6.4.5 Annexin V/PI-Färbung zur Detektion apoptotischer Zellen 

Der Farbstoff Annexin V bindet Phosphatidylserine, die in vitalen Zellen v.a. an der 

zytosolischen Seite der Plasmamenbran vorkommen, bei apoptotischen und nekrotischen 

Zellen aber an die Oberfläche translozieren und dadurch angefärbt werden können. Durch 

Anfärbung mit Annexin V und PI können verschiedene Populationen unterschieden werden: 

vitale Annexin-PI- (Ann-PI-) Zellen, Ann+PI- Zellen, die sich in der frühen Phase der Apoptose 

befinden, Ann+PI+ Zellen, die sich in der späten Apoptosephase oder in der Nekrose 

befinden sowie Ann-PI+ Zellen, die beschädigt bzw. tot sind, was vermutlich nicht durch 

Apoptose verursacht wurde, da sie nicht Annexin+ sind105.  

Die PBL:cDC bzw. PBL:ercDC-Kokulturen (siehe Abschnitt 6.2.2.1, Seite 35) wurden nach 5 

Tagen geerntet, zweimal mit 500 µl FACS-Azid-Puffer gewaschen und eine 

Oberflächenfärbung der Zellen durchgeführt (Antikörperkombination siehe Tabelle 6-3). Die 

anschließende Färbung von Annexin V und PI wurde nach Protokoll des Herstellers 

(eBioscience) durchgeführt. 
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Tabelle 6-3: Übersicht über die verwendeten Antikörper für die Detektion von CD3+CD4+ und 
CD3+CD8+ T-Zellen innerhalb der Kokulturen von PBL mit cDC bzw. ercDC (siehe Abschnitt 
6.2.2.1). Die Antikörper gegen CD19 und CD56 wurden zur Abgrenzung von B- und NK-Zellen 
verwendet.  

Versuch Ausschluss myeloischer 
Zellen 

Auswahl CD4+ und CD8+ 
T-Zellen 

T-Zell-Proliferation  CD209 PE 

CD3 PE-Cy7 
CD4 APC-A780 
CD8 PB 
CD19 A700 
CD56 APC 
CFSE  

Apoptoseinduktion CD209 PE 

CD3 PE-Cy7 
CD4 APC-A780 
CD8 PB 
CD19 A700 
CD56 APC 
Annexin V FITC 

 

 

6.4.6 Fluoreszenzmarkierung des intrazellulären Proteins Fascin 

Die myeloischen Zellen (5 x 105 Zellen) wurden in ein 1,5-ml-FACS-Röhrchen überführt, mit 

500 µl FACS-Azid-Puffer versetzt, zentrifugiert und der Überstand auf 50 µl abgesaugt. Es 

folgte die Zugabe des Lebend/Tot-Farbstoffs 7-AAD (10 µg/ml) und eine 20-minütige 

Inkubation bei 4°C im Dunkeln. Nach zweimaligem Waschen wurde 500 µl 1%iges PFA 

zugegeben, gut gemischt und 20 min bei 4°C im Dunkeln inkubiert. Nach dem Waschen mit 

500 µl FACS-Azid-Puffer folgte der erste Permeabilisierungsschritt mit 500 µl 80%igem 

Methanol für 10 min (4°C, Dunkelheit). Einem erneuten Waschschritt schloss sich ein 

zweistufiger Permeabilisierungsprozess mit je 500 µl 0,1%iger und 0,35%iger Saponinlösung 

an. Die Proben wurden jeweils nach Zugabe der Lösung zentrifugiert und auf 50 µl 

abgesaugt. Anschließend wurde die entsprechende Menge des unmarkierten, gegen Fascin 

gerichteten, Primärantikörpers (siehe Tabelle 5-9, Seite 27) zugegeben und für 25 min bei 

4°C im Dunkeln inkubiert. Danach wurde wieder mit 0,1%iger und 0,35%iger Saponinlösung 

gewaschen und der mit A488 markierte anti-Maus-IgG1-Sekundärantikörper zu den Zellen 

gegeben. Es folgten eine 25-minütige Inkubation bei 4°C im Dunkeln und ein letzter 

Waschschritt mit 500 µl FACS-Azid-Puffer. Der Überstand wurde auf 100 µl abgesaugt und 

die Zellen am LSR II-Durchflusszytometer analysiert.  
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6.4.7 Messung der Proben und Auswertung der Daten  

Vor der analytischen Messung der Proben am LSR II-Durchflusszytometer bzw. der 

Sortierung am FACSAria IIIu (siehe Abschnitt 6.4.8) wurde mit Hilfe einer unmarkierten 

Probe zunächst die Position der zu untersuchenden Zellpopulation im FSC/SSC so optimiert, 

dass diese möglichst in der Mitte des FSC/SSC-Punktewolkendiagramms (Dot-Plot) lag. 

Anschließend wurde für jede Fluoreszenz die PMT-Einstellung der Laser so gewählt, dass 

negative Signale möglichst am Nullpunkt der x-Achse lagen und positive Fluoreszenzen 

möglichst weit rechts im Histogramm. Dazu wurden Proben verwendet, die mit einem nicht 

gegen die jeweilige Zielstruktur gerichteten Isotyp-Antikörper gefärbt wurden. Weil die 

Emissionsspektren der verschiedenen Fluorochrome überlappen können, wie das z.B. bei 

FITC und PE der Fall ist, wurden positive und negative Kompensationbeads aufgenommen, 

um mit Hilfe der Auswertungssoftware „FlowJo“ eine Kompensation durchzuführen. Die zu 

untersuchende Zellpopulation wurde durch einen Auswahlrahmen im FSC/SSC-

Punktewolkendiagramm ausgewählt und jeweils zwischen 1 x 104 und 2 x 105 Ereignissen 

innerhalb der lebenden Zellpopulation aufgenommen bzw. die Zellen am FACSAria IIIu 

sortiert.  

Die Auswertung erfolgte mit der Software „FlowJo“, die die aufgenommenen 

Fluoreszenzparameter auf verschiedene Weise darstellen kann. Im Histogramm wird die 

Häufigkeitsverteilung einer Fluoreszenzintensität gegen die Anzahl der Ereignisse 

dargestellt. Hiermit lässt sich zum einen eine positive Zellfraktion von der für den jeweiligen 

Marker negativen unterscheiden, und zum anderen kann die Fluoreszenzintensität erfasst 

werden, die proportional zur Expressionsstärke des Markers ist. In einem 

Punktewolkendiagramm können zwei verschiedene Fluoreszenzen gegenübergestellt 

werden. Hierbei wird in einem xy-Koordinatennetz jede Zelle als Punkt projeziert, wobei x die 

Fluoreszenz des ersten und y die Fluoreszenz des zweiten Parameters anzeigt. Dadurch 

kann der Prozentsatz von Zellen bestimmt werden, der positiv für jeweils einen, beide oder 

keinen der beiden Marker ist. Eine Abwandlung des Punktewolkendiagramms ist das 

Konturdiagramm, bei dem die Zelldichte durch Linien dargestellt wird, wobei bei hoher 

Zelldichte die Linien dichter zusammen und bei niedriger Zelldichte die Linien weiter 

auseinander liegen. In dieser Darstellung können Zellen, die außerhalb der Hauptpopulation 

liegen, als Punkte ergänzt werden.  
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6.4.8 Zellsortierung 

6.4.8.1 Prinzip 

Für die Sortierung der verschiedenen myeloischen Subpopulationen aus RCC-Gewebe-

Zellsuspensionen und PBMC (siehe Abschnitt 7.5.1 und 7.5.2, Seite 68 bzw. 69) wurde das 

FACSAria IIIu Gerät verwendet. Die Funktionsweise entspricht im Wesentlichen der des LSR 

II-Durchflusszytometers. Die Laserkonfigurationen beider Geräte und die spektralen 

Eigenschaften der Fluorochrome sind in Tabelle 6-4 zusammengefasst.  

Die zu analysierende Zellsuspension, welche die mit Antikörpern gefärbten Zellen enthält, 

wird mit Druckluft aus dem Probenröhrchen durch einen dünnen Schlauch und ein 

Metallröhrchen in eine Düse gepresst (Abbildung 6-1). Die Zellen treten dann aus dem 

Metallröhrchen in das Zentrum der Düse ein und aus der hier verwendeten 100 µm breiten 

Öffnung wieder aus. Von der Seite wird eine isotonische Trägerflüssigkeit zugeleitet. 

Innerhalb der Düse werden die Zellen sehr stark beschleunigt, wodurch sie einer starken 

Belastung ausgesetzt sind. Unmittelbar unter der Düsenöffnung trifft ein Laserstrahl den 

austretenden Flüssigkeitsstrahl, wodurch die Größe, Granularität und die 

fluoreszenzmarkierten Moleküle der Zellen erfasst werden. Nach der Detektion durch den 

Laser bewegen sich die Zellen zum Abrisspunkt, wo der Flüssigkeitsstrahl, stabilisiert durch 

einen piezoelektronischen Schwingungsgeber, in Tröpfchen aufbricht. Jeder Tropfen enthält 

normalerweise eine einzelne Zelle. Die Tropfen werden kurz vor dem Abreißen, 

entsprechend der zuvor festgelegten Sortierkriterien, mit unterschiedlichen Ladungen 

versehen. In der nachfolgenden Fallstrecke werden sie beim Durchqueren des 

elektrostatischen Feldes, welches von zwei geladenen Metallplatten erzeugt wird, 

entsprechend ihrer Ladung in unterschiedliche Richtungen abgelenkt und so in getrennten 

Auffangröhrchen gesammelt. Es gibt verschiedene Sortiermodi mit unterschiedlicher 

Genauigkeit. Für die in dieser Arbeit durchgeführten Sortierungen wurde entweder der 

„purity-“ oder der „single cell“-Modus verwendet. Ersterer ist sehr genau, zielt aber darauf ab, 

möglichst das Maximum der verfügbaren Zellen zu sortieren, manchmal zu Lasten der 

Zellvitalität. Der „single cell“-Modus gewährleistet eine noch präzisere Sortierung als der 

„purity“-Modus, da nur Zellen die in der Mitte des Tropfens liegen in die Auffanggefäße 

abgelenkt werden, so dass wirklich nur eine Zelle pro Tropfen sortiert wird. Nachteil ist eine 

geringere Zellausbeute.  
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Abbildung 6-1: Prinzip der Fluoreszenz-aktivierten Zellsortierung. Entnommen und modifiziert 
nach Kimmig, Dissertationsarbeit, 2003106.  

Tabelle 6-4: Fluoreszenzcharakteristika der verwendeten Fluoreszenzfarbstoffe, die 
Wellenlänge der Laser für die Anregung sowie die Filter für die Detektion am LSR II-
Durchflusszytometer bzw. am FACSAria IIIu Sortiergerät.  

Fluoreszenz- 
farbstoff 

Absorptions- 
maximum 

Emissions-
maximum 

Wellenlänge 
des Lasers 
LSR II; 
FACSAria IIIu* 

Filter 
LSR II; FACSAria IIIu* 

PB 401 nm 452 nm 405 nm1,  450/50 nm; 450/40 nm 

PerCP-Cy5.5 482 nm 695 nm 488 nm2 695/40 nm 

Propidiumjodid  
(PI) 493 nm 619 nm 355 nm3; 561 nm4 610/20 nm 

FITC 494 nm 519 nm 488 nm 530/30 nm 

A488 495 nm 519 nm 488 nm  530/30 nm 

7-Amino- 
Actinomycin D  
(7-AAD) 

543 nm 655 nm 488 nm 695/40 nm 

PE 564 nm 578 nm 488 nm; 561 nm 575/26 nm; 582/15 nm 

PE-Cy7 564 nm 785 nm 488 nm; 561 nm 780/60 nm 

APC-Cy7  
(APC-A780) 650 nm 785 nm 633 nm5 780/60 nm 

APC 650 nm 660 nm 633 nm 660/20 nm 

A700 696 nm 719 nm 633 nm 730/45 nm 

Near-IR 
fluorescence 
reactive dye 

750 nm 775 nm 633 nm 780/60 nm 

1 violetter Laser, 2 blauer Laser, 3 UV-Laser, 4 grün-gelber Laser beim FACSAria IIIu, 5 roter Laser 
* nur bei Abweichung von den Bedingungen am LSR II gesondert aufgeführt 
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6.4.8.2 Sortierung von myeloischen Subpopulationen aus Blut und RCC-
Gewebe-Zellsuspensionen 

Die PBMC bzw. die RCC-Gewebe-Zellsuspensionen wurden mit spezifischen Kombinationen 

fluoreszenzmarkierter Antikörper gefärbt (Tabelle 6-5) und die Zellen anschließend am 

FACSAria IIIu sortiert. Die Auswahlstrategie für die myeloischen Zelltypen ist in Abschnitt 

7.5.1 bzw. 7.5.2 (Seite 68 und 69) des Ergebnisteils gezeigt. Die Oberflächenfärbung für die 

Sortierung der CD1c+ DC und slanDC aus den PBMC wurde analog der Färbung für 

Gewebe-Zellsuspensionen (siehe Abschnitt 6.4.3.2, Seite 39) mit 10 – 13 x 106 Zellen in 50 

µl pro Ansatz durchgeführt. Zuvor wurden die B-Zellen und NK-Zellen durch positive 

Selektion von CD19 und CD56 mittels MACS-Microbeads aus den PBMC entfernt. Die 

Durchführung erfolgte analog der Separation von Monozyten mittels CD14 Microbeads 

(siehe Abschnitt 6.1.7.2, Seite 32). 

Tabelle 6-5: Übersicht über die verwendeten Antikörper zur Auswahl myeloischer Zellen 
innerhalb der PBMC und RCC-Gewebe-Zellsuspensionen für die Sortierung am FACSAria IIIu. 
CD45 wurde zur Abgrenzung von CD45-negativen Tumorzellen verwendet, CD3, CD19 und CD56 
zum Ausschluss der T-, B- und NK-Zellen.  

Analyse Auswahl CD11c+ myeloischer 
Zellen 

Auswahl myeloischer 
Subtypen innerhalb 
der CD11c+ Zellen 

Sortierung der CD1c+ DC 
und slanDC aus PBMC  
 

CD11c PE 
CD3 PB 
CD19 PB 
CD56 APC 

CD1c PE-Cy7 
slan FITC 

Sortierung myeloischer 
Zellen aus RCC-Gewebe-
Zellsuspensionen 

CD45 PE-Cy7 
CD11c APC 
CD3 PB 

CD209 PE  
CD14 PerCP-Cy5.5 
slan FITC 

 

Für die Sortierung wurde eine Düse mit einer 100 µm breiten Öffnung verwendet, eine 

durchschnittliche Sortiergeschwindigkeit von 4000 Ereignissen/s eingestellt und die 

Sortiermodi „single cell“ bzw. „purity“ ausgewählt. Der „purity“-Modus wurde bei sehr 

geringen Zellzahlen verwendet, da sonst keine für die Genexpressionsanalyse ausreichende 

Zellzahl sortiert werden konnte. Die Zellen wurden in 1,5-ml-Eppendorf-Reaktionsgefäße 

(RNase-frei) sortiert, die jeweils 250 µl des Puffers RLT (Lysepuffer aus RNeasy Micro Kit), 

versetzt mit ß-Mercaptoethanol (143 mM), enthielten. Die Auffanggefäße wurden während 

der Sortierung nicht gekühlt, da sonst die Salze des Lysepuffers ausfallen. Während der 

Sortierung wurden die Zellen immer wieder im Puffer resuspendiert, um eine vollständige 

Lyse zu gewährleisten. Außerdem wurde darauf geachtet, dass das Verhältnis von RLT-

Puffer zur Geräteflüssigkeit, welche die sortierten Zellen enthielt, im Auffanggefäß stets 

mindestens 3:1 war. Dies gewährleistete die vollständige Aktivität des Lysepuffers. Falls 

genügend Zellen vorhanden waren, wurde ein Teil der Zellen jeder Fraktion in AIM-V-
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Medium (10% HS) sortiert und die Reinheit der sortierten Zellen durch eine Reanalyse am 

FACSAria IIIu überprüft. Diese lag zwischen 98% und 100%. Die lysierten Zellen wurden mit 

Hilfe des QIAshredders von QIAGEN nach Protokoll homogenisiert und anschließend bei -

80° gelagert. Eine Übersicht über die sortierten Zelltypen, deren Bezeichnung für die 

Genexpressionsanalyse, das Markerprofil, die Integrität der RNA (RIN-Werte) und die Anzahl 

der sortierten Zellen der Replikate können Tabelle 7-1 auf Seite 71 im Ergebnisteil 

entnommen werden.  

 

6.5 Molekularbiologische Methoden  

Alle molekularbiologischen Arbeiten wurden mit sterilen, RNAse-freien Materialien und 

Substanzen durchgeführt. Der Microarray und dessen Analyse wurden in Zusammenarbeit 

mit Martin Irmler und Anke Bettenbrock vom Institut für Experimentelle Genetik des 

Helmholtz Zentrums München sowie Tobias Straub von der Bioinformatischen Core Unit des 

Adolf-Butenandt-Instituts der LMU durchgeführt.  

 

6.5.1 RNA-Isolierung 

Die Gesamt-RNA der in vitro generierten sowie der aus den Gewebe-Zellsuspensionen und 

PBMC isolierten myeloischen Zellen (Ex-vivo-Zellen) wurde mit Hilfe des RNeasy Micro Kits 

der Firma QIAGEN isoliert. Die Zentrifugationsschritte wurden mit einer Eppendorfzentrifuge 

(Eppendorf „Centrifuge 5417R“) durchgeführt.  

Von den in vitro generierten Zellen wurden je 5 x105 Zellen als trockenes Pellet bei -80°C 

eingefroren. Die eiskalten Pellets wurden im ersten Schritt mit 350 µl RLT-Puffer (Lysepuffer) 

versehen, gemischt und zur Homogenisierung auf die QIAshredder Säule gegeben. Nach 

einer 2-minütigen Zentrifugation bei 14000 rpm wurde das Lysat 1:1 mit 70% Ethanol 

gemischt und dann auf die „MinElute“-Säule überführt. Die Ex-vivo-Zellen wurden am 

FACSAria IIIu direkt in RLT-Puffer, der β-Mercaptoethanol enthielt, sortiert, mit dem 

QIAshredder homogenisiert und anschließend bei -80°C eingefroren (Zellzahlen in Tabelle 

7-1, Seite 71). Zur Weiterverwendung wurden die Lysate für 15 min bei 37°C im Heizblock 

aufgetaut, 1:1 mit 70% Ethanol gemischt und wie die in vitro generierten Zellen auf die 

„MinElute“ Säule überführt. Alle nachfolgenden Schritte wurden nach Protokoll des 

Handbuchs von QIAGEN durchgeführt. Die RNA wurde dabei in 12 µl RNAse-freiem Wasser 

eluiert, das Endvolumen des Eluats betrug 10 µl. Die Konzentration wurde am NanoDrop-

ND-1000-Spektrophotometer bestimmt. Die RNA wurde anschließend in flüssigem Stickstoff 

schockgefroren und bei -80° C im Gefrierschrank gelagert.  
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6.5.2 Bestimmung der RNA-Konzentration 

Die Konzentrationsbestimmung der isolierten Gesamt-RNA wurde mit dem NanoDrop-ND-

1000-Spektrophotometer durchgeführt. Für die Messung sind bereits 1 µl RNA ausreichend. 

Die RNA-Konzentration wird durch Messung der optischen Dichte bei einer Wellenlänge von 

260 nm (OD260), dem Absorptionsmaximum der RNA, bestimmt. Eine OD260 von 1 entspricht 

dabei 40 µg ssRNA/ml (engl.: single stranded RNA). Daraus ergibt sich folgende Formel:  

c(µg RNA/ml) = OD260 x 40 µg/ml  

Das Absorptionsspektrum von 220 nm bis 350 nm kann außerdem graphisch dargestellt 

werden. In diesem Wellenlängenbereich können auch Lösungsmittel- und 

Proteinverunreinigungen sowie Salzkontaminationen der isolierten RNA detektiert werden. 

Das Verhältnis der Absorption bei 260 nm (OD260) zur Absorption bei 280 nm (OD280, 

Proteine) gibt die Reinheit der RNA an. Ein Wert von 2,0 spricht für eine reine, nicht 

kontaminierte RNA. Bei den Ex-vivo-Zellen wurde das Absortionsspektrum durch erhöhte 

Salzkonzentrationen und die daraus resultierende starke Absorption bei 230 nm gestört. Die 

gemessenen RNA-Konzentrationen beruhten hauptsächlich auf den bei 230 nm detektierten 

Salzen und nicht auf der Absorption der RNA bei 260 nm. In diesem Fall wurden die am 

Agilent 2100 Bioanalyzer (siehe nachfolgender Abschnitt) bestimmten Konzentrationen 

verwendet.  

 

6.5.3 Bestimmung der RNA-Integrität 

Die Integrität der isolierten Gesamt-RNA wurde mit dem Agilent RNA 6000 Pico Kit am 

Agilent 2100 Bioanalyzer ermittelt. Mit Hilfe des Gerätes können, basierend auf dem Prinzip 

der Kapillarelektrophorese, bis zu 11 RNA-Proben gleichzeitig hinsichtlich der Größe, 

Konzentration und Integrität analysiert werden. Der Chip besitzt neben den 11 Vertiefungen 

für die Proben weitere Vertiefungen für ein mit Fluoreszenzfarbstoff versehenes Gel, eine 

Konditionierungslösung und für einen externen Standard. Im Glas des Chips sind 

Mikrokanäle eingebaut, die eine Verbindung der einzelnen Vertiefungen ermöglichen. Bei der 

Vorbereitung des Chips wird ein fluoreszenzmarkiertes Gel zugegeben, so dass der Chip 

einen geschlossenen elektrischen Kreis darstellt. Danach werden die Proben und der 

externe Standard in die Vertiefungen des Chips pipettiert. Sie bewegen sich über die 

Mikrokanäle im elektrischen Feld fort, werden automatisch in eine Trennkapillare 

weitergeleitet und dort entsprechend ihrer Fragmentgröße durch einen Molekularsiebeffekt 

aufgetrennt. Kleine Fragmente laufen dabei schneller als große Fragmente. Die im Gel 

enthaltenen Fluoreszenzfarbstoffe interkalieren in die RNA und werden dann durch einen 

Laser und einen Fluoreszenzdetektor registriert. Ein „lower“ Marker wird zusätzlich in jeder 



METHODEN 48 

 

Probe mitgefahren, um Daten des externen Standards mit den Proben vergleichen zu 

können und „Drift“ Effekte zu verhindern.  

Das Gerät generiert aus den Daten sowohl ein Elektropherogramm als auch gelähnliche 

Bandengrafiken (Abbildung 6-2). Der externe Standard, der sogenannte RNA 6000 Pico 

Marker, dient als Referenz für die Datenanalyse und ermöglicht die Quantifizierung der RNA. 

Der Marker enthält 6 RNA-Fragmente mit bekannten Konzentrationen, deren Größe 

zwischen 0,2 bis 6 kb liegt (nicht gezeigt). Die Software vergleicht die Fläche unter den 

einzelnen Probenausschlägen mit denen der Markerfragmente und kann darüber die 

Konzentration und die ribosomalen RNA-Ausschläge erkennen. Die RNA-Integrität kann zum 

einen über das Verhältnis der 18S zur 28S rRNA („rRNA ratio“) bestimmt werden, wobei ein 

Wert von 2,0 ein optimaler Wert ist. Bei Degradation der RNA nimmt das Verhältnis ab. Ein 

genauerer und standardisierter Wert ist die sogenannte „RNA integrity number“ (RIN), 

welche das gesamte Elektropherogram für die Berechnung der Integrität berücksichtigt. Ein 

RIN-Wert von 1 bedeutet, dass die RNA komplett degradiert oder die RNA-Konzentration zu 

gering für die Messung ist, eine RIN von 10 zeigt nicht degradierte RNA bester Qualität an.  

 

Abbildung 6-2: Elektropherogramm und Gelbanden einer am Agilent 2100 Bioanalyzer 
gemessenen Probe. Der „lower“ Marker ist ein interner Standard, der die Verbindung der Proben-
daten mit dem externen Standard ermöglicht. Die RNA-Konzentration wird durch Vergleich der Fläche 
unter den Ausschlägen des externen Standards mit der Summe der Ausschläge der Proben ermittelt. 
Der „lower“ Marker wird dabei nicht berücksichtigt. Durch das Verhältnis der 18S rRNA zu 28S rRNA 
Aussschläge kann das rRNA-Verhältnis („rRNA ratio“) berechnet werden, welches eine Aussage zur 
RNA-Integrität zulässt. Die RNA-Integrität wird aber i.d.R. über die standardisierte RIN (engl.: RNA 
integrity number), die das gesamte Elektropherogramm berücksichtigt, bestimmt.  

Die Vorbereitung des Chips und Messung der Proben wurde gemäß Protokoll des Agilent 

RNA 6000 Pico Kits durchgeführt. Der externe Standard (Marker) wurde vor dem Gebrauch 

hitzedenaturiert (70°C) und in Aliquots bei -80°C aufbewahrt. Die Proben wurden für die 

Messung auf eine Konzentration von 2 ng/µl RNA eingestellt. Da bei den Proben der Ex-vivo-

Zellen eine starke Salzkontamination vorlag und die am NanoDrop-ND-1000-

Spektrophotometer berechneten Konzentrationen dadurch verfälscht wurden, wurden von 
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diesen Proben pauschal 1-2 µl mit RNAse-freiem Wasser auf ein Gesamtvolumen von 2,5 µl 

verdünnt. Für die Genexpressionsanalyse wurden Proben mit einem RIN-Wert > 5,6 

verwendet, wobei die meisten Proben RIN-Werte zwischen 6 und 9 besaßen (siehe Tabelle 

7-1 (Seite 71) und Tabelle 7-5 (Seite 91) im Ergebnisteil). 

 

6.5.4 Genexpressionsanalyse mit der Affymetrix GeneChip®-Technologie 

6.5.4.1 Prinzip 

Die GeneChip®-Technologie von Affymetrix ermöglicht umfangreiche Genexpressionsstu-

dien bei denen mehrere tausend Gene gleichzeitig analysiert werden können. Bei der 

Herstellung der Arrays werden auf einem Glasträger, der in winzige Zellen unterteilt ist, 

Oligonukleotide definierter Sequenz synthetisiert, die als Sonden („Probes“) zur Detektion 

fluoreszenzmarkierter Nukleinsäuren dienen. Die zu untersuchende cDNA hybridisiert dabei 

durch komplementäre Basenpaarung mit den Oligonukleotiden. Die Expression der Gene 

kann dann durch die Messung der Fluoreszenz detektiert werden. Die Analysen wurden 

unter Verwendung der Chipserie „Affymetrix GeneChip® Human Gene 1.0 ST“ durchgeführt. 

Dieser Chip umfasst rund 765000 Probesets, die 29000 Gene des Menschen detektieren 

können. Pro Gen werden im Durchschnitt 26 Sonden eingesetzt, die verschiedene Bereiche 

des Gens erkennen.  

Voraussetzung für die Anwendung der Affymetrix GeneChip®-Technologie ist die 

Umschreibung der RNA in cDNA. Diese wurde mit Hilfe eines Kits von NuGen durchgeführt 

(Abschnitt 6.5.4.2.1). Die cDNA wurde anschließend amplifiziert, fragmentiert und mit Biotin 

markiert. Im nächsten Schritt wurde sie auf den Affymetrix GeneChip® hybridisiert und 

fluoreszenzmarkiert (Abschnitt 6.5.4.2.2).  
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6.5.4.2 Durchführung 

6.5.4.2.1 Synthese, Amplifikation, Fragmentierung und Biotinmarkierung der 
cDNA 

Die extrahierte Gesamt-RNA wurde mit dem „Ovation® PicoSL WTA System V2“ in 

Kombination mit dem „Encore® Biotin Module“ von NuGen gemäß Protokoll in cDNA 

umgeschrieben, amplifiziert, fragmentiert und mit Biotin markiert. Es wurden für jeden in vitro 

generierten Zelltyp 3 Replika-Pools, bestehend aus jeweils 5 verschiedenen Spendern, 

hergestellt und von jedem Pool 30 ng RNA für die cDNA-Synthese und Amplifikation 

verwendet (siehe Tabelle 7-5 (Seite 91) im Ergebnisteil). Die RNA von den aus RCC-

Gewebe-Zellsuspensionen und PBMC sortierten Zelltypen wurde nicht gepoolt, so dass 

patienten- bzw. spenderindividuelle Replikate vorlagen. Von jedem Replikat wurden je nach 

Konzentration der Probe 0,5 – 15 ng RNA eingesetzt. Die cDNA wurde mit dem „MinElute 

Reaction Cleanup Kit“ gemäß Protokoll (mit der Mikrozentrifuge „Biofuge Pico“) aufgereinigt.  

Die Reinheit und Konzentration der cDNA wurde am NanoDrop-ND-1000-Spektrophotometer 

bestimmt. Die Konzentrationen lagen zwischen 160 und 405 ng/µl. Das Volumen wurde mit 

einer Speedvac eingeengt, um die Proben aufzukonzentrieren. Da die cDNA mit dem 

„Ovation® PicoSL WTA System V2“ synthetisiert und amplifiziert wurde, war es erforderlich, 

für die Fragmentierung und Markierung der cDNA jeweils die Hälfte der im „Encore® Biotin 

Module“ Handbuch angegebenen Volumina einzusetzen. Pro Probe wurden 12,5 µl cDNA, 

entspricht 2,5 µg cDNA, verwendet.  

 

6.5.4.2.2 Hybridisierung und Fluoreszenzmarkierung 

Die Hybridisierung und Fluoreszenzmarkierung wurde nach dem Protokoll des „GeneChip® 

Hybridization, Wash and Stain Kit“ von Affymetrix durchgeführt. Dabei wurden die durch das 

„Encore® Biotin Module“ Handbuch empfohlenen Volumina für den Hybridisierungscocktail 

beachtet (Tabelle 6-6). Er bestand aus 85 µl Mastermix und 25 µl biotinmarkierter cDNA (23 

ng/µl). 90 µl des Hybridisierungscocktails wurden durch eine kleine Öffnung auf den 

Affymetrix GeneChip® Human Gene ST 1.0 Array gegeben. Die Arrays wurden bei 45°C und 

60 rpm im Hybridisierungsofen für 17 h inkubiert. Für das Waschen und Färben der Arrays 

wurde die „Fluidics Station 450“ in Kombination mit der „Affymetrix GeneChip® Command 

Console Software“ benutzt. Die Waschschritte wurden mit dem „Fluidics script FS450_0007“ 

durchgeführt. Vor dem Scanschritt wurden überschüssige Flüssigkeiten von der 

Arrayoberfläche entfernt und auf die beiden im Array vorhandenen Öffnungen sogenannte 

„Touch Spots“ angebracht, die das Auslaufen der Flüssigkeit verhindern. Anschließend 

wurde der Array gescannt und die Genexpression (Transkriptlevel) als 

Fluoreszenzintensitäten mittels der Sonden erfasst. Die Daten wurden als sogenannte „cel 
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Files“ gespeichert und konnten dann mit spezieller Auswertesoftware bearbeitet werden 

(Abschnitt 6.5.4.3).  

Tabelle 6-6: Komponenten des Hybridisierungscocktails für den Affymetrix GeneChip®. 
Entnommen aus dem Handbuch des Encore® Biotin Module Kits.  

Komponente Volumen pro Array Finale Konzentration 
Kontroll-Oligonukleotide B2 (3 nM) 1,9 µl 50 pM 

20x Eukaryotische 
Hybridisierungskontrollen  
(bioB, bioC, bioD, cre) 

5,5 µl 1,5; 5; 25; 100 pM 

2x Hybridisierungspuffer 55 µl 1x 

100% DMSO 11 µl 10% 

Nuklease-freies Wasser 11,6 µl N/A 

biotinmarkierte cDNA 25 µl  

Gesamtvolumen 110 µl   

Volumen für Array 90 µl  

N/A: not available 

 

6.5.4.3 Auswertung der Daten 

Die Microarray-Rohdaten wurden mit Hilfe des Statistikpakets „R/Bioconductor“ 

(bioconductor.org) prozessiert und analysiert. Wenn nicht anders angegeben, wurden die 

Prozeduren mit den vorgegebenen Parametern aufgerufen. 

 

6.5.4.3.1 Qualitätskontrolle und Normalisierung der Daten 

Für selbst erhobene Daten wurde eine initiale Qualitätskontrolle durchgeführt. Ausreißer 

konnten mit der Bioconductor-Erweiterung „arrayQualityMetrics“ detektiert werden. 

Insbesondere die Verteilung der Fluoreszenzintensitäten als auch die Array-spezifischen 

MA-Graphen (M: „log ratio“; A: „mean average“) ließen bei keinem Array auf Probleme 

schließen, so dass letztendlich alle selbst angefertigen Arrays in die Analyse eingingen. 

Expressionswerte für alle Arrays (interne und externe) wurden mit der RMA-Prozedur (engl.: 

Robust Multi-Array Average) innerhalb der entsprechenden Studiengruppen (In-vitro- und 

Ex-vivo-Datensätze bzw. verschiedene externe Datensätze) ermittelt. Diese beinhaltete auch 

eine Quantilennormalisierung zwischen den Arrays. Technische Kontrollprobesets wie auch 

Probesets, deren Werte zwischen den Arrays nicht variierten (Varianz = 0), wurden vor 

weiteren Analysen entfernt. Für den Fall, dass mehrere Probesets einem Gen zugeteilt 

waren, wurde nur jenes Probeset behalten, welches über die verschiedenen Arrays einer 

Studiengruppe die stärkste Variation zeigte.  
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Für Metaanalysen, in die Expressionswerte verschiedener Studiengruppen eingingen, 

wurden die Expressionwerte nach RMA-Normalisierung innerhalb der Gruppe mit der 

COMBAT-Methode107 (library „inSilicoMerging“) angeglichen, um „Batch“-spezifische Effeke 

zu eliminieren. Hierfür wurden die Probesets über ihre assoziierte Entrez ID miteinander 

gepaart. Nur diejenigen Expressionsinformationen, die über ihre Entrez ID in allen 

Studiengruppen der jeweiligen Metaanalyse zu finden waren, wurden in weiterführenden 

Analysen verwendet. Ausgenommen in den Stripchart-Balkendiagrammen, wurden in den 

weiterführenden Analysen nur die Gene eingeschlossen, die robuste Expressionswerte im 

Sinne einer tatsächlichen Expression zeigten. Als sogenannte „informative Gene“ wurden die 

50% der Gene deklariert, deren Varianz über die Arrays am größten war.  

 

6.5.4.3.2 Verwendete Analysemethoden 

Dendrogramme:  
Aus den Expressionswerten der Gene der Arrays eines Zelltyps wurde der Median gebildet. 

Der euklidische Abstand zwischen verschiedenen Zelltypen wurde bestimmt und durch 

hierarchische Clusteranalyse mit „complete-linkage“ sortiert. 

Heatmaps: 
Aus den Expressionswerten der Gene der Arrays eines Zelltyps wurde der Median gebildet. 

Falls nicht anders ausgewiesen, wurden die Expressionswerte eines Gens über die 

dargestellten Zelltypen standardisiert (Mittelwert 0, Standardabweichung 1, Z-Score). Das 

Clustering von Genen und Zelltypen erfolgte wie unter „Dendrogramme“ aufgeführt.  

Bestimmung der Markergene:  
Von den Genen aller Arrays der eingeschlossenen Zelltypen wurden zunächst die „nearest 

shrunken centroids“ bestimmt. Hierfür wurde die Funktion „pamr.train“ des R-Pakets „pamr“ 

mit voreingestellten Parametern verwendet. Der erhaltene Klassifikator wurde einer 

Kreuzvalidierung unterzogen (Funktion „pamr.cv“ mit voreingestellten Parametern). Der 

Grenzwert wurde so bestimmt, dass eine Fehlklassifikationsrate von weniger als 20% 

resultierte und eine möglichst geringe Anzahl von ercDC_RCC-Markergenen erhalten wurde.  

Bestimmung der differentiell exprimierten Gene: 
Die Expressionswerte der Arrays von ercDC_RCC & infMΦ_ascOvCa wurden auf 

differenzielle Genexpression gegenüber allen anderen Zelltypen getestet. Hierfür wurde ein 

lineares Modell erstellt, mit dem durch empirische Bayes-Moderierung des Standardfehlers 

gegen einen gemeinsamen Wert eine moderierte T-Statistik berechnet wurde (Paket 

„limma“). Die Korrektur für multiples Testen wurde mit der Methode nach Benjamini & 



METHODEN 53 

 

Hochberg durchgeführt. Gene mit einem korrigierten p-Wert < 0,05 wurden als differenziell 

exprimiert kategorisiert.  

GO-Term-Anreicherungsanalyse: 
Hypergeometrische p-Werte für An- und Abreicherung differenziell exprimierter Gene in GO-

Kategorien der Gruppe „Biologischer Prozess“ wurden mit der Funktion „hyperGTest“ aus 

dem Bioconductor-Paket „GOstats“ berechnet. Der Test erfolgte mit den informativen Genen 

als Hintergrund (universe) mit einem p-Wert-Grenzwert von 0,001. 

InnateDB-Signalweganalyse:  
Die Anreicherung der differentiell exprimierten Gene innerhalb der Gensets (Signalwege) 

wurde mit den Standardeinstellungen der InnateDB Software108, dem empfohlenen 

Algorithmus (mit hypergeometrischer Statistik) und der p-Wert-Korrektur nach Benjamini & 

Hochberg ermittelt. Informative Gene dienten als Hintergrund.  

Gene Set Enrichment-Analyse (GSEA): 
Die GSEA (engl.: Gene Set Enrichment Analysis) wurde mit dem GSEA 1.0 R-Skript des 

Broad Institutes mit den vorgegebenen Parametern erstellt109. Die Gensets entsprachen den 

Datenbanken des Broad Institutes in der Version 4.0.  

GeneMANIA-Netzwerkanalyse:  
Die funktionelle Netzwerkanalyse mit der GeneMANIA Software110 wurde basierend auf den 

ercDC_RCC-Markergenen mit den vom System vorgegebenen Standardeinstellungen 

(Assoziationsdaten, automatische Netzwerk-Gewichtungsmethode, Anzeige verwandter 

Gene) durchgeführt.  

Modul-Eigengen-Korrelationsanalyse:  
Aus den Expressionswerten der Gene der Arrays eines Zelltyps wurde der Median gebildet. 

Mit Hilfe der Funktion „moduleEigengenes“ des R-Pakets „WGCNA“111 wurden für die in Xue 

et al.112 beschriebenen Module die Eigengen-Werte der Gene berechnet und gegen die in 

der Analyse verwendeten Zelltypen korreliert (Korrelation nach Pearson).  
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6.6 Statistische Auswertung der In-vitro-Funktionsanalysen und Stripchart-
Balkendiagramme 

Die statistischen Berechnungen der Signifikanzwerte in den einzelnen Experimenten wurden 

mit Hilfe des Programms „GraphPad Prism 6“ durchgeführt. Die Signifikanzen zu den 

Genexpressionswerten in den Stripchart-Balkendiagrammen wurden basierend auf den nor-

malverteilten log2-Expressionswerten und nicht den linearen Expressionswerten berechnet, 

da die log2-Expressionswerte bei parametrischen statistischen Tests (wie z.B. dem t-Test) 

eine bessere statistische Aussagekraft haben. Das Signifikanzniveau wurde mit * (p < 0,05), 

** (p < 0,01), *** (p < 0,001) bzw. **** (p < 0,0001) gekennzeichnet. Nicht-signifikante Unter-

schiede wurden als „ns“ (nicht signifikant) markiert. Bei den In-vitro-Funktionsanalysen wurde 

mit Hilfe des D’Agostino-Pearson Omnibus Tests kontrolliert, ob eine Normalverteilung der 

Proben vorliegt. Beim Vorliegen einer Normalverteilung (= parametrische Tests) wurde beim 

Vergleich von zwei gepaarten Proben der gepaarte „Student’s t-Test“ (zweiseitig) verwendet. 

Bei nicht gepaarten Proben wurde der „Welch’s t-Test“ (zweiseitig) angewandt. Lag keine 

Normalverteilung vor (= nicht-parametrische Tests), wurde der „Wilcoxon-matched-pairs-

signed-rank-Test“ (zweiseitig) für gepaarte Proben durchgeführt. Für den Vergleich von mehr 

als zwei gepaarten Stichproben, die nicht normalverteilt waren (Apoptoseinduktion, 

Abbildung 7-8 (Seite 66)), wurde der nicht-parametrische Friedmann Test angewandt.  
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7 ERGEBNISSE  

7.1 CD209+CD14+CD163+ myeloische Zellen im RCC 

Mit dem Ziel, das myeloische Infiltrat im RCC zu beschreiben, wurden Multiparameter-

Immunfluoreszenzfärbungen von klarzelligen RCC-Geweben durchgeführt (siehe Figel, 

Brech et al.101). CD209/DC-SIGN wurde als Marker für interstitielle DC ausgewählt, da es für 

die Antigenprozessierung und die Stimulation von T-Zellen essentiell ist113. CD209/DC-SIGN 

ist im humanen System auch als Marker für kreuzpräsentierende DC beschrieben114. Zur 

Identifizierung der MΦ wurde CD14 verwendet115. Zusätzlich wurde der Scavenger-Rezeptor 

CD163 gefärbt, welcher von geweberesidenten MΦ und im Blut zirkulierenden DC-Subtypen 

exprimiert wird116,117. CD163 spielt u.a. bei inflammatorischen Reaktionen, wie sie für das 

RCC beschrieben sind95, eine Rolle. Bei der Auswertung der 3-Farben-Färbung zeigte sich 

überraschend, dass der überwiegende Teil der CD209+ Zellen, die als DC vermutet wurden, 

auch die Marker CD14 und CD163 koexprimierte (Abbildung 7-1A)101. Die gleichzeitige 

Expression von CD209/DC-SIGN und CD14 wurde mittels FACS-Analyse bestätigt, wobei 

hierzu RCC-Gewebe-Zellsuspensionen verwendet wurden (Abbildung 7-1B). Dabei konnte 

weiterführend zur histologischen Analyse gezeigt werden, dass CD209+CD14+ Zellen diese 

Marker jeweils vergleichbar oder stärker exprimieren als die entsprechenden 

einfachpositiven CD209+CD14- DC bzw. CD209-CD14+ MΦ. 

Der tripelpositive CD209+CD14+CD163+ Zelltyp stellte im RCC die größte Subpopulation der 

CD209+ Zellen dar (Mittelwert (MW) 62%) (Abbildung 7-1C, links). Um festzustellen, ob die 

Koexpression der Marker durch den Tumor bedingt ist, wurden korrespondierende, 

tumorfreie Bereiche der tumortragenden Niere (NKC, engl.: nontumor kidney cortices) 

derselben Patienten analysiert. Es zeigte sich, dass der tripelpositive Zelltyp im NKC seltener 

vorkam (MW 19%). Aufgrund ihrer Anreicherung im RCC bezeichneten wir die 

CD209+CD14+CD163+ Zellen als „enriched-in-renal-carcinoma“ DC (ercDC). Einige 

Gewebeproben deckten den Übergangsbereich von Tumor und NKC ab. Das erlaubte 

zusätzlich zu den Proben aus dem Tumorzentrum bzw. dem NKC eine Quantifizierung der 

ercDC im Randbereich des Tumors an der Grenze zur Pseudokapsel (RCC-Peripherie, siehe 

Abbildung 11-1 im Anhang, Seite 157). Es zeigte sich, dass ercDC im Zentrum des Tumors 

am häufigsten vorkamen (Median 75%) und graduell in der Anzahl von der Tumorperipherie 

(Median 46%) zum NKC (Median 18%) abnahmen (Abbildung 7-1C, rechts)101. 
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Abbildung 7-1: Myeloische Zelltypen im RCC. A) Konfokalmikroskopische Aufnahme eines 3-fach 
gefärbten RCC-Gewebes (Vergrößerung: 630x, Skala = 50µm). Die Fluoreszenzkanäle für CD209 
(grün), CD14 (rot), CD163 (blau) und Zellkerne (grau) sind getrennt dargestellt. Pfeilspitze: CD209-
einfachpositive Zellen (CD209+CD14-CD163-), Pfeil mit dreieckiger Spitze: CD209+CD14-CD163+ 
Zellen, Pfeil mit viereckiger Spitze: CD209+CD14+CD163+ Zellen (ercDC). MΦ (CD14+CD209-) sind in 
diesem Ausschnitt nicht zu sehen. Die Aufnahme ist eine Vereinigung der Bilder aus 3 optischen Z-
Ebenen mit einem Abstand von jeweils 0,8 µm. B) Durchflusszytometrische Analyse von CD209 und 
CD14 auf CD209-CD14+ (MΦ, schwarz), CD209+CD14-(cDC, blau) und CD209+CD14+ (ercDC, rot) 
Zellen. Dazu wurden RCC-Gewebe-Zellsuspensionen (siehe Abschnitt 6.1.7.4) mit der in Tabelle 6-2 
angegebenen Antikörperkombination gefärbt. Die Zahlen sind die mediane Fluoreszenzintensität 
(MFI). C) Quantifizierte CD209+ Zelltypen in den 3-fach gefärbten Geweben. Der Tumor wurde in zwei 
verschiedene Regionen, das Tumorzentrum und die Tumorperipherie, eingeteilt (siehe Abbildung 11-1 
im Anhang). Das linke Diagramm zeigt die prozentuale Verteilung der verschiedenen CD209+ 
Subtypen im RCC-Zentrum und NKC (n = 7). Das rechte Diagramm zeigt den prozentualen Anteil von 
CD209+CD14+ Zellen im RCC-Zentrum (n = 11), RCC-Peripherie (n = 6) und NKC (n = 8). Weitere 
Infomationen in Figel, Brech et al.101 



ERGEBNISSE 57 

 

7.2 In-vitro-Modell zur Generierung von ercDC 

Aus der Beobachtung, dass der Anteil der CD209+CD14+ ercDC abhängig von der 

Geweberegion variierte, schlossen wir, dass eventuell regionale und insbesondere 

tumorassoziierte Faktoren die Koexpression der Marker induzierte. Daher testeten wir in 

einem In-vitro-Modell den Einfluss der von Tumorzellen produzierten Faktoren auf die 

Differenzierung myeloischer Zellen. Da beschrieben ist, dass die im Gewebe und 

insbesondere die in der Niere vorkommenden DC aus Monozyten hervorgehen118, wurden 

Monozyten aus dem Blut gesunder Spender isoliert und mit RCC-26-konditioniertem Medium 

(RCC-26-CM), welches lösliche Tumorfaktoren enthielt, inkubiert. Die anschließende FACS-

Analyse zeigte, dass der ercDC-Phänotyp mit der Koexpression von CD209/DC-SIGN, CD14 

und CD163 durch das RCC-26-CM induziert wurde (Figel, Brech et al.101). Eine genauere 

Analyse der im konditionierten Medium enthaltenen Zytokine und Chemokine (Bioplex) 

ergab, dass nur bei gleichzeitiger Anwesenheit der Zytokine IL-6, CXCL8/IL-8 und VEGF der 

komplette Phänotyp mit der Koexpression von CD209/DC-SIGN, CD14 und CD163 induziert 

wurde101. 

Zur Abgrenzung der in vitro generierten ercDC von den im RCC-Gewebe vorkommenden 

ercDC werden von nun an die Bezeichnungen „ercDC_in vitro“ bzw. „ercDC_RCC“ 

verwendet. Parallel dazu werden die durch Behandlung der Monozyten mit IL-4 und GM-CSF 

in vitro generierten cDC als „cDC_in vitro“ bezeichnet.  

 

7.3 Phänotypischer Vergleich der ercDC aus dem RCC mit den in vitro 
generierten ercDC 

Um die Vergleichbarkeit der in vitro generierten ercDC mit den ercDC_RCC weitergehend zu 

analysieren, wurde die Anwesenheit mehrerer, v.a. mit DC-Funktion assoziierter 

Oberflächenmarker durchflusszytometrisch analysiert (Abbildung 7-2, Seite 58). CD80 

konnte sowohl auf ercDC_RCC (Abbildung 7-2 oben, ex vivo, rotes Histogramm) als auch 

auf ercDC_in vitro (Abbildung 7-2 unten, in vitro, braunes Histogramm) im Vergleich zu den 

parallel analysierten cDC bzw. MΦ in größerer Menge detektiert werden. Auch weitere 

Kostimulationsmoleküle, CD86 und CD40 sowie das MHC-II-Molekül HLA-DR waren auf den 

ercDC_RCC deutlich vorhanden, mit Intensitäten, die jeweils höher waren als die der 

cDC_RCC (Abbildung 7-2 oben, ex vivo, dunkelblaues Histogramm) und MΦ_RCC 

(Abbildung 7-2 oben, ex vivo, schwarzes Histogramm) aus demselben Gewebe. Auch diese 

Marker, bis auf CD86, wurden auf den entsprechenden in vitro generierten ercDC 

mindestens genauso stark exprimiert wie auf cDC_in vitro (Abbildung 7-2 unten, in vitro, 

hellblaues Histogramm). 
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Abbildung 7-2: Durchflusszytometrische Analyse von Kostimulationsmolekülen und dem MHC-
II-Molekül HLA-DR auf myeloischen Zelltypen aus dem RCC-Gewebe und in vitro generierten 
myeloischen Zelltypen. Fluoreszenzintensitäten der Kostimulationsmoleküle CD80, CD86 und CD40 
sowie von HLA-DR auf den innerhalb der RCC-Gewebe-Zellsuspension elektronisch ausgewählten 
Ex-vivo-Zelltypen CD209-CD14+ MΦ_RCC (schwarz), CD209+CD14- cDC_RCC (dunkelblau), 
CD209+CD14+ ercDC_RCC (rot) und den in vitro generierten cDC (hellblau) und ercDC (braun). 
Jeweils in derselben Farbe, jedoch mit gestrichelter Linie, sind die Histogramme der zugehörigen 
Isotypkontrollen gezeigt. Die Zahlen sind die Differenz der MFI (mediane Fluoreszenzintensität) 
zwischen dem spezifischen Antikörper und dem jeweiligen Isotyp-Antikörper (ΔMFI). Gezeigt ist 
jeweils ein exemplarisches Beispiel. Anzahl der Experimente: ex vivo: n(CD80) = 5; n(CD86) = 5; 
n(CD40) = 8; n(HLA-DR) = 10; in vitro: n(CD80) = 6; n(CD86) = 5; n(CD40) = 6; n(HLA-DR) = 10  

Die Expression von Kostimulationsmolekülen und HLA-DR auf ercDC bestärkte die 

Verwandtschaft der ercDC zu den DC. Die gleichzeitige Anwesenheit von CD14 und CD163 

wies allerdings auch auf MΦ-Eigenschaften hin. Insgesamt passten diese ersten 

Beobachtungen zu der aufkommenden Diskussion, dass DC und MΦ möglicherweise keine 

scharf abgrenzbaren Populationen sind, sondern eher unterschiedliche Polarisationsformen 

innerhalb des Kontinuums des mononukleären Phagozytensystems (MPS)6,12.  

 

7.4 Funktionelle Charakteristika der ercDC 

Da nach den phänotypischen Analysen unklar blieb, ob ercDC eher den DC oder den MΦ 

zuzuordnen sind, wurden mit Hilfe der in vitro generierten ercDC verschiedene DC-

Funktionen abgefragt. Die ercDC aus dem RCC konnten aufgrund geringer Zellzahlen nicht 

für Funktionsversuche verwendet werden. Klassischerweise werden DC bislang durch ihre 

hohe Potenz zur Antigenpräsentation und die Stimulation naiver T-Zellen sowie durch die 

Fähigkeit zur Aktivierung CD8+ CTL durch Antigenkreuzpräsentation von den MΦ 

unterschieden6,12,119.  
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Die Kapazität der in vitro generierten cDC und ercDC zur Kreuzpräsentation von Antigenen 

auf MHC-I-Molekülen wurde mit Hilfe eines etablierten Systems, das aus HLA-A2 

restringierten MART (engl.: melanoma antigen recognized by T cells)-spezifischen CTL 

(CTL-A42) und einem N-terminal verlängerten pep70-MART-Peptid bestand, getestet (siehe 

Figel, Brech et al.101). Die Aufnahme und Prozessierung des verlängerten Peptids durch die 

DC ist Voraussetzung für die Epitoppräsentation und T-Zell-Stimulation. Nach der Erkennung 

des Epitops sezernieren die aktivierten CTL IFN-γ. Die Messung des IFN-γ zeigte, dass 

ercDC sogar eine stärkere Aktivierung der CTL-MART induzierten als cDC (Abbildung 7-3). 

Offensichtlich konnten ercDC die für cDC charakteristische Funktion der 

Antigenkreuzpräsentation ausüben.  

 

Abbildung 7-3: IFN-γ-Sekretion durch MART-spezifische CTL bei Kokultur mit pep70-MART 
inkubierten cDC und ercDC. Die cDC bzw. ercDC wurden für 1 h mit den angegebenen 
Konzentrationen des MART-Peptids inkubiert und anschließend für 24 h mit MART-spezifischen CTL 
(CTL-A42) kokultiviert. Durch die Bestimmung der Konzentration des T-Effektor-Zytokins IFN-γ in den 
Kokulturüberständen mittels ELISA konnte die Effektivität der Kreuzpräsentation gemessen werden. 
Kokulturen von CTL-A42 mit der Melanomzelllinie MEL 93.04A12, die natürlicherweise das MART-
Peptid auf HLA-A2 präsentiert, dienten als Positivkontrolle. Die Balken zeigen jeweils den Mittelwert 
und die Standardabweichung von zwei Replikaten. Gezeigt ist ein repräsentatives Ergebnis von drei 
unabhängigen Experimenten. Weitere Informationen in Figel, Brech et al.101 

Weiterführend wurde getestet, ob ercDC T-Zell-Proliferation induzieren können. Hierfür 

wurde eine allogene T-Zell-Stimulation durchgeführt. In vitro generierte ercDC bzw. cDC 

wurden mit allogenen, CFSE-gefärbten PBL im Verhältnis 1:10 kokultiviert. Nach 5 Tagen 

wurde die Konzentration des CFSE-Farbstoffs in CD4+ T-Zellen und CD8+ T-Zellen 

durchflusszytometrisch gemessen. Wie in Abbildung 7-4 (Seite 60) zu sehen, wurden sowohl 

CD4+ als auch CD8+ T-Zellen von ercDC schlechter zur Proliferation angeregt als von cDC. 

Im Median proliferierten in Kokulturen mit ercDC nur 17% der CD4+ T-Zellen und 21% der 
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CD8+ T-Zellen, während es in Kokulturen mit cDC bei den CD4+ T-Zellen 51% und den CD8+ 

T-Zellen 52% waren (Abbildung 7-4B). 

 

Abbildung 7-4: Proliferation allogener naiver CD4+ und CD8+ T-Zellen nach Stimulation mit in 
vitro generierten cDC und ercDC. Die cDC bzw. ercDC wurden für 5 Tage mit CFSE-markierten 
allogenen PBL im Verhältnis 1:10 kokultiviert und anschließend die CFSE-Fluoreszenz der CD4+ und 
CD8+ T-Zellen durchflusszytometrisch bestimmt. A) CFSE-Histogramme eines repräsentativen 
Experiments von insgesamt 19. Innerhalb der CD3+ Population wurden die CD4+ bzw. CD8+ T-Zellen 
ausgewählt. Die schwach CFSE-positive Population entspricht den proliferierten Zellen. PBL, die ohne 
APC kultiviert wurden, dienten als Kontrolle. B) Zusammenfassende Darstellung aller Experimente. 
Ein Symbol entspricht einem Experiment, die jeweils zusammengehörenden Experimente sind durch 
eine Linie verbunden. Die horizontale Linie ist der Median. Die Signifikanz wurde mit Hilfe des 
gepaarten Student’s t-Test bestimmt.  

Als Ursachen für die schwache Kapazität der ercDC T-Zellen zur Proliferation anzuregen, 

wurden folgende Möglichkeiten in Betracht gezogen: i) die Abwesenheit von T-Zell-

aktivierenden Molekülen, MHC-Molekülen und Adhäsionsmolekülen, ii) die Präsenz 

inhibitorischer Moleküle, iii) das Fehlen aktivierender Zytokine und/oder die gleichzeitige 

Anwesenheit inhibitorischer Zytokine, iv) die Induktion von T-Zell-Apoptose. Wie bereits 

gezeigt (siehe Abbildung 7-2, Seite 58), exprimierten die in vitro generierten ercDC 

kostimulatorische Moleküle und das MHC-II-Molekül HLA-DR, so dass deren Mangel als 
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Ursache unwahrscheinlich erschien. Für die T-Zell-Stimulation ist die stabile Ausbildung der 

immunologischen Synapse zwischen der DC und der T-Zelle eine wichtige Voraussetzung. 

Integrine und Integrinbindeproteine, wie LFA-1 und ICAM-1, spielen bei der Zelladhäsion 

eine wichtige Rolle120. Auch Glykoproteine, beispielsweise CD24, können den Zellkontakt 

vermitteln. CD24 bindet an P-Selektin auf T-Zellen und wirkt kostimulatorisch33. Askew et 

al.121 beobachteten, dass die Inhibition von CD24 zu einer drastischen Reduktion der 

Proliferation naiver T-Zellen führt. Dies verdeutlicht die Relevanz dieses Moleküls für die T-

Zell-Stimulation.  

Die FACS-Analysen ergaben, dass ercDC LFA-1 und CD24 in vergleichbarer Stärke 

exprimierten wie cDC (Abbildung 7-5A, Seite 62). ICAM-1 wurde von beiden Zelltypen stark 

exprimiert, von ercDC etwas schwächer. Das Aktin-bündelnde Protein Fascin stabilisiert den 

APC:T-Zell-Kontakt und fördert dadurch die T-Zell-Proliferation122. In Abbildung 7-5B ist auf 

der linken Seite ein repräsentatives Beispiel der durchflusszytometrischen Bestimmung des 

intrazellulären Fascins in cDC und ercDC gezeigt, rechts davon sind alle Experimente 

zusammengefasst. Es ist deutlich zu sehen, dass ercDC wesentlich weniger intrazelluläres 

Fascin exprimierten als cDC. Die schwache Expression von Fascin, nicht aber ein Fehlen 

von Adhäsionsmolekülen könnten zu der schwachen T-Zell-Stimulationsfähigkeit der ercDC 

beitragen.  
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Abbildung 7-5: Durchflusszytometrische Analyse von Adhäsionsmolekülen und Fascin in vitro 
generierter cDC und ercDC. A) Fluoreszenzintensitäten des Integrins LFA-1, des 
Integrinbindeproteins ICAM-1 sowie des Glycoproteins CD24 auf cDC_in vitro (hellblau) bzw. 
ercDC_in vitro (braun). Jeweils in derselben Farbe, jedoch mit gestrichelter Linie, sind die 
Histogramme der zugehörigen Isotypkontrollen gezeigt. Bei der Färbung von CD24 wurde die Maus 
Fibroblastenzelllinie L929-CD40L als Kontrolle verwendet (grau gestrichelte Linie). Die Zahlen in A 
und B geben die Differenz der MFI (mediane Fluoreszenzintensität) zwischen dem spezifischen und 
dem jeweiligen Isotyp-Antikörper (gestrichelte Linie) an (ΔMFI). B) Links: Histogramm eines 
repräsentativen Experiments von insgesamt 9 (links), das die Fluoreszenzintensitäten des 
intrazellulären Proteins Fascin in cDC_in vitro (hellblau) bzw. ercDC_in vitro (braun) zeigt sowie die 
Zusammenfassung aller Experimente (rechts). Die horizontale Linie ist der Median. Ein Symbol 
entspricht einem Experiment. Die jeweils zusammengehörenden Experimente sind durch eine Linie 
verbunden. Die Signifikanz wurde mit Hilfe des Wilcoxon-matched-pairs-signed-rank-Tests ermittelt.  

Weiterhin wurde die Expression der inhibitorischen Moleküle PD-L1, CD48 und ILT4 

durchflusszytometrisch untersucht. Die Interaktion des koinhibitorischen Proteins PD-L1 mit 

PD-1 blockiert die Proliferation und Zytokinproduktion von CD4+ und CD8+ T-Zellen123. CD48 

bindet an den inhibitorischen Liganden 2B4, der von CD8+ T-Zellen und NK-Zellen exprimiert 

wird124,125. ILT4 ist ein charakteristischer Marker tolerogener DC, die T-Zellen anergisieren 

und Treg induzieren126. Die ercDC besaßen weniger PD-L1, mehr CD48 und gleich viel ILT4 

im Vergleich zu cDC (Abbildung 7-6, Seite 63).  
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Abbildung 7-6: Durchflusszytometrische Analyse von inhibitorischen Molekülen auf in vitro 
generierten cDC und ercDC. Fluoreszenzintensitäten der Marker PD-L1, CD48 und ILT4 auf cDC_in 
vitro (hellblau) und ercDC_in vitro (braun). Jeweils in derselben Farbe, jedoch mit gestrichelter Linie, 
sind die Histogramme der zugehörigen Isotypkontrollen gezeigt. Die Zahlen geben die Differenz der 
MFI (mediane Fluoreszenzintensität) zwischen dem spezifischen und dem jeweiligen Isotyp-Antikörper 
(gestrichelte Linie) an (ΔMFI).  

Um die Frage nach dem möglichen Fehlen aktivierender bzw. der Präsenz inhibierender 

Zytokine zu klären, wurde mit Hilfe eines sogenannten Signal-3-Versuchs104 die stimulierte 

Sekretion des bioaktiven IL-12p70 sowie IL-10 untersucht. 

IL-12 induziert die Differenzierung naiver T-Zellen zu IFN-γ-produzierenden TH1-Zellen und 

unterstützt die zytotoxische Aktivität von CTL und NK-Zellen50,51,52. IL-10 ist der natürliche 

Gegenspieler des proinflammatorischen IL-12. Es wirkt antiinflammatorisch und dient dazu 

selbstzerstörende, überschießende Immunantworten einzudämmen53. Zur Analyse der  

Zytokine wurden ercDC bzw. cDC mit der Mausfibroblastenzelllinie L929-CD40L, die stabil 

humanes CD40L exprimiert, kokultiviert. Über CD40L wird ein T-Zell-Kontakt stimuliert. Wie 

in Abbildung 7-7 (Seite 64) zu sehen, sezernierten ercDC signifikant weniger IL-12p70 im 

Vergleich zu cDC. Bei IL-10 gab es keinen signifikanten Unterschied, ercDC sezernierten 

tendentiell etwas weniger IL-10 als cDC.  
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Abbildung 7-7: IL-12p70- und IL-10-Sekretion von in vitro generierten cDC und ercDC nach 
Stimulation mit CD40L. Die cDC und ercDC wurden für 24 h in einem Verhältnis von 1:2,5 mit L929-
CD40L-Zellen kokultiviert und danach die Zytokinkonzentrationen in den Überständen mittels ELISA 
gemessen. Ein Symbol entspricht einem Experiment, die zusammengehörenden Experimente sind 
durch Linien verbunden. Die horizontale Linie ist der Median. Als Kontrolle dienten unstimulierte, ohne 
L929-CD40L-Zellen kultivierte APC. Deren Zytokinkonzentrationen (IL-12p70: 0-18,5 pg/ml; IL-10: 0-
19,6 pg/ml) wurden von den jeweiligen stimulierten Proben abgezogen. n = 14. Die Signifikanz wurde 
mit Hilfe des Wilcoxon-matched-pairs-signed-rank-Tests ermittelt. 

Die Ergebnisse legen nahe, dass die geringe IL-12p70-Sekretion der ercDC dazu beiträgt, 

dass T-Zellen nicht optimal zur Proliferation angeregt werden. Im Rahmen einer Masterarbeit 

wurde getestet, ob die Supplementation der T-Zell-Stimulationskokulturen mit rhuIL-12 bzw. 

die Blockade von IL-10 und TGF-β die T-Zell-Proliferation verbessert (Radich, Masterarbeit, 

2012127). Es zeigte sich, dass durch Zugabe von rhuIL-12 zu den ercDC:T-Zell-Kokulturen 

die T-Zell-Proliferation gesteigert werden konnte (CD4+ T-Zellen Verdopplung, CD8+ T-Zellen 

Verdreifachung der Proliferation bei 1000 pg/ml rhuIL-12), allerdings nicht auf das durch cDC 

induzierte Niveau. Die Blockade von IL-10 und TGF-β konnte die Proliferation der CD8+ T-

Zellen verdoppeln, bewirkte jedoch keine Steigerung der Proliferation von CD4+ T-Zellen. 

Dies legte nahe, dass ein Mangel von IL-12p70 zwar eine wichtige Rolle zu spielen scheint, 

allerdings nicht der alleinige Auslöser für die schwache T-Zell-Proliferationsinduktion der 

ercDC ist.  

Abschließend wurde auch getestet, ob die Induktion von T-Zell-Apoptose eine Erklärung für 

die schlechte T-Zell-Proliferation sein könnte. MDSC beispielsweise inhibieren T-Zellen, 

indem sie deren Apoptose induzieren128. Ob T-Zell-Apoptose in Kokulturen mit ercDC auftrat, 

wurde durch Anfärbung der T-Zellen mit den Farbstoffen Annexin V und PI nach 5-tägiger 

Kokultur und anschließender durchflusszytometrischer Messung geklärt. Mit Hilfe der beiden 

Farbstoffe konnten vier verschiedene T-Zell-Populationen unterschieden werden: vitale 
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Annexin-PI- (Ann-PI-) Zellen, Ann+PI- Zellen, die sich in der frühen Phase der Apoptose 

befinden, Ann+PI+ Zellen, die sich in der späten Apoptosephase oder in der Nekrose 

befinden sowie Ann-PI+ die beschädigt bzw. tot sind, was vermutlich nicht durch Apoptose 

verursacht wurde, da sie nicht Annexin+ sind105. Abbildung 7-8A (Seite 66) zeigt ein 

exemplarisches Beispiel einer durchflusszytometrischen Messung, in Abbildung 7-8B sind 

die Ergebnisse von drei unabhängigen Experimenten zusammengefasst. In Kokulturen von 

PBL mit ercDC wurde ein mit cDC vergleichbarer Anteil von Ann+PI+ Zellen (Zahlen in 

oberem rechten Quadranten, grün) beobachtet. Es konnte im Mittel kein statistisch 

signifikanter Unterschied festgestellt werden (Test nach Friedmann, Abbildung 7-8B). T-

Zellen im frühen Stadium der Apoptose (Ann+PI-, rechter unterer Quadrant, orange) kamen 

wesentlich weniger häufig vor, wiederum ohne Unterschied zwischen Kokulturen mit cDC 

bzw. ercDC. Beschädigte oder tote Zellen (Ann-PI+) wurden in beiden Kokulturen fast nicht 

beobachtet. Die Ergebnisse zeigten, dass ercDC bei T-Zell-Kontakt nicht mehr Apoptose 

induzierten als cDC und daher Apoptose als Ursache für die schlechte T-Zell-Proliferation 

nicht wahrscheinlich erscheint.  
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Abbildung 7-8: Untersuchung der Apoptose von CD4+ und CD8+ T-Zellen nach Koinkubation 
mit allogenen in vitro generierten cDC und ercDC. Die cDC und ercDC wurden für 5 Tage im 
Verhältnis 1:10 mit allogenen PBL kokultiviert. Danach wurden durch Anfärbung mit Annexin V und PI 
die Stadien der Apoptose durchflusszytometrisch detektiert. A) Exemplarische Konturdiagramme der 
CD3+CD4+ bzw. CD3+CD8+ T-Zellen mit Darstellung der Fluoreszenz von Annexin V auf der x-Achse 
und der von PI auf der y-Achse. Vier Populationen können unterschieden werden: Ann-PI- Zellen (vital, 
unten links), Ann+PI- Zellen (frühe Apoptose, unten rechts), Ann+PI+ Zellen (späte Apoptose bzw. 
Nekrose, oben rechts) und Ann-PI+ Zellen (beschädigte bzw. tote Zellen, oben links). Die Zahlen 
geben den Prozentsatz der Zellen in dem entsprechenden Quadranten an. Die Grenzsetzung für die 
Positivität von PI und Annexin V wurde anhand nicht kokultivierter PBL festgelegt. B) 
Zusammenfassung von 3 Einzelexperimenten. Gezeigt ist jeweils der Mittelwert und der 
Standardfehler des Mittelwerts (SEM) für die angegebenen Populationen. Der statistische Vergleich 
zwischen den Kokulturen der PBL mit cDC bzw. ercDC für die Ann+PI+ Population (grün) wurde mit 
dem Test nach Friedmann durchgeführt und ergab keine Signifikanz. 

Zusammenfassend legen die Ergebnisse nahe, dass die geringe Kapazität der ercDC T-Zell-

Proliferation zu stimulieren wahrscheinlich nicht auf das Fehlen an Kostimulations-, MHC-II- 

und Adhäsionsmolekülen oder schlechter Antigenkreuzpräsentation zurückzuführen ist. Auch 

die Apoptoseinduktion ist als Ursache unwahrscheinlich. Das inhibitorische 

Oberflächenmolekül CD48 wurde von ercDC verhältnismäßig stark exprimiert, 

möglicherweise trägt es zur schlechten T-Zell-Proliferation bei. Einen Teilbeitrag leistet die 

begrenzte Fähigkeit zur stimulierten IL-12p70-Sekretion und auch die schwache Expression 

des Fascins könnte eine Ursache sein. Jedoch blieb eine überzeugende Erklärung dieses 

ercDC-Mangels nach den In-vitro-Analysen offen.  
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Weil ercDC die Funktion naive T-Zellen zur Proliferation anzuregen nur sehr bedingt 

ausführen konnten und darüber hinaus auch ein Defekt in der chemokinvermittelten 

Migration festgestellt wurde (Mak’Anyengo, Masterarbeit, 2012129), stellte sich erneut die 

Frage nach der Zuordnung der ercDC zu „DC“ oder „MΦ“. Wir bezeichneten ercDC 

ursprünglich als „DC“, obwohl sie den MΦ-Marker CD14 exprimierten, da die ercDC des 

RCC wie auch die in vitro generierten ercDC Kostimulations- und MHC-II-Moleküle stark 

exprimierten und die für cDC charakteristische Kreuzpräsentation beherrschten (ercDC_in 

vitro). Auch Literaturdaten, die zeigten, dass die Niere von einer Vielzahl interstitieller 

CX3CR1+ DC durchzogen ist78 und die Tatsache, dass auch unsere ercDC CX3CR1-positiv 

waren (nicht gezeigt), trugen zu dieser Entscheidung bei. Mit der zunehmenden Diskussion 

eines Kontinuums der Zellen des MPS anstelle eindeutig abgegrenzter Populationen stellte 

sich die Frage, welche Position die ercDC in diesem Kontinuum einnehmen würden. In 

Anlehnung an die publizierten Daten, die hauptsächlich auf Untersuchungen der 

myeloischen Zelltypen der Maus basieren, wurde eine globale Genexpressionsanalyse der 

ercDC aus dem RCC durchgeführt, mit dem Ziel, die Verwandtschaft der ercDC mit anderen 

myeloischen Zelltypen zu definieren, ein charakteristisches Genexpressionsprofil der ercDC 

zu erstellen und die funktionelle Polarisierung genauer zu beschreiben.  



ERGEBNISSE 68 

 

7.5 Genexpressionsanalyse  

Für die Genexpressionsanalyse wurden ercDC (CD209+CD14+) und MΦ (CD209-CD14+) aus 

Gewebesuspensionen des klarzelligen RCC sowie CD1c+ DC und slanDC aus dem Blut 

gesunder Spender mit Hilfe des FACSAria IIIu sortiert. Zudem schloss die Analyse neben 

den in vitro generierten cDC und ercDC auch in vitro generierte M1-MΦ, M2-MΦ und GM-

CSF-MΦ ein. Ebenfalls wurden aus dem Blut isolierte Monozyten analysiert, aus denen die 

verschiedenen In-vitro-Zelltypen differenziert wurden. 

 

7.5.1 Sortierung von ercDC (CD209+CD14+) und MΦ (CD209-CD14+) aus RCC-
Gewebe-Zellsuspensionen 

Die RCC-Gewebe-Zellsuspensionen wurden zunächst mit den in Tabelle 6-2 (siehe 

Methoden, Seite 39) angegebenen Antikörpern gefärbt. Die Leukozyten wurden anhand des 

Markers CD45 im CD45/SSC-Punktewolkendiagramm von den CD45- Tumorzellen 

abgegrenzt (Abbildung 7-9, Seite 69). Nach Auswahl der lebenden Zellen und Einzelzellen 

(Ausschluss von Dubletten) wurde das für das humane System als pan-myeloischer Marker 

geltende CD11c gegen den T-Zell-Marker CD3 dargestellt. In diesem 

Punktewolkendiagramm wurden die myeloischen CD11c+ Zellen ausgewählt, deren 

durchschnittlicher Anteil innerhalb der lebenden Leukozyten zwischen 10% und 60% lag. 

Innerhalb der CD11c+ Zellen wurden die ercDC und MΦ anhand der Marker CD14 und 

CD209/DC-SIGN voneinander unterschieden (Abbildung 7-9). Die Grenze für CD209-

Positivität wurde anhand eines Isotyp-Antikörpers festgelegt, die CD14+ Population wurde 

durch Abgleich mit CD14+ Monozyten innerhalb von PBMC, die parallel untersucht wurden, 

ermittelt (nicht gezeigt). Der Anteil von CD209+CD14+ ercDC innerhalb der CD11c+ Zellen lag 

durchschnittlich bei 9% (1-21%), der Anteil von CD209-CD14+ MΦ bei 66% (45-90%). 

Manchmal zeigte sich eine Mittelpopulation mit schwacher CD209-Intensität (siehe Pfeil in 

Abbildung 7-9), die nicht sortiert wurde. Wenn möglich, wurden die sortierten Populationen 

im FACSAria IIIu reanalysiert, um die Reinheit der Sortierung zu prüfen. Sie lag zwischen 98 

und 100%. Die ercDC und MΦ konnten aus RCC-Gewebe-Zellsuspensionen von sechs 

verschiedenen Patienten erfolgreich sortiert werden. Die sortierten Zellzahlen und die RIN-

Werte der RNA der einzelnen Replikate können Tabelle 7-1 (Seite 71) entnommen werden. 

Die aus dem RCC sortierten MΦ werden analog den ercDC im Folgenden als „MΦ_RCC“ 

bezeichnet.  

In den meisten RCC-Gewebe-Zellsuspensionen waren nur wenige CD209+CD14- cDC zu 

finden, obwohl diese bei Immunfluoreszenzfärbungen des Gewebes deutlich quantifiziert 

werden konnten (Abbildung 7-1, Seite 56). Daher fehlt leider diese sehr interessante 

Population in der Genexpressionsanalyse. Um eine DC-Population mit klassischen cDC-
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Eigenschaften als Vergleich zu den ercDC und MΦ in der Genexpressionsanalyse zu haben, 

wurden CD1c+ DC und slanDC aus dem Blut gesunder Spender sortiert (Abbildung 7-10).  

 

Abbildung 7-9: Auswahl der ercDC (CD209+CD14+) und Makrophagen (CD209-CD14+) innerhalb 
der RCC-Gewebe-Zellsuspensionen bei der Sortierung am FACSAria IIIu. Gezeigt ist das 
Auswahlschema für eine exemplarische RCC-Gewebe-Zellsuspension. Im ersten Schritt wurden die 
CD45+ Leukozyten ausgewählt. Anschließend wurden die lebenden Zellen und Einzelzellen 
ausgewählt. Innerhalb dieser Population wurden die myeloischen, CD11c+ Zellen eingegrenzt. Die 
ercDC konnten innerhalb der CD11c+ Zellen durch die Koexpression von CD209 und CD14 von den 
CD14+CD209- MΦ unterschieden werden. CD209-Positivität wurde anhand des Isotyp-Antikörpers für 
CD209 definiert, CD14-Positivität durch Abgleich mit CD14+ Monozyten innerhalb von parallel 
untersuchten PBMC festgelegt (nicht gezeigt). CD209+CD14- cDC waren nicht, oder nur in sehr 
geringer Anzahl vorhanden und konnten nicht sortiert werden.  

 

7.5.2 Sortierung von CD1c+ DC und slanDC aus dem Blut  

CD1c+ DC und slanDC wurden aus PBMC dreier gesunder Spender sortiert. Zunächst wurde 

durch positive Selektion von CD19 und CD56 mittels magnetischer Beads ein Großteil der 

potentiell CD1c+ B-Zellen und der NK-Zellen aus den PBMC entfernt. Die verbliebenen 

Zellen wurden für die anschließende FACS-basierte Sortierung mit der in Tabelle 6-5 

(Methoden, Seite 45) angegebenen Antikörperkombination gefärbt.  

Die Auswahlstrategie für die Sortierung der Zellen ist in Abbildung 7-10 (Seite 70) gezeigt. 

Nach der Abgrenzung von Zellschrott und der Auswahl lebender Zellen und Einzelzellen 

innerhalb der PBMC wurden durch Anfärbung von CD56, CD19 und CD3 verbliebene NK-
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Zellen, B-Zellen und T-Zellen von den CD11c+ Zellen abgegrenzt. Die CD11c+CD56-CD19-

CD3- Zellfraktion wurde zur Unterscheidung von CD1c+ DC und slanDC mit anti-CD1c und 

anti-slan (M-DC8) Antikörpern angefärbt. Innerhalb der CD11c+CD56-CD19-CD3- Zellfraktion 

waren die CD1c+ DC mit einer Frequenz von 0,7-2,9% und die slanDC mit 2,7-10,1% 

vertreten. Die CD1c+ DC und slanDC werden im Folgenden als „CD1c+ DC_Blut“ und 

„slanDC_Blut“ bezeichnet.  

 

Abbildung 7-10: Auswahl der CD1c+ DC und slanDC innerhalb der PBMC gesunder Spender bei 
der Sortierung am FACSAria IIIu. Gezeigt ist das Auswahlschema für einen der drei Spender. 
Zunächst wurden die PBMC im SSC/FSC-Punktewolkendiagramm ausgewählt und der Zellschrott 
abgegrenzt. Nach der Auswahl der lebenden Zellen und Einzelzellen wurden die CD11c+ Zellen gegen 
die CD56+ NK-Zellen aufgetragen. Die CD11c-CD56- Fraktion enthielt B- und T-Zellen. Im nächsten 
Schritt wurden potentiell CD11c+CD1c+ B-Zellen sowie mögliche verbliebene T-Zellen innerhalb der 
CD11c+CD56- Fraktion durch Anfärbung von CD19 und CD3 abgegrenzt. Innerhalb der CD11c+CD56-

CD19-CD3- Zellen wurden CD1c+ DC und slanDC durch die Marker slan (M-DC8) und CD1c 
unterschieden. Die Positivität für slan und CD1c wurde mit Hilfe von Isotyp-Antikörpern festgelegt 
(nicht gezeigt).  
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Tabelle 7-1: Übersicht über die aus RCC-Gewebe-Zellsuspensionen und PBMC sortierten 
myeloischen Zelltypen sowie die durch Microbeads aus PBMC isolierten Monozyten. Aufgeführt 
sind neben der Herkunft der Zelltypen auch deren Bezeichnung für die Genexpressionsanalyse, die 
Marker mit denen die Zellen im FACS-Gerät für die Sortierung ausgewählt wurden, die Bezeichnung 
der einzelnen Replikate, deren RNA RIN-Werte und sortierte Zellzahlen. 

Zelltyp Herkunft Bezeichnung Markerprofil Replikate RNA 
RIN 

Sortierte 
Zellzahlen 

ercDC RCC ercDC_RCC 
CD11c+ 
CD209+ 
CD14+ 

RCC66 8,6 2,1 x 104 
RCC74 6,1 1,7 x 104 
RCC89 8,0 9,5 x 104 
RCC91 8,0 1,1 x 104 
RCC94 6,7 1,1 x 104 
DD2 5,6 0,7 x 104 

MΦ RCC MΦ_RCC 
CD11c+ 
CD209- 
CD14+ 

RCC66 8,8 6,0 x 104 
RCC89 8,0 2,2 x 105 
RCC91 7,3 4,2 x 104 
RCC94 6,1 2,5 x 104 
DD1 7,8 0,5 x104 
DD2 7,8 6,1 x 104 

CD1c+ DC Blut CD1c+ DC_Blut CD11c+ 
CD1c+CD19- 

Spender 1 9,0 2,0 x 104 
Spender 2 7,4 1,2 x 104 
Spender 3 6,2 1,0 x 104 

slanDC Blut slanDC_Blut CD11c+slan+ 
CD19- 

Spender 1 7,6 1,5 x 104 
Spender 2 8,8 5,0 x 104 
Spender 3 8,6 2,7 x 104 

Monozyten* Blut  Mono_Blut  CD14+ 
Sp. Pool 1 8,0 5,0 x 105 
Sp. Pool 2 8,6 5,0 x 105 
Sp. Pool 3 7,9 5,0 x 105 

* Die Monozyten wurden nicht durch FACS-basierte Sortierung gewonnen, sondern durch CD14 
Microbeads aus den PBMC isoliert.  

 

7.5.3 Auswahl eines CD141+ DC-Transkriptomdatensatzes aus externen 
Datenbanken und Prüfung der aus PBMC sortierten CD1c+ DC auf 
Zelltyp-assoziierte Gene  

Neben den CD1c+ DC und slanDC gibt es eine weitere DC-Population im Blut, die CD141+ 

DC. Diese können CD8+ T-Zellen sehr effektiv durch Kreuzpräsentation aktivieren und 

sezernieren bei Stimulation große Mengen IL-1234,37. Beide Funktionen wurden bei ercDC 

abgefragt, weshalb die CD141+ DC zum Vergleich in die Genexpressionsanalyse 

eingeschlossen werden sollten. Da CD141+ DC nicht selber sortiert worden waren, wurde ein 

geeigneter Transkriptomdatensatz aus externen Datenbanken selektiert. Datensätze für 

CD141+ DC waren von Haniffa et al.130, Lindstedt et al.131, Yu et al.132 und Segura et al.43 auf 

der GEO (engl.: Gene Expression Omnibus) bzw. der „Array Express“ Homepage öffentlich 

verfügbar (Tabelle 7-2, Seite 72). Die genannten Studien beinhalteten auch Datensätze von 

CD1c+ DC. Diese wurden verwendet, um die Vergleichbarkeit mit den sortierten CD1c+ 

DC_Blut zu prüfen. 



ERGEBNISSE 72 

 

Tabelle 7-2: Externe Transkriptomdatensätze für CD141+ DC und CD1c+ DC. Aufgeführt sind die 
Bezugsquelle und Zugangsnummer des Datensatzes sowie die Bezeichnung und Anzahl der 
Replikate der jeweiligen Zelltypen. 

Datensatz aus Zugangsnummer Bezeichnung Anzahl Replikate 
Haniffa et al.130  GSE35459 CD141+ DC 

CD1c+ DC 
5 
6 

Lindstedt et al.131 E-TABM-34 CD141+ DC 
CD1c+ DC 

3 
3 

Yu et al.132  GSE43184 CD141+ DC 
CD1c+ DC 

3 
3 

Segura et al.43  GSE40484 CD1c+ DC 4 
 

 

Die externen Transkriptomdaten wurden zusammen mit den eigenen Datensätzen der 

Mono_Blut, slanDC_Blut und CD1c+ DC_Blut normalisiert und eine hierarchische 

Clusteranalyse basierend auf den informativen Genen durchgeführt, die das Ziel hatte, die 

Ähnlichkeit der verschiedenen CD1c+ DC bzw. CD141+ DC Datensätze zu ermitteln (siehe 

Abbildung 11-2 im Anhang, Seite 157). Mono_Blut und slanDC_Blut dienten als Kontrollen. 

Interessanterweise clusterten die externen Datensätze nicht nach Zelltyp, sondern, außer bei 

Lindstedt et al.131, nach Arbeitsgruppen. Offensichtlich ist dieser „Batch Faktor“, bedingt 

durch die unterschiedlichen Verfahrensweisen der Arbeitsgruppen, größer als die Zelltyp-

bedingten Unterschiede. Unsere CD1c+ DC_Blut (gelbe Markierung) clusterten mit CD1c+ 

DC_Segura (lila). Allerdings gab es bei Segura et al.43 keine korrespondierenden CD141+ 

DC, so dass nicht sicher ist, ob das Clustering wirklich aufgrund Zelltyp-spezifischer 

Ähnlichkeit erfolgte oder durch das Fehlen der korrespondierenden CD141+ DC. Die 

Analysen wurden danach mit einem reduzierten Genset durchgeführt, welches nur die 

CD141+ DC-Kerngene (Haniffa et al.130) bzw. die mit CD1c+ DC assoziierten Gene (Haniffa et 

al.130, Segura et al.43) enthielt. In Abbildung 11-3 des Anhangs (Seite 158) ist die Expression 

der vier Kerngene der CD141+ DC in den untersuchten Zelltypen vergleichend dargestellt. 

Die Kerngene sind CADM1, TLR3 und XCR1, die an der Antigenkreuzpräsentation und 

Migration beteiligt sind, sowie das Gen THBD, welches für den Rezeptor CD141 kodiert130. 

CLEC9A, ebenfalls ein Kerngen, war auf den Arrays von Lindstedt nicht vorhanden und 

konnte deshalb nicht berücksichtigt werden. Der Vergleich zeigte, dass die CD141+ DC von 

Lindstedt alle Kerngene am stärksten exprimierten (Abbildung 11-3A und B). Sie wurden 

deshalb für die vergleichende Genexpressionsanalyse mit unseren Datensätzen ausgewählt.  

Die hierarchische Clusteranalyse basierend auf den 140 mit CD1c+ DC assoziierten Genen 

zeigte, dass unsere CD1c+ DC_Blut mit den CD1c+ DC_Segura in einem Cluster lagen 

(Abbildung 11-4A im Anhang, Seite 159). Die CD1c+ DC_Blut exprimierten die Gene im Mittel 

am stärksten (Abbildung 11-4B). Sie wurden deshalb für die weitere vergleichende Analyse 

mit den ercDC benutzt und es wurde auf einen externen Datensatz für CD1c+ DC verzichtet.  
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7.5.4 Verwandtschaftsanalyse und charakteristisches Genexpressionsprofil 
der ercDC aus dem RCC  

Weil sich die ercDC durch die Koexpression von DC- und MΦ-Markern ungewöhnlich 

darstellten, wurde versucht über einen Vergleich des Transkriptoms der ercDC mit den 

Transkriptomen anderer myeloischer Zelltypen eine Positionierung im MPS-Kontinuum zu 

erreichen und ein charakteristisches Genexpressionsprofil der ercDC zu erstellen. Zusätzlich 

zu unseren Datensätzen wurden externe Datensätze ausgewählt, wobei nur humane 

Datensätze verwendet wurden, um Probleme mit nicht-orthologen Genen zu vermeiden.  

Neben den aus dem Blut stammenden CD141+ DC von Lindstedt wurden myeloische 

Zelltypen aus verschiedenen nicht-lymphatischen Organen (Decidua, Darm, Lunge, Ascites 

von Ovarialkarzinompatienten) ausgewählt, wobei die Auswahl sowohl gesunde als auch 

pathologische Situationen umfasste. Die Informationen zu den ausgewählten Datensätzen 

und Zelltypen sind in Tabelle 7-3 (Seite 74) zusammengestellt. Der Datensatz der MΦ aus 

dem Ersttrimestergewebe der Decidua wurde ausgewählt, weil auch hier wie bei den ercDC 

die Koexpression von CD14 und CD209/DC-SIGN beschrieben war133. Die intrauterinen MΦ 

wurden anhand der CD11c-Expressionsstärke in CD11cHI MΦ und CD11cLO MΦ unterteilt, 

wobei sich erstere durch die Expression von Genen des Lipidmetabolismus und 

Inflammation auszeichneten und letztere v.a. Gene exprimierten, die mit dem Wachstum und 

dem Umbau des Gewebes assoziiert sind.  

Die Datensätze der myeloischen Zellen aus dem Darm und der Lunge wurden ausgewählt, 

weil das Immunsystem beider Organe, wie das der Niere, für die Aufrechterhaltung der 

Balance zwischen Immunität und peripherer Toleranz essentiell ist134,135. Der in GEO 

hinterlegte Datensatz zu intestinalen myeloischen Zellen (Watchmaker et al.136) beinhaltete 

drei verschiedene DC-Subtypen aus der Lamina Propria, die anhand der Marker CD103 und 

Sirpα voneinander unterschieden wurden: 1) CD103+Sirpα- DC, die den CD141+ DC aus dem 

Blut ähnlich sind und viele mit der Kreuzpräsentation assoziierte Marker exprimieren; 2) 

CD103+Sirpα+ DC, beschrieben als den CD1c+ DC aus dem Blut ähnlich, TH17-Zellen 

induzierend, CD209/DC-SIGN und tolerogene Gene exprimierend; 3) CD103-Sirpα+ DC, die 

den MoDC (engl.: monocyte-derived DC) ähnlich sind und TH1-Zellen effektiv expandieren 

können. Von Shaykhiev et al.137 waren Datensätze von alveolaren MΦ aus der Lunge von 

Rauchern, Nichtrauchern und COPD-Patienten hinterlegt, von Woodruff et al.138 gab es 

Datensätze zu MΦ aus Asthma-Patienten, Rauchern und Nichtrauchern. Die publizierten 

Analysen lassen vermuten, dass entgegen den bisherigen Annahmen bei den MΦ von 

Rauchern und COPD-Patienten die M1-assoziierten proinflammatorischen Gene eher 

herabreguliert und die M2-assoziierten, regulatorischen Gene verstärkt exprimiert werden137. 

Auch scheinen sie analog zu den im Tumor vorkommenden MΦ viele 

Matrixmetalloproteinasen (MMP) zu sezernieren137,138.  
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Zu humanen myeloischen Zellen aus Tumoren gab es wenig Datenmaterial. Es gab lediglich 

einen Datensatz zu myeloischen Zellen aus einem soliden Tumor. Dies waren TAM aus 

gastrointestinalen stromalen Tumoren (GIST) von Cavnar et al.139. Für diese TAM wurde 

interessanterweise ein antitumoraler, proinflammatorischer, M1-ähnlicher Phänotyp 

beschrieben. Des Weiteren gab es einen Datensatz von myeloischen Zellen aus dem Ascites 

von Ovarialkarzinompatienten (Segura et al.43); die Zellen stammten also nicht wie die ercDC 

aus dem soliden Karzinom. Hierbei wurde zwischen inflammatorischen DC (infDC) und MΦ 

(infMΦ) unterschieden. Laut Literatur scheinen die infDC, ähnlich wie die ercDC, DC- und 

MΦ-Charakteristika zu besitzen, sie exprimierten ebenfalls CD14, nicht aber CD209/DC-

SIGN auf der Oberfläche43. Dagegen zeigten die infMΦ funktionelle Parallelen zu den ercDC, 

indem sie bei Stimulation kein IL-12p70 sezernierten und nur eine schwache T-Zell-

Proliferation induzieren konnten43.  

Tabelle 7-3: Informationen zu den externen humanen Datensätzen und Zelltypen, die für die 
vergleichende Genexpressionsanalyse verwendet wurden. Aufgeführt sind die Bezugsquelle und 
Zugangsnummer des Datensatzes sowie die Herkunft, Bezeichnung, Anzahl der Replikate und die 
Eigenschaften der jeweiligen Zelltypen.  

Datensatz 
aus 

Zugangs- 
nummer Herkunft Bezeichnung Anzahl 

Replikate Eigenschaft 

Lindstedt  
et al.131 

E-TABM 
-34 Blut  CD141+ DC 3 

CTL-Aktivierung 
mittels 
Kreuzpräsentation, 
migratorisch, IL-12-
Produktion 

Houser  
et al.133  GSE22342 

Decidua 
während 
Ersttrimester 

CD11cHI MΦ 8 Antigenpräsentation, 
Lipidstoffwechsel 

CD11cLO MΦ 8 ECM-Modifizierung, 
Gewebewachstum 

Watchmaker 
et al.136 GSE50380 Darm 

CD103+Sirpα- 
DC 3 

exprimieren 
Kreuzpräsentations-
marker, TH17-Zellen 
induzierend, ähnlich 
CD141+ DC 

CD103+Sirpα+ 
DC 5 

TH17-Zellen 
induzierend, 
tolerogen, CD209+, 
ähnlich CD1c+ DC 

CD103-Sirpα+ 
DC 3 TH1-Aktivierung, 

ähnlich MoDC 

Shaykhiev  
et al.137 (S)  GSE13896 avLunge 

MΦ_NR 24 Gewebehomöostase,  
Pathogenabwehr 

MΦ_R 34 Tendenz zu M2-
Polarisierung 

MΦ_COPD 12 M2-Polarisierung 

Woodruff  
et al.138 (W)  GSE2125 avLunge 

MΦ_NR 15 Gewebehomöostase, 
Pathogenabwehr 

MΦ_R 15 starke Expression von 
MMP 

MΦ_Asthma 15 ähnlich MΦ_NR 

Cavnar  
et al.139 GSE51697 GIST TAM_GIST* 12 

proinflammatorischer, 
M1-ähnlicher 
Phänotyp  
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Segura  
et al.43 GSE40484 ascOvCa 

infDC 5 
induzieren TH17-
Zellen; Sirpα+CD209-, 
ähnlich MoDC 

infMΦ 5 

induzieren keine TH17-
Zellen, CD209-, 
schlechte T-Zell-
Stimulatoren, keine IL-
12p70-Sekretion  

* TAM von unbehandelten, nicht-Imatinib-sensitiven Patienten  
ascOvCa: Ascites von Ovarialkarzinompatienten (OvCa, engl.: ovarian cancer); avLunge: Alveolen der 
Lunge; COPD: engl.: chronic obstructive pulmonary disease; ECM: engl.: extracellular matrix; infDC: 
inflammatorische DC; infMΦ: inflammatorische Makrophagen; GIST: Gastrointestinaler Stromatumor 
MoDC: engl.: monocyte-derived DC; MMP: Matrixmetalloproteinase; NR: Nichtraucher; R: Raucher 

Um die Ähnlichkeit der ercDC_RCC mit den verschiedenen Zelltypen zu ermitteln, wurde 

zunächst eine hierarchische Clusteranalyse basierend auf den informativen Genen 

durchgeführt. Das resultierende Dendrogramm gliederte sich in drei Großcluster A, B und C 

(Abbildung 7-11, Seite 76). Großcluster A enthielt alle aus Blut isolierten myeloische 

Zelltypen sowie die CD103+Sirpα- DC_Darm. Die letzteren bildeten ein Cluster mit CD141+ 

DC_Blut, mit denen sie laut Literatur auch einige Eigenschaften, v.a. die Expression von 

Markern die mit der Kreuzpräsentation assoziiert sind, teilen136. Die slanDC lagen in einem 

Cluster mit Monozyten. Dies unterstützt Literaturdaten, welche die slanDC als Subklasse der 

Monozyten vermuten31,48. CD1c+ DC_Blut bildeten einen eigenen Ast innerhalb dieses 

Clusters. Die von Watchmaker et al.136 beschriebene Ähnlichkeit zwischen CD1c+ DC_Blut 

und CD103+Sirpα+ DC_Darm zeigte sich hier nicht. 

Die ercDC_RCC lagen in Großcluster B, und darin in Subcluster 5 zusammen mit den 

MΦ_RCC sowie den infMΦ und infDC aus dem Ascites von Ovarialkarzinompatienten. In 

demselben Großcluster, aber einem anderen Subcluster, lagen die aus dem soliden Tumor 

stammenden TAM_GIST zusammen mit den CD11cLO MΦ_Decidua, den CD103+Sirpα+ 

DC_Darm und den MΦ_Asthma_avLunge_W. Interessanterweise lagen die MΦ der 

Raucher, Nichtraucher und COPD-Patienten im Großcluster C, also nicht im selben 

Großcluster wie die von Asthma-Patienten. Im Subcluster 2 des Großclusters C lagen neben 

den alveolaren MΦ von Nichtrauchern (NR) auch die CD11cHI MΦ_Decidua. Die von 

Watchmaker et al.136 als MoDC-ähnlich beschriebenen CD103-Sirpα+ DC_Darm bildeten 

einen separaten Arm im Großcluster C.  



ERGEBNISSE 76 

 

 

Abbildung 7-11: Hierachisches Clustering der ercDC und Makrophagen aus dem RCC und 
verschiedener myeloischer Zelltypen aus dem Blut sowie aus nicht-lymphatischen Geweben 
unter normalen und pathologischen Bedingungen. Die Zahlen unter der Tabelle geben die 
Subcluster an, die Großbuchstaben die diese umfassenden Großcluster. Die ercDC_RCC sind gelb 
markiert. Normal: normale Bedingungen; path.: pathologische Bedingungen 

 

7.5.4.1 Markergene und differentiell exprimierte Gene  

In einem nächsten Schritt stellte sich die Frage, ob für die ercDC_RCC ein charakteristisches 

Genexpressionsprofil erstellt werden kann das sie von anderen Zelltypen unterscheidet. Es 

wurde die Methode der „nearest shrunken centroids“140 angewandt, weil beschrieben ist, 

dass damit ein Markergenprofil für einen Zelltyp ermittelt werden kann und andere Zelltypen 

durch Abgleich ihres Genexpressionsprofils mit diesem Profil klassifiziert werden können.  

Zur Ermittlung der für ercDC_RCC charakteristischen Markergene wurde das 

Genexpressionsprofil der ercDC_RCC mit den Profilen aller anderen myeloischen Zelltypen 

(Nicht-ercDC_RCC, Kontrollgruppe, Abbildung 7-12) verglichen. Der Grenzwert (Abbildung 

7-12B, Seite 78) wurde so festgelegt, dass eine möglichst kleine Gruppe von Genen 

selektiert wird, die für ercDC_RCC spezifische Expressionsmuster zeigt. Die 

Kreuzvalidierung des daraus abgeleiteten Klassifikationsmodels ergab eine Gruppe von 61 

Genen bei einer akzeptablen niedrigen Fehlklassifikationsrate (< 20%, Abbildung 7-12B). Die 

Wahrscheinlichkeit, dass ein Zelltyp fälschlicherweise als ercDC_RCC klassifiziert wird 
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betrug 4%. Mit 17%-iger Wahrscheinlichkeit würde ein ercDC-Zelltyp nicht als solcher 

erkannt und fälschlicherweise der Kontrollgruppe zugeordnet werden. Die ercDC_RCC 

exprimierten 39 der Markergene im Vergleich zur Kontrollgruppe stärker und 22 schwächer 

(Abbildung 7-12A). Zu den Markergenen gehörte u.a. CD209/DC-SIGN, das auf 

Proteinebene für die Abgrenzung der ercDC_RCC von den CD209-CD14+ MΦ bei der 

Sortierung verwendet wurde. Vergleichbare Transkriptlevel für CD209/DC-SIGN wurden bei 

infMΦ_ascOvCa und CD11cLO MΦ_Decidua gefunden (Abbildung 7-12A). Diese beiden 

Zelltypen zeigten generell eine sehr starke Übereinstimmung mit den ercDC_RCC-

Markergenen. Die infMΦ_ascOvCa bildeten mit den ercDC_RCC ein gemeinsames Cluster 

und drei der fünf infMΦ_ascOvCa-Replikate wurden durch das Programm als ercDC_RCC 

klassifiziert. Auch ein Replikat der TAM_GIST, die in der Summe aber keine große 

Übereinstimmung mit dem Genexpressionsmuster der ercDC_RCC zeigten, wurde als 

ercDC_RCC klassifiziert. Interessanterweise wurden die MΦ_RCC, obwohl sie aus dem 

gleichen Gewebemilieu stammten wie die ercDC_RCC, nicht als ercDC_RCC klassifiziert, 

sondern lagen in einem separaten Cluster zusammen mit den infDC_ascOvCa. Dies lässt 

vermuten, dass in einem Tumorgewebe zeitgleich mehrere Mikromilieus existieren, die zur 

Differenzierung unterschiedlicher myeloischer Zelltypen führen. Die slanDC_Blut, CD1c+ 

DC_Blut und Mono_Blut zeigten ein zu den ercDC_RCC komplett konträres 

Expressionsmuster der Markergene (Abbildung 7-12A). 
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Abbildung 7-12: Erstellung eines Markergenprofils für ercDC aus dem RCC mittels der „nearest 
shrunken centroids“ Methode nach Tibshirani et al.140 Die Expressionswerte des ercDC_RCC-
Datensatzes wurden zur Ermittlung der Markergene gegen die aller anderen Datensätze verglichen. 
A) Die relative Expression (Z-Score) der 61 ermittelten Markergene sowie das Clustering der Zelltypen 
wurde in einer Heatmap visualisiert. Gelb markiert sind ercDC_RCC, welche mit den infMΦ_ascOvCa 
und den CD11cLO MΦ_Decidua in einem Cluster liegen. Gleichzeitig grau umrahmt ist exemplarisch 
das als Markergen identifizierte CD209, welches auf Proteinebene für die Sortierung der ercDC 
verwendet wurde. B) Diagramm zur Vergleichsprüfung (Kreuzvalidierung), welches den festgelegten 
Grenzwert, die kleinste Anzahl der für die Klassifizierung der ercDC nötigen Gene (gelbe Markierung), 
sowie die Fehlklassifizierungsrate der beiden Gruppen zeigt.  
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Um die ercDC_RCC weiterführend zu beschreiben, wurden zusätzlich zu den Markergenen 

die von den ercDC_RCC im Vergleich zu allen anderen Zelltypen differentiell exprimierten 

Gene ermittelt. Dabei wurde ein statistisches Verfahren angewandt und als „differenziell 

exprimiert“ solche Gene ermittelt, die mit einer statistischen Wahrscheinlichkeit von p < 0,05 

zwischen der Testgruppe und Kontrollgruppe unterschiedlich waren. Als Testgruppe wurden 

die ercDC_RCC mit den infMΦ_ascOvCa zusammengefasst, da sich ansonsten aufgrund 

der großen Ähnlichkeit der beiden Zelltypen nur zwei differentiell exprimierte Gene ergaben. 

Die Kontrollgruppe bestand aus allen anderen zum Vergleich verwendeten myeloischen 

Zelltypen (entsprechend Abbildung 7-12). Aus dieser Analyse ergaben sich 788 differentiell 

exprimierte Gene, 431 davon im Vergleich zur Kontrollgruppe stärker, 357 schwächer 

exprimiert (siehe Tabelle 11-1 und Tabelle 11-2 im Anhang, Seite 160 und 167). Diese 788 

Gene umfassende Gengruppe wurde als „ercDC_RCC-Signaturgene“ bezeichnet. 54 der 61 

Markergene (89%) wurden auch unter den ercDC_RCC-Signaturgenen gefunden (siehe 

Tabelle 7-4, Seite 88).  

Um das Ausmaß der Genexpressionsunterschiede (x-facher Unterschied, FC (engl.: Fold 

change)) zusammen mit der Signifikanz der Unterschiede beider Vergleichsgruppen zu 

visualisieren, wurde eine Volcano Plot Darstellung ausgewählt. Der Volcano Plot in 

Abbildung 7-13 (Seite 80) zeigt für alle informativen Gene den korrigierten p-Wert (–log10) 

sowie die x-fache Veränderung der Genexpression (log2) der ercDC_RCC & 

infMΦ_ascOvCa-Testgruppe gegenüber der Kontrollgruppe. Jedes Gen ist durch einen 

Punkt dargestellt, rote Punkte visualisieren die ercDC_RCC-Signaturgene (p < 0,05). Gene, 

die gegenüber der Kontrollgruppe besonders stark exprimiert und sehr signifikant sind, liegen 

rechts oben. Hier fanden sich viele der ercDC_RCC-Markergene (Fettdruck, gelbe 

Markierung), z.B. CD209/DC-SIGN, FOLR2, CCL8, GPNMB und SEPP1. Zu den 

hochregulierten Genen zählten einige Gene, die bei der Funktion bzw. der Rekrutierung von 

MΦ eine Rolle spielen, wie CD204/MSR1, MERTK, CD163, CCL2, CCL8 und CCL18 

(Abbildung 7-13, grüne Schrift). Gene, die im Vergleich zur Kontrollgruppe sehr signifikant 

und stark herabreguliert waren, befinden sich oben links in der Grafik. Dort liegen z.B. die 

Markergene FAM65B, FGR und CFP. Interessant ist außerdem, dass die Gene BCL11A und 

FLT3 (grüne Schrift), die für einen DC-typischen Transkriptionsfaktor bzw. 

Wachstumsfaktorrezeptor kodieren, zu den signifikant herabregulierten Genen gehörten. 

Auch das von cDC exprimierte, für ein MHC-I-ähnliches Protein kodierende, Gen CD1C 

(grüne Schrift) wurde von ercDC_RCC wesentlich geringer exprimiert als von der 

Kontrollgruppe.  
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Abbildung 7-13: Volcano Plot des Expressionsvergleichs der informativen Gene von 
ercDC_RCC & infMΦ_ascOvCa und der Kontrollgruppe. Auf der x-Achse ist der x-fache 
Unterschied der Expression (log2) der informativen Gene zwischen den beiden Vergleichsgruppen 
aufgetragen. Die Y-Achse zeigt die Signifikanzen (korrigierte p-Werte als –log10) der Unterschiede an. 
Als Kontrollgruppe für die Ermittlung der differentiell exprimierten Gene wurden alle in der Heatmap in 
Abbildung 7-12 aufgeführten Zelltypen außer den ercDC_RCC und den infMΦ_ascOvCa verwendet. 
In rot markiert sind die ercDC_RCC-Signaturgene (p < 0,05, entspricht –log10 p > 1,3) innerhalb der 
informativen Gene. Punkte, denen ein Gensymbol zugewiesen wurde, sind grau umrandet. Gene, die 
zu den ercDC_RCC-Markergenen gehören sind in Fettdruck und gelb unterlegt hervorgehoben. In 
grün sind Gene markiert, die im Text erwähnt werden.  

Um einen Eindruck über die biologischen Prozesse zu erhalten, an denen die ercDC_RCC-

Signaturgene beteiligt sind, wurde eine GO-Term-Anreicherungsanalyse durchgeführt. Ziel 

dieser Analyse war es, festzustellen, ob eine signifikante Anreicherung der im Vergleich zur 

Kontrollgruppe hoch- bzw. herabregulierten ercDC_RCC-Signaturgene in bestimmten GO-

Kategorien (GO-Terme) aus dem Bereich „Biologischer Prozess“ vorlag.  

In Abbildung 7-14 (Seite 81) sind die Top 20 der signifikant (p < 0,001) angereicherten 

Kategorien dargestellt. Unter diesen waren fast ausschließlich Kategorien, in denen 

gegenüber der Kontrollgruppe hochregulierte ercDC_RCC-Signaturgene angereichert waren. 

Herabregulierte Gene waren nur in der Kategorie „Translational initiation“ (orange Schrift) 

angereichert. Die Kategorien der herabregulierten Gene waren insgesamt weniger signifikant 

und hauptsächlich Transkriptions- und Translationsprozessen zugeordnet. Die Kategorien 

mit der höchsten Signifikanz waren „Response to wounding“ und „Inflammatory response“. 

Die Anreicherung beider Kategorien ist vermutlich dadurch zu erklären, dass Tumoren auch 

als „never healing wound“ bezeichnet werden, da sie sich oft aus einem chronisch 
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inflammatorischen Milieu entwickeln und die beteiligten zellulären und biochemischen 

Prozesse auch bei der Wundheilung eine Rolle spielen141. Das RCC zeichnet sich in der Tat 

durch ein chronisch inflammatorisches Milieu aus142, das möglicherweise eine 

entsprechende Genexpression in den myeloischen Zellen bewirken kann. Renale MΦ sind 

auch im Normalgewebe an Wundheilungsprozessen beteiligt und tragen darüber zur 

Aufrechterhaltung der Gewebehomöostase bei77,79. Die ercDC_RCC scheinen auch für die 

Abwehr von Pathogenen gewappnet zu sein, da die Kategorie „Defense response“ nach den 

Kategorien „Response to wounding“ und „Inflammatory response“ folgte.  

 

Abbildung 7-14: Top 20 der signifikant angereicherten GO-Kategorien von hoch- bzw. 
herabregulierten ercDC_RCC-Signaturgenen. Die Signifikanz der GO-Kategorien ist auf der x-
Achse angegeben (-log10 (p-Wert)). Die einzige Kategorie der Top 20 in der die herabregulierten 
ercDC_RCC-Signaturgene signifikant angereichert waren, „Translational initiation“, ist orange 
gekennzeichnet.  

Der Einordnung der ercDC_RCC-Signaturgene mittels der GO-Term-Anreicherungsanalyse 

folgte eine gezielte Analyse überrepräsentierter Signalwege, da dadurch Rückschlüsse auf 

die funktionelle Aktivität der Zellen möglich sind. Es wurden zwei verschiedene 

Analyseverfahren verwendet, einerseits basierend auf der InnateDB Plattform, andererseits 

die GSEA (engl.: Gene Set Enrichment Analysis). InnateDB konzentriert sich v.a. auf 

Signalwege, die mit der angeborenen Immunantwort assoziiert sind. Dabei dienen die 

Datenbanken „KEGG“, „BioCarta“, „Reactome“, „NetPath“, „INOH“ und „PID“ als Grundlage. 

Ein Signalweg ist überrepräsentiert, wenn von der für die Analyse ausgewählten 

Testgengruppe mehr Gene in einem durch InnateDB definierten Genset (hier: Signalweg) 

vorkommen als per Zufall erwartet wird. Die Signalweganalyse wurde innerhalb der 

ercDC_RCC-Signaturgene durchgeführt, alle anderen informativen Gene dienten als 
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Hintergrund. Die auf diese Weise ermittelten überrepräsentierten Signalwege (Top 20) sind 

in Tabelle 11-3 des Anhangs (Seite 174) aufgeführt. Einige der Signalwege, in denen die 

hochregulierten ercDC_RCC-Signaturgene angereichert waren, sind mit dem 

Komplementsystem, Lipidmetabolismus und der Modulation der extrazellulären Matrix 

(Kollagene, Integrine) assoziiert. Dies steht in Einklang mit der Beobachtung, dass ein 

deregulierter Lipidmetabolismus die Entwicklung des RCC begünstigt143. Auch kommt es bei 

vielen renalen inflammatorischen Erkrankungen zur Akkumulation von Immunkomplexen, die 

in einer starken Aktivierung des Komplements resultiert85,144. Die herabregulierten 

ercDC_RCC-Signaturgene waren, wie auch bei der GO-Term-Anreicherungsanalyse, 

hauptsächlich in Signalwegen überrepräsentiert, die mit Translationsprozessen assoziiert 

sind.  

Für die GSEA wurden im Gegensatz zu der GO-Term-Anreicherungsanalyse und der 

InnateDB basierten Analyse nicht nur ercDC_RCC-Signaturgene, sondern alle informativen 

Gene der ercDC_RCC & infMΦ_ascOvCa und der Kontrollgruppe verwendet. Die Gensets 

(hier: Signalwege) wurden der auf der GSEA Homepage zur Verfügung gestellten Datenbank 

„MSigDB“ entnommen. Verwendet wurden die Gensets aus den Signalwegdatenbanken 

„KEGG“, „Reactome“ und „BioCarta“. Mit Hilfe des GSEA-Algorithmus wird getestet, ob in 

definierten Testgensets signifikante Unterschiede in der Expression zweier 

Vergleichsgruppen bestehen. Die Stärke der Genexpressionsunterschiede zwischen den 

beiden Vergleichsgruppen innerhalb eines Testgensets wird durch den „enrichment score“ 

(ES) angezeigt (siehe Abbildung 11-5 im Anhang, Seite 175). Der normalisierte „enrichment 

score“ (NES) eignet sich für den Vergleich der Resultate verschiedener Gensets. Parallel mit 

dem NES wird auch ein p-Wert und eine FDR (engl.: false discovery rate) berechnet. Diese 

waren in unserem Fall meistens verhältnismäßig hoch (p > 0,05; FDR > 0,25), was bedeutet, 

dass die Unterschiede zwischen den beiden Vergleichsgruppen nicht so groß waren. Zur 

Beurteilung der Genexpressionsunterschiede wurde der NES verwendet, da dieser 

unabhängig von Signifikanzgrenzen eine Aussage zulässt. In der Tabelle 11-5 im Anhang 

(Seite 175) sind, basierend auf den NES aller verwendeten Signalwegdatenbanken, die Top 

20 der Gensets gezeigt, bei denen die ercDC_RCC & infMΦ_ascOvCa-Gruppe die stärkste 

Überexpression im Vergleich zur Kontrollgruppe zeigte. Wie auch bei der InnateDB basierten 

Analyse waren einige Gensets mit dem Lipidmetabolismus und dem Komplement assoziiert, 

wie z.B. „Lipid digestion mobilization and transport“, bei der die ercDC_RCC-Markergene 

PLTP und APOE zu den „leading edge“ Genen gehörten. „Leading edge“ Gene sind 

diejenigen Gene, die den größten Beitrag zum ES leisten (siehe Abbildung 11-5 im Anhang). 

Außerdem waren Gensets darunter, die an Prozessen der extrazellulären Matrix beteiligt 

sind, wie „Extracellular matrix organization“ und „ECM receptor interaction“. Auch das 

Genset „Systemic Lupus erythematosus“ befand sich unter den Top 20. Hier gehörten die in 

der Komplementkaskade involvierten ercDC_RCC-Markergene C2, C1QA und C1QB zu den 
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„leading edge“ Genen. Wie bereits bei der InnateDB basierten Analyse und der GO-Term-

Anreicherungsanalyse beobachtet, waren die Gensets, für welche die Kontrollgruppe eine 

starke Überexpression zeigte, hauptsächlich mit Transkriptions- und Translationsprozessen 

assoziiert. Sie sind in der Tabelle 11-5 (im Anhang) nicht aufgeführt.  

Weiterführend stellte sich die Frage, in welches funktionelle Netzwerk sich die ercDC_RCC-

Signatur- bzw. Markergene eingliedern lassen. Hierfür wurde das Programm GeneMANIA 

verwendet, das einzelne Gene aufgrund funktioneller Gemeinsamkeiten miteinander 

verknüpft. Das sich ergebende Netzwerk kann durch funktionell verwandte Gene erweitert 

werden, die durch das System anhand der Anzahl der Assoziationen mit den vorgegebenen 

Genen berechnet werden. Die einzelnen Gene werden basierend auf physikalischen und 

genetischen Interaktionen, Signalwegen, Koexpression, Kolokalisation, Ähnlichkeit von 

Proteindomänen und vorhergesagten funktionellen Interaktionen zwischen Genen bzw. 

Proteinen miteinander verbunden. Für die Kalkulation des Netzwerkes wurden die 

ercDC_RCC-Markergene verwendet, da die Anzahl der Signaturgene für das System zu 

groß war und das Netzwerk sonst unübersichtlich wäre. In Abbildung 7-15 (Seite 86) ist das 

Netzwerk der ercDC_RCC-Markergene und verwandter Gene gezeigt. Die Gene stellen 

dabei die Knoten dar und die Linien die sie verbindenden Verknüpfungen. Jede Linienfarbe 

ist mit einer Assoziationsquelle verknüpft, wobei die meisten Gene aufgrund von 

Koexpressionsdaten (lila) verbunden wurden. Die Länge der Linien gibt an, wie nahe 

verwandt die Gene miteinander sind. Die schwarzen Knotenpunkte kennzeichnen die 

Markergene, graue die durch das System ermittelten verwandten Gene. Ein grauer 

Knotenpunkt ist umso größer, je häufiger und enger die Verbindungen mit den Markergenen 

sind. Unter den verwandten Genen fanden sich MΦ-assoziierte Gene, wie CD14, CD163, 

CD206/MRC1 und CD16/FCGR3A. Sie sind durch eine gelbe Umrahmung hervorgehoben. 

Auch die beiden ercDC_RCC-Signaturgene, VSIG4 und HMOX1, gehörten zu den 

verwandten Genen. Sie kodieren für immuninhibierende, proangiogene Proteinprodukte.  

Um die bisher erarbeiteten Merkmale der ercDC_RCC-Markergene und der verwandten 

Gene im Zusammenhang zu betrachten, wurden sie auf das Schema eines mononukleären 

Phagozyten übertragen (Abbildung 7-16, Seite 87). Dabei wurde die zelluläre Lokalisation 

berücksichtigt und die Gene funktionell gruppiert (farblich hinterlegte Bereiche und 

Nummerierung). Die Proteine sind mit den entsprechenden Gensymbolen dargestellt, um zu 

verdeutlichen, dass die Ergebnisse aus der Genexpressionsanalyse hervorgingen. Rote 

Schrift bedeutet Hochregulation, blaue Schrift Herabregulation in ercDC_RCC gegenüber der 

Kontrollgruppe. Verwandte Gene sind durch (°) nach dem Gensymbol zu erkennen. Gene, 

die eine negative Auswirkung auf die zugeordnete Funktionsgruppe haben, sind mit (*) 

gekennzeichnet. In grau markiert sind wichtige Interaktionspartner, die aber nicht zu den 

ercDC_RCC-Markergenen gehören. Der Beitrag der einzelnen Gene zum Markergenprofil 

der ercDC_RCC (Centroid Schrumpfung, Differenz zum Mittelwert) sowie die Signifikanzen 
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und x-fachen Veränderungen gegenüber der Kontrollgruppe sind zusätzlich in Tabelle 7-4 

(Seite 88) aufgelistet. Insgesamt wurden die Markergene und verwandten Gene 13 

Funktionsgruppen zugeordnet: ① Lipidmetabolismus, ② Komplementsystem, ③ Stressant-

wort, ④ Transkription, ⑤ Endozytose und Antigenpräsentation, ⑥ Transport, ⑦ Bakterizide 

Aktivität, ⑧ Zytoskelett und Migration, ⑨ Zelladhäsion, ⑩ Pro/antiinflammatorische 

Immunantwort, ⑪ Angiogenese und Tumorinvasion, ⑫ T-Zell-Stimulation, ⑬ T-Zell-

Inhibition und Toleranz. 

Wie bereits in der GO-Term-Anreicherungsanalyse, InnateDB basierten Analyse und der 

GSEA beobachtet, waren sehr viele Markergene mit dem Lipidmetabolismus ① und dem 

Komplementsystem ② assoziiert. Alle an der Lipidumsetzung beteiligten Gene waren im 

Vergleich zur Kontrollgruppe hochreguliert, einige besitzen zudem antiinflammatorische 

Eigenschaften, wie z.B. APOE und PLTP, beides Targetgene des Transkriptionsfaktors LXR-

α (siehe Funktionsgruppe 4). Gene der Stressantwort (③; HMOX1, SEPP1, NUPR1) waren 

ebenfalls hochreguliert. Dies könnte durch das hypoxische und zytokinreiche 

inflammatorische Tumormilieu bedingt sein. So ist beschrieben, dass die Expression von 

HMOX1 u.a. durch NO und proinflammatorische Zytokine induziert wird145. Auch der 

antiinflammatorische Hämoglobinrezeptor CD163, der von ercDC_RCC exprimiert wird 

(siehe Abbildung 7-31B, Seite 116), kann die Expression von HMOX1 bewirken146. HMOX1 

inhibiert proinflammatorische Signalwege in DC während die IL-10-Sekretion bewahrt wird147. 

Somit kann die bekannte IL-10-Sekretion und die schwache IL-12-Sekretion der ercDC über 

die auf Transkriptebene beobachtete Hochregulation von HMOX1 erklärt werden. Auch die 

beobachtete Hochregulation der für Transkriptionsfaktoren kodierenden Gene MAF und 

NR1H3/LXRA ④ könnte zur Regulation von IL-10 und IL-12 beitragen. Beide haben eine 

antiinflammatorische Wirkung, MAF durch die Induktion von IL-10, LXR-α durch die Inhibition 

NFκB-induzierter proinflammatorischer Gene, wie z.B. IL-12148,149. Weiterhin stark vertreten 

waren Gene, die mit Funktionen der MΦ assoziiert sind, wie Endozytose und 

Antigenpräsentation ⑤, Transportvorgänge ⑥ und die Abtötung von Pathogenen 

(Bakterizide Aktivität ⑦). Unter den Markergenen waren auch viele Gene, die für 

zytoskelettale Proteine und Adhäsionsproteine kodieren (⑧, ⑨). Ein Teil davon (z.B. 

S100A12) ist mit proinflammatorischen Vorgängen assoziiert150. Interessanterweise waren 

unter den Markergenen aber auch solche, die mit antiinflammatorischen Funktionen 

assoziiert sind, IRAK3 und CRYAB (⑩)151,152 sowie beispielsweise PLTP und GPNMB153,154. 

Die starke Präsenz von proinflammatorischen als auch antiinflammatorischen Gengruppen 

legt den Schluss nahe, dass ercDC einen myeloischen Mischtyp darstellen, der sowohl pro- 

als auch antiinflammatorische Eigenschaften vereint. Solche Mischformen sind für renale MΦ 

im Mausmodell der Lupus-Nephritis beschrieben155.  
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Die Hochregulation von Genen innerhalb der Funktionsgruppe Angiogenese und 

Tumorinvasion ⑪ passt gut zu der Abstammung der ercDC aus Tumorgewebe. 

Hervorzuheben sind z.B. die Gene CCL8 und CCL18, deren Proteinprodukte bei der 

Rekrutierung von TAM eine Rolle spielen156. NRP1 kodiert für einen wichtigen 

proangiogenen Rezeptor, der für einen kontinuierlichen Influx von protumoralen MΦ in den 

Tumor sorgt157. Auch IGF1 und NRP2 kodieren für proangiogene Faktoren, wobei für beide 

aber auch eine T-Zell-stimulierende Wirkung beschrieben ist158,159,160 und sie daher auch zur 

Funktionsgruppe ⑫ gehören. Die Hochregulation von CXCL9, einem Gen, das für ein 

Chemokin mit primär antitumoralen Eigenschaften kodiert, passt zum bereits vorher 

beobachteten gemischten Bild der ercDC. Denn CXCL9 ist angiostatisch und antiinvasiv161 

und bewirkt durch Bindung an CXCR3 die Rekrutierung von IFN-γ-produzierenden TH1-

Zellen und CTL162,163. Diese Eigenschaften sind konsistent mit der beschriebenen reichlichen 

Präsenz von CXCR3+ TH1-Zellen im RCC164. Das gemischte Bild der ercDC bestätigte sich 

weiterhin, da unter den Markergenen neben Genen, die mit T-Zell-stimulierenden 

Eigenschaften assoziiert sind auch viele Gene mit T-Zell-inhibitorischen Eigenschaften zu 

finden waren. Zu der Funktionsgruppe T-Zell-Inhibition ⑬ gehören u.a. CD163, GPNMB und 

VSIG4, die in ercDC_RCC hochreguliert waren. VSIG4 ist in diesem Zusammenhang 

erwähnenswert, weil es für einen zur B7-Familie gehörenden Komplementrezeptor mit 

endozytotischen und koinhibitorischen Eigenschaften kodiert, der für die Aufrechterhaltung 

der T-Zell-Toleranz in peripheren Geweben wichtig ist165,166. Die Hochregulation könnte also 

am Tumor-„Immunescape“ mitbeteiligt sein. VSIG4 induziert außerdem die Sezernierung von 

protumoralem IL-8 und MMP-9167 und ist somit auf verschiedenen Ebenen tumorfördernd. 

Zusammenfassend zeigte die Verwandtschaftsanalyse, dass die ercDC_RCC den CD11cLO 

MΦ_Decidua und insbesondere den infMΦ_ascOvCa sehr ähnlich sind. Beide Zelltypen 

stimmten im Expressionsmuster der ercDC_RCC-Markergene sehr stark mit den 

ercDC_RCC überein. Bei den infMΦ_ascOvCa war die Ähnlichkeit sogar so groß, dass sie 

als ercDC_RCC klassifiziert wurden. Die anderen myeloischen Zelltypen aus den nicht-

lymphatischen Geweben (inklusive TAM-GIST) und dem Blut unterschieden sich dagegen 

deutlich im Expressionsmuster von den ercDC_RCC. Aus dem Markergenprofil lässt sich 

ableiten, dass die ercDC einen myeloischen Mischtyp darstellen, der pro- und 

antiinflammatorische sowie immunstimmulierende und immuninhibierende Eigenschaften 

vereint. Weiterhin deutet die beobachtete Anreicherung von Genen, die mit Wundheilung, 

Inflammation, ECM-Modulierung, Lipidmetabolismus oder dem Komplementsystem 

assoziiert sind, darauf hin, dass das Transkriptom der ercDC_RCC durch das Milieu des 

RCC geprägt ist, für das ein chronisch inflammatorisches Milieu, ein deregulierter 

Lipidmetabolismus und die Anreicherung von Komplementkomplexen beschrieben 

ist85,142,143,144.  
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Abbildung 7-15: Funktionelles Netzwerk der 
ercDC_RCC-Markergene. In schwarz sind die 
Markergene gekennzeichnet, in grau die durch das 
Programm GeneMANIA ermittelten verwandten Gene. Die 
Größe der grauen Knotenpunkte ist proportional zu der 
Anzahl und Nähe der Verbindungen mit den Markergenen. 
Die Assoziation der Gene wurde mit Hilfe verschiedener 
Assoziationsdaten (siehe Tabelle) ermittelt. Gene, die im 
Text diskutiert werden, sind gelb umrahmt.  

 

 

Assoziationsdaten Farbe Beitrag (%)  
Koexpression  lila 86,17 
vorhergesagte Interaktion grün 5,08 
Kolokalisation blau 5,07 
physikalische Interaktion grüngelb 2,54 
Signalwege rot 0,83 
gemeinsame 
Proteindomänen orange 0,28 

genetische Interaktion türkis 0,03 
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Abbildung 7-16: Funktion und Lokalisation der ercDC_RCC-Markergene in mononukleären Phagozyten. Die Gene wurden in 13 Funktionsgruppen 
(farbige Hinterlegung, Nummerierung) eingeteilt. Rot: Gene, die von ercDC_RCC im Vergleich zur Kontrollgruppe stärker exprimiert wurden; blau: 
herabregulierte Gene. Schwarz: nicht informatives, verwandtes Gen; grau: Gen, welches nicht zu den ercDC_RCC-Markergenen oder verwandten Genen 
gehört, aber aufgrund direkter Protein-Protein Interaktion ergänzt wurde. ° verwandtes Gen nach GeneMANIA; + verwandtes Gen, zu dem keine 
Expressionswerte vorlagen; * negative Auswirkung auf die angegebene Funktionsgruppe. Folgenden Genen konnte keine eindeutige Funktion in myeloischen 
Zellen zugeordnet werden: ANKRD36, MS4A4A, ACPP, GAL3ST4, IGSF6°, PLXDC1, CD4°, GRFA2° (siehe auch Tabelle 7-4).
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Tabelle 7-4: Fakten zur Expression und den Eigenschaften der ercDC_RCC-Markergene sowie 
verwandter Gene. Gezeigt ist der Beitrag der einzelnen Markergene zum charakteristischen 
Markergenprofil der ercDC_RCC (Differenz zum MW, „nearest shrunken centroids“ Methode), die 
Signifikanz (p-Wert) und die x-fache Veränderung (FC = engl.: fold change) der Gene gegenüber der 
Kontrollgruppe. Außerdem ist der Zell(sub)typ angegeben mit dem die Gene assoziiert sind. Die p-
Werte der Gene ohne signifikant differentielle Expression (p > 0,05) sind grün unterlegt. Die Gene sind 
in den jeweiligen Funktionsgruppen entsprechend der p-Werte (aufsteigend) angeordnet.  

Gensymbol/ 
alternat. Bez. 

Differenz 
zum MW 

p-Wert FC Weitere Funktionsgruppen 
Assoziierter 
Zell(sub)typ 

LIPIDMETABOLISMUS ① 
APOC1 0,083  0,00003 3,44 Angiogenese u. Tumorinvasion M2-MΦ, TAM 
ME1 0,140  0,00008 2,75   

PLTP 0,168  0,00019 4,00 
pro/antiinfl. Immunantwort, 
Angiogenese u. Tumorinvasion 

M2-MΦ, TAM 

FABP3 0,014  0,00059 2,91   

APOE 0,040  0,00068 3,53 
pro/antiinfl. Immunantwort,  
Angiogenese und Tumorinvasion 

M2-MΦ, TAM 

LIPA°   0,00459 1,62  M2-MΦ 
PLA2G7°   0,10167 0,87   
KOMPLEMENTSYSTEM ② 
C2 0,141  0,00008 2,74   
C1QA 0,051  0,00081 2,67   
CFP -0,282  0,00081 -2,53   
C1QB 0,018  0,00112 2,67   
SERPING1 0,048  0,00150 2,73   
C3AR1°   0,04161 1,90   
FCN1 -0,461  0,10462 -2,15   
C1QC°+         

STRESSANTWORT ③ 
SEPP1  0,194  0,00034 5,35  M2-MΦ, TAM 
NUPR1  0,142  0,00047 2,54   
HMOX1°   0,04047 1,60   
TRANSKRIPTION ④ 

NR1H3/LXRA°   0,00083 2,09 
Lipidmetabolismus, pro/antiinfl. 
Immunantwort 

 

MAF  0,003  0,00111 2,43  MΦ 
ENDOZYTOSE UND ANTIGENPRÄSENTATION ⑤ 
FOLR2 0,185  0,00003 2,62  M2-MΦ, TAM 
CD209/DC-SIGN 0,292  0,00012 2,63 Zelladhäsion (DC) 
FGR* -0,245  0,00059 -2,20   
SCAMP5 0,160  0,00149 1,56  MΦ 

CD163°   0,00207 2,88 
T-Zell-Inhibition und Toleranz, 
Stressantwort 

M2-MΦ 

LGMN 0,016  0,00288 2,95   
CD206/MRC1°   0,05368 1,98  MΦ 
AXL°   0,10866 1,65 pro/antiinfl. Immunantwort  
HLA-DPB1°   0,96735 -1,01   
FCGR3A/CD16°+        MΦ 

TRANSPORT ⑥ 
SLCO2B1 0,099  0,00027  3,63  M2-MΦ 
ABCC5 0,020  0,00031  1,79  M2-MΦ 
SLC38A6 0,071  0,00036  2,22  M2-MΦ 
SLC7A8 0,008  0,00042  3,10  MΦ 
LYST -0,013  0,00459 -2,11   
BAKTERIZIDE AKTIVITÄT ⑦ 
IL2RA 0,100  0,00112 2,24   
PLAC8 -0,088  0,01792 -2,42  MΦ 
CD14°   0,02409 1,96 pro/antiinfl. Immunantwort MΦ 
ZYTOSKELETT UND MIGRATION ⑧ 
SDC3 0,121  0,00006 2,35   
FAM65B -0,123  0,00034 -2,35   
RHOBTB3 0,030  0,00109 2,20   
ARHGAP12 0,042  0,00112 1,77   
TES -0,006  0,00330 -1,21   
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CCDC88C -0,154  0,00760 -1,79   
CDC42EP3 -0,078  0,01040 -1,87   
CAPN2 -0,056  0,01213 -1,67   
FLNA -0,037  0,01475 -1,67   
S100A12 -0,157  0,25430 -1,39 pro/antiinfl. Immunantwort  
TYROBP/DAP12°+   NI    
ZELLADHÄSION ⑨ 
DAB2 0,031  0,00059 2,85 pro/antiinfl. Immunantwort  
SIGLEC1/CD169 0,073  0,00070 2,74 pro/antiinfl. Immunantwort MΦ 
FYN -0,025  0,00109 -2,10   
EMR3 -0,071  0,00170 -2,76   
NEDD9 -0,018  0,00298 -1,84   
VCAM1°   0,04716 1,64   
PRO/ANTIINFL. IMMUNANTWORT ⑩ 
CRYAB 0,050  0,00083  2,11   
IRAK3 -0,045  0,04155 -1,79  M2-MΦ 
ANGIOGENESE UND TUMORINVASION ⑪ 
CCL8  0,086  0,00012  3,88  TAM 

GPNMB  0,127  0,00031  4,36 
pro/antiinfl. Immunantwort, 
T-Zell-Inhibition und Toleranz 

TAM 

NRP1  0,088  0,00042  3,31 Zytoskelett und Migration  
CCL18  0,080  0,00076  3,47 Zytoskelett und Migration TAM 
ADAMDEC1  0,026  0,00077  3,31  TAM 

IGF1 0,259  0,00491 2,34 
Zytoskelett u. Migration,  
T-Zell-Stimulation 

 

CXCL9*  0,011  0,01704  3,61 T-Zell-Stimulation  
T-ZELL-STIMULATION ⑫ 
NRP2 0,023  0,00034 2,83 Angiogenese u. Tumorinvasion DC 
CYTIP -0,067  0,00126 -1,78   
CD52 -0,228  0,00683 -1,69   
T-ZELL-INHIBITION	⑬ 
LILRB5/CD85C°   0,00044 1,96   
CD48 -0,023  0,00375 -1,81   

VSIG4°   0,00433 2,40 
Endozytose u. Antigenpräsentation, 
Angiogenese u. Tumorinvasion 

 

LILRA2/ILT1 -0,058  0,05806 -1,65   
LILRA1/CD85I -0,084  0,06103 -1,55   
CD5L°   0,78537 1,07  MΦ 
KEINE DEFINIERTE FUNKTION IN MYELOISCHEN ZELLEN
GAL3ST4 0,073  0,00006 2,67   
MS4A4A 0,024  0,00193 2,32  M2-MΦ 
PLXDC1 0,200  0,05613 1,37   
ACPP -0,040  0,10057 -1,30   
GFRA2°   0,17368 1,29   
ANKRD36 0,038  0,19111 1,28   
IGSF6°   0,39966 -1,24  MΦ 
CD4°   0,89129 1,36   

° verwandte Gene; + verwandte Gene, zu denen keine Expressions- und p-Werte vorliegen, da sie auf 
einem der für die Analyse verwendeten Arrays nicht vorhanden waren bzw. nicht informativ waren 
(TYROBP); * Gene mit negativer Auswirkung auf die jeweilige Funktionsgruppe; NI: nicht informativ 
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7.5.5 Vergleich der ercDC aus dem RCC mit in vitro generierten ercDC auf 
Transkriptebene 

Die durchflusszytometrische Analyse der Kostimulationsmoleküle CD80, CD86 und CD40 

sowie des MHC-II-Moleküls HLA-DR lieferte erste Hinweise, dass die in vitro generierten 

ercDC denen aus dem RCC-Gewebe ähnlich sein könnten. Mit den in vitro generierten 

Zellen können kontrollierte und umfangreiche Untersuchungen durchgeführt werden, weil sie 

gezielt unter definierten Bedingungen in relativ großer Menge hergestellt werden können. 

Dagegen sind ercDC aus dem RCC-Gewebe nur in limitierter Zellzahl verfügbar und 

aufgrund der Herkunft von Patientenmaterial heterogen. Es ist deshalb erstrebenswert, ein 

In-vitro-Modell zu entwickeln, das die In-vivo-Situation möglichst gut widerspiegelt. Um 

festzustellen inwieweit die in vitro generierten ercDC mit den ercDC aus dem RCC 

vergleichbar sind, wurde auch das Transkriptom der in vitro generierten ercDC untersucht. 

Vergleichend dazu wurden cDC (IL-4 plus GM-CSF) sowie M1- und M2-MΦ, die nach dem 

Protokoll von Martinez et al.103 aus Monozyten generiert wurden, analysiert (Tabelle 7-5, 

Seite 91). Die Genexpressionsprofile der M1- und M2-MΦ wurden, wie von Murray et al.168 

kürzlich vorgeschlagen, als Referenzen verwendet. Außerdem wurden durch Behandlung 

der Monozyten mit GM-CSF MΦ generiert, die laut Literatur M1-ähnlich sein sollen169.  

Jeder Zelltyp wurde aus Monozyten von 15 verschiedenen Spendern generiert, um einen 

möglichst guten biologischen Querschitt zu erlangen. Von jedem Zelltyp pro Spender wurde 

die RNA gewonnen. Anschließend wurde die RNA des gleichen Zelltyps von jeweils 5 

Spendern gepoolt, so dass drei biologische Replikate pro Zelltyp entstanden (Sp. Pool 1-3 in 

Tabelle 7-5). Diese Vorgehensweise wurde in Anlehnung an Literaturdaten durchgeführt und 

hatte zum Ziel, die biologische Variabilität der humanen Spender auszugleichen170. Die RNA-

Qualität der vereinigten Proben wurde überprüft, die RIN-Werte waren gut, sie lagen 

zwischen 7,8 und 9,1. Die Informationen zu den in der Genexpressionsanalyse eingesetzten 

in vitro generierten Zellen sind in Tabelle 7-5 zusammengefasst.  
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Tabelle 7-5: Übersicht über die in der Genexpressionsanalyse eingesetzten in vitro generierten 
Zelltypen. Aufgeführt ist die Bezeichnung der Zellen für die Genexpressionsanalyse, die 
Kultivierungsbedingung für die Generierung aus Monozyten, die Bezeichnung der Replikate sowie 
deren RNA RIN-Werte.  

Zelltyp Bezeichnung Kultivierungsbedingung Replikate RNA RIN 

cDC cDC_in vitro IL-4, GM-CSF 

Sp. Pool 1 8,3 

Sp. Pool 2 8,1 

Sp. Pool 3 8,8 

ercDC ercDC_in vitro RCC-26-CM 

Sp. Pool 1 7,8 

Sp. Pool 2 7,8 

Sp. Pool 3 8,1 

GM-CSF-MΦ GM-CSF-MΦ_in vitro GM-CSF 

Sp. Pool 1 9,6 

Sp. Pool 2 9,1 

Sp. Pool 3 8,9 

M1-MΦ  M1-MΦ_in vitro M-CSF, IFN-γ, LPS 
(nach Martinez et al.103) 

Sp. Pool 1 8,2 

Sp. Pool 2 8,5 

Sp. Pool 3 8,7 

M2-MΦ M2-MΦ_in vitro M-CSF, IL-4 
(nach Martinez et al.103) 

Sp. Pool 1 8,7 

Sp. Pool 2 8,8 

Sp. Pool 3 8,8 
 

 

Um die Ähnlichkeit der ercDC_in vitro mit den ercDC_RCC zu bestimmen, wurde im ersten 

Schritt eine Klassifizierung mit Hilfe der „nearest shrunken centroids“ Methode durchgeführt. 

Die ercDC_in vitro wurden anhand der 61 Markergene nicht als ercDC_RCC klassifiziert. Die 

Visualisierung der Genexpressionsstärken der Markergene in einer Heatmap zeigte jedoch, 

dass das Genexpressionsmuster der ercDC_in vitro mit dem der ercDC_RCC über weite 

Bereiche übereinstimmte (Abbildung 7-17, Seite 92, grauer Rahmen und gelbe Markierung).  
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Abbildung 7-17: Expression der ercDC_RCC-Markergene in in vitro generierten ercDC. Die 
Heatmap zeigt die relative Expression (Z-Score) der 61 Markergene und das Clustering der Zelltypen. 
Die ercDC_RCC und ercDC_in vitro sind gelb markiert und deren ähnliches Genexpressionsmuster 
durch einen grauen Rahmen gekennzeichnet.  
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In einem zweiten Schritt wurde geprüft, wie ähnlich die ercDC_in vitro den ercDC_RCC in 

der Expression der Signaturgene sind. Hierfür wurde die relative Expression der 

ercDC_RCC-Signaturgene in einer komprimierten Heatmap dargestellt und die Zelltypen 

entsprechend geclustert (Abbildung 7-18). Für den Vergleich wurden zusätzlich zu den 

beiden ercDC-Typen auch die anderen in vitro generierten Zelltypen, cDC, M1-MΦ, M2-MΦ 

und GM-CSF-MΦ sowie die Monozyten, CD1c+ DC und slanDC aus dem Blut verwendet. Die 

letzten drei Zelltypen gehörten der Kontrollgruppe bei der Ermittlung der ercDC_RCC-

Signaturgene an. Sie könnten daher potentiell eine zu den ercDC_RCC gegensätzliche 

Genexpression zeigen und wurden als Kontrolle eingeschlossen. Das aus der hierarchischen 

Clusteranalyse resultierende Dendrogramm (Abbildung 7-18) gliederte die Zelltypen in zwei 

Großcluster, 1 und 2, wobei Großcluster 1 alle Zelltypen aus dem Blut umfasste und 

Großcluster 2 alle in vitro generierten Zelltypen sowie die ercDC_RCC. Innerhalb des 

Großclusters 2 waren die ercDC_in vitro den ercDC_RCC am ähnlichsten (grauer Rahmen, 

gelbe Markierung), sie exprimierten viele der Signaturgene übereinstimmend. M2-MΦ_in 

vitro lagen in einem zu den beiden ercDC-Typen benachbarten Arm. M1-MΦ_in vitro bildeten 

einen eigenen, separaten Arm.  

 

 

 

 

 

 

 

 

Abbildung 7-18: Expression der ercDC_RCC-Signaturgene 
in in vitro generierten ercDC. Die Heatmap zeigt die relative 
Expression (Z-Score) der ercDC_RCC-Signaturgene sowie das 
Clustering der Zelltypen. Die Zelltypen gruppierten sich in zwei 
Großcluster, 1 und 2. Die ercDC_in vitro und ercDC_RCC 
bildeten ein Subcluster (grauer Rahmen, gelbe Markierung). 
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Bei der durchflusszytometrischen Oberflächenanalyse hatten sich Parallelen in der 

Expression der Kostimulations- und MHC-II-Moleküle zwischen ercDC_in vitro und 

ercDC_RCC gezeigt. Dies wurde nun auch auf Transkriptebene untersucht und dazu für 

jeden der analysierten Marker die linearen Expressionswerte in einem Stripchart-

Balkendiagramm dargestellt (Abbildung 7-19). Die cDC_in vitro wurden zum Vergleich 

miteinbezogen.  

Die Transkriptlevel von CD80 waren bei ercDC_in vitro und cDC_in vitro vergleichbar, die 

ercDC_RCC exprimierten signifikant mehr CD80 als die beiden In-vitro-Zelltypen. CD86 

wurde von allen Zelltypen stärker exprimiert als CD80, bei cDC_in vitro war das 

Transkriptlevel analog zur durchflusszytometrischen Analyse signifikant am höchsten. CD40 

wurde insgesamt von allen Zelltypen weniger stark transkribiert als CD86, wobei die 

Transkriptlevel bei den In-vitro-Zelltypen etwas niedriger waren als bei den ercDC_RCC. Die 

Transkriptlevel von HLA-DR waren bei allen Zelltypen vergleichbar hoch (Abbildung 7-19). 

Zusammenfassend korrespondierten die Transkriptlevel gut mit dem FACS-basierten 

Proteinmuster. Es bestätigte sich, dass ercDC_in vitro und auch ercDC_RCC die 

aktivierenden Marker, mit Ausnahme von CD86, mindestens genauso stark exprimieren wie 

die cDC_in vitro.  

 

Abbildung 7-19: Transkriptlevel der für Kostimulations- bzw. MHC-II-Moleküle kodieren Gene 
CD80, CD86, CD40 und HLA-DRA in in vitro generierten und aus dem RCC-Gewebe gewonnen 
ercDC. Gezeigt sind die normalisierten linearen Expressionswerte der Gene. Die Balken zeigen den 
Median an. Ein Symbol entspricht einem Replikat des jeweiligen Zelltyps. Die Signifikanz wurde mit 
Hilfe des gepaarten Student’s t-Test (cDC_in vitro und ercDC_in vitro) bzw. bei ungepaarten Proben 
(cDC_in vitro und ercDC_RCC) mit dem Welch’s t-Test ermittelt. 

Da ercDC im RCC-Gewebe häufig in engem Kontakt mit T-Zellen gefunden wurden101, ist 

anzunehmen, dass eine wechselseitige Beeinflussung stattfinden kann. Meine Daten 

zeigten, dass ercDC_in vitro eine schlechte Kapazität zur T-Zell-Proliferationsstimulation 
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haben. In In-vitro-Analysen waren neben den Kostimulations- und MHC-Molekülen auch die 

Adhäsionsmoleküle LFA-1, ICAM-1 und CD24 sowie das Aktin-bündelnde Protein Fascin 

untersucht worden, um eine mögliche Ursache zu finden. Diese Moleküle wurden nun auch 

auf Transkriptebene analysiert und dabei den ercDC_RCC gegenüber gestellt (Abbildung 

7-20A). Wie bereits die FACS-Daten gezeigt hatten, wurde ITGB2/LFA-1 auch auf RNA-

Ebene von cDC_in vitro etwas stärker exprimiert als von ercDC_in vitro. Die Transkriptlevel 

von ICAM1 waren bei cDC_in vitro und ercDC_in vitro vergleichbar, entgegen der höheren 

Positivität bei cDC_in vitro im FACS (siehe Abbildung 7-5, Seite 62). Die ercDC_RCC 

exprimierten ITGB2/LFA-1 schwächer und ICAM1 stärker als die beiden In-vitro-Zelltypen. 

Die CD24-Transkriptlevel waren in allen Zelltypen niedrig, wobei die der cDC_in vitro und 

ercDC_in vitro ähnlich, und das der ercDC_RCC etwas höher war (Abbildung 7-20A).  

Das Transkriptlevel von Fascin (kodiert durch das Gen FSCN1) war bei ercDC_in vitro 

signifikant niedriger als bei cDC_in vitro (Abbildung 7-20B). Dies bestätigt den Befund auf 

Proteinebene (siehe Abbildung 7-5, Seite 62). Auch die ercDC_RCC exprimierten signifikant 

weniger FSCN1 als die cDC_in vitro und sind somit in diesem Mangel mit den ercDC_in vitro 

vergleichbar.  

 

Abbildung 7-20: Transkriptlevel der für Adhäsionsmoleküle kodierenden Gene LFA-1, ICAM1 
und CD24 sowie des für Fascin kodierenden Gens FSCN1 in in vitro generierten und aus RCC-
Gewebe gewonnen ercDC. Gezeigt sind die normalisierten linearen Expressionswerte der für 
Integrine (LFA-1), Integrinbindeproteine (ICAM1) und Glykoproteine (CD24) (A) sowie zytoskelettales 
Fascin (FSCN1) (B) kodierenden Gene. Die Balken zeigen den Median an. Ein Symbol entspricht 
einem Replikat des jeweiligen Zelltyps. Die Signifikanz wurde mit Hilfe des gepaarten Student’s t-Test 
(cDC_in vitro und ercDC_in vitro) bzw. bei ungepaarten Proben (cDC_in vitro und ercDC_RCC) mit 
dem Welch’s t-Test ermittelt. 

Mit Hilfe der Transkriptomdaten wurde zusätzlich die Expression von ICAM3, VCAM1 und 

CD44 betrachtet (Abbildung 7-21, Seite 96), die in der durchflusszytometrischen Analyse 

nicht bestimmt worden waren, aber eine wichtige Rolle beim Kontakt und der Stimulation der 
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T-Zellen spielen. Das Transkriptlevel von ICAM3 war bei cDC_in vitro signifikant höher als 

bei den beiden ercDC-Typen, die vergleichbare Level besaßen. VCAM1 wurde insgesamt 

vergleichsweise schwach exprimiert, wobei die cDC_in vitro und die ercDC_in vitro ähnlich 

viel und die ercDC_RCC etwas mehr exprimierten. CD44 kodiert, wie CD24, für ein 

Glykoprotein, das für die Stabilität der immunologischen Synapse und für die Induktion der T-

Zell-Proliferation essentiell ist171. Es ist beschrieben, dass die gezielte Blockade von CD44 

auf DC deren Kapazität zur T-Zell-Proliferation inhibiert und in T-Zell-Apoptose resultiert172. 

CD44 wurde von allen Zelltypen verhältnismäßig stark exprimiert, von ercDC_in vitro und 

ercDC_RCC schwächer als von cDC_in vitro.  

 

Abbildung 7-21: Transkriptlevel der für Adhäsionsmoleküle kodierenden Gene ICAM3, VCAM1 
und CD44 in in vitro generierten und aus RCC-Gewebe gewonnen ercDC. Gezeigt sind die 
normalisierten linearen Expressionswerte der Gene. Die Balken zeigen den Median an. Ein Symbol 
entspricht einem Replikat des jeweiligen Zelltyps. Die Signifikanz wurde mit Hilfe des gepaarten 
Student’s t-Test (cDC_in vitro und ercDC_in vitro) bzw. bei ungepaarten Proben (cDC_in vitro und 
ercDC_RCC) mit dem Welch’s t-Test ermittelt. 

Es ist festzuhalten, dass sich die durchflusszytometrisch bestimmte Oberflächenexpression 

der Adhäsionsmoleküle LFA-1, ICAM1 und CD24 auch auf Transkriptebene bestätigte. Die 

ercDC_in vitro und die ercDC_RCC zeigten bei diesen Molekülen keine besonders großen 

Parallelen, während sie in den Transkriptleveln von ICAM3, CD44 sowie FSCN1 

übereinstimmten. Beide ercDC-Typen exprimierten ICAM3, CD44 und FSCN1 weniger stark 

als die cDC_in vitro.  

Eine Auswahl inhibitorischer Moleküle, die potentiell für die schlechte T-Zell-

Stimulationskapazität verantwortlich sein könnten, wurde bereits durchflusszytometrisch 

analysiert. Dabei wurde PD-L1 von ercDC_in vitro schwächer, CD48 stärker und ILT4 

genauso stark wie von cDC_in vitro exprimiert (Abbildung 7-6, Seite 63). Für PD-L1 und 

CD48 bestätigten sich diese Beobachtungen auch auf Transkriptebene (Abbildung 7-22A, 

Seite 97). ILT4-Transkript wurde im Gegensatz zur durchflusszytometrischen Analyse von 
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ercDC_in vitro signifikant stärker als von cDC_in vitro exprimiert. Ein Vergleich der ercDC_in 

vitro mit den ercDC_RCC zeigte, dass das PD-L1-Transkriptlevel der ercDC_RCC höher war 

als das der ercDC_in vitro, etwa so hoch wie das der cDC_in vitro. PD-L2 zeigte ein 

vergleichbares Expressionsmuster wie PD-L1 (nicht gezeigt). Wie die ercDC_in vitro hatten 

auch die ercDC_RCC höhere Transkriptlevel von CD48 und ILT4 als die cDC_in vitro.  

Weiterführend wurde die Expression von VSIG4 vergleichend analysiert, welches durch die 

Genexpressionsanalyse als Gen, das mit T-Zell-Inhibition assoziiert ist, auffiel. VSIG4 wurde 

von beiden ercDC-Typen signifikant stärker exprimiert als von cDC_in vitro, die nur eine sehr 

schwache Expression zeigten (Abbildung 7-22B). 

 

Abbildung 7-22: Transkriptlevel der für inhibitorische Oberflächenmoleküle kodierenden Gene 
PD-L1, CD48, ILT4 und VSIG4 in in vitro generierten und aus RCC-Gewebe gewonnenen ercDC. 
Gezeigt sind die normalisierten linearen Expressionswerte der inhibitorischen Gene PD-L1, CD48 und 
ILT4, deren Proteinexpression auch mittels FACS getestet wurde (A) sowie von VSIG4 (B). Die 
Balken zeigen den Median an. Ein Symbol entspricht einem Replikat des jeweiligen Zelltyps. Die 
Signifikanz wurde mit Hilfe des gepaarten Student’s t-Test (cDC_in vitro und ercDC_in vitro) bzw. bei 
ungepaarten Proben (cDC_in vitro und ercDC_RCC) mit dem Welch’s t-Test ermittelt. 

Hinsichtlich der Fragestellung, inwieweit die ercDC_in vitro mit den ercDC_RCC vergleichbar 

sind und sich damit als Modellsystem für die ercDC_RCC eignen, lässt sich festhalten, dass 

sich die durchflusszytometrisch ermittelte Ähnlichkeit der Protein-Expressionsmuster auch 

auf Transkriptebene bestätigte. Die ercDC_in vitro zeigten Parallelen in der Expression der 

ercDC_RCC-Marker- und Signaturgene sowie Parallelen in der Expression von 

Oberflächenmarkern, insbesondere bei Kostimulationsmolekülen und HLA-DR, aber auch bei 

den Transkriptleveln von ICAM3, CD44 und FSCN1 sowie ILT4 und VSIG4. Die im Vergleich 

zu cDC_in vitro stark reduzierte Expression von ICAM3, CD44 und FSCN1 sowie die im 

Vergleich zu cDC_in vitro stärkere Expression von CD48, ILT4 und VSIG4 könnte eine 

Ursache für die schwache T-Zell-Proliferationsinduktion der ercDC_in vitro sein. Die 

Oberflächenexpression von ICAM3, CD44 und VSIG4 muss weiterführend 
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durchflusszytometrisch bestätigt werden. Aufgrund der übereinstimmenden Protein- bzw. 

Genexpression der ercDC_RCC und ercDC_in vitro kann vermutet werden, dass auch die 

ercDC_RCC eine schlechte T-Zell-Stimulationsfähigkeit besitzen könnten.  

 

7.5.6 Positionierung der ercDC im MPS-Kontinuum mit Hilfe Makrophagen- 
und DC-assoziierter Marker 

Anhand der Ergebnisse der phänotypischen und funktionellen Charakterisierung konnten die 

ercDC weder eindeutig als DC noch als MΦ eingeordnet werden. Sie exprimierten den DC-

Marker CD209/DC-SIGN zusammen mit den MΦ-Markern CD14 und CD163. Die 

Kostimulationsmoleküle CD80, CD86 und CD40, bisher eher DC-assoziierte Marker, 

exprimierten sie gut, ebenso HLA-DR. Während sie eine zentrale DC-Funktion, die 

Antigenkreuzpräsentation, beherrschten, induzierten sie im Vergleich zu cDC nur eine 

schwache Proliferation naiver T-Zellen. Auf Transkriptebene waren unter den ercDC_RCC-

Marker- und Signaturgenen viele MΦ-assoziierte Gene, wie CD14, CD163, CD206/MRC1, 

SEPP1 und CD16/FCGR3A. Die Koexpression von bisher als MΦ- bzw. DC-assoziiert 

betrachteter Marker passt zur aktuellen Debatte, ob eine klare Abgrenzung von DC und MΦ, 

insbesondere in nicht-lymphatischen Geweben, überhaupt möglich ist, oder vielmehr ein 

Kontinuum myeloischer Zelltypen innerhalb des MPS existiert, deren Differenzierungsstatus 

sehr stark durch regionale Gewebemilieufaktoren bestimmt wird12. Im murinen System sind 

die Zelltypen des MPS-Kontinuums mittlerweile gut beschrieben173,174, während die 

Datenlage für humane Zelltypen noch spärlich ist.  

Die Gruppe um Gwendalyn Randolph und Emmanuel Gautier sowie Jennifer Miller hat in 

Zusammenarbeit mit dem Konsortium des „Immunologischen Genom (ImmGen) Projektes“ 

eine umfassende Analyse der Genexpression und -regulation muriner DC und MΦ aus 

peripheren Geweben durchgeführt175,176. Aus dem Vergleich der Transkriptome 

verschiedener DC- und MΦ-Subtypen wurde eine Liste von 39 murinen MΦ-Kerngenen 

(Gautier et al.175) und 24 DC-Kerngenen (Miller et al.176) erstellt. Xue et al.112 haben die 

murinen Listen erweitert, auf ihre humanen Daten angewendet und entsprechende 

Kerngenlisten für das humane System erstellt (Tabelle 7-6, Seite 99). Die humane MΦ-

Kerngenliste umfasste 40 Gene, die DC-Kerngenliste 35 Gene. Sie teilten die Kerngene 

jeweils in drei Gruppen ein: Der ersten Gruppe gehörten Gene an, deren differentielle 

Expression zwischen MΦ und DC nicht nur im murinen, sondern auch im humanen System 

besteht. Gruppe zwei beinhaltete Gene, die bei Behandlung der MΦ bzw. DC mit 

spezifischen aktivierenden Stimuli nicht mehr differentiell exprimiert werden, und in der 

dritten Gruppe befanden sich Gene, die im humanen System nicht differentiell exprimiert 

wurden.  
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Xue et al. postulierten ferner, dass der Nachweis der Oberflächenmoleküle CD14, MerTK, 

CD64/FcγRI, CD32/FcγRII und CD13/ANPEP mittels Durchflusszytometrie geeignet ist, um 

MΦ von DC sowohl im humanen als auch im murinen System voneinander zu unterscheiden. 

CD14 ist ein MΦ-assoziierter PRR (engl.: pattern recognition receptor) mit hoher Spezifität 

für LPS177, MerTK ein Rezeptor für apoptotische Zellen, der v.a. von antiinflammatorischen 

M2c-MΦ exprimiert wird178. Der IgG-Rezeptor CD64/FcγRI wird hauptsächlich von M1-MΦ 

exprimiert, CD32/FcγRII von M2-MΦ179. CD13/ANPEP ist ein endozytotischer Rezeptor, der 

insbesondere auf kreuzpräsentierenden DC zu finden ist180.  

Tabelle 7-6: Humane Makrophagen- und DC-Kerngene nach Xue et al.112. Gezeigt ist jeweils das 
Gensymbol, die Angehörigkeit zum informativen Datensatz (Info.) und die Funktion des Proteins. lila: 
ercDC_RCC-Signaturgen; Fettdruck: ercDC_RCC-Markergen 

MΦ-Kerngene DC-Kerngene 
Gensymbol/ 
alternat. Bez. Info. Funktion Protein Gensymbol/ 

alternat. Bez. Info. Funktion Protein 

Gruppe 1  Gruppe 1 
CD14 ja PRR für LPS ADAM19 ja Migration, Adhäsion 
PLD3 ja Phospholipase CCR7 ja Chemokinrezeptor 

CAMK1 ja Proteinkinase TRAF1 ja TNF-α 
Signaltransduktion 

TBXAS1 ja Monooxygenase ZBTB46 nein Transkriptionsfaktor 
CD114/CSF3R ja CSF3-Rezeptor GPR132 ja oxFS-Rezeptor 
PLOD1 ja Lysyl-Hydroxylase CD13/ANPEP ja endozytot. Rezeptor 

CTSD ja lysosomale  
Cysteinprotease SLAMF7 ja antiinflammatorisch 

CD32/FCGR2A ja IgG-Rezeptor RAB30 ja Vesikeltransport 
COMT nein Methyltransferase RUNX3 ja Transkriptionsfaktor 
FGD4 ja Aktin-Bindeprotein Gruppe 2 
Gruppe 2 SPINT2 ja Serinproteaseinhibitor 

MERTK ja Rezeptortyrosinkinase P2RY10 ja GPR für Purin, 
Pyrimidin 

PLA2G15 ja Lysophospholipase KMO ja Monooxygenase 
CD64/FCGR1A ja IgG-Rezeptor HLA-DQB2 nein Antigenpräsentation  

TLR7 ja PRR für virale RNA CIITA ja 
positiver Regulator 
von MHC-II-
Molekülen 

PECR ja Reduktase GPR68 ja pH-Homöostase 

TSPAN14 ja Signaltransduktion FLT3 ja Wachstumsfaktor-
rezeptor 

DRAM2 ja Apoptoseinduktion CD26/DPP4 ja  Serinexopeptidase 

TLR4 ja PRR für LPS CBFA2T3 nein Repression der 
Transkription 

TPP1 ja lysosomale Protease BCL11A ja Transkriptionsfaktor 

PCYOX1 ja Oxidase ASS1 ja Argininosuccinat-
synthase 

DOK3 ja Adaptorprotein JAK2 ja Signaltransduktion 
TOM1 ja Vesikeltransport Gruppe 3 
BLVRB ja Oxidoreduktase HLA-B nein Antigenpräsentation 
MR1 ja Antigenpräsentation CD117/KIT ja MGF-Rezeptor 
GLUL ja Glutaminsynthetase HLA-DRB1 nein Antigenpräsentation 
ARSG nein lysosomale Sulfatase TBC1D8 ja GTPase Aktivator 
MYO7A ja Aktin-Bindeprotein CNN2 ja Aktin-Bindeprotein 
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PTPLAD2 ja FS-Dehydratase BRI3BP ja p53-Stabilisator 
Gruppe 3 GPR114 nein Adhäsion 
CD164 ja Adhäsionsrezeptor SEPT6 ja GTPase 

CTSL2 nein lysosomale  
Cysteinproteinase NAPSA ja Aspartatproteinase 

FER ja Zelladhäsion  PSTPIP1 ja WAS-Regulator 
C10orf128 nein nicht bekannt HLA-DMB ja Antigenpräsentation 
LAMP2 ja lysosomales Protein AMICA1 ja Adhäsionsmolekül 
TCN2 ja Transportprotein FGL2 ja Prokoagulant 
NLN ja Metallopeptidase GPR82 ja nicht bekannt 
PLA2G4A ja Phospholipase 

 
SQRDL ja Sulfidreduktase 
SEPP1 ja Antioxidans 
SLC48A1 ja Hämtransport 
ABCA1 ja Cholesteroltransport  

FS: Fettsäuren; GPR: G-Protein-gekoppelter Rezeptor; GTP: Guanosin-Triphosphat; MGF: engl.: 
mast cell growth factor; oxFS: oxidierte Fettsäuren; WAS: Wiskott-Aldrich Syndrom 

 

7.5.6.1 Durchflusszytometrische Analyse der postulierten Marker zur 
Unterscheidung von Makrophagen und DC 

Die von Xue et al.112 zur Unterscheidung von MΦ und DC postulierten Oberflächenmarker 

CD14, MerTK und CD64/FcγRI wurden auf den ercDC_RCC (rote Linie), MΦ_RCC 

(schwarze Linie), in vitro generierten ercDC (braune Linie) sowie cDC_in vitro (blaue Linie), 

die als DC-Positivkontrolle verwendet wurden, getestet. M1-MΦ_in vitro (orange Linie) und 

M2-MΦ_in vitro (grüne Linie) dienten als MΦ-Positivkontrolle (Abbildung 7-23, Seite 101).  

CD14 wurde von den MΦ-Positivkontrollen stark exprimiert, von cDC_in vitro nur schwach. 

Die ercDC_in vitro exprimierten CD14 sogar stärker als die MΦ-Positivkontrollen, 

ercDC_RCC besaßen ebenfalls mehr CD14 als MΦ_RCC (ΔMFI 8087 vs. 4766). CD14 war 

dementsprechend zur Unterscheidung von MΦ und DC geeignet. MerTK dagegen war auf 

allen in vitro generierten Zelltypen, auch den cDC_in vitro, nachweisbar und unterschied 

somit nicht zwischen MΦ und DC. Von den beiden Ex-vivo-Zelltypen exprimierten 

ercDC_RCC den Marker MerTK stärker als die MΦ_RCC. CD64/FcγRI wurde von M1-MΦ_in 

vitro (ΔMFI 2872) und M2-MΦ_in vitro (ΔMFI 1754) stark exprimiert, von den cDC_in vitro 

nur schwach (ΔMFI 146) und erwies sich somit zur Unterscheidung geeignet. Die ercDC_in 

vitro exprimierten CD64/FcγRI sehr stark (ΔMFI 2721), vergleichbar mit M1_MΦ_in vitro. 

CD64/FcγRI wurde auf ercDC_RCC und MΦ_RCC nicht gemessen.  

Zusammenfassend ist festzuhalten, dass die Marker CD14 und CD64/FcγRI geeignet waren, 

um MΦ und DC im FACS zu unterscheiden. MerTK war dagegen nicht geeignet, weil es 

auch von cDC_in vitro exprimiert wurde. Da ercDC_in vitro und ercDC_RCC CD14 und 

CD64/FcγRI exprimierten, würden sie nach diesem Kriterium als MΦ eingestuft werden.  
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Abbildung 7-23: Durchflusszytometrische Analyse der von Xue et al.112 postulierten Marker zur 
Unterscheidung von Makrophagen und DC. Fluoreszenzintensitäten der Oberflächenmarker CD14, 
MerTK und CD64/FcγRI auf cDC_in vitro (blaue Linie), M1-MΦ_in vitro (orange Linie), M2-MΦ_in vitro 
(grüne Linie), ercDC_in vitro (braune Linie), MΦ_RCC (graue Linie) und ercDC_RCC (rote Linie). In 
grau gestrichelter Linie ist die Kontrolle, L929-CD40L-Zellen, dargestellt. Bei der Messung von MerTK 
auf Ex-vivo-Zellen wurde jeweils eine dem spezifischen Antikörper entsprechende Isotypkontrolle 
verwendet. Das Histogramm des Isotyp-Antikörpers ist in derselben Farbe, allerdings mit gestrichelter 
Linie dargestellt. Die Zahlen sind die Differenz der MFI (mediane Fluoreszenzintensität) zwischen dem 
spezifischen Antikörper und dem Isotyp-Antikörper (ΔMFI). Gezeigt ist jeweils ein exemplarisches 
Beispiel. In vitro: n(CD14) = 15; n(MerTK) = 4; n(CD64) = 6; ex vivo: n(CD14) = 26; n(MerTK) = 1  

 

7.5.6.2 Transkriptlevel der durchflusszytometrisch analysierten Marker  

Im nächsten Schritt wurde die Expression der durchflusszytometrisch analysierten Marker 

auf Transkriptebene zwischen den In-vitro- und Ex-vivo-Zelltypen verglichen. In Abbildung 

7-24 (Seite 102) sind die linearen Expressionswerte der Marker in einem Stripchart-

Balkendiagramm dargestellt. CD14 wurde, wie auch das Protein, von ercDC_in vitro und 

ercDC_RCC sowie den MΦ stark exprimiert, von cDC_in vitro nur sehr schwach. Entgegen 

der FACS-Analyse wurde MERTK-Transkript von cDC_in vitro nur schwach und von den 

MΦ-Positivkontrollen, insbesondere von den M2-MΦ_in vitro, deutlich stärker exprimiert. 

Beide ercDC-Typen exprimierten MERTK sogar noch etwas stärker als die M2-MΦ_in vitro. 

MerTK scheint zur Unterscheidung von MΦ und DC auf Transkriptebene, nicht aber auf 
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Proteinebene geeignet zu sein. Die Transkriptlevel von CD64/FCGR1A waren, entsprechend 

der durchflusszytometrischen Analyse, bei den MΦ, insbesondere bei M1-MΦ_in vitro, hoch 

und den cDC_in vitro, niedrig (Abbildung 7-24). Beide ercDC-Typen exprimierten 

CD64/FCGR1A stark. 

Insgesamt zeigte sich durch die Analysen, dass CD14 und CD64/FcγRI sowohl auf Protein- 

als auch auf Transkriptebene als Unterscheidungsmarker für DC und MΦ geeignet sind. 

MerTK kann dagegen auf Proteinebene nicht zur Unterscheidung verwendet werden, weil 

cDC_in vitro den Marker genauso stark auf der Oberfläche exprimierten wie ercDC_in vitro 

und die MΦ. Die ercDC_in vitro und ercDC_RCC sollten basierend auf den Transkript- bzw. 

Proteinleveln von CD14 und CD64/FcγRI entgegen der derzeitigen Bezeichnung (Figel, 

Brech et al.101) als MΦ und nicht als DC eingeordnet werden. 

 

Abbildung 7-24: Transkriptlevel der von Xue et al.112 postulierten Marker zur Unterscheidung 
von Makrophagen und DC. Gezeigt sind die normalisierten linearen Expressionswerte der Gene. Die 
Balken zeigen den Median an. Ein Symbol entspricht einem Replikat des jeweiligen Zelltyps. 

 

7.5.6.3 Anwendung der Makrophagen- und DC-Kerngenlisten 

Die MΦ- und DC-Kerngenlisten wurden auf die Datensätze ercDC_RCC, ercDC_in vitro und 

cDC_in vitro angewandt. CD1c+ DC_Blut und in vitro generierte M1-MΦ und M2-MΦ sollten 

jeweils DC- bzw. MΦ-spezifische Gene exprimieren und wurden deshalb als Kontrollen 

dazugenommen. Die Heatmap basierend auf den MΦ-Kerngenen (Abbildung 7-25, Seite 

103, links) verdeutlicht, dass ercDC_RCC (gelbe Markierung), ercDC_in vitro und M2-MΦ_in 

vitro sehr viel höhere Transkriptlevel der Gene hatten als CD1c+ DC_Blut und cDC_in vitro 

(Abbildung 7-25). Warum M1-MΦ_in vitro einige Gene nur schwach exprimierten, ist nicht 

klar. Das Expressionsmuster der DC-Kerngene stellte sich etwas heterogen dar, was u.a. 
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darauf zurückzuführen ist, dass selbst die CD1c+ DC_Blut nur einen Teil der DC-Kerngene 

stark exprimierten und die cDC_in vitro sogar alle DC-Kerngene relativ schwach exprimierten 

(Abbildung 7-25, rechts). Deutlich zu sehen ist jedoch, dass ercDC_RCC und ercDC_in vitro 

die DC-Kerngene im Vergleich zu CD1c+ DC_Blut deutlich schwächer exprimierten. Unter 

den MΦ- und DC-Kerngenen befanden sich viele Gene, die als ercDC_RCC-Marker- und 

Signaturgene (Fettdruck bzw. lila) identifiziert worden waren. Interessanterweise gehörten 

alle in der MΦ-Kerngenliste vorkommenden Marker- und Signaturgene den gegenüber der 

Kontrollgruppe hochregulierten, alle in der DC-Kerngenliste vorkommenden den gegenüber 

der Kontrollgruppe herabregulierten Genen an (siehe Abbildung 7-12, Seite 78 und Tabelle 

11-1 und Tabelle 11-2, Seite 160 und Seite 167 im Anhang). Insgesamt weisen diese 

Ergebnisse, wie bereits vorher die durchflusszytometrische Analyse, darauf hin, dass ercDC 

auf transkriptioneller Ebene eher mit MΦ als mit DC übereinstimmen.  

 

Abbildung 7-25: Expression der publizierten humanen Makrophagen- und DC-Kerngene in 
ercDC aus dem RCC. Neben ercDC_RCC (gelb) und ercDC_in vitro wurden in vitro generierte cDC, 
CD1c+ DC aus dem Blut sowie in vitro generierte M1-MΦ und M2-MΦ als DC- bzw. MΦ-
Positivkontrollen analysiert. Die Heatmaps zeigen die relative Expression (Z-Score) der durch Xue et 
al.112 bestimmten humanen Orthologe zu den murinen MΦ- und DC-Kerngenen175,176 sowie das 
Clustering der Zelltypen. Gene, die als ercDC_RCC-Marker- und Signaturgene identifiziert worden 
waren, sind in Fettdruck bzw. lila gekennzeichnet.  
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7.5.6.4 Makrophagen- und DC-assoziierte Transkriptionsfaktoren und Wachs-
tumsfaktorrezeptoren 

Um ein vertiefendes Bild zu bekommen, ob die ercDC eher den MΦ oder den DC 

zuzuordnen sind, wurde die Expression wichtiger Transkriptionsfaktoren und 

Wachstumsfaktorrezeptoren analysiert. Die Entwicklung der MΦ aus den MDP (engl.: 

macrophage-DC progenitor) wird insbesondere durch die Transkriptionsfaktoren MAFB, c-

MAF (kodiert durch MAF), EGR1 und EGR2 initiiert sowie durch die Bindung von M-CSF an 

den Rezeptor CSF1R. Gautier et al.175 postulierten, dass die Transkriptionsfaktoren C/EBP-

α, BACH1 und CREG1 die Expression der MΦ-Kerngene regulieren. Die Differenzierung der 

MDP zu CDP (engl.: common DC progenitor) wird maßgeblich durch die 

Transkriptionsfaktoren Ikaros (kodiert durch IKZF1) und IRF8 gesteuert. Aus den CDP 

differenzieren durch die Aktivität von ZBTB46 und BCL6 die prä-cDC. CD1c+ DC zeichnen 

sich durch die Expression von IRF4 aus, CD141+ DC durch BATF3. Die Expression des 

Transkriptionsfaktors PU.1 (kodiert durch SPI1) sowie des Wachstumsfaktorrezeptors FLT3 

ist ebenfalls charakteristisch für die DC-Linie.  

In Abbildung 7-26 (Seite 105) ist eine Auswahl von Transkriptionsfaktoren und 

Wachstumsfaktorrezeptoren, angelehnt an Literaturdaten, insbesondere an Segura et al.43 

und Gautier et al.175, gezeigt. Als positive Kontrolle für MΦ wurden M1-MΦ_in vitro und M2-

MΦ_in vitro, für DC CD1c+ DC_Blut verwendet. In Abbildung 7-26A ist zu sehen, dass die 

Gene, die für MΦ-assoziierte Transkriptionsfaktoren und Wachstumsfaktorrezeptoren 

kodieren, von den MΦ-Kontrollen, insbesondere von den M2-MΦ_in vitro, stark und von 

CD1c+ DC_Blut schwach exprimiert wurden (Ausnahme M1-MΦ_in vitro bei MAF). Die 

ercDC_RCC exprimierten alle Gene in vergleichbarer Stärke wie die M2-MΦ_in vitro. In 

Abbildung 7-26B ist die Expression der für DC-assoziierte Transkriptionsfaktoren und 

Wachstumsfaktorrezeptoren kodierenden Gene dargestellt. Diese wurden von CD1c+ 

DC_Blut stark und von den MΦ schwach exprimiert. Die ercDC_RCC zeigten eine den MΦ 

analoge, schwache Expression der Gene.  

Die MΦ-assoziierten Gene CEBPA (kodiert C/EBP-α), BACH1, EGR1, EGR2 sowie die DC-

assoziierten Gene SPI1, ZBTB46 und IRF8 wurden von den MΦ- und DC-Kontrollzellen 

ähnlich stark exprimiert. EGR2 wurde von CD1c+ DC_Blut sogar stärker exprimiert als von 

den MΦ-Kontrollzellen und IRF8 von den MΦ-Kontrollzellen stärker als von der DC-Kontrolle, 

CD1c+ DC_Blut. Die Expressionsdaten waren folglich zur Einordnung der ercDC_RCC nicht 

geeignet. Die Diagramme sind daher in Abbildung 7-26 nicht gezeigt, sie sind im Anhang, 

Abbildung 11-6 (Seite 176), aufgeführt.  
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Abbildung 7-26: Transkriptlevel ausgewählter Makrophagen- und DC-assoziierter 
Transkriptionsfaktoren und Wachstumsfaktorrezeptoren in ercDC aus dem RCC. Gezeigt sind 
die normalisierten linearen Expressionswerte der Gene. A) Gene, die für MΦ-assoziierte 
Transkriptionsfaktoren und den Wachstumsfaktorrezeptor CSF1R kodieren. B) Gene, die für DC-
assoziierte Transkriptionsfaktoren und den Wachstumsfaktorrezeptor FLT3 kodieren. Die ercDC_RCC 
sind rot gekennzeichnet, die DC-Kontrollzelle, CD1c+ DC_Blut, beige und die MΦ-Kontrollzellen grau. 
Der Balken zeigt den Median an, die Symbole die einzelnen Replikate eines Zelltyps. Die 
unterschiedliche Skalierung der Y-Achse ist zu beachten.  

Die drei verschiedenen Ansätze zur Klassifizierung von MΦ und DC, die 

durchflusszytometrische Analyse, die Transkriptlevel der Kerngene sowie die Analyse von 

Transkriptionsfaktoren und Wachstumsfaktorrezeptoren, zeigten eine klare Tendenz, dass 

die ercDC_RCC als MΦ eingeordnet werden sollten.  
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7.5.6.5 Einordnung der ercDC innerhalb der Makrophagen 

7.5.6.5.1 Klassifizierung anhand M1- und M2-assoziierter Gene 

Nachdem bisherige Ergebnisse vermuten ließen, dass ercDC eher ein MΦ-Subtyp als ein 

DC-Subtyp sind, wurde nun näher untersucht, welcher Polarisierungsrichtung innerhalb der 

MΦ sie zugeordnet werden können. MΦ werden oft in zwei Kategorien, klassische, 

immunstimulatorische und alternativ aktivierte, immunregulatorische MΦ, eingeteilt. 

Immunstimulatorisch sind MΦ mit einem M1-Phänotyp, immunregulatorisch MΦ mit einem 

M2-Phänotyp. Verschiedene Publikationen verweisen auf bestimmte polarisierende Zytokine 

und die dadurch induzierte Genexpression26,103,133,137,181. Insbesondere aus drei 

Publikationen, Martinez et al.103, Shaykhiev et al.137 und Houser et al.133, ließ sich eine M1- 

bzw. M2-assoziierte Genliste aufstellen, welche die in Tabelle 11-6 und Tabelle 11-7 (im 

Anhang, Seite 177 und Seite 179) aufgeführten Gene beinhaltete.  

In Abbildung 7-27 (Seite 108) ist die relative Expression der M1- und M2-assoziierten Gene 

in ercDC_RCC in einer Heatmap veranschaulicht. Als positive Kontrollzellen dienten in vitro 

generierte M1-MΦ bzw. M2-MΦ. CD1c+ DC_Blut fungierten als Negativkontrolle. Die 

ercDC_RCC zeigten mit beiden Profilen Übereinstimmung, mit der M2-assoziierten Genliste 

etwas mehr als mit der M1-assoziierten Genliste (Abbildung 7-27A). Dies äußerte sich auch 

in der größeren Anzahl von ercDC_RCC-Marker- und Signaturgenen unter den M2-

assoziierten Genen (12,9% vs. 2,6% und 45,2% vs. 23,7%, Abbildung 7-27B).  

Neben der Heatmap wurde ein Volcano Plot erstellt (Abbildung 7-27B). Hier wurden 

zusätzlich die M1- und M2-assoziierten Gene innerhalb der informativen Gene, die sich aus 

dem Vergleich der ercDC_RCC & infMΦ_ascOvCa mit der Kontrollgruppe ergaben, markiert. 

Dadurch wird visualisiert, ob die M1- und M2-assoziierten Gene unter den gegenüber der 

Kontrollgruppe hoch- oder herabregulierten Genen zu finden sind. In Abbildung 7-27B ist der 

informative Datensatz grau dargestellt, die darin zu findenden M1- und M2-assoziierten 

Gene orange bzw. grün. Die x-Achse zeigt die x-fache Veränderung (log2) der Gene 

gegenüber der Kontrollgruppe an, die y-Achse die Signifikanz der Unterschiede (korrigierter 

p-Wert). Gene mit p-Werten < 0,05 (entspricht –log10 1,3 (gestrichelte Linie)) gehören zu 

den ercDC_RCC-Signaturgenen (differentiell exprimierte Gene). Wie zu sehen, war die 

Mehrzahl der M1- als auch der M2-assoziierten Gene unter den hochregulierten Genen der 

Gruppe ercDC_RCC & infMΦ_ascOvCa zu finden. 18 der M1- und 28 der M2-assoziierten 

Gene gehörten zu den ercDC_RCC-Signaturgenen; die fünf Gene mit der höchsten 

Signifikanz gehörten zum M2-Profil (CD209/DC-SIGN, SLCO2B1, SLC38A6, SEPP1, 

CCL18). Sie waren gleichzeitig Bestandteil der ercDC_RCC-Markergene (Fettdruck). MAF, 

MS4A4A und IGF1 sind weitere Markergene, die mit M2-MΦ assoziiert sind (für Funktionen 

der Markergene siehe Tabelle 7-4, Seite 88). Einige der zu den ercDC_RCC-Signaturgenen 

gehörenden M2-assoziierten Gene kodieren für antiinflammatorische Zytokine (IL10), 
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Proteasen, die am Umbau der extrazellulären Matrix beteiligt sind (MMP2, MMP7, MMP9) 

oder Proteine mit proangiogener Wirkung (z.B. IGF1)182. Neben M2-assoziierten Genen 

gehörten auch M1-assoziierte Gene zu den ercDC_RCC-Markergenen, z.B. IL2RA und 

CXCL9. Viele der differentiell exprimierten M1-assoziierten Gene kodieren für Zytokine und 

Chemokine (z.B. IL6, CXCL1, CXCL10 oder CCL4).  

Die Heatmaps und der Volcano Plot verdeutlichten, dass die ercDC_RCC sowohl Merkmale 

von immunstimulatorischen M1- als auch von immunregulatorischen M2-MΦ besitzen. Auch 

die GSEA, in welcher die Genexpressionsunterschiede in den M1- bzw. M2-assoziierten 

Genlisten (Gensets) zwischen ercDC_RCC & infMΦ_ascOvCa und der Kontrollgruppe 

ermittelt wurden (nicht gezeigt), bestätigte dies. Hier zeigte sich weiterhin statistisch, dass 

bei der ercDC_RCC & infMΦ_ascOvCa-Gruppe eine stärkere Überexpression der M2-

assoziierten Gene (p = 0,02) im Vergleich zu den M1-assoziierten Genen (p = 0,09) vorlag.  
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Abbildung 7-27: Expression der M1- und M2-assoziierten Gene in ercDC aus dem RCC. A) Die 
relative Expression (Z-Score) der M1- und M2-assoziierten Gene in ercDC_RCC, in den Positiv- und 
Negativkontrollen M1-MΦ_in vitro, M2_MΦ_in vitro und CD1c+ DC_Blut sowie das Clustering der 
Zelltypen ist in einer Heatmap veranschaulicht. In lila sind Gene gekennzeichnet, die auch zu den 
ercDC_RCC-Signaturgenen zählen, in Fettdruck Gene, die zu den ercDC_RCC-Markergenen 
gehören. B) Der Volcano Plot zeigt die M1- und M2-assoziierten Gene innerhalb der informativen 
Gene, die sich aus dem Vergleich der ercDC_RCC & infMΦ_ascOvCa mit der Kontrollgruppe 
ergaben. Auf der x-Achse ist der x-fache Unterschied der Expression (log2) der informativen Gene 
zwischen den beiden Vergleichsgruppen angezeigt. Auf der y-Achse ist die Signifikanz (korrigierter p-
Wert) der Unterschiede aufgetragen. Die grauen Punkte im Hintergrund zeigen den informativen 
Datensatz an, in orange bzw. grün sind M1- bzw. M2-assoziierte Gene gekennzeichnet. In der Tabelle 
sind die Anzahl und der Prozentsatz der ercDC_RCC-Signaturgene sowie der ercDC_RCC-
Markergene unter den informativen M1- und M2-assoziierten Genen angezeigt. 

 M1-Gene  
Anzahl (%) 

M2-Gene 
Anzahl (%) 

Informativ 76 62 
ercDC_RCC-Signatur 18 (23,7%) 28 (45,2%) 
ercDC_RCC-Marker 2 (2,6%) 8 (12,9%) 
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7.5.6.5.2 Klassifizierung nach homöostatischer Funktion 

Neben der M1/M2-Klassifikation wird auch eine Einteilung der MΦ basierend auf drei 

verschiedenen homöostatischen Funktionen angewandt. So argumentieren Mosser et al.183 

für eine Einteilung in drei verschiedene MΦ-Subtypen basierend auf den Funktionen 

„Bakterizide Aktivität“, „Wundheilung“ und „Immunregulation“. Aus Mosser et al. wurde das 

charakteristische Markerprofil für diese Zelltypen entnommen (Tabelle 7-7) und nach 

Gustafsson et al.184 ergänzt (grüne Markierung). Die Ergänzung betraf die Markerliste der 

wundheilungsassoziierten MΦ, die durch gewebemodulierende Marker ergänzt wurde, sowie 

die Markerliste der regulatorischen MΦ, die durch immunmodulierende, supprimierende 

Marker erweitert wurde.  

Tabelle 7-7: Marker und funktionelle Charakteristika der drei Gewebemakrophagen-Subtypen.  
Die Tabelle wurde aus Mosser et al.183 entnommen und durch gewebemodulierende Marker bzw. 
immunmodulierende, supprimierende Marker (grün) aus Gustafsson et al.184 ergänzt. 

Marker Gensymbol/ 
alternat. Bez. Funktion des Proteins 

Klassisch aktivierte, bakterizide MΦ 
CCL15 CCL15* chemotaktisch für MΦ, Lymphozyten und Eosinophile  
CCL20 CCL20° chemotaktisch für DC und T-Zellen  
CXCL10 CXCL10 chemotaktisch für NK- und T-Zellen; bindet an CXCR3 
CXCL11 CXCL11 chemotaktisch für NK- und T-Zellen; bindet an CXCR3 
CXCL9 CXCL9  angiostatisch und antiinvasiv, T-Zell-stimulierend 
IL-12 IL12A/B° induziert TH1-Entwicklung 
iNOS NOS2° produziert NO und Citrullin aus Arginin, bakterizid 
Wundheilungsassoziierte, gewebemodulierende MΦ 
CCL17 CCL17 chemotaktisch für T-Zellen und MΦ 
CCL18 CCL18 chemotaktisch für T-Zellen und myeloische Zellen 

CCL22 CCL22 chemotaktisch für TH2-Zellen und andere CCR4-
exprimierende Zellen  

DCIR DCIR/CLEC4A inhibitorischer, Lektin-ähnlicher Immunrezeptor 

Factor XIII-A F13A1 bindet Proteine der extrazellulären Matrix, trägt zur 
Wundheilung bei 

IGF-1 IGF1 stimuliert Fibroblastenproliferation, proangiogen 
IL-27Rα IL27RA inhibiert die proinflammatorische Zytokinproduktion 
RELMα FIZZ1 moduliert die extrazelluläre Matrix 
Stabilin 1 STAB1 endozytotischer Rezeptor, steuert Lysosomensortierung 
YM1 YM1 kein humanes Ortholog 
BEX3 NGFRAP1 neuronaler Wachstumsfaktor 
C1q, subunit A C1QA Komplementkomponente 
C1q, subunit B C1QB Komplementkomponente 
COL1A2 COL1A2 Kollagen, Strukturprotein 
COL3A1 COL3A1 Kollagen, Strukturprotein 
COL4A2 COL4A2 Kollagen, Strukturprotein 
COL6A3 COL6A3 Kollagen, Strukturprotein 
FN1 FN1 vermittelt Zelladhäsion 
Gas6 GAS6 stimuliert Zellproliferation, bindet an MerTK 
HIF-2α EPAS1 durch Hypoxie induzierter Transkriptionsfaktor 
Hsp27 HSPB1 stressinduziert, im Aktin-Zytoskelett involviert 
ITGB5 ITGB5 vermittelt Zelladhäsion 
MMP-9 MMP9 Matrixmetalloproteinase 
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PADI4 PADI4 Enzym, vermittelt Inflammation 
Protein S PROS1 Plasmaprotein, inhibiert Blutgerinnung 
S100-A4 S100A4 involviert in Invasion 
SDC2 SDC2 vermittelt Zell-Matrix Kontakt 
Serpin F1 SERPINF1 inhibiert Angiogenese 
VCAN VCAN Matrixproteoglycan, involviert in Migration und Adhäsion 
Regulatorische, immunsupprimierende MΦ 
CCL1 CCL1 chemotaktisch für Eosinophile und TH2-Zellen; bindet CCR8  
IL-10 IL10 antiinflammatorisches Zytokin 

LIGHT LIGHT/TNFSF14 kostimulatorisches Signal für T-Zellen durch Bindung an 
HVEM 

SPHK1 SPHK1 katalisiert die Umwandlung von Sphingosin zu Sphingosin-1 
–phosphat 

α2M A2M Proteaseinhibitor 
CD9 CD9 negativer Regulator des TLR4-Signalweges 
c-Maf MAF Transkriptionsfaktor, durch IL-10 induziert 
DAB2 DAB2 inhibiert proinflammatorische Signalwege 
CD209 CD209/DC-SIGN Adhäsionsmolekül, Endozytose; durch IL-4 induziert 

DPEP2 DPEP2 Metalloprotease, hydrolysiert Leukotriene D4 zu Leukotriene 
E4 

IRAK3 IRAK3 negativer Regulator des TLR4-Signalweges 
CD206 CD206/MRC1 Mannose-Rezeptor 
PGDS PGDS Prostaglandin D2 Sythase 
TNFRSF21 TNFRSF21 induziert Apoptose, inhibiert T-Zell-Antwort 
TREM2 TREM2 inhibiert proinflammatorische Zytokinproduktion 
VSIG4 VSIG4 Komplementrezeptor, T-Zell-inhibierend 

* Gen war auf einem der Arrays nicht vorhanden und konnte deshalb nicht analysiert werden; ° Gen 
wurde in den nachfolgenden Stripchart-Balkendiagrammen nicht berücksichtigt, da es entweder von 
allen Zelltypen sehr schwach oder von den jeweiligen positiven Kontrollzellen nicht stärker als von den 
negativen Kontrollzellen exprimiert wurde. 

Es wurde getestet, ob ercDC_RCC einem der drei Gewebemakrophagen-Subtypen 

zugeordnet werden können. Als positive Kontrollzellen für klassisch aktivierte, bakterizide 

MΦ wurden M1_MΦ_in vitro verwendet185. M2_MΦ_in vitro dienten hier als negative 

Kontrolle. Für die wundheilungsassoziierten, gewebemodulierenden und die regulatorischen, 

immunsupprimierenden MΦ waren M2_MΦ_in vitro die positive Kontrolle185,186. Die CD11cLO 

MΦ_Decidua wurden zusätzlich als positive Kontrollzelle für die wundheilungsassoziierten, 

gewebemodulierenden MΦ verwendet, da sie von Houser et al.133 als gewebemodulierend 

beschrieben wurden. M1_MΦ_in vitro fungierten für die beiden letzten MΦ-Subtypen als 

Negativkontrolle.  

In Abbildung 7-28 (Seite 111) ist die Expression von drei Genen (CXCL9, CXCL10, 

CXCL11), die für bakterizide MΦ charakteristisch sind, gezeigt. Die positive Kontrolle 

(M1_MΦ_in vitro) ist schraffiert und die negative Kontrolle (M2_MΦ_in vitro, nicht-bakterizid) 

weiß gekennzeichnet. Die ercDC_RCC sind rot markiert. Wie erwartet, exprimierten 

M1_MΦ_in vitro diese Gene stark, während M2_MΦ_in vitro sie nur sehr schwach 

exprimierten. Die ercDC_RCC besaßen im Vergleich zu M2_MΦ_in vitro etwas höhere 

Transkriptlevel, die Unterschiede waren jedoch nicht signifikant (Welch’s t-Test). Bei allen 

drei Genen erreichten die ercDC_RCC allerdings nicht die Expressionswerte der M1_MΦ_in 
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vitro. Gene, die von allen Zelltypen sehr schwach exprimiert wurden, bzw. bei denen die 

positive Kontrollzelle das Gen nicht stärker exprimierte als die negative Kontrollzelle, wurden 

für die Analyse nicht berücksichtigt. Sie sind in Tabelle 7-7 mit einem (°) gekennzeichnet. 

 

Abbildung 7-28: Transkriptlevel charakteristischer Gene bakterizider Makrophagen in ercDC 
aus dem RCC. Gezeigt sind die normalisierten linearen Expressionswerte der Gene. Die ercDC_RCC 
sind rot gekennzeichnet, die positive Kontrollzelle, M1-MΦ_in vitro, schraffiert und die 
Negativkontrolle, M2-MΦ_in vitro, weiß. Der Balken zeigt den Median an, die Symbole die einzelnen 
Replikate eines Zelltyps. Die unterschiedliche Skalierung der Y-Achse ist zu beachten. Die Signifikanz 
der Expressionsunterschiede zwischen ercDC_RCC und M2-MΦ_in vitro wurde mit Hilfe des Welch’s 
t-Test für ungepaarte Proben ermittelt. Bei keinem der Gene konnten signifikante Unterschiede 
festgestellt werden.  

In Abbildung 7-29 (Seite 112) ist die relative Expression typischer Gene 

wundheilungsassoziierter, gewebemodulierender MΦ in einer Heatmap dargestellt. Es ist 

deutlich zu sehen, dass das Genexpressionsmuster der ercDC_RCC (gelbe Markierung) mit 

dem der beiden Positivkontrollen, M2-MΦ_in vitro und CD11cLO MΦ_Decidua, stark 

übereinstimmte. Die bakteriziden M1-MΦ_in vitro exprimierten die Gene in der Mehrzahl 

relativ schwach.  
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Abbildung 7-29: Expression charakteristischer Gene 
wundheilungsassoziierter, gewebemodulierender Makrophagen. 
Die Heatmap zeigt die relative Expression (Z-Score) der Gene sowie 
das Clustering der Zelltypen. Die ercDC_RCC sind gelb markiert. Als 
positive Kontrollzellen fungierten M2-MΦ_in vitro und CD11cLO 
MΦ_Decidua, mit denen die ercDC_RCC starke Übereinstimmung im 
Expressionsmuster zeigten. M1-MΦ_in vitro dienten als 
Negativkontrolle.  

 

 

Die relativ starke Expression der wundheilungsassoziierten, gewebemodulierenden Gene in 

ercDC_RCC bestätigt das Ergebnis der GO-Term-Anreicherungsanalyse, bei der die 

Kategorie „Response to wounding“ am signifikantesten war (siehe Abbildung 7-14, Seite 81).  

Im nächsten Schritt wurde die Expression typischer Gene des regulatorischen, 

immunsupprimierenden Subtyps analysiert. Die als immunregulatorisch beschriebenen M2-

MΦ_in vitro wurden als Positivkontrolle verwendet185. In der Heatmap (Abbildung 7-30, Seite 

113) ist deutlich zu sehen, dass die ercDC_RCC (gelbe Markierung) starke 

Übereinstimmungen im Expressionsmuster mit den M2-MΦ_in vitro zeigten und zu den als 

Negativkontrolle dienenden M1-MΦ_in vitro, die ein separates Cluster bildeten, konträr 

waren. 
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Abbildung 7-30: Expression charakteristischer Gene regulatori-
scher, immunsupprimierender Makrophagen. Die Heatmap zeigt 
die relative Expression (Z-Score) der Gene sowie das Clustering der 
Zelltypen. Die ercDC_RCC sind gelb markiert. Als positive 
Kontrollzellen fungierten M2-MΦ_in vitro, mit denen die ercDC_RCC 
ein gemeinsames Cluster bildeten. M1-MΦ_in vitro fungierten als 
Negativkontrolle.  

  

Zusammenfassend ist festzuhalten, dass die ercDC_RCC die wundheilungsassoziierten, 

gewebemodulierenden sowie die regulatorischen, immunsupprimierenden Gene 

verhältnismäßig stark, analog den jeweiligen positiven Kontrollzellen, exprimierten. Aber 

auch Gene des bakteriziden Subtyps wurden exprimiert, stärker als sie von den nicht-

bakteriziden M2-MΦ_in vitro exprimiert wurden (siehe Abbildung 7-28, Seite 111). Die 

ercDC_RCC stellen somit einen gemischten Zelltyp dar, der Charakteristika aller 

Gewebemakrophagen-Subtypen vereint.  

 

7.5.6.5.3 Expression von TAM-assoziierten Markern 

Die ercDC könnten ein TAM-Subtyp sein, weil sie im RCC-Gewebe deutlich häufiger 

vorkommen als im NKC. Unter den TAM sind verschiedene Polarisierungen möglich, da das 

Tumormilieu sowohl regional als auch über die Zeit stark unterschiedlich sein kann. So ist 

beschrieben, dass im heranwachsenden Tumor zunächst die antitumorale M1-Polarisierung 

überwiegt, im etablierten Tumor sollen dagegen in der Regel protumorale M2-polarisierte MΦ 

dominieren28. Beide Subtypen teilen die Expression einiger Marker, wie z.B. CD14 und 

CD68, unterscheiden sich aber beispielsweise in der Sekretion von Zytokinen und 

Matrixmetalloproteinasen115. Eine Subpopulation der im Tumor vorkommenden MΦ zeichnet 

sich durch die Expression des Angiopoetin-Rezeptors Tie2 (kodiert durch TEK) aus187,188. 

Tie2-exprimierende TAM (TEM) haben einen M2-ähnlichen Phänotyp und tragen maßgeblich 

zum sogenannten „angiogenen Switch“ des Tumors bei.  
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Heusinkveld et al.115 stellten eine Markerliste für verschiedene humane TAM-

Subpopulationen auf. Diese beinhaltet u.a. das Adhäsionsprotein CD68, das sehr häufig als 

Marker für MΦ in humanen Tumorgeweben eingesetzt wird189. CD68 wird oft in Kombination 

mit den Markern CD14, CD11b/ITGAM und HLA-DR für den TAM-Nachweis verwendet. Um 

TAM mit einem M2-Phänotyp zu detektieren, wird meistens eine Kombination der Marker 

CD163, CD206/MRC1, CD204/MSR1, MMP-2 und MMP-9 eingesetzt115. Auch der 

Folatrezeptor FRb (kodiert durch FOLR2) gilt als M2-Marker190. CD163, CD206/MRC1 und 

CD204/MSR1 können allerdings auch von M1-MΦ exprimiert werden. Bisher sind keine 

Oberflächenmarker für die eindeutige Detektion von TAM mit einem M1-Phänotyp 

beschrieben. M1-MΦ werden vielmehr über ihre funktionelle Aktivität, die Produktion 

bakterizider Substanzen (NO, ROS) und die Sezernierung von IL-12, detektiert. Das NO-

produzierende Enzym iNOS wird oft als Marker benutzt, da die Produktion von NO sehr 

kurzweilig ist und nur schwierig gemessen werden kann115. In Tabelle 7-8 sind die von 

Heusinkveld et al. vorgeschlagenen Marker, ergänzt durch Tie2, sowie deren Funktionen 

zusammengefasst. 

Tabelle 7-8: Marker zur Identifizierung humaner TAM-Subtypen. Angelehnt an Heusinkveld et 
al.115. In blau markiert sind Marker, die Subtyp-spezifisch exprimiert werden.  

Marker Gensymbol/ 
alternat. Bez. Funktion des Proteins Expression 

      M1  M2  TEM* 
CD68 CD68 Adhäsionsprotein x x x 
CD14 CD14 LPS-Korezeptor  x x x 
CD163 CD163 Scavenger-Rezeptor  +/- xx x 
CD206 CD206/MRC1 Mannose-Rezeptor x xx x 
MMP-2 MMP2 Matrixmetalloproteinase  - x x 
MMP-9 MMP9 Matrixmetalloproteinase  - x x 
HLA-DR HLADRA Antigenpräsentation x x x 
CD204 CD204/MSR1 Makrophagen Scavenger-Rezeptor 1 x x x 
B7H4 B7H4 inhibitorisches Kostimulationsmolekül  - x k.I. 
CD11b CD11B/ITGAM Adhäsionsprotein x x x 
FRb FOLR2 Folatrezeptor  - x x 
STAT3 STAT3 Transkriptionsfaktor  - x k.I. 
iNOS NOS2 Stickstoffmonoxid-Synthase x  -  - 
IL-12p70, 
p35 IL12A Interleukin-UE, T-Zell-Aktivierung xx  -  - 

IL-12p70, 
p40 IL12B Interleukin-UE, T-Zell-Aktivierung xx  -  - 

IL-10 IL10 Interleukin, T-Zell-Inhibition x xx xx 
Tie2 TEK/TIE2 Tyrosinkinaserezeptor  -  - x 

* TEM sind M2-ähnlich und exprimieren viele der Marker analog den M2-polarisierten TAM. k.I.: keine 
Information vorhanden; +/-: kann exprimiert sein; x: exprimiert; xx: stark exprimiert; UE: Untereinheit 

Um die Frage zu klären, ob ercDC_RCC einen TAM-Phänotyp besitzen, wurde die 

Expression der diskutierten Marker auf Transkriptebene überprüft. Die linearen 

Expressionswerte der Marker sind als Stripchart-Balkendiagramm in Abbildung 7-31 (Seite 
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116) dargestellt. Die von Cavnar et al.139 beschriebenen TAM_GIST wurden als positive 

Kontrolle für die allgemeinen TAM-Marker (Abbildung 7-31A) verwendet. Für Marker, die 

überwiegend von M2-MΦ, aber auch von M1-MΦ exprimiert werden können (Abbildung 

7-31B), wurden die M2-MΦ_in vitro als Positivkontrolle herangezogen, genauso wie für die 

M2-assoziierten TAM-Marker (Abbildung 7-31C). Die Positivkontrollen sind jeweils als 

schraffierter Balken, die Negativkontrollen jeweils als grau gepunkteter Balken dargestellt. 

Die vergleichende Analyse der Expressionswerte ergab, dass ercDC_RCC (roter Balken) die 

für allgemeine TAM-Marker kodierenden Gene CD68, CD14 und CD11B/ITGAM sehr stark 

exprimierten, mindestens genauso stark wie die Positivkontrolle TAM_GIST (Abbildung 

7-31A). Auch die Gene CD163, CD206/MRC1 und CD204/MSR1 (Abbildung 7-31B) 

exprimierten sie stärker als TAM_GIST und auch stärker als die Positivkontrolle M2-MΦ_in 

vitro. Von den M2-assoziierten Genen FOLR2, MMP2 und MMP9 (Abbildung 7-31C) 

besaßen die ercDC_RCC ebenfalls deutlich höhere Transkriptlevel als die TAM_GIST. Die 

Transkriptlevel von FOLR2 und MMP2 waren vergleichbar bzw. höher als die der M2-

Positivkontrolle (M2_MΦ_in vitro). Die MMP9-Transkriptlevel waren dagegen niedriger und 

mit M1-MΦ_in vitro vergleichbar.  

Die M1-assoziierten Gene IL12A, IL12B und NOS2, das M2-assoziierte Gen B7H4 und das 

von TEM exprimierte TEK wurden von allen Zelltypen nur sehr schwach exprimiert. Diese 

Marker sind deshalb nicht gezeigt. Die M2-assoziierten Gene STAT3 (engl.: signal 

transducer and activator of transcription 3) und IL10 sind ebenfalls nicht gezeigt, weil sie 

entgegen der Erwartung von M1-MΦ_in vitro, nicht jedoch von den als Positivkontrolle 

verwendeten M2-MΦ_in vitro, am stärksten exprimiert wurden.  
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Abbildung 7-31: Transkriptlevel von Markern, die zur Identifizierung humaner TAM verwendet 
werden. Gezeigt sind die normalisierten linearen Expressionswerte der Gene. A) Allgemeine TAM-
Marker unabhängig von der Polarisierung. B) Marker, die überwiegend von M2-polarisierten TAM 
exprimiert werden, aber auch von M1-polarisierten TAM exprimiert werden können. C) Marker, die zur 
Identifizierung von M2-polarisierten TAM verwendet werden. Die ercDC_RCC sind rot 
gekennzeichnet, die positiven Kontrollen schraffiert, die negativen Kontrollen grau gepunktet. Der 
Balken zeigt den Median an, die Symbole die einzelnen Replikate eines Zelltyps. Die unterschiedliche 
Skalierung der Y-Achse ist zu beachten.  
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Die starke Expression der M2-assoziierten TAM-Marker in ercDC_RCC deutet darauf hin, 

dass ercDC_RCC protumorale Funktionen besitzen könnten. Unter den ercDC_RCC-Marker- 

und Signaturgenen waren mehrere Gene hochreguliert, die eine Rolle in der Angiogenese 

und Invasion spielen (siehe Funktionsgruppe 11 in Abbildung 7-16, Seite 87). Wang et al.191 

definierten eine Gruppe von 72 Genen als „invasive Signatur“. Diese Gruppe wurde für die 

Analyse der ercDC_RCC durch proangiogene Faktoren aus der Literatur (Genset 

„angiogenesis“ der MSigDB Datenbank von der GSEA Homepage und Marker von 

qiagen.com) ergänzt, so dass das proangiogene und invasive Genset insgesamt 101 Gene 

umfasste. Es wurde nun getestet, wie stark die ercDC_RCC diese Gene im Vergleich zu den 

in vitro generierten M1- und M2-MΦ und den antitumoralen TAM_GIST exprimieren. CD1c+ 

DC_Blut wurden als vermutete nicht-proangiogene Probe mitgeführt.  

Abbildung 7-32 (Seite 118) zeigt die relative Expression der Gene in den genannten 

Zelltypen. Die ercDC_RCC (gelb) stimmten am stärksten mit den M2-MΦ_in vitro überein, 

mit denen sie auch ein gemeinsames Cluster bildeten (grauer Rahmen). Beide Zelltypen 

exprimierten die Mehrzahl der Gene verhältnismäßig stark. Die antitumoralen TAM_GIST 

dagegen exprimierten, wie die CD1c+ DC_Blut, die Gene relativ schwach. Das deutlich mit 

den M2-MΦ_in vitro übereinstimmende Expressionsmuster der proangiogenen und invasiven 

Gene unterstützt die Vermutung, dass die ercDC_RCC protumorale Eigenschaften haben 

könnten.
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Abbildung 7-32: Expression der Gene des proangiogenen und 
invasiven Gensets. Die Heatmap zeigt die relative Expression (Z-
Score) der Gene sowie das Clustering der Zelltypen. Die ercDC_RCC 
sind gelb markiert. Sie bilden ein Cluster mit den M2-MΦ_in vitro (grauer 
Rahmen). Die antitumoralen TAM_GIST und CD1c+ DC_Blut dienten als 
Negativkontrolle. Die invasiven Gene wurden der Publikation von Wang 
et al.191 entnommen und durch proangiogene Gene aus der Literatur 
ergänzt (Genset „Angiogenesis“ der GSEA-Datenbank, Marker von 
QIAGEN Homepage). 
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7.5.7 Einfluss von Gewebemilieufaktoren auf das Genexpressionsprofil der 
ercDC aus dem RCC 

Einschlägige Arbeiten der letzten Jahre zeigten, dass die Variabilität geweberesidenter 

Makrophagen sehr groß ist10,12,14. Dabei werden der Phänotyp und die Funktion 

entscheidend durch die im jeweiligen Mikromilieu vorkommenden löslichen Faktoren geprägt. 

Xue et al.112 benutzten definierte Aktivierungssignale (Stimuli) und bestimmten das 

entsprechend in den MΦ induzierte Genexpressionsprofil. Sie fassten die Stimulus-

spezifischen Gensets zu Modulen zusammen und bestimmten jeweils das Modul-„Eigengen“ 

(ME). Dieses wurde mit den verschiedenen Stimuli korreliert. In Anlehnung an diese Arbeit 

wurden nun unsere In-vitro- und Ex-vivo-Datensätze sowie die externen Datensätze 

dahingehend analysiert, ob Korrelationen mit bestimmten Modulen, also bestimmten 

polarisierenden Aktivierungssignalen, vorliegen. Dies sollte zeigen, ob eventuell 

Rückschlüsse gezogen werden können, welchem Milieu die ercDC im RCC ausgesetzt 

waren und durch welche Faktoren die ercDC-Polarisierung ausgelöst wurde.  

Abbildung 7-33 (Seite 122) zeigt eine Korrelationsheatmap, in welcher die myeloischen 

Zelltypen, abhängig von der Korrelation mit den Modulen, geclustert wurden. In der Heatmap 

sind neben den Modulen auch die jeweils positiv mit den Modulen korrelierenden Stimuli 

annotiert. Die vollständige Bezeichnung der Stimuli sowie die negativ assoziierten Stimuli 

können Tabelle 11-8 bzw. Tabelle 11-9 im Anhang (Seite 180 und 181) entnommen werden. 

Das Clustering teilte die Zelltypen in 4 Gruppen und die Module in 3 Gruppen, A, B und C, 

ein (Abbildung 7-33). Die Modulgruppen A und B wurden nochmals in 2 Subgruppen 

unterteilt (a und b). Zellgruppe 1 wurde ausschließlich von im Blut vorkommenden Zellen 

gebildet. Die Zelltypen dieser Gruppe zeichneten sich dadurch aus, dass sie mit den 

Modulen in Gruppe B positiv und denen in Gruppe A negativ korrelierten. Die Zelltypen in 

Gruppe 2 zeigten keine eindeutige Tendenz für das Überwiegen positiver oder negativer 

Korrelation mit den Modulgruppen.  

Zellgruppe 3, welche die ercDC_RCC enthielt, wird im Folgenden detaillierter betrachtet. 

Dieser Zellgruppe gehörten auch die infMΦ_ascOvCa an, welche bereits in den vorherigen 

Analysen als mit den ercDC_RCC unmittelbar verwandt identifiziert wurden. Weiterhin 

gehörten zu dieser Gruppe die infDC_ascOvCa, MΦ_RCC, M2-MΦ_in vitro, ercDC_in vitro 

sowie die CD103-Sirpα+ DC_Darm. Letztere ähnelten den ercDC_RCC insbesondere in der 

ausgeprägten negativen Korrelation mit den Modulen der Modulgruppe B und C, während sie 

in Modulgruppe A überwiegend konträr zu den ercDC_RCC waren. Für die Modulgruppe A 

zeigten alle Zelltypen der Gruppe 3, mit Ausnahme der CD103-Sirpα+ DC_Darm und 

teilweise der ercDC_in vitro, eine starke positive Korrelation. Die Module der Gruppe A sind 

überwiegend geprägt von der Stimulation mit Glucocorticoiden (GC), Palmitinsäure (PA, 

engl.: palmitic acid) und PGE2 oder einer Kombination aus TNF, PGE2 und P3C 

(Pam3CysSerLys4, TLR2-Ligand) (= TPP) (orange Schrift). PGE2 hat wie GC eine 
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antiinflammatorische Wirkung, PA- und TPP-Stimulierung ist mit chronischer Inflammation 

verknüpft192,193,194,195. Die ercDC_in vitro zeigten in der Modul-Subgruppe Aa weitgehende 

Parallelen mit den ercDC_RCC, während sie sich in der Modul-Subgruppe Ab konträr 

verhielten (schwarzer Kasten). Für die Modulgruppe B zeigten die Zelltypen der Gruppe 3 

eine überwiegend negative Korrelation. Die ercDC_RCC korrelierten sogar ausschließlich 

negativ und waren darin den ercDC_in vitro vergleichbar. In der Mehrzahl waren die Module 

der Gruppe B positiv mit dem Zytokin IL-4 (grüne Schrift) assoziiert. Die mit den ercDC_RCC 

nahe verwandten infMΦ_ascOvCa korrelierten mit Modulgruppe B auch überwiegend 

negativ. Jedoch unterschieden sie sich von den ercDC_RCC in der positiven Korrelation mit 

den fettsäureassoziierten Modulen 1,6,24 und 26 sowie Modul 49 (Modul-Subgruppe Ba, 

schwarz eingerahmt). Mit den meisten dieser Module korrelierten auch die infDC_ascOvCa, 

M2-MΦ_in vitro und MΦ_RCC positiv.  

Gruppe C enthielt überwiegend Module, die durch M1-Stimuli (IFN-γ, TNF, sLPS, braune 

Schrift) induziert werden. Entsprechend zeigte sich eine starke positive Korrelation mit den 

M1-MΦ_in vitro, die die Zellgruppe 4 bildeten. Die ercDC_RCC, ercDC_in vitro, M2-MΦ_in 

vitro und CD103-Sirpα+ DC_Darm korrelierten dagegen ausschließlich negativ mit diesen 

Modulen. Die MΦ_RCC, infDC_ascOvCa und infMΦ_ascOvCa zeigten im Gegensatz dazu 

teilweise positive Korrelationen. Die MΦ_RCC korrelierten überraschenderweise, wie die M1-

MΦ_in vitro, positiv mit Modul 8, welches von Xue et al.112 als ein für M1-MΦ 

charakteristisches Modul, das mit IFN-γ assoziiert ist, hervorgehoben wurde.  

Aus dem Ergebnis der Korrelationsanalyse kann geschlossen werden, dass das 

transkriptionelle Programm der ercDC_RCC nicht durch IL-4 bedingt wurde, sondern v.a. 

durch GC, PGE2, PA und TPP induziert wird. Es ist bekannt, dass PGE2 ein wichtiger 

Milieufaktor im RCC ist100. Das PGE2- und GC-reiche Milieu könnte auch ursächlich für die 

beobachtete Expression von CD163 in ercDC_RCC und infMΦ_ascOvCa (nicht gezeigt) 

sein, da beschrieben ist, dass beide Faktoren die Expression von CD163 in MΦ 

induzieren196,197. Für GC ist darüber hinaus bekannt, dass es das für die M2c-Polarisierung 

charakteristische MerTK induziert178, ein Marker, welcher auch von ercDC_RCC und 

infMΦ_ascOvCa (nicht gezeigt) stark exprimiert wurde. Die ausgeprägten Parallelen im 

Korrelationsmuster der ercDC_RCC und infMΦ_ascOvCa deuten darauf hin, dass die beiden 

Zelltypen durch ein ähnliches Gewebemilieu geprägt wurden. Die negative Korrelation der 

ercDC mit Modulen, die mit IL-4 assoziiert sind, steht in Einklang mit unserer Beobachtung, 

dass im RCC-Gewebe kein IL-4 detektiert wurde (Hosse (Eckl), Dissertationsarbeit, 2009198) 

und auch in dem für die Generierung der ercDC_in vitro verwendeten konditionierten RCC-

26-Medium IL-4 nicht nachweisbar war101.  

Die ercDC_in vitro zeigten starke Parallelen mit dem Korrelationsmuster der ercDC_RCC. 

Unterschiede gab es in der Modul-Subgruppe Ab, wo die ercDC_in vitro negative 
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Korrelationen zeigten, die ercDC_RCC jedoch positive. Die Module dieser Subgruppe sind 

u.a. von der Stimuluskombination TPP (TNF + PGE2 + P3C) bestimmt. Die negative 

Korrelation der ercDC_in vitro mit diesen Modulen könnte darauf zurückzuführen sein, dass 

das für die Generierung der ercDC_in vitro verwendete tumorkonditionierte Medium (RCC-

26-CM) weniger komplex ist als das Tumormilieu und v.a. TNF vermisst, das von den RCC-

26-Zellen nicht sezerniert wurde (nicht gezeigt).  

Die ebenfalls aus dem RCC stammenden MΦ_RCC ähnelten den ercDC_RCC im 

Korrelationsmuster, wobei die Korrelationen durchgehend über alle Module hinweg weniger 

stark ausgeprägt waren. Im Unterschied zu den ercDC_RCC korrelierten die MΦ_RCC 

positiv mit dem Modul 8, welchem der M1-Stimulus IFN-γ zugrunde liegt. Dies lässt 

vermuten, dass im RCC-Tumor verschiedene Mikromilieus existieren, die sich in einer 

unterschiedlichen Prägung der myeloischen Zellen niederschlagen.  
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Abbildung 7-33: Korrelation der Modul-Eigengene (ME) - basierend auf den von Xue et al.112 definierten Modulen - mit dem Genexpressionsprofil 
verschiedener myeloischer Zelltypen. Blau bedeutet negative Korrelation, rot bedeutet positive Korrelation. Die Zelltypen teilten sich anhand von Parallelen 
im Korrelationsmuster in 4 Gruppen ein. Die Module mit den positiv korrelierenden Stimuli bildeten 3 Gruppen, A, B und C. Die Module A und B unterteilten 
sich nochmals in 2 Subgruppen, a und b. Stimuli, die in der Modulgruppe A dominierten sind orange, die der Modulgruppe B grün und die der Modulgruppe C 
braun markiert. Erläuterungen zu den Abkürzungen sowie die negativ korrelierenden Stimuli sind in Tabelle 11-8 bzw. Tabelle 11-9 im Anhang zu finden.  
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8 DISKUSSION 

Obwohl das Nierenzellkarzinom (RCC) ein reichhaltiges Immunzellinfiltrat aus T-Zellen, NK-

Zellen, DC und MΦ besitzt, kommt es trotzdem nur sehr selten zur Abstoßung des 

Tumors199,200,201. Wir und auch andere Arbeitsgruppen konnten zeigen, dass CD8+ T-Zellen 

und NK-Zellen lytische Aktivität besitzen, allerdings erst nach In-vitro-Kultivierung88,92,94. 

Frisch aus dem Tumor gewonnen und unkultiviert sind sie inaktiv. Offensichtlich wird ihre 

Funktion durch das Tumormilieu supprimiert. DC und MΦ sind zentrale Regulatoren des 

adaptiven und angeborenen Immunsystems. Sie können abhängig vom Aktivierungszustand 

Immunität oder Toleranz induzieren. Für den Tumor könnte diese Zellpopulation deshalb ein 

attraktives Ziel sein, um eine aktivierende Immunantwort in eine tolerogene Immunantwort 

umzuwandeln.  

Das RCC entwickelt sich aus den Zellen des proximalen Tubulusepithels102. In der Maus ist 

für dieses spezifische Organkompartiment beschrieben, dass es von einem dichten 

Netzwerk aus CD11c+CX3CR1+ DC durchzogen ist78. Diese tubulointerstitiellen DC besitzen 

eine charakteristische funktionelle Polarisierung. Sie sezernieren u.a. antiinflammatorisches 

IL-10, das ein tolerogenes Mileu schafft und das Tubulusepithel vor schädigenden T-Zell-

Angriffen bei entzündlichen Gewebereaktionen schützt83,202. Auch das humane renale 

Tubulointerstitium scheint speziell geprägte DC zu besitzen8. Wir spekulierten, ob sich dieses 

Milieu des Tubulointerstitiums möglicherweise auch im RCC wiederfindet und dazu beiträgt, 

dass durch die Induktion tolerogener DC und MΦ eine immunvermittelte Tumorabstoßung im 

RCC verhindert wird.  

Daraus ergab sich als Ziel der Arbeit, die myeloischen Zellen des RCC näher zu 

charakterisieren, um neue Erkenntnisse zum „Immunescape“ zu gewinnen und 

möglicherweise Angriffspunkte für therapeutische Manipulation aufzudecken. Zunächst 

wurde das myeloische Infiltrat histologisch mit einer 3-fach-Färbung dargestellt101. Zur 

Detektion der interstitiellen DC wurde CD209/DC-SIGN benutzt, weil es im humanen System 

als Marker für kreuzpräsentierende DC beschrieben ist114. CD14 und CD163 wurden zum 

Nachweis von MΦ verwendet. Bei der Auswertung dieser Färbung fiel ein ungewöhnlicher 

Zelltyp auf, der CD209/DC-SIGN, CD14 und CD163 koexprimierte. Dieser Zelltyp wurde in 

der Arbeit Figel, Brech et al.101 beschrieben und als „enriched-in-renal-carcinoma DC“ 

(ercDC) bezeichnet, weil er nicht nur im RCC, sondern auch im tumorfreien 

Nierenparenchym (NKC) vorkam, jedoch in deutlich niedriger Frequenz. Für die Bezeichnung 

„DC“ entschieden wir uns u.a. deshalb, weil es Parallelen zu den murinen renalen 

CD11c+CX3CR1+ DC gab, die ebenfalls MΦ-Marker koexprimierten78,203. Auch in der 

humanen Dermis und in der Decidua des Ersttrimesters wurden CD209+CD14+ Zellen 

beschrieben, die Antigen präsentieren konnten und als DC-Subtyp eingestuft wurden204,205. 
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Die Zuordnung zu DC schien weiterhin angebracht, weil ercDC Kostimulationsmoleküle und 

HLA-DR exprimierten.  

Mittlerweile ist bekannt, dass viele ursprünglich als Zelltyp-spezifisch geltende 

Oberflächenmarker von vielen myeloischen Zelltypen exprimiert werden. Beispielsweise wird 

der im murinen System bislang als DC-spezifisch geltende Marker CD11c auch von MΦ in 

nicht-lymphatischen Geweben exprimiert6,12,206. Die in der Decidua gefundenen, zunächst als 

DC beschriebenen myeloischen Zellen204, werden mittlerweile als MΦ bezeichnet und 

anhand der Expressionsstärke von CD11c in zwei verschiedene Subtypen eingeteilt133. 

Mittlerweile gibt es zahlreiche Publikationen, die sich mit der Thematik „MΦ oder DC“ 

beschäftigen. Xue et al.112 postulierten kürzlich, dass die MΦ-typischen Marker CD14, 

CD64/FcγRI und MerTK für die FACS-basierte Unterscheidung von DC und MΦ im murinen 

und humanen System geeignet sind. In der hier durchgeführten FACS-Analyse (Abbildung 

7-23, Seite 101) zeigten jedoch die in vitro generierten cDC eine vergleichbar starke 

Oberflächenexpression von MerTK wie die parallel analysierten MΦ. MerTK eignete sich 

daher in unserem Fall nicht zur Unterscheidung von DC und MΦ. CD14 und CD64/FcγRI 

wurden von MΦ stark und von in vitro generierten cDC schwach exprimiert und erfüllten 

somit das Kriterium für eine DC-MΦ-Unterscheidung in unserem System. Allerdings ist 

beschrieben, dass renale DC CD64/FcγRI exprimieren können118.  

Neben Oberflächenmarkern werden auch funktionelle Eigenschaften zur Unterscheidung von 

DC und MΦ herangezogen. Als charakteristische DC-Eigenschaft gilt die Fähigkeit, nach 

Antigenkontakt in die T-Zell-Zone der Lymphknoten zu migrieren und dort mittels 

Antigenpräsentation und Kostimulation naive T-Zellen zu aktivieren4,5. Typisch für MΦ ist 

eine ausgeprägte Phagozytosefähigkeit sowie die Bildung bakterizider Substanzen, v.a. ROS 

und NO, nach Stimulation11. Mittlerweile sind diese Unterscheidungskriterien schon wieder 

umstritten, da auch MΦ zu den Lymphknoten migrieren und naive T-Zellen stimulieren 

können207 und einige DC-Subtypen, beispielsweise die TipDC, auch zytotoxische Funktion 

ausüben208. Im Tumor ist die funktionsbasierte Unterscheidung der DC und MΦ zusätzlich 

problematisch, weil ursprünglich charakteristische Funktionen durch das Tumormilieu 

verändert werden können. So ist beispielsweise beschrieben, dass Tumoren Oxysterole 

sezernieren, die durch Aktivierung des nukleären Transkriptionsfaktors LXR-α die Expression 

von CCR7 und damit die Migration der DC in den Lymphknoten blockieren76. Über LXR-α 

wird auch die T-Zell-Stimulationsfähigkeit beeinträchtigt, indem proinflammatorische Zytokine 

(v.a. IL-12) und Fascin inhibiert werden149,209,210, ungeachtet der Expression von 

Kostimulations- und MHC-Molekülen.  

Weil DC und MΦ stark durch das sie umgebende Mikromilieu beeinflusst werden, ist 

insbesondere in nicht-lymphatischen Geweben eine Klassifizierung basierend auf 

phänotypischen und funktionellen Charakteristika kaum möglich. Aktuell wird diskutiert, die 
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DC und MΦ nicht mehr als separate Zelltypen anzusehen, sondern sie an gegensätzlichen 

Polen des mononukleären Phagozytensystems (MPS) zu positionieren6,12. Unter dem MPS 

würde man demnach ein Kontinuum verschiedener mononukleärer myeloischer Zelltypen 

verstehen, deren Positionierung innerhalb des Kontinuums durch eine Kombination aus 

Phänotyp, Funktion, Ontogenie und anatomischer Lokalisation erreicht wird.  

 

8.1 Positionierung der ercDC aus dem RCC im Kontinuum des 
mononukleären Phagozytensystems  

Aufgrund der aktuellen Diskussion wurde die Einordnung der ercDC als „DC“ neu überdacht.  

In dieser Arbeit wurde mittels einer vergleichenden Genexpressionsanalyse die Position der 

aus dem RCC stammenden ercDC im MPS-Kontinuum definiert und ein charakteristisches 

Genexpressionsprofil erstellt. Als myeloische Vergleichszellen wurden MΦ aus dem RCC, 

CD1c+ DC, slanDC und Monozyten aus dem Blut sowie externe Datensätze humaner 

myeloischer Zelltypen aus dem Blut (CD141+ DC) und nicht-lymphatischen Geweben 

(Decidua, Darm, Lunge, Ascites von Ovarialkarzinompatienten) verwendet. Es wurden nur 

humane Datensätze analysiert, um die beim Vergleich mit murinen Daten auftretenden 

Probleme nicht-orthologer Gene zu vermeiden.  

Die decidualen MΦ wurden gewählt, da sie wie ercDC CD209/DC-SIGN und CD14 

koexprimieren133. Die Datensätze myeloischer Zellen aus dem Darm und der Lunge wurden 

verwendet, weil in diesen beiden Organen, wie bei der Niere, eine Balance zwischen 

Immunität und peripherer Toleranz aufrecht gehalten werden muss134,135. Auch MΦ aus 

einem soliden Tumor (Gastrointestinaler Stromatumor, GIST) sowie inflammatorische MΦ 

und DC aus dem Ascites von Ovarialkarzinompatienten wurden in die Analyse 

eingeschlossen. Um die Positionierung der ercDC zu erreichen, wurden verschiedene 

Analysemethoden durchgeführt. Zunächst wurde basierend auf den informativen Genen eine 

hierarchische Clusteranalyse durchgeführt. Mit Hilfe der „nearest shrunken centroids“ 

Methode wurde dann ein charakteristisches Markergenprofil der ercDC erstellt, anhand 

dessen die Ähnlichkeit der vergleichend analysierten myeloischen Zelltypen mit den ercDC 

bestimmt wurde. Ergänzend zum Markergenprofil wurden, mit Hilfe eines statistischen 

Verfahrens, die Signaturgene der ercDC ermittelt. Außerdem wurde die Expression aus der 

Literatur entnommener DC- und MΦ-Kerngene in ercDC geprüft, ebenso die Expression 

Zelltyp-spezifischer Transkriptionsfaktoren und Wachstumsfaktorrezeptoren, welche eine 

Positionierung nach Ontogenie erlauben.  

Die hierarchische Clusteranalyse zeigte, dass die ercDC den MΦ aus dem RCC und den 

inflammatorischen DC und MΦ aus dem Ascites von Ovarialkarzinompatienten ähnlich 

waren. Die „nearest shrunken centroids“ Analyse sowie die ercDC_RCC-Signaturgene, für 

deren Ermittlung die ercDC mit den inflammatorischen MΦ zusammengefasst werden 
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mussten, konkretisierten darüber hinaus, dass die inflammatorischen MΦ des Ascites den 

ercDC am nächsten standen. Die Parallelen in der Expression der Markergene zwischen 

ercDC und den inflammatorischen MΦ des Ascites waren sogar so groß, dass die 

inflammatorischen MΦ als ercDC klassifiziert wurden. Zu den Markergenen zählten u.a. 

SEPP1 und HMOX1, die an der Stressantwort beteiligt sind, sowie einige Gene, die mit 

Angiogenese und Tumorinvasion assoziiert sind (NRP1, GPNMB, CCL18).  

Bei der Gegenüberstellung der DC- und MΦ-Kerngenlisten, die von Wissenschaftlern des 

„Immunologischen Genomprojektes“ (ImmGen)175,176 aufgestellt und von Xue et al.112 

überarbeitet und an das humane System angepasst wurden, zeigte sich, dass die ercDC die 

MΦ-Kerngene ähnlich stark exprimierten wie die zum Vergleich analysierten MΦ-Subtypen 

(Abbildung 7-25, Seite 103). Zu den MΦ-Kerngenen gehören u.a. MERTK, CD14 und 

SEPP1. Die DC-Kerngene wurden dagegen im Vergleich zu den DC verhältnismäßig 

schwach exprimiert. Insgesamt ergab sich bei dieser Gegenüberstellung, dass sich die 

ercDC aus dem RCC im MPS-Kontinuum eher auf der Seite der MΦ positionieren. Auch die 

Analyse der Zelltyp-spezifischen Transkriptionsfaktoren und Wachstumsfaktorrezeptoren 

zeigte, dass die Transkriptlevel von MΦ-assoziierten Transkriptionsfaktoren, insbesondere 

MAFB und CREG1, in ercDC sehr hoch waren. Der für die Rekrutierung und Differenzierung 

von MΦ wichtige Wachstumsfaktorrezeptor CSF1R11,211 wurde von ercDC ebenfalls ähnlich 

stark exprimiert wie von den MΦ-Kontrollen. Die DC-assoziierten Gene wurden dagegen nur 

schwach exprimiert.  

Zusammenfassend ergab sich aus den Analysen der DC- und MΦ-Kerngene sowie der 

Transkriptionsfaktoren und Wachstumsfaktorrezeptoren, dass eine Positionierung der ercDC 

im MPS-Kontinuum eher auf der Seite der MΦ angebracht ist. Die hierarchische 

Clusteranalyse, die „nearest shrunken centroids“ Analyse und das ercDC_RCC-

Signaturgenprofil identifizierten die inflammatorischen MΦ aus dem Ascites von 

Ovarialkarzinompatienten als den am nächsten verwandten myeloischen Zelltyp der ercDC 

aus dem RCC.  

 

8.2 ErcDC besitzen ein gemischtes Funktionsprofil, welches Eigenschaften 
verschiedener Makrophagensubtypen vereint  

Unter den Begriff „Makrophage“ sind wiederum verschiedene Subtypen zusammengefasst. 

Die gängige Einteilung anhand von Aktivierungsstimuli unterscheidet zwei Kategorien: i) 

klassisch aktivierte M1-MΦ, die durch IFN-γ und TLR-Liganden induziert werden; ii) alternativ 

aktivierte M2-MΦ, die in vier Subtypen unterteilt werden und u.a. durch IL-4 und IL-13 (M2a) 

induziert werden. Auch die tumorassoziierten Makrophagen (TAM, M2d) zählen hierzu. Das 

Transkriptom der M1-MΦ ist durch Gene mit proinflammatorischen (IL12, IL6, IL15, CXCL10) 

und bakteriziden (NOS2) Eigenschaften geprägt. Typisch für M2-MΦ sind 
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Membranrezeptoren, wie z.B. Mannose- und Scavenger-Rezeptoren, die durch die Gene 

CD206/MRC1 und CD204/MSR1 kodiert werden. Auch mit der extrazellulären Matrix 

assoziierte Gene, wie FN1 und MMP9, sind charakteristisch für den M2-Phänotyp. Mosser et 

al.183 schlagen neben der M1/M2-Klassifizierung, da sie der Heterogenität und Plastizität der 

Gewebemakrophagen nicht gerecht wird, eine Einteilung der MΦ in drei Subtypen 

entsprechend der homöostatischen Funktionen „Bakterizide Aktivität“, „Wundheilung“ und 

„Immunregulation“ vor.  

Die in dieser Arbeit durchgeführten Analysen ergaben, dass die ercDC sowohl einige der von 

Martinez et al.103, Shaykhiev et al.137 und Houser et al.133 definierten M1-assoziierten Gene 

als auch M2-assoziierte Gene exprimierten. Tendenziell stimmten sie etwas mehr mit dem 

M2-Profil überein, was sich u.a. darin äußerte, dass unter den Markergenen und 

Signaturgenen der ercDC mehr M2-assoziierte als M1-assoziierte Gene vertreten waren. 

Weil jedoch auch viele M1-assoziierte Gene exprimiert wurden, können die ercDC weder den 

alternativ aktivierten M2-MΦ noch den klassisch aktivierten M1-MΦ zugeordnet werden. 

Charakteristische Gene wundheilungsassoziierter, gewebemodulierender und regulatori-

scher, immunsupprimierender MΦ wurden von den ercDC verhältnismäßig stark exprimiert. 

Sie exprimierten aber auch Gene, die für bakterizide MΦ typisch sind. Diese Assoziationen 

bestätigten sich auch in der GO-Term-Analyse, welche die Kategorien „Wundheilung“, „ECM-

Modulierung“ und „bakterizider Aktivität“ als signifikant angereicht identifizierte. In diesen 

Eigenschaften ähnelten die ercDC aus dem RCC den von Houser et al.133 beschriebenen 

CD11cLO MΦ aus der Decidua. Auch diese entsprechen laut Publikation weder dem M1-

Phänotyp noch dem M2-Phänotyp. Für sie ist, wie bei den ercDC, die Expression 

gewebemodulierender Gene beschrieben133. Funktionell wird für die CD11cLO MΦ postuliert, 

dass sie im tolerogenen Milieu der Decidua des Ersttrimesters an der Modulierung der 

extrazellulären Matrix beteiligt sind. Auch für renale DC und MΦ ist beschrieben, dass sie 

unter homöostatischen Bedingungen gewebemodulierende und regulatorische Funktionen 

ausüben, um die Gewebehomöostase und die periphere Toleranz aufrecht zu erhalten77,84. 

Für die ercDC im Kontext des RCC könnte der Besitz dieser Eigenschaften zur Folge haben, 

dass im Tumor ein tolerogenes Milieu geschaffen bzw. erhalten wird, welches die 

Immunzellen in einem inaktiven Zustand hält und gleichzeitig die Tumorinvasion durch die 

Modulierung der ECM begünstigt. Das ausgeprägte invasive und proangiogene 

Genexpressionsprofil der ercDC (siehe Abbildung 7-32, Seite 118) lässt vermuten, dass 

ercDC protumoral sein könnten. Das entspricht auch der histopathologischen Beobachtung, 

dass ercDC besonders zahlreich in Tumoren des fortgeschrittenen Stadiums gefunden 

wurden (Figel, Brech et al.101). Dem invasiven und proangiogenen Profil gehörten 

beispielsweise FOLR2, MMP2, MMP9, NRP1, CCL2 und GPNMB an, die auch zu den 

ercDC_RCC-Marker- und Signaturgenen zählten. Im Gegensatz zu den als antitumoral und 

proinflammatorisch beschriebenen TAM aus dem GIST exprimierten ercDC auch M2-
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assoziierte TAM-Marker stark. Mit den TAM_GIST stimmten die ercDC allerdings in der 

Expression der Gene CD68, CD14 und CD11B/ITGAM überein, die allgemein zur 

Identifizierung humaner TAM verwendet werden. 

Insgesamt zeigten die Analysen, dass die ercDC Eigenschaften verschiedener MΦ-Subtypen 

vereinen und weder anhand der M1/M2-Nomenklatur noch basierend auf homöostatischen 

Funktionen eindeutig zugeordnet werden können. Es ließen sich protumorale, 

gewebemodulierende und immunsuppressive Eigenschaften, aber auch bakterizide 

Funktionen ableiten. Die ercDC ähnelten den CD11cLO MΦ aus der Decidua, die ebenfalls 

weder M1-MΦ noch M2-MΦ zugeordnet werden konnten und sich, wie die ercDC_RCC, 

durch die Expression gewebemodulierender Gene auszeichneten.  

 

8.3 Das RCC-Milieu prägt das Transkriptom der ercDC  

Mehrere Publikationen weisen darauf hin, dass die funktionelle Polarisierung der 

myeloischen Zellen entscheidend durch das gewebespezifische Mikromilieu und die darin 

enthaltenen löslichen Faktoren bestimmt wird12,212,213,214. Da die ercDC aus dem Gewebe des 

RCC isoliert wurden, stellte sich die Frage, ob sich Charakteristika dieser anatomischen 

Lokalisation im Transkriptom wiederfinden lassen. Bei der „nearest shrunken centroids“ 

Analyse und den daraus resultierenden Markergenen zeigte sich deutlich, dass die ercDC 

ein anderes Genexpressionsprofil besaßen als die meisten vergleichend analysierten 

myeloischen Zellen anderer nicht-lymphatischer Gewebe. Interessanterweise grenzten sie 

sich von den proinflammatorischen TAM aus dem GIST deutlich ab und stimmten mit den 

CD11cLO MΦ aus der Decidua und insbesondere mit den inflammatorischen MΦ aus dem 

Ascites von Ovarialkarzinompatienten stark überein.  

Für das RCC ist ein reichhaltiges Zytokin- und Chemokinmilieu mit besonders starker 

Anreicherung von IL-6, VEGF, CXCL8/IL-8 und IL-15 beschrieben98,101,215,216. Auch PGE2, 

TNF-α und CCL5/RANTES sind bekannte Milieufaktoren99,100,217. Interessanterweise sind IL-

6, CXCL8/IL-8 und VEGF auch im Ascites von Ovarialkarzinompatienten 

beschrieben218,219,220, so dass sich die Verwandtschaft zu den inflammatorischen MΦ aus 

dem Ascites auf den prägenden Einfluss eines ähnlichen Milieus zurückführen lässt. In Figel, 

Brech et al.101 zeigten wir, dass drei Faktoren in Kombination, IL-6, CXCL8/IL-8 und VEGF, 

entscheidend an der Ausprägung des ercDC-Phänotyps beteiligt sind. Diese Faktoren 

fördern proangiogene Funktionen, u.a. über die Induktion von MMP-9221,222,223. Für IL-6 ist 

außerdem beschrieben, dass es eine M2-Polarisierung der MΦ induziert224 und über die 

Hochregulierung von CSF1R die Differenzierung von Monozyten zu MΦ gegenüber DC 

begünstigt213.  
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Die Genexpressionsanalyse zeigte, dass ercDC CSF1R und einige mit der M2-Polarisierung 

assoziierten Gene (z.B. FOLR2, CD206/MRC1, MERTK, MMP9) stark exprimierten. Somit 

konnten also Eigenschaften eines durch IL-6 geprägten Transkriptoms gefunden werden. 

Heusinkveld et al.225 beobachteten, dass IL-6- und PGE2-reiche Kulturüberstände von 

Zervikalkarzinomzellen tolerogene M2-MΦ induzieren, welche keine T-Zell-Proliferation 

bewirken und kein IL-12 sezernieren. Diese Eigenschaften wurden auch bei den in vitro 

generierten ercDC beobachtet. Allerdings war bei den mit Kulturüberständen von 

Zervikalkarzinomzellen generierten M2-MΦ, im Unterschied zu den in vitro generierten 

ercDC, die Expression der Kostimulationsmoleküle beeinträchtigt. Dieser Unterschied könnte 

auf das immunstimulatorische Uromodulin/Tamm-Horsfall-Protein (THP) zurückzuführen 

sein, welches bei Entzündungsvorgängen aus den renalen Tubuli in das Interstitium 

gelangen kann226,227. In Zusammenarbeit mit der Arbeitsgruppe von Hans-Joachim Anders 

konnten wir zeigen, dass THP Kostimulationsmoleküle und HLA-DR auf Monozyten 

hochreguliert und die Sezernierung von IL-6, CXCL8/IL-8, TNF-α und CCL5/RANTES 

induziert226. Dies könnte der ansonsten bei tumorinfiltrierenden myeloischen Zellen häufig 

beobachteten Herabregulierung von CD80, CD86 und CD4066 entgegenwirken und die 

starke Expression dieser Moleküle auf ercDC erklären. 

Unter Zuhilfenahme der von Xue et al.112 erarbeiteten Stimulus-spezifischen Gensets, 

sogenannten Modulen, wurde versucht, weitere Polarisierungssignale des RCC-Milieus zu 

identifizieren (Abbildung 7-33, Seite 122). Die ercDC aus dem RCC korrelierten stark positiv 

mit Modulen, die durch PGE2, Glucocorticoide (GC), Palmitinsäure (PA, engl.: palmitic acid) 

oder eine Kombination aus TNF, PGE2 und Pam3CysSerLys4 (TPP) induziert werden. Die 

phänotypischen und funktionellen Charakteristika der ercDC lassen sich gut durch diese 

Stimuli erklären. So ist bekannt, dass PGE2 und GC die Sekretion proinflammatorischer 

Zytokine, wie z.B. IL-12, supprimieren und die Polarisierung alternativ aktivierter MΦ und 

tolerogener DC fördern75,185,193,194. Für beide Stimuli ist auch beschrieben, dass sie die 

Expression von CD163, und für GC zusätzlich MerTK, induzieren, welche für die M2c- bzw. 

M2d-Polarisierung der MΦ charakteristisch sind178,196,197. Diese Gene wurden von ercDC 

exprimiert, was eine Prägung des ercDC-Transkriptoms durch PGE2 und GC unterstützt. PA 

induziert die TNF-α-Sekretion von MΦ und ist mit chronischer Inflammation assoziiert192. 

Auch ist bekannt, dass TNF-α im RCC angereichert ist99. Im Gegensatz zu der positiven 

Korrelation mit Modulen, die durch PGE2, GC, PA und TPP geprägt sind, zeigte sich eine 

starke negative Korrelation mit IL-4-assoziierten Modulen. Dies stimmt mit der Beobachtung 

überein, dass IL-4 im RCC-Gewebe nicht angereichert ist (Hosse (Eckl), Dissertationsarbeit, 

2009198) und auch damit, dass das RCC-26-konditionierte Medium, welches für die In-vitro-

Generierung der ercDC verwendet wurde, keine messbaren Mengen an IL-4 enthielt101. Die 

ercDC aus dem RCC zeigten starke Parallelen im Korrelationsmuster mit den 

inflammatorischen MΦ aus dem Ascites, mit denen sie auch ein gemeinsames Cluster 
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bildeten. Dies lässt vermuten, dass die beiden Zelltypen einem ähnlichen Milieu ausgesetzt 

waren. Auch die inflammatorischen MΦ korrelierten stark positiv mit PGE2-, GC-, PA- und 

TPP-assoziierten Modulen und negativ mit IL-4-assoziierten Modulen. Für den Ascites des 

Ovarialkarzinoms ist in der Tat beschrieben, dass er u.a. reich an TNF-α und PGE2 ist228,229. 

Auch die MΦ aus dem RCC waren den ercDC aus dem RCC sehr ähnlich, die Korrelationen 

waren jedoch insgesamt schwächer ausgeprägt. Ein interessanter Unterschied zeigte sich in 

der Korrelation mit dem Modul 8, welches mit dem M1-Stimulus IFN-γ assoziiert ist. Hier 

korrelierten die ercDC negativ und die MΦ positiv. Dies deutet darauf hin, dass sich die MΦ 

und die ercDC in verschiedenen Mikromilieus innerhalb des RCC-Tumors befanden und die 

MΦ dabei möglicherweise in Regionen vorkamen, in denen tumorreaktive T-Zellen IFN-γ-

sezernieren. Die Koexistenz mehrerer differentiell aktivierter MΦ innerhalb eines Tumors ist 

in Maustumoren beschrieben230,231.  

Festzuhalten ist, dass sich die ercDC durch ein Transkriptom auszeichneten, welches mit 

den Eigenschaften des RCC-Milieus in Einklang steht. Dabei wurden nicht nur Einflüsse von 

IL-6, CXCL8/IL-8 und VEGF, sondern auch von PGE2, GC, PA und TPP nachgewiesen. 

Diese Faktoren könnten ursächlich für das proangiogene und invasive Genexpressionsprofil 

der ercDC sein und eine Polarisierung der myeloischen Zellen bewirken, die eine 

Immunevasion des Tumors begünstigt.  

 

8.4 ErcDC und Immunevasion 

Während unserer anfänglichen Untersuchungen stellten wir eine positive Korrelation 

zwischen der Anzahl von ercDC im RCC-Gewebe und dem Tumorstadium fest, d.h., es 

wurden mehr ercDC in Tumoren fortgeschritteneren Stadiums gefunden, die eine schlechte 

Prognose besitzen101. Wir vermuteten, dass die ercDC zur Immunevasion beitragen könnten. 

Die funktionellen Untersuchungen mit den in vitro generierten ercDC zeigten, dass die ercDC  

eine deutliche Schwäche in der IL-12-Sekretion und in der Fähigkeit naive T-Zellen zur 

Proliferation zu stimulieren besaßen. Es wurde nach möglichen Ursachen gesucht, mit dem 

Gedanken, therapeutische Zielstrukturen zu identifizieren, die für die Repolarisierung der 

ercDC zu einem immunkompetenten Zelltyp geeignet sind. Die starke 

Oberflächenexpression der Kostimulations-, MHC- und Adhäsionsmoleküle ließ es 

unwahrscheinlich erscheinen, dass hierdurch die schwache T-Zell-Proliferation bedingt 

werden könnte. Auch das Fehlen von IL-12 konnte die festgestellte Schwäche in der 

Induktion der T-Zell-Proliferation nicht hinreichend erklären, denn bei exogener IL-12-Zugabe 

wurde die T-Zell-Proliferation zwar gesteigert, blieb aber weit hinter der mit cDC erreichten 

Proliferation zurück.  

Mit Hilfe der Genexpressionsanalyse sollte ein tieferes Verständnis der immuntolerogenen 

bzw. immunsuppressiven Eigenschaften erreicht werden. Es bestand auch die Hoffnung, 
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dass eine Erklärung für die schwache Fähigkeit zur T-Zell-Stimulation gefunden werden 

könnte, da über das Transkriptom ein viel breiteres Markerspektrum analysiert werden kann 

als das bei der durchflusszytometrischen Analyse und mit limitierter Zellzahl möglich ist. 

Außerdem bestand die Hoffnung, dass durch den Vergleich des Transkriptoms von in vitro 

generierten ercDC mit dem von ercDC aus dem RCC abgeschätzt werden könnte, ob 

funktionelle Eigenschaften der In-vitro-ercDC auch bei ercDC aus dem RCC zu erwarten 

sind. Beim detaillierten Betrachten von Markern, welche bei der Induktion der T-Zell-

Proliferation eine Rolle spielen, wurde festgestellt, dass das Transkriptlevel von FSCN1 

(kodiert für Fascin), welches für die Stabilität der immunologischen Synapse nötig ist, sowohl 

bei den ercDC aus dem RCC als auch bei den in vitro generierten ercDC sehr niedrig war. 

Weiterhin wurden bei beiden ercDC-Typen hohe Transkriptlevel von CD48 und ILT4 

gemessen, die für inhibitorische Oberflächenmoleküle kodieren. Diese Eigenschaften lassen 

vermuten, dass auch die ercDC aus dem RCC eine eher geringe T-Zell-aktivierende 

Kapazität haben dürften. 

Darüber hinaus fiel ein hohes Transkriptlevel von VSIG4 auf. Bei den durchgeführten 

Analysen wurde VSIG4 als mit den ercDC_RCC-Markergenen verwandtes Gen identifiziert. 

Weiterhin gehörte es auch zu den ercDC_RCC-Signaturgenen und war Bestandteil des 

proangiogenen und invasiven Gensets. VSIG4 ist ein koinhibitorischer Komplementrezeptor, 

der ausschließlich von bestimmten Subtypen gewebeständiger, naiver MΦ exprimiert 

wird166,232,233. Zur Funktion ist bisher noch wenig bekannt. Erste publizierte Daten lassen 

jedoch vermuten, dass es die T-Zell-Antwort inhibiert. VSIG4 scheint die Proliferation naiver 

CD4+ und CD8+ T-Zellen zu supprimieren234 und für die Aufrechterhaltung der oralen 

Toleranz essentiell zu sein166. Erst kürzlich wurden VSIG4+CD68+ MΦ auch in soliden 

humanen Tumoren beschrieben235. In einem entsprechenden murinen Modellsystem des 

nicht-kleinzelligen Lungenkarzinoms beobachteten Liao et al.235, dass VSIG4 das 

Tumorwachstum fördert, vermutlich durch die Inhibition der Proliferation und Effektor-

Zytokinsekretion von T-Zellen. Auch im RCC konnten wir zeigen, dass die infiltrierenden T-

Zellen kein IFN-γ sezernieren236. Ob die T-Zell-Inhibition im RCC in Zusammenhang mit 

VSIG4+ ercDC zu sehen ist, müssen zukünftige Untersuchungen klären. Die für VSIG4 

beschriebenen Mechanismen der T-Zell-Inhibition lassen dies möglich erscheinen. So ist 

beschrieben, dass VSIG4 keine T-Zell-Apoptose auslöst166. Auch meine Daten zeigten, dass 

in Kokulturen von ercDC mit PBL keine erhöhte Apoptoseinduktion gegenüber cDC:PBL-

Kokulturen vorlag. Vielmehr ist beschrieben, dass VSIG4 über Zellzyklusarrest und Induktion 

des Zellzyklusinhibitors p27kip-1 T-Zellen inhibiert166. Eine erhöhte Expression von p27kip-1 und 

Zellzyklusarrest wird auch bei tumorinfiltrierenden T-Zellen und NK-Zellen des RCC in 

Zusammenhang mit funktioneller Inhibition diskutiert236,237.  

Zusammenfassend ergaben sich verschiedene Hinweise, dass ercDC in vivo tolerogene und 

protumorale Eigenschaften haben dürften. Das über die Genexpressionsanalyse identifizierte 
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VSIG4 könnte bei der Ausprägung beider Eigenschaften eine Schlüsselrolle spielen. Als 

koinhibitorisches Molekül könnte es zur Inhibition der T-Zell-Aktivität beitragen und durch die 

Sekretion von CXCL8/IL-8 und MMP-9167 die Progression des Tumors unterstützen.  

 

8.5 Ausblick und therapeutische Ansatzpunkte für eine Repolarisierung der 
ercDC  

Mit Hilfe der Genexpressionsanalyse unter Einbeziehung verschiedener Aspekte, u.a. der 

Bestimmung eines Markergenprofils und funktionsrelevanter Gengruppen sowie 

Berücksichtigung der Ontogenie, konnte gezeigt werden, dass die ercDC aus dem RCC im 

MPS eher auf der Seite der MΦ anzusiedeln sind. Im Spektrum der MΦ ähnelten sie stark 

den inflammatorischen MΦ aus dem Ascites von Ovarialkarzinompatienten sowie den 

CD11cLO MΦ aus der Decidua. Die ursprüngliche Bezeichnung als „DC“ scheint nach diesen 

Untersuchungen nicht mehr passend. Auch andere zunächst als DC bezeichnete Zelltypen, 

beispielsweise die CD209+CD14+ Zellen der Decidua, werden mittlerweile als MΦ 

bezeichnet133,204.  

Die myeloischen Zellen der Niere sind eine heterogene Zellgruppe, die sowohl im murinen 

als auch im humanen System DC- und MΦ-Marker koexprimiert8,77. Mittlerweile sind im 

murinen System 5 verschiedene renale mononukleäre Phagozytenpopulationen 

beschrieben, die sich nicht nur in der Expression von Oberflächenmarkern unterscheiden, 

sondern auch unterschiedliche Funktionen ausüben77. In Mausmodellen konnte 

nachgewiesen werden, dass renale DC und MΦ sowohl protektive, antiinflammatorische als 

auch proinflammatorische, den Krankheitsverlauf verstärkende, Funktionen im Rahmen von 

entzündlichen Erkrankungen der Niere ausüben82,83,84,85,234. Die DC und MΦ im humanen 

RCC scheinen eher immunsuppressive, tolerogene Funktionen auszuüben. Es ist 

beschrieben, dass aus dem RCC isolierte TAM die Expression von FOXP3 und CTLA4 in T-

Zellen hochregulieren und große Mengen antiinflammatorisches IL-10 und PGE2 

sezernieren95. Neben den von uns beschriebenen ercDC wurde kürzlich von der 

Arbeitsgruppe um Marc Schmitz in Zusammenarbeit mit unserer Arbeitsgruppe ein weiterer 

myeloischer Zelltyp im RCC beschrieben, die sogenannten slanDC (Manuskript eingereicht). 

Die slanDC sind als DC-Subtyp im Blut sowie verschiedenen inflammatorischen Geweben, 

z.B. bei chronischen Erkrankungen der Haut (Psoriasis), beschrieben46,238. Sie besitzen 

proinflammatorische, T-Zell-stimulierende Eigenschaften und können anhand der 6-sulfo 

LacNAc (slan)-Modifizierung des Adhäsionsmoleküls PSGL-1 eindeutig von anderen 

myeloischen Zelltypen abgegrenzt werden. Anhand dieses Markers wurden sie auch im 

Gewebe des RCC entdeckt. Eine große Anzahl von slanDC im RCC-Gewebe zeigte sich als 

ungünstiger Prognosefaktor für das Patientenüberleben. Weitere Analysen ergaben, dass die 

slanDC im RCC, entgegen den proinflammatorischen Eigenschaften im Blut und in 



DISKUSSION 133 

 

inflammatorischen Geweben, einen tolerogenen Phänotyp (u.a. Expression von ILT3 und 

ILT4) besitzen. Wie die ercDC waren sie nach In-vitro-Kokultur mit RCC-Zellen nicht in der 

Lage, naive T-Zellen zur Proliferation zu stimulieren. Die Inhibition der T-Zell-Stimulationsfä-

higkeit myeloischer Zellen scheint somit ein allgemeiner Suppressionsmechanismus des 

RCC zu sein. Die Sortierung der slanDC aus dem RCC und die Analyse des Transkriptoms 

ist eines der zukünftig geplanten Experimente.  

Die Genexpressionsanalyse ließ weitere Rückschlüsse auf die funktionelle Polarisierung zu. 

So scheinen die ercDC ein myeloischer Mischtyp mit pro- und antiinflammatorischen 

Eigenschaften zu sein, indem sie sowohl Parallelen mit M2-MΦ als auch mit M1-MΦ zeigten. 

Insgesamt besaßen sie ein durch proangiogene und invasive Gene geprägtes Transkriptom, 

so dass sie im Tumor wohl eher protumorale, M2-ähnliche Funktionen ausüben. Dies 

unterstützt unseren Befund, dass eine große Anzahl von ercDC im RCC mit einer schlechten 

Prognose assoziiert ist101. Auch hinsichtlich der Kommunikation mit den Zellen des adaptiven 

Immunsystems ergaben sich interessante Aspekte aus dem Genexpressionsprofil der 

ercDC. Die schwache Expression von FSCN1, einhergehend mit der starken Expression der 

mit T-Zell-Inhibition und Toleranz assoziierten Gene CD48 und ILT4 sowie VSIG4 könnte 

das Ausbleiben einer produktiven Unterstützung der T-Zell-Funktion erklären und die 

Immunevasion des Tumors begünstigen. Wie in der Literatur mittlerweile häufig 

diskutiert239,240,241, könnte auch für die ercDC eine Repolarisierung zu einem 

immunkompetenten Zelltyp ein attraktiver therapeutischer Ansatzpunkt sein. Denn die ercDC 

besitzen neben den inhibierenden Eigenschaften auch Marker, die einen positiven Effekt auf 

die Kommunikation mit T-Zellen haben (z.B. CD80, CD86, CD40, HLA-DR). Es ist daher 

denkbar, dass die aktivierenden Eigenschaften zum Tragen kommen, wenn die 

Inhibierenden aufgehoben werden. Die ercDC sollten sich dann produktiv an einer 

antitumoralen Immunantwort beteiligen können.  

In Abbildung 8-1 (Seite 135) sind einige therapeutische Zielstrukturen aufgeführt, die durch 

die Genexpressionsanalyse in den Fokus rückten. Besonders interessant dürfte VSIG4 sein, 

da es einen direkten Einfluss sowohl auf die Immunzellen als auch auf den Tumor hat. So 

dürfte die gezielte Blockade von VSIG4 der Tolerogenisierung der T-Zellen vorbeugen und 

durch die gleichzeitige Inhibition der proangiogenen Faktoren CXCL8/IL-8 und MMP-9 auch 

der Tumorprogression entgegen wirken (Abbildung 8-1, ①). In der Literatur finden sich 

Hinweise, dass dies so eintreten könnte. Liao et al.235 wiesen die Expression von VSIG4 im 

Gewebe des humanen nicht-kleinzelligen Lungenkarzinoms und in entsprechenden 

Mausmodellen nach. Sie schlagen die gezielte Blockade von VSIG4 als neue, effektive 

Strategie für die Behandlung dieses Tumors vor. Die antitumorale T-Zell-Antwort könnte 

weiterhin durch eine Antikörper-basierte Blockade der T-Zell-inhibierenden 

Oberflächenmoleküle CD48 und ILT4 unterstützt werden (Abbildung 8-1, ②). 

Vielversprechend erscheint außerdem eine Inhibition des durch Oxysterole induzierten LXR-
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α-Signalwegs, der in den ercDC aus dem RCC hochreguliert war (siehe Funktionsgruppe 1 

in Abbildung 7-16 (Seite 87)). Für LXR-α ist beschrieben, dass es bei Aktivierung durch 

Lipide (Oxysterole) in DC und MΦ die Transkription NFκB-induzierter proinflammatorischer 

Gene inhibiert und eine Herabregulierung des Aktin-bündelnden Proteins Fascin sowie des 

Chemokinrezeptors CCR7 bewirkt76,149,209. Als Folge davon wird die Migration in die 

tumordrainierenden Lymphknoten verhindert und die T-Zell-stimulatorischen Fähigkeiten 

abgeschwächt. Der LXR-α-Signalweg könnte durch gezielte Blockade des Lipidrezeptors 

CD204/MSR1 mittels spezifischer Antikörper (Abbildung 8-1, ③) sowie durch direkte 

Inhibition von LXR-α durch Antagonisten, wie GSK2033242 und 22(S)-Hydroxycholesterol243, 

beeinflusst werden (Abbildung 8-1, ④). Es ist zu erwarten, dass dadurch die Expression von 

Fascin sowie die IL-12-Sekretion der ercDC gesteigert werden kann. Insbesondere über IL-

12 ist ein positiver Effekt auf die Tumorkontrolle zu erwarten, da dies in verschiedenen 

Modellen gezeigt wurde244,245,246.  

Weiterhin könnte therapeutisch auf die protumoralen Eigenschaften der ercDC Einfluss 

genommen werden. So ist denkbar, deren Rekrutierung und Akkumulation im Tumor zu 

verhindern. Ursächlich für die Rekrutierung und Akkumulation von protumoralen TAM sind 

u.a. der Wachstumsrezeptor CSF1R (bindet M-CSF)247 und die Chemokine CCL2, CCL8 und 

CCL18156 (Abbildung 8-1, ⑤ und ⑥). Die Marker werden von den ercDC stark exprimiert, so 

dass eine gezielte Blockade dieser Moleküle mit neutralisierenden Antikörpern oder „small-

molecule“-Inhibitoren im Kontext des metastasierenden RCC relevant sein könnte. Erste 

Versuche laufen bereits in Mausmodellen und klinischen Studien. Dabei zeigte sich in einem 

murinen Glioblastom-Modell, dass die Inhibition von CSF1R nicht nur zu einer reduzierten 

Anzahl protumoraler TAM im Tumorgewebe führt, sondern auch deren Repolarisierung zu 

antitumoralen, M1-ähnlichen TAM bewirkt248.  

Interessant ist auch der Rezeptor NRP1 (Neuropilin-1, Abbildung 8-1, ⑦), der zu den 

ercDC_RCC-Marker- und Signaturgenen gehört. Casazza et al.157 beobachteten, dass TAM 

durch die NRP1-vermittelte Bindung von tumorsezerniertem Semaphorin 3A (Sema3A) in 

hypoxische Bereiche gelockt werden. Dort wird die Differenzierung eines protumoralen 

Phänotyps begünstigt. Die gezielte Intervention dieses Signalwegs führte dazu, dass die 

TAM in normoxischen Bereichen verblieben und ihre tumorsuppressiven Fähigkeiten 

behielten157. Weitere Immuntherapieansätze könnten auf die Neutralisierung lokaler 

Tumormilieufaktoren, beispielsweise mit anti-IL-6, anti-CXCL8/IL-8 oder anti-VEGF-

Antikörpern, abzielen (Abbildung 8-1, ⑧). Dies könnte verhindern, dass ercDC 

proangiogene Eigenschaften entwickeln und die Fähigkeit zur Stimulation tumorreaktiver T-

Zellen verlieren. 

Auch wenn es mit der Zulassung der Tyrosinkinaseinhibitoren (TKI) mittlerweile eine Reihe 

von Möglichkeiten zur Behandlung des metastasierenden Nierenzellkarzinoms gibt, so ist 
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dennoch keine dieser Behandlungen kurativ. Oft kommt es aufgrund von 

Resistenzentwicklung zum Tumorprogress249. Die Immuntherapie mit hochdosiertem IL-2 

war vor Einführung der TKI die einzige Therapieoption250,251. Auch wenn nur ein geringer 

Prozentsatz der Patienten anspricht, so zeichnet sich diese Therapie gegenüber den TKI 

dadurch aus, dass ein Teil der Patienten Langzeitansprechen zeigt und als geheilt gilt. 

Wegen der starken Nebenwirkungen ist die Hochdosis-IL-2-Therapie jedoch nicht für die 

breite Anwendung geeignet und wird derzeit im klinischen Alltag praktisch nicht mehr 

eingesetzt. Wegen des Potenzials der Immuntherapie Tumorlangzeitkontrolle zu erzielen, 

sind neuartige therapeutische Ansätze, die auf eine Stärkung der antitumoralen 

Immunantwort abzielen, besonders vielversprechend. Die gezielte Blockade der in dieser 

Arbeit durch die Genexpressionsanalyse in den Fokus gelangten potentiellen Zielstrukturen, 

z.B. VSIG4, CSF1R oder LXR-α, könnte die Repolarisierung der ercDC zu einem 

immunkompetenten Zelltyp bewirken und damit zur Bekämpfung des RCC beitragen.  

 

Abbildung 8-1: Potenzielle therapeutische Zielstrukturen für die Repolarisierung der ercDC zu 
immunkompetenten, antitumoralen Zellen. 1) Blockade des koinhibitorischen Komplementrezeptors 
VSIG4 durch spezifische Antikörper könnte der Tolerogenisierung der T-Zellen und der Sekretion von 
proangiogenen Faktoren (MMP-9, CXCL8/IL-8) entgegenwirken. 2) Blockade der inhibitorischen 
Oberflächenmoleküle CD48 und ILT4, um die Bindung an 2B4 bzw. HLA-G auf T-Zellen und somit 
deren Suppression zu verhindern. 3) Inhibition des Lipidrezeptors CD204/MSR1, um der Akkumulation 
von Oxysterolen und damit der Aktivierung des antiinflammatorischen LXR-α vorzubeugen. 4) Appli-
kation von LXR-α-Antagonisten, um die Suppression von IL-12 und Fascin zu verhindern. 5) Blockade 
des Rezeptors CSF1R zur Verhinderung der Rekrutierung und Akkumulation sowie der Induktion 
eines protumoralen Phänotyps der ercDC. 6) Blockade von CCL2, CCL8 und CCL18 um die 
Akkumulation von weiteren tolerogenen und protumoralen myeloischen Zellen zu verhindern. 7) Inter-
vention des NRP1 (Neuropilin-1)-Signalwegs, um die Akkumulation der ercDC in hypoxischen 
Bereichen des Tumors zu verhindern und dadurch die antitumoralen Fähigkeiten zu erhalten. 8) 
Neutralisierung tumorsezernierter Faktoren mit blockierenden Antikörpern, um die Differenzierung 
proangiogener ercDC zu vermeiden. Pfeile: durchgezogen: direkte, gestrichelt: indirekte Verbindung 
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9 ABKÜRZUNGSVERZEICHNIS 

7-AAD 7-Aminoactinomycin D  
ADCC engl.: antibody-dependent cellular cytotoxicity 
APAAP alkalische Phosphatase-anti-alkalische-Phosphatase 
APC antigenpräsentierende Zelle  
ARG1 Arginase-1 
BDCA engl.: blood dendritic cell antigen 
cDC engl.: classical dendritic cell 
CDP engl.: common DC progenitor 
CFDA-SE engl.: Carboxyfluorescein diacetate succinimidyl ester 
CFSE engl.: Carboxyfluorescein succinimidyl ester 
CMP engl.: common myeloid progenitor 
COPD engl.: chronic obstructive pulmonary disease 
CTL  engl.: cytotoxic T lymphocyte 
DC-SIGN engl.: DC-specific ICAM-3-grabbing nonintegrin 
DMSO Dimethlysulfoxid 
ECM engl.: extracellular matrix 
EDTA Ethylendiamintetraacetat 
ELISA engl.: enzyme-linked immunosorbent assay  
ercDC engl.: enriched-in-renal-carcinoma DC 
ES  engl.: enrichment score 
FACS engl.: fluorescence activated cell sorting 
FC engl.: fold change 
FcR Fc-Rezeptor 
FCS engl.: fetal calf serum 
FDR engl.: false discovery rate 
FLT3 engl.: Fms-like tyrosine kinase 3 
FOXP3 engl.: forkhead box P3 
FSC engl.: forward scatter  
GC Glucocorticoide 
GIST Gastrointestinaler Stromatumor 
GM-CSF engl.: granulocyte-macrophage colony-stimulating factor 
GO engl.: Gene Ontology 
GPR G-Protein-gekoppelter Rezeptor 
GSEA engl.: Gene Set Enrichment Analysis 
GTP Guanosin-Triphosphat 
HLA humanes Leukozyten-Antigen 
HRP engl.: horseradish peroxidase 
HS Humanserum 
IC engl.: immune complexes 
ICAM-1 engl.: intercellular adhesion molecule 1 
IDEC engl.: inflammatory dendritic epidermal cells  
IDO1 Indolamin-2,3-Dioxygenase 1 
IL-1Ra IL-1-Rezeptor-Antagonist 
ImmGen engl.: Immunological Genome 
iNOS engl.: inducible nitric oxide synthase 
LXR Leber-X-Rezeptor 
MACS engl.: magnetic activated cell sorting  
MART engl.: melanoma antigen recognized by T cells  
MCF Makrophagen-chemotaktischer Faktor 
M-CFU engl.: myeloid colony-forming units 
MCP-1 engl.: monocyte chemoattractant protein-1 
M-CSF engl.: macrophage colony-stimulating factor 



ABKÜRZUNGSVERZEICHNIS 137 

 

MDP engl.: macrophage-DC progenitor 
MDSC engl.: myeloid-derived suppressor cells 
ME  Modul-Eigengen 
MFI mediane Fluoreszenzintensität 
MGF engl.: mast cell growth factor 
MHC engl.: major histocompatibility complex  
MMP Matrixmetalloproteinase 
MoDC engl.: monocyte-derived dendritic cell 
MPS mononukleäres Phagozytensystem 
MRC1 Mannose-Rezeptor, C-Typ 1 
MSR1 Makrophagen Scavenger-Rezeptor 1 
MΦ Makrophage 
NES engl.: normalized enrichment score 
NKC engl.: nontumor kidney cortices 
NK-Zelle natürliche Killerzelle 
NO engl.: nitric oxide 
NRP1 Neuropilin-1 
OvCa engl.: ovarian cancer 
oxFS oxidierte Fettsäuren 
PAMP engl.: pathogen associated molecular pattern 
PBL  engl.: peripheral blood lymphocytes  
PBMC engl.: peripheral blood mononuclear cells 
pDC plasmazytoide dendritische Zelle 
PFA Paraformaldehyd 
PGE2 Prostaglandin E2 
PI Propidiumjodid 
PMT engl.: photomultiplier tube 
PRR engl.: pattern recognition receptor 
PSGL-1 engl.: P-selectin glycoprotein ligand-1 
RCC engl.: renal cell carcinoma  
RCC-26-CM engl.: renal cell carcinoma-26 conditioned medium 
Rhu rekombinant human 
RIN engl.: RNA integrity number 
RMA engl.: Robust Multi-array Average  
rMoPh renale mononukleäre Phagozyten 
ROS engl.: reactive oxygen species 
SD  engl.: standard deviation 
SEM engl.: standard error of the mean 
Sema3A Semaphorin 3A 
slanDC engl.: 6-sulfo LacNAc dendritic cells 
SSC engl.: side scatter  
STAT engl.: signal transducer and activator of transcription  
TAM tumorassoziierte Makrophagen 
TCR engl.: T cell receptor 
TEM  Tie2 exprimierender Makrophage  
TFH follikuläre T-Helferzellen 
THP Tamm-Horsfall-Protein 
TipDC TNF/iNOS-produzierende DC 
TKI Tyrosinkinaseinhibitoren 
TLR engl.: Toll-like receptor 
TMB Tetramethylbenzidin 
Treg regulatorische T-Zelle 
U Unit  
VEGF engl.: vascular endothelial growth factor 
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11 ANHANG 

 

Abbildung 11-1: Histomorphologische Übersicht des Übergangsbereiches zwischen RCC-
Tumor und NKC. Gezeigt ist in 100-facher Vergrößerung die faserige Pseudokapsel, die den RCC-
Tumor (a) umschließt und diesen von dem tumorfreien Bereich der Niere (NKC, c) abgrenzt. Die 
Peripherie (b) stellt den Randbereich des Tumors an der Grenze zur Pseudokapsel dar. Der 
Gewebeschnitt wurde mit anti-CD8 Antikörper (rot, APAAP-Technik) gefärbt und mit Hämatoxylin 
(blau, Zellkerne) gegengefärbt. Weitere Informationen siehe Figel, Brech et al.101 

 

 

Abbildung 11-2: Hierachisches Clustering von CD1c+ DC, CD141+ DC, slanDC und Monozyten 
aus dem Blut. Hinter der Bezeichnung des Zelltyps ist jeweils der Autor vermerkt, der diesen 
Datensatz veröffentlichte. Zusätzlich wurden die Datensätze eines Autors jeweils farblich markiert. 
Mono_Blut, slanDC_Blut und CD1c+ DC_Blut stammen von unseren Analysen (gelb). 
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Abbildung 11-3: Expression der CD141+ DC-Kerngene in CD141+ DC, CD1c+ DC, slanDC und 
Monozyten aus dem Blut. A) Die Heatmap zeigt die relative Expression (Z-Score) der durch Haniffa 
et al.130 definierten CD141+ DC-Kerngene in den verschiedenen Zelltypen. Die Zelltypen wurden 
entsprechend geclustert. CD141+ DC_Lindstedt ist markiert (blau), da hier die Gene am stärksten 
exprimiert wurden. B) Der Boxplot zeigt die normalisierten mittleren Expressionswerte der CD141+ 
DC-Kerngene. Der Boxplot wurde nach Tukey erstellt, d.h. die Länge der „Whisker“ (obere und untere 
Antenne) ist auf maximal das 1,5-fache des Interquartilsabstands beschränkt. CD141+ DC_Lindstedt 
(blau) wurden für die Genexpressionsanalyse ausgewählt.  
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Abbildung 11-4: Hierarchisches Clustering und Expression CD1c+ DC-assoziierter Gene in 
CD1c+ DC, CD141+ DC, slanDC und Monozyten aus dem Blut. A) Das Dendrogramm zeigt das 
Clustering der verschiedenen Zelltypen basierend auf den 140 von Haniffa et al.130 und Segura et al.43 
definierten CD1c+ DC-assoziierten Genen. Hinter der Bezeichnung des Zelltyps ist jeweils der Autor 
vermerkt, der diesen Datensatz veröffentlichte. Zusätzlich wurden die Datensätze eines Autors jeweils 
farblich markiert. Mono_Blut, slanDC_ Blut und CD1c+ DC_Blut stammen von unseren Analysen 
(gelb). B) Der Boxplot zeigt die normalisierten mittleren Expressionswerte aller CD1c+ DC-assoziierten 
Gene an. Der Boxplot wurde nach Tukey erstellt, d.h. die Länge der „Whisker“ (obere und untere 
Antenne) ist auf maximal das 1,5-fache des Interquartilsabstands beschränkt. Unsere CD1c+ DC_Blut 
exprimierten die Gene am stärksten und wurden für die Genexpressionsanalyse ausgewählt (gelb).  

 

 



ANHANG 160 

 

Tabelle 11-1: Hochregulierte ercDC_RCC-Signaturgene. Gezeigt sind die von ercDC_RCC & 
infMΦ_ascOvCa gegenüber der Kontrollgruppe hochregulierten Gene (431 der 788 ercDC_RCC-
Signaturgene). Die Gene sind nach zunehmendem korrigierten p-Wert sortiert. Entrez ID: vom NCBI 
(http://www.ncbi.nlm.nih.gov) vergebene Nummer zur Identifizierung eines Gens; FC: engl.: fold 
change, x-facher Unterschied der Expression (log2) der Signaturgene zwischen den beiden 
Vergleichsgruppen. In grün markiert sind die ercDC_RCC-Markergene (zusätzlich Fettdruck) und 
deren verwandte Gene sowie zusätzlich einige im Text erwähnte Gene.  

Gensymbol Entrez ID 
norm. Expr.werte 
(log2) 
ercDC_RCC & 
infMΦ_ascOvCa 

norm. Expr.werte (log2) 
Kontrollgruppe logFC Korrig. 

p-Wert 

APOC1  341 11,82 10,04 1,78 0,00003 
FOLR2 2350 8,70 7,31 1,39 0,00003 
GAL3ST4 79690 8,01 6,59 1,42 0,00006 
SDC3 9672 7,65 6,42 1,23 0,00006 
ME1 4199 9,59 8,13 1,46 0,00008 
C2 717 8,52 7,07 1,46 0,00008 
CCL8 6355 8,53 6,57 1,96 0,00012 
CD209 30835 8,44 7,05 1,39 0,00012 
PLTP 5360 9,71 7,71 2,00 0,00019 
SLC2A5 6518 6,85 5,53 1,32 0,00019 
ITGA9 3680 6,19 5,28 0,90 0,00019 
SLCO2B1 11309 9,65 7,79 1,86 0,00027 
GPNMB 10457 11,22 9,09 2,13 0,00031 
ABCC5 10057 7,94 7,10 0,84 0,00031 
AP2A2 161 8,97 8,28 0,69 0,00031 
TNS3 64759 9,41 8,79 0,63 0,00031 
SEPP1 6414 9,11 6,69 2,42 0,00034 
NRP2 8828 8,12 6,62 1,50 0,00034 
CXCL12 6387 6,52 5,73 0,79 0,00034 
LHFPL2 10184 10,97 9,58 1,38 0,00036 
SLC38A6 145389 10,17 9,02 1,15 0,00036 
CMKLR1 1240 8,61 7,16 1,46 0,00040 
OLFML2B 25903 7,65 6,34 1,31 0,00040 
NRP1 8829 9,98 8,25 1,73 0,00042 
SLC7A8 23428 7,90 6,27 1,63 0,00042 
SLC38A7 55238 7,49 6,79 0,70 0,00042 
LILRB5 10990 6,87 5,90 0,97 0,00044 
NUPR1 26471 9,85 8,51 1,34 0,00047 
ACP2 53 9,95 9,05 0,91 0,00047 
EPHB2 2048 6,71 5,80 0,91 0,00050 
WBP5 51186 8,96 7,98 0,98 0,00051 
CTSL 1514 12,28 10,97 1,30 0,00052 
SLC36A1 206358 8,10 7,41 0,69 0,00057 
FABP3 2170 8,40 6,86 1,54 0,00059 
DAB2 1601 9,90 8,39 1,51 0,00059 
MMP14 4323 8,05 6,92 1,14 0,00059 
KAL1 3730 8,95 7,78 1,16 0,00065 
APOE 348 11,05 9,23 1,82 0,00068 
ABCA1 19 9,63 8,46 1,17 0,00068 
FRMD4A 55691 7,92 6,81 1,11 0,00068 
TEC 7006 6,45 5,96 0,49 0,00068 
SIGLEC1 6614 9,68 8,23 1,45 0,00070 
CCL18 6362 11,42 9,62 1,80 0,00076 
ADAMDEC1 27299 9,06 7,33 1,73 0,00077 
C1QA 712 11,83 10,41 1,42 0,00081 
DOCK4 9732 9,29 8,04 1,25 0,00081 
CRYAB 1410 6,75 5,68 1,08 0,00083 
NR1H3 10062 9,01 7,95 1,06 0,00083 
RAB3IL1 5866 7,30 6,76 0,54 0,00093 
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TREM2 54209 9,99 8,39 1,60 0,00099 
PLOD2 5352 5,22 4,27 0,95 0,00099 
SLC1A3 6507 8,06 6,67 1,39 0,00109 
RHOBTB3 22836 7,21 6,07 1,14 0,00109 
DRAM1 55332 10,26 9,37 0,89 0,00109 
HS3ST1 9957 6,90 5,74 1,16 0,00109 
MAF 4094 8,17 6,88 1,28 0,00111 
C1QB 713 12,33 10,92 1,42 0,00112 
CD64 2209 6,96 5,79 1,18 0,00112 
IL2RA 3559 6,85 5,69 1,16 0,00112 
ARHGAP12 94134 7,61 6,79 0,82 0,00112 
PSD3 23362 7,92 6,81 1,11 0,00115 
TNFRSF11A 8792 6,77 5,81 0,96 0,00119 
CTSB 1508 12,23 11,32 0,91 0,00119 
ADAP2 55803 9,85 9,02 0,83 0,00119 
CFH 3075 5,72 5,09 0,63 0,00127 
RNASE1 6035 10,53 8,67 1,86 0,00135 
ITGAV 3685 10,50 9,47 1,03 0,00135 
SCAMP5 192683 6,18 5,54 0,64 0,00149 
TCN2 6948 8,26 7,45 0,81 0,00149 
TDRKH 11022 6,33 5,65 0,68 0,00149 
SERPING1 710 11,43 9,99 1,45 0,00150 
IL10 3586 6,98 5,89 1,10 0,00165 
MMP19 4327 9,50 8,23 1,27 0,00165 
MS4A4A 51338 10,52 9,30 1,21 0,00193 
TMEM51 55092 8,87 7,95 0,92 0,00193 
MYO7A 4647 5,97 5,27 0,71 0,00193 
ZFYVE26 23503 9,17 8,55 0,62 0,00193 
ITSN1 6453 7,87 6,90 0,97 0,00199 
SCARB2 950 9,58 8,67 0,91 0,00199 
CFB 629 8,06 6,82 1,25 0,00206 
EDNRB 1910 5,53 4,79 0,74 0,00207 
CD163 9332 8,32 6,79 1,53 0,00207 
PDCD1LG2 80380 7,64 6,48 1,16 0,00207 
STAB1 23166 8,69 7,56 1,13 0,00207 
ADAM9 8754 10,03 9,10 0,93 0,00207 
SNX24 28966 7,07 6,31 0,76 0,00207 
CD81 975 12,34 11,60 0,75 0,00207 
CD28 940 4,91 4,28 0,63 0,00207 
FLCN 201163 6,85 6,34 0,51 0,00207 
C3 718 9,97 8,43 1,54 0,00223 
MITF 4286 8,40 7,70 0,70 0,00228 
CRYBB1 1414 6,20 5,70 0,50 0,00228 
EPAS1 2034 9,11 7,93 1,18 0,00244 
GLUL 2752 10,80 9,74 1,06 0,00246 
MERTK 10461 7,93 6,50 1,43 0,00250 
ADORA3 140 7,24 6,02 1,22 0,00250 
TRPV4 59341 6,56 5,98 0,57 0,00257 
PTPRM 5797 8,37 7,57 0,79 0,00260 
BMP2K 55589 8,97 8,16 0,81 0,00262 
APPL2 55198 7,39 6,79 0,60 0,00263 
KIAA0226L 80183 8,69 7,60 1,09 0,00267 
NPC1 4864 9,11 8,04 1,07 0,00267 
LAIR1 3903 9,89 8,86 1,02 0,00267 
VAT1 10493 10,31 9,55 0,76 0,00267 
LGALS3BP 3959 10,19 9,19 1,00 0,00280 
GNPDA1 10007 9,75 9,19 0,56 0,00285 
IDH1 3417 10,69 9,84 0,85 0,00288 
HNMT 3176 9,35 8,36 1,00 0,00288 
LGMN 5641 11,67 10,11 1,56 0,00288 
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CD84 8832 9,11 7,84 1,27 0,00290 
SGMS1 259230 8,66 7,91 0,75 0,00330 
CTSD 1509 11,32 10,42 0,90 0,00346 
BCL2L1 598 7,62 6,72 0,90 0,00348 
STX4 6810 9,78 9,24 0,53 0,00355 
SDS 10993 7,87 6,80 1,07 0,00369 
BNIP3 664 8,06 7,01 1,05 0,00369 
SPP1 6696 11,15 8,64 2,51 0,00375 
MPP1 4354 10,58 9,99 0,59 0,00385 
IL6 3569 7,68 6,29 1,39 0,00389 
NPL 80896 9,00 7,94 1,06 0,00389 
STARD13 90627 6,22 5,70 0,52 0,00395 
FCGR1B 2210 11,09 9,80 1,29 0,00400 
MARCKS 4082 10,25 8,94 1,31 0,00412 
TCF12 6938 9,19 8,63 0,56 0,00412 
PLA2G15 23659 8,76 8,07 0,68 0,00421 
CCL4 6351 11,32 9,56 1,76 0,00432 
VSIG4 11326 11,86 10,59 1,27 0,00433 
CCL2 6347 10,46 8,71 1,76 0,00459 
MGAT4A 11320 9,30 8,10 1,20 0,00459 
RND3 390 8,82 7,69 1,13 0,00459 
RGL1 23179 9,28 8,17 1,11 0,00459 
LIPA 3988 12,69 12,00 0,69 0,00459 
COLGALT1 79709 8,91 8,32 0,59 0,00459 
CREG1 8804 12,04 11,50 0,53 0,00459 
LRP1 4035 8,64 7,99 0,65 0,00463 
CYFIP1 23191 11,25 10,73 0,52 0,00463 
CPM 1368 9,70 8,68 1,02 0,00465 
CALU 813 8,49 7,88 0,61 0,00475 
MYO5A 4644 8,96 8,43 0,53 0,00490 
IGF1 3479 7,08 5,85 1,23 0,00491 
MAPK13 5603 8,20 7,49 0,72 0,00491 
GALC 2581 9,19 8,47 0,72 0,00491 
FZD5 7855 7,25 6,59 0,67 0,00504 
SLC6A8 6535 6,72 6,19 0,53 0,00504 
DYNLT3 6990 10,21 9,72 0,49 0,00540 
PLIN2 123 10,84 9,93 0,92 0,00547 
METTL1 4234 7,44 6,86 0,58 0,00561 
EYA2 2139 5,29 4,87 0,42 0,00574 
CXCL10 3627 10,24 8,15 2,08 0,00575 
CXCL2 2920 10,79 9,38 1,41 0,00582 
TFRC 7037 10,35 9,33 1,03 0,00582 
PLXNA3 55558 6,46 5,86 0,60 0,00582 
ATP13A2 23400 7,37 6,72 0,65 0,00605 
LYVE1 10894 6,39 5,40 1,00 0,00660 
OLR1 4973 11,00 9,40 1,60 0,00663 
RBM47 54502 9,35 8,69 0,65 0,00668 
FN1 2335 10,06 8,12 1,93 0,00675 
MARCO 8685 10,44 9,42 1,03 0,00683 
FAM13A 10144 8,11 7,33 0,78 0,00683 
AP1B1 162 8,95 8,46 0,49 0,00683 
CAMSAP2 23271 7,83 7,03 0,80 0,00687 
IGFBP4 3487 7,04 6,45 0,59 0,00698 
P4HA2 8974 7,50 6,97 0,53 0,00711 
ATP6V1C1 528 8,56 7,86 0,70 0,00723 
ENOSF1 55556 8,16 7,49 0,67 0,00754 
GPR65 8477 10,49 9,78 0,71 0,00760 
OLFML3 56944 6,10 5,50 0,60 0,00760 
SLC11A2 4891 8,37 7,79 0,57 0,00760 
PLAT 5327 5,30 4,77 0,52 0,00760 
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PLXND1 23129 9,37 8,85 0,52 0,00760 
CTSZ 1522 11,03 10,49 0,54 0,00797 
CXCL1 2919 8,55 7,33 1,22 0,00807 
ETV5 2119 7,67 6,56 1,11 0,00812 
DNASE2 1777 8,54 7,76 0,79 0,00812 
CD204 4481 9,74 8,14 1,60 0,00817 
IFI27 3429 9,65 8,19 1,47 0,00818 
ASPH 444 8,16 7,41 0,75 0,00818 
PLAU 5328 8,77 7,62 1,15 0,00827 
HOMER3 9454 7,32 6,71 0,61 0,00856 
ITPR2 3709 9,18 8,33 0,85 0,00876 
FABP5 2171 11,79 10,75 1,03 0,00877 
FNDC3B 64778 8,84 8,13 0,71 0,00969 
GPR137B 7107 10,84 10,08 0,76 0,00992 
ANGPTL4 51129 6,29 5,73 0,56 0,00992 
TIMP2 7077 10,99 10,48 0,51 0,00992 
GLA 2717 10,87 10,29 0,58 0,01010 
PI4K2A 55361 8,75 8,17 0,58 0,01016 
KCNMA1 3778 8,67 7,51 1,15 0,01024 
ELL2 22936 8,79 7,84 0,96 0,01035 
MMP2 4313 7,67 6,67 0,99 0,01036 
DYRK4 8798 7,75 7,32 0,43 0,01036 
CP 1356 5,03 4,20 0,83 0,01039 
A2M 2 11,18 9,48 1,70 0,01040 
FRMD4B 23150 8,60 7,67 0,93 0,01040 
PLEKHO2 80301 9,95 9,46 0,49 0,01079 
HAMP 57817 8,10 6,82 1,29 0,01099 
ADAMTS2 9509 5,74 5,30 0,44 0,01115 
SCIN 85477 5,25 4,52 0,73 0,01139 
IQCG 84223 7,12 6,69 0,43 0,01139 
LINC00597 81698 5,16 4,73 0,43 0,01139 
LILRB4 11006 9,02 8,24 0,77 0,01143 
PEAK1 79834 8,04 7,55 0,49 0,01180 
SLC16A10 117247 7,59 6,48 1,11 0,01183 
CTSA 5476 11,29 10,74 0,55 0,01183 
ACE 1636 6,14 5,66 0,48 0,01183 
ATG7 10533 7,31 6,79 0,52 0,01194 
MKNK1 8569 9,51 8,86 0,65 0,01200 
PLD3 23646 10,31 9,49 0,82 0,01204 
CXCL11 6373 7,07 5,48 1,59 0,01226 
SGPL1 8879 8,52 7,98 0,54 0,01230 
FPR3 2359 10,57 9,15 1,42 0,01241 
RCN3 57333 6,72 6,32 0,41 0,01252 
PMP22 5376 10,30 9,20 1,10 0,01270 
PROS1 5627 8,22 7,57 0,65 0,01279 
RAB13 5872 10,31 9,57 0,74 0,01288 
CDR1 1038 4,36 3,84 0,51 0,01288 
ECM1 1893 7,47 6,77 0,71 0,01295 
WASF1 8936 4,81 4,31 0,50 0,01313 
ATP2A2 488 8,51 8,07 0,44 0,01316 
CADM1 23705 7,64 6,36 1,28 0,01320 
FARP1 10160 7,68 7,15 0,53 0,01320 
WDFY3 23001 7,36 6,77 0,59 0,01333 
SLC37A4 2542 7,25 6,86 0,38 0,01348 
RNASE2 6036 7,92 6,95 0,97 0,01351 
ALG9 79796 7,64 7,20 0,44 0,01352 
HSPB1 3315 10,96 10,13 0,83 0,01353 
HSP90B1 7184 9,34 8,67 0,67 0,01356 
ABCG1 9619 8,03 7,24 0,79 0,01363 
DENND2D 79961 9,00 8,54 0,46 0,01373 
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PDIA5 10954 7,16 6,67 0,49 0,01383 
MMP9 4318 9,81 8,47 1,34 0,01402 
SAMD4A 23034 7,76 7,11 0,65 0,01404 
PPARG 5468 9,26 8,40 0,86 0,01425 
TNS1 7145 8,89 7,65 1,23 0,01452 
SCCPDH 51097 8,50 7,94 0,56 0,01541 
CH25H 9023 7,89 6,63 1,26 0,01549 
ADM 133 9,08 8,12 0,96 0,01552 
ST8SIA4 7903 7,17 6,48 0,69 0,01595 
SCD 6319 9,38 8,19 1,19 0,01618 
ACP5 54 11,01 10,19 0,82 0,01647 
PCOLCE2 26577 8,39 7,58 0,81 0,01656 
SEPT8 23176 6,95 6,52 0,43 0,01656 
PLEKHM2 23207 8,46 8,04 0,42 0,01656 
CXCL9 4283 9,73 7,88 1,85 0,01704 
IL15RA 3601 8,23 7,64 0,60 0,01704 
APBB3 10307 7,35 6,91 0,45 0,01737 
ZFP36L1 677 9,84 9,12 0,72 0,01763 
AMPD3 272 8,78 8,03 0,74 0,01765 
SLC4A7 9497 7,41 6,78 0,63 0,01765 
TBC1D2 55357 8,50 7,89 0,60 0,01765 
SLC2A8 29988 6,73 6,27 0,46 0,01765 
EOGT 285203 7,95 7,36 0,59 0,01779 
NFE2L1 4779 9,28 8,84 0,44 0,01779 
LPAR6 10161 10,06 9,23 0,83 0,01790 
RENBP 5973 7,58 7,07 0,51 0,01790 
FUCA1 2517 11,39 10,57 0,82 0,01799 
MAFB 9935 11,67 10,74 0,93 0,01852 
ZDHHC14 79683 7,20 6,72 0,48 0,01852 
BAMBI 25805 6,00 5,50 0,50 0,01859 
ABCC3 8714 8,43 7,69 0,73 0,01883 
TPX2 22974 6,15 5,56 0,59 0,01883 
GBAP1 2630 8,10 7,74 0,37 0,01883 
GNPTAB 79158 8,78 8,29 0,49 0,01894 
CXCL3 2921 9,27 8,22 1,05 0,01896 
CTSC 1075 10,90 10,12 0,78 0,01960 
CD82 3732 8,49 7,84 0,65 0,01980 
RACGAP1 29127 7,72 7,16 0,55 0,01998 
P2RX4 5025 9,70 9,03 0,67 0,02036 
TGFBI 7045 12,22 11,66 0,56 0,02045 
LXN 56925 7,38 6,86 0,52 0,02045 
PPAP2B 8613 9,00 8,00 1,00 0,02048 
SPHK1 8877 7,41 6,77 0,65 0,02048 
P4HB 5034 9,86 9,14 0,72 0,02081 
IER3 8870 11,54 10,32 1,21 0,02128 
PLOD1 5351 8,60 8,22 0,38 0,02128 
ITGB5 3693 6,83 6,05 0,77 0,02155 
TMEM140 55281 8,75 8,22 0,53 0,02162 
ATP6V0A1 535 8,86 8,32 0,54 0,02167 
BNC2 54796 5,75 5,25 0,49 0,02167 
NENF 29937 8,57 8,18 0,39 0,02167 
RRAGD 58528 9,86 9,27 0,60 0,02170 
CD59 966 8,60 7,77 0,83 0,02187 
ACVRL1 94 7,62 7,10 0,52 0,02206 
GAA 2548 9,63 9,14 0,48 0,02257 
CD80 941 8,19 7,10 1,09 0,02272 
CTNS 1497 8,43 7,83 0,60 0,02272 
SLC31A1 1317 9,10 8,56 0,54 0,02272 
NABP1 64859 9,35 8,72 0,63 0,02296 
PDIA4 9601 9,21 8,68 0,54 0,02296 
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HSPA5 3309 10,33 9,79 0,54 0,02311 
COLEC12 81035 8,99 8,14 0,85 0,02311 
MDFIC 29969 8,23 7,58 0,65 0,02311 
BLNK 29760 9,14 8,10 1,04 0,02312 
MMP7 4316 6,57 5,61 0,96 0,02329 
AAK1 22848 8,95 8,53 0,42 0,02350 
CCL7 6354 6,43 5,57 0,86 0,02353 
ARHGAP6 395 7,24 6,78 0,46 0,02353 
FCGRT 2217 10,71 10,24 0,48 0,02378 
EPHX1 2052 8,02 7,43 0,58 0,02387 
B2M 567 9,52 9,13 0,39 0,02387 
TRIP6 7205 8,46 8,06 0,40 0,02393 
CD14 929 11,49 10,52 0,97 0,02409 
ATXN1 6310 8,59 7,92 0,67 0,02411 
HTRA1 5654 7,60 6,95 0,65 0,02411 
LAMP1 3916 9,72 8,81 0,91 0,02412 
GGCX 2677 7,50 7,12 0,37 0,02418 
GATM 2628 8,50 7,42 1,08 0,02487 
PXDC1 221749 7,73 7,07 0,66 0,02520 
SERPINE1 5054 7,06 6,24 0,83 0,02551 
IKBKE 9641 7,31 6,93 0,38 0,02551 
DGKH 160851 5,47 5,10 0,37 0,02551 
PAX8 7849 6,53 5,95 0,58 0,02585 
PRUNE2 158471 6,94 5,97 0,96 0,02606 
ENG 2022 9,20 8,50 0,70 0,02606 
C1R 715 6,65 6,08 0,57 0,02606 
CD2AP 23607 7,79 7,24 0,56 0,02606 
TUBG1 7283 8,36 7,89 0,48 0,02606 
KIAA1279 26128 7,78 7,38 0,40 0,02606 
ERI2 112479 7,34 6,93 0,42 0,02618 
AHI1 54806 7,36 6,70 0,65 0,02626 
MSRB2 22921 8,50 8,06 0,44 0,02650 
DHRS3 9249 9,01 8,16 0,85 0,02654 
SERPINH1 871 7,86 7,23 0,63 0,02736 
MR1 3140 7,46 6,96 0,50 0,02736 
ME2 4200 9,09 8,60 0,50 0,02736 
DSC2 1824 8,48 7,60 0,88 0,02772 
LAMP2 3920 9,89 9,34 0,55 0,02806 
MORF4L2 9643 6,95 6,43 0,52 0,02842 
CA12 771 6,19 5,47 0,72 0,02854 
HSD17B14 51171 7,13 6,61 0,51 0,02854 
QKI 9444 8,66 8,14 0,52 0,02854 
RARRES1 5918 7,02 6,12 0,90 0,02866 
CALR 811 10,03 9,35 0,69 0,02887 
LUM 4060 4,74 4,20 0,54 0,02912 
C10orf10 11067 5,87 5,43 0,45 0,02912 
KIAA1199 57214 5,46 5,08 0,37 0,02912 
COL1A1 1277 7,07 6,52 0,55 0,02928 
PVRL2 5819 7,52 6,88 0,64 0,02929 
SMURF2 64750 7,89 7,28 0,61 0,02943 
CCL13 6357 7,34 6,43 0,91 0,02989 
NTAN1 123803 9,16 8,68 0,49 0,02989 
TFEC 22797 9,53 8,68 0,85 0,03004 
GCNT1 2650 7,69 7,15 0,54 0,03059 
PLD1 5337 6,63 5,95 0,67 0,03059 
CD9 928 9,62 8,55 1,07 0,03123 
EPB41L2 2037 9,04 8,38 0,66 0,03123 
EIF4A3 9775 10,54 10,09 0,44 0,03123 
CCRL2 9034 8,92 8,17 0,75 0,03178 
ARHGAP10 79658 7,96 7,50 0,46 0,03203 
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PDGFRL 5157 4,99 4,59 0,40 0,03300 
EPB41L3 23136 10,43 9,80 0,64 0,03305 
CD24 100133941 6,34 5,38 0,96 0,03320 
FAM168A 23201 7,61 7,21 0,40 0,03354 
KLF6 1316 9,57 8,89 0,67 0,03429 
DSE 29940 11,12 10,48 0,65 0,03434 
MELK 9833 6,65 6,07 0,58 0,03434 
CD68 968 10,56 10,16 0,40 0,03436 
MDC1 9656 7,22 6,82 0,40 0,03443 
CLN6 54982 7,98 7,48 0,50 0,03482 
COL3A1 1281 5,74 5,32 0,42 0,03482 
IBSP 3381 5,37 4,95 0,41 0,03482 
RYR1 6261 7,13 6,53 0,60 0,03497 
TRPM2 7226 6,98 6,55 0,43 0,03592 
ASIP 434 5,23 4,84 0,39 0,03598 
PDIA3 2923 10,24 9,89 0,35 0,03652 
BHLHE41 79365 8,47 7,43 1,03 0,03661 
CEP55 55165 6,05 5,34 0,72 0,03673 
HIVEP3 59269 7,13 6,50 0,62 0,03716 
PRDX4 10549 9,73 9,32 0,40 0,03728 
STAT1 6772 10,14 9,50 0,64 0,03733 
APOL1 8542 7,99 7,39 0,60 0,03738 
ARHGEF11 9826 7,45 6,96 0,49 0,03756 
TGM2 7052 9,77 8,90 0,87 0,03801 
MT1E 4493 9,64 8,97 0,67 0,03801 
ARMCX1 51309 8,18 7,69 0,49 0,03801 
LAMC1 3915 6,79 6,16 0,63 0,03811 
CYB5A 1528 9,61 9,19 0,42 0,03819 
MGAT5 4249 9,45 9,06 0,39 0,03838 
CDCP1 64866 8,31 7,59 0,72 0,03845 
DENND4C 55667 9,34 8,86 0,48 0,03845 
TSPAN4 7106 8,42 7,80 0,62 0,03850 
TLR7 51284 9,49 8,38 1,11 0,03866 
MGLL 11343 9,67 9,10 0,57 0,03893 
GNG12 55970 6,91 6,35 0,56 0,03893 
RPS27L 51065 8,05 7,53 0,52 0,03905 
RASGRP3 25780 7,95 7,05 0,90 0,03919 
TNFAIP3 7128 10,77 9,97 0,80 0,03919 
RBP4 5950 7,85 7,27 0,58 0,03919 
COL1A2 1278 6,13 5,70 0,43 0,03919 
SASH1 23328 9,01 8,35 0,66 0,03928 
THBS3 7059 6,09 5,78 0,31 0,03936 
PLOD3 8985 9,36 9,03 0,33 0,03973 
SGK1 6446 12,04 11,46 0,58 0,04045 
SLC39A8 64116 8,06 7,01 1,05 0,04047 
HMOX1 3162 11,21 10,54 0,68 0,04047 
LIMK2 3985 7,40 6,87 0,53 0,04047 
LY96 23643 10,77 10,36 0,40 0,04047 
KIFC3 3801 6,08 5,71 0,36 0,04115 
CD151 977 8,58 8,06 0,52 0,04142 
RRBP1 6238 7,88 7,48 0,41 0,04143 
MILR1 284021 8,30 7,76 0,54 0,04155 
FER 2241 6,19 5,80 0,39 0,04155 
C3AR1 719 11,49 10,56 0,93 0,04161 
B3GALNT1 8706 6,44 5,77 0,67 0,04202 
LAP3 51056 11,47 11,01 0,46 0,04242 
SPATA7 55812 6,01 5,62 0,39 0,04244 
FAM114A1 92689 6,73 6,28 0,46 0,04340 
ATRN 8455 7,54 7,18 0,36 0,04370 
CCL20 6364 9,16 7,78 1,38 0,04372 
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MT2A 4502 12,07 11,50 0,58 0,04399 
MUC1 4582 6,51 6,10 0,41 0,04402 
GIMAP6 474344 8,04 7,24 0,80 0,04425 
CCND1 595 6,73 6,03 0,70 0,04425 
UAP1L1 91373 6,93 6,55 0,38 0,04426 
GADD45B 4616 9,53 8,87 0,66 0,04447 
CBR1 873 8,19 7,83 0,36 0,04447 
NUCB1 4924 8,87 8,33 0,55 0,04452 
MT1G 4495 10,37 9,63 0,75 0,04487 
NLK 51701 7,50 7,11 0,39 0,04579 
IGFBP3 3486 6,52 5,93 0,59 0,04714 
GADD45G 10912 6,77 6,27 0,50 0,04714 
VCAM1 7412 6,21 5,50 0,71 0,04716 
PRDM1 639 8,73 7,91 0,83 0,04729 
KCNJ5 3762 6,19 5,77 0,42 0,04753 
ABL2 27 7,44 6,84 0,61 0,04865 
STEAP3 55240 7,25 6,77 0,48 0,04884 
CDH6 1004 5,62 5,24 0,38 0,04884 
SREBF1 6720 7,44 7,11 0,33 0,04892 
APOL2 23780 7,40 7,04 0,36 0,04933 
FGFR1 2260 6,54 6,12 0,43 0,04939 
TMEM180 79847 7,48 7,12 0,35 0,04950 

 

Tabelle 11-2: Herabregulierte ercDC_RCC-Signaturgene. Gezeigt sind die von ercDC_RCC & 
infMΦ_ascOvCa gegenüber der Kontrollgruppe herabregulierten Gene (357 der 788 ercDC_RCC-
Signaturgene). Die Gene sind nach zunehmendem korrigierten p-Wert sortiert. Entrez ID: vom NCBI 
(http://www.ncbi.nlm.nih.gov) vergebene Nummer zur Identifizierung des Gens; FC: engl.: fold change, 
x-facher Unterschied der Expression (log2) der Signaturgene zwischen den beiden 
Vergleichsgruppen. In grün markiert sind die ercDC_RCC-Markergene (zusätzlich Fettdruck) und 
verwandte Gene sowie zusätzlich einige im Text erwähnte Gene. 

Gensymbol Entrez ID 
Norm. Expr.werte (log) 
ercDC_RCC & 
infMΦ_ascOvCa 

Norm. Expr.werte (log) 
Kontrollgruppe logFC Korrig. 

p-Wert 

FAM65B 9750 5,16 6,40 -1,23 0,00034 
RPS9 6203 11,06 11,73 -0,67 0,00040 
SLC25A6 293 10,86 11,57 -0,71 0,00043 
FGR 2268 9,39 10,53 -1,13 0,00059 
NUP210 23225 6,66 7,48 -0,81 0,00068 
RHOF 54509 5,82 6,94 -1,12 0,00068 
PBX2 5089 7,06 7,64 -0,58 0,00070 
CCND3 896 8,81 9,53 -0,71 0,00070 
CFP 5199 6,44 7,77 -1,34 0,00081 
ICAM3 3385 6,56 7,76 -1,20 0,00093 
EIF4EBP2 1979 7,83 8,42 -0,59 0,00104 
FYN 2534 6,14 7,22 -1,07 0,00109 
CD244 51744 5,14 6,09 -0,95 0,00112 
RAB11FIP4 84440 5,73 6,37 -0,65 0,00119 
SMAD3 4088 5,91 6,56 -0,65 0,00119 
CYTIP 9595 9,11 9,94 -0,83 0,00126 
EIF3E 3646 8,19 8,71 -0,51 0,00149 
RPL15 6138 8,28 8,79 -0,50 0,00166 
LIMD2 80774 5,99 6,50 -0,51 0,00166 
ZBTB18 10472 6,57 7,21 -0,65 0,00170 
EMR3 84658 5,51 6,98 -1,47 0,00170 
CSNK1G2 1455 7,07 7,59 -0,52 0,00183 
GSTP1 2950 9,74 10,30 -0,56 0,00196 
BCL11A 53335 5,33 6,54 -1,21 0,00197 
FCHO1 23149 6,10 6,62 -0,52 0,00199 
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ATP8A1 10396 5,96 6,76 -0,80 0,00199 
RPL31 6160 8,00 8,68 -0,68 0,00207 
UPK3A 7380 5,03 5,59 -0,56 0,00223 
ITGA4 3676 5,84 6,78 -0,94 0,00223 
GLTSCR2 29997 8,11 8,66 -0,55 0,00224 
LSP1 4046 7,96 8,87 -0,91 0,00228 
SEZ6L 23544 4,82 5,40 -0,58 0,00250 
TSPAN32 10077 5,87 6,66 -0,78 0,00254 
EIF3G 8666 9,65 10,18 -0,53 0,00267 
KIAA0922 23240 7,48 8,29 -0,81 0,00288 
JAK1 3716 8,75 9,34 -0,59 0,00289 
NEDD9 4739 6,77 7,65 -0,88 0,00298 
ACAA1 30 8,38 8,86 -0,48 0,00316 
P2RY10 27334 4,45 5,22 -0,77 0,00319 
SIGIRR 59307 6,23 6,73 -0,51 0,00327 
TES 26136 8,00 8,75 -0,75 0,00330 
RPS23 6228 7,21 7,77 -0,56 0,00366 
RPS16 6217 9,18 9,64 -0,46 0,00375 
MED28 80306 7,76 8,26 -0,49 0,00375 
CD48 962 8,97 9,82 -0,85 0,00375 
RAC2 5880 8,37 9,26 -0,88 0,00375 
CD101 9398 6,47 7,63 -1,16 0,00375 
SF3A1 10291 8,16 8,68 -0,53 0,00392 
USP3 9960 9,49 10,02 -0,53 0,00421 
SPN 6693 6,63 7,43 -0,81 0,00424 
S1PR4 8698 6,86 7,41 -0,55 0,00434 
LYST 1130 7,27 8,34 -1,07 0,00459 
RAB11FIP1 80223 7,96 8,58 -0,62 0,00463 
CNN2 1265 8,35 8,93 -0,58 0,00470 
POLR1D 51082 9,04 9,51 -0,47 0,00475 
C15orf39 56905 6,58 7,21 -0,63 0,00475 
TRAF3IP3 80342 5,66 6,48 -0,83 0,00504 
MST4 51765 6,54 7,31 -0,77 0,00545 
RNF41 10193 6,25 6,73 -0,48 0,00547 
FCER1A 2205 4,97 6,36 -1,39 0,00575 
RNF24 11237 6,52 7,18 -0,66 0,00582 
WAC 51322 8,02 8,49 -0,47 0,00590 
BID 637 8,81 9,36 -0,56 0,00600 
FLT3 2322 5,43 6,36 -0,93 0,00616 
MTMR14 64419 7,39 7,85 -0,46 0,00625 
PRKCE 5581 5,48 5,98 -0,49 0,00625 
ZNF652 22834 5,99 6,85 -0,85 0,00625 
CNOT8 9337 8,02 8,62 -0,60 0,00637 
PTP4A2 8073 9,97 10,51 -0,54 0,00660 
FLOT2 2319 7,64 8,29 -0,65 0,00663 
CD11C 3687 9,01 9,90 -0,89 0,00663 
NACA 4666 8,70 9,18 -0,48 0,00663 
APOBR 55911 7,27 7,91 -0,63 0,00681 
CA5B 11238 5,60 6,09 -0,49 0,00683 
CD52 1043 10,72 11,48 -0,76 0,00683 
KLF12 11278 5,48 6,26 -0,78 0,00683 
FAM117A 81558 6,35 6,91 -0,56 0,00687 
INSR 3643 6,55 7,20 -0,65 0,00687 
NLRP1 22861 5,88 6,62 -0,74 0,00693 
CS 1431 9,84 10,19 -0,35 0,00711 
PELI2 57161 6,19 6,87 -0,68 0,00739 
APAF1 317 7,06 7,65 -0,60 0,00741 
MAP4K1 11184 6,29 7,04 -0,76 0,00741 
GALNT3 2591 4,82 5,39 -0,57 0,00741 
RASSF2 9770 7,71 8,46 -0,75 0,00760 
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EIF4B 1975 7,63 8,40 -0,77 0,00760 
CPPED1 55313 7,23 8,05 -0,82 0,00760 
CCDC88C 440193 4,64 5,48 -0,84 0,00760 
CD1C 911 6,20 7,52 -1,31 0,00760 
PLP2 5355 9,74 10,44 -0,70 0,00777 
PPM1F 9647 7,17 7,63 -0,46 0,00781 
VPS51 738 8,27 8,71 -0,44 0,00818 
RBL2 5934 6,79 7,34 -0,55 0,00818 
IL16 3603 6,91 7,34 -0,44 0,00912 
EIF3M 10480 9,05 9,61 -0,56 0,00925 
ITPK1 3705 8,55 8,98 -0,43 0,00926 
EIF3H 8667 7,30 7,86 -0,55 0,00926 
MEFV 4210 4,72 5,35 -0,63 0,00931 
PRKCB 5579 6,61 7,54 -0,93 0,00949 
ZBTB11 27107 7,77 8,24 -0,47 0,00966 
UNC119 9094 7,54 7,98 -0,44 0,00975 
PGLS 25796 8,03 8,59 -0,55 0,00975 
STK17B 9262 7,68 8,45 -0,78 0,00975 
ZDHHC18 84243 7,58 8,08 -0,50 0,00991 
OXA1L 5018 9,68 10,07 -0,39 0,00992 
GSE1 23199 7,04 7,61 -0,57 0,01000 
DNAJC4 3338 6,99 7,51 -0,53 0,01007 
TKT 7086 9,12 9,79 -0,67 0,01007 
GMFG 9535 10,23 10,68 -0,46 0,01017 
RPL36 25873 9,89 10,32 -0,43 0,01024 
TOB1 10140 8,36 9,23 -0,87 0,01035 
RPS27 6232 8,08 8,48 -0,41 0,01040 
NIN 51199 7,34 7,81 -0,46 0,01040 
IMPA2 3613 6,92 7,57 -0,64 0,01040 
CDC42EP3 10602 7,41 8,31 -0,90 0,01040 
CDKN1B 1027 9,32 9,83 -0,51 0,01092 
CAT 847 8,61 9,31 -0,70 0,01099 
ESYT1 23344 9,09 9,58 -0,48 0,01101 
FDFT1 2222 8,65 9,20 -0,55 0,01123 
DGKE 8526 4,68 5,18 -0,50 0,01138 
FBL 2091 9,28 9,73 -0,45 0,01139 
AGTPBP1 23287 7,80 8,33 -0,53 0,01162 
ATP2A3 489 5,71 6,32 -0,61 0,01180 
CORO1A 11151 8,09 8,87 -0,78 0,01185 
SEPT9 10801 6,00 6,57 -0,57 0,01194 
SIK3 23387 6,15 6,75 -0,59 0,01194 
KAT6A 7994 6,87 7,28 -0,41 0,01196 
RSL1D1 26156 7,61 8,09 -0,48 0,01200 
C1RL 51279 6,47 7,17 -0,69 0,01200 
GABBR1 2550 5,84 6,38 -0,54 0,01200 
CAPN2 824 9,86 10,60 -0,74 0,01213 
XYLT1 64131 6,58 7,39 -0,82 0,01219 
NDUFA10 4705 8,51 8,94 -0,43 0,01226 
MPHOSPH9 10198 6,25 6,74 -0,50 0,01241 
NDST1 3340 6,13 6,60 -0,47 0,01260 
C20orf27 54976 6,14 6,75 -0,61 0,01320 
PTPN6 5777 9,75 10,27 -0,52 0,01332 
NAP1L1 4673 9,09 9,66 -0,57 0,01333 
PSIP1 11168 6,76 7,39 -0,63 0,01348 
MAN2A2 4122 6,98 7,41 -0,43 0,01348 
ACAP1 9744 5,72 6,32 -0,60 0,01348 
ZNF467 168544 5,78 6,22 -0,43 0,01351 
SLC9A3R1 9368 7,68 8,15 -0,46 0,01354 
CERK 64781 7,72 8,18 -0,46 0,01361 
PDE4A 5141 6,02 6,65 -0,63 0,01363 
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RBM3 5935 6,88 7,39 -0,51 0,01376 
RFX7 64864 7,23 7,67 -0,44 0,01383 
ELF4 2000 8,01 8,46 -0,45 0,01404 
CDKN2D 1032 5,96 6,42 -0,46 0,01414 
ROGDI 79641 7,00 7,55 -0,55 0,01425 
FLNA 2316 8,08 8,82 -0,74 0,01475 
WDR48 57599 7,30 7,76 -0,47 0,01514 
FAM60A 58516 6,69 7,26 -0,56 0,01514 
CASP1 834 8,60 9,42 -0,83 0,01539 
AIP 9049 7,26 7,69 -0,43 0,01541 
TESC 54997 5,29 6,02 -0,73 0,01545 
LCP1 3936 11,40 11,85 -0,45 0,01549 
CYLD 1540 8,07 8,54 -0,47 0,01549 
RARA 5914 6,19 6,90 -0,71 0,01549 
NEK9 91754 7,55 7,92 -0,38 0,01551 
VCL 7414 8,14 8,85 -0,71 0,01552 
ABCA7 10347 6,27 6,69 -0,42 0,01580 
IL18R1 8809 4,28 4,92 -0,64 0,01618 
ADRBK2 157 8,19 8,64 -0,46 0,01621 
RUNX3 864 7,46 8,11 -0,65 0,01656 
CCNG1 900 9,00 9,48 -0,47 0,01661 
SCRN1 9805 7,57 8,20 -0,62 0,01661 
AHCYL2 23382 6,29 6,70 -0,41 0,01670 
PHF17 79960 5,83 6,32 -0,48 0,01672 
SETD2 29072 6,14 6,55 -0,41 0,01732 
PCYOX1L 78991 7,21 7,70 -0,48 0,01765 
AES 166 7,76 8,22 -0,46 0,01788 
PLAC8 51316 7,56 8,84 -1,28 0,01792 
SULT1B1 27284 5,20 5,70 -0,50 0,01799 
RIN3 79890 7,10 7,80 -0,70 0,01799 
RPS21 6227 8,66 9,04 -0,37 0,01818 
RAP1GAP2 23108 6,44 7,05 -0,61 0,01826 
DHPS 1725 7,38 7,80 -0,42 0,01832 
PITPNM1 9600 6,47 6,91 -0,44 0,01837 
VRK1 7443 7,18 7,63 -0,45 0,01860 
ADAP1 11033 7,48 7,96 -0,48 0,01870 
ATP11B 23200 6,42 6,91 -0,49 0,01883 
TUBA4A 7277 7,17 7,76 -0,58 0,01891 
WDR82 80335 9,50 9,87 -0,37 0,01893 
FRAT2 23401 7,63 8,08 -0,45 0,01898 
ZFAND1 79752 7,27 7,75 -0,48 0,01902 
LRMP 4033 7,08 7,76 -0,68 0,01971 
CPSF6 11052 6,52 6,97 -0,45 0,01987 
CD207 50489 4,71 5,56 -0,85 0,01987 
C11orf21 29125 5,58 6,40 -0,82 0,01998 
SRRM1 10250 8,61 8,93 -0,32 0,02036 
BRD3 8019 7,75 8,11 -0,36 0,02036 
SERTAD2 9792 9,21 9,60 -0,38 0,02036 
STAG3L4 64940 6,24 6,69 -0,44 0,02036 
DHTKD1 55526 6,23 6,70 -0,47 0,02036 
NONO 4841 8,29 8,69 -0,40 0,02066 
TBL1X 6907 6,31 7,09 -0,78 0,02072 
EIF2S3 1968 7,60 8,33 -0,72 0,02081 
LRBA 987 6,61 7,11 -0,50 0,02107 
VAMP2 6844 6,94 7,38 -0,43 0,02115 
MKNK2 2872 8,60 9,08 -0,48 0,02128 
STAG2 10735 7,95 8,44 -0,48 0,02140 
FMNL1 752 7,50 8,02 -0,53 0,02140 
ELF2 1998 6,53 6,98 -0,44 0,02167 
SETBP1 26040 5,30 5,74 -0,45 0,02167 



ANHANG 171 

 

MYO1F 4542 9,27 9,75 -0,48 0,02167 
SPATA6 54558 5,31 5,84 -0,54 0,02225 
DAPP1 27071 7,76 8,38 -0,63 0,02236 
IDH3A 3419 8,05 8,51 -0,46 0,02244 
TMEM104 54868 6,98 7,35 -0,37 0,02255 
MBNL3 55796 7,27 7,75 -0,48 0,02255 
CCNI 10983 8,10 8,64 -0,54 0,02255 
ZNF318 24149 6,89 7,28 -0,39 0,02257 
RASGRP2 10235 5,83 6,40 -0,57 0,02257 
PYCARD 29108 9,79 10,25 -0,46 0,02272 
BACH2 60468 4,11 4,46 -0,35 0,02296 
STAT5B 6777 6,81 7,19 -0,38 0,02348 
C6orf48 50854 8,36 8,91 -0,55 0,02350 
ARF5 381 7,99 8,36 -0,37 0,02353 
RPS27A 6233 8,58 8,97 -0,39 0,02372 
MEF2D 4209 6,90 7,30 -0,40 0,02378 
MEX3C 51320 6,84 7,35 -0,52 0,02378 
CELF2 10659 8,11 8,69 -0,57 0,02387 
GDI2 2665 9,76 10,23 -0,47 0,02409 
OSBPL8 114882 7,37 8,09 -0,72 0,02484 
GID8 54994 8,29 8,65 -0,36 0,02508 
MAP2K3 5606 7,40 7,97 -0,57 0,02535 
IPCEF1 26034 5,85 6,52 -0,66 0,02576 
ARAF 369 7,87 8,23 -0,36 0,02606 
CCDC69 26112 6,21 6,83 -0,61 0,02606 
FRY 10129 6,65 7,45 -0,81 0,02606 
SNRK 54861 8,11 8,56 -0,46 0,02618 
SVIL 6840 6,72 7,43 -0,71 0,02618 
SPINT1 6692 7,23 7,74 -0,51 0,02656 
AFF3 3899 4,84 5,46 -0,62 0,02656 
ARHGEF6 9459 9,37 9,79 -0,42 0,02686 
CREBBP 1387 7,33 7,67 -0,34 0,02705 
VEZF1 7716 8,31 8,75 -0,44 0,02736 
DIAPH1 1729 8,10 8,56 -0,46 0,02736 
CHST2 9435 6,02 6,57 -0,55 0,02736 
CDC40 51362 6,68 7,10 -0,42 0,02849 
RPL14 9045 8,91 9,39 -0,48 0,02868 
RMND5A 64795 6,93 7,34 -0,41 0,02929 
CIDEB 27141 6,96 7,42 -0,46 0,02941 
LIMD1 8994 6,89 7,33 -0,44 0,03059 
CHAF1A 10036 5,81 6,14 -0,33 0,03059 
TP53 7157 6,67 7,15 -0,48 0,03059 
BAG1 573 7,88 8,28 -0,40 0,03104 
INPP5F 22876 5,84 6,35 -0,51 0,03104 
TRAPPC6A 79090 7,42 7,81 -0,38 0,03112 
ANP32A 8125 8,95 9,35 -0,40 0,03123 
SLC12A6 9990 6,86 7,43 -0,57 0,03215 
PMS2P1 5379 6,89 7,30 -0,41 0,03272 
RNF126 55658 6,92 7,30 -0,37 0,03289 
BPTF 2186 5,81 6,14 -0,34 0,03306 
SELL 6402 6,73 7,49 -0,76 0,03327 
PNRC2 55629 8,69 9,05 -0,36 0,03354 
VIPR1 7433 5,58 6,08 -0,50 0,03366 
TMEM8B 51754 5,77 6,19 -0,42 0,03369 
SLC25A40 55972 8,48 8,96 -0,48 0,03369 
NADSYN1 55191 7,96 8,31 -0,35 0,03371 
PPP3CA 5530 8,44 8,90 -0,47 0,03383 
NCF2 4688 10,88 11,37 -0,48 0,03383 
ZNF592 9640 7,31 7,65 -0,34 0,03388 
TMEM66 51669 7,54 7,91 -0,37 0,03440 
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IRF4 3662 5,92 6,57 -0,65 0,03444 
LSM6 11157 8,82 9,20 -0,38 0,03475 
POLR1E 64425 5,27 5,60 -0,34 0,03482 
URI1 8725 7,23 7,63 -0,40 0,03482 
TNKS2 80351 7,94 8,39 -0,46 0,03482 
STK24 8428 8,35 8,69 -0,34 0,03482 
LIG3 3980 5,93 6,26 -0,33 0,03497 
HIVEP1 3096 6,93 7,49 -0,56 0,03511 
FAM168B 130074 7,59 8,00 -0,41 0,03547 
SLC38A1 81539 5,58 6,49 -0,92 0,03584 
SPIB 6689 5,16 5,66 -0,50 0,03589 
SLCO3A1 28232 7,28 7,88 -0,60 0,03598 
CYFIP2 26999 6,50 7,21 -0,70 0,03598 
AMPD2 271 7,62 8,22 -0,60 0,03630 
DCLRE1C 64421 6,68 7,08 -0,40 0,03652 
NFE2 4778 4,43 4,95 -0,52 0,03652 
CARS2 79587 8,43 8,78 -0,35 0,03687 
G3BP2 9908 8,25 8,62 -0,37 0,03738 
PPP6C 5537 8,90 9,26 -0,36 0,03765 
SLC25A28 81894 7,50 7,91 -0,41 0,03765 
RSL24D1 51187 9,06 9,46 -0,41 0,03801 
MTMR1 8776 7,46 8,00 -0,54 0,03801 
RPS6KA3 6197 9,00 9,41 -0,41 0,03837 
NCOA1 8648 8,07 8,44 -0,37 0,03845 
EPB41 2035 6,10 6,49 -0,40 0,03845 
RPL23A 6147 9,34 9,79 -0,45 0,03845 
SEPT6 23157 7,30 7,79 -0,48 0,03845 
LST1 7940 9,87 10,42 -0,55 0,03845 
PACS1 55690 6,94 7,27 -0,33 0,03850 
LNPEP 4012 7,13 7,65 -0,53 0,03871 
RCOR1 23186 7,83 8,17 -0,34 0,03919 
OBFC1 79991 6,69 7,02 -0,34 0,03919 
CASP2 835 5,73 6,14 -0,41 0,03919 
USP48 84196 6,51 6,85 -0,34 0,03928 
IFT20 90410 8,71 9,13 -0,42 0,03928 
SCAF4 57466 6,47 6,90 -0,43 0,03936 
CBX7 23492 6,92 7,28 -0,36 0,03955 
RGS14 10636 5,77 6,15 -0,38 0,03997 
NAAA 27163 7,98 8,49 -0,52 0,04045 
CHP1 11261 7,62 8,04 -0,42 0,04045 
SLC25A38 54977 7,26 7,59 -0,33 0,04047 
MKL1 57591 7,13 7,50 -0,37 0,04047 
LSM7 51690 8,42 8,79 -0,38 0,04047 
EFHD2 79180 9,56 10,01 -0,46 0,04062 
ZBTB33 10009 8,84 9,18 -0,34 0,04082 
SH2D3C 10044 5,50 6,01 -0,51 0,04133 
CD1E 913 4,58 5,72 -1,14 0,04144 
C2orf49 79074 5,79 6,10 -0,31 0,04147 
PDE6G 5148 6,41 6,77 -0,36 0,04155 
CRBN 51185 8,36 8,75 -0,40 0,04155 
CLEC4A 50856 7,78 8,56 -0,77 0,04155 
IRAK3 11213 7,18 8,02 -0,84 0,04155 
NOTCH2 4853 8,19 8,73 -0,54 0,04161 
KCTD15 79047 4,80 5,28 -0,47 0,04203 
SMARCC1 6599 7,39 7,75 -0,35 0,04211 
BCL2L13 23786 6,48 6,82 -0,35 0,04214 
KDM4B 23030 7,02 7,38 -0,36 0,04241 
SLC25A12 8604 6,28 6,62 -0,34 0,04242 
ERLIN2 11160 6,42 6,85 -0,44 0,04242 
KLF13 51621 7,21 7,74 -0,54 0,04242 
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CD37 951 9,15 9,74 -0,59 0,04242 
U2SURP 23350 6,31 6,79 -0,48 0,04251 
MAML3 55534 5,91 6,43 -0,52 0,04256 
ZNF281 23528 7,48 7,86 -0,39 0,04402 
RFTN1 23180 8,65 9,08 -0,43 0,04425 
C21orf91 54149 6,51 6,98 -0,47 0,04425 
ANAPC15 25906 7,64 7,99 -0,35 0,04443 
UQCRB 7381 6,38 6,75 -0,37 0,04443 
PLCB2 5330 8,01 8,41 -0,40 0,04443 
AKIRIN1 79647 7,91 8,35 -0,44 0,04443 
STK4 6789 7,23 7,79 -0,56 0,04443 
METTL9 51108 8,88 9,40 -0,52 0,04447 
PHF20 51230 7,39 7,84 -0,45 0,04452 
IPO5 3843 7,60 8,06 -0,46 0,04487 
CBX4 8535 7,15 7,56 -0,41 0,04535 
RSBN1 54665 7,42 7,85 -0,43 0,04573 
SLC1A5 6510 7,39 7,80 -0,40 0,04585 
LANCL1 10314 7,85 8,21 -0,36 0,04716 
ATPAF2 91647 6,47 6,81 -0,33 0,04729 
HNRNPUL1 11100 7,95 8,31 -0,36 0,04729 
ZMIZ1 57178 8,79 9,11 -0,32 0,04753 
SCN9A 6335 3,97 4,40 -0,44 0,04753 
OGT 8473 6,57 7,18 -0,61 0,04768 
KLHDC2 23588 8,30 8,68 -0,39 0,04794 
TMPO 7112 7,13 7,65 -0,52 0,04844 
EVI2B 2124 11,04 11,39 -0,36 0,04884 
KDM5A 5927 6,64 7,03 -0,39 0,04884 
UQCRC2 7385 6,85 7,21 -0,36 0,04892 
FXYD5 53827 9,88 10,31 -0,43 0,04892 
CBX6 23466 7,35 7,72 -0,38 0,04939 
DDX46 9879 7,73 8,06 -0,33 0,04950 
ADRBK1 156 7,28 7,70 -0,42 0,04983 
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Tabelle 11-3: Top 20 der überrepräsentierten Signalwege der hochregulierten ercDC_RCC-
Signaturgene bei Analyse mit der InnateDB Plattform. Als signifikant überrepräsentiert gelten 
Signalwege mit einem korrigierten p-Wert < 0,05 (orange Markierung).  

Signalweg Korrigierter p-Wert 
Lysosome 3,99 x 10-7 
Complement and coagulation cascades 1,57 x 10-4 
Beta1 integrin cell surface interactions 7,68 x 10-4 
Collagen biosynthesis and modifying enzymes 0,009 
Beta3 integrin cell surface interactions 0,016 
HDL-mediated lipid transport 0,020 
Phagosome 0,041 
ECM-receptor interaction 0,041 
Regulation of complement cascade 0,068 
NOD-like receptor signaling pathway 0,079 
Staphylococcus aureus infection 0,098 
Validated transcriptional targets of AP1 family members Fra1 and Fra2 0,113 
Integrin cell surface interactions 0,114 
Inhibition of matrix metalloproteinases 0,148 
Toll-like receptor signaling pathway 0,150 
Chemokine receptors bind chemokines 0,158 
Degradation of collagen 0,165 
Fibrinolysis pathway 0,166 
Metal ion SLC transporters 0,166 
Platelet amyloid precursor protein pathway 0,166 

Tabelle 11-4: Top 20 der überrepräsentierten Signalwege der herabregulierten ercDC_RCC-
Signaturgene bei Analyse mit der InnateDB Plattform. Als signifikant überrepräsentiert gelten 
Signalwege mit einem korrigierten p-Wert < 0,05 (orange Markierung). 

Signalweg Korrigierter p-Wert 
L13a-mediated translational silencing of Ceruloplasmin expression 2,66 x 10-8 
Formation of a pool of free 40S subunits 6,95 x 10-8 
Ribosome 1,27 x 10-6 
Eukaryotic translation termination 4,16 x 10-6 
Peptide chain elongation 4,16 x 10-6 
Ribosomal scanning and start codon recognition 4,86 x 10-6 
Translation initiation complex formation 4,86 x 10-6 
Viral mRNA translation 4,86 x 10-6 
Nonsense mediated decay independent of the exon junction complex 6,74 x 10-6 
Formation of the ternary complex, and subquently, the 43S complex 6,78 x 10-6 
Nonsense mediated decay enhanced by the exon junction complex 1,14 x 10-4 
SRP-dependent cotranslational protein targeting to membrane 1,14 x 10-4 
Amyotrophic lateral sclerosis (ALS) 0,053 
Long-term potentiation 0,372 
Role of mef2d in t-cell apoptosis 0,384 
Wnt signaling pathway 0,394 
Alzheimer‘s disease 0,444 
Natural killer cell mediated cytotoxicity 0,444 
IL-7 signal transduction 0,472 
Cell surface interactions at the vascular wall 0,514 
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Abbildung 11-5: „Enrichment Plot“ für das Genset „Lipid digestion mobilization and transport“ 
bei der GSEA. Der „enrichment score“ (ES) zeigt an, wie stark die systematische Abweichung von 
Genexpressionsveränderungen (ercDC_RCC & infMΦ_ascOvCa vs. Kontrollgruppe) in einem 
Testgenset ist. Der ES (oberer Pfeil) ergibt sich aus der maximalen Abweichung von Null. Diejenigen 
Gene (dargestellt als schwarze Striche), die vor diesem Punkt liegen („leading edge genes“, unterer 
Pfeil), tragen am meisten zum ES bei. Aus dem ES ergibt sich durch Normalisierung der normalisierte 
„enrichment score“ (NES). Parallel mit dem NES werden auch ein p-Wert und eine FDR berechnet 
(nicht gezeigt).  

 

Tabelle 11-5: Top 20 der überexprimierten Signalwege der ercDC_RCC & infMΦ_ascOvCa-
Gruppe, die bei der GSEA ermittelt wurden. Da die p-Werte und FDR-Werte sehr hoch waren, 
wurde der NES zur Beurteilung der Stärke der Genexpressionsunterschiede zwischen der 
ercDC_RCC & infMΦ_ascOvCa-Gruppe und der Kontrollgruppe verwendet. In der rechten Spalte sind 
ercDC_RCC-Markergene und verwandte Gene angegeben, die zu den „leading edge“ Genen des 
jeweiligen Gensets gehören. Fettdruck: Signalwege, die im Ergebnisteil erwähnt werden. 

Signalweg Datenbank NES 
Markergene/ 
verwandte Gene 
„Leading edge“ 

Lysosome KEGG 1,94 LGMN 

Complement and coagulation cascades KEGG 1,86 C2, SERPING1, C1QA, 
C1QB 

Lipid digestion mobilization and 
transport Reactome 1,85 PLTP, APOE 

Activation of chaperone genes by XBP1S Reactome 1,76  
Arginine and proline metabolism KEGG 1,69  
Iron uptake and transport Reactome 1,68 HMOX1 
Complement cascade Reactome 1,66 C2, C1QA, C1QB 
Extracellular matrix organization Reactome 1,66  
MHC class II antigen presentation Reactome 1,64 LGMN 
Unfolded protein response Reactome 1,63  
Diabetes pathways Reactome 1,61 PLA2G7 
Peptide ligand binding receptors Reactome  1,60 CXCL9, C3AR1 
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Collagen formation Reactome 1,60  
Response to elevated platelet 
cytosolic_CA2 Reactome 1,58 SERPING1 

Toll like receptor signaling pathway KEGG 1,55 CXCL9, CD14 
Axon guidance Reactome  1,55 NRP1, NRP2, GFRA2 
Amino sugar and nucleotide sugar 
metabolism KEGG 1,55  

Signal transduction by L1 Reactome 1,54 NRP1 
Systemic lupus erythematosus KEGG 1,53 C2, C1QA, C1QB 
ECM receptor interaction  KEGG 1,53 SDC3 

 

 

Abbildung 11-6: Transkriptlevel von Makrophagen- und DC-assoziierten Transkriptionsfakto-
ren, die bei den Makrophagen- und DC-Kontrollzellen keinen Unterschied zeigten. A) Gene, die 
für MΦ-assoziierte Transkriptionsfaktoren kodieren. B) Gene, die für DC-assoziierte 
Transkriptionfaktoren kodieren. Die aufgeführten Gene wurden für die Analyse nicht berücksichtigt, da 
sie entweder zwischen MΦ- und DC-Kontrollzellen nicht unterschiedlich exprimiert wurden (EGR1, 
EGR2, BACH1, SPI1/PU.1, IRF8) bzw. von allen Zelltypen nur sehr schwach exprimiert wurden 
(ZBTB46, CEBPA). Die ercDC_RCC sind rot gekennzeichnet, die DC-Kontrollzelle, CD1c+ DC_Blut, 
beige und die MΦ-Kontrollzellen grau. Der Balken zeigt den Median an, die Symbole die einzelnen 
Replikate eines Zelltyps. Die unterschiedliche Skalierung der Y-Achse ist zu beachten.  
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Tabelle 11-6: Liste M1-assoziierter Gene, die aus Publikationen von Martinez et al.103, 
Shaykhiev et al.137 und Houser et al.133 zusammengestellt wurde. Die Gene sind nach Funktion 
gruppiert. Gezeigt ist der Genname, das Gensymbol und die Zugehörigkeit zu den in der Abbildung 
7-27 aufgeführten informativen Genen. Fettdruck: ercDC_RCC-Markergen; lila: ercDC_RCC-
Signaturgen  

Genname Gensymbol/alternat. Bez. Informativ 
Membranrezeptoren     
Complement component 3a receptor 1 C3AR1 ja 
CCR7 CCR7 ja 
CD69  CD69 ja 
CD80 CD80 ja 
CD86 CD86 nein 
Fc fragment of IgG, high affinity Ia, receptor (CD64) CD64/FCGR1A ja 
Fc fragment of IgG, high affinity IIa, receptor (CD32) CD32/FCGR2A ja 
Fc fragment of IgG, high affinity IIIa, receptor (CD16) CD16/FCGR3A ja 
ICAM1 ICAM1 ja 
Interleukin 15 receptor α chain  IL15RA ja 
Interleukin 2 receptor α chain  IL2RA ja 
Interleukin 7 receptor IL7R ja 
Toll-like receptor 2 TLR2 ja 
Toll-like receptor 4 TLR4 ja 
Zytokine und Chemokine     
CXCL11 CXCL11 ja 
CCL14 CCL14 nein 
CCL15 CCL15 nein 
CCL19 CCL19 ja 
CCL20 CCL20 ja 
CCL4 CCL4 ja 
CCL5 CCL5 ja 
CXCL1 CXCL1 ja 
CXCL10 CXCL10 ja 
CXCL9 CXCL9 ja 
Thymidine phosphorylase TYMP ja 
Interleukin 12B IL12B nein 
Interleukin 15 IL15 nein 
Interleukin 18 IL18 ja 
Interleukin 1B IL1B ja 
Interleukin 23 IL23 ja 
Interleukin 32 IL32 ja 
Interleukin 6 IL6 ja 
Nicotinamide phosphoribosyltransferase NAMPT/PBEF1 ja 
Tumor necrosis factor ligand superfamily, member 2 TNF ja 
Tumor necrosis factor, α-induced protein 6 TNFAIP6 ja 
Tumor necrosis factor (ligand) superfamily, member 10 TRAIL ja 
Apoptose-assoziierte Gene      
BCL2-related protein A1 BCL2A1 ja 
Baculoviral 1AP repeat-containing 3 BIRC3 ja 
Tumor necrosis factor receptor superfamily, member 6 FAS ja 
Growth arrest and DNA-damage-inducible, γ GADD45G ja 
XIAP associated factor-1 HSXIAPAF1 ja 
Transportproteine     
Solute carrier family 21, member 15 SLC21A15 ja 
Solute carrier family 2, member 6 SLC2A6 ja 
Solute carrier family 31, member 2 SLC31A2 ja 
Solute carrier family 7, member 5 SLC7A5 ja  
Enzyme und andere Proteine     
Adenylate kinase 3  AK3 ja 
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B factor, properdin (complement factor B) CFB ja  
Chitinase 3-like 2 CHI3L2 ja 
Hydroxysteroid (11-β) dehydrogenase 1 HSD11B1 ja 
Indoleamine 2,3 dioxygenase 1 IDO1 ja 
Nitric oxide synthase 2A (inducible) NOS2A nein 
2‘-5‘-oligoadenylate synthetase 2 OAS2 ja 
2’-5’-oligoadenylate synthetase-like OASL ja 
Phosphodiesterase 4B, cAMP-specific PDE4B ja 
6-phosphofructo-2-kinase/fructo-2,6-biphosphatase 3 PFKFB3 ja 
Phosphofructokinase PFKP ja 
Phospholipase A1 member A PLA1A ja 
Proteasome subunit α type 2 PSMA2 ja 
Proteasome subunit β type 9 PSMB9 ja 
Proteasome activator subunit 2 PSME2 ja 
Sphingosine kinase 1 SPHK1 ja  
Extrazelluläre Mediatoren     
Apolipoprotein L1 APOL1 ja 
Apolipoprotein L2 APOL2 ja 
Apolipoprotein L3 APOL3 ja 
Apolipoprotein L6 APOL6 ja 
Chondroitin sulfate proteoglycan 2 CSPG2 ja 
Endothelin 1 EDN1 ja 
Insulin-like growth factor binding protein 4 IGFBP4 ja 
Inhibin β A INHBA ja 
Platelet-derived growth factor α PDGFA ja 
Pentraxin 3 PTX3 ja 
DNA-bindende Faktoren     
Activating transcription factor 3 ATF3 ja 
Homeobox expressed in ES cells 1  HESX1 ja 
Interferon regulatory factor 1 IRF1 ja 
Interferon regulatory factor 7 IRF7 ja 
Storkhead box 1 STOX1 nein  
Signaling-assoziierte Gene      
Guanylate-binding protein 1, IFN-inducible GBP1 ja 
Guanylate-binding protein 2, IFN-inducible GBP2 ja 
Guanylate-binding protein 3 GBP3 ja 
Guanylate-binding protein 4 GBP4 ja 
Guanylate-binding protein 5 GBP5 ja 
Immunoresponsive 1 homolog IRG1 nein 
Suppressor of cytokine signaling 3 SOCS3 ja 
Funktion unbekannt     
Chromosome 7 open reading frame 25 C7orf25 ja 
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Tabelle 11-7: Liste M2-assoziierter Gene, die aus Publikationen von Martinez et al.103, 
Shaykhiev et al.137 und Houser et al.133 zusammengestellt wurde. Die Gene sind nach Funktion 
gruppiert. Gezeigt ist der Genname, das Gensymbol und die Zugehörigkeit zu den in der Abbildung 
7-27 aufgeführten informativen Genen. Fettdruck: ercDC_RCC-Markergen; lila: ercDC_RCC-
Signaturgen  

Genname Gensymbol/alternat. Bez. Informativ 
Membranrezeptoren     
Adenosine A3 receptor ADORA3  ja 
CCR5 CCR5 ja  
CD163  CD163 ja 
CD36  CD36 ja 
CD9 CD9 ja 
C-type lectin family 7A CLEC7A/DECTIN1 ja 
C-type lectin domain family 10, member A CLEC10A/CLECSF13 ja 
CXCR4 CXCR4 ja 
CD302 CD302/DCL-1 ja 
CD209 CD209/DC-SIGN ja 
Fc fragment IgE, low affinity II, receptor for (CD23) FCER2/CD23 ja 
G protein-coupled receptor 86 GPR86 ja 
Histamine receptor H1 HRH1 ja 
IL4R IL4R ja 
c-mer protooncogene tyrosine kinase MERTK ja 
Mannose receptor, C type 1 CD206/MRC1 ja 
Mannose receptor, C type 2 MRC2 ja 
Membrane-spanning 4-domains, subfamily A, member 4A MS4A4A ja 
Membrane-spanning 4-domains, subfamily A, member 6A MS4A6A ja 
Macrophage scavenger receptor 1 CD204/MSR1 ja 
Purinergic receptor P2Y, G-protein coupled, 14 P2RY14 ja 
Purinergic receptor P2Y, G protein-coupled, 5 P2RY5/LPAR6 ja 
Stabilin 1 STAB1 ja 
Transforming growth factor β receptor II TGFBR2 ja 
Toll-like receptor 5 TLR5 ja 
Zytokine und Chemokine     
CCL13 CCL13 ja 
CCL17 CCL17 ja 
CCL18 CCL18 ja 
CCL22 CCL22 ja 
CCL23 CCL23 ja 
CCL24 CCL24 ja 
Insulin-like growth factor 1 IGF1 ja 
Interleukin 10 IL10 ja 
IL1 receptor antagonist IL1RN ja 
TGFB1 TGFB1 ja 
Transportproteine     
Solute carrier family 21, member 15 SLCO2B1/SLC21A9 ja 
Solute carrier family 38, member 6 SLC38A6 ja 
Solute carrier family 4, member 7 SLC4A7 ja 
Enzyme und andere Proteine     
Adenosine kinase ADK ja 
Arachidonate 15-lipoxygenase ALOX15 ja 
Arginase 1 ARG1 nein 
Carbonic anhydrase II CA2 ja 
Ceramide kinase  CERK ja 
Collagen, type VI, α 2 COL6A2 nein 
Cathepsin C CTSC ja 
Hexosaminidase B HEXB ja 
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Histamine N-methyltransferase HNMT ja 
Heparan sulfate (glucosamine) 3-O-sulfotransferase 1 HS3ST1 ja 
Heparan sulfate (glucosamine) 3-O-sulfotransferase 2 HS3ST2 ja 
Lipase A cholesterol esterase LIPA ja 
Leukotriene A4 hydrolase LTA4H ja 
Matrixmetallopeptidase 2  
(gelatinase A, 72-kDa gelatinase) MMP2 ja 

MMP7 (matrilysin, uterine) MMP7 ja 
MMP9 (gelatinase B, 92-kDa gelatinase) MMP9 ja 
Tyrosylprotein sulfotransferase 2 TPST2 ja 
Extrazelluläre Mediatoren     
Chimerin 2 CHN2 ja 
Fibrinogen-like 2 FGL2 ja 
Fibrionectin 1 FN1 ja 
Selenoprotein P, plasma, 1 SEPP1 ja 
Transforming growth factor, beta-induced, 68 kDa TGFBI ja 
DNA-bindende Faktoren     
Early growth response 2 EGR2 ja 
Growth arrest-specific 7 GAS7 ja 
v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog MAF ja 

Signaling-assoziierte Gene      
Regulator of G protein signaling 1  RGS1 ja 

 

Tabelle 11-8: Aktivierungssignale (Stimuli) aus Xue et al.112 

Stimulus Bezeichnung 
IL-4  Interleukin-4 
IL-13 Interleukin-13 
IL-10 Interleukin-10  
GC Glucocorticoide  
IC engl.: immune complexes 
HDL  engl.: high density lipoprotein 
PGE2 Prostaglandin E2 
OA engl.: oleic acid 
LiA engl.: linoleic acid 
TPP TNF+ PGE2 + P3C 
PA engl.: palmitic acid 
LA engl.: lauric acid 
SA engl.: stearic acid 
P3C Pam3CysSerLys4 
sLPS engl.: standard lipopolysaccharid 
upLPS engl.: ultrapure lipopolysaccharid 
IFN-β Interferon-β 
IFN-γ Interferon-y  
TNF Tumornekrosefaktor 
UP unpolarisiert, ohne Stimulus  
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Tabelle 11-9: Module und deren korrelierende Stimuli aus Xue et al.112. Die Zuordnung eines 
Stimulus zu einem Modul erfolgte bei p-Werten < 0,05. Bei p-Werten ≤ 10-6 wurde nur das Modul mit 
dem niedrigsten p-Wert mit dem Stimulus assoziiert, auch wenn andere Stimuli p-Werte < 0,05 
besaßen. Diese Regel ist angelehnt an Xue et al.112. Wenn keiner der Stimuli einen p-Wert ≤ 10-6 
hatte, wurden die beiden signifikantesten (p < 0,05) Stimuli verwendet. In der Tabelle ist die 
signifikantere Korrelation zuerst aufgeführt.  

Modul Stimulus 
Positive Korrelation Negative Korrelation 

1 LA, OA IL-13, IL-4 
2 n.d. IL-13, IL-4 
3 sLPS, UP IL-13, LiA 
4 OA IL-13, IL-4 
5 PA IL-4, IL-13 
6 OA, LA TPP, sLPS + IC 
7 IFN-γ, PA TPP, TNF+ PGE2 
8 IFN-γ TPP* 
9 IFN-γ + TNF, IFN-γ TPP, TPP + IFN-β 
10 IL-4, TNF PA, LiA 
11 IL-4 PA 
12 IL-4, IFN-γ TPP 
13 IL-4, IL-13 TPP  
14 IL-4 sLPS, upLPS + IC 
15 IL-4 TPP* 
16 PA IL-4, TPP + IFN-γ 
17 PA IL-4, IFN-γ + TNF 
18 PA sLPS, TPP 
19 PA IL-4, upLPS 
20 PA TPP 
21 PA TPP + IFN-β, TPP 
22 OA TPP + IFN-β + IFN-γ, TPP + IFN-β 
23 OA, LiA TPP, sLPS 
24 OA TPP, TPP + IFN-β + IFN-γ 
25 PA sLPS, TPP 
26 LiA sLPS, TPP 
27 LA, HDL sLPS 
28 OA, IL-4 sLPS 
29 TNF+ PGE2, TPP  UP, IFN-γ 
30 TPP IL-4, UP 
31 PA IL-4, UP 
32 TPP IL-4, UP 
33 TPP PA, OA 
34 TPP, sLPS + IC  OA, LA 
35 IFN-γ + TNF, sLPS + IFN-γ OA, LA 
36 TPP, P3C + PGE2 OA, IFN-γ 
37 IL-4, upLPS PA 
38 TPP, sLPS + IC OA 
39 TPP, PGE2 PA 
40 TPP, upLPS PA 
41 GC, PGE2 PA, TNF 
42 GC, UP PA, TNF + PGE2 
43 UP, PGE2 sLPS, IFN-γ + TNF 
44 OA, GC IFN-γ, TPP + IFN-β + IFN-γ 
45 IL-4 PA, sLPS 
46 IL-4 PA 
47 IL-4, GC PA 
48 IL-4 PA, OA 
49 n.d.  n.d.  

* Nur ein Stimulus besaß für das Modul einen p-Wert < 0,05, aber > 10-6; n.d.: nicht detektiert 
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