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1 Introduction 

1.1 Neointima formation  

Cardiovascular diseases (CVD) are the main cause of mortality worldwide
1
. One of the most 

common types of CVD is coronary artery disease (CAD) which is mainly caused by 

atherosclerosis
2
. A main way to treat CAD is to open the stenotic atherosclerotic artery by 

percutaneous coronary intervention (PCI), such as balloon angioplasty and stent implantation, to 

mechanically widen the arterial lumen
3-5

. This procedure causes mechanical injury of the artery 

and induces a vascular healing response that can lead to re-narrowing of the target vessel, called 

restenosis, in which the tunica intima of an artery thickens due to accumulation of vascular 

smooth muscle cells (SMCs) and extracellular matrix
6
. Restenosis occurs in up to 12% of patients 

with coronary or peripheral artery disease within 6 to 12 months after the PCI
5, 7, 8

. The pathology 

and mechanisms of neointima formation differ from those of atherosclerotic plaque formation
9
.  

During the initial phase, balloon angioplasty-induced vascular injury results in endothelial 

denudation and apoptosis of medial SMCs due to stretching of the artery. Platelets attach to the 

subendothelial matrix of the denuded vessel wall via glycoprotein Ib platelet alpha subunit-von 

Willebrand factor and glycoprotein VI-collagen interactions
10, 11

. Circulating leukocytes, such as 

neutrophils and monocytes, start rolling on the adherent platelets and firmly adhere through P-

selectin glycoprotein ligand 1 binding to platelet P-selectin
10-13

. Subsequently, adherent 

leukocytes migrate into the vessel wall guided by chemokines secreted from activated SMCs
14

. 

Moreover, platelets, leukocytes, and apoptotic SMCs serve as a scaffold for initial recruitment of 

monocytes, which differentiate into macrophages and contribute to the neointimal size, and 

activate SMCs by releasing growth factors and cytokines, such as platelet-derived growth factor 

(PDGF), interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α)
15-17

. 

Activation changes SMCs into proliferating and extracellular matrix-producing phenotype, which 

primarily promotes neointimal growth (Figure 1)
18, 19

. Complete re-endothelialization terminates 

SMC proliferation and neointima formation
18, 20

. Taken together intimal SMC proliferation 

represents an important mechanism of vascular healing but is also a common cause for vascular 

narrowing following injury. 
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Figure 1. Neointimal hyperplasia after mechanical injury. (A) An atherosclerotic plaque before 

intervention. (B) The immediate effects of mechanical vascular injury are endothelial denudation, 

adhesion of platelets to the subendothelial matrix, and apoptosis of medial SMCs. (C) Circulating 

leukocytes start rolling on the adherent platelets and firmly adhere through P-selectin glycoprotein ligand 

1 binding (PSGL-1) to platelet P-selectin. (D) and (E) Subsequently, SMCs accumulate in the neointima 

and surface adherent platelets mediate the recruitment of monocytes, which differentiate into macrophages 

and contribute to the neointimal size. (E) Finally, the neointimal growth terminates with the repair of the 

endothelium. Macros, macrophages; Neutos, neutrophils; MCP-1, monocyte chemoattractant protein-1; 

IL, interleukin; FGF, fibroblast growth factor; PDGF, platelet-derived growth factor; IGF, insulin-like 

growth factor; TGF-transforming growth factor VEGF, vascular endothelial growth factor; ECM, 

extra cellular matrix
21

. 
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1.1.1 SMC proliferation during neointima formation 

SMCs are a unique cell type that can switch between a quiescent, differentiated, and 

’’contractile’’ phenotype and the proliferative, dedifferentiated and ’’synthetic’’ state depending 

on the environmental cues
22

. Contractile SMCs are spindle-shaped with a central nucleus oriented 

along the axis of the cell (Figure 2). The orientation of SMCs in the tunica media of the blood 

vessels is spiral, which improves regulation of the vascular tone and the luminal diameter during 

contraction or relaxation of the SMCs, and thereby contributes to blood pressure control
22

. 

Contractile SMCs contain a functional contractile apparatus consisting of SM α-actin, SM 

myosin heavy chains (Myh11), calponin (Cnn1), SM-22α, and smoothelin. Small molecule 

signals, such as norepinephrine and acetylcholine, induce the contraction and relaxation of SMCs, 

respectively
22-25

. In contrast to contractile SMCs, synthetic SMCs are characterized by a higher 

growth rate and increased migratory activity, by their epithelioid-shape and by their high content 

of rough endoplasmic reticulum (ER), Golgi organelles, and ribosomes in the cytoplasm, which 

are necessary for synthetic capacity (Figure 2)
25-28

.  

Figure 2. Ultrastructural characteristics of SMC contractile and synthetic phenotypes. Contractile 

SMCs are elongated, spindle shaped cells, whereas synthetic SMCs are less elongated and have 

cobblestone morphology
26

. 
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Extracellular signaling factors, such as transforming growth factor beta 1 (TGF-β1) and heparin, 

promote a SMC contractile phenotype through inhibition of mitogen-activated protein kinase 

(MAPK) activation
26, 29

. However, several signaling factors including PDGF, insulin-like growth 

factors (IGFs), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) 

mediate the phenotypic switch from contractile into synthetic SMCs
16, 29, 30

. These growth factors 

induce proliferation of SMC following vascular injury by activating mutually crosslinked 

mitogenic signaling modules, such as phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian 

target of rapamycin (mTOR) and the Ras/RAF/extracellular signal-regulated kinase 1/2 

(ERK1/2)
16, 30-35

. Drug-eluting stents coated with several anti-proliferative drugs like sirolimus 

and its derivatives (including biolimus, everolimus, and zotarolimus) minimize SMC 

proliferation and reduce restenosis by inhibiting the PI3K/Akt/mTOR signaling pathway
31-38

. 

PI3K/Akt signaling module is linked to the nuclear factor kappa B (NF-B) pathway, a crucial 

inflammatory signaling cascade in synthetic SMCs, via its negative regulator phosphatase and 

tensin homolog (PTEN)
36, 37, 39

. NF-B-mediated upregulation of chemokines, such as CX3CL1 

and CCL2, in SMCs can, in turn, perpetuate and enhance the activation of NF-B and PI3K/Akt 

in a positive autoregulatory loop
39

. Taken together, the combined activation of PI3K/Akt/mTOR, 

Ras/RAF/ERK1/2, and NF-B signaling pathways appears to be essential for initiation of SMC 

proliferation. 

1.2  MiRNAs in arterial pathologies 

A new class of gene expression regulators called microRNAs (miRNAs) first discovered in 1993 

on the lin-4 gene, which control the timing of Caenorhabditis elegans larval development
40, 41

. 

MiRNAs are small non-coding RNAs (~22nt) that regulate post-transcriptional gene expression 

through mRNA cleavage or translational repression
42

. The miRNAs discovery also revealed a 

new class of regulators that play a key role in the fine regulation of several CVD processes 

including restenosis and atherosclerosis
43-46

. Moreover, miRNAs are involved in numerous 

pathophysiological CVD processes, such as inflammation, cell proliferation, apoptosis and lipid 

metabolism
47, 48

. Therefore, miRNAs as natural products that are released by almost all cell types 

can represent promising targets for the efficient therapeutic strategies to treat restenosis and 

atherosclerosis. 
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1.2.1 MiRNA processing enzyme Dicer  

RNA polymerase II transcribes the majority of primary miRNA transcript (pri-miRNA) which 

has embedded the mature miRNA sequences in their double-stranded stem structure
49

. In the 

miRNA biogenesis process Drosha and Dicer (RNAse III enzymes) are two major enzymes 

which are located in nucleus and cytoplasm, respectively
50

. To date, approximately 1000 different 

miRNAs have been predicted in humans of which most of them have not yet been verified 

experimentally
51

. In mammals, miRNAs regulate the expression of 50% of all protein-coding 

genes
49

.  

The long pri-miRNA is cleaved by a microprocessor complex in the nucleus that contains Drosha 

and double-stranded RNA binding protein, DiGeorge syndrome chromosomal region 8 

(DGCR8), to precursor miRNA (pre-miRNA)
52

. The 60–90-nt pre-miRNAs form stem and loop 

structures that contain terminal and internal loops, bulges, and a two- nucleotide-long 3ʹ overhang 

end. Pre-miRNA is then exported from the nucleus to the cytoplasm by a transport complex 

containing the protein exportin 5 (EXP5) and guanosine triphosphate (GTP)-binding nuclear 

protein RAN·GTP
53, 54

. During translocation GTP is hydrolysed, which results in the disassembly 

of the transport complex and the pre-miRNA release into the cytosol (Figure 3). Subsequently, in 

the cytoplasm the pre-miRNA is processed by a second enzyme, Dicer, to form a mature 

miRNA55, 56. 
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Figure 3. Translocation of pre-miRNA from the nucleus and release into the cytoplasm. The protein 

EXP5 and GTP-binding nuclear protein RAN•GTP from a complex with pre-miRNA to transport pre-

miRNA from cytoplasm to the nucleus
54

. 

The ribonuclease III Dicer is a ~200 kDa multidomain enzyme, which cleaves double-stranded 

RNA (dsRNA) that contains a two-nucleotide overhang, plays a pivotal role in the biogenesis of 

miRNAs
57

.  

The Dicer enzyme is composed of a putative helicase domain, the domain of unknown function 

(DUF) 283, the platform structure, and PIWI, Argonaute and Zwille (PAZ) domain at the N 

terminus and RNase III domains (RIIIDs) and a dsRNA binding domain (dsRBD) at the C 

terminus (Figure 4)
50, 57

. In the cytosol, Dicer together with an RNA binding protein called tar 

RNA binding protein (TRBP), cleaves a pre-miRNA hairpin into a short (~22 nt) miRNA 

duplex
58

. The N-terminal helicase of Dicer interacts with the terminal loop of the pre-miRNA 

whereas the PAZ domain anchors the ends of the pre-miRNA
59

. The PAZ domain has two basic 

pockets that can bind to the both 5ʹ and 3ʹ ends of the pre-miRNA, but usually binds at the 3′ end 

to the two-nucleotide overhang of the dsRNA substrate
59, 60

. However, the 5ʹ end binding occurs 

when the end is thermodynamically unstable, but not when the end is strongly paired (such as 

through G·C base pairs)
61

.  

A connector helix, so-called ruler, separates the PAZ domain from the RIIIDs tandem at a 

distance of approximately 22 nt, and thereby controls the accurate cutting of the pre-miRNA
54

. 

The RIIIDs of the Dicer form an internal dimer to build the catalytic core of the enzyme that 



1 Introduction 

7 

cleaves 22 nt away from the 3ʹ end (the 3ʹ-counting rule) or from the thermodynamically unstable 

5ʹ end (the 5ʹ-counting rule) of pre-miRNAs (Figure 4)
62

. The large helicase acts as an 

autoinhibitory module for the production of certain classes of small RNAs, contacts precursor 

miRNA substrates, and contributes to the processing activity of the enzyme
62

. Following the 

helicase domain is the small DUF283 domain that can bind to single-stranded nucleic acids and 

act as an annealer that facilitates hybridization between complementary RNA or DNA molecules 

(Figure 4)
60, 62-64

. The full structure of Dicer is required for specificity and efficiency of Dicer 

function. Functional disruption of Dicer for example by deletion of RIIIDs provides a tool for 

studying the global role of miRNAs in various diseases. For instance, mutations in RIIIDs of 

Dicer may affect the expression levels of miRNAs in which dysfunctional RIIIDa and RIIIDb 

impair production of miRNAs from the 3′- and 5′-arm of pre-miRNA hairpins, respectively
65-69

.  

 

Figure 4. Human Dicer domain architecture. Schematic representation of human Dicer domains
69

. 

In the following processing step, the miRNA duplex then is loaded onto a complex called 

miRNA-induced silencing complex (miRISC) that composed of Argonaute (AGO) proteins
69, 70

. 

Two steps are predicted in the miRISC assembly. The first step is unwinding of the miRNA 

duplex within the AGO protein and the second step is the retention of the guide strand, while the 
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passenger strand or miRNA* is discarded
70, 71

. The mature miRISCs is now containing the single-

stranded miRNA which is ready to bind target mRNA. MiRNAs bind through the “seed” 

sequenceat at the 5′ end of miRNAs, more precisely nucleotides 2 to 8, to the complementary 

sequences located at the 3′-untranslated region (UTR) of the target mRNAs and thereby mediate 

transcriptional repression via cleavage of mRNA molecules (Figure 5)
70, 72-75

. 

Figure 5. Current model of miRNA biogenesis. MiRNA processing includes: primary miRNA transcript 

(pri-miRNA) production by RNA polymerase II or III. Pri-miRNA is cleaved by Drosha–DGCR8 (Pasha) 

complex in the nucleus and processed in to the precursor hairpin, pre-miR. The pre-miRNA is exported 

from the nucleus to the cytoplasm by Exportin-5–Ran-GTP; the complex of RNase Dicer/TRBP cleaves 

the pre-miRNA hairpin to miRNA duplex. The mature miRNA together with argonaute (Ago2) proteins is 

loaded into the miRNA-induced silencing complex (miRISC), where silencing of target mRNAs happens 

through mRNA decay, translational inhibition or deadenylation, wherea the passenger strand (in black) is 

degraded
73

. 

Dicer is a central regulator of gene expression by producing miRNAs that post-transcriptionally 

regulate mRNA expression
76

. The accurate regulation of Dicer activity is the critical step in the 

functioning of all eukaryotic organisms
50, 77, 78

. Many cell-, tissue- or stage-specific factors can 

regulate the Dicer gene transcription
79

. For example transcription factor SOX4 and 

microphthalmia-associated transcription factor induce Dicer expression in cancer cells and 
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melanocytes, respectively
80, 81

. Multiple transcript variants of Dicer produced by starting 

transcription from alternative promoters and splicing from one Dicer gene. Shorter Dicer mRNA 

variants are produced in cancer cell lines and differentiated epithelial cells
79, 82

. The protein level 

and activity of human Dicer can be also regulated by its post-translational modification; for 

example phosphorylation induces nuclear localization of Dicer and inhibits its function, 

SUMOylation following cigarette smoke exposure decreases Dicer activity, and glycosylation by 

ER maintains Dicer protein levels
73

. Due to the profound effect on miRNAs processing and 

therefore on cellular post transcriptional activity, Dicer plays an important role in various 

processes from embryologic cell development to various disease such as CVD.  

 

1.2.2 MiRNAs in SMC phenotypic switch during neointima formation 

Since disruption of Dicer leads to global loss of miRNAs, deficiency of this enzyme has been 

used as an approach to study the biological effect of miRNAs in various cell types
73, 83-88

. 

Deletion of Dicer in SMCs during embryonic development causes late embryonic lethality and 

skin hemorrhage
83

. These effects are associated with thin blood vessel wall formation due to a 

diminished proliferation and differentiation of SMC
83

. However, loss of Dicer in adult mice is not 

lethal but dramatically decreases blood pressure owing to the loss of SMC contractile functions
83, 

89
.  

MiRNAs are involved in all cellular events under normal condition as well as pathological 

process of arterial remodeling, including platelet and leukocyte activation, SMC migration and 

proliferation, as well as EC recovery
89-93

. Notably, miRNAs play key role in phenotypic switch of 

SMCs. For instance, the miR-143/145 cluster, encoding the most abundant miRNAs in normal 

vascular walls, is required for SMC contractile phenotype (Figure 6)
90-96

. SMC differentiation is 

promoted by miR-145-5p in part by increasing myocardin d (Myocd) protein and functioning in a 

feed-forward loop to reinforce its own expression by the serum response factor -Myocd 

complex
94-97

. Moreover, miR-145-5p overexpression increases SMC contractile marker genes 

expression, such as SM α-actin, Cnn1, and SM-MHC
95, 98

. Furthermore, miR-143-3p inhibition 

increases the proliferation rate of SMCs in vitro, demonstrating the miR-143-3p as a negative 

regulator of SMC proliferation by targeting Myocd’s competitor, ETS domain-containing 

protein
95, 98

.  

Moreover, miR-221, miR-222, and miR-21 are up-regulated following vascular injury and 

increase SMC proliferation and thereby neointima formation
99, 100

. MiR-221 and -222 are induced 
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in response to vascular injury and increase neointima formation and SMCs proliferation by 

targeting p27(Kip1) and p57(Kip2)
95, 99, 100

. Moreover, miR-21 is the first miRNA in SMCs 

describe to have a pro-proliferative and antiapoptotic effect in a carotid injury model in rats
99, 100

. 

The NF-B-regulated miR-21 mediates SMC proliferation following vascular injury most likely 

by suppressing PTEN and increasing expression of B-cell leukemia/lymphoma 2 (Figure 6)
100

. 

Accordingly, stents coated with inhibitors of miRNAs, such as miR-21, can effectively reduce in-

stent-restenosis without affecting re-endothelialization101. 

Thus, an emerging theme in miRNA research from SMCs demonstrates miRNAs as potential 

targets to fine tune phenotypic switch of SMCs and to use miRNA-based therapy for 

cardiovascular disease. 

Figure 6. Phenotype-specific gene expression in SMCs is mediated by miRNAs. Synthetic and 

contractile SMCs are characterized by increased expression of a specific set (network) of miRNAs that 

either inhibit or promote the proliferation and/or expression of contractile proteins. Lats2, large tumour 

suppressor homolog 2; Trb3, Tribbles-like protein-3; myoc, myocardin; CalmK, calmodulin K; MRTF-B, 

myocardin-related transcription factor-B; KLF4/5, Krüppel-like factor 4/5; FRA-1, Fos related antigene-1; 

PDCD4, programmed cell death 4; Sp-1, Sp1 transcription factor; ACE, angiotensin-converting enzyme; 

PTEN, phosphatase and tensin homolog; p57, cyclin-dependent kinase inhibitor 1C (CDKN1C); p27, 

cyclin-dependent kinase inhibitor 1B (CDKN1B); c-kit, v-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homolog; ELK-1, ELK1 member of ETS oncogene family; PIM-1, proviral integration site 1
47

.  

1.3 Aims of the study 

Stent implantation into arteries with atherosclerotic plaque cause injury that frequently results in 

excessive neointima formation because of SMC proliferation, which causes re-narrowing of the 

arterial lumen (known as restenosis)
5, 7, 47

. Current approaches to reduce the rate of neointima 

fromation have successfully applied new stent platforms that elute anti-proliferative drugs such 

as sirolimus to reduce SMC proliferation
5, 7, 102

. However, the anti-proliferative effect of drugs is 
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unspecific and also affects endothelial recovery. This may cause late stent thrombosis and 

atherosclerosis. Therefore, development of new drug-eluting stents that specifically target SMC 

proliferation can be a promising approach to overcome restenosis without increasing the risk of 

in-stent thrombosis in the future.  

There is growing experimental evidence that miRNAs regulate the transition of SMCs from a 

contractile to a proliferating phenotype
5, 47, 103-105

. MiRNAs are essential for embryonic 

development by controlling protein expression variability against intrinsic noise of transcriptional 

changes during cell fate switches
47, 103, 106-108

. Moreover, individual miRNAs have beneficial or 

detrimental effect in arterial repair, for instance some miRNAs inhibit (e.g., miR-143-3p and -

145-5p) or promote (e.g., miR-21-5p) neointima formation, indicating that miRNAs play 

different roles in SMCs during vascular development and remodeling
96, 98, 100, 106-109

. The current 

study aimed at identifying the expression profile of miRNAs during neointima formation in 

Apoe
–/–

 mice. 

All mature miRNAs are reduced by the RNase III endonuclease Dicer, which cleaves precursor 

miRNAs. In SMCs, Dicer is essential for development and maintenance of the contractile 

phenotype
83, 89

. Despite numerous studies on the impact of miRNA expression on neointima 

formation and atherosclerosis, the role of SMC specific Dicer deletion on arterial repair remains 

unclear. The second aim of the study was to determine the role of miRNA biogenesis by Dicer in 

SMC phenotypic switch and proliferation during neointima formation using SMC-specific Dicer 

knockout mice.  

Single miRNA can bind hundreds of target mRNAs, and conversely, one mRNA can be targeted 

by multiple miRNAs, indicating that large and diverse miRNA-mRNA interaction networks can 

regulate gene expression in a cell type-specific manner
110, 111

. Therefore, the third aim was to 

investigate the mRNA-miRNA interaction that contributes mostly in observed effect of Dicer 

deletion in SMC after vascular injury. In particular, we focused on miR-27a-3p during SMC 

proliferation, because several studies suggest that the miR-27 family has important roles in 

atherosclerosis and more recently it has been shown that miR-27a-3p and miR-27b-3p are among 

those miRNAs which affect SMC proliferation in vitro
103, 112

. However, the role of miR-27a-3p in 

SMCs proliferation remains unclear. Therefore, the functional mechanism of miR-27a-3p during 

SMC proliferation was studied.  
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2 Materials and methods 

All solutions were prepared with ultra-pure (UP) water (Milli-Q Plus ultrapure purification, 

Millipore, Billerica, USA). The reagents were purchased from Sigma-Aldrich (Steinheim, 

Germany), Carl Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany) and Fluka (Buchs, 

Switzerland) unless stated otherwise in the text. 

2.1 General equipment 

Balance -  Precisa 92SM-202A (Sartorius mechatronics, Göttingen, Germany) 

Centrifuge -  Heraeus Pico 17 (Thermoscientific, Massachusetts, USA),  

 Heraeus Megafuge 1.0R (Thermoscientific, Massachusetts, USA),  

 Eppendorf 5430R and Eppendorf 5415D (Eppendorf AG, Hamburg, 

Germany) 

Microscopes -  Olympus SZX10 (Olympus optical, Hamburg, Germany) 

Laminar flow hood -  Herasafe (Heraeus, Osterode, Germany)  

 Maxisafe (Thermoscientific, Massachusetts, USA) 

pH-meter - WTW ph 526 (Weilheim, Germany) 

Spectrophotometer - Nanodrop 1000 (PeqLab, Erlangen, Germany) 

PCR thermocyclers - MasterCycler Nexus (Eppendorf AG, Hamburg, Germany)  

Thermal Cycler 2720 and 7900HT fast real-time PCR system (Applied 

Biosystems, Darmstadt, Germany) 

Tissue homogenizer - TissueLyserLT (Qiagen, Hilden, Germany) 

Autoclave - systec VX-95 (systec, Wettenberg, Germany) 

Microtome - Leica RM2235 (Leica Biosystems, Nussloch, Germany) 

Plate reader - SpectraFluor Plus (Tecan, Crailsheim, Germany) 

Imaging software - Leica-DM6000B (Leica Biosystems, Nussloch, Germany) 

Thermoblocks- Thermostat Plus (Eppendorf AG, Hamburg, Germany) 

Embedding station- Leica EG1160 (Leica-Microsystems) 

CO2 Incubator- Galaxy S (RS Biotech, Irvine, UK) 

Laser-Capture Microdissection system (LCM) LMD7000 (Leica Microsystem, Wetzlar, 

Germany) 
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2.2 Chemicals 

β-Mercaptoethanol (Sigma-Aldrich, Steinheim, Germany) 

Dimethyl sulfoxide (DMSO) (Carl Roth, Karlsruhe, Germany) 

Dithiothreitol (DTT) (Carl Roth, Karlsruhe, Germany) 

Horse serum (Vector Laboratories, Burlingame, California, USA) 

Ketamin (Pfizer, Berlin, Germnay) 

Xylazine (Serumwerk, Bernburg, Germany) 

Lipofectamin 2000 (Thermo Scientific, California, USA) 

Mounting medium with DAPI (Vector Laboratories, California, USA) 

NP-40 alternative (Merck, Darmstadt, Germany) 

Paraformaldehyde (PFA) (Carl Roth, Karlsruhe, Germany) 

Paxgene tissue container (PreAnalytiX, Hombrechtikon, Switzerland)  

Phosphate-buffered saline, PBS Dulbecco (Thermo Scientific, California, USA) 

RNaseZap decontamination solution (Thermo Scientific, California, USA) 

RNAlater (Thermo Scientific, California, USA) 

Triton X-100 (Sigma-Aldrich, Steinheim, Germany) 

Tween® 20 (Merck, Darmstadt, Germany) 

Vitro Clud (R. Langenbrinck, Emmendingen, Germany) 

Borgal solution 24% (Virac, Carros, France)  

Ethanol absolute (Sigma-Aldrich, Steinheim, Germany) 

Neutral oil (Miglyol, Sasol, Hamburg, Germany) 

BSA (SERVA Electrophoresis GmbH, Heidelberg, Germany) 

Acid-Phenol: Chloroform (Applied Biosystems, Darmstadt, Germany) 

Xylol (Honeywell, Stuttgart, Germany)   
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2.3 Antibodies  

 

2.3.1 Primary antibodies 

Antigen Clone Host Catalogue # Company 

α-SMA 1A4 mouse M0851 Dako, Hamburg, Germany 

Mac-2 M3/38 rat CL8942AP 
Cedarlane, Burlington, 

Canada 

ARHGEF26 polyclonal rabbit ab129265 Abcam, Cambridge, UK 

CD31 polyclonal goat sc-1506 
Santa Cruz Biotechnology,  

Santa Cruz, CA, USA 

Ki67 polyclonal rabbit ab15580 Abcam 

Caspase3 polyclonal rabbit 9662S 
Cell Signaling, Danvers, MA, 

USA 

Nonspecific 

primary antibody 

(Ab) 

monoclonal mouse sc-2025 Santa Cruz Biotechnology 

Nonspecific 

primary Ab  
monoclonal rat sc-2026 Santa Cruz Biotechnology  

Nonspecific 

primary Ab 
polyclonal rabbit ab27472 Abcam 

Nonspecific 

primary Ab 
polyclonal goat sc-2028 Santa Cruz Biotechnology 

 

2.3.2 Secondary antibodies Antigen Conjugated Host Catalogue # Company 

anti-rabbit IgG  Dylight549-conjugated goat 042-04-15-06 
KPL, Gaithersburg, MD, 

USA 

anti-mouse IgG  FITC-conjugated donkey 715-096-150 

Jackson 

immunoResearch, 

Pennsylvania, USA 

anti-rat IgG  FITC-conjugated donkey 712-095-153 
Jackson 

immunoResearch 

anti-rabbit IgG  FITC-conjugated donkey 711-095-152 
Jackson 

immunoResearch 

anti-mouse IgG  Cy3-conjugated donkey 715-165-151 
Jackson 

immunoResearch 

2.4 Buffers 

20× SSC buffer: 3 M NaCl, 0.3 M Na citrate (pH 7.0).  

Tris/EDTA buffer: 100 mM Tris (pH 7.4), 10 mM EDTA (pH 8.0). 

Citrate buffer: 630 ml UP water, 12.6 ml solution A (2.101 g citric acid in 100 ml UP water), 

57.4ml solution B (14.70 g nitrium citrate in 500 ml of UP water), 320 μl Tween 20, (pH 6.0). 
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Elastic Van Gieson (EVG) staining solutions: 

Solution A: 10 g of hematoxylin was dissolved in 100 ml of 96% ethanol 

Solution B: 29% Iron (III)-Chloride solution (145 g of Iron (III)-Chloride was dissolved in 500 

ml of UP water) and 7.5 ml of 37% HCL was added to 950 ml of UP water. 

TBS (1X): 

25 mM Tris-HCL, pH 7.4, 2.7 mM KCl, 137 mM NaCl 

4% PFA: 

16 g of PFA was added to 184 ml of UP water and dissolved by adding 5 ml of 10 M NaOH 

during heating at 100°C. The pH was decreased to 7.4-8 by adding 25% HCl. Subsequently, an 

equal volume of 2×PBS was added and the solution was filtered through a filter paper.  

Immunofluorescence staining: 

Blocking solution A: 5.4 ml PBS, 600 μl 10% BSA, 3 drops 2.5% normal horse serum. 

Oil Red O stock solution: 

1 g Oil Red O powder (Sigma-Aldrich) was dissolved in 200 ml 99% isopropanol 

Oil Red O working solution:  

160 ml Oil Red O stock solution was mixed with 120 ml UP water and stored at room 

temperature for 1 h. The solution was filtered through a filter paper. 

2.5 Mouse husbandry 

Mice were housed 4 per cage in a barrier facility and maintained on a 12 hour light-dark schedule 

within the animal laboratory facility of the University, the Zentrale Versuchstierhaltung (ZVH), 

Klinikum Universität München. Mice had free access to water and chow. All animal experiments 

were reviewed and approved by the local authorities (District Government of Upper Bavaria) in 

accordance with the German animal protection laws. 

2.6 Mouse strains 

Apolipoprotein E
–/–

 (Apoe)
–/– 

mice were purchased from the Jackson Laboratory (Bar Harbor, 

ME, USA) and used for some experiments. Male smooth muscle myosin heavy chain (SMMHC)-

Cre
+
 mice (kindly provided by Dr. Stefan Offermanns, Max Planck Institute for Heart and Lung 

Research, Bad Nauheim, Germany) were crossed with Dicer
+/+

 Apoe
–/–

 and Dicer
flox/flox

/Apoe
–/–

 

mice (The Jackson Laboratory) to obtain SMMHC-Cre
+
Dicer

+/+
 Apoe

–/–
 (SM-Dicer

+/+
) mice (as 

control group) and SMMHC-Cre
+
Dicer

flox/flox
Apoe

–/–
 (SM-Dicer

–/–
) mice

113, 114
. Dicer

 
floxed 

http://www.mpg.de/149809/herz_lungenforschung
http://www.mpg.de/149809/herz_lungenforschung
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mutant mice possess loxP sites flanking exon 23 of the Dicer1 gene. Cre-mediated recombination 

after tamoxifen injection results in the loss RIIIDb function due to the deletion of 90 amino acids 

in this domain
113

.  

 

2.6.1 Endothelial denudation injury to the carotid artery 

SM-Dicer
+/+

, SM-Dicer
–/–

 male mice, and Apoe
–/–

 mice (6-8 weeks old) were used for 

experiments. To induce cre recombinase activity the SM-Dicer
+/+

 and SM-Dicer
–/–

 mice were 

injected intraperitoneal (i.p.) with tamoxifen (2 mg per 20 g body weight; Sigma-Aldrich) 

dissolved in neutral oil for 5 consecutive days and 7 days after the last tamoxifen injection they 

fed a high-fat diet (HFD) comprising 0.15% cholesterol, 21% crude fat and 19.5% casein (ssniff 

Spezialdiäten GmbH, Soest, Germany or Altromin GmbH, Lage, Germany) for 7 days
113

. Apoe
–/–

 

mice were also fed a HFD for 7 days. Animals were anesthetized with ketamin (80 mg/kg, i.p., 

Pfizer, Berlin, Germnay) and xylazine (5 mg/kg, i.p., Serumwerk, Bernburg, Germany). Wire-

induced endothelial denudation was performed in the left carotid artery using a flexible 

angioplasty guide wire (0.36 mm diameter). The common, internal, and external carotid arteries 

were transiently ligated to interrupt the blood flow. After a transverse arteriotomy made in the 

external carotid artery (ECA), the angioplasty guide wire was inserted into the common carotid 

artery (CCA). The wire was rotated and moved 3 times back and forth the CCA resulting in 

endothelial denudation. After removal of the wire, the ECA was completely ligated and the blood 

flow restored through the common and the internal carotid arteries (ICA) (Figure 7)
115

.  

Figure 7. Wire-induced endothelial denudation of murine carotid arteries. Blood flow was transiently 

obstructed by ligating the CCA, the ECA and the ICA. Endothelial denudation of the CCA was achieved 

by 3 rotational passes using an angioplasty guide wire inserted into the ECA. The blood flow through the 

CCA and the ICA was restored by removing the ligation, whereas the ECA was occluded. 
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2.6.1 In situ perfusion of the vasculature 

Mice were anesthetized with ketamine hydrochloride and xylazine (as described in chapter 2.6.1) 

blood was taken by cardiac puncture for serum lipid measurements, the chest was opened, and a 

catheter was inserted into the left ventricle through an incision in the apex. Mice were then 

perfused with RNAlater (Thermo Scientific) or PAXgene Tissue Fix (PAXgene Tissue 

Containers; Qiagen) before harvesting of the tissues.  

To perfuse the animal with Paxgene Tissue Fix or RNA later, the right atrium was cut and a 

needle connected to a 1 ml syringe was inserted into the left ventricle. The vascular system was 

first perfused with 1 ml ice-cold PBS to remove blood and subsequently with 1 ml PAXgene 

Tissue Fix solution or RNAlater.  

After the perfusion with PAXgene, tissues were harvested and placed in PAXgene Tissue Fix 

solution for 2 h. Following fixation, tissues were removed from the PAXgene Tissue Fix solution 

and transferred to the PAXgene Tissue Stabilizer solution. Stabilized samples were embedded in 

paraffin for histological studies (see section 2.11.1). It includes 2 solutions PAXgene Tissue Fix, 

which rapidly enters and fixes the tissue, and PAXgene Tissue Stabilizer which protects nucleic 

acids and morphology of the tissue for up to 7 days at room temperature and at 2-8°C or -20°C 

for longer periods.  

To stabilize RNA, the vascular tree was flushed with 0.5-1 ml RNAlater solution. After this 

perfusion, tissues were dissected and placed in RNAlater solution. Samples were stored in 

RNAlater solution up to 21 days at 4ºC before the RNA was isolated for qRT-PCR analysis. All 

instruments used during organ dissection were first treated with RNaseZap according to the 

manufacturer’s instructions.  

2.7 MiRNA expression profile 

Carotid arteries from Apoe
–/–

 mice were perfused with RNAlater and harvested before (0 day) and 

1, 7, 14, and 28 days after wire injury. Of note, animal experiment for miRNA microarrays 

including surgical wire injury procedure and carotid harvest was performed by Maliheh Nazari-

Jahantigh. Total RNA was isolated from the carotid arteries using the mirVana miRNA isolation 

kit (Thermo Scientific) according to the manufacturer’s protocol. Briefly, the samples were 

disrupted with tissue homogenizer (Qiagen) and lysed in a denaturing lysis buffer, which 

stabilizes RNA and inactivates RNases. Next, the lysate was subjected to acid-phenol: 

chloroform extraction, which removes most of the DNA and the other cellular components. The 
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semi-pure RNA extracts were further purified over a glass-fiber filter to obtain total RNA. The 

RNA integrity number (RIN) of each sample was determined by capillary electrophoresis 

(Bioanalyzer Agilent 2100) using RNA 6000 Nano LabChip Kits (Agilent Technologies). The 

RNA was separated according to fragment size, and the fragments are detected and depicted as 

electropherograms and virtual gel images. The RIN was derived from the electrophoretic profile 

of the 28S and 18S-rRNAs (indicating massive degradation) to 10 (indicating no degradation). In 

addition to the 28S and 18S-rRNA peaks, the RIN calculation also takes into account the entire 

electrophoretic profile (e.g., the fraction of short degraded RNA species). RNA samples with a 

RIN ≥ 7.5 were used for further downstream analysis. A one–color–based hybridization protocol 

(DNAvision, Gosselies, Belgium) was applied using SurePrint mouse miRNA microarrays 

(Sanger miRBase v12) (Agilent Technologies). The microarray data were analyzed using 

Genespring GX13 software (Agilent Technologies). 

2.8 MiRNA real-time PCR array 

Total RNA from carotid arteries of SM-Dicer
+/+

 and SM-Dicer
–/–

 mice was isolated using 

mirVana kit according to the standard protocol of kit. The RNA quality of the samples was 

determined using an Agilent 2100 Bioanalyzer. RNA samples with RIN ≥ 7.5 were used for the 

array. Reverse transcription and pre-amplification were performed using the Megaplex reverse 

transcription (RT) & Preamp Rodent Pool Set (Thermo Scientific) according to the 

manufacturer’s instructions. To synthesize single-stranded cDNA, TaqMan microRNA reverse 

transcription kit (Thermo Scientific) and the Megaplex rodent RT primers (Thermo Scientific) 

were used. To perform reverse transcription, 3 μL (1 to 350 ng) total RNA were added to the 4.5 

μL of RT reaction mix. The RT reaction was carried out in the thermal cycler (Table 1). 

Table 1. Thermal cycling conditions 

Stage Temperature Time 

Stage 1-40 

16°C 2 min 

42°C 1 min 

50°C 1 sec 

Stage 41 85°C 5 min 

Hold 4°C ∞ 

Next, the cDNA samples were preamplified using Megaplex rodent preamplification primers and 

TaqMan preamplification master mix (both from Thermo Scientific). To prepare the 
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preamplification reaction 2.5 μL RT products were added to 22.5 μL preamplification reaction 

mix (Table 2).  

Table 2. Preamplification reaction 

Stage Temperature Time 

Stage 1 95°C 10 min 

Stage 2 55°C 2 min 

Stage 3 72°C 2 min 

Stage 4-16 (12 Cycles) 
95°C 15 sec 

60°C 4 min 

Stage 17‡ 99.9°C 10 min 

Hold 4°C ∞ 

‡ Required for enzyme inactivation. 

Preamplified products were diluted using 75 μL of tris-EDTA buffer pH 8.0. The PCR reaction 

mix for one array plate was prepared as follows in the Table 3. 

Table 3. PCR reaction 

Component Volume  

TaqMan universal PCR master mix, no 

ampErase UNG, 2x 
450 µl 

Diluted preamplified product 9 µl 

Nuclease-free water 441 µl 

Total 900 µl 

Finally, the samples were loaded into preconfigured 384-well microfluidic cards (TaqMan Array 

MicroRNA Cards, Thermo Scientific) and real-time analysis of 518 mouse miRNAs (Sanger 

miRBase v10) using the 7900HT real-time-PCR System was used (Table 4). 

Table 4. Real-time PCR program 

Stage Temperature Time 

Stage 1 50°C 2 min 

Stage 2 94.5°C 10 min 

Stage 3-43 (40 Cycles) 
97°C 30 sec 

59.7°C 1 min 

 

Data were analyzed using StatMiner software (Integromics, Granada, Spain) according to the 

ΔΔCt method using multiple internal control genes. The most stable combination of internal 

controls was determined using the Genorm algorithm. The fold change compared with the control 

group was calculated and logarithmically transformed (log10).  
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2.9 Global gene expression analysis 

Carotid arteries of SM-Dicer
+/+

 and SM-Dicer
–/–

 mice were harvested 14 days after vascular 

injury, following in situ perfusion with RNAlater (see also section 2.6.1). Animal experiments for 

gene expression the microarray were performed by Zhe Zhou. Total RNA was isolated using 

RNeasy micro Kit (Qiagen). The quality of the RNA samples was checked by 2100 Bioanalyzer 

and only the samples with RIN ≥ 7.5 were used for the array. A one-color based hybridization 

protocol was applied (IMGM Laboratories, Munich, Germany) using SurePrint G3 Mouse GE 

Microarrays (8x 60K format, Agilent). The microarray data were analyzed by GeneSpring GX13 

software. Data were analyzed by Ingenuity Pathway Analysis (IPA, Qiagen) to predict upstream 

regulators of the differentially expressed genes. 

 

2.9.1 Prediction of miRNAs target genes 

Integrative target prediction analysis of 66 downregulated miRNAs (P < 0.05; fold change ≥ 2) 

and 217 annotated upregulated genes (P < 0.05, fold change ≥ 2) were compared between SM-

Dicer
–/–

 mice and SM-Dicer
+/+

 mice using the web tool Magia
2 

(http://gencomp.bio.unipd.it/magia2/start/) with the miRanda prediction algorithm 

(http://www.microrna.org/microrna/home.do) including the top 50% predictions (prediction score 

cut-off = -0.3)
116

. First, a meta-analysis approach based on a P value calculation according to 

linear models for microarray data was applied separately for miRNAs and genes in the 2 groups 

and combined with the inverse chi square distribution to identify oppositely regulated miRNA-

gene pairs. In addition, false positive discovery rates for each mRNA-miRNA interaction were 

calculated following the Benjamini and Hochberg estimation method and interactions with an 

adjusted P value < 0.05 were selected. The network of the top 70 interactions was graphically 

depicted using Cytoscape software (http://www.cytoscape.org/). The conservation of miRNA 

binding sites in the mRNA targets between human and mouse was analyzed with TargetScan 

(http://www.targetscan.org). Potential target genes of miRNAs were identified among the up-

regulated genes (> 2-fold) 14 days after injury in carotid arteries of SM-Dicer
+/+

 and SM-Dicer
–/–

 

mice. 

2.10 Quantitative real-time polymerase chain reaction (qRT-PCR)  

The differential regulation of the miRNAs and mRNAs was studied by qRT-PCR which runs on a 

7900HT thermocycler. TaqMan gene or SYBR green expression assays were used in all the 

http://gencomp.bio.unipd.it/magia2/start/
http://www.microrna.org/microrna/home.do
http://www.cytoscape.org/
http://www.targetscan.org/
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experiments. SYBR green is a DNA binding dye that binds to all double stranded DNA during 

PCR and results in fluorescence which can be measured. It is important to have well-designed 

SYBR green primers that do not amplify non-target sequences. In this technique, the amplified 

cDNA is measured as the reaction progresses. During PCR, an increase in the DNA product leads 

to an increase in fluorescence intensity which can be measured at each cycle and hence the DNA 

concentration is quantified. This in turn can be used to calculate the expression of a target gene. 

The TaqMan gene expression assay consists of primers and probes. The purpose of these 

designed probes is to increase the specificity of quantitative PCR. The TaqMan probe contains a 

reporter dye at the 5′ end and a nonfluorescent quencher at the 3′ end. During the PCR reaction, 

the probe is cleaved, thereby separating the reporter dye and the quencher dye resulting in a 

fluorescent signal. The accumulation of the PCR products is detected by monitoring the increase 

in fluorescence of the reporter dye.  

Total RNA was isolated from paraffin embedded sections or from cultured SMCs using mirVana 

miRNA isolation kit (Thermo Scientific), PAXgene RNA MinElute kit (Qiagen), or RNeasy Mini 

Kit (Qiagen). The RNA concentration was determined by measuring the absorbance at 260 nm 

(A260) using spectrophotometer. The absorbance at 280 nm was also measured to determine the 

RNA purity. RNA with an A260/A280 ratio of 1.8-2.0 was used. For both SYBR green and 

TaqMan gene expression assays, RNA was reverse transcribed with the reverse transcription 

master mix (High capacity cDNA reverse transcription kit, Applied Biosystems, Foster city, CA) 

according to the manufacturer’s protocol (Table 5). The RT reaction consists of the following 

four steps: 25°C for 10 min, 37°C for 120 min, 85°C for 5 min and 4°C.  

The cDNA was subjected to PCR amplification with specific set of SYBR green primers (Sigma-

Aldrich, Table 6). PCR was performed in a 7900HT fast real-time PCR system (Applied 

Biosystems, Darmstadt, Germany) (Table 7).  
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Table 5. Reverse transcription 

Solution Volume 

RT buffer, 10x 2 μl 

dNTP mix (100 mM), 25x 0.8 μl 

RT random primers, 10x 2 μl 

multiscribe reverse transcriptase 1 μl 

RNase inhibitor 1 μl 

Nuclease-free water 3.2 μl 

RNA (up to 500 ng) 10 μl 

Table 6. Real-time PCR  

Solution  Volume 

SYBR green master mix 12.5 μl 

nuclease-free water 9.5 μl 

each forward and reverse primer 0.5 μl 

cDNA (25 ng) 2 μl 

Table 7. Real-time PCR program  

Steps Temperature  Time 

Initial denaturation 95° C 10 min 

Denaturation 95° C 15 sec 

Annealing 63° C 30 sec 

Extension 72° C 30 sec 

To check the expression of genes using TaqMan gene expression assays, cDNA was subjected to 

PCR amplification with TaqMan premixed primers and probes (Thermo scientific, Table 8). PCR 

was performed in a 7900HT fast real-time PCR system (Table 9). 

Table 8. Real-time PCR  

Solution Volume 

TaqMan universal PCR master mix 5 μl 

TaqMan gene expression assay mix, 20x 0.5 μl 

cDNA diluted in nuclease-free water (25 ng) 4.5 μl 

Table 9. Real-time PCR program 

Stage Temperature  Time 

UNG activation 
50° C 

95° C 

2 min 

10 min 

Denaturation 95° C 15 sec 

Annealing/extension 60° C 1 min 

40 

40 
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The relative expression levels were calculated using multiple internal control genes, adjusted for 

differences in PCR efficiency (Qbase, Biogazelle, Zwijnaarde, Belgium) and logarithmically 

transformed. Expression of the housekeeping genes such as Gapdh and Actb which is used to 

normalize the target gene expression should not vary among different samples used in the 

study
117

. However, previous studies show that housekeeping gene expression can vary in 

different tissues; therefore the use of one housekeeping gene to normalize gene expression may 

lead to errors. In order to obtain accurate measurement of gene expression, multiple internal 

control genes were used and the analysis was performed using the Qbase software. This software 

calculates the expression stability of the housekeeping genes in different samples. This is based 

on the principle that the ratio of two housekeeping gene expression is identical among all the 

samples
117

. An increasing variation in the ratio corresponds to decreasing expression stability of 

the housekeeping genes. The relative expression levels were normalized to the reference genes 

and logarithmically transformed (log10) (Qbase, Biogazelle).  

The mRNA expression levels of Rho guanine nucleotide exchange factor 26 (Arhgef26), SH3 

domain binding glutamate-rich protein like (Sh3bgrl2), SH2 domain containing 5 (Sh2d5), Delta 

like 4 (Dll4), carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 (Chst1), Insulin-like growth 

factor binding protein 3 (Igfbp3) and oncoprotein induced transcript 3 (Oit3) were quantified 

using either self-designed primers (Sigma-Aldrich) (Table 10) or TaqMan gene expression assays 

(Thermo scientific).  
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Table 10. PCR primer sequences  

Gene Primer sequence 

CDKN1A 
5'-GTGAAAACAGAGCGAGAGAGATG-3' 

5'-CAGGGGTACAGTGCTAAAGGC-3' 

CDKN1B 
5'-TAATTGGGGCTCCGGCTAACT-3' 

5'-TGCAGGTCGCTTCCTTATTCC-3' 

MYH11 
5'-TGGAACTTCATCGACTTTGGG-3' 

5'-ACAGCTTCTCCACGAAAGAC-3' 

DLL4 
5'-CACGGAGGTATAAGGCAGGAG-3' 

5'-TCACAGTCTGTCCGGTTCCT-3' 

OIT3 
5'-GTACAGTGGTCGATGTGGTGA-3' 

5'-GCTTGCTGGTTCGGATGATG-3' 

TAGLN 
5'-TCCAGACTGTTGACCTCTTTG-3' 

5'-CAGTTGGGATCTCCACGGTAG-3' 

GAPDH 
5'-AGGGCTGCTTTTAACTCTGGT-3' 

5'-CCCCACTTGATTTTGGAGGGA-3' 

Arhgef26 
5'-CATGCTACTAGGCGCTGAGAC-3' 

5'-GTCAGGGTGGTTCTGTCTGGT-3' 

Chst1 
5'-TCTTGGAAGGCTGTCCTCCT-3' 

5'-CCAGGGCAAGTGTGGAAAGA-3' 

Sh3bgrl2 
5'-AATGGCACTGTCTGGGCATC-3' 

5'-AGCAGCTTTCAGGCCATAGT-3' 

Dicer1 
5'-GAATAAGGCTTATCTTCTGCAGG-3' 

5'-CATAAAGGTGCTTGGTTATGAGG-3' 

Dll4 
5'-GAACAGAGGTCCAAGCCGAA-3' 

5'-CAGGCCCATTCTCCAGATCG-3' 

Tagln2 
5'-CCAAGCAGACTTCCATGGGC-3' 

5'-TGTTGAGGCAGAGAAGGCTTG-3' 

B2m 
5'-TCGGTGACCCTGGTCTTTCT-3' 

5'-TTTGAGGGGTTTTCTGGATAGCA-3' 

2.11 Histochemistry 

 2.11.1 Paraffin embedding, sectioning, and deparaffinization 

To quantify the lesion size, samples (arteries) were harvested from mice following in situ 

perfusion and fixation. Next, tissues were dehydrated using tissue processor and embedded in 

liquid paraffin (approximate temperature 60ºC) according to the following protocol:  

 Ethanol 70% for 30 min at 20ºC 

 Ethanol 70% for 30 min at 20ºC 

 Ethanol 96% for 30 min at 20ºC 

 Ethanol 96% for 30 min at 20ºC 

 Ethanol 100% for 30 min at 20ºC 
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 Ethanol 100% for 30 min at 20ºC 

 Ethanol 100% for 30 min at 20ºC 

 Xylol for 30 min at 45ºC 

 Xylol for 30 min at 45ºC 

 Xylol for 30 min at 45ºC 

 Paraffin I for 30 min at 62ºC 

 Paraffin II for 30 min at 62ºC 

 Paraffin III overnight at 62ºC 

The paraffin blocks were allowed to harden at -20°C (Leica EG1160) before sectioning using a 

microtome. Serial sections (5 μm thick) of the common carotid artery were collected on glass 

slides (Superfrost plus glass slides, Thermo Scientific) within 1 mm of the bifurcation area. After 

sectioning, the slides were incubated in a 37ºC incubator for 5-6 h or at room temperature 

overnight to reduce detachment of the tissue during staining. 

 

2.11.1 EVG staining  
To measure lesion size in paraffin embedded tissues EVG staining was performed. Cross sections 

of the carotid artery (3-5 per mouse) obtained at a standard distance (50 μm) starting from the 

bifurcation was used for staining. In order to stain the sections, deparaffinization and rehydration 

was performed according to the following protocol: 

Incubate in Xylol for 10 min 

Incubate in Xylol for 10 min 

Incubate in 100% ethanol for 5 min 

Incubate in 100% ethanol for 5 min 

Incubate in 96% ethanol for 5 min 

Incubate in 70% ethanol for 5 min 

Incubate in UP water for 5 min 

Incubate in PBS for 5 min 

EVG staining was performed using the following protocol: 

1) The sections were deparaffinized and rehydrated by the following procedure: 

2) Stained in resorcein-fuchsin solution (Roth, X877.1) for 15 min at 56ºC followed by slowly 

dipping in tap water 1-2 times. 

3) Differentiated in 80% ethanol followed by dipping in tap water and UP water 
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4) Incubated in solution A+B (100ml solution A and 100 ml solution B, freshly prepared, see also 

section 2.4) for 5 min 

5) Differentiated with 0.5% HCL-alcohol by dipping in the solution a few times 

6) Washed in tap water until the color of the nucleus turned blue 

7) Incubated in pikrofuchsin (Merck, 1.15974/4) for 1 min and washed in tap water shortly 

8) Dipped shortly in 70% ethanol followed by 96% ethanol 

9) Incubated in 100% ethanol for 3 min followed by 5 min in xylol and then the cover slip was 

placed using Vitro-Clud 

Images were obtained under a bright-field microscope (Leica DM6000B) connected to a camera 

(Leica DFC295) and using LAS software (Leica Microsystems). To measure the neointima area, 

images were opened with the image analysis software (ImageJ) available for free download 

http://rsb.info.nih.gov/ij/download.html. Next, the straight line draws along with the scale bar of 

the image to set up the accurate measurement by the software. To define the neointima area, a 

line was drawn manually around the neointima area and the software calculates the area 

automatically (Figure 8).  

  

Figure 8. Morphometric analysis of the CCA. IEL- internal elastic lamina. 

IEL 

Neointima area 

http://rsb.info.nih.gov/ij/download.html
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2.11.2 In vivo immunostaining  

To determine the composition of the neointimal area following wire injury, quantitative 

immunostaining in carotid artery sections (5 μm thick) was performed using primary antibodies 

for α-smooth muscle actin (SMA; 1:200), macrophage specific (Mac2, 1:200), Ki67 (1:1500), 

ARHGEF26 (1:20), activated Caspase 3 (1:400), and CD31 (1:75) (Table 8, see also section 

2.3.1). To detect the primary antibody, fluorescently conjugated secondary antibodies (FITC, 

Cy3, Dylight488, or Dylight549) were used (Table 11, see also section 2.3.2). The nuclei were 

counterstained with 4', 6-Diamidino-2-phenylindol (DAPI, Vector Laboratories). Fluorescence 

microscope (Leica-DM6000B) connected to a charge coupled device camera (Leica DFC365FX) 

was used to acquired digital images. The percentage of the cell number or positively stained area 

(2–3 sections/mouse, 50 μm distance between sections) was quantified using ImageJ software. To 

adjust the threshold, the background of negative control staining was used. In addition, the 

number of immunostained cells in the plaques was determined by counting DAPI positive nuclei 

within the immunostained area. The number of the immunostained cells was expressed as the 

percentage of total plaque cells.  

Table 11. Immunostaining protocols: Ab details are given in sections 2.3.1 – 2.3.2 

Antigen 
Antigen 

retrieval 
Blocking Primary Ab 

Detection 

system 

SMA 
Citrate buffer, 

20 min (100ºC) 

Blocking solution A 

(see section 2.4), 30 

min 

1:200, clone 

1A4, 4ºC, 

overnight (ON) 

anti-mouse Cy3 

1:300, 30 min 

Mac-2 
Citrate buffer, 

20 min (100ºC) 

Blocking solution A 

(see section 2.4), 30 

min 

1:200, clone 

M3/38, 4ºC, 

ON 

anti-rat FITC, 

1:100, 30 min 

CD31 
Citrate buffer, 

20 min (100ºC) 

Blocking solution A 

(see section 2.4), 30 

min 

1:75, goat 

polyclonal, 4ºC, 

ON 

anti-goat-Cy3, 

1:300, 30 min 

Activated 

Caspase 3 

Citrate buffer, 

20 min (100ºC) 

Blocking solution A 

(see section 2.4), 30 

min 

1:400, rabbit 

polyclonal, 4ºC, 

ON 

anti-rabbit-FITC, 

1:100, 30 min 

Ki67 
Citrate buffer, 

20 min (100ºC) 

Blocking solution A 

(see section 2.4), 30 

min 

1:1500, rabbit 

polyclonal, 4ºC, 

ON 

anti-rabbit-FITC, 

1:100, 30 min 

 

2.11.3 Combined in situ PCR and immunostaining 

In situ PCR is a method for the miRNAs detection in formalin fixed, or paraffin-embedded 

tissues. This method involves the extension of the labeled miRNA hybridized to a template with 
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100-nucleotide–long ultramer that contains the complementary sequence of the miRNA 3′-UTR. 

The extension method results in visualizing the miRNA signal in specific cells and tissues with 

using RT-PCR
118

.  

PAXgene-fixed carotid artery sections (5 μm thick) were deparaffinized in absolute ethanol, 96% 

ethanol, 70% ethanol, each 5 min; and absolute ethanol for 5-8 sec. Sections were incubated with 

DNase (Roche, Basel, Switzerland) ON at 37°C. One-step reverse transcriptase in situ PCR was 

performed in MasterCycler equipped with an adjustable slide container using gene-specific PCR 

in situ primers (Sigma-Aldrich, Table 12), SuperScript One-Step RT-PCR with PlatinumTaq 

(Thermo Scientific) and digoxigenin-11-dUTPs (Roche)
118, 119

. After washing with SSC buffer 

and blocking the nonspecific binding sites using nitroblue tetrazolium chloride (PerkinElmer, 

MA, USA) and biotin/avidin binding sites by using a blocking kit (Vector Laboratories), sections 

were incubated for 1 h at 37°C with a peroxidase-conjugated anti-digoxigenin sheep F’ab 

fragments (Fab fragments from sheep, 1:100 dilution; Roche). To visualize the probe a tyramide-

based amplification system (TSA Plus Biotin, PerkinElmer) and Dylight 549–conjugated 

streptavidin (1:200) were used. Sections were subsequently stained with SMA antibody (1:200) 

followed by a FITC-conjugated secondary antibody (Jackson ImmunoResearch). 

Table 12. In situ PCR primer sequences  

Gene Primer sequence Company 

Taq-in situ-miR-27a RT 
5'-GTATTCGCATGGATACGACGCGGA 

GTCGTATCCAGTGCAGGGTCCGAG-3' 
Sigma-Aldrich 

Taq-in situ-miR-27a 5'-GCCCTTCACAGTGGCTAAGT-3' Sigma-Aldrich 

2.12 Laser-Capture Microdissection system (LCM) 

Laser-Capture Microdissection system (LCM) is used to isolate specific cells of interest from 

microscopic regions of cells, tissue, and organisms. The area around the sample was cut by laser 

and collects it in the microfuge tube cap containing a buffer to adhere the tissue inside the cap 

(Figure 9). 

https://my.labguru.com/catalog/companies/491
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Figure 9. Laser-Capture Microdissection system (LCM). By using this method, the area around EC and 

SMC layers of an artery is cut by laser and collected in the microfuge tube cap containing a buffer.  

PAXgen-fixed serial sections (4 μm thick) of the uninjured (right) carotid arteries from SM-

Dicer
+/+

 and SM-Dicer
–/–

 mice (100-120 sections per mouse) were collected on RNase-free and 

UV-sterilized POL-membrane 0.9 µm FrameSlides (Leica Microsystem, Wetzlar, Germany) and 

dried at 40°C using Thermostat plus. All the steps were performed in the RNAse free condition to 

preserve RNA integrity. To collect ECs and SMCs, the inner cell monolayer of the artery was 

considered as the layer which contains ECs and the subsequent layer considered as medial layer 

containing SMCs (Figure 9). ECs and SMCs were carefully collected in separate tubes contains 

50 µl of TM1 buffer (PAXgene RNA isolation kit) using laser microdissection (Leica LMD7000) 

equipped with an inverted camera (Leica DFC365 FX) to visualize laser-dissected sections as 

digital images. Total RNA was isolated using the PAXgene RNA MinElute kit (Qiagen). 

 2.12.1 Human carotid lesion samples 

Human atherosclerotic lesion samples were obtained during carotid endarterectomy (kindly 

provided by Dr. Jochen Grommes, European Vascular Center Aachen-Maastricht, Aachen, 

Germany) and fixed with 4% paraformaldehyde. Paraffin embedded tissues (see also section 

2.11.1) were sectioned (5 μm thick) and incubated with primary antibodies for ARHGEF26 

(1:20) and in situ PCR for miR-27a-3p combined with α-smooth muscle actin (SMA; 1:200) 

(Table 2, see also section 2.3.1). Fluorescently conjugated secondary antibodies (FITC, Cy3, 

Dylight488, or Dylight549) (Table 8, see also section 2.3.2) were used to detect the primary 

antibodies. The nuclei were counterstained with DAPI (Vector Laboratories). All participants 
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gave their written informed consent. The study was approved by the Ethics Committee of the 

Medical Faculty at RWTH Aachen University for the collection of human plaque. 

2.13 Cell culture 

Human aortic SMCs (HASMCs) (Promocell GmbH, Heidelberg, Germany; passage 2–5) at a 

density of 1.5 × 10
5
 cells per well were seeded on 6-well plates (Sigma-Aldrich) and grown in 

smooth muscle cell growth medium 2 (Promocell), which contains growth factors, such as EGF, 

bFGF, and Insulin. Lipofectamine-2000 was used to transfect HASMCs for 48 h with the 

following nucleic acids: Locked nucleic acid (LNA)-modified miR-27a-3p inhibitors 

(CGGAACTTAGCCACTGTGA) or nontargeting control oligonucleotides 

(GTGTAACACGTCTATACGCCCA) (50 nM each; Exiqon), miR-27a-3p mimics 

(UUCACAGUGGCUAAGUUCCGC) or nontargeting control oligonucleotides (50 nM each; 

Thermo Scientific). ARHGEF26 was silenced using a GapmeR (GTAATGCAAGGATAGA) or 

control GapmeR (AACACGTCTATACGC) (50 nM each; Exiqon). GapmeRs are single strand 

(16 nucleotides long) antisense oligonucleotides that were used to study the loss of functions of 

proteins, mRNA and lncRNAs. They catalyze degradation of complementary RNA targets using 

RNase H. GapmeRs have the LNA-containing flanking regions which confer nuclease resistance 

to the antisense oligo while at the same time it increases target binding affinity regardless of the 

GC content. The central DNA “gap” activates the cleavage of RNase H upon binding. 

ARHGEF26 target site blocker (ARHGEF26-TSB) (TTCACAGGATTCAAATAG) or control-

TSB (GCTCCCTTCAATCCAA) (50 nM miRCURY LNATM miRNA Target Site Blockers; 

Exiqon) were used to study the functional role of the targeting of ARHGEF26 by miR-27a-3p. 

TSB is antisense oligonucleotides that bind to the miRNA target site of an mRNA to prevent 

miRNA from gaining access to that binding site. HASMCs were stimulated with IL-1 (5 ng/ml, 

Thermo Scientific). Total RNA was isolated after 48 h using the RNeasy Mini Kit or mirVana 

Isolation Kit.  

2.14 In vitro immunostaining  

HASMCs (passage 2–5) were plated on glass coverslips (Neuvitro, Vancouver, WA, USA) in 24-

well tissue culture plates (Sigma-Aldrich) for 24 h at a density of 3 × 10
4
 cells per well. 

HASMCs were fixed in ice-cold methanol-acetone with a 50-50 mixture (v/v) for 5 min. 
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Immunostaining was performed using a primary antibody against Ki67 (1:1500). Cell nuclei were 

counterstained with DAPI. The primary antibody was detected with fluorescently labeled anti-

rabbit, FITC-conjugated secondary antibodies (1:100, see also sections 2.3.1 and 2.3.2). Images 

were acquired using a Leica-DM6000B light microscope and the numbers of positive cells in 20 

fields from each chamber were counted using ImageJ software. 

2.15 MiRNA target identification and quantification system (MirTrap) 

HASMCs were co-transfected with miR-27a-3p mimics (50 nM, Thermo Scientific) and the 

vector called pMirTrap using the transfection reagent XfectTM miRNA which contains Xfect 

Polymer (all from Clontech, aint-Germain-en-Laye, France). The pMirTrap vector expresses a 

DYKDDDDK-tagged GW182 protein that enables locking of the mRNA/miRNA complex in the 

miRISC. HASMCs were collected after 24 h, washed with ice-cold PBS, and incubated in lysis 

buffer (MirTrap System) supplemented with protease inhibitors (Complete Protease Inhibitor 

Cocktail Tablets; Roche). The input RNA was isolated from the cell lysates. Anti-DYKDDDDK-

conjugated magnetic beads were washed two times with lysis wash buffer containing 0.1 unit/μl 

RNase inhibitor, 1 mM DTT, and protease inhibitors, and blocked for 3 h at 4°C with tRNA 

solution and BSA. Immunoprecipitation was performed by incubating anti-DYKDDDDK beads 

with the cell lysate for 2 h at 4°C and centrifugation at 1000 rpm. Total RNA was isolated after 

48 h using the RNeasy Mini Kit. The efficiency of transfection was determined by transfection of 

miR-132 mimics, the empty pMirTrap vector or the pMirTrap positive control vector, which 

expresses an Aequorea coerulescens green fluorescein protein (AcGFP1) that contains the miR-

132 target sequence. The fold enrichment of the target mRNAs in the GW182-

immunoprecipitates was normalized to GAPDH according to the manufacturer’s protocol.  

2.16 Luciferase reporter assay 

HEK293 cells cultured in complete DMEM (PAA Laboratories GmbH, Cölbe, Germany) were 

co-transfected with the Gaussia luciferase (GLuc) expressing pEZX-MT05 vector with or without 

the full length 3′-UTR of the human ARHGEF26 (500 ng, GeneCopoeia, Vienna, Austria), and 

miR-27a-3p mimic or control mimic oligonucleotides using Lipofectamine 2000 for 48 h.  

The miR-27a-3p binding site was mutated using the QuickChange site-directed mutagenesis kit 

(Agilent Technologies), PfuTurbo DNA polymerase (Thermo Scientific) and a PCR cycler, and 

using following primers (Sigma-Aldrich): 5′-
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GCTAAAAAGCAACTATTTGAATCCGTGTAATTAATTTATAAG-3′ and 5′- 

CTTATAAATTAATTACACGGATTCAAATAGTTGCTTTTTAGC-3′. The product was 

treated with Dpn I endonuclease to digest the parental DNA template and to select for mutation-

containing synthesized DNA
120

. The mutated pEZX-MT05 vector was transformed into XL10-

Gold Ultra component cells (Agilent Technologies) and the plasmid was isolated using the 

EndoFree Plasmid Maxi Kit (Qiagen). The GLuc and secreted alkaline phosphatase (SEAP) 

activities were measured 48 h after the transfection using the Secrete Pair Dual Luminescent 

Assay (GeneCopoeia) and a microplate reader (Tecan Group Ltd., Männedorf, Switzerland). The 

signal form GLuc luminescence was normalized to that of SEAP. 

2.17 Western blot analysis 

HASMCs were transfected with ARHGEF26-TSBs or control-TSBs and were lysed after 48 h in 

RIPA buffer (Sigma-Aldrich) containing protease inhibitors. Cell lysates from each sample were 

separated on SDS-PAGE gels and transferred to nitrocellulose membranes (Amersham/GE 

Healthcare, Uppsala, Sweden). The membrane was incubated with primary antibodies against 

ARHGEF26 (1:150, at 4°C ON) and ACTB (1:1000, at room temperature for 1 h), after blocking 

nonspecific binding with 5% milk in TBS (see also section 2.4) for 1.5 h at room temperature. To 

visualize the antigens, a secondary HRP-conjugated antibody (1:1000, at room temperature for 1 

h), an enhanced chemiluminescence detection system (ECL Advance, GE Healthcare Life 

Sciences) and an LAS 3000 Imager (Fuji Photo Film Co., Ltd., Tokyo, Japan) were used. The 

intensity of the bands was quantified by Multigauge software (Fuji Photo Film). ARHGEF26 

band intensities were expressed as a percentage of the ACTB bands. 

2.18 Statistics 

Quantitative PCR miRNA array data are presented as means, and groups were compared using an 

unpaired, moderated two-tailed t-test (Statminer 4.2, Integromics). The data represent as means ± 

s.e.m. More than 2 groups were compared using 1-way ANOVA followed by Newman-Keuls 

post-test and two groups were compared using paired, 2-tailed t-test (Prism 5.0; GraphPad and 

Genespring software). P < 0.05 was considered to be statistically significant.  

http://www.tebu-bio.com/brandsearch/217/GeneCopoeia.html
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3 Results 

3.1 Expression pattern of Dicer and miRNAs during neointima formation  

 

3.1.1 MiRNAs expression patterns during neointima formation  

MiRNA microarray analysis was performed in carotid arteries of Apoe
–/–

 mice before (0 day) and 

1, 7, 14, and 28 days after wire-induced injury to study the expression of 611 miRNAs. 

Transcripts of 401 miRNAs were detectable, 211 miRNAs of which were differentially expressed 

during neointima formation (P ≤ 0.05, n = 3–4 mice per group) (Supplemental Table 2 available 

on http://link.springer.com/article/10.1007%2Fs00018-016-2349-0#SupplementaryMaterial) 

(Figure 10). 

 

Figure 10. Differential expression of miRNAs during neointima formation. MiRNA microarray 

analysis was performed in carotid arteries from Apoe
–/–

 mice before (0 day) and 1, 7, 14, and 28 days after 

wire-induced injury (n = 3–4 mice per group). The number of differentially (P ≤ 0.05) and not 

differentially regulated miRNAs among the detectable miRNAs is shown. FC, fold change. 

The expression level of 159 significantly regulated miRNAs changed more than 2-fold. Notably, 

21 of the 25 most significantly regulated miRNAs were upregulated at day 7 and 14 after injury 

(Figures 11A-E) and their expression time course differed mainly at day 1. The expression level 

of 8 miRNAs peaked at day 1 (e.g., miR-21-3p and miR-16-5p, Figure 11A), whereas the 

expression of 5 miRNAs increased stepwise between day 1 and 7 (e.g., miR-222-3p; Figure 11B). 

Moreover, the expression level of 2 miRNAs (e.g., miR-34a-5p; Figure 11C) and 4 miRNAs 

(e.g., miR-299-3p; Figure 11D) remained unchanged and transiently decreased at day 1, 

respectively. The expression of two miRNAs, miR-377-3p and miR-299-5p (Figure 11E), peaked 
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at day 7 and returned to the baseline levels thereafter. By contrast, the expression level of 4 out of 

25 most significantly regulated miRNAs were downregulated at day 7, 14, and 28 after vascular 

injury (Figure 11F-H). However, miR-654-3p was upregulated at day 1 (Figure 11F) but along 3 

other miRNAs, such as miR-29c-3p (Figure 11G) and miR-181c-5p (Figure 11H), were 

downregulated at day 7 and 14 after injury and returned to the baseline level at day 28.  

 

Figure 11. Differential expression of miRNAs in wire-injured carotid arteries from Apoe
–/–

 mice. 

MiRNA microarray analysis was performed in carotid arteries from Apoe
–/–

 mice before (0 day) and 1, 7, 

14, and 28 days after wire-induced injury (n = 3–4 mice per group). (A-H) Expression patterns of the 25 

most significantly regulated miRNAs (FC ≥ 2). (A, B) Upregulated miRNAs at day 1, 7, 14, and 28 after 

injury. (C, D) Upregulated miRNAs at day 7, 14, and 28 after injury. (E, F) Upregulated miRNAs with a 

peak at day 1, and 7 and returned to the baseline level thereafter. (G, H) Different expression patterns of 

miRNAs downregulated during neointima formation. Error bars represent ± s.e.m. *P < 0.05 compared 

with 0 day; ‡P < 0.05 compared with 1 day. 
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3.1.2 Expression of Dicer during neointima formation 

To study the regulation of Dicer expression during neointima formation, carotid injury was 

induced in HFD-diet fed Apoe
–/–

 mice. Expression of Dicer in the carotid arteries was quantified 

at different time points by qRT-PCR. Notably, the expression of Dicer mRNA was significantly 

up-regulated in carotid arteries at day 7 and day 14 after injury compared with uninjured arteries 

(Figure 12). These data suggest that Dicer may contribute to the process of neointima formation. 

 

Figure 12. Dicer mRNA expression increased during neointima formation. Quantitation of Dicer 

mRNA expression in uninjured (0 day) and injured carotid arteries (1, 7, 14, and 28 days after vascular 

injury) from Apoe
–/–

 mice by qRT-PCR (n = 3–4 mice per group). All data are represented as the means ± 

s.e.m. of the indicated number (n) of repeats. **P < 0.01 compared to 0 day and 1 day and #P < 0.05 

compared to 1 day. P values were obtained by one-way analysis of variance (ANOVA). 

3.2 The effect of Dicer knockout in SMCs on neointima formation 
3.2.1 SMC-specific deletion of Dicer in 

–/–
Apoe

 
 mice

A tamoxifen-inducible transgenic mouse model was used to knockout Dicer in SMCs. To study 

whether tamoxifen injection indeed resulted in SMC-specific Dicer knockout in SM-Dicer
–/–

 

mice Dicer expression was quantified in carotid arteries (see section 2.6). Compared with SM-

Dicer
+/+

 control mice, the expression of Dicer was significantly reduced in injured carotid 

arteries of tamoxifen-injected SM-Dicer
–/–

 mice 14 days after injury (Figure 13A).  

To investigate whether the knockout of Dicer is SMC specific, Dicer mRNA expression was 

quantified in laser-microdissected SMCs and ECs isolated from the uninjured carotid arteries of 
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SM-Dicer
–/–

 and SM-Dicer
+/+

 mice 35 days after tamoxifen injection. Whereas Dicer expression 

was similar between SMCs and ECs from SM-Dicer
+/+

 mice, Dicer mRNA levels were reduced 

in SMCs compared with ECs in SM-Dicer
–/– 

mice (Figure 13B). These data indicate that Dicer 

expression is specifically reduced in vascular SMCs. 

  

Figure 13. Dicer mRNA expression in SM-Dicer
–/– 

and SM-Dicer
+/+

 mice.
 
(A)

 
Quantification of Dicer 

mRNA expression in injured carotid arteries from SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice by qRT-PCR 

(n = 4 mice per group). (B) Quantification of Dicer mRNA expression in SMCs and ECs of uninjured 

carotid arteries from SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice by qRT-PCR (n = 2-3 mice per group). All 

data are represented as the means ± s.e.m. of the indicated number (n) of repeats. *P < 0.05, **P < 0.01 

compared with SM-Dicer
+/+ 

mice. P values were obtained by Student's t test or one-way analysis of 

variance (ANOVA). 

 
3.2.1 Effect of SMC-specific-Dicer knockout on neointima formation 

To study the effect of Dicer in SMCs on neointimal growth, wire-induced vascular injury was 

performed in SM-Dicer
–/– 

and
 
SM-Dicer

+/+ 
mice. The left carotid arteries of SM-Dicer

–/– 
and

 
SM-

Dicer
+/+ 

mice were harvested 14 days and 28 days after injury. Planimetry of the neointima in 

histological sections of the carotid arteries showed that loss of Dicer expression in SMCs 

enhanced neointima formation in the carotid artery at 14 days and 28 days after injury, indicating 

that Dicer-dependent miRNA biogenesis limits neointima formation (Figure 14A-C). 
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Figure 14. Dicer deletion in SMCs increased neointima formation. Lesion areas were quantified in 

carotid sections of SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice at 14 days (A) and 28 days (B) after vascular 

injury stained with elastic van Gieson stain (representative images are shown). (C) Quantification of 

neointima formation in injured carotid arteries from SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice (n = 5–7 

mice per group). Scale bars, 200 μm. All data are represented as the means ± s.e.m. of the indicated 

number (n) of repeats. *P < 0.05 compared with SM-Dicer
+/+ 

mice. P values were obtained by Student's t 

test. 

To investigate the effect of SMC-specific Dicer deletion on the cellular composition of the 

neointima, the neointimal SMC content was studied in carotid arteries from SM-Dicer
–/–

 mice 

and SM-Dicer
+/+

 mice 14 and 28 days after vascular injury by SMA immunostaining (Figure 

15A-B).  
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Figure 15. Effect of SMC-specific Dicer deletion on neointimal SMC accumulation. Neointimal SMC 

content determined by SMA immunostaining at 14 days (A) and 28 days (B) after vascular injury 

(representative images are shown). Nuclei were counterstained with DAPI. The dash lines delineate the 

neointimal area. The asterisks indicate the lumen area. Scale bars, 100 μm. 



3 Results 

39 

In SM-Dicer
–/–

 mice, the neointimal SMA
+
 cell content was increased at 14 and 28 days after 

injury compared with SM-Dicer
+/+ 

mice (Figure 16). These data indicate that increased neointima 

formation in SM-Dicer
–/–

 mice is a consequence of enhanced SMC accumulation. 

 

Figure 16. Effect of SMC-specific Dicer deletion on neointimal SMC content. Neointimal SMC 

content determined by SMA immunostaining at 14 days and 28 days after vascular injury (n = 5–7 mice 

per group). All data are represented as the means ± s.e.m. of the indicated number (n) of repeats. *P < 

0.05 compared with SM-Dicer
+/+ 

mice. P values were obtained by Student's t test. 

To study whether the effect on the neointimal area was associated with an increased neointimal 

macrophage content, Mac2 immunostaining was performed in carotid arteries of SM-Dicer
–/– 

and
 

SM-Dicer
+/+ 

mice 14 and 28 days after vascular injury (Figure 17).  
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Figure 17. Effect of SMC-specific Dicer deletion on lesional macrophages. Neointimal macrophage 

content after 14 days (A) and 28 days (B) of vascular injury determined by Mac2 immunostaining 

(representative images are shown). Nuclei were counterstained with DAPI. The dash lines delineate the 

neointimal area. The asterisks indicate the lumen area. Scale bars, 100 μm.  
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The analysis of the lesional accumulation of Mac2 positive macrophages in the wire injured 

carotid arteries revealed that the neointimal macrophage content did not differ between both 

groups (Figure 18). These data indicate that neointimal macrophage accumulation does not 

contribute to increased neointima formation in SM-Dicer
–/–

 mice. 

 

Figure 18. Effect of SMC-specific Dicer deletion on the neointimal macrophage content. Neointimal 

macrophage content after 14 days and 28 days of vascular injury determined by Mac2 immunostaining (n 

= 5–7 mice per group). All data are represented as the means ± s.e.m. of the indicated number (n) of 

repeats. P values were obtained by Student's t test.  

 
3.2.2 Effect of Dicer deficiency on neointimal SMC proliferation and apoptosis 

To investigate whether SMC proliferation contributes to increased neointima formation in SM-

Dicer
–/–

 mice, double immunostaining of Ki67 and SMA was performed in carotid arteries from 

SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice 14 and 28 days after vascular injury (Figure 19).  
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Figure 19. Effect of SMC-specific Dicer deletion on SMC proliferation. Neointimal SMC proliferation 

14 days (A) and 28 days (B) after vascular injury determined by double immunostaining of SMA and 

Ki67 (representative images are shown). Nuclei were counterstained with DAPI. The dash lines delineate 

the neointimal area. The arrow heads indicate Ki67
+
 SMA

+
 cells. The asterisks indicate the lumen. Scale 

bars, 100 μm.  

The number of Ki67
+
 neointimal SMCs was higher in SM-Dicer

–/–
 than in SM-Dicer

+/+ 
mice at 

14 and 28 days after vascular injury (Figure 20), indicating that reduced SMC proliferation limits 

neointima formation in SM-Dicer
+/+ 

mice. 
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Figure 20. Effect of SMC-specific Dicer deletion on proliferation of neointimal SMC. Neointimal 

SMC proliferation after 14 days and 28 days of vascular injury determined by double immunostaining for 

Ki67 and SMA (n = 5–7 mice per group). All data are represented as the means ± s.e.m. of the indicated 

number (n) of repeats. **P < 0.01 compared with SM-Dicer
+/+ 

mice. P values were obtained by Student's t 

test. 

SMCs apoptosis induced by vascular injury triggers the healing response that may lead to 

neointimal hyperplasia
121

. To test whether Dicer affects SMC apoptosis during neointima 

formation immunostaining of activated caspase 3 and SMA was performed in carotid arteries 

from SM-Dicer
–/–

 mice and SM-Dicer
+/+ 

mice 14 and 28 days after vascular injury (Figure 21A). 

The percentage of apoptotic SMCs in the neointima was not different between SM-Dicer
–/–

 mice 

and SM-Dicer
+/+ 

mice (Figure 21B). These data suggest that SMC-specific Dicer deletion does 

not alter SMC apoptosis following vascular injury.  
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Figure 21. Effect of SMC-specific Dicer deletion on SMC apoptosis. (A) Neointimal SMC apoptosis 

was detected using double immunostaining of activated caspase 3 and SMA (representative images are 

shown). (B) SMC apoptosis was quantified at 14 and 28 days after injury (n = 5–7 mice per group). Nuclei 

were counterstained with DAPI. Representative overlays of caspase 3 and DAPI positive SMA 

immunostainings are shown. Scale bars, 100 µm. The asterisks indicate the lumen area. The arrowheads 

indicate caspase 3
+
/SMA

+
 cells. All data are represented as the means ± s.e.m. of the indicated number (n) 

of repeats. P values were obtained by Student's t test. 

 

3.2.3 Effect of SM-Dicer deficiency on endothelial recovery 
Re-endothelialization after arterial injury is associated with the termination of SMC proliferation 

and neointimal growth, and reduces thrombosis
21

. To study whether SMC-specific Dicer 

knockout affects endothelial recovery, the endothelial luminal lining was studied in SM-Dicer
+/+ 

and SM-Dicer
–/– 

mice at 14 days after vascular injury by CD31 immunostaining. Endothelial-

specific staining of CD31 showed that the absence of Dicer in SMCs did not affect the 

endothelial coverage at 14 days after vascular injury (Figure 22A-B). These data suggest that 

changes in re-endothelialization do not contribute to neointima formation in SM-Dicer
–/–

 mice. 
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Figure 22. Effect of SMC-specific Dicer deletion on endothelial recovery. (A) Re-endothelialization 

was determined by CD31 immunostaining (representative images are shown). (B) The degree of 

endothelial recovery was quantified in carotid arteries 14 days after vascular injury (n = 5 mice per group). 

Nuclei were counterstained with DAPI. Scale bars, 50 µm. The asterisks indicate the lumen area. All data 

are represented as the means ± s.e.m. of the indicated number (n) of repeats. P values were obtained by 

Student's t test. 

 

3.2.4 Effect of Dicer deletion on SMC differentiation Fully differentiated SMCs exhibit a mature contractile apparatus consisting of CNN1, transgelin 

2 (TAGLN2), and MYH11
23

. To study the effect of Dicer deficiency on SMC differentiation, the 

expression of the contractile markers, Tagln2, Cnn1, and Myh11 was quantified in the injured 

arteries by qPCR. In contrast to other contractile markers, Dicer deletion suppressed the 

expression of Tagln2 in SM-Dicer
–/–

 mice compared to SM-Dicer
+/+

 mice (Figure 23). These 

data indicate that Dicer deletion in SMCs partially decrease the expression of contractile genes. 
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Figure 23. Effect of Dicer deletion on SMC markers expression. The mRNA expression levels of the 

SMC contractile markers Tagln2, Cnn1, and Myh11 were determined 28 days after vascular injury by 

qPCR (n = 7 mice per group). The data are represented as the means ± s.e.m. of the indicated number (n) 

of repeats. *P < 0.05. P values were obtained by Student's t test. 

3.3 Effect of SM-Dicer deficiency on the miRNA expression profiles 

To determine miRNAs regulated by Dicer in SMCs during neointima formation, the miRNA 

expression profile in carotid arteries was compared between SM-Dicer
–/–

 mice and SM-Dicer
+/+

 

mice 14 days after injury by qPCR array analysis. Among 678 miRNAs studied, 497 miRNAs 

were detected of which 92 of them were significantly downregulated after deletion of Dicer in 

SMC (Supplemental Table 3 available on http://link.springer.com/article/10.1007%2Fs00018-

016-2349-0#SupplementaryMaterial). Notably, no miRNAs were upregulated after SMC-specific 

Dicer deletion. The expression levels of miR-147-3p, miR-143-3p, miR-100-5p, miR-99a-5p, and 

miR-27a-3p were most significantly reduced among the 92 downregulated miRNAs in SM-

Dicer
–/–

 mice compared to SM-Dicer
+/+ 

mice (Figure 24 and Table 13). SMC-specific miRNAs, 

such as miR-143-3p and miR-145-5p, were among the significantly downregulated miRNAs after 

SMC-specific Dicer deletion, whereas the expression of endothelial miR-126-5p was not 

different between SM-Dicer
–/–

 mice and SM-Dicer
+/+ 

mice (Figure 24). Among the miRNAs 

downregulated in SM-Dicer
–/–

 mice, 31 miRNAs, including miR-143-3p, miR-9-5p, miR-27a-3p, 

and miR-27b-3p, were previously reported in other studies to inhibit SMC proliferation in vitro
95, 

103
 (Table 13). 
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Figure 24. MiRNA expression profile in injured arteries following SMC-specific Dicer deletion. 

Expression profile of miRNAs in carotid lesions from SM-Dicer
–/–

 mice compared to that from SM-

Dicer
+/+

 mice 14 days after vascular injury (n = 3-4 mice per group). X axis represents fold change. Y axis 

represents P value. Left upper quadrant: significantly downregulated miRNAs. Right upper quadrant: 

significantly upregulated miRNAs. Left lower quadrant: downregulated miRNAs. Right lower quadrant: 

upregulated miRNAs. RQ, relative quantification. 

Table 13. MiRNAs downregulated in the carotid arteries from SM-Dicer
–/– 

mice
 
compared with SM-

Dicer
+/+ 

mice
 
14 days after vascular injury (n = 3-4 mice per group). 

miRNA Log10 RQ 

negLog10 P 

value 

Effect on SMC 

proliferation References 

miR-147-3p -3.39 5.24 Ø 
103

 

miR-100-5p -0.34 4.02 Ø 
103

 

miR-99a-5p -0.31 3.80 ↓ 
103

 

miR-652-3p -0.46 3.20   

miR-143-3p -0.57 3.18 ↓ 
95
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miR-669m-3p -1.83 3.04   

miR-301a-3p -0.48 2.95 Ø 
95, 103

 

miR-224-5p -0.64 2.92   

miR-210-3p -0.41 2.90 Ø 
103

 

miR-185-5p -0.60 2.87   

miR-9-5p -0.48 2.75 ↓ 
103

 

miR-27a-3p -0.35 2.75 ↓ 
103

 

miR-301b-3p -0.47 2.63   

miR-497-5p -0.31 2.52   

miR-27b-3p -0.39 2.42 ↓ 
103

 

miR-365-3p -0.39 2.37 ↓ 
122

 

miR-154-5p -2.38 2.36   

let-7a-3p -0.45 2.35   

miR-152-5p -0.29 2.34   

let-7a-5p -0.29 2.32   

miR-145-5p -0.50 2.23 ↓ 
98, 122

 

miR-140-5p -0.50 2.21 ↓ 
98, 103

 

miR-28-5p -0.36 2.15 ↓ 
103

 

let-7g-5p -0.25 2.14 Ø 
103

 

miR-1930-5p -0.87 2.11   

let-7d-5p -0.29 2.08   

let-7i-5p -0.31 2.06   

miR-696-3p -0.57 2.05   

miR-132-3p -0.40 2.03 ↓ 
103, 123

 

miR-148a-3p -0.32 1.94   

let-7e-5p -0.22 1.93   

miR-1198-5p -0.56 1.92   
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miR-127-3p -0.22 1.92 ↓ 
103, 123

 

miR-376a-3p -0.42 1.91 ↓ 
103

 

miR-331-3p -0.20 1.82 Ø 
103

 

miR-130b-5p -1.121 1.82   

miR-467a-5p -0.53 1.81   

miR-130a-3p -0.25 1.81   

miR-207-3p -1.93 1.81   

miR-140-3p -0.46 1.80 ↓ 
103

 

miR-125a-3p -0.71 1.79 Ø 
103

 

miR-29b-3p -0.32 1.76   

miR-26a-5p -0.22 1.76 ↑ 
124

 

miR-547-3p -0.29 1.75   

miR-24-3p -0.21 1.73 ↓ 
124, 125

 

miR-195-5p -0.19 1.73 ↓ 
125, 126

 

miR-30b-5p -0.20 1.73 Ø  
103, 126

 

miR-376c-3p -0.20 1.71   

miR-139-5p -0.40 1.70   

miR-30e-3p -0.32 1.70 Ø 
103

 

miR-26b-5p -0.19 1.69 Ø 
103

 

miR-24-5p -0.39 1.69   

miR-30c-5p -0.24 1.68   

miR-187-3p -1.08 1.68 ↓ 
103

 

miR-1839-3p -0.43 1.67   

miR-206-3p -0.50 1.65 ↓ 
103

 

miR-30a-3p -0.30 1.63 ↓ 
103

 

miR-192-5p -0.21 1.63 Ø 
103

 

miR-99b-5p -0.30 1.62 ↓ 
103
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miR-29c-3p -0.22 1.60 ↓ 
103

 

miR-103-3p -0.36 1.60   

miR-125b-5p -0.20 1.59 Ø 
103

 

miR-15a-3p -0.77 1.58   

miR-27b-5p -0.57 1.57   

miR-130b-3p -0.41 1.57 Ø 
103

 

miR-297a-5p -2.10 1.55   

miR-23b-3p -0.22 1.55 ↓ 
127

 

miR-1949-3p -0.60 1.53   

miR-423-3p -0.42 1.52   

miR-484-3p -0.24 1.51 Ø 
103, 127

 

miR-495-3p -0.43 1.49   

miR-29a-3p -0.17 1.47 ↓ 
125

 

miR-99b-3p -1.36 1.47 ↓ 
103, 125

 

miR-148b-3p -0.32 1.47 ↓ 
103

 

miR-181c-5p -0.27 1.46   

miR-431-5p -0.99 1.46 ↓ 
103

 

miR-193b-3p -0.48 1.45   

miR-1839-5p -0.43 1.45   

miR-485-3p -0.38 1.44 ↓ 
103

 

miR-30d-5p -0.33 1.44 Ø  
103

 

miR-29a-5p -0.72 1.43   

miR-221-3p -0.37 1.42 ↓ 
103

 

miR-503-5p -1.66 1.40 Ø  
103

 

let-7f-5p -0.30 1.40 Ø  
103

 

miR-509-3p -1.18 1.39   

miR-125a-5p -0.19 1.36 Ø 
103
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miR-421-3p -0.34 1.36 Ø 
103

 

miR-30e-5p -0.23 1.35 ↓ 
103

 

miR-425-3p -0.56 1.33 ↓ 
103

 

miR-93-3p -0.24 1.32 ↓ 
103

 

miR-455-5p -0.40 1.31 ↓ 
103

 

miR-872-3p -0.30 1.30   

3.4 Effect of SM-Dicer deficiency on the mRNA expression profiles 

To determine mRNAs regulated by Dicer in SMCs during neointima formation, global gene 

expression analysis in carotid arteries from SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice 14 days 

after injury was performed using microarrays. Genome-wide mRNA expression analysis showed 

that 484 annotated genes were upregulated and 294 genes were downregulated in the injured 

carotid arteries from SM-Dicer
–/–

 mice (fold change ≥ 1.5, p ≤ 0.05, n = 3 mice per group; Figure 

25A) (Supplementary Table 4 available on http://link.springer.com/article/10.1007%2Fs00018-

016-2349-0#SupplementaryMaterial). Dicer deficiency in SMCs increased the expression level 

of Igfbp3, Chst1, Sh3bgrl2, Arhgef26, Sh2d5, and Dll4 as determined by qRT-PCR (Figure 25B). 

To study the effect of SMC miRNAs on signaling pathways during neointima formation, 

differentially regulated genes in SM-Dicer
–/–

 mice compared with SM-Dicer
+/+ 

mice were 

analyzed by IPA software to identify upstream regulators. This analysis indicated activation of 

pro-proliferative signaling pathways like AKT, ERK1/2, PDGF-BB, and EGF, and of pro-

inflammatory signaling through NF-B and IL-1 in SM-Dicer
–/–

 mice (Figure 25C). Moreover, 

inhibition of anti-proliferative upstream regulators such as retinoblastom-protein 1 and cyclin-

dependent kinase 1 was found after Dicer deficiency. These data indicate that concomitant 

activation of inflammatory and growth factor signaling pathways causes neointimal SMC 

proliferation after Dicer deletion in SMCs.  
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Figure 25. mRNA expression profile in injured arteries following Dicer deletion in SMCs. (A) Heat 

map of a subset of differentially expressed mRNAs in the injured carotid artery of SM-Dicer
–/–

 mice 

compared with SM-Dicer
+/+ 

mice after 14 days of vascular injury as determined by microarrays (n = 3 

mice per group; P < 0.05; fold change cutoff = 1.5). (B) Quantification of Igfbp3, Chst1, Sh3bgrl2, 

Arhgef26, Sh2d5, and Dll4 expression in injured carotid arteries from SM-Dicer
+/+ 

and SM-Dicer
–/–

 mice 

14 days after vascular injury by qPCR (n = 4–6 mice per group). (C) Predicted inhibition and activation of 

signaling pathways that regulate the differentially expressed genes in injured carotid arteries from SM-

Dicer
+/+

 and SM-Dicer
–/–

 mice 14 days after vascular injury determined by IPA software. *P < 0.05 

compared with SM-Dicer
+/+ 

mice. P values were obtained by Student's t test. 

 
3.4.1 MiRNA-mRNA interactions involved in neointima formation 

To identify SMC-specific miRNA-mRNA interactions that regulate neointima formation, 

integrative target prediction analysis was performed using the web tool Magia
2
. Five-hundred 

twenty-one interactions between 51 miRNAs downregulated and 126 mRNAs upregulated in 

SM-Dicer
–/–

 mice were predicted (Supplemental Table 5 available on 

http://link.springer.com/article/10.1007%2Fs00018-016-2349-0#SupplementaryMaterial). 

Among the 70 most significant interactions (between 26 miRNAs and 47 mRNAs), the highest 

number of targets was predicted for miR-27a-3p (12 mRNAs), miR-154-5p (9 mRNAs), miR-

140-3p (6 mRNAs), and miR-497-5p (6 mRNAs) (Figure 26). Moreover, the miR-27a-3p binding 

sites of Arhgef26, Chst1, Dll4, and Oit3 were conserved between mouse and humans (Figure 26). 

These data suggest that miR-27a-3p might play a central role in neointima formation. 
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Figure 26. Predicted interactions between miRNAs and mRNAs following Dicer deletion SMCs. 

Integrative target prediction analysis by Magia2 using the downregulated miRNAs (ellipse) and the 

upregulated mRNAs (rectangular). The 70 most significant interactions between SM-Dicer
–/–

 mice and 

SM-Dicer
+/+ 

mice are shown. Red arrows indicate that the predicted interaction is conserved between 

mouse and humans. 

Reanalyzing the miRNA microarray performed in carotid arteries of Apoe
–/–

 mice (Figure 10) 

showed that among the 26 miRNAs involved in the most significant interactions (Figure 26), 10 

miRNAs, including miR-27a-3p, were not differentially regulated and 11 miRNAs were 

downregulated following vascular injury in Apoe
–/– 

mice (Figure 27). These data show that 

deletion of Dicer in SMCs largely reduced the expression of miRNAs that were not upregulated 

after vascular injury (Figure 27), although miRNAs were predominantly upregulated following 

vascular injury (Figure 11). 
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Figure 27. MiRNA expression profile in wire-injured carotid arteries from Apoe
–/– 

mice. Expression 

time course of miRNAs, which are predicted to target mRNAs during neointima formation, in injured 

carotid arteries of Apoe
–/–

 mice (n = 3-4 mice per group). Black line = P < 0.05; red line = P > 0.05; Error 

bars represent ± s.e.m.  

3.5 Expression of miR-27a-3p in medial and neointimal SMCs 

MiR-27a-3p was one of the most strongly downregulated miRNAs in SM-Dicer
–/–

 mice (Figure 

24). To study whether Dicer affects miR-27a-3p expression in vascular SMCs, in situ PCR for 

miR-27a-3p combined with SMA immunostaining was performed. MiR-27a-3p was highly 

expressed in medial SMCs of uninjured carotid arteries from SM-Dicer
+/+ 

mice (Figure 28A). 

Moreover, miR-27a-3p was expressed in neointimal SMCs of SM-Dicer
+/+ 

mice at 14 days after 

vascular injury (Figure 28B). By contrast, miR-27a-3p was not detectable in the medial or 

neointimal SMCs of SM-Dicer
-–/–

 mice. Therefore, miR-27a-3p is expressed in both medial and 

neointimal SMCs in the presence of Dicer. 
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Figure 28. Expression of miR-27a-3p in vascular SMCs of SM-Dicer
+/+

 and SM-Dicer
–/–

 mice. In situ 

PCR for miR-27a-3p and SMA immunostaining in medial SMCs of uninjured carotid arteries (A) and 

neointimal SMCs of injured carotid arteries (B) from SM-Dicer
+/+ 

and SM-Dicer
–/–

 mice 14 days after 

vascular injury (representative images are shown). Overlays show the cellular co-localization of miR-27a-

3p and SMA in neointimal and medial cells. Nuclei were counterstained with DAPI. The asterisks indicate 

the lumen. Scale bars, 50 μm.  
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3.6  Identification of miR-27a-3p targets in SMCs 

 

3.6.1 Effect of miR-27a-3p on the expression of predicted targets in SMCs 

MiR-27a-3p was predicted to target four mRNAs upregulated in injured carotid arteries of SM-

Dicer
–/–

 mice via conserved binding sites (Figure 26). To study whether miR-27a-3p regulates 

these four target genes in SMCs, gain-and-loss-of-function experiments were performed in 

HASMCs. Silencing of miR-27a-3p expression in HASMCs using LNA inhibitors (Figure 29A) 

increased the expression of ARHGEF26 and reduced the expression of DLL4 and OIT3 (Figure 

29B). Moreover, overexpression of miR-27a-3p in HASMCs (Figure 29C) reduced the 

expression of ARHGEF26, but did not alter the expression level of DLL4, CHST1, and OIT3 

(Figure 29D). These data indicate miR-27a-3p targets ARHGEF26 in SMCs. 

  

Figure 29. Effect of miR-27a-3p on expression of four conserved target genes in SMCs. The 

expression levels of miR-27a-3p, ARHGEF26, DLL4, CHST1, and OIT3 were quantified in HASMCs 

following miR-27a-3p inhibitors treatment (A, B) or miR-27a-3p mimics treatment (C, D) (n = 3). *P < 

0.05 and ***P < 0.001. P values were obtained by Student's t test. 
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3.6.2 MRNA targets of miR-27a-3p in SMCs 

To identify direct targets of miR-27a-3p in SMCs, MYC-tagged trinucleotide repeat containing 

6A (TNRC6A, known as GW182), a component of the miRISC, was overexpressed in HASMCs. 

Immunoprecipitation of GW182 showed that treatment with miR-27a-3p-mimics resulted in a 15-

fold enrichment of the ARHGEF26 mRNA in the miRISC. By contrast, DLL4, CHST1, and OIT3 

mRNAs were not enriched in the miRISC after miR-27a-3p mimic treatment (Figure 30). These 

data indicate miR-27a-3p targets ARHGEF26 but not DLL4, CHST1, and OIT3 in SMCs is 

directly repressed by miR-27a-3p. 

 

Figure 30. Effect of miR-27a-3p on target gene enrichment in the miRISC. Effect of miR-27a-3p 

mimic treatment on the enrichment of its potential targets in the miRISC of HASMCs overexpressing a 

MYC-tagged GW182 protein determined by GW182 immunoprecipitation and qPCR (n = 2). Results are 

expressed as target enrichment in miR-27a-3p mimic-treated over control mimic-treated HASMCs.  

 3.6.3 Binding site of miR-27a-3p in the ARHGEF26 3′-UTR 

Three predicted binding sites for miR-27a-3p were detected in the 3′-UTR of human ARHGEF26 

by in silico analysis. One of those binding sites was highly conserved between different species 

including mouse and human. To confirm the miR-27a-3p binding site in the ARHGEF26 mRNA, 

luciferase reporter assays were performed using the full length of ARHGEF26 3′-UTR and the 

ARHGEF26 3′-UTR that contained a mutation of the miR-27a-3p binding site (Figure 31A). The 

luciferase activity of the wild type ARHGEF26 3′-UTR was significantly reduced by miR-27a-3p 

mimic treatment (Figure 31B). The reduction of the luciferase activity by miR-27a-3p was not 

observed using the mutated ARHGEF26 3′-UTR (Figure 31B). These finding clearly show that 

miR-27a-3p directly targets ARHGEF26 through binding to one of the predicted binding sites in 

its 3′-UTR. 
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Figure 31. Binding site of miR-27a-3p in the ARHGEF26 3′-UTR. (A) Potential target site for miR-

27a-3p in the ARHGEF26 3′-UTR, predicted by the miRanda prediction algorithm. The miR-27a-3p target 

(yellow) site was mutated (indicated in red) in the binding site. The seed sequence of miR-27a-3p is 

highlighted in yellow. (B) Luciferase reporter assays performed in HEK293 cells treated with miR-27a-3p 

mimics or control mimics (control) using the pEZX-MT05 vector without ARHGEF26 3′-UTR (empty 

vector), pEZX-MT05 vector containing the ARHGEF26 3′-UTR or the ARHGEF26 3′-UTR with 

mutations in the predicted miR-27a-3p binding site (n = 3). All data are represented as the means ± s.e.m. 

of the indicated number (n) of repeats. ***P < 0.001. P values were obtained by one-way analysis of 

variance (ANOVA). 

3.7 Effect of miR-27a-3p targeting ARHGEF26 on SMC proliferation  

To study the role of miR-27a-3p and its target ARHGEF26 in SMC proliferation, expression of 

miR-27a-3p and ARHGEF26 was silenced. Treatment with ARHGEF26 GapmeRs reduced the 

expression of ARHGEF26 in HASMCs (Figure 32A). Treatment with miR-27a-3p inhibitors 

increased SMC proliferation, whereas silencing of ARHGEF26 prevented this effect of miR-27a-

3p inhibition on SMC proliferation (Figure 32B). These data indicate that the effect of miR-27a-

3p on SMC proliferation is mediated by targeting ARHGEF26. 
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Figure 32. Effect of miR-27a-3p and ARHGEF26 on SMC proliferation. (A) Quantification of 

ARHGEF26 mRNA in HASMCs treated with ARHGEF26 GapmeRs or control GapmeRs (n = 3). (B) 

Proliferation of HASMCs was determined by Ki67 immunostaining after treatment with miR-27a-3p 

inhibitors and ARHGEF26 GapmeRs. Nuclei were counterstained with DAPI (n = 3). Scale bars, 250 μm. 

***P < 0.001. P values were obtained by Student's t test or one-way analysis of variance (ANOVA). 

In addition, the interaction between miR-27a-3p and its binding site on the ARHGEF26 3′-UTR 

was blocked using LNA-modified target site blockers (TSBs) (Figure 33A). Treatment with TSBs 

upregulated ARHGEF26 expression at the mRNA (Figure 33B) and protein levels (Figure 33C) 

compared to the treatment with control oligonucleotide.  
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Figure 33. Effect of blocking the interaction between miR-27a-3p and ARHGEF26. (A) Sequence of 

the ARHGEF26-target site blockers (TSBs), an LNA-modified oligonucleotide that blocks the target site 

of miR-27a-3p in the ARHGEF26 3′-UTR. Quantification of ARHGEF26 mRNA levels (B) and protein 

levels (C), determined by qPCR and Western blot, respectively, in HASMCs treated with TSBs or control-

TSBs (n = 3). All data are represented as the means ± s.e.m. of the indicated number (n) of repeats. *P < 

0.05 or ***P < 0.001. P values were obtained by Student's t test. 

Moreover, blocking the interaction between miR-27a-3p and ARHGEF26 increased SMC 

proliferation (Figure 34A), and suppressed the expression of cell cycle inhibitors such as 

CDKN1A and CDKN1B (Figure 34B) and SMC contractile markers such as TAGLN and MYH11 

(Figure 34C). Taken together, these results indicate that miR-27a-3p inhibits SMC proliferation 

by interacting with a conserved binding site in the ARHGEF26 3′-UTR. 
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Figure 34. Effect of blocking the interaction of miR-27a-3p with the 3′-UTR ARHGEF26 on SMC 

proliferation and differentiation. Cell proliferation (n = 4) (A), the expression levels of the cell cycle 

inhibitors CDKN1A and CDKN1B (n = 3) (B), and the expression levels of the contractile markers TAGLN 

and MYH11 (n = 3) (C) were determined in HASMCs treated with TSBs or control-TSBs. The data are 

represented as the means ± s.e.m. of the indicated number (n) of repeats. *P < 0.05, **P < 0.01, ***P < 

0.001. P values were obtained by Student's t test. 

3.8 Effect of IL-1 on the expression of miR-27a-3p and ARHGEF26 

The inflammatory cytokine interleukin-1β (IL-1β) has recently been shown to repress expression 

of multiple SMC differentiation marker genes in cultured SMCs
128

. In order to study the effect of 

IL-l on miR-27a-3p and ARHGEF26 expression, in vitro experiments were performed on 

HASMCs Inflammatory activation of HASMCs by IL-1β increased the expression of 

ARHGEF26 and reduce miR-27a-3p expression (Figure 35).  

 

Figure 35. Effect of IL-1 on miR-27a-3p and ARHEF26 expression. The ARHGEF26 and miR-27a-

3p expression level after stimulation of HASMCs with IL-1(n = 6). Error bars represent ± s.e.m. *P < 

0.05. P values were obtained by Student's t test. 
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3.9 MiR-27a-3p and ARHGEF26 expression in SMCs of mouse and human lesions 

 

3.9.1 Arhgef26 protein expression in mouse neointimal SMCs 

To study Arhgef26 expression in neointimal SMCs at the protein level, combined Arhgef26 and 

SMA immunostaining was performed in injured carotid arteries from SM-Dicer
–/–

 and SM-

Dicer
+/+ 

mice. In line with the results obtained at the RNA level, the number of neointimal SMCs 

expressing Arhgef26 was substantially increased in SM-Dicer
–/–

 mice compared with that in SM-

Dicer
+/+ 

mice (Figure 36A-B). These data show that Dicer deficiency increases Arhgef26 

expression in SMCs during neointima formation. 

 

Figure 36. Expression of Arhgef26 in mouse carotid lesions. (A) Arhgef26 in neointimal SMCs was 

determined by double immunostaining of Arhgef26 and SMA in injured carotid arteries of SM-Dicer
+/+ 

and SM-Dicer
–/–

 mice 14 days after vascular injury (representative images are shown). (B) Quantification 

of Arhgef26 expressing SMCs in the neointima of SM-Dicer
+/+ 

and SM-Dicer
–/–

 mice 14 days after 

vascular injury (n = 5 mice per group). Nuclei were counterstained with DAPI. The dash lines delineate 

the neointimal area. The asterisks indicate the lumen area. Scale bars, 50 µm. *P < 0.05 compared with 

SM-Dicer
+/+

. P values were obtained by Student's t test. 

 
3.9.2 MiR-27a-3p and ARHGEF26 expression in human atherosclerotic lesions 

To identify miR-27a-3p and ARHGEF26 in human atherosclerotic lesions, in situ PCR of miR-

27a-3p or immunostaining of ARHGEF26 was performed in combination with immunostaining 

for SMA. MiR-27a-3p and ARHGEF26 was detected in SMCs of human atherosclerotic lesions 

(Figure 37A-B). Therefore, miR-27a and ARHGEF26 are both expressed in SMCs from human 

atherosclerotic plaque.   
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Figure 37. MiR-27a-3p and ARHGEF26 expression in human atherosclerotic lesions. Localization of 

miR-27a-3p and the expression of ARHGEF26 in human atherosclerotic lesions was determined by in situ 

PCR for miR-27a-3p (A) or immunostaining of ARHGEF26 (B) combined with immunostaining for SMA 

(representative images were shown). Nuclei were counterstained with DAPI. Scale bars, 50 µm.  
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4 Discussion 

4.1 MiRNAs are differentially expressed after vascular injury  

MiRNAs are differentially expressed in the vessel wall in response to the endogenous or 

exogenous stimuli, which suggests that they could modulate the vascular response to injuries
100, 

129
. Ji et al. showed that miRNAs are differentially expressed following balloon injury in rat 

carotid artery
100

. Similarly, the current study showed that approximately half of the miRNAs 

detected in mouse carotid arteries were differentially expressed following wire-induced injuries. 

In line with the findings of Ji et al. in rats
100

, among the 25 most significantly differentially 

expressed miRNAs, the expression of 21 miRNAs, including miR-21-3p, -16-5p, and -223-3p, 

was increased and the expression of 4 miRNAs, such as miR-29c-3p and -122-5p, was 

downregulated during neointima formation. These data indicates that a specific set of miRNAs is 

involved in the regulation of the vascular response to injury. Although the majority of 

differentially regulated miRNAs was upregulated in injured arteries, Dicer deletion in SMCs 

predominantly reduced the expression of miRNAs that were not upregulated after vascular injury. 

This result suggests that many miRNAs upregulated during neointima formation are not 

increased in SMCs but rather are upregulated in other cell types, such as leukocytes. For instance, 

the level of miR-155 and miR-223, which are high in hematopoietic cells, did not change in 

injured arteries by SMC-specific Dicer knockoutin injured arteries, although it was greatly 

increased after vascular injury
130, 131

. MiR-21 expression is increased in rat and mouse after 

balloon injury and its deletion reduces neointima formation
100

. In the present study, miR-21 was 

unaltered in carotid arteries after Dicer deletion in SMCs, suggesting that non SMC-derived miR-

21 promotes neointimal growth. In fact, Dicer in SMCs appears to limit the injury-induced 

downregulation of miRNAs.  

4.2 Dicer limits neointima formation by reducing SMC proliferation   

Up-regulation of a large number of miRNAs in injured arteries suggests that those miRNAs may 

enhance neointima formation and their suppression for instance by Dicer deletion may protect 

against neointima formation. However, the current study showed that post-natal deletion of Dicer 

in SMCs increased neointimal growth following wire-induced injury. This effect of Dicer 

deletion in SMCs was associated with increased accumulation and proliferation of neointimal 
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SMCs, whereas the neointimal macrophage content and endothelial recovery were not altered. 

These data indicate that Dicer and miRNAs biogenesis in SMCs limits neointima formation.  

In contrast to the finding of the current study, Dicer increases SMC proliferation during 

development
89

, indicating that Dicer plays different roles in SMCs during arterial repair and 

development. This difference may be because of distinction in the mechanisms of these two 

conditions in SMC proliferation. Notably, activation of both inflammatory signaling and growth 

factor which causes neointimal SMC proliferation is specific to arterial repair
132, 133

. For instance, 

activation of TNF and PDGF signaling pathways contribute to SMC proliferation and migration 

that leads to neointimal hyperplasia
132-135

. 

Growth factors modulate vascular cell survival and growth by activating signaling pathways such 

as PI3K/Akt/mTOR and Ras/RAF/MEK/ERK1/2
133

. ERK1/2 belongs to a sub family of MAPKs 

that regulate cellular processes such as transcription and proliferation
31, 32

. Phosphorylation 

activates ERK kinase activity and may mediate its translocation to the nucleus, where it regulates 

transcription by activating several transcription factors, especially of genes such as cyclin E and 

cyclin D1, leading to cell cycle progression
136-138

. In vascular SMCs, ERK activation increases 

proliferation and is involved in the development of restenosis
136

. The MAPK inhibitor 

PD0185625 abrogates p44/p42 MAPK activation in vivo, which results in reduced SMC 

proliferation and neointimal formation after vascular injury
31, 139

.  

In addition, inhibition of mTOR by using rapamycin affects PI3K/Akt/mTOR signaling pathway 

and promotes SMC contractile phenotype
36, 37, 140

. Moreover, cytokines such as IL-1β and tumor 

necrosis factor α (TNFα) activate pro-inflammatory NF-κB signaling in neointimal SMCs that 

involves in cross-talk with mitogenic pathways and increases the SMC proliferative response 

during neointima formation
38, 39, 140

. Multipotential mediator in inflammatory reaction, TNFα, 

contributes to stability of atherosclerotic plaque and lesion development through regulating SMC 

proliferation and apoptosis
133, 141

. NF-B pathway is activated in the SMCs of human 

atherosclerotic lesions and in vascular SMCs after balloon induced-injury in rat carotid arteries
141, 

142
. Our findings indicate that miRNAs biogenesis by RNase Dicer in SMCs after arterial injury 

reduces SMC proliferation by inhibiting growth factor and inflammatory signaling such as AKT, 

ERK1/2, PDGF-BB, EGF, NF-B and IL-1. 

Although vascular SMCs rarely proliferate after birth, the combined effect of growth factors, 

such as PDGF and EGF, and inflammatory signaling pathways, such as NF-κB, following 

vascular injury induces a phenotypic switch of SMCs characterized by increased proliferative 
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activity
133, 143

. Our results indicated that Dicer in SMCs suppressed growth factor and 

inflammatory cytokine signaling after vascular injury, and thereby limit neointimal growth and 

the proliferation of neointimal SMCs.  

In addition to proliferation, Dicer promotes a contractile SMC phenotype in uninjured arteries by 

regulating the contractile proteins expression such as actin, alpha 2, smooth muscle, aorta 

(ACTA2), Cnn1, potassium calcium-activated channel subfamily M regulatory beta subunit 1, 

Myh11, and Myocd
89

. However, the current study showed that Dicer regulated the expression of 

the contractile protein transgelin 2 (Tagln2) but not that of Myh11 and Cnn1. These data suggest 

that Dicer mainly regulated the SMC proliferation following vascular injury rather than 

contractile phenotype SMC.  

4.3 Dicer generates anti-proliferative miRNAs in SMCs 

The knockout of Dicer in SMCs reduced the neointimal expression of 92 miRNAs, including 

miR-24, miR-27a/b, miR-143/145, and miR-29a
95, 103

. Thirty-one of 92 miRNAs downregulated 

in injured arteries after SMC-specific Dicer deletion, such as miR-143/145, miR-365-3p, miR-

132-3p, miR-24-3p, miR-29-3p, in induced arteries, have been shown to inhibit SMC 

proliferation in vitro (Figure 38)
103

.  

The expression of the miR-143/145 cluster is enhanced in SMCs and mediates the maintenance 

of a contractile SMC phenotype
94, 95

. MiR-365-3p, another miRNA downregulated after SMC 

specific Dicer deletion, decreases PDGF-induced SMC proliferation by targeting the 3′-UTR of 

cyclin D1 in rat carotid arteries after balloon injury
122

. Moreover, miR-132-3p inhibits vascular 

SMC proliferation by targeting LRR binding FLII interacting protein 1
123

. Myoc as a regulator of 

SMC migration induces the expression of miR-24-3p and miR-29a-3p, which target the PDGF 

receptor β and thus reduce neointima formation by inhibiting SMC migration and proliferation
125

. 

MiR-195-5p is an abundant miRNAs in vascular SMCs that reduces SMC migration and 

proliferation, and decreases the synthesis of proinflammatory cytokines such as IL-1β, IL-8, and 

IL-6
126

. MiR-23b-3p expressed in a cluster together with miR-27b and miR-24-1 is involved in 

angiogenesis, cardiac ischemia, and retinal vascular development
125, 144, 145

. MiR-23b-3p inhibits 

vascular SMC proliferation and migration by targeting transcription factor forkhead box O4, 

which partially represses SMC contractile genes such as, ACTA2 and MYH11
127, 144, 145

.  

By contrast, 19 of the 92 miRNAs downregulated after SMC-specific Dicer deletion in injured 

arteries, including miR-147-3p and miR-210-3p, do not affect SMC proliferation in vitro
103

. MiR-
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147-3p, the most significantly downregulated miRNA, does not affect SMC proliferation, but was 

reported to suppress inflammatory activation in macrophages
103, 146

. MiR-210-3p is expressed in 

ECs and overexpression of this miRNA increases ECs migration, but has no effect on SMCs 

proliferation
103, 147

. MiR-26a-5p increases SMC proliferation and migration, and inhibits 

apoptosis, possibly through a mechanism that targets TGF-β/BMP signaling
147, 148

. Taking 

together, the results of the current study showed that Dicer deletion in SMC predominantly 

suppresses the expression of miRNAs that limit SMC proliferation, indicating that Dicer inhibits 

neointima formation by generating anti-proliferative miRNAs after vascular injury. 

 

Figure 38. Proposed mechanism of Dicer in SMCs during neointima formation. Dicer generates anti-

proliferative miRNAs, like miR-27-3p, which leads to reduced neointima formation by inhibiting SMC 

proliferation. In the predicted miRNA-mRNA interactome, miR-27a-3p can reduce inflammation-induced 

SMC proliferation by targeting AERHGEF26
149

. 
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4.4 MiR-27a-3p reduced SMC proliferation 

MiR-27a-3p was one of the most strongly downregulated miRNAs in injured carotid arteries after 

Dicer deletion in SMCs and inhibits SMC proliferation in vitro
103

. Moreover, the highest number 

of miRNA-mRNA interactions was predicted between miR-27a-3p and 12 mRNAs upregulated 

in SM-Dicer
–/–

 mice, including 4 potential targets that are conserved between human and mouse. 

By contrast, among the 9 predicted interactions of miR-154-5p and the 6 interactions of miR-140-

3p, none were conserved between mouse and human. These data indicate that miR-27a-3p played 

a central role in Dicer-mediated effects on neointima formation although it was not differentially 

expressed during neointima formation in Apoe
–/–

 mice. In addition, miR-27a-3p was highly 

expressed in medial SMCs of uninjured carotid arteries, which
 
suggests that under normal 

conditions the presence of this miRNA in the vessel wall maintain the contractile SMC 

phenotype. 

The highly conserved miR-27a-3p is expressed together with miR-23a and miR-24-2 in a 

polycistronic transcript from an intergenic region
144, 145

. Accordingly, all three mature miRNAs of 

the miR-27a-3p/23a/24-2 cluster are downregulated after deletion of Dicer in SMCs. Moreover, 

SRF also upregulates the expression of the pri-miR-27a-3p/23a/24-2 through direct interaction 

with a transcriptional binding site, suggesting that miR-27a-3p, miR-23a, and miR-24 promote a 

contractile SMC phenotype
150

. In addition, Myoc reduces SMC proliferation and limits neointima 

formation probably by upregulating miR-24, which targets the PDGF receptor β and thereby 

inhibits SMC migration
150

. Moreover, gain-and-loss-of-function experiments showed that miR-

27a-3p inhibited proliferation of human SMCs and the IL-1β-induced downregulation of miR-

27a-3p may mediate the proliferative effect of this inflammatory signaling pathway on SMC. 

However, the underlying mechanism by which IL-1 regulates miR-27a-3p expression is unclear.  

4.5 MiR-27a-3p inhibits SMC proliferation by targeting ARHGEF26  

Several genes upregulated in SM-Dicer
–/–

 mice contained conserved miR-27a-3p binding sites in 

their 3′-UTR, but only targeting of the ARHGEF26 mRNA by miR-27a-3p was experimentally 

confirmed. Different cell types, such as leukocytes and ECs are involved in neointima formation 

thus, many upregulated mRNAs predicted to have binding sites for miR-27a-3p may come not 

only from SMCs but also from other cell types. The 3′-UTR of the human ARHGEF26 mRNA 

contained three predicted miR-27a-3p target sites, but only one of those sites is conserved 

between mouse and humans. According to the classification by Bartel
151

, this conserved binding 
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site is a canonical 7-merA1 site consisting of six Watson-Crick base pairings with the nucleotides 

2-7 of the miR-27a-3p seed sequence and an adenine in opposite to nucleotide 1 of the miRNA.  

Rho‐GTPase plays complex roles in SMC proliferation and neointima formation through 

different mechanisms. Several experimental and clinical studies indicate that part of SMC 

proliferation and migration following in-stent restenosis is associated with Rho‐GTPase 

activity
152-154

. In addition Rho‐GTPase also plays central roles in SMC contractility, and 

differentiation
155

. In the current study, silencing ARHGEF26 rescued the effect of miR-27a-3p 

inhibition on SMC proliferation and blocking the interaction between miR-27a-3p and 

ARHGEF26 increased SMC proliferation, demonstrating that the effect of miR-27a-3p on SMC 

differentiation was mediated through targeting of ARHGEF26. ARHGEF26 as a potential target 

of miR-27a-3p activates the Rho GTPase RhoG by GTP loading and thereby enhances 

downstream signaling through Rac1 activation, which has been implicated in neointima 

formation
156, 157

. Moreover, ARHGEF26 is overexpressed during prostate cancer and therefore 

contributes to cancer development and progression through activation of growth factor signaling 

pathways, such as Akt and ERK1/2 pathways independent of its guanine nucleotide exchange 

factor function, and increases proliferation of cancer cells
152, 158, 159

. Notably, both EGF signaling 

and ERK1/2 activation promote neointima formation by inducing SMC proliferation
32, 152, 159-161

. 

Moreover, downregulation of miR-27a-3p in SMCs by inflammatory stimuli plays an important 

role in inflammation which induces SMC proliferation during neointima formation by mediating 

NF-B-induced upregulation of ARHGEF26. Therefore, miR-27a-mediated targeting of 

ARHGEF26 may play a crucial role in promoting inflammation-induced SMC proliferation 

during neointima formation.  

Genetic deletion of ARHGEF26 in Apoe
–/–

 mice reduces docking structure formation that 

contributes to decreased atherosclerosis in these mice
154

. This protective effect of Arhgef26 

deletion has been attributed to decrease intercellular adhesion molecule 1-mediated formation of 

docking structures around adherent leukocytes
154

. Moreover, in the current study we showed that 

SMC-specific Dicer deletion increased expression of Arhgef26 in wire-injured carotid arteries. 

MiR-27a-3p and ARHGEF26 were expressed in SMCs from human atherosclerotic lesions, 

suggesting that the miR-27a-3p/ARHGEF26 axis in SMCs may also play a role in human 

atherosclerosis.  

Taken together, we showed that Dicer activity controls neointimal hyperplasia by reducing SMC 

proliferation after vascular injury. In addition to other anti-proliferative miRNAs, miR-27a-3p-
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mediated targeting of Arhgef26 may contribute to the effect of Dicer in SMCs on neointima 

formation by reducing inflammation-induced growth factor signaling. Hence, local treatment 

with miR-27a-3p is a promising therapeutic strategy for restenosis. Taking into account that the 

miRNA-based therapeutics may regulate entire protein or gene networks as compared with the 

classical pharmacological approach
162

. However, due to the increased risk of lentiviral or 

adenoviral delivery of antisense oligonucleotides, new therapeutic strategies, such as miRNA-

mimics or miRNA-inhibitor, are a promising startegy
163

. This miRNA-based eluting stent could 

be optimized by considering the effective dose of the local administration of miRNA or by using 

several miRNAs on a single stent. In addition, long-term efficiency of using miRNA in 

preventing restenosis needs to be still investigated. 
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5 Summary 

The main cause for restenosis following coronary intervention is neointimal hyperplasia due to 

smooth muscle cell (SMC) accumulation with an immature and synthetic phenotype. Small, non-

coding microRNAs (miRNAs) generated by the RNase Dicer play an important role in SMCs 

during differentiation and development. Following vascular injury, several miRNAs, such as 

miR-221 and miR-21, are upregulated and promote neointima formation by increasing SMC 

proliferation. However, the role of Dicer in SMCs during neointima formation is unclear.  

To study the effect of Dicer in SMCs during neointima formation in atherosclerosis-prone 

mice, SMMHC-Cre/Dicer
+/+

apolipoprotein E (Apoe)
–/–

 (smooth muscle [SM]-Dicer
+/+

) and 

SMMHC-Cre/Dicer
flox/flox

Apoe
–/–

 (SM-Dicer
–/–

) mice were treated with tamoxifen to induce Dicer 

deletion in SMCs and fed a high fat diet, and subjected to vascular injury of the left carotid 

artery. Following wire injury in carotid arteries of Apoe
–/–

 mice, miRNA microarray analysis 

revealed that most of the significantly regulated miRNAs, such as miR-21-3p and miR-222-3p, 

were upregulated. Moreover, conditional deletion of Dicer in SMCs increased neointima 

formation, the neointimal SMC content and proliferation in SM-Dicer
–/–

 mice after 14 and 28 

days compared to SM-Dicer
+/+

 mice as quantified by Elastic van Gieson stain and Ki67/SMA 

immunostaining. 

To identify miRNA-mRNA interactions in SMCs that regulate neointima formation, miRNA 

expression and genome-wide gene expression profiles in carotid arteries were compared between 

SM-Dicer
–/–

 mice and SM-Dicer
+/+

 mice at 14 days after vascular injury. Among the 92 miRNAs 

downregulated in SM-Dicer
–/–

 mice 31 miRNAs, including miR-9-5p, miR-27a-3p, miR-143-3p 

and miR-27b-3p, were previously shown to inhibit SMC proliferation in vitro
103

. Genome-wide 

gene expression profiles in SM-Dicer
–/–

 mice also showed that SMC-specific Dicer deletion 

mostly reduced expression of miRNAs that were not upregulated in Apoe
–/–

 mice after wire-

induced injury. Dicer in SMCs reduced SMC proliferation and neointima formation by limiting 

the downregulation of miRNAs and maintaining the expression levels of miRNAs. Therefore, 

these data indicate that many miRNAs are not upregulated in SMCs, but in other cell types such 

as leukocytes. 

Integrative target prediction analysis predicted 521 interactions between 126 mRNAs and 51 

miRNAs that were upregulated and downregulated in SM-Dicer
–/–

 mice, respectively, and 

predicted binding sites in 12 genes for miR-27a-3p, including conserved binding sites in the 

ARHGEF26, CHST1, OIT3 and DLL4 mRNAs. Notably, 11 of the 31 anti-proliferative miRNAs 
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reduce neointima formation
95, 103

, including miR-132-3p. Moreover, miR-27a-3p suppressed 

ARHGEF26 but not CHST1, DLL4 and OIT3 mRNA expression in human SMCs by targeting the 

predicted binding site in the ARHGEF26 3′-UTR as demonstrated by GW182 

immunoprecipitation (MirTrap) and luciferase 3′-UTR reporter assays. Combined in situ PCR 

and SMA immunostaining revealed that miR-27a-3p was expressed in neointimal and medial 

SMCs in SM-Dicer
+/+

 mice and SM-Dicer
–/–

 mice. The number of neointimal SMCs expressing 

ARHGEF26 protein was significantly increased in SM-Dicer
–/–

 mice as detected by 

ARHGEF26/SMA immunostaining. Inhibition of miR-27a-3p or the miR-27a-3p binding site in 

the ARHGEF26 3′-UTR using LNA-inhibitors increased the proliferation of human SMCs as 

determined by Ki67 immunostaining. Moreover, treating HASMCs with IL-1β reduced the 

expression of miR-27a-3p and increased the expression of ARHGEF26. Our data suggest that 

downregulation of miR-27a-3p in SMCs by inflammatory stimuli plays an important role in 

inflammation-induced SMC proliferation during neointima formation by mediating NF-B-

induced upregulation of ARHGEF26 due to suppression of miR-27a-3p expression
164

. 

In conclusion, biogenesis of miRNA by Dicer in SMCs limits neointima formation by 

suppressing SMC proliferation. This effect of Dicer is partly due to the expression of miR-27a-

3p, which inhibits SMC proliferation by targeting ARHGEF26, a guanine exchange factor that 

promotes growth factor signaling. Thus, an increasing Dicer activity in SMCs represents a 

potential approach to prevent restenosis due to neointimal hyperplasia. 
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6 Zusammenfassung 

Die Restenose nach koronarer Intervention entwickelt sich als neointimale Hyperplasie infolge 

der Akkumulation glatter Muskelzellen (SMC), die unreife synthetische Eigenschaften 

aufweisen. Kleine, nichtkodierende microRNAs (miRNAs), gebildet durch die RNAse Dicer, 

spielen eine wichtige Rolle bei der Entwicklung und Differenzierung von SMC. Die Expression 

einiger miRNAs, wie miR-221 und miR-21, ist erhöht nach Gefäßverletzung und führt zur 

Neointimabildung durch die verstärkte SMC Proliferation. Allerdings ist die Rolle von Dicer in 

SMC im Rahmen der Neointimabildung nicht klar.  

Um den Einfluss von Dicer in SMCs auf die Neointimabildung in atheroskleroseanfälligen 

Mäusen zu untersuchen, wurden SMMHC-Cre/Dicer
+/+

apolipoprotein E (Apoe)
–/–

 (glatte 

Muskelzellen [SM]-Dicer
+/+

) und SMMHC-Cre/Dicer
flox/flox

Apoe
–/–

 (SM-Dicer
–/–

) Mäuse mit 

Tamoxifen behandelt, um die Dicer Deletion in SMC zu induzieren und anschließend auf High-

Fat Diät gesetzt.  

Die Analyse des miRNA Microarray nach Gefäßverletzung der linken Arteria carotis 

communis (A. communis) von Apoe
–/–

 Mäusen zeigte, dass die Expression der signifikant 

regulierten miRNAs, wie miR-21-3p und miR-222-3p, erhöht war. Ferner führte die konditionelle 

SMC Dicer Gendeletion (SM-Dicer
–/–

) zur verstärkten Neointimabildung, erhöhtem neointimalen 

SMC Anteil und gesteigerter SMC Proliferation nach 14 und 28 Tagen im Vergleich zu den SM-

Dicer
+/+

 Mäusen, gemessen mittels Elastic van Gieson Färbung und Ki67/SMA Immunfärbung. 

Um die miRNA-mRNA Interaktionen in SMC zu untersuchen, die Neointimabildung 

regulieren, wurden die miRNA- und die genomweite Genexpressionsprofile in A. communis 14 

Tage nach Gefäßverletzung gemessen und zwischen SM-Dicer
–/–

 und SM-Dicer
+/+

 Mäusen 

verglichen. Unter den 92 herunterregulierten miRNAs in SM-Dicer
–/–

 Mäusen können 31 

miRNAs, inkl. miR-9-5p, miR-27a-3p, miR-143-3p und miR-27b-3p die SMC Proliferation in 

vitro inhibieren
103

. Die Untersuchung der genomweiten Expressionsprofile in SM-Dicer
–/–

 

Mäusen hat auch gezeigt, dass die SMC-spezifische Dicer Deletion hauptsächlich die Expression 

der miRNAs reduzierte, die in den Apoe
–/–

 Mäusen nach Gefäßverletzung nicht erhöht waren. 

Dicer in SMC reduziert die SMC Proliferation und die Neointimabildung durch eine Begrenzung 

der Reduktion von miRNAs und eine Erhaltung der Expressionsniveaus von miRNAs. Diese 

Ergebnisse deuten darauf hin, dass viele miRNAs nicht in SMC, sondern in anderen Zelltypen 

wie Leukozyten vermehrt exprimiert sind.  

Mit Hilfe eines integrativen Vorhersageprogramms wurden 521 Interaktionen zwischen den 



6 Zusammenfassung 

 

74 

erhöhten 126 mRNAs und den verringerten 51 miRNAs in SM-Dicer
–/–

 Mäusen vorausberechnet. 

Ferner wurden Bindungsstellen in 12 Genen für miR-27a-3p, inkl. konservierter Bindungsstellen 

in den ARHGEF26, CHST1, OIT3 und DLL4 mRNAs prognostiziert. Wichtig erscheint es, dass 

11 von 31 anti-proliferativen miRNAs, einschließlich miR-132-3p, die Neointimabildung 

verringern können
95, 103

. Außerdem konnte miR-27a-3p in humanen SMC die Expression von 

ARHGEF26, aber nicht von CHST1, DLL4 und OIT3 mRNAs mittels vorhergesagten 

Bindungsstellen in den ARHGEF26 3′-UTR supprimieren, wie mithilfe von GW182 

Immunpräzipitation (MirTrap) und Luziferase 3′-UTR Reporter-Assays detektiert werden konnte. 

Eine Kombination von in situ PCR und SMA Immunfärbung konnte zeigen, dass miR-27a-3p in 

den neointimalen und medialen SMC in SM-Dicer
+/+

 und SM-Dicer
–/–

 Mäusen exprimiert wird. 

Die Anzahl von neointimalen SMC, die das ARHGEF26 Protein exprimieren, war deutlich 

angestiegen in den SM-Dicer
–/–

 Mäusen, gemessen mittels ARHGEF26/SMA Immunfärbung. 

Die Suppression von miR-27a-3p oder der Bindungsstelle in der ARHGEF26 3′-UTR mittels 

LNA-Inhibitoren führte zu einer Erhöhung der Proliferation humaner SMC, detektiert mithilfe 

von Ki67 Immunfärbung. Ferner reduzierte die Behandlung von HASMCs mit IL-1β die miR-

27a-3p Expression und erhöhte die ARHGEF26 Expression. Unsere Ergebnisse deuten darauf 

hin, dass die reduzierte Expression von miR-27a-3p in SMC eine wichtige Rolle in der SMC 

Proliferation unter inflammatorischen Bedingungen während der Neointimabildung spielt. Dies 

kann über die NF-B-induzierte Erhöhung von ARHGEF26 aufgrund der miR-27a-3p 

Suppression vermittelt werden
164

. 

Zusammenfassend lässt sich sagen, dass die Dicer-vermittelte Biogenese von miRNAs in 

SMC die Neointimabildung, durch die Suppression der SMC Proliferation, inhibiert. Dieser 

Effekt von Dicer ist auch auf die miR-27a-3p zurückzuführen, die die SMC Proliferation via 

Bindung an ARHGEF26 inhibiert. ARHGEF26 begünstigt als Guanine-Austauschfaktor das 

Wachstumsfaktoren-Signaling. In diesem Zusammenhang kann eine erhöhte Dicer Aktivität in 

SMCs einen potentiellen Ansatz zur Bekämpfung von Restenose durch eine verminderte 

Neointimabildung darstellen. 
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