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1. Introduction 
 

1.1. Colorectal cancer 
 
 
Cancers figure beside diseases of the circulatory system as the leading cause of death 

worldwide. With about 14.1 million new cancer cases and 8.2 million deaths worldwide in 

2012, cancers represent a massive societal burden affecting both developed and developing 

countries. While the genetic component and, in some tumor types, inherited genetic 

susceptibility play a major role in tumor initiation, environmental risk factors like tobacco  

use, alcoholism, obesity and some chronic infections have a great contribution to the high 

incidence of cancer (Torre et al., 2015). 

Cancer is the result of a multistep process transforming normal tissue cells into malignant 

tumor cells. Most solid human tumors require two to eight sequential genetic alterations to 

develop over a timeframe of 20 to 30 years (Vogelstein et al., 2013). During malignant 

transformation, tumor cells acquire several specific capabilities, which have been defined as 

the hallmarks of cancer. These include malignant traits like proliferation, replicative 

immortality, angiogenesis, invasion, metastasis, reprogramming energy metabolism and the 

eschewal of growth suppressors, cell death and immune surveillance (Hanahan & Weinberg, 

2011). 

Among cancers, colorectal cancer (CRC) is a major cause of cancer morbidity and mortality, 

ranking third in cancer incidence among men and women (Jemal et al., 2009). CRC is 

associated with good survival rates of about 90% if the cancer is diagnosed early, but the 

chances of survival decrease to 12% if distant metastases are present. Poor survival rates are 

associated with the deregulation of crucial signaling pathways, such as WNT, NOTCH and 

Hedgehog, the presence of distant metastases and the acquired resistance to targeted therapies. 

(Cheruku et al., 2015; Van Emburgh, Sartore-Bianchi, Di Nicolantonio, Siena, & Bardelli, 

2014). Diagnosis of CRC is traditionally based on histologic characteristics, tumor stage and 

increasingly assessment of individual mutations (Linnekamp, Wang, Medema, & Vermeulen, 

2015). Furthermore, over the past decade whole exome sequencing revealed the genomic 

landscapes of CRC and provided further insights into the pathways involved in tumorigenesis 

(The Cancer Genome Atlas Network, 2012). 



8  

Colorectal cancers derived from normal colonic mucosa by accumulation of mutations that 

transform colonic epithelial cells into malignant tumor cells. Most CRCs are initiated by 

mutations in APC or ȕ-catenin that lead to over activation of the WNT signaling pathway in 

these tumors (The Cancer Genome Atlas Network, 2012). This first mutation confers a 

selective growth advantage to affected intestinal epithelial cells over surrounding cells, and is 

therefore called a “driver” mutation (Vogelstein et al., 2013). Aside from mutations in genes 

associated with the WNT pathway, activating mutations in codons 12 or 13 of KRAS are 

present in about 40 % of these tumors, causing an over activation of MAPK signaling. These 

occur early within the malignant transformation process and contribute to the clonal  

expansion of adenomas (Vaughn et al, 2011) (Figure 1). 

 
 
 

 

Figure 1. Multistage transformation process from normal colon epithelium to carcinoma. Upper panel: 

H&E staining of normal colon epithelium (left), adenoma (middle) and carcinoma (right). Lower panel: 

Deregulation of crucial signaling pathways accompanying the adenoma–carcinoma sequence. 

 
 
Further common genetic alterations in colorectal cancer lead to deregulation of PI3K, TGF-ȕ 

or P53 signaling pathways. The frequency of genetic mutations in CRC is variable and about 

16% of CRC have very high mutation frequencies due to an impaired DNA mismatch repair 

mechanism (The Cancer Genome Atlas Network, 2012). 

Mutations in driver genes and the resulting deregulation of key signaling pathways cause a 

selective   growth   advantage   by influencing   on   core   cellular   processes,   like   cell fate 
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determination, cell survival and genome maintenance (Vogelstein et al., 2013). A better 

understanding of these pathways and their underlying mechanisms has broad implications for 

cancer therapy. Since the discovery of activating mutations in driver genes, a series of 

potential therapeutic targets, like EGFR or BRAF, have been identified. The limited success  

of therapies, that selectively target signaling pathways in CRC, has been related to acquired 

drug resistance based on genetic intratumoral heterogeneity (Misale et al., 2012; Snuderl et  

al., 2011). 

 
 

1.2. The tumor microenvironment 
 
 
The tumor microenvironment describes the complex mixture of non-transformed cell types 

present in the tumor and the proteins secreted by these cells. Angiogenic vascular cells, 

fibroblasts, cancer associated fibroblasts, infiltrating immune cells, the extracellular matrix 

and secreted factors constitute the topography of the tumor surroundings. The relationship 

between cancer cells and the associated stroma can influence tumor initiation and progression, 

metastatic colonization, but also therapeutic response and resistance to therapy. Immune cells 

can have both pro- and anti-tumor roles, dependent on their activation status and their 

localization (Junttila & de Sauvage, 2013). The perivascular niche within tumors has the 

potential to harbor cancer stem cells (Calabrese et al., 2007) and soluble factors secreted by 

endothelial cells can promote the cancer stem cell phenotype (Krishnamurthy et al., 2011; Lu 

et al., 2013). 

The tumor microenvironment is considered to have a great contribution to the tumor  

formation in the colon, as many colorectal cancers are associated with inflammation (Quante, 

Varga, Wang, & Greten, 2013). TNF-α and IL-6 are two of the main drivers of cancer 

inflammation, that activate proliferation and survival pathways in epithelial cells. Cancer 

associated fibroblasts at the invasive tumor edge release pro-invasive factors like TGF-ȕ, 

EGF, HGF and PDGF supporting signaling crosstalk with tumor cells and the dissemination  

of cancer cells in the course of metastasis. In this context, elevated TGF-ȕ activity in  

advanced stages of CRC is responsible for promoting disease progression and is linked to  

poor prognosis. Finally, the complex and variable microenvironments can contribute to the 

inter- and intratumoral heterogeneity and play a critical role in the clinical outcome (Junttila  

& de Sauvage, 2013; Quail & Joyce, 2013; Tauriello & Batlle, 2016). 
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1.3. Intratumoral heterogeneity 
 
 
Intratumoral heterogeneity is defined as the coexistence of tumor cell subpopulations with 

distinct biological or phenotypic characteristics within the same tumor. This heterogeneity 

may be associated with distinct genetic profiles but also occurs within the same core genetic 

background of a tumor. Most human tumors exhibit substantial heterogeneity with regard to 

cellular morphology, gene expression, metabolism, as well as the proliferative, angiogenic  

and metastatic potential (Marusyk & Polyak, 2013; Snuderl et al., 2011) . 

Heterogeneity within tumors can be observed at different levels: genetic, epigenetic and 

functional (Welch, 2016). Genomic instability can lead to clonal differences if it is an early 

event in tumor evolution, or to subclonal expansion, reflecting later events. Intrinsic 

differences can be also caused by epigenetic changes (Baylin & Jones, 2011). Selective 

pressure, like stress, nutrition or therapies, can modulate the tumor evolution in a time 

dependent manner. Positional heterogeneity is influenced by the exposure of tumor cells to 

external stimuli like growth factors, hypoxia or signals from other tumor cells (McGranahan  

& Swanton, 2015; Welch, 2016). Genetically identical cancer cells can also display 

heterogeneous phenotypes. The differentiation of cells with extensive self-renewal potential, 

also known as cancer stem cells, into fully differentiated cancer cells, which lost the capacity 

to fuel tumor growth, can account for a tumor heterogeneity, that can’t be explained by clonal 

evolution or environmental differences (Kreso & Dick, 2014). 

Tumor heterogeneity, on both genetic and functional level, can have profound implications on 

therapy efficiency. The presence of KRAS or EGFR mutations in small subpopulations within 

a cancer is associated with higher relapse rates after anti-EGFR therapy. The selective 

therapeutic the pressure allows the expansion of these cells and to the repopulation of the 

tumor (Diaz et al., 2012; Misale et al., 2014). Another observed mechanism of therapy 

resistance in CRC is the clonal cooperation, where cetuximab resistant KRAS mutant 

subclones support the survival of drug-sensitive KRAS wildtype cells (Hobor et al., 2014). 

Recent studies found that individual colorectal cancer cells with identical genetic background 

show a functional heterogeneity regarding the capacity of long-term clonal propagation and 

response to therapy. Actively proliferating cells can be eliminated by chemotherapy with 

oxaliplatin while their non-proliferating counterparts are nonresponsive and are able to 

reinitiate the tumor after therapy (Kreso et al., 2013). Others show that a transient drug 
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tolerance appears to reflect an epigenetic heterogeneity within a cancer cell population 

(Sharma et al., 2010). 

These studies highlight the clinical implications of intratumoral heterogeneity. In order to 

improve the efficiency of personalized therapy, the functional heterogeneity of cancer cells  

has to be taken into account for future drug development strategies. 

 

 
1.4. Intestinal stem cells and colon cancer stem cells 

 
 

In healthy intestinal epithelia small populations of adult stem cells are responsible for the 

maintenance of the tissue homeostasis (Barker, 2014). The human colon is composed of 

millions of crypts and each crypt contains distinct functional compartments. The stem cells  

are located in the niche at the base of the crypt, the proliferating transit amplifying zone 

constitutes the mid of the crypt and the differentiated cells (goblet cells, enterocytes, 

enteroendocrine cells and tuft cells) expand towards the crypt apex (Cernat et al., 2014; 

Humphries & Wright, 2008). Cheng and Leblond proposed a model, by which all different 

intestinal cell types are derived from a single crypt base columnar (CBC) cell (Cheng & 

Leblond, 1974). Direct evidence for this stem cell model was provided in 2007 by Barker and 

colleagues, who identified the Lgr5 gene, a WNT target gene, as the genuine stem cell marker 

of the small intestine and of the colon (Figure 2). 

They performed in vivo lineage tracing from Lgr5 positive intestinal stem cells using a Lgr5- 

EGFP-ires-CreERT2/Rosa26lacZ mouse model. Lineage tracing is a molecular tool used for 

the identification of all progeny of a single cell. Labeling the cells without changing their 

features provides insight into their behavior in the context of the intact tissue over a long 

period of time (Kretzschmar & Watt, 2012). In this mouse model, a GFP and CreERT2 

expressing cassette was inserted into the genomic locus of LGR5. Additionally, these mice 

contain a LoxP flanked STOP cassette in front of a LacZ reporter gene within the Rosa26 

locus. After tamoxifen induction, recombination and thus LacZ expression occurs specifically 

in LGR5 expressing cells at the intestinal crypt bases of the small intestine and colon. Over 

time whole LacZ expressing crypts derive from these cells, demonstrating LGR5 to be an 

intestinal stem cell marker (Barker et al., 2007). 
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Further animal studies revealed, that the expression of additional CBC marker, like Bmi1, 

Tert, Hopx, Smoc2, Sox9, Prom1 and Lrig1 partially overlaps and that CBC and +4 intestinal 

stem cells can interconvert, adding to the complexity of the stem cell concept (Itzkovitz et al., 

2012; Muñoz et al., 2012; Louis Vermeulen & Snippert, 2014). 

 
 
 

 
 

Figure 2. Lineage tracing of stem cells in the small intestine and colon. (A) Generation of the Lgr5-EGFP- 

ires-CreERT2/Rosa26lacZ mouse model. (B) Histological analysis of LacZ activity one day and 60 days after 

tamoxifen induction. Figure modified after (Barker et al., 2007) 

 

 
Many cancers retain features of normal tissue organization (Cernat et al., 2014; L Vermeulen, 

Sprick, Kemper, Stassi, & Medema, 2008), where cancer stem cells (CSCs) are responsible 

for fueling tumor growth. Cancer stem cells can be defined by their self-renewal potential and 

by their ability to generate heterogeneous tumors comprised of tumorigenic and non- 

tumorigenic progenies (Vermeulen et al., 2008). The cancer stem cell model has generated 

considerable interest because of the relevance of CSCs in drug resistance, metastasis and 

tumor recurrence (Chen, Huang, & Chen, 2013; Cojoc, Mäbert, Muders, & Dubrovska, 2015). 

Initially the cancer stem cell model was described in AML and breast cancer (Al-Haji et al., 

2003; Bonnet & Dick, 1997). These publications were followed by the identification of CSCs 

in tumors of various organs, like brain (Singh et al., 2004), colon (Ricci-Vitiani et al., 2007), 

head and neck (Prince et al., 2007), pancreas (Li et al., 2007) and others. However, not all 

cancers follow the cancer stem cell model. In some tumors, like acute myeloid leukemia 
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(AML), CSCs represent a small population of less than 1%, while other malignancies, like 

acute lymphoblastic leukemia, have CSC frequencies of up to 82% (Cojoc et al., 2015). 

In colon cancer, cell-surface-markers such as CD133, CD166 and CD44 have been validated 

in the identification of CSCs (Dalerba et al., β007; O’Brien, Gallinger, Pollett, & Dick, β007; 

Ricci-Vitiani et al., 2007). In vivo limiting dilution transplantation assays have been the gold 

standard for the estimation of CSC frequencies. However, conflicting results about the right 

marker combination and the right xenograft models point to the limitations of current methods 

used in cancer stem cell research (O’Brien, Kreso, & Jamieson, β010). In CRC the 

EpCAMhigh/CD44 combination provides a more robust marker profile than CD133, which is 

expressed only in subsets of colorectal tumors (Dalerba et al., 2007). Another disadvantage of 

limiting dilution assays is the necessity to dissociate the tumor cells from their environment 

before transplantation, which might change their behavior and lead to a misrepresentation of 

CSC frequencies. Finally, CSC abundance can be underestimated when less immunodeficient 

mice are used for serial transplantations (Quintana et al., 2008). The application of a lineage 

tracing system to resolve individual cell fate within tumors might overcome some limitations 

of transplantation assays and facilitate the efforts to characterize CSC. 

Identifying the pathways that regulate CSC self-renewal decisions will lead to a better 

understanding of the mechanisms driving tumor growth. The activation of pathways like 

WNT, NOTCH, Hedgehog, and others have been reported to fuel CSC initiation and 

propagation (Hoey et al., 2009; Varnat et al., 2009; Louis Vermeulen et al., 2010).  

Interactions between cancer cells and surrounding stroma cells have been hypothesized to 

sustain these pathways by mediating signals emitted from the tumor microenvironment. 

Keeping the different levels of intratumoral heterogeneity in mind, different outcomes can be 

postulated with regard to the self-renewal capacity: some CSC may have the ability to 

regulate the necessary pathway and remain independent of the surrounding  

microenvironment, while others may need the niche support, but many cancer cells probably 

lose this capacity, regardless of the stromal support they receive (O’Brien, Kreso, &  

Jamieson, 2010) (Figure 3). 
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Figure 3. Cancer stem cell self-renewal capacities in the context of the tumor microenvironment. Several 

pathways, including WNT, NOTCH and Hedgehog are involved in the regulation of CSC self-renewal decisions. 

Figure from (O’Brien et al., β010). 

 

 
CSCs have been also linked to therapy resistance and recurrence. Beside the activation of 

developmental pathways and the microenvironmental stimuli, they use a variety of 

mechanisms for chemo- and radiotherapy resistance, like drug efflux by ABC transporters 

(Golebiewska et al. 2011), aldehyde dehydrogenase activity (Marcato et al. 2011), enhanced 

DNA damage response and reactive oxygen species (ROS) scavenging (Peitzsch et al. 2013) 

as well as autophagy (Rausch et al. 2012). 

The properties of drug resistance are reflected in particular in the context of metastasis.  

Recent studies provided evidence, that CSCs have the ability to initiate metastasis and are 

responsible for relapse after chemotherapy (Todaro et al., 2014). The metastatic process 

includes the dissemination of cancer cells from the primary tumor and their ability to give rise 

to macroscopic tumors in foreign tissues. There is growing evidence that only a subset of CSC 

harbor a metastasis-forming potential (Dieter et al., 2011). In colon cancer CD26 positive  

CSC show an enriched metastatic capacity, enhanced invasiveness and chemoresistance 

compared to their CD26 negative counterparts (Pang et al., 2010). It has also been suggested 

that  tumor  cells  can  gain  metastatic  capacities  during  epithelial-mesenchymal   transition 
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(Kalluri & Weinberg, 2009; Mani et al., 2008), but the exact relationship between these 

processes has yet to be elucidated. 

 

 
1.5. Epithelial-mesenchymal transition 

 
 

The epithelial-mesenchymal transition (EMT) is an evolutionarily conserved process, during 

which cells lose their epithelial features and become more migratory. Epithelial tissues are 

characterized by the loss of migratory freedom, with cells establishing an apico-basal axis of 

polarity through the expression of adherens junctions, desmosomes, and tight junctions 

(Thiery, Acloque, Huang, & Nieto, 2009). EMT governs the embryonic development, tissue 

regeneration, but also plays a major role in organ fibrosis and cancer metastasis. During 

morphogenesis, EMT and the reverse process, mesenchymal-epithelial transition (MET), are 

associated with gastrulation, neural crest delamination and heart formation (Lim & Thiery, 

2012). 

Loss of CDH1 (E-cadherin) expression is considered a central event during EMT. Several 

transcription factors, like SNAI1, ZEB, E47, KLF8, TWIST, E2.2, FoxC2, TCF and LEF, 

have been described to repress CDH1 either directly, by binding to its promoter, or indirectly, 

by interacting with miRNAs (Gonzalez & Medici, 2014; Thiery et al., 2009). The traditional 

assessment of the EMT phenotype is the decreased expression of selected markers, like E- 

cadherin, occludins and cytokeratins and the increase in N-cadherin, LAMC2 or Vimentin. 

But recent studies indicate a higher complexity, with intermediate epithelial and mesenchymal 

phenotypes reflecting the capacity of cells to induce or reverse the EMT process (Nieto, 

Huang, Jackson, & Thiery, 2016) (Figure 4). Interactions between epigenetic and transcription 

regulators are also thought to regulate the transitional states during EMT/MET (Tam & 

Weinberg, 2013). 

The role of EMT in cancer progression is still controversial. In some cancer types EMT might 

not be prerequisite for metastasis (Zheng et al., 2016), yet there is a vast body of evidence that 

links the EMT program to malignant traits (Thiery et al., 2009). 
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Figure 4. A dynamic phase transition between epithelial and mesenchymal phenotypes. Extracellular 

signals, epigenetic and transcription regulators interact to govern the epithelial-mesenchymal plasticity. Figure 

from (Nieto et al., 2016) 

 

 
In colorectal cancers EMT seems to play a central role in the formation of metastasis. CRC 

exhibit an intratumoral EMT gradient, where the tumor center shows a differentiated, 

epithelial pattern while at the invasive front tumor cells gain a more mesenchymal phenotype. 

At the interface between the tumor and its microenvironment EMT processes enable cellular 

detachment, the first step in the process of metastasis. These disseminating cells display an 

accumulation of nuclear ȕ-catenin, which is indicative of an active WNT pathway. (Brabletz, 

Jung, Spaderna, Hlubek, & Kirchner, 2005; Thiery et al., 2009). 

The crosstalk between WNT and other pathways, such as TGF-ȕ, BMP, RTK, NOTCH, 

Hedgehog and hypoxia signaling regulates the expression and function of EMT-inducing 

transcription factors (Gonzalez & Medici, 2014). Given the involvement of EMT in various 



17  

processes, it is not surprising, that it is governed by many overlapping pathways and can be 

influenced by a wide array of extracellular signals. Understanding the relationship between 

these different pathways and their role in promoting EMT may provide crucial insights into 

the fundamental mechanisms of metastasis and to the improvement of therapeutic strategies. 

 

 
1.6. The wingless-related integration site pathway 

 
 
 
WNTs are secreted cysteine rich proteins that activate a highly conserved signaling pathway. 

During embryonic development WNT signaling regulates cell fate determination, polarity, 

migration and organogenesis and in adults it plays a crucial role in homeostasis and stem cell 

maintenance (Clevers, 2006; Clevers & Nusse, 2012). 

The combination between the human WNTs encoded by 19 genes and the more than 15 

different WNT receptors and co-receptors results in a highly complex downstream signaling, 

activating ȕ-catenin dependent (canonical) or independent (non-canonical) pathways (Miller, 

2001). 

Deregulated canonical WNT signaling activity is implicated in hereditary diseases, 

neurological disorders and various cancers (Clevers & Nusse, 2012; De Ferrari & Moon, 

2006; Nishisho et al., 1991). The canonical pathway is activated by the interaction of WNT 

with a Frizzled protein and LRP5/6. Subsequently it was supposed that the “destruction 

complex”, a large multiprotein assembly responsible for the proteolysis of ȕ-catenin, 

dissociates and causes the stabilization of ȕ-catenin. But recent studies show that upon 

receptor activation, Dishevelled undergoes a conformational switch, facilitating its binding to 

AXIN1, which is recruited to the phosphorylated tail of LRP. The ubiquitination of ȕ-catenin 

is inhibited, leading to the saturation of the destruction complex with phosphorylated ȕ- 

catenin. The newly synthesized, nonphosphorylated ȕ-catenin can accumulate and  translocate 

into the nucleus. There it displaces Groucho from TCF/LEF and activates WNT target genes 

(Clevers, 2006; V. S. W. Li et al., 2012; Gammons et al., 2016) (Figure 5). 

In the absence of WNT ligands the destruction complex is responsible for the phosphorylation 

of ȕ-catenin by the serine/threonine kinases CK1 and GSKγα/ȕ, followed by ubiquitination 

through the ȕTrCP ubiquitin ligase, and subsequent degradation by the proteasome. Further 

core components of the destruction complex  are the scaffold protein  AXIN1, which  is    the 
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rate-limiting factor of the destruction complex and adenomatous polyposis coli (APC), a 

crucial negative regulator of the WNT pathway (Heppner Goss & Groden, 2000; Lee, Salic, 

Krüger, Heinrich, & Kirschner, 2003; V. S. W. Li et al., 2012) . 

 
 
 

Figure 5. Regulatory model of WNT/β-catenin signaling. In the absence of the WNT signal, the destruction 

complex binds to the cytosolic ȕ-catenin which is subsequently degraded by the proteasome. The binding of 

WNT to its receptors leads to the stabilization and translocation of ȕ-catenin to the nucleus, where it displaces 

Groucho from TCF/LEF and activates WNT target genes  Figure from ( Li et al., 2012). 

 
 
Despite the mutational activation, WNT signaling in CRC remains regulated on high levels, 

resulting in distinct tumor cell subpopulations with relatively low or high WNT activity  

(Horst et al., 2012a). Colon cancer cell subpopulations with high WNT levels were attributed 

certain characteristics such as more mesenchymal phenotypes and putative cancer stem cell 

traits, express markers that are linked to tumor invasion, and therefore are thought to be 

crucial drivers of colon cancer progression (Brabletz et al., 2005). These tumor cells are 

typically located at the infiltrative tumor edge where they invade the surrounding tissue, while 

those with lower WNT levels are frequently more central within the tumor and appear 

phenotypically more differentiated (Cernat et al., 2014; Kirchner & Brabletz, 2000). Due to 

these findings, high WNT signaling activity is assumed to be a driving force of colon cancer 

invasion and progression, making it an attractive potential target for therapeutic intervention. 

However, since WNT signaling is required for various physiological processes including adult 
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tissue and stem cell homeostasis, efforts in targeting this central pathway in clinical settings is 

complicated, and serious side effects may be anticipated (Kahn, 2014). 

 
 

1.7. The mitogen-activated protein kinase pathway 
 
 

Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved 

signal transduction pathways involved in the regulation of gene expression, proliferation, 

survival and differentiation of normal cells. Mammalian cells possess at least four well 

characterized MAPKs, extracellular signal-related kinases (ERK)-1/2, p38 proteins 

(pγ8α/ȕ/Ȗ/δ), Jun amino-terminal kinases (JNK1/2/3) and ERK5, that function downstream of 

cell surface receptors in response to stress, growth factor or cytokine stimulation (Roberts & 

Der, 2007) (Figure 6). 

 
 
 

Figure 6. The four major mammalian MAPK cascades: stimuli and substrates. The ERK pathway is usually 

activated by growth factors, while the JNK, p38 and ERK5 can be activated by stress, cytokines and growth 

factors. Figure from (Roberts & Der, 2007) 
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Deregulation of the RAS–RAF–MEK–ERK signaling pathway can be observed in    nearly  

50 % of human malignancies (Herrero et al., 2015) (Figure 7). 

The GTPase KRAS is a component of mitogen-activated protein kinase (MAPK) signaling 

that communicates signals from growth factor receptors into the cell nucleus (Schubbert, 

Shannon, & Bollag, 2007). In KRAS wild-type tumor cells, binding of  epidermal  growth 

factor (EGF) to its receptor (EGFR) causes GTP-loading of KRAS which activates RAF to 

phosphorylate MAPK/ERK-activating kinase (MEK), which in turn phosphorylates 

extracellular signal-regulated kinase (ERK). Phosphorylated ERK (p-ERK) then causes 

expression of MAPK target genes through ELK1 and AP1 transcription factors that promote 

malignant traits of tumor progression including invasion and metastasis (Urosevic et al.,  

2014; Yordy & Muise-helmericks, 2000). However, in contrast to wild-type KRAS, mutated 

KRAS binds GTP permanently and independently of EGFR stimulation (Scheffzek et al., 

1997). MAPK signaling therefore is thought to be constitutively activated in KRAS mutated 

CRC, promoting tumor progression independently of external EGFR stimulation 

(Hatzivassiliou et al., 2013; Khambata-Ford et al., 2007). This translates into clinical 

application, since in contrast to wild-type cases, KRAS mutated CRC lacks significant 

treatment response to upstream MAPK inhibition when targeting the EGFR with antibody 

drugs, such as cetuximab (Lievre et al., 2008). 
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Figure 7. Mutational activation of the RAS–RAF–MEK –ERK signaling pathway in various types of 

cancers. Mutations of the EGFR and the Ras small guanosine triphosphatases (GTPases) lead to a constitutive 

activation of downstream effectors, which promote tumor progression and metastasis. Figure from (Roberts & 

Der, 2007) 

 

 
Previous studies demonstrated that MAPK signaling regulates WNT signaling, and suggested 

a contribution of MAPK signaling to phenotypic tumor cell heterogeneity in CRC (Horst et 

al., 2012b). However, the extent of differential MAPK activity and its significance in KRAS 

wild-type and mutant CRC has remained largely unknown. 

 
 
1.6. Activity-dependent neuroprotector homeobox 

 
 

The differential regulation of signaling pathways like WNT and MAPK, leads also to a 

heterogeneous expression of target genes within tumors. Many of these target genes control 

critical cellular processes such as proliferation, survival, and invasion. Exploring their 

functional relevance may lead to the identification of new prognostic markers and therapeutic 

targets. In this work we identified activity-dependent neuroprotector homeobox (ADNP) as a 

pharmacologically inducible repressor of WNT signaling in colon cancer. 
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ADNP was initially discovered in brain tissue and encodes a ubiquitously expressed zinc 

finger homeobox protein with transcription factor activity (Bassan et al., 1999; Zamostiano et 

al., 2001). Most knowledge on ADNP function is related to the central nervous system where 

it is required for brain formation and cranial neural tube closure (Pinhasov et al., 2003). It also 

assumes protective roles against cognitive defects in neurodegenerative disease (Vulih- 

Shultzman et al., 2007). Moreover, ADNP has been shown to reduce the expression of genes 

involved in regulation of transcription, organogenesis and neurogenesis, and is suggested to 

interact with chromatin remodeling complexes that are associated with cellular differentiation 

(Mandel & Gozes, 2007). In regard to cancer, a previous report demonstrated overexpression 

of ADNP in proliferative tissues and several different malignancies, including colon cancer, 

and since ADNP depletion reduced the viability of certain cancer cells suggested a possible 

association with tumorigenesis and cell survival (Zamostiano et al., 2001). However, the 

contribution of ADNP to human cancer and its functional role in malignancies is still poorly 

understood. 
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Objectives 
 
 

The deregulation of WNT and MAPK signaling plays a key part in colorectal cancer 

development. Despite mutational activation these signaling pathways can remain regulated in 

CRC and contribute to distinct phenotypes of tumor cell subpopulations. 

The first objective of this work was to investigate the intratumoral signaling heterogeneity in 

colorectal cancer and exploit its functional relevance. Focusing on transcription factors linked 

to WNT signaling, the second aim was to translate the findings from the studies on tumor cell 

heterogeneity into diagnostic and clinically applicable markers. 



24  

2. Material 
 
2.1 Chemicals and reagents 

 
 
 

Chemicals Supplier 
 
 
 

4-Hydroxytamoxifen ≥70% Z isomer Sigma-Aldrich, St.Louis, MO, USA 
 

4x Laemmli Sample Buffer Bio-Rad, Munich, Germany 
 

Agarose Biozym LE Biozym Scientific, Hessisch Oldenforf, Germany 
 

All-purpose Hi-Lo DNA Marker Bionexus, Netanya, Israel 
 

Ammonium peroxodisulfate Carl Roth GmbH, Karlsruhe, Germany 
 

Ampicillin sodium salt Sigma-Aldrich, St.Louis, MO, USA 
 

Antibody diluent Dako, Carpinteria, CA, USA 
 

beta-Mercaptoethanol Carl Roth GmbH, Karlsruhe, Germany 
 

Biofreeze Einfriermedium Biochrom, Berlin, Germany 
 

Blasticidin Carl Roth GmbH, Karlsruhe, Germany 
 

BSA (Albumin Faktor V) Carl Roth GmbH, Karlsruhe, Germany 
 

Cetuximab Merck Serono, Darmstadt, Germany 
 

Chloroform Sigma-Aldrich, St. Louis, MO, USA 
 

Collagen Santa Cruz Biotechnology, Santa Cruz, CA, USA 

cOmplete, Mini Protease Inhibitor Cocktail Tablets Roche Diagnostics GmbH, Penzberg, Germany 

Crystal violet Carl Roth GmbH, Karlsruhe, Germany 

DAPI Carl Roth GmbH, Karlsruhe, Germany 
 

Dimethylsulfoxide Sigma-Aldrich, St.Louis, MO, USA 
 

DMEM Invitrogen GmbH, Karlsruhe, Germany 
 

dNTP Mix Fermentas GmbH, St. Leon-Rot, Germany 
 

Doxycycline Sigma-Aldrich, St.Louis, MO, USA 
 

EGF Recombinant Human Invitrogen GmbH, Karlsruhe, Germany 
 

Ethidiumbromide 1% Carl Roth GmbH, Karlsruhe, Germany 
 

Epitope Retrieval Solution Leica Biosystems, Nussloch, Germany 
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Chemicals Supplier 
 

Fast SYBR Green Mix QIAGEN GmbH, Hilden, Germany 
 

Fast-Media Amp Agar InvivoGen, San Diego, CA, USA 
 

FCS Invitrogen GmbH, Karlsruhe, Germany 
 

FGF-Basic (AA 10-155) Recombinant Human Protein Invitrogen GmbH, Karlsruhe, Germany 

Fugene 6 Promega GmbH, Mannheim, Germany 

HiPerFect Transfection Reagent QIAGEN GmbH, Hilden, Germany 
 

Immedge Pen Biozym Scientific, Hessisch Oldenforf, German 

Immobilon Western Chemiluminescent HRP Substrate Merck Millipore, Billerica, MA, USA 

Ketamine Ratiopharm, Ulm, Germany 

LB Media Carl Roth GmbH, Karlsruhe, Germany 
 

Lenti-X Concentrator Clontech, Mauntain View, Ca, USA 
 

LipoD293 Tebu-Bio, Le Perray-en-Yvelines, France 
 

LiCl Sigma-Aldrich, St.Louis, MO, USA 
 

Matrigel Corning, New York, NY, USA 
 

NP40 Substitute Sigma-Aldrich, St.Louis, MO, USA 
 

Oleoyl-L-alpha-lysophosphatidic acid Santa Cruz Biotechnology, Santa Cruz, CA, USA 
 

Opti-MEM Thermo Fisher Scientific Inc., Waltham, MA, USA 
 

Page Ruler Plus Prestained Fermentas GmbH, St. Leon-Rot, Germany 
 

Paraformaldehyde Carl Roth GmbH, Karlsruhe, Germany 
 

Penicillin/Streptomycin Biochrom, Berlin, Germany 
 

PhosSTOP Roche Diagnostics GmbH, Mannheim, Germany 
 

Polybrene Sigma-Aldrich, St.Louis, MO, USA 
 

ProLong Gold Antifade Reagent Invitrogen GmbH, Karlsruhe, Germany 
 

Protein Block Dako, Carpinteria, CA, USA 
 

Puromycin, dihydrochlorid Merck Millipore, Billerica, MA, USA 
 

Rotiphorese Gel 30 (37,5:1) Carl Roth GmbH, Karlsruhe, Germany 
 

Sodium dodecyl sulfate Carl Roth GmbH, Karlsruhe, Germany 
 

Skim milk powder Sigma-Aldrich, St.Louis, MO, USA 
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Chemicals Supplier 
 

Sunflower oil Sigma-Aldrich, St.Louis, MO, USA 
 

Tamoxifen free base Sigma-Aldrich, St.Louis, MO, USA 
 

Target Retrieval solution Dako, Carpinteria, CA, USA 
 

TEMED Carl Roth GmbH, Karlsruhe, Germany 
 

TritonX100 Carl Roth GmbH, Karlsruhe, Germany 
 

Trizol Reagent Invitrogen GmbH, Karlsruhe, Germany 
 

Trypsin/EDTA Biochrom, Berlin, Germany 
 

TWEEN 20 Sigma-Aldrich, St.Louis, MO, USA 
 

WNT3A R&D Systems, Minneapolis, MN, USA 
 
 
 

2.2. Kits and disposables 
 
 

Kits and disposables Supplier 
 

Active Ras Pull-Down and Detection Kit Thermo   Fisher   Scientific   Inc.,  Waltham,  MA, 

USABio-Rad DC Protein Assay Reagents Package Kit Bio-Rad, Munich, Germany 

Dual-Luciferase Reporter Assay System 10-Pack Promega GmbH, Mannheim, Germany 

Pure Yield Plasmid Midi Prep Kit Promega GmbH, Mannheim, Germany 

Quantitect Reverse Transcription Kit QIAGEN GmbH, Hilden, Germany 
 

Rapid DNA Ligation Kit Fermentas GmbH, St. Leon-Rot, Germany 
 

StemPro® hESC SFM KIT Invitrogen GmbH, Karlsruhe, Germany 
 

Vectastain ABC Kit Universal Vector Laboratories, Burlingame, CA, USA 

Wizard V Gel and PCR Clean-Up System Promega GmbH, Mannheim, Germany 

Chromatography Paper 10 cm x 100 m GE Healthcare 

Immobilon-P Transfer Membrane Merck Millipore, Billerica, MA, USA 
 

ThinCert cell culture inserts Greiner Bio-One, Kremsmünster, Austria 
 

Rotilabo Filter .45µm PES Carl Roth GmbH, Karlsruhe, Germany 
 

E-Plate 16 Omni Life Science, Bremen, Germany 
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2.3. Enzymes 
 
 

Enzymes Supplier 
 
 

T4 Polynucleotide kinase Fermentas GmbH, St. Leon-Rot, Germany 
 

Klenow Fermentas GmbH, St. Leon-Rot, Germany 
 

FastAP Thermosensitive Alkaline Phosphatase Fermentas GmbH, St. Leon-Rot, Germany 
 

Pfu Polymerase Fermentas GmbH, St. Leon-Rot, Germany 
 

Restriction endonucleases Fermentas GmbH, St. Leon-Rot, Germany 
 
 
 
 
 
2.4. Buffers and solutions 

 
 

Name Ingredients 
 
 
 

50x TAE Buffer 40 mM Tris Base 

20 mM acetic acid 

1 mM EDTA pH 8.0 
 
 
 

10x PCR Buffer 166 mM NH4SO4 

670 mM Tris pH 8.8 

67 mM MgCl2 
 

100 mM ȕ-Mercaptoethanol 
 
 
 

RIPA Buffer 1% NP40 
 

0.5% sodium deoxycholat 
 

0.1% SDS 
 

150 mM NaCl 
 

50 mM TrisHCl, pH 8.0 
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Name Ingredients 
 
 
 

10x TBS 20  mM Tris base 
 

150 mM NaCl 
 
 
 

1x TBST TBS 
 

0.1% Tween 20 
 
 
 

1x FACS Buffer 1 mM EDTA 

0.5% BSA 

10 mM HEPES 
 

pH 6.5, ad 500ml PBS 
 
 
 

10x Running Buffer 1.92 M glycine 

250 mM Tris base 

1% SDS, pH 8.5 

 
 

10x Transfer Buffer 1.92 M glycine 

250 mM Tris base 

1% SDS,  pH 8.5 

20% Methanol 
 
 
 

4x SDS-PAGE Lower Buffer 1.5 M Tris-base 

0.4% SDS, pH 8.8 

 
 

4x SDS-PAGE Upper Buffer 500 mM Tris-base 

0.4% SDS, pH 6.8 
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2.5. Laboratory equipment 
 
 

Device Supplier 
 

Axioplan 2 Carl Zeiss GmbH, Oberkochen, Germany 
 

Centrifuge 5415R Eppendorf AG, Hamburg, Germany 
 

FACSAria III  BD Bioscience, Heidelberg, Germany 
 

HERACell 240i Co2 Incubator Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Heraeus Megafuge 40R Centrifuge Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Image Station 440 CF Kodak, Rochester, New York, USA 

Light Cycler 480 II  Roche Diagnostics GmbH, Mannheim, Germany 

Mini-PROTEAN Tetra System Bio-Rad, Munich, Germany 

MultiImage Light Cabinet Alpha InnoTec, Kasendorf, Germany 
 

ND-100 Spectrophotometer NanoDrop products, Wilmington, DE, USA  

Orion II Micropate Luminometer Berthold Detection Systems, Pforzheim, Germany 

PEQPOWER PEQLAB 

PrimoVert Carl Zeiss GmbH, Oberkochen, Germany 
 

SAFE 2020 T Thermo Fisher Scientific Inc., Waltham, MA, USA 
 

T100 Thermo Cycler Bio-Rad, Munich, Germany 
 

Varioscan Thermo Fisher Scientific Inc., Waltham, MA, USA 
 

xCELLigence RTCA DP Roche Diagnostics GmbH, Penzberg, Germany 
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3. Methods 
 
 

3.1. Clinical samples and statistical analyses 
 
 
 
Resection specimens of patients diagnosed with FAP as well as CRC specimens from patients 

that underwent intentionally curative surgical resection between 1994 and 2006 at the LMU 

were drawn from the archives of the institute of pathology. For CRC specimens, inclusion 

criteria were localized colorectal adenocarcinomas with absence of nodal (N0) or distant 

metastasis (M0) at the time of diagnosis (UICC stage I and II). Follow-up data were recorded 

prospectively by the Munich Cancer Registry. CRC tissues were assembled into tissue 

microarrays (TMAs) with representative 1 mm cores, including tumor edges and  tumor 

centers of each case. The final CRC collection consisted of 221 cases of which in 43 cases 

(19%) patients had died of their tumor within the follow-up period. For tumor  specific 

survival analysis, CRC attributed deaths were defined as clinical endpoints. For analysis of 

disease free survival, tumor progression after surgical resection was the clinical endpoint, 

documented as either tumor recurrence or metastasis. Survival was analyzed by the Kaplan- 

Meier method and groups were compared with the log-rank test. Cox proportional hazards 

model was used for multivariate analysis. Statistics were calculated using SPSS (IBM). 

For KRAS mutational testing, tumor tissue was scraped from deparaffinized tissue sections 

under microscopic control using sterile scalpel blades, and tumor DNA was extracted from  

the tissue, in a final volume of β0 μl, using Qiagen FFPE Micro Kits. 1 μl of the DNA  

solution was amplified by PCR using the KRAS exon-specific primer pair 5’- 

NNNGGCCTGCTGAAAATGACTGAA-γ’ and 5’-Biotin- 

TTAGCTGTATCGTCAAGGCACTCT-γ’ and HotStar Taq Polymerase (Qiagen). The PCR 

was performed with 1 x PCR buffer, 5 mM MgCl2, β00 μM dNTP mix, 400 nM of each 

primer and 1 unit of Taq polymerase, under the following conditions: 1 x 15 minutes at 95° C, 

and 50 cycles (30 seconds at 95° C, 30 seconds at 60° C, 30 seconds at 72° C) followed by 2 

minutes at 72° C. 

KRAS exon 2 then was analyzed by pyrosequencing on a PyroMark Q24 Advanced instrument 

(Qiagen) with primers 5’-NNNGGCCTGCTGAAAATGACTGAA-γ’ and 5’- 

TGTGGTAGTTGGAGCT-γ’ for sequencing. KRAS wild-type and mutated CRCs then   were 
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grade and stage matched, resulting in a final collection of 160 cases, half of which had KRAS 

exon 2 mutations and the other half of which were KRAS wild-type (Table 1). Specimens and 

data were anonymized, and the need for consent was waived by the institutional ethics 

committee of the Medical Faculty of the LMU. 

Table 1. Colorectal cancer case characteristics. 
 
 
 

Characteristics Total   KRAS mutation status   

  WT G12D G12V G12S G12A G12C G12R G13D 

All patients 160 80 27 25 8 4 3 2 11 

Age   (y,  Median          

≤ 68 72 40 14 10 2 0 1 0 5 

≥ 69 88 40 13 15 6 4 2 2 6 

Gender          

Male 88 48 16 15 2 2 0 0 5 

Female 72 32 11 10 6 2 3 2 6 

T-stage (UICC)          

T3 126 63 23 19 6 4 3 2 6 

T4 34 17 4 6 2 0 0 0 5 

Tumor grade          

low grade 102 51 15 17 4 2 3 1 9 

high grade 58 29 12 8 4 2 0 1 2 
 
 
 

3.2. Gene expression data sets, TCGA data, and GSEA 
 
 
 
Three sets of differentially expressed genes from colon cancer cells with low and high WNT 

activity were screened for consistently deregulated genes (Horst et al., 2012b; Louis 

Vermeulen et al., 2010). From The Cancer Genome Atlas (TCGA) database (https://tcga- 

data.nci.nih.gov/tcga/) RNA-Seq data of 41 normal mucosa samples and 457 colon cancer 

samples were retrieved. Within the cancer sample data, pearson correlations of ADNP 

expression and expression of 20,531 genes within this data set were calculated and genes were 

ranked accordingly. GSEA analyses were conducted using this ranked gene list against 

curated sets of upregulated WNT targets derived from Nusse et al. 

(web.stanford.edu/group/nusselab/cgi-bin/WNT/target_genes) and (Herbst et al., 2014). Gene 

sets are listed in Table 2. Heat maps for individual factors were drawn with GENE-E (Broad 

Institute). 
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Table 2. WNT target gene sets used for GSEA. 
 
 
 

Herbst et al. WNT target gene set    Nusse et al. WNT target gene set 

KIAA1199 SLC7A2 SEMA3F SLC5A6  MYC 

NAV2 C12orf24 RNF44 RCL1  MYCN 

ASCL2 FGF18 TMEM97 KLHL29  CCND1 

EDAR FGF9 KATNB1 MDN1  HNF1A 

ABCB1 GJA3 WFDC9 NHP2L1  TCF7 

ADAMTS19 PIK3AP1 HSD11B2 PAICS  LEF1 

AXIN2 ADCK3 CR2 DCAF4  PPARD 

KCNJ8 ABHD6 LDLRAD3 SORD  JUN 

TNFRSF19 ECE2 C5orf13 WDR74  FOSL1 

DEPDC7 NPTX2 CDC25A PTDSS1  PLAUR 

SLC4A8 GAS5 AIF1L NOP2  MMP7 

LOC100134361 PPP2R2C LOC100505644 DDX20  AXIN2 

RNF43 BCL11A RSL1D1 ADCY3  NRCAM 

GLS2 SMPDL3B TMEM80 CD83  TCF4 

SLC9B2 MEX3A QSOX2 SFXN4  GAST 

SUSD4 MAOB TEX10 NME1  CD44 

LOC100287482 PDCD2L TFB2M MCAM  EPHB2 

CTNNB1 PLD6 LOC202181 ADSL  EPHB3 

MYC ACTR3B GEMIN5 NLE1  BMP4 

PXK TXLNG KIF9 IMP3  CLDN1 

B7H6 NSUN5P1 RFC3   BIRC5 

APCDD1 MCOLN2 CCNO   VEGFA 

GAD1 RABEPK SCLY   FGF18 

DPYSL3 UBE2CBP HPCAL4   MET 

RORA POLR3G KCNJ5   EDN1 

TMEM177 C10orf2 LOC100506469   MYC 

ISM1 GALNT6 CD44   L1CAM 

ZNRF3 SLC16A10 MKI67IP   ID2 

VSNL1 SNHG1 SKP2   JAG1 

BCL2L15 CSTF3 HAS2   MSL1 

LOC100507303 RPIA MATR3   DKK1 

CTDSPL C7orf40 BCS1L   FGF20 

BDNF C1QTNF9B-AS1 BCL2L11   SOX17 

CCNB1IP1 BEGAIN FXN   SOX9 

MIR17HG SPTLC3 NAV3   TIAM1 

SLC2A3 SLC6A16 KIAA1804   LGR5 

FKBP7 DKC1 DHX33   WNT 
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3.3. Bacterial cell culture, transformation and plasmid DNA preparation 
 
 

The Escherichia coli strains DH5α or Stblγ (Invitrogen) were used for plasmid replication. 

Bacterial cells were cultured in LB medium at γ7’°C for 1β-18 hours or on LB agar plates, in 

order to isolate DNA from single cell clones. 100 μg/ml ampicillin were added to the LB- 

medium for selection of antibiotic–resistant cells. 

For transformation 100 µl bacteria were thawed on ice, 100 ng plasmid or 10 µl of a ligation 

reaction were added and incubated for 30 minutes on ice, followed by a heat-shock at 42°C 

for 45 seconds. The transformed bacterial cells were mixed with 500 µl antibiotic-free LB- 

medium and incubated for 45 minutes at 37°C. The bacterial cells were plated on LB-agar 

plates containing ampicillin and incubated at 37°C overnight. Single cell clones were used to 

inoculate ampicillin containing LB medium and incubated for 8-12 hours at 37°C. 

For plasmid DNA isolation the mi-Plasmid Miniprep Kit (Metabion) or the Pure Yield Midi 

Prep Kit (Promega) were used following the manufacturer's instructions. 

 
 
3.4. DNA cloning and sequencing 

 
 
 
Amplification of DNA was performed in a 40 μl master mix containing 50 ng DNA, 4 μl 10 x 

PCR Buffer, β μl specific oligonucleotides (Table 5) , 1 μl dNTPs, β μl DMSO and 1 μl Pfu 

polymerase under following PCR cycling conditions: three minutes at 95°C initial 

denaturation, 36 cycles of 30 seconds denaturation at 95°C, 90 seconds annealing at 55-65°C 

(depending on the melting temperature of the used oligonucleotides) and 45 seconds per kb of 

product length extension at 72°C, and for the final extension step 5 minutes at 72°C. The 

length of the PCR products was analyzed on a 1% agarose gel by electrophoresis. The DNA 

was purified from excised gel fragments using the Wizard® SV Gel and PCR Clean-Up 

System (Promega) following the manufacturer's protocol. 

Enzymatic digestions were performed at γ7°C for γ0 minutes using 1 μg DNA, β0 units (U)  

of restriction enzymes and γ μl Green Buffer (Fermentas) in a γ0 μl master mix. The DNA 

was 5’-dephosphorylated by adding 10 U Fast AP at 37°C for 15 minutes. For DNA blunting 

2 U Klenow Fragment was added for 15 minutes at 37°C to fill-in 5'-overhangs. 
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For DNA ligation vector and insert DNA was mixed in a molar ratio of approximately 1:3 and 

incubated with 5 U T4 ligase for 20 minutes at 22°C. 

The verification of DNA sequences was executed via Sanger sequencing by GATC Biotech 

(Konstanz). 

 
 

3.5. Isolation of RNA and qPCR 
 
 
 

Total RNA was isolated from cancer cells using TRIzol (Invitrogen) according to the 

manufacturer's protocol. 1 μg RNA was reverse transcribed into cDNA using the Quantitect 

Reverse Transcription Kit (Qiagen) following the manufacturer's instructions. The 

quantitative real-time PCR protocol consisted of 40 cycles of amplification at 95 °C (15 

seconds) and 60 

°C (1 minute) and was performed a LightCycler 480 (Roche) with a Fast SYBR Green Master 

Mix (Applied Biosystems) using primers indicated in Table 3. ACTB and GAPDH served as 

housekeeping genes. The results were analyzed with the ΔΔCp method (Livak & Schmittgen, 

2001) and presented as relative mRNA expression. 

 
 

Table 3. Primer sequences used for qPCR. 
 

Gene 
 
ACTB 

Forward 5’->3’ 
 

CCAACCGCGAGAAGATGA 

Reverse 5’->3’ 
 

CCAGAGGCGTACAGGGATAG 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

ADNP 1 CCCATCACTTACGAAAAACCA GGACATTGCGGAAATGACTT 

ADNP 2 GGACCACATTGTCAATTCACACC GGACAAGCGCTGCAGCAGAAAGG 

ADNP 3 GTGACATCGCTTCCCATTTTAG CCACTCAGCATCAAAATCCATC 

AXIN2 AGGCCAGTGAGTTGGTTGTC CATCCTCCCAGATCTCCTCA 

 
 
 

3.6. Cell and spheroid culture 
 
 

SW122 were a gift from the Ludwig Institute for Cancer Research (New York, USA) and 

primary colon cancer cells (P-Tu) were obtained from the HTCR (Munich, Germany). Other 

cell lines were from the ATCC. Cell lines were cultured in DMEM containing 10 % FCS, 100 
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U/ml penicillin, and 0.1 mg/ml streptomycin (Biochrom) at 5% CO2 and 37°C. P-Tu colon 

cancer cells were grown as spheroids in StemPro hESC SFM medium supplemented with 20 

ng/ml EGF and 10 ng/ml bFGF (Life Technologies) in ultra-low attachment flasks (Corning). 

Colon cancer cell lines were cryo-preserved in 90 % FCS and 10 % DMSO (Sigma) and 

tumor spheroids in Biofreeze (Biochrom). 

 
 

3.7. In vitro treatments 
 
 

For WNT induction or inhibition, cells were treated with 20 ng/ml WNT3A (R&D Systems), 

20 mM LiCl, or 10 µM XAV939 (both Sigma-Aldrich), respectively. In vitro ketamine 

treatment was done at concentrations of 200 µM (Ratiopharm). 

For in vitro MAPK stimulation experiments, cells were starved for 24 hours in serum-free 

medium, treated with 10 µg/ml cetuximab (Merck Serono) or PBS, and then with 40 ng/ml 

EGF (Invitrogen) for 10 minutes before protein isolation. For the induction of caMEK, cells 

were cultivated in serum-free medium and treated at several time points with 1 µg/ml 

doxycycline before protein isolation. To assess phenotypic effects, tumor spheroids of P-Tu 

colon cancer cells were mixed with 25 µl rat tail collagen I (Santa Cruz), placed in 8-well 

culture slides (Falcon), incubated for four days in serum free DMEM with or without 100 nM 

oleoyl-L-alpha-lysophosphatidic acid (LPA, Santa Cruz), and subjected to immune 

fluorescence as described below. 

 
 

3.8. Lentiviral vectors 
 
 

All template plasmids were obtained through Addgene (www.addgene.org). 
 
For stable ADNP knockdown, oligonucleotides containing specific targeting sequences (Table 

4) were selected from The RNAi Consortium shRNA Library (Broad Institute) and inserted 

between BamHI and EcoRI restriction sites of the lentiviral pGreenPuro shRNA vector 

(System Bioscience). 

pLenti SRE-GFP was constructed by replacing the PGK promoter in pLenti PGK-GFP 

(pRRLSIN.cPPT.PGKGFP.WPRE, a gift from Didier Trono) with a serum response   element 

http://www.addgene.org/
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optimal promoter cassette (3xSRE), containing synthetic GGATGTCCATATTAGGACATCT 

binding sites (Hayes, Sengupta, & Cochran, 1988). We then removed the internal ribosomal 

entry site (IRES) of pBMN-I-GFP (a gift from Garry Nolan) using Not1 and Nco1 restriction 

enzymes, amplified CreERT2 from pCAG-CreERT2 (Matsuda & Cepko, 2007) by PCR, and 

inserted both into the SalI sites of pLenti PGK-GFP and pLenti SRE-GFP, yielding pLenti 

PGK-GFP-CreERT2 and pLenti SRE-GFP-CreERT2. For the Cre sensitive recombination 

vector pLenti lox-mCh-LacZ, we replaced the GFP cassette of pLenti PGK-GFP with a 

synthetic sequence containing two lox2272 and loxP sites (Zhang et al., 2010) as well as 

EcoRV and HpaI restriction sites. PCR amplified H2BmCherry from PGK-H2BmCherry 

(Kita-Matsuo et al., 2009) and LacZ from LV-Lac (Pfeifer, Brandon, Kootstra, Gage, & 

Verma, 2001) then were inserted or reversely inserted into EcoRV and HpaI sites, 

respectively. For construction of pLenti CMVTRE3G-caMEK Puro, we amplified 

constitutively active MEK1 (caMEK) from pCScherryActMEK (Covassin et al., 2009) by 

PCR and inserted it between BamHI and XbaI restriction sites of pLenti CMVTRE3G eGFP 

Puro (a gift from Eric Campeau), replacing eGFP by caMEK. Modified vector elements were 

verified by restriction analysis and sequencing. 

For in vitro induction, pLenti CMV rtTA3G Blast (a gift from Dominic Esposito) and pLenti 

CMVTRE3G-caMEK Puro transduced T84 and P-Tu colon cancer cells were treated with 10 

ng/ml doxycycline in PBS or with PBS alone before protein isolation and immunoblotting. 

 
 

Table 4. shRNA sequences 

shRNA Sequence 

sh1ADNP GCCATGATTGGGCACACAAAT 

sh2ADNP GCCCGAGAAGAGAGTAGTATT 

shCtrl GGCTACGTCCAGGAGCGCACC 

 
 

Table 5. Primer sequences for DNA amplification. 
 

Gene 
 
CreERT2 
 
mCherry 

Forward 5’->3’ 

ATGTCCAATTTACTGACCGTACACC 

GCCGCCACCatgCCAGAGCCAGCGAA 

Reverse 5’->3’ 

TCAAGCTGTGGCAGGGAAACC 

CCGCTTTACTTGTACAGCTCGT 

LacZ GCCGCCACCATGAAAGTGTTCCGCAAT TTATTATTATTTTTGACACCAGACCAACT 

caMEK ATAGGATCCGCCACCATGGATGCCCAAGAA ATATCTAGATTAGACGCCAGCAGCATGG 
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3.9. Transient transfections 
 
 

For transient knockdown, pre-designed siRNAs targeting CTNNB1, ADNP (Thermo Fisher), 

DNMT1, or TLN1 (Dharmacon), or scrambled (siCtrl) were transfected into HCT116 or 

SW1222 cells at 10 nM final concentration using HiPerFect (Qiagen). 48 hours after 

transfection, cells were harvested for further analysis. 

Transient ADNP overexpression was achieved by transfecting HCT116 and SW1222 cells 

with 1 µg p4.2-hADNP or, as control, empty p4.2 plasmid (a gift from Vivien Bubb), in 6- 

well plates in the presence of 6 µl FuGENE 6 (Promega). 

 
 

3.10. Luciferase assays 
 
 

For luciferase reporter assays, treated cells or cells with stable or transient ADNP knockdown 

or overexpression were transfected or co-transfected, respectively, in 24-well plates with 10  

ng Renilla luciferase control vector and 100 ng TOPflash or FOPflash luciferase reporter 

constructs carrying either wild-type or mutant TCF-binding sites (The Cancer Genome Atlas 

Network, 2012). Firefly luciferase activity was measured with dual-luciferase Reporter  

Assays (Promega) after 24 hours according to manufacturer’s instructions with an Orion II 

luminometer (Berthold), analyzed with the SIMPLICITY software package (DLR) and 

normalized to Renilla luciferase activity. 

 
 

3.11. Lentiviral transductions and single cell sorting 
 
 
 
For transductions, lentivirus was produced in HEK293 cells by co-transfection with 10 µg 

lentiviral vector, 10 µg pCMV-dR8.91, and 3 µg pMD2.G, in the presence of 60 µl  

LipoD293. Virus containing medium was passed through 0.45 µm filters (Millipore), mixed 

1:1 with DMEM, and used to infect colon cancer cells in the presence of 8 µg/ml polybrene 

(Sigma-Aldrich). 

Transduced cells were single cell sorted into 96-well plates on a FACSAria III instrument  

(BD Biosciences) and expanded. 
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3.12. CRISPR/Cas9 genome editing 
 
 

Synthetic oligonucleotide pairs of two guide sequences targeting the coding region (Exon 6)  

of ADNP were selected using the Zhang Laboratory MIT CRISPR Design Tool. Each pair  

was annealed and inserted into pSpCas9(bb)-2A-GFP (PX458, a gift from Feng Zhang, 

Addgene plasmid 48138), resulting in two different ADNP targeting vectors. Both vectors 

then were co-transfected into HCT116 and SW1222 colon cancer cells in 24-well plates with 

FuGENE 6. After 2 days, GFP positive single cells were sorted into 96-well plates on a 

FACSAria III instrument (BD Biosciences) and expanded. Single cell clones with loss of 

ADNP expression were selected by immunoblotting. 

 

 
Table 6. sgRNA sequences. 

 

sgRNA 
 
ADNP Ex6-1 

Forward 5’->3’ 
 

caccgCTACTTGGTGCGCTGGCGTT 

Reverse 5’->3’ 
 

aaacAACGCCAGCGCACCAAGTAGc 

ADNP Ex6-2 caccgCCTGATAGCCTATACGTTCA aaacAACGCCAGCGCACCAAGTAGc 

 
 
 

3.13. Gene expression analyses 
 
 

RNA was isolated from cell lines using TRIzol (Invitrogen) according to manufacturer’s 

protocol. 

Libraries were constructed using the Encore Complete RNA-Seq library system (NuGEN) 

according to manufacturer’s protocol. In brief, 150 ng of total RNA were used for first-strand 

cDNA synthesis and fragmented. cDNA was end repaired, ligated with barcoded adaptors,  

and the strand selected library was amplified with AMPure XP beads (Beckman Coulter). 

Barcoded libraries then were quantified, pooled at 10 nM concentration, and sequenced in 

multiplex on a HiSeq 1500 as 100 b single reads. Data then were demultiplexed, adaptor 

sequences and polyA tails were removed, and mapped to the hg19 human reference genome. 

Sequence reads for annotated genes were counted and comparative analyses of gene 

expression were done with the DEseq2 package with a <5 % false discovery rate (FDR). 

GSEA on fold change ranked gene lists were done and heat maps were drawn as described 
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above. Significantly upregulated genes were characterized according to signaling pathways 

using PANTHER version 10.0 (www.pantherdb.org). 

Expression data are accessible through GEO (GSE79395). 
 
 
 
3.14. Immunoblotting 

 
 
 
For Immunoblotting cell were lysed in RIPA buffer supplemented with protease and 

phosphatase inhibitors (Roche). Sonication was performed for 10 seconds at 85% amplitude 

with the HTU SONI130 (G. Heinemann Ultraschall- und Labortechnik). Protein 

concentrations were determined with the DC Protein Assay Reagents Package Kit (Biorad) 

according to manufacturer’s instructions and measured with a Varioskan Flash Multimode 

Reader using the SkanIt RE 2.4.3 software (Thermo Scientific). 50 µg of the protein samples 

supplemented with Laemmli buffer were denatured at 95°C for five minutes and separated on 

9 % SDS- polyacrylamide gel using the Mini-PROTEAN Tetra System (Biorad) and Tris- 

glycine-SDS running buffer. Proteins were transferred onto Immobilon-P PVDF Transfer 

Membranes using the PerfectBlue™ SEDEC blotting system (Peqlab) and transfer buffer with 

constant electrical current of 100 mA per gel for 45-90 minutes. In order to block unspecific 

protein binding the membranes were incubated in 5% skim milk/TBST for one hour. The 

incubation with primary antibodies diluted in TBST was done overnight at 4°C. The detection 

of proteins was accomplished using secondary antibodies conjugated with horseradish 

peroxidase (HRP) and a chemiluminescent ECL/HRP substrate (Immobilon) on the CF440 

Imager (Kodak).  Antibodies are listed in Table 7. 

 
 

3.15. Mass spectrometry (MS) 
 
 

For mass spectrometry (MS) proteome analysis, cells were lysed, sonicated, and centrifuged 

through QIA-Shredder devices (Qiagen). 10 µg of total protein was reduced with 4.5 mM 

dithiothreitol for 30 minutes, alkylated with 10 mM iodoacetamide for 20 minutes, and 

incubated overnight at 37 °C with 200 ng porcine trypsin (Promega). For separation an 

EASY-nLC  1000 chromatography system connected to an Orbitrap XL instrument (Thermo 

Scientific) was used. 2.5 µg of peptides in 10 µl 0.1 % formic acid were transferred to   
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PepMap100 C18 trap columns and separated at flow rates of 200 nl/minutes on analytical 

PepMap RSLC C18 columns (Thermo Scientific) using consecutive linear gradients from 2 % 

to 25 % solvent B (0.1 % formic acid, 100 % acetonitrile) in 260 minutes and 25 % to 50 % 

solvent B in 60 minutes. For data acquisition, a top five data dependent collision-induced 

dissociation method was used at  a needle voltage of 1.9 kV. MS raw data files were 

processed with the Homo sapiens subset of the UniProt database and MaxQuant V1.5.1 with 

the following parameters: (i) enzyme, trypsin; (ii) mass tolerance precursor, 10 ppm; (iii) 

mass tolerance MS/MS, 0.8 Da; (iv) fixed modification, carbamidomethylation of cysteine; 

(v) variable modifications, acetylation of protein N-terminus and oxidized methionine. FDRs 

at peptide and protein levels were set to 1 

%. Missing values for proteins detected in at least three replicates per group were handled by 

MaxQuant imputation. Proteins with log2 fold changes of ± 0.6 at P values < 0.05 were 

considered relevant. 

 
 

3.16. RAS-GTP assays 
 
 

For detection of active RAS-GTP, 500 μg cell lysates were incubated with GST-Raf1-RBD 

(Thermo Fisher) for 60 minutes at 4°C, washed 3 times with washing buffer (25mM Tris HCl, 

pH 7.2, 150 mM NaCl, 5 mM MgCl2, 1 % NP-40 and 5 % glycerol), eluted with SDS sample 

buffer (25 mM Tris HCl, pH 6.8, 2% glycerol, 4% SDS (w/v) and 0.05% bromophenol blue) 

and heated for 5 minutes at 95°C. Proteins were separated by SDS-PAGE, transferred onto 

PVDF membranes (Merck Millipore) and incubated with primary antibodies. Bands were 

visualized using HRP‐conjugated secondary mouse (Promega) or rabbit (Sigma) antibodies 

and ECL/HRP Substrate (Millipore). 
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3.17. Immunohistochemistry, immunofluorescence and imaging 
 
 

For immunohistochemistry, 5 µm tissue sections of CRC samples were deparaffinized, 

incubated with primary antibodies listed in Table 7 and stained on a Ventana Benchmark XT 

autostainer with an ultraView Universal DAB detection kit (Ventana Medical Systems). 

Scoring of ADNP and ȕ-catenin in colon cancer cases was done in a manner blinded for 

clinical outcome, and cases were classified semi-quantitatively for overall ADNP and ȕ- 

catenin expression intensity, ranging from absent or barely detectable to strong 

overexpression. Staining intensities of ADNP in tumor cells with low or high ȕ-catenin were 

quantified with ImageJ (NIH). 

For immunofluorescence, cultured cells were fixed in 4 % paraformaldehyde for 10 minutes, 

permeabilized with 0.2 % TritonX100 for 15 minutes, blocked with 3 % BSA in PBS for 30 

minutes and then incubated with for 60 minutes at RT with ADNP Ab (1:50), AXIN2 Ab 

(1:100), or DNMT1 Ab (1:100). Secondary Alexa Fluor 488 or 555 conjugated antibodies 

(Invitrogen) were used for visualization and nuclei were counterstained with DAPI (Vector 

Laboratories). Confocal fluorescence images were taken on a LSM 700 laser scanning 

microscope using the ZEN software (Carl Zeiss). 

For mutational analyses of tumor cell subpopulations, 1000 positive or negative tumor cells 

were laser-microdissected from p-ERK stained slides with a PALM system (Zeiss).  DNA 

from these tumor cell subpopulations then was separately isolated and subjected to KRAS 

mutation analysis as described above. For immune fluorescence, sections of CRC cases and 

xenografts were deparaffinized and antigens were retrieved in Target Retrieval Solution 

(Dako) or Epitope Retrieval Solution pH8 (Leica) for 20 minutes in a microwave oven. 

Spheroid cultures were fixed in 4 % paraformaldehyde and 5 % sucrose in PBS for 20 

minutes, permeabilized in 1 % Triton X-100 for 10 minutes, and blocked with 3 % BSA in 

PBS for 30 minutes at RT. Sections or spheroids then were incubated with primary antibodies 

listed in Table 7. Secondary Alexa Fluor 488 or 555 conjugated antibodies (Invitrogen) were 

used for visualization and nuclei were counterstained with DAPI (Vector Laboratories). 

Confocal fluorescence images were taken on a LSM 700 laser scanning microscope using the 

ZEN software (Zeiss). Co-localization of fluorescence signals was measured using Volocity 

6.1.1 software (PerkinElmer) and plotted as percentage values of maximum fluorescence 

intensity. 
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Table 7. Antibody details and concentrations for immunoblotting (WB), immune fluorescence (IF) and 

immunohistochemistry (IHC). 

 
 

Antibody 
 
ADNP 

Species 
 

Rabbit 

Manufacturer 
 

Proteintech 

WB 
 

1:1000 

IF  
 

1:50 

IHC 
 

1:100 

AXIN2 

DNMT1 

TLN1 

Rabbit 

Rabbit 

Mouse 

Cell Signaling 

Santa Cruz 

Santa Cruz 

1:1000 

1:1000 

1:1000 

1:50 

1:50 

 

LEF1 Rabbit Cell-Signaling 1:1000   

p44/42 MAPK (ERK1/2) 

Phospho p44/42 MAPK (Thr202/Tyr204) 

MEK1/2 (L38C12) 

Phospho-MEK1/2 (Ser221) (166F8) 

EGF Receptor (D38B1) 

Mouse 

Rabbit 

Mouse 

Rabbit 

Rabbit 

Cell Signaling 

Cell Signaling 

Cell Signaling 

Cell Signaling 

Cell Signaling 

1:10000 

1:1000 

1:10000 

1:1000 

1:1000 

 
 

1:100 

1:100 

Phospho-EGF Receptor (Tyr1068) (D7A5) 

H-Ras (sc-520) 

N-Ras (sc-519) 

Rabbit 

Rabbit 

Rabbit 

Cell Signaling 

Santa Cruz 

Santa Cruz 

1:1000 

1:1000 

1:1000 

  

K-Ras (sc-30) 

E-cadherin (24E10) 

Mouse 

Rabbit 

Santa Cruz 

Cell Signaling 

1:1000 

1:1000 

 
 

1:200 

 

SNAIL (C15D3) 

FRA1 (sc-28310) 

CD44 (DF1485) 

ASCL2 

EPHB2 (clone 3B3) 

Rabbit 

Mouse 

Mouse 

Mouse 

Mouse 

Cell Signaling 

Santa Cruz 

Dako 

US Biological 

Sigma-Aldrich 

1:1000 

1:1000 

1:1000 

1:1000 

1:1000 

1:50 

1:50 

 
 

1:100 

Laminin-5-Ȗβ (clone D4B5) Mouse Merck Millipore  1:250  

Fibronectin 1 

Ki67 (8D5) 

Active ȕ-catenin (clone 8E7) 

ȕ-Catenin 

Rabbit 

Mouse 

Mouse 

Mouse 

Sigma-Aldrich 

Cell Signaling 

Merck Millipore 

BD Biosciences 

 
 
 

1:1000 

1:50 

1:100 
 

 
1:200 

 

ȕ-Galactosidase 

GFP (4B10) 

GFP 

Tubulin (DM1A) 

Alexa Fluor 488 

Rabbit 

Mouse 

Rabbit 

Mouse 

Goat 

Thermo Fisher 

Cell Signaling 

Cell Signaling 

Sigma-Aldrich 

Invitrogen 

 
 

1:1000 
 

 
1:50000 

1:500 

1:180 

1:180 
 

 
1:500 

1:1000 

1:180 

Alexa Fluor 555 Goat Invitrogen  1:500  
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3.18. Proliferation, migration and invasion assays 
 
 

To assess cell proliferation 5x104 cells per well were seeded in 200 µl cell culture media on 

conductive microtiter plates (E-Plate 16) and monitored for up to 150 hours using an 

xCELLigence DP instrument (ACEA Bioscience). For transwell migration and invasion  

assays 8 µm ThinCert cell culture inserts (Greiner Bio-One) were used, which for invasion 

were coated with 100 µl of 1 mg/ml growth factor-depleted Matrigel (Corning). 1x105 

cells/well were seeded in serum free medium in the upper insert chambers and after 24 h 

DMEM with 10 % FCS was added to the lower chambers of the inserts. For HCT116 and 

SW1222 cells, inserts were removed after 1 or 3 days for migration, and 3 or 5 days for 

invasion, respectively. Cells were fixed with 4 % paraformaldehyde, stained with crystal 

violet, residual cells from the upper chamber were removed, and photomicrographs were 

taken. For quantification, staining was dissolved in 250 µl of 30 % acetic acid, and 

absorbance was measured at 590 nm on a Varioskan instrument (Thermo Scientific). 

 
 

3.19. Tumor xenografts and in vivo treatments 
 
 

Mouse experiments were reviewed and approved by the Regierung von Oberbayern. 
 

To determine effects of ADNP depletion, 8x106 SW1222 ADNP knockdown or control cells 

were suspended in β00 μl of a 1:1 mixture of PBS and growth factor-depleted Matrigel and 

injected subcutaneously into age and gender matched 6-8 week old NOD/SCID mice 

(NOD.CB17-Prkdcscid, The Jackson Laboratory). Tumor growth was measured over time 

using calipers. Matched mice carrying ADNP knockdown and control xenografts were 

sacrificed when knockdown tumors reached volumes of 500-900 mm3. For in vivo treatment 

studies, subcutaneous xenografts were grown as described above using SW1222, HCT116, or 

primary colon cancer cells. Mice were randomly assigned to control or treatment groups when 

tumor volumes reached 100 mm3. Ketamine (20 mg/kg in PBS) or as control PBS were 

administered daily intraperitoneally until tumors reached volumes of 1000-1300 mm3. 

Single clone expanded T84 or P-Tu colon cancer cells, either native or carrying the respective 

lentiviral constructs described above, were suspended in 100 μl of a 1:1 mixture of PBS and 

growth factor-depleted Matrigel (Corning), and injected subcutaneously into 6-8 week old 
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NOD/SCID mice for xenograft formation. In pLenti CMV rtTA3G Blast and pLenti 

CMVTRE3G-caMEK Puro transduced T84 colon cancer cell-derived xenografts, caMEK 

expression was induced with 1 mg doxycycline (dissolved in aqua ad injectabilia) in p.o. For 

lineage tracing, pLenti lox-mCh- LacZ and pLenti PGK-GFP-CreERT2 or pLenti SRE-GFP-

CreERT2 transduced P-Tu colon cancer cell-derived xenografts were treated once with 3 mg 

tamoxifen (dissolved in 10% ethanol and 90 % sunflower oil) by i.p. injection. Treatments 

were done when tumor diameters reached 7 mm. Non-treated tumors were included as 

controls. Mice were sacrificed and tumors were removed 4 days after  caMEK induction, and 

2 or 21 days for short and long term lineage tracing experiments, respectively. All xenograft 

tumors were formalin fixed and paraffin embedded for further analyses. 
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4. Results 
 
4.1. Identification of ADNP as a repressor of WNT signaling in colon cancer 

 
The results presented in this section are part of the following publication: 

 
Blaj, C., Bringmann, A., Schmidt, E.M, Urbischek, M., Lamprecht, S., Fröhlich, T., Arnold, 

G., Krebs, S., Blum, H., Hermeking, H., Jung, A., Kirchner, T., Horst, D. ADNP is a 

therapeutically inducible repressor of WNT signaling in colorectal cancer. Clinical Cancer 

Research, 2016 Nov 30. 

4.1.1. ADNP is overexpressed in colon cancer cells with high WNT signaling activity 
 
 
 
To identify transcription factors that are linked to WNT signaling in colon cancer, we 

comparatively analyzed three previously published gene expression profiles of colon cancer 

cell subpopulations with low and high WNT activity (Horst et al., 2012a; Louis Vermeulen et 

al., 2010). Among few genes that were consistently upregulated in tumor cells with high  

WNT signaling, we identified ADNP as the only overexpressed gene encoding a transcription 

factor (Table 8). Direct comparison confirmed that increased ADNP expression coincided  

with high WNT target gene expression and, conversely, with repression of genes linked to 

tumor cell differentiation (Figure 8 A). We then analyzed an independent data set of 41  

normal mucosa samples and 457 colon cancers from The Cancer Genome Atlas (TCGA) by 

Gene Set Enrichment Analyses (GSEA), and found that ADNP mRNA expression on average 

was 2.73 fold increased in colon cancer compared to normal mucosa, and that ADNP in colon 

cancer samples strongly correlated with genes enriched for WNT target gene signatures 

(Figure 8 B; 2). On the protein level, ADNP was overexpressed at the infiltrative tumor edge 

of colorectal cancers, where it co-localized with strong nuclear ȕ-catenin expression, a marker 

for colon cancer cells with high WNT activity (Figure 8 C-E). Moreover, in adenomas of FAP 

patients (n=23 adenomas), known to carry APC gene mutations (Smith et al., 1993), ADNP 

was overexpressed when compared to normal mucosa (Figure 8 C). In addition, even  in 

normal mucosa, epithelial cells at the crypt base, where WNT activity is increased 

(Humphries & Wright, 2008), showed slightly increased ADNP expression (Figure 8 F). 

These findings demonstrated consistent upregulation of ADNP in colorectal cancer cells and 

precursor lesions with high WNT activity on mRNA and protein levels, and suggested a 

possible regulation of ADNP by WNT. 
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Table 8. Fold change (F.C.) of consistently deregulated genes in three gene expression data sets of colon 

cancer cells with high vs. low WNT activity, and F.C. in differential expression of these genes in TCGA 

data in colon cancer vs. normal mucosa. P values are t test results. 

 
WNT high vs. low dataset  TCGA dataset   

Gene symbol F.C.  P    value    F.C P value 
INHBB 4.19 0.00005  0.42 0.03477 

DPEP1 4.01 0.00039  0.6 0.00344 

FN1 3.11 0.00794  0.67 0.19989 

ITPR2 2.76 0.00003  1.16 0.43835 

DRAM1 2.75 0.0009  1.82 <0.00001 

KIF3C 2.48 0.00013  1.32 0.18091 

KRT23 2.38 0.00021  0.6 0.00018 

PROM1 2.04 0.0002  1.01 0.82154 

RGS19 2 0.00064  1.37 0.60719 

APOBEC3B 1.95 0.00226  1.5 <0.00001 

TCTN1 1.91 0.00284  2.34 <0.00001 

ANXA9 1.9 0.00001  1.31 <0.00001 

VSNL1 1.86 0.00135  1.14 <0.00001 

EML1 1.79 0.04144  0.97 <0.00001 

FLNA 1.78 0.00012  0.93 <0.00001 

SORBS1 1.77 0.01099  0.87 <0.00001 

BCAS3 1.76 0.00219  2.13 0.16157 

CEP68 1.71 0.00561  2.35 0.07352 

SESN1 1.61 0.00002  1.04 0.00226 

SEPT6 1.59 0.00061  1.72 <0.00001 

SEZ6L2 1.56 0.00294  1.35 <0.00001 

H2AFJ 1.53 0.00221  1.47 0.25736 

TTLL5 1.43 0.00167  3.34 0.00099 

MSRB2 1.42 0.01328  2.19 0.46093 

HYAL2 1.36 0.00463  1.62 <0.00001 

CCNF 1.35 0.00203  2.35 <0.00001 

CDC45 1.33 0.00322  2.51 <0.00001 

SUPT7L 1.29 0.00539  4.2 <0.00001 

GINS1 1.29 0.00009  1.75 <0.00001 

VPS54 1.24 0.00001  2.91 0.1922 

VPS13B 1.22 0.00259  2.3 0.02021 

ADNP 1.1 0.0015  2.73 <0.00001 

PLCE1 0.7 0.00017  1.61 <0.00001 

FA2H 0.67 0.00024  1.79 0.00141 

SULT1B1 0.6 0.00004  0.96 <0.00001 

RARRES1 0.58 0.00007  0.57 0.01459 

SPINK5 0.45 0.01115  0.7 <0.00001 

GCNT3 0.43 0.00179  0.71 <0.00001 

FCGBP 0.41 0.00084  0.52 <0.00001 
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Figure 8. ADNP is overexpressed in colon cancer cells with high WNT activity (A) Heat maps of ADNP, 

selected WNT targets and differentiation factors in these three data sets (D1-D3) of colon cancer cells with high 

and low WNT activity. (B) GSEA for genes ranked by Pearson correlation (Pearson r) to ADNP expression for 

two WNT target gene signatures by Herbst et al. (green curve: NES = 1.70, P < 0.001) and Nusse et al. (orange 

curve: NES = 1.36, P = 0.09) in 457 RNA-Seq data sets of colon cancer from TCGA. (C) Immunohistochemistry 

on serial sections of colon cancer (upper panels; scale bar, 100 µm) and a colonic adenoma of an FAP patient 

(lower panels; scale bar, 200 µm) illustrate upregulation of ADNP in areas with increased ȕ-catenin staining 

(arrows). (D) Immunostaining for ADNP and ȕ-catenin on serial sections of two colon cancers. (E) Staining 

intensities of  ADNP  in colon  cancer  cells (n =  500,  5  different  tumors)  with high or  low nuclear ȕ-Catenin 



48  

expression. P value is t test result. (C) Immunostaining for ADNP in normal mucosa. Right panels are 

magnifications of areas boxed in left panel. Scale bars, 100 µm. 

 

 
In order to test if ADNP expression directly responds to WNT, we stimulated WNT signaling 

in HEK293 cells by the GSKγȕ inhibitor lithium chloride (LiCl) or by WNT3A, and then 

evaluated ADNP mRNA and protein levels. Surprisingly, although TOPflash luciferase assays 

and overexpression of ȕ-catenin and AXIN2 indicated strong induction of WNT signaling, 

there were no significant effects on ADNP expression (Figure 9 A-B). Also, suppressing  

WNT activity by silencing ȕ-catenin in colorectal cancer cell lines had no significant impact 

on ADNP protein levels (Figure 9 C). Hence, while ADNP expression strongly coincided with 

WNT signaling activity in colon cancer, it apparently is no direct WNT target gene. 

 

Figure 9. ADNP is not affected 

by WNT manipulation. (A, B) 

Dual-luciferase assays with 

TOPflash reporter constructs, 

immunoblotting, and qRT-PCR 

results on indicated proteins or 

genes after stimulation of 

HEK293 cells with LiCl (A) or 

WNT3A (B). P values are t test 

results, data are mean ± SD, n ≥ 

3. (C) Immunoblotting of 

indicated proteins after 

transfection of HCT116 and 

SW1222 colon cancer cells with 

siRNA against ȕ-Catenin. 

Numbers below immunoblots 

indicate fold change by 

densitometry. 
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4.1.2. ADNP is a repressor of WNT signaling in colon cancer 
 
 
 
To obtain initial insights into ADNP function in colorectal cancer, we next analyzed the 

effects of ADNP knockdown on gene expression in HCT116 colon cancer cells using RNA- 

seq. Depletion of ADNP by siRNA caused 1.4 fold or more deregulation of 4.82 % of the 

transcriptome. Interestingly, upregulated genes were significantly more frequent than 

downregulated genes (3.69 % vs. 1.13 %, p<0.0001), suggesting predominantly repressive 

functions of ADNP on the transcriptome (Figure 10 A). To identify potential targets of ADNP 

repression, we therefore focused on genes that were upregulated by ADNP knockdown and 

screened them for functional and pathway associations using the PANTHER analysis tool. 

Surprisingly, these analyses revealed that WNT signaling was the pathway most prominently 

related to genes affected by ADNP depletion (Figure 10 B). We therefore compared our gene 

expression data set with WNT target gene signatures using GSEA, and found that indeed 

upregulated WNT target genes were significantly enriched upon ADNP depletion (Figure 10 

C), with overexpression of typical WNT targets such as DNMT1, CD44, AXIN2 and TCF7 

(Figure 10 D). These findings suggested repression of WNT signaling by ADNP. 

Next, to determine effects on the proteome level, we used mass spectrometry analysis and 

identified deregulated proteins after ADNP silencing. Consistent with our transcriptome data, 

we found that upregulated proteins were significantly more abundant than downregulated 

proteins (2.8% vs. 1.43%, p<0.0001, Figure 10 E). Furthermore strong correlation between  

our transcriptome and proteome results among 58 factors that were significantly deregulated  

in both data sets indicated consistency within these analyses (Pearson r2=0.52, P=0.001,   data 

not shown). Among proteins that showed most significant upregulation were the WNT target 

DNMT1, a known driver of cell proliferation and interaction partner of ȕ-Catenin, as well as 

Talin-1, a recently identified key node of WNT signaling with roles in cell migration, 

invasion, and angiogenesis of human cancers (Figure 10 F, Table 9) (Bayerlová et al., 2015; 

Bostanci et al., 2014). 
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Figure 10. ADNP depletion shows de-repressive effects on transcriptome, proteome and WNT signaling in 

colon cancer cells. (A-D) Gene expression analyses for ADNP knockdown in HCT116 cells. (A) Heat map 

results of genes with significantly (P < 0.05) differential expression and 1.4 or more fold change. Rows represent 

gens and columns represent biological replicates. (B) Top ten results of PANTHER analysis showing frequencies 

of upregulated genes linked to pathways indicated. (C) GSEA with genes ranked by fold change for WNT target 

gene signatures by Herbst et al. (green curve: NES = 1.54, P < 0.001) and Nusse et al. (orange curve: NES = 

1.36, P = 0.04). (D) Heat map of selected WNT targets among differentially expressed genes. (E, F) Proteome 

analyses for ADNP knockdown in HCT116 cells. (E) Heat map results of proteins with significant (P < 0.05) 

differential expression. Rows represent proteins and columns represent biological replicates. (F) Volcano plot of 

protein expression. Red and blue dots indicate proteins with significant up- or downregulation (P < 0.05; abs.  

fold change >1.5), respectively. Arrows highlight most significantly deregulated proteins. Legends on heat maps 

indicate fold change 
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Table 9. Proteome analysis results upon ADNP depletion. Proteins with significant up- or downregulation are 

listed (P < 0.05; abs. fold change >1.5) 

 

 
Gene symbol fold change P value 
SCAMP1 17.3 0.04499 

RBP1 3.87 0.00969 

PFDN1 3.65 0.02272 

CBFB 3.29 0.04149 

PPP1R14B 3.18 0.00034 

ATP5I 2.18 0.02753 

IPO11 2.06 0.00486 

CLIC4 1.98 0.01883 

MOV10 1.95 0.00502 

HMGCS1 1.93 0.01151 

MSI1 1.89 0.00327 

TLN1 1.81 6.1E-06 

TBCD 1.75 0.04971 

YWHAH 1.73911 0.00148 

DSP 1.71421 0.00017 

DNMT1 1.65193 0.00004 

MTPN 1.59213 0.00055 

DCBLD2 1.57902 0.04529 

CRABP2 1.56989 0.01137 

KIF2A 1.52558 0.04091 

ALDH9A1 1.51196 0.00036 

GLRX5 0.64654 0.01303 

POLR2G 0.55182 0.00224 

SMAP 0.54448 0.04437 

ASF1B 0.52641 0.01293 

HINT2 0.49374 0.02004 

DYNC1I2 0.48191 0.02935 

ADNP 0.45216 0.00144 

UBQLN4 0.44124 0.00544 

NAPRT1 0.39740 0.04786 

THRAP3 0.20366 0.02930 
 
 
 
 
 
 
 

We further addressed the effects of ADNP on WNT signaling in HCT116 and SW1222 colon 

cancer cells in vitro. In both cell lines ADNP silencing increased expression of active-ȕ- 

catenin and the WNT target genes DNMT1, AXIN2 and LEF1 (Figure 4A). Immune 

fluorescence of HCT116 cells confirmed these results with cytoplasmic and membranous, or 

nuclear increase of AXIN2 and DNMT1, respectively (Figure 4B). In addition, upon ADNP 
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silencing, both cell lines showed elevated WNT activity when assessed by TOPflash 

luciferase reporter assays (Figure 11 C). In contrast, overexpression of ADNP reduced ȕ- 

catenin and LEF1 (Figure 11 D), and repressed WNT signaling in TOPflash assays (Figure 11 

E). These results further corroborated the hypothesis, that ADNP negatively regulates WNT 

signaling in colorectal cancer with repression of factors related to cell proliferation and other 

malignant traits of colorectal cancer cells. 

 
 
 

 
 

Figure 11. ADNP represses WNT signaling in colon cancer in vitro. (A-C) Effects of ADNP or control (Ctrl) 

knockdown by siRNA on HCT116 and SW1222 colon cancer cells, harvested 48 h after transfection. (A) 

Immunoblotting of indicated proteins on whole cell lysates. (B) Representative confocal immunofluorescence 
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images of HCT116 cells for indicated proteins and DAPI as nuclear counterstain. Scale bars, 20 µm. (C) Dual- 

luciferase assays for HCT116 and SW1222 colon cancer cells, simultaneously transfected with indicated siRNAs 

and TOPflash reporter constructs. (D, E) Effects of transient ADNP overexpression by transfection of HCT116 

and SW122 with p4.2-hADNP compared to empty p4.2 vector for 24 h. (D) Immunoblotting of indicated  

proteins on whole cell lysates. (E) Dual-luciferase assays for HCT116 and SW1222 colon cancer cells, 

simultaneously transfected with p4.2-hADNP or p4.2 and TOPflash reporter constructs. Numbers below 

immunoblots indicate fold change by densitometry. P values are t test results, data are mean ± SD, n ≥ 3. 

 
 

4.1.3. ADNP represses malignant traits and tumor growth of colon cancer 
 
 

Because WNT and its associated factors DNMT1 and Talin-1 are known to regulate 

proliferation, migration and invasion of colorectal cancer (Bayerlová et al., 2015; Bostanci et 

al., 2014), we tested the functional relevance of ADNP loss for these malignant traits in 

HCT116 and SW1222 colon cancer cells. We depleted ADNP by two different shRNAs, and 

also generated ADNP knockout cells by CRISPR/Cas9 genome editing (Figure 12 A, Figure 

13 A). Importantly, ADNP depletion or knockout caused dramatic increases in transwell cell 

migration and invasion of both colon cancer cell lines as determined by Boyden chamber 

assays (Figure 12 B-C, Figure 13 C). Of note these effects could be counteracted in ADNP 

knockout cells by concomitant depletion of ȕ-Catenin, DNMT1, or Talin-1 (Figure 13 B- D). 
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Figure 12. ADNP depletion increases migration, invasion and proliferation of colon cancers cells in vitro. 

(A-D) Effects of stable ADNP depletion by two different shRNAs against ADNP (sh1/2 ADNP) versus 

unspecific control shRNA (sh Ctrl) on HCT116 and SW1222 colon cancer cells. (A) Immoblotting for indicated 

proteins. Numbers below immunoblots indicate fold change by densitometry. (B, C) Representative micrographs 

(left panels) and quantification (right panels) of migrated or invaded tumor cells in transwell assays for indicated 

cell lines. (D) Representative proliferation kinetics based on cell quantification by impedance measurements. 

Data are mean, n ≥ γ, P values are t test results. 
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Figure 13. Depletion of β-Catenin, DNMT1, or TLN-1 conteracts the effects of the ADNP kockout.    (A- 

B) Immunoblotting of indicated proteins on whole cell lysates in ADNP wild-type (WT) or knockout (KO) cell 

lines. Numbers below immunoblots indicate fold change by densitometry. (C) Representative micrographs (left 

panels) and quantification (right panels) of migrated or invaded tumor cells in transwell assays for indicated 

ADNP WT and KO cell lines, treated with indicated siRNAs or control siRNA (siCtrl). (D) Representative 

proliferation kinetics based on cell quantification by impedance measurements. Data are mean, n ≥ γ. ȕ-Cat = ȕ- 

catenin. 
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In addition, ADNP depletion or knockout significantly increased cell proliferation of both cell 

lines as determined by impedance measurements (Figure 12 D, Figure 13 D). Moreover, 

ADNP overexpression showed opposite effects on invasion and migration (Figure 14). 

 
 

Figure 14. ADNP 

overexpression inhibits 

migration and invasion in vitro. 

Representative micrographs (left 

panels) and quantification (right 

panels) of migrated or invaded 

HCT116 or SW1222 tumor cells 

with transient ADNP 

overexpression by transfection 

with p4.2-hADNP compared to 

empty p4.2 vector for 24 h in 

transwell assays. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To further assess effects in vivo, we then injected 8x106 SW1222 cells with and without stable 

ADNP knockdown subcutaneously into flanks of NOD/SCID mice and measured tumor 

growth over time. In line with our in vitro data, tumor xenografts derived from SW1222 cells 

with ADNP knockdown grew significantly faster, yielding larger tumors, with darker color 

due to increased intratumoral hemorrhage, when compared to tumor xenografts with normal 

ADNP levels (Figure 15 A). Immunohistochemical staining of these tumors for Ki67 revealed 

that proliferation was increased upon ADNP knockdown in vivo, explaining these observed 

differences in tumor growth and size (Figure 15 B). Taken together, these data showed strong 

effects of ADNP depletion on migration, invasion and proliferation of colon cancer cells in 
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vitro as well as tumor growth in vivo, and suggested a tumor suppressor function of ADNP 

through repression of WNT signaling in colorectal cancer. 

 
 
 

 
 

Figure 15. ADNP depletion increases in vivo tumor growth of colon cancers. (A, B) Effects of stable ADNP 

depletion (sh2 ADNP, n = 8) compared to control transduction (sh Ctrl, n = 8) of SW1222 colon cancer cells on 

xenograft tumor growth in vivo. (A) Photograph and growth curves of SW1222 colon cancer xenografts 

transduced with indicated shRNA constructs. P values are t test results, data are mean ± SE. (B) 

Immunohistochemistry for ADNP and the proliferation marker Ki67, and quantification of Ki67 in xenograft 

tumors. Data are mean ± SD, P values are t test results, n = 8. Scale bars, 50 µm. 

 
 

4.1.4. Induction of ADNP by sub-narcotic ketamine suppresses tumor growth in vivo 
 
 
 
Previous studies indicated that ADNP expression can be pharmacologically induced by sub- 

narcotic doses of ketamine in cortical neurons (Brown et al., 2015; Turner et al., 2012). 

Exploiting this potential, we treated colon cancer cell lines and primary colon cancer cells, 

which had high endogenous WNT activity (Figure 16 A-B), with low dose ketamine and 

observed slight but steady increases of ADNP protein levels by immunoblotting (Figure 16  

C). To determine the effects of ketamine-induced ADNP induction on WNT signaling, we 

then subjected these cell lines and primary colon cancer cells to TOPflash luciferase assays 
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and indeed observed significant reductions in WNT activity under ketamine treatment (Figure 

16 D). 

 
 

Figure 16. Low dose ketamine induces ADNP and represses WNT activity (A) Immunoblotting of indicated 

proteins on whole cell lysates of SW1222, HCT116 cell lines and primary colon cancer (P-Tu) cells. Numbers 

below immunoblots indicate fold change by densitometry. (B) Immunostaining of SW1222, HCT116  and 

primary colon cancer (P-Tu) xenografts for ȕ-Catenin. Scale bars, 50 µm. (C, D) Effects of in vitro treatment of 

SW122, HCT116, and primary colon cancer cells (P-Tu) with 100 µM ketamine. (C) Immunoblotting for 

indicated proteins on indicated time points after addition of ketamine to culture media. Numbers below 

immunoblots indicate fold change by densitometry. (D) Dual-luciferase assays for indicated colon cancer cells 

transfected with TOPflash reporter constructs under treatment with ketamine or PBS as control. Data are mean ± 

SD, P values are t test results, n ≥ γ. 
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Importantly, these relative repressive effects of ketamine on WNT activity were decreased in 

ADNP knockout cell lines, while the effects of a direct WNT inhibitor (XAV939) remained 

unchanged, suggesting that WNT repression by ketamine in part depended on ADNP 

induction (Figure 17 A-B). 

 
 
 

 
 

Figure 17. WNT repression by ketamine partially depends on ADNP induction (A-B) Dual-luciferase assays 

for indicated ADNP wild-type (WT) or knockout (KO) colon cancer cells transfected with TOPflash reporter 

constructs. Treatments with PBS, ketamine or the WNT inhibitor IWP-2, as indicated. 

 

 
Additionally, similar to the effects of ADNP overexpression, ketamine reduced migration and 

invasion of colon cancer cells (Figure 18). 
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Figure 18. Ketamine reduced migration and invasion of colon cancer cells in vitro. Representative 

micrographs (left panels) and quantification (right panels) of migrated or invaded HCT116 or SW1222 tumor 

cells in transwell assays, treated with PBS or 200 µM ketamine for 24 h, as indicated. Data are mean ± SD, P 

values are t test results, n ≥ γ. 

 

 
Next, we treated NOD/SCID mice bearing colon cancer cell line or primary colon cancer 

xenografts with sub-narcotic doses of ketamine and observed tumor growth over time. 

Ketamine treatment significantly slowed tumor growth (Figure 19 A) and prolonged tumor 

survival (Figure 19 B). These findings implicate that, through induction of ADNP and WNT 

repression, sub-narcotic doses of ketamine can inhibit colorectal cancer growth and tumor 

progression in vivo. 
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Figure 19. Low dose ketamine slows tumor growth of colon cancer xenografts. (A, B) Impact of daily 

treatment with ketamine (20 mg/kg) or PBS as control on xenograft growth of indicated colon cancer cells or 

primary colon cancer (P-Tu), shown as growth curves (A) and tumor specific survival in Kaplan-Meier plots (B). 

P values are t test results and data are mean ± SE in (A) or log-rank test results in (B). 

 
 

4.1.5. High ADNP expression predicts good outcome of colorectal cancer patients 
 
Finally we tested for ADNP expression and disease outcome of colorectal cancer patients. 

Using immunohistochemistry, we scored overall ADNP expression in a collection of 221  

stage I and II human colorectal cancers with recorded clinical follow-up data. ADNP 

expression varied substantially between cases, ranging from negative or barely detectable 

(score 0) to strong expression (score 3, Figure 20 A, Table 10). Using Kaplan-Meier statistics, 

we found that differential ADNP expression was strongly linked to cancer specific survival. 

All patients with strong ADNP expression completely survived their follow-up period (score 

3, five-year survival rate 100 %). In contrast, moderate (score 2, five-year survival rate 88.7 

%), weak (score 1, five-year survival rate 78.2 %), and barely detectable or negative ADNP 

expression (score 0, five-year survival rate 60.4 %) were significantly linked to cancer 

specific deaths at increasing frequencies (Figure 21 A). Testing for disease free survival 

yielded comparable, yet slightly less stark results (Figure 21 A). We then categorized ADNP 

expression into low (scores 0 and 1) and high (scores 2 and 3), and tested for an overall 

association with ȕ-catenin expression levels. Although not significant, high  ADNP 

expression tended to be more frequent in cases with high nuclear ȕ-catenin (Table 10). 



62  

Interestingly however, high and low ADNP expression separated survival probabilities 

particularly well in the subset of colorectal cancer cases with high nuclear ȕ-catenin 

expression (Figure 21B). We then evaluated co-occurrences of ADNP expression and other 

clinical/pathological variables and found that T-stages were significantly associated with 

different ADNP expression scores, with a tendency of lower T-stages linked to higher ADNP 

expression. Also low tumor grade tended to associate with low ADNP expression, while the 

other core clinical variables age and sex were not linked to ADNP (Table 10). Including these 

variables and ȕ-catenin expression levels into proportional hazards regression analyses 

revealed that ADNP expression was an independent predictor of favorable outcome (Table 

11). Collectively, high ADNP expression was a marker of good prognosis in colorectal cancer 

patients which is in agreement with its tumor suppressive function in this malignancy. 

 
 
 

 
 

Figure 20. Assessment of ADNP (A) and nuclear β-catenin (B) immunostaining in a collection of 221 

primary human colorectal cancers. (A) Tumors were assigned semi-quantitative expression scores from 0 (no 

or barely detetable ADNP staining) to 3 (strong ADNP staining). (B) Tumors were assigned scores from 0 (no 

nuclear ȕ-Catenin) to 3 (most tumor cells with strong nuclear ȕ-Catenin) and accordingly categorized as ȕ- 

catenin low (score 0-1) and ȕ-catenin high (score 2-3). Scale bars, 100 µm. 
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Figure 21. Loss of ADNP expression indicates poor prognosis in colorectal cancer. (A) Kaplan-Meier plots 

for different ADNP expression scores for tumor specific survival and disease free survival indicate significant 

poorer outcomes with decreasing ADNP expression. (B) Kaplan-Meier plots for low and high ADNP expression 

in all cases, and in colon cancer subsets with low or high expression of nuclear ȕ-catenin. P values indicate log- 

rank test results. Ratios on curves indicate the number of events over the number of patients per group. 
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Table 10. Clinical/pathological data and ADNP expression in colorectal cancer. 
 

Characteristics Total ADNP expression score   P 

  0 1 2 3  

All patients 221 (100) 33 (14.9) 99 (44.8) 78 (35.3) 11 (5.0)  

Age (y, median 69)       

≤ 68 110 (49.8) 16 (14.8) 45 (41.7) 41 (38.0) 6 (5.6) 0.794 

≥ 69 111 (50.2) 17 (15.0) 54 (47.8) 37 (32.7) 5 (4.4)  

Gender       

Male 121 (54.8) 14 (11.5) 59 (48.4) 42 (34.4) 7 (5.7) 0.344 

Female 100 (45.2) 19 (19.2) 40 (40.4) 36 (36.4) 4 (4.0)  

T-stage (UICC)       

T1 1 (0.5) 0 (0) 1 (100) 0 (0) 0 (0) 0.01 

T2 36 (16.3) 1 (2.7) 18 (48.6) 15 (40.5) 3 (8.1)  

T3 176 (79.6) 27 (15.4) 77 (44.0) 63 (36.0) 8 (4.6)  

T4 8 (3.6) 5 (62.5) 3 (37.5) 0 (0) 0 (0)  

Tumor grade (WHO)       

low grade 200 (90.5) 29 (14.6) 86 (43.2) 73 (36.7) 3 (5.5) 0.308 

high grade 21 (9.5) 4 (18.2) 13 (59.1) 5 (22.7) 0 (0)  

 
Row percent values are given in parentheses 

     

 
 
 

Table 11. Multivariate analysis of cancer specific survival. 
 

Variables Cancer specific survival  

 HR (95% confidence interval) P 

Age (≥ vs < median) 2.0 (1.05-3.86) 0.034 

Gender (F vs M) 0.8 (0.44-1.59) 0.598 

T-stage 2.5 (1.1-5.8) 0.028 

Tumor grade 1.2 (0.53-2.82) 0.637 

ADNP expression 

score 

 
 
0.6 

 
 
(0.37-0.87) 

 
 

0.01 
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4.2. Analysis of differential MAPK signaling in colorectal cancer 
 
 

The results presented in this section are part of the following publication: 
 
Blaj, C., Schmidt, E.M., Lamprecht, S., Hermeking, H., Jung, A., Kirchner, T., Horst, D. 

Oncogenic Effects of High MAPK Activity in Colorectal Cancer Mark Progenitor Cells and 

Persist Irrespective of RAS Mutations. Cancer Research, 2017 Apr 1;77(7) 

4.2.1. MAPK activity is heterogeneous in colorectal cancer 
 
 

To characterize MAPK activity in colorectal cancer, we stained a collection of 160 cases, half 

of which were KRAS wild-type and half of which had activating KRAS mutations (Table 1), 

for phosphorylated ERK (p-ERK). Cases with detectable p-ERK (59.4 %) generally showed a 

heterogeneous staining pattern and were composed of p-ERK positive and negative tumor cell 

subpopulations. In specific, p-ERK strongly marked colon cancer cells at the  infiltrative 

tumor edge, including tumor cells that invaded the stroma by apparently detaching from the 

gland forming tumor mass (Figure 22 A). This staining pattern was observed in KRAS wild- 

type and mutant colon cancer cases (Figure 22 B). To exclude that heterogeneous p-ERK 

expression in KRAS mutant cancers was caused by a mixture of KRAS mutant and wild-type 

tumor cell subclones, we then microdissected p-ERK positive and negative colon cancer cells 

in 3 of these cases, and generally found an identical KRAS mutation status in both 

subpopulations. Next, we assessed MAPK activity through staining for FRA1, a component   

of the AP1 transcription factor complex. Similar to p-ERK, all cases with detectable FRA1 

expression (75.0 %) showed a heterogeneous distribution with clearly predominant expression 

in infiltrative tumor cells at the leading tumor edge that again was irrespective of the tumors’ 

KRAS mutation status (Figure 22 A-B). Furthermore, we injected cells of a KRAS wild-type 

primary colon cancer (P-Tu) or KRAS mutant T84 colon cancer cells into NOD/SCID mice  

for xenograft formation. In both cases adenocarcinomas formed that showed heterogeneous 

expression of p-ERK and FRA1 with predominant staining at the tumor edge (Figure 22 C). 

We then constructed a lentiviral MAPK reporter with GFP expression under control of 

multimerized serum response elements (pLenti SRE-GFP), expanded single cell clones of 

transduced  P-TuSRE-GFP    and  T84SRE-GFP    colon  cancer  cells,  and  s.c.  injected  them     into 

NOD/SCID mice. In the resulting xenograft tumors, GFP expression was strongly 

heterogeneous and again predominantly localized at the tumor edge (Figure 22 D). These 
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findings demonstrated that MAPK signaling is strongly regulated in colon cancers with and 

without activating KRAS mutations by locoregional cues, with colon cancer cells at the 

infiltrative tumor edge displaying the highest MAPK activity levels. 

 
 
 

 
 

Figure 22. Heterogeneous MAPK activity in colorectal cancer. (A) Representative immunostainings for p- 

ERK and FRA1 in human colorectal cancer specimens with indicated KRAS mutation status. WT, KRAS wild- 

type. Arrowheads indicate positive staining of tumor cells at the leading tumor edge. Arrows indicate tumor cells 

without staining. Scale bars 100 μm. (B) Frequencies of colorectal cancers (n = 160) without detectable staining 

(NEG) or heterogeneous staining (HET) for p-ERK and FRA1. KRAS mutation status is indicated by distinct 

colors. WT, KRAS wild-type. (C) Immunostainings of primary (P-Tu) or T84 colon cancer xenografts (n ≥ γ) for 

p-ERK and FRA1. Arrowheads indicate positive staining. Scale bars 50 μm. (D) Upper panel: Lentiviral MAPK 

reporter pLenti SRE-GFP. LTR, long terminal repeat; SRE, serum response element; PRE, posttranscriptional 

regulatory element. Mid panel: Expansion of single transduced colon cancer cells and injection into NOD/SCID 

mice for xenograft formation. Lower panel: Immunostainings of pLenti SRE-GFP transduced P-Tu or T84 single 

cell derived xenografts (n ≥ γ) for GFP. Arrowheads indicate positive staining. Scale bars 50 μm. 
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4.2.2. MAPK signaling is regulated through wild-type RAS isoforms in colorectal cancer 
 

 
To determine the underlying regulations, we next analyzed MAPK signaling upon stimulation 

by growth factor receptors in colon cancer cells with and without KRAS mutations in vitro. 

Within the MAPK pathway, stimulation of EGFR is transduced through the RAS-RAF-MEK- 

ERK signaling cascade. Expectedly, stimulation of KRAS wild-type colon cancer cells with 

EGF caused strong phosphorylation of ERK, indicating pathway activation, while blocking 

EGFR with cetuximab prevented this effect (Figure 23 A). Surprisingly, we observed exactly 

the same response upon EGF treatment of KRAS mutant colon cancer cell lines that also was 

abolished by cetuximab (Figure 23B). Moreover, in both KRAS wild-type and mutant colon 

cancer cells, stimulation by EGF led to phosphorylation of EGFR and MEK in addition to 

ERK, indicating full pathway response (Figure 23 C). These findings suggested that MAPK 

signaling remains responsive to external stimulation of EGFR in KRAS wild-type and mutant 

colon cancer cells. To shed light on the underlying mechanism, we then used GTP pulldown 

assays that expectedly showed predominant GTP loading of KRAS and NRAS in KRAS wild- 

type colon cancer cells (Figure 23 D). In contrast, KRAS mutated colon cancer cells showed 

constitutively GTP bound KRAS, while EGF stimulation caused additional GTP loading of 

either wild-type NRAS or HRAS or both (Figure 23 D). Collectively, these findings 

demonstrate that remaining wild-type RAS isoforms contribute to sustained regulation of 

MAPK signaling in KRAS mutant colon cancers. 

 
 

4.2.3. Colorectal cancer cells with high MAPK activity have a distinct phenotype 
 
 

To learn about the relevance of regulated MAPK signaling in colon cancer, we further 

characterized the phenotype of colon cancer cell subpopulations with low and high pathway 

activity. We examined colon cancer specimens with and without KRAS mutations by double 

immune-fluorescence. Tumor cells with high p-ERK expression at the leading tumor edge 

showed concomitant overexpression of nuclear ȕ-catenin (Figure 24 A-B), indicating 

coincident activation of MAPK and WNT signaling. Furthermore, as indicated by Ki67 

staining, proliferation was strongly reduced in colon cancer cells with high p-ERK staining 

when compared to gland forming tumor cells with lower or absent p-ERK staining (Figure 24 

C-D). 
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Figure 23. RAS mediated MAPK pathway regulation in colorectal cancer cells. (A-C) 

Colon cancer cell lines were serum starved, treated with 10 μg/ml cetuximab or PBS for 

two hours, and then stimulated with 40 ng/ml EGF, or not stimulated. Immunoblotting on 

whole cell lysates for indicated proteins 10 minutes after stimulation in (A) KRAS wild-type 

(WT) cell lines, (B) KRAS mutated cell lines, and (C) KRAS WT or mutated cell lines. (D) 

RAS activity in cell lines with indicated KRAS mutation status was determined by RAS-GTP 

pulldown assays and immunoblotting for indicated proteins. n ≥ γ 
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At the same time, highly p-ERK positive tumor cells exhibited a significantly reduced 

expression of the epithelial cell adhesion molecule E-cadherin (Figure 24 E-F) and increased 

expression of LAMC2 (Figure 24 G-H), both indicating epithelial-mesenchymal transition 

(EMT) in CRC. Taken together, tumor cells with high MAPK activity at the infiltrative tumor 

edge of CRC displayed increased WNT signaling, decreased proliferation, and had undergone 

an EMT. 

 
 
 

 
 

Figure 24. Phenotype of colorectal cancer cells with differential MAPK activity. (A, C, E, G) Representative 

immune fluorescence for indicated proteins in human colorectal cancer specimens. Arrowheads indicate p-ERK 

positive tumor cells at the leading tumor edge. Arrows indicate p-ERK negative gland forming tumor cells. Scale 

bars 100 μm. (B, D, F, H) Quantification of co-immune fluorescence signals for indicated proteins. Percentage 

values of relative fluorescence intensity (% RFI) for individual tumor cells (n ≥ 700) of different colorectal 

cancer samples (n ≥ 7) are shown. P values are results of linear regression analyses. 
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4.2.4. MAPK signaling regulates EMT in colorectal cancer 
 

 
In order to determine the impact of MAPK signaling on the observed tumor cell phenotype, 

we transduced KRAS wild-type and mutant colon cancer cells with two lentiviral vectors 

encoding a doxycycline inducible constitutively active MEK1 (caMEK-Tet-On, Figure 25 A). 

Treatment of P-TucaMEK-Tet-On  and T84caMEK-Tet-On  colon cancer cells with doxycycline   caused 

strong up-regulation of p-ERK and FRA1, indicating the expected activation of downstream 

MAPK signaling (Figure 25B). 

 
 

Figure 25. Effects of MAPK overactivation in colorectal cancer cells. (A) Lentiviral vectors for doxycycline 

inducible overexpression (TET-On) of constitutively active MEK (caMEK). CMV, cytomegalovirus promoter; 

BlastR,    blasticidin    resistance;    PuroR,    puromycine    resistance;    LTR,    long    terminal    repeat;    PRE, 
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posttranscriptional regulatory element. (B) Immunoblotting of indicated proteins on whole cell lysates of pLenti 

CMV rtTA3G Blast and pLenti CMVTRE3G-caMEK Puro primary (P-TucaMEK-Tet-On) and T84caMEK-Tet- 

On colon cancer cells at indicated time points after doxycycline (DOX) stimulation. n ≥ γ. (C) Immune 

fluorescence for indicated proteins in T84SRE-GFP/caMEK-Tet-On xenografts (n ≥ γ), 4 days after treatment 

with doxycycline (+DOX) or without doxycycline treatment (-DOX). Scale bars 50 μm. (D) Immune 

fluorescence for indicated proteins in 3D spheroids of P-TuSRE-GFP colon cancer cells (n ≥ γ) with or without 

LPA stimulation for 4 days. Arrowheads indicate radial cytoplasmic extensions upon LPA stimulation. Scale 

bars 50 μm. E-cad, E-cadherin; ABC, active ȕ-catenin. 

 
 
 
 

Importantly, caMEK induction also caused elevated expression of active ȕ-catenin (ABC), 

indicating increased WNT activity, as well as induction of SNAI1 and a decrease of E- 

cadherin,  both  indicating  an  EMT  phenotype.  Furthermore,  induction  of  caMEK  caused 

pronounced expression of the putative colon cancer stem cell antigens CD44, ASCL2, and 

EPHB2. We then additionally transduced T84caMEK-Tet-On colon cancer cells with a pLenti 

SRE-GFP reporter (Figure 22 D), yielding T84SRE-GFP/caMEK-Tet-On, expanded single cell clones, 

injected them into NOD/SCID mice for xenograft formation, and examined the effects of 

caMEK induction by doxycycline in vivo. Similar to our results in cell culture, doxycycline 

treatment induced the expression of FRA1 and GFP, indicating MAPK activation, increased 

ȕ-catenin and SNAI1 expression, and repressed expression of E-cadherin (Figure 25 C). To 

further evaluate effects of MAPK on EMT, we then stimulated in vitro spheroids of P-TuSRE- 

GFP colon cancer cells with the MAPK activator LPA. While tumor spheroids without 

stimulation formed rounded edges, LPA stimulation caused tumor cells to form radial 

cytoplasmic extensions with spindle cell morphology (Figure 25 D). Moreover, we found an 

upregulation of FN1 and LAMC2 with concomitant downregulation of E-cadherin upon LPA 

stimulation (Figure 25 D). Collectively, these findings demonstrated induction of EMT and 

expression of putative cancer stem cell antigens upon MAPK stimulation in KRAS wild-type 

and mutant colon cancer cells. 
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4.2.5. Lineage tracing reveals a progenitor cell phenotype of colon cancer cells with high 

MAPK activity 

 
 
Ectopic activation of MAPK signaling caused increased WNT signaling and expression of 

markers that had been previously related to tumor-initiating colon cancer stem cells (Hanahan 

& Weinberg, 2011; Herbst et al., 2014; Lustig et al., 2002). To test if colon cancer cells with 

high MAPK activity represent a progenitor cell compartment within growing tumors in vivo, 

we developed a Cre-lox based lineage tracing system that allowed to genetically label and 

follow tumor cells and their progeny over time. We designed two lentiviral vectors that either 

expressed GFP and CreERT2 under control of the MAPK sensitive serum response element 

(pLenti SRE-GFP-CreERT2) or of a ubiquitously active PGK promoter (pLenti PGK-GFP- 

CreERT2) (Figure 26 A). We then created a second lentiviral vector that upon Cre activation 

irreversible recombined with a switch from mCherry to LacZ expression (pLenti lox-mCh- 

LacZ) (Figure 26 B). Next, we transduced primary colon cancer cells with pLenti lox-mCh- 

LacZ and either pLenti SRE-GFP-CreERT2 (P-TuSRE-lin) or pLenti PGK-GFP-CreERT2 (P- 

TuPGK-lin), expanded single cell clones, and injected them into NOD/SCID mice (Figure 26 C). 
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Figure 26. Lineage tracing of colon cancer cells with high MAPK activity. (A) Lentiviral vectors for GFP 

and CreERT2 expression under control of a MAPK responsive promoter (pLenti SRE-GFP-CreERT2) or a 

ubiquitously active promoter (pLenti PGK-GFP-CreERT2). (B) Cre-responsive lentiviral vector with a double- 

floxed inverted LacZ gene. Upon Cre activation, the LacZ gene will be irreversibly inverted and expressed under 

control of the CMV promoter. mCherry expression can be used as a transduction marker. LTR, long terminal 

repeat; SRE, serum response element; PRE posttranscriptional regulatory element. (C) P-TuSRE-lin and control 

P-TuPGK-lin xenografts (n ≥ γ) were derived from single cells that were double transduced with pLenti lox- 

mCh-LacZ and pLenti pLenti SRE-GFP-CreERT2 or pLenti PGK-GFP-CreERT2, respectively. 

(D) Experimental schedule for lineage tracing. (E) Immunostaining for LacZ and (F) quantification of LacZ 

positive (LacZ+) tumor cells in PTuSRE-lin and P-TuPGK-lin xenografts (n ≥ γ) at indicated time points after 

tamoxifen induced recombination. Scale bars 50 μm. *** P < 0.001; * P < 0.05 by t test. 
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After xenograft growth, a single tamoxifen pulse was given to induce recombination (Figure 

26 D) that after 2 days caused labelling of individual tumor cells by LacZ in P-TuSRE-lin and P- 

TuPGK-lin xenografts (Figure 26 E). Importantly, at this early time point, recombined LacZ 

positive tumor cells were located towards the leading tumor edge in P-TuSRE-lin xenografts, 

whereas  in  P-TuPGK-lin   xenografts  they  were  randomly  distributed  throughout  the   tumor 

(Figure 26 E). Moreover, when examining tumors 21 days after tamoxifen induction, the 

number of recombined LacZ positive tumor cells had significantly increased throughout the 

tumor in P-TuSRE-lin xenografts, whereas in contrast, P-TuPGK-lin xenografts showed a loss of 

LacZ labelled tumor cells (Figure 26 F). These findings demonstrated a higher potential of 

initially labelled tumor cells in P-TuSRE-lin than in P-TuPGK-lin xenografts for maintaining tumor 

cell lineages in colon cancer. 

To further characterize recombined colon cancer cells in P-TuSRE-lin  xenografts, we   analyzed 

them for co-localization with GFP, indicating high MAPK activity. As expected, 2 days after 

tamoxifen induction most recombined LacZ positive tumor cells showed high  GFP 

expression, indicating predominant labeling of tumor cells with high MAPK activity (Figure 

27 A-B). Importantly, when examining tumors 21 days after recombination, the LacZ label 

had extended into tumor cell subpopulations with low GFP expression, and thus,  lower 

MAPK activity (Figure 27 A-B). We then tested for co-localization of recombined cells and 

nuclear ȕ-catenin as a marker for high WNT activity. 2 days after recombination, LacZ 

labeled tumor cells had significantly higher levels of nuclear ȕ-catenin than LacZ negative 

tumor cells (Figure 27 C-D). Similar to our findings for GFP, the label had extended into 

tumor cell subpopulations without nuclear ȕ-catenin staining 21 days after recombination 

(Figure 27 C-D). Collectively, these data demonstrated a significant contribution of colon 

cancer cell subsets with high MAPK activity and concomitantly high WNT activity to lineage 

persistence in vivo. 
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Figure 27. Phenotypic switch of tumor cells during lineage outgrowth. (A, C) Immune fluorescence for 

indicated proteins in P-TuSRE-lin xenografts (n ≥ 3) at indicated time points after tamoxifen induced 

recombination. Scale bars 50 μm. (B, D) Quantification of GFP and ȕ-catenin immune fluorescence in LacZ 

positive (LacZ+) or negative (LacZ-) tumor cells at indicated time points after tamoxifen induced recombination. 

Percentage values of relative fluorescence intensity (% RFI) of individual tumor cells (n ≥ β00)  in ≥ γ biological 

replicates are shown. *** P < 0.0001; ** P < 0.01; n.s., non-significant by t test. 
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5. Discussion 
 

 
5.1. ADNP is a therapeutically inducible repressor of WNT signaling in colorectal cancer 

 
 

Constitutive activation of WNT signaling by inactivating mutations in APC is hallmark of 

most colorectal cancers and drives tumor progression via target genes that promote cell 

proliferation, invasion, and spawn putative cancer stem cell traits (Brabletz et al., 2005; The 

Cancer Genome Atlas Network, 2012; Vermeulen et al., 2010). Therefore, identifying 

effectors or regulators of WNT signaling which are involved in governing these malignant 

traits may hold keys for a deeper understanding of colon cancer biology, and the development 

of more effective therapies (Anastas & Moon, 2013). In this context, we here identified 

upregulation of the transcription factor ADNP in colon cancer cells with high WNT signaling 

activity. Although differential expression of ADNP in colon cancer cell subpopulations with 

high and low WNT activity was relatively small, we demonstrate high consistency of this 

finding on mRNA and protein levels. However, a direct regulation of ADNP through WNT 

remained unclear, since modulation of WNT signaling in colon cancer and other cells yielded 

no measurable effects on ADNP expression. How ADNP expression itself is regulated in 

colon cancer cells therefore still needs to be determined, keeping in mind that ADNP is  

known to engage in auto-regulatory feedback loops, as others report (Aboonq et al., 2012). 

Consistent upregulation of ADNP in colon cancer cells with high WNT activity prompted us 

to further investigate its functional relevance. Unexpectedly, ADNP depletion caused 

significant upregulation of WNT target genes, as assessed on multiple levels of the 

transcriptome, proteome, for individual factors, and in reporter assays, while, in line with  

these findings, overexpression of ADNP in colon cancer cells showed opposite effects. ADNP 

therefore exhibited a previously unknown function in suppressing WNT activity in colon 

cancer. In specific, ADNP knockdown caused overexpression of WNT targets such as 

DNMT1 and the recently identified WNT signaling node Talin-1, which are  reported drivers 

of tumor cell proliferation, invasion and migration, respectively (Bayerlová et al., 2015; 

Bostanci et al., 2014). Indeed, we found that these attributes of malignancy were strongly 

unleashed in colorectal cancer cells under ADNP knockdown or knockout in vitro, and that 

ADNP depletion strongly enhanced tumor growth in vivo. ADNP therefore acted as a
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tumor suppressor gene in colorectal cancer and our data suggest that this may mainly be 

transduced through WNT repression. Due to strongest ADNP expression in tumor cells with 

high WNT activity, its function may thus partially mirror that of WNT feedback inhibitors such 

as AXIN2 (Lustig et al., 2002). However, although these effects may be mediated through 

chromatin remodeling, since ADNP has been shown to interact with SWI/SNF complexes that 

also are known to impact on WNT signaling (Mandel & Gozes, 2007; Wang, Haswell, & 

Roberts, 2014), the exact mechanism of ADNP function, and the detailed dynamics of its WNT 

and tumor suppressive effects in colon cancer yet remain to be determined. Moreover, since 

ADNP knockdown also upregulated genes of other pathways driving colon cancer progression, 

such as angiogenesis and EGFR signaling (Hanahan & Weinberg, 2011; Normanno et al., 

2006), we hypothesize that tumor suppressor effects of ADNP may additionally transduce 

through other pathways than WNT. 

ADNP can be pharmacologically induced in neurons by ketamine (Brown et al., 2015; Turner 

et al., 2012) and our data demonstrate how this aspect may translate into a therapeutic 

approach for colorectal cancer. Treatment with sub-narcotic ketamine induced ADNP, 

suppressed WNT signaling, inhibited migration and invasion of colon cancer cells, and 

significantly slowed tumor growth of colon cancer xenografts in vivo. Although the 

mechanism of ADNP induction by ketamine is currently unknown (Brown et al., 2015), we 

demonstrate that the effects of ketamine treatment were similar to those of ADNP 

overexpression, and decreased in ADNP knockout cells, suggesting that the tumor suppressive 

effects of ketamine in part depend on ADNP-mediated WNT repression. These findings are of 

specific interest when considering that transcription factors are usually difficult drug targets 

due to their binding promiscuity and the intrinsically disordered nature of their binding sites 

(Dunker & Uversky, 2010). Moreover, direct targeting of WNT signaling poses substantial 

challenges due to complexity of its signaling cascade and cross talk from various other 

signaling pathways (Kahn, 2014; Niehrs, 2012; Voronkov & Krauss, 2013). The benefit for 

colorectal cancer patients with advanced disease by repressing WNT through ADNP  

induction with low dose ketamine may quite easily be tested as an add-on to existing  

treatment regimens, since this substance and its pharmacological characteristics are well 

studied (Kurdi et al., 2015). Of course side effects of this treatment are to be carefully 

evaluated and strictly balanced with potential therapeutic benefits, especially since others 

reported adverse effects of ketamine for patients with other malignancies, such as breast 

cancer (He et al., 2013). 
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Although ADNP was consistently linked to nuclear ȕ-catenin expression within individual 

colorectal cancers, we were surprised to find only a weak and non-significant overall 

association of ADNP expression and nuclear ȕ-catenin in our tissue collection. This may be 

attributed to heterogeneous genetic backgrounds in colorectal cancers with differential 

influence of other signaling pathways on WNT activity that may not necessarily impact on 

nuclear ȕ-catenin (Ormanns et al., 2014; The Cancer Genome Atlas Network, 2012). 

However, in support of the idea that ADNP functions as a tumor suppressor, we found that 

high ADNP expression predicted better outcomes for cancer and disease free survival in 

human colorectal cancer, while this was independent of other core clinical variables. Because 

ADNP predicted differential outcome particularly well in cases with high nuclear ȕ-catenin 

expression levels that also have been attributed more aggressive behavior in some studies (Z. 

Chen et al., 2013), ADNP may predominantly exhibit its protective role in this subset of 

colorectal cancer cases. Since more than 50 % of colorectal cancers progress and/or develop 

metastases during the course of the disease, markers predicting prognosis and individual risk 

may guide personalized therapy regimens (Langan et al., 2013). In this context, patients with 

low stage colorectal cancer but loss of ADNP expression may benefit from increased clinical 

attention and intensified or adjuvant treatment protocols. In regard to ketamine treatment, 

since individual colon cancers showed significantly different expression levels of ADNP, it 

may be a useful biomarker in predicting therapy response, a hypothesis to be addressed in 

further pre-clinical and eventually clinical trials. 

In conclusion, we here identified ADNP as a transcription factor that is overexpressed in  

colon cancer cells with high WNT signaling activity, counteracts WNT activity in these tumor 

cells, and exhibits tumor suppressor functions. These characteristics may be therapeutically 

exploited since ADNP is inducible by low dose ketamine treatment which reduces tumor 

growth in pre-clinical xenograft models in vivo. Moreover, in human colorectal cancer  

patients ADNP predicts superior clinical outcome. We propose that these potentials of ADNP 

as a prognostic marker and therapeutic target may be considered in further trials to improve 

management and treatment options for colorectal cancer patients. 
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5.2. High MAPK activity induces EMT and marks progenitor cells in colorectal cancer 
 
 
 
In this work we demonstrate strong intratumoral heterogeneity and sustained regulation of 

MAPK signaling in KRAS wild-type but also in KRAS mutant CRC. We show that in human 

CRC tissues and in primary and cultured colon cancer xenografts with clonal KRAS mutation 

status, high MAPK activity is consistently restricted to tumor cells at the leading tumor edge, 

while more centrally and glandular differentiated tumor cell subpopulations have lower 

MAPK activity. This observation at first is unexpected when considering that oncogenic 

mutations in KRAS are assumed to constitutively activate MAPK signaling in all clonally 

derived colon cancer cells (Fearon, Hamilton, & Vogelstein, 1987; Hatzivassiliou et al., 2013; 

Khambata-Ford et al., 2007). However, our in vitro data demonstrate that in both KRAS wild- 

type and mutant colon cancers, the inducibility of MAPK signaling is retained at all levels 

upon growth factor stimulation. Furthermore, we show that in KRAS mutated CRC,  

regulation of MAPK signaling is maintained through the remaining wild-type RAS isoforms. 

Our findings thus parallel recent observations in other RAS mutated cancer cells in which the 

capacity to activate downstream MAPK signaling is not saturated (Young, Lou, & 

McCormick, 2013). When additionally considering that growth factor secreting stromal cells 

surround colon cancers at the leading tumor edge (Brabletz et al., 2001; Vermeulen et al., 

2010), heterogenous MAPK signaling may likely be caused by differential stimulation of 

tumor cells by the tumor microenvironment, irrespective of the tumors’ KRAS mutation 

status. Of note, since activating mutations in RAS decrease EGFR sensitivity (Young et al., 

2013), this may still explain why despite maintained MAPK regulation, KRAS mutated CRCs 

respond less to EGFR inhibition therapies by antibody drugs, such as cetuximab (Lievre et al., 

2008). However, in light of WNT as another signaling pathway that remains regulated in APC 

mutated tumors (Horst et al., 2012a), the paradigm of constitutive pathway activation through 

oncogenic mutations may generally require reconsideration. 

Colon cancer cells with high MAPK activity had a distinct phenotype with decreased E- 

cadherin expression and increased expression of the ZEB1 target LAMC2, indicating loss of 

epithelial and gain of mesenchymal characteristics (Sánchez-tilló et al., 2011). Moreover, 

ectopic activation of MAPK signaling caused loss of E-cadherin and upregulation of SNAI1, 

and inducer of EMT (Peinado, Olmeda, & Cano, 2007). In line with these findings, previous 

studies demonstrated that ectopic expression of FRA1 or constitutively active MEK1 induced 

EMT in colon cancer cells and was linked to tumor progression (Bakiri et al., 2015; Diesch  et 
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al., 2014). Because we show similar effects of MAPK activation in colon cancer cells with 

and without activating KRAS mutations, we propose that MAPK signaling generally regulates 

EMT in CRC. Moreover, our data may provide a rationale for this sustained MAPK 

regulation, since we found that colon cancer cells with high MAPK activity undergoing EMT 

had low proliferation rates. Differentially high and low MAPK activity may thus be required 

to balance infiltrative tumor cells undergoing EMT, and tumor cell proliferation forming new 

tumor mass. We therefore suggest that the full malignant potential of CRC may depend on 

differential MAPK signaling, allowing for phenotypic plasticity that generates tumor cell 

subpopulations with distinct phenotypes fostering tumor growth and progression, respectively. 

In addition to an EMT phenotype, colon cancer cells with high MAPK activity showed strong 

staining for nuclear ȕ-Catenin, indicating high WNT activity (Fodde & Brabletz, 2007). 

Moreover, activation of MAPK signaling caused increased expression of CD44, ASCL2, and 

EPHB2. Because these markers and high WNT activity have previously been linked to 

putative colon cancer-initiating cells (Dalerba et al., 2007; Merlos-Suárez et al., 2011; Stange 

et al., 2010; Vermeulen et al., 2010), we hypothesized that high MAPK activity may indicate 

a progenitor cell phenotype in CRC. Using a lineage tracing strategy, we demonstrate a higher 

contribution of colon cancer cells with high MAPK activity to persistent tumor cell lineages, 

when compared to a random tumor cell subpopulation. Moreover, we show lineage outgrowth 

of colon cancer cells with high MAPK and high WNT activity into cancer cell subpopulations 

with lower activity for both signaling pathways. Therefore, our findings suggest that high 

MAPK activity characterizes stem-like tumor cells that continuously give rise to more 

differentiated tumor cell subpopulations, and might hence be regarded as the cancerous 

equivalent of an organ based adult tissue stem cell (Barker, Van Oudenaarden, & Clevers, 

2012). Our approach differs from previous descriptions of colon cancer stem cells that were 

operationally defined by tumor-initiating potential in limiting-dilution xenografts, which had 

the caveat of low reproducibility (Gallinger et al., 2007; Horst et al., 2012; Shmelkov et al., 

2008; Vermeulen et al., 2010). Inducing a tumor in mice may rather require robustness of the 

injected tumor cell but may not directly assess its hierarchical level within the original tumor 

(Clevers, 2011). In contrast to such tumor-initiating studies that capture an event that yet has 

to build a new tumor, our approach marks a growth-fueling progenitor cell compartment 

within the mature tumor architecture. We therefore believe that lineage tracing advances the 

cancer stem cell field and will improve our understanding on  how tumor cell subpopulations 

contribute to cancer outgrowth and persistence. 
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Summary 
 

Constitutively active WNT signaling in colorectal cancers is hallmark and driver of malignant 

progression in these tumors. However, therapeutic targeting of WNT signaling is difficult due 

to anticipated side effects on WNT dependent normal tissue homeostasis. Using 

transcriptome, proteome and cell biology approaches, we identified the transcription factor 

ADNP as a repressor of WNT signaling in colon cancer that can be induced 

pharmacologically by treatment with sub-narcotic doses of ketamine. Treatment results in 

significantly slowed tumor growth in pre-clinical xenograft models of colon cancer. 

Moreover, high ADNP expression in human colorectal cancers predicts improved disease 

outcome. Our findings indicate ADNP as a tumor suppressor and promising prognostic 

marker, and ketamine treatment with ADNP induction as a potential therapeutic approach that 

may add to current treatment protocols with benefits for colorectal cancer patients. 

Beside mutational WNT activation, about 40 % of colorectal cancers have mutations in  

KRAS with downstream activation of MAPK signaling that promotes tumor invasion and 

progression. We demonstrate that MAPK signaling shows strong intratumoral heterogeneity, 

and surprisingly remains regulated in colorectal cancer, irrespective of the tumors’ KRAS 

mutation status. Using primary colorectal cancer tissues, xenografts and MAPK reporter 

constructs, we show that tumor cells with high MAPK activity specifically reside at the 

leading tumor edge, cease to proliferate, undergo epithelial-mesenchymal transition (EMT), 

and express markers related to colon cancer stem cells. In KRAS mutant colon cancer cells, 

regulation of MAPK signaling is preserved through remaining wild-type RAS isoforms. 

Moreover, using a lineage tracing strategy, we provide evidence that high MAPK activity 

marks a progenitor cell compartment of growth fueling colon cancer cells in vivo. Our results 

imply that differential MAPK signaling balances EMT, cancer stem cell potential, and tumor 

growth in colorectal cancer. 

The positive crosstalk between WNT and MAPK signaling in colorectal cancer has strong 

implications for the development of combination therapies and a better understanding of the 

underlying mechanisms may lead to improved therapeutic strategies. 
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Zusammenfassung 
 
 
In Kolorektalkarzinomen wird die maligne Progression durch eine konstitutive Aktivierung 

des WNT Signalwegs gekennzeichnet und gefördert. Der gezielte therapeutische Eingriff in 

den WNT Signalweg, erweist sich jedoch, aufgrund von voraussichtlichen WNT-abhängigen 

Nebeneffekten auf die Homeostase des gesunden Gewebes, als schwierig. Mittels 

Transkriptom-, Proteom- und zellbiologischen Analysen, haben wir den Transkriptionsfaktor 

ADNP als einen WNT-Repressor in Kolorektalkarzinomen identifiziert, der mit 

subnarkotischen Ketamindosen pharmakologisch induziert werden kann. Die Behandlung 

führt zu einer signifikanten Verlangsamung des Tumorwachstums in preklinischen Xenograft- 

Modellen. Ferner, prognostiziert eine hohe ADNP-Expression einen verbesserten 

Krankheitsverlauf. Unsere Ergebnisse deuten darauf hin, dass ADNP ein Tumorsuppressor 

und vielversprechender prognostischer Marker ist. Eine ADNP-Induktion durch 

Ketaminbehandlung ist eine mögliche therapeutische Strategie zur Verbesserung aktueller 

klinischer Protokolle. 

Zusätzlich zu einer mutationsbedingten Aktivierung des WNT Signalwegs, weisen ungefähr 

40% der Kolorektalkarzinomen KRAS-Mutationen und eine nachgeschaltete MAPK 

Signalaktivierung auf, die die Tumorinvasion und Tumorprogression fördert. Wir konnten 

zeigen, dass der MAPK-Signalweg eine starke intratumorale Heterogenität aufweist und, 

unabhängig vom KRAS-Mutationsstatus, in Kolorektalkarzinomen reguliert bleibt. Mittels 

Analysen von Primärgeweben aus Kolorektalkarzinomen und dem Einsatz von Xenografts 

und MAPK Reporterkonstrukten, zeigen wir, dass Tumorzellen mit hoher MAPK-Aktivität  

am Tumorrand lokalisiert sind. Gleichzeitig hören sie auf zu proliferieren, durchlaufen eine 

epithelial-mesenchymale Transition und exprimieren Tumorstammzell-assoziierte Marker. 

Die Regulierung des MAPK-Signalwegs bleibt in KRAS mutierten Kolonkrebszellen durch 

die anderen Wildtyp-RAS-Isoformen erhalten. Darüber hinaus, konnten wir mittels „lineage 

tracing“ Experimenten nachweisen, dass eine hohe MAPK-Aktivität eine Population von 

Vorläuferzellen markiert, die für das Tumorwachstum in vivo verantwortlich ist. Unsere 

Ergebnisse implizieren, dass die differentielle MAPK-Signalaktivität für die Erhaltung des 

Gleichgewichts zwischen EMT, Tumorstammzellpotential und Tumorwachstum in 

Kolorektalkarzinomen zuständig ist. 

Das Zusammenspiel zwischen der WNT- und MAPK- Signaltransduktion in 

Kolorektalkarzinomen    hat    weitreichende    Implikationen    für    die    Entwicklung     von 
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Kombinationstherapien. Ein besseres Verständnis der grundlegenden Mechanismen könnte zu 

effizienteren therapeutischen Strategien führen. 
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LRP Low-density lipoprotein receptor-related protein 

MAPK Mitogen-activated protein kinase 
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Nod/SCID Non-obese diabetic/severe combined immunodeficiency 
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PCP Planar cell polarity 

PBS Phosphate-buffered saline 

(q)PCR (quantitative) Polymerase chain reaction 

PDGF Platelet-derived growth factor 

p-ERK Phospho-ERK 
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PI3K phosphoinositide-3-kinase 

Prom1 Prominin-1 

RAF Rapidly accelerated fibrosarcoma 
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RT Room temperature 

RTK Receptor tyrosine kinases 
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