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I. Zusammenfassung 

 

Das Hauptziel der vorliegenden Dissertation ist die genetische Charakterisierung von 

zytogenetischen Subgruppen der Akuten Myeloischen Leukämie (AML). Grundlage 

dieser kumulativen Dissertation sind die beiden aufgeführten Publikationen, die in 

renommierten Fachzeitschriften erschienen sind (Impact-factor von Blood in 2014: 

10.452; aktueller Impact-factor von Nature Communications: 11.470): 

- Herold, T., K. H. Metzeler, S. Vosberg, L. Hartmann, C. Röllig, F. Stölzel, 
S. Schneider, M. Hubmann, E. Zellmeier, B. Ksienzyk, V. Jurinovic, Z. 
Pasalic, P. M. Kakadia, A. Dufour, A. Graf, S. Krebs, H. Blum, M. C. 
Sauerland, T. Büchner, W. E. Berdel, B. J. Wörmann, M. Bornhäuser, G. 
Ehninger, U. Mansmann, W. Hiddemann, S. K. Bohlander, K. Spiekermann 
and P. A. Greif (2014). "Isolated trisomy 13 defines a homogeneous AML 
subgroup with high frequency of mutations in spliceosome genes and poor 
prognosis." Blood 124(8): 1304-1311. 
 

- Hartmann, L., S. Dutta, S. Opatz, S. Vosberg, K. Reiter, G. Leubolt, K. H. 
Metzeler, T. Herold, S. A. Bamopoulos, K. Bräundl, E. Zellmeier, B. 
Ksienzyk, N. P. Konstandin, S. Schneider, K. P. Hopfner, A. Graf, S. Krebs, 
H. Blum, J. M. Middeke, F. Stölzel, C. Thiede, S. Wolf, S. K. Bohlander, C. 
Preiss, L. Chen-Wichmann, C. Wichmann, M. C. Sauerland, T. Büchner, 
W. E. Berdel, B. J. Wörmann, J. Braess, W. Hiddemann, K. Spiekermann 
and P. A. Greif (2016). "ZBTB7A mutations in acute myeloid leukaemia 
with t(8;21) translocation." Nat Commun 7: 11733. 

 

In beiden Arbeiten wurden Genmutationen  identifiziert, die spezifisch bei AML 

Patienten mit bestimmten chromosomalen Veränderungen auftreten: SRSF2 

Mutationen bei Patienten mit Trisomie 13 und ZBTB7A Mutationen bei Patienten mit 

t(8;21) Translokation.   

Es ist bekannt, dass die Entwicklung von AML als mehrstufiger Prozess abläuft, der 

von Veränderungen im Genom getrieben ist. Die spezifische Assoziation von 

bestimmten chromosomalen Veränderungen und Genmutationen, so wie in dieser 

Arbeit beschrieben, deutet auf eine definierte Kooperation der verschiedenen 

genetischen Veränderungen bei der Leukämogenese hin. Neue Einblicke in dieses 

Zusammenspiel können dazu beitragen, die Entstehung der AML besser zu 

verstehen und gezielte Therapieansätze zu entwickeln. 
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II. Summary 

 

The main objective of this dissertation is the genetic characterization of cytogenetic 

subgroups of acute myeloid leukemia (AML). This cumulative dissertation is based on 

two articles that were published in leading scientific journals (impact factor of Blood in 

2014: 10.452; recent impact factor of Nature Communications: 11.470): 

- Herold, T., K. H. Metzeler, S. Vosberg, L. Hartmann, C. Röllig, F. Stölzel, 
S. Schneider, M. Hubmann, E. Zellmeier, B. Ksienzyk, V. Jurinovic, Z. 
Pasalic, P. M. Kakadia, A. Dufour, A. Graf, S. Krebs, H. Blum, M. C. 
Sauerland, T. Büchner, W. E. Berdel, B. J. Wörmann, M. Bornhäuser, G. 
Ehninger, U. Mansmann, W. Hiddemann, S. K. Bohlander, K. Spiekermann 
and P. A. Greif (2014). "Isolated trisomy 13 defines a homogeneous AML 
subgroup with high frequency of mutations in spliceosome genes and poor 
prognosis." Blood 124(8): 1304-1311. 
  

- Hartmann, L., S. Dutta, S. Opatz, S. Vosberg, K. Reiter, G. Leubolt, K. H. 
Metzeler, T. Herold, S. A. Bamopoulos, K. Bräundl, E. Zellmeier, B. 
Ksienzyk, N. P. Konstandin, S. Schneider, K. P. Hopfner, A. Graf, S. Krebs, 
H. Blum, J. M. Middeke, F. Stölzel, C. Thiede, S. Wolf, S. K. Bohlander, C. 
Preiss, L. Chen-Wichmann, C. Wichmann, M. C. Sauerland, T. Büchner, 
W. E. Berdel, B. J. Wörmann, J. Braess, W. Hiddemann, K. Spiekermann 
and P. A. Greif (2016). "ZBTB7A mutations in acute myeloid leukaemia 
with t(8;21) translocation." Nat Commun 7: 11733. 

 

In both studies, gene mutations were found that occur specifically in AML patients 

with distinct chromosomal aberrations: SRSF2 mutations in patients with trisomy 13 

and ZBTB7A mutations in patients with t(8;21) translocation.  

It is known that the development of AML is a multistep process driven by genomic 

alterations. The specific associations between certain chromosomal lesions and gene 

mutations, as described in this dissertation, point towards a defined leukemogenic 

cooperativity between the different kinds of genetic alterations. New insights into this 

interaction can contribute to a better understanding of the evolution of AML and to  

the development of targeted therapy approaches.  
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III. Abbreviations 

 

2-DG  2-Deoxy-D-glucose 

AML  Acute myeloid leukemia 

CBF  Core binding factor 

CLP  Common lymphoid progenitor 

CML  Chronic myeloid leukemia 

CMP  Common myeloid progenitor 

CN-AML Cytogenetically normal AML 

ELN  European leukemia network 

FAB  French-American-British 

HSC  Hematopoietic stem cell 

INDEL Small insertion/deletion 

ITD  Internal tandem duplication 

MDS  Myelodysplastic syndrome 

MPP  Multipotent progenitor 

MRC  Medical Research Council  

NGS  Next generation sequencing 

PTD  Partial tandem duplication 

SNV  Single nucleotide variant 

TCGA  The cancer genome atlas 

WHO  World Health Organization 
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IV. Tables and Figures 

 

Table 1: WHO 2008 classification of acute myeloid leukemia 

Table 2: MRC AML risk classification according to chromosomal aberrations 

Table 3: Recurrently mutated genes in AML 

 

Figure 1: Normal hematopoiesis and acute myeloid leukemia 

Figure 2: Cytogenetic results from the Medical Research Council (MRC) trials 

Figure 3: The core binding factor (CBF) complex 

Figure 4: Molecular pathogenesis of AML 

Figure 5: Contribution of chromosomal aberrations and gene mutations to 
leukemogenesis 
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1. Introduction 

 

1.1. Acute myeloid leukemia (AML) 

 

Clinical characteristics 

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by 

excessive growth of clonal myeloid progenitor cells. The term ‘leukemia’ was coined 

in the 19th century by Rudolf Virchow, based on his observations of ‘white blood’ 

(Kampen, 2012).  

Common symptoms of AML include anemia, bleeding and frequent infections. The 

diagnosis is based on cytomorphological assessment of bone marrow and peripheral 

blood. AML is mostly a disease of the elderly, with a median age of >65 years at 

diagnosis (Juliusson et al, 2012; Wang, 2014). A combination of daunorubicin and 

cytarabine (the so-called ‘3+7’ regimen) is the standard initial treatment for AML and 

results in remission, i.e. reduction of bone marrow blast counts to <5%, in 40-80% of 

patients (Burnett et al, 2011). However, a high proportion of patients will eventually 

relapse and become non-responsive to further therapy approaches. The five-year 

survival rate for adult AML can be as low as 10% (Burnett et al, 2011). Importantly, it 

was shown that remission and survival rates highly depend on clinical (e.g. age) and 

biological factors (e.g. karyotype, gene mutations), allowing for risk stratification and 

treatment adjustment such as consideration of allogeneic stem cell transplantation for 

suitable patients with high risk disease (Estey and Döhner, 2006; Döhner et al, 2010).  

Initially, AML was classified based on cytomorphology. In 1976, the French-

American-British (FAB) co-operative group proposed the so-called FAB classification 

which recognizes eight subtypes (M0- M7) with respect to cell type and differentiation 

(Bennett et al, 1976). Later, with better understanding of AML pathogenesis, a more 

refined classification established by the World Health Organization (WHO) also 

included biological and cytogenetic factors (Vardiman et al, 2009).  

Table 1: WHO 2008 classification of acute myeloid leukemia (Vardiman et al, 2009) 

Acute myeloid leukemia  

Acute myeloid leukemia with recurrent genetic abnormalities 
Acute myeloid leukemia with myelodysplasia-related changes 
Therapy-related myeloid neoplasms 
Acute myeloid leukemia, not otherwise specified 
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Leukemogenesis 

Normal hematopoiesis follows a tightly regulated hierarchy (Figure 1). Hematopoietic 

stem cells (HSC) reside in the bone marrow and have self-renewal capacities but can 

also differentiate into all blood cell types. Upon stimulation, HSCs differentiate to 

multipotent progenitors (MPP) which are still able to generate all kinds of mature 

blood cells but have lost self-renewal capacity (Fiedler and Brunner, 2012). The 

common lymphoid progenitors (CLP) and common myeloid progenitors (CMP) give 

rise to the mature cells of the lymphoid lineage (T-cells, B-cells, NK-cells) or the 

mature cells of myeloid lineage (erythrocytes, megakaryocytes, macrophages, 

granulocytes), respectively (Kondo et al, 1997; Akashi et al 2000). Differentiation and 

commitment to cell lineage fates have been demonstrated to highly depend on the 

expression of specific combinations of transcription factors (Tenen, 2003; Wilson et 

al, 2010; Pouzolles et al, 2016). 

It was shown that AML derives from early progenitor cells (Bonnet and Dick, 1997). 

Ddifferentiation of myeloid progenitors is blocked and the cells proliferate 

unrestrictedly, leading to accumulation of clonal immature precursor cells in the bone 

marrow and consecutive suppression of normal hematopoiesis.  

 
Figure 1: Normal hematopoiesis and acute myeloid leukemia (adapted from Tan et al, 

2006). Blood cells derive from precursor cells that undergo multiple differentiation 

steps. In AML, differentiation of hematopoietic stem cells (HSC) or multipotent 

progenitors (MPP) is blocked, leading to accumulation of leukemic blasts. CLP= 

common lymphoid progenitor, CMP= common myeloid progenitor 
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The transformation of normal HSCs or MPPs to leukemic blasts is a multi-step 

process driven by sequential leukemogenic events (reviewed by Horton and Huntly, 

2012). These events are commonly alterations of the genome. In consequence, 

characterization of genomic lesions in AML is essential to understand the 

pathogenesis of AML and ultimately to enable the development of tailored, more 

effective therapies.  

 

 

1.2. Chromosomal alterations in AML 

Recurrent cytogenetic alterations, i.e. structural or numerical chromosomal 

abnormalities, in AML were already described more than 40 years ago by pioneering 

work of Janet Rowley and others (reviewed by Freireich et al, 2014). The discovery of 

recurring balanced translocations between chromosomes 8 and 21, termed 

t(8;21)(q22;q22), in AML was the first translocation to be described in human cancers 

and is considered a milestone in our understanding of cancer genetics (Rowley, 

1973). In approximately 50-60% of AML patients, abnormal karyotypes can be 

detected and as shown in Figure 2, the diversity of cytogenetic abnormalities is rather 

high.  

 

Figure 2: Cytogenetic results from the Medical Research Council (MRC) trials 

(Grimwade et al, 2010). A total of 5876 AML karyotypes were analyzed and 

abnormalities were identified in 59% of patients. Of note, these patients were <60 

years old, and distribution of cytogenetic aberrations varies in different age groups. 

MDS= Myelodysplastic syndrome 
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Despite this complexity, the prognostic impact of the most common chromosomal 

abnormalities has been assessed through efforts of numerous study groups 

(overview in Burnett et al, 2011), leading to the widely used risk classification 

established by the European Leukemia Network (ELN) and Medical Research 

Council (MRC).  

Table 2: MRC AML risk classification according to chromosomal aberrations 

(Grimwade et al, 2010) 

Favorable Risk 

t(15;17)(q22;q21) 
inv(16)(p13.1q22); t(16;16)(p13.1;q22) 
t(8;21)(q22;q22) 

Intermediate Risk 

Normal karyotype 
Cytogenetic abnormalities not classified as favorable or adverse 

Adverse Risk 

abnormal(3q), excluding t(3;5)(q21~25;q31~35) 
inv(3)(q21q26.2); t(3;3)(q21;q26.2) 
add(5q), del(5q), -5 
-7, add(7q)/del(7q) 
t(6;11)(q27;q23) 
t(10;11)(p11~13;q23) 
t(11q23), excluding t(9;11)(p21~22;q23) and t(11;19)(q23;p13) 
t(9;22)(q34;q11) 
-17/abnormal(17p) 
complex karyotype* 

                            * Defined as >4 independent chromosomal aberrations 
 

Besides assessing their prognostic impact, understanding the underlying 

mechanisms how chromosome abnormalities arise and how they contribute to 

leukemogenesis is of great importance.    

Aneuploidy, i.e. gain or loss of entire chromosomes, is the result of erroneous 

chromosome segregation during mitosis (Bakhoum and Compton, 2012). It is 

challenging to decipher the direct influence of numerical chromosomal aberrations on 

leukemogenesis since the aberrations affect numerous gene loci. However, gene 

dosage effects are believed to play an important role. For example, in a study of 80 

patients with trisomy 8 (+8) as sole aberration, 452 genes were significantly 

upregulated and 329 downregulated in +8 AML compared to cytogenetically normal 

AML (Becker et al, 2014). Of the 452 upregulated genes, 189 (42%) were located on 

chromosome 8.  
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The precise molecular mechanism which causes chromosomal translocations 

remains elusive. Studies showed that homologous recombination, non-homologous 

end joining and chromosome fragile sites potentially trigger the formation of 

translocations (reviewed by Aplan, 2006). Moreover, it was shown that chromosome 

segregation errors during mitosis can lead to translocations as well (Janssen et al, 

2011). In general, oncogenic translocations lead either to novel fusion genes 

(Hermans et al, 1987; de Thé et al, 1991) or juxtaposition of regulatory elements from 

one translocation partner to the other, resulting in aberrant gene expression (ar-

Rushdi et al, 1983; Gröschel et al, 2014).  The functional consequences of many 

chromosomal rearrangements have been subject to intensive studies. The recurrent 

translocation t(8;21)(q22;q22), for example, leads to the chimeric RUNX1/RUNX1T1 

gene (also known as AML1-ETO) (Erickson et al, 1992). RUNX1 is an important 

transcription factor for regulation of hematopoiesis (Tanaka et al, 1995; Okuda et al, 

1996) and part of the so-called core binding factor (CBF) complex. Through fusion 

with RUNX1T1, normal function of RUNX1 in the CBF complex is disturbed, 

preventing transcription of CBF target genes important for myeloid differentiation, and 

thereby leading to disruption of normal hematopoiesis and inactivation of tumor 

suppressor genes (Westendorf et al, 1998; Goyoma and Mulloy, 2011). 

 

Figure 3: The core binding factor (CBF) complex (adapted from Solh et al, 2014). (A) 

The CBF consists of 2 subunits. RUNX1 and CBFB form a complex known to initiate 

transcription of genes involved in myeloid differentiation. (B) The t(8;21) translocation 

leads to the RUNX1/RUNX1T1 fusion and, via recruitment of additional factors, to 

inactivation of CBF target genes.  

 

However, in vivo models indicate the requirement of additional lesions, such as gene 

mutations, for leukemogenesis as the RUNX1/RUNX1T1 fusion gene alone is not 

sufficient to induce leukemia in murine models (Rhoades et al, 2000; Yuan et al, 

2001). Similarly, in children with t(8;21) positive AML, the RUNX1/RUNX1T1 fusion 

could already be detected in neonatal blood samples but the full-blown leukemia was 

characterized by additional genomic aberrations (Wiemels et al, 2002). 
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1.3. The mutational landscape of AML 

Besides microscopically detectable chromosomal alterations, gene mutations in AML 

have also been intensively investigated. Initially, gene mutations were identified 

based on candidate approaches or serendipitously. For example, AML samples were 

screened for NRAS mutations based on the observation that this oncogene is 

mutated in other types of cancer (Bos et al, 1985). NPM1 mutations, which occur in 

approximately 25-35% of AML patients, were discovered after detection of aberrant 

cytoplasmic localization of the protein. It was shown that in most cases an insertion of 

4 bases lead to a frame shift in the region encoding the C-terminus of NPM1, thereby 

truncating the protein and leading to loss of a nuclear localization signal and 

consequently abnormal sub-cellular localization (Falini et al, 2005).   

With the introduction of next generation sequencing (NGS) technologies (reviewed by 

Welch and Link, 2011), the number of known recurrently mutated genes in AML has 

increased tremendously. In fact, the first human cancer genome to be completely 

sequenced was from a patient with AML (Ley et al, 2008). Shortly after, DNMT3A 

mutations were described by the same research group (Ley et al, 2010), followed by 

the discovery of several other novel gene mutations in AML such as BCOR 

(Grossmann et al, 2011), GATA2 (Greif et al, 2012), RAD21 (Dolnik et al, 2012) and 

ASXL2 (Micol et al, 2014). Through high-throughput sequencing approaches, these 

and other mutations have been studied by several groups with regards to their 

frequency and prognostic significance (reviewed by Larsson et al, 2013; Meyer and 

Levine, 2014; Döhner et al, 2015). An overview of the most common recurrently 

mutated genes in AML is shown in Table 3.  

Table 3: Recurrently mutated genes in AML (according to Döhner et al, 2015). ITD= 

Internal tandem duplication, PTD= Partial tandem duplication 

Mutated gene Frequency 

NPM1 

FLT3-ITD 
DNMT3A 

NRAS 

25-35% 
20% 

18-22% 
15% 

TET2 7-25% 
CEBPA 6-10% 
RUNX1 5-15% 
ASXL1 5-17% 

IDH1; IDH2 7-14%; 8-19% 
KIT <5% 

KMT2A-PTD 5% 
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Development of AML is believed to be a multistep process that requires the 

sequential acquisition of several mutations. Based on studies of CBF leukemia, it was 

proposed that these mutations would fall into two distinct categories (Speck and 

Gilliland, 2002). Class I mutations (for example in FLT3, KIT and NRAS) enhance 

proliferation and survival, predominantly through constitutively activated signaling 

pathways. In contrast, class II mutations result in impaired differentiation of 

hematopoietic progenitor cells and often affect transcription factors such as RUNX1 

or GATA1/2. Mutations of both classes are likely necessary to develop full-blown 

leukemia.  

In the last years, with the discovery of numerous novel gene mutations, this model 

had to be revised. Functional analyses demonstrated that several mutations do not 

accurately fit in class I or II but can be categorized in other functional groups. 

DNMT3A, for example, encodes a DNA methyltransferase and DNMT3A mutations 

lead to global changes of the DNA methylation pattern (Russler-Germain et al, 2014). 

Likewise, TET2 and IDH1/2 mutations have also been associated with epigenetic 

changes (Figueroa et al, 2010).  In consequence, new functional classifications of 

gene mutations in AML have been suggested as shown in Figure 4 (Thiede, 2012).                                                                                                                                            

Figure 4: Molecular pathogenesis of AML (adapted from Thiede, 2012). Initially, 

mutations were only categorized in class I (affecting proliferation) and class II 

(affecting differentiation). This model was revised after discovery of gene mutations 

that affect further functional categories.  
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2. Specific aims and questions  

AML is an exceedingly heterogeneous disease on the genetic level (Grimwade et al, 

2016; Papaemmanuil et al, 2016; Metzeler et al, 2016). Probably, we will not identify 

two individuals with AML that are characterized by exactly the same genetic 

alterations. However, since associations between gene mutations and certain 

chromosomal aberrations have already been shown, e.g. KIT mutations in AML with 

t(8;21) or inv(16) (Beghini et al, 2000; Care et al, 2003) and TP53 mutations in AML 

with complex karyotype (Haferlach et al, 2008), it is worth investigating cytogenetic 

subgroups of AML in order to identify further patterns of mutational co-occurrence 

and thereby decipher the genetic heterogeneity. Furthermore, it is of great interest to 

study the impact of these mutations on a clinical and functional level. Can we 

improve risk stratification if we include information about gene mutations? Are co-

occurring gene mutations just bystanders or how do they contribute to the AML 

phenotype? This information might be particularly valuable for the design of novel 

targeted therapies.  

The studies presented in this thesis aimed (I) to investigate the mutational landscape 

of selected cytogenetic subgroups and (II) to evaluate clinical and functional 

consequences of identified mutations. 

Figure 5: Contribution of chromosomal aberrations and gene mutations to 

leukemogenesis (adapted from Bochtler et al, 2015).  Both types of genomic lesions 

can lead to leukemia. However, their synergism is not yet fully understood. 
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3. Summary of results 

Paper I: Characterization of AML with trisomy 13 

Herold T, Metzeler KH, Vosberg S, Hartmann L, Röllig C, Stölzel F, et al. Isolated 

trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations 

in spliceosome genes and poor prognosis. Blood. 2014 

Trisomy 13 (+13) as sole aberration is a rare cytogenetic finding in AML with an 

incidence of <1%. According to ELN and MRC risk stratification, patients with isolated 

+13 fall into the intermediate risk group. However, previous studies indicated adverse 

clinical outcome for AML patients with +13. 

The aims of the presented study were (I) clinical characterization, (II) mutational 

profiling and (III) gene expression analysis of AML patients with +13. 

Clinical data were available for 34 patients with isolated +13 and 850 patients with 

other cytogenetic findings that also fall into the same risk group. Patients with +13 

were significantly older and had higher blast counts at diagnosis. Moreover, relapse-

free survival and overall survival were inferior for the AML +13 group compared with 

the other intermediate-risk patients.  

Exome sequencing of paired diagnostic and remission samples from two patients 

with +13 identified leukemia-specific mutations in 36 genes, including RUNX1, 

ASXL1, BCOR, ZRSR2, NUP188 and CEBPZ.  Next, targeted amplicon sequencing 

was performed on 16 AML +13 samples, revealing high frequencies of mutations in 

RUNX1 (n=12, 75%) and the spliceosome complex (SRSF2: 81%, SF3B1: 6%, SF1: 

6% and ZRSR2:13%). Moreover, novel mutations in CEBPZ were identified. The 

frequency of SRSF2 mutations in AML +13 is the highest to be so far reported in any 

AML subgroup, pointing towards a joint contribution to cell transformation. Similarly, 

gene expression analysis identified genes that were significantly deregulated in AML 

+13, including FLT3 (upregulation) and SPRY2 (downregulation). 

Contribution to this project as co-author: 

Confirmation of CEBPZ, ASXL1 and SRSF2 mutations by Sanger sequencing 

(Tables S2 and S3, Figure S3), confirmation of somatic status (Figure S3), screening 

of cytogenetically normal AML (CN-AML) patients for SRSF2 mutations, manuscript 

preparation and proof-reading.  
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Paper II: ZBTB7A mutations in t(8;21) positive AML 

Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, et al. ZBTB7A Mutations in 

Acute Myeloid Leukemia with t(8;21) Translocation, Nat Commun. 2016 

The t(8;21) translocation is one of the most frequent chromosomal abnormalities in 

AML and leads to the fusion gene RUNX1/RUNX1T1. However, in vivo models 

indicate the requisite of additional lesions for leukemogenesis as RUNX1/RUNX1T1 

alone is not able to induce leukemia. Exome sequencing of matched diagnostic and 

remission samples of two patients with t(8;21) rearrangement identified leukemia-

specific ZBTB7A mutations in both patients. ZBTB7A is a transcriptional repressor 

and plays a role in normal hematopoiesis. Previous studies indicated that ZBTB7A 

has both proto-oncogenic and tumor suppressor properties in a tissue-dependent 

fashion.    

The aim of this study were to (I) assess the mutation frequency of ZBTB7A mutations 

in a large cohort of AML patients with t(8;21) translocation, (II) functionally 

characterize ZBTB7A mutations and (III) evaluate the clinical impact of ZBTB7A 

mutations and expression. 

Using targeted amplicon sequencing, ZBTB7A mutations were identified in 13/56 

(23%) of screened RUNX1/RUNXT1 positive AML patients. Importantly, ZBTB7A 

mutations were not detected in 50 CN-AML patients. Two mutational hotspots (R402 

and A175fs) were identified and further characterized on a functional level. The R402 

mutations affect the zinc finger structure of ZBTB7A while the A175fs mutation leads 

to complete loss of the zinc finger domain. DNA pull-down assays and luciferase-

based transcription reporter assays indicated that the analyzed ZBTB7A mutations 

lead to loss-of-function. Retroviral expression of wild-type ZBTB7A in a 

RUNX1/RUNXT1 positive cell line as well as lineage negative murine bone marrow 

cells (co-expressing RUNX1/RUNX1T1) inhibited cell growth, whereas this anti-

proliferative effect was lost or weakened upon expression of ZBTB7A mutants.  

From a clinical perspective, ZBTB7A mutations showed no influence on patient 

outcome. However this evaluation was limited by the relatively small cohort size. 

Remarkably, in over 200 CN-AML patients treated on a clinical trial (NCT00266136), 

high expression of ZBTB7A was associated with a favorable outcome suggesting a 

relevance in AML beyond the t(8;21) subgroup. 
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4. Conclusion and outlook 

The two studies presented in this thesis provided novel insides into the biology of 

acute myeloid leukemia: 

-Isolated trisomy 13 is a rare cytogenetic finding but associated with inferior clinical 

outcome. Consequently, patients with this cytogenetic aberration should be stratified 

into the group of adverse risk. 

-For the first time we have shown that trisomy 13 is associated with a high frequency 

of SRSF2 mutations (13 of 16 patients, 81%).  SRSF2 is a splicing factor and part of 

the spliceosome. It was shown that the common SRSF2 P59H mutation leads to 

deregulated splicing because of altered RNA-binding affinities (Zhang et al, 2015). 

How this effect contributes to leukemogenesis and how mutated SRSF2 and trisomy 

13 may collaborate remains to be investigated. 

-ZBTB7A mutations are a novel finding in AML. Just recently, another group also 

identified ZBTB7A mutations in 3/20 patients with t(8;21) translocation (Lavallée et al, 

2016), independently confirming our data. Given the high frequency of these 

mutations, it is worth analyzing ZBTB7A mutations in a larger patient cohort to gain 

reliable information about the prognostic relevance of ZBTB7A mutations. This 

information can help to refine risk-stratification for t(8;21) positive patients. 

-Our data indicates a specific association of ZBTB7A mutations and 

RUNX1/RUNX1T1 suggesting oncogenic collaboration, however, the underlying 

mechanism remains elusive.  

-ZBTB7A has been reported to act either as a tumor suppressor or oncogene, in a 

tissue-dependent fashion. The presented study indicates that ZBTB7A functions as a 

tumor suppressor in AML.  

Ideally, therapy of AML could be improved by novel approaches that target one or 

more cooperating lesions. Since ZBTB7A mutations lead to loss of function in AML, 

therapies would either need to restore ZBTB7A function or reverse the consequences 

of insufficient ZBTB7A. It was shown that ZBTB7A mutations lead to higher glycolytic 

activity in vitro (Liu et al, 2015), thereby increasing tumor metabolism and promote 

cell proliferation. Consequently, it is attractive to explore if tumor metabolism could be 



21 
 

restricted in ZBTB7A mutated AML by treatment with glycolysis inhibitors such as 2-

Deoxy-D-glucose (2-DG). For solid tumors, mouse transplantation assays already 

indicated that 2-DG treatment leads to reduced growth of ZBTB7A-knock down cells 

(Liu et al 2014). Importantly, clinical trials confirmed that the administration of 2-DG 

alone or combined with other anticancer therapies, such as chemotherapy and 

radiotherapy was safe and well tolerated by patients with solid tumors (Dwarakanath 

et al, 2009; Raez et al, 2013). It is therefore worthwhile investigating whether similar 

effects can also be observed in AML. 

In 2013, the cancer genome atlas (TCGA) consortium published a series of 200 AML 

cases that were comprehensively characterized for gene mutations by either whole 

genome sequencing (n=50) or exome sequencing (n=150). The cohort comprised 

adult AML patients representing the major cytomorphologic and cytogenetic 

subtypes, including 7 patients that were RUNX1/RUNX1T1 positive and a single 

patient with isolated trisomy 13. A total of 2315 somatic single nucleotide variants 

(SNV) and 270 small insertions or deletions (INDEL) in coding regions were 

identified. However, no ZBTB7A mutations and only a single SRSF2 mutation were 

reported in this patient cohort (the SRSF2 mutation was not found in the patient with 

isolated trisomy 13). This highlights that the genetic landscape of AML is still not fully 

understood and that focused analyses of cytogenetic subgroups is important for the 

discovery of novel mutations that might play an important role in leukemogenesis and 

provide the basis for tailored therapies that overcome the poor clinical outcome of 

patients with AML. 
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Key Points

• AML patients with isolated
trisomy 13 have a very poor
clinical outcome

• Isolated trisomy 13 in
AML is associated with
a high frequency of
mutations in SRSF2 (81%)
and RUNX1 (75%)

In acute myeloid leukemia (AML), isolated trisomy 13 (AML113) is a rare chromosomal

abnormalitywhoseprognostic relevance ispoorlycharacterized.Weanalyzed theclinical

course of 34 AML113 patients enrolled in the German AMLCG-1999 and SAL trials and

performedexomesequencing, targetedcandidategene sequencingandgeneexpression

profiling. Relapse-free (RFS) and overall survival (OS) of AML113 patients were inferior

compared to other ELN Intermediate-II patients (n5855) (medianRFS, 7.8 vs 14.1months,

P5 .006; median OS 9.3 vs. 14.8 months, P5 .004). Besides the known high frequency of

RUNX1 mutations (75%), we identified mutations in spliceosome components in 88%,

including SRSF2 codon 95 mutations in 81%. Recurring mutations were detected in

ASXL1 (44%) andBCOR (25%). Twopatients carriedmutations inCEBPZ, suggesting that

CEBPZ is a novel recurrently mutated gene in AML. Gene expression analysis revealed

a homogeneous expression profile including upregulation of FOXO1 and FLT3 and

downregulation of SPRY2. This is the most comprehensive clinical and biological characterization of AML113 to date, and reveals

a striking clustering of lesions in a few genes, defining AML113 as a genetically homogeneous subgroup with alterations in a few

critical cellular pathways.Clinicaltrials.gov identifiers: AMLCG-1999: NCT00266136; AML96:NCT00180115; AML2003:NCT00180102;

and AML601: NCT00893373 (Blood. 2014;124(8):1304-1311)

Introduction

Acquired isolated trisomy 13 (113) is a rare cytogenetic alteration in
acutemyeloid leukemia (AML). In a retrospective study of 22 856AML
patients from the Mayo Clinic, its incidence was 0.7%.1 So far, the
prognostic relevance of AML113 has not been extensively studied, but
assumed to be unfavorable based on small or heterogeneous patient
cohorts.2-4 However, according to the European LeukemiaNet (ELN)
classification, AML113 is currently classified in the Intermediate-II
genetic group.5 AML113 is frequently associated with FAB M0
morphology and shows a high frequency (80% to 100%) of RUNX1
mutations.6,7 Overexpression of FLT3 (located in band q12 on
chromosome 13) due to a gene dosage effect was proposed as

a potential mechanism of leukemogenesis in AML113.6,7 The
possibility that AML113 might be a marker for treatment response
to lenalidomide has recently been raised.8

Constitutional aneuploidy is linked to increased cancer risk.9 For
example, Down syndrome (trisomy 21) predisposes tomegakaryoblastic
leukemia with a high frequency of acquired GATA1 mutations.10

Trisomy 13 (Patau syndrome) is a severe congenital disorder
with cerebral, cardiac, and renal malformations.11 An association of
Patau syndrome and solid neoplasms including neuroblastoma and
nephroblastoma was reported.12 In the literature, we found a single
case report of Patau syndrome with congenital myeloid leukemia.13
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Considering that the vastmajority of infants with Patau syndrome die
before 1 year of age,11 it remains unclear whether constitutional
trisomy 13 predisposes to myeloid neoplasia.

We set out to characterize the clinical course of AML113 patients
and to elucidate the underlying spectrum ofmolecular genetic changes
by exome sequencing, targeted sequencing, and gene expression
profiling.

Materials and methods

Patients

In this analysis, a subgroup of patients enrolled in the German AML
Cooperative Group (AMLCG) (NCT00266136) multicenter AMLCG-1999
trial, and the AML96, AML2003, and AML601 trials of the Study Alliance
Leukemia (SAL) was studied (for details, see supplemental Figure 1A-B
on the BloodWeb site).14-17 All patients received intensive induction chemo-
therapy as described elsewhere.14-17 The AMLCG and SAL clinical trials
were approved by the local institutional review boards of all participating
centers and informed consent was obtained from all patients in accordance
with the Declaration of Helsinki.

Exome sequencing

To perform exome sequencing, genomic DNA of available paired diagnostic and
remission samples was extracted from archived bone marrow (BM) samples and
fragmented for library preparation as described previously.18,19 Protein-coding
regions were enriched using the SureSelect Human All Exon V4 Kit (Agilent),
followed by multiplexed 80 bp paired-end sequencing on an Illumina Genome
Analyzer IIx. In total, at least 3.2 Gb of raw sequence data were generated per
sample (mean 3.5 Gb; quality metrics are summarized in supplemental Table 1).
Raw sequence reads were filtered by Illumina’s chastity filter and mapped to the
NCBI human hg19 RefSeq reference genome using BWA mapper with default
parameters.20 Insufficientlymapped sequence reads (cutoffQ13, according to 95%
confidence of correct mapping) and polymerase chain reaction (PCR) duplicate
reads were removed using SAMtools21; realignment of mapped reads was
performed using the GenomeAnalysis Toolkit to reduce false-positive single
nucleotide variant calls.22 Candidates for somatically acquired mutations
were detected using VarScan with the following parameters: coverage$ 103,
variant allele frequency$ 20%, variant base calling quality$Q13, and variant
reads$ 3.23 Positionswith evidence for a variant in the corresponding remission
sample or annotated polymorphism (as listed in dbSNP v135) were excluded.

Targeted amplicon sequencing

A selection of genes identified by exome sequencing (n5 9) and a panel of genes
recurringly mutated in AML (n 5 42) were studied by targeted amplicon
sequencing (Haloplex; Agilent) in all AMLCG AML113 patients with available
material (16 of 23). The resulting libraries were sequenced in a single run on
a MiSeq instrument. Sequence data were aligned to the human reference genome
(version hg19) using BWA.20 Single nucleotide variants and short insertions or
deletions were called using VarScan 2 and Pindel, respectively.24,25

In addition, Sanger sequencing of genomic DNA was performed for
additional validation of selected mutations. Primer sequences and PCR
conditions (for SRSF2) are shown in supplemental Tables 2 and 3). PCR
products were purified using NucleoFast 96 PCR Clean-up Kit (Macherey
Nagel, Düren, Germany) and bi-directional sequencing was performed on an
ABI 3500xL Genetic Analyzer using the BigDye Terminator v1.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA). Sequences were
aligned and compared with the reference sequences (NCBI accession
numbers: NC_000002.11 [CEBPZ], NG_027868.1 [ASXL1], and
NG_032905.1 [SRSF2]) using the Sequencher software (Gene Codes
Corporation, Ann Arbor, MI)

Gene expression analysis

To further characterize the AML113 subgroup, we compared gene ex-
pression profiles of 9 patients with AML113 to 509 AML patients with
various genetic abnormalities (except for numerical alterations affecting
chromosome 13). The gene expression data set was published previously
and is publicly available through the Gene Expression Omnibus Web site
(GSE37642).26 Eight of 9 patients were also included in the genetic analysis.
Details of sample preparation, hybridization, and image acquisition were
described previously.26 For probe-to-probe set summarization, we used
custom chip definition files based on GeneAnnot version 2.0 (available at
http://www.xlab.unimo.it/GA_CDF/) as reported before.18 Only the 17 389
probe sets present on both the Affymetrix HG-U133A and B chips, and the
HG-U133 plus 2.0 chips were included in the analysis. To eliminate the batch
effect resulting from the use of different chip designs, we applied an empirical
Bayesian method as described previously.27

Gene set enrichment analysis (GSEA) was performed with GSEA
software (MIT) using the “c5_all” collection consisting of 1454 gene sets
derived from the controlled vocabulary of the Gene Ontology project.28

The Linear Models for Microarray Data package was used to compute
differentially regulated probe sets. Differential regional gene expression on
chromosome 13 was analyzed using MACAT (MicroArray Chromosome
Analysis Tool) as described previously.29,30

Table 1. Patient characteristics

Variable AML113* Control Group* P

No. of patients 34 850

Median age, years (range) 64 (43-80) 59 (17-84) .004

Male sex, no. (%) 24 (70) 465 (55) .08

WBC count, G/l, median (range) 10 (1-318) 11 (0.1-365) .64

Hemoglobin, g/dl, median (range) 8.9 (4.6-12.8) 9.2 (2.9-17.2) .2

Platelet count, G/l, median (range) 77 (1-399) 54 (1-1760) .23

LDH (U/l), median (range) 269 (155-1011) 414 (115-11140) .009

BM blasts, %, median (range) 80 (11-100) 68 (11-100) .02

BM blasts at day 16, %, median (range) 5 (0-85) 9 (0-100) .78

Performance status (ECOG) $ 2 (%) 8 (26) 263 (34) .44

de novo AML (%) 26 (76) 646 (76) 1.0

Allogeneic transplantation, no. (%) 6 (18) 180 (21) .83

CR, no. (%) 21 (62) 471 (55) .49

Relapse, no. (%) 18 (86) 327 (69) .14

Deceased, no. (%) 31 (91) 644 (76) .04

Significant P values are indicated in bold.

*All patients were enrolled in the AMLCG-99 or SAL trials and received intensive induction treatment. All patients are classified as ELN Intermediate-II; AML113: patients

with isolated tri- or tetrasomy 13, additional aberrations of the sex chromosomes are allowed.
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Statistical analyses

All statistical analyses were performed using the R 2.12.2 and 3.0.1
software31 and routines from the biostatistics software repository Biocon-
ductor, and SPSS version 21.0 (SPSS Inc., Chicago, IL). Two-sided Fisher’s
exact test was used to compare categorical variables, while Wilcoxon Mann-
WhitneyU test was applied for continuous variables. Adjustment for multiple
hypothesis testing was performed using the Benjamini-Hochberg pro-
cedure.32 Complete remission (CR) was defined as hematologic recovery
with at least 1000 neutrophils permL and at least 100 000 platelets permL, and
, 5% BM blasts in at least one measurement.33 Relapse-free survival (RFS)
was defined as time from the date of CR until relapse, or death. Overall
survival (OS)was defined as time from study entry until death from any cause.
Patients alive without an event were censored at the time of their last follow-
up. The prognostic impact of AML113 was evaluated according to the
Kaplan-Meier method and the log-rank test. To adjust for other potential
prognostic variables, we derived multivariate Cox models for RFS and OS.
The following variables were included in the models, based on their role as
potential confounders and availability of data: age (as a continuous
parameter), sex, BM blasts at initial diagnosis and on day 16, Eastern

Cooperative Oncology Group (ECOG) performance status, white blood cell
(WBC) count, platelet count, hemoglobin, serum lactate dehydrogenase
(LDH) level, de novo vs secondary AML, and presence of AML113. No
variable selection techniquewas applied, and all variableswere retained in the
final models. P # .05 was considered significant.

Results

Isolated trisomy 13 is associated with poor prognosis

We evaluated the cytogenetic reports of 6836 AML patients with
available follow up data treated within the multicenter AMLCG-
1999 and SAL trials for aneuploidy of chromosome 13. A total of 264
patients (3.9%) lacked sufficient cytogenetic data.Additional copies of
chromosome 13 were reported in 99 of 6572 patients (incidence,
1.5%).Our analyses focused on patientswith isolated trisomy (n533)
or tetrasomy 13 (n 5 1) (incidence, 0.5%). Patients with additional

Figure 1. RFS and OS in AML patients. (A-B) AMLCG

cohort. (C-D) Combined AMLCG and SAL cohort.

Kaplan–Meier estimates of RFS and OS are signifi-

cantly reduced for the AML113 subgroup within the

ELN Intermediate-II genetic group.

Table 2. Multivariate analysis

Variable‡

RFS* OS†

HR (95% CI) P HR (95% CI) P

Age (10 y increase) 1.33 (1.21-1.46) <.001 1.38 (1.27-1.5) <.001
BM blasts on day 16 (10% increase) 1.04 (0.97-1.09) .08 1.02 (1.02-1.09) .002

WBC (10 G/l increase) 1.02 (0.99-1.05) .15 1.02 (1-1.05) .04

de novo vs secondary AML 1.02 (0.75-1.4) .89 1.26 (1-1.59) .05

AML113 1.47 (0.82-2.62) .2 1.65 (1.03-2.63) .04

Significant P values are indicated in bold.

*n 5 378, number of events 5 275 (114 patients excluded due to missing covariables).

†n 5 549, number of events 5 410 (335 patients excluded due to missing covariables).

‡Only variables with P# .05 in either model are shown. The following variables were included in both models: sex, age (continuous variable), BM blasts at initial diagnosis

and day 16, ECOG performance status, WBC count, platelet count, hemoglobin, serum LDH level, de novo vs secondary AML, and AML113 status.
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numerical alterations of the sex chromosomes (n5 2) were included.
These 34 patients (AML113) were categorized into the Intermediate-II
genetic category according to the ELN recommendations.5 The
remaining 65 patients had heterogeneous additional cytogenetic
aberrations (aAML113), frequently in the context of a complex
karyotype, andweremostly classified as “adverse” according toELN
criteria (Favorable, n5 1; Intermediate-II, n5 20;Adverse, n5 44).
AML113 patients (n5 34 [AMLCG, n5 23; SAL, n5 11]) were
compared with 850 ELN Intermediate-II genetic group patients
without 113 enrolled in the same clinical trials. Detailed patient
characteristics are given in Table 1 (and separated for the AMLCG
and SAL subgroups in supplemental Table 4A-B). The study design
is summarized in supplemental Figure 1A-B. In the combined data
set, AML113 patients were significantly older (P 5 .004) and had
higher initial BMblast counts (P5 .02), but significantly lower LDH
levels (P 5 .009) than other patients in the ELN Intermediate-II
genetic group. AML113 and aAML113 patients had similar
baseline characteristics, except for significantly lower LDH levels
and a higher CR rate in AML113 and lower platelet counts than
aAML113 (supplemental Table 4C).

Twenty-one AML113 patients (62%, 95% confidence interval
[CI]: 44% to 77%) reached CR, compared with 471 (55%, 95% CI:
52% to 59%) of ELN Intermediate-II patients without113 (P5 .49).
However, 18 of these 21 patients (86%, 95%CI: 63% to96%) relapsed.

In the AMLCG trial, AML113 was associated with inferior RFS
and OS (median RFS5 8.7 vs 14.1 months,P5 .02; median OS5 7
vs13.9months,P5 .01; Figure 1A-B),whereas in theSALcohort, the
differences betweenAML113 and other ELN Intermediate-II patients
did not reach significance (RFS, P5 .12; OS, P5 .29; supplemental
Figure 2A), possibly due to the small number of AML113 cases
(n5 11). RFS andOS in the combinedSAL andAMLCGcohortwere
inferior for the AML113 group compared with other ELN
Intermediate-II patients (median RFS 5 7.8 vs 14.1 months,
P5 .006; median OS5 9.3 vs 14.8months,P5 .004; Figure 1C-D).

In a multivariate analysis in the combined AMLCG and SAL
cohorts that adjusted for other known prognostic markers, AML113
remained a significant variable within the ELN Intermediate-II
genetic group for OS, but not for RFS (Table 2).

There was no significant difference in RFS (P 5 .74) or OS
(P5 .82) between the AML113 and aAML113 subgroups, despite
the high frequency of adverse cytogenetic alterations in the aAML1
13 group (supplemental Figure 2B). We also compared the AMLCG
AML113 group (n 5 23) to 463 patients treated on the AMLCG-
1999 trial who had adverse cytogenetics. Baseline characteristics for
these cohorts are shown in supplemental Table 4D. There was
no significant difference regarding RFS (P 5 .78) or OS (P 5 .98)
between both groups (supplemental Figure 2C).

High frequency of mutations affecting SRSF2, RUNX1, ASXL1,

and BCOR in AML113

Tosystematically identify somaticmutations associatedwithAML113,
we performed exome sequencing of paired diagnostic and remission
samples from 2 patients with AML113 (patients no. 8 and 11). We
identified nonsynonymous leukemia-specific mutations affecting 36
genes, including RUNX1, ASXL1, BCOR, ZRSR2, NUP188, and
CEBPZ.No recurring mutations were observed between the 2 patients.
Nonsynonymous mutations in protein-coding transcripts are summa-
rized in supplemental Table 5.

Targeted amplicon sequencing was performed on 16 AML113
patient samples. Consistent with previous reports,6,7 we found a
high frequency of RUNX1 mutations (n 5 12, 75%). In addition,
we detected mutations in spliceosome components in 14 AML113
patients (88%), including SRSF2 codon 95 mutations in 13 patients
(81%) and an SF3B1 mutation in 1 patient. The association of
spliceosome component mutations (SRSF2, SF3B1, SF1, and ZRSR2)
withRUNX1mutationswas significant (P5 .05).Additional recurring
mutations affected ASXL1 (n 5 7, 44%) and BCOR (n 5 4, 25%),
and occurred with RUNX1 and SRSF2 mutations but these asso-
ciations did not reach statistical significance (ASXL1-SRSF2,
P 5 .21; ASXL1-RUNX1, P 5 .34; BCOR-SRSF2, P 5 .53; and
BCOR-RUNX1, P 5 .53). The 2 patients without mutations in the
splicing machinery had DNMT3A mutations, which were also
mutually exclusive withmutations inRUNX1 or ASXL1. Two patients
carried mutations in CEBPZ, thus establishing CEBPZ as a novel
recurrently mutated gene in AML. Details of all detected non-
synonymous variants are shown in Figure 2 and supplemental Table 6.

The mutations in SRSF2 and CEBPZ were confirmed by Sanger
sequencing (results summarized in supplemental Table 6). The
correlation of the results from Sanger sequencing and targeted high
throughput sequencing was 100% (for details, see supplemental
Figure 3). In one of the patients with a CEBPZ mutation and an
available remission sample, we could confirm the somatic nature of
the mutation (supplemental Figure 3).

Both patients characterized by exome sequencing carried SRSF2
mutations at codon 95, as identified by amplicon sequencing.
However, these mutations were not detected by exome sequencing
due to low coverage of this region in both samples. These results
show that our targeted sequencing approach detects mutations in
AMLcandidate geneswith high sensitivity and specificity, including
mutations in regions not covered by exome sequencing.

To further explore the association between RUNX1 and SRSF2
mutations, we analyzed the SRSF2 gene in a cohort of 14 patients with
a knownRUNX1mutation and normal karyotype AML (CN-AML).34

We found mutations in SRSF2 in 3 of the 14 patients (21%).

Distinct gene expression pattern of AML113

We identified 678 probe sets as significantly (P # .05 after
adjustment for multiple testing) deregulated (upregulated, 492;
downregulated, 186) in AML113 patients (n5 9), when compared

Figure 2. Frequency distribution of recurrently mutated genes in AML113.

Distribution of mutated genes in 16 patients with AML113. Patients show a high

frequency of mutations in spliceosome components and in RUNX1, ASXL1, and

BCOR. Arrows highlight the 2 patients who were exome-sequenced.
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to AML patients with various other cytogenetic abnormalities
(n5 509). Detailed patient characteristics are given in supplemental
Table 7. Only 59 (8.7%) of these probe sets were localized on
chromosome 13, but of those, 55 were upregulated and only 4 were
downregulated. Upregulated probe sets on chromosome 13 included
FOXO1, FLT3, (Figure 3A) and RB1. The strongest downregulated
probe set on chromosome 13 belonged to the tumor suppressor gene
SPRY2 (Figure 3B), which is a negative regulator of receptor tyrosine
kinases. As described before, FLT3 is significantly upregulated in

AML113, compared with all other AML samples in our gene
expression data set (P 5 .04). However, as shown in Figure 3A,
FLT3 expression in AML shows a complex pattern with a wide
range of expression levels, and AML113 is not the only entity
associated with high FLT3 levels.

A total of 21 probe sets showed highly significant deregulation
(log-fold change$2 or#22 and adjustedP-value, .001) andwere
therefore used for clustering (supplemental Table 8). The result of the
clustering is shown in Figure 3C. Consistent with the results from our

Figure 3. Gene expression profile of AML113. (A-B) FLT3 and SPRY2 expression in AML subgroups. Boxplot showing FLT3 (A) and SPRY2 (B) expression levels in

various cytogenetic AML subgroups. The boxes indicate the upper and lower quartiles. The band within the boxes represents the median. Outliers are plotted as individual

points. FLT3 expression is significantly higher in AML113 compared with all other samples (P 5 .04). However, in several individual samples of various cytogenetic

subgroups, FLT3 was expressed at higher levels compared with AML113. SPRY2 expression is significantly lower in AML113 (P, .001). (C) Clustering of AML113 using 21

probe sets. Heatmap visualizing hierarchical clustering of AML113 samples according to the 21 most differentially expressed probe sets (log-fold change $ 2 or # 22 and

adjusted P-value , .001) compared with AML with various other cytogenetic aberrations except for 113. All AML113 samples cluster closely together, indicating a highly

homogenous expression profile of this subgroup. (D) Regional gene expression on chromosome 13 in AML113. Expression levels of probe sets located on chromosome 13

displayed by MACAT analysis in AML113 patients (n 5 9) compared with AML with various other cytogenetic abnormalities (except113, n 5 519). Scores for probe sets are

shown as black dots. The sliding average of the 0.025 and 0.975 quantiles of the permuted scores are visualized as gray lines. The sliding average permuted scores (red line),

and highlighted regions (yellow-dotted), where the score exceeds the quantiles, are plotted along chromosome 13. Despite the majority of probe sets showing elevated

expression levels as expected, some regions were characterized by significantly lower expression levels.

1308 HEROLD et al BLOOD, 21 AUGUST 2014 x VOLUME 124, NUMBER 8

For personal use only.on May 16, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


genetic analysis, AML113 shows a homogenous gene expression
profile that is distinct from other AML subsets.

Surprisingly, some genes located on chromosome 13 showed
significantly lower expression in AML113 compared with patients
with two copies of chromosome 13. The differential regional gene
expression of AML113 patient samples across chromosome 13 is
visualized in Figure 3D (for details, see supplemental Table 9A-B).
Despite the additional copy of chromosome 13, we identified
several regions on chromosome 13 with significantly reduced
gene expression levels compared with patients with two copies of
chromosome 13.

By using GSEA, we see a potential deregulation of gene sets
associated with cytoplasmatic and nuclear transport and the reg-
ulation of transcription. Details are given in supplemental Table 10.
We could also observe that the expression levels of the transcription
factor FOXO1 correlated with higher expression levels of a prede-
fined gene set consisting of target genes of this transcription factor
(nominal P-value: .02; false discovery rate: .23). In summary, our
gene expression studies reveal a complex picture of deregulated
genes in AML113 patients with a potential role in leukemogenesis.
Some of these genes, such as SPRY2 (Figure 3B) are downregulated
despite their location on chromosome 13.

Finally, we compared the results of our gene expression analysis
with data derived from the comparison of RUNX1-mutated and wild
type AMLwith CN-AML.34 This 85 gene RUNX1 signature showed
an overlap of 28 genes (33%) with differentially expressed genes in
AML113 (supplemental Table 11).

Discussion

Our study is the first to show that AML113 patients have a
significantly inferior RFS and OS compared with patients with
other intermediate-risk cytogenetic abnormalities in a homoge-
neously treated cohort. Based on these findings, AML113 should
be considered as a subgroup associated with an extremely poor
outcome. Furthermore, we provide evidence that AML113
leukemia is genetically homogenous, not only on the cytogenetic but

also on the molecular level. AML113 is not only associated with
a high frequency of RUNX1 mutations, but also with mutations in
SRSF2, ASXL1, and BCOR. To our knowledge, the incidence of
mutations in SRSF2 in AML113 is the highest of any AML or
myelodysplastic syndrome (MDS) subgroup reported so far.35,36 An
association between SRSF2 and RUNX1 mutations was already
reported in patients with MDS.35 We provide first evidence that an
association between these mutations could also be observed in AML
with RUNX1 mutations. However, larger studies are necessary to
verify this observation.

It is intriguing to speculate about functional interactions between
mutations in these two genes and trisomy 13. It remains unclear
whether mutations targeting SRSF2 and RUNX1, and trisomy 13,
affect a common pathway or different but complementary pathways
on the way to leukemia. Although one of these lesions likely rep-
resents a near compulsory additional hit required by the initial event,
the order of these events remains elusive. In light of the high prev-
alence of acquired GATA1 mutations in AML of Down syndrome
patients,10 it is very likely that the chromosomal aneuploidy is the
first event and determines the subsequent acquisition of mutations in
precisely defined genes.

There is some, but limited overlap of recurrentlymutated genes in
AML and MDS. However, the high incidence of spliceosome gene
mutations in both MDS and AML113 is striking. A case report of 2
AML113 patients who achieved sustained complete morphologic
and cytogenetic remissionwhile treated with high-dose, single-agent
lenalidomide suggests a potential role of spliceosome genemutations
in the response to lenalidomide, which is also used inMDS therapy.8

Otrock et al recently reported an association of lenalidome response
with distinct mutation patterns.37

Of note, only one SRSF2 mutation was found in 200 AML
patients studied by whole exome or whole genome sequencing.38

This SRSF2-mutated patient also had a RUNX1mutation. The study
included a total of 19RUNX1-mutated patients.38 As is obvious from
our study, it is likely that some SRSF2mutations in this study might
have gone undetected, since exome sequencing may miss these
mutations due to inefficient target enrichment.

It was proposed that overexpression of FLT3,which localizes to
chromosome 13, could play a crucial role in AML113.6,7 Our

Figure 3. Continued
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study confirms an elevated expression level of FLT3 in the AML1
13 subgroup. However, the levels are similar to other cytogenetic
AML subgroups without additional chromosome 13, showing that
highFLT3 expression levels are not a defining feature ofAML113.
Nevertheless, these findings do not rule out that high FLT3 expres-
sion levels are an important leukemic driver in AML113. High
FLT3 expression levels might be achieved by other mechanisms
than an additional copy of chromosome 13 in other leukemias. Our
gene expression analysis suggests several possible alternative or
additional consequences of trisomy 13.FOXO1 is overexpressed in
AML113, and GSEA revealed upregulated sets of FOXO1 target
genes. Recurrent mutations in FOXO1 associated with poor
survival were recently discovered in diffuse large B-cell lym-
phoma.39 Furthermore, activation of FOXO1 was observed in
;40% of AML patients.40 Inhibition of FOXO1 leads to reduced
leukemic cell growth.40 The tumor suppressor gene SPRY2,
a negative regulator of receptor tyrosine kinases, had strikingly
low expression levels even though it is located on chromosome 13
(Figure 3B). Downregulation of SPRY2 was previously reported
in a variety of solid tumors.41-44 It is challenging to explain the
underlying mechanism for this apparently contradictory result (ie, the
downregulation despite an additional gene copy). Potential mecha-
nisms for low SPRY2 expression include epigenetic inactivation,
submicroscopic deletions of SPRY2, or mutations in upstream
regulators of SPRY2.These results again demonstrate the complexity
of gene regulation and indicate that the concept of gene dosage is
inadequate to explain all effects of an additional chromosome 13.
Our gene expression data show a distinct gene expression profile of
AML113 partially overlapping with RUNX1- mutated CN-AML.

The striking association of mutations affecting only a few distinct
genes inAML113 suggests a strong synergismof these lesions during
leukemogenesis. The fact that mutations in RUNX1, ASXL1, and
upregulation of FLT3 were previously reported as markers of poor
prognosis in AML clearly suggests that the combination of these
lesions is responsible for the extremely poor outcome of AML113.

In summary, we discovered the highest incidence of SRSF2
mutations in a specific AML subgroup reported so far. This rare, but
genetically extremely homogenous group of AML113 leukemia is
characterized by concurrentmutations of SRSF2 andRUNX1, aswell
as a specific gene expression profile. Consistent with other studies,
our findings suggest a connection between mutations of RUNX1 and
SRSF2 in myeloid leukemogenesis. AML113 is associated with
inferior survival despite intensive treatment. Therefore, new treat-
ment strategies are highly warranted.

The discovery of rare, genetically homogenous AML sub-
groups indicates that the genetic complexity of AML is extremely
high but mutations do not occur randomly. Despite the increas-
ing number of comprehensively characterized AML cases,
the understanding of oncogenic collaboration poses a challenge
ahead.
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Table S1: Quality metrics summary of exome sequencing data 
 
 Patient 8

tumor 
Patient 8
control 

Patient 11
tumor 

Patient 11 
control 

# total sequence reads 41,169,242 36,455,938 43,076,316 41,118,008 
# total bases sequenced 3,595,441,280 3,170,797,760 3,766,165,920 3,579,766,560
% mapped reads 99.55 99.4721 99.4451 99.4387 
% sequenced bases mapped 89.44 89.83 89.2 89.68 
% target region* sequenced 97.65 97.52 97.67 97.71 
% target region* sequenced, 
minimum 10x coverage 

78.49 74.33 78.25 77.34 

Mean coverage 33.91 28.83 33.83 31.62 
*NCBI human gemome (hg)19 protein coding region (34 Mb) 

 

Table S2: Primer Sequences 

Primer Name Sequence 

CEBPZ_1 forward 5’CAGCCTCAGGATGTTGTATCTAAG

CEBPZ_1 reverse 5’GCTTTTGTGGCAATTCTGTTC

CEBPZ_2 forward 5’AGCCCTTACCGTGGCTC

CEBPZ_2 reverse 5’GGGCACTGCTTGTGCTG

ASXL1 forward 5’AGTCCCTAGGTCAGATCACCC

ASXL1 reverse 5’CAACGGGGAGTTGGGAG

SRSF2_TO_fw 5’CAAGGTGGACAACCTGACCT

SRSF2_TO_rev 5’AGACGCCATTTCCCCAGT

 

Table S3: PCR conditions 

Step Duration Temperature

Initial denaturation 3 min 94°C 
Denaturation 0,5 min 94°C 
Primer annealing 0,5 min 56°C 
Extension 1 min 72°C 
Final extension 10 min 72°C 
Number of cycles: 35 
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Table S4 A: Patient characteristics AMLCG cohort 

Variable AML+13* Control Group* P-value

No. of patients 23 364  

Median age, years (range) 62 (45-80) 61 (18-82) 0.16 

Male sex, no. (%) 16 (70) 200 (55) 0.2 

White-cell count, G/l, median (range) 10.6 (0.7-318.1) 12 (0.6-341) 0.7 

Hemoglobin, g/dl, median (range) 8.8 (4.6-12.8) 9.1 (3.8-16.9) 0.42 

Platelet count, G/l ,median (range) 80 (1-283) 53.5 (1-1760) 0.19 

LDH (U/l), median(range) 269 (155-869) 413 (115-11140) 0.009 

Bone marrow blasts, %, median (range) 82 (11-100) 80 (11-100) 0.13 

Bone marrow blasts at day 16, %, median (range) 5 (0-85) 5 (0-100) 0.88 

Performance Status (ECOG) ≥ 2 (%) 5 (22) 114 (35) 0.26 

de novo AML (%) 18 (78) 272 (75) 0.81 

Allogeneic transplantation, no. (%) 5 (22) 87 (24) 1 

Complete remission, no. (%) 13 (57) 198 (54) 1 

Relapse, no. (%) 12 (92) 155 (78) 0.31 

Deceased, no. (%) 22 (96) 286 (79) 0.06 

*All patients were enrolled in the AMLCG-99 trial and received intensive induction 
treatment. All patients are classified as ELN Intermediate-II; AML+13: patients with 
isolated tri- or tetrasomy 13, additional aberrations of the sex chromosomes are 
allowed. 
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Table S4 B: Patient characteristics SAL cohort 

Variable AML+13* Control Group* P-value

No. of patients 11 486  

Median age, years (range) 66 (43-76) 56 (17-84) 0.03 

Male sex, no. (%) 8 (72.7) 265 (55) 0.36 

White-cell count G/l, median (range) 7 (1-237) 11 (0.4-365) 0.5 

Hemoglobin, g/dl, median (range) 8.9 (5.3-12.1) 9.3 (2.9-17.2) 0.51 

Platelet count, G/l, median (range) 74 (11-399) 56 (1-1043) 0.92 

LDH, U/l, median (range) 371 (184-1011) 416 (122-5565) 0.4 

Bone marrow blasts, %, median (range) 73 (28-92) 62 (11-99) 0.27 

Bone marrow blasts at day 15, %, median (range) 5 (1-80) 10 (0-95) 0.78 

Performance status (ECOG) >= 2, no., (%) 3 (37.5) 121 (29) 0.7 

de novo AML, no. (%) 8 (80.0) 374 (77) 0.85 

Allogeneic transplantation, no. (%) 1 (9.1) 93 (19) 0.7 

Complete remission, no. (%) 8 (72.7) 273 (56) 0.36 

Relapse, no. (%) 6 (75.0) 172 (63) 0.17 

Deceased, no. (%) 9 (81.8) 358 (74) 0.74 

*All patients were enrolled in SAL trials and received intensive induction treatment. 
All patients are classified as ELN Intermediate-II; AML+13: patients with isolated tri- 
or tetrasomy 13, additional aberrations of the sex chromosomes are allowed. 
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Table S4 C: Patient characteristics AML+13 versus aAML+13  

Variable AML+13* aAML+13* P-value

No. of patients 34 65  

Median age, years (range) 64 (43-80) 64 (32-86) 0.93 

Male sex, no. (%) 24 (70) 41 (63) 0.51 

White-cell count, G/l, median (range) 10 (1-318) 12 (0.1-269) 0.68 

Hemoglobin, g/dl, median (range) 8.9 (4.6-12.8) 9.3 (4.4-14.8) 0.2 

Platelet count, G/l ,median (range) 77 (1-399) 41 (1-592) 0.03 

LDH (U/l), median(range) 269 (155-1011) 458 (104-7015) 0.003 

Bone marrow blasts, %, median (range) 80 (11-100) 75 (12-100) 0.12 

Bone marrow blasts at day 16, %, median (range) 5 (0-85) 5 (0-90) 0.91 

Performance Status (ECOG) ≥ 2 (%) 8 (26) 19 (31) 0.64 

de novo AML (%) 26 (76) 43 (66) 0.36 

Allogeneic transplantation, no. (%) 6 (18) 13 (20) 1 

Complete remission, no. (%) 21 (62) 25 (38) 0.03 

Relapse, no. (%) 18 (86) 21 (84) 1 

Deceased, no. (%) 31 (91) 56 (86) 0.54 

*All patients were enrolled in the AMLCG-99 or SAL trials and received intensive 
induction treatment. AML+13: patients with isolated tri- or tetrasomy 13, additional 
aberrations of the sex chromosomes are allowed; aAML+13: patients with additional 
copies of chromosome 13 and further genetic aberrations not classified as AML+13. 
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Table S4 D: Patient characteristics of AML+13 versus and ELN Adverse  

Variable AML+13* ELN Adverse  

Genetic Group* 

P-value

No. of patients 23 463  

Median age, years (range) 62 (45-80) 62 (17-85) 0.44 

Male sex, no. (%) 16 (70) 242 (52) 0.13 

White-cell count, G/l, median (range) 10.6 (0.7-318.1) 4.5 (0.3-666) 0.2 

Hemoglobin, g/dl, median (range) 8.8 (4.6-12.8) 8.8 (3.6-14.5) 0.94 

Platelet count, G/l ,median (range) 80 (1-283) 52 (1-1110) 0.1 

LDH (U/l), median(range) 269 (155-869) 342 (76-19624) 0.14 

Bone marrow blasts, %, median (range) 82 (11-100) 60 (5-100) 0.001 

Bone marrow blasts at day 16, %, median (range) 5 (0-85) 8 (0-100) 0.92 

Performance Status (ECOG) ≥ 2 (%) 5 (22) 145 (34) 0.26 

de novo AML (%) 18 (78) 113 (24) <0.001 

Allogeneic transplantation, no. (%) 5 (22) 27 (6) 0.01 

Complete remission, no. (%) 13 (57) 146 (32) 0.02 

Relapse, no. (%) 12 (92) 134 (92) 1 

Deceased, no. (%) 22 (96) 393 (85) 0.23 

*All patients were enrolled in the AMLCG-99 trial and received intensive induction 
treatment. AML+13: patients with isolated tri- or tetrasomy 13, additional aberrations 
of the sex chromosomes are allowed. 
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Table S7: Patient characteristics of the gene expression data set 

Variable AML+13* All other (+13 

excluded) 

P-

value 

No. of patients 9 509  

Median age, years (range) 64 (50-80) 57 (18-85) 0.06 

Male sex, no. (%) 8 (88.9) 251 (49.3) 0.04 

White-cell count, G/l, median (range) 10.6 (1.2-

255) 

19.5 (0.1-666) 0.69 

Hemoglobin, g/dl, median (range) 8.7 (4.6-

11.6) 

9 (3.5-15.4) 0.85 

Platelet count, G/l ,median (range) 84 (1-234) 49 (1-1760) 0.17 

LDH (U/l), median(range) 268 (166-

459) 

465 (76-19624) 0.004 

Bone marrow blasts, %, median 

(range) 

90 (80-100) 80 (10-100) 0.01 

Bone marrow blasts at day 16, %, 

median (range) 
15 (0-95) 

5 (0-100) 
0.14 

Performance Status (ECOG) ≥ 2 (%) 3 (33.3) 149 (31.2) 1 

de novo AML (%) 9 (100) 399 (78.4) 0.22 

Allogeneic transplantation, no. 0 37 1 

Complete remission, no. (%) 5 (55.5) 282 (55.4) 1 

Relapse, no. (%) 5 (100) 181 (64.2) 0.17 

Deceased, no. (%) 9 (100) 354 (69.5) 0.06 

All patients were enrolled in the AMLCG-99 trial and received intensive induction 
treatment. 
* AML+13: patients with isolated tri- or tetrasomy 13, additional aberrations of the sex 
chromosomes are allowed; All other: patients with all kind of cytogenetic 
abnormalities expect of additional copies of chromosome 13. 
 



Running title: SRSF2 mutations in AML +13 

12 

Table S8: Top 21 differentially expressed genes in AML+13 

Probe set Gene Description
Adjusted 
P-value

Log fold 
change Chromosome

GC10P098054_at DNTT deoxynucleotidyltransferase, terminal <0.001 5.12 10
GC10M097941_at BLNK B-cell linker <0.001 4.02 10

GC07P079763_at GNAI1 
guanine nucleotide binding protein (G 
protein), alpha inhibiting activity polypeptide 1 <0.001 3.16 7

GC03M150929_at P2RY14
purinergic receptor P2Y, G-protein coupled, 
14 <0.001 3.12 3

GC17M017397_at RASD1 RAS, dexamethasone-induced 1 <0.001 2.88 17
GC13M048963_at LPAR6 lysophosphatidic acid receptor 6 <0.001 2.72 13

GC08P104152_at BAALC brain and acute leukemia, cytoplasmic <0.001 2.71 8

GC09P112542_at 
PALM2-
AKAP2 PALM2-AKAP2 readthrough <0.001 2.54 9

GC06M047246_at TNFRSF21 
tumor necrosis factor receptor superfamily, 
member 21 <0.001 2.53 6

GC22M028144_at MN1 
meningioma (disrupted in balanced 
translocation) 1 0.001 2.52 22

GC18P042260_at SETBP1 SET binding protein 1 <0.001 2.46 18
GC09P112810_at AKAP2 A kinase (PRKA) anchor protein 2 <0.001 2.45 9
GC04P146402_at SMAD1 SMAD family member 1 <0.001 2.35 4
GC13M041129_at FOXO1 forkhead box O1 <0.001 2.32 13

GC10P091579_at LOC643529 hCG2024094 <0.001 2.28 10
GC16P085932_at IRF8 interferon regulatory factor 8 <0.001 2.25 16
GC13M046916_at C13orf18 chromosome 13 open reading frame 18 <0.001 2.17 13

GC02M165908_at SCN3A 
sodium channel, voltage-gated, type III, alpha 
subunit <0.001 2.17 2

GC10M015294_at FAM171A1 
family with sequence similarity 171, member 
A1 <0.001 2.14 10

GC13M080910_at SPRY2 sprouty homolog 2 (Drosophila) <0.001 -2.82 13

GC17M056347_at MPO myeloperoxidase <0.001 -2.97 17
Top 21 significantly deregulated genes between AML+13 (n=9) and AML without an additional 
chromosome 13 (n=509) derived from the gene expression data set GSE37642. P-Value adjustment 
was done with the Benjamini Hochberg method. A positive value in log fold change means an over 
expression in the AML+13 subgroup, and a negative value a lower expression of this gene in the 
AML+13 subgroup. 
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Table S9 A: Genes within significant regions as identified by MACAT 

ProbeSet ID Cytoband Gene Symbol Gene Description Score p-Value

226724_s_at 13q34 GAS6 growth arrest-specific 6 -0.1 0.86
226574_at 13q12.2 RPL21 ribosomal protein L21 1.62 0.008
222612_at 13q12 HMGB1 high-mobility group box 1 2.7 <0.001
222611_s_at 13q12 HMGB1 high-mobility group box 1 1.48 0.016
218371_s_at 13q34 GAS6 growth arrest-specific 6 1.96 0.004
235620_x_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 0.73 0.21
215948_x_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 1.36 0.041
206744_s_at 13q33 ERCC5 excision repair cross-complementing rodent repair 

deficiency, complementation group 5
2.3 <0.001

206652_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 2.35 0.001
218479_s_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 0.9 0.163
222649_at 13q34 CDC16 cell division cycle 16 homolog (S. cerevisiae) 1.82 0.001
223379_s_at 13q14.1 FOXO1 forkhead box O1 0.86 0.042
223380_s_at 13q14.1 FOXO1 forkhead box O1 2.44 <0.001
227013_at 13q12.2-

q13.3 
SUCLA2 succinate-CoA ligase, ADP-forming, beta subunit 2.55 <0.001

230348_at 13q14.2 RB1 retinoblastoma 1 3.32 <0.001
214429_at 13q31.1 SPRY2 sprouty homolog 2 (Drosophila) 2.21 0.004
228789_at 13q12-q14 USPL1 ubiquitin specific peptidase like 1 2.09 0.008
204435_at 13q22 EDNRB endothelin receptor type B 1.75 0.012
223984_s_at 13q22 EDNRB endothelin receptor type B 0.5 0.292
225047_at 13q12.13 NUPL1 nucleoporin like 1 2.03 0.004
241425_at 13q12.3 PDS5B PDS5, regulator of cohesion maintenance, homolog B 

(S. cerevisiae)
1.99 0.004

204831_at 13q14.3 RCBTB2 regulator of chromosome condensation (RCC1) and BTB 
(POZ) domain containing protein 2

0.98 0.138

200012_x_at 13q12 CDK8 cyclin-dependent kinase 8 1.15 0.014
238353_at 13q14 NUFIP1 nuclear fragile X mental retardation protein interacting 

protein 1
-0.3 0.49

243092_at 13q14 NUFIP1 nuclear fragile X mental retardation protein interacting 
protein 1

4.17 <0.001

225563_at 13q14 NUFIP1 nuclear fragile X mental retardation protein interacting 
protein 1

3.59 <0.001

233804_at 13q32.3 GPR183 G protein-coupled receptor 183 -0.6 0.111
227713_at 13q22 DACH1 dachshund homolog 1 (Drosophila) 2.22 0.002
223790_at 13q22 DACH1 dachshund homolog 1 (Drosophila) 1.46 0.01
224734_at 13q34 RASA3 RAS p21 protein activator 3 3.34 <0.001
224731_at 13q34 RASA3 RAS p21 protein activator 3 1.63 0.009
214938_x_at 13q33-q34 LIG4 ligase IV, DNA, ATP-dependent 1.24 0.01
200680_x_at 13q12 ZMYM5 zinc finger, MYM-type 5 1.55 0.002
200679_x_at 13q22 EDNRB endothelin receptor type B 1.88 0.011
204190_at 13q12 ZMYM5 zinc finger, MYM-type 5 2.07 0.002
215105_at 13q34 UPF3A UPF3 regulator of nonsense transcripts homolog A 

(yeast)
0.72 0.117

242576_x_at 13q34 UPF3A UPF3 regulator of nonsense transcripts homolog A 
(yeast)

1.01 0.021

235547_at 13q12.3 PDS5B PDS5, regulator of cohesion maintenance, homolog B 
(S. cerevisiae)

0.7 0.155

221899_at 13q21.2 TDRD3 tudor domain containing 3 1.73 0.013
214753_at 13q34 ING1 inhibitor of growth family, member 1 1.79 0.006
214748_at 13q31.2-

q32.3 
STK24 serine/threonine kinase 24 0.08 0.887

202259_s_at 13q31.2-
q32.3 

STK24 serine/threonine kinase 24 1.6 0.012

202258_s_at 13q14.3 LCP1 lymphocyte cytosolic protein 1 (L-plastin) 1.44 0.02
242302_at 13q34 CDC16 cell division cycle 16 homolog (S. cerevisiae) 0.04 0.895
215888_at 13q34 CDC16 cell division cycle 16 homolog (S. cerevisiae) 1.22 0.031
207956_x_at 13q34 ING1 inhibitor of growth family, member 1 2.52 0.001
204742_s_at 13q32 GPR18 G protein-coupled receptor 18 2.7 <0.001
233432_at 13q34 ING1 inhibitor of growth family, member 1 -0.3 0.439
228484_s_at 13q14.13 NEK3 NIMA (never in mitosis gene a)-related kinase 3 0.28 0.443
202724_s_at 13q14.2 RB1 retinoblastoma 1 4.93 <0.001
202723_s_at 13q14 TPT1 tumor protein, translationally-controlled 1 4.65 <0.001
212418_at 13q32.2 IPO5 importin 5 1.91 <0.001
212420_at 13q32.2 IPO5 importin 5 1.79 0.011
220656_at 13q32.2 IPO5 importin 5 0.22 0.404
219378_at 13q32.2 IPO5 importin 5 2.92 <0.001
205134_s_at 13q14 TPT1 tumor protein, translationally-controlled 1 1.08 0.047
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205135_s_at 13q13 ELF1 E74-like factor 1 (ets domain transcription factor) 1.58 0.017
205136_s_at 13q13 ELF1 E74-like factor 1 (ets domain transcription factor) 1.37 0.008
229891_x_at 13q14 TPT1 tumor protein, translationally-controlled 1 2.18 0.005
229078_s_at 13q14.13 NEK3 NIMA (never in mitosis gene a)-related kinase 3 1.49 0.008
226429_at 13q33.1 C13orf27 chromosome 13 open reading frame 27 1.36 0.005
223606_x_at 13q21.2 TDRD3 tudor domain containing 3 1.63 0.035
220171_x_at 13q34 UPF3A UPF3 regulator of nonsense transcripts homolog A 

(yeast)
0.34 0.593

216520_s_at 13q14 TPT1 tumor protein, translationally-controlled 1 0.68 0.132
214327_x_at 13q12 MTMR6 myotubularin related protein 6 0.14 0.65
212869_x_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 -0.1 0.8
212284_x_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 -0.1 0.799
211943_x_at 13q14.11 LRCH1 leucine-rich repeats and calponin homology (CH) domain 

containing 1
0.01 0.96

227709_at 13q12 HMGB1 high-mobility group box 1 1.71 0.005
227710_s_at 13q14.3 RNASEH2B ribonuclease H2, subunit B 1.26 0.007
228913_at 13q12-q13 CG030 hypothetical CG030 0.32 0.503
238171_at 13q31.2-

q32.3 
STK24 serine/threonine kinase 24 0.51 0.23

226782_at 13q12.3 PDS5B PDS5, regulator of cohesion maintenance, homolog B 
(S. cerevisiae)

3.53 <0.001

223450_s_at 13q12 ZMYM5 zinc finger, MYM-type 5 3.18 <0.001
238228_at 13q21 ATXN8OS ATXN8 opposite strand (non-protein coding) -0.2 0.827
208885_at 13q14 TPT1 tumor protein, translationally-controlled 1 0.32 0.608
219471_at 13q34 UPF3A UPF3 regulator of nonsense transcripts homolog A 

(yeast)
5.51 <0.001

44790_s_at 13q14.3 ITM2B integral membrane protein 2B 6.05 <0.001
235012_at 13q14.3 ITM2B integral membrane protein 2B 3.74 <0.001
226795_at 13q14.2 MED4 mediator complex subunit 4 4.45 <0.001
214936_at 13q34 ANKRD10 ankyrin repeat domain 10 0.49 0.346
202930_s_at 13q14 RCBTB1 regulator of chromosome condensation (RCC1) and BTB 

(POZ) domain containing protein 1
0.68 0.382

219347_at 13q12.11 PSPC1 paraspeckle component 1 0.58 0.408
217843_s_at 13q11 XPO4 exportin 4 2.79 <0.001
222438_at 13q14 LPAR6 lysophosphatidic acid receptor 6 2.98 <0.001
217731_s_at 13q14.3 INTS6 integrator complex subunit 6 1.24 0.023
217732_s_at 13q14.3 RNASEH2B ribonuclease H2, subunit B 0.95 0.079
203132_at 13q14.2 NUDT15 nudix (nucleoside diphosphate linked moiety X)-type 

motif 15
2.13 0.006

211540_s_at 13q14.11 NAA16 N(alpha)-acetyltransferase 16, NatA auxiliary subunit 3.21 <0.001
218589_at 13q14.13 C13orf18 chromosome 13 open reading frame 18 4.66 <0.001
204759_at 13q33 KDELC1 KDEL (Lys-Asp-Glu-Leu) containing 1 1.72 0.026
220813_at 13q13-q14 KIAA1704 KIAA1704 -0.7 0.17
218352_at 13q14.3 GUCY1B2 guanylate cyclase 1, soluble, beta 2 2.43 0.001
237417_at 13q14.11 NAA16 N(alpha)-acetyltransferase 16, NatA auxiliary subunit 0.76 0.05
223306_at 13q14.2 CYSLTR2 cysteinyl leukotriene receptor 2 0.95 0.2
221503_s_at 13q14.3 KPNA3 karyopherin alpha 3 (importin alpha 4) 2.45 <0.001
221502_at 13q14.3 KPNA3 karyopherin alpha 3 (importin alpha 4) 2.26 <0.001
233277_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 -0.7 0.088
233156_at 13q14.3 INTS6 integrator complex subunit 6 4.09 <0.001
229210_at 13q14.2 MED4 mediator complex subunit 4 0.95 0.203
219056_at 13q12.11 PSPC1 paraspeckle component 1 2.04 0.002
215040_at 13q12.11 PSPC1 paraspeckle component 1 2.08 0.001
220506_at 13q11 XPO4 exportin 4 -0.5 0.239
218819_at 13q33.1 BIVM basic, immunoglobulin-like variable motif containing 1.93 0.007
222239_s_at 13q34 ANKRD10 ankyrin repeat domain 10 2.14 0.001
235283_at 13q12-q13 EBPL emopamil binding protein-like 1.38 0.013
213116_at 13q11-q12 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) 2.66 0.001
211089_s_at 13q11-q12 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) 1.38 0.012
208089_s_at 13q14.13 COG3 component of oligomeric golgi complex 3 1.99 0.003
214028_x_at 13q13-q14 KIAA1704 KIAA1704 1.57 0.001
232054_at 13q12.3 KATNAL1 katanin p60 subunit A-like 1 -0.6 0.197
223810_at 13q21 KLHL1 kelch-like 1 (Drosophila) -0.3 0.433
216404_at 13q32.3 FKSG29 FKSG29 -0.1 0.742
228915_at 13q12.13 NUPL1 nucleoporin like 1 3.32 <0.001
205472_s_at 13q32.3 UBAC2 UBA domain containing 2 2.89 0.005
205471_s_at 13q12 HMGB1 high-mobility group box 1 3.4 0.002
225619_at 13q12 HMGB1 high-mobility group box 1 1.9 0.009
206701_x_at 13q12.13 NUPL1 nucleoporin like 1 1.28 0.03
204273_at 13q34 RASA3 RAS p21 protein activator 3 1.36 0.008
204271_s_at 13q12.2 PAN3 PAN3 poly(A) specific ribonuclease subunit homolog (S. 

cerevisiae)
1.42 0.022
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204011_at 13q22.3 SLAIN1 SLAIN motif family, member 1 -5.1 <0.001
236734_at 13q34 ZNF828 zinc finger protein 828 0.01 0.977
236906_x_at 13q13-q14 KIAA1704 KIAA1704 0.6 0.196
211955_at 13q12.11 PSPC1 paraspeckle component 1 1.86 0.002
211954_s_at 13q34 ANKRD10 ankyrin repeat domain 10 2.06 0.001
211953_s_at 13q12.11 PSPC1 paraspeckle component 1 2.31 0.002
211952_at 13q14.13 SLC25A30 solute carrier family 25, member 30 0.41 0.55
215188_at 13q14.11 LRCH1 leucine-rich repeats and calponin homology (CH) domain 

containing 1
0.02 0.958

208855_s_at 13q11-q12 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) 3.06 <0.001
208854_s_at 13q34 ANKRD10 ankyrin repeat domain 10 3.47 <0.001
224298_s_at 13q14.13 LOC100190939 hypothetical LOC100190939 1.22 0.046
210279_at 13q14.13 LOC100190939 hypothetical LOC100190939 3.88 <0.001
205419_at 13q12.3 KATNAL1 katanin p60 subunit A-like 1 1.67 0.047
223896_at 13q33-q34 LIG4 ligase IV, DNA, ATP-dependent -0.5 0.239
213346_at 13q14.1 FOXO1 forkhead box O1 -2.3 0.002
219479_at 13q12 MTMR6 myotubularin related protein 6 -2.4 0.005
222761_at 13q14.13 LOC100190939 hypothetical LOC100190939 -3.8 <0.001
229478_x_at 13q22 DACH1 dachshund homolog 1 (Drosophila) -0.3 0.436
229589_x_at 13q13-q14 KIAA1704 KIAA1704 -1.2 0.016
233255_s_at 13q14.3 RNASEH2B ribonuclease H2, subunit B -2.9 <0.001
202414_at 13q33.1 BIVM basic, immunoglobulin-like variable motif containing 1.79 0.003
227766_at 13q33.1 BIVM basic, immunoglobulin-like variable motif containing 1.92 0.011
206235_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 1.26 0.028
234993_at 13q13-q14 KIAA1704 KIAA1704 1.74 0.012
235348_at 13q11-q12 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) 3.93 <0.001
208415_x_at 13q21 PCDH20 protocadherin 20 1.11 0.025
209808_x_at 13q14.3 RNASEH2B ribonuclease H2, subunit B 1.68 0.004
210350_x_at 13q33.1 BIVM basic, immunoglobulin-like variable motif containing 1.22 0.029
241414_at 13q14.3 DLEU7 deleted in lymphocytic leukemia, 7 0.74 0.034
239116_at 13q14.11 LOC646982 twelve-thirteen translocation leukemia gene -0.3 0.477
227260_at 13q12.3 LOC440131 hypothetical LOC440131 0.56 0.386
226663_at 13q33.3 ABHD13 abhydrolase domain containing 13 1.07 0.123
223251_s_at 13q14.11 LRCH1 leucine-rich repeats and calponin homology (CH) domain 

containing 1
2.2 0.002

218093_s_at 13q14.3 INTS6 integrator complex subunit 6 3.24 <0.001
242999_at 13q33.3 ABHD13 abhydrolase domain containing 13 0.8 0.202
239397_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 0.01 0.99
236416_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 0.07 0.812
235412_at 13q12 ZMYM5 zinc finger, MYM-type 5 2.75 <0.001
229642_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 0.57 0.318
202548_s_at 13q31.1 SLITRK1 SLIT and NTRK-like family, member 1 2.48 <0.001
202547_s_at 13q32.2 IPO5 importin 5 1.51 0.017
238226_at 13q14 RCBTB1 regulator of chromosome condensation (RCC1) and BTB 

(POZ) domain containing protein 1
0.2 0.667

1598_g_at 13q14.13 SLC25A30 solute carrier family 25, member 30 4.32 <0.001
202177_at 13q34 FAM70B family with sequence similarity 70, member B 4.47 <0.001
225562_at 13q14.13 COG3 component of oligomeric golgi complex 3 1.92 0.004
206221_at 13q12.2 RASL11A RAS-like, family 11, member A 0.5 0.218
206220_s_at 13q34 ANKRD10 ankyrin repeat domain 10 -0.3 0.482
202717_s_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 2.07 0.001
209658_at 13q34 ANKRD10 ankyrin repeat domain 10 1.47 0.02
209659_s_at 13q12.13 NUPL1 nucleoporin like 1 1.72 0.008
206958_s_at 13q12.3 PDS5B PDS5, regulator of cohesion maintenance, homolog B 

(S. cerevisiae)
1.9 0.004

206959_s_at 13q13.1 N4BP2L2 NEDD4 binding protein 2-like 2 0.94 0.127
214323_s_at 13q34 ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 1.6 0.026
217596_at 13q12.2 LOC100288730 hypothetical LOC100288730 0.9 0.099
226194_at 13q14.13 C13orf18 chromosome 13 open reading frame 18 1.84 0.007
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Table S9 B: Differentially expressed genes located on chromosome 13 (Limma) 

Probe set Gene Description Adjusted 
P-value 

Log fold 
change 

GC13M048963_at LPAR6 lysophosphatidic acid receptor 6 <0.001 2.72 
GC13M041129_at FOXO1 forkhead box O1 <0.001 2.32 
GC13M046916_at C13orf18 chromosome 13 open reading 

frame 18 
<0.001 2.17 

GC13M028710_at LOC100288730 hypothetical LOC100288730 <0.001 1.68 
GC13M099906_at GPR18 G protein-coupled receptor 18 <0.001 1.68 
GC13M072012_at DACH1 dachshund homolog 1 (Drosophila) 0.001 1.67 
GC13M023902_at SACS spastic ataxia of Charlevoix-

Saguenay (sacsin) 
0.001 1.35 

GC13M028577_at FLT3 fms-related tyrosine kinase 3 0.041 1.33 
GC13P024734_at SPATA13 spermatogenesis associated 13 0.001 1.24 
GC13P088324_at SLITRK5 SLIT and NTRK-like family, 

member 5 
0.004 1.20 

GC13P028713_at PAN3 PAN3 poly(A) specific ribonuclease 
subunit homolog (S. cerevisiae) 

<0.001 1.13 

GC13M114523_at GAS6 growth arrest-specific 6 <0.001 1.09 
GC13M050106_at RCBTB1 regulator of chromosome 

condensation (RCC1) and BTB 
(POZ) domain containing protein 1 

0.037 0.97 

GC13P041885_at NAA16 N(alpha)-acetyltransferase 16, 
NatA auxiliary subunit 

<0.001 0.95 

GC13P042846_at AKAP11 A kinase (PRKA) anchor protein 11 <0.001 0.91 
GC13P046039_at COG3 component of oligomeric golgi 

complex 3 
<0.001 0.90 

GC13P048877_at RB1 retinoblastoma 1 0.001 0.88 
GC13M099103_at STK24 serine/threonine kinase 24 <0.001 0.85 
GC13M030338_at UBL3 ubiquitin-like 3 0.019 0.77 
GC13M111530_at ANKRD10 ankyrin repeat domain 10 <0.001 0.77 
GC13M021547_at LATS2 LATS, large tumor suppressor, 

homolog 2 (Drosophila) 
0.009 0.76 

GC13M048627_at MED4 mediator complex subunit 4 <0.001 0.75 
GC13M050273_at KPNA3 karyopherin alpha 3 (importin alpha 

4) 
0.003 0.70 

GC13P047127_at LRCH1 leucine-rich repeats and calponin 
homology (CH) domain containing 
1 

<0.001 0.70 

GC13P108870_at ABHD13 abhydrolase domain containing 13 0.008 0.70 
GC13P037572_at EXOSC8 exosome component 8 0.045 0.69 
GC13M051928_at INTS6 integrator complex subunit 6 0.004 0.69 
GC13P098086_at RAP2A RAP2A, member of RAS oncogene 

family 
0.049 0.68 

GC13P043597_at DNAJC15 DnaJ (Hsp40) homolog, subfamily 
C, member 15 

0.041 0.68 

GC13M025820_at MTMR6 myotubularin related protein 6 0.025 0.67 
GC13P031191_at USPL1 ubiquitin specific peptidase like 1 0.026 0.67 
GC13P050069_at PHF11 PHD finger protein 11 0.006 0.67 
GC13P033160_at PDS5B PDS5, regulator of cohesion 

maintenance, homolog B (S. 
cerevisiae) 

<0.001 0.65 

GC13P021276_at IL17D interleukin 17D 0.005 0.62 
GC13M113139_at TUBGCP3 tubulin, gamma complex 

associated protein 3 
<0.001 0.59 

GC13P052158_at WDFY2 WD repeat and FYVE domain 
containing 2 

0.001 0.59 
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GC13P020532_at ZMYM2 zinc finger, MYM-type 2 0.003 0.58 
GC13P037393_at RFXAP regulatory factor X-associated 

protein 
0.028 0.57 

GC13M052706_at NEK3 NIMA (never in mitosis gene a)-
related kinase 3 

0.002 0.57 

GC13M041506_at ELF1 E74-like factor 1 (ets domain 
transcription factor) 

0.044 0.56 

GC13P021714_at SAP18 Sin3A-associated protein, 18kDa 0.001 0.56 
GC13P027998_at GTF3A general transcription factor IIIA 0.005 0.56 
GC13P098605_at IPO5 importin 5 0.029 0.55 
GC13P051483_at RNASEH2B ribonuclease H2, subunit B 0.032 0.54 
GC13M030776_at KATNAL1 katanin p60 subunit A-like 1 0.007 0.53 
GC13M045967_at SLC25A30 solute carrier family 25, member 30 <0.001 0.52 
GC13M020249_at PSPC1 paraspeckle component 1 0.008 0.49 
GC13P025875_at NUPL1 nucleoporin like 1 0.022 0.48 
GC13M031032_at HMGB1 high-mobility group box 1 0.001 0.48 
GC13M073329_at DIS3 DIS3 mitotic control homolog (S. 

cerevisiae) 
0.038 0.46 

GC13P060970_at TDRD3 tudor domain containing 3 0.016 0.46 
GC13M021950_at ZDHHC20 zinc finger, DHHC-type containing 

20 
0.027 0.43 

GC13M107194_at ARGLU1 arginine and glutamate rich 1 0.013 0.38 
GC13M020397_at ZMYM5 zinc finger, MYM-type 5 0.015 0.35 
GC13M079888_at RBM26 RNA binding motif protein 26 0.033 0.30 
GC13M096453_at UGGT2 UDP-glucose glycoprotein 

glucosyltransferase 2 
0.026 -0.31 

GC13M103418_at C13orf27 chromosome 13 open reading 
frame 27 

0.026 -0.90 

GC13P103451_at BIVM basic, immunoglobulin-like variable 
motif containing 

0.001 -1.13 

GC13M080910_at SPRY2 sprouty homolog 2 (Drosophila) <0.001 -2.82 
Table S9 B displays all significantly deregulated genes located on chromosome 13 (Limma). P-Value 
adjustment was done with the Benjamini Hochberg method. A positive value in log fold change means 
an over expression in the AML+13 subgroup, and a negative value a lower expression of this gene in 
the AML+13 subgroup. 
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Table S10: GSEA results  

NAME ES NES NOM p-val FDR q-val 
NUCLEOCYTOPLASMIC_TRANSPORT 0.494 1.747 <0.001 0.117 
PROTEIN_POLYMERIZATION 0.685 1.869 <0.001 0.118 
N_ACETYLTRANSFERASE_ACTIVITY 0.605 1.773 0.010 0.123 
PROTEIN_IMPORT_INTO_NUCLEUS 0.567 1.782 0.004 0.127 
NUCLEAR_TRANSPORT 0.491 1.747 <0.001 0.128 
REGULATION_OF_ORGANELLE_ORGANIZATION_AND_BIOGENESIS 0.525 1.789 0.002 0.133 
PROTEIN_BINDING__BRIDGING 0.523 1.759 0.004 0.134 
PROTEIN_IMPORT 0.534 1.799 <0.001 0.137 
N_ACYLTRANSFERASE_ACTIVITY 0.608 1.748 0.008 0.139 
NEGATIVE_REGULATION_OF_RNA_METABOLIC_PROCESS 0.492 1.719 <0.001 0.146 
PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION 0.531 1.706 0.017 0.149 
ACETYLTRANSFERASE_ACTIVITY 0.568 1.709 0.010 0.154 
NEGATIVE_REGULATION_OF_TRANSCRIPTION__DNA_DEPENDENT 0.492 1.719 <0.001 0.158 
NUCLEAR_IMPORT 0.575 1.804 0.002 0.159 
TRANSCRIPTION_ACTIVATOR_ACTIVITY 0.424 1.694 0.008 0.165 
PROTEIN_UBIQUITINATION 0.528 1.684 0.017 0.170 
RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_ACTIVITY 0.393 1.686 0.004 0.175 
MOLECULAR_ADAPTOR_ACTIVITY 0.597 1.808 0.002 0.199 
HISTONE_ACETYLTRANSFERASE_ACTIVITY 0.623 1.656 0.040 0.222 
SH3_SH2_ADAPTOR_ACTIVITY 0.627 1.870 <0.001 0.228 
POSITIVE_REGULATION_OF_TRANSCRIPTION 0.402 1.645 0.010 0.239 
Comparison of patients with AML+13 and the control group using the “c5all” gene sets implemented in 
GSEA. ES: enrichment score; NES; nominal enrichment score; NOM p-val: nominal p-value; FDR q-
val: false discovery rate. Only gene sets with an FDR of <0.25 are displayed. 
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Table S11: Overlap of genes differentially expressed genes in RUNX1 mutated AML 

with normal karyotyp and AML+13 

Microarray probe 
set 

Gene 
symbol 

Gene name Differnetially expressed 
in AML+13 

GC03M015700_at ANKRD28 ankyrin repeat domain 28 no 
GC04M122868_at ANXA5 annexin A5 no 
GC08P104222_at BAALC brain and acute leukemia, cytoplasmic yes 
GC02M060589_at BCL11A B-cell CLL/lymphoma 11A (zinc finger protein) no 
GC10M097941_at BLNK B-cell linker yes 
GC07P043764_at BLVRA biliverdin reductase A no 
GC13M102219_at C13orf27 chromosome 13 open reading frame 27 yes 
GC14M094943_at C14orf139 chromosome 14 open reading frame 139 no 
GC04P113286_at C4orf32 chromosome 4 open reading frame 32 no 
GC01P221966_at CAPN2 calpain 2, (m/II) large subunit no 
GC11P034417_at CAT catalase yes 
GC16M087468_at CBFA2T3 core-binding factor, runt domain, alpha subunit 2; 

translocated to, 3 
no 

GC04P110700_at CCDC109B coiled-coil domain containing 109B no 
GC01P026516_at CD52 CD52 molecule no 
GC03P112743_at CD96 CD96 molecule no 
GC0XM109724_at CHRDL1 chordin-like 1 yes 
GC05M149413_at CSF1R colony stimulating factor 1 receptor no 
GC14M024112_at CTSG cathepsin G yes 
GC11P065405_at CTSW cathepsin W no 
GC02P237143_at CXCR7 chemokine (C-X-C motif) receptor 7 yes 
GC15P020444_at CYFIP1 cytoplasmic FMR1 interacting protein 1 no 
GC10P098054_at DNTT deoxynucleotidyltransferase, terminal yes 
GC08P026491_at DPYSL2 dihydropyrimidinase-like 2 no 
GC06P116708_at DSE dermatan sulfate epimerase no 
GC18P027332_at DSG2 desmoglein 2 no 
GC02P047425_at EPCAM epithelial cell adhesion molecule no 
GC13M042358_at EPSTI1 epithelial stromal interaction 1 (breast) no 
GC06M006089_at F13A1 coagulation factor XIII, A1 polypeptide no 
GC10M015294_at FAM171A1 family with sequence similarity 171, member A1 yes 
GC01P117860_at FAM46C family with sequence similarity 46, member C no 
GC0XP135057_at FHL1 four and a half LIM domains 1 yes 
GC01M089290_at GBP1 guanylate binding protein 1, interferon-inducible, 67kDa no 
GC01M089345_at GBP2 guanylate binding protein 2, interferon-inducible no 
GC16M019422_at GDE1 glycerophosphodiester phosphodiesterase 1 no 
GC07P150015_at GIMAP2 GTPase, IMAP family member 2 no 
GC07M149953_at GIMAP6 GTPase, IMAP family member 6 no 
GC07P149842_at GIMAP7 GTPase, IMAP family member 7 no 
GC07P079602_at GNAI1 guanine nucleotide binding protein (G protein), alpha 

inhibiting activity polypeptide 1 
yes 

GC07P093388_at GNG11 guanine nucleotide binding protein (G protein), gamma 11 yes 
GC04P156807_at GUCY1A3 guanylate cyclase 1, soluble, alpha 3 no 
GC06P032649_at HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 no 
GC04M057210_at HOPX HOP homeobox yes 
GC01P078858_at IFI44L interferon-induced protein 44-like no 
GC11P000303_at IFITM1 interferon induced transmembrane protein 1 (9-27) no 
GC14M105389_at IGHM immunoglobulin heavy constant mu no 
GC22M022239_at IGLL1 immunoglobulin lambda-like polypeptide 1 no 
GC11M000602_at IRF7 interferon regulatory factor 7 yes 
GC15P086983_at ISG20 interferon stimulated exonuclease gene 20kDa yes 
GC07M150272_at KCNH2 potassium voltage-gated channel, subfamily H (eag-

related), member 2 
no 

GC14P105461_at KIAA0125 KIAA0125 no 
GC04M025425_at KIAA0746 KIAA0746 protein no 
GC10U900364_at LOC283070 hypothetical LOC283070 no 
GC05M088051_at MEF2C myocyte enhancer factor 2C no 
GC17M053702_at MPO myeloperoxidase yes 
GC21P041720_at MX1 myxovirus (influenza virus) resistance 1, interferon-

inducible protein p78 (mouse) 
no 

GC21P041655_at MX2 myxovirus (influenza virus) resistance 2 (mouse) no 
GC09M138039_at NACC2 NACC family member 2, BEN and BTB (POZ) domain 

containing 
no 

GC12M000543_at NINJ2 ninjurin 2 yes 
GC11P017255_at NUCB2 nucleobindin 2 no 
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GC03M152412_at P2RY14 purinergic receptor P2Y, G-protein coupled, 14 yes 
GC07M139370_at PARP12 poly (ADP-ribose) polymerase family, member 12 no 
GC10M119033_at PDZD8 PDZ domain containing 8 no 
GC07M076779_at PION pigeon homolog (Drosophila) no 
GC02M037389_at PRKD3 protein kinase D3 no 
GC08M141737_at PTK2 PTK2 protein tyrosine kinase 2 yes 
GC02M001606_at PXDN peroxidasin homolog (Drosophila) no 
GC01M152220_at RAB13 RAB13, member RAS oncogene family no 
GC08P030361_at RBPMS RNA binding protein with multiple splicing no 
GC14P020429_at RNASE3 ribonuclease, RNase A family, 3 (eosinophil cationic 

protein) 
yes 

GC02M165652_at SCN3A sodium channel, voltage-gated, type III, alpha subunit yes 
GC18P040535_at SETBP1 SET binding protein 1 yes 
GC04M140646_at SETD7 SET domain containing (lysine methyltransferase) 7 yes 
GC22P049402_at SHANK3 SH3 and multiple ankyrin repeat domains 3 no 
GC12M044867_at SLC38A1 solute carrier family 38, member 1 yes 
GC12P092466_at SOCS2 suppressor of cytokine signaling 2 yes 
GC18M051045_at TCF4 transcription factor 4 no 
GC10P114700_at TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) yes 
GC12M115961_at TESC tescalcin no 
GC05P135392_at TGFBI transforming growth factor, beta-induced, 68kDa yes 
GC01P012161_at TNFRSF1B tumor necrosis factor receptor superfamily, member 1B no 
GC07M047281_at TNS3 tensin 3 no 
GC22M026704_at TTC28 tetratricopeptide repeat domain 28 yes 
GC09M025668_at TUSC1 tumor suppressor candidate 1 no 
GC07M149094_at ZNF467 zinc finger protein 467 no 
GC18M020895_at ZNF521 zinc finger protein 521 no 
Differentially expressed genes in RUNX1-mut (n=15) vs. RUNX1-wt (n=26) patients. The analysis was 
restricted to NPM1-wt patients. Overlap with differentially expressed genes in AML+13 is indicated. 
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Figure S1 A: Study design AMLCG cohort 

AMLCG-1999 AML patients 
(n=3310)

23 patients with isolated 
trisomy 13

16 patients with available 
material (DNA)

2/16 patients with remission 
samples for exome

sequencing

Targeted amplicon 
sequencing in 16 patients

66 excluded 
(missing cytogenetic data)

83 patients with trisomy 13

3244 included in the analysis

60 patients with trisomy 13 and 
additional cytogenetic abnormalities

Gene expression analysis in 9 
patients – included in GSE37642 

data set

364 Intermediate-II patients 
as control group

2797 excluded

 

Definition of isolated trisomy 13: Isolated trisomy (n=22) or tetrasomy 13 (n=1) in 
absence of further cytogenetic aberrations except for numerical alterations of the sex 
chromosomes (n=2). 
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Figure S1 B: Study design SAL cohort 

SAL - AML patients
AML96, AML2003 and AML60+

trials (n=3526)

11 patients with isolated 
trisomy 13

198 excluded 
(missing cytogenetic data)

16 patients with trisomy 13

5 patients with trisomy 13 and 
additional cytogenetic abnormalities

486 Intermediate-II patients 
as control group

2826 excluded

3328 included in the analysis

 

Definition of isolated trisomy 13: Isolated trisomy (n=11) or tetrasomy 13 (n=0) in 
absence of further cytogenetic aberrations except for numerical alterations of the sex 
chromosomes (n=0). 
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Figure S2 A: Relapse free and overall survival in AML patients (only SAL 

cohort) 
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Kaplan–Meier estimates of SAL patients with isolated trisomy 13 (AML+13) and ELN 
Intermediate-II patients without amplifications of chromosome 13. The differences did 
not reach significance possibly due to the small number of AML+13 cases. 
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Figure S2 B: Relapse free and overall survival in AML+13 and aAML+13 
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Kaplan–Meier estimates of AMLCG and SAL patients with isolated trisomy 13 
(AML+13) and trisomy 13 and heterogeneous additional cytogenetic aberrations 
(aAML+13). There is no difference between AML+13 and the aAML+13 group 
regarding RFS and OS despite the high frequency of high risk aberrations in the 
aAML+13 group.  
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Figure S2 C: Relapse free and overall survival in AML+13 and ELN Adverse 
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Kaplan–Meier estimates of AML in the ELN Adverse control group and patients with 
isolated trisomy 13 (AML+13). Only patients enrolled in the AMLCG trials are shown. 
There is no significant difference between the groups regarding RFS and OS  
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Figure S3: Results of Sanger sequencing  

 

SRSF2  

#1, SNV at position 17:74,732,959; C>G 

 

 

#2, in frame deletion at position 17:74,732,936-17:74,732,959 

 

 

#3, wild type 

 

 

#4, SNV at position 17:74,732,959; C>A 
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#5, in frame deletion at position 17:74,732,936-17:74,732,959 

 

 

#6, in frame insertion at position 17:74,732,959 

 

 

#7, SNV at position 17:74,732,959; C>A 

 

 

#8, SNV at position 17:74,732,959; C>A 

 

 

#9, SNV at position 17:74,732,959; C>T 
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#10, in frame deletion at position 17:74,732,936-17:74,732,959 

 

 

#11, in frame deletion at position 17:74,732,936-17:74,732,959 

 

 

#11, Loss of SRSF2 mutation at complete remission 

 

 

#13, wild type 

 

 

#14, SNV at position 17:74,732,959; C>T 
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#15, SNV at position 17:74,732,959; C>G 

 

 

#16, in frame deletion at position 17:74,732,936-17:74,732,959 

 

 

CEBPZ  

#10, SNV at position 2:37,455,632; T>C 

 

 

#11, SNV at position 2:37,455,685; C>G 

 

 

#11 Loss of CEBPZ mutation at complete remission 
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ASXL1  

#8, frameshift deletion at position 20:31,022,415-20:31,022,437 
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B
lock of myeloid differentiation is one of the hallmarks of
acute myeloid leukaemia (AML). First insights into this
key mechanism were gained by the discovery of the

t(8;21)(q22;q22) translocation, which was the first balanced
translocation described in a tumour and results in the RUNX1/
RUNX1T1 fusion gene (also known as AML1/ETO)1,2. The
RUNX1/RUNX1T1 rearrangement is one of the most frequent
chromosomal aberrations in AML and defines an important
clinical entity with favourable prognosis according to the World
Health Organization classification3. The RUNX1/RUNX1T1
fusion protein disrupts the core-binding factor complex, and
thereby blocks myeloid differentiation. However, in vivo models
indicate the requirement of additional lesions, such as of KIT or
FLT3 mutations, for leukaemogenesis as the RUNX1/RUNX1T1
fusion gene alone is not sufficient to induce leukaemia4–8. In the
present study, we set out to identify additional mutations in AML
t(8;21) and discovered frequent mutations of ZBTB7A—encoding
a transcription factor important for the regulation of
haematopoietic development9 and tumour metabolism10. It is
very likely that ZBTB7A mutations are one of the important
missing links in RUNX1/RUNX1T1-driven leukaemogenesis.

Results
ZBTB7A is frequently mutated in AML t(8;21). To identify
additional cooperating mutations, we performed exome
sequencing of matched diagnostic and remission samples from
two AML patients with t(8;21) translocation and detected 11 and
12 somatic variants, respectively (Supplementary Table 1).

ZBTB7A was the only mutated gene identified in both patients.
ZBTB7A (also known as LRF, Pokemon and FBI-1) is a member
of the POZ/BTB and Krüppel (POK) transcription factor family9,
which is characterized by an N-terminal POZ/BTB
protein–protein interaction domain and C-terminal C2H2 zinc
fingers11. The first patient carried a homozygous missense
mutation resulting in the amino-acid change R402H
(NM_015898:exon2:c.1205G4A:p.R402H) affecting the highly
conserved zinc-finger domain, while a heterozygous frameshift
insertion (NM_015898:exon2:c.522dupC:p.A175fs) resulting in
loss of the zinc-finger domain was identified in the second
patient. Both mutations were validated by Sanger sequencing
(Supplementary Fig. 1; Supplementary Table 2). Using targeted
amplicon sequencing of ZBTB7A and 45 leukaemia relevant
genes, we screened 56 diagnostic AML t(8;21) samples, including
one of the two samples analysed by exome sequencing (UPN 1),
whereas for the other one (UPN 2) availability of material was
insufficient. ZBTB7A mutations were identified in 13 of 56
patients (23%; Fig. 1a,b; Supplementary Table 3). Patient
characteristics are summarized in Supplementary Table 4. Two
recurring mutational hotspots (A175fs and R402) in exon 2 were
identified altering or resulting in loss of the zinc-finger domain
(Fig. 1a). It was previously shown that the zinc-finger domain of
ZBTB7A is essential for DNA binding12. Structural modelling
revealed that arginine 402 binds into the major groove of the
DNA double helix and likely contributes to the affinity or
sequence specificity of the DNA interaction of the zinc-finger
domain of ZBTB7A (Fig. 2a). We confirmed that both ZBTB7A
mutants A175fs and R402H fail to bind DNA (Fig. 2b,c).
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Variant allele frequency ranged from 5.4 to 76.2% (cut-off 2%)
and 4 of 13 patients (31%) harboured two mutations of ZBTB7A.
Fourteen of 17 mutations (82%) were validated by Sanger
sequencing (Supplementary Fig. 1). Somatic status was confirmed
in a total of three patients with available remission samples.
Thirty-two additional samples of t(8;21)-positive AML with
inadequate sample availability for gene panel sequencing were
analysed by Sanger sequencing of exon 2 (encoding amino acids
1–421) resulting in the identification of two ZBTB7A mutations
(2/32; 6%). This lower mutation frequency might be due to the
lower sensitivity of Sanger sequencing and incomplete coverage of
the coding exons of ZBTB7A (we were not able to
reliably amplify exon 3 encoding amino acids 422–584).
To evaluate the consequences of truncating ZBTB7A mutations
on the protein level, we performed western blot analysis for
one patient with available material and detected a shorter

form of the ZBTB7A protein resulting from the R377X mutation
(Supplementary Fig. 2).

Recently, frequent ASXL2 mutations were identified in t(8;21)
AML13. In our cohort, ZBTB7A and ASXL2 mutations occurred
at similar frequencies (Fig. 1b) and 5 of 13 patients carried
mutations in both genes; however, there was no significant
association of mutated ZBTB7A and mutations in ASXL2
(Fisher’s exact test, P¼ 0.12) or any other recurrently mutated
gene. Alterations of ASXL1 were mutually exclusive with
genetic lesions of ZBTB7A suggesting alternative routes of
leukaemogenesis. Similarly, mutations of ZBTB7A and KIT
were exclusive in all, but one patient. In the exome data of 22
patients with inversion inv(16) (another rearrangement
disrupting the core-binding factor complex in AML), we found
a single ZBTB7A mutation (A211V). Of note, we did not find
any ZBTB7A mutations by exome sequencing of 50 patients
with cytogenetically normal AML (CN-AML) or 14 AML patients
with chromosomal aberrations other than t(8;21) or inv(16).
These results point towards a specific association between
ZBTB7A alterations and the RUNX1/RUNX1T1 fusion.

Mutations disrupt the anti-proliferative function of ZBTB7A.
To assess the functional consequences of the identified ZBTB7A
mutations, we performed luciferase reporter gene assays. It is
known that ZBTB7A represses the expression of ARF (alternate
open reading frame of CDKN2A)14. In contrast to wild-type
ZBTB7A, the R402H, R402C, A175fs or R377X mutants failed to
repress a luciferase reporter containing ZBTB7A-binding
elements derived from the ARF promoter (Fig. 3a). Expression
of ZBTB7A constructs was confirmed by western blot (Fig. 3b).

In light of recent reports about the negative regulation of
glycolysis by ZBTB7A10, we assessed the expression of glycolytic
genes (SLC2A3, PFKP and PKM) in the RNA-sequencing data
from our AML t(8;21) patients (Supplementary Fig. 3).
In ZBTB7A-mutated patients (n¼ 5), we found a significantly
higher expression of PFKP (Student’s t-test, P¼ 0.03) compared
with patients without any detectable ZBTB7A mutation (n¼ 11).
On average, PKM and SLC2A3 also showed higher expression
levels in patients with ZBTB7A mutations, but did not reach
statistical significance (Student’s t-test, P¼ 0.17 and P¼ 0.54,
respectively). In the latter case, the difference in the mean values
can be attributed mainly to an outlier in the ZBTB7A-mutated
group with very high SLC2A3 expression. Expression levels of
ZBTB7A were similar in both the patient groups, compatible with
inactivation of ZBTB7A on the genetic level rather than on the
transcriptional level.

The C-terminal part of ZBTB7A is important for nuclear
localization15. Because some mutations result in loss of the
C-terminal zinc-finger domain and nuclear localization signal, we
evaluated the cellular localization of mutant ZBTB7A. Whereas
wild-type ZBTB7A was detected in the nucleus, immuno-
fluorescence staining of the A175fs and R377X mutants showed
an altered cytoplasmic localization (Fig. 3c). In contrast,
mutants R402H and R402C exhibited a variable cellular
localization with cytoplasmic protein detectable only in a minor
subset of cells (Supplementary Fig. 4a,b). Amino-acid substitutions
of R402 showed a smaller increase in cytoplasmic protein fraction
compared with truncation mutants as analysed by western blot
(Supplementary Fig. 4c). Ultimately, the observed effect of
mutations on ZBTB7A localization remains to be confirmed in
appropriate primary patient material, which was not available in
our study.

In the t(8;21) translocation-positive AML cell line Kasumi-1,
retroviral expression of wild-type ZBTB7A inhibited cell growth,
whereas this anti-proliferative effect was not observed upon
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expression of the A175fs ZBTB7A mutant (Fig. 3d). The R402C
mutant expressing Kasumi-1 cells showed a trend towards reduced
cell growth, suggesting residual activity. On the basis of this
observation, we expressed ZBTB7A wild type or its mutants
together with the RUNX1/RUNX1T1 fusion in lineage-negative
murine bone marrow cells and performed colony-forming cell
(CFC) assays. ZBTB7A expression led to a significant decrease in
the number of colonies in primary CFC (87±12.6 versus 45±5.8,
Student’s t-test, Po0.0001), while this effect was lost for both
mutants tested (Fig. 3e). These findings support an oncogenic
cooperativity between RUNX1/RUNX1T1 and ZBTB7A mutations.

Prognostic relevance of ZBTB7A expression in CN-AML. The
identification of a novel recurrently mutated gene demands the
evaluation of its clinical relevance. We did not find a significant
difference in overall or relapse-free survival between

t(8;21)-positive AML patients with wild-type or mutant ZBTB7A
(Supplementary Fig. 5). However, this evaluation was limited by
the relatively small cohort size. Considering the potential role of
ZBTB7A as tumour suppressor in AML and its anti-proliferative
properties, we correlated ZBTB7A expression with clinical
outcome in a larger cohort of AML patients (GSE37642). There
was no significant difference in ZBTB7A expression levels
between cytogenetic subgroups of AML (Supplementary Fig. 6).
Remarkably, in over 200 CN-AML patients treated on clinical
trial (NCT00266136), high expression of ZBTB7A was associated
with a favourable outcome (Fig. 3f; Supplementary Fig. 7),
suggesting a relevance in AML beyond the t(8;21) subgroup. The
favourable prognostic impact of high ZBTB7A transcript levels
was most obvious in elderly patients (age 460 years) and high
ZBTB7A expression was associated with a ‘low molecular risk
genotype’ (mutated NPM1 without FLT3-ITD; Supplementary
Fig. 7; Supplementary Table 5). We validated the association of
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high ZBTB7A expression with favourable outcome in an inde-
pendent CN-AML patient cohort16,17 (Supplementary Fig. 8).

Discussion
In summary, we have identified ZBTB7A as one of the most
frequently mutated genes in t(8;21)-positive AML. Consistent
with our findings, ZBTB7A mutations in 3 of 20 (15%) AML
t(8;21) patients and 1 of 395 AML inv(16) patients were
reported18 during the revision of the present manuscript. Our
functional analyses indicate that ZBTB7A mutations result in loss
of function, due to alteration or loss of the zinc-finger motives.
Beyond DNA binding, the zinc-finger domain of ZBTB7A is also
known to interact with TP53 and BCL6 (ref. 9). Thus, multiple
pathways might be influenced by alteration or loss of the ZBTB7A
zinc-finger domain. The N-terminal missense mutations in the
BTB domain may result in failure of co-repressor recruitment.
Considering that 4 of 13 of patients had more than one ZBTB7A
mutation, our finding that overexpression of wild-type ZBTB7A
leads to reduced proliferation of Kasumi-1 cells and a decreased
number of CFCs of murine bone marrow cells, we suggest that
ZBTB7A acts as a tumour suppressor in t(8;21)-positive AML.
Initial studies characterized ZBTB7A as proto-oncogene in
various tissues14,19. For example, Maeda et al. demonstrated
that transgenic mice with Zbtb7a overexpression in the immature
T- and B-lymphoid lineage develop precursor T-cell lymphoma/
leukaemia14. In contrast, it was more recently shown that
ZBTB7A can also act as a tumour suppressor. Overexpression
of Zbtb7a in murine prostate epithelium did not result in
neoplastic transformation; unexpectedly, Zbtb7a inactivation lead
to the acceleration of Pten-driven prostate tumorigenesis20.
Recently, somatic zinc-finger mutations of ZBTB7A were found
at low frequencies (o5%) in a variety of solid cancers suggesting
a common mechanism across tumour entities21. In fact, the
de-repression of glycolytic genes upon deletion or mutation of
ZBTB7A10,21 might underlie the loss of anti-proliferative
properties that we observed for ZBTB7A mutants A175fs
and R402C in the present study. Any inactivating alteration of
ZBTB7A will likely increase glycolysis, and, thus, helps the
tumour cells to produce more energy. Besides tumour
metabolism, it is known that ZBTB7A also plays an important
role in haematopoietic lineage fate decisions9. During
lymphopoiesis ZBTB7A regulates B-cell development22, whereas
in the myeloid lineage it is essential for erythroid
differentiation23. Thus, ZBTB7A mutations may contribute to
the block of differentiation in AML t(8;21).

The favourable prognostic relevance of high ZBTB7A
expression in CN-AML, which accounts for half of all AML
patients, may point towards a more general tumour suppressor
role of ZBTB7A in myeloid leukaemia. In particular, the
anti-proliferative properties of ZBTB7A may slow down disease
progression. High ZBTB7A expression as a favourable prognostic
marker has been reported also in colorectal cancer10, consistent
with a clinicobiological role of ZBTB7A across malignancies of
multiple tissue origins. Given that somatic mutations of ZBTB7A
seem to be absent or rare in CN-AML, other mechanisms,
including epigenetic changes or alterations of upstream
regulators, may lead to inactivation or downregulation of
ZBTB7A.

Our discovery of frequent ZBTB7A mutations in AML with
t(8;21) translocation, one of the most common translocations
in AML and the first balanced translocation identified in
leukaemia1, demonstrates that the mutational landscape of AML
is still not fully understood. Further studies will be required to
unravel the mechanism underlying leukaemogenic cooperativity
between mutated ZBTB7A and the RUNX1/RUNX1T1 fusion gene.

Methods
Patients. AML samples were collected within the German Cancer Consortium
(DKTK) at the partner sites Munich and Dresden. Patients were treated according
to the protocols of Acute Myeloid Leukemia Cooperative Group (AMLCG) or
Study Alliance Leukemia (SAL) multicentre clinical trials. Study protocols were
approved by the Institutional Review Boards of the participating centres. Informed
consent was received in accordance with the Declaration of Helsinki.

Sequencing. Exome sequencing (mean coverage: 87x; range 80–90x) was per-
formed on a HiSeq 2000 Instrument (Illumina), using the SureSelect Human All
Exon V5 kit (Agilent). Pretreatment blood or bone marrow specimens from 56
AML patients with t(8;21) translocation were sequenced using Haloplex custom
amplicons (Agilent) and a HiSeq 1500 instrument (Illumina). Target sequence
included the entire open-reading frame of ZBTB7A in addition to 45 leukaemia-
related genes or mutational hotspots (Supplementary Table 3). Variant calling was
performed as described previously24. Sanger sequencing of PCR-amplified genomic
DNA was carried out using a 3500xL Genetic Analyzer (Applied Biosystems).
Primer sequences are provided in Supplementary Table 2. Sequencing of messenger
RNA was performed using the TruSeq RNA Sample Preparation protocol, followed
by sequencing on a HiSeq 2000 Instrument (Illumina). RNA sequence reads were
aligned to the human genome (hg19) using STAR25 (version 2.4.1b). Reads per
gene were counted using HTseq26 (version 0.6.1) with intersection-strict mode and
normalized for the total number of reads per sample.

Structural modelling. Suitable templates for the modelling were searched with
HHPRED27, using the zinc-finger domain of ZBTB7A as input sequence. The
highest scoring homologue, for which a structure of a DNA complex is available,
was the Wilms tumour suppressor protein28 (PDB accession code 2J9P, E-value
4.8E–29, P-value 1.3E–30). The model for ZBTB7A was generated on the basis of
2J9P using MODELLER29. Importantly, 2J9P also contains an arginine at the
equivalent position of ZBTB7A’s R402, allowing us to model the function of R402
as major groove binder with confidence.

Plasmids. The pcDNA3.1-His-ZBTB7A expression construct was a gift from
Takahiro Maeda (Boston). ZBTB7A A175fs, R377X, R402C and R402H mutant
plasmids were generated using the QuikChange II XL Site-Directed Mutagenesis
Kit (Agilent) and confirmed by Sanger sequencing. ZBTB7A wild type and mutants
were subcloned into pMSCV-IRES-YFP (pMIY), using the In-Fusion HD cloning
kit (Clontech) and EcoRI restriction sites. The pMSCV-IRES-GFP(pMIG)-
RUNX1/RUNX1T1 plasmid was provided by Christian Buske (Ulm).

DNA pull-down. HEK293T cells (DSMZ no.: ACC 635) were transfected with
pcDNA3.1 His-Xpress-ZBTB7A (wild type or mutant). After 24 h, protein was
extracted using lysis buffer (50 mM Tris HCl, pH 8.5, 150 mM NaCl, 1% Triton
X-100, cOmplete Protease Inhibitor Cocktail). For each reaction, 20 ml protein
lysate was incubated in binding buffer (PBS supplemented with 150 mM NaCl
resulting in a total salt concentration of nearly 300 mM, 0.1% NP40, 1 mM ETDA)
with 10 pM biotinylated double-stranded oligonucleotides that contain either the
ZBTB7A consensus binding motif (POK WT; 50-GGTTAAAAGACCCCTCCCCG
AATTCGGATC-30) or a mutant thereof (POK mut; 50-GGTTAAAATTTTTCTCC
CCGAATTCGGATC-30). After 1 h of incubation at 4 �C, 10ml streptavidin agarose
beads (Sigma Aldrich) was added to each reaction and incubated for 30 min at 4 �C.
Beads were washed three times with binding buffer and resupended in 10 ml
Laemmli buffer for subsequent western blot analysis. ZBTB7A protein was detected
using an antibody against the Xpress tag (1:5,000 dilution, clone R910-25; Life
Technologies) and secondary goat anti-mouse IgG-HRP (1:10,000 dilution, clone
sc-2060; Santa Cruz). The uncropped western blot scan underlying Fig. 2c is shown
in Supplementary Fig. 9.

Reporter gene assay. HEK293T cells (DSMZ no.: ACC 635) were co-transfected
with pcDNA3.1-His-ZBTB7A (wild type or mutant), pGL2-p19ARF-Luc (gift from
Takahiro Maeda, Boston) as well as pRL-CMV (Renilla luciferase; Promega) using
Lipofectamine 2000 (ThermoFischer). After 24 h, cells were lysed; Firefly and
Renilla luciferase activity was measured with the dual-luciferase reporter assay
system (Promega) according to the manufacturer’s instructions. Three independent
experiments were each performed in triplicates.

Western blot. HEK293T cells (DSMZ no.: ACC 635) were transfected using
Lipofectamine 2000 (ThermoFischer) with pcDNA3.1-His-ZBTB7A (wild type
or mutant). After 24 h, protein was either extracted by multiple freeze–thaw cycles
in lysis buffer (600 mM KCl, 20 mM Tris-Cl pH 7.8, 20% Glycerol, cOmplete
Protease Inhibitor Cocktail) or using the Qproteome Nuclear Protein Kit (Qiagen)
for the analysis of nuclear and cytoplasmic protein fractions. From archived patient
bone marrow samples, protein was isolated using the AllPrep DNA/RNA/Protein
Mini Kit (Qiagen) according to the manufacturer’s instructions. Following
SDS–polyacrylamide gel electrophoresis and protein transfer to polyvinylidene
difluoride membrane (Hybond PTM, Amersham Pharmacia biotech),
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immunoblots were blocked with 5% nonfat dried milk, probed with anti-human
Pokemon (ZBTB7A) purified antibody (1:5,000 dilution, clone: 13E9; eBioscience)
and secondary anti-Armenian hamster IgG-HRP (1:10,000 dilution, clone: sc-2443;
Santa Cruz). As loading control immunoblots were incubated with rabbit anti-actin
(1:5,000 dilution, clone: sc-1616- R; Santa Cruz) and secondary goat anti-rabbit
IgG-HRP (1:10,000 dilution, clone: sc-2030; Santa Cruz). For analysis of the
nuclear and cytoplasmic ZBTB7A protein fractions, we used mouse anti-Xpress
tag (1:5,000 dilution, clone R910-25, Life Technologies) and secondary goat
anti-mouse IgG-HRP (1:10,000 dilution, clone: sc-2060; Santa Cruz). Mouse
anti-GAPDH (1:10,000 dilution, clone: sc-32233; Santa Cruz) served as loading
control for the cytoplasmic protein fraction. Proteins were detected with enhanced
chemiluminescence (ECL, Amersham, GE Healthcare).

Immunofluorescence staining. U2OS human osteosarcoma cells (ATTC no.:
HTB-96) were grown on coverslips and transiently transfected with pcDNA3.1-
His-ZBTB7A wild type and mutant constructs using PoliFect (Qiagen) according to
the manufacturer’s guidelines. Cells were fixed 48 h post transfection using
PBS 2% formaldehyde (37% stock solution; Merck Schuchardt) for 10 min,
permeabilized with PBS 0.5% Triton X-100 (Carl Roth) for 10 min and blocked for
1 h with PBS 2% bovine serum albumin (Albumin Fraction V, AppliChem).
Cells were then incubated with polyclonal rabbit His-probe (H-15) antibody
(1:50 dilution; Santa Cruz) for 1 h. After extensive washing with PBS 0.1% Tween
20 (Carl Roth), secondary antibody incubation was performed for 1 h with goat
anti-rabbit IgG (Hþ L), F(ab0)2 fragment Alexa Fluor 594 conjugate (1:500
dilution; Cell Signaling Technology). Counterstaining was performed using
NucBlue Reagent and ActinGreen 488 ReadyProbes Reagent (Life Technologies;
2 drops per ml) at room temperature for 20 min. Coverslips were mounted using
fluorescence mounting medium (DAKO). Specimens were analysed using a
confocal fluorescence laser scanning system (TCS SP5 II; Leica). For image
acquisition and processing, the LAS AF Lite Software (Leica) was used.

Retroviral transduction. Retroviral transduction of Kasumi-1 cells (DSMZ no.:
ACC 220) was accomplished as outlined previously30. In brief, HEK293T cells were
co-transfected with pMSCV-IRES-YFP (pMIY) vectors containing either wild-type
or mutant (A175fs, R402C) ZBTB7A and packaging plasmids. After 48 h, the cell
culture supernatant was collected, sterile filtered and used for viral loading of
RetroNectin (Takara Clontech)-coated plates. A total of 3� 105 Kasumi-1 cells
were transduced per well. The percentage of YFP-positive cells was assessed on a
FACSCalibur flow cytometer (BD Biosciences). Three independent experiments
were each performed in duplicates.

Colony-forming cell assay. For in vitro CFC assays, bone marrow cells were
collected from the femur and pelvic girdle of wild-type mice (C57BL/6X129/J).
Lineage-negative haematopoietic progenitors were isolated using magnetic
separation (MACS, murine lineage depletion kit, Miltenyi biotech). Retrovirally
transduced cells were sorted for GFP/YFP and were plated in 1% myeloid-condi-
tioned methylcellulose containing Iscove’s modified Dulbecco medium-based
Methocult (Methocult M3434; StemCell Technologies) at a concentration of
500 cells per ml. Single-cell suspensions of colonies were serially replated at the
same concentration until the exhaustion of cell growth. Three independent
experiments were each performed in duplicates.

Analysis of clinical and gene expression data. Clinical relevance of ZBTB7A
mutations or expression levels was evaluated using the Kaplan–Meier method and
the log-rank test. Fisher’s exact test was used to compare categorical variables,
while Wilcoxon Mann–Whitney U-test was applied for continuous variables. All
patients included in this analysis were treated intensively with curative intent
according to the AMLCG protocols. Gene expression profiling was performed on
215 adult patients with cytogenetically normal AML, using Affymetrix Human
Genome (HG) U133A/B (n¼ 155) and HG U133Plus2.0 microarrays (n¼ 60).
The RMA method was used for data normalization, and probe set summarization
utilized custom chip definition files based on the GeneAnnot database (version
2.2.0). Probe set GC19M004001_at was used to determine ZBTB7A expression
levels. High ZBTB7A expression was defined as the highest (4th) quartile of
expression values observed in CN-AML patients. Patients with ZBTB7A expression
levels in the 1st to 3rd quartile were classified as having low expression. The
patients analysed here represent a subset of the previously published data set
GSE37642. Validation of the results was done using data sets from the Haemato
Oncology Foundation for Adults in the Netherlands (HOVON) study group
(GSE14468 and GSE1159)16,17.

Data availability. Data referenced in this study are available in the Gene
Expression Omnibus database with the accession codes GSE37642, GSE14468 and
GSE1159. The next-generation sequencing data that support the findings of this
study are available on request from the corresponding author (P.A.G). The data are
not publicly available due to them containing information that could compromise
research participant privacy or consent. Explicit consent to deposit raw-sequencing
data was not obtained from the patients, many samples were collected 410 years

ago. Thus, the vast majority of patients cannot be asked to provide their consent for
deposit of their comprehensive genetic data.
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Supplementary Figure 1. Sanger sequencing confirms ZBTB7A mutations.  



UPN#3-Diagnosis: NM_015898:exon2: c.1204C>T:p.R402C  
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Supplementary Figure 1 (continued). Sanger sequencing confirms ZBTB7A mutations.  



UPN#5-Diagnosis: NM_015898:exon2: c.146G>A:p.R49H 

 

 

 

UPN#6-Diagnosis: NM_015898:exon2: c.1183G>T:p.G395C 

 

 

 

UPN#7-Diagnosis: NM_015898:exon2: c.1204C>T:p.R402C 
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Supplementary Figure 1 (continued). Sanger sequencing confirms ZBTB7A mutations. 



UPN#9-Diagnosis: NM_015898:exon2: c.1129C>T:p.R377X 
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Supplementary Figure 1 (continued). Sanger sequencing confirms ZBTB7A mutations. 
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Supplementary Figure 1 (continued). Sanger sequencing confirms ZBTB7A mutations. 

  



 

Supplementary Figure 2. Western blot analysis of a patient with the truncating R377X mutation 
(UPN9) and another patient with wild-type ZBTB7A (UPN15).  
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Supplementary Figure 3. Expression of glycolytic genes and ZBTB7A in AML t(8;21) patients 
according to ZBTB7A mutation status. Circles indicate mRNA sequence read counts from 
individual patients. Horizontal bars show mean values of the two patient groups (mutated n=5; 
wild-type n=11). Differences between groups were assessed using a two-tailed unpaired 
Student’s t-test. 
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Supplementary Figure 4. Subcellular localization of ZBTB7A wild-type and mutants.  
(a) Representative confocal laser scans of transiently transfected U2OS cells show the 
predominant protein distribution observed for each construct. Scale bar corresponds to 25 µm. 
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Supplementary Figure 4 (continued). (b) Cell counts after immunofluorescence staining of 
ZBTB7A wild-type and mutants in transiently transfected U2OS cells. Bar graph shows mean 
values ± standard deviation of 3 independent experiments with evaluation of 124 cells per 
construct (representing the minimum number of cells available for evaluation in each 
experiment). Statistical difference was assessed using a two-tailed unpaired Student’s t-test. 
Nuclear localization was defined as detection of ZBTB7A exclusively in the cell nucleus, 
whereas cytoplasmic localization indicates ZBTB7A protein detected both in the nucleus and the 
cytoplasm.    
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Supplementary Figure 4 (continued). (c) Western blot analysis of cytoplasmic (cyt) and 
nuclear (nuc) protein fractions extracted from HEK293T cells expressing ZBTB7A wild-type or 
mutants. 
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Supplementary Figure 5. Survival of t(8;21) positive AML patients according to ZBTB7A 
mutation status. P values were calculated by the log-rank test. (a) Event free survival, (b) Overall 
survival and (c) Relapse-free survival.  
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Supplementary Figure 6. ZBTB7A expression in cytogenetic subgroups of AML. 

  



 

 

 

Supplementary Figure 7. Survival of patients with cytogenetically normal (CN-)AML according 
to ZBTB7A expression (GSE37642). High ZBTB7A expression (red) was defined as the highest 
(4th) quartile of expression values observed in CN-AML patients. Patients with ZBTB7A 

expression levels in the 1st to 3rd quartile were classified as having low expression. P values 
were calculated by the log-rank test. (a) Event-free survival (b) Overall survival (c) Relapse-free 
survival.  
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Supplementary Figure 7 (continued). Survival of patients ≥ 60 years with CN-AML according 
to ZBTB7A expression (GSE37642). (d) Event-free survival patients (e) Overall survival (f) 
Relapse-free survival.  
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Supplementary Figure 7 (continued). Survival of patients < 60 years with CN-AML according 
to ZBTB7A expression (GSE37642). (g) Event-free survival patients (h) Overall survival (i) 
Relapse-free survival.  
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Supplementary Figure 8. Overall survival of patients with CN-AML according to ZBTB7A 
expression in the AMLCG-cohort (GSE37642) and the HOVON cohort (GSE14468 and 
GSE1159). P values were calculated by the log-rank test. 

  

AMLCG CN-AML cohort, Q1-3 vs Q4 OS AMLCG CN-AML cohort, median cut 

HOVON CN-AML cohort, Q1-3 vs Q4 
  

HOVON CN-AML cohort, median cut 

ZBTB7A high (Q4) n=54 

ZBTB7A low (Q1-3) n=161 

ZBTB7A high (Q4) n=52 

ZBTB7A low (Q1-3) n=155 

ZBTB7A high (>median) n=107 

ZBTB7A low (≤median) n=108 

ZBTB7A high (>median) n=103 

ZBTB7A low (≤median) n=104 

p=0.00026 
p=0.0117 

p=0.0843 p=0.04 



 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 9. Uncropped Western blot scan underlying Figure 2c. 
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Supplementary Table 1. Somatic variants from exome sequencing of two AML t(8;21) patients. 

UPN Chr Position 
(hg 19) 

Gene  Ref Var dbSNP VarFreq 
(%) 

Type AA Change 

1 7 138437432 ATP6V0A4 C T  52.9 nonsynonymous 
SNV 

NM_020632:c.967G>A:p.A323T 

1 19 16040374 CYP4F11 T A  87 nonsynonymous 
SNV 

NM_021187:c.236A>T:p.Q79L 

1 3 183823156 HTR3E A -GCAAG  50.5 frameshift 
deletion 

NM_001256613:c.662_666delGCAAG: 
p.K222fs 

1 5 38869211 OSMR A G  37.0 nonsynonymous 
SNV 

NM_001168355:c.65A>G:p.Q22R 

1 16 67695894 PARD6A C A  41.8 nonsynonymous 
SNV 

NM_016948:c.385C>A:p.P129T 

1 6 150569915 PPP1R14C G A  26.2 nonsynonymous 
SNV 

NM_030949:c.457G>A:p.G153S 

1 14 61186589 SIX4 G A  45.1 stopgain SNV NM_017420: c.1438C>T:p.Q480X 

1 15 62994266 TLN2 C G  47.8 nonsynonymous 
SNV 

NM_015059:c.1772C>G:p.S591C 

1 15 81627077 TMC3 C G rs376889456 35.4 nonsynonymous 
SNV 

NM_001080532:c.2443G>C:p. E815Q   

1 19 4054026 ZBTB7A C T  75.2 nonsynonymous 
SNV 

NM_015898:c.1205G>A:p.R402H 

1 19 24288837 ZNF254 G A  43.9 nonsynonymous 
SNV 

NM_203282:c.126G>A:p:M42I 

2 12 70724077 CNOT2 C T  44 nonsynonymous 
SNV 

NM_014515:c.397C>T:p.P133S 

2 1 22903142 EPHA8 C T  34 nonsynonymous 
SNV 

NM_020526:c.592C>T:p.R198C 

2 16 30495266 ITGAL C T  29.7 nonsynonymous 
SNV 

NM_002209:c.841C>T:p.R281C 

2 4 55599321 KIT A T rs121913507 28.3 nonsynonymous 
SNV 

NM_000222:c.2447A>T:p.D816V   

2 18 30321954 KLHL14 G A  45.6 nonsynonymous 
SNV 

NM_020805:c.1006C>T:p.R336W 

2 5 140348603 PCDHAC2 G T position of 
rs143196630 

37.2 nonsynonymous 
SNV 

NM_018899:c.2252G>T:p.R751M 

2 6 42890875 PTCRA C T  40.7 nonsynonymous 
SNV 

NM_138296:c.169C>T:p.L57F 

2 19 46198897 QPCTL C T  51.3 nonsynonymous 
SNV 

NM_017659:c.554C>T:p.T185M 

2 6 28540575 SCAND3 A C  46.8 nonsynonymous 
SNV 

NM_052923:c.3091T>G:p.S1031A 

2 3 36534709 STAC C T  29.5 nonsynonymous 
SNV 

NM_003149:c.754C>T:p. R252C 

2 X 104464034 TEX13A G A  44.9 nonsynonymous 
SNV 

NM_031274:c.842C>T:p.T281M 

2 19 4054708 ZBTB7A C +G  45.7 
 

frameshift 
insertion 

NM_015898:c.522dupC:p.A175fs 

 



Supplementary Table 2. Primer sequences for Sanger sequencing of ZBTB7A exon 2. 

Region PCR-amplification primers Sequencing primers 

Exon2_1 fwd GGGTGGAACGCTGCTTCT fwd CTTGTCAGTGGGCACAGGAA 

rev GTTCATGGGGTTGCTCTGGA rev CTGAGGATGTCACCCACGTT 

Exon2_2 fwd GCTCATGGACTTCGCCTAC fwd ACAGCCAACGTGGGTGAC 

rev GGTAGTAGTCCATGACGCCC rev CTCCCGACAGGAAGCCC 

Exon2_3 fwd CCAGAGCGGGATGAGGAC fwd ACTCTCCGGGCTTCCTGTC 

rev GTGTGCACGTGCGTGTATG rev GTATGTGTGCGTCTGCGTG 

 

Supplementary Table 3. ZBTB7A mutations from gene panel* analysis of 56 AML t(8;21) cases. 

UPN Chr Position 
(hg 19) 

Gene Ref Var Length Ref 
Count 

Var 
Count 

VarFreq 
(%) 

Type AA Change Sanger 
validated 

1 19 4054026 ZBTB7A C T 1 298 901 75.2 nonsynonymous 
SNV 

NM_015898:exon2: 
c.1205G>A:p.R402H 

Yes 

3 19 4054027 ZBTB7A G A 1 564 136 19.4 nonsynonymous 
SNV 

NM_015898:exon2: 
c.1204C>T:p.R402C 

Yes 

3 19 4054708 ZBTB7A - G 1 446 156 25.9 frameshift 
insertion 

NM_015898:exon2: 
c.522dupC:p.A175fs 

Yes 

4 19 4054727 ZBTB7A G - 1 2387 290 10.8 frameshift 
deletion 

NM_015898:exon2: 
c.504delC:p.P168fs 

No 

4 19 4055082 ZBTB7A G A 1 888 438 33.0 nonsynonymous 
SNV 

NM_015898:exon2: 
c.149C>T:p.S50L 

Yes 

5 19 4054141 ZBTB7A - TTA 3 242 89 26.9 stopgain 
insertion 

NM_015898:exon2: 
c.1089_1090insTAA: 
p.V364delinsX 

Yes 

5 19 4055085 ZBTB7A C T 1 305 211 40.9 nonsynonymous 
SNV 

NM_015898:exon2: 
c.146G>A:p.R49H 

Yes 

6 19 4054048 ZBTB7A C A 1 522 77 12.9 nonsynonymous 
SNV 

NM_015898:exon2: 
c.1183G>T:p.G395C 

Yes 

7 19 4054027 ZBTB7A G A 1 2129 1117 34.4 nonsynonymous 
SNV 

NM_015898:exon2: 
c.1204C>T:p.R402C 

Yes 

8 19 4054708 ZBTB7A - G 1 459 231 33.4 frameshift 
insertion 

NM_015898:exon2: 
c.522dupC:p.A175fs 

Yes 

9 19 4054102 ZBTB7A G A 1 235 167 41.5 stopgain SNV NM_015898:exon2: 
c.1129C>T:p.R377X 

Yes 

10 19 4048131 ZBTB7A G - 1 328 35 9.6 frameshift 
deletion 

NM_015898:exon3: 
c.1374delC:p.R458fs 

No 

10 19 4054708 ZBTB7A - G 1 208 12 5.5 frameshift 
insertion 

NM_015898:exon2: 
c.522dupC:p.A175fs 

No 

11 19 4054994 ZBTB7A G T 1 462 174 27.4 nonsynonymous 
SNV 

NM_015898:exon2: 
c.237C>A:p.F79L 

Yes 

12 19 4054708 ZBTB7A - G 1 7326 552 7.0 frameshift 
insertion 

NM_015898:exon2: 
c.522dupC:p.A175fs 

Yes 

13 19 4054977 ZBTB7A A C 1 197 629 76.2 nonsynonymous 
SNV 

NM_015898:exon2: 
c.254T>G:p.L85R 

Yes 

14 19 4054708 ZBTB7A - G 1 872 362 29.3 frameshift 
insertion 

NM_015898:exon2: 
c.522dupC:p.A175fs 

Yes 

*JAK1, NRAS, GATA3, PTEN, SMC3, WT1, SF1, CBL, ETV6, KRAS, PTPN11, FLT3, IDH2, TP53, SRSF2, JAK3, CEBPA, U2AF2, DNMT3A, 
SF3B1, IDH1, ASXL1, RUNX1, U2AF1, SF3A1, MYD88, GATA2, KIT, TET2, FBXW7, IL7R, NPM1, BRAF, EZH2, RAD21, JAK2, NOTCH1, 
ZRSR2, BCOR, GATA1, SMC1A, STAG2, PHF6, ZBTB7A, ASXL2, FAT1



Supplementary Table 4. Patient characteristics of AML t(8;21) gene panel sequencing cohort. 

Variable Wild-type ZBTB7A Mutated ZBTB7A P value* 

No. of patients 43 13  

Median Age, years 
(range) 

55 (23-79) 53 (16-66) 0.148 

Male gender, no. (%) 29 (67) 10 (77) 0.7331 

White blood cell count 
G/l, median (range) 

9 (1.9-210) 8.3 (3.5-245) 0.9689 

Bone marrow blasts %, 
median (range) 

70 (4-95) 55 (14-90) 0.1141 

French-American-British 
(FAB) classification, no. 
(%) 

M1: 7 (20) M1: 1 (3) 0.6593 

M2: 28 (80) M2: 10 (83) 1.0000 

 M4: 1 (3) 0.2553 

Secondary AML (%) 7 8 1.0000 

Allogeneic 
transplantation, no. (%) 

4 (12) 2 (22) 0.5928 

Complete Remission, no. 
(%) 

18 (55) 6 (67) 0.7083 

Relapse, no. (%) 5 (28) 4 (67) 0.1501 

Deceased, no. (%) 15 (45) 6 (67) 0.4537 

*Two-tailed Fisher’s exact test was used to compare categorical variables, while Wilcoxon Mann-
Whitney U test was applied for continuous variables 

 

Supplementary Table 5. ZBTB7A expression in molecular and age subgroups of CN-AML.  

ITD, Internal tandem duplication; LMR, low molecular risk genotype; mutated NPM1 without FLT3-ITD, 
Q4, quartile of patients with highest expression levels of ZBTB7A, Q1-3, quartiles of patients with lower 
expression levels of ZBTB7A. P Values were calculated by two-tailed Fisher’s exact test.  

 All CN-AML 

N=218 

CN-AML <60 years 

N=112 

CN-AML >=60 years 

N=106 

 ZBTB7A
Q4

 

N=55 

ZBTB7A
Q1-3

 

N=163 

P ZBTB7A
Q4

 

N=37 

ZBTB7A
Q1-3

 

N=75 

P ZBTB7A
Q4

 

N=18 

ZBTB7A
Q1-3

 

N=88 

P 

FLT3-ITD 13/54 70/163 .015 11/36 36/75 .10 2/18 34/88 .03 

NPM1 31/53 83/158 .52 20/36 47/74 .53 11/17 36/84 .11 

LMR 24/53 34/159 .001 14/36 20/75 .20 10/17 14/84 <.001 
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