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ABSTRACT 

 

The development and function of the auditory system requires a complex interplay of 

genetically encoded programs, spontaneous activity and sensory experience. The basic 

projection patterns between auditory brainstem nuclei develop during fetal life. The 

topographic representation of frequencies established in the cochlea, the so-called 

tonotopy, is present at almost all stages of the auditory system. The development of 

auditory brainstem circuits involves a refinement of these projections and a maturation of 

cellular and synaptic properties. This work studies different aspects of development and 

function of the binaural auditory system with respect to species-specific differences, the 

influence of tonotopy on certain cellular and synaptic properties and the consequences of 

two deafness-related mutations.   

 

The first project examines the early postnatal development of the inhibitory projection from 

the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO), a 

tonotopically arranged nucleus involved in binaural sound localization. The detection of 

small differences in sound intensity between the two ears requires a temporally and spatially 

precise convergence of the binaural excitatory and inhibitory inputs. During development, 

the inhibitory projection undergoes a shift from predominantly GABAergic to glycinergic 

transmission. In this project, this switch in transmitter type was comparatively studied in 

pre-hearing mice and gerbils by analyzing miniature and evoked inhibitory postsynaptic 

currents (IPSCs). In both animals, an increase in miniature IPSC amplitude and frequency was 

shown, as well as acceleration of the decay kinetics. However, the application of a GABAA 

antagonist did not provide evidence for a simultaneous release of both transmitters. 

Possible explanations for the GABAergic component observed in evoked IPSCs involve a 

spillover of GABA from other synapses and that other projections besides the MNTB provide 

additional inhibitory input to the LSO. 

The second study addresses the question whether the tonotopic arrangement of the LSO of 

adult mice is reflected in adaptations on the cellular and synaptic level. The characterization 

of different intrinsic properties of LSO neurons revealed the existence of two distinct 
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neuronal populations that display differences regarding their firing type and input 

resistance. Cells that exhibited an onset firing behavior probably showed a mediolateral 

gradient in their input resistance. The analysis of evoked and miniature IPSCs in mice could 

not provide clear evidence for position-dependent adaptations.  

 

A third set of experiments studies the consequences of two mutations associated with 

deafness in mice and humans. The Diminuendo mutation is the first known mutation of a 

microRNA related to hearing disorders. MicroRNA-96 regulates the expression of numerous 

genes involved in inner ear development and mutations are accompanied by defects of the 

peripheral auditory system, but its function in the central auditory system has not been 

investigated yet. This study examines the consequences of this mutation for a large central 

auditory synapse, the calyx of Held, and its postsynaptic partners in the MNTB. Since there 

is no conditional knockout available yet, another deaf mouse model, the Claudin-14 

knockout mouse, served as control. In this mouse, the defect is exclusively peripheral. The 

comparison of both mutants allows to distinguish between peripheral and central defects. 

The study demonstrated that neither the mutation of miR-96 nor deafness had a significant 

effect on the passive membrane properties of MNTB neurons. However, Diminuendo mice 

showed a higher proportion of cells displaying an immature firing behavior. Studying the 

presynaptic morphology provided further hints for a developmental arrest. Calyces in 

Diminuendo mice did not possess the donut-like structures characteristic for adult animals 

but appeared rather immature. On a functional level, excitatory postsynaptic currents in the 

Diminuendo mutant displayed a stronger depression, suggesting a faster depletion of the 

vesicle pool, which is also in accordance with the idea of a developmental arrest. This 

hypothesis is further supported by the analysis of NMDA and AMPA receptor mediated 

currents, which display immature properties regarding their amplitude and kinetics.  

In summary, this study provides evidence that mutations of miR-96 result in a 

developmental arrest of several pre- and postsynaptic properties in the brainstem, similar 

to its function in the peripheral auditory system, while the influence of deafness on the calyx 

of Held-MNTB synapse is rather small.   
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ZUSAMMENFASSUNG 

 

Die korrekte Entwicklung und Funktion des auditorischen Systems erfordert ein komplexes 

Zusammenspiel aus genetisch vorgegebenen Programmen, spontaner neuronaler Aktivität 

und sensorischem Input. Die grundlegenden Verbindungen zwischen den Nuclei des 

auditorischen Hirnstamms entwickeln sich frühzeitig während der Embryonalentwicklung. 

Die bereits in Cochlea etablierte tonotopische Organisation, also die räumlich geordnete 

Repräsentation von Frequenzen, wird dabei auf vielen Stufen des zentralen auditorischen 

Systems beibehalten. Die weitere Entwicklung geht einher mit der Verfeinerung 

bestehender Projektionen und einer Reifung der zellulären und synaptischen Eigenschaften. 

Diese Arbeit befasst sich mit verschiedenen Aspekten der Entwicklung und Funktion des 

binauralen auditorischen Systems in Hinblick auf Spezies-spezifische Unterschiede, den 

Einfluss von Tonotopie auf zelluläre und synaptische Eigenschaften und die Auswirkungen 

von zwei mit Taubheit assoziierten Mutationen. 

 

In einem ersten Projekt wurde die frühe postnatale Entwicklung der inhibitorischen 

Projektion vom medialen Nucleus des Trapezkörpers (MNTB) zur lateralen superioren Olive 

(LSO) betrachtet. Die LSO ist ein tonotopisch organisierter Nucleus, dessen Hauptaufgabe in 

der Lokalisation einer Schallquelle anhand von Lautstärkenunterschieden an beiden Ohren 

besteht, was die präzise räumliche und zeitliche Konvergenz des binauralen Inputs erfordert. 

Während der Entwicklung durchläuft die inhibitorische Projektion einen Wechsel des 

vorherrschenden Transmittertyps von GABA zu Glycin, der in dieser Arbeit komparativ in 

Mäusen und Gerbils durch die Analyse von Miniatur- und evozierten postsynaptischen 

Strömen (IPSCs) untersucht wurde. In beiden Tieren zeigte sich eine entwicklungsabhänge 

beschleunigte Kinetik und eine Zunahme in Frequenz und Amplitude der Minis, allerdings 

fanden sich keine Hinweise auf die simultane Freisetzung beider Transmitter. Mögliche 

Erklärungen für die GABAerge Komponente, die sich in den evozierten IPSCs zeigte, 

beinhalten Spillover und die Existenz einer zusätzlichen Quelle inhibitorischen Inputs 

außerhalb des MNTB. 
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Das zweite Projekt befasste sich mit der Frage, inwieweit sich die tonotopische Organisation 

der LSO adulter Mäuse in Anpassungen auf zellulärer und synaptischer Ebene widerspiegelt. 

Die Studie zeigte die Existenz zweier verschiedener Populationen von Neuronen, die sich vor 

allem durch ihr Feuerverhalten und ihren Eingangswiederstand unterschieden. Neuronen, 

die durch ein Onset-Aktionspotential charakterisiert waren, wiesen einen mediolateralen 

Gradienten bezüglich ihres Eingangswiderstands auf. Die Analyse der postsynaptischen 

Ströme lieferte keine klaren Anhaltspunkte für Tonotopie-spezifische Anpassungen. 

 

In einer dritten Studie wurden die Auswirkungen zweier Mutationen untersucht, die auch 

im Menschen mit Taubheit assoziiert sind. Diminuendo stellt die erste bekannte Mutation 

einer microRNA dar, die mit Taubheit in Verbindung steht. MicroRNA-96 reguliert die 

Expression zahlreicher in die Entwicklung des Innenohrs involvierter Gene und Mutationen 

gehen mit schweren Defekten des peripheren auditorischen Systems einher, aber ihre 

Auswirkungen auf das zentrale auditorischen System wurden bisher nicht erforscht. Diese 

Arbeit untersucht die Konsequenzen der Mutation für die Entwicklung einer großen 

auditorischen Synapse, der Held´schen Calyx und ihrer postsynaptischen Partner im MNTB. 

Dazu wurde die Diminuendo-Maus mit einer anderen Mutante, der Claudin-14-knockout-

Maus verglichen, in der die Mutation ausschließlich das periphere auditorische System 

betrifft. Der Vergleich beider Mäuse ermöglicht die Trennung zwischen peripheren und 

zentralen Defekten. Die Studie konnte zeigen, dass weder Taubheit im Allgemeinen noch die 

Mutation von miR-96 signifikante Auswirkungen auf die passiven Membraneigenschaften 

haben, allerdings wiesen Diminuendo-Mäuse einen höheren Anteil an Neuronen mit 

unreifem Feuerverhalten auf. Morphologisch waren die präsynaptischen Donut-artigen 

Strukturen, die charakteristisch für die adulte Calyx sind, weniger ausgeprägt. Funktionell 

zeigten diese Synapsen eine stärkere Depression der postsynaptischen Ströme, was auf eine 

schnellere Erschöpfung des Vesikel-Pools hindeutet. Auch die AMPA- und NMDA-Rezeptor 

vermittelten Ströme wiesen unreife Charakteristika auf. Insgesamt kann man also 

feststellen, dass die Mutation von miR-96, ähnlich wie im peripheren auditorischen System, 

verschiedene Aspekte der prä- und postsynaptischen Entwicklung im MNTB zu verzögern 

oder aufzuhalten scheint, während Taubheit im Allgemeinen nur einen kleinen Effekt auf 

dessen Entwicklung zeigt. 
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I. INTRODUCTION 

 

 

 

1.  THE MAMMALIAN AUDITORY PATHWAY 

 

 

Spatial hearing provides important cues for identifying dangers or prey and 

contributes to many social behaviors. Hence, the ability to localize a sound source 

rapidly and accurately is essential to the survival of many species. In contrast to the 

visual or somatosensory systems, there is no topographic representation of 

auditory space at the level of the sensory receptors in the inner ear. Instead, the 

mammalian central auditory system has evolved strategies to compute the location 

of a sound source by analyzing spectral cues and interaural differences (Grothe et 

al., 2010). To perform these tasks, auditory brainstem circuits feature several 

adaptations such as the ability to fire up to several hundred Hertz with high 

temporal precision and coincidence detection in the sub-millisecond range. 

 

 

 

The peripheral auditory system 

 

 

Sound waves cause vibrations of the tympanic membrane that are transmitted 

mechanically through the three middle ear ossicles (malleus, incus and stapes) and 

the oval window to evoke waves in the three fluid-filled chambers of the cochlea. 
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The scala vestibuli and scala tympani are filled with perilymph, a fluid with low 

potassium and high sodium concentration. In contrast, the endolymph of the scala 

media is rich in potassium, resulting in an ionic gradient that creates the 

endocochlear potential. An important component for the separation of these fluids 

are tight junctions, as they create a permeability barrier that regulates the flux of 

ions and larger solutes between the compartments (Madara, 1998).  

 

Scala tympani and scala media are separated by the basilar membrane. The width 

and stiffness of this membrane decrease from the basal to the apical end of the 

cochlea, creating a gradient where the maximum amplitudes of the travelling wave 

occur at different locations along the membrane depending on the frequency (von 

Bekesy, 1956). This topographic representation of frequencies, the so-called 

tonotopy, is maintained at nearly all stages of the auditory pathway. 

 

Sitting on the basilar membrane is the organ of Corti, where the mechanical energy 

is transduced into electrical signals. Key components of the organ of Corti are two 

classes of mechanosensory cells, one row of inner hair cells (IHCs) and three rows 

of outer hair cells (OHCs). Auditory information about the environment is provided 

by IHCs while OHCs are involved in the amplification of sounds.  

Both are equipped with a set of stereocilia at their apical end that extends above 

the reticular lamina into the endolymph. The tips of OHC stereocilia are attached to 

the tectorial membrane and accordingly, movements of the membrane relative to 

the hair bundle lead to a deflection of the stereocilia. The deflection of IHC cilia is 

caused by motion of the endolymph beneath the tectorial membrane. Stereocilia 

are connected with tip links that mechanically open or close cation channels when 

stretched, allowing ions to flow across the membrane, depolarizing the cell and 

thereby triggering the release of neurotransmitter at ribbon synapses with spiral 

ganglion neurons (Bear et al., 2007).  
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The central auditory system 

 

 

Afferents from the spiral ganglion enter the brain via the 8th cranial nerve 

(vestibulocochlear nerve) and innervate the ventral and dorsal cochlear nucleus 

(VCN and DCN) in an organized projection pattern, preserving the tonotopic 

organization established in the cochlea. The VCN can be further divided into an 

anterior and posterior part (AVCN and PVCN, respectively) and is comprised of 

multiple specialized types of neurons that give rise to projections to nuclei 

throughout the brainstem (Cant and Benson, 2003). Thus, different aspects of 

auditory information can be extracted simultaneously in parallel ascending 

pathways (Bear et al., 2007).   

 

One of the cell types found in the VCN are the octopus cells. Besides other targets, 

projections from the octopus area innervate the ventral nucleus of the lateral 

lemniscus (VNLL). VNLL neurons are contacted by several converging endbulb 

terminals (Covey and Casseday, 1986; Friauf and Ostwald, 1988; Adams, 1997; 

Schofield and Cant, 1997) and are capable of coincidence detection (Berger et al., 

2014; Franzen et al., 2015). These neurons are broadly tuned and preferentially 

respond to the onset of sounds (Rhode et al., 1983; Covey and Casseday, 1991; 

Smith et al., 2005; Zhang and Kelly, 2006), and provide temporally precise feed-

forward onset inhibition to the inferior colliculus (IC; Pollak et al. (2011)).  

 

Other cell types of the VCN include the spherical and globular bushy cells (SBCs and 

GBCs, respectively), that convey information to several nuclei of the superior olivary 

complex (SOC), including the medial nucleus of the trapezoid body (MNTB) and the 

medial and lateral superior olive (MSO and LSO, respectively; Figure 1), that are 

involved in sound localization based on binaural cues (Cant and Benson, 2003).  
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Axons of superior olivary neurons then ascend via the lateral lemniscus and 

innervate the IC and other nuclei. The IC projects to the medial geniculate body in 

the thalamus that innervates the auditory cortex.  

 

 

 

Figure 1: Schematic drawing of the mammalian auditory brainstem. Shown are the major 

nuclei of the auditory brainstem and the pathways involved in ILD and ITD processing. The 

gray gradient indicates the tonotopic organization of each nucleus (HF: high frequency, LF:  

low frequency). Excitatory projections are marked in grey, inhibitory projections in black. 

For clarity, only one side of each projection is shown. Medial superior olive (MSO) neurons 

receive bilateral excitatory input from the cochlear nucleus (CN) and inhibitory input from 

the ipsilateral medial nucleus of the trapezoid body (MNTB). Excitatory input to the lateral 

superior olive (LSO) is provided by the ipsilateral CN, inhibition arises from the ipsilateral 

MNTB. The MNTB receives excitatory input from the contralateral CN. 

_________________________________________________________________________ 
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ITD and ILD coding in mammals 

 

 

Unlike in the visual or somatosensory system, the cochlea provides no topographic 

map of auditory space. In order to obtain information about the location of a sound 

source nonetheless, the mammalian central auditory system analyzes spectral cues 

to localize sounds in the vertical dimension and compares differences in sound 

intensity and timing between the two ears for the localization in the horizontal 

plane (Grothe et al., 2010). Interaural level differences (ILDs) occur when the 

wavelengths is equal or shorter than the diameter of the head, hence ILDs are used 

to analyze high frequency sounds. For lower frequencies, the auditory system 

compares differences in the arrival times of a sound at the two ears (interaural time 

differences, ITDs).  

 

The computation of ITDs and ILDs is performed in specialized nuclei of the superior 

olivary complex, the medial and lateral superior olive (MSO and LSO, respectively). 

Especially the MSO can show species-specific structural variations that reflect 

differences in hearing range when it is concerned with sound source localization. 

Low-frequency hearing animals such as the gerbil tend to have a large MSO, and it 

is less pronounced or strongly reduced in high-frequency hearing mammals like 

mice (Grothe, 2000; Tollin, 2003).   

 

Both the LSO and the MSO receive inhibitory projections from the MNTB (Figure 1) 

that acts as a fast sign-inverting relay, providing well-timed glycinergic inhibition to 

these nuclei. The main input to the MNTB originates from GBCs in the AVCN that 

form specialized large axosomatic excitatory synapses with MNTB principal 

neurons, the calyces of Held. This largest central auditory synapse allows for fast 

and temporally precise high-frequency transmission (Borst and Sakmann, 1998). 
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The MSO is the major nucleus for ITD coding is able to perform coincidence 

detection of binaural inputs in the sub-millisecond range (Grothe et al., 2010). MSO 

neurons receive bilateral excitatory input from SBCs of both cochlea nuclei (Smith 

et al., 1993) as well as binaural inhibitory projections from the medial and lateral 

nucleus of the trapezoid body (Figure 1). 

ILDs are processed in the LSO pathway. SBCs from the ipsilateral AVCN form 

excitatory synapses with LSO neurons. These neurons also receive inhibitory input 

from MNTB principal neurons that are innervated by GBCs from the contralateral 

AVCN (Figure 1). Depending on whether the sound intensity is higher at the 

contralateral or ipsilateral ear, the inhibitory or excitatory input predominates. 

Thus, the convergence of ipsilateral excitatory inputs and inhibition from the 

contralateral side provide the basis for ILD sensitivity (Boudreau and Tsuchitani, 

1968, 1970; Moore and Caspary, 1983; Sanes, 1990; Kavanagh and Kelly, 1992; 

Grothe et al., 2010).  
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2. EARLY DEVELOPMENT AND REFINEMENT OF AUDITORY 

BRAINSTEM CIRCUITS 

 

 

 

Auditory processing is a challenge that is reflected in the complex organization of 

the peripheral auditory system and the precisely arranged projections between 

multiple specialized nuclei throughout the brain. The basic circuitry in the auditory 

brainstem is established during fetal life and later refined by spontaneous and 

sensory-evoked activity (Friauf and Lohmann, 1999). The development of precisely 

organized projections is accompanied by changes at the synaptic level and a 

maturation of the intrinsic cell properties. Depending on the hearing range and the 

required temporal precision, the auditory system possesses species-specific 

differences regarding the developmental time course and further adaptations and 

refinements. 

 

 

 

Early development of the auditory brainstem 

 

 

The early mammalian brain consists of three primary vesicles, the prosencephalon, 

the mesencephalon and the rhombencephalon, which is divided into twelve 

domains, the rhombomeres (r) 1 – r11 and the isthmus (r0), that give rise to the 

different auditory brainstem nuclei. The subdivisions of the ventral CN originate 

from rhombomeres r2 to r4 and develop between embryonic day (E) 11 and E14 in 

mice. Most nuclei of the superior olivary complex are generated between E9 to E14 

and descend from r5, with r3 additionally contributing to the MNTB. The nuclei of 
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the lateral lemniscus (NLL) arise from r4 (ventral NLL), r1 (intermediate NLL) and r0 

(dorsal NLL). The IC is of mesencephalic origin (Di Bonito et al., 2013; Willaredt et 

al., 2015). 

 

The growing axons in the developing auditory brainstem innervate their correct 

target nuclei with remarkable precision at early developmental stages and thus 

independent of spontaneous synaptic activity and sensory experience. 

In mice, the subdivisions of the immature CN are innervated by auditory nerve 

fibers in a tonotopically organized pattern as early as E 15.5 (Kandler et al., 2009). 

It has been shown for rats that axons from CN neurons begin to innervate the nuclei 

of the superior olivary complex and the IC at E 18, and functional synapses are 

formed shortly after (Friauf and Lohmann, 1999). Tonotopy is established long 

before hearing onset and even before the onset of synaptic activity, indicating the 

importance of intrinsic programs (Koundakjian et al., 2007) and axonal guidance 

cues, such as Eph and Robo receptors and their ligands (Michalski et al., 2013; 

Cramer and Gabriele, 2014), for tonotopic map formation.  

However, the maturation of auditory processing requires an additional 

reorganization and refinement of auditory brainstem circuits, as well as 

adjustments at the synaptic and cellular level.  

 

 

 

Synaptic refinement in auditory brainstem nuclei 

 

 

Neurons in the LSO encode ILDs by integrating converging excitatory projections 

from the ipsilateral CN with inhibitory glycinergic inputs provided by the MNTB. ILD 

coding requires the precise alignment of the two converging inputs so that LSO 
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neurons are excited and inhibited by the same sound frequency. This tonotopic 

organization is already present at hearing onset, however, projections are less 

precisely matched and the inhibitory input is more effective compared to adult 

animals (Sanes and Rubel, 1988). 

 

The maturation of the inhibitory MNTB-LSO projection involves distinct periods of 

synapse silencing and axonal pruning. Pruning occurs after hearing onset and may 

contribute to the maturation of frequency selectivity by decreasing the spread of 

the dendritic arbor along the tonotopic axis (Sanes and Siverls, 1991; Sanes et al., 

1992; Kandler et al., 2009).  

Silencing occurs independent of auditory experience and is completed before 

hearing onset. During this period, LSO neurons become disconnected from the 

majority of their MNTB inputs, thus increasing the tonotopic precision of the MNTB-

LSO projection (Kandler et al., 2009).  

 

The developing central auditory system also exhibits fundamental differences in 

synaptic transmission compared to adult animals. As a result of the high 

intracellular chloride concentration in immature LSO neurons, the inhibitory 

neurotransmitters GABA and glycine act depolarizing and can elicit action potentials 

and activate voltage-gated calcium channels (Kandler and Friauf, 1995; Kotak et al., 

1998; Kakazu et al., 1999; Kullmann and Kandler, 2001; Kullmann et al., 2002).  

During development, the MNTB-LSO projection undergoes a gradual shift from 

primarily GABAergic to glycinergic transmission (Kotak et al., 1998; Nabekura et al., 

2004) that is largely complete around hearing onset. The transient GABAergic 

phenotype may be important for the refinement of the projection since GABA can 

induce long-term depression at MNTB terminals (Kotak and Sanes, 2000; Chang et 

al., 2003). 
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MSO neurons analyze ITDs by comparing tonotopically matched bilateral excitatory 

inputs from both cochlear nuclei using a coincidence detection mechanism. They 

also receive bilateral inhibitory input from the MNTB and LNTB that contribute to 

ITD coding (Grothe, 2003; McAlpine and Grothe, 2003; Grothe et al., 2010). In 

mature low-frequency hearing animals, these inhibitory inputs are largely restricted 

to the soma, an organization that facilitates fast and temporally precise inhibition. 

The dendritic inhibitory inputs are selectively eliminated during development, a 

process that is dependent on auditory experience as it starts only after hearing 

onset and is impaired if normal acoustic input is not available (Kandler et al., 2009). 

In addition to the elimination of dendritic inputs, axonal pruning of MNTB 

projections to the MSO increases the tonotopic precision in this pathway (Werthat 

et al., 2008).  

In contrast to the inhibitory pathway, the excitatory projections to the MSO are 

thought to show little or no refinement. In the intact auditory pathway, axon 

terminals from both cochlear nuclei contact dendrites of MSO neurons on opposing 

sides as soon as they innervate the MSO (Kil et al., 1995; Kitzes et al., 1995; Kapfer 

et al., 2002).  

 

The MNTB is the major source of inhibitory input to the MSO and LSO. MNTB 

principal neurons receive glutamatergic input from GBCs in the contralateral CN. 

Each neuron is contacted by one single large axosomatic terminal, the calyx of Held, 

which functions as a fast, sign-inverting relay (Borst and Soria van Hoeve, 2012). 

The one-to-one innervation pattern is already largely present when the first proto-

calyces are discernable around P2 (Hoffpauir et al., 2006) and develops 

independent of spontaneous activity and auditory experience (Youssoufian et al., 

2005). However, spontaneous activity is required for the establishment of a 

tonotopic gradient of intrinsic properties in MNTB principal neurons (Leao et al., 

2006b) and influences the time course of maturation of the calyx of Held (Ford et 

al., 2009).  
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The transformation from an initially spoon-shaped calyx into a highly fenestrated 

structure occurs during the first three weeks of life and develops with a temporal 

gradient, beginning in the high frequency region of the MNTB. Animals deprived of 

auditory nerve activity do not exhibit such a gradient (Ford et al., 2009).  The mature 

calyx shows membrane swellings that contain vesicles assembled around a cluster 

of mitochondria in a donut-like ring, in contrast to the more homogenous 

distribution of vesicles in pre-hearing animals (Wimmer et al., 2006). 

 

The morphological changes in the calyx of Held are accompanied by functional 

changes underlying short term plasticity and the modulation of transmitter release, 

like a shortening of the presynaptic action potential waveform (Taschenberger and 

von Gersdorff, 2000) or differences in Ca2+ currents (Yang and Wang, 2006), Ca2+ 

channel subtype (Iwasaki and Takahashi, 1998) and Ca2+ domains (Wang et al., 

2008). 

 

 

 

Development of intrinsic cell properties 

 

 

In addition to changes at the synaptic and connectivity level, the development of 

the auditory system involves the maturation of intrinsic passive and active 

properties of auditory brainstem neurons, such as the capacitance, the input 

resistance and the potassium currents. 

 

Morphologically, a developmental reduction in soma size and dendritic arborization 

can be observed in neurons of many auditory brainstem nuclei (Rietzel and Friauf, 
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1998; Rautenberg et al., 2009; Franzen et al., 2015), leading to a decrease in 

effective cell capacitance and therefore, to a faster charging of the membrane. A 

developmental decrease in input resistance that was described for auditory 

neurons of several brainstem nuclei (Magnusson et al., 2005; Scott et al., 2005; 

Hoffpauir et al., 2010; Rusu and Borst, 2011; Walcher et al., 2011; Ammer et al., 

2012; Franzen et al., 2015) can further shorten the integration time. 

Beside these passive membrane parameters, a major component controlling the 

response properties of a neuron are voltage-gated potassium currents. These are 

also subject to developmental regulation and contribute to the maturation of action 

potential properties and the establishment of the adult firing behavior (Scott et al., 

2005; Bortone et al., 2006; Franzen et al., 2015). 

 

The interplay of the different intrinsic active and passive properties, together with 

refinements on the synaptic and circuit level, generate the basis for fast and precise 

voltage signaling that is required in binaural sound localization circuits. 
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3. MOUSE MODELS FOR HEARING DISORDERS 

 

 

 

Hearing loss is the most common sensory loss in the human population, affecting 

approximately 1-2 out of 1000 newborns (Raviv et al., 2010). By the age of 70 years, 

the prevalence of a significant hearing loss of at least 25 dB increases to 60 % 

(Gratton and Vazquez, 2003).  

The causes for hearing loss are manifold. A variety of environmental factors like 

noise exposure, acoustic trauma, infections or ototoxic drugs (Yorgason et al., 2006) 

can harm the auditory system. The prevalence of these acquired forms of hearing 

loss could be reduced by appropriate protection and avoidance of the risk factors. 

However,  in up to 70 % of the cases, the hearing impairment is not induced by 

environmental influences but has a genetic basis (Raviv et al., 2010). To date, 

approximately 100 genes have been identified that are thought to be involved in 

the pathogenesis of different forms of hereditary hearing loss (Nishio et al., 2015). 

These show a large degree of clinical heterogeneity and can be classified into 

isolated non-syndromic forms and syndromic forms that are associated with other 

abnormalities (Raviv et al., 2010). 
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The mouse as a model for hearing loss 

 

 

The heterogeneity of hereditary deafness reflects the complex interplay of the 

many genes that are involved in the development and function of the auditory 

system. Given the similarities between mice and humans regarding the cochlear 

transduction mechanism, mouse mutants represent a powerful model to identify 

and manipulate relevant genes and link them to their corresponding functions in 

hearing.  

 

Today, a growing number of mouse models is available to study different 

developmental and functional aspects of auditory processing. Furthermore, these 

models allow for a detailed understanding of the underlying mechanisms of genetic 

hearing disorders in humans. 

 

Broadly speaking, all mouse models fall in one of three categories – spontaneous 

mutations, mutations that are the result of exposure to mutagens, and approaches 

that target a certain gene directly  (Brown et al., 2008).  

Many spontaneous mutations were initially identified because they are often 

accompanied by vestibular dysfunctions that lead to characteristic behavioral 

abnormalities. Examples include the shaker, whirler and waltzer mutants that 

helped to reveal the roles of different proteins for the stereocilia bundle in the 

vestibular and auditory system (Gibson et al., 1995; Palma et al., 2001; Mburu et 

al., 2003). 

 

An efficient method to create large numbers of novel mutations is the treatment 

with the highly potent mutagen N-ethyl-N-nitrosourea (ENU). ENU is known to 

generate point mutations that occur preferably at A-T base pairs (Brown and Peters, 
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1996). It acts most effectively in spermatogonial cells of male mice. The offspring of 

these mutagenized animals is then systematically screened for novel phenotypes.  

The advantage of this phenotype-driven approach is that it makes no a priori 

assumptions about the genes that may be involved and thus, it could uncover 

unexpected results (Nolan et al., 2000). Actually, this method revealed a phenotype 

that represents the first identified mutation of a microRNA associated with 

deafness, the Diminuendo mutant mouse (Lewis et al., 2009). 

 

In a third gene-driven approach, mouse models are generated by directly 

manipulating or deleting a gene of interest in a permanent or conditional manner. 

An example is the Claudin-14-knockout mouse. The role of Claudin-14 for the 

hearing process was identified by the observation that mutations are associated 

with non-syndromic recessive deafness in humans (Wilcox et al., 2001; Lee et al., 

2012; Charif et al., 2013). Furthermore, in situ hybridization and 

immunohistochemistry confirmed the expression of Claudin-14 in the organ of 

Corti. Targeted deletion of the gene resulted in a mouse model with a phenotype 

similar to the human phenotype (Ben-Yosef et al., 2003). 

 

 

 

Genes and pathways involved in hearing disorders 

 

 

Mouse models exist for numerous aspects of the hearing process and have helped 

to increase our understanding of the underlying mechanisms and the involved 

genes and molecules. 

Mapping of deafness genes in human families as well as the analysis of mouse 

mutants associated with a deaf phenotype have revealed various molecular 
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pathways that affect different components of the peripheral and central auditory 

system, including fluid homeostasis and compartmentalization, gene regulation 

and synaptic transmission (Dror and Avraham, 2010). 

 

The fluids that fill the compartments of the inner ear are an essential for normal 

hearing as they transfer the sound pressure wave, leading to a deflection of the 

stereocilia. The high potassium concentration of the endolymph creates an ion 

gradient that enables a depolarization of the hair cell upon mechanical stimulation. 

A large number of proteins are involved in establishing and maintaining the ionic 

compositions of the fluids, including channels, transporters and tight junction (TJ) 

proteins that form a diffusion barrier between the compartments of the inner ear. 

Mutations in these genes are associated with a variety of syndromic and non-

syndromic hearing disorders (Dror and Avraham, 2010).  

 

The most common forms of autosomal recessive deafness in humans, DFNB1A and 

DFNB1B, result from mutations in genes encoding for connexins (Kelsell et al., 1997; 

del Castillo et al., 2002). Connexins are components of gap junctions that are 

thought to play a crucial role for potassium redistribution in the inner ear (Nickel 

and Forge, 2008).  

 

Transducing the mechanical wave into an electrical signal requires functional hair 

cells and the structural integrity of the basilar and tectorial membranes. Numerous 

proteins have been identified that are essential for the structure and function of 

the signal transduction machinery, including scaffold proteins, motor proteins and 

adhesion molecules (Dror and Avraham, 2010). Many of them are associated with 

different forms of deafness like the clinically and genetically heterogeneous Usher 

syndrome, the most common form of deaf-blindness. At least twelve genes code 

for components of a larger multiprotein complex, that participates in the 
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development and function of sensory cells in the inner ear and the retina (Kremer 

et al., 2006; Mathur and Yang, 2015) 

 

While most forms auf genetic hearing disorders are a consequence of impaired hair 

cell function, there are also less frequent conditions in which the transmission from 

the cochlea to the brain is disrupted (Dror and Avraham, 2010). Examples for 

proteins known to be involved in signal transmission at the ribbon synapses of IHCs 

are VGLUT3 and otoferlin. Mutations in the gene encoding for the vesicular 

glutamate transporter VGLUT3, responsible for the accumulation of glutamate in 

synaptic vesicles, are the cause of the human hearing disorder DFNA25 (Ruel et al., 

2008). Otoferlin has been shown to be essential for vesicle exocytosis, as it serves 

as the major Ca2+ sensor at ribbon synapses and interacts with proteins of the 

SNARE complex (Roux et al., 2006). Mutations are linked to the human auditory 

neuropathy DFNB9 (Yasunaga et al., 1999). 

 

The correct temporal and spatial expression pattern of genes is essential for 

development and function of the nervous system. The transcription of genes into 

RNA molecules is controlled by regulatory proteins like transcription factors (TF), 

and a further posttranscriptional regulation of gene expression is accomplished by 

microRNAs. Mutations in TF genes are associated with various developmental 

defects of the inner ear (Dror and Avraham, 2010) and the central auditory system 

(Willaredt et al., 2015), causing different syndromic and non-syndromic forms of 

hereditary hearing loss in humans and mice. 

 

  

The role of miRNAs for the development and function of the auditory system was 

first described by two complementary studies that link mutations in the seed region 

of microRNA-96 (miR-96) to a hearing impaired phenotype in humans (Mencia et 

al., 2009) and in the so-called Diminuendo mouse (Lewis et al., 2009).  
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The Diminuendo mouse 

 

 

The Diminuendo phenotype results from a point mutation in the seed region of miR-

96. MicroRNAs are small non-coding RNAs with a length of about 21-23 nucleotides 

involved in the regulation of gene expression by influencing mRNA stability and 

translation. Since their discovery in Caenorhabditis elegans, hundreds of microRNAs 

have been identified in a large variety of metazoa (Grimson et al., 2008). They are 

thought to regulate the expression of most mammalian genes (Friedman et al., 

2009) and are involved in many cellular programs, including proliferation, 

differentiation and apoptosis in various tissues. Alterations are associated with 

developmental defects, cancer and other diseases (Ruepp et al., 2010; Tuna et al., 

2016). They also play a key role in the brain, as they coordinate the precise spatial 

and temporal expression of numerous genes that generate the anatomical and 

functional complexity of the central nervous system. (Davis et al., 2015).  

 

Their biogenesis begins with the transcription of primary miRNA by Polymerase II 

from the corresponding gene. It is further processed by the enzymes Drosha and 

Dicer, resulting in a single-stranded miRNA molecule that is incorporated in the 

RNA-induced silencing complex (RISC). The single strand acts as a template for the 

RISC to recognize the complementary sequence of the target mRNA. Mutations in 

miRNAs lead to impaired target recognition and thus, their regulatory role in gene 

expression is impaired (Kloosterman and Plasterk, 2006; Winter et al., 2009). 

 

MiR-96 is expressed in all sensory hair cells of the inner ear and in cochlear und 

vestibular ganglion neurons of newborn mice, affecting the expression of various 

genes directly or as a downstream effect at specific developmental stages. Some of 

the downregulated genes are highly expressed in hair cells and are partly known to 

cause deafness in the corresponding knockout, including the motor protein Prestin, 
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the calcium-binding protein Oncomodulin, both expressed in OHCs, and Ptprq that 

is required for hair cell maturation (Lewis et al., 2009).  

The Diminuendo phenotype is characterized by progressive hearing loss in 

heterozygous and profound congenital deafness in homozygous animals. Deafness 

is a consequence of an arrested development of cochlear hair cells around birth and 

their subsequent degeneration around postnatal day (P) 7. Hair cells fail to 

differentiate into IHCs and OHCs and show no maturation of their biophysical and 

morphological properties (Kuhn et al., 2011).  

 

A recent study also demonstrated a developmentally increasing expression of miR-

96 in the brainstem (Rosengauer et al., 2012) , suggesting a possible role of miR-96 

for the development and maturation of the central auditory brainstem as well. As 

there is no conditional knockout for miRNA-96 in the brainstem available yet, the 

Claudin-14-knockout mouse serves as a control in this study. 
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The Claudin-14-knockout mouse 

 

 

Mutations in the gene encoding for  Claudin-14 have been linked to an autosomal-

recessive form of non-syndromic hearing loss in humans, DFNB29 (Wilcox et al., 

2001; Lee et al., 2012; Charif et al., 2013).  

The creation of a Claudin-14 knockout mouse demonstrated that deafness is a 

result of hair cell degeneration during the first three weeks of life in homozygous 

mutants (Ben-Yosef et al., 2003). Claudin-14 is a tight junction protein that is 

expressed in the cochlea (Wilcox et al., 2001; Ben-Yosef et al., 2003).  

Tight junctions are important to create a permeability barrier that regulates the flux 

of ions and larger solutes between compartments with different ionic compositions 

(Madara, 1998). In the inner ear, tight junctions separate the compartments 

containing the sodium-rich perilymph and the potassium-rich endolymph (Bear et 

al., 2007).  In vitro experiments have demonstrated that the absence of Claudin-14 

from tight junctions results in a failure to maintain the paracellular cation-selective 

barrier of the reticular lamina. The beginning of OHC loss around P 9 coincides with 

the increase of endolymphatic potassium concentration and the establishment of 

the endocochlear potential. Presumably, the exposure of the basolateral 

membrane of OHCs to toxic potassium concentrations is responsible for their 

degeneration, since the elevated potassium concentration leads to prolonged 

depolarizations of OHCs which eventually causes their death. (Ben-Yosef et al., 

2003). 

 

The rapid loss of OHCs is followed by a slower degeneration of IHCs. Measurements 

of auditory brainstem responses at P 15 – P 17 demonstrate that Cldn-14-/- mice are 

deaf (Ben-Yosef et al., 2003). 

A possible explanation for the lower sensitivity of IHCs to the knockout is that they 

are able to substitute Claudin-14 with other members of the Claudin family, similar 
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to other Claudin-14 expressing tissues.  In the liver, the kidney and the vestibular 

system, the knockout does not affect the function because other Claudins can 

compensate for the loss (Hou, 2012).  

In addition, the basolateral membrane of IHCs is not exposed to a fluid-filled space. 

IHCs are therefore possibly less sensitive to alterations of the ionic composition and 

thus, degenerate later (Ben-Yosef et al., 2003). 
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4. AIMS 

 

 

1. ILD coding requires the converging excitatory and inhibitory inputs to the LSO to 

be tonotopically organized and matched precisely. The adjustment of the 

inhibitory MNTB-LSO projection is largely accomplished before hearing onset. In 

rats, this projection is thought to undergo a shift from predominantly GABAergic 

to glycinergic transmission.  

In this project, this developmental switch in transmitter was studied in pre-

hearing mice and gerbils. The comparison of high- and low-frequency hearing 

animals also may allow to identify adaptations of inhibitory sound localization 

circuits depending on the different requirements of the system.   

 

2. Principal neurons in the LSO process ILDs by integrating ipsilateral excitatory 

inputs with inhibitory inputs coming from the contralateral side. These 

converging inputs are tonotopically organized: LSO neurons in the medial limb 

are more sensitive to high frequency sounds while cells located laterally rather 

respond to low frequencies (Tollin, 2003). 

This project addresses the question whether the tonotopic gradient in the adult 

mouse LSO is reflected in adaptations in the intrinsic and synaptic properties of 

neurons depending on their position within this nucleus. 

 

3. Normal development of the central auditory system requires a combination of 

genetically encoded programs and activity-dependent mechanisms. Mouse 

models provide a powerful tool to analyze the genetic and molecular basis of 

hearing and help to understand the fundamental mechanisms of auditory 

development and function.  
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The majority of mutations that are known to cause early-onset deafness usually 

lead to various structural and functional defects of the cochlea (Richardson et al., 

2011). The Diminuendo mutation, a single base change in miR-96 is an exception. 

Besides leading to an arrest of cochlear hair cell development, it is also expressed 

in the brainstem (Rosengauer et al., 2012), but its role for the maturation of the 

central auditory system is not known.  

The aim of this project was to study the consequences of the Diminuendo 

mutation for auditory processing by analyzing morphological and functional 

changes occurring at MNTB principal neurons and their calyx of Held-synapses in 

adult mice.  

To be able to distinguish between effects that originate in the central nervous 

system and the consequences of deafness in general, the Diminuendo mouse was 

compared to another mutation that serves as a model for peripheral hearing loss 

only, the Claudin-14-knockout mouse. The knockout of this tight junction protein 

results in a degeneration of OHCs and IHCs during the first three weeks of life 

(Ben-Yosef et al., 2003). Thus, the Claudin-14-knockout mouse is a suitable 

control since both mouse models display a normal initial development of the 

cochlea that is followed by a degeneration of hair cells.  
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II. MATERIAL AND METHODS 

 

 

 

1. ANIMALS 

 

 

All experiments complied with institutional guidelines and national and regional 

laws as approved by the Regierung of Oberbayern. Experiments were performed 

on male and female Mongolian Gerbils (Meriones unguiculatus) and mice aged 

between P5 and P30. Mouse lines used were C57BL/6N (Chapter III-1 and III-0), 

Claudin-14 knockout (Cldn-14-/-) mice on a NMRI background, and Diminuendo 

(dmdo/dmdo) mice on a C3HeB/FeJ background (Chapter III-3).  For Cldn-14-/- and 

dmdo/dmdo mice, their respective wild type littermates served as controls. The 

Claudin-14 and Diminuendo animals were supplied by the group of Prof. Dr. 

Nothwang (Carl von Ossietzky Universität Oldenburg, Institut für Biologie und 

Umweltwissenschaften), who also were responsible for the genotyping. 

 

 

 

2. SLICE PREPARATION 

 

 

Similar to Berger et al. (2014) and Franzen et al. (2015), brains were removed after 

decapitation under isoflurane anesthesia and transferred to ice cold slice solution 

containing (in mM) 50 sucrose, 25 NaCl, 27 NaHCO3, 2.5 KCL, 1.25 Na2HPO4, 3 MgCl2, 
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0.1 CaCl2, 25 glucose, 0.4 ascorbic acid, 3 myo-inositol and 2 Na-pyruvate, bubbled 

with 95% O2 and 5% CO2, pH 7.4. 200 µm-thick transverse brain slices containing the 

LSO or the MNTB were taken with a VT1200S vibratome (Leica Biosystems, 

Germany) and incubated in recording solution (same as slice solution but with 1.2 

mM CaCl (Chapter III-2 and III-3) or 2 mM CaCl (Chapter III-1), 1mM MgCl2, 125 mM 

NaCl and no sucrose) at 35°C for 45 minutes, bubbled with 5% CO2 and 95% O2.  

 

 

 

3. ELECTROPHYSIOLOGY 

 

 

All electrophysiological experiments were carried out near physiological 

temperature (34-36°C) and slices were continuously perfused with recording 

solution. Cells were visualized and imaged using a BX50WI Microscope (Olympus, 

Germany) equipped with gradient contrast illumination and a TILL photonics system 

consisting of a TILL-Imago CCD camera and a monochromator (Polychrome IV; TILL 

Photonics, Germany). Recordings were performed with an EPC10/2 amplifier (HEKA 

Elektronik, Germany) with a sampling frequency of 50 kHz (Chapter III-2 and III-3) 

or 100 kHz (Chapter III-1). 

In voltage-clamp experiments, access resistance was compensated to 3 MΩ. For 

current-clamp recordings the bridge balance was set to 100 %. Patch pipettes of 3-

3.5 MΩ resistance were pulled from borosilicate glass capillaries using a DMZ 

Universal Puller (Zeitz Instruments, Germany) and filled with an intracellular 

solution.  

For voltage-clamp experiments the solution contained (in mM):  105 Cs-gluconate, 

26.7 CsCl, 10 Cs-HEPES, 20 TEA-Cl, 3.3 MgCl2, 2 Na2-ATP, 0.3 Na-GTP, 3 Na2-
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phosphocreatine, 5 Cs-EGTA, 5 QX 314-bromide and 20 µM Alexa 568. The pH was 

adjusted to 7.2 with CsOH. 

For current-clamp experiments the following intracellular solution was used (in 

mM):  145 K-gluconate, 5 KCl, 15 HEPES, 2 K-ATP, 2 Mg-ATP, 0.3 Na-GTP, 7.5 Na2-

phosphocreatine, 5 K-EGTA and 20 µM Alexa 568, adjusted to pH 7.2 with KOH. 

 

Synaptic inputs were stimulated either with a glass electrode filled with recording 

solution or with a concentric bipolar electrode (FHC, USA). A 200-µs biphasic 

voltage pulse with adjustable stimulation strength was triggered by the amplifier 

and conveyed by an isolated pulse stimulator (Model 2100, A-M Systems, USA). To 

activate the inputs to the MNTB, the electrode was placed medial to the MNTB. 

Synaptic currents in the LSO were evoked by stimulating the fibers projecting from 

the MNTB to the LSO.  

 

Excitatory and inhibitory inputs were pharmacologically isolated by adding 10 µM 

SR-95531 and 1 µM Strychnine or 20 µM DNQX and 10 µM R-CPP, respectively. 

Miniature postsynaptic currents were measured in the presence of 1 µM TTX. 

Data are not corrected for liquid junction potential. 

 

 

 

4. IMMUNHISTOCHEMISTRY AND CONFOCAL MICROSCOPY 

 

 

After inducing a deep anesthesia with 200 mg/kg pentobarbital, animals were 

perfused transcardially with Ringer solution containing 0.1% Heparin for 5 minutes, 

followed by 4% paraformaldehyde (PFA) for 30 minutes. Brains were post-fixed 

overnight in 4 % PFA at 4°C and 50 - 70 µm-thick coronal sections were cut with a 
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VT 1200S vibratome (Leica Biosystems, Germany). After rinsing in phosphate-

buffered saline (PBS, pH 7.4) sections were transferred to blocking solution 

containing 1 % bovine serum albumin, 0.3% Triton X-100 and 0.1% Saponin in PBS. 

Standard immunohistochemical procedures were performed on free-floating slices 

with primary antibodies for microtubule-associated protein 2 (MAP2, chicken 

polyclonal, 1:1000, Neuromics, USA) and synaptic vesicle protein 2 (SV2, mouse 

monoclonal, 1:500, DSHB, USA). After 2 days of incubation at 4°C, secondary 

antibodies (Alexa488 donkey anti-chicken, 1:200 and Cy3 donkey anti-mouse, 

1:300, Dianova, Germany) were applied for 2 hours at room temperature. 

Slices were mounted in Vectashield medium and confocal scans were acquired with 

a Leica TCS SP5-2 confocal laser scanning microscope (Leica Microsystems, 

Germany). Images were taken with a 63x objective (1.32 NA), leading to a pixel size 

between 120 nm2 and 320 nm2, depending on the zoom factor. To improve the 

signal-to-noise ratio, images were averaged from 6 to 8 successive scans (Chapter 

III-3). 

 

 

 

5. IMAGE AND DATA ANALYSIS 

 

 

Confocal image stacks were processed and analyzed with ImageJ. To estimate the 

cell diameter of MNTB neurons (Chapter III-3), the length and width of each cell was 

measured from maximum intensity projection images of the MAP2 stainings. To 

quantify structural changes at the calyx of Held, the donut-like substructures were 

extracted from maximum projections and the grey value of individual donuts was 

determined by line scans and normalized over the dynamic range. 
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Analysis of electrophysiological data was performed offline using custom-written 

IGOR Pro procedures (WaveMetrics, USA), Microsoft Office Excel (Microsoft, USA) 

and GraphPad InStat (GraphPad Software, USA). Results are presented as mean ± 

SEM. Data were tested for normality using a Shapiro-Wilk test. Since the majority of 

data was considered to follow a normal distribution, statistical significance was 

determined by a paired or unpaired two-tailed Student’s t-test with a significance 

level of P < 0.05. In no case, using the Mann-Whitney-U test would have changed 

the significance level. Correlation coefficients were determined by a Pearson test 

(Chapter III-2) 
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III. RESULTS 

 

 

 

1. DEVELOPMENT OF GABAERGIC AND GLYCINERGIC 

INPUTS TO THE LSO IN MICE AND GERBILS. 

 

 

 

A strategy for the localization of high-frequency sounds in the horizontal plane is 

the comparison of interaural level differences that are processed in the lateral 

superior olive. The LSO integrates excitatory inputs from the ipsilateral 

anteroventral cochlear nucleus with contralateral inhibitory inputs provided by the 

medial nucleus of the trapezoid body. ILD coding requires both inputs to be 

tonotopically organized and matched precisely.  

 

The adjustment of the inhibitory MNTB-LSO projection is largely accomplished 

before hearing onset, thus largely independent of sound-evoked activity and 

genetically encoded (Kandler et al., 2009). During early postnatal development, this 

projection undergoes a shift from predominantly GABAergic to glycinergic 

transmission, a process that is thought to contribute to the refinement of the 

MNTB-LSO pathway (Kotak et al., 1998; Korada and Schwartz, 1999; Nabekura et 

al., 2004; Weber et al., 2015). For isolated neurons of developing rats, the co-

release of GABA and Glycine from single vesicles has been demonstrated (Nabekura 

et al., 2004). 
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In the following, I studied the experience-independent, genetically encoded early 

postnatal development of the inhibitory MNTB-LSO projection in mice and gerbils, 

two species with different hearing ranges. The comparison of both rodents may 

help to identify adjustments of sound localization circuits to the varying demands 

of high- and low-frequency hearing animals. 

To comparatively characterize the development of the inhibitory projection, 

evoked and miniature inhibitory postsynaptic currents (IPSCs) were analyzed. With 

the aim to separate between GABAergic and glycinergic transmission, all 

experiments were performed in the absence and presence of the GABAA receptor 

antagonist SR-95531. 

Considering the different hearing ranges of the two species and the tonotopic 

gradient in the LSO, I focused on the medial limb of the nucleus which displays 

greater sensitivity to high frequency sounds.  

 

 

 

Miniature IPSCs before and after hearing onset 

 

 

Pharmacologically isolated miniature IPSCs (mIPSCs) were measured from mice and 

gerbils at the ages of P8-9 and P15-16 and were analyzed concerning their 

amplitudes, decay times and frequencies. I included only cells that had a minimum 

of 50 mIPSCs and were recorded for at least 3 minutes without and in the presence 

of SR-95531. As an additional control, Strychnine was also added in some cases, 

resulting in the complete absence of mIPSCs, proving that all observed miniature 

events were GABA- and glycinergic. 

The very low mIPSC frequency in animals aged P 6 or younger prevented further 

analysis of this age group. 
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Since most mIPSCs showed no clear bi-exponential decay time course, the decay 

times shown in Figure 2A were obtained from mono-exponential functions fitted to 

the average mIPSCs of the respective cells before and after the wash-in of SR-

95531. In contrast to the idea of co-release (Nabekura et al., 2004), the GABAA 

blocker did not have any effect on the decay kinetics of both species and age 

groups.  

 

_________________________________________________________________________ 

 

 

 

Figure 2: mIPSCs in the developing LSO of mice and gerbils. Decay time constants (A), 

amplitudes (B) and frequency (C) of miniature IPSCs under control conditions and in the 

presence of SR-95531. Blue open circles: gerbil P 8-9 (n = 10); black open circles: mouse P 

8-9 (n = 10); blue closed circles: gerbil P 15-16 (n = 8); black closed circles: mouse P 15-16 

(n= 8). 

_________________________________________________________________________ 
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However, the analysis demonstrates interesting differences between mice and 

gerbils. In the gerbil, the average mIPSC had a decay time of 3.02 ± 0.31 ms at the 

age of P 8-9 that accelerated significantly (p < 0.0005) to 1.19 ± 0.14 ms at postnatal 

day 15-16. Miniature IPSCs in mice were with 4.49 ± 0.55 (P 8-9) and 3.15 ± 0.59 (P 

15-16, p = 0.06) generally slower than in Gerbils. 

 

Shown in Figure 2B are the median mIPSC amplitudes for each cell with and without 

blocked GABAA currents. Again, the bath application of SR-95531 did not lead to 

significant changes. The comparison of the two animal species revealed larger 

mIPSCs in the gerbil and in both species, the amplitude increased during 

development (mouse: -29.51 ± 4.19 (P 8-9), -57.23 ± 13.14 pA (P 15-16), p = 0.06.; 

gerbil: -44.37 ± -7.09 (P 8-9) and -60.80 ± -8.28 pA (P 15-16), p < 0.0005). This 

increase in amplitude was accompanied by a slightly elevated mIPSC frequency 

(Figure 2C). In the young age group, an average of 0.99 ± 0.28 (gerbil) and 2.10 ± 

0.48 (mouse) inhibitory events per second were recorded that increased to 3.85 ± 

1.66 (gerbil, p = 0.10) and 3.90 ± 1.66 (mouse, p = 0.24) IPSCs per second at the age 

of P 15-16.  In none of the groups the frequency was sensitive to the application of 

SR-95531.  

 

To summarize, the study demonstrated species-specific differences with faster 

mIPSC kinetics and larger amplitudes in gerbils. During development, mIPSCs in 

both animals develop faster kinetics, larger amplitudes and a higher frequency. 

Unexpectedly, the bath application of the GABAA receptor antagonist SR-95531 

failed to modify the shape or frequency of the miniature inhibitory events although 

GABAergic and glycinergic co-release has been indicated to occur at the MNTB-LSO 

projection (Nabekura et al., 2004). Thus, these results speak against the release of 

both transmitters from the same vesicle in mice and gerbils. To address this issue 
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further, I next studied IPSCs evoked by stimulations of the inhibitory inputs to the 

LSO. 

 

 

Evoked IPSCs in prehearing mice and gerbils 

 

 

To evoke IPSCs, a bipolar stimulation electrode was placed in the fibers projecting 

from the MNTB to the LSO of mice and gerbils at the ages of P 5-6 and P 8-9. 

Excitatory currents were blocked pharmacologically.  

Figure 3A shows the average IPSCs calculated from ten repetitions under control 

conditions and under the presence of SR-95531.  In all groups, the average 

amplitudes showed a slight decrease after the wash-in of the GABAA receptor 

blocker. This effect was more pronounced in gerbils and independent of the age 

(mice P 5-6: control:  -0.51 ± 0.17 nA, SR: -0.47 ± 0.19 nA (-5.7 %; p = 0.57); mice P 

8-9: control -1.71 ± 0.34 nA, SR: -1.61 ± 0.31 nA (-6.2 %; p = 0.33); gerbil P 5-6: 

control: -4.18 ± 2.34 nA, SR: -3.57 ± 1.79 nA (-14.7 %; p = 0.46); gerbil P 8-9: control: 

-4.47 ± 1.44, SR: -3.83 ± 0.80 nA (-14.2 %; p = 0.56; Figure 3B). 

Double exponential functions were fitted to each IPSC to extract the fast and slow 

components of the decay time constants. The fast component was not sensitive to 

SR-95531. In P 5-6 mice, Ԏfast was on average 7.11 ± 0.86 ms under control 

conditions and 7.21 ± 0.83 ms in the presence of the drug (p = 0.83). At the age of 

P8-9, Ԏfast decreased to 4.37 ± 0.69 ms (control) and 4.32 ± 0.61 ms (SR; p = 0.83). 

For the P 5-6 gerbils, values of 4.43 ± 0.69 ms (control) and 4.47 ± 0.72 ms were 

determined (p = 0.30). In the older age group Ԏfast was reduced to 2.91 ± 0.29 and 

3.07 ± 0.32 ms before and after the application of SR-95531 (p = 0.21; Figure 3C). 
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Figure 3: evoked IPSCs in pre-hearing mice and gerbils. A: example IPSC under control 

conditions (black) and after SR-95531 bath application. B, C, D: IPSC amplitudes (B), Ԏfast (C) 

and Ԏslow (D) in mice and gerbils at the ages of P 5-6 and P 8-9 before and after the wash-in 

of SR-95531. E, F: change in Ԏfast (E) or Ԏslow (F) plotted against the initial value. Blue open 

circles: gerbil P 5-6 (n = 9); black open circles: mouse P 5-6 (n = 11); blue closed circles: 

gerbil P 8-9 (n = 10), black closed circles: mouse P 8-9 (n = 10). Triangular symbols indicate 

average values.  

_________________________________________________________________________ 
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While the fast component is unchanged by the block of GABAA receptors, the drug 

appears to have an influence on the slow component shown in Figure 3D. The effect 

was strongest in the younger mice with a reduction of 19.6 % from 26.86 ± 3.59 ms 

to 21.61 ± 2.38 ms (p = 0.05). In P 8-9 mice, Ԏslow slightly decreased from 18.76 ± 

2.03 ms to 17.30 ± 2.10 ms (-7.8 %; p = 0.26). In gerbils, the slow component was 

insignificantly reduced from 18.2 ± 1.47 to 15.49 ± 1.08 ms (-14.9 %; p = 0.10) at the 

age of P 5-6. IPSCs in the older animals showed a similar decrease from 8.94 ± 1.60 

to 7.74 ± 1.81 ms (-13.5 %; p = 0.22).  

Figure 3E and F illustrate the effect of SR-95531 on the decay time constants by 

plotting the change in Ԏ against its initial value. While Ԏfast remained constant, the 

slow component displayed a sensitivity to the drug that seems to have a stronger 

effect on IPSCs with a larger Ԏslow. 

 

Unlike the analysis of mIPSCs, the fiber stimulation experiment might provide 

indication for the release of both GABA and glycine at LSO neurons. Evoked IPSCs 

showed a biphasic decay that suggests the involvement of inhibitory conductances 

with different kinetics that were modified by the GABAA receptor antagonist SR-

95531. The stronger influence on IPSCs in younger animals would be consistent with 

the developmental switch from GABAergic to glycinergic transmission in the LSO. 

However, these results provide no evidence for the co-release of GABA and Glycine 

from single vesicles in mice and gerbils, contrary to the rat (Nabekura et al., 2004). 

Therefore, the data suggest that the switch in transmitter type must be based on a 

different cellular mechanism other than co-release. 
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2. CHARACTERIZATION OF CELLS AND INPUTS IN THE ADULT 

MOUSE LSO ALONG THE TONOTOPIC AXIS 

 

 

 

After hearing onset, the integration of ipsilateral excitatory inputs and contralateral 

inhibitory inputs enables LSO neurons to encode interaural differences in sound 

intensity. This subtraction mechanism requires the inputs to be matched regarding 

their frequency tuning, resulting in a tonotopic organization of the LSO with 

neurons preferentially responding to high frequencies in the medial limb and cells 

more sensitive to lower-frequency sounds located in the lateral part (Tollin, 2003). 

 

The hearing range of mice is limited to relatively high frequencies above 2 kHz 

(Heffner and Heffner, 2007). The following experiments investigated whether the 

tonotopic gradient in the mature mouse LSO is accompanied by adaptations in the 

intrinsic and synaptic properties of neurons sensitive to different frequencies. To 

answer this question, I performed whole-cell recordings of neurons along the 

tonotopic axis in the LSO of adult mice (P 20-30). I characterized their passive and 

active properties that determine how the cell responds to the incoming inputs. 

Excitatory and inhibitory synaptic transmission was studied by analyzing miniature 

and evoked postsynaptic currents. 
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Characterization of passive and active properties of LSO neurons 

 

 

 

Figure 4A shows an exemplary neuron (left) and its position in the LSO (right). The 

position for each cell was mapped on a stereotypic LSO (Figure 4B) to reveal 

possible differences in passive and active membrane properties along the tonotopic 

axis. 

Passive membrane parameters such as the input resistance (Rin), the membrane 

time constant (Ԏ) and the cell capacitance (Cm) contribute to signal transmission by 

influencing the integration of synaptic inputs and interacting with the active 

properties of the neuron. These parameters can be approximated by analyzing the 

voltage responses to current injections that are kept small to minimize the 

additional activation and deactivation of voltage-dependent conductances (Ammer 

et al., 2012; Berger et al., 2014; Franzen et al., 2015).  

Fehler! Verweisquelle konnte nicht gefunden werden.Figure 4B shows the voltage 

deflection induced by the injection of 500 ms-long currents of -5 pA. Ԏ, extracted 

from exponential functions fitted to the onset response, was used to estimate the 

membrane capacitance. Rin did not correlate with the membrane capacitance 

(correlation coefficient r = 0.42) but there appeared to be two different populations 

of neurons, one with rather low Rin and one with input resistances above 500 MΩ 

(Figure 4C). Neurons with a Rin above 500 MΩ were predominantly found in the 

medial and middle parts of the LSO (Figure 4E, top graph). The  population with 

input resistances below 500 MΩ, enlarged in Figure 4E (second to top), exhibited 

an increasing Rin from the medial to the lateral side of the LSO, with an average Rin 

of 32.28 ± 3.42 MΩ for the ten most medial neurons and 86.63 ± 14.43 MΩ for the 

ten most lateral neurons (p < 0.002).  
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Figure 4: Passive properties of LSO neurons. A: example neuron filled with Alexa dye (left) 

and its location in the LSO (right). B: membrane potential changes in response to 500 ms-

long current injections (top). 60 single trials (grey) were averaged (black) and fitted with an 

exponential function (blue). C: Rin as a function of the membrane capacitance. D: Schematic 

illustration of the LSO. Numbers indicate the location of each recorded cell. E: Membrane 

parameters Rin, Cm and Vm plotted according to the position of the respective cell in the LSO. 

For Rin (top panel), the area labeled in grey is shown enlarged, the dotted line indicates the 

linear regression of Rin dependent on the cell´s position (second to top). Included are the 

pooled data of onset and sustained firing neurons.  n = 31 

_________________________________________________________________________ 
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The membrane capacitance and the resting membrane potential Vm displayed no 

position-dependent differences (Figure 4E, bottom panels). On average, the 

neurons had a Cm of 41.60 ± 4.41 pF and a resting membrane potential of -67.53 ± 

15.05 mV. 

 

Characterization of the firing behavior in response to 500 ms-long current injections 

between -200 and +1000 pA confirmed the existence of two different populations. 

About two-thirds of neurons fired 1-3 onset action potentials (Figure 5A, top) while 

the second type displayed a sustained firing pattern (Figure 5A, bottom).  

With an average Rin of 815.04 ± 148.05 MΩ, the continuously firing neurons were 

equivalent to the high input resistance cells shown in Figure 4C and 4E and differed 

significantly from neurons firing an onset action potential (Rin = 46.89 ± 6.00 MΩ; p 

< 0.0005). In contrast to continuously spiking neurons, the steady state current in 

onset neurons changes linear with the injected current (Figure 5B). 

 

However, under physiological conditions action potentials are rather elicited by 

short excitatory postsynaptic currents than by prolonged constant current 

injections. Thus, I used a stimulus approximating the shape of an EPSC with a rise 

time of 150 µs and a decay time of 800 µs that was incremented in steps of 100 pA 

and analyzed the first supra-threshold event (Figure 5C).   

Action potentials were characterized regarding their voltage and current 

thresholds, their height and their half-width (Figure 5D). None of these parameters 

displayed a clear correlation with the position of the cell within the LSO but differed 

between the two populations. Onset firing neurons had slightly higher voltage 

thresholds (-43.75 ± 3.39 mV vs. 38.89 ± 2.80 mV; p = 0.12) and significantly 

elevated current thresholds (0.72 ± 0.12 nA vs. 1.38 ± 0.17 nA; p < 0.05). Action 

potentials of continuously spiking cells were on average higher (90.87 ± 6.60 mV vs. 

82.42 ± 1.94 mV; p = 0.09) and significantly broader (654.63 ± 106.76 µs vs. 162.22 

± 76.17 µs; p < 0.0005).  
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Figure 5: Firing patterns and action potentials in LSO neurons. A: Characterization of the 

firing behavior in response to 500 ms-long current injections between -200 and +1000 pA 

(top) revealed two types of firing patterns: cells firing an onset action potential (black, n = 

17) and continuously spiking cells (blue, n = 8). B: steady state potentials as a function of 

the injected current for both cell types. C: Action potentials elicited by increasing stimuli 

approximating the shape of an EPSC. The last sub-threshold response is shown in blue. 

From the first suprathreshold event (black), the current and voltage thresholds, the height 

and the half-width were analyzed and plotted according to the cell´s location in the LSO 

(D). Black dots indicate single-spiking cells, blue dots represent cells with repetitive firing 

(n = 25). 

_________________________________________________________________________ 
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In summary, the LSO auf mature mice is composed of at least two types of neurons 

with different intrinsic properties that differ in their input resistance, firing pattern 

and action potential characteristics. Onset spiking cells display a gradient in Rin that 

increases along the tonotopic axis of the LSO from medial to lateral.  

 

 

Synaptic transmission in the mature LSO 

 

 

The lateral superior olive integrates ipsilateral excitatory input with contralateral 

inhibitory input. To gain insight into synaptic transmission in the LSO, I studied the 

properties of spontaneous and evoked inhibitory and excitatory postsynaptic 

currents in the following set of experiments.  

 

Figure 6A shows an example for the spontaneous synaptic activity recorded from a 

LSO neuron. Pharmacologically isolated miniature inhibitory or excitatory 

postsynaptic currents (mIPSCs and mEPSCs) were extracted and their amplitudes, 

decay time constants and frequencies were analyzed.  

Figure 6B shows examples for the amplitude distribution of mEPSCs and mIPSCs in 

two cells. The inhibitory events had a slightly larger amplitude than mEPSCs (52.03 

± 9.62 pA vs. 34.60 ± 2.95 pA; p = 0.08) and decayed slower (1.06 ± 0.10 ms vs. 0.93 

± 0.15 ms; p = 0.5). With 8.91 ± 1.43 events per second, EPSCs occurred with a 

significantly higher frequency than IPSCs (4.74 ± 0.62; p < 0.05; Figure 6C). 

 

To visualize possible differences along the tonotopic axis, the analyzed parameters 

were again arranged according to the cell´s position in the LSO (Figure 6D). 

Both mIPSCs and mEPSCs displayed no clear tendency from medial to lateral 

regarding their amplitudes and decay time constants. If anything, these parameters 
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showed a higher variability at more lateral positions. The frequency of mIPSCs was 

highest in medially located cells and decreased continuously. In the middle and 

lateral regions of the LSO, cells displayed either a rather high or low mEPSC 

frequency with increasing difference from medial to lateral. 

 

 

Figure 6: Miniature inhibitory and excitatory events in the LSO. A: Example recording of 

mIPSCs shown at low (top) and higher temporal resolution (bottom). B: Example amplitude 

distributions of mIPSCs (left) and mEPSCs. C: Average and individual results (circles) for the 

amplitudes, decay time constants and frequencies of inhibitory (blue) and excitatory (red) 

miniature events. D: mIPSC (blue) and mEPSC (red) amplitudes, decay time constants and 

frequencies of single cells plotted against the recording position along the LSO. mIPSCs: n 

= 11 cells / 4849 events; mEPSCs: n = 15 cells / 7070 events. 

_________________________________________________________________________ 
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To analyze evoked postsynaptic currents, fibers projecting to the recorded neuron 

were stimulated by an electrode placed in the vicinity of the cell. Figure 7A shows 

examples for pharmacologically isolated excitatory (right) and inhibitory 

postsynaptic currents (left) evoked by various stimulation intensities (0 - 100 V) 

incremented in steps of 2 - 10 V.  

 

Figure 7: Evoked excitatory and inhibitory postsynaptic currents in LSO neurons. A: 

Example recordings of IPSCs (left) and EPSCs (right) evoked by stimulations of 0 – 100 V. B: 

IPSC (left) and EPSC amplitudes (right) as a function of the stimulation strength. C, D: 

Average maximal amplitudes (C) and decay time constants (D) of IPSCs (blue) and EPSCs 

(red). Circles represent individual cells. E: Maximal amplitudes and decay times of IPSCs 

(blue) and EPSCs (red) arranged according to the position of the cell in the LSO. EPSCs: n = 

9; IPSCs: n = 12. 
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The peak amplitudes were dependent on the stimulation strength and usually 

increased rather stepwise than gradually (Figure 7B), which is generally interpreted 

as the recruitment of additional fibers projecting to the neuron. 

IPSCs had a significantly larger maximal amplitude than EPSCs (2.53 ± 0.38 nA vs. 

0.96 ± 0.23 nA; p < 0.005; Figure 7C) and a slightly slower decay time of 1.83 ± 0.27 

ms than the excitatory currents (1.41 ± 0.29 ms; p = 0.32; Figure 7D).  

With correlation coefficients of 0.03 (IPSCs) and -0.18 (EPSCs), the amplitudes of 

evoked postsynaptic currents showed no clear relation with the position of the 

neuron along the tonotopic axis (Figure 7E; top graph). In contrast, excitatory and 

inhibitory currents displayed a tendency to slower decay time constants in cells 

recorded at the lateral edge of the LSO compared to cells located more medially 

(IPSCs: p = 0.57; EPSCs: p = 0.39; Figure 7E, bottom). 

 

Taken together, this study provides a characterization of the basic intrinsic 

properties of neurons in the mature LSO and their inhibitory and excitatory synaptic 

inputs. In addition, the results indicate that the position of a neuron along the 

tonotopic axis of the LSO is reflected in adaptations of some of the intrinsic and 

synaptic properties. 
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3. CONSEQUENCES OF TWO DEAFNESS-RELATED 

MUTATIONS FOR A LARGE CENTRAL AUDITORY SYNAPSE 

 

 

 

The previous experiments provided a characterization of the cellular and synaptic 

properties in an auditory brainstem nucleus of normal-hearing mice. To understand 

the mechanisms underlying normal development and function of the auditory 

system, the study of deafness-related changes can provide additional insight. In this 

study I compared two mutations that have been shown to cause hearing disorders 

in both mice and humans: the Diminuendo mouse, in which the mutation affects 

the peripheral and the central nervous system, and the Claudin-14-knockout 

mouse, where the defect is only peripheral. 

 

The Diminuendo (dmdo/dmdo) mutation is a single base change in the seed region 

of microRNA-96. MicroRNAs are small non-coding RNAs involved in the regulation 

of posttranscriptional gene expression by binding to complementary sites on their 

target mRNAs. MicroRNA-96 is expressed in the mammalian cochlear and has been 

shown to play a crucial role in coordinating the development and maturation of the 

peripheral auditory system. Mutations are associated with hearing loss in mice 

(Lewis et al., 2009) and humans (Mencia et al., 2009) and  lead to a physiological 

and morphological arrest in cochlear hair cell differentiation around the day of birth 

in homozygous mice (Lewis et al., 2009; Kuhn et al., 2011). Quantitative RT-PCR 

analysis recently demonstrated that miR-96 is also expressed in the auditory 

brainstem and up-regulated during development (Rosengauer et al., 2012), 

suggesting that this miRNA plays a role in the maturation process of the central 

auditory system as well. 
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The Claudin-14-/- mouse is a model for peripheral hearing loss only and hence 

contrasts the peripheral and central deficiencies in the Diminuendo mouse. Claudin-

14 is a tight junction protein that is required in the reticular lamina to form a cation-

restrictive barrier. Its absence leads to a failure in maintaining the cochlear fluid 

compartmentalization, resulting in the rapid death of outer hair cells, followed by 

slower degeneration of inner hair cells during the first three weeks of life in mice 

(Ben-Yosef et al., 2003). 

The comparison of these two mouse models should allow to separate central 

changes induced by the Diminuendo mutation from alterations that are a result of 

peripheral hair cell deficiencies in the auditory brainstem.  

 

In the following, I analyzed the morphological and functional consequences of these 

mutations in homozygous animals and their respective wildtype. Experiments were 

performed  the medial nucleus of the trapezoid body, a rather homogenous 

brainstem nucleus that represents the first inhibitory hub in auditory processing 

and acts mainly as a relay. MNTB principal neurons are innervated by single large 

glutamatergic terminals that form the calyx of Held, a giant synapse that has 

become an established model for detailed structural and functional studies of signal 

transmission in the auditory brainstem (Nakamura and Cramer, 2011) and that 

exhibits little activity-dependent plasticity (Oleskevich et al., 2004; Youssoufian et 

al., 2005; Youssoufian et al., 2008). Therefore, the MNTB is well-suited to 

investigate the intrinsic and synaptic effects of these hearing disorders. 

 

To reduce possible influences of the tonotopic gradient in neuronal properties (Li 

et al., 2001; Barnes-Davies et al., 2004; von Hehn et al., 2004; Brew and Forsythe, 

2005), all neurons were recorded from the middle third of the MNTB. 

  

 

  



59 

Morphology 

 

 

In order to investigate whether these mutations lead to morphological alterations 

of the pre- and postsynaptic compartments of the MNTB, immunostainings for 

MAP2 for somata and SV2 as a presynaptic marker were applied (Figure 8A). 

Dmdo/dmdo mice showed a significant decrease in cell diameter (16.40 ± 0.29 µm) 

compared to their wildtype littermates (18.15 ± 0.21 µm; p < 0.0005) whereas the 

size of neurons in Cldn-14-/- mice did not differ from the control group (17.51 ± 0.44 

vs. 17.13 ± 0.64 µm; p = 0.63; Figure 8B). 

 

Figure 8C (left) shows example stainings of presynaptic terminals surrounding 

Diminuendo wildtype and mutant MNTB neurons and average images of the donut-

like substructures for each group (Figure 8C, middle and right). To quantify the 

apparent morphologic changes at the calyx of Held, the grey value of individual 

donuts was determined by line scans and normalized over the dynamic range 

(Figure 8D). Donuts in Diminuendo wildtype mice were rather uniform and showed 

a well-defined round shape, leading to lower signal intensities distant to the center. 

In dmdo/dmdo mice these structures appeared distorted and accordingly, the 

average signal intensity was higher at the edges. In Cldn-14-/- and control animals, 

the donuts seemed less defined compared to Diminuendo wildtypes. 

 

In contrast to the Cldn-14-/- and Cldn-14+/+ mice, both the calyces of Held and the 

postsynaptic neurons in dmdo/dmdo mice were clearly different from the control, 

indicating that these alterations originate in the brainstem and are not a 

consequence of peripheral defects. 
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Figure 8: Pre- and postsynaptic morphology in the MNTB. A: Immunostainings against 

MAP2 (red) and SV2 (green) as markers for somata and presynaptic terminals in the MNTB 

of Diminuendo (DM) wildtype (left) and mutant animals (right). B: Average soma diameter 

of MNTB principal neurons in DM WT (n = 42), dmdo/dmdo (n = 42), Claudin-14 (CL-14) 

wildtype (n = 11) and CL-14 KO (n = 11). Circles represent single cells. C (left): Example SV2 

stainings of the presynaptic structures surrounding a neuron in DM WT (top) and mutant 

mice (bottom). Middle and right: Average images of all extracted donuts scaled to the same 

signal intensity (DM WT: n = 278 donuts/ 12 cells; dmdo/dmdo: n = 281 donuts, 12 cells; 

CL-14 WT: n = 231 donuts, 11 cells; CL-14 KO: n = 275 donuts, 11 cells). D: Averaged signal 

intensity of the donuts determined by line scans and normalized over the dynamic range. 
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Passive properties 

 

 

To study whether these alterations in cell morphology are also accompanied by 

functional changes, I first estimated the passive membrane properties of MNTB 

neurons. Parameters like the input resistance Rin, the membrane time constant Ԏm 

and the cell capacitance Cm influence the integration of synaptic inputs and interact 

with active properties, hence contributing to voltage signaling in the MNTB. 

These parameters were analyzed from the average voltage response to 200 ms-long 

current injections of -5 pA (Figure 9A) and from the average response to a 10 mV 

hyperpolarization from a holding potential of -60 mV (Figure 9E). The current and 

voltage steps were kept small to minimize the activation or deactivation of 

additional voltage-dependent conductances, hence the passive properties can be 

estimated (Ammer et al., 2012; Berger et al., 2014; Franzen et al., 2015). Both 

paradigms allow for the calculation of Rin according to Ohm’s Law which then in 

turn can be used to estimate the cell capacitance (Cm = Ԏ / Rin).   

 

Under current-clamp conditions, neurons in dmdo/dmdo mice showed a slightly 

elevated Rin (279.13 ± 43.77 MΩ) compared to their wildtype littermates (235.91 ± 

44.46 MΩ, p = 0.50). A similar difference in Rin was calculated for Cldn-14-/- and 

control mice (273.38 ± 56.46 and 231.53 ± 44.46 MΩ, respectively; p = 0.57; Figure 

9B). The values for Rin obtained from the voltage-clamp paradigm were generally 

lower, however the trend between the four groups remained comparable (DM WT: 

176.78 ± 26.14 MΩ, dmdo/dmdo: 267.76 ± 63.64 MΩ, p = 0.22; Cldn-14-/-: 266.27 ± 

62.70 MΩ, Cldn-14+/+:  176.78 ± 26.143 MΩ, p = 0.42; Figure 9F).  
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Figure 9: Passive membrane properties of MNTB neurons. A: Voltage responses to 200 

ms-long current injections of -10 pA. The average potential (black) was calculated from 60 

trials (grey) and an exponential function (blue) was fitted to the onset of the response. This 
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protocol was used to estimate Rin (B), Ԏ (C) and Cm (D) in current-clamp conditions. Circles 

represent values for individual cells. E: 50 single trials (grey) and the average current (black) 

induced by 10 mV hyperpolarizations, fitted with a double exponential function (blue). F: 

Average Rin calculated from the voltage-clamp protocol and individual values shown as 

circles. The double-exponential fit results in a fast and a slow component of Ԏ (G) and 

accordingly, lead to two different values for Cm, representing the slow and the fast charging 

compartment (H). Bottom parts of the bars and rectangular symbols correspond to values 

based on Ԏfast, entire bars and circles represent Ԏfast + Ԏslow and the corresponding values 

for Cm. DM WT: n = 16, dmdo/dmdo: n = 19, CL-14 WT: n = 12, CL-14 KO: n = 13. 

_________________________________________________________________________ 

 

Membrane time constants were extracted from mono- (Figure 9A) or bi-

exponential functions (Figure 9E) fitted to the onset of the average voltage or 

current responses. Figure 9C shows a slightly faster Ԏ for Cldn-14-/- and control mice 

(Cldn-14-/-: 6.21 ± 1.11 ms, Cldn-14+/+: 5.67 ± 0.91 ms, p = 0.71) compared to 

Diminuendo mutants and wildtypes (dmdo/dmdo: 8.09 ± 1.43 ms, DM WT: 6.67 ± 

1.01 ms, p = 0.44), resulting in a marginally smaller Cm in the Claudin-14 group (DM 

WT: 30.06 ± 1.85 pF, dmdo/dmdo: 29.42 ± 2.31 pF, p = 0.83; Cldn-14+/+: 25.62 ± 1.21 

pF, Cldn-14-/-: 23.52 ± 1.23 pF, p = 0.23; Figure 9D). 

 

The current deflection in voltage clamp mode shown in Figure 9B could be better 

described by a bi-exponential function, leading to membrane time constants with a 

fast and a slow component (Figure 9G) and hence, to two estimated capacitances 

corresponding to Ԏfast and Ԏslow (Figure 9H). Neither Ԏfast (DM WT: 0.101 ± 0.005 ms, 

dmdo/dmdo: 0.090 ± 0.004 ms, p = 0.11; Cldn-14+/+: 0.099 ± 0.007 ms, Cldn-14 -/-: 

0.100 ± 0.010 ms, p = 0.93) nor Ԏslow (DM WT: 0.839 ± 0.100 ms, dmdo/dmdo: 0.911 

± 0.111 ms, p = 0.64; Cldn-14+/+: 0.840 ± 0.125 ms, Cldn-14-/-: 0.784 ± 0.112 ms, p = 

0.74; Figure 9G) showed significant differences between the four groups.  
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The total electronically effective capacitance calculated from Rin and Ԏ was slightly, 

but not significantly larger in the control groups (DM WT: 20.04 ± 1.51 pF, 

dmdo/dmdo: 16.80 ± 1.87 pF, p = 0.18; Cldn-14+/+: 18.61 ± 1.47 pF, Cldn-14-/-: 15.16 

± 1.16 pF, p = 0.07). The capacitance corresponding to the fast component of Ԏ was 

7.59 ± 0.50 pF in DM WT, 7.24 ± 0.45 pF in dmdo/dodo (p = 0.60) , 8.41 ± 0.49 pF in 

Cldn-14+/+ and 6.82 ± 0.64 in Cldn-14-/- mice (p = 0.06; Figure 9H).  

Taken together, neither a peripheral hearing loss nor the mutation of miR-96 seem 

to alter the passive membrane parameters of MNTB neurons considerably, since 

both paradigms could not show any significant effects on the input resistance, the 

membrane time constant and the capacitance. To find out whether the active 

properties remain unaffected by these mutations as well, I next analyzed the firing 

behavior and action potential properties in MNTB neurons.  

 

 

 

Active properties and firing behavior 

 

 

The firing behavior of MNTB principal neurons was characterized in response to 300 

ms-long current injections, incremented in 100 pA steps from -200 to -1000 pA.  

Neurons in all four groups responded either with one or a few onset spikes (Figure 

10A) or they showed a sustained firing pattern (Figure 10B). In Cldn-14-/- and 

wildtype mice, the proportion of both firing types seemed comparable: 8 of 13 cells 

in the wildtype and 7 of 13 cells in the knockout responded with onset spikes. In 

the Diminuendo control group, the onset firing pattern clearly predominated (10 of 

16 cells) while in the mutants, two-thirds of neurons fired continuously (Figure 10E).  
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Figure 10: Firing behavior of MNTB neurons. A, B: MNTB neurons showed either an onset 

action potential (A) or a sustained firing pattern (B) in response to 300 ms-long current 

injections of -200 to +1000 pA. C: the maximal current amplitude (top Graph) and the sag 

potential (bottom) plotted against the injected current. D: Bars represent average current 

thresholds, single cells are indicated by open circles. E: numbers for onset and sustained 

firing neurons in the different groups.  

_________________________________________________________________________ 
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Average current thresholds in dmdo/dmdo and Cldn-14-/- neurons were reduced 

compared to their respective controls and in dmdo/dmdo mice, this reduction was 

significant (DM WT: 248.44 ± 32.39 pA, dmdo/dmdo: 157.50 ± 14.41 pA, p < 0.05; 

Cldn-14+/+: 246.15 ± 39.11 pA, Cldn-14-/-: 175.00 ± 24.35 pA, p = 0.14; Figure 10D). 

Vmin did not differ between dmdo/dmdo neurons and their controls while in the 

Claudin-14 group, wildtype neurons displayed a larger voltage deflection compared 

to the knockout (Figure 10C, top). The sag potential, measured by subtracting the 

steady-state potential from the hyperpolarization minimum, was also similar in 

Diminuendo mutant and wildtype cells, whereas Cldn-14-/- neurons had a larger sag 

than their wildtype counterparts (Figure 10C, bottom). 

 

To analyze the characteristics of a single action potential in detail, I used a stimulus 

that approximates the shape of an EPSC and is therefore physiologically more 

relevant than prolonged depolarizations (Franzen et al., 2015). Currents with a rise 

time of 0.2 ms and a decay time of 0.45 ms and were incremented in steps of 100 

pA and action potential parameters were analyzed from the first supra-threshold 

event (Figure 11A).  

The average current thresholds were noticeably reduced in dmdo/dmdo neurons 

compared to their wildtypes while Cldn-14-/- mice showed no such difference 

(dmdo/dmdo: 1.67 ± 0.13 nA, DM WT: 2.10 ± 0.19 nA; p = 0.067; Cldn-14+/+: 1.82 ± 

0.18 nA, Cldn-14-/-: 1.69 ± 0.24 nA, p = 0.67; Figure 11E). The other parameters 

investigated did not differ between normal hearing and mutant animals. The 

duration of the action potential, determined as the half-width measured from 

resting potential, did not differ significantly between the four groups (DM WT: 

281.16 ± 14.59 µs, dmdo/dmdo: 249.82 ± 13.66 µs, p = 0.95; Cldn-14+/+: 260.79 ± 

25.20 µs, Cldn-14-/-: 277.16 ± 23.44 µs, p = 0.37; Figure 11B). The peak of the first 

supra-threshold response was reached after 1.15 ± 0.07 ms in DM WT, 1.04 ± 0.08 

ms in dmdo/dmdo (p = 0.07), 1.33 ± 0.11 ms in Cldn-14+/+ and 1.27 ± 0.14 ms in 

Cldn-14-/- (p = 0.67; Figure 11F).   
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Interestingly, the study revealed considerable strain-specific differences between 

the NMRI mice used for the Claudin-14 knockout and the C3HeB/FeJ line that 

served as background for the Diminuendo group. Action potentials were 

significantly higher in C3HeB/FeJ (DM WT: 53.14 ± 4.03 mV, dmdo/dmdo: 53.61 ± 

4.07 mV, Cldn-14+/+: 35.12 ± 5.92 mV, Cldn-14-/-: 33.49 ± 4.58 mV, p < 0.05 when 

comparing both wildtypes; Figure 11C) and showed significantly elevated voltage 

thresholds (DM WT: -37.90 ± 3.45 mV, Cldn-14+/+: -19.90 ± 4.87 mV, p < 0.005; 

dmdo/dmdo: -38.20 ± 3.54 mV, Cldn-14-/-: -19.30 ± 4.43 mV; Figure 11D).  

 

In summary, the analysis of the active properties of MNTB principal neurons 

demonstrated several differences between the four groups. Reduced current 

thresholds were observed for both hearing-deficient mice, although more 

prominent in dmdo/dmdo animals, and possibly compensate for the lack of normal 

synaptic activity to maintain the overall excitability in the circuit. The large 

proportion of neurons that display sustained firing in dmdo/dmdo mutant mice 

could hint to a specific effect of miR-96 on intrinsic properties of auditory brainstem 

neurons.   
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Figure 11: Action potential properties. A: Action potentials elicited by an EPSC-

approximating stimulus (top) incremented in 100 pA steps. The last sub-threshold event is 

shown in black, and from the first action potential (blue), the half-width (B), the height (C), 

the voltage- (D) and current thresholds (E) and the time to peak (F) were analyzed. Circles 

represent individual cells. DM WT: n = 16, dmdo/dmdo: n = 19, CL-14 WT: n = 13, CL-14 KO: 

n = 13.  
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Miniature EPSCs 

 

 

Figure 8 showed alterations of the presynaptic substructures that form the calyx of 

Held in dmdo/dmdo mutants as well as differences between the two mouse lines. 

To probe for accompanying changes in synaptic transmission, pharmacologically 

isolated miniature excitatory postsynaptic currents (mEPSCs) were quantified. Only 

cells with more than 40 mEPSCs and with recordings of at least 180 s duration were 

included.  

 

Figure 12A (top) shows an example trace and the corresponding histogram of the 

amplitude distribution (bottom left). The decay time constant was obtained from 

an exponential function fitted to the average mEPSC (bottom right). 

With 85.96 ± 6.59 pA, mEPSCs in dmdo/dmdo mutant mice had a significantly 

higher median amplitude compared to their wildtype littermates (66.71 ± 4.47 pA; 

p < 0.05). The Cldn-14-/- animals also showed a slight increase in amplitude 

compared to their normal hearing counterparts (Cldn14-/-: 60.68 ± 6.26 pA, Cldn-

14+/+: 44.16 ± 7.91 pA, p = 0.13; Figure 12B). 

In the Diminuendo group, 5.58 ± 1.11 (dmdo/dmdo) and 4.88 ± 0.99 (WT) mEPSCs 

per second were detected on average (p = 0.64). The mEPSC frequency in Claudin-

14 wildtype mice was with 3.33 ± 1.71 events per second slightly lower than in the 

mutants (5.98 ± 1.88 mEPSCs/s, p = 0.24; Figure 12C). 

 

To characterize the kinetics of the miniature postsynaptic currents, the 20 – 80 % 

rise time and the decay time constant were analyzed from the average mEPSC of 

each cell. Miniature EPSCs in the Diminuendo group displayed no significant 

differences between normal hearing and mutant mice regarding their rise time (DM 

WT: 83.5 ± 2.7 µs; dmdo/dmdo: 77.8 ± 1.9 µs, p = 0.10). Also for knockout and 

wildtype animals in the Claudin-14 group, no changes in rise time were detected 
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(Cldn-14-/-: 90.2 ± 3.4 µs; Cldn-14+/+: 90.3 ± 2.7 µs, p = 0.15; Figure 12D). The decay 

time constants determined from single exponential functions were 0.18 ± 0.02 ms 

(DM WT), 0.17 ± 0.01 ms (dmdo/dmdo; p = 0.49), 0.23 ± 0.02 ms (Cldn-14+/+) and 

0.19 ± 0.02 ms (Cldn-14-/-; p = 0.18; Figure 12E).  

 

_________________________________________________________________________ 

 

 

Figure 12: Miniature EPSCs in the MNTB. A: Example recording of mEPSCs (top) and the 

amplitude distribution of all detected events (bottom left). The decay time constant was 

extracted from an exponential fit (blue) to the average mEPSC (bottom right). For each cell, 

the median amplitude (B), frequency (C), rise time (D) and decay time (E) were 

characterized. DM WT: n = 13, dmdo/dmdo: n = 12, CL-14 WT: n = 9, CL-14 KO: n = 9. 

_________________________________________________________________________ 
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The significantly increased mEPSC amplitude in Diminuendo mutant mice, together 

with a slightly elevated frequency suggests a possible effect of miR-96 on synaptic 

transmission in the auditory brainstem. To investigate this question further, I 

studied EPSCs evoked by stimulation trains of different frequencies in the following 

experiments. 

 

 

 

Evoked EPSCs 

 

 

To evoke EPSCs, a bipolar stimulation electrode was placed in the fibers between 

the midline and the MNTB. The stimulus strength was adjusted to reliably produce 

an EPSC in response to each pulse. Inputs were stimulated with trains of 20 pulses 

at 10, 20, 50, 100, 300 and 500 Hz and the average current of four repetitions for 

each frequency was analyzed.  

 

In all four groups, I found neurons with two different types of inputs. Figure 13A 

shows an example for a large input from a calyx terminal that is characterized by a 

high initial EPSC amplitude and displayed depression at higher stimulation 

frequencies. In contrast, the EPSCs of the smaller non-calyceal inputs shown in 

Figure 13B often facilitated. The proportion of large and small inputs in the different 

groups is presented in Figure 13J.  
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Figure 13: Characterization of large and small inputs. A, B: example responses to train 

stimulations of MNTB neurons receiving large calyceal inputs (A) and small inputs (B). C, D: 

Average peak amplitudes for large (C) and small inputs (D). Circles represent values for 

individual cells. E, F: Normalized EPSC amplitudes as a function of the pulse number for 

large (E) and small inputs (F) for stimulation frequencies of 100, 300 and 500 Hz. G: Steady 

state depression as a function of the stimulation frequency for cells receiving a calyceal 

input. H: Facilitation observed in cells receiving small inputs as a function of the stimulation 

frequency. I: Time constants of the depression plotted for each stimulation frequency. J: 

Proportion of neurons receiving large and small inputs. 

_________________________________________________________________________ 

 

 

The average amplitudes of the first EPSC were not significantly altered by the 

mutations. Large inputs in Diminuendo wildtype neurons had a peak current of 9.27 

± 0.99 nA compared to 10.90 ± 1.43 nA in the mutant (p = 0.52). The peak 

amplitudes for Claudin-14 wildtype and knockout animals were 9.27 ± 0.90 and 

12.29 ± 2.69 nA, respectively (p = 0.45; Figure 13C). Stimulating the small inputs 

lead to EPSCs with average amplitudes of 298.31 ± 47.82 pA in Diminuendo wildtype 

neurons, 519.68 ± 18.33 pA in the mutant (p = 0.19), 513.39 ± 10.81 pA in the 

Claudin-14 control and 552.26 ± 13.44 pA in the knockout (p = 0.67; Figure 13D). 

 

Figure 13E illustrates the depression of large EPSC amplitudes from the first to the 

last pulse. The depression was dependent on the frequency and stronger in 

dmdo/dmdo animals. At 100 Hz, the amplitude decreased to 50% of its initial value 

in the Diminuendo control and to 44 % in the mutant. At 500 Hz, the amplitude of 

dmdo/dmdo mice was reduced to 17 % compared to 33 % in the wildtype. In 

contrast, the depression of EPSCs in Claudin-14 wildtype and knockout mice 

remained similar. Figure 13G summarizes the depression of EPSCs for all 

frequencies used by plotting the average depression of the last three normalized 
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EPSCs against the frequency. Claudin-14+/+ and knockout mice displayed a nearly 

identical course. In Diminuendo mutants, the amplitude continued to decrease with 

increasing frequency while in the wildtype, the depression reached a plateau. At 

500 Hz, the difference between both groups was significant (p < 0.05). 

 

To extract the time course of the depression for each frequency, an exponential 

function was fitted to the amplitudes of the 20 EPSCs of each cell (Figure 13). The 

dmdo/dmdo mutant cells exhibited the fastest depression of all groups for 

frequencies above 100 Hz. In Cldn-14-/- mice, the decrease in amplitude occurred 

faster compared to their wildtype littermates as well.  

 

EPSCs evoked by stimulation of the small inputs showed facilitation as exemplified 

in Figure 13F for 100, 300 and 500 Hz and plotted in Figure 13H for all frequencies. 

In general, the facilitation was most pronounced at low-frequency stimulations and 

in the control groups. Again, there was a clear difference between dmdo/dmdo 

mice and their wildtype counterparts that was most significant at stimulation 

frequencies of 50 and 100 Hz (p < 0.05 in both cases). In contrast to the wildtype 

control, EPSCs of Diminuendo mutants showed only little or no facilitation. A similar 

trend was observed in Claudin-14 mice with lower facilitation in the hearing-

deficient animals. 

 

The cumulative EPSC (EPSCcum) that may be used to compare the physiologically 

relevant apparent pool size (Elmqvist and Quastel, 1965) was calculated for three 

different stimulation frequencies in cells that received large inputs (Figure 14A). 

After an initial phase with a higher increase, the cumulative EPSC amplitude showed 

a linear rise during the later pulses. At 100 Hz, the EPSCcum amplitude of 

dmdo/dmdo mice reached -121.90 ± 21.39 nA at pulse 20. At 300 and 500 Hz, the 

maximal amplitude was slightly reduced to -88.71 ± 18.48 nA (p = 0.36) and -69.48 

± 10.97 nA (p = 0.16 when compared to 100 Hz) respectively, suggesting a depletion 
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of the pool at higher frequencies.  EPSCcum amplitudes in Diminuendo control mice 

decreased less with higher stimulation frequencies (-99.63 ± 9.73 nA (100 Hz), -

96.69 ± 10.25 nA (300 Hz; p = 0.98), -86.62 ± 9.91 (500 Hz; p = 0.65 when compared 

to 100 Hz at pulse 20)). The larger EPSCcum at 500 Hz (p = 0.69 when comparing 

dmdo/dmdo and wildtype animals), together with the steeper slope, may indicate 

that wildtype synapses can transmit higher frequencies over longer periods of time. 

In the Claudin-14 group, the EPSCcum in mutant mice reaches a slightly higher 

maximal amplitude at all stimulation frequencies than their normal-hearing 

littermates (Cldn-14-/-: -103.02 ± 18.92 nA (100 Hz), -99.86 ±15.93 nA (300 Hz), -

81.84 ± 12.61 nA (500 Hz); Cldn-14+/+: -81.82 ± 9.53 nA (100 Hz; p = 0.31), -87.66  ± 

10.15 nA (300 Hz; p = 0.54), -73.17 ± 10.03 nA (500 Hz; p = 0.29 when compared to 

the knockout)). 

Figure 14B shows the EPSC amplitudes plotted against EPSCcum that allows for a 

linear extrapolation to the first EPSCs in a train of 20 stimuli. Based on the 

assumption that the EPSC size is proportional to the number of remaining quanta, 

the intersection with the x-axis provides an estimate of the releasable quanta 

(Elmqvist and Quastel, 1965; Taschenberger et al., 2002). This estimate was 

proportional to -67.43 nA (100 Hz), -81.16 nA (300 Hz) and -72.84 nA (500 Hz) in 

Diminuendo control mice. In the mutants, this value continually decreased with 

increasing stimulation frequency from -92.54 nA to -52.99 nA and -48.91 nA. In the 

Claudin-14 group, this analysis revealed no apparent differences between wildtype 

(-58.70 nA, -64.66 nA and -55.07 nA) and knockout mice (-60.87 nA, 62.67 nA and 

56.51 nA for 100, 300 and 500 Hz, respectively). 

These results indicate that deafness alone is not sufficient to alter the degree of 

depression at higher stimulation frequencies at the calyx of Held, suggesting that 

the observed changes in the Diminuendo mouse could be caused by the miR-96 

mutation. 
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Figure 14: Cumulative EPSCs. A: cumulative EPSC amplitudes in DM WT (black), 

dmdo/dmmdo (blue), CL-14 WT (white) and CL-14 KO (red) for train stimulations with 100, 

300 and 500 Hz. B: Plot of EPSCs versus the cumulative EPSC. Linear fits to the first four 

data points indicate the initial pool size. 

_________________________________________________________________________ 

 

 

AMPA and NMDA currents 

 

 

Both types of inputs to MNTB neurons displayed differences between Diminuendo 

wildtype and mutant animals. Both calyceal and non-calyceal EPSCs are mediated 

by AMPA and NMDA receptor activation (Hamann et al., 2003). Since AMPAR and 
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NMDAR mediated currents are also involved in development, I studied these 

currents in more detail in the following experiment. 

 

NMDA and AMPA receptor mediated currents were recorded at holding potentials 

between -70 and +50 mV incremented in steps of 10 mV. The NMDA current was 

measured at a time point that corresponds to 5x the fast component of ԎAMPA, 

assuming that the faster AMPA-mediated current is over at this time. 

Figure 15A shows two examples both with a large, fast AMPA current. In addition, 

the neuron on the left displays a slower NMDA current that is absent in the other 

recording.  The NMDA/AMPA ratio calculated for dmdo/dmdo mice was with -0.115 

± 0.011 significantly larger than in the control (-0.044 ± 0.004; p < 0.0005). There 

was no such difference between Claudin-14 wildtype and mutant mice (-0.034 ± 

0.002 and -0.042 ± 0.009, respectively; p = 0.37; Figure 15B). The different 

NMDA/AMPA ratios in the Diminuendo group did not result from differences in the 

AMPA current amplitudes that were similar (Figure 15C), but from a considerably 

larger NMDA current in the mutant mice (Figure 15D).  

 

Although the AMPA-mediated currents in the Diminuendo group displayed similar 

amplitudes, bi-exponential fits revealed substantial differences in the decay 

kinetics. The fast component Ԏfast was with 293.40 ± 18.76 µs in the mutant 

significantly slower than in the wildtype (172.78 ± 12.48; p < 0.0005). Claudin-14 

mice showed no such difference (Cldn-14+/+: 220.57 ± 17.41 µm, Cldn-14-/-: 230.42 

± 25.34 µs, p = 0.80; Figure 15E). The slow component Ԏslow was in Diminuendo 

wildtype mice also faster than in the mutant (DM WT: 1.64 ± 0.33 ms, dmdo/dmdo: 

3.01 ± 0.83 ms; p = 0.11). AMPA currents in Claudin-14 mice had a Ԏslow of 2.19 ± 

0.51 ms in the control and 1.22 ± 0.36 ms in the knockout (p = 0.14; Figure 15F). 
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Figure 15: Characterization of AMPA and NMDA currents. A: Example recordings of NMDA 

and AMPA currents evoked at holding potentials between -70 and +50 mV in a cell with 

(left) and without NMDA currents (right). B: Ratio of the NMDA peak to the AMPA peak 

current. Closed colored symbols represent average values, open circles are individual cells. 

C, D: AMPA (C) and NMDA (D) currents as a function of the holding potential. E, F: The bar 

graphs show average values for the fast (E) and slow (F) components of the time constant 

of the AMPA current. Circles correspond to individual cells. DM WT: n = 11, dmdo/dmdo:  

n = 8, CL-14 WT: n = 10, CL-14 KO: n =11.  

_________________________________________________________________________ 

-15

-10

-5

0

5

A
M

P
A

 P
e

a
k
 (

n
A

)

-40 0 40
Holding pot. (mV)

1.0

0.5

0.0

-0.5

N
M

D
A

 P
e

a
k
 (

n
A

)

-40 0 40
Holding pot. (mV)

-0.15

-0.10

-0.05

0.00

N
M

D
A

/A
M

P
A

 r
a

ti
o

dm
do

/d
m

do

D
M

 W
T

C
L-

14
 K

O

C
L-

14
 W

T

***

30 ms

3
 n

A

30 ms

5
 n

A

A

C

E

B

D

F

5

0

A
M

P
A

 t
a

u
s
lo

w
 (

m
s
)

D
M

 W
T

dm
do

/d
m

do

C
L-

14
 W

T

C
l-1

4 
K
O

400

200

0

A
M

P
A

 t
a

u
fa

s
t 
(µ

s
)

D
M

 W
T

dm
do

/d
m

do

C
L-

14
 W

T

C
l-1

4 
K
O

***



79 

In summary, this study provides indication for pre- and postsynaptic changes that 

are specific to the mutation of miR-96 and not a general consequence of hair cell 

loss. MNTB neurons in homozygous Diminuendo mutant mice showed a highly 

significant decrease in cell diameter and structural deviations at the presynaptic 

side that were accompanied by changes in the intrinsic properties and alterations 

in synaptic transmission.  

It will be interesting to further analyze the underlying mechanisms that generate 

the observed differences between Diminuendo wildtype and mutant mice. For 

instance, altered potassium currents could play a role for the changes in firing 

behavior.  
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IV. DISCUSSION 

 

 

The early development and wiring of the auditory system is to a large extend 

genetically encoded and differs between animals depending on their different 

demands. The basic tonotopic arrangement is established during fetal and early 

postnatal life, and thus, without the influence of sensory input, but further activity-

dependent refinement occurs during maturation.  

In the first set of experiments (Chapter III-1: Development of GABAergic and 

glycinergic inputs to the LSO in mice and gerbils.), I comparatively studied the 

developmental changes of the inhibitory MNTB-LSO projection in mice and gerbils 

before hearing onset. I further analyzed whether the inhibitory neurotransmitters 

GABA and Glycine are co-released from single vesicles during early postnatal 

development, a period where this projection undergoes a shift in the 

predominating transmitter type.  

The second study (Chapter II-Characterization of cells and inputs in the adult mouse 

LSO along the tonotopic axis) examines the LSO of adult mice and addresses the 

question whether the tonotopic arrangement of this nucleus is reflected in 

adaptations on the cellular and synaptic level. 

In a third series of experiments (Chapter III-3: Consequences of two deafness-

related mutations for a large central auditory synapse) I analyzed how the lack of 

sensory experience affects the calyx of Held and its postsynaptic partners in the 

MNTB and studied the role of miR-96 for the maturation of this nucleus. Therefore, 

I compared the Claudin-14 knockout mouse, a mouse model for peripheral hearing 

loss, to the Diminuendo mouse where the mutated miR-96 is expressed in the 

peripheral and central nervous system. 
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1.  DEVELOPMENT OF GABAERGIC AND GLYCINERGIC 

INPUTS 

 

 

The basis for ILD processing in the LSO is a precise balance of the converging 

excitatory and inhibitory inputs (Boudreau and Tsuchitani, 1968; Sanes, 1990; 

Grothe et al., 2010). The inhibitory MNTB-LSO projection undergoes major changes 

before the onset of hearing, including a reduction of inhibitory inputs (Kim and 

Kandler, 2003) and a decrease in arborization (Sanes and Siverls, 1991). 

During early postnatal development, inhibition in this pathway is predominantly 

GABA-mediated and undergoes a shift to primarily glycinergic transmission that is 

largely completed around hearing onset (Kotak et al., 1998; Nabekura et al., 2004), 

a process that contributes to the synaptic refinement of this projection (Kotak and 

Sanes, 2000; Chang et al., 2003).  

 

In this project, I studied the switch in transmitter type in mice and gerbils at the 

ages of P 5-6, P 8-9 and P 15-16 Since both species possess differences regarding 

their hearing range and their required temporal resolution, the question arises 

whether this is also reflected in differences in the development of the inhibitory 

MNTB-LSO projection. 

 

 

 

Development and species-specific differences 

 

 

In both mice and gerbils, a developmental increase in the frequency and amplitude 

of miniature IPSCs was observed, in accordance with literature (Walcher et al., 
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2011). An increase in amplitude of miniature postsynaptic currents was also 

reported for other nuclei of the SOC, such as the MNTB (Taschenberger and von 

Gersdorff, 2000) and the MSO (Magnusson et al., 2005). 

Furthermore, the analysis demonstrated that mIPSCs in both species acquire faster 

kinetics (Figure 2). An acceleration of the decay time was also observed in the 

evoked EPSCs while the maximal amplitude remained rather constant in both 

species (Figure 3). The acquisition of faster IPSC kinetics in both mice and gerbils is 

in accordance to previously published results in the LSO (Walcher et al., 2011) and 

was also observed for other nuclei such as the MNTB (Awatramani et al., 2004), the 

MSO (Magnusson et al., 2005) and the DNLL (Ammer et al., 2012). One factor that 

could contribute to the acceleration of IPSC kinetics are different GABA and glycine 

receptor isoforms. The subunit composition changes during development 

(Piechotta et al., 2001) and influences the IPSC time course (Lynch, 2009).  

 

Contrary to the results reported in Walcher et al. (2011), miniature and evoked 

IPSCs in the mouse at all studied ages exhibited a generally slower decay time 

compared to gerbils. Possibly, these slower kinetics in mice are caused by strain-

specific differences, as the study mentioned above used Balb/C mice while the 

results reported here were obtained from C57/BL6 mice. It has been shown 

previously that different mouse lines exhibit a large variability regarding their 

auditory function (Zheng, 1999; Myint et al., 2016). One could speculate that the 

faster IPSC decay kinetics in the Balb/C mouse might lead to a reduced or 

temporally more precise inhibition in the LSO, but whether this actually leads to 

changes in ILD processing or is compensated by other intrinsic factors remains to 

be shown. 
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No evidence for co-release of GABA and glycine 

 

 

If there would be a co-release of GABA and glycine from one single synaptic 

terminal, mIPSCs should exhibit sensitivity to specific blockers.  However, in this 

study, the wash-in of the GABAA receptor antagonist SR-95531 did not alter the 

decay time, the amplitude or the frequency significantly (Figure 2). 

.   

A co-release of both transmitters from the same vesicles should have resulted in 

alterations of the mIPSC waveform upon the application of SR-95531. This is in 

contrast to previously published observations that could demonstrated mixed 

mIPSCs in the rat (Nabekura et al., 2004) but confirms results obtained in the mouse 

(Frotscher (2012); unpublished). 

A possible explanation could be that mixed mIPSCs occur in the rat but not in mice 

or gerbils or that the GABAergic component is too small to be detected in these 

animals. Alternatively, differences in the experimental procedure could have led to 

these dissimilar results, such as the type of drug used to block GABAergic 

transmission. While Nabekura et al. (2004) used bicuculline, SR-95531 was applied 

in this study and in the work of Frotscher (2012). For both drugs, an additional 

unspecific action on glycine receptors has been demonstrated, that is dependent 

on the subunit composition and could have influenced the results (Li and Slaughter, 

2007).  

 

Furthermore, the wash-in of the blocker did not lead to a reduction of the mIPSC 

frequency, as it would have been expected for a release of GABA and Glycine from 

separate vesicles. Assuming that there is actually also GABAergic transmission in 

the LSO, an explanation for this finding could be a very low release probability of 

GABA-containing vesicles that is not sufficient to alter the mIPSC frequency 

significantly. 
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Indeed, the existence of a GABAergic component could be inferred for evoked IPSCs 

and was in line with a developmental transition from primarily GABAergic to 

glycinergic transmission in the mouse LSO (Figure 3). This is in agreement with 

literature, where the switch in transmitter type has been demonstrated in gerbils 

and rats by analyzing evoked IPSCs (Kotak et al., 1998; Gillespie et al., 2005).  

While the fast component of the decay time was insensitive to SR-95531, the slow 

component showed a slight reduction in both species. This reduction was more 

pronounced in the younger age group, suggesting that GABA has a larger 

contribution in immature animals. 

 

However, these results could not provide evidence for a fast co-release of GABA 

and glycine in mice and gerbils. The data rather suggest that both transmitters are 

released separately. The maturation of the inhibitory MNTB-LSO projection in both 

rodents involves similar developmental changes, such as the acquisition of faster 

IPSC kinetics. This is not surprising as sound localization with high temporal 

resolution requires fast and precise signal transmission.  

 

However, this study raises the question where the GABA comes from, as there 

seems to be no co-release with Glycine from the same vesicle. Furthermore, the 

results indicate that both inhibitory transmitters could exhibit different release 

probabilities, arguing against a simultaneous release from the same synaptic 

terminal. An explanation could be that the GABAergic component demonstrated in 

the evoked IPSCs is a result of spillover. Indeed, spillover of GABA between 

neighboring MNTB axons that causes the activation of GABAA receptors has been 

recently shown to occur in developing mice (Weisz et al., 2016). 

 

Alternatively, the GABAergic input could originate from an entirely different 

projection that does not arise in the MNTB. To test this hypothesis, the Egr2;En1 

conditional knockout mouse would be an ideal model, as it does not possess an 
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MNTB. Studies have shown that mice lacking the MNTB still display a functional 

glycinergic innervation of the LSO (Jalabi et al., 2013; Altieri et al., 2014), suggesting 

that inhibition in the LSO may have additional other origins besides the MNTB. 

 

 

 

  



86 

2. CHARACTERIZATION OF CELLS TYPES AND INPUTS IN THE 

LSO 

 

 

The LSO receives converging inhibitory and excitatory inputs that are arranged in a 

frequency-dependent manner and provide the basis for ILD coding (Boudreau and 

Tsuchitani, 1968, 1970; Moore and Caspary, 1983; Kavanagh and Kelly, 1992). The 

medial limb preferentially responds to high-frequency sounds while neurons 

located in the lateral part are more sensitive to sounds with lower frequencies. The 

following experiments investigate whether the tonotopic gradient in the LSO is 

accompanied by adaptations in the intrinsic and synaptic properties of neurons 

sensitive to different frequencies. This study was carried out in the mouse, an 

animal with a hearing range of relatively high frequencies above 2 kHz (Heffner and 

Heffner, 2007). 

 

 

 

Two different cell types in the LSO 

 

 

Morphological studies have described between five and seven neuron types in the 

LSO of rodents and cats (Helfert and Schwartz, 1986, 1987; Rietzel and Friauf, 1998). 

Electrophysiologically, this study could demonstrate the existence of two different 

cell populations in the LSO, which display differences regarding their firing behavior, 

their input resistance and the action potential waveform, but with similar 

membrane capacitance and resting membrane potential. 

The finding of two cell populations is in accordance with Sterenborg et al. (2010), 

who have also classified two types of neurons in mice: principal neurons that mostly 
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fire onset action potentials, and continuously spiking lateral olivocochlear (LOC) 

neurons, that are both evenly distributed within the LSO. 

While LSO principal neurons are involved in ILD coding by integrating bilateral 

converging excitatory and inhibitory inputs, less is known about the function of LOC 

neurons. They receive input from the ipsilateral PVCN and send efferent projections 

via the olivocochlear bundle to ipsilateral spiral ganglion neurons that innervate 

inner hair cells (Felix and Ehrenberger, 1992; Warr, 1992). They are thought to 

balance interaural sensitivity (Darrow et al., 2006) and play a protective role during 

noise exposure (Darrow et al., 2007).  LOC neurons in the rat (Fujino et al., 1997; 

Adam et al., 1999) and the mouse (Sterenborg et al., 2010) are characterized by 

distinct properties, including their sustained firing behavior, their higher input 

resistance compared to principal neurons and distinct current-voltage 

characteristics.  

 

In this study, the continuously spiking neurons possessed a high input resistance 

above 500 MΩ and broader action potentials. This cell type was found in the whole 

LSO except for the most lateral positions and displayed no location-specific 

adaptations. In contrast, the input resistance of the onset firing neurons was 

generally lower and increased from medial to lateral. With respect to their higher 

input resistance and their firing pattern, the continuously firing neurons could 

therefore indeed be classified as LOC neurons. Furthermore, they were the less 

prevalent cell type and accounted for approximately one third of all neurons, a ratio 

that was also previously reported for LOC neurons (Sterenborg et al., 2010). 

However, in contrast to previous findings (Sterenborg et al., 2010), these neurons 

did not differ from principal neurons regarding their membrane capacitance and 

their resting potential.  
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Excitatory and inhibitory inputs 

 

 

LSO neurons are excited by sounds presented to the ipsilateral ear and receive 

increasing inhibition with increasing sound intensity at the contralateral ear 

(Boudreau and Tsuchitani, 1968, 1970; Moore and Caspary, 1983; Kavanagh and 

Kelly, 1992). For ILD coding, the precise timing and strength of the excitatory and 

inhibitory input is crucial. 

 

The analysis of pharmacologically isolated miniature postsynaptic currents 

demonstrated larger amplitudes and slower kinetics for inhibitory events compared 

to excitatory events. Miniature IPSCs occurred with a lower frequency, indicating 

that LSO neurons receive fewer but stronger inhibitory inputs. 

Larger and slower currents were also observed for evoked IPSCs compared to the 

EPSCs. Especially IPSCs showed discrete amplitude steps with gradually increasing 

stimulation strength, which is generally interpreted as a recruitment of additional 

fibers and was also reported in previous studies in mice (Walcher et al., 2011), 

gerbils (Walcher et al., 2011) and rats (Kim and Kandler, 2003). This stepwise 

increase in amplitude was less pronounced for EPSCS, suggesting that LSO neurons 

receive more and smaller excitatory inputs.  

 

 

Little evidence for tonotopy-dependent adaptations in the mouse LSO 

 

 

This study found only few hints for cellular and synaptic adaptations to the 

tonotopic position of the neuron: Onset spiking neurons possibly displayed a 

gradient regarding their input resistance that increased from the medial to the 
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lateral LSO while the intrinsic properties of continuously firing cells showed no such 

relation to their position within the LSO. This would make sense insofar that the 

onset spiking neurons are presumably principal neurons, and thus, in contrast to 

the continuously firing LOC neurons, they are involved in ILD coding.  Tonotopy-

dependent adaptations in the intrinsic properties would therefore rather be 

expected from these cells than from the LOC neuron. A lower input resistance in 

the high-frequency medial limb could contribute to a shortening of the integration 

time, and would therefore improve temporal precision. 

On the synaptic side, the characteristics of miniature and evoked IPSCs and EPSCs 

showed no clear trend from the medial to the lateral limb. If anything, postsynaptic 

currents in the most laterally located neurons displayed a larger variability. 

 

Taken together, these results indicate that neurons in the mouse LSO hardly 

possess any considerable adaptations that reflect whether they are involved in the 

processing of higher or lower frequencies. The lack of any gradients in the 

properties of LSO neurons contrasts findings from other species with hearing ranges 

that include lower sound frequencies than the mouse. In the rat and the ferret LSO, 

a mediolateral gradient was demonstrated for the expression of different proteins 

such as synaptotagmins (Cooper and Gillespie, 2011), cannabinoid receptors (Chi 

and Kandler, 2012) and calcium binding proteins (Friauf, 1993; Henkel and Brunso-

Bechtold, 1998). A graded expression pattern was also observed for Kv channels 

that play a role in regulating neuronal excitability (Li et al., 2001; Barnes-Davies et 

al., 2004). 

Presumably, the absence of tonotopy-dependent adaptations in the mouse LSO 

results from the hearing range of these animals, which is generally quite high and 

hence, all neurons in the LSO would be already specialized to process these high 

frequencies and need no further adaptations. It would be interesting to perform 

the same experiments in an animal with a broader hearing range. 
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3. CONSEQUENCES OF DEAFNESS-RELATED MUTATIONS 

 

 

In this study, I compared the consequences of two deafness-related mutations for 

MNTB principal neurons and their synaptic inputs. Diminuendo is the first known 

mutation of a microRNA associated with deafness and is expressed in the peripheral 

and central auditory system. While the effects of miR-96 on cochlear development 

have been investigated before (Lewis et al., 2009; Kuhn et al., 2011), its role in the 

development of the auditory brainstem was unexplored yet. Since there is no 

conditional knockout available, the Claudin-14 knockout mouse, where the defect 

affects only the peripheral auditory system, served as a control.  

 

 The MNTB is a suitable nucleus to investigate the consequences of both mutations 

as it is an early station in auditory processing and acts mainly as a relay rather than 

fulfilling more complicated integrative functions. The main input to each MNTB 

principal neuron is provided by one single giant terminal, the calyx of Held, which 

has become a well-studied model for the analysis of synaptic structure-function 

relationship. The calyx of Held exhibits little activity-dependent plasticity and 

develops largely normal in models of congenital hearing loss (Oleskevich et al., 

2004; Youssoufian et al., 2005; Youssoufian et al., 2008), an aspect that is helpful to 

detect alterations induced by the mutation of miR-96 in the brainstem. In contrast, 

several intrinsic properties of postsynaptic MNTB neurons have been shown to be 

altered by deafness (Leao et al., 2004; von Hehn et al., 2004; Leao et al., 2006b), 

making a control with only peripheral deficits necessary.  
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To reduce possible influences of the tonotopic gradient in neuronal properties (Li 

et al., 2001; Barnes-Davies et al., 2004; von Hehn et al., 2004; Brew and Forsythe, 

2005), all neurons were recorded from the middle part of the MNTB. Despite this 

limitation, a still impressive heterogeneity was observed in the recordings. This is, 

however, in agreement with other studies obtained at high temperature, which also 

showed large variations in their data (Grande et al., 2014). 

 

 

 

Comparability of both mutants  

 

 

The normal development and maturation of sound localization circuits requires 

genetics, spontaneous activity and sensory experience.  

Thus, a suitable control to the Diminuendo mouse should exhibit a similar time 

course and type of developmental defects. Although there is a large number of 

mouse mutants with hair cell deficiencies available, there is none that mimics the 

exact cochlear phenotype of the dmdo/dmdo mutation, which has been shown to 

influence the expression of 96 transcripts directly or as a downstream effect, 

including several genes involved in hair cell function and maturation (Lewis et al., 

2009). So far, there is also no conditional knockout of miR-96 in the brainstem 

available that could serve as control. 

 

In the dmdo/dmdo mutant, hair cell development stops at a late embryonic or early 

postnatal stage. Hair cells fail to differentiate into IHCs and OHCs and retain their 

immature biophysical properties and morphology before they start to degenerate 

around P7 (Lewis et al., 2009; Kuhn et al., 2011). In Cldn-14-/- mice, the development 

of the cochlea appears normal during the first postnatal week. This is followed by a 
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rapid progressive loss of OHCs starting around P 8 and a slower degeneration of 

IHCs, presumably caused by a failure of the reticular lamina to act as an ionic 

permeability barrier. Measurements of auditory brainstem responses at P 15 – P 17 

demonstrate that Cldn-14-/- mice are deaf (Ben-Yosef et al., 2003). 

 

Although the deficiencies in the peripheral system are not identical in these 

mutants, both the Cldn-14-/- and the dmdo/dmdo mouse display a similar initial 

development of the cochlea with a regular morphology and arrangement of hair 

cells and stereocilia, followed by hair cell loss and deafness. Thus, both mutants 

should experience normal patterns of spontaneous auditory nerve activity during 

fetal life, but no refinement dependent on auditory input, making the Cldn-14-/- 

mouse to a sufficient control.  

 

However, mice also exhibit substantial strain-specific differences regarding their 

auditory function (Zheng, 1999; Myint et al., 2016). Since both mutants are on a 

different background (NMRI for the Cldn-14-/- mouse and C3HeB/FeJ for 

Diminuendo) it is important to compare each mutant to its respective wildtype.  

 

 

 

Maturation of synaptic morphology  

 

 

The calyx of Held features several structural and functional specializations to fulfill 

its role as fast and largely reliable relay synapse, such as the giant size that allows 

to harbor large numbers of vesicles and active zones (Satzler et al., 2002). During 

the first three weeks of life, the cup- or spoon-shaped calyx develops into a complex 

and highly fenestrated morphology with finger-like substructures and membrane 
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swellings (Kandler and Friauf, 1993; Satzler et al., 2002; Wimmer et al., 2006; Ford 

et al., 2009). Within these swellings, the initially more homogenously distributed 

vesicles assemble around a cluster of mitochondria, forming a so-called donut 

around hearing onset (Wimmer et al., 2006). The morphological specializations of 

the mature calyx of Held are thought to support high-frequency transmission in 

several ways. For example, the close proximity of vesicles to mitochondria could 

provide the energy needed for the vesicle cycle. The compartmentalization 

generated by the membrane swellings could be important to control local calcium 

and to maintain high concentrations of ATP and glutamate near the active zones 

(Wimmer et al., 2006).  

 

Immunohistochemical stainings against synaptic vesicle protein 2 (Figure 8) 

demonstrated well-defined round donuts in the Diminuendo wildtype while vesicles 

in mutant mice were arranged in irregular asymmetric shapes similar to donuts at 

more immature states shown in Wimmer et al. (2006). In the Claudin-14 group, 

donuts were generally less uniform and round. A difference between wildtype and 

mutant was visible but less pronounced, suggesting that deafness may play a role 

but cannot fully account for the observed differences, indicating that miR-96 is 

involved in the maturation of the calyx of Held.  

 

 

 

Altered synaptic transmission in the Diminuendo mutant 

 

 

A role of miR-96 in the development of the calyx of Held is further supported by the 

fact that synapses in mutant mice also exhibit immature features on a functional 

level, as shown by the analysis of EPSCs. 
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EPSCs can be described as a product of the number of available vesicles (N), the 

release probability (PR) of a single vesicle, and the quantal size q that reflects a 

single vesicle (Sakaba et al., 2002). Owing to their size, giant synapses such as the 

calyx of Held can harbor a large number of release sites that determine the 

maximum N, which can be limited by the rate of pool replenishment. PR
 is 

influenced by intracellular Ca2+ and can be increased by elevating the Ca2+ 

concentration, (Borst and Sakmann, 1998; Schneggenburger et al., 1999). Thus, it 

should be noted that the recording solution used in this study contained a 

physiological concentration of 1.2 mM Ca2+ when comparing these results to other 

studies of synaptic depression at the calyx of Held.  

 

In all four groups, EPSCs evoked by stimulation of calyceal inputs showed similar 

peak amplitudes. However, only dmdo/dmdo mice demonstrated strong 

depression compared to the wildtype, especially at higher frequencies (Figure 13).  

Assuming that depression is to a large degree caused by vesicle pool depletion, 

cumulative EPSCs were used to estimate the initial pool size (Figure 14). The pool 

sizes extrapolated from plotting EPSC amplitudes against EPSCcum revealed no 

differences between normal hearing and deaf mice in the Claudin-14 group. In 

contrast, pool size estimates for Diminuendo mutant mice at 300 and 500 Hz were 

only 65 and 67 % of the value calculated for the wildtype control. These results 

further support the view of an arrested development in dmdo/dmdo mice since it 

has been shown that the degree of depression is reduced during development and 

the estimated vesicle pool increases (Taschenberger and von Gersdorff, 2000; 

Taschenberger et al., 2002). 

 

These results also confirm the close relationship of structure and function at the 

calyx of Held. The mature morphology with its donut-like arrangement of vesicles 

(Figure 8) is thought to support high frequency transmission for longer periods of 
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time (Wimmer et al., 2006). The Diminuendo control mouse with the most defined 

donuts shows less depression and a larger pool size estimate than the other groups.  

However, the differences especially at high-frequency stimulations are not 

necessarily caused only by presynaptic differences but could be partly also 

generated postsynaptically by AMPA receptor saturation and desensitization 

(Neher and Sakaba, 2001; Scheuss et al., 2002). 

 

In all groups, MNTB neurons received smaller non-calyceal inputs in addition to the 

large calyceal input (Figure 13). These inputs were also mentioned in previous 

studies (Forsythe and Barnes-Davies, 1993; Smith et al., 1998; Taschenberger and 

von Gersdorff, 2000; Hamann et al., 2003) but their function and origin remains 

largely unclear. Due to their differences in threshold and kinetics, it is assumed that 

they do not originate from globular bushy cells. Possibly, they arise from SBCs in 

the contralateral AVCN and have a modulatory effect on the calyceal input (Hamann 

et al., 2003). 

These inputs were clearly different from the calyceal inputs and are characterized 

by a smaller amplitude and slower kinetics, consistent with literature (Hamann et 

al., 2003). Furthermore, they often displayed facilitation upon train stimulation at 

lower frequencies that was more pronounced in the normal hearing animals, 

suggesting that activity-dependent mechanisms may play a role in the development 

of the non-calyceal inputs.  
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Immature AMPAR and NMDAR mediated currents in Diminuendo mice 

 

 

The study of NMDA and AMPA receptor mediated currents revealed differences 

between the dmdo/dmdo mouse and the other groups (Figure 15). Both AMPA and 

NMDA receptors are activated by glutamate. Their different kinetics lead to a 

biphasic response with a slower NMDA component and a faster AMPA component. 

Several studies demonstrate that the initially large amplitude of NMDAR mediated 

currents in pre-hearing animals is strongly reduced during maturation, a process 

that is thought to contribute to fast high-fidelity synaptic transmission 

(Taschenberger and von Gersdorff, 2000; Futai et al., 2001; Joshi and Wang, 2002; 

Steinert et al., 2010).   

 

Interestingly, substantial NMDAR current amplitudes were only observed in 

dmdo/dmdo mice but not in the other groups while AMPAR current amplitudes did 

not differ from the wildtype, leading to a significantly altered NMDA/AMPA ratio in 

the Diminuendo mutant Figure 15 B - D). This prominent difference was also 

confirmed by blind analysis – Diminuendo mutant and wildtype mice were correctly 

identified in about 80 % of the cells, while Claudin.14 knockout and wildtype mice 

were undistinguishable. Deafness had no influence on the NMDA/AMPA ratio as 

also indicated by the similar values in the Claudin14 group, suggesting that miR-96 

takes part in the development of mature NMDAR current characteristics in MNTB 

principal neurons.  

 

In addition, AMPAR mediated currents demonstrated significantly slower kinetics 

in the Diminuendo mutant (Figure 15 E, F). It has been shown that AMPAR currents 

acquire faster kinetics during development (Taschenberger and von Gersdorff, 

2000; Koike-Tani et al., 2005), further supporting the assumption that the miR-96 

mutation disrupts the maturation of glutamatergic transmission in the MNTB. 
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Alteration of specific intrinsic properties by the miR-96 mutation 

 

 

In contrast to many aspects of synaptic morphology and transmission that were 

clearly influenced by miR-96, several passive properties and action potential 

parameters of MNTB principal neurons remained to a large extend unchanged by 

the Diminuendo mutation and by deafness in general.  

 

Although the average cell diameter estimated from immunostainings was 

significantly reduced by about 11 % in the Diminuendo mutant (Figure 8), this 

difference in size was not significant in effective membrane capacitance 

measurements (Figure 9). Both deaf mice exhibited a slightly lower, but not 

significantly altered input resistance and showed no clear differences regarding 

their membrane time constants. This is consistent with previous studies that 

demonstrated that hearing loss has no considerable effect on these passive 

parameters (Leao et al., 2005; Leao et al., 2006a; Grimsley and Sivaramakrishnan, 

2014). These results also indicate that the mutation of miR-96 has only little 

consequences for the development of the approximated passive cell properties. 

 

The analysis of several action potential parameters revealed that neither deafness 

in general nor the mutation of miR-96 altered the shape and thresholds 

considerably (Figure 11). Only the current threshold in cells of Diminuendo mutant 

mice showed a nearly significant reduction. It has been shown that action potentials 

in MNTB principal neurons acquire higher current thresholds during development 

(Hoffpauir et al., 2010).  

Thus, this could be an additional hint for the theory of a developmental arrest. 

Alternatively, the reduced current threshold could reflect a generally elevated 

excitability as previously described for deaf mice (Leao et al., 2004) 
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Although these results demonstrated no clear effects of any of the mutations, they 

emphasize the large strain-specific differences between the NMRI and C3HeB/FeJ 

mice. 

 

Despite the largely unchanged action potential parameters elicited by short EPSC-

approximating stimuli, long depolarizations demonstrated clear differences in 

excitability. In the Diminuendo mouse, a larger proportion of cells exhibited a tonic 

firing behavior compared to the wildtype (Figure 10), again indicating that certain 

neuronal properties remain developmentally premature. Studies demonstrate that 

a continuous firing behavior is characteristic for young animals while an onset-firing 

type predominates in MNTB neurons of mature animals (Dodson et al., 2002; 

Hoffpauir et al., 2010). Pharmacological evidence, immunohistochemistry and gene 

expression studies have revealed that low-voltage activated potassium channels 

play a major role in controlling the firing behavior and that the expression of 

different subtypes is developmentally regulated (Brew and Forsythe, 1995; Leao et 

al., 2004; Hoffpauir et al., 2010).  

It will be interesting to address the question whether the observed changes in firing 

behavior of MNTB neurons in the Diminuendo mouse are a consequence of an 

immature expression pattern of these channels. This could be realized by different 

approaches, such as pharmacological or Immunohistochemical methods or by 

analyzing expression levels of calcium channel mRNA.  

 

The fact that both firing types occur with the same frequency in normal hearing and 

deaf mice of the Claudin-14 group indicates that hair cell defects alone are not 

sufficient to alter the firing behavior. Conversely, MNTB neurons in the deafness 

(dn/dn) mouse, another commonly used model for deafness caused by cochlear 

defects, have been shown to exhibit a predominance of the sustained firing pattern 

comparable to the Diminuendo mouse (Oleskevich and Walmsley, 2002). In this 
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mutant, the degeneration of the organ of Corti starts around P15, but some 

structural abnormalities are already present at birth (Faddis et al., 1998). 

 

 

 

Summary and outlook 

 

 

The comparison of the Diminuendo mutant and the Claudin-14 knockout mouse 

revealed several features of the calyx of Held. First, it is notable that the maturation 

of the calyx of Held and its postsynaptic partner show little activity-dependent 

plasticity and seem to follow a developmental program that is barely influenced by 

hair cell degeneration, as indicated by the results obtained from the Claudin-14 

knockout mice. The majority of the results showed no differences between hearing-

impaired and control animals: the passive and active intrinsic membrane properties 

of MNTB principal neurons were not distinguishable and both groups exhibited 

similar firing patterns and action potential characteristics, as well as equal levels of 

depression of calyceal EPSCs, a similar vesicle pool estimate and a comparable 

NMDA/AMPA ratio.  

 

In the Diminuendo group, the differences between mutant and wildtype mice were 

more pronounced. These alterations appear to reflect a developmentally 

premature state of the calyx of Held and some features of the postsynaptic neuron 

rather than a compensation for the lack of normal auditory experience. The 

presynaptic terminal displays an immature morphology that is accompanied by 

several features of synaptic transmission characteristic for younger animals, such 

as a stronger depression of EPSCs and immature proportions and kinetics of NMDA 

and AMPA receptor mediated currents. In addition, neurons are more excitable and 
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only a minority responds with an adult-like firing pattern. The fact that some 

parameters are not altered by the mutation indicates that it does not lead to a 

general developmental arrest but that is involved in the maturation of certain 

specific neuronal and synaptic properties. 

 

Furthermore, this work shows that mice exhibit considerable strain-specific 

differences that should not be underestimated when comparing results from 

different mouse lines. But even if the mice investigated here would have had the 

same background, the comparison of these two mutations has limitations as both 

affect cochlear development in their own complex ways, which could have 

downstream consequences that are hard to predict. Thus, the next step would be 

to create a conditional knockout of miR-96 in the auditory brainstem. 

 

Despite these limitations, the findings reported in this study provide evidence that 

miR-96 is not only involved in the development of the cochlea but that it also 

regulates the maturation of auditory brainstem nuclei. These results may also 

contribute to the understanding of miR-96 mutations related to hearing loss in 

humans. For instance, to predict the outcome of a treatment with a cochlea 

implant, it is important to know whether the central auditory pathway is actually 

functional.   

 

  



101 

LITERATURE 

 
 
 
 
Adam TJ, Schwarz DW, Finlayson PG (1999) Firing properties of chopper and delay neurons in 

the lateral superior olive of the rat. Experimental brain research 124:489-502. 
Adams J (1997) Projections from octopus cells of the posteroventral cochlear nucleus to the 

ventral nucleus of the lateral lemniscus in cat and human. Auditory Neuroscience 3:335-
350. 

Altieri SC, Zhao T, Jalabi W, Maricich SM (2014) Development of glycinergic innervation to the 
murine LSO and SPN in the presence and absence of the MNTB. Frontiers in neural 
circuits 8:109. 

Ammer JJ, Grothe B, Felmy F (2012) Late postnatal development of intrinsic and synaptic 
properties promotes fast and precise signaling in the dorsal nucleus of the lateral 
lemniscus. Journal of neurophysiology 107:1172-1185. 

Awatramani GB, Turecek R, Trussell LO (2004) Inhibitory control at a synaptic relay. The Journal 
of neuroscience : the official journal of the Society for Neuroscience 24:2643-2647. 

Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of 
principal neuron excitability across the tonotopic axis in the rat lateral superior olive. 
The European journal of neuroscience 19:325-333. 

Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: Exploring the brain: Lippincott 
Williams & Wilkins. 

Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, 
Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael 
Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal 
recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Human 
molecular genetics 12:2049-2061. 

Berger C, Meyer EM, Ammer JJ, Felmy F (2014) Large somatic synapses on neurons in the ventral 
lateral lemniscus work in pairs. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 34:3237-3246. 

Borst JG, Sakmann B (1998) Calcium current during a single action potential in a large 
presynaptic terminal of the rat brainstem. The Journal of physiology 506 ( Pt 1):143-
157. 

Borst JG, Soria van Hoeve J (2012) The calyx of Held synapse: from model synapse to auditory 
relay. Annual review of physiology 74:199-224. 

Bortone DS, Mitchell K, Manis PB (2006) Developmental time course of potassium channel 
expression in the rat cochlear nucleus. Hearing research 211:114-125. 

Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. 
Journal of neurophysiology 31:442-454. 

Boudreau JC, Tsuchitani C (1970) Cat superior olive S-segment cell discharge to tonal 
stimulation. Contributions to sensory physiology 4:143-213. 



102 

Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary 
functions in postsynaptic integration at a central auditory synapse. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 15:8011-8022. 

Brew HM, Forsythe ID (2005) Systematic variation of potassium current amplitudes across the 
tonotopic axis of the rat medial nucleus of the trapezoid body. Hearing research 
206:116-132. 

Brown SD, Hardisty-Hughes RE, Mburu P (2008) Quiet as a mouse: dissecting the molecular and 
genetic basis of hearing. Nature reviews Genetics 9:277-290. 

Brown SDM, Peters J (1996) Combining mutagenesis and genomics in the mouse — closing the 
phenotype gap. Trends in Genetics 12:433-435. 

Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different 
neuronal populations in the dorsal and ventral cochlear nuclei. Brain Research Bulletin 
60:457-474. 

Chang EH, Kotak VC, Sanes DH (2003) Long-term depression of synaptic inhibition is expressed 
postsynaptically in the developing auditory system. Journal of neurophysiology 
90:1479-1488. 

Charif M, Boulouiz R, Bakhechane A, Benrahma H, Nahili H, Eloualid A, Rouba H, Kandil M, Abidi 
O, Lenaers G, Barakat A (2013) Genetic and molecular analysis of the CLDN14 gene in 
Moroccan family with non-syndromic hearing loss. Indian journal of human genetics 
19:331-336. 

Chi DH, Kandler K (2012) Cannabinoid receptor expression at the MNTB-LSO synapse in 
developing rats. Neuroscience letters 509:96-100. 

Cooper AP, Gillespie DC (2011) Synaptotagmins I and II in the developing rat auditory brainstem: 
Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory 
terminals. The Journal of comparative neurology 519:2417-2433. 

Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of 
the lateral lemniscus of the bat Eptesicus fuscus. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 6:2926-2940. 

Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating 
bat: parallel pathways for analyzing temporal features of sound. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 11:3456-3470. 

Cramer KS, Gabriele ML (2014) Axon guidance in the auditory system: multiple functions of Eph 
receptors. Neuroscience 277:152-162. 

Darrow KN, Maison SF, Liberman MC (2006) Cochlear efferent feedback balances interaural 
sensitivity. Nature neuroscience 9:1474-1476. 

Darrow KN, Maison SF, Liberman MC (2007) Selective removal of lateral olivocochlear efferents 
increases vulnerability to acute acoustic injury. Journal of neurophysiology 97:1775-
1785. 

Davis GM, Haas MA, Pocock R (2015) MicroRNAs: Not “Fine-Tuners” but Key Regulators of 
Neuronal Development and Function. Frontiers in Neurology 6:245. 

del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, 
Moreno F (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing 
impairment. The New England journal of medicine 346:243-249. 

Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli 
FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the 
mouse brainstem. PLoS genetics 9:e1003249. 



103 

Dodson PD, Barker MC, Forsythe ID (2002) Two heteromeric Kv1 potassium channels 
differentially regulate action potential firing. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 22:6953-6961. 

Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 
68:293-308. 

Elmqvist D, Quastel DM (1965) A quantitative study of end-plate potentials in isolated human 
muscle. The Journal of physiology 178:505-529. 

Faddis BT, Hughes RM, Miller JD (1998) Quantitative measures reflect degeneration, but not 
regeneration, in the deafness mouse organ of Corti. Hearing research 115:6-12. 

Felix D, Ehrenberger K (1992) The efferent modulation of mammalian inner hair cell afferents. 
Hearing research 64:1-5. 

Ford MC, Grothe B, Klug A (2009) Fenestration of the calyx of held occurs sequentially along the 
tonotopic axis, is influenced by afferent activity, and facilitates glutamate clearance. 
The Journal of comparative neurology 514:92-106. 

Forsythe ID, Barnes-Davies M (1993) The binaural auditory pathway: excitatory amino acid 
receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial 
nucleus of the trapezoid body. Proceedings Biological sciences / The Royal Society 
251:151-157. 

Franzen DL, Gleiss SA, Berger C, Kumpfbeck FS, Ammer JJ, Felmy F (2015) Development and 
modulation of intrinsic membrane properties control the temporal precision of 
auditory brain stem neurons. Journal of neurophysiology 113:524-536. 

Friauf E (1993) Transient appearance of calbindin-D28k-positive neurons in the superior olivary 
complex of developing rats. The Journal of comparative neurology 334:59-74. 

Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral 
cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. 
Experimental brain research 73:263-284. 

Friauf E, Lohmann C (1999) Development of auditory brainstem circuitry. Activity-dependent 
and activity-independent processes. Cell and tissue research 297:187-195. 

Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved 
targets of microRNAs. Genome research 19:92-105. 

Frotscher E (2012) Analyse pharmakologisch isolierter „miniature events“ an LSO Neuronen in 
Wildtyp und CaV1.3 knock-out Mäusen. In: bachelor thesis, TU Kaiserslautern. 

Fujino K, Koyano K, Ohmori H (1997) Lateral and medial olivocochlear neurons have distinct 
electrophysiological properties in the rat brain slice. Journal of neurophysiology 
77:2788-2804. 

Futai K, Okada M, Matsuyama K, Takahashi T (2001) High-fidelity transmission acquired via a 
developmental decrease in NMDA receptor expression at an auditory synapse. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 21:3342-
3349. 

Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD 
(1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 
374:62-64. 

Gillespie DC, Kim G, Kandler K (2005) Inhibitory synapses in the developing auditory system are 
glutamatergic. Nature neuroscience 8:332-338. 

Grande G, Negandhi J, Harrison RV, Wang LY (2014) Remodelling at the calyx of Held-MNTB 
synapse in mice developing with unilateral conductive hearing loss. The Journal of 
physiology 592:1581-1600. 



104 

Gratton MA, Vazquez AE (2003) Age-related hearing loss: current research. Current opinion in 
otolaryngology & head and neck surgery 11:367-371. 

Grimsley CA, Sivaramakrishnan S (2014) Postnatal developmental changes in the medial nucleus 
of the trapezoid body in a mouse model of auditory pathology. Neuroscience letters 
559:152-157. 

Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, 
Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in 
animals. Nature 455:1193-1197. 

Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory 
brainstem structure. Progress in neurobiology 61:581-610. 

Grothe B (2003) New roles for synaptic inhibition in sound localization. Nature reviews 
Neuroscience 4:540-550. 

Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. 
Physiological reviews 90:983-1012. 

Hamann M, Billups B, Forsythe ID (2003) Non-calyceal excitatory inputs mediate low fidelity 
synaptic transmission in rat auditory brainstem slices. The European journal of 
neuroscience 18:2899-2902. 

Heffner HE, Heffner RS (2007) Hearing ranges of laboratory animals. Journal of the American 
Association for Laboratory Animal Science : JAALAS 46:20-22. 

Helfert RH, Schwartz IR (1986) Morphological evidence for the existence of multiple neuronal 
classes in the cat lateral superior olivary nucleus. The Journal of comparative neurology 
244:533-549. 

Helfert RH, Schwartz IR (1987) Morphological features of five neuronal classes in the gerbil 
lateral superior olive. The American journal of anatomy 179:55-69. 

Henkel CK, Brunso-Bechtold JK (1998) Calcium-binding proteins and GABA reveal spatial 
segregation of cell types within the developing lateral superior olivary nucleus of the 
ferret. Microscopy Research and Technique 41:234-245. 

Hoffpauir BK, Grimes JL, Mathers PH, Spirou GA (2006) Synaptogenesis of the calyx of Held: 
rapid onset of function and one-to-one morphological innervation. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 26:5511-5523. 

Hoffpauir BK, Kolson DR, Mathers PH, Spirou GA (2010) Maturation of synaptic partners: 
functional phenotype and synaptic organization tuned in synchrony. The Journal of 
physiology 588:4365-4385. 

Hou J (2012) The yin and yang of claudin-14 function in human diseases. Annals of the New York 
Academy of Sciences 1258:185-190. 

Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating 
synaptic transmission in rat auditory brainstem. The Journal of physiology 509:419-423. 

Jalabi W, Kopp-Scheinpflug C, Allen PD, Schiavon E, DiGiacomo RR, Forsythe ID, Maricich SM 
(2013) Sound Localization Ability and Glycinergic Innervation of the Superior Olivary 
Complex Persist after Genetic Deletion of the Medial Nucleus of the Trapezoid Body. 
The Journal of Neuroscience 33:15044-15049. 

Joshi I, Wang LY (2002) Developmental profiles of glutamate receptors and synaptic 
transmission at a single synapse in the mouse auditory brainstem. The Journal of 
physiology 540:861-873. 

Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by 
cotransporters in developing lateral superior olive neurons. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 19:2843-2851. 



105 

Kandler K, Friauf E (1993) Pre- and postnatal development of efferent connections of the 
cochlear nucleus in the rat. The Journal of comparative neurology 328:161-184. 

Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission 
in the auditory brainstem of perinatal rats. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 15:6890-6904. 

Kandler K, Clause A, Noh J (2009) Tonotopic reorganization of developing auditory brainstem 
circuits. Nature neuroscience 12:711-717. 

Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of 
inhibitory inputs to auditory coincidence-detector neurons. Nature neuroscience 
5:247-253. 

Kavanagh GL, Kelly JB (1992) Midline and lateral field sound localization in the ferret (Mustela 
putorius): contribution of the superior olivary complex. Journal of neurophysiology 
67:1643-1658. 

Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) 
Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 
387:80-83. 

Kil J, Kageyama GH, Semple MN, Kitzes LM (1995) Development of ventral cochlear nucleus 
projections to the superior olivary complex in gerbil. The Journal of comparative 
neurology 353:317-340. 

Kim G, Kandler K (2003) Elimination and strengthening of glycinergic/GABAergic connections 
during tonotopic map formation. Nature neuroscience 6:282-290. 

Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the 
ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation 
of the contralateral cochlea. The Journal of comparative neurology 353:341-363. 

Kloosterman WP, Plasterk RHA (2006) The Diverse Functions of MicroRNAs in Animal 
Development and Disease. Developmental Cell 11:441-450. 

Koike-Tani M, Saitoh N, Takahashi T (2005) Mechanisms underlying developmental speeding in 
AMPA-EPSC decay time at the calyx of Held. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 25:199-207. 

Korada S, Schwartz IR (1999) Development of GABA, glycine, and their receptors in the auditory 
brainstem of gerbil: a light and electron microscopic study. The Journal of comparative 
neurology 409:664-681. 

Kotak VC, Sanes DH (2000) Long-lasting inhibitory synaptic depression is age- and calcium-
dependent. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 20:5820-5826. 

Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to 
glycinergic transmission in the central auditory system. The Journal of neuroscience : 
the official journal of the Society for Neuroscience 18:4646-4655. 

Koundakjian EJ, Appler JL, Goodrich LV (2007) Auditory neurons make stereotyped wiring 
decisions before maturation of their targets. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 27:14078-14088. 

Kremer H, van Wijk E, Marker T, Wolfrum U, Roepman R (2006) Usher syndrome: molecular 
links of pathogenesis, proteins and pathways. Human molecular genetics 15 Spec No 
2:R262-270. 

Kuhn S, Johnson SL, Furness DN, Chen J, Ingham N, Hilton JM, Steffes G, Lewis MA, Zampini V, 
Hackney CM, Masetto S, Holley MC, Steel KP, Marcotti W (2011) miR-96 regulates the 
progression of differentiation in mammalian cochlear inner and outer hair cells. 



106 

Proceedings of the National Academy of Sciences of the United States of America 
108:2355-2360. 

Kullmann PH, Kandler K (2001) Glycinergic/GABAergic synapses in the lateral superior olive are 
excitatory in neonatal C57Bl/6J mice. Brain research Developmental brain research 
131:143-147. 

Kullmann PH, Ene FA, Kandler K (2002) Glycinergic and GABAergic calcium responses in the 
developing lateral superior olive. The European journal of neuroscience 15:1093-1104. 

Leao RN, Berntson A, Forsythe ID, Walmsley B (2004) Reduced low-voltage activated K+ 
conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. 
The Journal of physiology 559:25-33. 

Leao RN, Svahn K, Berntson A, Walmsley B (2005) Hyperpolarization-activated (Ih) currents in 
auditory brainstem neurons of normal and congenitally deaf mice. European Journal of 
Neuroscience 22:147-157. 

Leao RN, Naves MM, Leão KE, Walmsley B (2006a) Altered sodium currents in auditory neurons 
of congenitally deaf mice. European Journal of Neuroscience 24:1137-1146. 

Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B (2006b) 
Topographic organization in the auditory brainstem of juvenile mice is disrupted in 
congenital deafness. The Journal of physiology 571:563-578. 

Lee K, Ansar M, Andrade PB, Khan B, Santos-Cortez RL, Ahmad W, Leal SM (2012) Novel CLDN14 
mutations in Pakistani families with autosomal recessive non-syndromic hearing loss. 
American journal of medical genetics Part A 158a:315-321. 

Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-
Goodger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ, Steel KP 
(2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in 
mice. Nature genetics 41:614-618. 

Li P, Slaughter M (2007) Glycine receptor subunit composition alters the action of GABA 
antagonists. Visual neuroscience 24:513-521. 

Li W, Kaczmarek LK, Perney TM (2001) Localization of two high-threshold potassium channel 
subunits in the rat central auditory system. The Journal of comparative neurology 
437:196-218. 

Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. 
Neuropharmacology 56:303-309. 

Madara JL (1998) Regulation of the movement of solutes across tight junctions. Annual review 
of physiology 60:143-159. 

Magnusson AK, Kapfer C, Grothe B, Koch U (2005) Maturation of glycinergic inhibition in the 
gerbil medial superior olive after hearing onset. The Journal of physiology 568:497-512. 

Mathur P, Yang J (2015) Usher syndrome: Hearing loss, retinal degeneration and associated 
abnormalities. Biochimica et biophysica acta 1852:406-420. 

Mburu P et al. (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia 
elongation, cause deafness in the whirler mouse and families with DFNB31. Nature 
genetics 34:421-428. 

McAlpine D, Grothe B (2003) Sound localization and delay lines--do mammals fit the model? 
Trends in neurosciences 26:347-350. 

Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L, Aguirre LA, 
del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA (2009) Mutations in the 
seed region of human miR-96 are responsible for nonsyndromic progressive hearing 
loss. Nature genetics 41:609-613. 



107 

Michalski N, Babai N, Renier N, Perkel DJ, Chedotal A, Schneggenburger R (2013) Robo3-driven 
axon midline crossing conditions functional maturation of a large commissural synapse. 
Neuron 78:855-868. 

Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary 
neurons. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 3:237-242. 

Myint A, White CH, Ohmen JD, Li X, Wang J, Lavinsky J, Salehi P, Crow AL, Ohyama T, Friedman 
RA (2016) Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice. 
Hearing research 332:113-120. 

Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, 
Ishibashi H (2004) Developmental switch from GABA to glycine release in single central 
synaptic terminals. Nature neuroscience 7:17-23. 

Nakamura PA, Cramer KS (2011) Formation and maturation of the calyx of Held. Hearing 
research 276:70-78. 

Neher E, Sakaba T (2001) Combining deconvolution and noise analysis for the estimation of 
transmitter release rates at the calyx of held. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 21:444-461. 

Nickel R, Forge A (2008) Gap junctions and connexins in the inner ear: their roles in homeostasis 
and deafness. Current opinion in otolaryngology & head and neck surgery 16:452-457. 

Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa Y, Mori K, 
Shima Y, Sakuma N, Usami S (2015) Gene expression profiles of the cochlea and 
vestibular endorgans: localization and function of genes causing deafness. The Annals 
of otology, rhinology, and laryngology 124 Suppl 1:6s-48s. 

Nolan PM et al. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme 
for gene function studies in the mouse. Nature genetics 25:440-443. 

Oleskevich S, Walmsley B (2002) Synaptic transmission in the auditory brainstem of normal and 
congenitally deaf mice. The Journal of physiology 540:447-455. 

Oleskevich S, Youssoufian M, Walmsley B (2004) Presynaptic plasticity at two giant auditory 
synapses in normal and deaf mice. The Journal of physiology 560:709-719. 

Palma FD, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth 
K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia 
disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature 
genetics 27:103-107. 

Piechotta K, Weth F, Harvey RJ, Friauf E (2001) Localization of rat glycine receptor α1 and α2 
subunit transcripts in the developing auditory brainstem. The Journal of comparative 
neurology 438:336-352. 

Pollak GD, Gittelman JX, Li N, Xie R (2011) Inhibitory projections from the ventral nucleus of the 
lateral lemniscus and superior paraolivary nucleus create directional selectivity of 
frequency modulations in the inferior colliculus: a comparison of bats with other 
mammals. Hearing research 273:134-144. 

Rautenberg PL, Grothe B, Felmy F (2009) Quantification of the three-dimensional morphology 
of coincidence detector neurons in the medial superior olive of gerbils during late 
postnatal development. The Journal of comparative neurology 517:385-396. 

Raviv D, Dror AA, Avraham KB (2010) Hearing loss: a common disorder caused by many rare 
alleles. Annals of the New York Academy of Sciences 1214:168-179. 



108 

Rhode W, Oertel D, Smith P (1983) Physiological response properties of cells labeled 
intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. Journal of 
Comparative Neurology 213:448-463. 

Richardson GP, de Monvel JB, Petit C (2011) How the genetics of deafness illuminates auditory 
physiology. Annual review of physiology 73:311-334. 

Rietzel HJ, Friauf E (1998) Neuron types in the rat lateral superior olive and developmental 
changes in the complexity of their dendritic arbors. The Journal of comparative 
neurology 390:20-40. 

Rosengauer E, Hartwich H, Hartmann AM, Rudnicki A, Satheesh SV, Avraham KB, Nothwang HG 
(2012) Egr2::cre mediated conditional ablation of dicer disrupts histogenesis of 
mammalian central auditory nuclei. PloS one 7:e49503. 

Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing 
P, Hamard G, Triller A, Avan P, Moser T, Petit C (2006) Otoferlin, defective in a human 
deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277-
289. 

Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin 
M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance 
MM, Puel JL (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-
3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in 
null mice. American journal of human genetics 83:278-292. 

Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, 
Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in 
diseases and biological processes. Genome biology 11:R6. 

Rusu SI, Borst JG (2011) Developmental changes in intrinsic excitability of principal neurons in 
the rat medial nucleus of the trapezoid body. Dev Neurobiol 71:284-295. 

Sakaba T, Schneggenburger R, Neher E (2002) Estimation of quantal parameters at the calyx of 
Held synapse. Neuroscience research 44:343-356. 

Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral 
superior olive. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 10:3494-3506. 

Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral 
superior olive. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 8:682-700. 

Sanes DH, Siverls V (1991) Development and specificity of inhibitory terminal arborizations in 
the central nervous system. Journal of neurobiology 22:837-854. 

Sanes DH, Song J, Tyson J (1992) Refinement of dendritic arbors along the tonotopic axis of the 
gerbil lateral superior olive. Brain research Developmental brain research 67:47-55. 

Satzler K, Sohl LF, Bollmann JH, Borst JG, Frotscher M, Sakmann B, Lubke JH (2002) Three-
dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in 
the medial nucleus of the trapezoid body. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 22:10567-10579. 

Scheuss V, Schneggenburger R, Neher E (2002) Separation of presynaptic and postsynaptic 
contributions to depression by covariance analysis of successive EPSCs at the calyx of 
Held synapse. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 22:728-739. 

Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of 
immediately available transmitter quanta at a calyx synapse. Neuron 23:399-409. 



109 

Schofield BR, Cant NB (1997) Ventral nucleus of the lateral lemniscus in guinea pigs: 
cytoarchitecture and inputs from the cochlear nucleus. Journal of Comparative 
Neurology 379:363-385. 

Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal 
processing in principal neurons of the medial superior olive. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 25:7887-7895. 

Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell 
axons from the cochlear nucleus of the cat: evidence for delay lines to the medial 
superior olive. The Journal of comparative neurology 331:245-260. 

Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus 
of the trapezoid body (MNTB) of the cat. Journal of neurophysiology 79:3127-3142. 

Smith PH, Massie A, Joris PX (2005) Acoustic stria: anatomy of physiologically characterized cells 
and their axonal projection patterns. Journal of Comparative Neurology 482:349-371. 

Steinert JR, Postlethwaite M, Jordan MD, Chernova T, Robinson SW, Forsythe ID (2010) NMDAR-
mediated EPSCs are maintained and accelerate in time course during maturation of 
mouse and rat auditory brainstem in vitro. The Journal of physiology 588:447-463. 

Sterenborg JC, Pilati N, Sheridan CJ, Uchitel OD, Forsythe ID, Barnes-Davies M (2010) Lateral 
olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory 
synaptic inputs with slower kinetics than LSO principal neurons. Hearing research 
270:119-126. 

Taschenberger H, von Gersdorff H (2000) Fine-Tuning an Auditory Synapse for Speed and 
Fidelity: Developmental Changes in Presynaptic Waveform, EPSC Kinetics, and Synaptic 
Plasticity. The Journal of Neuroscience 20:9162-9173. 

Taschenberger H, Leao RM, Rowland KC, Spirou GA, von Gersdorff H (2002) Optimizing synaptic 
architecture and efficiency for high-frequency transmission. Neuron 36:1127-1143. 

Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. The 
Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 
9:127-143. 

Tuna M, Machado AS, Calin GA (2016) Genetic and epigenetic alterations of microRNAs and 
implications for human cancers and other diseases. Genes, Chromosomes and Cancer 
55:193-214. 

von Bekesy G (1956) SIMPLIFIED MODEL TO DEMONSTRATE THE ENERGY FLOW AND 
FORMATION OF TRAVELING WAVES SIMILAR TO THOSE FOUND IN THE COCHLEA. 
Proceedings of the National Academy of Sciences of the United States of America 
42:930-944. 

von Hehn CA, Bhattacharjee A, Kaczmarek LK (2004) Loss of Kv3.1 tonotopicity and alterations 
in cAMP response element-binding protein signaling in central auditory neurons of 
hearing impaired mice. The Journal of neuroscience : the official journal of the Society 
for Neuroscience 24:1936-1940. 

Walcher J, Hassfurth B, Grothe B, Koch U (2011) Comparative posthearing development of 
inhibitory inputs to the lateral superior olive in gerbils and mice. Journal of 
neurophysiology 106:1443-1453. 

Wang LY, Neher E, Taschenberger H (2008) Synaptic vesicles in mature calyx of Held synapses 
sense higher nanodomain calcium concentrations during action potential-evoked 
glutamate release. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 28:14450-14458. 



110 

Warr WB (1992) Organization of Olivocochlear Efferent Systems in Mammals. In: The 
Mammalian Auditory Pathway: Neuroanatomy (Webster DB, Popper AN, Fay RR, eds), 
pp 410-448. New York, NY: Springer New York. 

Weber, Felmy, Nothwang (2015) Comparative analysis of inhibitory inputs to the superior 
olivary complex in low- frequency hearing gerbils, high-frequency hearing mice, and 
cogenital deaf mice. In. unpublished. 

Weisz CJ, Rubio ME, Givens RS, Kandler K (2016) Excitation by Axon Terminal GABA Spillover in 
a Sound Localization Circuit. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 36:911-925. 

Werthat F, Alexandrova O, Grothe B, Koch U (2008) Experience-dependent refinement of the 
inhibitory axons projecting to the medial superior olive. Dev Neurobiol 68:1454-1462. 

Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd 
NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB (2001) Mutations 
in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness 
DFNB29. Cell 104:165-172. 

Willaredt MA, Schluter T, Nothwang HG (2015) The gene regulatory networks underlying 
formation of the auditory hindbrain. Cellular and molecular life sciences : CMLS 72:519-
535. 

Wimmer VC, Horstmann H, Groh A, Kuner T (2006) Donut-like topology of synaptic vesicles with 
a central cluster of mitochondria wrapped into membrane protrusions: a novel 
structure-function module of the adult calyx of Held. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 26:109-116. 

Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA 
biogenesis pathways and their regulation. Nature cell biology 11:228-234. 

Yang YM, Wang LY (2006) Amplitude and kinetics of action potential-evoked Ca2+ current and 
its efficacy in triggering transmitter release at the developing calyx of Held synapse. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 26:5698-
5708. 

Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, El-Zir E, Loiselet J, 
Petit C (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes 
DFNB9, a nonsyndromic form of deafness. Nature genetics 21:363-369. 

Yorgason JG, Fayad JN, Kalinec F (2006) Understanding drug ototoxicity: molecular insights for 
prevention and clinical management. Expert opinion on drug safety 5:383-399. 

Youssoufian M, Oleskevich S, Walmsley B (2005) Development of a robust central auditory 
synapse in congenital deafness. Journal of neurophysiology 94:3168-3180. 

Youssoufian M, Couchman K, Shivdasani MN, Paolini AG, Walmsley B (2008) Maturation of 
auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse. The 
Journal of comparative neurology 506:442-451. 

Zhang H, Kelly JB (2006) Responses of Neurons in the Rat's Ventral Nucleus of the Lateral 
Lemniscus to Monaural and Binaural Tone Bursts. Journal of neurophysiology 95:2501-
2512. 

Zheng QY, Johnson, K.R.,  Erway, L.C. (1999) Assessment of hearing in 80 inbred strains of mice 
by ABR threshold analyses. Hearing research. 

 

  



111 
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AVCN 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

Anteroventral cochlear nucleus 

DCN Dorsal cochlear nucleus 

ENU N-ethyl-N-nitrosourea 

EPSC Excitatory postsynaptic current 

GBCs Globular bushy cells 

IC Inferior colliculus 
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ILD Interaural level differences 

ITD Interaural time differences 

IPSC Inhibitory postsynaptic current 
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mEPSC Miniature EPSC 

mIPSC Miniature IPSC 

miRNA microRNA 

mRNA Messenger RNA 

MNTB Medial nucleus of the trapezoid body 
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NMDA 

Medial superior olive 

N-Methyl-D-aspartate 

OHCs Outer hair cells 

PVCN Posterior ventral cochlear nucleus 

RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

SBCs Spherical bushy cells 
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