
A RT I F I C I A L N E U R A L N E T WO R K
M E T H O D S A P P L I E D TO S E N T I M E N T

A NA LYS I S

Inaugural-Dissertation
zur Erlangung des Doktorgrades der Philosophie
an der Ludwig-Maximilians-Universität München

vorgelegt von
Sebastian Ebert

aus Ilmenau

München 2017

Referent: Prof. Dr. Hinrich Schütze
Korreferent: Dr. Helmut Schmid

Tag der mündlichen Prüfung: 07.02.2017

A B ST R AC T

Sentiment Analysis (SA) is the study of opinions and emotions that are
conveyed by text. This field of study has commercial applications for
example in market research (e.g., “What do customers like and dislike
about a product?”) and consumer behavior (e.g., “Which book will a
customer buy next when he wrote a positive review about book X?”).
A private person can benefit from SA by automatic movie or restau-
rant recommendations, or from applications on the computer or smart
phone that adapt to the user’s current mood.

In this thesis we will put forward research on artificial Neural Net-
work (NN) methods applied to SA. Many challenges arise, such as
sarcasm, domain dependency, and data scarcity, that need to be ad-
dressed by a successful system.

In the first part of this thesis we perform linguistic analysis of a word
(“hard”) under the light of SA. We show that sentiment-specific word
sense disambiguation is necessary to distinguish fine nuances of polar-
ity. Commonly available resources are not sufficient for this.

The introduced Contextually Enhanced Sentiment Lexicon (CESL) is
used to label occurrences of “hard” in a real dataset with its sense. That
allows us to train a Support Vector Machine (SVM) with deep learning
features that predicts the polarity of a single occurrence of the word,
just given its context words. We show that the features we propose
improve the result compared to existing standard features. Since the
labeling effort is not neglectible, we propose a clustering approach that
reduces the manual effort to a minimum.

The deep learning features that help predicting fine-grained,
context-dependent polarity are computed by a Neural Network Lan-
guage Model (NNLM), namely a variant of the Log-Bilinear Language
model (LBL). By improving this model the performance of polarity
classification might as well improve. Thus, we propose a non-linear
version of the LBL and the vectorized Log-Bilinear Language model
(vLBL), because non-linear models are generally considered more pow-
erful. In a parameter study on a language modeling task, we show that
the non-linear versions indeed perform better than their linear counter-
parts. However, the difference is small, except for settings where the
model has only few parameters, which might be the case when little
training data is available and the model therefore needs to be smaller
in order to avoid overfitting.

An alternative approach to fine-grained polarity classification as
used above is to train classifiers that will do the distinction automat-
ically. Due to the complexity of the task, the challenges of SA in gen-
eral, and certain domain-specific issues (e.g., when using Twitter text)

I

II

existing systems have much room to improve. Often statistical classi-
fiers are used with simple Bag-of-Words (BOW) features or count fea-
tures that stem from sentiment lexicons. We introduce a linguistically-
informed Convolutional Neural Network (lingCNN) that builds upon
the fact that there has been much research on language in general and
sentiment lexicons in particular. lingCNN makes use of two types
of linguistic features: word-based and sentence-based. Word-based
features comprise features derived from sentiment lexicons, such as
polarity or valence and general knowledge about language, such as a
negation-based feature. Sentence-based features are also based on lex-
icon counts and valences. The combination of both types of features
is superior to the original model without these features. Especially,
when little training data is available (that can be the case for differ-
ent languages that are underresourced), lingCNN proves to be signif-
icantly better (up to 12 macro-F1 points).

Although, linguistic features in terms of sentiment lexicons are ben-
eficial, their usage gives rise to a new set of problems. Most lexicons
consist of infinitive forms of words only. Especially, lexicons for low-
resource languages. However, the text that needs to be classified is
unnormalized. Hence, we want to answer the question if morphologi-
cal information is necessary for SA or if a system that neglects all this
information and therefore can make better use of lexicons actually has
an advantage. Our approach is to first stem or lemmatize a dataset
and then perform polarity classification on it. On Czech and English
datasets we show that better results can be achieved with normaliza-
tion. As a positive side effect, we can compute better word embed-
dings by first normalizing the training corpus. This works especially
well for languages that have rich morphology. We show on word simi-
larity datasets for English, German, and Spanish that our embeddings
improve performance. On a new WordNet-based evaluation we con-
firm these results on five different languages (Czech, English, German,
Hungarian, and Spanish). The benefit of this new evaluation is further
that it can be used for many other languages, as the only resource that
is required is a WordNet.

In the last part of the thesis, we use a recently introduced method to
create an ultradense sentiment space out of generic word embeddings.
This method allows us to compress 400 dimensional word embeddings
down to 40 or even just 4 dimensions and still get similar results on a
polarity classification task. While the training speed increases by a fac-
tor of 44, the difference in classification performance is not significant.

A B ST R A K T

Sentiment Analyse (SA) ist das Untersuchen von Meinungen und Emo-
tionen die durch Text übermittelt werden. Dieses Forschungsgebiet fin-
det kommerzielle Anwendungen in Marktforschung (z.B.: „Was mö-
gen Kunden an einem Produkt (nicht)?“) und Konsumentenverhalten
(z.B.: „Welches Buch wird ein Kunde als nächstes kaufen, nachdem
er eine positive Rezension über Buch X geschrieben hat?“). Aber auch
als Privatperson kann man von Forschung in SA profitieren. Beispiele
hierfür sind automatisch erstellte Film- oder Restaurantempfehlungen
oder Anwendungen auf Computer oder Smartphone die sich der ak-
tuellen Stimmungslage des Benutzers anpassen.

In dieser Arbeit werden wir Forschung auf dem Gebiet der Neurona-
len Netze (NN) angewendet auf SA vorantreiben. Dabei ergeben sich
viele Herausforderungen, wie Sarkasmus, Domänenabhängigkeit und
Datenarmut, die ein erfolgreiches System angehen muss.

Im ersten Teil der Arbeit führen wir eine linguistische Analyse
des englischen Wortes „hard“ in Hinblick auf SA durch. Wir zeigen,
dass sentiment-spezifische Wortbedeutungsdisambiguierung notwen-
dig ist, um feine Nuancen von Polarität (positive vs. negative Stim-
mung) unterscheiden zu können. Häufig verwendete, frei verfügbare
Resourcen sind dafür nicht ausreichend. Daher stellen wir CESL (Con-
textually Enhanced Sentiment Lexicon), ein sentiment-spezifisches Be-
deutungslexicon vor, welches verwendet wird, um Vorkommen von
„hard“ in einem realen Datensatz mit seinen Bedeutungen zu verse-
hen. Das Lexicon erlaubt es eine Support Vector Machine (SVM) mit
Features aus dem Deep Learning zu trainieren, die in der Lage ist, die
Polarität eines Vorkommens nur anhand seiner Kontextwörter vorher-
zusagen. Wir zeigen, dass die vorgestellten Features die Ergebnisse der
SVM verglichen mit Standard-Features verbessern. Da der Aufwand
für das Erstellen von markierten Trainingsdaten nicht zu unterschät-
zen ist, stellen wir einen Clustering-Ansatz vor, der den manuellen
Markierungsaufwand auf ein Minimum reduziert.

Die Deep Learning Features, die die Vorhersage von feingranula-
rer, kontextabhängiger Polarität verbessern, werden mittels eines neu-
ronalen Sprachmodells, genauer eines Log-Bilinear Language model
(LBL)s, berechnet. Wenn man dieses Modell verbessert, wird vermut-
lich auch das Ergebnis der Polaritätsklassifikation verbessert. Daher
führen wir nichtlineare Versionen des LBL und vectorized Log-Bilinear
Language model (vLBL) ein, weil nichtlineare Modelle generell als
mächtiger angesehen werden. In einer Parameterstudie zur Sprach-
modellierung zeigen wir, dass nichtlineare Modelle tatsächlich besser
abschneiden, als ihre linearen Gegenstücke. Allerdings ist der Unter-

III

IV

schied gering, es sei denn die Modelle können nur auf wenige Parame-
ter zurückgreifen. So etwas kommt zum Beispiel vor, wenn nur weni-
ge Trainingsdaten verfügbar sind und das Modell deshalb kleiner sein
muss, um Überanpassung zu verhindern.

Ein alternativer Ansatz zur feingranularen Polaritätsklassifikation
wie oben verwendet, ist es, einen Klassifikator zu trainieren, der die
Unterscheidung automatisch vornimmt. Durch die Komplexität der
Aufgabe, der Herausforderungen von SA im Allgemeinen und spe-
ziellen domänenspezifischen Problemen (z.B.: wenn Twitter-Daten
verwendet werden) haben existierende Systeme noch immer großes
Optimierungspotential. Oftmals verwenden statistische Klassifikato-
ren einfache Bag-of-Words (BOW)-Features. Alternativ kommen Zähl-
Features zum Einsatz, die auf Sentiment-Lexika aufsetzen. Wir stel-
len linguistically-informed Convolutional Neural Network (lingCNN)
vor, dass auf dem Fakt beruht, dass bereits viel Forschung in Sprachen
und Sentiment-Lexika geflossen ist. lingCNN macht von zwei linguis-
tischen Feature-Typen Gebrauch: wortbasierte und satzbasierte. Wort-
basierte Features umfassen Features die von Sentiment-Lexika, wie Po-
larität oder Valenz (die Stärke der Polarität) und generellem Wissen
über Sprache, z.B.: Verneinung, herrühren. Satzbasierte Features basie-
ren ebenfalls auf Zähl-Features von Lexika und auf Valenzen. Die Kom-
bination beider Feature-Typen ist dem Originalmodell ohne linguisti-
sche Features überlegen. Besonders wenn wenige Trainingsdatensätze
vorhanden sind (das kann der Fall für Sprachen sein, die weniger er-
forscht sind als englisch). lingCNN schneidet signifikant besser ab (bis
zu 12 macro-F1 Punkte).

Obwohl linguistische Features basierend auf Sentiment-Lexika vor-
teilhaft sind, führt deren Verwendung zu neuen Problemen. Der Groß-
teil der Lexika enthält nur Infinitivformen der Wörter. Dies gilt insbe-
sondere für Sprachen mit wenigen Resourcen. Das ist eine Herausfor-
derung, weil der Text der klassifiziert werden soll in der Regel nicht
normalisiert ist. Daher wollen wir die Frage beantworten, ob morpho-
logische Information für SA überhaupt notwendig ist oder ob ein Sys-
tem, dass jegliche morphologische Information ignoriert und dadurch
bessere Verwendung der Lexika erzielt, einen Vorteil genießt. Unser
Ansatz besteht aus Stemming und Lemmatisierung des Datensatzes,
bevor dann die Polaritätsklassifikation durchgeführt wird. Auf engli-
schen und tschechischen Daten zeigen wir, dass durch Normalisierung
bessere Ergebnisse erzielt werden. Als positiven Nebeneffekt kann
man bessere Wortrepresentationen (engl. word embeddings) berech-
nen, indem das Trainingskorpus zuerst normalisiert wird. Das funktio-
niert besonders gut für morphologisch reiche Sprachen. Wir zeigen auf
Datensätzen zur Wortähnlichkeit für deutsch, englisch und spanisch,
dass unsere Wortrepresentationen die Ergebnisse verbessern. In einer
neuen WordNet-basierten Evaluation bestätigen wir diese Ergebnis-
se für fünf verschiedene Sprachen (deutsch, englisch, spanisch, tsche-

V

chisch und ungarisch). Der Vorteil dieser Evaluation ist weiterhin, dass
sie für viele Sprachen angewendet werden kann, weil sie lediglich ein
WordNet als Resource benötigt.

Im letzten Teil der Arbeit verwenden wir eine kürzlich vorgestellte
Methode zur Erstellen eines ultradichten Sentiment-Raumes aus gene-
rischen Wortrepresentationen. Diese Methode erlaubt es uns 400 di-
mensionale Wortrepresentationen auf 40 oder sogar nur 4 Dimensio-
nen zu komprimieren und weiterhin die gleichen Resultate in Polari-
tätsklassifikation zu erhalten. Während die Trainingsgeschwindigkeit
um einen Faktor von 44 verbessert wird, sind die Unterschiede in der
Polaritätsklassifikation nicht signifikant.

CO N T E N T S

list of figures XI
list of tables XII
1 introduction 1

1.1 Challenges 1
1.2 Existing Approaches 2

1.2.1 Lexicon Creation 2
1.2.2 Statistical Classification Methods 3
1.2.3 Word Representation Learning 4

1.3 Outline and Contributions 5
2 foundations 7

2.1 Language Modeling 7
2.1.1 Training an Ngram Model 7
2.1.2 Smoothing 8
2.1.3 Evaluating a Language Model 10
2.1.4 Log-Bilinear Language Model 11
2.1.5 Training a Log-bilinear Language Model 14

2.2 Convolutional Neural Network 15
2.2.1 Architecture 16
2.2.2 CNNs for NLP 18

3 fine-grained contextual predictions for hard
sentiment words 23
3.1 Introduction 23
3.2 Linguistic Analysis of Sentiment Contexts of

“hard” 24
3.3 Deep Learning Features 26
3.4 Experiments 26

3.4.1 Classification 26
3.4.2 Clustering 29

3.5 Related Work 31
3.6 Conclusion 32
3.7 Future Work 33

4 linear versus non-linear language models 35
4.1 Introduction 35
4.2 Non-linear LBL Variants 36
4.3 Experiments 37

4.3.1 Results 3-gram 38
4.3.2 Results 7-gram 42

4.4 Related Work 44
4.5 Conclusion 46
4.6 Future Work 47

5 linguistically-informed convolutional neural
networks 49

VII

VIII contents

5.1 Introduction 50
5.2 LingCNN Architecture 51

5.2.1 Word-level Features 51
5.2.2 Sentence-level Features 54

5.3 Experiments 56
5.3.1 Data 56
5.3.2 Model Settings 58
5.3.3 Results 59

5.4 Analysis 62
5.4.1 Examples 62
5.4.2 Corpus Size 63

5.5 Related Work 66
5.6 Conclusion 67
5.7 Future Work 67

6 morphologically independent sentiment analy-
sis 69
6.1 Introduction 69
6.2 Stem/Lemma Creation 71
6.3 Experiments 72

6.3.1 Word Similarity 72
6.3.2 Word Relations 75
6.3.3 Polarity Classification 84

6.4 Analysis 87
6.4.1 Embedding Size 87
6.4.2 Corpus Size 88

6.5 Related Work 89
6.6 Conclusion 90
6.7 Future Work 91

7 ultradense sentiment representations 93
7.1 Introduction 93
7.2 Model 95

7.2.1 Separating Words of Different Groups 96
7.2.2 Aligning Words of the Same Group 96
7.2.3 Training 96
7.2.4 Orthogonalization 98

7.3 Lexicon Creation 98
7.4 Evaluation 101

7.4.1 Top-Ranked Words 101
7.4.2 Quality of Predictions 102
7.4.3 Determining Association Strength 104
7.4.4 Polarity Classification 104

7.5 Parameter Analysis 106
7.5.1 Size of Subspace 106
7.5.2 Size of Training Resource 107

7.6 Related Work 108
7.7 Conclusion 110

contents IX

7.8 Future Work 110
8 conclusion 113
acronyms 115
bibliography 117

L I ST O F F I G U R E S

Figure 2.2.1 CNN architecture 20
Figure 4.3.1 Perplexity of 3-gram models per word embed-

dings size 39
Figure 4.3.2 Interpolated perplexity of 3-gram models per

word embeddings size 41
Figure 4.3.3 Perplexity of 7-gram models per word embed-

dings size 43
Figure 4.3.4 Interpolated perplexity of 7-gram models per

word embeddings size 45
Figure 5.2.1 lingCNN architecture 51
Figure 5.4.1 Analysis of training set sizes 65
Figure 6.4.1 Embedding size analysis 88
Figure 6.4.2 Corpus size analysis 89
Figure 7.2.1 Original and transformed space 97
Figure 7.4.1 Illustration of en-Twitter output lexicon 103
Figure 7.5.1 Subspace size analysis 107
Figure 7.5.2 Lexicon size analysis 108

XI

L I ST O F TA B L E S

Table 3.2.1 Sense inventory of “hard” 27
Table 3.3.1 Context polarity results 28
Table 3.4.1 Signifiance 30
Table 4.3.1 Analyzed parameters 38
Table 4.3.2 Hyperparameters of the best 3-gram mod-

els 38
Table 4.3.3 Perplexity of 3-gram models per word embed-

dings size 39
Table 4.3.4 Results of best 3-gram models 40
Table 4.3.5 Interpolated perplexity of 3-gram models per

word embeddings size 41
Table 4.3.6 Hyperparameters of the best 7-gram mod-

els 42
Table 4.3.7 Perplexity of 7-gram models per word embed-

dings size 43
Table 4.3.8 Results of best 7-gram models 44
Table 4.3.9 Interpolated perplexity of 7-gram models per

word embeddings size 45
Table 5.2.1 Example of linguistic resources 53
Table 5.2.2 Word-level feature matrix for example sen-

tence 54
Table 5.2.3 Sentence-level feature matrix for example sen-

tence 55
Table 5.3.1 Twitter dataset sizes 57
Table 5.3.2 Baseline results 60
Table 5.3.3 lingCNN results 61
Table 5.3.4 Signifiance 63
Table 5.3.5 SemEval 2015 results 64
Table 5.4.1 Analysis of training set sizes 65
Table 6.1.1 Stemming result of “brechen” 70
Table 6.3.1 Word similarity datasets 73
Table 6.3.2 Sizes of training corpora 74
Table 6.3.3 Word similarity results for full vocabu-

lary 76
Table 6.3.4 Word similarity results for vocabulary intersec-

tion 77
Table 6.3.5 Number of lemmata in WordNet

datasets 79
Table 6.3.6 Word relation results on the unfiltered test

set 81

XII

List of Tables XIII

Table 6.3.7 Number of invalid results on the unfiltered test
set 82

Table 6.3.8 Word relation results on the filtered test
set 83

Table 6.3.9 Number of invalid results on the filtered test
set 84

Table 6.3.10 Polarity classification datasets 85
Table 6.3.11 List of Czech superlative exceptions 86
Table 6.3.12 Polarity classification results 87
Table 7.3.1 Embeddings training corpora 99
Table 7.3.2 Ultradense lexicons 100
Table 7.4.1 Top 10 English sentiment words 101
Table 7.4.2 Top 10 English and German words in different

categories 102
Table 7.4.3 Results of association strength 105
Table 7.4.4 Polarity classification results 106

1
I N T RO D U C T I O N

Sentiment Analysis (SA) deals with the recognition of a person’s opin-
ion towards a specific topic or product, or a property thereof (Pang and
Lee, 2008). Whenever an automated analysis of a person’s opinion or
feeling towards something is requested, SA techniques come into play.
More specifically, politicians might want to know what their voters
think about a specific bill they advertise or a company might want to
get an idea about product users in order to learn about problems and
maybe possible improvements. But also an individual user can ben-
efit from an automated system, for instance when there is a need for
recommendations for products, vacations, etc. A movie fan can get rec-
ommendations for a “sad movie with happy end”. Besides that there
are other useful applications of SA. For example, it enables the sum-
marization of opinions regarding a topic, may it be textual or visual.
Further, a well working system can be used to correct for false labeled
data in cases where a user’s star rating does not align with the written
text. An intriguing application are question answering systems that
can be enabled to react according to a user’s mood and might soothe
them when being sad.

This thesis focuses on text in contrast to sentiment in speech or
videos. Furthermore, we cover only polarity classification, the classifica-
tion of text into coarse categories, mostly into positive, negative, and neu-
tral. A different approach would be to classify into more fine-grained
categories, such as a 5-star rating with strongly negative, slightly neg-
ative, neutral, slightly positive, and strongly positive. Extending this
idea leads to analyzing a text’s valence, i.e., the magnitude of positivity
or negativity on a continuous range of values. This however is not the
focus of this work.

Furthermore, we deal with the polarity of entire pieces of text, not
depending on specific properties or aspects of products. For example,
we want to know if a given text is overall positive instead of which
aspect of a product is positive.

Finally, emotion research is also not in the focus of this work. For
instance, we do not want to classify a reviewer’s mood into basic emo-
tions such as the 8 basic emotions of Plutchik, (1980).

1.1 challenges

Major challenges research in SA faces are:

domain dependency Polarity is domain dependent. Consider the
sentence: “Go, read the book!” When talking about a book, this

1

2 introduction

statement is positive. However, when talking about a movie that
is based on a book, this statement is negative.

multiple aspects One review can comprise multiple aspects about
an item. For instance, a reviewer might write about actors of a
movie that he did not like, but still might like the movie overall.

multiple word senses Many words carry more than one sense. For
polarity classification this is challenging, because in one occur-
rence a word can be polar, whereas in another context the same
word is neutral.

data sparsity Labeled sentiment datasets are scarce. Especially,
when aspect-level labels are required much manual effort is
necessary to create a dataset that can be used in statistical
approaches. But also coarse-grained sentence-level labels are
scarce, especially in languages other than English.

linguistic problems Such problems include spelling errors (e.g.,
“wierd” instead of “weird”), colloquial speech (e.g., “swell” in-
stead of “great”), and frequently used emoticons (e.g., “:)” mean-
ing something is positive). In contrast to these more word-based
problems there are problems arising out of composition. Nega-
tion often (but not always) changes the entire polarity of a sen-
tence. Valence shifters (Polanyi and Zaenen, 2004; 2006) change
the valence of polarity. Some problems only arise in certain do-
mains. In Twitter for example, user’s are forced to heavily ab-
breviate words due to the 140 character limit per message. Texts
such as ”whr go sux? life is sooo beautiful !” are very common.

1.2 existing approaches

1.2.1 Lexicon Creation

Much research in SA has gone into lexicon creation. The underlying
idea is that words have a prior polarity, which is the polarity one would
assign a word when nothing about the word’s context is known. Man-
ual approaches for creating lexicons comprise for example the General
Inquirer lexicon (Stone et al., 1966), ANEW (Bradley and Lang, 1999),
and the lexicons created by Taboada et al., (2011). Semi-automatically
created lexicons, usually based on a list of seed words were used
among others by Mohammad et al., (2013), Turney, (2002), and Wil-
son et al., (2005).

Sentiment lexicons have been used in many approaches for SA, rang-
ing from Bayesian approaches (Maas et al., 2011) and machine learn-
ing approaches (e.g., Tang, Wei, Qin, Zhou, et al., (2014) and Tang,
Wei, Yang, et al., (2014)), to systems that explicitly use linguistic fea-

1.2 existing approaches 3

tures (Gamon, 2004) and other types of polarity features such as va-
lence shifters (Taboada et al., 2011).

1.2.2 Statistical Classification Methods

On the other hand there are attempts to learn statistical classifiers with-
out any additional linguistic knowledge such as sentiment lexicons.
One of the first attempts of automated polarity classification tried to
classify movie reviews into positive, negative, and neutral (Pang et
al., 2002). The labels for the created dataset were automatically ex-
tracted from user-provided star ratings and thus may be noisy. The
authors used Bag-of-Words (BOW) features with different weighting
schemes (binary and frequency) and a position feature plus a simple
negation detection in Naive Bayes, Maximum Entropy, and Support
Vector Machine (SVM) models. Surprisingly, a simple binary uni-
gram SVM yielded the best performance. S. I. Wang and Manning,
(2012) later found that bigram features consistently improve the per-
formance. They showed improvements for all three of their tested clas-
sifiers (Naive Bayes, SVM, and Naive Bayes SVM).

This straight-forward classification approach was followed by a two
step approach where first a classifier determines if a sentence in the
review is subjective or objective and then in a second step another clas-
sifier classifies the polarity of only the subjective sentences (Pang and
Lee, 2004; Riloff, Wiebe, Collins, et al., 2003).

Scheible and Schütze, (2013) later argued that classifying only subjec-
tive and objective sentences is not appropriate for detailed SA, because
there are subjective sentences that do not convey sentiment and there
are objective sentences that do convey polarity.

Recently, most work aims for implicit and automatic learning of sub-
jectivity or relevance by having a single classifier for the text’s polarity
without explicit modeling of both (e.g., Hagen et al., (2015)). More re-
cent approaches to SA include neural network methods such as Recur-
sive Neural Networks (Socher et al., 2013) and Convolutional Neural
Networks (CNNs) (Kim, 2014; Severyn and Moschitti, 2015; Yin and
Schütze, 2015).

In (Meng et al., 2015) an ensemble of ngram Language Models
(LMs), Recurrent Neural Network (RNN) LM (Mikolov et al., 2010),
sentence vectors (Le and Mikolov, 2014), and a Naive Bayes SVM was
shown to reach state-of-the-art performance on a large sentiment tree-
bank (Socher et al., 2013). In their study, the ngram LMs had the small-
est effect on the results. All other classifiers contributed to the final
result in the linear interpolation.

4 introduction

1.2.3 Word Representation Learning

The following approaches learn special word representations to sup-
port SA:

Maas and Ng, (2010) introduce a probabilistic model that learns
semantic, distributed word representations. Instead of focusing on
syntax during word representation induction the model takes docu-
ment term relations into account, i.e., it uses the correlation of words
within documents inside the training objective, leading to more seman-
tic word representations. These capture the “empirical distribution of
words in a document”. The presented approach is similar to LDA, but
learns word representations instead of topic distributions. The power
of the word embeddings is evaluated on document level sentiment clas-
sification and sentence level subjectivity detection.

Maas et al., (2011) follow up on the idea of semantic word representa-
tions and propose a model that learns word representations that cap-
ture semantic similarities and word sentiment at the same time in a
multi-task learning setting. This is done by having a training objective
that combines a semantic training objective taken from Maas and Ng,
(2010) and a sentiment-based training objective, which is a classifica-
tion score on movie review data.

Labutov and Lipson, (2013) introduce a method to use existing
source representations, i.e., representations that have been computed
by external parties, to improve supervised tasks. The idea is to have a
supervised training objective for the task at hand that learns target rep-
resentations optimized for this task and an objective that makes use of
the source representations to guide the learning of the target represen-
tations by computing a norm of the representations’ differences. The
usage of different source representations (Collobert et al., 2011; Huang
et al., 2012; Mnih and Hinton, 2008) and different training set sizes
shows superior performance on a sentiment classification task.

Tang, Wei, Yang, et al., (2014) present 3 different neural networks
for learning sentiment specific n-gram representations. The models
are based on Collobert et al., (2011)’s model and incorporate sentiment
labels into the loss function. All sentiment labels are extracted auto-
matically from Twitter tweets by searching for predefined emoticons
in the texts and labelling them accordingly, e.g., “:-)” is positive. Their
best model combines the hinge loss of Collobert et al., (2011)’s model
and the sentiment hinge loss. Evaluation on the SemEval 2013 test
set shows superior performance compared to all baselines, including
the SemEval2013 winner. Further evaluations show that using higher-
order n-gram embeddings helps in classification.

1.3 outline and contributions 5

1.3 outline and contributions

Our contributions align with the chapters in this thesis. The chapters
and main contributions per chapter are:

Chapter 2 gives an overview over basic concepts and methods that
are used throughout this thesis. It describes language model-
ing as a Natural Language Processing (NLP) task and is used
in Chapter 3 and Chapter 4. It further gives an overview over
CNNs that are later extended in Chapter 5.

Chapter 3 introduces a system for fine-grained polarity classification.
We argue that fine-grained polarity depends on the sense of a
word, which depends on the context. Therefore, we analyze the
senses of a word in the light of sentiment and show that senti-
ment specific senses are different than senses in terms of linguis-
tic meaning. Building upon this sense inventory we propose a
method for context-dependent polarity classification, based on
either an LM or a clustering method.

Chapter 4 builds upon the idea used in Chapter 3 to use an LM for po-
larity classification. In order to improve language modeling we
introduce non-linear extensions to the linear Log-Bilinear Lan-
guage model (LBL) that are easily applicable to other linear mod-
els. We reach the biggest gains when a model has only a small
number of parameters, leading to benefits for settings with little
training data.

Chapter 5 describes the incorporation of linguistic knowledge into
a CNN architecture. We present two orthogonal approaches
for feature integration, a word-based and a sentence-based ap-
proach. On sentence level we show that this additional informa-
tion is very beneficial for polarity classification. We show espe-
cially strong improvements when training data is scarce.

Chapter 6 analyzes the impact of morphological normalization on
polarity classification. We compare the standard form-based ap-
proach with stem- and lemma-based methods for up to five dif-
ferent languages. We present strong improvements especially
for Morphologically Rich Languages (MRLs), because normal-
ization for them is more beneficial compared to languages with
simple morphology, such as English. We further show that the
presented methods successfully address sparsity problems and
are beneficial when little training data is available.

Chapter 7 describes a method that converts generic word embed-
dings in a way that puts focused information, such as valence
and concreteness, into specific dimensions. This allows us to cre-
ate one-dimensional representations of words, i.e., a lexicon, for

6 introduction

each of these properties. The created lexicons have high-quality
and a large coverage. Moreover, as we show in this chapter, re-
ducing the number of dimensions from 400 down to 40 or even
4, does not reduce the polarity classification performance much.

Chapter 8 concludes this thesis.

All main chapters contain their own specific introduction, detailed con-
tribution list, related work section, and conclusion.

2
FO U N DAT I O N S

In this Chapter we introduce basic concepts that are required by the
topics in this thesis. We start with language modeling in Section 2.1,
where we describe the basic concept of Language Models, with the
most prominent example, n-gram models. We explain how they are
trained and evaluated and introduce a more recent Neural Network
Language Model. In Section 2.2 we describe a special type of Neu-
ral Network, namely the Convolutional Neural Network, which has
originally been developed for vision, but has appealing properties for
natural language as well.

2.1 language modeling

Language modeling is a fundamental task for many Natural Language
Processing (NLP) applications such as Optical Character Recogni-
tion (OCR), Automatic Speech Recognition (ASR), statistical Machine
Translation (MT), or spelling correction. Generally speaking a
Language Model (LM) assigns a probability to a sequence of m words
S = w1w2 . . . wm = wm

1 :

P(S) = P (wm
1) =

m

∏
i=1

P
(

wi|wi−1
1

)
(2.1.1)

For traditional non-Neural Network (NN) LMs it is infeasible to com-
pute P

(
wi|wi−1

1

)
for large i, because there is not enough data to esti-

mate the probability. Therefore, the Markov assumption is used in
order to restrict the context to the previous n− 1 words:

P
(

wi|wi−1
1

)
≈ P

(
wi|wi−1

i−n+1

)
= P (wi|hi) (2.1.2)

Such a model is called n-gram model, where n is called the order of
the model, and hi is called the history of wi.

2.1.1 Training an Ngram Model

Ngram models are learnt by Maximum Likelihood, i.e., they maximize
the likelihood of a training set T given the model parameters θ:

L(T) = Pθ (T) =
M

∏
i=1

Pθ (wi|hi) (2.1.3)

where M is the number of words in T. The Maximum Likelihood Esti-
mate (MLE) maximizing L can be computed as follows:

7

8 foundations

PMLE (w|h) =
c(hw)

c(h)
(2.1.4)

with c(hw) being the frequency of the ngram hw in the training set T.
Although very simple, the MLE comes at its price. Any previously

unseen ngram receives zero probability, which is clearly an underes-
timate. The larger n the more severe this problem becomes, because
no text contains all possible ngrams (data sparsity). Smoothing tech-
niques address this issue by redistributing probability mass from fre-
quent ngrams to infrequent or unseen ngrams.

2.1.2 Smoothing

Chen and Goodman, (1999) give an extensive overview over many
different smoothing techniques, such as additive smoothing (Laplace,
1825), Good-Turing (Good, 1953), Jelinek-Mercer (Jelinek and Mercer,
1980), Katz smoothing (Katz, 1987) etc. We focus on modified Kneser-
Ney (KN) (Chen and Goodman, 1999), an extension to KN smooth-
ing (Kneser and Ney, 1995) and a smoothing technique that has proven
to be very powerful. This is the technique we use in later language
modeling experiments.

In contrast to other smoothing techniques KN estimates lower-order
ngram probabilities not on their counts but on their usage in higher or-
der ngrams. For instance unigram probabilities are based on the num-
ber of word types they can follow, i.e., their usage in bigrams. More
specifically, a unigram’s probability is computed as:

PMKN (wi) =
N1+ (•wi)

N1+ (••) (2.1.5)

where

N1+ (•wi) = | {wi−1 : c (wi−1wi) ≥ 1} | (2.1.6)

with c(x) again being the frequency of x in the training set. Hence,
N1+ (•wi) is the number of different words that precede wi in the train-
ing set.

N1+ (••) = ∑
wi−1

N1+ (wi−1•)

= | {(wi−1wi) : c (wi−1wi) ≥ 1} | (2.1.7)
= ∑

wi

N1+ (•wi)

is the number of bigram types that occur at least once.
The ngram probability of the highest order ngram depends on abso-

lute counts:

2.1 language modeling 9

PMKN (wi|hi) =
max {c (hiwi)− D (c (hiwi)) , 0}

∑wi
c (hiwi)

+ γhighest (hi) PMKN

(
wi|wi−1

i−n+2

)
(2.1.8)

This equation shows two modifications of Chen and Goodman,
(1999). First, they use interpolation instead of back-off as the original
implementation. This means that they use “lower-order distribution
for all words, not just for words that have zero counts in the higher- or-
der distribution” (Chen and Goodman, 1999). Second, they introduce
several discount values depending on the count of a particular ngram:

D (c) =



0 if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c ≥ 3

(2.1.9)

The discount parameters are computed as:

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2
(2.1.10)

D3+ = 3− 4Y
n4

n3

where n∗ are the total number of n-grams that occur exactly ∗ times
and

Y =
n1

n1 + 2n2
(2.1.11)

The third and last modification that is introduced is that the discount
parameters in Equation 2.1.10 are estimated on held-out data instead
of the training set.

The normalization factor or interpolation factor that is responsible
for making it sum up to 1 is defined as:

γhighest (hi) =
D1N1 (hi•) + D2N2 (hi•) + D3+N3+ (hi•)

∑wi
c (hiwi)

(2.1.12)

N1 (hi•) = | {wi : c (hiwi) = 1} | (2.1.13)

is the number of word types that follow the history exactly once.
N2 (hi•) and N3+ (hi•) are defined accordingly.

The probability estimation for lower order ngrams, i.e., of order be-
tween the highest and unigram, is computed as:

10 foundations

PMKN (wi|hi) =
max {N1+ (•hiwi)− D (c (hiwi)) , 0}

∑wi
N1+ (•hiwi)

+ γlower (hi) PMKN

(
wi|wi−1

i−n+2

)
(2.1.14)

where

γlower (hi) =
D1N1 (hi•) + D2N2 (hi•) + D3+N3+ (hi•)

∑wi
N1+ (•hiwi)

(2.1.15)

Thus, the estimated probability of a lower order ngram depends
on discounts instead of absolute counts as seen for the highest order
ngram.

2.1.3 Evaluating a Language Model

Evaluating LMs in an end to end system, such as MT or ASR is often
complicated and computationally expensive. Therefore, they are often
evaluated intrinsically using either cross entropy or perplexity. Cross
entropy “is the average number of bits that would be required to en-
code the test data using an optimal coder” (Goodman, 2001):

H (D, θ) = − ∑
hw∈Vn

P (hw) log2 Pθ (w|h)

= − ∑
hw∈Vn

c(hw)

M
log2 Pθ (w|h)

= −
M

∑
i

1
M

log2 Pθ (wi|hi) (2.1.16)

where D is some dataset previously unseen and V is the vocabulary of
the training set T.

Perplexity is then defined as:

PPL (D, θ) = 2H(D,θ)

= 2−∑M
i

1
M log2 Pθ(wi |hi)

= 2−
1
M ∑M

i log2 Pθ(wi |hi)

= M

√
1

∏M
i Pθ (wi|hi)

(2.1.17)

Minimizing perplexity corresponds to having a model that is closer
to the real data distribution of D.

2.1 language modeling 11

2.1.4 Log-Bilinear Language Model

As we have seen before, the larger the ngram size n the sparser the
data becomes and hence the more ngram models suffer from data spar-
sity. There are extensions that address this problem, such as class-
based LM (Brown et al., 1992) and skip-n-gram models (Pickhardt et al.,
2014), that both try to cluster together ngrams (or parts thereof). A very
different approach is to use NNs. First work in this direction was done
by Bengio et al., (2000) and Bengio et al., (2003) who trained a feed-
forward NN. Their model embeds all words into a low-dimensional
real-valued space. Therefore, the model is also called Continuous
Space Language Model (CSLM). The advantage of this model is that
the word vectors are learned automatically in a way that words that
occur in similar context get similar vectors. For instance the vector of
Saturday will be similar to the vector of Sunday.

The combination of words in the continuous space as performed by
the network works like implicit smoothing and can lead to non-zero
probability no matter if an ngram has been seen before or not.

Low-dimensional word representations, also called embeddings, are
created for all words in the vocabulary and are updated during the
model training. This leads to similar words having similar word em-
beddings, which is a property that can be used in all kinds of tasks,
such as word similarity judgements.

Despite its power and intriguing properties, Bengio et al., (2000)’s
CSLM is computationally very expensive and needs lots of training
data, because of the large number of model parameters. One way of
reducing training time is by using a hierarchical version of the train-
ing algorithm as presented by Morin and Bengio, (2005). Instead of
directly predicting a probability distribution over all words in the vo-
cabulary, it predicts a bit vector representation as output. This rep-
resentation encodes a path in a binary tree from the root to the leaf,
where the leaf corresponds to the searched word. The advantage of
this method is that there will be “gradient propagation only for the
nodes on the path from the root to the leaf”, which saves much com-
putation time. This method delivers significant training speed-up, but
yields lower performance than the original model.

An alternative model is the Log-Bilinear Language model
(LBL) (Mnih and Hinton, 2007), another CSLM. It is a linear
model, that has fewer parameters and therefore is easier to train, but
reaches better performance than the CSLM from Bengio et al., (2000).

Architecture

The LBL embeds words into two distinct spaces, one input space (R)
and one target space (Q), depending on whether the word occurs in
the history or as a target word. We denote the input embedding of

12 foundations

word w as rw ∈ Rd and the target embedding as qw ∈ Rd, where d is
the embeddings size.

For a given ngram history h = wn−1
1 the model predicts a target em-

bedding q̂ by linearly combining the context word embeddings with
position dependent weights:

q̂LBL(h) =
n−1

∑
i=1

Cirwi (2.1.18)

where Ci ∈ Rd×d is a weight matrix associated with position i in the
history. When concatenating the weight matrices (C = C1 . . . Cn−1) and
word embeddings (r = rw1 . . . rwn−1) we see that the LBL corresponds
to a NN with one hidden layer with a linear activation function:

q̂LBL(h) = Cr (2.1.19)

To measure the quality of the predicted target embedding q̂LBL and
the real target embedding qw, the model computes a similarity using
the dot product:

sθ(w, h) = q̂(h)Tqw + bw (2.1.20)

where bw is a bias term and θ = {R, Q, C, b} are the model’s param-
eters. The final probability of a word given its context is calculated
using the softmax function:

Ph
θ (w) =

exp(sθ(w, h))
∑w′ exp(sθ(w′, h))

(2.1.21)

Noise-Contrastive Estimation

The softmax function quickly becomes a bottleneck, because it requires
to compute sθ(w′, h) for all vocabulary items. Thus, the computational
complexity increases linearly with the vocabulary size. In order to
avoid this expensive calculation Mnih and Hinton, (2008) introduce
a hierarchical LBL model to speed up the training in the same manner
as the hierarchical CSLM does. They state however that it is not triv-
ial to find an appropriate tree structure for the output layer. Hence,
Mnih and Teh, (2012) and Mnih and Kavukcuoglu, (2013) propose
to use Noise-Contrastive Estimation (NCE) (Gutmann and Hyvärinen,
2012). In NCE the unsupervised problem of density estimation is con-
verted into a supervised binary classification problem. There, a clas-
sifier learns to distinguish between samples from the real data distri-
bution Ph

d and samples from a noise distribution Pn. “In the language
modeling setting, the data distribution Ph

d (w) will be the distribution
of words that occur after a particular context h” (Mnih and Teh, 2012).
In other words, we try to fit the context-dependent model Ph

θ (w) to
Ph

d (w). Since the properties of the noise distribution are known, we

2.1 language modeling 13

can learn properties of the data distribution. Noise samples are con-
sidered to be k times more frequent than data samples, i.e., it is k times
more likely that a sample w is drawn from the noise distribution. Given
only the context h we can draw data and noise samples using

P(D = 1, w|h) = 1
k + 1

Ph
d (w) (2.1.22)

P(D = 0, w) =
k

k + 1
Pn(w). (2.1.23)

where D = 1 corresponds to the data distribution and D = 0 corre-
sponds to the noise distribution.

The posterior probability that a word w came from the data distribu-
tion is given as:

Ph(D = 1|w; θ) =
Ph

θ (w)

Ph
θ (w) + kPn(w)

(2.1.24)

Instead of comparing the data sample to all items in the vocabulary
it is now compared to only k noise samples. That makes the compu-
tation much faster. What is new about this method is that it sums up
unnormalized and normalized probability distributions in the denom-
inator. Thus, the algorithm must learn to normalize the unnormalized dis-
tribution Ph

θ (w) and therefore allow the binary classification. We drop
the denominator in Equation 2.1.21 and directly use the unnormalized
probability as Ph

θ (w). The overall objective function is:

Jh(θ) = EPh
d

[
log Ph(D = 1|w; θ)

]
+ kEPn

[
log Ph(D = 0|w; θ)

]
(2.1.25)

That means, we want to learn to distinguish between samples from the
data distribution and samples from the noise distribution.

So far, we have only computed the objective function for a single con-
text. We cannot train distributions of different contexts separately, be-
cause they share parameters, which are the word representations and
the neural network parameters. In order to combine the per-context
objective functions, the global NCE objective is given as a sum of the
objectives of all contexts h

J(θ) = ∑
h

P(h)Jh(θ), (2.1.26)

= EP(h) Jh(θ)

where P(h) are the empirical context probabilities.
In practice we can apply some simplifications. Since we know the

correct word w in the given context h we can calculate the word’s con-
tribution to the overall objective by sampling k noise samples x1, . . . , xk.
For a context word pair this leads to

14 foundations

Jhw(θ) = log Ph(D = 1|w; θ)

+
k

∑
i=1

log Ph(D = 0|xi; θ) (2.1.27)

We can see that we learn to distinguish between the real word and
some noise samples.

Note, if we go over all windows in a corpus and calculate Jhw we
do not need to apply Equation 2.1.26. The reason is that we get the
weighting automatically, by seeing frequent contexts more often and
therefore incorporate their cost more often. The overall objective is
therefore

J(θ) = ∑
(hw)

Jhw(θ) (2.1.28)

As noise distribution Mnih and Teh, (2012) compare unigram and
uniform distribution over the training vocabulary. They find that us-
ing a unigram distribution consistently gives better results. Using a
more realistic distribution, such as a bi- or trigram distribution might
improve the results even further or increase the training speed by re-
quiring fewer noise samples (Mnih and Teh, 2012).

NCE only speeds up the model training. Normalization is still nec-
essary during prediction. The normalized probability of word w for a
context h is computed using the softmax function (Equation 2.1.21).

Vectorized Log-Bilinear Language Model

Mnih and Hinton, (2008) present another speedup technique of the
LBL model. They set the position dependent weight matrices Ci to di-
agonal matrices, creating the vectorized Log-Bilinear Language model
(vLBL). In this model the predicted word embedding (cf. Equa-
tion 2.1.18) is computed as:

q̂(h) =
n−1

∑
i=1

ci ⊙ rwi (2.1.29)

, where ci ∈ Rd is the weight vector associated with position i in the
context and⊙ is point-wise multiplication. The rest of the calculations
stay the same.

2.1.5 Training a Log-bilinear Language Model

The standard way of training a LBL is by Stochastic Gradient Descent
(SGD). In SGD a parameter θi is updated after every randomly sam-
pled training example:

2.2 convolutional neural network 15

θi ← θi − η
∂J′

∂θi
(2.1.30)

where J′ is the training objective, i.e., the cost function that is to be
minimized. For the LBL the objective is J′ = J. Often however, some
regularization is wanted to avoid overfitting to the training data. This
is added to the task-specific objective J. For ℓ2 regularization that cor-
responds to:

J′ = J + ∑
i

θ2
i (2.1.31)

An alternative training strategy that can be used is AdaGrad (Duchi
et al., 2011). In AdaGrad every parameter has its own learning rate. It
gives “frequently occurring features very low learning rates and infre-
quent features high learning rates” (Duchi et al., 2011).

Let gt,i =
∂J′t
∂θi

be the gradient of parameter θi at time step t, then the
parameter-specific learning rate ηt,i is set to

ηt,i =
η√

∑t
t′=1 g2

t′,i

(2.1.32)

where η is the global learning rate. In other words, in AdaGrad we
keep track of the squared gradients along the training process. Thus,
the SGD update rule is rewritten as:

θi ← θi −
η√

∑t
t′=1 g2

t′,i

gt,i (2.1.33)

The global learning rate η is less important in AdaGrad than it is in
SGD, because it gets adjusted depending to the frequency with which
a feature is seen (Dyer, 2013).

2.2 convolutional neural network

In this section we introduce Convolutional Neural Networks (CNNs)
a classifier with very appealing properties for Sentiment Analysis (SA)
as we will see below.

CNNs are a special type of feed-forward NN that originally were
introduced for vision, more precisely handwritten digit recognition.
In contrast to standard feed-forward Multi Layer Perceptron (MLP)
which have a feature vector as input, a CNN directly uses the 2-
dimensional image data as input (Denker et al., 1988; LeCun et al.,
1989; 1990). The underlying idea is to find specific patterns in the input
data independent of their exact position with fewer parameters than an
MLP. This is achieved by having the following three appealing prop-
erties:

16 foundations

local (sparse) connectivity One unit in a convolutional layer cor-
responds to a local neighborhood (i.e., a receptive field) in the in-
put layer. That means that a single neuron is connected only to a
subset of the units in the input layer (i.e., it is a window approach).
This is in contrast to the usually fully connected MLP. The ad-
vantage of this approach is the sparser connectivity. Therefore,
fewer parameters must be learnt.
SA benefits from this property, because most often, polarity is
contained in only a few words of a sentence. The vast majority of
words do not contribute to the polarity value and can therefore
be ignored. Instead of looking at all the words in a sentence at
ones, we can focus on windows containing the polarity.

shared weights All units in a convolutional layer share the same
weights, making it a sliding window approach. This also leads to
fewer free parameters. However, the main advantage of this is
that the same pattern is recognized independent of its position.
For SA that means that the model recognizes feature combina-
tions that indicate polarity, no matter where in the sentence they
appear.

subsampling / pooling layers The output of convolution layers
is usually subsampled by pooling operations for two reasons: (i)
The exact position of a certain pattern is usually not required to
know. Instead, we just want to know roughly where a feature
occurs (if at all). Thus, the exact position can be ignored. For
SA this is beneficial, because we do not care about the position of
the polarity indicator, but only about their polarity value. (ii) The
output size is reduced even further, leading to fewer parameters
in the following layers of the CNN.
Subsampling is either done on non-overlapping windows or on
partially overlapping windows. Common pooling operations are
average pooling LeCun et al., (1990) and max-pooling (Collobert
and Weston, 2008).

In the following we describe all the building blocks of the popular
CNN architecture LeNet for handwritten character recognition LeCun
et al., (1998).

2.2.1 Architecture

A CNN receives a 2-dimensional input Z ∈ Rn1×n2 , where n1 and n2

are the dimensionalities of the input image. LeNet consists of three
types of layers (in the following indicated by a superscript index): a
convolution layer, a pooling layer, and a fully connected softmax layer.

2.2 convolutional neural network 17

2D Convolution

Using a convolution matrix M ∈ Rm1×m2 (also called filter matrix) a
CNN performs a 2d convolution that spans a region of size m1 ×m2:

A(1)
o,p =

m1

∑
i=1

m2

∑
j=1

Mi,jZo+i,p+j (2.2.1)

where A(1)
o,p is the layer’s activation at position p ∈ [−n1, n1 − 1] and

o ∈ [−n2, n2 − 1]. Positions outside the boundaries of Z are set to a
default value (−1 in LeCun et al., (1989)). This approach makes sure
that every row and column of the filter reaches every row and column
of the input.

The output of the convolution is called feature map and has a size of
A(1) ∈ R(n1+m1−1)×(n2+m2−1). It is the input to a pooling layer.

Subsampling / Pooling

Pooling is used for further reducing the parameters of the model in
the following layers and for achieving translation invariance of feature
detectors. There are two common choices for pooling.1

Average pooling is defined as:

a(2)
′
=

1
(n1 + m1 − 1)× (n2 + m2 − 1) ∑

o
∑

p
A(1)

o,p (2.2.2)

Max pooling is defined as:

a(2)
′
= max

o,p
A(1)

o,p (2.2.3)

The final output of the pooling layer is computed by adding a bias b
and applying an element-wise non-linear activation function g:

a(2) = g
(

a(2)
′
+ b(2)

)
(2.2.4)

A common choice for the activation function g is the hyperbolic tan-
gent:

g(x) = tanh(x) (2.2.5)

In order to detect multiple different patterns in the data, multiple
filters exist in the network. Every filter has its own pooling step. There-
fore, the output of the pooling layer is the combination of all pooled
values:

a(2) = a(2)1 . . . a(2)f (2.2.6)

1 We assume a pooling over all values of the feature map, instead of a pooling area. This
is not common when working with images. However, for the NLP applications in this
work, using a different subsampling strategy is not necessary.

18 foundations

where f is the number of filters used.
In vision, usually there are multiple sequences of convolution and

pooling layers, making it a deep network. Every convolution layer then
recognizes more abstract features than the one before leading to the
ability to detect complicated patterns.

Fully Connected Hidden Layers

The output of the last max-pooling layer is input to a sequence of fully-
connected hidden layers. For simplicity we assume only one convolu-
tion layer, one pooling layer, and one fully-connected hidden layer:

a(3) = g
(

a(2)W(3) + b(3)
)

(2.2.7)

with W(3) being the weight matrix of the hidden layer and b(3) being
the bias of the hidden layer.

Softmax Layer

The final prediction is computed using another fully-connected layer
with the softmax activation function:

a(4)i =
exp(zi)

∑j exp(zj)
(2.2.8)

with z = a(3)W(4)+ b(4). The softmax converts the output into a proper
probability distribution.

All parameters of the CNN θ = {M∗, b∗, W∗} are trained with SGD
using back-propagation for computing the partial derivatives (LeCun
et al., 1989; Rumelhart et al., 1986; Werbos, 1982).

2.2.2 CNNs for NLP

CNNs are especially powerful when dealing with 2-dimensional input.
When we want to make use of the properties of CNNs in NLP, the
question arises how to represent text. There are two main possibilities
to represent a word in a NN model:

1. Distributional representations represent a word by a large vec-
tor containing cooccurrence statistics with all the other words
in the vocabulary. The values in the vector can be (among oth-
ers) simple cooccurrence counts (Bullinaria and Levy, 2007), tf-
idf scores (Manning et al., 2009), or pointwise mutual informa-
tion scores (Baroni et al., 2014; Bullinaria and Levy, 2007). The
main advantage of this type of representation is the interpretabil-
ity. Every dimension in the vector corresponds to one piece of
information (usually the cooccurrence statistic). This however
requires a long vector, because a single word is represented by
the cooccurrence to all other words in the vocabulary.

2.2 convolutional neural network 19

2. Distributed representations – often called word embeddings, be-
cause they embed every word into a latent semantic space – on
the other hand, distribute information among all available di-
mensions in a vector (Hinton, 1984; 1986). Additionally, a single
dimension in such a vector participates in multiple pieces of in-
formation (Hinton et al., 1986). Such a representation “leads to
automatic generalization” (Hinton, 1986). Additionally, the vec-
tors are more compact and therefore smaller in dimensionality.

Both types of representations are based on the distributional hypothe-
sis, which states that a word gets it semantics by the words it cooccurs
with (Sahlgren, 2008). That means, if two words share the same set
of other words they cooccur with, then their meaning must be simi-
lar (Karlgren and Sahlgren, 2001).

Baroni et al., (2014) compare several distributional representations
with a distributed representation on a number of different tasks, such
as semantic relatedness and synonymy detection. They show that mod-
els using distributional representations are superior to count models
in many semantic tasks. While Levy et al., (2015) challenge this find-
ing by stating that careful hyperparameter tuning makes both embed-
dings types performing similarly, they claim that skip-gram, one way
of computing word embeddings, usually gives reasonable results and
is the “fastest method to train, and cheapest (by far) in terms of disk
space and memory consumption”. In SA, models using word embed-
dings also perform very well (see e.g., dos Santos and Gatti, (2014),
Kim, (2014), and Tang, Wei, Yang, et al., (2014)). Thus, we restrict our
research to this type of word representations.

Word Embedding Methods

There are several popular alternative methods to compute distributed
representations:

1. Early work created a cooccurrence matrix of words and applied a
Singular Value Decomposition (SVD) on it (Schütze, 1992). Sim-
ilarly, Lebret et al., (2013) applied a Hellinger Principal Compo-
nent Analysis (PCA) on such a matrix.

2. As presented in Section 2.1 the CSLM from Bengio et al., (2000)
learns word embeddings as a side product of the language mod-
eling architecture. The major drawback of this method is the
computational complexity, which makes learning of large vocab-
ularies expensive. The same holds true for the LBL (Mnih and
Hinton, 2007).

3. Mikolov, Chen, et al., (2013) presented two methods for using
a NN model to learn semantic word vectors given an unlabeled
text corpus, Continuous Bag-of-Words (CBOW) and skip-gram.
In the CBOW model one tries to predict the word embedding

20 foundations

pooling

softmax

conv.

i'm fine tnx

0 000

0 000

0 000

figure 2.2.1: CNN architecture CNN architecture with embeddings
layer, convolution, max-pooling, and the softmax.

of the target word from the sum of the word embeddings of the
context words. In the skip-gram model one tries to predict the
word embeddings of context words from the word embedding
of a source word.
Both methods gained large popularity as initialization method
for word representations in many NLP applications such as
Morphology Induction (Soricut and Och, 2015), Named Entity
Recognition (NER) (Passos et al., 2014), Part-of-Speech (POS) tag-
ging (dos Santos and Zadrozny, 2014), and relation classifica-
tion (dos Santos et al., 2015).

Due to their power and easy computation we use skip-gram to precom-
pute word embeddings.

Word Embeddings in CNNs

Since we can create a 2-dimensional input for the CNN now using
word embeddings, we can adapt the original model architecture. Let
LT ∈ Rd×|V| denote a lookup table that assigns each word in the vo-
cabulary V a d-dimensional vector. This lookup table is trained with
skip-gram (Mikolov, Chen, et al., 2013). The CNN architecture is de-
picted in Figure 2.2.1.

2.2 convolutional neural network 21

Given a sequence of n tokens t1 to tn the model concatenates all n
word representations. The original input of the model Z therefore is
replaced by:

Z =

 | | |
LT·,t1 · · · LT·,tn

| | |

 (2.2.9)

As stated before, word embeddings distribute information among
all available dimensions, i.e., a single piece of information is not lo-
cated in a single dimension. Therefore, we use filters that span all
dimension to find features that interact with multiple dimensions:
M ∈ Rd×m. The output of the first convolution layer is therefore a
vector a(1) ∈ R(n+m−1) instead of a matrix A as in Equation 2.2.1. The
width of the filter m now specifies how many words the filter spans.
Additionally, we can make use of multiple filter widths (m ∈ {3, 4}
in Figure Figure 2.2.1) (Kim, 2014). This allows us to have filters that
focus on shorter or longer patterns.

As before, the positions outside the boundaries of Z are set to a de-
fault value, which we set to zero. This is also known as wide convolu-
tion (Kalchbrenner et al., 2014). More precisely, we pad the input Z
with m − 1 zero columns at the left and right side (i.e., the sentence
length becomes n + 2 ∗ (m− 1)).

Instead of neglecting all but one value per feature map in the pooling
layer, Kalchbrenner et al., (2014) propose to use the k maximum values,
which they call k-max pooling. Thus, more information about the data
and its similarity to the filter is retained.

LetNk be the set of the k largest values in the feature map a(1), let π

with πi ∈ [0, n + m− 1] be a list of indices of the values in Nk sorted
according to their indexes in the feature map a(1) in ascending order.
Then k-max pooling is defined as:

a(2)
′
= [a(1)πi |∀1 ≤ i ≤ k] (2.2.10)

The activation function that is used in all our experiments in this
work is the Rectified Linear Unit (ReLU) function :

g(x) = max(0, x) (2.2.11)

This non-linearity proved to be a crucial part in object recogni-
tion (Jarrett et al., 2009), MT (Vaswani et al., 2013), and ASR (Zeiler et
al., 2013). It has some useful properties: (i) it is easier to optimize than
other non-linear functions such as sigmoidal functions; (ii) it leads to
faster convergence and better generalization; (iii) and is faster to com-
pute (Zeiler et al., 2013).

We follow Kalchbrenner et al., (2014) and do not use a fully-
connected hidden layer. Instead the output of the k-max pooling layer
a(2) is directly forwarded into the softmax layer (cf. Equation 2.2.8).

22 foundations

Please note that for English with its simple grammar, one layer of
convolution and pooling is often sufficient, because there are rarely
long-distance relations that make the interaction of filters at different
positions necessary.

3
F I N E - G R A I N E D CO N T E X T UA L P R E D I C T I O N S FO R
H A R D S E N T I M E N T WO R D S

This chapter covers work already published at international
peer-reviewed conferences. The relevant publication is Ebert
and Schütze, (2014). The research described in this chapter was
carried out in its entirety by myself. The other author of the pub-
lication acted as advisor(s) or were responsible for work that
was reported in the publication(s), but is not included in this
chapter.

Many Sentiment Analysis (SA) systems use some kind of resource that
indicates the polarity or even the valence of a word. Such resources
mostly assign one polarity label (Hu and Liu, 2004) or one valence
value to one word (Mohammad et al., 2013). Some sentiment lexi-
cons such as the MPQA lexicon (Wilson et al., 2009) are more fine-
grained and contain one polarity for different Part-of-Speech (POS) of
a word. All these resources leave out information about the contex-
tual usage of words. For instance “bright” in “bright mind” might be
positive, whereas in “bright light” might be neutral. Since in both us-
ages “bright” is an adjective, both occurrences would be labeled with
the same polarity/valence. Therefore, the values in most available re-
sources can only be considered a prior polarity/valence.

We put forward the hypothesis that high-accuracy SA is only pos-
sible if word senses with different polarity are accurately recognized.
We provide evidence for this hypothesis in a case study for the
word “hard” and propose Contextually Enhanced Sentiment Lexicons
(CESLs) that contain the information necessary for sentiment-relevant
sense disambiguation. An experimental evaluation demonstrates that
senses with different polarity can be distinguished well using a combi-
nation of standard and novel features.

3.1 introduction

This chapter deals with fine-grained sentiment analysis. We aim to
make three contributions.

1. Based on a detailed linguistic analysis of contexts of the word
“hard” (Section 3.2), we give evidence that highly accurate sen-
timent analysis is only possible if senses with different polarity
are accurately recognized.

2. Based on this analysis, we propose to return to a lexicon-based
approach to sentiment analysis that supports identifying sense

23

24 fine-grained contextual predictions for hard sentiment words

distinctions relevant to sentiment. Currently available sentiment
lexicons give the polarity for each word or each sense, but this is
of limited utility if senses cannot be automatically identified in
context. We extend the lexicon-based approach by introducing
the concept of a CESL. The lexicon entry of a word w in CESL has
three components: (i) the senses of w; (ii) a sentiment annotation
of each sense; (iii) a data structure that, given a context in which
w occurs, allows to identify the sense of w used in that context.
As we will see in Section 3.2, the CESL sense inventory – (i)
above – should be optimized for SA: closely related senses with
the same sentiment should be merged whereas subtle semantic
distinctions that give rise to different polarities should be distin-
guished.
The data structure in (iii) is a statistical classification model in
the simplest case. We will give one other example for (iii) below:
it can also be a set of centroids of context vector representations,
with a mapping of these centroids to the senses.

3. If sentiment-relevant sense disambiguation is the first step in sen-
timent analysis, then powerful contextual features are necessary
to support making fine-grained distinctions. Our third contri-
bution is that we experiment with deep learning as a source of
such features. We look at two types of deep learning features:
word embeddings and neural network language model predic-
tions (Section 3.3). We show that deep learning features signifi-
cantly improve the accuracy of context-dependent polarity clas-
sification (Section 3.4) on a newly created dataset.

4. The newly created dataset with fine-grained sense labels is made
publicly available.

This chapter is structured as follows. In Section 3.2, we present a lin-
guistic analysis of different types of contexts of “hard” that are rele-
vant for sentiment. Section 3.3 introduces our method: SA based on
a CESL. Section 3.4 gives a preliminary experimental evaluation of
CESL for the word “hard”. Section 3.5 discusses related work. Sec-
tion 3.6 presents our conclusions.

3.2 linguistic analysis of sentiment contexts of “hard”

For the linguistic analysis of the word “hard” we use the Amazon Prod-
uct Review Data (Jindal and Liu, 2008). This dataset consists of about
5.8 million reviews taken from http://www.amazon.com. Every review
concerns a product from one of the categories books, music, DVD, or
industry manufactured products. Working with user reviews allows us
to exploit a large variety of different contexts for “hard”, because the
speech is not restricted and therefore is informal and contains collo-
quial words.

http://www.amazon.com

3.2 linguistic analysis of sentiment contexts of “hard” 25

From the 511 thousand contexts of “hard” in the dataset we took a
random sample of 5000. 200 contexts are used a test set and another
200 are set aside for future use. We analyzed the remaining 4600 con-
texts using a tool we designed for this study, which provides function-
ality for selecting and sorting contexts, including a keyword in context
display.

Our goal is to identify the different uses of “hard” that are relevant
for sentiment. The basis for our inventory is the Cobuild (Sinclair,
1987) lexicon entry for “hard”. We use Cobuild because it was com-
piled based on an empirical analysis of corpus data and is therefore
more likely to satisfy the requirements of Natural Language Process-
ing (NLP) applications than a traditional dictionary, such as WordNet.

Cobuild lists 16 senses. One of these senses (3) is split into two to dis-
tinguish the adverbial (“to accelerate hard”) and adjectival (“hard ac-
celeration”) uses of “hard” in the meaning ‘intense’. We conflated five
senses (2, 4, 9, 10, 11) referring to different types of difficulty: “hard
question” (2), “hard work” (4), “hard life” (11) and two variants of
“hard on”: “hard on someone” (9), “hard on something” (10). Another
four different senses (3a, 5, 6, 7) referring to different types of inten-
sity: “to work hard” (3a), “to look hard” (5), “to kick hard” (6), “to
laugh hard” (7) are conflated as well. Furthermore, we identified a
number of non-compositional meanings or phrases (lists NEGATIVE-
P and NEUTRAL-P in the supplementary material1) in addition to the
four listed by Cobuild (13, 14, 15, 16). Moreover, new senses for “hard”
are introduced for opposites of senses of “soft”: the opposite of ‘qui-
et/gentle voice/sound’ (7: music; e.g., “hard beat”, “not too hard of a
song”) and the opposite of ‘smooth surface/texture’ (8: contrast; e.g.,
“hard line”, “hard edge”).

Table 3.2.1 lists the 10 different uses that are the result of our analy-
sis. For each use, we give the corresponding Cobuild sense numbers,
syntactic information, meaning, examples, typical patterns, polarity,
and number of occurrences in our training and test sets. 7 of the iden-
tified uses are neutral and 3 are negative. However, in most sentiment
lexicons, such as the MPQA (Wilson et al., 2009), “hard” is labeled as
negative. The reason is that the vast majority of occurrences can be
connected to the sense “difficult”. This finding provides evidence for
our hypothesis that senses need to be disambiguated to allow for fine-
grained and accurate polarity recognition.

During the analysis, if a reliable pattern has been identified (e.g., the
phrase “die hard” in Table 3.2.1), all contexts matching the pattern can
be labeled automatically with the corresponding sense label. This way
we create semi-automatic labels for the 4600 analyzed contexts. For the
test set we hired two PhD students to label each of the 200 contexts with
one of the 10 labels in Table 3.2.1. The inter-rater agreement Cohen’s
kappa is κ = .78. Disagreement was resolved by a third person.

1 All supplementary material is available at http://www.cis.lmu.de/ebert.

http://www.cis.lmu.de/ebert

26 fine-grained contextual predictions for hard sentiment words

We have published the labeled data set of 4600+200 contexts as sup-
plementary material.

3.3 deep learning features

We use two types of deep learning features to be able to make the fine-
grained distinctions necessary for sense disambiguation.

1. We use word embeddings as features by averaging the embed-
dings of all words in the context (see below). This is similar to
recent work, for instance Blacoe and Lapata, (2012).

2. We use a Neural Network Language Model (NNLM), the
vectorized Log-Bilinear Language model (LBL) (Mnih and
Kavukcuoglu, 2013), to predict the distribution of words for the
position at which the word of interest occurs. For example, a
Language Model (LM) will predict that words like “granite” and
“concrete” are likely in the context “a * countertop” and that
words like “serious” and “difficult” are likely in the context “a
* problem”. This is then the basis for distinguishing contexts in
which “hard” is neutral (in the meaning ‘firm, solid’) from con-
texts in which it is a sentiment indicator (in the meaning ‘diffi-
cult’). We will use the term Predicted Context Distribution (PCD)
to refer to the distribution predicted by the LM.

LBL has three appealing features. (i) It learns state-of-the-art word
embeddings (Mnih and Kavukcuoglu, 2013). (ii) The model is a lan-
guage model and can be used to calculate PCDs. (iii) As a linear model,
vectorized Log-Bilinear Language model (vLBL) can be trained much
faster than other models, such as the original NNLM by Bengio et al.,
(2003).

3.4 experiments

The lexicon entry of “hard” in CESL consists of three components:

1. the senses

2. the polarity annotations (neutral or negative) and

3. the sense disambiguation data structure.

Components (i) and (ii) are shown in Table 3.2.1. In this section, we
evaluate two different options for (iii) on the task of sentiment classifi-
cation, namely classification and clustering.

3.4.1 Classification

The first approach is to use a statistical classification model as the sense
disambiguation structure. The task given a context of “hard” is to pre-

3.4 experiments 27
C

ob
ui

ld
ex

am
pl

e
us

e
se

ns
e

sy
nt

ax
m

ea
ni

ng
ex

am
pl

e
pa

tt
er

ns
se

nt
im

en
t

#
tr

ai
n

#
te

st

1
fir

m
1

ad
je

ct
iv

e
fir

m
,s

tiff
ha

rd
flo

or
,

ha
rd

kn
ot

ha
rd

N
ne

ut
ra

l
87

5

2
di

ffi
cu

lt
1,

4,
9,

10
,1

1
ad

je
ct

iv
e

di
ffi

cu
lt

ha
rd

qu
es

tio
n

ha
rd

fo
r,

ha
rd

on
,h

ar
d

to
V

ne
ga

tiv
e

25
61

12
0

3
in

te
ns

e
3a

,5
,6

,7
ad

ve
rb

in
te

ns
el

y
w

or
k

ha
rd

V
[s

o,
to

o,
as

]
ha

rd
,V

ha
rd

ne
ut

ra
l

42
5

19

4
in

te
ns

e
3b

ad
je

ct
iv

e
in

te
ns

e
ha

rd
lo

ok
be

ha
rd

at
it,

ha
rd

N
ne

ut
ra

l
24

7

5
ha

rd
m

an
8

ad
je

ct
iv

e
un

ki
nd

ha
rd

m
an

ha
rd

m
an

ne
ga

tiv
e

15
0

6
ha

rd
tr

ut
h

12
at

tr
ib

ut
iv

e
ad

-
je

ct
iv

e
de

fin
ite

ly
tr

ue
ha

rd
tr

ut
h

ha
rd

tr
ut

h(
s)

ne
ut

ra
l

5
4

7
m

us
ic

-
ad

je
ct

iv
e

ha
rd

-r
oc

k-
ty

pe
m

us
ic

ha
rd

be
at

s
ha

rd
-r

oc
k(

er
)

ne
ut

ra
l

34
7

15

8
co

nt
ra

st
-

ad
je

ct
iv

e
op

po
si

te
of

so
ft

tr
an

si
tio

n
ha

rd
ed

ge
ha

rd
ed

ge
(d

),
ha

rd
co

nt
ra

st
ne

ut
ra

l
3

1

9
ne

ga
tiv

e
ph

ra
se

13
,1

5
ph

ra
se

s
ha

rd
dr

ug
s,

ha
rd

to
ge

t
di

e
ha

rd
ne

ga
tiv

e
36

2

10
ne

ut
ra

lp
hr

as
e

14
,1

6
ph

ra
se

s
ha

rd
di

sk
ha

rd
[c

op
y,

ba
ck

,
co

ve
r,

bo
un

d]

ne
ut

ra
l

37
5

27

ta
bl

e
3.

2.
1:

se
ns

e
in

ve
nt

or
y

of
“h

ar
d”

Th
es

e
ar

e
al

ls
en

se
s

th
at

ar
e

re
le

va
nt

fo
rS

A
w

ith
th

ei
rr

ef
er

en
ce

to
th

e
C

ob
ui

ld
se

ns
e

nu
m

be
r.

Be
si

de
s

m
or

e
de

ta
ile

d
in

fo
rm

at
io

n,
su

ch
as

th
e

sy
nt

ac
tic

st
ru

ct
ur

e,
th

e
m

ea
ni

ng
,c

on
cr

et
e

ex
am

pl
es

,e
xa

m
pl

e
pa

tte
rn

s,
an

d
th

e
po

la
rit

y
fo

ra
ll

se
ns

es
ar

e
gi

ve
n.

Th
e

la
st

tw
o

co
lu

m
ns

sh
ow

th
e

nu
m

be
ro

fo
cc

ur
re

nc
es

of
ev

er
y

se
ns

e
in

th
e

tr
ai

ni
ng

an
d

te
st

da
ta

.

28 fine-grained contextual predictions for hard sentiment words

ng
ra

m

PC
D

em
be

d

acc. prec. rec. F1

de
ve

lo
pm

en
t

bl 1 .62 .62 1.00 .76

fu
ll

y

2 + .90 .91 .94 .92
3 + .90 .91 .92 .92
4 + .87 .87 .92 .90
5 + + .92 .92 .94 .93
6 + + .91 .90 .95 .92
7 + + .86 .83 .96 .89
8 + + + .92 .93 .95 .94

se
m

i

9 + .85 .87 .89 .88
10 + .85 .87 .89 .88
11 + .76 .73 .98 .83
12 + + .85 .87 .89 .88
13 + + .85 .87 .89 .88
14 + + .85 .89 .87 .88
15 + + + .86 .87 .90 .89

te
st

bl 16 .66 .66 1.00 .80
fully 17 + + + .90 .89 .96 .92
semi 18 + + + .85 .85 .91 .88

table 3.3.1: context polarity results Results of the classification
and clustering approaches using ngram, word embeddings,
PCD, and their combinations as features. A “+” indicates
that the feature type is active. “bl” denotes the majority base-
line.

3.4 experiments 29

dict its polarity, either negative or neutral. We use liblinear (Fan et al.,
2008) with standard parameters for classification based on three dif-
ferent feature types: ngrams, embeddings (embed) and PCDs. Ngram
features are all n-grams for n ∈ {1, 2, 3}. As embedding features we
use the concatenation of (i) the mean of the input space (R) embed-
dings and (ii) the mean of the target space (Q) embeddings of the
words in the context as given by the LBL model. Blacoe and Lapata,
(2012) showed that simply averaging word embeddings often yields
better results than more complicated methods. As PCD features we
use the PCD predicted by the LBL model for the sentiment word of
interest, in our case “hard”.

We split the set of 4600 contexts introduced in Section 3.2 into a train-
ing set of 4000 and a development set of 600. The contexts are prepared
in a way that “hard” is the center word. All contexts are labeled as
negative or neutral according to Table 3.2.1. We train the LBL model
to receive the deep learning features, with stochastic gradient descent
on mini-batches of size 100, following the Noise-Contrastive Estima-
tion (NCE) training procedure of Mnih and Kavukcuoglu, (2013). We
use AdaGrad (Duchi et al., 2011) with an initial learning rate set to
η = 0.5. The embeddings size is set to 100.

We use a window size of ws = 7 for training the model. We found
that the model did not capture enough contextual phenomena for ws =
3 and that results for ws = 11 did not have better quality than ws = 7,
but had a negative impact on the training time. Using a vocabulary of
the 100K most frequent words, we train the vLBL model for 4 epochs
on 1.3 billion 7-grams randomly selected from the English Wikipedia.

Table 3.3.1 (lines 1–8) shows the classification results on the devel-
opment set for all feature type combinations. Significant differences
between results – computed using the approximate randomization test
(Padó, 2006) – are given in Table 3.4.1. The majority baseline (bl), which
assigns a negative label to all examples, reaches F1 = .76. Our classi-
fier is significantly better than the baseline for all feature combinations
with F1 ranging from .89 to .94. We obtain the best classification result
(.94) when all three feature types are combined (significantly better
than all other feature combinations except for 5).

3.4.2 Clustering

Manually labeling all occurrences of a word is expensive. As an alterna-
tive we investigate clustering of the contexts of the word of interest. There-
fore, we represent each of the 4000 contexts of “hard” in the training
set as its PCD,2 use kmeans clustering with k = 100 and then label each
cluster. This decreases the cost of labeling by an order of magnitude

2 To transform vectors into a format that is more appropriate for the underlying Gaus-
sian model of kmeans, we take the square root of each probability in the PCD vectors.

30 fine-grained contextual predictions for hard sentiment words

1 2 3 4 5 6 7 8
1
2 ‡

3 ‡

4 ‡ ‡ ∗
5 ‡ ‡

6 ‡ ‡

7 ‡ ‡ † ‡ ‡

8 ‡ † † ‡ † ‡

table 3.4.1: signifiance Significant differences of lines 1–8 in Table 3.3.1.
‡: p = 0.01, †: p = 0.05, ∗: p = 0.1.

since only 100 clusters have to be labeled instead of 4000 training set
contexts.

Table 3.3.1 (lines 9–15) shows results for this semi-supervised ap-
proach to classification, using the same classifier and the same feature
types, but the cluster-based labels instead of manual labels for training.

For most feature combinations, F1 drops compared to fully super-
vised classification. The best performing model for supervised classifi-
cation (ngram+PCD+embed) loses 5%. This is not a large drop consid-
ering the savings in manual labeling effort. All results are significantly
better than the baseline. There are no significant differences between
the different feature sets (lines 9–15) with the exception of embed, which
is significantly worse than the other 6 sets.

The centroids of the 100 clusters can serve as an alternative sense dis-
ambiguation structure for the lexicon entry of “hard” in CESL.3 Each
sense s is associated with the centroids of the clusters whose majority
sense is s.

As final experiment (lines 16–18 in Table 3.3.1), we evaluate perfor-
mance for the baseline and for PCD+ngram+embed – the best feature
set – on the test set. On the test set, baseline performance is .80 (.04
higher than .76 on line 1, Table 3.3.1); F1 of PCD+ngram+embed is .92
(.02 less than development set) for supervised classification and is .88
(.01 less) for semi-supervised classification (comparing to lines 8 and
15 in Table 3.3.1). Both results (.92 and .88) are significantly higher than
the baseline (.80).

One thing to note is that the LBL model is trained on rather formal
Wikipedia texts, whereas the contexts consists of user reviews, which
are often informal and contain much colloquial speech. By using a
different corpus, like a web corpus, the underlying word embeddings
would reflect the word distribution of the “hard” contexts better and
lead to improved classification results.

3 The centroids are available as supplementary material.

3.5 related work 31

3.5 related work

Initial work on sentiment analysis was either based on sentiment lex-
icons that listed words as positive or negative sentiment indicators
(e.g., Hu and Liu, (2004), Turney, (2002), and Yu and Hatzivassiloglou,
(2003)), on statistical classification approaches that represent docu-
ments as ngrams (e.g., Pang et al., (2002)) or on a combination of both
(e.g., Riloff, Wiebe, and Wilson, (2003), Whitelaw et al., (2005)). The
underlying assumption of lexicon-based sentiment analysis is that a
word always has the same sentiment, sometimes called prior sentiment.
This is clearly wrong because words can have senses with different po-
larity, e.g., “hard copy” (neutral) vs. “hard memory” (negative).

Ngram approaches are also limited because ngram representations
are not a good basis for relevant generalizations. For example, the
neutral adverbial sense ‘intense’ of “hard” (“laugh hard”, “try hard”)
vs. the negative adjectival meaning ‘difficult’ (“hard life”, “hard mem-
ory”) cannot be easily distinguished based on an ngram representation.
Although ngram approaches could learn the polarity of these phrases
they do not generalize to new phrases.

Wilson et al., (2005) present a more fine-grained polarity lexicon
that contains polarity labels for POS-word pairs. The most similar sen-
timent lexicon to our work is SentiWordNet (Baccianella et al., 2010;
Esuli and Sebastiani, 2006). It assigns 3 sentiment scores to each of the
senses contained in WordNet (Miller, 1995). Although, this is a sense-
based lexicon, the senses in WordNet are general and not focused on
sentiment. As our analysis of “hard” shows, additional effort is nec-
essary in order to adapt the available senses. Among the focus of our
lexicon on the sentiment domain, we provide additional means to iden-
tify the polarity of a word in its context.

More recent compositional approaches to sentiment analysis can
outperform lexicon and ngram-based methods (e.g., Socher et al.,
(2011), Socher et al., (2013)). However, these approaches conflate two
different types of contextual effects: differences in sense or lexical
meaning (“hard memory” vs. “hard wood”) on the one hand and
meaning composition like negation on the other hand. From the point
of view of linguistic theory, these are different types of contextual ef-
fects that should not be conflated. Recognizing that “hard” occurs in
the scope of negation is of no use if the basic polarity of the contextu-
ally evoked sense of “hard” (e.g., negative in “no hard memories” vs.
neutral in “no hard wood”) is not recognized.

Wilson et al., (2009) present an approach to classify contextual po-
larity building on a two-step process. First, they classify if a sentiment
word is polar in a phrase and if so, second, they classify its polarity.
Our approach can be seen as an extension of this approach; the main
difference is that we show in our analysis of “hard” that the polarity
of phrases depends on the senses of the words that are used. This is

32 fine-grained contextual predictions for hard sentiment words

evidence that high-accuracy polarity classification depends on sense
disambiguation.

There has been previous work on assigning polarity values to senses
of words taken from WordNet (e.g., Baccianella et al., (2010), Wiebe
and Mihalcea, (2006)). These approaches again can be considered a
prior polarity and therefore do not disambiguate the sense of a word
given its context.

Akkaya et al., (2009) introduce subjectivity word sense disambigua-
tion, “which is to automatically determine which word instances in
a corpus are being used with subjective senses, and which are being
used with objective senses”. The authors propose a system that uses
one classifier for each word in a lexicon. These classifiers classify every
occurrence of the respective word as being subjective or objective. Sev-
eral existing subjective/objective classifiers were adapted to the new
approach and showed superior performance. Additionally, the pro-
posed subjective/objective classifier was used as preprocessing step
in polarity classification. Our classification procedure directly classi-
fies polarity instead of subjectivity and objectivity. As Scheible and
Schütze, (2013) show, subjectivity classification is not sufficient for sen-
timent.

Previous work on representation learning for sentiment analysis in-
cludes Maas and Ng, (2010) and Maas et al., (2011). Their models learn
word embeddings that capture semantic similarities and word senti-
ment at the same time. Their approach focuses on sentiment of entire
sentences or documents and does not consider each sentiment word
instance at a local level.

We present experiments with one supervised and one semi-
supervised approach to Word Sense Disambiguation (WSD) in
this chapter. Other WSD approaches, e.g., thesaurus-based WSD
(Yarowsky, 1992), could also be used for CESL.

3.6 conclusion

The sentiment of a sentence or document is the output of a causal
chain that involves complex linguistic processes like contextual modi-
fication and negation. Our hypothesis in this chapter was that for high-
accuracy sentiment analysis, we need to model the root causes of this
causal chain: the meanings of individual words. This is in contrast
to other work in sentiment analysis that conflates different linguistic
phenomena (word sense ambiguity, contextual effects, negation) and
attempts to address all of them with a single model.

For sense disambiguation, the first step in the causal chain of gen-
erating sentiment, we proposed CESL, a Contextually Enhanced Sen-
timent Lexicon that for each word w holds the inventory of senses of
w, polarity annotations of these senses and a data structure for assign-
ing contexts of w to the senses. We introduced new features for senti-

3.7 future work 33

ment analysis to be able to perform the fine-grained modeling of con-
text needed for CESL. In a case study for the word “hard”, we showed
that high accuracy in sentiment disambiguation can be achieved using
our approach.

All supplementary material is available at http://www.cis.lmu.de/
ebert.

3.7 future work

Possible extensions of our work are:

• In this chapter only a single word is analyzed. Thus, it needs
to be shown that our findings generalize to the entire sentiment
lexicon.

• Although the presented clustering method reduces manual la-
beling effort, it is still a time consuming process. One possible
approach is to search for words in the contexts that are uniquely
associated with one sense, such as “die hard” and then extend
the pattern by synonyms of the found word using again a manual
lexicon (e.g., WordNet (Miller, 1995)). Yarowsky, (1995) proposes
a bootstrapping approach for generating a growing training set
by starting with high quality seed patterns, then training a classi-
fier and using those newly found patterns for the training set in
the next iteration that receive a high classifier confidence.

• A more sophisticated approach for computing a context repre-
sentation out of the single word embeddings can further improve
the performance of out system. Dinu et al., (2013) give a starting
point by comparing several methods.

http://www.cis.lmu.de/ebert
http://www.cis.lmu.de/ebert

4
L I N E A R V E R S U S NO N - L I N E A R L A NG UAG E
M O D E L S

In the previous chapter we use a Language Model (LM) to improve con-
textual polarity classification. The model of choice is the Log-Bilinear
Language model (LBL). Since it is a linear model, it has a serious draw-
back compared to non-linear models. Words do not interact with each
other in a linear way. For example, “her” can either be a personal pro-
noun as in “to see her” or a possessive pronoun as in “her book”. The
meaning of “her” hence depends on the words in the context. Such a
non-linear behavior can only limitedly be handled by a linear model.

Moreover, since a sequence of linear layers can be replaced by one big
layer, non-linear layers are building bricks for deep neural networks.
Deep non-linear neural networks are more powerful and compact than
shallow or less deep architectures (Bengio, 2009). The success of deep
neural networks in various Machine Learning (ML) tasks proves that.

In this chapter we introduce a very simple extension to the LBL and
show in an empirical parameter study that even this shallow model
can benefit from a non-linearity. Due to its simplicity, the proposed
method is easily applicable to other linear models, such as Mikolov’s
popular Continuous Bag-of-Words (CBOW) model (Mikolov, Chen, et
al., 2013).

4.1 introduction

Language modeling, the task of assigning a probability to a sequence
of words, is a crucial task for many applications in Natural Language
Processing (NLP), such as Machine Translation (MT) (e.g., Vaswani
et al., (2013)), Automatic Speech Recognition (ASR) (e.g., Schwenk
and Gauvain, (2005) and Schwenk, (2007)), or Sentiment Analysis
(SA) (Ebert and Schütze, 2014). Since their introduction, Neural Net-
work Language Model (NNLM) (Bengio et al., 2003) have received
much attention. One reason for their success is the way of learn-
ing word representations. The model embeds all words into a low-
dimensional vector space and automatically learns similar word em-
beddings for words that occur in similar contexts. Therefore, the em-
beddings of “Monday” and “Tuesday” will be similar, whereas the em-
beddings of “Monday” and “love” will be dissimilar.

Combining several word embeddings in NNLMs addresses the spar-
sity problem of ngram models, because word sequences do not have
to be memorized but are combined by the neural network. Thus, the
next word can always be predicted, even for a previously unseen con-

35

36 linear versus non-linear language models

texts, which for a standard ngram model can only be achieved with
techniques such as smooting (Goodman, 2001) or back-off (Katz, 1987).
Unfortunately, training an NNLM is computationally expensive, be-
cause in the final prediction step a normalization over the entire vo-
cabulary is necessary, to receive a probability distribution.

A more efficient continuous space LM is the LBL model (Mnih and
Hinton, 2007). It is a linear model, which can be trained efficiently,
yields comparable results to NNLM (Mikolov et al., 2011) and con-
verges faster (Le et al., 2010). However, Bengio, (2009) argues that
deep non-linear architectures have “greater expressive power” than
their shallow linear counterparts. Therefore, in this chapter we show
that a non-linearity even helps in a shallow LBL model and make the
following contributions:

1. We show that adding a non-linearity is useful when a model has
only a limited number of parameters. This can happen, when not
enough training data is available to train a full-size model.

2. To prove that, we introduce simple non-linear extensions to the
LBL and the vectorized Log-Bilinear Language model (vLBL).
Our method can be applied to other linear models as well (Sec-
tion 4.2).

3. We perform an exhaustive empirical parameter study that shows
under which circumstances non-linear models are better than lin-
ear models. We show that the linear model is sufficient for lan-
guage modeling tasks in which – given the corpus and vocabu-
lary sizes – a sufficient number of parameters is available to han-
dle the data’s variety. The more difficult the task becomes, e.g.,
by having fewer embeddings dimensions, the more important
non-linearity becomes (Table 4.3.2).

4. Finally, in Table 4.3.2 we show that non-linear models are less
correlated with a modified Kneser-Ney (KN) model and there-
fore benefit more from interpolation than the linear models.

This Chapter is structured as follows. Section 4.2 introduces our ex-
tensions to the LBL model. In Section 4.3 we present the empirical
parameter study and show results with all 3- and 7-gram model vari-
ants as well as interpolated results with a modified KN model. The
following Section (Section 4.4), presents related work. The chapter is
concluded in Section 4.5 and Section 4.6 suggests future work.

4.2 non-linear lbl variants

Both variants of the model LBL and vLBL are linear models in that
they linearly combine weights and word embeddings to predict the
next word. Thus, interaction of words with each other is also limited

4.3 experiments 37

to be linear. In order to increase the power of the models we propose
to add a non-linear function f to the predicted word representation of
the LBL model (cf. Equation 2.1.18) creating a non-linear matrix model
(non-linear Log-Bilinear Language model (nLBL)):

q̂nLBL = f (q̂LBL) (4.2.1)

We can do the same with the vLBL model (cf. Equation 2.1.29, non-
linear vectorized Log-Bilinear Language model (nvLBL)):

q̂nvLBL = f (q̂vLBL) (4.2.2)

As non-linear function we use a Rectified Linear Unit (ReLU) (cf.
Equation 2.2.11) (Nair and Hinton, 2010) In preliminary experiments
it showed improved results over the usually used tanh function.

4.3 experiments

We perform an exhaustive empirical parameter analysis on the Wall
Street Journal (WSJ) part of the Penn Treebank. For comparability rea-
sons we use the preprocessed version from Mikolov et al., (2010). It
contains 930K/74K/82K tokens in the training/development/test set.
The vocabulary consists of the 10K most frequent word types. Other
types are mapped to the unknown token. The preprocessing includes
tokenization, lowercasing, converting numbers to the generic symbol
“N”, and the removal of punctuation that is not part of an abbreviation
(e.g., the period in “ms.” and the apostrophe in “do n’t” are retained).

We first report results for 3-gram models – i.e., train a model that
predicts a word given its two preceding words – as this is a standard
model in many applications. Since we want to improve the LM as part
of our “hard” classification pipeline (cf. Chapter 3) we additionally
again use a 7-gram model. As noise distribution for Noise-Contrastive
Estimation (NCE) the unigram distribution of words in the training
set is used, and the number of noise samples is set to k = 5. Note
that a higher number of noise samples would lead to better perfor-
mance but longer training times. We train all models with mini-batch
Stochastic Gradient Descent (SGD), having a mini-batch size of 100 ex-
amples. The training is stopped if 100 epochs of training are finished
or five consecutive epochs lead to decreasing performance (early stop-
ping), which ever comes first. We use AdaGrad (Duchi et al., 2011) for
dynamic learning rate adjustment and make use of ℓ2 regularization.

To find reasonable parameter choices that we can then use in the
grid search, we trained vLBL models with several parameter configu-
rations for some epochs. The parameters in Table 4.3.1 lead to reason-
able performances and are thus used in a grid search. Combining all
parameter configurations leads to 240 configurations for each of the 4
model types. All experiments are evaluated intrinsically by computing
Perplexity (PPL).

38 linear versus non-linear language models

parameter description values

lremb learning rate of word embed-
dings

{1, 10−1, 10−2}

lrdefault learning rate of remaining pa-
rameters (e.g., position depen-
dent weights)

{1, 10−1, 10−2, 10−3}

λ weight decay (ℓ2 regulariza-
tion)

{10−5, 10−6}

m word embeddings size {10, 20, . . . , 100}

table 4.3.1: analyzed parameters List of parameters that are analyzed
with a description and their value ranges.

model lremb lrdefault λ

vLBL 0.01 0.1 10−5

nvLBL 0.01 0.1 10−5

LBL 0.1 0.001 10−6

nLBL 1.0 1.0 10−5

table 4.3.2: hyperparameters of the best 3-gram models Best pa-
rameter configuration for m = 100 embeddings dimensions,
according to the development set performance.

4.3.1 Results 3-gram

Table 4.3.2 lists the parameters for each model type that led to the low-
est perplexity for 100 embeddings dimensions on the development set.
While the vectorized models yield the best performance with the same
parameter configuration, the parameters for the matrix models need
to be quite different in order to reach the best performance.

In Figure 4.3.1 and Table 4.3.3 we can see that the nvLBL model is
considerable worse than the other models with only 10 embeddings di-
mensions. However, it can catch up with 20-30 dimensions. Between
20 and 60 dimensions, the models reach similar performance, with the
nLBL model always being the best. With more than 60 dimensions, the
LBL model cannot improve anymore. Our analysis suggests that this
is a problem of overfitting of the LBL model due to the larger number
of parameters. Thus, it is even more surprising that the non-linear ma-
trix model (nLBL) does not seem to be susceptible to this problem and
reaches the best development set performance with 176.8 PPL. How-
ever, the difference between the models is almost neglectible.

The left half of Table 4.3.4 shows the performance on the develop-
ment and test set of the WSJ data of the single best model per model
type that make use of 100 dimensional embeddings. The test set seems

4.3 experiments 39

10 20 30 40 50 60 70 80 90 100
m

170

180

190

200

210

220

230

240
pe

rp
le

xi
ty

vLBL
nvLBL
LBL
nLBL

figure 4.3.1: perplexity of 3-gram models per word embed-
dings size Best PPL performances of all 3-gram models
per embeddings size m on the development set.

m vLBL nvLBL LBL nLBL

10 232.3 240.0 232.2 232.8
20 201.6 203.2 200.5 199.9
30 190.7 190.8 189.3 188.1
40 186.5 185.6 187.3 183.4
50 185.6 184.4 185.8 181.8
60 182.1 182.7 185.0 181.3
70 180.9 182.3 186.1 178.9
80 179.4 179.7 187.9 177.9
90 178.3 177.7 187.1 178.2

100 177.9 178.0 186.8 176.8

table 4.3.3: perplexity of 3-gram models per word embeddings
size Best PPL performances of all 3-gram models per
embeddings size m on the development set. Bold is best per
row.

40 linear versus non-linear language models

single interpolated

model dev test dev test

vLBL 177.9 166.6 140.7 132.8
nvLBL 178.0 164.9 140.9 132.2

LBL 186.8 174.7 141.9 133.9
nLBL 176.8 165.1 137.8 129.9

table 4.3.4: results of best 3-gram models Results of the best 3-
gram models with 100 dimensional word embeddings. sin-
gle denotes the performance of the LBL models alone. inter-
polated is the performance of the LBL models interpolated
with a modified KN model. Bold is the best perplexity per
column.

to be more similar to the training set than the development set, because
all models reach lower perplexity on it. While the non-linear matrix
model yields the lowest PPL on the development set, the nvLBL model
takes over on the test set. The difference between development and test
set performance is similar for all models, indicating that no model is
better or worse in generalization than another. As can be seen, the non-
linear variant of the vector model improves on the linear variant only
on the test set. For the matrix models, the difference between linear
and non-linear models is larger.

Interpolation

Now we interpolate all our models with a modified KN 3-gram model,
as estimated by the srilm toolkit.1 As before, only the best parame-
ter configurations are reported. To simplify the procedure we equally
weight KN and LBL models. Figure 4.3.2 and Table 4.3.5 shows the
results. The KN model alone yields 157.8 PPL on the development set
and 148.3 on the test set.

Interpolating is beneficial for all four LBL model types. However,
the perplexity for both vector models stagnates at about 80 embed-
dings dimensions. The performance of the non-linear matrix model
keeps on becoming lower and reaches its lowest perplexity of 137.8 at
100 embeddings dimensions. We conclude that the LBL model learns
features that are more orthogonal to the KN model and can therefore
benefit more from the interpolation. The performance of the best de-
velopment set models per model type (left half of Table 4.3.4), interpo-
lated with the KN model on the development and test set are listed in
the right half of Table 4.3.4.

1 http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/

4.3 experiments 41

10 20 30 40 50 60 70 80 90 100
m

135

140

145

150

155

160
pe

rp
le

xi
ty

vLBL
nvLBL
LBL
nLBL

figure 4.3.2: interpolated perplexity of 3-gram models per
word embeddings size Best interpolated PPL perfor-
mances of all 3-gram models per embeddings size m on the
development set. The solid line corresponds to the 3-gram
KN model.

m vLBL nvLBL LBL nLBL

10 148.1 149.1 147.9 147.6
20 143.5 143.1 142.8 142.3
30 142.0 141.7 141.1 140.2
40 141.5 141.2 140.5 139.5
50 141.2 141.3 140.8 139.2
60 141.2 140.9 140.9 138.5
70 141.1 140.6 141.5 138.0
80 140.8 140.4 141.5 138.0
90 140.9 140.5 141.8 138.2

100 140.7 140.6 141.7 137.8

table 4.3.5: interpolated perplexity of 3-gram models per
word embeddings size Best interpolated PPL perfor-
mances of all 3-gram models per embeddings size m on the
development set. Bold is best per row.

42 linear versus non-linear language models

model lremb lrdefault λ

vLBL 0.01 1.0 10−6

nvLBL 0.01 1.0 10−6

LBL 0.1 0.1 10−5

nLBL 1.0 1.0 10−5

table 4.3.6: hyperparameters of the best 7-gram models Best pa-
rameter configuration for m = 100 embeddings dimensions,
according to development set performance.

4.3.2 Results 7-gram

We now repeat all experiments for 7-gram models, because we use
these models in Chapter 3. Table 4.3.6 lists the parameter configura-
tions for all models yielding the lowest perplexity for 100 dimensional
word embeddings on the development set. As before, both vector mod-
els require equal parameters, whereas both matrix models perform
best with different parameter configurations.

Figure 4.3.3 and Table 4.3.7 depict the perplexities of the best pa-
rameter configuration of every model type for all embeddings sizes on
the development set. For the setting of m = 10, the choice of model
is not important, since no model is able to capture sufficient variation,
due to the small number of parameters. The vLBL model yields bet-
ter performance than the nvLBL model with m ≤ 30. With more di-
mensions, the nvLBL is consistently better. That shows that having a
non-linearity, even such a simple one, is beneficial.

The linear matrix model (LBL) performs much worse than the other
models starting from m = 60 (similar to the 3-gram experiments). This
again seems to be caused by overfitting of the LBL model due to the
larger number of parameters. Thus, it is even more surprising that the
non-linear matrix model (nLBL) does not seem to be susceptible to that
problem and reaches the best development set performance with 162.6
PPL.

Another explanation for LBL’s low performance might be the param-
eter choice. It is possible that the LBL model needs different parame-
ters than the ones presented in Section 4.3 to find better minima. The
right choice might be more crucial for a model having more parameters
than the vector models.

The best single model’s performance for 100 dimensions on the de-
velopment and test set are listed in the left part of Table 4.3.8. Again,
the test set PPLs are better than the development set PPLs, as all models
reach lower perplexity. Interestingly, the vector-based models increase
the distance to their matrix-based counterparts. This result indicates
that the vector-based models are better in generalizing to unseen data.

4.3 experiments 43

10 20 30 40 50 60 70 80 90 100
m

160

170

180

190

200

210

220

230

240
pe

rp
le

xi
ty

vLBL
nvLBL
LBL
nLBL

figure 4.3.3: perplexity of 7-gram models per word embed-
dings size Best PPL performances of all 7-gram models
per embeddings size m on the development set.

m vLBL nvLBL LBL nLBL

10 225.7 230.2 224.2 226.9
20 190.0 193.2 187.7 186.8
30 175.5 178.9 173.9 172.0
40 171.5 169.0 169.8 167.2
50 171.7 168.6 169.4 166.8
60 169.9 168.1 172.2 166.8
70 168.7 166.8 174.5 165.1
80 167.2 166.6 176.0 163.9
90 166.9 164.3 177.4 162.8

100 164.9 163.4 177.5 162.6

table 4.3.7: perplexity of 7-gram models per word embeddings
size Best PPL performances of all 7-gram models per
embeddings size m on the development set. Bold is best per
row.

44 linear versus non-linear language models

single interpolated

model dev test dev test

vLBL 164.9 153.7 124.8 119.0
nvLBL 163.4 152.6 123.8 118.1

LBL 177.5 170.9 126.2 122.0
nLBL 162.6 154.8 121.4 116.7

table 4.3.8: results of best 7-gram models Results of the best 7-
gram models with 100 dimensional word embeddings. single
denotes the performance of the LBL models alone. interpo-
lated is the performance of the LBL models interpolated with
a modified KN model. Bold is the best perplexity per col-
umn.

On the test set, both non-linear models perform better than their linear
counterpart. However, the difference is rather small.

Please note that Mikolov et al., (2011) report a perplexity of 144.5
for the LBL model, compared to our result of 170.9. Since no details
about the model parameters are given we tried several parameter con-
figurations to match the reported performance. We reached 145.7 PPL
with an 11-gram model. Besides the context size another difference
between our and their implementation is that our training uses NCE,
which might perform a little worse than the maximum likelihood train-
ing.

Interpolation

The 7-gram KN model alone reaches 147.4 PPL on the development
and 140.9 on the test set. Interpolating with a 7-gram modified KN
model is beneficial for all four LBL model types. vLBL reaches its low-
est perplexity at 70 dimensions, while the non-linear version of it fur-
ther reduces perplexity up to 100 dimensions. The performance of the
non-linear matrix model keeps on becoming lower and reaches its low-
est perplexity of 121.4 at 100 embeddings dimensions. We conclude
that the LBL model learns features that are more orthogonal to the KN
model and can therefore benefit more from the interpolation. The per-
formance of the best model per model type with 100 dimensional em-
beddings on the development set (left half in Table 4.3.8) interpolated
with the 7-gram KN model is listed in the right part of Table 4.3.8.

4.4 related work

NNLMs’ major problem is the long training time. Several speed-up
techniques have been proposed to make the training of large NNLMs
feasible. They include short lists (Schwenk, 2004), class-based predic-

4.4 related work 45

10 20 30 40 50 60 70 80 90 100
m

120

125

130

135

140

145

150
pe

rp
le

xi
ty

vLBL
nvLBL
LBL
nLBL

figure 4.3.4: interpolated perplexity of 7-gram models per
word embeddings size Best interpolated PPL perfor-
mances of all 3-gram models per embeddings size m on the
development set. The solid line corresponds to the 3-gram
KN model.

m vLBL nvLBL LBL nLBL

10 137.0 137.6 136.4 136.9
20 129.7 130.1 129.0 128.6
30 126.7 126.5 125.8 125.0
40 126.0 124.9 124.5 123.2
50 125.7 124.7 124.5 123.0
60 125.3 124.6 125.2 123.1
70 124.6 124.4 125.6 122.4
80 125.0 124.4 126.0 121.8
90 124.7 123.9 126.2 121.6

100 124.8 123.8 126.2 121.4

table 4.3.9: interpolated perplexity of 7-gram models per
word embeddings size Best interpolated PPL perfor-
mances of all 3-gram models per embeddings size m on the
development set. Bold is best per row.

46 linear versus non-linear language models

tion (Goodman, 2001; Le et al., 2013), the usage of mini-batches and
SGD, the use of optimized BLAS libraries and early stopping (Bengio
et al., 2003; Schwenk, 2004). Although these techniques improve the
training speed of NNLMs, the LBL model can also benefit from all
these methods (e.g., for class-based prediction in LBL see Botha and
Blunsom, (2014)) and is therefore even more efficient to train.

The prominent skip-gram (Mikolov, Chen, et al., 2013) model could
be seen as an alternative to the LBL, but it lacks the capability of or-
dering information. It behaves like a bag-of-words model and doesn’t
distinguish between “dog bites man” and “man bites dog”. Therefore,
it is not suited for LM tasks. Recently, and after our study was finished,
Ling et al., (2015) proposed an extensions to the skip-gram model that
makes it position-dependent. They show improvements of their model
on two syntactic tasks, Part-of-Speech (POS) tagging and dependency
parsing.

Little research has been conducted on the comparison of linear and
non-linear models. M. Wang and Manning, (2013) compared linear
and non-linear feed forward networks on Named Entity Recognition
(NER) and chunking tasks. They found that non-linear architectures
lead to better performance in low-dimensional space, whereas linear
architectures perform equally well (and even a little bit better in some
tasks) in a high dimensional discrete feature space. Lebret et al., (2013)
report diverse results with respect to linearity. They show that linear
networks using different types of word representation as input yield
similar results to non-linear ones on polarity classification. However,
in NER non-linear networks are better. Arisoy et al., (2012) compared a
shallow NNLM with a deep NNLM with the same number of parame-
ters and found that the deep NNLM yields better results. This finding
suggests that non-linear functions might be crucial. In this chapter we
show that non-linear versions of the LBL model lead to better perfor-
mance in language modeling.

4.5 conclusion

In this chapter we have introduced a very simple non-linear extension
of the popular LBL model and have shown that it reaches lower per-
plexity than the original model. This is especially true, if there are too
few parameters to cope with the data’s variety. Therefore, this is help-
ful in scenarios where large models cannot be learnt sufficiently, e.g.,
when there is not enough training data. Thus, we suggest to always
use the non-linear version, because the computational overhead is min-
imal, but it can lead to superior performance. We have further shown
that the vectorized non-linear model is better than the matrix-based
model when there is no interpolation. In the case of interpolation with
a KN model, the matrix model seems to learn more orthogonal fea-
tures, because it benefits more from the ngram model.

4.6 future work 47

4.6 future work

There are possible directions for future work:

• The presented extension is very simply and can be replaced by a
more powerful version. For instance, q̂nvLBL can be computed as:

q̂′nvLBL =
n−1

∑
i=1

f (ci ⊙ rwi)

• Due to its relatively small size, the WSJ corpus is well suited for
exhaustive parameter studies as this one. As next step, the find-
ings in this chapter need to be verified on a larger corpus, such as
the APNews corpus (Bengio et al., 2003) or the One Billion Word
corpus (Chelba et al., 2013).

5
L I NG U I ST I CA L LY- I N FO R M E D CO N VO LU T I O NA L
N E U R A L N E T WO R K S

This chapter covers work already published at international
peer-reviewed conferences. The relevant publications are Ebert
et al., (2015b) and Ebert et al., (2015a). The research described
in this chapter was carried out in its entirety by myself. The
other author(s) of the publication(s) acted as advisor(s) or were
responsible for work that was reported in the publication(s), but
is not included in this chapter.

As we saw in Chapter 3, fine-grained Sentiment Analysis (SA) requires
a substantial amount of manual work. Moreover, in many cases labels
on sub-sentence levels may not even be required, e.g., when one is in-
terested in the polarity of entire reviews. In an ideal case we want a
classifier to automatically make these distinctions. Therefore, in this
chapter we will improve on a standard architecture, a Convolutional
Neural Network (CNN) for polarity classification of entire pieces of
text, such as whole sentences or in our case Twitter tweets. The model
is supposed to learn fine-grained interactions using prior polarity and
contexts. A CNN is more suited for this task than the Language Model
(LM) approach we followed in Chapter 3, because it is a sequence
model that analyzes the entire text instead of only a window around a
given word. Thus, also long-distance dependencies can be learnt. Ad-
ditionally, CNNs focus on only the most salient features of the input.
This is a beneficial property in SA, because the polarity of a text very
often is determined by a couple of words only. Having multiple fea-
ture detectors allows for resolving long-distance relationships such as
negation.

A standard CNN has no information about polarity or knowledge
of positivity or negativity. But research has shown that linguistic
knowledge in terms of sentiment lexicons and other linguistic re-
sources proved to be beneficial in polarity classification. This chapter
introduces a linguistically-informed Convolutional Neural Network
(lingCNN), which incorporates this valuable kind of information into
the model. We present two intuitive and simple methods: The first
method integrates word-level features, the second sentence-level fea-
tures. By combining both types of features our model achieves results
that are comparable to state-of-the-art systems.

49

50 linguistically-informed convolutional neural networks

5.1 introduction

This chapter explores the use of CNNs for SA. CNNs reach state-of-
the-art results in several polarity classification tasks (Kalchbrenner et
al., 2014; Kim, 2014; Severyn and Moschitti, 2015; Tang, Wei, Qin, Liu,
et al., 2014). Reasons are their ability to deal with arbitrary input sen-
tence lengths and to preserve word order. Moreover, they learn to find
the most important polarity indicators and ignore the rest of the sen-
tence. That is beneficial, since most of the words in a text do not convey
sentiment information. Finally, CNNs can make use of powerful pre-
trained word representations (e.g., Mikolov, Chen, et al., (2013)).

Despite its power, a CNN does not know about sentiment and there-
fore requires labeled training data. However, labeled training data is
scarce, especially for languages other than English. One approach to
address this issue is to enlarge training data in a semi-supervised fash-
ion (Severyn and Moschitti, 2015). Instead, we propose to make use
of already available linguistically motivated resources. Especially sen-
timent lexicons are important cues for polarity classification (cf. Mo-
hammad et al., (2013)).

Our contributions in this chapter are:

1. We introduce two intuitive and simple methods of incorpo-
rating linguistic features into a CNN. The resulting architec-
ture is called linguistically-informed Convolutional Neural Network
(lingCNN). The first method is to add features to every word
in a sentence. That enables the model to learn interactions be-
tween words and between individual word embeddings and lin-
guistic features. For example the Twitter text “[...] it’s not like
there was a viable 2nd option [...]” contains the usually positive
word “like”, which would be negated by “not”. A CNN is ca-
pable of learning that the sense of “like” is different here. That
plus word-level linguistic features allows the lingCNN to learn
phrases and their polarity.

2. The second method is to add feature vectors that are computed
based on the entire sentence.

3. The results show that word-level features can improve the clas-
sification and are more beneficial than sentence-level features.
However, the combination of both methods reaches the best per-
formance, indicating that both feature types are to some extend
orthogonal. Our best results are comparable to state-of-the-art
on the SemEval Twitter polarity data set.

4. In our analysis we show that linguistic features are especially
beneficial if there is little training data. This fact makes lingCNN
especially suitable for under-resourced languages.

5.2 lingcnn architecture 51

pooling

softmax

conv.

i'm fine tnx

0 000

0 000

0 000

0 000

0 000

figure 5.2.1: lingCNN architecture lingCNN architecture with word-
and sentence-level features.

Section 5.2 introduces our extensions to the standard CNN architec-
ture. In Section 5.2.1 and Section 5.2.2 we present word-level and
sentence-level features. The experiments are described in Section 5.3.
The results are followed by the analysis (Section 5.4) and related work
(Section 5.5). Finally, the chapter is concluded in Section 5.6.

5.2 lingcnn architecture

After introducing the general CNN foundations in Chapter 2, we now
present adaptations for incorporating linguistic knowledge.

Figure 5.2.1 depicts the lingCNN architecture.

5.2.1 Word-level Features

In Chapter 2, Equation 2.2.9 we have defined the input of the CNN as:

52 linguistically-informed convolutional neural networks

Z =

 | | |
LT·,t1 · · · LT·,tn

| | |


where each word ti is represented by a d dimensional vector in the
lookup table LT. To incorporate linguistic features at word-level into
the learning process we create the lookup table by concatenating two

matrices: LT =

[
P

Q

]
. P ∈ RdP×|V| denotes a matrix of low-

dimensional word embeddings, learned for example with a Neural
Network Language Model (NNLM), such as the Log-Bilinear Lan-
guage model (LBL). dP, the size of the embeddings, is usually set to
50 – 300, depending on the task.

In addition to P, we introduce another matrix Q ∈ RdQ×|V|, which
contains external word features. In this case dQ is the number of fea-
tures for a word. The features in Q are precomputed and not embed-
ded into any embeddings space, i.e., Q is fixed during training. We use
the following feature types:

binary sentiment indicators These features indicate a word’s
prior polarity as given by lexicons. We create two such features
per word per lexicon. The first feature indicates positive and the
second negative polarity of that word in the lexicon. Having two
separate features allows us to indicate if a word can be both pos-
itive and negative.
The lexicons used for this feature type are the Opinion lexi-
con (Hu and Liu, 2004), MPQA (Wilson et al., 2005), and NRCC
Emotion lexicon (Mohammad and Turney, 2013).

sentiment scores The Sentiment140 lexicon and the Hashtag lexi-
con (Mohammad et al., 2013). Both lexicons have been explicitly
developed for the Twitter domain. They provide a valence score
for each word instead of just a binary label. A positive score in-
dicates positivity, a negative score negativity. The higher the ab-
solute number of the score, the stronger the sentiment conveyed
by a word is. We directly incorporate these scores into the fea-
ture matrix. Please note that we do not need a separate feature
for positive and negative here (in contrast to binary sentiment in-
dicators), because the two lexicons do not provide several scores
for one word.

sentiment ngram scores Both lexicons, Sentiment140 lexicon and
the Hashtag lexicon, also contain scores for bigrams. For ex-
ample the bigram “lazy saturday” is labeled as positive (it has
a score of 5). Both lexicons furthermore contain skip ngrams,
which are a sequence of a uni- or bigram, followed by a sequence

5.2 lingcnn architecture 53

feature type example value

binary positive cute positive
binary negative annoying negative
score unigram positive cute 0.1
score unigram negative annoying, find -0.9, -0.1
score bigram positive very cute 1.6
score bigram negative so annoying -1.5
score skip ngram positive i * sun 1.3
score skip ngram negative i * so annoying -5
emoticon positive :) 1
emoticon negative :(-1
negation words don’t, never -
punctuation ,.!? -
POS A(djective), E(moticon),

V(erb), O(ther)
-

table 5.2.1: example of linguistic resources Exemplary items of
several linguistic resources as described in the word level fea-
tures. The sentiment scores are taken from the Hashtag Lex-
icon (Mohammad et al., 2013).

of arbitrary words, followed by another uni- or bigram. For in-
stance, the skip ngram “i * so annoying” (labeled as negative with
a score of -5) would match “i don’t find him so annoying” or “i
think it’s so annoying”. In both cases, bigram or skip ngrams, all
words of the sequence receive the same score that is assigned by
the lexicon.

binary negation Following Christopher Potts,1 we mark each word
between a negation word, such as “never” or “not” and the next
punctuation, such as a period or a comma, as negated.

In total each word receives 13 additional features (3 ∗ 2 binary, 2 un-
igram scores, 2 ∗ 2 (skip) ngram scores, 1 negation). Since lingCNN
performs a 2d convolution over all feature dimensions, it allows the
detection of features that interact with word embeddings and linguis-
tic features.

Lets consider the example sentence: “i don’t find him so annoying ,
but cute :)”. For the example resources listed in Table 5.2.1 the features
are shown in Table 5.2.2.

1 http://sentiment.christopherpotts.net/lingstruc.html

http://sentiment.christopherpotts.net/lingstruc.html

54 linguistically-informed convolutional neural networks

i do
n’

t

fin
d

hi
m

so an
no

yi
ng

, bu
t

cu
te

:)

Part-of-Speech (POS) O O V O O A O O A E

binary positive 0 0 0 0 0 0 0 0 1 0
binary negative 0 0 0 0 0 1 0 0 0 0
score unigram 0 0 -0.1 0 0 -0.9 0 0 0.1 0
score bigram 0 0 0 0 -1.5 -1.5 0 0 0 0
score skip ngram -5 -5 -5 -5 -5 -5 0 0 0 0
binary negation 0 0 1 1 1 1 0 0 0 0

table 5.2.2: word-level feature matrix for example sentence
Linguistic features for the example sentence “i don’t find
him so annoying , but cute :)”.

5.2.2 Sentence-level Features

An alternative to adding word-level features into the training process
is to add sentence-level features. The reason for doing so is that simple
count features work surprisingly well (e.g., Mohammad et al., (2013)).
In lingCNN these features are concatenated with the pooling layer’s
output to serve as additional input for the softmax layer. We recall the
pooling output in Equation 2.2.4 being defined as:

a(2) = max(0, a(1) + b(2))

We simply redefine a(2) as the concatenation of the activated values
and the sentence-level feature vector s:

a(2) = [max(0, a(1) + b(2)) s] (5.2.1)

The definition for k-max pooling (Equation 2.2.10) is accordingly.

counts We count the number of elongated words such as “coooool”,
because they frequently express sentiment. A word is considered
elongated when it contains at least three equal characters in a
row.
Another feature is the count of emoticons, where the list of possi-
ble emoticons is taken from the SentiStrength project.2 Further,
we count the number of contiguous sequences of punctuation,
such as “...” or “!!!”. And finally we count the number of negated
words using the same list of words as in the word-level features.

2 http://sentistrength.wlv.ac.uk/

http://sentistrength.wlv.ac.uk/

5.2 lingcnn architecture 55

feature type value

no. of elongated words 0
no. of emoticons 1
no. of punctuation sequences 0
no. of negated words 4

scores Tweet 3 -0.9 0.1 0.1
scores hashtag 0 0 0 0
scores adjective 2 -0.8 0.1 0.1
scores emoticon 1 1 1 1
scores verb 1 -0.1 0 -0.1
scores other POS 0 0 0 0

table 5.2.3: sentence-level feature matrix for example sen-
tence Linguistic features for the example sentence “i don’t
find him so annoying , but cute :)”. The scores are only
shown exemplary for unigrams (score unigram in Table 5.2.1)
and for emoticons.

sentiment scores Mohammad et al., (2013) showed that simple
sentence-level sentiment features can be very successful. There-
fore, we reimplement their feature set. The computed lexicon
features are the number of sentiment words in a sentence, the
sum of sentiment scores of these words as provided by the lexi-
cons, the maximum sentiment score, and the sentiment score of
the last analyzed word. These four numbers are calculated for
all 5 previously mentioned sentiment lexicons: Opinion lexicon
(one time) (Hu and Liu, 2004), MPQA (one time) (Wilson et al.,
2005), NRCC Emotion lexicon (one time), Sentiment140 lexicon
(three times for uni-, bigrams, and skip ngrams), and the Hashtag
lexicon (three times) (Mohammad et al., 2013). Moreover, these
features are computed separately for the entire sentence, for each
POS tag (25 as described below) and for all hashtag tokens in the
sentence (Mohammad et al., 2013).

The total number of sentence-level features is 976 (4 count features,
(25 + 2) ∗ 4 ∗ 9 sentiment scores).

In order to be able to compute the feature vector for the previously
seen example “i don’t find him so annoying , but cute :)” it needs to be
tagged with POSs. Using the example resources in Table 5.2.1 the POS
sequence is “O O V O O A O O A E” (cf. Table 5.2.2). The resulting
sentence-level features are listed in Table 5.2.3.

56 linguistically-informed convolutional neural networks

5.3 experiments

5.3.1 Data

To evaluate lingCNN, we use the SemEval 2015 Task 10B data
set (Rosenthal et al., 2015). SemEval is a collection of shared tasks
each dealing with a different topic in semantics. The task we use is
Task 10: Sentiment Analysis in Twitter, Subtask B Message polarity classi-
fication Rosenthal et al., (2015). Here the task is to classify entire text
messages (Twitter tweets and SMS) into positive, negative, and neutral.

Equally to the official shared task we train the model on the SemEval
2013 training and development set and use the SemEval 2013 test set as
development set (Nakov et al., 2013; Rosenthal et al., 2015). This leads
to 9845 tweets in the training set and 3813 tweets in the development
set. The final evaluation is done on the SemEval 2015 test set, which
contains 2390 tweets. Table 5.3.1 lists all data set sizes and the label
distribution in detail. We can see that the negative class is strongly
underrepresented.

Additionally, to compare with other SemEval 2015 participants, we
use the SMS dataset from SemEval 2013 (Nakov et al., 2013), and
the Twitter, Twitter sarcasm, and LiveJournal datasets from SemEval
2014 (Rosenthal et al., 2014). Moreover, we test the generality of our
findings by reporting results on the manually labeled test set of the
Sentiment140 corpus (Go et al., 2009). It contains about 500 tweets (cf.
Table 5.3.1), which were collected by searching Twitter for specific cat-
egories, such as movie, person, and company. Table 5.3.1 shows the
details of all datasets.

The examples in all data sets are labeled with one of the three classes:
positive, negative, or neutral. As proposed by the SemEval organizers,
tweets labeled as objective are mapped to the neutral label. We report
accuracy and the macro F1 score of the positive and negative classes,
because this is the official shared task evaluation metric:

F1,macro =

(
F1,positive + F1,negative

)
2

(5.3.1)

Data Prepocessing

The SemEval and Sentiment140 data are preprocessed in the following
way:

tokenization and POS tagging Tweets are first tokenized and
POS tagged using TweetNLP (Owoputi et al., 2013). It has been
developed especially for Twitter and therefore can handle fre-
quent phenomena that a standard tokenizer/tagger cannot han-
dle very well. Examples are correct tokenization of emoticons
and correct POS tagging of interjections (e.g., “lololol”, “ikr” - “I
know right”) and proper nouns (e.g., “fb” - “Facebook”).

5.3 experiments 57

total positive negative neutral

Twitter 2015 train 9845 3636 1535 4674
Twitter 2015 dev 3813 1572 601 1640
Twitter 2015 test 2390 1038 365 987

Sentiment140 test 498 182 177 139
SMS 2013 2093 492 394 1207
Twitter 2014 1853 982 202 669
Twitter 2014 sarcasm 86 33 40 13
LiveJournal 2014 1142 427 304 411

table 5.3.1: twitter dataset sizes Number of overall, positive, nega-
tive, and neutral Twitter tweets/SMS per dataset.

normalization In the Twitter domain there are certain standards
that are unique. For example, words starting with “@” refer to
other users, and words starting with “#” (so called hashtags) de-
scribe thoughts or feelings. Additionally, tweets very often con-
tain web URLs. Neither URLs, nor user mentions do provide any
cue of polarity. Therefore, we normalize them to “<web>” and
“<user>”. We keep hashtags, because they often contain valu-
able information such as topics or even sentiment (e.g., “#happy-
day”).
Punctuation sequences like “!?!?” can act as exaggeration or
other polarity modifiers, thus we want to keep them. However,
the sheer amount of possible sequences increases the Out-of-
Vocabulary (OOV) rate dramatically. Therefore, we normalize
them in the following way. All sequences of punctuations are
replaced by a list of distinct punctuations in this sequence (e.g.,
“!?!?” is replaced by “[!?]”). Additionally, we sort the remain-
ing characters to lower the variability even further. This way, we
keep most of the information without increasing the vocabulary
size or the OOV rate much. We consider the following punctua-
tion characters: “.:;!?,!?\’\-_<>*”.

lowercasing and shuffling In the next step, we lowercase all
tweets to further reduce the vocabulary size. This is an impor-
tant step especially for Twitter, because of the great variety of
(mis-)spellings of words. Finally, the datasets are randomly shuf-
fled.

58 linguistically-informed convolutional neural networks

5.3.2 Model Settings

Baseline Systems

The first baseline is the majority baseline, i.e., a classifier that would
always predict the most common class. Since we use the macro F1 of
the positive and negative class, we have to choose the most frequent
class among these two. In both Twitter 2015 and Sentiment140 that is
the positive class.

We use the SemEval 2013 and SemEval 2014 winning system (Mo-
hammad et al., 2013) as baseline. This system uses a Support Vector
Machine (SVM) for classification. According to their analysis, Bag-of-
Words (BOW) features and linguistic features are the most important
ones. BOW features are computed for words ({1, 2, 3}-grams) and for
characters {3, 4, 5}-grams. Linguistic features are the ones we use as
sentence-level features for lingCNN: counts and sentiment scores (cf.
Section 5.2.2). Features such as POS tags or clusters have not made an
important contribution in the experiments of Mohammad et al., (2013).
Therefore, we implement only BOW and linguistic features. To account
for differences in scales of the different sentiment scores, we standard-
ize them to have a zero mean and a standard deviation of 1. In prelim-
inary experiments this slightly improved the results.

There are three feature settings we analyze: (i) only BOW features
(for both, word and characters), (ii) only linguistic features, and (iii) the
combination of BOW and linguistic features. We use LIBLINEAR (Fan
et al., 2008) to train the model and optimize the C parameter on the
development set. The analyzed values are C ∈ {1e − 4, 5e − 4, 1e −
3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1, 1, 2, 3, 5, 7}.

For reference we add the first and second best systems of the Sem-
Eval 2015 tweet level polarity task: Webis (Hagen et al., 2015) and
UNITN (Severyn and Moschitti, 2015). Webis is an ensemble based
on four systems, which participated in the same task of SemEval 2014
(Task 9, subtask B). One of it is our SVM baseline, the others are (i) a
Stochastic Gradient Descent (SGD) classifier with mainly linguistic fea-
tures (Günther and Furrer, 2013), (ii) Maximum Entropy classifier with
statistical and linguistic features (Proisl et al., 2013), and (iii) a system
that is similar to our SVM baseline with more POS, word- and n-gram
features, and more sentiment lexicons (Miura et al., 2014). The UNITN
system trains a CNN similar to ours. They rely on pretraining the en-
tire model on a large distant supervised training corpus (10M labeled
tweets). This approach is orthogonal to ours and can easily be com-
bined with our idea of linguistic feature integration. This combination
is likely to increase the performance further.

5.3 experiments 59

LingCNN

To analyze the effect of the linguistic features and our extensions we
train different CNN models with different combinations of features:
(i) only pretrained word embeddings, (ii) integration of word-level fea-
tures, and (iii) integration of sentence-level features. The model up-
dates all parameters during training θ = {P, M∗, W, b(∗)}, where P is
the embeddings matrix, M∗ are the filter matrices, W is the weight ma-
trix of the softmax layer, and b∗ are the model’s biases (see Section 2.2).
We set the embeddings size to dP = 60. Our model uses filters of width
2 ≤ m ≤ 5 with 100 filters each and set k-max pooling to k = 1. We
train the models for a maximum of 30 epochs with mini-batch SGD
(batch size: 100). The training was stopped when three consecutive
epochs lead to worse results on the development set (early stopping).
We use AdaGrad (Duchi et al., 2011) for dynamic learning rate adjust-
ment with an initial learning rate of η = 0.01 and ℓ2 regularization
(λ = 5e−5).

The embeddings matrix P is initialized in two different ways. First,
we pretrain Twitter specific word embeddings, because previous work
has shown that pretrained word embeddings are helpful in various
tasks (e.g., Kim, (2014)). In order to do so we train skip-gram word
embeddings (Mikolov, Chen, et al., 2013) with the word2vec toolkit3

on a large amount of unlabeled Twitter text data. We first down-
loaded about 60 million tweets from the unlabeled Twitter Events data
set (McMinn et al., 2013). It is preprocessed the same way as the other
datasets. The vocabulary is built out of all the words of the SemEval
training data and the 50K most frequent words of the Twitter Events
data set. This way we increase the chance to have good embeddings
for frequent words in the SemEval test set. Additionally, an unknown
word is added to the vocabulary to learn a word embedding for out-of-
vocabulary words. Every word that does not exist in this vocabulary
is replaced by the unknown word. Finally, a skip-gram model with
60-dimensional vectors is trained on the unlabeled data and used to
initialize the word embeddings matrix P. The matrix P is as stated
above further fine-tuned during model training.

As second word embeddings initialization method we create ran-
dom 60 dimensional embeddings for all words in the same vocabulary.
Each random number is sampled from a normal distribution with a
mean of 0 and a standard deviation of 0.01.

5.3.3 Results

Baselines

Table 5.3.2 lists the baseline results on the SemEval 2015 and the Senti-
ment140 test sets. As expected, the majority baseline yields the lowest

3 https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/

60 linguistically-informed convolutional neural networks

SemEval 2015 Sentiment140

model acc. F1 acc. F1

majority (positive) 43.43 30.28 36.55 26.76
SVM BOW (C = 0.005) 62.13 51.07 68.67 67.94
SVM ling. (C = 0.0001) 64.90 57.88 66.67 66.61
SVM BOW + ling. (C = 0.001) 66.53 59.32 70.21 70.08

Webis - 64.84 - -
UNITN - 64.59 - -

table 5.3.2: baseline results Test set results of the baseline systems.
SVM is our reimplemented SVM with a BOW and linguistic
features similar to Mohammad et al., (2013). C is the value
of the C parameter of the SVM that yielded the best result on
the development set.
Webis (Hagen et al., 2015) is an ensemble system of 4 indi-
vidual classifiers. UNITN (Severyn and Moschitti, 2015) is
a CNN trained on a large distant supervised corpus. Webis
and UNITN only provide F1 results on the SemEval test set.

performance. Especially on Sentiment140, where the number of pos-
itive and negative examples are almost equal and there are almost as
many neutral examples, this baseline is very weak. The other baselines
are much stronger.

Similar to Mohammad et al., (2013)’s findings, the combination of
ngram and linguistic features gives the best performance for the acsvm.
We can also see that linguistic features alone are more valuable than
just ngram features. This shows how important linguistic resources
are for this classification task. The fact that the SVM with bow features
is only 2.8% in accuracy behind the SVM with linguistic features, but
almost 7 F1 points indicates that the former has big trouble classifying
the negative class. Our analysis proves that.

Interestingly, the ngram SVM is better than the linguistic only SVM
on the Sentiment140 dataset. In general, the results on this test set are
better by a large margin, indicating that the SemEval data set is more
difficult and more different than the training data.

Both SemEval participating systems beat even the best SVM baseline
by a large margin.

LingCNN

Table 5.3.3 shows the lingCNN results on the SemEval 2015 test set.
With only word-level features the model yields similar F1 performance
as the SVM with only linguistic features. Adding sentence-level fea-
tures improves the performance to the level of the SVM baseline sys-

5.3 experiments 61

features SemEval 2015 Sentiment140

w2v rand word sentence acc. F1 acc. F1

1 + 61.80 57.83 69.08 72.58
2 + + 63.51 59.24 71.49 74.36
3 + 64.90 58.50 70.28 70.40
4 + + 65.27 58.89 74.90 76.73
5 + + 66.40 62.22 76.51 78.67
6 + + + 66.23 62.10 76.91 79.10
7 + 67.36 62.72 76.31 77.59
8 + + 66.95 62.61 77.71 79.14
9 + + 67.41 63.43 78.71 80.21

10 + + + 68.16 64.46 78.31 80.75

table 5.3.3: lingCNN results Test set results of lingCNN for differ-
ent feature type combinations. “w2v” are pretrained word
embeddings; “rand” are randomly initialized embeddings;
“word” are word-level features; “sentence” are sentence-level
features. A “+” indicates that the feature type is active.

tem with bag-of-words and linguistic features. This was the winning
system of the SemEval 2014.

Random embeddings as only feature yields lower F1 performance
than the combination of word- and sentence-level features. Similarly,
adding sentence-level features is worse. When adding word-level fea-
tures, the performance increases by a large range, e.g., 3 F1 points from
configuration 2 to configuration 5.

We see that using pretrained word embeddings as only feature type
yields large improvements. Sentence features on top of that can not im-
prove the performance further. However, word-level features together
with pretrained word embeddings yield higher performance. The best
result on the SemEval 2015 test set is reached by the combination of
word embeddings and both types of linguistic features. This perfor-
mance is comparable with both state-of-the-art SemEval 2015 winner
systems (cf. Table 5.3.2).

A general finding is that linguistic features seem very beneficial
if there is little domain-specific knowledge. Pretrained embeddings,
which are trained on domain-specific data, cannot benefit as much
from them as random embeddings can: 1.74 F1 from configuration 7
to configuration 10, compared to 3.6 from configuration 3 to 6.

Significance – again computed using the approximate randomiza-
tion test (Padó, 2006) – of all results from Table 5.3.3 is shown in Ta-
ble 5.3.4. We can confirm that word embeddings are necessary to reach
high performance. However, the right initialization of embeddings is

62 linguistically-informed convolutional neural networks

important. Configuration 6 in Table 5.3.3 (random embeddings plus
word-level plus sentence-level features) is significantly worse than its
pretrained counterpart in configuration 10. That is consistent with
findings of previous work on CNNs (e.g., Kim, (2014)). Additionally,
word-level features are confirmed to reach better performance than
sentence-level features, because the difference between configuration 8
and configuration 10 is significant, whereas the difference between con-
figuration 9 and 10 is not.

The results on the Sentiment140 test set (right part of Table 5.3.3)
show the same tendencies. Linguistic features help the classifier to
a great extend. This time even the combination of pretrained word
embeddings and sentence-level features yields better results than just
the word embeddings alone. The best F1 score again is reached by the
model with pretrained embeddings and both types of linguistic fea-
tures.

Table 5.3.5 shows the official SemEval 2015 results. The rank of a
system for every dataset is shown in subscript. The datasets are named
according to the organizer’s convention. Twitter 2013 is the SemEval
2013 test set, which is used as SemEval 2015 development set. Twitter
2015 is the SemEval 2015 test set.

Compared to the 30 best systems of SemEval 2015 lingCNN would
rank 3rd (last column in Table 5.3.5). Our system further scores well
on LiveJournal (2nd) and SMS (4th). These two datasets are probably
less noisy than the other datasets that are Twitter-based. Since Twitter
2013 is the SemEval 2015 development set, one can see that the develop-
ment data (Twitter 2013) and test data (Twitter 2015) are quite different,
because all systems loose performance.

Please also note that CIS-positive is our official SemEval 2015 sub-
mission system (Ebert et al., 2015b), which is a more basic version of
lingCNN.

5.4 analysis

5.4.1 Examples

Here, we analyze examples to find out why the linguistic features help.
Consider the example “saturday night in with toast , hot choc & <user>
on e news #happydays”. Only the hashtag “#happydays” indicates po-
larity. The hashtag exists in the hashtag sentiment lexicon (Moham-
mad et al., 2013), but does not exist in the training vocabulary. There-
fore, there is no embedding for it, rather the unknown word embedding
is used. Thus, a standard CNN does not have any information about
contexts or sentiment of this token.

Here is another example: “shiiiiit my sats is on saturday . i’m going
to fail”. “Fail” is strongly negative in all lexicons. However, it occurs
only 10 times in the training set. That is likely not enough to learn

5.4 analysis 63

1 2 3 4 5 6 7 8 9 10
1
2 †

3
4
5
6 ‡ ‡

7 ‡ ‡

8 ‡ ‡

9 ‡ ‡

10 ‡ ‡ ‡ ∗

table 5.3.4: signifiance Significant differences of lines 1–10 in Ta-
ble 5.3.3. ‡: p = 0.01, †: p = 0.05, ∗: p = 0.1.

a good sentiment-bearing embedding. As a result, the CNN without
linguistic knowledge classifies the tweet as neutral. Having linguis-
tic features enables the model to implicitly incorporate sentiment in-
formation into the word embeddings, helping to classify this example
correctly. Note that proper normalization of “shiiiiit” might have given
the model another clue of negative polarity.

5.4.2 Corpus Size

In this section we analyze the benefit of linguistic features with respect
to the size of the training corpus. Figure 5.4.1 and Table 5.4.1 shows the
performance of a standard CNN with word embeddings and lingCNN
with both types of linguistic features. The two models are trained on
different fractions of the SemEval training set. We clearly see that lin-
guistic features are helpful in all cases. Especially, where only limited
training data is available, the performance difference is large. Even
with only 1000 training samples, lingCNN yields a reasonable result
of 60.89. The CNN that does not have access to linguistic features
reaches only 49.89. Although, the performance of the standard CNN
without linguistic features increases much for 3000 training examples,
this model is still more than 4 points behind the linguistically informed
model. The more training data is available the smaller is the difference
between both models. But still, even when using the entire training set,
lingCNN yields higher performance.

64 linguistically-informed convolutional neural networks

Twitter SMS Twitter Sarcasm LiveJournal Twitter
2013 2013 2014 2014 2014 2015

Webis 68.4911 63.9215 70.868 49.3311 71.6414 64.841

unitn 72.792 68.372 73.602 55.445 72.4813 64.592

lingCNN 69.718 67.764 70.906 46.6718 74.692 64.463

lsislif 71.344 63.4218 71.545 46.5719 73.0111 64.274

INESC 71.973 63.7816 72.523 56.233 69.7822 64.175

Splusplus 72.801 67.166 74.421 42.8626 75.341 63.736

wxiaoac 66.4317 64.0414 68.9612 54.387 73.3610 63.007

IOA 71.325 68.143 71.864 51.489 74.523 62.628

Swiss-Chocolate 68.8010 65.567 68.7413 48.2214 73.955 62.619

CLaC-SentiPipe 70.427 63.0519 70.1611 51.4310 73.597 62.0010

TwitterHawk 68.4412 62.1221 70.6410 56.024 70.1719 61.9911

SWATCS65 68.2113 65.499 67.2315 37.2331 73.379 61.8912

UNIBA 61.6628 65.508 65.1126 37.3030 70.0520 61.5513

KLUEless 70.646 67.665 70.897 45.3623 73.508 61.2014

NLP 66.9615 61.0525 67.4514 39.8727 66.1230 60.9315

ZWJYYC 69.569 64.7212 70.779 46.3420 71.6015 60.7716

Gradiant-Analytics 65.2921 61.9722 66.8718 59.111 72.6312 60.6217

IIIT-H 65.6819 62.2520 67.0417 57.502 69.9121 59.8318

ECNU 65.2522 68.491 66.3721 45.8722 74.404 59.7219

CIS-positiv 64.8223 65.1411 66.0522 49.2312 71.4716 59.5720

SWASH 63.0726 56.4931 62.9330 48.4213 69.4324 59.2621

GTI 64.0324 63.5017 65.6523 55.386 70.5017 58.9522

iitpsemeval 60.7830 60.5626 65.0927 47.3216 73.706 58.8023

elirf 57.0531 60.2028 61.1731 45.9821 68.3328 58.5824

SWATAC 65.8618 61.3024 66.6420 39.4528 68.6727 58.4325

UIR-PKU 67.4114 64.6713 67.1816 52.588 70.4418 57.6526

SWATCMW 65.6720 65.4310 65.6224 37.4829 69.5223 57.6027

WarwickDCS 66.5716 61.9223 65.4725 45.0325 68.9825 57.3228

SenticNTU 63.5025 60.5327 66.8519 45.1824 68.7026 57.0629

DIEGOLab 62.4927 58.6030 63.9928 47.6215 63.7431 56.7230

table 5.3.5: semeval 2015 results Best 30 systems from the official re-
sults of the SemEval 2015 shared task on several test sets.
lingCNN is highlighted in bold. Numbers in subscript in-
dicate the rank according to the corresponding test set. The
best result per column is highlighted in bold.

5.4 analysis 65

1000 2000 3000 4000 5000 6000 7000 8000 9000 all

training set size

48

50

52

54

56

58

60

62

64

66

F
1

lingCNN

CNN

figure 5.4.1: analysis of training set sizes Comparison of a stan-
dard CNN with lingCNN for different training set sizes.

size CNN lingCNN

1000 49.89 60.89
2000 53.99 60.23
3000 58.10 62.51
4000 54.50 59.91
5000 55.03 59.44
6000 58.79 61.08
7000 60.08 62.03
8000 59.27 60.56
9000 59.78 61.23

all 62.72 64.46

table 5.4.1: analysis of training set sizes Comparison of a stan-
dard CNN with lingCNN on different training set sizes.

66 linguistically-informed convolutional neural networks

5.5 related work

Collobert et al., (2011) published the first CNN architecture for a range
of natural language processing tasks, such as chunking and Named En-
tity Recognition (NER). They propose to use multiple look-up tables
and add simple features indicating if a word exists in a gazetteer list.
We adopt their idea of using multiple look-up tables to incorporate lin-
guistic features at the word-level into the CNN and add more feature
type variants.

Since then CNNs have been used for a variety of sentence classi-
fication tasks (e.g., Zeng et al., (2014)), including polarity classifica-
tion (e.g., Kim, (2014)). Kalchbrenner et al., (2014) showed that their
DCNN for modeling sentences can achieve competitive results in this
field. They introduce several techniques that increase model complex-
ity. The techniques are (i) wide convolution; (ii) k-max pooling, that
uses the k maximum values instead of only single largest number af-
ter convolution; (iii) dynamic k-max pooling that chooses k according
to the input sentence length; (iv) folding, a special subsampling tech-
nique that reduces the number of parameters. Our CNN architecture
is simpler than theirs. We use max pooling and a single layer only.
Having more layers would lead to overfitting on the small SemEval
dataset. We also use wide convolution but use multiple filter widths
in the convolution layer.

There are alternative approaches of integrating linguistic features
into model training. By adding more labeled data, implicit knowl-
edge is given to the model. This approach usually requires manual
labeling effort. Alternatively, a method called distant supervision semi-
automatically labels texts based on emoticons it contains (Go et al.,
2009). This approach is used by Severyn and Moschitti, (2015) to train
a CNN. Please note that adding more training data is orthogonal to
our approach.

A different method to integrating linguistic features is to incorporate
linguistic knowledge into the objective function to guide the model
training. For instance Tang, Wei, Yang, et al., (2014) incorporate the
polarity of an ngram into a hinge loss function.

Tang, Wei, Qin, Liu, et al., (2014) used a CNN to compute representa-
tions of input sentences. These representations together with linguistic
features on sentence-level form the input to an SVM. In contrast, we
use linguistic features at the word-level, which allows interaction be-
tween linguistic features and word embeddings. Furthermore, we use
similar sentence features and directly incorporate them into the CNN.

In addition to CNNs, researchers have been using different neu-
ral network architectures. However, each of these has its own dis-
advantages. A deep feed forward network cannot model easily that
inserting many types of words into a string (e.g., “happy to drive
my new car” vs “happy to drive my red new car”) does not change

5.6 conclusion 67

sentiment. acprnn (Elman, 1990) and Long Short Term Memorys
(LSTMs) (Hochreiter and Schmidhuber, 1997) are powerful for un-
bounded dependencies, but tweets are short; the sentiment of a tweet
is usually determined by one part of it and unlike Recurrent Neural
Network (RNN)/LSTM, convolution plus max pooling can learn to fo-
cus on that. Recursive architectures like the Recursive Neural Tensor
Network (Socher et al., 2013) assume some kind of hierarchical sen-
tence structure. This structure does not exist or is hard to recognize for
many noisy tweets.

As mentioned before, we use the SemEval 2013 and SemEval 2014
winning system (Mohammad et al., 2013) as baseline. Moreover, we
include several features of their system to improve the CNN.

5.6 conclusion

In this chapter we have shown that CNNs are powerful classifiers for
the task of sentence-level polarity classification. We have introduced
an intuitive and simple way of incorporating linguistic word-level and
sentence-level features into a standard CNN architecture. Using such
features yields significant improvements on two polarity classification
Twitter data sets without the need of more labeled training data. Using
both feature types, our lingCNN performs comparable to state-of-the-
art systems of the SemEval 2015 shared task.

Our analysis shows that especially (but not only) when little domain
knowledge in form of training data or pretrained word embeddings
is available lingCNN is more effective than an uninformed standard
CNN. This suggests that it especially helps when the model is not pow-
erful enough to capture all the data’s variance.

Our proposed methods are easy to implement and often times do not
require new resources, because there often are already some available
depending on the task.

5.7 future work

The following points are possible extensions to the existing system:

• More often than not fine-tuning word embeddings during the
training on task-dependent data improves the performance of
models (e.g., Kim, (2014)). Along these lines linguistic word-
level features could be fine-tuned during training as well. Start-
ing with a lexicon’s prior polarity score (or label transformed into
a score) domain specific scores can be the result. For instance
“read” can be a positive word in the book domain, whereas it
can be negative in the movie domain where “go read the book”
is a negative statement.

68 linguistically-informed convolutional neural networks

• More linguistic features can enhance the system even further.
For instance features indicating uncertainty (“might”, “may”)
change polarity. POS-based features can help the model to dis-
ambiguate between different uses and are already given by the
MPQA lexicon (Wilson et al., 2005). Mohammad et al., (2013)
have been successful with ngram features; we could incorporate
them as additional sentence-level feature type. Both word and
character ngram features are possible. More Twitter-specific fea-
tures can be extracted from elongated words or hashtags.

6
M O R P H O LO G I CA L LY I N D E P E N D E N T S E N T I M E N T
A NA LYS I S

This chapter covers work already published at international
peer-reviewed conferences. The relevant publication is Ebert
et al., (2016). The research described in this chapter was carried
out in its entirety by myself. The other author(s) of the publi-
cation(s) acted as advisor(s) or were responsible for work that
was reported in the publication(s), but is not included in this
chapter.

In this chapter we want to find out what the role of morphology is
on polarity classification. The underlying hypothesis is that morphol-
ogy is not relevant for polarity classification. Whereas for valence pre-
diction it is important to know that better may have a more positive
connotation than good, for polarity it may not make a difference.

In this chapter we address this question by neglecting all deriva-
tional and inflectional morphology by learning stem- and lemma-
based word embeddings that can be used in classifiers such as
linguistically-informed Convolutional Neural Network (lingCNN).
Neglecting morphology enables us to map all forms of sentiment-
bearing words, such as love and hate, to one canonical form each. This
makes a system more robust against rare or unseen word forms. Ad-
ditionally, stem- and lemma-based word embeddings have the benefit
of working especially well for morphologically rich languages.

Instead of training embeddings of surface forms of words, we train
embeddings of lemmata. This yields significantly better results than
standard word embeddings in three experiments. On a new WordNet-
based evaluation STem EMbeddings (Stem) and LemmA eMBeddings
(Lamb) lead to significant improvements for five different languages.
They are up to 50% better than standard embeddings. A strong im-
provement is also shown on popular word similarity and polarity
classification tasks. Additionally, our analysis shows that lemma em-
beddings successfully address sparsity and therefore lead to more
efficiency because high-quality embeddings can be learned even for
smaller dimensionalities and for smaller training corpora.

6.1 introduction

Despite their power and prevalence, embeddings have serious prac-
tical problems. First, large text corpora are necessary to train high-
quality embeddings. Such corpora are not available for under-
resourced languages. Second, Morphologically Rich Languages

69

70 morphologically independent sentiment analysis

genus / numerus form stem

infinitive brechen brech

1st singular breche brech
2nd singular brichst brich
3rd singular bricht bricht

1st plural brechen brech
2nd plural brecht brecht
3rd plural brechen brech

table 6.1.1: stemming result of “brechen” Result of stemming of
the German verb “brechen” (to break) for all present indica-
tive forms using Snowball.

(MRLs) are a challenge for standard embedding models because many
inflectional forms are rare or absent even in a large corpus. For exam-
ple, a Spanish verb has more than 50 forms, many of which are rarely
used. This leads to missing or low quality embeddings for such inflec-
tional forms, even for otherwise frequent verbs, i.e., sparsity is a prob-
lem. For Finnish and Turkish, this is even more of a problem. There-
fore, we propose to compute normalized embeddings instead of em-
beddings for surface/inflectional forms (referred to as forms through-
out the rest of the chapter): STem EMbeddings (Stem) for word stems
and LemmA eMBeddings (Lamb) for lemmata.

Stemming is a heuristic approach to reducing form-related sparsity
issues. Based on simple rules, forms are converted into their stem.
However, often the forms of one word are converted into several dif-
ferent stems. For example, present indicative forms of the German
verb “brechen” (to break) are mapped to four different stems (see Ta-
ble 6.1.1). A more principled solution is lemmatization. Lemmatiza-
tion unites many individual forms, many of which are rare, in one
equivalence class, represented by a single lemma. Stems and equiv-
alence classes are more frequent than each individual form. As we
will show, this successfully addresses the sparsity issue.

Both methods can learn high-quality semantic representations for
rare forms and thus are most beneficial for MRLs as we show below.
Moreover, less training data is required to train lemma embeddings
of the same quality as form embeddings. Alternatively, we can train
lemma embeddings that have the same quality but fewer dimensions
than form embeddings, resulting in more efficient applications.

If an application such as parsing requires inflectional information,
then stem and lemma embeddings may not be a good choice since
they do not contain such information. However, many NLP applica-
tions are semantic and for them inflectional information may not even

6.2 stem/lemma creation 71

be necessary. For example, most word similarity benchmarks (e.g.,
MEN (Bruni et al., 2014)) only evaluate semantic similarity, which is
largely independent of inflectional morphology. The same is true for
polarity classification as we show in this study.

Our contributions in this Chapter are the following:

1. We introduce the normalized embeddings Stem and Lamb and
show their usefulness on different tasks for five languages. Al-
though lemmatization is not new and used in other domains,
e.g., in information retrieval, only few studies in the word rep-
resentation domain make use of it (e.g., Melamud et al., (2014),
Köper et al., (2015)). This is probably due to the fact that the
majority of research is done on English, where sparsity is less of
a problem. This chapter is the first study that comprehensively
compares stem/lemma-based with form-based embeddings for
MRLs.

2. We show the advantage of normalization on word similarity
benchmarks. Normalized embeddings yield better performance
for MRL languages on most datasets (6/7 for German and 2/2
for Spanish).

3. We propose a new intrinsic relatedness evaluation based on
WordNet graphs and publish datasets for five languages. On this
new evaluation, Lamb outperforms form-based baselines by a big
margin.

4. Stem and Lamb outperform baselines on polarity classification for
Czech and English.

5. We show that Lamb embeddings are efficient in that they are high-
quality for small training corpora and small dimensionalities.

This chapter is structured as follows. Section 6.2 describes the two nor-
malization methods we use in this study, stemming and lemmatiza-
tion, and how they are applied. In Section 6.3 we conduct three ex-
periments, word similarity, word relations, and polarity classification.
An analysis of the benefits of morphological normalization is given in
Section 6.4. Section 6.5 gives an overview over related work and Sec-
tion 6.6 concludes this chapter.

6.2 stem/lemma creation

The main hypothesis of this work is that normalization addresses spar-
sity issues, especially for MRLs, because although a particular word
form might not have been seen in the text, its stem or lemma is more
likely to be known.

72 morphologically independent sentiment analysis

Stemmers are available for many languages. Especially Snowball,1
a “string processing language designed for creating stemming algo-
rithms” is widely used and covers all languages from our experiments.
Since it is a rule-based approach, training data is not necessary.

We use the term lemma as that surface form that represents the set of
word forms that belong to one equivalence class. Lemmata allow the
mapping of words to lexical resources. For lemmatization we use the
pipeline version of the freely available, high-quality lemmatizer Lem-
ming (Müller et al., 2015). Since it is a language-independent token-
based lemmatizer it is especially suited for our multi-lingual experi-
ments. Moreover, it reaches state-of-the-art performance for the five
languages that we study.

Lemming’s pipeline annotates tokens in context by first running the
morphological tagger MarMoT (Müller et al., 2013). It then creates a
set of lemma candidates for each token by applying a set of edit trees
(Chrupała, 2008). These edit trees encode a sequence of replacement
operations such as remove “s” (as in “walks” - “walk”) or replace “oo”
with “ee” (as in “feet” - “foot”) and are used to convert the current
token into a lemma candidate. The resulting candidate set is then
scored in a log-linear model using a number of features such as the
edit tree index, the aligned replacement operations, and features that
test whether the resulting lemma occurs in a dictionary or has a high
unigram count in some raw text corpus. We train the pipeline using the
Penn Treebank (Marcus et al., 1993) for English, SPMRL 2013 shared
task data (Seddah et al., 2013) for German and Hungarian, and CoNLL
2009 (Hajič et al., 2009) datasets for Spanish and Czech. We addition-
ally use a unigram list extracted from Wikipedia datasets and the As-
pell dictionary of each language.2

6.3 experiments

We conduct two intrinsic and one extrinsic evaluation. The two intrin-
sic evaluations compute word similarities based on either forms, stems,
or lemmata and demonstrate that stem- and lemma-based similarities
are superior to form-based similarities. The extrinsic evaluation is po-
larity classification for Czech and English. We show that a system
based on Stem and Lamb are consistently better than a system based
on form embeddings.

6.3.1 Word Similarity

One popular way of evaluating embedding quality is through word
similarity. A model needs to assign a similarity score to predefined

1 snowball.tartarus.org
2 ftp://ftp.gnu.org/gnu/aspell/dict

snowball.tartarus.org
ftp://ftp.gnu.org/gnu/aspell/dict

6.3 experiments 73

lang. dataset pairs reference

de Gur30 29 Gurevych, (2005)
Gur350 350 Gurevych, (2005)
Gur65 65 Gurevych, (2005)
MSL 999 Leviant and Reichart, (2015)
MWS 350 Leviant and Reichart, (2015)
WS 280 Köper et al., (2015)
ZG222 222 Zesch and Gurevych, (2006)

en MC 30 Miller and Charles, (1991)
MEN 1000 Bruni et al., (2014)
RG 65 Rubenstein and Goodenough, (1965)
RW 2034 Luong et al., (2013)
SL 999 Hill et al., (2014)
WS 353 Finkelstein et al., (2002)

es MC 30 Hassan and Mihalcea, (2009)
WS 352 Hassan and Mihalcea, (2009)

table 6.3.1: word similarity datasets Word similarity datasets for all
three evaluated languages, with abbreviation, number of
word pairs, and reference.

word pairs. Given a pair of words (m, n) and a set of embeddings E
we compute their similarity as cosine similarity:

simE(m, n) = cos(Em, En)

=
Em · En

∥ Em ∥ · ∥ En ∥
(6.3.1)

where Em and En are the embeddings of m and n respectively. For
word pairs where at least one word is unknown to the model we assign
simE(m, n) := 0. After computing the similarities for all word pairs,
Spearman correlation is computed between these similarity scores and
human-based judgments. This is done for three sets of embeddings,
form embeddings EF, Stem ES, and Lamb EL.

For form embeddings EF, we directly use the embeddings of the
word pairs’ forms (EF

m and EF
n) and compute their similarity. For Stem

we use ES
stem(w)

, where stem(w) is the stem of w. For Lamb we use
EL

lemma(w), where lemma(w) is the lemma of w; we randomly select one
of w’s lemmata if there are several.

We conduct experiments on English (en), German (de), and Spanish
(es). All used datasets with their sizes are listed in Table 6.3.1.

74 morphologically independent sentiment analysis

lang. corpus # tokens # forms # stems # lemmas

cz Wikipedia 83M 1461K 873K 869K

de COW 7973M 1335K 1059K 1104K
Wikipedia 609M 8223K 6669K 6876K

en Wikipedia 1779M 7741K 7092K 7403K

es COW 3681M 373K 274K 229K
Wikipedia 396M 6395K 5823K 6082K

hu Wikipedia 85M 2710K 1563K 1557K

table 6.3.2: sizes of training corpora Sizes of training corpora with
number of tokens, and number of form, stem, and lemma
types. The numbers for both COW corpora consider only
types that occur at least 50 times.

For good performance, high-quality embeddings, trained on large
corpora, are required. Hence, the training corpora for German and
Spanish are taken from COW14 (Schäfer, 2015). Preprocessing in-
cludes removal of XML, conversion of HTML characters, lowercasing,
stemming using Snowball, and lemmatization using Lemming. We
use the entire Spanish corpus (3.7 billion tokens), but cut the German
corpus to approximately 8 billion tokens to be comparable to Köper et
al., (2015) (Table 6.3.2). We train CBOW models (Mikolov, Chen, et al.,
2013) for forms, stems, and lemmata using word2vec3 with the follow-
ing settings: 400 dimensions, symmetric context of size 2 (no dynamic
window), 1 training iteration, negative sampling with 15 samples, a
learning rate of 0.025, minimum count of words of 50, and a sampling
parameter of 10−5. CBOW is chosen, because it trains much faster than
skip-gram.

Since the morphology of English is rather simple we do not expect
Stem and Lamb to reach or even surpass highly optimized systems on
any word similarity dataset (e.g., Bruni et al., (2014)). Therefore, for
practical reasons we use a smaller training corpus, namely the prepro-
cessed and tokenized Wikipedia dataset of Müller and Schütze, (2015)
(cf. Table 6.3.2).4 Embeddings are trained with the same settings (us-
ing 5 iterations instead of only 1, due to the smaller size of the corpus:
1.8 billion tokens).

Results

Table 6.3.3 shows the results. Although English has a simple morphol-
ogy, Lamb improves over form performance on MEN and SL. A tie is

3 code.google.com/p/word2vec/
4 cistern.cis.lmu.de/marmot/naacl2015

code.google.com/p/word2vec/
cistern.cis.lmu.de/marmot/naacl2015

6.3 experiments 75

achieved on RW. These are the three largest English datasets, giving a
more reliable result. Both models perform comparably on WS. Here,
Stem is ahead by 1 point. Forms are better on the small datasets MC
and RG, where a single word pair can have a large influence on the
result. Because of the simple morphology of English, Stem/Lamb do
not outperform forms or only by a small margin and thus they cannot
compete with highly optimized state-of-the-art systems such as Baroni
et al., (2014). Their performances are higher on some of the datasets
for the best of 48 different parameter configurations. Our results are in
the range of their results showing comparability of our untuned results.

On German, both Stem and Lamb perform better on all datasets ex-
cept WS. We set the new state-of-the-art of 0.79 on Gur350 (compared
to 0.77, Szarvas et al., (2011)) and 0.39 on ZG (compared to 0.25, Botha
and Blunsom, (2014)); 0.83 on Gur65 (compared to 0.79, Köper et al.,
(2015)) is the best performance of a system that does not need addi-
tional knowledge bases (cf. Navigli and Ponzetto, (2012) and Szarvas
et al., (2011)).

Lamb’s results on Spanish are equally good. 0.82 on MC and 0.58
on WS are again the best performances of a system not requiring an
additional knowledge base (cf. Navigli and Ponzetto, (2012)). The best
performance before was 0.64 for MC and 0.50 for WS (both Hassan
and Mihalcea, (2009)). Stem cannot improve over form embeddings,
showing the difficulty of Spanish morphology.

To establish comparability of the models, we also report the Spear-
man correlation only for those word pairs that are covered by all mod-
els’ vocabularies. Table 6.3.4 lists the results. The results change only
slightly. Stem looses slightly on WS (de), but gains on ZG (de). Lamb
looses slightly on MWS (de), but also gains on ZG (de) and on RW (en).

6.3.2 Word Relations

The second intrinsic evaluation addresses the problem that word sim-
ilarity benchmarks are not available for many languages and are ex-
pensive to create. To remedy this situation, we create word similarity
benchmarks that leverage WordNets, which are available for a great
number of languages.

Generally, a representation is deemed good if words related by a lexi-
cal relation in WordNet – synonymy, hyponymy etc. – have high cosine
similarity with this representation. Since the gold standard necessary
for measuring this property of a representation can be automatically
derived from a WordNet, we can create very large similarity bench-
marks with up to 50K lemmata for the five languages we investigate:
Czech, English, German, Hungarian, and Spanish.

We view each WordNet as a graph whose edges are the lexical re-
lations encoded by the WordNet, e.g., synonymy, antonymy, and hy-
ponymy. We then define L as the set of lemmata in a WordNet and

76 morphologically independent sentiment analysis

lang. dataset form Stem Lamb coverage

de Gur30 0.76 0.83 0.80 29, 29, 29
Gur350 0.74 0.79 0.79 336, 340, 339
Gur65 0.80 0.83 0.82 65, 65, 65
MSL 0.44 0.44 0.47 994, 995, 995
MWS 0.60 0.61 0.62 348, 350, 350
WS 0.72 0.72 0.71 279, 280, 280
ZG 0.36 0.38 0.39 200, 207, 208

en MC 0.82 0.77 0.80 30, 30, 30
MEN 0.72 0.73 0.74 1000, 1000, 1000
RG 0.82 0.79 0.79 65, 65, 65
RW 0.47 0.47 0.47 1613, 1947, 1819
SL 0.42 0.38 0.43 998, 999, 999
WS 0.63 0.64 0.63 353, 353, 353

es MC 0.70 0.69 0.82 30, 30, 30
WS 0.54 0.54 0.58 350, 352, 352

table 6.3.3: word similarity results for full vocabulary Spear-
man correlation (ρ) for single models on the full vocabular-
ies of all models. Coverage shows the number of word pairs
that are known by the respective model. Bold numbers are
the best performance per row.

6.3 experiments 77

lang. dataset form Stem Lamb coverage

de Gur30 0.76 0.83 0.80 29
Gur350 0.74 0.79 0.79 336
Gur65 0.80 0.83 0.82 65
MSL 0.44 0.44 0.47 994
MWS 0.60 0.61 0.61 348
WS 0.72 0.71 0.71 279
ZG 0.36 0.40 0.41 200

en MC 0.82 0.77 0.80 30
MEN 0.72 0.73 0.74 1000
RG 0.82 0.79 0.79 65
RW 0.47 0.47 0.48 1613
SL 0.42 0.38 0.43 998
WS 0.63 0.64 0.63 353

es MC 0.70 0.69 0.82 30
WS 0.54 0.54 0.58 350

table 6.3.4: word similarity results for vocabulary intersec-
tion Spearman correlation (ρ) for single models on the
intersected vocabularies of all models. Coverage shows the
number of word pairs that are known by all models. Bold
numbers are the best performance per row.

78 morphologically independent sentiment analysis

the distance d(l, l′) between two lemmata l and l′ as the length of the
shortest path connecting them in the graph. The k-neighborhoodN k(l)
of l is the set of lemmata l′ that have distance k or less, excluding l:
N k(l) := {l′|d(l, l′) ≤ k, l ̸= l′}. The rank of l for an embedding set E
is defined as:

rankk
E(l) := argmin

i
li ∈ N k(l) (6.3.2)

where li is the lemma at position i in the list of all lemmata in the Word-
Net, ordered according to cosine similarity to l in descending order. In
other words, rankk

E(l) computes the rank of the word from the neigh-
borhood with the most similar embedding to l.

We restrict i ∈ [1, 10] and set k = 2 for all experiments in this chapter.
We omit the indexes k and E when they are clear from context.

To measure the quality of a set of embeddings we compute the Mean
Reciprocal Rank (MRR) on the rank results of all lemmata:

MRRE =
1
|L| ∑l∈L

1
rankE(l)

(6.3.3)

We compute the MRR only based on those examples the model re-
turns valid neighbors for, i.e., rankk

E ≤ 10 for at least one element in
the k-neighborhood (since i ∈ [1, 10]). We denote examples for which
a model does not return any valid neighbor as invalid.

We create large similarity datasets for five languages: Czech (cz),
English (en), German (de), Hungarian (hu), and Spanish (es) by ex-
tracting all lemmata from the WordNet version of the respective lan-
guage. For English and Spanish we use the preprocessed WordNets
from the Open Multilingual WordNet Bond and Paik, (2012). We use
the Czech and Hungarian WordNets Miháltz et al., (2008) and PALA
and SMRZ, (2004) and GermaNet Hamp and Feldweg, (1997) for Ger-
man. We keep all lemmata that have a known form in the form embed-
dings and that exist in the lemma embeddings. Moreover, we filter
out all synsets that contain only one lemma and discard all multiword
phrases (e.g., there are 68082 in the English WordNet, such as “real
time”). The split into development and test sets is done in a way that
the distribution of synset sizes (i.e., the number of lemmata per synset)
is nearly equal in both sets. The number of lemmata in our evaluation
sets can be found in Table 6.3.3. For more insight, we report results
on all Part-of-Speech (POS), as well as separately for nouns (n), verbs
(v), and adjectives (a). Note that the all-POS setting can include further
POS, depending on the WordNet. Moreover, some lemmata occur in
multiple POS. The datasets are made publicly available.

We propose the following models for the embeddings evaluation.
For form embeddings we compare three different strategies, a realistic
one, an optimistic one, and a lemma approximation strategy. In the re-
alistic strategy (form real), given a query lemma we randomly sample a
form, for which we then compute the k-neighborhood. If the neighbors
contain multiple forms of the same equivalence class, we exclude the

6.3 experiments 79

lang. set all a n v

cz dev 9694 852 6436 2315
test 9763 869 6381 2433

de dev 51682 6347 40674 5018
test 51827 6491 40623 5085

en dev 44448 9713 30825 5661
test 44545 9665 30736 5793

es dev 12384 1711 8634 1989
test 12476 1727 8773 1971

hu dev 19387 1953 15268 2057
test 19486 1928 15436 2011

table 6.3.5: number of lemmata in wordnet datasets Size of the
WordNet datasets in terms of number of lemmata. They are
separated by language and POS and split into development
and test set.

repetitions and use the next neighbors instead. For instance, if house is
already a neighbor, then houses will be skipped. The optimistic strategy
(form opt) works similarly, but uses the embedding of the most frequent
surface form of a lemma. This is the upper bound a form model can
reach, which already requires information about lemma and surface
form counts. As a baseline lemma approximation strategy, we sum up
all surface form embeddings that belong to one equivalence class (form
sum). For Stem we repeat the same experiments as described for forms,
leading to stem real, stem opt, and stem sum.

For embeddings training, Wikipedia comes as a natural choice as cor-
pus, because it is available for many languages. Therefore, we use the
preprocessed and tokenized Wikipedia datasets of Müller and Schütze,
(2015) and annotate them with stems using Snowball and with lem-
mata using Lemming. The resulting corpora sizes are listed in Ta-
ble 6.3.2.

We train 50-dimensional skip-gram embeddings Mikolov, Chen, et
al., (2013) with word2vec on the original, the stemmed, and the lem-
matized corpus, respectively. Embeddings are trained for all tokens,
because we need a high coverage; the context size is set to 5, all re-
maining parameters are left at their default value. We train smaller
embeddings than before, because we have more models to train and
the training corpora are smaller. This furthermore allows us to train
the more performance-hungry skip-gram models.

80 morphologically independent sentiment analysis

Results

The MRR results in Table 6.3.6 show that for all languages and for
all POS, form real has the worst performance among the form models.
This comes at no surprise since this model does barely know anything
about word forms and lemmata. The form opt model improves these
results based on the additional information it has access to (the map-
ping from lemma to its most frequent form). form sum – approximat-
ing the embedding of the lemma by summing the embeddings of its
forms – performs similar to form opt. For Czech, Hungarian, and Span-
ish it is slightly better (or equally good), whereas for English and Ger-
man there is no clear trend. There is a large difference between these
two models on German nouns, with form sum performing considerably
worse. We attribute this to the fact that many German noun forms are
rare compounds and therefore lead to badly trained form embeddings,
which summed up do not lead to high quality embeddings either.

Among the stemming models stem real also is the worst performing
model. We can further see that for all languages and almost all POS,
stem sum performs worse than stem opt. That indicates that stemming
leads to many low-frequency stems or many words sharing the same
stem. This is especially apparent in Spanish verbs. There, the stem-
ming models are clearly inferior to form models.

Overall, Lamb performs best for all languages and POS types. Most
improvements of Lamb are significant. The improvement to the best
form-model reaches up to 6 points (e.g., Czech nouns). In contrast to
form sum, Lamb improves over form opt on German nouns. This indi-
cates that the sparsity issue is successfully addressed by Lamb.

In general, morphological normalization in terms of stemming or
lemmatization improves the result on all languages, leading to an es-
pecially substantial improvement on MRLs. For the morphologically
very rich languages Czech and Hungarian, the relative improvement of
Stem or Lamb to form-based models is especially high; e.g., Hungarian
all: 50%. Moreover, we find that MRLs yield lower absolute perfor-
mance. This confirms the findings of Köper et al., (2015). Surprisingly,
Lamb yields better performance on English despite its simple morphol-
ogy.

The number of invalid lemmata together with the total number of
query lemmata is listed in Table 6.3.7.We can see that Stem retrieves
more valid neighbors than form-based models. Lamb retrieves more
valid neighbors than all other models.

The low absolute results and the still high number of invalid exam-
ples – especially for Hungarian – show that we address a challenging
task and that our new evaluation methodology is a good evaluation
for new types of word representations.

For further insight, we restrict the nearest neighbor search space (i.e.,
k-neighborhood) to those lemmata that have the same POS as the query
lemma. Note that this restriction does not need additional resources,

6.3 experiments 81

form Stem

lang. POS real opt sum real opt sum Lamb

cz a 0.03 0.04 0.05 0.02 0.05 0.05 0.06
n 0.15‡ 0.21‡ 0.24‡ 0.18‡ 0.27‡ 0.26‡ 0.30
v 0.07‡ 0.13‡ 0.16† 0.08‡ 0.14‡ 0.16‡ 0.18
all 0.12‡ 0.18‡ 0.20‡ 0.14‡ 0.22‡ 0.21‡ 0.25

de a 0.14‡ 0.22‡ 0.25† 0.17‡ 0.26 0.21‡ 0.27
n 0.23‡ 0.35‡ 0.30‡ 0.28‡ 0.35† 0.33‡ 0.36
v 0.11‡ 0.19‡ 0.18‡ 0.11‡ 0.22 0.18‡ 0.23
all 0.21‡ 0.32‡ 0.28‡ 0.24‡ 0.33† 0.30‡ 0.34

en a 0.22‡ 0.25‡ 0.24‡ 0.16‡ 0.26‡ 0.25‡ 0.28
n 0.24‡ 0.27‡ 0.28‡ 0.22‡ 0.30 0.28‡ 0.30
v 0.29‡ 0.35‡ 0.37 0.17‡ 0.35 0.24‡ 0.37
all 0.23‡ 0.26‡ 0.27‡ 0.20‡ 0.28‡ 0.25‡ 0.29

es a 0.20‡ 0.23‡ 0.23‡ 0.08‡ 0.21‡ 0.18‡ 0.27
n 0.21‡ 0.25‡ 0.25‡ 0.16‡ 0.25‡ 0.23‡ 0.29
v 0.19‡ 0.35† 0.36 0.11‡ 0.29‡ 0.19‡ 0.38
all 0.20‡ 0.26‡ 0.26‡ 0.14‡ 0.24‡ 0.21‡ 0.30

hu a 0.02‡ 0.06‡ 0.06‡ 0.05‡ 0.08 0.08 0.09
n 0.01‡ 0.04‡ 0.05‡ 0.03‡ 0.07 0.06‡ 0.07
v 0.04‡ 0.11‡ 0.13‡ 0.07‡ 0.14‡ 0.15 0.17
all 0.02‡ 0.05‡ 0.06‡ 0.04‡ 0.08‡ 0.07‡ 0.09

table 6.3.6: word relation results on the unfiltered test set
MRR results per language and POS types for all models on
the test set. Significance (sign test) is compared to Lamb
with ‡: p = 0.01, †: p = 0.05. Bold is the best performance
per row.

82 morphologically independent sentiment analysis

form Stem

lang. POS total real opt sum real opt sum Lamb

cz a 869 832 814 790 834 792 789 778
n 6381 4611 3869 3643 4246 3403 3455 3106
v 2433 2053 1794 1721 2020 1763 1706 1629

all 9763 7530 6542 6218 7207 6020 6014 5576

de a 6491 4909 4200 3954 4688 3883 4045 3820
n 40623 25680 19088 20947 22774 18435 18774 17951
v 5085 4043 3414 3370 4026 3193 3302 3108

all 51827 34328 26575 28126 31311 25390 25992 24776

en a 9665 6297 5925 5955 7083 5766 5614 5562
n 30736 18689 16982 16384 19038 15888 16321 15698
v 5793 3085 2542 2292 3870 2416 2871 2311

all 44545 27825 25604 24887 29674 24448 25028 23903

es a 1727 1207 1108 1114 1473 1129 1157 1037
n 8773 5668 5100 5056 6275 5075 5264 4598
v 1971 1202 813 799 1469 934 1102 775

all 12476 8185 7127 7078 9304 7257 7622 6530

hu a 1928 1841 1720 1731 1758 1638 1645 1615
n 15436 15096 14372 14040 14569 13759 13886 13580
v 2011 1865 1621 1577 1755 1522 1479 1424

all 19486 18823 17777 17413 18173 17003 17079 16679

table 6.3.7: number of invalid results on the unfiltered test
set Number of invalid lemmata, i.e., where a model returns
a k-neighborhood with all items having rankk

E > 10, per
language and POS for all models on the test set (smaller is
better). Bold is the best number per row.

6.3 experiments 83

form Stem

lang. POS real opt sum real opt sum Lamb

cz a 0.03‡ 0.05† 0.07 0.04† 0.08 0.08 0.09
n 0.17‡ 0.23‡ 0.26‡ 0.20‡ 0.29‡ 0.28‡ 0.32
v 0.09‡ 0.15‡ 0.17‡ 0.09‡ 0.17† 0.18 0.20

de a 0.17‡ 0.25‡ 0.27‡ 0.23‡ 0.33 0.33 0.33
n 0.24‡ 0.36‡ 0.31‡ 0.28‡ 0.36 0.35‡ 0.37
v 0.13‡ 0.20‡ 0.21‡ 0.13‡ 0.24‡ 0.23‡ 0.26

en a 0.25‡ 0.28‡ 0.28‡ 0.18‡ 0.29‡ 0.32 0.31
n 0.25‡ 0.28‡ 0.29‡ 0.23‡ 0.31† 0.31‡ 0.32
v 0.33‡ 0.39‡ 0.42‡ 0.21‡ 0.42† 0.39‡ 0.44

es a 0.21‡ 0.25‡ 0.26‡ 0.10‡ 0.26‡ 0.26‡ 0.30
n 0.22‡ 0.26‡ 0.27‡ 0.17‡ 0.27‡ 0.26‡ 0.30
v 0.22‡ 0.36‡ 0.36‡ 0.16‡ 0.36‡ 0.33‡ 0.42

hu a 0.04‡ 0.08‡ 0.08‡ 0.06‡ 0.12 0.11 0.12
n 0.01‡ 0.04‡ 0.05‡ 0.04‡ 0.07† 0.06‡ 0.07
v 0.05‡ 0.13‡ 0.14‡ 0.07‡ 0.15‡ 0.16† 0.19

table 6.3.8: word relation results on the filtered test set
MRR results per language and POS type for all models on
the test set. The k-neighborhood is restricted to lemmata of
the same POS as the query lemma. The Significance (sign
test) is compared to Lamb with ‡: p = 0.01, †: p = 0.05. Bold
is the best performance per row.

because the lemmatizer yields POS tags as well. The general findings
in Table 6.3.8 are similar to the unrestricted experiment: Normaliza-
tion leads to superior results. The form real and stem real models yield
the lowest performance. Form opt improves the performance and form
sum is better on average than form opt. Stem sum can rarely improve
on stem opt. The best stemming model most often is better than the
best form model. Lamb can benefit more from the POS type restriction
than the form models. The distance to the best form model generally
increases, especially on German adjectives and Spanish verbs. In all
cases except on English adjectives, Lamb yields the best performance.
Again, in almost all cases Lamb’s improvement over the form-models
is significant.

Except for Spanish, the best Stem model retrieves more valid exam-
ples than the best form model (Table 6.3.9). Overall, Lamb is ahead of

84 morphologically independent sentiment analysis

form Stem

lang. POS total real opt sum real opt sum Lamb

cz a 869 814 789 761 799 743 747 735
n 6381 4377 3652 3416 3997 3180 3167 2936
v 2433 1947 1704 1659 1921 1643 1600 1561

de a 6491 4615 3866 3632 4067 3267 3277 3272
n 40623 25169 18590 20261 22503 17854 17979 17546
v 5085 3758 3207 3120 3782 2926 3009 2821

en a 9665 5890 5482 5455 6735 5338 5111 5175
n 30736 18255 16630 15903 18849 15402 15608 15213
v 5793 2603 2163 1988 3228 1849 2071 1867

es a 1727 1142 1036 1021 1401 1039 1039 964
n 8773 5450 4891 4840 6139 4882 4941 4479
v 1971 1140 771 790 1213 746 789 673

hu a 1928 1784 1635 1625 1708 1521 1539 1513
n 15436 15091 14357 14034 14472 13675 13807 13500
v 2011 1814 1533 1505 1734 1483 1432 1356

table 6.3.9: number of invalid results on the filtered test set
Number of invalid lemmata, i.e., where a model returns
a k-neighborhood with all items having rankk

E > 10, per
language and POS for all models on the test set (smaller is
better) The k-neighborhood is restricted to lemmata of the
same POS as the query lemma. Bold is the best number per
row.

the other models in almost all cases. It is no surprise that the models
retrieve more valid examples compared to the unrestricted experiment
(cf. Table 6.3.7).

6.3.3 Polarity Classification

Our first two evaluations were intrinsic and show that the normalized
embeddings are of high quality. We now analyze the influence of mor-
phological normalization on polarity classification. For that we con-
duct similar experiments as in Chapter 5, namely polarity classifica-
tion on English Twitter tweets. lingCNN (cf. Section 5.2) is used for
classification. We use the features explained in Section 5.2, with the
following extensions:

6.3 experiments 85

dataset total positive negative neutral

Twitter 2015 train 9845 3636 1535 4674
Twitter 2015 dev 3813 1572 601 1640
Twitter 2015 test 2390 1038 365 987

Czech Film Database (CSFD) 91379 30896 29716 30767

table 6.3.10: polarity classification datasets Datasets for the po-
larity classification experiments with their number of tweet-
s/reviews in total and per polarity class. The Twitter
dataset is the same as the one used in Chapter 5.

1. Three new word-level binary sentiment indicators are created
for the emoticons from the SentiStrength lexicon. One for each
emoticon category of positive, negative, and neutral.

2. Three new sentence-level count features are created accordingly
(instead of just one for all polarities as done in Section 5.2.2).

As dataset the SemEval 2015 Twitter data from Table 5.3.1 (for conve-
nience also shown in Table 6.3.10) is reused (Rosenthal et al., 2015).
We train lingCNN using Stochastic Gradient Descent (SGD) with Ada-
Grad Duchi et al., (2011) and early stopping (maximum number of
epochs: 30), batch size = 100, 100 filters each per width of 2 ≤ m ≤ 5;
k-max pooling with k = 1; learning rate η = 0.01; and ℓ2 regularization
(λ = 5e−5). We reuse the 50-dimensional Wikipedia embeddings from
Section 6.3.2. As training vocabulary we use the 100K most frequent
word types of the Wikipedia embeddings.

Since the morphology of English is very simple, another experiment
on Czech is performed. The task is classification of Czech movie re-
views from the CSFD project (Habernal et al., 2013)) into positive, neg-
ative, or neutral (Table 6.3.10). Since there are fewer resources available
lingCNN has fewer features. Linguistic word level features are:

binary sentiment indicators We create two features from the Sub-
Lex 1.0 sentiment lexicon (Veselovská and Bojar, 2013). One for
each of positive and negative. In addition we create three fea-
tures for the emoticons from the SentiStrength lexicon.

binary negation Differently than English, negation in Czech is indi-
cated by the word prefix “ne”. Thus, instead of marking words
between a negation word and the following punctuation charac-
ter as negated, we use this prefix instead. We however disregard
words with the prefix “nej” as negation indicators, because they
indicate superlatives. Exceptions from this rule (i.e., words with
“nej” as prefix that are indeed negation indicators) are common
negated words such as “nejsi” (Engl. “you are not”). Table 6.3.11
lists the used exceptions.

86 morphologically independent sentiment analysis

form English translation

nejsem I am not
nejsi you are not
nejsme we are not
nejste you are not (plural)
nejsou they are not

table 6.3.11: list of czech superlative exceptions List of words
having the prefix “nej” but being negations instead of su-
perlatives.

The used linguistic sentence-level features are the same as for
English with the exception that the sentiment score features (Sec-
tion 5.2.2) for the SubLex lexicon are not computed separately based
on their POS.

The CSFD dataset is larger than the SemEval dataset. Hence, we
choose different hyperparamters for the model training: We use the
entire vocabulary of the Wikipedia embeddings. We use 200 filters
each for filter widths of 3 ≤ m ≤ 6 and set k-max pooling to k = 5. The
other hyperparameters remain the same as for the English experiment.

For both languages we compare three experimental conditions: us-
ing forms, Stem, and Lamb. In order to establish comparability and
analyzing only the effect of embeddings, for all three model variants
we compute the linguistic features based on the original dataset. Only
the embeddings part of the model (matrix P in Section 5.2.1) is changed
based on the stemmed and lemmatized dataset.

Results

On the SemEval data, Stem performs comparably to the form model.
Lamb improves the results over form and stem in terms of both accu-
racy and macro F1 (cf. Table 6.3.12).5 Hence, Lamb can still pick up ad-
ditional information despite the simple morphology of English. This is
probably due to better embeddings for rare words. The SemEval 2015
winner Hagen et al., (2015) is a highly domain-dependent and special-
ized system that we do not outperform.

The lower half of Table 6.3.12 lists the 10-fold cross-validation results
(accuracy and macro F1) on the CSFD dataset. Lamb/Stem results are
consistently better than form results.

In the introduction, we discussed that normalization removes inflec-
tional information that is necessary for NLP tasks like parsing. For
polarity classification, comparatives and superlatives can be important.
Further analysis is necessary to determine whether their normalization

5 To be comparable with published results we report the macro F1 of positive and neg-
ative classes. Cf. Equation 5.3.1.

6.4 analysis 87

lang. features acc. F1

en Hagen et al., (2015) - 64.84
form 66.78 62.21
Stem 66.95 62.06
Lamb 67.49 63.01

cz Brychcin and Habernal, (2013) - 81.53
form 80.86 80.75
Stem 81.51 81.39
Lamb 81.21 81.09

table 6.3.12: polarity classification results Accuracy and macro
F1 performance of state-of-the-art model and three versions
of lingCNN. For English, macro F1 is computed for positive
and negative classes. For Czech, it is computed on all three
classes. Bold is best per language and column.

hurts in our experiments. However, note that we evaluate on polarity
only, not on valence, i.e., the magnitude of positivity and negativity.

Furthermore, the following example shows how sparsity is success-
fully addressed by Lamb: “popis a název zajmavý a film je taková fil-
mařská prasárna .” (“Description and title are interesting, but it is bad
film-making.”). The underlined words “zajmavý” (interesting) and
“prasárna” (bad, smut) are unknown to the form model, because they
do not occur in the embeddings training file. The latter however is
known to Lamb, which is then able to classify this example correctly as
negative.

6.4 analysis

Normalized embeddings deal better with sparsity than form embed-
dings. In this section, we demonstrate two additional benefits of
Lamb based on its robustness against sparsity. First, we train lower-
dimensional lemma embeddings and still reach the same performance
as form embeddings with higher dimensionality. Second we need less
training data for embeddings to reach the same performance.

6.4.1 Embedding Size

We now show that Lamb can train embeddings with fewer dimensions
on the same amount of data and still reach the same performance as
larger form embeddings. We repeat the word relation experiments of
Section 6.3.2 (all POS) and train all models with embeddings sizes 10,
20, 30, 40, and 50 for Spanish. We choose Spanish because it has richer

88 morphologically independent sentiment analysis

10 20 30 40 50
embeddings size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
R

R
LAMB

form sum
form opt

form real
stem sum

stem opt
stem real

figure 6.4.1: embedding size analysis MRR of the word relation ex-
periment on Spanish (all POS) with respect to embeddings
size.

morphology than English and more training data than Czech and Hun-
garian.

Figure 6.4.1 depicts the MRR results of all models with respect to
embeddings size. The relative ranking of form models is real < opt <
sum. That comes from the additional information the more complex
models have access to. All stemming models reach lower performance
than their form counterparts (similar to results in Table 6.3.6). That
suggests that stemming is not a proper alternative to correctly dealing
with Spanish morphology. The relative ranking of stem models is real
< sum < opt. Lamb reaches higher performance than form real with al-
ready 20 dimensions. The 30 dimensional Lamb model is better than
all other models. Thus, we can create lower-dimensional lemma em-
beddings that are as good as higher-dimensional form embeddings;
this has the benefits of reducing the number of parameters in models
using these embeddings and of reducing training times and memory
consumption.

6.4.2 Corpus Size

Our second hypothesis is that less training data is necessary to train
good embeddings. We create 10 training corpora consisting of the first
k percent, k ∈ {10, 20, . . . , 100}, of the randomized Spanish Wikipedia
corpus. With these 10 subcorpora we repeat the word relation exper-
iments of Section 6.3.2 (all POS). As query lemmata, we use the lem-
mata from before that exist in all subcorpora.

Figure 6.4.2 shows that the relative ranking among the models is the
same as before. This time however, form sum yields better performance
than form opt, especially when little training data is available. Recall

6.5 related work 89

10 20 30 40 50 60 70 80 90 100
corpus size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
R

R

LAMB

form sum
form opt

form real
stem sum

stem opt
stem real

figure 6.4.2: corpus size analysis MRR of the word relation experi-
ment on Spanish (all POS) with respect to corpus size.

that form opt is similar to an approach that is used in most systems that
have embeddings, which just use the available surface forms.

The stemming models again are inferior to their form counterparts.
Only stem opt is able to reach similar performance than form opt. Lamb
always reaches higher performance than form real, even when only 10%
of the training corpus is used. With 30% of the training corpus, Lamb
surpasses the performance of the other models. Again, by requiring
less than 30% of the training data, embedding training becomes much
more efficient. Furthermore, in low-resource languages that lack the
availability of a large homogeneous corpus, Lamb can still be trained
successfully.

6.5 related work

There has been a large number of studies on English, a morphologi-
cally simple language, that show that the effect of normalization, in
particular stemming, is different for different applications. For in-
stance, Karlgren and Sahlgren, (2001) analyze the impact of morpho-
logical analysis on creating word representations for synonymy detec-
tion. They compare several stemming methods. Bullinaria and Levy,
(2012) use stemming and lemmatization before training word repre-
sentations. The improvement of morphological normalization in both
studies is moderate in the best case. Melamud et al., (2014) compute
lemma embeddings to predict related words given a query word. They
do not compare form and lemma representations.

A finding about English morphology does not provide insight into
what happens with the morphology of an MRL. In this chapter we use
English to provide a data point for morphologically poor languages.
Although we show that normalization for embeddings increases per-

90 morphologically independent sentiment analysis

formance significantly on some applications – a novel finding to the
best of our knowledge – morphologically simple languages (for which
normalization is expected to be less important) are not the main focus
of the chapter. Instead, MRLs are the main focus. For these, we show
large improvements on several tasks.

Recently, Köper et al., (2015) compared form and lemma embed-
dings on English and German focusing on morpho-syntactic and se-
mantic relation tasks. Generally, they found that lemmatization has
limited impact. We extensively study MRLs and find a strong improve-
ment on MRLs when using normalization, on intrinsic as well as extrin-
sic evaluations.

Synonymy detection is a well studied problem in the NLP commu-
nity (Baroni and Bisi, 2004; Grigonyte et al., 2010; Ruiz-Casado et al.,
2005; Turney et al., 2003; Turney, 2001). Rei and Briscoe, (2014) classify
hyponomy relationships through embedding similarity. Our premise
is that semantic similarity comprises all of these relations and more.
Our ranking-based word relation evaluation addresses this issue. Sim-
ilar to Melamud et al., (2014), our motivation is that, in contrast to stan-
dard word similarity benchmarks, large resources can be automatically
generated for any language with a WordNet. This is also exploited by
Tsvetkov et al., (2015). Their intrinsic evaluation method requires an
annotated corpus, e.g., annotated with WordNet supersenses. Our ap-
proach requires only the WordNet.

An alternative strategy of dealing with data sparsity is presented by
Soricut and Och, (2015). They compute morphological features in an
unsupervised fashion in order to construct a form embedding by the
combination of the word’s morphemes. We address scenarios (such
as polarity classification) in which morphological information is less
important, thus form embeddings are not needed.

6.6 conclusion

We have presented Stem and Lamb, embeddings based on stems and
lemmata. In three experiments we have shown the superiority com-
pared to commonly used form embeddings. Especially (but not only)
on MRLs, where data sparsity is a problem, both normalized embed-
dings perform better than form embeddings by a large margin. In
a new challenging WordNet-based experiment we have shown four
methods of adding morphological information (opt, sum, Stem, Lamb).
Here, Lamb is the best of the proposed ways of using morphological
information, consistently reaching (much) higher performance. Stem
methods are not consistently better, indicating that the more princi-
pled way of normalization as done by Lamb is to be preferred. The
datasets are published at http://www.cis.lmu.de/ebert.

Our analysis shows that by using Lamb, fewer embedding dimen-
sions or less embedding training data is required to reach the same

http://www.cis.lmu.de/ebert

6.7 future work 91

performance as with form embeddings, making it appealing for under-
resourced languages.

The use of linguistic morphological analyzers may not be justified for
morphologically poor languages like English. The cost/benefit trade-
off in that case is in favor of purely data-driven methods. This however
is different for MRLs. Especially, since a finding about English mor-
phology does not indicate what happens with the morphology of an
MRL. Since morphological analyzers are becoming available for more
and more languages, we show that better results can be obtained al-
most for free.

6.7 future work

The following points are possible future directions of this work:

• The lemma approximation strategy form sum in Section 6.3.1 and
Section 6.3.2 can be improved by using a weighted average, lead-
ing to another interesting baseline.

• One possible extension of this work would be to use normaliza-
tion only on infrequent word forms. This would lead to high
quality embeddings for a word’s most frequent form(s) and a sin-
gle embedding covering all infrequent word forms.

• As pointed out in Section 6.3.3 future work needs to analyze the
exact effect of morphology on Sentiment Analysis (SA) applica-
tions. Whereas for polarity classification superlatives, etc. do
not seem to require special handling, for valence or fine-grained
polarity classification (more than two categories of polarity) the
opposite might apply.

• We hypothesize that morphological information is not required
for some Natural Language Processing (NLP) applications. For
instance, the TOEFL dataset (Landauer and Dumais, 1997) re-
quires to find the most similar word out of four choices given a
query word. Similarly, in the MSR Sentence Completion Chal-
lenge the task is to choose one out of five given words to be
filled in into a sentence depending on context words (Zweig and
Burges, 2011). Both these tasks are semantic in nature and may
not require morphology.

• We compute all linguistic features in the polarity classification
experiment based on the original unstemmed and unlemma-
tized dataset. For comparability this is beneficial, allowing to
see the effect of the different embeddings only. In terms of per-
formance this might be counter-productive, because the lemma-
tized dataset might match more entries of the sentiment lexicons.
Conducting such an experiment might improve the results in Ta-
ble 6.3.12.

92 morphologically independent sentiment analysis

• In order to have a better understanding of the data and the differ-
ences among the 5 used languages, the analysis in Section 6.4 can
be conducted on all languages and on all three presented tasks.

7
U LT R A D E N S E S E N T I M E N T R E P R E S E N TAT I O N S

This chapter covers work already published at international
peer-reviewed conferences. The relevant publication is Rothe
et al., (2016).
I was the primary contributor to all experimental work on po-
larity classification described in Section 7.4.4. Sascha Rothe de-
veloped the formalization of ultradense embeddings and was
the primary contributor to the experimental work on concrete-
ness, frequency, and association strength. The last author of the
publication acted as advisor.

As we saw earlier, embeddings are generic representations that are
useful for many NLP tasks. In this chapter, we want to use a new
method of computing sentiment-specific word embeddings for polar-
ity classification. The method, Densifier, learns an orthogonal trans-
formation of the embedding space that focuses the information rel-
evant for a task in an ultradense subspace of a dimensionality that is
smaller by a factor of 100 than the original space. We show that ul-
tradense embeddings generated by Densifier reach state of the art on
a lexicon creation task in which words are annotated with three types
of lexical information – sentiment, concreteness, and frequency. On
the SemEval 2015 Task 10B polarity classification task we show that no
information is lost when the ultradense subspace is used, but training
is an order of magnitude more efficient due to the compactness of the
ultradense space.

7.1 introduction

Embeddings are a useful building block for many tasks, including
word similarity (cf., Chapter 6 and e.g., Pennington et al., (2014)),
Named Entity Recognition (NER) (e.g., Collobert et al., (2011)) and
Sentiment Analysis (SA) (cf. Chapter 5, Chapter 6, and e.g., Kalchbren-
ner et al., (2014), Kim, (2014), and Severyn and Moschitti, (2015)). Em-
beddings are generic, task-independent representations, containing
different types of information about a word. It is usually the responsi-
bility of a statistical model to make best use of these generic represen-
tations for a specific application like NER or SA. Our hypothesis in this
chapter is that the information useful for any given task is contained
in an ultradense subspace. This chapter describes the method Densifier
that is used to identify the ultradense subspace Eu. Given a set of word
embeddings, Densifier learns an orthogonal transformation of the orig-

93

94 ultradense sentiment representations

inal space Eo on a task-specific training set. The orthogonality of the
transformation can be considered a hard regularizer.

The benefit of this method is that embeddings are most useful if
learned on unlabeled corpora and performance-enhanced on a broad
array of tasks. This means we should try to keep all information of-
fered by them. Orthogonal transformations “reorder” the space with-
out adding or removing information and preserve the bilinear form,
i.e., Euclidean distance and cosine distance. The transformed embed-
dings concentrate all information relevant for the task in Eu.

The benefits of the ultradense subspace Eu compared to the original
space Eo are (i) high-quality and (ii) efficient representations:

1. Densifier moves non-task-related information outside of Eu, i.e.,
into the orthogonal complement of Eu. As a result, Eu provides
higher-quality representations for the task than Eo. For example,
noise that could result in overfitting is reduced in Eu compared
to Eo.

2. Eu has a dimensionality smaller by a factor of 100 in our exper-
iments. As a result, training statistical models on these embed-
dings is much faster. These models also have many fewer pa-
rameters, thus again helping to prevent overfitting, especially for
complex, deep neural networks.

In the most extreme form, ultradense representations – i.e., Eu – have a
single dimension. We exploit this for creating lexicons in which words
are annotated with lexical information, e.g., with sentiment. Specifi-
cally, we create high-coverage lexicons with up to 3 million words (i)
for three lexical properties: sentiment, concreteness, and frequency;
(ii) for five languages: Czech, English, French, German, and Spanish;
(iii) for two domains: Twitter and news, in a domain adaptation setup.

The main advantages of this method of lexicon creation are:

1. We need a training lexicon of only a few hundred words, thus
making the method effective for new domains and languages
and requiring only a minimal manual annotation effort.

2. The method is applicable to any set of embeddings, including
phrase and sentence embeddings. Assuming the availability of
a small hand-labeled lexicon, Densifier automatically creates a
domain dependent lexicon based on a set of embeddings learned
on a large corpus of the domain.

3. While the input lexicon is discrete – e.g., positive (+1) and nega-
tive (-1) polarity – the output lexicon is continuous and this more
fine-grained assessment is potentially more informative than a
simple binary distinction.

We show that lexicons created by Densifier beat the state of the art on
SemEval 2015 Task 10E (determining association strength).

7.2 model 95

Our contribution in this chapter is to use ultradense embeddings
for polarity classification on the English SemEval 2015 Task 10B and
the Czech Film Database (CSFD) datasets. We show that by using
sentiment-focused embeddings that are smaller by a factor of 100 we
almost get the same results as with the original vectors. However, the
efficiency of the training is much higher.

One of our goals is to make embeddings more interpretable. The
work on sentiment, concreteness, and frequency we describe in this
chapter is a first step towards a general decomposition of embedding
spaces into meaningful, dense subspaces. This would lead to cleaner
and more easily interpretable representations – as well as representa-
tions that are more effective and efficient.

This chapter is divided into the following sections. Section 7.2 de-
scribes the model that creates the ultradense subspace out of generic
word representations. In Section 7.3 we show new lexicons and ex-
plain how they were created. The resulting ultradense representations
are then evaluated in Section 7.4, which is followed by an analysis of
the number of subspace dimensions and the size of training resources
in Section 7.5. Section 7.6 describes related work and Section 7.7 con-
cludes this chapter.

7.2 model

Let Q ∈ Rd×d be an orthogonal matrix that transforms the original
word embedding space Eo ⊂ Rd×|V| into a space in which certain types
of information are represented by a small number of dimensions. Con-
cretely, we learn Q such that the dimensions Ds ⊂ {1, . . . , d} of the
resulting space correspond to a word’s sentiment information and the
{1, . . . , d} \Ds remaining dimensions correspond to non-sentiment in-
formation. Analogously, the sets of dimensions Dc and D f correspond
to a word’s concreteness information and frequency information, re-
spectively. In this chapter, we assume that these properties do not
correlate and therefore the ultradense subspaces do not overlap, i.e.,
Ds ∩ Dc = Ds ∩ D f = D f ∩ Dc = ∅. However, this might not be true
for other settings, e.g., sentiment and semantic information.

If ew = Eo
w with ew ∈ Rd is the original embedding of word w, the

transformed representation is Qew. We use ∗ as a placeholder for s, c,
and f and call d∗ = |D∗| the dimensionality of the ultradense subspace
of ∗. For each ultradense subspace, we create P∗ ∈ Rd∗×d, an identity
matrix for the dimensions in D∗ ⊂ {1, . . . , d} and a zero matrix for
the residual dimensions. Thus, the ultradense representation u∗w = Eu

w
with u∗w ∈ Rd∗ of ew is defined as:

u∗w := P∗Qew (7.2.1)

96 ultradense sentiment representations

7.2.1 Separating Words of Different Groups

We assume to have a lexicon resource l in which each word w is anno-
tated for a certain information as either l∗(w) = +1 (positive, concrete,
frequent) or l∗(w) = −1 (negative, abstract, infrequent). We now want
to separate words from each other, that have different information, e.g.,
we want to separate positive from negative words.

Let L∗̸∼ be a set of word index pairs (v, w) for which l∗(v) ̸= l∗(w)

holds. We want to maximize:

∑
(v,w)∈L∗̸∼

∥u∗v − u∗w∥ (7.2.2)

Thus, our objective is given by:

argmax
Q

∑
(v,w)∈L∗̸∼

∥P∗Q(ew − ev)∥ (7.2.3)

or, equivalently, by:

argmin
Q

∑
(v,w)∈L∗̸∼

−∥P∗Q(ew − ev)∥ (7.2.4)

subject to Q being an orthogonal matrix.

7.2.2 Aligning Words of the Same Group

Another goal is to minimize the distance of two words of the same
group. For example, we want to minimize the distance of two positive
words. Let L∗∼ be a set of word index pairs (v, w) for which l∗(v) =

l∗(w) holds. In contrast to Equation 7.2.3, we now want to minimize
the overall distance. Thus, the objective is given by:

argmin
Q

∑
(v,w)∈L∗∼

∥P∗Q(ew − ev)∥ (7.2.5)

subject to Q being an orthogonal matrix.
The intuition behind the two objectives is graphically depicted in

Figure 7.2.1.

7.2.3 Training

We combine the two objectives in Equation 7.2.3 and Equation 7.2.5
for each subspace, i.e., for sentiment, concreteness, and frequency, and
weight them with α∗ and 1− α∗. Hence, there is one hyperparameter
α∗ for each subspace. We then perform Stochastic Gradient Descent
(SGD). The batch-size is 100 and the starting learning rate is 5. It is
multiplied by 0.99 in each iteration.

7.2 model 97

dislike

like

peace

war

do

chocolate

don't

money

max

max

min

(a) Original space

dislike
like

peacewar
do

chocolate

don't

money

max

max

min

sentiment
dimension

non-sentiment
dimensions

(b) Transformed space

figure 7.2.1: original and transformed space The original word
embedding space Eo (top) and the transformed embedding
space Eu (bottom). The training objective for Q is to min-
imize the distances in the sentiment dimension between
words of the same group (e.g., positive / green: “like” &
“peace”) and to maximize the distances between words of
different groups (e.g., negative / red & positive / green:
“war” & “peace”. The words do not necessarily need to be
antonyms).

98 ultradense sentiment representations

7.2.4 Orthogonalization

Each step of SGD updates Q. The updated matrix Q′ is in general no
longer orthogonal. We therefore reorthogonalize Q′ in each step based
on Singular Value Decomposition (SVD):

Q′ = USVT (7.2.6)

where S is a diagonal matrix, and U and V are orthogonal matrices.
The matrix

Q := UVT (7.2.7)

is the nearest orthogonal matrix to Q′ in both the 2-norm and the Frobe-
nius norm (Fan and Hoffman, 1955). (Formalizing our regularization
directly as projected gradient descent would be desirable. However,
gradient descent includes an additive operation and orthogonal matri-
ces are not closed under summation.)

SGD for this problem is sensitive to the learning rate. If the learning
rate is too large, a large jump results and the reorthogonalized matrix
Q basically is a random new point in the parameter space. If the learn-
ing rate is too small, then learning can take long. We found that our
training regime of starting at a high learning rate (5) and multiplying
by 0.99 in every iteration is effective. Typically, the cost initially stays
approximately constant (random jumps in parameter space), then cost
steeply declines in a small number of about 50 iterations (sweet spot);
the curve flattens after that. Training Q took less than 5 minutes per
experiment for all experiments in this chapter.

7.3 lexicon creation

For lexicon creation, the input is a set of embeddings and a lexicon re-
source l, in which words are annotated for a lexical information such
as sentiment, concreteness, or frequency. Densifier is then trained to
produce a one-dimensional ultradense subspace. The output is an out-
put lexicon. It consists of all words covered by the embedding set,
each associated with its one-dimensional ultradense subspace repre-
sentation (which is simply a real number), an indicator of the word’s
strength for that information.

The embeddings and lexicon resources used in this chapter cover
three lexical properties (sentiment, concreteness, frequency), five lan-
guages (Czech (cz), English (en), French (fr), German (de), Spanish
(es)), and three domains (news, Twitter, web). Table 7.3.1 lists statis-
tics about the embeddings training corpora for all languages and do-
mains. The Google News embeddings for English1 and the FrWac em-
beddings for French2 are publicly available. We use word2vec to train

1 https://code.google.com/p/word2vec/
2 http://fauconnier.github.io/

https://code.google.com/p/word2vec/
http://fauconnier.github.io/

7.3 lexicon creation 99

lang. domain name # tokens # types

cz web CWC2011 3.3B 2.4M
de web COW14 11.9B 1.3M
en news Google News 100.0B 3.0M

Twitter custom 5.4B 3.3M
es web COW14 3.7B 0.4M
fr web FrWac 1.6B 0.1M

table 7.3.1: embeddings training corpora List of embeddings train-
ing corpora with basic information, reference, and size. # to-
kens: number of tokens in the corpus. # types: number of
word types we train embeddings for.

400-dimensional embeddings for English on a custom Twitter corpus
of size 3.3e12 that was collected in 2013. For Czech we use the CWC2011
corpus with a size of 2.4e12 tokens (Spoustová and Spousta, 2014). For
German and Spanish, we train embeddings on web data from the COW
project (Schäfer and Bildhauer, 2012; Schäfer, 2015), having sizes of
1.3e12 and 0.4e12 tokens, respectively.

We use the following lexicon resources for sentiment (cf. Table 7.3.2):
SubLex 1.0 (Veselovská and Bojar, 2013) for Czech; WHM for English
(the combination of MPQA (Wilson et al., 2005), Opinion Lexicon (Hu
and Liu, 2004), and NRC Emotion lexicons (Mohammad and Tur-
ney, 2013)); FEEL (Abdaoui et al., 2014) for French; German Polar-
ity Clues (Waltinger, 2010) for German; and the sentiment lexicon of
Pérez-Rosas et al., (2012) for Spanish. For concreteness, we use BWK,
a lexicon of 40K English words (Brysbaert et al., 2014). For frequency,
we exploit the fact that word2vec stores words in frequency order.
Thus, the ranking provided by word2vec is our lexicon resource for
frequency.3

For a resource / embedding-set pair (l, E), we intersect the vocab-
ulary of l with the top 80K words of E to filter out noisy, infrequent
words, because they tend to have low quality embeddings and we do
not want them to introduce noise when training the transformation
matrix.

For the sentiment and concreteness resources, l∗(w) ∈ {−1, 1} for
all words w covered. We create a resource l f for frequency by setting
l f (w) = 1 for the 2K most frequent words and l f (w) = −1 for words at
ranks 20K-22K. 1K words randomly selected from the 5K most frequent
are the test set.4 We designate three sets of dimensions Ds, Dc, and D f

3 We cannot directly use the token frequency, because token counts are not available for
Google News and FrWac embeddings.

4 The main result of the frequency experiment below is that Kendall’s τ is low even in a
setup that is optimistic due to train / test overlap; presumably it would be even lower
without overlap.

100 ultradense sentiment representations

train
test

property
lang.

dom
ain

resource
∩

#
w

ords
resource

∩
#

w
ords

τ

1
sentim

ent
cz

w
eb

SubLex
1.0

2,492
4,125

SubLex
1.0

319
500

.580
2

sentim
ent

de
w

eb
G

erm
an

PC
10,718

37,901
G

erm
an

PC
573

1,000
.654

3
sentim

ent
es

w
eb

full-strength
824

1,147
full-strength

185
200

.563
4

sentim
ent

fr
w

eb
FEEL

7,496
10,979

FEEL
715

1,000
.544

5
sentim

ent
en

Tw
itter

W
H

M
all

12,601
19,329

Trial10E
198

200
.661

6
sentim

ent
en

new
s

W
H

M
train

7,633
10,270

W
H

M
val

952
1,000

.622

7
concreteness

en
new

s
BW

K
14,361

29,954
BW

K
8,694

10,000
.623

8
frequency

en
new

s
w

ord2vec
order

4,000
4,000

w
ord2vec

order
1,000

1,000
.361

9
frequency

fr
w

eb
w

ord2vec
order

4,000
4,000

w
ord2vec

order
1,000

1,000
.460

table
7.3.2:ultradense

lexiconsResultsoflexicon
creation

forthree
lexicalproperties,five

languages,and
three

dom
ains.Foreach

resource,w
e

giveitssize(“#
w

ords”)and
thesizeoftheintersection

ofresourceand
em

bedding
set(“∩

”).K
endall’s

τ
iscom

puted
on

theintersection
“∩

”.

7.4 evaluation 101

en-Twitter en-news

positive negative positive negative
#blessed rape expertise angry
inspiration racist delighted delays
blessed horrible honored worse
inspiring nasty thank anger
foundation jealousy wonderful foul
provide murder commitment blamed
wishes waste affordable blame
dedicated mess passion complained
offers disgusting exciting bad
#happy spam flexibility deaths

table 7.4.1: top 10 english sentiment words Top 10 sentiment
words in the output lexicons for the English Twitter and
news domains.

to represent sentiment, concreteness and frequency, respectively, and
arbitrarily set (i) Dc := {11} for English and Dc := ∅ for the other
languages, because we do not have concreteness resources for them,
(ii) Ds := {1}, and (iii) D f := {21}. Referring to the lines in Table 7.3.2,
we then learn six orthogonal transformation matrices Q: for cz-web (1),
de-web (2), es-web (3), fr-web (4, 9), en-Twitter, and (5) en-news (6, 7,
8).

7.4 evaluation

7.4.1 Top-Ranked Words

Table 7.4.1 shows the top 10 positive / negative words (i.e., the most
extreme values on dimension Ds) when we apply the transformation
to the corpora en-Twitter and en-news. Table 7.4.2 shows the top 10
positive / negative words of de-web and the top 10 concrete / abstract
words (i.e., most extreme values on dimension Dc) for en-news. For
en-Twitter (leftmost double column in Table 7.4.1), the selected words
look promising: they contain highly domain-specific words such as
hashtags (e.g., #happy). This is surprising because there is not a single
hashtag in the lexicon resource WHM that Densifier was trained on.
Results for the other double column show likewise extreme examples
for the corresponding information and language. This initial evalua-
tion indicates that our method effectively learns high quality lexicons
for new domains.

102 ultradense sentiment representations

en-news de-web

concrete abstract positive negative
tree fundamental herzlichen gesperrt
truck obvious kenntnisse droht
kitchen legitimate hervorragende verurteilt
dog reasonable ideale gefahr
bike optimistic bestens falsche
bat satisfied glückwunsch streit
garden surprising optimale angst
homer honest anregungen krankheit
bed regard freuen falschen
gallon extraordinary kompetenzen verdacht

table 7.4.2: top 10 english and german words in different
categories Top 10 words in the output lexicons for English
concreteness in the news domain and German sentiment in
the web domain.

Figure 7.4.1 depicts values for selected words for the three properties.
Illustrative examples are “brother” / “brotherhood” for concreteness
and “hate” / “love” for sentiment.

7.4.2 Quality of Predictions

Table 7.3.2 presents our experimental results. In each case, we split the
resource into training and test sets, except for Twitter where we use the
trial data of SemEval 2015 Task 10E for test. We train Densifier on the
training set and compute Kendall’s τ on the test set.

The size of the lexicon resource has no big effect. For example, re-
sults for Spanish (small resource; line 3 in Table 7.3.2) and French (large
resource; line 4) are about the same. See Section 7.5.2 for a more de-
tailed analysis of the effect of resource size.

The quality of the output lexicon depends strongly on the quality
of the underlying word embeddings. For instance, results for French
(small embedding training corpus; line 4 in Table 7.3.2) are worse
than results for English (large embedding training corpus; line 6) even
though the lexicon resources have comparable size. However, the dif-
ference may also be caused by the used training resources, because
they are from a non-web domain, which might give the English news
data an advantage over the French web data. Future work needs to
assess on this issue.

In contrast to sentiment and concreteness, τ values for frequency
are low (lines 8-9 in Table 7.3.2). For the other three languages we ob-
tain τ ∈ [.34, .46] for frequency (not shown). This suggests that word

7.4 evaluation 103

positive

negative

ab
st

ra
ct

co
nc

re
te

fr
ie

nd

fr
ie

nd
sh

ip

en
em

y
#f

rid
ay

#m
on

da
y

:)

:(
ha

pp
y

#h
ap

py

#s
ad

#f
ol

lo
w

er

#u
nf

ol
lo

w

ch
ild ch

ild
ho

od

br
ot

he
r

br
ot

he
rh

oo
d

ro
m

an
ce

#l
ov

e
lo

ve

ha
te

jo
ur

ne
y

ro
ad

tr
ip

de
m

oc
ra

cy
di

ct
at

or
sh

ip

di
ct

at
or

pr
es

id
en

t
m

on
ey

pr
eg

na
nt

ab
or

tio
n

tr
op

hy

su
cc

es
s

ba
by

ro
bb

er
y

su
n

ca
pp

uc
ci

no

te
a

ch
oc

ol
at

e

pu
ke

ha
ng

ov
er

hu
rt

pa
in

#s
ta

rw
ar

s

#s
ot

ru
e

#s
to

ry
of

m
yl

ife

#t
ha

ta
w

kw
ar

dm
om

en
t

#g
oa

w
ay

#w
ed

di
ng

#v
al

en
tin

es
da

y
#h

iri
ng #p

ro
ud

#h
ip

st
er

#l
ol

va
ca

tio
n

ho
m

es
ic

k

co
co

nu
t

be
ac

h

sl
um

fi
gu

re
7.

4.
1:

il
lu

st
ra

ti
on

of
en

-t
w

it
te

r
ou

tp
ut

le
xi

co
n

D
en

si
fi

er
va

lu
es

ar
ex

co
or

di
na

te
(s

en
tim

en
t),

y
co

or
di

na
te

(c
on

cr
et

en
es

s)
,a

nd
fo

nt
si

ze
(fr

eq
ue

nc
y)

.

104 ultradense sentiment representations

embeddings represent sentiment and concreteness much better than
frequency. The reason for this likely is the learning objective of word
embeddings, namely modeling the context. Infrequent words can oc-
cur in frequent contexts. Thus, the frequency information in a single
word embedding is limited. In contrast negative words are likely to
occur in negative contexts.

The nine output lexicons in Table 7.3.2 – each a list of words anno-
tated with predicted strength on one of three properties – are available
at www.cis.lmu.de/~sascha/Ultradense/.

7.4.3 Determining Association Strength

We also evaluate lexicon creation on SemEval 2015 Task 10E (Rosenthal
et al., 2015). As before, the task is to predict the sentiment score of
words and phrases. We use the trial data (200 examples) of the task to
tune the hyperparameter, αs = 0.4. Out-of-Vocabulary (OOV) words
are predicted as neutral (7/1315). Table 7.4.3 shows that the lexicon
computed by Densifier (line 5 in Table 7.3.2) has a τ of 0.654 (line 6,
column all in Table 7.4.3), significantly better than all other systems,
including the winner of SemEval 2015 (τ = 0.626, line 1). Densifier
also beats Sentiment140 (Mohammad et al., 2013), a widely used semi-
automatic sentiment lexicon.

The last column shows Kendall’s τ on the intersection of Densifier
and Sentiment140. It shows that Densifier again performs signifi-
cantly better than Sentiment140.

7.4.4 Polarity Classification

After describing the formalism of Densifier and showing the quality
of the resulting lexicons, we now turn back to polarity classification as
extrinsic evaluation. More precisely, we show that ultradense embed-
dings decrease model training times without any noticeable decrease
in performance compared to the original embeddings. We again eval-
uate on SemEval 2015 Task 10B, classification of Twitter tweets as posi-
tive, negative, or neutral (Table 6.3.10 gives dataset statistics). As classi-
fication model we use the linguistically-informed Convolutional Neu-
ral Network (lingCNN) (cf. Chapter 5). We do not use sentence-based
features to focus on the evaluation of the embeddings. We initialize the
first layer of lingCNN, the embedding layer, in three different ways:

1. 400-dimensional Twitter embeddings (Section 7.3)

2. 40-dimensional ultradense embeddings derived from (i)

3. 4-dimensional ultradense embeddings derived from (i).

The objective weighting is αs = .4, optimized on the development set
(cf. Table 6.3.10).

www.cis.lmu.de/~sascha/Ultradense/

7.4 evaluation 105

τ

system all ∩
1 Amir et al., (2015) 0.626†

2 Hamdan et al., (2015) 0.621†

3 Zhang et al., (2015) 0.591†

4 Özdemir and Bergler, (2015) 0.584†

5 Plotnikova et al., (2015) 0.577†

6 Densifier 0.654 0.650
7 Sentiment140 0.508† 0.538†

8 Densifier, trial only 0.627†

table 7.4.3: results of association strength The first “τ” column
gives the correlation with the entire test lexicon of SemEval
2015 10E, the last column only on the intersection of our out-
put lexicon and Sentiment140. Of the 1315 words of task 10E,
985 and 1308 are covered by Densifier and Sentiment140,
respectively. Significance (Fisher z-transformation) is com-
pared to the best system in the same column with †: p = 0.05.
Bold is the best performance per column.

We choose the following hyperparameters: filters spanning 2-5
words (100 filters each), k-max pooling with k = 1, training with SGD
using AdaGrad (Duchi et al., 2011), ℓ2 regularization (λ = 5e−5), learn-
ing rate of lr = 0.01, and mini-batch size of 100.

As before we report macro F1 of positive and negative classes (the of-
ficial SemEval evaluation metric) and accuracy over the three classes.
Table 7.4.4 shows that 40-dimensional ultradense embeddings per-
form almost as well as the full 400-dimensional embeddings. There
is no significant difference according to a sign test. Training time is
shorter by a factor of 21 (85/4 examples/second). The 4-dimensional
ultradense embeddings lead to only a small loss of 1.5% although the
size of the embeddings is smaller by a factor of 100 (again not a signif-
icant drop). The training time is shorter by a factor of 44 (178/4).

We perform the same experiment on CSFD (see Table 6.3.10) to
show the benefits of ultradense embeddings for a low-resource lan-
guage where only one rather small lexicon is available. As original
word embeddings we train new 400 dimensional embeddings on a
large Twitter corpus (3.3e9 tokens). We use Densifier to create 40
and 4 dimensional embeddings out of these embeddings and SubLex
1.0 (Veselovská and Bojar, 2013). We use the same word-level features
as before (see Section 6.3.3). Since CSFD is a large dataset, we ran-
domly split the 91K dataset instances into 90% training and 10% test
and report accuracy and macro F1 score over all three classes.

106 ultradense sentiment representations

lang. embeddings # dim acc. F1 ex./sec
en original 400 66.61 62.35 4

Densifier 40 66.23 62.02 85
Densifier 4 64.60 60.76 178

cz original 400 80.30 80.21 1
Densifier 40 80.30 80.10 24
Densifier 4 77.10 76.90 83

table 7.4.4: polarity classification results Accuracy and macro F1
performance of lingCNN for different embeddings settings.
For English, macro F1 is computed for positive and negative
classes. For Czech, it is computed on all three classes.

Table 7.4.4 confirms the findings on English. There is only a small
performance drop when using ultradense embeddings (not significant
for 40 dimensional embeddings) while the speed improvement is sub-
stantial.

7.5 parameter analysis

In this section, we analyze the influence of two parameters on the qual-
ity of ultradense embeddings: (i) the size of ultradense subspace and
(ii) the size of lexicon resource. We leave an evaluation of another pa-
rameter, the size of the embedding training corpus, for future work,
but empirical results suggest that this corpus should ideally have a size
of several billion tokens.

7.5.1 Size of Subspace

With the exception of the two polarity classification experiments, all
our subspaces have dimensionality d∗ = 1. The question arises: does
a one-dimensional space perhaps have too low a capacity to encode
all relevant information and could we further improve our results by
increasing the dimensionality of the subspace to values d∗ > 1? The
lexicon resources that we train and test on are all binary. Thus, if we
use values d∗ > 1, then we need to map the subspace embeddings to
a one-dimensional scale for evaluation. We do this by training, on the
train part of the resource, a linear transformation from the ultradense
subspace to the one-dimensional scale (e.g., to the sentiment scale).

Figure 7.5.1 compares different values of ds for three different types
of subspaces in this setup, i.e., the setup in which the subspace repre-
sentations are mapped via linear transformation to a one-dimensional
sentiment value:

random We take the first ds dimensions of the original embeddings.

7.5 parameter analysis 107

0 50 100 150 200 250 300
size of subspace

0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

Ultradense
PCA
Random

figure 7.5.1: subspace size analysis Kendall’s τ for different subspace
sizes. See line 6 in Table 7.3.2 for training and test split.

PCA We compute a Principal Component Analysis (PCA) and take
the first ds principal components, i.e., those dimensions that com-
prise the largest variance.

ultradense We use the ultradense subspace of dimensionality ds.

We use the word embeddings and lexicon resources of line 6 in Ta-
ble 7.3.2. For random, the performance starts dropping when the sub-
space is smaller than 200 dimensions. For PCA, the performance is
relatively stable until the subspace becomes smaller than 100 dimen-
sions. In contrast, ultradense subspaces have almost identical perfor-
mance for all values of ds, even for ds = 1. This suggests that a single
dimension is sufficient to encode all sentiment information needed for
sentiment lexicon creation. However, for other sentiment tasks more
dimensions may be needed, e.g., for modeling different emotional di-
mensions of polarity: fear, sadness, anger etc.

An alternative approach to create a low-dimensional space is to
simply train low-dimensional word2vec embeddings. The following
experiment suggests that this does not work very well. We used
word2vec to train 60-dimensional Twitter embeddings with the same
settings as on line 5 in Table 7.3.2. While the correlation for 400-
dimensional embeddings shown in Table 7.3.2 is 0.661, the correlation
of 60-dimensional embeddings is only 0.568. Thus, although we show
that the information in 400-dimensional embeddings that is relevant
for sentiment can be condensed into a single dimension, hundreds of
dimensions seem to be needed if we use word2vec to collect sentiment
information. If we run word2vec with a small dimensionality, only a
subset of available sentiment information is “harvested” from the cor-
pus.

7.5.2 Size of Training Resource

Next, we analyze what size of training resource is required to learn a
good transformation Q. Labeled resources covering many words may

108 ultradense sentiment representations

10 1 10 2 10 3 10 4

size of lexicon

0.3

0.4

0.5

0.6

0.7

co
rr

el
at

io
n

Sentiment
Concreteness

figure 7.5.2: lexicon size analysis Kendall’s τ for different training
resource sizes. See line 8 in Table 7.3.2, for training and test
split.

not be available or suffer from lack of quality. This is for example true
for less studied languages. We use the settings of lines 6 (sentiment)
and 7 (concreteness) in Table 7.3.2. Figure 7.5.2 shows that a small
training resource of 300 entries is sufficient for high performance. This
suggests that Densifier can create a high quality output lexicon for a
new language by hand-labeling only 300 words; and that a small, high-
quality resource may be preferable to a large lower-quality resource
(semi-automatic or out of domain).

To provide further evidence for this we repeat the association
strength experiment from Section 7.4.3. This time however, we
train Densifier on only the trial data of SemEval 2015 task 10E, instead
of the WHM lexicon. To convert the continuous trial data to binary−1
/ 1 labels, we discard all words with sentiment values between −0.5
and 0.5 and round the remaining values, giving us 39 positive and 38
negative training words. We tune αs on the train set, which in this set-
ting is equal to the trial data of SemEval 2015 task 10E. This seems to
work due to the different objectives for training (maximize / minimize
difference) and development (correlation).

The resulting lexicon reaches τ = 0.627 (see line 8 in Table 7.4.3).
This is worse than τ = 0.654 (line 6) for the setup in which we used
several large resources. However, our system would still reach the best
rank in the SemEval 2015 Task 10E competition, with only 77 training
examples. This indicates that Densifier is especially suited for lan-
guages or domains for which little training data is available.

7.6 related work

To the best of our knowledge, the presented approach is the first to train
an orthogonal transformation to reorder word embedding dimensions
into ultradense subspaces. However, there is much prior work on post-
processing word embeddings.

7.6 related work 109

Faruqui et al., (2015) perform postprocessing based on a semantic
lexicon with the goal of fine-tuning word embeddings. Their trans-
formation is not orthogonal and therefore does not preserve distances.
They show that their approach optimizes word embeddings for a given
application, i.e., word similarity, but also that it worsens them for other
applications like detecting syntactic relations. Faruqui et al., (2015)’s
approach also does not have the benefit of ultradense embeddings, in
particular the benefit of increased efficiency.

In a tensor framework, Rothe and Schütze, (2015) transform the
word embeddings to sense (synset) embeddings. In their work, all em-
beddings live in the same space whereas we explicitly want to change
the embedding space to create ultradense embeddings with several de-
sirable properties.

Xing et al., (2015) restrict the work of Mikolov, Le, et al., (2013) to an
orthogonal transformation to ensure that normalized embeddings stay
normalized. This transformation is learned between two embedding
spaces of different languages to exploit similarities. They normalize
word embeddings in a first step, something that does not improve our
results.

As a reviewer pointed out, our method is also related to Oriented
PCA (Diamantaras and Kung, 1996). However in contrast to PCA a
solution for Oriented PCA is not orthogonal.

Sentiment lexicons are often created semi-automatically, e.g., by ex-
tending manually labeled seed sets of sentiment words or adding
for each word its synonyms and antonyms. Alternatively, words fre-
quently cooccurring with a seed set of manually labeled sentiment
words are added (Kiritchenko et al., 2014; Turney, 2002). Heerschop et
al., (2011) use WordNet together with a PageRank-based algorithm to
propagate the sentiment of the seed set to unknown words. Scheible,
(2010) present a semi-automatic approach based on machine trans-
lation of sentiment lexicons. The winning system of SemEval 2015
10E (Amir et al., 2015) is based on structured skip-gram embeddings
with 600 dimensions and support vector regression with RBF kernels.
Hamdan et al., (2015), the second ranked team, use the average of
six sentiment lexicons as a final sentiment score, a method that can-
not be applied to low resource languages. We show that the lexi-
cons created by Densifier achieve better performance than other semi-
automatically created lexicons.

Tang, Wei, Yang, et al., (2014) train sentiment specific embeddings by
extending Collobert and Weston, (2008)’s model and Tang, Wei, Qin,
Zhou, et al., (2014)’s skip-gram model. The first model automatically
labels tweets as positive and negative based on emoticons, a process
that cannot be easily transferred to other domains like news. The sec-
ond uses the Urban Dictionary to expand a small list of 350 sentiment
seeds. In our work, we show that a training resource of about the same
size is sufficient without an additional dictionary. Densifier differs

110 ultradense sentiment representations

from this work in that it does not need a text corpus, but can transform
existing, publicly available word embeddings. Densifier is indepen-
dent of the embedding learning algorithm and therefore extensible to
other word embedding models like GloVe (Pennington et al., 2014), to
phrase embeddings (Yu and Dredze, 2015), and even to sentence em-
beddings (Kiros et al., 2015).

7.7 conclusion

We described Densifier, a method that transforms task-agnostic word
embeddings to an ultradense subspace that contains only the informa-
tion relevant for the application. In experiments on SemEval, Densi-
fier demonstrates two benefits of the ultradense subspace. (i) Infor-
mation is preserved even if we focus on a subspace that is smaller by
a factor of 100 than the original space. This means that unnecessary
noisy information is removed from the embeddings and robust learn-
ing without overfitting is better supported. (ii) Since the subspace is
100 times smaller, models that use the embeddings as their input rep-
resentation can be trained more efficiently and have a much smaller
number of parameters. We could speed up the classifier training by a
factor of 44.

The subspace can be learned with just 80-300 training exam-
ples, achieving state-of-the-art results on lexicon creation. The nine
large Densifier lexicons shown in Table 7.3.2 are publicly available.5

We have described in this chapter that up to three orthogonal ul-
tradense subspaces can be created. Many training datasets can be re-
structured as sets of similar and dissimilar pairs. For instance, in part-
of-speech tasks verb/verb pairs would be similar, verb/noun pairs dis-
similar. Hence, our objective is widely applicable. Therefore, we pro-
pose to explore the possibility of factoring all information present in an
embedding into a dozen or so orthogonal subspaces. This factorization
would not change the information embeddings contain, but it would
make them more compact for any given application, more meaningful
and more interpretable.

7.8 future work

We propose the following extensions to the presented work:

• In Section 7.4.2 we show that the quality of word embeddings
determines the quality of the output lexicons. More research has
to analyze influences of the embeddings training corpus, for ex-
ample its optimal size. Moreover, the interaction of the embed-
dings corpus’ domain with the domain of the lexicon resource
must be analyzed. For example, can Densifier successfully be

5 www.cis.lmu.de/~sascha/Ultradense/

www.cis.lmu.de/~sascha/Ultradense/

7.8 future work 111

trained with news-based word embeddings and a Twitter lexi-
con? The qualitative analysis in Table 7.4.1 suggests that, but a
more profound and quantitative experiment could give clarity
on this matter.

• Our polarity classification experiments in Section 7.4.4 suggest
that there is a minimum number of embeddings dimensions for
lingCNN where no drop in performance is created and still the
training time is much smaller. This optimal point can be found
by more experimentation.

• When creating a multi-dimensional sentiment space for polarity
classification – having 40 or 4 dimensions – the actual meaning
of every single dimension is still unknown. One possible future
direction would be to analyze each dimension on its own. Pos-
sible information that may be encoded are negation or valence
values for different word senses, although the new dimensions
are likely to be just as distributed as the original dimensions.

• Since only 300 labeled words in the lexicon resource are required
to create a high-quality sentiment lexicon, new lexicons for many
languages can relatively easy be created for low-resource lan-
guages. Using Wikipedia as embeddings training corpus and
300 hand-labeled words would allow to easily provide a large
number of lexicons at small cost.

8
CO NC LU S I O N

As we saw, Sentiment Analysis (SA) is a challenging research area,
which faces many difficulties, such as lack of resources, and requires
semantic understanding to capture all nuances of polarity. In this the-
sis we addressed some of the problems.

1. We have addressed the issue of sense-dependent polarity by
proposing the idea of a Contextually Enhanced Sentiment Lex-
icon (CESL). Our approach of analyzing the senses of a word in
the light of sentiment showed that there exist sentiment-specific
differences in the meaning of words. A detailed and complete
analysis of a text is only possible by having a fine-grained under-
standing of sentiment-related word senses. The presented ap-
proach however is labeling intense and therefore requires more
research to find alternative labeling strategies, along the lines of
the presented semi-automatic clustering approach.

2. We have extended an existing Convolutional Neural Network
(CNN) architecture with linguistic knowledge. Since SA is a
very semantic topic, statistical models can be supported and en-
hanced by existing resources such as sentiment lexicons. These
resources alone however cannot be used for a well working po-
larity classification system, because they contain only prior polar-
ity labels. In other words, they are context independent. Thus,
prior knowledge together with a statistical model, which con-
siders a word’s context, lead to powerful systems. This is not
contradictory to our claim that a detailed and complete anal-
ysis of the text requires fine-grained sentiment-related word
senses. First, linguistically-informed Convolutional Neural Net-
work (lingCNN) as presented classifies polarity of the entire sen-
tence and neither gives an explanation nor a detailed analysis
why a sentence is positive or negative. Second, if such an analy-
sis is requested, lingCNN can be used to classify the sense of a
word given its context. By that it can benefit from the CESL.

3. We have shown that discarding morphological information does
not harm polarity classification. It is even beneficial. This is true
although intuitively morphology seems important. For instance
a lemmatizer maps “good”, “better”, “best” to the same lemma
“good”. We claim that for polarity classification comparatives
and superlatives are not as important. Some inflection, such as
the number and gender of nouns and adjectives, and conjugation
of verbs, such as gender, tense, etc, do not seem to add any senti-

113

114 conclusion

ment information. But for valence prediction the normalization
may hurt performance. For instance, the mood of a word (e.g.,
subjunctive vs. imperative) is able to change the magnitude of
sentiment. This is true for English. For other languages, espe-
cially Morphologically Rich Languages (MRLs), different rules
may apply. Further research is necessary to fully understand the
influence of morphology on SA.

4. We have presented three different approaches to address sparsity
issues that emerge out of a lack of data. The non-linear extension
to the Log-Bilinear Language model (LBL) model has proven to
be helpful especially when the model has only a small number
of parameters, which usually is the case when little training data
is available. The use of linguistic knowledge in the lingCNN has
been beneficial when little training data is available. And finally,
the normalization of corpora before training a polarity classifica-
tion system has proven beneficial for languages with a rich mor-
phology, because it reduces the sparsity related to rare or missing
word forms.

5. We have described a method that is able to create large-scale lex-
icons (e.g., sentiment lexicons) for low-resource languages by re-
quiring a minimum of manual labeling effort. We have shown
that this method increases efficiency of models that use word
embeddings for specific tasks, such as polarity classification. By
reducing the number of dimensions from 400 down to 4 and
compressing all sentiment information into an ultradense sub-
space, without lowering the performance much we can train big-
ger models or train models on more data in less time.

The ultimate goal of SA should be the creation of user-specific mod-
els. Every user has a different view about polarity, has different un-
derstanding of, or feelings about sarcasm and irony. A model that is
dedicated to a single user’s preference can assist in finding interesting
articles to read, movies to watch, etc. In such a scenario data scarcity
is one of the biggest problems. The user had to label every text (e.g.,
news article, movie/book description) by how much he likes it, i.e.,
what his sentiment is towards that text. The methods presented in this
thesis can help achieving this goal by reducing the need for data and
by providing model choices that help in the final classification.

AC RO N Y M S

ASR Automatic Speech Recognition

BOW Bag-of-Words

CBOW Continuous Bag-of-Words

CESL Contextually Enhanced Sentiment Lexicon

CNN Convolutional Neural Network

CSFD Czech Film Database

CSLM Continuous Space Language Model

KN Kneser-Ney

Lamb LemmA eMBeddings

LBL Log-Bilinear Language model

lingCNN linguistically-informed Convolutional Neural Network

LM Language Model

LSTM Long Short Term Memory

MLE Maximum Likelihood Estimate

MLP Multi Layer Perceptron

ML Machine Learning

MRL Morphologically Rich Language

MRR Mean Reciprocal Rank

MT Machine Translation

NCE Noise-Contrastive Estimation

NER Named Entity Recognition

nLBL non-linear Log-Bilinear Language model

NLP Natural Language Processing

NNLM Neural Network Language Model

NN Neural Network

nvLBL non-linear vectorized Log-Bilinear Language model

115

116 acronyms

OCR Optical Character Recognition

OOV Out-of-Vocabulary

PCA Principal Component Analysis

PCD Predicted Context Distribution

POS Part-of-Speech

PPL Perplexity

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SA Sentiment Analysis

SGD Stochastic Gradient Descent

Stem STem EMbeddings

SVD Singular Value Decomposition

SVM Support Vector Machine

vLBL vectorized Log-Bilinear Language model

WSD Word Sense Disambiguation

WSJ Wall Street Journal

B I B L I O G R A P H Y

Amine Abdaoui, Jérôme Azé, Sandra Bringay, and Pascal Poncelet
(2014). FEEL: French Extended Emotional Lexicon: ISLRN: 041-639-484-
224-2.

Cem Akkaya, Janyce M. Wiebe, and Rada Mihalcea (2009). “Subjectiv-
ity Word Sense Disambiguation.” In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Vol. 1.

Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Martins, Mario J.
Silva, and Isabel Trancoso (2015). “INESC-ID: A Regression Model
for Large Scale Twitter Sentiment Lexicon Induction.” In: Proceedings
of the 9th International Workshop on Semantic Evaluation.

Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramab-
hadran (2012). “Deep Neural Network Language Models.” In: Pro-
ceedings of the NAACL-HLT Workshop: Will We Ever Really Replace the
N-gram Model? On the Future of Language Modeling for HLT.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani (2010). “Sen-
tiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analy-
sis and Opinion Mining.” In: Proceedings of the International Conference
on Language Resources and Evaluation.

Marco Baroni and Sabrina Bisi (2004). “Using Cooccurrence Statistics
and the Web to Discover Synonyms in a Technical Language.” In:
Proceedings of the Fourth International Conference on Language Resources
and Evaluation.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski (2014).
“Don’t count, predict! A systematic comparison of context-counting
vs. context-predicting semantic vectors.” In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent (2000). “A Neu-
ral Probabilistic Language Model.” In: Proceedings of the Advances in
Neural Information Processing Systems 13.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin (2003). “A Neural Probabilistic Language Model.” In: Journal of
Machine Learning Research 3, pp. 1137–1155.

Yoshua Bengio (2009). “Learning Deep Architectures for AI.” In: Foun-
dations and Trends in Machine Learning 2.1, pp. 1–127.

William Blacoe and Mirella Lapata (2012). “A Comparison of Vector-
based Representations for Semantic Composition.” In: Proceedings of
the Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning.

Francis Bond and Kyonghee Paik (2012). “A Survey of Wordnets and
their Licenses.” In: Proceedings of the 6th Global WordNet Conference.

117

118 bibliography

Jan A. Botha and Phil Blunsom (2014). “Compositional Morphology
for Word Representations and Language Modelling.” In: Proceedings
of the 31st International Conference on Machine Learning.

Margaret M. Bradley and Peter J. Lang (1999). Affective norms for English
words (ANEW): Instruction manual and affective ratings.

Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, Jennifer C.
Lai, and Robert L. Mercer (1992). “Class-Based n-gram Models of
Natural Language.” In: Computational Linguistics 18.4, pp. 467–479.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni (2014). “Multimodal
Distributional Semantics.” In: Journal of Artificial Intelligence Research
49, pp. 1–47.

Tomas Brychcin and Ivan Habernal (2013). “Unsupervised Improving
of Sentiment Analysis Using Global Target Context.” In: Recent Ad-
vances in Natural Language Processing.

Marc Brysbaert, Amy B. Warriner, and Victor Kuperman (2014). “Con-
creteness ratings for 40 thousand generally known English word
lemmas.” In: Behavior Research Methods 46.3, pp. 904–911.

John A. Bullinaria and Joseph P. Levy (2007). “Extracting semantic
representations from word co-occurrence statistics: A computational
study.” In: Behavior Research Methods 39.3, pp. 510–526.

John A. Bullinaria and Joseph P. Levy (2012). “Extracting semantic
representations from word co-occurrence statistics: stop-lists, stem-
ming, and SVD.” In: Behavior Research Methods 44.3, pp. 890–907.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten
Brants, and Phillipp Koehn (2013). “One Billion Word Benchmark
for Measuring Progress in Statistical Language Modeling.” In: Com-
puting Research Repository abs/1312.3005.

Stanley F. Chen and Joshua T. Goodman (1999). “An empirical study of
smoothing techniques for language modeling.” In: Computer Speech
& Language 13.4, pp. 359–393.

Grzegorz Chrupała (2008). “Towards a Machine-Learning Architec-
ture for Lexical Functional Grammar Parsing.” PhD thesis. Dublin
City University.

Ronan Collobert and Jason Weston (2008). “A Unified Architecture for
Natural Language Processing: Deep Neural Networks with Multi-
task Learning.” In: Proceedings of the Twenty-Fifth International Confer-
ence on Machine Learning.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa (2011). “Natural Language Process-
ing (almost) from Scratch.” In: Journal of Machine Learning Research
12, pp. 2493–2537.

John S. Denker, W. R. Gardner, Hans Peter Graf, Donnie Henderson,
R. E. Howard, Wayne E. Hubbard, Lawrence D. Jackel, Henry S.
Baird, and Isabelle Guyon (1988). “Neural Network Recognizer for
Hand-Written Zip Code Digits.” In: Proceedings of the Advances in Neu-
ral Information Processing Systems 1.

bibliography 119

Konstantinos I. Diamantaras and S. Y. Kung (1996). Principal Compo-
nent Neural Networks: Theory and Applications. Adaptive and Learning
Systems for Signal Processing, Communications, and Control Series.

Georgiana Dinu, Nghia The Pham, and Marco Baroni (2013). “General
estimation and evaluation of compositional distributional semantic
models.” In: Proceedings of the Workshop on Continuous Vector Space
Models and their Compositionality.

Cícero Nogueira dos Santos and Maíra Gatti (2014). “Deep Convolu-
tional Neural Networks for Sentiment Analysis of Short Texts.” In:
Proceedings of the 25th International Conference on Computational Lin-
guistics.

Cícero Nogueira dos Santos and Bianca Zadrozny (2014). “Learning
Character-level Representations for Part-of-Speech Tagging.” In: Pro-
ceedings of the 31st International Conference on Machine Learning.

Cícero Nogueira dos Santos, Bing Xiang, and Bowen Zhou (2015).
“Classifying Relations by Ranking with Convolutional Neural Net-
works.” In: Proceedings of the 53nd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federation of Natural Lan-
guage Processing.

John C. Duchi, Elad Hazan, and Yoram Singer (2011). “Adaptive Sub-
gradient Methods for Online Learning and Stochastic Optimization.”
In: Journal of Machine Learning Research 12, pp. 2121–2159.

Chris Dyer (2013). Notes on Adagrad.
Sebastian Ebert and Hinrich Schütze (2014). “Fine-Grained Contextual

Predictions for Hard Sentiment Words.” In: Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze (2015a). “A Lin-
guistically Informed Convolutional Neural Network.” In: Proceedings
of the 6th Workshop on Computational Approaches to Subjectivity and Sen-
timent Analysis.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze (2015b). “CIS-
positive: Combining Convolutional Neural Networks and SVMs for
Sentiment Analysis in Twitter.” In: Proceedings of the 9th International
Workshop on Semantic Evaluation.

Sebastian Ebert, Thomas Müller, and Hinrich Schütze (2016). “LAMB:
A Good Shepherd of Morphologically Rich Languages.” In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Process-
ing, EMNLP.

Jeffrey L. Elman (1990). “Finding Structure in Time.” In: Cognitive Sci-
ence 14.2, pp. 179–211.

Andrea Esuli and Fabrizio Sebastiani (2006). “SentiWordNet: A Pub-
licly Available Lexical Resource for Opinion Mining.” In: Proceedings
of the fifth International Conference on Language Resources and Evalua-
tion.

120 bibliography

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin (2008). “LIBLINEAR: A Library for Large Linear Clas-
sification.” In: Journal of Machine Learning Research 9, pp. 1871–1874.

Ky Fan and Alan J. Hoffman (1955). “Some metric inequalities in the
space of matrices.” In: Proceedings of the American Mathematical Society
6.1, pp. 111–116.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard
H. Hovy, and Noah A. Smith (2015). “Retrofitting Word Vectors to Se-
mantic Lexicons.” In: Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin (2002). “Placing search in
context: the concept revisited.” In: ACM Transactions on Information
Systems 20.1, pp. 116–131.

Michael Gamon (2004). “Sentiment Classification on Customer Feed-
back Data: Noisy Data, Large Feature Vectors, and the Role of Lin-
guistic Analysis.” In: Proceedings of the 20th International Conference
on Computational Linguistics.

Alec Go, Richa Bhayani, and Lei Huang (2009). Twitter Sentiment Clas-
sification using Distant Supervision.

Joshua T. Goodman (2001). “A bit of progress in language modeling.”
In: Computer Speech & Language 15.4, pp. 403–434.

Irving J. Good (1953). “The population frequencies of species and the
estimation of population parameters.” In: Biometrika 40.3-4, pp. 237–
264.

Gintare Grigonyte, João Cordeiro, Gaël Dias, Rumen Moraliyski, and
Pavel Brazdil (2010). “Paraphrase Alignment for Synonym Evidence
Discovery.” In: Proceedings of the 23rd International Conference on Com-
putational Linguistics.

Tobias Günther and Lenz Furrer (2013). “GU-MLT-LT: Sentiment Anal-
ysis of Short Messages using Linguistic Features and Stochastic Gra-
dient Descent.” In: Proceedings of the 7th International Workshop on Se-
mantic Evaluation.

Iryna Gurevych (2005). “Using the Structure of a Conceptual Network
in Computing Semantic Relatedness.” In: Proceedings of the Second
International Joint Conference on Natural Language Processing. Lecture
Notes in Computer Science (LNCS).

Michael Gutmann and Aapo Hyvärinen (2012). “Noise-Contrastive Es-
timation of Unnormalized Statistical Models, with Applications to
Natural Image Statistics.” In: Journal of Machine Learning Research 13,
pp. 307–361.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger (2013). “Sentiment
Analysis in Czech Social Media Using Supervised Machine Learn-
ing.” In: Proceedings of the 4th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis.

bibliography 121

Matthias Hagen, Martin Potthast, Michel Büchner, and Benno Stein
(2015). “Webis: An Ensemble for Twitter Sentiment Detection.” In:
Proceedings of the 9th International Workshop on Semantic Evaluation.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawa-
hara, Maria Antònia Martí, Lluís Màrquez, Adam Meyers, Joakim
Nivre, Sebastian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang (2009). “The CoNLL-2009 Shared Task:
Syntactic and Semantic Dependencies in Multiple Languages.” In:
Proceedings of the 13th Conference on Computational Natural Language
Learning: Shared Task.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet (2015). “Lsislif:
Feature Extraction and Label Weighting for Sentiment Analysis in
Twitter.” In: Proceedings of the 9th International Workshop on Semantic
Evaluation.

Birgit Hamp and Helmut Feldweg (1997). “GermaNet - a Lexical-
Semantic Net for German.” In: In Proceedings of ACL workshop Auto-
matic Information Extraction and Building of Lexical Semantic Resources
for NLP Applications.

Samer Hassan and Rada Mihalcea (2009). “Cross-lingual Semantic Re-
latedness Using Encyclopedic Knowledge.” In: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing.

Bas Heerschop, Alexander Hogenboom, and Flavius Frasincar (2011).
“Sentiment Lexicon Creation from Lexical Resources.” In: Proceed-
ings of the 14th International Conference on Business Information Systems.
Vol. 87. Lecture Notes in Business Information Processing.

Felix Hill, Roi Reichart, and Anna Korhonen (2014). “SimLex-999: Eval-
uating Semantic Models with (Genuine) Similarity Estimation.” In:
Computing Research Repository abs/1408.3456.

Geoffrey E. Hinton, James L. McClelland, and David E. Rumelhart
(1986). “Distributed Representations.” In: Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Ed. by David E.
Rumelhart and James L. McClelland. Vol. Vol. 1.

Geoffrey E. Hinton (1984). Distributed representations.
Geoffrey E. Hinton (1986). “Learning Distributed Representations of

Concepts.” In: Proceedings of the Eighth Annual Conference of the Cogni-
tive Science Society.

Sepp Hochreiter and H. Jürgen Schmidhuber (1997). “Long Short-Term
Memory.” In: Neural Computation 9.8, pp. 1735–1780.

Minqing Hu and Bing Liu (2004). “Mining and Summarizing Cus-
tomer Reviews.” In: Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining.

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew
Y. Ng (2012). “Improving Word Representations via Global Context
and Multiple Word Prototypes.” In: Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics.

122 bibliography

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann Le-
Cun (2009). “What is the Best Multi-Stage Architecture for Object
Recognition?” In: Proceedings of the IEEE 12th International Conference
on Computer Vision.

Frederick Jelinek and Robert L. Mercer (1980). “Interpolated Estima-
tion of Markov Source Parameters from Sparse Data.” In: Proceedings
of the Workshop on Pattern Recognition in Practice.

Nitin Jindal and Bing Liu (2008). “Opinion Spam and Analysis.” In:
Proceedings of the International Conference on Web Search and Web Data
Mining.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom (2014). “A
Convolutional Neural Network for Modelling Sentences.” In: Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics.

Jussi Karlgren and Magnus Sahlgren (2001). “From Words to Under-
standing.” In: Foundations of Real World Intelligence. Ed. by Yoshinori
Uesaka, Pentti Kanerva, and Hideki Asoh.

Slava M. Katz (1987). “Estimation of Probabilities from Sparse Data for
the Language Model Component of a Speech Recognizer.” In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 35.3, pp. 400–
401.

Yoon Kim (2014). “Convolutional Neural Networks for Sentence Clas-
sification.” In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mohammad (2014).
“Sentiment Analysis of Short Informal Texts.” In: Journal of Artificial
Intelligence Research 50, pp. 723–762.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel,
Raquel Urtasun, Antonio Torralba, and Sanja Fidler (2015). “Skip-
Thought Vectors.” In: Proceedings of the Advances in Neural Information
Processing Systems 28.

Reinhard Kneser and Hermann Ney (1995). “Improved backing-off for
M-gram language modeling.” In: Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing.

Maximilian Köper, Christian Scheible, and Sabine Schulte Im Walde
(2015). “Multilingual Reliability and ”Semantic” Structure of Contin-
uous Word Spaces.” In: Proceedings of the 11th International Conference
on Computational Semantics.

Igor Labutov and Hod Lipson (2013). “Re-embedding Words.” In: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational
Linguistics.

Thomas K. Landauer and Susan T. Dumais (1997). “A solution to
Plato’s problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge.” In: Psychological Re-
view 104.2, pp. 211–240.

bibliography 123

Pierre-Simon Laplace (1825). Pierre-Simon Laplace Philosophical Essay on
Probabilities. 5th edition, Translated by Andrew I. Dale, 1995.

Hai-Son Le, Alexandre Allauzen, Guillaume Wisniewski, and François
Yvon (2010). “Training Continuous Space Language Models: Some
Practical Issues.” In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and
François Yvon (2013). “Structured Output Layer Neural Network
Language Models for Speech Recognition.” In: IEEE Transactions on
Audio, Speech and Language Processing 21.1, pp. 197–206.

Quoc V. Le and Tomas Mikolov (2014). “Distributed Representations
of Sentences and Documents.” In: Proceedings of the 31st International
Conference on Machine Learning.

Rémi Lebret, Joël Legrand, and Ronan Collobert (2013). “Is Deep Learn-
ing Really Necessary for Word Embeddings?” In: Proceedings of the
26th Annual Conference on Neural Information Processing Systems.

Yann LeCun, Bernhard E. Boser, John S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel (1989). “Backpropagation Ap-
plied to Handwritten Zip Code Recognition.” In: Neural Computation
1.4, pp. 541–551.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
R. E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel (1990).
“Handwritten Digit Recognition with a Back-Propagation.” In: Pro-
ceedings of the Advances in Neural Information Processing Systems 2.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998).
“Gradient-Based Learning Applied to Document Recognition.” In:
Proceedings of the IEEE 86.11, pp. 2278–2324.

Ira Leviant and Roi Reichart (2015). “Judgment Language Mat-
ters: Multilingual Vector Space Models for Judgment Language
Aware Lexical Semantics.” In: Computing Research Repository
abs/1508.00106.

Omer Levy, Yoav Goldberg, and Ido Dagan (2015). “Improving Dis-
tributional Similarity with Lessons Learned from Word Embed-
dings.” In: Transactions of the Association for Computational Linguistics
3, pp. 211–225.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel Trancoso (2015).
“Two/Too Simple Adaptations of Word2Vec for Syntax Problems.”
In: Proceedings of the Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies.

Minh-Thang Luong, Richard Socher, and Christopher D. Manning
(2013). “Better Word Representations with Recursive Neural Net-
works for Morphology.” In: Proceedings of the Seventeenth Conference
on Computational Natural Language Learning.

Andrew L. Maas and Andrew Y. Ng (2010). “A Probabilistic Model for
Semantic Word Vectors.” In: Proceedings of the NIPS Deep Learning and
Unsupervised Feature Learning Workshop.

124 bibliography

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, An-
drew Y. Ng, and Christopher Potts (2011). “Learning Word Vectors
for Sentiment Analysis.” In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Tech-
nologies.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze
(2009). Introduction to Information Retrieval.

Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz
(1993). “Building a Large Annotated Corpus of English: The Penn
Treebank.” In: Computational Linguistics 19.2, pp. 313–330.

Andrew J. McMinn, Yashar Moshfeghi, and Joemon M. Jose (2013).
“Building a large-scale corpus for evaluating event detection on twit-
ter.” In: Proceedings of the 22nd ACM International Conference on Infor-
mation and Knowledge Management.

Oren Melamud, Ido Dagan, Jacob Goldberger, Idan Szpektor, and
Deniz Yuret (2014). “Probabilistic Modeling of Joint-context in Dis-
tributional Similarity.” In: Proceedings of the Eighteenth Conference on
Computational Natural Language Learning.

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin
Jiang, and Qun Liu (2015). “Encoding Source Language with Convo-
lutional Neural Network for Machine Translation.” In: Proceedings of
the 53nd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Process-
ing of the Asian Federation of Natural Language Processing.

Márton Miháltz, Csaba Hatvani, Judit Kuti, György Szarvas, János
Csirik, Gábor Prószéky, and Tamás Váradi (2008). “Methods and Re-
sults of the Hungarian WordNet Project.” In: Proceedings of the 4th
Global WordNet Conference.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and
Sanjeev Khudanpur (2010). “Recurrent Neural Network Based Lan-
guage Model.” In: Proceedings of the 11th Annual Conference of the In-
ternational Speech Communication Association.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukás Burget, and
Jan Cernocký (2011). “Empirical Evaluation and Combination of Ad-
vanced Language Modeling Techniques.” In: Proceedings of the 12th
Annual Conference of the International Speech Communication Associa-
tion.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean
(2013). “Efficient Estimation of Word Representations in Vector
Space.” In: Proceedings of the 1st International Conference on Learning
Representations.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever (2013). “Exploiting
Similarities among Languages for Machine Translation.” In: Comput-
ing Research Repository abs/1309.4168.

bibliography 125

George A. Miller and Walter G. Charles (1991). “Contextual correlates
of semantic similarity.” In: Language and Cognitive Processes 6.1, pp. 1–
28.

George A. Miller (1995). “WordNet: A Lexical Database for English.”
In: Communications of the ACM 38.11, pp. 39–41.

Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and Tomoko
Ohkuma (2014). “TeamX: A Sentiment Analyzer with Enhanced Lex-
icon Mapping and Weighting Scheme for Unbalanced Data.” In: Pro-
ceedings of the 8th International Workshop on Semantic Evaluation.

Andriy Mnih and Geoffrey E. Hinton (2007). “Three New Graphical
Models for Statistical Language Modelling.” In: Proceedings of the
Twenty-Fourth International Conference on Machine Learning. Vol. 227.
ACM International Conference Proceeding Series.

Andriy Mnih and Geoffrey E. Hinton (2008). “A Scalable Hierarchical
Distributed Language Model.” In: Proceedings of the Twenty-Second
Annual Conference on Neural Information Processing Systems.

Andriy Mnih and Yee Whye Teh (2012). “A fast and simple algorithm
for training neural probabilistic language models.” In: Proceedings of
the 29th International Conference on Machine Learning.

Andriy Mnih and Koray Kavukcuoglu (2013). “Learning word embed-
dings efficiently with noise-contrastive estimation.” In: Proceedings
of the 26th Annual Conference on Neural Information Processing Systems.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu (2013).
“NRC-Canada: Building the State-of-the-Art in Sentiment Analysis
of Tweets.” In: Proceedings of the 7th International Workshop on Semantic
Evaluation.

Saif M. Mohammad and Peter D. Turney (2013). “Crowdsourcing a
Word-Emotion Association Lexicon.” In: Computational Intelligence
29.3, pp. 436–465.

Frederic Morin and Yoshua Bengio (2005). “Hierarchical Probabilistic
Neural Network Language Model.” In: Proceedings of the Tenth Inter-
national Workshop on Artificial Intelligence and Statistics.

Thomas Müller, Helmut Schmid, and Hinrich Schütze (2013). “Effi-
cient Higher-Order CRFs for Morphological Tagging.” In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Pro-
cessing.

Thomas Müller, Ryan Cotterell, Alexander M. Fraser, and Hinrich
Schütze (2015). “Joint Lemmatization and Morphological Tagging
with Lemming.” In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Thomas Müller and Hinrich Schütze (2015). “Robust Morphological
Tagging with Word Representations.” In: Proceedings of the Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

126 bibliography

Vinod Nair and Geoffrey E. Hinton (2010). “Rectified Linear Units Im-
prove Restricted Boltzmann Machines.” In: Proceedings of the 27th In-
ternational Conference on Machine Learning.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov,
Alan Ritter, and Theresa A. Wilson (2013). “SemEval-2013 Task 2:
Sentiment Analysis in Twitter.” In: Proceedings of the 7th International
Workshop on Semantic Evaluation.

Roberto Navigli and Simone Paolo Ponzetto (2012). “BabelRelate! A
Joint Multilingual Approach to Computing Semantic Relatedness.”
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel,
Nathan Schneider, and Noah A. Smith (2013). “Improved Part-of-
Speech Tagging for Online Conversational Text with Word Clusters.”
In: Proceedings of the Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies.

Canberk Özdemir and Sabine Bergler (2015). “CLaC-SentiPipe: Sem-
Eval2015 Subtasks 10 B,E, and Task 11.” In: Proceedings of the 9th In-
ternational Workshop on Semantic Evaluation.

Sebastian Padó (2006). User’s guide to sigf: Significance testing by approx-
imate randomisation.

Karel PALA and Pavel SMRZ (2004). “Building Czech Wordnet.” In:
Romanian Journal of Information Science and Technology 7.1-2.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan (2002). “Thumbs
Up?: Sentiment Classification Using Machine Learning Techniques.”
In: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing.

Bo Pang and Lillian Lee (2004). “A Sentimental Education: Sentiment
Analysis Using Subjectivity Summarization Based on Minimum
Cuts.” In: Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics.

Bo Pang and Lillian Lee (2008). Opinion Mining and Sentiment Analysis.
Vol. 2. Foundations and Trends in Information Retrieval.

Alexandre Passos, Vineet Kumar, and Andrew K. McCallum (2014).
“Lexicon Infused Phrase Embeddings for Named Entity Resolution.”
In: Proceedings of the Eighteenth Conference on Computational Natural
Language Learning.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning
(2014). “GloVe: Global Vectors for Word Representation.” In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Process-
ing.

Verónica Pérez-Rosas, Carmen Banea, and Rada Mihalcea (2012).
“Learning Sentiment Lexicons in Spanish.” In: Proceedings of the
Eighth International Conference on Language Resources and Evaluation.

Rene Pickhardt, Thomas Gottron, Martin Körner, Paul G. Wagner, Till
Speicher, and Steffen Staab (2014). “A Generalized Language Model

bibliography 127

as the Combination of Skipped n-grams and Modified Kneser Ney
Smoothing.” In: Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics.

Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan Evert, Andreas
Lerner, Natalie Dykes, and Heiko Ermer (2015). “KLUEless: Polarity
Classification and Association.” In: Proceedings of the 9th International
Workshop on Semantic Evaluation.

Robert Plutchik (1980). “A general psychoevolutionary theory of emo-
tion.” In: Emotion: Theory, research and experience. Vol. 1, Theories of
emotion. Ed. by Robert Plutchik and Henry Kellerman. Vol. 1.

Livia Polanyi and Annie Zaenen (2004). “Contextual Lexical Valence
Shifters.” In: Proceedings of the AAAI Spring Symposium on Exploring
Attitude and Affect in Text Theories and Applications. Vol. 7.

Livia Polanyi and Annie Zaenen (2006). “Contextual Valence Shifters.”
In: Computing Attitude and Affect in Text: Theory and Applications. Ed.
by James G. Shanahan, Yan Qu, and Janyce M. Wiebe. Vol. 20. The
Information Retrieval Series.

Thomas Proisl, Paul Greiner, Stefan Evert, and Besim Kabashi (2013).
“KLUE: Simple and robust methods for polarity classification.” In:
Proceedings of the 7th International Workshop on Semantic Evaluation.

Marek Rei and Ted Briscoe (2014). “Looking for Hyponyms in Vector
Space Language Learning.” In: Proceedings of the Eighteenth Conference
on Computational Natural Language Learning.

Ellen M. Riloff, Janyce M. Wiebe, Michael Collins, and Mark Steedman
(2003). “Learning Extraction Patterns for Subjective Expressions.” In:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing.

Ellen M. Riloff, Janyce M. Wiebe, and Theresa A. Wilson (2003). “Learn-
ing Subjective Nouns using Extraction Pattern Bootstrapping.” In:
Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL. Vol. 4.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and Veselin Stoyanov
(2014). “SemEval-2014 Task 9: Sentiment Analysis in Twitter.” In:
Proceedings of the 8th International Workshop on Semantic Evaluation.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif M. Moham-
mad, Alan Ritter, and Veselin Stoyanov (2015). “SemEval-2015 Task
10: Sentiment Analysis in Twitter.” In: Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation.

Sascha Rothe and Hinrich Schütze (2015). “AutoExtend: Extending
Word Embeddings to Embeddings for Synsets and Lexemes.” In:
Proceedings of the 53nd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Process-
ing.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze (2016). “Ultra-
dense Word Embeddings by Orthogonal Transformation.” In: Pro-

128 bibliography

ceedings of the Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies.

Herbert Rubenstein and John B. Goodenough (1965). “Contextual cor-
relates of synonymy.” In: Communications of the ACM 8.10, pp. 627–
633.

Maria Ruiz-Casado, Enrique Alfonseca, and Pablo Castells (2005). “Us-
ing context-window overlapping in synonym discovery and ontol-
ogy extension.” In: Proceedings of the Recent Advances in Natural Lan-
guage Processing III.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams (1986).
“Learning representations by back-propagating errors.” In: Letters to
Nature 323.

Magnus Sahlgren (2008). “The distributional hypothesis.” In: Rivista di
lingüística 20.1, pp. 33–54.

Holger Schwenk and Jean-Luc Gauvain (2005). “Training Neural Net-
work Language Models on Very Large Corpora.” In: Proceedings of
the Conference on Human Language Technology Conference and Empiri-
cal Methods in Natural Language Processing.

Roland Schäfer and Felix Bildhauer (2012). “Building Large Corpora
from the Web Using a New Efficient Tool Chain.” In: Proceedings of the
Eighth International Conference on Language Resources and Evaluation.

Christian Scheible and Hinrich Schütze (2013). “Sentiment Relevance.”
In: Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics.

Holger Schwenk (2004). “Efficient Training of Large Neural Networks
for Language Modeling.” In: Proceedings of the IEEE International Joint
Conference on Neural Networks.

Holger Schwenk (2007). “Continuous space language models.” In:
Computer Speech & Language 21.3, pp. 492–518.

Christian Scheible (2010). “Sentiment Translation through Lexicon In-
duction for Computational Linguistics.” In: Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics: Student
Research Workshop.

Roland Schäfer (2015). “Processing and querying large web corpora
with the COW14 architecture.” In: Proceedings of the 3rd Workshop on
Challenges in the Management of Large Corpora (CMLC-3).

Hinrich Schütze (1992). “Dimensions of Meaning.” In: Proceedings of
Supercomputing.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho
D. Choi, Richárd Farkas, Jennifer Foster, Iakes Goenaga, Koldo
Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley,
Veronika Vincze, Marcin Woliński, Alina Wróblewska, and Eric
Villemonte de la Clergerie (2013). “Overview of the SPMRL Shared
Task: A Cross-Framework Evaluation of Parsing Morphologically

bibliography 129

Rich Languages.” In: Proceedings of the Fourth Workshop on Statistical
Parsing of Morphologically-Rich Languages.

Aliaksei Severyn and Alessandro Moschitti (2015). “UNITN: Training
Deep Convolutional Neural Network for Twitter Sentiment Classifi-
cation.” In: Proceedings of the 9th International Workshop on Semantic
Evaluation.

John M. Sinclair (1987). Looking Up: An account of the COBUILD Project
in lexical computing.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng,
and Christopher D. Manning (2011). “Semi-Supervised Recursive
Autoencoders for Predicting Sentiment Distributions.” In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Pro-
cessing.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher
D. Manning, Andrew Y. Ng, and Christopher Potts (2013). “Recur-
sive Deep Models for Semantic Compositionality Over a Sentiment
Treebank.” In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing.

Radu Soricut and Franz J. Och (2015). “Unsupervised Morphology In-
duction Using Word Embeddings.” In: Proceedings of the Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Johanka Spoustová and Miroslav Spousta (2014). “A High-Quality Web
Corpus of Czech.” In: Proceedings of the Ninth International Conference
on Language Resources and Evaluation.

Philip J. Stone, Dexter C. Dunphy, and Marshall S. Smith (1966). “The
General Inquirer: A Computer Approach to Content Analysis.” In:
American Educational Research Journal 4.4, p. 397.

György Szarvas, Torsten Zesch, and Iryna Gurevych (2011). “Com-
bining Heterogeneous Knowledge Resources for Improved Distri-
butional Semantic Models.” In: Proceedings of the 12th International
Conference on Computational Linguistics and Intelligent Text Processing.
Vol. 6608. Lecture Notes in Computer Science.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly D. Voll, and
Manfred Stede (2011). “Lexicon-Based Methods for Sentiment Anal-
ysis.” In: Computational Linguistics 37.2, pp. 267–307.

Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou (2014).
“Coooolll: A Deep Learning System for Twitter Sentiment Classifi-
cation.” In: Proceedings of the 8th International Workshop on Semantic
Evaluation.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting Liu (2014).
“Building Large-Scale Twitter-Specific Sentiment Lexicon: A Repre-
sentation Learning Approach.” In: Proceedings of the 25th International
Conference on Computational Linguistics.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin
(2014). “Learning Sentiment-Specific Word Embedding for Twitter

130 bibliography

Sentiment Classification.” In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and
Chris Dyer (2015). “Evaluation of Word Vector Representations by
Subspace Alignment.” In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Peter D. Turney, Michael L. Littman, Jeffrey Bigham, and Victor Shnay-
der (2003). “Combining independent modules in lexical multiple-
choice problems.” In: Proceedings of the Recent Advances in Natural
Language Processing III. Vol. 260. Current Issues in Linguistic Theory
(CILT).

Peter D. Turney (2001). “Mining the Web for Synonyms: PMI-IR ver-
sus LSA on TOEFL.” In: Proceedings of the 12th European Conference on
Machine Learning. Vol. 2167. Lecture Notes in Computer Science.

Peter D. Turney (2002). “Thumbs Up or Thumbs Down? Semantic Ori-
entation Applied to Unsupervised Classification of Reviews.” In: Pro-
ceedings of the 40th Annual Meeting of the Association for Computational
Linguistics.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chi-
ang (2013). “Decoding with Large-Scale Neural Language Models
Improves Translation.” In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Kateřina Veselovská and Ondřej Bojar (2013). Czech SubLex 1.0. url:
http://hdl .handle .net/11858/00- 097C- 0000- 0022- FF60- B (vis-
ited on 12/16/2015).

Ulli Waltinger (2010). “GermanPolarityClues: A Lexical Resource for
German Sentiment Analysis.” In: Proceedings of the International Con-
ference on Language Resources and Evaluation.

Sida I. Wang and Christopher D. Manning (2012). “Baselines and Bi-
grams: Simple, Good Sentiment and Topic Classification.” In: Pro-
ceedings of the 50th Annual Meeting of the Association for Computational
Linguistics.

Mengqiu Wang and Christopher D. Manning (2013). “Effect of Non-
linear Deep Architecture in Sequence Labeling.” In: Proceedings of
the 6th International Joint Conference on Natural Language Processing.

Paul J. Werbos (1982). “Applications of advances in nonlinear sensi-
tivity analysis.” In: System Modeling and Optimization. Ed. by R. F.
Drenick and F. Kozin. Vol. 38. Lecture Notes in Control and Infor-
mation Sciences.

Casey Whitelaw, Navendu Garg, and Shlomo Argamon (2005). “Using
appraisal groups for sentiment analysis.” In: Proceedings of the ACM
CIKM International Conference on Information and Knowledge Manage-
ment.

Janyce M. Wiebe and Rada Mihalcea (2006). “Word Sense and Subjec-
tivity.” In: Proceedings of the 21st International Conference on Computa-

http://hdl.handle.net/11858/00-097C-0000-0022-FF60-B

bibliography 131

tional Linguistics and 44th Annual Meeting of the Association for Compu-
tational Linguistics.

Theresa A. Wilson, Janyce M. Wiebe, and Paul Hoffmann (2005). “Rec-
ognizing Contextual Polarity in Phrase-Level Sentiment Analysis.”
In: Proceedings of the Conference on Human Language Technology Confer-
ence and Empirical Methods in Natural Language Processing.

Theresa A. Wilson, Janyce M. Wiebe, and Paul Hoffmann (2009).
“Recognizing Contextual Polarity: An Exploration of Features for
Phrase-Level Sentiment Analysis.” In: Computational Linguistics 35.3,
pp. 399–433.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin (2015). “Normalized
Word Embedding and Orthogonal Transform for Bilingual Word
Translation.” In: Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies.

David Yarowsky (1992). “Word-Sense Disambiguation Using Statisti-
cal Models of Roget’s Categories Trained on Large Corpora.” In: 14th
International Conference on Computational Linguistics.

David Yarowsky (1995). “Unsupervised Word Sense Disambiguation
Rivaling Supervised Methods.” In: 33rd Annual Meeting of the Associ-
ation for Computational Linguistics.

Wenpeng Yin and Hinrich Schütze (2015). “Multichannel Variable-Size
Convolution for Sentence Classification.” In: Proceedings of the Nine-
teenth Conference on Computational Natural Language Learning.

Hong Yu and Vasileios Hatzivassiloglou (2003). “Towards Answering
Opinion Questions: Separating Facts from Opinions and Identifying
the Polarity of Opinion Sentences.” In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

Mo Yu and Mark Dredze (2015). “Learning Composition Models for
Phrase Embeddings.” In: TACL 3, pp. 227–242.

Matthew D. Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Mark Z. Mao,
K. Yang, Quoc V. Le, Patrick Nguyen, Andrew W. Senior, Vincent
Vanhoucke, Jeffrey Dean, and Geoffrey E. Hinton (2013). “On recti-
fied linear units for speech processing.” In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao
(2014). “Relation Classification via Convolutional Deep Neural Net-
work.” In: Proceedings of the 25th International Conference on Computa-
tional Linguistics.

Torsten Zesch and Iryna Gurevych (2006). “Automatically Creating
Datasets for Measures of Semantic Relatedness.” In: Proceedings of
the Workshop on Linguistic Distances.

Zhihua Zhang, Guoshun Wu, and Man Lan (2015). “ECNU: Multi-level
Sentiment Analysis on Twitter Using Traditional Linguistic Features
and Word Embedding Features.” In: Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation.

132 bibliography

Geoffrey Zweig and Christopher J. C. Burges (2011). The Microsoft Re-
search Sentence Completion Challenge.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Challenges
	1.2 Existing Approaches
	1.2.1 Lexicon Creation
	1.2.2 Statistical Classification Methods
	1.2.3 Word Representation Learning

	1.3 Outline and Contributions

	2 Foundations
	2.1 Language Modeling
	2.1.1 Training an Ngram Model
	2.1.2 Smoothing
	2.1.3 Evaluating a Language Model
	2.1.4 Log-Bilinear Language Model
	2.1.5 Training a Log-bilinear Language Model

	2.2 Convolutional Neural Network
	2.2.1 Architecture
	2.2.2 CNNs for NLP

	3 Fine-Grained Contextual Predictions for Hard Sentiment Words
	3.1 Introduction
	3.2 Linguistic Analysis of Sentiment Contexts of ``hard''
	3.3 Deep Learning Features
	3.4 Experiments
	3.4.1 Classification
	3.4.2 Clustering

	3.5 Related Work
	3.6 Conclusion
	3.7 Future Work

	4 Linear versus Non-linear Language Models
	4.1 Introduction
	4.2 Non-linear LBL Variants
	4.3 Experiments
	4.3.1 Results 3-gram
	4.3.2 Results 7-gram

	4.4 Related Work
	4.5 Conclusion
	4.6 Future Work

	5 Linguistically-informed Convolutional Neural Networks
	5.1 Introduction
	5.2 LingCNN Architecture
	5.2.1 Word-level Features
	5.2.2 Sentence-level Features

	5.3 Experiments
	5.3.1 Data
	5.3.2 Model Settings
	5.3.3 Results

	5.4 Analysis
	5.4.1 Examples
	5.4.2 Corpus Size

	5.5 Related Work
	5.6 Conclusion
	5.7 Future Work

	6 Morphologically Independent Sentiment Analysis
	6.1 Introduction
	6.2 Stem/Lemma Creation
	6.3 Experiments
	6.3.1 Word Similarity
	6.3.2 Word Relations
	6.3.3 Polarity Classification

	6.4 Analysis
	6.4.1 Embedding Size
	6.4.2 Corpus Size

	6.5 Related Work
	6.6 Conclusion
	6.7 Future Work

	7 Ultradense Sentiment Representations
	7.1 Introduction
	7.2 Model
	7.2.1 Separating Words of Different Groups
	7.2.2 Aligning Words of the Same Group
	7.2.3 Training
	7.2.4 Orthogonalization

	7.3 Lexicon Creation
	7.4 Evaluation
	7.4.1 Top-Ranked Words
	7.4.2 Quality of Predictions
	7.4.3 Determining Association Strength
	7.4.4 Polarity Classification

	7.5 Parameter Analysis
	7.5.1 Size of Subspace
	7.5.2 Size of Training Resource

	7.6 Related Work
	7.7 Conclusion
	7.8 Future Work

	8 Conclusion
	Acronyms
	Bibliography

