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Abstract

To cope with the rapid changes in the environment, all the cellular processes

must be carefully regulated and this is often achieved by means of the post-

translational modifications. These chemical modifications added to the side

chains of amino acids in protein sequences have a variety of consequences,

ranging from the stability to the change in protein-protein interactions.

One of these post-translational modifications is ADP-ribosylation. ADP-

ribosylation is mainly associated to the regulation of DNA damage repair,

although it is important for the modulation of a large variety of cellular

processes. Being a complex signaling pathway, ADP-ribosylation requires

a likely complex metabolism and a number of transferases and hydrolases

orchestrate its spatial and temporal dynamics. Among the latter, MacroD2

removes the most proximal ADP-ribosyl-moiety from the glutamate of a

substrate protein.

My host lab is interested in the understanding of the modulation of the

DNA damage repair response by focusing on the ADP-ribosyl-hydrolases.

This brought my direct supervisor, Dr. G. Timinszky, to discover a par-

ticular phenomenon associated to MacroD2 protein: when the protein is

tagged with EGFP, upon DNA damage it recruits to the DNA lesion, while

its nuclear signal decreases over time. The work of my PhD aimed to un-

derstand and characterize the strange DNA damage-dependent behavior of

MacroD2.

For my work, I use a combination of microscopy and biochemical technics.

Thus, I show that the decrease in MacroD2 nuclear protein levels is due to

its regulated nuclear export. This behavior of EGFP-tagged MacroD2 con-

struct is also performed by the endogenous protein. I then characterize the

stimulus that triggers MacroD2 nuclear export. Upon DNA damage, mostly



upon formation of double-strand breaks, the kinase ATM, master regulator

of genotoxic stress response, is activated. ATM induces the phosphorylation

of MacroD2 on two specific serine residues located in the MacroD2 intrinsi-

cally disordered C-terminus region. This event triggers the nuclear export

of MacroD2. I also show that MacroD2 nuclear export is able to affect its

own recruitment dynamics at the DNA lesion, suggesting a potential role

in the regulation of the DNA damage response.

Although I defined the events inducing MacroD2 nuclear export, to under-

stand the mechanism with which MacroD2 crosses the nuclear envelope, I

performed a co-immunopurification experiment associated to peptide mass

fingerprinting. By comparing genotoxic stress condition to the control, and

a series of MacroD2 constructs (full-length protein, macrodomain or C-

terminus fragments), it is possible to draw the interactome of the protein

for the specific constructs in the specific conditions. The experiment does

not indicate any candidate that could drive MacroD2 into the cytoplasm.

On the other hand, the co-immunopurification experiment suggests few hy-

potheses about MacroD2 functional roles in the cells. In fact, although little

is known about MacroD2 functions, by combining the analyses on the en-

riched proteins with published studies, I formulate testable hypotheses able

to connect the enzymatic activity of MacroD2 to its genomic association

with autism syndrome.

Zusammenfassung

Alle zellulären Prozesse müssen genau reguliert werden, um auf plötzliche

Umwelteinflüsse reagieren zu können. Dies wird häufig durch posttrans-

lationale Modifikationen erreicht. Hierbei werden chemische Modifikatio-

nen an Aminosäureseitenketten hinzugefügt. Dies kann viele, verschiedene

Auswirkungen auf Zellen haben, von Änderungen der Proteinstabilität bis

zu unterschiedlichen Proteininteraktionen. Eine dieser Modifikationen ist

die ADP-ribosylierung von Proteinen. ADP-ribosylierung wird hauptsächlich

mit der Reparatur von DNA-Schäden verbunden, obwohl diese Modifikation

für eine Vielfalt von weiteren zellulären Prozessen von Bedeutung ist. Da



ADP-ribosylierung ein komplexer Signaltransduktionsweg ist, wird ein ex-

tensiver Metabolismus benötigt, welcher aus mehreren Transferasen und

Hydrolasen besteht. Diese Enzyme bestimmen die örtliche und zeitliche

Dynamik dieses Prozesses. Eines der Enzyme ist MacroD2, das den ADP-

ribose-Rest, welcher über einen Glutamatrest proximal an ein Substratpro-

tein gebunden ist, entfernt.

Der Arbeitskreis von Dr. G. Timinszky am Department für physiologische

Chemie der LMU ist daran interessiert herauszufinden, wie die Reparatur

von DNA-Schäden modifiziert wird, insbesondere durch ADP-Ribosyl- Hy-

drolasen. Dies führte zur Entdeckung eines besonderen Phänomens von

MacroD2 durch meinen direkten Betreuer Dr. G. Timinszky. EGFP-

markiertes MacroD2 rekrutiert zu induzierten DNA-Läsionen, wobei das

nukleäre EGFP Signal über die Zeit geringer wird. Das Ziel meiner Dok-

torarbeit war es, dieses bemerkenswerte Verhalten von MacroD2 nach der

Induktion von DNA-Schäden zu verstehen und zu charakterisieren.

In meiner Doktorarbeit habe ich eine Kombination von Mikroskopie und

biochemischen Methoden verwendet. Damit konnte ich zeigen, dass die

Reduktion des nukleären MacroD2s durch dessen regulierten Zellkernex-

port hervorgerufen wird. Dieses Verhalten von EGFP-markiertem MacroD2

wurde auch bei endogenem MacroD2 nachgewiesen. Ich konnte auch den

Stimulus charakterisieren, der dazu führt, dass MacroD2 aus dem Zel-

lkern exportiert wird. Durch DNA-Schäden, hauptsächlich durch DNA-

Doppelstrangbrüche, wird die Kinase ATM aktiviert, welche Signalkaskaden

in der Zelle startet, um auf genotoxischen Stress zu antworten. ATM

phoshoryliert MacroD2 an zwei spezifischen Serinresten in dessen ungeord-

neter, C-terminaler Region. Dies hat den Export von MacroD2 aus dem

Zellkern zur Folge. Ich konnte des Weiteren zeigen, dass der Zellkernexport

von MacroD2 dessen Rekrutierungsdynamik an DNA-Läsionen beeinflusst.

Dies spricht für eine potentielle Rolle von MacroD2 in der Antwort auf

DNA-Schäden.

Nachdem ich den Mechanismus definieren konnte, der dazu führt, dass

MacroD2 aus dem Zellkern exportiert wird, war es wichtig herauszufinden,



durch welchen Mechanismus MacroD2 die Kernmembran passieren kann.

Hierfür habe ich Co-Immunopräzipitationen mit anschließender Analyse der

Peptid-massenfingerprints durchgeführt. Durch den Vergleich von geno-

toxischen Stressbedingungen mit Kontrollbedingungen und durch die Ver-

wendung mehrerer MacroD2 Konstrukte (Volllängenprotein, Macrodomäne

und C-terminale Domäne) ist es möglich das Interaktom der Proteine mit

MacroD2 für verschiedene Konstrukte und Bedingungen zu definieren. Diese

Experimente zeigten jedoch keinen Kandidaten, welcher MacroD2 aus dem

Zellkern in das Zytoplasma exportieren könnte. Andererseits konnten mehrere

Hypothesen über funktionelle Aufgaben von MacroD2 in Zellen aufgestellt

werden. Obwohl wenig über Funktionen von MacroD2 bekannt ist, konnte

ich, durch die Kombination der Analyse von angereicherten Proteinen und

publizierten Ergebnissen, prüfbare Hypothesen aufstellen. Diese Hypothe-

sen verbinden die enzymatische Funktion von MacroD2 mit genomweiten

Assoziationsstudien über das Autismus Syndrom.
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becca Smith, Giuliana Möller, Anna Hegele, Julia Preißer and Mai Ly Tran, thank

you all.

I thank Andrew Bowman and Gytis Jankevicius for teaching me, willingly or less

willingly, how to survive in the lab: professionalism and craziness at the same

time. I also want to thank Aurelio Nardozza, Marta Forn, Ramon Barrales and

Ava Handley for the many questions you were asked and the patience with which

you were answering them. Additionally, I would like to thank Andreas Schmidt for

the help in designing and performing the mass spectrometry experiments.

I would like to thank Anton Eberharter, Christine Werner and Corey Laverty

for having taken care of all the bureaucratic and management issues, as well as

the long hours of English editing. To all the other members of the department of

Physiological Chemistry, thank you for being my “enlarged” family for these four
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Introduction

Life demands adaptation to new stimuli, from the outside world as well as from the

inside. Every cellular process consists of a series of enzymatic reactions performed by

a large number of proteins. All these processes need a great deal of coordination: a

multi-step pathway must take place in a controlled manner, in the right proportion,

at the right time and in the right place. It is indeed a complex task for the cell to

organize everything. Therefore, for each pathway, a regulatory system that accurately

fine tunes the different steps in that pathway has evolved.

Each process needs to be adjusted according to the variable conditions inside and

outside of the cell. When the environment changes rapidly, the cell response needs to

be equally fast. This fast response cannot rely on the synthesis of new proteins, since

all together transcription, transcript processing and translation are relatively slow.

To generate an appropriate quick response, other types of regulation have evolved.

For example, post-translational modifications, which are covalently-attached chemical

groups, can affect the activity or the stability of the target protein. Another means

to achieve the regulation of a pathway is to modulate the localization of the proteins

within the cell. Either alone or in combination, these two strategies of regulation can

change the activity of a specific pathway and adjust its functionality to the momentary

needs of the cell.
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1. INTRODUCTION

1.1 Post-translational modifications in modulating cellu-

lar processes

Many eukaryotic proteins are regulated by means of a chemical modification. The amino

acid side chains of a protein can be modified covalently by a chemical group or even a

small protein, which affects its activity or stability (1). Since the modification occurs

after the synthesis of the protein, it is called a post-translational modification. There

are many classes of post-translational modifications and virtually all proteins could

be regulated through them (Figure 1.1). The most well-studied post-translational

modifications are phosphorylation, methylation, acetylation, ubiquitination and ADP-

ribosylation. But many more are at work in the cells.

The first evidence of reversible post-translational modification is described in the

work on the glycogen phosphorylase (2), whose phosphorylation state dictates the ac-

tivation levels of the protein (3). Since then, our knowledge of post-translational mod-

ifications has expanded rapidly and there is an increasing number of types of modifi-

cation and mechanisms regulating protein activity. Despite their diversity, most post-

translational modifications are modulated through three types of protein components:

a “writer”, an “eraser” and a “reader”. The “writer” is an enzyme, like a transferase,

that attaches the modification to the target protein. The “eraser” removes the modi-

fication. The “reader” is a protein that is able to decode the modification and induce

the effect that the modification is calling for (Figure 1.2). This theory was first elab-

orated for the modifications occurring on histone proteins (4). However, this theory is

generally applicable in describing other post-translational modification-based signaling

pathways. Nonetheless, this view may suffer of extreme generalization, as, for example,

the reader function can be dispensable. In fact, in many cases the post-translational

modification is able to produce an effect by changing the structural conformation of

the substrate, in a way that is independent from “reader” factor.

So far, the main body of research describes how one specific post-translational

modification regulates one biological process. But it is becoming clear that the different

pathways do not work as separated blocks and the survival of the cell is accomplished

only when all the processes are coordinated (5). This is the reason why the interactions

of different pathways are the real key to understand how life is so apt to adapt. Only

2
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Figure 1.1: Different post-translational modifications present similar functional

components - A small selection of post-translational modifications in the cell: phospho-

rylation (a), acetylation (b), methylation (c). Simplified representation of the reactions

that add or remove the post-translational modification. Also shown as an example is one

typical domain that binds the protein substrates only when the specific post-translational

modification is present. P, phosphorylation; Ac, acetylation; Me, methylation. Adapted

from Deribe et al., 2010 (1).
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Writer

Eraser

Reader

a b c

Figure 1.2: Post-translational modifications dynamics result from the combi-

nation of three different functions - As originally formulated in the “histone code

hypothesis”, the structure of each post-translational modification is based on three func-

tions: the “writers” set the signal; the “erasers” remove the signal; the “readers” decode

the signal. Adapted from Baker et al., 2008 (4).

by knowing how the network of different processes is interconnected, we can actually

understand the system, and maybe one day control it.

1.2 ADP-ribosylation: regulation and functions

ADP-ribosylation is a post-translational modification discovered already in 1963 (6).

Although in the early years it was mainly referred as enzymatic activity of bacte-

rial toxins, like diphtheria toxin, it then became clear that ADP-ribosylation is a re-

versible post-translational modification implicated in the regulation of several cellular

processes, such as genomic stability (7), chromatin structure (8), transcription (6), cir-

cadian rhythm (9), and RNA metabolism (10). ADP-ribosylation is a very dynamic

post-translational modification, whose high turnover is due to the presence of several

“writers” and “erasers” (Figure 1.3). ADP-ribosylation is very complex, since the

modification can comprise of a single moiety up to 200-long-units chain, which can

be linear or branched. So far, the single ADP-ribosyl-modification works in a distinct

manner, when compared to the long-chain regulatory activity (11). However, the pos-

sible combinations for the long chain, such as the number of moieties in the chain

and the presence of branching, may exponentially increase the coding abilities of this

post-translational modification.
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5



1. INTRODUCTION

1.2.1 Human ADP-ribose transferases are diverse in structure and

function

In humans, ADP-ribosylation is carried out by different classes of transferases. Ac-

cording to the recently proposed nomenclature, ADP-ribose transferases (ARTs) are

divided into two groups (13), depending on which protein structure they adopt: the

first and most studied group consists of the eighteen ADP-ribosyltransferases diphtheria

toxin-like proteins (ARTDs), most of which were previously known as poly(ADP-ribose)

polymerases (PARPs); the second group consists of the five C2 and C3 toxin-like ADP-

rybosyltransferases (ARTCs). Besides the ARTDs and ARTCs, SIRT2, SIRT4 and

SIRT6, belonging to the family of the de-acetylase sirtuins, were also reported to act

as ADP-ribosyl-transferases (14, 15, 16, 17).

The ARTs transfer an ADP-ribose moiety from nicotinamide adenine dinucleotide

(NAD+) onto the target protein and release nicotinamide as by-product (Figure 1.4;

(6)). Many residues that accept ADP-ribose have been described so far. These are:

glutamate (18), aspartate (18), lysine (19), arginine (20), asparagine (21), cysteine (22),

diphthamide (23) and phospho-serine (24) residues.

The complexity of ADP-ribosylation signaling is due to the fact that the modifica-

tion itself shows a certain degree of complexity. While most enzymes can only perform

the transfer of one ADP-ribose moiety, and therefore are called mono(ADP-ribose)

transferases (MARTs), some can attach other moieties to the first, granting the pos-

sibility to create a chain up to 200 units, thus the former name of PARPs (6). The

chain can be linear, if the new moiety is attached to the adenine-proximal ribose unit

through a 2′-1′′-O-glycosidic bond. Also, the PARPs can attach the new moiety at the

nicotinamide-proximal ribose, thus creating a 2′′-1′′′-O-glycosidic bond and forming a

branch (25). The branching happens every 20-50 ADP-ribose units per chain in both

in vitro and in vivo experiments (25, 26, 27, 28).

The eighteen human ARTDs are further classified according to their enzymatic

activity (Figure 1.5). ARTD1, ARTD2, ARTD5 (TNKS1) and ARTD6 (TNKS2)

generate poly(ADP-ribose) (PAR) (11). The others can only transfer a single mono-

ADP-ribose (MAR) onto target proteins, with the exception of ARTD9 and ARTD13

that are inactive. Additionally, the sirtuins SIRT2, SIRT4 and SIRT6 have been shown

to be themselves mono-ADP-ribosyl-transferases (14, 15, 16, 17).
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ARTZF ZF ZF BRCT AMD WGR HD1 ARTD1 / PARP11014

ARTBRCT PRDlike VIT vWA MVP-ID1 ARTD4 / vPARP1724

ARTHPS ARD ARD ARD ARD ARD SAM1 ARTD5 / TANK11327
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ARTWWE1 ARTD11 / PARP11334
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Figure 1.5: Domain architecture of the human ARTDs - List of the eighteen ARTDs

with their domain composition. ART: catalytic core for ART activity; HD: linking helical

subdomain; WGR: conserved central motif (W-G-R); BRCT: BRCA1 carboxy-terminal

domain; SAM: sterile alpha motif; ARD: ankyrin repeat domains; VIT: vault protein inter-

alpha-trypsin; vWA: von Willebrand type A; WWE: named after three conserved residues

(W-W-E); Macro: macrodomain; ZF: zinc finger domains; SAP: SAF/Acinus/PIAS-DNA-

binding domain; MVP-ID: Major-vault particle interaction domain; HPS: Histidine-proline-

serine region; RRM: RNA-binding/recognition motif; UIM: ubiquitin interaction motif;

TPH: Ti-PARP homologous domain. GRD: glycine-rich domain; CBD: caveolin-binding

domain. Adapted from Hottiger et al., 2010 (13)
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ARTD1/PARP1 is the most studied member of the ARTDs. ARTD1 a 116 kDa

enzyme, is one of the few ARTs that is activated by binding specific DNA-damage

related structures. ARTD1 is composed of many structural domains: two homologous

zinc-finger domains (ZnF1 and ZnF2); a third zinc finger domain (ZnF3) diverged from

the previous two; a BRCA1 C-terminus (BRCT) motif with the auto-modification

domain; a WGR (Trp-Gly-Arg) motif; a catalytic domain containing the linking helical

subdomain (HD) and the conserved catalytic signature (HYE) in the real catalytic

fragment (CAT) (Figure 1.6 (29)). So far, crystallization of the whole protein has

been elusive, but through crystallization of ARTD1 fragments it has been possible

to define how the enzyme binds the damaged DNA and how the binding enhances

the enzymatic activity (30, 31, 32, 33, 34, 35). According to several studies, the ZnF1,

ZnF3, WGR and CAT domains are necessary for DNA-dependent activity on DSB (29).

However, Ali et al., 2012 showed that in vivo recruitment of the ARTD1 fragment to

DNA lesions is dependent on a functional ZnF2 upon UV-laser microirradiation (33).

This observation is explained by the role of ZnF2 in the recognition of DNA single-

strand-breaks, largely induced by UV laser (30).

Human ARTD1
a

b

CAT

CAT

Figure 1.6: Domain architecture and activation of ARTD1 - ARTD1 is the best

characterized ARTD. In a, the domain composition of the human ARTD1. In b, surface

rapresentation of ARTD1/DNA structure. Adapted from Langelier et al., 2012 (34).

The most recent mechanism for ARTD1 activation suggests that the ZnF3 and the

WGR domain relay the DNA damage binding to the catalytic domain (34, 35). When

the ZnF domains bind a DNA lesion, a conformational switch in the WGR domain

9
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makes the HD subdomain to move away from the CAT domain, which then increases

its catalytic processivity. ARTD2 and ARTD3 have the same allosteric regulation

between the HD and CAT domains, although the binding domain and the activating

DNA molecule are different from ARTD1.

Since ARTD1 is so well studied, many examples are described, where ARTD1 ac-

tivity is modulated by post-translational modifications from other enzymes: SET7/9-

dependent methylation (36), SIRT6-induced MARylation (37, 38) and cyclin-dependent

kinase 2 (CDK2)-dependent phosphorylation (39) are all able to induce ARTD1. ARTD1

is also phosphorylated by DNA-PK (40, 41) and by ataxia-telangiectasia-mutated (ATM)

(42, 43, 44), although it is not clear if there is a functional role for these modifications.

Little is known about the structural details of the other ARTD enzymes (45). And

even less is known about the structure of the MARTs. ARTD10 has been the first

MART to be studied in detail and the definition of its catalytic mechanism suggested

that the sequence requirement for the MARylating activity and for the polymerase

activity are different (46).

The MART activity of the sirtuins has been described in a number of paper, but

little is known about their functional role or their substrates. SIRT2 was the first

human sirtuin found to have MART activity in in vitro experiments (14), although other

enzymatic activities, such as deacetylation and demyristoylation, might be prevalent

in the cellular environment (47). SIRT4 is localized in the mitochondria and has been

shown to MARylate the glutamate dehydrogenase (GDH) and modulate in this way its

enzymatic activity (16). Last but not least, SIRT6 has been shown to be recruited to

DNA lesions and to MARylate ARTD1 (37, 38). This modification would increase the

polymerase activity of ARTD1.

1.2.2 The ADP-ribose recognition modules relay the encoded message

Post-translational modifications are often recognized by specific recognition modules.

So far, seven ADP-ribose recognition modules have been identified (Figure 1.7 (8,

12)). These are able to recognize specific or common features of MAR and PAR.

The first identified were the linear PAR-binding motifs (PBMs) (48). Then, in rapid

succession, more modules have been discovered: WWE domain (49), macrodomain

(50) and PAR binding-zinc finger (PBZ) (51). The following domains to be discovered,

FHAs and BRCTs, were previously associated to the recognition of phosphorylation.
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These specific domains seems to have diverged from the canonical phosphorylation-

binder FHA and BRCT domains and a combination of in vitro and in vivo assays

showed for them a better affinity for ADP-ribosylation (52, 53). Similar story occurred

for the single-strand DNA binding domain OB. The authors were able to show binding

for the ADP-ribosylation in place of DNA molecules (54).

Being very diverse binding modules, they can recognize different features of the

ADP-ribose molecule, as different immunoglobulins from a polyclonal antibody recog-

nize several epitopes. For example, WWE domain binds at the linkage between two

different ADP-ribose moieties, making it the perfect reader for PAR (55). On the other

hand, macrodomain is binding the most terminal potion of the ADP-ribosyl-residue.

Therefore, it can bind either the end of a PAR chain or a single MAR (56).

1.2.3 PARG and ARH3 degrades the poly-ADP-ribose into mono-

ADP-ribose

In every type of signaling, the timely removal is essential for proper regulation. There-

fore, in humans there are a number of enzymes that negatively regulate the levels

of ADP-ribosylation, even though they are much fewer compared to the pool of the

transferases (12).

The PAR glycohydrolase (PARG) and ADP-ribose hydrolase 3 (ARH3) degrade

PAR by hydrolyzing the O-glycosidic ribose-ribose bonds and release ADP-ribose (57,

58). In particular, PARG removes preferentially one moiety at the time, but can also

remove the whole chain all together (59). Conversely, the crystal structure of ARH3

suggests that it can only remove the last ADP-ribose of the chain (60, 61). However,

they are ineffective on the protein-linked mono-ADP-ribose, so that their final products

are mono-ADP-ribosylated proteins.

Surprisingly, the two proteins show different structures in the catalytic domain, since

the first possess a catalytic macrodomain, while the latter belongs to the dinitrogenase

reductase-activating glycohydrolase-related protein family (62, 63). PARG activity is

essential to a proper regulation of ADP-ribosylation, due to the lethality at the embryo

stage in PARG-/- mice and to the pronounced neural overproduction of PAR associated

with neurodegeneration in Drosophila (64, 65). ARH3 activity is also important for

proper cell function upon oxidative stress (66).
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Keun Woo Ryu et al. Chem Rev 2015; 115(6):2453-81

Figure 1.7: The different PAR-binding modules - Each PAR binding module

can recognize distinct features of the PAR molecule. a) The PBZ domain (blue) uses

a zinc-coordinated fold that recognise the 2′′-1′-O-glycosidic bond between two ribose

units, shown in the boxes with crystal structures of APLF and CHFR binding analogues.

The macrodomain (red) binds the terminal ADP-ribose residue of PAR or mono-ADP-

ribosylated protein. The WWE domain (green) recognize the iso-ADP-ribose residue.

Human RNF146 WWE domain in complex with iso-ADP-ribose is shown as example. b)

A table summarizing all the different PAR binding modules, the PAR element recognized

and some example factors. From Ryu et al., 2015 (6).
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Until recently, ADP-ribosylation was not a completely reversible modification, since

the enzymes removing the most proximal ADP-ribose moiety attached to the acidic

residues were still unknown. In 2013, three different papers characterized the enzymatic

activity of MacroD1, MacroD2 and TARG1, the human mono-ADP-ribosylhydrolases

(56, 67, 68).

1.2.4 MacroD1, MacroD2 and TARG1: the ultimate “erasers”

ADP-ribosyl-arginine hydrolases in animal species were already known since the middle

1980s (69). These activities, however, were only able to remove the final moiety from

other amino acid residues a part from arginine. Therefore, the mono-ADP-ribosyl

hydrolase activity acting on acidic residues was still missing. MacroD1, MacroD2 and

TARG1 can reverse protein MARylation by hydrolyzing the ester bond between ADP-

ribose and glutamate or aspartate (56, 67, 68). These three proteins belong to the same

protein family, since they share the same catalytic domain, the macrodomain (Figure

1.8). The same domain is present also in PARG, even though modified in key residues

so that PARG cannot perform this last removal step (see 1.2.3; (62)).

The macrodomain is a globular domain presenting a combination of 5 α-helices

and 6 β-sheets (Figure 1.9; (50, 70)). The macrodomain is a very conserved mod-

ule, spread throughout the whole evolutionary arc, from archeobacteria, bacteria to

vertebrates. It is also represented in some virus classes, arguing for a primordial role

in the anti-viral response and a successively exchange between hosts and viruses (70).

Also, the number of macrodomain-containing genes within an organism well correlates

with its complexity, even though it is not always true. Among the model organisms

in research, macrodomains are present in mouse, frog, fruit fly, chicken, zebrafish and

roundworm, as well as many others. Remarkably, budding yeast has not ARTDs but

two macrodomains, probably successively reintroduced (70).

The macrodomain has been first found as an unknown sequence of the histone

variant MacroH2A (71). Independently, by an unbiased genomic approach in yeast,

it was found that this same sequence could hydrolyze a byproduct of tRNA splicing,

the ADP-ribose-1′′-phosphate (72). But at the time there was no connection with

MacroH2A, as well as no crystal structure nor protein family. In 2005 the crystal

structure of the macrodomain from the Archaeoglobus fulgidus protein Afl1521 was

published, matching the folding of the previously unknown sequence with the yeast
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H2A Macro MacroH2A11 372

H2A Macro MacroH2A21 372

MacroSNF2_N HELICc ALC11 797

MacroMacro PARP cat ARTD9/PARP9/BAL11 854

Macro Macro Macro PARP catWWERRM ARTD8/PARP14/BAL21 1801

Macro Macro PARP cat ARTD7/PARP15/BAL31 678

Macro SEC14 GDAP21 497

Macro MacroD11 325

Macro MacroD21 448

Macro TARG11 152

MacroRegulatory domain Accessory domain PARG1 976

Figure 1.8: Macrodomain family members in humans - Domain structure of the

human macrodomain proteins. Domain abbreviations: H2A, core histone H2A-like do-

main; HELICc, helicase conserved C-terminal domain; Macro, macrodomain; PARP cat,

poly(ADP-ribose) polymerase catalytic domain; RRM, RNA recognition motif; SEC14,

named after yeast SECretory protein 14 (Sec14p); SNF2-N, SNF2 helicase family N-

terminal domain; WWE, domain is named after a conserved tryptophan/glutamate-

containing motif. Adapted from Rack et al., 2016 (70).
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Rack et al Annu Rev Biochem 2016 (Epub ahead of  print)

a b c d

Figure 1.9: How the macrodomain folds and binds to the ADP-ribose - a)The

topological representation of the macrodomain shows the organization of the central six-

stranded -sheet (red) flanked on both sides by five α-helices (green). However, some

macrodomains have additional α-helices or β-strands. b-d) The ribbon and surface rep-

resentations of three human macrodomains, MacroH2A1.1 (b), MacroD2 (c) and TARG1

(d). The structures show the binding of ADP-ribose (b,c) or the lysyl-ADPr intermediate

(d). In the magnifications, details on the coordination of the adenosine moiety by a con-

served phenylalanine and/or asparagine residue as well as by the substrate-binding loops

1 and 2 (red) is depicted in the magnifications. From Rack et al., 2016 (70).
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protein (50). Along with the folding, the macrodomain was identified as a ADP-ribose-

1′′-phosphate hydrolase, as well as a PAR-binding module. MacroH2A was next shown

to bind O-acetyl-ADP-ribose, a byproduct of Sirtuins de-acetylase activity, and that

this ability was lost according to the splicing isoform of MacroH2A (73).

It took some time to show that macrodomains from the human MacroD1 and

MacroD2 were able to hydrolyze O-acetyl-ADP-ribose as well, suggesting a role of

macrodomain proteins in the regulation of histone acetylation (74). In the meantime,

the crystal structure and the O-acyl-ADP-ribose hydrolase activity of C6orf130/TARG1

were confirmed (75). Two years later, several groups finally showed the mono-ADP-

ribose hydrolase activity of MacroD1, MacroD2 and TARG1 (56, 67, 68).

The three mono-ADP-ribose hydrolases share the macrodomain structure. But they

greatly differ in other elements. TARG1 is the smallest of the three proteins, only 17

kDa. It has most of the protein sequence overlapping with the macrodomain and it is

more related to the ALC1-like folding than to the MacroD protein folding (70). When

tagged with EGFP, TARG1 is found in the whole cell, therefore it seems there is no

restriction in its localization (68). The small size should not affect the free movement

of TARG1 within the cell. The catalytic activity of TARG1 requires the formation

of a stable intermediate of the target protein bound to the enzyme. This mode of

action is slightly different from the other two enzymes of the group, consistent with the

fact that TARG1 is in a different phylogenic branch (68, 70, 75). The only described

interactors of TARG1 are ARTD1 and ARTD10, so far (68). Also, TARG1 is shown

to recruit to DNA damage sites upon UV-laser microirradiation and it is dependent

on the ADP-ribose binding ability of the macrodomain. TARG1 activity is associated

with neurodegeneration (68), similarly to PARG (65). Thus, the regulation of ADP-

ribosylation appears to be particularly necessary in the brain.

MacroD1 is a slightly bigger protein, with 35.5 kDa molecular weight. Aside the

macrodomain, MacroD1 presents an N-terminal sequence with a mitochondrial tar-

geting sequence (MTS) (76). Its mitochondrial location suggests that the MacroD1

enzymatic substrates could be all mitochondrial proteins. Studies have shown that

MARylation occurs in mitochondria: for example, SIRT4 negatively regulates GAPDH

activity by MARylation (16). Also, one of PARG isoforms presents a MTS (12). There-

fore, regulation of mitochondrial processes could be mediated by ADP-ribosylation.

However, in vitro tests on the MAR-hydrolase activity of MacroD1 were performed on
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ARTD1 and ARTD10, whose main location is not in the mitochondria. Additionally,

the work of W. Han group shows that MacroD1 (called by them LRP16) is co-activator

of the estrogen receptor α and androgen receptor, as well as being involved in the NF-

κB regulation (77, 78, 79). It is still unknown how these functional interactions can be

consistent with the mitochondrial localization.

The catalytic mechanism proposed for MacroD1 and MacroD2 is different com-

pared to the mechanism of TARG1. MacroD1 and MacroD2 are proposed to perform

a substrate-assisted catalysis (56). The macrodomain would adapt its conformation

to better accommodate the substrate, so that the pyrophosphate of the ADP-ribose

would activate a water molecule for a nucleophilic attack against the glutamate of the

substrate, leading to the release of the ADP-ribose.

1.2.5 The elusive nature of MacroD2

MacroD2 is the third member of the macrodomain mono-ADP-ribosyl hydrolases.

MacroD2 is the biggest of the three, with 448 amino acids length and 50 kDa molec-

ular weight. As the other two members, it has a macrodomain that is located in

the N-terminal portion of the protein (see Uniprot page http://www.uniprot.org/

uniprot/A1Z1Q3). The C-terminal portion is instead not annotated and includes a

compositional biased sequence for glutamic acid between the aa 247 and 388. In the

evolution of macrodomains, MacroD1 and MacroD2 functions were probably performed

by one gene only, until when there has been a duplication event at the beginning of the

vertebrate clade (80).

Previous molecular studies on MacroD2 have focused on the macrodomain alone

(56, 67). In fact, before my PhD, I worked on the recruitment of MacroD1, MacroD2

and TARG1, as shown in Jankevicius et al., 2013 and Sharifi et al., 2013 (56, 68).

Thus, I showed that the MacroD2 macrodomain is able to recruit to the DNA damage

sites upon laser microirradiation, as it is also true for other macrodomains, namely

MacroH2A1.1 variant, MacroD1 and TARG1 (56, 68, 81). The recruitment of MacroD2

was dependent on ADP-ribosylation, since both ARTD inhibition and mutation in the

MacroD2 ADP-ribose-binding pocket (MacroD2 G188E mutant) prevent MacroD2 from

localizing at DNA lesions (56). Also, the recruitment of MacroD2 was different from

MacroH2A1.1, a sole reader of the mark. In fact, while MacroH2A1.1 recruited in a

sharp peak, MacroD2 showed a bimodal curve (Figure 1.10). These results suggested
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that MacroD2 recruited in a first peak, but only upon conversion of the PAR into

MAR by PARG it was able to reside longer at the DNA damage site. To confirm the

hypothesis, when I depleted PARG by RNAi-mediated knock-down, the first peak was

lost and the overall recruitment was strongly decreased (56).

Jankevicius et al. Nat Struct Mol Biol 2013 20(4):508-14 

Figure 1.10: MacroD2 macrodomain recruits to DNA lesions - Recruitment of

EGFP-MacroD2 and mCherry-MacroH2A.1.1 macrodomains to sites of laser-induced DNA

damage. The focus of laser microirradiation is indicated with a yellow circle. Scale bar,

10 µm. Quantification of accumulation to the damage site. From Jankevicius et al., 2013

(56).

The characterization of MacroD2 macrodomain activity defined as possible sub-

strates ARTD1, ARTD10 and Histone H1 (Figure 1.11; (56, 67)). As mentioned

before, MacroD2 enzymatic activity adopts the substrate-assisted catalyst mechanism

described for MacroD1 (56).

Additionally, MacroD2 successfully removes the modification from glycogen syn-

thase kinase β (GSK3β) both in in vitro and in vivo experiments (Figure 1.11; (67)).

GSK3β is an enzyme involved in the regulation of several pathways, involved in prolif-

eration and apoptosis, cell morphology and motility, as well as to diabetes and several
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Rosenthal et al. Nat Struct Mol Biol 2013 20(4):502-7

Figure 1.11: MacroD2 removes MAR from ARTD10 and GSK3β in vitro -

Coomassie blue (CB) staining and autoradiography (32P) results of in vitro assays with

tandem-affinity purification (TAP)-tagged ARTD10 and GST-GSK3β coupled to beads.

MacroD2 macrodomain removes MAR from both purified ARTD10 and GSK3β, while the

macrodomains 1 and 2 from mouse ARTD8 do not. From Rosenthal et al., 2013 (67).
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neuropathologies (82, 83). GSK3β has been shown to be in vitro and in vivo MARy-

lated by ARTD10 and this modification results in the decreased activity of the kinase

(84). Thus, ARTD10 and MacroD2 could represent an independent pathway, impor-

tant for the fine-tuning of GSK3β activation levels. But more experiments awaits to

test this hypothesis.

Overall, MacroD2 cellular function is still unclear. There are many hints suggest-

ing MacroD2 to be involved in many processes, but no real evidence. For example,

initial MacroD2 association with Kabuki syndrome has been proved wrong (85, 86).

Still with some controversy, MacroD2 is often associated with autism syndrome, so

that it has also been referred as one of the autism-associated prototypical genes in

genome-wide association studies (87, 88, 89, 90, 91, 92, 93). In addition, MacroD2 has

been associated to other neurological related diseases, as attention-deficit hyperactivity

disorder (ADHD) or major depressive disorder (89, 94, 95). Other association studies

were linking MacroD2 to the temporal lobe volume (96) and to brain connectivity in

patients with neurological and psychiatric disorders (97). Therefore, MacroD2 function

might have an important role in the development of brain functions, as well as in their

protection. As confirm, the MacroD2 knockout mouse shows a number of behavioral

and neurological phenotypes (International Mouse Phenotyping Consortium), firmly

indicating the functional role of MacroD2 in the brain. What would be its molecular

role in the brain is still to define.

MacroD2 overexpression was shown to induce tamoxifen resistance in estrogen re-

ceptor α positive breast cancers (98). Considering the abovementioned interaction be-

tween MacroD1 and the same pathway (77), the authors did actually test and exclude

that MacroD1 overexpression is involved in the formation of the resistance. Multiple

studies found the deletion of MacroD2 gene in association with colorectal cancer, sug-

gesting that MacroD2 could be a tumor-suppressor gene (99, 100, 101, 102). However,

it has also been proposed that the MacroD2 gene locus is fragile (94, 103), thus maybe

erroneously found in diverse genome-wide association studies (94, 104, 105, 106, 107,

108, 109). In conclusion, if these many phenotypes associated with MacroD2 indi-

cate a true relationship and not a coincidence, it is still unknown. And how MacroD2

enzymatic activity could explain such phenotypes, is still an open question.
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1.2.6 ADP-ribosylation regulates several aspects of DNA damage re-

pair

Since its discovery, most efforts in studying ADP-ribosylation signaling function have

focused on its involvement in DNA damage response (DDR) (Figure 1.12; (8)). DNA-

depentent ARTDs, namely ARTD1, ARTD2 and ARTD3, are differentially involved

in this response, even though most studies characterize just ARTD1 activity in the

different DDR pathways (110).
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Figure 1.12: ADP-ribosylation is involved in several DNA repair pathways -

Different types of DNA damage types activares ARTD1 and others transferases. In grey,

some factors that are activated by ADP-ribosylation or recruited to DNA lesions in a PAR-

dependent manner. In the lower boxes, the output repair pathways that are influenced by

ADP-ribosylation signalling.

Many different types of lesions occur on DNA. Single-strand breaks (SSB) arises

either because of endogenous factors, like reactive oxygen species (ROS), or because

of failure in the enzymatic activity of type I topoisomerases (111). These enzymes

are involved in DNA replication and transcription and their role consists in allowing

the denaturation of the DNA double strand, in order to access to the information

kept within: thus, type I topoisomerases nick the sugar-phosphate backbone of one

strand while creating the covalent intermediate of a phospho-tyrosine. As the whole
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DNA molecule has relaxed, adjusting its physical tensions, the topoisomerases ligate

the ends back together. But when there is an abortive ligation or a malfunction in

topoisomerase I activity, the DNA molecule gets an unresolved SSB.

SSBs are also formed as natural process in the repair of other types of lesions.

Oxidative damage, alkylation, methylation, deamination or hydroxylation of a DNA

base are recognized as lesions, since they could interfere with the DNA- or RNA-

polymerase processing and create a base-pairing mismatch. For this reason, the base

excision repair pathway (BER) is initialized. The BER starts with the detection and

excision of the damaged base by DNA glycosylases, which remove from one to eight

nucleotides of the same strand and generate a SSB (112, 113).

Even if ARTD2 is also involved to SSB repair (114), ARTD1 has been described as

an important factor in the induction of BER response, although its actual contribution

to the repair efficiency is controversial (115, 116). Depletion of ARTD1 affects repair

of lesions derived from uracil or 8-oxoguanine, inducers of abasic sites. Also ARTD1

and PARG depletion were relevant in SSB repair upon treatment with H2O2 in chicken

DT40 or A549 human lung carcinoma cells (117). The importance of ARTD1 activity is

probably due to its function in recruiting downstream BER factors due to the formation

of the PAR scaffold. In fact, many proteins involved in the pathways have been found

enriched in PAR-binding proteins or as ADP-ribosylated proteins (53, 118, 119, 120,

121, 122, 123, 124, 125, 126). Therefore, depletion of ARTD1 is affecting the speed of

the repair process but not its successful completion (127, 128, 129).

Other types of DNA lesions that require a more invasive repair pathway, the nu-

cleotide excision repair (NER), do still belong to the SSBs: cyclobutane pyrimidine

dimers (CPDs), (6-4) pyrimidine-pyrimidones photoproducts (6-4PPs) are induced by

UV-C light and consists of bulky adducts distorting the DNA molecule, so that the

entire nucleotide is required to be exchange (130). These DNA lesions are shown to be

strong activators of ADP-ribosylation, arguing for its role in the NER pathway (131).

ARTD1 interacts with damaged DNA binding 2 (DDB2), the factor that recognizes the

malignant photoproducts (130, 132, 133, 134). ARTD1 activity on one side helps the

rearrangement of the chromatin by the recruitment of the chromatin remodeler ALC1.

On the other side, PARylation helps DDB2 to retain at the DNA lesions, although it

is not required for its initial recruitment (133). ARTD1 strongly interacts also with

xeroderma pigmentosum-complementation group A (XPA), another factor for one NER
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sub-pathway (48, 135, 136). ARTD1 activity is important for the recruitment of XPA

to DNA lesions, but the interaction of the two factors might provoke the release of both

ARTD1 and XPA from the DNA.

Although less frequent than the SSBs, the double-strand break (DBS) is the most

dangerous type of lesion, since it can generate important rearrangements in the genome

if not repaired in time (137). DSBs can have an endogenous origin, like in case of

collapse of DNA replication fork or in case of cell-specific genome editing, as in meiosis

in the gamete formation or in V(D)J recombination and class-switch recombination

for the immune cell maturation (138). In addition, exogenous factors can also induce

DSBs, such as ionizing radiation, radiomimetic chemicals and type II topoisomerase

inhibitors (137, 138, 139).

DSBs are repaired by a variety of pathways, whose activation is defined in the

very early onset of the response. The two most studied DSB repair pathways are

the homologous recombination (HR) and the classical non-homologous end-joining (c-

NHEJ). But other pathways can also take place, like the single-strand annealing (SSA)

and the alternative end-joining (alt-EJ) (140). The c-NHEJ pathway consists of the

fast re-ligation of the broken DNA ends. It occurs throughout the whole cell-cycle

but it is the preferential repair in G0/G1 and late G2 phase (141). Even if c-NHEJ

inhibits big translocations and chromosome rearrangements, it brings micro-mutations

at the re-ligation point, defining it as an error-prone pathway (142, 143, 144, 145). The

main factors involved in this pathway are the DNA-dependent protein kinase catalytic

subunit (DNA-PKcs), Ku70 and Ku80, XRCC4 and the Ligase IV (140).

If the broken DNA ends are immediately resected and present 3 single-strand over-

hangs, c-NHEJ is blocked and one of the other three pathways can take place. The

homology-driven repair, another name for the HR, is generally activated after repli-

cation, because it requires a homologous sequence for the restoration of the original

information. Since the most preferred homologous sequence is the sister chromatid,

HR occurrence peaks in mid-S phase (141). Main factors of this slow pathway are the

replication protein A (RPA), which avoids degradation of DNA single strand by coating

it, and the recombinase RAD51.

The last two pathways, SSA and alt-EJ, are highly mutagenic and also required a

different degree of DNA resection. SSA is a homology-driven repair process exploiting

nucleotide repeats (140). Since one of the repeats is deleted during the repair, the loss
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of genetic information makes it an error-prone pathway. The interaction between RPA

and RAD52 allow the repair by SSA. Lastly, the alt-EJ was at first described as a

backup pathway for the c-NHEJ. The alt-EJ employs a different set of factors: in fact,

the repair is mediated by most of the factors that works in the BER pathway, such as

ARTD1, XRCC1 and Ligase III (138).

ARTD1 recognizes DSBs and its clear that ADP-ribosylation is interacting with

different DSB repair pathways, even though the underlying mechanism is not totally

clear (8, 29). Also, the study of ARTD1 for DSB repair is tightly connected with the

story of the PARP inhibitors (PARPi) (146). In 2005 two studies in parallel showed

that inhibition of ARTD1 in cancer cells defected in BRCA genes − genes involved

mainly in HR completion, causing these cell lines to be called BRCAness cells − leads

to their death (147, 148). These studies envisioned for the first time a synthetic-

lethality strategy for treatment in cancer with tumor-suppressor gene deficiency. Since

then, more and more sophisticated PARPi molecules were designed and tested mainly in

ovarian and breast cancer patients with BRCAness background, alone or in combination

with other cytotoxic compounds (146). Unfortunately, it is not clear what is the real

meaning of this synthetic lethality. More recent studies suggest that PARPi induces

a stalled ARTD1-DNA intermediate that can be processed only by HR pathway (149,

150).

ARTD1 negative regulates HR by counteracting the accumulation of RAD51 (151).

Such an activity of ARTD1 affects the sister chromatid exchange (152), the intra-

and the extrachromosomal recombination (151, 153, 154). However, some proteins

involved in HR are found enriched in pull-downs of PARylated proteins in the presence

of genotoxic stress (118, 119). Even more factors present a PAR-binding module,

suggesting that their recruitment could be dependent on ARTDs activity, at least at

some stage of the damage response (51, 52, 53, 54, 118, 119, 155, 156, 157, 158, 159).

A similar concept is true also for the c-NHEJ pathway: some studies showed in-

teraction between repair factors and PARylation, mainly because of the presence of

PAR-binding modules (48, 53, 118, 119). Because of their PBMs, DNA-PKcs and

Ku70 recruit to DNA damage in a PAR-dependent manner (48). They form a complex

together with ARTD1 at the DNA lesion (40, 41, 48, 160, 161, 162, 163). However,

it is not clear what are the effects of such an interaction. Maybe the PARylation of

DNA-PK stimulates the kinase activity (41, 160). Similarly, the DNA-PK-mediated
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phosphorylation of ARTD1 fails to have a clear effect on the activity of the ADP-ribose

trasferase (40, 41). However, in many studies, ARTD1 and DNA-PK activities coop-

erates, for example in double knock-out mice for DNA repair or in the case of V(D)J

recombination in B cells (164, 165, 166). Also, DNA-PK and ARTD1 interaction is

shown to be relevant in the unresected stalled DNA-replication fork (167), as well as

in the inhibition of the ribosomal RNA synthesis (168).

But the most important role of ARTD1 in DNA damage response is associated with

the alt-EJ pathway (138). First defined as backup pathway, it has now emancipated

as an alternative pathway, whose activation is mainly due to the location of the DNA

damage and the poor accessibility of other pathways factors. In fact, the alt-EJ is

activated in the lack of c-NHEJ factors, like the Ku proteins (162), given the shear

competition that ARTD1 and the Ku proteins have for the DNA ends (169, 170, 171,

172). The alt-EJ is particularly prone to cause translocations and major genomic

rearrangements and requires XRCC1 and Ligase III for the accomplishment of the

repair (173, 174).

In conclusion, ADP-ribosylation has definitely a role in the early phase of the re-

sponse, helping the general recruitment of factors involved in different DSB repair

pathways. However, it might be that the location of the DNA lesion in the genome

might preferentially activate different pathways and, similarly, the involvement of ADP-

ribosylation might change accordingly. As last comment, the role of MARylation in all

DNA damage responses is still obscure. For example, ARTD10 interacts with PCNA

and ARTD10-depletion induced sensitivity to hydroxyurea and UV, both inducing

stalled replication forks (175). But we still miss a complete picture of the involve-

ment of MARylation in DNA damage response.

1.2.7 ADP-ribosylation regulates also other cellular processes

Beyond the DDR, the eighteen human ARTDs are collectively involved in almost ev-

ery cellular process. In a recent study that compares the location and the knock-

down-induced effects on morphology of each ARTD, the authors showed, although just

in a macroscopic way, how ADP-ribosylation influences different aspects of cellular

life, ranging from cell cycle defects to cytoskeletal defects (176). Among the eighteen

ARTDs, ARTD1 is the most studied, above all in relation to DNA damage repair. But
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fragmented studies show the involvement of ARTD1 and many other transferases in a

vast variety of cellular processes.

For example, many studies involving ARTD1 explore its function in gene expression,

as modulator of chromatin compaction status. Since the early time of ADP-ribosylation

field, PARylation on histones was shown to relax the chromatin and make it more

accessible (177, 178). In fact, the generation of a PAR chain, long and rich in negative

charges, is bound to have dramatic effects on the activity of the target protein or its

affinity for other molecules. Thus, the modification and consequent eviction of H1 is the

most favorable explanation for the chromatin relaxation (179). The eviction process is

shown also for other chromatin factors, like the histone chaperone complex FACT or

the histone demethylase KDM5B (180, 181). But PAR formation on chromatin induces

also the recruitment of other proteins, such as the chromatin remodelers (8). ALC1

has a macrodomain that allows the recruitment to DNA and, if bound to PAR, induces

the activation of the remodeling activity (Figure 1.13,1; (182)). PARylation is also

inducing the recruitment of SMARCA5 and CHD4, two major components of other

chromatin remodeling complex, respectively the ISWI family complexes and the NuRD

complex (157, 183, 184). Of course, by regulating the accessibility of different factor to

the genomic information, ARTD1 holds the key for the proper regulation of almost all

processes that take place in the cell.

Other studies also focusing on ARTD1 showed that PARylation on a target pro-

tein can induce the recruitment of PAR-binding E3 ubiquitin ligases, so that ADP-

ribosylation can be read as mark for protein degradation. RNF146/Iduna and CHFR,

two E3 ligases, have a WWE and a PBZ domain, respectively (159, 185). Once re-

cruited, the E3 ligases ubiquitylate the PARylated target and mark it for degradation.

It is not clear if all the PARylated proteins are actually target of this degradation

pathway. It might be that the E3 ligases require an additional signal to activate their

ligase activity. However, this mechanism has been shown for axin, a component of the

Wnt signaling (186), mediated by ARTD5 activity (Figure 1.13,2; (187)), as well

as for ARTD1 itself, to avoid DNA damage-induced hyperactivation (Figure 1.13,3;

(185, 188)). Hyperactivation of ARTD1 and PARylation are connected to a particu-

lar form of caspase-independent programmed cell death, thus called parthanatos (189).

The parthanatos is based on the release of free PAR chains, which transmits as sec-
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Figure 1.13: The many roles of ADP-ribosylation in the cell - MARylation and

PARylation have been connected with several signaling pathways and cell processes. An

overview on some described functional interactions: 1 ) upon DNA damage, ARTD1 acti-

vated recruits chromatin remodelers, like ALC1, for relaxation of the chromatin and mod-

ulation of gene expression and repair; 2 ) ARTD5 release the negative feedback loop of Wnt

signaling activation by PARylating axin, negative regulator of the pathway, and targeting it

to degradation; 3 ) ARTD1 targets itself to degradation by PARylation-mediated ubiquiti-

lation and prevents its own hyper-activation, which brings to the AIF-mediated cell-death,

also known as parthanatos; 4 ) ARTD10 MARylates GSK3β, which normally inhibits the

activation of Wnt signaling by targeting β-catenin for degradation; 5 ) ARTD10 also inhibits

NF-κB signaling by affecting the positive signaling mediated by NEMO; 6 ) upon IL-4 cy-

tokine signaling, ARTD8 activity co-activates STAT6-responding genes; 7 ) ARTD9, maybe

together with ARTD8, affects STAT1-dependent gene expression; 8 ) ARTD15 controls the

unfolded protein response (UPR) by modifying IRE1α and PERK; 9 ) when different types

of stress arise, PARylation is generally involved in the modulation of RNA metabolism and

temporary block of RNA interference; 10 ) PARylation, mediated for example by ARTD1,

modulates different DNA damage repair pathways. Adapted from Bütepage et al., 2015

(11)

27



1. INTRODUCTION

ondary messenger the death signal to the mitochondria and leads to the release of the

apoptosis-inducing factor (AIF) (190)

Apart from the omnipresent ARTD1, other transferases were found to be involved

in interesting cellular processes. ARTD10, for example, might be involved in the regu-

lation of the Wnt signaling, since it modifies the glycogen synthase kinase 3 β (GSK3β)

in vitro (84). In normal condition, the GSK3β kinase is assembled in a complex lo-

cated at the cellular membrane and its activity results in the degradation of β-catenin,

the activating transcription factors for the Wnt-responsive genes (Figure 1.13,4).

When Wnt molecule binds the receptor outside the cellular membrane, β-catenin is

not phosphorylated, thus not degraded, and can activate the Wnt-responsive genes,

which lead to proliferation. Therefore, if MARylation is able to decrease the activity of

GSK3β, the β-catenin would consequently be stabilized. Unfortunately, the authors of

the previous studies did not show if the MARylation of GSK3β was actually affecting

Wnt signaling. However, in vitro and in vivo experiments indicated GSK3β as one of

the few substrates of MacroD2 activity (67), further suggesting a functional role of the

MARylation for the regulation of this enzyme. Nonetheless, the regulation of β-catenin

protein level is just one of the functions ascribed to GSK3β: for example, as the name

of the protein suggests, it regulates the glycogen synthesis, therefore this could open a

possible connection between MARylation and metabolism (191, 192).

ARTD10 has been also shown to negatively regulate the activation of NF-κB path-

way, which activates pro-inflammatory genes in response to cytokines like IL-1β and

TNFα or genotoxic stress (Figure 1.13,5; (11, 193)). The study performed by Lüscher

group showed that ARTD10 can modifies one of the positive regulators of the pathway,

NF-κB essential modulator (NEMO) (194). This interaction interferes with the K36-

polyubiquitination of NEMO, which helps maintain the signaling induced. The result is

the renewed inhibition of NF-κB-dependent transcriptional activation. Thus, ARTD10

and MARylation could represent a checkpoint for the total activation of the inflam-

matory response. On the other hand, ARTD1 activity has been shown to help NF-κB

activation by promoting NEMO nuclear export, as well as by acting as co-activator of

the NF-κB transcription factors at the promoters (195, 196, 197). This opposite effect

between MARylation and PARylation shows that MARylation is not just a step of the

formation of PAR chains, but a real independent signal.
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Other transferases are also involved in the regulation of signaling pathways. Few

studies have described how ARTD8/PARP15/BAL2 co-activates with STAT6 the ex-

pression of specific cytokines, which are important for the humoral immunity (Figure

1.13,6; (198, 199, 200, 201)). The macrodomains of ARTD8 are necessary for the

interaction with STAT6, but the exact reason is not yet clear (199, 200). Also, the

MART activity is required for ARTD8 function (198, 200). In fact, ARTD8 is pro-

posed to function as a transcriptional switch, by repressing or activating the expression

according to the interaction with STAT6 (201).

The inactive ARTD9/PARP9/BAL1, instead, is involved in another immune response-

related pathway, the interferone-γ (INFγ)-dependent STAT1 pathway (Figure 1.13,7;

(202, 203)). In Camicia et al., 2013, the authors state (but not show) that STAT1 is

modified by ARTD8 and ARTD10 in vitro. However, they could not reproduce such a

result in vivo, probably due to lack of a proper tool for the detection of MARylation in

the cell (202). However, they showed that in diffuse large B-cell lymphoma ARTD9 in-

teracts via its macrodomains with both MARylated isoforms of STAT1 (STAT1α and

STAT1β). As consequence, STAT1α activates two proto-oncogenes genes (interefer-

one responsive factor 2 (IFR2) and B-cell CLL/lymphoma 6 (BCL6)), while STAT1β

negatively regulates transcription of the INFγ-dependent tumor-suppressor IRF1.

ARTD15/PARP15 regulates the activation of the Unfolded Protein Response (UPR)

(Figure 1.13,8). ARTD15 is a tail-anchored protein embedded in the membrane of

endoplasmic reticulum (ER) and facing the cytosol (204). When in the ER there is

abundance of unfolded proteins, the UPR is activated in order to temporally block

protein synthesis and to express chaperones that will assist in the folding of the al-

ready synthetized but denaturated proteins. Jwa and colleagues showed that ARTD15

MARylates IRE1α and PERK, the two kinases involved in the activation of the UPR.

Such a modification could induce decreased affinity for their inhibitor, the binding im-

munoglobulin protein (BiP), and activate the UPR. Although BiP is ADP-ribosylated,

it is not clear which ADP-ribosyltransferase might modify it, since BiP resides within

the ER lumen (205).

Lastly, proteomic studies of PAR-binding proteins or PARylated proteins showed

enrichments in RNA biology-related classification terms (10, 118, 118, 206). In addition,

several studies showed effects of ARTDs in all the key steps of RNA metabolism (10).

For example, several splicing factors, which are members of the hnRNPs, contains
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PAR-binding modules (207). Upon formation of PAR due to heat-shock stress, some

splicing factors are sequestered from the mRNAs under maturation (208). Therefore,

induction of ADP-ribosylation can have important consequences on the maturation of

RNA transcripts (Figure 1.13,9).

But ADP-ribosylation affects life of RNA molecules also in the cytoplasm. Mono(ADP-

ribosylation) of eukaryotic elongation factor-2 (eEF-2) dissociates the ribosomal com-

plex and blocks protein synthesis, as performed also by the cognate A fragment of

diphtheria toxin (209, 210). This regulation occurs also upon inflammatory response,

since cells treated with interleukin-1 β (IL1β) show increased levels of modified eEF-2

(211). Also, ADP-ribosylation affects the translation of mRNAs also by regulating

the RNA-interference machinery. Interestingly, all the members of the Ago family are

modified and the ADP-ribosylation affects their affinity towards the target mRNA,

leading to a negative regulation of the microRNAs (212). Interestingly, in the same

paper PAR is shown to be required for the formation of cytoplasmic stress granules,

where RNA-binding proteins accumulate together with mRNA molecules. Even so far

away from the chromatin, PAR shows to be precious for its scaffolding properties.

In conclusion, while PARylation has been studied since 50 years, only recently

MARylation has gained a spotlight. In fact, limitations in the detection of the specific

MARylation on the proteins has so far limited the possibility to define the subset of

physiological processes regulated by this signal (11). However, the development of

techniques that combine genetics, organic chemistry and mass-spectrometry has begun

to explore the network connected to specific ARTDs (213, 214). In these studies, a

specific ARTD is mutated so that it can use as donor of ADP-ribose a special NAD+

derivative. The power of this tool is then to define both the complete list of substrates

of the specific transferase, but also to provide the yet unknown sequence requirements

for the modification. Therefore, in the next years more comprehensive understanding

of the MARylation network will arise.

1.2.8 Upon DNA damage MacroD2 shows a double behavior

Dr. Gyula Timinszky, the direct supervisor of my PhD project, has worked on ADP-

ribosylation and macrodomain proteins since the professional relationship with Prof.

A.G. Ladurner started. Before my arrival at the lab, Dr. Timinszky was comparing the
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behavior of different macrodomains upon DNA damage, by using a live-cell imaging

approach.

Most of the macrodomains are able to recruit to the DNA damage sites because of

their ability to bind ADP-ribosylation. For example, when MacroH2A1.1 macrodomain

is expressed as fragment tagged with EGFP, it recruits to the microirradiation-induced

DNA lesions with a very fast dynamic (56, 81). Similarly, this recruiting behavior has

been successively shown for the three macrodomain ADP-ribosyl-hydrolases, MacroD1,

MacroD2 and TARG1 (56, 67, 68).

Aside the published work, Dr. Timinszky discovered that, in contrast of the

other macrodomain proteins tested, the EGFP-tagged full-length form of MacroD2

showed the decrease of the nuclear signal upon DNA damage. This behavior was

proved for few conditions, like different DNA-damage inducing compounds or upon

UV-microirradiation (Figure 1.14). This phenomenon might be explained either by

regulated nuclear transport or by a regulated form of protein degradation.

0 min 1 min 2 min 4 min 12 min

EGFP-MacroD2

Figure 1.14: MacroD2 nuclear protein level decreases upon DNA damage - Laser

micro-irradiation experiment on HeLa cells expressing EGFP-MacroD2. Yellow arrows

show the focus point of the laser microirradiation. The experiment was performed by Dr.

Gyula Timinszky.

Dr. Timinszky decided also to probe for possible inducers of the phenomenon. In a

set of experiments, he showed the involvement of ataxia-telangiectasia-mutated (ATM)

kinase in the induction of MacroD2 signal decrease. ATM is a key regulator of the DNA

damage response and the activation of the cell-cycle checkpoint (215). Dr. Timinszky

showed also that, if MacroD2 signal decreased in the nucleus, the inhibition of the

kinase restores the initial distribution of the signal, arguing also for the reversibility of

the process (Figure 1.15).

The sudden discovery of the double MacroD2 behavior upon DNA damage is an

intriguing open question that can add more to the regulation and function of this still

unknown protein. Moreover, the interaction between ADP-ribosylation metabolism
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Before
ATM inhibitor

5 min 15 min 30 min

Figure 1.15: ATM inhibition results in reversal of MacroD2 signal decrease

in the nucleus - Cell were pre-treated for one hour with camptothecin, yellow arrows

indicate those cells that responded to the drug. Then, they were imaged upon treatment

with ATM inhibitor KU55933. The experiment was performed by Dr. Gyula Timinszky.

and ATM-signaling, and its possible role in the DNA damage response, urges for a

more detailed understanding of MacroD2 functions in the cell.

Since MacroD2 responds to ATM activation, I will give a summary about ATM

kinase, its modes of activation and its protein family (see Section 1.3). Finally, since

I could show that MacroD2 new behavior is explained by regulated nuclear export, I

will give an overview on the nuclear transport and the basic features of its regulation

(see Section 1.4).

1.3 ATM and the PI3K-like kinases

Ataxia-telangiectasia mutated (ATM) is a key regulator of the DNA damage response

and it belongs to the PI3K-like kinse family. The amount of studies about this kinase

family is massive, since most of the members are involved in DNA damage and tumor

development.

1.3.1 ATM is the protein behind the ataxia-telangiectasia disease

ATM received its name from the autosomal recessive disorder ataxia telangiectasia

(A-T) (216, 217). This disease presents several symptoms, among which the dilata-

tion of blood vessel (telangiectasia), neurodegeneration in the cerebellum that affects

movement and coordination and general immunodeficiency (215). Also, A-T patients
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are predisposed to cancer, especially lymphomas, and are very sensitive to ionizing

radiation (218).

ATM is a big protein, 350 kDa in weight and 3056 residue long. ATM belongs to the

PI3K-like kinase (PIKKs) family, related to the lipid-kinase PI3K. Unlike their cousins,

PIKKs transfer phosphate group exclusively onto serines or threonines of protein targets

(219). For some members of the family, ATM among them, the modified serine or

threonine must be followed by a glutamine, forming the so called SQ/TQ motif (220).

ATM is located mainly in the nucleus (221), even though many studies showed presence

of ATM in the cytoplasm of neuronal cells of mouse and human cerebellum or in

differentiated neuronal cell lines (222, 223, 224, 225). One report suggested that ATM

might export together with NEMO upon stress-dependent activation of the NF-κB

pathway (226).

1.3.2 ATM is a master regulator of the DNA damage repair

Cells lacking ATM activity present increased genomic instability and sheer sensitivity to

DNA damage-inducing agents, in particular to irradiation or radiomimetic compounds

(227, 228). This sensitivity was soon linked to the important function that ATM has

during DNA damage response, in particular upon DSB repair (215). In fact, ATM-

dependent regulation is important for the overall DNA repair process, the cell-cycle

checkpoint regulation and the definition of the cell fate: survival over apoptosis (229).

In addition, upon DNA damage, ATM activity immediately restructures most of cellular

processes through a powerful amplification of the signal, mediated by ATM itself and

its associated kinases: Chk1, Chk2 and Mk2, kinases that are activated by ATM to

relay the SOS signal everywhere in the cell (230).

It is not clear how ATM is activated in the very first place upon DSB (Figure

1.16). ATM might have the ability to bind damaged DNA (231), but it seems to be

not a strong interaction and it requires help from other proteins (232). Thus, some

factor must be sensing the presence of DSB and transfer the message to ATM itself,

in order to initiate the system. The best candidate is the complex MRN, formed by

Mre11-Rad50-Nbs1 (233, 234, 235): in fact, Mre11 is recruiting to irradiated foci with

a fast dynamics and independent from ATM (236). Patients lacking Mre11 present

most of A-T symptoms, above all the sensitivity to irradiation, thus this disease is

called A-T-like disorder (ATLD). The mutation of Nbs1, on the other hand, induces
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the Nijmegen breakage syndrome (NBS), which among diverse symptoms shows strong

radiosensitivity. The similarities are probably due to the fact that the MRN complex

is important for the initial activation of ATM and for its binding to DNA (232, 237).

It is suggested that the MRN complex is able to bind the DNA ends, slightly open the

DNA molecule and predispose it to the interaction with ATM (232).

After the initial activation of ATM mediated by the MRN complex (232, 237), more

steps are required to the full activation. In the absence of DNA damage, two ATM

molecules constitute a dimer, whose positioning inhibits the binding and modification

of substrates (238). Upon DNA damage, the two molecules auto-phosphorylate in

trans on S1981 and this is enough to dissociate the dimer. In addition, the histone

acetylase TIP60, constitutively binding the C-terminus of ATM, acetylates ATM on

position K3016 and fully activates it (239). TIP60 is also involved in a positive feedback

loop, since ATM induces the Chk2 kinase, whose activity helps TIP60 remain active

(240, 241, 242).

Once ATM is activated, it can perform its main role of amplification of the signal.

ATM phosphorylates the histone variant H2AX (γH2AX), which is used as recruitment

platform for repair factors, forming visible irradiation-induced foci (243). One of the

first factors recruited and modified by ATM is the mediator of DNA damage checkpoint

protein 1 (Mdc1) (244, 245). In fact, Mdc1 is important for the setup of a positive

feedback loop by binding the γH2AX with its BRCT domain, ATM with the FHA

domain and interacting with Nbs1 via a Ck2-dependent phosphorylation event (246,

247, 248). Modification of Mdc1 by ATM helps its oligomerization and therefore the

formation of the foci (249).

This recruiting environment enhances ATM chances to encounter and modify its

almost thousand substrates (42, 44, 250, 251). Mass spectrometry approaches showed

an intricate network, mainly involved in DNA repair, but also regulating transcrip-

tion, mRNA processing, chromatin remodeling, cell-cycle regulation. ATM-mediated

modifications on the kinases Chk1, Chk2 and Mk2 are able to achieve the maximum

amplification of the response (252, 253, 254). Other described modified proteins are

Nbs1, Rad50, Kap1, the cohesin subunits Smc1 and Smc3 and the tumor suppressor

p53 (44).

The tumor suppressor p53 was the very first identified target of ATM activity

(255, 256, 257). In cells undergoing DNA damage in G1 phase, the G1/S checkpoint
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Figure 1.16: ATM is activated by double-strand breaks - a) In normal conditions,

ATM is in a dimeric inactive form. But upon DSB, ATM becomes active.b) ATM activates

itself by autophosphorylation, which induces the release from the dimer. ATM is then able

to interact with the MRN complex at the DNA lesion- The interaction further activates

ATM, that in turn modifies many effectors: histone H2AX, p53, BRCA1 and Chk2 and

others. The start of the signaling cascade leads to the repair of the DNA damage, the tem-

porary arrest of the cell-cycle and the modulation of the metabolism, with the temporary

standby of energy-consuming processes. In extreme case, ATM initiates the cell-death pro-

gram or the entrance to senescence. c) The phosphorylation of the histone H2AX recruits

Mdc1, which induces the further activation of ATM and the spreading of the histone mark.

Adapted from Maréchal et al. 2013 (230).
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is activated and cells are prevented to start the DNA replication, due to the possible

problems that the replication machinery can encounter in the presence of unrepaired

DSBs (258). The DNA-induced phosphorylation on S15 mediated by ATM is one of the

sequential events that lead to the stabilization of p53, which acts as transcription factor

and induces the cell-cycle checkpoint (259). ATM has a guardian role throughout the

cell cycle. Mutations in ATM impair both the S-phase and the S/G2 checkpoints. In

both, ATM modifies the breast cancer type 1 susceptibility protein (BRCA1) in two

sites, whose mutation affects either one or the other checkpoint initiation (260, 261,

262).

Recent studies have also connected ATM activation with NF-κB signaling (226).

Upon DNA damage, ATM performs one of the three post-translational modifications

required to target the NF-κB essential modulator (NEMO) from the nucleus to the

cytoplasm. Such a regulated localization is important for the phosphorylation and

dissociation of the NF-κB inhibitory complex, thus leading to the activation of the

inflammatory response (193). Thus, while ARTD10 MARylates NEMO, repressing the

activation of the pathway (194), ATM induces it by leading NEMO into the cytopasm.

Therefore, induction of the inflammatory pathway represents another condition when

several signals must be integrated to obtain an organic response.

1.3.3 ATM is activated also in MRN-independent manner

Apart from the previously described MRN-dependent activation of ATM, other activa-

tion modes have been discovered in the recent years (229, 263). Upon hypotonic stress

or cloroquine treatment, the ATM INteracting protein (ATMIN) binds ATM, as shown

by colocalization in immunofluorescence experiments (264). ATM and ATMIN asso-

ciation induces the ATM-mediated phosphorylation on p53. Also, ATMIN competes

with Nbs1 for the same binding site on ATM, therefore ATMIN-dependent and MRN-

dependent activation pathways are mutually exclusive (265). The interaction between

ATM and ATMIN is abrogated by a ubiquitylation event performed by the E3 ligase

UBR5 upon DNA damage (266). Thus, this event shifts the equilibrium of the ATM

species towards the interaction with Nbs1 and the initiation of the DDR.

Hypoxia is also able to activate ATM (267). The study from the Hammond group

showed that the activation of ATM is independent of Nbs1 and the foci formation, since

ATM stays in a diffuse nuclear form. However, they showed that Mdc1 is required for
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the amplification of the signal. Later, ATM-activation was confirmed and linked to the

phosphorylation and stabilization of hypoxia-inducible factor 1-α (HIF-1α) (268).

A MRN-independent mode of activation of ATM is also achieved upon oxidative

stress (263, 269). It was already clear that both A-T cell lines and mouse models

showed higher levels of ROS if compared with normal cells (270, 271, 272). Therefore,

it was suggested that the absence of ATM induces oxidative stress in neurons. This

chronic stress could explain the degeneration in the cerebellum of A-T patients. This

hypothesis is partially confirmed with the higher sensitivity that A-T cells have for

oxidative agents (273, 274).

The mechanism of the activation is quite peculiar, since it involves two ATM

molecules that keep the dimeric structure, which is actually enforced by the forma-

tion of disulfide bonds (275). Therefore, in contrast to the inactive, non-covalent dimer

of the inactive form, Paull and colleagues found an ATM dimer form that is actually

active. The most relevant disulfide bond, out of the many forming within the dimer,

utilizes the C2991. Mutation of this cysteine into alanine affects only the hydrogen

peroxide-induction of ATM but not the canonical MRN-dependent pathway (275).

To sum up, the activity of ATM has the critical role in coordinating many processes

that take place in the cell and in driving to the most successful resolution of the

crisis: by stopping activities like cell-cycle progression and DNA transcription, by easing

the access to the DNA lesion with a suitable recruitment platform and relaxation of

the chromatin, by readjusting the cellular metabolism for a less DNA damage-prone

environment.

1.3.4 ATR and DNA-PK also belong to the PIKK family

The PI3K-like kinase family is composed in total by six members and all are specialized

in the response to different stimuli (276). For the DNA damage repair response, two

other members are activated beyond ATM: ATM and Rad3 related (ATR) and DNA-

dependent protein kinase (DNA-PK). ATR activity is induced upon DSBs that are

associated to replication fork (277). The resection of the DSBs and the formation of

RPA-coated single-strand DNA induces the activation of ATR in complex with ATRIP

(278). On the other hand, c-NHEJ is regulated by DNA-PK catalytic subunit (DNA-

PKcs), in association with the Ku70/Ku80 dimer (279).
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The DNA-PK holoenzyme is composed by three components: the DNA-PKcs,

around 350 kDa in size; Ku70; Ku80 (Figure 1.17, panel a; (279)). The latter

two factors form the clamp that recognizes the DNA double strand and help the re-

cruitment of the DNA-PKcs to the DSB. A low-resolution structure shows how the

kinase binds directly the DSB ends with the help of the Ku70/Ku80 dimer (280). Also,

the DNA-PKcs phosphorylates itself in several sites, behaving similarly to ATM (281).

However, different groups of auto-modification induce distinct effects, like negatively

regulating the interaction with the Ku proteins or modulating the enzymatic activity

(282, 283).

DNA-PK modifies a series of effectors involved in the c-NHEJ (279). In addition,

DNA-PK modifies the histone H2AX, even though this event is linked to particular

conditions, like hypotonic stress combined to irradiation and mitosis regulation (284,

285). As I mentioned above, DNA-PK interacts with ARTD1. Even though they

might interact upon DSB repair, their interaction is important for the DSB-dependent

induction of transcription of estrogen-responsive genes (286). DNA-PK is also involved

in the transcription of other classes of genes, like the androgen-responsive (287) or the

insulin-responsive ones (288).

As third DSB-dependent kinase, ATR role is so important that the homozygous

mutation of ATR brings embryonic lethality in mice and cell death in human cells (230).

ATR is activated upon formation of long stretches of ssDNA, as in the case of DSBs and

with stalled replication forks (Figure 1.17, panel b). Due to the common SQ/TQ

motif and the connection to the HR regulation, the targets of ATM activity found by

mass spectrometry experiments are actually shared with ATR (42), although the two

subsets of ATM and ATR targets change according to the DNA damage type (289).

While ATM is more relevant for the G1 checkpoint, ATR is more active in the intra-S

and G2/M checkpoints, by phosphorylating its main effector, Chk1 (252, 290, 291).

However, since the role of ATM is shown in all checkpoints, it is possible that for each

case the two kinases cooperate to properly amplify the response.

The other three members of the PIKKs are activated upon other stimuli. Sup-

pressor in morphogenesis in genitalia 1 (SMG-1) is involved in the non-sense mediated

decay, a quality control pathway for the mRNAs (292). The mechanistic target of

rapamycin (mTOR, previously known as FRAP) is instead activated upon metabolic
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Figure 1.17: The activation of DNA-PK and ATR by double-strand breaks

- a) When DSBs occur (1), the Ku70/Ku80 dimer is recruited to the ends of the DNA

lesion. The Ku dimer recruits DNA-PKcs (3), forming the DNA-PK holoenzyme. In the

complex, the Ku proteins shift along the DNA to allow DNA-PKcs to bind the DNA ends.

DNA-PK is finally active (4), auto-phosphorylates and leads to the recruitment of c-NHEJ

factors (as example, XRCC4, XLF, PNKP, DNA Ligase IV) (5). The activation induces

also DNA-PKcs to disattach from the DNA. b) RPA molecules coat ssDNA, also in the

proximity of the replication fork (1). RPA induces the independent recruitment of inactive

ATR via ATRIP, and of the 9-1-1 complex (2). ATR gets activated and modifies the 9-1-1

complex (3). The modification leads to the recruitment of the TopBP1 protein, which

further enhances ATR activity (5). ATR modifies other targets, for example Chk1 and

p53. Adapted from Jette and Lees-Miller 2015 and Maréchal et al. 2013 (230, 279).
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stimuli (293). mTOR is responding to different pathways, like insulin and growth fac-

tors, and induces proliferation. It is the catalytic subunit of two different complexes,

with different components: mTORC1 induces ribosome genesis and lipid synthesis, in

response of a favorable energetic environment; mTORC2, instead, positively regulates

the actin cytoskeleton, cell size and cell progression. The last member of the PIKK fam-

ily is transformation/transcription domain-associated protein (TRRAP) and, although

it is catalytically inactive, it is a component of a histone acetyltransferase complex

specialized in the activation of mitotic checkpoint genes (294).

1.4 The nuclear transport

When a stimulus occurs, survival requires a fast but accurate response. As mentioned

above, this is easily achieved by post-translational regulation of mediators of the re-

sponse. Another way to switch on or off the activity of a protein in a fast manner

is to regulate its location in the cell. An enzyme, for example, might be restricted

to a compartment, secluded from its substrates, and released only at the moment of

need. Considering that within the eukaryotic cell there are many membrane-enclosed

compartments, the regulation of the function can take advantage of this evolutionary

feature.

The preliminary work performed by my supervisor Dr. Timinszky indicated that

MacroD2 nuclear signal is depleted upon DNA damage. During my PhD project, I

showed that this depletion is explained by the regulated nuclear export of MacroD2.

The nuclear transport is not a trivial problem for the cell, but mechanisms have evolved

to exploit a probably energetic-disadvantage into a regulatory opportunity.

1.4.1 The mechanism of nuclear transport

The presence of a distinct compartment where to keep the genetic information and the

related processes was one of the major breakthroughs in the evolution of the eukaryotic

cell. The nucleus is separated from the cytoplasm by the nuclear envelope. This

is a double-bilayer membrane connected with the endoplasmic reticulum. The nuclear

envelope is fenestrated by giant protein complexes, the nuclear pore complexes (NPCs),

which allow the passage of molecules between the nucleus and the cytoplasm. Each
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1.4 The nuclear transport

vertebrate cell has around 4000 NPCs embedded in the nuclear envelope, allowing a

constant traffic between the two compartments (295).

More than simple channels, NPCs are complexes formed by multiple copies of 34

proteins, called nucleoporins (296). These make a passage in the points where the inner

and the outer membranes of the nuclear envelope fuse. In X. laevis, the giant structure

is around 120 MDa in total weight, a diameter of 126 nm and a height of 71 nm within

the envelope, excluding the accessory elements on the cytoplasmic and nuclear face

(297). In fact, on the nuclear side eight rod-shapes proteins connect to a distal ring

and form the so called nuclear basket; likewise, on the cytoplasmic face there are eight

flexible protrusions, completing the structure. The overall structure is conserved across

all eukaryotic clades (298).

The conduit across the envelope is full of unstructured tails of the nucleoporins,

rich in phenylalanine-glycine (FG) repeats. These repeats weakly interact with each

other, forming a hydrogel in the center of the pore that form the permeability barrier

for the passage (299). The diameter of the conduit is a controversial issue, since even

if it is calculated to be 2.5-5 nm (300), it can accommodate particles up to 40 nm in

diameter (301). The NPC allows the indiscriminate passage of ions and metabolites.

Macromolecules smaller than 5nm in diameter (roughly 40 kDa in size) can also dif-

fuse freely (300). This is a rough estimation, since slightly bigger macromolecule but

with an elongated shape still show free passage. On the other hand, bigger macro-

molecules require assisted transport, mediated by the nuclear transport receptors, a

class of proteins that bind their cargo and help the cross beyond the NPC (302).

The nuclear transport receptors bind or release the protein cargos depending on

the binding with the small GTP-binding protein/GTPase Ran (Figure 1.18). Ran

converts guanosine triphosphate (GTP) into guanosine diphosphate (GDP): the confor-

mation of Ran changes according to the guanosine species it is binding at the moment.

However, the enzymatic activity is not efficient. To this end, Ran needs to associate

with the GTPase-activating proteins (GAPs), which enhance the conversion from GTP

to GDP; and with the guanine nucleotide exchange factors (GEFs), which induce the

release of the GDP and the bind with the next GTP molecule. By positioning GAPs

and GEFs in the cytoplasm and in the nucleus, respectively, it is possible to create a

directionality in the conformational change: RanGAPs, like RanBP1, are associated to
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the cytoplasmic protrusions of the NPC, while RanGEFs, like RCC1, are sitting on the

chromatin (303).

The nuclear transport receptors are divided into two classes: the importins bind the

cargo in the cytoplasm and release it in the nucleus upon binding with the Ran-GTP;

on the other hand, the exportins bind the cargo in the nucleus in a trimeric complex

with Ran-GTP. This complex dissociates in the cytoplasm when Ran is activated to

convert the GTP into GDP. Ran is then transported back into the nucleus by binding

with the nuclear transport receptor NTF2. This nucleocytoplasmic cycle, thus, even if

it offers many regulatory options, is energy-dependent (302, 303).

The importins and exportins belong together to the karyopherin β superfamily

(304). Most karyopherins bind their cargos directly, while other times adaptor proteins

are required between the nuclear transport factor and the cargo. The importin β,

for example, binds the cargo through the interaction with the karyopherin importin

α (305). While the importin α/β complex accounts for the import of most proteins,

there are other importins that have a more specialized subset of cargoes. Similarly,

the exportin 1 (Xpo1/CRM1) is the one that helps the export of the vast majority of

cargoes. Other exportins have few other specialized targets, for example exportin t

carries the tRNAs into the cytoplasm (306).

The karyopherins recognize special sequences on the cargo protein, called nuclear

localization signal (NLS), in case it induces the nuclear import, and nuclear export

sequence (NES), if it is able to drive the nuclear export. These sequences are generally

located in unstructured loops and the presence of such sequences helps with the predic-

tion of the general localization of the protein, even though the accessibility of a specific

sequence can be constantly modulated. Importin α recognizes an NLS sequence that

consists of either one stretch of basic residues or two basic stretches connected via a

short linker, in which case it is called a bipartite NLS (307). Apart from the most classi-

cal NLS, other sequences have been described, like the so called PY-NLS recognized by

the adapter importin β2 (308, 309). Regarding the export signal, exportin 1 recognizes

an 8- to 15- residues leucine/hydrophobic-rich motif (310). It is also worth to mention

that the cargos can also interact with other partners, conferring to proteins without

any localization sequence the ability to cross the nuclear envelope. This mechanism is

called “piggy-backing” (302).
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Figure 1.18: The assisted nuclear transport cycle - The nuclear tranport is illus-

trated: 1 ) The importin binds its cargo in the cytoplasm and crosses the nuclear envelope;

2 ) in the nucleus the Ran-GTP (red) molecule binds the importin, induces the release of

the cargo and drives the importin back to the cytoplasm; 3 ) the RanGAP enhances Ran

GTPase activity and the Ran-GDP (yellow) releases the importin, which is free to bind the

new cargo; 4 ) in the nucleus, the exportin interacts with Ran-GTP (red) which allows the

interaction with the exporting cargo; 5 ) the complex formed by exportin-Ran-GTP-cargo

crosses the nuclear envelope; 6 ) in the cytoplasm, the conversion of Ran-GTP (red) into

Ran-GDP (yellow) incudes the disassembly of the complex and the exportin is free for

a new round; 7 ) Ran-GDP (yellow) is transported back by the transporter NTF2; 8 ) in

the nucleus, a RanGEF induces the release of GDP and the binding with the new GTP,

regenerating the Ran-GTP (red) for the nuclear transport.
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1.4.2 Regulation of protein localization

The localization of the protein across the different compartments depends on a series

of factors. If the protein is smaller than 40 kDa, or if it has a more suitable shape,

it can freely pass through the permeability barrier of the NPC and equally distribute

between the nucleus and the cytoplasm. However, the size will impact on the speed

with which the protein will equilibrate, even though the equilibrium will be eventually

reached. On the contrary, the localization can be tightly regulated if the proteins need

the help of the nuclear transport receptors. Thus, the overall distribution is defined by

many factors. First of all, the concentration of free karyopherins and how the transport

system itself is saturated can impact on the speed of the process. On the other hand,

the accessibility of the cargo localization signal is often modulated (302).

In some occasions, an interaction partner can mask the signal upon binding, af-

fecting the interaction between the cargo and the karyopherin, like in the case of the

inhibitor IκBα that masks the NLS of NF-κB (311, 312). The regulation can also be

due to an allosteric change in the protein conformation, which the cargo adopts upon

binding with an interactor: when the fatty-acid binding protein 5 (FABP5) binds to

its ligand, it undergoes a conformational change so that a tertiary non-linear nuclear

targeting signal is formed (313).

In other cases, the protein can be trapped in one specific compartment, due to a

stable interaction with an immobile component, such as cytoskeleton, chromatin or

the cellular membrane. This means that the pool of protein available for the nuclear

transport is reduced and the modulation of the export consists mainly in modulating

the interaction with the cellular component. This is the case of the Ca2+-dependent

induction of calmodulin nuclear import (314). On the other hand, some proteins, like

Notch receptor, are generally anchored in a particular compartment and the release

and translocation is triggered by a protease, which cleaves away their anchor (315).

Last but not least, the modulation can occur also co-transcriptionally, by performing

an alternative splicing that might introduce (or remove) a localization signal in (or from)

the protein sequence. In the case of the Nek2 kinase, the splicing of three alternative

variants changes the presence and even the strength of the NLS, making Nek2C isoform

mainly nuclear, Nek2B mainly cytoplasmic and Nek2A equally distributed (316).
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1.4 The nuclear transport

Most often, however, the modulation occurs via post-translational modification.

The post-translational modifications might affect the interaction between the cargo and

the transporter. For example, upon DNA damage response ATM or ATR phosphorylate

p53, next to its NES, preventing its interaction with exportin 1 and leading to its

accumulation in the nucleus (256, 257, 317). Likewise, the estrogen receptor α is

also phosphorylated upon p38MAPK activation and the modification affects the NES

recognition, leading to nuclear accumulation (318). Even if the phosphorylation is

the most common post-translational modification that affects nuclear transport, other

post-translational modifications can occur as well. The p300 acetylates the NLS of the

RecQ protein-like 4 (RECQL4) helicase, preventing it to localize in the nucleus (319).

Post-translational modifications could also actively induce the translocation, al-

though these cases are not very frequent. The best known cases occur in the MAP

kinases signal cascade: p38MAPK and p42MAPK are phosphorylated in two different

sites and the phosphorylation induces the recognition of the NLS by the importin 7,

leading to the accumulation in the nucleus and the activation of nuclear targets (320).

On the other hand, post-translational modification-dependent nuclear export occurs

in case of the androgen receptor (AR). While it is translocated into the nucleus upon

androgen-binding, the AR nuclear export is enhanced when other signaling pathways

are active: p38MAPK or c-Jun induce the phosphorylation on S650, next to the NES of

the AR, thus increasing the interaction with the exportin 1 (321). Similarly, upon stress,

p38MAPK induces the p38 regulated/activated protein kinase (PRAK, also known as

MAPKAPK5) nuclear export (322). Several types of cellular stress induce also the

phosphorylation of the kinase MK2 on the threonine 317, which induces a change in

conformation and increases the accessibility of its NES, leading to the accumulation in

the cytoplasm (323). Remarkably, a series of three different post-translational modifica-

tions are necessary to export NF-κB-inhibitor NEMO: ubiquitination, ATM-dependent

phosphorylation and finally SUMOylation (193, 226).

Sometimes, however, the post-translational modification-dependent accumulation

in the cytoplasm is caused by the fact that the protein tightly interacts with residents

of the cytoplasm and its nuclear import is therefore impaired. This is true for the

ubiquitin E3-ligase COP1, whose activity leads to the nuclear export and degradation

of p53. COP1 is phosphorylated upon DNA damage and the mark is recognized by

the chaperone 14-3-3σ in the cytoplasm (324). Also other proteins get trapped in
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the cytoplasm due to the interaction with the 14-3-3 proteins, namely FOXO1 (325) or

FOXO4 (326, 327). In the case of the nuclear factor of activated T-cells (NF-AT), GSK3

modifies the protein and the phosphorylated form is trapped in the cytoplasm, although

it is not clear if it is due to interaction with other factors (328). Upon Ca2+ signaling,

calcineurin dephosphorylates NF-AT and induces its nuclear import (329, 330).

1.5 Integration of the signals: the key to the success

In conclusion, to achieve fast adaptation to all the inputs that are constantly collected,

cells need to be able to change rapidly the pathway usage and the specific protein ac-

tivity. For example, the complex machinery that is employed for the repair of DSBs

requires an accurate calibration of its activation, as well as the block of all the physi-

ological processes that might negatively impact the repair. The easiest way to achieve

such a complex result is to send out a signal that can tune the activity of many pieces

of the clockwork at the same time: post-translational modifications are information

theory applied to biochemistry, the clever way with which the cells have coped with

the daunting task of adaptation.
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Aims of the project

As a post-translational modification, ADP-ribosylation presents stunning dynamics

and an elevated level of complexity. It is involved in virtually every process in the cell,

either directly, as a regulatory mechanism of single steps of a process, or indirectly,

by its involvement in the regulation of chromatin accessibility. Only recently have

appropriate tools been developed to thoroughly study this modification, bringing a

new Renaissance to the field.

Although the presence of tools to detect PARylation has directed most of the efforts

in the understanding its functional role, still little is known about the actual extent

of regulation mediated by MARylation. However, recent studies suggest a similar

extensive involvement of MARylation signaling in cellular life. In 2013, it was possible

to define the last enzymes that complete the whole metabolism of ADP-ribosylation,

with the discovery of MacroD1, MacroD2 and TARG1 (56, 67, 68). But their actual

functions are still far from being defined.

MacroD2 is the largest of the three proteins. The localization of the EGFP-tagged

version of MacroD2 overlaps with that of TARG1, but MacroD2 contains an additional

protein sequence that suggests a different function or regulation as compared to the

smallest brother. The MacroD2 gene, as distinct from MacroD1, is first found in the

vertebrates, probably due to a duplication event followed by a fusion with an additional

unknown sequence, which is present only within vertebrates with more than 50 % of

identity. Therefore, the presence of MacroD2 as gene correlates with high complexity,

and the association studies with deficiencies in neural function suggest that it might

indeed have a specific function that appeared only recently in evolution.
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During a short internship at the Timinszky group, before starting the PhD, I helped

characterize the recruitment dynamics of the MacroD2 macrodomain, then included in

the Jankevicius et al., 2013 work. Before that point, published studies on MacroD2 had

mainly shown only broad associations with disease. The characterization of MacroD2

enzymatic activity has been a remarkable step forward, but it is still unclear how it is

connected with the greater picture. Therefore, the serendipitous discovery of a second

MacroD2 behavior upon DNA damage - the decrease of its nuclear signal - represented

a thrilling opportunity to add more pieces to the puzzle.

Already at that time, preliminary experiments showed that HeLa cells transfected

with mEGFP-MacroD2 full-length manifest a decrease in the fluorescent signal in the

nucleus in certain conditions, like Topoisomerase poisons camptothecin and etoposide,

or UV laser micro-irradiation (Figure 1.14). Additionally, preliminary data showed

a possible induction of MacroD2 export by ATM, and the reversibility of this process

(Figure 1.15).

I joined the group and this particular project with the aim of characterizing this

MacroD2 behavior: the decrease of nuclear levels. In general, such a behavior could

show a form of regulation for the MacroD2 function, either by activation of a degra-

dation pathway or by active translocation across the nuclear envelope. Therefore, I

thought that by dissecting the behavior that Dr. Timinszky had discovered, I would

be able to understand the mechanism inducing it, which could consequently provide

more insight on the cellular function of MacroD2. In addition, since the preliminary

experiments showed that the induction of the MacroD2 special behavior is probably

due to ATM-signaling, this project allowed me to explore a probable integration node

between two massive regulatory systems upon DNA damage response, namely the ADP-

ribosylation-mediated and the ATM-mediated signaling.

For these reasons, my PhD project had two main goals.

1. Aim I: characterize the decrease of MacroD2 nuclear protein levels

upon DNA damage

To better understand the phenomenon of decrease of MacroD2 nuclear protein

levels I intend to use a combination of live-cell microscopy and biochemical ap-

proaches. Firstly, I need to define if the decrease of MacroD2 nuclear signal is due

to regulated nuclear export or to the activation of a degradation pathway. Next,
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I intend to define the overall conditions that robustly induce the phenomenon, as

well as the contribution of ATM or other kinases of the PI3K-like kinase family.

I also intend to define the requirements for the phenomenon at the level of the

MacroD2 protein sequence. Lastly, the decrease of MacroD2 nuclear levels also

needs to be proved for the endogenous protein.

2. Aim II: identify candidates for the regulation of MacroD2 upon DNA

damage and for MacroD2 cellular function

In parallel to Aim I, I intend to define the interactome of MacroD2 protein in the

presence and absence of genotoxic stress. By means of an unbiased approach, this

proteomic strategy can suggest testable hypotheses concerning two aspects: the

protein factors that might be involved in the regulation of the decrease in nuclear

levels, and the function of MacroD2 in cells. In fact, by performing the experiment

under conditions that induce the new behavior of MacroD2, I can define proteins

that might help MacroD2 regulation. On the other hand, both the control and

genotoxic conditions could show factors involved in cellular processes that are

possibly regulated by MacroD2 enzymatic activity.
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ATM kinase induces MacroD2

nuclear export

3.1 Introduction

MacroD2 is one of the three ADP-ribosyl-hydrolases recently found in humans (56,

67). These proteins share the same catalytic domain, known as the macrodomain,

which enables them to remove the most-proximal ADP-ribose from the target protein,

completely reversing the ADP-ribosylation modification. The MacroD2 macrodomain

has been shown to recruit to DNA lesions upon laser microirradiation experiments (see

Figure 1.10). However, the exact role of MacroD2 during the DNA damage response

is still unknown.

As mentioned in the Section 1.2.5 of the Introduction chapter, preliminary exper-

iments showed that the nuclear signal of EGFP-tagged MacroD2 full-length protein

decreases upon DNA damage (see Figure 1.14). This serendipitous discovery sug-

gests two different possibilities: either upon DNA damage MacroD2 is degraded in a

regulated manner, or the protein subcellular localization changes, with a net trans-

port into the cytoplasm. In both cases, it proposes that MacroD2 could be regulated,

either at the protein levels or in its subcellular localization. Moreover, other experi-

ments showed that the depletion of the MacroD2 signal in the nucleus is blocked upon

treatment with a specific ATM kinase inhibitor (See Figure 1.15).

Although little is still known about MacroD2 function in the cell, the hypothesis

that MacroD2 is regulated upon DNA damage can provide more insight into under-
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3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

standing ADP-ribosylation’s function during the repair response, both at the DNA

lesion and in the rest of the cell. Also, the possible involvement of ATM kinase brings

ADP-ribosylation into the arena with one of the master regulators of DNA damage

repair. Therefore, I decided to characterize this particular regulation of nuclear signal

MacroD2, by understanding its nature and by dissecting the process of its induction.

3.2 MacroD2 exports from the nucleus upon DNA dam-

age

A necessary first control experiment was to test if the EGFP itself could be the cause

of the decrease of MacroD2 nuclear protein levels. To do this, I transfected HeLa

cells stably expressing mCherry-H2B with either EGFP-tagged full-length MacroD2

or EGFP. The cells were then imaged upon UV-laser microirradiation and the images

were analyzed with an automatic approach (see Methods 6.8). By comparing the

ratio of the nuclear signal over the cytoplasmic signal, I observed a consistent decrease

of EGFP-MacroD2 signal in the nucleus. This behavior was not observed with EGFP

alone, excluding that the EGFP tag could be the cause of the phenomenon (Figure

3.1).
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Figure 3.1: Nuclear EGFP-MacroD2 signal is depleted in the nucleus - a)UV-

microirradiation experiments using HeLa cells stably expressing mCherry-H2B and trans-

fected with mEGFP-MacroD2 or mEGFP constructs. Scale bar, 10 µm. b) 50−100

cells were quantified from three independent experiments (see Methods 6.8). Nu-

clear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), and the mCherry signal

was used for the nuclei segmentation. Error bars, 95 %CI.

I then aimed to understand whether the amount of DNA damage correlates with

the extent of MacroD2 signal decrease. Thus, I tested how the increasing amount
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3.2 MacroD2 exports from the nucleus upon DNA damage

of DNA damage that I inflicted on the cells by changing the energy of the 355 nm

laser affected the extent of the MacroD2 nuclear signal decrease. Increasing amounts

of DNA damage initiate the DNA damage response in a more robust manner and

enhance the amplification of the signaling cascade. The increase in response is used to

show that phenomenon is due to a biological process, as customary in DNA-damage

research field, and not due to an artifact, which would instead show no correlation.

Thus, I performed the experiment on U2OS cells stably expressing mYFP-MacroD2

full-length and mCherry-H2B and used two different energy amounts to induce DNA

damage (see Methods 6.8). The speed of depletion of MacroD2 nuclear signal was

proportional to the amount of laser energy irradiated and, consequently, to the amount

of DNA damage that was induced, confirming the presence of a DNA damage-dependent

response (Figure 3.2).
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Figure 3.2: MacroD2 nuclear signal depletion occurs with a DNA damage

dosage-dependent manner - a)Microirradiation live-cell microscopy using U2OS cells

stably expressing the mYFP-MacroD2 full length and the mCherry-H2B constructs. Arbi-

trary medium and high laser energy values are used to induce different amounts of damage

to the cell. Scale bar, 10 µm. b) 50−100 cells were quantified from three independent

experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated using Cell-

Profiler 2.0 (331), the mCherry signal was used for the nuclei segmentation. Error bars,

95 %CI.

UV-laser microirradiation induces different types of DNA damage lesions accord-

ing to the amount of energy delivered (332). Therefore, it is impossible to define the

exact amount of the various DNA lesions that are generated with this experimental

setup. To gain better insight into MacroD2’s response to these different types of dam-

age, I decided to test the MacroD2 decrease in nuclear signal in the presence of small

molecule compounds, which cause specific types of DNA damage. For single-strand

breaks (SSBs), I chose the drug camptothecin. Camptothecin blocks the activity of the
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3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

class I of topoisomerases, enzymes that are important for the process of replication and

transcription (111). During these processes, the topoisomerase I nicks a single strand

in order to release the surplus of topological energy of the DNA molecule in a controlled

manner. Therefore, by not allowing the topoisomerase to perform the ligation step, the

camptothecin drug induces SSBs in DNA.

I found that when camptothecin is used, MacroD2 nuclear signal depletion is lim-

ited to only a subset of cells, as shown in preliminary experiments (see Figure 1.15).

Since only a fraction of cells responds to the treatment, I hypothesized that the exclu-

sive generation of SSBs does not induces the phenomenon. Since in S-phase, SSBs are

converted into double-strand breaks (DSBs) upon replication (111), the few respon-

sive cells upon camptothecin treatment might be in S-phase, when their SSBs have

been converted into DSBs. Therefore, if only SSBs are generated, the cell-cycle could

influence the decrease of MacroD2 nuclear protein levels.

To test this hypothesis, I synchronized U2OS stably expressing mEGFP-MacroD2

via aphidicolin treatment, which blocks cells at the G1-S interphase (see Method

6.7.4). Shortly after release, the cells were treated with camptothecin and imaged.

I then checked the percentage of cells responsive to the camptothecin treatment, in

synchronized and not synchronized cells (Figure 3.3). Indeed, the number of cells

showing MacroD2 nuclear signal depletion increased when cells were synchronized and

released in S-phase. Therefore, SSBs may be poor inducers of the decrease of MacroD2

nuclear levels, compared to DSBs.

To test whether DSBs are the cause of the MacroD2 nuclear depletion, I used

the etoposide compound in the same assay. Unlike camptothecin, etoposide targets

class II topoisomerases, whose activity consists in interrupting the DNA phosphate

backbone at both strands. The drug freezes the topoisomerase molecule before the

ligation, thus forming DSBs. I tested the MacroD2 nuclear signal depletion in U2OS

stably expressing mYFP-MacroD2 and mCherry-H2B upon etoposide and DMSO con-

trol treatment (Figure 3.4). In contrast to the camptothecin experiment, the response

upon etoposide treatment was robust and strong, suggesting that DSB formation acti-

vates the signaling pathway that leads to the depletion of the nuclear MacroD2 signal.

Since etoposide strongly induces the nuclear MacroD2 signal depletion in a reproducible

manner, I used this treatment for further tests regarding the MacroD2 nuclear signal

depletion.
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Figure 3.3: Double-strand breaks induce MacroD2 decrease in nuclear signal

better than single-strand breaks - Percentage of cells showing MacroD2 nuclear signal

depletion in U2OS cells stably transfected with mEGFP-MacroD2, synchronized or not

with aphidicolin and treated with camptothecin 50 µM. Cells analyzed from one experi-

ment, three imaging fields. Error bars, SD.
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Figure 3.4: Etoposide strongly induces MacroD2 nuclear signal depletion -

a)Live-cell imaging using U2OS-mYFP-MacroD2 full length+mCherry-H2B cells treated

either with DMSO or etoposide 10 µM. Scale bar, 10 µm. b) 50−100 cells were quantified

from three independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was

calculated using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei

segmentation. Error bars, 95 %CI.
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The next step was to determine whether MacroD2 nuclear signal depletion is due

to degradation upon DNA damage, in contrast to the hypothesis that it is caused by

nuclear export. Therefore, I performed a cyclohexamide chase, to test whether the

depletion of MacroD2 is due to protein degradation (see Methods 6.10). Cyclo-

hexamide is a compound that blocks the translation elongation step of the ribosomal

complex, impairing the cellular protein synthesis. Once the protein synthesis is blocked

by cyclohexamide, the protein levels of MacroD2 can be compared in the presence and

absence of DNA damage, in order to show if there is induction of the MacroD2 protein

degradation upon DNA damage response. Thus, I treated U2OS cells stably-expressing

mYFP-MacroD2 with cyclohexamide or ethanol as negative control. After 30 minutes

I treated the same cells either with DMSO or etoposide to induce DNA damage. Then,

I collected the cells over a 24 hours time period (0, 45 minutes, 2 hours, 4 hours and

24 hours for both cyclohexamide and ethanol treatments). The following immunoblots

were used for quantitative analysis (Figure 3.5). Since I did not observe significant

changes in EGFP-MacroD2 protein levels upon etoposide treatment in the timescale of

our microscopy studies (45 minutes), I concluded that the MacroD2 nuclear depletion

is not due to regulated protein degradation.

In addition to the cyclohexamide chase, to investigate if the observed nuclear de-

pletion of MacroD2 upon DNA damage is due to nuclear export and not to protein

degradation, I tracked the nuclear and cytoplasmic intensity of EGFP-tagged MacroD2

expressed in HeLa cells upon UV-laser microirradiation. Over time, the MacroD2 nu-

clear intensity is reduced almost to the half of the initial reading, while the cytoplasmic

intensity increases by 15 % (Figure 3.6). This disparity in fluorescence changes be-

tween the two set of intensities is compatible with the difference in the volume between

the nuclear and the cytoplasmic compartments. This experiment further excludes that

MacroD2 nuclear depletion is explained by its regulated degradation. Instead, it con-

firms that MacroD2 is exported from the nucleus upon DNA damage.

Since the ectopically-expressed EGFP-MacroD2 construct is reproducibly export-

ing, I wanted to test if the endogenous MacroD2 is also exporting. To this end, I needed

a working antibody, since the commercially-available antibodies for MacroD2 fail to de-

tect the correct protein size via immunoblot. An anti-MacroD2 serum was prepared

by the in-house animal facility, where the rabbits have been immunized with purified

V5-MacroD2 macrodomain prepared by G. Jankevicius. To increase the purity and the
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Figure 3.5: Etoposide treatment does not reduce the total mYFP-MacroD2

protein levels in 30 minutes - a)Cyclohexamide chase experiment (see Methods

6.10). U2OS-mYFP-MacroD2 full length+mCherry-H2B cells were pretreated with cy-

clohexamide (CHX) or ethanol (V) for 30 minutes. At time 0, either DMSO or etoposide

(10 µM) was added. Cells were then collected over a 24 hours time period. Immunoblot

decorated with anti-GFP or anti-actin. b) Quantification of (a) from four independent

experiments. Statistics performed with unpaired non-parametrical Mann-Whitney test.

Error bars, SEM.
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Figure 3.6: The cytoplasmic signal of EGFP-MacroD2 increases upon UV-

lased microirradiation - DNA damage was induced with UV-microirradiation (high

laser energy) on HeLa cells stably expressing mCherry-H2B and transfected with mEGFP-

MacroD2. The quantification of nuclear and cytoplasmic intensity over time was performed

by means of the software Fiji (http://fiji.sc/Fiji) (see Methods 6.8.4). One cell is

shown as example
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3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

specificity of the antibody, I performed the affinity-purification of the seventh bleed of

anti-MacroD2 serum, following the standard protocol generally used in the department

(see Methods 6.11). The elution step was performed with three different buffers

(citrate, glycine and phosphate buffer) and I tested their performance by immunoblot

with different amounts of purified V5-MacroD2 macrodomain protein (Figure 3.7).

As expected, the antibody recognize the macrodomain of MacroD2 and the best per-

forming batch was the one obtained by the glycine elution, which was always used for

my subsequent experiments.
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Figure 3.7: Anti-MacroD2 serum was purified by affinity-purification - V5-

MacroD2 macrodomain was coupled to CNBr-Sepharose 4B beads. The affinity-column

prepared was then used to purify the serum. Three types of buffers (citrate, glycine and

phosphate buffer) were used for the elution steps (see Methods 6.11). A western blot

with 5 ng and 25 pg of purified V5-MacroD2 macrodomain, used also for raising the an-

tibody, was used to define the purification quality. MacroD2 macrodomain runs at the

height of 25 kDa.

To test the specificity of the antibody, I pre-cleared the anti-MacroD2 antibody

by incubating it with recombinant MacroD2 full-length protein. I then used the pre-

cleared antibody for an immunoblot with different cell lysates (U2OS mYFP-MacroD2

full-length; U2OS; HeLa mCherry-H2B; HEK293 TREx) and purified MacroD2 full-

length recombinant protein (Figure 3.8) in comparison to the non-cleared antibody.

Upon pre-clearing, both the endogenous and recombinant MacroD2 bands showed a

reduction in intensity. However, the unspecific band around 110 kDa became stronger,

possibly due to a larger amount of secondary antibodies available for the recognition

of those bands.
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Figure 3.8: Anti-MacroD2 antibody specifically recognize endogenous and re-

combinant MacroD2 - Cell lysates (U2OS mYFP-MacroD2 full-length; U2OS; HeLa

mCherry-H2B; HEK293 TREx; for each, 30 µg loaded) and 200 ng purified MacroD2

full-length were run for a western blot (see Methods 6.9). The primary antibody (anti-

MacroD2) has been previously incubated for one hour at 4 ◦C with 1 mg/mL purified

MacroD2 full-length or water. For the non-cleared antibody section of the membrane,

both short and long exposition are shown; for the pre-cleared antibody section, only long

exposition is shown. * is unspecific band
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To further confirm that the band at 70 kDa is specific for MacroD2, I treated U2OS

cells for RNAi-mediated depletion, by using control or MacroD2-targeting siRNA (see

Methods 6.7.3). Then, I performed a western blot from the cell lysates (Figure

3.9). The 70 kDa band is not present in the knock-down samples, indicating that this

band is MacroD2.
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Figure 3.9: RNAi-mediated knock-down of MacroD2 confirms the partial speci-

ficity of anti-MacroD2 antibody - U2OS cells treated either with siRNA against

MacroD2 or negative control. Collection of cells and lysate preparation at 72 hours post

transfection. Immunoblot with anti-MacroD2 and anti-GAPDH, used as loading control.

The presence of the unspecific band around 110 kDa makes this a not ideal antibody.

Nonetheless, being the best tool available, this antibody was used to test endogenous

MacroD2 nuclear export by immunofluorescence microscopy (see Methods 6.8.2).

To this end, I compared the wild-type U2OS to the U2OS MacroD2 knock-out cell line

generated by G. Möller by means of the CRISPR-Cas system (333). Cells were treated

with DMSO or etoposide for 1 hour, fixed and processed according to the protocol. In

wild-type U2OS, the nuclear signal showed depletion after 1 hour etoposide treatment,

while the knock-out cells did not (Figure 3.10). The export is clearly detectable,

showing the physiological nature of the regulation of MacroD2 localization upon DNA

damage. However, this antibody does not show the specific localization of MacroD2,

because of the impurities still present after the purification.
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Figure 3.10: The endogenous MacroD2 exports from the nucleus upon one

hour etoposide treatment - a)Immunofluorescence experiment with anti-MacroD2 anti-

body and Hoechst dye on U2OS and U2OS MacroD2-/- cells treated either with DMSO or

etoposide 10 µM for 1 hour. Scale bar, 10 µm. b) Quantification of (a) in three indepen-

dent experiments (see Methods 6.8.2). Nuclear/cytoplasmic ratio was calculated using

CellProfiler 2.0 (331), the Hoechst signal was used for the nuclei segmentation. Statistics

performed with unpaired non-parametrical Kolmogorov-Smirnov test. Error bars, Tukey

fences.
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3.3 The C-terminal region of MacroD2 drives the nuclear

export

MacroD2 has no known nuclear localization signal (NLS) nor a nuclear exporting se-

quence (NES). Indeed, several online predicting programs, such as NLS mapper, NL-

Stradamus, SeqNLS, NES Finder 0.2, Net NES 1.1and LocNES, fail to detect any

localization sequence with satisfactory confidence (data not shown). Therefore, it is

possible that its mode of export could differ from those of other exporting proteins.

When observing the protein sequence, MacroD2 protein consists of an annotated

N-terminal globular macrodomain (aa 59-240) and a long C-terminal region with un-

known function. The globular macrodomain recognizes with high affinity mono-ADP-

ribosylated protein and removes the modification (56, 67). The C-terminus, instead,

is not annotated and the only sequences with more than 50 % identity are from other

vertebrate MacroD2 genes via BLAST search. Therefore, I tested which part of the

MacroD2 protein is sufficient for the regulated nuclear export. I expressed in HeLa

cells EGFP-tagged MacroD2 full-length, macrodomain or the C-terminal region. Then,

I treated the cells with etoposide and imaged using live-cell imaging (Figure 3.11).

Both the full-length and the C-terminal constructs exported, while the macrodomain

alone did not. This indicates that the C-terminal region of MacroD2 is responsible for

its nuclear export.

Due to the lack of localization signals, I decided to explore the protein sequence

and structure of MacroD2. Although the structure of the MacroD2 macrodomain has

been already solved (56), the C-terminus region has never been studied. Online pre-

dictions for the protein secondary structure, such as PredictProtein, indicate that the

C-terminal stretch should be unstructured, with high likelihood being exposed to the

cell environment (Figure 3.12; (334)).

To confirm this prediction, I expressed and purified MacroD2, as a full-length and

C-terminal region (244-488) constructs (see Methods 6.12). Although the C-terminal

region is predicted to be unstructured, the construct was soluble and purified without

precipitation (Figure 3.13). Also, the MacroD2 C-terminal region runs at the height

of 50 kDa, even though its length would account for 25 kDa. This behavior is probably

due to the compositional bias of the C-terminal sequence, as it is also shared by the
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Figure 3.11: The C-terminal region is sufficient for MacroD2 nuclear export

- Live-cell imaging of tagged mEGFP-MacroD2 constructs (full-length, macrodomain or

C-terminal region) in HeLa-mCherry-H2B cells treated either with DMSO or etoposide 10

µM (see Methods 6.8). Scale bar, 10 µm.
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Figure 3.12: The C-terminal portion of MacroD2 is predicted to be unstruc-

tured - Predictions of MacroD2 secondary structure. Sequence of MacroD2 Isoform 1 of

Uniprot was analysed with the online software PredictProtein (334). The first line shows

prediction for each residue to be exposed or buried; the second line shows prediction for

the presence of helices or strands of β-sheets; the third line shows prediction of disorder.
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MacroD2 full-length protein. The constructs were then further purified by a size-

exclusion column.
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Figure 3.13: The MacroD2 C-terminal region is expressed and purified - His-

TEV-MacroD2 C-terminal construct was expressed in E. coli and purified. The construct

runs at the height of 50 kDa, even though its length would account for 25 kDa. In the

Coomassie-stained gel, the different steps of the purification are shown.

I then analyzed the three purified proteins (full-length and C-terminus purified by

me, macrodomain purified by G. Jankevicius) by circular dichroism, with the help

of Dr. F. Kamp, LMU (see Methods 6.13). Circular dichroism is generally used

to investigate the secondary structure of the proteins by analyzing the change in the

circularly polarized light that passes through a solution with the pure protein. Although

it is not as accurate as a crystal structure, circular dichroism can show which is the

predominant secondary structure of the protein that is being analyzed.

The spectrum of the macrodomain showed a predominant presence of α-helices,

given to the strong positive value around 190 nm and the negative (and almost parallel

to the x-axis) portion of the curve in the interval 209-222 nm (Figure 3.14). This

result is consistent with the percentages calculated from the crystal structure, with 37

% of α-helices and almost 15 % of β-sheets.

The result also confirmed the prediction for the structure of the C-terminus, since
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Figure 3.14: The MacroD2 C-terminal region is unstructured - Circular dichro-

ism experiment on purified MacroD2 full-length, macrodomain and C-terminal region

constructs (5 µM; 20 mM phosphate buffer pH 7.3). In the box, examples for the α-

helix (alpha - green), β-sheet (beta - blue) and random coil (random - red) spectra

(http://www.fbs.leeds.ac.uk/facilities/cd/images/1.png)

the C-terminal fragment showed a strong unstructured behavior, as shown by the deep

negative valley at 198 nm and the almost positive value at 212 nm (335). The full-length

construct showed mostly similarities to the macrodomain folding pattern. Nonetheless,

it has a lower content of α-helices and the presence of random coils when compared to

the macrodomain alone, explaining the shift towards negative values in the portion of

the curve between 190 and 205 nm.

3.4 ATM kinase activity induces MacroD2 nuclear export

As previously mentioned, preliminary experiments showed that ATM kinase activity

could induce MacroD2 nuclear export (see Figure 1.15). Cells were pre-treated with

camptothecin and then treated with an ATM inhibitor KU55399. The few cells re-

sponding to the camptothecin with MacroD2 nuclear export showed a net import of

the protein upon treatment with ATM inhibitor.

ATM belongs to the PI3K-like kinases (276, 336). This class of kinases consists of

six members: ATM, ATR, DNA-PK, SGM-1, mTOR and TRRAP. Of these, ATM,

ATR and DNA-PK play an important role in the DNA damage response by regulating
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3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

the early phase of factor recruitment, cell-cycle checkpoints and the choice of repair

pathway to activate (276). Since all three are involved in DNA damage repair regula-

tion and might even share a subset of common targets, I wanted to define which was

the specific contribution of each of the kinases to MacroD2 export, by using specific

small molecule inhibitors: KU55933, VE-821 and NU7441 for ATM, ATR and DNA-

PK, respectively. Therefore, I pre-treated U2OS stably expressing mYFP-MacroD2

full-length with these inhibitors for 30 minutes before performing the imaging upon

laser microirradiation (see Methods 6.8). The ATM inhibitor successfully inhibited

MacroD2 nuclear export, while ATR and DNA-PK inhibitors did not. In fact, the inhi-

bition of ATR minimally enhances the export (Figure 3.15). This might be explained

by the fact that inactivation of ATR could lead to the increased activation of ATM,

since less competition would take place at the DNA damage site.
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Figure 3.15: Among the PI3K-like kinases, only ATM induces MacroD2 nuclear

export - a) Microirradiation live-cell microscopy of U2OS cells stably expressing mYFP-

MacroD2 full length and mCherry-H2B constructs, pretreated with KU55933 10 µM, VE-

821 1 µM, NU7441 1 µM or DMSO for 30 minutes. Medium laser energy was used. Scale

bar, 10 µm. b) 50−100 cells were quantified from three independent experiments (see

Methods 6.8). Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331),

and the mCherry signal was used for the nuclei segmentation. Error bars, 95 %CI.

To confirm ATM involvement in the induction of MacroD2 nuclear export, I per-

formed a similar experiment using etoposide. I pre-treated U2OS cells stably expressing

mYFP-MacroD2 full-length with either DMSO or ATM inhibitor for 30 minutes. Then,

I performed the experiment by adding DMSO or etoposide while imaging (see Meth-
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ods 6.8). The experiment showed that ATM inhibition blocks MacroD2 export also

when DNA damage is induced by etoposide (Figure 3.16).
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Figure 3.16: ATM inhibition blocks MacroD2 nuclear export upon etoposide

treatment - a)Live-cell imaging of U2OS-mYFP-MacroD2 full length+mCherry-H2B cells

pre-treated with either DMSO or KU55933 10 M for 30 minutes, and treated either with

DMSO or etoposide 10 µM. Scale bar, 10 µm. b) 50−100 cells were quantified from three

independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated

using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei segmentation.

Error bars, 95 %CI.

While small molecule compounds are a very powerful tool, the main drawback for

their use is the chance in affecting other proteins that might share some similarity with

the main target. For this reason, it is advisable to confirm the functional interaction

with at least another approach. Thus, to further validate the involvement of ATM, I

wanted to perform the siRNA-mediated knockdown of ATM.

To check the efficiency of the knock-down, I performed an immunblot with whole

cell lysate from U2OS cells treated with siRNA against ATM or a control siRNA for

72 hours (see Methods 6.7.3) and probed it with anti-ATM antibody and anti-

GAPDH as loading control. The RNAi treatment drastically reduced ATM protein

levels (Figure 3.17). Hence, the residual expression of ATM implies that a residual

ATM enzymatic activity could still be activated and may generate an intermediate

phenotype, rather than the complete block of MacroD2 nuclear export.

To test the MacroD2 nuclear export upon ATM-knockdown, I imaged U2OS cells

expressing EGFP-MacroD2 C-terminal region upon etoposide treatment (see Meth-
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Figure 3.17: RNAi against ATM successfully reduces ATM protein levels -

Immunoblotting with anti-ATM in U2OS-mYFP-MacroD2 full length+mCherry-H2B cells

treated either with siRNA against ATM or negative control siRNA 72 hours post transfec-

tion (see Methods 6.7.3). GAPDH is used as loading control.

ods 6.7.3 and 6.8). The export dynamics of the C-terminal region construct was

reduced by half when ATM is depleted in cells (Figure 3.18). As expected, given

that the ATM knock-down was incomplete, the experiment showed residual export of

MacroD2 C-terminus region.

I then performed the same experiment with U2OS cells stably expressing MacroD2

full-length construct. In this case, the reduction of MacroD2 nuclear export was mini-

mal and restricted to the time-window of 15-25 minutes after etoposide addition (Fig-

ure 3.19).

I then wanted to check if the reduced effect of ATM knock-down on MacroD2 full-

length nuclear export is restricted to the etoposide treatment. Therefore, I tested the

U2OS stably expressing MacroD2 full-length upon UV-microirradiation (see Methods

6.8). Also in this condition, MacroD2 full-length nuclear export only minimally changes

between the two conditions (Figure 3.20). I detected a minor difference in the export

speed of the ATM-depleted cells compared with the control in case of high laser energy,

while such a difference was lost when I applied a modest amount of DNA damage.

So, while the ATM inhibitor successfully blocked the nuclear export of MacroD2,

the RNAi-mediated treatment showed more contrasting results. These could be ex-

plained either by the residual presence of ATM, due to the incomplete depletion of

the protein, or by a possible redundancy with other kinases, that appears clearly only

upon specific conditions, such as the decreased activity of ATM. Thus, to further test

the involvement of ATM in the induction of MacroD2 nuclear export, we acquired two
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Figure 3.18: siRNA-mediated knock-down of ATM reduces the nuclear export

of the MacroD2 C-terminus fragment - Quantification of live-cell imaging experiments

with U2OS cells stably expressing the mEGFP-MacroD2 C-terminal region+mCherry-H2B,

pretreated for 72 hours with siRNA against ATM or negative control siRNA, and treated

with DMSO or etoposide 10 µM. 50−100 cells were quantified from two independent exper-

iments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated using CellProfiler

2.0 (331), and the mCherry signal was used for the nuclei segmentation. Error bars are 95

%CI.
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Figure 3.19: ATM-depletion minimally affects the export of the MacroD2 full-

length construct - Quantification of live-cell imaging experiments with U2OS cells stably

expressing the mYFP-MacroD2 full-length, pretreated for 72 hours with siRNA against

ATM or negative control siRNA, and with DMSO or etoposide 10 µM. 50−100 cells were

quantified from two independent experiments (see Methods 6.8). Nuclear/cytoplasmic

ratio was calculated using CellProfiler 2.0 (331), and the mCherry signal was used for the

nuclei segmentation. Error bars are 95 %CI.
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Figure 3.20: The nuclear export of the MacroD2 full-length construct upon

laser microirradiation is marginally affected by the ATM knock-down - a) Quan-

tification of live-cell imaging experiments with high UV-laser energy. b) Quantification of

live-cell imaging experiments with medium UV-laser energy. For (a) and (b), 50−100 U2OS

cells stably expressing the mYFP-MacroD2 full-length and mCherry-H2B, pretreated for

72 hours with siRNA against ATM or negative control siRNA, were quantified from three

independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated

using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei segmentation.

Error bars are 95 %CI.

new cell lines, the G-361 (ATM+/+) and the HT-144 (ATM-/-). These two cell lines are

both melanoma cells with similar, although not identical, genetic background. To check

for the expression of ATM, I tested their cell lysates by immunoblots with anti-ATM

antibody (see Methods 6.9). ATM band was clearly detected in G-361 samples,

however, it was absent in HT-144 sample lanes (Figure 3.21). This result confirms

that HT-144 is a knock-out cell line for ATM.

Then, to test whether MacroD2 can export in the cell line without ATM kinase, I

transfected G-361 and HT-144 cells with EGFP-MacroD2 full-length and imaged the

cells upon UV-laser microirradiation (see Methods 6.8). While in the ATM+/+ G-

361 cell line MacroD2 exports as expected, in the ATM-/- HT-144 cell line MacroD2

nuclear export is not blocked (Figure 3.22). This result indicates that another kinase

could replace ATM in the induction of MacroD2 nuclear export.

Due to similarities between the different members of the PI3K-like kinases family,

it is plausible that some redundancy between these kinases is shown upon specific

conditions. To determine whether one of the other PI3K-like kinases might replace

ATM in the induction of MacroD2 nuclear export when ATM is absent, I transfected
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Figure 3.21: ATM-/- cells do not show ATM band at the immunoblot - Im-

munoblotting with anti-ATM using cell extracts of G-361 and HT-144 cells prepared in

triplicate. GAPDH is used as loading control.
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Figure 3.22: MacroD2 shows residual nuclear export in ATM-/- cells - Microir-

radiation live-cell microscopy of G-361 (ATM+/+) and HT-144 (ATM-/-) cells transfected

with mEGFP-MacroD2 full-length construct. The focus of the laser micro-irradiation is

indicated with yellow arrowheads (see Methods 6.8). High laser energy was used. Scale

bar, 10 µm.
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HT-144 cells with EGFP-MacroD2 full-length and mCherry-H2B. I pretreated the cells

with DMSO, ATM inhibitor (KU55933), ATR inhibitor (VE-821) or DNA-PK inhibitor

(NU7441) for 30 minutes before inducing DNA damage by UV-microirradiation (see

Methods 6.7.3 and 6.8). While the ATM and the ATR inhibitors did not affect the

nuclear export of MacroD2, DNA-PK inhibition resulted in the decrease of MacroD2

nuclear export. These results suggest that in ATM-/- HT-144 cells the role of ATM in

inducing MacroD2 upon UV-laser microirradiation is taken over by DNA-PK (Figure

3.23).
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Figure 3.23: In ATM-/- cells DNA-PK induces MacroD2 nuclear export - a)

Microirradiation live-cell microscopy of HT-144 (ATM-/-) cells transfected with mEGFP-

MacroD2 full-length and mCherry-H2B constructs. Cells were then pretreated with DMSO,

KU55933 10 µM, VE-821 10 µM or NU7441 1 µM for 30 minutes (see Methods 6.8).

High laser energy was used. Scale bar, 10 µm. b) Quantification of an example cell.

Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), the mCherry signal

was used for the nuclei segmentation.

The redundancy in ATM activity could represent a back-up mechanism that is

frequently activated, given the importance of the task of this kinase. On the other

hand, it might occur only upon specific conditions. Therefore, to test whether this

redundancy is not restricted to UV-laser microirradiation, the EGFP-MacroD2 nuclear

export was tested in ATM-/- HT-144 upon etoposide treatment (see Methods 6.7.3,

6.8 and 6.8.6). U2OS cells were used as positive control of the MacroD2 nuclear

export. Unlike with the UV-laser, MacroD2 nuclear export was completely inhibited in

HT-144 cells (Figure 3.24). Therefore, upon etoposide treatment, MacroD2 nuclear
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3.5 MacroD2 macrodomain marginally modulates its nuclear export

export is exclusively induced by ATM kinase. Such a result show that a specific DNA

damage type might activate a specific pathway, which is able to induce the nuclear

export of MacroD2 in a contained extent.
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Figure 3.24: MacroD2 nuclear export is blocked when ATM-/- cells are treated

with etoposide - Quantification of live-cell imaging experiments with U2OS and ATM-/-

HT-144 cell, transiently transfected with EGFP-MacroD2 full-length and pre-treated with

Hoechst, then treated with etoposide 10 µM. 50−200 cells were quantified from two inde-

pendent transfections (see Methods 6.7.3, 6.8 and 6.8.6). Nuclear/cytoplasmic ratio

was calculated using CellProfiler 2.0 (331), the Hoechst signal was used for the nuclei

segmentation. Error bars are 95 %CI.

3.5 MacroD2 macrodomain marginally modulates its nu-

clear export

In the Section 3.4, I showed that ATM induces MacroD2 nuclear export and that ATM

can be replaced by other kinases according to the type of pathway that is activated.

I also showed that the RNAi-mediated depletion of ATM affects the MacroD2 nuclear

export in different ways, depending on the construct that has been transfected, either

full-length MacroD2 or its C-terminal region (see Figures 3.18 and 3.19).

Since the ATM knock-down is performed in the same way in the two experiments,

the difference in MacroD2 behavior should not be caused by a difference in ATM

activity. However, the two MacroD2 constructs, the full-length and the C-terminal

fragment, differ by the presence (or absence) of the macrodomain. It is then important
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3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

to define whether the macrodomain affects the nuclear export of the whole protein.

The macrodomain presents three features:

1. it is able to bind mono-ADP-ribose, which occurs at DNA lesions;

2. it has a mono-ADP-ribosyl-hydrolase activity, upon binding to modified targets;

3. it is a globular domain of 25 kDa, which might hinder the passage through the

NPC by affecting the MacroD2 physical properties.

I then decided to test how these different features could affect MacroD2 nuclear ex-

port. Assuming that the recruitment to the DNA damage site is important for ATM to

get close to MacroD2, I should see a decrease in its nuclear export dynamics by affect-

ing MacroD2 recruitment. Thus, I pre-treated U2OS cells stably expressing MacroD2

full-length in the presence of DMSO or olaparib, a strong inhibitor of ARTD1, ARTD2

and ARTD3 (337). Olaparib treatment, thus, hinders the PAR formation at the DNA

lesions. Successively, I tested the MacroD2 nuclear export dynamics upon UV-laser mi-

croirradiation (see Methods 6.7.3 and 6.8). As consequence, the olaparib-treated

cells showed no recruitment of MacroD2 to the DNA damage site (Figure 3.25). Yet,

MacroD2 nuclear export dynamics was not affected. Therefore, the recruitment of

MacroD2 to the DNA lesion is not important for MacroD2 nuclear export.
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Figure 3.25: The recruitment to DNA lesions does not affect MacroD2

nuclear export - a)Microirradiation live-cell imaging of U2OS-mYFP-MacroD2 full-

length+mCherry-H2B cells pretreated with either DMSO or olaparib 2 µM. Yellow cir-

cle show the microirradiation focus. High laser energy was used. Scale bar, 10 µm. b)

50−100 cells were quantified from three independent experiments (see Methods 6.8).

Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), and the mCherry

signal was used for the nuclei segmentation. Error bars, 95 %CI.
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3.5 MacroD2 macrodomain marginally modulates its nuclear export

To investigate if the abolishment of the binding to the ADP-ribose or the acquired

binding to PAR could affect the dynamics of MacroD2 nuclear export, I used two

published mutants. Previous studies on MacroD2 macrodomain have defined a series

of mutation that might affect the binding or the catalytic activity (56). For example,

the G188E mutation completely abolishes the binding of ADP-ribose. Additionally,

the G100E+I189R+Y190R mutant no longer has catalytic activity, but is still able to

bind the ADP-ribose. Moreover, this mutant is no longer selective for the mono-ADP-

ribosylation, but gains the ability to bind PAR as well (G. Jankevicius, unpublished).

Therefore, I transiently expressed these mutants in comparison to the wild-type in

HeLa cells stably expressing mCherry-H2B and performed UV-laser microirradiation

experiments(see Methods 6.8).

The MacroD2 nuclear export dynamics of the three constructs were similar but not

equal (Figure 3.26). The MacroD2 G188E mutant that cannot bind any ADP-ribose

was exported marginally faster than the wild-type construct. This minimal difference

between the ADP-ribose-binding deficient mutant and the wild-type construct in the

export rate is quite striking if compared to the total overlap upon olaparib treatment.

This distinction could be explained by the fact that the MacroD2 macrodomain inter-

acts with mono-ADP-ribosylation, while the main targets of olaparib are ARTD1 and

ARTD2, which are poly-ADP-ribosyl-transferases. Therefore, affecting the binding of

the macrodomain with any type of ADP-ribosylation induces a slightly faster export.

On the other hand, the MacroD2 G100E+I189R+Y190N mutant that is capable to

bind PAR as well as MAR is consistently marginally slower than the wild-type, maybe

due to the increase in binding events that this protein can undergo.

The MacroD2 macrodomain is 25 kDa in size, as is EGFP. To test whether the size

of the protein affects the export rate, with the help of J. Preißer, a C-terminal construct

in a vector containing two EGFP in series was generated. This construct has a similar

molecular weight compared to EGFP-MacroD2 full-length. Thus, by comparing the

nuclear export of these two construct, two outputs are expected: one option is that the

EGFP-EGFP-MacroD2 C-terminal construct behaves like the EGFP-MacroD2 full-

length, meaning that the size but not the macrodomain affects the nuclear export. In

the other scenario, where the EGFP-EGFP-MacroD2 C-terminal exports as the same

fragment with only one EGFP attached, the macrodomain affects the nuclear export by
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Figure 3.26: The macrodomain ability to bind ADP-ribose marginally af-

fects the MacroD2 export rate - Quantification of microirradiation live-cell imaging

of mEGFP-MacroD2 constructs (full-length wild type, full-length G188E or full-length

G100E+I189R+Y190N) in HeLa cells stably expressing mCherry-H2B. 50−100 cells were

quantified from three independent experiments (see Methods 6.8). Nuclear/cytoplasmic

ratio was calculated using CellProfiler 2.0 (331), and the mCherry signal was used for the

nuclei segmentation. Error bars, 95 %CI For the microirradiation, high laser energy was

used..

sourcing possible interactions. I thus transfected EGFP-MacroD2 full-length, EGFP-

MacroD2 C-terminus and EGFP-EGFP-MacroD2 C-terminus constructs in HeLa cells

stably expressing mCherry-H2B (Figure 3.27).

The export dynamics of EGFP-EGFP-MacroD2 C-terminus shows a shape that

is very similar to the one of the MacroD2 full-length construct. However, the two

constructs shows a difference in the overall speed, maybe due to the fact that the

EGFP-EGFP-MacroD2 C-terminus cannot bind any ADP-ribosylation and therefore it

is faster in being exported. On the other hand, the EGFP-C-terminus construct shows

a completely different export dynamics, suggesting that the main difference between

the full-length and the C-terminus constructs is indeed just the size.

As shown previously (see Figures 3.18 and 3.19), the RNAi-mediated depletion

of ATM affects the dynamics of nuclear export of the MacroD2 C-terminus fragment,

but only marginally the dynamics of the full-length protein. To test if these differences

in behavior are indeed due to the presence of the macrodomain, four U2OS stable

cell lines expressing EGFP-MacroD2 full-length, EGFP-MacroD2 full-length (G188E),

EGFP-MacroD2 C-terminus or EGFP-EGFP-MacroD2 C-terminus were treated for 72
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Figure 3.27: The EGFP-EGFP-MacroD2 C-terminus construct shows the same

dynamic of export of the full-length protein - Quantification of microirradiation

live-cell imaging of mEGFP-MacroD2 constructs (EGFP-MacroD2 full-length, EGFP-

MacroD2 C-terminus or EGFP-EGFP-MacroD2 C-terminus) in HeLa cells stably express-

ing mCherry-H2B. Around 50 cells were quantified from three independent experiments

(see Methods 6.8). Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331),

and the mCherry signal was used for the nuclei segmentation. Error bars, 95 %CI. For the

microirradiation, high laser energy was used.

hours with ATM siRNA or a negative control siRNA (see Methods 6.7.3). On the

third day, cells were pre-treated with Hoechst to stain the nuclei and imaged (see

Methods 6.8 and 6.8.6). The DNA damage was induced by etoposide treatment,

since the Hoechst treatment, necessary for the nuclei segmentation, is not compatible

with my settings of UV-laser microirradiation. In the control treatment, MacroD2 full-

length and C-terminus construct showed the same behavior that was seen previously

(see Figure 3.28, panel b).

The EGFP-MacroD2 full-length G188E mutant also behaves as shown previously,

being slightly faster than the EGFP-MacroD2 full-length. On the contrary, the EGFP-

EGFP-MacroD2 C-terminus construct maintains its previously shown behavior only in

the initial phase of the export dynamics, since it exports up to 20 minutes with a rate

that is intermediate between the full-length and the C-terminus construct; successively,

the C-terminus protein with two EGFP attached slows down in the export, becoming

slower than the full-length (see Figure 3.28, panel a). Since this experiment has been

performed upon etoposide treatment and not UV-laser, it is possible that this change

might have slightly changed the export rate of the different constructs, although the
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Figure 3.28: The partial depletion of ATM mostly affect the dynamics of the

MacroD2 C-terminus only - Quantification of microirradiation live-cell imaging of four

U2OS stable cell lines (EGFP-MacroD2 full-length, EGFP-MacroD2 full-length (G188E),

EGFP-MacroD2 C-terminus and EGFP-EGFP-MacroD2 C-terminus) treated with ATM

siRNA or control siRNA for 72 hours. Before imaging, cells were treated with Hoechst.

Upon imaging, DNA damage was induced by using Etoposide 10 µM. 300−600 cells were

quantified per each condition (see Methods 6.8 and 6.8.6). a) The eight conditions are

shown for the total length of the experiment (80 minutes). b) Close-up of a, with the four

cell lines treated with control siRNA. c) Close-up of a, with the four cell lines treated with

ATM siRNA. Both a and b show the first portion of the experiment, up to 50 minutes.

Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), and the Hoechst

signal was used for the nuclei segmentation. Error bars, 95 %CI. For the microirradiation,

high laser energy was used.
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DNA damage

two controls (full-length and C-terminus) were behaving as expected.

When comparing the control treatment with the ATM knock-down, the results show

that the construct showing the most relevant decrease in export rate was the EGFP-

MacroD2 C-terminus, while EGFP-MacroD2 full-length, EGFP-MacroD2 full-length

(G188E) and the EGFP-EGFP-MacroD2 C-terminus constructs were less affected (see

Figure 3.28, panels a and c). The result further supports the hypothesis that the

length of the construct is the main factor influencing the export dynamics of MacroD2.

3.6 ATM induces the phosphorylation of MacroD2 C-terminal

region upon DNA damage

Upon DNA damage, ATM kinase modifies mediators and effectors of the repair process,

creating a signaling cascade of phosphorylation events (276, 338). In particular, ATM

activates other kinases, like Chk1 and Chk2, whose main role is to stop cell-cycle

progression until the DNA lesion is resolved (252, 339, 340).

Therefore, I tested if MacroD2 is phosphorylated upon DNA damage as well. In

HEK293 lysate I added the purified EGFP-tagged MacroD2 C-terminal fragment to-

gether with (32P)γ-ATP (see Methods 6.14). In control samples I also added ATM

inhibitor KU55933. I then induced DNA damage in the samples by adding Benzonase

nuclease and incubated for 40 minutes. I then purified EGFP-MacroD2 C-terminus

protein by GFP-trap and ran the samples on a gel, which was stained with Coomassie

and then analyzed for the radioactive content.

In the autoradiograph, I could see increased phosphorylation of the C-terminal

fragment in the sample incubated with Benzonase, as DNA damage inducer (Figure

3.29). On the contrary, when the reaction buffer was supplemented with the ATM

inhibitor KU55933, the radioactive signal was reduced. This means that upon DNA

damage MacroD2 is phosphorylated either directly or indirectly by ATM kinase activity.

To look at the DNA damage-induced phosphorylation of MacroD2 in more detail,

we started a collaboration with Dr. A. Schmidt at the Zentrallabor für Proteinanalytik,

LMU. By checking the sequence annotated on Uniprot, the MacroD2 protein sequence

presents several residues that might accept phosphorylation. Thus, we adopted a mass

spectrometry-based phospho-proteomics approach to measure the abundance of phos-

phorylated peptides from MacroD2 (see Methods 6.15). U2OS cells stably expressing

79



3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

P
 / 

P
ro

te
in

 a
m

o
u

n
t

3
2

3

2

1

0

No d
am

age
Benzo

nase

KU55933 - 
Benzo

nase

KU55933 - 
No d

am
age

- -
- - -

-
-

-+ +
++ +

+ +
+

Input IP

KU55933
Benzonase

P32

Coomassie
MacroD2 
C-terminal

MacroD2 
C-terminal

a b

Figure 3.29: MacroD2 is phosphorylated in the C-terminal region - a)Coomassie

and autoradiography of purified mEGFP-MacroD2 C-terminal domain added to HEK293

cell lysate, which has been treated or not with benzonase and KU55933, spiked with

(32P)γ-ATP and successively immunopurified. b) Quantification of IP results from three

independent experiments (see Methods 6.14). Error bars, SEM.

mYFP-MacroD2 full-length and mCherry-H2B were treated for 1 hour with DMSO or

etoposide. MacroD2 proteins were then purified by using GFP-trap and treated for

mass spectrometry by Dr. Schmidt. In three biological replicates we achieved a pro-

tein coverage of 70 %. Some sites showed increased phosphorylation upon etoposide

treatment as compared with control, such as S292, S415 and S426 (Figure 3.30, Ta-

ble 3.1). Additionally, there were cases, like the phosphorylation in the aa 307-317

stretch, that is present only in the DMSO-treated cells. Other cases showed the same

enrichment level in both treatments, arguing for the irrelevance of these particular

modifications in MacroD2 nuclear export.

In particular, the phosphorylated version of the peptide 402-417 is more enriched

upon etoposide treatment (Figure 3.31,panel a). In fact, in the spectrum of the

phosphorylated peptide (see panel a,1), the peak is present upon etoposide treat-

ment but absent in the untreated sample. In addition, since the peptide 402-417 is

short, it is certain that the phosphorylation event occurs exclusively on S415, since

the modification is present only for the y-fragments upon the peptide fragmentation

(Figure 3.31,panel b).
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Figure 3.30: MacroD2 residues are phosphorylated upon etoposide treatment

- Abundance of phosphorylated peptides of MacroD2. U2OS stably expressing mYFP-

MacroD2+mCherry-H2B were treated for 1 hour with etoposide 10 µM or DMSO and

immunopurified with GFP-trap. Following treatment, mass spectrometry experiment and

analysis performed by Dr. A. Schmidt. Quantification of three independent experiments.

Error bars, SEM. Statistics performed with paired t-Test with two-tailed distribution.

Sequence Localization Amino acid Localization score

DENGPEEKQSVEEMEEQSQ 268 S 1.00

DGVNTVTVPGPASEEAVE 292 S 1.00

DENITKGGEVT 311 S 0.99

DSTKNEIKIETESQSSYMETEELSSNQE 345 S 0.65

DSTKNEIKIETESQSSYMETEELSSNQE 356 S 0.47

DSTKNEIKIETESQSSYMETEELSSNQE 352 T 0.51

DSTKNEIKIETESQSSYMETEELSSNQE 349 Y 0.59

DTPRMPGKSEGSSDLENTPGPDVEMNSQV 400 S 0.90

DTPRMPGKSEGSSDLENTPGPDVEMNSQV 401 S 0.49

DLENTPGPDVEMNSQV 415 S 1.00

DKVNDPTESQQEDQLIAGAQ 424 T 0.74

DKVNDPTESQQE 426 S 1.00

Table 3.1: Identified MacroD2 phosphorylated peptides - Overview of identified

peptides and position of the phosphorylation. The localization score is the probability that

the particular modification is located on the specific residue and it is calculated by dividing

the (1 − pvalue) of the fragmented ion with the specific modified residues with the sum of

the (1 − pvalue) of all the fragmented ions of the peptide (341).
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Figure 3.31: The serine in position 415 is modified upon etoposide treatment

- a) Extracted ion chromatogram from experiment 3.30, showing aa 402-417 peptide with

phosphorylation of the serine (1), oxidation of the methionine (2) or with both modifications

(3), comparing control treatment with etoposide treatment. b) CID-MS/MS spectrum of

the 402-417 peptide in the phosphorylated and oxidated form (921.37 m/z).
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3.7 Phosphorylation sequence requirements indicates the

direct involvement of ATM

MacroD2 is rich in residues that can accept phosphorylation, as shown for the many

phosphorylation events on serines and threonines occurring on MacroD2 (see Figure

3.30). Importantly, most of these amino acids are located in the C-terminal region of

MacroD2, which has a biased composition towards acidic residues. This biased compo-

sition is favorable for a few classes of kinases, such as PI3K-like kinases, Chk kinases

and Polo-like kinases, although these different classes have specific and more detailed

consensus sequences (342, 343). In the MacroD2 C-terminal region there are four ser-

ines followed by glutamine (S276, S345, S415 and S426), a motif that is recognized by

ATM, ATR and DNA-PK (220). The S415 was a well characterized site phosphory-

lated upon etoposide treatment, as detected by mass spectrometry (see Figure 3.31),

leading to the hypothesis that MacroD2 could be specifically phosphorylated by ATM

and PI3K-like kinases.

To test whether these four SQ motifs are involved in the induction of MacroD2

nuclear export, I generated a EGFP-MacroD2 construct with all four C-terminal region

SQ motifs mutated (mutant 4SA; S276,345,415,426A) with the help of G. Jankevicius

and S. Grau. The mutant 4SA was transfected in HeLa cells stably expressing mCherry-

H2B and tested for the export upon UV-laser microirradiation, in comparison to the

wild-type (see Methods 6.8). The EGFP-MacroD2 mutated in all SQ motifs was not

able to export (Figure 3.32). These motifs are thus necessary for MacroD2 nuclear

export.

To address the specific contribution of each motif, we created four mutants, each

with three of the four serines mutated to alanine, leaving only one SQ motif intact

per construct.The constructs were then tested for the nuclear export upon UV-laser

microirradiation, having been transfected in HeLa cells stably expressing mCherry-

H2B (see Methods 6.8). The experiment showed that the serines S276 and S426 are

irrelevant for the export, because the constructs presenting only these motifs intact did

not accumulate in the cytoplasm (Figure 3.33). On the other hand, S345 and S415

are necessary for the nuclear export. When each of these two serines was left intact,

MacroD2 nuclear export was successful.
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Figure 3.32: Mutation of the four SQ motifs completely abolishes MacroD2

nuclear export - a)Microirradiation live-cell microscopy of HeLa cells stably expressing

mCherry-H2B and transfected with mEGFP-MacroD2 full-length or mEGFP-MacroD2

S276,345,415,426A constructs. For the microirradiation, high laser energy was used. Scale

bar, 10 µm. b) 50−100 cells were quantified from three independent experiments (see

Methods 6.8). Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331),

and the mCherry signal was used for the nuclei segmentation. Error bars, 95 %CI.

Then, to further confirm the role of the S345 and S415 for the nuclear export of

MacroD2, I generated a EGFP-MacroD2 full-length construct whose S276 and S426

were mutated to alanine, leaving S345 and S415 as serine. As before, I transfected

the mutant and the wild-type constructs in HeLa cells stably expressing mCherry-H2B

and tested their ability to export from the nucleus upon UV-laser microirradiation

(see Methods 6.8). The export dynamics of the MacroD2 S276,426A construct is

indistinguishable from the wild-type (Figure 3.34). Additionally, from Figure 3.33 it

is clearly noticeable that when the S354 and S415 are intact alone in the protein, the

nuclear export does occur but not at the same level of the wild-type protein. Thus,

S345 and S415 are likely working in a cooperative way.

The fact that I could pinpoint two specific residues essential for MacroD2 nuclear

export argues for the presence of two exporting sequences in the C-terminus region.

It is likely that each sequence includes a phosphorylated serine. The serine S415 is

clearly shown to be phosphorylated upon DNA damage (see Figure 3.31). Also S345

was recognized as site during the identification of the phosphorylated sites with mass

spectrometry, although not with the same degree of certainty (see Table 3.1). Indeed,

due to the length of the peptide and, thus, the presence of many residues capable of

modification, S345 was not shown to be the only site able to accept the phosphorylation

within the peptide. Nonetheless, in both cases the mutation of the serine blocks the
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Figure 3.33: S345 and S415 are neccessary for MacroD2 nuclear export

- a)Microirradiation live-cell microscopy of HeLa cells stably expressing mCherry-H2B

and transfected with mEGFP-MacroD2 full-length or different serine triple mutants

(S345,415,426A; S276,415,426A; S276,345,426A; S276,345,415A). For the microirradiation,

high laser energy was used. Scale bar, 10 µm. b) 50−100 cells were quantified from three

independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated

using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei segmentation.

Error bars, 95 %CI.
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Figure 3.34: S345 and S415 are sufficient for the nuclear export of MacroD2

- Quantification of microirradiation live-cell microscopy of HeLa cells stably expressing

mCherry-H2B and transfected with mEGFP-MacroD2 full-length wild type or S276,426A.

50−100 cells were quantified from three independent experiments (see Methods 6.8).

Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), and the mCherry

signal was used for the nuclei segmentation. Error bars, 95 %CI. For the microirradiation,

high laser energy was used.

nuclear export. Thus, it is highly likely that the S345 undergoes the phosphorylation

event able to induce the nuclear export, as the serine S415 does. However, more

sequence requirements could be necessary for the activity of these export sequences.

For this reason, I wanted to characterize the contribution of the residues surrounding

the phospho-serine for the export. This piece of information could be in fact very

helpful to define possible interactors that are important for the accomplishment of the

localization.

I initially focused on the sequence surrounding the serine 415 because it was the

best characterized modification in the phospho-proteomics analysis (see Figure 3.31).

First, I tested a series of fragments with decreasing length to find a sequence short

enough for further manipulation, yet, still be able to export. I therefore compared

EGFP-MacroD2 full-length, MacroD2 C-terminal (aa 236-448) and the fragments aa

382-418, aa 402-418 and aa 410-418, all transiently expressed in HeLa-mCherry-H2B

cells and measured the nuclear export upon UV-laser microirradiation (see Methods

6.8). Surprisingly, just a 9-residue-long fragment, namely aa 410-418 (DVEMNSQVD),

is still able to export residually (Figure 3.35). Therefore, I defined this fragment as

the core exporting sequence.
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Figure 3.35: The fragment aa 410-418 is sufficient for MacroD2 nuclear export

- a)Microirradiation live-cell imaging of HeLa cells stably expressing mCherry-H2B and

transfected with mEGFP-tagged constructs (MacroD2 full-length, MacroD2 C-terminal

region (aa 236-448), MacroD2 aa 382-418, MacroD2 aa 402-418, MacroD2 aa 410-418). For

the microirradiation, high laser energy was used. Scale bar, 10 µm. b) 50−100 cells were

quantified from three independent experiments (see Methods 6.8). Nuclear/cytoplasmic

ratio was calculated using CellProfiler 2.0 (331), and the mCherry signal was used for the

nuclei segmentation. Error bars, 95 %CI.
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To define to what extent each residue in the sequence is required for phosphoryla-

tion, I adopted a scanning mutagenesis approach. I mutated each residue of the 410-416

stretch to alanine (or aspartate in the case of V411, given to the close similarity be-

tween alanine and valine) within the EGFP-MacroD2 (382-418) fragment. I performed

the mutations in a longer fragment to avoid impairments in the binding of the kinase

due to sequence length. To assay the kinase activity, I used HEK293 cell lysates spiked

with the purified proteins and treated with Benzonase nuclease (see Methods 6.14).

I tested the incorporation of (32P)-phosphate in the His-EGFP-tagged mutagenized

fragments compared to the GST-EGFP-tagged wild-type fragment, which acted as an

internal positive control for phosphorylation (Figure 3.36).
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Figure 3.36: Both S415 and Q416 are required for the phosphorylation -

a)Coomassie and autoradiography of purified GST-mEGFP-MacroD2 (aa382-418) wild-

type and His-mEGFP-MacroD2 (aa382-418) (wild-type or mutant proteins). Purified con-

structs were added to HEK293 cell lysate, which was treated with benzonase and spiked

with (32P)γ-ATP. Successively, immunopurification with GFP-trap. b) Quantification of

(a) in three independent experiments. Error bars, SEM. Statistics performed with un-

paired non-parametrical Mann-Whitney test against the wild-type (see Methods 6.14).

* is p = 0.05; n.s. is p > 0.05.

Different residues appear to have different effects on the phosphorylation, presum-

ably due to a variation in recognition by the kinase. As expected, the mutation of the

serine 415 abolished the incorporation of radioactivity. Additionally, the Q416A muta-

tion totally blocked the modification. This result argued for the direct involvement of
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ATM in the phosphorylation of MacroD2, since ATM, ATR and DNA-PK are the only

kinases that strictly require the glutamine after the serine: among them, ATM seems

to be the main inducer of MacroD2 nuclear export (see Section 3.4; (342)). On the

other hand, other mutations only marginally affected the modification, thus they are

not fundamental for the kinase to recognize the sequence.

After having defined the phosphorylation level of these mutant, I wanted to see

their nuclear export efficiency. Thus, I transfected all the EGFP-tagged mutants of the

aa 382-418 fragment in HeLa cells stably expressing mCherry-H2B and I tested them

in nuclear export assays upon UV-laser microirradiation (see Methods 6.8). As

expected, neither S415A nor Q416A are able to export (Figure 3.37). Interestingly,

the M413A mutant shared the same phenotype.

Since M413A mutant shows no change in incorporation of the (32P)-phosphate

compared to the wild type, this result suggests that the methionine could be essential

in the nuclear export in a step that is downstream of the phosphorylation of the serine,

such as for the recognition of the sequence by the export machinery.

A similar approach was taken to define the sequence requirements also for the S345

site. Together with J. Preißer and M.L. Tran, we determined the shortest sequence re-

quired for the export of a fragment containing the serine 345. We found that the stretch

between K340 and M350 is necessary and sufficient for the export (KIETESQSSYM ):

in comparison with the fragment 410-418 around the serine 415, the 340-350 stretch is

slightly longer (data not shown). Still, to again avoid impairments in the binding, we

performed the scanning alanine mutagenesis in a longer fragment, namely aa 336-372:

the two fragments, aa 382-418 and aa 336-372, were designed to have a comparable

length.

M.L. Tran expressed all the mutants in HeLa cells stably expressing mCherry-H2B

and tested their nuclear export dynamics upon laser microirradiation. Similarly to the

410-418 fragment, S345, Q346 and M350 are necessary for the nuclear export of this

fragment (Figure 3.38). On the other hand, few other mutations also slowed the

export dynamics (Table 3.2). Their residues were mainly located downstream from

the SQ motif.

In both sequences, the mutation of the serine or the following glutamine affected

the nuclear export. Likewise, in both sequences the mutation of a methionine into an

alanine impaired the export, although their position relative to the serine is different:
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Figure 3.37: M413 is also necessary for the nuclear export of the fragment aa

382-418 - a)Microirradiation live-cell microscopy of HeLa cells stably expressing mCherry-

H2B and transfected with mEGFP-MacroD2 (aa382-418) wild-type construct or mutants

(D410A; V411E; E412A; M413A; N414A; S415A; Q416A). For the microirradiation, high

laser energy was used. Scale bar, 10 µm. b) 50−100 cells were quantified from three

independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated

using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei segmentation.

Error bars, 95 %CI.
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Figure 3.38: In the aa 336-372 fragment, S345, Q346 and M350 are necessary

for the export - Quantification of microirradiation live-cell imaging of HeLa cells stably

expressing mCherry-H2B and transfected with mEGFP-MacroD2 (aa336-372) wild-type

construct or mutants S345A, Q346A and M350A. 50−100 cells were quantified from three

independent experiments (see Methods 6.8). Nuclear/cytoplasmic ratio was calculated

using CellProfiler 2.0 (331), and the mCherry signal was used for the nuclei segmentation.

Error bars, 95 %CI. For the microirradiation, high laser energy was used.

Position Wild-type Mutant Export in mutant Significance

340 K A unchanged no

341 I A unchanged no

342 E A unchanged no

343 T A slow yes

344 E A unchanged no

345 S A no yes

346 Q A no yes

347 S A slow yes

348 S A slow yes

349 Y A slow yes

350 M A no yes

Table 3.2: Export dynamics for alanine mutant in the aa 336-372 fragment

- Alanine scanning mutagenesis for the fragment aa 336-372. Each mutant is compared

to the wild-type and the outcome of unpaired non-parametrical Mann-Whitney tests is

shown.
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M413 is in position -2 compared to the S415, while M350 is in position +5 from the

serine S345. In addition, when comparing the two export sequences, all the residues of

the aa 382-418 fragment that are relevant for the definition of the export dynamics were

located shortly upstream from the SQ motif. Conversely, in the aa 336-372 fragment,

the majority of the residues whose mutation affected the nuclear export were located

downstream from the SQ motif.

The inhibition of the MacroD2 nuclear export when the methionine is mutated

into alanine shows that by placing a residue of different nature in that position does

impair the occurrence of the process, but does not prove that the methionine and only

the methionine is required in that position. To test how essential is the methionine,

I mutated the M413 to phenylalanine or isoleucine. These two residues are, in fact,

belonging to the same group of strongly hydrophobic amino acids.

For the experiment, I transfected the mEGFP-MacroD2 (aa388-424) wild-type

and mutants M413A, M413F and M413I constructs in HeLa cells stably expressing

mCherry-H2B. I then tested the export dynamics of these construct upon UV-laser

microirradiation (see Methods 6.8). When comparing the wild-type construct with

its related mutants, it is clear that the mutation of the methionine impairs the nuclear

export, even when it is mutated to strongly hydrophobic residues (Figure 3.39).

In summary, the phosphorylation of the S415 residue within the aa 382-418 frag-

ment is dependent on the presence of the serine and the glutamine. Moreover, for

both the exporting sequences, the mutation of the serine or the glutamine to alanine

blocks the nuclear export. Having the serine followed by a glutamine in both motifs as

sequence requirement, strongly suggests that ATM itself is interacting with MacroD2

and modifying it upon DNA damage.

In addition to the SQ motif, the two sequences share another feature: a methionine,

whose mutation to alanine impairs the nuclear export of MacroD2 fragments. The

mutation of the methionine does not affect the phosphorylation process, as I showed

for the aa 382-418 sequence. However, the relative positions of the methionines and

the SQ motifs change in the two exporting sequences.
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Figure 3.39: Mutation of the M413 to other hydrophobic residues does not

rescue MacroD2 nuclear export - Quantification of microirradiation live-cell imag-

ing of HeLa cells stably expressing mCherry-H2B and transfected with mEGFP-MacroD2

(aa388-424) wild-type construct or mutants M413A, M413F and M413I. 50−100 cells were

quantified from two independent experiments (see Methods 6.8). Nuclear/cytoplasmic

ratio was calculated using CellProfiler 2.0 (331), and the mCherry signal was used for the

nuclei segmentation. Error bars, 95 %CI. For the microirradiation, high laser energy was

used.
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3.8 14-3-3s do not bind MacroD2

As the two sequences in MacroD2 protein necessary for its nuclear export upon DNA

damage have been defined (see Section 3.7), it is possible to address which mechanism

mediates the nuclear export of MacroD2. As shown above, this process is regulated

by means of phosphorylation events, which can modulate the interaction with nuclear

transport receptors or adaptor proteins. As described in Section 1.4.2, it is a common

mechanism that proteins are phosphorylated and such phospho-sites can be recognized

by adaptor proteins, which mediate in turn the formation of the complex with the

export machinery (302, 344, 345).

The best described class of these adaptor proteins are the 14-3-3s (346, 347, 348).

Preliminary analyses of the first biological replicate of the co-immunopurification ex-

periment coupled to peptide mass fingerprinting, which I describe in Chapter 4, showed

the binding of 14-3-3ε to MacroD2 full-length and C-terminal fragment upon etoposide

treatment. This preliminary result prompted me to perform validation experiments on

this possible binding candidate for the MacroD2 nuclear export.

14-3-3 proteins are small (28 kDa), abundant and very stable and preferentially

bind phosphorylated serines or threonines that are placed within a consensus sequence

(349, 350). There are three described consensus sequences:

• -R(S/T)XpSXP-

• -RX(F/Y)XpSXP-

• -pSXCOOH

Several proteins have been described to interact with the 14-3-3s in a phosphorylation-

independent manner, such as the anti-apoptotic protein BAX (351), the transcription

factor ChREBP (352) and the viral ADP-ribosyltransferase ExoS (353).

The 14-3-3s might be suitable candidates to drive MacroD2 out of the nucleus for

a number of reasons. First of all, they bind phospho-serines or phospho-threonine. In

the case of COP1, the phospho-site is modified by ATM itself (324). 14-3-3s have been

described several times as intermediate of nuclear export, such as for COP1, Chk1,

FKHRL1, FOXO1, FOXO4, BAD or Cdc25C (324, 325, 346, 354, 355, 356). However,

in most cases the nuclear export is due to the fact that, upon binding, the 14-3-3 masks
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the NLS of the transported protein, thus impairing the nuclear import. Often, the

binding with 14-3-3s require two phospho-sites, since the 14-3-3 proteins adopt either

a homo- or a heterodimer form (350). The two residues that act as binding site for

the 14-3-3s are preferentially located in unstructured sequences, to help in formation

of all possible contacts between the proteins (356). For these reasons, it is feasible

to hypothesize a possible interaction between MacroD2 and a 14-3-3 protein upon

DNA damage. As shown in the previous section, MacroD2 has two motifs undergoing

phosphorylation upon DNA damage, which drive its nuclear export. Both sites are

present in the unstructured C-terminus region of MacroD2.

On the other hand, some other considerations question the involvement of 14-3-3s

in the export of MacroD2. The consensus sequence for the 14-3-3 binding tends to be

incompatible with the one of the PI3K-like kinases, since the 14-3-3s prefers positive

charges, while the PI3K-like kinases prefers sequences rich in negative charges (357).

Therefore, the consensus is theoretically incompatible also with MacroD2 exporting

sequences, being that MacroD2 is rich in acidic amino acids. Still, given the many

elements supporting the hypothesis, it was worthwhile to test the interaction.

For this reason, with the help of J. Preißer, I expressed and purified all seven

human 14-3-3 isoforms (ε, σ, ζ, β, η, θ and γ) with a GST tag (see Methods 6.16.1)

Additionally, I also purified the 14-3-3ε with a mutation of lysine 49 into glutamate.

This mutant is described as unable to bind the phospho-serine, and as such represents

a suitable negative control for a pull-down assay. I used synthetic biotynilated-peptides

in place of MacroD2 protein in order to test the interaction in an in vitro condition:

1. Biotin - G S L S Q R Q R S T S T P N V H (Control peptide - unphosphorylated)

2. Biotin - G S L S Q R Q R S T pS T P N V H (Control peptide - phosphorylated)

3. Biotin - N T P G P D V E M N S Q V D K V

4. Biotin - N T P G P D V E M N pS Q V D K V

5. Biotin - N T P G P D V E A N S Q V D K V

6. Biotin - N T P G P D V E A N pS Q V D K V
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1 and 2 are control peptides that have been previously published (343). The other

four peptides are designed from MacroD2 protein sequence (aa 402-420). Peptides 4

and 6 are phosphorylated at serine 415; 5 and 6 have the methionine 413 mutated to

alanine. Considering that the percentage of phosphorylated MacroD2 over the total

cellular pool is unknown, by adopting synthetic peptides I sought to work in a defined

condition, where all the MacroD2 sequences would be modified.

I then performed the pull-down experiment of the GST-14-3-3 proteins using the

biotinilated peptides conjugated to Streptavidin resin (see Methods 6.16.2). The

Figure 3.40 shows the pull-down experiment of the GST-14-3-3 proteins with the syn-

thetic peptides.
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Figure 3.40: The MacroD2 phosphorylated peptides do not interact with puri-

fied 14-3-3s - Pull-down experiment of purified 14-3-3 (ε, ε(K49E), σ, ζ, β, η, θ and γ) and

biotinylated-peptides, phosphorylated or not. Immunoblot of the samples with anti-GST

(see Methods 6.16.2).
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3.8 14-3-3s do not bind MacroD2

In the negative control EGFP, the signal in most of the lanes suggested a background

binding, while the pull-down of the 14-3-3 ε (K49E) mutant was not comparable because

of its faint signal in the input. All the 14-3-3 proteins except the σ convincingly bound

the phosphorylated control protein more than the unphosphorylated form. Among

these pull-downs, the 14-3-3 ε, β, η and θ bound better the unphosphorylated MacroD2

peptide compared to the phosphorylated one, while only the 14-3-3 ζ seemed to bind

more the phosphorylated peptide than the unphosphorylated form, even if very weakly.

When comparing the pull-downs performed with the peptides with the mutated

methionine, the 14-3-3 σ was more enriched in the phosphorylated form compared to

the unphosphorylated one. However, the equal binding for the positive control urged

me to not consider this protein, since published work clearly showed that it should bind

more the phosphorylated control peptide over the unposphorylated (343). This output

was also present for the 14-3-3 β, even though it was a very faint signal. On the other

hand, the 14-3-3 ζ, η, θ and γ showed more enrichment upon the unphosphorylated

version. Finally, the 14-3-3 ε showed no signal for either pull-downs. According to

these results, no 14-3-3 protein met these three criteria: to bind the control peptides as

expected (2 more than 1 ), to bind the phosphorylated MacroD2 peptide (4 ) more than

the unphosphorylated one (3 ), and to not bind any peptide mutated in the methionine

(5 and 6 ).

I repeated the experiment with a subset of proteins, but the results were not repro-

ducible, possibly due to different amounts of peptides conjugated to the beads across

the different experiments (data not shown). Although the control peptides always

worked consistently, since I did not find a way to define the amount of MacroD2 pep-

tides present until the end of the experiment, I decided to test the interaction with

another approach: a co-immunopurification experiment between 14-3-3 proteins and

the purified MacroD2 C-terminus fragment.

To this end, I added EGFP-MacroD2 C-terminal domain and a selection of the

14-3-3 proteins (ε, ε(K49E), ζ and β) to the HEK293 lysate and activated the DNA

damage response by adding Benzonase to the system (see Methods 6.16.3), as done

previously (see Figures 3.29 and 3.36). As mentioned above, the strength of the pull-

down approach with synthetic peptides consisted of having at least 95 % of the molecules

phosphorylated, while in this case I ignore the exact percentage of phosphorylated

protein. However, since I used a large amount of purified proteins in the experiments,
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it may have been possible to detect the interaction between the two partners in this

condition. Nonetheless, the band for the EGFP-MacroD2 C-terminal region did not

appear in any of the pull-downs from samples treated with Benzonase (Figure 3.41).
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Figure 3.41: The MacroD2 C-terminal domain does not interact with 14-3-3ε, ζ

and β in vitro - Immunoprecipitation experiment of EGFP-MacroD2 C-terminal domain

and GST-14-3-3s (ε, ε(K49E), ζ and β) or GST-EGFP. Purified proteins were spiked into

HEK293 cell-extract. DNA damage was induced by adding Benzonase nuclease. Control

immunopurifications were performed with water in place of Benzonase. Co-IP performed

with glutathione beads and interaction tested with anti-GFP.(see Methods 6.16.3)

Although I could not detect any signal, I decided to perform a variation of the

same experiment, using the EGFP-MacroD2 (aa382-418) fragments previously used

(see Figure 3.36). In particular, I added the same above mentioned 14-3-3 proteins

and the MacroD2 fragments, both the wild type and the mutants M413A and S415A

to the HEK293 cell lysate (see Methods 6.16.3). As before, I could not detect

any enrichment of the MacroD2 fragments upon pull-down of the GST-14-3-3 proteins

(Figure 3.42).

As a last attempt to observe the interaction between MacroD2 and the 14-3-3s, I

performed a co-immunoprecipitation experiment of the 14-3-3ε with EGFP-MacroD2

or EGFP alone stably expressed in HEK293 cells (see Methods 6.16.4). The 14-3-3ε

was the isoform identified in the first place in the co-immunopurification experiment

coupled with peptide mass fingerprinting (see Chapter 4). The cells were treated for

one hour with etoposide before harvesting, reproducing the same conditions used for

the co-IP experiment that is described in Chapter 4. However it was observed that even

though MacroD2 was highly enriched, the 14-3-3ε was not detectable (Figure 3.43).

To sum up, the multiple attempts at identifying an interaction were unsuccessful

and, therefore, the 14-3-3 identified by the mass spectrometry approach appears to be

a false positive.
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Figure 3.42: The 14-3-3s do not interact with MacroD2 fragments in vitro -

Immunoprecipitation experiment of EGFP-MacroD2 fragment (aa382-418) wild type and

mutants (M413A and S415A) and GST-14-3-3s (ε, ε(K49E), ζ and β). Purified proteins

were spiked into HEK293 cell-extract. DNA damage was induced by adding Benzonase

nuclease. Co-IP performed with glutathione beads and interaction tested with anti-GFP

on immunoblot (see Methods 6.16.3).
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Figure 3.43: MacroD2 fails to pull down the 14-3-3ε in vivo - Immunoprecipitation

experiment of 14-3-3ε protein from HEK293 cell extract. Cells were overexpressing EGFP-

MacroD2 full-length or EGFP alone, treated for one hour with etoposide 10 µM and

immuno-purified by GFP-trap. GAPDH was used as negative control (see Methods

6.16.4).

3.9 ATM activity regulates the recruitment of MacroD2

to DNA lesions

After having characterized MacroD2 nuclear export, the question about the possible

role of this regulation is still open. To this end, I tested if the ATM-induced MacroD2

nuclear export could affect MacroD2 recruitment to sites of DNA damage. Thus, I

transfected EGFP-tagged MacroD2 full-length, MacroD2 macrodomain and MacroD2

C-terminus proteins in HeLa stably expressing mCherry-H2B and performed UV-laser

microirradiation experiments to test their recruitment dynamics (see Methods 6.8).

The recruitment dynamics of the three protein was very different (Figure 3.44).

Both MacroD2 full-length and macrodomain recruited to DNA damage sites, while

the EGFP-MacroD2 C-terminus fragment did not. Moreover, between the two recruit-

ing constructs there was a striking difference in the residency time: the full-length

protein dissipates from the sites of DNA damage faster than the macrodomain only

construct.

To investigate if the MacroD2 nuclear export can affect the recruitment dynamics,

I compared the accumulation of EGFP-tagged wild type MacroD2 with that of the

export-incompetent (4SA - S276,345,415,426A) mutant at the UV microirradiated sites
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Figure 3.44: The macrodomain of MacroD2 is necessary for the recruitment of

MacroD2 to DNA lesions - Recruitment of tagged mEGFP-MacroD2 constructs (full

length, macrodomain or C-terminal domain) in HeLa cells stably expressing mCherry-

H2B. The focus of laser micro-irradiation is indicated with yellow arrowheads. For the

microirradiation, medium laser energy was used. Scale bar, 10 µm.

of DNA damage induced by UV-laser microirradiation. The two constructs were also

compared in the recruitment in the presence of the ATM inhibitor, KU55933, or DMSO

control (see Methods 6.8.5). The recruitment of the wild type MacroD2 construct

treated with DMSO peaked 2 minutes after laser irradiation (Figure 3.45).

Afterwards, the protein amount at the sites of DNA damage - and within the whole

nucleus - decreased, which led to the loss of MacroD2 proteins at the damage site within

5 minutes.

When the cells transfected with the wild-type construct are treated with the ATM

inhibitor, MacroD2 visibly resided at the DNA lesions up to 30 minutes after the laser

microirradiation, as also shown by the quantified levels of the fluorescent signal in the

recruitment area that persist around 1 for the whole experiment. Likewise, the cells

trasfected with the export-incompetent mutant show high recruitment and persistence

of the fluorescent signal at DNA lesions until the end of the experiment (30 minutes),

as shown by both the images and the quantification.

In summary, while the recruitment has no impact on the nuclear export dynamics of

MacroD2 (see Figure 3.25), these results show that MacroD2 nuclear export affects

its recruitment dynamics.
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Figure 3.45: MacroD2 nuclear export affects its recruitment to DNA lesions - a)

Recruitment of tagged mEGFP-MacroD2 constructs (wild-type or S276,345,415,426A mu-

tant) in HeLa cells stably expressing mCherry-H2B, treated either with DMSO or KU55933

10 µM. The focus of laser micro-irradiation is indicated with a yellow circle. For the mi-

croirradiation, medium laser energy was used. Scale bar, 10 µm. b) Quantification of

the recruitment performed on 15 cells from three independent experiments (see Methods

6.8.5). Error bars are 95 %CI.
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3.10 Discussion

This chapter shows that MacroD2 nuclear signal depletion upon DNA damage is ex-

plained by its regulated nuclear export (Figure 3.46). The phenomenon was also

confirmed for the endogenous protein, suggesting a physiological relevance of this form

of regulation.

EXPORT

Cytoplasm

Nucleus

S S

P P

MACROD2

ATM

Figure 3.46: The model of MacroD2 nuclear export - Upon DNA damage, most

likely via DSB formation, ATM gets activated. ATM modifies the unstructured C-terminus

of MacroD2 in two serines: S345 and S415. This event induces the regulated export of

MacroD2 from the nucleus.

Upon DNA damage, the activation of the ATM kinase induces the phosphoryla-

tion of two serines in the MacroD2 C-terminal unstructured region. These two serine

residues (S345 and S415) are both followed by a glutamine, which is a motif that is

directly recognized by ATM, ATR and DNA-PK kinases (220). Since the mutation of

the Q416 showed loss of phosphorylation, a PI3K-like kinase is likely performing the

modification. As long as ATM kinase is available and active, the inhibition of ATR or

DNA-PK does not affect MacroD2 nuclear export. However, in other conditions, such

as ATM knock-out, RNAi-mediated knock-down or activation of ATM-independent

DNA damage reponse pathways, ATM kinase can be replaced in inducing MacroD2
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nuclear export by other PI3K-like kinases, such as DNA-PK.

I then showed that for both exporting sites a short stretch of sequence (10 − 15

amino acids long) is able to target EGFP for nuclear export. These results exclude the

possibility that the modification might unmask a hidden nuclear exporting sequence,

but rather suggest that the phosphorylation induces the interaction of these stretches

with factors that enable the nuclear export. Within each of the two exporting se-

quences, a methionine is essential for the export: in fact, when mutated into alanine,

phenylalanine or isoleucine, the nuclear export of MacroD2 fragments cannot take place.

However, when comparing the two exporting sequences, the residue is not present at

the same position in relation to the phosphoserine.

I then considered the possibility that MacroD2 is exported from the nucleus via

a “piggy-back” mechanism by interacting with a NES-carrying protein. Preliminary

data from a co-immunoprecipitation coupled to peptide mass fingerprinting experiment

suggested a 14-3-3 protein as a viable candidate as an interaction partner. These

chaperone proteins can bind a phosphorylated motif in the cargo protein and cause

the protein to accumulate in the cytoplasm. Although I have performed three different

types of experiments to test their binding, I did not see any interaction. Indeed, a

scientist can only show that a certain phenomenon happens, therefore it is not possible

to show without any doubt that two proteins do not interact: I could spend years,

endlessly changing the experimental procedure and never be sure that I found the right

condition to see the interaction. However, considering the chaperone nature of the

14-3-3s and the amount of material I used for the experiments, it is likely that the

interaction between the partners could easily have occurred. Since it did not happen,

it is unlikely that the 14-3-3s are the exporting factors interacting with MacroD2.

Finally, I compared the recruitment dynamics at the DNA lesion of MacroD2 full-

length, macrodomain and C-terminus fragment. While the whole protein is both able

to recruit and export from the nucleus, the macrodomain-only construct remains at the

DNA lesion for a much longer time, due to its inability to export. This is confirmed

also by the MacroD2 full-length exporting-deficient mutant, as well as by the inhibition

of ATM activity by small inhibitor. Thus, the nuclear export of MacroD2 affects its

own residency at the DNA lesion and might impact the DNA damage response.
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3.10.1 MacroD2 C-terminus is an intrinsically disordered region

MacroD2 is a protein with a globular N-terminal macrodomain domain (56, 67). How-

ever, the C-terminal portion of the protein has not been previously annotated. My

experiments indicated that the C-terminus region is unstructured (see Figure 3.14).

The circular dichroism spectrum exhibits the features of a totally unstructured region,

with this portion likely to be unstructured also within the full-length protein context.

Surprisingly, although unstructured fragments are generally associated with insolubility

in physiological conditions, the purification of the C-terminal fragment was successful

(see Figure 3.13), likely due to the amino acidic composition of the sequence, rich in

residues that form hydrogen bonds. The composition is indeed in line with the require-

ments for the intrinsically disordered proteins and might allow the correct solubility of

the fragment (358).

Intrinsically disordered proteins are defined as having at least a region that, al-

though able to assume different conformation with various degrees of order, is still

biologically active (358). In eukaryotic proteomes, the presence of proteins with at

least a short disordered stretch seems quite important, with at least 1500 proteins

showing this feature. The presence of a disordered region makes the protein able to

bind interactors more dynamically, by lowering the free-energy barriers. For this reason,

the disordered proteins represent important hubs in signaling pathways, with p53 being

the most notorious example of disordered proteins (359). This might be connected to

the fact that intrinsically disordered proteins are on average substrate to twice as many

kinases as the structured ones (360).

The fact that the MacroD2 C-terminus is an intrinsically disordered region could

be very interesting for two reasons. First, an intrinsically disordered domain confers

augmented interacting capabilities, and could represent a fundamental source of both

positive and negative regulation of the enzymatic activity. Secondly, the disordered

proteins are underrepresented in the group of proteins involved in catalysis and biosyn-

thesis (361). Therefore, MacroD2 could represent an intriguing anomaly in the world

of the flexible proteins.
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3.10.2 MacroD2 ratio across the nuclear envelope changes upon DNA

damage

MacroD2 is a protein 448 amino acids long with a molecular weight of 50 kDa. Since

almost half of the protein is disordered, the shape of MacroD2 is more similar to a 25

kDa globular protein with a long, highly hydrated tail, than a globular protein of 50

kDa. This change in shape should be taken into account for what concerns the mode

of passage through the nuclear pore.

According to the laboratory of Dr. D Görlich (Max Planck Institute for Biophysical

Chemistry, Göttingen), a non-spherical probe, like a GFP-GFP fusion, although hav-

ing a mass of 54 kDa, crosses the nuclear pore faster than the globular maltose-binding

protein, which is 43 kDa in weight (mentioned as unpublished datum in (300)). This

observation is explained by the possibility that the protein could passively cross the

membrane with a preferred orientation. Even if such a concept could seem counterin-

tuitive in light of our knowledge about how proteins behave in gels and pores, it well

explains why the EGFP-tagged version of MacroD2 can be easily found in both nuclear

and cytoplasmic compartments. For this reason, when there is no DNA damage in the

cell, MacroD2 might passively diffuse across the nuclear envelope.

However, even if MacroD2 is constantly redistributing itself between the nucleus and

the cytoplasm in a passive manner, upon DNA damage the flux of MacroD2 towards

the cytoplasm is increased. The net flux out across the nuclear envelope comes from

the combination of two components: the influx and the efflux of the protein, the first

factor being smaller than the second (362). The net flux of MacroD2 into the cytoplasm

could be explained either by increased efflux and unchanged influx or by unchanged

efflux and decreased influx. In this second case, the influx contribution can reduce so

much to be null, due for example to the protein being anchored in the cytoplasm.

According to the Fick laws for diffusion applied to a permeable membrane (363),

the flux of of the molecule X across the membrane (Jx, n/m2s) is the result of the

difference of concentration of the protein in the two compartments, multiplied for a

constant P , so that:

Jx = P ([X]2 − [X]1)

106



3.10 Discussion

where [X]1 is the concentration of the molecule X in the first compartment, while

[X]2 is the concentration in the second one. The constant P is the permeability in the

membrane of the molecule X. Thus, the increase in MacroD2 flux out might be caused

by a change in the gradient across the membrane, maybe because MacroD2 is released

by some anchoring in the nucleus (for example from chromatin) or is anchored once

it arrives in the cytoplasm. Another cause of efflux increase could be a change in the

permeability coefficient: for example, MacroD2 molecules might be positively regulated

to interact with the export machinery, resulting in a facilitated transport.

A fluorescence loss in photobleaching (FLIP) experiment, where cytoplasmic EGFP-

MacroD2 signal is constantly photo-bleached, allowed Dr. Timinszky to determine the

efflux upon control or DNA damage treatment (Dr. G. Timinszky, unpublished).

By transforming the single-exponential curve into a linear function by change in scale,

he was able to determine the P constant in the two conditions. In fact, upon DNA

damage, the constant was higher. Thus, MacroD2 efflux is not due to a change in

gradient across the envelope, arguing against the anchoring hypothesis. Instead, this

result supports the hypothesis that MacroD2 interacts in a regulated manner with a

component of the exporting machinery upon DNA damage.

In summary, since EGFP-tagged MacroD2 is distributed always between the nucleus

and the cytoplasm, it is possible that such a distribution is true also for the endogenous

protein. Instead of imagining MacroD2 fully nuclear or cytoplasmic, MacroD2 could

show a precise ratio between the nucleus and the cytoplasm, possibly connected with

the unknown function that it has (or has not) to perform at a certain physiological

state. However, upon DNA damage and activation of the response, the phosphorylation

shifts the equilibrium towards the cytoplasmic accumulation. Most likely it favors the

occurrence of more enzymatic reactions in the cytoplasm, while it discourages those in

the nucleus.

3.10.3 The mechanism behind MacroD2 passage through the nuclear

envelope

According to the data that I have collected, MacroD2 accumulates in the cytoplasm

upon DNA damage in a regulated manner. However, MacroD2 lacks targeting se-

quences, both for the import and for the export (see Section 3.3). As a mechanism

107



3. ATM KINASE INDUCES MACROD2 NUCLEAR EXPORT

underling this accumulation, the two short MacroD2 exporting sequences are phospho-

rylated, triggering the nuclear export.

One hypothesis is that this modification could induce the binding to an adaptor

protein carrying a NES: therefore, MacroD2 would export by a “piggy-back” mech-

anism. Considering the different export-deficient mutants (see Figures 3.37 and

3.38), the binding seems to require the presence of a methionine, possibly important

to form contacts with the binding pocket of the exporting adaptor. The position of

the methionine was different in the two exporting sequences. Although it is possible

to argue that the mechanism regulating the two exporting sequences might be differ-

ent, due perhaps to different partners, it is difficult to explain that the methionine is

essential in both sequences by mere coincidence. Thus, considering the phosphorylated

serines and the methionines as requirements for the binding of the exporting interactor,

I tested whether the 14-3-3 proteins can meet these requirements. Even though the

14-3-3 proteins are known phospho-binders, these candidates did not show any clear

binding upon in vitro and in vivo experiments (see Section 3.8).

Together with the direct interactor, I lack clues as to which exportin protein might

be involved in the nuclear transport. Exportin 1 is the most common transporter for

the nuclear export (303). The involvement of exportin 1 is generally tested by use of

leptomycin B, a compound that blocks exportin 1 interaction with cargoes by modifying

the binding pocket (364). When Dr. Timinszky used this compound, MacroD2 nuclear

export was only partially blocked, thus arguing against its exclusive involvement (Dr.

G. Timinszky, unpublished). More data should be collected to have an exhaustive

picture about the involvement of other exportins.

An alternate hypothesis is that the phosphorylation might confer increase MacroD2

affinity for the components of the NPC, allowing MacroD2 to cross the membrane more

often. In fact, a study showed that nucleoporins contains hydrophobic residues yet are

overall positively charged, which well matches with the overall negative charge of the

nuclear transport receptors (365). This would be also compatible with the overall

negative charge of the C-terminal portion of MacroD2.

As mentioned previously, the mutation of a methionine within both MacroD2 ex-

porting sequences completely inhibits the nuclear export. Since the methionine is a very

hydrophobic residue, it could be important for the interaction with the hydrophobic

residues of the nucleoporins. After all, the loss of binding due to methionine oxidation
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in few cases of protein-protein interaction studies shows how essential the methionine

can be in such a situation (366, 367, 368). Also, this hypothesis would better explain

why the methionine does not have the same position in the two MacroD2 exporting

sequences, since the successful interaction for the export would not require a fixed con-

sensus sequence, but only the position of hydrophobic residues in a negatively charged

patch. Therefore, it could be possible that the phosphorylation of the serines shifts the

balance towards an even more unfolded and negatively charged sequence, allowing the

methionine to directly bind the FG repeats of the nucleoporins present in the NPC. It

would probably be the first case of “regulated passive diffusion”.

Therefore, according to this hypothesis, the phosphorylation would allow faster

translocation through the nuclear pore, regardless of the direction of the transport.

To assure the directionality from the nucleus to the cytoplasm, the phosphorylation

step must be assumed to take place within the nucleus, while MacroD2 should be

preferentially dephosphorylated in the cytoplasm. In support to this hypothesis, the

mutation of the MacroD2 exporting serines into glutamate did not show any net nuclear

export of MacroD2 (Dr. G. Timinszky, unpublished).

However, mutation of the methionine into other strongly hydrophobic residues

(isoleucine and phenylalanine) impairs the nuclear export (see Figure 3.39). Al-

though all are hydrophobic residues, such a result argues for a specific role of the me-

thionine, that cannot be mediated just by its hydrophobic nature. This result indeed

argues against this alternative hypothesis.

Nonetheless, the methionine is an important element for the accomplishment of

MacroD2 nuclear export. Such an important role of the methionine could then explain

a little conundrum that involves MacroD2 and oxidative stress: at the beginning of

my PhD, I tested MacroD2 nuclear export upon H2O2 treatment, and although be-

ing preliminary experiments, both Dr. Timinszky and I found that MacroD2 nuclear

export was minimal (Figure 3.47). Although more experiments and more controls

are needed to transform this preliminary observation into a result, the results I have

successively collected might explain this anomalous behavior. In fact, now we know

that the methionine is necessary for the MacroD2 nuclear export and it is generally

oxidized upon oxidative stress (366).

Oxidative stress is a powerful inducer of ADP-ribosylation and ARTD1 activity.

However, a set of studies showed that, beside DBSs, oxidative stress can also activate
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Figure 3.47: Oxidative stress fails to trigger MacroD2 nuclear export - Quan-

tification of live-cell imaging of U2OS-mEGFP-MacroD2 C-terminus+mCherry-H2B cells

treated with H2O2, 600 µM. 50−100 cells were quantified analyzed from one experiment.

Nuclear/cytoplasmic ratio was calculated using CellProfiler 2.0 (331), and the mCherry

signal was used for the nuclei segmentation. Error bars, 95 %CI.

ATM kinase (275). Therefore, the activity of ATM should lead to MacroD2 nuclear

export, but this does not happen. A first explanation could be the absence of MacroD2

phosphorylation, because ATM might change its substrate subset according to the type

of DNA damage type and activation mode, although it is still not clear whether it is

true (263). On the other hand, the lack of export may not be due to a change in the

modification of the MacroD2 C-terminus region, but because of impaired interaction

with the export machinery. The oxidation of the methionine, as a consequence of the

oxidative stress, could be thus a mechanism to override ATM regulation and still keep

MacroD2 within the nucleus to perform its activity. Such a mechanism would be then

negatively regulated by the activity of the methionine sulfoxide reductase A, which can

restore the native state of the methionines (368).

3.10.4 ATM kinase regulates MacroD2 nuclear export

In my experiments, I showed that ATM is the primary kinase that induces MacroD2

nuclear export (see Section 3.4). But MacroD2 may not be the only export target of

ATM: ATM activation has been shown to induce changes in the localization of several

proteins. In some cases, a direct intervention of ATM has been shown to affect the

nuclear export of some factors (226, 324, 369). The NF-κB essential modulator, NEMO,
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requires three sequential post-translational modifications for its nuclear export and

ATM phosphorylation is the second; ATM is also shown to cross the nuclear envelope

together with NEMO (226). COP1, instead, is the E3 ubiquitin ligase that targets p53

for degradation (369). ATM-induced nuclear export of COP1 is important to stabilize

p53 and activate it.

ATM modifies a vast number of proteins (42, 44). Many of these targets have more

than one site modified and contain a stretch of 100 residues with three phosphorylated

SQ/TQ motifs, called a SQ/TQ cluster domain (SCD) (370). In a recent meta-study,

among the proteins with SCDs, unexpected cellular processes were enriched, such as

“gene regulation”, “vesicle-mediated traffic”, “cytoskeletal components” and “neural

development” (371). However, I realized that in this meta-study, MacroD2 did not

appear, even though it does meet the definition (S345+S415+S426). This is explained

by the fact that the first isoform annotated on Genbank, which the authors of the study

used for their study, contains only one of the three SQ motifs. The S415 and S426 are

in fact included in an exon that is likely spliced in alternative ways, considering all

the splice variants annotated on Uniprot (Figure 3.48). The exon sequence is very

conserved among vertebrates.

350 360 370 380 390 400 410 420 430 440 448

* *

Figure 3.48: Comparison of the sequence 350-448 in the different annotated

MacroD2 isoforms - The sequence between 350 and 448 amino acids of all the isoforms

of MacroD2 present on Uniprot database is shown. On the bottom line is the consensus

sequence for the alignment. The stars indicate the position of the two SQ motifs. Alignment

performed with MultAlin (372)

Such a hypothesis would represent an interesting mode of regulation of the protein.

Since the two SQ motifs S345 and S415 have an additive effect on the nuclear export

of MacroD2 (see Figure 3.33), the regulated exclusion of one of them could impact

on the dynamics of MacroD2 nuclear export. I can thus imagine the possibility of

differential splicing according to cell types or environmental stimuli.
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When testing the involvement of ATM, I showed the complete blockage of MacroD2

export upon inhibitor treatment in the case of UV-laser microirradiation with medium

energy and etoposide treatment, as well as in ATM-/- HT-144 cell line treated with

etoposide (see Section 3.4). The preliminary work with camptothecin also suggest

the exclusive involvement of ATM (see Figure 1.15). In the other conditions that I

tested, such as RNAi-mediated ATM knock-down or HT-144 cells treated with UV-laser

microirradiation, the inhibition of MacroD2 nuclear export was only partial.

The RNAi-mediated knock-down of ATM showed only a partial if not minimal effect

on the MacroD2 nuclear export dynamics (see Figures 3.18, 3.19 and 3.20). This

result could be explained first of all by the partial depletion of ATM kinase, whose

residual amount might still suffice to accomplish the kinase functions, although with

a decreased rate. On the other hand, the partial impact of the ATM depletion on

MacroD2 export rate could be due to the activation of other kinases that replace ATM

when its presence in cells is drastically decreased, as shown also in the case of the

ATM knock-out cell line, where DNA-PK clearly activates MacroD2 nuclear export

(see Figure 3.23). Nonetheless, the fact that the absence of ATM might allow other

kinases to modify non-physiological substrates could represent either a back-up pathway

or the occurrence of unwanted interactions with possible pathological consequences.

Lastly, the impact that the siRNA treatment has on the two MacroD2 constructs

(full-length or C-terminal region) is different. While the C-terminus export is reduced

by half its maximum level upon ATM depletion, the full-length protein export is affected

only marginally (see Figures 3.18, 3.19 and 3.20). It is possible that the presence

of the macrodomain favors the interaction between the kinase and the substrate, lim-

iting the effect of the ATM depletion in this specific case. Indeed, the presence of a

functioning macrodomain shows to have an impact, even if minimal, on the nuclear

export dynamics when comparing the MacroD2 full length wild-type protein with the

mutant deficient in ADP-ribose binding (G188E) (see Figure 3.26).

However, the EGFP-EGFP-MacroD2 C-terminus, which has a comparable size to

the EGFP-MacroD2 full-length construct but lacks the macrodomain, shows likewise

a minimal change in export rate upon ATM depletion, supporting the idea that the

presence of the macrodomain cannot answer for this reduced effect of the knock-down

(see Figures 3.28). Most likely, it is the size of the protein in the first place that

defines the speed of translocation across the nuclear envelope. For slower translocators,
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such as EGFP-MacroD2 full-length and EGFP-EGFP-MacroD2 C-terminus, crossing

the nuclear envelope, not the phosphorylation event, may be the limiting step of the

process.

3.10.5 ADP-ribosylation meets ATM signaling

ADP-ribosylation is a very dynamic post-translational modification, broadly involved

in the regulation of DNA damage repair. Similarly, ATM is activated by a number of

genotoxic stimuli and its main function is to oversee the correct repair and survival of

the cell, or to induce its programmed death, if damage is beyond repair (336). It is not

a surprise that these two signaling pathways show a number of connections. Several

factors involved in homologous recombination and ATM signaling, including ATM itself,

recruit to DNA breaks thanks to PAR-binding modules (8, 156). For example, both

Nbs1 and Mre11 initial recruitment depend on ARTD1 activation, and subsequently

the Mre11-Rad50-Nbs1 (MRN) complex induces increased levels of ATM activation

(155).

In general, the recruitment of the repair factors employs modules that recognize

poly-ADP-ribosylation, since a vast platform of PAR molecules offers a better sub-

strate for the formation of a three-dimensional network (6). The negative regulation

of this recruiting platform is thus bestowed mainly on PARG activity, as shown by the

change in recruitment dynamics in the presence and absence of RNAi-mediated PARG

depletion (56).

While the role of PARylation in DNA damage response is well established (see

Section 1.2.6), more evidence continues to be collected about the contribution of

MARylation in DNA repair regulation. ARTD3 is a MART that is involved in DNA

damage repair, namely in the choice between HR and NHEJ pathways (373, 374).

ARTD10, the prototypical MART, is instead involved in the regulation of trans-lesion

DNA synthesis, which occurs when the replication fork encounters a DSB site (175).

In my study, while inhibition of the recruitment of MacroD2 to DNA lesions did

not have any impact on its nuclear export dynamics, the nuclear export did affect the

recruitment dynamics (see Figure 3.45). The recruitment to the DNA damage site

is a feature of the macrodomain (see Figure 3.44), and it is quite clear that the

fluorescent signal persists for 30 minutes at the damage focus if not promptly removed

by the nuclear export (see Figures 3.44 and 3.45).
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Furthermore, inhibition of ATM or mutation of the SQ motifs result in the failure

of MacroD2 nuclear export and its persistence within the nucleus. Indeed, a longer

presence of MacroD2 in the nucleus means a longer presence at the DNA lesion (see

Figure 3.45), which might easily be a source of misregulation of the repair pathway.

Thus, the ATM-induced nuclear export of MacroD2 could represent another case sup-

porting the role played by MARylation in the regulation of the DNA repair process.

In particular, MacroD2 might negatively regulate the DNA damage response.

3.11 Future directions

3.11.1 Regarding the location of MacroD2 and the mechanism of ex-

port

While I could show that endogenous MacroD2 still exports from the nucleus upon

etoposide treatment using an immunofluorescence approach (see Figure 3.10), I could

not define its cellular localization in the two conditions. It would be important to

address this question in order to understand whether the whole pool of protein relocates

or just a fraction. As the antibody used in this study has limits, as previously discussed,

it is essential to develop new immunological tools. Currently, a PhD student in our

lab, G. Möller, is preparing and testing new monoclonal antibodies developed together

with the “Monoclonal Antibodies” facility of the Helmholtz Zentrum, Munich. Once

the tool has been developed, it is possible to test the real localization of the endogenous

MacroD2 upon control and DNA damage condition. I hypothesize that MacroD2 will

most likely be present in both the nuclear and cytoplasmic compartment in the control

condition, showing a common behavior with the EGFP-tagged MacroD2. However,

whether there will be residual MacroD2 left in the nucleus upon DNA damage or if

the nuclear export will be complete, remains unclear. If the endogenous MacroD2

is generally present in both nuclear and cytoplasmic compartments, except during the

DNA damage response, this result would argue for the continuous shuttling of MacroD2

across the nuclear envelope.

To rule out that MacroD2 signal is distributing across the nuclear envelope be-

cause of a form of active transport, it would be necessary to test the distribution of

MacroD2 upon RNAi-mediated knock-down of importins or exportins. When such an

experiment is performed in the absence of DNA damage, it can discriminate between
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passive diffusion and active transport: if the depletion of at least one importin or ex-

portin changes the nuclear-cytoplasmic ratio, it suggests that MacroD2 distribution is

mediated by a form of active transport dependent on importin/exportin cycles. If the

ratio is unchanged, it means that in the absence of DNA damage MacroD2 moves via

passive diffusion between the two compartments.

Since the depletion of the importins and exportins using RNA-interference might

be only partial, interfering with the formation of a more definite phenotype, the use of

knock-out cell lines for the different factors would probably be the ideal way to define

whether MacroD2 distribution is indeed due to a regulated active transport. Nonethe-

less, the results of such experiments might still show a confusing output, since the

nuclear transport receptors are essential factors for the healthy localization of cellular

components and their absence may generate pleiotropic effects.

The mechanism of transport of MacroD2 upon DNA damage could be different

from the mechanism with which MacroD2 crosses the nuclear envelope in the absence

of stress. If MacroD2 exports upon DNA damage by an active transport mechanism,

it will most likely be through a “piggy-back” mechanism, where phosphorylation of

MacroD2 enables it to bind another protein that contains a NES. MacroD2 protein, in

fact, lacks annotated or predicted NES sequences. Since it is a matter of finding the

right interactor, the best option is to adopt a pull-down approach coupled with mass

spectrometry. This is indeed what I did and I will describe it in the next chapter (see

Chapter 4).

The second hypothesis I formulated consists of a “regulated passive diffusion”. Ac-

cording to this hypothesis, MacroD2 would be intrinsically able to bind the nucleoporins

without any intermediary and to cross the nuclear envelope. Upon DNA damage, the

phosphorylation of its intrinsically disordered region would further favor the interaction

with the nuclear pore complex. The interaction may take place due to the presence

of negativly charged residues and few hydrophobic residues, positioned in strategic po-

sitions: among them, the two methionines (M350 and M413) would be important for

the interaction with the FG-rich motifs of the nucleoporins. This hypothesis could be

refuted by the fact that the MacroD2 fragment in which the methionine 413 has been

mutated to phenylalanine or isoleucine showed no nuclear export. Nonetheless, it could

still be interesting to perform the in vitro pull-down using the MacroD2 exporting
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fragments and nucleoporin FG-rich tail fragments in the presence and absence of DNA

damage, to test if the two proteins can directly interact.

Regardless from the mechanism of the translocation of MacroD2, my experiments

showed the importance of the methionine for the accomplishment of the nuclear export

of MacroD2. Since the oxidation of the methionine has been shown to affect protein-

protein interactions, I wonder if the oxidation of MacroD2 methionines upon H2O2

treatment could be a way to override ATM-induced nuclear export and to keep MacroD2

within the nucleus to perform its function. First of all, more experiments are needed to

define whether MacroD2 nuclear export is responsive or not to oxidative stress. Also, I

would test the PAR levels in the cells upon H2O2 treatment, in order to test the export

in a condition where the oxidative stress response is active.

Once the anomalous behavior of MacroD2 is confirmed, I would test if the MacroD2

exporting fragments would be phosphorylated also upon oxidative stress. In adopting

the same protocol that I used for the experiments with the radioactive γ-ATP (see

Figures 3.29 and 3.36), the Benzonase nuclease and the ATM inhibitor could be

used as positive and negative controls, respectively. If these fragments are still phos-

phorylated by ATM, I would then test if the methionine is oxidized. To this end, it

could be possible to analyze the same fragments with mass spectrometry, looking just

for the oxidation of these residues. Since the oxidation of the methionine residues fre-

quently occurs during sample preparation for mass spectrometry, it is vital to perform

the experiment also with the control sample, without DNA damage, and to evaluate the

difference in oxidation. Then, once it is determined if MacroD2 exports by interacting

with a specific adaptor protein or with the nucleoporins, if upon H2O2 the methionines

are indeed more oxidized, the efficiency of the interaction between MacroD2 exporting

fragments and the counterpart should be tested in the presence of either the unmodified

or oxidized methionine. Addition of reducing agents in the unmodified samples should

help increase the difference in binding between the two conditions.

3.11.2 Regarding ATM and the regulation of MacroD2 nuclear export

Upon DNA damage, ATM is activated and phosphorylates MacroD2. This event trig-

gers the nuclear export of the ADP-ribosylhydrolase. While the most studied activa-

tion mode of ATM is the induction by DSBs, the literature shows many other ways by

which ATM can be activated (see Section 1.3.3). It would be interesting to screen
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for MacroD2 nuclear export in many other conditions: hypotonic stress, cloroquine

treament for the ATMIN-dependent activation, or hypoxia.

Additionally, many targets of ATM have more than one modifiable site, such as

MacroD2, as it has been defined by this study. However, two of the three SQ motifs

in MacroD2 that could form a SQ/TQ cluster domain are present on a putative alter-

natively spliced exon (see Figure 3.48). The alternative splicing of this exon might

confer an additional layer of regulation to MacroD2 nuclear export and its dynamics,

since it could define how fast MacroD2 should be exported from the nucleus. However,

to test this hypothesis it is necessary to know the function of MacroD2, in order to

define the conditions to compare and to design the experiments accordingly.

For example, one of the probable functions of MacroD2 is the negative regulation of

PARylation at DNA lesions, which avoids hyper-activation of ARTDs and subsequent

parthanatos. Thus, MacroD2 splicing could be tested in a context prone to parthanatos.

Indeed, the generation of a MacroD2 isoform that exports more slowly from the nucleus

would generate a bigger barrier against this type of programmed death. There are in-

deed physiological situations where high intrinsic production of reactive oxygen species

is reported, such as activation from quiescence in hematopoietic stem cells or neural

development (375, 376). Since these tissues suffer from substantial oxidative stress, the

activation of PARylation is expected. Moreover, oxidative stress is also able to activate

ATM, although it would be important to confirm the activation of the kinase also in

these study models. Then, specific probes for the whole protein and for the specific

exon should be designed in order to perform real-time quantitative PCR, in order to

define both the expression levels of MacroD2 in these tissues and to answer for the

possible exon exclusion.

3.11.3 Regarding the role of MacroD2 upon DNA damage

The nuclear export of MacroD2 and its ATM-dependent regulation upon DNA dam-

age response suggests that MacroD2 might be involved in the DNA damage response.

Moreover, this behavior negatively correlates with the residency time of MacroD2 at

the DNA lesions (see Figures 3.44 and 3.45). For this reason, it would be interesting

to test if MacroD2 is able to affect the DNA repair.

To test this hypothesis, one could compare the wild-type and MacroD2 knock-out

cell lines previously used (see Figure 3.10) in specific DNA repair pathway assays. By
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transiently transfecting GFP-based reporter plasmids, it is possible to easily monitor

the efficiency of specific repair pathways, such as homologous recombination (HR), c-

NHEJ, single-strand annealing (SSA) and alt-EJ (377). Such reporter plasmids contain

sequence for a GFP molecule divided into two parts and, between them, the site for a

very rare restriction enzyme, Isce-I. The reporters are designed so that upon cutting

with the specific enzyme, the GFP gene is successfully generated if the specific DNA

repair pathways has been used. To this end, it is possible to monitor the amount of

cells that underwent the specific repair by cell sorting.

If there is any difference between the control and the knock-out cell lines in a

specific pathway, the experiment should be completed with the rescue of the phenotype.

Transfecting the MacroD2 knock-out cells with MacroD2 wild-type, MacroD2 ADP-

ribose binding-deficient or MacroD2 export-deficient constructs will help defining the

function of MacroD2 needed for the repair pathway. I would expect that when wild-type

or export-deficient mutant MacroD2 are transfected, the pathways that require ATM

activation, like HR, would show a decrease in their repair efficiency, since the export

is likely a mechanism to decrease the presence of MacroD2 at the DNA lesion and the

export is activated by ATM itself. The binding-deficient mutant, instead, should act

like the negative control. However, for those pathways where MacroD2 seems not to

be exported from the nucleus and its activity could be welcome at the DNA lesion,

like c-NHEJ (dependent on DNA-PK) or alt-EJ (dependent on ARTD1), the repair

efficiency might not be affected.

The only caveat in this plan is that the transfection of MacroD2 constructs rep-

resent a strong over-expression compared to the endogenous: MacroD2 is a protein

of lowly abundance, whose expression is regulated at transcriptional and possible

post-transcriptional level, given the anti-sense non-coding RNA overlapping its gene

(MacroD2 gene surroundings: http://www.ncbi.nlm.nih.gov/gene/140733). Since

MacroD2 has an enzymatic activity, I cannot exclude that its over-expression might shift

the system towards other deleterious effects. Therefore, the output of the experiment

should be carefully evaluated considering these two aspects. Ultimately, this problem

could be solved by restoring the endogenous promoter in the mCherry-construct, al-

though this might only ameliorate the transcriptional regulation but not the possible

post-transcriptional regulation.
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However, if MacroD2 shows an impact on some DNA repair pathways, the next

step would be to determine which factor can be ADP-ribosylated and are a tar-

get of MacroD2 enzymatic activity. The increasing number of publications on mass

spectrometry-associated pull-downs of ADP-ribosylated proteins could be a further

source of candidates to test. The recently generated online database of ADP-ribosylated

proteins could be the suitable starting point for this search (378). In vitro experiments

to test the functional activity or structural status of the substrate, with and without the

modification, will be necessary to characterize the role of MacroD2 regulatory activity

in the DNA repair pathway.
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4

MacroD2 interactome in control

and genotoxic condition

4.1 Introduction

Chapter 3 detailed the nuclear export of MacroD2 upon DNA damage. While phospho-

rylation by ATM and PI3K-like kinases was shown to induce the export, the exporting

mechanism and the related machinery were not identified. If the most likely “piggy-

back” mechanism for the nuclear transport indeed occurrs, the name of an interactor

able to drive MacroD2 across the nuclear envelope is missing. Instead of painstackingly

searching for the whole genome looking for possible candidates on hypothesis-driven

experiments, the most time and cost-effective strategy at this point would consist of a

unbiased approach on proteomic scale.

Moreover, MacroD2’s real cellular function is still unidentified and the current list

of MacroD2 interactors is so short that it is not helpful in answering this question.

The few interactors of MacroD2 already published are mostly shown to bind in in

vitro experiments: ARTD1 (56, 67), ARTD10 (56, 67), GSK3β (67). Other studies

involving MacroD2 suggest functional roles in carcinogenesis and neural development,

but they are mainly based on genome-wide association studies and fail to show any

mechanistic insight behind the association (see Section 1.2.5). Thus, knowing the

complete interactome of MacroD2 and possibly the substrates of its enzymatic activity

could be an important step to unlock its cellular role.
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To this end, I chose to perform co-immunoprecipitation (co-IP) experiment com-

bined with peptide mass fingerprinting to define the MacroD2 interactome in the

presence and absence of DNA damage. I therefore employed two different treat-

ments: DMSO and etoposide. Also, I used three different baits: MacroD2 full-length,

macrodomain and C-terminal region fragments, in order to define differential enrich-

ments caused by the two halves of MacroD2. The experiment was performed in collab-

oration with Dr. A. Schmidt from the Zentrallabor für Proteinanalytik, LMU.

By defining the interactome of MacroD2 with and without genotoxic stress, I aimed

to address two points: first, I aimed to identify the proteins involved in MacroD2

regulated export. Morover, I aimed to define the areas of cellular life that are regulated

by MacroD2 enzymatic activity.

4.2 Setup of the co-immunopurification experiment

4.2.1 Generation of stable cell lines

For the co-IP, I decided to use stable cell lines expressing the constructs of interest, thus

avoiding possible inconsistencies due to transfection efficiency (see Methods 6.17.1).

To this end, we used HEK293 Flp-InTM T-RExTM by Thermofisher. There are several

advantages associated with using this cell line. Firstly, HEK293 achieve much higher

yield of cell-lysate relate to the amount of growing surface compared to our other cell-

lines of use, U2OS and HeLa. Also, these commercial cells allowed us to obtain stable

cell-lines with the gene integrated in the same spot, avoiding differences in expression

or genetic background. Lastly, the promoter is normally repressed by a TetR protein,

allowing inducible expression upon administration of doxycyclin.

I created four cell lines with the help of S. Grau and J. Preißer, each expressing one

of the following:

• EGFP-MacroD2 full-length

• EGFP-MacroD2 macrodomain (aa 1-243)

• EGFP-MacroD2 C-terminus (aa 237-448)

• EGFP
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4.2 Setup of the co-immunopurification experiment

The use of the EGFP tag allows for easy screening of colonies that successfully

integrated the genes by directly checking with a bench-top microscope, followed by

immunoblotting. EGFP is 25 kDa, which is quite large for being used as a tag. This

is the same approximate size of the macrodomain or the C-terminus alone. Therefore,

I cannot exclude that such a tag might impair possible binding events, even if EGFP

is considered to be an inert protein and less prone to interactions. While the size

of EGFP may prevent interactions due to steric impairment, EGFP-tagged MacroD2

constructs are still able to recruit to the DNA lesion and to export from the nucleus,

suggesting that the binding ability is not affected. Moreover, one of the generated cell

lines expresses only the EGFP alone, in order to exclude possible interactors accounted

to the tag and not to MacroD2.

The Flp-InTM T-RExTM system is very convenient. The HEK293 cells obtained

directly from Thermofisher present two integrated constructs, one with the FRT site,

selected through a zeocin-selection marker, and one with the TetR gene expressing

the repressor and presenting the blasticidin-selection marker. Growing cells in zeocin-

blasticidin selection medium ensures the maintenance of the FRT site in the cell popu-

lation. The genes of interest were cloned into a pcDNATM5/FRT/TO plasmid, which

has a hygromycin-selection marker. After seeding the cells, the hygromycin-selected

plasmid is transfected together with the pOG44 plasmid containing the Flp recombi-

nase: in the cells that acquire both plasmids, the transiently expressed Flp recombinase

leads to the integration of the gene of interest to the specific point in the genome where

the FRT site is located. Also, the integration makes the cells resistant to hygromycin

but sensitive to zeocin, thus allowing the proper selection of the cells that have correctly

performed the integration. After two weeks in selection media with hygromycin and

blasticidin, single-cells colonies showing expression of green fluorescence were isolated

before amplifying them for immunoblots and functional testing.

Before each experiment, the cells were tested for induction of protein expression

upon doxycyclin treatment (Figure 4.1). In order to confirm the identity of the cells

used for the pull-down experiments, induced cells were also tested for their functional

behavior upon laser microirradiation. Each induced protein preserved the same be-

haviors and even kinetics in HEK293 cells. EGFP-expressing cells did not show any

change in the protein localization upon UV-laser microirradiation. EGFP-MacroD2

full-length showed both export from the nucleus and recruitment to the DNA lesion
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with a peak at 2.5 minutes, similar to what previously shown for HeLa cells (see Fig-

ure 3.44). Likewise, EGFP-MacroD2 macrodomain recruits to the DNA lesion while

the EGFP-MacroD2 C-terminus exports from the nucleus.

0 min 2.5 min 5 min 10 min 15 min

EGFP

EGFP
MacroD2
full length

EGFP
MacroD2

macrodomain

EGFP
MacroD2

C-terminus

Figure 4.1: Induction and functional check of HEK293 stable cell lines -

The four HEK293 stable cell lines (EGFP; EGFP-MacroD2 full-length; EGFP-MacroD2

macrodomain; EGFP-MacroD2 C-terminus) are induced with doxycyclin 1mg/mL. After

one day of incubation, cells were checked for the proper induction of the constructs expres-

sion and tested upon UV laser microirradiation for recruitment and/or export. The focus

of laser micro-irradiation is indicated with yellow arrowhead. Scale bar, 10 µm.

4.2.2 Protocol for the co-immunopurification

The co-immunopurification was optimized and the final conditions were as follows.

RIPA buffer was used for the generation of whole-cell lysates, as described in Methods

6.17.2. The incubation of the cell lysate with the GFP-trapping resin was performed

for 2 hours at 4 ◦C and the wash of the resin was performed once with RIPA buffer and

twice with PBS. All buffers were supplemented with protease inhibitor and phosphatase

inhibitors cocktails, to prevent protein degradation and dephosphorylation, which may

induce loss of interactors. Moreover, the whole procedure was performed at 4 ◦C, so

that the enzymatic activity of MacroD2 was inhibited (56).
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4.2 Setup of the co-immunopurification experiment

In order to increase the chances of detecting also weak interactors, I chose to use

large amount of cell lysate. Therefore, the experiment required similarly large amounts

of GFP-trap beads to achieve a satisfactory pull-down. Therefore, I evaluated whether

to use the homemade agarose-coupled GFP-trap, prepared by G. Jankevicius and Dr.

A. Bowman, or a commercially available product (agarose-coupled GFP-trap by Chro-

motek). I tested the two for the efficiency of pull-down of purified EGFP (10 µg)

(Figure 4.2). Although the commercial resin showed its superiority in the efficiency

of pull-down, possibly due to a much higher density of coupled GFP-trap, I decided to

use the home-made GFP-trap for the first replicate, with an increased amount of beads

used in each sample.
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25

35

kDa

Figure 4.2: Comparison in pull-down efficiency between commercial and home-

made GFP-trap - 10 µg of purified EGFP was used to a compared purification using

10 µL of commercial GFP-trap (Chromotek) or 20 µL of in-house made GFP-trap (G.

Jankevicius and A. Bowman). Elution was performed with Laemmli buffer and purification

efficiency was tested by Coomassie staining (loaded 2.5 % of the material in each lane).

For the purification steps, see Methods 6.17.2.

Finally, to test the efficiency of the purification, I performed the co-IP with 6 mg of

cell-lysate from cells expressing EGFP-MacroD2 full-length and 50 µL of home-made

GFP-trap. This setup allowed an enrichment of bait by 1.6-fold compared to the input

(Figure 4.3). The Coomassie staining of the same samples, showed the sequential

reduction of the unspecific bands within the series of washes. In the elution with

Laemmli buffer, the patterns of residual bands is very different from the one present in

the washes, suggesting the purification of specific interactors of MacroD2.

The elution step of my preliminary experiments was performed with Laemmli buffer

in order to collect all the material attached to the beads and to have a better estimation
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Figure 4.3: Pull-down efficiency test with EGFP-MacroD2 full-length - HEK293

EGFP-MacroD2 full-length cells were plated and induced with doxycyclin 1mg/mL. After

one day, cells were collected and cell lysate was prepared. 6 mg of cell lysate was then

purified with 50 µL of in-house made GFP-trap. Elution was performed with Laemmli

buffer and purification efficiency was tested by western-blot with anti-GFP (loaded 2.5

% of the material in each lane) and Coomassie staining. For the purification steps, see

Methods 6.17.2
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of the immuno-purification efficiency. When the co-immunopurification experiments

were coupled to mass spectrometry detection, the initial steps in the preparation for

the mass spectrometry run were performed directly on beads by Dr. A. Schmidt. For

the detailed protocol, see Methods 6.17.2.

4.3 Co-immunopurification experiment

Four biological replicates of co-immunipurification experiment were performed. For

each replicate, the doxycyclin-mediated induction of the protein expression in the four

cell line was tested using live-cell imaging coupled with UV-laser microirradiation, as

shown in Figure 4.1. Once the correct induction was confirmed, the four cell lines were

seeded in non-selective media. The three MacroD2 cell lines were plated in two distinct

dishes, while the EGFP was plated once. Doxycyclin (1 mg/mL) was added to the

plates 4 hours after plating. After 24 hours from induction, I treated the MacroD2

cell lines with DMSO or etoposide 10 µM for one hour in order to obtain the following

conditions:

1. EGFP

2. EGFP-MacroD2 full-length DMSO

3. EGFP-MacroD2 full-length etoposide

4. EGFP-MacroD2 macrodomain DMSO

5. EGFP-MacroD2 macrodomain etoposide

6. EGFP-MacroD2 C-terminus DMSO

7. EGFP-MacroD2 C-terminus etoposide

The co-IP was complated as described in Methods 6.17.2. The first biological repli-

cated was performed with home-made GFP-trap beads, while the commercially avail-

able resin was used for the remaining three replicates, due to the certified reproducibility

in their performance compared to the home-made beads. The preparatory steps for the

mass-spectrometry run and the runs themselves were performed by Dr. Schmidt (see

Methods 6.17.2 and 6.17.3).
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4.4 Analysis and quality controls

The collected the data from the mass spectrometer were treated in order to transform

a series of spectra into a usable output (see Methods 6.17.4). The final output of a

co-IP-peptide mass fingerprinting experiment should be a list of protein names, which

represent the group of most probable interactors of the bait protein in a particular

condition. From these protein lists it is then possible to perform statistical analysis to

determine interesting patterns in the cellular functions and pathways.

For the peptide mass fingerprinting, the identification step is essential, yet delicate.

Each peptide that flew in the machine has a specific mass/charge ratio (m/z). The

MaxQuant software that we used is able to identify the protein of origin for each peptide

by using the mass/charge ratio. The algorithm compares the mass/charge ratio of one

experimentally-measured peptide with the values of all the peptides generated in silico

from the human proteome. Therefore, the software can assign each detected peptide to

a protein peptide. Such a process is bound to generate some error, which can be reduced

by the optimized definition of the parameters available in the software. Dr. Schmidt

chose the best parameters according to his personal experience and the knowledge of

the instrument. The identification process is also performed at the same time for all

the samples, so that the parameters used are exactly the same.

The identification step generates a table in which associates each peptide with its

protein of origin and its specific signal intensity. The MaxQuant-embedded algorithm

calculates the intensity of each protein in a sample by considering the peak intensity of

all the found peptides related to the protein in the mass spectrometry spectra (379).

To have a first view of the quality of the different replicates, Dr. Schmidt compared

the average of the signal intensities and the missing values in the four replicates. In

fact, as error is normally generated upon mass spectrometry detection and/or peptide

identification, from the total subset of protein detected in the whole experiment, not all

the proteins are found in all the samples. These proteins that have not been detected

are defined as missing values and are generated either by the loss of the signal at

the detection or for a possible incorrect identification. For example, the protein A is

present in replicate 1 and 3 but not in replicate 2 of the same condition. Therefore, in

the replicate 2 a missing value is present for that protein. This initial analysis allowed

Dr. Schmidt to realize that the first biological replicate was behaving very differently
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4.4 Analysis and quality controls

compared to the others in terms of signal intensities and number of peptides associated

per each protein (which are also known as spectral counts) (Figure 4.4). Also, all the

samples of replicate 1 presented many more missing values than the other replicates.

Since this replicate was the only one performed with the home-made beads, we decided

to exclude it from the analysis.
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Figure 4.4: Comparison in intensities and missing values between the four

biological replicates - a) Intensities of the EGFP and MacroD2 protein signals showed

as LFQ (label-free quantitation) value, which are raw intensities normalized on multiple

levels to reflect the relative amounts of the proteins (380); b) Missing values (red) of each

protein (row) in every condition (column).

We thus proceeded in the analysis of the last three biological replicates. The signal

intensity of all proteins needed to be corrected, as the overall amount of detected protein

might differ between one sample and the other due to technical error generated upon

the co-IP step or the mass spectrometry run.

First of all, we chose to work with the intensity-based absolute quantification

(iBAQ) values: for each protein in a specific sample, the iBAQ signal is the sum of

all the peptides intensities divided by the number of the peptides of the protein that

could be observed. Therefore, the iBAQ represents a weighted intensity, which intro-

duce a measure of reliability of this signal in the quantification. Then, to even out

the technical error due to sample processing, the iBAQ value of every protein in each

sample was normalized according to a coefficient defined per each sample. To obtain
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the sample-specific coefficient, Dr. Schmidt identified the proteins that are present in

most samples. He then calculated the median iBAQ of these proteins for each sample

and each median was normalized against the highest median value among all samples.

Due to the very nature of the mass spectrometry technique, where random pep-

tides are sampled, the normalized iBAQ signals showed a number of missing values as

expected. Missing values are always generated, since peptides might be not present,

not detected or not correctly identified. In order to avoid considering proteins with

too many missing values in the statistical tests, which might generate additional noise,

all the proteins that were not present in all three biological replicates for at least one

condition were filtered out. For example, protein X is present in the three replicates of

EGFP condition but nowhere else, thus protein X is retained in the analysis; protein Y

is present only in two replicates of the EGFP condition, but nowhere else, thus protein

Y is excluded from further analyses. This step was important in removing from the

analysis noise generated from stochastic sampling of the mass spectrometry run.

Once the proteins were filtered, in order to determine the similarities of the different

conditions across the biological replicates, I performed a hierarchical clustering test as

an additional quality control. The clustering algorithm that I adopted performed a

single-linkage approach: with this algorithm, the clustering proceeds by reiteratively

combining two groups that contains the closest pair of elements, still not close enough

to be part of the same group. This method is also called the nearest neighbor clustering.

In the ideal case, all the samples of one condition in different replicates should cluster

together. However, the test on my data showed differences between different biological

replicates (Figure 4.5).

Most strikingly, all the samples from the fourth biological replicate clustered to-

gether. This feature is shared also using other clustering algorithm outputs (data not

shown). Such a behavior indicates that the fourth biological replicate is in same ways

different from the other two, since each condition of this replicate is more similar to

different conditions of the same replicate than to the same condition in the other repli-

cates. On the other hand, the other two biological replicates mostly cluster according

to the condition. The only exception is the C-terminus-associated samples, which are

located quite far away from each other.

In order to totally eliminate missing values from further analyses, after having

filtered the proteins I imputed the iBAQ signal in place of the missing values by mean
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Figure 4.5: Hierarchical clustering of the different co-IP samples - Hierarchical

clustering performed with single-linkage algorithm on Perseus 1.5.3.2 software.

of a normal distribution. The imputation step, thus, substitutes the null values with

values that are similar to background signal so that they do not generate an important

bias in the analysis, but yet can be used to perform the enrichment tests.

4.5 Enrichments and generation of protein lists

In the previous steps, the iBAQ signals have been corrected and filtered. At this point

they are ready to be used for the generation of the protein lists for my six conditions

of interest:

1. “MacroD2 full-length DMSO”

2. “MacroD2 full-length etoposide”

3. “MacroD2 macrodomain DMSO”

4. “MacroD2 macrodomain etoposide”

5. “MacroD2 C-terminus DMSO”

6. “MacroD2 C-terminus etoposide”
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The following steps were performed in order to determine the list of significantly

enriched proteins for each condition. To this end, I first compared the protein intensities

of all the samples, two by two. In each comparison, I performed Student’s t-tests in

order to identify the proteins that are specifically enriched in one of two samples.

Each t-test was performed by using 0.1 as value for the S0 coefficient and 0.08 for

the false discovery rate (FDR) on the Perseus software. The FDR value of 0.08 is

more lenient than the default 0.05, which was too stringent for some enrichments. For

example, by comparing MacroD2 full-length DMSO and MacroD2 full-length etoposide

protein intensities, I could define the 10 − 20 protein enriched in the first sample and

the similar number of proteins enriched in the second (Figure 4.6). The comparison

between two samples with a T-test and the generation of specific protein lists is referred

as enrichment.
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Figure 4.6: An example of enrichment between two different samples - Graphic

representation of the Student’s t-test between two samples, in this example MacroD2 full-

length DMSO versus MacroD2 full-length etoposide. The t-test was performed with 0.1 as

S0, which defines the importance of the pvalue over the difference in enrichment, and 0.08

as FDR. In red, the genes that are significantly enriched in the two samples. On the right

part of the graph, the genes are enriched in the MacroD2 full-length DMSO sample, on

the left side the genes are more present in the MacroD2 full-length etoposide sample. In

gray are all the genes that are not significantly enriched in either of the two samples. The

graph was generated with Perseus 1.5.3.2 software.
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Per each condition that I wanted to define, such as “MacroD2 full-length DMSO” or

“MacroD2 C-terminus etoposide”, I perfomed an enrichment of the omonimous sample

against each of those samples that could be considered negative controls: the negative

control sample should present proteins that are not enriched in the main sample, and

viceversa. Therefore, for each condition, there are as many protein enrichments as

negative controls (Table 4.1). For example, for the “MacroD2 full-length DMSO”

condition, I performed one enrichment between the MacroD2 full-length DMSO and

the EGFP sample and another enrichment between the the MacroD2 full-length DMSO

and the MacroD2 full-length etoposide sample. Or, in case of the “MacroD2 C-terminus

etoposide” condition, the negative controls were EGFP, MacroD2 C-terminus DMSO,

MacroD2 macrodomain DMSO and MacroD2 macrodomain etoposide, and thus for this

condition four protein enrichments were generated.

Condition Negative control

MacroD2 full-length DMSO EGFP
MacroD2 full-length etoposide

MacroD2 full-length etoposide EGFP
MacroD2 full-length DMSO

MacroD2 macrodomain DMSO EGFP
MacroD2 macrodomain etoposide
MacroD2 C-terminus DMSO
MacroD2 C-terminus etoposide

MacroD2 macrodomain etoposide EGFP
MacroD2 macrodomain DMSO
MacroD2 C-terminus DMSO
MacroD2 C-terminus etoposide

MacroD2 C-terminus DMSO EGFP
MacroD2 C-terminus etoposide
MacroD2 macrodomain DMSO
MacroD2 macrodomain etoposide

MacroD2 C-terminus etoposide EGFP
MacroD2 C-terminus DMSO
MacroD2 macrodomain DMSO
MacroD2 macrodomain etoposide

Table 4.1: List of enrichments - Overview of the different enrichments, divided accord-

ing to the condition and showing the relative negative controls.
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Once created these protein enrichments, I compared all the enrichments of the same

condition and defined which proteins were present in at least two out of four enrich-

ments (or in case of the full-length conditions, in both enrichments). These recurring

proteins are considered common proteins and represent the most reliable interactors of

MacroD2 in that specific condition. However, in a few cases the list of common proteins

was extremely short, which hampered the following analyses. In addition, sometimes

different components of a same complex were present in two different enrichments of

the same condition. Such a phenomenon also hinders the finding of relevant biological

terms. For this reason, I also looked in the combined list of the enriched proteins (all

proteins).

The protein lists generated from the above analysis, both common proteins and all

proteins, are shown in Appendix A. For each list, I checked the annotations of every

entry on Uniprot. This manual revision was important to define the presence of specific

proteins that could be easily connected to MacroD2 regulation by nuclear transport,

such as kinases, exportins or chaperones. However, neither kinases or exportins were

present in any of the protein lists.

Instead, in order to have a clearer understanding about the overall protein network

in each condition and to formulate hypotheses on the cellular function of MacroD2, I

analyzed the lists by looking for biological patterns. To this end, each list was analyzed

by means of the online database STRING and its associated software. This software

scrutinizes the protein lists and classifies the proteins according to the biological tags

that each protein has. Consequently, STRING finds the enriched biological terms for

functional processes, pathways or cellular localizations within a group of proteins. Each

biological term in the list is associated to a FDR value, which represents the likelihood

that this enriched term is false: the lower the FDR is, the more likely this term is

genuinely enriched in the list of terms. In my analysis only biological terms with FDR

lower than 0.05 are taken into account. The enriched biological terms lists are shown

in Appendix B.
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4.6 General overview of MacroD2 interactors and enriched

biological terms

4.6.1 MacroD2 full-length treated with DMSO

The complete list of interactors of “MacroD2 full-length DMSO” is shown in Appendix

A (Table A.1). For the MacroD2 full-length conditions, I considered as negative

controls the EGFP and the MacroD2 full-length protein with the opposite compound

treatment, in this case MacroD2 full-length etoposide sample.

When checking the common proteins to the two enrichments, only one protein

remained. This was EIF3K, an initiation factor for protein translation (Table A.2).

This means that detection of enriched biological terms was impossible.

Therefore, to have a glimpse of what might be the overall network of the MacroD2

protein in the DMSO condition, I analyzed all the proteins present in the three lists.

When analyzing all the proteins combined, the enriched biological terms showed clearly

the strong contribution of RNA-binding proteins within the MacroD2 interactome (see

Table B.1). These biological terms reflect the presence of both components of the

ribosomal complex and proteins involved in RNA splicing.

Indeed, recently the role of ADP-ribosylation in the regulation of RNA metabolism

has become clearer. Proteomic studies of PAR-binding proteins or PARylated proteins

showed enrichments in RNA biology-related classification terms (10, 118, 118, 206).

In addition, several studies showed effects of ARTDs in all the key steps of RNA

metabolism, from transcription to translation, but also in stress-dependent alternative

splicing or RNA-interference regulation (10). Thus, the presence of factors necessary

for RNA splicing among the MacroD2 interactors may indicate a direct involvement of

MacroD2 in this new branch of ADP-ribosylation-mediated regulation.

4.6.2 MacroD2 full-length treated with etoposide

The complete list of interactors of “MacroD2 full-length etoposide” is shown in Ap-

pendix A (Table A.3). The enrichments were performed against EGFP and EGFP-

MacroD2 full-length DMSO. The number of proteins that are common to the two en-

richments (common proteins) was also small (Table A.4). These proteins fail to show

any significant enrichment in the biological terms.
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When I combined all the proteins belonging to this condition, the only significant

biological terms all pertained to the binding of RNA molecules (see Table B.2). This

result is in line with the enriched biological terms of the MacroD2 full-length DMSO

condition, however it does not address the possible role of MacroD2 upon genotoxic

stress.

4.6.3 MacroD2 macrodomain treated with DMSO

The complete list of interactors of “MacroD2 macrodomain DMSO” is shown in Ap-

pendix A (Table A.5). As negative controls, I considered EGFP, MacroD2 macrodomain

etoposide, MacroD2 C-terminus DMSO and MacroD2 C-terminus etoposide samples.

The “MacroD2 macrodomain DMSO” was the condition with the highest number

of interactors (Table A.6). Consequently, the number of filtered common proteins

was 54. The annotated interactions show an intricate network (Figure 4.7). Some

members are involved in RNA metabolism and translation. Other interactions, instead,

involve proteins that have a role in transport across the different compartments, such

as 14-3-3ζ (YWAHZ) and Ran-GTPase (RAN).

The presence of the 14-3-3ζ in this enrichment was unexpected. I tested the 14-3-3s

as possible candidates for MacroD2-regulated nuclear export, since the 14-3-3ε protein

appeared in the first biological replicate of the co-immunopurification experiment (see

Section 3.8). My experiments, however, did not show any interaction. Although I

have never tested the binding of the 14-3-3ζ with full-length MacroD2, the fact that the

protein is enriched with the macrodomain fragment indicates that, even when it binds,

the 14-3-3ζ is not likely to be involved in the regulated nuclear export of MacroD2.

Likewise, the C-terminus-dependent MacroD2 nuclear export would suggest that

a possible interaction with the Ran-GTPase should occur either with the full-length

protein or the C-terminus fragment. Instead, the Ran-GTPase is immunoprecipi-

tated by the MacroD2 macrodomain. However, this result is consistent with the fact

that Ran-GTPase is MARylated by bacterial toxins as well as by ARTD10 in vitro

(381). Therefore, this interaction represents another indirect validation for the co-

immunopurification approach.

When checking the enriched biological terms for the list of common interactors

in the MacroD2 macrodomain DMSO condition (see Table B.3), the presence of

many membrane-associated terms, among them the endoplasmic reticulum (ER), can
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Figure 4.7: Annotated interactions within the common proteins present in the

four EGFP-MacroD2 macrodomain DMSO enrichments - Annotated interactions

shown with the help of STRING software. Edges of different colors according to the type

of interaction and the experimental proof: cyan) known interaction from curated database;

fucsia) known interaction experimentally determined; green) gene neighborhood; red) gene

fusions; blue) gene co-occurrence; yellow) text-mining; black) co-expression; light blue)

protein homology.
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be connected to the role of MARylation in the regulation of the Unfolded Protein

Response by ARTD15/PARP16 (see Section 1.2.7).

Moreover, the “intracellular steroid hormone receptor signaling pathway” term sug-

gests that MacroD2 might be involved in the signaling pathway responsive to steroid

hormones. Indeed, MacroD2 itself was shown to interact with the estrogen-receptor

α (ERα) in a functional way (98). Even before MacroD2, MacroD1 was connected

to both the ERα and the androgen receptor as well (77, 78), while ARTD1 regulates

the transcription of estrogene-responsive genes (382). Thus, it is possible to imagine a

general role of ADP-riboylation in the steroid hormones-dependent signaling pathway.

I then performed the biological term analysis on the list of all proteins of the four

enrichments (Table B.4). When all the proteins are analyzed, the enriched biological

term “intracellular steroid hormone receptor signaling pathway” disappeared, having

lost its significance. However, other biological terms were introduced. For example,

some additional biological terms refer to carbon metabolism and energy production, like

“glycolysis/gluconeogenesis”, “citrate cycle”, “pyruvate metabolism” and even some

amino acid biosynthetic pathways.

ADP-ribosylation in general, and MacroD2 in particular, might easily have a reg-

ulatory role on the cellular energy production and metabolism in general. ADP-

ribosylation requires NAD+ as donor of the ADP-ribose and consumption of this

reagent can indirectly affect the activation level of glycolysis versus the citrate cy-

cle. On the other hand, considering a potential role of sirtuins and MacroD1 in the

regulation of the respiratory chain activity, it is possible that the regulation of the

cytoplasmic enzymes falls upon MacroD2. However, as long as we do not have a com-

plete list of MARylated proteins in the cell, it is difficult to formulate more precise

hypotheses.

4.6.4 MacroD2 macrodomain treated with etoposide

The complete list of interactors of “MacroD2 macrodomain etoposide” is shown in

Appendix A (Table A.7). The “MacroD2 macrodomain etoposide” condition includes

much fewer proteins compared to the DMSO condition. Therefore, the common proteins

are only 16 (Table A.8). ARTD1/PARP1 is present among these selected proteins. As

ARTD1 is one of the few proteins whose interaction with MacroD2 has been published

138



4.6 General overview of MacroD2 interactors and enriched biological terms

(56, 67), its presence in the “MacroD2 macrodomain etoposide” condition provides

validity of the whole experimental setup.

Moreover, the Ras GTPase-activating protein-binding protein 2 (G3BP2) is a factor

with a RNA-binding domain, thus generally involved in the mRNA nuclear export, and

also appears in the list. Interestingly, G3BP2, together with G3BP1, has been shown

to be able to induce ADP-ribosylation-based cytoplasmic stress granules (212, 383).

When I then analyzed this list of 16 proteins on STRING, the only enriched biological

terms are related to RNA biology (Table B.5). The short list of terms is probably

determined by the short list of common interactors.

The complete list of proteins generated a longer list of enriched biological terms (see

Table B.6). A group of biological terms indicates an enrichment in factors involved

in the focal adhesion foci and adherens junctions formation, which might indicate a

possible function of MacroD2 in the regulation of fibril based structures.

Similarly, the neural progenitors-specific chromatin remodeling complex (npBAF

complex) and the neuron-specific chromatin remodeling complex (nBAF complex) are

other interesting entries of this list of biological terms. Although the presence of such

terms is quite surprising if we consider that HEK293 cells derive from kidney tissues,

these cells are indeed cancer cell lines with unstable genomes. Thus, the malignant

nature of these cells might have allowed the unexpected expression of neuron-specific

genes.

4.6.5 MacroD2 C-terminus treated with DMSO

The list of interactors for “MacroD2 C-terminus DMSO” is shown in Appendix A

(Table A.9). There are only 10 proteins, when the four enrichments of “MacroD2

C-terminus DMSO” condition are combined (Table A.10). Four out of these ten

proteins are involved in mRNA processing. In fact, the biological terms associated to

this list are strictly related to RNA biology (Table B.7).

The biological terms derived from the all the protein from the four enrichments

combined involve mainly nuclear and nucleolar compartments (see Table B.8). At

the top of the list there is an enrichment of “RNA binding” terms. Other strongly

represented terms in this condition are the “mRNA processing” and “spliceosome”

keywords. While in other conditions the presence of ribosomal proteins might have

been the major component of the RNA-binding interactors, most MacroD2 C-terminus
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interactors that bind RNA molecules may be mainly involved in RNA processing, such

as mRNA splicing and export from the nucleus, with a preferential localization within

the nuclear envelope.

4.6.6 MacroD2 C-terminus treated with etoposide

Last but not least, I performed the analysis for the “MacroD2 C-terminus etoposide”

condition. The complete list of proteins enriched in MacroD2 C-terminus etoposide

sample over the four negative controls is shown in Appendix A (Table A.11). There

are 29 proteins in common to the four enrichment lists for this condition (Table A.12

and Figure 4.8).

Among the annotated interactions, 3 proteins are connected to the DNA damage

response: p53 (TP53), RPA2 and SSBP1. The p53 protein is an important factor of

the DDR, since upon activation mediated by ATM and/or ATR, it blocks the progres-

sion of the cell cycle and decides whether the cell survives and undergoes repair or

undergoes programmed death (258). In addition, RPA2 is one of the factors involved

in the recruitment and activation of the heterodimer ATR-ATRIP (278). SSBP1 is a

mitochondrial protein, involved in the mitochondrial DNA replication and repair, al-

though localization of MacroD2 within the mitochondria is mostly excluded (384). The

enriched biological terms for the common list prevalently regard extracellular vesicles,

as cellular waste or functional secretion, and RNA binding (see Table B.9).

The analysis of the whole list of proteins, instead, greatly increases the range of

biological terms, many related to functional processes (see Table B.10). Compared

to the C-terminus DMSO condition, the localization of the factors is much more het-

erogeneous, with proteins located in compartments other than the nucleus, including

the cytosol, the mitochondria, the ER and other vesicle-based structures. The range of

functional processes is also widened, now including “mismatch repair”, “DNA replica-

tion”, “contractile fiber”, “protein regulation of protein folding”, “regulation of helicase

activity” and “carbon metabolism”.

It seems, thus, that the etoposide treatment has radically changed the types of inter-

actions that the same fragment is able to have. The nature of the change might indeed

be linked to the number of post-translational modifications that the C-terminus un-

dergoes upon genotoxic stress. This modification might augment the possible contacts
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Figure 4.8: Annotated interactions within the common proteins present in the

four EGFP-MacroD2 C-terminus etoposide enrichments - Annotated interactions

shown with the help of STRING software. Edges of different colors according to the type

of interaction and the experimental proof: cyan) known interaction from curated database;

fucsia) known interaction experimentally determined; green) gene neighborhood; red) gene

fusions; blue) gene co-occurrence; yellow) text-mining; black) co-expression; light blue)

protein homology.
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that the C-terminus fragment can perform and possibly expand the cellular localizations

that the fragment can adopt.

4.7 Discussion

This co-immunopurification (co-IP) approach was the first attempt to uncover the

interactome of the MacroD2 full-length protein in normal physiological conditions and

under genotoxic stress. The goal of the experiment was to generate candidates that

drive MacroD2 into the cytoplasm with the regulated nuclear export. Moreover, by

uncovering the MacroD2 interactome it was possible to suggest testable hypotheses

about the functional role of MacroD2 in the cell in order to fill the gap between the

molecular activity of MacroD2 and the genome-wide association studies that concern

it (see Section 1.2.5). To achieve this, we designed the experiment with different

constructs in different conditions. In the lists of proteins false positive candidate are

further filtered out by cross-comparing the different samples.

On the other hand, the hierarchical clustering revealed problems in the quality of

the data, namely that the fourth replicate did not cluster with the others (see Figure

4.5). This is generally solved by performing another independent co-IP experiment in

the same condition and repeating the set of analyses in order to verify that the enriched

proteins and enriched biological terms do not change. However, since my host lab is

setting up other unbiased approaches to define MacroD2’s functional role, including

a BioID-based pull-down coupled with peptide mass fingerprinting (385), we chose to

use my dataset as a complementary approach to define the recurrent interactors and

functional target of MacroD2, instead of investing more time and resources on a new

replicate.

The experiment that I have presented has some limitations. First of all, MacroD2

might engage a vast array of transient interactions. The classical co-IP is not suitable

to detect interactions with labile affinity and this is possibly why I could not find any

kinases in my enrichments. To this end, the BioID approach, provided it is properly

controlled against false positives, may identify these transient interactions. Secondly,

the experiment could have been further improved by also using a cell line express-

ing MacroD2 macrodomain ADP-ribose binding-deficient (G188E) mutant. This could
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have helped define the pool of interactors that are actual MacroD2 substrates by dis-

criminating the proteins able to interact with the overall structure of the macrodomain,

from those that bind MacroD2 by means of ADP-ribosylation. However, this is a minor

limitation, since this can be easily tested during validations of the candidates.

The presence of ARTD1/PARP1 as an interactor in the “MacroD2 macrodomain

etoposide” condition acts as validation of the experimental setup. MacroD2 macrodomain

has been shown to interact with ARTD1 in vitro and in vivo, most likely mediated by

ADP-ribosylation (56, 67). Published literature also shows that etoposide treatment

can induce the activation of ARTD1 (386). Even if etoposide is not as good an inducer of

ADP-ribosylation as oxidative stress is, the treatment can still activate ARTD1 slightly

more than in the untreated state, allowing an enrichment of ARTD1 upon etoposide

treatment.

4.7.1 MacroD2 full-length protein has less interactors than its two

fragments

When comparing the number of interactors in the different conditions, the fragment

showing the largest number of interactors upon DMSO treatment was the macrodomain;

conversely, upon etoposide, the best binder was the C-terminus fragment (Figure 4.9).

MacroD2 full-length showed less interactors than the two shorter fragments in both

treatments. Considering how the experiment was designed, the pool of proteins binding

MacroD2 full-length should include both the interactors of the macrodomain and those

of the C-terminus. Therefore, I would have expected more binders for the MacroD2

full-length, both as an absolute number and in comparison to the two fragments. I

also performed all the enrichments of the six conditions against EGFP with much more

lenient parameters (0.05 as S0 and 0.5 as FDR), in order to be more inclusive (data

not shown). The result was a dramatic increase of protein shared by the macrodomain

and the C-terminus fragment. However, this probably represents increased noise in the

analysis.

The reason why MacroD2 full-length is a poor binder could be explained either

by technical error or by a proper physiological feature of the protein. In the first

case, the poor quality of the hierarchical clustering shows a problem in reproducibility

across the different biological replicates, which surely impacts on the statistical tests

that I perform for the enrichment. It might be that the full-length samples suffer
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FL DMSO common genes MD DMSO common genes

CT DMSO common genes

FL ETO common genes MD ETO common genes

CT ETO common genes

Figure 4.9: Overview of the most reliable binders for the six different conditions

- Venn diagram of the most reliable binders for the six conditions. The lists are generated

by the overlap of different enrichment of the same condition against two or four negative

controls, defined thus as common proteins. FL is full-length; MD is macrodomain; CT is

C-terminus. Generated with Venny 2.1.0.
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more than the others in the issue of reproducibility. On the other hand, the two

MacroD2 domains, the macrodomain and the unstructured C-terminus, might hinder

the binding of reciprocal interactors when they are together in the same polypeptide.

This hypothesis argues for an even stronger role in the crosstalk of the two parts of

MacroD2 in regulating the protein function.

In addition, almost 50 % of genes selected for the “MacroD2 C-terminus DMSO”

condition were shared with the “MacroD2 macrodomain DMSO”. This overlap was

not expected. However, considering that the MacroD2 macrodomain DMSO condition

presents the biggest number of proteins after the filtering, I can think of two explana-

tions: either the higher number of enriched proteins simply generated some background,

which was not corrected upon normalization, or there is a biological reason. It might

be that these interactors are part of complexes that might bind both the MacroD2

macrodomain and the C-terminus fragment, although I do not know of any published

cases in the current literature.

4.7.2 Filtering the protein shared in the macrodomain and C-terminus

conditions

Subsequently, I wanted to verify how many proteins are shared between the macrodomain

and C-terminus conditions. Considering that the common lists are generated by com-

bining the enrichments against the other three conditions, I would expect that no back-

ground gene is selected. Ideally all the final lists of common proteins should not share

any protein. However, some proteins are still shared between two or three conditions

(Figure 4.10).

“The MacroD2 macrodomain DMSO” is the condition that shares proteins with all

the other conditions, the highest commonality with “MacroD2 C-terminus etoposide”

condition. Considering that I generated the lists of common proteins by taking only

those that were enriched against at least two different conditions, these factors are

still likely to be proper interactors of MacroD2, with the shared proteins belonging to

large complexes. MacroD2 might interact with these complexes by exploiting both the

macrodomain and the C-terminus.

I then checked for the enrichments in biological keywords for the four conditions.

For each condition, the list has been filtered of all those factors that are shared with
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MD Etoposide

MD DMSO

CT DMSO

CT Etoposide

Figure 4.10: Proteins shared in the four conditions - Venn diagram of the most

reliable binders for four conditions: MD DMSO, MD etoposide, CT DMSO, CT etoposide.

The input lists are the common proteins for each condition. FL is full-length; MD is

macrodomain; CT is C-terminus. Generated via Venny 2.1.0.
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other conditions. Thus, the biological terms of the interactors specific for that certain

condition are shown (Table 4.2).

Category Term FDR

MacroD2 macrodomain DMSO

GO.0043230 extracellular organelle 3.00E-07
GO.0065010 extracellular membrane-bounded organelle 3.00E-07
GO.0070062 extracellular exosome 3.00E-07
GO.1903561 extracellular vesicle 3.00E-07
GO.0031988 membrane-bounded vesicle 1.18E-06
GO.0031982 vesicle 1.72E-06
GO.0044444 cytoplasmic part 0.000134
GO.0032991 macromolecular complex 0.000421
GO.0006457 protein folding 0.000528
GO.0044421 extracellular region part 0.000548
GO.0044822 poly(A) RNA binding 0.000712
GO.0003723 RNA binding 0.000878
GO.0044446 intracellular organelle part 0.0011
GO.0031625 ubiquitin protein ligase binding 0.00142
GO.0044389 ubiquitin-like protein ligase binding 0.00142
GO.0044422 organelle part 0.0016
GO.0016023 cytoplasmic membrane-bounded vesicle 0.00281
GO.0042470 melanosome 0.00281
GO.0005576 extracellular region 0.00388
GO.0031410 cytoplasmic vesicle 0.0047
GO.0070013 intracellular organelle lumen 0.0047
GO.0005829 cytosol 0.00474
GO.0043233 organelle lumen 0.00515
GO.0044428 nuclear part 0.00516
GO.0031974 membrane-enclosed lumen 0.00555
GO.0005634 nucleus 0.00603
GO.0005737 cytoplasm 0.0061
GO.0044297 cell body 0.0061
GO.0005832 chaperonin-containing T-complex 0.00665
GO.0002199 zona pellucida receptor complex 0.00798
GO.0012505 endomembrane system 0.00857
GO.0043209 myelin sheath 0.00857
GO.0019953 sexual reproduction 0.0111
GO.0031967 organelle envelope 0.0116
GO.0031975 envelope 0.0116

Continues on next page
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Table 4.2 – Continued from previous page

Category Term FDR

GO.0005515 protein binding 0.0118
GO.0045454 cell redox homeostasis 0.0172
GO.0005635 nuclear envelope 0.0199
GO.0061024 membrane organization 0.021
GO.0044703 multi-organism reproductive process 0.0215
GO.0043234 protein complex 0.0241
GO.0000003 reproduction 0.0243
GO.1990204 oxidoreductase complex 0.0266
GO.0043228 non-membrane-bounded organelle 0.0274
GO.0043232 intracellular non-membrane-bounded organelle 0.0274
GO.0043231 intracellular membrane-bounded organelle 0.0315
GO.1903047 mitotic cell cycle process 0.0329
GO.0005488 binding 0.0343
GO.0005739 mitochondrion 0.0365
GO.0042995 cell projection 0.0376
GO.0015630 microtubule cytoskeleton 0.0381
GO.0022402 cell cycle process 0.0414
GO.0044702 single organism reproductive process 0.0414
GO.0035770 ribonucleoprotein granule 0.0459
GO.0036464 cytoplasmic ribonucleoprotein granule 0.0459
GO.0097223 sperm part 0.0459
KEGG:04141 protein processing in endoplasmic reticulum 0.047

MacroD2 macrodomain etoposide

GO.0003723 RNA binding 0.0117
GO.0044822 poly(A) RNA binding 0.0128

MacroD2 C-terminus DMSO

GO.0022618 ribonucleoprotein complex assembly 0.0302
GO.0071826 ribonucleoprotein complex subunit organization 0.0302

MacroD2 C-terminus etoposide

KEGG:03430 mismatch repair 0.025
KEGG:03440 homologous recombination 0.025
KEGG:03030 DNA replication 0.0282

Continues on next page
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Table 4.2 – Continued from previous page

Category Term FDR

Table 4.2: Biological term enrichment for the core proteins of the four condi-

tions - Overview of enriched biological terms. Generated by STRING database

The biological terms for the “MacroD2 macrodomain DMSO” condition reveal a

very heterogeneous localization, with many references to the ER. The “regulation of

steroid hormone signaling pathway” has instead disappeared, probably as some filtered

out factors were contributing to the significance of that pathway in the enrichment.

The “MacroD2 macrodomain etoposide” condition has now only terms related to RNA

binding, while the “ MacroD2 C-terminus DMSO” is focused on ribonucleoprotein com-

plexes. These ribonuclear complexes include both ribosomes and particles belonging to

the spliceosome. Lastly, the “MacroD2 C-terminus etoposide” lost most of its enriched

biological terms, surprisingly retaining only those referring to “DNA replication” and

“mismatch repair”. “Homologous recombination” was also a surprising new entry in

the list.

4.7.3 Looking for the exporting interactor

Defining the interactors that are important for the nuclear export of MacroD2 upon

etoposide treatment was the main motivation for performing the co-immunopurification

experiment. One possibility is the interaction with a protein that present a NES, so

that MacroD2 is exported via a “piggy-back” mechanism. Such an interactor should be

able to bind the two MacroD2 phosphorylated serines, which are within SQ/TQ motifs

modified by ATM or a PI3K-like kinase upon DNA damage. Moreover, the candidate

should optimally be found among the interactors that are enriched in “MacroD2 full-

length etoposide” or “MacroD2 C-terminus etoposide” conditions.

It is possible to define which phospho-binding module will more likely recognize the

modification performed by a certain kinase by considering the sequence requirements of

the kinases and of the phospho-binders (357). The serine or threonine modified by ATM

and the PI3K-like kinases are most probably recognized by FHA and BRCT binding

modules. For this reason, I downloaded the list of human proteins possessing either a

FHA or a BRCT domain from Uniprot and I systematically compared these two lists
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with the one I have produced by analyzing the co-IP experimental data, looking for

possible factors that might be involved in the recognition of the modification.

Although 71 FHA-containing proteins and 44 BRCT-containing proteins are anno-

tated in Uniprot, out of the hundreds of proteins present in my pull-down experiment,

only ARTD1 and SMARCC1 present a BRCT domain. Both the proteins are present

in the list of common proteins of the MacroD2 macrodomain etoposide condition. Con-

sidering that the factor I am looking for should bind the C-terminus of the protein, I

would exclude their role in the MacroD2 assisted nuclear export.

4.8 Future directions

After having performed the experiment and completed its analysis, the next step for

proteomics experiments is the validation. This is normally performed by in vitro and

in vivo pull-downs, co-localization tests by immunofluorescence or more refined experi-

ments, such as BiMolecular Fluorescence Complementation, Proximity Ligation Assay

or FRET. However, after the analyses it is vital to search through the literature and

define which are the most sensible candidates, both as protein and as physiological

functions, to pursue. What follows are the most interesting hypotheses I formulated

about possible MacroD2 cellular functions and related follow-up experiments.

4.8.1 Screening for factors affecting MacroD2 nuclear export

As mentioned above, one of the reasons why I performed the co-IP coupled to peptide

mass fingerprinting upon etoposide treatment was to discover the interactors that may

lead MacroD2 across the nuclear envelope into the cytoplasm. When I compared the

list of MacroD2 interactors with the list of proteins possessing FHA or BRCT domains,

the only proteins present in both lists are ARTD1 and SMARCC1. However, both pro-

teins are highly enriched in the “MacroD2 macrodomain etoposide” condition. Also,

both proteins are described as nuclear proteins, thus it seems difficult to imagine how

these two factors may be involved. Considering instead the great number of proteins

that I compared, it is feasible to find two false positive elements in my search. Nonethe-

less, their functional involvement in MacroD2 nuclear export is easily testable. Using

an RNAi-mediated approach to knock-down ARTD1 or SMARCC1 and subsequently
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performing live-cell imaging experiment with EGFP-MacroD2 C-terminus upon UV-

laser microirradiation should be sufficient to define the actual involvement of these two

proteins to the nuclear export of MacroD2.

The discovery of the exporting interactor may have been hindered by the limita-

tions of the co-IP approach, as it might be not sufficient for the detection of tran-

sient interactions or interactors with small affinities. Therefore, the BioID-based mass

spectrometry-coupled pull-down experiment that my host lab is planning to perform

could greatly increase the pool of proteins that are interacting with MacroD2. The

technique is based on the generation of a hybrid construct with the protein of interest

attached to a promiscuous biotin ligase, that is able to mark with biotin the proteins

that get in proximity to the bait (385). Indeed, the main drawback of the technique is

the possible modification of too many proteins generating a great deal of false positives.

Therefore, the experiment requires good negative controls. For example, in the case of

MacroD2, the ADP-ribose-binding deficient mutant (G188E) and the export-deficient

mutant (S276,345,415,426A) could be useful to screen the interactor list and to find

proteins that are strictly related to these two protein features of MacroD2. This ap-

proach might hopefully be able to enlarge the list of interactors that I have shown in a

constructive manner.

Lastly, in order to discover the interactors that allow MacroD2 nuclear export, an-

other strategy would take advantage of the well-known phenotype of MacroD2: the

nuclear export itself. By employing libraries of siRNAs, it could be possible to screen

for those factors whose absence negatively affects MacroD2 nuclear export. This ex-

periment would be then based on RNAi-mediated strategy coupled to cell-imaging on

U2OS-MacroD2 C-terminus + mCherry-H2B stable cell line. Essential genes, whose

lack might impair the cellular life, should not be included in the siRNA library. Most of

the membrane proteins should also be discarded, since our interactor is most probably

soluble and itself able to shuttle between the nuclear and cytoplasmic compartments.

Moreover, the library could be mainly targeting proteins carrying a phospho-binding

domain. Consequently, these requirements should greatly decrease the number of genes

of interest, making the library generation and the experiment itself more feasible. An

alternative to the classical siRNA library could be instead a genome-wide CRISPR/Cas-

mediated knock-out strategy (387). By generating the all possible knock-out mutants
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from a specific cell line, this approach would definitely solve the interferences generated

by the partial depletion of target proteins that the siRNA strategy produces.

Considering the microscopy-related aspects, such a high-throughput experiment

excludes the adoption of a live-cell imaging strategy. However, it is advisable to perform

not just an end-point assay, since the kinetics of the export might be affected more in the

initial phase and somehow recovered in the late stage, when maybe the activation of the

kinase decreases. This is even more true when multiple factors redundantly cooperate

for the nuclear export of MacroD2. Lastly, if the knock-out strategy would solve the

problem of the incomplete depletion, the siRNA strategy instead will only strongly

decrease the expression of the candidate factor. Therefore, an imaging assay with four

time points (0, 5, 30 and 60 minutes) should be enough to indicate perturbations in

different phases of the nuclear export of MacroD2 and avoid false negative cases even

with the siRNA strategy approach.

4.8.2 RNA biology regulation

By checking the most common biological terms found in my co-IP experiment, RNA-

related keywords appeared for every condition analyzed. While RNA-binding proteins

are generally regarded as particularly “sticky” in pull-down experiments (388), ADP-

ribosylation has been associated to many processes where RNA molecules are involved

(see Section 1.2.7).

As mentioned above, factors involved in both constitutive and alternative splicing

contain ADP-ribose binding modules, and ADP-ribosylation of splicing factors can

impact the maturation of the transcripts (118, 206, 389). Indeed, both constitutive

and alternative splicing factors have been found in my enrichment lists. Moreover,

among the enriched proteins from my co-IP experiments, many ribosomal proteins

appeared. These proteins are also classified as RNA-binding factors. Translation itself

can be modulated by ADP-ribosylation, as shown by the physiological mono-ADP-

ribosylation of eukaryotic elongation factor-2 (eEF-2) (209, 210, 211). Therefore, the

question is whether these interactions are just due to sample preparation or whether

MacroD2 has a physiological role in the regulation of RNA biology.

The validation of the interaction is essential and requires the additional control with

the addition of RNAse, as RNA-binding proteins tend to be considered as contaminant

in pull-down experiments. Such a control would exclude the possibility that large
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complexes containing RNA molecules have been indeed purified and question a direct

role of MacroD2 in the regulation of splicing. If however, the binding of MacroD2 and

the splicing factors is validated and is indeed mediated by an RNA molecule, it could

be interesting to define which fragment of MacroD2 sequence possesses this binding

property. Performing in vitro pull-down experiments with purified MacroD2 fragments

and the candidate splicing factor, in the presence and absence of a RNA molecule will

be useful in assessing this hypothesis. Moreover, if MacroD2 binds the splicing factor,

it might perform its enzymatic activity on the factor as well: thus, the splicing factor

should be tested to see whether it undergoes any MARylation or PARylation, If the

factor is modified, the modification might be able to hinder its splicing performance,

which could be tested by means of an in vitro splicing experiment in cell-extract.

Lastly, PAR is shown to be required for the formation of cytoplasmic stress gran-

ules, where RNA-binding proteins accumulate together with mRNA molecules and

Argonaute proteins in order to temporally block their translation (212). G3BP2, which

was enriched in the “MacroD2 macrodomain etoposide” condition, was shown to be an

inducer of the cytoplasmic stress granules (383).

The localization of the MacroD2 can be tested with arsenite treatment, the most

classical method to induce the stress-granule formation. If MacroD2 is indeed able

to relocate to the stress granules, a screen for MacroD2 substrates within the stress

granules could define which proteins might have their ADP-ribosylation reversed by

MacroD2. Afterwards, these proteins might be studied for the impact that the ADP-

ribosylation has on their structure or their functional activity.

4.8.3 The neuron-specific remodeling complex, nBAF

Among the enriched biological terms for the “MacroD2 macrodomain etoposide” condi-

tion, the “SWI/SNF superfamily-type complex”, “npBAF complex”, “SWI/SNF com-

plex” and “nBAF complex” terms were present. These are all terms referring to the

BRG1- and BRM-associated factor (BAF) remodelling complex, an ATP-dependent

SWI/SNF-like complex (390). BAF complexes are formed with up to 15 factors, where

the ATP-ase subunit is generally either BRG1 or BRM. The composition of the complex

changes according to the cell type, creating hundreds of different possible complexes in

humans. The only complexes that are referred to in my list are the neural progenitor

BAF (npBAF) and neural BAF (nBAF). Two proteins, SMARCC1 and SMARCE1,
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are found in different enrichments of the same condition and the two factors are present

in both npBAF and nBAF.

npBAF and nBAF complexes are essential for the development of the nervous sys-

tem, by helping the maintenance or the establishment of the required expression pattern

(390). In neural progenitors, npBAF activity maintains the expression of the pluripo-

tency factors and represses the neuron-specific genes in order to preserve the identity

of the progenitors. However, upon commitment for the neural differentiation, some

factors of npBAF are replaced by nBAF-specific proteins and the switch from npBAF

to nBAF complex is tightly regulated (391).

Mutations in the different members of the complexes affect the neural development:

loss of npBAF specific factors, for example, impairs the proliferation of the pool of pro-

genitors, leading to microcephaly (392). However, de novo mutations on npBAF/nBAF

factors are associated with non-familial autism (393, 394). In fact, since autism causes

defects in neural circuit formation, authors have suggested that a failure in npBAF

or nBAF-mediated regulation of dendritic outgrowth could be one of the causes of

this syndrome (395, 396). Therefore, an interaction between np/nBAF complex and

MacroD2 could be a starting point to explore the mechanism behind MacroD2’s as-

sociation to autism. While the co-IP has been performed in kidney-derived HEK293

cells, where neural-specific genes are not expected to be expressed, as it is a cancer

cell-line, the possible ectopic expression of neural factors might be an explanation for

this incongruity.

The association between MacroD2 and npBAF/nBAF is interesting because of the

amount of studies that associate MacroD2 to autism and other neural development

syndromes, although without offering any mechanistic insight (see Section 1.2.5). If

the physical interaction between MacroD2 and the np/nBAF complexes is confirmed,

it would be interesting to proceed in this line of research. In fact, I can imagine two

scenarios that might link MacroD2 to this chromatin remodeler complex. In the first

scenario, the ADP-ribosylation is important for the recruitment of the complexes on

the correct promoters. Thus, MacroD2 might interact with the remodelling complex

due to their common recruitment to the same region through ADP-ribosylated factors

present on the promoters of neural genes. In the second scenario, MacroD2 could have

a role in the modulation of the catalytic activity of the npBAF/nBAF complex or even

its assembly.

154



4.8 Future directions

In support of the first scenario, the ATP-ase unit BRG1 was already found associ-

ated to ARTD1 at the chromatin, even though in a completely different context (397).

ChIP-sequencing experiments could maybe show that BRG1 interacts on the chromatin

with MacroD2 as well, provided having an anti-MacroD2 antibody with high specificity.

However, the ultimate outcome of these experiments would be to test whether ADP-

ribosylation is important for the targeting of the npBAF and nBAF complexes to the

correct neural gene promoters.

In support of the second scenario, SMARCC1 was shown to increase the stability

of SMARCE1 by impairing its ubiquitination (398). The authors indicated TRIP12 to

be the E3-ligase enzyme, which contains a WWE domain. Therefore, ARTDs might

regulate SMARCE1 levels by PARylation-dependent degradation. Thus, the levels

of SMARCE1 protein could be tested in the presence and the absence of oxidative

stress, when ARTD1 should be mostly active. I would also employ a siRNA-mediated

approach and look for the increase of expression levels of SMARCE1 in order to test if

other ARTDs are involved. Neuronal cell lines, such as differentiated SH-SY5Y or NT2,

should be used to be sure that SMARCE1 is properly expressed. If the hypothesis holds

true and an ARTD is found to regulate SMARCE1 protein levels, the role of MacroD2

in the system can be tested, by checking the influence that the over-expression or its

depletion have in SMARCE1 levels.

Moreover, MARylation may be a modification that regulates the activation level

or the structure of the whole complex. By screening for ADP-ribosylated or even

MARylated proteins in neuronal cell lines, it may be possible to find proteins whose

activity is modulated by such a modification, and, thus, to test possible interactions of

MacroD2 with neuronal proteins.

4.8.4 Regulation of the cytoskeletal dynamics

Various types of cytoskeletal components were enriched with all the three MacroD2

constructs, mainly upon etoposide treatment. Two proteins associated to the cy-

toskeletal structure of the focal adhesion (FA) foci, TRIP6 and SNX9, were found

to be enriched in the “MacroD2 full-length etoposide” condition (399, 400) (see Table

A.4). “Microtubule cytoskeleton” and “cytoskeleton” biological terms were enriched

in the “MacroD2 macrodomain DMSO” condition (see Table B.4). Also more biolog-

ical terms related to cytoskeletal structures appeared in the “MacroD2 macrodomain
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etoposide” condition, such as “focal adhesion”, “cell-substrate adherens junction”,

“cell-substrate junction”, “intermediate filament cytoskeleton”, “adherens junction”

and “anchoring junction” (see Table B.6). Lastly, the enriched biological terms in

the “MacroD2 C-terminus etoposide” condition included “sarcomere”, “contractile fiber

part”, “myofibril”, “cuticular plate”, “I band”, “anchoring junction”, “spectrin ”, “Z

disc” and “adherens junction” (see Table B.10). Although the structures defined

by these different term are functionally distinct, they all present as common feature

the presence of protein filaments, like F-actin, intermediate filaments or tubulin-made

microtubules.

FAs and other cytoskeletal elements can be very important for generating morpho-

logical structures with special functions. These structures are even more important

when set in the context of special cell-types that have a peculiar morphology and

function, such as the neurons. Recent literature shows that the interaction between

cytoskeleton and neural function is an expanding research field (401). F-actin are, for

example, necessary for the correct formation of dendritic spines, the membrane struc-

ture forming one part of the synapse (402). Disruption of the morphology brings a

disruption in the neural functionality. How everything is ultimately connected with

neurological disorders is still an open question.

The above-mentioned association of MacroD2 with autism and other neurological

disorders (see Section 1.2.5) could also be explained by a dysfunction in cytoskeletal

organization. The imperfect formation of synapses may affect the general neural net-

work. In fact, impairment of brain connectivity has been associated also with a locus

nearby to the MacroD2 gene (97). In my co-IP experiment, the MacroD2 constructs

purified cytoskeletal factors above all upon etoposide treatment, arguing that the hypo-

thetical regulation of the cytoskeletal dynamics by MacroD2 is activated upon genotoxic

stress. Moreover, as described in Chapter 3, ATM substrates possessing the SQ/TQ

cluster domain (SCD) in the sequence were analyzed for biological term enrichment.

In this case cytoskeleton-related terms were surprisingly overrepresented (371).

To proceed in this direction, I could take advantage of microscopy techniques and

analyze the co-localization of MacroD2 with cytoskeletal components. As the focal

adhesion biological terms appeared frequently in the analysis, examining the changes

in foci formation in MacroD2 knock-out cells compared to wild-type cells would give

an indication into MacroD2’s role. Alternatively, testing neural cells for dendritic spine
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formation in the presence and the absence of MacroD2 would also indicate MacroD2

function in this process. When a clear phenotype is linked to MacroD2 depletion, it is

possible to study the mechanism behind it. It would be important to understand what

protein directly interacts with MacroD2 and whether this protein is ADP-ribosylated.

In fact, I imagine that even a single ADP-ribosylation moiety, at a specific site on the

protein surface, can have important consequences on its activity and function.

4.8.5 NF-κB signaling pathway

The NF-κB pathway is activated either upon interleukines binding at the cell mem-

brane or from the nucleus in response to genotoxic stimuli. Its activation increases the

expression of the genes involved in inflammation by the release of the transcription

factors NF-κB from the cytoplasmic inhibitory complex and by their translocation into

the nucleus. The NF-κB pathway is connected with both ATM signaling and mono-

ADP-ribosylation. In fact, upon genotoxic stress, ATM induces the activation of the

NF-κB pathway by modifying and escorting the positive regulator of NF-κB signaling,

NEMO, out of the nucleus (226). On the other side, NEMO activity is inhibited by

ARTD10-mediated MARylation (194).

Several factors involved in the NF-κB signaling in different ways were found in

several of my protein lists: NKAP, TRIP6, PRDX4 and G3BP2. The NF-κB activating

protein (NKAP) is present in the “MacroD2 full-length DMSO” condition (see Table

A.1) and has been shown to induce the NF-κB pathway (403). The peroxiredoxin-4

(PRDX4), instead, was present in the “MacroD2 macrodomain DMSO” condition (see

Table A.5), and it is a thioredoxin specifically able to activate the NF-κB pathway

(404). In this study the authors first showed the cytoplasmic localization of the PRDX4

and suggested that it is involved in NF-κB regulation by affecting the phosphorylation

of the IκBα inhibitor. The thyroid receptor-interacting protein 6 (TRIP6) was enriched

in the “MacroD2 macrodomain etoposide” condition (see Table A.8). It has been

shown to reside at the promoters of the NF-κB-responsive genes and to mediate either

the activation, when the NF-κB transcrition factors are binding, or the repression,

when the glucocorticoid receptor is binding those same genes (405). Last but not least,

the Ras GTPase-activating protein-binding protein 2 (G3BP2) was also enriched in the

“MacroD2 macrodomain etoposide” condition (see Table A.8). G3BP2 is able to
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retain the NF-κB-IκBα complex in the cytoplasm, acting as repressor of the pathway

(406).

Therefore, MacroD2 could accumulate in the cytoplasm upon ATM activation and

help remove the last “break”, the MARylation performed by ARTD10 on NEMO,

which would be necessary for the full activation of the NF-κB pathway. In order to test

this hypothesis, in vitro assays for the removal of MARylation on NEMO by MacroD2

are the necessary starting point. Subsequently, the activation of the NF-κB pathway

must be determined in vivo, by comparing wild-type cells to MacroD2-/- cells. This

can be performed by testing the phosphorylation levels of the inhibitor IκBα. IκBα’s

inhibitory action is mediated through trapping the transcription factors within the cyto-

plasm. After its ATM-induced nuclear export, NEMO activates the complex of the IκB

kinase (IKK), which phosphorylates IκBα and forces the disassembly of the inhibitory

complex (226). Thus, if NEMO is a substrate of MacroD2, the NF-κB translocation

into the nucleus and activation of the gene expression should be less in MacroD2-/-

cells than their wild-type counterpart. In case of decreased activation of the NF-κB

pathway, the phenotype should be further verified by a rescue experiment, for example,

by transiently transfecting MacroD2 wild-type, MacroD2 ADP-ribose binding-deficient

mutant (G188E) or MacroD2 export-deficient mutant (S276,345,415,426A). The ADP-

ribose binding-deficient mutant should not be able to rescue the phenotype and the

export-deficient mutant should do it only partially.

In conclusion, the possible interaction between MacroD2 and the NF-κB pathway

would be particularly interesting as it would give more relevance to the regulatory

role of the nuclear export of MacroD2. In normal conditions, the NF-κB factors are

cytoplasmic, blocked by the inhibitory complex, while MacroD2 presence in the nucleus

avoid its overwhelming presence in the cytoplasm. Upon genotoxic stress, ATM would

shift the balance towards the cytoplasm for both NEMO and MacroD2. MacroD2

would then allow the full release of the NF-κB transcription factors by ensuring the

total activity of NEMO. In such a story, many passages across the nuclear envelope

would hinder the overexpression of genes involved in the inflammatory response.
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The work I have performed in these years of research contributed to a deeper un-

derstanding of the ADP-ribosyl-hydrolase world. In fact, I show in this thesis that

the ADP-ribosyl-hydrolase MacroD2 exports from the nucleus upon DNA damage.

Although most of my experiments are performed with EGFP-tagged version of the

protein, I could also show that the endogenous MacroD2 shares this behavior. The

nuclear export of MacroD2 is induced by double-strand breaks via ATM activation.

The kinase phosphorylates two serines that are located in the intrinsically disordered

region of MacroD2.

MacroD2 nuclear export can be easily considered a mechanism to regulate its en-

zymatic activity, as shown by the change in recruitment dynamics at the DNA lesion

caused by the block of the nuclear export. However, the regulation might have other

possible outcomes. To help define the range of consequences, as well as the exact mech-

anism that allows MacroD2 to cross the nuclear envelope, I decided to start uncovering

the MacroD2 interactome, by means of a co-IP experiment coupled with protein mass

fingerprinting. The different hypothesis I proposed could be considered when proceed-

ing with the validation step.

This work underlines the importance of the integration between the different sig-

naling pathways, above all upon extraordinary conditions, such as for DNA damage.

Many times, ATM signaling and ADP-ribosylation have been shown to cross each oth-

ers’ paths regarding modulation of the DNA damage response. But never before had

the interaction shown such a clear and incontrovertible effect, like the nuclear export

of an enzyme. Moreover, although ATM and ARTD1 are suggested to be directly in
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contact, my work shows in a definitive way that the interaction between these two sys-

tems does happen and it can have a visible output. Now, uncovering MacroD2 cellular

functions, its interacting network and its specific subset of substrates, is the next step

needed to really understand the reasons for the interaction between the two signaling

pathways.

With this study, the uniqueness of MacroD2 is revealed. MacroD2, in fact, is the

only human ADP-ribosyl-hydrolase so far described to be regulated in its localization.

Experiments with both full-length MacroD1 and TARG1 show localization at the mi-

tochondria or only recruitment to the DNA lesion, respectively. Neither of them is

exported from the nucleus upon DNA damage. This specific feature of MacroD2 sug-

gests that the activity of this enzyme requires a fast and tight regulation, which is not

required for the other two proteins. And enzymatic activity undergoing a complicated

regulation could easily point to important functions or interactions so far neglected.

Another interesting finding is the double nature of MacroD2. Although it is an

enzyme, MacroD2 has a C-terminus fragment that is an intrinsically disordered re-

gion. Intrinsically disordered proteins are underrepresented among enzymes, and still

MacroD2 belongs to both groups. However, these two features may be combined in

MacroD2 because they are well confined within the two portions of the proteins se-

quence: the N-terminus macrodomain can perform its enzymatic activity and keep its

ordered folding, while the C-terminus region keeps its disordered structure, more apt

to address its signaling functions. This unique “schizophrenic” nature of MacroD2

probably underlies the importance that it has in the regulation of cellular functions.

Remarkably, MacroD2 has been associated several times to autism syndrome and

other neurodevelopmental diseases. However, we don’t know yet how this phenotype

can be connected to its enzymatic activity. We are surely getting closer to solve the

riddle, but more effort should be put into filling the gap between MacroD2 molecu-

lar activity and its consequences on the whole organism, by understanding the one or

many functions that this protein might have. Considering the consequences that disin-

formation on the alleged connection between autism and vaccination has caused for the

public health of many western countries, the understanding of a possible mechanism

inducing this syndrome should be one of the top priorities of research on MacroD2.

Another conclusion I draw from my work is that we need to develop a more compre-

hensive understanding of the different signaling mechanisms ongoing in the cell. So far,
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partially due to technical limitations, the research on ADP-ribosylation has focused on

the transferases and their activation. It is now important to pay attention to the whole

cycle, by understanding also the mechanisms that induce the destruction of the specific

signal when the emergency phase is over. ADP-ribosylation is a very dynamic signal,

and the accurate regulation of its mechanisms must be a challenging task. But, as this

is true within the regulation of the sole ADP-ribosylation signaling, it is also true when

considering the many signaling pathways in action at the same time all together. Upon

each condition, several signaling pathways are activated to various extents.

Although it is quite a daunting task, our knowledge of what is happening in the

cell at every moment is still very fragmented. But the real understanding comes with

the knowledge of all the factors contributing to a system and the ability of generating

successful predictions. With my experience, I can say that in biology we are not there

yet. Still, the path in front of us does not seem so long anymore.
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Material and methods

6.1 Reagents

DMSO (Dimethyl sulfoxide) (D2438; Sigma)

Etoposide (E1383; Sigma)

Aphidicolin (A0781; Sigma)

Camptothecin (7689-03-4; Sigma)

PARP inhibitor Olaparib (AZD2281; Selleckchem)

ATM kinase inhibitor (KU55933; Selleckchem)

ATR kinase inhibitor (VE-821; Selleckchem)

DNA-PK kinase inhibitor (NU7441; Selleckchem)

(32P)γATP (FP-301; Hartmann Analytic)

GFP-trap homemade (from Dr. A. Bowman and G. Jankevicius)

GFP-trap (gta; Chromotek)

bisBenzimide H 33342 trihydrocloride (Hoechst; Sigma)

Peptides (Metabion)

Oligos (Metabion)

6.2 Antibodies

Anti-MacroD2 (#494-7, rabbit polyclonal, from in-house facility)

Anti-GFP antibody (goat polyclonal, lab stock)

Anti-GST antibody (rat monoclonal from Dr. Kremmer of Helmholtz Zentrum Mu-

nich)
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Anti-ATM [Y170] (ab32420, rabbit monoclonal, Abcam)

Anti-GAPDH (rat monoclonal #5C4 from Dr. Kremmer of Helmholtz Zentrum Mu-

nich)

Anti-beta actin antibody (rabbit polyclonal, ab8227, Abcam)

Alexa-488 goat anti-rabbit (Invitrogen)

Goat anti-rabbit IgG-HRP conjugated (BIO-RAD)

Goat anti-rat IgG-HRP conjugated (Jackson ImmunoResearch)

6.3 Buffers

RIPA buffer

50 mM Tris-Cl, pH 7.5

150 mM NaCl

0.1% Sodium Deoxycholate

1 mM EDTA

1% NP-40

SDS protein sample loading buffer 4x

250 mM Tris-HCl pH 6.8

10% dithiothreitol

5% SDS

40% glycerol

0,005% Bromphenol Blue

4x upper/stacking gel SDS buffer

500 mM Tris-HCl pH 6.8

0.1% SDS

4x lower/separating gel SDS buffer

1.5 M Tris-HCl; pH 8.7

0.1% SDS
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6.4 Cell culture media

1x Western Blot transfer buffer

25 mM Tris buffer

192 mM Glycine

20% Methanol

0.0375% SDS (added only for transferring ATM protein)

Ponceau S

0.1% Ponceau S (Sigma)

1% Acetic acid

1x Coomassie blue R-250

40% Methanol

10% Acetic acid

0.1% Coomassie Brilliant Blue R-250 (Sigma)

for destaining, the buffer was prepared without Coomassie dye

6.4 Cell culture media

Normal culture medium

DMEM - high glucose (#5671 - Sigma)

10 % FBS (Gibco)

2 mM L-glutamine (Sigma)

100 U mL-1 penicillin + 100 g mL-1 streptomycin (Sigma)

McCoy’s-based culture medium

McCoy’s 5a (Sigma)

10 % FBS (Gibco)

2 mM L-glutamine (Sigma)

100 U mL-1 penicillin + 100 g mL-1 streptomycin (Sigma)

Imaging medium

Phenol Red-free Leibovitz’s L-15 (21083027 - Life Technologies)

10 % FBS (Gibco)
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2 mM L-glutamine (Sigma)

100 U mL-1 penicillin + 100 g mL-1 streptomycin (Sigma)

6.5 Kits

The list of commercial kits used during the study is shown in the Table 6.1.

Item Manifacturer

Plasmid preparation Miniprep Metabion

Plasmid preparation Midiprep Promega

PCR purification Metabion

Gel extraction Kit Metabion

NuPAGE (precast gels and buffers) Invitrogen

Table 6.1: Kits - Overview of the commercial kits used during the study.

6.6 Plasmids

The list of plasmid used during the study is shown in the Table 6.2.

Plasmid Database location

pmEGFP-C1 CL1036

pmEGFP-C1-MacroD2 full-length CL2251

pmEGFP-C1-MacroD2 macrodomain (aa 1-234) CL1977

pmEGFP-C1-MacroD2 C-terminus (aa 236-448) CL1978

pmEGFP-C1-MacroD2 G188E CL3521

pmEGFP-C1-MacroD2 G100E+I189R+Y190N CL3760

pmEGFP-C1-EGFP-MacroD2 C-terminus (aa 236-end) CL3758

pmEGFP-C1-MacroD2 S276,345,415,426A CL3714

pmEGFP-C1-MacroD2 S276,345,415A CL3715

pmEGFP-C1-MacroD2 S276,345,426A CL3716

pmEGFP-C1-MacroD2 S276,415,426A CL3717

pmEGFP-C1-MacroD2 S345,415,426A CL3718

pmEGFP-C1-MacroD2 S276,426A CL3759

pmEGFP-C1-MacroD2 (aa410-418) CL3503

pmEGFP-C1-MacroD2 (aa402-418) CL3742

pmEGFP-C1-MacroD2 (aa382-418) CL3552

pmEGFP-C1-MacroD2 (aa382-418) D410A CL3540

Continues on next page
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pmEGFP-C1-MacroD2 (aa382-418) V411E CL3543

pmEGFP-C1-MacroD2 (aa382-418) E412A CL3544

pmEGFP-C1-MacroD2 (aa382-418) M413A CL3546

pmEGFP-C1-MacroD2 (aa382-418) N414A CL3547

pmEGFP-C1-MacroD2 (aa382-418) S415A CL3548

pmEGFP-C1-MacroD2 (aa382-418) Q416A CL3549

pmEGFP-C1-MacroD2 (aa336-372) CL3729

pmEGFP-C1-MacroD2 (aa336-372) S345A CL3736

pmEGFP-C1-MacroD2 (aa336-372) Q346A CL3737

pmEGFP-C1-MacroD2 (aa336-372) M350A CL3741

pETMCN-6His-TEV-MacroD2 full-length CL3528

pETMCN-6His-TEV-V5-MacroD2 macrodomain (aa 1-234) CL3053

pETMCN-6His-TEV-MacroD2 C-terminus (aa 244-448) CL3529

pETMCN-6His-TEV-EGFP-MacroD2 (aa 1-448) CL3720

pETMCN-6His-TEV-EGFP-MacroD2 C-terminus (aa 236-448) CL3743

pGEX-6P1-GST-EGFP-MacroD2 (aa 382-418) CL3721

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) CL3745

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) D410A CL3722

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) V411E CL3723

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) E412A CL3724

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) M413A CL3725

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) N414A CL3726

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) S415A CL3727

pETMCN-6His-TEV-EGFP-MacroD2 (aa 382-418) Q416A CL3728

pGEX-4T1-GST-14-3-3 ε CL3747

pGEX-4T1-GST-14-3-3 ε K49E CL3748

pGEX-2TK-GST-14-3-3 σ CL3749

pGEX-4T1-GST-14-3-3 ζ CL3750

pGEX-2TK-GST-14-3-3 β CL3751

pGEX-6P1-GST-14-3-3 η CL3752

pGEX-6P1-GST-14-3-3 τ CL3753

pGEX-4T2-GST-14-3-3 γ CL3754

pcDNA5-FRT/TO-EGFP CL3553

pcDNA5-FRT/TO-EGFP-C1-MacroD2 (aa 1-448) CL3538

pcDNA5-FRT/TO-EGFP-C1-MacroD2 (aa 1-243) CL3761

pcDNA5-FRT/TO-EGFP-C1-MacroD2 (aa 237-448) CL3554

pOG44 Flippase CL3640

Continues on next page
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Table 6.2: Plasmids - Overview of the plasmids used during the study.

6.7 Cell culture and treatments

6.7.1 Cell lines used

The lists of the used cell lines is shown in the Table 6.3.

Cell lines Media

U2OS Normal

U2OS MacroD2-/- (GM09) Normal

U2OS mYFP-MacroD2 (aa 1-448) + mCherry-H2B Normal

U2OS mEGFP-MacroD2 (aa 237-448) + mCherry-H2B Normal

U2OS mEGFP-MacroD2 (aa 1-448) Normal

U2OS mEGFP-MacroD2 (aa 237-448) Normal

U2OS mEGFP-MacroD2 (aa 1-448) G188E Normal

U2OS mEGFP-mEGFP-MacroD2 (aa 237-448) Normal

HeLa Kyoto mCherry-H2B Normal

G-361 McCoy’s-based

HT-144 McCoy’s-based

HEK293 Flp-InTM T-RExTM Normal

HEK293 Flp-InTM T-RExTM EGFP Normal

HEK293 Flp-InTM T-RExTM EGFP-MacroD2 (aa 1-448) Normal

HEK293 Flp-InTM T-RExTM EGFP-MacroD2 (aa 1-243) Normal

HEK293 Flp-InTM T-RExTM EGFP-MacroD2 (aa 237-448) Normal

Table 6.3: Cell lines - Overview of the cell lines used during the study.

6.7.2 Cell culture

Human U2OS stable cell lines were grown in normal cell culture medium supplemented

with 200 µg mL-1 G418 (Gibco). For maintenance of the mCherry-H2B construct, 2

µg mL-1 Puromycin (Sigma) may have been added to the medium. HEK293 stable

cell lines were grown in normal cell culture medium supplemented with 15 µg mL-1

blasticidin and 100 µg mL-1 hygromycin. For transient transfections, HeLa Kyoto cell
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line stably expressing mCherry-H2B were mainly used. Transient transfections were

also performed on U2OS and HT-144 cell lines.

Cells were plated in borosilicate 8-well Lab-Tek chambered cover glasses (Thermo-

Scientific) for imaging experiments. For other types of experiments, different plastic

supports were used: 6-well plates, 12-well plates. 24-well plates, 60-cm2 dishes or

150-cm2 dishes (TPP).

6.7.3 Transfections and treatments

For transient transfections, cells were plated in a number that was adjusted according

to the cell line, the day of use and the surface of plating (for example, 20000 U2OS

cells were plated in one Lab-Tek well to be used on the next day).The next day, DNA

transfection was performed by means of Xfect (Clontech) according to the manufac-

turer’s recommendations. For example, regarding the most used setup, for one single

Lab-Tek well, 500 ng of plasmid was used together with 0.3 µL of X-fect reagent. Cells

were tested the day after transfection.

For siRNA-mediated MacroD2 and ATM depletion, Negative Control #2, s44380

and s1708 Silencer Select siRNA oligonucleotides (Ambion) were used in combination

with Lipofectamine RNAiMAX (ThermoFisher) according to the manufacturers proto-

col. Cells were tested 72 hours post transfection.

Small molecule inhibitors were added to the culture medium 30 minutes before

imaging in the concentration indicated. For DNA damage-induction upon microscopy

experiments, camptothecin (50 µM) or etoposide (10 µM) were added during the imag-

ing session. For protein lysates, cells were incubated with etoposide (10 µM) for 1 hour

before collection.

6.7.4 Synchronization with Aphidicolin

To synchronize the cells, a protocol with Aphidicolin (Sigma) was used. On the first

day, 20000 cells of U2OS mEGFP-MacroD2 (aa 237-448) + mCherry-H2B were plated

in each 8-well Lab-Tek well. After 4 hours, Aphidicolin to a final concentration of 5

µg mL-1 was added. After 16 hours, the reactivation process was performed by means

of a wash in PBS, a wash in normal medium and an incubation of 10 minutes in the

incubator. These three steps were performed twice. Then imaging medium was added

and cells were ready for the experiment.
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6.8 Microscopy experiments

6.8.1 Microscope setup and imaging

During the experiments, cells were kept at 37 ◦C in Imaging medium. Imaging was

performed on a Zeiss AxioObserver Z1 confocal spinning-disk microscope equipped with

an AxioCam HRm CCD camera (Zeiss) through a Zeiss C-Apochromat 40x/1.2 water-

immersion objective or a Zeiss Plan-Apochromat 63x/1.2 water-immersion objective.

For laser microirradiation, we used a 355-nm wavelength, diode-pumped, solid-state,

pulsed laser (DPSL-355/14, Rapp OptoElectronics). DNA damage was induced by

focusing the laser to a point or a line in the nucleus or by adding camptothecin or

etoposide. Cells were imaged every 10 seconds for 30 minutes.

6.8.2 Detection of endogenous MacroD2 by immunofluorescence

U2OS cells were plated in borosilicate 8-well Lab-Tek chambered cover glasses (Ther-

moScientific). Treatment with etoposide 10 M was performed for one hour. Cells were

then fixed and permeabilised with Methanol/Acetone 1:1 solution for 10 minutes at

-20 ◦C. Blocking was performed with PBS-Tween 0.1% with BSA 5%. Cells were incu-

bated with the antibody anti-MacroD2 antibody (1:500), diluted in PBS-Tween 0.1%

- BSA 3%, for one hour at room temperature. Incubation with Alexa-488-conjugated

antibody (1:500) was performed for one hour at room temperature. Lastly, cells were

incubated with Hoechst 33342 (Sigma) at 200 ng mL-1 final concentration for 10 min-

utes.

6.8.3 Analysis of MacroD2 export

The time-lapse and the immunofluorescence images were analysed with CellProfiler 2.0

(331). The mCherry-H2B or Hoechst images were used for the segmentation of the

nucleus. To quantify protein export upon treatment, background was first subtracted

and the ratio of nuclear intensity over cytoplasmic intensity of MacroD2 in each cell

was calculated. For the time-lapse images, the ratio of each time point was normalized

to the first time point. Only the cells properly segmented in the first time-point of the

time laps were selected for the calculation of the average. Igor Pro (WaveMetrics) was

used for analyzing and plotting the data.
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6.8.4 Comparison between nuclear and cytoplasmic signal change

To compare nuclear signal depletion with cytoplasmic signal increase, HeLa cells stably

expressing mCherry-H2B and transfected with mEGFP-MacroD2 were used for UV-

laser experiments, as described before. The analysis was performed in Fiji (http:

//fiji.sc/Fiji) and consisted of manually segmenting the whole cell, the nucleus and

the cytoplasm. The mean intensity of each object was subtracted of the background.

The nuclear mean intensity over the total cell mean intensity was compared to the

cytoplasm mean intensity over the total cell mean intensity. Igor Pro (WaveMetrics)

was used for plotting the data.

6.8.5 Analysis of MacroD2 recruitment

To quantify the amount of protein recruited to DNA damage site, cells were registered

by means of the MultiStackReg plugin (http://bradbusse.net/sciencedownloads.

html) in Fiji (http://fiji.sc/Fiji). The mean intensity of the recruitment area was

subtracted with the background and normalized over the mean intensity of the total

cell. Then, the obtained ratio at each time point was normalized to the intensity of

the initial time point. Igor Pro (WaveMetrics) was used for analyzing and plotting the

data.

6.8.6 Automatized analysis of MacroD2 export

For the experiments 3.24 and 3.28, changes to the normal setup have been introduced.

Cells were plated in black cycloolefin-covered 96-well plates (Greiner) with a number

of cells per well adjusted according to the experiment and the cell line. Before exper-

iment, cells were treated for 10 minutes with Hoechst, in order to allow nuclei seg-

mentation upon analysis. During the experiments, cells were kept at 37 ◦C in Imaging

medium. Imaging was performed on a Zeiss AxioObserver Z1 confocal spinning-disk

microscope equipped with an AxioCam HRm CCD camera (Zeiss) through a Zeiss

Plan-Apochromat 20x/0.8 lens. Cells were imaged while treated with etoposide 10 µM,

every 5 minutes for 80 or 85 minutes. Each well was imaged in 18 positions.

The time-lapse and the immunofluorescence images were analysed with CellProfiler

2.0 (331). The Hoechst images were used for the segmentation of the nucleus. To

quantify protein export upon treatment, background was first subtracted and the aver-

age nuclear intensity and the average cytoplasmic intensity of all MacroD2 cells in the

condition were calculated. The ratio of nuclear intensity over cytoplasmic intensity of

MacroD2 was then calculated. The ratio of each time point was normalized to the first
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time point. Igor Pro (WaveMetrics) was used for analyzing and plotting the data.

6.9 Immunoblotting

RIPA buffer was used to obtain whole cell lysate. Samples were also sonicated to shear

genomic DNA and incubated at 4 ◦C for 30 minutes. Afterwards, supernatant was

cleared from cellular debris by centrifugating for 30 minutes at 11000 g. The cleared

lysate concentration was after determined via a Bradford assay on strongly diluted

samples. Proteins were resolved either on 12% or 6%+12% SDS-PAGE, if detecting

MacroD2 or ATM, respectively. The transfer was performed onto nitrocellulose mem-

brane (Whatman Protran). Transfer efficiency was checked with Ponceau S solution.

The membrane was blocked in PBS-Tween 0.05% buffer supplemented with 5%

non-fat milk. Proteins were detected with the appropriate primary antibodies (anti-

MacroD2 antibody 1:1000; anti-ATM antibody 1:1000; anti-GAPDH antibody 1:10;

anti-GST 1:10; anti-14-3-3ε 1:1000) and secondary antibodies coupled to horseradish

peroxidase (1:10000). Detection was performed with Immobilon Western Blotting de-

tection reagent (GE Healthcare).

6.10 Ciclohexamide chase

U2OS mYFP-MacroD2 full-length + mCherry-H2B cells were plated in two 6-well

plates (TPP) with 300000 cells per well. On the next day, ciclohexamide (300 µg mL-1)

was added in all the wells, but the two control wells with ethanol only. After one hour,

the timepoint 0 cells were collected and placed on ice. In the meantime, the chase

was started by adding DMSO or etoposide (10 µM) in either of the two plates. Then,

following timepoints were collected at the times: 45 minutes, 2 hours, 4 hours, 24 hours.

Also the control with ethanol was collected at 24 hours.

All the samples were prepared with RIPA buffer, as described before. For the

western blot, anti-GFP (1:1000) and anti-actin (1:5000) were used. The different signal

bands were quantified. The signal of the GFP band was normalized over the actin band

and each time point was normalized over time 0. The ratios were then averaged and

analyzed with unpaired non-parametrical Mann-Whitney.
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6.11 Affinity-purification of anti-MacroD2 serum

Column buffer

100 mM NaHCO3, pH 8.3

500 mM NaCl

Acid buffer

100 mM acetate, pH 4.0

500 mM NaCl

Basic buffer

100 mM Tris, pH 8.0

500 mM NaCl

Loading buffer

10 mM Tris, pH 7.5

1mM PMSF

Washing buffer

10 mM Tris, pH 7.5

500 mM NaCl

This protocol has been provided by Dr. D. Mokranjac. Firstly, the purified 6His-

TEV-V5-MacroD2 macrodomain (1-243) was digested by a TEV protease during the

first dialysis over night. Afterwards, the protein was further purified by mean of a

size-exclusion column loaded on the FPLC. 5 mg of V5-MacroD2 macrodomain (1-

243) was then dyalized into column buffer by means of a PD-10 column (17-0851-01;

GE-Healthcare).

For the preparation of the resin, CNBr-Sepharose 4B beads powder (GE Healthcare)

was used. The powder was incubated for 30 minutes with 1 mM HCl, for hydration.

Further washes were performed with 1 mM HCl. Afterwards, the beads were transfered

into a disposable plastic column (Bio-Rad). The protein solution was added, a part

from an aliquot that works as input for the coupling efficiency. The column was then

rolled for 1 hour at room temperature. Unbound material was collected for checks of the

coupling efficiency. The column was then washed with column buffer and the remaining
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active groups were blocked by loading 1M ethanolamine pH 8.0. The ethanolamine was

incubated for 2 hours at room temperature. Then, the column was washed with three

cycles of two buffers at different pH: acetate at pH 4.0 and Tris at pH 8.0. Lastly, the

columns is washed with 0.05% NaN3 and stored at 4 ◦C.

For the affinity-purification, the column was equilibrated with 10 mM Tris, pH 7.5.

The serum was prepared by diluting it with the loading buffer (6 mL + 24 mL). Then,

the diluted serum was loaded onto the column. The flow-through was collected to test

the purification efficiency. The column was then washed with 10 mM Tris, pH 7.5 and

with the washing buffer. Finally, the elution consisted with three steps.

• 0.1 M citrate buffer, pH 4.0

• 0.1 M glycine buffer, pH 2.5

For each of these two elution steps, 1 mL fractions were collected and immediately

neutralized with 100 µL 1 M Tris, pH 8.8. Then, the column was equilibrated with 0.1

M Tris, pH 8.8 and prepared for the third elution.

• 0.1 M phosphate buffer, pH 12.5

Aso in this case, the 1 mL fractions were collected and immediately neutralized with

100 µL 1 M glycine, pH 2.0.

For further usage, the column was washed with 0.1 M Tris, pH 8.8, then washed

and stored with 0.05% NaN3 at 4 ◦C.

6.12 Protein purification

Lysis/wash buffer

50 mM Tris-Cl, pH 7.5

500 mM NaCl

20 mM imidazole

1mM DDT

protease inhibitor cocktail (Roche)

Elution buffer

50 mM Tris-Cl, pH 7.5

500 mM NaCl

500 mM imidazole

1mM DDT
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protease inhibitor cocktail (Roche)

Storage buffer

25 mM Tris-Cl, pH 7.5

250 mM NaCl

1 mM DTT

For His-tagged proteins, protein expression constructs were expressed in E. coli Rosetta

(DE3)pLysS cells at 18 ◦C for 16 hours after 0.2 mM IPTG induction. Cell pellets were

snap-frozen in liquid nitrogen and stored at -80 ◦C.

For histidine-tagged protein purification, the thawed pellet was resuspended in a

lysis/wash buffer. Lysates were sonicated for 20 x 18 seconds at medium setting (Bran-

son) until the lysate was not viscous and centrifuged for 45 minutes at ∼45,000 g at

4 ◦C.

The supernatant was exposed to a column with Ni-NTA agarose (Qiagen), washed

3 times with 30 mL wash buffer and eluted with 5 mL the elution buffer. The proteins

were dialyzed in storage buffer with either dialysis membranes (ZelluTrans - Roth;

MWCO 3500) over-night or PD-10 columns (17-0851-01; GE-Healthcare).

Peak fractions were confirmed by SDS-PAGE and Coomassie staining. Concentra-

tions were determined by Bradford assay (Biorad).

For GST-tagged protein purification, the procedure was as above, with the exception

that no imidazole was used, glutathione Sepharose 4 Fast Flow (GE-Healthcare) was

used as column resin and 20 mM reduced-glutathione elution buffer (GE Healthcare)

was used.

6.13 Experimental determination of MacroD2 secondary

structure composition

6His-TEV-MacroD2 full-length, 6His-TEV-V5-MacroD2 macrodomain (aa 1-234) and

6His-TEV-MacroD2 C-terminus (aa 244-448) proteins were purified as previously ex-

plained with the Ni-NTA agarose (Quiagen). Upon dialysis into storage buffer, proteins

were digested over-night with a TEV protease to remove the His-tag. Then, with the

help of G. Jankevicius and A. Bowman, the proteins were further purified by mean of

a size-exclusion column loaded on the FPLC.

The proteins were successively dyalized with 20 mM phosphate buffer (pH 7.3). For

the circular dichroism test, a sample of each protein at the concentration of 5 µM was
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used by Dr. F. Kamp for the run of the machine.

6.14 Kinase assay on MacroD2 fragments

Lysis buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.5% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Dilution buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Washing buffer

25 mM Tris-Cl, pH 7.5

500 mM NaCl

0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

The purified proteins His-mEGFP-MacroD2 C-terminal (aa236-448) fragment (5 µg

(200 pmol) per sample); GST-mEGFP-tagged MacroD2 (aa382-418) fragment (52 µg (1

nmol) per sample) and His-mEGFP-tagged MacroD2 (aa382-418) fragments (wild-type

and mutants) (35 µg (1 nmol) per sample) were used.

HEK293 Flp-InTM T-RExTM cells (ThermoFisher) were collected on ice. Cells were

resuspended in lysis buffer, then incubated on ice for 30 minutes while mechanically

lysed by syringe. Where appropriate, KU55933 at the final concentration of 10 µM was

added. The cell lysate was then supplemented with 250 U Benzonase nuclease (Sigma),

MgCl2 to a final concentration of 4 mM and 2 µCi (32P)γATP (FP-301 Hartmann

Analytic).
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The lysate was incubated at 37 ◦C for 40 minutes. It was then cleared from the

chromatin with a maximum speed centrifugation, diluted by 1:5 with dilution buffer

and the input was kept. Proper amounts of GFP-trap (Chromotek), previously washed

with lysis:dilution buffer, were incubated with the supernatant for 1 hour at 4 ◦C with

agitation. The beads were then washed two times with lysis:dilution buffer and once

with washing buffer. Input and beads were boiled for 10 minutes at 95 ◦C in equal

amounts of 2x SDS protein sample loading buffer. Beads were centrifuged for 10 minutes

at maximum speed, in order to break the beads apart and release all the protein.

Samples were separated on 1 mm Bis-Tris, 4-12 % acrylamide NuPAGE gel according to

the manufacturers protocol (Invitrogen). the gel was stained with Coomassie Brilliant

blue and imaged (ImageScanner III GE Healthcare). Afterwards, the gel was destained,

dried for two hours with high temperature and exposed to imaging plates (Fuji Film).

Quantification for the kinase assay on purified C-terminal fragments was performed

by defining the intensity of every band in both the Coomassie staining and in the

autoradiography. In each case, the band signal was subtracted of the background sig-

nal present along the lane. Then, the autoradiography signal was normalized to the

Coomassie staining signal, defining per each band the ratio radioactive signal/amount.

The ratios from three different experiments were then averaged. Similarly, the quantifi-

cation for the kinase assay on purified mutant MacroD2 fragments was performed by

defining the intensity of every band and their ratio radioactive signal/coomassie signal,

as described above. Each His-construct intensity was then subtracted of the resid-

ual intensity in the His-S415A mutant, whose radioactivity signal is generated by the

degradation of the upper wild-type-containing band, when the GST-tag is lost. Then,

the adjusted His-construct intensities were normalized to the GST-construct intensity

of the same lane, normalized to the wild-type/wild-type ratio and averaged.

6.15 Phospho-peptide enrichment upon DNA damage

Lysis buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.5% NP-40

10 mM NaF

1 mM Na3VO4

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)
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Dilution buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.01% NP-40

10 mM NaF

1 mM Na3VO4

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Washing buffer

25 mM Tris-Cl, pH 7.5

500 mM NaCl

0.01% NP-40

10 mM NaF

1 mM Na3VO4

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Storage buffer

PBS

100 mM NaF

10 mM Na3VO4

phosphatase inhibitor cocktail (PhosSTOP Roche)

protease inhibitor cocktail (Roche)

Human U2OS cell lines stably expressing mYFPMacroD2 full length+mCherry-H2B

were treated with etoposide 5 M or DMSO for one hour. Cells were then collected on ice

and treated with lysis buffer. Lysates were than diluted 1:5 with dilution buffer. After

vigorous centrifugation, the supernatant was collected and the input was kept. Proper

amounts of GFP-trap (Chromotek), previously washed with lysis:dilution buffer, were

incubated with the supernatant for 1 hour at 4 ◦C with agitation. The beads were then

washed two times with lysis:dilution buffer and once with washing buffer. Beads were

then kept in storage buffer.

Further preparation, run of the machine and data analysis performed by Dr. An-
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dreas Schmidt. Proteins bound to beads were treated with 5 mM DTT to reduce

disulfide bonds and subsequently alkylated using 20 mM iodoacetamide. Proteins were

cleaved with AspN for 12 hours at 25 ◦C. Following proteolytic digest, peptide mixtures

were desalted on reverse-phase C18 stage tips. 90% of the peptide mixture was mixed

with 2 M glycolic acid for phosphopeptide enrichment on TiO2 as described in (407),

then loaded onto the prepared TiO2 resin (Glygen).

Eluted phosphopeptide mixtures and peptide mixtures were separated on an Ul-

timate 3000 nano-RP-HPLC coupled to an LTQ-Orbitrap mass spectrometer (both

Thermo-Fisher). The mass spectrometer was operated in data-dependent acquisition

mode with one survey scan for precursor mass detection and up to 6 MS/MS experi-

ments per cycle. CID-MS/MS experiments were conducted with multi-stage activation

for neutral loss masses of 32.7, 49 and 98. For MS acquisition, monoisotopic precursor

selection and dynamic exclusion for 30 seconds were enabled.

Raw data were searched with MaxQuant vs. 1.5 against a human protein database

(Uniprot, May 2015) and an in-house target database containing common target protein

and contaminants. All phosphopeptide hits for the MacroD2 were manually curated.

To quantify the phosphorylation, peak areas for the most abundant charged states for

unmodified peptides and phosphopeptides of the target protein were extracted from the

raw data of the tryptic peptide mixture before phosphopeptide enrichment and log2

normalized. Signal strength of unmodified peptides was used for normalization of the

protein amount between control and treatment experiments of each biological replicate.

6.16 Interaction assays with 14-3-3 proteins

6.16.1 14-3-3 proteins purification

All the expression plasmid of GST-14-3-3 proteins were purchased via Addgene. For

some of them, some mutagenesis steps were necessary to reproduce the sequence an-

notated on Uniprot. The GST-14-3-3 tagged proteins were purified according to the

protocol described before (see Methods 6.12), with the additional step of the size-

exclusion column purification. Proteins were stored in storage buffer.

6.16.2 Pull-down with biotinilated-MacroD2 peptides

Dilution buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl
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0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Washing buffer

25 mM Tris-Cl, pH 7.5

500 mM NaCl

0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Peptides were ordered from Metabion.

1. Biotin - G S L S Q R Q R S T S T P N V H (Control peptide - unphosphorylated)

2. Biotin - G S L S Q R Q R S T pS T P N V H (Control peptide - phosphorylated)

3. Biotin - N T P G P D V E M N S Q V D K V

4. Biotin - N T P G P D V E M N pS Q V D K V

5. Biotin - N T P G P D V E A N S Q V D K V

6. Biotin - N T P G P D V E A N pS Q V D K V

Peptides were dissolved following the instruction given by the manufacturer: 1 and 2

were dissolved in water; the other peptides were dissolved in 20% acetonitrile. Also,

to avoid the oxidation of the methionine, water and acetonitrile used for dissolve the

peptides have been previously insufflated with N2. All peptides were dissolved with a

concentration of 1 mg mL-1.

The peptides were then conjugated to Streptavidin Sepharose High Performance

(Sigma). 100 µg of peptide were resuspended in 400 µL PBS. In the meantime, 400 µL

of beads was washed three times with PBS + 0.1% NP-40. The beads and the peptides

were then combined and incubated on rotation over night at 4 ◦C. On the next day,

the beads were washed three times with PBS + 0.1% NP-40 to remove the unbound

peptide. The conjugated beads were then stored in PBS and kept at 4 ◦C.

Per each GST-tagged 14-3-3 recombinant protein, 2 µg of protein were resuspended

in in dilution buffer. To clear any precipitated protein from the solution, the samples

were centrifuged for 15 minutes at maximum speed and the supernatant was then
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6.16 Interaction assays with 14-3-3 proteins

transferred to a fresh tube. From the cleared supernatant, an aliquot was kept as

Input. At the same time, aliquots of 30 µL slurry conjugated beads were prepared and

washed three times in dilution buffer.

The protein solution was finally added to the conjugated beads and incubated with

rotation for 1 hour at 4 ◦C. Afterwards, beads were washed twice with dilution buffer

and once with washing buffer. Each sample with 15 µL beads had the supernatant

removed and was added with 20 µL 2x SDS protein sample loading buffer. The beads

were then boiled for 10 minutes at 95 ◦C and centrifuged for 10 minutes at maximum

speed, in order to break the beads apart and release all the protein.

Samples were separated on 12% acrylamide SDS-PAGE gel. For the western blot,

anti-GST (1:10) was used to probe the amount of GST-14-3-3 proteins purified by

means of the peptides.

6.16.3 Pull-down with purified MacroD2 fragments

Lysis buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.5% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Dilution buffer

25 mM Tris-Cl, pH 7.5

150 mM NaCl

0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)

Washing buffer

25 mM Tris-Cl, pH 7.5

500 mM NaCl

0.01% NP-40

phosphatase inhibitor cocktail (PhosSTOP - Roche)

protease inhibitor cocktail (Roche)
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6. MATERIAL AND METHODS

The purified proteins His-mEGFP-MacroD2 C-terminal (aa236-448) fragment (2

µg) were used together with a selection of GST-14-3-3 proteins (ε, ε K49E, ζ and β) (2

µg), with GST-EGFP as negative control. The same GST-14-3-3 proteins were used

for the next experiment, with the His-mEGFP-tagged MacroD2 (aa382-418) fragments

(wild-type, M413A and S415A) (7 µg).

HEK293 Flp-InTM T-RExTM cells (ThermoFisher) were collected on ice. Cells were

resuspended in lysis buffer, then incubated on ice for 30 minutes while mechanically

lysed by syringe. The cell lysate was then supplemented with 250 U Benzonase nuclease

(Sigma) and MgCl2 to a final concentration of 4 mM or only water as control.

The lysate was incubated at 37 ◦C for 40 minutes. It was then cleared from the chro-

matin with a maximum speed centrifugation, diluted by 1:5 with dilution buffer and the

input was kept. Proper amounts of glutathione Sepharose 4 Fast Flow (GE-Healthcare),

previously washed with lysis:dilution buffer, were incubated with the supernatant for 1

hour at 4 ◦C with agitation. The beads were then washed two times with lysis:dilution

buffer and once with washing buffer. Input and beads were boiled for 10 minutes at

95 ◦C in equal amounts of 2x SDS protein sample loading buffer. Samples were sep-

arated by 12% acrylamide SDS-PAGE gel. For the western blot, anti-GFP (1:1000)

was used to probe the amount of EGFP-MacroD2 fragments purified by means of the

GST-14-3-3 proteins.

6.16.4 Co-Immunopurification of 14-3-3 ε

HEK293 Flp-InTM T-RExTM stably expressing EGFP or EGFP-MacroD2 full-length

were plated and the recombinant protein expression was induced by 1mg/mL doxycy-

clin. On the next day, cells were treated for 1 hour with etoposide 10 µM and then

collected on ice. The whole cell extract was processed with RIPA buffer. In the mean-

time, aliquots of GFP-trap beads (Chromotek) were washed three times with RIPA

buffer. A part from the input aliquot, 5 mg of cell lysates were added to the beads

and incubated for 2 hours at 4 ◦C. Beads were then washed once with RIPA buffer and

twice with PBS.

Input and beads were boiled for 10 minutes at 95 ◦C in 2x SDS protein sample

loading buffer. The beads were centrifuged for 10 minutes at maximum speed, in order

to break the beads apart and release all the protein. 2.5% input and 25% beads were

loaded onto 12% acrylamide SDS-PAGE gel for separation. For the western blot, anti-

MacroD2 (1:1000) and anti-14-3-3 ε (1:1000) were used to interact the two perspective

interactors. Anti-GAPDH (1:10) was used as negative control for the pull-down.
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6.17 Co-immunopurification of MacroD2 interactome

6.17 Co-immunopurification of MacroD2 interactome

6.17.1 Generation of cell lines

HEK293 Flp-InTM T-RExTM were used to generate the four cell lines:

• EGFP-MacroD2 full-length

• EGFP-MacroD2 macrodomain (aa 1-243)

• EGFP-MacroD2 C-terminus (aa 237-448)

• EGFP

HEK293 Flp-InTM T-RExTM were plated in 6-well plates, in order to have 80%

confluency on the next day. On the next day, cells were transfected with either pcDNA5-

FRT/TO-EGFP, pcDNA5-FRT/TO-EGFP-C1-MacroD2 (aa 1-448), pcDNA5-FRT/TO-

EGFP-C1-MacroD2 (aa 1-243) or pcDNA5-FRT/TO-EGFP-C1-MacroD2 (aa 237-448),

together with pOG44 Flippase in a 1:9 ratio. In one well, pmEGFP was used as positive

control for the transfection. The transfection was performed with the reagent Xfect

(Clontech), according to the manufacturer’s recommendations. On the next day, cells

from one well were plated into seven 150-cm2 dishes (TPP) in medium added with blas-

ticidin (15 µg mL-1) and hygromicin (100 µg mL-1). This strong dilution was meant to

have single colony formation in the big plates.

For two weeks, cells were grown in selecting medium, which was changed every three

days to restore the selecting capacity. After two weeks, 14 colonies were collected and

transfered into 96-well plates. As soon as cells became confluent, cells were transfered

into a support with greater surface, in order to amplify them. In each stage, slowest-

growing colonies were trashed. When reached the 6-well stage, colonies were plated

and induced with 1mg mL-1 doxycyclin. The next day, cells were collected and tested

by western blot (anti-GFP) to check for the correct size of the expressed construct.

Colonies were also screened for fluorescence intensity. The three colonies left for each

construct were then tested at the microscope for response to laser microirradiation. This

test was also performed before each biological replicate preparation. Only the colony

per each construct that was best performing for fluorescence intensity and growth rate

was used for the real experiment.

6.17.2 Co-immunopurification

Each experiment was performed in four biological replicates. The four cell lines de-

scribed above, HEK293 Flp-InTM T-RExTM expressing EGFP, EGFP-MacroD2 full-
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length, EGFP-MacroD2 macrodomain and EGFP-MacroD2 C-terminus, were grown in

normal medium, in two different plates. One day before the treatment and collection, all

cells were induced with 1 mg mL-1 doxycyclin. On the next day, EGFP-MacroD2 full-

length, macrodomain and C-terminus-expressing cells were treated either with DMSO

or etoposide 10 µM for 1 hour.

Cells were collected on ice, washed with PBS and treated with RIPA buffer, in order

to obtain the whole cell extract. In the meantime, aliquots of homemade GFP (for the

first replicate) or GFP-trap beads (Chromotek, for the second to fourth replicate) were

washed three times with RIPA buffer. A part from the input aliquot, 5 mg of cell

lysates were added to the beads and incubated for 2 hours at 4 ◦C.

1. EGFP

2. EGFP-MacroD2 full-length DMSO

3. EGFP-MacroD2 full-length etoposide

4. EGFP-MacroD2 macrodomain DMSO

5. EGFP-MacroD2 macrodomain etoposide

6. EGFP-MacroD2 C-terminus DMSO

7. EGFP-MacroD2 C-terminus etoposide

Beads were then washed once with RIPA buffer and twice with PBS. The samples

were than brought to Dr. Schmidt to perform the rest of the processing. Disulfide

bonds were reduced with dithioteitrol at 56 ◦C. Then, the free cysteines were alky-

lated with 10 mM iodoacetamide in 100 mM Tris, 6 M urea. The urea is added to

unfold the proteins and make them more accessible to both alkylation and following

digestion steps. Proteins are then pre-digested with Lys-C (200 ng/sample) at 30 ◦C

on rotation for 4 hours, in order to pre-cleave the proteins and remove the beads. Af-

ter centrifugation, the supernatant was transfered into a new vial and the beads were

washed two times with 100 mM ammonium bicarbonate. Each wash was added to the

above-mentioned supernatant, to collect all the proteins from the beads. The collected

proteins were then digested by trypsin (1 µg per sample) for 12 hours at 30 ◦C. The

output peptides of Lys-C and trypsin digestion are exactly the same, so that for in

silico peptide identification in the analysis, we could consider as only the trypsin have

been used.
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6.17 Co-immunopurification of MacroD2 interactome

6.17.3 Mass spectrometry

After a desalting step, Dr. Schmidt performed the mass spectrometry run. Tryptic

protein digests were analyzed by nano-high performance liquid chromatography mass

spectrometry (HPLC-MS) on an Ultimate 3000 nanoLC system (Thermo-Fisher), cou-

pled to a quadrupole time-of-flight (qTOF) mass spectrometer 6600 Triple TOF (Sciex).

First, acidified peptides were injected onto a trapping column (5 x 0.3 mm) packed

with C18 material (Thermo-Fisher, Acclaim PepMap, 5 µm, 100 Å) to remove salt and

chemicals applied during chromatography at a flow rate of 20 µL min-1 of 0.05% TFA

solution.

After the washing phase, peptides were separated on a nano-RP-C18 column (Thermo-

Fisher, Acclaim PepMap, 250 x 0.075 mm x 2.4 µm, 100 Å) using a linear gradient from

4-35% ACN over a mixing time of 120 min. The column outlet was directly coupled

to the electrospray-source to introduce the peptides into the mass spectrometer. The

mass spectrometer was operated in data-dependent acquisition mode detecting peptides

eluting from the chromatography column in a survey scan from 300-2000 m/z. Up to

40 precursor signals were subjected to fragmentation analysis by collision-induced dis-

sociation per operation cycle of 3 seconds. Precursor ions which were fragmented in

previous cycles were excluded for 30 seconds to reduce re-analysis and obtain deeper

proteomic data.

6.17.4 Data analysis

Peptide identification was performed by mean of the Andromeda search engine inte-

grated in the MaxQuant software (408). All samples were mapped against a database

containing the amino acids sequences of human proteins (Uniprot, vs. Oct 2015). Com-

pared to the other three, the first biological replicate performed very poorly and was

then excluded from the analysis.

As intensities, a Max-Quant-embedded algorithm was used (379). For one protein,

iBAQ signal consists of the the sum of all the peptides intensities divided by the number

of theoretical peptides generated by the in silico digestion. For normalization of the

different samples, every iBAQ signal was divided by a coefficient defined per each

sample. To obtain the sample-specific coefficient, the peptides that are present in most

samples were identified. The median iBAQ for each sample was then calculated and

each median was normalized against the highest median value.

The normalized iBAQ signals of the different proteins were then filtered in order

to keep only those proteins that were present in all the biological replicate of one
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specific condition (for example, protein present in replicate 2, 3 and 4 for MacroD2

macrodomain DMSO were kept, even if missing in all others conditions). Then, in

place of the missing values, the iBAQ values were inputed by mean of a normal dis-

tribution. Successively, t-tests between different samples were performed. Each t-test

was performed by using 0.1 as minimal fold enrichment and 0.08 as false discovery

rate (FDR). For the full-length conditions, the enrichments were performed against the

EGFP negative control and the full-length fragment with the opposite treatment, for

a total of two enrichments per condition. For the macrodomain and C-terminus frag-

ments, the enrichments were performed against the EGFP negative control, the same

fragment with the opposite treatment and the opposite fragment in both treatment,

for a total of four enrichments per condition.

Having these series of enrichments, two protein list types were generated. The first

list, the common proteins, is generated by selecting the proteins shared by at least two

enrichments for the same condition. The second list is the pool of all the proteins found

enriched in all the enrichments of a condition. Each of the two lists was then analyzed by

means of the STRING database and its embedded software (http://string-db.org/).

The common lists were further checked for the amount of overlap, by means of the

Venny 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/). The filtered common

lists were again analyzed with the STRING associated software.
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Appendix A

Lists of MacroD2 interactors

A.1 MacroD2 full-length DMSO protein list

Protein name Gene name

MacroD2 full-length DMSO over EGFP

Costars family protein ABRACL ABRACL

Apoptotic chromatin condensation inducer in the nucleus ACIN1

T-complex protein 1 subunit epsilon CCT5

Cx9C motif-containing protein 4 CMC4

Elongation factor 1-beta EEF1B2

Eukaryotic translation initiation factor 3 subunit K EIF3K

Fragile X mental retardation syndrome-related protein 1 FXR1

Heat shock 70 kDa protein 12A HSPA12A

Leucine-rich repeat-containing protein 59 LRRC59

O-acetyl-ADP-ribose deacetylase MACROD2 MACROD2

Microtubule-associated protein RP/EB family member 1 MAPRE1

Phosphatidylethanolamine-binding protein 1 PEBP1

Ran-specific GTPase-activating protein RANBP1

60S ribosomal protein L31 RPL31

40S ribosomal protein S10 RPS10

Tubulin-specific chaperone A TBCA

Treacle protein TCOF1

Nucleolysin TIAR TIAL1

MacroD2 full-length DMSO over full-length etoposide

Continues on next page
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Table A.1 – Continued from previous page

Protein name Gene name

Aminoacyl tRNA synthase complex-interacting protein 2 AIMP2

ATPase family AAA domain-containing protein 3A ATAD3A

Calmodulin-like protein 5 CALML5

Cystathionine beta-synthase CBS

Eukaryotic translation initiation factor 3 subunit C EIF3C

Eukaryotic translation initiation factor 3 subunit K EIF3K

Guanine nucleotide-binding protein (...) subunit beta-1 GNB1

Histone H2A.V H2AFV

Histone H2A type 1-J HIST1H2AJ

Galectin-7 LGALS7

NF-kappa-B-activating protein NKAP

Poly(U)-binding-splicing factor PUF60 PUF60

RNA-binding protein 3 RBM3

Iporin RUSC2

Ubiquitin carboxyl-terminal hydrolase 5 USP5

Table A.1: MacroD2 full-length DMSO - Overview of enriched proteins in MacroD2

full-length DMSO sample, when compared with EGFP and MacroD2 full-length etoposide

samples.

Protein name Gene name

MacroD2 full-length DMSO common proteins

Eukaryotic translation initiation factor 3 subunit K EIF3K

Table A.2: MacroD2 full-length DMSO, common proteins - Overview of the pro-

teins that are in common among the different “MacroD2 full-length DMSO” enrichments.

A.2 MacroD2 full-length etoposide protein list

Protein name Gene name

MacroD2 full-length etoposide over EGFP

Apoptotic chromatin condensation inducer in the nucleus ACIN1

Continues on next page
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A.2 MacroD2 full-length etoposide protein list

Table A.3 – Continued from previous page

Protein name Gene name

Sodium/potassium-transporting ATPase (...) alpha-1 ATP1A1

Cx9C motif-containing protein 4 CMC4

Elongation factor 1-beta EEF1B2

Protein FAM98A FAM98A

Leucine zipper putative tumor suppressor 3 LZTS3

O-acetyl-ADP-ribose deacetylase MACROD2 MACROD2

Microtubule-associated protein RP/EB family member 1 MAPRE1

28S ribosomal protein S23 (mitochondrial) MRPS23

Myotrophin MTPN

Phosphatidylethanolamine-binding protein 1 PEBP1

Proteasome subunit alpha type-6 PSMA6

RNA-binding protein 26 RBM26

60S ribosomal protein L31 RPL31

40S ribosomal protein S10 RPS10

Splicing factor 3B subunit 5 SF3B5

Sorting nexin-9 SNX9

Spermidine synthase SRM

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Thyroid receptor-interacting protein 6 TRIP6

Tumor susceptibility gene 101 protein TSG101

MacroD2 full-length etoposide over full-length DMSO

Leucine zipper putative tumor suppressor 3 LZTS3

Myotrophin MTPN

Ornithine aminotransferase (mitochondrial) OAT

RNA-binding protein Raly RALY

RNA-binding protein 26 RBM26

Splicing factor 3B subunit 5 SF3B5

Serine hydroxymethyltransferase (mitochondrial) SHMT2

Sorting nexin-9 SNX9

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Thyroid receptor-interacting protein 6 TRIP6

Tubulin beta-2B chain TUBB2B

Table A.3: MacroD2 full-length etoposide - Overview of enriched proteins in

MacroD2 full-length etoposide sample, when compared with EGFP and MacroD2 full-

length DMSO samples.
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Protein name Gene name

EGFP-MacroD2 full-length etoposide common proteins

Leucine zipper putative tumor suppressor 3 LZTS3

Myotrophin MTPN

RNA-binding protein 26 RBM26

Splicing factor 3B subunit 5 SF3B5

Sorting nexin-9 SNX9

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Thyroid receptor-interacting protein 6 TRIP6

Table A.4: MacroD2 full-length etoposide, common proteins - Overview of the

proteins that are in common among the different “MacroD2 full-length etoposide” enrich-

ments.

A.3 MacroD2 macrodomain DMSO protein list

Protein name Gene name

MacroD2 macrodomain DMSO over EGFP

ATP-citrate synthase ACLY

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

Sodium/potassium-transporting ATPase (...) alpha-1 ATP1A1

Calreticulin CALR

T-complex protein 1 subunit epsilon CCT5

T-complex protein 1 subunit zeta CCT6A

T-complex protein 1 subunit eta CCT7

Chromatin target of PRMT1 protein CHTOP

Dihydrolipoyl dehydrogenase (mitochondrial) DLD

DnaJ homolog subfamily A member 1 DNAJA1

Aspartyl aminopeptidase DNPEP

Enoyl-CoA hydratase (mitochondrial) ECHS1

Elongation factor 1-beta EEF1B2

Eukaryotic translation initiation factor 2 subunit 1 EIF2S1

Eukaryotic peptide chain release factor subunit 1 ETF1

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Fragile X mental retardation syndrome-related protein 1 FXR1

Glutathione S-transferase omega-1 GSTO1

Continues on next page
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Table A.5 – Continued from previous page

Protein name Gene name

Histidine triad nucleotide-binding protein 1 HINT1

Importin subunit beta-1 KPNB1

L-lactate dehydrogenase B chain LDHB

Protein ERGIC-53 LMAN1

Leucine-rich repeat-containing protein 59 LRRC59

O-acetyl-ADP-ribose deacetylase MACROD2 MACROD2

MARCKS-related protein MARCKSL1

39S ribosomal protein L12 (mitochondrial) MRPL12

Myosin light polypeptide 6 MYL6

Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase NOP2

tRNA (cytosine(34)-C(5))-methyltransferase NSUN2

Protein disulfide-isomerase P4HB

Proliferation-associated protein 2G4 PA2G4

28 kDa heat- and acid-stable phosphoprotein PDAP1

Programmed cell death protein 5 PDCD5

Phosphatidylethanolamine-binding protein 1 PEBP1

ATP-dependent 6-phosphofructokinase. platelet type PFKP

Prohibitin PHB

DNA-directed RNA polymerases I and III subunit RPAC1 POLR1C

DNA-directed RNA polymerase II subunit RPB3 POLR2C

26S proteasome non-ATPase regulatory subunit 7 PSMD7

RNA-binding protein Raly RALY

Ran-specific GTPase-activating protein RANBP1

RNA-binding protein 4 RBM4

60S ribosomal protein L31 RPL31

40S ribosomal protein S10 RPS10

40S ribosomal protein S14 RPS14

40S ribosomal protein S21 RPS21

RuvB-like 1 RUVBL1

SUMO-activating enzyme subunit 1 SAE1

Endophilin-A1 SH3GL2

Phosphate carrier protein (mitochondrial) SLC25A3

Staphylococcal nuclease domain-containing protein 1 SND1

Small nuclear ribonucleoprotein F SNRPF

Sorting nexin-9 SNX9

Superoxide dismutase [Cu-Zn] SOD1

Spermidine synthase SRM

Serine/arginine-rich splicing factor 5 SRSF5

Tubulin-specific chaperone A TBCA

Transcription elongation regulator 1 TCERG1

Nucleolysin TIAR TIAL1

Mitochondrial import inner (...) translocase TIM50 TIMM50

Continues on next page
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Table A.5 – Continued from previous page

Protein name Gene name

Transketolase TKT

Translation machinery-associated protein 16 TMA16

Thioredoxin domain-containing protein 5 TXNDC5

UBX domain-containing protein 1 UBXN1

14-3-3 protein beta/alpha YWHAB

14-3-3 protein zeta/delta YWHAZ

MacroD2 macrodomain DMSO over macrodomain etoposide

Multidrug resistance protein 3 ABCB4

Actin-like protein 6A ACTL6A

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

Rho GDP-dissociation inhibitor 1 ARHGDIA

Sodium/potassium-transporting ATPase (...) alpha-1 ATP1A1

ATP synthase subunit gamma (mitochondrial) ATP5C1

ATPase inhibitor (mitochondrial) ATPIF1

BAG family molecular chaperone regulator 2 BAG2

Complement C1q tumor necrosis factor-related protein 8 C1QTNF8

Calreticulin CALR

T-complex protein 1 subunit theta CCT8

Corneodesmosin CDSN

Chromatin target of PRMT1 protein CHTOP

Density-regulated protein DENR

Dihydrolipoyl dehydrogenase (mitochondrial) DLD

Enoyl-CoA hydratase (mitochondrial) ECHS1

Emerin EMD

Peptidyl-prolyl cis-trans isomerase FKBP3 FKBP3

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Protein FRG1 FRG1

Far upstream element-binding protein 1 FUBP1

Glutathione S-transferase omega-1 GSTO1

Histidine triad nucleotide-binding protein 1 HINT1

Ig alpha-2 chain C region IGHA2

Protein lin-7 homolog C LIN7C

Leucine-rich repeat-containing protein 59 LRRC59

Malate dehydrogenase (mitochondrial) MDH2

39S ribosomal protein L12 (mitochondrial) MRPL12

mRNA turnover protein 4 homolog MRTO4

Myotubularin-related protein 4 MTMR4

Myosin-10 MYH10

Myosin-9 MYH9

Myosin regulatory light chain 12A MYL12A

Continues on next page
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Table A.5 – Continued from previous page

Protein name Gene name

Nuclear autoantigenic sperm protein NASP

Protein disulfide-isomerase P4HB

Proliferation-associated protein 2G4 PA2G4

28 kDa heat- and acid-stable phosphoprotein PDAP1

Phosphatidylethanolamine-binding protein 1 PEBP1

Serine/threonine-protein phosphatase PGAM5 (mitochondrial) PGAM5

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Peroxiredoxin-4 PRDX4

Phosphoribosyl pyrophosphate synthase-associated protein 2 PRPSAP2

GTP-binding nuclear protein Ran RAN

Arginine–tRNA ligase. cytoplasmic RARS

RNA-binding protein 4 RBM4

60S ribosomal protein L28 RPL28

60S ribosomal protein L37a RPL37A

40S ribosomal protein S23 RPS23

SUMO-activating enzyme subunit 1 SAE1

Endophilin-A1 SH3GL2

Staphylococcal nuclease domain-containing protein 1 SND1

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Sorting nexin-9 SNX9

Spermidine synthase SRM

Serine/arginine-rich splicing factor 1 SRSF1

Serine/arginine-rich splicing factor 5 SRSF5

Stathmin STMN1

Suppressor of G2 allele of SKP1 homolog SUGT1

Transgelin-2 TAGLN2

Tubulin-specific chaperone A TBCA

Tubulin-folding cofactor B TBCB

Transcription elongation regulator 1 TCERG1

Nucleolysin TIAR TIAL1

Mitochondrial import inner (...) translocase subunit TIM50 TIMM50

Transketolase TKT

Transmembrane protein 178A TMEM178A

DNA topoisomerase 1 TOP1

Tubulin beta-2B chain TUBB2B

Ubiquitin-conjugating enzyme E2 S UBE2S

Cytochrome b-c1 complex subunit 1 (mitochondrial) UQCRC1

Voltage-dependent anion-selective channel protein 3 VDAC3

14-3-3 protein zeta/delta YWHAZ

MacroD2 macrodomain DMSO over C-terminus DMSO

Continues on next page
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Table A.5 – Continued from previous page

Protein name Gene name

Acidic leucine-rich nuclear (...) 32 family member A ANP32A

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2

T-complex protein 1 subunit zeta CCT6A

T-complex protein 1 subunit theta CCT8

Corepressor interacting with RBPJ 1 CIR1

DnaJ homolog subfamily A member 1 DNAJA1

Eukaryotic peptide chain release factor subunit 1 ETF1

Peptidyl-prolyl cis-trans isomerase FKBP1A FKBP1A

Guanine nucleotide-binding protein (...) subunit beta-1 GNB1

Histidine triad nucleotide-binding protein 1 HINT1

Ig alpha-2 chain C region IGHA2

Protein lin-7 homolog C LIN7C

Protein ERGIC-53 LMAN1

Prelamin-A/C;Lamin-A/C LMNA

mRNA turnover protein 4 homolog MRTO4

Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase NOP2

tRNA (cytosine(34)-C(5))-methyltransferase NSUN2

Phosphatidylethanolamine-binding protein 1 PEBP1

26S proteasome non-ATPase regulatory subunit 7 PSMD7

GTP-binding nuclear protein Ran RAN

Serine hydroxymethyltransferase (mitochondrial) SHMT2

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Stathmin STMN1

Tubulin-specific chaperone A TBCA

Triosephosphate isomerase TPI1

Thioredoxin domain-containing protein 5 TXNDC5

Voltage-dependent anion-selective channel protein 3 VDAC3

14-3-3 protein zeta/delta YWHAZ

MacroD2 macrodomain DMSO over C-terminus etoposide

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

BAG family molecular chaperone regulator 2 BAG2

Calmodulin CALM1

T-complex protein 1 subunit zeta CCT6A

Cleavage and polyadenylation specificity factor subunit 2 CPSF2

Putative ATP-dependent RNA helicase DHX30 DHX30

DnaJ homolog subfamily A member 1 DNAJA1

Emerin EMD

Far upstream element-binding protein 1 FUBP1

Glutamine synthetase GLUL

Continues on next page
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Protein name Gene name

Ig heavy chain V-III region KOL IGHV3-23

Prelamin-A/C LMNA

mRNA turnover protein 4 homolog MRTO4

Myosin-10 MYH10

Phosphatidylethanolamine-binding protein 1 PEBP1

Serine/threonine-protein phosphatase PP1-gamma (...) PPP1CC

Peroxiredoxin-4 PRDX4

26S proteasome non-ATPase regulatory subunit 4 PSMD4

Tyrosine-protein phosphatase non-receptor type 11 PTPN11

RNA-binding protein 4 RBM4

60S ribosomal protein L28 RPL28

U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200

Serine/arginine-rich splicing factor 5 SRSF5

Transcription elongation regulator 1 TCERG1

Thioredoxin domain-containing protein 5 TXNDC5

UBX domain-containing protein 1 UBXN1

Cytochrome b-c1 complex subunit 1 (mitochondrial) UQCRC1

Table A.5: MacroD2 macrodomain DMSO - Overview of enriched proteins

in MacroD2 macrodomain DMSO sample, when compared with EGFP, MacroD2

macrodomain etoposide, MacroD2 C-terminus DMSO and MacroD2 C-terminus etoposide.

Protein name Gene name

MacroD2 macrodomain DMSO common proteins

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

Sodium/potassium-transporting ATPase (...) alpha-1 ATP1A1

BAG family molecular chaperone regulator 2 BAG2

Calreticulin CALR

T-complex protein 1 subunit zeta CCT6A

T-complex protein 1 subunit theta CCT8

Chromatin target of PRMT1 protein CHTOP

Dihydrolipoyl dehydrogenase (mitochondrial) DLD

DnaJ homolog subfamily A member 1 DNAJA1

Enoyl-CoA hydratase (mitochondrial) ECHS1

Emerin EMD

Eukaryotic peptide chain release factor subunit 1 ETF1

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Far upstream element-binding protein 1 FUBP1

Continues on next page
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Protein name Gene name

Glutathione S-transferase omega-1 GSTO1

Histidine triad nucleotide-binding protein 1 HINT1

Ig alpha-2 chain C region IGHA2

Protein lin-7 homolog C LIN7C

Protein ERGIC-53 LMAN1

Prelamin-A/C;Lamin-A/C LMNA

Leucine-rich repeat-containing protein 59 LRRC59

39S ribosomal protein L12 (mitochondrial) MRPL12

mRNA turnover protein 4 homolog MRTO4

Myosin-10 MYH10

Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase NOP2

tRNA (cytosine(34)-C(5))-methyltransferase NSUN2

Protein disulfide-isomerase P4HB

Proliferation-associated protein 2G4 PA2G4

28 kDa heat- and acid-stable phosphoprotein PDAP1

Phosphatidylethanolamine-binding protein 1 PEBP1

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Peroxiredoxin-4 PRDX4

26S proteasome non-ATPase regulatory subunit 7 PSMD7

GTP-binding nuclear protein Ran RAN

RNA-binding protein 4 RBM4

60S ribosomal protein L28 RPL28

SUMO-activating enzyme subunit 1 SAE1

Endophilin-A1 SH3GL2

Staphylococcal nuclease domain-containing protein 1 SND1

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Sorting nexin-9 SNX9

Spermidine synthase SRM

Serine/arginine-rich splicing factor 5 SRSF5

Stathmin STMN1

Tubulin-specific chaperone A TBCA

Transcription elongation regulator 1 TCERG1

Nucleolysin TIAR TIAL1

Mitochondrial import inner (...) translocase subunit TIM50 TIMM50

Transketolase TKT

Thioredoxin domain-containing protein 5 TXNDC5

UBX domain-containing protein 1 UBXN1

Cytochrome b-c1 complex subunit 1 (mitochondrial) UQCRC1

Voltage-dependent anion-selective channel protein 3 VDAC3

14-3-3 protein zeta/delta YWHAZ

Continues on next page
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Protein name Gene name

Table A.6: MacroD2 macrodomain DMSO, common proteins - Overview of the

proteins that are in common among the different “MacroD2 macrodomain DMSO” enrich-

ments.

A.4 MacroD2 macrodomain etoposide protein list

Protein name Gene name

MacroD2 macrodomain etoposide over EGFP

Acidic leucine-rich nuclear (...) 32 family member E ANP32E

Cx9C motif-containing protein 4 CMC4

Fragile X mental retardation syndrome-related protein 1 FXR1

Keratin. type I cytoskeletal 18 KRT18

Programmed cell death protein 6 PDCD6

60S ribosomal protein L31 RPL31

Survival of motor neuron-related-splicing factor 30 SMNDC1

MacroD2 macrodomain etoposide over macrodomain DMSO

Alpha-aminoadipic semialdehyde dehydrogenase ALDH7A1

Annexin A7 ANXA7

Calmodulin-like protein 5 CALML5

Coiled-coil domain-containing protein 80 CCDC80

Bifunctional coenzyme A synthase COASY

Coronin-1C CORO1C

dCTP pyrophosphatase 1 DCTPP1

DnaJ homolog subfamily C member 2 DNAJC2

Four and a half LIM domains protein 1 FHL1

Ras GTPase-activating protein-binding protein 2 G3BP2

Histone H2A type 1-J HIST1H2AJ

Heat shock 70 kDa protein 12A HSPA12A

Isocitrate dehydrogenase [NAD] subunit beta (mitochondrial) IDH3B

Keratin. type I cytoskeletal 18 KRT18

Keratin. type II cytoskeletal 6B KRT6B

Methylated-DNA–protein-cysteine methyltransferase MGMT

Poly [ADP-ribose] polymerase 1 PARP1

Proteasome subunit alpha type-3 PSMA3

SWI/SNF complex subunit SMARCC1 SMARCC1

Continues on next page
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Protein name Gene name

SWI/SNF-related (...) regulator of chromatin subfamily E 1 SMARCE1

Stomatin-like protein 2 (mitochondrial) STOML2

Nesprin-1 SYNE1

Vacuolar protein sorting-associated protein 28 homolog VPS28

MacroD2 macrodomain etoposide over C-terminus etoposide

Alpha-aminoadipic semialdehyde dehydrogenase ALDH7A1

Acidic leucine-rich nuclear (...) 32 family member B ANP32B

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2

T-complex protein 1 subunit delta CCT4

Putative ATP-dependent RNA helicase DHX30 DHX30

Enoyl-CoA hydratase (mitochondrial) ECHS1

Protein FAM98B FAM98B

Ras GTPase-activating protein-binding protein 2 G3BP2

Glutamine synthetase GLUL

Ig heavy chain V-III region KOL IGHV3-23

mRNA turnover protein 4 homolog MRTO4

Polyadenylate-binding protein 2 PABPN1

Poly [ADP-ribose] polymerase 1 PARP1

26S proteasome non-ATPase regulatory subunit 4 PSMD4

40S ribosomal protein S29 RPS29

Survival of motor neuron-related-splicing factor 30 SMNDC1

Signal recognition particle subunit SRP68 SRP68

Transcription elongation factor SPT5 SUPT5H

UBX domain-containing protein 1 UBXN1

Cytochrome b-c1 complex subunit 1 (mitochondrial) UQCRC1

Vacuolar protein sorting-associated protein 28 homolog VPS28

MacroD2 macrodomain etoposide over C-terminus DMSO

Acidic leucine-rich nuclear (...) 32 family member A ANP32A

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2

Coiled-coil domain-containing protein 80 CCDC80

dCTP pyrophosphatase 1 DCTPP1

Protein FAM98B FAM98B

Guanine nucleotide-binding protein (...) subunit beta-1 GNB1

Histidine triad nucleotide-binding protein 1 HINT1

Histone H2A type 1-J HIST1H2AJ

Keratin. type I cytoskeletal 18 KRT18

Prelamin-A/C;Lamin-A/C LMNA

Methylcrotonoyl-CoA carboxylase beta chain (mitochondrial) MCCC2
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Protein name Gene name

mRNA turnover protein 4 homolog MRTO4

Poly [ADP-ribose] polymerase 1 PARP1

Programmed cell death protein 6 PDCD6

26S proteasome non-ATPase regulatory subunit 7 PSMD7

Histone-binding protein RBBP7 RBBP7

Serine hydroxymethyltransferase (mitochondrial) SHMT2

SWI/SNF-related (...) regulator of chromatin subfamily E 1 SMARCE1

Survival of motor neuron-related-splicing factor 30 SMNDC1

Transcription elongation factor SPT5 SUPT5H

Nesprin-1 SYNE1

Vacuolar protein sorting-associated protein 28 homolog VPS28

Table A.7: MacroD2 macrodomain etoposide - Overview of enriched proteins

in MacroD2 macrodomain etoposide sample, when compared with EGFP, MacroD2

macrodomain DMSO, MacroD2 C-terminus etoposide and MacroD2 C-terminus DMSO.

Protein name Gene name

MacroD2 macrodomain etoposide common proteins

Alpha-aminoadipic semialdehyde dehydrogenase ALDH7A1

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2

Coiled-coil domain-containing protein 80 CCDC80

dCTP pyrophosphatase 1 DCTPP1

Protein FAM98B FAM98B

Ras GTPase-activating protein-binding protein 2 G3BP2

Histone H2A type 1-J HIST1H2AJ

Keratin. type I cytoskeletal 18 KRT18

mRNA turnover protein 4 homolog MRTO4

Poly [ADP-ribose] polymerase 1 PARP1

Programmed cell death protein 6 PDCD6

SWI/SNF-related (...) regulator of chromatin subfamily E 1 SMARCE1

Survival of motor neuron-related-splicing factor 30 SMNDC1

Transcription elongation factor SPT5 SUPT5H

Nesprin-1 SYNE1

Vacuolar protein sorting-associated protein 28 homolog VPS28

Continues on next page
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Protein name Gene name

Table A.8: MacroD2 macrodomain etoposide, common proteins - Overview of

the proteins that are in common among the different “MacroD2 macrodomain etoposide”

enrichments.

A.5 MacroD2 C-terminus DMSO protein list

Protein name Gene name

MacroD2 C-terminus DMSO over EGFP

Uncharacterized protein C9orf43 C9orf43

Calnexin CANX

Cx9C motif-containing protein 4 CMC4

Dihydrolipoyl dehydrogenase (mitochondrial) DLD

Aspartyl aminopeptidase DNPEP

Elongation factor 1-beta EEF1B2

Eukaryotic translation initiation factor 3 subunit K EIF3K

Fragile X mental retardation syndrome-related protein 1 FXR1

Non-POU domain-containing octamer-binding protein NONO

Proliferation-associated protein 2G4 PA2G4

28 kDa heat- and acid-stable phosphoprotein PDAP1

Phosphatidylethanolamine-binding protein 1 PEBP1

60S ribosomal protein L31 RPL31

Protein SET SET

Splicing factor 1 SF1

U1 small nuclear ribonucleoprotein C SNRPC

Small nuclear ribonucleoprotein F SNRPF

Spermidine synthase SRM

Tubulin-specific chaperone A TBCA

Transcription elongation regulator 1 TCERG1

Translation machinery-associated protein 16 TMA16

NEDD8-conjugating enzyme Ubc12 UBE2M

MacroD2 C-terminus DMSO over C-terminus etoposide

Probable ATP-dependent RNA helicase DDX11 DDX11

Eukaryotic translation initiation factor 3 subunit K EIF3K

Far upstream element-binding protein 1 FUBP1

Ig heavy chain V-III region KOL IGHV3-23

Continues on next page
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Protein name Gene name

Serine/threonine-protein phosphatase PP1-gamma (...) PPP1CC

RNA-binding protein 4 RBM4

Transcription elongation regulator 1 TCERG1

Tubulin alpha-1C chain TUBA1C

UBX domain-containing protein 1 UBXN1

MacroD2 C-terminus DMSO over macrodomain DMSO

Uncharacterized protein C9orf43 C9orf43

Bifunctional coenzyme A synthase COASY

Probable ATP-dependent RNA helicase DDX11 DDX11

Protein FAM133B FAM133B

Heterogeneous nuclear ribonucleoprotein H2 HNRNPH2

LanC-like protein 2 LANCL2

Methylated-DNA–protein-cysteine methyltransferase MGMT

Polymerase delta-interacting protein 3 POLDIP3

Pre-mRNA-splicing factor 38B PRPF38B

Splicing factor 1 SF1

U1 small nuclear ribonucleoprotein C SNRPC

MacroD2 C-terminus DMSO over macrodomain etoposide

Rho GDP-dissociation inhibitor 1 ARHGDIA

Probable ATP-dependent RNA helicase DDX11 DDX11

Density-regulated protein DENR

Isochorismatase domain-containing protein 2 (mitochondrial) ISOC2

39S ribosomal protein L12 (mitochondrial) MRPL12

Myotubularin-related protein 4 MTMR4

28 kDa heat- and acid-stable phosphoprotein PDAP1

Arginine–tRNA ligase (cytoplasmic) RARS

RNA-binding protein 4 RBM4

Splicing factor 1 SF1

U1 small nuclear ribonucleoprotein C SNRPC

Spermidine synthase SRM

Tubulin-specific chaperone A TBCA

Transcription elongation regulator 1 TCERG1

Nucleolar protein of 40 kDa ZCCHC17

Zinc finger CCHC domain-containing protein 3 ZCCHC3

Continues on next page
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Protein name Gene name

Table A.9: MacroD2 C-terminus DMSO - Overview of enriched proteins in MacroD2

C-terminus DMSO sample, when compared with EGFP, MacroD2 C-terminus etoposide,

MacroD2 macrodomain DMSO and MacroD2 macrodomain etoposide.

Protein name Gene name

MacroD2 C-terminus DMSO common proteins

Uncharacterized protein C9orf43 C9orf43

Probable ATP-dependent RNA helicase DDX11 DDX11

Eukaryotic translation initiation factor 3 subunit K EIF3K

28 kDa heat- and acid-stable phosphoprotein PDAP1

RNA-binding protein 4 RBM4

Splicing factor 1 SF1

U1 small nuclear ribonucleoprotein C SNRPC

Spermidine synthase SRM

Tubulin-specific chaperone A TBCA

Transcription elongation regulator 1 TCERG1

Table A.10: MacroD2 C-terminus DMSO, common proteins - Overview of the

proteins that are in common among the different “MacroD2 C-terminus DMSO” enrich-

ments.

A.6 MacroD2 C-terminus etoposide protein list

Protein name Gene name

MacroD2 C-terminus etoposide over EGFP

Fructose-bisphosphate aldolase A ALDOA

Calreticulin CALR

T-complex protein 1 subunit epsilon CCT5

Chromatin target of PRMT1 protein CHTOP

Spliceosome RNA helicase DDX39B DDX39B

Dihydrolipoyl dehydrogenase. mitochondrial DLD

Enoyl-CoA hydratase. mitochondrial ECHS1
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Protein name Gene name

Eukaryotic peptide chain release factor subunit 1 ETF1

Fatty acid-binding protein. epidermal FABP5

Protein FAM98A FAM98A

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Glutathione S-transferase omega-1 GSTO1

Heat shock 70 kDa protein 12A HSPA12A

Importin subunit beta-1 KPNB1

Protein ERGIC-53 LMAN1

Leucine-rich repeat-containing protein 59 LRRC59

Leucine zipper putative tumor suppressor 3 LZTS3

Microtubule-associated protein RP/EB family member 1 MAPRE1

DNA helicase MCM9 MCM9

Myotrophin MTPN

Phosphatidylethanolamine-binding protein 1 PEBP1

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Proteasome subunit alpha type-6 PSMA6

Ran-specific GTPase-activating protein RANBP1

Histone-binding protein RBBP4 RBBP4

Replication protein A 32 kDa subunit RPA2

Ribosomal RNA processing protein 1 homolog B RRP1B

Staphylococcal nuclease domain-containing protein 1 SND1

U1 small nuclear ribonucleoprotein A SNRPA

Small nuclear ribonucleoprotein F SNRPF

Superoxide dismutase [Cu-Zn] SOD1

Spectrin beta chain. non-erythrocytic 1 SPTBN1

Spermidine synthase SRM

Lupus La protein SSB

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Tubulin-specific chaperone A TBCA

Transketolase TKT

Translation machinery-associated protein 16 TMA16

Cellular tumor antigen p53 TP53

NEDD8-conjugating enzyme Ubc12 UBE2M

MacroD2 C-terminus etoposide over C-terminus DMSO

Eukaryotic peptide chain release factor subunit 1 ETF1

Peptidyl-prolyl cis-trans isomerase FKBP1A FKBP1A

Guanine nucleotide-binding protein (...) subunit beta-2 GNB2

Heat shock 70 kDa protein 12A HSPA12A

Protein lin-7 homolog C LIN7C

Protein ERGIC-53 LMAN1
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Protein name Gene name

28S ribosomal protein S22. mitochondrial MRPS22

Membrane-associated progesterone receptor component 1 PGRMC1

Proteasome subunit alpha type-6 PSMA6

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Spermidine synthase SRM

Single-stranded DNA-binding protein (mitochondrial) SSBP1

MacroD2 C-terminus etoposide over macrodomain etoposide

Rho GDP-dissociation inhibitor 1 ARHGDIA

ATP synthase subunit gamma (mitochondrial) ATP5C1

ATPase inhibitor (mitochondrial) ATPIF1

Complement C1q tumor necrosis factor-related protein 8 C1QTNF8

Calreticulin CALR

Corneodesmosin CDSN

Chromatin target of PRMT1 protein CHTOP

Enoyl-CoA hydratase (mitochondrial) ECHS1

Eukaryotic translation initiation factor 1A. X-chromosomal EIF1AX

Peptidyl-prolyl cis-trans isomerase FKBP3 FKBP3

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Guanine nucleotide-binding protein G(s) subunit alpha GNAS

Guanine nucleotide-binding protein (...) subunit beta-2 GNB2

Heterogeneous nuclear ribonucleoprotein H2 HNRNPH2

Heat shock protein beta-1 HSPB1

Isochorismatase domain-containing protein 2 (mitochondrial) ISOC2

Protein lin-7 homolog C LIN7C

Protein ERGIC-53 LMAN1

Microtubule-associated protein RP/EB family member 1 MAPRE1

28S ribosomal protein S22. mitochondrial MRPS22

Myotrophin MTPN

Myosin regulatory light chain 12A MYL12A

Cytosolic Fe-S cluster assembly factor NARFL NARFL

Proliferating cell nuclear antigen PCNA

Phosphatidylethanolamine-binding protein 1 PEBP1

Serine/threonine-protein phosphatase PGAM5 (mitochondrial) PGAM5

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Peroxiredoxin-4 PRDX4

Histone-binding protein RBBP4 RBBP4

Replication protein A 32 kDa subunit RPA2

60S ribosomal protein L35a RPL35A

60S ribosomal protein L38 RPL38

SUMO-activating enzyme subunit 1 SAE1
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Protein name Gene name

Staphylococcal nuclease domain-containing protein 1 SND1

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Spectrin alpha chain. non-erythrocytic 1 SPTAN1

Spermidine synthase SRM

Serine/arginine-rich splicing factor 1 SRSF1

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Suppressor of G2 allele of SKP1 homolog SUGT1

Transgelin-2 TAGLN2

Tubulin-specific chaperone A TBCA

Transketolase TKT

Cellular tumor antigen p53 TP53

Tumor susceptibility gene 101 protein TSG101

Voltage-dependent anion-selective channel protein 3 VDAC3

Zinc finger CCHC domain-containing protein 3 ZCCHC3

MacroD2 C-terminus etoposide over macrodomain DMSO

Annexin A7 ANXA7

Arginase-1 ARG1

Corneodesmosin CDSN

Coronin-1C CORO1C

Desmocollin-1 DSC1

Protein FAM133B FAM133B

Heat shock 70 kDa protein 12A HSPA12A

Leucine zipper putative tumor suppressor 3 LZTS3

Methylated-DNA–protein-cysteine methyltransferase MGMT

Myosin regulatory light chain 12A MYL12A

PITH domain-containing protein 1 PITHD1

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Histone-binding protein RBBP4 RBBP4

Replication protein A 32 kDa subunit RPA2

Staphylococcal nuclease domain-containing protein 1 SND1

Stomatin-like protein 2 (mitochondrial) STOML2

Transgelin-2 TAGLN2

Zinc finger CCHC domain-containing protein 3 ZCCHC3

Table A.11: MacroD2 C-terminus etoposide - Overview of enriched proteins in

MacroD2 C-terminus etoposide sample, when compared with EGFP, MacroD2 C-terminus

DMSO, MacroD2 macrodomain etoposide and MacroD2 macrodomain DMSO.
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Protein name Gene name

MacroD2 C-terminus etoposide common proteins

Calreticulin CALR

Corneodesmosin CDSN

Chromatin target of PRMT1 protein CHTOP

Enoyl-CoA hydratase (mitochondrial) ECHS1

Eukaryotic peptide chain release factor subunit 1 ETF1

Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4

Guanine nucleotide-binding protein (...) subunit beta-2 GNB2

Heat shock 70 kDa protein 12A HSPA12A

Protein lin-7 homolog C LIN7C

Protein ERGIC-53 LMAN1

Leucine zipper putative tumor suppressor 3 LZTS3

Microtubule-associated protein RP/EB family member 1 MAPRE1

28S ribosomal protein S22. mitochondrial MRPS22

Myotrophin MTPN

Myosin regulatory light chain 12A MYL12A

Phosphatidylethanolamine-binding protein 1 PEBP1

DNA-directed RNA polymerase II subunit RPB3 POLR2C

Proteasome subunit alpha type-6 PSMA6

Histone-binding protein RBBP4 RBBP4

Replication protein A 32 kDa subunit RPA2

Staphylococcal nuclease domain-containing protein 1 SND1

U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein SNRNP27

Spermidine synthase SRM

Single-stranded DNA-binding protein (mitochondrial) SSBP1

Transgelin-2 TAGLN2

Tubulin-specific chaperone A TBCA

Transketolase TKT

Cellular tumor antigen p53 TP53

Zinc finger CCHC domain-containing protein 3 ZCCHC3

Table A.12: MacroD2 C-terminus etoposide, common proteins - Overview of

the proteins that are in common among the different “MacroD2 C-terminus etoposide”

enrichments.
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Appendix B

Lists of enriched biological terms

B.1 MacroD2 full-length DMSO

The list for the enrichment of biological terms for all proteins of “MacroD2 full-length

DMSO” is enlisted below (Table B.1).

Category Term FDR

GO.0044822 poly(A) RNA binding 1.95E-05

GO.0003723 RNA binding 2.61E-05

GO.0043230 extracellular organelle 0.00688

GO.0065010 extracellular membrane-bounded organelle 0.00688

GO.0070062 extracellular exosome 0.00688

GO.1903561 extracellular vesicle 0.00688

GO.0005852 eukaryotic translation initiation factor 3 complex 0.0241

GO.0043227 membrane-bounded organelle 0.0241

GO.0005730 nucleolus 0.0366

GO.0016282 eukaryotic 43S preinitiation complex 0.0366

GO.0031982 vesicle 0.0366

GO.0031988 membrane-bounded vesicle 0.0366

GO.0033290 eukaryotic 48S preinitiation complex 0.0366

GO.0070993 translation preinitiation complex 0.0383

GO.0030529 ribonucleoprotein complex 0.0403

GO.0044421 extracellular region part 0.0403

Table B.1: Biological term enrichment for all “MacroD2 full-length DMSO”

proteins - Overview of enriched biological terms. Generated by STRING database.
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B.2 MacroD2 full-length etoposide

The list for the enrichment of biological terms for all proteins of “MacroD2 full-length

etoposide” is enlisted below (Table B.2).

Category Term FDR

GO:0003723 RNA binding 1.22E-05

GO:0044822 poly(A) RNA binding 5.58E-05

GO:0003676 nucleic acid binding 0.0174

Table B.2: Biological term enrichment for all “MacroD2 full-length etoposide”

proteins - Overview of enriched biological terms. Generated by STRING database.

B.3 MacroD2 macrodomain DMSO

The list for the enrichment of biological terms for common proteins of “MacroD2

macrodomain DMSO” is enlisted below (Table B.3).

Category Term FDR

GO.0044822 poly(A) RNA binding 3.93E-12

GO.0003723 RNA binding 6.30E-11

GO.0043230 extracellular organelle 2.00E-10

GO.0065010 extracellular membrane-bounded organelle 2.00E-10

GO.0070062 extracellular exosome 2.00E-10

GO.1903561 extracellular vesicle 2.00E-10

GO.0031988 membrane-bounded vesicle 2.82E-08

GO.0006457 protein folding 3.90E-08

GO.0031982 vesicle 4.95E-08

GO.0032991 macromolecular complex 1.86E-06

GO.0044421 extracellular region part 2.79E-06

GO.0070013 intracellular organelle lumen 1.63E-05

GO.0044446 intracellular organelle part 1.77E-05

GO.0043233 organelle lumen 1.86E-05

GO.0031974 membrane-enclosed lumen 2.26E-05

GO.0044428 nuclear part 3.49E-05

GO.0005634 nucleus 5.59E-05

GO.0005576 extracellular region 5.83E-05

GO.0044422 organelle part 9.07E-05

GO.0003676 nucleic acid binding 0.000128

GO.0005488 binding 0.000225

GO.0005515 protein binding 0.000244

Continues on next page
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B.3 MacroD2 macrodomain DMSO
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Category Term FDR

GO.0042470 melanosome 0.00052

GO.0031625 ubiquitin protein ligase binding 0.000577

GO.0044389 ubiquitin-like protein ligase binding 0.000577

GO.1901363 heterocyclic compound binding 0.000577

GO.0097159 organic cyclic compound binding 0.000585

GO.0043228 non-membrane-bounded organelle 0.000708

GO.0043232 intracellular non-membrane-bounded organelle 0.000708

GO.0044444 cytoplasmic part 0.000763

KEGG:04141 protein processing in endoplasmic reticulum 0.00109

GO.0031981 nuclear lumen 0.00132

GO.0030529 ribonucleoprotein complex 0.00176

GO.0016023 cytoplasmic membrane-bounded vesicle 0.00182

GO.0005829 cytosol 0.00194

GO.0005730 nucleolus 0.00234

GO.0043234 protein complex 0.00266

GO.0043231 intracellular membrane-bounded organelle 0.00275

GO.0043209 myelin sheath 0.00291

GO.0005737 cytoplasm 0.00317

GO.0031410 cytoplasmic vesicle 0.00321

GO.0043227 membrane-bounded organelle 0.00375

GO.0016607 nuclear speck 0.00491

GO.0015630 microtubule cytoskeleton 0.00592

GO.0044297 cell body 0.00592

GO.0051087 chaperone binding 0.00632

GO.0005832 chaperonin-containing T-complex 0.0106

GO.0005654 nucleoplasm 0.0112

GO.0005874 microtubule 0.0112

GO.0035770 ribonucleoprotein granule 0.0112

GO.0036464 cytoplasmic ribonucleoprotein granule 0.0112

GO.0097223 sperm part 0.0112

GO.0003674 molecular function 0.0114

GO.0051082 unfolded protein binding 0.0114

GO.0002199 zona pellucida receptor complex 0.0114

GO.0012505 endomembrane system 0.013

GO.0005635 nuclear envelope 0.0134

GO.0005739 mitochondrion 0.0154

KEGG:05169 Epstein-Barr virus infection 0.0183

GO.0019953 sexual reproduction 0.024

GO.0044237 cellular metabolic process 0.024

GO.0044260 cellular macromolecule metabolic process 0.024

GO.0044703 multi-organism reproductive process 0.024

Continues on next page
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Category Term FDR

GO.1902582 single-organism intracellular transport 0.0263

GO.0043170 macromolecule metabolic process 0.0289

GO.0031967 organelle envelope 0.0315

GO.0031975 envelope 0.0315

GO.0045454 cell redox homeostasis 0.0345

GO.0005783 endoplasmic reticulum 0.0382

GO.0044451 nucleoplasm part 0.0382

GO.0030518 intracellular steroid hormone receptor signaling pathway 0.0406

GO.0044702 single organism reproductive process 0.0406

GO.0051704 multi-organism process 0.0406

GO.0061024 membrane organization 0.0406

GO.0006810 transport 0.0428

GO.0046907 intracellular transport 0.0428

GO.0031090 organelle membrane 0.0433

GO.0001669 acrosomal vesicle 0.0448

GO.0016604 nuclear body 0.0456

GO.0005856 cytoskeleton 0.0479

Table B.3: Biological term enrichment for “MacroD2 macrodomain DMSO”

common proteins - Overview of enriched biological terms. Generated by STRING

database

The list for the enrichment of biological terms for all proteins of “MacroD2 macrodomain

DMSO” is enlisted below (Table B.4). Since the list of terms was extremely long,

here I show just a selection, with the lowest FDR values of each super-group, such as

cellular localization or molecular pathway.

Category Term FDR

GO.0043230 extracellular organelle 4.69E-20

GO.0065010 extracellular membrane-bounded organelle 4.69E-20

GO.0070062 extracellular exosome 4.69E-20

GO.1903561 extracellular vesicle 4.69E-20

GO.0003723 RNA binding 1.56E-16

GO.0044822 poly(A) RNA binding 1.56E-16

GO.0031988 membrane-bounded vesicle 1.05E-15

GO.0031982 vesicle 3.79E-15

GO.0044421 extracellular region part 9.04E-14

GO.0044446 intracellular organelle part 6.18E-12

GO.0006457 protein folding 2.03E-11

Continues on next page
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Category Term FDR

GO.0032991 macromolecular complex 2.24E-11

GO.0005576 extracellular region 3.58E-11

GO.0005829 cytosol 4.97E-10

GO.0044422 organelle part 9.91E-10

GO.0005488 binding 7.80E-08

GO.1901363 heterocyclic compound binding 8.43E-08

GO.0097159 organic cyclic compound binding 1.20E-07

GO.0003676 nucleic acid binding 6.86E-07

GO.0006458 de novo protein folding 2.70E-06

GO.0046907 intracellular transport 2.70E-06

GO.1902582 single-organism intracellular transport 3.05E-06

GO.0043933 macromolecular complex subunit organization 1.22E-05

GO.0061024 membrane organization 1.22E-05

GO.0051084 de novo posttranslational protein folding 1.71E-05

GO.0006413 translational initiation 6.71E-05

GO.0006605 protein targeting 6.71E-05

GO.0006810 transport 6.71E-05

GO.0016482 cytoplasmic transport 6.71E-05

GO.0032984 macromolecular complex disassembly 6.71E-05

GO.0044237 cellular metabolic process 6.71E-05

GO.0051649 establishment of localization in cell 6.71E-05

GO.0071822 protein complex subunit organization 6.71E-05

GO.0016071 mRNA metabolic process 6.79E-05

GO.0071704 organic substance metabolic process 8.13E-05

GO.0046483 heterocycle metabolic process 9.76E-05

KEGG:03010 ribosome 0.000208

KEGG:01200 carbon metabolism 0.000283

KEGG:04141 protein processing in endoplasmic reticulum 0.00392

KEGG:05169 Epstein-Barr virus infection 0.00777

KEGG:00010 glycolysis / gluconeogenesis 0.0222

KEGG:00020 citrate cycle (TCA cycle) 0.0257

KEGG:01230 biosynthesis of amino acids 0.0264

KEGG:03040 spliceosome 0.0264

KEGG:00270 cysteine and methionine metabolism 0.0362

KEGG:00620 pyruvate metabolism 0.0443

Table B.4: Biological term enrichment for all the “MacroD2 macrodomain

DMSO” proteins - Overview of enriched biological terms. Generated by STRING

database
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B.4 MacroD2 macrodomain etoposide

The list for the enrichment of biological terms for common proteins of “MacroD2

macrodomain etoposide” is enlisted below (Table B.5).

Category Term FDR

GO.0003723; RNA binding 0.00139

GO.0044822; poly(A) RNA binding 0.00139

Table B.5: Biological term enrichment for the EGFP-MacroD2 macrodomain

etoposide common proteins - Overview of enriched biological terms. Generated by

STRING database

The list for the enrichment of biological terms for all proteins of “MacroD2 macrodomain

etoposide” is enlisted below (Table B.6).

Category Term FDR

GO.0044822 poly(A) RNA binding 4.50E-06

GO.0031974 membrane-enclosed lumen 5.77E-06

GO.0044446 intracellular organelle part 5.77E-06

GO.0070013 intracellular organelle lumen 5.77E-06

GO.0043233 organelle lumen 6.13E-06

GO.0003723 RNA binding 1.96E-05

GO.0043230 extracellular organelle 2.89E-05

GO.0065010 extracellular membrane-bounded organelle 2.89E-05

GO.0070062 extracellular exosome 2.89E-05

GO.1903561 extracellular vesicle 2.89E-05

GO.0031988 membrane-bounded vesicle 4.76E-05

GO.0031982 vesicle 6.54E-05

GO.0032991 macromolecular complex 6.54E-05

GO.0044422 organelle part 6.54E-05

GO.0043227 membrane-bounded organelle 0.000252

GO.0031981 nuclear lumen 0.000363

GO.0044428 nuclear part 0.000363

GO.0044421 extracellular region part 0.000386

GO.0005634 nucleus 0.00128

GO.0043229 intracellular organelle 0.00128

GO.0005654 nucleoplasm 0.00135

GO.0044877 macromolecular complex binding 0.00155

GO.0043231 intracellular membrane-bounded organelle 0.00183

Continues on next page
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Category Term FDR

GO.0070603 SWI/SNF superfamily-type complex 0.00197

GO.0005737 cytoplasm 0.00205

GO.0005759 mitochondrial matrix 0.00205

GO.0043234 protein complex 0.0021

GO.0005635 nuclear envelope 0.00247

GO.0005515 protein binding 0.00315

GO.0044444 cytoplasmic part 0.00385

GO.0005576 extracellular region 0.0041

GO.0005622 intracellular 0.00498

GO.0044424 intracellular part 0.00744

GO.0043226 organelle 0.00768

KEGG:01230 biosynthesis of amino acids 0.00863

GO.0005925 focal adhesion 0.0135

GO.0043228 non-membrane-bounded organelle 0.0135

GO.0043232 intracellular non-membrane-bounded organelle 0.0135

GO.0005924 cell-substrate adherens junction 0.0141

GO.0030055 cell-substrate junction 0.0143

GO.0045111 intermediate filament cytoskeleton 0.0146

GO.0005739 mitochondrion 0.0155

KEGG:00280 valine, leucine and isoleucine degradation 0.0182

KEGG:03050 proteasome 0.0182

GO.0031965 nuclear membrane 0.019

GO.0071564 npBAF complex 0.0204

GO.0016514 SWI/SNF complex 0.0226

GO.0071565 nBAF complex 0.0226

GO.0005912 adherens junction 0.023

GO.0070161 anchoring junction 0.0271

GO.0031967 organelle envelope 0.0285

GO.0031975 envelope 0.0285

GO.0005829 cytosol 0.0292

GO.0044429 mitochondrial part 0.037

GO.0005838 proteasome regulatory particle 0.0399

Table B.6: Biological term enrichment for all the “MacroD2 macrodomain

etoposide” proteins - Overview of enriched biological terms. Generated by STRING

database
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B.5 MacroD2 C-terminus DMSO

The list for the enrichment of biological terms for common proteins of “MacroD2 C-

terminus DMSO” is enlisted below (Table B.7).

Category Term FDR

GO.0003723 RNA binding 0.000113

GO.0044822 poly(A) RNA binding 0.00939

GO.0003676 nucleic acid binding 0.0335

Table B.7: Biological term enrichment for “MacroD2 C-terminus DMSO” com-

mon proteins - Overview of enriched biological terms. Generated by STRING database.

The list for the enrichment of biological terms for all proteins of “MacroD2 C-

terminus DMSO” is enlisted below (Table B.8).

Category Term FDR

GO.0003723 RNA binding 3.77E-17

GO.0044822 poly(A) RNA binding 4.19E-10

GO.0003676 nucleic acid binding 5.20E-10

GO.1901363 heterocyclic compound binding 5.85E-06

GO.0097159 organic cyclic compound binding 6.45E-06

GO.0030529 ribonucleoprotein complex 2.05E-05

GO.0031981 nuclear lumen 2.05E-05

GO.0044428 nuclear part 2.05E-05

GO.0070013 intracellular organelle lumen 2.05E-05

GO.0043233 organelle lumen 2.09E-05

GO.0031974 membrane-enclosed lumen 2.27E-05

GO.0005634 nucleus 3.29E-05

GO.0005730 nucleolus 0.00107

GO.0044446 intracellular organelle part 0.00139

GO.0005654 nucleoplasm 0.00213

GO.0044422 organelle part 0.00715

GO.0032991 macromolecular complex 0.0151

GO.0043231 intracellular membrane-bounded organelle 0.0199

GO.0043603 cellular amide metabolic process 0.0295

GO.0005681 spliceosomal complex 0.0297

GO.0008380 RNA splicing 0.0306

GO.0006397 mRNA processing 0.0374

GO.0016071 mRNA metabolic process 0.0374

GO.0022618 ribonucleoprotein complex assembly 0.0374

GO.0034622 cellular macromolecular complex assembly 0.0374

GO.0071826 ribonucleoprotein complex subunit organization 0.0374

Continues on next page
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Category Term FDR

KEGG:03040 spliceosome 0.0379

GO.0005685 U1 snRNP 0.0422

GO.0006518 peptide metabolic process 0.0442

GO.0043227 membrane-bounded organelle 0.0496

Table B.8: Biological term enrichment for all the “MacroD2 C-terminus

DMSO” proteins - Overview of enriched biological terms. Generated by STRING

database

B.6 MacroD2 C-terminus etoposide

The list for the enrichment of biological terms for common proteins of “MacroD2 C-

terminus etoposide” is enlisted below (Table B.9).

Category Term FDR

GO.0043230 extracellular organelle 0.000239

GO.0065010 extracellular membrane-bounded organelle 0.000239

GO.0070062 extracellular exosome 0.000239

GO.1903561 extracellular vesicle 0.000239

GO.0051095 regulation of helicase activity 0.00295

GO.0003723 RNA binding 0.00539

GO.0044822 poly(A) RNA binding 0.00539

GO.0044421 extracellular region part 0.00607

GO.0031988 membrane-bounded vesicle 0.00924

GO.0032991 macromolecular complex 0.00924

GO.0043228 non-membrane-bounded organelle 0.00924

GO.0043232 intracellular non-membrane-bounded organelle 0.00924

GO.0031982 vesicle 0.0103

GO.0005576 extracellular region 0.0219

GO.0003676 nucleic acid binding 0.0306

Table B.9: Biological term enrichment for “MacroD2 C-terminus etoposide”

common proteins - Overview of enriched biological terms. Generated by STRING

database

The list for the enrichment of biological terms for all proteins of “MacroD2 C-

terminus etoposide” is enlisted below (Table B.10).
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Category Term FDR

GO.0043230 extracellular organelle 3.22E-12

GO.0065010 extracellular membrane-bounded organelle 3.22E-12

GO.0070062 extracellular exosome 3.22E-12

GO.1903561 extracellular vesicle 3.22E-12

GO.0044822 poly(A) RNA binding 2.35E-11

GO.0003723 RNA binding 1.56E-10

GO.0031988 membrane-bounded vesicle 1.02E-08

GO.0031982 vesicle 2.13E-08

GO.0005829 cytosol 3.59E-07

GO.0003676 nucleic acid binding 2.13E-06

GO.0005634 nucleus 2.89E-06

GO.0044421 extracellular region part 3.12E-06

GO.0032991 macromolecular complex 3.12E-05

GO.0005576 extracellular region 5.94E-05

GO.0030017 sarcomere 5.97E-05

GO.0044446 intracellular organelle part 6.94E-05

GO.0044449 contractile fiber part 8.78E-05

GO.0030016 myofibril 0.000113

GO.0031974 membrane-enclosed lumen 0.000113

GO.0043292 contractile fiber 0.000149

GO.0044428 nuclear part 0.000211

GO.0043228 non-membrane-bounded organelle 0.000215

GO.0043232 intracellular non-membrane-bounded organelle 0.000215

GO.0043233 organelle lumen 0.000215

GO.1901363 heterocyclic compound binding 0.000424

GO.0070013 intracellular organelle lumen 0.000424

GO.0097159 organic cyclic compound binding 0.000491

GO.0044422 organelle part 0.000706

GO.0043231 intracellular membrane-bounded organelle 0.000943

GO.0005739 mitochondrion 0.00122

GO.0030529 ribonucleoprotein complex 0.00159

GO.0043227 membrane-bounded organelle 0.00163

GO.0043209 myelin sheath 0.00197

GO.0043234 protein complex 0.00342

GO.0005759 mitochondrial matrix 0.00367

GO.0005488 binding 0.00412

GO.0044429 mitochondrial part 0.00441

GO.0032437 cuticular plate 0.00461

GO.0031981 nuclear lumen 0.00534

GO.0031674 I band 0.00541

GO.0070161 anchoring junction 0.0121

GO.0006457 protein folding 0.0147

Continues on next page
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Category Term FDR

KEGG:03040 spliceosome 0.0181

KEGG:03430 mismatch repair 0.0181

GO.0005527 macrolide binding 0.0194

GO.0005528 FK506 binding 0.0194

GO.0031967 organelle envelope 0.0195

GO.0031975 envelope 0.0195

GO.0022417 protein maturation by protein folding 0.0219

GO.0051095 regulation of helicase activity 0.0219

GO.0008091 spectrin 0.023

GO.0003684 damaged DNA binding 0.0293

GO.0005515 protein binding 0.0293

GO.0051087 chaperone binding 0.0293

GO.0019899 enzyme binding 0.0316

KEGG:03030 DNA replication 0.0329

GO.0005657 replication fork 0.0337

GO.0030018 Z disc 0.0337

KEGG:01200 carbon metabolism 0.0414

KEGG:05016 Huntington disease 0.0414

GO.0005912 adherens junction 0.0451

GO.0005730 nucleolus 0.0469

GO.0005685 U1 snRNP 0.0496

GO.0098827 endoplasmic reticulum subcompartment 0.0496

Table B.10: Biological term enrichment for all “MacroD2 C-terminus etopo-

side” proteins - Overview of enriched biological terms. Generated by STRING database
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M. Topoisomerase ii-mediated dna damage is differ-

ently repaired during the cell cycle by non-homologous

end joining and homologous recombination. PLoS One

5 (2010). URL http://dx.doi.org/10.1371/journal.pone.

0012541. 23

[140] Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Re-

pair pathway choices and consequences at the double-

strand break. Trends Cell Biol 26, 52–64 (2016). URL

http://dx.doi.org/10.1016/j.tcb.2015.07.009. 23

[141] Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quan-

titative live cell imaging reveals a gradual shift be-

tween dna repair mechanisms and a maximal use of hr

in mid s phase. Mol Cell 47, 320–329 (2012). URL

http://dx.doi.org/10.1016/j.molcel.2012.05.052. 23
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[230] Maréchal, A. & Zou, L. Dna damage sensing by the

atm and atr kinases. Cold Spring Harb Perspect Biol

5 (2013). URL http://dx.doi.org/10.1101/cshperspect.

a012716. 33, 35, 38, 39

[231] Smith, G. C. et al. Purification and dna binding proper-

ties of the ataxia-telangiectasia gene product atm. Proc

Natl Acad Sci U S A 96, 11134–11139 (1999). 33

[232] Lee, J.-H. & Paull, T. T. Atm activation by dna double-

strand breaks through the mre11-rad50-nbs1 complex.

Science 308, 551–554 (2005). URL http://dx.doi.org/

10.1126/science.1108297. 33, 34

[233] Stewart, G. S. et al. The dna double-strand break repair

gene hmre11 is mutated in individuals with an ataxia-

telangiectasia-like disorder. Cell 99, 577–587 (1999).

33

[234] Waltes, R. et al. Human rad50 deficiency in a nijmegen

breakage syndrome-like disorder. Am J Hum Genet 84,

605–616 (2009). URL http://dx.doi.org/10.1016/j.ajhg.

2009.04.010. 33

[235] Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig,

A. Targeted disruption of the nijmegen breakage syn-

drome gene nbs1 leads to early embryonic lethality in

mice. Curr Biol 11, 105–109 (2001). 33

[236] Mirzoeva, O. K. & Petrini, J. H. Dna damage-

dependent nuclear dynamics of the mre11 complex. Mol

Cell Biol 21, 281–288 (2001). URL http://dx.doi.org/

10.1128/MCB.21.1.281-288.2001. 33

[237] Uziel, T. et al. Requirement of the mrn complex for

atm activation by dna damage. EMBO J 22, 5612–5621

(2003). URL http://dx.doi.org/10.1093/emboj/cdg541. 34

[238] Bakkenist, C. J. & Kastan, M. B. Dna damage acti-

vates atm through intermolecular autophosphorylation

and dimer dissociation. Nature 421, 499–506 (2003).

URL http://dx.doi.org/10.1038/nature01368. 34

[239] Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price,

B. D. A role for the tip60 histone acetyltransferase

in the acetylation and activation of atm. Proc Natl

Acad Sci U S A 102, 13182–13187 (2005). URL http:

//dx.doi.org/10.1073/pnas.0504211102. 34

[240] Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venki-

taraman, A. R. Hp1-beta mobilization promotes chro-

matin changes that initiate the dna damage response.

Nature 453, 682–686 (2008). URL http://dx.doi.org/

10.1038/nature06875. 34

[241] Goodarzi, A. A. et al. Atm signaling facilitates re-

pair of dna double-strand breaks associated with het-

erochromatin. Mol Cell 31, 167–177 (2008). URL

http://dx.doi.org/10.1016/j.molcel.2008.05.017. 34

[242] Bolderson, E. et al. Kruppel-associated box (krab)-

associated co-repressor (kap-1) ser-473 phosphorylation

regulates heterochromatin protein 1β (hp1-β) mobiliza-

tion and dna repair in heterochromatin. J Biol Chem

287, 28122–28131 (2012). URL http://dx.doi.org/10.

1074/jbc.M112.368381. 34

[243] Andegeko, Y. et al. Nuclear retention of atm at

sites of dna double strand breaks. J Biol Chem 276,

38224–38230 (2001). URL http://dx.doi.org/10.1074/

jbc.M102986200. 34

[244] Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A.

M. R. & Elledge, S. J. Mdc1 is a mediator of the mam-

malian dna damage checkpoint. Nature 421, 961–966

(2003). URL http://dx.doi.org/10.1038/nature01446. 34

[245] Lee, M. S., Edwards, R. A., Thede, G. L. & Glover,

J. N. M. Structure of the brct repeat domain of

mdc1 and its specificity for the free cooh-terminal end

of the gamma-h2ax histone tail. J Biol Chem 280,

32053–32056 (2005). URL http://dx.doi.org/10.1074/

jbc.C500273200. 34

[246] Lou, Z. et al. Mdc1 maintains genomic stability by par-

ticipating in the amplification of atm-dependent dna

damage signals. Mol Cell 21, 187–200 (2006). URL

http://dx.doi.org/10.1016/j.molcel.2005.11.025. 34

[247] Chapman, J. R. & Jackson, S. P. Phospho-dependent

interactions between nbs1 and mdc1 mediate chromatin

retention of the mrn complex at sites of dna damage.

EMBO Rep 9, 795–801 (2008). URL http://dx.doi.org/

10.1038/embor.2008.103. 34

[248] Melander, F. et al. Phosphorylation of sdt repeats

in the mdc1 n terminus triggers retention of nbs1 at

the dna damage-modified chromatin. J Cell Biol 181,

213–226 (2008). URL http://dx.doi.org/10.1083/jcb.

200708210. 34

[249] Liu, J. et al. Structural mechanism of the

phosphorylation-dependent dimerization of the mdc1

forkhead-associated domain. Nucleic Acids Res 40,

3898–3912 (2012). URL http://dx.doi.org/10.1093/nar/

gkr1296. 34

[250] Mu, J.-J. et al. A proteomic analysis of ataxia

telangiectasia-mutated (atm)/atm-rad3-related (atr)

substrates identifies the ubiquitin-proteasome system

as a regulator for dna damage checkpoints. J Biol Chem

282, 17330–17334 (2007). URL http://dx.doi.org/10.

1074/jbc.C700079200. 34

[251] Choi, S. et al. Quantitative proteomics reveal atm

kinase-dependent exchange in dna damage response

complexes. J Proteome Res 11, 4983–4991 (2012). URL

http://dx.doi.org/10.1021/pr3005524. 34

[252] Flaggs, G. et al. Atm-dependent interactions of a mam-

malian chk1 homolog with meiotic chromosomes. Curr

Biol 7, 977–986 (1997). 34, 38, 79

[253] Matsuoka, S. et al. Ataxia telangiectasia-mutated phos-

phorylates chk2 in vivo and in vitro. Proc Natl Acad Sci

U S A 97, 10389–10394 (2000). URL http://dx.doi.org/

10.1073/pnas.190030497. 34

[254] Reinhardt, H. C., Aslanian, A. S., Lees, J. A. & Yaffe,

M. B. p53-deficient cells rely on atm- and atr-mediated

checkpoint signaling through the p38mapk/mk2 path-

way for survival after dna damage. Cancer Cell 11,

175–189 (2007). URL http://dx.doi.org/10.1016/j.ccr.

2006.11.024. 34

[255] Siliciano, J. D. et al. Dna damage induces phosphory-

lation of the amino terminus of p53. Genes Dev 11,

3471–3481 (1997). 34

[256] Banin, S. et al. Enhanced phosphorylation of p53 by

atm in response to dna damage. Science 281, 1674–

1677 (1998). 34, 45

228

http://dx.doi.org/10.1101/cshperspect.a012716
http://dx.doi.org/10.1101/cshperspect.a012716
http://dx.doi.org/10.1126/science.1108297
http://dx.doi.org/10.1126/science.1108297
http://dx.doi.org/10.1016/j.ajhg.2009.04.010
http://dx.doi.org/10.1016/j.ajhg.2009.04.010
http://dx.doi.org/10.1128/MCB.21.1.281-288.2001
http://dx.doi.org/10.1128/MCB.21.1.281-288.2001
http://dx.doi.org/10.1093/emboj/cdg541
http://dx.doi.org/10.1038/nature01368
http://dx.doi.org/10.1073/pnas.0504211102
http://dx.doi.org/10.1073/pnas.0504211102
http://dx.doi.org/10.1038/nature06875
http://dx.doi.org/10.1038/nature06875
http://dx.doi.org/10.1016/j.molcel.2008.05.017
http://dx.doi.org/10.1074/jbc.M112.368381
http://dx.doi.org/10.1074/jbc.M112.368381
http://dx.doi.org/10.1074/jbc.M102986200
http://dx.doi.org/10.1074/jbc.M102986200
http://dx.doi.org/10.1038/nature01446
http://dx.doi.org/10.1074/jbc.C500273200
http://dx.doi.org/10.1074/jbc.C500273200
http://dx.doi.org/10.1016/j.molcel.2005.11.025
http://dx.doi.org/10.1038/embor.2008.103
http://dx.doi.org/10.1038/embor.2008.103
http://dx.doi.org/10.1083/jcb.200708210
http://dx.doi.org/10.1083/jcb.200708210
http://dx.doi.org/10.1093/nar/gkr1296
http://dx.doi.org/10.1093/nar/gkr1296
http://dx.doi.org/10.1074/jbc.C700079200
http://dx.doi.org/10.1074/jbc.C700079200
http://dx.doi.org/10.1021/pr3005524
http://dx.doi.org/10.1073/pnas.190030497
http://dx.doi.org/10.1073/pnas.190030497
http://dx.doi.org/10.1016/j.ccr.2006.11.024
http://dx.doi.org/10.1016/j.ccr.2006.11.024


REFERENCES

[257] Canman, C. E. et al. Activation of the atm kinase by

ionizing radiation and phosphorylation of p53. Science

281, 1677–1679 (1998). 34, 45

[258] Kastan, M. B., Onyekwere, O., Sidransky, D., Vogel-

stein, B. & Craig, R. W. Participation of p53 protein

in the cellular response to dna damage. Cancer Res 51,

6304–6311 (1991). 36, 140

[259] Martinez, J. D., Craven, M. T., Joseloff, E., Milczarek,

G. & Bowden, G. T. Regulation of dna binding and

transactivation in p53 by nuclear localization and phos-

phorylation. Oncogene 14, 2511–2520 (1997). URL

http://dx.doi.org/10.1038/sj.onc.1201095. 36

[260] Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Require-

ment of atm-dependent phosphorylation of brca1 in the

dna damage response to double-strand breaks. Science

286, 1162–1166 (1999). 36

[261] Xu, B., Kim St & Kastan, M. B. Involvement of brca1

in s-phase and g(2)-phase checkpoints after ionizing ir-

radiation. Mol Cell Biol 21, 3445–3450 (2001). URL

http://dx.doi.org/10.1128/MCB.21.10.3445-3450.2001. 36

[262] Xu, B., Kim, S.-T., Lim, D.-S. & Kastan, M. B. Two

molecularly distinct g(2)/m checkpoints are induced

by ionizing irradiation. Mol Cell Biol 22, 1049–1059

(2002). 36

[263] Paull, T. T. Mechanisms of atm activation. Annu Rev

Biochem 84, 711–738 (2015). URL http://dx.doi.org/

10.1146/annurev-biochem-060614-034335. 36, 37, 110

[264] Kanu, N. & Behrens, A. Atmin defines an nbs1-

independent pathway of atm signalling. EMBO J 26,

2933–2941 (2007). URL http://dx.doi.org/10.1038/sj.

emboj.7601733. 36

[265] Zhang, T. et al. Competition between nbs1 and at-

min controls atm signaling pathway choice. Cell Rep

2, 1498–1504 (2012). URL http://dx.doi.org/10.1016/j.

celrep.2012.11.002. 36

[266] Zhang, T., Cronshaw, J., Kanu, N., Snijders, A. P.

& Behrens, A. Ubr5-mediated ubiquitination of at-

min is required for ionizing radiation-induced atm sig-

naling and function. Proc Natl Acad Sci U S A 111,

12091–12096 (2014). URL http://dx.doi.org/10.1073/

pnas.1400230111. 36

[267] Bencokova, Z. et al. Atm activation and signaling under

hypoxic conditions. Mol Cell Biol 29, 526–537 (2009).

URL http://dx.doi.org/10.1128/MCB.01301-08. 36

[268] Cam, H., Easton, J. B., High, A. & Houghton, P. J.

mtorc1 signaling under hypoxic conditions is controlled

by atm-dependent phosphorylation of hif-1α. Mol Cell

40, 509–520 (2010). URL http://dx.doi.org/10.1016/j.

molcel.2010.10.030. 37

[269] Ditch, S. & Paull, T. T. The atm protein kinase and

cellular redox signaling: beyond the dna damage re-

sponse. Trends Biochem Sci 37, 15–22 (2012). URL

http://dx.doi.org/10.1016/j.tibs.2011.10.002. 37

[270] Yi, M., Rosin, M. P. & Anderson, C. K. Response of

fibroblast cultures from ataxia-telangiectasia patients

to oxidative stress. Cancer Lett 54, 43–50 (1990). 37

[271] Kamsler, A. et al. Increased oxidative stress in ataxia

telangiectasia evidenced by alterations in redox state of

brains from atm-deficient mice. Cancer Res 61, 1849–

1854 (2001). 37

[272] Quick, K. L. & Dugan, L. L. Superoxide stress identi-

fies neurons at risk in a model of ataxia-telangiectasia.

Ann Neurol 49, 627–635 (2001). 37

[273] Shackelford, R. E. et al. The ataxia telangiectasia

gene product is required for oxidative stress-induced

g1 and g2 checkpoint function in human fibroblasts.

J Biol Chem 276, 21951–21959 (2001). URL http:

//dx.doi.org/10.1074/jbc.M011303200. 37

[274] Kurz, E. U., Douglas, P. & Lees-Miller, S. P. Doxoru-

bicin activates atm-dependent phosphorylation of mul-

tiple downstream targets in part through the gener-

ation of reactive oxygen species. J Biol Chem 279,

53272–53281 (2004). URL http://dx.doi.org/10.1074/

jbc.M406879200. 37

[275] Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. &

Paull, T. T. Atm activation by oxidative stress. Sci-

ence 330, 517–521 (2010). URL http://dx.doi.org/10.

1126/science.1192912. 37, 110

[276] Shiloh, Y. Atm and related protein kinases: safe-

guarding genome integrity. Nat Rev Cancer 3, 155–168

(2003). URL http://dx.doi.org/10.1038/nrc1011. 37, 65,

66, 79

[277] Lovejoy, C. A. & Cortez, D. Common mechanisms

of pikk regulation. DNA Repair (Amst) 8, 1004–1008

(2009). URL http://dx.doi.org/10.1016/j.dnarep.2009.

04.006. 37

[278] Zou, L. & Elledge, S. J. Sensing dna damage through

atrip recognition of rpa-ssdna complexes. Science

300, 1542–1548 (2003). URL http://dx.doi.org/10.1126/

science.1083430. 37, 140

[279] Jette, N. & Lees-Miller, S. P. The dna-dependent

protein kinase: A multifunctional protein kinase with

roles in dna double strand break repair and mitosis.

Prog Biophys Mol Biol 117, 194–205 (2015). URL

http://dx.doi.org/10.1016/j.pbiomolbio.2014.12.003. 37,

38, 39

[280] Spagnolo, L., Rivera-Calzada, A., Pearl, L. H. &

Llorca, O. Three-dimensional structure of the human

dna-pkcs/ku70/ku80 complex assembled on dna and its

implications for dna dsb repair. Mol Cell 22, 511–519

(2006). URL http://dx.doi.org/10.1016/j.molcel.2006.

04.013. 38

[281] Dobbs, T. A., Tainer, J. A. & Lees-Miller, S. P. A

structural model for regulation of nhej by dna-pkcs au-

tophosphorylation. DNA Repair (Amst) 9, 1307–1314

(2010). URL http://dx.doi.org/10.1016/j.dnarep.2010.

09.019. 38

[282] Ding, Q. et al. Autophosphorylation of the catalytic

subunit of the dna-dependent protein kinase is required

for efficient end processing during dna double-strand

break repair. Mol Cell Biol 23, 5836–5848 (2003). 38

[283] Uematsu, N. et al. Autophosphorylation of dna-pkcs

regulates its dynamics at dna double-strand breaks. J

Cell Biol 177, 219–229 (2007). URL http://dx.doi.org/

10.1083/jcb.200608077. 38

229

http://dx.doi.org/10.1038/sj.onc.1201095
http://dx.doi.org/10.1128/MCB.21.10.3445-3450.2001
http://dx.doi.org/10.1146/annurev-biochem-060614-034335
http://dx.doi.org/10.1146/annurev-biochem-060614-034335
http://dx.doi.org/10.1038/sj.emboj.7601733
http://dx.doi.org/10.1038/sj.emboj.7601733
http://dx.doi.org/10.1016/j.celrep.2012.11.002
http://dx.doi.org/10.1016/j.celrep.2012.11.002
http://dx.doi.org/10.1073/pnas.1400230111
http://dx.doi.org/10.1073/pnas.1400230111
http://dx.doi.org/10.1128/MCB.01301-08
http://dx.doi.org/10.1016/j.molcel.2010.10.030
http://dx.doi.org/10.1016/j.molcel.2010.10.030
http://dx.doi.org/10.1016/j.tibs.2011.10.002
http://dx.doi.org/10.1074/jbc.M011303200
http://dx.doi.org/10.1074/jbc.M011303200
http://dx.doi.org/10.1074/jbc.M406879200
http://dx.doi.org/10.1074/jbc.M406879200
http://dx.doi.org/10.1126/science.1192912
http://dx.doi.org/10.1126/science.1192912
http://dx.doi.org/10.1038/nrc1011
http://dx.doi.org/10.1016/j.dnarep.2009.04.006
http://dx.doi.org/10.1016/j.dnarep.2009.04.006
http://dx.doi.org/10.1126/science.1083430
http://dx.doi.org/10.1126/science.1083430
http://dx.doi.org/10.1016/j.pbiomolbio.2014.12.003
http://dx.doi.org/10.1016/j.molcel.2006.04.013
http://dx.doi.org/10.1016/j.molcel.2006.04.013
http://dx.doi.org/10.1016/j.dnarep.2010.09.019
http://dx.doi.org/10.1016/j.dnarep.2010.09.019
http://dx.doi.org/10.1083/jcb.200608077
http://dx.doi.org/10.1083/jcb.200608077


REFERENCES

[284] Reitsema, T., Klokov, D., Banáth, J. P. & Olive, P. L.
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