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Nature is relentless and unchangeable, and it is indifferent as to whether its 
hidden reasons and actions are understandable to man or not.  

 Galileo Galilei 
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1.1. Major Depressive Disorder 
“I didn’t want to wake up. I was having a much better time asleep. It was almost like a reverse 

nightmare, like when you wake up from a nightmare you’re so relieved. I woke up into a 

nightmare.” – Ned Vizzini, It’s Kind Of A Funny Story 

For a healthy individual it will always be difficult to fathom what suffering from major 

depressive disorder (MDD) really feels like and what it means to a person. The above quote, 

taken from a personal account of a depressed patient, is an attempt to express the subjective 

sensation of major depression. When asked, many patients describe a feeling of inescapable 

emotional hurt or pain, together with a perceived inability to move or to act (Abramson et al., 

1989, Uleyn, 1976, Joiner, 2001). MDD is a highly debilitating mood disorder that negatively 

affects a person's social and work life, their sleeping and eating habits, and general health (Blais 

and Peterson, 2004, Kennedy et al., 2001, Kupferberg et al., 2016). It often shows a chronic 

diseases course, where relapse is common, and it is extremely difficult to treat (Mrazek et al., 

2014, Leonard, 1991). Epidemiologists estimate that up to 17% percent of the worldwide 

population will suffer from MDD during their lifetime (Andrade et al., 2003, Tsuang et al., 2004). 

All these factors converge to make MDD one of the leading causes of disability worldwide 

(WHO, 2001), as well a heavy economic burden (Greenberg et al., 2015). In spite of intense 

research efforts, the causes and the neurobiological pathways leading to MDD are still not fully 

understood. This lack of understanding is exemplified by the fact that the available treatment 

options remain insufficient, as 30-50% of MDD patients do not respond to established 

antidepressant medications (Menard et al., 2016). Many currently used drugs for the treatment 

of MDD are based on serendipitous discoveries (Penn and Tracy, 2012), and their mechanisms 

of action, leading to the amelioration of the depressive symptoms in some patients but not in 

others, are the topic of ongoing research. Part of the difficulty in understanding and treating 

MDD is likely due to the heterogeneity of the disease (Goldberg, 2011). In the diagnostic and 

statistical manual of mental disorders (DSM), version V (APA, 1994), the diagnostic criteria for 

MDD include cognitive and emotion-related symptoms (low mood, loss of interest or 

enjoyment, difficulties in concentrating, feelings of guilt or self-blame, thoughts of death and 

suicide) and vegetative symptoms (fatigue, psychomotor changes, disturbances of sleep, 

changes in appetite and bodyweight). Further, at least two subtypes of MDD can be 

distinguished, based on specific symptoms during an episode or over the course of several 
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episodes. Patients with a melancholic/psychotic depression subtype experience insomnia with 

early morning awakening, variable mood (worse in the morning), appetite loss, weight loss, 

psychomotor disturbances (agitation), and neuroendocrine dysregulation of the stress 

hormone system with hyper-cortisolemia (Fink and Taylor, 2007, Gold and Chrousos, 1999, 

Antonijevic, 2006). Almost the inverse pattern is seen in patients with atypical depression, 

where symptoms include hypersomnia, reactive mood, increased appetite, weight gain, leaden 

paralysis, interpersonal rejection sensitivity, and neuroendocrine dysregulation with hypo-

cortisolemia (Gold and Chrousos, 1999, Stewart et al., 2009, Thase, 2009). The existence of 

these divergent subtypes, together with the observation that the dysregulated stress hormone 

secretion often normalizes before remission of clinical symptoms (Baghai et al., 2008, Ebert, 

1996, Hirschfeld, 1999, Holsboer, 1983), highlights the central role of the neuroendocrine 

stress response system in MDD pathology.  

1.2. The stress response system 
In our everyday life, the word “stress” is used ubiquitously as a term referring to a situation, a 

feeling or a state that is perceived as stressful. In the field of stress research, a more precise 

definition is necessary to avoid confusion and redundancy. Hence, “stress” has been defined as 

the nonspecific response of an organism in answer to a stressor (Selye, 1976). The stressor can 

be any perceived threat to homeostasis, be it a real-word physical danger or psychological 

phenomenon. Upon perception of the stressor, two endocrine systems become rapidly activated 

to enable the organism to cope:  

First, the sympathetic nervous system (SNS) signals to the adrenal medulla to initiate the 

release of catecholamines (epinephrine and norepinephrine) into the blood stream. These 

hormones act in the periphery to increase cardiovascular tone and blood supply to vital organs 

and skeletal muscles, and to stimulate energy metabolism from lipids and glucose. At the same 

time catecholamine signaling reduces appetite, digestive functions, and sexual drive, thereby 

focusing the body on essential actions in order to survive (the so called “flight-or flight” 

response (Cannon, 1915)). In the brain, norepinephrine is released from cells in the locus 

coeruleus and binds to receptors in limbic structures, such as the amygdala and the 

hippocampus, where it can modulate cognitive function (Valentino and Van Bockstaele, 2008).  

Second, the hypothalamic-pituitary-adrenal (HPA) axis is activated, illustrated in Figure 1. 

Parvocellular neurons in the paraventricular nucleus of the hypothalamus (PVN) release 
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corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) into the portal blood 

stream to the pituitary gland, where they trigger the release of adreno-corticotropic hormone 

(ACTH) into the blood circulation to stimulate the synthesis and release of glucocorticoid (GC) 

hormones from the adrenal cortex (De Kloet et al., 1998, Herman and Cullinan, 1997, Sapolsky 

et al., 2000). GCs (mainly cortisol in humans and corticosterone (CORT) in murine rodents) act 

in the periphery to mobilize glucose reserves, stimulate gluconeogenesis, and suppress 

inflammation, and, together with AVP, to increase vasorestriction and water retention, which is 

especially important when injuries occur (Sapolsky et al., 2000). The lipophilic GCs easily pass 

the blood brain barrier and interact with various neurotransmitter systems in the brain (e.g. the 

dopaminergic, the endocannabinoid, the neurotrophic, or the noradrenergic system) to affect 

cognitive function (Czyrak et al., 2003, Daskalakis et al., 2015, Hill et al., 2010, Krugers et al., 

2012). For instance, in the prefrontal cortex (PFC) GC signaling can promote attention and 

vigilance (de Kloet et al., 2005, Henckens et al., 2012), in the amygdala the stress hormones 

modulate emotion processing (McIntyre and Roozendaal, 2007, Phelps and LeDoux, 2005), and 

in the hippocampus they can reinforce memory formation and retention (Oitzl and de Kloet, 

1992, Schwabe et al., 2012, Schwabe et al., 2008). GCs exert their function by binding to two 

types of receptors, the glucocorticoid and the mineralocorticoid receptors (GR and MR), which 

have very distinct functional profiles (de Kloet et al., 2005, Reul and de Kloet, 1985): The 

intracellular MR has a high affinity to GCs (~0.5 nM) and is therefore mostly bound, even under 

basal conditions. The GR has an approximately 10-fold lower binding affinity and thus only 

becomes activated under high GC conditions (Joels and Baram, 2009). Both receptor types are 

co-expressed in many cortical and limbic brain areas, including the hippocampus and amygdala, 

and in the PVN, but the relative proportions differ between regions. Both MR and GR are ligand-

activated transcription factors, i.e. when bound, they can translocate to the nucleus, where they 

regulate gene expression by binding to glucocorticoid response elements (GREs) in the DNA 

and thus initiate a biochemical cascade leading to the transcription or repression of genes 

(Dostert and Heinzel, 2004, Pearce, 1994). In this way the GR has been reported to regulate up 

to 10-20% of all genes in the human genome (Oakley and Cidlowski, 2013). In an acute stress 

response, the elevated level of circulating GCs promotes their binding to GRs, which, in the PVN, 

stimulates a negative feedback signal directly onto the CRH-releasing neurons. A negative 

feedback signal also comes from GR activation in the pituitary and in the hippocampus, 

transmitted via gamma-Aminobutyric acid (GABA)-ergic projections to the PVN, leading to a 

cessation of the CRH release and a return of the HPA axis to baseline (Joels and Baram, 2009).  
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The negative feedback loop of the HPA axis is essential to 

maintain a delicate balance between an activated stress 

response state, optimal for coping with potentially life-

threatening challenges at the expense of self-sustaining 

physiological and reproductive functions, and a baseline state, 

which is necessary to recover, rest and reproduce (McEwen, 

2005). Thus, a well-controlled stress response is highly 

adaptive and often essential for survival (de Kloet et al., 1999, 

Sapolsky, 2015). However, extended exposure to high levels of 

GCs can exert neurotoxic effects, affecting cell proliferation, 

synaptic plasticity, and dendritic arborization throughout the 

brain, ultimately impairing cognitive function and mental 

health (Cuesta and Singer, 2012, de Kloet et al., 2005, McEwen 

and Gianaros, 2010, Holsboer and Ising, 2010, Lupien et al., 

2009). This “tearing and wearing” effect of the stress response 

on cells and systems of the brain is summarized in the term 

“allostatic load”(McEwen, 2004). Thus, as long as the balance 

of stress and recovery phases is maintained, the stress 

response is beneficial and highly adaptive, but when the balance is tipped this can lead to 

adverse consequences for health and well-being. A dysregulated stress response is associated 

with several forms of metabolic, immune and affective disorders (McEwen, 2005, Sapolsky, 

2015, Schneiderman et al., 2005, Segerstrom and Miller, 2004) and is likely to play a central role 

in their etiology and pathophysiology. 

1.3. Development of the HPA axis 
At birth, most vertebrates are still strongly dependent on their mother for survival. At this time 

point, many areas of the brain are still developing and the stress response system is not fully 

mature yet. To discover how the stress response system develops, researchers have often used 

rodents as a model system, and evidence suggests that the development in humans follows a 

similar course (though on a different time scale) (Gunnar and Donzella, 2002, Sapolsky and 

Meaney, 1986). During the final days of gestation and at birth circulating GC levels in the fetus 

are high, as they are essential for healthy lung development of the fetus (Jaskoll et al., 1996), but 

decrease rapidly after delivery (Martin et al., 1977, Mastorakos and Ilias, 2003). In mice, CORT 

Figure 1. A basic summary of the 

hypothalamic-pituitary-adrenal (HPA) 

axis.  CRH: Corticotropin-releasing 

hormone, ACTH: Adreno-corticotropic 

hormone, CORT: Corticosterone 
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levels then remain stable at low concentrations and fail to increase in response to most 

stressors until postnatal day (P)12 (Schmidt et al., 2003, Levine, 2002). This developmental 

phase is termed the stress hyporesponsive period (SHRP). During the SHRP, ACTH secretion is 

suppressed under basal condition and shows no measurable increase in response to stressors 

(Walker et al., 1986). In addition, the adrenal sensitivity to ACTH signaling is much reduced 

(Rosenfeld et al., 1992a). In contrast, CRH levels in the PVN are high from birth until P12, but 

this signal fails to stimulate a response from the HPA axis (Baram and Lerner, 1991, Schmidt et 

al., 2003). Similarly, MR are highly expressed from birth onwards, but GR levels are low at birth 

and increase steadily until P12 (Bohn et al., 1994, Rosenfeld et al., 1988, van Eekelen et al., 

1991). After P12, animals show a transient rise in basal CORT levels, as the negative feedback 

loop comes “online” and GRs become more integrated into the hippocampus (Meaney et al., 

1985, Schmidt et al., 2003). The regulation of HPA axis then gradually normalizes to adult levels. 

Evolutionarily, the purpose of the SHRP is most likely to protect the brain from the 

neurotoxicity of excessive GC exposure during a critical period of development.  

In humans, the SHRP is less well described, due to several ethical and practical limitations 

concerning research in neonates. It is known that, at birth, human infants already show a 

reliable rise in cortisol in response to even minor stressors (Gunnar, 1992), but around three 

months of age, the adrenal sensitivity to ACTH becomes markedly reduced (Gunnar et al., 1996) 

and by 12 months of age, moderate stressors, such as inoculation shots or brief separation 

periods, fail to trigger a cortisol response, in spite of fearful or distressed behavioral reactions 

(Gunnar, 1998). Both human and animal data reveal clear evidence for a maternal regulation of 

the infants stress response system. For instance, insecurely attached children show elevated 

cortisol levels in response to a psychological challenge, when securely attached peers do not 

(Nachmias et al., 1996, Spangler and Grossmann, 1993). Also, maternally deprived rat pups 

show an HPA axis response to stressors during the SHRP, when non-deprived rats remain 

unresponsive (Stanton and Levine, 1990). Experiments have identified some individual 

components of maternal care, such as feeding, tactile stimulation, and temperature regulation, 

that are important regulators for the maintenance of the SHRP (Cirulli et al., 1992, Rosenfeld et 

al., 1993, Pauk et al., 1986, Bruder et al., 2011). However, no signal component on its own can 

fully recapitulate the suppressive effect of intact maternal care on the pups endocrine stress 

response (Levine, 2002). In summary, the SHRP is a critical phase in the development of the 

brain and the HPA axis, which is tightly regulated by maternal cues and can be disrupted only 

by severe stressors, such as by interfering with the mother-infant relationship. 
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1.4. Risk factors for Major Depressive Disorder 
To better understand the etiology of MDD and its high incidence rate, much effort has been 

invested to delineate potential causes and risk factors. The identified factors can be roughly 

divided into internal (i.e. tied to the person’s biology or to his/her choices and actions) and 

external factors (i.e. related to the environment). 

1.4.1.  Internal risk factors 

1.4.1.1. Neuroendocrine vulnerability 
A dysregulation of the neuroendocrine response to stressors is a key endophenotype associated 

with many affective disorders, such as schizophrenia and post-traumatic stress disorder 

(PTSD), as well as both melancholic/psychotic and atypical depression (Keller et al., 2006, 

Antonijevic, 2006, Gold and Chrousos, 1999, Gold and Chrousos, 2002). Interestingly, the 

deviation from the normal range of HPA axis function occurs in both directions, i.e. hypo-

reactivity is often reported in PTSD and atypical depression patients (Yehuda, 1997, Gold and 

Chrousos, 2002), while hyper-reactivity is a common feature in melancholic depression (Heim 

et al., 2000a, Strohle and Holsboer, 2003). In schizophrenia patients, both hypo- and hyper-

reactivity of the HPA axis have been described (Bradley and Dinan, 2010). The extent to which 

such a dysregulation of the stress response is cause or consequence of affective disorders is still 

an open question, but a lot of evidence indicates that a genetic vulnerability for HPA axis 

dysregulation may be an important predisposition for the development of MDD (Nestler et al., 

2002). Indeed, resilience to depression has been proposed to depend on the ability of the HPA 

axis to respond appropriately to stressors of varying magnitudes and to be shut-off efficiently 

(Bale and Vale, 2003). Studies using animal models have shown that innate differences in stress 

reactivity moderate the susceptibility to adverse consequences of early-life stress (ELS) 

(McIlwrick et al., 2016, Rana et al., 2015). In humans, sex differences in the HPA axis 

responsiveness are commonly observed, probably related to the influence of reproductive 

hormones (Seeman, 1997, Young et al., 2001). Taken together with the fact that women are 

twice as frequently affected by depression than men (Bale, 2006), this supports the view that 

heightened stress sensitivity is an important risk factor for MDD.  

The neuroendocrine changes associated with MDD include an increased release of CRH, blunted 

ACTH sensitivity, enlarged adrenal and pituitary glands, and changes in the expression of GR 

throughout the brain (Gold et al., 1984, Holsboer et al., 1987, Keck and Holsboer, 2001, 
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Nemeroff, 1996), suggesting that the HPA axis is critically involved in the pathophysiology of 

the disorder. Further evidence supporting the central role of the HPA axis in MDD is provided 

by the finding that patients, who respond to antidepressant treatment, show a normalization of 

their HPA axis function before symptom remission (Holsboer, 1983, Strohle and Holsboer, 

2003). Two commonly used measures to assess HPA axis function are the combined 

dexamethasone/CRH test (Heuser et al., 1994, Ising et al., 2005) and the cortisol awakening 

response (CAR) (Kuehner et al., 2007). Strikingly, family-based linkage analysis revealed that 

first-degree relative of MDD patients show a slight, but significant, deviation in their HPA axis 

response compared to individuals with no family history of affective disorders (Holsboer et al., 

1995), indicating that the vulnerability for HPA axis dysregulation is partly hereditary. 

Supporting this, studies investigating the genetic basis of the CAR in mono- and dizygotic twins 

unanimously showed that genetic, but also environmental factors, play a role in shaping the 

sensitivity of the HPA axis (see Dedovic and Ngiam, 2015 for review). In addition,  personality 

traits, such as an inclination for hopelessness, worry, or neuroticism appear to be predictors of 

abnormal CAR and have been associated with both increased and decreased awakening cortisol 

levels (Kuehner et al., 2007, Portella et al., 2005). Taken together, HPA axis sensitivity is 

affected by both genetic predisposition and environmental influences, and a high stress 

sensitivity is linked to an increased risk for affective disorders.  

1.4.1.2. Risk behaviour 
Risk behaviour such as smoking, alcoholism, and other substance abuse show a strong 

statistical association with MDD and evidence suggests that co-morbid addiction and MDD can 

mutually exacerbate their disease progression (Chaiton et al., 2009, Danaei et al., 2009). For 

instance, substance abuse can affect stress sensitivity and stress coping by inducing a chronic 

activation of the HPA axis and upregulating the expression of CRH in the PVN and the amygdala, 

as these neurobiological processes form central components underlying the development of 

craving and drug seeking behaviour (Koob, 2010, Logrip et al., 2011). Furthermore, in the 

course of addiction, a blunting of the negative feedback loop of the HPA axis has been described 

(Koob and Kreek, 2007, Rasmussen et al., 2000) and in consequence, high circulating levels of 

GCs can sensitize CRH neurons in the extended amygdala and the medial PFC, leading to 

negative affective states and withdrawal symptoms (Koob, 2010, Shepard et al., 2000). 

Scientists agree that the tendency towards engaging in substance abuse behaviour has 

biological underpinnings (Nestler et al., 1993, Volkow and Baler, 2014), including a 

desensitization of the dopaminergic reward pathway and a vulnerability for HPA axis 
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dysregulation, which can also affect the risk for MDD (Stephens and Wand, 2012, Chu et al., 

2014). In conclusion, overlapping factors seem to underlie the development of risk behaviors, 

such as substance abuse, and mental disorders, such as MDD. With aggravation of addictive 

symptoms several risk factors for MDD can become enhanced and, vice-versa, as progression of 

both disorders interferes with the common underlying neurobiological systems, controlling 

reward sensitivity, impulse control, and stress regulation. 

1.4.1.3. Genetic factors  
The inheritance of psychiatric disorders was already in the focus of research in the early 

nineteenth century (Slater, 1936, Kosters et al., 2015). Since then, family history studies and 

twin studies have provided ample evidence for a genetic component contributing to the risk for 

affective disorders, by showing that the incidence rates in first-degree relatives of patients with 

affective disorders are significantly higher than predicted based on the general population, and 

that monozygotic twins are more likely to share a mental disorder than dizygotic twins (Allen, 

1976, Gershon et al., 1976, Gershon et al., 1971). Indeed, the heritability (i.e. the proportion of 

phenotypic variation that is explained by genetic variation) of MDD is estimated at ~40% 

(Burmeister et al., 2008, Sullivan et al., 2000) (which is relatively low, compared to e.g. autism 

spectrum disorder: ~90%, or schizophrenia: 70-85% (Burmeister et al., 2008)). However, 

genome-wide association studies (GWAS), including samples from thousands of patients, have 

not been able to identify genetic candidates that show strong main effects contributing to the 

risk for stress-related psychiatric disorders (Klengel and Binder, 2015). This “missing 

heritability” (Lee et al., 2013) may be partially due to the large heterogeneity in patients 

diagnosed with MDD, including different subtypes. Nevertheless, genetic association studies 

have identified some candidates, which may confer an increased risk. In particular, single 

nucleotide polymorphism (SNPs) in the DNA of genes involved in the serotonergic, the 

dopaminergic, and the neurotrophic system have been associated with increased affective 

disorders incidence (Antypa et al., 2016, Gatt et al., 2015, Levinson, 2006). Recently, a 

polymorphism on the gene coding for FKBP51, a co-chaperone protein regulating the affinity of 

the GR, has been implicated in MDD and in the response to antidepressant treatment (Binder et 

al., 2004, Gassen et al., 2015, Ising et al., 2008, Menke et al., 2013). However, none of the 

discovered SNPs have been unambiguously confirmed in GWA studies, suggesting that, while 

the detected polymorphisms may be associated with underlying traits contributing to the broad 

affective disorder phenotype, larger sample sizes and improved diagnostic classifications may 

be required to detect strong polygenic risk factors for MDD (Klengel and Binder, 2015, 
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Heinzmann et al., 2014). A further explanation for the “missing heritably” of MDD is provided by 

the discovery of epigenetics. Epigenetic mechanisms can modify the DNA without changing its 

actual code, for example by DNA methylation, histone modification, or microRNA interference. 

Epigenetics thus offers a mechanism for altering gene expression and regulation, while 

remaining undetected by traditional genomic tools.  

1.4.2. External factors 

1.4.2.1. Chronic Stress  
The idea that extreme stress and depression are closely linked is widely accepted (Hammen, 

2005). Supporting evidence comes from many case-control studies, which found that depressed 

patients report a significantly higher incidence rate of stressful life events prior to the disease 

than healthy controls (for review see Kessler, 1997, and Mazure, 1998). Importantly, this effect 

remains significant after correcting for a range of biases associated with the depression itself 

(e.g. personal responsibility in causing the events, mood congruent memory bias (Schwarz and 

Clore, 1983)). Furthermore, in the vast majority of depression patients, the disease onset was 

preceded by a severe negative life event, such as the death of a loved one, job loss, or divorce 

(Aseltine and Kessler, 1993, Carnelley et al., 1999, Dew et al., 1987), suggesting that adverse 

events may play an important role in the onset and development of MDD. Two factors, which 

seem to confer a particularly strong risk, are the uncontrollable nature and the chronic duration 

of certain stressors, like poverty, medical disability, or martial conflict (Kessler, 1979, Mazure, 

1998). Overall, the experience of extended adverse conditions appears to provoke a chronic 

activation of the body’s stress response system, without the necessary recovery phase and the 

return to physiological homeostasis, thereby increasing the allostatic load (McEwen, 2004). 

Over time, a high allostatic load can contribute to sustained changes in the cellular and 

molecular properties of brain cells (Joels et al., 2007), leading to a lasting dysregulation of the 

stress response system and to increased risk for MDD. 

1.4.2.2. Perinatal stress 
Perinatal depression affects 10-15% of childbearing women and, apart from being associated 

with increased morbidity and mortality for the mothers (Gavin et al., 2005), it can negatively 

impact on the future health of the child (Rahman et al., 2004, Talge et al., 2007). Stress during 

pregnancy has been associated with a lower birth weight of the infant and with an increased 

risk for hypertension, cardiovascular health deficits, type II diabetes, and psychopathology in 
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adulthood (Fumagalli et al., 2007, Goodman and Gotlib, 1999, Huizink et al., 2004, Meaney et al., 

2007, Seckl, 2004). These adverse outcomes are thought to be a consequence of elevated levels 

of GC hormones in the mother during pregnancy, which can change the expression of stress-

related genes in the placenta (Robinson et al., 1988) and pass through the placenta to the 

developing infant (Maccari et al., 2003). In unstressed conditions, only 10-20% of maternal GCs 

reach the fetus (Benediktsson et al., 1997), as the majority of GCs is rendered biologically 

inactive by a placental catalyst enzyme (11beta-hydroxysteroid dehydrogenase or 11β-HSD), 

which converts active cortisol to inactive cortisone (corticosterone to 11-

dehydrocorticosterone in rodents)(Krozowski et al., 1999). Maternal stress is associated with 

both a rise in circulating maternal GCs and a downregulation of 11β-HSD in the placenta 

(Holmes et al., 2006, Seckl and Walker, 2001), allowing for increased crossing of active GCs to 

the developing infant. In-utero exposure to elevated levels of maternal stress hormones impacts 

on growth, morphology, and function of brain and peripheral tissue of the fetus, often with 

irreversible consequences (Duthie and Reynolds, 2013, Cottrell et al., 2012, Maniam et al., 

2014).  

After birth, the brain continues to develop and remains highly sensitive to environmental 

programming. In humans, both grey and white matter volumes increase significantly during the 

first 5 years of life as important brain areas expand, followed by a period of neuronal pruning 

and myelination that continues into late adolescence (Giedd et al., 1999, Paus et al., 1999). The 

exposure to adverse experiences or trauma during this sensitive time of brain development can 

lastingly impact on the child’s future health (Carr et al., 2013, Heim and Binder, 2012, Mandelli 

et al., 2015). In an effort to define some critical insults on childhood wellbeing, the World 

Report on Violence and Health (WHO, 2002) has distinguished four different types of childhood 

maltreatment: sexual abuse, physical abuse, emotional and psychological abuse, and neglect. 

However, studies show that, in everyday life, these categories often overlap, i.e. children who 

are victims of one form of abuse are also more likely to be victims of another (Chartier et al., 

2010, Dong et al., 2003, Felitti et al., 1998). Independently, all forms of childhood abuse have 

been associated with cognitive impairments (Gould et al., 2012, Nikulina and Widom, 2013), as 

well as with an increased risk for mental disorders, including MDD and PTSD (Afifi et al., 2009, 

Norman et al., 2012, Sadowski et al., 1999, Young and Widom, 2014, Kessler et al., 2010), and 

the accumulated experience of several adversities and traumas strengthens this relationship 

(Hill et al., 2001). All different types of ELS have repeatedly been associated with long-term 

changes in the regulation of the stress hormone system (Lupien et al., 2009). For instance, 
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children who experienced psychological neglect in orphanage care show a flattened diurnal 

cortisol profile later in life (Carlson and Earls, 1997) and childhood sexual abuse has been 

associated with elevated cortisol levels (Cicchetti and Rogosch, 2001). In addition to these 

neuroendocrine programming effects, animal studies have shown that ELS can lead to an 

accelerated maturation of neuronal morphology and regional brain circuitry, including the 

hippocampus, the amygdala, and the PFC (Bath et al., 2016, Moriceau et al., 2006), associated 

with a preterm shift to adult-like behaviour (Callaghan and Richardson, 2011). In line with 

these findings, results of a recent human imaging study revealed the early emergence of adult-

like structural connectivity between amygdala and prefrontal cortex in children who were 

institutionalized in orphanages (Gee et al., 2013), showing that ELS leaves lasting imprints in 

the structure of emotion-processing networks in the brain. 

One important mechanism by which ELS can lastingly influence brain and behaviour is through 

epigenetic programming of gene expression (Bale, 2011, Heim and Binder, 2012, Meaney et al., 

2007, Murgatroyd, 2014). Epigenetic modification of DNA result in subtle changes in gene 

regulation, which can impact on neuronal morphology, plasticity, connectivity, and even brain 

structure, and thereby shape the behavioral phenotype (Klengel and Binder, 2015). For 

example, methylation of the GR promoter gene has been shown to be altered as a function of 

maternal care (Weaver et al., 2004), leading to enduring changes in GR expression and negative 

feedback regulation. Epigenetic modifications do not necessarily have to be revealed in changes 

of baseline gene expression, but can also lead to “poised states”, in which the targeted genes are 

rendered more sensitive, thus conferring enhanced vulnerability to future environmental 

hazards (Klengel and Binder, 2015). Overall, there is overwhelming evidence showing that 

adverse experiences during early-life can lead to neurobiological programming and to an 

increased risk for affective disorders later in life.   
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1.5. Gene × Environment interaction 
Each of the risk factors described above is independently associated with an elevated risk for 

MDD. However, the individual contribution to the phenotype is relatively small, that is to say, 

many carriers of a specific risk allele show no symptoms of MDD, and many people experience 

severe or chronic stressors without developing an affective disorder. Over the lifespan, 

individuals with varying genetic predispositions are exposed to a great many environmental 

challenges, resulting in a large inter-individual variability of health-related outcomes (Klengel 

and Binder, 2015). As illustrated in Figure 2, gene × environment (G × E) interaction studies are 

investigating how innate and environmental factors together affect the chances for disease or 

resilience. Thus, a G × E interaction describes 

differences between genotypes in 

susceptibility to environmental stressors 

(Kendler and Eaves, 1986). Understanding 

these interactions will be essential to 

identify the biological mechanisms 

underlying vulnerability to psychiatric 

disorders and may benefit the development 

of personalized treatments based on 

individual history and genetic profile 

(Dempfle et al., 2008, Holsboer, 2008).  

 G × E interaction studies require a well thought-through design, with the appropriate controls 

and statistical models to avoid misinterpretation of the data. For instance, gene × environment 

correlations, where the genotype influences the probability of exposure to certain risk 

environments, can lead to false positive findings (Karg and Sen, 2012). For example, divorce can 

increase the risk for depression, but it could equally be that people with a genetic risk for 

depression are more irritable and quarrelsome, thus promoting their chances for marital 

dispute and creating a correlation between the genotype and the environmental risk exposure 

(Jaffee and Price, 2008). However, due to the high etiological validity of G × E interaction models 

in psychiatric research, G × E interaction studies are becoming more frequent and have 

provided many valuable results. For instance, in a seminal longitudinal study, Caspi and 

colleagues found that maltreated children with a functional polymorphism in the gene encoding 

the neurotransmitter-metabolizing enzyme monoamine oxidase A (MAOA), which reduces the 

Figure 2. Gene × environment interaction paradigms 

assume that the effects of the environment depend on 

the genetic predisposition of the individual, shaping 

molecular processes, structure, and function of the brain, 

and thereby leading to variable health-related outcomes. 

(Inspired by Caspi and Moffitt, 2006) 
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expression of MAOA, were more likely to exhibit antisocial behaviour in adulthood than 

maltreated children who did not have this genotype (Caspi et al., 2002). Using a similar study 

design, it was demonstrated that a polymorphism in the serotonin transporter gene, 5-HTT, 

moderates the risk for developing MDD in individuals who experienced stressful life events in 

childhood or in adulthood (Caspi et al., 2003). Going one step further and investigating the 

underlying neurobiological mechanisms involved in G × E interactions, Klengel et al. found that 

in individuals who were exposed to ELS, an epigenetic modification of the gene coding for 

FKBP5, a functional regulator of GR sensitivity, was dependent on genotype. Specifically, 

carriers of the genetic risk allele showed increased demethylation at the transcription sites of 

the FKPB5 gene if they had experienced childhood abuse. In carriers of the protective allele, 

childhood abuse was not associated with FKBP5 methylation changes (Klengel et al., 2013). The 

epigenetic stimulation of FKBP5 transcription through demethylation leads to down-stream 

changes in the regulation of the HPA axis and confers a risk for later psychopathology (Klengel 

et al., 2013). These findings from human studies are supplemented by experiments using 

animal models, which have the advantage of high levels of experimental control, so that both 

genotype and exposure to risk factors can be experimentally manipulated. In particular, animal 

models of genetic susceptibility are a valuable tool to investigate the effect of specific 

environmental risk factors on the development of disease processes.  

1.6. Animal models in psychiatric research 
In the study of MDD much of our knowledge is derived from case studies in human patients and 

from epidemiological research. Human studies are evidently critical in the study of uniquely 

human disorders, but they have the drawback that, due to several important ethical and 

practical considerations, causality and mechanistic evidence at the level of neurobiological 

processes are extremely hard to obtain from human patients (Nestler and Hyman, 2010). 

Therefore, a lot of the research on the neurobiological underpinnings of MDD is conducted 

using animal models. However, MDD is a highly complex disease, affecting higher order 

cognition, mood, vegetative function, and overall health, and many of the core symptoms of 

MDD (e.g. sadness, guilt, or suicidal ideation) cannot be convincingly modelled in animals. 

Furthermore, to date, there are no objective diagnostic tests for MDD and the clinical diagnosis 

is given purely on the basis of phenomenology (Nestler and Hyman, 2010). Collectively, these 

impediments preclude the development of a fully convincing model of MDD in animals. 
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An opportunity to nonetheless make use of animal models in a meaningful way in the study of 

psychiatric disorders is granted by the focus on individual endophenotypes, which are 

accessible to be studied in animals (Hasler et al., 2004). Endophenotypes have been defined as 

“measurable components, unseen by the unaided eye, along the pathway between disease and 

distal genotype” (Gottesman and Gould, 2003). Thus, animal models in psychiatric research 

should not be understood as full disease models, but rather as models of selected 

endophenotypes associated with the disease. Rodents are popular model systems in the field of 

stress research, as they recapitulate many of the neuroendocrine changes observed in humans 

in response to acute and chronic stress (Tarantino et al., 2011). The approaches used to 

generate disease models include targeted genetic manipulations, selective breeding, 

optogenetics, brain lesions, and environmental manipulations. To constitute a powerful 

research tool, an animal model should present high levels of etiological, construct, face, and 

predictive validity (Chadman et al., 2009, Willner and Mitchell, 2002). Etiological validity 

relates to the origin or cause of the disease to be modelled, which should be similar in the model 

and in real-life cases. Construct validity refers to the process by which the phenotype was 

achieved, which should be plausibly related to the causal process of the phenotype in humans. 

Face validity implies that a model replicates key features of the target endophenotype. 

Predictive validity confirms that the animal model responds to treatment (e.g. 

pharmacotherapy) in the same way as human patients would. An optimal model should comply 

to a high degree with all of these criteria. However, some animal models can be beneficial and 

useful even when not all criteria are met completely (Belzung and Lemoine, 2011). 

1.6.1. Genetic animal models 
To delineate the role of specific genes and their contribution to physiology and behaviour in a 

bottom-up approach, genetic engineering, i.e. the direct manipulation of the genome by 

targeting specific candidate genes, is a powerful research technique promising high construct 

validity (Nestler and Hyman, 2010). Using molecular genetic manipulations, scientists can for 

example generate “transgenic” lines, where DNA sequences are inserted and result in functional 

changes downstream, or “knock-in/knock-out” lines, where the expression of specific genes is 

altered in a controlled manner, thus creating animals carrying selected genetic variants of 

interest. In general, the higher the penetrance of a genetic variant in humans (i.e. the proportion 

of individuals carrying a particular variant that also express the associated phenotype), the 

more likely it is that a mouse model carrying this variant will also produce the desired 
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phenotype (Cox, 2015). Unfortunately, for most affective disorders, few or no alleles matching 

this criterion have been identified (Klengel and Binder, 2015). In addition, in different 

individuals the genetic pathway leading to a disease phenotype may vary, and vice versa, the 

same genetic variant may lead to different phenotypes depending on its interaction with other 

genes, epigenetic factors, and environmental influences (Nestler and Hyman, 2010, Sullivan et 

al., 2000). This greatly complicates the process of constructing and validating genetic animal 

models for MDD. However, genetic models are employed with great success to recreate specific 

endophenotypic alterations associated with MDD. For example, impaired or increased feedback 

inhibition of the HPA axis has been genetically engineered in animal models by knocking out or 

overexpressing the GR in selected brain regions (Howell and Muglia, 2006, Müller and Holsboer, 

2006) or by interfering with the CRH system  (Dedic et al., 2012, Wang et al., 2013). Genetically 

manipulated mice have also been employed to explore the contribution of various monoamine 

and neuropeptide systems, the neurotrophic system, and the immune system in 

endophenotypes associated with MDD (for review see Barkus, 2013, and Urani et al., 2005).  

A different approach to investigating the genetic component of psychiatric disorders using a 

more top-down design is selective breeding. That is, animals exhibiting a specific trait are used 

to study a particular endophenotype of interest. To generate such a model, animals are 

screened and selected for breeding based on the presence or absence of a defined genetic trait, 

leading over time to the stable expression of this trait in the resulting population. Examples of 

selectively bred animal models relevant to affective disorders are the Flinders sensitive and 

resistant rat lines (Overstreet and Russell, 1982), the congenitally learned-helpless rats 

(Vollmayr and Henn, 2001), the Fawn Hooded rats (Tschopp and Zucker, 1972), the Wistar-

Kyoto rats (Okamoto and Aoki, 1963, Okamoto et al., 1966), the swim low-active and high-

active rats (Weiss et al., 1998), and the high-anxiety and low-anxiety rats and mice (Kromer et 

al., 2005, Landgraf et al., 1999).  

As a dysregulation of the HPA axis is a central feature in the pathophysiology of both 

melancholic/psychotic and atypical depression, a mouse model for extremes in stress reactivity 

was generated (Touma et al., 2008) in order to further elucidate the neurobiological parameters 

underlying these disease endophenotypes. The so-called Stress Reactivity (SR) mouse model 

consists of a high reactivity (HR) and a low reactivity (LR) breeding line, with a third 

intermediate reactivity (IR) line providing an internal “normal” reference. To generate this 

model, a founder generation of 100 male and 100 female outbred CD1 mice, aged ~8 weeks, 
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was screened and selected for breeding based on their plasma CORT increase in response to a 

standardized psychological stressor (15 min restraint). In each new generation this screening 

and selection procedure was repeated to maintain the three breeding lines and expand the 

phenotype, leading to, today, thirty generations of the SR mouse model. HR animals are 

proposed to model the neuroendocrine endophenotype associated with melancholic/psychotic 

depression (hyper-responsive HPA axis), while LR animals present a neuroendocrine 

endophenotype reminiscent of atypical depression (hypo-responsive HPA axis). Extensive 

phenotyping of the SR mouse model has brought to light several further parallels between the 

HR and LR mouse lines and their corresponding subtypes of MDD, including changes in 

bodyweight (Heinzmann et al., 2014, McIlwrick et al., 2016, Touma et al., 2008, Touma et al., 

2009), locomotor activity and stress-coping behaviour (Knapman et al., 2010a, McIlwrick et al., 

2016, Surget et al., 2016, Touma et al., 2008), cognitive function (Knapman et al., 2010a, 

Knapman et al., 2010b, Knapman et al., 2012, McIlwrick et al., 2016, Surget et al., 2016), sleep 

architecture (Fenzl et al., 2011), as well as in circadian rhythms of stress hormone secretion and 

feedback sensitivity of the HPA axis (Heinzmann et al., 2014, Touma et al., 2009, Touma et al., 

2008). The SR mouse model thus offers a promising starting point to explore of the role of HPA 

axis dysregulation and its sequelae in the etiology and pathophysiology of MDD, by modelling 

genetic predispositions for extremes in stress reactivity including several endophenotypes of 

MDD.  

1.6.2. Environmental animal models 

1.6.2.1. Environmental stress paradigms in adulthood 
It has long been recognized that the environment can have a lasting influence on a person’s 

behaviour and wellbeing. One of the first experimental demonstrations of the profound effect of 

an environmental stressor on affective behaviour was provided in the early 80s, when Katz and 

colleagues described a paradigm in which a mouse was subjected to painful foot shocks and 

showed increasingly passive and anhedonic behaviour in consequence (Katz, 1982). Following 

this observation, the experiment was extended by using a sequence of different milder physical 

stressors, making the model more ethical and etiologically valid, and it was shown that the 

resulting anhedonia in the animals was reversible by chronic antidepressant treatment (Willner 

et al., 1987). Since then, the so-called chronic unpredictable mild stress model has become 

highly popular and is generally accepted as a valid model of behavioral depression in rodents 
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(Hill et al., 2012, Surget et al., 2008, Yalcin et al., 2008). A similar depression-like phenotype can 

also be ascertained by using the chronic social defeat paradigm (Nestler and Hyman, 2010). In 

this social stress paradigm, a mouse is exposed to daily bouts of repeated social defeat by a 

larger, aggressive resident mouse. After the defeat, the animals are physically separated, but 

sensory contact remains through a perforated dividing wall, thus intensifying the chronic 

nature of the stressor (Golden et al., 2011). The depression-like symptoms in mice after chronic 

social defeat include anhedonia, social withdrawal, and metabolic disturbance, which can be 

ameliorated with chronic antidepressant treatment (Bourke et al., 2014, Murata et al., 2015, 

Razzoli et al., 2011). Both the chronic unpredictable mild stress and the chronic social defeat 

paradigms show good levels of construct, face, and predictive validity and have been used as 

valuable tools in several studies to investigate the neurobiological processes underlying 

affective disorders (Hill et al., 2012, Hollis and Kabbaj, 2014).  

1.6.2.2. Perinatal environmental stress paradigms  

The perinatal period is a critical phase in the etiology of several affective disorders. To 

investigate how stress exposure during this phase impacts on future health and coping, several 

pre- and postnatal stress paradigms have been developed. Prenatally, the most common 

methods include repeated restraint of the dam during gestation or repeated injections of GC 

hormones to mimic a chronic stress response (Maccari and Morley-Fletcher, 2007, Seckl, 2004, 

Seckl and Meaney, 2004). To model ELS in the postnatal period, maternal separation has 

frequently been employed, with a range of differing parameters (e.g. varying the duration of 

deprivation, removing the dam from the nest versus removing the pups, leaving the litter intact 

versus isolating each pup, using a heating pad during the absence of the dam or not, etc.) 

(Millstein and Holmes, 2007, Nishi et al., 2014, Plotsky and Meaney, 1993, Weaver et al., 2007). 

These manipulations have generated convincing data showing that maternal separation can 

lead to a lasting dysregulation of the HPA axis (Avishai-Eliner et al., 1995, van Oers et al., 1997), 

affect learning and memory (Lehmann et al., 1999), alter stress-coping behaviour (Aisa et al., 

2007), and influence a range of neurobiological processes (Brunton, 2015, Gracia-Rubio et al., 

2016, Nishi et al., 2014, Rosenfeld et al., 1992b). However, all variations of the maternal 

separation paradigm are to some extent subject to rising criticism that is concerned with the 

effects of starvation or irregular nursing and thermal stressors affecting the pups during the 

separation periods (Molet et al., 2014a). To minimize the influence of these confounding factors, 

a novel postnatal stress paradigm was developed, which attempts to create a more naturalistic 
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model of ELS. In this so-called limited nesting and bedding material paradigm, dams and their 

litters are kept in “impoverished” housing conditions during a 7-day period in the early 

postnatal phase, achieved by strongly reducing the amount of cage bedding and nest building 

material. In both rats and mice, this environmental manipulation has been reported to reliably 

induce adverse changes in maternal behaviour, such as increased erratic and unpredictable 

sequences of maternal care and frequent exits from the nest area (Avishai-Eliner et al., 2001b, 

Rice et al., 2008).  The limited nesting and bedding material paradigm therefore creates a 

situation of unpredictable und uncontrollable ELS for the pups, reminiscent of childhood 

neglect and adverse care in humans, making it a valuable tool to investigate the effects of ELS in 

rodents. 

1.1. Aims of this thesis 
Previous research has demonstrated a high degree of validity of the SR mouse model as a 

genetic animal model for affective disorders. Several key endophenotypes of 

melancholic/psychotic and atypical depression are recapitulated in the HR and the LR mouse 

lines, respectively, making the SR mouse model a promising tool for the investigation of G × E 

interactions underlying affective disorders.  

In the presented work, we aimed to complement the existing data by assessing the predictive 

validity of the SR mouse model. Further, the main objective of this thesis was to investigate the 

G × E interaction of ELS and genetic predisposition for extremes in stress reactivity using the SR 

mouse model to advance our understanding of how ELS interacts with a specific genetic 

vulnerability by shedding light onto the behavioral, neuroendocrine, and molecular 

consequences at different stages of development. Such knowledge has the potential to increase 

our understanding of the etiology and pathophysiology of MDD, and may contribute to the 

development of novel intervention or treatment approaches for affective disorders, which take 

genetic risk factors into account. 

Thus, in an initial study, we exposed animals of the three SR mouse lines to chronic 

antidepressant treatment by daily fluoxetine injections, and tested the effect of this 

pharmacological manipulation on a range of parameters for endophenotypes of MDD (Chapter 

2). We used a battery of behavioral assays to evaluate the animals’ locomotor activity, stress-

coping, and anxiety-related behaviour. Furthermore, the animals’ spatial learning and memory 

performance was tested, and we employed neuroendocrine tests to assess alterations in their 
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stress reactivity and HPA axis feedback regulation. In addition, changes in hippocampal 

neurogenesis were investigated with immunohistochemistry. The results of this study add 

further validity to the SR mouse model as a genetic animal model for affective disorders.  

In the reality of human patients, and as described in the introduction above, the development of 

MDD often results from an interaction of genetic and environmental factors. To model this 

clinical situation, we exposed animals of the SR mouse model to ELS with the objective of 

assessing the consequences of this G × E interaction at the level of emotional behaviour, 

cognitive function, neuroendocrine regulation, and gene expression over the animals’ life span 

(Chapters 3 and 4). 

As a means to induce ELS, we established the limited nesting and bedding material paradigm 

(Rice et al., 2008) in our mouse model and monitored the resulting changes in maternal 

behaviour in dams of the HR, IR, and LR lines (Chapter 3). Our aim was to assess (a) whether, as 

predicted, maternal care was adversely affected by the ELS paradigm, and (b) if there were any 

significant differences in the effects of the ELS paradigm on maternal behaviour between dams 

of the three SR mouse lines. The latter assessment was of particular importance, as line 

differences in maternal care could explain later differences observed in the pups. 

Once this ground work had been laid, we examined how the ELS paradigm influenced 

behaviour, neuroendocrine development, and gene regulation in the pups (Chapter 3). We used 

an adapted version of the stress reactivity test to measure the pups’ HPA axis response to a 

stressor at different time points until weaning. As a supplementary measure of HPA axis 

activity, we also collected the adrenals from pups at different stages of postnatal development. 

To assess changes in their emotional behaviour, we recorded the pups’ ultrasonic vocalizations 

(USVs) and their locomotor activity during the first week of life, as well as their stress-coping 

behaviour on the day of weaning. The animals’ physiological development was monitored 

throughout the experiment by weighing them regularly.  

In a next step, we asked whether the long-term consequences of ELS exposure differ between 

mice of the three SR breeding lines. We therefore repeated several of the previous assessments 

when the animals had reached early adulthood, including tests for emotional behaviour, stress-

coping, stress reactivity and recovery, as well as gene expression measurements in relevant 

areas of the brain (Chapter 3).  
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Finally, we aimed to understand how the discovered consequences of ELS and the differences 

between the three mouse lines developed over time into late adulthood. Furthermore, as 

reduced cognitive function has been linked to adverse early-life experience and MDD, we also 

wanted to investigate if cognitive impairments emerged in any of the three SR mouse lines as a 

function of ELS. Therefore, we employed a battery of cognitive tests and evaluated the cognitive 

performance of ELS-exposed and standard-housed animals in early and late adulthood. In 

addition, we replicated previous findings regarding changes in the regulation of the HPA axis in 

early adulthood and were able to show that these consequences of ELS were long-lasting, but 

differed between the three mouse lines as a function of their genetic predisposition (Chapter 4). 
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a b s t r a c t

Modelling key endophenotypes can be a powerful approach to gain insight into mechanisms underlying

the aetiology and pathophysiology of neuropsychiatric disorders. Based on evidence of stress hormone

system dysregulations in depression, the Stress Reactivity (SR) mouse model has been generated by a

selective breeding approach for extremes in HPA axis reactivity, resulting in high (HR), intermediate (IR)

and low (LR) reactive mice. The characterisation of their phenotypic alterations has highlighted many

similarities of HR and LR mice with the melancholic and atypical depression, respectively. We therefore

aimed to examine whether the antidepressant fluoxetine (10 mg/kg/day i.p., 4e5 weeks) can ameliorate

the phenotypic characteristics of HR and LR mice in neuroendocrine functions (HPA axis basal activity,

stress reactivity, negative feedback), emotional reactivity/coping-strategy (open field, forced swim tests),

spatial learning/memory (Morris water-maze) and hippocampal neurogenesis. Line differences in HPA

axis reactivity were maintained under fluoxetine treatment. However, we observed fluoxetine effects on

glucocorticoid-induced negative feedback, stress-coping behaviours, cognitive functions and neuro-

genesis. Specifically, our results revealed line-dependent consequences of fluoxetine treatment: (1) an

amelioration of the ‘melancholic-like’ features of HR mice (reversing the negative feedback resistance,

the hyperactive coping style and the memory deficits; increasing hippocampal neurogenesis); (2) an

exacerbation of the phenotypic deviations of LR mice (increasing their pronounced negative feedback

and passive coping style). Thus, these findings support the predictive validity of antidepressant treat-

ment in the HR mouse line and emphasize the translational value of the SR mouse model for the

development of therapeutic strategies based on endophenotype-driven classifications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Animal models are essential to explore neural circuits and dy-
namic neurobiological processes that are not directly accessible
from human subjects. However, the lack of knowledge on major
depressive disorders (MDDs) limits the capacity to objectively

assess the quality of the models and question their validity (van der
Staay et al., 2009). Moreover, considering the multifactorial origins
of depression along with its symptomatic variability and the sub-
jective nature of some symptoms (Ostergaard et al., 2011), trying to
recapitulate the full depressive syndrome in animals is certainly
unrealistic. In order to overcome these limitations, an alternative
approach focusing on endophenotypes has increasingly gained
support (Hasler et al., 2004). Endophenotypes are assumed to
represent more basic phenomena that are related either to a single
component of the clinical symptomatology or a biological trait
associated with MDDs. As more elementary phenotypes, they are
supposed to involve fewer genes, to underlie more straightforward
pathophysiological processes and to improve the translation from
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preclinical to clinical research.
Selective breeding is a valuable approach to isolate specific

endophenotypes. It has recently been used to select CD-1 mice for
extremes in hypothalamic-pituitary-adrenocortical (HPA) axis
reactivity, thereby establishing the so-called ‘stress reactivity’ (SR)
mousemodel (Touma et al., 2008). Indeed, dysfunction of the stress
hormone system is one of the most consistent physiological alter-
ations reported inMDDs (de Kloet et al., 2005; Nemeroff et al.,1984;
Stetler and Miller, 2011). In particular, HPA axis abnormalities are
commonly observed in depressed patients and can be characterized
by altered circadian activity, aberrant glucocorticoid (GC) release in
response to stressors, and/or an impaired negative feedback
(Holsboer, 2000; Holsboer and Ising, 2010). It is noteworthy that the
directionality of HPA axis dysregulations depends on the MDD
subtypes: hyperactivity and disturbed negative feedback are
frequently found inmelancholic depression, while hypoactivity and
exaggerated negative feedback have been linked to atypical
depression (Antonijevic, 2006; Gold and Chrousos, 2002). In the SR
mouse model, three breeding lines with different levels of cortico-
sterone (CORT) release in response to a psychological stressor
(15 min restraint) have been established: the high (HR), interme-
diate (IR) and low (LR) reactivity mice. In addition to their neuro-
endocrine disturbances, HR and LR mice display a number of other
phenotypic similarities with MDDs (Heinzmann et al., 2014;
Knapman et al., 2010b; Touma et al., 2008; Touma et al., 2009). For
instance, increased HPA axis activity and decreased glucocorticoid-
induced negative feedback in the HR line are associated with lower
body weight, disturbed sleep architecture, cognitive deficits,
increased emotional reactivity and hyperactive stress-coping
behaviour. Such impairments are reminiscent of many characteris-
tics of the melancholic subtype of depression. In contrast, the LR
mice recapitulate some features associated with atypical depres-
sion: exacerbated HPA axis negative feedback, higher body weight,
reduced emotional reactivity and passive coping style. Altogether,
these previousworks enabled the identification ofmanyphenotypic
consequences of the genetic predisposition for extremes in HPA axis
reactivity. However, the question whether the different neuroen-
docrine and behavioural phenotypes of HR and LR mice can be
reversed by antidepressant treatments had not been addressed yet.

Accordingly, this study aimed to assess the effects of antide-
pressant treatments in the SR mouse model. We investigated
whether the selective serotonin reuptake inhibitor (SSRI) fluoxetine
can ameliorate the HPA axis disturbances and other important
phenotypic characteristics (emotional reactivity, spatial learning/
memory) observed in HR and LR mice. Neuroendocrine functions
were assessed via three distinct measures of HPA axis activity: basal
activity, stress responsiveness and glucocorticoid-induced negative
feedback as assessed in the combined dexamethasone/
corticotropin-releasing hormone (Dex/CRH) test. The examination
of emotional reactivity was based on stress-coping behaviour in the
Forced Swim test (FST) as well as anxiety-related behaviours and
exploratory drives in the Open Field test. Hippocampus-dependent
spatial learning and memory were evaluated in the Morris water-
maze (MWM). Finally, since hippocampal neurogenesis has been
found to be reduced in depression (Lucassen et al., 2010) and crit-
ically involved in antidepressant response and regulation of the
HPA axis (Surget et al., 2011), we also examined cell proliferation
(Ki67þ) and levels of immature neurons (doublecortin-positive,
DCXþ) in the dentate gyrus (DG) of the hippocampal formation.

2. Methods

2.1. Animals and housing conditions

The study used adult male mice from generations XV and XVII of

the SR mouse model, which consists on three independent mouse
lines derived from the CD-1 mouse strain and selectively bred for
extreme HPA axis reactivity (see details about this approach in
Touma et al., 2008). The mice were housed in groups of four ani-
mals in transparent polycarbonate cages (38 " 22 " 15 cm) with
wood chips as bedding and wood shavings as nesting material. At
the age of about eight weeks, HPA axis responsiveness to a stressor
was assessed by means of the stress reactivity test (SRT) described
below (see 2.3). The mice used in the experiments described below
were 3e5 months of age and single housed (cage 23 " 16 " 14 cm)
at least ten days before performing the experiments in order to
avoid potential dominance hierarchy effects. Housing and experi-
mental rooms were kept under standard laboratory conditions (12/
12 h light/dark cycle, lights on 8:00 h; temperature: 22 ± 1 #C;
relative humidity: 55 ± 10%). Commercial mouse diet (Altromin
GmbH, Lage, Germany) and tap water were available ad libitum. All
conducted experiments were in accordance with the current reg-
ulations covering animal experimentation (European Communities
Council Directive 86/609/EEC) and approved by the appropriate
local authorities.

2.2. Experimental design

A first cohort of mice was used to investigate the effects of
chronic fluoxetine treatment on HPA activity and emotional reac-
tivity (Fig. 1). Briefly, HR, IR and LR lines received a daily treatment
with fluoxetine or vehicle (0.9% NaCl) for a total of 5 weeks.
Fluoxetine was administered i.p. and at the concentration of 10 mg/
kg/day based on previous experiments (Surget et al., 2008; Yalcin
et al., 2008). After 25 days of treatment, baseline plasma CORT
level was assessed from blood samples (‘initial sample’). After 28
days of treatment, emotional reactivity was examined in a com-
bined behavioural test comprising a 10-min open field test and a 6-
min FST, which was immediately followed by a blood sampling to
assess HPA axis reactivity to the swim stress (‘reaction sample’).
After 32 days of treatment, another blood sampling was carried out
to obtain baseline plasma CORT values (‘untreated sample’) for the
combined Dex/CRH test. Finally, after 35 days of treatment, the
combined Dex/CRH test was performed.

A second cohort of mice was used to investigate the effects of
chronic fluoxetine on spatial memory and hippocampal neuro-
genesis (Fig. 5a). HR, IR and LRmice received a daily treatment with
fluoxetine (10 mg/kg/day, i.p.) or vehicle (0.9% NaCl) for a total of 33
days. After 26 days of treatment, all mice were subjected to the
MWM test, consisting of a 4-day training stage followed by a probe
trial. Four days later, the brain was collected to assess hippocampal
cell proliferation/neurogenesis by immunohistochemistry.

2.3. Stress reactivity test (SRT)

The SRT is described in detail elsewhere (Touma et al., 2008).
Briefly, the test consists of a 15-min restraint period and two tail
blood samplings, one immediately before and one right after the
restraint stressor. The animals’ plasma CORT increase in response to
the SRT served as criterion for selecting the animals over genera-
tions for the respective experimental groups of the three mouse
lines.

2.4. Blood sampling

Blood sampling was performed as described previously (Touma
et al., 2008). Blood samples obtained from the animals’ ventral tail
vessel were collected in EDTA-coated tubes (Microvette, Sarstedt,
Nürnbrecht, Germany). Trunk blood was collected in EDTA-coated
tubes (KABE Labortechnik GmbH, Nürnbrecht-Elsenroth,
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Germany) equipped with 10 ml of the protease inhibitor Aprotinin
(Bayer Vital GmbH, Leverkusen, Germany). All blood samples were
immediately cooled on ice and centrifuged at 4000 g for 10 min at
4 #C. The plasma was transferred into fresh tubes (SafeSeal, Sar-
stedt, Nürnbrecht, Germany) and stored at $20 #C until further
analysis.

2.5. Open field test

The Open Field test was performed to assess locomotor activity
and anxiety-related behaviours in a novel environment. As previ-
ously described (Varadarajulu et al., 2011), each mouse was placed
in the centre of a circular arena (60 cm in diameter, surrounded by
40 cm high walls) and tested for 5 min under dimly lit conditions
(~15 lux). The total distance travelled and the time the animal spent
in the inner zone (30 cm diameter) were measured. Total distance
and avoidance of the inner zone are commonly used to assess lo-
comotor activity and anxiety-related behaviours, respectively (Prut
and Belzung, 2003).

2.6. Forced swim test

The FST was used to measure stress-coping behaviour. It in-
volves placing each mouse for 6 min in an inescapable and aversive
situation in a glass cylinder (12 cm diameter, 24 cm height) filled
two-thirds with 23 #C warm water. After an initial period of
vigorous activity (‘swimming’ and ‘struggling’) in an attempt to
escape (swimming is characterized by relatively strong movements
of the limbs and the tail, while ‘struggling’ also includes breaking
the water surface with the front paws or trying to climb up the
walls of the beaker), the animals intermittently adopt immobile
postures (‘floating’) interspersedwith bouts of swimming. The total
time spent floating (defined as ceasing to move altogether, making
only those movements necessary to keep the head above water)
during the test was scored by a trained observer and has been

proposed to reflect a state of despair or an alteration in coping
strategy from active to passive.

2.7. Morris water-maze test

The Morris water maze (MWM) consisted of a circular pool
(90 cm in diameter " 30 cm in height) filled with water (21 ± 1 #C)
made opaque by addition of black polypropylene 4-mm granules at
a height of 14 cm. The pool was virtually subdivided in four equal
quadrants. Animals had to learn the location of a submerged plat-
form (5 " 5 cm) placed in the centre of one quadrant, in order to
escape the water. Several extra-maze cues (posters and objects)
could serve to locate the platform. All mice were trained for 4
consecutive days and received 4 trials per day, each time randomly
starting from a different start point (four in total) with an inter-trial
interval of 6 min. If the mice were unable to find the platform
within the 60 s trial, they were gently guided there by the experi-
menter. After 5 s on the platform, the mice were placed back into
their homecage. Each trial was videotracked and analysed using
Ethovision (Noldus, Netherlands). Twenty-four hours after the final
training trial mice were tested in a 1-min probe trial to assess the
spatial retention memory. During the probe trial the platform was
removed from the pool and the time the animals spent in each
quadrant was recorded.

2.8. The combined Dex/CRH test

The combined Dex/CRH test was performed as described pre-
viously (Heinzmann et al., 2014; Touma et al., 2011). Briefly, a
reference blood sample was collected by an incision in the ventral
tail vessel at 15:00, three days prior to the actual test (‘untreated’
value). On the experimental day, at 09:00, HR, IR and LR mice were
injected ip with a relatively low dose of Dex (0.05 mg/kg). At 15:00,
a second blood sample was drawn from the tail vessel (‘after Dex’
value), immediately followed by an injection of CRH (0.15 mg/kg,

Fig. 1. Schematic representation of the experiment designed to assess chronic fluoxetine effects on emotional reactivity and HPA axis functions. Time scale is expressed in

days. Abbreviations: BW, body weight; Dex, dexamethasone; CRH, corticotropin-releasing hormone.
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ip). Thirty minutes later, the mice were sacrificed and trunk blood
was collected (‘after CRH’ value). All blood samples were stored
frozen at $20 #C until plasma CORT concentrations were analysed.

2.9. CORT radioimmunoassay

Plasma corticosterone (CORT) wasmeasured as described before
(Touma et al., 2008), using a commercially available CORT radio-
immunoassay (RIA) kit (MP Biomedicals) following the manufac-
turer’s protocol with slight modifications, i.e. using half of the
recommended volume of all reagents. Ten microliters of plasma of
each sample were applied to the assay and all samples were ana-
lysed in duplicate. Furthermore, the same pool samples (one in the
upper and one in the lower concentration range) were run in every
assay as an internal standard to control for intra- and inter-assay
variations, which were both below 10% in this study. Radio-
labelled samples were measured by a gamma counter (Wallac
Wizard 1470 automatic gamma counter, Perkin Elmer life science,
Rodgau, Germany). CORT concentrations were calculated by means
of a seven point standard curve. Double estimations were accepted
if the coefficient of variation was below 10%. The detection limit of
the CORT RIA was 1 ng/ml plasma.

2.10. Immunohistochemistry

Immunohistochemistry was performed as previously described
(Tanti et al., 2013). Mice were anesthetised with ketamine/xylazine
(120 and 10 mg/kg, respectively) and transcardially perfused with
saline for 2 min followed by 4% paraformaldehyde (PFA)/0.1 mol
phosphate-buffered saline (PBS; pH ¼ 7.4) for 5 min. Brains were
collected and postfixed overnight in 4% PFA at 4 #C and then cry-
oprotected in a 20% sucrose solution for 48 h. Serial coronal sections
through the hippocampus were cut (35 mm) and consecutive sec-
tions were placed sequentially in four vials containing freezing
solution (Glycerol, Ethylene glycol and PB) and stored at $20 #C
until processing. Sections were rinsed 3" in PB, followed by incu-
bation in 3% H2O2 for 30 min. Sections were blocked in 1% normal
Horse serum and incubated in DCX (1:500) for 36 h or Ki-67 (1:500)
for 48 h. Following incubations, sections were rinsed in PB 3", then
incubated in the secondary anti-body, biotynilated anti-rat for DCX
or anti-rabbit for ki-67 for 2 h. Sections were rinsed in PB (3"),
incubated for 1hr in ABC ekit, washed (PB, 3") and DAB was used
for visualisation. Stained sections were mounted on gel coated
slides, dehydrated in alcohol, cleared with claral and coverslipped.
DCX and Ki-67 positive cells were quantified in every 4th section.
The coordinates and boundaries used to dissociate the dorsal and
ventral hippocampus were based on previous publications (Tanti
et al., 2012): $1.06 mm to $2.06 mm and $3.08 mm to
$3.80 mm from Bregma for dorsal and ventral hippocampus,
respectively.

2.11. Statistics

Data were analysed with factorial or repeated-measures ANOVA
using ‘line’, ‘antidepressant treatment’, ‘Dex treatment’, ‘sampling
time point‘ (in the combined Dex/CRH test) and/or ‘training day’ (in
the MWM test) as factors where appropriate. Significant main ef-
fects or interactions were followed up with posthoc tests including
the Bonferroni methods for multiple comparisons. A t-test was
used for the probe trial of the MWM in order to compare observed
distributions to a theoretical distribution and to compare fluoxetine
effects within each line. A Pearson correlation coefficient was used
to determine the correlation between performances in the MWM
and neurogenesis or cell proliferation in the DG.

3. Results

3.1. Effects of chronic fluoxetine treatment on HPA axis function

Three different functions of the HPA axis were examined: basal
CORT levels, stress responsiveness and HPA axis regulation as
assessed in the combined Dex/CRH test.

After 25 days of chronic fluoxetine treatment, baseline CORT
levels as assessed from blood samples collected at 09:00 (‘initial
sample’, Fig. 1), revealed low values in all three mouse lines
(Fig. 2a). It is noteworthy, however, that HR, IR and LR mice already
differed significantly for this measure (F44,2 ¼ 11.518, p < 0.001).
Specifically, HR mice exhibited a significantly higher plasma CORT
level than IR mice (p ¼ 0.003), while the lowest concentration was
found in LR animals (HR vs LR: p < 0.001, IR vs. LR: p¼ 0.470). These
differences were independent of the fluoxetine treatment, i.e. no
significant differences were found between vehicle- and
fluoxetine-treated animals in any of the three mouse lines
(F44,1 ¼ 1.049, p ¼ 0.311; Fig. 2a).

On day 28, another blood sampling was carried out immediately
after the behavioural tests (10-min OF þ 6-min FST) (‘reaction
sample’, Fig. 1). The results demonstrated that the three lines dis-
played a robust increase of plasma CORTconcentrations in response
to the forced swim stressor (Fig. 2b). However, substantial differ-
ences in the rise of CORT levels were found between HR, IR and LR
mice (F44,2 ¼ 206.660, p < 0.001, post hoc tests: all p < 0.001). HPA
axis reactivity was the highest in HR mice with a CORT increase
clearly over 400 ng/ml. In contrast, the CORT rise in LR mice was
lower than 100 ng/ml, while intermediate values were found in the
IR line (mean increase: about 200 ng/ml). Chronic fluoxetine treat-
ment did not affect these differences between the lines and did not
change HPA axis responsiveness (F44,1 ¼ 0.277, p ¼ 0.601; Fig. 2b).

On day 32, blood samples were collected at 15:00 in order to
obtain a reference value for the Dex/CRH test (‘untreated’, Fig. 1).
The three lines, whether treated with fluoxetine or not, did not
differ for this measure (F43,2 ¼ 1.884, p ¼ 0.164; Fig. 2c). On day 35,
the combined Dex/CRH test was carried out. Dex was injected and
plasma samples were collected six hours later, immediately before
the CRH injection and 30 min afterwards. Overall, the test revealed
a strong main effect of ‘sampling time point‘ (i.e. ‘untreated‘, ‘after
Dex‘ and ‘after CRH‘) (F86,2 ¼ 676.881, p < 0.001), an interaction of
‘sampling time point‘ and ‘line‘ (F86,4 ¼ 134.805, p < 0.001), an
interaction of ‘sampling time point‘ and ‘treatment‘ (F86,4 ¼ 4.338,
p ¼ 0.016), as well as a strong trend for a three way interaction of
‘sampling time point’, ‘line’, and ‘treatment’ (F86,4 ¼ 2.369,
p ¼ 0.059).

Posthoc analyses revealed that animals of all three lines showed
a significant Dex-induced suppression of CORT levels (‘untreated’
vs. ‘after Dex’: p < 0.001 in HR, IR and LR mice). Interestingly,
however, in the HR and the IR mouse line, the Dex-induced sup-
pression of CORT was significantly weaker in the vehicle-compared
to the fluoxetine-treated animals (‘after Dex’: HR vehicle vs fluox-
etine: p ¼ 0.002; IR vehicle vs fluoxetine: p ¼ 0.005), showing that
chronic fluoxetine treatment led to a stronger glucocorticoid-
induced negative feedback in these animals. There was no differ-
ence in Dex-induced suppression between vehicle- and fluoxetine-
treated animals in the LR line (p ¼ 0.951), presumably due to floor
effects. The ‘after CRH’ value, however, revealed that fluoxetine-
treated LR mice had a dampened CRH-induced CORT secretion
compared to vehicle-treated LR animals (p ¼ 0.004), indicating a
very strong Dex-induced suppression, which hampered the acti-
vation of the stress hormone secretion in fluoxetine-treated ani-
mals. Animals of the HR and IR line did not show a significant
difference between vehicle and fluoxetine treatment in their ‘after
CRH’ CORT levels (p ¼ 0.732 and p ¼ 0.222). The plasma samples
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collected after the injection of CRH showed a marked effect of line
on CORT levels (F43,2 ¼ 163.364, p < 0.001), reminiscent of the line
effect seen in the stress reactivity measurements described above.
Taken together, the results of the combined Dex/CRH test indicate
an augmentation of the glucocorticoid-induce negative feedback of
the HPA axis by chronic fluoxetine treatment in all three SR lines.

3.2. Effects of chronic fluoxetine treatment on emotional reactivity

The effects of fluoxetine on emotional behaviour were assessed
in the Open Field test and the FST (Fig. 1). In the Open Field test,
mice were allowed to freely explore an empty arena for 10 min.
Mice typically tend to avoid bright and open spaces of unfamiliar
environments, hence a decrease of the exploratory drive toward the
inner zone of the Open Field is commonly used as an indicator for
anxiety-related behaviours (Prut and Belzung, 2003). Overall, HR
mice showed a slightly increased locomotor activity compared to
LR animals (F44,2 ¼ 4.116, p ¼ 0.023; post hoc test: p ¼ 0.018;
Fig. 3a). However, in all three SR mouse lines, fluoxetine treatment
did not change the total distance travelled by the animals during

the test (F44,1 ¼1.313, p ¼ 0.258; Fig. 3a), nor the time they spent in
the inner zone (F44,1 ¼ 0.769, p ¼ 0.377; Fig. 3b).

Immediately after the Open Field test, the mice were subjected
to a 6 min FST (Fig. 1). In this test, animals are exposed to an
aversive situation from which they cannot escape, restricting their
behavioural response to two different coping alternatives: active
(struggling and swimming) or passive (floating). The FST is
commonly used to assess stress-coping behaviour and to screen
antidepressant drugs (Cryan and Holmes, 2005). Our results
revealed significant differences between the SR lines in their stress-
coping behaviour (struggling time: F44,2 ¼ 9.214, p < 0.001, Fig. 3c;
floating time: F44,2 ¼ 13.984, p < 0.001, Fig. 3d). HR mice spent
clearlymore time struggling comparedwith both IR (p¼ 0.010) and
LR mice (p < 0.001). No difference in struggling time was found
between IR and LR mice (p¼ 0.482). Consistent with this result, the
time spent floating was markedly lower in HR mice compared with
both IR (p ¼ 0.001) and LR mice (p < 0.001), while the latter two
lines again did not differ significantly for this measure (p ¼ 0.286).
Strikingly, the data showed a main effect of fluoxetine treatment on
both struggling time (F44,1 ¼ 8.251, p ¼ 0.006) and floating time

Fig. 2. Chronic fluoxetine effects on HPA axis activity and regulation in the SR mouse model. Effects on HPA axis functions were assessed through plasma corticosterone

concentration for (a) basal HPA axis activity (treatment day 25; Flx, 10 mg/kg/day, ip), (b) stress reactivity measured immediately following behavioural testing (treatment day 28),

and (c) in the combined Dex/CRH test (treatment day 35). Data are given as box plots showing medians (lines in the boxes), 25% and 75% percentiles (boxes) as well as 10% and 90%

percentiles (whiskers), n ¼ 8e9 per group. Results of the posthoc group comparison are indicated above the appropriate boxes (n.s., p > 0.1; *p < 0.05, **p < 0.01; ***p < 0.001).

Abbreviations: CRH, corticotropin-releasing hormone; Dex: dexamethasone; Flx, fluoxetine-treated mice; HR, high reactive mice; IR, intermediate reactive mice; LR, low reactive

mice; Veh, vehicle-treated mice.
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(F44,1 ¼ 12.316, p ¼ 0.001). Posthoc within-line comparisons
revealed that the chronic fluoxetine treatment significantly
decreased struggling time in the HR line (p ¼ 0.011; Fig. 3c), and
increased floating time in IR and LR animals (p ¼ 0.008 and
p ¼ 0.092; Fig. 3d).

3.3. Effects of chronic fluoxetine treatment on spatial learning and
memory

A significant decrease of the distance to reach the escape plat-
form was evidenced along the training period in all three lines
(training effect HR: F3,30 ¼ 11.11, p < 0.001; IR: F3,30 ¼ 24.62,
p < 0.001; LR: F3,24 ¼ 11.12, p < 0.001). However, differences
appeared when looking at the different treatment groups within
each line, with a significant effect of treatment found in the HR line
only (F1,30 ¼ 26.01, p < 0.01). Vehicle-treated mice from the IR and
LR lines displayed a significant decrease of the distance to escape
between day 1 and day 4, indicative of an effective learning
(Fig. 4b). Vehicle-treated mice from the HR line, however, were
unable to significantly reduce this distance during the same time-
frame, suggestive of learning deficits in the HR line. On the other
hand, all 3 lines significantly decreased the distance to reach the
platform when treated with fluoxetine. Posthoc comparisons
confirmed the memory-enhancing effects of fluoxetine in HR mice,
with a significant reduction of the distance swum to reach the
platform on day 4 compared with vehicle-treated HR mice

(p < 0.05, Fig. 4b). No significant differences due to chronic fluox-
etine treatment were observed in IR and LR mice.

Subsequent to the 4-day training period, a probe trial was car-
ried out. The percentage of time spent in the target quadrant
(where the platform was located during the training) was
computed in order to evaluate spatial reference memory. The ef-
fects observed during the learning phase were corroborated by the
results in the probe trial. All experimental groups, except for the HR
vehicle-treated mice, spent a significantly higher than chance
percentage of time in the target quadrant (>25%) (Fig. 4c). Once
again, the memory-enhancing effects of fluoxetine in the HR line
were evidenced in the within-line comparison, with a significant
augmentation of the time spent in the target quadrant compared
with vehicle-treated HR mice. No fluoxetine effects were observed
in IR and LR mice.

3.4. Effects of chronic fluoxetine treatment on hippocampal
neurogenesis

Following the MWM, fluoxetine treatment was continued for
another 4 days before brain collection. The density of proliferative
Ki67-expressing cells and immature DCX-expressing neurons were
assessed in the dorsal and ventral DG (dDG and vDG) of the
hippocampus.

The examination of DG cell proliferation revealed significant
differences between the three SR lines (Fig. 5a) in both the dDG

Fig. 3. Chronic fluoxetine effects on emotional reactivity and stress-coping behaviour in the SR mouse model. The figure illustrates the results obtained from the Open Field

test (10 min) and the Forced Swim test (6 min) (treatment day 28; Flx, 10 mg/kg/day, ip): (a) the total distance travelled during the Open Field test; (b) the time spent exploring the

inner zone of the Open Field; (c) the time spent floating and (d) the time spent struggling during the Forced Swim test. Data are given as box plots showing medians (lines in the

boxes), 25% and 75% percentiles (boxes) as well as 10% and 90% percentiles (whiskers), n ¼ 8e9 per group. Results of the posthoc group comparison are indicated above the

appropriate boxes (n.s., p > 0.1; T, p < 0.1; *p < 0.05, **p < 0.01; ***p < 0.001). Abbreviations: Flx, fluoxetine-treated mice; HR, high reactive mice; IR, intermediate reactive mice; LR,

low reactive mice; Veh, vehicle-treated mice.
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(line effects F2,22 ¼ 16.25, p < 0.001; treatment effects F1,22 ¼ 15.72,
p < 0.001; line x treatment F2,22 ¼ 9.49, p < 0.01) and the vDG
(treatment effects F1,22 ¼ 16.39, p < 0.001; line x treatment
F2,22 ¼ 9.56, p < 0.01). HR and LR mice exhibited a significantly
higher density of Ki67þ cells than IRmice in the dDG. In addition to
the dDG, LR mice also displayed a trend for higher density of
Ki67þ cells in the vDG. Strikingly, chronic fluoxetine treatmentwas
able to reverse these effects in the LR line and reduced cell prolif-
eration of LR mice in both dDG and vDG. No fluoxetine effects were
found in the 2 other lines.

Significant differences in the density of immature DCX-
expressing neurons (Fig. 5b) were observed in both the dDG (line
effects F2,23 ¼ 135.66, p < 0.001; line x treatment F2,23 ¼ 15.43,
p < 0.001) and the vDG (line effects F2,23 ¼ 5.94, p < 0.01). An
increased density of DCX þ neurons in the dDG was found in HR
mice compared with IR mice. Interestingly, chronic fluoxetine
treatment in HR mice was able to further increase this density in
the dDG. By contrast, the density of DCX þ cells in the dDG did
differ between LR and IR mice but no significant fluoxetine effects
were found in these lines. In the vDG, we found a trend for higher
densities of DCX þ cells in LR but not in HR mice, compared with IR

mice. No significant fluoxetine effects on DCX þ cell density were
found in the vDG. Finally, a significant correlation was observed
between the memory performance in the MWM and the density
of DCX þ neurons in the dDG in HR mice (but not in the vDG or

with Ki67 þ cell density). In IR and LR mice, the density of
Ki67 þ cells or DCX þ neurons in the dDG or vDG was not found to
correlate with memory performance in the MWM (Suppl. Tab. 1).

4. Discussion

Our results confirmed several phenotypic alterations previously
found in the SR mouse model on neuroendocrine functions, stress-
coping strategies and spatial memory. Remarkably, we identified
distinct phenotypic consequences of a chronic antidepressant
treatment with fluoxetine in HR and LR mice (Fig. 6). More pre-
cisely, HR mice exhibited a disturbed HPA axis negative feedback in
the Dex/CRH test, a hyperactive coping style in the FST and cogni-
tive impairments in the MWM, mirroring some hallmarks of the
melancholic subtype of MDDs. Chronic fluoxetine treatment
improved all of these disturbances in addition to increasing neu-
rogenesis in the dorsal hippocampus. By contrast, instead of
reversing the ‘atypical’ features of LR mice, fluoxetine treatment
tended to exacerbate their phenotypic deviation, i.e. amplifying the
already pronounced HPA axis negative feedback and enhancing the

Fig. 4. Chronic fluoxetine effects on the spatial learning and memory in the SR

mouse model. (a) Schematic representation of the experiment. The time scale is

expressed in days. (b) MWM learning: represents the total distance to reach the escape

platform each day during the 4-day training stage, n ¼ 5e6 per group. *p < 0.05, Veh-

vs Flx-treated mice. (c) MWM Probe trial: represents the percentage of time spent in

the target quadrant (where the platformwas located during training). Data are given as

mean þ S.E.M., n ¼ 5e6 per group. Results of the posthoc group comparison are

indicated: n.s. p > 0.1, **p < 0.05, **p < 0.01, Veh-vs Flx-treated mice. # indicates the

experimental group with a time spent in target quadrant that was not significantly

different from chance (25% dashed line). Abbreviations: BW, body weight; Flx,

fluoxetine-treated mice; HR, high reactive mice; IR, intermediate reactive mice; LR, low

reactive mice; MWM, Morris Water maze; Veh, vehicle-treated mice.

Fig. 5. Chronic fluoxetine effects on cell proliferation and neurogenesis in the

dentate gyrus in the SR mouse model. (a) Density of Ki67-labelled proliferative cells

in the granular layer of the dentate gyrus in the dorsal and ventral hippocampus. (b)

Density of doublecortin-labelled immature neurons in the granular layer of the dentate

gyrus in the dorsal and ventral hippocampus. Data are given as mean þ S.E.M., n ¼ 4e5

per group. Results of the posthoc group comparison are indicated above the appro-

priate bars (n.s., p > 0.1; T, p < 0.1; *p < 0.05, **p < 0.01; ***p < 0.001). Abbreviations:

DCX, doublecortin; Flx, fluoxetine-treated mice; HR, high reactive mice; IR, interme-

diate reactive mice; LR, low reactive mice; Veh, vehicle-treated mice.
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passive coping behaviour in the FST.

4.1. Fluoxetine treatment did not affect baseline activity and stress
responsiveness of the HPA axis

HPA axis dysregulation is one of the most consistent biological
endophenotypes reported in MDDs and inspired the development
of the SR mouse model (Touma et al., 2008). We therefore aimed to
assess whether a chronic antidepressant treatment could affect
three different functions of the HPA axis: CORT basal levels, reac-
tivity to stressors and feedback inhibition.

Basal CORT measurements revealed only minor line differences
and no additional effect of fluoxetine treatment. No difference was
observed between IR and LR mice while HR mice displayed
significantly higher basal CORTconcentrations at 9:00 (Fig. 2a). This
effect was not observed in samples collected at 15:00, i.e. in the
‘untreated sample’ of the Dex/CRH test (Fig. 2c), which is likely due
to the circadian variation of CORT secretion as previously described
(Touma et al., 2008). On the other hand, our results confirmed clear
line differences in HPA axis reactivity between HR, IR and LR mice
(Fig. 2b). These differences were present in the vehicle-treated
animals and were maintained also under fluoxetine treatment.
Because extremes in HPA axis reactivity served as the selection
criterion used in the selective breeding approach to establish the SR
mouse lines, such robust differences in stress reactivity were ex-
pected. As described previously (Touma et al., 2008), the response
to selection in the SR mouse model was rapid (i.e. from the first
breeding generation), strong and stable over generations, indi-
cating a pronounced genetic basis for this endophenotype. This
finding is also in line with selection studies on CORT secretion in
other species (Evans et al., 2006; Pottinger and Carrick, 1999;
Satterlee and Johnson, 1988). Accordingly, it could be expected
that such a phenotype with a strong genetic basis would be hard to
affect by a relatively short pharmacological treatment with SSRIs,

such as fluoxetine, that do not directly target the HPA axis.

4.2. Fluoxetine treatment improved the HPA axis negative feedback

We also assessed the glucocorticoid-induced negative feedback
of the HPA axis, whose dysfunction represents one of the most
consistent alterations of the HPA axis in MDD (Holsboer and Ising,
2010). This was tested in the combined Dex/CRH test, a potent tool
to detect dysregulations of the HPA axis, including negative feed-
backmechanisms (Ising et al., 2007). Dex, acting as a glucocorticoid
receptor (GR) agonist, has a suppressive effect on HPA axis activity,
setting the inhibitory feedback loop into action. In contrast, CRH,
the principal ACTH secretagogue, elicits HPA axis activation and
ultimately the release of CORT from the adrenals. The prior action of
Dex could potentially counterbalance the CRH effects in the Dex/
CRH test and limit the CORT release, depending on the strength of
the feedback inhibition. Accordingly, both measures ‘after Dex’ and
‘after CRH’ provide a dual readout reflecting the magnitude of the
negative feedback. Our findings demonstrated that the three SR
mouse lines significantly differ in this test. HR mice exhibited a
diminished negative feedback with a reduced DEX-induced CORT
suppression and a pronounced CRH-induced CORT rise (see also
Heinzmann et al., 2014). These features are reminiscent of the
melancholic subtype of depression, whose patients display HPA
feedback resistance (Gold and Chrousos, 2002). Interestingly, the
feedback resistance of HR mice was counteracted by fluoxetine, as
shown by the reestablishment of a robust Dex-induced CORT sup-
pression. This result is particularly relevant for MDDs since the
normalization of HPA axis negative feedback by antidepressants
has been shown to precede or parallel successful remissions in
patients and animal models (Ising et al., 2007; Law et al., 2016;
Surget et al., 2011). Evidence from preclinical and clinical studies
suggests that this normalization by antidepressants involves al-
terations of GR functions and it is possible that similar changes

Fig. 6. Summary of the phenotypic characteristics observed in HR and LR mice (relative to IR) and the effects induced by chronic fluoxetine treatment. The results obtained

in (a) HR and (b) LR mice recapitulated some symptomatic features of melancholic (red-filled boxes) and atypical (blue-filled boxes) depression, respectively. Chronic fluoxetine

treatment (10 mg/kg/day, i.p. for 4e5 weeks) ameliorated the melancholic-like profile of HR mice but exacerbated phenotypic alterations of LR mice. The phenotypic characteristics

described in each box correspond to the results of vehicle-treated mice of the HR and LR lines compared to vehicle-treated IR mice. Effects of chronic fluoxetine treatment are

indicated in green at the left of each box and correspond to the within-line comparison of fluoxetine-treated mice versus vehicle-treated mice. A bar ($) indicates a lack of

fluoxetine effects on the phenotype. Abbreviations: CORT, corticosterone; DG, dentate gyrus; FLX, fluoxetine-treated mice; HR mice, high reactive mice; IR mice, intermediate

reactive mice; LR mice, low reactive mice. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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occurred in HR mice. Indeed, GR activation in various brain areas
regulates HPA axis activity (Ulrich-Lai and Herman, 2009), and
antidepressants enhance GR expression and function (Okugawa
et al., 1999; Pariante et al., 1997). The contribution of alternative
mechanisms has also been suggested, involving for instance the
modulation of blood-brain barrier (BBB) permeability. Indeed,
steroid transporters, such as the multidrug resistance 1 P-glyco-
protein (Mdr1-Pgp) strongly regulate the accessibility of glucocor-
ticoids to cells of the central nervous system (CNS). Remarkably,
antidepressants can inhibit steroid transporters, resulting in facil-
itated glucocorticoid penetration into the brain and a potential
mechanism for HPA axis feedback enhancement (Mason et al.,
2008; Pariante et al., 2003).

Mechanisms that promote GR functions and glucocorticoid ac-
cess to the brain are therefore assumed to strengthen the feedback
inhibition on the HPA axis (Anacker et al., 2011a). However, in
contrast to HR mice, LR mice exhibit an increased sensitivity to
glucocorticoids. It is therefore unclear if and how the potential
antidepressant mechanisms described abovewould be beneficial to
LR mice and could reverse an exaggerated HPA axis negative
feedback. Actually, our results indicate that fluoxetine appears to
enhance the negative feedback in all three SR lines, including in the
LR mice. The pronounced negative feedback of LR mice (already
maximal ‘after Dex’) was not alleviated but exacerbated by fluox-
etine treatment (as revealed by the sustained CORT suppression
‘after CRH’ stimulation). Our results can be compared with clinical
conditions where similar antagonistic HPA dysregulations occur in
melancholic vs. atypical depression (Antonijevic, 2006; Gold and
Chrousos, 2002). Interestingly, these two MDD subtypes also
exhibit differences in antidepressant responses. Symptoms in the
melancholic subtype appear to be treated more successfully by
SSRIs and tricyclic antidepressants (TCAs), while atypical depres-
sion is more likely to respond to monoamine oxidase inhibitors
(MAOIs) (Baghai et al., 2008; Hirschfeld, 1999; Thase et al., 1995).
These actions are associated with contrasting effects on the HPA
axis. SSRIs and TCAs reduce HPA axis activity and improve negative
feedback essentially by increasing GR expression in HPA axis
feedback-related forebrain regions (Heydendael and Jacobson,
2008; Mukherjee et al., 2004). By contrast, MAOIs tend to
decrease GR expression and facilitate noradrenergic stimulation
from the locus coeruleus to brain nuclei activating the HPA axis,
thereby dampening the inhibitory feedback and promoting HPA
activation (Heydendael and Jacobson, 2009; Ziegler et al., 1999).
Altogether, these results raise the possibility that different classes
of antidepressants may have distinct effects on HPA axis activity
and distinct effectiveness to treat different MDD subtypes. Such a
scenario might also apply to the SR mouse model, with fluoxetine
treatment being appropriate to improve a reduced HPA axis nega-
tive feedback, as previously shown in other depression models
(Surget et al., 2011). Overall, these studies suggest there would be a
considerable interest to stratify patients and determine therapeutic
strategies according to their endophenotypes, particularly HPA axis
related-functions. In this context, the SR mouse model may
represent a valuable tool for the identification and development of
novel therapeutic targets designed for specific endophenotypes
and patient groups.

4.3. Fluoxetine treatment altered stress-coping behaviours in the
FST

Our results did not show any significant line- or fluoxetine-
effects on anxiety-related behaviours in the Open Field test but
revealed that the three SR mouse lines adopted markedly different
coping behaviours when exposed to the more stressful forced
swimming situation. In the Open Field test, the absence of line

differences for anxiety-related measures (Fig. 3b) and the slight
increase in locomotor activity of HR mice (Fig. 3a) are consistent
with previous findings in the SR mouse model (Heinzmann et al.,
2014; McIlwrick et al., 2016; Touma et al., 2008). The lack of
fluoxetine effects was also expected because such antidepressant
treatments have been shown to have very little, if any, effects in this
test, particularly on anxiety-related behaviours (for review see Prut
and Belzung, 2003). In the FST, HR mice engaged in a hyperactive
stress-coping strategy encompassing a pronounced agitated
behaviour (struggling) and hardly any immobility (floating), while
LR mice expressed more passive stress-coping behaviours with
high levels of immobility, which is generally interpreted as
‘behavioural despair’ (Cryan and Mombereau, 2004). The distinct
behavioural phenotypes of HR and LR mice in the FST were already
reported in earlier generations of the SR mouse models (Knapman
et al., 2010a; Touma et al., 2008). It has been proposed that they
mimic different stress-coping strategies often seen in melancholic
vs. atypical depression, similar to signs of restlessness and agitation
vs. signs of retreat and apathy, respectively (Touma, 2011). Strik-
ingly, chronic fluoxetine treatment significantly altered the ani-
mals’ stress-coping behaviour in the FST. It promoted the
development of more passive strategies in all three SR lines, i.e.
reducing the hyperactive coping behaviour of HR mice and
increasing the floating time in IR and LR mice. Interestingly,
fluoxetine effects in the FST thoroughly paralleled those in the Dex/
CRH test: fluoxetine enhancing both HPA axis negative feedback
and passive stress-coping behaviours in the three lines. These re-
sults are rather consistent with other models targeting genes
involved in HPA axis regulation. For instance, CRH overexpression
or GR depletion in the CNS led to HPA axis hyperactivity along with
reduced immobility in the FST reminiscent of the phenotypes
observed in HR mice (Lu et al., 2008; Tronche et al., 1999). Together
with these previous findings, our study reveals that conditions
leading to long-lasting HPA axis overreactivity are associated with
hyperactive/agitated stress-coping behaviours, and that both HPA
axis overreactivity and hyperactive stress-coping strategies can be
alleviated by chronic fluoxetine treatments.

4.4. Fluoxetine treatment reversed cognitive deficits in HR mice

There is solid evidence of an inverted-U-shaped relationship
between HPA axis activity and explicit learning/memory, suggest-
ing that long-lasting HPA axis abnormalities are linked to cognitive
deficits in MDD patients, particularly in those MDD subtypes pre-
senting adrenocortical hyperactivation, such as psychotic and
melancholic depression (Lupien andMcEwen,1997; Rimmele et al.,
2013). The SR mouse model is therefore a valuable tool to explore
relationships between depression-related phenotypes, HPA axis
dysfunctions and cognitive deficits. While IR and LR mice per-
formed well in the MWM test, HRmice were unable to significantly
improve their performance during the four days of training and
showed deficits to remember the target location in the probe trial,
indicating spatial learning and memory deficits. Strikingly, the
chronic fluoxetine treatment led to an enhanced performance of HR
mice in the MWM, without affecting IR and LR animals. These re-
sults are paralleled by previous findings demonstrating cognitive
deficits of HR mice in other behavioural paradigms (Y-maze,
reversal learning, novel object recognition test) exploring executive
functions and hippocampus- and prefrontal cortex-dependent
learning and memory (Knapman et al., 2010a, 2010b; 2012).
Interestingly, cognitive impairments have also been documented in
depressed patients, encompassing deficits in learning, memory and
executive functions dependent on brain regions such as the hip-
pocampus and prefrontal cortex (Austin et al., 2001). Moreover,
these deficits appear to be related to the presence of an aberrant
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HPA axis activity/regulation (Reppermund et al., 2007). Although
differences in CORT release may contribute to the contrasting test
performance observed between the SR mouse lines or treatment
groups, it is believed that more persistent cognitive deficits (as seen
in MDDs) depend on profound neurobiological and plastic changes
in critical brain areas such as the hippocampus (Pittenger and
Duman, 2008). Consistent with this view, reduced neuronal
integrity and decreased brain-derived neurotrophic factor (BDNF)
levels have been found in the hippocampus of HR mice (Knapman
et al., 2010a, 2012). In addition, spine density in the CA1 hippo-
campal field has been shown to be lower in HR mice compared to
LR mice (Pillai et al., 2012).

4.5. Fluoxetine treatment enhanced hippocampal neurogenesis in
HR mice

Hippocampal neurogenesis is another neurobiological process
suggested to be involved in MDDs, since studies highlighted its
pivotal role in: (1) behavioural effects of antidepressants (Santarelli
et al., 2003), (2) HPA axis negative feedback (Snyder et al., 2011;
Surget et al., 2011) and (3) hippocampus-dependent memory
(Dupret et al., 2008; Snyder et al., 2005). These three functionswere
all altered by the fluoxetine treatment in our study pointing toward
hippocampal neurogenesis as a critical factor for the alterations
observed at least in HR mice after fluoxetine treatment. However, a
complex picture emerged from our cell proliferation/neurogenesis
results. HR and LR mice displayed higher densities of Ki67þ cells in
the dorsal DG than IR mice, an effect entirely counteracted by
chronic fluoxetine treatment in LR animals. Because Ki67 immu-
nohistochemistry labels undifferentiated proliferative cells only, we
also assessed the density of DG cells expressing DCX, a marker
specific of newborn immature neurons and hence a more accurate
method/tool to estimate adult neurogenesis. Again, both HR and LR
mice displayed higher densities of immature neurons in the dorsal
hippocampus compared to IR mice. Interestingly, however, fluox-
etine treatment did markedly increase the density of
DCX þ neurons in the dorsal hippocampus only in HR mice. A large
body of evidence highlighted a negative correlation between CORT
levels and hippocampal neurogenesis (Cameron and Gould, 1994),
which supports the results obtained in the LR mice but makes the
relatively high level of immature neurons in HR mice somewhat
unexpected. This relationship, however, is far from being linear. For
instance, GR activation and circadian variations of glucocorticoids
are necessary for the neurogenic effects of antidepressants
(Anacker et al., 2011b; Huang and Herbert, 2006). Only prolonged
high CORT levels by exogenous administration or repeated CORT
upsurges induced by chronic stress procedures led to consistent
decreases of DG cell proliferation and neurogenesis (Cameron and
Gould, 1994; David et al., 2009; Surget et al., 2011). Apart from a
slightly higher diurnal CORT trough, HR mice exhibit a relatively
normal range of daily CORT levels under normal, non-stressed
conditions (Touma et al., 2009), which is probably sufficient to
maintain neurogenesis rates equal or higher than in IR mice.
However, considering their HPA axis hyperreactivity to stressors,
HRmice are expected to be particularly vulnerable to chronic stress
conditions and it would be interesting to determine whether hip-
pocampal neurogenesis of HR mice is especially impacted under
such conditions, as observed in other mouse models of depression
(Surget et al., 2011; Van Bokhoven et al., 2011). Moreover, the
neurogenesis-promoting effects of fluoxetine in HR mice are in line
with results obtained in other animal models of depression (David
et al., 2009; Surget et al., 2011). Interestingly, the antidepressant-
induced increase of hippocampal neurogenesis appears to be
necessary to reverse HPA axis abnormalities and behavioural al-
terations in these models. Whether a proneurogenic action is

required for the antidepressant effects of fluoxetine in HR mice is
hard to determine at this point; we can however speculate that
hippocampal neurogenesis may at least contribute to the memory-
enhancing effects of fluoxetine in HR mice, as suggested by our
results and neurogenesis correlations with MWM performance.

4.6. Conclusion

In summary, our study is the first demonstrating phenotypic
alterations induced by chronic antidepressant treatments in the SR
mouse model, affecting neuroendocrine functions, stress-coping
behaviour, spatial learning and memory, and hippocampal neuro-
genesis. Remarkably, fluoxetine enhanced both HPA axis negative
feedback and passive stress-coping behaviours in all three SR lines,
resulting in an amelioration of the ‘melancholic-like’ features of HR
mice and an exacerbation of the phenotypic deviations of LR mice.
Thus, our findings underscore the predictive validity of chronic
antidepressant treatments in the HR line and suggest that the SR
mouse model represents a valuable tool for the identification of
novel therapeutic targets and drug development. Future studies
will have to determine whether other classes of antidepressant
drugs (e.g. MAOIs) can improve the phenotype of LR mice, which
would further support the translational value of the SR mouse
model to investigate therapeutic strategies in melancholic vs.
atypical depression subtypes, and thus promote the modern
concept of endophenotype-driven classification and personalized
medicine in biological psychiatry.
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Supplemental Table 1. Correlation matrix between the percentages of time spent in the target 

quadrant during the MWM probe trial and the densities of Ki67+ or DCX+ cells in the dorsal and 

ventral dentate gyrus. 

  Target quadrants (%) 
  HR IR LR 

dKi67+ -0.2687 0.2041 0.5377 
vKi67+ -0.0079 -0.0174 0.0295 
dDCX+ 0.7977** 0.3315 0.5342 
vDCX+ 0.1991 0.1282 0.0292 

Values represent Pearson correlation coefficients. ** indicates a significant correlation at p < 0.01 (n=9-10 per 

group). Ki67+ and DCX+ cells in the dorsal hippocampus are indicated by dKi67+ and dDCX+. Ki67+ and DCX+ 

cells in the ventral hippocampus are indicated by vKi67+ and vDCX+. 
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a  b  s  t  r a  c t

A  dysregulation  of the  hypothalamus-pituitary-adrenocortical  (HPA)  axis and  the  experience  of early-life
adversity are  both  well-established  risk factors  for  the  development  of  affective  disorders,  such  as  major
depression. However,  little  is  known about the  interaction  of these  two  factors  in shaping  endopheno-
types of the  disease.  Here,  we studied  the  gene-environment  interaction of a  genetic  predisposition  for
HPA  axis  dysregulation  with  early-life  stress  (ELS), assessing  the short-,  as  well  as the  long-lasting  con-
sequences  on emotional  behavior,  neuroendocrine  functions and gene expression  profiles. Three  mouse
lines, selectively  bred for  either high  (HR),  intermediate (IR), or  low (LR)  HPA  axis reactivity,  were  exposed
to  one  week of  ELS  using  the  limited  nesting  and  bedding  material  paradigm.  Measurements  collected
during  or  shortly  after the  ELS period showed  that,  regardless  of genetic background,  ELS exposure led  to
impaired weight gain and  altered  the  animals’  coping behavior  under  stressful conditions.  However,  only
HR  mice  additionally  showed  significant changes  in neuroendocrine  stress  responsiveness  at a young  age.
Accordingly,  adult HR  mice  also  showed  lasting consequences  of ELS, including  hyperactive  stress-coping,
HPA  axis  hyperreactivity, and  gene expression  changes in the  Crh system, as well  as downregulation  of
Fkbp5 in  relevant  brain regions.  We suggest  that  the  genetic predisposition  for high  stress  reactivity  inter-
acts  with  ELS  exposure  by  disturbing  the  suppression of corticosterone release  during  a critical  period of
brain  development,  thus  exerting  lasting programming  effects  on  the HPA  axis,  presumably via  epigenetic
mechanisms.  In concert, these  changes lead  to the emergence of  important  endophenotypes  associated
with  affective  disorders.

© 2016 Elsevier  Ltd. All  rights  reserved.

1. Introduction

Major Depressive Disorder (MDD) is  one of the most prevalent
and costly psychiatric disorders (Ferrari et al., 2013; Greenberg
et al., 2015). Among the large number of patients diagnosed with
MDD, there exist smaller clinical subgroups, which can be  dis-
tinguished by their opposing vegetative symptoms (for example:
motor agitation or  retardation, insomnia or hypersomnia, weight
loss or gain) (Antonijevic, 2006; Gold, 2014; Gold and Chrousos,
1999, 2002; Lamers et al., 2012). In addition, patients suffer-
ing from these different subtypes of MDD  also show opposite
symptoms regarding the function of their hypothalamus-pituitary-
adrenocortical (HPA) axis, one of the main neuroendocrine systems
controlling the body’s stress response (Joëls and Baram, 2009;

∗ Corresponding author.
E-mail address: touma@psych.mpg.de (C. Touma).

Nemeroff, 1996; Sapolsky et al., 1984). Specifically, the atypi-
cal depression subtype is  associated with blunted cortisol release
in response to stressors, while patients with the psychotic or
melancholic depression subtype show stress hyper-reactivity with
extreme cortisol release and a flattened profile in their diurnal glu-
cocorticoid secretion (Antonijevic, 2006; Gold and Chrousos, 1999,
2002). Thus, due to its central role in the systemic regulation of
the stress response, a  dysfunctional HPA axis may  be  a  critical
factor in  the etiology of both depression subtypes (Gold, 2014;
Holsboer, 1999; Lamers et al., 2012). However, a genetic predis-
position for high or low HPA axis reactivity alone is  probably not
sufficient to  cause a  psychiatric disorder; severe negative experi-
ences or  other stressful environmental factors are thought to  play
an equally important role (Provenç al and Binder, 2015). Until today,
it remains poorly understood how a genetic predisposition for HPA
axis dysregulation and environmental stressors interact, and what
the short- and long-term consequences are.

http://dx.doi.org/10.1016/j.psyneuen.2016.04.023
0306-4530/© 2016 Elsevier Ltd. All  rights reserved.

dx.doi.org/10.1016/j.psyneuen.2016.04.023
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The Stress Reactivity (SR) mouse model offers a good starting
point to investigate this gene × environment (G  × E) interac-
tion. This genetic animal model consists of three independent,
CD1-derived mouse lines, selectively bred for either high (HR),
intermediate (IR), or low (LR) HPA axis reactivity in response to a
psychological stressor, thereby mirroring the HPA axis dysregula-
tion endophenotypes described in the melancholic/psychotic and
the atypical depression subtypes, respectively (Heinzmann et al.,
2014; Touma et al., 2008, 2009). Compared to  the IR line, which
serves as reference line, HR mice have lower bodyweight, show dis-
turbed circadian activity patterns and increased REM sleep, display
hyperactive stress-coping behavior and show cognitive deficits,
corresponding to symptoms of melancholic/psychotic depression.
In contrast, LR mice have increased bodyweight, show passive cop-
ing behavior, as well as intact sleep and cognitive function, akin to
symptoms of atypical depression (Fenzl et al., 2011; Heinzmann
et al., 2014; Knapman et al., 2010a,b, 2012; Touma et al., 2008,
2009). Thus, the SR mouse model is an appropriate tool to inves-
tigate the interaction of a  genetic vulnerability for disturbances in
the stress hormone system and environmental stressors.

Exposure to early-life stress (ELS) is a  well-established environ-
mental risk factor for affective disorders (Baram et al., 2012; Heim
et al., 2002; Kessler et al., 2005; Penza et al., 2003). During the early
postnatal period, the central nervous system is still highly plastic,
so that the environment can profoundly and lastingly shape the
brain and the neuroendocrine system (Everson-Rose et al., 2003;
Lehmann et al., 2002; Oomen et al., 2010a,b; Plotsky and Meaney,
1993; Wilson et al., 2005). Recent evidence from animal models and
human data suggests that this process involves epigenetic mod-
ifications at several target sites, including the genes coding for
the glucocorticoid receptor (Gr), vasopressin (Avp),  corticotropin-
releasing hormone (Crh), and FK506 binding protein 5 (Fkpb5)
(Bockmühl et al., 2015; Klengel et al., 2012; Provenç al and Binder,
2015; Radtke et  al., 2015; Weaver et al., 2004; Zimmermann et al.,
2015). A dominant factor in  a  mouse pup’s early-life environment
is the dam. Via her maternal behavior, she has a  profound influ-
ence on her pups’ brain development (Caldji et al., 2004; Meaney,
2001). For example, the amount of maternal licking and grooming
can change the behavior of the offspring by  altering their brain func-
tion and HPA axis responsiveness (Champagne et al., 2003; Francis
et al., 1999; Liu et al., 1997; Sarro et al., 2014).

Also in humans, the mother acts as a  powerful regulator of
the development of the infant’s physiological regulatory systems,
including the HPA axis (Als et al., 2004; Hane and Fox, 2006)  and
the  quality of the mother-child relationship is  highly predictive
of the child’s trajectory regarding mental and cognitive health
(Belsky and Fearon, 2002; Bowlby, 1958; Masur et al., 2005). For  the
development of a  secure attachment relationship maternal sensi-
tivity and responsiveness are  of critical importance (McElwain and
Volling, 2004). Fragmentation and unpredictability of maternal care
are therefore important triggers of ELS and predictors of mental
health deficits in children. In rodents such fragmented and unpre-
dictable maternal care can be experimentally induced by  reducing
the amount of the nesting and bedding material available to  nurs-
ing dams (Molet et al., 2014; Rice et al., 2008), thus permitting
controlled studies of the consequences of ELS.

In our study, we combined the genetic predisposition for HPA
axis hyper- or hypo-reactivity of the SR mouse lines with expo-
sure to ELS to investigate the interaction of these two  risk factors
at the level of physiology, behavior, neuroendocrine function and
gene expression in the brain. We aimed to (i) study the long-lasting
consequences of this G × E interaction, including key endopheno-
types of affective disorders, and (ii) examine the short-term effects
of ELS-exposure, which may  be involved in  mediating the long-
term outcomes. Therefore, we exposed mice of the three SR mouse
lines to ELS and studied the pups and the adult animals using a

battery of tests for emotional behavior, HPA axis reactivity and
recovery, as well as expression profiles of candidate genes in  rel-
evant brain nuclei. Additionally, factors influencing the animals’
stress experience during the ELS paradigm, such as maternal behav-
ior, nest temperature, and nest quality were monitored throughout
the experiment. This experimental design allowed us to detect
endophenotypes associated with the development of long-lasting
consequences of ELS, which can contribute to the ongoing search
for intervention targets after early-life adversity.

2. Methods

All  presented work is in accordance with the accepted stan-
dards of humane care and use of experimental animals and was
approved by the appropriate local authority. The supplementary
material provides additional descriptions of methods and experi-
mental procedures.

2.1. Animals and housing conditions

In  all experiments, animals from the SR mouse model were used
(Touma et al., 2008). A detailed description of the breeding proce-
dure used to  generate and maintain this mouse model is  provided
in the supplementary material, section 1.1. Animals were housed
under standard laboratory conditions (stable 12 h light/dark cycle
(lights on at 8 a.m.), 22 ±  2 ◦C,  55 ± 10% humidity, standard diet
chow and water ad libitum).

2.2. Experimental design

We  used a 3 × 2 factorial design: Three SR breeding lines (HR, IR,
and LR) and two environmental conditions (early-life stress (ELS)
and standard housing (STD)), resulting in a total of six experimental
groups. The data presented here was  generated from five inde-
pendent cohorts of experimental animals, derived from breeding
generations XXIII–XXVIII of the SR mouse model, focusing on either
the long-lasting effects of ELS in  adulthood (cohorts I and II) or on
the short-term effects in the pups (cohorts III, IV  and V).

2.3. Breeding of experimental cohorts

For each cohort, 48 breeding pairs were used, i.e. 16 male-female
pairs per mouse line. The cages of pregnant primiparous females
were inspected daily at 5 p.m. for the delivery of pups and the day
a  litter was discovered was  defined as postnatal day 0 (P0). On P2,
litters were culled to seven pups, consisting of six males and one
female, when possible. Only litters with a  total number of at least six
pups and including at least four males were included in  the study
to ensure a comparable early-life situation for pups from different
litters.

2.4. Early-life stress paradigm

Dams and their offspring were randomly assigned to either the
ELS or the STD condition (N =  8 dams per line and condition). We
used a stress paradigm based on limiting the resources of nesting
and bedding material, described by Rice et al. (2008).  This paradigm
creates a  chronic ELS environment that has been described as
more naturalistic and creating fewer metabolic side-effects than
repeated maternal-separation (Molet et al., 2014). Briefly, on P2,
dams assigned to the ELS condition were placed, together with their
litter, into a  polycarbonate type II  cage  fitted with an aluminum grid
floor (mesh dimensions 0.4  × 0.9 cm,  catalog no. 57398; McNichols
Co., Tampa, U.S.A). A  reduced amount of sawdust bedding mate-
rial (∼20 g) was  spread underneath the aluminum grid and half a
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Fig. 1. Bodyweight and behavior in adult animals. Data from adult high (HR), inter-
mediate (IR), and low (LR) reactivity mice  raised in early-life stress (ELS) or standard
(STD) housing conditions are presented as boxplots showing the median (horizontal
line in the boxes), 25–75% (boxes) and 10–90% (whiskers). (A) The animals’ body-
weight  at 10 weeks of age showed a  main effect of mouse line (F2,114 =  89.253,
p  < 0.001, post-hoc tests: HR vs IR  and HR vs LR: p <  0,001; IR vs LR: p =  0.059),
N  = 19–21 per group. (B) Distance traveled in the Open Field Test (OFT) showed a
main effect of line (F2,54 = 23.372, p < 0.001, post-hoc tests: HR  vs IR: p  = 0.409, HR
vs  LR and IR vs LR: p < 0.001; N  = 8–11 per group). (C) Time spent struggling in the
Forced Swim Test (FST) showed a  main effect of line (F2,114 =  87.201, p <  0.001, post-
hoc  tests: HR vs IR and LR: p  < 0.001, IR  vs LR: p = 0.006), a main effect of condition
(F1,114 = 19.971, p <  0.001) and an interaction effect (F2,114 =  12.933, p < 0.001, post-
hoc tests: HR ELS vs  STD: p <  0.001, IR  ELS vs STD p =  0.309, LR ELS vs STD: p = 0.994;
N  = 18–21 per group). (D) Time spent swimming in the FST showed a main effect
of  line (F2,114 = 13.411, p <  0.001, post-hoc tests: HR vs IR  and HR vs  LR: p < 0.001,
IR  vs LR: p = 1.0; N = 18–21 per group). (E) Time spent floating in the  FST showed a
main effect of line (F2,114 =  96.723, p < 0.001, post-hoc tests: HR vs IR  and HR vs LR:
p  < 0.001, IR vs LR: p =  0.019), a main effect of condition (F1,114 =  4.272, p = 0.041) and
an  interaction (F2,114 = 4.807, p = 0.010, post-hoc tests: HR ELS vs STD: p  <  0.001, IR
ELS vs STD: p = 0.91, LR ELS  vs STD: p = 0.723; N = 18-21 per group). (F) The latency to
the first floating bout showed a main effect  of line (F2,114 = 82.112, p < 0.001, post-hoc
tests: HR vs IR and HR vs LR:  p < 0.001, IR  vs LR: p =  0.231), a  main effect of condi-
tion (F1,114 = 13.985, p < 0.001) and an interaction (F2,114 =  17.725, p < 0.001, post-hoc
tests: HR ELS vs STD: p <  0.001, IR  ELS vs STD: p =  0.795, LR ELS vs STD: p  =  0.425;
N  = 18-21 per group). Main effects of line are represented by  a  horizontal line above
the graphs. The respective post-hoc test statistics are indicated underneath the line
(≈ p ≥ 0.1, ≤/≥, p < 0.1, </> p  <  0.05). Statistical significance of post-hoc tests for main
effects of condition and the interaction are presented above the  appropriate boxes
(T  p < 0.1, * p  < 0.05, **  p  <  0.01, *** p  < 0.001).

nestlet (∼5 g) (Nestlets NES3600, Ancare, Bellmore, U.S.A.) was  pro-
vided for nest building. Mice assigned to the STD housing condition
were placed into polycarbonate type II  cages with normal amounts
of sawdust bedding (∼100 g)  and two nestlets (∼20 g). Supplemen-
tary Fig. 1  shows examples of the ELS and STD housing conditions.
The animals were left undisturbed for seven days. On  P9, dams and
pups were weighed and moved to standard housing cages. On P25,

one or  two male sibling pairs from each litter were weaned and
pair-housed in  standard cages until adulthood (cohort I and II).

2.5. Long-lasting effects of ELS

2.5.1. Bodyweight
Two  weeks before the behavioral phenotyping, the test animals

were weighed and single housed in  order to  avoid dominance hier-
archy effects.

2.5.2. Behavioral parameters
All behavioral tests were conducted during the light phase

(between 9 and 12 a.m.), when corticosterone levels are in  the circa-
dian trough (Ishida et al., 2005).  Between tests, mice were given at
least 48 h of rest to avoid carry over effects from one test to another,
as advised for repeated behavioral testing (McIlwain et al., 2001).

2.5.2.1. Locomotor and exploratory activity. The Open Field Test
(OFT) was used to detect differences in  locomotor and exploratory
activity. Briefly, each mouse (12–14 week old males, cohort I)  was
placed into the center of a  circular arena (60 cm diameter), evenly
illuminated with 15 lx, and left to explore for 5 min  (for details
see Varadarajulu et al., 2011). The test was video recorded, and
a  tracking software (ANYmaze, Stoeling Co, Wood Dale, U.S.A.) was
used to analyze the animal’s behavior. After testing, the animal was
returned to  its home cage and the OF apparatus was cleaned (soapy
water and ethanol solution) and dried to leave no odor cues for the
subsequent animal.

2.5.2.2. Anxiety-related behavior. The Dark-Light Box Test was used
to assess anxiety-related behavior. This test is  based on the animals’
natural aversion for brightly lit spaces and on their innate tendency
to explore novel environments (Crawley and Goodwin, 1980).
Briefly, each mouse (12–14 week old males, cohort I) was placed
into a small dark compartment (15 × 20 × 25 cm,  <10 lx), which was
connected with a  larger, brightly lit  compartment (30 × 20 × 25 cm,
>700 lx) through a  short tunnel. The latency for the animal to enter
the brightly lit  compartment, the number of entries, and the time
it spent there were extracted with the help of a  tracking software
(ANYmaze, Stoeling Co, Wood Dale, U.S.A.).

2.5.2.3. Stress-coping behavior. Stress-coping behavior was
assessed using the Forced Swim Test (FST) and the Tails-Suspension
Test (TST). Importantly, animals were assigned to one or the other
of these tests so that no mouse was  tested in both the FST and the
TST. Briefly, in the FST, each mouse (12–14 week old males, cohorts
I and II) was placed into a  glass beaker (12 cm diameter, 24 cm
high) filled with warm water (23 ◦C)  and its behavior was  video
recorded for 6 min. The mouse was then removed from the water,
gently dried and placed back into its home cage. In the analysis,
three behaviors were quantified: (1) struggling: strong movements
with front and hind paws, breaking through the water surface; (2)
swimming: movement with all four paws, and (3) floating: no limb
movement, or  minimal movement to prevent sinking. All videos
were scored by the same trained observer, who  was  blind to  the
animals’ breeding line and experimental condition.

In the TST, each mouse (12–14 week old males, cohort I)  was sus-
pended by its tail  using tape, in  such a way that it could not escape.
The test, lasting for 6 min, was  video-recorded for later scoring by a
trained observed. Two  behaviors were quantified: (1) struggling:
active mobility, including any escape attempts; (2) immobility:
passive hanging or swinging with not  attempt to escape.

2.5.3. HPA axis function
We  used the stress reactivity test (SRT) to measure basal and

stress-induced corticosterone levels in the adult animals (see
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Fig. 2. Neuroendocrine stress responsiveness in adult animals. The neuroendocrine response of the HPA axis in the Stress Reactivity Test (SRT) of adult high (HR), intermediate
(IR),  and low (LR) reactivity mice raised in early-life stress (ELS) or standard (STD) housing conditions is presented as line plot, showing means and SEM, and boxplots, showing
the  median (horizontal line  in the boxes), 25–75% (boxes) and 10–90% (whiskers), N = 8–11 per group. (A) The increase in plasma corticosterone levels after 15 min restraint
showed a main effect of line (F2,54 = 199.722, p < 0.001, post-hoc tests: all  p < 0.001) and an interaction of line and condition (F2,54 = 5.743, p  =  0.005, post-hoc tests: HR ELS vs
STD:  p < 0.002, IR ELS vs  STD: p = 0.322, LR ELS vs STD: p =  0.526). The recovery of plasma corticosterone levels showed a main effect of line (F2,54 = 76.544, p <  0.001, post-hoc
tests:  all: p < 0.001) and an interaction of line and condition (F2,54 = 3.536, p  =  0.036, post-hoc tests: HR ELS vs  STD: p =  0.016, IR ELS vs STD: p = 0.225, LR ELS vs STD: p  = 0.860).
(B)  The area under the curve (AUC) showed a  main effect of line (F2,54 = 180.231, p < 0.001, post-hoc tests: all p  <  0.001) and an interaction of line and condition (F2,54 = 4.340,
p  = 0.018, post-hoc tests: HR ELS vs STD: p =  0.012, IR  ELS vs STD: p =  0.862, LR ELS  vs  STD: p = 0.148). (C)  Initial corticosterone levels showed a  main effect of line (F2,54 = 6.485,
p  = 0.003, post-hoc tests: HR vs IR: p = 0.949, HR vs LR: p = 0.003, IR vs  LR: p  =  0.044). (D)  Corticosterone reaction levels (after 15 min of restraint) showed a  main effect of line
(F2,54 = 192.243, p < 0.001, post-hoc test: all p < 0.001), as well as an interaction (F2,54 = 5.001, p = 0.010, post-hoc tests: HR ELS vs STD: p = 0.004, IR ELS  vs STD: p =  0.303, LR ELS
vs  STD: p = 0.464). (E) Corticosterone recovery levels (60  min  after termination of the  stressor) showed a main effect of line (F2,54 = 14.432, p <  0.001, post-hoc tests: HR vs  IR:
p  = 0.512, HR vs IR and vs LR:  p < 0.001), and a  trend for an interaction (F2,54 =  2.484, p = 0.094, post hoc tests: HR ELS vs STD: p = 0.964, IR  ELS vs STD: p =  0.095, LR ELS vs  STD:
p  = 0.153). Main effects of line are represented by a horizontal line above the  graphs. The  respective post-hoc test statistics are indicated underneath the line (≈ p  ≥  0.1, ≤/≥,
p  < 0.1, </> p < 0.05). Statistical significance of post-hoc tests for main effects of condition and the interaction are presented above the appropriate boxes (T p < 0.1, * p  < 0.05,
**  p  < 0.01, *** p < 0.001). The grey shaded area indicates the period of restraint.

Touma et al., 2008 for details). Briefly, a  sample of blood was
obtained from each animal (14–16 week old males, cohort II)
through a small incision in the ventral tail vessel within 2 min  after
disturbing the cage (initial sample). The animal was then submit-
ted to a 15 min  restraint period in a 50 ml plastic tube, with holes
for ventilation and an aperture in the cap for the tail, followed by a
second incision and blood sample collection (reaction sample). For
a recovery period of 60 min, the animal was returned to  its home
cage, whereafter a  third blood sample was taken (recovery sample).
All blood samples were kept on ice until further processing.

2.5.4. Candidate gene expression
The activity of the HPA axis is dependent on the expression

and function of  multiple genes in  several brain regions, includ-
ing the paraventricular nucleus of the hypothalamus (PVN), the
dorsal and ventral hippocampus, the basolateral amygdala (BLA)
and the pituitary. To investigate the interaction of early-life adver-
sity and genetic predisposition for extremes in stress reactivity,
we assessed the expression of several candidate genes in these
brain nuclei using quantitative real-time polymerase chain reac-
tion (qPCR). A detailed description is  provided in  the supplementary
material (1.2.).

2.6. Short-term effects of ELS

2.6.1. Bodyweight
Pups were weighed on P2, P9, P17 and P25 when cages where

changed. To minimize handling of the pups, litters were weighed as
units and the weight reported here is the average weight per pup
per litter.

2.6.2. Behavioral parameters
2.6.2.1. Ultrasonic vocalization. Mouse pups isolated from their
mothers emit ultrasonic vocalization (USV) calls (Portfors, 2007)
and previous research has shown that ELS can alter pups’ vocaliza-
tion behavior (Laloux et al., 2012; Zimmerberg et al., 2003). We
therefore included a USV test as a  measure of early behavioral
effects of the ELS  paradigm. The USV test was  conducted on P3 and
P7 between 2 and 4 p.m. Briefly, one randomly chosen male pup
(cohort III) was removed from each litter, weighed and placed onto
a glass dish (20 cm diameter) in  a  noise protected chamber with
a  sensitive microphone (Avisoft-SASLab Pro, Glienicke, Germany)
for 5 min  to record the USV calls. Before and after the test the ani-
mals body surface temperature was  measured using a non-invasive
infrared thermometer (Visual IR Thermometer VT02, FLUKE, Eind-
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Fig. 3. Candidate gene expression in adult animals. Relative gene expression in the
paraventricular nucleus (PVN) and the dorsal Hippocampus (dHip) of adult high
(HR), intermediate (IR), and low (LR) reactivity mice raised in early-life stress (ELS)
or  standard (STD) housing conditions is presented as boxplots, showing the median
(horizontal line in the boxes), 25–75% (boxes) and 10–90% (whiskers), N = 8–11 per
group. (A) The expression of Crh  was affected by  an interaction of line and condition
(F2,54 = 3.592, p = 0.034, post-hoc tests: HR ELS vs STD: p = 0.010, IR  ELS vs STD:
p  = 0.267, LR ELS vs STD: p =  0.280). (B) The  expression of Crh-r1 showed a main effect
of  line (F2,54 = 4.219, p =  0.020, post-hoc tests: HR vs IR: p =  0.256, HR vs LR: p  =  0.026,
IR  vs LR: p = 0.934), a  main effect of condition (F1,54 = 4.349, p = 0.042), and an inter-
action of line and condition (F2,54 =  4.977, p =  0.010, post-hoc tests: HR ELS vs STD:
p  = 0.001, IR ELS vs STD: p =  0.851, LR ELS vs  STD: p = 0.713). (C)  Expression of Nr3c1

showed no effect of line  or condition. (D) The  expression of Fkbp5 showed a main

hoven, Netherlands; Suppl. Fig. 4D). A detailed description of  the
testing protocol is  provided in  the supplementary material (1.3.)

2.6.2.2. Locomotor and exploratory activity. During the 5 min  USV
tests on P3 and P7, the behavior of the male pups (cohort III) was
recorded using a  light sensitive camera installed in the set-up (see
above). The distance traveled during the testing session was man-
ually scored with the help of grid lines on the surface of  the glass
dish (squares sized 2 ×  2 cm). Every line crossing (defined as head
and forelegs across the line) was counted as one distance unit to
assess the pup’s locomotor and exploratory activity.

2.6.2.3. Stress-coping behavior. To investigate the effects of ELS on
the pups coping strategies in a stressful situation we used the FST
as described above (see 2.5.2.3.). For this test, one or two male pups
per litter (cohort V)  were removed from the nest in  the morning of
P25 (before weaning) and individually submitted to 6 min  of  forced
swimming.

2.6.3. Neuroendocrine parameters
2.6.3.1. Relative adrenal weight. Adrenals were dissected from one
pup per litter on P13 and P25 (reliable removal of the adrenals in
younger animals was not  possible). Briefly, one randomly chosen
male pup (cohort III) was removed from the nest, weighed and
quickly decapitated. Both kidneys, with the adrenals attached, were
dissected and placed in labelled Eppendorf tubes in  PBS solution.
Subsequently, the adrenals were dissected, remaining fat  tissue
was removed, and adrenals were weighed on a microscale (0.01 mg
readability, 40SM-200A Precisa, Abbott, Chicoago, U.S.A.). The rela-
tive weight of both adrenals was  calculated by dividing the adrenal
weight by the respective pup’s bodyweight.

2.6.3.2. HPA axis function. To assess the short-term effects of  ELS
on HPA axis function in  pups, a  modified version of the SRT was
conducted on P9 and P25. Briefly, two male pups (cohort IV) were
removed from each litter: The first was  immediately decapitated
and trunk blood was obtained (baseline sample; time between
removal from the nest and decapitation was always below 2  min).
The second pup was  placed into an empty cage with fresh bedding
for 15 min  (novelty exposure), whereafter it was decapitated and
trunk blood was  collected (reaction sample). To investigate the pos-
sibility of preexisting differences between the groups, basal plasma
samples were also collected from one male pup per litter on P2.

2.6.4. Candidate gene expression
To investigate the short-term effects of ELS on the expression

of HPA axis related genes, we  measured the expression of  several
candidate genes in the PVN using qPCR. A detailed description is
provided in  the supplementary material (1.4.).

effect of condition (F1,54 =  5.094, p =  0.028) and a  trend for an interaction of line and
condition (F2,54 =  2.762, p = 0.072, post-hoc tests: HR ELS vs STD: p =  0.011, IR ELS
and  STD: p = 0.074, LR ELS and STD: p =  0.580). (E) The expression of Crh  showed an
interaction of line and condition (F2,53 = 4.662, p =  0.014, post-hoc tests: HR ELS vs
STD: p =  0.004, IR  ELS vs STD: p =  0.517, LR ELS vs STD: p  = 0.212). (F) Expression of
Crh-r1  showed no  effect of line or condition. (G) The expression of Nr3c1 showed
a  main effect of line (F2,53 = 6.141, p =  0.004, post-hoc tests: HR vs  IR: p =  0.299, HR
vs LR: p = 0.242, IR  vs LR: p =  0.003). (H) The  expression of Fkbp5 showed a main
effect of line (F2,53 = 8.531, p =  0.001, post-hoc tests: HR  vs IR: p = 0.174, HR vs LR:
p =  0.121, IR vs  LR: p <  0.001). (I) The expression of Nr3c2 showed a  main effect of
line (F2,53 = 3.430, p =  0.040, post-hoc tests: HR vs  IR: p = 0.479, HR  vs  LR: p =  0.027, IR
vs LR:  p = 0.601). (J) The expression of Gilz showed a main effect of line (F2,54 = 3.692,
p =  0.031, post-hoc tests: HR vs IR: p = 1.0, HR vs LR: p = 0.045, IR  vs LR: p =  0.087).
Main effects of line are represented by  a  horizontal line above the graphs. The respec-
tive post-hoc test statistics are indicated underneath the line (≈ p ≥  0.1, ≤/≥,  p < 0.1,
</> p  < 0.05). Statistical significance of post-hoc tests for main effects of condition
and the interaction are presented above the  appropriate boxes (T p  < 0.1, * p  <  0.05,
**  p  < 0.01, *** p  < 0.001).
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2.7.  Effects of the ELS paradigm on dams and nesting environment

Differences in the response of HR, IR,  and LR dams to the
ELS paradigm could influence the resulting phenotypes in  the
pups by changing their early-life environment. To detect any line-
specific difference, we  assessed several relevant parameters of the
pups’ early-life environment, including maternal behavior, mater-
nal bodyweight, nest temperature, and nest quality from P2 until
weaning. A detailed description of the methods used is  provided in
the supplementary material (1.5.).

2.8. Corticosterone measurement

All blood samples were centrifuged at 4 ◦C and plasma sam-
ples were stored at −20 ◦C until further analysis. Corticosterone
concentration was measured using a  radioimmunoassay kit  (DRG
Instruments GmbH, Marburg, Germany) with 10 !l of plasma per
dilution and duplicates for each sample (for details see Touma et al.,
2008). The intra- and inter-assay coefficients of variation were both
below 10%.

2.9. Statistical analysis

All statistical analyses were done using PASW statistics 18. Data
was analyzed in a two-way analysis of variance (ANOVA) with
“experimental condition” × “mouse line” as fixed factor and Bon-
ferroni corrected post-hoc t-tests when appropriate. All data points
that were collected repeatedly from the same animal were analyzed
using a repeated-measures ANOVA, with “time point” as a  with-
subjects variable, and “experimental condition” and “mouse line” as
between-subjects factors. Bonferroni corrected post-hoc tests were
calculated when appropriate. Whenever a  variable was  assessed
in more than one experimental cohort, a  covariate “cohort” was
included into the statistical model. Statistical significance was
accepted for p < 0.05 (*), p < 0.01  (**), p < 0.001 (***), while p <  0.1
(T) was considered a trend.

3. Results

3.1. Long-lasting effects of ELS

3.1.1. Bodyweight
Being raised in  the ELS condition did not affect the animals’

bodyweight in adulthood (Fig. 1A). Nevertheless, there was  a main
effect of mouse line (F2,114 = 89.253, p  <  0.001), confirming previous
findings (Heinzmann et al., 2014; Touma et al., 2008), showing that
HR mice were lighter than IR and LR animals, and LR mice tended
to be heavier than IR animals.

3.2. Locomotor and explorative activity

The adult mice showed no effect of ELS on any of the OFT read-
outs  (total distance traveled; time, number of entries and distance
traveled in the inner zone) (Suppl. Fig. 2A–C). However, overall,
LR mice traveled shorter total distances (F2,54 = 23.372, p < 0.001,
Fig. 1B), made less entries to the inner zone (F2,54 = 3.480, p =  0.038)
and traveled shorter distances in  the inner zone (F2,54 =  6.046,
p = 0.004) than HR and IR animals (Suppl. Fig. 2A and C).  These dif-
ferences in locomotor activity may  lead to differences in  energy
expenditure and could thus contribute to the differences in body-
weight between the three mouse lines.

3.3. Anxiety-related behavior

ELS housing had no significant effect on the animals behavior
in  the dark-light box test. However, the data showed that, overall,

HR mice tended to be more anxious than IR and LR mice, indicated
by a lower number of entries to, less time spent in, and a greater
latency to enter into the lit zone (Suppl. Fig. 2D–F).

3.4. Stress-coping behavior

The animals’ stress-coping behavior in the FST showed an
interaction effect of mouse line and condition on the time spent
struggling (F1,114 = 12.933, p <  0.001, Fig. 1C) and the time spent
floating (F2,114 = 4.807, p = 0.01, Fig. 1E). Post-hoc tests revealed
that ELS-raised HR mice struggled significantly longer (p <  0.001),
and floated significantly less (p < 0.001) than STD-raised HR mice.
The behavior of IR and LR animals was  not changed by their ELS-
experience. The latency to  the first floating episode also showed
a  significant interaction of line and condition (F2,114 =  17.725,
p <  0.001), with ELS-raised HR mice starting to  float significantly
later than HR STD animals (p < 0.001), but showed no difference in
IR and LR mice (Fig. 1F). Overall, HR ELS mice showed an even more
hyperactive stress-coping style than the already highly active HR
STD animals.

The FST results also revealed some profound differences in
stress-coping behavior between the three SR mouse lines, confirm-
ing previous findings (Touma et al., 2008; Knapman et al., 2010a,b;
Heinzmann et al., 2014). There was  a main effect of line on the
time spent struggling (F2,114 =  87.201, p <  0.001, Fig. 1C), the time
spent swimming (F2,117 = 13.441, p < 0.001, Fig. 1D), and the time
spent floating (F2,1142114 = 96.723, p < 0.001, Fig. 1E), as well as on
the latency to the first floating episode (F = 82.112, p  <  0.001, Fig. 1F).

The results of the TST  are in line with the FST data (Suppl. Fig.
2G–I). Specifically, there was a  trend for an interaction of mouse line
and condition on the time spent struggling (F2,54 = 3.740, p = 0.058,
post-hoc tests: HR: p  =  0.029, IR and LR: p  >  0.1), as well as a  main
effect of mouse line (F2,54 = 5.987, p  =  0.004), with LR animals show-
ing less active coping behavior than HR and IR mice.

3.5. Neuroendocrine parameters

Unsurprisingly, since the responsiveness in  the stress reactiv-
ity test is  the selection criterion for breeding the SR mouse lines,
the plasma corticosterone increase in this test revealed a  strong
main effect of line (F2,54 = 199.722, p  <  0.001). In addition, the HPA
axis response showed an interaction of mouse line and condi-
tion (F2,54 =  5.743, p  =  0.005) and post-hoc tests revealed that in
ELS-exposed HR mice the increase in  plasma corticosterone after
restraint was even higher than in HR STD mice (p =  0.002, Fig. 2A). In
IR and LR animals, the ELS-experience did not affect corticosterone
release.

The area under the curve (AUC) also showed an interaction of
mouse line and condition (F2,51 =  4.340, p  =  0.018), demonstrating
that HR ELS mice were exposed to a  higher cumulative amount
of corticosterone during the test than HR STD animals (p =  0.012,
Fig.  2B). Conversely, ELS exposure did not influence this parameter
in  IR and LR mice.

The absolute initial, reaction and recovery levels of plasma
corticosterone are presented in  Fig. 2C–E. There were significant
differences in corticosterone levels between the three lines at all
three time points, which were especially pronounced immediately
after the restraint stressor.

3.6. Candidate gene expression

In the PVN, the expression of Crh mRNA showed an interaction
of mouse line and condition (F2,54 = 3.592, p =  0.034). Post-hoc tests
revealed that the relative expression of Crh was reduced in ELS-
exposed HR mice compared to HR STD animals (p =  0.010), while
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the  IR and LR mice appeared to be resilient to this ELS-induced
impact on gene expression (Fig. 3A).

A  similar interaction of line and condition was found regarding
the expression of Crh-r1 (F2,54 = 4.977, p = 0.010). The Crh-r1 mRNA
was significantly upregulated in  the PVN of ELS-exposed HR mice
compared to HR STD animals (p = 0.001), but not  in  IR and LR mice
(Fig. 3B).

The expression levels of NR3c1 in the PVN were similar in  all
three mouse lines and showed no effect of ELS-exposure (Fig. 3C).
However, the relative expression of Fkbp5 mRNA indicated a  trend
for an interaction of line × condition (F2,54 =  2.762, p =  0.072). Post-
hoc tests revealed that ELS-exposed HR mice had significantly
lower levels of Fkbp5 than STD-housed HRs (p = 0.011), and IR ELS
mice showed a  trend in the same direction (p =  0.074), while LR ELS
and STD mice showed no differential expression (Fig. 3D).

Interestingly, in  the dorsal hippocampus, Crh mRNA was upreg-
ulated by ELS only in HR mice (interaction of line × condition:
F2,53 =  4.662, p  <  0.014, post-hoc tests HR: p < 0.004, IR and LR:
p ≥ 0.1, Fig. 3E). No other of the investigated candidate genes
showed a significant regulation by ELS-exposure in  the dorsal hip-
pocampus. However, several genes showed expression differences
between the three mouse lines (Fig. 3G–J).

In the ventral hippocampus, the BLA,  and the pituitary we
detected no ELS-induced changes in  gene expression, but some
line differences. An overview of the gene expression profiles in the
analyzed brain areas is  provided in supplementary Table 2.A-E and
gene expression levels in the pituitary are illustrated in supplemen-
tary Fig. 3.

3.7. Short-term effects of ELS

3.7.1. Bodyweight
The bodyweight development of the pups between P2 and P25

is presented in Fig. 4A. The analysis revealed that ELS-exposed pups
in all three mouse lines gained significantly less weight than STD-
housed pups (F1,119 =  25.554, p  <  0.001). Post-hoc tests showed that
this difference in weight gain was significant on P9 (p < 0.001),
P17 (p = 0.002), and P25 (p =  0.011), demonstrating that the ELS
paradigm had a  substantial effect on  the development of pups in
all lines. Overall, HR pups were lagging slightly behind IR and LR
pups in bodyweight until weaning (F2,119 =  7.805, p  =  0.001). Impor-
tantly, on P2, i.e. before the ELS exposure, there was no difference in
bodyweight between pups of all three mouse lines or between con-
ditions (Fig. 4B). However, on P9, i.e. after seven days of ELS or STD
housing, the bodyweight showed a  substantial difference between
ELS and STD-housed pups (F1,174 =  145.863, p  <  0.001, Fig.  4C).

3.9. Behavioral parameters

3.9.1. Ultrasonic vocalizations, body temperature, and
exploratory activity

When isolated from their nest and littermates on P3, pups from
the STD condition made more USV calls than ELS-condition pups
(F1,36 = 16.409, p <  0.001). However, post-hoc tests showed that  the
difference was only significant in  the HR and the IR lines (HR:
p  = 0.008, IR:  p  =  0.009), but not in LR pups (Fig. 5 A). Further-
more, the ELS-exposed HR pups called at a  lower peak frequency
(F2,36 = 3.020, p  =  0.061, post-hoc tests: HR: p =  0.001, IR and LR:
p  > 0.1, Suppl. Fig. 4A), made shorter calls (F2,36 =  8.314, p =  0.001,
post-hoc tests: HR: p =  0.002, IR: p > 0.1, LR: p  =  0.021, Suppl. Fig. 4C),
and had a longer inter-call interval than HR STD pups (F1,36 = 7.779,
p = 0.008, post-hoc tests: HR: p  =  0.027, IR and LR: p  >  0.1, Suppl.
Fig. 4D). Both before and after the USV recording on P3, pups in
the ELS condition had a significantly lower body surface tempera-
ture than STD-housed pups (before: F1,36 = 37.456, p  <  0.001; after:
F1,36 = 12.811, p =  0.001, Suppl. Fig. 5). However, although ELS pups

Fig. 4.  Bodyweight development in young animals before weaning. The bodyweight
of high (HR), intermediate (IR), and low (LR) reactivity mouse pups raised in early-life
stress (ELS) or standard (STD) housing conditions measured from postnatal day (P) 2
until weaning (P25) is presented as line plots, showing means and SEM, and boxplots,
showing the median (horizontal line in the boxes), 25–75% (boxes) and 10–90%
(whiskers). (A) Weight gain in percent from P2 to  P25. A repeated-measures ANOVA
showed that weight gain was affected by a main effect of line (F2,119 =  7.805, p =  0.001,
post-hoc tests: HR vs IR: p  =  0.067, HR  vs LR:  p = 0.001, IR  vs LR:  p = 0.356) and by a
main effect of condition (F1,119 = 25.554, p < 0.001, post-hoc tests overall time points:
HR ELS vs STD: p = 0.002, IR  ELS  vs  STD: p =  0.001, LR ELS vs STD: p  =  0.029; N = 19–23
per  group). (B) The bodyweight of the pups before the start of the ELS paradigm
did not differ between the three lines or between STD and ELS litters (N  =  30–33 per
group). (C) Bodyweight on P9 showed a  main effect of line (F2,175 = 9.381, p < 0.001,
post-hoc tests: HR vs IR: p = 1.0, HR  vs  LR: p = 0.006, IR  vs LR:  p <  0.001) and a main
effect of condition (F1,175 =  145.863, p  <  0.001, post-hoc tests: all p <  0.001; N =  27-32
per  group). Main effects of line are  represented by a  horizontal line above the graphs.
The  respective post-hoc test statistics are indicated underneath the  line (≈ p  ≥ 0.1,
≤/≥, p<0.1, </> p  < 0.05). Statistical significance of post-hoc tests for main effects of
condition and the interaction are presented above the appropriate boxes (T  p < 0.1,
* p  < 0.05, ** p  < 0.01, *** p  <  0.001). The  grey shaded area indicates the  period of ELS
or  STD housing.

were less warm than STD pups, they experienced a  less pronounced
drop in surface temperature during the USV test (F1,36 = 22.934,
p  <  0.001, Suppl. Fig. 5), probably due to  a  floor effect created by
the heating pad in the USV test set-up. The exploratory activ-
ity, measured by the number of line crossings during the USV
test, demonstrated that ELS-condition pups were significantly less
active than STD-housed pups (F1,36 = 20.660, p <  0.001, post-hoc
tests: HR: p  =  0.004, IR: p =  0.008, LR: p = 0.055, Fig. 5B).

On  P7, i.e. after five days of ELS or STD housing, no  signifi-
cant effect of housing condition on the number of  USV calls was
observed (Fig. 5C and Suppl. Fig. 4E–H), and only a  marginally
reduced number of exploratory line crossings was counted in  ELS
mice (F1,35 =  6.246, p  =  0.017, post-hoc tests: HR and LR: p >  0.1, IR:
p =  0.038, Fig. 5D). The pups’ body surface temperature before and
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Fig. 5. Behavior in young animals before weaning. Ultrasonic vocalizations (USV)
measured on postnatal day (P) 3 and 7, and stress-coping behavior tested on
P25,  of high (HR), intermediate (IR), and low (LR) reactivity mouse pups raised
in  early-life stress (ELS) or standard (STD) housing conditions are presented as
boxplots, showing the median (horizontal line in the boxes), 25–75% (boxes) and
10–90% (whiskers), N  =  6–10 per group. (A) The number of USV calls emitted by
pups on P3 showed a main effect of condition (F1,36 =  16.409, p <  0.001, post-hoc
tests: HR ELS vs STD: p =  0.008, IR  ELS vs  STD: p =  0.009, LR ELS vs STD: p =  0.172). (B)
The  number of line crossings during the USV test on P3 showed a  trend for a main
effect of line (F2,36 =  2.963, p = 0.064, post-hoc tests: HR vs  IR:  p =  0.148, HR vs  LR:
p  = 1.0, IR vs LR: p =  0.044) and a main effect of condition (F1,36 = 20.660, p < 0.001,
post-hoc tests: HR ELS vs STD: p =  0.004, IR ELS vs STD: p =  0.008, LR ELS vs STD:
p  = 0.055). (C) There was  no effect of line or condition on the number of USV calls
on  P7. (D) The number of line crossings during the USV test on P7 showed a  main
effect of condition (F1,35 =  6.246, p =  0.017, post-hoc tests: HR ELS vs STD: p = 0.251,
IR  ELS vs STD: p = 0.038, LR ELS vs STD: p = 0.337). (E) The time spent struggling in
the  Forced Swim Test (FST) showed a  main effect of line (F2,50 = 20.062, p < 0.001,
post-hoc tests: HR vs IR and HR vs LR: p <  0.001, IR vs LR: p  = 1.0) and a  main effect
of  condition (F1,50 = 16.432, p <  0.001, post-hoc tests: HR ELS vs STD: p =  0.008, IR
ELS  vs STD p = 0.022; LR ELS vs STD: p =  0.058) (F) The time spent swimming in the
FST  showed a  main effect of line (F2,50 =  10.266, p  <  0.001, post-hoc tests: HR vs IR:
p  < 0.001, HR vs LR: p = 0.005, IR  vs  LR:  p  =  1.0). (G) The time spent floating in the FST
showed a main effect of line  (F2,50 = 3.676, p = 0.033, post-hoc tests: HR vs IR: p =  1.0,
HR  vs LR: p = 0.094, IR  vs LR: p = 0.235) and a  main effect of condition (F1,50 =  23.958,
p  < 0.001, post-hoc tests: HR ELS vs STD: p = 0.036, IR ELS  vs STD: p < 0.001, LR
ELS  vs STD: p = 0.062). (H) The latency to  the first floating bout showed no effect
of  line or condition. Main effects of line are represented by a horizontal line above the

after the USV test also showed no significant difference between
lines and conditions, apart from a  trend for increased cooling dur-
ing the test in  the STD- compared to the ELS-housed animals
(F1,35 =  3.282, p  =  0.079, Suppl. Fig. 5).

3.9.2. Stress-coping behavior
Stress-coping behavior of the pups was assessed on P25 using

the FST. The results showed that, similar to the FST in adult mice,
there was  a  main effect of mouse line on the animals’ coping
style. Specifically, HR pups struggled longer than IR and LR pups
(F2,50 = 20.062, p  <  0.001, Fig. 5E) and floated less (F2,50 = 3.676,
p =  0.033, Fig. 5G).

Regarding the short-term impact of ELS on stress-coping behav-
ior, the results showed that ELS-exposed animals in all lines
struggled longer than STD-raised mice (F1,50 = 16.432, p  <  0.001,
post-hoc tests: HR: p = 0.008, IR: p =  0.022, LR: p  =  0.058). How-
ever, the interaction of line and condition on struggling duration,
that had been highly significant in the adult mice, did not reach
significance in  the pups (F2,50 = 0.106, p = 0.897, Fig. 5E). Accord-
ingly, ELS-exposed pups of all lines spent less time floating, i.e.
showed less passive coping behavior, compared to  STD-raised pups
(F1,50 =  23.958, p  <  0.001, post-hoc tests: HR: p  = 0.036, IR: p <  0.001,
LR: p  =  0.062, Fig. 5G). The latency to the first floating episode, how-
ever, was  unaffected by mouse line or condition (Fig. 5H).

3.10. Neuroendocrine parameters

3.10.1. Relative adrenal weight
On P13, i.e. shortly after the end of the ELS exposure, the rel-

ative adrenal weight was significantly increased in HR and IR ELS
pups compared to the respective STD-housed pups, while no such
effect was present in  the LR line (interaction of line × condition:
F2,35 = 8.601, p  =  0.001, post-hoc tests: HR:  p  <  0.001, IR: p  =  0.025,
LR: p  ≥0.1). Moreover, the relative adrenal weight showed a main
effect of mouse line (F2,35 = 6.645, p =  0.004). Overall, HR and IR mice
had a  higher relative adrenal weight than LR mice (Fig. 6A).

On P25, the effects of ELS on relative adrenal weight were
no longer statistically significant, while the relative difference
between the three mouse lines was more pronounced than on P13
(F2,25 = 9.966, p = 0.001, Fig. 6B). The latter confirms previous find-
ings in  adult HR/IR/LR mice (Heinzmann et al., 2014; Touma et al.,
2008).

3.10.2. HPA axis reactivity
On P2, basal corticosterone levels were similarly low in all six

experimental groups (Suppl. Fig. 6). On P9, i.e. after one week of  ELS
or  STD housing, ELS-exposed HR pups had elevated basal corticos-
terone levels compared to STD pups, while pups of the IR and LR
mouse line showed no difference associated with ELS (interaction
of mouse line × condition: F(2,40) = 8.093, p = 0.001, post-hoc tests:
HR: p  < 0.001, IR and LR: p  ≥ 0.1). The basal corticosterone levels
also revealed a  main effect of mouse line (F2,40 =  27.807, p  <  0.001,
Fig.  6C).

After a 15-min novelty exposure, the stress-induced lev-
els of corticosterone confirmed the main effect of mouse line
(F2,40 =  27.222, p < 0.001, Fig. 6C). However, within each of the three
lines, the stress-induced corticosterone levels of ELS and STD-raised
pups were on a  similar level.

Before weaning on P25, the pups’ basal corticosterone lev-
els only slightly differed between lines and conditions (line:

graphs. The respective post-hoc test statistics are indicated underneath the line (≈
p  ≥ 0.1, ≤/≥, p < 0.1, </> p  < 0.05). Statistical significance of post-hoc tests for main
effects of condition and the interaction are  presented above the appropriate boxes
(T p  <  0.1, * p <  0.05, **  p  < 0.01, *** p  < 0.001).
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Fig. 6. Neuroendocrine stress responsiveness in young animals before weaning. Parameters of neuroendocrine responsiveness of the HPA axis in high (HR), intermediate
(IR), and low (LR) reactivity mouse pups raised in early-life stress (ELS) or standard (STD) housing conditions, measured on postnatal day (P) 9, 13  and 25, are presented
as  boxplots, showing the median (horizontal line in the boxes), 25–75% (boxes) and 10–90% (whiskers). (A) The relative adrenal weight on P13 showed a main effect of
line (F2,35 = 6.645, p = 0.004, post-hoc tests: HR  vs IR: p = 0.123, HR vs LR: p =  0.006, IR vs LR: p = 0.771), as well as a main effect of condition (F1,35 = 17.988, p < 0.001) and an
interaction of line  and condition (F2,35 = 8.601, p =  0.001, post-hoc tests: HR  ELS vs STD: p < 0.001, IR ELS vs STD: p = 0.025, LR ELS vs STD: p =  0.659; N = 6-8 per group). (B) The
relative  adrenal weight on P25 showed a main effect of line (F2,25 =  9.966, p  =  0.001, post-hoc tests: HR vs IR:  p = 0.348, HR vs  LR: p =  0.001, IR vs LR:  p = 0.041) and a trend for
a  main effect of condition (F1,25 = 3.022, p = 0.094, post-hoc tests: HR ELS vs STD: p =  0.615, IR ELS vs STD: p  =  0.103, LR ELS vs STD: p = 0.439; N  =  4-6 per group). Panels (C) and
(D) show the basal and stress-induced (15 min  novelty exposure) levels of plasma corticosterone in pups on P9 and on  P25, respectively. Note the different Y-axis scale in
these  panels. (C) The basal plasma corticosterone levels on  P9 showed a  main effect of line (F2,40 = 27.807, p <  0.001, post-hoc tests: HR vs IR: p  <  0.001, HR vs LR: p  <  0.001, IR
vs  LR: p = 0.979), a  main effect of condition (F1,40 =  8.796, p  =  0.005) and an interaction of line and condition (F2,40 = 8.093, p = 0.001, post-hoc tests: HR ELS vs STD: p < 0.001,
IR  ELS vs STD: p = 0.690, LR ELS vs STD: p =  0.760; N = 7-8 per group). The stress-induced plasma corticosterone levels on  P9 only showed a main effect of line (F2,40 =  27.222,
p  < 0.001, post-hoc tests: HR  vs  IR: p <  0.001, HR vs LR: p < 0.001, IR  vs LR: p = 0.721; N  =  7–8 per group). (D) The basal plasma corticosterone levels on  P25 showed a trend for
a  main effect of line  (F2,34 = 2.862, p  =  0.071, post-hoc tests: HR vs IR: p =  0.095, HR vs LR:  p =  0.239, IR vs LR: p =  1.0), and a  trend for a main effect of condition (F1,34 =  3.027,
p  = 0.091, post-hoc tests: HR ELS vs STD: p =  0.612, IR ELS vs STD: p  =  0.396, LR ELS vs STD: p = 0.096; N = 5-8 per  group). The stress-induced plasma corticosterone levels on
P25  showed a  main effect of line (F2,32 = 30.724, p < 0.001, post-hoc tests: HR  vs IR: p  <  0.001, HR vs LR:  p < 0.001, IR  vs LR: p =  0.182) and an interaction of line and condition
(F2,32 =  4.053, p = 0.027, post-hoc tests: HR  ELS vs STD: p  =  0.016, IR ELS vs STD: p = 0.256, LR ELS vs STD: p = 0.575; N  = 5–8 per group). Main effects of line are represented
by  a  horizontal line above the  graphs. The  respective post-hoc test statistics are  indicated underneath the line (≈ p ≥ 0.1, ≤/≥, p  <  0.1, </> p <  0.05). Statistical significance of
post-hoc tests for main effects of condition and the interaction are presented above the appropriate boxes (T  p <  0.1, * p < 0.05,  ** p  < 0.01, *** p  <  0.001). The grey shaded area
indicates the basal samples.

F2,34 =  2.862, p = 0.071, condition: F1,34 = 3.027, p  =  0.091, post-hoc
tests: all p  ≥  0.1). However, after the 15-min novelty exposure,
ELS-reared HR pups had significantly higher corticosterone levels
than STD-raised HR pups, while IR and LR pups showed no sig-
nificant difference between the ELS and STD groups (interaction
of mouse line × condition: F2,32 = 4.053, p =  0.027, post-hoc tests:
HR: p = 0.016, IR and LR: p  ≥ 0.1, Fig. 6D). In addition, a strong
main effect of mouse line appeared in response to  the novelty-
stress (F2,32 = 30.724, p  <  0.001), with HR pups reaching significantly
higher stress-induced corticosterone levels than both IR and LR
mice.

3.11. Candidate gene expression

On P9, the expression of Crh mRNA in the PVN  showed an inter-
action of mouse line and condition (F2,36 = 2.598, p  =  0.088). Similar
to the effect observed in adult mice, post-hoc tests revealed that
the relative expression of Crh was reduced in ELS-exposed HR mice
compared to STD animals (p = 0.051), while the IR and LR mice
showed no such effect (Suppl. Fig. 7A). The expression levels of
Crh-r, Nr3c1 and Fkbp5 mRNA in  the PVN  were not significantly dif-
ferent between ELS and STD housed pups on P9 (Suppl. Fig. 7B–D).
In the dorsal hippocampus there were no significant differences
in the expression levels of Crh, Crh-r, Nr3c1,  Fkbp5, Nr3c2, and Gilz
between conditions or  between lines (Suppl. Fig. 7E–J).

3.12. Effects of the ELS paradigm on dams and nesting
environment

The between-lines comparison revealed no significant differ-
ences between HR, IR  and LR dams in any of the quantified
parameters of maternal behavior and nesting environment. How-
ever, in  all three lines, the ELS paradigm lead to more fragmented
maternal behavior, reflected by an increased number of exits from
the nest area on P3 (F1,42 =  34.634, p  <  0.001, post-hoc test: HR:
p  =  0.004, IR: p <  0.001, LR: p = 0.042, Suppl. Fig. 8A). In addition,
ELS nests were of poorer quality, indicated by lower nest scores
(F1,36 = 70.226, p  < 0.001, post-hoc tests: all p <  0.001, Suppl. Fig. 9E)
and the temperature in  ELS nests was lower than in  STD nests
(F1,32 = 64.612, p <  0.001, post-hoc tests: HR: p = 0.002, IR and LR:
p  <  0.001, Suppl. Fig.  9C). A more detailed description of the results
regarding the effects of the ELS paradigm on the maternal behav-
ior and the nesting environment is  provided in  the supplementary
material (2.1.).

4.  Discussion

The aim of the presented study was  to  investigate a G ×  E  inter-
action in an established mouse model of affective disorders with
a  genetic predisposition for extremes in  HPA axis reactivity and to
describe the short-term, as well as the lasting consequences of ELS
on emotional behavior, neuroendocrine function, and gene expres-
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sion profiles. We  detected a  range of short-term effects in  pups of all
three mouse lines, affecting bodyweight development, USV calling
and explorative behavior, as well as stress-coping behavior. How-
ever, only offspring of HR animals showed substantial functional
changes in neuroendocrine parameters shortly after ELS exposure.
Long-lasting consequences of ELS also emerged primarily in  HR ani-
mals, affecting their stress-coping behavior, HPA axis function, and
the expression of HPA axis-related genes. In contrast, IR and LR
mice showed no measurable evidence of enduring consequences
of the ELS exposure, though some short-term effects had appeared
in IR pups. Thus, our  results suggest that a genetic predisposition
for a dysregulation of the HPA axis may  be a critical factor influenc-
ing the vulnerability to programming effects of early-life adversity,
and that a neuroendocrine dysregulation during early development
may  set the stage for the emergence of endophenotypes of affec-
tive disorders later in life. We have presented data supporting these
suggestions and will discuss the results in detail below.

4.1. Physiological consequences of ELS

In HR, IR and LR pups, ELS caused a  delay in  bodyweight gain
(Fig. 4) that was independent of genetic predisposition for extremes
in stress reactivity, suggesting that  metabolic factors are underlying
this developmental phenotype. However, the effect was transient,
since by week 12, animals raised in the ELS condition had caught up
in bodyweight with the STD-housed mice (Fig. 1A). Possible causes
of the initial developmental delay in ELS pups include a  reduced
nursing time (Ivy et al., 2008), lower milk quality or poor absorp-
tion of nutrients from the milk by the pups (Yam et al., 2015), and
an increased metabolic expenditure of the pups due to heat loss
(Harshaw and Alberts, 2012). In line with previous studies (Brunson
et al., 2005; Rice et al., 2008), our analysis of maternal behavior
revealed that the ELS paradigm led to fragmented maternal care in
all three mouse lines (Suppl. Fig. 8A). In addition, we for the first
time showed that nests in  the ELS housing condition were colder
than STD nests (Suppl. Fig. 9C), suggesting that thermoregulation
plays an important role in  the developmental phenotype induced
by this ELS paradigm. Counterintuitively, dams in the ELS condition
spent significantly more time on their nest than STD housed dams
(Suppl. Fig. 8B), thus, theoretically, allowing more time for nursing.
Unfortunately, our video recordings were not  detailed enough to
enable a quantitative analysis of the nursing behavior in  the nest. A
possible explanation for the dams’ behavior could be that the grid
floor in ELS cages is  rather cold and hard, and hence no attractive
alternative to resting on the nest.

4.2. Behavioral consequences of ELS

During the ELS-paradigm, on P3, pups in the ELS condition
showed significantly altered USV behavior. These animals made
fewer USV calls, of shorter duration, and with lower peak frequency
than STD housed pups (Fig. 5A, and Suppl. Fig.  4). Furthermore, ELS-
housed pups showed less exploratory behavior during the USV test
(Fig. 5B) and displayed a  hyperactive stress-coping behavior in  the
FST compared to STD animals (Fig. 5E and G). However, these short-
term consequences of ELS were only significant in HR and to some
extent in IR pups (LR ELS pups showed only a  trend for reduced
exploration and actually made longer USV calls), indicating that
the behavioral short-term effect of ELS are partially moderated by
the  animals’ genetic predisposition for high HPA axis reactivity to
stressors.

In  adulthood, ELS-reared HR mice showed a  clearly hyperactive
stress-coping style in  the FST compared to STD-housed HR mice
(Fig. 1C–F), while IR and LR animals no longer displayed ELS-related
changes in stress-coping behavior. This data was further supported
by similar results in  the TST (Suppl. Fig. 2G–I). The baseline loco-

motor activity under less stressful conditions (in the OFT) showed
that, while HR and IR mice moved around more than LR mice, there
was no difference between the STD- and the ELS-reared groups
(Fig. 1.B and Suppl. Fig. 2A–C). Similarly, there was no indication
for ELS-induced changes in anxiety-related behavior (Suppl. Fig.
2D–F). These data indicate that the pronounced hyperactivity dis-
played by ELS HR mice in  the FST and the TST  is not a general trait
of these animals, but  rather an extreme behavioral response to  the
aversive testing situation, which might be a  behavioral correlate of
an extreme HPA axis response.

In the context of antidepressant drug screening, struggling is
regarded as an active way of coping in the FST and the TST,
while floating (or immobility) is classically interpreted as a  sign
of behavioral despair (Petit-Demouliere et al., 2004; Porsolt et al.,
1977). However, this interpretation has rightfully been debated
(Borsini and Meli, 1988; O’Neill and Valentino, 1982) and it has
been pointed out that for example chronic stress, a  trigger for
depression-like behavior, can lead to  increased struggling in  the FST
(Platt and Stone, 1982), i.e.  produce an “antidepressant-like” effect.
These contradicting findings make it clear that the interpretation of
struggling and immobility in tests of stress-coping behavior is not
straightforward. Regarding the very high persistence and intensity
of the escape-related struggling activity observed in HR mice, par-
ticularly HR ELS animals, we propose that  this behavior indicates a
hyperactive stress-coping style, which resembles agitation rather
than an adaptive coping behavior (for further discussion, see also
Touma el al. 2008).

4.3. Neuroendocrine consequences of ELS

ELS-exposed HR pups had a  significantly increased relative
adrenal weight, as well as elevated basal and stress-induced cor-
ticosterone levels compared to STD-housed HR pups (Fig. 6A,C,D).
In contrast, ELS had a milder effect on IR mice and did not  at all
affect these parameters of HPA axis function in  LR offspring. When
interpreting these findings it is important to know that from ∼P1-
12  mouse pups go through a so-called “stress-hypo-responsive
period” (SHRP) (Levine, 1994; Schmidt et al., 2003). This period
is characterized by a blunted HPA axis response and altered gene
regulation, and its likely evolutionary function is to protect the
developing brain from the impact of glucocorticoids (Levine, 1994;
Lupien et al., 2009; Schmidt et al., 2003). Thus, our results indicate
that, particularly in  HR pups, ELS-exposure caused an activation of
the stress-hormone system during the SHRP, which managed to
override the HPA axis suppression, so that elevated glucocorticoid
levels during this critical period of development exerted epigenetic
programming effects, leading to  a lasting dysregulation of neu-
roendocrine functions. The IR and LR mouse lines were somewhat
protected from these downstream effects (or recovered rapidly
from their temporary impact, in the case of IR mice), demonstrating
that the enduring effects of ELS depend on an interaction of genetic
and environmental factors.

The stress reactivity test results in adult animals confirm this
interpretation by revealing that a brief restraint period led to
an extreme HPA axis response in HR ELS mice, with corticos-
terone levels surpassing even the already very high levels of  HR
STD mice (Fig. 2A  and D), while adult IR and LR mice showed
no ELS-associated differences in HPA axis function. Importantly,
the feedback regulation of the HPA axis was not impaired by  the
ELS experience, since the recovery levels of corticosterone (taken
60 min  after the end of the restraint) did not  differ between ELS
and STD mice in all three lines (Fig. 2A and D). However, the
enlarged AUC (Fig. 2B) demonstrates that HR ELS animals are proba-
bly exposed to  an increased amount of stress hormones throughout
their life. Previous research has shown that  such chronic excess of
glucocorticoid exposure can lead to  dendritic atrophy (Magariños
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and McEwen, 1995; Woolley et al., 1990), reduce neurogenesis and
the survival of immature neurons (Lucassen et al., 2015; Wong and
Herbert, 2004), increase the risk for affective disorders (Bebbington
et al., 1993; McEwen, 2005), and impair cognitive performance
(Aisa et al., 2007; McEwen and Sapolsky, 1995). Interestingly, stud-
ies in the SR mouse model revealed that dendritic arborization in
the  hippocampus of young adult STD HR  mice was not different
from the arborization in IR and LR animals, while spine density was
increased in LR mice (Pillai et al., 2012). It  remains to  be investigated
to  what extent the ELS exposure and the downstream neuroen-
docrine alterations (most likely leading to  increased glucocorticoid
exposure throughout life) may  impact on structural measures of
hippocampal integrity and cognitive function.

4.4. Consequences of ELS on gene expression

The  above described long-lasting consequences of early-life
adversity co-occurred with specific alterations on the level of gene
expression (Fig. 3). These mainly affected the CRH system, a  neu-
ropeptide system that functions as the primary regulator of the
neuroendocrine stress responses (Vale et al., 1981), and has repeat-
edly been described to play a  central role in mediating the effects
of early-life adversity (Brunson et al., 2001; Meaney et al., 1996;
Wang et al., 2012). In our study, we observed a  down-regulation
of Crh mRNA in  the PVN  of HR mice after ELS both in adult mice
(Fig. 3A) and in pups on P9 (Suppl. Fig. 7A), which is in  accordance
with findings reported by Avishai-Eliner et al. (2008) and Rice et al.
(2008),  who described similar effects of the limited nesting and
bedding material ELS paradigm in Sprague-Dawley rat and C57Bl/6
mice. In adult animals, prolonged activation of the HPA axis gen-
erally leads to CRH depletion and compensatory up-regulation of
the Crh mRNA in the PVN, which can be suppressed by glucocorti-
coid receptor activation directly in the PVN (Yi et al., 1993), or via
inhibitory GABAergic pathways from the hippocampus (De Kloet
et al., 1998; Plotsky et al., 1987). However, a compensatory Crh
up-regulation does not occur during the stress-hypo-responsive
period in pups (Avishai-Eliner et al., 1995), and negative feedback
by glucocorticoids has been suggest as potential mechanism for
this (Brunson et al., 2001). Thus, abnormally high glucocorticoid
levels during the stress-hypo-responsive period, as observed in  HR
ELS mice, could trigger a  lasting down-regulation of hypothalamic
Crh mRNA via high levels of glucocorticoid-induced feedback in the
PVN and increased activation of GABAergic innervation from the
hippocampus.

In the PVN of adult HR ELS mice the down-regulation of Crh was
accompanied by  an upregulation of the Crhr1 receptor (Fig. 3B),
suggesting an internal compensatory mechanism acting within this
nucleus, and by an up-regulation of Crh in  the dorsal hippocampus
(Fig. 3E). During the stress response, CRH is  released from limbic
brain structures, such as the hippocampus and the amygdala, into
the extracellular space and acts as a  neuromodulator in the inter-
action of limbic and endocrine systems (Brunson et al., 2002; Chen
et al., 2004). Excess CRH-R1 stimulation, however, causes spine loss
and dendritic atrophy in  the hippocampus (Chen et al., 2008). Thus,
our data suggests that  aged HR ELS mice are likely to suffer from
cognitive deficits and hippocampal degeneration symptoms, but
this remains to be investigated.

A further important candidate gene that  showed a  significant
change in its expression associated with ELS was Fkbp5.  Fkbp51
(the protein of the Fkbp5 gene) indirectly regulates the sensitiv-
ity of the glucocorticoid receptor (Binder, 2009; Grad and Picard,
2007; Touma et al., 2011), and elevated Fkbp5 expression has been
proposed as a potential pathogenetic factor for affective disorders
(Binder, 2009; Klengel et al., 2012; O’Leary et al., 2011). Chronic
mild stress can trigger an up-regulation of Fkbp5 expression in  the
ventral hippocampus and prefrontal cortex (Guidotti et al., 2012).

Using our ELS paradigm, we found a  significant down-regulation
of basal Fkbp5 expression in  the PVN of adult HR ELS mice, and
a  trend in the same direction in IR ELS animals (Fig. 3D), but no
changes in other brain areas (Suppl. Table 2)  and no changes on
P9 (Suppl. Fig. 7D and H). Under basal conditions, Fkbp5 expres-
sion in the PVN is  relatively low, but the expression is  transiently
increased by an acute stress-experience (Scharf et al., 2011; Touma
et al., 2011). A further down-regulation of baseline levels may  be
related to  a  potent GR-mediated negative feedback tone from the
hippocampus and from an ultrashort local feedback loop within the
PVN (Fries et al., 2015).

5.  Conclusion

Taken together, our results show that in mice that are geneti-
cally predisposed for increased stress reactivity, early-life adversity
leads to endophenotypes associated with affective disorders, leav-
ing more stress-resilient individuals relatively unaffected in their
later life. We suggest that this G × E interaction is initiated through
an increased HPA axis activation during the stress-hypo-responsive
period in HR animals. Abnormally elevated corticosterone levels
overcome the suppression of the HPA  axis and set off a program-
ming cascade that lastingly modifies neuroendocrine functions
and gene expression profiles, probably through epigenetic mod-
ifications in key regulators. The down-stream effects are stress
hyper-reactivity and excess glucocorticoid exposure, with negative
repercussions affecting brain function and behavior. In conclusion,
the presented findings make the three SR mouse lines a  highly
valuable animal model to  explore how genetic predispositions
and environmental stress factors interact to increase, or to buffer,
the risk for developing endophenotypes associated with affective
disorders and therefore contribute to our understanding of the
pathomechanisms underlying psychiatric diseases.
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1. Methods (supplementary) 

1.1.  The Stress Reactivity mouse model 

The Stress Reactivity (SR) mouse model is a recently established genetic animal for affective disorders. A 

selective breeding approach was used to generate three mouse lines, which differ in their HPA axis 

responsiveness to stressors, thus creating a high reactivity (HR), intermediate reactivity (IR) and low 

reactivity (LR) mouse line. A detailed description of the breeding and selection procedure is published in 

Touma et al., 2008. Briefly, a founder generation, consisting of 100 male and 100 female outbred CD-1 

mice, was subjected to the stress reactivity test (SRT, see manuscript section 2.5.3.). Based on the CORT 

increase (response minus initial value) measured in this test, high reactivity breeding pairs, as well as 

intermediate, and low reactivity breeding pairs were selected as founders to produce the F1 generation of 

the three mouse lines (HR, IR and LR, respectively). Through routine SRT testing of every new 

generation of animals at the age of 7-8 weeks, new breeding pairs are selected and three stable mouse lines 

have thus been created, differing significantly in their HPA axis reactivity. Extensive endophenotyping of 

the SR mouse model lines has henceforth revealed several phenotypic similarities between HR animals 

and the melancholic subtype of depression and LR animals and the atypical depression subtype, including 

altered activity, bodyweight, sleep architecture, stress-coping behavior and cognition (Fenzl et al., 2011; 
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Heinzmann et al., 2014,; Knapman et al., 2010 a,b 2011, 2012; Touma et. al, 2008, 2009). The mice used 

to generate the experimental animals for the present study were taken from breeding generations XXIII-

XXVIII of the SR mouse model.”  

 

1.2.  Candidate gene expression in adult mice  

Three days after the last behavioral test, the mice (14-16 week old males, cohort I) were decapitated under 

basal conditions after a brief isoflurane anesthesia. Brains were dissected, snap-frozen in methylbutane, 

wrapped in aluminum foil and stored at -80 °C until further processing. The pituitary was removed from 

the scull, frozen on dry ice in a labeled tube, and stored at -80 °C until further processing. As previously 

described (Heinzmann et al., 2014), the frozen brains were sliced on a cryostat into 200 µm thick coronal 

sections and tissue punches of the paraventricular nucleus of the hypothalamus (PVN) (0.8- to 1.4 mm 

from Bregma), dorsal (-1.2 to -2,0 mm from Bregma) and ventral (-3.0 to -3,80 mm from Bregma) 

hippocampus and the basolateral amygdala (BLA) (-1.0 to -1,8 mm from Bregma) were acquired by 

micropuncture (needle ⌀ 0.8 mm). Total RNA was isolated from the collected brain tissue punches and 

pituitaries using RNA spin column (RNeasy Micro Kit, Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. Approximately 200 ng of the extracted RNA was reverse transcribed into cDNA 

using the High-Capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA). Gene 

transcripts were analyzed in 384 well-plates using a qPCR kit (QuantiFast SYBR Green, Qiagen GmbH, 

Hilden, Germany) following the manufacturer’s protocol. All samples were analyzed in duplicates using 

the Roche Lightcycler® 480 instrument (Roche Diagnostics, Mannheim, Germany). TATA-binding 

protein (Tbp) and Hypoxanthine-Guanine Phosphoribosyltransferase (Hprt) were used as housekeeping 

genes. A list of all measured candidate genes with the applied oligonucleotide primers is provided in 

supplementary table 1. Relative gene expression was calculated using the 2-ΔΔCT algorithm (Livak and 

Schmittgen, 2001). Crossing points were normalized to the mean of the two housekeeping genes and to 

the relative expression mean of the IR STD group. 
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1.3.  Ultrasonic vocalization test 

On P3 and P7, one randomly chosen male pup (cohort III) was removed from each litter, weighed and 

gently placed onto a glass dish (20 cm diameter) in a noise protected chamber. Since a decrease in body 

temperature can affect a pups’ ultrasonic vocalization (USV) frequency (Allin and Banks, 1971; Blumberg 

et al., 1992a), we measured the body surface temperature of each pup immediately before and after the 

USV test, using a non-invasive infrared thermometer (Visual IR Thermometer VT02, FLUKE, Eindhoven, 

Netherlands). In addition, to limit the effect of thermal stress due to cooling during the USV test, a 

styrofoam board and a heating pad (HK 35, Beurer, Neu-Ulm, Germany) were positioned underneath the 

dish to maintain a temperature of 27 ± 2 °C. At the beginning of the test, the pup was positioned in the 

center of the dish on its four paws. USVs were recorded for a 5 min period using a sensitive microphone, 

mounted 12.5 cm above the center of the glass dish and analyzed using specialized software (microphone 

and software: Avisoft-SASLab Pro, Glienicke, Germany). After the test on P3, the pup’s back was marked 

(Animal marker, #50441, Stoeling Co, Wood Dale, U.S.A) before returning it to the cage to exclude the 

possibility of testing the same animal again on P7. 

1.4.  Candidate gene expression in pups  

In the morning of P9, one male pup per litter (cohort IV) was removed from the nest and immediately 

decapitated within less than 2 min from disturbing the nest. Brains were collected, snap-frozen in 

methylbutane, wrapped in aluminum foil and stored at -80 °C until further processing, as described above 

in section 1.2 of the supplementary material. Total RNA from tissue punches of the PVN was isolated, 

reverse transcribed the cDNA, and gene expression was analyzed using qPCR.  

1.5. Effects of the ELS paradigm on dams and nesting environment 

1.5.1.  Bodyweight of dams 

Dams were weighed once per week during the regular changing of cages on P2, P9, P17 and P25. 
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1.5.2. Nest temperature 

During the early postnatal period, mouse pups are not able to regulate their body temperature and are 

therefore dependent on external sources of warmth and insulation (Sokoloff, 2001). The reduced amount 

of nesting material in the ELS housing condition is likely to result in a difference in nest temperature 

between ELS and STD nests. To quantify this thermal stressor, the nest temperature was measured on P2, 

3, 5, 7, 9, 13 and 17 (cohort III).  A non-invasive method using an infrared thermometer (Visual IR 

Thermometer VT02, FLUKE, Eindhoven, Netherlands) was employed to minimize the disturbance of the 

animals. Briefly, the dam was gently removed from the cage and the thermometer was centred 

approximately 10 cm above the pups in the nest, guided by the color-coded screen (see Suppl. Fig. 5.D). 

In STD cages with a full dome nest, the nest was briefly uncovered to allow an accurate measurement. 

The temperature in the warmest place of the nest, usually in the centre of the assembled pups, was noted 

down, and the dam was immediately returned to her pups (time between removal and return of the dam to 

the cage was below 30 seconds). 

1.5.3. Nest score 

As a further measure of the early-life environment, the nest quality was evaluated on P5 (cohort III), using 

the scale established by Deacon (2006). Nest scores ranging from 1 to 5 were assigned based on the 

following criteria: (1) no nest and pups scattered, (2) no intact nest but pups assembled, (3) basic nest and 

pups assembled, (4) incomplete dome and all pups in nest, (5) full dome and all pups in nest. 

1.5.4.  Maternal behavior 

The limited nesting and bedding material paradigm has been reported to lead to erratic maternal behavior 

in rats and mice (Brunson et al., 2005; Rice et al., 2008), which in turn creates a stressful environment for 

the pups. To verify this finding in the SR mouse lines and to detect potential differences in maternal 

behavior between HR, IR and LR dams, we mounted light-sensitive video cameras above the ELS and 

STD cages (cohort II) and recorded the dams’ behavior for 24 hrs on P3 and P7. During the dark phase 

dim red light was used to illuminate the cages. On both days, three one-hour time periods of the video 
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recordings (light phase: 9-10 a.m. and 3-4 p.m.; dark phase: 9-10 p.m.) were analyzed by a trained 

observer to determine the number of exits from the nest area and the time the dams spent on the nest. 

2. Results (supplementary) 

2.1. Effects of the ELS paradigm on dams and nesting environment 

2.1.1. Bodyweight of dams  

The ELS paradigm did not cause any significant changes in maternal bodyweight, i.e. within each mouse 

line, dams in the ELS and the STD condition did not statistically differ in bodyweight throughout the first 

four postnatal weeks (Suppl. Fig. 5.A). However, the dam’s bodyweight on P2 showed a main effect of 

mouse line (F2,44=10.500, p<0.001, Suppl. Fig. 5.B), and a repeated-measures ANOVA over all time 

points between P2 and P25 showed a trend for a main effect of line (F2,43=2.604, p=0.086). From P2 until 

P25, all dams initially gained, and then lost some bodyweight, but this was independent of line and 

condition. 

2.1.2. Nest temperature 

The nest temperature measurements taken between P2 to P17 were analyzed using a repeated-measures 

ANOVA and revealed a main effect of condition (F1,32=15.098, p<0.001, Suppl. Fig. 5.C). Post-hoc tests 

confirmed that the temperature in ELS nests was significantly lower than in STD nests during the ELS 

paradigm (P3: p<0.001), P5: p<0.001), P7: p=0.005, and P9: p=0.002), but not before (P2) or after (P13, 

P17), and there was no difference in nest temperature between the three mouse lines. 

2.1.3. Nest score 

The nest quality assessment on P5 showed that ELS nests were of a significantly lower quality than STD 

nests (F1,42=70.226, p<0.001, post-hoc tests: all p<0.001), reflected in lower nest scores (Suppl. Fig. 5.E). 

However, there was no difference in nest quality between the three mouse lines. 
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2.1.4. Maternal behavior during the ELS paradigm 

The video recordings of the maternal behavior on P3 revealed that dams in the ELS condition exited the 

nest area significantly more often than STD-housed dams (F1,42=34.634, p<0.001) and post-hoc tests 

confirmed that this effect was significant in all three mouse lines (HR: p=0.004, IR: p<0.001, LR: 

p=0.042, Suppl. Fig. 6.A). However, the more frequent nest exits did not lead to a reduction in the overall 

time spent on the nest. On the contrary, ELS dams spent significantly more time on their nest than STD 

dams of all three lines (F1,42=47.582, p<0.001, post-hoc tests: all p≤0.001, Suppl. Fig. 6.B). On P7, there 

remained a strong statistical trend for a main effect of condition on the number of exits from the nest area 

(F1,41=4.016, p=0.053, Suppl. Fig. 6.C), but there was no longer any difference in the time that ELS and 

STD dams spent on their nest (Suppl. Fig. 6.D). 

Comparing the maternal behavior of the HR, IR and LR mouse lines, we detected no significant 

differences in any of the measured parameters of maternal behavior both on P3 and on P7, confirming 

pervious findings showing no difference in maternal behavior between the three lines of the SR mouse 

model (Touma et al., 2008). 
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Supplementary Figure 1. Representative pictures of cages from the early-life stress and standard 

housing conditions. (A) Early-life stress (ELS) cages were equipped with ~20 g of sawdust bedding 

covered by an aluminum grid and half a nestlet (~5 g) as nesting material. (B) Standard (STD) cages were 

equipped with normal amounts of sawdust bedding (~100 g) and two nestlets (~20 g).  
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Supplementary Figure 2. Behavior testing of adult animals. Results of the open field test, dark-light 

box test, and tail-suspension test of high (HR), intermediate (IR), and low (LR) reactivity mice, raised in 

early-life stress (ELS) or standard (STD) housing conditions, are presented as box plots, showing the 

median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % (whiskers), N=8-11 per group. (A) The 

number of entries to the inner zone of the open field arena showed a main effect of line (F2,54=3.480, 

p=0.038, post-hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.098, IR vs LR: p=0.081). (B) The time in the 

inner zone did not differ between lines or conditions. (C) The distance traveled in the inner zone showed a 

main effect of line (F2,54=6.046, p=0.004, post-hoc tests: HR vs IR: p=1.0, HR vs LR: p<0.054, IR vs LR: 

p=0.005). (D) The number of entries to the lit zone of the dark-light test showed a main effect of mouse 

line (F2,52=10.562, p<0.001, post-hoc tests: HR vs IR: p<0.001, HR vs LR: p=0.032, IR vs LR: p=0.226). 

(E) The time in the lit zone showed a main effect of mouse line (F2,52=9.475, p<0.001, post-hoc tests: HR 

vs IR: p<0.001, HR vs LR: p=0.010, IR vs LR: p=1.0).  (F) The latency to the first lit zone entry showed a 

main effect of mouse line (F2,52=18.404, p<0.001, post-hoc tests: HR vs IR: p<0.001, HR vs LR: p<0.001, 

IR vs LR: p=1.0). (G) The time spent struggling during the tail suspension test showed a main effect of 
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mouse line (F2,54=5.987, p=0.004, post-hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.004, IR vs LR: p=0.041) 

and a trend for an interaction of line and condition (F2,54=3.740, p=0.058, post-hoc tests: HR ELS vs STD: 

p=0.029, IR ELS vs STD: p=0.998, LR ELS vs STD: p=0.289) (H) The time spent immobile during the tail-

suspension test showed a main effect of mouse line F2,54=6.104, p=0.004, post-hoc tests: HR vs IR: 

p=1.0, HR vs LR: p=0.003, IR vs LR: p=0.039) and a trend for an interaction of line and condition 

(F2,54=3.676, p=0.061, post-hoc tests: HR ELS vs STD: p=0.030, IR ELS vs STD: p=0.998, LR ELS vs 

STD: p=0.292). (I) The latency to the first immobile episode showed a main effect of mouse line 

(F2,54=3.398, p=0.041, post-hoc tests: HR vs IR: p=0.484, HR vs LR: p=0.040, IR vs LR: p=0.778). Main 

effects of line are represented by a horizontal line above the graphs. The respective post-hoc test 

statistics are indicated underneath the line (≈ p≥0.1, ≤/≥, p<0.1, </> p<0.05). Statistical significance of 
post-hoc tests for main effects of condition and the interaction are presented above the appropriate boxes 

(T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Figure 3. Candidate gene expression in the pituitary of adult animals. Relative gene 

expression in the pituitary of adult high (HR), intermediate (IR), and low (LR) reactivity mice, raised in 

early-life stress (ELS) or standard (STD) housing conditions, is presented as box plots, showing the 

median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % (whiskers), N=8-11 per group. (A) The 

expression of Crh-r1 showed a significant difference between the three lines (F2,54=7.875, p=0.001, post-

hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.001, IR vs LR: p=0.011), but no effect of condition. (B) The 

expression of Pomc showed a main effect of line (F2,53=7.694, p=0.001, post-hoc tests: HR vs IR: 

p=0.059, HR vs LR: p=0.001, IR vs LR: p=0.353). (C) The expression of Nr3c1 showed no effect of line or 

condition. (D) The expression of Fkbp5 showed a significant effect of line (F2,54=3.243, p=0.047, post-hoc 

tests: HR vs IR: p=0.056, HR vs LR: p=1.0, IR vs LR: p=0.320), but no effect of condition. (E) The 

expression of Nr3c2 showed no effect of line or condition. (F) The expression of V1b showed a significant 

effect of line (F2,53=105.617, p<0.001, post-hoc tests: HR vs IR: p=0.356, HR vs LR and IR vs LR: 

p<0.001). Main effects of line are represented by a horizontal line above the graphs. The respective post-
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hoc test statistics are indicated underneath the line (≈ p≥0.1, ≤/≥, p<0.1, </> p<0.05). Statistical 

significance of post-hoc tests for main effects of condition and the interaction are presented above the 

appropriate boxes (T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Figure 4. Parameters assessed in the ultrasonic vocalization test in pups on P3 

and P7. The frequency, amplitude, duration and inter-call interval of ultrasonic vocalization (USV) calls 
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recorded in high (HR), intermediate (IR), and low (LR) reactivity mouse pups raised in early-life stress 

(ELS) or standard (STD) housing conditions, measured on postnatal day (P) 3 and P7, are presented as 

box plots, showing the median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % (whiskers), 

N=6-8 per group. (A) The peak frequency of  USV calls on P3 showed a main effect of line (F2,36=6.125, 

p=0.005, post-hoc tests: HR vs IR: p=0.007, HR vs LR: p=0.024, LR ELS vs STD: p=1.0), a main effect of 

condition (F1,36=6.981, p=0.012) and a strong trend for an interaction (F2,36=3.020, p=0.061, post-hoc 

tests: HR ELS vs STD: p=0.001, IR ELS vs STD: p=0.405, LR ELS vs STD: p=0.816) (B) The peak 

amplitude of USV calls on P3 showed no significant differences between the lines or conditions. (C) The 

duration of calls on P3 showed a significant interaction of line and condition (F2,36=8.314, p=0.001, post-

hoc tests: HR ELS vs STS: p=0.002, IR ELS vs STD: p=0.669, LR ELS vs STD: p=0.021). (D) The inter-

call intervals on P3 were significantly longer in ELS-housed pups compared to STD-housed pups 

(F1,36=7.779, p=0.008, post-hoc tests: HR ELS vs STS: p=0.027, IR ELS vs STD: p=0.143, LR ELS vs 

STD: p=0.316), but there was no main effect of line. (E) The peak frequency of USV calls on P7 showed 

no significant effect of line or condition. (F) The peak amplitude of USV calls on P7 showed a strong trend 

for a main effect of line (F2,35=3.237, p=0.051, post-hoc tests: HR vs IR: p=1.0 and HR vs LR: p=0.145, IR 

vs LR: p=0.072). (H) The duration of calls on P7, and (G) the inter-call intervals on P7 both showed no 

significant effect of line or condition. Main effects of line are represented by a horizontal line above the 

graphs. The respective post-hoc test statistics are indicated underneath the line (≈ p≥0.1, ≤/≥, p<0.1, </> 
p<0.05). Statistical significance of post-hoc tests for main effects of condition and the interaction are 

presented above the appropriate boxes (T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Figure 5. Body surface temperature before and after the USV test. Body surface 

temperature of high (HR), intermediate (IR), and low (LR) reactivity mouse pups raised in early-life stress 

(ELS) or standard (STD) housing conditions, measured on postnatal day (P) 3 and 7 before and after a 5-

min USV test is presented as line plots, showing means and SEM, N=6-10 per group. On P3 (left panel), 

there was a main effect of condition on body surface temperature both before (F1,36=37.456, p<0.001, post 

hoc tests: HR and IR: p=0.002, LR: p<0.001) and after the USV test (F1,36=12.811, p=0.001, post hoc 

tests: HR: p=0.096, IR: p=0.058, LR: p=0.015). In addition, there was a main effect of condition on 

temperature loss during the test (F1,36=22.934, p<0.001, post hoc tests: HR and IR: p=0.007, LR: 

p=0.013). On P7 (right panel), the pups’ body surface temperature before and after the test showed no 
significant difference between groups, but there was a trend for increased cooling during the test in the 

STD- compared to the ELS-housed animals (F1,35=3.282, p=0.079, post hoc tests: HR and LR p≥0.1, IR: 
p=0.020). Statistical significance of post-hoc tests for main effects of condition are presented in the panels 

(T p<0.1, * p<0.05, ** p<0.01, *** p<0.001).  
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Supplementary Figure 6. Basal corticosterone levels before the early-life stress period. Basal 

plasma corticosterone levels of high (HR), intermediate (IR), and low (LR) reactivity mouse pups raised in 

early-life stress (ELS) or standard (STD) housing conditions, measured on postnatal day (P) 2, i.e. before 

the start of the ELS paradigm, are presented as box plots, showing the median (horizontal line in the 

boxes), 25-75% (boxes) and 10-90 % (whiskers), N=5-6 per group. Corticosterone levels on P2 did not 

differ significantly between the three mouse lines, nor between animals assigned to the STD and ELS 

housing condition.  
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Supplementary Figure 7. Candidate gene expression in the pups. Relative gene expression in the 

paraventricular nucleus of the hypothalamus (PVN) (A-D) and the dorsal hippocampus (dHip) (E-J) of high 

(HR), intermediate (IR), and low (LR) reactivity mouse pups raised in early-life stress (ELS) or standard 

(STD) housing conditions, measured on postnatal day (P) 9, i.e. at the end of the ELS paradigm, is 

presented as box plots, showing the median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % 

(whiskers), N=6-8 per group. (A) The expression of Crh showed a strong trend for an interaction of line 

and condition (F2,36=2.598, p=0.088, post-hoc tests: HR ELS vs STD: p=0.051, IR ELS vs STD: p=0.691, 

LR ELS vs STD: p=0.249). (B) The expression of Crh-r1 showed a trend for a main effect of line 

(F2,36=2.859, p=0.071, post-hoc tests: HR vs IR: p=1.00, HR vs LR: p=0.088, IR vs LR: p=0.214). (C) The 

expression of Nr3c1 showed no significant effect of line or condition. (D) The expression of Fkbp5 showed 

no significant effect of line or condition. (E) The expression of Crh showed no significant difference 

between lines or between conditions. (F) The expression of Crh-r1 showed a trend for a main effect of 

condition (F1,34=3.706, p=0.063, post-hoc tests: all p>0.1). (G) The expression of Nr3c1 showed no 

significant effect of line or condition. (H) The expression of Fkbp5 showed no significant effect of line or 

condition. (I) The expression of Nr3c2 showed no significant effect of line or condition. (J) The expression 

of Gilz showed no significant effect of line or condition. Main effects of line are represented by a horizontal 

line above the graphs. The respective post-hoc test statistics are indicated underneath the line (≈ p≥0.1, 
≤/≥, p<0.1, </> p<0.05). Statistical significance of post-hoc tests for main effects of condition and the 

interaction are presented above the appropriate boxes (T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Figure 8. Maternal behavior. The number of nest exits and the time spent in the nest by 

high (HR), intermediate (IR), and low (LR) reactivity dams in early-life stress (ELS) or standard (STD) 

housing conditions, measured on postpartum (P) day 3 and 7, are presented as box plots, showing the 

median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % (whiskers), N=7-10 per group. (A) The 

number of exits from the nest area on P3 showed a main effect of condition (F1,42=34.634, p<0.001, post-

hoc tests: HR ELS vs STD: p=0.004, IR ELS vs STD: p<0.001, LR ELS vs STD: p=0.042). (B) The time 

the dams spent on the nest on P3 showed a main effect of condition (F1,42=47.582, p<0.001, post-hoc 

tests: all p≤0.001). (C) The number of exits from the nest area on P7 showed a trend for a main effect of 

condition (F1,41=4.016, p=0.053, HR ELS vs STD: p=0.305, IR ELS vs STD: p=0.033, LR ELS vs STD: 

p=0.689. (D) The time the dams spent on the nest on P7 showed no significant effect of line or condition. 

Main effects of line are represented by a horizontal line above the graphs. The respective post-hoc test 

statistics are indicated underneath the line (≈ p≥0.1, ≤/≥, p<0.1, </> p<0.05). Statistical significance of 
post-hoc tests for main effects of condition and the interaction are presented above the appropriate boxes 

(T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Figure 9. Effects of early-life stress housing on dams and nesting environment. 

Bodyweight of dams and nest quality in cages of high (HR), intermediate (IR), and low (LR) reactivity 

dams in early-life stress (ELS) or standard (STD) housing conditions, measured from postpartum day (P) 

2 until P25 (nest temperature measurements until P17) are presented as line plots, showing means and 

SEM, and as box plots, showing the median (horizontal line in the boxes), 25-75% (boxes) and 10-90 % 

(whiskers), N=7-10 per group. (A) The change in bodyweight between P2 and P25 (weaning) was 

analyzed in a repeated-measures ANOVA. The results show a trend for a main effect of line over all time 

points (F2,43=2.604, p=0.086, post-hoc tests: HR vs IR: p=0.173, HR vs LR: p=0.147, IR vs LR: p=1.0. (B) 

The bodyweight of the dams on P2 showed a main effect of line (F2,44=10.500, p<0.001, post-hoc tests: 

HR vs IR: p=0.011, HR vs LR: p<0.001, IR vs LR: p=0.288). (C) The nest temperature measurements, 
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analyzed using repeated-measures ANOVA, showed a main effect of condition (F1,32=15.098, p<0.001, 

post-hoc tests: HR ELS vs STD: p=0.002, IR and LR ELS vs STD: p<0.001). Specifically, the temperature 

was significantly lower in the ELS condition compared to the STD condition nests on P3 (p<0.001), P5 

(p<0.001), P7 (p=0.005), and P9 (p=0.002), i.e. only during the ELS period. (D) Photograph of the infra-

red thermometer (Visual IR Thermometer VT02, FLUKE, Eindhoven, Netherlands) used to measure nest 

and pup surface temperature. (E) The nest scores, assigned on P5, showed a main effect of condition 

(F1,36=70.226, p<0.001, post-hoc tests: all p<0.001), i.e. nest quality was reduced in all three mouse lines 

in the ELS housing condition. Main effects of line are represented by a horizontal line above the graphs. 

The respective post-hoc test statistics are indicated underneath the line (≈ p≥0.1, ≤/≥, p<0.1, </> p<0.05). 
Statistical significance of post-hoc tests for main effects of condition and the interaction are presented 

above the appropriate boxes (T p<0.1, * p<0.05, ** p<0.01, *** p<0.001). 
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Supplementary Table 1. List of investigated candidate genes. Candidate genes measured by 

quantitative real-time polymerase chain reaction (qPCR), including full designation, oligonucleotide primer 

sequence, melting temperature (Tm) and the amplicon length in base pairs (bp). 

 

Candidate 
gene 

Designation Direction Sequence Tm 
Amplicon 

length [bp] 

Avp Arginine Vasopressin 
forward TCGCCAGGATGCTCAACAC 67.6 

174 
reverse TTGGTCCGAAGCAGCTC 67.7 

Crh 
Corticotropin releasing 

hormone 

forward GCATCCTGAGAGAAGTCCCTCTG 67.5 
135 

reverse GCAGGACGACAGAGCCA 64.2 

Crh-r1 
Corticotropin releasing 

hormone receptor 1 

forward GGTCCTGCTGATCAACTTTA 59.2 
152 

reverse ACATGTAGGTGATGCCCA 59.9 

Fkbp4 FK506-binding protein 4 
forward CAACGCCACACTTGTATTTGA 63.5 

143 
reverse CTTCCACCATAGCACCATCAT 63.7 

Fkbp5 FK506-binding protein 5 
forward AGAATCAAACGGAAAGGCGAG 66.3 

103 
reverse CTCGGCAATCAAATGTCCTTC 65.6 

Gilz 
Glucocorticoid-induced 

leucine zipper 

forward GTGGCCCTAGACAACAAGATT 61.8 
122 

reverse GAGTTCTTCTCAAGCAGCTCA 61.4 

Hprt 
Hypoxanthine guanine 

phosphoribosyl transferase 

forward GTTGGATACAGGCCAGACTTTGT 65.1 
225 

reverse CCACAGGACTAGAACACCTGCTA 64.3 

Nr3c1 Glucocorticoid receptor 
forward CAAGGGTCTGGAGAGGACAA 64.2 

220 
reverse TACAGCTTCCACACGTCAGC 64.1 

Nr3c2 Mineralocorticoid receptor 
forward GTGTGTGGAGATGAGGC 57.2 

155 
reverse GGACAGTTCTTTCTCCGAAT 59.6 

Pomc Proopiomelanocortin 
forward GAAGATGCCGAGATTCTGCT 63.4 

222 
reverse TTTTCAGTCAGGGGCTGTTC 64.1 

Tbp TATA box binding protein 
forward CCCCCTTGTACCCTTCACC 65.4 

285 
reverse TGGATTGTTCTTCACTCTTGG 65.3 

V1b 
 

Arginine vasopressin  
receptor 1b 

 

forward CCTTTCTTCAGTGTCCAGATG 61.2 
141 

reverse GTTGAAGCCCATATAGATCCA 60.3 
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Supplementary Table 2. Relative mRNA expression of candidate genes. Candidate gene expression as assessed by qPCR in selected brain nuclei of adult high 

(HR), intermediate (IR) and low (LR) reactivity mice raised in either early-life stress (ELS) or standard (STD) housing conditions (N=8-11 per group) is given (mean, 

SEM) relative to two housekeeping genes (HPRT and TBP) and normalized to the IR STD group. Significant results of the statistical analysis (univariate ANOVA, 

p<0.05) are indicated (bold), including Bonferroni-corrected post-hoc tests. (A) Relative expression of candidate genes in the paraventricular nucleus of the 

hypothalamus (PVN). (B) Relative expression of candidate genes in the dorsal hippocampus. (C) Relative expression of candidate genes in the ventral hippocampus. 

(D) Relative expression of candidate genes in the basolateral amygdala (BLA). (E) Relative expression of candidate genes in the pituitary. 

 

 

A 
 
mRNA expression in the PVN 

Gene 

 

HR IR LR ANOVA 

ELS STD ELS STD ELS STD 
Main effect: 
Line Post-hoc tests Main effect: Condition Interaction effect Post-hoc tests 

Nr3c1 Mean 0.93 1.10 0.77 1.00 1.02 1.02  F(2,54)=0.755, p=0.475    F(1,54)=1.696, p=0.198 F(2,54)=1.319, p=0.276   

SEM 0.13 0.12 0.09 0.09 0.12 0.16          

Nr3c2 Mean 0.95 0.94 1.01 1.00 0.81 0.95  F(2,54)=0.965, p=0.388    F(1,54)=0.466, p=0.498 F(2,54)=0.440, p=0.647   

SEM 0.15 0.07 0.09 0.08 0.08 0.04           

Crh Mean 0.62 1.25 0.81 1.00 1.01 0.82  F(2,54)=0.187, p=0.830    F(1,54)=2.453, p=0.123 F(2,53)=3.592, p=0.034 HR ELS vs STD: p=0.010 

SEM 0.08 0.15 0.10 0.13 0.13 0.09          

Crh-r1 Mean 1.36 0.96 1.02 1.00 0.92 0.96  F(2,54)=2.419, p=0.020 HR vs LR: p=0.026  F(1,54)=4.349, p=0.042              F(2,54)=4.977, p=0.010 HR ELS vs STD: p=0.001 

SEM 0.12 0.05 0.06 0.05 0.07 0.05           

Fkbp4 Mean 1.00 0.98 0.94 1.00 0.86 0.97  F(2,54)=0.687, p=0.508    F(1,54)=0.555, p=0.460  F(2,53)=1.150, p=0.325   

SEM 0.10 0.04 0.06 0.07 0.04 0.05           

Fkbp5 Mean 0.72 0.96 0.74 1.00 0.84 0.76  F(2,54)=0.380, p=0.686    F(1,54)=5.094, p=0.028               F(2,54)=2.762, p=0.072 HR ELS vs STD: p=0.011 

SEM 0.03 0.10 0.11 0.09 0.13 0.12         IR ELS vs STD: p=0.074 

AVP Mean 0.77 0.96 0.74 1.00 0.75 0.62  F(2,54)=0.725, p=0.489    F(1,54)=1.249, p=0.269  F(2,54)=0.394, p=0.676   

SEM 0.23 0.21 0.08 0.24 0.08 0.15           
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B 
 
mRNA expression in the dorsal hippocampus 

Gene 

 

HR IR LR ANOVA 

ELS STD ELS STD ELS STD 
Main effect: 
Line Post-hoc tests Main effect: Condition Interaction effect Post-hoc tests 

Nr3c1 Mean 0.91 0.83 0.95 1.00 0.70 0.79 F(2,53)=6.141, p=0.004 IR vs LR: p=0.003   F(1,54)=0.176, p=0.677  F(2,54)=0.944, p=0.395   

SEM 0.09 0.05 0.07 0.08 0.06 0.04         

Nr3c2 Mean 0.93 0.82 1.05 1.00 1.23 1.11 F(2,53)=3.430, p=0.040 HR vs LR: p=0.027   F(1,54)=0.997, p=0.323  F(2,54)=0.053, p=0.948   

SEM 0.12 0.08 0.12 0.10 0.13 0.11         

Crh Mean 1.38 0.88 1.10 1.00 0.92 1.12  F(2,54)=0.486, p=0.618    F(1,54)=2.076, p=0.155 F(2,54)=4.662, p=0.014 HR ELS vs STD: p=0.004 

SEM 0.16 0.07 0.10 0.08 0.15 0.14         

Crh-r1 Mean 0.81 0.91 0.94 1.00 0.88 0.98  F(2,54)=0.871, p=0.424    F(1,54)=1.714, p=0.196  F(2,54)=0.033, p=0.967   

SEM 0.06 0.09 0.06 0.09 0.06 0.09           

Fkbp4 Mean 0.97 0.86 0.99 1.00 0.94 1.15  F(2,54)=1.366, p=0.264    F(1,54)=0.264, p=0.610  F(2,54)=2.003, p=0.145  

SEM 0.07 0.06 0.08 0.10 0.09 0.07         

Fkbp5 Mean 0.89 0.86 1.09 1.00 0.66 0.73 F(2,53)=8.531, p=0.001 IR vs LR: p<0.001  F(1,54)=0.103, p=0.749  F(2,54)=0.444, p=0.644   

SEM 0.09 0.06 0.09 0.09 0.05 0.10         

Gilz Mean 0.99 1.03 0.98 1.00 0.82 0.87 F(2,54)=3.692, p=0.031 HR vs LR: p=0.045  F(1,54)=0.440, p=0.510  F(2,54)=0.023, p=0.977   

SEM 0.05 0.07 0.05 0.08 0.04 0.08   IR vs LR: p=0.087       

V1b Mean 0.85 1.19 1.31 1.00 1.08 0.79 F(2,54)=0.593, p=0.557    F(1,54)=0.260, p=0.613  F(2,54)=1.589, p=0.215   

SEM 0.13 0.18 0.19 0.28 0.24 0.13           

 
 
 
C 
 
mRNA expression in the ventral hippocampus 

Gene 

 

HR IR LR ANOVA 

ELS STD ELS STD ELS STD 
Main effect: 
Line Post-hoc tests Main effect: Condition Interaction effect Post-hoc tests 

Nr3c1 Mean 0.40 0.44 0.61 1.00 0.82 0.77 F(2,52)=5.241, p=0.008 HR vs IR p=0.018  F(1,52)=1.312, p=0.257  F(2,52)=1.529, p=0.226   

SEM 0.10 0.09 0.15 0.16 0.14 0.14   HR vs LR p=0.022    

Nr3c2 Mean 0.55 0.73 0.85 1.00 1.03 0.81 F(2,53)=3.955, p=0.025 HR vs IR p=0.066  F(1,53)=0.169, p=0.683  F(2,53)=1.908, p=0.158  

SEM 0.07 0.09 0.10 0.15 0.13 0.11   HR vs LR p=0.074    

Crh Mean 0.84 0.82 1.06 1.00 1.01 1.15 F(2,53)=3.783, p=0.029 HR vs LR p=0.029  F(1,53)=0.132, p=0.718  F(2,53)=0.620, p=0.542  

SEM 0.08 0.06 0.14 0.10 0.07 0.10       

Crh-r1 Mean 0.87 0.81 0.78 1.00 1.04 0.95 F(2,53)=0.322, p=0.726    F(1,53)=0.091, p=0.765  F(2,53)=1.651, p=0.202  

SEM 0.08 0.06 0.08 0.08 0.15 0.16        

Fkbp4 Mean 1.06 1.09 1.03 1.00 1.11 1.08 F(2,53)=0.294, p=0.747    F(1,53)=0.131, p=0.719  F(2,53)=0.008, p=0.992  

SEM 0.20 0.11 0.17 0.09 0.13 0.17        

Fkbp5 Mean 0.72 0.80 0.81 1.00 0.77 0.73 F(2,53)=2.151; p=0.126   F(1,53)=1.171, p=0.284  F(2,53)=0.899, p=0.413  

SEM 0.08 0.08 0.09 0.09 0.08 0.09        

Gilz Mean 0.61 0.72 0.73 1.00 0.77 0.79 F(2,53)=1.246; p=0.297   F(1,53)=1.667, p=0.203  F(2,53)=0.072, p=0.626  

 SEM 0.10 0.12 0.11 0.15 0.13 0.14      

V1b Mean 1.07 1.16 1.03 1.00 1.39 1.35 F(2,53)=0.249; p=0.780   F(1,53)=0.047, p=0.829  F(2,53)=0.095, p=0.909  

 SEM 0.24 0.18 0.09 0.24 0.31 0.29        
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D 
 
mRNA expression in the BLA 

Gene 

 

HR IR LR ANOVA 

ELS STD ELS STD ELS STD 
Main effect: 
Line Post-hoc tests Main effect: Condition Interaction effect Post-hoc tests 

Nr3c1 Mean 1.11 1.27 1.11 1.00 1.03 1.12 F(2,53)=0.281; p=0.756   F(1,53)=0.838, p=0.364  F(2,53)=0.036, p=0.965  

SEM 0.17 0.15 0.11 0.09 0.11 0.11       

Nr3c2 Mean 1.33 1.33 1.18 1.00 1.12 1.03 F(2,53)=1.022; p=0.367   F(1,53)=0.066, p=0.799  F(2,53)=0.286, p=0.752  

SEM 0.22 0.13 0.14 0.10 0.13 0.14        

Crh Mean 1.26 1.28 1.07 1.00 0.79 0.51 F(2,53)=10.367,p<0.001 HR vs LR p<0.001  F(1,53)=3.163, p=0.081  F(2,53)=1.741, p=0.190 LR ELS vs STD: p=0.014 

SEM 0.12 0.20 0.20 0.13 0.07 0.10   IR vs LR p=0.007    

Crh-r1 Mean 0.77 0.97 0.74 1.00 1.03 0.85  F(2,52)=0.162; p=0.851   F(1,52)=0.601, p=0.442  F(2,52)=1.403, p=0.255  

SEM 0.08 0.07 0.07 0.25 0.13 0.13        

Fkbp4 Mean 1.33 1.22 1.21 1.00 1.28 0.98  F(2,52)=0.517; p=0.851   F(1,52)=2.119, p=0.152               F(2,53)=0.145, p=0.865   

SEM 0.22 0.14 0.20 0.16 0.19 0.16           

Fkbp5 Mean 0.98 1.19 0.79 1.00 0.92 0.94  F(2,53)=0.987; p=0.379   F(1,53)=1.662, p=0.203  F(2,52)=0.286, p=0.753  

SEM 0.09 0.14 0.12 0.18 0.12 0.14         

 

E 
 
mRNA expression in the Pituitary 

Gene 

 

HR IR LR ANOVA 

ELS STD ELS STD ELS STD 
Main effect: 
Line Post-hoc tests Main effect: Condition Interaction effect Post-hoc tests 

Nr3c1 Mean 1.02 1.01 1.12 1.00 0.86 0.97  F(2,53)=1.615, p=0.209    F(1,53)=0.11, p=0.916 F(2,53)=1.008, p=0.372   

SEM 0.12 0.06 0.10 0.07 0.04 0.09          

Nr3c2 Mean 0.89 1.01 0.93 1.00 0.90 0.83  F(2,53)=0.693, p=0.505    F(1,53)=0.281, p=0.598 F(2,53)=0.538, p=0.587   

SEM 0.09 0.13 0.08 0.09 0.07 0.05           

Crh-r1 Mean 1.06 1.09 1.06 1.00 0.94 0.79  F(2,54)=7.875, p=0.001 HR vs LR: p=0.001  F(1,54)=1.855, p=0.179              F(2,54)=1,.236, p=0.299  

SEM 0.07 0.05 0.06 0.06 0.05 0.03   IR vs LR p=0.011       

Fkbp5 Mean 0.72 0.82 0.99 1.00 0.84 0.89  F(2,54)=3.243, p=0.047  HR vs IR; p=0.056  F(1,54)=0.387, p=0.537  F(2,54)=0.152, p=0.859   

SEM 0.10 0.08 0.09 0.09 0.08 0.11           

Pomc Mean 1.24 1.34 1.11 1.00 0.96 0.74  F(2,53)=7.694, p=0.001 HR vs IR: p=0.059  F(1,53)=0.330, p=0.568               F(2,53)=0.482, p=0.620  

SEM 0.15 0.22 0.17 0.16 0.06 0.09   HR vs LR p=0.001      

V1b Mean 1.17 1.08 1.10 1.00 0.14 0.15  F(2,53)=105.6, p<0.001 HR vs LR: p<0.001  F(1,53)=0.301, p=0.586  F(2,53)=0.301, p=0.742   

SEM 0.15 0.12 0.09 0.06 0.01 0.02   IR vs LR p<0.001       
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Abstract 

Early-life stress (ELS) has been associated with lasting cognitive impairments and with an 

increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal 

(HPA) axis, the body’s main stress response system, forms a central pathway leading from 

adverse experience to adverse behavioral outcomes. It remains unclear to what extent a genetic 

predisposition for HPA axis sensitivity or resilience influences the relationship between ELS 

and cognitive impairments, and which neuroendocrine and molecular mechanisms may be 

involved. To investigate this, we exposed animals of the stress reactivity mouse model, 

consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low 

(LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, 

neuroendocrine function, and hippocampal gene expression in early and in late adulthood. Our 

results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity 

in early and late adulthood, associated with cognitive impairments in hippocampus-dependent 

tasks, as well as molecular changes in genes involved in the regulation of the HPA axis (Crh) and 

in neurotropic action (Bdnf). In contrast, LR animals showed intact cognitive function across 

adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to 

ELS even showed some indications of enhanced cognitive performance in late adulthood, which 

may be related to some late-onset changes observed in the expression of Crh and Crhr1 in the 

dorsal hippocampus. Collectively, our findings demonstrate that the lasting consequences of 

ELS at the level of cognition differ as a function of genetic predispositions and suggest that an 

innate tendency for low stress reactivity may be protective against late-onset cognitive 

impairments after ELS.  

  



 Late-onset consequences of early-life stress are moderated by differences in genetic stress reactivity 

81 
 

1. Introduction 

Many affective disorders have their roots in early-life, during the perinatal phase of development 

when important networks in the central nervous system (CNS) are being shaped (Heim and 

Nemeroff, 2002, Provencal and Binder, 2015). Offering a window of opportunity to prepare the 

organism for its future environment, the CNS is particularly sensitive to environmental cues 

during these periods, so that key signaling pathways and neuronal ensembles in the brain can be 

lastingly programmed in their response to relevant stimuli (Bale et al., 2010, Barker et al., 2013). 

While this may be an adaptive process in some cases (e.g. the attenuation of the enzyme 11β-

HSD-2 can be beneficial to regulate sodium retention in nutrient poor environments (Yehuda and 

Seckl, 2011)), the lasting effects of early-life stress (ELS) exposure on the hypothalamic-pituitary-

adrenal (HPA) axis, one of the body’s main stress response system, can be detrimental for future 

health and coping (Meaney, 2001, Pryce and Feldon, 2003). Several studies both in humans and 

animal models have shown that ELS can precipitate a dysregulation of the HPA axis in later life 

(Heim et al., 2000b, Korosi and Baram, 2010, McIlwrick et al., 2016, Shea et al., 2005), evidenced 

by alterations in the corticotrophin-releasing hormone (CRH) system, exaggerated release of 

glucocorticoid hormones from the adrenal cortex in response to stressors, and by impaired 

negative feedback via glucocorticoid and mineralocorticoid receptors (GR and MR) in the brain. 

A lasting dysregulation of HPA axis function increases the risk for affective disorders, such as 

major depressive disorders (MDD) and anxiety disorders (Heim and Binder, 2012, Holsboer, 

1999, Holsboer, 2000, Sanchez et al., 2001, Yehuda and Seckl, 2011).  

Limbic brain areas, such as the hippocampal formation, are particularly sensitive to the 

signaling of stress hormones, as they abundantly express GRs and MRs, as well as CRH receptor 

1 (CRH-R1). High levels of glucocorticoids (cortisol in humans, corticosterone (CORT) in murine 

rodents) can activate signaling pathways which exert neurotoxic effects when excessively or 

chronically activated (Conrad, 2008, Raber, 1998). Importantly, the hippocampus develops 

perinatally, so that ELS can directly impact on its development. Manifestations of the 

exitotoxicity of stress, or of the exposure to excessive levels of glucocorticoids, include reduced 

survival of newborn cells (Gould et al., 1991, Naninck et al., 2015, Sapolsky, 1985), 

downregulation of brain derived neurotrophic factor (BDNF) (Daskalakis et al., 2015), and 

reduced synaptic plasticity (Anacker et al., 2011, Liston and Gan, 2011), as well as changes of 

dendritic morphology and dendritic atrophy of pyramidal neurons (Alfarez et al., 2009, Brunson 

et al., 2005, Magarinos et al., 1996, McKittrick et al., 2000). Imaging studies in MDD patients 
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have extended these findings by demonstrating that reduced hippocampal volume is associated 

with ELS (Kronmuller et al., 2008, Teicher et al., 2012, Woon and Hedges, 2008). Furthermore, 

ELS has been causally linked to impaired hippocampus-dependent memory (Brunson et al., 

2005, Gould et al., 2012, Nelson et al., 2007), probably via excessive glucocorticoid-induced 

activation of hippocampal CRH-R1 and subsequent changes in the CRH system (Ivy et al., 2010, 

Wang et al., 2013). In concert, the accumulated evidence demonstrates that ELS can alter HPA 

axis function and adversely affect the hippocampus, thus impairing cognitive performance and 

increasing the risk for affective disorders, such as MDD.  

Genetic factors also play an important role in the etiology of MDD (Kendler, 2001, Lohoff, 2010) 

and are likely moderators of individual trajectories towards resilience or vulnerability. 

Evidence suggests that individuals with a genetic predisposition for dysregulated stress 

reactivity may be at greater risk for affective disorders (Holsboer, 1999, Pariante and Lightman, 

2008). Interestingly, within the group of patients diagnosed with MDD, two subtypes can be 

distinguished based on the profile of their HPA axis function (Antonijevic, 2006, Gold and 

Chrousos, 1999, Gold and Chrousos, 2002). On one extreme are patients with stress hyper-

reactivity (psychotic or melancholic depression subtype), displaying symptoms such as 

restlessness, hyperactivity, a shift in their diurnal neurohormone rhythms, impaired sleep 

architecture with increased REM sleep, weight loss, and cognitive impairments. On the other 

extreme are patients with a markedly reduced HPA axis reactivity, i.e. stress hypo-reactivity 

(atypical depression subtype), showing symptoms of lethargy, hypersomnia, weight gain, and a 

heightened sensitivity for social rejection, but no signs of cognitive impairments. This 

stratification of MDD patients by HPA axis function suggests that different genetic 

predispositions may be underlying the divergent endophenotypes (Heinzmann et al., 2014). 

Using the stress reactivity (SR) mouse model, our group has recently shown that a genetic 

predisposition for extremes in stress reactivity (high or low) interacts with ELS to shape short-

term, as well as lasting consequences at the level of stress-coping behavior, neuroendocrine 

function, and gene expression (McIlwrick et al., 2016). The SR mouse model is a genetic animal 

model, which recapitulates several of the key endophenotypes of the two MDD subtypes 

described above (Heinzmann et al., 2014, Touma et al., 2008), including associated changes in 

bodyweight (Touma et al., 2009), sleep architecture (Fenzl et al., 2011, Touma et al., 2009), 

stress hormone profiles (Touma et al., 2008, Touma et al., 2009, Heinzmann et al., 2014), and 

cognitive performance (Knapman et al., 2010a, Knapman et al., 2010b, Knapman et al., 2012). 
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The SR mouse model thus offers an ideal starting point to investigate the interaction of genetic 

predisposition and environmental adversity. 

In the present study we asked how a genetic predisposition for increased or decreased HPA axis 

reactivity interacts with ELS, laying a particular focus on cognitive function, the role of 

neurotrophic factors, and the expression of stress-related genes in the hippocampus. To this 

end, we exposed animals of the three SR mouse lines to a well-established paradigm of ELS, 

based on limited nesting and bedding material (Rice et al., 2008), and assessed cognitive 

performance, stress reactivity, and the expression of selected candidate genes (Bdnf, Ntrk2 

(TrkB), Crh, Crh-r1, Nr3c1 (GR), Nrc32 (MR), Fkbp5) in the dorsal and ventral hippocampus of 

these animals at two time points during early and late adulthood, as evidence points towards 

cumulative effects of glucocorticoid exposure over time.  

2. Materials and methods 

All presented work is in accordance with the accepted standards of humane care and use of 

experimental animals and was approved by the appropriate local authority.  

2.1. The stress reactivity mouse model 
The SR mouse model consists of three independent mouse lines selectively bred for either high 

(HR) or low (LR) HPA axis reactivity in response to a psychological stressor. The IR mouse line, 

bred for intermediate stress reactivity, serves as a reference line. Briefly, to generate this 

animal model, a founder generation of 100 outbred CD-1 male and female mice was tested in 

the stress reactivity test (SRT), which measures the animal’s CORT release in response to a 

psychological stressor (15 min restraint, a detailed description of the SRT is provided in section 

2.9.). Based on the test results, breeding pairs were selected to generate the HR, IR, and LR 

mouse lines. Through repeated testing and re-selection of every new generation at the age of 7-

8 weeks, three inbred mouse lines were established. The SR mouse model has been extensively 

phenotyped and several parallels regarding symptoms associated with MDD have been 

highlighted. In the HR line, these include a reduced bodyweight, increased locomotor activity, 

hyperactive stress-coping behavior, altered sleep architecture with increased rapid eye 

movement (REM) sleep, and impaired cognition, akin to endophenotypes of 

melancholic/psychotic depression. On the other hand, LR animals show an increased 

bodyweight, reduced locomotor activity, passive stress-coping behavior, and intact sleep and 



Late-onset consequences of early-life stress are moderated by differences in genetic stress reactivity 
 

84 
 

cognitive function, in line with endophenotypes of the atypical depression subtype (Fenzl et al., 

2011, Heinzmann et al., 2014, Knapman et al., 2010a, Knapman et al., 2010b, Knapman et al., 

2012, Pillai et al., 2012, Touma et al., 2009, Touma et al., 2008). 

2.2. The early-life stress paradigm 

To induce ELS, we used the limited nesting and bedding material paradigm (Rice et al., 2008), 

which creates a stressful early-life situation for the dam and her pups, without having to 

physically remove the dam from the litter. This ELS paradigm has been described as more 

ecologically valid than maternal separation (Molet et al., 2014b) and its lasting effect on the 

offspring has been replicated in rats and mice in several studies (Avishai-Eliner et al., 2001b, 

Gunn et al., 2013, Machado et al., 2013, McIlwrick et al., 2016, Naninck et al., 2015). Briefly, 16 

dams of each SR mouse line were randomly assigned to either the ELS or the standard (STD) 

housing condition. On P2, after regulating the litters (see 2.4.1.), dams in the ELS condition were 

placed, together with their pups, into a macrolone cage type II, the floor of which was covered 

by an aluminum grid (mesh dimensions 0.4 x 0.9 cm, catalog no. 57398; McNichols Co., Tampa, 

U.S.A). Twenty grams of wood chip bedding and half a nestlet (~5 g) were provided for nest 

building. Dams in the STD condition were moved, together with their pups, into standard 

macrolone cage type II with ample wood chip bedding (~100 g) and 2 nestlets (~20 g) for nest 

building. The animals were then left undisturbed until P9, when all litters were moved to 

standard cages, where they stayed with their mother until weaning (P25). In a previous study 

using this ELS paradigm in the SR mouse model, we conducted a detailed analysis of the 

maternal behavior (McIlwrick et al., 2016). Briefly, the dams of all three mouse lines show 

similar changes in their maternal behavior (number of exits and time spent on the nest) when 

rearing their pups in the ELS condition. Emerging differences between the pups can thus not be 

attributed to differences in maternal care between the three mouse lines. 

2.3. Experimental design 

To investigate the gene × environment interaction of a genetic predisposition for extremes in 

stress reactivity with ELS, we used a three-by-two experimental design (i.e. the three SR mouse 

lines, HR, IR, and LR, and two conditions, ELS and STD), thus resulting in a total of six 

experimental groups. This two-factorial design was employed both when testing animals during 

early and late adulthood. In total, the data presented in this manuscript was collected from 

three sequential cohorts of experimental animals, generated from breeding generations XXIII, 

XXVI, and XXVII of the SR mouse model. Animals from experimental cohorts I and II were tested 
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starting at 16 ± 1 weeks of age (early adulthood), while animals from cohort III were tested 

starting at 26 ± 1 weeks of age (late adulthood). There was some natural stratification in the 

birth dates of the litters of each breeding cohort (~14 days), so that the mean age of the animals 

in each cohort was used to determine the date to start testing. 

2.4. Animals 
For this study, male animals from the three SR mouse lines (HR, IR, and LR) were used. All mice 

were bred in-house, and housed in sibling-pairs until two weeks before the behavioral testing, 

when they were single housed to avoid influences of dominance hierarchy. Mice were housed in 

macrolone cages under standard laboratory conditions, with standard chow and water ad 

libitum, a 12 h light/dark cycle (lights on at 8 a.m.) and constant humidity (55 ± 10 %). Cages 

were changed once per week, but never on the day of or immediately before testing.  

2.4.1. Breeding of experimental animals 
For breeding, 16 females and 8 males of each of the three SR mouse lines were housed in 

triplets for 14 days to allow mating. Thereafter, the females were moved to fresh single cages 

with ample nesting material. Cages were checked daily at 5 p.m. for the delivery of litters. The 

day a litter was discovered was defined as postnatal day 0 (P0). On P2, litters were culled to 

seven pups (including at least 5 males), to maximize the similarity in the early-life situation 

between litters. Litters with less than 5 pups and litters with only same-sex pups were not 

included in the experiment.  On P25, pups were weaned and pair-housed with same-sex siblings 

until adulthood.  

2.5. Bodyweight  
During and after the ELS paradigm, the animals’ bodyweight was closely monitored, as research 

has shown that it can be lastingly affected by stress manipulations during early-life (Maniam et 

al., 2014). Pups’ weight was assessed on P2, P9, P17 and P25, when the cages were changed, 

and in adulthood bodyweight was measured two weeks before the behavioral testing. 

2.6. Behavioral and cognitive testing 

All behavioral tests were performed between 8 a.m. and 1 p.m., when the animals’ CORT levels 

are in the circadian trough (Ishida et al., 2005, Touma et al., 2009). Between the different 

behavioral tests, the animals were allowed at least 48 h of rest in order to avoid carry-over 

effects influencing behavioral readouts in subsequent tests (McIlwain et al., 2001). During the 
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tests, the animals’ behavior was video-recorded and tracked using automated tracking software 

(ANY-maze, Stoeling GmbH), with the exception of the water cross-maze test, which was scored 

in real-time by a trained observer. At the beginning and between different animals, the testing 

apparatus was cleaned with soapy water and 10% ethanol solution and dried to remove any 

odor cues. 

2.6.1. Open field test 

We used the Open field test (OFT) to assess the animals’ exploratory and anxiety-related 

behavior. In this classic behavioral test (for review see Bailey and Crawley, 2009) the animal is 

placed into the center of a circular arena (⌀ 60 cm), which is dimly lit (15 Lux), and is allowed to 

explore freely for 5 min. Behavioral measures of exploration include the total distance travelled 

by the animal in the arena, as well as the time and distance it travelled in the more aversive 

central zone (⌀ 30 cm). For animal cohort I, tested during early adulthood, the OFT was the first 

in a battery of behavioral tests. In cohort III, tested during late adulthood, the OFT was 

incorporated into the habituation phase for the object recognition test (see section 2.6.4.). The 

entire habituation phase in the OF arena lasted for 20 min. To compare the results with those 

from the early adulthood cohort, we extracted the data from the first 5 min and analyzed these 

separately.  

2.6.2. Water cross-maze test 
The water cross-maze (WCM) is a test for hippocampus-dependent learning and memory. It 

was described in detail by Kleinknecht et al. (2012). Briefly, the apparatus consists of a cross-

shaped maze, made of transparent acrylic glass (maze dimensions: arm length: 50 cm, arm 

width: 10 cm, wall height: 30 cm), which is filled with water (~23 °C, 11 cm deep). The maze 

was placed on a wooden platform (30 cm above the floor) in an evenly and dimly lit room (~14 

Lux), containing some environmental spatial cues (shelves, ceiling pipes). We used a place 

learning protocol as described previously (Kleinknecht et al., 2012) to assess the animals’ 

spatial memory performance. Briefly, the cross-maze was converted to a T-maze by blocking 

the arm opposite to the start arm with an acrylic glass shield. Each animal was gently placed 

into the water facing the back wall of the start arm and had to swim to a location where a small 

platform (acrylic glass, 8 x 8 cm) was submerged under the water surface at the end of the goal 

arm. Once the mouse had climbed onto the hidden platform, it was removed from the water, 

dried and returned to its home cage (which was placed partly under an infrared lamp for 

voluntary heating). If an animal failed to locate the platform within 30 s, it was manually guided 
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to the platform and 31 s was entered as latency for this trial. In all other cases, the experimenter 

remained motionless behind the start arm until the animal had reached the platform, so as not 

to provide any cue for the platform location. Each animal completed six trials per day on eight 

consecutive days, with an inter-trial interval (ITI) of ~10 min. As required by the place learning 

protocol, the start arm varied in a pseudo-random order, while the hidden platform always 

remained in the same position. Thus, the animals had to make use of distal spatial cues in order 

to minimize the time to reach their target. This place learning strategy involves building a 

cognitive map of the environment and is dependent on intact hippocampal function (Gutierrez-

Guzman et al., 2011, Morris et al., 1982, O'Keefe et al., 1975). To assess the animals’ 

performance, three main variables were quantified in each trial: (1) accuracy (scored as 0 if the 

animals entered any other arm before entering the goal arm, scored as 1 if the animal directly 

entered the goal arm), (2) latency (the time from entering the water to climbing onto the hidden 

platform), (3) number of wrong platform visits (scored as 0 if the animal did not enter the outer 

third of any arm apart from the goal arm, scored as 1 (or more) if the animal swam into the 

outer third of any non-goal arm). For the analysis, the scores on all six daily trials were 

averaged per animal on every training day. The WCM test was used to assess spatial learning 

only in animals during early adulthood (cohort I).  

2.6.3. Y-maze test 
The Y-maze is a frequently used behavioral test to assess hippocampus-dependent spatial 

memory in rodents (Dellu et al., 2000). The test is based on the innate tendency of rodents to 

explore unfamiliar areas. The apparatus consists of a Y-shaped maze (3 arms joining in a central 

area, arm length: 30 cm, arm width: 11 cm, wall height: 15 cm) made of dark grey plastic, evenly 

illuminated with 15 Lux. The walls of each of the three arms were marked with a white symbol 

(a triangle, a bar, or a plus), so that they can be clearly distinguished. The test consisted of an 

acquisition phase (10 min), followed by an ITI of 60 min, and a retrieval phase (5 min). During 

the acquisition phase, the plus-arm was blocked by a removable wall. The animal was placed 

into the central area, facing the corner joining the two open arms together, and was allowed to 

freely explore the maze. In the ITI, the animal was returned to its home cage. For the retrieval 

phase, the wall blocking the plus-arm was removed; the mouse was again placed into the center 

area and allowed to explore the entire maze. To derive a measure of cognitive performance, a 

discrimination ratio was calculated using the following formula: (distance in the novel arm - the 

mean exploration distance in the two familiar arms) / total distance in all three arms. The 

discrimination ratio provides a measure of whether an animal distinguished between the novel 
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and the familiar arms (i.e. if the ratio is larger than zero). It is also possible to calculate a 

discrimination ratio based on the time the animal spent in each of the arms (we provide both 

measures here), but this time-based discrimination ratio may sometimes be less sensitive to 

detect subtle differences in task performance, as animals can spend a lot time sitting in one arm, 

without actually exploring it. We used the Y-maze test to assess spatial memory in mice during 

both early and late adulthood (cohorts II and III). 

2.6.4. Object recognition test 

The Object Recognition Test (ORT) is one of the most frequently used tests for non-spatial 

memory in rodents (Akkerman et al., 2012). The performance in the ORT is dependent on 

hippocampal function (Clark et al., 2000), as well as on perirhinal and entorhinal cortex activity 

(Aggleton et al., 2010, Buckmaster et al., 2004). Similar to the Y-maze test, the ORT relies on the 

animals’ natural preference for novelty. We followed the testing protocol described by Leger et 

al. (2013). Briefly, 24 h before the familiarization phase, each animal was placed into the open 

field arena to freely explore for 20 min to allow habituation and to reduce the stressfulness of 

the subsequent testing phases. On the next day, the animal was returned to the arena, where 

two identical objects (constructed from LEGO blocks, Lego Group, Bilund, Denmark) had been 

placed, and was allowed to explore for 10 min (familiarization phase). During the ITI (60 min) 

the animal was returned to its home cage. In the test phase, one familiar and one novel object 

(also built from LEGO blocks, but with a different shape and color) were placed at the identical 

locations to where the objects had been in the familiarization phase, and the animal was again 

allowed to explore for 10 min. The objects we used were same as those previously employed by 

Knapmann et al. (2010a) and have been pretested to make sure they were equally “interesting” 

to the animals. To assess the animals’ memory performance, a discrimination ratio (Akkerman 

et al., 2012) was calculated (formula: (time exploring novel object - time exploring familiar 

object) / time exploring both objects). Exploration was defined as the animal’s head being 

within a 3 cm circumference from the object’s center. Any animal that failed to explore any of 

the objects for less than 5 s during the familiarization was excluded from the analysis. The ORT 

was performed in animals during late adulthood (cohort III).  

2.7. Stress reactivity and CORT measurement 

As a measure of HPA axis responsiveness we used the SRT, as previously described (Touma et 

al., 2008). Briefly, each mouse was removed from its home cage and an initial blood sample was 

obtained through a small incision from the ventral tail vessel (to ensure the reference sample 
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was very close to baseline levels, the time between initial handling of the cage until completing 

the blood sampling was less than 2 min). The mouse was then placed into a small restrainer (50 

ml plastic tube, with holes for ventilation and an aperture in the cap for the tail) for 15 min, 

whereafter it was decapitated (after a very brief isoflurane anesthesia), and a “reaction sample” 

was collected from the trunk blood. We employed the SRT to measure the animals’ stress 

reactivity during both early and late adulthood (cohorts II and III). All blood samples were kept 

on ice until they were centrifuged (4 °C) and plasma was removed for measurement of CORT 

using radioimmunoassay, according to the manufacturer’s protocol (DRG Instruments GmbH, 

Marburg, Germany), with slight modifications (Touma et al., 2008). All samples were measured 

in duplicates and the intra- and inter-assay coefficients of variation were both below 10 %. 

2.8. Gene expression  

To detect lasting consequences of ELS exposure at the level of gene regulation in the three SR 

mouse lines, we analyzed the relative expression of selected candidate genes using quantitative 

polymerase chain reaction (qPCR). Early and late adulthood samples were collected from 

cohorts I and III to explore whether the effects of ELS changed over time. Briefly, after the SRT 

on the last day of testing, the animals were decapitated, the brain was removed, snap frozen in 

iced methylbutane, and stored at -80 °C until further processing. The brains were sectioned into 

200 µm thick coronal slices and mounted onto glass slides. Tissue punches of the dorsal (-1.2 to 

-2,0 mm from Bregma) and ventral (-3.0 to -3,80 mm from Bregma) hippocampus (dHip and 

vHip) were collected via micropuncture (for further details see Heinzmann et al., 2014). Total 

mRNA was extracted using RNeasy columns (RNeasy Micro Kit, Qiagen, Hilden, Germany) and 

200 ng of the extracted mRNA was reverse transcribed to cDNA using high-capacity 

transcription kits (High-Capacity cDNA Reverse Transcription Kit, Applied Biosystems, Foster 

City, CA). The expression of candidate genes was measured using qPCR kits (QuantiFast SYBR 

Green, Qiagen GmbH, Hilden, Germany) following the manufacturer’s protocol. All samples were 

measured in duplicates (Standard deviation (SD) < 1.0) on 384 well-plates with three genes per 

plate, including standard curves. A list of all measured candidate genes with the applied 

oligonucleotide primers is provided in Table 1. The relative fold expression of each gene was 

calculated using the ∆∆CT method (Livak and Schmittgen, 2001) by normalizing to two 

housekeeping genes (TATA-binding protein (Tbp) and Hypoxanthine-Guanine 

Phosphoribosyltransferase (Hprt) and again normalizing to the mean of IR STD group.  
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2.9. Statistical analysis 

All statistical data analysis was conducted in PASW 18, using two-way analysis of variance 

(ANOVA), with the independent factors “line” and “condition”. To detect the difference between 

early and late adulthood data, “age” was added as an independent variable. When data points 

were collected repeatedly from the same animal in one test, a three-way repeated-measures 

ANOVA, with “line” and “condition” as between-subjects factors, and “sampling time” as a 

within-subjects variable, was employed. Where appropriate, post-hoc tests were conducted and 

corrected using the Bonferroni method. Statistical significance was accepted for p≤0.05 (*), 

p≤0.01 (**), p≤0.001 (***), while p≤0.1 (T) was considered a trend. 

Some data from cohort I animals was presented in a previous publication (McIlwrick et al., 

2016) (OFT, expression of Crh and Crhr1). This data is included here as we aimed to provide an 

early adulthood comparison time point for the late adulthood data in all assessed read-outs, 

without increasing the number of animals sacrificed for this research.  

3. Results 

3.1. ELS influences bodyweight development 

Figure 1A illustrates the development of the animals’ bodyweight throughout the entire 

experimental time span. Before the start of the ELS paradigm, on P2, there were no significant 

differences in bodyweight between pups of the three mouse lines, or between pups assigned to 

the ELS or STD condition (Fig. 1B). After one week of ELS or STD housing, on P9, the analysis 

revealed a significant main effect of condition (F1,90=71.557, p<0.001, post-hoc tests: all 

p<0.001), showing that pups that had been exposed to ELS had gained significantly less weight 

than STD-housed pups (Fig. 1C). In addition, there was a small difference in bodyweight 

between the mouse lines (F2,90=2.846, p=0.063, post-hoc tests: HR vs LR: p=0.089, all other 

between-lines comparisons: p>0.1).  On P17, the main effect of housing condition remained 

significant (F1,87=20.396, p<0.001, post-hoc tests for ELS vs STD: HR: p=0.004, IR: p=0.012, LR: 

p=0.023) and a comparison between the three lines revealed that LR pups weighed more than 

HR pups (F2,87=3.339, p=0.040, post-hoc tests: HR vs LR: p=0.036, all other:  p>0.1) (Fig. 1D). At 

weaning on P25, only the main effect of condition was significant (F1,87=18.181, p<0.001, post-

hoc tests: HR: p=0.032, IR: p=0.007, LR: p=0.016) (Fig. 1E). During early adulthood, there was a 

clear differences in bodyweight between animals of the three lines, increasing from HR to IR to 
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LR (F2,127=169.490, p<0.001, post-hoc tests: all p<0.001), as well as a main effect of ELS 

exposure (F1,127=17.543, p<0.001), and an interaction of line and condition (F2,127=5.317, 

p=0.007). Further analysis specified that the ELS effect was significant in the HR (p<0.001) and 

the LR mouse line (p=0.026) (Fig. 1F). During late adulthood, HR mice still weighed significantly 

less than animals of the other two lines (F2,65=54.141, p<0.001, post-hoc tests: HR vs IR and LR: 

p<0.001), but IR and LR mice no longer differed (IR vs LR: p=1.0). In addition, the effect of ELS 

housing was still significant (F1,65=5.331, p=0.024), and post-hoc tests showed a statistical trend 

in the LR line (p=0.096) (Fig. 1G). 

3.2. Results of the behavioral and cognitive testing 

3.2.1. Anxiety-related behavior was not affected by ELS 

When animals were tested during early adulthood, the total distance travelled in the OF arena 

revealed a main effect of mouse line (F2,54=23.371, p<0.001). Specifically, LR mice traveled 

shorter distances than HR and IR mice (post-hoc tests: HR vs IR: p=0.409, HR vs LR: p<0.001, IR 

vs LR: p<0.001) (Fig. 2A), confirming previous findings in the SR mouse model (Heinzmann et 

al., 2014, Touma et al., 2008). ELS exposure had no effect on the animals’ locomotor activity in 

the OFT at this time point. When animals were tested during late adulthood, there was again a 

significant effect of mouse line on the total distance traveled (F2,54=7.462, p=0.001, post-hoc 

tests: HR vs IR: p=0.084, HR vs LR: p=0.001, IR vs LR: p>0.1) (Fig. 2B). In addition, the analysis 

revealed a main effect of condition (F1,54=4.130, p=0.047), and post-hoc tests showed that ELS-

exposed mice in the HR line tended to move around less than STD-housed HR mice (ELS vs STD: 

HR: p=0.019, IR and LR: p>0.1). 

At both time points (early and late adulthood), there was no indication of an effect of ELS on 

anxiety-related behavior (time in the inner zone: early adulthood:  F2,54=0.635, p=0.429, late 

adulthood:  F2,54=0.093, p=0.762) (Fig. 2C, D). Animals tested in late adulthood showed trend for 

a main effect of mouse line regarding the time spent in the inner zone of the OF (F2,54=3.002, 

p=0.058, post-hoc tests: HR vs IR: p=0.055, HR vs LR and IR vs LR: p>0.1), indicating that HR 

mice spent slightly more time in the more aversive inner zone than IR animals. This may, 

however, be related to the increased locomotor activity of HR mice in general. In line with this, 

at both time points, the ratio of the path length the animals traveled in the inner and outer zone 

showed no significant differences between the lines (early: F2,54=1.642, p=0.203; late: 
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F2,54=0.576, p=0.565) or between conditions (early: F1,54=0.006, p=0.940; late: F1,54=2.320, 

p=0.134) (Fig. 2 E, F). 

3.2.2. ELS hampers spatial learning in HR animals 

To assess spatial learning and memory, we first evaluated each animal’s performance during 

the eight days of training in the WCM test. A repeated-measures ANOVA confirmed that, overall, 

the animals in all six experimental groups improved their task performance over time, showing 

an increased accuracy (F7,378=62.794, p<0.001) (Fig. 3A), a decreased latency to reach the 

hidden platform (F7,378=85.502, p<0.001) (Fig. 3B), and a decreasing number of wrong platform 

visits (F7,378=60.502, p<0.001) (Fig. 3C). We next analyzed the data for between-group effects 

and found a trend for a main effect of condition on accuracy (F1,54=2.882, p=0.095) (Fig. 3A), a 

significant effect of condition on latency (F1,54=4.123, p=0.047) (Fig. 3B), as well as a trend for a 

main effect of condition on the number of wrong platform visits (F1,54=3.376, p=0.072) (Fig. 3C). 

Post-hoc tests for the accuracy measures revealed that on training days two, three, and five HR 

ELS mice performed worse than HR STD mice (p=0.040, p=0.032, and p=0.094, respectively), 

leading, overall, to a statistical trend for decreased accuracy in HR ELS compared to HR STD 

mice (F1,54=3.085, p=0.085). IR ELS animals also had lower accuracy scores than IR STD animals 

on training day eight (p=0.048), but overall, the performance of IR ELS mice was not 

significantly different from IR STD animals. LR mice showed no significant effects of ELS on 

accuracy in this task. Post-hoc tests for the latency to reach the platform showed that both HR 

and IR ELS mice had some deficits on different testing days (HR, day three:  p=0.032; IR, days 

seven and eight: p=0.060 and p=0.040), but over the course of the entire eight days of testing, 

the difference in latency scores between ELS and STD mice was not significant in any of the 

three lines. Post-hoc analysis of the number of wrong platform visits, overall, revealed that, 

although there were no significant differences on any particular training day, there was a trend 

for more platform errors in HR ELS compared to HR STD mice (F1,54=2.891, p=0.095), but no 

difference between ELS and STD mice in the other two mouse lines. Together this data indicates 

some ELS-induced deficiencies in the acquisition of hippocampus-dependent place learning and 

spatial navigation mainly in HR mice, and some slight effects also in IR animals. 

3.2.3. HR and LR mice show divergent effects of ELS on spatial memory 

The animals’ spatial memory performance was assessed using the Y-maze test. In early 

adulthood, the animals’ distance-based discrimination ratio revealed that LR animals 

differentiated between novel and familiar and more extensively explored the novel arm, 
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compared to the familiar arms (one sample t-test against test value zero: LR ELS: t9=4.346, 

p=0.001, LR STD: t9=3.487, p=0.004) (Fig. 4A). Similarly, HR and IR mice that had been raised in 

STD conditions also made this distinction by travelling longer distances in the novel than in the 

familiar arms (HR STD: t9=3.255, p=0.005, IR STD: t9=2.648, p=0.014). However, HR and IR mice 

that had been exposed to ELS showed no preference for the novel arm (HR ELS: t9=-1.302, 

p=0.113, IR ELS: t9=-0.412, p=0.345). A comparison between all six experimental groups 

revealed a main effect of line (F2,54=7.785, p=0.001, post-hoc tests: HR vs IR: p>0.1, HR vs LR: 

p=0.002, IR vs LR: p=0.006), a main effect of condition (F1,54=6.828, p=0.012), and an interaction 

of line and condition (F1,54=3.297, p=0.045, post-hoc tests: HR: p=0.009, IR: p=0.020 and LR: 

p>0.1).  

In line with the results seen in young adult animals, the analysis of the Y-maze test in late 

adulthood revealed that, in terms of exploration distance, only HR ELS did not discriminate 

between the novel and the familiar arms (one sample t-test against test value zero: HR ELS: 

t9=1.134, p=0.142, HR STD: t8=3.768, p=0.003, IR ELS: t9=3.256, p=0.005, IR STD: t8=4.362, 

p=0.001, LR ELS: t9=6.119, p<0.001, LR STD: t9=4.614, p=0.001) (Fig. 4B). In this cohort, one HR 

STD and one IR STD animal had to be excluded from the analysis due to difficulties in video 

tracking. The ANOVA comparing the performance of all six groups showed a main effect of 

mouse line (F2,52=4.410, p=0.017, post-hoc tests: HR vs IR, and IR vs LR: p>0.1, HR vs LR: 

p=0.012), as well as a significant interaction of line and condition (F2,52=8.978, p<0.001). Post-

hoc tests specified that HR ELS animals performed significantly worse than HR STD mice 

(p=0.009), while LR ELS mice actually outperformed LR STD animals (p=0.005).  

Both at the early and the late adulthood time point, there was a main effect of mouse line on the 

total exploration distance in the Y-maze (early adulthood: F2,54=40.514, p<0.001, post-hoc test: 

all p≤0.001; late adulthood: F2,52=13.059, p<0.001, post-hoc test: HR vs IR and vs LR: p≤0.001, IR 

vs LR: p=1.0), showing that HR mice were more active than the other two lines (Fig. 4C, D). 

Importantly, there was no difference in the total distance traveled by ELS and STD animals at 

both time points (early adulthood: F1,54=0.114, p=0.737; late adulthood: F1,52=0.103, p=0.750). 

As a further measure of spatial memory performance, we analyzed the time the animals spent 

in the different areas of the maze during the test. In early adulthood, only LR mice discriminated 

between the novel and the familiar arms of the Y-maze in terms of the time they spent exploring 

the different arms (one sample t-test against test value zero: LR ELS: t9=2.361, p=0.022, LR STD: 
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t9=2.104, p=0.033) (Fig. 4E). IR STD and HR STD animals showed a statistical trend (IR STD: 

t9=1.754, p=0.056, HR STD: t9=1.739, p=0.058), but IR ELS and HR ELS animals failed to show 

this discrimination or spent more time exploring the familiar arms (IR ELS: t9=-1.493, p=0.085, 

HR ELS: t9=-0.258, p=0.401). When comparing the groups in a univariate ANOVA, a main effect 

of mouse line was confirmed (F2,54=3.315, p=0.044, post-hoc tests: HR vs IR and vs LR: p>0.1, IR 

vs LR: p=0.058), but condition did not affect this read-out of spatial memory performance. 

Animals tested during late adulthood showed a similar pattern of results. Specifically, LR mice 

showed a significant preference for the novel arm (LR ELS: t9=3.258, p=0.005, LR STD: t9=2.394, 

p=0.020) (Fig. 4F). In the HR and IR mouse lines, those animals that had been raised in STD 

conditions made a distinction between novel and familiar arms (HR STD: t8=1.905, p=0.045, IR 

STD: t8=1.715, p=0.060), while ELS-exposed animals did not (HR ELS: t9=0.392, p=0.352, IR ELS: 

t9=-0.939, p=0.186). The ANOVA showed a main effect of mouse line (F2,54=4.039, p=0.023, post-

hoc tests: HR vs IR, and vs LR: p>0.1, IR vs LR: p=0.022), but no effect of condition. 

To detect an effect of aging on the animals’ spatial memory performance in the Y-maze test, 

“age” was included as independent factor in a univariate ANOVA. The results showed a main 

effect of age on the animals’ performance in the distance-based discrimination ratio 

(F1,106=5.016, p=0.027), but there was no significant difference between early and late 

adulthood performance in the time-based discrimination measure.  

3.2.4. ELS impairs object recognition in HR animals 
To detect whether the animals were able to distinguish between the previously encountered 

and the novel object, a discrimination ratio was calculated for each animal, as described in the 

methods section. One HR STD and one LR STD animal had to be excluded from the analysis, 

because they did not reach the criterion of exploring both objects for at least 5 s during the 

familiarization phase. Using one-sample t-tests (against test value zero), the analysis showed 

that both HR ELS and IR ELS animals did not spend more time exploring the novel object (HR 

ELS mice actually showed a trend for favoring the familiar object) (one-sided t-tests: HR ELS: 

t9=-1.499, p=0.084, IR ELS: t9=0.118, p=0.454) (Fig 5A). HR STD mice showed a trend for 

positive object discrimination (HR STD: t8=1.617, p=0.073), and animals from the IR STD group, 

as well as LR ELS and LR STD all spent significantly more time investigating the novel object (IR 

STD: t9=2.943, p=0.008, LR ELS: t9=2.834, p=0.010, LR STD: t8=3.835, p=0.003), thus showing 

they remembered the previously encountered familiar object. Comparisons between the 
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experimental groups using a univariate ANOVA revealed a significant main effect of line 

(F2,52=6.003, p=0.005), showing that LR animals performed significantly better in this task than 

HR (p=0.006) and IR mice (p=0.025). In addition, the analysis showed a main effect of condition 

(F1,52=6.925, p=0.011) and post-hoc tests specified that this effect was only significant in the HR 

mouse line (p=0.011), i.e. overall, HR ELS mice performed significantly worse that HR STD 

animals. 

During the testing phase, LR animals spent overall less time exploring both objects than IR and 

HR mice (F2,52=6.663, p=0.003, post-hoc tests HR vs IR: p=0.1, HR vs LR: p=0.039, IR vs LR: 

p=0.003), but there was no difference between ELS and STD-housed animals (Fig. 5B). A similar 

pattern was seen when examining the animals’ exploration of each object separately (Fig. 5C, 

D). 

3.3. HR animals show increased stress reactivity after ELS exposure 

The absolute levels of plasma CORT concentration before (initial) and after (response) 15 min 

of restraint were analyzed using a repeated-measures ANOVA. In early adulthood, the data 

showed a strong effect of time point (initial vs response), confirming a significant rise in plasma 

CORT levels in response to the stressor in animals of all three lines (within-subjects effect: 

F1,54=1459.996, p<0.001) (Fig. 6A). The initial CORT levels (taken within 2 min after the first 

disturbance of the animals’ cage) showed that HR and IR mice had higher baseline CORT levels 

than LR mice (F2,54=6.253, p=0.004, post-hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.007, IR vs LR: 

p=0.015), but there was no difference between conditions (F1,54=0.148, p=0.702). In the 

response levels measured after restraint, the main effect of mouse line was exacerbated, with 

evident differences in CORT concentrations between all three lines (F2,54=214.164, p<0.001, 

post-hoc tests: all p<0.001). In addition, the analysis revealed a main effect of condition 

(F1,54=5.675, p=0.021), as well as an interaction of line and condition (F2,54=4.232, p=0.020), and 

post-hoc comparisons showed that HR ELS mice had significantly higher plasma CORT levels in 

response to the stressor than HR STD mice (p<0.001), while no other mouse line showed this 

effect of ELS. 

As there had been differences between the groups at baseline, we also analyzed the CORT 

increase (reaction CORT minus initial CORT level) and this measure confirmed the main effect 

of mouse line (F2,54=223.319, p<0.001, post-hoc tests: all p<0.001) (Fig. 6B). In addition, the 

increase in plasma CORT concentration also revealed a main effect of condition (F1,54=6.022, 
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p=0.017), as well as an interaction of line and condition (F2,54=6.243, p=0.016), showing that HR 

ELS mice had a significantly higher increase in CORT levels than HR STD mice (p<0.001), while 

IR and LR mice did not show this effect of ELS exposure on stress reactivity (p=0.776 and 

p=0.949, respectively).  

The SRT carried out in mice during late adulthood matched the earlier results (Fig. 6C). Again, 

there was a strong effect of time point (initial vs response) (F1,53=1957.027, p<0.001) and the 

initial CORT values showed a strong trend for a main effect of line (F2,53=3.023, p=0.057, post-

hoc tests: HR vs IR: p=0.063, HR vs LR: p=0.309 IR vs LR: p=1.0), but no effect of condition 

(F1,53=0.381, p=0.540). The difference between the three lines became highly significant after 15 

min of restraint (F2,53=140.272, p<0.001, post-hoc tests: all p<0.001), when, in addition, there 

was also an interaction of line and condition (F2,53=3.468, p=0.038). Specifically, ELS-exposed 

HR mice showed a significantly stronger CORT response than STD-raised HR mice (p=0.048), 

while IR and LR mice seemed more resilient to this early-life programming of stress reactivity. 

The analysis of the increase in plasma CORT levels confirmed a main effect of mouse line 

(F2,53=166.189, p<0.001, post-hoc tests: all p<0.001), and the interaction of line and condition 

(F2,53=4.544, p=0.015, post-hoc tests: HR: p=0.026, IR: p=0.092, LR: p=0.344) (Fig. 6D).  

3.4. ELS is associated with long-term changes in hippocampal gene expression 

3.4.1. Expression of Bdnf and Ntrk2 in the hippocampus 

The analysis of gene expression in the dHip of animals sacrificed during early adulthood 

showed that Bndf was downregulated in HR mice that had been exposed to ELS compared to 

STD-raised HR mice (p=0.031) (Fig. 7A). In addition, there was a main effect of line (F1,54=4,091, 

p=0.022), showing that, overall, HR mice had a lower Bdnf expression levels than LR animals 

(p=0.038). When the expression levels of Bdnf were measured in animals sacrificed during late 

adulthood, the data showed a statistical trend in the same direction (F2,52=2.651, p=0.080, post-

hoc tests: HR vs LR: p=0.080) (Fig. 7B). Interestingly, the difference between HR ELS and STD 

mice was not present in the older animals; rather, at this later time point, the Bdnf expression 

levels in HR STD animals resembled those measured in HR ELS mice. The BDNF receptor coding 

gene Ntrk2 showed no changes in expression between lines or conditions at either of the two 

time points in the dHip (Fig. 7C, D). 

Mirroring the pattern seen in the dHip, the levels of Bdnf in the vHip during early adulthood 

were significantly downregulated in HR ELS compared to HR STD mice (p>0.001) (Fig. 7E). In 
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addition, the data showed a strong statistical trend for a main effect of line (F2,52=2.993, 

p=0.059), a main effect of condition (F1,52=4.513, p=0.038), and an interaction of line and 

condition (F2,52=5.677, p=0.006). As seen in the dHip, the difference in Bdnf levels between HR 

ELS and STD mice was no longer significant when gene expression in the vHip was measured in 

late adulthood. Again, this seemed to be mainly due to a downward shift in the expression levels 

in HR STD animals (Fig. 7F). There was a clear main effect of line (F2,54=5.218, p=0.008), and, 

overall, HR animals had lower Bdnf levels than LR mice (p=0.007), while there was no effect of 

condition. As in the dHip, the expression of Ntrk2 in the vHip showed no effect of line or 

condition both in early and late adulthood (Fig. 7G, H). 

3.4.2. Expression of Crh and Crhr1 in the hippocampus  

The expression of Crh in the dHip was affected by an interaction of line and condition 

(F2,48=4.358, p=0.018). Post-hoc analyses revealed that HR ELS mice had higher Crh levels than 

HR STD animals (p=0.008) (Fig. 8A). When measured in late adulthood, the same interaction 

was detected (F2,52=5.247, p=0.009) and further analysis revealed that, as before, HR ELS mice 

had significantly  higher Crh levels than HR STD mice (p=0.047) and that the opposite was true 

in LR animals (p=0.015), i.e. LR ELS animals displayed reduced Crh expression compared to LR 

STD mice (Fig. 8B). The expression of the CRH-R1 gene did not differ significantly between lines 

and conditions in early adulthood (Fig. 8C). However, in late adulthood, the data showed an 

interaction of line and condition (F2,50=3.487, p=0.038), with post-hoc tests specifying that 

Crhr1 levels were significantly reduced in LR ELS compare to LR STD mice (p=0.001) (Fig. 8D). 

In the vHip, there was a main effect of line on the expression of Crh in early adulthood 

(F1,53=3.782, p=0.029, post-hoc tests: HR vs LR: p=0.029) (Fig. 8E), but this effect was not 

observed in the later adulthood samples (Fig. 8F). The expression of Crhr1 in the vHip showed 

no significant changes associated with line or condition in early or late adulthood (Fig. 8G,H). 

4. Discussion 

Here, we confirm previous findings showing that ELS produces late-onset and long-lasting 

effects on cognitive function (Brunson et al., 2005, Gould et al., 2012, Mehta and Schmauss, 

2011). Our results further reveal that the nature of these effects differs between individuals, 

contingent with their innate stress reactivity (high versus low). The genetic predisposition is 

therefore centrally involved in shaping the cognitive phenotype after ELS, as well as in 
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mediating the consequences at the level of neuroendocrine regulation and gene expression. 

Below, we discuss and integrate the key findings of the presented experiments in the light of 

past and current research regarding the complex interaction of genes and environment. 

4.1. Bodyweight and behavior  
Exposure to the ELS paradigm caused a substantial delay in bodyweight development in pups of 

all three SR mouse lines, evidenced by reduced bodyweight gain from P2 to P9 in litters raised 

in ELS conditions (Fig. 1C). This main effect of ELS confirms previous findings in the SR mouse 

model, as well as in other rodent models (Avishai-Eliner et al., 2001b, Bath et al., 2016, Gilles et 

al., 1996, McIlwrick et al., 2016, Naninck et al., 2015, Rice et al., 2008). The difference in 

bodyweight remained significant all throughout development into early and late adulthood in 

the HR and the LR lines, similar to observations by others (Bath et al., 2016). Animals in the IR 

ELS group matched their STD housed control group by early adulthood (Fig. 1D-G). However, in 

a previous study in our animal model (McIlwrick et al., 2016), and as reported by others (Rice et 

al., 2008), no weight differences had been observed between ELS and STD mice by early 

adulthood. The lasting effects of ELS on bodyweight will thus need to be investigated in further 

studies to allow a better understanding of the circumstances under which long-term changes in 

bodyweight occur and how ELS influences the underlying metabolic processes.  

In line with previous studies using the limited nesting material paradigm or maternal 

separation (Brunson et al., 2005, Millstein and Holmes, 2007, Rice et al., 2008), ELS did not 

affect anxiety-related behavior in the adult offspring (Fig. 2C-F). In general, the OFT results 

showed that HR mice were more active than LR mice, a phenotype which was present at both 

measurement time points (Fig. 2A, B) and confirms earlier studies (Heinzmann et al., 2014, 

Touma et al., 2008). While there was an indication for reduced locomotor activity in aged HR 

ELS mice (Fig. 2B), this finding was not confirmed in a slightly different testing set-up (Fig. 4D), 

pointing towards a context-specific, rather than a general effect of ELS.  

4.2. Cognitive function 

Cognitive function was clearly influenced by ELS in the SR mouse model. However, the three 

lines were not equally vulnerable to the deleterious effects of early-life adversity. HR ELS 

animals showed the most pronounced phenotype in terms of cognitive impairments, emerging 

in early adulthood [reduced spatial learning performance (Fig. 3) and impaired place memory 

(Fig. 4A)] and lasting into older age [impaired place memory (Fig. 4B) and impaired object 
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memory (Fig. 5A)]. IR ELS animals showed a similar effect in early adulthood [partially reduced 

spatial learning (Fig. 3) and impaired place memory (Fig. 4A)], but appeared to recover with 

increasing age [intact place memory (Fig. 4B) and no significant difference in object memory 

(Fig. 5A)]. In contrast, LR ELS animals showed no indication of cognitive deficits in early 

adulthood [normal spatial learning (Fig. 3) and good place memory (Fig. 4A)], and there was 

even some evidence for improved cognitive function in aged ELS-exposed LR mice compared to 

STD animals (Fig. 4B). These results highlight that the consequences of ELS on cognitive 

function depend very much on the genetic predisposition of the individual. Previous studies in 

the SR mouse model have provided evidence for deficits in cognitive function in HR animals 

(Knapman et al., 2010a, Knapman et al., 2010b) and have linked this to reduced hippocampal 

activity and neuronal integrity (Knapman et al., 2012). The proposed mechanism underlying 

this phenotype is a cumulative neurotoxic effect of glucocorticoids, as lifetime exposure to 

elevated stress hormones can give rise to progressive deficits in learning and memory (Hibberd 

et al., 2000, Lupien et al., 2009, Sapolsky et al., 2000). Our new data complements these findings 

by showing that the cognitive deficits observed in HR mice become exacerbated by ELS 

exposure. In a set of studies, Brunson et al. demonstrated that ELS can set off a cascade of 

structural and functional changes in different subfields of the hippocampus, including aberrant 

mossy fiber expansion, impaired long-term potentiation (LTP), and dendritic atrophy, which 

contribute to several cognitive impairments emerging with increased age (Brunson et al., 

2005). We suggest that these same mechanisms may be acting in HR mice and that they may 

become increasingly detrimental through the additional sensitization of the HPA axis set in 

motion by the exposure to ELS. 

4.3. Stress reactivity 

To verify the central role of HPA axis programming in the effects of ELS, the animals’ stress 

reactivity was tested at two time points. Both in early and in late adulthood, the results showed 

that HR ELS mice had an increased stress reactivity compared to STD-raised HR mice (Fig. 6). 

This ELS-induced augmentation in CORT release supports the hypothesis that the cognitive 

deficits displayed by HR ELS animals are due to excessive, cumulative glucocorticoid exposure 

and its adverse downstream consequences in stress sensitive regions of the brain, such as the 

hippocampus. Earlier work from our group demonstrated that directly after a week-long period 

of ELS exposure HR ELS pups had elevated basal CORT levels, which normalized by the age of 

weaning (McIlwrick et al., 2016). In the present study, we found no differences in basal CORT 

levels between adult HR ELS and STD mice, but differences in stress reactivity. This indicates 
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that a disruption of the HPA axis suppression during the stress-hyporesponsive period (SHRP) 

led to changes in the neuroendocrine programming of stress reactivity in these animals. During 

the SHRP, lasting from P2 –P12 in mice, moderate stressors fail to elicit a measurable 

physiological stress response in pups, due to a desensitization at all levels of the HPA axis 

(Sapolsky and Meaney, 1986). The suppression of the pups’ stress reactivity is tightly controlled 

by maternal care and can only be disrupted by severe stressors, such as removal of the dam 

(Schmidt et al., 2003, Levine, 2002). The SHRP coincides with a critical period of postnatal brain 

development, and it is evolutionary purpose most likely to minimize the damaging effects of 

glucocorticoids on the developing brain (Sapolsky and Meaney, 1986). In HR mice, the 

fragmented maternal care induced by the ELS paradigm was apparently sufficient to disrupt the 

suppression of the stress response system, leading to elevated basal CORT levels during the 

SHRP. As the GR-mediated negative feedback loop is not yet functioning in pups at this young 

age (Meaney et al., 1985), the CORT levels remained elevated, with the potential to interfere 

with neuroendocrine receptor expression and programming throughout the brain. Thus, once 

the negative feedback loop became instantiated, basal CORT levels of HR ELS pups dropped to 

normal levels, while neuroendocrine programming mechanisms led to enhanced stress 

reactivity in adult HR ELS animals.  

In contrast, adult LR mice showed no differences in their stress response associated with ELS 

rearing conditions. However, we noted that the baseline CORT levels of LR ELS mice increased 

significantly from early to late adulthood (pairwise comparisons LR ELS early vs late adulthood: 

p=0.031), and overall, LR mice displayed a rise in their stress response CORT levels in late 

adulthood (pairwise comparisons LR early vs late adulthood: p=0.051). To date, only some 

acute and no lasting effects of ELS exposure have been reported in LR animals (McIlwrick et al., 

2016). Our new data now suggests that there are indeed some lasting consequences, but that 

these only appear with a late adulthood onset. Strikingly, the ELS-induced effects in LR mice, 

while not being very pronounced, seem to be rather favorable in nature: aged LR ELS animals 

showed signs of improved cognitive function and had slightly raised baseline CORT levels 

compared to LR STD mice. Since the effects of stress hormones have an inverted U-shaped 

relationship to cognition (de Kloet et al., 1999, Mateo, 2008, Sapolsky, 2015) and LR mice 

usually have a very low baseline HPA axis tone (Touma et al., 2008, Touma et al., 2009), a small 

increase in baseline activation may convey some beneficial aspects for attention and behavioral 

reactivity, by increasing the relative occupancy of MRs compared to GRs in the hippocampus 
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(de Kloet et al., 1999, Ferguson and Sapolsky, 2007, Herbert et al., 2006) and thus promote 

cognitive function.  

4.4. Gene expression 

BDNF is an important mediator of neural growth, maturation, and survival, as well as synaptic 

plasticity (Daskalakis et al., 2015, Huang and Reichardt, 2001), and thereby plays a central role 

in the underlying processes of learning and memory (Cunha et al., 2010). Moreover, ELS has 

been shown to impact on BDNF expression in the hippocampus (Liu et al., 2000), suggesting a 

link to cognitive deficits that have been described (Daskalakis et al., 2015). In our animals, we 

found that, during early adulthood, Bdnf levels were downregulated in the dorsal and ventral 

hippocampus of HR ELS mice compared to HR STD animals (Fig. 7A, E). This change in gene 

expression may reflect a downstream effect of exaggerated glucocorticoid stimulation, as the 

BDNF- and glucocorticoid-signaling pathways are closely interlinked and show bi-directional 

cross talk (Daskalakis et al., 2015, Jeanneteau and Chao, 2013). In late adulthood, the difference 

in Bdnf levels between HR ELS and STD mice was reduced, due to a downward shift in the 

expression levels of HR STD animals (Fig 7B, F). Overall, HR mice had lower Bdnf levels than LR 

mice, confirming previous findings at the level of proteins in the hippocampus (Knapman et al., 

2010b). Taken together, these results indicate that a reduced availability of neurotrophins, such 

as BDNF, may contribute to the cognitive impairments observed in HR mice, and HR ELS in 

particular. Since in early adulthood, BDNF mRNA expression was changed as a function of ELS 

experience, it is likely to reflect a dynamic signature of downstream glucocorticoid signaling, 

rather than genomic differences between the mouse lines. Glucocorticoid signaling can affect 

the regulation of transcription factors, the epigenome, and mircoRNAs, implicating a wide array 

of potential programming pathways (de Kloet et al., 2009, McGowan et al., 2009, Suri and 

Vaidya, 2013). 

Furthermore, changes in the CRH system have repeatedly been implicated in the adverse effects 

of ELS (Avishai-Eliner et al., 2001a, Rice et al., 2008, Fuge et al., 2014, Ivy et al., 2010, Korosi et 

al., 2010, Liao et al., 2014, McIlwrick et al., 2016, Wang et al., 2013). In this study, we detected 

an upregulation of Crh in the dorsal hippocampus of ELS-exposed HR mice compared to HR STD 

animals, which was stable over time from early to late adulthood (Fig. 8A, B), while the 

expression level of the Crhr1 remained unchanged (Fig. 8C, D, G, H). An increased tone of CRH 

activity in the hippocampus has been implicated in dendritic remodeling (Chen et al., 2012, 

Chen et al., 2008) and could constitute a further pathway contributing to the observed deficits 
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in hippocampus-dependent cognitive tasks. In LR mice no ELS-associated changes in Crh and 

Crhr1 expression were observed in the dorsal hippocampus during early adulthood (Fig. 8A, C), 

but a down regulation of both genes became evident in late adulthood (Fig. 8B, D), coinciding 

with somewhat enhanced cognitive performance of LR ELS mice (Fig. 4B). In conclusion, our 

data suggests that ELS exposure sets in motion a range of neuroendocrine and molecular 

alterations, the effects of which emerge gradually in adulthood and strongly depend on the 

animal’s genetic predisposition for high or low stress reactivity. 

4.5. Shortcomings and future directions 
The selection of appropriate behavioral tests is critical to reliably measure small effects of 

experimental manipulations in behaving animals. To assess cognitive function in early and late 

adulthood we used the Y-maze test at both time points, but supplemented this with different 

behavioral tasks (i.e. the WCM was used only in early adulthood; the object recognition test was 

used only in late adulthood), which creates some asymmetry in the data. The reason why we did 

not repeat the WCM in the late adulthood animal cohort was that this test presupposes the 

animals’ ability to navigate using visual cues and albino mice are poorly equipped for vision-

based tasks (Brown and Wong, 2007). Hence, animals of the SR mouse model in general 

preformed relatively poorly compared to e.g. wild type C57Bl6/N (Kleinknecht et al., 2012). In 

addition, the WCM is a quite stressful test, due to the need for the animals to swim, which may 

impact on the animals’ performance. Therefore, we decided to use a less stressful and less 

vision-dependent test in the late adulthood cohort of animals. Since the Y-maze test was 

identical at both time points and the results concurred well with the results of both other 

cognitive tasks, we believe that our conclusions regarding changes in cognitive function from 

early to late adulthood are nonetheless valid and justifiable. 

In the presented work, we investigated the effects of ELS in male mice, only. However, the 

clinical reality shows that women are at a 2-fold increased risk for affective and stress-related 

disorders (Castle, 2007, Gater et al., 1998). Several factors may play a role in this enhanced 

vulnerability, including differences in neuroendocrine regulation and interaction of 

reproductive hormones (Bale, 2006, Seeman, 1997, Young et al., 2001), which may be 

exacerbated through ELS experiences. As the findings from male animals are not necessarily 

directly translatable to females and therefore only provide limited information regarding large 

parts of the patient population, future studies should include female subjects in the 

investigation. 
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In recent years, several gene variants that contribute to individual risk or resilience for affective 

disorders have been identified, including Nr3c1 (Wust et al., 2009), Nr3c2 (DeRijk et al., 2006), 

Fkbp5 (Ising et al., 2008), Crhr1 (Clarke and Schumann, 2009), Crhbp (Wang et al., 2007), 

Gabra6 (Uhart et al., 2004), and Slc6a4 (Way and Taylor, 2010). It would contribute to our 

understanding of the gene × environment interaction described here to have a better 

knowledge about the genomic sequence of the three SR mouse lines, in order to seek 

confirmation for some of the known risk polymorphisms and to detect new potential 

candidates. Moreover, an analysis of the methylation status of candidate genes may add 

valuable information about epigenetic changes induced by ELS in the three SR mouse lines. 

4.6. Conclusion 

In summary, we present evidence showing that the lasting effects of ELS can differ greatly 

between individuals and that one key determinant of the long-term outcome is the individual’s 

genetic predisposition for high or low stress reactivity. The SR mouse model provided us with 

an ideal tool to investigate the role of innate differences in neuroendocrine function in this gene 

× environment interaction. Using this animal model we could show that, while HR mice display 

cognitive deficits already in early adulthood, accompanied by a hyper-reactive HPA axis and 

lasting changes in the regulation of Crh and Bdnf, LR mice appear to be largely protected against 

these adverse effects of ELS. Taken together, our findings contribute to improve our 

understanding of factors influencing vulnerability and resilience to early-life adversity and to 

stress-related psychopathology. Future studies using the SR mouse model could yield valuable 

insights into the molecular mechanism underlying resilience and vulnerability and epigenetic 

programming is a promising candidate, likely to be involved in these processes. A better 

understanding of how ELS interacts with genetic predisposition to program individuals for 

increased stress sensitivity and risk for affective disorders could guide the design of future 

treatment options by reversing or otherwise targeting these pathological processes. 
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Figure 1 

Bodyweight development of high (HR), 

intermediate (IR), and low (LR) reactivity 

mice, raised in early-life stress (ELS) or 

standard (STD) housing conditions was 

analyzed by repeated-measures or 

univariate ANOVA. Data are presented as 

line plots showing means and standard 

error of the mean (SEM) (error bars) and 

as boxplots showing the median 

(horizontal line in the box), 25-75% 

(boxes) and 10-90 % (whiskers). (A) The 

animals’ bodyweight shows different 

developmental trajectories. A repeated-

measures ANOVA over all time points 

revealed a main effect of line (F2,35=87.404, 

p<0.001, post hoc tests: P2: p=0.208, P9: 

p=0.002, P17: p=0.020, P25: p=0.005, 

P100: p<0.001, P170: p<0.001) and a main 

effect of condition (F1,35=45.631, p<0.001, 

post hoc tests: P2: p=0.872, P9: p<0.001, 

P17: p<0.001, P25: p<0.001, P100: 

p=0.031, P170: p=0.018). Panels b-g show 

each time point in more detail: (B) On P2, 

there were no significant differences in 

bodyweight between the lines (F2,93=2.367, 

p=0.099, post hoc tests: all p>0.1) or 

conditions (F1,93=0.63, p=0.803), N=14-18. 

(C) On P9, there was a statistical trend 

main effect of line on bodyweight 

(F2,90=2.846, p=0.063, post hoc tests: HR vs 

IR: p=1.0, HR vs LR: p=0.086, IR vs LR: 

p=0.279), and a main effect of condition 

F1,90=71.557, p<0.001, post hoc tests: all 

p<0.001), N=14-17. (D) On P17, there was 

a main effect of line on bodyweight 

(F2,87=3.339, p=0.040, post-hoc tests: HR vs 

IR: p=1.0, IR vs LR: p=0.295, HR vs LR: 

p=0.036), and a main effect of condition 
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(F1,87=20.396, p<0.001, post-hoc tests: HR ELS vs STD: p=0.004, IR ELS vs STD: p=0.012, LR ELS vs STD: p=0.023), 

N=14-16. (E) On P25, the main effect of line was not significant (F 2,87=2.336, p=0.103), but there was a main effect of 

condition (F1,87=18.181, p<0.001, post-hoc tests: HR ELS vs STD: p=0.032, IR ELS vs STD: p=0.007, LR ELS vs STD: 

p=0.016), N=14-17. (F) During early adulthood, there was a main effect of line (F2,127=169.490, p<0.001, post-hoc 

tests: all: p<0.001), a main effect of condition (F1,127=17.543, p<0.001), and an interaction of line and condition  

(F2,127=5.317, p=0.007, post-hoc tests: HR ELS vs STD: p<0.001, IR ELS vs STD: p=0.811, LR ELS vs STD: p=0.026), 

N=22-23. (G) During late adulthood, there was a main effect of line (F2,65=54.141, p<0.001, post-hoc tests: HR vs IR 

and HR vs LR: p<0.001, IR vs LR: p=1.0) and a main effect of condition (F1,65=5.331, p=0.024, post-hoc tests: HR ELS 

vs STD: p=0.181, IR ELS vs STD: p=0.349, LR ELS vs STD: p=0.096), N=10-13. Symbols: ***, p≤0.001; **, p≤0.01; *, 

p≤0.05; T, p≤0.1. Main effects of line are represented above a horizontal line above the graphs. The respective post-

hoc test statistics are indicated underneath the line with: </>, p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for 

main effects of condition and the interaction are presented above the appropriate boxes. 
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Figure 2 

Open field test (OFT) in early and late 

adulthood. The behaviour of high (HR), 

intermediate (IR), and low (LR) reactivity 

mice, raised in early-life stress (ELS) or 

standard (STD) housing conditions was 

analyzed by univariate ANOVA, N=10 per 

group. Data are presented as boxplots 

showing the median (horizontal line in 

the box), 25-75% (boxes) and 10-90 % 

(whiskers). (A) The total distance 

travelled in the OFT in early adulthood 

differed significantly between the three 

mouse lines (F2,54=23.371, p<0.001, post 

hoc tests: HR vs IR: p=0.409, HR vs LR: 

p<0.001, IR vs LR: p<0.001), but not 

between conditions (F1,54=1.219, 

p=0.274). (B) The total distance travelled 

during the OFT in late adulthood showed 

a main effect of line (F2,54=7.462, p=0.001, 

post hoc tests: HR vs IR: p=0.084, HR vs 

LR: p=0.001, IR vs LR: p=0.357), as well as 

a main effect of condition (F1,54=4.130, 

p=0.047, HR: p=0.019, IR: p=0.299 and 

LR: p=0.954). (C) In early adulthood, the 

time the animals spent in the inner zone 

of the OF was not affected by line 

(F2,54=0.980, p=0.382) or condition (F1,54=0.635, p=0.429). (D) In late adulthood, the time in the inner zone showed a 

trend for a main effect of line (F2,54=3.002, p=0.058, post hoc tests: HR vs IR: p=0.055, HR vs LR: p=0.985, IR vs LR: 

p=0.459), butno effect of condition (F1,54=0.093, p=0.762). (E), (F) Both in early and late adulthood, the ratio of the 

inner to outer path length showed no significant effect of line (early: F2,54=1.642, p=0.203; late: F2,54=0.576, p=0.565) 

or condition (early: F1,54=0.006, p=0.940; late: F1,54=2.320, p=0.134). Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, 

p≤0.1. Main effects of line are represented above a horizontal line above the graphs. The respective post-hoc test 

statistics are indicated underneath the line with: </>, p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for main effects 

of condition and the interaction are presented above the appropriate boxes.  
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Figure 3 

Water Cross-Maze test. Test performance of high (HR), 

intermediate (IR), and low (LR) reactivity mice, raised in 

early-life stress (ELS) or standard (STD) housing 

conditions was analyzed by univariate ANOVA, N=10 per 

group. Data was analyzed using repeated-measures 

ANOVA and is presented as line plots showing means and 

standard error of the mean (SEM) (error bars). (A) The 

accuracy of the animals task performance showed a 

within-subjects main effect of training day (F7,378=62.794, 

p<0.001), and a trend for a between-subjects main effect 

of condition (F1,54=2.882, p=0.095), but no effect of line 

(F2,54=1.753, p=0.183). Specifically, HR ELS mice were 

less accurate than HR STD mice on testing days two, 

three, and five (p=0.040, p=0.032, p=0.094) and IR ELS 

mice were less accurate than IR STD mice on day eight 

(p=0.048). Overall pairwise comparisons showed a trend 

for poorer accuracy in the HR ELS compared to HR STD 

animals (F1,54=3.085, p=0.085), but no difference in the IR 

and LR lines(F1,54=0.986, p=0.325, and F1,54=0.036, 

p=0.849). (B) The latency to reach the hidden platform 

showed a within-subjects main effect of training day 

(F7,378=85.502, p<0.001), and a between-subjects main 

effect of condition (F1,54=4.123, p=0.047), but no effect of 

line (F2,54=0.635, p=0.534). Specifically, HR ELS mice had 

a higher latency than HR STD mice on testing day three 

(p=0.032) and IR ELS had a higher latency than IR STD 

mice on days seven and eight (p=0.060 and p=0.040). 

Overall pairwise comparisons were not significant (HR: 

F1,54=1.562, p=0.217, IR: F1,54=1.218, p=0.275, LR: 

F1,54=1.353, p=0.250). (C) The number of wrong platform 

visits showed a within-subjects main effect of training 

day (F7,378=60.502, p<0.001), and a trend for a between-

subjects main effect of condition (F1,54=3.376, p=0.072), but no effect of line (F2,54=1.348, p=0.268). No particular day 

showed significant differences between conditions, but overall pairwise comparisons revealed a trend for an 

increased number of wrong platform visits in the HR ELS compared to HR STD mice (F1,54=2.891, p=0.095), but not in 

IR and LR animals IR: F1,54=1.188, p=0.281, LR: F1,54=0.154, p=0.696). Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, 

p≤0.1. Post-hoc statistics for main effects of condition and the interaction are presented above the appropriate data 

points of the line plot in the corresponding color. 
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Figure 4 

Y-maze test in early 

and late adulthood. 

Test performance of high 

(HR), intermediate (IR), 

and low (LR) reactivity 

mice, raised in early-life 

stress (ELS) or standard 

(STD) housing conditions 

was analyzed by one-

sample t-tests and 

univariate ANOVA, N=9-

10 per group. Data are 

presented as boxplots 

showing the median 

(horizontal line in the 

box), 25-75% (boxes) 

and 10-90 % (whiskers). 

(A) In early adulthood, 

the discrimination ratio 

(based on distance) 

showed that LR animals, 

as well as HR STD and IR 

STD animals, 

discriminated between 

novel and familiar arms 

by traveling further 

distances in the novel 

arm, but HR ELS and IR 

ELS mice did not (HR 

ELS: t9=-1.302, p=0.113, 

HR STD: t9=3.255, 

p=0.005, IR ELS: t9=-

0.412, p=0.345, IR STD: t9=2.648, p=0.014, LR ELS: t9=4.346, p=0.001, LR STD: t9=3.487, p=0.004). The ANOVA 

revealed a main effect of line (F2,54=7.785, p=0.001, post hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.002, IR vs LR: 

p=0.006), a main effect of condition (F1,54=6.828, p=0.012), and an interaction of line and condition (F1,54=3.297, 

p=0.045, post hoc tests: HR: p=0.009, IR: p=0.020 and LR: p=0.564). (B) In late adulthood, the discrimination ratio 

(based on distance) showed that only HR ELS mice did not discriminate between novel and familiar arms (HR ELS: 

t9=1.134, p=0.142, HR STD: t8=3.768, p=0.003, IR ELS: t9=3.256, p=0.005, IR STD: t8=4.362, p=0.001, LR ELS: t9=6.119, 
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p<0.001, LR STD: t9=4.614, p=0.001). The ANOVA showed a main effect of mouse line (F2,52=4.410, p=0.017, post hoc 

tests: HR vs IR: p=0.940, HR vs LR: p=0.012, IR vs LR: p=0.157), and a significant interaction (F2,52=8.978, p>0.001, 

post hoc tests: HR: p=0.009, LR: p=0.128, LR: p=0.005). (c) The total distance travel by the animals in early adulthood 

in the Y-maze showed a main effect of line (F2,54=40.514, p<0.001, post hoc test: all p≤0.001), while condition had no 

effect (F1,54=0.114, p=0.707). (D) The total distance travel by the animals in late adulthood in the Y-maze showed a 

main effect of line (F2,52=13.059, p<0.001, post hoc test: HR vs IR and vs LR: p≤0.001, IR vs LR: p=1.0), while condition 

had no effect (F1,52=0.737, p=0.484). (E) In early adulthood, the discrimination ratio (based on time) showed that 

only LR mice discriminated between the novel and familiar arms by spending significantly more time in the novel 

arm (HR ELS: t9=-0.258, p=0.401, HR STD: t9=1.739, p=0.058, IR ELS: t9=-1.493, p=0.085, IR STD: t9=1.754, p=0.056, 

LR ELS: t9=2.361, p=0.022, LR STD: t9=2.104, p=0.033). The ANOVA revealed a main effect of line (F2,54=3.315, 

p=0.044, post hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.154, IR vs LR: p=0.058), but no effect of condition (F1,54=2.404, 

p=0.127) and no interaction (F2,54=2.037, p=0.140). (F) In late adulthood, the discrimination ratio (based on time) 

showed that LR mice (from both conditions), IR STD mice, and HR STD mice discriminated between novel and 

familiar arms by spending significantly more time in the novel arm, but not IR and HR ELS animals (HR ELS: t9=0.392, 

p=0.352, HR STD: t9=1.905, p=0.045, IR ELS: t9=-0.939, p=0.186, IR STD: t9=1.715, p=0.060, LR ELS: t9=3.258, 

p=0.005, LR STD: t9=2.394, p=0.020). The ANOVA revealed only a significant main effect of line (F2,54=4.039, p=0.023, 

post hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.196, IR vs LR: p=0.022; main effect of condition: F1,54=1.118, p=0.295, 

interaction: F2,54=1.884, p=0.162). Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, p≤0.1. Main effects of line are 

represented above a horizontal line above the graphs. The respective post-hoc test statistics are indicated 

underneath the line with: </>, p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for main effects of condition and the 

interaction are presented above the appropriate boxes. 
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Figure 5 

Object recognition test 

in late adulthood.  Test 

performance of high (HR), 

intermediate (IR), and 

low (LR) reactivity mice, 

raised in early-life stress 

(ELS) or standard (STD) 

housing conditions was 

analyzed using one-

sample t-tests and 

univariate ANOVA, N=10 

per group. Data are 

presented as boxplots 

showing the median 

(horizontal line in the 

box), 25-75% (boxes) and 

10-90 % (whiskers). (A) 

The discrimination ratio, 

based on the exploration 

time animals spent with 

both objects, showed that 

IR STD, LR ELS and LR STD mice preferentially explored the novel object, while HR STD mice showed a trend. IR ELS 

and HR ELS mice did not show a preference for the novel object or even showed a trend for preferring the familiar 

object (HR ELS: t9=-1.499, p=0.084, HR STD: t8=1.617, p=0.073, IR ELS: t9=0.118, p=0.454, IR STD: t9=2.943, p=0.008, 

LR ELS: t9=2.834, p=0.010, LR STD: t8=3.835, p=0.003). The ANOVA showed a main effect of mouse line (F2,52=6.003, 

p=0.005, post-hoc  tests: HR vs IR: p=0.1, HR vs LR: p=0.006, IR vs LR: p=0.025) and a main effect of condition 

(F1,52=6.925, p=0.011, post-hoc tests: HR ELS vs STD: p=0.011, IR p=0.279, LR ELS vs STD: p=0.412). (B) The total 

exploration time animals spent with both objects showed a main effect of line (F2,52=6.663, p=0.003, post-hoc tests 

HR vs IR: p=1.0, HR vs LR: p=0.039, IR vs LR: p=0.003), but no effect of condition. (C) The time animals spent with the 

novel object showed a trend for a main effect of line (F2,52=2.532, p=0.089, post-hoc tests HR vs IR: p=0.526, HR vs 

LR: p=1.0, IR vs LR: p=0.094), but no effect of condition. (D) HR and IR mice spent more time exploring the familiar 

objects compared to LR animals (F2,52=7.884, p=0.001, post-hoc tests HR vs IR: p=0.1, HR vs LR: p=0.005, IR vs LR: 

p=0.002), and there was a trend for a main effect of condition (F1,52=3.191, p=0.080, post hoc tests: HR ELS vs STD: 

p=0.156, IR p=0.543, LR ELS vs STD: p=0.307). Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, p≤0.1. Main effects of 

line are represented above a horizontal line above the graphs. The respective post-hoc test statistics are indicated 

underneath the line with: </>, p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for main effects of condition and the 

interaction are presented above the appropriate boxes. 
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Figure 6 

Stress reactivity. 

Corticosterone 

concentrations 

measured in the plasma 

of high (HR), 

intermediate (IR), and 

low (LR) reactivity 

mice, raised in early-life 

stress (ELS) or 

standard (STD) housing 

conditions, collected 

during the SRT was 

analyzed using 

repeated-measured and 

univariate ANOVA. Data 

is presented as line 

plots showing means 

and standard error of 

the mean (SEM) (error 

bars) and as boxplots 

showing the median 

(horizontal line in the 

box), 25-75% (boxes) 

and 10-90 % 

(whiskers). (A) In early 

adulthood, there was a 

significant effect of time point (initial vs response) on the plasma corticosterone concentration (within-subjects 

effect: F1,54=1459.996, p<0.001). The initial corticosterone concentration showed a main effect of line (F2,54=6.253, 

p=0.004, post hoc tests: HR vs IR: p=1.0, HR vs LR: p=0.007, IR vs LR: p=0.015), but no effect of condition (F1,54=0.148, 

p=0.702). The response levels of corticosterone showed a main effect of mouse line (F2,54=214.164, p<0.001, post hoc 

tests: all p<0.001), as well as a main effect of condition (F1,54=5.675, p=0.021), and an interaction of line and 

condition (F2,54=4.232, p=0.020, post hoc tests, ELS vs STD: HR: p<0.001, IR: p=0.742, LR: p=0.857). (B) The increase 

in plasma corticosterone levels in response to 15 restraint showed a main effect of line (F2,54=223.319, p<0.001, post 

hoc tests: all p<0.001), a main effect of condition (F1,54=6.022, p=0.017), as well as an interaction of line and condition 

(F2,54=6.243, p=0.016, post hoc tests ELS vs STD: HR: p<0.001, IR: p=0.776, LR: p=0.949). (C) In late adulthood, there 

was a significant effect of time point (initial vs response) on the plasma corticosterone concentration (within-

subjects effect: F1,53=1957.027, p<0.001). The initial corticosterone concentration showed a trend for a main effect of 

mouse line (F2,53=3.023, p=0.057, post hoc tests: HR vs IR: p=0.063, HR vs LR: p=0.278, IR vs LR: p=1.0), but no effect 
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of condition (F1,53=0.381, p=0.540). The response levels of corticosterone showed a main effect of mouse line 

(F2,54=140.272, p<0.001, post hoc tests: all p<0.001), and interaction of line and condition (F2,53=3.468, p=0.038, post 

hoc tests, ELS vs STD: HR: p=0.048, IR: p=0.118, LR: p=0.580). (D) The increase in plasma corticosterone levels in 

response to 15 restraint showed a main effect of line (F2,53=166189, p<0.001, post hoc tests: all p<0.001), and an 

interaction of line and condition (F2,53=4.544, p=0.015, post hoc tests, ELS vs STD: HR: p=0.026, IR: p=0.0.092, LR: 

p=0.344). Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, p≤0.1. Main effects of line are represented above a 

horizontal line above the graphs. The respective post-hoc test statistics are indicated underneath the line with: </>, 

p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for main effects of condition and the interaction are presented above 

or next to the appropriate boxes. 
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Figure 7 

Relative expression levels of Bdnf and Ntrk2. The relative expression levels of the genes coding for the 

neurotrophin BDNF (Bdnf) and its receptor TRKB (Ntrk2) were measured in selected brain regions of high (HR), 

intermediate (IR), and low (LR) reactivity mice, raised in early-life stress (ELS) or standard (STD) housing conditions, 

at an early and a late time point in adulthood. The data was normalized to the IR STD animals and analyzed using 

two-way ANOVAs, and is presented as boxplots showing the median (horizontal line in the box), 25-75% (boxes) and 

10-90 % (whiskers). (A) In early adulthood, the expression of Bndf in the dHip showed a main effect of line 

(F1,54=4,091, p=0.022, post hoc tests: HR vs IR: p=0.301, HR vs LR: p=0.038 IR vs LR: p=1.0), as well as a  trend for a 

main effect of condition (F1,54=3.177, p=0.080, post hoc tests ELS vs STD: HR: p=0.031, IR: p=0.972, LR: p=0.442). (B) 

In late adulthood, the expression of Bndf in the dHip showed a trend for a main effect of line (F2,52=2.651, p=0.080, 

post hoc tests: HR vs IR: p=0.615, HR vs LR: p=0.080, IR vs LR: p=0.931). (C), (D) In early adulthood and in late 

adulthood, there was no effect of line of condition on the expression of Ntrk2 in the dHip. (E) In early adulthood, the 

expression of Bndf in the vHip showed a trend for main effect of line (F2,52=2.993, p=0.059, post hoc test: all p>0.1), a 

main effect of condition (F1,52=4.513, p=0.038), and an interaction of line and condition (F2,52=5.677, p=0.006, post 

hoc tests ELS vs STD: HR: p>0.001, IR: p=0.649, LR: p=0.492). (F) In late adulthood, the expression of Bndf in the vHip 

showed a main effect of line (F2,54=5.218, p=0.008, post hoc tests: HR vs IR: p=0.174, HR vs LR: p=0.007, IR vs LR: 

p=0.628). (G), (H) In early adulthood and in late adulthood, there was no effect of line of condition on the expression 

of Ntrk2 in the vHip. Symbols: ***, p≤0.001; **, p≤0.01; *, p≤0.05; T, p≤0.1. Main effects of line are represented above 

a horizontal line above the graphs. The respective post-hoc test statistics are indicated underneath the line with: </>, 

p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc statistics for main effects of condition and the interaction are presented above 

the appropriate boxes. 
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Figure 8 

Relative expression levels of Crh and Crhr1. The relative expression levels of the genes coding for the 

neuropeptide CRH (Crh) and its receptor CRH-R1 (Crhr1) were measured in selected brain regions of high (HR), 

intermediate (IR), and low (LR) reactivity mice, raised in early-life stress (ELS) or standard (STD) housing conditions, 

at an early and a late time point in adulthood. The data was normalized to the IR STD animals and analyzed using 

two-way ANOVAs, and is presented as boxplots showing the median (horizontal line in the box), 25-75% (boxes) and 

10-90 % (whiskers). (A) In early adulthood, the expression of Crh in the dHip showed an interaction of line and 

condition (F2,48=4.358, p=0.018, post hoc tests ELS vs STD: HR: p=0.008, IR: p=0.556, LR: p=0.170). (B) In late 

adulthood, the expression of Crh in the dHip showed an interaction of line and condition (F2,52=5.247, p=0.009, post 

hoc tests ELS vs STD: HR: p=0.047, IR: p=0.743, LR: p=0.015). (C) In early adulthood, the expression of Crhr1 in the 

dHip showed no effect of line of condition. (D) In late adulthood, the expression of Crhr1 in the dHip showed a main 

effect of condition (F1,50=4.798, p=0.033) and an interaction of line and condition (F2,50=3.487, p=0.038, post hoc tests 

ELS vs STD: HR: p=0.661, IR: p=0.949, LR: p=0.001). (E) In early adulthood, the expression of Crh in the vHip showed 

a main effect of line (F1,53=3.782, p=0.029, post hoc tests: HR vs IR: p=0.162, HR vs LR: p=0.029, IR vs LR: p=1.0). (F) 

In late adulthood, the expression of Crh in the vHip showed no effect of line or condition. (G), (H) In early and late 

adulthood, the expression of Crhr1 in the vHip showed no effect of line or condition. Symbols: ***, p≤0.001; **, 

p≤0.01; *, p≤0.05; T, p≤0.1. Main effects of line are represented above a horizontal line above the graphs. The 

respective post-hoc test statistics are indicated underneath the line with: </>, p≤0.05; ≤/≥, p≤0.1; ≈, p>0.1. Post-hoc 

statistics for main effects of condition and the interaction are presented above the appropriate boxes. 
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5.1. Synopsis 
Ample evidence has linked adverse early-life experiences with an increased risk for affective 

disorders in later life (Carr et al., 2013, Heim and Binder, 2012, Mandelli et al., 2015, Maniam et 

al., 2014, Mazure, 1998, Sadowski et al., 1999, Seckl, 2004), but why some individuals are more 

susceptible to such environmental pathogens than other remains poorly understood. In many 

cases, individuals who were exposed to ELS manifest endophenotypes associated with affective 

disorders, even when no full disorder can be diagnosed (Aisa et al., 2007, Brunson et al., 2005, 

Chen and Baram, 2015, Gould et al., 2012, Maniam et al., 2014, Pesonen et al., 2013). Examples 

for such endophenotypes of affective disorders are changes in stress-coping behaviour, reduced 

cognitive function, and neuroendocrine dysregulation (Hasler et al., 2004, Hasler and Northoff, 

2011, Heinzmann et al., 2014, Radley et al., 2011). While it was long believed that mental 

disorders are strongly dependent on genetic influences (Gershon et al., 1971), the contribution 

of environmental risk factor and pathogens, i.e. of proven environmental causes (Caspi and 

Moffitt, 2006), has become more and more recognized (Burmeister et al., 2008, Flint and 

Kendler, 2014, Klengel and Binder, 2015). Recent studies in genetic epidemiology have 

demonstrated that, in the vast majority of cases, psychiatric disorders are brought about by an 

interaction of genetic vulnerability and environmental hazards (Flint and Kendler, 2014, Heim 

and Binder, 2012, Klengel and Binder, 2015). In the context of G × E interactions, epigenetic 

modifications are a powerful process which can explain how the environment “gets under ones 

skin” and why some people are more sensitive to certain adversities than others (Hollins and 

Cairns, 2016, Karsten and Baram, 2013, Mifsud et al., 2011, Murgatroyd, 2014, Radley et al., 

2011, Radtke et al., 2015). The study of G × E interactions is now a thriving field of research that 

has the potential to considerably advance our knowledge and understanding of the etiology, 

pathophysiology, and underlying mechanisms of affective disorders, and to guide the 

development of targeted and personalized treatment options and early interventions. In the 

presented work, we used a genetic animal model of affective disorders in combination with an 

environmental ELS manipulation, mimicking a common clinical situation, to investigate the 

consequences of this G × E interaction with the aim of shedding light onto the molecular and 

neuroendocrine underpinnings of endophenotypes of affective disorders.  

We began by extending the established validity of the SR mouse model by experimentally 

testing its predictive validity in the response to antidepressant SSRI treatment (Chapter 2). We 
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were able to show that HR animals respond to chronic fluoxetine treatment with an 

amelioration of depression-associated endophenotypes at the level of behaviour, cognition, and 

HPA axis feedback regulation, paralleled by changes in hippocampal neurogenesis. In LR 

animals, on the other hand, chronic fluoxetine treatment worsened the atypical depression-like 

endophenotypes. Many clinical studies have described a similar divergence in the response to 

SSRI treatment between depression patients with melancholic/psychotic and atypical features 

(Duman, 2004, Korte et al., 2015, McIntyre, 2016). The presented data thus confers a high 

degree of predictive validity to the SR mouse model as an animal model for these opposing 

subtypes of MDD.  

In a next step, we employed the three SR mouse lines to model the clinical situation of genetic 

differences in HPA axis sensitivity interacting with ELS (Chapter 3). We were able to show that, 

in the short-term, ELS affected the offspring of all three SR mouse lines in terms of physiological 

development and behaviour. However, only HR pups revealed additional alterations in HPA axis 

regulation and gene expression at this point in time, providing evidence for early programming 

effects of neuroendocrine systems by ELS. Our results suggest that the genetic predisposition 

for high stress reactivity rendered HR animals more vulnerable to ELS than animals of the other 

two mouse lines. Indeed, ELS-exposed HR pups had elevated basal plasma CORT levels on P9 

compared to STD-housed HR mice, and this effect was absent in IR and LR animals, thus 

demonstrating that ELS elicited an HPA axis activation only in genetically susceptible animals. 

Interestingly, we were able to show that HR mice already displayed an increased stress 

reactivity at this very young age, even without ELS exposure, although overall the animals’ GC 

levels in response to a stressor remained relatively low due to the SHRP. Until now it was 

uncertain whether the genetic predisposition would measurably increase the stress reactivity 

of HR offspring already during the first days of life, or whether the effect would emerged more 

gradually, increasing with repeated stress experience over the course of development. Our new 

findings confirm the innate and immediate nature of the HPA axis endophenotype in the SR 

mouse model and demonstrate that difference in stress hormone regulation between the three 

mouse lines are already present during early postnatal development.  

In early adulthood, ELS-exposed HR mice showed an even further increase in stress reactivity 

compared to STD-raised HR mice, as well as hyperactive stress-coping behavior, and changes in 

the expression of stress-related genes in the PVN and the hippocampus, while IR and LR 

animals seemed largely protect from these long-term consequences of ELS. These results 
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impart that many late-onset consequences of ELS have their roots in an early neuroendocrine 

dysregulations and suggests a potential target for early intervention. 

Finally, we examined how the observed long-term effects of ELS developed over the adult 

lifespan, and to what extent cognitive function was impaired by the adverse early-life 

conditions (Chapter 4). Our results revealed that the endophenotypic changes observed in HR 

mice during early adulthood at the level of stress-coping behaviour and neuroendocrine 

regulation did not diminish in late adulthood, but stayed stable over time. In addition, ELS led to 

impaired cognitive function in HR mice already during early adulthood. In LR mice, we 

observed no significant enduring consequences of ELS in early adulthood. However, in late 

adulthood, these animals seemed to improve in their cognitive abilities and revealed some late-

onset changes in the regulation of stress-related genes in the hippocampus, as well as a small, 

but significant, increase in baseline GC levels.  

In summary, in the presented research we further validated the SR mouse model as an animal 

model of affective disorders. In addition, we present data on a clinically relevant G × E 

interaction using the SR mouse model and a recently established paradigm of ELS, showing that 

endophenotypes related to MDD emerge preferentially in animals that are genetically 

predisposed for increased stress reactivity. 

5.2. Predictive validity of the SR mouse model 
When investigating the predictive validity of the SR mouse model, we detected line specific 

differences in the effects of chronic SSRI treatment. Interestingly, these findings in our animal 

model reflect what is seen in human patients, particularly in studies that stratified patients by 

depression subtype when assessing the treatment benefits of SSRIs. Namely, the clinical data 

suggests that the efficacy of SSRIs differs between melancholic/psychotic depression and 

atypical depression patients (Baghai et al., 2008, Duman, 2004, Korte et al., 2015, Thase, 2007). 

This makes intuitive sense, since these two subtypes of depression are near mirror images of 

each other (displaying either psychomotor agitation or retardation, insomnia or hypersomnia, 

depressed mood or reactive mood, weight gain or loss) and are likely to have different 

neurobiological underpinnings, which could be best targeted through different treatments 

(Antonijevic, 2006, Baghai et al., 2008, Gold and Chrousos, 1999, Gold and Chrousos, 2002). 

Evidence from human studies shows that patients with melancholic/psychotic depression often 

respond well to chronic SSRI treatment (Hirschfeld, 1999, Korte et al., 2015). SSRIs exert their 
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function by inhibiting the uptake of serotonin from the synaptic cleft and increasing the 

postsynaptic serotonin signal. Increased serotonin has a reinstating effect on neurotropic 

signaling, thereby contributing to increased hippocampal neurogenesis and synaptic plasticity 

(Surget et al., 2011), and to increased negative feedback from forebrain regions by promoting 

the insertion of GRs (Heydendael and Jacobson, 2008, Seckl and Fink, 1992). Both increased 

neurogenesis and negative feedback contribute to counteract the HPA axis hyper-

responsiveness seen in many MDD patients (Rothschild et al., 1993, Surget et al., 2011, 

Wolfersdorf et al., 1995, Zanardi et al., 2000). The fact that HR animals responded to chronic 

SSRI treatment with reduced hyperactive stress-coping, improved negative GC feedback, and 

increased neurogenesis strongly suggests that similar neurobiological pathways underlie the 

endophenotypes observed in HR animals and melancholic/psychotic depression patients.  

Atypical depression patients often do not benefit from SSRI treatment and appear to be more 

responsive to MAOA inhibitors (Korte et al., 2015, McIntyre, 2016, Thase, 2007). MAOA 

inhibitors function by inhibiting the monoamine oxidizing enzyme, which digests three 

different classes of monoamines (dopamine, norepinephrine and serotonin), thereby increasing 

the monoaminergic signal in the brain (Heydendael and Jacobson, 2009, Thase et al., 1995). It 

has been suggested that a reduced monoaminergic response, which is brought about by 

increased inflammatory processes (van Heesch et al., 2013), is responsible for the anhedonic 

symptoms in atypical depression (Korte et al., 2015). MAOA inhibitors are thought to improve 

depressive symptoms in atypical depression patients by normalizing the monoaminergic signal 

in the Locus coeruleus (Heydendael and Jacobson, 2009). Furthermore, an elevated 

monoaminergic signal can reduce GR expression in forebrain regions and dampen the negative 

feedback suppression of the HPA axis, thereby increasing the stress reactivity (Heydendael and 

Jacobson, 2008, Heydendael and Jacobson, 2009). In LR mice, several studies have 

demonstrated increased bodyweight and passive behaviour (Heinzmann et al., 2014, Knapman 

et al., 2010a, Touma et al., 2008, Touma et al., 2009), which could be indicative of inflammation 

and impaired monoamine reward signaling (Pan et al., 2013, Stice et al., 2010). In future 

studies, it may be beneficial to assess if LR animals show an amelioration of symptoms after 

treatment with MAOA inhibitors, as this would further validate the model and constitute a 

valuable tool to understand the mechanism underlying the treatment response in atypical 

depression.  
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Today, when treating MDD patients, it is still not standard to include information regarding 

individual specifiers of the depression subtype into the treatment decision. Rather, most MDD 

patients are prescribed an SSRI as a first line treatment, with additional drugs added or 

replacing SSRIs in second or third line. Our results in the SR mouse model strengthen the 

proposition that better treatment outcomes could be attained for MDD patients if more 

extensive phenotyping and subtype characterization were used a standard tool to inform the 

choice of pharmacological treatment. Furthermore, in clinical studies, stratification of MDD 

patients according to their respective subtype could greatly advance our knowledge regarding 

the efficacy of a range of pharmacological treatment options. Currently, many treatment effects 

are diluted or hidden in the data, due to the large heterogeneity of the study population (see 

also Heinzmann et al., 2014, Gold and Chrousos, 2013). Studies using stringent criteria to 

stratify their patient sample could thus provide further insights into the endophenotypes 

associated with the different subtypes of MDD and allow a better understanding of the 

underlying neurobiological mechanisms.  

5.3. G × E interaction: Effects of ELS in the SR mouse model 
Early-life adversity is a powerful negative stimulus, which can give rise to many long-lasting 

consequences in a developing individual (Carr et al., 2013, Chartier et al., 2010, Heim et al., 

2002, Nishi et al., 2014, Sanchez et al., 2001). In our study, we found that as little as seven days 

of ELS experience, induced my erratic maternal behavior in the limited nesting and bedding 

material paradigm, was sufficient to elicited acute physiological and behavioral effects in the 

offspring of all three SR mouse lines. Specifically, at the end of the ELS period, all ELS-raised 

pups showed a delay in bodyweight gain relative to their respective STD-housed control groups, 

and displayed ELS-induced changes in emotional and stress-coping behavior. These short-term 

changes appeared to be independent of the animals’ genetic predisposition. However, 

alterations at the level of neuroendocrine read-outs, including adrenal weight and plasma CORT 

levels, as well as changes in gene expression, were detected only in HR offspring, suggesting 

that the animals’ genetic predisposition played a critical role in determining the extent of their 

vulnerability to ELS. Many rodent studies in the field of stress research rely on the inbred 

C57BL/6 mouse strain as model system (van Bogaert et al., 2006), and reliable main effects of 

ELS have been reported in these animals (Kohl et al., 2015, Naninck et al., 2015, Rice et al., 

2008, Wang et al., 2012, Wang et al., 2013). Our data, however, illustrates that ELS affects 

genetically different individuals in different ways, and highlights that carefully considering 
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genetic variation is critical for understanding the etiology of affective disorders. There have 

been some previous studies demonstrating strain-dependent differences in the effects of ELS 

(Mehta and Schmauss, 2011, Rana et al., 2015, Stohr et al., 1998). The key advantage of the SR 

mouse model is that we can directly relate the observed differences in vulnerability to a specific 

neuroendocrine trait that differs between the lines, namely HPA axis reactivity. This is possible 

because all three breeding lines of the SR mouse model were derived from the same founding 

strain (CD1 mice), and were selected for breeding based on a single criterion, while between-

strain analyses are comparing individuals that strongly differ in their genetic background, so 

that the origin of an observed difference cannot be pin-pointed. 

In the presented studies, the short-term alterations in stress hormone regulation and gene 

expression measured in juvenile HR ELS mice were most likely of critical importance in paving 

the way for the lasting changes in stress-coping behavior, cognitive function, stress reactivity, 

and gene regulation that were observed in early and late adulthood. Indeed, LR mice, which 

showed no short-term effects of ELS on neuroendocrine function and gene expression, were 

largely protected from the adverse long-term effects of ELS. 

5.4. Neuroendocrine programming through ELS 

5.4.1. How can ELS produce enduring neuroendocrine programming 

effects in HR mice?  
Integrating our findings with the existing literature, we propose the following mechanism for 

the ELS-induced programming effects in HR offspring. During the exposure to the 7-day ELS 

paradigm, it is likely that pups of all three breeding lines initiated a small neuroendocrine 

response to the environmental stressor (Dent et al., 2000). However, as the ELS exposure 

occurred during the SHRP, the pups’ HPA axis reactivity was subdued, allowing only a minor 

increase in CRH release, which could not stimulate a measurable release of ACTH or a rise in 

plasma CORT levels due to the insensitive state of the pituitary and the adrenal glands (Levine, 

2002, Schmidt et al., 2002). Importantly, in offspring of the HR mouse line, the overall 

sensitivity of the HPA axis is genetically increased (Heinzmann et al., 2014, Touma et al., 2008), 

causing HR pups to be hypersensitive to molecular stress signals even during the SHRP. Thus, a 

slight ELS-induced increase in the CRH signal could be sufficient to stimulate a release of ACTH, 

and a subsequent adrenal response, leading to elevated plasma CORT levels in HR pups. It 

should be noted that on P9, the adrenals of HR ELS pups were significantly larger than those of 
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STD-raised HR pups, reflecting their increased CORT synthesis and release.  Critically, during 

the early postnatal phase of neonatal mice, GRs are not yet functionally integrated into the 

hippocampus (Goldman et al., 1973, Levine, 2002, Schmidt et al., 2003), so that no negative 

feedback signal can be produced to control the stress response and the return of CORT levels to 

baseline. This lack of negative feedback regulation explains the sustained elevation of basal 

CORT levels in HR pups, measured on P9. As soon as GRs became functionally integrated in the 

HPA axis (starting ~P12 (Meaney et al., 1985, Schmidt et al., 2003)), the high basal plasma 

CORT levels most likely provoked a substantial inhibitory feedback signal onto the CRH-

releasing neurons in the PVN, so that the tonic HPA axis activation was gradually suppressed 

and the baseline CORT levels returned to normal, low levels. Yet, a sustained neuroendocrine 

activation, occurring during a sensitive window of brain development when CORT levels should 

have been low, can give rise to a lasting hyper-sensitivity of the HPA axis (Bale and Epperson, 

2015, Korosi and Baram, 2010). This was manifested by a marked increase in stress reactivity 

in adult HR mice that experienced ELS.  

Epigenetic processes are prominently involved in shaping the changes in neuroendocrine 

function and gene regulation (Heim and Binder, 2012, Meaney et al., 2007, Murgatroyd, 2014, 

Weaver et al., 2004). For instance, ELS-induced demethylation of the Fkbp5 GRE promotor has 

been shown to produce long-lasting changes in stress-dependent gene expression, leading to a 

dysregulation of the stress hormone system (Klengel et al., 2013). The functional role of 

microRNAs is also being investigated in this context (Hollins and Cairns, 2016). In particular, 

candidate microRNAs that are known to target the expression of HPA axis-related genes, such 

as the miR-34 family, which is involved in regulating the sensitivity of CRHR1 and its expression 

(Andolina et al., 2016, Haramati et al., 2011), miR-18 and miR-124, which regulate the 

expression of GR protein (Vreugdenhil et al., 2009), or miR-132, which is dependent on GR 

activation and decreases BDNF expression (Bredy et al., 2011), may be relevant regulators 

involved in ELS-induced neuroendocrine programming. 

5.4.2. What is the role of the PVN in HPA axis programming?  
At the end of the ELS period, we found a reduction in the levels of hypothalamic CRH mRNA in 

HR ELS pups, resembling similar findings of previous studies (Levine, 2002, Rice et al., 2008, 

Schmidt et al., 2006). Subsequent measurements revealed that this effect was maintained into 

early and late adulthood. Strikingly, studies exploring neuroendocrine programming effects of 

early-life handling of rodent pups have reported that changes at the level of hypothalamic CRH 
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expression appeared as the first in a cascades of gene regulation changes, leading to reduced 

ACTH expression, reduced CORT secretion, and increased hippocampal GR expression (Korosi 

and Baram, 2010, Levine et al., 1967, Plotsky and Meaney, 1993). It was demonstrated that this 

cascade could also be triggered by the administration of a selective CRH-R1 receptor antagonist 

in the early postnatal period, showing that the hypothalamic CRH signal during early-life is 

causally involved in down-stream programming of the HPA axis (Fenoglio et al., 2006). In the 

case of early-life handling, evidence suggests that the signal leading to reduced hypothalamic 

CRH expression comes, indirectly, from increased activation of the paraventricular nucleus of 

the thalamus (PVT)(Fenoglio et al., 2006). The PVT inhibits CRH-stimulating activity of the 

central amygdala (ACe) and the bed nucleus of the stria terminalis (BNST) (Hsu and Price, 

2009) and leads to alterations in the activation of transcription factors regulating CRH 

expression in PVN neurons (Korosi and Baram, 2010, Korosi et al., 2010). It remains to be 

tested whether a similar signaling pathway is involved in the lasting downregulation of 

hypothalamic CRH after ELS in HR mice. Studies of immediate early gene expression in the 

implicated brain regions may provide useful insights.  

An alternative pathway, which may be involved in the acute changes in hypothalamic CRH 

levels, is GC-induced GABA-ergic negative feedback from the anterior pituitary, where GRs 

become functionally active early in the postnatal development (Schmidt et al., 2005, Walker et 

al., 1986). Also, feedback suppressing the expression of CRH directly at the level of CRH-positive 

neurons in the PVN may play a role, as studies have reported abundant expression of GRs in the 

parvocellular neurons of PVN during the early postnatal period (van Eekelen et al., 1991, Yi et 

al., 1994), though these receptor appear to become functionally active only after ~P8 (Yi et al., 

1993).  

Taken together, research suggests that early-life changes in hypothalamic CRH regulation are 

centrally involved in the subsequent programming of the HPA axis and that inhibitory signaling 

from the PVT, the pituitary, and the PVN itself may contribute to the acute changes in 

hypothalamic gene expression. 
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5.5. Future outlook  
The research presented in this thesis has generated many interesting and thought-provoking 

findings regarding the interaction of genetic differences in stress reactivity with ELS, and it also 

raises many questions for future studies. For instance, we have shown here that a genetic 

predisposition for high or low stress reactivity interacts with adverse early-life experiences, 

shaping the short- and long-term outcomes. In future studies, it would be of interest to explore 

how exactly innate differences in stress reactivity are involved in shaping the response to 

adulthood stressors, using, for example, a chronic mild stress paradigm or exposure to addictive 

substances in adulthood. As the HPA axis develops during the early postnatal life (Levine, 2002, 

Meaney et al., 1985, Schmidt et al., 2003), it seems unlikely that adulthood stressors would be 

able to reprogram the stress response in an equally powerful way as ELS, which occurs during a 

critical period of brain and neuroendocrine development. However, genetic differences in stress 

reactivity may nonetheless contribute to profound differences in the vulnerability to adult 

stress exposure. Previous studies have reported a G × E interaction at the level of hedonic and 

anxiety-related behavior, associated with differences in emotional reactivity (Stedenfeld et al., 

2011), but the underlying mechanism remain unclear. In the field of addiction research, a 

dysregulated stress reactivity has been proposed as a risk factor for substance addiction and 

relapse (Koob and Kreek, 2007, Lovallo, 2006). Thus, the SR mouse model could be employed as 

a promising tool to shed light onto the role of genetic differences in stress reactivity in the 

consequences of adulthood stress exposure. Readouts of such a G × E interaction study could 

include behavioral, neuroendocrine, and molecular assays, as well as an in-depth analysis of 

potential epigenetic processes, such as methylation changes on key regulatory genes, or 

changes in mircoRNA levels, which can confer even wide-spread alterations in gene regulation 

(Hollins and Cairns, 2016).  

A further open question is whether it would be possible to rescue, or even to prevent, the 

emergence of adverse long-term consequences induced by ELS in HR mice by early or late 

intervention. As discussed previously, a potential window for early intervention could be timed 

directly after or during the ELS exposure in the postnatal period. The primary aim of such an 

early intervention would be to prevent changes in HPA axis programming and gene expression 

by normalizing basal CORT and hypothalamic CRH levels during important periods of postnatal 

brain development. This may realign the future development and forestall any downstream 

effects at the level of stress-coping behavior, cognitive function, and stress-reactivity. As chronic 
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antidepressant treatment with SSRIs has demonstrated good efficacy in adult HR animals, SSRIs 

may be a promising tool to intervene again lasting neuroendocrine changes during early-life.  

However, the administration of a psychoactive substance to developing mouse pups 

necessitates a careful consideration of the dosage and of potential side-effects of the drug, 

which may be different from the side-effects in adult animals.  During brain development 

serotonin serves important functions as a trophic factor involved in cell migration, axonal 

growth, and differentiation of neurons (Lauder, 1990, Whitaker-Azmitia, 2001), and even small 

changes in serotonergic signaling can lead to abnormalities in brain development (Lauder et al., 

2000). Furthermore, studies concerning human affective disorders, such as MDD, are essentially 

seeking solutions for human subjects. Thus, when investigating the effects of perinatal SSRI 

exposure, it is essential to consider differences in the developmental timing of the serotonergic 

system in humans and in rodents. It is estimated that the third trimester of human gestation 

corresponds to the early postnatal period (~P2-7) in rodents (Ansorge et al., 2004, Vitalis et al., 

2013), complicating the translation of findings from mouse pups to human infants. 

Nevertheless, several studies have investigated the effects of perinatal exposure to SSRIs, as this 

is the most commonly prescribed treatment for pre-and postpartum depression in women 

(Bennett et al., 2004). The results show that in-utero exposure to SSRIs can cause withdrawal 

symptoms and psychomotor deficits in human infants and neonate mice (Gentile and Galbally, 

2011, Hayes et al., 2012, Simpson et al., 2011, Zeskind and Stephens, 2004). Furthermore, 

increased HPA axis reactivity, as well as increased anxiety and social avoidance, have been 

described in young children and juvenile animals (Casper et al., 2003, Klinger et al., 2011, 

Oberlander et al., 2008, Zimmerberg and Germeyan, 2015). The long-term consequences of 

perinatal SSRI exposure in humans remain largely unknown (Glover et al., 2015), but animal 

models have revealed long-lasting effects on depression-like and anxiety-related behavior of 

pre- and postnatal exposure to SSRIs (Ansorge et al., 2008, Hansen et al., 1997). In addition, 

animal studies have shown that perinatal SSRI exposure can adversely impact on hippocampal 

neuroplasticity by reducing the expression of neurotrophic factors, such as BDNF (Karpova et 

al., 2009). Interestingly, when adverse early-life conditions are included in the study design, the 

benefits of the antidepressant treatment seem to outweigh the drawbacks. For instance, a 

recent animal study described that the adverse effects of prenatal stress exposure on HPA axis 

regulation and depression-like behavior could be reversed by chronic low-dose SSRI treatment 

during the pre- and postnatal period (Salari et al., 2016). In line with this, different studies 
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showed that prenatal stress-induced impairments in hippocampal neurogenesis and structural 

plasticity could be rescued by postnatal administration of SSRIs (Ishiwata et al., 2005, Rayen et 

al., 2011). These studies reported only minor or no negative effects of SSRI treatment alone, 

suggesting that timing, dosage, and route of administration are critical in this respect. Based on 

these promising findings, it may be possible to rescue the ELS-induced endophenotype of HR 

mice through postnatal treatment with low doses of SSRIs. To test this in an experiment, 

fluoxetine could be administered to the dam starting on P1, via the drinking water or using 

osmotic mini-pumps (previous studies employed low concentrations ranging from 5-8 

mg/kg/day (Rayen et al., 2011, Salari et al., 2016)), allowing the fluoxetine and its active 

metabolite to pass to the offspring while nursing (Gentile et al., 2007). The short-term effects of 

such antidepressant treatment in ELS- and STD-housed pups could then be determined on P9, 

at the level of gene expression, neuroendocrine regulation, and behavior. Lasting changes and a 

potential rescue effect of fluoxetine on ELS-induced endophenotypes of affective disorders 

should be assessed in adult animals. 

A different line of approach could be to attempt to counteract the lasting consequences of ELS in 

HR mice by SSRI treatment during adulthood. This has the advantage that considerations of 

interfering with early developmental processes of the serotonergic system can be neglected. 

However, treating mature animals has the disadvantage that any dysregulated neuroendocrine 

and molecular processes are already deeply entrenched, and have profoundly shaped 

downstream behavior over time (Lewis et al., 2014). Further, plasticity, required for change, 

may be harder to achieve in adults than in developing organisms (Kolb and Whishaw, 1998). 

Nevertheless, it has been demonstrated that SSRI treatment can reduce HPA axis hyper-

responsiveness in human adults, who experienced childhood trauma (Rinne et al., 2003). Thus, 

effective antidepressant treatment in adults can normalized HPA axis dysregulation (Holsboer 

and Barden, 1996, Schule et al., 2003), probably by increasing GR mRNA and protein levels in 

the hippocampus (Pariante and Miller, 2001, Seckl and Fink, 1992). In addition, SSRIs can 

contribute to enhanced plasticity by increasing serotonin levels in the brain, which is involved 

in the expression and secretion of BDNF (Martinowich and Lu, 2008, Surget et al., 2011). 

Whether a neuroendocrine normalization can be obtained by SSRI treatment in adult HR 

animals after ELS, and whether their hyperactive stress-coping behavior and cognitive deficits 

can also be ameliorated in this way, remains to be tested.  
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Lastly, one major drawback of the presented research is that it included only male test subjects. 

Unfortunately, this gender bias is still found in the vast majority of preclinical and clinical 

studies (Hayden, 2010, Holdcroft, 2007, Wald and Wu, 2010). There are, of course, several good 

reasons for why many researchers preferentially opt for male subjects. For instance, possibly 

the main reason is that males do not go through complex hormonal cycles, which would 

otherwise need to be taken into account in the design and analysis of the study (Becker et al., 

2005, Wizemann, 2001). For many research questions, using males therefore dramatically 

reduces the number of experimental subjects required, by increasing the homogeneity of the 

study population. Furthermore, the influence of gonadal hormones and sex chromosomes on 

behavior, neuroendocrine function, and gene expression can be very broad and many aspects 

remain poorly understood (Bale and Epperson, 2015), making it difficult to adequately control 

for potentially confounding effects. In addition, every new finding contributing to the body of 

existing research is built on previous findings and needs to be integrated into the current 

knowledge in order to move the field forward to new discoveries. Keeping the gender of 

experimental subjects constant increases the comparability of the results and often enables 

scientists to extrapolate from pervious findings (Eliot, 2011). In spite of these apparent 

advantages of male experimental subjects, more and more scientists and grant organizations 

are recognizing the importance of including females into their studies (Cahill, 2006, Clayton and 

Collins, 2014). This is especially critical for the study of affective disorders, as these afflict 

women twice as often as men (Altemus et al., 2014, Nestler et al., 2002). Therefore, in future 

research, the interaction of genetic predisposition in the SR mouse model and ELS should also 

be investigated in female animals. As sex-dependent difference in the neuroendocrine effects of 

perinatal stress have repeatedly been described (Bale and Epperson, 2015, Garcia-Caceres et al., 

2010, Glover and Hill, 2012, Weinstock, 2007, Mueller and Bale, 2008), it is likely that females 

will show a different response pattern to postnatal ELS exposure than their male siblings. 

Evidence from prenatal depression studies indicates a sexually dimorphic effect of prenatal 

stress, as it is generally proposed to increase the risk for neuroendocrine dysregulation and 

affective disorders in females, while males appear to be more likely to develop learning and 

memory difficulties and autism-spectrum disorders (Bale, 2011, Weinstock, 2007, Davis and 

Pfaff, 2014), but not all findings are consistent (Entringer et al., 2009, Glover and Hill, 2012). 

Other studies have investigated gender differences in susceptibility to postnatal stress (Arp et 

al., 2016, Elton et al., 2014, Horovitz et al., 2012, Lajud and Torner, 2015, Naninck et al., 2015, 

Oomen et al., 2011), but also these results are not yet fully conclusive and highlight the 
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importance of several influencing factors, including age, type of stressor, duration of stress 

exposure, and level of analysis or readout (Loi et al., 2014). To increase our understanding of 

the complex three-way interaction of genes, gender, and environment, a study exploring the 

consequences of ELS in female mice in the SR mouse model would be a promising future 

research project. 

5.6. Conclusion 
In conclusion, the results presented in this thesis demonstrate a high degree of construct and 

predictive validity in the SR mouse model, further establishing its value as a research tool to 

explore the molecular processes underlying the pathophysiology of MDD, as well as the 

neurobiological underpinnings of the antidepressant treatment response in 

melancholic/psychotic and atypical depression. In addition, using the SR model, we were able 

to show that mice with a genetic predisposition for high stress reactivity display a heightened 

vulnerability for lasting adverse consequences after ELS, affecting the neuroendocrine system 

and gene expression, as well as stress-coping behavior and cognitive function in early and late 

adulthood. These long-term consequences were preceded by acute changes in neuroendocrine 

readouts and gene expression in the PVN in vulnerable animals only, suggesting that a short-

term neuroendocrine dysregulation during the SHRP may be critically involved in programming 

the lasting endophenotypes. To further elucidate the processes underlying the developmental 

programming in this G × E interaction and to test their reversibility, we suggest studying the 

effects of an early or late intervention with pharmacological treatment. Moreover, valuable 

insights may be gained by changing the timing (e.g. postnatal or adulthood) and type (e.g. 

chronic mild stress, social defeat, or substance addiction) of the stress manipulation, as well as 

by repeating the experiments using female animals.  
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7.1. Abbreviations 

ACe Central Amygdala 

ACTH Adreno-Corticotropic Hormone  

ANOVA  Analysis of Variance 

AUC Area under the Curve 

AVP Arginine vasopressin 

BDNF Brain-derived Neurotrophic Factor 

BLA  Basolateral Amygdala 

BnST Bed Nucleus of the Stria Terminalis 

CAR  Cortisol Awakening Response 

CNS Central Nervous System 

CORT Corticosterone 

CRH  Corticotrophin-Releasing Hormone  

dDG Dorsal Dentate Gyrus 

DEX Dexamethasone  

DG Dentate Gyrus 

dHip Dorsal Hippocampus 

DSM  Diagnostic and Statistical Manual of 
Mental Disorders 

ELS Early-life Stress 

FKBP5 FK506 binding protein 5 

FST Forced Swim Test 

GABA Gamma-Aminobutyric Acid 

GC Glucocorticoid 

G × E Gene × Environment  

GR  Glucocorticoid Receptor 

GRE Glucocorticoid Response Element 

GWAS Genome-wide Association Studies 

HPA  Hypothalamic-Pituitary-Adrenal 

HPRT Hypoxanthine-Guanine 
Phosphoribosyltransferase 

HR  High Reactivity 

ITI Inter-trial Interval 

IR Intermediate Reactivity  

LR Low Reactivity 

LTP  Long-Term Potentiation 

MAOA Monoamine Oxidase A 

MAOI  Monoamine Oxidase Inhibitor 

MDD  Major Depressive Disorder  

MR Mineralocorticoid Receptor 

MWM Morris Water-Maze 

OFT Open Field Test 

ORT Object Recognition Test 

P Postnatal Day 

PFA Paraformaldehyde 

PFC  Prefrontal Cortex 

PTSD Posttraumatic Stress Disorder 
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PVN  Paraventricular Nucleus of the 
Hypothalamus 

PVT  Paraventricular Nucleus of the 
Thalamus  

qPCR  Quantitative Polymerase Chain 
Reaction 

REM Rapid Eye Movement 

RIA  Radioimmunoassay 

SD Standard Deviation 

SHRP Stress Hyporesponsive Period 

SNP  Single Nucleotide Polymorphism 

SNS  Sympathetic Nervous System 

SR  Stress Reactivity 

SRT Stress Reactivity Test 

SSRI Selective Serotonin Reuptake 
Inhibitor 

STD Standard 

TBP TATA-Binding Protein 

TCA Tricyclic Antidepressants 

TST Tail Suspension Test 

USV Ultrasonic Vocalization 

vDG  Ventral Dentate Gyrus 

vHip  Ventral Hippocampus 

WCM  Water Cross-Maze 

WHO World Health Organization 
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