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Deutsche Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der Messung des zeitlichen Profils von Elektronenpulsen
aus lasergetriebenen Plasmabeschleunigern. Bei der sogenannten laser wakefield acceleration
(LWFA) treibt ein hochintensiver Ultrakurzpulslaser eine Plasmawelle, die Beschleunigungsfel-
der von mehreren hundert GV/m aufrechterhalten kann, und somit die von derzeitigen Radiofre-
quenzbeschleunigern erreichbaren Felder um vier Größenordnungen übertrifft. Dies eröffnet die
Möglichkeit die Größe und somit die Kosten derartiger Beschleuniger in Zukunft zu reduzieren.

Da der zu beschleunigende Elektronenpuls notwendigerweise auf die im Bereich von µm liegen-
de Größe der Plasmawelle limitiert ist, liefern LWFAs darüber hinaus ultrakurze und brillante
Elektronenpakete, die geeignet sind kompakte Kurzpuls-Röntgenquellen zu realisieren, sei es
mittels Thomson-Rückstreuung, Betatronstrahlung oder durch Freie-Elektronen-Laser (FELs).
Insbesondere für letztere Anwendung ist das Profil des Elektronenpakets ausschlaggebend, da es
den zur Verfügung stehenden Spitzenstrom bestimmt, der eine wichtige Ausgangsgröße für ein
Undulatordesign darstellt, welches den Selbstverstärkungsprozess optimal unterstützt.

Die in dieser Doktorarbeit beschriebenen Experimente dienten dazu, sowohl das zeitliche Profil
des durch LWFA erzeugten Elektronenpakets zu vermessen, als auch dessen Entwicklung in Ab-
hängigkeit von der Beschleunigungsstrecke und der Plasmadichte zu bestimmen.
Durch Messung des Frequenzspektrums der von den beschleunigten Elektronenpaketen emit-
tierten Übergangsstrahlung gelang es, das zeitliche Profil der Elektronenpulse mit einzigarti-
ger Präzision zu rekonstruieren. Im Vergleich zu vorherigen Experimenten ist eine entschei-
dende Verbesserung durch die Einzelschuss-Messung eines breiten Frequenzbereichs von über
vier Oktaven erreicht worden, wodurch eine Zeitauflösung des rekonstruierten Profils im Sub-
Femtosekundenbereich ermöglicht wurde. Die durchgeführten Experimente regten weiterhin die
Entwicklung eines neuartigen Algorithmus durch unsere Kollaboration mit der Universität von
Oxford an. Im Gegensatz zu herkömmlichen Methoden benötigt dieser weder a priori Annahmen
über eine bestimmte Profilform noch eine Extrapolation des gemessenen Spektrums.

Die vorgestellten Experimente benutzten den 50 TW Ti:Sa-Laser ATLAS sowie eine längen-
veränderliche Gaszelle. Unter optimierten Bedingungen wurden einzelne Elektronenpakete mit
einer kürzesten Pulsdauer von 4.8± 0.2 fs erzeugt, die eine maximale Energie von 650 MeV,
eine Ladung von 30 pC und einen Spitzenstrom von 5.7± 1.2 kA aufwiesen. Durch die Einzel-
schussmessung, sowie die Möglichkeit die Beschleunigungsstrecke zu variieren, war es erstmals
möglich die zeitliche Entwicklung des Elektronenpakets in Abhängigkeit der Beschleunigungs-
strecke zu bestimmen. Die Experimente geben Aufschluss über verschiedene Stadien der Be-
schleunigung, die letztlich durch sogenanntes Elektronen-Dephasing bzw. Defokussierung des
Laserpulses charakterisiert sind, sowie die zugrundeliegende Plasmadynamik. Es konnte gezeigt
werden, dass es nach Überschreiten der Dephasinglänge möglich wird ein zweites Elektronen-
paket in die dem Laserpuls folgende oder eine spätere Periode der Plasmawelle zu injizieren.
Die Dichte des ursprünglichen Elektronenpakets ist dabei ausreichend, um nach Defokussierung
des Laserpulses eine rein Elektronenstrahl-getriebene Plasmawelle aufrechtzuerhalten. Der er-
zeugte Elektronen-Doppelpuls eignet sich somit hervorragend für weiterführende, ausschließlich
Elektronenstrahl-getriebene Experimente und eröffnet die Möglichkeit eines Demonstrationsex-
periments der sogenannten afterburner acceleration, bei der der zweite Elektronenpuls in der
Plasmawelle des ersten Pulses nachbeschleunigt werden kann.





Abstract

This thesis deals with the temporal characterisation of electron bunches produced by a laser
plasma accelerator. In the so-called laser wakefield acceleration (LWFA) scheme, an ultra-short
high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields
of several hundred GV/m, thus exceeding the fields attainable by current state-of-the-art radio
frequency (RF) accelerators by four orders of magnitude, offering the prospect of downsizing
both the size and cost of such machines.

Furthermore, by intrinsically confining the accelerated electron beam to the µm-scale size of the
plasma wave, LWFAs provide ultra-short and highly brilliant beams, sparking great scientific
interest for their application as a driver for compact sources of ultra-short X-ray pulses, e.g.
Thomson-scattering, betatron sources or table-top free-electron lasers (FELs). The bunch profile
is an important quantity for the application of these sources. With particular regard to the envi-
sioned table-top FELs, it also determines the available peak current, an import input parameter
for an appropriate undulator design that is optimized to support the self-amplified spontaneous
emission (SASE) process.

The experiments presented in this thesis comprise the measurement of the temporal profile of
electron bunches produced by LWFA and further investigation of the evolution of the temporal
profile in dependence of the acceleration distance and the plasma density. By measuring the
intensity spectrum of coherent transition radiation (CTR) emitted by LWFA-driven electron
bunches in the frequency domain, the experiments allow a reconstruction of the longitudinal
bunch profiles with unprecedented resolution. Compared to earlier work, a key improvement is
the single-shot coverage of a broadband spectral range of more than four octaves, which yields
a time resolution of the reconstructed bunch profile in the sub-femtosecond region. This work
further inspired the development of a new iterative reconstruction algorithm by our collaborators
from Oxford University. A major benefit of their algorithm is to avoid any a priori assumptions
about the bunch shape or extrapolation of the spectrum outside the measured range, which are
usually necessary in traditional methods.

In the presented experiments, the ATLAS 50 TW Ti:Sa based laser system was used in conjunc-
tion with a hydrogen-filled gas cell. Under optimized conditions, the shortest bunch duration
was determined to 4.8±0.2 fs for single electron bunches with a maximum energy of 650 MeV,
a charge of 30 pC and a resulting peak current of 5.7±1.2 kA. In combination with the length-
tunable gas target, the single-shot measurement technique allows for the first time to study the
temporal evolution of the electron bunch profile as a function of the acceleration distance. This
technique sheds new light onto the acceleration regimes characterized by electron dephasing and
laser depletion as well as the involved plasma dynamics. The results show that after electron de-
phasing a second electron bunch can be injected in the first or subsequent plasma periods. After
laser depletion, the first bunch is further found to be dense enough to drive its own beam-driven
wakefield. The obtained double bunch structure is well suited for further beam-driven experi-
ments and may enable a demonstration scheme for an energy boost by afterburner acceleration
in the near future.
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Chapter 1

Introduction

Particle accelerators are one of the most versatile tools in physics research, having led to nu-
merous scientific breakthroughs. Starting from the discovery of the electron, over nuclear and
particle physics up to the recent discovery of the long-sought Higgs boson [1], these machines
are an established driving force of fundamental research. Although the present energy frontier
in particle physics requires ever increasing facilities such as the Large Hadron Collider (LHC)
(with a circumference of 27 km), accelerators on any scale are nowadays also indispensable for
industrial as well as medical applications [2].

On the other hand, the invention of lasers has triggered scientific discoveries and technological
advances of no less importance. Founding an entirely new field of physics by enabling laser cool-
ing and trapping of cold atoms (i.a. enabling the experimental demonstration of Bose-Einstein
condensation [3]), these sources of coherent light have also become essential for applications in
high speed communication, chemical and biological analysis, material processing and medicine,
to name just a few.

Based on the reciprocal time-energy and space-momentum relations, just as higher output en-
ergies of particle accelerators are desired to resolve the fine structure of space and time, short-
wavelength light sources experience great demand in order to investigate the structure of matter
on the nm scale. Before the recent realization of free-electron lasers (FELs) [4, 5], advanced
imaging applications mostly relied on synchrotron light sources in which radiation is generated
by sending a GeV-scale electron beam through a bending magnet or an alternating magnetic field
structure, causing the deflected electron beam to emit X-ray radiation. With the advent of FELs
in 2002, coherent sources of X-ray radiation have become available, which hold promise for
single-shot diffractive imaging of individual molecules, avoiding the need for a crystalline struc-
ture of the sample [6]. Furthermore, the high peak currents needed to start the self-amplified
spontaneous emission (SASE) process in FELs are usually accompanied by electron bunch dura-
tions in the femtosecond range, which translate into bursts of X-rays with durations of the same
order. Ultimately, such pulses may permit to observe the virtually unexplored area of extremely
fast processes in biological and chemical reactions on a molecular level [7].

All these sources, be it high energy particle accelerators, synchrotron light sources or FELs, cur-
rently rely on radio frequency (RF) accelerators that typically provide acceleration gradients of
several tens of MV per meter. In order to reach electron energies around 15 GeV that are needed
to seed the LCLS (at present, the most advanced FEL light source located at SLAC National
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1. Introduction

Accelerator Laboratory (SLAC)), an accelerator tunnel of approximately 1 km length is needed.
Thus, relatively large and expensive facilities are required for FELs seeded by RF technology,
which limits their proliferation to a few dedicated research facilities worldwide. As an extreme
example of the scaling limits of current accelerator technology, the next projected design for a
high energy collider (termed the International Linear Collider (ILC), which will provide collision
energies between electron and positron beams of 1 TeV) will need a length of 32 km and require
an estimated funding around 20 billion dollar [8]. This machine may likely mark the end of what
can be practically realized by current accelerator technology.

For these reasons, alternative acceleration concepts have attracted increasing attention, as they
may not only constitute viable alternatives to lower the cost and size of future high-energy ac-
celerators, but also support the proliferation of accelerator-based light sources, including the
aforementioned FELs.
Among these concepts, plasma based accelerators are considered as some of the most promising
candidates. In contrast to RF accelerators, which are limited by material breakdown [9], plasma
waves can sustain electric fields of several hundred GV/m at plasma densities around 1018 cm−3.
In the wakefield acceleration scheme, plasma electrons are either expelled by the electric field of
a laser pulse (referred to as laser wakefield acceleration (LWFA)) or a dense bunch of charged
particles (called plasma wakefield acceleration (PWFA)), leaving behind the ions, which can be
regarded as a static homogeneous charge density due to their much higher inertia. The induced
charge separation subsequently forces the expelled electrons to oscillate around the ion column,
forming a wakefield behind the driver. This concept, first proposed by Tajima and Dawson [10]
for LWFA and Chen et al. [11] for PWFA, has been demonstrated to achieve acceleration gradi-
ents of ∼ 300 GV/m [12] and ∼ 40 GV/m [13], respectively.
Since the first demonstration of quasi-monoenergetic LWFA beams in 2003 [14–16], significant
progress has been achieved by optimizing the beam parameters, e.g. pushing the single stage
gain to 4.2 GeV [17] and enhancing the stability and energy spread [18, 19] as well as character-
izing important parameters such as the beam emittance and pulse duration [20–22]. Regarding
PWFA, important milestones have been realized by the energy doubling of a fraction of 42 GeV
electrons in a 85 cm long plasma wakefield accelerator [13] and the demonstration of monoener-
getic acceleration of a discrete witness bunch [23].

Besides the high acceleration gradients, one of the unique benefits of wakefield accelerators is the
small size of the acceleration structure that naturally confines the beam size to a fraction of the
plasma wavelength (with a typical extent on the order of µm). This results in a transverse beam
emittance that rivals the one of state-of-the-art RF accelerators and in bunch durations in the fs
range. The ultra-short bunch duration is a significant intrinsic advantage of wakefield acceler-
ators compared to conventional technology. For the latter, substantial effort has to be invested
in order to compress a previously intentionally chirped beam by magnetic chicanes to durations
of several tens of fs, which are usually needed in order to reach the beam currents necessary for
FEL operation or PWFA experiments.

Here, LWFAs (which avoid the need for an external particle accelerator) hold promise to signifi-
cantly simplify the acceleration process and shrink the required acceleration length by 3-4 orders
of magnitude, lowering both the cost and footprint of these machines. In the future, plasma
accelerators are therefore envisioned as a cost-effective driver for brilliant X-ray light sources,
which may lead to their widespread availability for fundamental research at university-scale lab-
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oratories as well as for medical and industrial imaging applications. The precise measurement
of the temporal bunch shape is important for monitoring and optimizing LWFA electron bunches
for the success of these applications. For example, besides the bunch’s energy spread, the per-
formance of an LWFA-driven FEL is largely determined by the available bunch profile [24].

On the other hand, experimental access to the detailed form of the longitudinal bunch profile
and its evolution with acceleration distance is crucial for a deeper understanding of the physi-
cal mechanisms involved in wakefield accelerators. As will be shown in this work, under certain
conditions a double bunch structure may be generated in a single LWFA stage. Such multi-bunch
structures are of particular interest as a test bed for PWFA, enabling driver-witness type experi-
ments, e.g. afterburner acceleration, in which a subsequent lower charge witness bunch is accel-
erated in the first bunch’s wakefield [25]. In particular, PWFA has the benefit of avoiding the rel-
ative phase slippage between the laser driver and the accelerated bunch that is inherent to LWFA
and ultimately limits the achievable energy gain per stage [12]. In such experiments, knowledge
of the bunch profile is important for optimizing the experimental conditions and analysing its
outcomes.

While originally predicted by particle-in-cell (PIC) simulations, the ultra-short bunch duration
of LWFA electron beams has been confirmed experimentally in previous work by several authors
[21, 22, 26]. However, neither a detailed shape of the electron bunch profile nor its dynamics
could be assessed in these measurements. Similar to the experiments performed by Lundh et al.
[21, 27], the bunch profile diagnostic developed in this work is based on a frequency-domain
technique by measurement of the intensity spectrum of coherent transition radiation (CTR). In
comparison, the presented measurements advance this earlier work in several key aspects:

(i) the bandwidth of the recorded spectrum covers a broadband spectral range of more than
4 octaves, facilitating a time resolution of the reconstructed bunch profile in the sub-fs
region.

(ii) the CTR spectrum is recorded in a single shot, preventing shot-to-shot fluctuations in the
electron bunch parameters distorting the measured spectrum and permitting to determine
the shape of each generated bunch.

(iii) the CTR spectrum is analysed with a new algorithm developed by our collaborators from
Oxford University [28], which allows to reconstruct the electron bunch profile from the
measured spectrum without the need to assume a specific form for the bunch profile or
extrapolation of the spectrum outside the measured range.

These improvements enable us to obtain a detailed longitudinal bunch profile for each shot, quan-
tify the shot-to-shot reproducibility and study its dependence on a wide range of experimental
conditions, based on large shot statistics.

Besides using the well-controlled ATLAS laser system, the experiments described in this thesis
employ a turbulence-free, steady-state flow and length-tunable gas cell, which delivered repro-
ducible electron beams with low fluctuations in spectral shape, charge and cut-off energy. By
varying the length of the gas cell, the experimental setup allows for the first time to study the
temporal evolution of the bunch profile as a function of the acceleration distance and to probe
the physics bunch evolution.
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1. Introduction

The structure of this work is the following:

Chapter II introduces the physics behind wakefield excitation and electron acceleration.

Chapter III introduces the theoretical foundations of CTR, which is emitted when a charged particle
beam crosses the boundary between two materials of different dielectric index. As de-
rived in this chapter, the spectral shape of the emitted CTR contains information about
the bunch’s longitudinal charge profile. We also introduce the algorithm developed by our
collaborators from Oxford University, which enables us to reconstruct the bunch profile
from the measured CTR spectrum.

Chapter IV describes the experimental setup used for LWFA of electron bunches, including the layout
of the employed ATLAS laser system and the spectrometer setup designed to measure
the CTR spectrum. Particular focus is laid on the custom-built mid-infrared spectrometer,
which is based on a design developed by our collaborators from DESY.

Chapter V gives details about the numerical calculation of the detectors’ spectral response. Due to
the peculiar emission characteristics of CTR as well as a possible contribution of a par-
asitic source of CTR, this procedure is necessary in order to obtain an accurate spectral
measurement and a reliable reconstruction of the bunch profile.

Chapter VI describes the experimentally observed electron beam energy evolution in dependence of
the target length. These measurements allow to determine important parameters of the
acceleration process, including the laser depletion and electron dephasing lengths.

Chapter VII presents the main results of this thesis. The retrieved longitudinal bunch profiles are in-
vestigated in dependence of the acceleration parameters. The experimental results are
discussed and further supported by numerical simulations.
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Chapter 2

Plasma wakefield acceleration

In this chapter, the theoretical framework of laser and particle bunch driven wakefields will be
presented. Starting from first principles, the generation of plasma waves is obtained alongside
the involved physical phenomena of electron trapping and acceleration. Finally, the laser pulse
evolution in plasma is discussed and scalings and limits on energy gain are established. This
chapter gives an extensive overview of the involved physics that is needed to understand and
interpret the experimental results presented in this thesis. An in-depth treatment of the underlying
physics can be found in ref. [12, 29].

2.1 Basic laser-particle interaction

In this section we start out to study the basic single electron dynamics in laser fields which
will lead to the concept of the ponderomotive force. First, some basic properties of light are
introduced.

2.1.1 Properties of electromagnetic radiation

A laser beam can be described by a coherent electromagnetic wave. In classical electrodynamics,
the propagation of light as an electromagnetic wave is governed by the Maxwell equations [30]

∇ ·EEE =
ρ

ε0
,

∇×EEE =−∂BBB
∂t

,

∇ ·BBB = 0 ,

∇×BBB =
1
c2

∂EEE
∂t

+µ0 jjj .

(2.1)

Here, EEE and BBB denote the electric and magnetic fields, ε0 is the vacuum permittivity, µ0 the
vacuum permeability and c = 1/

√
ε0µ0 is the speed of light, ρ denotes the charge density and jjj

is the current density. The six (scalar) fields given by EEE and BBB may be reduced to four fields by
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2. Plasma wakefield acceleration

introducing the vector and scalar potentials AAA and Φ, defined by

EEE =−∇Φ− ∂AAA
∂t

,

BBB = ∇×AAA . (2.2)

Applying the Lorenz gauge (∇ ·AAA =−1/c2 ∂Φ/∂t), the Maxwell equations reduce to the simple
wave equations [30] (

∆− 1
c2

∂2

∂t2

)
Φ =− ρ

ε0
,(

∆− 1
c2

∂2

∂t2

)
AAA =−µ0 jjj .

(2.3)

When dealing with electromagnetic wave propagation in vacuum, the charge density ρ and cur-
rent density jjj vanish. A general solution to the homogeneous Maxwell equations is then given
by a linear superposition of plane wave solutions with amplitude akkk, i.e.

AAA(rrr, t) =
1
2

(∫
akkk exp[i(kkk · rrr−ωt +φ)] dkkk+ c.c.

)
, (2.4)

where the angular frequency ω is related to the wave vector kkk by the dispersion relation in vacuum
ω(kkk) = c |kkk| and φ represents an absolute phase offset. Splitting this solution into a term that
accounts for the center or carrier frequency ωL and an envelope function E0(rrr, t) that describes
the pulse shape, the electric and magnetic fields of a laser pulse can be expressed by

EEE(rrr, t) = E0(rrr, t)sin(kkk000 · rrr−ωLt +φ) , (2.5)
BBB(rrr, t) = B0(rrr, t)sin(kkk000 · rrr−ωLt +φ) . (2.6)

Thus, in vacuum, the electric and magnetic fields oscillate in phase and from eq. (2.2) and
eq. (2.4) follows that EEE ⊥ kkk,BBB ⊥ kkk,EEE ⊥ BBB and |BBB| = |EEE|/c. The energy flux density of the
wave is given by the Poynting vector SSS = (EEE ×BBB)/µ0 and the intensity I is obtained from the
cycle averaged Pointing vector [30]

I = 〈|SSS|〉T =
1
µ0
〈|EEE×BBB|〉T =

ε0c
2

E2
0 . (2.7)

In practical terms, the intensity may also be expressed as the laser pulse energy E that is trans-
ported through a surface perpendicular to the propagation direction within a certain time window.
Assuming a Gaussian profile in space and time with a full width at half maximum (FWHM) pulse
duration of tFWHM and spot diameter of dFWHM, the peak intensity is given by

I0 =

(
2
√

ln2
π

)3

E

tFWHM d2
FWHM

≈ 0.83 E
tFWHM d2

FWHM
. (2.8)

This equation can be used for a simple estimate of the peak intensities that are commonly pro-
vided by high power laser systems. Typical parameters for the laser beam delivered by the
ATLAS system during the experimental campaign presented in this thesis were a pulse energy
of E = 1.5 J, a time duration of tFWHM = 28 fs and a focused spot size of dFWHM = 22 µm. With
these values, a peak intensity of I0 ≈ 9× 1018 W/cm2 is attainable, which corresponds to an
extreme electric field strength of 8 TV/m.
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2.1 Basic laser-particle interaction

2.1.2 Single electron in a plane wave laser field

Laser-plasma interactions generally represent a complex many-body problem that typically can-
not be solved analytically. In weakly coupled systems such as underdense plasmas, the formation
of collective dynamics is initiated by the interaction of individual charged particles with the laser
pulse. In order to understand more complex phenomena, it is therefore instructive to approach
the physics of LWFA by starting from the simple case of a single electron interacting with a plane
wave linearly polarised laser field.
The equation of motion of a charge q moving with velocity vvv in the electromagnetic field is
governed by the Lorentz force

dppp
dt

= q(EEE + vvv×BBB) . (2.9)

To obtain the conserved quantities of this system it proves beneficial to resort to the Lagrangian
formalism. Expressing the electromagnetic field by its potentials AAA and Φ, the Lagrangian L of a
relativistic particle with mass m is given by [30, 31]

L =−mc2

√
1− vvv222

c2 +qvvv ·AAA−qφ . (2.10)

The Lorentz force equation can be recovered from the Lagrangian by the Euler-Lagrange equa-
tion ∂L

∂rrr = d
dt

∂L
∂vvv . The merit of the Lagrangian formalism is that the conserved quantities of the

system can be easily obtained from its symmetries and invariants without explicitly solving the
differential of eq. (2.9) [31]. We first compile the canonical momentum pppcan, which is conjugate
to the spatial coordinate rrr

pppcan =
∂L
∂vvv

= mγvvv+qAAA , (2.11)

where γ denotes the Lorentz factor defined by γ = (1−v2/c2)−1/2. In the case of a linearly polar-
ized plane wave travelling along the z-direction, the potentials can be expressed as a sole function
of time t and longitudinal coordinate z , i.e. φ = φ(z, t) and AAA = AAA⊥(z, t). Applying Noether’s
theorem [32], one directly obtains the conservation laws. Since the system is invariant under
translations in the transverse coordinate rrr⊥, the canonical momentum in transverse direction is
conserved

d
dt

pppcan
⊥ =

d
dt

∂L
∂vvv⊥

=
∂L

∂rrr⊥
= 0 → ppp⊥+qAAA⊥ = c1 . (2.12)

A second conserved quantity is found by considering the propagation of the waveform with time,
i.e. AAA⊥(t,z) = AAA⊥(t− z/c). We now use the Weyl gauge φ = 0 [33]. The energy of the particle
is given by the Hamiltonian H(rrr, ppp, t) = E. Using the relation dH/dt =−∂L/∂t, one obtains

dH
dt

=−∂L
∂t

= c
∂L
∂z

= c
d
dt

∂L
∂v‖

= c
d
dt

pcan
‖ = c

d
dt

p‖ , (2.13)

where in the last step A‖ = 0 has been used as we consider a purely transverse wave. Integration
of eq. (2.13) yields the second conserved quantity

E− cp‖ = c2 . (2.14)
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2. Plasma wakefield acceleration

For an electron initially at rest the integration constants are c1 = 0 and c2 = mec2. Using the
relativistic energy-momentum relation E = γmec2 =

√
(mec2)2 +(p⊥c)2 +(p‖c)2 together with

both constants of motion (eq. (2.12) and eq. (2.14)), the kinetic energy can be expressed by

Ekin = (γ−1)mec2 = p‖c =
p2
⊥

2me
=

e2AAA2
⊥

2me
(2.15)

and a relation between p⊥ and p‖ is established:

tan(θ) =
p⊥
p‖

=

√
2

γ−1
. (2.16)

For a linearly polarised wave AAA = (A0,0,0) travelling along the z-direction, the trajectory of an
electron is now obtained from the conserved quantities. Using normalized units, the equations of
motion take the simple form

aaa =
eAAA
mc

, (2.17)

ppp′⊥ =
ppp⊥
mc

=
γ

c
drrr⊥
dt

= aaa = (a0,0,0) , (2.18)

ppp′‖ =
ppp′⊥
2

=
γ

c
drrr‖
dt

=
a2

2
, (2.19)

γ = 1+
a2

2
. (2.20)

For a laser pulse with aaa = (a0,0,0)sin(ωτ), where τ = t− z/c, the equations of motion can be
directly integrated (using dτ = dt/γ)

x(τ) =
ca0

ω
cos(ωτ) ,

z(τ) =
ca2

0
4

(τ+
1

2ω
cos(2ωτ)) .

(2.21)

The trajectory of an electron is thus composed of two terms. A transverse motion with the laser
frequency ω that scales linearly with a0 and a longitudinal motion consisting of a drift term

zd(t) =
a2

0

a2
0 +4

ct (2.22)

superimposed by an oscillation with frequency 2ω. Since the drift velocity scales with a2
0 for

highly relativistic pulses with a0� 1, the trajectory is dominated by the longitudinal motion and
strongly bent in the forward direction with an angle θ to the laser propagation direction given by
eq. (2.16). In the drift frame with coordinates (x′,z′) this results in a figure-8 motion described
by:

x′ =
ac
ω

cos(ωt) , z′ =
a0c
8ω

cos(2ωτ) . (2.23)
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2.1 Basic laser-particle interaction

kz

0 20 40 60

p
' z

, 
p
' x

, 
γ
, 
e

L

-5

0

5

10

15

20
p'

z
p'

x γ e
L

(a)

kz/a
0

2

0 2 4 6

k
x
/a

0

-1

-0.5

0

0.5

1

(b)

kz'

-1 0 1

k
x
'

-10

-5

0

5

10

a
0
=1

a
0
=2

a
0
=5

a
0
=8

(c)

Figure 2.1: Electron dynamics in a plane wave laser field. (a) shows the particle’s momentum and kinetic
energy during its slippage through the laser field eL (a0 = 5). The resulting motion in the laboratory frame
is shown in (b). While oscillating in polarisation direction, the electron is pushed forward by the vvv×BBB
force and drifts in laser propagation direction. (c) shows the characteristic figure-8 motion in the drift
frame.

The electron dynamics are depicted in Fig. 2.1. As shown in Fig. 2.1a, each half cycle of the
driving field the electron is accelerated and decelerated again, both in longitudinal and trans-
verse direction. However, its kinetic energy is only dependent on the transverse electric field
strength (cf. eq. (2.20)). The forward acceleration is due to the vvv×BBB term of the Lorentz force,
which transforms the transverse velocity into a forward motion. Since this force always acts
perpendicular to the trajectory, no energy is transferred. The resulting particle position in the
laboratory frame is plotted in Fig. 2.1b and, after subtracting the drift term, results in the typical
figure-8 motion in the drift frame as shown in Fig. 2.1c.

In the case of a plane wave of infinite transverse extent, no net energy transfer from the laser
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2. Plasma wakefield acceleration

pulse to a charged particle takes place, even in the case of a finite pulse length, where the elec-
tron motion simply stops after the laser pulse has passed. However, a net energy gain can be
achieved if the laser has an intensity gradient in space. An electron initially located in the center
of the focal spot will then be displaced by the transverse electric field of the laser to a region
of lower intensity. As the electric field changes sign the restoring force is smaller, such that the
electron can not return to its initial position. This results in a drift motion of the electron’s oscil-
lation center towards regions of lower intensity, while at the same time its mean kinetic energy
is increased. This so-called ponderomotive force arising from the cycle averaged Lorentz forced
will now be derived.

2.1.3 Ponderomotive force
For non-relativistic velocities, the ponderomotive force is easily derived from the Lorentz force.
In this case, the vvv×BBB term can be neglected, as |BBB| = |EEE|/c� |EEE|. Considering a position
dependent laser field EEE(xxx, t) = EEE(xxx) · sin(ωt) the equation of motion reads

dvvv
dt

=
∂vvv
∂t

+(vvv ·∇)vvv =− e
me

EEE(xxx)sin(ωt) . (2.24)

We now decompose the spatial dependence of the electric field by Taylor expansion, i.e. EEE(xxx) =
EEE0 +(∆xxx ·∇)EEE(xxx000). To the lowest order of EEE(xxx) its solution is

vvv =
eEEE(xxx)
meω

cos(ωt) , (2.25)

which describes the transverse oscillation of the electron. By averaging over the fast oscillation
cycle of the carrier frequency and requiring the electric field envelope to not change significantly
during this time scale, one obtains

me
∂〈vvv〉T

∂t
=−e〈EEE(xxx, t)〉T −me〈vvv ·∇vvv〉T =−1

4
e2

meω2 ∇EEE2(xxx) . (2.26)

Thus, as the quiver motion is averaged out, the electron’s oscillation center experiences a force
proportional to the gradient of the laser intensity, the ponderomotive force

FFF p =−
1
4

e2

meω2 ∇EEE2(xxx) =− q2

8π2ε0mec3 ∇(Iλ
2) , (2.27)

=−mec2
∇

〈
a2

2

〉
=−mec2

∇
a2

4
. (2.28)

In the relativistic case also the longitudinal momentum has to be taken into account. Employing
the Lagrange formalism, a relativistic expression for the ponderomotive force is given by Bauer
et al. [34]

FFF p,rel =−mec2
∇γ̄ , (2.29)

where γ̄ is the particle’s Lorentz factor averaged over one oscillation cycle. Comparing eq. (2.28)
and eq. (2.29), we also find that γ̄ = a2/4 (cf. eq. (2.20)).
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2.2 Basic plasma properties

Another quantity of interest is the electric field strength required for the electron quiver motion
to become relativistic. From eq. (2.25), the maximum velocity is given by

vmax =
eE

meω
=

eA0

me
. (2.30)

Thus, in the non-relativistic treatment, the electron’s quiver velocity reaches c for a0 = 1. Al-
though this classical derivation is not stringent for relativistic speeds, the definition of a0 provides
a convenient quantity to distinguish between the non-relativistic (a0,v/c� 1) and relativistic
(a0 � 1) regimes. As an engineering formula, the laser intensity (eq. (2.7)) is conveniently
expressed in terms of a0 by

I0 =
2π2ε0m2

ec5

e2λ2 a2
0 ≈

1.37 a2
0

λ2[µm]
×1018 W/cm2 . (2.31)

2.2 Basic plasma properties
So far the basic interaction of a single charged particle with laser light has been discussed. In
this section collective phenomena arising from the interaction of laser light with plasma are
considered. Plasma is a state of matter containing unbound positively and negatively charged
particles. It is distinguished from an only locally ionized medium by its definition of being a
quasi-neutral gas of charged (and neutral) particles that also exhibits collective effects [35].

Debye length

An essential characteristic of plasma is that the unbound charges can interact with a number of
nearby neighbours, which enables the emergence of collective effects. The range over which
interactions can occur before the electrostatic field of a particle is screened by the surrounding
plasma is given by the Debye length λD and the electrostatic potential of a test charge in plasma
decays as φ(r) ∝ exp(−r/λp).
Beyond this length the plasma is effectively neutral. The Debye length is given by

1
λ2

D
=

1
λ2

D,e
+

1
λ2

D,ion
, (2.32)

where λ2
D,e and λ2

D,ion denote the respective shielding length of the electron and ion species. In the
case of laser-matter interactions, the ion species are commonly treated as an immobile positively
charged background due to their high inertia. This assumption is justified by the ion’s much
lower vector potential of a = eA/mionc� 1 (achievable with present laser technology) and the
short timescale of the interaction. Thus, when treating laser produced plasmas, only the electrons
have to be considered. For the latter the Debye length is given by

λD =

√
ε0kBTe

nee2 , (2.33)

where Te denotes the electron temperature, kB is the Boltzmann constant and ne is the electron
density.
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2. Plasma wakefield acceleration

The average number of particles within a sphere with a radius equal to the Debye length is given
by the Debye number

ND =
4π

3
neλ

3
D . (2.34)

For the common definition of a plasma the Debye number has to satisfy Nd � 1. The more
particles can interact electrostatically within the Debye sphere, the less pronounced is the effect
of collisions. While the latter influence the particle motion locally, the range of the electric
and magnetic fields of moving charges affects the motion of other charged particles far away.
Thus, ND can be used of as measure of the dominance of collective interactions over collisions
[36]. In laser plasma interactions this is guaranteed by the energy transfer from the wake driver
to the electrons, which leads to a high particle temperature. Additionally, in plasma wakefield
experiments, ne is typically on the order of (1018− 1019) cm−3. Thus, λD is large, the Debye
sphere is densely populated and the coupling between particles is weak.
The notion of charge neutrality implies that the dimensions d of the plasma are much larger than
λD such that local charge concentrations or fields are shielded in a relatively short distance. Then
the plasma appears neutral to an external observer and the bulk of the plasma remains field-free
over a length scale � λD. Thus, a second criterion for an ionized gas to be a plasma is that
λD� d [35].

Ionization

Ψ(r)
E

ion

V(r)
(a)

-eE
x
r

Ψ(r)

V(r) ~ 1/r

E
ion

V(r)
(b)

Figure 2.2: Ionization mechanisms. Schematic drawing of (a) an electron bound in an unperturbed
Coulomb potential and (b) in a Coulomb potential disturbed by an external laser field. The unperturbed
wave function Ψ(r) of an s-electron is depicted for reference. If the potential barrier is suppressed below
its ground state energy (represented by the dotted line) barrier suppression ionization occurs, for lower
laser fields the tunnel probability is increased.
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2.2 Basic plasma properties

For plasma generation, ionization can be accomplished by high temperatures or strong electro-
magnetic fields. In the case of LWFA it is usually produced by a high voltage or, most easily, by
the strong electromagnetic field of the laser pulse itself. In order to ionize a specific element, the
bound electron has to overcome the potential barrier of the nucleus. For hydrogen the ionization
energy amounts to Eion = 13.6eV. The photon energy of the employed Ti:Sa laser (λL ≈ 800nm)
of Eph = ~ωL ≈ 1.6eV is insufficient to ionize a hydrogen gas target directly by the photoelectric
effect. However, in the presence of a strong laser field, ionization can take place via alternative
mechanisms called multi-photon, tunnel or barrier-suppression ionization. The occurrence of
the different processes depends on laser intensity and can be classified by the Keldysh parameter
[37, 38]

γK = ωL

√
2Eion

IL
, (2.35)

where IL is the laser intensity. The Keldysh parameter is a measure for the ratio between the
tunnelling time and one half of the laser period [39]. When γK > 1, the binding potential of the
nucleus remains practically undisturbed and the only process leading to ionization is absorption
of multiple photons. For γk < 1, the laser field becomes comparable to the core’s Coulomb field
and the potential barrier is lowered, which increases the electron’s tunnelling probability. For
even higher laser intensities (γK � 1), the potential is strongly disturbed and suppressed even
below the electron’s ground state potential such that the electron is released from the binding
potential. This mechanism, called barrier suppression ionization, occurs for laser intensities
exceeding [38]

IBSI =
π2cε3

0E4
ion

2Z2e6 , (2.36)

where Z is the effective nuclear charge of the element. For hydrogen IBSI = 1.4×1014 W/cm2.
The typical laser intensity provided by the ATLAS laser is on the order of IL ∼ 1018 W/cm2.
Hence, even the pedestal of the main laser pulse is intense enough to ionize the employed hydro-
gen gas target before arrival of the main pulse. One can therefore safely assume a fully ionized
plasma during the main interaction.

Plasma waves
In a neutral plasma, electrons displaced from their equilibrium position feel a restoring force
caused by the unshielded positive ion background and start to oscillate about their equilibrium
position. Assuming a small density perturbation, the harmonic oscillation contains only one
frequency component, i.e. EEE(rrr, t) = Re

[
EEEkkkei(kkkrrr−ωt)

]
. Resorting to the Maxwell equations and

combining the Faraday equation with Ampere’s law yields

∇×∇×EEE =−µ0∂t jjj−µ0ε0
∂2EEE
∂t2 . (2.37)

The partial derivative of the current density ∂t jjj =−ene∂tvvv is obtained from the Lorentz force by
∂tvvv =−eEEE/me. Hence, dropping the oscillatory terms, the solution of eq. (2.37) in Fourier space
is given by

kkk× kkk×EEEkkk = µ0

(
nee2

me
− ε0ω

2
)

EEEkkk . (2.38)
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2. Plasma wakefield acceleration

Langemuir waves

For kkk ‖EEEk, the left hand side of eq. (2.38) equals zero. The right hand side describes an oscillation
of the electron density with the plasma frequency ωp, where

ωp =

√
e2ne

meε0
. (2.39)

This longitudinal electrostatic plasma wave is called a Langmuir wave. Our simple derivation
implicitly assumes a collision-less plasma where the thermal motion of the electrons has been
neglected, which is also termed the cold plasma approximation. When including thermal effects,
a general dispersion relation valid for a finite temperature plasma was derived by Bohm and
Gross [40]:

ω
2 = ω

2
p +3v2

t,ek2 , (2.40)

where vt,e = kBT/γme is the thermal speed of the electrons.

Electromagnetic waves

For kkk ⊥ EEEk, eq. (2.38) yields the dispersion relation of electromagnetic waves propagating in
plasma

ω
2
L = ω

2
p + c2k2 . (2.41)

Depending on the ratio of ωL/ωp, eq. (2.41) identifies two distinct cases. If ωL > ωp, the fre-
quency of the electromagnetic field is higher than the plasma frequency and the plasma response
is too slow to follow these oscillations. In this case the wavenumber k is real, the plasma is
transparent to light and called underdense. If ωp > ωl , the plasma is called overdense. Here, k
becomes imaginary and describes an evanescent wave inside the plasma as the electron response
time τ∼ω−1

p is fast enough to follow ωL and shield the electromagnetic field. The plasma density
at which ωp = ωL is called the critical density and is given by

nc =
ε0me

e2 ω
2
L =

1.12
λ2

L [µm]
×1021 cm−3 . (2.42)

The dispersion relation (eq. (2.41)) determines the non-relativistic group and phase velocities of
a laser pulse propagating through underdense plasma:

vgr =
dωL

dk
= ηc , (2.43)

vph =
ωL

k
=

c
η
, (2.44)

and η =

√
1−

ω2
p

ω2
L
, (2.45)

where η is the refractive index. Thus, for underdense plasmas, 0 < η ≤ 1 is real and light
propagates with group velocity vgr = cη and phase velocity vph = c/η, while for overdense
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2.3 Wakefield generation

plasmas (ωp > ωL) η becomes imaginary and the incident light is fully reflected. We further
define the rapidity and Lorentz factor associated with vgr by

βgr =
vgr

c
=

√
1− ne

nc
, (2.46)

γgr =
(√

1−β2
gr

)−1
=

√
nc

ne
=

ωL

ωp
. (2.47)

2.3 Wakefield generation
A high intensity laser pulse or a dense bunch of charged particles can excite plasma waves by
its respective ponderomotive force or Coulomb potential. In contrast to the purely longitudinal
Langmuir waves derived above, in these cases plasma electrons are also expelled in transverse
direction and the resultant plasma wave exhibits a more complex three-dimensional structure. In
the following we will derive the fundamental equations needed to describe wakefield excitation.
These allow to analytically solve the resulting wakefield in the 3D linear and in the 1D nonlinear
regime.

2.3.1 Fundamental equations
We revert to the inhomogeneous Maxwell equations given in eq. (2.1). The positive charge
density of the immobile ion background is denoted by n0, ne describes the electron density and
n = ne/n0. Using ρ = e(n0− ne) and jjj = −enevvv, where vvv is the electron fluid velocity, the
Maxwell equations read

∇ ·EEE =
e(n0−ne)

ε0
, (2.48)

∇×EEE =−∂BBB
∂t

, (2.49)

∇ ·BBB = 0 , (2.50)

∇×BBB = µ0ε0
∂EEE
∂t
−µ0enevvv . (2.51)

We also recall the electromagnetic potentials introduced in eq. (2.2)

EEE =−∇Φ− ∂AAA
∂t

,

BBB = ∇×AAA , (2.52)

and use the Coulomb gauge ∇ ·AAA = 0.

Poisson equation

With the definition of the normalized potential ϕ = eφ/mec2, the Poisson equation becomes

∇
2
ϕ =

ω2
p

c2 (n−1) . (2.53)

15
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Continuity equation

Neglecting recombination and assuming a fully ionized plasma, the total charge in each fluid el-
ement is conserved. Taking the divergence of eq. (2.51) and using eq. (2.48) yields the continuity
equation

∂n
∂t

+ c∇(nβββ) = 0 . (2.54)

Electro-magnetic wave equation

We now express eq. (2.51) in terms of the potentials and use the vector identity
∇× (∇×AAA) = ∇ · (∇ ·AAA)−∇2AAA:

∇×∇×AAA =−µ0enevvv− 1
c2

∂

∂t

(
∇Φ+

∂AAA
∂t

)
, (2.55)(

c2
∇

2− ∂2

∂t2

)
AAA =

ene

ε0
vvv+

∂

∂t
∇Φ , (2.56)

(
c2

∇
2− ∂2

∂t2

)
aaa = ω

2
pnβββ+ c

∂

∂t
∇ϕ , (2.57)

where ωp denotes the undisturbed plasma frequency. We have now obtained the normalized
wave equation which describes the propagation of electromagnetic modes through plasma.

Equation of motion

Expressing the equation of motion (eq. (2.9)) in terms of the electromagnetic potentials and using
ppp = γmvvv yields

dppp
dt

=

(
∂

∂t
+ vvv ·∇

)
ppp =−e(EEE + vvv×BBB) = e

(
∇Φ+

∂AAA
∂t
− vvv×∇×AAA

)
. (2.58)

Together with the vector identity ∇p2 = 2[(ppp ·∇)ppp+ ppp× (∇× ppp)] and

(vvv ·∇)ppp =
1

2mγ
∇p2− vvv× (∇× ppp) = mc2

∇γ− vvv× (∇× ppp) , (2.59)

the partial derivative of ppp with respect to time is

∂

∂t
ppp = e∇Φ+ e

∂AAA
∂t
−mc2

∇γ+ vvv× (∇× (ppp− eAAA)) . (2.60)

Taking the curl of this equation,

∂

∂t
(∇× (ppp− eAAA)) = ∇× (vvv× (∇× (ppp− eAAA))) , (2.61)

shows that ∇× (ppp− eAAA) = 0 for all times for the initial condition of an unperturbed plasma
before arrival of the laser pulse [41]. The equation of motion thus becomes

∂

∂t
ppp = e∇Φ+ e

∂AAA
∂t
−mc2

∇γ . (2.62)
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2.3.2 Linear wakefields
In the non-relativistic regime the induced wakefields can be solved analytically. In the following,
we derive the wakefield produced by a weak laser (with an envelope given by a) or particle bunch
driver (with a charge profile given by nb). Both induce a plasma density perturbation described
by δn. For small density perturbations (ne = n0+δn, δn� n0), linear perturbation theory can be
applied to the cold-fluid Maxwell equations. In this case, the linearised continuity equation, the
equation of motion and Gauss’s law read [42]

∂

∂t
δn+n0∇ · vvv = 0 , (2.63)

∂vvv
∂t

=−eEEE
me
− c2

∇
a2

4
, (2.64)

∇ ·EEE =
−e(nb +δn)

ε0
. (2.65)

By taking the time derivative of eq. (2.63), the divergence of eq. (2.64) and plugging both into
eq. (2.65), we obtain a wave equation for the plasma density perturbation(

∂2

∂t2 +ω
2
p

)
δn
n0

= c2
∇

2 a2

4
−ω

2
p

nb

n0
. (2.66)

The density perturbation that forms the plasma wave follows the wake driver and thus has a phase
velocity determined by the velocity of the wake driver. Therefore, it proves convenient to per-
form a variable transform from the laboratory frame to a co-moving frame (ξ,τ) with ξ = z− ct
and τ = t. The co-moving frame follows the driver with a velocity of v ≈ c and ξ specifies the
distance from the center of the wake driver at a specific time τ.

In the co-moving frame eq. (2.66) can be simplified considerably by introducing the so-called
quasi-static approximation [43, 44] which assumes that the envelope of the driver does not
change significantly during the time it takes to transit a plasma electron, which is given by the
driver’s pulse duration. In this case ∂/∂τ≈ 0 and the partial derivatives are given by ∂/∂z = ∂/∂ξ

and ∂/∂t = ∂/∂τ− c∂/∂ξ≈−c∂/∂ξ. Thus, in the co-moving frame eq. (2.66) reads(
∂2

∂ξ2 + k2
p

)
δn
n0

=

(
∇

2
⊥+

∂2

∂ξ2

)
a2

4
− k2

p
nb

n0
, (2.67)

which is recognized as an inhomogeneous Helmholtz equation.
The electric field Ez can then be obtained with the help of eq. (2.53):(

∇
2
⊥− k2

p
) Ez

E0
= kp

∂

∂ξ

(
a2

4
− δn

n0
− nb

n0

)
, (2.68)

where E0 = mecωp/e is the maximum attainable field amplitude, also called the cold non-
relativistic wave breaking limit (to be discussed in detail in subsection 2.3.4).

For the case of an electron beam driver (a2 = 0) and assuming a cylindrically symmetric drive
beam the solution of eq. (2.67) is [45]

δn
n0

= kp

∫
ξ

0
dξ
′ sin[kp(ξ−ξ

′)]
nb(ξ

′)

n0
(2.69)
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(a) (b)

Figure 2.3: Longitudinal (a) and radial (b) electric field of a linear laser-driven wakefield. The colormap
depicts the electric field strength behind the driver in a plane along its propagation axis. The interval
−3π/2≤ kpξ <−π of the wakefield phase in which an electron is exposed to both a longitudinally accel-
erating and a transversely focusing field is indicated by the transparent region.

and for the case of a sole laser driver in the absence of an electron bunch (nb = 0)

δn
n0

= kp

∫
ξ

0
dξ
′ sin[kp(ξ−ξ

′)]

(
∇

2
⊥+

∂

∂ξ′2

)
a2(ξ′)

4
. (2.70)

Equation (2.69) and eq. (2.70) can be solved analytically. For a beam driver of bi-Gaussian
charge distribution nb(ξ,r⊥) = nb,0 exp(−ξ2/2σ2

‖)exp(−r2
⊥/2σ2

⊥), the wake amplitude on the
propagation axis (r = 0) behind the beam (ξ� 0) is given by [46]

Ez(ξ,0)
E0

=−
√

2π
nb,0

n0
kpσze−k2

pσ2
z/2 R(0)cos(kpξ) , (2.71)

where

R(0) =
k2

pσ2
r

2
ek2

pσ2
r/2

Γ(0,k2
pσ

2
r/2) (2.72)

and Γ(α,β) =
∫

∞

β
tα−1e−t dt.

For laser drivers of Gaussian shape the longitudinal field is [47, 48]

Ez(ξ,r)
E0

=

√
π

2
ωpτL

2
a2

0 e−w2
pτ2

L/2 e−2r2/w2
0 cos(kpξ) (2.73)

and in the radial direction

Er(ξ,r)
E0

=−
√

2π cτL
r

w2
0

a2
0 e−w2

pτ2
L/2 e−2r2/w2

0 sin(kpξ) , (2.74)

where τL denotes the root mean square (rms) pulse duration and w0 is the beam waist.
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2.3 Wakefield generation

For both, laser and beam drivers in the linear regime, the plasma wave is thus given by a sinu-
soidal density perturbation behind the wake driver. The longitudinal and radial electric fields are
phase shifted by π/2 1. The electric fields of a linear laser-driven wakefield are shown in Fig. 2.3.
The wake structure not only provides regions for longitudinal acceleration but also regions with
transverse focusing and defocusing fields. Regarding wakefield acceleration of electron beams,
the useful phase of the plasma wave that provides both accelerating and focusing fields is found
between −3π/2≤ kpξ <−π. For both types of drivers, the wake amplitude scales linearly with
a2

0 and nb/n0, respectively. By taking the derivative of eq. (2.71) and eq. (2.73) with respect to
σ‖, it can further be shown that the amplitude is maximized for kpσ‖ =

√
2.

2.3.3 Nonlinear wakefields

For wakefields in the relativistic regime (a2
0 > 1 or nb/n0 > 1), the perturbation analysis presented

above is no longer valid. Here, an analytic theory only exists in a one-dimensional description,
while more general cases must be modelled numerically. However, nonlinear effects such as
wave steepening and period lengthening can already be derived from the 1D model. Further-
more, the model may be used to obtain scaling laws as well as a general understanding of the
involved physics. In the following section the fully relativistic one-dimensional description of a
laser or bunch driven wakefield is derived, which also encompasses arbitrary velocities vgr of the
driver laser.

Transverse momentum conservation. For the one dimensional derivation we resort to a laser
pulse propagating along the z-direction which is linearly polarised along eeex with aaa= eeexa0(z−vgrt).
Recalling eq. (2.12), we make use of the transverse momentum conservation px = eAx that is
valid in a 1D scenario. After normalizing by mec, this yields

γβx = a0 . (2.75)

With the conservation of transverse momentum, the relativistic γ-factor can be expressed by 2

γ =
1√

1−β2
⊥−β2

z

=

√
1+a2

0√
1−β2

z
= γ⊥γ‖ . (2.76)

1. In the purely beam driven case the same behaviour is found. The longitudinal field (eq. (2.71)) shows a cos(kpξ)
dependence and the radial component, which can be obtained from the Panofsky-Wenzel theorem [49], also
exhibits a sin(kpξ) dependency [50].

2. Since the transverse momentum of the electron is only determined by the laser vector potential, this dependence
is frequently expressed by splitting the Lorentz factor into a transverse and a longitudinal component by

γ = γ⊥γ‖ (2.77)

with
γ⊥ = (1+a2

0)
1/2 and γ‖ = (1−β

2
z )
−1/2 . (2.78)
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2. Plasma wakefield acceleration

Longitudinal electron fluid momentum. In the longitudinal z-direction the electron fluid mo-
mentum equation (eq. (2.62)) in 1D becomes

∂(γβz)

∂t
= c

∂(ϕ− γ)

∂z
. (2.79)

Co-moving frame. Analogous to the linear case we now apply a coordinate transform to
a reference frame co-propagating with the laser pulse. However, this time the frame is co-
moving with the group velocity vgr, such that ξ = z− vgrt. The partial derivatives are then
given by ∂/∂z = ∂/∂ξ, ∂/∂t = ∂/∂τ− vgr∂/∂ξ and the total derivative with respect to time is
d
dt =

∂

∂τ
−vgr

∂

∂ξ
+cβz

∂

∂ξ
. Thus, the longitudinal fluid momentum equation (2.79) in the co-moving

frame becomes
1
c

∂(γβz)

∂τ
= βgr

∂(γβz)

∂ξ
−βz

∂(γβz)

∂ξ
+

∂(ϕ− γ)

∂ξ
=

∂

∂ξ
[ϕ− γ(1−βgrβz)] . (2.80)

Analogously, the one-dimensional continuity and Poisson equations read

1
c

∂n
∂τ

=
∂[n(βgr−βz)]

∂ξ
, (2.81)

∂2ϕ

∂ξ2 =
ω2

p

c2

(
n−1+

nb

n0

)
. (2.82)

Making use of the quasi-static approximation, the time derivatives can be neglected and eq. (2.80)
and eq. (2.81) are easily integrated, yielding

γ(1−βgrβz)−ϕ = 1 , (2.83)
n(βgr−βz) = βgr , (2.84)

where the integration constants have been determined from the requirement that for ξ→ ∞ an
undisturbed cold plasma (n = 1 and βz = ϕ = 0) is recovered.
The electrostatic potential of eq. (2.82) can now be expressed by

∂2ϕ

∂ξ2 =
ω2

p

c2

[
βz

βgr−βz
+

nb

n0

]
. (2.85)

Using the expression for βgr given by eq. (2.83) and eq. (2.76) one obtains

∂2φ

∂ξ2 =
ω2

p

c2 γ
2
gr

βgr

(
1−

γ2
⊥

γ2
gr(1+ϕ)2

)−1/2

−1

+ ω2
p

c2
nb

n0
, (2.86)

where γ2
⊥ = 1+a2

0 is the relativistic Lorentz factor stemming from the electrons’ quiver motion
in the transverse laser field and γgr = (1−βph)

1/2 is the Lorentz factor associated with the wake
phase velocity. In the limit vgr → c, the expression for the electrostatic potential ϕ of the wake
simplifies to

∂2ϕ

∂ξ2 =
ω2

p

2c2

[
1+a2

0
(1+ϕ)2 −1

]
+

ω2
p

c2
nb

n0
. (2.87)

Equation (2.86) and eq. (2.87) can only be solved numerically. Once the solution for ϕ is known,
n and βz can be calculated from eq. (2.82) and eq. (2.84) and the normalized longitudinal electric
field ez is given by ez =−cω−1

p ∂ϕ/∂ξ.
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Figure 2.4: One-dimensional nonlinear laser driven wakefield. (a) shows the normalized wakefield prop-
erties for a driver laser with a0 = 2 and a Gaussian longitudinal profile with ξFWHM/λp = 0.2. (b) depicts
the efficiency of wake excitation in dependence of the peak normalized vector potential a0 and the laser
pulse width. The colormap shows the peak electric field normalized by a2

0/(a
2
0 +1)1/2, where the latter is

the maximum field amplitude attainable by a square pulse of optimal duration.

In Fig. 2.4a these quantities are plotted for a Gaussian laser pulse with a0 = 2 and a Gaussian
temporal profile with a pulse duration of τFWHM = 0.2 λp/c. The main characteristics of nonlin-
ear wakefields are reproduced by the one-dimensional theory. These include the elongation of
the wave period due to the relativistic mass increase of the electrons forming the wake and the
sharp spikes in the electron density at the minima of the electrostatic potential. In contrast to
the linear regime, the longitudinal electric field exhibits a sawtooth like profile with an almost
constant field gradient between the wave crests.

In the special case of a circularly polarised laser pulse with a square temporal profile the wake-
field can be solved analytically. For an optimized pulse duration the maximum attainable field
strength and wake potential scale as [51]

ϕmax ∝ a2
0 and εmax ∝

a2
0√

a2
0 +1

. (2.88)

For different pulse durations the maximum efficiency for wake excitation is dependent on a0
and the ratio between laser pulse length and plasma wavelength. The excitation efficiency for
Gaussian laser pulses is depicted in Fig. 2.4b, where the maximum field strength normalized
by the scaling of eq. (2.88) is shown in dependence of the laser amplitude and pulse length.
For a0 � 1 the linear result kpσ‖ =

√
2 is recovered. For relativistic intensities optimal wake

excitation is obtained for shorter pulse durations, while at the same time the dependence on laser
pulse duration is relaxed due to a broader resonance of the excitation.
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2. Plasma wakefield acceleration

2.3.4 Wave breaking
A major advantage of plasma accelerators compared to conventional microwave cavities is that
plasma waves can sustain electric fields in the order of several hundred GV/m. These fields1are
limited by wave breaking, which occurs when the velocity of the electrons constituting the wake
exceeds the phase velocity of the wake itself. A first estimate about the attainable field strength
can be obtained from linear theory for which the maximum density perturbation is given by
δn/n0 = 1. For a phase velocity of vph = c all electrons are oscillating with kp = ωp/c. The
Poisson equation (eq. (2.53)) then reads ∂Ez/∂z = E0 ωp/c = ω2

pme/e or

E0 =
mecωp

e
≈ 96

√
n0 [cm−3]

V
m
, (2.89)

which is known as the cold non-relativistic wave breaking limit [52].
Taking into account nonlinear effects, plasma waves can sustain even higher fields. The same
procedure can be applied to the 1D nonlinear theory, for which it can be shown that as the
electron velocities ve approach vph, the electron density diverges and ∂2φ/∂ξ2→ ∞. This leads
to the following expression for the cold relativistic wave breaking limit [53]

EWB = E0

√
2(γph−1) , (2.90)

where γph = (1− v2
ph/c2)−

1
2 is the relativistic factor associated with the wake phase velocity.

The theory may be extended to include temperature effects. For warm plasmas, the wave break-
ing limit is lower, as the thermal motion leads to a velocity distribution with an effective velocity
spread vth. Thus, a fraction of the background electrons with ve + vth ≥ vph can get trapped in
the wake [54]. A derivation for warm plasmas, including relativistic fluid momenta, is given in
ref. [55, 56]. Apart from the simple 1D model, a more accurate description of wave breaking
also has to account for the transverse motion of plasma electrons, which can influence the wave
breaking threshold.

2.3.5 The bubble regime
So far wake generation has been discussed in the 3D linear and 1D nonlinear regime, assuming
a non-evolving static laser or particle bunch driver. These models have the advantage of being
tractable within analytic theory and capture the basic features of the involved physics. Neverthe-
less, a realistic description necessarily needs a three-dimensional treatment as the wake driver not
only expels plasma electrons longitudinally but also in transverse direction. Since a strict ana-
lytic solution in the nonlinear regime does not exist, a full description ultimately requires the use
of numerical simulations. This is usually done by PIC simulations that evaluate the dynamics of
the electromagnetic fields and the charged particles on a computational grid in a self-consistent
manner.

For short relativistic wake drivers (a0 or nb/n0� 1 and σ‖ < λp,), the transverse component of
the electric field or the ponderomotive force dominates the wake formation process by expelling

1. For plasma densities in the range of 1018 − 1019 cm−3 that are commonly used in LWFA experiments, the
maximum attainable electric field is in the range of 100−300 GV/m.
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2.3 Wakefield generation

(a) (b)

Figure 2.5: PIC simulations showing the shape of the wakefield in the blow-out regime. (a) depicts the
electron density (blue colorbar) and longitudinal electric field (black lineout, [a.u.]) of the central slice
through a 3D PIC simulation box for a matched laser driver with a0 = 10. The γ factor of the injected
electrons is shown by the right colorbar. In (b), the wake is excited by an electron bunch (red colorbar)
with nb/n0 = 10 and kpσ⊥ = kpσ‖ =

√
2.

the plasma electrons radially, leaving behind a pure ion column of uniform charge density +en0.
The plasma electrons are then pulled back by the channel and perform a harmonic motion af-
ter which their trajectories cross each other on the propagation axis and create a large density
spike at a distance of around λp. The nonlinearities induced by the large amplitude wake cause
initial position dependent frequency shifts. Further downstream, this phase mixing of the return-
ing electrons leads to trajectory crossing and therefore a non-laminar motion, which destroys the
wake structure [52, 57]. Due to the solitary shape of the plasma cavity it is called a bubble. Using
numerical simulations, the so-called bubble or blowout regime was first identified for PWFA by
Rosenzweig et al. [58] and later by Pukhov and Meyer-ter Vehn [59] for LWFA.

A major benefit of the bubble regime is the radially independent linear acceleration field and a
transverse focusing field that is constant along ξ and therefore preserves the transverse emittance
of an accelerated electron bunch (cf. subsection 3.2.3). The structure of the bubble is an ap-
proximately spherical ion cavity surrounded by a thin dense layer of expelled electrons, radially
followed by a weakly disturbed plasma with an extent of one skin depth. In the ultrarelativistic
limit and for short wake drivers the shape of the bubble is given by [60]

rb
d2rb

dξ2 +2
(

drb

dξ

)2

+1 = 0 , (2.91)

where rb denotes the bubble radius. This equation resembles a sphere, except for the extra term
(drb/dξ)2, which causes the trajectories to steepen at the rear side of the bubble. While for
PWFA this shape is accurate for ultrarelativistic and narrow beam drivers for which the potential
extends far beyond the bunch dimensions, the ponderomotive potential of a laser driver is limited
by the outer edges of the pulse. Furthermore, the laser cannot be guided by self-focusing if its
spot size is too small. Thus, for LWFA, the shape slightly deviates from a sphere, as shown in
Fig. 2.5. Using PIC simulation, Lu et al. [61] found that a refined condition for LWFA leading
to a well defined sheet accompanied by laser self-guiding without significant oscillations in spot
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size is obtained for a laser waist w0 satisfying

kprb ' kpw0 = 2
√

a0 . (2.92)

The axial electric field and the effective radial focusing field within the bubble are given by
[12, 62]

Ez '
kpξ

2
E0 and Er '

kpr
2

E0 , (2.93)

where Ez is maximal when ξ = rb and, using eq. (2.92), the maximum acceleration field scales
as Emax '

√
a0E0. Note that the effective focusing field Er is independent of ξ.

PIC simulations further show that in the LWFA case a characteristic spherical bubble is reached
for a & 2 [61]. In order to reach the blowout regime with particle beam drivers, kpσ⊥ < 1,
kpσ‖ < 2 and nb/n0 > 1 is required [58].

2.4 Trapping and acceleration
Once the plasma wave breaks or an electron is injected by other means into the potential of the
wakefield it can co-propagate if a sufficient initial momentum is exceeded. The electron is then
trapped within the potential of the wakefield, where the latter is moving with the wake’s phase
velocity, and permanently exposed to its electric field.

Having determined the wake’s potential (e.g. from eq. (2.86)), it is instructive to examine the
trajectory of a test electron in phase space. The longitudinal dynamics of an electron in the
presence of the laser pulse vector potential A⊥ and the wakefield potential φ are described by the
Hamiltonian given by [63]

H =
√

m2c4 + c2P2
‖ +(cP⊥+ eA⊥(z, t))2− eΦ(z, t) . (2.94)

Transformation to the co-moving frame, averaging over the fast laser oscillation cycle and using
normalized units yields [64]

h(ξ, p‖) =
√

γ2
⊥+ p2

‖−ϕ(ξ)−βph p‖ = h0(ξ0, p0) , (2.95)

where γ⊥ = (1 + a2
0/2)1/2 for a linear polarised laser pulse (cf. eq. (2.76)). As h does not

explicitly depend on time, the energy of the system is conserved and the electron orbit is only
dependent on its initial coordinates before arrival of the wakefield, i.e. the trajectory is solely
determined by its initial energy h(ξ0, p0) = h0.

The separatrix
Solving eq. (2.95) for the normalized longitudinal momentum yields [64]

p‖ = βphγ
2
ph(h0 +ϕ)± γph

√
γ2

ph(h0 +ϕ)2− γ2
⊥ . (2.96)
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Figure 2.6: Longitudinal phase space of the wake. The upper part shows the properties of a 1D nonlinear
laser driven wakefield in the co-moving frame (a0 = 2, ξFWHM = 0.14λp, γph = 13). The lower part shows
the resulting longitudinal phase space of a test electron in the wakefield. Different classes of electron
trajectories are labeled by characters and described in the main text. The total energy of the test electron
is given by the colormap.

This equation describes individual electron orbits which are distinguished by their initial energy
h0. In Fig. 2.6, the Hamiltonian defined in eq. (2.95) is plotted for the longitudinal phase space
(p‖,ξ), where the colour code corresponds to the initial energy h0. Individual electron trajectories
are highlighted by lines. Each line represents the motion of an electron with a certain initial
energy h0, which moves in phase space along trajectories of constant energy. On top of the
phase space plot the laser pulse envelope, electron density and longitudinal electric field are
shown for comparison. From Fig. 2.6 it is evident that, depending on their initial energy, some
electrons are moving on closed orbits (d) and are trapped in the wake potential. As time proceeds,
electrons follow their trajectories in the direction indicated by arrows. Trapped electrons are
therefore periodically accelerated and decelerated. To distinguish these orbits from untrapped
orbits, an import criterion in phase space is the separatrix (c), which refers to the limiting orbits
that separate both types of trajectories.

The separatrix is the solution to eq. (2.95) for the minimum energy hs for which closed orbits
are achieved. These orbits join at singular points at which the 2nd term on the right hand side
of eq. (2.96) vanishes. Therefore hs has to satisfy γ2

ph(ϕ(ξ)+hs)
2− γ2

⊥ = 0 [63, 64]. The initial
momentum for an electron to get trapped in the wake structure is obtained by using h = hs and
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solving for p‖, which yields [64]

p‖,min = γph

(
βph(γ⊥− γphϕmin)−

√
(γ⊥− γphϕmin)2−1

)
, (2.97)

where γph is set by the laser’s group velocity γgr. An orbit with p‖,min corresponds to an electron
moving with γmin in laser propagation direction before arrival of the wake driver. At ξ/λp =−1
its velocity exactly equals the phase velocity of the wake. The separatrix orbit also determines the
maximum attainable acceleration. After the turning point at ξ/λp = −1, the electron circulates
along the separatrix and is accelerated to velocities exceeding γph. When it has travelled half
the plasma wavelength (ξ/λp = −0.5), the maximum energy is obtained. Ideally, acceleration
should be stopped at this so-called dephasing point, otherwise the electron continues to follow
the separatrix and is decelerated again.

If a test electron’s initial momentum is too low to get trapped, it simply follows the wave motion
but moves backward with respect to the wake frame (a). These low-momentum electrons form
the wake itself and their momentum oscillates around the initial value. On the other hand, if an
electron’s initial velocity is too high it overtakes the wake without being trapped (b).

In the first bucket behind the laser driver the trapping potential is modified by the laser potential
and only electrons with lower energies < hs are truly trapped. Between these and the separatrix a
further class of orbits called runaway orbits exists (e). These electrons get reflected by the wake
potential, asymptotically overtake the driver and can gain substantial energy comparable to the
trapped orbits. A further class of orbits is also directly reflected from the driver potential (f).

Plasma wave phase velocity

As seen from eq. (2.90) and eq. (2.97), the plasma wave phase velocity determines the wave
breaking limit, the minimum kinetic electron energy needed for injection and also the dephasing
length, i.e. the acceleration length after which the electron enters the decelerating phase of the
wake. For non-evolving wake drivers the phase velocity is determined by the driver’s velocity.
Thus, in the case of LWFA vph = vgr, while for PWFA it equals the velocity of the driver beam,
which, for relativistic drive beams, is vph ≈ c. As seen from eq. (2.97), the injection threshold is
lowered for decreased phase velocities and greater wake amplitudes. For amplitudes approaching
the wave breaking field EWB (eq. (2.90)) this threshold simplifies to γmin = γph [65].

Due to the high phase velocity ∼ c of wakes driven by relativistic beam drivers, wave breaking
can normally not be achieved for PWFA in homogeneous plasma and has not been reported up
to date. Thus, either more complex gas targets have been proposed or an external electron bunch
must be injected in the wakefield.
The following section will deal with electron injection either by nonlinear wave breaking or by
altering the wake phase velocity which will lower the trapping threshold.

2.5 Injection mechanisms & beam loading
If the wake driver is highly relativistic, nonlinear plasma waves exceeding the wave breaking
threshold given by eq. (2.90) can be driven. At this point the electrons forming the density
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spike would move faster than the phase velocity of the wake. As a result, the wakefield loses its
coherent nature, the fluid description breaks down and the electron motion becomes non-laminar.
The wave is said to break and a portion of plasma electrons with γ ≥ γmin from the density
spike of the background electrons can get injected into the preceding wave bucket. Usually, this
process is further assisted by the laser pulse evolution in plasma (discussed in section 2.6), which
increases the laser vector potential and leads to even higher wake amplitudes. Wave breaking is
routinely observed in PIC simulations if the plasma wave becomes nonlinear. By approximating
the electron sheet in the bubble regime with elliptical orbits, Thomas [66] analytically derived a
condition for trapping to occur: √

ln(2γph)−1
kprb

.
1
2
. (2.98)

Using the phenomenological scaling of the bubble radius kprb ' 2
√

a0 (eq. (2.92)) and
γph ≈ (ω2

L/3ωp)
1/2 [67], a condition for the necessary vector potential can be obtained

a0 & ln

(
ω2

L
3ω2

p

)
−1 . (2.99)

This trapping threshold is routinely reached experimentally even for mildly relativistic laser
pulses after sufficient propagation and laser evolution in plasma [67].

Although self-injection requires the least complex target design, it inherently depends on various
nonlinear effects related to the dynamics of laser pulse and wakefield evolution. The acceler-
ator is therefore prone to variations of the beam parameters caused by even small fluctuations
of the laser and target parameters. Furthermore, the injection position and amount of trapped
charge cannot be controlled precisely, where the former leads to variations in acceleration length
and thus cut-off energy, while the latter can cause beam loading effects that increase the energy
spread.

Controlled injection
The acceleration process can be optimized by choosing other means of injecting an electron
bunch into the wakefield. Since in this case the wave breaking threshold must not be exceeded,
either the laser intensity or the plasma density can be decreased. This concept not only allows to
optimize the energy gain for a given a0 (by lowering the plasma density, cf. section 2.7), but also
enables control over the amount of injected charge and can avoid beam loading effects. Since the
wakefield is driven weaker, this scheme also decreases nonlinear effects.

Even though an external accelerator may be used to provide electron bunches with sufficient en-
ergy to get trapped in the wakefield, this approach is demanding since the injected bunch has to
be synchronized with the wake driver at the correct phase to a precision determined by a fraction
of the acceleration structure’s size, i.e. the plasma wavelength, which is in the order of 10 µm
at typical plasma densities used in LWFA. As this is a demanding task even for state-of-the-art
accelerators (mainly due to the temporal synchronization between the laser pulse and the elec-
tron bunch), experiments up to date rely on the control of the injection process by the gas target
design or additional laser pulses.

To this point various schemes to exert control over this process have been developed, including
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the use of a second laser pulse propagating in perpendicular direction (ponderomotive injection
[68]), counter-propagating geometry (colliding pulse injection [69]) or exploiting intensity de-
pendent tunnel ionization of core electrons (ionization injection [70]).

Lowering the trapping threshold

Another possibility to exert control over the injection process is to modify the plasma wavelength
and thereby simultaneously alter the wake phase velocity and the trapping threshold.
Assuming a relativistic velocity ∼ c of the driver, the wake phase velocity behind the driver
(ξ < 0) is given by Ψ = kp(z)(z− ct), where kp(z) takes into account possible changes of the
plasma wavelength with propagation distance z. Since vph/c = (−∂Ψ/∂ct)/(∂Ψ/∂z), the local
phase velocity behind the driver reads [71]

βph =

(
1+

ξ

kp

dkp

dz

)−1

. (2.100)

Hence, an elongation of the plasma wavelength with increasing propagation distance z yields
dkp/dz < 0, which effectively reduces the wake phase velocity γph = βphc with increasing dis-
tance from the driver. As outlined in section 2.4, a lower γph will reduce the required γmin needed
for injection. Additionally, the reduction in phase velocity leads to a build-up of electron density
at the crest of the wake. This can lead to wave breaking even if the initial wake amplitude is
below the wave breaking threshold [72].

For example, a negative slope of the plasma density (dn/dz < 0) will increase λp and yields
dkp/dz < 0. This concept of density down ramp assisted injection has been demonstrated exper-
imentally for LWFA [19, 73, 74], while PIC simulations show that it can also lead to injection
even in a purely beam-driven case [75].

An increase of the plasma wavelength with propagation distance can also be obtained by enhanc-
ing the nonlinearity of the wake during propagation. As outlined in the following section, such
an increase of the wakefield strength can also happen at a late stage of the acceleration process if
the wakefield driven by the trapped electron bunch adds up constructively with that of the laser
driver.

Beam loading
Electrons being trapped and accelerated in the wake will themselves drive a wakefield and thus
modify the acceleration dynamics by lowering the attainable acceleration fields. Reverting to
eq. (2.87), the wake’s potential is given by

∂2ϕ

∂ξ2 =
ω2

p

2c2

[
1+a2

0
(1+ϕ)2 −1

]
+

ω2
p

c2
nb

n0
, (2.101)

where the wakefield produced by a (trapped) electron bunch is described by the second term.
If the wakefield amplitude generated by the electron bunch approaches the magnitude of the
accelerating wakefield, the latter will be significantly altered, leading to a degradation of the
bunch properties, an effect called beam loading.
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Figure 2.7: Effects of beam loading. (a) shows the wakefield of a laser pulse with a0 = 2 and
τFWHM = 0.2 λp/c. (b,c): When an electron bunch is trapped and accelerated, the wake induced by the
bunch itself modifies the accelerating electric field shown in red. The bunch is located at ξ/λp = −0.75
with a peak charge density of (b) nb/n0 = 0.5 and (c) nb/n0 = 1.1. (d-f) show the evolution of the longi-
tudinal field as a bunch with nb/n0 = 0.5 advances towards the wake driver. Its position is (d): −1 ξ/λp,
(e): −0.75 ξ/λp and (f): −0.5 ξ/λp.

The impact of beam loading is illustrated in Fig. 2.7 for varying charge density and distance
of the electron bunch from the wake driver. Figure 2.7a shows the wakefield of a laser pulse
of optimal duration and a0 = 2. In the case of PWFA, a beam driver would analogously be
situated in the first half of its own wakefield and therefore experience a decelerating electric field
throughout most of its profile. We now consider a laser pulse as the wake driver and a trapped
electron bunch. As seen from Fig. 2.7b, if the trapped bunch and the driver are out-of-phase (the
bunch is located in the accelerating phase of the driver’s wake) the wake amplitude is reduced.
This effect will also terminate the initial self-injection once the wake is sufficiently loaded and
limit the process to a short time. However, if the wake driver is strong enough, the injection
process can continue and even increase the plasma wavelength and wake amplitude as shown in
Fig. 2.7c. This process is typically observed in PIC simulations in the highly relativistic regime.
Nevertheless, in both cases the overall electric field at the position of the bunch is reduced and
the achievable energy gain is thus lower. Furthermore, dependent on the trapped charge (cf.
Fig. 2.7b and Fig. 2.7c), electrons at different longitudinal position experience a varying field,
which will increase the bunch’s energy spread. Although a specifically tailored beam load can
theoretically lead to a uniform electric field across the bunch and create favourable acceleration
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2. Plasma wakefield acceleration

conditions as each part of the bunch is exposed to the same electric field strength, uncontrolled
beam loading will normally significantly alter the wakefield and degrade the quality and energy
distribution of the electron bunch.
Finally, as the bunch progresses towards the laser driver (Fig. 2.7d-f), both wakefields will be
more and more in phase and the field strength is enhanced over the initial wakefield of the driver
alone. As seen in Fig. 2.7f, the increased nonlinearity of the wake is accompanied by an enlarged
plasma wavelength and therefore also a reduced wake phase velocity during this process. This in
turn can lead to further injection.

A simple method to estimate the threshold for beam loading to become significant is to compare
the peak amplitude of the wakefield driven by the electron bunch to that of the main wake driver.
In the case of LWFA, using non-relativistic linear theory and assuming an electron bunch with a
step-like temporal profile and a laser pulse with a Gaussian radial and half-sine temporal profile,
this ratio is approximately given by [45]

α≈
kpσz

a2
0

nb

n0
R(0) , (2.102)

with the radial profile function R(0) as defined in eq. (2.72). Beam loading can only be neglected
if α� 1. It further imposes a constraint on the number of electrons that can be accelerated in a
plasma wave without deterioration of the beam properties.
In the bubble regime, Tzoufras et al. [76] give the following relation between the trapped charge
Q and the accelerating field Ez

QEz

mc2/re
=

1
43 (kprb)

4 , (2.103)

where rb denotes the blowout radius and re is the classical electron radius.

2.6 Laser pulse evolution in plasma

For LWFAs, the wakefield properties and thus the performance of the accelerator is strongly de-
termined by the laser pulse evolution in plasma. Its most important effects will now be discussed.

We start out with the refractive index of an underdense plasma given in eq. (2.45),

η =

√
1−

ω2
p

γ⊥ω2
L
≈ 1−

ω2
p

2γ⊥ω2
L
, (2.104)

where γ⊥ = (1+a2
0)

1/2 accounts for the relativistic mass increase of plasma electrons exposed to
an intense laser pulse and ωp = (e2n0/ε0me)

1/2. The refractive index is thus affected by changes
to either the plasma density, the laser amplitude or its frequency. In the weakly relativistic regime,
the refractive index can be expanded to first order by [77]

η' 1−
ω2

p

2ω2
L

(
1+

δn
n0
−
〈
a2〉
2
− 2δωL

ωL

)
. (2.105)
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2.6 Laser pulse evolution in plasma

We now compile the expressions for the laser phase and group velocity in plasma

vph =
c
η
= c

[
1+

1
2

ω2
p

ω2
L

(
1+

δn
n0
−
〈
a2〉
2
− 2δωL

ωL

)]
, (2.106)

vgr = cη = c

[
1− 1

2
ω2

p

ω2
L

(
1+

δn
n0
−
〈
a2〉
2
− 2δωL

ωL

)]
. (2.107)

Defocusing effects

The term δn/n0 of eq. (2.105) describes the variation of the refractive index due to variations in
plasma electron density. Such variations exist at the front of a pulse focused into a neutral gas,
as the higher intensity on axis will first ionize the medium. The resulting transverse gradient in
refractive index leads to so-called ionization defocusing. However, in the context of high inten-
sity lasers with intensities many orders of magnitude above the ionization threshold of hydrogen,
this effect is of minor importance as it only affects the leading edge of the main pulse’s pedestal.
A more relevant effect emerges for higher laser intensities during wake excitation, as the pon-
deromotive force also expels plasma electrons in the forward direction, which creates a swell
in electron density directly in front of the main pulse. The resulting defocusing counteracts the
relativistic self-focusing effect described below. However, PIC simulations show that pulse etch-
ing due to energy transfer to the plasma is fast enough to deplete the front of the pulse before it
diffracts [78], such that this effect is of minor importance in practical applications as well.

Relativistic self-focusing

The term −
〈
a2〉/2 of eq. (2.105) accounts for the relativistic effect due to the mass increase

of plasma electrons during the interaction. The intensity gradient of
〈
a0(r⊥)2〉 in the transverse

dimensions leads to a curved profile of the refractive index. The retardation of the phase fronts
on axis causes the so-called relativistic self-focusing effect. Calculating the phase difference
between the center and the edge of the beam waist shows that the focusing effect can counteract
diffraction if the following condition is met [77]

a2
0w2

0ω2
p

32c2 > 1 , (2.108)

where w0 denotes the focal spot size in vacuum. This leads to a power threshold condition
P/Pc > 1 for self-guiding, with the critical power Pc given by [79]

Pc = 8πε0c
(

mec2

e

)2
ω2

L
ω2

p
' 17.4

ω2
L

ω2
p
[GW] . (2.109)

If P > Pc, guiding over several Rayleigh lengths can be achieved. It has to be noted that these
dynamics describe the pulse evolution down to the scale set by λp. Ultimately, the final self-
focused spot size is limited by higher order nonlinearities that are not included in the first order
expansion of the refractive index [79]. For example, it is obvious that for high enough laser
powers self-focusing will reduce the beam diameter and therefore a0 until complete electron
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2. Plasma wakefield acceleration

blow-out of plasma electrons occurs, leaving only a positively charged ion channel. In this case,
further self-focusing cannot occur inside the channel due to the lack of plasma electrons. This
plays an important role for self-guiding of ultra-short laser pulses. Although the response of
the plasma and therefore the changes in the refractive index happen on a time scale of τ = ω−1

p ,
electron blowout enables the back side of the pulse to be guided inside the ion channel, even for
pulse lengths t < λp/c [80, 81]. In this regime, phenomenological investigations conducted by
Lu et al. [61] show with the help of PIC simulations that a stable self-guided spot size is reached
if the condition

w0kp = 2
√

a0 (2.110)

is fulfilled. This condition can be reformulated to yield

a0 = 2
(

P
Pc

)1/3

. (2.111)

In order to achieve maximum electron energies, self-focusing must be maintained over the de-
phasing length Ld (cf. section 2.7). Lu et al. [61] further show that this imposes a condition on
a0

a0 ∼
(

ωL

ωp

)2/5

. (2.112)

By combining eq. (2.111) and eq. (2.112), we finally obtain an equation for the laser power that
is needed in order to maintain self-guiding over Ld at a specific plasma density [82]:

PLd

Pc
=

1
8

(
ωL

ωp

)6/5

. (2.113)

Finally, the evolution of the laser spot size in plasma will lead to an increase of a0. Starting the
self-focusing effect from the vacuum focus of a Gaussian beam, the evolution of the beam waist
is described by [12]

w(z)2

w2
0

= 1+
(

1− P
Pc

)
z2

z2
R
, (2.114)

where zR = kw2
0/2 is the Rayleigh length and z is the longitudinal distance from the vacuum

focus. Compared to diffraction in vacuum, the evolution of a Gaussian pulse in plasma differs
by an additional term −P/Pc (z2/z2

R).

The laser power of ∼ 50 TW used in the experiments presented in this thesis is significantly
higher than Pc which was in the range of 3− 10 TW at the employed plasma densities. Thus,
laser self-focusing plays an important role in the acceleration dynamics.

Pulse compression and photon deceleration

So far we have mainly considered transverse variations of the refractive index. Nevertheless,
analogous effects on the longitudinal variation of η play an important role in the laser evolution.
We first consider its dependence on δn. As mentioned above, at the front of the pulse, electrons
are pushed forward, resulting in an aggregation of plasma electrons and a decrease in η. However,
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2.7 Acceleration limits and scaling laws

the back part of the pulse, exposed to the density perturbation of the wake, propagates in a region
with a lower electron density. Therefore η increases towards the front of the pulse and its tail
travels at a higher group velocity than the front part, resulting in a temporal pulse compression
and steepening of the back of the pulse. Simultaneously, due to the reduced phase velocity at the
rear side, these photons become red-shifted, an effect known as photon deceleration [83].

The situation becomes more complex when also including the relativistic term

δη≈
ω2

p (a
2/4−δn)

2ω2
L

, (2.115)

which tends to cancel the variations of η imposed by δn at the front of the pulse [84, 85]. How-
ever, beyond this first maximum of ne, the decreasing density and increasing intensity still cause
an increasing η and thus a higher vgr and reciprocal decrease in vph [85]. Thus, self-compression
and photon deceleration remain the dominant effects [83]. This was also confirmed experimen-
tally, where Ti:Sa laser pulses of τFWHM = 38 fs and τFWHM = 45 fs were compressed down
to 12 fs and 18 fs, respectively [85, 86]. Naturally, the pulse compression entails an intensity
increase of a0, which results in an increased wakefield amplitude.

2.7 Acceleration limits and scaling laws

Laser energy depletion
By excitation of a plasma wave laser energy is continuously transferred to the plasma. The length
after which only a fraction 1/e of the initial energy remains is called the laser pump depletion
length Lpd . In one-dimensional theory, a simple estimate can be derived from energy conser-
vation arguments by comparing the initial pulse energy to the energy contained in a wakefield
of length Lpd . For a flattop pulse of optimal length and for resonant excitation, Lpd is given by
[12, 87]

Lpd =

(
ωL

ωp

)2

λp

{
2/a2

0 if a0� 1 ,(√
2/π

)
a0 if a0� 1 .

(2.116)

For a driver pulse of Gaussian shape, a slightly different numeric factor was found empirically
with the help of PIC simulations by Shadwick et al. [88]:

Lpd ' 8.7
(

ωL

ωp

)2

λp

{
1/πa2

0 if a0� 1 ,
1/2π if a0� 1 .

(2.117)

For the bubble regime, a further estimate valid for laser pulses with a0 ≥ 2 has been derived by
Lu et al. [61]. Here, only the front of the laser pulse is interacting with the plasma, while the
remainder is guided in the plasma cavity such that only the front is etched away with a velocity
of vetch ' cω2

p/ω2
L. For a pulse duration of τ this leads to a depletion length of

Lpd,3D =
ω2

L
ω2

p
cτFWHM . (2.118)
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Electron dephasing
A severe constraint to the achievable energy gain in an LWFA is electron dephasing. As discussed
in section 2.4, acceleration of electrons only takes place in the rear half of each bucket that
carries a positive gradient of the wake potential. In the case of LWFA, upon being accelerated to
relativistic energies, electrons will catch up with the laser driver which propagates with vgr < c.
The propagation length up to the dephasing point is called the dephasing length Ld and is given
by Ld(1− vgr/c) = λp/2. For relativistic wakefields, λp is elongated and approximately given
by λp,nonlin. ' λp(2

√
2/π)a0 [51, 89]. Thus, in one-dimensional theory Ld is given by

Ld =

(
ωL

ωp

)2

λp

{
1 if a0� 1 ,
(
√

2/π)a0 if a0� 1 .
(2.119)

Note that this limitation does not exist in the PWFA case, as the beam driver also propagates
with relativistic velocity ∼ c. In the LWFA case, Ld can be elongated by an appropriate tapering
of the plasma density profile. When increasing the plasma density with propagation distance,
λp decreases such that the wake phase velocity at the position of the accelerated bunch becomes
closer to c, i.e. the accelerated bunch is continuously re-phased to remain in the same phase of
the accelerating field, resulting in a larger single stage gain [84, 91]. Although to completely
counteract dephasing, ultimately infinite plasma densities would be required, this scheme can
delay dephasing issues until acceleration is eventually limited by other factors such as pump
depletion.

LWFA energy gain and scaling laws
The energy gain in a wakefield accelerator is determined by the attainable electric field strength
and the acceleration distance, i.e. ∆E = −e

∫ Lacc
0 Ez(z)dz. A limit to the former is set by wave

breaking. For PWFAs, a limit to the energy gain is imposed by the transformer ratio which will
be discussed shortly. For LWFAs, the acceleration length is largely determined by the evolution
of the laser pulse and is ultimately limited by either laser energy depletion and diffraction or
electron dephasing.

Analytical expression for the characteristic lengths have already been obtained from linear and
1D nonlinear theory. For the three-dimensional relativistic case simulations are required. A com-
plete scaling theory in the bubble regime, which relies on a mixture of analytical approaches and
PIC simulations, is given by Lu et al. [61] for laser intensities of a0 & 2. A summary of the most
important scalings found by the different approaches is given in table 2.1.

The laser power available during the experimental campaign exceeded the critical power for
self-focusing at the employed plasma densities. Therefore, the vacuum Rayleigh length, which
would otherwise constitute a severe constrain to the energy gain, is ineffectual. Comparing the
dephasing and pump depletion lengths of mildly relativistic laser pulses with a0 & 1, the different
theories predict that both are approximately of the same order (Ld ∼ Lpd). The dominating effect
is eventually dependent on the laser propagation dynamics in plasma, which are inherently non-
linear and therefore difficult to predict exactly. Nevertheless, if the acceleration length is limited
by dephasing, the gas target length should ideally match Ld in order to achieve the maximum
energy gain. If it is limited by Lpd , the target length should be adjusted to achieve the maximum
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a0 w0 Ld Lpd γph Emax/mec2

Linear < 1 λp
ω2

L
ω2

p
λp

ω2
L

ω2
p

8.7λp

πa2
0

ωL
ωp

a2
0

ω2
L

ω2
p

1D Nonlinear > 1 - ω2
L

ω2
p

√
2a0λp

π

ω2
L

ω2
p

8.7λp
2π

√
a0

ωL
ωp

4a2
0

ω2
L

ω2
p

3D Bubble > 2
√

a0
π

λp
4
3

ω2
L

ω2
p

√
a0

kp

ω2
L

ω2
p
cτ0

1√
3

ωL
ωp

2
3a0

ω2
L

ω2
p

Table 2.1: Overview of the scaling laws obtained from analytical linear and 1D nonlinear theory and the
phenomenological scaling laws derived from PIC simulations by Lu et al. [61].

energy gain without possible deterioration of the beam properties caused by beam head erosion
due to propagation through the gas medium.

From the 3D phenomenological theory, some fundamental scalings can be considered to predict
the best parameters for LWFA. In general, neglecting energy depletion, a lower plasma den-
sity allows for higher energy gains as Ld is increased. In the bubble regime, the energy gain is
approximately given by [61]

∆[GeV] = 3.8
(

P
Pc

)−3/2 P[TW]

100
∝ n−2/3

0 . (2.120)

Thus, n0 should be chosen as low as possible. On the other hand, the available laser power has
to exceed PLd (eq. (2.113)) in order to maintain self-guiding over the dephasing length.

From an experimental point of view, the available laser pulse energy and the pulse duration
are usually fixed. The energy gain can thus be maximized by choosing an appropriate plasma
density and focal spot size. Since, by eq. (2.112), self-guiding over the dephasing length requires
a0 ∼ (ωL/ωp)

2/5, this condition set a lower bound to the plasma density and an upper bound to
the focal spot size. Within this constraint, both can then be optimized by satisfying w0kp = 2

√
a0

(eq. (2.110)).

The optimized parameters can be deduced from Fig. 2.8. Assumed is a laser energy on target of
1.5J and a pulse duration of tFWHM = 28fs, which were also used in the experiments described in
this thesis. The blue surface shows the minimum a0 that is needed to maintain self-guiding over
the acceleration length, where lower plasma densities require a larger a0. On the other hand, the
beam waist may not exceed the limit depicted by the red plane, as otherwise the required a0 can
not be obtained with the provided laser energy and pulse duration. The condition for the matched
spot size, i.e. a0 = w2

0k2
p/4 is shown by the green triangular face and the black line shows the

matched conditions that are accessible with the provided laser parameters.
In order to maximize the electron energy gain, the lowest plasma density has to be chosen. At the
point where the three planes meet ne = 3.3×1018 cm−3,w0 = 11 µm and a0 = 3.5. This plasma
density is remarkably close to the optimal value found in the experiment of 3.4× 1018 cm−3.
Although the laser vacuum focus was w0 = 19 µm (corresponding to a0 = 1.7), the latter will be
significantly altered after pulse propagation in plasma due to self-focusing and temporal pulse
compression.
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2. Plasma wakefield acceleration

Figure 2.8: Optimal laser parameters in the bubble regime for a laser energy of 1.5J and a pulse duration
of tFWHM = 28 fs. The blue plane shows a0,min ∼ (ωL/ωp)

2/5 that needs to be exceeded to maintain self-
guiding over the dephasing length at the respective plasma density. The red plane shows the corresponding
maximum laser waist size w0 compatible with the given laser parameters. The coloured triangular plane
shows the matched beam condition w0kp = 2

√
a0. With the presumed laser energy and pulsed duration,

these conditions can be simultaneously satisfied along the black line. In order to obtain maximum electron
energies, the lowest density should be chosen, determined by the intersection of the 3 planes for which
n0 = 3.3×1018 cm−3.

The PWFA transformer ratio
In PWFA, electron dephasing does not take place because both, the relativistic driver and the
accelerated witness bunch, propagate with the same speed of v ≈ c. Analogous to laser energy
depletion, the maximum energy a witness can extract from the driver bunch in a PWFA is limited
by the so-called transformer ratio R defined by

R =
∆γ

γb
=

E+

E−
, (2.121)

where ∆γ is the maximum energy gain of the accelerated bunch, γb is the energy of the driving
bunch and E+,E− are the mean accelerating and decelerating electric fields experienced by the
witness and driver, respectively. In the linear regime (nb < n0) the transformer ratio is R = 1 for
short Gaussian bunches with an upper limit of R≤ 2 for any longitudinally symmetric bunch pro-
file [92, 93]. It has been shown by simulations that this limit can be overcome by asymmetrically
shaped triangular bunches with a linear ramp (R ∼ 6) or by operating in the nonlinear regime
(R∼ 7) [94, 95].
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Chapter 3

Transition radiation

Transition radiation (TR) is emitted when a charged particle moves uniformly across the interface
of two media with different dielectric constants. Although from classical electrodynamics it is
easily seen that an accelerated charge acts as a source of electromagnetic radiation, it was long
believed that a charge moving uniformly along a straight line does not emit radiation. This
conception was first disproved with the discovery of Cherenkov radiation, which is emitted when
the velocity of a charged particle passing through a dielectric exceeds the phase velocity of
light in that medium. Later it was realized that although the motion of a charged particle is
uniform, the presence of an inhomogeneous or time-varying dielectric medium also results in
the emission of electromagnetic radiation. In this context, TR, diffraction radiation and Smith-
Purcell radiation may be mentioned [96–98]. In all these cases radiation is emitted in the presence
of an inhomogeneous material, either constituted by the interface between two media (TR), an
aperture (diffraction radiation) or the surface of a grating (Smith-Purcell radiation). Transition
radiation was first predicted in 1954 by Frank and Ginzburg [96]. The heuristic cause of TR is
the abrupt change of the charged particle’s self-field at the discontinuity of the dielectric index,
due to a different screening of the Coulomb fields inside both materials. To ensure the continuity
condition for the tangential electric fields, transient surface currents are induced at the boundary,
which act as the source of TR. In this chapter, first the radiation pattern formed by a single
electron will be derived. Subsequently, an expression for the emission of a bunch of electrons
will be compiled and shown that the emitted spectrum allows to draw conclusions about the
bunch’s temporal shape.

3.1 Transition radiation emitted by a single electron

Mathematically, the emission process of TR can be approached by several methods [99]. The
original derivation, employed by Frank and Ginzburg [96], relies on explicitly solving the Maxwell
equations at a metal-vacuum boundary of infinite extent. This yields an expression for the far
field energy radiated per unit frequency [96, 100, 101].
An alternative description of the TR formation process is given by the method of virtual quanta.
In this model the electron’s self-field is described by the spatial Fourier components of an un-
perturbed moving charge, namely the pseudo- or virtual photons (Weizsäcker-Williams approx-
imation [102]). Upon passing a metallic interface, these are converted into real photons due to
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3. Transition radiation

the boundary condition. From this source field, the radiation field at an arbitrary distance can be
calculated by solving the free space propagation. This method has the advantage that it is valid
for an arbitrary distance from the source and thus allows to calculate the emission characteristic
also in the near field. A comprehensive treatment of this method can be found in ref. [103, 104],
which will be outlined in the following section.

3.1.1 The particle’s self-field
We start by considering an ultra-relativistic electron moving with constant velocity vvv such that
the current density jjj and the charge density ρ are expressed by

jjj =−evvvδ(rrr− vvvt) ,
ρ =−eδ(rrr− vvvt) .

(3.1)

Using the Maxwell equations in the Lorentz gauge, the inhomogeneous macroscopic wave equa-
tions (eq. (2.3)) for the electric and the magnetic potential read

(∆− 1
c2

∂2

∂t2 )Φ =− ρ

ε0
,

(∆− 1
c2

∂2

∂t2 )AAA =−µ0 jjj .

(3.2)

The solution to these equations can be found by expanding the potentials in the Fourier domain
[100, 105], e.g.

AAA(rrr, t) =
∫

dω

∫
dkkk AAA(kkk,ω)ei(kkk·rrr−ωt) , (3.3)

where

AAA(kkk,ω) =
1

(2π)4

∫
dt

∫
drrr AAA(rrr, t)e−i(kkk·rrr−ωt) . (3.4)

The wave equation for the vector potential in the Fourier domain now reads(
kkk2− ω2

c2

)
AAA(kkk,ω) = µ0 jjj(kkk,ω) = µ0

−evvv
(2π)4

∫
dt

∫
drrr δ(rrr− vvvt)e−i(kkk·rrr−ωt) . (3.5)

Analogous equations also hold for the electrostatic potential φ. The integration over the δ func-
tion in the space domain is trivial. Using rrr = vvvt, we now perform the integration with respect to
time ∫

dtei(ω−kkk·vvv)t = 2πδ(ω− kkk · vvv) . (3.6)

This leads to an expression for the frequency components of the potentials:

AAA(kkk,ω) =
−µ0evvv
(2π)3

δ(ω− kkk · vvv)
k2−ω2/c2 ,

φφφ(kkk,ω) =
−e

(2π)3ε0

δ(ω− kkk · vvv)
k2−ω2/c2 .

(3.7)
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3.1 Transition radiation emitted by a single electron

To find the electric field we apply the definition of the potentials in the Fourier domain, i.e.
EEE(kkk,ω) =−ikkkφ(kkk,ω)+ iωAAA(kkk,ω). The electric field’s Fourier components are thus given by

EEE(kkk,ω) =
−ie

(2π)3ε0

ωvvv− kkkc2

k2c2−ω2 δ(ω− kkk · vvv) . (3.8)

We now have arrived at the inhomogeneous solution, which describes the electron’s self-field in
the wavenumber-frequency domain. The complete solution to eq. (3.2) is obtained by adding the
solution of the homogeneous wave equation, given by

EEE ph(kkk,ω) = EEE ′(kkk,ω)δ(k2−ω
2/c2) , (3.9)

which describes the divergence-free radiation field.
Equation (3.8) - the Fourier representation of the electron’s Coulomb field - forms the basis of
several approaches that deal with the description of the TR emission process. Depending on the
specific problem to be solved, this topic has been addressed by several authors [99, 104–107].

3.1.2 General framework

Due to its appealing simplicity, the formula most often stated in the literature is the angular
distribution of the spectral energy derived from the classic theory given by Frank and Ginzburg
[96]

d2W
dωdΩ

=
e2

4π3ε0c
β2 sin2

θ

(1−β2 cos2 θ)2 . (3.10)

In this derivation, the authors make use of the electric field’s continuity conditions at the interface
to explicitly solve the Maxwell equations in the Fourier domain. Thus, the radiation field is found
in the wavenumber-frequency domain, which allows a straightforward calculation of the angular
dependence of the radiated energy. However, this approach is only valid in the far-field limit
and for transversely infinite target dimensions, conditions which are not always justified in the
experiment. To avoid these restrictions, it is necessary to also take into account the macroscopic
size of the source field. This leads to a different field distribution in the so-called pre-wave zone,
i.e. for observation distances from which the TR source can not be considered as a point, and
also causes the finite size target effect [108].

As will be shown in the following, the pre-wave zone can easily extent up to several meters
if considering long wavelength TR emitted by high-energy electrons and can exceed the size
of the laboratory. Therefore, an accurate measurement of the TR spectrum needs to include
these effects. We now derive a model valid in the pre-wave (near-field) zone as well as for
arbitrarily shaped targets, analogous to that presented in [104]. Further, we will show that for
sufficiently large observation distances and target dimensions the classic Ginzburg-Frank formula
is recovered.

For this purpose, the electron’s Coulomb field in terms of wavenumber is of minor interest but
we are interested in its spatial extent. Reverting to eq. (3.8) and taking its Fourier transform,
the field’s frequency components in the spatial domain are obtained. In cylindrical coordinates
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(ρ,ϕ,z) the result is [104, 105]

EEE(rrr,ω) =
−eα

(2π)3/2ε0βc

(
eeeρ K1(αρ)− eeez

i
γ

K0(αρ)

)
ei ω

βc z (3.11)

(γ�1)
=

−eα

(2π)3/2ε0βc
eeeρ K1(αρ)ei ω

βc z
, (3.12)

with α =
ω

γβc
,

and where K0 and K1 denote the 0th and 1st order modified Bessel functions.
Equation (3.11) is the exact representation of the electron’s Coulomb field. From now on we
restrict our treatment to the fields produced by highly relativistic electrons, as the experiments
described in this thesis are performed in this regime. In this case the contribution of the 2nd term
can be neglected as it vanishes with γ−1 and the particle’s self-field is approximated as being
purely transverse1. Since its Fourier components resemble the fields of plane electromagnetic
waves, it is referred to as a disk of virtual photons, also called the Weizsäcker-Williams approxi-
mation [30, 109].

We now consider the case of forward TR produced by a relativistic electron traversing a metallic
foil at normal incidence. The foil is assumed to be a perfect conductor positioned at z = 0 and
may possess an arbitrary shape. After passing the radiator foil, the total electric field EEE+(rrr,ω)
in the half-space z > 0 may be written as [103]

EEE+(rrr,ω) = EEE+
rad(rrr,ω)+EEEe(rrr,ω) , (3.13)

where EEE+
rad(rrr,ω) represents the radiation field and EEEe(rrr,ω) denotes the electron’s self-field given

by eq. (3.12). An analogous expression may be established for the backward radiation field.
Since the total field inside the conductor vanishes and the particle fields are considered to be
purely transverse, the continuity condition for the tangential component of the total field at the
boundary yields

EEE+
rad(rrr,ω) =−EEEe(rrr,ω) . (3.14)

The radiation field at z = 0 is thus simply given by a change in sign of the particle field and, as
the latter, is radially polarised2. Now that the radiation field is known, the field distribution at an
observation point located at rrr′ = (ρ′,ϕ′,z′) can be calculated by the Huygens-Fresnel principle
[110]. For targets of arbitrary shape S, the integral must be performed twice for orthogonal
polarisations

Ex/y(rrr
′,ω) =− ik

2π

∫
S

∫
Ee,x/y(rrr,ω)

exp(ik|rrr′− rrr|)
|rrr′− rrr|

ρdρdϕ , (3.15)

1. As shown by Shkvarunets and Fiorito [107], negligence of the 2nd term of eq. (3.11) only has a minor effect even
for a mildly relativistic electron energy of γ = 5. Furthermore, considering the geometry used in the experiments
(observation length, collection angle and radiator size), ref. [107] shows that an excellent agreement is reached
for arbitrary particle energy.

2. This derivation is valid as long as the radiator can be considered an ideal conductor, i.e. ε(ω) = 1−ωp/ω� 0.
For most metals the plasma frequency is on the order of 1016 Hz. The experiments described in this thesis were
performed in the range from infrared to optical frequencies in which ε(ω) approximates an ideal conductor. The
radiator’s plasma frequency constitutes a high-frequency cut-off of the radiation spectrum in the X-ray regime.
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Figure 3.1: Sketch of the coordinate system used to calculate the diffraction integral of the TR source
term for a circular radiator of finite radius.

where x,y denote the polarisation, k = ω/c and |rrr′− rrr| � λ. For complex target shapes numeri-
cal calculation is required since usually analytic solutions do not exist.

We have now arrived at a description of the electric field distribution. However, from an exper-
imental point of view, the quantity of interest is usually the spectral energy distribution that is
more easily accessible by the use of spectrometers.
The total energy W radiated through an observation plane can be calculated by integrating the
energy flux density given by the Poynting vector with respect to space and time. Applying Par-
seval’s theorem yields

W =
1

µ0c

∫
A

∫
∞

−∞

|EEE(t)|2 dt dA = 2ε0c
∫

A

∫
∞

0
|EEE(ω)|2 dωdA . (3.16)

The spectral energy density is thus given by

d2W
dωdA

= 2ε0c|EEE(ω)|2 . (3.17)

In contrast to the classical Ginzburg-Frank formula, we now have the tools at hand to describe the
radiation field and spectral energy distribution quantitatively in a general model. In particular,
finite target shapes as well as observation distances within the near-field region can be accounted
for.

3.1.3 Spectral and angular distribution

We now study the example of the radiation pattern produced by a circular radiator of radius a.
As this simple case possesses an analytical solution, it will be useful to derive the angular and
spectral characteristics of TR. The geometry is sketched in Fig. 3.1. Note that on the observation
screen a Cartesian coordinate system is chosen. Due to the radial symmetry of the target as well
as the source field, it is sufficient to calculate the field along a radial lineout. Using eq. (3.15),
the field amplitude along the x-axis at point P(x,0,z) is

Ex(P,ω) =
−ik
2π

∫ 2π

0

∫ a

0
Ee(rrr,ω)cosφ

exp(ikR′)
R′

ρdρdϕ , (3.18)

41



3. Transition radiation

where R′ is the distance between Q and P given by

R′ =
√

z2 +(x−ρcosφ)2 +(ρsinφ)2 ≈ R− xρcosφ

R
+

ρ2

2R
(3.19)

with R2 = z2 + x2.
We will first study the far-field case. For this purpose only the first two terms of the Taylor expan-
sion of R′ are considered, which results in the far-field approximation of a spherical wavefront.
Using sinθ = x/R and the relativistic source term of eq. (3.12) we obtain

Ex(P,ω) =
iek2

(2π)(5/2)ε0β2γc
exp(ikR)

R

×
∫ 2π

0

∫ a

0
K1

(
kρ

βγ

)
cosφexp(−ikρsinθcosφ)ρdρdφ .

(3.20)

Both integrals can be solved analytically, resulting in [104]

Ex(θ,ω) =
e

(2π)3/2ε0c
exp(ikR)

R
βsinθ

1−β2 cos2 θ
[1−T (θ,ω)] , (3.21)

where

T (θ,ω) =
ka
βγ

J0(kasinθ)K1

(
ka
βγ

)
+

ka
β2γ2 sinθ

J1(kasinθ)K0

(
ka
βγ

)
and J1 denotes the Bessel function of the first kind.

As a first case, we consider the radiation from a target of infinite size. In the limit a→ ∞, both
Bessel functions tend to zero and lim

a→∞
T (θ,ω) = 0 [104]. Using eq. (3.17) and relating the surface

element to the solid angle by dA = R2dΩ, we obtain the classical result

d2W
dωdΩ

=
e2

4π3ε0c
β2 sin2

θ

(1−β2 cos2 θ)2 . (3.22)

This rather simple formula is instructive to explore some of the basic properties of TR. A peculiar
feature of eq. (3.22) is that the spectral energy distribution is frequency-independent, which
accounts for the generation of broadband radiation (note that this property is exactly true only in
the far-field approximation and for an infinite target size, as will be outlined below). The second
term of eq. (3.22) describes a hollow cone, a slice of which is plotted in Fig. 3.2a. Differentiating
with respect to θ, we find that the angular distribution has its maximum at an opening angle of

θmax = arcsin
(

1
βγ

)
(γ�1)
' 1

γ
. (3.23)

Thus, for relativistic particle energies, the emission is strongly directed in forward direction. In
this case, using the small angle approximation, the second term of eq. (3.22) can be simplified
by [104]

β2 sin2
θ

(1−β2 cos2 θ)2 '
β2θ2

(1−β2(1−θ2))2 ' γ
2 (θγ)2

(1+(θγ)2)2 . (3.24)
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Figure 3.2: Angular distribution of TR in the far-field. (a) shows the angular emission characteristics in
the horizontal plane for different values of γ. The opening angle is given by 1/γ as shown by the black line
for the lobe corresponding to the highest value of γ. The three-dimensional emission pattern (eq. (3.24))
is given by rotation of the lobes around the axis defined by the electron trajectory (shown by the dashed
line). A lineout through its center is shown in (b), plotted over the scaled angle γθ. For γ� 1, the shape
of the TR emission is only a function of this scaled angle, while the peak intensity scales with γ2. In (c),
the vertical axis on the right shows the integral of the spectral energy emitted in a forward cone with an
opening angle of θ, illustrating the logarithmic γ dependence determined in eq. (3.25). For comparison,
the angular distributions, scaling with γ2, are shown on the left.

For large γ, the shape of the distribution is a simple function of the quantity θγ as depicted in
Fig. 3.2b and its magnitude scales with γ2. Due to the radial symmetry and polarisation of the
source term, the intensity in forward direction cancels exactly.

We finally compute the spectral energy emitted in the forward hemisphere. Using eq. (3.22) and
integrating over all angles in the limit γ� 1 yields [111]

dW
dω

=
e2

2π2ε0c
lnγ . (3.25)
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3. Transition radiation

The last two equations show that although the peak of the angular distribution scales with γ2,
the total emission exhibits a rather weak, logarithmic γ dependence. The reason is the strong
directionality of TR, which confines the peak emission to small angles around γ−1 and is of
less consequence when considering larger collection angles. The radiated spectral energy in
dependence of the collection angle is illustrated in Fig. 3.2c.

3.1.4 Radiation from a finite-size target
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Figure 3.3: Far-field distribution of TR produced by a charged particle with γ = 1000 traversing a finite,
circular radiator of radius a. In (a), its effect on the angular distribution is shown for different values of
a/(γλ). For small fractions of a/(γλ), the angular distribution is broadened such that the spectral content
becomes a function of the emission angle. For radii exceeding the effective source size, the distribution
is in perfect agreement with the infinite radiator described by eq. (3.22). (b) shows the spectral energy
emitted into the forward cone with an opening half-angle of 133 mrad (corresponding to the collection
angle as used in the experiments presented in this thesis) and γ = 1000. As the source size increases
and exceeds the radiator dimensions, the outer parts of the particle’s self-field do not contribute to the
radiation process, which leads to a reduction of the spectral energy.

We now revert to eq. (3.21) in order to analyse the effect of a radiator with a finite radius a such
that T (θ,ω) 6= 0. In this case, the spectral content of the radiation is no longer constant but
becomes a function of the emission angle θ [106]. This effect can be understood by considering
the radial extent of the particle’s self-field, which can be defined by taking its weighted mean,
yielding a characteristic radius of [105, 108]

reff =

∫
∞

0 ρE(ρ,ω)2πρdρ∫
∞

0 E(ρ,ω)2πρdρ
=

2β

π2 γλ∼ γλ . (3.26)

The quantity of interest is the ratio between the extent of the source field and the radiator. If the
source field exceeds the extent of the radiator, the outer parts do not contribute to the radiation
process and the target surface effectively acts as an aperture. Consequently, diffraction effects
arise, leading to an increased emission angle as well as diffraction rings. The smaller this ratio,
the stronger will be its effect, as shown in Fig. 3.3a. When the target dimensions exceed the
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3.1 Transition radiation emitted by a single electron

extent of the self-field, T (θ,ω)� 1 and the effect vanishes [104, 106]. Thus, the target may only
be considered infinite if

a≥ γλ . (3.27)

For a quantitative analysis this is an important condition, because the effective aperture caused by
a smaller radiator not only alters the angular distribution but also reduces the amount of radiation
as shown in Fig. 3.3b. Utilizing Babinet’s principle, this reduction can be interpreted as the
sum of diffraction radiation (which would be produced by a circular hole of radius a) and the
conventional TR produced by an infinite target [106].

3.1.5 Radiation in the near-field
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Figure 3.4: Near-field angular distribution of TR for a charged particle with γ = 1000. In this case the
source condition a≥ λγ is satisfied. The evolution is shown for different distances R from the source, given
in units of the formation length L f = γ2λ. For R & L f the far field distribution is obtained. In the near-
field, the distribution becomes wider and the macroscopic source size leads to strong, distance dependent
interference effects.

To determine the effect of a finite observation distance we resort to eq. (3.19) and now include
the 2nd term in the Taylor expansion of the distance from the source to the observation screen.
This leads to an additional phase factor of the form exp(ikρ2/2R) and eq. (3.20) becomes

Ex(P,ω) ∝

∫ 2π

0

∫ a

0
K1

(
kρ

βγ

)
cosφexp(−ikρsinθcosφ)exp

(
ik

ρ2

2R

)
ρdρdφ . (3.28)

Due to inclusion of the parabolic phase term, eq. (3.28) will be valid in the region of Fresnel
diffraction, also called the near-field or pre-wave region [110, 112].
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Performing the integral with respect to the azimuthal angle and applying eq. (3.17) we obtain
[104]

d2W
dωdΩ

= 2ε0c
∣∣∣∣ ek2

(2π)3/2ε0β2γc

∫ a

0
K1

(
kρ

βγ

)
J1(kρsinθ)exp

(
ik

ρ2

2R

)
ρdρ

∣∣∣∣2 . (3.29)

Since an analytical solution does not exist, the integration with respect to ρ has to be solved
numerically. Note that eq. (3.29) differs form the far-field description only by the parabolic
phase factor. By requiring the exponential to not contribute substantially to the integration, we
can compile an expression for the validity range of the far-field description:

kρ2

2R
< π . (3.30)

The integrand will only contribute over the finite extent of the source size. Using eq. (3.26) we
obtain

R >
2πγ2λ2

2πλ
= γ

2
λ = L f , (3.31)

where L f is commonly referred to as the formation length. The evolution of the angular distribu-
tion is shown in Fig. 3.4 for different distances to the source. Within the near-field (R/L f < 1),
the distribution differs significantly from the far-field description and shows a complex behaviour
that strongly depends on R/L f . As R/L f decreases, the beam becomes wider and exhibits a
diffraction ring structure. Simultaneously, the emission into the range of angles θ ∼ γ−1 is sup-
pressed. These effects can be attributed to interference between the elementary radiators from
the macroscopic source [103, 112].

In the experiments described in this thesis, TR was produced by electron bunches with energies
up to 700MeV (γ∼ 1400) and its spectral energy was measured in the range of λ = 0.4−7.1µm.
Due to the γ2 dependence of the formation length, for high-energy electrons L f ≈ 14m, which ex-
ceeds the dimensions of the vacuum chamber. Since the collection optics are necessarily placed
within the near-field region, a thorough analysis needs to include the precise emission character-
istics. Therefore, the spectral energy distribution in the near-field was determined by eq. (3.28)
and subsequently propagated through the optical setup with the help of Fourier optics. The com-
plete procedure will be presented in chapter 5.

3.2 Coherent transition radiation
With the characteristic distribution of the single particle TR at hand, we now focus on the emis-
sion produced by a bunch of electrons. In particular, we will address the question which kind of
information can be retrieved by a measurement of the TR frequency spectrum.

The total electric field of an electron bunch consisting of N electrons is found by summing up the
contribution produced by each individual particle. Again it is assumed that the energies are rela-
tivistic, such that β≈ 1 for all particles and consequently their relative position within the bunch
does not change significantly during the emission process. The coordinate system is shown in
Fig. 3.5, where nnnR and nnniii denote unity vector directed towards the observation point P. At P, the
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Figure 3.5: Schmematic drawing of the coordinate system used to describe the electron bunch density
distribution ρ(rrr).

radiation field is given by the sum of the individual fields EEE i, taking into account their relative
phase

EEEtot(ω) =
N

∑
i=1

EEE i(ω)eiφi . (3.32)

The relative phase delay between TR produced by a reference electron located in the middle of
the bunch and an electron located at rrri is given by φi = ω∆t = k(R−Ri). Using rrriii+Ri nnni = RnnnR,
one obtains

Ri = R nnnR ·nnniii−nnni · rrri ≈ Rcos(θ)−nnni · rrri ≈ R−nnnR · rrri . (3.33)

This approximation is valid if the observer is located far from the radiator compared to the
transverse extent of the electron bunch (|rrri| � R), which is usually true1. The relative phase
delay is then given by

φi = k nnnR · rrri = kkk · rrri . (3.34)

In the experimental measurement, the quantity of interest is the radiated spectral energy. Using
eq. (3.32) and eq. (3.34) yields

d2Wtot

dωdΩ
∝ |EEEtot(ω)|2

=

∣∣∣∣∣ N

∑
i=1

EEE i(ω)eikkkirrri

∣∣∣∣∣
2

=
N

∑
i=1

N

∑
j=1

EEE iii(ω)EEE∗j(ω)e
ikkk(rrri−rrr j)

=
N

∑
i=1
|Ei(ω)|2 +

N

∑
i, j=1,(i 6= j)

EEE i(ω)EEE∗j(ω)e
ikkk(rrri−rrr j) .

(3.35)

The spectral energy at the observation point P is thus composed of a term linear in N, which
describes the incoherent sum of the individual particle fields, and a 2nd term that scales with
N2. The latter describes coherent transition radiation (CTR) as it takes into account the phase
relationship between the fields.

1. Considering the geometry of the experimental setup presented in chapter 4, the phase error introduced by this
assumption amounts to less than 1 %.
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Since the number of particles per bunch is typically in the order of 108 (for charges in the pC
range), the contribution of the incoherent term can be neglected.
To further simplify eq. (3.35) it proves convenient to represent the electron beam by its ensem-
ble average. We therefore describe its charge distribution by a normalized continuous function
h(rrr, ppp), where rrr and ppp denote the position and momentum of the distribution in six-dimensional
phase space,

∫ ∫
hdrrr dppp = 1 and the momentum distribution is given by g(ppp) =

∫
hdrrr. In the

limit of large N, the discrete summation of eq. (3.32) can now be replaced by an integral expres-
sion [111, 113]

N

∑
i=1

EEE i(ω)eikkkrrriii → N
∫

EEE(ω, ppp)
∫

h(rrr, ppp)eikkkrrr drrr dppp (3.36)

and the coherent term of eq. (3.35) becomes

|EEE(ω)|2 = N2
∣∣∣∣∫ EEE(ω, ppp)

∫
h(rrr, ppp)e−ikkkrrr drrr dppp

∣∣∣∣2
= N2

∣∣∣∣∫ EEE(ω, ppp)g(ppp)F dppp
∣∣∣∣2 ,

(3.37)

where F is the form factor defined by

F =
1

g(ppp)

∫
h(rrr, ppp)e−ikkkrrr drrr . (3.38)

The degree of coherence is thus determined by the form factor, which is a function of the radiation
frequency ω = |kkk|c, the observation direction kkk/k and the phase space distribution h.

3.2.1 The form factor

(a) (b)

Figure 3.6: Illustration of the incoherent (a) and coherent (b) superposition of TR from individual elec-
trons forming a bunch. Wavelengths longer than the bunch length add up coherently.

When the momentum distribution is known, the single particle fields can be calculated as de-
scribed in the last section. As seen from eq. (3.37), the spectral energy distribution at an obser-
vation plane is then completely determined by the form factor and thus by the electron bunch’s
phase space distribution h.

To isolate information about the bunch shape we simplify our model by assuming that the mo-
mentum and spatial distributions are not correlated (the effect of possible correlations will be
discussed in subsection 3.2.4). Then h is separable into a momentum distribution and a spatial
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distribution by h(rrr, ppp) = g(ppp)ρ(rrr) and the form factor becomes a simple Fourier transform of
the latter

F(kkk) =
∫

e−ikkkrrr
ρ(rrr) drrr , (3.39)

with the inverse transform given by

ρ(rrr) =
1

2π

∫
F(kkk)eikkkrrr dkkk . (3.40)

The form factor is now completely determined by the bunch shape ρ(rrr) and describes the am-
plitude and phase of the spatial distribution in Fourier space. The transition from incoherent
radiation to constructive interference can be visualized in a simple picture. The two limiting
cases are depicted in Fig. 3.6.
For wavelengths short compared to the bunch length, the partial waves emitted by individual
electrons add up incoherently (|F | = 0). When the wavelength becomes comparable or larger
than the bunch length, electrons within the bunch radiate roughly in phase, leading to a coherent
enhancement. In the limiting case of an infinitely short bunch and fully constructive interference
the form factor becomes |F |= 1.

The simple picture given above is true for observation in the forward direction. When the ob-
server is placed under an angle, also the transverse coherence determined by the transverse bunch
dimensions has to be considered. For the time being we assume a cylindrically symmetric charge
distribution and also neglect correlations between the longitudinal and transverse distributions
(which is found to be justified by the measurements presented in chapter 4) by using the separa-
tion ansatz

ρ(rrr) = ρ⊥(r⊥)ρ‖(z) . (3.41)

The form factor can then be written as F =F⊥F‖ with the longitudinal and transverse components
given by

F⊥(k⊥) =
∫

e−ik⊥r⊥ρ⊥(r⊥) dr⊥ , (3.42)

F‖(k‖) =
∫

e−ik‖zρ‖(z) dz . (3.43)

Equation (3.37) can now be expressed by

d2W
dωdΩ

∝ |EEE(ω)|2 = N2
∣∣∣∣∫ EEE(ω, ppp)g(ppp) dppp

∣∣∣∣2 |F⊥|2 ∣∣F‖∣∣2 . (3.44)

3.2.2 Effects of the bunch’s spatial and momentum distribution
We now have a closer look at the individual terms, starting with the influence of the spatial bunch
dimensions. To illustrate their effect on the spectral energy distribution, we discuss the analytical
model of a bi-Gaussian shape given by

ρ(r⊥,z) =
1

√
2π

3
σ2
⊥σ‖

exp
(
−

r2
⊥

2σ2
⊥

)
exp

(
− z2

2σ2
‖

)
, (3.45)
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for which the resulting form factor is

F(kkk) = F⊥F‖ = exp
(
−2π

2 σ2
⊥

λ2 sin2
θ

)
exp

(
−2π

2
σ2
‖

λ2 cos2
θ

)
. (3.46)
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Figure 3.7: Transverse form factor. (a) Angular dependence of |F⊥| for bunches of Gaussian transverse
shape and different ratios of σ⊥/λ. (b) Relative spectral energy radiated into a forward cone with an
opening half angle θmax, normalized to the energy radiated by a bunch with σ⊥ = 0, where F‖ = 1 and
γ = 1000 is assumed. The light blue line (2πσ⊥ = 100λ) corresponds to λ = 2 µm for a transverse extent
at the radiator of σ⊥ ∼ 30µm (which is approximately the case in the experiments presented in chapter 7).

The impact of the transverse bunch extent is to reduce the coherence with increasing obser-
vation angle θ and decreasing wavelength λ, due to an increase in path difference between CTR
emitted along the transverse bunch extent. As can be seen from eq. (3.46), the effect may only
be neglected if the exponent is much smaller than 1, i.e.

σ⊥�
1√
2π

λ

sinθ
. (3.47)

Figure 3.7a displays the angular dependence of |F⊥| with respect to the ratio of σ⊥/λ. As shown
in Fig. 3.7b, the relative reduction in spectral energy due to decreased coherence is less pro-
nounced when restricting the acceptance angle θmax, because otherwise eq. (3.47) is more heavily
violated. However, in this case the detectable absolute energy would be severely diminished (cf.
Fig. 3.2c). Regarding the experiments described in this thesis, the necessary acceptance angle is
mainly determined by the detector sensitivity at long wavelengths, which are also less affected by
the bunch’s transverse dimensions. Due to the finite collection angle, the transverse form factor
must be taken into account in a broadband measurement spanning many octaves towards shorter
wavelengths.
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Figure 3.8: Longitudinal form factor. In (a), |F‖| is plotted in dependence of σ‖/λ for different observation
angles θ. The form factor approaches 1 for λ . 2πσ‖. (b) Relative error of the spectral energy contained
in a forward cone with opening half-angle θmax introduced by the approximation cosθ ≈ 1 (with γ =
1000, |F⊥| = 1). W ′ denotes the radiated energy using this small angle approximation. The dark red
line (2πσ‖ = 4λ) corresponds to a typical bunch duration of 5 fs FWHM (σ‖ = 0.6 µm rms) observed at
λ = 1 µm. Within an acceptance angle of θmax = 133 mrad the error is less than 4 %.

Longitudinal form factor

The quantity of interest to be determined by the measurement of the CTR spectrum is |F‖(k‖)|,
as it is related to the longitudinal charge distribution ρ‖ by eq. (3.43). Figure 3.8a shows its mag-
nitude in dependence of σ‖/λ for a Gaussian charge distribution. With decreasing σ‖, shorter
wavelengths are coherently enhanced and the form factor and accordingly the radiated spectral
energy are increased.

As seen from Fig. 3.8a and eq. (3.46), for increasing θ the longitudinal coherence is now en-
hanced, due to a decrease in path difference between CTR emitted along the bunch’s longitudinal
extent. However, for small observation angles θ, the longitudinal form factor is only weakly in-
fluenced by the observation direction due to its dependence on cosθ. Since the acceptance angle
used in the experiment is θmax = 133 mrad, we make use of the the small angle approximation
cosθ≈ 1, kz ≈ |kkk|= ω/c, and the longitudinal form factor becomes a sole function of ω:

F‖(kz)≈
∫

dze−iωz/c
ρ‖(z) dz = F‖(ω) . (3.48)

Figure 3.8b quantifies the error introduced by this approximation. Due to negligence of the term
cos(θ), the radiated CTR is underestimated and, for a given bunch duration, the error increases
with decreasing wavelength. As shown by the dark red line in Fig. 3.8b, for a typical bunch
duration of 5 fs FWHM (0.6 µm rms), the error is less than 4% at a CTR wavelength of λ = 1 µm
and θmax = 133 mrad. When further taking into account the finite transverse bunch size and
resulting suppression of large angle emission by |F⊥|, the relative error amounts to less than
0.5 %. Within the small angle approximation, the longitudinal form factor can now be separated
from the integral over the acceptance angle and the spectral energy radiated into a cone with
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opening angle θmax is given by

dW
dω

∝ N2 |F‖(ω)|2
∫

Ωmax

∣∣∣∣∫ EEE(ω, ppp)g(ppp) dppp
∣∣∣∣2 |F⊥|2 dΩ . (3.49)

Thus, when both the electron beam momentum distribution g(ppp) and the transverse spatial dis-
tribution ρ⊥ are known, |F‖(ω)| can be determined by a measurement of the CTR spectrum.

Influence of the momentum distribution
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Figure 3.9: Impact of divergence. (a) Dependence of the angular distribution on beam divergence for
γ = 1000, normalized by the bunch charge. (b) Relative spectral energy radiated into a forward cone with
an opening half-angle of θmax, normalized to the emission of a collimated beam.

We are now left with the influence of the momentum distribution. To analyse its effect, we use
eq. (3.49), set |F | = 1 and separate the momentum distribution in absolute value and direction
by g(ppp) = gp(p)gΩ(ψ,φ). As discussed in section 3.1, for a collimated beam the emitted energy
scales roughly with lnγ (cf. eq. (3.25)).

Figure 3.9 shows the impact of divergence for a cylindrically symmetric normally distributed
beam divergence modeled by g(ppp) = δ(p)gΩ(ψ,φ) with

gΩ(ψ,φ) =
1√

2πσψ

e
− ψ2

2σ2
ψ . (3.50)

The angular spectral distribution of CTR was calculated numerically according to eq. (3.29). The
effect of a finite beam divergence is to reduce the intensity in forward direction (Fig. 3.9a), as
the radiation cones of the individual particles overlap less and partially cancel due to the radial
polarisation. Naturally, this effect is more pronounced as the beam divergence is increased.
Since the losses mainly occur within the cone of 1/γ, the effect scales roughly as σψγ. Low
energy electrons can therefore tolerate a higher bunch divergence.
Nevertheless, the bunch divergence has a relatively weak influence on the collected spectral
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energy when considering collection angles θmax� 1/γ. This can be seen from Fig. 3.9b, which
shows the total spectral energy radiated into a forward cone with opening angle θmax, normalized
by the emission of a collimated beam.

Summary

The discussion so far set the theoretical foundations that relate the CTR spectrum to the longi-
tudinal form factor and ultimately to the temporal bunch profile. The other main contributions
to the CTR spectrum are the transverse form factor, the electron energy spectrum and the bunch
divergence. As will be described in chapter 6, the transverse density distribution at the position
of the radiator is known and almost entirely determined by the beam divergence. The latter was
measured in a separate run and found to be stable with regard to shot-to-shot fluctuations, while
the electron energy and CTR spectrum were recorded in single-shot measurements. The setup
thus allows to determine |F‖(ω)| for each shot.

In the following, we will first define the beam emittance and then proceed to analyse the effect of
possible phase space correlations. The fundamental assumption of phase space separability will
be discussed in chapter 6.

3.2.3 The emittance
A useful property to characterize an electron beam in terms of size, divergence and energy chirp
is the emittance, a measure of the beam’s volume in the six-dimensional phase space spanned by
rrr and ppp. As before, the bunch is conveniently described by the normalized distribution function
h(rrr, ppp, t) with its normalized charge density given by

ρ(rrr, t) =
∫

h(rrr, ppp, t) dppp . (3.51)

As by Liouville’s theorem the emittance ε is a conserved quantity in the absence of dissipative or
time-varying forces, it is a useful beam property often used in accelerator physics. If the particle
motion in the transverse and the longitudinal plane is not coupled and the transverse forces are
cylindrically symmetric, the six-dimensional phase space can be decomposed and the emittance
becomes separable into a transverse and a longitudinal component, both of which are conserved
individually:

ε = ε‖ε⊥ . (3.52)

These conditions also apply for nonlinear wakefields, as the transverse focusing field inside
the wave bucket is cylindrically symmetric and independent of the longitudinal position (cf.
eq. (2.93)). Expressing the phase space coordinates relative to the beam centroid, rrr = 〈rrr〉+ δrrr,
ppp = 〈ppp〉+δppp, the transverse and longitudinal normalized rms emittances are given by [114, 115]

εn,‖ =
1

mec

√〈
δr2
‖

〉〈
δp2
‖

〉
−
〈
δr‖δp‖

〉2
, (3.53)

εn,⊥ =
1

mec

√〈
δr2
⊥
〉〈

δp2
⊥
〉
−〈δr⊥δp⊥〉2 , (3.54)

where 〈 〉 denotes the average over the beam distribution function h at a specific time t. If
〈δr⊥δp⊥〉= 0, the distribution function is said to be uncorrelated, otherwise it is correlated.
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The emittance in a transverse plane (e.g. spanned by (x, px)) is more conveniently expressed
using x and x′ = px/p‖ as one is usually more interested in knowing about the size and the di-
vergence of the beam. The space spanned by (x,x′) is called trace space in which the geometric
beam emittance is defined by [116]

εtr,x =

√
〈x2〉〈x′,2〉−〈xx′〉2 . (3.55)

In accelerators, as the particles’ longitudinal momenta increase, εtr,x decreases as 1/p‖, a pro-
cess called adiabatic damping. The reason is that the transverse momenta of the particles are
unaffected and thus the divergence angle θx (given by θx = arctan(px/p‖)) is reduced during
acceleration. On this account another frequently used quantity is defined by the normalized
trace-space emittance [114, 117]

εtr,n =
|ppp|
mec

εtr , (3.56)

which is conserved during acceleration.
On the other hand, if the beam possesses an energy spread, a free space drift will increase εtr,n due
to a correlation of transverse particle position with momentum, while the geometric emittance is
conserved. This is the case because the geometric emittance only takes into account the position
and propagation angle of each particle but is independent of energy [114, 116].

z

x

x

x'

x

x'

x

x'

beam
waist

diverging
beam

converging
beam

Figure 3.10: Example of emittance conservation during a free space drift. εtr,x is the area in the (x,x′)
plane divided by π. While propagating along the longitudinal coordinate z, the orientation and aspect
ratio of the phase space ellipse in the (x,x′) plane varies but the area εtr,x is conserved.

3.2.4 Effects of beam propagation and phase space correlations
So far the effects of the transverse, longitudinal and momentum distributions have been discussed
separately.

Due to the injection and acceleration mechanisms of LWFA, the accelerated bunch exhibits some
degree of longitudinal position-momentum correlation because electrons constituting the head of
the bunch are injected first (and therefore exposed longest to the accelerating field) and are also
less affected by beam loading which can lower the acceleration field for electrons in the bunch’s
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tail. Such chirped LWFA beams have been confirmed recently [118].

From physical considerations it is further expected that the transverse phase space inside the
wakefield can be approximated as being uncorrelated. This is due to the accelerated electrons
performing betatron oscillations with different amplitude and phase determined by their different
initial conditions after injection. This process, called betatron phase mixing, leads to a decoher-
ence of transverse beam structure which may be initially present [119]. Nevertheless, during the
free space propagation from the exit of the plasma wake to the CTR radiator foil, the transverse
phase space will develop a position-angle correlation.

In the following, the effects of a possible correlation in transverse or longitudinal phase space
will be quantified.

Transverse phase space effects due to free-space propagation

The influence of the bunch divergence in the limit of |F | = 1 has already been discussed in
subsection 3.2.2. During the free space propagation of the electron beam from its release out of
the confining potential of the wakefield to the CTR radiator, the geometric trace space emittance
is conserved but the phase space is rotated as depicted in Fig. 3.10, which leads to an increase in
spot size. This causes a reduction of F⊥(θ,ω) with larger opening angles and blue-shifted CTR
spectrum. As will be described in chapter 5, the measured CTR spectrum is corrected for this
effect before retrieval of the longitudinal bunch profile.

Due to ballistic propagation from the exit of the plasma to the CTR radiator, the spatial bunch
profile acquires the shape of a spherical shell since electrons propagating under an angle cover a
longer path than on-axis electrons. These arrive slightly later at the CTR radiator, which leads to
a coupling between the transverse and longitudinal phase space distributions and an elongation
of the projected bunch profile. The relative lengthening after a drift length Ldrift is given by
∆l ≈ (1− cos(σψ))Ldrift. For the experimentally observed divergence of σψ,FWHM ∼ 1.4 mrad,
Ldrift ∼ 50 mm and a bunch duration of ∼ 5 fs, the relative lengthening is ∆l < 1% and thus
negligible.

Finally, the rotation of the phase space during the ballistic propagation not only leads to an
increased spot size but also introduces a transverse position-angle correlation. To quantify its
influence on the measurement, the expected CTR spectra produced by an uncorrelated and a
correlated transverse distribution were simulated. The respective trace space distributions in the
(x,x′) plane are shown in Fig. 3.11a and b. The correlated bunch distribution corresponds to the
ballistic propagation of an initially uncorrelated distribution with a spatial transverse Gaussian
distribution with σ⊥ = 1µm rms (as expected at the exit of the gas cell) over a distance of 50mm
with a divergence of 1.4 mrad FWHM. Both distributions contain 1×105 particles and the same
transverse beam profile at the position of the CTR radiator. The longitudinal form factor is
neglected, i.e. F‖ = 1. The computed CTR spectra are shown in Fig. 3.11c for different values of
γ. The near perfect coincidence of the CTR spectra emitted by both distributions demonstrates
that a transverse phase space correlation is insignificant to the measurement, moreover as the
longitudinal form factor will essentially determine the spectrum at optical frequencies. The minor
influence of the position-angle correlation is due to the large size of the CTR beam at the entrance
plane of the collection optics compared to its small transverse size at the radiator foil.
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Figure 3.11: Influence of a transverse phase space correlation. (a) shows the trace space distribution in
the (x,x′) plane for an uncorrelated bunch and (b) for an electron bunch with σψ,FWHM = 1.4 mrad and
σ⊥ = 1 µm after 50 mm of propagation. Both bunches contain 105 particles and exhibit the same radially
symmetric Gaussian transverse charge profile. Coloured lines depicted in (c) show the computed CTR
spectra corresponding to the correlated distribution (b) for an electron bunch with F‖ = 1 and different
values of γ. The dashed black lines show the respective CTR spectra produced by the uncorrelated distri-
bution shown in (a). The near perfect coincidence of the spectra demonstrates that a correlated transverse
phase space distribution does not influence the CTR spectrum significantly under the experimental condi-
tions.

Effect of a position-momentum correlation

We now examine the effect of a correlation of electron energy with longitudinal position as even
an initially unchirped bunch will acquire this correlation due to the free-space propagation to the
radiator if it has a finite energy spread. Such an energy chirp in the longitudinal bunch profile will
have two effects. First, since electrons with different energy have different velocity, the bunch is
longitudinally compressed or elongated during propagation to the CTR radiator. Second, it can
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influence the radiated CTR spectrum due to more intense CTR emitted by high-energy electrons.

To assess the influence of a longitudinal phase space correlation at the position of the radiator,
the expected CTR spectra were again calculated for uncorrelated and correlated (chirped) longi-
tudinal phase space distributions. The simulated phase space distributions are shown in Fig. 3.12
and were chosen such that the temporal bunch profile is Gaussian, while possessing a broadband
energy spectrum (Fig. 3.12a), a flat-top energy spectrum (Fig. 3.12b) or an exponentially decay-
ing energy spectrum (Fig. 3.12c).
The respective projections of the uncorrelated and correlated phase space distributions (1st and
2nd column of Fig. 3.12) on the energy axis result in an identical energy spectrum. The com-
puted CTR spectra for chirped bunches of 5 fs FWHM duration and unchirped bunches of vari-
ous FWHM durations are shown in the 3rd column of Fig. 3.12. For the same FWHM duration,
the chirped bunches exhibit a broader CTR spectrum than the respective uncorrelated bunches.
This is due to more intense CTR emitted by the high-energy electrons that are concentrated
in a shorter temporal feature if a chirp is present. Since the total CTR emission scales as lnγ

(eq. (3.25)), the effect is relatively stronger if the electron spectrum contains mostly low-energy
electrons (cf. Fig. 3.12c). The CTR spectra produced by the chirped bunches of 5 fs duration are
generally bracketed by the spectra of unchirped bunches with shorter durations. Since the bunch
profile retrieval process described in the next chapter cannot account for an energy chirp, the
method would underestimate the real bunch duration by approximately 0.2 fs (4%), 0.5 fs (10%)
or 0.9 fs (18%) if the respective chirp were present.

The maximal bunch lengthening (or compression) due to the free-space drift is given by
∆l = (1−βmin/βmax)Ldrift. For an electron bunch with energies in the range of 250− 800 MeV
and a duration of 5 fs, the maximal elongation or compression amounts to ∼ 6 %. Thus, if
the electron bunch carries a positive chirp (i.e. higher energy electrons reside in the head of the
bunch), which appears highly likely in a LWFA before dephasing, the two effects partially cancel.
In this case, the intrinsic energy chirp of the electron beam at the exit of the plasma contributes
the most to the measurement error. Provided that the energy spectrum is sufficiently broadband
(Fig. 3.12a and Fig. 3.12b), a measurement error of . 15 % due to the effect of a longitudinal
phase space correlation appears justified.
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Figure 3.12: Influence of a longitudinal phase space correlation. Longitudinal phase space distribu-
tion of a bunch with (a) a broadband energy spectrum centered around 550 MeV, (b) a flat-top energy
spectrum and (c) and exponentially decaying energy spectrum. The 1st column shows the respective un-
correlated and the 2nd column the respective correlated phase space distributions (with an uncorrelated
energy spread of 5 %). All distributions contain 5×105 electrons and exhibit a Gaussian temporal shape
and an energy spectrum identical to that of the same row. The last column shows simulated CTR spec-
tra corresponding to the distributions shown in the 1st and the 2nd column of the same row for different
FWHM bunch durations.
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3.3 The Bubblewrap reconstruction algorithm

Going back to eq. (3.48), the longitudinal bunch profile is related to the longitudinal form factor
by an inverse Fourier transform

ρ‖(z) =
1

2π

∫
F‖(ω)e

iωz/c dω . (3.57)

In general, the form factor is a complex quantity. According to eq. (3.49), a measurement of the
CTR spectrum yields the absolute value of the longitudinal form factor. However, since phase
information is not recorded, direct determination of the bunch profile by inverse Fourier trans-
formation is not possible.
In CTR experiments, a commonly used method relies on the Kramers-Kronig relations, which
relate the real and imaginary parts of the spectrum to each other, based on a causality condition.
This procedure allows to approximate the missing phase information [120]. However, the am-
plitude of the spectrum has to be known for all frequencies. Since in practice this is impossible,
assumptions about its shape at low and high frequencies have to be made, which can influence the
deduced temporal profile [106, 121, 122]. As a further complication, only the so-called minimal
phase is obtained1. Therefore, even if the complete spectrum is known, the incomplete phase in-
formation can lead to a further discrepancy between the real bunch profile and its reconstruction
[122, 124].

In order to reconstruct the longitudinal bunch profile form the measured CTR spectrum, a new
iterative algorithm was developed by our collaborators from Oxford University, capable of re-
constructing the missing phase information. Such type of algorithms have been successfully
deployed to a variety of problems including X-ray imaging and crystallography, in which the
original signal is to be reconstructed from the magnitude of its Fourier transform [122, 125–127].
Recently, such algorithms have also been used to reconstruct the transverse profile of electron
bunches from the spectrum of coherent optical transition radiation (COTR) [128, 129]. For the
application of reconstructing the longitudinal bunch profile, the so-called Bubblewrap algorithm
has been developed in the framework of a PhD thesis by Sevtoslav Bajlekov [130]. A detailed
description has also been published in [28]. The main goal of the retrieval algorithm was to min-
imize the required assumptions. Particularly, it avoids any extrapolation of the spectral shape in
frequency ranges that were not measured. In this section, an overview of its working principle
will be presented.

1. The Kramers-Kronig relations connect the amplitude and phase of a complex function that is analytic in the
upper half plane. Based on a causality condition, Lai and Sievers [120] show that the form factor satisfies this
constraint and its phase is determined by

ψmin +ψBlaschke =−
2ω

π
P
∫

∞

0

ln |F‖(x)|
x2−ω2 dx+∑

j
arg

(
ω− ω̂ j

ω− ω̂∗j

)
,

where P denotes the Cauchy principal value and ω̂ j identify the complex zeros of F‖(ω) in the upper half plane.
Only the first phase term ψmin (the so-called minimal phase) can be retrieved from the measurement [123].
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Ingredient 1: The Gerchberg-Saxton algorithm

One of the classic algorithms applied in phase retrieval problems is the Gerchberg-Saxton al-
gorithm [131], which has been originally applied to recover the phase information from images
containing only intensity information. Usually the problem consists of recovering the original
signal f (x) from a measurement of |F(u)|, where both functions are related by a Fourier trans-
form, i.e. F(u) = F [ f (x)]. In the present case, one seeks to recover the longitudinal bunch
profile ρ‖ from the measured values of the longitudinal form factor.

G = |G(ω)| eiψ(ω)

ℱ-1[⋅] G' = |F||(ω)| eiψ(ω)

ℱ[⋅]
g

g'

apply 
time domain
constraints

apply 
frequency domain

constraints

Figure 3.13: Flowchart of the Gerchberg-Saxton algorithm.

The algorithm consists of iterative Fourier transformations between the time (or real-space) and
the frequency domain. In each domain, a priori known constraints are enforced on the candi-
date function. The algorithm starts with an initial random bunch profile in the real space domain.
Each iteration then consists of four steps, which are depicted in the flow chart shown in Fig. 3.13:

1. A Fourier transform is applied to the current estimate of the bunch profile gn(t). This step
yields the magnitude and phase of the corresponding Fourier transform Gn(ω).

2. The frequency domain constraints are enforced: the magnitude of Gn(ω) is replaced by
the measured form factor

∣∣F‖(ω)∣∣, while the phase information is retained. At frequencies
that were not measured the candidate function remains unchanged. The resulting function
satisfying the frequency domain constraints is now called G′n.

3. An inverse Fourier transform of G′n yields the updated bunch charge distribution function
g′n(t).

4. The time domain constraints are applied based on a priori information about the bunch
profile. This step yields the next estimate gn+1(t) of the candidate function ρ‖(t).

It is obvious that in the frequency domain the candidate function has to include the measured
data points. In the time domain, any a priori known information may be applied. In the current
application, the bunch profile is necessarily described by a real and positive function. At the set
of points I that violate these constraints, the value of the candidate function is set to zero, i.e.

gn+1(t) =

{
g′n(t), t /∈ I ,
0, t ∈ I .

(3.58)
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3.3 The Bubblewrap reconstruction algorithm

In the nth iteration the error in the time domain is given by

En =
√

∑
t
|gn+1(t)−g′n(t)|

2 . (3.59)

It can be shown that in each iteration cycle the error is either reduced or stays constant, for which
reason the Gerchberg-Saxton algorithm is also called the error-reduction algorithm . However,
although the error usually decreases rapidly during the first iterations, the algorithm is prone
to stagnation or may converge towards a local minimum [131]. The convergence can be sped
up by applying modifications to the Gerchberg-Saxton algorithm. A commonly used practice is
to combine the latter with a faster converging algorithm, which is less prone to stagnation. In
return, these algorithms typically exhibit less stability, i.e. the error is not necessarily reduced
in each iteration. For the present application, best reconstruction results could be obtained by a
combination with the so-called hybrid input-output algorithm.

Ingredient 2: The hybrid input-output algorithm

The hybrid input-output algorithm differs from the Gerchberg-Saxton algorithm only in the last
step. The first three operations are kept the same, and can be regarded as a nonlinear system
with input gn(t) and output g′n(t). In the last step, the real space constraints are abandoned.
Therefore, the input function can be altered with more flexibility, which can lead to a faster
convergence [131]. If a change ∆g(t) in the output function is desired, a logical choice of the
change in the input is −βhio ∆g(t), where βhio is a constant depending on the nonlinearity of the
system. This leads to a new class of algorithms, the so-called input-output algorithms. One of its
representations that simultaneously ensures a fast convergence while at the same time avoiding
the problem of stagnation is given by the so-called hybrid input-output algorithm, for which the
new input function gn+1(t) is defined by

gn+1(t) =

{
g′n(t), t /∈ I ,
gn(t)−βhio g′n(t), t ∈ I ,

(3.60)

where βhio denotes the amount of feedback. At points of I which violate the real-space con-
straints, the input is now driven in the opposite direction of the deviation. Depending on the
value of βhio, this type of feedback allows the algorithm to emerge from local minima and thus
explore a wider set of target functions than the Gerchberg-Saxton algorithm [125].

Ingredient 3: Adaptive support selection

In addition to the real space constraint of seeking a real non-negative function, one may further
involve a support condition, i.e. the reconstructed function is limited to a certain time window.
Such a condition can drastically improve the convergence of the algorithm. While for too re-
strictive support sizes a solution may not exist, a size of the support that is too large may lead to
ambiguous solutions with poor convergence [122, 132]. It was found that a Gaussian of length
1 µm rms was almost always correctly reconstructed on a support of size 10 µm but the recon-
struction failed for a support of 15 µm length [28], which underlines the need for finding the
correct support size for a viable reconstruction of the bunch profile. In many cases the support
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Figure 3.14: Adaptive support selection. From (a) to (c) the threshold for support recalculation (shown
by the dashed line) is continuously decreased, allowing the appearance of low current features in the
retrieved bunch profile. If the threshold is set too low, noise in the input CTR spectrum can lead to a
number of artificial subsidiary bunches.

size can be estimated from an intensity autocorrelation [132]. However, in the present case, such
information is not available. Therefore, it was opted to adaptively recalculate the support during
the reconstruction, a method first introduced by the Shrinkwrap algorithm [125]. Compared to
an a priori specification of the support, the authors showed improved reconstruction results even
in the presence of noise. In this approach, the support is recalculated after each iteration cycle
based on a threshold applied to the candidate function. For reconstruction of the bunch profile
from the CTR spectrum, it was shown that accurate results could be obtained [28]. The thresh-
old for support calculation is initially set to 20 % of the peak value. In order to permit also low
current features in the bunch profile, this threshold is then continually reduced until reaching a
final value on the sub-percent level.

The adaptive support selection is illustrated in Fig. 3.14, which shows the candidate function g′n
after different iteration numbers n before applying the real space constraints. The threshold for
the support recalculation is shown by the dashed black line. To obtain the new current estimate
function g, only values of g′n that exceed this threshold are retained, while points with lower
values are set to zero (only regions under the grey square boxes are retained). As the threshold
is gradually lowered (from Fig. 3.14a to Fig. 3.14c), more subtle features in the retrieved bunch
profiles appear. If the threshold is lowered too far, noise in the CTR measurement can lead to a
number of subsidiary bunches (cf. Fig. 3.14c). The minimum threshold for support recalculation
was therefore set to 0.5 % of the main peak, which yielded best results throughout a wide range
of input spectra.

Choice of the parameters

In order to establish the remaining parameters for best performance of the Bubblewrap algorithm,
it was applied to the CTR spectra calculated from various synthetic bunch profiles. The simulated
spectra were truncated to the limited spectral range that was also accessible experimentally and
used as an input for the algorithm. The following procedure was found to yield the best results
of the algorithm:
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3.3 The Bubblewrap reconstruction algorithm

• The initial support size is set to 20 µm and is allowed to grow or shrink by the adaptive
support selection.

• In each iteration cycle, the HIO algorithm is run for 45 iterations, followed by 5 iterations
of the Gerchberg-Saxton algorithm.

• Before calculating the support, the function is smoothed by a Gaussian function of rms
length σ. Its initial value is set to 3 data points and is reduced in each iteration cycle by
0.5 % until reaching a final value of 1.1 data points.

• The threshold for support recalculation is initially set to 20 % of the peak of the recon-
structed profile and decreased by 2.5 % in each iteration cycle until reaching a final value
of 0.5 %.

• The parameter βhio of the hybrid input-output algorithm is initially set to 1 and decreased
in each cycle until a final value of 0.05 is reached.

Post-selection procedure
Although for two-dimensional phase retrieval problems a unique solution can exist, this is not
generally the case for one-dimensional problems. Furthermore, considering the bunch profile
ρ‖(z), an ambiguity in translation (ρ‖(z+ z0)) and time reversal (ρ‖(−z)) exists, as both distri-
butions will lead to the same measured form factor [122].
However, for the same measured CTR spectrum, distinct retrieval processes started from random
seeds normally lead to very similar results. To select a reliable reconstruction and ensure that
the retrieved profile is the correct inversion of the CTR spectrum, the retrieval process is run five
times. The peak of the resulting bunch profiles is used to align the profiles and the skewness of
the distribution is used to remove the ambiguity in time direction between individual profiles.
The aligned profiles are then compared to each other by calculating the square difference error.
Subsequently, the profile that is most different from the others is removed from the set until three
profiles remain. From these, the profile for which the sum of its square errors with the two re-
maining profiles is minimized is chosen as the reference for a given measurement. In ref. [28],
the accuracy of the Bubblewrap algorithm is demonstrated for various synthetic test profiles. The
algorithm and the selection procedure show a reliable reconstruction among a large variety of test
cases.

Recent developments
Recently, the Bubblewrap algorithm has attracted further attention and received suggestions for
improvement. Pelliccia and Sen [122] proposed to alter the post-selection procedure. Instead of
choosing the best solution by comparing the least squares difference of the retrieved profiles to
each other and successively eliminating outliers, they pick the reconstruction with the smallest
error to the measured spectrum and average all solutions whose cross correlation with this profile
exceeds a certain threshold.
Bakkali Taheri et al. [133] alter the initialization of the algorithm and initially perform a re-
construction of the bunch profile by the Kramser-Kronig method. The obtained amplitude and
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3. Transition radiation

minimal phase is then fed to an algorithm similar to Bubblewrap, with the constraint that the
retrieved phase must not fall below the minimal phase. In this way they eliminate the need to
start the algorithm several times from random seeds as the deterministic input profile always
leads to the same output. However, it remains unclear if the constraint to the calculated minimal
phase may not lead to additional errors in the retrieved profile due to noise or uncertainties in the
measured CTR spectrum.
These welcome improvements manifest the interest for the use of iterative algorithms in phase
retrieval problems. Since the measurements presented in this thesis inspired the development
of the Bubblewrap algorithm, it was opted to utilize its original version for retrieving the lon-
gitudinal bunch profiles. Retrieval examples of single-shot measurements will be presented in
section 7.1.
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Chapter 4

Experimental Setup

This chapter describes the setup used in the experiments. Generally, an LWFA experiment re-
quires three major components: A laser system providing high-intensity ultra-short pulses, a gas
target in which plasma wakefield acceleration takes place and a detection system to characterize
the accelerated electron bunches.

The experimental results presented in this thesis were obtained by using the ATLAS laser sys-
tem, which is described in the next section. A general overview of the rest of the experimental
setup is given in section 4.2. The laser pulses were focused to the entrance of a gas cell (de-
scribed in section 4.3) in which ionization of hydrogen, plasma wave excitation and electron
acceleration took place. The electron energy diagnostic is presented in section 4.4. In order to
simultaneously characterize the longitudinal bunch profile, CTR was produced by a metallic tape
inserted into the electron beam path and the radiated spectrum was measured by three individual
spectrometers. This CTR diagnostic is presented in detail in section 4.5 and section 4.6.

4.1 The ATLAS laser system

As outlined in chapter 2, in order to excite nonlinear plasma waves that reach the self-injection
threshold, laser intensities of a0 > 1 with pulse durations τ < λp/c are necessary. These re-
quirements can be met by the combination of pulse energies on the Joule level with femtosecond
pulse durations, corresponding to laser powers in the range of Terra- to Petawatt. Such powers
are nowadays readily achieved even by commercial systems.

The experiments utilized the ATLAS high-field laser, which, at the time the experimental cam-
paign took place, was located at the Max Planck Institut für Quantenoptik (MPQ) in Garching.
Although the laser was originally supplied as a commercial system, several upgrades have turned
this machine into a highly customized system. During the course of this thesis, one of these up-
grades was carried out before the experimental campaign. Afterwards, the system was relocated
to the newly established Laboratory for Extreme Photonics (LEX), completely rebuilt and a fur-
ther upgrade raised its output power to the 300TW level. In the following, the state of the system
is described as it existed at the time the experiments were carried out.

ATLAS is a table-top laser system based on the principle of chirped pulse amplification (CPA)
[134], using titanium-sapphire (Ti:Sa) as an amplification medium. By stretching the pulses in
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Figure 4.1: Sketch of the chirped pulse amplification (CPA) principle.

time, the CPA technique allows to lower the pulse intensity during amplification, avoiding prob-
lems associated with the damage threshold of optical components and nonlinear effects such
as self-focusing or self-phase modulation. For these reasons state-of-the-art ultra-high intensity
lasers usually employ this technique. By introducing a frequency dependent path difference, the
low-intensity ultra-short pulses coming from a mode-locked oscillator are coherently stretched
in time, resulting in a low intensity beam as sketched in Fig. 4.1. After amplification has taken
place, an opposite path difference is introduced by the compressor. The ATLAS system employs
a low-aberration, grating based Öffner stretcher [135] along with a grating compressor. Up to
3rd order, the matched compressor allows to compensate not only for the dispersion introduced
by the stretcher, but also the material dispersion of the transmission optics employed in the laser
chain.
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Figure 4.2: Schematic layout of the ATLAS laser system.

A schematic of the ATLAS system is shown in Fig. 4.2. The Ti:Sa crystals are pumped at
λ= 532nm by frequency-doubled flashlamp-based Nd:YAG lasers. The amplifier chain is seeded
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4.1 The ATLAS laser system

by a broadband commercial Kerr-lense mode-locked Femtolasers Rainbow oscillator, providing
a pulse train with 70 MHz repetition rate. Its output pulses with E ∼ 5 nJ, τFWHM ∼ 15 fs are
reduced to a 10 Hz repetition rate by using a Pockels cell in conjunction with polarisers. The
pre-amplified pulses are then stretched with a positive chirp to a pulse duration of∼ 350ps. Sub-
sequently, an acousto-optic programmable dispersive filter (AOPDF, Dazzler by Fastlite), allows
to compensate residual spectral phase distortions up to higher order and is also used to optimize
the pulse duration and chirp in the LWFA experiment. The stretched pulses are then amplified
in a regenerative amplifier where a 2nd AOPDF is located within the cavity. Here, the so-called
Mazzler (by Fastlite) allows enhancing the amplified spectral bandwidth by damping central fre-
quency components of the spectrum and limiting the effects of gain-narrowing. The pulses are
then further amplified by four successive multi-pass amplifiers to ∼ 2.4 J with 5 Hz repetition
rate (intentionally limited by the repetition rate of the last three pump lasers) and sent into the
compressor. The amplified bandwidth after the regenerative amplifier is & 80 nm and ∼ 50 nm
before compression. The temporal pulse shape is diagnosed by a commercial GRENOUILLE

Figure 4.3: Intensity distribution of the ATLAS laser in the focal plane. Approximately 32 % of the laser
energy is contained within the FWHM beam diameter.

device (by Swamp optics) based on the technique of frequency-resolved optical gating (FROG).
The typically retrieved pulse duration of the ATLAS system is tFWHM ≈ 28 fs. The system is
further equipped with a deformable mirror and a Shack-Hartmann wavefront sensor in order to
collimate the beam and compensate for residual wavefront distortions before entering the com-
pressor. Inside the experimental chamber, the focal spot of the final f/22 focusing paraboloid can
be imaged by a 20x microscope objective on a CCD camera. A typical focal spot image of the
attenuated laser beam is shown in Fig. 4.3. After accounting for transmission losses in the com-
pressor and the beamline of ∼ 35 % that result in an on-target energy of 1.5 J, the peak intensity
amounts to 5.8×1018 W/cm2 or a0 = 1.66.

67



4. Experimental Setup

4.2 Overview of the experimental setup
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Figure 4.4: Overview of the experimental setup. The whole setup resides in interconnected vaccum
chambers. Only the near-infrared and visible spectrometer are placed in air.

Figure 4.4 shows an overiew of the experimental setup used for LWFA. The experiments were
performed using the previously described ATLAS laser system which delivered 1.5± 0.1 J on
target with a pulse duration of τ = 28± 2 fs FWHM. After being reflected to the experimental
chamber, the beam was focused by a 1.5 m focal length off-axis paraboloid to the entrance hole
of a steady-state-flow gas cell filled with hydrogen, length-tunable in the range of 1.5−14 mm.
The FWHM focal spot size was d = 22±1.4µm, which resulted in a normalized vector potential
of a0 = 1.66± 0.13. Electron bunches were accelerated following self-injection in the weakly
relativistic regime at plasma electron densities in the range of n0 = 3− 9× 1018 cm−3. After
exiting the gas cell, the electron beam energy and charge was analysed by a dipole magnet and
the scintillator screen S2. Optionally, a second scintillator screen S1 located in front of the
magnets could be inserted to determine the beam divergence, pointing and transverse projection
of the beam profile after 1.5 m of propagation.

The electron energy spectrometer and pointing screen are two of the basic tools to characterize
the electron bunch in terms of its energy spectrum, charge and divergence and form the basic set
of single-shot diagnostics commonly used in LWFA experiments. In order to also determine the
longitudinal bunch profile, the setup was extended by a tape drive and three optical spectrometers
that were used to measure the spectrum of CTR emerging from the tape. The following sections
give a detailed description of the essential components of the setup.
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4.3 Gas target

4.3 Gas target

Figure 4.5: Sketch of the length-variable gas cell used in the experiment. Eight radially arranged holes
in the outer cylinder serve as gas inlets. Image credit: Popp [136].

Commonly used gas targets for wakefield acceleration include sub- or supersonic gas jets, cap-
illaries or cells containing larger volumes of gas, referred to as gas cells. The latter type was
chosen for the experiment. It has the advantage that an appropriately designed cell allows to
easily adjust the length of the gas reservoir during the experiment and avoids turbulences. A
schematic drawing of the cell is shown in Fig. 4.5. Its piston-like design enables a length adjust-
ment in the range of 1.5− 14 mm. Its inner diameter amounts to 10 mm. The cell is mounted
such that the entrance hole is static and the outer cylinder moves, which ensures that the entrance
plane is fixed with respect to the longitudinal laser focus position. A sapphire plate (0.3 mm
thickness) is glued on the entrance hole to reduce the gas flow to vacuum and, after a few laser
shots, possesses a laser-drilled hole with a diameter of approximately 0.4 mm. Eight radially ar-
ranged holes in the rear cylinder serve as gas inlets, each 2mm in diameter. The backing pressure
is controlled by an electronic closed-loop PID controller with a maximum deviation of ±4 mbar
around the target value. The reference value at 100 mbar was taken from a calibrated pressure
gauge. The gas cell is connected to a reservoir by a gas pipe of approximately 2 m length. Sim-
ulations with the computational fluid dynamics modelling software OpenFoam [137] show that
by applying a constant backing pressure directly at the gas cell inlets, the density within the cell
reaches a homogeneous steady-state after 1.5 ms [138]. In the experiment, the opening valve
(located at a distance of 20 cm from the gas cell) is triggered 50 ms before the arrival of the laser
pulse to ensure enough time to also fill the gas supply pipe. Due to the large cross section of the
supply pipe (4 mm diameter) as well as the 8 inlet holes as compared to the cross section of the
exit holes, a steady state should develop well within these 50ms. The steady-state flow condition
is beneficial, as it avoids turbulences and thus facilitates reproducible electron beams with low
shot-to-shot fluctuations.

4.4 Electron spectrometer
The electron bunch energy spectrum is measured for each single shot by means of a dipole mag-
net and a scintillating screen inserted into the electron beam path. The screen is mounted on
the outside of the last vacuum chamber’s door and imaged by a CCD camera. The dipole has a
total length of 40 cm and consists of 6 permanent magnets of type VACODYM 764 TP that are
attached to a steel yoke with a gap between the magnets of 40 mm [136]. The resulting magnetic
field strength is on the order of 1 T. In order to increase the spectral resolution of high-energy

69



4. Experimental Setup

Dipole magnet
Lanex 
screen

S2

Lanex 
screen

S1
(optional)

(a)

Energy [MeV]

02004006008001000

D
e
fl
e

c
ti
o
n

 [
c
m

]

-30

-25

-20

-15

-10

-5

0

w/o extension box

w/   extension box

(b)

Figure 4.6: Electron spectrometer. (a) shows a sketch of the electron spectrometer setup. An optional
extension chamber can be inserted between the magnet and the screen S2 to increase the drift space
and thus the spectrometer resolution. (b) shows the energy dependent deviation of an electron from its
propagation axis. Tracking data by courtesy of J. Wenz and R. Weingartner.

electron bunches, an extension chamber can be mounted between the magnet and the scintillating
screen S2, which increases the drift space. The scintillating screen is thus placed at either 52mm
or 302 mm behind the exit plane of the magnet. The exact magnetic field map in the central
plane was measured with a calibrated Hall sensor and the deflection from the propagation axis
was traced for electrons of different kinetic energy using the software package General Particle
Tracker [139], including the magnet’s fringe fields. The dependence between this vertical deflec-
tion and the electron energy is shown in Fig. 4.6b. Due to the finite size of the milled-out portion
of the vacuum chamber’s last door, only deviations up to ≈ 30 cm can be observed. When the
drift extension is used, this corresponds to a low energy cut-off of the spectrometer for electron
energies . 190 MeV, without the additional drift space the cut-off is . 110 MeV.

The scintillating screen of type CAWO OG 16 [140] allows for an absolute measurement of the
impinging beam charge using a layer of rare earth phosphors with a decay time of the metastable
excited state on the order of 1ms, which mainly decays by emission of photons with λ = 545nm.
These screens exhibit a constant energy deposition for electron energies above 10 MeV and a
linear response to the charge density, such that for relativistic energies the detected luminescent
signal directly corresponds to the bunch charge1. Previous work by Buck et al. [141] established
an absolute calibration of the screen, referenced to a constant light source. The latter is composed
of tritium capsules covered with a fluorescent dye, which is excited by the tritium’s beta decay.
From the recorded CCD images, the relative brightness of the constant light source allows to ob-
tain an absolutely calibrated electron energy spectrum for each shot, independent of the imaging
optics.

1. The response is linear for charge densities below 32.9pC/mm2 [141]. Above this threshold, the screen saturates
and may suffer from irreversible damage, which is currently investigated. However, the experimentally obtained
charge densities are usually far below this saturation limit at the position of the screen S2.
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Pointing and divergence

An additional scintillator screen S1 could be inserted in front of the dipole magnet to monitor
the electron beam pointing and the transverse projection of the beam profile. The screen was
imaged by a second CCD camera equipped with a 550 nm central wavelength bandpass filter,
which transmits the fluorescent signal but is opaque for the laser wavelength. The screen allows
to obtain the (energy integrated) divergence of the electron beam, taking into account its distance
to the exit of the gas cell, which amounts to 1.46 m. The screen is only inserted if needed, as
it leads to scattering of the electron beam and thus causes an increased beam divergence that
reduces the spectrometer’s energy resolution.

4.5 CTR diagnostics
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Figure 4.7: Rendering of the CTR diagnostics. Accelerated electrons (dark blue) leaving the gas cell gen-
erate coherent transition radiation (light blue) when they traverse the steel tapes. Forward CTR from the
2nd tape is separated from the co-propagating electron bunch, collimated by an off-axis paraboloid, split
by silicon wafers and directed into 3 optical spectrometers covering a spectral range from 0.4−7.1 µm.

A schematic drawing of the CTR diagnostics is given in Fig. 4.7. The CTR radiator was re-
alized by introducing a pair of steel tapes (20 µm thick, 12.5 mm wide) into the electron beam
path, positioned 56 mm behind the gas cell entrance. Both tapes were attached to a motorized
tape drive. Before each shot the tapes were advanced to provide a clean, undamaged surface.
The 1st tape served the purpose of blocking the residual laser light as well as any thermal sig-
nal or plasma recombination glow and ensured that no such signal could reach the back of the
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2nd tape, which served as the actual CTR radiator. The tapes with a thickness of 20 µm each
were chosen thick enough to avoid puncture by laser ablation but as thin as possible in order
to avoid excessive degradation of the electron bunch divergence, which would deteriorate the
resolution of the electron energy spectrum. Forward CTR generated at the downstream side of
the 2nd tape was separated from the co-propagating electron beam by a reflective aluminium-
coated pellicle positioned 10 cm behind the tape and collimated by a f/3.75 off-axis paraboloid
with an effective focal length of feff = 19.05 cm. The beam was then split by silicon wafers
and reflected to three individual spectrometers. The duration of LWFA electron bunches was
expected to reside in the few femtosecond range (which was confirmed during the course of this
work by ref. [21, 22]), which corresponds to wavelengths of peak CTR emission in the mid-
infrared region. Since in this range commercial spectrometers are not widely available, the main
CTR diagnostic was constructed as a custom-built spectrometer sensitive to mid-infrared wave-
lengths in the range of 1.7− 7.1 µm. Its design is based on a similar instrument that had been
developed at DESY [142] and its detailed description will be given in section 4.6. This spec-
trometer was supplemented by two additional commercial imaging spectrometers that extended
the wavelength coverage towards higher frequencies. The near-infrared part of the spectrum
was covered by an Acton SP2150i imaging spectrometer equipped with a Princeton Instruments
OMA-V 1024-element linear InGaAs photodiode array. The liquid nitrogen cooled diodes fa-
cilitated measurements in the wavelength range of 1.1− 1.8 µm. The range of 420− 1096 nm
was covered by a Oriel MS260 imaging spectrometer coupled to an Andor CV 420-OE silicon
CCD camera with 1024×256 pixels. Accordingly, these will be referred to as the mid-infrared,
near-infrared and visible spectrometer.
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Figure 4.8: Optical properties of a silicon wafer of 1 mm thickness. (a) Reflectivity, transmitivity and
absorption in the optical range. Reflective index data taken from ref. [143, 144]. (b) Transmission in the
mid-infrared range (image taken from www.tydex.ru [145]). Deviations from a flat transmission in the
range of 6.5−25 µm are due to the silicon lattice absorption band.

All spectrometers employ diffraction gratings, whose first diffraction order is used for wave-
length separation. To avoid ambiguities in the measured spectra, the contribution of higher
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diffraction orders has to be avoided, effectively limiting the bandwidth of a single grating to
one octave. In order to distribute the CTR beam to the different spectrometers, silicon wafers
were chosen as beam splitters as they possess the favourable feature of low-pass filtering the
transmitted beam. The optical properties of silicon regarding transmission, reflection and ab-
sorption are shown in Fig. 4.8. For visible to mid-infrared wavelengths a reflectivity & 30 % is
obtained, while the transmission is limited to photon energies below the silicon band gap, i.e.
λ & 1.1 µm.

Exploiting these properties, a first silicon wafer of 1 mm thickness was used to reflect a part of
the CTR through a glass window out of the vacuum chamber. The transmitted beam was directed
to the mid-infrared spectrometer, which was directly connected to the main vacuum chamber. To
obtain a flat transmission of approx. 55% in the relevant spectral range from 1.7−7.1 µm, high
purity silicon wafers produced by float-zone crystal growth were chosen. The transmission curve
provided by the manufacturer is shown in Fig. 4.8b.

The collimated beam reflected outside the experimental chamber was refocused by a lens ( f =
60 cm, f/5.9) and split by a 2nd silicon wafer of similar type. The reflected part was focused on
the entrance slit of the visible spectrometer and the transmitted radiation was focused on the slit
of the near-infrared spectrometer. In the latter, the contribution of high order diffraction of the
visible part of the CTR spectrum as well as of stray laser light was avoided, due to the low-pass
characteristic of the wafer. High order diffraction of any UV light in the visible spectrometer did
not contribute to the signal because of the sharp drop in quantum efficiency of the silicon CCD
detector for wavelengths below 400 nm.

4.6 The mid-infrared spectrometer

1st order

grating

0th order

incoming CTR beam

1st order

pyroelectric detectors 
+ focusing parabolic
    ring mirrors

beam 
dump

Figure 4.9: Layout of the mid-infrared spectrometer.

Since the peak of the CTR spectral intensity (dW/dλ) was expected in the near- to mid-infrared
region, a suitable spectrometer was needed for a meaningful measurement of the bunch’s form
factor. To this end, a custom spectrometer was built up, which relies on pyroelectric crystals
for CTR detection. In contrast to semiconductor detectors like CCD cameras (for which the low
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4. Experimental Setup

frequency detection limit is given by the material’s bandgap), these offer good sensitivities over
a wide spectral range in which the response is proportional to the energy of the absorbed radia-
tion. As their response is mainly determined by the temperature change induced by the incoming
radiation, these are in principle sensitive to radiation of arbitrary wavelength.

The mid-infrared spectrometer is based on a similar instrument developed at DESY in the group
of B. Schmidt. Its detailed description can be found in ref. [113, 142, 146]. For the spec-
trometer set up in the course of this work, the building blocks consisting of pyroelectric crystal
arrays, electronic pre-amplifiers, shaper boards and ring-shaped focusing mirrors were supplied
by DESY.

4.6.1 Working principle
The spectrometer is based on plane blazed reflection gratings and specifically designed ring mir-
rors that focus the dispersed radiation onto pyroelectric line arrays. Such an assembly constitutes
one stage of the spectrometer. By tailoring the gratings’ groove density, blaze angle and radiation
incidence angle, a high efficiency for 1st order diffraction can be obtained while the grating can
act simultaneously as a low pass filter for the specularly reflected beam. This allows a broadband
spectral coverage by a sequential arrangement of multiple grating stages.

The staged setup requires a careful design of the gratings’ diffraction efficiency. In particular, the
wavelength range dispersed in each stage should be maximized. Simultaneously, an overlap with
higher diffraction orders has to be avoided and long wavelength radiation should be specularly
reflected with high efficiency in order to be analysed in a subsequent stage.

Grating normal

+ - Reflected lightIncident light

β-1

β1
β0

α
Diffracted lightDiffracted light

d

θb

Figure 4.10: Diffraction by a blazed reflection grating. The angle of incidence α and diffraction angle
β are defined with respect to the grating normal and the sign convention is indicated by the + and −
symbols. Also shown is the blaze angle θb, which strongly determines the grating’s diffraction efficiency.

For this purpose we start with the well-known grating equation that describes the wavelength
dependence of the diffraction angle

sinα+ sinβm =
mλ

d
. (4.1)

Here, α denotes the angle of incidence, βm is the propagation direction of the mth diffraction
order (both angles are measured relative to the grating normal) and d is the grating’s groove
period, as depicted in Fig. 4.10. For m = 0, the solution is independent of λ and describes the
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4.6 The mid-infrared spectrometer

0th order specular reflection. For m 6= 0, the spectral components of the incident radiation are
dispersed in different directions. Based on eq. (4.1), the dispersive power can be defined by

dβm

dλ
=

m
d cosβm

(4.2)

and specifies the grating’s ability to separate different wavelengths. We will first mention a cou-
ple of aspects that are easily seen from these equations. First, the larger the angle of diffraction,
the higher is the dispersive power, meaning that the spectral bandwidth diffracted into a certain
solid angle is diminished. Second, diffraction into higher order yields better resolution but, on
the other hand, the dispersed wavelengths range is maximized for m = 1. Third, these effects
scale with λ/d, thus it is sufficient to model one stage and adequately scale the groove period of
subsequent stages.

One problem imposed by eq. (4.1) is the identical diffraction angle of different orders m if the
product mλ is the same. To obtain a unique correspondence between λ and βm, higher order
wavelengths have to be filtered out beforehand. We will see shortly that the problem of higher
order diffraction can be resolved with a special design in which multiple grating stages with
appropriately engineered diffraction efficiencies are used.

Diffraction efficiency

The diffraction efficiency η of a grating is defined as the optical power P of monochromatic light
diffracted in a certain order relative to the incident power P0:

η =
P
P0

. (4.3)

In general, η is dependent on the surface geometry (determined by the blaze angle θb), the inci-
dence angle, the polarisation and the surface coating. A great amount of control is attainable by
modifying θb. The calculation of η is cumbersome and usually performed numerically solving
the Maxwell equations at the surface of the grating. For the calculations presented in this work
the code Multilayer Rigorous Coupled Wave Analysis was used [147].

For the case of the present single-shot spectrometer, the incidence angle needs to be fixed and a
maximum usable spectral range is desired. The efficiencies have to be optimized to simultane-
ously fulfil the following requirements:

• the spectral range dispersed into the 1st order is maximized and the angles of emergence
do not overlap with the incidence angle

• in this wavelength range diffraction into the 1st order is efficient

• the arrangement acts as a low-pass filter for wavelengths longer than the dispersive window
which are specularly reflected and analysed in a next stage.

In ref. [113, 146] an optimized solution was found for p-polarised light at an incidence angle of
approx. 20◦ and a blaze angle of 27◦.
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Figure 4.11: Diffraction efficiency for different orders of a blazed reflection grating for (a) p-polarisation
and (b) s-polarisation.

In Fig. 4.11, the calculated grating efficiencies for these parameters are plotted over λ/d for
p- and s-polarisation. For p-polarisation (for which the electric field is perpendicular to the
grating grooves), a high efficiency η > 80% is obtained for m = 1 in the dispersive window
from λ/d = [0.74− 1.32] and consequently the leakage into the 0th order is η < 20%. For s-
polarisation, a high efficiency is obtained at the beginning of the dispersive window, which then
continually drops at the expense of an increased reflection. In both cases, long wavelengths
λ > d(1+ sinα), for which the only solution to eq. (4.1) is given by m = 0, are specularly re-
flected. Although the efficiency curves of p-polarised light are more favourable for the cascading
principle, in this work the use of polarisers was avoided for two reasons. First, highly transmis-
sive polarisers were not available in the required broadband spectral range and the detectable
energy would have not only been reduced by disregarding the s-polarised component but also
by the transmission losses. Second, since in this wavelength regime calibrated light sources and
detectors are not easily accessible, the usually non-flat, frequency dependent transmission curve
of a polariser would lead to an additional measurement uncertainty. It was therefore opted for
taking both polarisations into account.

The mid-infrared spectrometer employs a two-stage setup. For the second stage, the requirements
defined above are more relaxed because the reflected 0th order does not need to be transported
to a subsequent stage. Here, an incidence angle of α = 5.8◦ and a blaze angle of θb = 13◦ were
chosen, which yields a broader usable wavelength range of λ/d = [0.34−1.09] (cf. Fig. 4.13b).
The optimal grating parameters are summarized in table 4.1.

G [1/mm] θb[
◦] α[◦] β[◦] λ [µm] λ/d

filter grating 830 27 20.7
1st stage 497 27 20.7 23−75 1.5−2.7 0.74−1.32
2nd stage 150 13 5.8 14−82 2.3−7.3 0.34−1.09

Table 4.1: Grating parameters used for the two stage mid-infrared spectrometer. G = 1/d denotes the
groove density, λ and λ/d is the usable wavelenth range for 1st order diffraction and β denotes the cor-
resonding range of diffraction angles.
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1st stage

2nd stage 0th grating

Incoming 
CTR 
beamBeam

dump

Figure 4.12: Cascaded spectrometer setup. Each grating disperses a particular wavelength range and
acts as a low-pass filter for the subsequent stage. In principle the concept allows for the sequence of an
arbitrary amount of stages and a single-shot spectral coverage much broader than one octave.

As seen from Fig. 4.11, short wavelengths (λ/d = [0.74− 1.32]/2) diffracted with high effi-
ciency into the 2nd order can interfere with 1st order diffraction. Therefore, it is necessary to
filter this wavelength range by using a preceding grating as a low pass filter. A sketch of the final
cascaded setup is shown in Fig. 4.12. At each grating stage, the respective wavelengths of the
polychromatic CTR beam are dispersed into the 1st order and longer wavelengths are reflected
into the 0th order. In the next stage the subsequent wavelength range is analysed. The groove
period d is chosen such that the longest diffracted wavelength equals the minimal wavelength of
the subsequent stage. The 0th grating is used as a low pass filter to avoid second order diffraction
in the 1st stage. In addition, wavelengths below 1.1 µm were blocked by the silicon wafer.

The combined final diffraction efficiency of all three gratings at the 1st and 2nd stage, including
transmission losses from the preceding gratings, is shown in Fig. 4.13. In both stages the erro-
neous signal due to higher order diffraction is limited to less than 20%. Furthermore, it may be
inferred from the spectrum measured by the near-infrared spectrometer and subtracted from the
measured signal to correct for the imperfect low-pass characteristics of the preceding gratings.
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Figure 4.13: Total diffraction efficiency of the three grating setup at (a) the first and (b) the second grating
stage. The contribution of higher orders (for short wavelength radiation) is due to the imperfect low-pass
characteristic of the preceding grating(s).
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4.6.2 Detection system
The angularly dispersed radiation is collected by specifically designed ring mirrors and detected
by pyroelectric line arrays. These components together with the customized read-out electronics
have been developed and supplied by DESY and shall only be briefly described here. More
details can be found in the original work described in ref. [113, 146].

Parabolic ring mirrors

Parabola

Ring
mirror

zR

z

f

(a)
Detector 

array

Polychromatic
beam

Grating

Parabolic
ring mirror

(b)

Figure 4.14: Sketch of the parabolic ring mirror used in the mid-infrared spectrometer to focus the inci-
dent CTR onto the pyroelectric detectors which are arranged in an arc. Image credit: Wesch [113].

In the experiment, the spectrally dispersed radiation has to be focused onto the individual py-
roelectric crystals, where each angle of emergence corresponds to a monochromatic, collimated
beam diffracted by the grating, and the focusing optic needs to cover the usable wavelength range
dispersed by each grating. For this purpose specific ring mirrors were designed by DESY which
are sketched in Fig. 4.14. In vertical direction these exhibit a 90◦ off-axis parabolic shape needed
for optimal focusing. In the horizontal direction (the dispersion plane), this two-dimensional
shape is rotated around the center of the grating by 60◦, resembling the segment of a circle. The
radius zR of the circle (and therefore its focal length) as well as the focal length f of the off-axis
parabolic shape are 150 mm. In this way focusing is achieved in both planes, approximating an
ideal focal spot [113].

Pyroelectric line arrays & readout electronics

In the detection plane, the spectrally resolved beam is focused on the individual pyroelectric
crystals. Figure 4.15 shows a schematic drawing of the line array that has been manufactured
by InfraTec [148]. Each pyroelectric element of type X003 has a surface area of 2×2 mm2 and
consists of a specially coated LiTa03 crystal. One array contains 30 such elements arranged in a
circular arc of radius R = 150 mm with a spacing of 5 mm. The arc covers an angle of 55.4◦ and
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Figure 4.15: Schematic drawing of (a) the line array consisting of 30 individual pyroelectric crystals
arranged in an arc, which is placed below the parabolic ring mirror as shown in (b).

is placed below the ring mirrors as illustrated in Fig. 4.15b.

The signal from the pyroelectric detectors is then amplified and shaped by custom circuit boards.
A pre-amplifier board directly connected to the line array amplifies the signal using commercial
Cremat CR100 charge sensitive amplifiers within the vacuum chamber. The differential signal
is conducted by twisted pair cables to shaper amplifiers (Cremat CR200) placed outside the
chamber and digitized by peak-sensing ADCs (Caen V78) with 12 bit resolution.

4.7 Laser beam alignment
The laser propagation axis in the experimental chamber was referenced by two marks. An aper-
ture introduced into the laser beam allowed to align the position of the beam center to crosshairs
marked on the backside of the focusing paraboloid. The second reference point was the beam’s
focal position, which was imaged by a CCD camera equipped with a 20x microscope objective.
This procedure determined the beam direction.

The CTR diagnostics and involved optics were first aligned on air using a He-Ne laser referenced
to the laser beam path. The incidence angle on the gratings of the mid-infrared spectrometer was
determined by observing multiple higher order diffraction angles with respect to the pyroelec-
tric elements. Since the angle between individual elements of 1.6◦ is known, fitting the grating
equation (eq. (4.1)) to the diffraction orders allowed to determine the incidence angle as well
as the angle of the individual pyro-detectors with respect to the grating normal to within 0.5◦.
This translates to an absolute error in wavelength calibration of less than 2.5%. Further, three
reference points (crosshairs imaged by a CCD camera) for the mid-infrared spectrometer were
set: one at the entrance of its vacuum chamber and one before each of the two grating stages.
The first crosshairs possessed a hole with a diameter of ∼ 0.5 mm, which allowed to observe the
beam pointing on the subsequent reference marks.
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Under vacuum, the alignment of the CTR beam path was simplified by the fact that the electron
beam co-propagates with the laser beam. The CTR beam thus overlaps with the laser axis and,
by removing the tapes, its beam path under vacuum could be easily readjusted by aligning the
center of the attenuated laser beam on the reference marks with the help of CCD cameras. The
same procedure was also used to align the CTR beam to the entrance slits of the visible and
near-infrared spectrometers.

4.8 Spectral response
The spectral response of the two commercial spectrometers in the visible and near-infrared range
was established by the use of a blackbody radiatior (Lot-Oriel LSB150) and a tungsten halogen
lamp (Ocean Optics HL-2000-CAL). Since both sources were placed at the position of the CTR
radiator, this calibration takes into account the frequency response of the imaging optics, the
detectors, the gratings’ diffraction efficiencies as well as the silicon wafers’ transmission and
reflection coefficients. The wavelength calibration was performed using the first three diffraction
orders of a He-Ne laser. An absolute sensitivity calibration of the visible spectrometer was
established using the He-Ne laser in conjunction with a chopper wheel. From the spectral overlap
with the near-infrared spectrometer, an absolute calibration of the latter could be established as
well.

The spectral response of the mid-infrared spectrometer was determined based on the calculated
grating efficiencies, the mirror reflectivities, the transmission of the silicon wafer, the spectral
bandwidth covered by each pyro-element and the spectral response of the pyro-elements (as
determined by Behrens [149]). A detailed description of this procedure is given in Appendix A.
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Chapter 5

Transmission of CTR through the detection
optics

Besides the calibration of the spectral response of the individual elements involved in the di-
agnostic setup, the amount of detected CTR is further dependent on the CTR emission charac-
teristics and its propagation along the imaging optics involved in the detection system, as the
apertures of its components, diffraction of the beam and the size of the focal spot finally deter-
mine the amount of radiation that is incident on each detector pixel. Moreover, CTR is not only
produced at the tape but also at the reflective pellicle, which was used to separate the CTR from
the electron beam. This could possibly lead to interference effects between both sources and
impact the measured spectrum. Therefore, the spectral transmission function of the detection
system and the contribution of both CTR sources was modelled by a Fourier optics transport
calculation, which is described in the following.

5.1 Fourier optics beam propagation
Recalling eq. (3.15), the complex CTR field amplitude in an observation plane with coordinate
rrr1 = (x1,y1) that is placed at a distance z from the source plane (with coordinate rrr0 = (x0,y0))
can be calculated by the Huygens-Fresnel principle

E‖/⊥(rrr1,ω) =−
ik
2π

∫
S

∫
E‖/⊥(rrr1,ω)

exp(ik|rrr1− rrr0|)
|rrr1− rrr0|

drrr , (5.1)

where ‖ and ⊥ denote the orthogonal linear polarisation components.
For a Cartesian coordinate system on both planes, the distance |rrr1− rrr0| is given by

|rrr1− rrr0|=
√

z2 +(x1− x0)2 +(y1− y0)2 . (5.2)

Together with the source field given in eq. (3.12), the field distribution at any distance of the
observation screen with z� λ can be evaluated.

When optical elements that modify the wavefront (appertures, lenses, etc.) are introduced in
the beam path, the propagation has to be performed in a stepwise manner. First, the complex
field amplitude is evaluated at the entrance plane of the optical element. After accounting for
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5. Transmission of CTR through the detection optics

the wavefront modification imposed by this element, the field is then propagated to the entrance
plane of the next element. Apart from simple model cases, this calculation has to be performed
numerically. This is also the case in the present application, since the CTR near field expression
of eq. (3.28) does not possess an analytical solution.

The exact calculation of the Huygens-Fresnel integral of eq. (5.1) is computationally expensive.
A more usable expression can be obtained by applying the so-called Fresnel approximation,
which is based on the expansion of the square root of eq. (5.2) up to 2nd order [110]

r01 =

√
z2 +(x1− x0)

2 +(y1− y0)
2

≈ z+
x2

1 + y2
1

2z
− x1x0 + y1y0

z
+

x2
0 + y2

0
2z

.
(5.3)

The Fresnel approximation is valid when the distance between the source and the observation
screen is large compared to the transverse extent of the field distribution. Plugging above expres-
sion into eq. (5.1) we finally obtain the Fresnel diffraction integral

E(x1,y1,z) =−
ik

2πz

∫ ∫
E(x0,y0,0)exp

[
ik
2z

(
(x1− x0)

2 +(y1− y0)
2
)]

dx0 dy0 , (5.4)

where an absolute phase factor exp(ikz) has been neglected.

Propagation by Fourier transformation

Equation (5.4) can be rewritten in the form

E(x1,y1,z) =−
ik

2πz
Pz(x1,y1)

×
∫ ∫

E(x0,y0,0)P0(x0,y0)exp
[
−ik

(
x1x0 + y1y0

z

)
dx0 dy0

]
(5.5)

with

Pz(x,y) = exp
[

ik
2z

(
x2 + y2)] . (5.6)

The field propagation along a distance z can thus be calculated by a two-dimensional Fourier
transform for which efficient algorithms exist. The propagated field is found by multiplying the
source field by a phase term P0(x0,y0), subsequent Fourier transformation with the transverse
wave numbers kx = kx1/z and ky = ky1/z, followed by multiplication with a further phase factor
Pz(x1,y1). These phase terms account for the near-field diffraction. Note that in the case z�
k
(
x2 + y2) the phase factor Pz ≈ 1 and the far-field Fraunhofer diffraction equation is recovered.

Phase shift by optical elements

Due to their surface curvature, focusing optics introduce a relative path length difference on the
beam as a function of its distance from the optical axis of the element. This imposes a varying
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phase shift in the transverse plane. At the exit plane of the optical element, this phase shift is
added to the incident beam, i.e

E(x,y)exit = E(x,y)entrance exp(iϕ(x,y)) . (5.7)

The phase term introduced by a parabolic mirror can be derived from the geometrical path dif-
ference between rays traveling at a distance r =

√
x2 + y2 to the optical axis. For a paraboloid of

focal length f it is given by [104]

ϕ(r) =−k
r2

2 f
. (5.8)

5.2 Model representation

Figure 5.1: Schematic setup of the experiment (top) and modelling representation (bottom). In the case
of the mid-infrared spectrometer, a grating (not drawn) in the 2 m propagation leg provides spectral sep-
aration to different detector pixels. The aluminium coated pellicle is roughly at half the focal distance
from the first collimating optic, which leads to a large difference in wavefront curvature between the CTR
beams from the tape and the pellicle. In the sketch, the divergences are strongly exaggerated.

The imaging system used in the experimental setup collects CTR produced at the radiator foil
with a collection half-angle of 133mrad defined by the f-number of the first collimating paraboloid.
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5. Transmission of CTR through the detection optics

Subsequently the CTR beam is split and transported to the three spectrometers, where the spec-
trally dispersed radiation is focused onto the respective detector pixels. The beam path is made up
of the following distinct optical elements: plane mirrors, paraboloids, gratings and the parabolic
ring mirrors. Since the calculation is performed for distinct CTR frequencies, the gratings that
spectrally disperse the incident CTR are treated as normal plane mirrors, since no spatially de-
pendent phase term is introduced in the diffracted monochromatic beam. The same is true for
plane mirrors. Thus, only the parabolic mirrors introduce transversely varying phase factors that
account for collimation and focusing of the CTR beam.

Figure 5.1 shows a schematic of the optical path and the representation of the setup used in the
numerical calculation. The main purpose of the beam propagation is to quantify the frequency
dependent CTR energy that is transported through the detection optics and focused on the de-
tectors. Furthermore, as sketched in Fig. 5.1, CTR is not only produced at the tape but also at
the reflective pellicle, which was needed to separate the CTR radiation from the electron beam.
Although collection of CTR behind the electron spectrometer (where the electron bunch would
have been deflected by the magnet from the CTR beam path) would have allowed to avoid the
pellicle, the latter was needed in order to obtain a large collection angle, which ensured sufficient
count rates on the pyroelectric detectors while avoiding excessively big optics. Moreover, separa-
tion of CTR from the electron beam before the electron spectrometer magnet prevented parasitic
synchrotron radiation produced by the deflected electron beam from reaching the spectrometers.

Transmission function

Recalling eq. (3.49), the form factor is related to the emitted spectral energy by

dW
dω

∝ N2|F‖(ω)|2
∫

Ωmax

∣∣∣∣∫ EEE(ω, ppp)g(ppp) dppp
∣∣∣∣2 · |F⊥|2 dΩ , (5.9)

where Ωmax denotes the solid angle of collection. We now have to quantify the spectral energy
emitted by the electron bunch that is actually transferred to the detection plane. Therefore, we
introduce the spectral transmission function T (ω, ppp) of the detection optics that describes the
propagation of the collected CTR to the detection plane. Integrating over the area of one detector
pixel, the detected spectral energy is related to the form factor by

dW
dω

= N2 ∣∣F‖(ω)∣∣2 2ε0c
∣∣∣∣∫ g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp

∣∣∣∣2 . (5.10)

Simple rearrangement yields the magnitude of the longitudinal form factor:

∣∣F‖(ω)∣∣2 = dW/dω

2ε0cN2 |
∫

g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp|2
. (5.11)

By measurement of the electron energy spectrum and the transverse density distribution of the
electron beam, the momentum distribution g(ppp) and the transverse form factor F⊥(ω) can be
determined experimentally. Thus, with the knowledge of the transmission function T (ω, ppp), the
absolute value of the longitudinal form factor can be obtained from the measured CTR spectrum.
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5.3 Numerical calculation
In the following, the calculation of the denominator of eq. (5.11) is described in detail. Since the
electron energy spectrum varies dependent on the experimental conditions, the calculation has to
be performed for each single shot. As a complete numerical calculation of the CTR propagation
for each shot is not feasible, the relevant experimental parameter space was divided into discrete
steps. The parameter space includes the CTR frequency, electron energy, and transverse beam
size. The latter varied in a controlled manner due to the different length settings of the gas cell,
which resulted in a variation of the distance between the gas cell exit and the fixed radiator foil
and consequently in a different transverse beam size at the CTR radiator.

The calculation was performed for 64 evenly spaced frequency intervals covering the measured
spectral range from 0.4−16µm, 15 electron energies in the detection range from 125−825MeV
and 12 different transverse sizes of the electron beam, corresponding to the discrete distances
between the exit of the gas cell and the radiator foil. For each unique set of parameters, the TR
field pattern was propagated from the source to the detection plane.

As illustrated in Fig. 5.1, the calculation was done in a stepwise procedure. In the first step,
the CTR spectral amplitude and phase in the near-field originating from the two sources (tape
and pellicle) are computed at the entrance plane of the first lens according to eq. (3.29). In
the calculation of the denominator of eq. (5.11) the longitudinal form factor is not considered
(F‖(ω) = 1), and thus the electron beam is modelled as a mono-energetic sheet of unit charge. Its
transverse size at both radiators is given by the distance between the entrance plane, the position
of the radiators and the divergence of the beam. The mutual phase delay φ between both beams is
taken into account, given by the velocity difference between electrons and TR times the distance
d between tape and pellicle: φ = 2πd/2γ2λ. This step yields the radially symmetric complex
amplitude of both beams at the entrance plane of the first paraboloid. Their spectral fluence is
plotted in Fig. 5.2a. Due to the radial symmetry and the radial polarisation, the emission on axis
cancels, which leads to a doughnut shaped beam. In a second step, the wavefront modification
introduced by the collimating paraboloid is applied to the fields and both beams are propagated
over 2 m to the entrance plane of the focusing optics. The spectral fluence at this position is
displayed in Fig. 5.2b. In the third step, after applying the phase modification introduced by
the second paraboloid, a further beam propagation of the complex amplitudes yields the field
distribution of both beams in the detection plane. The radial lineouts of the focus distributions
are plotted in Fig. 5.2c.

In the last step, as the field distribution for each point of the parameter space has been calculated,
the denominator of eq. (5.11) is evaluated for each shot. The integral of eq. (5.11) with respect
to p is performed by binning the measured electron energy spectrum g(p) into 50 MeV steps.
Finally, the detected spectral energy is obtained by integrating the fluence over the area of each
detector pixel.
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(a)

(b) (c)

Figure 5.2: Spectral fluence of CTR on the detection optics. (a) shows the spectral fluence on the entrance
plane of the first paraboloid, (b) on the entrance plane of the second paraboloid and (c) in the detection
plane. The beam pattern is radially symmetric and radially polarised. An electron energy of 525MeV and
a divergence of 1.4 mrad FWHM is assumed.

5.4 Discussion

As seen in Fig. 5.2c, CTR from the tape is well focused in the detection plane compared to the
beam from the pellicle, which forms a much larger spot due to its origin far from the geometrical
object plane of the detection optics. The region of radii where interference can occur is limited
to the very outer parts of the beam from the tape and inner parts of the beam from the pellicle.
For both beams the finite transverse size of the electron bunch at the two radiators leads to a
suppression of high frequency radiation into large angles due to reduced transverse coherence
as F⊥(ω,θ) < 1. This effect is more pronounced for CTR emerging from the pellicle since the
electron bunch’s transverse size has approximately tripled compared to its size at the tape.
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Figure 5.3: Transmitted spectral energy incident on the detector. (a) shows the computed spectral fluence
integrated over one pixel of the detector. Plotted is the respective CTR energy from the tape and pellicle
itself and their coherent sum for an electron energy of 525 MeV. (b) shows the combined signal from both
radiators for mono-energetic electron sheets of different energy. A distance between the exit of the gas
cell and the tape of 50 mm and a divergence of σFWHM = 1.4 mrad is assumed. The beam charge Q is
normalized to Q =−e.

Figure 5.3a shows the transmitted spectral energy produced individually at the tape and the pel-
licle as well as their coherent sum for an electron energy of 525 MeV in dependence of the CTR
frequency. The CTR signal from the pellicle is weaker compared to that from the tape, because
of the increased transverse electron beam size at the position of the pellicle and due to its lack
of collimation after the first lens, such that only a part of the radiation is collected by the free
aperture of the 2nd lens and focused onto the detector.

The combined signal of both radiators is shown in Fig. 5.3b for different electron energies. For
fixed ω, the curves roughly resemble the lnγ dependence of the radiated energy expected from
eq. (3.25). The knowledge of the transmission curves together with the measured electron energy
spectrum finally allows to obtain

∣∣F‖(ω)∣∣ from the measured CTR spectrum by eq. (5.11).

Interference effect

The distribution of CTR emitted from the two radiators leads to interference in the detection plane
due to the geometrical path difference to both sources. An additional energy-dependent relative
phase is acquired by the difference between the particles’ velocity and the radiation velocity c
while propagating the distance d between both radiators, with the effective path difference given
by d/(2γ)2. The coherent enhancement due to interference between both radiation fields can be
quantified by an

Enhancement factor =
∫ ∣∣Et +Ep

∣∣2 dA∫
|Et |2 +

∣∣Ep
∣∣2 dA

, (5.12)

where Et and Ep denote the electric field of the beams from the tape and the pellicle, respectively.
The result is plotted in Fig. 5.4.
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5. Transmission of CTR through the detection optics

Angular frequency [rad/s] ×10
15

0 1 2 3 4

E
n
h
a
n
c
e
m

e
n
t 
fa

c
to

r

0

0.5

1

825 MeV

725 MeV

625 MeV

525 MeV

425 MeV

325 MeV

225 MeV

Figure 5.4: Interference effect between both CTR radiators in the detection plane. The enhancement
factor as defined in the text is plotted for different electron energies.

For electron energies in the range of 225− 725 MeV, a maximum deviation of ±13% relative
to the incoherent sum of both beams in the relevant frequency range is preserved. The effect is
generally weak due to their different size in the detection plane, but more pronounced at higher
electron energies due to a better spatial overlap caused by the lower divergence (1/γ) of both
beams. The effective path length difference is small and for γ = 1000 and d = 10 cm amounts
to 50 nm. Due to the small absolute phase delay and little spatial overlap of the two beams, no
oscillatory behaviour with wavelength occurs.

The analysis shows that despite the contribution of two CTR sources, the spectral energy in the
detection plane is a smooth function of frequency. This is an important property as otherwise
possible oscillations would have to be resolved by all spectrometers and the exact distance be-
tween both radiators could strongly influence the measured spectrum. Furthermore, quantifying
the transmission of the detection optics is essential for an accurate determination of the absolute
value of F‖(ω) from the measured CTR spectrum. The measured form factor can then be fed to
the Bubblewrap algorithm to retrieve the longitudinal bunch profile ρ‖(z) for each shot.
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Chapter 6

Momentum and transverse spatial
distribution of LWFA electron bunches
from a length-variable gas target

As outlined in chapter 2, the dynamics of LWFA are governed by complex physical phenomena
including laser pulse compression, self-focusing, depletion, diffraction and electron dephasing,
many of which are inherently nonlinear and interdependent. As shown previously by Antonia
Popp [136], measurement of the electron energy spectra in dependence of the plasma length
allows to experimentally identify the process limiting acceleration at a specific density, be it
pump depletion or electron dephasing. In the present work, the experimental setup employed by
A. Popp was extended by the CTR diagnostics in order to simultaneously explore the dynamics
of bunch evolution after different target lengths.

In this chapter, we first analyse the electron beam divergence and spatial profile recorded by the
electron beam diagnostics to verify that the assumptions made in our model of the CTR emission
are justified. We will then discuss the evolution of the electron energy spectra of two scans of
the gas cell length conducted at different plasma densities. Experimental data of the longitudinal
bunch profiles obtained during these scans will be presented in chapter 7.

6.1 Beam divergence
As described in chapter 4, at the scintillator screen S2 positioned behind the dipole magnet the
bunch is energetically dispersed in the vertical direction. On the horizontal axis, a lineout of the
spatial profile and thus the energy dependent divergence can be evaluated after 2.2 m of propa-
gation.

Figure 6.1a shows this quantity obtained during a scan of the gas cell length in the range of
4− 14 mm. At each discrete cell length (distinguished by different colours) the mean energy-
resolved divergence is evaluated from 30 consecutive shots. The error bars show the shot-to-shot
standard deviation of each 30-shot dataset. As seen from the plot, the divergence is not influenced
significantly by the length of the gas cell as all data points agree with each other within the error
margin of ±1 standard deviation. In this experimental run, CTR was recorded simultaneously
with the scintillator screen images. Therefore, the double tape drive was inserted into the electron
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6. Momentum and transverse spatial distribution of LWFA electron bunches from a
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Figure 6.1: Energy resolved divergence θFWHM of the electron bunch in the horizontal plane (perpendicu-
lar to the polarisation of the driver laser) determined from images of the scintillation screen S2 behind the
spectrometer magnet. (a) shows the beam divergence with the CTR radiator inserted into the beam path
for a backing pressure of 70mbar, corresponding to n0 = 3.4×1018 cm−3. For each discrete length setting
of the gas cell a set of 30 consecutive shots was evaluated. Each such set is plotted in a different colour.
Markers show its mean value, error bars indicate the shot-to-shot standard deviation. Due to crossing the
steel tapes, the intrinsic divergence of the electron bunch is enlarged by multiple small-angle Coulomb
scattering inside the metallic foils. In (b), red markers show the bunch divergence determined from a
separate run under similar experimental conditions in which the tapes were removed from the beam path.
The data points thus reflect the actual beam divergence before crossing the tapes. For comparison, blue
makers show the divergence averaged over all gas cell lengths shown in (a). The dashed black line illus-
trates 1/γ. This scaling would apply to the bunch divergence (due to adiabatic damping) if the normalized
emittance would be conserved during acceleration.

beam path, which led to an increased angular distribution due to multiple small-angle Coulomb
scattering within the steel tapes. The divergence determined in this scan thus only demonstrates
its independence of gas cell length but is inappropriate to determine the bunch size at the tapes.

The intrinsic energy resolved divergence was therefore determined from a separate run in which
the steel tapes were removed from the electron beam path. A comparison of these two mea-
surements is shown in Fig. 6.1b. The values are significantly lower than those obtained with the
CTR radiator in place and approximately constant with θFWHM ∼ 1.4 mrad. Although adiabatic
damping1would imply that the divergence scales with electron energy by 1/γ (as indicated by the
dashed black line), this is not the case. The near constant divergence is therefore contradictory to
a purely longitudinal acceleration. The observed behaviour may be caused by a non-ideal shape
of the plasma cavity or direct interaction of the electron bunch with the rear of the laser field.

1. Adiabatic damping refers to the fact that during longitudinal acceleration the divergence decreases with increas-
ing energy because the ratio of transverse over longitudinal beam momentum is reduced.
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6.2 Phase space separability
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Figure 6.2: Projected transverse beam profile. Shown is a typical transverse beam profile observed at the
scintillator screen S1 (before the electron spectrometer magnet). White lines display its projection on the
x- and y-axis. The transverse profile is well approximated by a radially symmetric Gaussian distribution
as revealed by the Gaussian fit to the respective projections, shown by the red lines.

As described in section 4.4, a second scintillator screen (S1) could optionally be inserted in
front of the dipole magnet and allowed to monitor the transverse electron beam profile after
1.46 m of propagation. As exemplarily shown in Fig. 6.2, the transverse profile was found to be
approximately Gaussian and radially symmetric.

6.2 Phase space separability
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Figure 6.3: Sketch of the geometry used to determine the transverse charge profile before entering the
electron spectrometer magnet. Also shown is the position of the CTR radiator that (if inserted) was
positioned 42− 54 mm behind the exit of the gas cell (dependent on the length setting of the cell). Due
to the small source size, the beam diameter after the distance d1 and d2 is practically determined by the
beam divergence.

In chapter 3, we made the following assumptions about the separability of the electron bunch’s
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phase space distribution h(rrr, ppp):

h(rrr, ppp) = ρ(rrr)g(ppp) , (6.1)
ρ(rrr) = ρ‖(z)ρ⊥(r⊥) , (6.2)

g(ppp) = gp(p)gθ(θ)gφ(φ) , (6.3)

where the momentum and spatial distributions were defined by g(ppp) =
∫

hdrrr and ρ(rrr) =
∫

hdppp.
Thus, we had assumed that the phase space distribution h is fully separable by

h(rrr, ppp) = h(z,r⊥, p,θ,φ) (6.4)
= ρ‖(z)ρ⊥(r⊥)gp(p)gθ(θ)gφ(φ) . (6.5)

We now investigate the validity of these assumptions by analysing the possible correlations of
h = h(z,rrr⊥, p,θ,φ), where the respective projections of h on the coordinate axes z,rrr⊥, p,θ,φ are
denoted by ρ‖,ρ⊥,gp,gθ,gφ. The correlation coefficient cor(X ,Y ) is defined by

cor(X ,Y ) =
〈δX δY 〉√
〈δX2〉〈δY 2〉

, (6.6)

where 〈 〉 denotes the integral over the distribution function h. In the following, we use of the
conservation of the correlation coefficient under linear transformations

cor(a+b X ,Y ) = cor(X ,Y ) a,b ∈ R, b > 0 (6.7)

and make the assumption that the beam divergence is independent of energy and gas cell length,
as suggested by Fig. 6.1.

The source size of LWFA electron beams has been determined by various authors to be on the
order of a few µm [20, 150, 151]. This is much smaller than the size of the projected transverse
beam profile on the screen S1, which is given by sin(θFWHM)d1 ≈ 2 mm, as sketched in Fig. 6.3.
As a result, the electron charge distribution on S1 can be regarded as originating from a point
source and its transverse size is only dependent on the angular distribution of g(ppp).
The circular symmetry and beam size observed on the scintillator screen S1, which is consistent
with the energy resolved divergence of θFWHM ∼ 1.4 mrad, suggest that the momentum distri-
bution g(ppp) is circularly symmetric. The correlation coefficient cor(gp,gθ) vanishes because gθ

is approximated as being energy independent. Thus, the momentum distribution is separable by
g(ppp) = gp(p)gθ(θ)gφ(φ).

We now proceed to analyse possible correlations of h = h(z,rrr⊥, p,θ), starting with correlations
of ρ⊥ with g(ppp):
(i) It is crucial to realize that the actual CTR measurement takes place at the position of the tape,
where h has evolved from its shape inside the wakefield by free space propagation. As above, the
transverse spatial profile of the electron beam at the position of the radiator is only determined by
the beam divergence, because its transverse beam size of sin(θFWHM)d2 & 60 µm is much larger
than its source size inside the wakefield. Thus, ρ⊥(rrr⊥) = ρ⊥(r⊥)≈ d2gθ and

cor(ρ⊥,gθ)≈ cor(gθ,gθ) = 1 . (6.8)
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6.3 Energy evolution

However, as shown in subsection 3.2.4, the resulting transverse position-angle correlation has no
significant effect on the measured CTR spectrum.

(ii) Since ρ⊥ ≈ d2gθ and using our assumption that the beam divergence does not depend on
electron energy, i.e. cor(gp,gθ) = 0, we conclude

cor(ρ⊥,gp)≈ cor(gθ,gp) = 0 . (6.9)

After having treated the correlations of ρ⊥ with g(ppp), we are now left to investigate potential
correlations of ρ‖:
(iii) As observed in PIC simulations (to be presented in section 7.4), the electron bunch exhibits
some degree of longitudinal position-momentum correlation, which can be approximated by a
linear chirp. Hence, the longitudinal charge distribution of the bunch will be mapped to the
energy axis, i.e. ρ‖ ≈ a gp, where a denotes a proportionality constant. We therefore conclude
that inside the plasma

cor(ρ‖,gθ)≈ cor(gp,gθ) = 0. (6.10)

(iv) A similar argument leads us to conclude that ρ‖ is not correlated with ρ⊥:

cor(ρ‖,ρ⊥)≈ cor(agp,d2gθ) = cor(gp,gθ) = 0. (6.11)

Nevertheless, the free space drift from the plasma to the radiator will introduce a correlation
between longitudinal and transverse position, manifested by a curved beam shape due to a geo-
metric path difference to the radiator foil (cf. Fig. 6.3). However, as discussed in subsection 3.2.4,
the effect is negligible.

(v) The only correlation left is
cor(ρ‖,gp) , (6.12)

i.e. an energy chirp in longitudinal phase space. Its effect on the radiated CTR spectrum along
with the bunch lengthening of a chirped beam due to free-space propagation to the radiator foil
has been discussed in subsection 3.2.4. A possible energy chirp accounts for an error in the
retrieved bunch duration of < 15 %.

Within this error margin, our analysis shows that the assumption of phase space separability is
indeed justified.

6.3 Energy evolution
The evolution of the longitudinal bunch profile in dependence of the gas cell length L was stud-
ied in two detailed scans conducted at different plasma density. The densities were changed by
altering the nominal backing pressures of hydrogen at the gas cell reservoir (70 and 160 mbar),
corresponding to plasma electron densities of n1 = 3.4× 1018cm−3 and n2 = 7.7× 1018cm−3,
respectively. L was varied in discrete steps and 30 consecutive shots were recorded at each length
setting. In order to obtain an understanding of the dynamics involved in the acceleration process,
we now examine the evolution of the electron bunch energy spectra analogous to the analysis
presented by Popp [136].
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(a) (b)

Figure 6.4: Evolution of the electron energy spectra in dependence of the gas cell length for two scans
conducted at (a) n1 = 3.4×1018cm−3 and (b) n2 = 7.7×1018cm−3. For each discrete length setting, 30
consecutive electron spectra are plotted as thin vertical lines. Red dots show the average cut-off energy1

at each length, white dots show the average charge. Error bars show the respective shot-to-shot standard
deviation. In (a), the gas cell was scanned between 3 mm and 14 mm in 1 mm steps. In (b), the scan range
was 1.5−12 mm with uneven step sizes.

The electron energy evolution in dependence of the gas cell length is plotted in Fig. 6.4 for both
densities. At each discrete cell length, the individual electron spectra of 30 consecutive shots are
plotted as thin vertical lines. The average cut-off energy1 at each length setting is shown in red,
white dots show the average charge and error bars depict the shot-to-shot standard deviation. A
clear difference in the evolution of the cut-off energies is found between the two scans. For the
scan conducted at n1, a stagnation of the cut-off energies is found for L & 9 mm. In contrast,
the scan conducted at the higher plasma electron density n2 shows a different behaviour. After
reaching the maximum cut-off energies at L = 5 mm, further extension of the gas cell first leads
to a strong decline in electron energies, followed by a region of less pronounced deceleration for
L & 8 mm.

Dephasing length

The scans permit to infer the respective electron dephasing length Ld from the measured energy
spectra. Since in the nonlinear regime the longitudinal accelerating field Ez in the co-moving
frame is well approximated by a linear slope (cf. subsection 2.3.3), the corresponding potential
is of harmonic form. Once an electron gets injected at the rear side of the plasma cavity and is
accelerated to relativistic velocities, it progresses towards the laser driver with a relative velocity
of v≈ βc−vgr. When reaching the middle of the plasma bucket where the electric field changes
sign, it has travelled the dephasing length Ld , obtained the maximum kinetic energy and is subse-

1. The cut-off energy is defined as the highest energy for which the spectral charge density drops below 5 % of its
maximum value.
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Figure 6.5: Evaluation of the dephasing length Ld from the evolution of the electron cut-off energies.
Up to a certain gas cell length of (a) 10 mm and (b) 8 mm, the cut-off energies shown in Fig. 6.4 are
well reproduced by a weighted nonlinear least-squares fit to a parabolic function, where the fit weights
were given by the inverse shot-to-shot standard deviations. The relevant acceleration parameters are
summarized in table 6.1.

quently decelerated again. Within the approximation of a static, linear electric field before laser
depletion, its kinetic energy E in dependence of the acceleration length Lacc is given by

E =−1/2 e dEz/dz (Lacc−Ld)
2 +Emax (6.13)

where Lacc = L−Levo. The latter denotes the length needed for evolution of the laser and wake-
field properties before electron injection takes place. Figure 6.5 shows a fit of this model to the
measured cut-off energies. For both scans the data points are well approximated by the fit and
allow to deduce Ld . The fit parameters are summarized in table 6.1.

n0[cm−3] Ld [mm] Ez,max [GV/m] Emax [MeV] Levo [mm]

3.4×1018 9.0±0.3 144±23 646±6 0.13±0.5
7.7×1018 4.6±0.2 310±83 714±34 0.66±0.6

Table 6.1: Acceleration parameters obtained from a parabolic fit of the cut-off energies as shown in
Fig. 6.5. Levo denotes the gas cell length at which the fit curve crosses the E = 0 axis, which corresponds
to the position of electron injection and thus to the origin of the acceleration length Lacc. The peak
accelerating field at this position is given by Ez,max. Error margins specify the 1σ confidence interval.

Levo is determined by the crossing of the fit curve with the E = 0 axis. For the n2 scan, its rela-
tively large value, as compared to the lower density scan, indicates that a longer distance for laser
evolution is required before electron injection occurs. Although such effects are not included in
this simple model, it nevertheless shows a remarkable agreement with the energy evolution up to
a certain value of L, once electrons have been injected into the wakefield.
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Laser pump depletion length

In both scans, after a certain gas cell length, the electron energies deviate from a parabolic curve
and enter a regime characterized by a less significant energy variation. We therefore conclude
that the electron bunch is no more subjected to a strong longitudinal electric field at this stage
of the acceleration process. Thus, the laser intensity must have become too weak to drive a
substantial plasma wave. Otherwise, a further energy gain or loss, the latter due to dephasing,
would be expected.

While in the scan at n1 laser depletion approximately coincides with dephasing, this type of
energy loss is observed at n2. The adherence of the cut-off energies to a parabolic curve together
with the high deceleration gradient indicate that in the n2 scan a laser-driven wakefield is still
present after the dephasing length. Only for L ≥ 8mm the curve flattens as the laser depletes.
From Fig. 6.5, the laser pump depletion lengths Lpd are approximately given by Lpd(n1)∼ 10mm
and Lpd(n2) ∼ 8 mm. Consequently, for longer gas cell lengths, the electron bunch is expected
to co-propagate with the remnants of the diffracting laser pulse.

6.4 Comparison to theory
In the following sections we will now compare the experimentally observed behaviour with the
theoretical description presented in chapter 2.

Self-focused acceleration length

In vacuum, the waist of a Gaussian laser beam evolves by w = w0
√

(1+(z/zR)2, where w0 is
the beam waist and zR is the Rayleigh length given by zR = πω2

0/λ [152]. For the f/22 focusing
geometry used in the experiment, zR amounts to 1.37 mm. The measured energy evolution ob-
viously shows that the effective acceleration distance greatly exceeds zR and hence self-guiding
plays an important role. This is to be expected, as the provided laser power of ∼ 50 TW ex-
ceeds the critical power for self-focusing at the employed plasma electron densities, given by
Pc(n1) = 8.9 TW and Pc(n2) = 3.6 TW, respectively (cf. eq. (2.109)).

To effectively accelerate electrons up to maximum electron energies, self-focusing has to be
maintained over an acceleration length Lacc such that Lacc ∼ Ld . By eq. (2.113), this is assured
for an initial power of PLd = 1/8(ωL/ωp)

6/5 Pc. For the two scans, the necessary power is given
by PLd(n1) = 47 TW and PLd(n2) = 13 TW.
These values agree well with the experiment. For n1, for which the laser power approximately
equals PLd , the acceleration process terminates at Lacc ≈ Ld since the remaining power is insuf-
ficient to maintain self-focusing over a longer distance, which would lead to electron dephasing.
On the other hand, exactly this behaviour is observed at the higher plasma density n2, as in this
case the necessary power for self-focusing over Ld is greatly exceeded.

Dephasing and depletion lengths

As outlined in chapter 2, expressions for Lpd and Ld can be derived from one-dimensional ana-
lytic theory and are functions of n0, ωL and a0. Since the laser power provided in the experiment
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n0[cm−3] PLd [TW] a0,sf Lpd,exp.[mm] Lpd[mm] Ld,exp.[mm]
Ld,nonlin.

Ld,lin.
[mm]

3.4×1018 47 3.6 ∼ 10±1.5 12.8 9.0±0.3
12.9
9.3

7.7×1018 13 4.7 ∼ 8±1.5 3.7 4.6±0.2
4.5
2.4

Table 6.2: Comparison between the experimentally obtained values for the dephasing and depletion
lengths and the theoretical predictions of 1D linear and nonlinear theory according to eq. (2.117) and
eq. (2.119). The experimental value of Lpd is determined from the deviation of the cut-off energy evolution
from a parabolic curve and is estimated to be accurate to within ±1.5 mm. PLd denotes the initial laser
power needed to maintain self-focusing over Ld and a0,sf is the calculated peak laser vector potential after
self-focusing to a matched spot size is reached.

exceeds Pc, an increase of a0 due to self-focusing as well as temporal pulse compression is to be
expected and must be considered when determining the actual laser parameters present during
wakefield excitation. However, these effects are not included in the analytic theory in which a
non-evolving bullet-type driver is assumed.

Excluding temporal effects, the self-focused a0 can be roughly estimated by the following con-
siderations. On the one hand, the evolution of the laser waist due to self-focusing is given by
eq. (2.114):

w(z)2

w2
0

= 1+
(

1− P
Pc

)
z2

z2
R
.

On the other hand, a constant spot size is maintained if the matched condition of eq. (2.110),

kp w = 2
√

a0(w) ,

is satisfied. Neglecting energy loss due to pump depletion, the matched spot size and the resulting
laser vector potential a0 can be obtained by numerically solving both equations.
The result is displayed in Fig. 6.6a for laser parameters of E = 1.5 J, tFWHM = 28 fs and w0 =
18.7 µm (as present in the experiment), corresponding to an initial a0 of 2.1. It is found that self-
focusing leads to a significant enhancement of a0,sf (n1) = 3.6 and a0,sf (n2) = 4.7. In both cases,
the self-focused spot sized is reached within 520 µm of propagation, such that the negligence
of pump depletion is approximately accurate. Although this estimate can only serve as a lower
bound for the actual a0 as it does not take into account temporal effects, it reflects the importance
of laser self-modulation effects on the LWFA dynamics.

Once a0 is known, the pump depletion and dephasing lengths given by nonlinear 1D theory
can be evaluated. A comparison of these with the experimentally determined values is given in
table 6.2 and plotted in Fig. 6.6b, where the black line shows Lpd for a laser pulse with a Gaussian
temporal profile in the limit of a0� 1 (eq. (2.117)). The continuous and dashed blue lines depict
the expressions for Ld in the nonlinear and linear regime, respectively. Note that in 1D theory Ld
assumes a driver pulse with a square temporal profile1.

1. In nonlinear regime, the pump depletion length Lpd of a square driver also exactly coincides with Ld i.e.
Lpd,square = Ld,square for a0� 1 (cf. eq. (2.116) and eq. (2.119)).
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Figure 6.6: Depletion and dephasing lengths after laser self-focusing to a matched spot size. A laser pulse
with E = 1.5J, w0 = 18.7µm and tFWHM = 28 fs (a0 = 2.1) is assumed. (a) shows the resulting values of a0
and w after self-focusing to the matched spot size in dependence of the plasma density. The propagation
distance needed to reach the matched spots size is given by zsf . (b) shows Lpd and Ld as predicted by 1D
theory together with the experimentally determined values.

Discussion

For n1 = 3.4× 1018 cm−3, the experimentally determined dephasing length Ld is in accordance
with the prediction of linear theory and overestimated by nonlinear theory. In the latter, the exper-
imental value of Ld,exp. = 9.0mm would require a reduced a0 = 2.1. The root of this discrepancy
may have different reasons: One possibility is a decreased laser energy in the main plasma chan-
nel, e.g. due to a non-Gaussian intensity distribution in the focal spot. Another possibility would
be the injection of the electron bunch at an early stage of the self-focusing process, which could
be triggered by oscillations of the beam waist due to a non-matched laser pulse which affects the
nonlinear plasma wavelength and therefore the wake phase velocity and the trapping threshold
according to eq. (2.100) and eq. (2.96). At this point, a0 and therefore λp,nonlin. may not have
reached their peak values yet. For the higher plasma density n2, Ld approximately matches the
nonlinear description.

Regarding laser depletion, Lpd is overestimated for n1 (by about ∼ 30 %) and severely un-
derestimated for n2. However, it is important to note that eq. (2.117) is valid only in the
limit of a0 � 1 and for pulse durations close to the linear resonant value of kptrms =

√
2.

The resonant pulse durations at the employed densities would be tFWHM(n1) ≈ 32 fs and
tFWHM(n2) ≈ 20 fs. In the n2 scan, the relatively longer actual pulse duration of tFWHM = 28 fs
may require an increased distance for laser etching to occur and therefore leads to a longer de-
pletion length.

Although analytic theory provides a basic understanding of the acceleration dynamics, its appli-
cation to predict experimental outcomes is not only hindered by the fundamental constraints of
the one-dimensional treatment and the assumption of a static wake driver, but also by its strict
validity for either the linear or the highly relativistic limit, while the experiment was performed
with mildly relativistic laser pulses. Furthermore, the incomplete knowledge of the experimental
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parameters due to the nonlinear processes occurring during pulse propagation adds to the un-
certainty. In this regard, the values obtained for a0,sf by the simple treatment presented above
can only serve as a rough estimate. On the one hand, a0 may be well underestimated by the
negligence of temporal effects, including self-compression (cf. section 2.6). On the other hand,
intensity modulations of the beam profile in the focal region may lead to an energy loss in the
main guiding channel. It also must be kept in mind that continuous laser depletion will further
influence the acceleration dynamics.

6.5 Summary
• Low density case: n1 = 3.4×1018 cm−3

In the low-density case, the power needed to maintain self-focusing and thus efficient wake gen-
eration up to Ld approximately equals the available laser power of ∼ 50 TW. Acceleration is
therefore expected to stop at L∼ Ld , which agrees well with the experimental data. At Lpd ∼ Ld ,
which matches 1D theory to within 30 %, the laser energy is depleted and no significant wake-
fields persist that could accelerate or decelerate the bunch. Thus, the electron bunch propagates
undisturbed from a laser-induced wakefield. Only its own particle bunch-driven wakefield per-
sists.

• High-density case: n2 = 7.7×1018 cm−3

In the high-density case, the provided laser power exceeds the threshold needed to sustain self-
focusing up to Ld by a factor of ∼ 4. The scan of the electron energies presented in Fig. 6.4b
clearly shows that an energetic laser pulse is still present beyond the dephasing length, as elec-
trons are strongly decelerated for L > Ld . This implies Lpd > Ld , although this observation
contradicts 1D theory. Apart from the shortcomings of 1D theory, this might be attributed to
the non-resonant laser pulse length of tFWHM = 28 fs, while the optimal pulse duration would be
tFWHM(n2)∼ 20fs, and lead to a significantly longer pump depletion length. Moreover, the pulse
evolution driven by nonlinear effects can alter the pulse shape, and hence a0 during propagation
in plasma of up to 8 mm.
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Chapter 7

Characterisation of the longitudinal bunch
profile by CTR

7.1 Single-shot bunch profile reconstruction

The setup and methods presented so far allow for the single-shot characterisation of the longitu-
dinal bunch profile. In this section, the required steps are exemplary elaborated and discussed in
detail.

Experimental data of the electron bunch diagnostics for two representative shots is presented in
Fig. 7.1. The electron energy information, i.e the raw images of the scintillating screen together
with the evaluated energy spectra, is shown in Fig. 7.1a and b. The measured CTR spectra,
containing the data acquired by all three spectrometers, are displayed in Fig. 7.1c and d. De-
pending on the experimental conditions, the CTR spectra were found to be either mostly smooth
(Fig. 7.1c) or contain a dominant single frequency modulation (Fig. 7.1d). The latter can be
attributed to a double bunch structure being generated. The information contained in this feature
will be discussed in the next section.
Plotted on a logarithmic y-axis, the insets of Fig. 7.1c, d further show that the spectral energy of
CTR throughout the measured spectral range is more than 7 orders of magnitude above the level
of incoherent TR (shown in grey) expected from the measured electron energy spectrum, which
confirms the coherent nature of the radiation. Additional tests were performed to ensure that the
measured signal is indeed CTR. First, when lowering the gas pressure in the cell such that the
plasma density was too low for wave breaking to occur, no electron beam was generated and
accordingly no CTR signal recorded. Second, under normal operating conditions, when placing
a band-pass filter (Si-WBP, 8.0−14.0 µm, by InfraTec [148]) in the CTR beam path, the signal
was limited to the accordant wavelength range. Both tests allow to exclude the possibility of
measurement artefacts due to parasitic electromagnetic pulses induced by the high peak current
of the accelerated electron beam and confirm that the steel tapes together with the surrounding
stray light shielding were opaque for the main laser pulse or any type of plasma glow.

The data shown in Fig. 7.1 contains all the necessary information to retrieve the longitudinal
bunch profile. Recalling eq. (5.11), the modulus of the longitudinal form factor is related to the
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Figure 7.1: Single-shot data of the electron bunch diagnostics for two representative shots for gas cell
lengths of 9 mm (left column) and 13 mm (right column). (a) and (b) show the respective raw image of
the scintillator screen S2 behind the dipole magnet along with the evaluated electron energy spectrum.
(c) and (d) show the respective CTR spectral energy measured by the three spectrometers (blue) and the
transmission T ′(ω) of an infinitely short bunch with F‖(ω) = 1. The inset shows the measured spectral
CTR energy and the expected amount of incoherent TR (grey), plotted on a logarithmic scale.

measured quantities by

∣∣F‖(ω)∣∣=
√

dW/dω

2ε0cN2 |
∫

g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp|2
. (7.1)

The electron energy information, shown in Fig. 7.1a, b, is used as an input to calculate the
denominator of eq. (7.1) as described in chapter 5,

T ′(ω) = 2ε0cN2
∣∣∣∣∫ g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp

∣∣∣∣2 . (7.2)

T ′(ω) describes the spectral energy of CTR that would be incident in the detection plane in the
case of full coherence (i.e. F‖(ω) = 1). For comparison, the transmission T ′(ω) is depicted in
red alongside the measured CTR spectra (shown with blue markers) in Fig. 7.1c and d.
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7.1 Single-shot bunch profile reconstruction
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Figure 7.2: Measured and reconstructed longitudinal form factor
∣∣F‖(ω)∣∣ and reconstructed bunch pro-

files I(z) for the two shots presented in Fig. 7.1. (a) and (b) show the measured (black dots) and recon-
structed (red) form factor and the reconstructed spectral phase (grey). Error bars depict the measurement
uncertainty of the mid-infrared spectrometer (as described in Appendix A.1). The respective reconstructed
longitudinal bunch profiles are shown in (c) and (d).

Bunch profile retrieval

According to eq. (7.1), the form factor
∣∣F‖(ω)∣∣ is now obtained by taking the root of the measured

CTR spectrum divided by T ′(ω), shown by black data points in Fig. 7.2a and b, respectively. The
Bubblewrap retrieval algorithm is then run on the measured values of the form factor to retrieve
the longitudinal bunch profile for each shot. The resulting reconstructed form factors and bunch
profiles are shown in Fig. 7.2a, b (red lines) and Fig. 7.2c, d, respectively.

Spectral modulations

Depending on the experimental conditions, the recorded CTR spectra were found to exhibit
strong spectral modulations (cf. Fig. 7.1d and Fig. 7.2b). These modulations are spectral in-
terference fringes that are characteristic of multi-bunch structures and contain information about
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Figure 7.3: Longitudinal form factors of multi-bunch structures with Gaussian shape and equal
bunch durations. (a) shows a comparison between the form factor of a single bunch and dou-
ble bunches with different inter-bunch distances. For double bunches, the charge ration between
both bunches is fixed at q1 = 3q2 and the form factor does not reach zero even for fully de-
structive interference. (b) shows the form factors of double and triple bunches with varying sep-
arations. Due to the spectral beating of more than one oscillation frequency, form factors con-
taining more than two bunches generally exhibit a more complex shape. The charge ratio is
q1 = 3q2 = 3q3.

the individual bunch shapes and spacings. In the following, the effect of multiple bunches, their
bunch separation, charge ratio and duration on the form factor will be elaborated.
In the simple case where the longitudinal bunch profile consists of two individual bunches sepa-
rated by a distance d, the form factor can be expressed by

|F(ω)|=
∣∣∣q1 f1(ω)+q2 f2(ω) e−

idω

c

∣∣∣ . (7.3)

Here q(1,2) denotes the fraction of the charge contained in each bunch, d is the inter-bunch dis-
tance and f(1,2)(ω) is the respective Fourier transform of ρ(1,2)(z). For simplicity, we first assume
two bunches of Gaussian shape with the same profile σ1 = σ2 but different charge. Each bunch
produces a smooth spectrum, but due to the time of flight difference the emitted CTR spectrum
is modulated by interference. From eq. (7.3) it is readily seen that the oscillation frequency is
directly related to the bunch separation by ∆ω = 2πc/d. This case of a single frequency mod-
ulation is depicted in Fig. 7.3a. In contrast, bunch trains consisting of more than two bunches
lead to more complex form factors that contain more than one oscillation frequency due to the
spectral beating between CTR emitted by the individual bunches, as shown in Fig. 7.3b.

Fringe visibility

While the bunch separation determines the oscillation frequency, the charge ratio and the indi-
vidual bunch durations are encoded in the fringe visibility V (ω). The latter can be defined by the
minimum and maximum value of the form factor and, for the case of two Gaussian bunches, is
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Figure 7.4: Effects of charge ratio and bunch duration on the form factor of a double bunch structure.
For equal bunch shapes, the fringe visibility is only dependent on the charge ratio. For different bunch
durations (or different transverse form factors), the lower spectral energy radiated by the longer bunch
reduces the fringe visibility at higher frequencies. Nevertheless, the charge ratio can still be determined
from V (ω→ 0).

given by [27]

V (ω) =
Fmax−Fmin

Fmax +Fmin
=

2ξ(ω)

1+ξ(ω)2 , (7.4)

where ξ denotes the ratio of the individual form factors

ξ =
q2 f2(ω)

q1 f1(ω)
=

q2

q1
e0.5(σ2

‖,1−σ2
‖,2)ω

2
e0.5(σ2

⊥,1−σ2
⊥,2)sin2

θω2/c2
. (7.5)

The dependence of V (ω) on q(1,2) as well as σ(1,2) is sketched in Fig. 7.4. For equal bunch
duration and transverse size (σ1−σ2 = 0), both bunches radiate a CTR spectrum of equal shape
and the fringe visibility is only dependent on their charge ratio. For such bunches, the charge
ratio can be directly deduced from the fringe visibility. In general, this finding is not limited to
the assumption of a specific (i.e. Gaussian) shape.

As seen from eq. (7.5), the fringe visibility for double bunches of different duration or transverse
size (σ1− σ2 6= 0) acquires an additional ω dependence, caused by the interference of CTR
spectra of different shape. With increasing frequency ω, the longer (or transversely broader)
bunch emits a relatively lower amount of CTR, which leads to a reduction of V (ω), manifested
by a wash-out of the interference fringes as depicted in Fig. 7.4. Nevertheless, for such bunches,
the charge ratio can be approximately determined from the fringe visibility at lim

ω→0
V (ω).
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7. Characterisation of the longitudinal bunch profile by CTR

7.2 Temporal evolution of the longitudinal bunch profile
With the presented reconstruction technique, the temporal bunch profile can be determined in
dependence of the acceleration parameters. Here, the single-shot measurement allows to quantify
shot-to-shot fluctuations and is beneficial to avoid disturbances in the measured CTR spectrum
that are inherent to scanning techniques. We now focus on the CTR measurements that were
recorded simultaneously with the electron energy spectra presented in section 6.3. Based on
the length tunability of the gas cells, these measurements allow for the first time to observe
the evolution of the temporal bunch profile after different stages of the acceleration process. In
the following, both length scans taken at different plasma electron densities will be discussed
successively.

7.2.1 Bunch evolution at n1 = 3.4 x 1018 cm-3

Figure 7.5: Bunch profile evolution at a plasma electron density of n1 = 3.4× 1018 cm−3. The plot
shows the mean retrieved bunch profiles at the different length settings of the gas cell averaged over 30
consecutive shots. The grey band shows ±1σ, where σ is the shot-to-shot standard deviation of each
30-shot dataset.

The average of the retrieved longitudinal bunch profiles at each discrete settings of the gas cell
length scan conducted at n1 = 3.4× 1018 cm−3 is shown in Fig. 7.5. The grey band shows the
shot-to-shot standard deviation of each 30-shot dataset. The scan reveals two qualitatively dif-
ferent regimes. For short gas cell lengths in the range of L ≤ 9 mm, a dominant single electron
bunch is observed. In this regime, the CTR spectra generally exhibit a smooth shape, similar
to that presented in Fig. 7.2a. The electron beam cut-off energy is maximized at a cell length
of L = 9 mm, at which Ecutoff = 653± 51 MeV and a charge of Q = 29± 6 pC is obtained. At
this length, we find an average bunch duration of tFWHM = 4.8± 0.2 fs and a peak current of
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7.2 Temporal evolution of the longitudinal bunch profile

Authors n0[cm−3] tFWHM[fs] Ipeak[kA] Q[pC] Emax[MeV] ∆E[MeV]

Buck
et al. [22] 3.2×1019 5.8+1.9

−2.1 N/A 2.3±1.8 19.2±6.7 2.3±1.9

Lundh
et al. [21] 1×1019 3.3−4.2 3−4 15±7 84±21 21±17

current
study 3.4×1018 4.8±0.2 5.7±1.2 29±6 653±51 (100%)

Table 7.1: Comparison with selected publications in which the bunch duration of LWFA electron beams
was determined experimentally, either by a spectral measurement of CTR (Lundh et al. [21]) or by detect-
ing the rotated polarisation of a probe beam due to the Faraday effect induced by the magnetic field of the
relativistic electron bunch (Buck et al. [22]).

5.7±1.2 kA. The values are in agreement with those reported by other authors. A summary of
comparable data taken from selected publications is given in table 7.1.

A different regime is found for L > 9 mm, for which the retrieved bunch profiles reveal the
emergence of a distinct 2nd electron bunch. The latter is separated by d = 14.9±0.5µm from the
dominant bunch. This is close to, albeit smaller than one plasma wavelength, which for a linearly
driven wake is λp(n1) = 18.1 µm. If driven nonlinearly by a pulse with a0 > 1, λp,nonlin. would
only exceed this value due to the plasma electrons’ relativistic mass increase and concomitant
period lengthening of the wakefield. In either case, the retrieved bunch separation is thus smaller
than one wakefield period.

Note that since the spectral phase of the CTR has not been measured directly, the time direction
of the retrieved bunch profiles is ambiguous. Given that the bunch profile is a real-valued func-
tion, a time reversal of the bunch profile (ρ‖(t)→ ρ‖(−t)) would produce the same CTR spectral
amplitudes since |F

[
ρ‖(−t)

]
| = |F‖(ω)| = |F‖(ω)|. Therefore, the Bubblewrap algorithm re-

constructs the same bunch profile for both cases. However, the dominant bunch is expected to be
preceding, as the normal bunch formation processes by nonlinear wave breaking usually leads to
injection at the rear side of a plasma cavity. It therefore appears highly unlikely that a 2nd bunch
could be formed in front of the accelerated bunch. To our knowledge, such a scenario has also
never been observed in PIC simulations.

Evolution of the bunch parameters

We will now have a closer look at the bunch properties. Apparently, the emergence of the 2nd

bunch is either linked to the point of laser pump depletion (Lpd ∼ 10 mm) or electron dephasing
(Ld ≈ 9 mm). This can be deduced from Fig. 7.6a, which shows the evolution of the cut-off
energies alongside the probability P2nd that a 2nd bunch is found1. The probability of observing
a double bunch structure is only P2nd > 0 for cell lengths L≥ 10 mm and reaches a maximum of
P2nd = 93 % at L = 13 mm. Correspondingly, the shape of the CTR spectrum changes when the
gas cell length is increased beyond L ≥ 10 mm. In this regime, the CTR spectra exhibit an in-
tensity oscillation, dominated by a single frequency modulation similar to the example presented

1. The bunch profile is defined to contain two bunches if the peak current of the 2nd bunch exceeds 5 % of that of
the dominant bunch.
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Figure 7.6: Evolution of the electron beam parameters in dependence of the gas cell length at a plasma
density of n1 = 3.4× 1018 cm−3. (a) shows the evolution of the electron cut-off energies along with the
probability that a 2nd bunch is observed in the retrieved profile. (b) shows the charge contained in the 1st

and 2nd bunch if the latter is present. The respective FWHM durations of both bunches are shown in (c).
Error bars display the shot-to-shot rms fluctuation in each quantity at a specific gas cell length.

in Fig. 7.2b. The modulation frequency is consistent with the bunch separation retrieved by the
Bubblewrap algorithm.

Charge

The evolution of the charge contained in both bunches is plotted in Fig. 7.6b. The charge frac-
tion of each bunch was obtained by integrating the normalized longitudinal charge distribution
ρ‖(z) over their respective extent, whereas the total charge Q was determined from the electron
spectrometer. Note that due to the low energy cut-off of the electron spectrometer only electrons
with energies E > 200 MeV can be observed. Thus, the detected charge increases along with the
cut-off energy and the data points for cell length L . 7 mm are influenced by this effect. Never-
theless, for cell length L & 8 mm, the detected charge should be a constant fraction of the total
bunch charge, as the spectrum is broadband and the cut-off energies are approximately constant.
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7.2 Temporal evolution of the longitudinal bunch profile

However, for L ≥ 9 mm, the dominant bunch continuously loses charge and the emerging 2nd

bunch contains a charge of 5.5±2.7 pC that is approximately constant within the error bars.

Bunch durations

The individual FWHM bunch durations are depicted in Fig. 7.6c. The duration of the main bunch
is found to slightly decrease from 5.7± 0.3 fs at L = 4 mm to a minimum value of 4.3± 0.3 fs
at L = 13 mm. However, as before, data for cell lengths of L . 7 mm must be regarded as less
significant, as a larger fraction of charge resides outside the detection window of the electron
spectrometer. The unknown part of the electron spectrum leads to a less accurate determination
of the transmission function T ′(ω) and respectively the form factor. In the range of cell lengths
with L≥ 7 mm, the FWHM bunch duration can be regarded as roughly constant within the error
bars with a mean value of 4.7±0.3 fs.
Within the range of its occurrence, the 2nd bunch shows a trend towards longer bunch durations
with increasing L. Especially for L = 14 mm its duration is significantly increased. Within the
error bars and between L = 10− 13 mm, its duration is roughly constant with a mean value of
tFWHM = 4.8±0.7 fs that is comparable to that of the 1st bunch.

Measurement reliability

The error margins given so far specify the shot-to-shot rms error. The following section will
comment on the measurement reliability and the error of a single-shot measurement.

In general, the spectral resolution in the visible and near-infrared region allows to resolve the
spectral oscillation and fringe visibility with high accuracy. In contrast, the sparse number of
sampling points and uneven frequency spacing in the mid-infrared region is not always sufficient
to fully resolve these modulations.

• As the modulation frequency is typically constant throughout the measured spectral range,
the bunch separation can also be determined from the spectral region sampled with high
resolution by the visible and the near-infrared spectrometer. It is found that the bunch sepa-
ration retrieved by the Bubblewrap algorithm agrees with these values to within . 0.1µm.

• The total charge contained in the electron beam is determined from the fluorescence sig-
nal of the electron spectrometer’s calibrated scintillator screen, but can also be roughly
evaluated from the detected CTR intensity. The electron spectrometer reliably detects the
number of electrons with energies above the detection limit. On the other hand, the CTR
intensity may be lower due to pointing fluctuations of the beam stemming from fluctuations
of the electron beam pointing (∼ 1.5 mrad rms). Furthermore, the charge determined from
the CTR intensity is calculated from

∫
ρ‖(z) dz = F‖(0) and thus relies on the reconstruc-

tion of the form factor at ω = 0. In addition, electrons with energies below the detection
limit contribute to the CTR intensity but are not detected by the electron spectrometer such
that the determination of the transmission function T ′(ω) becomes less accurate. Never-
theless, the total charge detected by both methods agrees with each other within 85±25%,
where the CTR signal is usually slightly less than expected.

• In the case of a double bunch, the charge ratio between both bunches is given by the fringe
visibility at ω→ 0. As in this region the CTR spectral amplitudes have not been measured,
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7. Characterisation of the longitudinal bunch profile by CTR

this ratio depends on the reliability of the reconstruction algorithm. In addition, the low
sampling rate in the mid-infrared region can lead to an undersampling of the oscillation
such that the reconstruction algorithm may underestimate the actual charge ratio.

• In the case of a single bunch, the accuracy of the retrieved bunch duration is limited by the
measurement uncertainty in the spectral domain. The different sources contributing to this
uncertainty are described in Appendix A.1. Since the measured spectrum and the bunch
profile are related by a Fourier transform, a direct (analytic) calculation of the uncertainty
in the retrieved bunch profile is not possible. Instead, the error in the time domain is
assessed by retrieving the bunch profiles from CTR spectra corresponding to the upper
and lower error margins for exemplary shots, as described in Appendix A.2. It was found
that the uncertainty in the spectral domain translates to an uncertainty in bunch duration of
∼ 0.3 fs for spectra that correspond to bunch durations on the order of 4.5 fs. The relative
error is therefore . 7 %. As previously shown in subsection 3.2.4, an additional relative
error of < 15 % is due to a possible energy chirp in longitudinal phase space and the effect
of free space propagation from the exit of the gas cell to the CTR radiator. The error in
determination of the bunch duration is thus . 22 %.

• The bunch duration of the 2nd bunch is determined by the fringe visibility V (ω) as de-
scribed in section 7.1. Hence, as the form factor decreases with increasing ω, the measure-
ment uncertainty of the quotient q2 f2/q1 f1 increases and introduces a larger error in the
duration of the 2nd bunch. Additionally, the sparse sampling points at low frequency may
introduce an error by underestimating V (ω) and therefore the charge ratio q2/q1.

These statements show that the properties of the 2nd bunch are afflicted by a relatively larger error
margin. Since there is no analytical treatment to transfer the error margins into the time domain,
these could only by assessed by retrieving the bunch profile for all possible CTR spectra that are
located within the measurement uncertainty. This is impossible due to the large computational
effort that would be required for each single-shot measurement. However, for a large series of
shots, the existing shot-to-shot fluctuations intrinsically sample the measurement uncertainty.
For this reason, the relative shot-to-shot error in the bunch duration and charge of the 2nd bunch
is larger compared to that of the dominant bunch (cf. Fig. 7.6).

7.2.2 Bunch evolution at n2 = 7.7 x 1018 cm-3

Before discussing the acceleration dynamics, it is helpful to compare the bunch evolution pre-
sented above to that obtained from the length scan conducted at the plasma density of
n2 = 7.7×1018 cm−3. In contrast to the scan conducted at n1, in this scan the injection probabil-
ity was < 100%. Thus, in contrast to the data set presented above, at each length setting a subset
of the best 80 % of 30 consecutive shots (in terms of charge, corresponding to 24 shots at each
length) was taken into account. Additionally, due to the on average much higher injected charge,
the mid-infrared spectrometer saturated for some shots, which were excluded as well.

The average longitudinal bunch profile obtained from this data set is shown in Fig. 7.7. Similar to
the behaviour found at n1, a 2nd electron bunch emerges after a certain gas cell length. Analogous
to the low-density case, additional insight is obtained by relating the bunch profile evolution with
the respective energy evolution, as shown in Fig. 7.8a. In contrast to the scan at lower plasma
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7.2 Temporal evolution of the longitudinal bunch profile

Figure 7.7: Bunch profile evolution at a plasma electron density of n2 = 7.7×1018 cm−3. Blue lines show
the average retrieved bunch profile at the different length settings of the gas cell for a subset of the best
80 % out of 30 consecutive shots. Additionally, shots with saturated CTR spectra were excluded from the
data set. The grey band shows the rms shot-to-shot fluctuations of the bunch profile at each length setting
of the gas cell.

density, this scan exhibits a distinct maximum in the electron energy evolution for L = 5 mm, at
which an average bunch duration of tFWHM = 5.8±0.2 fs, a peak current of 27±5 kA, a cut-off
energy of Ecutoff = 730±58 MeV and a charge of Q = 174±33 pC is obtained.

As seen from Fig. 7.8a, the 2nd bunch is not yet observed during the following onset of the de-
cline of the electron energies, but only once the gas cell is extended to L ≥ 8 mm for which the
energy evolution is characterized by a less significant energy loss. As discussed in section 6.3,
this regime is attributed to cell lengths that exceed the pump depletion length (L & Lpd), where
the bunch is no longer exposed to a laser-driven wakefield.
These findings bear similarities, but also complement those observed at n1. Because in the latter
it was found that Ld ∼ Lpd , it was not possible to link the emergence of a 2nd bunch to either
electron dephasing or laser pump depletion, whereas the present scan reveals that the emergence
of the 2nd bunch occurs between Ld and Lpd .

The evolution of the individual charge and the bunch durations is plotted in Fig. 7.8b and c.
Due to the strong variations in cut-off energy between the individual length settings, the charge
determined from the electron spectrometer is affected by the undetected part of the spectrum
with energies below the detection limit. Consequently, the amount of detected charge correlates
strongly with the electron cut-off energies and is of less significance.
Nevertheless, the FWHM bunch durations show the same qualitative behaviour as in the low-
density case, with an approximately constant bunch duration of the main bunch and a slightly
increased duration of the emerging bunch. Quantitatively, their average durations are found to
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Figure 7.8: Evolution of the electron beam parameters in dependence of the gas cell length at a plasma
density of n1 = 7.7× 1018 cm−3. (a) shows the evolution of the electron cut-off energies along with the
probability that a 2nd bunch is observed in the retrieved profile. (b) shows the charge contained in the 1st

and 2nd bunch if the latter is present. The respective FWHM durations of both bunches are shown in (c).
Error bars display the shot-to-shot rms fluctuation in each quantity at a specific gas cell length.

be larger than those found at n1, with FWHM values of 5.6± 1.4 fs and 7.8± 2.2 fs, respec-
tively. In the n2 scan, the mean charge contained in the 2nd bunch is significantly higher with
Q2nd = 27±16 pC.

Besides the maximum in the energy evolution, one striking difference to the low-density case
is the bunch separation d. The linear plasma wavelength corresponding to the electron density
determined from the nominal applied backing pressure is given by λp(n2) = 11.5 µm, while a
bunch separation of d = 20.0± 0.5 µm is found. Hence, at n2, the bunch separation exceeds
the length scale set by λp, while in the low-density case d < λp. For comparison, the measured
quantities of both scans are summarized in table 7.2.
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7.2 Temporal evolution of the longitudinal bunch profile

n0 [cm−3] 3.4×1018 7.7×1018

λp [µm] 18.1 12.0
d [µm] 14.9±0.5 20.0±0.5
Lpd,exp. [mm] ∼ 10 ∼ 8
L(P2nd > 0) [mm] ≥ 10 ≥ 8
tFWHM, 1st [fs] 4.7±0.3 5.6±1.4
tFWHM, 2nd [fs] 4.8±0.7 7.8±2.2
Q1st [pC] 29±6 174±33
Q2nd [pC] 4±2 27±16
nb/n0 ∼ 6.1 ∼ 5.5

Table 7.2: Overview of the key parameters of both length scans. Specified error margins denote the shot-
to-shot standard deviations. λp is the linear plasma wavelength expected at the applied backing pressure.
L(P2nd > 0) denotes the range of gas cell lengths for which secondary bunches are observed. nb/n0 gives
the ratio of the peak charge density of the first bunch over the plasma density at the point of laser pump
depletion.

7.2.3 Discussion
Both scans show a similar behaviour in the bunch profile evolution, where a 2nd bunch is formed
for acceleration lengths that exceed the dephasing length Ld . While in the low-density scan
Ld ∼ Lpd , the n2 scan allows to separate both length scales and shows that injection occurs be-
tween Ld . L . Lpd . Thus, injection of a 2nd bunch becomes possible after electron dephasing
and is likely supported by laser energy depletion.
For L & Lpd , the cut-off energies deviate from a parabolic evolution and are characterized by a
stagnation (n1) or slight energy decrease (n2). In this regime, the nearly constant electron en-
ergies are evidence that the bunch is not exposed to a longitudinal electric field any more and
the remaining laser intensity is insufficient to excite a significant wakefield. However, even a
fraction of the initial laser energy is sufficient to provide a fully ionized plasma (cf. section 2.2).
It is therefore safe to assume that the electron bunch propagates through fully ionized plasma.

As outlined in section 2.3, an electron bunch of sufficient charge density can drive its own wake-
field and even excite a nonlinear plasma wave in the blowout regime. A simple assessment of
the charge density shows that these densities are indeed reached in the experiment. Assuming a
Gaussian transverse profile, the peak beam density nb is given by

nb =
N ρ‖,peak

2π σ2
⊥,rms

, (7.6)

where N denotes the number of electrons and ρ‖,peak is the peak value of the normalized lon-
gitudinal charge distribution ρ‖. The transverse source size inside the plasma was determined
previously by Weingartner et al. [20] to σ⊥,rms = 0.95 µm. The experimental setup employed
similar backing pressures, the same gas target and laser system as the present experiment. Using
the retrieved longitudinal profiles ρ‖(z) at Lpd and eq. (7.6), the charge density of the main bunch
amounts to nb(n1)∼ 2.1×19cm−3 and nb(n2)∼ 4.6×19cm−3. In both cases, this is higher than
the background plasma electron density with nb/n1 ∼ 6.1 and nb/n2 ∼ 5.5, respectively. Due to
the LWFA mechanism, the transverse and longitudinal bunch dimensions are naturally confined
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7. Characterisation of the longitudinal bunch profile by CTR

to the size of the plasma bucket. In the present experiment, kpσ⊥ ≈ 0.33, kpσ‖ ≈ 0.21 at n1 and
kpσ⊥ ≈ 0.50, kpσ‖ ≈ 0.36 at n2. Thus, all prerequisites are fulfilled that are needed for the main
bunch to drive a nonlinear wakefield in the blowout regime of PWFA.

This implies that during the final stage of laser depletion, the electron bunch itself is able to
sustain a plasma wave. Finally, a mode transition from laser-driven to a particle bunch-driven
wakefield occurs at L & Lpd . With the emergence of a second bunch closely linked to this tran-
sition, the question arises which mechanism leads to plasma dynamics that can result in a 2nd

injection process. In the following, the possibilities of nonlinear wave breaking in either a purely
laser- or beam-driven mode, or a laser- to beam-driven mode transition are discussed.

Self-injection in purely laser- or beam-driven mode

A laser induced self-injection process due to nonlinear wave breaking is unlikely to occur at this
late stage of the acceleration process. After travelling the depletion length, the remaining laser
power is insufficient to drive a strong wakefield. The electron energy evolution for L≥ Lpd con-
firms the absence of a significant wakefield strength that could possibly reach the wave breaking
limit.
Additionally, accompanying depletion, the decreasing nonlinearity of the laser-driven plasma
wave and the resulting contraction of λp,nonlin. towards λp leads to an effectively increased wake
phase velocity. As outlined in section 2.4, an increase of γph will only raise the injection and
wave breaking threshold (cf. eq. (2.90) and eq. (2.97)).

For a purely electron beam-driven wakefield, the phase velocity of the wake of vph ≈ c is too
large to trap background electron initially at rest and the wave breaking threshold of EWB =
E0
√

2(γph−1) (eq. (2.90)) is dramatically increased. Thus, for the present case of a homoge-
neous plasma density, self-injection of the purely bunch-driven wake can be ruled out as well.

Injection due to a laser- to beam-driven mode transition

The preceding arguments suggests that renewed injection by either a purely laser- or beam-driven
wake is implausible. Yet, as a third possibility, the transition from a laser- to a bunch-driven
wakefield may trigger a renewed injection process.

First, after an acceleration length exceeding Ld , the remaining laser-driven wakefield and the
bunch-driven wakefield become more and more in phase and the overall wakefield amplitude
increases (cf. section 2.5). Second, the injection can further be assisted by a temporal slowdown
of the wake’s phase velocity during the mode transition:
After an acceleration length of Lpd , the electron bunch is located close to (n1) or after the point
of dephasing (n2), where its distance to the laser driver is in the range of 0− λp/2. After the
laser ceases to drive an effective wake and diffracts, the front of the plasma wave slips back
until the electron bunch itself acts as the main wake driver. The displacement of the front of
the plasma wave relative to the electron bunch therefore leads to a temporary slow-down of the
wake’s phase velocity, which can assist a renewed trapping process. Assuming a transition region
of ∆z = 0.5 mm in which the wake’s front slips back by λp/2, the instantaneous phase velocity,
given by

vph = vgr(1−λp/(2∆z)) (7.7)
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is roughly reduced to ∼ 0.98c or γph ∼ 5− 6. This would constitute a significant slow-down
from its initial velocity determined by the group velocity of the laser pulse, which corresponds to
γgr = 14− 21 (at n2 and n1, respectively). This mode transition would act analogous to density
down-ramp injection, for which the reduced plasma wave phase velocity has been shown both
theoretically and experimentally to enable an efficient trapping of plasma electrons [71, 154].

Electron deceleration and dephasing

Another possible formation mechanism is based upon deceleration of bunch electrons. In PWFA
mode, the wakefield generated by the bunch itself leads to a decelerating field that is strongest
at its rear side (cf. Fig. 2.7). Once these electrons are decelerated to sub-relativistic velocities,
they slip back with respect to the driving bunch. These electrons can then be trapped in the
accelerating field at the rear side of the cavity and form a second bunch. Such behaviour has
been observed in PIC simulations that have been carried out in the framework of a PhD thesis
by Chou [155]. This phenomenon is not limited to the PWFA mode but can also result from
electron dephasing in LWFA mode, once electrons are decelerated to γ < γph [119]. This process
should lead to the formation of a second bunch in the same wave bucket. However, in our case,
a continuous transition, i.e a fill-up of the electron density between both bunches, is not observed.

7.3 Dependence of the bunch separation on plasma density
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Figure 7.9: Retrieved bunch separation as a function of the background plasma electron density n0 at a
fixed gas cell length of L = 12 mm. Error bars on the x-axis represent the uncertainty of the hydrogen
pressure inside the cell of +4 mbar

−20 % . The dashed black line indicates multiples of the plasma wavelength λp.

So far possible mechanisms leading to the formation of a double bunch structure have been dis-
cussed. However, the distance d between both bunches has not yet been taken into account. As
mentioned before, it is found that at n1 = 3.4× 1018 cm−3 the bunch distance d is smaller than
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7. Characterisation of the longitudinal bunch profile by CTR

the plasma wavelength λp, while at n2 = 7.7×1018 cm−3 d is larger than λp. To obtain a more
detailed insight into the scaling of d with n0, the gas cell length was fixed at L = 12 mm, while
the backing pressure of hydrogen and therefore the plasma density inside the cell was varied in
the range of n0 = (3−9)×1018cm−3.

Figure 7.9 shows the retrieved bunch separation in dependence of the plasma electron density.
Error bars on the x-axis indicate the uncertainty regarding the actual plasma density inside the
cell. The asymmetric shape corresponds to an uncertainty of +4 mbar

−20 % , where the upper limit is
given by the maximum deviation of the closed-loop regulator from the target value and the lower
limit takes into account a possibly lower gas pressure inside the cell due to gas flow through the
gas cell’s laser entrance and exit holes. Here, a conservative margin of 20 % is assumed.
The plot reveals density regimes that are separated by discrete steps of the bunch separation.
Multiples of the (linear) plasma wavelength are depicted by dashed lines. In the range of
n0 = (3− 5)× 1018 cm−3, which includes n1, d < λp and approximately follows the density
dependence of the plasma wavelength given by λp ∝ 1/

√
n0.
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Figure 7.10: Single-shot data obtained at different plasma densities. Each column shows the respec-
tive electron energy spectrum, the measured and retrieved form factor and the retrieved bunch pro-
file of a single shot. (a) corresponds to n0 = 4.5× 1018 cm−3, (b) to n0 = 5.8× 1018 cm−3 and (c) to
n0 = 8.6×1018 cm−3. The CTR modulation frequency increases with increasing plasma density. Accord-
ingly, the retrieved bunch separation becomes larger.
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At slightly higher plasma densities of n0 = (5− 8)× 1018 cm−3, a sudden jump to d ∼ 20 µm
is observed, consistent with the bunch separation obtained in the length scan conducted at n2.
For even higher densities, a further increase to d ∼ 25 µm is found. Data of three exemplary
single shots corresponding to these density ranges is presented in Fig. 7.10. The plots show that
the increase in bunch separation with increasing plasma density is clearly reflected by a higher
modulation frequency in the CTR spectrum.

Energy spectra

To correlate these finding with the electron energy spectra, images of the electron spectrometer’s
scintillator screen S2 together with the retrieved bunch separations are plotted in Fig. 7.11 for a
selection of single shots. The shots are ordered such that the plasma density (specified by green
diamonds) increases with shot number (denoted by the x-axis). Note that the scintillator screen
images have been corrected for the magnet’s dispersion curve, such that the vertical dimension
corresponds to a linear increase in electron energy as given by the left (black) y-axis. The re-
trieved bunch separation is given by red squares.
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Figure 7.11: Evolution of the electron energy spectrum in dependence of the plasma density at a fixed gas
cell length of 12mm. The plot shows selected single-shot images of the electron spectrometer’s scintillator
screen S2. The images have been corrected for the magnet’s dispersion such that the energy axis is linear.
The shots (numbered by the x-axis) are arranged by increasing plasma density, as specified by green
diamonds. Red squares show the retrieved bunch separation.
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• For n0 < 5× 1018 cm−3, the cut-off energies are roughly constant. Analogous to the length
scan at n1, in this regime Ld ∼ Lpd . The electron energies increase only slightly with increas-
ing density, as the higher acceleration gradient is counterbalanced by a shorter pump depletion
length.

• In the range of n0 = (5− 8)× 1018 cm−3, at first the cut-off energies decrease with increas-
ing density (shots #7− 12). Similar to the length scan performed at n2, this behaviour can be
attributed to an energy loss by dephasing, as for increased n0 the dephasing length is reduced.
For shots #13−15, which still lie within the range of densities for which d ∼ 20µm, the electron
spectra show an distinct regain in cut-off energy. Furthermore, a local minimum of the spectral
charge density around 400 MeV lends itself to the interpretation that the two parts of the energy
spectrum might be attributable to the electron populations of the two individual bunches. For
increasing shot number from #7− 15, this interpretation would be consistent with deceleration
of the first bunch from 500− 300 MeV, while a second bunch with initially lower energy is ac-
celerated from . 200 MeV (e.g. the low energy tail of shot #9) to similar energies as the first
bunch (shots #10− 12) and finally up to energies between 500− 700 MeV for shots #13− 15.
This would constitute a substantial energy transfer from the first to the second bunch of ∼ 15 %
(assuming equal maximum energies of both bunches, the energy transfer is given by their charge
ratio). However, significantly higher energies than that attained at lower plasma densities of
∼ 700 MeV are not observed.

• The last three electron spectra obtained at n0 > 8× 1018 cm−3 are likewise limited by de-
phasing and characterized by a pronounced charge density at low energies. These spectra are
accompanied by a long tail towards higher energies (also seen in Fig. 7.10c).

The data presented so far shows that the measured bunch separations can be divided into three
classes. These classes also find a representation in the electron energy spectra observed on the
scintillator screen S2 and can be characterized as being limited by pump depletion or electron
dephasing. For plasma densities of n0 > 8× 1018 cm−3 (with d ∼ 25 µm), high-charge electron
bunches with mostly low electron energies and an increased beam divergence are generated.
It is worth mentioning that throughout the measured density range only two dominant bunches
are observed simultaneously. If additional bunches containing a significant fraction of the total
charge would be existent, the CTR spectra would exhibit a more complex shape, as outlined in
section 7.1. Nevertheless, a three bunch scenario can not be ultimately ruled out for the regime
of n0 > 8×1018 cm−3, due to the few number of shots and the high modulation frequency that is
not thoroughly resolved by the mid-infrared spectrometer.
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7.4 Comparison with PIC simulations

7.4 Comparison with PIC simulations
To obtain a better understanding of the physics and to confirm the suggested LWFA to PWFA
transition, PIC simulations were conducted to explore the plasma dynamics that lead to the for-
mation of a secondary bunch at a late stage of the acceleration process. Since the inner workings
of PIC codes shall not be discussed here, the reader is referred to more specialized publications
such as ref.[29].

A major drawback of PIC simulations are the extensive computational resources needed to model
a three-dimensional plasma with sufficient resolution over interaction lengths of several mm. In
particular, this applies to simulations including laser drivers, which not only need to resolve
the plasma wavelength but also the typically much shorter length scale set by λL. Although
two-dimensional simulations need much less computational effort, these usually assume a trans-
lational invariance in transverse direction and therefore fail to capture the exact plasma dynamics
present in the experiment and can only serve to qualitatively understand the involved physics.

7.4.1 LWFA to PWFA transition
The following simulation was performed with the PIC code OSIRIS [156, 157], assuming a fully
pre-ionized plasma. The purpose of this simulation was to obtain a single self-injected electron
bunch and subsequently observe the plasma dynamics occurring during the point of electron de-
phasing and laser depletion. The 3D simulation was set up with a matched laser pulse such that
the required distance for laser self-focusing is minimized. The pulse energy was chosen such that
the electron bunch has progressed to the dephasing point before the laser-driven wake structure
collapses due to laser depletion.

A plasma density of n0 = 3.4× 1018 cm−3, consistent with the low-density length scan at n1,
was chosen. The laser pulse with a Gaussian waist of w0,FWHM = 13.5 µm and a pulse dura-
tion of tFWHM = 29 fs is initialized in vacuum and focused at the beginning of a plasma density
plateau following an up-ramp of 250 µm. A vector potential of a0 = 2.9, corresponding to a
laser pulse energy of 1.1 J, proved to be sufficient to achieve self-injection and laser depletion
within a simulation length of 8 mm. The size of the simulation box is 86×121×121 µm3 with
3840× 240× 240 grid points and 2 macro-particles per cell, where each macro-particle repre-
sents approximately 104 electrons.

The parameters which differ from the experimental conditions are the transverse beam size (PIC:
13.5 µm, experiment: 22 µm) and the laser pulse energy (PIC: 1.1 J, experiment: 1.5 J). The
smaller but matched beam size was chosen in order to limit the computation time as it avoids an
additional simulation length that would be needed for self-focusing to occur. The slightly lower
energy of 1.1 J was chosen in order to obtain laser depletion approximately at the point of elec-
tron dephasing. The slightly larger nominal experimental value can be attributed to a deviation
of the laser focus from an ideal Gaussian intensity distribution (cf. Fig. 4.3), which may lead to
a loss of laser energy in the main guiding channel.

Characteristic snap-shots of this PIC simulation are shown in Fig. 7.12. The upper row depicts
the electron density (blue colormap) together with a lineout of the longitudinal electric field along
the laser propagation axis (black line). The lower row shows the longitudinal phase space. On
the basis of these time steps, the acceleration process can be described as follows.
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7. Characterisation of the longitudinal bunch profile by CTR

Figure 7.12: 3D PIC simulation (using the code OSIRIS) reproducing an LWFA to PWFA transition
accompanied with injection of a 2nd bunch. The respective upper row shows characteristic snap-shots
of the electron density perturbation (blue colormap), where the electron bunch energies are given by the
rainbow colormap. Plotted are the central slices of the simulation box. Black lineouts represent the
longitudinal electric field along the laser propagation axis ([a.u.]). The lower row shows a plot of the
respective longitudinal phase space. For a description of the time steps and the simulation parameters see
main text.
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After entering the plasma, the laser drives a nonlinear wakefield characterized by a large electric
field spike at the crest of the 1st wave bucket. After an electron bunch is injected at the rear
side of the cavity, the superposition of the wakefields driven by the laser and the electron bunch
leads to a reduction of the total field amplitude by beam loading (cf. section 2.5). This prevents
further injection and limits the injection process to a short time interval. Low-charge bunches
are also observed to be injected in the 2nd and 3rd wake period. During subsequent LWFA, the
relativistic electron bunches gradually advance towards the laser pulse. Note that the 1st bunch’s
charge density is sufficient to significantly modify the longitudinal electric field at the position of
the bunch. Its deviation from a linear slope shows that beam loading is strong enough to modify
the acceleration gradient within the bunch.

When reaching the middle of the plasma period, the bunch has reached the dephasing point and
obtained its maximum energy. As the distance between the laser and 1st electron bunch continues
to decrease, both wakefields become more and more in phase and the electric field amplitude at
the rear side of the cavity increases again. With further propagation, the field-strength at the crest
of the 1st wave bucket exceeds the wave-breaking threshold, which leads to self-injection of a
2nd bunch at the rear side of the 1st wave bucket. During further propagation, the 1st bunch is
then decelerated by its own wakefield and that driven by the remnants of the laser driver, while
the newly injected 2nd bunch experiences an energy gain.
At this stage of the acceleration process, the chirp of the 1st bunch does not change sign as would
be the case in a dephasing process, where electrons in the head of the bunch experience a stronger
deceleration than those at its tail. The deceleration of the 1st bunch with nearly unaltered chirp is
a consequence of its own bunch driven wakefield being dominant after laser energy depletion.

Energy evolution

The acceleration process can be intuitively visualized by plotting the on-axis electron density as
well as the evolution of the electron energy spectrum as shown in Fig. 7.13. Each vertical line
in Fig. 7.13a shows the charge density on the central laser propagation axis in the simulation
box (co-moving with c) for subsequent time steps, i.e. after different propagations lengths L.
The laser pulse, initially located at x1 = 79 µm, close to the beginning of the simulation box,
slips backwards as vgr < c. The same is true for the crests of the first three wave periods, which
appear as oblique lines of increased electron density. The slope of these lines intuitively visu-
alizes the corresponding wake phase velocity vph. Electrons injected from the wake crests and
accelerated in the respective wake periods are recognized as vertical lines due to their relativistic
velocity of v ≈ c. Figure 7.13b shows the corresponding energy evolution, where each vertical
line represents the energy spectrum of all macro-particles with γ≥ 100 in dependence of L.

In conjunction with the longitudinal phase space plotted in Fig. 7.12, the injection at L . 1 mm
and subsequent acceleration can be ascribed to macro-particles forming the bunch inside the 1st

wave bucket. At L ≈ 1.5 mm, low-charge bunches are also injected and accelerated in the 2nd

and 3rd wave bucket.
After reaching the dephasing point at L≈ 6 mm, the electron energies temporarily decline due to
the onset of dephasing. With further propagation (L & 6 mm), the 2nd bunch is injected into the
1st wave bucket and a subset of its electrons is accelerated up to Emax ∼ 300 MeV at L ≈ 12 mm.
The injection is due to a temporarily reduced wake phase velocity caused by two effects: (i) the
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(a)

(b)

Figure 7.13: Evolution of the on-axis electron density (a) and the electron energy spectrum (b) in depen-
dence of the simulated propagation length. The vertical dimension of (a) shows a lineout of the electron
density through the center of the simulations box after different time steps. The spectrally resolved charge
density extracted from the PIC simulation is shown in (b). Only the contribution of electrons with γ≥ 100
is shown.

density spike at the crest of the 1st wake bucket slipping back because of the more nonlinear
nature of the wakefield and (ii) the relocation of the front of the wake towards the PWFA driver
because of the onset of laser energy depletion, manifested in Fig. 7.13a around L ∼ 6 mm by a
steeper slope of the crest of the 1st plasma period due to the reduced phase velocity.
At L & 8 mm the deceleration rate of the 1st bunch decreases as the laser is depleted. The now
lower deceleration gradient is caused by its own bunch-driven wakefield.

It is further seen that the low-charge bunches injected in the 2nd and 3rd wave bucket disappear
at L ≈ 7 mm. These are first decelerated by dephasing and later exposed to the defocusing re-
gion near the crest of the preceding plasma period. Low-charge bunches from trailing plasma
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7.4 Comparison with PIC simulations

cavities are also not observed experimentally during the initial LWFA stage. Similarly, this can
be ascribed to the density down ramp present at the exit of the gas cell, in which the plasma
wavelength is continuously elongated such that these bunches become likewise exposed to the
defocusing fields of the preceding wave crests.

Bunch profile evolution

(a)

(b) (c)

Figure 7.14: Bunch profile evolution extracted from the PIC simulation. (a) shows a 3D plot of all
simulated macro-particles with γ ≥ 100 projected onto the z-axis and binned by λp/450. Dashed white
lines illustrate multiples of λp. (b) shows a top view of (a), illustrating the bunch separation d. (c) shows
a close-up view of the 1st bunch’s profile evolution with high resolution (bin size λp/1000).

The evolution of the longitudinal bunch profile extracted from the simulation is plotted in
Fig. 7.14a. The striking similarity to the experimentally measured evolution suggests that the
simulated plasma dynamics resemble those of the experimental scan conducted at the plasma
density n1. As in the experiment, a second injection process occurs late in the acceleration pro-
cess at L & Ld . The bunch separation of d < λp also matches the experimental observation. From
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7. Characterisation of the longitudinal bunch profile by CTR

the simulation we find d ≈ 0.85 λp (cf. Fig. 7.14b), while d(n1) = 0.82+0.05
−0.17λp, where the error

margins stem from the uncertainty in backing pressure of 70+4
−20 % mbar. Both values therefore

agree well within the error margin.

As seen from the energy evolution presented in Fig. 7.13b, despite its short length in the fs range,
the accelerated bunch develops a broadband energy spectrum. This is caused by beam loading,
which results in a local dependence of the accelerating field along the bunch’s longitudinal extent
(cf. Fig. 7.12). Nevertheless, the induced velocity spread does not lead to a significant elonga-
tion of the bunch duration, due to rapid acceleration to relativistic energies. A close-up view
of the 1st bunch’s profile evolution is shown in Fig. 7.14c. Its duration after injection amounts
to tFWHM = 2.1 fs and is only slightly elongated by the velocity spread to tFWHM = 2.5 fs at
L = 12 mm.

Apart from the shorter duration of the 1st bunch and an increased charge of 70 pC, the experi-
mental results presented in subsection 7.2.1 are thus largely reproduced by the PIC simulation,
which corroborates the inferred LWFA to PWFA transition.

7.4.2 Bunch separations exceeding λp

The simulation presented above resembles the plasma dynamics found in the length scan con-
ducted at n1. In contrast, a bunch separation of d > λp as observed in the gas cell length scan at
n2 = 7.7× 1018 cm−3 could not be reproduced in 3D simulations. This may well be attributed
to the fact that the computational resources were not sufficient to explore a much wider range
of input parameters within a reasonable time frame. Nevertheless, 2D PIC simulations can be
utilized to simulate individual events of the plasma dynamics during acceleration and are helpful
to explore the physics of wakefield evolution.

Rapid reduction of λp,nonlin.

A potential mechanism leading to separations of d > λp could be identified in 2D simulations,
which are depicted in Fig. 7.15. Both columns show a series of snap-shots of two simulations
with mostly identical input parameters. In these simulations, an electron bunch with nb/n0 = 6.1
was initialized as a non-evolving bullet-type charge distribution with an electron energy of
400 MeV and a bi-Gaussian spatial charge profile, representing the first injected bunch close
to dephasing. The simulations differ in that the simulation shown in the right column assumes
a weaker laser, a shorter distance between the electron bunch and the laser pulse as well as a
shorter bunch driver, which, despite exhibiting the same peak current, contains less charge.

In both simulations, the nonlinear wakefield excited by the laser and the electron bunch is driven
strong enough for wave breaking to occur, such that a 2nd electron bunch is injected and accel-
erated in the 1st wake period. At the point of laser depletion, the wakefield strength decreases
and the plasma period rapidly shortens. Depending on the strength of the PWFA driver and its
distance to the laser, the 2nd electron bunch can get trapped in the first plasma cavity (left col-
umn) or be exposed to and overtaken by the defocusing region at the rear side of the cavity (right
column). In the latter case a portion of the 2nd bunch’s electrons can then get trapped in the 2nd

plasma cavity. After a sufficient propagation length, the 2nd electron bunch resides in the middle
of the 2nd wave bucket at d ∼ 1.5λp.
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7.4 Comparison with PIC simulations

Figure 7.15: 2D PIC simulations showing trapping of a 2nd bunch in either the 1st or the 2nd wake period.
The simulation shown in the left column assumes a stronger laser and beam driver and an increased
distance between the laser and the electron bunch. The simulation parameters are n0 = 7.7×1018 cm−3,
w0 = 12 µm, tFWHM = 28 fs and:
left column: a0 = 3.3 and nb/n0 = 6.1, with kpσ‖ = 0.4 and kpσ⊥ = 0.3,
right column: a0 = 3.1 and nb/n0 = 6.1, with kpσ‖ = 0.2 and kpσ⊥ = 0.3.
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7. Characterisation of the longitudinal bunch profile by CTR

Although this mechanism would need to be verified by 3D simulations, it reproduces the separa-
tion of d ∼ 1.5λp observed experimentally.

Lower trapping threshold with increasing distance to the driver

Analogous to the 3D PIC simulation presented before, an alternative scenario leading to bunch
separations of d > λp may equally rely on a transiently reduced wake phase velocity caused by
the superposition of the laser- and bunch-driven wakefields during electron dephasing. Since,
by eq. (2.100), the accompanying nonlinear elongation of λp reduces the local phase velocity of
the wake with increasing distance to the driver, the injection threshold may only be exceeded
for distances ξ corresponding to the 2nd or subsequent wake periods. This explanation would
also enable bunch separations d > 2 λp as observed experimentally for plasma densities of n0 >
8×1018 cm−3.
This process would require the superposition of the wakefields to be too weak to reach the wave
breaking threshold within the 1st wave period. However, in contrast to the low density scan
performed at n1, the higher plasma density in the n2 scan should theoretically reduce the wave
breaking threshold, due to a lower laser group velocity (cf. eq. (2.47) and eq. (2.96)). It therefore
remains unclear if this process can indeed happen and additional large-scale 3D PIC simulations
would be required.

7.4.3 Conclusion
At the stage of the acceleration process at which the laser pulse depletes, the dense electron
bunch will take over as the wakefield driver. As argued in subsection 7.2.3, and confirmed by
PIC simulations, the plasma dynamics triggered by the re-phasing of the wakefield during the
LWFA to PWFA transition can lead to injection of a 2nd bunch at the crest of the 1st wave bucket.
This scenario is observed experimentally at a plasma density of n1 = 3.4×1018 cm−3, for which
the laser pump depletion length roughly equals the electron dephasing length. The experimen-
tally retrieved bunch separation of d = 14.9 µm at n1 agrees within the error bars with the value
determined from the PIC simulation (PIC: d/λp ≈ 0.85, experimental: d/λp = 0.82+0.05

−0.17).
In the experiment, a clear signature of a 2nd bunch is not observed by the electron energy diag-
nostics. It must thus be concluded that its energy spectrum is either broadband or has energies
< 200 MeV that are below the detection window. Also this finding is supported by the simula-
tion, which shows that, in spite of their short durations, both bunches carry a broadband energy
spectrum caused by beam loading, which hinders their identification by a measurement of the
energy spectrum alone.

For the range of higher plasma densities of n0 = (5−8)×1018 cm−3, including the length scan at
n2, the experimentally observed bunch separations are approximately given by d ∼ 1.5 λp. Both
bunches could only reside in the same plasma cavity if λp would be elongated significantly. The
plasma wavelength in the purely beam driven case was therefore quantified by additional 3D PIC
simulations. These simulations show that the nonlinear plasma wavelength driven by an electron
bunch with the experimentally determined parameters is only elongated by∼ 15% over its linear
value. A distance of d ∼ 1.5λp is therefore not consistent with both bunches residing in the same
plasma cavity. The observed bunch separation would be consistent with a rapid contraction of
the plasma wavelength after laser depletion, as suggested by the presented 2D PIC simulations.
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7.4 Comparison with PIC simulations

For even higher densities n0 > 8× 1018 cm−3, the few number of recorded shots at a fixed gas
cell length of L = 12 mm impedes a thorough analysis. Based on analogous arguments as given
above, the measured bunch separation of d & 2λp is interpreted as the 2nd electron bunch residing
in the 3rd plasma cavity trailing the laser pulse. The beam quality in this regime is reduced by a
larger beam divergence and an almost thermal-like electron energy spectrum caused by advanced
electron dephasing as well as strong beam loading effects due to a large beam charge. However,
the low-charge tail towards energies around 600 MeV observed in the respective electron energy
spectra suggests that acceleration by a beam-driven wake could still be possible for some of the
2nd bunch’s electrons.

To assess the exact plasma dynamics for densities of n0 ≥ 5× 1018 cm−3, further investigation
will be required, in part by conduction 3D PIC simulations, and by extending the experimental
setup to gather additional information. For example, a transverse probe beam, as established in
ref. [22, 158], could be utilized to take shadowgraphic snap-shots of the electron density dis-
tribution, which would allow to observe the period lengthening of the plasma wave during the
transition from a laser- to a beam-driven wakefield.

As argued in this chapter, the renewed injection of a 2nd bunch is always related to this transition,
irrespective of the plasma density. For n0 ≥ 5× 1018 cm−3, the uneven spacing in terms of λp
between both bunches supports this interpretation, since, for purely LWFA driven wakefields,
injection of trailing bunches into subsequent wave buckets should lead to multi bunch structures
separated by an integer amount of plasma wavelengths λp (as observed using colliding pulse
injection in ref. [27]). Furthermore, these bunches are expected to be injected at an early stage
of the acceleration process in which the laser driver is strong enough for wave breaking to occur.
In contrast, in the present case the emergence of the double bunch structure occurs at a late stage
of the acceleration process, where nonlinear wave breaking is unlikely to occur due to advanced
laser pump depletion.
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7. Characterisation of the longitudinal bunch profile by CTR

7.5 Coherent enhancement at visible frequencies
A feature, which is observed in the measured CTR spectra but has so far been unregarded, is
a local enhancement of the CTR spectrum at visible frequencies. The high of this feature is
typically on the order of |F‖(ωpeak)| ≤ 5 %, located at ωpeak ∼ 4× 1015 rad/s, which corre-
sponds to a CTR wavelength of λ∼ 470 nm. In both length scans, this local maximum is present
in almost all recorded CTR spectra (97 % of all shots at n1 and 87 % of the shots at n2 with
L <= 6 mm), independent of the number of retrieved bunches. Figure 7.16 shows a magnifica-
tion of the relevant spectral range for two representative shots. As seen in Fig. 7.16b, this part of
the spectrum is also modulated whenever the low-frequency part of the spectrum is and exhibits
the same modulation frequency. This confirms that the signal is indeed CTR rather than the sec-
ond harmonic of laser light penetrating the stray light shielding.

(a) (b)

Figure 7.16: Local enhancement of the form factor at visible frequencies. (a) shows the measured form
factor of a single bunch and (b) of a double bunch structure. The insets show a magnification of the feature
in the visible part of the spectrum. If a double bunch is present, the modulation frequency is the same as
that of the low-frequency part of the spectrum.

We first discuss an unmodulated CTR spectrum from a single bunch as shown in Fig. 7.16a. Since
the bunch profile and the form factor are related by a Fourier transform, the central frequency of
the feature indicates a modulation of the bunch profile on the scale of 2πc/ωpeak ∼ 470 nm. An
alternative point of view is to consider the local enhancement as arising from a low frequency
modulation in |F‖(ω)| with ∆ω = ωpeak and hence a multi-bunch structure with a bunch sep-
aration of d = 2πc/∆ω = λpeak. Similar to the case of two bunches, which was described in
section 7.1, the fringe visibility V (ω) eventually depends on the shape of each individual bunch,
their charge ratio and, in the case of a periodic bunch train, on the number of bunches and their
individual separations. However, as the fringe visibility for more than two bunches depends on a
large number of parameters, all of these cannot be inferred from a single measurement. Yet, by
introducing the following two assumptions, the shape of the local enhancement allows to draw
conclusions about the bunch profile:

(i) We first assume that the bunch profile ρ‖(t) exhibits a modulation with a constant fre-
quency ω0 = 2π/T . Its shape can then be regarded as a macro-bunch consisting of indi-
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7.5 Coherent enhancement at visible frequencies

vidual micro-bunches with constant spacing T and an outline determined by an envelope
function E(t).

(ii) We further assume an equal shape of each micro-bunch.

We now model a pulse train of micro-bunches by a convolution of their individual shapes Sm(t)
with a Dirac comb combT . The outline of the macro-bunch is obtained by multiplying the micro-
bunch train with the envelope function E(t), resulting in a macro-bunch profile as depicted in
Fig. 7.17a. Its profile can thus be expressed by

ρ‖(t) = (combT ∗Sm(t)) ·E(t) . (7.8)

Recalling eq. (3.48), the longitudinal form factor is determined from ρ‖(t) by F‖(ω) = F [ρ‖].
Denoting the form factor of a single micro-bunch by F‖,micro = F [Sm] and that of the macro-
bunch’s envelope by F‖,macro = F [E], the resulting form factor reads

F‖(ω) = F [(combT ∗Sm(t)) ·E(t)] ,
= (combω0 ·F [Sm(ω)])∗F [E(ω)] ,

=
(
combω0 ·F‖,micro(ω)

)
∗F‖,macro(ω) ,

=

(
∞

∑
n=0,n∈N

δ(ω−nω0)F‖,micro(ω)

)
∗F‖,macro(ω) ,

=
∞

∑
n=0,n∈N

F‖,micro(nω0) ·F‖,macro(ω−nω0) ,

(7.9)

We will now have a closer look at the corresponding CTR spectrum. The magnitude of the
resulting form factor is plotted in Fig. 7.17 for the case of a Gaussian envelope as well as micro-
bunches of Gaussian shape for different micro- and macro-pulse durations and ω0 = ωpeak. In
Fig. 7.17b the macro-bunch duration is kept constant and the micro-bunch duration is varied,
while in Fig. 7.17c the situation is vice versa. As seen from these plots, the modulated bunch
profiles reproduce the local enhancement in the measured form factor at ωpeak.

Equation (7.9) allows a simple assessment of its properties. The magnitude of the enhancement
is given by the micro-bunch’s form factor F‖,micro(ωpeak) (for n = 1), as illustrated by dashed
lines in Fig. 7.17b and c. The shape of the feature is given by the convolution of F‖,macro with
δ(ω−ωpeak), which, according to the Fourier shifting theorem, corresponds to a simple fre-
quency shift by ωpeak (cf. Fig. 7.17d). Hence, the shape of the local maximum directly resembles
electron bunch’s envelope function E(t).

It has to be emphasized that the analysis presented above relies on the assumption of a constant
modulation frequency ω0. In this case, F‖,macro(ω) is convoluted with a complex constant, whose
phase is irrelevant to the modulus of the form factor |F‖(ω)|. In contrast, a varying modulation
frequency would correspond to the convolution of two complex functions. Then, the shape of
|F‖(ω)| would no longer be uniquely defined by F‖,macro(ω) = F [E(t)] alone.
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Figure 7.17: CTR spectra emitted by a modulated bunch profile. (a) shows the longitudinal profile
of the modelled bunch. The macro-bunch profile (red line) consists of micro-bunches of equal shape
(shown with black lines) following the outline of a Gaussian envelope function (dashed black line).
(b) shows the computed form factor of a series of macro-bunches with a FWHM duration of 4 fs, a mod-
ulation frequency of ωpeak = 4× 1015 rad/s and different FWHM micro-bunch durations. Dashed lines
show the form factors of the respective micro-bunches and the solid black line shows the form factor of the
envelope function. In (c), the macro-bunch duration is varied and tmicro,FWHM is kept constant at 1 fs. In
(d), the macro- and micro-bunch duration is kept constant at 4 fs and 1 fs, respectively, and the modulation
frequency ωpeak is varied.

We now analyse the feature in the recorded CTR spectra. It may not only be used to cross check
the retrieved bunch durations, but also delivers more insight into the acceleration process. For
both scans of the gas cell lengths, the width of the form factor and the width of the local max-
imum were determined for each shot by fitting a Gaussian to the respective spectral ranges as
illustrated in Fig. 7.18a. The bunch durations of the corresponding Gaussian temporal bunch
profiles are plotted in Fig. 7.18b and c, where markers correspond to the mean value of all shots
obtained at each discrete gas cell length and error bars show the shot-to-shot standard deviation.

It is found that the bunch durations obtained from a simple Gaussian fit to the form factor (in
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Figure 7.18: Width of the enhancement. (a) illustrates the fitting process. A Gaussian was either fitted
to the complete form factor (red line) or only to the spectral range around 4× 1015 [rad/s] (blue line).
The widths of the corresponding Gaussian temporal bunch profiles are shown in (b) and (c) for the scan
conducted at n1 and n2, respectively. Data points show the mean values obtained at each length setting of
the gas cell and error bars display the shot-to-shot rms variations.

the complete frequency range, shown in red) agree well with those obtained by the Bubblewrap
algorithm (cf. Fig. 7.6c and Fig. 7.8c in section 7.2).
Blue data points show the macro-bunch durations determined from the fit to the local maxi-
mum. In the low-density scan at n1 (Fig. 7.18b), the width of this feature is smaller and would
correspond to a longer duration of approximately 150 %, albeit afflicted with large shot-to-shot
fluctuations. As noted before, this discrepancy may reveal that some of the applied assumptions
are violated, e.g. the presence of a non-constant micro-bunch spacing.

In the n2 scan shown in Fig. 7.18c, both widths approximately coincide up to a gas cell length of
L ≤ 6 mm. For longer acceleration lengths a distinct maximum at ωpeak can no longer be iden-
tified, as exemplary shown by the CTR spectra plotted in Fig. 7.19, presumably due to changes
of the longitudinal beam structure induced by dephasing or increased interaction of the electron
bunch with the rear of the laser pulse.
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Figure 7.19: Example of the CTR emission in the optical range before and after dephasing of the 1st

bunch in the high-density (n2) case. For L < 8 mm a distinct peak is observable for almost all recorded
shots, while for L ≥ 8 mm this is not the case. The comparable amount of CTR indicates that small scale
features, although more randomly distributed, are still present in the longitudinal bunch profile.
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Figure 7.20: Center wavelength and amplitude of the enhancement. (a) and (b) show the center wave-
length λpeak and amplitude |F‖(ωpeak)| of the feature for the length scan conducted at n1 and n2, respec-
tively. Data points show the mean values obtained at each length setting of the gas cell and error bars
display the shot-to-shot rms variations.

The height and position λpeak of the feature are plotted in Fig. 7.20a and b. It is observed that
its height is roughly constant within the error bars and therefore approximately independent of
L. Thus, the modulation of the bunch profile with λpeak is present even for short acceleration
distances.

Possible origin of the bunch profile modulation

The fact that the modulation period is remarkably close to half the laser wavelength λL suggests
that the short scale modulations of the bunch profile are related to the frequency of the laser field.

Micro-bunching of the electron beam has been observed previously in PIC simulations. These
publications ascribe the micro-structure to partially coherent betatron oscillations, for which the
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modulation period resembles the wavelength of the local laser field, leading to a micro-bunching
at twice the laser frequency due to the vvv×BBB force [159–161]. Since the interaction is caused
by the overlap of the electron bunch with the rear of the laser pulse, the modulation depth is
expected to grow with propagation length, due to a longer interaction time and an increasing
vector potential as the distance between the electron bunch and the laser pulse decreases by elec-
tron dephasing. However, in the present case, the amplitude of the enhancement is independent
of acceleration length. Hence, it must be concluded that the micro-structure is either imprinted
during a very early stage of acceleration or by the injection process itself.

With respect to latter, the injection probability could potentially be modified by an electron’s
initial longitudinal momentum. As outlined in section 2.1, the trajectory of a single electron ex-
posed to the laser field consists out of a transverse motion with ωL and a forward motion caused
by the vvv×BBB force. Omitting the cycle average in the derivation of the ponderomotive force, an
electron’s final momentum after interaction with the laser pulse is ultimately determined by the
initial laser phase and its transverse position with respect to the focus. Since in plasma vph and vgr
differ, the phase of the carrier wave with respect to the pulse envelope changes with propagation.
This so-called carrier-envelope phase (CEP) increases by 2π after a time tCEP = λL/(vph− vgr).
During this time, a trapped relativistic electron bunch progresses a distance d = (c− vgr) tCEP
towards the driver pulse. Using eqs. (2.43, 2.44) , this yields

d =
c− vgr

vph− vgr
λL =

1
η(1+η)

λL ≈
1
2

λL . (7.10)

Assuming an asymmetric laser focus, electrons pushed out by the intensity gradient therefore
carry a difference in their obtained energy and longitudinal momentum dependent on the CEP
of the laser pulse, which translates into a periodicity of λL/2 in a trapped electron bunch’s co-
moving frame. Close to the trapping threshold, this difference may determine if an electron has
a sufficient longitudinal momentum to get injected in the wakefield, which would relate the ob-
served enhancement to the initial electron-laser interaction.

In conclusion, the local enhancement of the form factor at ωpeak provides strong evidence for a
slight micro-bunching of the longitudinal bunch profile caused by an interaction with the laser
pulse. This finding certainly warrants further investigation by carrying out additional studies of
its dependence on the experimental parameters as well as performing PIC simulations to identify
the definitive mechanism. For example, decreasing the laser pulse duration and increasing the
laser vector potential a0 while lowering the plasma density to tune the wakefield strength close to
the injection threshold may enhance the effect, leading to a higher modulation depth and a more
well-defined micro-bunch spacing.

As shown in this section, imprinting a constant modulation onto the bunch profile is a conve-
nient way to produce a replica of the bunch’s form factor in the visible range of the spectrum,
which is experimentally accessible by much simpler means. Regarding practical applications,
the signal may then be analysed by standard ultra-short pulse measurement techniques such as
FROG, which are able to simultaneously retrieve the spectral phase information. Such measure-
ments would allow to determine the longitudinal bunch profile by a simple Fourier transform,
significantly simplifying both the measurement and the retrieval process in future experiments.
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Chapter 8

Outlook

The presented work shows that a bunch profile diagnostic based on the detection of CTR pro-
vides an important tool that can not only be used to characterize ultra-short bunch lengths, but
which also proved to be crucial for a deeper understanding of the physical mechanisms involved
in LWFA.

In the presented experiments, single electron bunches with a determined duration of 4.8±0.2 fs
FWHM and a peak current of 5.7± 1.2 kA were accelerated up to 653± 51 MeV within an ac-
celeration length of 9 mm. At a higher plasma density, peak currents of 27± 5 kA could be
obtained with a slightly increased pulse duration of 5.8±0.2 fs FWHM and a maximum energy
of 730±58 MeV within 5 mm of acceleration. The evaluated peak charge densities are sufficient
to drive a significant beam-driven wakefield. In combination with a gas target of variable length,
the presented single-shot measurement technique further allowed new insights into the evolution
of the temporal bunch profile in dependence of the target length. Supported by PIC simulations,
the results revealed that the beam-driven wakefield can lead to the injection of a second bunch
if the acceleration length exceeds the electron dephasing length. Besides determining important
beam parameters, this work contributes to a better understanding of the physics of bunch evolu-
tion and the dynamics of electron injection in wakefield accelerators. The results and methods
presented in this thesis are of interest for future developments, especially in the view of the grow-
ing aspirations of PWFA as well as for studies of plasma accelerators driving compact X-ray light
sources.

In recent years, PWFA has attracted increasing attention as a potential technology for next gen-
eration high energy colliders, due to the significantly higher acceleration gradients compared
to conventional accelerators, potentially reducing the required acceleration length from several
tens of kilometres to the scale of meters. For this purpose, existing conventional accelerator
infrastructure could be used to provide a high-charge bunch to drive a wakefield, while a lower-
charge witness bunch residing in the wakefield’s accelerating phase is efficiently accelerated to
high energy [23]. Several conventional accelerator facilities have started research aimed at estab-
lishing the foundations of this concept [162]. For these state-of-the-art accelerators, generating
high-current, ultra-short bunches is still a demanding task, requiring substantial effort for com-
pressing, timing and focusing of two ultra-short electron beams with respect to the microscopic
dimensions of the plasma wave.
By choosing an appropriate target length to facilitate injection of a 2nd bunch, the plasma dy-
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namics observed in this work open up the possibility to conveniently generate such double bunch
structures. This approach allows to study the physics of PWFA at low energy in a second plasma
stage without the need for a large-scale accelerator, significantly simplifying the experimental
setup and extending the scope also to university laboratories.

On the other hand, the intrinsically short bunch durations provided by LWFAs are well suited
to drive a variety of compact and cost-effective, though ultra-short and highly brilliant X-ray
sources, based for example on Thomson-scattering or betatron radiation [150, 163–165]. By de-
livering peak currents in the kA range, LWFAs even possess the potential for realizing table-top
FELs [166, 167]. These next-generation light sources promise few-femtosecond X-ray pulses
intrinsically synchronized to a laser pulse, thus enabling pump-probe experiments with fem-
tosecond resolution.

Up to date, FEL operation and PWFA experiments routinely rely on conventional RF accelera-
tors. Due to their purpose of providing high peak currents, these represent the most advanced
short-pulse linear accelerators currently available worldwide. Table 8.1 gives an overview of
some of their main beam parameters and those of LWFA electron beams as determined in this
thesis.

LCLS [168, 169] FACET [170] FLASH [171, 172] LWFA
Electron energy [GeV] 2−16 23 1.25 0.7
Energy spread . 1 % 3 % N/A 100%
Bunch charge [pC] 20−250 3000 70 30−175
Peak current [kA] ∼ 3 ∼ 20 ∼ 2.5 6−27
Bunch length (rms) [fs] 3−30 80 80 2−2.5
Emittance [µm rad] 0.4−1 50(εx)/5(εy) 2 0.7
Repetition rate [Hz] 120 10 10 5

Table 8.1: Comparison of the electron beam parameters of current ultra-short-pulse linear accelerators
and the beam properties obtained by LWFA as determined in this thesis. The value for the emittance of
LWFA was taken from ref. [20]. Apart from the final beam energy and the energy spread, the properties
of LWFA beams are comparable to those of state-of-the-art accelerators. Note that in order to achieve the
shortest possible bunch length and smallest emittance, the LCLS beam charge corresponds to the lower
margin.

LCLS and FACET refer to two linear accelerators located at SLAC National Accelerator Lab-
oratory, Stanford, USA, that are used to seed the LCLS’s FEL and enable PWFA experiments,
respectively. FLASH refers to the electron accelerator located at DESY, Hamburg, that drives
the FLASH’s FEL. Unlike LWFAs, in which the injected electron bunch is intrinsically short,
these accelerators need to imprint a positive energy chirp on the beam, such that it can finally be
compressed in a magnetic chicane. After compression, the time slice that leads to free-electron
lasing contains less than the nominal charge as it typically has to possess an energy spread on the
sub-percent level.

As seen from table 8.1, except for the final beam energy and the energy spread, the properties of
LWFA electron beams are comparable to these sources, at a fraction of their size and cost. Fur-
ther improvement of the LWFA beam parameters could enable the envisioned table-top FELs in
the near future. While electron beams with 4.2 GeV (6 % rms energy spread) have been reported
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[17], methods for controlling the injection process hold promise for a further decrease of the
energy spread. For example, by using a sharp plasma density transition, Buck et al. [19] obtained
a constant absolute energy spread of ∼ 5 MeV FWHM for electron bunches in a tunable energy
range between 10− 130 MeV. If this spread can be maintained while increasing the final beam
energy, relative energy spreads below 1 % become feasible.

Nevertheless, FELs currently in operation usually require an even lower slice energy spread to
achieve free-electron lasing. For example, the slice energy spread at LCLS is σE/E ≈ 0.01% [5].
Although the energy chirp of LWFA beams has not yet been determined experimentally, the PIC
simulations presented in section 7.4 indicate that the electron bunch carries a negative energy
chirp which is not compressible by magnetic chicanes. However, due to the correlation, its time
slices possess a much smaller slice energy spread that may prove satisfactory. It will therefore
be important to not only characterize the bunch length but the complete longitudinal phase space
in future experiments. With this knowledge, the impact of the energy spread may further be mit-
igated by using a tapered undulator design and a chromatically elongated electron beam focus,
such that the respective energy slices experience optimal resonance along the tapered undulator,
a concept called chromatic focus matching [173, 174].

To design such an optimized undulator setup, a detailed knowledge of the beam’s longitudinal
phase space distribution will be necessary. For this purpose, the bunch profile diagnostic devel-
oped in this thesis can be utilized in conjunction with a magnetic chicane to record the bunch
profile in dependence of an additionally induced chirp, which would enable a limited angle phase
space tomography. Theoretical work towards this goal of a full longitudinal phase space recon-
struction is currently carried out in the framework of a PhD thesis by Sebastian Raith [175]. Once
the longitudinal phase space distribution is determined, a tapered undulator and associated fo-
cusing optics can be designed that take advantage of the intrinsic energy chirp and the ultra-high
peak currents of LWFA electrons. This may pave the way for table-top FELs in the near feature,
which would dramatically reduce the cost of beamtime, bringing the prospect of access to ultra-
short, highly brilliant X-ray sources even to university-scale laboratories as well as industry and
medicine.
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Appendix A

Spectral response of the mid-infrared
spectrometer

Recalling eq. (5.11), the absolute value of the longitudinal form factor is given by

∣∣F‖(ω)∣∣=
√

dW/dω

2ε0cN2 |
∫

g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp|2
. (A.1)

The experimentally accessible quantities are the electron energy spectrum g(ppp) and the CTR
spectral energy dW/dω.
The spectral energy measured by the mid-infrared spectrometer is determined from the raw signal
counts Sn of the readout channel n by

dW
dωn

=
Sn R(ωn)A

∆ωn
, (A.2)

where ωn denotes the central frequency covered by the nth pyroelectric detector, ∆ωn denotes
the covered frequency interval, R(ωn) is the relative spectral response of the detector and the
proportionality constant A corresponds to an absolute calibration factor given in [nJ/count].

The integral in the denominator of eq. (A.1) is determined from the electron energy spectrum as
described in chapter 5 and yields the transmission function T ′(ω), given by

T ′(ω) = 2ε0cN2
∣∣∣∣∫ g(ppp)T (ω, ppp)EEE(ω, ppp)F⊥(ω) dppp

∣∣∣∣2 . (A.3)

Thus, eq. (A.1) can be expressed by

∣∣F‖(ωn)
∣∣=√ Sn R(ωn)A

∆ωn T ′(ωn)
. (A.4)

Based on the last equation, we will proceed to discuss the contribution of the different terms to
the measurement uncertainty of

∣∣F‖(ωn)
∣∣.

In contrast to the visible and near-infrared CTR spectrometers, which were calibrated by com-
monly available light sources, an experimental calibration of the mid-infrared detector was not
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A. Spectral response of the mid-infrared spectrometer

performed, although an attempt for a calibration during a dedicated beamtime at FELBE (an
FEL located at the Forschungszentrum Dresden-Rossendorf, Germany) was undertaken. This
was due to the challenging properties required: On the one hand, the radiation has to be pulsed
with durations < 8µs, a limitation set by the shaping amplifiers in the readout electronics. On the
other hand, pulse energies on the order of several nJ per detector element are necessary to obtain
a sufficient signal-to-noise ratio (these requirements already exclude the use of simple constant
light sources such as blackbody radiators, but coherent light sources are required). However,
the FEL’s macro-pulse duration > 200 µs was too long to provide a step-like input signal to the
spectrometer’s shaping amplifiers. Furthermore, the spectral bandwidth was too large to focus
the FEL beam to a single pyroelectric detector pixel with the gratings in place. In the end, the
accumulated uncertainty in the actual pulse energy incident on each detector pixel did not allow
to obtain a reliable calibration.

Therefore, it was opted to base the relative calibration of the mid-infrared spectrometer on the
available spectral response curves of its components. The calibration was later compared to
the expected response, which allowed a fine-tuning of R(ωn). This procedure will be described
below.

Relative calibration R(ωn)

The relative calibration R(ωn) includes the contribution of the following terms: the transmitiv-
ity of the silicon wafer, the gratings’ diffraction efficiencies, the spectral response of a generic
pyroelectric crystal and variations in sensitivity between the individual readout channels. These
sources will now be discussed. An overview over these quantities is plotted in Fig. A.1.

• As shown in Fig. A.1a, the transmission through the silicon low-pass filter is 52.5± 2.5 %
throughout the relevant spectral range from 1.7−7.1 µm.
• The gratings’ diffraction efficiencies, exemplarily shown in Fig. A.1b, rely on numerical cal-
culation. A deviation from the expected efficiencies due to imperfections in the manufacturing
process can not be assessed by the software.
• Figure A.1c shows the spectral response of a particular pyroelectric crystal connected to the
read-out electronics, which has been determined at the FEL light source Felix in the diploma
thesis of Christopher Behrens [149]. This data only covers 17 of the long-wavelength channels
of our setup, as the response for λ < 5.1 µm had not been measured. For the unmeasured wave-
lengths, initially a flat response equal to the shortest measured wavelength was assumed.
• The absolute efficiency of the 60 pyroelectric detector elements at a wavelength of 1064 nm
was determined using a Q-switched Nd:YAG laser. The raw signal counts of each channel, when
illuminated with a pulse energy of 25 nJ, are shown in Fig. A.1d, where 230 measurements were
taken for each channel. The statistical error amounts to 1−8 raw signal counts depending on the
channel number. Apart from 5 faulty channels, variations in detection efficiency between indi-
vidual channels are clearly observed, corresponding to a standard deviation between the channels
of 11 %.

The relative calibration was thus hampered by two issues. First, spectral response data of a single
pyro-element was unavailable in the range of λ = 1.7− 5.1 µm and, even if it were present, the
rather strong differences in detection efficiency at λ = 1064µm between individual readout chan-
nels suggest that such variations may also be present in the individual spectral response curves.
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Figure A.1: Overview of the different sources that contribute to the relative spectral response function
R(ω). (a) Transmission of CTR through the silicon wafer. (b) Grating efficiency of 1st order diffraction.
(c) Spectral response of a single pyroelectric detector of type InfraTec X003 for wavelengths λ≥ 5.1 µm.
Data courtesy of Behrens [149]. Data points mark the 17 channels of the mid-infrared spectrometer
that reside within the measured spectral range. (d) Raw response of each detector channel (blue) when
illuminated with 25 nJ pulses from a Q-switched Nd:YAG laser at a wavelength of λ = 1064 nm. Error
bars indicate the statistical error of 230 shots. Besides a couple of dead channels, the deviation between
individual channels corresponds to 11% rms. Shown in red is the central wavelength λn covered by each
pyrodetector in the experiment, where error bars indicate the 1σ confidence interval (< 1.5 %) due to the
uncertainty in the gratings’ incidence and diffraction angles. Note that due to the known dispersive power
of the gratings, the wavelength interval ∆ωn covered by each pryodetector is accurate to within < 0.5 %.

In the course of the data analysis it was found that systematic variations in efficiency were in-
deed present, as some channels showed a consistent difference in signal strength compared to
their neighbours. This finding was independent of the experimental conditions such as the length
of gas cell or the plasma density. These systematic variations in efficiency add apparent artifi-
cial noise in the measured single-shot signal and typically caused the longitudinal bunch profile
returned by the Bubblewrap algorithm to contain small subsidiary bunches. The systematic vari-
ations were therefore corrected in the following way:
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A. Spectral response of the mid-infrared spectrometer
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Figure A.2: Relative spectral response R(ωn). Shown is the linear correction factor applied to each
pyroelectric detector channel. Error bars indicate the 68 % confidence interval of the least-squares linear
fit.

For a specific run (L = 5 mm, n0 = 3.4× 1018 cm−3, 30 consecutive shots), in which only a
single bunch was generated, as confirmed by the smooth shape in the visible and near-infrared
spectrometers, the subsidiary electron bunches in the retrieved spectra were filtered out, which
allowed to calculate the CTR spectra generated by a single bunch. These spectra were then com-
pared to the measured data and a linear fit between expected and measured signal counts yielded
a linear correction factor for each pyroelectric detector channel. The resulting relative calibration
curve R(ωn) is shown in Fig. A.2 and was subsequently applied in the analysis of all other data.
R(ωn) includes any deviation of the transmitivity of the silicon wafer from the curve provided by
the manufacturer, deviations of the gratings’ diffraction efficiencies from the calculated values
as well as differences in the detection efficiency and spectral response of the individual pyrode-
tectors.

Absolute calibration

The absolute correspondence between the raw signal counts and the incident radiation energy
was determined with a Nd:YAG laser. It was assumed that the absorption at λ = 1064 nm equals
that of the first detector channel located at λ1 = 1.67 µm. Further, the reflectivity of the gold
mirrors used in the detection system was taken into account, assuming a flat reflectivity of 97 %
for each reflection. Depending on frequency, CTR was either detected by the first or the second
grating stage, which included 5 or 6 reflections, respectively.

A.1 Measurement uncertainty in the frequency domain

According to eq. (A.4), the relative error of |F‖| is given by

σF‖ =
1
2

√
σ2

T ′+σ2
R +σ2

Sn
+σ2

∆ω
, (A.5)
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A.1 Measurement uncertainty in the frequency domain
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Figure A.3: Influence of the beam divergence on the CTR transmission function T ′(ω) for a typical shot.
(a) shows the frequency dependent CTR transmission for the mean divergence θ (black line) determined
from a 30 shot dataset. θ+ and θ− correspond to a divergence of± one standard deviation from the mean.
(b) shows the corresponding relative error margins using the same colour code as (a), i.e. |Tθ±−Tθ|/Tθ± .

where σ denotes the relative error in each quantity. Their contributions to σF‖ will now be dis-
cussed individually:

σ′T :
The most significant measurement error originates from the uncertainty in bunch divergence,
which translates into an uncertainty in the transverse electron beam size at both CTR radiators.
By eq. (A.3), the resulting error in F⊥ leads to an error in T ′(ω), due to a reduced CTR emission
with increased opening angle if the bunch divergence is increased (cf. section 3.2).
To quantify the relative error σT ′ , the CTR transport calculation was performed for bunch di-
vergences of θ± = θ±σθ, where σθ denotes the shot-to-shot standard deviation of the 30 shot
dataset evaluated in section 6.1 and θ is its mean value. The resulting transmission curves are
plotted in Fig. A.3a, showing the decrease of CTR radiation with increased divergence and source
size at the radiators. Figure A.3b shows the resulting relative error σT ′ .

σR:
The second source of error stems from the relative spectral response R(ωn) described in the last
section, which includes the sources of error shown in Fig. A.1. Here, the confidence interval of
the linear correction factor for each channel (shown as error bars in Fig. A.2) divided by its mean
is taken as the relative error σR.

σSn:
A third uncertainty is introduced by the readout noise of Sn (the count rate determined by the
pyroelectric detector electronics), which amounts to 4−6 raw counts. The relative error is there-
fore dependent on the signal level Sn of each channel and has to be evaluated for each shot.

σ∆ωn :
Since the gratings’ incidence and emergence angles could be determined to within ±0.5◦, the
relative error regarding the frequency range ∆ωn covered by each pyroelectric crystal amounts to
σ∆ωn < 0.5 % and is therefore negligible.
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Figure A.4: Relative error σF‖ in the measurement of the longitudinal form factor. Error margins are given
for the 68 % confidence interval. Lower and upper error margins are denoted by ε(+,−), symmetrically
distributed errors are denoted by σ.

The relative error σF‖ , resulting from the combination of these error sources is plotted in Fig. A.4
for a CTR measurement with a typical count rate of the pyroelectric detectors. The dominant
error stems from the uncertainty in bunch divergence and hence σT ′ . In the spectral region up
to 2×1015rad/s, which contains the main part of the CTR energy, the relative error amounts to
. 15 %.

The absolute measurement error of the mid-infrared spectrometer is caused the difference in de-
tector efficiency at the calibration wavelength of λ = 1064nm and the first detector frequency bin
at λ = 1.67µm, as well as the actual mirror reflectivities that were assumed to be 97%. However,
in the context of the determination of the bunch profile, the absolute error is of minor interest as
the shape of the bunch profile is encoded in the shape of the CTR spectrum.

A.2 Measurement uncertainty in the time domain

Since the measured longitudinal form factor and the bunch profile are related by a Fourier trans-
form, the measurement uncertainty in the frequency domain cannot be analytically transferred in
the temporal domain. Nevertheless, the induced uncertainty in the time domain can be roughly
assessed by retrieving the bunch profile from different form factors, which correspond to the
upper and lower error margins of the measurement. This procedure is shown in Fig. A.5 for two
exemplary shots.
In Fig. A.5a and b, the measured data points are shown along with the reconstructed form fac-
tors, for which the initial spectrum fed to the retrieval algorithm was set to the measured data
points (red) as well as the upper (blue) and lower (yellow) error limits. The respective retrieved
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Figure A.5: Assessment of the measurement uncertainty in the time domain. (a) and (b) show the mea-
sured data points (black) from two single-shots. The Bubblewrap retrieval algorithm was started form
the measured data points and afterwards from an input spectrum corresponding to the upper and lower
error margins. The retrieved spectra are shown in red, blue and yellow, respectively. The retrieved bunch
profiles are shown in (c) and (d) with the same colour code.

bunch profiles are shown in Fig. A.5c and d. For the single shot shown in Fig. A.5a and c, the
retrieved FWHM bunch durations are 4.83 fs, 4.85 fs and 4.85 fs for the measured data points
and the upper and lower error margin, respectively. For the shot shown in Fig. A.5b and d, the
retrieved durations are 4.41 fs, 4.44 fs and 4.67 fs, respectively. As demonstrated for these two
exemplary shots, the uncertainty in the spectral domain leads to an uncertainty in the time do-
main of . 0.3 fs for CTR spectra corresponding to bunch durations of ∼ 4.5 fs FWHM. This
translates into a relative measurement error in the time domain of . 7 %.
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