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Abstract

Novel low-scaling techniques for molecular electronic structure and property calculations
are introduced. Through the use of rank-revealingmatrix factorizations, overheads compared
to canonical molecular orbital-based formulations are virtually eliminated. Asymptotic
computational complexity is linear or sub-linear (depending on the property) through the
use of sparsity-preserving transformations throughout. For electron correlation energy
calculations within the random phase approximation, these techniques are combined with
an attenuated Coulomb metric in the resolution-of-the-identity to improve the accuracy
over existing low-scaling methods and to reduce the scaling compared to existing canonical
methods. For the resolution-of-the-identity itself, a novel method for the compression of
auxiliary bases is introduced, powered by removal of the particle-hole-interaction nullspace
through projection. Furthermore, efficient schemes for the calculation of molecular response
properties at the Hartree–Fock and density functional theory levels are introduced: For
the linear scaling calculation of vibrational frequencies, the exact cancellation of different
long-range operator derivatives is employed in combination with Laplace-transformed
and Cholesky-decomposed coupled-perturbed self-consistent field theories. Using related
techniques, calculations of indirect nuclear spin-spin coupling constants with asymptotically
constant time complexity are demonstrated and used to explore the dependence of spin-spin
couplings in a peptide on the size of a surrounding solvent environment.
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1 Introduction

An ongoing quest in quantum chemistry is the calculation of the correlation energy. For
small molecules, coupled-cluster theories truncated to double [1] or (perturbative) triple [2]
excitations reliably provide excellent energetics and properties. [3–6] However, this only holds
when the Hartree–Fock reference wave function is a good approximation to the exact wave
function. If the electronic ground state cannot be qualitatively captured in a single Slater
determinant, truncated coupled-cluster theories fail. The same is true for Møller–Plesset [7]
many-body perturbation theory.
For such electronic situations, the standard approach is to resort to multi-configuration

theories, in which the ground state wave function ansatz is a superposition of multiple Slater
determinants. [8] Multi-configurational self-consistent field theory is well established, [9]
as is the application of perturbation theory. [10,11] In case of coupled-cluster theories, this
generalization has not yet been fully realized, but several competing approaches have
been put forward. [6,12] All multi-configurational methods share some common limitations,
though.
First, the computational demand increases extremely steeply with the number of con-

figurations. The number of electrons which can be correlated by conventional multi-
configurational approaches is of the order of ten to twenty, beyond which the necessary
computational resources rise to intractable levels. This limits applications to molecular
systems of small to moderate size.
The second limitation lies in the selection of which orbitals to include in the multi-

configurational treatment. For small systems, chemical insight allows for an educated guess
and often works well. This requires intricate knowledge of both the theoretical treatment
and the molecular system under study, however.
For medium- to large-sized molecular systems, Kohn–Sham density functional theory

(KS-DFT) [13] is the de facto standard, because it yields useful accuracy at affordable com-
putational cost. In fact, KS-DFT is often the only available choice, squarely due to the steep
cost of other methods. The limitations of KS-DFT are relatively well understood. [14,15]
First, non-local correlation effects, such as dispersion forces, cannot be captured by lo-
cal or semi-local density functionals. Approaches to remedy this include empirical [16] or
non-empirical [17–20] corrections and non-local potentials. [21–25] Second, most approximate
exchange-correlation functionals suffer from self-interaction errors. [26] Finally, static cor-
relation is a problem in Kohn–Sham theories as much as it is in wave function theories.
Several approaches have been proposed, including but not limited to, refs. 27–31.
Among the many approaches which have been put forward to overcome these limi-

tations of KS-DFT, the random phase approximation (RPA) holds great promise. As a
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correlation method, the RPA can be rigorously derived from the adiabatic connection (cf.
sec. 2.4). It contains only well-defined approximations and no empirical parameters, is
size-consistent [32] and contains an ab initio description of dispersion. Additionally, it is
non-perturbative, and convergent even for small-gap systems and metals. These desirable
features have led to increased interest in the RPA over the last 15 years, even though the
method itself can be traced to 1951. [33]

In a Gaussian basis set, calculation of the RPA correlation energy scales as O(N6) with
molecular size N if computed through diagonalization, orO(N5) when using iterativematrix
sign-function methods. [34] A breakthrough by Eshuis et al. [35] reduced this to O(N4 log N )
using resolution-of-the-identity methods (cf. sec. 2.3) and a numerical integration. Since
then, multiple authors have reported even lower-scaling algorithms. [36–39]
This work includes article I (page 43), which takes the approach by Schurkus and

Ochsenfeld [38] and improves both accuracy and performance dramatically. Accuracy is
enhanced by introducing a Coulomb metric attenuated by a complementary error function
in the resolution-of-the-identity (cf. sec. 3.7), and performance is improved by pivoted
Cholesky decomposition of density-like matrices (cf. sec. 3.2).
Article II (page 55) describes a novel method for the generation and compression of

auxiliary bases in resolution-of-the-identity calculations, specifically correlation energy
calculations which require the use of particle-hole pair interactions, such as second-order
Møller–Plesset perturbation theory and the random phase approximation.
Aside from the molecular correlation energy, calculation of molecular properties (cf.

sec. 2.2) is another important field of quantum chemistry. Articles III (page 79) and IV
(page 91) are concerned with the calculation of second-order molecular properties at the
self-consistent field level of theory. Because second- and higher-order must normally be
calculated as derivatives of the electronic energy, computational cost is prohibitive in many
cases. Explicitly using the locality of the perturbing operators (cf. sec. 3.6) to obtain sparse
matrix representations has enabled the calculations of harmonic vibrational frequencies
with O(N ) scaling (page 91), and the calculation of indirect nuclear spin–spin coupling
constants with O(1) scaling (page 79), both at the (hybrid-) density functional level of
theory.

This work is a cumulative dissertation. As such, articles I through IV are considered the
main part of this work and are collected in their entirety starting from page 43. Chapter 2
contains a succinct overview of the required theoretical background. Chapter 3 comprises
additional results obtained during the work on this dissertation which have not been included
included in articles I through IV. Finally, chapter 4 summarizes the results.
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2 Theory

2.1 Self-Consistent Field Methods
Hartree–Fock [40–42] and Kohn–Sham [13] theories are two of the most commonly employed
methods for electronic structure calculations. Both provide approximate solutions to the
Schrödinger equations by transforming the many-electron problem to a set of effective
one-electron problems,where the electron-electron interaction is folded into an effective one-
electron potential. This potential is itself a dependent on the one-electron wave functions.
The solutions and potential are iteratively refined until they are self-consistent, i. e., the
one-electron wave function solution set gives rise to the same potential (“field”) as was
used to obtain the wave functions. Hence the term self-consistent field (SCF) theory.
I will review Hartree–Fock and Kohn–Sham theory only very briefly in the following,

noting that countless textbooks are available on the topic (for example refs. 8,43–45). The
aim here is to provide some context to the equations in the following sections and establish
a consistent notation, without reiterating too much textbook knowledge.

2.1.1 Hartree–Fock Theory
Hartree–Fock theory starts with the exact, non-relativistic molecular Hamiltonian Ĥ

Ĥ = −
∑

A

1
2mA
∇2

A −
∑

i

1
2
∇2

i +
∑

B>A

ZAZB

rab
−

∑

iA

ZA

riA
+

∑

j>i

1
ri j
, (2.1.1)

(in atomic units), where A, B index nuclei with mass mA, charges ZA, ZB, and i, j index elec-
trons. rx y =

���r y − r x
��� denotes the distance between particles x, y . The Born–Oppenheimer

approximation is assumed, and the ansatz for the molecular wave function is a single Slater
determinant |ΨSD〉 built from an orthonormal set of molecular orbitals {|ϕ〉} (MOs, one-
particle wave functions). The Hartree–Fock energy expression is the expectation value of
the exact Hamiltonian with this Slater determinant:

EHF =
〈ΨSD |Ĥ |ΨSD〉
〈ΨSD |ΨSD〉 . (2.1.2)

This expression is variationally minimized by forming the functional derivative with respect
to the molecular orbitals |ϕi〉 and finding the roots of the resulting expression, which yields
the Hartree–Fock equations (canonical form) [43]

F̂ |ϕi〉 = εi |ϕi〉 , (2.1.3)
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with

F̂ = ĥ + v̂HF, (2.1.4)

ĥ = −1
2
∇2 + vext (r ) (2.1.5)

v̂HF = Ĵ − K̂, (2.1.6)

Ĵ =
∑

j

∫
dr′ ϕ∗j (r

′)
1

|r − r′|ϕ j (r′) =
∫
dr′

ρ (r′)
|r − r′| , (2.1.7)

K̂ =
∑

j

∫
dr′ ϕ∗j (r

′)
P

|r − r′|ϕ j (r′). (2.1.8)

The external potential vext includes the field generated by the nuclei, and possibly other
external fields. The non-local Fock potential v̂HF comprises the classical electron-electron
interaction in the Coulomb operator Ĵ, and the non-classical exchange interaction in the
exchange operator K̂ . The permutation operator P in Eq. 2.1.8 exchanges the electronic
coordinates r and r′.
Equation 2.1.2 leads to the definition of the correlation energy EC, which is just the

difference between the exact energy and the Hartree–Fock energy [43]

EC = Eexact − EHF. (2.1.9)

2.1.2 Kohn–Sham Theory
Kohn–Sham theory builds on the Hohenberg–Kohn theorems [46] to construct an approx-
imate one-electron potential analogous to the Fock potential v̂HF (Eq. 2.1.6), called the
Kohn–Sham potential vKS. Unlike the Fock potential, the Kohn–Sham potential is a func-
tional of the electron density ρ rather than the molecular orbitals |ϕi〉. Analogously to the
Hartree–Fock equations (2.1.3), the Kohn–Sham equations read [44,45]

F̂ |ϕi〉 = εi |ϕi〉 , (2.1.10)

F̂ = −1
2
∇2 + vext (r ) + vKS (r ) , (2.1.11)

vKS (r ) =
∫
dr′

ρ (r′)
|r − r′| + vXC (r ) , (2.1.12)

vXC (r ) =
δEXC

[
ρ
]

δρ (r )
. (2.1.13)

Compared to the Hartree–Fock equations, the exchange operator is replaced by the exchange-
correlation (XC) potential vXC (r ), which is the functional derivative of the exchange-
correlation energy functional EXC

[
ρ
]
with respect to the density ρ (r ). While the exact

form of EXC
[
ρ
]
is unknown for the general case, various constraints and physical insights

have been used to obtain a plethora of approximations (collectively known as density
functional approximations). [45]
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As the name suggests, exchange-correlation functionals attempt to fold exchange and
correlation effects into the effective potential. This is in contrast to Hartree–Fock theory,
which only incorporates exchange effects and—by definition—no electron correlation.

2.1.3 Roothaan–Hall Equations
The Hartree–Fock and Kohn–Sham equations are most often (but not exclusively) solved by
expanding the molecular orbitals {|ϕi〉} in some (generally non-orthogonal) one-electron
basis set {|µ〉}

|ϕi〉 =
∑

µ

|µ〉Cµi, (2.1.14)

which when inserted into Eqs. 2.1.3 or 2.1.10 yields the Roothaan–Hall [47,48] equations
∑

ν

FµνCνi =
∑

ν

SµνCνiεi (2.1.15)

Fµν = 〈µ ���F̂��� ν〉 , (2.1.16)
Sµν = 〈µ|ν〉 , (2.1.17)

which is simply the matrix representation of the Hartree–Fock or Kohn–Sham equations
in the basis {|µ〉 , |ν〉 , . . .}. Many different types of basis sets are in use, including but not
limited to plane waves and augmented plane waves, wavelets, atom-centered Gaussian or
Slater functions modeled after atomic orbitals (AOs). The results presented in this work,
particularly in chapter 3 and articles I-IV, used Gaussian functions exclusively. However,
many of the principles are directly applicable to any other type of local basis set. In the
following, {i, j, . . .

}
will be used for occupied MOs, {a, b, . . .} will be virtual MOs, and

{p, q, . . .
}
will be general (occupied or virtual) MOs.

2.1.4 Density Matrix Formulations
It is very often convenient to work with reduced one-particle density matrices instead
of molecular orbitals. For AO-based linear-scaling SCF theories, this is in fact required,
because the canonical molecular orbitals offer no locality. Section 3.3 discusses this aspect
in more detail.

In SCF-type calculations, the density operator is

ρ̂ =
∑

p

|ϕp〉 np 〈ϕp | , (2.1.18)

where the occupation numbers np are zero (virtual orbitals) or unity (occupied orbitals) for
pure states, such as all states considered in this work. The atomic orbital representation of
the density operator in SCF theories reduces to

Pµν =
∑

i∈occ
CµiC

†
iν, (2.1.19)
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which is the dyadic product of all occupied MO coefficient vectors C

P = C C†. (2.1.20)

For pure states, the density operator is a projection operator. Later, it will be useful to define
a “virtual” density, which is the complement of the density (operator), defined by

Q = C C† = S−1 − P, (2.1.21)

where C are the virtual MO coefficient vectors.
Using density matrices in the atomic orbital basis, the energy expression in Hartree–Fock

and Kohn–Sham theories become [49]

ESCF =
∑

µν

Pµνhνµ +
1
2

PµνGνµ (P) + VNN (2.1.22)

= Tr
(
Ph +

1
2

PG (P)
)
+ VNN, (2.1.23)

where VNN is the nuclear repulsion energy, and G (P) is the matrix representation of the
Fock (Eq. 2.1.6) or Kohn–Sham (Eq. 2.1.12) potential, respectively. This notation shows
the explicit dependence of the effective potential G on the density matrixP.

2.2 Molecular Properties
Apart from energies, prediction of molecular properties is of high relevance. Predictions
can aid in interpretation of experimental data, substantiate or challenge hypotheses.
For virtually all molecular electronic structure methods, gradients of the energy with

respect to nuclear coordinates are among the most important properties. They allow opti-
mization of molecular geometries toward points of zero gradients, i. e. stationary points on
the potential hyper surface. Other properties accessible include harmonic and higher-order
vibrational frequencies including infrared and Raman intensities, nuclear magnetic shield-
ings tensors, indirect nuclear spin-spin coupling tensors, static and dynamic polarizabilities
and hyper-polarizabilities, g-tensors, hyperfine coupling constants. [50]

Some molecular properties can be calculated as simple expectation values of the ground-
state wave function or (spin) densities, for example dipole moments, or hyperfine coupling
constants. Higher-order properties, such as the gradient (first-order) or vibrational frequen-
cies (second-order) are more involved.

2.2.1 Hellmann–Feynman Theorem
The Hellmann–Feynman theorem [51,52] states that the first derivative of an expectation
value requires only evaluation of an expectation value of the unperturbed wave function

18



with the operator derivative, but no wave function derivatives:
E = 〈Ψ |Ĥ |Ψ 〉 (2.2.1)

dE
dλ
= 〈 d

dλ
Ψ |Ĥ |Ψ 〉 + 〈Ψ | d

dλ
Ĥ |Ψ 〉 + 〈Ψ |Ĥ | d

dλ
Ψ 〉 (2.2.2)

= E 〈 d
dλ
Ψ |Ψ 〉 + E 〈Ψ | d

dλ
Ψ 〉 + 〈Ψ | d

dλ
Ĥ |Ψ 〉 (2.2.3)

= E
d
dλ
〈Ψ |Ψ 〉 + 〈Ψ | d

dλ
Ĥ |Ψ 〉 (2.2.4)

= 〈Ψ | d
dλ

Ĥ |Ψ 〉 . (2.2.5)

While the theorem holds only for complete bases and is therefore typically not applicable
in quantum chemistry, it can still provide valuable insight. In the context of linear-scaling
computation of vibrational frequencies as second-order energy derivatives with respect to
nuclear coordinates, the decay behavior of the interaction can be inferred to be more rapid
than cursory examination suggests. Details of this will be discussed in sec. 3.6. In most
practical calculations, energy derivatives are not evaluated through the Hellmann–Feynman
theorem, but by explicitly computing the derivatives of the energy expression of the method
in question.

2.2.2 Derivatives of the SCF Energy
The first derivative of the Hartree–Fock or Kohn–Sham energy [53–57] in a density matrix-
based form (Eq. 2.1.23) with respect to a general perturbation λ (we use the shorthand
d
dλZ = Zλ) yields

dESCF
dλ

=
d
dλ

Tr
(
Ph +

1
2

PG(P)
)
+

d
dλ

VNN (2.2.6)

= Tr
(
Phλ +

1
2

PGλ (P) + Pλ (h +G(P))
)
+ V λ

NN (2.2.7)

= Tr
(
Phλ +

1
2

PGλ (P) + PλF
)
+ V λ

NN (2.2.8)

= Tr
(
Phλ +

1
2

PGλ (P) −WSλ
)
+ V λ

NN, (2.2.9)

with W = PFP. The identity Tr
(
PλF

)
= −Tr

(
WSλ

)
can be understood from inspection

of the subspace projections of Pλ and F: [58]

PSPλSP = Pλ
oo = −PSλP, (2.2.10)

PSPλ (1 − SP) = Pλ
ov, (2.2.11)

(1 − PS)PλP = Pλ
vo, (2.2.12)

(1 − PS)Pλ (1 − SP) = Pλ
vv = 0. (2.2.13)
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Brillouin’s theorem requires that the occupied-virtual and virtual-occupied subspace pro-
jections of F vanish. Hence, the only subspace shared between F and Pλ is the occupied-
occupied space. The first energy derivative may therefore be evaluated without having to
resort to any explicit density or wave function derivatives. This is in accordance with the
Hellmann–Feynman theorem (Eq. 2.2.5) and Wigner’s (2n + 1) rule.

For second derivatives, however, a density response is required. The general expression
is [53–57]

d2ESCF
dξdλ

=
d
dξ

Tr
(
Phλ +

1
2

PGλ (P) −WSλ
)
+

d
dξ

V λ
NN (2.2.14)

= Tr
(
Phλξ +

1
2

PGλξ (P) −WSλξ
)

(2.2.15)

+ Tr
(
Pξhλ + PξGλ (P) −WξSλ

)
+ V λξ

NN. (2.2.16)

Evidently, the density response (or perturbed density) Pξ is required for second derivatives,
and may be obtained through solution of the coupled-perturbed SCF (CPSCF) equations,
discussed in sec. 2.2.3.

2.2.3 Coupled-Perturbed SCF
Differentiation of the Roothaan–Hall equations (2.1.15) with respect to perturbation ξ
yields

∑

ν

Fξ
µνCνi + FµνC

ξ
νi =

∑

ν

SξµνCνiεi + SµνC
ξ
νiεi + SµνCνiε

ξ
i . (2.2.17)

Inserting Cξ
νi =

∑
a CνaU ξ

ai and multiplying by
∑
µ C†aµ from the left gives

∑

aµν

C†aµFξ
µνCνi + C†aµFµνCνaU ξ

ai =
∑

aµν

C†aµSξµνCνiεi + C†aµSµνCνaU ξ
aiεi, (2.2.18)

or equivalently
Fξ

ai + εaU ξ
ai = Sξaiεi +U ξ

aiεi . (2.2.19)

After rearranging terms, we obtain a compact form of the coupled-perturbed SCF (CPSCF)
equations [55,59–61]

U ξ
ai =

Sξaiεi − Fξ
ai

εa − εi
, (2.2.20)

Pξ
µν =

∑

ai

CµaU ξ
aiC
†
iν +

∑

ia

CµiU
ξ†
ia C†aν −

∑

λσ

PµλSξλσPσν . (2.2.21)

Because Fξ
µν depends on the perturbed density matrix Pξ , the CPSCF equations must be

solved iteratively.
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2.2.4 Laplace-Transformed Density Matrix-Based CPSCF
A transformation of Eq. 2.2.20 to the AO basis has been introduced by Beer and Ochsen-
feld [62] by means of the the well-established Laplace transformation [63]

1
εa − εi

=

∫ ∞

0
dt e−(εa−εi )t (2.2.22)

'
τ∑

α=1
wαe−(εa−εi )tα, (2.2.23)

which is used in Møller–Plesset perturbation theory, [64–66] CPSCF, [62,67–69] and in a differ-
ent form in the random phase approximation. [38] In the context of CPSCF, Eq. 2.2.20 is
rewritten as

U ξ
ai '

τ∑

α=1
wαe−εatα

(
Sξaiεi − Fξ

ai

)
eεitα (2.2.24)

=

τ∑

α=1
wαe−(εa−εF)tα

(
Sξaiεi − Fξ

ai

)
e(εi−εF)tα, (2.2.25)

where εF is arbitrary. Ayala and Scuseria [66] pointed out that setting εF to a value between
εHOMO and εLUMO (the highest occupied and lowest unoccupied orbital energies, respec-
tively) means the exponential factor is always smaller than unity. We will make use of this
in sec. 3.2.
The density matrix-based Laplace-transformed CPSCF equations introduced by Beer

and Ochsenfeld [62] read

Pξvo =
τ∑

α=1
Q(α)

(
−hξ −G

[
Pξ

] )
P(α), (2.2.26)

P(α)
µν =

√
wα

∑

i

Cµi exp (tαεi) C†iν, (2.2.27)

Q(α)
µν =

√
wα

∑

a

Cµa exp (−tαεa) C†aν . (2.2.28)

We refer to P(α) and Q(α) loosely as “pseudo-density matrices”. Like the regular one-
particle density matrices P and Q = S−1 −P, they become sparsely populated for molecular
systems of sufficient size and non-zero band gap.

2.3 Resolution-of-the-Identity
In the context of quantum chemistry, the resolution-of-the-identity (RI) [70–77] is used to
approximate four-center two-electron repulsion integrals (ERIs) over atomic basis functions
of the form

(
µν |λσ)

=

∫∫
drdr′ µ (r ) ν (r )

1
|r − r′| λ

(
r′
)
σ

(
r′
)

(2.3.1)
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as
(
µν |λσ) ≈

∑

PQ

(
µν |P)

(P |Q)−1 (Q |λσ) , (2.3.2)

(
µν |P)

=

∫∫
drdr′ µ (r ) ν (r )

1
|r − r′|P

(
r′
)
, (2.3.3)

where we introduced the shorthand notation

(P |Q)−1 ≡
(
C−1

)
PQ,

(2.3.4)

CPQ = (P |Q) =
∫∫

drdr′ P (r )
1

|r − r′|Q
(
r′
)
, (2.3.5)

and P,Q are elements of an auxiliary basis set, which is typically about three times as big
as the atomic orbital basis set. RI is also known as “Density Fitting”, because derivation of
Eq. 2.3.2 [74] proceeds by fitting an auxiliary density ρ̃ to the exact density ρ,

ρ (r ) =
∑

µν

µ (r ) ν (r ) Pνµ ≈ ρ̃ (r ) =
∑

P

χP (r ) CP
µν, (2.3.6)

and minimizing the residual self-repulsion R

R =
∫∫

drdr′
(
ρ̃ − ρ) (r )

(
ρ̃ − ρ) (r′)

|r − r′| . (2.3.7)

Equation 2.3.2 has been the ubiquitous form of RI for some time. It is used to approximate
ERIs in Kohn–Sham, [74,78,79] Hartree–Fock, [80] second-order Møller–Plesset, [77,81,82] as
well as coupled-cluster theories. [83,84]

However, Eq. 2.3.2 is only uniquely defined through Eq. 2.3.7. Alternatively, minimizing
the norm ���δµν���2 =

∫
dr

����(µν) (r ) −
∑

P

χP (r ) CP
µν

����
2

(2.3.8)

leads to [74] (
µν |λσ) ≈

∑

PQRS

(
µνP

)
(PQ)−1 (Q |R) (RS)−1 (Sλσ) , (2.3.9)

with

(PQ)−1 ≡
(
S−1

)
PQ
, (2.3.10)

SPQ =

∫
dr P (r ) Q (r ) , (2.3.11)

(
µνP

)
=

∫
dr µ (r ) ν (r ) P (r ) . (2.3.12)

In terms of linear algebra, equations 2.3.2 and 2.3.9 differ in their definition of the norm
(and hence the metric thereby induced). Equation 2.3.2 is known as Coulomb-metric RI (or
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“RI-V”), while Eq. 2.3.9 corresponds to the overlap-metric RI (or “RI-SVS”). In the limit of
a complete auxiliary basis, any metric will give the correct result. In finite bases, Eq. 2.3.2
has been found to yield superior accuracy, [74,76] which is why it was universally adopted.

Coulomb-metric RI has a distinct disadvantage compared to overlap-metric RI, however.
In the context of linear-scaling techniques, the three-center two-electron integrals (Eq. 2.3.3)
offer only limited useable sparsity (cf. sec. 3.3) in their atomic orbital representations. In
local bases (e. g., Gaussian functions), the product vector |µν) vanishes if |µ) and |ν) are
centered on points sufficiently far apart. This criterion is universally used in all programs
using local basis functions for virtually all integral evaluations, and it is also useful in the
evaluation of Eq. 2.3.3. However, the 1

r coupling between bra and ket in
(
µν |P)

means
whenever |µν) is significant, the integral

(
µν |P)

will also be significant. In other words,
the number of significant Coulomb-metric three-center RI integrals grows as O(N2). In
contrast, overlap-metric three-center integrals offer extremely high useable sparsity, since
the integral decays exponentially in the distance of bra and ket.
Overlap-metric RI was reintroduced by Schurkus and Ochsenfeld [38] for an effective

linear-scaling RPA algorithm within the RI approximation. Techniques to combine the
advantages of overlap- and Coulomb-metric RI is discussed in article I (page 43) and
sec. 3.7.

2.4 Correlation Energies from the Random Phase
Approximation

The Random Phase Approximation (RPA) originates in a series of publications by Bohm
and Pines. [33,85,86] Langreth and Perdew [87] first defined the RPA correlation energy. In
modern electronic structure literature, the RPA correlation energy is most often derived
from the adiabatic connection [87–90] and the fluctuation-dissipation theorem. [91] Here, we
follow Eshuis et al. [92] for the first steps.

2.4.1 Adiabatic Connection Correlation Energy

A well-known result from the adiabatic connection formalism for the correlation energy EC
is

EC =

∫ 1

0
dα

(
〈Ψ α

0
���V̂ee

���Ψ α
0 〉 − 〈Ψ α=0

0
���V̂ee

���Ψ α=0
0 〉

)
, (2.4.1)

where α is the coupling strength,Ψ α
0 is the ground-state wave function at coupling strength α,

and V̂ee is the exact electron-electron interaction. In second quantization, V̂ee may be rewrit-
ten as [8]

V̂ee =
1
2

∑

pqrs

〈pq |rs〉 ĉ†pĉ†q ĉs ĉr, (2.4.2)
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with the creation
(
ĉ†p

)
and annihilation

(
ĉp

)
operators. In terms of the two-particle density

operator P̂ (x1, x2),

V̂ee =

∫∫
dx1dx2

P̂ (x1, x2)
|r1 − r2 | =

∫∫
dx1dx2 P̂ (x1, x2) v (x1, x2) , (2.4.3)

where xi = (r i, σi) is a combined spin-space coordinate and v (x1, x2) = 1/ |r1 − r2 | is the
bare Coulomb interaction. Using electron field operators [93]

ψ̂† (x) =
∑

p

φ∗p (x) ĉ†p, (2.4.4)

the two-particle density operator reads

P̂ (x1, x2) =
1
2
ψ̂† (x1) ψ̂† (x2) ψ̂ (x2) ψ̂ (x1) , (2.4.5)

which may be factorized as

P̂ (x1, x2) =
1
2

[
ρ̂ (x1) ρ̂ (x2) − δ (x1 − x2) ρ̂ (x1)

]
, (2.4.6)

using the fermionic anti-commutator relations [93][
ψ̂ (x1) , ψ̂† (x2)

]
+
= δ (x1 − x2) , (2.4.7)[

ψ̂ (x1) , ψ̂ (x2)
]
+
=

[
ψ̂† (x1) , ψ̂† (x2)

]
+
= 0. (2.4.8)

Introducing the density-fluctuation operator [93]

∆ρ̂ (x) = ρ̂ (x) − ρ (x) , (2.4.9)

equation 2.4.6 becomes

P̂ (x1, x2) =
1
2

[
∆ρ̂ (x1) ∆ρ̂ (x2) + ρ̂ (x1) ρ (x2)

+ ρ (x1) ρ̂ (x2) − δ (x1 − x2) ρ̂ (x1)
]
. (2.4.10)

Inserting Eqs. 2.4.3 and 2.4.10 into the correlation energy expression from the adiabatic
connection (Eq. 2.4.1) leaves just

EC =
1
2

∫ 1

0
dα

∫∫
dx1dx2

[ 〈Ψ α
0 |∆ρ̂ (x1) ∆ρ̂ (x2) |Ψ α

0 〉
|r1 − r2 |

− 〈Ψ
α=0
0 |∆ρ̂ (x1) ∆ρ̂ (x2) |Ψ α=0

0 〉
|r1 − r2 |

]
, (2.4.11)
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because all other terms vanish identically forΨ α
0 andΨ α=0

0 . Inserting the resolution-of-the-
identity

1 =
∑

n

|Ψ α
n 〉 〈Ψ α

n | (2.4.12)

between ∆ρ̂ (x1) and ∆ρ̂ (x2) yields

EC =
1
2

∫ 1

0
dα

∫∫
dx1dx2

∑

n

[ 〈Ψ α
0 | ρ̂ (x1) |Ψ α

n 〉 〈Ψ α
n | ρ̂ (x2) |Ψ α

0 〉
|r1 − r2 |

− 〈Ψ
α=0
0 | ρ̂ (x1) |Ψ α=0

n 〉 〈Ψ α=0
n | ρ̂ (x2) |Ψ α=0

0 〉
|r1 − r2 |

]
. (2.4.13)

Written more compactly,

EC =
1
2

∫ 1

0
dα

∫∫
dx1dx2

∑

n

[
ρα0n (x1) ρα0n (x2) v (x1, x2)

−ρα=0
0n (x1) ρα=0

0n (x2) v (x1, x2)
]
, (2.4.14)

with
ρα0n (x) = 〈Ψ α

0 | ρ̂ (x) |Ψ α
n 〉 . (2.4.15)

2.4.2 Frequency Integration of the Polarization Propagator
Next, we inspect the Lehmann representation of the (retarded) polarization propagator [93,94]
at coupling strength α

χα (x1, x2, ω) = lim
η→0+

∑

n

(
ρα0n (x1) ρα0n (x2)

ω − Ωα
n + iη

− ρα0n (x1) ρα0n (x2)

ω + Ωα
n + iη

)
, (2.4.16)

which has first-order poles at z0 = Ω
α
n − iη and z1 = −Ωα

n − iη with residues

Res χα (x1, x2, z) | z=z0 = ρ
α
0n (x1) ρα0n (x2) , (2.4.17)

Res χα (x1, x2, z) | z=z1 = −ρα0n (x1) ρα0n (x2) . (2.4.18)

Using Cauchy’s residue theorem, integration along the imaginary axis can be performed by
counter-clockwise integration along the contour Γ enclosing z1, yielding

∫ ∞

−∞
du χα (x1, x2, iu) =

∮

Γ
dz χα (x1, x2, z) (2.4.19)

= 2πiRes χα (x1, x2, z) | z=z1 (2.4.20)
= −2πiρα0n (x1) ρα0n (x2) . (2.4.21)

25



Inserting this result in Eq. 2.4.14 gives a useful expression for the correlation energy

EC = − 1
4π

Im
∫ 1

0
dα

∫ ∞

−∞
du

∫∫
dx1dx2

[
χα (x1, x2, iu)

− χ0 (x1, x2, iu)
]
v (x1, x2) , (2.4.22)

known as the adiabatic-connection fluctuation-dissipation-theorem correlation energy. [87,89,95–97]

2.4.3 Dyson Equation and the Random Phase Approximation
We switch to matrix notation, where multiplication is understood to mean

(ab)xx′ =
∑

x′′
axx′′bx′′x′ (2.4.23)

=

∫
dx′′ a

(
x, x′′

)
b
(
x′′, x′

)
. (2.4.24)

The polarization propagator χα at coupling strength α obeys a Dyson- or Bethe–Salpeter-
type equation [34,93,98]

χα (x1, x2, ω) = χ0 (x1, x2, ω)

+

∫∫
dx′1dx′2 χ0

(
x1, x′1, ω

) [
αv

(
x′1, x′2

)
+ f XCα

(
x′1, x′2, ω

)]
χα

(
x′2, x2, ω

)
, (2.4.25)

or
χα (ω) = χ0 (ω) + χ0 (ω)

[
αv + f XCα (ω)

]
χα (ω) , (2.4.26)

where f XCα is the (frequency-dependent) exchange–correlation kernel at coupling strength α.
The (direct) random phase approximation simply omits f XCα so that Eq. 2.4.26 becomes

χRPA
α (ω) = χ0 (ω) + αχ0 (ω) vχRPA

α (ω) , (2.4.27)

which may be rearranged to

χRPA
α (ω) =

[
χ−1

0 (ω) − αv
]−1

, (2.4.28)

where the coupling-strength integral may be evaluated analytically
∫ 1

0
dα Tr

(
χRPA
α (ω) v

)
=

∫ 1

0
dα Tr

( [
χ−1

0 (ω) − αv
]−1

v
)

(2.4.29)

= −Tr ln
(
1 − χ0 (ω) v

)
. (2.4.30)

Combining this result with 2.4.22 yields a definition of the RPA correlation energy

ERPA
C =

1
4π

Im
∫ ∞

−∞
du Tr

[
ln

(
1 − χ0 (iu) v

) − χ0 (iu) v
]
. (2.4.31)
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3 Additional Results
This chapter includes additional results and remarks not included in articles I-IV.

3.1 The Pivoted Cholesky Factorization for DL-CPSCF
Both the occupied (P(α))and virtual (Q(α)) pseudo-densities are positive semi-definite and
therefore amenable to a pivoted Cholesky factorization:

P(α) =
√
wα exp (taPF) P = P̃(α)P̃(α)T, (3.1.1)

Q(α) =
√
wα exp (−taQF) Q = Q̃(α)Q̃(α)T. (3.1.2)

The occupiedmatrices have rank Nocc, and the virtualmatrices have rank Nvirt. The Cholesky
factors P̃(α) and Q̃(α) consequently have dimension Nbasis × Nocc and Nbasis × Nvirt, respec-
tively. The canonical DL-CPSCF equation (2.2.26) can be rewritten using the Cholesky
factors as

Pξvo =
τ∑

α=1
Q̃(α)Q̃(α)T

(
−hx −G

[
Pξ

] )
P̃(α)P̃(α)T. (3.1.3)

This expression was first given by the author in articles III (page 79) and IV (page 91).
Because not all matrices here are square, the order of multiplications is important to

performance. The optimum sequence depends on matrix sparsity, as well as the ratio of
occupied to virtual orbitals. We will omit discussion of linear dependencies in the atomic
orbital basis, because they are easily eliminated by projection, and reduce the total number
of molecular orbitals only by a small fraction over the number of atomic orbitals.

In typical calculations with basis sets of useful size (i. e. non-minimal bases), the number
of occupied orbitals is much smaller than the total number of orbitals. We will assume
Nocc =

1
10 Nbasis (and therefore Nvirt =

9
10 Nbasis) in the following, which can be considered

typical for basis sets of double-ζ quality.
In the limiting case where all matrices are densely filled, evaluation of Eq. 2.2.26 re-

quires 2N3
basis multiplications per Laplace point α. The optimal strategy for evaluation of

Eq. 3.1.3 is to perform the Cholesky factorization only on P(α), and proceed by multiplying
the integrand −hx − G [Px] by the left Cholesky factor P̃(α) from the right, followed by
multiplication with Q(α) from the left, and finally multiplication by P̃(α)T from the right.
Assuming Nocc =

1
10 Nbasis, this sequence requires 0.3N3

basis multiplications, improving
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computational time 6×. Performing the Cholesky factorization also on Q(α) increases the
number of multiplications to 0.38N3

basis.
This discussion typically also holds for sparse matrices. In many cases, however, factoriz-

ing both Q(α) and P(α) does turn out to be superior after all. This is due to rank reductions
beyond Nocc and Nvirt, discussed in sec. 3.2.

3.2 Rank Reduction Through Cholesky Factorization
For a fixed number of integration nodes τ in Eq. 3.1.3, the sum of the numerical ranks of
all Q(α) becomes smaller the smaller the HOMO-LUMO gap gets. This follows from the
numerical quadrature of the Laplace-transformed term 1

x . In the interval x ∈ [1, R],

1
x
'

τ∑

α=1
w̄α exp (−t̄αx) . (3.2.1)

The corresponding roots {wα} and weights {tα} for the interval y = Ax ∈ [A, B] with
B = AR are [99]

1
y
'

τ∑

α=1
wα exp

(−tα y
)
, (3.2.2)

wα = w̄α/A, (3.2.3)
tα = t̄α/A. (3.2.4)

In this particular application, the quadrature interval is

y ∈
[
εLUMO − εHOMO, εhigh − εlow

]
, (3.2.5)

where εHOMO and εLUMO are the HOMO and LUMO energies, respectively, and εhigh and
εlow are the overall highest and lowest MO energies, respectively. For closing HOMO-
LUMO gaps, therefore, tα in Eq. 3.2.2 grows and the numerical rank of Q(α) in Eq. 2.2.28
shrinks.

This means, for instance, that the pivoted Cholesky decomposition provides larger rank
reductions for non-hybrid KS calculations than for HF calculations (for a fixed number
of nodes τ), since the former generally produces smaller gaps. In turn, the integration
interval y in HF calculations is smaller than in KS calculations, meaning fewer quadrature
points τ may be sufficient.
The numerical properties of the Cholesky factorization are discussed in Ref. 100. In

LAPACK (routine dpstrf), accuracy is controlled by a tolerance parameter. We have
found that the pseudo-density matrices are generally well-behaved with regard to the pivoted
Cholesky factorization. The default tolerance in LAPACK introduces errors in the order
of the machine precision. The numerical rank of the Cholesky factors can be artificially
reduced at the cost of accuracy by using a less strict tolerance parameter. In our tests,
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however, forcing the numerical rank to be just 10% below the rank revealed by the default
tolerance leads to unacceptable errors.

As a general rule, numerical results are improvedwhen performing the orbital energy shift
(Eq. 2.2.25) discussed in sec. 2.2.4. This is particularly true when using loose tolerances. In
exact arithmetic, εF in Eq. 2.2.25 can be chosen arbitrarily. In double precision arithmetic,
however, shifting the orbital energies by as little as ±5Hartree leads to severe numerical
instabilities. Thus, we always choose εF = (εHOMO + εLUMO)/2, which means all occupied
MO energies will be negative, and all virtual MO energies will be positive. Consequently,
the argument to the exponential function in Eqs. 2.2.27 and 2.2.28 is always negative, and
numerical singularities are avoided.
In AO-RPA calculations, derivatives of pseudo-density matrices must be evaluated. In

ω-CDD-RPA (article I, page 43), these matrices are Cholesky-factorized. Particularly in
pure (non-hybrid) Kohn–Sham calculations, which form the basis of an RPA calculation, a
few low-lying virtual orbitals with negative orbital energies are the norm rather than the
exception. In such a case, the spectral representation of a virtual pseudo-density matrix
derivative

− ∂

∂tα
Q(α)
µν =

√
wα

∑

a

Cµaεa exp (−tαεa) C†aν (3.2.6)

reveals the matrix is manifestly not positive semi-definite and hence not amenable to
Cholesky factorization, unless all virtual orbital energies are shifted to positive values.

Articles III (page 79) and IV (page 91) established that performing Cholesky-factorizing
the virtual pseudo-density matrices in addition to their occupied counterparts can increase
performance and improve numerical stability, particularly when using sparse algebra. This
is despite the fact that the theoretical number of multiplications increases, as discussed in
sec. 3.1.

3.3 Useable Matrix Sparsity
The key difficulty in the design and implementation of low-scaling variants of ab initio
theories in the atomic orbitals lies in the matrix sparsity of relevant quantities. It is well
known that the overlap, Fock, and density matrices become sparsely populated—in a local
basis (such as Gaussian functions)—for molecules of sufficient size with non-vanishing
band gaps.
However, unlike other problem domains—such as finite-element calculations—only

certain specific forms of matrix sparsity are useful for AO-based low-scaling methods.
Finite-element calculations often see matrices of dimensions of several hundred thousand
rows and columns, with extremely high (> 99%) sparsity. Large SCF calculations, on the
other hand,might have matrix dimension of several ten thousand rows and columns,with just
50–90% sparsity. The immediate consequence is that most sparse matrix storage schemes,
such as the compressed-sparse-row (CSR) format, have extremely poor performance in this
problem domain.
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The most successful sparse storage format for ab initio calculations is the blocked-
compressed sparse row (BCSR) format, [101–105] which divides the source matrix into
sub-matrices (typically 100 × 100 in size) and discards all blocks whose matrix norm
is below a numerical threshold. This format allows for matrix multiplications with very
low overhead, because the sub-matrix multiplications are delegated to high-performance
libraries, often supplied by the processor vendor.
The caveat of the BCSR format, however, is that it only works well for banded sparse

matrices (see figure 3.1 on the facing page for examples). If the significant elements of a
matrix are dispersed all over the matrix, effectively all blocks must be allocated, and no
compression is possible with the BCSR format.
This leads to a concept of useable matrix sparsity within AO-based quantum chemical

calculations. The useable sparsity can be measured by, for example, the matrix bandwidth.
An alternative criterion is the percentage of allocated BCSR blocks required for a certain
accuracy.

Designing an AO-based low-scaling quantum chemical algorithm requires that the matrix
operations preserve useable sparsity. This requirement is the key difficulty. It effectively
eliminates the use of eigendecompositions and singular value decompositions in the algo-
rithm, because the eigenvectors and singular vectors of the Fock and SCF density matrices
have no useable sparsity. One highly useful sparsity-preserving matrix factorization is the
Cholesky decomposition, extensively used in this work in articles I through IV. Two very
important aspects of useable matrix sparsity will be discussed in sections 3.4 and 3.5.

3.4 Sparsity of the Virtual Density Matrix
One of the more common misleading statements in much of the literature concerning the
sparsity of density matrices concerns the virtual density matrix (Eq. 2.1.21 on page 18). It
is true that, for typical molecular calculations using atom-centered Gaussian basis sets, the
contravariant atomic orbital representation of the virtual density matrix Q is much less
sparse than the corresponding occupied density matrix representation. However, Eq. 2.1.21
simplifies to

Q = 1 − P (3.4.1)

when the atomic orbital basis has been orthogonalized. In other words, the occupied and
virtual density matrices have identical sparsity patterns in an orthogonalized basis. There is
no physical reason whatsoever dictating the virtual density matrix be any less local (sparse)
than the occupied density matrix. The confusion arises due to the presence of S−1 in
Eq. 2.1.21. In Gaussian orbitals, the overlap matrix S is extremely sparse, because elements
Sµν decay as exp

(
−r2

)
in the distance r of their centers. Matrix inversion will destroy a

significant portion (but by no means all) of this sparsity. Hence, in the contravariant AO
basis, the virtual density matrix Q is much less sparse than its occupied counterpart P.
In an orthogonalized basis, however, the sparsity of Q and P is identical. If the aim is

to obtain a sparse matrix representation of the occupied and virtual density matrices, this
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translates to finding an a sparsity-preserving orthogonalization of the atomic orbital basis.
Löwdin orthogonalization [106] provides orthogonalized AOs which are most similar to

the original AOs in a least-squares sense, [107,108] and hence inherit most of their locality.
Another possible choice is the Cholesky factorization of S as S = LLT. Using L to
orthogonalize contravariant quantities, and L−1 to orthogonalize covariant quantities. This
procedure is equivalent to Gram–Schmidt orthogonalization, and is much faster to compute
than Löwdin’s orthogonalization. Like Löwdin’s procedure, it preserves much of the existing
sparsity. Sparsity patterns of occupied and virtual density matrices (computed for n-C80H162,
PBE/def2-SVP) are given in figure 3.1.

Figure 3.1: Sparsity patterns of occupied and virtual density matrices in different bases. From
left to right: P and Q (contravariant AO basis); P and Q (orthogonal Cholesky basis). In the
orthogonalized basis, occupied and virtual density matrices have identical sparsity patterns,
whereas the virtual density matrix is significantly less sparse in the contravariant AO basis.

3.5 Sparsity of Cholesky-Decomposed Density Matrices
An interesting and highly surprising result of the different orthogonalization techniques
arose in the course of preparing article I (page 43). We used electronically sparse, highly
symmetric, linear molecules as examples to demonstrate the computational complexity
of our new method, ω-CDD-RPA (article I). The question of whether to factorize virtual
density-like quantities in addition to factorizing occupied density-like quantities posed
itself. The surprising result was that factorizing virtual density matrices in either the (non-
orthogonal) contravariant AO basis, or the (orthogonal) Löwdin basis gave mostly local
pseudo-molecular orbitals, but invariably showed a number of completely non-local MOs
which spanned the whole AO space. When factorizing Cholesky-orthogonalized density
matrices, however, sparsity and banded structure in the pseudo-MOs was perfectly preserved.
Figure 3.2 shows typical examples of the phenomenon.

We attribute this behavior to an interaction between the molecular symmetry and the or-
thogonalization procedure. A possible (partial) explanation is as follows: Löwdin’s method,
also known as symmetric orthogonalization, [43] tries to orthogonalize symmetry-equivalent
AO basis functions a symmetry-equivalent footing. The combined orthogonality and “sym-
metry” constraints forced the generation of several non-local, far-reaching orthogonalized
orbitals. In contrast, the Cholesky orthogonalization procedure does not have any sym-
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Figure 3.2: Sparsity patterns of the column-reordered Cholesky factors of QFQFQ(α) . Left: inter-
mediate Löwdin orthogonalization. A large number of pseudo-MOs span the whole AO space.
Right: intermediate Cholesky orthogonalization. The useable matrix sparsity is fully retained.

metry constraints whatsoever. In fact, the transformation matrices, being triangular, are
maximally asymmetric in some sense. This additional degree of freedom enables Cholesky-
orthogonalized density matrices to yield very sparse pseudo-MOs when factorized.

3.6 Local Perturbations
Articles III (page 79) and IV (page 91) of this dissertation are concerned with the linear-
scaling computation of second-order molecular properties at the SCF level. Specifically,
III describes the evaluation of indirect nuclear spin–spin coupling constants with constant
time-complexity. IV describes the evaluation of harmonic vibrational frequencies. For
both of these properties, the perturbation (cf. sec. 2.2.2) is local, i. e., the effect of the
perturbation is spatially confined to only parts of the molecule. This is in contrast to global
perturbations, which affect the whole molecular electronic structure—an external magnetic
field, for example. Local perturbations require considerations beyond those necessary for
global perturbations.

3.6.1 Nuclear Displacement
The local perturbation in article IV (page 91) is the nuclear displacement, that is, the
infinitesimal movement of an individual nucleus in all three spatial directions. The Hell-
mann–Feynman theorem (sec. 2.2.1) suggests the decay behavior of the perturbation is
dictated only by the operator derivatives. In the case of nuclear displacement, the crucial
operator would seem to be the derivative of the electron-nuclear interaction with respect to
nuclear displacement. Whereas the electron-nuclear interaction decays as r−1, its derivative
decays as r−2.
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This line of argumentation holds in the limit of a complete basis. Typical basis sets
commonly in use for SCF calculations are nowhere near complete, however. This gives rise
to additional terms in the derivative of the SCF energy expression, which are long-range
(r−1 decay), and effectively prohibit a linear-scaling behavior. Article IV showed that, even
in incomplete bases, exploiting the r−2 decay is still possible. Consequently, evaluation of
a density matrix perturbed by an individual nuclear displacement decays rapidly enough to
enable constant-time evaluation. Evaluation of all nuclear displacements in a molecule, a
prerequisite for the calculation of harmonic vibrational frequencies, is therefore possible in
linear time.

3.6.2 Magnetic Perturbations
The perturbations in article III (page 79) are Fermi contact, spin-dipole, as well as para-
magnetic and diamagnetic spin-orbit interaction operators. The Fermi contact operator
decays exponentially in Gaussian basis set. The Spin-dipole operator decays as r−3, but
its atomic orbital representation increases strongly in sparsity after projection onto the
virtual-occupied subspace, which is the only subspace required to solve the CPSCF equa-
tions. Finally, the combination of paramagnetic and diamagnetic spin-orbit operators also
decays as r−3. [109] The individual parts, however, only decay as r−2. Because they are cal-
culated very differently, combined evaluation is not yet possible to the best of the author’s
knowledge. Whether or not this is possible in principle is subject to further research.

3.7 Local Metrics in the Resolution-of-the-Identity
Coulomb- and overlap-metric resolution-of-the-identity (RI) have been discussed in sec. 2.3.
Article I (page 43) goes beyond overlap-metric RI. One of the techniques introduced by
the author in that article is the usage of an attenuated Coulomb-metric RI within RPA
calculations.
In fact, any inner product defined for the union of vector spaces spanned by the union

of atomic orbital and auxiliary bases induces an eligible RI metric. The Coulomb metric
minimizes the error in the Hartree energy (cf. sec. 21). In the limit of infinite bases, however,
all metrics yield the exact result.
As discussed in sec. 2.3, the Coulomb metric affords no useable sparsity beyond that

granted by the Gaussian product theorem (or its equivalent for other local bases). The
overlap metric, on the other hand, affords very high useable sparsity at the cost of accuracy.

Attenuated Coulomb operators have been known for a long time. Gill et. al. published a
series of articles [110–116] in which the resolution

1
r12
=

erf (ωr12)
r12

+
erfc (ωr12)

r12
(3.7.1)

was disseminated, where erf is the error function, and erfc is the complementary error
function. This partitioning splits the long-range 1

r -operator into a short-range (erfc) and a
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Figure 3.3: Sparsity patterns of three-center two-electron RI integrals in different metrics in the
def2-SVP basis, for n-C80H162. Shown is the pattern for one matrix (µν |erfc (ωr12) /r12 | P) at a
fixed auxiliary function P. From left to right: ω = 0 (Coulomb metric); ω = 0.1; ω = 1; ω = ∞
(overlap metric).

long-range (erf) part, with the attenuation parameter ω.
The first use of the erfc-operator within the resolution-of-the-identity was, to the best

of the author’s knowledge, given by Jung et al. [117]. In 2007, Jung et al. [118] presented a
variant of scaled-opposite-spin second-order Møller–Plesset perturbation theory [119] using
an erfc-attenuated Coulomb metric. Later, attenuated Coulomb operators were studied in
the context of RI-HF and RI-KS calculations. [120,121]
Article I introduces the erfc-attenuated Coulomb metric for resolution-of-the-identity

calculations of the random-phase-approximation correlation energy. It is demonstrated
that the erfc-Coulomb metric can combine the advantages of the (long-range but accurate)
Coulomb- and (short-range but less accurate) overlap-metrics. It was shown that, over a
considerable interval of attenuation parameters ω, energies matched the accuracy of the
(unattenuated) Coulomb metric, while sparsity (and consequently, performance) rivaled
that of the overlap metric.

Figure 3.3 shows sparsity patterns of three-center two-electron RI integrals in different
metrics in the def2-SVP basis, for n-C80H162. Concerning useable sparsity, variation of the
attenuation parameterω provides a smooth interpolation between the Coulomb (ω = 0) and
overlap (ω = ∞) RI metrics. This aspect, as well as accuracy in RPA correlation energies
is discussed in detail in article I (page 43).
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4 Summary
This work introduces novel methods for the low-scaling calculation of molecular properties
and correlation energies.
Using an attenuated Coulomb metric in the resolution-of-the-identity and Cholesky-

decomposed pseudo-density matrices, correlation energies from the random phase approxi-
mation can be computed with O(N ) scaling. The newly introduced method has virtually no
overhead compared to the canonical molecular orbital-based formulation [Eshuis et al. [35],
O(N4)] for small molecules, and outperforms it by an order ofmagnitude for large molecules
due to superior scaling.
A technique for the ad-hoc compression of auxiliary basis sets for resolution-of-the-

identity (RI) correlation energy calculations (e. g. MP2,RPA) has been presented. Projection
onto the particle-hole space followed by construction of a rank-reducing auxiliary basis
transformation enables calculation of correlation energies to approach RI-free reference
accuracy, while keeping the performance and memory benefits of RI intact.

Molecular property calculations at the Hartree–Fock and Kohn–Sham density functional
theories with linear and sub-linear scaling behavior have been developed. Linear-scaling
calculation of harmonic vibrational frequencies for molecules with a non-vanishing elec-
tronic gap have been demonstrated, made possible by explicit consideration of cancellation
in long-range derivatives of the Coulomb interaction. No real-space cutoffs or thresholds
are required and no further approximations are introduced in our novel technique. Only
physically justifiable arguments—cancellation of long-range operators and distance-decay
in the density matrix—are employed in the derivation and implementation.
Similar methods were used to enable O(1) calculation of nuclear spin–spin couplings

in molecular systems, i. e., the computational effort to compute one coupling constant is
asymptotically independent of system size. Here too, no additional approximations over
existing response theory are necessary. The new method was used to study the convergence
behavior of spin–spin couplings in an aminopyrazole peptide with respect to increases in
the solvation environment size. The study revealed that large solvent environments (500
atoms and more) are required to converge the observables, underlining the necessity of
low-scaling methods for molecular property calculations.
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ABSTRACT: A reformulation of the random phase approx-
imation within the resolution-of-the-identity (RI) scheme is
presented, that is competitive to canonical molecular orbital
RI-RPA already for small- to medium-sized molecules. For
electronically sparse systems drastic speedups due to the
reduced scaling behavior compared to the molecular orbital
formulation are demonstrated. Our reformulation is based on
two ideas, which are independently useful: First, a Cholesky
decomposition of density matrices that reduces the scaling
with basis set size for a fixed-size molecule by one order,
leading to massive performance improvements. Second,
replacement of the overlap RI metric used in the original
AO-RPA by an attenuated Coulomb metric. Accuracy is
significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective
linear scaling behavior.

1. INTRODUCTION

The random phase approximation (RPA) correlation method
has for its excellent description of long-ranged correlation effects
piqued the interest of many researchers in the field of quantum
chemistry, especially since its advancement from a computation-
ally prohibitively expensive method in the original O(M6)
formulation1,2 to a method computationally tractable enough
for use within rung five3 DFT schemes.4 Many authors have
contributed to this algorithmic improvement: Furche and
co-workers5−8 put forward an effective O(M4) scaling formula-
tion.While their approach employs the resolution-of-the-identity
(RI) approximation,9 Yang and co-workers10 suggested to
employ the tensor hypercontraction (THC) developed by
Martinez and co-workers11−13 instead. Kresse and co-workers14

were able to reduce the scaling to O(M3) for periodic systems.
Kallay15 and also ourselves16 have shown how to further reduce
the effective computational complexity to linear for molec-
ules with nonvanishing band gaps. Most recently, Hutter and
co-workers17 have made significant steps toward highly paral-
lelized evaluation of these formulations. Extensive analysis of the
results obtainable within these new formulations has since shown
themany strengths of the RPA.5,18−22 Analytical gradients for the
RPA energy are given in refs 23 and 24. Benchmark studies have
shown the importance of evaluating the RPA with large basis sets
of up to quadruple-ζ size.
Our previously presented atomic orbital (AO) formulation

shows linear scaling with the molecule size M and thus extends
the applicability of the RPA to molecules comprising thousands
of atoms. To do so, we moved from the Coulomb RI metric,

which gives the most accurate results for the commonly employed
auxiliary basis sets, to the potentially less accurate short-range
overlapmetric. Also, the scalingwith basis set sizeNbasis and auxiliary
basis set sizeNaux for any fixed molecular size (Nocc = const), which
is important for the prefactor of the evaluation time, increases
from N N N( )aux

2
basis occ to N N( )aux

2
basis

2 , thereby limiting the
applicability to basis sets much smaller than quadruple-ζ sizes.
The present work supplies remedies for these drawbacks by

introducing two concepts from related fields to the context of
RPA. First, by pivoted Cholesky decomposition25−27 of the
density and pseudodensity matrices (CDD28,29) within the AO
formulation the scaling with basis set size is brought back down
to N N N( )aux

2
basis ooc (section 3.1). We attain a prefactor which

allowseven in the case of small moleculesfor evaluation
times competitive with the canonical MO-based formulation as
will be shown in section 4.1. Second, by exchanging the overlap
metric RI for a formulation using the Coulombmetric attenuated
by the complementary error function30−32 in section 3.2 we
arrive at a formulation that can smoothly interpolate between the
overlap metric and exact Coulomb metric result. We show in
section 4.2 that choices for the attenuation parameter ω are
available which combine the best of both worldsrendering
results numerically equivalent to the Coulombmetric results, but
local enough to be evaluated in linear time.
Neither of these concepts change the complexity with molec-

ular size, thus either one or both can be applied while still allowing
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for linear scaling evaluation as will be verified in section 4.3.
By combining the two, we finally arrive at a formulation we term
ω-CDD-RPA, which is competitive with the canonical (M )4

formulation regardless of molecule and basis set size but has the
additional advantage of (M) scaling, allowing for the applica-
tion to extended systems.

2. REVIEW
2.1. RI-RPA in Molecular and Atomic Orbital Bases. In

the following, we will use μ, ν for atomic orbitals (AOs), i, j for
occupied molecular orbitals (MOs), a, b for virtual molecular
orbitals, and M, N for auxiliary RI functions. The RI-RPA cor-
relation energy in its standard Coulomb metric form is6

∫π
= + −∞

E Tr u u u1 Q Q
1

2
(ln[ ( )] ( )) dC

RPA

0 (1)

where

=Q u uS G S( ) 2 ( )MN M N
T

(2)

δ= ϵ − ϵ
ϵ − ϵ +G u

u
( )

( )

( )ai bj
a i ai bj

a i
,

,
2 2

(3)

∑= |S ai N L( )ai
M

N
NM

(4)

= −LL CT 1 (5)

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C M

r
N

1
MN

12 (6)

using the Mulliken notation for two- and three-center integrals.
The frequency integration in eq 1 is performed by Clenshaw-
Curtis quadrature.6 Computational complexity is N N N( )aux

2
occ virt

per frequency point u, where Naux is the number of auxiliary
functions, and Nocc and Nvirt are the numbers of occupied and
virtual MOs, respectively.
The reformulation in the atomic orbital basis presented by two

of us, Schurkus and Ochsenfeld,16 used the integral transform

∫ϵ − ϵ + = ∞ − ϵ −ϵ
u

ut
u

t
1

( )
sin( )

e d
a i

t
2 2 0

( )a i

(7)

which together with the overlap RI metric

∑| ≈ ̃ai bj B C B( )
MN

ai
M

MN bj
N

(8)

̃ = − −C S CS1 1 (9)

∫μν χ χ χ= =μν μ νB M r r r r( ) ( ) ( ) ( ) dM
M (10)
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2
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t
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1
INT
( )

2 0
1

2 D
( )

(11)

enabled effective linear scaling. u* specifies the frequency where
we switch from one formula to the other, which was chosen as

0.5 au. wα and tα are the weights and roots for the quadrature of
the integral in eq 7. Equation 1 is modified to

∫π
= + ̃ − ̃− ∞

E Tr u u u1 Q C Q C
1

2
(ln[ ( ) ] ( ) ) dC

AO RPA

0
(12)

that is, multiplication with the long-range
r
1

12
-operator matrix C̃ is

deferred until the last step of the algorithm. All other matrices are
local and sparse for largemolecules. The three types of Fmatrices
are given by

= ̅ − ̅ ̅Tr TrF PFPB PB PB PFPB( ) ( ) ( )MN M N M N0 (13)

= ̲ ̅α αα TrF P B P B( ) ( )t
MN M NINT

( ) ( ) ( )
(14)

= ̲ ̿ − ̲ ̅
− ̲ ̅

α α α α

α α

α Tr Tr

Tr

F P B P B P B P B

P B P B

( ) 2 ( ) ( )

( )

t
MN M N M N

M N

D
( ) ( ) ( ) ( ) ( )

( ) ( )
(15)

P, P, and F are occupied and virtual one-particle density matrices,
and the Kohn−Shammatrix, respectively. P(α) and P(α), as well as

their first ̲ ̿α αP P( , )( ) ( )
and second ̲ ̅α α

P P( , )( ) ( )
derivatives with

respect to tα are the usual Laplace pseudodensity matrices
defined in ref 16.

2.2. Notes on the Frequency Quadrature. The trace of
the matrix logarithm in eq 12 can be more efficiently evaluated by
Cholesky-factorizing C̃ = LLT, and using the Mercator series for
ln(1 + x) to rewrite

∏

+ ̃ = +
= ′ ′
= ′

Tr u Tr u

L

1 Q C 1 L Q L

L L

ln( ( ) ) ln( ( ) ) (16)

ln(det det ) (17)

2 ln (18)
i

ii

T

T

where 1 + LTQ(u)L itself was Cholesky-factorized as L′L′T.14
This strategy is about 10 × faster than diagonalization of
1 + Q(u)C̃ (which is not symmetric). The point at which the

N( )aux
3 evaluation of eq 16 becomes the time-determining step

is thus pushed further outward.
An important and possibly under-appreciated advantage of

computing Q(u) by eq 11 (AO16) versus eq 2 (MO6) lies in the
decoupling of the u-integration from the time-determining
step. In eq 2, G(u) must be recalculated from scratch for each
u-frequency point and contracted with three-center integrals
Sai
M from left and right, which is the dominant step at

N N N N( )u aux
2

occ virt , where Nu is the number of u-quadrature
nodes. In other words, the computational time required for
conventional RI-RPA is directly proportional to the number of
u-quadrature nodes. In contrast, the integral transform in eq 7
enables us to precompute the matrices F0, FINT

(tα) , and FD
(tα) at a

formal cost of τN N( )aux
2

basis
2 , where τ is the number of Laplace

quadrature nodes, because they do not depend on u.Q(u) is then
constructed via eq 11 at a negligible cost of τN( )aux

2 per
u-quadrature node, making it possible to employ hundreds of
quadrature nodes essentially for free. When the electronic
structure is sparse and a local RI metric is used, eq 11 (AO)
asymptotically scales linearly, whereas eq 2 (MO) always scales
quartically.
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3. THEORY AND RESULTS
3.1. Complexity Reduction through Cholesky Factori-

zation. In this work, we report dramatic performance improve-
ments to the RI-RPA energy evaluation by pivoted Cholesky
factorization. Formal complexity is reduced from N N( )aux

2
basis

2

to N N N( )aux
2

basis occ , resulting in drastic runtime reductions
especially for the large basis sets typically used in RPA cal-
culations.
We emphasize that we use the term “pivoted Cholesky

factorization”26 in the following sense: a positive semidefinite
matrix A may be decomposed as P−1AP = LLT, where L is lower
triangular, and P is a permutation matrix, or equivalently
A = PLLTP−1. A permutation matrix P is a unitary matrix which
permutes the rows of a matrix A when premultiplied (PA), or the
columns when postmultiplied (AP). PL has dimension dim A ×
rank A and is not lower triangular. After resorting the columns of
PL by another permutation matrixU to enhance useable sparsity
(see ref 33 for details on this reordering procedure), the com-
plete factorization is A = PLUU−1LTP−1, which we abbreviate as
“A = LLT”.
We proceed by performing pivoted Cholesky decompositions

of all occupied-type density matrices (P, PFP, P(α), ̲ αP( ), and

̲ αP( )) in eqs 13−15. This reveals the matrices’ ranks, which isNocc

or smaller. We then reorder the columns of each left Cholesky
factor for sparsity, as described in ref 33. The resulting Cholesky
factor is a transformation matrix to a local pseudo-MO basis.28,29

We transform one AO index of the three-center integrals BM to
this local basis, which reduces the dimension of each BM from
Nbasis × Nbasis to Nbasis × Nocc, while at the same time preserving
any sparsity of the original matrix (see remarks below). The
resulting expressions for F0, FINT

(tα) , and FD
(tα) are

= − ̅ − ̅ ̅Tr TrF V PV W PFPW( ) ( ) ( )MN M N M N0
T T

(19)

= ̅α α αα TrF Z P Z( ) ( )t
MN M NINT

( ) ( )T ( ) ( )
(20)

= − ̿ − ̅
− ̅

α α α α α α

α α α

α Tr Tr

Tr

F X P X Y P Y

Z P Z

( ) 2 ( ) ( )

( )

t
MN M N M N

M N

D
( ) ( )T ( ) ( ) ( )T ( ) ( )

( )T ( ) ( )
(21)

where the occupied density matrices have been absorbed:

= ′ − = ′ ′V B L PFP L LwithM M
T

(22)

= =W B L P LLwithM M
T

(23)

= ̲ − ̲ = ̲ ̲α α α α αX B L P L LwithM M
( ) ( ) ( ) ( ) ( )T

(24)

= ̲ ̲ = ̲ ̲α α α α αY B L P L LwithM M
( ) ( ) ( ) ( ) ( )T

(25)

= ̲ ̲ = ̲ ̲α α α α αZ B L P L LwithM M
( ) ( ) ( ) ( ) ( )T

(26)

Note that PFP and ̲ αP( ) are negative semidefinite and are there-
fore multiplied by −1 before factorization, which leads to sign
changes in eqs 19 and 21 compared to eqs 13 and 15. Shifting the
MO energies downward uniformly by ϵ + ϵ( )1

2 HOMO LUMO

(as described in ref 34; HOMO is highest occupied MO and
LUMO is the lowest unoccupied MO) before constructing the
pseudodensity matrices gives the numerically most stable results.
The question of whether to also factorize the virtual pseudo-

densities arises naturally. In the context of coupled-perturbed
self-consistent field calculations, factorization of the virtual

subspace has performance benefits,35 mostly due to numerical
rank deficiency of some pseudodensities far beyond their
analytical rank of Nvirt. In AO-RPA, doing the same results in
simpler and more symmetric equations, which are given in
Appendix A. When it comes to performance, however, we have
found this approach disappointing. The reason is twofold. First,
correlation methods such as RPA require large bases for good
results, in which case Nbasis ≈ Nvirt and the rank reduction from
factorization is negligible. Second, the Cholesky factorization of
the virtual subspace preserves sparsity less well than in the
occupied subspace. Consequently, the rank reduction is often
counteracted by loss of sparsity, and performance degrades. For
small systems, when no sparse algebra is used, however, we do
use the equations given in Appendix A.
Finally, we point out another surprising pitfall. The pivoted

Cholesky decomposition will sometimes yield pseudo-MOs of
which a small number are not local, but extend over the whole
AO space, which thwarts attempts to benefit from blocked
sparse algebra. We have found this problem can be solved by
orthogonalizing the density matrices in the contravariant AO
basis before Cholesky factorization, and reverting the orthog-
onalization afterward. However, the orthogonalization cannot
be Löwdin’s symmetric orthogonalization, but must be some
sparsity-preserving but nonsymmetric orthogonalization. We use
the Cholesky factors of the AO overlap matrix.

3.2. RI-RPA Using the erfc-Attenuated Coulomb
Metric. Key to reduce the computational effort and scaling in
extended molecules is the choice of the RI metric. As mentioned
above, ref 16 uses the overlap metric36 (eq 10), which is local in
the sense that auxiliary functionsM do not overlap with AO basis
function pairs μν if there is enough distance between their
centers, which leads to sparsity in the matrix representations.
In contrast, the Coulomb metric (eq 4) couples auxiliary
functions and AO basis function pairs over effectively infinite
distances (

r
1

12
decay), and no sparsity can be gained.

The Coulomb metric has been shown to be optimal in fitting
density-like repulsions,37 and has subsequently been the ubiqui-
tous choice. This metric has no disadvantage when transforming
to the canonical MO basis where all sparsity is lost anyway. In
local bases, such as the atomic orbitals and Cholesky pseudo-
MOs (see section 3.1), local RI metrics have important
advantages.
The overlapmetric is very local, because it decays as exp (−r122 )

in Gaussian basis sets. The downside is decreased accuracy.37

Other metrics have been described in the literature, especially
Coulomb metrics attenuated by a complementary error function
(erfc)30,31 or by a Gaussian function.32 For correlation energy
calculations, the erfc-attenuated Coulomb metric was first used
by Jung et al.31 for scaled-opposite-spin MP2 calculations.
Here, we employ the erfc-attenuated Coulomb metric within

RI-RPA for the first time, and show that it combines the
advantages of the Coulomb and overlap metrics.
The two- and three-center integrals necessary are given by

μν
ω

μν| =ω

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M M

r
r

( )
erfc( )12

12 (27)

ω=ω

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M

r
r

NS( )
erfc( )

MN
12

12 (28)

̃ =ω ω ω
− −C S CS1 1

(29)
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such that the resolution-of-the-identity is formally

∑| = | ̃ |ω ω ωai bj ai M N bjC( ) ( ) ( ) ( )
MN

MN
(30)

Adamson et al.38 have described how to efficiently calculate these
integrals. C̃ω is most reliably computed as (SωC

−1Sω)
−1. As with

the overlap metric, deferring the multiplication with the two-
center integrals to the last step of the algorithm (eq 12) is
necessary to retain locality through the time-determining
steps. The attenuation strength is controlled by the parameter
ω. erfc-attenuation has the pleasant property of allowing con-
tinuous variation between the

r
1

12
and overlap operators

ω =
ω→

r
r r

lim
erfc( ) 1

0

12

12 12 (31)

ω
δ=

ω→∞
r

r
rlim

erfc( )
( )12

12
12

(32)

where δ is Dirac’s function.
Figure 1 shows the effect of different values for ω over several

orders of magnitude. Plotted are the RPA correlation energy

(top) and the wall time required (bottom, 12 threads on an Intel
Xeon E5-2620 machine) as a function of ω (logarithmic scale).
The limits of ω → 0 and ω → ∞ are correctly recovered.
The overlap metric as well as high-ω attenuation violate the
variational upper bound property6 of the Coulomb metric.
For relative energies, this bound does not hold for the
Coulomb metric either, though. For ω ≳ 500, our implementa-
tion begins to diverge, presumably due to the limits of double
precision floating point arithmetic. For ω-values between
approximately 0.5 and 1.1, the erfc-attenuated absolute energies
are lower than for the Coulombmetric. The computational effort

rises dramatically as the attenuation approaches zero, exceeding
28 h, and bottoms out at around 30 min for maximum attenua-
tion. The most interesting region is between ω ≃ 0.1 (where the
Coulombmetric result is recovered to within 100 μHartree in the
absolute energy) and ω ≃ 1 (where the correlation energy starts
to move toward the overlap metric result). The wall times
required for calculations in this ω-interval are around 2 h, but
yield absolute energies within mHartree of the Coulomb metric
result, which takes over 10× as long to compute. We will present
more data in sections 4.1 and 4.2, including from calculations
with larger basis sets, which corroborate these findings. From the
combined results, we recommend ω = 0.1 as a starting point
when using the erfc-attenuated Coulomb metric in RI-RPA.

4. CALCULATIONS
We used the Perdew−Burke−Ernzerhof (PBE) functional39,40 to
obtain Kohn−Sham orbitals, using def2-SVP, def2-TZVP, and
def2-QZVP basis sets.41,42 The RI approximation uses the
corresponding RI counterparts.43,44 We use RI only for (ai|bj)-
type integrals in the correlation part of the RPA energy, not for
the Hamiltonian expectation value with the Kohn−Sham orbitals
or during the preceding SCF calculation. All calculations use
100 quadrature nodes for the frequency integration, and a fixed
integration interval of u ∈ [0;400] a.u., using the coordinate
mapping described in ref 6. We emphasize that 100 quadrature
nodes is more than typically used in RI-RPA calculations. We
chose a generous number of nodes and a large integration
interval to eliminate any errors from the quadrature, and used
that same number of quadrature nodes for all calculations in this
work in order to facilitate easy comparisons. We stress that fewer
quadrature nodes may be sufficient (depending on the system
under study), which would improve the efficiency of the
MO-based formulation.
Where applicable, 15 Laplace quadrature points using the

weights and nodes of ref 45. were employed. Core orbitals
were frozen in all calculations. None of the results presented
include corrections for possible basis set superposition errors.
While this may render the statistical results slightly worse, the
error is expected to be systematic across all methods presented.
Some caution is advised when comparing the results below to
counterpoise-corrected results.
Our ω-CDD-RPA method as well as the MO (ref 6) and AO

(ref 16) formulations of RI-RPA, as well as RI-free RPA were
implemented in the FermiONs++ program.46,47 We checked our
MO-RI implementation against the canonical implementation in
Turbomole7.048 to verify correctness and comparable perform-
ance. All runtimes given are wall times, not CPU times.

4.1. Performance: S66 Set. The full S66 set49 of small-
molecule interaction energies (mean reference interaction
energy −5.5 kcal mol−1, maximum reference interaction energy
−19.8 kcal mol−1) in double-, triple-, and quadruple-ζ bases
serves as a performance and accuracy benchmark for small
molecules. All calculations were performed using 12 threads on a
dual-processor Intel Xeon E5−2620 machine. The small size of
the molecules in the test set means no sparsity in the RI integrals
or density matrices can be expected and no computational
efficiency can be gained from a local metric, that is, all metrics
yield identical performance.
The following results, therefore, measure (1) the RI-independent

performance of the AO,ω-CDD, andMO formulations of RI-RPA
for small systems without electronic sparsity and (2) their accuracy
using different RI metrics, also including RI-free RPA results
(computed via eq 9 in ref 6). The accuracy of all methods and

Figure 1. Effect of the attenuation parameter ω on the accuracy and
performance of ω-CDD-RPA in the erfc-Coulomb metric for linear
n-C80H162 (def2-SVP). The dashed horizontal lines are reference energy
values calculated with the Coulomb (ω = 0) and overlap (ω = ∞)
RI metrics. For a wide range ω ∈ [0,0.1], the erfc-Coulomb metric
reproduces the (optimal) Coulomb metric results to sub-mHartree
accuracy in absolute energies at a fraction of the cost. Our recommended
value of ω = 0.1 is indicated by the dashed vertical line. Divergence
(presumably because of limited floating point precision) is observed
after ω ≳ 500 (shaded graph area).
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RImetrics for the S66 set can be summarized briefly as being very
similar. Detailed values for the root mean square (RMSD), mean
absolute (MAD), and maximum absolute (MAX) deviations
from the updated50 CCSD(T)/CBS reference interaction
energies can be found in Table 1. We note the Laplace transform
of eq 7 and its quadrature introduces no significant error in the
S66 set. Likewise, the Cholesky decompositions of section 3.1 do
not introduce any error over the AO formulation.
Regarding the RI metric, the Coulombmetric is generally best.

However, the moderately erfc-attenuated (ω = 0.1) Coulomb
metric gives practically identical results. Increasing the attenu-
ation to ω = 0.5 leads to slightly inferior results, which are,
however, magnitudes below the error inherent to RPA. Overlap
metric results are slightly worse, but still an order of magnitude
below the RPA error itself. Increasing the attenuation system-
atically increases the error for a given RI basis set, but only very
slightly. Generally, the differences between RI metrics decrease
for larger AO bases (and correspondingly larger RI bases). For
quadruple-ζ bases, the differences between different RI metrics
almost vanish for the S66 test set.
We nowmove to performance characteristics. Cumulative wall

times for the complete S66 set (3 × 66 = 198 calculations) are
given in Table 2 for AO-RPA and ω-CDD-RPA. Exploiting the

rank deficiency of occupied (pseudo-) density matrices leads to
large performace improvements of ω-CDD. The speedups are
larger for larger bases, reaching 27× for a quadruple-ζ basis. As
was discussed in section 3.1, ω-CDD reduces the computational
complexity with respect to basis set size for a fixed-size molecule
from N4 to N3, the same as MO-RI-RPA, while the linear scaling
of AO-RPA with molecular size remains unchanged.

ω-CDD-RPA is also competitive with MO-RI-RPA, slightly
outperforming it for double- and triple-ζ bases, and showing
equal performance for a quadruple-ζ basis. ω-CDD-RPA has
extremely low overhead and the same scaling behavior as
MO-RI-RPA in the limit of dense matrices (i.e., no usable matrix
sparsity, such as in the S66 set). We emphasize that runtimes of
ω-CDD-RPA are proportional to the number τ of Laplace
quadrature points, while runtimes of MO-RI-RPA are propor-
tional to the number Nu of u-frequency quadrature points.
Theoretical parity is reached when 4τ + 2 =Nu. Which of the two
formulations will outperform the other depends on which
quadrature can be carried out with fewer points.

4.2. Accuracy: L7 Set. The L7 benchmark set51 comprises
dispersion-dominated molecular systems of much larger size (up
to 112 atoms, mean reference interaction energy−18.2 kcal mol−1,
maximum reference interaction energy −31.3 kcal mol−1) than
those in the S66 set. Using the def2-TZVP basis, we calculated
RMSD, MAD, and MAX deviations from the QCISD(T)/CBS
reference interaction energies51 for different attenuation param-
eters ω for both the MO and ω-CDD formulations of RI-RPA.
The results are shown in Figure 2.
ω-CDD-RPA yields lower errors throughout, which is clearly

fortuitous. The more significant result is between the different
attenuation parameters ω. Unlike the smaller molecules of the
S66 test set, the larger molecules of the L7 set are sensitive to the
choice of the RI metric. For all three measures (RMSD, MAD,
MAX), the unattenuated Coulomb metric consistently yields the
best results. Similarly to the results of section 4.1, lower attenua-
tion yields superior results. However, a moderate attenuation of
ω = 0.1 degrades the accuracy by only 0.02 kcal mol−1 in RMSD
and MAD, and 0.05 kcal mol−1 in MAX, which we consider
numerical noise. Increasing the attenuation to ω = 0.2 or ω = 0.5
increases the error measures very slightly. The overlap metric
(ω = ∞), however, yields an RMSD almost one kcal mol−1

higher than the Coulombmetric, anMADwhich is 0.6 kcal mol−1

higher, and a maximum absolute error 2.5 kcal mol−1 higher.
Combined with the results presented in sections 3.2 and 4.1, this
strongly supports the erfc-attenuated Coulombmetric in place of
the overlap metric in RI-RPA calculations.
Finally, we note that while the systems comprising this bench-

mark set are considerably larger than those of the S66 set

Table 1. S66: Root Mean Square (RMSD), Mean Absolute (MAD), and Maximum Absolute (MAX) Deviations from the Updated
CCSD(T)/CBS Reference Interaction Energies50 in kcal mol−1 for Coulomb-, erfc-Attenuated Coulomb- (ω = 0.1, ω = 0.5), and
Overlap-RI Metric RPA in the AO, ω-CDD, and MO Formulations, as well as for RI-Free RPA

RMSD/kcal mol−1 MAD/kcal mol−1 MAX/kcal mol−1

basis RI metric AO ω-CDD MO AO ω-CDD MO AO ω-CDD MO

def2-SVP no RI 0.95 0.75 3.43
Coulomb 0.98 0.98 0.97 0.77 0.77 0.77 3.45 3.45 3.46
ω = 0.1 0.98 0.98 0.97 0.77 0.77 0.77 3.44 3.44 3.46
ω = 0.5 1.00 1.00 1.00 0.81 0.81 0.81 3.44 3.44 3.45
overlap 1.04 1.04 1.04 0.87 0.87 0.87 3.57 3.57 3.58

def2-TZVP no RI 0.88 0.56 3.83
Coulomb 0.86 0.86 0.88 0.56 0.56 0.56 3.81 3.81 3.83
ω = 0.1 0.87 0.87 0.88 0.56 0.56 0.56 3.81 3.81 3.83
ω = 0.5 0.90 0.90 0.91 0.59 0.59 0.59 3.88 3.88 3.89
overlap 0.95 0.95 0.96 0.64 0.64 0.65 3.99 3.99 4.01

def2-QZVP no RI 0.62 0.47 3.11
Coulomb 0.62 0.62 0.62 0.47 0.47 0.46 3.11 3.11 3.11
ω = 0.1 0.62 0.62 0.62 0.47 0.47 0.46 3.11 3.11 3.11
ω = 0.5 0.63 0.63 0.63 0.48 0.48 0.47 3.11 3.11 3.11
overlap 0.64 0.64 0.64 0.51 0.51 0.50 3.11 3.11 3.11

Table 2. S66: Accumulated Wall Times and Speedups for
AO- and ω-CDD-RPA Correlation Energy Calculations
(ω = 0.1)

time (s) speedup

basis AO ω-CDD ω-CDD v AO

def2-SVP 2453 373 7×

def2-TZVP 16408 1476 11×
def2-QZVP 432405 15879 27×
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discussed in section 4.1, they are not as large as to provide usable
matrix sparsity. Consequently, dense matrix algebra is used for all
calculations, and performance is similar for the ω-CDD and MO
variants of RI-RPA.
4.3. Scaling Behavior. Utilizing the rank deficiency of

density matrices (cf. section 3.1) reduces the computational pre-

factor of AO-RPA, as well as its formal scaling from N N( )aux
2

basis
2

to N N N( )aux
2

basis occ in the limit of densely populated matrices.
In the limit of large molecules with sparse electronic structures,
however, we must ensure that the Cholesky factorization does
not destroy usable matrix sparsity. Similarly, the introduction of
an erfc-attenuated Coulomb metric instead of the overlap metric
has to preserve the asymptotic N( ) scaling of AO-RPA. In the
following, we focus on these two aspects. Calculations in this

Figure 2. L7: Root mean square (RMSD), mean absolute (MAD), and maximum absolute (MAX) deviations in kcal mol−1 from the QCISD(T)/CBS
reference interaction energies51 for different attenuation parameters ω (def2-TZVP). Left column: Canonical MO-RI-RPA. Right column: ω-CDD-
RPA.

Figure 3. Plots of wall time against number of basis functions showing the computational complexity of the MO and ω-CDD formulations for linear
n-alkanes (def2-SVP, erfc-attenuated Coulombmetric,ω = 0.1). Left: Linear plot. Right: Log−log plot, with linear fits for MO andω-CDD. The vertical
dashed line indicates the point after which sparse algebra is used.
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section used 16 threads on a dual-processor Intel Xeon E5−2667
machine. We switched the ω-CDD formulation from dense to
sparse algebra at 2000 basis functions. Ideally, this would be
automatically decided based on usable sparsity in the density
matrix and three-center integrals (eq 27). For the purpose of this
work, we switched to sparse algebra as soon as it was faster, which
for both test sets in sections 4.3.1 and 4.3.2 happened to be at
2000 basis functions. Structure files for the test systems can be
found online.52

4.3.1. Alkanes. Our first test set are linear n-alkanes of
increasing length. We calculated the RI-RPA correlation energy
with canonical MO-RPA and ω-CDD-RPA (ω = 0.1), which
includes construction of Q(u) and evaluation of the matrix
logarithm via eq 16. The data is plotted in Figure 3 in linear and
log−log plots. From the linear fit in the log−log plots, MO-RPA
scales as N( )3.7 , which is slightly better than the theoretical

N( )4 . Our own ω-CDD-RPA scales as N( )1.3 for large
systems.
Selected data points are given in Table 3. ω-CDD-RPA gives

speedups over MO-RI-RPA of around 20−40% for systems with
around 1000 basis functions. As discussed in section 4.1, whether
or not a speedup can be attained for these system sizes depends
critically on the number of u-frequency quadrature nodes used.
For large molecular sizes, however, the scaling behavior of

ω-CDD will always give large speedups over MO-RPA. Table 3

shows the scaling exponents for ω-CDD and MO for pro-
gressively larger molecules. While ω-CDD-RPA reaches perfect

N( ) scaling for the largest system, MO-RPA scales as N( )3.7 .
ω-CDD outperforms MO 8-fold for the largest system.

4.3.2. Glycine Chains. As a second test set for the scaling
behavior, we used glycine chains of increasing length. The
corresponding linear and log−log plots are given in Figure 4.
Similarly to the results of section 4.3.1, linear fits in the log−log
plots reveal N( )3.6 scaling for MO, and N( )1.4 scaling for
ω-CDD. These timing data contain both the construction of
Q(u) via eq 2 (MO) or eqs 11 and 33−35 (ω-CDD), as well as
evaluation of the matrix logarithm (eq 16).
Selected data points are given in Table 4, where we separately

resolved the construction of Q(u) and evaluation of the matrix
logarithm (eq 16). The complexity of the time-determining
steps inω-CDD-RPA (eqs 33−35) reaches N( )1.3 very quickly,
whereas the time-determining step in MO-RPA scales as N( )4 .
Evaluation of the matrix logarithm is identical for both formula-
tions, and predictably has N( )3 complexity with a small pre-
factor. For the largest system, the time required for this step is
less than 8% of the total time for ω-CDD-RPA, and will become
dominant only for extremely large molecules. The total speedup
(including matrix logarithm evaluation) of ω-CDD over MO
steadily rises from 1.3× up to over 13× for the largest test
system.

5. SUMMARY
Cholesky decomposition of densities (CDD) in atomic orbital
RI-RPA16 calculations reduces the scaling with respect to
basis set size by one order, removing the main drawback of the
AO formulation over the canonical MO formulation. CDD can
accelerate AO-RPA calculations by over 5× for double-ζ, over
10× for triple-ζ, and over 25× for quadruple-ζ basis sets, without
any decrease in accuracy.
Depending on the number of necessary nodes for the frequency

or Laplace quadrature, even for small molecular systems our
method is competitive with the canonical MO-RI-RPA for-
mulation of ref 6, due to the decoupling of the numerical
integration in the frequency domain from the time-determining
step. For sparse electronic systems, our w-CDD-RPA method
outperforms the canonical formulation over 10×.

Table 3. Wall Times and Computational Complexity of the
ω-CDD and MO Formulations for Linear n-Alkanes
(def2-SVP, erfc-Attenuated Coulomb Metric, ω = 0.1)a

ω-CDD MO total

Nbasis time (s) N( )x time (s) N( )x speedup

C20H42 490 33 38 1.2×
C50H102 1210 919 3.7 1244 3.9 1.4×
C100H202 2410 8585 3.2 13 995 3.5 1.6×
C120H242 2890 12100 1.9 27 359 3.7 2.3×
C150H302 3610 17022 1.5 62 025 3.7 3.6×
C200H402 4810 22593 1.0 *182 875 (3.7) *8.1×

aThe column headed N( )x contains the scaling exponents relative to
the row above. Values marked with an asterisk (*) are extrapolated
conservatively.

Figure 4. Plots of wall time against number of basis functions showing the computational complexity of the MO and ω-CDD formulations for glycine
chains (def2-SVP, erfc-attenuated Coulomb metric, ω = 0.1). Left: Linear plot. Right: Log−log plot, with linear fits for MO and ω-CDD. The vertical
dashed line indicates the point after which sparse algebra is used.
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Furthermore, we introduced the use of the erfc-attenuated
Coulomb metric for the resolution-of-the-identity in RPA cal-
culations, which reproduces Coulomb-metric results to very high
accuracy even in absolute energies while preserving the locality
and performance benefits of the overlap metric. We demon-
strated that the effective N( ) scaling of AO-RPA in the overlap
metric is fully retained, while improving accuracy at the same
time.
Further research is required to obtain more efficient quadra-

tures for the Laplace transform of eq 7, to increase accuracy and
lower the number of necessary nodes. Similarly, the behavior of
the transform for small-gap systems warrants further study.

■ APPENDIX A: RI-RPA EQUATIONSWITH CHOLESKY
DECOMPOSITION OF OCCUPIED AND VIRTUAL
SUBSPACES

When performing Cholesky factorizations also on all virtual
pseudodensity matrices, eqs 19−21 simplify to
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We present a method to improve upon the resolution-of-the-identity (RI) for correlation methods.
While RI is known to allow for drastic speedups, it relies on a cancellation of errors. Our method
eliminates the errors introduced by RI which are known to be problematic for absolute energies. In
this way, independence of the error compensation assumption for relative energies is also achieved.
The proposed method is based on the idea of starting with an oversized RI basis and projecting
out all of its unphysical parts. The approach can be easily implemented into existing RI codes and
results in an overhead of about 30%, while effectively removing the RI error. In passing, this process
alleviates the problem that for many frequently employed basis sets no optimized RI basis sets have
been constructed. In this paper, the theory is presented and results are discussed exemplarily for the
random phase approximation and Møller-Plesset perturbation theory. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4985085]

I. INTRODUCTION

The resolution-of-the-identity (RI) approximation1–6 is a
common approach throughout the electronic structure theo-
ries of quantum chemistry in which an identity is resolved into
a product of terms dependent on a preoptimized (auxiliary)
basis. This allows to reformulate theories into a computa-
tionally more tractable form. For example, within explicitly
correlated methods7–9 (F12) several three-electron integrals
occur which are commonly split into products of two-electron
integrals via RI. However, the by far most frequently encoun-
tered use of RI is the case of 4-center-2-electron repulsion
integrals (ERIs) occurring in almost any correlation method,
which are split into products of at most 3-center-2-electron
integrals.10,11 The final formulations obtained in this case are
identical to those that can be derived from another perspective,
often called density-fitting12 (DF). For this reason, in theories
containing only this special type of RI the terms RI and DF
are often used interchangeably.13 While we will focus on this
major case of RI, i.e., DF, in the following, we expect the trans-
fer to other types of RI to be straightforward. As an example,
we sketch the application to F12 in the supplementary material.

Preoptimized incomplete auxiliary bases have to balance
accuracy against computational performance. Several attempts
and discussions have therefore revolved around improving the
RI approach.14–17 While a lot of effort has been put into advanc-
ing upon the approximation formula itself18–23 as well as the
auxiliary basis sets,24–26 the null space structure of the physical
models remains more or less opaque.

In this paper, we present an approach which explicitly
recognizes the physical model of the correlation method. By
starting with an oversized auxiliary basis, we eliminate the
RI error and then project out any contribution spanned by the
auxiliary basis which is not used by the physical model. While
the theory extends to any precomputable null space structure

of the physical model, here we focus on the concrete examples
of second order Møller-Plesset perturbation theory27 (MP2;
as a post-Hartree–Fock (HF) theory) and the direct random
phase approximation28 (RPA; as a post-Kohn–Sham (KS) the-
ory) because the supports of their physical models are both
encompassed by particle-hole space. This allows us to treat
both of these theories simultaneously.

In formulating our theory, we employ the Cholesky
decomposition (CD) and the singular value decomposition
(SVD) which have been studied in related works by Aquilante,
Lindh, and Pedersen21–23 and Kállay,29 respectively.

II. THEORY

Consider a generic correlation method (Einstein’s sum
convention is used throughout)

EC = Qµνλσ(µν |λσ) (1)

which contains a single set of ERIs

(µν |λσ) ≡ (µν | 1
r12
|λσ) :=

∫∫
χµ(r1)χν(r1)

1
|r1 − r2 |

× χλ(r2)χσ(r2) dr1dr2 (2)

over basis functions { χ}, where Q is given by the physical
model (µν | 1

r12
|I) denotes a corresponding three-center inte-

gral. Note that if Q again depends on ERIs, the following
considerations can be applied to each of them in turn. Even
if the actual computation may be done in basis functions
χµ, χν , . . ., most physical models will not describe the interac-
tion of all basis functions, but instead of a physically relevant
subspace. Writing a theory like Eq. (1), however, hides this
information in the physical model Q.

0021-9606/2017/146(21)/211106/5/$30.00 146, 211106-1 Published by AIP Publishing.
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For the ERIs [Eq. (2)], the RI results in the following
equality (see the supplementary material for details):

(µν |λσ) = Bµν,I CI ,JBT
J ,λσ , (3)

where I and J are indices over an auxiliary basis set. The B
and C matrices are computed in any chosen metric m12 as

Bµν,I = (µν |m12 |I), (4)

CI ,J = (I |m12 |K)−1(K |L)(L |m12 |J)−1, (5)

with the most common choice being the Coulomb metric m12

= 1/r12. Note that (K |L) = (K | 1
r12
|L) is a Coulomb integral

independent of the chosen metric. In typical approaches, a
preoptimized auxiliary basis set is employed which is only 3-
4 times larger in cardinality than the set { χ} because by the
reasoning of DF one finds that Eq. (3) is the best approxima-
tion in a metric-specific sense also when the auxiliary basis
is incomplete. While drastically improving performance, this
introduces errors of several meVs in absolute energies. In con-
trast, our considerations start with a saturated auxiliary basis,
such that Eq. (3) in fact effectively constitutes an identity.

By employing the RI, the correlation energy [Eq. (1)]
becomes

EC = Tr
{
Q̃C

}
with Q̃I ,J = Bµν,I QµνλσBλσ,J . (6)

A. Example cases: RPA and MP2

As two exemplary cases we consider the RPA and MP2
methods. As post-KS/post-HF methods, they can be formu-
lated in molecular orbitals as linear combinations of atomic
orbitals. cµi, cνa, etc. denote the coefficient matrix elements,
where i, j, k, . . . index the occupied orbitals and a, b, c, . . .
the virtual orbitals. Within the RI-RPA11,30–33 in the time-
determining step, one has to compute a quantity of the
form

BT
I ,ia

εa − εi

(εa − εi)2 + ω2
Bia,J , (7)

whereω is a variable to be integrated over in a later step of the
algorithm and εi, etc. denote orbital energies. Therefore, we
can associate

Qµνλσ ∼ cµicνa
εa − εi

(εa − εi)2 + ω2
cλicσa. (8)

Within RI-MP234 on the other hand, the time-determining
step is the recombination of the ERIs according to Eq. (3)
in computing

tab
ij Bia,I CI ,JBT

J ,jb with tab
ij = −

(ia|jb) − (ib|ja)
εa + εb − εi − εj

, (9)

so we can associate

Qµνλσ ∼ cµicνatab
ij cλjcσb. (10)

Both of these methods share a commonality: Their physical
models are built solely around particle-hole (ph) interactions
as

Qµνλσ = cµicνa · · · cλicσa. (11)

To treat both methods within the same derivation, we will only
focus on this common property and restrict ourselves to treat
the inner part as a black box.

B. Null space projection

We aim to project out all auxiliary basis functions and
linear combinations in the null space of the physical model
(Null(Q̃) = {x | Q̃x = 0}) because these will not contribute to
the final energy, or equivalently project onto its complement,
called support.

We begin with a thought experiment: If Q̃ was known
beforehand, one could construct a minimal-rank projector P
onto the support of Q̃ such that

Q̃P = Q̃. (12)

To do so, one would first apply SVD to Q̃

Q̃ = UΣVT , (13)

where Σ is a diagonal matrix containing only rank(Q̃) non-
zero singular values and the columns of the unitary matri-
ces U and V are the corresponding left and right singular
vectors. We now discard all singular vectors with a corre-
sponding zero singular value. In numerical implementations,
it is useful to further discard those corresponding to very
small singular values. This step is justified by the Eckart-
Young-Mirsky theorem.35 Precisely which numerical values
qualify as very small in this context will be further analyzed in
Sec. III A.

As the left and right singular vectors form an orthogo-
nal system each, recombining the remaining singular vectors
according to

PL = UUT , PR = VVT (14)

defines a left and a right projector. The right projector fulfils
Eq. (12) and the left projector can similarly be introduced to
the left of Q̃ at any point in the derivation.

Therefore one can redefine Eqs. (4) and (5) without
changing the final correlation energy, Eq. (6),

Bµν,I → Bµν,JVJ ,I , (15)

C → VT CV . (16)

This reduces the effective size of the auxiliary basis in all
the time determining steps to the width of the singular vector
matrices, which per constructionem is exactly limited by the
rank of the physical model.

For the case at hand, there is no need for additional steps
in the construction. Nonetheless, we want to propose one that
may prove useful in other cases. Once the projector matrix is
known, it can be decomposed by pivoted CD as

P = LLT , (17)

where the number of columns in the Cholesky factor L again
equals the rank of P. Therefore, Eqs. (15) and (16) can be
carried out with L instead of V. This may prove useful, for
example, when P is sparse because unlike the singular decom-
position, pivoted CD on a sparse matrix can return sparse
factors. Although not necessary, we use the Cholesky fac-
tors throughout, since their use does not deteriorate the results
compared to the use of V.

C. Auxiliary matrix construction

Computing the exact physical model is almost always
part of the time determining step. To exploit the previous
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discussion, it is therefore necessary to find an auxiliary matrix
H, such that

Null(H) ⊆ Null(Q̃), (18)

and construct the projectors from H instead of Q̃. The central
idea to finding H is to recognize that because in a k-linear map
N : W → X , e.g., a matrix or tensor product, the zero element
in W is mapped to the zero element in X, in a succession of
maps M : V → W , N : W → X, · · · the null space of the first
map is contained within the null space of the succession of all
maps.

Returning to the generic example, Eq. (11), this means

Null(cµicνaBµν,I ) ⊆ Null(· · · cµicνaBµν,I ) (19)

allowing the definition of H for this case as

Hia,I = cµicνaBµν,I . (20)

By the SVD decomposition of H, it becomes obvious that HT H
in fact has the same span as H (although in numerical imple-
mentations a tighter threshold for the singular values is needed)
so we may equally define

HI ,J = BT
I ,µνcµicνacλicσaBλσ,J , (21)

which is favorable as it allows for a cheaper SVD. Applying the
discussion of Sec. II B to H instead of Q̃ thus delivers the new
projection. Because it does not make use of all the internal
structure of Q̃, it may eliminate less than—however due to
Eq. (18) never more than—the projector constructed directly
from Q̃. Therefore no additional error is introduced.

While the argument extends naturally to any other opera-
tor with a non-trivial null space structure, e.g., Q̃C, by replac-
ing Q̃ with that operator in Eq. (18), we will only evaluate
the straightforward example, which we have presented here,
in Sec. III.

III. NUMERICAL EVALUATION

All calculations have been done in a development ver-
sion of the program package FermiONs++36,37 employing the
Coulomb metric. All RPA calculations have been based on self-
consistent orbitals obtained with the Perdew-Burke-Ernzerhof
(PBE) functional.

A. Accuracy

Two practical questions have yet to be addressed: The
auxiliary basis to start the projection from and the numerical
threshold to choose for the SVD.

In principle, any auxiliary basis large enough to fulfill
Eq. (3) as an identity can be taken as the starting point.
While a naı̈ve overly large auxiliary basis can be used, it
is advisable to make use of specialized auxiliary basis sets
whenever available, to lessen the overhead of the projector
construction.

To find a suitable choice for both the starting basis and
the threshold, we evaluated all 198 monomers and dimers
within the S66 test set of small to medium sized molecules.38

In Fig. 1 we compare the deviation in energy from the RI-
free result to the total number of auxiliary basis functions left

FIG. 1. Mean errors (left axis) and standard deviations (error bars) against
the number of auxiliary functions using ph-projection. Solid lines: Projection
from cc-pV6Z-RI (red) and cc-pV5Z-RI (orange). Larger thresholds result
in fewer auxiliary basis functions. Gray bars labelled XZ = 6Z, 5Z, QZ, TZ
represent the corresponding unprojected cc-pVXZ-RI bases. Mean error and
standard deviation nearly vanish for cc-pV6Z-RI. Null space removal grants
sub-meV accuracy with an auxiliary basis set size only slightly larger than the
canonical RI basis.

after the projection along the continuous range of thresholds.
The variation over the different molecules is expressed by the
empirical standard deviation of the energy differences (at
threshold values 0 and 10−10, 10−9, . . . , 10−5, respectively).
The unprojected RI results with the canonical discrete set of
preoptimized auxiliary basis sets (cc-pVXZ-RI) are also given
for comparison.

RPA/cc-pVQZ results are effectively converged with an
auxiliary basis two cardinality numbers larger than the AO
basis, cc-pV6Z-RI (Fig. 1, top). Kállay’s very different reason-
ing29 had focused on reducing the size of the typical auxiliary
basis (here cc-pVQZ-RI). In contrast, our understanding as
presented above, has led us to consider saturated auxiliary
basis sets. We find that even when aiming for the same aux-
iliary size after reduction, projections based on larger basis
sets lead to significantly better results. SVD thresholds tighter
than 10�6 hardly change the results, so we recommend the
combination cc-pV6Z-RI→ 10−6 and use it for the following
analysis.

For MP2 (Fig. 1, bottom), where the typical basis set size
is triple-ζ , here cc-pVTZ, already the pentuple-ζ auxiliary
basis can be considered converged. Because projecting from a
smaller basis means that less auxiliary functions are left after

TABLE I. Comparison of accuracy gain and computational overhead of
cc-pV6Z-RI → 10−6 ph-projection against canonical cc-pVQZ-RI for
molecules in Fig. 2 (geometries and more detailed results are given
in the supplementary material). All calculations were carried out at the
RPA@PBE/cc-pVQZ level with 12 concurrent evaluation threads on an Intel
E5-2620@2.0GHz architecture.

Molecule A B C

Canonical RI error (meV) 30.2 40.9 56.5
ph-projection error (meV) 0.7 0.6 0.8
Total walltime overhead +27% +35% +14%



211106-4 Schurkus, Luenser, and Ochsenfeld J. Chem. Phys. 146, 211106 (2017)

FIG. 2. Selection of molecules employed for testing (see Table I;
C26H22O2S,39 adenosine-thymine base pair, and C60).

projection with the same threshold, we recommend tightening
the threshold to 10�7 in this case.

B. Overhead

Our recommended choices for the projector construc-
tion (see Sec. III A) in eliminating the RI error result in
slightly more auxiliary functions entering the energy eval-
uation than canonical RI (e.g., cc-pVQZ-RI for cc-pVQZ).
Additional compute time overhead is caused by the construc-
tion of the projector itself. While the most expensive step
scales formally as O(N4) [Eq. (21); asymptotic limit with a
local metric: O(N)] the same holds true for the RI correlation
methods [MP2: O(N5), RPA: O(N4 log(N))], so the overhead
is approximately given by a constant fraction of the total run-
time. In Table I we compare the overall overhead of our method
to the gains in accuracy for some larger molecules (Fig. 2).
Timings comprise the complete correlation energy calculation
after the generation of the Kohn–Sham orbitals. This includes
projector construction, integral evaluation and transformation,
and evaluation of the Hamiltonian expectation value as part
of the full RPA energy. Our recommended choices eliminate
the RI error to an insignificant residue of less than one meV
in absolute energy also for these larger molecules, causing a
total overhead of only about 30% compared to the canoni-
cal RI approach, which shows two orders of magnitude larger
errors.

C. Potential energy surfaces

As the projection is essentially error-free, so are potential
energy surfaces evaluated with it. We computed the dissocia-
tion curve of the C60 dimer in Fig. 3. The equilibrium distance
can be deduced from experiment to be 9.93 Å,40 in good agree-
ment with our results. Obtaining a good experimental estimate
for the binding energy is more intricate.41,42

FIG. 3. cc-pV6Z-RI→ 10−6 ph-projected potential energy dissociation curve
of the C60 dimer. Geometries were taken from Ref. 43. The experimental
equilibrium distance40,44 is given as a black line for reference. All calculations
have been counter-poise corrected.45

IV. CONCLUSION

We have introduced the concept of null space projection
of the physical model. The theory was presented in a general
manner and is not limited to the discussed applications at the
MP2 and RPA levels. For these specifically we have shown that
the RI error can be eliminated to a residue of less than one meV
while overall runtime increases by only about 30%, within a
few lines of code. Other correlation methods may similarly
benefit from our presented null space projection idea.

SUPPLEMENTARY MATERIAL

See supplementary material for further results and discus-
sions as indicated in the text.
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(2005).

43D. I. Sharapa, J. T. Margraf, A. Hesselmann, and T. Clark, J. Chem. Theory
Comput. 13, 274 (2017).

44Y.-y. Ohnishi, K. Ishimura, and S. Ten-no, J. Chem. Theory Comput. 10,
4857 (2014).

45S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).





SUPPLEMENTARY MATERIAL

Almost Error-Free Resolution-of-the-Identity Correlation Methods

By Null Space Removal Of The Particle-Hole Interactions

Henry F. Schurkus, Arne Luenser, and Christian Ochsenfeld

Chair of Theoretical Chemistry and Center for Integrated

Protein Science Munich (CIPSM), Department of Chemistry,

University of Munich (LMU), Butenandtstr. 7, D-81377 Munich,

Germany

1



I. GEOMETRIES

A. C26H22O2S

Element x/Bohr y/Bohr z/Bohr

C 2.30641074 10.10228689 5.48436316

H 2.28581272 11.98539897 5.63780892

C -0.36792968 9.06841773 5.35888534

C -2.28354505 9.20485595 7.15166852

H -2.03939243 10.10247586 8.68744894

C -4.57710565 7.99467534 6.64711164

H -5.89367784 8.04569795 7.86560705

C -5.11528075 6.52700065 4.02723314

H -6.51955513 5.88101667 4.07065904

C -3.06135632 6.63067103 2.53393376

H -3.32931949 5.79125468 0.96924053

C -0.76892956 7.81704109 3.05700995

C 1.55845713 7.95933746 1.54881953

C 2.16109080 6.93718460 -0.80370052

H 0.92747758 6.05184791 -1.76368139

C 4.61301044 7.24275332 -1.71700516

H 5.05766300 6.54771205 -3.31174503

C 6.42242321 8.55649092 -0.32276522

H 8.08689398 8.73034572 -0.96924053

C 5.81430934 9.62002878 2.01218038

H 7.04017468 10.53824671 2.94853967

C 3.37353908 9.30879089 2.94230358

C 3.94159075 8.93141258 7.55191251

H 4.05421843 7.08099276 7.30605914

H 5.67031221 9.64100474 7.47518963

C 4.16609021 8.67611058 11.98332027
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C 2.87597419 9.24321739 14.45961739

H 3.42796319 10.95625413 15.03503899

C -0.07917952 9.19786397 14.38100478

H -0.90971416 10.64917363 13.50077035

C -0.81069251 6.57908150 13.46278686

H -1.54636289 6.17619189 11.87636178

C -0.22922378 4.94333457 15.30130140

H -0.45977037 3.16377948 15.24801113

C 0.86814018 6.44812348 17.49262782

H 0.79595264 5.61437632 19.18771215

C 3.55646457 7.28735085 16.57459887

H 4.41515612 5.80467174 15.77770136

C -0.62984572 8.93991635 17.23071178

H -2.45191965 8.74073922 17.60695625

H 0.09391939 10.33755779 18.24303806

C 5.23850979 8.32821200 18.61739281

O 2.81418014 9.48113391 9.98285620

O 6.22211224 7.68343745 11.77601732

S 8.33066865 8.89116142 18.08014367

C 8.82861148 9.85529968 21.15340527

H 10.42013882 10.40350923 21.78136126

C 6.70304754 9.74588454 22.57750287

H 6.61933267 10.20130854 24.31227146

C 4.60753024 8.85903607 21.13167342

H 2.95685447 8.64927647 21.80328208

B. DNA (AT-base pair)

Element x/Bohr y/Bohr z/Bohr

3



H -50.07585257 -13.74775756 7.89017349

O -48.92330861 -12.77341477 6.89031940

H -48.44426304 -15.75974896 4.43953358

H -44.47621612 -12.74658066 5.94829092

C -48.15059960 -13.72167934 4.49792612

H -51.43437669 -11.83818931 3.00617632

H -49.22812144 -13.14285622 0.61718455

C -45.34586809 -13.14134444 4.12319343

H -42.25333128 -14.26648738 1.76519317

H -43.08348797 -16.49844290 4.12394932

C -49.49079337 -12.20857563 2.43415622

O -45.33793124 -10.73288850 2.79036960

H -48.37264242 -8.80480093 4.35033851

C -44.10394008 -15.15106818 2.75219713

C -47.86241637 -9.84037085 2.64429377

H -48.53270222 -10.54901815 -2.66470281

O -45.40917391 -16.45441228 0.96583902

N -48.05819199 -8.13111357 0.41498386

C -48.38416975 -8.76284901 -2.06603757

C -47.94197383 -5.54540131 0.46562852

N -48.48375831 -6.83343864 -3.57441696

H -48.32558824 0.74946538 -4.94503532

H -48.60999202 -2.23970340 -6.24800149

N -47.63168081 -4.05629713 2.51144602

H -47.38412668 -0.43463701 3.28528887

C -48.20370090 -4.76891285 -1.98099990

N -48.38057927 -1.12797752 -4.73716545

C -47.60768128 -1.65785673 1.86213612

C -48.14644220 -2.15485470 -2.43207752

N -47.83898376 -0.62682216 -0.42216482
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H -44.91066416 10.68961377 -6.04882435

H -46.52997047 8.12374364 -7.49994504

H -48.23507036 10.85609864 -6.53108246

O -47.05455845 4.26643467 -5.21602205

H -47.76056013 2.90658775 -0.81995217

C -46.66225130 9.60642275 -6.07622538

C -47.24542079 5.71528769 -3.40112908

N -47.64075149 4.78421963 -0.99739745

O -48.23431447 5.19277842 3.23388832

C -47.09027427 8.43649331 -3.53019737

H -47.20989393 11.73141978 -1.56903960

C -47.88736075 6.19093176 1.18693698

C -47.32346647 9.84981948 -1.43505802

H -50.98764543 17.48355713 0.16742973

N -47.71426184 8.76341593 0.88212415

H -47.50506915 9.22054068 4.85546230

O -50.38312204 17.04589656 1.81678270

H -53.55748399 14.81979919 2.41110156

H -52.79195593 16.91871799 4.90969744

C -47.97069767 10.34814026 3.19571585

H -44.41102057 12.32063639 3.76131088

H -46.55378102 13.75569441 1.38932665

C -51.73446519 15.64787717 3.49391463

O -50.49858431 11.23328797 3.32308339

H -51.44552607 13.07161355 6.56226294

C -46.33891916 12.72333702 3.15886619

C -50.52787506 13.56521001 4.78535347

H -47.44100744 16.15999295 5.32694897

C -47.73467088 14.12211230 5.26591082

O -47.02526769 13.04383457 7.62239930

5



H -47.88811664 13.90422688 8.96637252

H -44.33354180 -17.71674934 0.23035761

C. C60

Element x/Bohr y/Bohr z/Bohr

C -1.36154741 -4.88927519 4.34643598

C 1.36154741 4.88927519 -4.34643598

C -1.36154741 -4.88927519 -4.34643598

C 1.36154741 -4.88927519 -4.34643598

C -1.36154741 4.88927519 -4.34643598

C 1.36154741 -4.88927519 4.34643598

C -1.36154741 4.88927519 4.34643598

C 1.36154741 4.88927519 4.34643598

C -2.68624518 -5.70798339 2.20303021

C 2.68624518 5.70798339 -2.20303021

C -2.68624518 -5.70798339 -2.20303021

C 2.68624518 -5.70798339 -2.20303021

C -2.68624518 5.70798339 -2.20303021

C 2.68624518 -5.70798339 2.20303021

C -2.68624518 5.70798339 2.20303021

C 2.68624518 5.70798339 2.20303021

C -2.20303021 -2.68624518 5.70798339

C 2.20303021 2.68624518 -5.70798339

C -2.20303021 -2.68624518 -5.70798339

C 2.20303021 -2.68624518 -5.70798339

C -2.20303021 2.68624518 -5.70798339

C 2.20303021 -2.68624518 5.70798339

C -2.20303021 2.68624518 5.70798339
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C 2.20303021 2.68624518 5.70798339

C -4.88927519 -4.34643598 1.36154741

C 4.88927519 4.34643598 -1.36154741

C -4.88927519 -4.34643598 -1.36154741

C 4.88927519 -4.34643598 -1.36154741

C -4.88927519 4.34643598 -1.36154741

C 4.88927519 -4.34643598 1.36154741

C -4.88927519 4.34643598 1.36154741

C 4.88927519 4.34643598 1.36154741

C -1.32469777 -6.54946600 0.00000000

C 1.32469777 -6.54946600 0.00000000

C -1.32469777 6.54946600 0.00000000

C 1.32469777 6.54946600 0.00000000

C -6.54946600 0.00000000 1.32469777

C 6.54946600 0.00000000 -1.32469777

C -6.54946600 0.00000000 -1.32469777

C 6.54946600 0.00000000 1.32469777

C 0.00000000 -1.32469777 6.54946600

C 0.00000000 1.32469777 -6.54946600

C 0.00000000 -1.32469777 -6.54946600

C 0.00000000 1.32469777 6.54946600

C -4.34643598 -1.36154741 4.88927519

C 4.34643598 1.36154741 -4.88927519

C -4.34643598 -1.36154741 -4.88927519

C 4.34643598 -1.36154741 -4.88927519

C -4.34643598 1.36154741 -4.88927519

C 4.34643598 -1.36154741 4.88927519

C -4.34643598 1.36154741 4.88927519

C 4.34643598 1.36154741 4.88927519

C -5.70798339 -2.20303021 2.68624518
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C 5.70798339 2.20303021 -2.68624518

C -5.70798339 -2.20303021 -2.68624518

C 5.70798339 -2.20303021 -2.68624518

C -5.70798339 2.20303021 -2.68624518

C 5.70798339 -2.20303021 2.68624518

C -5.70798339 2.20303021 2.68624518

C 5.70798339 2.20303021 2.68624518

II. EXTENDED TABLES

Here, we present more detailed results for the three example molecules of the main text.

All calculations are RPA energy evaluations and have been carried out in a cc-pVQZ atomic

orbital basis and based on PBE orbitals.

Natoms: Number of atoms in the molecule.

Naux : Number of (projected) pure auxiliary functions

6Z-RI: Evaluation with cc-pV6Z-RI auxiliary basis.

QZ-RI: Evaluation with cc-pVQZ-RI auxiliary basis.

proj: Evaluation with cc-pV6Z-RI auxiliary basis projected to threshold 10−6.

Speedup vs 6Z-RI: comparing “proj” with 6Z-RI

Overhead vs QZ-RI: comparing “proj” with QZ-RI

Etotal: Absolute correlated energy.

ERPA
C : RPA correlation energy.
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Natoms 51 62 60

Speedup vs 6Z-RI 2.5x 2.8x 1.9x

Naux-Reduction -50.0% -49.3% -47.7%

Error of proj. 2.6e-5 hartree 2.4e-5 hartree 2.8e-5 hartree

Error of QZ-RI 1.1e-3 hartree 1.5e-3 hartree 2.1e-3 hartree

Overhead vs QZ-RI +27.2% +35.4% +14.4%

cc-pV6Z-RI:

walltime[s] 27890 56531 172617

Naux 11346 13685 16980

Etotal[hartree] -1552.5715171846 -1764.3369534545 -2272.0007428025

ERPA
C [hartree] -8.09901141777614 -10.90586404074700 -14.45599212934066

cc-pVQZ-RI:

walltime[s] 8611 14874 80667

Naux 5064 6105 7920

Etotal[hartree] -1552.5704047828 -1764.3354520156 -2272.0007428025

ERPA
C [hartree] -8.09789901599577 -10.90436260185441 -14.45391667695902

cc-pV6Z-RI→1e-6:

walltime[s] 10954 20141 92273

Naux 5650 6935 8873

Etotal[hartree] -1552.5715434597 -1764.3369772871 -2272.0007428025

ERPA
C [hartree] -8.09903769282070 -10.90588787332585 -14.45601973832719

III. EXTENSION ON S66 ACCURACY

In the following we present more results as in fig. 1 of the main text (see caption of

fig. 1 for details). While in fig. 1 we show only the typical combinations of atomic orbital

9



basis sets and correlation methods, here we present all combinations of RPA/MP2 with

cc-pVTZ/cc-pVQZ.
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IV. DENSITY FITTING AS A SPECIAL CASE OF

RESOLUTION-OF-THE-IDENTITY

In the literature both terms, “density fitting” (DF) and “resolution-of-the-identity” (RI),

are used to denote the factorization of the ERIs as

(µν|λσ) = (µν|m12|I)(I|m12|J)−1(J |K)(K|m12|L)−1(L|m12|λσ) . (1)

However, they differ in perspective: While RI considers an exact identity to be introduced,

DF considers how to minimize the error of fitting a product of functions by a linear com-

bination over single functions in some metric. We now show that both perspectives yield

11



eq. 1 – RI as an exact identity over a complete set, DF as an optimal approximation over

an incomplete set.

In DF one is interested in fitting the “density” |µν) with an in general incomplete auxiliary

function set

|µν) ≈ |µ̃ν) = αµνI |I) (2)

where the coefficients α are to be determined such as to minimize the error within a metric

m12

0
!

=
∂

∂αµνK
(µν − µ̃ν|m12|λσ − λ̃σ) (3)

= −(K|m12|λσ) + (K|m12|J)αλσJ (4)

So by solving for α

αλσJ = (J |m|K)−1(K|m|λσ) (5)

one obtains eq. 1 as

(µν|λσ) ≈ αµνI (I|J)αλσJ (6)

We are now going to show eq. 1 again, but not from a DF perspective but by insertion

and resolution of an identity. Consider the ERI (µν|λσ) as a chain of operations. One can

insert two identities into it, obtaining

(µν|I|1
r
|I|λσ) . (7)

Again, we will omit the 1
r12

operator and replace it with a vertical bar whenever an integral

contains no other operators. A three center overlap integral is therefore denoted by (µνλ).

Let us first only consider the identity to the right of 1
r
. Given a complete and orthogonal

set {|R̃)} one can “resolve” this identity as

I = |R̃)(R̃| (8)

so that

(µν|λσ) = (µν|R̃)(R̃λσ) (9)

Given a complete, however non-orthogonal set {|I)} one can similarly “resolve” the iden-

tity. To find the explicit form we first note that

|I) = |R̃)(R̃I) (10)
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and so by completeness of the new set {|I)}

|R̃) = |I)(IR̃)−1 (11)

where we have introduced the notational shorthand of (IR̃)−1 meaning the (I, R̃)-th element

of the inverse of the matrix (R̃I) for easier readability.

If {|J)} is a complete set of functions J(x) and m12 = m(x1, x2) is a two-point function

(which we call metric), in many cases

mJ(x) =

∫
J(x′)m(x′, x) dx′ (12)

forms again a complete set {|mJ)}. Specifically this is the case for the choices m(x1, x2) =

δ(x1 − x2) (overlap metric), m(x1, x2) = 1
|x1−x2| (Coulomb metric), and m(x1, x2) =

erfc(w|x1−x2|)
|x1−x2| (attenuated Coulomb metric). With {|mJ)} being a complete set one can

write in analogy to eq. 10

(mJ | = (J |m12|R̃)(R̃| (13)

as

(R̃| = (R̃|m12|J)−1(mJ | (14)

Expanding |R̃) in eq. 8 according to eqs. 11 and 14 respectively one obtains

I = |I)(IR̃)−1(R̃|m12|J)−1(mJ | (15)

where for the inner matrix product the elements can be found as

(IR̃)−1(R̃|m12|J)−1 = ((I|m12|R̃)(R̃J))−1 = (I|m12|J)−1 (16)

due to eq. 8. So concluding one finds

I = |I)(I|m12|J)−1(J |m12| (17)

or by exchanging |I) with (I|, etc. throughout the argument

I = |m|I)(I|m|J)−1(J | (18)

Inserted into eq. 7 this yields the final formulation, eq. 1, which we take as the starting point

in the main text (eq. 3 and following).
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V. OUTLOOK: KERNEL PROJECTION FOR EXPLICITLY

CORRELATED METHODS

While the main text is focused solely on RI in the context of ERIs, for which it is

equivalent to DF, in the following we briefly outline some related ideas for use in another

type of RI, as it applies to explicitly correlated (F12) methods (c.f. [W. Klopper, C.C.M.

Samson: J. Chem. Phys. 116 (2002), 6397] and references therein). There, integrals of the

form

〈xy|F12o1g12|ij〉 (19)

occur where F12 and g12 are operators acting on both electrons, while o1 acts on the first

electron only, projecting it onto the occupied space, while the second electron is effectively

acted on by an identity operation

o1 = |k〉 〈k| ⊗ I (20)

Writing eq. 19 in explicit integral form makes it obvious that this is in fact a three-electron

integral

〈xy|F12o1g12|ij〉 = (21)

=

∫
〈x(r)y(r′)|F12(r, r

′)|k(r)〉 〈k(r′′)|g12(r′′, r′)|i(r′′)j(r′)〉 dr′ (22)

=

∫∫∫
x(r)y(r′)k(r′′)F12g32k(r)j(r′)i(r′′)drdr′dr′′ (23)

= 〈xyk|F12g32|kji〉 (24)

However, within the RI the identity in eq. 20 is resolved according to eq. 8. For this outlook

we disregard, that commonly the complementary auxiliary basis set (CABS, [E.F. Valeev:

Chem. Phys. Lett. 395 (2004), 190]) approach is used, by which certain contributions are

already projected out of the otherwise formally complete auxiliary set. Within RI eq. 20

then becomes

o1 = |kI〉 〈kI| (25)

and therefore

〈xy|F12o1g12|ij〉 = 〈xy|F12|kI〉 〈kI|g12|ij〉 (26)

which is a sum of products of two-electron integrals.
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With 〈xy|F12|kI〉 being linear in each index (specifically I) one could consider it as a

linear operator Fxyk,I and build an auxiliary matrix as

HIJ = F †I,xykFxyk,J (27)

This would suggest that the projector PR constructed from H (following the scheme of the

main text) would not change the result when introduced as

〈xy|F12|kI〉 〈kI|g12|ij〉 = 〈xy|F12|kI〉PR
IJ 〈kJ |g12|ij〉 (28)

How well this approach would perform in terms of auxiliary reduction compared to overhead

costs caused by the projector construction remains to be seen and will have to be studied

in future work.
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We present a (sub)linear-scaling algorithm to determine indirect nuclear spin–spin coupling constants
at the Hartree–Fock and Kohn–Sham density functional levels of theory. Employing efficient integral
algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for
systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms
and 20 000 basis functions illustrate the performance and accuracy of our reference implementation.
Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for
10 000 basis functions and above. Attainable speedups of our method exceed 6× in total runtime and
10× in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin–spin
couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using
the new method it is shown that large solvent spheres are necessary to converge spin–spin coupling
values. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962260]

I. INTRODUCTION

Nuclear magnetic resonance spectroscopy (NMR) is an
important tool to determine chemical structures in liquid
or solid state. In recent years, a particular focus has been
on the structural investigation of large biochemical systems
like proteins.1–4 While theoretical prediction of molecular
magnetic properties like NMR shieldings, spin-spin couplings,
hyperfine couplings, or g-tensors using ab initio methods
(see, e.g., Refs. 5–8 for overviews) is routine nowadays,
the unfavorable scaling behavior of conventional algorithms
prevents the application to large molecular systems. For self-
consistent field (SCF) methods, computational complexity
is O �

N3Npert
�
, where N is a measure for system size, e.g.,

number of atoms, and Npert is the number of perturbations.
In the last decade, linear-scaling methods for

Hartree–Fock (HF) and Kohn–Sham density functional
(KS-DFT) theories have been introduced which allow the
theoretical investigation of large chemical systems with more
than 1000 atoms (see, e.g., Ref. 9 for a recent review).
Considering magnetic properties, linear-scaling methods10–14

allow the investigation of large chemical and biochemical
systems.10,15,16

The goal of the present work is to reduce the compu-
tational scaling for calculating indirect nuclear spin–spin
coupling constants (ISSCs) at the density functional level
of theory (DFT). Conventionally, the scaling is O �

N3� per
perturbing nucleus. Most ISSCs in larger molecules are
vanishingly small and thus inaccessible experimentally.17

Ideally, computation of a single ISSC would scale as O (1),
i.e., be asymptotically independent of system size. See also
our related work on nuclei-selected NMR with O(1) scaling.12

We will review the required theory in Sections II A and
II B. The obstacles to be overcome and our approach are

a)christian.ochsenfeld@uni-muenchen.de

described in Sections II C through II D. Sections III and IV
show exemplary calculations demonstrating the computational
scaling. Finally, Section V summarizes our results.

II. THEORY

We will briefly review the underlying physics for the
ab initio calculation of indirect spin-spin coupling constants
and discuss the strategies to reduce the scaling behavior of the
occurring terms. For a more detailed description of the theory
we refer the reader to several excellent reviews on the theory
of magnetic interactions in molecules.5–8,18

A. Intramolecular magnetic interactions

Indirect nuclear spin–spin coupling refers to the coupling
mechanism of the nuclear magnetic moments m in a
molecular system, which is not described by the classical
through-space magnetic dipole–dipole interaction.19 Instead,
the indirect coupling is conveyed by three mechanisms. They
are the spin–orbit (SO), spin–dipole (SD), and Fermi contact
(FC) interactions. In Ramsay’s theory of indirect spin–spin
coupling,20,21 four operators describe these interactions
(the spin–orbit coupling has a diamagnetic [DSO] and a
paramagnetic [PSO] part)5,6

ĥFC
A = −

8πα2

3



j

δ
�
r j A

�
m j, (1)

ĥSD
A = α

2


j

r2
j Am j − 3

�
m j · r j A

�
r j A

r5
j A

, (2)

ĥPSO
A = α2



j

−ir j A × ∇ j

r3
j A

, (3)
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ĥDSO
AB =

α4

2



j

�
r j A · r jB

�
1 − r j ArT

jB

r3
j A

r3
jB

, (4)

where i =
√−1 is the imaginary unit, j indexes electrons,

A,B index nuclei, and α is the fine structure constant. In
practical calculations, ISSCs are obtained by differentiation
of the electronic energy with respect to the magnetic moments
of the coupling nuclei

J AB = h
γAγB

4π2 K AB = h
γAγB

4π2

d2E
dmAdmB

, (5)

where h is Planck’s constant and γA, γB are the gyromagnetic
ratios of nuclei A,B. See Ref. 22 for a discussion of the
units and the reduced coupling tensorK . Most often, only the
isotropic average JAB =

1
3 Tr (J AB) of the coupling tensor is

reported.

B. Molecular properties in Hartree–Fock
and Kohn–Sham DFT

In a density matrix form, the SCF energy for a restricted
wave function is given by

ESCF = Tr
(
Ph +

1
2

PG [P]
)
, (6)

Gµν [P] = Jµν [P] − 1
2
γKµν [P] + V XC

µν [P] , (7)

Jµν [P] =


λσ

(µν |λσ) Pλσ, (8)

Kµν [P] =


λσ

(µλ |νσ) Pλσ, (9)

where h is the one-electron matrix, P is the one-particle density
matrix, and VXC is the Kohn–Sham exchange-correlation
(XC) matrix, and µ, ν, λ,σ are AO basis functions. For
Hartree–Fock, VXC vanishes and γ = 1. For pure DFT, γ = 0.
For hybrid DFT, 0 < γ ≤ 1.

The second derivative of the electronic energy with
respect to the magnetic moments mA,mB of nuclei A,B
yields the indirect nuclear spin–spin coupling tensor between
those nuclei,

d2ESCF

dmAdmB
= Tr (PmAhmB + PhmAmB) , (10)

where Ax is short for d
dx A. We also used the fact that the

basis functions do not depend on the magnetic moments. The
perturbed one-electron matrices are given by

hmB
µν = ⟨µ|ĥFC

B + ĥSD
B + ĥPSO

B |ν⟩, (11)

hmAmB
µν = ⟨µ|ĥDSO

AB |ν⟩. (12)

The total coupling tensor comprises the following contribu-
tions:

J AB = J FC
AB +J SD

AB +J SDFC
AB +J PSO

AB +J DSO
AB , (13)

J FC
AB = h

γAγB

4π2 Tr
�
PFC
A hFC

B

�
, (14)

J SD
AB = h

γAγB

4π2 Tr
�
PSD
A hSD

B

�
, (15)

J SDFC
AB = h

γAγB

4π2 Tr
�
PSD
A hFC

B + PFC
A hSD

B

�
, (16)

J PSO
AB = h

γAγB

4π2 Tr
�
PPSO
A hPSO

B

�
, (17)

J DSO
AB = h

γAγB

4π2 Tr
�
PhDSO

AB

�
. (18)

The SD and FC operators are real triplet operators, while
the PSO operator is a purely imaginary singlet operator.
Because singlet and triplet states do not mix, there are
no PSO-FC or PSO-SD contributions. The mixed SD-FC
contribution is traceless, and does not contribute to the
isotropic coupling. The calculation of ISSCs within DFT was
first discussed by Fukui,23 later by Malkin et al.24 The first
complete implementation (no terms omitted) within KS-DFT
was given in Refs. 25–28. The decay behavior of the individual
contributions has been studied in Ref. 17.

C. Coupled perturbed SCF

The perturbed density matrices PmA are the solutions
to the coupled perturbed SCF (CPSCF) equations.29–31

Integral-direct molecular orbital (MO)-CPSCF32 computes
two-electron integral contractions on-the-fly in the atomic
orbital (AO) basis, and transforms to the canonical molecular
orbital (MO) basis for solving the CPSCF equations

U x
ai =

Sx
aiεi − F x

ai

εa − εi , (19)

where i indexes occupied orbitals, a indexes virtuals, and x
is a general perturbation. The perturbed density matrix Px is
given by

Px
µν =



ai

CµaU x
aiC

†
iν +



ia

CµiU
x†
ia C†aν −



λσ

PµλSx
λσPσν.

(20)

Since the canonical MO basis is delocal, the matrix C of MO
coefficients is densely populated. The number of significant
elements therefore grows as O �

N2� with the system size N .
The matrix multiplications of AO-MO transformations in Eqs.
(19) and (20) thus scale as O �

N3�, regardless of whether the
perturbation is local or not.

To reduce scaling to linear or sub-linear, we use
the density matrix-based Laplace-transformed CPSCF (DL-
CPSCF) equations,12,14 which are formulated entirely in the
AO basis

Px
vo =

τ

α=1

Q(α) (−hx −G [Px])P(α) (21)

=

τ

α=1

Q̃(α)Q̃(α)T (−hx −G [Px]) P̃(α)P̃(α)T, (22)

P(α) =
√
wα exp (taPF)P = P̃(α)P̃(α)T, (23)

Q(α) =
√
wα exp (−taQF)Q = Q̃(α)Q̃(α)T. (24)

In contrast to the MO coefficient matrix C, the occupied
(P(α)) and virtual (Q(α)) pseudo-density matrices are sparse
for large systems. P̃(α) and Q̃(α) are the factors from a pivoted
Cholesky decomposition of P(α) and Q(α), respectively.33 The
required number of roots τ is typically 5–10. We have
omitted all terms involving basis function derivatives with
respect to nuclear magnetic moments from the full DL-CPSCF
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equations because they vanish for the perturbations discussed
in this work. The full perturbed density matrix is thus simply
Px = Px

vo + Px
ov with Px

ov = (Px
vo)†.

The efficient evaluation of the occurring quantities as
well as the (sub)linear-scaling solution of the linear equation
system in Eq. (20) is discussed in Section II D. Furthermore,
it is also possible to reduce the prefactor of the DL-CPSCF
algorithm as described in Sec. II C 1.

1. Reducing the computational prefactor
by Cholesky decomposition

As discussed in Ref. 33, performing a Cholesky
decomposition with complete pivoting on the occupied
(Eq. (23)) and/or virtual (Eq. (24)) pseudo-density matrices
can reduce the computational prefactor of the DL-CPSCF
method. The time savings are more pronounced the larger the
basis set is, because the complexity of evaluating Eq. (21)
can be reduced from O �

N3
basis

�
to O �

N2
basisNocc

�
in the limiting

case where all matrices are densely filled.
Performing the decomposition on the occupied pseudo-

densities reveals their numerical rank, which is Nocc or
smaller, and reduces computational complexity hugely when
Nocc ≪ Nbasis. Decomposition of the virtual counterparts is
often very beneficial as well. Beyond rank reduction to Nvirt,
the numerical rank of the matrices can be much smaller.
Pseudo-densities corresponding to Laplace points with large
roots tα often have a numerical rank one order of magnitude
smaller than Nvirt. This is obvious from Eq. (24), where −tα
is an argument to the exponential function. Consequently,
Eq. (22) is most economical in our experience. We first
multiply by the left Cholesky factor of the occupied pseudo-
density matrix, then by the two virtual Cholesky factors, and
finally by the right occupied Cholesky factor. For the largest
molecule studied in Sec. III B 2, the numerical rank of the
most sparse virtual pseudo-density matrix Q(α) is 2455 while
the number of virtual orbitals is 19 160, an 87% reduction in
rank.

D. (Sub)linear-scaling algorithms

We restrict ourselves to closed-shell, spin-unpolarized
systems in this work. Because the operator matrix represen-
tations (Eq. (11)) involve only one-electron integrals, their
computation is extremely rapid and consumes negligible
overall time. This leaves three time-determining steps in the
computation of the FC, PSO, and SD contributions. These are
the construction of K [Px] (only when using hybrid density
functional approximations), construction of VXC [Px], and
solution of Eq. (21), i.e., matrix multiplications.

1. (Sub)linear-scaling sparse algebra

If the matrices hx, G [Px], and Px in Eq. (21) are local,
i.e., the number of significant elements is asymptotically
constant with respect to system size, the matrix multiplications
can be performed with O (1) scaling. Our implementation
(also detailed in Refs. 12 and 33) uses a modified blocked
compressed sparse matrix format (BCSR).11,34–36 Matrices are

blocked into submatrices of ∼100 × 100 elements, which
are only allocated in memory if their Frobenius norm
exceeds a threshold, typically 10−6. Obtaining compact
matrix representations for sparse matrices in BCSR format
requires the atoms be sorted by spatial proximity. We do
this by applying the Cuthill–McKee algorithm to the atom
connectivity matrix.37,38

2. The exact-exchange matrix K[Px]
For hybrid density functional approximations, we

calculate the exact-exchange contribution

Kµν [Px] =


λσ

(µλ |νσ) Px
λσ (25)

using the LinK algorithm.39,40 Due to the coupling of bra-
and ket-charge distributions via the local response density
Px, the computational effort is asymptotically independent
of system size for a single perturbation. Furthermore,
our implementation directly scatters the resulting exchange
integrals into sparse matrix format, thus also ensuring O (1)
scaling with respect to memory usage.

Increasing the fraction of HF exchange in the density
functional approximation promotes the development of triplet
instabilities in the wave function.41 This can strongly impede
the quality of predictions, which is why pure density
functionals may be preferable to hybrid functionals for
increased robustness.

3. The exchange-correlation potential matrix VXC [Px]
The central step within the evaluation of the exchange-

correlation (XC) potential and its derivatives is the calculation
of the XC-energy and its derivatives based on the ground-
state density ρ(r). Using local basis functions, linear scaling
behavior is possible.42,43

In order to reduce the scaling to O (1) when using local
response densities Px, a preselection of those basis function
pairs where Px has significant values is necessary. Since
only a constant number of local basis functions remains, the
functional values as well as the real-space representations of
the densities have to be evaluated for a constant number of
grid points in order to obtain the local response potential
VXC [Px].

4. The FC and SD contributions

The FC and SD contributions require evaluation of both
VXC [Px] and K [Px] (hybrid functionals only). The Coulomb-
type two-electron integral contraction J [Px] vanishes because
the response densities of α- and β-spin cancel for closed-shell
triplet operators.

The FC operator (Eq. (1)) is extremely local with an
exp

�−r2� decay in a Gaussian basis. The operator is isotropic
and requires only a single response density matrix per
perturbing nucleus. Figure 1 shows the sparsity pattern of
the resulting converged response density matrix in the AO
basis. The number of significant elements in the matrix is
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FIG. 1. Sparsity patterns for perturbed density matrices obtained from DL-CPSCF for ISSCs in amylose16 (PBE/pcJ-1). Darker areas mean higher absolute
values of the matrix elements. White areas are numerically insignificant (<10−5) and not allocated in memory. Shown are the perturbed density matrices for the
FC (left), SD (center), and PSO (right) perturbations.

independent of the molecular size. Evaluation of the matrix in
constant time will be demonstrated in Sec. III.

The SD operator (Eq. (2)) decays as r−3, and requires
six independent perturbations to be evaluated per perturbing
nucleus (cf. Ref. 25). The sparsity of the SD operator’s AO
representation can be significantly enhanced by projection
onto the virtual-occupied subspace before performing CPSCF.
An exemplary sparsity pattern of a corresponding response
density is given in Fig. 1. As with the FC operator, the
electronic response to the SD perturbation is spatially local
and does not further increase with system size beyond a certain
point.

5. The PSO contribution

The PSO (Eq. (3)) operator is longer ranged at r−2

than both FC and SD. Three independent perturbations
must be computed per perturbing nucleus. The XC potential
matrix VXC �PPSO�, as well as the Coulomb matrix J

�
PPSO�,

vanishes due to the purely imaginary Hermitian (i.e.,
skew-symmetric) nature of the operator. For pure density
functional approximations (no exact-exchange contribution),
this perturbation can therefore be evaluated non-iteratively
using Eq. (22).

While the PSO operator is the longest-ranged of the
three (see Fig. 1 for a sample sparsity pattern of the resulting
response density), the evaluation is still extremely rapid in pure
DFT calculations. This operator has the worst scaling exponent
of the three, allowing for just below linear computational
complexity for the systems considered in Sec. III. The
absolute computational time, however, is very small. In hybrid
DFT calculations, where K

�
PPSO� must be computed, this

perturbation becomes the dominating contribution.
Like the SD operator, we project the PSO operator’s

AO representation to the virtual-occupied subspace before
CPSCF. This enhances sparsity slightly and is beneficial for
performance of large molecules.

6. The DSO contribution

The DSO contribution is calculated directly as an
expectation value with the ground state density. In our

implementation, like in most others,25,26 it is computed
numerically using existing grid-based numerical quadrature
routines for KS-DFT. The expectation valueJ DSO

AB is obtained
by contracting the real-space representations of the DSO
operator (Eq. (4)) and the density on the grid

J DSO
AB =


ĥDSO
AB (r) ρ (r) d3r ≈



g

wg ĥDSO
AB

�
rg
�
ρ
�
rg
�
, (26)

with grid points rg and weights wg .
Thus, this step shows a very small prefactor as compared

to the other contributions of the total ISSC tensor and will
not dominate the overall computation time even for very large
systems. Because its evaluation is so rapid, we will forego
further discussion of this term.

III. ILLUSTRATIVE CALCULATIONS

Calculations were performed using the PBE func-
tional44,45 (as recommended by Lutnæs41) and HF theory,
using Jensen’s pcJ-1 basis set designed specifically for
spin–spin coupling calculations,46,47 as deposited in the
EMSL basis set exchange.48–50 While the HF approximation
is not recommended for the calculation of spin-spin
coupling constants, recent work by Cheng et al.51 shows
impressive improvements by employing the Tamm–Dancoff
approximation. In the present context we employ the HF
calculations for demonstrating the scaling behavior of hybrid
density functional approximations containing exact exchange.
We implemented our method in a development version of
Q-Chem.52 Computations were performed on an Intel Xeon
E5-2620 machine, using no symmetry and a single thread
of execution. Structure files for the molecules can be found
online.53

A. Accuracy

To find the most economical thresholds and to assess the
accuracy of our methods, we performed a series of calculations
with varying sparsity thresholds (Frobenius norm) and integral
thresholds. Our reference molecule was the adenine–thymine
DNA base pair (62 atoms, 1215 basis functions). In each
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case, we calculated the SD, FC, and PSO contributions to
the spin–spin coupling values between one hydrogen nucleus
and all other nuclei in the molecule, as well as between one
carbon nucleus and all other nuclei. We consider settings to
be accurate if the maximum absolute deviation in the final
expectation value of all those 1H–1H and 1H–13C couplings
differs from the reference value by less than 1% or less than
0.1 Hz.

First, the number of Laplace points (we use the
minimax fitting of Takatsuka et al.54) was fixed to seven
in all calculations. Reference values were computed with
MO-CPSCF using an Euler–Maclaurin/Lebedev grid with
99 radial and 590 spherical points, an integral threshold
of 10−12, and dense linear algebra. Second, we studied the
influence of the DFT grid on accuracy. In our case, the
SG-0 standard grid55 gave sufficiently accurate (according
to the criterion above) results compared to a 99-590
Euler–Maclaurin–Lebedev grid, using an integral threshold
of 10−12 in both cases.

Finally, we searched for the most economical combination
of sparsity thresholds and integral thresholds for DL-CPSCF.
The reference in this case was an MO-CPSCF calculation
using dense linear algebra and an integral threshold of 10−12.
We obtained sufficiently accurate (vide supra) results with
an integral threshold of 10−8 and a sparsity threshold of
10−5 (Frobenius norm). The VXC [Px] screening described in
Sec. II D 3 is based on shell pairs. If no element in Px

belonging to a particular shell pair exceeds 10−6 (absolute
value), that shell pair is eliminated from the evaluation
of VXC. Otherwise, the shell pair is considered significant,
and all constituent basis functions are used in the potential
matrix evaluation. We confirmed the accuracy of our final
thresholds on the DNA8 molecule (524 atoms, 10 770 basis
functions).

To facilitate easy comparison, the number of CPSCF
iterations was fixed to seven in all cases below, which is easily
sufficient for the given accuracy. All times given below are

wall times, and correspond to the cumulative times of all seven
iterations.

B. Pure density functionals

1. Amylose chains

We computed individual ISSCs on amylose chains
of increasing length using the PBE density functional
approximation. The perturbing nucleus is located near the
end of the molecule in each case. Detailed wall times and
scaling exponents are given in Table I.

The data show the most expensive steps of the calculation.
They are (in decreasing order of cost for the largest system)
evaluation of the XC response potential and solution of
Eq. (22) for the SD perturbation (corresponding to 58%
and 19% of the total time, respectively). Evaluation of
VXC �PFC� accounts for 13%, and solution of Eq. (22)
for the PSO contribution accounts for 6% of the overall
time.

The FC contribution is extremely local because of
its exponential decay. Correspondingly, it shows sub-linear
scaling behavior even between the smaller systems. Because
of its high sparsity and compact matrix representation,
the DL-CPSCF iteration step (Eq. (22)) is extremely
rapid for the FC perturbation even for the largest
systems.

The scaling exponent for the computation of VXC �PFC�
increases from 0.2 to 1.0 for the larger systems. This is a
consequence of our implementation using the pre-existing
DFT algorithms in Q-Chem, which can also be observed
for the DNA systems studied in Sec. III B 2. Specifically,
the converged perturbed densities evaluated on the real-space
DFT grid have virtually the same number of significant grid
points, basis functions, and basis function pairs from amylose4
through amylose32. The extent of the perturbative effect has
decayed below numerical accuracy. Our screening procedure

TABLE I. Wall times (in seconds) for the calculation of an individual ISSC in amylose chains (PBE/pcJ-1). The columns headed O (N x) contain the scaling
exponents between the systems to the left and right of that column. Exponents and sums calculated from unrounded numbers.

Amylose4 O(N x) Amylose8 O(N x) Amylose16 O(N x) Amylose32

Natoms 87 171 339 675
Nelectrons 354 698 1386 2 762
Nbasis 1635 3223 6399 12 751

DL-CPSCF

SD


VXC�PSD� 238 0.2 267 0.2 305 0.7a 508
Eq. (22) 50 0.8 86 0.4 114 0.6 167

FC


VXC�PFC� 39 0.2 46 0.4 60 1.0a 119
Eq. (22) 5 1.0 10 0.2 12 0.6 19

PSO Eq. (22) 5 1.7 15 1.1 32 0.8 56
Σ 337 424 524 868

MO-CPSCF

SD


VXC�PSD� 222 0.4 286 0.3 347 0.7a 546
Eqs. (19) and (20) 9 2.9 67 3.0 508 3.0 3 879

FC


VXC�PFC� 41 0.3 50 0.4 63 0.9a 119
Eqs. (19) and (20) 2 2.9 11 2.9 84 3.0 650

PSO Eqs. (19) and (20) 1 3.0 5 2.9 36 3.0 280
Σ 274 419 1038 5 474

aSee text for a detailed discussion.
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FIG. 2. Sparsity patterns of several matrices for DNA16 (PBE/pcJ-1). Darker areas mean higher absolute values of the matrix elements. White areas are
numerically insignificant (<10−5) and not allocated in memory. Shown (from left to right) are the ground state density matrix, an occupied pseudo-density
Cholesky factor, as well as the least and most sparse virtual pseudo-density Cholesky factors.

within the evaluation of the XC matrix correctly recognizes
this, and only evaluates those basis functions on the current
grid batch which have significant elements in Px. However,
the DFT numerical integration procedure currently available
in Q-Chem performs several steps adversely affecting the
scaling, which cannot be circumvented without rewriting a
large part of the implementation. These steps do not surface
in the evaluation of the regular Kohn–Sham potential matrix
during SCF, but do in fact become dominant steps during the
evaluation of local perturbations in systems with many basis
functions as is the case here. Although these steps can be
avoided, we have opted not to rewrite the corresponding code,
but to discuss this shortcoming by showing the actual wall
times in all cases, even though the resulting scaling exponents
arguably understate the power of the DL-CPSCF method in
the present context.

The SD contribution is the most expensive one for
two reasons. First, six independent density matrices must
be computed for this perturbation (cf. Sec. II D 4), each

of which is less sparse than the FC-perturbed density. The
computational time grows sub-linearly for both the evaluation
of the XC matrix and the solution of the DL-CPSCF equations.

Finally, the computational complexity of the PSO
contribution decreases with larger systems. While scaling
is nearly quadratic between the two small systems, it has
reduced to below linear at O �

N0.7� for the largest systems.
This is consistent with its slower decay behavior of r−2, being
the longest-ranged of the three contributions. The interaction
has not decayed below the matrix sparsity threshold for
these systems to enable truly constant scaling, but steadily
reduces in complexity with molecular size. Nevertheless, the
computational prefactor of the PSO evaluation is very small
due to the vanishing response potential, i.e., one only has to
solve the uncoupled perturbed KS-equations in a non-iterative
manner.

Table I also contains timing data for regular MO-CPSCF
as a reference. The routines for evaluation of the XC response
potential are the exact same ones as used in the DL-CPSCF

TABLE II. Wall times (in seconds) for the calculation of an individual ISSC in DNA double strands (PBE/pcJ-1). The columns headed O (N x) contain the
scaling exponents between the systems to the left and right of that column. Exponents and sums calculated from unrounded numbers.

DNA1 DNA2 DNA4 O(N x) DNA8 O(N x) DNA16

Natoms 62 128 260 524 1 052
Nelectrons 260 580 1220 2 500 5 060
Nbasis 1215 2580 5310 10 770 21 690

DL-CPSCF

SD


VXC�PSD� 115 390 813 0.2 958 0.7a 1 602
Eq. (22) 22 148 485 1.0 986 0.4 1 312

FC


VXC�PFC� 24 69 101 0.3 125 1.1a 279
Eq. (22) 3 16 49 1.0 99 0.6 148

PSO Eq. (22) 2 16 90 2.0 362 1.0 748
Σ 165 638 1538 2 531 4 090

MO-CPSCF

SD


VXC�PSD� 104 337 664 0.7 1 059 0.7a 1 752
Eqs. (19) and (20) 4 36 302 3.0 2 477 2.8 17 771

FC


VXC�PFC� 24 70 100 0.5 142 1.0a 287
Eqs. (19) and (20) 1 6 50 3.0 414 3.0 3 355

PSO Eqs. (19) and (20) 0 3 22 3.0 178 3.0 1 494
Σ 132 451 1136 4 269 24 659

aSee text for a detailed discussion.
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FIG. 3. Real-space representation of the Fermi contact-perturbed density
on the numerical DFT grid for DNA8 and DNA16. The points colored in
orange are employed for both calculations; those in purple are used only
for DNA16.

calculations. The matrix multiplications required in MO-
CPSCF (Eqs. (19) and (20)) show the expected O �

N3�
complexity with a low prefactor. The crossover point after
which DL-CPSCF outperforms MO-CPSCF lies at eight
amylose units, beyond which DL-CPSCF is much faster.
The overall speedup is 2× for amylose16, and exceeds 6× for
amylose32.

2. DNA strands

We also performed calculations on adenine-thymine
DNA double strands with up to 16 base pairs (1052
atoms) as a more representative example of a space-
filling biochemical structure that exhibits a more delocalized
electronic structure. The density matrices (ground-state as
well as occupied and virtual pseudo-density matrices) for
these systems will become sparse only for large molecular
sizes. Figure 2 shows exemplary sparsity patterns for the

largest molecular system. Detailed timing data are given
in Table II.

As for amylose chains, computational time for the
FC contribution is the smallest. Scaling of the XC matrix
construction is below linear between four and eight base pairs.
The scaling behavior deteriorates when moving to sixteen
base pairs, which is an artefact of our implementation using
pre-existing DFT algorithms as discussed in more detail in
Sec. III B 1. Figure 3 is a graphical representation of the DNA8
and DNA16 molecules (the translucent atoms in the lower
half of the image exist only in the larger molecule), and the
perturbed density from the Fermi contact operator. The density
is shown on the real-space DFT grid used during numerical
integration. All grid points used during the computation are
shown. The perturbation is nearly identical for the two different
molecules. The perturbed density is localized around the
perturbing nucleus, and does not reach the far end of the
molecule.

The SD contribution once again dominates computational
time, constituting 78% of the total in DNA16. The XC matrix
construction scales as O �

N0.2� between four and eight base
pairs, whereas the linear algebra step exhibits sub-linear
scaling only between eight and sixteen base pairs. The PSO
contribution scales linearly between the two largest systems,
due to its long range. The computational prefactor is small,
however, accounting for just 18% of the total time.

DL-CPSCF has significant performance benefits over
MO-CPSCF. It is competitive in performance for small
molecules, and significantly faster for large systems. The
total speedup is 6× for DNA16. Again, this is mostly due to
the computational savings from using linear-scaling sparse
algebra routines, which become dominant at around 10 000
basis functions.

C. Approximations including exact exchange

To study the scaling behavior of the exact-exchange
contribution K [Px] using LinK,39,40 we employed HF theory
to the same amylose systems as in Section III B 1. Detailed
timings are given in Table III, indicating that considering
exact exchange strongly increases the computational effort as
compared to pure DFT calculations (cf. Sec. III B).

TABLE III. Wall times (in seconds) for the calculation of an individual
ISSC in amylose chains (HF/pcJ-1). The columns headed O (N x) contain the
scaling exponents between the systems to the left and right of that column.
Exponents calculated from unrounded numbers.

Amylose4 O(N x) Amylose8 O(N x) Amylose16

Natoms 87 171 339
Nbasis 1635 3 223 6 399

K
�
PPSO� 3641 0.8 6 313 0.7 10 089

K
�
PSD� 4070 0.2 4 496 −0.0 4 438

K
�
PFC� 542 0.1 579 0.2 650

Eq. (22) (PSO) 43 1.8 148 1.2 336
Eq. (22) (SD) 60 1.1 124 0.2 147
Eq. (22) (FC) 7 1.1 15 0.3 18

8363 11 674 15 678
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The PSO perturbation dominates the computational
effort for the largest systems, being the longest-ranged. The
complexity of the evaluation of K

�
PPSO� using LinK is slightly

below linear with a large prefactor as compared to the other
contributions, while solution of Eq. (22) scales slightly above
linear with a small prefactor. The FC and SD perturbations
behave very favorably, with near constant time complexity
between each of the systems in the evaluation of K [Px], and
near constant complexity in the solution of Eq. (22) between
the two larger molecules. Computation of K

�
PSD� is in fact

slightly faster for amylose16 compared to amylose8 which is
due to the different orientations of the two molecules.

IV. EXAMPLE APPLICATION: CONVERGENCE
OF ISSCS WITH SYSTEM SIZE
IN A WATER ENVIRONMENT

In order to illustrate the usefulness of the new possibilities
for studying large molecular systems, we studied the
convergence of ISSCs with the size of an exemplary model
system. We chose an aminopyrazole peptide from Ref. 15,
embedded in spheres of water of increasing radius. We
calculated all 1H–1H and 1H–13C couplings from the naked
solvate (89 atoms in total, 2134 unique 1H–1H and 1H–13C
couplings, PBE/pcJ-1). Of those, a subset of couplings with
magnitudes above 0.1 Hz was selected as our test set, resulting
in 145 1H–1H and 76 1H–13C couplings. These ISSCs were
calculated with the solvate embedded in increasingly large
shells of solvent water, using the pcJ-1 basis for the solvate
and def2-SV(P) for the solvent. Our reference system contains
the solvate, plus 246 water molecules, for a total of 827 atoms
and 6083 basis functions.

Statistical data given in Table IV show that system sizes of
over 500 atoms are required to converge 1H–13C couplings to
∼1 Hz. 1H–1H couplings require above 350 atoms to converge
below 0.5 Hz. This convergence behavior is similar to that of
nuclear magnetic shieldings.15

Figure 4 shows the size convergence of one 1H–1H and one
1H–13C coupling (arbitrarily selected) as a function of the total
number of atoms in the calculation. While the convergence
behavior of other couplings may vary, it shows the systematic
convergence. It has to be noted that the results for individual
couplings typically do not improve monotonically, whereas
the whole set of coupling constants statistically continuously
improves the overall result upon increasing the solvent radius,
as can be seen from Table IV.

FIG. 4. Convergence of one 1H–1H and one 1H–13C coupling of an aminopy-
razole peptide with increasing solvent radius.

The convergence behavior in other systems may of course
vary, however, the data illustrate the general importance to
systematically study the convergence of observables with
respect to increasing the solvent spheres or the considered QM
spheres in general. Because of its superior scaling properties,
the DL-CPSCF method allows to perform such studies and to
describe large molecular systems.

V. SUMMARY

We have presented a method to calculate indirect nuclear
spin–spin coupling tensors at the DFT level with reduced time
complexity. For pure density functional approximations, the
observed scaling is sub-linear per perturbation as compared
to the cubic scaling of conventional algorithms. When exact
exchange is incorporated, overall observed scaling is also
below linear per perturbation, albeit with a later onset and
higher prefactor. We exploit the locality of the interaction
(r−2, r−3, or exponential decay) without any real-space cutoffs
and do not neglect any of the operators. Our method has
near-constant time complexity (i.e., computational time is
asymptotically independent of system size) in the evaluation
of the Fermi contact and spin–dipole contributions for both
pure and hybrid density functional approximations where
speedups for the largest test systems exceed 6 times. This
includes evaluation of the exchange-correlation and exact-
exchange response potential matrices as well as the solution
of the DL-CPSCF equations. Although the computation of
the paramagnetic spin–orbit contribution scales only slightly
better than linear for our largest test systems, its prefactor

TABLE IV. Root mean square (RMS), mean absolute (MAD), and maximum absolute (max) deviations for ISSCs
(in Hz) of an aminopyrazole peptide with different solvent environments.

No. atoms Naked 98 137 239 350 476 665

1H
RMS 0.49 0.41 0.36 0.23 0.15 0.10 0.06
MAD 0.20 0.18 0.15 0.10 0.06 0.04 0.02
Max 1.66 1.21 1.33 1.20 0.78 0.38 0.36

13C
RMS 2.16 1.94 1.77 1.03 0.59 0.41 0.29
MAD 0.34 0.30 0.27 0.15 0.08 0.06 0.05
Max 8.43 7.97 6.85 3.95 3.27 1.64 1.12
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is very small if pure KS-DFT is employed as compared
to the other steps of the computation. A further reduction
of the scaling behavior of this step is subject to further
research.

In addition, a convergence study of spin–spin coupling
values of a peptide in a water environment revealed that large
system sizes (>500 atoms) are necessary to converge results
to sub-Hertz accuracy.
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42J. M. Pérez-Jordá and W. Yang, Chem. Phys. Lett. 241, 469 (1995).
43R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257,

213 (1996).
44J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
45J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
46F. Jensen, J. Chem. Theory Comput. 2, 1360 (2006).
47F. Jensen, Theor. Chem. Acc. 126, 371 (2009).
48See https://bse.pnl.gov/bse/portal for basis set definition.
49D. Feller, J. Comput. Chem. 17, 1571 (1996).
50K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J.

Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045 (2007).
51C. Y. Cheng, M. S. Ryley, M. J. G. Peach, D. J. Tozer, T. Helgaker, and A. M.

Teale, Mol. Phys. 113, 1937 (2015).
52See http://www.q-chem.com for development version of the Q-Chem

program package.
53See www.cup.lmu.de/pc/ochsenfeld/ for structures.
54A. Takatsuka, S. Ten-no, and W. Hackbusch, J. Chem. Phys. 129, 044112

(2008).
55P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys. Lett. 209, 506

(1993).





Article IV
“A reduced-scaling density matrix-based method for the computation of the vibrational
Hessian matrix at the self-consistent field level”,
J. Kussmann, A. Luenser, M. Beer, and C. Ochsenfeld,
J. Chem. Phys. 142, 094101 (2015).

91





THE JOURNAL OF CHEMICAL PHYSICS 142, 094101 (2015)

A reduced-scaling density matrix-based method for the computation
of the vibrational Hessian matrix at the self-consistent field level

Jörg Kussmann, Arne Luenser, Matthias Beer, and Christian Ochsenfelda)

Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7,
D-81377 München, Germany

(Received 6 August 2014; accepted 3 February 2015; published online 2 March 2015)

An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field
level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type
two-electron integral contractions, we show that the effect of the perturbation on the electronic struc-
ture due to the displacement of nuclei decays at least as r−2 instead of r−1. The perturbation is asymp-
totically local, and the computation of the Hessian matrix can, in principle, be performed with O (N)
complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid
but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling
in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding
systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the
underlying electronic structure. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908131]

I. INTRODUCTION

Together with the evaluation of the forces acting on the
nuclei at a specified molecular geometry, the prediction of
vibrational frequencies in the harmonic approximation is
among the most fundamental properties in quantum chem-
istry.1,2 Not only are the predictions of the vibrational frequen-
cies and related thermochemical properties themselves quite
accurate (especially when using empirical scaling3), but per-
haps even more importantly, the sign of the force constants
at zero-gradient molecular geometries reveals important infor-
mation about the potential energy hypersurface at that point. It
allows for characterization of true energetic minima, transition
states, and higher-order saddle points. Prediction of vibrational
frequencies is a routine procedure nowadays, albeit only for
small to medium-sized molecules.

To obtain the harmonic force constants, the matrix of all
second derivatives of the molecular energy (Hessian matrix)
with respect to displacements of the nuclei must be evaluated.
This requires solving the coupled perturbed self-consistent
field (CPSCF) equations4 in order to find the response
of the electronic structure to the perturbation, i.e., the per-
turbed (response) density matrices. Traditionally, this has
been done completely in the molecular orbital (MO) basis
(MO-CPSCF),4–6 necessitating a transformation of the two-
electron integrals from the atomic orbital (AO) to the molecular
orbital basis. The computational time for this step scales as
O �

N5�, where N is some measure of system size such as the
number of atoms. Alternatively, an integral-direct variant7 can
be used, in which the two-electron integrals are evaluated and
directly contracted with the response densities, while the linear
equations are still solved in the MO basis. This approach scales
as O �

N4� for the case of vibrational frequencies.

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

Reduction of the computational complexity of self-consis-
tent field (SCF) calculations, specifically Hartree–Fock (HF)
and density functional theory (DFT), has spawned many differ-
ent approaches. We are concerned with molecular calculations
using a Gaussian basis only. Computation of the Coulomb
matrix with O (N) or O (N log N) scaling is possible with, for
example, the Continuous Fast Multipole Method (CFMM),8,9

the Quantum Chemical Tree Code (QCTC),10,11 and the Fourier
Transform Coulomb (FTC) method.12–16 For insulating sys-
tems, the exchange matrix can be obtained with O (N) com-
plexity through the NFX,17 ONX,18,19 LinK,20,21 and COSX22

methods. Numerical quadrature of the exchange-correlation
energy functional is described in Refs. 23 and 24. The final
bottleneck is the O �

N3� diagonalization of the Fock ma-
trix, which can be circumvented by density matrix minimiza-
tion25–32 or purification33–36 algorithms.

Likewise, reduced-scaling computation of response prop-
erties has received attention in the form of density matrix-based
CPSCF,37–40 exponential parametrization of the density ma-
trix,41–43 density matrix perturbation theory,44–47 and density
matrix-based Laplace-transformed CPSCF (DL-CPSCF),48,49

which is discussed in Sec. II. Reduced-scaling approaches for
second nuclear derivatives are briefly reviewed in Sec. III B.

In this work, we describe the theory to evaluate the full
nuclear-displacement Hessian matrix at the SCF level with
effective linear scaling behavior. We show that the long-range
Coulomb interaction due to the nuclear displacement decays
more rapidly than is obvious from rudimentary inspection (r−2

instead of r−1). The perturbation of the nuclear displacement
on the electronic structure is spatially local and asymptotically
does not increase in size for larger molecules. Our implemen-
tation at HF level was tested on several molecular systems of
increasing size, showcasing near-linear scaling behavior in the
time-determining steps. Evaluation of the far-field Coulomb
contributions is asymptotically O �

N2� with a very small pref-
actor, but can, in principle, be reduced toO (N). The limitations

0021-9606/2015/142(9)/094101/11/$30.00 142, 094101-1 © 2015 AIP Publishing LLC
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of the method are discussed and an overview of possible future
work is given.

II. THEORY

In the Born–Oppenheimer approximation, electronic and
nuclear motion are uncoupled. Apart from the electronic
Schrödinger equation, this ansatz also results in a nuclear
Schrödinger equation whose Hamiltonian is

Ĥnuc = T̂nuc + Eel({RA}),

where the potential Eel is the electronic energy including the
nuclear-nuclear repulsion. Eel is a function of the complete set
of nuclear coordinates {RA}. For small nuclear displacements,
a harmonic potential is often a good approximation

Vharmonic =
1
2

kr2.

This model potential corresponds to the harmonic oscillator
model for molecular vibrations. To obtain the vibrational
eigenmodes and eigenfrequencies of a molecule in the har-
monic approximation, the 3Natoms × 3Natoms matrix of second
derivatives of the electronic energy with respect to the carte-
sian nuclear coordinates (Hessian matrix for short) must be
calculated. The Hessian matrix is then weighted with nuclear
masses, and translational and rotational degrees of freedom
are projected out. The eigenmodes and eigenfrequencies are
obtained from the resulting matrix by diagonalization.

In a density matrix-based form, the HF or DFT expression
for the electronic energy Eel is

ESCF = Tr

Ph +

1
2

PG[P]

+ VNN,

with the ground-state one-particle density matrix P, the core
Hamiltonian matrix h = T + VeN, the two-electron terms G[P]
= J[P] + αK[P] + (1 − α)VXC[P] (α = 1: HF, 0 < α < 1:
hybrid DFT, α = 0: pure DFT), and the nuclear-nuclear repul-
sion energy VNN.

The first derivative with respect to a perturbation x gives

∂E
∂x
= Ex = Tr


Phx +

1
2

PGx[P] −WSx


+ V x

NN,

with the energy-weighted density matrix W = PFP. The sec-
ond derivative is given by

∂2E
∂ y∂x

= Exy = Tr

Phxy +

1
2

PGxy[P] −WSxy



+Tr [Pyhx + PyGx[P] −WySx] + V xy
NN . (1)

The second matrix trace in this expression contains the first-
order response density with respect to perturbation y , obtained
from CPSCF.

In this work, we adapt the DL-CPSCF algorithm.48 In what
follows, {i, j, . . .} refer to occupied MOs, {a,b, . . .} refer to
virtual MOs, {p,q, . . .} refer to any (occupied or virtual) MO,
and {µ, ν, . . .} refer to AOs. We start from the Roothaan-Hall
equations50,51

FC = SCε

and form the derivative with respect to x

FxC + FCx = SxCε + SCxε + SCεx.

Inserting Cx
µp =


q CµqU x

qp and multiplying with C† from the
left gives

Fx
MO + εU

x = Sx
MOε + Uxε + εx.

Since the matrix εx is block-diagonal, i.e., occupied and virtual
spaces are orthogonal, it suffices to inspect the virtual-occupied
subspace. One obtains

U x
ai =

Sx
aiεi − F x

ai

εa − εi , (2)

which is a short form of the canonical MO-CPSCF equations.
The response densities, whose subspace projections satisfy52

Px
oo = −PSxP, Px

ov = Px
vo
†, Px

vv = 0,

are obtained from the matrix Ux as

(Px
vo)µν =



ai

CµaU x
aiC

†
iν.

However, Eq. (2) cannot be readily transformed to the AO
basis because of the orbital energy denominator. A Laplace
transformation and numerical integration53–55 with τ roots tα
and weights wα,

1
εa − εi =

∞

0

e(εi−εa)t dt ≈
τ

α=1

wαe(εi−εa)tα,

allow us to write Eq. (2) in the AO basis

(Px
vo)µν =

τ

α=1



λσ

Q
(α)
µλ

�
b̃x
λσ − Gλσ[Px]� P(α)

σν, (3a)

b̃x
λσ = (SxPF)λσ − hx

λσ − Gx
λσ [P] , (3b)

with

P(α)
σν =

√
wα



i∈occ

Cσie
tαεiC†iν,

Q
(α)
µλ =

√
wα



a∈virt

Cµae−tαεaC†
aλ
.

As will be shown in Sec. III, it is crucial to move the occupied-
occupied projection of the perturbed density (Px

oo) within the
integrand from G [Px] to b̃x to form the working DL-CPSCF
equations

Px
vo =

τ

α=1

Q
(α) �

bx −G
�
Px

vo + Px
ov
��

P(α), (4a)

bx = SxPF − hx −Gx[P] −G[Px
oo]. (4b)

bx is computed just once for each perturbation, as all compo-
nents are directly accessible. Equation (4a) is then solved
iteratively for each perturbation with the help of Pulay’s direct
inversion of the iterative subspace (DIIS).56 The pseudo-
densities of the occupied

(
P(α)) and virtual

(
Q

(α))
subspace are

computed only once, in a linear-scaling fashion as described
in Refs. 48, 55, and 57

P(α) =
√
wα exp (tαPF)P,

Q
(α)
=
√
wα exp (−tαQF)Q.
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III. SCALING BEHAVIOR

A. General considerations

For linear-scaling behavior, our method requires the sys-
tem to have a local electronic structure, i.e., a non-zero gap
between the highest occupied and lowest virtual orbital ener-
gies (HOMO-LUMO gap). The ground state Fock and density
matrices, F and P, respectively, will then contain a number of
significant elements, which grows as O (N) with system size.

We do not tackle the issue of extracting useful information
from the Hessian matrix in this work (i.e., circumventing the
O �

N3
atoms

�
diagonalization), because the computational pref-

actor of that step is very small. Hessian matrices for systems
with several thousand atoms can be rapidly diagonalized on
workstation computers.

The time-determining steps in the construction of the Hes-
sian matrix are the determination of the electronic response
density Px via CPSCF and the formation of two-electron inte-
grals. Since three response densities (x, y, z directions) are
required for each atom in the system, the computational time
for the determination of each of them must be asymptotically
constant to allow for overall linear scaling. Equation (4) can
be solved in constant time if bx and G

�
Px

vo + Px
ov
�

have an
asymptotically constant number of significant elements (see
Sec. III C). Technical details of the DL-CPSCF regarding the
sparse-matrix implementation are discussed in Sec. IV B.

B. State of the art

The computationally expensive contributions to the sec-
ond derivatives of the SCF energy with respect to nuclear
positions are the derivatives of the Coulomb and exchange inte-
gral contractions, the derivatives of the exchange-correlation
matrix (DFT only), and the solution of the CPSCF equations.

The derivatives required for the Coulomb contribution in
the CFMM formulation were first given by Burant, Strain,
Scuseria, and Frisch.58,59 Like CFMM itself, the gradient also
scales linearly with system size because the integral derivatives
are directly contracted with the ground state density matrices

Ex
J = Tr [PJx[P]] =



µν

Pµν(µν |λσ)xPλσ

=


µνλσ

Pµν([µν]x |λσ)Pλσ +


µνλσ

Pµν(µν |[λσ]x)Pλσ

= 2


µνλσ

Pµν([µν]x |λσ)Pλσ,

where the far-field |λσ)Pλσ is generated only once for all
derivatives.

For second derivatives, however, the explicit matrix Jx[P]
is required for each perturbation (cf. Sec. III C), which to date
scales linearly per perturbation, leading to overall quadratic
scaling in the Coulomb contribution. Similarly, the J[Px] and
Jx[Py] terms scale quadratically in existing implementations.
We show in the following that an overall linear-scaling is
possible in principle.

Linear-scaling methods to compute the first-order ex-
change contributions Kx[P] and K[Px] can be found in Refs. 20,
21, 42, and 60. Second-order derivatives of this term are briefly

discussed in Sec. IV D 2 and demonstrated to show linear
scaling in Sec. V.

Solution of the CPSCF equations for nuclear derivatives
with linear complexity has been proposed several times (cf.
Sec. I) but is demonstrated here for the first time, using sparse
matrix algebra in all steps.

C. Integrals and decay behavior

We distinguish between two types of terms in Eq. (1).
First, quantities that are only calculated once and scale as
O (N). Second, quantities that are calculated 3N times and,
therefore, must scale as O (1) with respect to system size for
overall linear scaling.

Quantities in the first category are the second-order inte-
gral derivatives contracted with the ground-state density. Linear
scaling can, in principle, be achieved by adapting CFMM8,9

and LinK20,21-based integral routines combined with sparse
linear algebra. Details of their implementation are given in
Sec. IV D 2.

The second category warrants a more detailed analysis.
Here, the O (1) scaling of the CPSCF for a single perturbation
is crucial in order to achieve an overall linear-scaling behavior.
Apart from the integral evaluation, DL-CPSCF equation (4)
has to be computed with O (1) complexity. This is possible
if Px, bx, and G [Px] contain only an asymptotically constant
number of significant elements for a single perturbation. We
will show this to be the case in the following.

When using Eq. (3) instead of Eq. (4) (that is, the term
G[Px

oo] is computed as part of G [Px] instead of bx), both bx and
G [Px] contain a linear-scaling number of significant elements.
On first glance, the problematic terms in bx appear to be Vx

eN
and Jx[P], due to their long-range r−1 coupling. Inspecting the
explicit derivative formula for Vx

eN, however, reveals the term
is in fact short-ranged

∂

∂x


χµ

ZA

rA
χν dr =


∂χµ

∂x
ZA

rA
χν dr +


χµ

ZA

rA

∂χν
∂x

dr

−

χµ

ZAx
r3
A

χν dr. (5)

The first two terms in Eq. (5) are only non-zero for basis
functions centered on the displaced nucleus. The last term
represents an electric field integral which decays as r−2 and,
therefore, results in only a constant number of significant ma-
trix elements. A similar term occurs in the context of nuclei-
selected magnetic shielding calculations.49

The term Jx[P] shows a linear-scaling number of signifi-
cant elements due to the r−1 coupling of the locally perturbed
charge-distribution |[λσ]x)Pλσ with the bra distributions (µν |

J x
µν[P] =



λσ

([µν]x |λσ)Pλσ +


λσ

(µν |[λσ]x)Pλσ. (6)

The first term on the right-hand side of Eq. (6) results in a
constant number of matrix elements. The unperturbed far-field
|λσ)Pλσ is the same for all perturbations and can be reused
from the final SCF iteration. The second term, however, leads
to linear growth in the number of significant matrix elements.
Similarly, the number of significant elements in the matrix
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J[Px],
Jµν[Px] =



λσ

(µν |λσ)Px
λσ,

grows linearly for each perturbation. For deeper analysis,
we split J[Px] into separate contributions from the subspace

projections of Px

J[Px] = J[Px
oo] + J[Px

ov] + J[Px
vo],

and inspect the multipole expansion61,62 of the long-range (i.e.,
far-field) component of J[Px

oo],

JFF
µν[Px

oo] =
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(µν |λσ)(Px

oo)λσ

=
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j
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(rP)Tlm, jk(rPQ)qλσjk (rQ)(Px

oo)λσ
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l
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j
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00 qλσ00

rPQ
+

qµν
00


1

j=−1
T ′00,1 jq
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PQ
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+/////-

PλκSx
κθPθσ, (7)

with

qµν
lm
(rP) =


χµ(r)χν(r)Rlm(rP) dr,

Tlm, jk(rPQ) = T ′lm, jk(rPQ)r−(l+ j+1)
PQ

= (−1) j I∗l+ j,m+k(rPQ),
where Rlm and Il+ j,m+k designate regular and irregular solid harmonics, respectively. We use the notation λσ\µν to emphasize
that the charge distribution χλχσ(Px

oo)λσ must be fully disjoint from χµχν, i.e., the idempotency condition PSP = P of the density
matrix must hold for the set of all χλχσ. Intuitively, this will be the case for two distinct molecular systems at large separations,
where the density matrix is individually idempotent for each system.

Analogously, the multipole expansion for the far-field component of

λσ(µν |[λσ]x)Pλσ is



λσ\µν
(µν |[λσ]x)Pλσ =



λσ\µν

*.....,
qµν

00

�
qλσ00

�x
rPQ
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00
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+ · · ·
+/////-

Pλσ, (8)

where
(
qλσ
jk

) x
= ∂qλσ

jk
/∂x. Since qλσ00 = Sλσ and

�
qλσ00

�x
= Sx

λσ
, the long-range, slowly decaying r−1 components in the sum of

Eqs. (7) and (8) cancel



λσ\µν
κθ\µν

*,
qµν

00

�
qλσ00

�x
rPQ

Pλσ −
qµν

00 qλσ00

rPQ
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+-
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SµνSx
λσ

Pλσ
rPQ

−


λσ\µν
κθ\µν

SµνSλσPλκSx
κθPθσ

rPQ

=


λσ\µν

SµνSx
λσ

Pλσ
rPQ

−


κθ\µν

SµνSx
κθPθκ

rPQ
= 0, (9)

where we used the idempotency condition PSP = P. Building bx as given in Eq. (4b) by explicitly moving J[Px
oo] from G [Px]

to bx gives a local matrix where all components decay at least as r−2. We use the conventional O (N) CFMM for this term in our
implementation (Sec. IV) because of the small computational prefactor of this step. One approach to consider the cancellation of
far-field terms during the integral evaluation would be the introduction of a second well-separated criterion based on the extent
of the density-coupled distribution SµνPνλSλσ, i.e., ensuring that the distribution µν is not coupled to λσ via the density matrix
P, so that Eq. (9) remains valid. However, the implementational effort is hardly justified by the benefit due to the small prefactor
of the long-range contribution to the Coulomb matrices.
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Finally, the far-field component of J[Px
ov] must be shown to decay faster than r−1. Again, we invoke the multipole expansion
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where we used the cyclic permutation property of the trace, and
(1 − SP)SP = 0. The long-range r−1 component thus vanishes
in all Coulomb-type matrices, leading to an r−2 coupling. The
two matrices bx and G

�
Px

vo + Px
ov
�

in Eq. (4) as well as the per-
turbed density matrix Px itself are local and contain an asymp-
totically constant number of significant elements for large
system sizes. In principle, computing the electronic response
due to a displacement of a single nucleus is, therefore, possible
with O (1) time complexity.

IV. IMPLEMENTATIONAL DETAILS

A. Sparse storage format

All matrices in our implementation are stored in a variant
of the blocked compressed sparse row format (BCSR).26,40,63,64

In this storage scheme, the matrix is divided into blocks of sub-
matrices of dimension ∼100 × 100. Only blocks whose matrix
norm (typically the Frobenius norm) is above a numerical
threshold are allocated in memory. In contrast to the original
BCSR format, the non-zero blocks are not necessarily located
in a single contiguous chunk of memory but are individually
allocated. This provides increased flexibility during the imple-
mentation of matrix operations, because allocating and free-
ing individual blocks during integral contraction procedures
is possible on-the-fly and independently of all other blocks.
The memory overhead is negligible. At the same time, matrix-
matrix multiplications, matrix traces, or similar matrix opera-
tions are trivial to implement and cause virtually zero overhead
compared to the corresponding dense matrix operations. The
matrix operations on the individual blocks are delegated to
highly tuned linear algebra (BLAS) libraries for maximum
performance.

B. DL-CPSCF

For large molecular systems, the DL-CPSCF equations
must be solved in several consecutive batches. In order to avoid
unnecessary recalculation of a large number of two-electron
integrals, we group the atoms by relative proximity and create

batches of spatially close atoms. The response densities Px in a
batch thus share most of the significant two-electron integrals,
reducing overhead. To obtain a suitable atom ordering, we
apply the reverse Cuthill–McKee algorithm65 to the connec-
tivity matrix.40,66 This or a similar reordering is also required
to obtain compact matrix representations for all quantities in
DL-CPSCF equation (4). The matrix multiplications can be
performed in a way that is both fast and has the necessary
O (1) complexity only if the significant elements of each matrix
are grouped together. We explicitly reproject matrices onto
the virtual-occupied subspace (A → (1 − SP)APS) to increase
sparsity and obtain more local matrices. In our implementation,
this is performed for bx and G

�
Px

vo + Px
ov
�

(cf. Eq. (4) and
Fig. 2).

When building the pseudo-density matrices P(α) and Q
(α)

via matrix exponentials (see, e.g., Ref. 67), special care must
be taken with respect to sparsity cutoffs, as too loose thresholds
will lead to numerical noise and consequently to low sparsity.
A recent discussion about matrix sparsity in electronic struc-
ture calculations can be found in Ref. 68. We also remark that
the numerical quadrature fitting for the Laplace transformation
we presently employ69 requires knowledge of the system’s
HOMO-LUMO gap, which can, in principle, be obtained even
within diagonalization-free SCF procedures through, e.g., the
method put forward by Rubensson and Zahedi.70

C. Cholesky decomposition of the pseudo-densities

Fill-in effects (creeping loss of matrix sparsity), partic-
ularly in the perturbed density matrices Px, adversely affect
matrix multiplications in the main DL-CPSCF equation (4),
as well as integral formation and contraction. Sparsity loss
can be alleviated by performing the multiplications in Eq. (4a)
stepwise. To this end, we perform a Cholesky decomposition
with complete pivoting on P(α) and Q

(α)
(P(α) = L(α)L(α)T) and

subsequently reorder the columns of the Cholesky
factors

P(α) = L(α)L(α)T = L′(α)L′(α)T,



094101-6 Kussmann et al. J. Chem. Phys. 142, 094101 (2015)

with L′(α) = L(α)M. M is a (unitary) permutation matrix which
reorders the columns of L(α) in ascending order of a weighted
mean index defined by

w j =


i |L(α)

i j |i


i |L(α)
i j |

.

Q
(α)

is decomposed analogously as Q
(α)
= L

′(α)
L
′(α)T

.
The resulting transformation matrices L′(α) and L

′(α)
have

dimensions Nbasis × Nocc and Nbasis × Nvirt, respectively. They
are sparse and define local pseudo-molecular orbitals, which
are not orthogonal.71 The orthogonality of the occupied and
virtual subspaces, however, is preserved. The intermediate
quantities L

′(α)T �
bx −G

�
Px

vo + Px
ov
��

L′(α) are non-zero only
in their virtual-occupied blocks, which in turn are also sparse.

Performing the numerical integration in this stepwise
manner doubles the number of matrix multiplications per
iteration from 2τ to 4τ. However, because of their pronounced
sparsity, multiplication with the Cholesky factors is so rapid
that the numerical integration is typically faster nevertheless.
Tests showed a 10%–15% reduction in computational time
for the evaluation of Eq. (4a). We attribute the improved
sparsity in Px to the lower absolute values in L

′(α)
compared

to Q
(α)

. We have observed that sparse matrix multiplications
accumulate less numerical noise when the multiplicands have
absolute values of comparable magnitude (cf. Ref. 40). With
the correct sequence of multiplications, the Cholesky decom-
position reduces the complexity of Eq. (4a) from O �

N3
basis

�
to O �

N2
basisNocc

�
for dense matrices. For local matrices, the

scaling is unchanged at O (1).

D. Integral routines

1. First-order derivatives

The first-order derivatives of various terms occurring in the
Fock- or Kohn–Sham matrix must be evaluated such that only
a constant amount of memory is required. The integrals and
integral derivatives are scattered directly into sparse matrices.

The evaluation of the one-electron terms Sx = ∂S
∂x

, Tx

= ∂T
∂x

, and Vx
eN =

∂VeN
∂x

is straightforward. We stress that the
evaluation of the electron-nuclear attraction term formally
scales quadratically with system size due to the r−1-coupling
in the electron-nuclear attraction term. Although this could
be reduced to linear by applying the fast multipole method,
we currently use the conventional routine since the computa-
tional effort is negligible. Considering the sparse storage, the
significant shell-pairs are directly identified by the displaced
nuclei, so that direct scattering of theO (1) significant elements
into BCSR-format bears virtually no overhead compared to
conventional methods.

Among the two-electron terms, the Coulomb term gener-
ally requires the most implementational effort when using the
CFMM approach. Distinguishing between integral and density
derivatives, the following two first-order Coulomb-derivatives
must be evaluated during DL-CPSCF:

Jµν[X] =


λσ

(µν |λσ)Xλσ, X = (Px
vo + Px

ov) or Px
oo, (10)

J x
µν[P] =



λσ

([µν]x |λσ)Pλσ +


λσ

(µν |[λσ]x)Pλσ. (11)

The first matrix (Eq. (10)) is computed using standard CFMM
routines where the far-field is built from the perturbed densities
Px

oo or Px
vo + Px

ov. No special routines have been developed to
reduce the loops over the constant number of significant boxes
toO (1) due to the small prefactor of the far-field part compared
to the near-field part (see Sec. V A). However, the strategy
suggested in Ref. 59 could be employed in order to reduce the
computational effort. The near-field contribution is computed
in O (1) time by preselecting only those neighboring boxes
which contain basis functions with significant response density
elements.

For the Coulomb matrix Jx[P] (Eq. (11)), the first term
is obtained easily by a modification of the CFMM gradient
routine.72 In our current implementation, the evaluation of the
far-field contribution scales linearly with system size. Again,
due to the small prefactor, this step is only a small part of
the overall computational effort, but one could easily avoid
this step by storing the final far-field from the preceding SCF
calculation. However, for the evaluation of the second term
of Jx[P], a new CFMM routine for the generation of the per-
turbed far-field due to the displaced basis functions was im-
plemented. Note that the conversion to and the handling of
the Taylor expansion (steps 2–4 in Ref. 8) are not affected
by nuclear displacement, only the multipole as it is generated
and shifted to the center of the lowest-level box. Thus, the
derivative of |λσ)Pλσ is formed as described for the bra-term
in Ref. 72. The multipoles are then converted to Taylor expan-
sions as in the original algorithm. Note that we have to perform
steps 2-4 of the CFMM algorithm for each perturbation of the
batch.

The exchange terms occurring within the CPSCF,

Kµν[X] =


λσ

(µλ|νσ)Xλσ, X = (Px
vo + Px

ov) or Px
oo,

K x
µν[P] =



λσ

([µλ]x |νσ)Pλσ +


λσ

(µλ|[νσ]x)Pλσ,

are evaluated with the LinK20,21 algorithm in O (1) time, made
possible by the P/Px-coupling of the bra and ket distributions.

2. Second-order derivatives

The second-order derivatives in Eq. (1) are never formed
explicitly but directly contracted with P and Px to the corre-
sponding contribution to the Hessian matrix elements. We use
standard routines for the second-order derivatives of the one-
electron terms Txy, Vxy

eN , and Sxy. The mixed integral/density
derivatives (Tr [PyKx[P]], for example) are obtained by a
modification of the standard gradient routines in order to
support density matrices in sparse format.

We have implemented linear-scaling integral routines to
evaluate Jxy[P] and Kxy[P], respectively. We fell back on
existing routines to evaluate Vxy

xc [P].73 For the exchange contri-
bution Kxy[P], an adaptation of the LinK gradient routine21 is
straightforward. However, for the Coulomb term Jxy[P],
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Tr [PJxy[P]] = 2


µν
λσ

Pµν([µν]xy |λσ)Pλσ

+ Pµν([µν]x |[λσ]y)Pλσ, (12)

two new CFMM routines were implemented along the lines
of Ref. 59. For the first term in Eq. (12), the unperturbed
far-field must contract with the second-order derivatives of
the bra charge-distributions, where the derivative equations
are obtained by a straightforward derivation of the gradient
expressions in Ref. 72. The second term involves the interac-
tion of the perturbed far-field and the perturbed bra charge-
distributions, where the routines can be composed from the
gradient algorithm72 and the far-field algorithm as it is used
for the evaluation of Jx[P] in Eq. (11). As with the first-order
Coulomb derivatives, the far-field contribution scales as O (N)
per perturbation in our present implementation.

V. EXEMPLARY CALCULATIONS AND DISCUSSION

We have implemented our method in a development vers-
ion of Q-Chem74 to illustrate performance and scaling. Exem-
plary calculations showcasing the effective O (N) construction
(in the rate-determining steps) of the complete nuclear Hes-
sian matrix were performed on a series of linear alkanes and
amylose chains of increasing length. As a more demanding
model system, we used stacked DNA base pairs and calculated
the response density matrices due to the displacement of a
single nucleus. In the following, scaling exponents reported
for alkanes and amylose (Secs. V A and V B) are for the
complete Hessian matrix, whereas scaling exponents for DNA
fragments (Sec. V C) are for a single nucleus due to the high
computational demand.

All calculations were performed at the Hartree–Fock level
of theory, using the 6-31G(d) basis set and an integral cut-
off threshold of 10−8 a.u. The sparsity criterion was set to
10−7 (Frobenius norm, modified BCSR format with an average
100 × 100 blocksize). Seven Laplace points using the mini-
max fitting69 were employed for the numerical integration. For
C10H22, C20H42, and C40H82, this provides a combined root
mean square deviation of ∼0.2 cm−1 in comparison to MO-
based CPSCF without CFMM/LinK. All calculations were
performed on a dual Intel Xeon E5-2620 machine using a sin-
gle thread of execution. No molecular symmetry was exploited.
All times given are actual wall times. Our method is not disk-
bound, so processor and wall times are very close. Percentages

and scaling exponents are calculated from unrounded numbers.
Coordinate files for all systems can be found online.75

A. n-alkanes

The execution times for the creation of the complete
molecular vibrational Hessian matrix for linear alkanes of
increasing length are given in Table I. The onset of linear
scaling occurs as early as 40 carbon atoms for this class of
highly sparse systems. Near-linear scaling is observed when
moving from C40H82 to C80H162 and beyond. Note that even
for the largest system, the projection and diagonalization of
the Hessian matrix take just 21 s.

The wall times for C80H162 and C160H322 broken down into
detailed contributions are given in Table II. In both cases, the
J[Px] and K[Px] contributions dominate, consuming around
70% of the total time. The three most computationally expen-
sive terms (K[Px], the near-field part of J[Px], and Jx[Py]
which contribute a combined 70% of the overall time) are all
within the linear-scaling regime. The most time-consuming
term with quadratic scaling behavior is the far-field part of
J[Px] (which must be evaluated every CPSCF iteration for
each perturbation) requires only about 4% of the total time
for C160H322. This is in contrast to Jx[Py], which must be
evaluated only once per perturbation, and consequently takes
less total time. We note that all exchange-type contributions
(K[Px], Kx[P], Kx[Py], and Kxy[P]), as well as all near-field
Coulomb-type contributions show linear or near-linear scaling,
as does the DL-CPSCF iteration step (Eq. (4a)). Figure 1 shows
the wall times and scaling exponents graphically, including
results from conventional integral-direct MO-CPSCF without
LinK or CFMM. In the case of MO-CPSCF, the timings for
C80H162 and C160H322 were extrapolated using a conservative
O �

N3� scaling. The crossover of our method with the conven-
tional algorithm is at around 150 atoms.

For visual reference, sparsity patterns of several matrices
occurring during the calculation of C80H162 are shown in
Fig. 2. The response density Px is local and changes very
little compared to the corresponding matrix of C40H82. This
confirms our observations concerning the range of the pertur-
bative effect on the electronic structure. The interaction decays
below the matrix sparsity threshold before reaching the far
end of the molecule, i.e., is constant with respect to further
system size increases. Also shown in Fig. 2 is the effect of
explicit reprojection of G

�
Px

vo + Px
ov
�
, which increases matrix

sparsity.

TABLE I. Wall times and scaling behavior (relative to previous entry) for the calculation of the complete nuclear
Hessian matrix for linear alkanes (CnH2n+2, HF/6-31G(d)). The last two rows (labeled “conventional”) contain
data from integral-direct MO-CPSCF without LinK/CFMM, where the data in parentheses were extrapolated.

Molecule C10H22 C20H42 C40H82 C80H162 C160H322

Natoms 32 62 122 242 482
Nbasis 194 384 764 1524 3044
Wall time (h) 0.53 2.61 8.78 23.1 60.2
O (N x) . . . 2.31 1.75 1.40 1.38
Wall time (h) (conventional) 0.11 0.84 7.20 (57.6) 898.5/(460.8)
O (N x) (conventional) . . . 2.88 3.09 (3) 3.49a/(3)

aScaling exponent with respect to C40H82.
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TABLE II. Detailed wall times in minutes (percent of total time in parenthe-
ses) and scaling behavior for the complete nuclear Hessian matrix of C80H162
and C160H322.

C80H162 C160H322 O (N x)

K[Px] 668 (48%) 1525 (42%) 1.19
J[Px] (near-field) 341 (25%) 815 (23%) 1.26
Jx[Py] (near-field) 90 (7%) 197 (5%) 1.13
J[Px] (far-field) 44 (3%) 158 (4%) 1.85
Equation (4a) 66 (5%) 157 (4%) 1.26
Jx[Py] (far-field) 22 (2%) 86 (2%) 1.95
Kx[P] 24 (4%) 57 (2%) 1.27
Kx[Py] 18 (1%) 48 (1%) 1.39
Jx[P] (near-field) 7.8 (0.5%) 19 (0.5%) 1.28
Jx y[P] (far-field) 4.2 (0.3%) 16 (0.5%) 1.97
Jx y[P] (near-field) 6.2 (0.4%) 13 (0.3%) 1.03
Kx y[P] 5.3 (0.4%) 11 (0.3%) 1.03
Jx[P] (far-field) 2.3 (0.1%) 9.1 (0.3%) 1.97

FIG. 1. Wall times for the calculation of the complete nuclear Hessian matrix
for linear alkanes and amylose chains (HF/6-31G(d)). The numbers in paren-
theses are the observed scaling exponents O (N x) relative to the previous
system. The asterisk indicates the timing data were extrapolated from the
scaling exponent in parentheses. Refer to Tables I and III for numerical data.

B. Amylose chains

We computed the vibrational Hessian matrix for amylose
chains of 4, 8, and 16 glucose units. Timing data and scaling
exponents are given in Table III. The largest of these mole-
cules has 339 atoms and 2979 basis functions. A scaling
behavior which is considerably better than quadratic (N1.7

basis) is
observed when comparing the eight- and sixteen-unit amylose
chains. The relative computational costs of the individual terms
are listed in Table IV. They are essentially very similar to
those of the alkanes. The exchange-type contractions as well

TABLE III. Wall times and scaling behavior (relative to previous entry) for
the calculation of the complete nuclear Hessian matrix of amylose chains
(HF/6-31G(d)).

Molecule amylose4 amylose8 amylose16

Natoms 87 171 339
Nbasis 759 1499 2979
Wall time (h) 35.7 146.0 471.4
O (N x) . . . 2.07 1.71

as the near-field contributions to the Coulomb-type contrac-
tions exhibit linear or near-linear scaling, while the far-field
Coulomb-type contributions show, as discussed above, qua-
dratic scaling with small prefactors. The DL-CPSCF iteration
step does not show linear-scaling between 8 and 16 glucose
units, because the matrices involved are not yet sufficiently
sparse for these systems sizes. This is not a serious problem
since this step constitutes only around 5% of the total compu-
tational time for the largest system. The scaling behavior of
matrix multiplications improves for larger systems with more
sparse matrices (cf. Sec. V A). Figure 1 shows the wall times
and scaling exponents graphically.

C. DNA base pairs

We calculated the perturbed density matrices for all three
cartesian directions of a single atom in stacked DNA base pairs
of increasing size. The chosen perturbed nuclei are located on
the periphery of each DNA molecule. Computation of these
large, realistic, and very representative systems are challenging
because of their demanding electronic structure. Full linear-
scaling is only achieved for very large systems even in the
underlying SCF calculation. The timing data are given in Ta-
ble V. We observe linear scaling between increasing system
sizes, leading to overall quadratic scaling for the complete Hes-
sian matrix. Note that for the given fragment sizes, the number
of significant elements in the first-order matrices still grows
linearly with system size, i.e., our method provides quadratic
scaling effort for the construction of the nuclear Hessian. This
already substantially improves the conventionalO �

N4� scaling
for the integral-direct CPSCF7 solved in the MO basis.

Detailed contributions are given in Table VI. The dominat-
ing contribution, the contraction of exchange integrals with the
response density matrices (K[Px]), shows sub-linear scaling
between eight and sixteen DNA base pairs. The correspond-
ing Coulomb-type contraction J[Px] scales linearly in the
near-field contribution and somewhat worse than linear in

FIG. 2. Matrix sparsity patterns from
C80H162 (HF/6-31G(d), modified BCSR
format, sparsity threshold 10−7). White
areas are numerically insignificant and
are not allocated in memory. Darker
shades mean higher absolute matrix
elements. (a) Response density Px. (b)
Unprojected matrix of two-electron
integral contractions G

�
Px

vo+Px
ov
�
.

(c) Subspace-projected matrix (1
−SP)G�

Px
vo+Px

ov
�(PS). See text for a

discussion of the long-range behavior.
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TABLE IV. Detailed wall times in minutes (percent of total time in parentheses) and scaling behavior for the
complete nuclear Hessian matrix of amylose chains (HF/6-31G(d)).

amylose8 amylose16 O (N x)

K[Px] 3637.3 (42%) 10 814.9 (38%) 1.59
J[Px] (near-field) 3365.8 (38%) 10 759.3 (38%) 1.69
Jx[Py] (near-field) 743.5 (8.5%) 2313.1 (8.2%) 1.65
Equation (4a) 323.3 (3.7%) 1547.8 (5.5%) 2.28
J[Px] (far-field) 176.3 (2.0%) 865.7 (3.1%) 2.32
Kx[P] 69.1 (0.8%) 161.3 (0.6%) 1.24
Jx[Py] (far-field) 32.6 (0.4%) 149.8 (0.5%) 2.22
Kx[Py] 58.4 (0.7%) 145.3 (0.5%) 1.33
Jx[P] (near-field) 39.6 (0.5%) 86.7 (0.3%) 1.14
Jx y[P] (near-field) 28.2 (0.4%) 56.5 (0.2%) 1.01
Kx y[P] 13.9 (0.2%) 28.8 (0.1%) 1.06
Jx y[P] (far-field) 3.9 (<0.1 %) 14.5 (0.1%) 1.92
Jx[P] (far-field) 3.1 (<0.1 %) 12.2 (<0.1 %) 2.00

TABLE V. Wall times and scaling behavior (relative to previous entry)
for the calculation of the perturbed density matrices Px (three cartesian
directions) for a single atom in stacked adenine–thymine DNA base pairs
(HF/6-31G(d)).

Molecule DNA4 DNA8 DNA16

Natoms 260 524 1052
Nbasis 2598 5290 10 674
Wall time (h) 2.09 4.46 9.16
O (N x) . . . 1.07 1.02

the far-field contribution. This is consistent with the matrix
sparsity of Px: for DNA8, Px has around 90% significant
elements (as measured by the number of significant blocks),
while Px for DNA16 has around 46%. This corresponds to
an approximately linear growth in the number of significant
elements in the matrix from DNA8 to DNA16. In other words,
the perturbation range has not decayed below the sparsity
threshold for these systems, and the best possible scaling would
be linear per perturbation.

Importantly, these calculations illustrate the importance of
utilizing sparse linear algebra and linear-scaling CPSCF algo-
rithms such as DL-CPSCF for large-scale molecular property
calculations. The largest of the calculations uses more than
10 000 basis functions. Consequently, matrix multiplications
take considerable portions of the total wall time, reaching over
30% just for the DL-CPSCF iteration step (Eq. (4a)). Dense

matrix multiplications used in conventional CPSCF algorithms
would dominate the computational expense very quickly for
larger systems due to their O �

N3� complexity. In contrast,
sparse linear algebra shows decreasing complexity for larger
systems, i.e., more sparse matrices, as shown for linear alkanes
in Table II.

VI. CONCLUSION AND OUTLOOK

We have presented an AO-based CPSCF scheme for calcu-
lating the nuclear Hessian for molecular systems which opens
the way to linear scaling in all time-determining steps. The key
step making this possible is circumventing the long-range (r−1)
coupling through cancellation of far-field interactions between
two perturbed Coulomb-type contractions of the two-electron
integrals. Multipole expansions of the corresponding terms
reveal a r−2-decay, which is much more short ranged, so that
all occurring first-order matrices in the DL-CPSCF equations
contain an asymptotically constant number of significant ele-
ments. No approximations are introduced in the derivation.

We implemented the method, reducing the complexity
of the rate-determining steps in the calculation of the com-
plete nuclear displacement Hessian matrix to linear. Using DL-
CPSCF theory combined with the CFMM and LinK integral
evaluation schemes, obtaining the response of the electronic
structure to a single nuclear displacement becomes possible
with sub-linear complexity.

TABLE VI. Detailed wall times in minutes (percent of total time in parentheses) and scaling behavior for
the calculation of the perturbed density matrices Px (three cartesian directions) for a single atom in stacked
adenine–thymine DNA base pairs (HF/6-31G(d)).

DNA8 DNA16 O (N x)

K[Px] 124.2 (45.8%) 194.4 (34.8%) 0.64
Equation (4a) 61.3 (22.6%) 169.8 (30.4%) 1.45
J[Px] (near-field) 66.8 (24.6%) 137.4 (24.6%) 1.03
J[Px] (far-field) 5.5 (2.0%) 16.1 (2.9%) 1.54
Kx[P] 0.9 (0.3%) 2.6 (0.5%) 1.45
Jx[P] (near-field) 0.5 (0.2%) 1.2 (0.2%) 1.18
Jx[P] (far-field) 0.3 (0.1%) 0.9 (<0.1 %) 1.45
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Like all density matrix-based algorithms, our method
requires a local electronic structure, i.e., a non-zero band
gap (HOMO-LUMO gap) to achieve linear scaling. Further-
more, exploiting the long-range cancellation in the Coulombic
contribution using the CFMM is difficult. In our implementa-
tion, evaluation of the far-field contributions to Coulomb-type
matrices has quadratic scaling with a very small prefactor. For
our realistic and difficult test system (stacked DNA base pairs
with over 10 000 basis functions), evaluation of the far-field
contribution takes less than 3% of the total CPSCF time. This
step is expected to dominate the computational cost only for
extremely large systems which are out of reach for the time
being. The r−2 decay laid out in Sec. III C implies, however,
that these contributions can, in principle, also be calculated
with O (N) scaling.

Finally, the eigendecomposition of the nuclear displace-
ment Hessian matrix, which reveals the actual vibrational
frequencies and scales as O �

N3
atoms

�
with a very small pref-

actor, has not been studied in this work.
While in the present paper, we have focused on HF, it is

expected that an O (1) (overall O (N)) DFT implementation
can be achieved along similar lines due to the local nature of
current exchange-correlation functionals.

We note the evaluation of the nuclear Hessian matrix is
an easily parallelizable problem. Evaluation of several batches
of nuclei in parallel with shared- or distributed-memory ap-
proaches would yield large speedups on many-processor ma-
chines. Using the proposed method, fully analytical vibrational
frequency calculations of large molecular systems are now
accessible.
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