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1 Zusammenfassung 
 
Major Depression ist eine belastende, weit verbreitete Krankheit.  Derzeit wird sie meist 

mit Antidepressiva behandelt, welche die Verfügbarkeit von Serotonin und/oder Norad-

renalin im synaptischen Spalt erhöhen. Eine hohe Anzahl von depressiven Patienten re-

agiert jedoch entweder gar nicht oder in insuffizientem Maße auf diese Erstlinienthera-

pie: Niedrige Remissions- und hohe Chronifizierungsraten sowie der verzögerte Wirk-

eintritt von bis zu 6 Wochen deuten darauf hin, dass die Monoaminmangelhypothese 

unzulänglich ist.  Daher bedarf es der Entwicklung neuer – mehr spezifischer, potenterer 

und schneller wirkender - Antidepressiva . In der Pathogenese von verschiedenen 

Krankheiten wie zum Beispiel diverser Krebsarten und neurodegenerativen Erkrankun-

gen wie Parkinson, Alzheimer und Huntington scheint die Autophagie, ein intrazellulä-

rer Prozess eine große Rolle zu spielen, bei dem Zellen Makromoleküle und Zellbestand-

teile abbauen und wiederverwerten.  Neue Studien konnten zeigen, dass Marker der 

Autophagie sowie in den Prozess eingebundene Moleküle wie z.B. Beclin1 auch nach 

einer antidepressiven Therapie mit Serotonin Wiederaufnahmehemmern erhöhte Werte 

aufweisen. Darüber hinaus scheint eine Stabilisierung von Beclin1 (und somit eine Au-

tophagieinduktion) einen antidepressiven Effekt auszulösen.  In der hier vorliegenden 

Arbeit wurden 24 Medikamente, die in einem Hochdurchsatz-Screen als SKP2 E3 ligase 

Hemmer identifiziert worden sind, als potentielle neue Antidepressiva in primären Rat-

tenastrozyten in nichttoxischer Dosis gestestet.  Marker/Moleküle wie Beclin1, LC3 und 

Vps34 sowie der Zellzyklus Inhibitor p27 dienten der Western Blot Analyse. Die Appli-

kation von Bafilomycin A1 und die Quantifizierung des p62 Abbaus ermöglichten die 

Beobachtung des autophagischen Flusses. Im Ergebnis hat sich gezeigt, dass Medika-

mente wie Salinomycin, Celecoxibe, Etoposide, Xanthohumol und Perphenazine einen 
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positiven Effekt auf die Autophagie hatten und somit für eine antidepressive Therapie 

erfolgsversprechend sein könnten. Salinomycin wurde ferner im Forced Swim Test in 

Mäusen untersucht. Mäuse, die damit injiziert worden waren, strampelten signifikant 

mehr und ließen sich weniger treiben als die Kontrollgruppe der Tiere, die mit Sodium-

chlorid behandelt worden waren. Dies deutet auf einen antidepressiven Effekt von Sali-

nomycin hin. Die Erhöhung der Autophagie scheint ein großes Potential für die Behand-

lung von Depressionen zu besitzen. In weiteren Studien muss jedoch exploriert werden, 

ob wirklich die Autophagie, der Umsatz von Proteinen an sich, oder die durch die Ini-

tatorkomplexe angestoßenen Membranprozesse der antidepressiven Wirkung zugrunde 

liegen. Bevor entsprechende Medikamente in klinischen Studien getestet werden kön-

nen, bedarf es außerdem weiterer Experimente mit einer größeren Palette von auto-

phagischen Markern und einer Erforschung ihrer Bluthirnschrankengängigkeit. 

2 Abstract 
 

Major depression is a debilitating and highly prevalent disease that up to now has been 

treated predominantly with antidepressants that increase the availability of serotonin 

and/or noradrenaline in the synaptic cleft. High rates of non-responders to first line 

therapy and high levels of chronicity within patients, however, demonstrate the limits of 

the monoamine hypothesis of depression. Thus the search for novel, more-rapidly acting 

and more effective antidepressants has become the focus of much research during the 

past years. Autophagy, a process whereby cells salvage and recycle cellular macromole-

cules or organelles involving dynamic reorganization and fusion of membranous struc-

tures in response to stress, has been implicated as playing a role in several diseases, 

namedly different cancers and neurodegenerative diseases such as Parkinson’s, Hun-

tington’s and Alzheimer’s. It has recently been observed that autophagic markers such 
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as Beclin1 were increased following treatment with serotonin reuptake inhibitors and 

conversely, a stabilisation of Beclin1 (and therefore autophagic pathways) might lead to 

an antidepressant-like effect. 24 substances that were found to be inhibitors of the SKP2 

E3 ligase via a high throughput screen were tested as potential autophagy inducers and 

thus novel antidepressants and primary rat astrocytes were treated with them in non-

toxic concentrations. Effects on autophagic markers or molecules involved in autophagy 

such as Beclin1, LC3, and Vps34, as well as the cyclin dependent kinase p27, were inves-

tigated via Western Blot. In addition, effects on autophagic flux were determined with 

Bafilomycin A1 and p62 degradation assays.  As a result, I could show that drugs such as 

Salinomycin, Celecoxibe, Etoposide, Xanthohumol and Perphenazine increased au-

tophagic markers, making them promising candidates for the treatment of major de-

pression. The effects of Salinomycin were further tested on mice subjected to a forced 

swim test. Here, Salinomycin was found to increase struggling and to decrease the time 

spent floating, thus exhibiting an antidepressant-like effect. An increase in autophagy 

seems to harbor a large psychopharmacological potential. Yet it still needs to be seen 

whether autophagy, the recycling of proteins per se, or the membrane processes kicked 

off by the initiator complexes underly the antidepressant action. Hence, before proceed-

ing to test the respective substances in clinical trials, further research is needed to ex-

pand the range of autophagic markers examined, check the drugs’ blood-brain-barrier 

crossing potentials, and test the substances in further animal experiments.  

3 Introduction 
 

3.1 Epidemiology and Definition of Major Depression 
 
Major Depressive Disorder (MDD) is a medical condition that affects about 350 million 

people worldwide.1 Unipolar depressive disorders are the third leading cause of the 
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total global burden of disease2, taking into account premature mortality, disability and 

loss of health. The life-time prevalence of MDD is 20% in men and 30% in women3. MDD 

is an “affective” disorder, predominantly concerning mood, but also affecting sleep 

patterns and cognition. The core signs and symptoms are outlined in Box 1.  

Box 1: Clinical diagnosis of major depression 
According to the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5), Major Depression120, also referred to as Major Depressive Disorder, is 
defined as:  
A. Five (or more)of the following symptoms have be present during the same 2-week 
period and represent a change from previous functioning; at least one of the symptoms 
is either (1) depressed mood or (2) loss of interest or pleasure.  
Note: Do not include symptoms that are clearly attributable to another medical condi-
tion. 

1) Depressed mood most of the day, nearly every day, as indicated by either 
subjective report (e.g. feels sad, empty, hopeless) or observation made by 
others (e.g. appears tearful) 

2) Markedly diminished interest or pleasure in all, or almost all, activities most 
of the day, nearly every day (as indicated by either subjective account or ob-
servation) 

3) Significant weight loss when not dieting or weight gain (e.g., a change of 
more than 5% of body weight in a month), or decrease or increase in appetite 
nearly every day 

4) Insomnia or hypersomnia nearly every day 

5) Psychomotor agitation or retardation nearly every day (observable by oth-
ers, not merely subjective feelings of restlessness or beings slowed down) 

6) Fatigue or loss of energy nearly every day 

7) Feelings of worthlessness or excessive or inappropriate guilt (which may be 
delusional) nearly every day (not merely self-reproach or guilt about being 
sick) 

8) Diminished ability to think or concentrate, or indecisiveness, nearly every 
day (either by subjective account or as observed by others) 

9) Recurrent thoughts of death (not just fear of dying), recurrent suicidal idea-
tion without a specific plan, or a suicidal attempt or a specific plan for com-
mitting suicide 

B. The symptoms cause clinically significant distress or impairment in social, occupa-
tional, or other important areas of functioning. 

C. The episode is not attributable to the physiological effects of a substance or to anoth-
er medical condition. 
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Note: Criteria A-C represent a major depressive episode.  

Note: Responses to a significant loss (e.g. bereavement, financial ruin, losses from a 
natural disaster, a serious medical illness or disability) may include the feelings of in-
tense sadness, rumination about the loss, insomnia, poor appetite, and weight loss not-
ed in Criterion A, which may resemble a depressive episode. Although such symptoms 
may be understandable or considered appropriate to the loss, the presence of a major 
depressive episode in addition to the normal response to a significant loss should also 
be carefully considered. This decision inevitably requires the exercise of clinical judg-
ment based on the individual’s history and the cultural norms for the expression of dis-
tress in the context of loss.  

D. The occurrence of the major depressive episode is not better explained by schizoaf-
fective disorder, schizophrenia, schizophreniform disorder, delusional disorder, or oth-
er specified and unspecified schizophrenia spectrum and other psychotic disorders. 

E. There has never been a manic episode or a hypomanic episode. 

 

3.2 Pharmacological treatment options of MDD 
 
Despite a myriad of treatment options for MDD, including pharmacological 

antidepressants, psychotherapies and neuromodulation techniques, many patients with 

MDD demonstrate high rates of non-recovery, relapse, recurrence or chronification of 

the illness,4,5. It has been shown that fewer than 50% of patients reached remission after 

an initial antidepressant treatment and that a third of patients could not reach remission 

even after four successive treatment steps with various antidepressants6,7. The well 

known fact that a specific drug that had brought relief to a patient in a previous 

depressive episode may not be equally as effective during a future episode again 

highlights the big variability in treatment response and efficacy between individuals.  

Since the Monoamine Theory of Depression, postulating that MDD orginates from a 

functional deficit of monoamine neurotransmitters in certain brain regions, has been 

proposed by Joseph Schildkraut in 19658, antidepressant development has been striving 

towards more specificity towards monoamines, thus resulting in fewer side effects. 

Existing antidepressants like Serotonin-Reuptake-Inhibitors (SSRIs) prolong the action 

of monoamines by increasing their duration in the synaptic cleft and thus rapidly 
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ameliorate the proposed imbalance of neurotransmitters in the brain. Their delayed 

onset of action with regard to behavioural changes as well as their poor effectiveness 

accentuate the need to understand their underlying mechanism of action.  

Since the discovery of tricyclic antidepressants in the 1950s by serendipity, no radically 

new antidepressant drug therapies have been developed based on an a prori approach 

to the pathophysiology of depression9.  

3.3 The Pathophysiology of MDD 

As to this date, many different studies trying to elucidate the pathogenesis of MDD have 

been carried out and several different theories have been formulated10. Abnormalities in 

the Hypothalamic-Pituitary- Axis (HPA) involved in the acute stress response as well as  

its several subsidiary parts have been implicated as a potential target for antidepressant 

action- such as the adrenocorticotropic hormone (ACTH), corticotropin releasing 

hormone (CRH) and cortisol itself, as well as various receptors such as the 

Glucocorticoid Receptor (GR)11, the CRH Receptors, or the vasopressin receptor12. Other 

studies have presented inflammatory cytokines as contributors to the development of 

depression13–16 thus hinting at cytokine antagonists or anti-inflammatory drugs as po- 

tential therapeutic strategies. Postmortem studies that have shown that the cell densi-

ties-of neurons and glia cells- as well as neuronal size, synaptic proteins and synapses in 

MDD patients were decreased in frontal and subcortical brain regions17–19, taken togeth-

er with MRI studies that document smaller hippocampal volumes in depressed pa-

tients20, lead to the hypothesis that antidepressants might have a possible role in neuro-

genesis21, mainly through the expression of Brain Derived Neurotrophic Factor 

(BDNF)22.  As can be seen from the list above,  there are many different approaches that 

are being tested for their efficacy in treating MDD. Recently, it has also been shown that 
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classic tricyclic antidepressants induce autophagy. The exact role of autophagy in this 

scenario, however, still has to be further investigated. 

3.4 Autophagy  
 
Autophagy, coming from the Greek “auto”-onself and “phagy”-to eat, is a conserved cel-

lular degradation process that ensures the quality of the cytoplasm, the intactness of 

cells and therefore tissues, by controlling the elimination of waste- damaged macromol-

ecules such as protein aggregates and organelles - out of the cell. Different forms of au-

tophagy exist: chaperone-mediated, micro- and macroautophagy. In this research, the 

focus was placed on macroautophagy as that seems to be the most important one in en-

suring cell homeostasis. Through the stepwise formation of an autophagosome, double-

membrane vesicles, cytoplasmic to-be-degraded cargo are engulfed and shuttled along 

microtubules towards the lysosome, with which the autophagosome fuses to yield an 

autolysosome. Through the acidic components of the autolysosome, the captured mate-

rial together with the inner membrane is then broken down and nutrients and mem-

branes are recycled. The whole process is governed and regulated by more than 15 au-

tophagy-related genes (ATG) as well as the mammalian target of rapamycine (mTOR), 

which integrates many upstream signals such as energy status, growth factors and ami-

no acids, just to name a few. Other proteins important in the pathways of autophagy in-

clude class III phosphoinositide 3-kinases (PI3Ks or Vps34) and Beclin 1, which initiate 

the process, microtubule-associated protein 1 light chain 3 II (LC3-II results from the 

lipidation of LC3-I) and Atg13, involved in formation and expansion of the phagosome 

membrane, p62 which is an autophagy receptor that recognises cellular waste, and p27 

that positively regulates autophagy, preventing the induction of apoptosis23,24.  

Autophagy is vital in regulating cell homeostasis, development, differentiation and sur-

vival. It has been found that alterations in autophagy are associated with a wide variety 



 

 8 

of pathological conditions and diseases, including neurodegeneration, liver disease, can-

cers, infectious and metabolic diseases, like diabetes.  Thus, recent research has focused 

on agents that might induce autophagy for therapeutic use25.  

3.5 Autophagy in Depression 
 
A potential role of autophagy in depression has been discussed. Clomipramine, a tricy-

clic antidepressant, was shown to increase autophagosomal markers and obstruct au-

tophagic flux26, whereas Lithium and Sertraline, a SSRI, triggered autophagy27–30. The 

induction of autophagy thus seemed to contribute to the increased resilience of cells. 

Approaching the problem from a different angle, it was found that the mTOR inhibitor 

rapamycin, an inducer of autophagy, had a mild antidepressant effect in mice and rats 

that underwent testing with the Forced Swim Test and the Tail Suspension test31.  

3.6 FKBP51 
 
The Hsp90 cochaperone FKBP5 seems to correspond with the treatment response to 

antidepressant. It has recently been postulated that this is not only due to its regulation 

of the glucocorticoid receptor and therefore the physiological stress response within the 

Hypothalamic-Pituitary-Adrenal (HPA) Axis32,33, but also due to its association with Be-

clin 1, a regulator of autophagy, and other factors involved in autophagy, such as AKT 1. 

FKBP5 not only induces autophagy and enhances autophagic flux; its presence in cells 

also seems to be crucial for the effects of antidepressants to take place29,34,35. FKBP51 

also seems to scaffold the binding of the E3 ligase SKP2, which binds to Beclin1, AKT and 

PHLPP.  Inhibition of SKP2 in turn was shown to stabilize Beclin1, thus inducing autoph-

agy.   
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Figure 1: Model of FKBP51’s effect on the Akt-Beclin1 heterocomplex and its pharmacolog-
ical modulation. (A, B) FKBP51 interacts with PHLPP, Beclin1, and Akt, thus recruiting in-
active Akt to Beclin1. Beclin1 becomes dephosphorylated and is therefore more active, in-
ducing autophagy. (C) The inhibition of Akt by PHLPP results in the inactivation of the 
SKP2 E3 ligase, which in turn suppresses the ubiquination and hence the degradation of 
Beclin1.  
 

3.7 My research 
 
Here is the point where my own research comes in. Rico-Bautista et al. conducted a 

high-throughput screen of 7368 chemical compounds to measure their effects on the 

levels of p27, a cyclin-dependent kinase inhibitor and tumor suppressor that was found 

to be downregulated in different human carcinomas36. 176 small molecule inhibitors of 

p27 depletion (SMIPs) were identified, with SMIP004, a SKP2 downregulator having the 

most cancer selective antiproliferative activity.  SMIP004 had already been established 

as a potent stabilising agent of Beclin 1 and seemed to elicit antidepressant like effects 

similar to paroxetine in mice undergoing the tail suspension test. In my research, I hence 
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looked at the list of 176 molecules and searched the literature to see whether any of 

them had been described as having an effect on autophagy, with an eye on a potential 

antidepressant effect of these molecules. Ultimately, I focused on 24 substances, some of 

which are already used in clinical medicine today, some of which are currently undergo-

ing clinical trials, to test their effects on autophagy in primary cortical rat astrocytes. My 

strategy has been elucidated in Box 2 below.  

Box 2: Step-by-step course of action 
1) Literature research to determine at which concentrations the 24 substances had 

been used previously 
2) Cytotoxicity assays: MTT Assays  were run to establish at which concentration of 

the drug  administered 80% of cells were still viable 
3) Primary cortical rat astrocytes were then treated with the ascertained concen-

trations and harvested 
4) BCA Assays were carried out to determine the total protein concentration within 

each sample 
5) Western Blots: Gel electrophoresis, followed by detection of markers of autoph-

agy such as Beclin1, Vps34, LC3, and cell cycle inhibitor p27 via antibodies 
6) Bafilomycin A1 Assays and p62 degradation assays were run for substances, in 

which LC3 levels increased following stimulation, to determine autophagic flux  
7) Behavioural Model in Mice: The Forced Swim Test was carried out with sub-

stances bearing the most promise of having an antidepressant effect 
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Figure 2: Model of Autophagy and some of the factors involved. p27 is a cyclin-dependent 
kinase inhibitor and tumor suppressor, controlling cell motility and proliferation as well as 
apoptosis. SKP2 leads to the ubiquitylation and therefore degradation in the proteasome of 
p27 as well as the that of Beclin1. It is inhibited by SMIP004, which thus stabilizes p27 and 
Beclin1. Beclin1, together with several other molecules such as Vps34, a class III PI3 Ki-
nase, form the core complex of the autophagy initators, stabilising the conversion of LC3I 
(cytoplasmic form) via proteolysis and lipidation to LC3II. LC3II in turn gets incorporated 
into the membranes of autophagosomes, which envelop p62 bound to toxic cellular waste. 
When the autophagosome fuse with the lysosome, an autolysosome is formed.  p62 and its 
sequestrated cargo are degraded, whereas LC3 is recycled.  
 

  

 

Figure 3: Bafilomycin A1 is a macrolide antibiotic that prevents the formation of an au-
tolysosome by inhibiting the fusion of the autophagosome with the lysosome37. It also in-
hibits the degradation of the autolysosome content due to inhibiting the vacuolar Na+H+ 

ATPase, thus increasing lysosomal pH and impeding the lysosomal proteases38. By blocking 
the fusion and thus the aforementioned degradation and recycling step of LC3, Bafilomycin 
halts autophagic flux, leading to an increase in LC3II. 
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Table 1: Substances and their known effects 

Drug Abbreviation                        action                          Mechanism of action 

Etoposide ETO chemotherapeutic topoisomerase II inhibitor 

Xanthohumol XAN chemotherapeutic, free radical scavenger not known, COX-I and II inhibitor, found in hop 

ABT-737 ABT chemotherapeutic Bcl-2 Inhibitor (pro-apoptotic) 

Topotecan TOP chemotherapeutic topoisomerase I inhibitor 
17-AAG (derivative of geldan-
amycin)  AAG antibiotic, antineoplastic inhibits Hsp90  

Gossypol GOS chemotherapy, antimalarial, contraceptive Protein Kinase C inhibitor, proapoptotic properties (Bcl2, Bax) 

Securinine SEC CNS stimulant, chemotherapeutic GABA receptor antagonist  

Tamoxifen TAM 
chemotherapeutic (antiestrogen), esp. Breast can-
cer, neuroprotective SERM (selective estrogen receptor modulator) 

Valinomycin VAL antibiotic, coronavirus 

macrolide- bacteriostatic, inhibits bacterial protein synthesis by not allowing the translocation of tRNA 
from the donor-to the acceptor position in the ribosome, potassium ionophore, offsets membrane poten-
tial, cell death 

Minocycline MIN antibiotic, neuroprotective 
tetracycline- bacteriostatic, inhibits bacterial protein synthesis by not allowing the t-RNA to bind to the 
30S subunit of ribosomes 

Salinomycin SAL antibacterial, coccidiostat, 
possibly chemotherapeutic 

polyether ionophore, generates reactive oxygen species, induces apoptosis,  
exact mechanism still to be determined 

Parthenolide PAR antineoplastic/antimycobacterial 
(feverfew used in herbal medicine) 

suppresses or modulates NF-ĸB- activity, induces apoptosis  

Pimozide PIM antipsychotic, tranquilizer D2-dopamine receptor agonist  

Haloperidol HAL antipsychotic 
D2-dopamine receptor antagonist, binds to α1 Receptor at low doses, to 5-HT2 receptors at a higher 
dosage 

 
Perphenazine 

 
PEP 

 
antipsychotic, tranquilizer D1- and D2-dopamine receptor antagonist,some anti-α-adrenergic and anticholinergic effects 

Clomipramine CLO antidepressant tricyclic antidepressant- inhibits reuptake of serotonin and noradrenaline by blocking their transporters 
Bromocriptin mesylate BROM antiparkinsonian, diabetes mellitus type II, hy-

perprolactinaemia  
ergoline derivative, Dopamin D2-receptor agonist, Serotonin receptor agonist  

Rasagiline RAS antiparkinsonian, neuroprotective irreversible inhibitor of monoamine oxidase (MAO) 
Pyrvinium pamoate PYR anthelmintic (pinworms), 

newly discussed as an chemotherapeutic drug 
suppresses NADH-fumarate reductase system, which in turn inhibits the mitochondrial, electron-
transport chain complex II, thus inhibiting efficient ATP production, androgen receptor inhibitor 

Niclosamide NIC anthelmintic (tapeworms) uncouples oxidative phosphorylation- no more production of ATP 
Perhexiline maleate PER prophylactic anti-anginal agent in Australia and 

New Zealand 
inihibits mitochondrial carnitine palmitoyltransferase-1 => more glucose utilisation => more ATP, in-
creased myocardial efficiency 

Luteolin LUT antioxidant  not known, type of flavonoid, present in plants  

Celecoxibe CEL NSAID COX-2 selective inhibitor  

Amiloride AMI potassium sparing diuretic blocks epithelial Sodium channel (ENaC), thus inhibiting sodium reabsorption in the kidney          

xxx 
 

used in clinical medicine 
 xxx 

 
currently in clinical trial 
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4 Material and Methods 
 

4.1 Materials 

4.1.1 Technical Equipment  
 
Light Microscope Olympus CK30 

Cell Culture Incubator (Binder) 

Biofuge pico Heraeus Sigma 2-6 Centrifuge 

Vortex peqlab peqtwist 

Water Bath GFL 

Herasafe, Heraeus Instruments Germany laminar flow hood 

Biorda iMark Microplate Reader 

Eppendorf Thermomixer comfort 1.5mL heat block 

Heidolph Duomax 1030 shaker 

BioRad Power Pac 200 Western Blot 

Deckworks Low Binding Barrier Pipet Tips (Corning) 

4.1.2 Chemicals, Reagents and Buffers 
 
Skim Milk powder, Sigma Aldrich # 70166-500G 

Thermo Scientific Pierce BCA Protein Assay Kit # 23228 

ECL Detection Reagent (Millipore, Billerica, MA, USA, WBKL 0500) 

Whatman® Gel Blotting Paper, Sigma Aldrich # WHA10427810 

Nitrocellulose Membrane AmershamTM ProtranTM 0.2μM NC GE Healthcare Life Sciences 

#10600001 

Ponceau Solution for electrophoresis (0,2%) Serva #33427.01 

Roti® Stock 20% SDS Roth # 1057.1 

Acrylamide/bis solution 37.5:1 (30% w/V), 2.6% C Serva # 10688.01 

Tris PUFFERAN® >99,9%, Tris-(hydroxymethyl-)aminomethan p.a. Carl Roth # 4855.2 
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TEMED <99,9%, N,N,N',N'-Tetramethylethylendiamin, 1,2-Bis(dimethylamino)-ethan 

    p.a. für die Elektrophorese Carl Roth # 2367.1 

Glycin ≥99 % zur Synthese, α-Aminoessigsäure, Glykokoll Carl Roth # 3790.2 

Natriumchlorid >99,8 % Carl Roth # 9265.1 

Ammonium persulfate (APS), Sigma Aldrich # A3678-25G 

Tween® 20 Polyoxyethylen-20-sorbitanmonolaurat, Polysorbat 20 Carl Roth #9127.2 

Methanol ROTIPURAN® ≥99,9 %, p.a., ACS, ISO Carl Roth #4627.6 

Bafilomycin A1 ≥90%, Sigma Aldrich, #B1793-2UG 

Etoposide ≥98%, Sigma Aldrich, # E1383-25MG 

Xanthohumol, ROTICHROM®, Carl Roth #NC35.1 

ABT-737, Bcl-2 Inhibitor, APExBIO #A8193 

Topotecan hydrochloride hydrate ≥98%,  Sigma Aldrich #T2705-10MG 

Valinomycin ≥98%,  Sigma Aldrich #94675-10MG 

Minocycline hydrochlorine, Sigma Aldrich # M9511-25MG 

Salinomycin ≥98%, Sigma Aldrich # S4526-5MG 

Parthenolide ≥98%, Sigma Aldrich # P0667-5MG 

Pyrvinium Pamoate salt hydrate ≥98%,  Sigma Aldrich # P0027-10MG 

Niclosamide, Sigma Aldrich # N3510-50G 

Pimozide, Sigma Aldrich # P1793-500MG 

Gossypol, Santa Cruz Biotechnology # sc-200501 

Clomipramine hydrochloride, Sigma Aldrich # C7291-1G 

Securinine ≥98%, Sigma Aldrich # SML0055-5MG 

Tamoxifen ≥99%, Sigma Aldrich # T5648-1G 

Amiloride hydrochorate hydrate  ≥98%, Sigma Aldrich # A7410-1G 

Rasagiline mesylate ≥98%, Sigma Aldrich # SML0124-10MG 

Haloperidol, Sigma Aldrich # H1512-5G 
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Perphenazine, Sigma Aldrich # P6402-1G 

Bromocriptin mesylate, Sigma Aldrich # 1076501-150MG 

Perhexilene maleate ≥98%, Sigma Aldrich # SML0120-10MG 

Luteolin ≥98%, Sigma Aldrich # L9283-10MG 

Celecoxib ≥98%, Sigma Aldrich #PZ0008-5MG 

17-AAG, 17-(Allyamino)-17-demethoxygeldanamycin, Sigma Aldrich #A8476-500UG 

SKP2 E3 Ligase Inhibitor II, SMIP004, Merck Millipore #500517 

4.1.3 Antibodies 

4.1.3.1 Primary Antibodies 
 
PI3K Kinase Class III (D9AS) Rabbit mAB Cell Signalling Technology # 4263S 

P27 Kip1 (D69 C12) XP(R) Rabbit mAB Cell Signalling Technology # 3686S 

Beclin-1 Rabbit Ab Cell Signalling # 3738S 

SQSTM1/p62 Rabbit Ab Cell Signalling # 5114S 

Akt(pan) (C67E7) Rabbit mAB Cell Signalling # 46912L 

P-Akt (S473) (193H12) Rabbit mAb Cell Signalling # 4058L 

Hsc70 (B-6) mouse monoclonal IgG Santa Cruz Biotechnology # sc-7298 

Aktin (I-19) goat polyclonal IgG Santa Cruz Biotechnology # sc-1616 

4.1.3.2 Secondary Antibodies 
 
Anti-rabbit IgG, HRP-linked AB Cell Signalling Technology # 7074S 

Alexa Fluor 488 donkey anti-goat IgG (H+L) Life Technologies # A11055 

Alexa Fluor 488 donkey anti-mouse IgG (H+L) Invitrogen molecular probes # 898250 

1xMEM Minimal Essential Medium gibco # 31095029 

Gentamycin (10mg/mL) gibco by Life Technologies # 15710-049 

Sodium pyruvate 100mM (100X) gibco # 11360-039 

Horse Serum, Sigma Aldrich # H0146-5ML 

Antibiotic Antimycotic Solution (100x), Stabilized, Sigma Aldrich # A5955-100ML 
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Phosphatase Inhibitor Cocktail Tablets, Phospho Stop EASYpack, Roche # 04906837001 

Protease Inhibitor Sigma Aldrich #P2714 

peqGOLD Protein Marker IV 10-170kDa, 10 bands # 27-2110, 27-2111 

DMSO Santa Cruz Biotechnology # sc 202581 

4.1.4 Sofware 
 
BioRad Chemi Doc MP Imaging System 

Sigma Plot 12.5 

Image Lab 5.0 

Adobe Illustrator CC 

Audymaze 4.20 

4.2 Methods 

4.2.1 Primary cultures of rat astrocytes (already provided)  
 
Enriched astroglial cell cultures were derived from postnatal day 1 Sprague-Dawley rat 

pups (Charles River, Suzfeld, Germany) and handled as described previously39,40. The 

dissected cortical hemispheres as well as the hippocampuses were trypsinized. To stop 

the trypsinization, Hank’s balanced salt solution and 10% fetal calf serum were added. 

The mixture containing the tissue was then passed through a serological pipette, centri-

fuged and after the supernatant had been poured off, resuspended in Minimal Essential 

Medium (MEM) complemented with 10% horse serum. 

4.2.2 MTT Assay 
 
Cell viability of rat astrocytes was measured by the 3-(4,5-dimethylthylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) method. MTT Assays were performed with stag-

gered concentrations of the different substances that had previously been solubilised in 

DMSO. Cells were seeded in 96- well plates and grown in 1xMEM supplemented with 

Horse Serum, Gentamycin, and Sodium Pyruvate. Cells were stimulated for 48h at 37°C, 
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after which MTT solution (5mg/ml) was added and left for 4h, followed by solubilizing 

solution (100 μM), which was left overnight in the dark. The absorption was measured 

at 570nm and 655nm wavelength on the next day. Triplicates were performed. 

4.2.3 Cell culture 
 
Primary astrocytes were grown in MEM supplemented with Horse Serum, Gentamycin 

and Sodium Pyruvate. After stimulation and incubation overnight, cells were tryp-

sinized, spun down, washed with 1xPBS, centrifuged again, and resuspended in 1x Lysis 

Buffer (62,5mM Tris, 2% SDS, 10% sucrose) containining Phosphatase Inhibitor and 

Protease Inhibitor. All manipulations were carried out with sterile reagents under a lam-

inar flow hood. Samples were then incubated in a heating block at 95° C for 5 minutes 

and further analyzed. Stimulation was carried out with Xanthohumol, Topotecan, Secur-

inine, Bromocriptin mesylate, Perhexilene maleate, Pyrvinium pamoate, Valinomycin,  

Rasagiline, Parthenolide, Minocyclin, Pimozide, Luteolin, ABT-737,  Salinomycin, Etopo-

side, Gossypol, Niclosamide, Clomipramine,  Tamoxifen, Perphenazine, Haloperidol, 

Celecoxibe, 17-AAG,  Amiloride, and SKP-Inhibitor. DMSO, which served as the solvent 

for the different drugs, was used as a vehicle control, being set at 100% as a reference in 

further analyses.  

4.2.4 Bafilomycin Assays  
 
Cells were stimulated as described above. Two hours before harvesting the cells, the 

medium was exchanged and Bafilomycin A1 at a concentration of 100nM35 was added. 

Two hours later cells were harvested as usual. 

4.2.5 BCA Assay, SDS gel, Western Blotting 
 
Protein concentration of the lysed cell probes was determined by BCA Assay using the 

Thermo Scientific Pierce BCA Protein Assay Kit. Samples were mixed with 1x Lysis Buff-

er with Phospho Stop and Protease inhibitor and LAP and incubated at 95°C for 5 
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minutes. 20 μl of each sample were loaded onto a 15% SDS-PAGE gel. The assays were 

performed in triplicates. 5 μl Protein Marker IV (peqGOLD) were loaded as a reference 

band marker. The gel was run at 100V for 10 minutes and then at 170V for 60 minutes. 

Proteins were then electrotransferred onto a nitrocellulose membrane using the Biorad 

in 1x Wetblot Buffer. The transfer was performed at 4°C using 100V for 90 minutes. 

Blots were then blocked by means of 5% low-fat milk in Tris-buffered saline and Tween 

20 for 1 hour at room temperature and incubated with respective primary antibody di-

luted in TBS/ 0,05% Tween overnight at 4°C whilst gently shaking. The following prima-

ry antibodies were used: LC3B-I/II (1:1000), PI3K Kinase Class III (Vps34, 1:1000), Be-

clin-1 (1:1000), SQSTM1/p62 (1:1000), p27 Kip 1 (1:1000), Akt (pan) (1:1000), UVRAG 

(1:1000), P-Akt (1:1000), Atg3 (1:1000), Hsc-70 (1:4000), Aktin (1:4000). Subsequently, 

the blots were washed thrice for 10 minutes with TBS-T and probed with the appropiate 

secondary antibody- Horseradish-Peroxidase- linked (HRP- linked anti-rabbit IgG anti-

body) or fluorophore-conjugated- for 2 hours at RT. After washing the blots four times 

for 10 minutes with TBS-T, the immunoreactive bands were visualised using either ECL 

detection reagent according to the manufacturer’s instructions or directly by the excita-

tion of the respective fluorophore. Determination of the relative optical density and 

quantification of bands was performed using a BioRad ChemiDoc MP and Imagelab 5.0. 

Actin or Hsc70 were used as a loading controls as they exhibits constitutive high-level 

expression patterns, ensuring that samples have been loaded equally across all wells.  

4.2.6 Animals and animal housing             

24 male mice, 10-16 weeks old and weighing 280-320 g were used for the experiments. 

The animals were housed individullay and held under standard conditions in a tempera-

ture-controlled room (23±2°C) on a 12h/12h light/dark cylce (lights on at 8:00 am) with 

access to food (Altromin 1314) and water ad libitum. All of the animals were housed in 

polyprolene cages (41x32x16.5cm) with wood shavings as bedding.  
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All experiments took place at the animal facility of the Max-Planck-Institute of Psychia-

try, Munich, Germany. The experiments were carried out in accordance with the Euro-

pean Communities’ Council Directive 86/609/EEC and utmost care was applied to min-

imize animal suffering during the experiments. The protocols were approved by the 

committee for the Care and Use of Laboratory animals of the Government of Upper Ba-

varia, Germany.  

4.2.7 Animal treatment and behavioural experiments (conducted by Georgia 
Balsevich) 

All mice were injected either with a single dose of saline (vehicle) solution or Salinomy-

cin. The drug was administered intraperitoneally by syringe in a constant volume of 

5.0ml/kg body weight. 45 minutes after the injection, each mouse was subjected to the 

Forced Swim Test (FST) for 6 minutes. The FST was carried out between 9:00 and 10:30 

am in the same room that the mice were housed in. During the FST, each mouse was 

lowered into a 2L glass beaker (diameter: 13cm, height: 24cm) that was filled with tap 

water (21±1°C) up to a height of 15cm. The mouse could thus not reach the bottom with 

either hind paws or tail. The mice were videotaped by an automated video-tracking sys-

tem (Audymaze 4.20) for the subsequent quantification of the following parameters: 

immobility (absence of motion of the entire body and only small movements necessary 

to keep the animal’s head above water), climbing (lively movements of the forepaws in 

and out of the water, often directed towards the walls of the tank), and swimming (con-

siderable forepaw motions that displaced water and moved the mouse’s body around 

the cylinder, more than necessary to keep the head above water). After six minutes, the 

mouse was taken out of the water, dried off, and sacrificed. Quantification of the FST was 

carried out by an experienced observer, blind to the treatment of the animals.  

4.2.8 Statistical Analysis                             

All statistical analyses were performed with the help of Sigma Plot. Drugs were placed 
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into groups of four depending on their medical use, and compared via one- or two-way 

analysis of variance (ANOVA).  Otherwise, variables in groups were compared to con-

trols pairwise via the Tukey Test, Dunn’s Method or the Bonferroni t-test. Significant 

results of the comparison test are emphasized by asterisks in the graphs and will be dis-

cussed in the results section. P values of less than 0.05 were considered significant. 

5 Results 

5.1 Identification of appropriate drug concentrations 
 
To determine the maximal concentrations of the drug at which 80% of cells would still 

survive (LD20), 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) 

assays were carried out41. MTT Assays have been found to be suitable for the 

initial stage of in vitro drug screening42 as the MTT (yellow) is reduced by metabolically 

active cells, resulting in a colour change (purple formazan) that can be quantified by 

spectrometric means. Hence, cell proliferation rate and activation or conversely, a 

reduction in cell viability (through apoptosis or necrosis), can be measured with a high 

degree of precision41,43,44.  The amount of signal generated generally depends on the 

concentration of MTT used, the number of viable cells and their respective metabolic 

activity, as well as the length of incubation with MTT. Below, in Table 2, is the list of 

substances tested with their respective concentrations. Whereas the addition of several 

substances such as Bromocriptin mesylate, Clomipramine or Perphenazine reduced cell 

viability in a dose-dependent manner, other substances such as Luteolin or Salinomycin 

seemed to activate cell  proliferation or metabolism, with the percentage of cell viability 

increasing, sometimes well beyond 100%. Due to unexplained results in the MTT assays, 

the concentrations for Luteolin45,46 (Fig.9B), Celecoxibe47 (Fig.9C), Niclosamide48,49 (Fig. 

8D),Haloperidol50,51 (Fig. 7A), Salimomycin52 (Fig. 6C) and ABT-73753,54 (Fig. 4C) were  

derived from the literature as their cell viability percentage never passed below the 80%  
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cutoff.  In one study, Celecoxibe was even described as not having any effect at all on cell 

viability in vitro when administered in a dose below 10 μM55. In the cases of 

Clomipramine56,57 (Fig. 7D), Topotecan58,59 (Fig. 4D), and Pimozide 60,61(Fig. 7A), cell 

viability percentage values oscillated quite a lot,  so common concentrations cited in 

the literature were chosen. Lastly, Xanthohumol (Fig. 4B) showed a graph of cell 

viability, which was decreasing consistently with higher concentrations of Xanthohumol 

administered and seemed to suddenly increase at a concentration of 100 μM. Since 

Xanthohumol  itself has a yellow colour, it thus seems that at such a high concentration, 

its absorption mirrors that of a high viable cell count. I therefore decided to elimit this 

point from the graph. 

 

Drug Abbreviation Concentration 

Etoposide ETO 6 μM 

Xanthohumol XAN 10 μM 

ABT-737 ABT 10 μM 

Topotecan TOP 30 nM 

17-AAG (derivative of geldanamycin)  AAG 10 nM 

Gossypol GOS 10 μM 

Securinine SEC 100 μM   

Tamoxifen TAM 10 μM  

Valinomycin VAL 10 μM 

Minocycline MIN 3 μM   
Salinomycin SAL 5 μM   
Parthenolide PAR 10 μM 

Pimozide PIM 10 μM 

Haloperidol HAL 10 μM 

Perphenazine PEP 20 μM  

Clomipramine CLO 10 μM 
Bromocriptin mesylate BRO 100 μM   

Rasagiline RAS 100 μM   
Pyrvinium pamoate PYR 3 μM   

Niclosamide NIC 1 μM 
Perhexiline maleate PER 10 μM 

Luteolin LUT 50 μM   

Celecoxibe CEL 1 μM  

Amiloride AMI 10 μM 

SKP-Inhibitor (SMIP 004) SMI 10 μM 
xxx used in clinical medicine  

xxx currently in clinical trial  

Table 2: Concentrations of drugs at which cell viability lay at or above 80%. 
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To evaluate the molecular effects that the different drugs had on autophagy, I analysed 

autophagic markers, such as Beclin1 and Vps34 (both part of the initiation complex), as 

well as LC3I and II and p27, a cell cycle inhibitor, in protein extracts from primary rat 

astrocytes that had been treated with the drugs for a period of 24 hours. As a control, 

DMSO was used to treat the cells. Groups of four substances were formed in order to 

ease statistical analysis.  

5.2 Western Blot Analyses 

5.2.1 Etoposide, Xanthohumol, ABT-737 and Topotecan 
 
The chemotherapeutic drugs Etoposide, Xanthohumol, ABT-737 and Topotecan  all in-

creased the LC3II/I ratio of cells (Fig. 4E), with Etoposide, Xanthohumol and ABT-737 all 

showing a significant increase (p<0.05). The difference in Beclin1 expression was not 

nearly as stark (Fig. 4F), with only Topotecan leading to an increase of 100%. Since Be-

clin1 and p27 are both substrates of the E3 ligase SKP2, which had been shown to be 

inhibited by the drugs selected by Rico-Bautista et al., one would expect p27, which is 

autophagy independent, to have a similar expression pattern as Beclin 1. However, this 

is not always the case, as in response to treatment with all four drugs, expression levels 

of p27 decrease (Fig. 4G), in the case of Topotecan significantly so (p=0.023). Levels of 

Vps34 (Fig. 4H), which forms a complex with Beclin162,63, increased only upon treatment 

with Topotecan (p<0.05). 

5.2.2 17-AAG, Gossypol, Securinine and Tamoxifen 
 
Out of the next group of antineoplastic and antibiotic drugs consisting of 17-AAG, Gossy-

pol, Securinine and Tamoxifen, only 17-AAG, Gossypol and Tamoxifen seemed to boost 

the lipidation of LC3 (Fig. 5E). Tamoxifen, a known activator of autophagy 64,  also en-

hances expression of Beclin1 (Fig. 5F) and p27 (Fig. 5G), whereas 17-AAG elevates all 

four markers (Fig. 5 E-H), p27 significantly so (p<0.05).  Securinine does not seem to 
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influence protein expression much, except in the case of Beclin1 (Fig. 5F), where it rises 

to about 400%, and in the case of Vps34 (Fig. 5H), which decreases significantly 

(p<0.05).  

5.2.3 Valinomycin, Minocycline, Salinomycin and Parthenolide 
 
The antibiotic group of drugs showed a big variation in expression levels. Salinomycin 

significantly (p<0.05) increased the expression of LC3II/I (Fig. 6E) and of Beclin1 (Fig. 

6F),  whereas Parthenolide enhanced the expression of Vps34 (Fig. 6H) significantly 

(p=0.002) and Valinomycin downregulated it (p=0.011).   

5.2.4 Pimozide, Haloperidol, Perphenazide and Clomipramine 
 
The psychoactive drugs Pimozide, Haloperidol, Perphenazide and Clomipramine showed 

no significant effect on Beclin1 expression (Fig. 7F). Pimozide, a potent D-2 Receptor 

antagonist has been shown to induce autophagic degradation65. It increased Vps34 ex-

pression (Fig. 7H) and the ratio of LC3II/I (Fig. 7E) significantly (p<0.05). Perphenazine 

had a significant effect on both LC3II/I (Fig. 7E, p<0.05) and p27 (Fig. 7G, p<0.032), in-

creasing the expression of the first, and decreasing that of the later.  Conversely, Clomi-

pramine enhances the expression of p27 (Fig. 7G) drastically (p<0.001) and increases 

LC3 lipidation (Fig. 7E, p<0.05). Haloperidol also exerts a significant p27 stabilizing ef-

fect (Fig. 7G, p=0.038). 

5.2.5 Rasagiline, Bromocriptin mesylate, Pyrvinium Pamoate and Niclosamide 
 
Rasagiline and Bromocriptin mesylate, drugs used in the treatment of Parkinson disease 

did not affect LC3II/I or Beclin1 expression. Nevertheless, Rasagiline treatment reduced 

the expression of p27 significantly (Fig. 8G, p<0.05) and Bromocriptin mesylate in-

creased the expression of Vps34 (Fig. 8H). The anthelminthic drugs Pyrvinium pamoate 

and Niclosamide did not exhibit an overall effect. Pyrvinium pamoate significantly in-

duced LC3II/I ratio (Fig. 8E, p<0.05), however.  
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5.2.6 Perhexilene maleate, Luteolin, Celecoxibe and Amiloride 
 
The prophylactic antianginal agent Perhexilene maleate66 has markedly positive effects 

on expression levels of LC3II/I (Fig. 9E, p<0.05) and p27(Fig. 9G, p<0.05). Celecoxibe 

also had an overall pronounced effect on the upregulation of autophagy on all four 

markers: LC3II/I (Fig. 9E, p<0.05), Beclin1 (Fig. 9F, p<0.05), p27 (Fig. 9G, p<0.05) and 

Vps34 (Fig. 9H, p<0.05). Lastly, Luteolin, increased the levels of p27 significantly (Fig. 

9G, p<0.05) without having an effect on the other markers of autophagy.  

5.2.7 SMIP004, a SKP2 E3 ligase Inhibitor 
 
As a control the SKP2 inhibitor, SMIP004, led to a significant increase in p27 (Fig. 10E, 

p=0.017) and Beclin1 (Fig. 10D, p=0.039) as expected. LC3II/I levels also rose signifi-

cantly (Fig. 10C, p=0.013). 

5.3 Autophagic Flux Assays 
 
Assays assessing the autophagic flux, in which Bafilomycin A1 was added to the culture 

medium of astrocytes two hours before harvesting them, were carried out only with 

some substances that seemed to increase the LC3II/I signal. In addition, the autophagic 

marker p62 was tested in response to treatment with these substances. p62 is a protein 

that itself is degraded by autophagy; it thus accumulates when autophagy is inhibited 

and its levels decrease when autophagy is induced. Therefore, it, together with LC3II/I 

serves as a marker for autophagic flux67.  

5.3.1 Chemotherapeutic drugs on autophagic flux 
 
When 100 nM of Bafilomycin A1 were added to cells previously treated with chemo-

therapeutics such as Etoposide or Xanthohumol, the increase of expression in LC3II/I, 

signifying the inhibition of autophagic flux, was much more pronounced than in the con-

trol cells (Fig. 11A, p<0.001), only having been treated with DMSO. This further supports 
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the idea that these two substances usually increase flux as LC3II/I drastically accumu-

lates. Etoposide also increases the levels of p62, but not significantly (Fig. 11B). 

5.3.2 Antibiotics on autophagic flux 
 
Amongst the antibiotic drugs tested, only Minocyclin, Salinomycin and Parthenolide ini-

tially increased LC3II/I. When treated with Bafilomycin A1, Salinomycin had a pro-

nounced effect on the accumulation of LC3BII/I (Fig. 11G, p=0.002). Both Minocyclin and 

Salinomycin led to an increase in p62 levels (Fig. 11H, p=0.001 and p<0.001, respective-

ly).  

5.3.3 Psychoactive Drugs on autophagic flux 
 
Within the group of psychoactive drugs, only Perphenazide had a significant (Fig. 12A, 

p=0.019) effect on both LC3BI/II and p62 (Fig. 12B, p<0.05), but Clomipramine also 

slightly increased the LC3BII/I after Bafilomycin A1 treatment in comparison to the con-

trol.  

5.3.4 Antibiotic and Antineoplastic drugs on autophagic flux 
 
Gossypol increased levels of LC3B/II (Fig. 12F) after cells were treated with Bafilomycin 

A1 and also increased the p62 signal (Fig. 12G), but not significantly.  

5.3.5 NSAID and Diuretic on autophagic flux 
 
Both Celecoxibe and Amiloride further increased the levels of LC3BII/I levels in re-

sponse to Bafilomycin A1 treatment (Fig. 13A), but only Amiloride led to a rise in p62 

levels (Fig. 13B). 

5.3.6 Anthelminthics on autophagic flux 
 
Lastly, the anthelminthic Pyrvinium pamoate made LC3BII/I levels rise after Bafilomy-

cin A1 treatment (Fig. 13E) and also increased the p62 signal (Fig. 13F). 

 



 

 26 

5.4 Forced Swim Test (carried out by Georgia Balsevich) 
 
The forced swim test is a behavioral paradigm to assess depressive-like behavior in ro-

dents, which is used to screen drugs for their potential antidepressant activity by com-

paring the time an animal struggles to that it spends floating or being immobile in re-

sponse to intraperitoneal injection with a drug68,69. A significant difference in behavior 

between animals having been injected with saline (control) and those injected with 

5mg/kg Salinomycin 45 minutes prior to the forced swim test was observed. Salinomy-

cin led to an increase in struggling (Fig. 14A, p=0.027) as well as a decrease in floating 

(Fig. 14B, p=0.034), thus confirming my hypothesis that Salinomycin, an upregulator of 

autophagy, acts antidepressant-like in mice.  

6 Discussion 
 

6.1 The need for new antidepressants 
 
Many antidepressants treatments are currently available, but these only insufficiently 

address the high rates of recurrence, non-recovery, and chronicity of major depression. 

Moreover, clinical improvement tends to only set in after several weeks or months of 

treatment. The monoamine hypothesis of depression, according to which the augmenta-

tion of synaptic availability of serotonin and/or noradrenaline would suffice in treating 

major depression, has been challenged not only after observing that selective serotonin 

reuptake inhibitors and selective serotonin and noradrenaline reuptake inhibitors do 

not ameliorate response and remission rates of major depression as quickly and suffi-

ciently as hoped, but also by studies showing that a selective serotonin reuptake en-

hancer, Tianeptine, which enhances the presynaptical uptake of serotonin, thereby de-

creasing its concentration in the synaptic cleft, was clinically effective in treating major 

depression despite having the opposite effect as SSRIs70. In the search of novel psycho-

pharmacological therapies to combat major depression, autophagy, a repair mechanism, 
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that has been implicated in many different diseases, including neurodegenerative ones 

like Huntington, Parkinson’s and Alzheimer’s71–74, has recently come into the focus of 

antidepressant research. As current antidepressants seem to act not only on neurons as 

primary targets, but also directly on astrocytes by affecting intracellular signalling 

pathways and gene expression39,75,76, because major depression is associated with com-

promised glial function77 and because astrocytes are vitally important for recycling of 

substances, especially glutamate, at the synapse78, I tested the 24 chosen substances on 

primary rat astrocytes.  

6.2 MTT Assays 
 
As mentioned in the Results section and as presented in Figure 1-6, many substances did 

not elicit a decreased cell viability at high concentrations, but instead led to a higher rate 

of reduction of MTT than the vehicle control did. In the case of Luteolin, this could be 

due to the finding that Luteolin even seems to reduce MTT even in the absence of 

cells79,80, feigning higher rates of viability, thus showing no correlation to mitochondrial 

activity and rendering my MTT assay void. Ultimately, Luteolin was used at a 

concentration of 50 μM as described in the literature46. Other substances might have 

similar effects. However, a viability of above that of the vehicle control (above 100% in 

the graphs) could also signify that a substance, instead of having a toxic effect,  leads to 

cell proliferation and therefore a higher total mitochondrial activity (and thus a higher 

reduction rate, measured as higher absorbance rates). A drug could also lead to higher 

mitochondrial activity per se in individual cells, hence also increasing absorbance 

values44. In order to better assess drug toxicity on cell viability, it might be advisable to 

also run other cytotoxicity assays like LDH release assays to evaluate necrosis, Trypan 

blue staining assays to assess membrane damage, caspase activity to assess apoptosis or 

several others. 
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6.3 Levels of p27 
 
All of the 24 drugs were selected from the high throughput screen carried out by Rico-

Bautista et al. that tested different substances with their regard to SKP2 inhibition. As a 

readout of this inhibition, the stabilization of p27, well-characterized as a SKP2 sub-

strate, was used. Theoretically, all 24 drugs thus should have increased the levels of p27 

due to a decreased ubiquitination and degradation of p27 upon SKP2 inhibition. With 

the vehicle set to be at 100% as reference, however, p27 did not seem to increase in re-

sponse to many drugs. This might be explained by the fact that the screen done by Rico-

Bautista et al. was carried out by using higher concentrations of the drugs, whereas I 

titrated them down to low-toxic concentrations by means of LD20.  By basically eliminat-

ing toxic effects of the substances on cells, autophagic processes, like the stabilization of 

Beclin 1, that were elicited in response to an SKP2 inhibition could be focused upon. 

Since p27 is a cell cycle inhibitor that regulates cell differentiation and proliferation, it 

only makes sense that its level increased in response to toxic stimuli, however, thus try-

ing to induce cell cycle arrest and enhancing expression of DNA repair proteins.  

6.4 Levels of p27 in accordance with Beclin1 
 
The E3 ligase SKP2 catalyses the ubiquitination of both Beclin1 and p27 as can be seen 

in Figure 1, thus targeting the two proteins for degradation by the proteasome. When 

this E3 ligase is inhibited by the small molecule inhibitor SMIP004 or other substances, 

it would only be logical that both, levels of p27 and Beclin1, would increase as seen in 

Fig. 7D and E. For certain substances like 17-AAG, Clomipramine and Celecoxibe this 

holds true (Fig. 2F and G, Fig. 4F and G, Fig. 6F and G, respectively). However, this does 

not seem to be the case in all instances as other drugs, like Topotecan, Salinomycin or 

Securinine increase Beclin1 levels whilst decreasing p27 levels (Fig. 1F and G, Fig. 3F  

and G, and Fig. 2F and G, respectively), whereas some drugs like Perphenazine and Lute- 

olin decrease the p27 signal significantly whilst the Beclin1 signal stays nearly the same 
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(Fig. 4F and G). Despite both Beclin1 and p27 being substrates of SKP2, this phenome- 

non could be explained by a difference in affinity for the E3 ligase. Since the substances  

used were administered at different concentrations, depending on the results of the 

MTT assays performed, this is a possible explanation. Binding affinities are affected by 

many different parameters, including allosteric regulation which might very well play a  

role in the differing response of p27 and Beclin1 levels in response to SKP2 inhibition, 

but it would go beyond the scope of this study to test them all.  

6.5 Beclin1 and Vps34 
 
Out of the four molecules that I looked at in my study, Beclin1 and Vps34 are part of a 

class III PI3 kinase-containing complex that is also termed the autophagy initiation 

complex, acting as a binding platform for other proteins such as Atg 14 (that leads to 

autophagy induction)81, UVRAG (which promotes autophagosome maturation by 

fostering the fusion of autophagosome and late endosomes)82–84, Rubicon (negative 

regulator of autophagy that inhibits the autophagosome maturation)85,86,87 or others.  

As Beclin1 plays a crucial role in the coordination of the cytoprotective role of 

autophagy88 and Vps34, vacuolar protein sorting 34, a phosphoinositide 

3-kinase, also seems important in regulating autophagy (as inhibition of 

it led to a blockade of autophagic degradation)89, it makes sense to analyze the protein 

levels of Beclin1 and Vps34 in order to understand whether the applied drugs induce 

autophagy (as could be seen by increased levels of Beclin1 and Vps34) or 

downregulated it (in which case levels of Beclin1 and Vps34 would decrease). 

In the case of levels of Beclin1 in comparison to those of Vps34, a similar issue as that of 

the relationship of levels of p27 and Beclin1 can be observed. Since Beclin1 and Vps34 

form the above mentioned complex, it would only seem plausible that these two 

parameters would change in a related manner,  i.e. to either both increase or both 

decrease in a perhaps even proportional fashion as could be observed in response to 
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treatment with Celecoxibe (Fig. 6F and H). Nevertheless, several drugs had opposite 

effects on the ratio of Beclin1 to Vps34 levels. Whereas Valinomycin decreased the levels 

of Vps34, the levels of Beclin1 stayed almost constant (Fig.3 F and H). Parthenolide, on 

the other hand, increased Vps34 significantly, but Beclin1 levels lingered at 100% (Fig. 

3F and H). In the opposite direction, this could also be observed: Beclin1 levels 

increased in response to Clomipramine or Niclosamide, but Vps34 levels stagnated (Fig. 

4F and H, Fig 5 F and H, respectively). These results could be explained by the finding 

that not the entire amount of Vps34 is bound to Beclin162,63 as part of the initiation 

complex, but that  part of it is free. Which part is affected by the administration of the 

drug remains to be seen and would be subject to further research, like 

coimmunoprecipitation using crosslinks to identify physiological protein-protein 

interactions. Similarly, the experiments carried out for this thesis do not differentiate 

between expression vs. activity of a protein marker. Beclin1, for example, becomes 

phosphorylated by the ULK1/2 kinase,  which leads to the activation of Vps3490, 

whereas Rubicon, on the other hand, decreases the activation of Vps34 and therefore 

leads to a downregulation of autophagy85.  It therefore would be important to make the 

distinction between activated vs. inactive Vps34, which cannot be deduced from my 

data, as that would provide more information about the effect of up- or downregulation 

of a marker on autophagy.  

6.6 Bafilomycin Assays and assay of p62 degradation 
 
 
The level of lipidated LC3, a downstream marker of autophagy that was tested, was af-

fected by the addition of Bafilomycin A1 upon treatment with some of the different sub-

stances as well. Autophagic flux, defined as the dynamic process of autophagy, includes 

autophagy formation and maturation, lysosomal fusion and the following degradation 

and recycling of macromolecules. It is useful to look at autophagic flux instead of only 
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conducting experiments measuring the protein abundance of „static“ markers, because 

autophagic flux is a measure of autophagic degradation activity91 and is therefore crucial 

in understanding the dynamics of autophagy in cells. Since an accumulation of autopha-

gosomes, represented by an increased lipidated LC3, could be due to an increased rate 

auf autophagic induction or a block somewhere downstream, inhibiting autosomal mat-

uration and degradation, it is important to distinguish between these two scenarios by 

means of visualizing autophagic flux. Bafilomycin A1, a macrolide antibiotic that as a 

vacuolar H(+) ATP-ase inhibitor92 increases the pH of lysosomes93 and inhibits the fu-

sion of lysosomes and autophagosomes37, thereby acting as a lysosomal degradation 

inhibitor. Bafilomycin A1 increases the level of LC3II when autophagic flux occurs, be-

cause the transit of autophagosomes (to whose membranes LC3II is linked) through the 

autophagic pathway is blocked94.  Thus, the difference in the amount of LC3II/I in the 

samples without Bafilomycin A1 to the ones treated with Bafilomycin A1 account for the 

amount of LC3II/I that is degraded by lysosomes95. The fact that the effect of Bafilomy-

cin A1, a marked increase in the signal of LC3II/I, was amplified even more upon the 

addition of the substance shows that more marker accumulates due to increase in au-

tophagic flux in response to administration of the drug. This was the case for Etoposide, 

Xanthohumol, Perphenazine and Salinomycin as they increased the lipidated LC3 signifi-

cantly (Fig. 11A and B, Fig. 12 A and B, Fig. 11 G and H, respectively). However, although 

LC3II usually correlates with the number of autophagosomes96,  not all LC3II is linked to 

autophagic membranes as some seems to be ectopically generated97. These LC3II popu-

lations being independent of autophagy makes it difficult to account changes in the ex-

pression of LC3II solely to autophagic flux. Therefore, it is important to also use other 

means of monitoring autophagic flux in combination with methods looking at LC3II 

turnover. As p62 is degraded by autophagy, p62 levels can also be implemented to serve 

this purpose. Thus, an activation of autophagy leads to decreased levels of p62, whereas 
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a suppression of it leads to an accumulation of the marker. Clomipramine and Celecox-

ibe increased the lipidated LC3 in response to Bafilomycin administration and also de-

creased the level of p62 (Fig. 12 A and B), but not significantly and therefore seem to 

increase autophagic flux. Salinomycin, which has been shown to induce autophagic flux 

at low concentrations98,99, however, increases both the LC3II/I ratio and p62 significant-

ly (Fig. 11 G and H). Similar effects can be seen in the case of Perphenazine (Fig. 12 A 

and B), Etoposide (where only LC3II/I, however, increases significantly) and Pyrvinium 

pamoate (where both LC3II/I and p62 increase, but neither does so significantly). These 

effects could be explained by pitfalls in this system of monitoring autophagic flux as p62 

is degraded not only through autophagy, but also through a ubiquitin-proteasome sys-

tem, leading to increased levels of p62 also when the proteasome is inhibited. Addition-

ally, p62 seems to be linked to other molecular signalling pathways that affect autopha-

gy100, thus making the monitoring of autophagic flux based on p62 more difficult. Con-

versely, levels of p62 could have also increased due to a stimulatory effect of the applied 

substances as p62 by means of transcriptional upregulation, for example101. Despite the 

drawbacks of both Bafilomycin A1 and p62 degradation assays, taken in combination 

with each other, they should yield reliable results. However, because Bafilomycin A1 

assays seem to have fewer flaws than p62 degradation assays, I decided to impart more 

importance to their results when p62 and LC3II/I values did not correlate as in several 

instances mentioned above. Nevertheless, it might be advisable to look at other ways of 

measuring autophagic flux through tandem-fluorescence tagged LC3102 or lysomome-

dependent long-lived protein degradation97 or to even try to measure the rate of au-

tophagic flux in further studies.  

 

6.7 Forced Swim Test  
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The forced swim test is a behavioural test in rodents, used to test the efficacy of poten-

tial new antidepressant compounds by creating a situation in which “behavioural des-

pair” is induced. Salinomycin, chosen to be tested by these means, exhibited a significant 

antidepressant-like effect by increasing the time of struggling and decreasing the time 

that the mouse spent floating (Fig. 14). The forced swim test was developed in the late 

1970s as a animal behavioural paradigm for the evaluation of antidepressant drugs. The 

assumption is that animals will try to escape stressful stimuli (in this case, being placed 

into a cylinder of water), but if that is impossible, they would give up. Antidepressant- 

acting substances should increase the time an animal spends in escape attempts (meas-

ured by struggling), instead of giving up (floating, being immobile)103. Since minimal 

equipment is needed in order to carry out the test in mice, because high-throughput 

screening of drugs is possible via this method, yielding a wealth of data which can be 

used to compare different studies, the FST is an important tool in drug discovery and 

research68. Of course, there are drawbacks to this test as it does not necessarily repre-

sent the human condition104. To verify results, it would therefore be advisable to also 

carry out other models for depression-like behaviour, such as the open field test, the 

elevated plus maze or the tail suspension test. Since only 12 animals were tested in the 

drug and the control group of our study, more behavioural assessments should be car-

ried out to verify the results.  

6.8 Potential novel antidepressants 
 
Taking into account all the things discussed above, the substances most promising of 

being potential novel antidepressants are Celecoxibe (in response to treatment with 

which all markers tested increased significantly and which increased autophagic flux, if 

not significantly), Salinomycin (which increased both Beclin1 and LC3II/I significantly 

and seems to increase autophagic flux), Etoposide, Xanthohumol and Perphenazine (all 

three increasing LC3II/I significantly and increasing autophagic flux). Pimozide, a potent 
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D-2 receptor antagonist which is often coprescribed with serotonin reuptake inhibitors 

to better treat depression in patients with Tourette Syndrom60 , and Perhexilene male-

ate (which has been shown to rapidly induce autophagy105) should also be further eval-

uated in the future. Lastly, Clomipramine, a substance that has been used as tricyclic 

antidepressant for years has previously been shown to interfere with autophagic flux26, 

in our study increased Beclin1, p27 and LC3II/I, LC3II/I and p27 even significantly so, 

and also increased autophagic flux, if not significantly. Of course, our study only used a 

sample size of three, hence further experiments should be carried out to validate these 

results. Salinomycin, which has been shown to induce autophagy especially in cancer 

cells99,106, still looked promising after being tested in mice during the forced swim test, 

whereas Celecoxibe, a cyclooxygenase-2 inhibitor used as a non steroidal antiinflamma-

tory drug in clinical medicine, has already been tested in rats107 as well as in several pla-

cebo-controlled clinical trials108,109, catering to the hypothesis that an inflammation un-

derlies the pathophysiology of depression.  It was found to have antidepressive effects. 

Interestingly enough, Luteolin, which was shown to have antidepressant-like effects, in 

part because of a suppression of endoplasmic reticulum stress45, did not have an over-

whelming effect on autophagic markers. Similarly, Gossypol and ABT-737, which as a 

Bcl-2 inhibitors seemed promising, did not convince either as they did increase LC3II/I 

(ABT-737 significantly so), but did not significantly affect flux at all. This was suprising, 

as through Bcl-2 inhibition, Bcl-2’s interaction with the BH3 domain of Beclin1 was elim-

inated, thus reducing its inhibitive effect on autophagy110,111, rendering Gossypol112 and 

ABT-73753,113 autophagic inducers. Lastly, Minocycline, which has been tested as a po-

tential novel antidepressant in several instances and has had positive effects, did not 

affect expression patterns of autophagic markers very much at all and even seems to 

suppress autophagic flux (decreasing lipidated LC3 and increasing p62), again showing 

that there might be different cellular processes involved in the pathophysiology of major 
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depression. Since the drugs tested here were only administered for a period of 24 hours, 

after which the cells were harvested and protein effects were determined, it is impossi-

ble to say what the drugs’ effects would be when used over an extended period of time, 

in chronic treatment. Different experiments, including those measuring the concentra-

tion of drugs in the brain to see what kind of gradients could be built up, as well as elec-

trophysiological test, examining the reaction of hippocampal neurons in response to 

drug administration114, would be useful in creating a more complete picture of the 

drugs’ actions.  

7 Conclusion and Outlook 
 
In conclusion, out of the 24 drugs that were tested with respect to their effect on au-

tophagy, a few showed positive effects on the induction of autophagy and thus should be 

further investigated in light of potentially being novel antidepressants.  

There is still much to be researched in the field of major depression as very little is yet 

known about the pathophysiology of this disease. Many more experiments will have to 

be carried out, and just in the field of autophagy, many processes will have to be more 

completely understood in order to properly evaluate the results. Until these mechanisms 

have been understoood, it would be important to look at even more different markers of 

autophagy, such as UVRAG, Rubicon or Atg14, that are also involved in the initiation 

complex, as well as sites of phosphorylation or the oligomerization behaviour of differ-

ent molecules, in order to get a broader picture of a drug’s action. In addition, the exper-

iments should also be repeated in neurons, as both astrocytes and neurons are critical 

for the antidepressant response. Furthermore, a greater number of in vivo experiments 

still have to be carried out, including potentially ones of the drugs that I found out to be 

promising targets. In order to be able to undertake those, however, it would be wise to 

also look at the drug’s ability to cross the blood brain barrier, as otherwise, it would 
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have to be discussed whether a peripheral effect of the drug would be great enough to 

show a strong antidepressant effect. Similarly, it would be important to consider the side 

effects of potential new antidepressants, especially in the view of taking them over an 

extended period of time as the antidepressant effect would have to warrant the side ef-

fects. Side effects were especially pronounced in some of the first antidepressant drugs, 

tricyclic antidepressants, which since then have almost been replaced in the treatment 

of depression by the more selective (and thus fewer side effect-inducing) SSRIs. It would 

be hoped that new antidepressants would also induce faster antidepressant responses 

in patient behaviour. Ketamine, an NMDA-Receptor antagonist used in clinical anesthe-

sia, has recently been discovered to elicit a rapid and potent antidepressant effect, after 

having been administered intravenously only once115,116. Since then, the effect of the glu-

tamatergic system on major depression has been the focus of much research. In re-

sponse to NMDA stimulation, autophagy in neurons seems to be upregulated117,118. Since 

autophagy also seems to a play role in NMDA-Receptor modulated synaptic neuro-

transmission and synaptic plasticity119, substances acting on autophagic pathways might 

have a faster onset of action than many of the antidepressant drugs used currently in 

clinical medicine, hence making the further study of autophagy in the context of the 

pharmacological therapy of major depression worthwhile.  
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Figure 4. Group of chemotherapeutic substances inhibiting SKP2: cell viability and protein 
effects tested in primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean 
± SEM difference to control (vehicle) in triplicates. Vehicle was set to 100%. The red line 
indicates a 80% viability. Western Blot analyses (E-H) of cell lysates show effects of 
compounds on LC3II/I, Beclin1, p27 and Vps34 levels. Bars represent the mean + SEM 
(n=3). *p<0.05. (I-L) show cropped images of Western blots. The dotted line represents 
the separation between DMSO and drug-treated blots.  
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Figure 5. Group of substances inhibiting SKP2: cell viability and protein effects tested in 
primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean ± SEM differ-
ence to control (vehicle) in triplicates. Vehicle was set to 100%. The red line indicates a 
80% viability. Western Blot analyses (E-H) of cell lysates show effects of compounds on 
LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean + SEM (n=3). 
*p<0.05. (I-L) show cropped images of Western blots. The dotted line represents the 
separation between DMSO and drug-treated blots. 
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Figure 6. Group of antibiotic substances inhibiting SKP2: cell viability and protein effects 
tested in primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean ± SEM 
difference to control (vehicle) in triplicates. Vehicle was set to 100%. The red line indi-
cates a 80% viability. Western Blot analyses (E-H) of cell lysates show effects of com-
pounds on LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean + 
SEM (n=3). *p<0.05; **p<0.01; ***p<0.001. (I-L) show cropped images of Western blots. 
The dotted line represents the separation between DMSO and drug-treated blots. 
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Figure 7. Group of psychoactive substances inhibiting SKP2: cell viability and protein ef-
fects tested in primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean ± 
SEM difference to control (vehicle) in triplicates. Vehicle was set to 100%. The red line 
indicates a 80% viability. Western Blot analyses (E-H) of cell lysates show effects of 
compounds on LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean 
+ SEM (n=3). *p<0.05; ***p<0.001. (I-L) show cropped images of Western blots. The dot-
ted line represents the separation between DMSO and drug-treated blots. 



 

 41 

 
 

Figure 8. Group of substances inhibiting SKP2: cell viability and protein effects tested in 
primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean ± SEM differ-
ence to control (vehicle) in triplicates. Vehicle was set to 100%. The red line indicates a 
80% viability. Western Blot analyses (E-H) of cell lysates show effects of compounds on 
LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean + SEM (n=3). 
*p<0.05. (I-L) show cropped images of Western blots. The dotted line represents the 
separation between DMSO and drug-treated blots. 
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Figure 9. Group of substances inhibiting SKP2: cell viability and protein effects tested in 
primary rat cortical astrocytes. MTT assay graphs (A-D) display the mean ± SEM differ-
ence to control (vehicle) in triplicates. Vehicle was set to 100%. The red line indicates a 
80% viability. Western Blot analyses (E-H) of cell lysates show effects of compounds on 
LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean + SEM (n=3). 
*p<0.05. (I-L) show cropped images of Western blots. The dotted line represents the 
separation between DMSO and drug-treated blots. 
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Figure 10. SMIP004, a SKP2/ E3 ligase Inhibitor: cell viability and protein effects tested in 
primary rat cortical astrocytes. MTT assay graph (A) displays the mean ± SEM difference 
to control (vehicle) in triplicates. Vehicle was set to 100%. The red line indicates a 80% 
viability. Western Blot analyses (C-F) of cell lysates show effects of compound on 
LC3II/I, Beclin1, p27 and Vps34 protein levels. Bars represent the mean + SEM (n=3). 
Autophagic flux was measured with Bafilomycin A1 assays (G) and p62 quantification 
(H). *p<0.05; ***p<0.001. (B,F) show cropped images of Western blots. The dotted line 
represents the separation between DMSO and drug-treated blots. 
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Figure 11. Bafilomycin assays and levels of p62. 100nM of Bafilomycin A1 were added to 
cells 2 hours before harvesting after cells had been treated with drugs for 24h. Western 
blot analyses (A-B, G-H) of cell lysates show effects of compound on LC3II/I as well as 
p62 protein levels. Bars represent the mean + SEM (n=3). **p<0.01; ***p<0.001. (I-K) 
show cropped images of Western blots. The dotted line represents the separation be-
tween DMSO and drug-treated blots. 
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Figure 12. Bafilomycin assays and levels of p62. 100nM of Bafilomycin A1 were added to 
cells 2 hours before harvesting after cells had been treated with drugs for 24h. Western 
blot analyses (A-B, G-H) of cell lysates show effects of compound on LC3II/I as well as 
p62 protein levels. Bars represent the mean + SEM (n=3). *p<0.05. (C-J) show cropped 
images of Western blots. The dotted line represents the separation between DMSO and 
drug-treated blots. 
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Figure 13. Bafilomycin assays and levels of p62. 100nM of Bafilomycin A1 were added to 
cells 2 hours before harvesting after cells had been treated with drugs for 24h. Western 
blot analyses (A-B, G-H) of cell lysates show effects of compound on LC3II/I as well as 
p62 protein levels. Bars represent the mean + SEM (n=3). (G,H) show cropped images of 
Western blots. The dotted line represents the separation between DMSO and drug-
treated blots. 
 

 
 
Figure 14. Effect of FDA- approved drug Salinomycin (antibiotic that inhibits E3 ligase 
SKP2) on Forced Swimming Behaviour. Mice received an intraperitoneal injection of 
5mg/kg Salinomycin or equal quantity of saline (as vehicle, control) 45 minutes prior to 
testing (n=12). *p<0.05.  
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